xref: /openbmc/linux/drivers/net/ethernet/sfc/efx.c (revision 3b27d139)
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/ethtool.h>
21 #include <linux/topology.h>
22 #include <linux/gfp.h>
23 #include <linux/aer.h>
24 #include <linux/interrupt.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29 #include "sriov.h"
30 
31 #include "mcdi.h"
32 #include "workarounds.h"
33 
34 /**************************************************************************
35  *
36  * Type name strings
37  *
38  **************************************************************************
39  */
40 
41 /* Loopback mode names (see LOOPBACK_MODE()) */
42 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
43 const char *const efx_loopback_mode_names[] = {
44 	[LOOPBACK_NONE]		= "NONE",
45 	[LOOPBACK_DATA]		= "DATAPATH",
46 	[LOOPBACK_GMAC]		= "GMAC",
47 	[LOOPBACK_XGMII]	= "XGMII",
48 	[LOOPBACK_XGXS]		= "XGXS",
49 	[LOOPBACK_XAUI]		= "XAUI",
50 	[LOOPBACK_GMII]		= "GMII",
51 	[LOOPBACK_SGMII]	= "SGMII",
52 	[LOOPBACK_XGBR]		= "XGBR",
53 	[LOOPBACK_XFI]		= "XFI",
54 	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
55 	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
56 	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
57 	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
58 	[LOOPBACK_GPHY]		= "GPHY",
59 	[LOOPBACK_PHYXS]	= "PHYXS",
60 	[LOOPBACK_PCS]		= "PCS",
61 	[LOOPBACK_PMAPMD]	= "PMA/PMD",
62 	[LOOPBACK_XPORT]	= "XPORT",
63 	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
64 	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
65 	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
66 	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
67 	[LOOPBACK_GMII_WS]	= "GMII_WS",
68 	[LOOPBACK_XFI_WS]	= "XFI_WS",
69 	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
70 	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
71 };
72 
73 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
74 const char *const efx_reset_type_names[] = {
75 	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
76 	[RESET_TYPE_ALL]                = "ALL",
77 	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
78 	[RESET_TYPE_WORLD]              = "WORLD",
79 	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
80 	[RESET_TYPE_DATAPATH]           = "DATAPATH",
81 	[RESET_TYPE_MC_BIST]		= "MC_BIST",
82 	[RESET_TYPE_DISABLE]            = "DISABLE",
83 	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
84 	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
85 	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
86 	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
87 	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
88 	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
89 	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
90 };
91 
92 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
93  * queued onto this work queue. This is not a per-nic work queue, because
94  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
95  */
96 static struct workqueue_struct *reset_workqueue;
97 
98 /* How often and how many times to poll for a reset while waiting for a
99  * BIST that another function started to complete.
100  */
101 #define BIST_WAIT_DELAY_MS	100
102 #define BIST_WAIT_DELAY_COUNT	100
103 
104 /**************************************************************************
105  *
106  * Configurable values
107  *
108  *************************************************************************/
109 
110 /*
111  * Use separate channels for TX and RX events
112  *
113  * Set this to 1 to use separate channels for TX and RX. It allows us
114  * to control interrupt affinity separately for TX and RX.
115  *
116  * This is only used in MSI-X interrupt mode
117  */
118 static bool separate_tx_channels;
119 module_param(separate_tx_channels, bool, 0444);
120 MODULE_PARM_DESC(separate_tx_channels,
121 		 "Use separate channels for TX and RX");
122 
123 /* This is the weight assigned to each of the (per-channel) virtual
124  * NAPI devices.
125  */
126 static int napi_weight = 64;
127 
128 /* This is the time (in jiffies) between invocations of the hardware
129  * monitor.
130  * On Falcon-based NICs, this will:
131  * - Check the on-board hardware monitor;
132  * - Poll the link state and reconfigure the hardware as necessary.
133  * On Siena-based NICs for power systems with EEH support, this will give EEH a
134  * chance to start.
135  */
136 static unsigned int efx_monitor_interval = 1 * HZ;
137 
138 /* Initial interrupt moderation settings.  They can be modified after
139  * module load with ethtool.
140  *
141  * The default for RX should strike a balance between increasing the
142  * round-trip latency and reducing overhead.
143  */
144 static unsigned int rx_irq_mod_usec = 60;
145 
146 /* Initial interrupt moderation settings.  They can be modified after
147  * module load with ethtool.
148  *
149  * This default is chosen to ensure that a 10G link does not go idle
150  * while a TX queue is stopped after it has become full.  A queue is
151  * restarted when it drops below half full.  The time this takes (assuming
152  * worst case 3 descriptors per packet and 1024 descriptors) is
153  *   512 / 3 * 1.2 = 205 usec.
154  */
155 static unsigned int tx_irq_mod_usec = 150;
156 
157 /* This is the first interrupt mode to try out of:
158  * 0 => MSI-X
159  * 1 => MSI
160  * 2 => legacy
161  */
162 static unsigned int interrupt_mode;
163 
164 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
165  * i.e. the number of CPUs among which we may distribute simultaneous
166  * interrupt handling.
167  *
168  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
169  * The default (0) means to assign an interrupt to each core.
170  */
171 static unsigned int rss_cpus;
172 module_param(rss_cpus, uint, 0444);
173 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
174 
175 static bool phy_flash_cfg;
176 module_param(phy_flash_cfg, bool, 0644);
177 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
178 
179 static unsigned irq_adapt_low_thresh = 8000;
180 module_param(irq_adapt_low_thresh, uint, 0644);
181 MODULE_PARM_DESC(irq_adapt_low_thresh,
182 		 "Threshold score for reducing IRQ moderation");
183 
184 static unsigned irq_adapt_high_thresh = 16000;
185 module_param(irq_adapt_high_thresh, uint, 0644);
186 MODULE_PARM_DESC(irq_adapt_high_thresh,
187 		 "Threshold score for increasing IRQ moderation");
188 
189 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
190 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
191 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
192 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
193 module_param(debug, uint, 0);
194 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
195 
196 /**************************************************************************
197  *
198  * Utility functions and prototypes
199  *
200  *************************************************************************/
201 
202 static int efx_soft_enable_interrupts(struct efx_nic *efx);
203 static void efx_soft_disable_interrupts(struct efx_nic *efx);
204 static void efx_remove_channel(struct efx_channel *channel);
205 static void efx_remove_channels(struct efx_nic *efx);
206 static const struct efx_channel_type efx_default_channel_type;
207 static void efx_remove_port(struct efx_nic *efx);
208 static void efx_init_napi_channel(struct efx_channel *channel);
209 static void efx_fini_napi(struct efx_nic *efx);
210 static void efx_fini_napi_channel(struct efx_channel *channel);
211 static void efx_fini_struct(struct efx_nic *efx);
212 static void efx_start_all(struct efx_nic *efx);
213 static void efx_stop_all(struct efx_nic *efx);
214 
215 #define EFX_ASSERT_RESET_SERIALISED(efx)		\
216 	do {						\
217 		if ((efx->state == STATE_READY) ||	\
218 		    (efx->state == STATE_RECOVERY) ||	\
219 		    (efx->state == STATE_DISABLED))	\
220 			ASSERT_RTNL();			\
221 	} while (0)
222 
223 static int efx_check_disabled(struct efx_nic *efx)
224 {
225 	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
226 		netif_err(efx, drv, efx->net_dev,
227 			  "device is disabled due to earlier errors\n");
228 		return -EIO;
229 	}
230 	return 0;
231 }
232 
233 /**************************************************************************
234  *
235  * Event queue processing
236  *
237  *************************************************************************/
238 
239 /* Process channel's event queue
240  *
241  * This function is responsible for processing the event queue of a
242  * single channel.  The caller must guarantee that this function will
243  * never be concurrently called more than once on the same channel,
244  * though different channels may be being processed concurrently.
245  */
246 static int efx_process_channel(struct efx_channel *channel, int budget)
247 {
248 	struct efx_tx_queue *tx_queue;
249 	int spent;
250 
251 	if (unlikely(!channel->enabled))
252 		return 0;
253 
254 	efx_for_each_channel_tx_queue(tx_queue, channel) {
255 		tx_queue->pkts_compl = 0;
256 		tx_queue->bytes_compl = 0;
257 	}
258 
259 	spent = efx_nic_process_eventq(channel, budget);
260 	if (spent && efx_channel_has_rx_queue(channel)) {
261 		struct efx_rx_queue *rx_queue =
262 			efx_channel_get_rx_queue(channel);
263 
264 		efx_rx_flush_packet(channel);
265 		efx_fast_push_rx_descriptors(rx_queue, true);
266 	}
267 
268 	/* Update BQL */
269 	efx_for_each_channel_tx_queue(tx_queue, channel) {
270 		if (tx_queue->bytes_compl) {
271 			netdev_tx_completed_queue(tx_queue->core_txq,
272 				tx_queue->pkts_compl, tx_queue->bytes_compl);
273 		}
274 	}
275 
276 	return spent;
277 }
278 
279 /* NAPI poll handler
280  *
281  * NAPI guarantees serialisation of polls of the same device, which
282  * provides the guarantee required by efx_process_channel().
283  */
284 static int efx_poll(struct napi_struct *napi, int budget)
285 {
286 	struct efx_channel *channel =
287 		container_of(napi, struct efx_channel, napi_str);
288 	struct efx_nic *efx = channel->efx;
289 	int spent;
290 
291 	if (!efx_channel_lock_napi(channel))
292 		return budget;
293 
294 	netif_vdbg(efx, intr, efx->net_dev,
295 		   "channel %d NAPI poll executing on CPU %d\n",
296 		   channel->channel, raw_smp_processor_id());
297 
298 	spent = efx_process_channel(channel, budget);
299 
300 	if (spent < budget) {
301 		if (efx_channel_has_rx_queue(channel) &&
302 		    efx->irq_rx_adaptive &&
303 		    unlikely(++channel->irq_count == 1000)) {
304 			if (unlikely(channel->irq_mod_score <
305 				     irq_adapt_low_thresh)) {
306 				if (channel->irq_moderation > 1) {
307 					channel->irq_moderation -= 1;
308 					efx->type->push_irq_moderation(channel);
309 				}
310 			} else if (unlikely(channel->irq_mod_score >
311 					    irq_adapt_high_thresh)) {
312 				if (channel->irq_moderation <
313 				    efx->irq_rx_moderation) {
314 					channel->irq_moderation += 1;
315 					efx->type->push_irq_moderation(channel);
316 				}
317 			}
318 			channel->irq_count = 0;
319 			channel->irq_mod_score = 0;
320 		}
321 
322 		efx_filter_rfs_expire(channel);
323 
324 		/* There is no race here; although napi_disable() will
325 		 * only wait for napi_complete(), this isn't a problem
326 		 * since efx_nic_eventq_read_ack() will have no effect if
327 		 * interrupts have already been disabled.
328 		 */
329 		napi_complete(napi);
330 		efx_nic_eventq_read_ack(channel);
331 	}
332 
333 	efx_channel_unlock_napi(channel);
334 	return spent;
335 }
336 
337 /* Create event queue
338  * Event queue memory allocations are done only once.  If the channel
339  * is reset, the memory buffer will be reused; this guards against
340  * errors during channel reset and also simplifies interrupt handling.
341  */
342 static int efx_probe_eventq(struct efx_channel *channel)
343 {
344 	struct efx_nic *efx = channel->efx;
345 	unsigned long entries;
346 
347 	netif_dbg(efx, probe, efx->net_dev,
348 		  "chan %d create event queue\n", channel->channel);
349 
350 	/* Build an event queue with room for one event per tx and rx buffer,
351 	 * plus some extra for link state events and MCDI completions. */
352 	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
353 	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
354 	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
355 
356 	return efx_nic_probe_eventq(channel);
357 }
358 
359 /* Prepare channel's event queue */
360 static int efx_init_eventq(struct efx_channel *channel)
361 {
362 	struct efx_nic *efx = channel->efx;
363 	int rc;
364 
365 	EFX_WARN_ON_PARANOID(channel->eventq_init);
366 
367 	netif_dbg(efx, drv, efx->net_dev,
368 		  "chan %d init event queue\n", channel->channel);
369 
370 	rc = efx_nic_init_eventq(channel);
371 	if (rc == 0) {
372 		efx->type->push_irq_moderation(channel);
373 		channel->eventq_read_ptr = 0;
374 		channel->eventq_init = true;
375 	}
376 	return rc;
377 }
378 
379 /* Enable event queue processing and NAPI */
380 void efx_start_eventq(struct efx_channel *channel)
381 {
382 	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
383 		  "chan %d start event queue\n", channel->channel);
384 
385 	/* Make sure the NAPI handler sees the enabled flag set */
386 	channel->enabled = true;
387 	smp_wmb();
388 
389 	efx_channel_enable(channel);
390 	napi_enable(&channel->napi_str);
391 	efx_nic_eventq_read_ack(channel);
392 }
393 
394 /* Disable event queue processing and NAPI */
395 void efx_stop_eventq(struct efx_channel *channel)
396 {
397 	if (!channel->enabled)
398 		return;
399 
400 	napi_disable(&channel->napi_str);
401 	while (!efx_channel_disable(channel))
402 		usleep_range(1000, 20000);
403 	channel->enabled = false;
404 }
405 
406 static void efx_fini_eventq(struct efx_channel *channel)
407 {
408 	if (!channel->eventq_init)
409 		return;
410 
411 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
412 		  "chan %d fini event queue\n", channel->channel);
413 
414 	efx_nic_fini_eventq(channel);
415 	channel->eventq_init = false;
416 }
417 
418 static void efx_remove_eventq(struct efx_channel *channel)
419 {
420 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
421 		  "chan %d remove event queue\n", channel->channel);
422 
423 	efx_nic_remove_eventq(channel);
424 }
425 
426 /**************************************************************************
427  *
428  * Channel handling
429  *
430  *************************************************************************/
431 
432 /* Allocate and initialise a channel structure. */
433 static struct efx_channel *
434 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
435 {
436 	struct efx_channel *channel;
437 	struct efx_rx_queue *rx_queue;
438 	struct efx_tx_queue *tx_queue;
439 	int j;
440 
441 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
442 	if (!channel)
443 		return NULL;
444 
445 	channel->efx = efx;
446 	channel->channel = i;
447 	channel->type = &efx_default_channel_type;
448 
449 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
450 		tx_queue = &channel->tx_queue[j];
451 		tx_queue->efx = efx;
452 		tx_queue->queue = i * EFX_TXQ_TYPES + j;
453 		tx_queue->channel = channel;
454 	}
455 
456 	rx_queue = &channel->rx_queue;
457 	rx_queue->efx = efx;
458 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
459 		    (unsigned long)rx_queue);
460 
461 	return channel;
462 }
463 
464 /* Allocate and initialise a channel structure, copying parameters
465  * (but not resources) from an old channel structure.
466  */
467 static struct efx_channel *
468 efx_copy_channel(const struct efx_channel *old_channel)
469 {
470 	struct efx_channel *channel;
471 	struct efx_rx_queue *rx_queue;
472 	struct efx_tx_queue *tx_queue;
473 	int j;
474 
475 	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
476 	if (!channel)
477 		return NULL;
478 
479 	*channel = *old_channel;
480 
481 	channel->napi_dev = NULL;
482 	memset(&channel->eventq, 0, sizeof(channel->eventq));
483 
484 	for (j = 0; j < EFX_TXQ_TYPES; j++) {
485 		tx_queue = &channel->tx_queue[j];
486 		if (tx_queue->channel)
487 			tx_queue->channel = channel;
488 		tx_queue->buffer = NULL;
489 		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
490 	}
491 
492 	rx_queue = &channel->rx_queue;
493 	rx_queue->buffer = NULL;
494 	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
495 	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
496 		    (unsigned long)rx_queue);
497 
498 	return channel;
499 }
500 
501 static int efx_probe_channel(struct efx_channel *channel)
502 {
503 	struct efx_tx_queue *tx_queue;
504 	struct efx_rx_queue *rx_queue;
505 	int rc;
506 
507 	netif_dbg(channel->efx, probe, channel->efx->net_dev,
508 		  "creating channel %d\n", channel->channel);
509 
510 	rc = channel->type->pre_probe(channel);
511 	if (rc)
512 		goto fail;
513 
514 	rc = efx_probe_eventq(channel);
515 	if (rc)
516 		goto fail;
517 
518 	efx_for_each_channel_tx_queue(tx_queue, channel) {
519 		rc = efx_probe_tx_queue(tx_queue);
520 		if (rc)
521 			goto fail;
522 	}
523 
524 	efx_for_each_channel_rx_queue(rx_queue, channel) {
525 		rc = efx_probe_rx_queue(rx_queue);
526 		if (rc)
527 			goto fail;
528 	}
529 
530 	return 0;
531 
532 fail:
533 	efx_remove_channel(channel);
534 	return rc;
535 }
536 
537 static void
538 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
539 {
540 	struct efx_nic *efx = channel->efx;
541 	const char *type;
542 	int number;
543 
544 	number = channel->channel;
545 	if (efx->tx_channel_offset == 0) {
546 		type = "";
547 	} else if (channel->channel < efx->tx_channel_offset) {
548 		type = "-rx";
549 	} else {
550 		type = "-tx";
551 		number -= efx->tx_channel_offset;
552 	}
553 	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
554 }
555 
556 static void efx_set_channel_names(struct efx_nic *efx)
557 {
558 	struct efx_channel *channel;
559 
560 	efx_for_each_channel(channel, efx)
561 		channel->type->get_name(channel,
562 					efx->msi_context[channel->channel].name,
563 					sizeof(efx->msi_context[0].name));
564 }
565 
566 static int efx_probe_channels(struct efx_nic *efx)
567 {
568 	struct efx_channel *channel;
569 	int rc;
570 
571 	/* Restart special buffer allocation */
572 	efx->next_buffer_table = 0;
573 
574 	/* Probe channels in reverse, so that any 'extra' channels
575 	 * use the start of the buffer table. This allows the traffic
576 	 * channels to be resized without moving them or wasting the
577 	 * entries before them.
578 	 */
579 	efx_for_each_channel_rev(channel, efx) {
580 		rc = efx_probe_channel(channel);
581 		if (rc) {
582 			netif_err(efx, probe, efx->net_dev,
583 				  "failed to create channel %d\n",
584 				  channel->channel);
585 			goto fail;
586 		}
587 	}
588 	efx_set_channel_names(efx);
589 
590 	return 0;
591 
592 fail:
593 	efx_remove_channels(efx);
594 	return rc;
595 }
596 
597 /* Channels are shutdown and reinitialised whilst the NIC is running
598  * to propagate configuration changes (mtu, checksum offload), or
599  * to clear hardware error conditions
600  */
601 static void efx_start_datapath(struct efx_nic *efx)
602 {
603 	bool old_rx_scatter = efx->rx_scatter;
604 	struct efx_tx_queue *tx_queue;
605 	struct efx_rx_queue *rx_queue;
606 	struct efx_channel *channel;
607 	size_t rx_buf_len;
608 
609 	/* Calculate the rx buffer allocation parameters required to
610 	 * support the current MTU, including padding for header
611 	 * alignment and overruns.
612 	 */
613 	efx->rx_dma_len = (efx->rx_prefix_size +
614 			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
615 			   efx->type->rx_buffer_padding);
616 	rx_buf_len = (sizeof(struct efx_rx_page_state) +
617 		      efx->rx_ip_align + efx->rx_dma_len);
618 	if (rx_buf_len <= PAGE_SIZE) {
619 		efx->rx_scatter = efx->type->always_rx_scatter;
620 		efx->rx_buffer_order = 0;
621 	} else if (efx->type->can_rx_scatter) {
622 		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
623 		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
624 			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
625 				       EFX_RX_BUF_ALIGNMENT) >
626 			     PAGE_SIZE);
627 		efx->rx_scatter = true;
628 		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
629 		efx->rx_buffer_order = 0;
630 	} else {
631 		efx->rx_scatter = false;
632 		efx->rx_buffer_order = get_order(rx_buf_len);
633 	}
634 
635 	efx_rx_config_page_split(efx);
636 	if (efx->rx_buffer_order)
637 		netif_dbg(efx, drv, efx->net_dev,
638 			  "RX buf len=%u; page order=%u batch=%u\n",
639 			  efx->rx_dma_len, efx->rx_buffer_order,
640 			  efx->rx_pages_per_batch);
641 	else
642 		netif_dbg(efx, drv, efx->net_dev,
643 			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
644 			  efx->rx_dma_len, efx->rx_page_buf_step,
645 			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
646 
647 	/* RX filters may also have scatter-enabled flags */
648 	if (efx->rx_scatter != old_rx_scatter)
649 		efx->type->filter_update_rx_scatter(efx);
650 
651 	/* We must keep at least one descriptor in a TX ring empty.
652 	 * We could avoid this when the queue size does not exactly
653 	 * match the hardware ring size, but it's not that important.
654 	 * Therefore we stop the queue when one more skb might fill
655 	 * the ring completely.  We wake it when half way back to
656 	 * empty.
657 	 */
658 	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
659 	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
660 
661 	/* Initialise the channels */
662 	efx_for_each_channel(channel, efx) {
663 		efx_for_each_channel_tx_queue(tx_queue, channel) {
664 			efx_init_tx_queue(tx_queue);
665 			atomic_inc(&efx->active_queues);
666 		}
667 
668 		efx_for_each_channel_rx_queue(rx_queue, channel) {
669 			efx_init_rx_queue(rx_queue);
670 			atomic_inc(&efx->active_queues);
671 			efx_stop_eventq(channel);
672 			efx_fast_push_rx_descriptors(rx_queue, false);
673 			efx_start_eventq(channel);
674 		}
675 
676 		WARN_ON(channel->rx_pkt_n_frags);
677 	}
678 
679 	efx_ptp_start_datapath(efx);
680 
681 	if (netif_device_present(efx->net_dev))
682 		netif_tx_wake_all_queues(efx->net_dev);
683 }
684 
685 static void efx_stop_datapath(struct efx_nic *efx)
686 {
687 	struct efx_channel *channel;
688 	struct efx_tx_queue *tx_queue;
689 	struct efx_rx_queue *rx_queue;
690 	int rc;
691 
692 	EFX_ASSERT_RESET_SERIALISED(efx);
693 	BUG_ON(efx->port_enabled);
694 
695 	efx_ptp_stop_datapath(efx);
696 
697 	/* Stop RX refill */
698 	efx_for_each_channel(channel, efx) {
699 		efx_for_each_channel_rx_queue(rx_queue, channel)
700 			rx_queue->refill_enabled = false;
701 	}
702 
703 	efx_for_each_channel(channel, efx) {
704 		/* RX packet processing is pipelined, so wait for the
705 		 * NAPI handler to complete.  At least event queue 0
706 		 * might be kept active by non-data events, so don't
707 		 * use napi_synchronize() but actually disable NAPI
708 		 * temporarily.
709 		 */
710 		if (efx_channel_has_rx_queue(channel)) {
711 			efx_stop_eventq(channel);
712 			efx_start_eventq(channel);
713 		}
714 	}
715 
716 	rc = efx->type->fini_dmaq(efx);
717 	if (rc && EFX_WORKAROUND_7803(efx)) {
718 		/* Schedule a reset to recover from the flush failure. The
719 		 * descriptor caches reference memory we're about to free,
720 		 * but falcon_reconfigure_mac_wrapper() won't reconnect
721 		 * the MACs because of the pending reset.
722 		 */
723 		netif_err(efx, drv, efx->net_dev,
724 			  "Resetting to recover from flush failure\n");
725 		efx_schedule_reset(efx, RESET_TYPE_ALL);
726 	} else if (rc) {
727 		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
728 	} else {
729 		netif_dbg(efx, drv, efx->net_dev,
730 			  "successfully flushed all queues\n");
731 	}
732 
733 	efx_for_each_channel(channel, efx) {
734 		efx_for_each_channel_rx_queue(rx_queue, channel)
735 			efx_fini_rx_queue(rx_queue);
736 		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
737 			efx_fini_tx_queue(tx_queue);
738 	}
739 }
740 
741 static void efx_remove_channel(struct efx_channel *channel)
742 {
743 	struct efx_tx_queue *tx_queue;
744 	struct efx_rx_queue *rx_queue;
745 
746 	netif_dbg(channel->efx, drv, channel->efx->net_dev,
747 		  "destroy chan %d\n", channel->channel);
748 
749 	efx_for_each_channel_rx_queue(rx_queue, channel)
750 		efx_remove_rx_queue(rx_queue);
751 	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
752 		efx_remove_tx_queue(tx_queue);
753 	efx_remove_eventq(channel);
754 	channel->type->post_remove(channel);
755 }
756 
757 static void efx_remove_channels(struct efx_nic *efx)
758 {
759 	struct efx_channel *channel;
760 
761 	efx_for_each_channel(channel, efx)
762 		efx_remove_channel(channel);
763 }
764 
765 int
766 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
767 {
768 	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
769 	u32 old_rxq_entries, old_txq_entries;
770 	unsigned i, next_buffer_table = 0;
771 	int rc, rc2;
772 
773 	rc = efx_check_disabled(efx);
774 	if (rc)
775 		return rc;
776 
777 	/* Not all channels should be reallocated. We must avoid
778 	 * reallocating their buffer table entries.
779 	 */
780 	efx_for_each_channel(channel, efx) {
781 		struct efx_rx_queue *rx_queue;
782 		struct efx_tx_queue *tx_queue;
783 
784 		if (channel->type->copy)
785 			continue;
786 		next_buffer_table = max(next_buffer_table,
787 					channel->eventq.index +
788 					channel->eventq.entries);
789 		efx_for_each_channel_rx_queue(rx_queue, channel)
790 			next_buffer_table = max(next_buffer_table,
791 						rx_queue->rxd.index +
792 						rx_queue->rxd.entries);
793 		efx_for_each_channel_tx_queue(tx_queue, channel)
794 			next_buffer_table = max(next_buffer_table,
795 						tx_queue->txd.index +
796 						tx_queue->txd.entries);
797 	}
798 
799 	efx_device_detach_sync(efx);
800 	efx_stop_all(efx);
801 	efx_soft_disable_interrupts(efx);
802 
803 	/* Clone channels (where possible) */
804 	memset(other_channel, 0, sizeof(other_channel));
805 	for (i = 0; i < efx->n_channels; i++) {
806 		channel = efx->channel[i];
807 		if (channel->type->copy)
808 			channel = channel->type->copy(channel);
809 		if (!channel) {
810 			rc = -ENOMEM;
811 			goto out;
812 		}
813 		other_channel[i] = channel;
814 	}
815 
816 	/* Swap entry counts and channel pointers */
817 	old_rxq_entries = efx->rxq_entries;
818 	old_txq_entries = efx->txq_entries;
819 	efx->rxq_entries = rxq_entries;
820 	efx->txq_entries = txq_entries;
821 	for (i = 0; i < efx->n_channels; i++) {
822 		channel = efx->channel[i];
823 		efx->channel[i] = other_channel[i];
824 		other_channel[i] = channel;
825 	}
826 
827 	/* Restart buffer table allocation */
828 	efx->next_buffer_table = next_buffer_table;
829 
830 	for (i = 0; i < efx->n_channels; i++) {
831 		channel = efx->channel[i];
832 		if (!channel->type->copy)
833 			continue;
834 		rc = efx_probe_channel(channel);
835 		if (rc)
836 			goto rollback;
837 		efx_init_napi_channel(efx->channel[i]);
838 	}
839 
840 out:
841 	/* Destroy unused channel structures */
842 	for (i = 0; i < efx->n_channels; i++) {
843 		channel = other_channel[i];
844 		if (channel && channel->type->copy) {
845 			efx_fini_napi_channel(channel);
846 			efx_remove_channel(channel);
847 			kfree(channel);
848 		}
849 	}
850 
851 	rc2 = efx_soft_enable_interrupts(efx);
852 	if (rc2) {
853 		rc = rc ? rc : rc2;
854 		netif_err(efx, drv, efx->net_dev,
855 			  "unable to restart interrupts on channel reallocation\n");
856 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
857 	} else {
858 		efx_start_all(efx);
859 		netif_device_attach(efx->net_dev);
860 	}
861 	return rc;
862 
863 rollback:
864 	/* Swap back */
865 	efx->rxq_entries = old_rxq_entries;
866 	efx->txq_entries = old_txq_entries;
867 	for (i = 0; i < efx->n_channels; i++) {
868 		channel = efx->channel[i];
869 		efx->channel[i] = other_channel[i];
870 		other_channel[i] = channel;
871 	}
872 	goto out;
873 }
874 
875 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
876 {
877 	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
878 }
879 
880 static const struct efx_channel_type efx_default_channel_type = {
881 	.pre_probe		= efx_channel_dummy_op_int,
882 	.post_remove		= efx_channel_dummy_op_void,
883 	.get_name		= efx_get_channel_name,
884 	.copy			= efx_copy_channel,
885 	.keep_eventq		= false,
886 };
887 
888 int efx_channel_dummy_op_int(struct efx_channel *channel)
889 {
890 	return 0;
891 }
892 
893 void efx_channel_dummy_op_void(struct efx_channel *channel)
894 {
895 }
896 
897 /**************************************************************************
898  *
899  * Port handling
900  *
901  **************************************************************************/
902 
903 /* This ensures that the kernel is kept informed (via
904  * netif_carrier_on/off) of the link status, and also maintains the
905  * link status's stop on the port's TX queue.
906  */
907 void efx_link_status_changed(struct efx_nic *efx)
908 {
909 	struct efx_link_state *link_state = &efx->link_state;
910 
911 	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
912 	 * that no events are triggered between unregister_netdev() and the
913 	 * driver unloading. A more general condition is that NETDEV_CHANGE
914 	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
915 	if (!netif_running(efx->net_dev))
916 		return;
917 
918 	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
919 		efx->n_link_state_changes++;
920 
921 		if (link_state->up)
922 			netif_carrier_on(efx->net_dev);
923 		else
924 			netif_carrier_off(efx->net_dev);
925 	}
926 
927 	/* Status message for kernel log */
928 	if (link_state->up)
929 		netif_info(efx, link, efx->net_dev,
930 			   "link up at %uMbps %s-duplex (MTU %d)\n",
931 			   link_state->speed, link_state->fd ? "full" : "half",
932 			   efx->net_dev->mtu);
933 	else
934 		netif_info(efx, link, efx->net_dev, "link down\n");
935 }
936 
937 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
938 {
939 	efx->link_advertising = advertising;
940 	if (advertising) {
941 		if (advertising & ADVERTISED_Pause)
942 			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
943 		else
944 			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
945 		if (advertising & ADVERTISED_Asym_Pause)
946 			efx->wanted_fc ^= EFX_FC_TX;
947 	}
948 }
949 
950 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
951 {
952 	efx->wanted_fc = wanted_fc;
953 	if (efx->link_advertising) {
954 		if (wanted_fc & EFX_FC_RX)
955 			efx->link_advertising |= (ADVERTISED_Pause |
956 						  ADVERTISED_Asym_Pause);
957 		else
958 			efx->link_advertising &= ~(ADVERTISED_Pause |
959 						   ADVERTISED_Asym_Pause);
960 		if (wanted_fc & EFX_FC_TX)
961 			efx->link_advertising ^= ADVERTISED_Asym_Pause;
962 	}
963 }
964 
965 static void efx_fini_port(struct efx_nic *efx);
966 
967 /* We assume that efx->type->reconfigure_mac will always try to sync RX
968  * filters and therefore needs to read-lock the filter table against freeing
969  */
970 void efx_mac_reconfigure(struct efx_nic *efx)
971 {
972 	down_read(&efx->filter_sem);
973 	efx->type->reconfigure_mac(efx);
974 	up_read(&efx->filter_sem);
975 }
976 
977 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
978  * the MAC appropriately. All other PHY configuration changes are pushed
979  * through phy_op->set_settings(), and pushed asynchronously to the MAC
980  * through efx_monitor().
981  *
982  * Callers must hold the mac_lock
983  */
984 int __efx_reconfigure_port(struct efx_nic *efx)
985 {
986 	enum efx_phy_mode phy_mode;
987 	int rc;
988 
989 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
990 
991 	/* Disable PHY transmit in mac level loopbacks */
992 	phy_mode = efx->phy_mode;
993 	if (LOOPBACK_INTERNAL(efx))
994 		efx->phy_mode |= PHY_MODE_TX_DISABLED;
995 	else
996 		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
997 
998 	rc = efx->type->reconfigure_port(efx);
999 
1000 	if (rc)
1001 		efx->phy_mode = phy_mode;
1002 
1003 	return rc;
1004 }
1005 
1006 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1007  * disabled. */
1008 int efx_reconfigure_port(struct efx_nic *efx)
1009 {
1010 	int rc;
1011 
1012 	EFX_ASSERT_RESET_SERIALISED(efx);
1013 
1014 	mutex_lock(&efx->mac_lock);
1015 	rc = __efx_reconfigure_port(efx);
1016 	mutex_unlock(&efx->mac_lock);
1017 
1018 	return rc;
1019 }
1020 
1021 /* Asynchronous work item for changing MAC promiscuity and multicast
1022  * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1023  * MAC directly. */
1024 static void efx_mac_work(struct work_struct *data)
1025 {
1026 	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1027 
1028 	mutex_lock(&efx->mac_lock);
1029 	if (efx->port_enabled)
1030 		efx_mac_reconfigure(efx);
1031 	mutex_unlock(&efx->mac_lock);
1032 }
1033 
1034 static int efx_probe_port(struct efx_nic *efx)
1035 {
1036 	int rc;
1037 
1038 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1039 
1040 	if (phy_flash_cfg)
1041 		efx->phy_mode = PHY_MODE_SPECIAL;
1042 
1043 	/* Connect up MAC/PHY operations table */
1044 	rc = efx->type->probe_port(efx);
1045 	if (rc)
1046 		return rc;
1047 
1048 	/* Initialise MAC address to permanent address */
1049 	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1050 
1051 	return 0;
1052 }
1053 
1054 static int efx_init_port(struct efx_nic *efx)
1055 {
1056 	int rc;
1057 
1058 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1059 
1060 	mutex_lock(&efx->mac_lock);
1061 
1062 	rc = efx->phy_op->init(efx);
1063 	if (rc)
1064 		goto fail1;
1065 
1066 	efx->port_initialized = true;
1067 
1068 	/* Reconfigure the MAC before creating dma queues (required for
1069 	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1070 	efx_mac_reconfigure(efx);
1071 
1072 	/* Ensure the PHY advertises the correct flow control settings */
1073 	rc = efx->phy_op->reconfigure(efx);
1074 	if (rc && rc != -EPERM)
1075 		goto fail2;
1076 
1077 	mutex_unlock(&efx->mac_lock);
1078 	return 0;
1079 
1080 fail2:
1081 	efx->phy_op->fini(efx);
1082 fail1:
1083 	mutex_unlock(&efx->mac_lock);
1084 	return rc;
1085 }
1086 
1087 static void efx_start_port(struct efx_nic *efx)
1088 {
1089 	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1090 	BUG_ON(efx->port_enabled);
1091 
1092 	mutex_lock(&efx->mac_lock);
1093 	efx->port_enabled = true;
1094 
1095 	/* Ensure MAC ingress/egress is enabled */
1096 	efx_mac_reconfigure(efx);
1097 
1098 	mutex_unlock(&efx->mac_lock);
1099 }
1100 
1101 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1102  * and the async self-test, wait for them to finish and prevent them
1103  * being scheduled again.  This doesn't cover online resets, which
1104  * should only be cancelled when removing the device.
1105  */
1106 static void efx_stop_port(struct efx_nic *efx)
1107 {
1108 	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1109 
1110 	EFX_ASSERT_RESET_SERIALISED(efx);
1111 
1112 	mutex_lock(&efx->mac_lock);
1113 	efx->port_enabled = false;
1114 	mutex_unlock(&efx->mac_lock);
1115 
1116 	/* Serialise against efx_set_multicast_list() */
1117 	netif_addr_lock_bh(efx->net_dev);
1118 	netif_addr_unlock_bh(efx->net_dev);
1119 
1120 	cancel_delayed_work_sync(&efx->monitor_work);
1121 	efx_selftest_async_cancel(efx);
1122 	cancel_work_sync(&efx->mac_work);
1123 }
1124 
1125 static void efx_fini_port(struct efx_nic *efx)
1126 {
1127 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1128 
1129 	if (!efx->port_initialized)
1130 		return;
1131 
1132 	efx->phy_op->fini(efx);
1133 	efx->port_initialized = false;
1134 
1135 	efx->link_state.up = false;
1136 	efx_link_status_changed(efx);
1137 }
1138 
1139 static void efx_remove_port(struct efx_nic *efx)
1140 {
1141 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1142 
1143 	efx->type->remove_port(efx);
1144 }
1145 
1146 /**************************************************************************
1147  *
1148  * NIC handling
1149  *
1150  **************************************************************************/
1151 
1152 static LIST_HEAD(efx_primary_list);
1153 static LIST_HEAD(efx_unassociated_list);
1154 
1155 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1156 {
1157 	return left->type == right->type &&
1158 		left->vpd_sn && right->vpd_sn &&
1159 		!strcmp(left->vpd_sn, right->vpd_sn);
1160 }
1161 
1162 static void efx_associate(struct efx_nic *efx)
1163 {
1164 	struct efx_nic *other, *next;
1165 
1166 	if (efx->primary == efx) {
1167 		/* Adding primary function; look for secondaries */
1168 
1169 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1170 		list_add_tail(&efx->node, &efx_primary_list);
1171 
1172 		list_for_each_entry_safe(other, next, &efx_unassociated_list,
1173 					 node) {
1174 			if (efx_same_controller(efx, other)) {
1175 				list_del(&other->node);
1176 				netif_dbg(other, probe, other->net_dev,
1177 					  "moving to secondary list of %s %s\n",
1178 					  pci_name(efx->pci_dev),
1179 					  efx->net_dev->name);
1180 				list_add_tail(&other->node,
1181 					      &efx->secondary_list);
1182 				other->primary = efx;
1183 			}
1184 		}
1185 	} else {
1186 		/* Adding secondary function; look for primary */
1187 
1188 		list_for_each_entry(other, &efx_primary_list, node) {
1189 			if (efx_same_controller(efx, other)) {
1190 				netif_dbg(efx, probe, efx->net_dev,
1191 					  "adding to secondary list of %s %s\n",
1192 					  pci_name(other->pci_dev),
1193 					  other->net_dev->name);
1194 				list_add_tail(&efx->node,
1195 					      &other->secondary_list);
1196 				efx->primary = other;
1197 				return;
1198 			}
1199 		}
1200 
1201 		netif_dbg(efx, probe, efx->net_dev,
1202 			  "adding to unassociated list\n");
1203 		list_add_tail(&efx->node, &efx_unassociated_list);
1204 	}
1205 }
1206 
1207 static void efx_dissociate(struct efx_nic *efx)
1208 {
1209 	struct efx_nic *other, *next;
1210 
1211 	list_del(&efx->node);
1212 	efx->primary = NULL;
1213 
1214 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1215 		list_del(&other->node);
1216 		netif_dbg(other, probe, other->net_dev,
1217 			  "moving to unassociated list\n");
1218 		list_add_tail(&other->node, &efx_unassociated_list);
1219 		other->primary = NULL;
1220 	}
1221 }
1222 
1223 /* This configures the PCI device to enable I/O and DMA. */
1224 static int efx_init_io(struct efx_nic *efx)
1225 {
1226 	struct pci_dev *pci_dev = efx->pci_dev;
1227 	dma_addr_t dma_mask = efx->type->max_dma_mask;
1228 	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1229 	int rc, bar;
1230 
1231 	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1232 
1233 	bar = efx->type->mem_bar;
1234 
1235 	rc = pci_enable_device(pci_dev);
1236 	if (rc) {
1237 		netif_err(efx, probe, efx->net_dev,
1238 			  "failed to enable PCI device\n");
1239 		goto fail1;
1240 	}
1241 
1242 	pci_set_master(pci_dev);
1243 
1244 	/* Set the PCI DMA mask.  Try all possibilities from our
1245 	 * genuine mask down to 32 bits, because some architectures
1246 	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1247 	 * masks event though they reject 46 bit masks.
1248 	 */
1249 	while (dma_mask > 0x7fffffffUL) {
1250 		if (dma_supported(&pci_dev->dev, dma_mask)) {
1251 			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1252 			if (rc == 0)
1253 				break;
1254 		}
1255 		dma_mask >>= 1;
1256 	}
1257 	if (rc) {
1258 		netif_err(efx, probe, efx->net_dev,
1259 			  "could not find a suitable DMA mask\n");
1260 		goto fail2;
1261 	}
1262 	netif_dbg(efx, probe, efx->net_dev,
1263 		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1264 
1265 	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1266 	rc = pci_request_region(pci_dev, bar, "sfc");
1267 	if (rc) {
1268 		netif_err(efx, probe, efx->net_dev,
1269 			  "request for memory BAR failed\n");
1270 		rc = -EIO;
1271 		goto fail3;
1272 	}
1273 	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1274 	if (!efx->membase) {
1275 		netif_err(efx, probe, efx->net_dev,
1276 			  "could not map memory BAR at %llx+%x\n",
1277 			  (unsigned long long)efx->membase_phys, mem_map_size);
1278 		rc = -ENOMEM;
1279 		goto fail4;
1280 	}
1281 	netif_dbg(efx, probe, efx->net_dev,
1282 		  "memory BAR at %llx+%x (virtual %p)\n",
1283 		  (unsigned long long)efx->membase_phys, mem_map_size,
1284 		  efx->membase);
1285 
1286 	return 0;
1287 
1288  fail4:
1289 	pci_release_region(efx->pci_dev, bar);
1290  fail3:
1291 	efx->membase_phys = 0;
1292  fail2:
1293 	pci_disable_device(efx->pci_dev);
1294  fail1:
1295 	return rc;
1296 }
1297 
1298 static void efx_fini_io(struct efx_nic *efx)
1299 {
1300 	int bar;
1301 
1302 	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1303 
1304 	if (efx->membase) {
1305 		iounmap(efx->membase);
1306 		efx->membase = NULL;
1307 	}
1308 
1309 	if (efx->membase_phys) {
1310 		bar = efx->type->mem_bar;
1311 		pci_release_region(efx->pci_dev, bar);
1312 		efx->membase_phys = 0;
1313 	}
1314 
1315 	/* Don't disable bus-mastering if VFs are assigned */
1316 	if (!pci_vfs_assigned(efx->pci_dev))
1317 		pci_disable_device(efx->pci_dev);
1318 }
1319 
1320 void efx_set_default_rx_indir_table(struct efx_nic *efx)
1321 {
1322 	size_t i;
1323 
1324 	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1325 		efx->rx_indir_table[i] =
1326 			ethtool_rxfh_indir_default(i, efx->rss_spread);
1327 }
1328 
1329 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1330 {
1331 	cpumask_var_t thread_mask;
1332 	unsigned int count;
1333 	int cpu;
1334 
1335 	if (rss_cpus) {
1336 		count = rss_cpus;
1337 	} else {
1338 		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1339 			netif_warn(efx, probe, efx->net_dev,
1340 				   "RSS disabled due to allocation failure\n");
1341 			return 1;
1342 		}
1343 
1344 		count = 0;
1345 		for_each_online_cpu(cpu) {
1346 			if (!cpumask_test_cpu(cpu, thread_mask)) {
1347 				++count;
1348 				cpumask_or(thread_mask, thread_mask,
1349 					   topology_sibling_cpumask(cpu));
1350 			}
1351 		}
1352 
1353 		free_cpumask_var(thread_mask);
1354 	}
1355 
1356 	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1357 	 * table entries that are inaccessible to VFs
1358 	 */
1359 #ifdef CONFIG_SFC_SRIOV
1360 	if (efx->type->sriov_wanted) {
1361 		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1362 		    count > efx_vf_size(efx)) {
1363 			netif_warn(efx, probe, efx->net_dev,
1364 				   "Reducing number of RSS channels from %u to %u for "
1365 				   "VF support. Increase vf-msix-limit to use more "
1366 				   "channels on the PF.\n",
1367 				   count, efx_vf_size(efx));
1368 			count = efx_vf_size(efx);
1369 		}
1370 	}
1371 #endif
1372 
1373 	return count;
1374 }
1375 
1376 /* Probe the number and type of interrupts we are able to obtain, and
1377  * the resulting numbers of channels and RX queues.
1378  */
1379 static int efx_probe_interrupts(struct efx_nic *efx)
1380 {
1381 	unsigned int extra_channels = 0;
1382 	unsigned int i, j;
1383 	int rc;
1384 
1385 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1386 		if (efx->extra_channel_type[i])
1387 			++extra_channels;
1388 
1389 	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1390 		struct msix_entry xentries[EFX_MAX_CHANNELS];
1391 		unsigned int n_channels;
1392 
1393 		n_channels = efx_wanted_parallelism(efx);
1394 		if (separate_tx_channels)
1395 			n_channels *= 2;
1396 		n_channels += extra_channels;
1397 		n_channels = min(n_channels, efx->max_channels);
1398 
1399 		for (i = 0; i < n_channels; i++)
1400 			xentries[i].entry = i;
1401 		rc = pci_enable_msix_range(efx->pci_dev,
1402 					   xentries, 1, n_channels);
1403 		if (rc < 0) {
1404 			/* Fall back to single channel MSI */
1405 			efx->interrupt_mode = EFX_INT_MODE_MSI;
1406 			netif_err(efx, drv, efx->net_dev,
1407 				  "could not enable MSI-X\n");
1408 		} else if (rc < n_channels) {
1409 			netif_err(efx, drv, efx->net_dev,
1410 				  "WARNING: Insufficient MSI-X vectors"
1411 				  " available (%d < %u).\n", rc, n_channels);
1412 			netif_err(efx, drv, efx->net_dev,
1413 				  "WARNING: Performance may be reduced.\n");
1414 			n_channels = rc;
1415 		}
1416 
1417 		if (rc > 0) {
1418 			efx->n_channels = n_channels;
1419 			if (n_channels > extra_channels)
1420 				n_channels -= extra_channels;
1421 			if (separate_tx_channels) {
1422 				efx->n_tx_channels = max(n_channels / 2, 1U);
1423 				efx->n_rx_channels = max(n_channels -
1424 							 efx->n_tx_channels,
1425 							 1U);
1426 			} else {
1427 				efx->n_tx_channels = n_channels;
1428 				efx->n_rx_channels = n_channels;
1429 			}
1430 			for (i = 0; i < efx->n_channels; i++)
1431 				efx_get_channel(efx, i)->irq =
1432 					xentries[i].vector;
1433 		}
1434 	}
1435 
1436 	/* Try single interrupt MSI */
1437 	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1438 		efx->n_channels = 1;
1439 		efx->n_rx_channels = 1;
1440 		efx->n_tx_channels = 1;
1441 		rc = pci_enable_msi(efx->pci_dev);
1442 		if (rc == 0) {
1443 			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1444 		} else {
1445 			netif_err(efx, drv, efx->net_dev,
1446 				  "could not enable MSI\n");
1447 			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1448 		}
1449 	}
1450 
1451 	/* Assume legacy interrupts */
1452 	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1453 		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1454 		efx->n_rx_channels = 1;
1455 		efx->n_tx_channels = 1;
1456 		efx->legacy_irq = efx->pci_dev->irq;
1457 	}
1458 
1459 	/* Assign extra channels if possible */
1460 	j = efx->n_channels;
1461 	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1462 		if (!efx->extra_channel_type[i])
1463 			continue;
1464 		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1465 		    efx->n_channels <= extra_channels) {
1466 			efx->extra_channel_type[i]->handle_no_channel(efx);
1467 		} else {
1468 			--j;
1469 			efx_get_channel(efx, j)->type =
1470 				efx->extra_channel_type[i];
1471 		}
1472 	}
1473 
1474 	/* RSS might be usable on VFs even if it is disabled on the PF */
1475 #ifdef CONFIG_SFC_SRIOV
1476 	if (efx->type->sriov_wanted) {
1477 		efx->rss_spread = ((efx->n_rx_channels > 1 ||
1478 				    !efx->type->sriov_wanted(efx)) ?
1479 				   efx->n_rx_channels : efx_vf_size(efx));
1480 		return 0;
1481 	}
1482 #endif
1483 	efx->rss_spread = efx->n_rx_channels;
1484 
1485 	return 0;
1486 }
1487 
1488 static int efx_soft_enable_interrupts(struct efx_nic *efx)
1489 {
1490 	struct efx_channel *channel, *end_channel;
1491 	int rc;
1492 
1493 	BUG_ON(efx->state == STATE_DISABLED);
1494 
1495 	efx->irq_soft_enabled = true;
1496 	smp_wmb();
1497 
1498 	efx_for_each_channel(channel, efx) {
1499 		if (!channel->type->keep_eventq) {
1500 			rc = efx_init_eventq(channel);
1501 			if (rc)
1502 				goto fail;
1503 		}
1504 		efx_start_eventq(channel);
1505 	}
1506 
1507 	efx_mcdi_mode_event(efx);
1508 
1509 	return 0;
1510 fail:
1511 	end_channel = channel;
1512 	efx_for_each_channel(channel, efx) {
1513 		if (channel == end_channel)
1514 			break;
1515 		efx_stop_eventq(channel);
1516 		if (!channel->type->keep_eventq)
1517 			efx_fini_eventq(channel);
1518 	}
1519 
1520 	return rc;
1521 }
1522 
1523 static void efx_soft_disable_interrupts(struct efx_nic *efx)
1524 {
1525 	struct efx_channel *channel;
1526 
1527 	if (efx->state == STATE_DISABLED)
1528 		return;
1529 
1530 	efx_mcdi_mode_poll(efx);
1531 
1532 	efx->irq_soft_enabled = false;
1533 	smp_wmb();
1534 
1535 	if (efx->legacy_irq)
1536 		synchronize_irq(efx->legacy_irq);
1537 
1538 	efx_for_each_channel(channel, efx) {
1539 		if (channel->irq)
1540 			synchronize_irq(channel->irq);
1541 
1542 		efx_stop_eventq(channel);
1543 		if (!channel->type->keep_eventq)
1544 			efx_fini_eventq(channel);
1545 	}
1546 
1547 	/* Flush the asynchronous MCDI request queue */
1548 	efx_mcdi_flush_async(efx);
1549 }
1550 
1551 static int efx_enable_interrupts(struct efx_nic *efx)
1552 {
1553 	struct efx_channel *channel, *end_channel;
1554 	int rc;
1555 
1556 	BUG_ON(efx->state == STATE_DISABLED);
1557 
1558 	if (efx->eeh_disabled_legacy_irq) {
1559 		enable_irq(efx->legacy_irq);
1560 		efx->eeh_disabled_legacy_irq = false;
1561 	}
1562 
1563 	efx->type->irq_enable_master(efx);
1564 
1565 	efx_for_each_channel(channel, efx) {
1566 		if (channel->type->keep_eventq) {
1567 			rc = efx_init_eventq(channel);
1568 			if (rc)
1569 				goto fail;
1570 		}
1571 	}
1572 
1573 	rc = efx_soft_enable_interrupts(efx);
1574 	if (rc)
1575 		goto fail;
1576 
1577 	return 0;
1578 
1579 fail:
1580 	end_channel = channel;
1581 	efx_for_each_channel(channel, efx) {
1582 		if (channel == end_channel)
1583 			break;
1584 		if (channel->type->keep_eventq)
1585 			efx_fini_eventq(channel);
1586 	}
1587 
1588 	efx->type->irq_disable_non_ev(efx);
1589 
1590 	return rc;
1591 }
1592 
1593 static void efx_disable_interrupts(struct efx_nic *efx)
1594 {
1595 	struct efx_channel *channel;
1596 
1597 	efx_soft_disable_interrupts(efx);
1598 
1599 	efx_for_each_channel(channel, efx) {
1600 		if (channel->type->keep_eventq)
1601 			efx_fini_eventq(channel);
1602 	}
1603 
1604 	efx->type->irq_disable_non_ev(efx);
1605 }
1606 
1607 static void efx_remove_interrupts(struct efx_nic *efx)
1608 {
1609 	struct efx_channel *channel;
1610 
1611 	/* Remove MSI/MSI-X interrupts */
1612 	efx_for_each_channel(channel, efx)
1613 		channel->irq = 0;
1614 	pci_disable_msi(efx->pci_dev);
1615 	pci_disable_msix(efx->pci_dev);
1616 
1617 	/* Remove legacy interrupt */
1618 	efx->legacy_irq = 0;
1619 }
1620 
1621 static void efx_set_channels(struct efx_nic *efx)
1622 {
1623 	struct efx_channel *channel;
1624 	struct efx_tx_queue *tx_queue;
1625 
1626 	efx->tx_channel_offset =
1627 		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1628 
1629 	/* We need to mark which channels really have RX and TX
1630 	 * queues, and adjust the TX queue numbers if we have separate
1631 	 * RX-only and TX-only channels.
1632 	 */
1633 	efx_for_each_channel(channel, efx) {
1634 		if (channel->channel < efx->n_rx_channels)
1635 			channel->rx_queue.core_index = channel->channel;
1636 		else
1637 			channel->rx_queue.core_index = -1;
1638 
1639 		efx_for_each_channel_tx_queue(tx_queue, channel)
1640 			tx_queue->queue -= (efx->tx_channel_offset *
1641 					    EFX_TXQ_TYPES);
1642 	}
1643 }
1644 
1645 static int efx_probe_nic(struct efx_nic *efx)
1646 {
1647 	int rc;
1648 
1649 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1650 
1651 	/* Carry out hardware-type specific initialisation */
1652 	rc = efx->type->probe(efx);
1653 	if (rc)
1654 		return rc;
1655 
1656 	/* Determine the number of channels and queues by trying to hook
1657 	 * in MSI-X interrupts. */
1658 	rc = efx_probe_interrupts(efx);
1659 	if (rc)
1660 		goto fail1;
1661 
1662 	efx_set_channels(efx);
1663 
1664 	rc = efx->type->dimension_resources(efx);
1665 	if (rc)
1666 		goto fail2;
1667 
1668 	if (efx->n_channels > 1)
1669 		netdev_rss_key_fill(&efx->rx_hash_key,
1670 				    sizeof(efx->rx_hash_key));
1671 	efx_set_default_rx_indir_table(efx);
1672 
1673 	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1674 	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1675 
1676 	/* Initialise the interrupt moderation settings */
1677 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1678 				true);
1679 
1680 	return 0;
1681 
1682 fail2:
1683 	efx_remove_interrupts(efx);
1684 fail1:
1685 	efx->type->remove(efx);
1686 	return rc;
1687 }
1688 
1689 static void efx_remove_nic(struct efx_nic *efx)
1690 {
1691 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1692 
1693 	efx_remove_interrupts(efx);
1694 	efx->type->remove(efx);
1695 }
1696 
1697 static int efx_probe_filters(struct efx_nic *efx)
1698 {
1699 	int rc;
1700 
1701 	spin_lock_init(&efx->filter_lock);
1702 	init_rwsem(&efx->filter_sem);
1703 	down_write(&efx->filter_sem);
1704 	rc = efx->type->filter_table_probe(efx);
1705 	if (rc)
1706 		goto out_unlock;
1707 
1708 #ifdef CONFIG_RFS_ACCEL
1709 	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1710 		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1711 					   sizeof(*efx->rps_flow_id),
1712 					   GFP_KERNEL);
1713 		if (!efx->rps_flow_id) {
1714 			efx->type->filter_table_remove(efx);
1715 			rc = -ENOMEM;
1716 			goto out_unlock;
1717 		}
1718 	}
1719 #endif
1720 out_unlock:
1721 	up_write(&efx->filter_sem);
1722 	return rc;
1723 }
1724 
1725 static void efx_remove_filters(struct efx_nic *efx)
1726 {
1727 #ifdef CONFIG_RFS_ACCEL
1728 	kfree(efx->rps_flow_id);
1729 #endif
1730 	down_write(&efx->filter_sem);
1731 	efx->type->filter_table_remove(efx);
1732 	up_write(&efx->filter_sem);
1733 }
1734 
1735 static void efx_restore_filters(struct efx_nic *efx)
1736 {
1737 	down_read(&efx->filter_sem);
1738 	efx->type->filter_table_restore(efx);
1739 	up_read(&efx->filter_sem);
1740 }
1741 
1742 /**************************************************************************
1743  *
1744  * NIC startup/shutdown
1745  *
1746  *************************************************************************/
1747 
1748 static int efx_probe_all(struct efx_nic *efx)
1749 {
1750 	int rc;
1751 
1752 	rc = efx_probe_nic(efx);
1753 	if (rc) {
1754 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1755 		goto fail1;
1756 	}
1757 
1758 	rc = efx_probe_port(efx);
1759 	if (rc) {
1760 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1761 		goto fail2;
1762 	}
1763 
1764 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1765 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1766 		rc = -EINVAL;
1767 		goto fail3;
1768 	}
1769 	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1770 
1771 #ifdef CONFIG_SFC_SRIOV
1772 	rc = efx->type->vswitching_probe(efx);
1773 	if (rc) /* not fatal; the PF will still work fine */
1774 		netif_warn(efx, probe, efx->net_dev,
1775 			   "failed to setup vswitching rc=%d;"
1776 			   " VFs may not function\n", rc);
1777 #endif
1778 
1779 	rc = efx_probe_filters(efx);
1780 	if (rc) {
1781 		netif_err(efx, probe, efx->net_dev,
1782 			  "failed to create filter tables\n");
1783 		goto fail4;
1784 	}
1785 
1786 	rc = efx_probe_channels(efx);
1787 	if (rc)
1788 		goto fail5;
1789 
1790 	return 0;
1791 
1792  fail5:
1793 	efx_remove_filters(efx);
1794  fail4:
1795 #ifdef CONFIG_SFC_SRIOV
1796 	efx->type->vswitching_remove(efx);
1797 #endif
1798  fail3:
1799 	efx_remove_port(efx);
1800  fail2:
1801 	efx_remove_nic(efx);
1802  fail1:
1803 	return rc;
1804 }
1805 
1806 /* If the interface is supposed to be running but is not, start
1807  * the hardware and software data path, regular activity for the port
1808  * (MAC statistics, link polling, etc.) and schedule the port to be
1809  * reconfigured.  Interrupts must already be enabled.  This function
1810  * is safe to call multiple times, so long as the NIC is not disabled.
1811  * Requires the RTNL lock.
1812  */
1813 static void efx_start_all(struct efx_nic *efx)
1814 {
1815 	EFX_ASSERT_RESET_SERIALISED(efx);
1816 	BUG_ON(efx->state == STATE_DISABLED);
1817 
1818 	/* Check that it is appropriate to restart the interface. All
1819 	 * of these flags are safe to read under just the rtnl lock */
1820 	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1821 	    efx->reset_pending)
1822 		return;
1823 
1824 	efx_start_port(efx);
1825 	efx_start_datapath(efx);
1826 
1827 	/* Start the hardware monitor if there is one */
1828 	if (efx->type->monitor != NULL)
1829 		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1830 				   efx_monitor_interval);
1831 
1832 	/* If link state detection is normally event-driven, we have
1833 	 * to poll now because we could have missed a change
1834 	 */
1835 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1836 		mutex_lock(&efx->mac_lock);
1837 		if (efx->phy_op->poll(efx))
1838 			efx_link_status_changed(efx);
1839 		mutex_unlock(&efx->mac_lock);
1840 	}
1841 
1842 	efx->type->start_stats(efx);
1843 	efx->type->pull_stats(efx);
1844 	spin_lock_bh(&efx->stats_lock);
1845 	efx->type->update_stats(efx, NULL, NULL);
1846 	spin_unlock_bh(&efx->stats_lock);
1847 }
1848 
1849 /* Quiesce the hardware and software data path, and regular activity
1850  * for the port without bringing the link down.  Safe to call multiple
1851  * times with the NIC in almost any state, but interrupts should be
1852  * enabled.  Requires the RTNL lock.
1853  */
1854 static void efx_stop_all(struct efx_nic *efx)
1855 {
1856 	EFX_ASSERT_RESET_SERIALISED(efx);
1857 
1858 	/* port_enabled can be read safely under the rtnl lock */
1859 	if (!efx->port_enabled)
1860 		return;
1861 
1862 	/* update stats before we go down so we can accurately count
1863 	 * rx_nodesc_drops
1864 	 */
1865 	efx->type->pull_stats(efx);
1866 	spin_lock_bh(&efx->stats_lock);
1867 	efx->type->update_stats(efx, NULL, NULL);
1868 	spin_unlock_bh(&efx->stats_lock);
1869 	efx->type->stop_stats(efx);
1870 	efx_stop_port(efx);
1871 
1872 	/* Stop the kernel transmit interface.  This is only valid if
1873 	 * the device is stopped or detached; otherwise the watchdog
1874 	 * may fire immediately.
1875 	 */
1876 	WARN_ON(netif_running(efx->net_dev) &&
1877 		netif_device_present(efx->net_dev));
1878 	netif_tx_disable(efx->net_dev);
1879 
1880 	efx_stop_datapath(efx);
1881 }
1882 
1883 static void efx_remove_all(struct efx_nic *efx)
1884 {
1885 	efx_remove_channels(efx);
1886 	efx_remove_filters(efx);
1887 #ifdef CONFIG_SFC_SRIOV
1888 	efx->type->vswitching_remove(efx);
1889 #endif
1890 	efx_remove_port(efx);
1891 	efx_remove_nic(efx);
1892 }
1893 
1894 /**************************************************************************
1895  *
1896  * Interrupt moderation
1897  *
1898  **************************************************************************/
1899 
1900 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1901 {
1902 	if (usecs == 0)
1903 		return 0;
1904 	if (usecs * 1000 < quantum_ns)
1905 		return 1; /* never round down to 0 */
1906 	return usecs * 1000 / quantum_ns;
1907 }
1908 
1909 /* Set interrupt moderation parameters */
1910 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1911 			    unsigned int rx_usecs, bool rx_adaptive,
1912 			    bool rx_may_override_tx)
1913 {
1914 	struct efx_channel *channel;
1915 	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1916 						efx->timer_quantum_ns,
1917 						1000);
1918 	unsigned int tx_ticks;
1919 	unsigned int rx_ticks;
1920 
1921 	EFX_ASSERT_RESET_SERIALISED(efx);
1922 
1923 	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1924 		return -EINVAL;
1925 
1926 	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1927 	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1928 
1929 	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1930 	    !rx_may_override_tx) {
1931 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1932 			  "RX and TX IRQ moderation must be equal\n");
1933 		return -EINVAL;
1934 	}
1935 
1936 	efx->irq_rx_adaptive = rx_adaptive;
1937 	efx->irq_rx_moderation = rx_ticks;
1938 	efx_for_each_channel(channel, efx) {
1939 		if (efx_channel_has_rx_queue(channel))
1940 			channel->irq_moderation = rx_ticks;
1941 		else if (efx_channel_has_tx_queues(channel))
1942 			channel->irq_moderation = tx_ticks;
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1949 			    unsigned int *rx_usecs, bool *rx_adaptive)
1950 {
1951 	/* We must round up when converting ticks to microseconds
1952 	 * because we round down when converting the other way.
1953 	 */
1954 
1955 	*rx_adaptive = efx->irq_rx_adaptive;
1956 	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1957 				 efx->timer_quantum_ns,
1958 				 1000);
1959 
1960 	/* If channels are shared between RX and TX, so is IRQ
1961 	 * moderation.  Otherwise, IRQ moderation is the same for all
1962 	 * TX channels and is not adaptive.
1963 	 */
1964 	if (efx->tx_channel_offset == 0)
1965 		*tx_usecs = *rx_usecs;
1966 	else
1967 		*tx_usecs = DIV_ROUND_UP(
1968 			efx->channel[efx->tx_channel_offset]->irq_moderation *
1969 			efx->timer_quantum_ns,
1970 			1000);
1971 }
1972 
1973 /**************************************************************************
1974  *
1975  * Hardware monitor
1976  *
1977  **************************************************************************/
1978 
1979 /* Run periodically off the general workqueue */
1980 static void efx_monitor(struct work_struct *data)
1981 {
1982 	struct efx_nic *efx = container_of(data, struct efx_nic,
1983 					   monitor_work.work);
1984 
1985 	netif_vdbg(efx, timer, efx->net_dev,
1986 		   "hardware monitor executing on CPU %d\n",
1987 		   raw_smp_processor_id());
1988 	BUG_ON(efx->type->monitor == NULL);
1989 
1990 	/* If the mac_lock is already held then it is likely a port
1991 	 * reconfiguration is already in place, which will likely do
1992 	 * most of the work of monitor() anyway. */
1993 	if (mutex_trylock(&efx->mac_lock)) {
1994 		if (efx->port_enabled)
1995 			efx->type->monitor(efx);
1996 		mutex_unlock(&efx->mac_lock);
1997 	}
1998 
1999 	queue_delayed_work(efx->workqueue, &efx->monitor_work,
2000 			   efx_monitor_interval);
2001 }
2002 
2003 /**************************************************************************
2004  *
2005  * ioctls
2006  *
2007  *************************************************************************/
2008 
2009 /* Net device ioctl
2010  * Context: process, rtnl_lock() held.
2011  */
2012 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2013 {
2014 	struct efx_nic *efx = netdev_priv(net_dev);
2015 	struct mii_ioctl_data *data = if_mii(ifr);
2016 
2017 	if (cmd == SIOCSHWTSTAMP)
2018 		return efx_ptp_set_ts_config(efx, ifr);
2019 	if (cmd == SIOCGHWTSTAMP)
2020 		return efx_ptp_get_ts_config(efx, ifr);
2021 
2022 	/* Convert phy_id from older PRTAD/DEVAD format */
2023 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2024 	    (data->phy_id & 0xfc00) == 0x0400)
2025 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2026 
2027 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2028 }
2029 
2030 /**************************************************************************
2031  *
2032  * NAPI interface
2033  *
2034  **************************************************************************/
2035 
2036 static void efx_init_napi_channel(struct efx_channel *channel)
2037 {
2038 	struct efx_nic *efx = channel->efx;
2039 
2040 	channel->napi_dev = efx->net_dev;
2041 	netif_napi_add(channel->napi_dev, &channel->napi_str,
2042 		       efx_poll, napi_weight);
2043 	napi_hash_add(&channel->napi_str);
2044 	efx_channel_init_lock(channel);
2045 }
2046 
2047 static void efx_init_napi(struct efx_nic *efx)
2048 {
2049 	struct efx_channel *channel;
2050 
2051 	efx_for_each_channel(channel, efx)
2052 		efx_init_napi_channel(channel);
2053 }
2054 
2055 static void efx_fini_napi_channel(struct efx_channel *channel)
2056 {
2057 	if (channel->napi_dev) {
2058 		netif_napi_del(&channel->napi_str);
2059 		napi_hash_del(&channel->napi_str);
2060 	}
2061 	channel->napi_dev = NULL;
2062 }
2063 
2064 static void efx_fini_napi(struct efx_nic *efx)
2065 {
2066 	struct efx_channel *channel;
2067 
2068 	efx_for_each_channel(channel, efx)
2069 		efx_fini_napi_channel(channel);
2070 }
2071 
2072 /**************************************************************************
2073  *
2074  * Kernel netpoll interface
2075  *
2076  *************************************************************************/
2077 
2078 #ifdef CONFIG_NET_POLL_CONTROLLER
2079 
2080 /* Although in the common case interrupts will be disabled, this is not
2081  * guaranteed. However, all our work happens inside the NAPI callback,
2082  * so no locking is required.
2083  */
2084 static void efx_netpoll(struct net_device *net_dev)
2085 {
2086 	struct efx_nic *efx = netdev_priv(net_dev);
2087 	struct efx_channel *channel;
2088 
2089 	efx_for_each_channel(channel, efx)
2090 		efx_schedule_channel(channel);
2091 }
2092 
2093 #endif
2094 
2095 #ifdef CONFIG_NET_RX_BUSY_POLL
2096 static int efx_busy_poll(struct napi_struct *napi)
2097 {
2098 	struct efx_channel *channel =
2099 		container_of(napi, struct efx_channel, napi_str);
2100 	struct efx_nic *efx = channel->efx;
2101 	int budget = 4;
2102 	int old_rx_packets, rx_packets;
2103 
2104 	if (!netif_running(efx->net_dev))
2105 		return LL_FLUSH_FAILED;
2106 
2107 	if (!efx_channel_lock_poll(channel))
2108 		return LL_FLUSH_BUSY;
2109 
2110 	old_rx_packets = channel->rx_queue.rx_packets;
2111 	efx_process_channel(channel, budget);
2112 
2113 	rx_packets = channel->rx_queue.rx_packets - old_rx_packets;
2114 
2115 	/* There is no race condition with NAPI here.
2116 	 * NAPI will automatically be rescheduled if it yielded during busy
2117 	 * polling, because it was not able to take the lock and thus returned
2118 	 * the full budget.
2119 	 */
2120 	efx_channel_unlock_poll(channel);
2121 
2122 	return rx_packets;
2123 }
2124 #endif
2125 
2126 /**************************************************************************
2127  *
2128  * Kernel net device interface
2129  *
2130  *************************************************************************/
2131 
2132 /* Context: process, rtnl_lock() held. */
2133 int efx_net_open(struct net_device *net_dev)
2134 {
2135 	struct efx_nic *efx = netdev_priv(net_dev);
2136 	int rc;
2137 
2138 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2139 		  raw_smp_processor_id());
2140 
2141 	rc = efx_check_disabled(efx);
2142 	if (rc)
2143 		return rc;
2144 	if (efx->phy_mode & PHY_MODE_SPECIAL)
2145 		return -EBUSY;
2146 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2147 		return -EIO;
2148 
2149 	/* Notify the kernel of the link state polled during driver load,
2150 	 * before the monitor starts running */
2151 	efx_link_status_changed(efx);
2152 
2153 	efx_start_all(efx);
2154 	efx_selftest_async_start(efx);
2155 	return 0;
2156 }
2157 
2158 /* Context: process, rtnl_lock() held.
2159  * Note that the kernel will ignore our return code; this method
2160  * should really be a void.
2161  */
2162 int efx_net_stop(struct net_device *net_dev)
2163 {
2164 	struct efx_nic *efx = netdev_priv(net_dev);
2165 
2166 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2167 		  raw_smp_processor_id());
2168 
2169 	/* Stop the device and flush all the channels */
2170 	efx_stop_all(efx);
2171 
2172 	return 0;
2173 }
2174 
2175 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
2176 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2177 					       struct rtnl_link_stats64 *stats)
2178 {
2179 	struct efx_nic *efx = netdev_priv(net_dev);
2180 
2181 	spin_lock_bh(&efx->stats_lock);
2182 	efx->type->update_stats(efx, NULL, stats);
2183 	spin_unlock_bh(&efx->stats_lock);
2184 
2185 	return stats;
2186 }
2187 
2188 /* Context: netif_tx_lock held, BHs disabled. */
2189 static void efx_watchdog(struct net_device *net_dev)
2190 {
2191 	struct efx_nic *efx = netdev_priv(net_dev);
2192 
2193 	netif_err(efx, tx_err, efx->net_dev,
2194 		  "TX stuck with port_enabled=%d: resetting channels\n",
2195 		  efx->port_enabled);
2196 
2197 	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2198 }
2199 
2200 
2201 /* Context: process, rtnl_lock() held. */
2202 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2203 {
2204 	struct efx_nic *efx = netdev_priv(net_dev);
2205 	int rc;
2206 
2207 	rc = efx_check_disabled(efx);
2208 	if (rc)
2209 		return rc;
2210 	if (new_mtu > EFX_MAX_MTU)
2211 		return -EINVAL;
2212 
2213 	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2214 
2215 	efx_device_detach_sync(efx);
2216 	efx_stop_all(efx);
2217 
2218 	mutex_lock(&efx->mac_lock);
2219 	net_dev->mtu = new_mtu;
2220 	efx_mac_reconfigure(efx);
2221 	mutex_unlock(&efx->mac_lock);
2222 
2223 	efx_start_all(efx);
2224 	netif_device_attach(efx->net_dev);
2225 	return 0;
2226 }
2227 
2228 static int efx_set_mac_address(struct net_device *net_dev, void *data)
2229 {
2230 	struct efx_nic *efx = netdev_priv(net_dev);
2231 	struct sockaddr *addr = data;
2232 	u8 *new_addr = addr->sa_data;
2233 	u8 old_addr[6];
2234 	int rc;
2235 
2236 	if (!is_valid_ether_addr(new_addr)) {
2237 		netif_err(efx, drv, efx->net_dev,
2238 			  "invalid ethernet MAC address requested: %pM\n",
2239 			  new_addr);
2240 		return -EADDRNOTAVAIL;
2241 	}
2242 
2243 	/* save old address */
2244 	ether_addr_copy(old_addr, net_dev->dev_addr);
2245 	ether_addr_copy(net_dev->dev_addr, new_addr);
2246 	if (efx->type->set_mac_address) {
2247 		rc = efx->type->set_mac_address(efx);
2248 		if (rc) {
2249 			ether_addr_copy(net_dev->dev_addr, old_addr);
2250 			return rc;
2251 		}
2252 	}
2253 
2254 	/* Reconfigure the MAC */
2255 	mutex_lock(&efx->mac_lock);
2256 	efx_mac_reconfigure(efx);
2257 	mutex_unlock(&efx->mac_lock);
2258 
2259 	return 0;
2260 }
2261 
2262 /* Context: netif_addr_lock held, BHs disabled. */
2263 static void efx_set_rx_mode(struct net_device *net_dev)
2264 {
2265 	struct efx_nic *efx = netdev_priv(net_dev);
2266 
2267 	if (efx->port_enabled)
2268 		queue_work(efx->workqueue, &efx->mac_work);
2269 	/* Otherwise efx_start_port() will do this */
2270 }
2271 
2272 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2273 {
2274 	struct efx_nic *efx = netdev_priv(net_dev);
2275 
2276 	/* If disabling RX n-tuple filtering, clear existing filters */
2277 	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2278 		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2279 
2280 	return 0;
2281 }
2282 
2283 static const struct net_device_ops efx_netdev_ops = {
2284 	.ndo_open		= efx_net_open,
2285 	.ndo_stop		= efx_net_stop,
2286 	.ndo_get_stats64	= efx_net_stats,
2287 	.ndo_tx_timeout		= efx_watchdog,
2288 	.ndo_start_xmit		= efx_hard_start_xmit,
2289 	.ndo_validate_addr	= eth_validate_addr,
2290 	.ndo_do_ioctl		= efx_ioctl,
2291 	.ndo_change_mtu		= efx_change_mtu,
2292 	.ndo_set_mac_address	= efx_set_mac_address,
2293 	.ndo_set_rx_mode	= efx_set_rx_mode,
2294 	.ndo_set_features	= efx_set_features,
2295 #ifdef CONFIG_SFC_SRIOV
2296 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2297 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2298 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2299 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2300 	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
2301 	.ndo_get_phys_port_id   = efx_sriov_get_phys_port_id,
2302 #endif
2303 #ifdef CONFIG_NET_POLL_CONTROLLER
2304 	.ndo_poll_controller = efx_netpoll,
2305 #endif
2306 	.ndo_setup_tc		= efx_setup_tc,
2307 #ifdef CONFIG_NET_RX_BUSY_POLL
2308 	.ndo_busy_poll		= efx_busy_poll,
2309 #endif
2310 #ifdef CONFIG_RFS_ACCEL
2311 	.ndo_rx_flow_steer	= efx_filter_rfs,
2312 #endif
2313 };
2314 
2315 static void efx_update_name(struct efx_nic *efx)
2316 {
2317 	strcpy(efx->name, efx->net_dev->name);
2318 	efx_mtd_rename(efx);
2319 	efx_set_channel_names(efx);
2320 }
2321 
2322 static int efx_netdev_event(struct notifier_block *this,
2323 			    unsigned long event, void *ptr)
2324 {
2325 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2326 
2327 	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2328 	    event == NETDEV_CHANGENAME)
2329 		efx_update_name(netdev_priv(net_dev));
2330 
2331 	return NOTIFY_DONE;
2332 }
2333 
2334 static struct notifier_block efx_netdev_notifier = {
2335 	.notifier_call = efx_netdev_event,
2336 };
2337 
2338 static ssize_t
2339 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2340 {
2341 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2342 	return sprintf(buf, "%d\n", efx->phy_type);
2343 }
2344 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2345 
2346 #ifdef CONFIG_SFC_MCDI_LOGGING
2347 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
2348 			     char *buf)
2349 {
2350 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2351 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2352 
2353 	return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
2354 }
2355 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
2356 			    const char *buf, size_t count)
2357 {
2358 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2359 	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2360 	bool enable = count > 0 && *buf != '0';
2361 
2362 	mcdi->logging_enabled = enable;
2363 	return count;
2364 }
2365 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
2366 #endif
2367 
2368 static int efx_register_netdev(struct efx_nic *efx)
2369 {
2370 	struct net_device *net_dev = efx->net_dev;
2371 	struct efx_channel *channel;
2372 	int rc;
2373 
2374 	net_dev->watchdog_timeo = 5 * HZ;
2375 	net_dev->irq = efx->pci_dev->irq;
2376 	net_dev->netdev_ops = &efx_netdev_ops;
2377 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2378 		net_dev->priv_flags |= IFF_UNICAST_FLT;
2379 	net_dev->ethtool_ops = &efx_ethtool_ops;
2380 	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2381 
2382 	rtnl_lock();
2383 
2384 	/* Enable resets to be scheduled and check whether any were
2385 	 * already requested.  If so, the NIC is probably hosed so we
2386 	 * abort.
2387 	 */
2388 	efx->state = STATE_READY;
2389 	smp_mb(); /* ensure we change state before checking reset_pending */
2390 	if (efx->reset_pending) {
2391 		netif_err(efx, probe, efx->net_dev,
2392 			  "aborting probe due to scheduled reset\n");
2393 		rc = -EIO;
2394 		goto fail_locked;
2395 	}
2396 
2397 	rc = dev_alloc_name(net_dev, net_dev->name);
2398 	if (rc < 0)
2399 		goto fail_locked;
2400 	efx_update_name(efx);
2401 
2402 	/* Always start with carrier off; PHY events will detect the link */
2403 	netif_carrier_off(net_dev);
2404 
2405 	rc = register_netdevice(net_dev);
2406 	if (rc)
2407 		goto fail_locked;
2408 
2409 	efx_for_each_channel(channel, efx) {
2410 		struct efx_tx_queue *tx_queue;
2411 		efx_for_each_channel_tx_queue(tx_queue, channel)
2412 			efx_init_tx_queue_core_txq(tx_queue);
2413 	}
2414 
2415 	efx_associate(efx);
2416 
2417 	rtnl_unlock();
2418 
2419 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2420 	if (rc) {
2421 		netif_err(efx, drv, efx->net_dev,
2422 			  "failed to init net dev attributes\n");
2423 		goto fail_registered;
2424 	}
2425 #ifdef CONFIG_SFC_MCDI_LOGGING
2426 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2427 	if (rc) {
2428 		netif_err(efx, drv, efx->net_dev,
2429 			  "failed to init net dev attributes\n");
2430 		goto fail_attr_mcdi_logging;
2431 	}
2432 #endif
2433 
2434 	return 0;
2435 
2436 #ifdef CONFIG_SFC_MCDI_LOGGING
2437 fail_attr_mcdi_logging:
2438 	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2439 #endif
2440 fail_registered:
2441 	rtnl_lock();
2442 	efx_dissociate(efx);
2443 	unregister_netdevice(net_dev);
2444 fail_locked:
2445 	efx->state = STATE_UNINIT;
2446 	rtnl_unlock();
2447 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2448 	return rc;
2449 }
2450 
2451 static void efx_unregister_netdev(struct efx_nic *efx)
2452 {
2453 	if (!efx->net_dev)
2454 		return;
2455 
2456 	BUG_ON(netdev_priv(efx->net_dev) != efx);
2457 
2458 	if (efx_dev_registered(efx)) {
2459 		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2460 #ifdef CONFIG_SFC_MCDI_LOGGING
2461 		device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2462 #endif
2463 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2464 		unregister_netdev(efx->net_dev);
2465 	}
2466 }
2467 
2468 /**************************************************************************
2469  *
2470  * Device reset and suspend
2471  *
2472  **************************************************************************/
2473 
2474 /* Tears down the entire software state and most of the hardware state
2475  * before reset.  */
2476 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2477 {
2478 	EFX_ASSERT_RESET_SERIALISED(efx);
2479 
2480 	if (method == RESET_TYPE_MCDI_TIMEOUT)
2481 		efx->type->prepare_flr(efx);
2482 
2483 	efx_stop_all(efx);
2484 	efx_disable_interrupts(efx);
2485 
2486 	mutex_lock(&efx->mac_lock);
2487 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2488 	    method != RESET_TYPE_DATAPATH)
2489 		efx->phy_op->fini(efx);
2490 	efx->type->fini(efx);
2491 }
2492 
2493 /* This function will always ensure that the locks acquired in
2494  * efx_reset_down() are released. A failure return code indicates
2495  * that we were unable to reinitialise the hardware, and the
2496  * driver should be disabled. If ok is false, then the rx and tx
2497  * engines are not restarted, pending a RESET_DISABLE. */
2498 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2499 {
2500 	int rc;
2501 
2502 	EFX_ASSERT_RESET_SERIALISED(efx);
2503 
2504 	if (method == RESET_TYPE_MCDI_TIMEOUT)
2505 		efx->type->finish_flr(efx);
2506 
2507 	/* Ensure that SRAM is initialised even if we're disabling the device */
2508 	rc = efx->type->init(efx);
2509 	if (rc) {
2510 		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2511 		goto fail;
2512 	}
2513 
2514 	if (!ok)
2515 		goto fail;
2516 
2517 	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2518 	    method != RESET_TYPE_DATAPATH) {
2519 		rc = efx->phy_op->init(efx);
2520 		if (rc)
2521 			goto fail;
2522 		rc = efx->phy_op->reconfigure(efx);
2523 		if (rc && rc != -EPERM)
2524 			netif_err(efx, drv, efx->net_dev,
2525 				  "could not restore PHY settings\n");
2526 	}
2527 
2528 	rc = efx_enable_interrupts(efx);
2529 	if (rc)
2530 		goto fail;
2531 
2532 #ifdef CONFIG_SFC_SRIOV
2533 	rc = efx->type->vswitching_restore(efx);
2534 	if (rc) /* not fatal; the PF will still work fine */
2535 		netif_warn(efx, probe, efx->net_dev,
2536 			   "failed to restore vswitching rc=%d;"
2537 			   " VFs may not function\n", rc);
2538 #endif
2539 
2540 	down_read(&efx->filter_sem);
2541 	efx_restore_filters(efx);
2542 	up_read(&efx->filter_sem);
2543 	if (efx->type->sriov_reset)
2544 		efx->type->sriov_reset(efx);
2545 
2546 	mutex_unlock(&efx->mac_lock);
2547 
2548 	efx_start_all(efx);
2549 
2550 	return 0;
2551 
2552 fail:
2553 	efx->port_initialized = false;
2554 
2555 	mutex_unlock(&efx->mac_lock);
2556 
2557 	return rc;
2558 }
2559 
2560 /* Reset the NIC using the specified method.  Note that the reset may
2561  * fail, in which case the card will be left in an unusable state.
2562  *
2563  * Caller must hold the rtnl_lock.
2564  */
2565 int efx_reset(struct efx_nic *efx, enum reset_type method)
2566 {
2567 	int rc, rc2;
2568 	bool disabled;
2569 
2570 	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2571 		   RESET_TYPE(method));
2572 
2573 	efx_device_detach_sync(efx);
2574 	efx_reset_down(efx, method);
2575 
2576 	rc = efx->type->reset(efx, method);
2577 	if (rc) {
2578 		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2579 		goto out;
2580 	}
2581 
2582 	/* Clear flags for the scopes we covered.  We assume the NIC and
2583 	 * driver are now quiescent so that there is no race here.
2584 	 */
2585 	if (method < RESET_TYPE_MAX_METHOD)
2586 		efx->reset_pending &= -(1 << (method + 1));
2587 	else /* it doesn't fit into the well-ordered scope hierarchy */
2588 		__clear_bit(method, &efx->reset_pending);
2589 
2590 	/* Reinitialise bus-mastering, which may have been turned off before
2591 	 * the reset was scheduled. This is still appropriate, even in the
2592 	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2593 	 * can respond to requests. */
2594 	pci_set_master(efx->pci_dev);
2595 
2596 out:
2597 	/* Leave device stopped if necessary */
2598 	disabled = rc ||
2599 		method == RESET_TYPE_DISABLE ||
2600 		method == RESET_TYPE_RECOVER_OR_DISABLE;
2601 	rc2 = efx_reset_up(efx, method, !disabled);
2602 	if (rc2) {
2603 		disabled = true;
2604 		if (!rc)
2605 			rc = rc2;
2606 	}
2607 
2608 	if (disabled) {
2609 		dev_close(efx->net_dev);
2610 		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2611 		efx->state = STATE_DISABLED;
2612 	} else {
2613 		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2614 		netif_device_attach(efx->net_dev);
2615 	}
2616 	return rc;
2617 }
2618 
2619 /* Try recovery mechanisms.
2620  * For now only EEH is supported.
2621  * Returns 0 if the recovery mechanisms are unsuccessful.
2622  * Returns a non-zero value otherwise.
2623  */
2624 int efx_try_recovery(struct efx_nic *efx)
2625 {
2626 #ifdef CONFIG_EEH
2627 	/* A PCI error can occur and not be seen by EEH because nothing
2628 	 * happens on the PCI bus. In this case the driver may fail and
2629 	 * schedule a 'recover or reset', leading to this recovery handler.
2630 	 * Manually call the eeh failure check function.
2631 	 */
2632 	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2633 	if (eeh_dev_check_failure(eehdev)) {
2634 		/* The EEH mechanisms will handle the error and reset the
2635 		 * device if necessary.
2636 		 */
2637 		return 1;
2638 	}
2639 #endif
2640 	return 0;
2641 }
2642 
2643 static void efx_wait_for_bist_end(struct efx_nic *efx)
2644 {
2645 	int i;
2646 
2647 	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2648 		if (efx_mcdi_poll_reboot(efx))
2649 			goto out;
2650 		msleep(BIST_WAIT_DELAY_MS);
2651 	}
2652 
2653 	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2654 out:
2655 	/* Either way unset the BIST flag. If we found no reboot we probably
2656 	 * won't recover, but we should try.
2657 	 */
2658 	efx->mc_bist_for_other_fn = false;
2659 }
2660 
2661 /* The worker thread exists so that code that cannot sleep can
2662  * schedule a reset for later.
2663  */
2664 static void efx_reset_work(struct work_struct *data)
2665 {
2666 	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2667 	unsigned long pending;
2668 	enum reset_type method;
2669 
2670 	pending = ACCESS_ONCE(efx->reset_pending);
2671 	method = fls(pending) - 1;
2672 
2673 	if (method == RESET_TYPE_MC_BIST)
2674 		efx_wait_for_bist_end(efx);
2675 
2676 	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2677 	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2678 	    efx_try_recovery(efx))
2679 		return;
2680 
2681 	if (!pending)
2682 		return;
2683 
2684 	rtnl_lock();
2685 
2686 	/* We checked the state in efx_schedule_reset() but it may
2687 	 * have changed by now.  Now that we have the RTNL lock,
2688 	 * it cannot change again.
2689 	 */
2690 	if (efx->state == STATE_READY)
2691 		(void)efx_reset(efx, method);
2692 
2693 	rtnl_unlock();
2694 }
2695 
2696 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2697 {
2698 	enum reset_type method;
2699 
2700 	if (efx->state == STATE_RECOVERY) {
2701 		netif_dbg(efx, drv, efx->net_dev,
2702 			  "recovering: skip scheduling %s reset\n",
2703 			  RESET_TYPE(type));
2704 		return;
2705 	}
2706 
2707 	switch (type) {
2708 	case RESET_TYPE_INVISIBLE:
2709 	case RESET_TYPE_ALL:
2710 	case RESET_TYPE_RECOVER_OR_ALL:
2711 	case RESET_TYPE_WORLD:
2712 	case RESET_TYPE_DISABLE:
2713 	case RESET_TYPE_RECOVER_OR_DISABLE:
2714 	case RESET_TYPE_DATAPATH:
2715 	case RESET_TYPE_MC_BIST:
2716 	case RESET_TYPE_MCDI_TIMEOUT:
2717 		method = type;
2718 		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2719 			  RESET_TYPE(method));
2720 		break;
2721 	default:
2722 		method = efx->type->map_reset_reason(type);
2723 		netif_dbg(efx, drv, efx->net_dev,
2724 			  "scheduling %s reset for %s\n",
2725 			  RESET_TYPE(method), RESET_TYPE(type));
2726 		break;
2727 	}
2728 
2729 	set_bit(method, &efx->reset_pending);
2730 	smp_mb(); /* ensure we change reset_pending before checking state */
2731 
2732 	/* If we're not READY then just leave the flags set as the cue
2733 	 * to abort probing or reschedule the reset later.
2734 	 */
2735 	if (ACCESS_ONCE(efx->state) != STATE_READY)
2736 		return;
2737 
2738 	/* efx_process_channel() will no longer read events once a
2739 	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2740 	efx_mcdi_mode_poll(efx);
2741 
2742 	queue_work(reset_workqueue, &efx->reset_work);
2743 }
2744 
2745 /**************************************************************************
2746  *
2747  * List of NICs we support
2748  *
2749  **************************************************************************/
2750 
2751 /* PCI device ID table */
2752 static const struct pci_device_id efx_pci_table[] = {
2753 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2754 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2755 	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2756 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2757 		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2758 	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2759 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2760 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2761 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2762 	 .driver_data = (unsigned long) &siena_a0_nic_type},
2763 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2764 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2765 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
2766 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2767 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
2768 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2769 	{0}			/* end of list */
2770 };
2771 
2772 /**************************************************************************
2773  *
2774  * Dummy PHY/MAC operations
2775  *
2776  * Can be used for some unimplemented operations
2777  * Needed so all function pointers are valid and do not have to be tested
2778  * before use
2779  *
2780  **************************************************************************/
2781 int efx_port_dummy_op_int(struct efx_nic *efx)
2782 {
2783 	return 0;
2784 }
2785 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2786 
2787 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2788 {
2789 	return false;
2790 }
2791 
2792 static const struct efx_phy_operations efx_dummy_phy_operations = {
2793 	.init		 = efx_port_dummy_op_int,
2794 	.reconfigure	 = efx_port_dummy_op_int,
2795 	.poll		 = efx_port_dummy_op_poll,
2796 	.fini		 = efx_port_dummy_op_void,
2797 };
2798 
2799 /**************************************************************************
2800  *
2801  * Data housekeeping
2802  *
2803  **************************************************************************/
2804 
2805 /* This zeroes out and then fills in the invariants in a struct
2806  * efx_nic (including all sub-structures).
2807  */
2808 static int efx_init_struct(struct efx_nic *efx,
2809 			   struct pci_dev *pci_dev, struct net_device *net_dev)
2810 {
2811 	int i;
2812 
2813 	/* Initialise common structures */
2814 	INIT_LIST_HEAD(&efx->node);
2815 	INIT_LIST_HEAD(&efx->secondary_list);
2816 	spin_lock_init(&efx->biu_lock);
2817 #ifdef CONFIG_SFC_MTD
2818 	INIT_LIST_HEAD(&efx->mtd_list);
2819 #endif
2820 	INIT_WORK(&efx->reset_work, efx_reset_work);
2821 	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2822 	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2823 	efx->pci_dev = pci_dev;
2824 	efx->msg_enable = debug;
2825 	efx->state = STATE_UNINIT;
2826 	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2827 
2828 	efx->net_dev = net_dev;
2829 	efx->rx_prefix_size = efx->type->rx_prefix_size;
2830 	efx->rx_ip_align =
2831 		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2832 	efx->rx_packet_hash_offset =
2833 		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2834 	efx->rx_packet_ts_offset =
2835 		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2836 	spin_lock_init(&efx->stats_lock);
2837 	mutex_init(&efx->mac_lock);
2838 	efx->phy_op = &efx_dummy_phy_operations;
2839 	efx->mdio.dev = net_dev;
2840 	INIT_WORK(&efx->mac_work, efx_mac_work);
2841 	init_waitqueue_head(&efx->flush_wq);
2842 
2843 	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2844 		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2845 		if (!efx->channel[i])
2846 			goto fail;
2847 		efx->msi_context[i].efx = efx;
2848 		efx->msi_context[i].index = i;
2849 	}
2850 
2851 	/* Higher numbered interrupt modes are less capable! */
2852 	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2853 				  interrupt_mode);
2854 
2855 	/* Would be good to use the net_dev name, but we're too early */
2856 	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2857 		 pci_name(pci_dev));
2858 	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2859 	if (!efx->workqueue)
2860 		goto fail;
2861 
2862 	return 0;
2863 
2864 fail:
2865 	efx_fini_struct(efx);
2866 	return -ENOMEM;
2867 }
2868 
2869 static void efx_fini_struct(struct efx_nic *efx)
2870 {
2871 	int i;
2872 
2873 	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2874 		kfree(efx->channel[i]);
2875 
2876 	kfree(efx->vpd_sn);
2877 
2878 	if (efx->workqueue) {
2879 		destroy_workqueue(efx->workqueue);
2880 		efx->workqueue = NULL;
2881 	}
2882 }
2883 
2884 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
2885 {
2886 	u64 n_rx_nodesc_trunc = 0;
2887 	struct efx_channel *channel;
2888 
2889 	efx_for_each_channel(channel, efx)
2890 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2891 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2892 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2893 }
2894 
2895 /**************************************************************************
2896  *
2897  * PCI interface
2898  *
2899  **************************************************************************/
2900 
2901 /* Main body of final NIC shutdown code
2902  * This is called only at module unload (or hotplug removal).
2903  */
2904 static void efx_pci_remove_main(struct efx_nic *efx)
2905 {
2906 	/* Flush reset_work. It can no longer be scheduled since we
2907 	 * are not READY.
2908 	 */
2909 	BUG_ON(efx->state == STATE_READY);
2910 	cancel_work_sync(&efx->reset_work);
2911 
2912 	efx_disable_interrupts(efx);
2913 	efx_nic_fini_interrupt(efx);
2914 	efx_fini_port(efx);
2915 	efx->type->fini(efx);
2916 	efx_fini_napi(efx);
2917 	efx_remove_all(efx);
2918 }
2919 
2920 /* Final NIC shutdown
2921  * This is called only at module unload (or hotplug removal).  A PF can call
2922  * this on its VFs to ensure they are unbound first.
2923  */
2924 static void efx_pci_remove(struct pci_dev *pci_dev)
2925 {
2926 	struct efx_nic *efx;
2927 
2928 	efx = pci_get_drvdata(pci_dev);
2929 	if (!efx)
2930 		return;
2931 
2932 	/* Mark the NIC as fini, then stop the interface */
2933 	rtnl_lock();
2934 	efx_dissociate(efx);
2935 	dev_close(efx->net_dev);
2936 	efx_disable_interrupts(efx);
2937 	efx->state = STATE_UNINIT;
2938 	rtnl_unlock();
2939 
2940 	if (efx->type->sriov_fini)
2941 		efx->type->sriov_fini(efx);
2942 
2943 	efx_unregister_netdev(efx);
2944 
2945 	efx_mtd_remove(efx);
2946 
2947 	efx_pci_remove_main(efx);
2948 
2949 	efx_fini_io(efx);
2950 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2951 
2952 	efx_fini_struct(efx);
2953 	free_netdev(efx->net_dev);
2954 
2955 	pci_disable_pcie_error_reporting(pci_dev);
2956 };
2957 
2958 /* NIC VPD information
2959  * Called during probe to display the part number of the
2960  * installed NIC.  VPD is potentially very large but this should
2961  * always appear within the first 512 bytes.
2962  */
2963 #define SFC_VPD_LEN 512
2964 static void efx_probe_vpd_strings(struct efx_nic *efx)
2965 {
2966 	struct pci_dev *dev = efx->pci_dev;
2967 	char vpd_data[SFC_VPD_LEN];
2968 	ssize_t vpd_size;
2969 	int ro_start, ro_size, i, j;
2970 
2971 	/* Get the vpd data from the device */
2972 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2973 	if (vpd_size <= 0) {
2974 		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2975 		return;
2976 	}
2977 
2978 	/* Get the Read only section */
2979 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2980 	if (ro_start < 0) {
2981 		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2982 		return;
2983 	}
2984 
2985 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2986 	j = ro_size;
2987 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2988 	if (i + j > vpd_size)
2989 		j = vpd_size - i;
2990 
2991 	/* Get the Part number */
2992 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2993 	if (i < 0) {
2994 		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2995 		return;
2996 	}
2997 
2998 	j = pci_vpd_info_field_size(&vpd_data[i]);
2999 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
3000 	if (i + j > vpd_size) {
3001 		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
3002 		return;
3003 	}
3004 
3005 	netif_info(efx, drv, efx->net_dev,
3006 		   "Part Number : %.*s\n", j, &vpd_data[i]);
3007 
3008 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3009 	j = ro_size;
3010 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
3011 	if (i < 0) {
3012 		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
3013 		return;
3014 	}
3015 
3016 	j = pci_vpd_info_field_size(&vpd_data[i]);
3017 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
3018 	if (i + j > vpd_size) {
3019 		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
3020 		return;
3021 	}
3022 
3023 	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
3024 	if (!efx->vpd_sn)
3025 		return;
3026 
3027 	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3028 }
3029 
3030 
3031 /* Main body of NIC initialisation
3032  * This is called at module load (or hotplug insertion, theoretically).
3033  */
3034 static int efx_pci_probe_main(struct efx_nic *efx)
3035 {
3036 	int rc;
3037 
3038 	/* Do start-of-day initialisation */
3039 	rc = efx_probe_all(efx);
3040 	if (rc)
3041 		goto fail1;
3042 
3043 	efx_init_napi(efx);
3044 
3045 	rc = efx->type->init(efx);
3046 	if (rc) {
3047 		netif_err(efx, probe, efx->net_dev,
3048 			  "failed to initialise NIC\n");
3049 		goto fail3;
3050 	}
3051 
3052 	rc = efx_init_port(efx);
3053 	if (rc) {
3054 		netif_err(efx, probe, efx->net_dev,
3055 			  "failed to initialise port\n");
3056 		goto fail4;
3057 	}
3058 
3059 	rc = efx_nic_init_interrupt(efx);
3060 	if (rc)
3061 		goto fail5;
3062 	rc = efx_enable_interrupts(efx);
3063 	if (rc)
3064 		goto fail6;
3065 
3066 	return 0;
3067 
3068  fail6:
3069 	efx_nic_fini_interrupt(efx);
3070  fail5:
3071 	efx_fini_port(efx);
3072  fail4:
3073 	efx->type->fini(efx);
3074  fail3:
3075 	efx_fini_napi(efx);
3076 	efx_remove_all(efx);
3077  fail1:
3078 	return rc;
3079 }
3080 
3081 /* NIC initialisation
3082  *
3083  * This is called at module load (or hotplug insertion,
3084  * theoretically).  It sets up PCI mappings, resets the NIC,
3085  * sets up and registers the network devices with the kernel and hooks
3086  * the interrupt service routine.  It does not prepare the device for
3087  * transmission; this is left to the first time one of the network
3088  * interfaces is brought up (i.e. efx_net_open).
3089  */
3090 static int efx_pci_probe(struct pci_dev *pci_dev,
3091 			 const struct pci_device_id *entry)
3092 {
3093 	struct net_device *net_dev;
3094 	struct efx_nic *efx;
3095 	int rc;
3096 
3097 	/* Allocate and initialise a struct net_device and struct efx_nic */
3098 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
3099 				     EFX_MAX_RX_QUEUES);
3100 	if (!net_dev)
3101 		return -ENOMEM;
3102 	efx = netdev_priv(net_dev);
3103 	efx->type = (const struct efx_nic_type *) entry->driver_data;
3104 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
3105 			      NETIF_F_HIGHDMA | NETIF_F_TSO |
3106 			      NETIF_F_RXCSUM);
3107 	if (efx->type->offload_features & NETIF_F_V6_CSUM)
3108 		net_dev->features |= NETIF_F_TSO6;
3109 	/* Mask for features that also apply to VLAN devices */
3110 	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
3111 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
3112 				   NETIF_F_RXCSUM);
3113 	/* All offloads can be toggled */
3114 	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
3115 	pci_set_drvdata(pci_dev, efx);
3116 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3117 	rc = efx_init_struct(efx, pci_dev, net_dev);
3118 	if (rc)
3119 		goto fail1;
3120 
3121 	netif_info(efx, probe, efx->net_dev,
3122 		   "Solarflare NIC detected\n");
3123 
3124 	if (!efx->type->is_vf)
3125 		efx_probe_vpd_strings(efx);
3126 
3127 	/* Set up basic I/O (BAR mappings etc) */
3128 	rc = efx_init_io(efx);
3129 	if (rc)
3130 		goto fail2;
3131 
3132 	rc = efx_pci_probe_main(efx);
3133 	if (rc)
3134 		goto fail3;
3135 
3136 	rc = efx_register_netdev(efx);
3137 	if (rc)
3138 		goto fail4;
3139 
3140 	if (efx->type->sriov_init) {
3141 		rc = efx->type->sriov_init(efx);
3142 		if (rc)
3143 			netif_err(efx, probe, efx->net_dev,
3144 				  "SR-IOV can't be enabled rc %d\n", rc);
3145 	}
3146 
3147 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3148 
3149 	/* Try to create MTDs, but allow this to fail */
3150 	rtnl_lock();
3151 	rc = efx_mtd_probe(efx);
3152 	rtnl_unlock();
3153 	if (rc)
3154 		netif_warn(efx, probe, efx->net_dev,
3155 			   "failed to create MTDs (%d)\n", rc);
3156 
3157 	rc = pci_enable_pcie_error_reporting(pci_dev);
3158 	if (rc && rc != -EINVAL)
3159 		netif_warn(efx, probe, efx->net_dev,
3160 			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);
3161 
3162 	return 0;
3163 
3164  fail4:
3165 	efx_pci_remove_main(efx);
3166  fail3:
3167 	efx_fini_io(efx);
3168  fail2:
3169 	efx_fini_struct(efx);
3170  fail1:
3171 	WARN_ON(rc > 0);
3172 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3173 	free_netdev(net_dev);
3174 	return rc;
3175 }
3176 
3177 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
3178  * enabled on success
3179  */
3180 #ifdef CONFIG_SFC_SRIOV
3181 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
3182 {
3183 	int rc;
3184 	struct efx_nic *efx = pci_get_drvdata(dev);
3185 
3186 	if (efx->type->sriov_configure) {
3187 		rc = efx->type->sriov_configure(efx, num_vfs);
3188 		if (rc)
3189 			return rc;
3190 		else
3191 			return num_vfs;
3192 	} else
3193 		return -EOPNOTSUPP;
3194 }
3195 #endif
3196 
3197 static int efx_pm_freeze(struct device *dev)
3198 {
3199 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3200 
3201 	rtnl_lock();
3202 
3203 	if (efx->state != STATE_DISABLED) {
3204 		efx->state = STATE_UNINIT;
3205 
3206 		efx_device_detach_sync(efx);
3207 
3208 		efx_stop_all(efx);
3209 		efx_disable_interrupts(efx);
3210 	}
3211 
3212 	rtnl_unlock();
3213 
3214 	return 0;
3215 }
3216 
3217 static int efx_pm_thaw(struct device *dev)
3218 {
3219 	int rc;
3220 	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3221 
3222 	rtnl_lock();
3223 
3224 	if (efx->state != STATE_DISABLED) {
3225 		rc = efx_enable_interrupts(efx);
3226 		if (rc)
3227 			goto fail;
3228 
3229 		mutex_lock(&efx->mac_lock);
3230 		efx->phy_op->reconfigure(efx);
3231 		mutex_unlock(&efx->mac_lock);
3232 
3233 		efx_start_all(efx);
3234 
3235 		netif_device_attach(efx->net_dev);
3236 
3237 		efx->state = STATE_READY;
3238 
3239 		efx->type->resume_wol(efx);
3240 	}
3241 
3242 	rtnl_unlock();
3243 
3244 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3245 	queue_work(reset_workqueue, &efx->reset_work);
3246 
3247 	return 0;
3248 
3249 fail:
3250 	rtnl_unlock();
3251 
3252 	return rc;
3253 }
3254 
3255 static int efx_pm_poweroff(struct device *dev)
3256 {
3257 	struct pci_dev *pci_dev = to_pci_dev(dev);
3258 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3259 
3260 	efx->type->fini(efx);
3261 
3262 	efx->reset_pending = 0;
3263 
3264 	pci_save_state(pci_dev);
3265 	return pci_set_power_state(pci_dev, PCI_D3hot);
3266 }
3267 
3268 /* Used for both resume and restore */
3269 static int efx_pm_resume(struct device *dev)
3270 {
3271 	struct pci_dev *pci_dev = to_pci_dev(dev);
3272 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3273 	int rc;
3274 
3275 	rc = pci_set_power_state(pci_dev, PCI_D0);
3276 	if (rc)
3277 		return rc;
3278 	pci_restore_state(pci_dev);
3279 	rc = pci_enable_device(pci_dev);
3280 	if (rc)
3281 		return rc;
3282 	pci_set_master(efx->pci_dev);
3283 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3284 	if (rc)
3285 		return rc;
3286 	rc = efx->type->init(efx);
3287 	if (rc)
3288 		return rc;
3289 	rc = efx_pm_thaw(dev);
3290 	return rc;
3291 }
3292 
3293 static int efx_pm_suspend(struct device *dev)
3294 {
3295 	int rc;
3296 
3297 	efx_pm_freeze(dev);
3298 	rc = efx_pm_poweroff(dev);
3299 	if (rc)
3300 		efx_pm_resume(dev);
3301 	return rc;
3302 }
3303 
3304 static const struct dev_pm_ops efx_pm_ops = {
3305 	.suspend	= efx_pm_suspend,
3306 	.resume		= efx_pm_resume,
3307 	.freeze		= efx_pm_freeze,
3308 	.thaw		= efx_pm_thaw,
3309 	.poweroff	= efx_pm_poweroff,
3310 	.restore	= efx_pm_resume,
3311 };
3312 
3313 /* A PCI error affecting this device was detected.
3314  * At this point MMIO and DMA may be disabled.
3315  * Stop the software path and request a slot reset.
3316  */
3317 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3318 					      enum pci_channel_state state)
3319 {
3320 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3321 	struct efx_nic *efx = pci_get_drvdata(pdev);
3322 
3323 	if (state == pci_channel_io_perm_failure)
3324 		return PCI_ERS_RESULT_DISCONNECT;
3325 
3326 	rtnl_lock();
3327 
3328 	if (efx->state != STATE_DISABLED) {
3329 		efx->state = STATE_RECOVERY;
3330 		efx->reset_pending = 0;
3331 
3332 		efx_device_detach_sync(efx);
3333 
3334 		efx_stop_all(efx);
3335 		efx_disable_interrupts(efx);
3336 
3337 		status = PCI_ERS_RESULT_NEED_RESET;
3338 	} else {
3339 		/* If the interface is disabled we don't want to do anything
3340 		 * with it.
3341 		 */
3342 		status = PCI_ERS_RESULT_RECOVERED;
3343 	}
3344 
3345 	rtnl_unlock();
3346 
3347 	pci_disable_device(pdev);
3348 
3349 	return status;
3350 }
3351 
3352 /* Fake a successful reset, which will be performed later in efx_io_resume. */
3353 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3354 {
3355 	struct efx_nic *efx = pci_get_drvdata(pdev);
3356 	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3357 	int rc;
3358 
3359 	if (pci_enable_device(pdev)) {
3360 		netif_err(efx, hw, efx->net_dev,
3361 			  "Cannot re-enable PCI device after reset.\n");
3362 		status =  PCI_ERS_RESULT_DISCONNECT;
3363 	}
3364 
3365 	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3366 	if (rc) {
3367 		netif_err(efx, hw, efx->net_dev,
3368 		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3369 		/* Non-fatal error. Continue. */
3370 	}
3371 
3372 	return status;
3373 }
3374 
3375 /* Perform the actual reset and resume I/O operations. */
3376 static void efx_io_resume(struct pci_dev *pdev)
3377 {
3378 	struct efx_nic *efx = pci_get_drvdata(pdev);
3379 	int rc;
3380 
3381 	rtnl_lock();
3382 
3383 	if (efx->state == STATE_DISABLED)
3384 		goto out;
3385 
3386 	rc = efx_reset(efx, RESET_TYPE_ALL);
3387 	if (rc) {
3388 		netif_err(efx, hw, efx->net_dev,
3389 			  "efx_reset failed after PCI error (%d)\n", rc);
3390 	} else {
3391 		efx->state = STATE_READY;
3392 		netif_dbg(efx, hw, efx->net_dev,
3393 			  "Done resetting and resuming IO after PCI error.\n");
3394 	}
3395 
3396 out:
3397 	rtnl_unlock();
3398 }
3399 
3400 /* For simplicity and reliability, we always require a slot reset and try to
3401  * reset the hardware when a pci error affecting the device is detected.
3402  * We leave both the link_reset and mmio_enabled callback unimplemented:
3403  * with our request for slot reset the mmio_enabled callback will never be
3404  * called, and the link_reset callback is not used by AER or EEH mechanisms.
3405  */
3406 static struct pci_error_handlers efx_err_handlers = {
3407 	.error_detected = efx_io_error_detected,
3408 	.slot_reset	= efx_io_slot_reset,
3409 	.resume		= efx_io_resume,
3410 };
3411 
3412 static struct pci_driver efx_pci_driver = {
3413 	.name		= KBUILD_MODNAME,
3414 	.id_table	= efx_pci_table,
3415 	.probe		= efx_pci_probe,
3416 	.remove		= efx_pci_remove,
3417 	.driver.pm	= &efx_pm_ops,
3418 	.err_handler	= &efx_err_handlers,
3419 #ifdef CONFIG_SFC_SRIOV
3420 	.sriov_configure = efx_pci_sriov_configure,
3421 #endif
3422 };
3423 
3424 /**************************************************************************
3425  *
3426  * Kernel module interface
3427  *
3428  *************************************************************************/
3429 
3430 module_param(interrupt_mode, uint, 0444);
3431 MODULE_PARM_DESC(interrupt_mode,
3432 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3433 
3434 static int __init efx_init_module(void)
3435 {
3436 	int rc;
3437 
3438 	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3439 
3440 	rc = register_netdevice_notifier(&efx_netdev_notifier);
3441 	if (rc)
3442 		goto err_notifier;
3443 
3444 #ifdef CONFIG_SFC_SRIOV
3445 	rc = efx_init_sriov();
3446 	if (rc)
3447 		goto err_sriov;
3448 #endif
3449 
3450 	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3451 	if (!reset_workqueue) {
3452 		rc = -ENOMEM;
3453 		goto err_reset;
3454 	}
3455 
3456 	rc = pci_register_driver(&efx_pci_driver);
3457 	if (rc < 0)
3458 		goto err_pci;
3459 
3460 	return 0;
3461 
3462  err_pci:
3463 	destroy_workqueue(reset_workqueue);
3464  err_reset:
3465 #ifdef CONFIG_SFC_SRIOV
3466 	efx_fini_sriov();
3467  err_sriov:
3468 #endif
3469 	unregister_netdevice_notifier(&efx_netdev_notifier);
3470  err_notifier:
3471 	return rc;
3472 }
3473 
3474 static void __exit efx_exit_module(void)
3475 {
3476 	printk(KERN_INFO "Solarflare NET driver unloading\n");
3477 
3478 	pci_unregister_driver(&efx_pci_driver);
3479 	destroy_workqueue(reset_workqueue);
3480 #ifdef CONFIG_SFC_SRIOV
3481 	efx_fini_sriov();
3482 #endif
3483 	unregister_netdevice_notifier(&efx_netdev_notifier);
3484 
3485 }
3486 
3487 module_init(efx_init_module);
3488 module_exit(efx_exit_module);
3489 
3490 MODULE_AUTHOR("Solarflare Communications and "
3491 	      "Michael Brown <mbrown@fensystems.co.uk>");
3492 MODULE_DESCRIPTION("Solarflare network driver");
3493 MODULE_LICENSE("GPL");
3494 MODULE_DEVICE_TABLE(pci, efx_pci_table);
3495