1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/pci.h> 10 #include <linux/netdevice.h> 11 #include <linux/etherdevice.h> 12 #include <linux/delay.h> 13 #include <linux/notifier.h> 14 #include <linux/ip.h> 15 #include <linux/tcp.h> 16 #include <linux/in.h> 17 #include <linux/ethtool.h> 18 #include <linux/topology.h> 19 #include <linux/gfp.h> 20 #include <linux/aer.h> 21 #include <linux/interrupt.h> 22 #include "net_driver.h" 23 #include <net/gre.h> 24 #include <net/udp_tunnel.h> 25 #include "efx.h" 26 #include "efx_common.h" 27 #include "efx_channels.h" 28 #include "ef100.h" 29 #include "rx_common.h" 30 #include "tx_common.h" 31 #include "nic.h" 32 #include "io.h" 33 #include "selftest.h" 34 #include "sriov.h" 35 36 #include "mcdi_port_common.h" 37 #include "mcdi_pcol.h" 38 #include "workarounds.h" 39 40 /************************************************************************** 41 * 42 * Configurable values 43 * 44 *************************************************************************/ 45 46 module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444); 47 MODULE_PARM_DESC(interrupt_mode, 48 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 49 50 module_param(rss_cpus, uint, 0444); 51 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 52 53 /* 54 * Use separate channels for TX and RX events 55 * 56 * Set this to 1 to use separate channels for TX and RX. It allows us 57 * to control interrupt affinity separately for TX and RX. 58 * 59 * This is only used in MSI-X interrupt mode 60 */ 61 bool efx_separate_tx_channels; 62 module_param(efx_separate_tx_channels, bool, 0444); 63 MODULE_PARM_DESC(efx_separate_tx_channels, 64 "Use separate channels for TX and RX"); 65 66 /* Initial interrupt moderation settings. They can be modified after 67 * module load with ethtool. 68 * 69 * The default for RX should strike a balance between increasing the 70 * round-trip latency and reducing overhead. 71 */ 72 static unsigned int rx_irq_mod_usec = 60; 73 74 /* Initial interrupt moderation settings. They can be modified after 75 * module load with ethtool. 76 * 77 * This default is chosen to ensure that a 10G link does not go idle 78 * while a TX queue is stopped after it has become full. A queue is 79 * restarted when it drops below half full. The time this takes (assuming 80 * worst case 3 descriptors per packet and 1024 descriptors) is 81 * 512 / 3 * 1.2 = 205 usec. 82 */ 83 static unsigned int tx_irq_mod_usec = 150; 84 85 static bool phy_flash_cfg; 86 module_param(phy_flash_cfg, bool, 0644); 87 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 88 89 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 90 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 91 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 92 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 93 module_param(debug, uint, 0); 94 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 95 96 /************************************************************************** 97 * 98 * Utility functions and prototypes 99 * 100 *************************************************************************/ 101 102 static void efx_remove_port(struct efx_nic *efx); 103 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog); 104 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp); 105 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, 106 u32 flags); 107 108 #define EFX_ASSERT_RESET_SERIALISED(efx) \ 109 do { \ 110 if ((efx->state == STATE_READY) || \ 111 (efx->state == STATE_RECOVERY) || \ 112 (efx->state == STATE_DISABLED)) \ 113 ASSERT_RTNL(); \ 114 } while (0) 115 116 /************************************************************************** 117 * 118 * Port handling 119 * 120 **************************************************************************/ 121 122 static void efx_fini_port(struct efx_nic *efx); 123 124 static int efx_probe_port(struct efx_nic *efx) 125 { 126 int rc; 127 128 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 129 130 if (phy_flash_cfg) 131 efx->phy_mode = PHY_MODE_SPECIAL; 132 133 /* Connect up MAC/PHY operations table */ 134 rc = efx->type->probe_port(efx); 135 if (rc) 136 return rc; 137 138 /* Initialise MAC address to permanent address */ 139 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); 140 141 return 0; 142 } 143 144 static int efx_init_port(struct efx_nic *efx) 145 { 146 int rc; 147 148 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 149 150 mutex_lock(&efx->mac_lock); 151 152 efx->port_initialized = true; 153 154 /* Ensure the PHY advertises the correct flow control settings */ 155 rc = efx_mcdi_port_reconfigure(efx); 156 if (rc && rc != -EPERM) 157 goto fail; 158 159 mutex_unlock(&efx->mac_lock); 160 return 0; 161 162 fail: 163 mutex_unlock(&efx->mac_lock); 164 return rc; 165 } 166 167 static void efx_fini_port(struct efx_nic *efx) 168 { 169 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 170 171 if (!efx->port_initialized) 172 return; 173 174 efx->port_initialized = false; 175 176 efx->link_state.up = false; 177 efx_link_status_changed(efx); 178 } 179 180 static void efx_remove_port(struct efx_nic *efx) 181 { 182 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 183 184 efx->type->remove_port(efx); 185 } 186 187 /************************************************************************** 188 * 189 * NIC handling 190 * 191 **************************************************************************/ 192 193 static LIST_HEAD(efx_primary_list); 194 static LIST_HEAD(efx_unassociated_list); 195 196 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) 197 { 198 return left->type == right->type && 199 left->vpd_sn && right->vpd_sn && 200 !strcmp(left->vpd_sn, right->vpd_sn); 201 } 202 203 static void efx_associate(struct efx_nic *efx) 204 { 205 struct efx_nic *other, *next; 206 207 if (efx->primary == efx) { 208 /* Adding primary function; look for secondaries */ 209 210 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 211 list_add_tail(&efx->node, &efx_primary_list); 212 213 list_for_each_entry_safe(other, next, &efx_unassociated_list, 214 node) { 215 if (efx_same_controller(efx, other)) { 216 list_del(&other->node); 217 netif_dbg(other, probe, other->net_dev, 218 "moving to secondary list of %s %s\n", 219 pci_name(efx->pci_dev), 220 efx->net_dev->name); 221 list_add_tail(&other->node, 222 &efx->secondary_list); 223 other->primary = efx; 224 } 225 } 226 } else { 227 /* Adding secondary function; look for primary */ 228 229 list_for_each_entry(other, &efx_primary_list, node) { 230 if (efx_same_controller(efx, other)) { 231 netif_dbg(efx, probe, efx->net_dev, 232 "adding to secondary list of %s %s\n", 233 pci_name(other->pci_dev), 234 other->net_dev->name); 235 list_add_tail(&efx->node, 236 &other->secondary_list); 237 efx->primary = other; 238 return; 239 } 240 } 241 242 netif_dbg(efx, probe, efx->net_dev, 243 "adding to unassociated list\n"); 244 list_add_tail(&efx->node, &efx_unassociated_list); 245 } 246 } 247 248 static void efx_dissociate(struct efx_nic *efx) 249 { 250 struct efx_nic *other, *next; 251 252 list_del(&efx->node); 253 efx->primary = NULL; 254 255 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 256 list_del(&other->node); 257 netif_dbg(other, probe, other->net_dev, 258 "moving to unassociated list\n"); 259 list_add_tail(&other->node, &efx_unassociated_list); 260 other->primary = NULL; 261 } 262 } 263 264 static int efx_probe_nic(struct efx_nic *efx) 265 { 266 int rc; 267 268 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 269 270 /* Carry out hardware-type specific initialisation */ 271 rc = efx->type->probe(efx); 272 if (rc) 273 return rc; 274 275 do { 276 if (!efx->max_channels || !efx->max_tx_channels) { 277 netif_err(efx, drv, efx->net_dev, 278 "Insufficient resources to allocate" 279 " any channels\n"); 280 rc = -ENOSPC; 281 goto fail1; 282 } 283 284 /* Determine the number of channels and queues by trying 285 * to hook in MSI-X interrupts. 286 */ 287 rc = efx_probe_interrupts(efx); 288 if (rc) 289 goto fail1; 290 291 rc = efx_set_channels(efx); 292 if (rc) 293 goto fail1; 294 295 /* dimension_resources can fail with EAGAIN */ 296 rc = efx->type->dimension_resources(efx); 297 if (rc != 0 && rc != -EAGAIN) 298 goto fail2; 299 300 if (rc == -EAGAIN) 301 /* try again with new max_channels */ 302 efx_remove_interrupts(efx); 303 304 } while (rc == -EAGAIN); 305 306 if (efx->n_channels > 1) 307 netdev_rss_key_fill(efx->rss_context.rx_hash_key, 308 sizeof(efx->rss_context.rx_hash_key)); 309 efx_set_default_rx_indir_table(efx, &efx->rss_context); 310 311 /* Initialise the interrupt moderation settings */ 312 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); 313 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 314 true); 315 316 return 0; 317 318 fail2: 319 efx_remove_interrupts(efx); 320 fail1: 321 efx->type->remove(efx); 322 return rc; 323 } 324 325 static void efx_remove_nic(struct efx_nic *efx) 326 { 327 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 328 329 efx_remove_interrupts(efx); 330 efx->type->remove(efx); 331 } 332 333 /************************************************************************** 334 * 335 * NIC startup/shutdown 336 * 337 *************************************************************************/ 338 339 static int efx_probe_all(struct efx_nic *efx) 340 { 341 int rc; 342 343 rc = efx_probe_nic(efx); 344 if (rc) { 345 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 346 goto fail1; 347 } 348 349 rc = efx_probe_port(efx); 350 if (rc) { 351 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 352 goto fail2; 353 } 354 355 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); 356 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { 357 rc = -EINVAL; 358 goto fail3; 359 } 360 361 #ifdef CONFIG_SFC_SRIOV 362 rc = efx->type->vswitching_probe(efx); 363 if (rc) /* not fatal; the PF will still work fine */ 364 netif_warn(efx, probe, efx->net_dev, 365 "failed to setup vswitching rc=%d;" 366 " VFs may not function\n", rc); 367 #endif 368 369 rc = efx_probe_filters(efx); 370 if (rc) { 371 netif_err(efx, probe, efx->net_dev, 372 "failed to create filter tables\n"); 373 goto fail4; 374 } 375 376 rc = efx_probe_channels(efx); 377 if (rc) 378 goto fail5; 379 380 return 0; 381 382 fail5: 383 efx_remove_filters(efx); 384 fail4: 385 #ifdef CONFIG_SFC_SRIOV 386 efx->type->vswitching_remove(efx); 387 #endif 388 fail3: 389 efx_remove_port(efx); 390 fail2: 391 efx_remove_nic(efx); 392 fail1: 393 return rc; 394 } 395 396 static void efx_remove_all(struct efx_nic *efx) 397 { 398 rtnl_lock(); 399 efx_xdp_setup_prog(efx, NULL); 400 rtnl_unlock(); 401 402 efx_remove_channels(efx); 403 efx_remove_filters(efx); 404 #ifdef CONFIG_SFC_SRIOV 405 efx->type->vswitching_remove(efx); 406 #endif 407 efx_remove_port(efx); 408 efx_remove_nic(efx); 409 } 410 411 /************************************************************************** 412 * 413 * Interrupt moderation 414 * 415 **************************************************************************/ 416 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs) 417 { 418 if (usecs == 0) 419 return 0; 420 if (usecs * 1000 < efx->timer_quantum_ns) 421 return 1; /* never round down to 0 */ 422 return usecs * 1000 / efx->timer_quantum_ns; 423 } 424 425 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks) 426 { 427 /* We must round up when converting ticks to microseconds 428 * because we round down when converting the other way. 429 */ 430 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); 431 } 432 433 /* Set interrupt moderation parameters */ 434 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, 435 unsigned int rx_usecs, bool rx_adaptive, 436 bool rx_may_override_tx) 437 { 438 struct efx_channel *channel; 439 unsigned int timer_max_us; 440 441 EFX_ASSERT_RESET_SERIALISED(efx); 442 443 timer_max_us = efx->timer_max_ns / 1000; 444 445 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) 446 return -EINVAL; 447 448 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && 449 !rx_may_override_tx) { 450 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 451 "RX and TX IRQ moderation must be equal\n"); 452 return -EINVAL; 453 } 454 455 efx->irq_rx_adaptive = rx_adaptive; 456 efx->irq_rx_moderation_us = rx_usecs; 457 efx_for_each_channel(channel, efx) { 458 if (efx_channel_has_rx_queue(channel)) 459 channel->irq_moderation_us = rx_usecs; 460 else if (efx_channel_has_tx_queues(channel)) 461 channel->irq_moderation_us = tx_usecs; 462 else if (efx_channel_is_xdp_tx(channel)) 463 channel->irq_moderation_us = tx_usecs; 464 } 465 466 return 0; 467 } 468 469 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, 470 unsigned int *rx_usecs, bool *rx_adaptive) 471 { 472 *rx_adaptive = efx->irq_rx_adaptive; 473 *rx_usecs = efx->irq_rx_moderation_us; 474 475 /* If channels are shared between RX and TX, so is IRQ 476 * moderation. Otherwise, IRQ moderation is the same for all 477 * TX channels and is not adaptive. 478 */ 479 if (efx->tx_channel_offset == 0) { 480 *tx_usecs = *rx_usecs; 481 } else { 482 struct efx_channel *tx_channel; 483 484 tx_channel = efx->channel[efx->tx_channel_offset]; 485 *tx_usecs = tx_channel->irq_moderation_us; 486 } 487 } 488 489 /************************************************************************** 490 * 491 * ioctls 492 * 493 *************************************************************************/ 494 495 /* Net device ioctl 496 * Context: process, rtnl_lock() held. 497 */ 498 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 499 { 500 struct efx_nic *efx = netdev_priv(net_dev); 501 struct mii_ioctl_data *data = if_mii(ifr); 502 503 if (cmd == SIOCSHWTSTAMP) 504 return efx_ptp_set_ts_config(efx, ifr); 505 if (cmd == SIOCGHWTSTAMP) 506 return efx_ptp_get_ts_config(efx, ifr); 507 508 /* Convert phy_id from older PRTAD/DEVAD format */ 509 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 510 (data->phy_id & 0xfc00) == 0x0400) 511 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 512 513 return mdio_mii_ioctl(&efx->mdio, data, cmd); 514 } 515 516 /************************************************************************** 517 * 518 * Kernel net device interface 519 * 520 *************************************************************************/ 521 522 /* Context: process, rtnl_lock() held. */ 523 int efx_net_open(struct net_device *net_dev) 524 { 525 struct efx_nic *efx = netdev_priv(net_dev); 526 int rc; 527 528 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 529 raw_smp_processor_id()); 530 531 rc = efx_check_disabled(efx); 532 if (rc) 533 return rc; 534 if (efx->phy_mode & PHY_MODE_SPECIAL) 535 return -EBUSY; 536 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) 537 return -EIO; 538 539 /* Notify the kernel of the link state polled during driver load, 540 * before the monitor starts running */ 541 efx_link_status_changed(efx); 542 543 efx_start_all(efx); 544 if (efx->state == STATE_DISABLED || efx->reset_pending) 545 netif_device_detach(efx->net_dev); 546 efx_selftest_async_start(efx); 547 return 0; 548 } 549 550 /* Context: process, rtnl_lock() held. 551 * Note that the kernel will ignore our return code; this method 552 * should really be a void. 553 */ 554 int efx_net_stop(struct net_device *net_dev) 555 { 556 struct efx_nic *efx = netdev_priv(net_dev); 557 558 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 559 raw_smp_processor_id()); 560 561 /* Stop the device and flush all the channels */ 562 efx_stop_all(efx); 563 564 return 0; 565 } 566 567 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid) 568 { 569 struct efx_nic *efx = netdev_priv(net_dev); 570 571 if (efx->type->vlan_rx_add_vid) 572 return efx->type->vlan_rx_add_vid(efx, proto, vid); 573 else 574 return -EOPNOTSUPP; 575 } 576 577 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid) 578 { 579 struct efx_nic *efx = netdev_priv(net_dev); 580 581 if (efx->type->vlan_rx_kill_vid) 582 return efx->type->vlan_rx_kill_vid(efx, proto, vid); 583 else 584 return -EOPNOTSUPP; 585 } 586 587 static const struct net_device_ops efx_netdev_ops = { 588 .ndo_open = efx_net_open, 589 .ndo_stop = efx_net_stop, 590 .ndo_get_stats64 = efx_net_stats, 591 .ndo_tx_timeout = efx_watchdog, 592 .ndo_start_xmit = efx_hard_start_xmit, 593 .ndo_validate_addr = eth_validate_addr, 594 .ndo_do_ioctl = efx_ioctl, 595 .ndo_change_mtu = efx_change_mtu, 596 .ndo_set_mac_address = efx_set_mac_address, 597 .ndo_set_rx_mode = efx_set_rx_mode, 598 .ndo_set_features = efx_set_features, 599 .ndo_features_check = efx_features_check, 600 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid, 601 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid, 602 #ifdef CONFIG_SFC_SRIOV 603 .ndo_set_vf_mac = efx_sriov_set_vf_mac, 604 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, 605 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, 606 .ndo_get_vf_config = efx_sriov_get_vf_config, 607 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state, 608 #endif 609 .ndo_get_phys_port_id = efx_get_phys_port_id, 610 .ndo_get_phys_port_name = efx_get_phys_port_name, 611 .ndo_setup_tc = efx_setup_tc, 612 #ifdef CONFIG_RFS_ACCEL 613 .ndo_rx_flow_steer = efx_filter_rfs, 614 #endif 615 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port, 616 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port, 617 .ndo_xdp_xmit = efx_xdp_xmit, 618 .ndo_bpf = efx_xdp 619 }; 620 621 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog) 622 { 623 struct bpf_prog *old_prog; 624 625 if (efx->xdp_rxq_info_failed) { 626 netif_err(efx, drv, efx->net_dev, 627 "Unable to bind XDP program due to previous failure of rxq_info\n"); 628 return -EINVAL; 629 } 630 631 if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) { 632 netif_err(efx, drv, efx->net_dev, 633 "Unable to configure XDP with MTU of %d (max: %d)\n", 634 efx->net_dev->mtu, efx_xdp_max_mtu(efx)); 635 return -EINVAL; 636 } 637 638 old_prog = rtnl_dereference(efx->xdp_prog); 639 rcu_assign_pointer(efx->xdp_prog, prog); 640 /* Release the reference that was originally passed by the caller. */ 641 if (old_prog) 642 bpf_prog_put(old_prog); 643 644 return 0; 645 } 646 647 /* Context: process, rtnl_lock() held. */ 648 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp) 649 { 650 struct efx_nic *efx = netdev_priv(dev); 651 652 switch (xdp->command) { 653 case XDP_SETUP_PROG: 654 return efx_xdp_setup_prog(efx, xdp->prog); 655 default: 656 return -EINVAL; 657 } 658 } 659 660 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, 661 u32 flags) 662 { 663 struct efx_nic *efx = netdev_priv(dev); 664 665 if (!netif_running(dev)) 666 return -EINVAL; 667 668 return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH); 669 } 670 671 static void efx_update_name(struct efx_nic *efx) 672 { 673 strcpy(efx->name, efx->net_dev->name); 674 efx_mtd_rename(efx); 675 efx_set_channel_names(efx); 676 } 677 678 static int efx_netdev_event(struct notifier_block *this, 679 unsigned long event, void *ptr) 680 { 681 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 682 683 if ((net_dev->netdev_ops == &efx_netdev_ops) && 684 event == NETDEV_CHANGENAME) 685 efx_update_name(netdev_priv(net_dev)); 686 687 return NOTIFY_DONE; 688 } 689 690 static struct notifier_block efx_netdev_notifier = { 691 .notifier_call = efx_netdev_event, 692 }; 693 694 static ssize_t 695 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) 696 { 697 struct efx_nic *efx = dev_get_drvdata(dev); 698 return sprintf(buf, "%d\n", efx->phy_type); 699 } 700 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); 701 702 static int efx_register_netdev(struct efx_nic *efx) 703 { 704 struct net_device *net_dev = efx->net_dev; 705 struct efx_channel *channel; 706 int rc; 707 708 net_dev->watchdog_timeo = 5 * HZ; 709 net_dev->irq = efx->pci_dev->irq; 710 net_dev->netdev_ops = &efx_netdev_ops; 711 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) 712 net_dev->priv_flags |= IFF_UNICAST_FLT; 713 net_dev->ethtool_ops = &efx_ethtool_ops; 714 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS; 715 net_dev->min_mtu = EFX_MIN_MTU; 716 net_dev->max_mtu = EFX_MAX_MTU; 717 718 rtnl_lock(); 719 720 /* Enable resets to be scheduled and check whether any were 721 * already requested. If so, the NIC is probably hosed so we 722 * abort. 723 */ 724 efx->state = STATE_READY; 725 smp_mb(); /* ensure we change state before checking reset_pending */ 726 if (efx->reset_pending) { 727 netif_err(efx, probe, efx->net_dev, 728 "aborting probe due to scheduled reset\n"); 729 rc = -EIO; 730 goto fail_locked; 731 } 732 733 rc = dev_alloc_name(net_dev, net_dev->name); 734 if (rc < 0) 735 goto fail_locked; 736 efx_update_name(efx); 737 738 /* Always start with carrier off; PHY events will detect the link */ 739 netif_carrier_off(net_dev); 740 741 rc = register_netdevice(net_dev); 742 if (rc) 743 goto fail_locked; 744 745 efx_for_each_channel(channel, efx) { 746 struct efx_tx_queue *tx_queue; 747 efx_for_each_channel_tx_queue(tx_queue, channel) 748 efx_init_tx_queue_core_txq(tx_queue); 749 } 750 751 efx_associate(efx); 752 753 rtnl_unlock(); 754 755 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 756 if (rc) { 757 netif_err(efx, drv, efx->net_dev, 758 "failed to init net dev attributes\n"); 759 goto fail_registered; 760 } 761 762 efx_init_mcdi_logging(efx); 763 764 return 0; 765 766 fail_registered: 767 rtnl_lock(); 768 efx_dissociate(efx); 769 unregister_netdevice(net_dev); 770 fail_locked: 771 efx->state = STATE_UNINIT; 772 rtnl_unlock(); 773 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 774 return rc; 775 } 776 777 static void efx_unregister_netdev(struct efx_nic *efx) 778 { 779 if (!efx->net_dev) 780 return; 781 782 BUG_ON(netdev_priv(efx->net_dev) != efx); 783 784 if (efx_dev_registered(efx)) { 785 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 786 efx_fini_mcdi_logging(efx); 787 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 788 unregister_netdev(efx->net_dev); 789 } 790 } 791 792 /************************************************************************** 793 * 794 * List of NICs we support 795 * 796 **************************************************************************/ 797 798 /* PCI device ID table */ 799 static const struct pci_device_id efx_pci_table[] = { 800 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ 801 .driver_data = (unsigned long) &siena_a0_nic_type}, 802 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ 803 .driver_data = (unsigned long) &siena_a0_nic_type}, 804 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */ 805 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 806 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */ 807 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 808 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */ 809 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 810 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */ 811 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 812 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */ 813 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 814 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */ 815 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 816 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */ 817 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 818 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */ 819 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 820 {0} /* end of list */ 821 }; 822 823 /************************************************************************** 824 * 825 * Data housekeeping 826 * 827 **************************************************************************/ 828 829 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats) 830 { 831 u64 n_rx_nodesc_trunc = 0; 832 struct efx_channel *channel; 833 834 efx_for_each_channel(channel, efx) 835 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; 836 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; 837 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); 838 } 839 840 /************************************************************************** 841 * 842 * PCI interface 843 * 844 **************************************************************************/ 845 846 /* Main body of final NIC shutdown code 847 * This is called only at module unload (or hotplug removal). 848 */ 849 static void efx_pci_remove_main(struct efx_nic *efx) 850 { 851 /* Flush reset_work. It can no longer be scheduled since we 852 * are not READY. 853 */ 854 BUG_ON(efx->state == STATE_READY); 855 efx_flush_reset_workqueue(efx); 856 857 efx_disable_interrupts(efx); 858 efx_clear_interrupt_affinity(efx); 859 efx_nic_fini_interrupt(efx); 860 efx_fini_port(efx); 861 efx->type->fini(efx); 862 efx_fini_napi(efx); 863 efx_remove_all(efx); 864 } 865 866 /* Final NIC shutdown 867 * This is called only at module unload (or hotplug removal). A PF can call 868 * this on its VFs to ensure they are unbound first. 869 */ 870 static void efx_pci_remove(struct pci_dev *pci_dev) 871 { 872 struct efx_nic *efx; 873 874 efx = pci_get_drvdata(pci_dev); 875 if (!efx) 876 return; 877 878 /* Mark the NIC as fini, then stop the interface */ 879 rtnl_lock(); 880 efx_dissociate(efx); 881 dev_close(efx->net_dev); 882 efx_disable_interrupts(efx); 883 efx->state = STATE_UNINIT; 884 rtnl_unlock(); 885 886 if (efx->type->sriov_fini) 887 efx->type->sriov_fini(efx); 888 889 efx_unregister_netdev(efx); 890 891 efx_mtd_remove(efx); 892 893 efx_pci_remove_main(efx); 894 895 efx_fini_io(efx); 896 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 897 898 efx_fini_struct(efx); 899 free_netdev(efx->net_dev); 900 901 pci_disable_pcie_error_reporting(pci_dev); 902 }; 903 904 /* NIC VPD information 905 * Called during probe to display the part number of the 906 * installed NIC. VPD is potentially very large but this should 907 * always appear within the first 512 bytes. 908 */ 909 #define SFC_VPD_LEN 512 910 static void efx_probe_vpd_strings(struct efx_nic *efx) 911 { 912 struct pci_dev *dev = efx->pci_dev; 913 char vpd_data[SFC_VPD_LEN]; 914 ssize_t vpd_size; 915 int ro_start, ro_size, i, j; 916 917 /* Get the vpd data from the device */ 918 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 919 if (vpd_size <= 0) { 920 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); 921 return; 922 } 923 924 /* Get the Read only section */ 925 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 926 if (ro_start < 0) { 927 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); 928 return; 929 } 930 931 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 932 j = ro_size; 933 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 934 if (i + j > vpd_size) 935 j = vpd_size - i; 936 937 /* Get the Part number */ 938 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); 939 if (i < 0) { 940 netif_err(efx, drv, efx->net_dev, "Part number not found\n"); 941 return; 942 } 943 944 j = pci_vpd_info_field_size(&vpd_data[i]); 945 i += PCI_VPD_INFO_FLD_HDR_SIZE; 946 if (i + j > vpd_size) { 947 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); 948 return; 949 } 950 951 netif_info(efx, drv, efx->net_dev, 952 "Part Number : %.*s\n", j, &vpd_data[i]); 953 954 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 955 j = ro_size; 956 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); 957 if (i < 0) { 958 netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); 959 return; 960 } 961 962 j = pci_vpd_info_field_size(&vpd_data[i]); 963 i += PCI_VPD_INFO_FLD_HDR_SIZE; 964 if (i + j > vpd_size) { 965 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); 966 return; 967 } 968 969 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); 970 if (!efx->vpd_sn) 971 return; 972 973 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); 974 } 975 976 977 /* Main body of NIC initialisation 978 * This is called at module load (or hotplug insertion, theoretically). 979 */ 980 static int efx_pci_probe_main(struct efx_nic *efx) 981 { 982 int rc; 983 984 /* Do start-of-day initialisation */ 985 rc = efx_probe_all(efx); 986 if (rc) 987 goto fail1; 988 989 efx_init_napi(efx); 990 991 down_write(&efx->filter_sem); 992 rc = efx->type->init(efx); 993 up_write(&efx->filter_sem); 994 if (rc) { 995 netif_err(efx, probe, efx->net_dev, 996 "failed to initialise NIC\n"); 997 goto fail3; 998 } 999 1000 rc = efx_init_port(efx); 1001 if (rc) { 1002 netif_err(efx, probe, efx->net_dev, 1003 "failed to initialise port\n"); 1004 goto fail4; 1005 } 1006 1007 rc = efx_nic_init_interrupt(efx); 1008 if (rc) 1009 goto fail5; 1010 1011 efx_set_interrupt_affinity(efx); 1012 rc = efx_enable_interrupts(efx); 1013 if (rc) 1014 goto fail6; 1015 1016 return 0; 1017 1018 fail6: 1019 efx_clear_interrupt_affinity(efx); 1020 efx_nic_fini_interrupt(efx); 1021 fail5: 1022 efx_fini_port(efx); 1023 fail4: 1024 efx->type->fini(efx); 1025 fail3: 1026 efx_fini_napi(efx); 1027 efx_remove_all(efx); 1028 fail1: 1029 return rc; 1030 } 1031 1032 static int efx_pci_probe_post_io(struct efx_nic *efx) 1033 { 1034 struct net_device *net_dev = efx->net_dev; 1035 int rc = efx_pci_probe_main(efx); 1036 1037 if (rc) 1038 return rc; 1039 1040 if (efx->type->sriov_init) { 1041 rc = efx->type->sriov_init(efx); 1042 if (rc) 1043 netif_err(efx, probe, efx->net_dev, 1044 "SR-IOV can't be enabled rc %d\n", rc); 1045 } 1046 1047 /* Determine netdevice features */ 1048 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 1049 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL); 1050 if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM)) 1051 net_dev->features |= NETIF_F_TSO6; 1052 /* Check whether device supports TSO */ 1053 if (!efx->type->tso_versions || !efx->type->tso_versions(efx)) 1054 net_dev->features &= ~NETIF_F_ALL_TSO; 1055 /* Mask for features that also apply to VLAN devices */ 1056 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | 1057 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | 1058 NETIF_F_RXCSUM); 1059 1060 net_dev->hw_features |= net_dev->features & ~efx->fixed_features; 1061 1062 /* Disable receiving frames with bad FCS, by default. */ 1063 net_dev->features &= ~NETIF_F_RXALL; 1064 1065 /* Disable VLAN filtering by default. It may be enforced if 1066 * the feature is fixed (i.e. VLAN filters are required to 1067 * receive VLAN tagged packets due to vPort restrictions). 1068 */ 1069 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 1070 net_dev->features |= efx->fixed_features; 1071 1072 rc = efx_register_netdev(efx); 1073 if (!rc) 1074 return 0; 1075 1076 efx_pci_remove_main(efx); 1077 return rc; 1078 } 1079 1080 /* NIC initialisation 1081 * 1082 * This is called at module load (or hotplug insertion, 1083 * theoretically). It sets up PCI mappings, resets the NIC, 1084 * sets up and registers the network devices with the kernel and hooks 1085 * the interrupt service routine. It does not prepare the device for 1086 * transmission; this is left to the first time one of the network 1087 * interfaces is brought up (i.e. efx_net_open). 1088 */ 1089 static int efx_pci_probe(struct pci_dev *pci_dev, 1090 const struct pci_device_id *entry) 1091 { 1092 struct net_device *net_dev; 1093 struct efx_nic *efx; 1094 int rc; 1095 1096 /* Allocate and initialise a struct net_device and struct efx_nic */ 1097 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, 1098 EFX_MAX_RX_QUEUES); 1099 if (!net_dev) 1100 return -ENOMEM; 1101 efx = netdev_priv(net_dev); 1102 efx->type = (const struct efx_nic_type *) entry->driver_data; 1103 efx->fixed_features |= NETIF_F_HIGHDMA; 1104 1105 pci_set_drvdata(pci_dev, efx); 1106 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 1107 rc = efx_init_struct(efx, pci_dev, net_dev); 1108 if (rc) 1109 goto fail1; 1110 1111 netif_info(efx, probe, efx->net_dev, 1112 "Solarflare NIC detected\n"); 1113 1114 if (!efx->type->is_vf) 1115 efx_probe_vpd_strings(efx); 1116 1117 /* Set up basic I/O (BAR mappings etc) */ 1118 rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask, 1119 efx->type->mem_map_size(efx)); 1120 if (rc) 1121 goto fail2; 1122 1123 rc = efx_pci_probe_post_io(efx); 1124 if (rc) { 1125 /* On failure, retry once immediately. 1126 * If we aborted probe due to a scheduled reset, dismiss it. 1127 */ 1128 efx->reset_pending = 0; 1129 rc = efx_pci_probe_post_io(efx); 1130 if (rc) { 1131 /* On another failure, retry once more 1132 * after a 50-305ms delay. 1133 */ 1134 unsigned char r; 1135 1136 get_random_bytes(&r, 1); 1137 msleep((unsigned int)r + 50); 1138 efx->reset_pending = 0; 1139 rc = efx_pci_probe_post_io(efx); 1140 } 1141 } 1142 if (rc) 1143 goto fail3; 1144 1145 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 1146 1147 /* Try to create MTDs, but allow this to fail */ 1148 rtnl_lock(); 1149 rc = efx_mtd_probe(efx); 1150 rtnl_unlock(); 1151 if (rc && rc != -EPERM) 1152 netif_warn(efx, probe, efx->net_dev, 1153 "failed to create MTDs (%d)\n", rc); 1154 1155 (void)pci_enable_pcie_error_reporting(pci_dev); 1156 1157 if (efx->type->udp_tnl_push_ports) 1158 efx->type->udp_tnl_push_ports(efx); 1159 1160 return 0; 1161 1162 fail3: 1163 efx_fini_io(efx); 1164 fail2: 1165 efx_fini_struct(efx); 1166 fail1: 1167 WARN_ON(rc > 0); 1168 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 1169 free_netdev(net_dev); 1170 return rc; 1171 } 1172 1173 /* efx_pci_sriov_configure returns the actual number of Virtual Functions 1174 * enabled on success 1175 */ 1176 #ifdef CONFIG_SFC_SRIOV 1177 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 1178 { 1179 int rc; 1180 struct efx_nic *efx = pci_get_drvdata(dev); 1181 1182 if (efx->type->sriov_configure) { 1183 rc = efx->type->sriov_configure(efx, num_vfs); 1184 if (rc) 1185 return rc; 1186 else 1187 return num_vfs; 1188 } else 1189 return -EOPNOTSUPP; 1190 } 1191 #endif 1192 1193 static int efx_pm_freeze(struct device *dev) 1194 { 1195 struct efx_nic *efx = dev_get_drvdata(dev); 1196 1197 rtnl_lock(); 1198 1199 if (efx->state != STATE_DISABLED) { 1200 efx->state = STATE_UNINIT; 1201 1202 efx_device_detach_sync(efx); 1203 1204 efx_stop_all(efx); 1205 efx_disable_interrupts(efx); 1206 } 1207 1208 rtnl_unlock(); 1209 1210 return 0; 1211 } 1212 1213 static int efx_pm_thaw(struct device *dev) 1214 { 1215 int rc; 1216 struct efx_nic *efx = dev_get_drvdata(dev); 1217 1218 rtnl_lock(); 1219 1220 if (efx->state != STATE_DISABLED) { 1221 rc = efx_enable_interrupts(efx); 1222 if (rc) 1223 goto fail; 1224 1225 mutex_lock(&efx->mac_lock); 1226 efx_mcdi_port_reconfigure(efx); 1227 mutex_unlock(&efx->mac_lock); 1228 1229 efx_start_all(efx); 1230 1231 efx_device_attach_if_not_resetting(efx); 1232 1233 efx->state = STATE_READY; 1234 1235 efx->type->resume_wol(efx); 1236 } 1237 1238 rtnl_unlock(); 1239 1240 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ 1241 efx_queue_reset_work(efx); 1242 1243 return 0; 1244 1245 fail: 1246 rtnl_unlock(); 1247 1248 return rc; 1249 } 1250 1251 static int efx_pm_poweroff(struct device *dev) 1252 { 1253 struct pci_dev *pci_dev = to_pci_dev(dev); 1254 struct efx_nic *efx = pci_get_drvdata(pci_dev); 1255 1256 efx->type->fini(efx); 1257 1258 efx->reset_pending = 0; 1259 1260 pci_save_state(pci_dev); 1261 return pci_set_power_state(pci_dev, PCI_D3hot); 1262 } 1263 1264 /* Used for both resume and restore */ 1265 static int efx_pm_resume(struct device *dev) 1266 { 1267 struct pci_dev *pci_dev = to_pci_dev(dev); 1268 struct efx_nic *efx = pci_get_drvdata(pci_dev); 1269 int rc; 1270 1271 rc = pci_set_power_state(pci_dev, PCI_D0); 1272 if (rc) 1273 return rc; 1274 pci_restore_state(pci_dev); 1275 rc = pci_enable_device(pci_dev); 1276 if (rc) 1277 return rc; 1278 pci_set_master(efx->pci_dev); 1279 rc = efx->type->reset(efx, RESET_TYPE_ALL); 1280 if (rc) 1281 return rc; 1282 down_write(&efx->filter_sem); 1283 rc = efx->type->init(efx); 1284 up_write(&efx->filter_sem); 1285 if (rc) 1286 return rc; 1287 rc = efx_pm_thaw(dev); 1288 return rc; 1289 } 1290 1291 static int efx_pm_suspend(struct device *dev) 1292 { 1293 int rc; 1294 1295 efx_pm_freeze(dev); 1296 rc = efx_pm_poweroff(dev); 1297 if (rc) 1298 efx_pm_resume(dev); 1299 return rc; 1300 } 1301 1302 static const struct dev_pm_ops efx_pm_ops = { 1303 .suspend = efx_pm_suspend, 1304 .resume = efx_pm_resume, 1305 .freeze = efx_pm_freeze, 1306 .thaw = efx_pm_thaw, 1307 .poweroff = efx_pm_poweroff, 1308 .restore = efx_pm_resume, 1309 }; 1310 1311 static struct pci_driver efx_pci_driver = { 1312 .name = KBUILD_MODNAME, 1313 .id_table = efx_pci_table, 1314 .probe = efx_pci_probe, 1315 .remove = efx_pci_remove, 1316 .driver.pm = &efx_pm_ops, 1317 .err_handler = &efx_err_handlers, 1318 #ifdef CONFIG_SFC_SRIOV 1319 .sriov_configure = efx_pci_sriov_configure, 1320 #endif 1321 }; 1322 1323 /************************************************************************** 1324 * 1325 * Kernel module interface 1326 * 1327 *************************************************************************/ 1328 1329 static int __init efx_init_module(void) 1330 { 1331 int rc; 1332 1333 printk(KERN_INFO "Solarflare NET driver\n"); 1334 1335 rc = register_netdevice_notifier(&efx_netdev_notifier); 1336 if (rc) 1337 goto err_notifier; 1338 1339 #ifdef CONFIG_SFC_SRIOV 1340 rc = efx_init_sriov(); 1341 if (rc) 1342 goto err_sriov; 1343 #endif 1344 1345 rc = efx_create_reset_workqueue(); 1346 if (rc) 1347 goto err_reset; 1348 1349 rc = pci_register_driver(&efx_pci_driver); 1350 if (rc < 0) 1351 goto err_pci; 1352 1353 rc = pci_register_driver(&ef100_pci_driver); 1354 if (rc < 0) 1355 goto err_pci_ef100; 1356 1357 return 0; 1358 1359 err_pci_ef100: 1360 pci_unregister_driver(&efx_pci_driver); 1361 err_pci: 1362 efx_destroy_reset_workqueue(); 1363 err_reset: 1364 #ifdef CONFIG_SFC_SRIOV 1365 efx_fini_sriov(); 1366 err_sriov: 1367 #endif 1368 unregister_netdevice_notifier(&efx_netdev_notifier); 1369 err_notifier: 1370 return rc; 1371 } 1372 1373 static void __exit efx_exit_module(void) 1374 { 1375 printk(KERN_INFO "Solarflare NET driver unloading\n"); 1376 1377 pci_unregister_driver(&ef100_pci_driver); 1378 pci_unregister_driver(&efx_pci_driver); 1379 efx_destroy_reset_workqueue(); 1380 #ifdef CONFIG_SFC_SRIOV 1381 efx_fini_sriov(); 1382 #endif 1383 unregister_netdevice_notifier(&efx_netdev_notifier); 1384 1385 } 1386 1387 module_init(efx_init_module); 1388 module_exit(efx_exit_module); 1389 1390 MODULE_AUTHOR("Solarflare Communications and " 1391 "Michael Brown <mbrown@fensystems.co.uk>"); 1392 MODULE_DESCRIPTION("Solarflare network driver"); 1393 MODULE_LICENSE("GPL"); 1394 MODULE_DEVICE_TABLE(pci, efx_pci_table); 1395