1 /**************************************************************************** 2 * Driver for Solarflare Solarstorm network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2011 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/pci.h> 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/delay.h> 16 #include <linux/notifier.h> 17 #include <linux/ip.h> 18 #include <linux/tcp.h> 19 #include <linux/in.h> 20 #include <linux/crc32.h> 21 #include <linux/ethtool.h> 22 #include <linux/topology.h> 23 #include <linux/gfp.h> 24 #include <linux/cpu_rmap.h> 25 #include <linux/aer.h> 26 #include "net_driver.h" 27 #include "efx.h" 28 #include "nic.h" 29 #include "selftest.h" 30 31 #include "mcdi.h" 32 #include "workarounds.h" 33 34 /************************************************************************** 35 * 36 * Type name strings 37 * 38 ************************************************************************** 39 */ 40 41 /* Loopback mode names (see LOOPBACK_MODE()) */ 42 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; 43 const char *const efx_loopback_mode_names[] = { 44 [LOOPBACK_NONE] = "NONE", 45 [LOOPBACK_DATA] = "DATAPATH", 46 [LOOPBACK_GMAC] = "GMAC", 47 [LOOPBACK_XGMII] = "XGMII", 48 [LOOPBACK_XGXS] = "XGXS", 49 [LOOPBACK_XAUI] = "XAUI", 50 [LOOPBACK_GMII] = "GMII", 51 [LOOPBACK_SGMII] = "SGMII", 52 [LOOPBACK_XGBR] = "XGBR", 53 [LOOPBACK_XFI] = "XFI", 54 [LOOPBACK_XAUI_FAR] = "XAUI_FAR", 55 [LOOPBACK_GMII_FAR] = "GMII_FAR", 56 [LOOPBACK_SGMII_FAR] = "SGMII_FAR", 57 [LOOPBACK_XFI_FAR] = "XFI_FAR", 58 [LOOPBACK_GPHY] = "GPHY", 59 [LOOPBACK_PHYXS] = "PHYXS", 60 [LOOPBACK_PCS] = "PCS", 61 [LOOPBACK_PMAPMD] = "PMA/PMD", 62 [LOOPBACK_XPORT] = "XPORT", 63 [LOOPBACK_XGMII_WS] = "XGMII_WS", 64 [LOOPBACK_XAUI_WS] = "XAUI_WS", 65 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", 66 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", 67 [LOOPBACK_GMII_WS] = "GMII_WS", 68 [LOOPBACK_XFI_WS] = "XFI_WS", 69 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", 70 [LOOPBACK_PHYXS_WS] = "PHYXS_WS", 71 }; 72 73 const unsigned int efx_reset_type_max = RESET_TYPE_MAX; 74 const char *const efx_reset_type_names[] = { 75 [RESET_TYPE_INVISIBLE] = "INVISIBLE", 76 [RESET_TYPE_ALL] = "ALL", 77 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", 78 [RESET_TYPE_WORLD] = "WORLD", 79 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", 80 [RESET_TYPE_DISABLE] = "DISABLE", 81 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", 82 [RESET_TYPE_INT_ERROR] = "INT_ERROR", 83 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", 84 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH", 85 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH", 86 [RESET_TYPE_TX_SKIP] = "TX_SKIP", 87 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", 88 }; 89 90 /* Reset workqueue. If any NIC has a hardware failure then a reset will be 91 * queued onto this work queue. This is not a per-nic work queue, because 92 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. 93 */ 94 static struct workqueue_struct *reset_workqueue; 95 96 /************************************************************************** 97 * 98 * Configurable values 99 * 100 *************************************************************************/ 101 102 /* 103 * Use separate channels for TX and RX events 104 * 105 * Set this to 1 to use separate channels for TX and RX. It allows us 106 * to control interrupt affinity separately for TX and RX. 107 * 108 * This is only used in MSI-X interrupt mode 109 */ 110 static bool separate_tx_channels; 111 module_param(separate_tx_channels, bool, 0444); 112 MODULE_PARM_DESC(separate_tx_channels, 113 "Use separate channels for TX and RX"); 114 115 /* This is the weight assigned to each of the (per-channel) virtual 116 * NAPI devices. 117 */ 118 static int napi_weight = 64; 119 120 /* This is the time (in jiffies) between invocations of the hardware 121 * monitor. 122 * On Falcon-based NICs, this will: 123 * - Check the on-board hardware monitor; 124 * - Poll the link state and reconfigure the hardware as necessary. 125 * On Siena-based NICs for power systems with EEH support, this will give EEH a 126 * chance to start. 127 */ 128 static unsigned int efx_monitor_interval = 1 * HZ; 129 130 /* Initial interrupt moderation settings. They can be modified after 131 * module load with ethtool. 132 * 133 * The default for RX should strike a balance between increasing the 134 * round-trip latency and reducing overhead. 135 */ 136 static unsigned int rx_irq_mod_usec = 60; 137 138 /* Initial interrupt moderation settings. They can be modified after 139 * module load with ethtool. 140 * 141 * This default is chosen to ensure that a 10G link does not go idle 142 * while a TX queue is stopped after it has become full. A queue is 143 * restarted when it drops below half full. The time this takes (assuming 144 * worst case 3 descriptors per packet and 1024 descriptors) is 145 * 512 / 3 * 1.2 = 205 usec. 146 */ 147 static unsigned int tx_irq_mod_usec = 150; 148 149 /* This is the first interrupt mode to try out of: 150 * 0 => MSI-X 151 * 1 => MSI 152 * 2 => legacy 153 */ 154 static unsigned int interrupt_mode; 155 156 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), 157 * i.e. the number of CPUs among which we may distribute simultaneous 158 * interrupt handling. 159 * 160 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. 161 * The default (0) means to assign an interrupt to each core. 162 */ 163 static unsigned int rss_cpus; 164 module_param(rss_cpus, uint, 0444); 165 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 166 167 static bool phy_flash_cfg; 168 module_param(phy_flash_cfg, bool, 0644); 169 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 170 171 static unsigned irq_adapt_low_thresh = 8000; 172 module_param(irq_adapt_low_thresh, uint, 0644); 173 MODULE_PARM_DESC(irq_adapt_low_thresh, 174 "Threshold score for reducing IRQ moderation"); 175 176 static unsigned irq_adapt_high_thresh = 16000; 177 module_param(irq_adapt_high_thresh, uint, 0644); 178 MODULE_PARM_DESC(irq_adapt_high_thresh, 179 "Threshold score for increasing IRQ moderation"); 180 181 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 182 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 183 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 184 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 185 module_param(debug, uint, 0); 186 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 187 188 /************************************************************************** 189 * 190 * Utility functions and prototypes 191 * 192 *************************************************************************/ 193 194 static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq); 195 static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq); 196 static void efx_remove_channel(struct efx_channel *channel); 197 static void efx_remove_channels(struct efx_nic *efx); 198 static const struct efx_channel_type efx_default_channel_type; 199 static void efx_remove_port(struct efx_nic *efx); 200 static void efx_init_napi_channel(struct efx_channel *channel); 201 static void efx_fini_napi(struct efx_nic *efx); 202 static void efx_fini_napi_channel(struct efx_channel *channel); 203 static void efx_fini_struct(struct efx_nic *efx); 204 static void efx_start_all(struct efx_nic *efx); 205 static void efx_stop_all(struct efx_nic *efx); 206 207 #define EFX_ASSERT_RESET_SERIALISED(efx) \ 208 do { \ 209 if ((efx->state == STATE_READY) || \ 210 (efx->state == STATE_RECOVERY) || \ 211 (efx->state == STATE_DISABLED)) \ 212 ASSERT_RTNL(); \ 213 } while (0) 214 215 static int efx_check_disabled(struct efx_nic *efx) 216 { 217 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { 218 netif_err(efx, drv, efx->net_dev, 219 "device is disabled due to earlier errors\n"); 220 return -EIO; 221 } 222 return 0; 223 } 224 225 /************************************************************************** 226 * 227 * Event queue processing 228 * 229 *************************************************************************/ 230 231 /* Process channel's event queue 232 * 233 * This function is responsible for processing the event queue of a 234 * single channel. The caller must guarantee that this function will 235 * never be concurrently called more than once on the same channel, 236 * though different channels may be being processed concurrently. 237 */ 238 static int efx_process_channel(struct efx_channel *channel, int budget) 239 { 240 int spent; 241 242 if (unlikely(!channel->enabled)) 243 return 0; 244 245 spent = efx_nic_process_eventq(channel, budget); 246 if (spent && efx_channel_has_rx_queue(channel)) { 247 struct efx_rx_queue *rx_queue = 248 efx_channel_get_rx_queue(channel); 249 250 efx_rx_flush_packet(channel); 251 if (rx_queue->enabled) 252 efx_fast_push_rx_descriptors(rx_queue); 253 } 254 255 return spent; 256 } 257 258 /* Mark channel as finished processing 259 * 260 * Note that since we will not receive further interrupts for this 261 * channel before we finish processing and call the eventq_read_ack() 262 * method, there is no need to use the interrupt hold-off timers. 263 */ 264 static inline void efx_channel_processed(struct efx_channel *channel) 265 { 266 /* The interrupt handler for this channel may set work_pending 267 * as soon as we acknowledge the events we've seen. Make sure 268 * it's cleared before then. */ 269 channel->work_pending = false; 270 smp_wmb(); 271 272 efx_nic_eventq_read_ack(channel); 273 } 274 275 /* NAPI poll handler 276 * 277 * NAPI guarantees serialisation of polls of the same device, which 278 * provides the guarantee required by efx_process_channel(). 279 */ 280 static int efx_poll(struct napi_struct *napi, int budget) 281 { 282 struct efx_channel *channel = 283 container_of(napi, struct efx_channel, napi_str); 284 struct efx_nic *efx = channel->efx; 285 int spent; 286 287 netif_vdbg(efx, intr, efx->net_dev, 288 "channel %d NAPI poll executing on CPU %d\n", 289 channel->channel, raw_smp_processor_id()); 290 291 spent = efx_process_channel(channel, budget); 292 293 if (spent < budget) { 294 if (efx_channel_has_rx_queue(channel) && 295 efx->irq_rx_adaptive && 296 unlikely(++channel->irq_count == 1000)) { 297 if (unlikely(channel->irq_mod_score < 298 irq_adapt_low_thresh)) { 299 if (channel->irq_moderation > 1) { 300 channel->irq_moderation -= 1; 301 efx->type->push_irq_moderation(channel); 302 } 303 } else if (unlikely(channel->irq_mod_score > 304 irq_adapt_high_thresh)) { 305 if (channel->irq_moderation < 306 efx->irq_rx_moderation) { 307 channel->irq_moderation += 1; 308 efx->type->push_irq_moderation(channel); 309 } 310 } 311 channel->irq_count = 0; 312 channel->irq_mod_score = 0; 313 } 314 315 efx_filter_rfs_expire(channel); 316 317 /* There is no race here; although napi_disable() will 318 * only wait for napi_complete(), this isn't a problem 319 * since efx_channel_processed() will have no effect if 320 * interrupts have already been disabled. 321 */ 322 napi_complete(napi); 323 efx_channel_processed(channel); 324 } 325 326 return spent; 327 } 328 329 /* Process the eventq of the specified channel immediately on this CPU 330 * 331 * Disable hardware generated interrupts, wait for any existing 332 * processing to finish, then directly poll (and ack ) the eventq. 333 * Finally reenable NAPI and interrupts. 334 * 335 * This is for use only during a loopback self-test. It must not 336 * deliver any packets up the stack as this can result in deadlock. 337 */ 338 void efx_process_channel_now(struct efx_channel *channel) 339 { 340 struct efx_nic *efx = channel->efx; 341 342 BUG_ON(channel->channel >= efx->n_channels); 343 BUG_ON(!channel->enabled); 344 BUG_ON(!efx->loopback_selftest); 345 346 /* Disable interrupts and wait for ISRs to complete */ 347 efx_nic_disable_interrupts(efx); 348 if (efx->legacy_irq) { 349 synchronize_irq(efx->legacy_irq); 350 efx->legacy_irq_enabled = false; 351 } 352 if (channel->irq) 353 synchronize_irq(channel->irq); 354 355 /* Wait for any NAPI processing to complete */ 356 napi_disable(&channel->napi_str); 357 358 /* Poll the channel */ 359 efx_process_channel(channel, channel->eventq_mask + 1); 360 361 /* Ack the eventq. This may cause an interrupt to be generated 362 * when they are reenabled */ 363 efx_channel_processed(channel); 364 365 napi_enable(&channel->napi_str); 366 if (efx->legacy_irq) 367 efx->legacy_irq_enabled = true; 368 efx_nic_enable_interrupts(efx); 369 } 370 371 /* Create event queue 372 * Event queue memory allocations are done only once. If the channel 373 * is reset, the memory buffer will be reused; this guards against 374 * errors during channel reset and also simplifies interrupt handling. 375 */ 376 static int efx_probe_eventq(struct efx_channel *channel) 377 { 378 struct efx_nic *efx = channel->efx; 379 unsigned long entries; 380 381 netif_dbg(efx, probe, efx->net_dev, 382 "chan %d create event queue\n", channel->channel); 383 384 /* Build an event queue with room for one event per tx and rx buffer, 385 * plus some extra for link state events and MCDI completions. */ 386 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); 387 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); 388 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; 389 390 return efx_nic_probe_eventq(channel); 391 } 392 393 /* Prepare channel's event queue */ 394 static void efx_init_eventq(struct efx_channel *channel) 395 { 396 netif_dbg(channel->efx, drv, channel->efx->net_dev, 397 "chan %d init event queue\n", channel->channel); 398 399 channel->eventq_read_ptr = 0; 400 401 efx_nic_init_eventq(channel); 402 } 403 404 /* Enable event queue processing and NAPI */ 405 static void efx_start_eventq(struct efx_channel *channel) 406 { 407 netif_dbg(channel->efx, ifup, channel->efx->net_dev, 408 "chan %d start event queue\n", channel->channel); 409 410 /* The interrupt handler for this channel may set work_pending 411 * as soon as we enable it. Make sure it's cleared before 412 * then. Similarly, make sure it sees the enabled flag set. 413 */ 414 channel->work_pending = false; 415 channel->enabled = true; 416 smp_wmb(); 417 418 napi_enable(&channel->napi_str); 419 efx_nic_eventq_read_ack(channel); 420 } 421 422 /* Disable event queue processing and NAPI */ 423 static void efx_stop_eventq(struct efx_channel *channel) 424 { 425 if (!channel->enabled) 426 return; 427 428 napi_disable(&channel->napi_str); 429 channel->enabled = false; 430 } 431 432 static void efx_fini_eventq(struct efx_channel *channel) 433 { 434 netif_dbg(channel->efx, drv, channel->efx->net_dev, 435 "chan %d fini event queue\n", channel->channel); 436 437 efx_nic_fini_eventq(channel); 438 } 439 440 static void efx_remove_eventq(struct efx_channel *channel) 441 { 442 netif_dbg(channel->efx, drv, channel->efx->net_dev, 443 "chan %d remove event queue\n", channel->channel); 444 445 efx_nic_remove_eventq(channel); 446 } 447 448 /************************************************************************** 449 * 450 * Channel handling 451 * 452 *************************************************************************/ 453 454 /* Allocate and initialise a channel structure. */ 455 static struct efx_channel * 456 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) 457 { 458 struct efx_channel *channel; 459 struct efx_rx_queue *rx_queue; 460 struct efx_tx_queue *tx_queue; 461 int j; 462 463 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 464 if (!channel) 465 return NULL; 466 467 channel->efx = efx; 468 channel->channel = i; 469 channel->type = &efx_default_channel_type; 470 471 for (j = 0; j < EFX_TXQ_TYPES; j++) { 472 tx_queue = &channel->tx_queue[j]; 473 tx_queue->efx = efx; 474 tx_queue->queue = i * EFX_TXQ_TYPES + j; 475 tx_queue->channel = channel; 476 } 477 478 rx_queue = &channel->rx_queue; 479 rx_queue->efx = efx; 480 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, 481 (unsigned long)rx_queue); 482 483 return channel; 484 } 485 486 /* Allocate and initialise a channel structure, copying parameters 487 * (but not resources) from an old channel structure. 488 */ 489 static struct efx_channel * 490 efx_copy_channel(const struct efx_channel *old_channel) 491 { 492 struct efx_channel *channel; 493 struct efx_rx_queue *rx_queue; 494 struct efx_tx_queue *tx_queue; 495 int j; 496 497 channel = kmalloc(sizeof(*channel), GFP_KERNEL); 498 if (!channel) 499 return NULL; 500 501 *channel = *old_channel; 502 503 channel->napi_dev = NULL; 504 memset(&channel->eventq, 0, sizeof(channel->eventq)); 505 506 for (j = 0; j < EFX_TXQ_TYPES; j++) { 507 tx_queue = &channel->tx_queue[j]; 508 if (tx_queue->channel) 509 tx_queue->channel = channel; 510 tx_queue->buffer = NULL; 511 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); 512 } 513 514 rx_queue = &channel->rx_queue; 515 rx_queue->buffer = NULL; 516 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); 517 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, 518 (unsigned long)rx_queue); 519 520 return channel; 521 } 522 523 static int efx_probe_channel(struct efx_channel *channel) 524 { 525 struct efx_tx_queue *tx_queue; 526 struct efx_rx_queue *rx_queue; 527 int rc; 528 529 netif_dbg(channel->efx, probe, channel->efx->net_dev, 530 "creating channel %d\n", channel->channel); 531 532 rc = channel->type->pre_probe(channel); 533 if (rc) 534 goto fail; 535 536 rc = efx_probe_eventq(channel); 537 if (rc) 538 goto fail; 539 540 efx_for_each_channel_tx_queue(tx_queue, channel) { 541 rc = efx_probe_tx_queue(tx_queue); 542 if (rc) 543 goto fail; 544 } 545 546 efx_for_each_channel_rx_queue(rx_queue, channel) { 547 rc = efx_probe_rx_queue(rx_queue); 548 if (rc) 549 goto fail; 550 } 551 552 channel->n_rx_frm_trunc = 0; 553 554 return 0; 555 556 fail: 557 efx_remove_channel(channel); 558 return rc; 559 } 560 561 static void 562 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len) 563 { 564 struct efx_nic *efx = channel->efx; 565 const char *type; 566 int number; 567 568 number = channel->channel; 569 if (efx->tx_channel_offset == 0) { 570 type = ""; 571 } else if (channel->channel < efx->tx_channel_offset) { 572 type = "-rx"; 573 } else { 574 type = "-tx"; 575 number -= efx->tx_channel_offset; 576 } 577 snprintf(buf, len, "%s%s-%d", efx->name, type, number); 578 } 579 580 static void efx_set_channel_names(struct efx_nic *efx) 581 { 582 struct efx_channel *channel; 583 584 efx_for_each_channel(channel, efx) 585 channel->type->get_name(channel, 586 efx->channel_name[channel->channel], 587 sizeof(efx->channel_name[0])); 588 } 589 590 static int efx_probe_channels(struct efx_nic *efx) 591 { 592 struct efx_channel *channel; 593 int rc; 594 595 /* Restart special buffer allocation */ 596 efx->next_buffer_table = 0; 597 598 /* Probe channels in reverse, so that any 'extra' channels 599 * use the start of the buffer table. This allows the traffic 600 * channels to be resized without moving them or wasting the 601 * entries before them. 602 */ 603 efx_for_each_channel_rev(channel, efx) { 604 rc = efx_probe_channel(channel); 605 if (rc) { 606 netif_err(efx, probe, efx->net_dev, 607 "failed to create channel %d\n", 608 channel->channel); 609 goto fail; 610 } 611 } 612 efx_set_channel_names(efx); 613 614 return 0; 615 616 fail: 617 efx_remove_channels(efx); 618 return rc; 619 } 620 621 /* Channels are shutdown and reinitialised whilst the NIC is running 622 * to propagate configuration changes (mtu, checksum offload), or 623 * to clear hardware error conditions 624 */ 625 static void efx_start_datapath(struct efx_nic *efx) 626 { 627 bool old_rx_scatter = efx->rx_scatter; 628 struct efx_tx_queue *tx_queue; 629 struct efx_rx_queue *rx_queue; 630 struct efx_channel *channel; 631 size_t rx_buf_len; 632 633 /* Calculate the rx buffer allocation parameters required to 634 * support the current MTU, including padding for header 635 * alignment and overruns. 636 */ 637 efx->rx_dma_len = (efx->type->rx_buffer_hash_size + 638 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + 639 efx->type->rx_buffer_padding); 640 rx_buf_len = (sizeof(struct efx_rx_page_state) + 641 NET_IP_ALIGN + efx->rx_dma_len); 642 if (rx_buf_len <= PAGE_SIZE) { 643 efx->rx_scatter = false; 644 efx->rx_buffer_order = 0; 645 } else if (efx->type->can_rx_scatter) { 646 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES); 647 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) + 648 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE, 649 EFX_RX_BUF_ALIGNMENT) > 650 PAGE_SIZE); 651 efx->rx_scatter = true; 652 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE; 653 efx->rx_buffer_order = 0; 654 } else { 655 efx->rx_scatter = false; 656 efx->rx_buffer_order = get_order(rx_buf_len); 657 } 658 659 efx_rx_config_page_split(efx); 660 if (efx->rx_buffer_order) 661 netif_dbg(efx, drv, efx->net_dev, 662 "RX buf len=%u; page order=%u batch=%u\n", 663 efx->rx_dma_len, efx->rx_buffer_order, 664 efx->rx_pages_per_batch); 665 else 666 netif_dbg(efx, drv, efx->net_dev, 667 "RX buf len=%u step=%u bpp=%u; page batch=%u\n", 668 efx->rx_dma_len, efx->rx_page_buf_step, 669 efx->rx_bufs_per_page, efx->rx_pages_per_batch); 670 671 /* RX filters also have scatter-enabled flags */ 672 if (efx->rx_scatter != old_rx_scatter) 673 efx_filter_update_rx_scatter(efx); 674 675 /* We must keep at least one descriptor in a TX ring empty. 676 * We could avoid this when the queue size does not exactly 677 * match the hardware ring size, but it's not that important. 678 * Therefore we stop the queue when one more skb might fill 679 * the ring completely. We wake it when half way back to 680 * empty. 681 */ 682 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx); 683 efx->txq_wake_thresh = efx->txq_stop_thresh / 2; 684 685 /* Initialise the channels */ 686 efx_for_each_channel(channel, efx) { 687 efx_for_each_channel_tx_queue(tx_queue, channel) 688 efx_init_tx_queue(tx_queue); 689 690 efx_for_each_channel_rx_queue(rx_queue, channel) { 691 efx_init_rx_queue(rx_queue); 692 efx_nic_generate_fill_event(rx_queue); 693 } 694 695 WARN_ON(channel->rx_pkt_n_frags); 696 } 697 698 if (netif_device_present(efx->net_dev)) 699 netif_tx_wake_all_queues(efx->net_dev); 700 } 701 702 static void efx_stop_datapath(struct efx_nic *efx) 703 { 704 struct efx_channel *channel; 705 struct efx_tx_queue *tx_queue; 706 struct efx_rx_queue *rx_queue; 707 struct pci_dev *dev = efx->pci_dev; 708 int rc; 709 710 EFX_ASSERT_RESET_SERIALISED(efx); 711 BUG_ON(efx->port_enabled); 712 713 /* Only perform flush if dma is enabled */ 714 if (dev->is_busmaster && efx->state != STATE_RECOVERY) { 715 rc = efx_nic_flush_queues(efx); 716 717 if (rc && EFX_WORKAROUND_7803(efx)) { 718 /* Schedule a reset to recover from the flush failure. The 719 * descriptor caches reference memory we're about to free, 720 * but falcon_reconfigure_mac_wrapper() won't reconnect 721 * the MACs because of the pending reset. */ 722 netif_err(efx, drv, efx->net_dev, 723 "Resetting to recover from flush failure\n"); 724 efx_schedule_reset(efx, RESET_TYPE_ALL); 725 } else if (rc) { 726 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); 727 } else { 728 netif_dbg(efx, drv, efx->net_dev, 729 "successfully flushed all queues\n"); 730 } 731 } 732 733 efx_for_each_channel(channel, efx) { 734 /* RX packet processing is pipelined, so wait for the 735 * NAPI handler to complete. At least event queue 0 736 * might be kept active by non-data events, so don't 737 * use napi_synchronize() but actually disable NAPI 738 * temporarily. 739 */ 740 if (efx_channel_has_rx_queue(channel)) { 741 efx_stop_eventq(channel); 742 efx_start_eventq(channel); 743 } 744 745 efx_for_each_channel_rx_queue(rx_queue, channel) 746 efx_fini_rx_queue(rx_queue); 747 efx_for_each_possible_channel_tx_queue(tx_queue, channel) 748 efx_fini_tx_queue(tx_queue); 749 } 750 } 751 752 static void efx_remove_channel(struct efx_channel *channel) 753 { 754 struct efx_tx_queue *tx_queue; 755 struct efx_rx_queue *rx_queue; 756 757 netif_dbg(channel->efx, drv, channel->efx->net_dev, 758 "destroy chan %d\n", channel->channel); 759 760 efx_for_each_channel_rx_queue(rx_queue, channel) 761 efx_remove_rx_queue(rx_queue); 762 efx_for_each_possible_channel_tx_queue(tx_queue, channel) 763 efx_remove_tx_queue(tx_queue); 764 efx_remove_eventq(channel); 765 channel->type->post_remove(channel); 766 } 767 768 static void efx_remove_channels(struct efx_nic *efx) 769 { 770 struct efx_channel *channel; 771 772 efx_for_each_channel(channel, efx) 773 efx_remove_channel(channel); 774 } 775 776 int 777 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) 778 { 779 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; 780 u32 old_rxq_entries, old_txq_entries; 781 unsigned i, next_buffer_table = 0; 782 int rc; 783 784 rc = efx_check_disabled(efx); 785 if (rc) 786 return rc; 787 788 /* Not all channels should be reallocated. We must avoid 789 * reallocating their buffer table entries. 790 */ 791 efx_for_each_channel(channel, efx) { 792 struct efx_rx_queue *rx_queue; 793 struct efx_tx_queue *tx_queue; 794 795 if (channel->type->copy) 796 continue; 797 next_buffer_table = max(next_buffer_table, 798 channel->eventq.index + 799 channel->eventq.entries); 800 efx_for_each_channel_rx_queue(rx_queue, channel) 801 next_buffer_table = max(next_buffer_table, 802 rx_queue->rxd.index + 803 rx_queue->rxd.entries); 804 efx_for_each_channel_tx_queue(tx_queue, channel) 805 next_buffer_table = max(next_buffer_table, 806 tx_queue->txd.index + 807 tx_queue->txd.entries); 808 } 809 810 efx_device_detach_sync(efx); 811 efx_stop_all(efx); 812 efx_stop_interrupts(efx, true); 813 814 /* Clone channels (where possible) */ 815 memset(other_channel, 0, sizeof(other_channel)); 816 for (i = 0; i < efx->n_channels; i++) { 817 channel = efx->channel[i]; 818 if (channel->type->copy) 819 channel = channel->type->copy(channel); 820 if (!channel) { 821 rc = -ENOMEM; 822 goto out; 823 } 824 other_channel[i] = channel; 825 } 826 827 /* Swap entry counts and channel pointers */ 828 old_rxq_entries = efx->rxq_entries; 829 old_txq_entries = efx->txq_entries; 830 efx->rxq_entries = rxq_entries; 831 efx->txq_entries = txq_entries; 832 for (i = 0; i < efx->n_channels; i++) { 833 channel = efx->channel[i]; 834 efx->channel[i] = other_channel[i]; 835 other_channel[i] = channel; 836 } 837 838 /* Restart buffer table allocation */ 839 efx->next_buffer_table = next_buffer_table; 840 841 for (i = 0; i < efx->n_channels; i++) { 842 channel = efx->channel[i]; 843 if (!channel->type->copy) 844 continue; 845 rc = efx_probe_channel(channel); 846 if (rc) 847 goto rollback; 848 efx_init_napi_channel(efx->channel[i]); 849 } 850 851 out: 852 /* Destroy unused channel structures */ 853 for (i = 0; i < efx->n_channels; i++) { 854 channel = other_channel[i]; 855 if (channel && channel->type->copy) { 856 efx_fini_napi_channel(channel); 857 efx_remove_channel(channel); 858 kfree(channel); 859 } 860 } 861 862 efx_start_interrupts(efx, true); 863 efx_start_all(efx); 864 netif_device_attach(efx->net_dev); 865 return rc; 866 867 rollback: 868 /* Swap back */ 869 efx->rxq_entries = old_rxq_entries; 870 efx->txq_entries = old_txq_entries; 871 for (i = 0; i < efx->n_channels; i++) { 872 channel = efx->channel[i]; 873 efx->channel[i] = other_channel[i]; 874 other_channel[i] = channel; 875 } 876 goto out; 877 } 878 879 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) 880 { 881 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); 882 } 883 884 static const struct efx_channel_type efx_default_channel_type = { 885 .pre_probe = efx_channel_dummy_op_int, 886 .post_remove = efx_channel_dummy_op_void, 887 .get_name = efx_get_channel_name, 888 .copy = efx_copy_channel, 889 .keep_eventq = false, 890 }; 891 892 int efx_channel_dummy_op_int(struct efx_channel *channel) 893 { 894 return 0; 895 } 896 897 void efx_channel_dummy_op_void(struct efx_channel *channel) 898 { 899 } 900 901 /************************************************************************** 902 * 903 * Port handling 904 * 905 **************************************************************************/ 906 907 /* This ensures that the kernel is kept informed (via 908 * netif_carrier_on/off) of the link status, and also maintains the 909 * link status's stop on the port's TX queue. 910 */ 911 void efx_link_status_changed(struct efx_nic *efx) 912 { 913 struct efx_link_state *link_state = &efx->link_state; 914 915 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure 916 * that no events are triggered between unregister_netdev() and the 917 * driver unloading. A more general condition is that NETDEV_CHANGE 918 * can only be generated between NETDEV_UP and NETDEV_DOWN */ 919 if (!netif_running(efx->net_dev)) 920 return; 921 922 if (link_state->up != netif_carrier_ok(efx->net_dev)) { 923 efx->n_link_state_changes++; 924 925 if (link_state->up) 926 netif_carrier_on(efx->net_dev); 927 else 928 netif_carrier_off(efx->net_dev); 929 } 930 931 /* Status message for kernel log */ 932 if (link_state->up) 933 netif_info(efx, link, efx->net_dev, 934 "link up at %uMbps %s-duplex (MTU %d)%s\n", 935 link_state->speed, link_state->fd ? "full" : "half", 936 efx->net_dev->mtu, 937 (efx->promiscuous ? " [PROMISC]" : "")); 938 else 939 netif_info(efx, link, efx->net_dev, "link down\n"); 940 } 941 942 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising) 943 { 944 efx->link_advertising = advertising; 945 if (advertising) { 946 if (advertising & ADVERTISED_Pause) 947 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); 948 else 949 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); 950 if (advertising & ADVERTISED_Asym_Pause) 951 efx->wanted_fc ^= EFX_FC_TX; 952 } 953 } 954 955 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) 956 { 957 efx->wanted_fc = wanted_fc; 958 if (efx->link_advertising) { 959 if (wanted_fc & EFX_FC_RX) 960 efx->link_advertising |= (ADVERTISED_Pause | 961 ADVERTISED_Asym_Pause); 962 else 963 efx->link_advertising &= ~(ADVERTISED_Pause | 964 ADVERTISED_Asym_Pause); 965 if (wanted_fc & EFX_FC_TX) 966 efx->link_advertising ^= ADVERTISED_Asym_Pause; 967 } 968 } 969 970 static void efx_fini_port(struct efx_nic *efx); 971 972 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure 973 * the MAC appropriately. All other PHY configuration changes are pushed 974 * through phy_op->set_settings(), and pushed asynchronously to the MAC 975 * through efx_monitor(). 976 * 977 * Callers must hold the mac_lock 978 */ 979 int __efx_reconfigure_port(struct efx_nic *efx) 980 { 981 enum efx_phy_mode phy_mode; 982 int rc; 983 984 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 985 986 /* Serialise the promiscuous flag with efx_set_rx_mode. */ 987 netif_addr_lock_bh(efx->net_dev); 988 netif_addr_unlock_bh(efx->net_dev); 989 990 /* Disable PHY transmit in mac level loopbacks */ 991 phy_mode = efx->phy_mode; 992 if (LOOPBACK_INTERNAL(efx)) 993 efx->phy_mode |= PHY_MODE_TX_DISABLED; 994 else 995 efx->phy_mode &= ~PHY_MODE_TX_DISABLED; 996 997 rc = efx->type->reconfigure_port(efx); 998 999 if (rc) 1000 efx->phy_mode = phy_mode; 1001 1002 return rc; 1003 } 1004 1005 /* Reinitialise the MAC to pick up new PHY settings, even if the port is 1006 * disabled. */ 1007 int efx_reconfigure_port(struct efx_nic *efx) 1008 { 1009 int rc; 1010 1011 EFX_ASSERT_RESET_SERIALISED(efx); 1012 1013 mutex_lock(&efx->mac_lock); 1014 rc = __efx_reconfigure_port(efx); 1015 mutex_unlock(&efx->mac_lock); 1016 1017 return rc; 1018 } 1019 1020 /* Asynchronous work item for changing MAC promiscuity and multicast 1021 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current 1022 * MAC directly. */ 1023 static void efx_mac_work(struct work_struct *data) 1024 { 1025 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); 1026 1027 mutex_lock(&efx->mac_lock); 1028 if (efx->port_enabled) 1029 efx->type->reconfigure_mac(efx); 1030 mutex_unlock(&efx->mac_lock); 1031 } 1032 1033 static int efx_probe_port(struct efx_nic *efx) 1034 { 1035 int rc; 1036 1037 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 1038 1039 if (phy_flash_cfg) 1040 efx->phy_mode = PHY_MODE_SPECIAL; 1041 1042 /* Connect up MAC/PHY operations table */ 1043 rc = efx->type->probe_port(efx); 1044 if (rc) 1045 return rc; 1046 1047 /* Initialise MAC address to permanent address */ 1048 memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN); 1049 1050 return 0; 1051 } 1052 1053 static int efx_init_port(struct efx_nic *efx) 1054 { 1055 int rc; 1056 1057 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 1058 1059 mutex_lock(&efx->mac_lock); 1060 1061 rc = efx->phy_op->init(efx); 1062 if (rc) 1063 goto fail1; 1064 1065 efx->port_initialized = true; 1066 1067 /* Reconfigure the MAC before creating dma queues (required for 1068 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ 1069 efx->type->reconfigure_mac(efx); 1070 1071 /* Ensure the PHY advertises the correct flow control settings */ 1072 rc = efx->phy_op->reconfigure(efx); 1073 if (rc) 1074 goto fail2; 1075 1076 mutex_unlock(&efx->mac_lock); 1077 return 0; 1078 1079 fail2: 1080 efx->phy_op->fini(efx); 1081 fail1: 1082 mutex_unlock(&efx->mac_lock); 1083 return rc; 1084 } 1085 1086 static void efx_start_port(struct efx_nic *efx) 1087 { 1088 netif_dbg(efx, ifup, efx->net_dev, "start port\n"); 1089 BUG_ON(efx->port_enabled); 1090 1091 mutex_lock(&efx->mac_lock); 1092 efx->port_enabled = true; 1093 1094 /* efx_mac_work() might have been scheduled after efx_stop_port(), 1095 * and then cancelled by efx_flush_all() */ 1096 efx->type->reconfigure_mac(efx); 1097 1098 mutex_unlock(&efx->mac_lock); 1099 } 1100 1101 /* Prevent efx_mac_work() and efx_monitor() from working */ 1102 static void efx_stop_port(struct efx_nic *efx) 1103 { 1104 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); 1105 1106 mutex_lock(&efx->mac_lock); 1107 efx->port_enabled = false; 1108 mutex_unlock(&efx->mac_lock); 1109 1110 /* Serialise against efx_set_multicast_list() */ 1111 netif_addr_lock_bh(efx->net_dev); 1112 netif_addr_unlock_bh(efx->net_dev); 1113 } 1114 1115 static void efx_fini_port(struct efx_nic *efx) 1116 { 1117 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 1118 1119 if (!efx->port_initialized) 1120 return; 1121 1122 efx->phy_op->fini(efx); 1123 efx->port_initialized = false; 1124 1125 efx->link_state.up = false; 1126 efx_link_status_changed(efx); 1127 } 1128 1129 static void efx_remove_port(struct efx_nic *efx) 1130 { 1131 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 1132 1133 efx->type->remove_port(efx); 1134 } 1135 1136 /************************************************************************** 1137 * 1138 * NIC handling 1139 * 1140 **************************************************************************/ 1141 1142 /* This configures the PCI device to enable I/O and DMA. */ 1143 static int efx_init_io(struct efx_nic *efx) 1144 { 1145 struct pci_dev *pci_dev = efx->pci_dev; 1146 dma_addr_t dma_mask = efx->type->max_dma_mask; 1147 int rc; 1148 1149 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); 1150 1151 rc = pci_enable_device(pci_dev); 1152 if (rc) { 1153 netif_err(efx, probe, efx->net_dev, 1154 "failed to enable PCI device\n"); 1155 goto fail1; 1156 } 1157 1158 pci_set_master(pci_dev); 1159 1160 /* Set the PCI DMA mask. Try all possibilities from our 1161 * genuine mask down to 32 bits, because some architectures 1162 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit 1163 * masks event though they reject 46 bit masks. 1164 */ 1165 while (dma_mask > 0x7fffffffUL) { 1166 if (dma_supported(&pci_dev->dev, dma_mask)) { 1167 rc = dma_set_mask(&pci_dev->dev, dma_mask); 1168 if (rc == 0) 1169 break; 1170 } 1171 dma_mask >>= 1; 1172 } 1173 if (rc) { 1174 netif_err(efx, probe, efx->net_dev, 1175 "could not find a suitable DMA mask\n"); 1176 goto fail2; 1177 } 1178 netif_dbg(efx, probe, efx->net_dev, 1179 "using DMA mask %llx\n", (unsigned long long) dma_mask); 1180 rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask); 1181 if (rc) { 1182 /* dma_set_coherent_mask() is not *allowed* to 1183 * fail with a mask that dma_set_mask() accepted, 1184 * but just in case... 1185 */ 1186 netif_err(efx, probe, efx->net_dev, 1187 "failed to set consistent DMA mask\n"); 1188 goto fail2; 1189 } 1190 1191 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR); 1192 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc"); 1193 if (rc) { 1194 netif_err(efx, probe, efx->net_dev, 1195 "request for memory BAR failed\n"); 1196 rc = -EIO; 1197 goto fail3; 1198 } 1199 efx->membase = ioremap_nocache(efx->membase_phys, 1200 efx->type->mem_map_size); 1201 if (!efx->membase) { 1202 netif_err(efx, probe, efx->net_dev, 1203 "could not map memory BAR at %llx+%x\n", 1204 (unsigned long long)efx->membase_phys, 1205 efx->type->mem_map_size); 1206 rc = -ENOMEM; 1207 goto fail4; 1208 } 1209 netif_dbg(efx, probe, efx->net_dev, 1210 "memory BAR at %llx+%x (virtual %p)\n", 1211 (unsigned long long)efx->membase_phys, 1212 efx->type->mem_map_size, efx->membase); 1213 1214 return 0; 1215 1216 fail4: 1217 pci_release_region(efx->pci_dev, EFX_MEM_BAR); 1218 fail3: 1219 efx->membase_phys = 0; 1220 fail2: 1221 pci_disable_device(efx->pci_dev); 1222 fail1: 1223 return rc; 1224 } 1225 1226 static void efx_fini_io(struct efx_nic *efx) 1227 { 1228 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); 1229 1230 if (efx->membase) { 1231 iounmap(efx->membase); 1232 efx->membase = NULL; 1233 } 1234 1235 if (efx->membase_phys) { 1236 pci_release_region(efx->pci_dev, EFX_MEM_BAR); 1237 efx->membase_phys = 0; 1238 } 1239 1240 pci_disable_device(efx->pci_dev); 1241 } 1242 1243 static unsigned int efx_wanted_parallelism(struct efx_nic *efx) 1244 { 1245 cpumask_var_t thread_mask; 1246 unsigned int count; 1247 int cpu; 1248 1249 if (rss_cpus) { 1250 count = rss_cpus; 1251 } else { 1252 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { 1253 netif_warn(efx, probe, efx->net_dev, 1254 "RSS disabled due to allocation failure\n"); 1255 return 1; 1256 } 1257 1258 count = 0; 1259 for_each_online_cpu(cpu) { 1260 if (!cpumask_test_cpu(cpu, thread_mask)) { 1261 ++count; 1262 cpumask_or(thread_mask, thread_mask, 1263 topology_thread_cpumask(cpu)); 1264 } 1265 } 1266 1267 free_cpumask_var(thread_mask); 1268 } 1269 1270 /* If RSS is requested for the PF *and* VFs then we can't write RSS 1271 * table entries that are inaccessible to VFs 1272 */ 1273 if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 && 1274 count > efx_vf_size(efx)) { 1275 netif_warn(efx, probe, efx->net_dev, 1276 "Reducing number of RSS channels from %u to %u for " 1277 "VF support. Increase vf-msix-limit to use more " 1278 "channels on the PF.\n", 1279 count, efx_vf_size(efx)); 1280 count = efx_vf_size(efx); 1281 } 1282 1283 return count; 1284 } 1285 1286 static int 1287 efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries) 1288 { 1289 #ifdef CONFIG_RFS_ACCEL 1290 unsigned int i; 1291 int rc; 1292 1293 efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels); 1294 if (!efx->net_dev->rx_cpu_rmap) 1295 return -ENOMEM; 1296 for (i = 0; i < efx->n_rx_channels; i++) { 1297 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap, 1298 xentries[i].vector); 1299 if (rc) { 1300 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); 1301 efx->net_dev->rx_cpu_rmap = NULL; 1302 return rc; 1303 } 1304 } 1305 #endif 1306 return 0; 1307 } 1308 1309 /* Probe the number and type of interrupts we are able to obtain, and 1310 * the resulting numbers of channels and RX queues. 1311 */ 1312 static int efx_probe_interrupts(struct efx_nic *efx) 1313 { 1314 unsigned int max_channels = 1315 min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS); 1316 unsigned int extra_channels = 0; 1317 unsigned int i, j; 1318 int rc; 1319 1320 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) 1321 if (efx->extra_channel_type[i]) 1322 ++extra_channels; 1323 1324 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { 1325 struct msix_entry xentries[EFX_MAX_CHANNELS]; 1326 unsigned int n_channels; 1327 1328 n_channels = efx_wanted_parallelism(efx); 1329 if (separate_tx_channels) 1330 n_channels *= 2; 1331 n_channels += extra_channels; 1332 n_channels = min(n_channels, max_channels); 1333 1334 for (i = 0; i < n_channels; i++) 1335 xentries[i].entry = i; 1336 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels); 1337 if (rc > 0) { 1338 netif_err(efx, drv, efx->net_dev, 1339 "WARNING: Insufficient MSI-X vectors" 1340 " available (%d < %u).\n", rc, n_channels); 1341 netif_err(efx, drv, efx->net_dev, 1342 "WARNING: Performance may be reduced.\n"); 1343 EFX_BUG_ON_PARANOID(rc >= n_channels); 1344 n_channels = rc; 1345 rc = pci_enable_msix(efx->pci_dev, xentries, 1346 n_channels); 1347 } 1348 1349 if (rc == 0) { 1350 efx->n_channels = n_channels; 1351 if (n_channels > extra_channels) 1352 n_channels -= extra_channels; 1353 if (separate_tx_channels) { 1354 efx->n_tx_channels = max(n_channels / 2, 1U); 1355 efx->n_rx_channels = max(n_channels - 1356 efx->n_tx_channels, 1357 1U); 1358 } else { 1359 efx->n_tx_channels = n_channels; 1360 efx->n_rx_channels = n_channels; 1361 } 1362 rc = efx_init_rx_cpu_rmap(efx, xentries); 1363 if (rc) { 1364 pci_disable_msix(efx->pci_dev); 1365 return rc; 1366 } 1367 for (i = 0; i < efx->n_channels; i++) 1368 efx_get_channel(efx, i)->irq = 1369 xentries[i].vector; 1370 } else { 1371 /* Fall back to single channel MSI */ 1372 efx->interrupt_mode = EFX_INT_MODE_MSI; 1373 netif_err(efx, drv, efx->net_dev, 1374 "could not enable MSI-X\n"); 1375 } 1376 } 1377 1378 /* Try single interrupt MSI */ 1379 if (efx->interrupt_mode == EFX_INT_MODE_MSI) { 1380 efx->n_channels = 1; 1381 efx->n_rx_channels = 1; 1382 efx->n_tx_channels = 1; 1383 rc = pci_enable_msi(efx->pci_dev); 1384 if (rc == 0) { 1385 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; 1386 } else { 1387 netif_err(efx, drv, efx->net_dev, 1388 "could not enable MSI\n"); 1389 efx->interrupt_mode = EFX_INT_MODE_LEGACY; 1390 } 1391 } 1392 1393 /* Assume legacy interrupts */ 1394 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { 1395 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0); 1396 efx->n_rx_channels = 1; 1397 efx->n_tx_channels = 1; 1398 efx->legacy_irq = efx->pci_dev->irq; 1399 } 1400 1401 /* Assign extra channels if possible */ 1402 j = efx->n_channels; 1403 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) { 1404 if (!efx->extra_channel_type[i]) 1405 continue; 1406 if (efx->interrupt_mode != EFX_INT_MODE_MSIX || 1407 efx->n_channels <= extra_channels) { 1408 efx->extra_channel_type[i]->handle_no_channel(efx); 1409 } else { 1410 --j; 1411 efx_get_channel(efx, j)->type = 1412 efx->extra_channel_type[i]; 1413 } 1414 } 1415 1416 /* RSS might be usable on VFs even if it is disabled on the PF */ 1417 efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ? 1418 efx->n_rx_channels : efx_vf_size(efx)); 1419 1420 return 0; 1421 } 1422 1423 /* Enable interrupts, then probe and start the event queues */ 1424 static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq) 1425 { 1426 struct efx_channel *channel; 1427 1428 BUG_ON(efx->state == STATE_DISABLED); 1429 1430 if (efx->legacy_irq) 1431 efx->legacy_irq_enabled = true; 1432 efx_nic_enable_interrupts(efx); 1433 1434 efx_for_each_channel(channel, efx) { 1435 if (!channel->type->keep_eventq || !may_keep_eventq) 1436 efx_init_eventq(channel); 1437 efx_start_eventq(channel); 1438 } 1439 1440 efx_mcdi_mode_event(efx); 1441 } 1442 1443 static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq) 1444 { 1445 struct efx_channel *channel; 1446 1447 if (efx->state == STATE_DISABLED) 1448 return; 1449 1450 efx_mcdi_mode_poll(efx); 1451 1452 efx_nic_disable_interrupts(efx); 1453 if (efx->legacy_irq) { 1454 synchronize_irq(efx->legacy_irq); 1455 efx->legacy_irq_enabled = false; 1456 } 1457 1458 efx_for_each_channel(channel, efx) { 1459 if (channel->irq) 1460 synchronize_irq(channel->irq); 1461 1462 efx_stop_eventq(channel); 1463 if (!channel->type->keep_eventq || !may_keep_eventq) 1464 efx_fini_eventq(channel); 1465 } 1466 } 1467 1468 static void efx_remove_interrupts(struct efx_nic *efx) 1469 { 1470 struct efx_channel *channel; 1471 1472 /* Remove MSI/MSI-X interrupts */ 1473 efx_for_each_channel(channel, efx) 1474 channel->irq = 0; 1475 pci_disable_msi(efx->pci_dev); 1476 pci_disable_msix(efx->pci_dev); 1477 1478 /* Remove legacy interrupt */ 1479 efx->legacy_irq = 0; 1480 } 1481 1482 static void efx_set_channels(struct efx_nic *efx) 1483 { 1484 struct efx_channel *channel; 1485 struct efx_tx_queue *tx_queue; 1486 1487 efx->tx_channel_offset = 1488 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0; 1489 1490 /* We need to mark which channels really have RX and TX 1491 * queues, and adjust the TX queue numbers if we have separate 1492 * RX-only and TX-only channels. 1493 */ 1494 efx_for_each_channel(channel, efx) { 1495 if (channel->channel < efx->n_rx_channels) 1496 channel->rx_queue.core_index = channel->channel; 1497 else 1498 channel->rx_queue.core_index = -1; 1499 1500 efx_for_each_channel_tx_queue(tx_queue, channel) 1501 tx_queue->queue -= (efx->tx_channel_offset * 1502 EFX_TXQ_TYPES); 1503 } 1504 } 1505 1506 static int efx_probe_nic(struct efx_nic *efx) 1507 { 1508 size_t i; 1509 int rc; 1510 1511 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 1512 1513 /* Carry out hardware-type specific initialisation */ 1514 rc = efx->type->probe(efx); 1515 if (rc) 1516 return rc; 1517 1518 /* Determine the number of channels and queues by trying to hook 1519 * in MSI-X interrupts. */ 1520 rc = efx_probe_interrupts(efx); 1521 if (rc) 1522 goto fail; 1523 1524 efx->type->dimension_resources(efx); 1525 1526 if (efx->n_channels > 1) 1527 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key)); 1528 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) 1529 efx->rx_indir_table[i] = 1530 ethtool_rxfh_indir_default(i, efx->rss_spread); 1531 1532 efx_set_channels(efx); 1533 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 1534 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 1535 1536 /* Initialise the interrupt moderation settings */ 1537 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 1538 true); 1539 1540 return 0; 1541 1542 fail: 1543 efx->type->remove(efx); 1544 return rc; 1545 } 1546 1547 static void efx_remove_nic(struct efx_nic *efx) 1548 { 1549 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 1550 1551 efx_remove_interrupts(efx); 1552 efx->type->remove(efx); 1553 } 1554 1555 /************************************************************************** 1556 * 1557 * NIC startup/shutdown 1558 * 1559 *************************************************************************/ 1560 1561 static int efx_probe_all(struct efx_nic *efx) 1562 { 1563 int rc; 1564 1565 rc = efx_probe_nic(efx); 1566 if (rc) { 1567 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 1568 goto fail1; 1569 } 1570 1571 rc = efx_probe_port(efx); 1572 if (rc) { 1573 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 1574 goto fail2; 1575 } 1576 1577 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); 1578 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { 1579 rc = -EINVAL; 1580 goto fail3; 1581 } 1582 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; 1583 1584 rc = efx_probe_filters(efx); 1585 if (rc) { 1586 netif_err(efx, probe, efx->net_dev, 1587 "failed to create filter tables\n"); 1588 goto fail3; 1589 } 1590 1591 rc = efx_probe_channels(efx); 1592 if (rc) 1593 goto fail4; 1594 1595 return 0; 1596 1597 fail4: 1598 efx_remove_filters(efx); 1599 fail3: 1600 efx_remove_port(efx); 1601 fail2: 1602 efx_remove_nic(efx); 1603 fail1: 1604 return rc; 1605 } 1606 1607 /* If the interface is supposed to be running but is not, start 1608 * the hardware and software data path, regular activity for the port 1609 * (MAC statistics, link polling, etc.) and schedule the port to be 1610 * reconfigured. Interrupts must already be enabled. This function 1611 * is safe to call multiple times, so long as the NIC is not disabled. 1612 * Requires the RTNL lock. 1613 */ 1614 static void efx_start_all(struct efx_nic *efx) 1615 { 1616 EFX_ASSERT_RESET_SERIALISED(efx); 1617 BUG_ON(efx->state == STATE_DISABLED); 1618 1619 /* Check that it is appropriate to restart the interface. All 1620 * of these flags are safe to read under just the rtnl lock */ 1621 if (efx->port_enabled || !netif_running(efx->net_dev)) 1622 return; 1623 1624 efx_start_port(efx); 1625 efx_start_datapath(efx); 1626 1627 /* Start the hardware monitor if there is one */ 1628 if (efx->type->monitor != NULL) 1629 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1630 efx_monitor_interval); 1631 1632 /* If link state detection is normally event-driven, we have 1633 * to poll now because we could have missed a change 1634 */ 1635 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { 1636 mutex_lock(&efx->mac_lock); 1637 if (efx->phy_op->poll(efx)) 1638 efx_link_status_changed(efx); 1639 mutex_unlock(&efx->mac_lock); 1640 } 1641 1642 efx->type->start_stats(efx); 1643 } 1644 1645 /* Flush all delayed work. Should only be called when no more delayed work 1646 * will be scheduled. This doesn't flush pending online resets (efx_reset), 1647 * since we're holding the rtnl_lock at this point. */ 1648 static void efx_flush_all(struct efx_nic *efx) 1649 { 1650 /* Make sure the hardware monitor and event self-test are stopped */ 1651 cancel_delayed_work_sync(&efx->monitor_work); 1652 efx_selftest_async_cancel(efx); 1653 /* Stop scheduled port reconfigurations */ 1654 cancel_work_sync(&efx->mac_work); 1655 } 1656 1657 /* Quiesce the hardware and software data path, and regular activity 1658 * for the port without bringing the link down. Safe to call multiple 1659 * times with the NIC in almost any state, but interrupts should be 1660 * enabled. Requires the RTNL lock. 1661 */ 1662 static void efx_stop_all(struct efx_nic *efx) 1663 { 1664 EFX_ASSERT_RESET_SERIALISED(efx); 1665 1666 /* port_enabled can be read safely under the rtnl lock */ 1667 if (!efx->port_enabled) 1668 return; 1669 1670 efx->type->stop_stats(efx); 1671 efx_stop_port(efx); 1672 1673 /* Flush efx_mac_work(), refill_workqueue, monitor_work */ 1674 efx_flush_all(efx); 1675 1676 /* Stop the kernel transmit interface. This is only valid if 1677 * the device is stopped or detached; otherwise the watchdog 1678 * may fire immediately. 1679 */ 1680 WARN_ON(netif_running(efx->net_dev) && 1681 netif_device_present(efx->net_dev)); 1682 netif_tx_disable(efx->net_dev); 1683 1684 efx_stop_datapath(efx); 1685 } 1686 1687 static void efx_remove_all(struct efx_nic *efx) 1688 { 1689 efx_remove_channels(efx); 1690 efx_remove_filters(efx); 1691 efx_remove_port(efx); 1692 efx_remove_nic(efx); 1693 } 1694 1695 /************************************************************************** 1696 * 1697 * Interrupt moderation 1698 * 1699 **************************************************************************/ 1700 1701 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns) 1702 { 1703 if (usecs == 0) 1704 return 0; 1705 if (usecs * 1000 < quantum_ns) 1706 return 1; /* never round down to 0 */ 1707 return usecs * 1000 / quantum_ns; 1708 } 1709 1710 /* Set interrupt moderation parameters */ 1711 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, 1712 unsigned int rx_usecs, bool rx_adaptive, 1713 bool rx_may_override_tx) 1714 { 1715 struct efx_channel *channel; 1716 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max * 1717 efx->timer_quantum_ns, 1718 1000); 1719 unsigned int tx_ticks; 1720 unsigned int rx_ticks; 1721 1722 EFX_ASSERT_RESET_SERIALISED(efx); 1723 1724 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max) 1725 return -EINVAL; 1726 1727 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns); 1728 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns); 1729 1730 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 && 1731 !rx_may_override_tx) { 1732 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 1733 "RX and TX IRQ moderation must be equal\n"); 1734 return -EINVAL; 1735 } 1736 1737 efx->irq_rx_adaptive = rx_adaptive; 1738 efx->irq_rx_moderation = rx_ticks; 1739 efx_for_each_channel(channel, efx) { 1740 if (efx_channel_has_rx_queue(channel)) 1741 channel->irq_moderation = rx_ticks; 1742 else if (efx_channel_has_tx_queues(channel)) 1743 channel->irq_moderation = tx_ticks; 1744 } 1745 1746 return 0; 1747 } 1748 1749 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, 1750 unsigned int *rx_usecs, bool *rx_adaptive) 1751 { 1752 /* We must round up when converting ticks to microseconds 1753 * because we round down when converting the other way. 1754 */ 1755 1756 *rx_adaptive = efx->irq_rx_adaptive; 1757 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation * 1758 efx->timer_quantum_ns, 1759 1000); 1760 1761 /* If channels are shared between RX and TX, so is IRQ 1762 * moderation. Otherwise, IRQ moderation is the same for all 1763 * TX channels and is not adaptive. 1764 */ 1765 if (efx->tx_channel_offset == 0) 1766 *tx_usecs = *rx_usecs; 1767 else 1768 *tx_usecs = DIV_ROUND_UP( 1769 efx->channel[efx->tx_channel_offset]->irq_moderation * 1770 efx->timer_quantum_ns, 1771 1000); 1772 } 1773 1774 /************************************************************************** 1775 * 1776 * Hardware monitor 1777 * 1778 **************************************************************************/ 1779 1780 /* Run periodically off the general workqueue */ 1781 static void efx_monitor(struct work_struct *data) 1782 { 1783 struct efx_nic *efx = container_of(data, struct efx_nic, 1784 monitor_work.work); 1785 1786 netif_vdbg(efx, timer, efx->net_dev, 1787 "hardware monitor executing on CPU %d\n", 1788 raw_smp_processor_id()); 1789 BUG_ON(efx->type->monitor == NULL); 1790 1791 /* If the mac_lock is already held then it is likely a port 1792 * reconfiguration is already in place, which will likely do 1793 * most of the work of monitor() anyway. */ 1794 if (mutex_trylock(&efx->mac_lock)) { 1795 if (efx->port_enabled) 1796 efx->type->monitor(efx); 1797 mutex_unlock(&efx->mac_lock); 1798 } 1799 1800 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1801 efx_monitor_interval); 1802 } 1803 1804 /************************************************************************** 1805 * 1806 * ioctls 1807 * 1808 *************************************************************************/ 1809 1810 /* Net device ioctl 1811 * Context: process, rtnl_lock() held. 1812 */ 1813 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 1814 { 1815 struct efx_nic *efx = netdev_priv(net_dev); 1816 struct mii_ioctl_data *data = if_mii(ifr); 1817 1818 if (cmd == SIOCSHWTSTAMP) 1819 return efx_ptp_ioctl(efx, ifr, cmd); 1820 1821 /* Convert phy_id from older PRTAD/DEVAD format */ 1822 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 1823 (data->phy_id & 0xfc00) == 0x0400) 1824 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 1825 1826 return mdio_mii_ioctl(&efx->mdio, data, cmd); 1827 } 1828 1829 /************************************************************************** 1830 * 1831 * NAPI interface 1832 * 1833 **************************************************************************/ 1834 1835 static void efx_init_napi_channel(struct efx_channel *channel) 1836 { 1837 struct efx_nic *efx = channel->efx; 1838 1839 channel->napi_dev = efx->net_dev; 1840 netif_napi_add(channel->napi_dev, &channel->napi_str, 1841 efx_poll, napi_weight); 1842 } 1843 1844 static void efx_init_napi(struct efx_nic *efx) 1845 { 1846 struct efx_channel *channel; 1847 1848 efx_for_each_channel(channel, efx) 1849 efx_init_napi_channel(channel); 1850 } 1851 1852 static void efx_fini_napi_channel(struct efx_channel *channel) 1853 { 1854 if (channel->napi_dev) 1855 netif_napi_del(&channel->napi_str); 1856 channel->napi_dev = NULL; 1857 } 1858 1859 static void efx_fini_napi(struct efx_nic *efx) 1860 { 1861 struct efx_channel *channel; 1862 1863 efx_for_each_channel(channel, efx) 1864 efx_fini_napi_channel(channel); 1865 } 1866 1867 /************************************************************************** 1868 * 1869 * Kernel netpoll interface 1870 * 1871 *************************************************************************/ 1872 1873 #ifdef CONFIG_NET_POLL_CONTROLLER 1874 1875 /* Although in the common case interrupts will be disabled, this is not 1876 * guaranteed. However, all our work happens inside the NAPI callback, 1877 * so no locking is required. 1878 */ 1879 static void efx_netpoll(struct net_device *net_dev) 1880 { 1881 struct efx_nic *efx = netdev_priv(net_dev); 1882 struct efx_channel *channel; 1883 1884 efx_for_each_channel(channel, efx) 1885 efx_schedule_channel(channel); 1886 } 1887 1888 #endif 1889 1890 /************************************************************************** 1891 * 1892 * Kernel net device interface 1893 * 1894 *************************************************************************/ 1895 1896 /* Context: process, rtnl_lock() held. */ 1897 static int efx_net_open(struct net_device *net_dev) 1898 { 1899 struct efx_nic *efx = netdev_priv(net_dev); 1900 int rc; 1901 1902 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 1903 raw_smp_processor_id()); 1904 1905 rc = efx_check_disabled(efx); 1906 if (rc) 1907 return rc; 1908 if (efx->phy_mode & PHY_MODE_SPECIAL) 1909 return -EBUSY; 1910 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) 1911 return -EIO; 1912 1913 /* Notify the kernel of the link state polled during driver load, 1914 * before the monitor starts running */ 1915 efx_link_status_changed(efx); 1916 1917 efx_start_all(efx); 1918 efx_selftest_async_start(efx); 1919 return 0; 1920 } 1921 1922 /* Context: process, rtnl_lock() held. 1923 * Note that the kernel will ignore our return code; this method 1924 * should really be a void. 1925 */ 1926 static int efx_net_stop(struct net_device *net_dev) 1927 { 1928 struct efx_nic *efx = netdev_priv(net_dev); 1929 1930 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 1931 raw_smp_processor_id()); 1932 1933 /* Stop the device and flush all the channels */ 1934 efx_stop_all(efx); 1935 1936 return 0; 1937 } 1938 1939 /* Context: process, dev_base_lock or RTNL held, non-blocking. */ 1940 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, 1941 struct rtnl_link_stats64 *stats) 1942 { 1943 struct efx_nic *efx = netdev_priv(net_dev); 1944 struct efx_mac_stats *mac_stats = &efx->mac_stats; 1945 1946 spin_lock_bh(&efx->stats_lock); 1947 1948 efx->type->update_stats(efx); 1949 1950 stats->rx_packets = mac_stats->rx_packets; 1951 stats->tx_packets = mac_stats->tx_packets; 1952 stats->rx_bytes = mac_stats->rx_bytes; 1953 stats->tx_bytes = mac_stats->tx_bytes; 1954 stats->rx_dropped = efx->n_rx_nodesc_drop_cnt; 1955 stats->multicast = mac_stats->rx_multicast; 1956 stats->collisions = mac_stats->tx_collision; 1957 stats->rx_length_errors = (mac_stats->rx_gtjumbo + 1958 mac_stats->rx_length_error); 1959 stats->rx_crc_errors = mac_stats->rx_bad; 1960 stats->rx_frame_errors = mac_stats->rx_align_error; 1961 stats->rx_fifo_errors = mac_stats->rx_overflow; 1962 stats->rx_missed_errors = mac_stats->rx_missed; 1963 stats->tx_window_errors = mac_stats->tx_late_collision; 1964 1965 stats->rx_errors = (stats->rx_length_errors + 1966 stats->rx_crc_errors + 1967 stats->rx_frame_errors + 1968 mac_stats->rx_symbol_error); 1969 stats->tx_errors = (stats->tx_window_errors + 1970 mac_stats->tx_bad); 1971 1972 spin_unlock_bh(&efx->stats_lock); 1973 1974 return stats; 1975 } 1976 1977 /* Context: netif_tx_lock held, BHs disabled. */ 1978 static void efx_watchdog(struct net_device *net_dev) 1979 { 1980 struct efx_nic *efx = netdev_priv(net_dev); 1981 1982 netif_err(efx, tx_err, efx->net_dev, 1983 "TX stuck with port_enabled=%d: resetting channels\n", 1984 efx->port_enabled); 1985 1986 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 1987 } 1988 1989 1990 /* Context: process, rtnl_lock() held. */ 1991 static int efx_change_mtu(struct net_device *net_dev, int new_mtu) 1992 { 1993 struct efx_nic *efx = netdev_priv(net_dev); 1994 int rc; 1995 1996 rc = efx_check_disabled(efx); 1997 if (rc) 1998 return rc; 1999 if (new_mtu > EFX_MAX_MTU) 2000 return -EINVAL; 2001 2002 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); 2003 2004 efx_device_detach_sync(efx); 2005 efx_stop_all(efx); 2006 2007 mutex_lock(&efx->mac_lock); 2008 net_dev->mtu = new_mtu; 2009 efx->type->reconfigure_mac(efx); 2010 mutex_unlock(&efx->mac_lock); 2011 2012 efx_start_all(efx); 2013 netif_device_attach(efx->net_dev); 2014 return 0; 2015 } 2016 2017 static int efx_set_mac_address(struct net_device *net_dev, void *data) 2018 { 2019 struct efx_nic *efx = netdev_priv(net_dev); 2020 struct sockaddr *addr = data; 2021 char *new_addr = addr->sa_data; 2022 2023 if (!is_valid_ether_addr(new_addr)) { 2024 netif_err(efx, drv, efx->net_dev, 2025 "invalid ethernet MAC address requested: %pM\n", 2026 new_addr); 2027 return -EADDRNOTAVAIL; 2028 } 2029 2030 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len); 2031 efx_sriov_mac_address_changed(efx); 2032 2033 /* Reconfigure the MAC */ 2034 mutex_lock(&efx->mac_lock); 2035 efx->type->reconfigure_mac(efx); 2036 mutex_unlock(&efx->mac_lock); 2037 2038 return 0; 2039 } 2040 2041 /* Context: netif_addr_lock held, BHs disabled. */ 2042 static void efx_set_rx_mode(struct net_device *net_dev) 2043 { 2044 struct efx_nic *efx = netdev_priv(net_dev); 2045 struct netdev_hw_addr *ha; 2046 union efx_multicast_hash *mc_hash = &efx->multicast_hash; 2047 u32 crc; 2048 int bit; 2049 2050 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC); 2051 2052 /* Build multicast hash table */ 2053 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) { 2054 memset(mc_hash, 0xff, sizeof(*mc_hash)); 2055 } else { 2056 memset(mc_hash, 0x00, sizeof(*mc_hash)); 2057 netdev_for_each_mc_addr(ha, net_dev) { 2058 crc = ether_crc_le(ETH_ALEN, ha->addr); 2059 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1); 2060 __set_bit_le(bit, mc_hash); 2061 } 2062 2063 /* Broadcast packets go through the multicast hash filter. 2064 * ether_crc_le() of the broadcast address is 0xbe2612ff 2065 * so we always add bit 0xff to the mask. 2066 */ 2067 __set_bit_le(0xff, mc_hash); 2068 } 2069 2070 if (efx->port_enabled) 2071 queue_work(efx->workqueue, &efx->mac_work); 2072 /* Otherwise efx_start_port() will do this */ 2073 } 2074 2075 static int efx_set_features(struct net_device *net_dev, netdev_features_t data) 2076 { 2077 struct efx_nic *efx = netdev_priv(net_dev); 2078 2079 /* If disabling RX n-tuple filtering, clear existing filters */ 2080 if (net_dev->features & ~data & NETIF_F_NTUPLE) 2081 efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); 2082 2083 return 0; 2084 } 2085 2086 static const struct net_device_ops efx_netdev_ops = { 2087 .ndo_open = efx_net_open, 2088 .ndo_stop = efx_net_stop, 2089 .ndo_get_stats64 = efx_net_stats, 2090 .ndo_tx_timeout = efx_watchdog, 2091 .ndo_start_xmit = efx_hard_start_xmit, 2092 .ndo_validate_addr = eth_validate_addr, 2093 .ndo_do_ioctl = efx_ioctl, 2094 .ndo_change_mtu = efx_change_mtu, 2095 .ndo_set_mac_address = efx_set_mac_address, 2096 .ndo_set_rx_mode = efx_set_rx_mode, 2097 .ndo_set_features = efx_set_features, 2098 #ifdef CONFIG_SFC_SRIOV 2099 .ndo_set_vf_mac = efx_sriov_set_vf_mac, 2100 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, 2101 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, 2102 .ndo_get_vf_config = efx_sriov_get_vf_config, 2103 #endif 2104 #ifdef CONFIG_NET_POLL_CONTROLLER 2105 .ndo_poll_controller = efx_netpoll, 2106 #endif 2107 .ndo_setup_tc = efx_setup_tc, 2108 #ifdef CONFIG_RFS_ACCEL 2109 .ndo_rx_flow_steer = efx_filter_rfs, 2110 #endif 2111 }; 2112 2113 static void efx_update_name(struct efx_nic *efx) 2114 { 2115 strcpy(efx->name, efx->net_dev->name); 2116 efx_mtd_rename(efx); 2117 efx_set_channel_names(efx); 2118 } 2119 2120 static int efx_netdev_event(struct notifier_block *this, 2121 unsigned long event, void *ptr) 2122 { 2123 struct net_device *net_dev = ptr; 2124 2125 if (net_dev->netdev_ops == &efx_netdev_ops && 2126 event == NETDEV_CHANGENAME) 2127 efx_update_name(netdev_priv(net_dev)); 2128 2129 return NOTIFY_DONE; 2130 } 2131 2132 static struct notifier_block efx_netdev_notifier = { 2133 .notifier_call = efx_netdev_event, 2134 }; 2135 2136 static ssize_t 2137 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) 2138 { 2139 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2140 return sprintf(buf, "%d\n", efx->phy_type); 2141 } 2142 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL); 2143 2144 static int efx_register_netdev(struct efx_nic *efx) 2145 { 2146 struct net_device *net_dev = efx->net_dev; 2147 struct efx_channel *channel; 2148 int rc; 2149 2150 net_dev->watchdog_timeo = 5 * HZ; 2151 net_dev->irq = efx->pci_dev->irq; 2152 net_dev->netdev_ops = &efx_netdev_ops; 2153 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops); 2154 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS; 2155 2156 rtnl_lock(); 2157 2158 /* Enable resets to be scheduled and check whether any were 2159 * already requested. If so, the NIC is probably hosed so we 2160 * abort. 2161 */ 2162 efx->state = STATE_READY; 2163 smp_mb(); /* ensure we change state before checking reset_pending */ 2164 if (efx->reset_pending) { 2165 netif_err(efx, probe, efx->net_dev, 2166 "aborting probe due to scheduled reset\n"); 2167 rc = -EIO; 2168 goto fail_locked; 2169 } 2170 2171 rc = dev_alloc_name(net_dev, net_dev->name); 2172 if (rc < 0) 2173 goto fail_locked; 2174 efx_update_name(efx); 2175 2176 /* Always start with carrier off; PHY events will detect the link */ 2177 netif_carrier_off(net_dev); 2178 2179 rc = register_netdevice(net_dev); 2180 if (rc) 2181 goto fail_locked; 2182 2183 efx_for_each_channel(channel, efx) { 2184 struct efx_tx_queue *tx_queue; 2185 efx_for_each_channel_tx_queue(tx_queue, channel) 2186 efx_init_tx_queue_core_txq(tx_queue); 2187 } 2188 2189 rtnl_unlock(); 2190 2191 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2192 if (rc) { 2193 netif_err(efx, drv, efx->net_dev, 2194 "failed to init net dev attributes\n"); 2195 goto fail_registered; 2196 } 2197 2198 return 0; 2199 2200 fail_registered: 2201 rtnl_lock(); 2202 unregister_netdevice(net_dev); 2203 fail_locked: 2204 efx->state = STATE_UNINIT; 2205 rtnl_unlock(); 2206 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 2207 return rc; 2208 } 2209 2210 static void efx_unregister_netdev(struct efx_nic *efx) 2211 { 2212 struct efx_channel *channel; 2213 struct efx_tx_queue *tx_queue; 2214 2215 if (!efx->net_dev) 2216 return; 2217 2218 BUG_ON(netdev_priv(efx->net_dev) != efx); 2219 2220 /* Free up any skbs still remaining. This has to happen before 2221 * we try to unregister the netdev as running their destructors 2222 * may be needed to get the device ref. count to 0. */ 2223 efx_for_each_channel(channel, efx) { 2224 efx_for_each_channel_tx_queue(tx_queue, channel) 2225 efx_release_tx_buffers(tx_queue); 2226 } 2227 2228 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 2229 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2230 2231 rtnl_lock(); 2232 unregister_netdevice(efx->net_dev); 2233 efx->state = STATE_UNINIT; 2234 rtnl_unlock(); 2235 } 2236 2237 /************************************************************************** 2238 * 2239 * Device reset and suspend 2240 * 2241 **************************************************************************/ 2242 2243 /* Tears down the entire software state and most of the hardware state 2244 * before reset. */ 2245 void efx_reset_down(struct efx_nic *efx, enum reset_type method) 2246 { 2247 EFX_ASSERT_RESET_SERIALISED(efx); 2248 2249 efx_stop_all(efx); 2250 efx_stop_interrupts(efx, false); 2251 2252 mutex_lock(&efx->mac_lock); 2253 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) 2254 efx->phy_op->fini(efx); 2255 efx->type->fini(efx); 2256 } 2257 2258 /* This function will always ensure that the locks acquired in 2259 * efx_reset_down() are released. A failure return code indicates 2260 * that we were unable to reinitialise the hardware, and the 2261 * driver should be disabled. If ok is false, then the rx and tx 2262 * engines are not restarted, pending a RESET_DISABLE. */ 2263 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) 2264 { 2265 int rc; 2266 2267 EFX_ASSERT_RESET_SERIALISED(efx); 2268 2269 rc = efx->type->init(efx); 2270 if (rc) { 2271 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); 2272 goto fail; 2273 } 2274 2275 if (!ok) 2276 goto fail; 2277 2278 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) { 2279 rc = efx->phy_op->init(efx); 2280 if (rc) 2281 goto fail; 2282 if (efx->phy_op->reconfigure(efx)) 2283 netif_err(efx, drv, efx->net_dev, 2284 "could not restore PHY settings\n"); 2285 } 2286 2287 efx->type->reconfigure_mac(efx); 2288 2289 efx_start_interrupts(efx, false); 2290 efx_restore_filters(efx); 2291 efx_sriov_reset(efx); 2292 2293 mutex_unlock(&efx->mac_lock); 2294 2295 efx_start_all(efx); 2296 2297 return 0; 2298 2299 fail: 2300 efx->port_initialized = false; 2301 2302 mutex_unlock(&efx->mac_lock); 2303 2304 return rc; 2305 } 2306 2307 /* Reset the NIC using the specified method. Note that the reset may 2308 * fail, in which case the card will be left in an unusable state. 2309 * 2310 * Caller must hold the rtnl_lock. 2311 */ 2312 int efx_reset(struct efx_nic *efx, enum reset_type method) 2313 { 2314 int rc, rc2; 2315 bool disabled; 2316 2317 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", 2318 RESET_TYPE(method)); 2319 2320 efx_device_detach_sync(efx); 2321 efx_reset_down(efx, method); 2322 2323 rc = efx->type->reset(efx, method); 2324 if (rc) { 2325 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); 2326 goto out; 2327 } 2328 2329 /* Clear flags for the scopes we covered. We assume the NIC and 2330 * driver are now quiescent so that there is no race here. 2331 */ 2332 efx->reset_pending &= -(1 << (method + 1)); 2333 2334 /* Reinitialise bus-mastering, which may have been turned off before 2335 * the reset was scheduled. This is still appropriate, even in the 2336 * RESET_TYPE_DISABLE since this driver generally assumes the hardware 2337 * can respond to requests. */ 2338 pci_set_master(efx->pci_dev); 2339 2340 out: 2341 /* Leave device stopped if necessary */ 2342 disabled = rc || 2343 method == RESET_TYPE_DISABLE || 2344 method == RESET_TYPE_RECOVER_OR_DISABLE; 2345 rc2 = efx_reset_up(efx, method, !disabled); 2346 if (rc2) { 2347 disabled = true; 2348 if (!rc) 2349 rc = rc2; 2350 } 2351 2352 if (disabled) { 2353 dev_close(efx->net_dev); 2354 netif_err(efx, drv, efx->net_dev, "has been disabled\n"); 2355 efx->state = STATE_DISABLED; 2356 } else { 2357 netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); 2358 netif_device_attach(efx->net_dev); 2359 } 2360 return rc; 2361 } 2362 2363 /* Try recovery mechanisms. 2364 * For now only EEH is supported. 2365 * Returns 0 if the recovery mechanisms are unsuccessful. 2366 * Returns a non-zero value otherwise. 2367 */ 2368 static int efx_try_recovery(struct efx_nic *efx) 2369 { 2370 #ifdef CONFIG_EEH 2371 /* A PCI error can occur and not be seen by EEH because nothing 2372 * happens on the PCI bus. In this case the driver may fail and 2373 * schedule a 'recover or reset', leading to this recovery handler. 2374 * Manually call the eeh failure check function. 2375 */ 2376 struct eeh_dev *eehdev = 2377 of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev)); 2378 2379 if (eeh_dev_check_failure(eehdev)) { 2380 /* The EEH mechanisms will handle the error and reset the 2381 * device if necessary. 2382 */ 2383 return 1; 2384 } 2385 #endif 2386 return 0; 2387 } 2388 2389 /* The worker thread exists so that code that cannot sleep can 2390 * schedule a reset for later. 2391 */ 2392 static void efx_reset_work(struct work_struct *data) 2393 { 2394 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); 2395 unsigned long pending; 2396 enum reset_type method; 2397 2398 pending = ACCESS_ONCE(efx->reset_pending); 2399 method = fls(pending) - 1; 2400 2401 if ((method == RESET_TYPE_RECOVER_OR_DISABLE || 2402 method == RESET_TYPE_RECOVER_OR_ALL) && 2403 efx_try_recovery(efx)) 2404 return; 2405 2406 if (!pending) 2407 return; 2408 2409 rtnl_lock(); 2410 2411 /* We checked the state in efx_schedule_reset() but it may 2412 * have changed by now. Now that we have the RTNL lock, 2413 * it cannot change again. 2414 */ 2415 if (efx->state == STATE_READY) 2416 (void)efx_reset(efx, method); 2417 2418 rtnl_unlock(); 2419 } 2420 2421 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) 2422 { 2423 enum reset_type method; 2424 2425 if (efx->state == STATE_RECOVERY) { 2426 netif_dbg(efx, drv, efx->net_dev, 2427 "recovering: skip scheduling %s reset\n", 2428 RESET_TYPE(type)); 2429 return; 2430 } 2431 2432 switch (type) { 2433 case RESET_TYPE_INVISIBLE: 2434 case RESET_TYPE_ALL: 2435 case RESET_TYPE_RECOVER_OR_ALL: 2436 case RESET_TYPE_WORLD: 2437 case RESET_TYPE_DISABLE: 2438 case RESET_TYPE_RECOVER_OR_DISABLE: 2439 method = type; 2440 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", 2441 RESET_TYPE(method)); 2442 break; 2443 default: 2444 method = efx->type->map_reset_reason(type); 2445 netif_dbg(efx, drv, efx->net_dev, 2446 "scheduling %s reset for %s\n", 2447 RESET_TYPE(method), RESET_TYPE(type)); 2448 break; 2449 } 2450 2451 set_bit(method, &efx->reset_pending); 2452 smp_mb(); /* ensure we change reset_pending before checking state */ 2453 2454 /* If we're not READY then just leave the flags set as the cue 2455 * to abort probing or reschedule the reset later. 2456 */ 2457 if (ACCESS_ONCE(efx->state) != STATE_READY) 2458 return; 2459 2460 /* efx_process_channel() will no longer read events once a 2461 * reset is scheduled. So switch back to poll'd MCDI completions. */ 2462 efx_mcdi_mode_poll(efx); 2463 2464 queue_work(reset_workqueue, &efx->reset_work); 2465 } 2466 2467 /************************************************************************** 2468 * 2469 * List of NICs we support 2470 * 2471 **************************************************************************/ 2472 2473 /* PCI device ID table */ 2474 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = { 2475 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2476 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), 2477 .driver_data = (unsigned long) &falcon_a1_nic_type}, 2478 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2479 PCI_DEVICE_ID_SOLARFLARE_SFC4000B), 2480 .driver_data = (unsigned long) &falcon_b0_nic_type}, 2481 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ 2482 .driver_data = (unsigned long) &siena_a0_nic_type}, 2483 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ 2484 .driver_data = (unsigned long) &siena_a0_nic_type}, 2485 {0} /* end of list */ 2486 }; 2487 2488 /************************************************************************** 2489 * 2490 * Dummy PHY/MAC operations 2491 * 2492 * Can be used for some unimplemented operations 2493 * Needed so all function pointers are valid and do not have to be tested 2494 * before use 2495 * 2496 **************************************************************************/ 2497 int efx_port_dummy_op_int(struct efx_nic *efx) 2498 { 2499 return 0; 2500 } 2501 void efx_port_dummy_op_void(struct efx_nic *efx) {} 2502 2503 static bool efx_port_dummy_op_poll(struct efx_nic *efx) 2504 { 2505 return false; 2506 } 2507 2508 static const struct efx_phy_operations efx_dummy_phy_operations = { 2509 .init = efx_port_dummy_op_int, 2510 .reconfigure = efx_port_dummy_op_int, 2511 .poll = efx_port_dummy_op_poll, 2512 .fini = efx_port_dummy_op_void, 2513 }; 2514 2515 /************************************************************************** 2516 * 2517 * Data housekeeping 2518 * 2519 **************************************************************************/ 2520 2521 /* This zeroes out and then fills in the invariants in a struct 2522 * efx_nic (including all sub-structures). 2523 */ 2524 static int efx_init_struct(struct efx_nic *efx, 2525 struct pci_dev *pci_dev, struct net_device *net_dev) 2526 { 2527 int i; 2528 2529 /* Initialise common structures */ 2530 spin_lock_init(&efx->biu_lock); 2531 #ifdef CONFIG_SFC_MTD 2532 INIT_LIST_HEAD(&efx->mtd_list); 2533 #endif 2534 INIT_WORK(&efx->reset_work, efx_reset_work); 2535 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); 2536 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work); 2537 efx->pci_dev = pci_dev; 2538 efx->msg_enable = debug; 2539 efx->state = STATE_UNINIT; 2540 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); 2541 2542 efx->net_dev = net_dev; 2543 spin_lock_init(&efx->stats_lock); 2544 mutex_init(&efx->mac_lock); 2545 efx->phy_op = &efx_dummy_phy_operations; 2546 efx->mdio.dev = net_dev; 2547 INIT_WORK(&efx->mac_work, efx_mac_work); 2548 init_waitqueue_head(&efx->flush_wq); 2549 2550 for (i = 0; i < EFX_MAX_CHANNELS; i++) { 2551 efx->channel[i] = efx_alloc_channel(efx, i, NULL); 2552 if (!efx->channel[i]) 2553 goto fail; 2554 } 2555 2556 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS); 2557 2558 /* Higher numbered interrupt modes are less capable! */ 2559 efx->interrupt_mode = max(efx->type->max_interrupt_mode, 2560 interrupt_mode); 2561 2562 /* Would be good to use the net_dev name, but we're too early */ 2563 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", 2564 pci_name(pci_dev)); 2565 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); 2566 if (!efx->workqueue) 2567 goto fail; 2568 2569 return 0; 2570 2571 fail: 2572 efx_fini_struct(efx); 2573 return -ENOMEM; 2574 } 2575 2576 static void efx_fini_struct(struct efx_nic *efx) 2577 { 2578 int i; 2579 2580 for (i = 0; i < EFX_MAX_CHANNELS; i++) 2581 kfree(efx->channel[i]); 2582 2583 if (efx->workqueue) { 2584 destroy_workqueue(efx->workqueue); 2585 efx->workqueue = NULL; 2586 } 2587 } 2588 2589 /************************************************************************** 2590 * 2591 * PCI interface 2592 * 2593 **************************************************************************/ 2594 2595 /* Main body of final NIC shutdown code 2596 * This is called only at module unload (or hotplug removal). 2597 */ 2598 static void efx_pci_remove_main(struct efx_nic *efx) 2599 { 2600 /* Flush reset_work. It can no longer be scheduled since we 2601 * are not READY. 2602 */ 2603 BUG_ON(efx->state == STATE_READY); 2604 cancel_work_sync(&efx->reset_work); 2605 2606 #ifdef CONFIG_RFS_ACCEL 2607 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); 2608 efx->net_dev->rx_cpu_rmap = NULL; 2609 #endif 2610 efx_stop_interrupts(efx, false); 2611 efx_nic_fini_interrupt(efx); 2612 efx_fini_port(efx); 2613 efx->type->fini(efx); 2614 efx_fini_napi(efx); 2615 efx_remove_all(efx); 2616 } 2617 2618 /* Final NIC shutdown 2619 * This is called only at module unload (or hotplug removal). 2620 */ 2621 static void efx_pci_remove(struct pci_dev *pci_dev) 2622 { 2623 struct efx_nic *efx; 2624 2625 efx = pci_get_drvdata(pci_dev); 2626 if (!efx) 2627 return; 2628 2629 /* Mark the NIC as fini, then stop the interface */ 2630 rtnl_lock(); 2631 dev_close(efx->net_dev); 2632 efx_stop_interrupts(efx, false); 2633 rtnl_unlock(); 2634 2635 efx_sriov_fini(efx); 2636 efx_unregister_netdev(efx); 2637 2638 efx_mtd_remove(efx); 2639 2640 efx_pci_remove_main(efx); 2641 2642 efx_fini_io(efx); 2643 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 2644 2645 efx_fini_struct(efx); 2646 pci_set_drvdata(pci_dev, NULL); 2647 free_netdev(efx->net_dev); 2648 2649 pci_disable_pcie_error_reporting(pci_dev); 2650 }; 2651 2652 /* NIC VPD information 2653 * Called during probe to display the part number of the 2654 * installed NIC. VPD is potentially very large but this should 2655 * always appear within the first 512 bytes. 2656 */ 2657 #define SFC_VPD_LEN 512 2658 static void efx_print_product_vpd(struct efx_nic *efx) 2659 { 2660 struct pci_dev *dev = efx->pci_dev; 2661 char vpd_data[SFC_VPD_LEN]; 2662 ssize_t vpd_size; 2663 int i, j; 2664 2665 /* Get the vpd data from the device */ 2666 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 2667 if (vpd_size <= 0) { 2668 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); 2669 return; 2670 } 2671 2672 /* Get the Read only section */ 2673 i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 2674 if (i < 0) { 2675 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); 2676 return; 2677 } 2678 2679 j = pci_vpd_lrdt_size(&vpd_data[i]); 2680 i += PCI_VPD_LRDT_TAG_SIZE; 2681 if (i + j > vpd_size) 2682 j = vpd_size - i; 2683 2684 /* Get the Part number */ 2685 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); 2686 if (i < 0) { 2687 netif_err(efx, drv, efx->net_dev, "Part number not found\n"); 2688 return; 2689 } 2690 2691 j = pci_vpd_info_field_size(&vpd_data[i]); 2692 i += PCI_VPD_INFO_FLD_HDR_SIZE; 2693 if (i + j > vpd_size) { 2694 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); 2695 return; 2696 } 2697 2698 netif_info(efx, drv, efx->net_dev, 2699 "Part Number : %.*s\n", j, &vpd_data[i]); 2700 } 2701 2702 2703 /* Main body of NIC initialisation 2704 * This is called at module load (or hotplug insertion, theoretically). 2705 */ 2706 static int efx_pci_probe_main(struct efx_nic *efx) 2707 { 2708 int rc; 2709 2710 /* Do start-of-day initialisation */ 2711 rc = efx_probe_all(efx); 2712 if (rc) 2713 goto fail1; 2714 2715 efx_init_napi(efx); 2716 2717 rc = efx->type->init(efx); 2718 if (rc) { 2719 netif_err(efx, probe, efx->net_dev, 2720 "failed to initialise NIC\n"); 2721 goto fail3; 2722 } 2723 2724 rc = efx_init_port(efx); 2725 if (rc) { 2726 netif_err(efx, probe, efx->net_dev, 2727 "failed to initialise port\n"); 2728 goto fail4; 2729 } 2730 2731 rc = efx_nic_init_interrupt(efx); 2732 if (rc) 2733 goto fail5; 2734 efx_start_interrupts(efx, false); 2735 2736 return 0; 2737 2738 fail5: 2739 efx_fini_port(efx); 2740 fail4: 2741 efx->type->fini(efx); 2742 fail3: 2743 efx_fini_napi(efx); 2744 efx_remove_all(efx); 2745 fail1: 2746 return rc; 2747 } 2748 2749 /* NIC initialisation 2750 * 2751 * This is called at module load (or hotplug insertion, 2752 * theoretically). It sets up PCI mappings, resets the NIC, 2753 * sets up and registers the network devices with the kernel and hooks 2754 * the interrupt service routine. It does not prepare the device for 2755 * transmission; this is left to the first time one of the network 2756 * interfaces is brought up (i.e. efx_net_open). 2757 */ 2758 static int efx_pci_probe(struct pci_dev *pci_dev, 2759 const struct pci_device_id *entry) 2760 { 2761 struct net_device *net_dev; 2762 struct efx_nic *efx; 2763 int rc; 2764 2765 /* Allocate and initialise a struct net_device and struct efx_nic */ 2766 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, 2767 EFX_MAX_RX_QUEUES); 2768 if (!net_dev) 2769 return -ENOMEM; 2770 efx = netdev_priv(net_dev); 2771 efx->type = (const struct efx_nic_type *) entry->driver_data; 2772 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 2773 NETIF_F_HIGHDMA | NETIF_F_TSO | 2774 NETIF_F_RXCSUM); 2775 if (efx->type->offload_features & NETIF_F_V6_CSUM) 2776 net_dev->features |= NETIF_F_TSO6; 2777 /* Mask for features that also apply to VLAN devices */ 2778 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG | 2779 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | 2780 NETIF_F_RXCSUM); 2781 /* All offloads can be toggled */ 2782 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA; 2783 pci_set_drvdata(pci_dev, efx); 2784 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 2785 rc = efx_init_struct(efx, pci_dev, net_dev); 2786 if (rc) 2787 goto fail1; 2788 2789 netif_info(efx, probe, efx->net_dev, 2790 "Solarflare NIC detected\n"); 2791 2792 efx_print_product_vpd(efx); 2793 2794 /* Set up basic I/O (BAR mappings etc) */ 2795 rc = efx_init_io(efx); 2796 if (rc) 2797 goto fail2; 2798 2799 rc = efx_pci_probe_main(efx); 2800 if (rc) 2801 goto fail3; 2802 2803 rc = efx_register_netdev(efx); 2804 if (rc) 2805 goto fail4; 2806 2807 rc = efx_sriov_init(efx); 2808 if (rc) 2809 netif_err(efx, probe, efx->net_dev, 2810 "SR-IOV can't be enabled rc %d\n", rc); 2811 2812 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 2813 2814 /* Try to create MTDs, but allow this to fail */ 2815 rtnl_lock(); 2816 rc = efx_mtd_probe(efx); 2817 rtnl_unlock(); 2818 if (rc) 2819 netif_warn(efx, probe, efx->net_dev, 2820 "failed to create MTDs (%d)\n", rc); 2821 2822 rc = pci_enable_pcie_error_reporting(pci_dev); 2823 if (rc && rc != -EINVAL) 2824 netif_warn(efx, probe, efx->net_dev, 2825 "pci_enable_pcie_error_reporting failed (%d)\n", rc); 2826 2827 return 0; 2828 2829 fail4: 2830 efx_pci_remove_main(efx); 2831 fail3: 2832 efx_fini_io(efx); 2833 fail2: 2834 efx_fini_struct(efx); 2835 fail1: 2836 pci_set_drvdata(pci_dev, NULL); 2837 WARN_ON(rc > 0); 2838 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 2839 free_netdev(net_dev); 2840 return rc; 2841 } 2842 2843 static int efx_pm_freeze(struct device *dev) 2844 { 2845 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2846 2847 rtnl_lock(); 2848 2849 if (efx->state != STATE_DISABLED) { 2850 efx->state = STATE_UNINIT; 2851 2852 efx_device_detach_sync(efx); 2853 2854 efx_stop_all(efx); 2855 efx_stop_interrupts(efx, false); 2856 } 2857 2858 rtnl_unlock(); 2859 2860 return 0; 2861 } 2862 2863 static int efx_pm_thaw(struct device *dev) 2864 { 2865 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2866 2867 rtnl_lock(); 2868 2869 if (efx->state != STATE_DISABLED) { 2870 efx_start_interrupts(efx, false); 2871 2872 mutex_lock(&efx->mac_lock); 2873 efx->phy_op->reconfigure(efx); 2874 mutex_unlock(&efx->mac_lock); 2875 2876 efx_start_all(efx); 2877 2878 netif_device_attach(efx->net_dev); 2879 2880 efx->state = STATE_READY; 2881 2882 efx->type->resume_wol(efx); 2883 } 2884 2885 rtnl_unlock(); 2886 2887 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ 2888 queue_work(reset_workqueue, &efx->reset_work); 2889 2890 return 0; 2891 } 2892 2893 static int efx_pm_poweroff(struct device *dev) 2894 { 2895 struct pci_dev *pci_dev = to_pci_dev(dev); 2896 struct efx_nic *efx = pci_get_drvdata(pci_dev); 2897 2898 efx->type->fini(efx); 2899 2900 efx->reset_pending = 0; 2901 2902 pci_save_state(pci_dev); 2903 return pci_set_power_state(pci_dev, PCI_D3hot); 2904 } 2905 2906 /* Used for both resume and restore */ 2907 static int efx_pm_resume(struct device *dev) 2908 { 2909 struct pci_dev *pci_dev = to_pci_dev(dev); 2910 struct efx_nic *efx = pci_get_drvdata(pci_dev); 2911 int rc; 2912 2913 rc = pci_set_power_state(pci_dev, PCI_D0); 2914 if (rc) 2915 return rc; 2916 pci_restore_state(pci_dev); 2917 rc = pci_enable_device(pci_dev); 2918 if (rc) 2919 return rc; 2920 pci_set_master(efx->pci_dev); 2921 rc = efx->type->reset(efx, RESET_TYPE_ALL); 2922 if (rc) 2923 return rc; 2924 rc = efx->type->init(efx); 2925 if (rc) 2926 return rc; 2927 efx_pm_thaw(dev); 2928 return 0; 2929 } 2930 2931 static int efx_pm_suspend(struct device *dev) 2932 { 2933 int rc; 2934 2935 efx_pm_freeze(dev); 2936 rc = efx_pm_poweroff(dev); 2937 if (rc) 2938 efx_pm_resume(dev); 2939 return rc; 2940 } 2941 2942 static const struct dev_pm_ops efx_pm_ops = { 2943 .suspend = efx_pm_suspend, 2944 .resume = efx_pm_resume, 2945 .freeze = efx_pm_freeze, 2946 .thaw = efx_pm_thaw, 2947 .poweroff = efx_pm_poweroff, 2948 .restore = efx_pm_resume, 2949 }; 2950 2951 /* A PCI error affecting this device was detected. 2952 * At this point MMIO and DMA may be disabled. 2953 * Stop the software path and request a slot reset. 2954 */ 2955 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev, 2956 enum pci_channel_state state) 2957 { 2958 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 2959 struct efx_nic *efx = pci_get_drvdata(pdev); 2960 2961 if (state == pci_channel_io_perm_failure) 2962 return PCI_ERS_RESULT_DISCONNECT; 2963 2964 rtnl_lock(); 2965 2966 if (efx->state != STATE_DISABLED) { 2967 efx->state = STATE_RECOVERY; 2968 efx->reset_pending = 0; 2969 2970 efx_device_detach_sync(efx); 2971 2972 efx_stop_all(efx); 2973 efx_stop_interrupts(efx, false); 2974 2975 status = PCI_ERS_RESULT_NEED_RESET; 2976 } else { 2977 /* If the interface is disabled we don't want to do anything 2978 * with it. 2979 */ 2980 status = PCI_ERS_RESULT_RECOVERED; 2981 } 2982 2983 rtnl_unlock(); 2984 2985 pci_disable_device(pdev); 2986 2987 return status; 2988 } 2989 2990 /* Fake a successfull reset, which will be performed later in efx_io_resume. */ 2991 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev) 2992 { 2993 struct efx_nic *efx = pci_get_drvdata(pdev); 2994 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 2995 int rc; 2996 2997 if (pci_enable_device(pdev)) { 2998 netif_err(efx, hw, efx->net_dev, 2999 "Cannot re-enable PCI device after reset.\n"); 3000 status = PCI_ERS_RESULT_DISCONNECT; 3001 } 3002 3003 rc = pci_cleanup_aer_uncorrect_error_status(pdev); 3004 if (rc) { 3005 netif_err(efx, hw, efx->net_dev, 3006 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc); 3007 /* Non-fatal error. Continue. */ 3008 } 3009 3010 return status; 3011 } 3012 3013 /* Perform the actual reset and resume I/O operations. */ 3014 static void efx_io_resume(struct pci_dev *pdev) 3015 { 3016 struct efx_nic *efx = pci_get_drvdata(pdev); 3017 int rc; 3018 3019 rtnl_lock(); 3020 3021 if (efx->state == STATE_DISABLED) 3022 goto out; 3023 3024 rc = efx_reset(efx, RESET_TYPE_ALL); 3025 if (rc) { 3026 netif_err(efx, hw, efx->net_dev, 3027 "efx_reset failed after PCI error (%d)\n", rc); 3028 } else { 3029 efx->state = STATE_READY; 3030 netif_dbg(efx, hw, efx->net_dev, 3031 "Done resetting and resuming IO after PCI error.\n"); 3032 } 3033 3034 out: 3035 rtnl_unlock(); 3036 } 3037 3038 /* For simplicity and reliability, we always require a slot reset and try to 3039 * reset the hardware when a pci error affecting the device is detected. 3040 * We leave both the link_reset and mmio_enabled callback unimplemented: 3041 * with our request for slot reset the mmio_enabled callback will never be 3042 * called, and the link_reset callback is not used by AER or EEH mechanisms. 3043 */ 3044 static struct pci_error_handlers efx_err_handlers = { 3045 .error_detected = efx_io_error_detected, 3046 .slot_reset = efx_io_slot_reset, 3047 .resume = efx_io_resume, 3048 }; 3049 3050 static struct pci_driver efx_pci_driver = { 3051 .name = KBUILD_MODNAME, 3052 .id_table = efx_pci_table, 3053 .probe = efx_pci_probe, 3054 .remove = efx_pci_remove, 3055 .driver.pm = &efx_pm_ops, 3056 .err_handler = &efx_err_handlers, 3057 }; 3058 3059 /************************************************************************** 3060 * 3061 * Kernel module interface 3062 * 3063 *************************************************************************/ 3064 3065 module_param(interrupt_mode, uint, 0444); 3066 MODULE_PARM_DESC(interrupt_mode, 3067 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 3068 3069 static int __init efx_init_module(void) 3070 { 3071 int rc; 3072 3073 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); 3074 3075 rc = register_netdevice_notifier(&efx_netdev_notifier); 3076 if (rc) 3077 goto err_notifier; 3078 3079 rc = efx_init_sriov(); 3080 if (rc) 3081 goto err_sriov; 3082 3083 reset_workqueue = create_singlethread_workqueue("sfc_reset"); 3084 if (!reset_workqueue) { 3085 rc = -ENOMEM; 3086 goto err_reset; 3087 } 3088 3089 rc = pci_register_driver(&efx_pci_driver); 3090 if (rc < 0) 3091 goto err_pci; 3092 3093 return 0; 3094 3095 err_pci: 3096 destroy_workqueue(reset_workqueue); 3097 err_reset: 3098 efx_fini_sriov(); 3099 err_sriov: 3100 unregister_netdevice_notifier(&efx_netdev_notifier); 3101 err_notifier: 3102 return rc; 3103 } 3104 3105 static void __exit efx_exit_module(void) 3106 { 3107 printk(KERN_INFO "Solarflare NET driver unloading\n"); 3108 3109 pci_unregister_driver(&efx_pci_driver); 3110 destroy_workqueue(reset_workqueue); 3111 efx_fini_sriov(); 3112 unregister_netdevice_notifier(&efx_netdev_notifier); 3113 3114 } 3115 3116 module_init(efx_init_module); 3117 module_exit(efx_exit_module); 3118 3119 MODULE_AUTHOR("Solarflare Communications and " 3120 "Michael Brown <mbrown@fensystems.co.uk>"); 3121 MODULE_DESCRIPTION("Solarflare Communications network driver"); 3122 MODULE_LICENSE("GPL"); 3123 MODULE_DEVICE_TABLE(pci, efx_pci_table); 3124