1 /**************************************************************************** 2 * Driver for Solarflare network controllers and boards 3 * Copyright 2005-2006 Fen Systems Ltd. 4 * Copyright 2005-2013 Solarflare Communications Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation, incorporated herein by reference. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/pci.h> 13 #include <linux/netdevice.h> 14 #include <linux/etherdevice.h> 15 #include <linux/delay.h> 16 #include <linux/notifier.h> 17 #include <linux/ip.h> 18 #include <linux/tcp.h> 19 #include <linux/in.h> 20 #include <linux/ethtool.h> 21 #include <linux/topology.h> 22 #include <linux/gfp.h> 23 #include <linux/aer.h> 24 #include <linux/interrupt.h> 25 #include "net_driver.h" 26 #include "efx.h" 27 #include "nic.h" 28 #include "selftest.h" 29 #include "sriov.h" 30 31 #include "mcdi.h" 32 #include "workarounds.h" 33 34 /************************************************************************** 35 * 36 * Type name strings 37 * 38 ************************************************************************** 39 */ 40 41 /* Loopback mode names (see LOOPBACK_MODE()) */ 42 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; 43 const char *const efx_loopback_mode_names[] = { 44 [LOOPBACK_NONE] = "NONE", 45 [LOOPBACK_DATA] = "DATAPATH", 46 [LOOPBACK_GMAC] = "GMAC", 47 [LOOPBACK_XGMII] = "XGMII", 48 [LOOPBACK_XGXS] = "XGXS", 49 [LOOPBACK_XAUI] = "XAUI", 50 [LOOPBACK_GMII] = "GMII", 51 [LOOPBACK_SGMII] = "SGMII", 52 [LOOPBACK_XGBR] = "XGBR", 53 [LOOPBACK_XFI] = "XFI", 54 [LOOPBACK_XAUI_FAR] = "XAUI_FAR", 55 [LOOPBACK_GMII_FAR] = "GMII_FAR", 56 [LOOPBACK_SGMII_FAR] = "SGMII_FAR", 57 [LOOPBACK_XFI_FAR] = "XFI_FAR", 58 [LOOPBACK_GPHY] = "GPHY", 59 [LOOPBACK_PHYXS] = "PHYXS", 60 [LOOPBACK_PCS] = "PCS", 61 [LOOPBACK_PMAPMD] = "PMA/PMD", 62 [LOOPBACK_XPORT] = "XPORT", 63 [LOOPBACK_XGMII_WS] = "XGMII_WS", 64 [LOOPBACK_XAUI_WS] = "XAUI_WS", 65 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", 66 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", 67 [LOOPBACK_GMII_WS] = "GMII_WS", 68 [LOOPBACK_XFI_WS] = "XFI_WS", 69 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", 70 [LOOPBACK_PHYXS_WS] = "PHYXS_WS", 71 }; 72 73 const unsigned int efx_reset_type_max = RESET_TYPE_MAX; 74 const char *const efx_reset_type_names[] = { 75 [RESET_TYPE_INVISIBLE] = "INVISIBLE", 76 [RESET_TYPE_ALL] = "ALL", 77 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", 78 [RESET_TYPE_WORLD] = "WORLD", 79 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", 80 [RESET_TYPE_DATAPATH] = "DATAPATH", 81 [RESET_TYPE_MC_BIST] = "MC_BIST", 82 [RESET_TYPE_DISABLE] = "DISABLE", 83 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", 84 [RESET_TYPE_INT_ERROR] = "INT_ERROR", 85 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", 86 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", 87 [RESET_TYPE_TX_SKIP] = "TX_SKIP", 88 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", 89 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)", 90 }; 91 92 /* Reset workqueue. If any NIC has a hardware failure then a reset will be 93 * queued onto this work queue. This is not a per-nic work queue, because 94 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. 95 */ 96 static struct workqueue_struct *reset_workqueue; 97 98 /* How often and how many times to poll for a reset while waiting for a 99 * BIST that another function started to complete. 100 */ 101 #define BIST_WAIT_DELAY_MS 100 102 #define BIST_WAIT_DELAY_COUNT 100 103 104 /************************************************************************** 105 * 106 * Configurable values 107 * 108 *************************************************************************/ 109 110 /* 111 * Use separate channels for TX and RX events 112 * 113 * Set this to 1 to use separate channels for TX and RX. It allows us 114 * to control interrupt affinity separately for TX and RX. 115 * 116 * This is only used in MSI-X interrupt mode 117 */ 118 bool efx_separate_tx_channels; 119 module_param(efx_separate_tx_channels, bool, 0444); 120 MODULE_PARM_DESC(efx_separate_tx_channels, 121 "Use separate channels for TX and RX"); 122 123 /* This is the weight assigned to each of the (per-channel) virtual 124 * NAPI devices. 125 */ 126 static int napi_weight = 64; 127 128 /* This is the time (in jiffies) between invocations of the hardware 129 * monitor. 130 * On Falcon-based NICs, this will: 131 * - Check the on-board hardware monitor; 132 * - Poll the link state and reconfigure the hardware as necessary. 133 * On Siena-based NICs for power systems with EEH support, this will give EEH a 134 * chance to start. 135 */ 136 static unsigned int efx_monitor_interval = 1 * HZ; 137 138 /* Initial interrupt moderation settings. They can be modified after 139 * module load with ethtool. 140 * 141 * The default for RX should strike a balance between increasing the 142 * round-trip latency and reducing overhead. 143 */ 144 static unsigned int rx_irq_mod_usec = 60; 145 146 /* Initial interrupt moderation settings. They can be modified after 147 * module load with ethtool. 148 * 149 * This default is chosen to ensure that a 10G link does not go idle 150 * while a TX queue is stopped after it has become full. A queue is 151 * restarted when it drops below half full. The time this takes (assuming 152 * worst case 3 descriptors per packet and 1024 descriptors) is 153 * 512 / 3 * 1.2 = 205 usec. 154 */ 155 static unsigned int tx_irq_mod_usec = 150; 156 157 /* This is the first interrupt mode to try out of: 158 * 0 => MSI-X 159 * 1 => MSI 160 * 2 => legacy 161 */ 162 static unsigned int interrupt_mode; 163 164 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), 165 * i.e. the number of CPUs among which we may distribute simultaneous 166 * interrupt handling. 167 * 168 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. 169 * The default (0) means to assign an interrupt to each core. 170 */ 171 static unsigned int rss_cpus; 172 module_param(rss_cpus, uint, 0444); 173 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 174 175 static bool phy_flash_cfg; 176 module_param(phy_flash_cfg, bool, 0644); 177 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 178 179 static unsigned irq_adapt_low_thresh = 8000; 180 module_param(irq_adapt_low_thresh, uint, 0644); 181 MODULE_PARM_DESC(irq_adapt_low_thresh, 182 "Threshold score for reducing IRQ moderation"); 183 184 static unsigned irq_adapt_high_thresh = 16000; 185 module_param(irq_adapt_high_thresh, uint, 0644); 186 MODULE_PARM_DESC(irq_adapt_high_thresh, 187 "Threshold score for increasing IRQ moderation"); 188 189 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 190 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 191 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 192 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 193 module_param(debug, uint, 0); 194 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 195 196 /************************************************************************** 197 * 198 * Utility functions and prototypes 199 * 200 *************************************************************************/ 201 202 static int efx_soft_enable_interrupts(struct efx_nic *efx); 203 static void efx_soft_disable_interrupts(struct efx_nic *efx); 204 static void efx_remove_channel(struct efx_channel *channel); 205 static void efx_remove_channels(struct efx_nic *efx); 206 static const struct efx_channel_type efx_default_channel_type; 207 static void efx_remove_port(struct efx_nic *efx); 208 static void efx_init_napi_channel(struct efx_channel *channel); 209 static void efx_fini_napi(struct efx_nic *efx); 210 static void efx_fini_napi_channel(struct efx_channel *channel); 211 static void efx_fini_struct(struct efx_nic *efx); 212 static void efx_start_all(struct efx_nic *efx); 213 static void efx_stop_all(struct efx_nic *efx); 214 215 #define EFX_ASSERT_RESET_SERIALISED(efx) \ 216 do { \ 217 if ((efx->state == STATE_READY) || \ 218 (efx->state == STATE_RECOVERY) || \ 219 (efx->state == STATE_DISABLED)) \ 220 ASSERT_RTNL(); \ 221 } while (0) 222 223 static int efx_check_disabled(struct efx_nic *efx) 224 { 225 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { 226 netif_err(efx, drv, efx->net_dev, 227 "device is disabled due to earlier errors\n"); 228 return -EIO; 229 } 230 return 0; 231 } 232 233 /************************************************************************** 234 * 235 * Event queue processing 236 * 237 *************************************************************************/ 238 239 /* Process channel's event queue 240 * 241 * This function is responsible for processing the event queue of a 242 * single channel. The caller must guarantee that this function will 243 * never be concurrently called more than once on the same channel, 244 * though different channels may be being processed concurrently. 245 */ 246 static int efx_process_channel(struct efx_channel *channel, int budget) 247 { 248 struct efx_tx_queue *tx_queue; 249 int spent; 250 251 if (unlikely(!channel->enabled)) 252 return 0; 253 254 efx_for_each_channel_tx_queue(tx_queue, channel) { 255 tx_queue->pkts_compl = 0; 256 tx_queue->bytes_compl = 0; 257 } 258 259 spent = efx_nic_process_eventq(channel, budget); 260 if (spent && efx_channel_has_rx_queue(channel)) { 261 struct efx_rx_queue *rx_queue = 262 efx_channel_get_rx_queue(channel); 263 264 efx_rx_flush_packet(channel); 265 efx_fast_push_rx_descriptors(rx_queue, true); 266 } 267 268 /* Update BQL */ 269 efx_for_each_channel_tx_queue(tx_queue, channel) { 270 if (tx_queue->bytes_compl) { 271 netdev_tx_completed_queue(tx_queue->core_txq, 272 tx_queue->pkts_compl, tx_queue->bytes_compl); 273 } 274 } 275 276 return spent; 277 } 278 279 /* NAPI poll handler 280 * 281 * NAPI guarantees serialisation of polls of the same device, which 282 * provides the guarantee required by efx_process_channel(). 283 */ 284 static int efx_poll(struct napi_struct *napi, int budget) 285 { 286 struct efx_channel *channel = 287 container_of(napi, struct efx_channel, napi_str); 288 struct efx_nic *efx = channel->efx; 289 int spent; 290 291 if (!efx_channel_lock_napi(channel)) 292 return budget; 293 294 netif_vdbg(efx, intr, efx->net_dev, 295 "channel %d NAPI poll executing on CPU %d\n", 296 channel->channel, raw_smp_processor_id()); 297 298 spent = efx_process_channel(channel, budget); 299 300 if (spent < budget) { 301 if (efx_channel_has_rx_queue(channel) && 302 efx->irq_rx_adaptive && 303 unlikely(++channel->irq_count == 1000)) { 304 if (unlikely(channel->irq_mod_score < 305 irq_adapt_low_thresh)) { 306 if (channel->irq_moderation > 1) { 307 channel->irq_moderation -= 1; 308 efx->type->push_irq_moderation(channel); 309 } 310 } else if (unlikely(channel->irq_mod_score > 311 irq_adapt_high_thresh)) { 312 if (channel->irq_moderation < 313 efx->irq_rx_moderation) { 314 channel->irq_moderation += 1; 315 efx->type->push_irq_moderation(channel); 316 } 317 } 318 channel->irq_count = 0; 319 channel->irq_mod_score = 0; 320 } 321 322 efx_filter_rfs_expire(channel); 323 324 /* There is no race here; although napi_disable() will 325 * only wait for napi_complete(), this isn't a problem 326 * since efx_nic_eventq_read_ack() will have no effect if 327 * interrupts have already been disabled. 328 */ 329 napi_complete(napi); 330 efx_nic_eventq_read_ack(channel); 331 } 332 333 efx_channel_unlock_napi(channel); 334 return spent; 335 } 336 337 /* Create event queue 338 * Event queue memory allocations are done only once. If the channel 339 * is reset, the memory buffer will be reused; this guards against 340 * errors during channel reset and also simplifies interrupt handling. 341 */ 342 static int efx_probe_eventq(struct efx_channel *channel) 343 { 344 struct efx_nic *efx = channel->efx; 345 unsigned long entries; 346 347 netif_dbg(efx, probe, efx->net_dev, 348 "chan %d create event queue\n", channel->channel); 349 350 /* Build an event queue with room for one event per tx and rx buffer, 351 * plus some extra for link state events and MCDI completions. */ 352 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); 353 EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); 354 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; 355 356 return efx_nic_probe_eventq(channel); 357 } 358 359 /* Prepare channel's event queue */ 360 static int efx_init_eventq(struct efx_channel *channel) 361 { 362 struct efx_nic *efx = channel->efx; 363 int rc; 364 365 EFX_WARN_ON_PARANOID(channel->eventq_init); 366 367 netif_dbg(efx, drv, efx->net_dev, 368 "chan %d init event queue\n", channel->channel); 369 370 rc = efx_nic_init_eventq(channel); 371 if (rc == 0) { 372 efx->type->push_irq_moderation(channel); 373 channel->eventq_read_ptr = 0; 374 channel->eventq_init = true; 375 } 376 return rc; 377 } 378 379 /* Enable event queue processing and NAPI */ 380 void efx_start_eventq(struct efx_channel *channel) 381 { 382 netif_dbg(channel->efx, ifup, channel->efx->net_dev, 383 "chan %d start event queue\n", channel->channel); 384 385 /* Make sure the NAPI handler sees the enabled flag set */ 386 channel->enabled = true; 387 smp_wmb(); 388 389 efx_channel_enable(channel); 390 napi_enable(&channel->napi_str); 391 efx_nic_eventq_read_ack(channel); 392 } 393 394 /* Disable event queue processing and NAPI */ 395 void efx_stop_eventq(struct efx_channel *channel) 396 { 397 if (!channel->enabled) 398 return; 399 400 napi_disable(&channel->napi_str); 401 while (!efx_channel_disable(channel)) 402 usleep_range(1000, 20000); 403 channel->enabled = false; 404 } 405 406 static void efx_fini_eventq(struct efx_channel *channel) 407 { 408 if (!channel->eventq_init) 409 return; 410 411 netif_dbg(channel->efx, drv, channel->efx->net_dev, 412 "chan %d fini event queue\n", channel->channel); 413 414 efx_nic_fini_eventq(channel); 415 channel->eventq_init = false; 416 } 417 418 static void efx_remove_eventq(struct efx_channel *channel) 419 { 420 netif_dbg(channel->efx, drv, channel->efx->net_dev, 421 "chan %d remove event queue\n", channel->channel); 422 423 efx_nic_remove_eventq(channel); 424 } 425 426 /************************************************************************** 427 * 428 * Channel handling 429 * 430 *************************************************************************/ 431 432 /* Allocate and initialise a channel structure. */ 433 static struct efx_channel * 434 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) 435 { 436 struct efx_channel *channel; 437 struct efx_rx_queue *rx_queue; 438 struct efx_tx_queue *tx_queue; 439 int j; 440 441 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 442 if (!channel) 443 return NULL; 444 445 channel->efx = efx; 446 channel->channel = i; 447 channel->type = &efx_default_channel_type; 448 449 for (j = 0; j < EFX_TXQ_TYPES; j++) { 450 tx_queue = &channel->tx_queue[j]; 451 tx_queue->efx = efx; 452 tx_queue->queue = i * EFX_TXQ_TYPES + j; 453 tx_queue->channel = channel; 454 } 455 456 rx_queue = &channel->rx_queue; 457 rx_queue->efx = efx; 458 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, 459 (unsigned long)rx_queue); 460 461 return channel; 462 } 463 464 /* Allocate and initialise a channel structure, copying parameters 465 * (but not resources) from an old channel structure. 466 */ 467 static struct efx_channel * 468 efx_copy_channel(const struct efx_channel *old_channel) 469 { 470 struct efx_channel *channel; 471 struct efx_rx_queue *rx_queue; 472 struct efx_tx_queue *tx_queue; 473 int j; 474 475 channel = kmalloc(sizeof(*channel), GFP_KERNEL); 476 if (!channel) 477 return NULL; 478 479 *channel = *old_channel; 480 481 channel->napi_dev = NULL; 482 memset(&channel->eventq, 0, sizeof(channel->eventq)); 483 484 for (j = 0; j < EFX_TXQ_TYPES; j++) { 485 tx_queue = &channel->tx_queue[j]; 486 if (tx_queue->channel) 487 tx_queue->channel = channel; 488 tx_queue->buffer = NULL; 489 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); 490 } 491 492 rx_queue = &channel->rx_queue; 493 rx_queue->buffer = NULL; 494 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); 495 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, 496 (unsigned long)rx_queue); 497 498 return channel; 499 } 500 501 static int efx_probe_channel(struct efx_channel *channel) 502 { 503 struct efx_tx_queue *tx_queue; 504 struct efx_rx_queue *rx_queue; 505 int rc; 506 507 netif_dbg(channel->efx, probe, channel->efx->net_dev, 508 "creating channel %d\n", channel->channel); 509 510 rc = channel->type->pre_probe(channel); 511 if (rc) 512 goto fail; 513 514 rc = efx_probe_eventq(channel); 515 if (rc) 516 goto fail; 517 518 efx_for_each_channel_tx_queue(tx_queue, channel) { 519 rc = efx_probe_tx_queue(tx_queue); 520 if (rc) 521 goto fail; 522 } 523 524 efx_for_each_channel_rx_queue(rx_queue, channel) { 525 rc = efx_probe_rx_queue(rx_queue); 526 if (rc) 527 goto fail; 528 } 529 530 return 0; 531 532 fail: 533 efx_remove_channel(channel); 534 return rc; 535 } 536 537 static void 538 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len) 539 { 540 struct efx_nic *efx = channel->efx; 541 const char *type; 542 int number; 543 544 number = channel->channel; 545 if (efx->tx_channel_offset == 0) { 546 type = ""; 547 } else if (channel->channel < efx->tx_channel_offset) { 548 type = "-rx"; 549 } else { 550 type = "-tx"; 551 number -= efx->tx_channel_offset; 552 } 553 snprintf(buf, len, "%s%s-%d", efx->name, type, number); 554 } 555 556 static void efx_set_channel_names(struct efx_nic *efx) 557 { 558 struct efx_channel *channel; 559 560 efx_for_each_channel(channel, efx) 561 channel->type->get_name(channel, 562 efx->msi_context[channel->channel].name, 563 sizeof(efx->msi_context[0].name)); 564 } 565 566 static int efx_probe_channels(struct efx_nic *efx) 567 { 568 struct efx_channel *channel; 569 int rc; 570 571 /* Restart special buffer allocation */ 572 efx->next_buffer_table = 0; 573 574 /* Probe channels in reverse, so that any 'extra' channels 575 * use the start of the buffer table. This allows the traffic 576 * channels to be resized without moving them or wasting the 577 * entries before them. 578 */ 579 efx_for_each_channel_rev(channel, efx) { 580 rc = efx_probe_channel(channel); 581 if (rc) { 582 netif_err(efx, probe, efx->net_dev, 583 "failed to create channel %d\n", 584 channel->channel); 585 goto fail; 586 } 587 } 588 efx_set_channel_names(efx); 589 590 return 0; 591 592 fail: 593 efx_remove_channels(efx); 594 return rc; 595 } 596 597 /* Channels are shutdown and reinitialised whilst the NIC is running 598 * to propagate configuration changes (mtu, checksum offload), or 599 * to clear hardware error conditions 600 */ 601 static void efx_start_datapath(struct efx_nic *efx) 602 { 603 bool old_rx_scatter = efx->rx_scatter; 604 struct efx_tx_queue *tx_queue; 605 struct efx_rx_queue *rx_queue; 606 struct efx_channel *channel; 607 size_t rx_buf_len; 608 609 /* Calculate the rx buffer allocation parameters required to 610 * support the current MTU, including padding for header 611 * alignment and overruns. 612 */ 613 efx->rx_dma_len = (efx->rx_prefix_size + 614 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + 615 efx->type->rx_buffer_padding); 616 rx_buf_len = (sizeof(struct efx_rx_page_state) + 617 efx->rx_ip_align + efx->rx_dma_len); 618 if (rx_buf_len <= PAGE_SIZE) { 619 efx->rx_scatter = efx->type->always_rx_scatter; 620 efx->rx_buffer_order = 0; 621 } else if (efx->type->can_rx_scatter) { 622 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES); 623 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) + 624 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE, 625 EFX_RX_BUF_ALIGNMENT) > 626 PAGE_SIZE); 627 efx->rx_scatter = true; 628 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE; 629 efx->rx_buffer_order = 0; 630 } else { 631 efx->rx_scatter = false; 632 efx->rx_buffer_order = get_order(rx_buf_len); 633 } 634 635 efx_rx_config_page_split(efx); 636 if (efx->rx_buffer_order) 637 netif_dbg(efx, drv, efx->net_dev, 638 "RX buf len=%u; page order=%u batch=%u\n", 639 efx->rx_dma_len, efx->rx_buffer_order, 640 efx->rx_pages_per_batch); 641 else 642 netif_dbg(efx, drv, efx->net_dev, 643 "RX buf len=%u step=%u bpp=%u; page batch=%u\n", 644 efx->rx_dma_len, efx->rx_page_buf_step, 645 efx->rx_bufs_per_page, efx->rx_pages_per_batch); 646 647 /* RX filters may also have scatter-enabled flags */ 648 if (efx->rx_scatter != old_rx_scatter) 649 efx->type->filter_update_rx_scatter(efx); 650 651 /* We must keep at least one descriptor in a TX ring empty. 652 * We could avoid this when the queue size does not exactly 653 * match the hardware ring size, but it's not that important. 654 * Therefore we stop the queue when one more skb might fill 655 * the ring completely. We wake it when half way back to 656 * empty. 657 */ 658 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx); 659 efx->txq_wake_thresh = efx->txq_stop_thresh / 2; 660 661 /* Initialise the channels */ 662 efx_for_each_channel(channel, efx) { 663 efx_for_each_channel_tx_queue(tx_queue, channel) { 664 efx_init_tx_queue(tx_queue); 665 atomic_inc(&efx->active_queues); 666 } 667 668 efx_for_each_channel_rx_queue(rx_queue, channel) { 669 efx_init_rx_queue(rx_queue); 670 atomic_inc(&efx->active_queues); 671 efx_stop_eventq(channel); 672 efx_fast_push_rx_descriptors(rx_queue, false); 673 efx_start_eventq(channel); 674 } 675 676 WARN_ON(channel->rx_pkt_n_frags); 677 } 678 679 efx_ptp_start_datapath(efx); 680 681 if (netif_device_present(efx->net_dev)) 682 netif_tx_wake_all_queues(efx->net_dev); 683 } 684 685 static void efx_stop_datapath(struct efx_nic *efx) 686 { 687 struct efx_channel *channel; 688 struct efx_tx_queue *tx_queue; 689 struct efx_rx_queue *rx_queue; 690 int rc; 691 692 EFX_ASSERT_RESET_SERIALISED(efx); 693 BUG_ON(efx->port_enabled); 694 695 efx_ptp_stop_datapath(efx); 696 697 /* Stop RX refill */ 698 efx_for_each_channel(channel, efx) { 699 efx_for_each_channel_rx_queue(rx_queue, channel) 700 rx_queue->refill_enabled = false; 701 } 702 703 efx_for_each_channel(channel, efx) { 704 /* RX packet processing is pipelined, so wait for the 705 * NAPI handler to complete. At least event queue 0 706 * might be kept active by non-data events, so don't 707 * use napi_synchronize() but actually disable NAPI 708 * temporarily. 709 */ 710 if (efx_channel_has_rx_queue(channel)) { 711 efx_stop_eventq(channel); 712 efx_start_eventq(channel); 713 } 714 } 715 716 rc = efx->type->fini_dmaq(efx); 717 if (rc && EFX_WORKAROUND_7803(efx)) { 718 /* Schedule a reset to recover from the flush failure. The 719 * descriptor caches reference memory we're about to free, 720 * but falcon_reconfigure_mac_wrapper() won't reconnect 721 * the MACs because of the pending reset. 722 */ 723 netif_err(efx, drv, efx->net_dev, 724 "Resetting to recover from flush failure\n"); 725 efx_schedule_reset(efx, RESET_TYPE_ALL); 726 } else if (rc) { 727 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); 728 } else { 729 netif_dbg(efx, drv, efx->net_dev, 730 "successfully flushed all queues\n"); 731 } 732 733 efx_for_each_channel(channel, efx) { 734 efx_for_each_channel_rx_queue(rx_queue, channel) 735 efx_fini_rx_queue(rx_queue); 736 efx_for_each_possible_channel_tx_queue(tx_queue, channel) 737 efx_fini_tx_queue(tx_queue); 738 } 739 } 740 741 static void efx_remove_channel(struct efx_channel *channel) 742 { 743 struct efx_tx_queue *tx_queue; 744 struct efx_rx_queue *rx_queue; 745 746 netif_dbg(channel->efx, drv, channel->efx->net_dev, 747 "destroy chan %d\n", channel->channel); 748 749 efx_for_each_channel_rx_queue(rx_queue, channel) 750 efx_remove_rx_queue(rx_queue); 751 efx_for_each_possible_channel_tx_queue(tx_queue, channel) 752 efx_remove_tx_queue(tx_queue); 753 efx_remove_eventq(channel); 754 channel->type->post_remove(channel); 755 } 756 757 static void efx_remove_channels(struct efx_nic *efx) 758 { 759 struct efx_channel *channel; 760 761 efx_for_each_channel(channel, efx) 762 efx_remove_channel(channel); 763 } 764 765 int 766 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) 767 { 768 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; 769 u32 old_rxq_entries, old_txq_entries; 770 unsigned i, next_buffer_table = 0; 771 int rc, rc2; 772 773 rc = efx_check_disabled(efx); 774 if (rc) 775 return rc; 776 777 /* Not all channels should be reallocated. We must avoid 778 * reallocating their buffer table entries. 779 */ 780 efx_for_each_channel(channel, efx) { 781 struct efx_rx_queue *rx_queue; 782 struct efx_tx_queue *tx_queue; 783 784 if (channel->type->copy) 785 continue; 786 next_buffer_table = max(next_buffer_table, 787 channel->eventq.index + 788 channel->eventq.entries); 789 efx_for_each_channel_rx_queue(rx_queue, channel) 790 next_buffer_table = max(next_buffer_table, 791 rx_queue->rxd.index + 792 rx_queue->rxd.entries); 793 efx_for_each_channel_tx_queue(tx_queue, channel) 794 next_buffer_table = max(next_buffer_table, 795 tx_queue->txd.index + 796 tx_queue->txd.entries); 797 } 798 799 efx_device_detach_sync(efx); 800 efx_stop_all(efx); 801 efx_soft_disable_interrupts(efx); 802 803 /* Clone channels (where possible) */ 804 memset(other_channel, 0, sizeof(other_channel)); 805 for (i = 0; i < efx->n_channels; i++) { 806 channel = efx->channel[i]; 807 if (channel->type->copy) 808 channel = channel->type->copy(channel); 809 if (!channel) { 810 rc = -ENOMEM; 811 goto out; 812 } 813 other_channel[i] = channel; 814 } 815 816 /* Swap entry counts and channel pointers */ 817 old_rxq_entries = efx->rxq_entries; 818 old_txq_entries = efx->txq_entries; 819 efx->rxq_entries = rxq_entries; 820 efx->txq_entries = txq_entries; 821 for (i = 0; i < efx->n_channels; i++) { 822 channel = efx->channel[i]; 823 efx->channel[i] = other_channel[i]; 824 other_channel[i] = channel; 825 } 826 827 /* Restart buffer table allocation */ 828 efx->next_buffer_table = next_buffer_table; 829 830 for (i = 0; i < efx->n_channels; i++) { 831 channel = efx->channel[i]; 832 if (!channel->type->copy) 833 continue; 834 rc = efx_probe_channel(channel); 835 if (rc) 836 goto rollback; 837 efx_init_napi_channel(efx->channel[i]); 838 } 839 840 out: 841 /* Destroy unused channel structures */ 842 for (i = 0; i < efx->n_channels; i++) { 843 channel = other_channel[i]; 844 if (channel && channel->type->copy) { 845 efx_fini_napi_channel(channel); 846 efx_remove_channel(channel); 847 kfree(channel); 848 } 849 } 850 851 rc2 = efx_soft_enable_interrupts(efx); 852 if (rc2) { 853 rc = rc ? rc : rc2; 854 netif_err(efx, drv, efx->net_dev, 855 "unable to restart interrupts on channel reallocation\n"); 856 efx_schedule_reset(efx, RESET_TYPE_DISABLE); 857 } else { 858 efx_start_all(efx); 859 netif_device_attach(efx->net_dev); 860 } 861 return rc; 862 863 rollback: 864 /* Swap back */ 865 efx->rxq_entries = old_rxq_entries; 866 efx->txq_entries = old_txq_entries; 867 for (i = 0; i < efx->n_channels; i++) { 868 channel = efx->channel[i]; 869 efx->channel[i] = other_channel[i]; 870 other_channel[i] = channel; 871 } 872 goto out; 873 } 874 875 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) 876 { 877 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); 878 } 879 880 static const struct efx_channel_type efx_default_channel_type = { 881 .pre_probe = efx_channel_dummy_op_int, 882 .post_remove = efx_channel_dummy_op_void, 883 .get_name = efx_get_channel_name, 884 .copy = efx_copy_channel, 885 .keep_eventq = false, 886 }; 887 888 int efx_channel_dummy_op_int(struct efx_channel *channel) 889 { 890 return 0; 891 } 892 893 void efx_channel_dummy_op_void(struct efx_channel *channel) 894 { 895 } 896 897 /************************************************************************** 898 * 899 * Port handling 900 * 901 **************************************************************************/ 902 903 /* This ensures that the kernel is kept informed (via 904 * netif_carrier_on/off) of the link status, and also maintains the 905 * link status's stop on the port's TX queue. 906 */ 907 void efx_link_status_changed(struct efx_nic *efx) 908 { 909 struct efx_link_state *link_state = &efx->link_state; 910 911 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure 912 * that no events are triggered between unregister_netdev() and the 913 * driver unloading. A more general condition is that NETDEV_CHANGE 914 * can only be generated between NETDEV_UP and NETDEV_DOWN */ 915 if (!netif_running(efx->net_dev)) 916 return; 917 918 if (link_state->up != netif_carrier_ok(efx->net_dev)) { 919 efx->n_link_state_changes++; 920 921 if (link_state->up) 922 netif_carrier_on(efx->net_dev); 923 else 924 netif_carrier_off(efx->net_dev); 925 } 926 927 /* Status message for kernel log */ 928 if (link_state->up) 929 netif_info(efx, link, efx->net_dev, 930 "link up at %uMbps %s-duplex (MTU %d)\n", 931 link_state->speed, link_state->fd ? "full" : "half", 932 efx->net_dev->mtu); 933 else 934 netif_info(efx, link, efx->net_dev, "link down\n"); 935 } 936 937 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising) 938 { 939 efx->link_advertising = advertising; 940 if (advertising) { 941 if (advertising & ADVERTISED_Pause) 942 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); 943 else 944 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); 945 if (advertising & ADVERTISED_Asym_Pause) 946 efx->wanted_fc ^= EFX_FC_TX; 947 } 948 } 949 950 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) 951 { 952 efx->wanted_fc = wanted_fc; 953 if (efx->link_advertising) { 954 if (wanted_fc & EFX_FC_RX) 955 efx->link_advertising |= (ADVERTISED_Pause | 956 ADVERTISED_Asym_Pause); 957 else 958 efx->link_advertising &= ~(ADVERTISED_Pause | 959 ADVERTISED_Asym_Pause); 960 if (wanted_fc & EFX_FC_TX) 961 efx->link_advertising ^= ADVERTISED_Asym_Pause; 962 } 963 } 964 965 static void efx_fini_port(struct efx_nic *efx); 966 967 /* We assume that efx->type->reconfigure_mac will always try to sync RX 968 * filters and therefore needs to read-lock the filter table against freeing 969 */ 970 void efx_mac_reconfigure(struct efx_nic *efx) 971 { 972 down_read(&efx->filter_sem); 973 efx->type->reconfigure_mac(efx); 974 up_read(&efx->filter_sem); 975 } 976 977 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure 978 * the MAC appropriately. All other PHY configuration changes are pushed 979 * through phy_op->set_settings(), and pushed asynchronously to the MAC 980 * through efx_monitor(). 981 * 982 * Callers must hold the mac_lock 983 */ 984 int __efx_reconfigure_port(struct efx_nic *efx) 985 { 986 enum efx_phy_mode phy_mode; 987 int rc; 988 989 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 990 991 /* Disable PHY transmit in mac level loopbacks */ 992 phy_mode = efx->phy_mode; 993 if (LOOPBACK_INTERNAL(efx)) 994 efx->phy_mode |= PHY_MODE_TX_DISABLED; 995 else 996 efx->phy_mode &= ~PHY_MODE_TX_DISABLED; 997 998 rc = efx->type->reconfigure_port(efx); 999 1000 if (rc) 1001 efx->phy_mode = phy_mode; 1002 1003 return rc; 1004 } 1005 1006 /* Reinitialise the MAC to pick up new PHY settings, even if the port is 1007 * disabled. */ 1008 int efx_reconfigure_port(struct efx_nic *efx) 1009 { 1010 int rc; 1011 1012 EFX_ASSERT_RESET_SERIALISED(efx); 1013 1014 mutex_lock(&efx->mac_lock); 1015 rc = __efx_reconfigure_port(efx); 1016 mutex_unlock(&efx->mac_lock); 1017 1018 return rc; 1019 } 1020 1021 /* Asynchronous work item for changing MAC promiscuity and multicast 1022 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current 1023 * MAC directly. */ 1024 static void efx_mac_work(struct work_struct *data) 1025 { 1026 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); 1027 1028 mutex_lock(&efx->mac_lock); 1029 if (efx->port_enabled) 1030 efx_mac_reconfigure(efx); 1031 mutex_unlock(&efx->mac_lock); 1032 } 1033 1034 static int efx_probe_port(struct efx_nic *efx) 1035 { 1036 int rc; 1037 1038 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 1039 1040 if (phy_flash_cfg) 1041 efx->phy_mode = PHY_MODE_SPECIAL; 1042 1043 /* Connect up MAC/PHY operations table */ 1044 rc = efx->type->probe_port(efx); 1045 if (rc) 1046 return rc; 1047 1048 /* Initialise MAC address to permanent address */ 1049 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); 1050 1051 return 0; 1052 } 1053 1054 static int efx_init_port(struct efx_nic *efx) 1055 { 1056 int rc; 1057 1058 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 1059 1060 mutex_lock(&efx->mac_lock); 1061 1062 rc = efx->phy_op->init(efx); 1063 if (rc) 1064 goto fail1; 1065 1066 efx->port_initialized = true; 1067 1068 /* Reconfigure the MAC before creating dma queues (required for 1069 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ 1070 efx_mac_reconfigure(efx); 1071 1072 /* Ensure the PHY advertises the correct flow control settings */ 1073 rc = efx->phy_op->reconfigure(efx); 1074 if (rc && rc != -EPERM) 1075 goto fail2; 1076 1077 mutex_unlock(&efx->mac_lock); 1078 return 0; 1079 1080 fail2: 1081 efx->phy_op->fini(efx); 1082 fail1: 1083 mutex_unlock(&efx->mac_lock); 1084 return rc; 1085 } 1086 1087 static void efx_start_port(struct efx_nic *efx) 1088 { 1089 netif_dbg(efx, ifup, efx->net_dev, "start port\n"); 1090 BUG_ON(efx->port_enabled); 1091 1092 mutex_lock(&efx->mac_lock); 1093 efx->port_enabled = true; 1094 1095 /* Ensure MAC ingress/egress is enabled */ 1096 efx_mac_reconfigure(efx); 1097 1098 mutex_unlock(&efx->mac_lock); 1099 } 1100 1101 /* Cancel work for MAC reconfiguration, periodic hardware monitoring 1102 * and the async self-test, wait for them to finish and prevent them 1103 * being scheduled again. This doesn't cover online resets, which 1104 * should only be cancelled when removing the device. 1105 */ 1106 static void efx_stop_port(struct efx_nic *efx) 1107 { 1108 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); 1109 1110 EFX_ASSERT_RESET_SERIALISED(efx); 1111 1112 mutex_lock(&efx->mac_lock); 1113 efx->port_enabled = false; 1114 mutex_unlock(&efx->mac_lock); 1115 1116 /* Serialise against efx_set_multicast_list() */ 1117 netif_addr_lock_bh(efx->net_dev); 1118 netif_addr_unlock_bh(efx->net_dev); 1119 1120 cancel_delayed_work_sync(&efx->monitor_work); 1121 efx_selftest_async_cancel(efx); 1122 cancel_work_sync(&efx->mac_work); 1123 } 1124 1125 static void efx_fini_port(struct efx_nic *efx) 1126 { 1127 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 1128 1129 if (!efx->port_initialized) 1130 return; 1131 1132 efx->phy_op->fini(efx); 1133 efx->port_initialized = false; 1134 1135 efx->link_state.up = false; 1136 efx_link_status_changed(efx); 1137 } 1138 1139 static void efx_remove_port(struct efx_nic *efx) 1140 { 1141 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 1142 1143 efx->type->remove_port(efx); 1144 } 1145 1146 /************************************************************************** 1147 * 1148 * NIC handling 1149 * 1150 **************************************************************************/ 1151 1152 static LIST_HEAD(efx_primary_list); 1153 static LIST_HEAD(efx_unassociated_list); 1154 1155 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) 1156 { 1157 return left->type == right->type && 1158 left->vpd_sn && right->vpd_sn && 1159 !strcmp(left->vpd_sn, right->vpd_sn); 1160 } 1161 1162 static void efx_associate(struct efx_nic *efx) 1163 { 1164 struct efx_nic *other, *next; 1165 1166 if (efx->primary == efx) { 1167 /* Adding primary function; look for secondaries */ 1168 1169 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 1170 list_add_tail(&efx->node, &efx_primary_list); 1171 1172 list_for_each_entry_safe(other, next, &efx_unassociated_list, 1173 node) { 1174 if (efx_same_controller(efx, other)) { 1175 list_del(&other->node); 1176 netif_dbg(other, probe, other->net_dev, 1177 "moving to secondary list of %s %s\n", 1178 pci_name(efx->pci_dev), 1179 efx->net_dev->name); 1180 list_add_tail(&other->node, 1181 &efx->secondary_list); 1182 other->primary = efx; 1183 } 1184 } 1185 } else { 1186 /* Adding secondary function; look for primary */ 1187 1188 list_for_each_entry(other, &efx_primary_list, node) { 1189 if (efx_same_controller(efx, other)) { 1190 netif_dbg(efx, probe, efx->net_dev, 1191 "adding to secondary list of %s %s\n", 1192 pci_name(other->pci_dev), 1193 other->net_dev->name); 1194 list_add_tail(&efx->node, 1195 &other->secondary_list); 1196 efx->primary = other; 1197 return; 1198 } 1199 } 1200 1201 netif_dbg(efx, probe, efx->net_dev, 1202 "adding to unassociated list\n"); 1203 list_add_tail(&efx->node, &efx_unassociated_list); 1204 } 1205 } 1206 1207 static void efx_dissociate(struct efx_nic *efx) 1208 { 1209 struct efx_nic *other, *next; 1210 1211 list_del(&efx->node); 1212 efx->primary = NULL; 1213 1214 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 1215 list_del(&other->node); 1216 netif_dbg(other, probe, other->net_dev, 1217 "moving to unassociated list\n"); 1218 list_add_tail(&other->node, &efx_unassociated_list); 1219 other->primary = NULL; 1220 } 1221 } 1222 1223 /* This configures the PCI device to enable I/O and DMA. */ 1224 static int efx_init_io(struct efx_nic *efx) 1225 { 1226 struct pci_dev *pci_dev = efx->pci_dev; 1227 dma_addr_t dma_mask = efx->type->max_dma_mask; 1228 unsigned int mem_map_size = efx->type->mem_map_size(efx); 1229 int rc, bar; 1230 1231 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); 1232 1233 bar = efx->type->mem_bar; 1234 1235 rc = pci_enable_device(pci_dev); 1236 if (rc) { 1237 netif_err(efx, probe, efx->net_dev, 1238 "failed to enable PCI device\n"); 1239 goto fail1; 1240 } 1241 1242 pci_set_master(pci_dev); 1243 1244 /* Set the PCI DMA mask. Try all possibilities from our 1245 * genuine mask down to 32 bits, because some architectures 1246 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit 1247 * masks event though they reject 46 bit masks. 1248 */ 1249 while (dma_mask > 0x7fffffffUL) { 1250 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); 1251 if (rc == 0) 1252 break; 1253 dma_mask >>= 1; 1254 } 1255 if (rc) { 1256 netif_err(efx, probe, efx->net_dev, 1257 "could not find a suitable DMA mask\n"); 1258 goto fail2; 1259 } 1260 netif_dbg(efx, probe, efx->net_dev, 1261 "using DMA mask %llx\n", (unsigned long long) dma_mask); 1262 1263 efx->membase_phys = pci_resource_start(efx->pci_dev, bar); 1264 rc = pci_request_region(pci_dev, bar, "sfc"); 1265 if (rc) { 1266 netif_err(efx, probe, efx->net_dev, 1267 "request for memory BAR failed\n"); 1268 rc = -EIO; 1269 goto fail3; 1270 } 1271 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size); 1272 if (!efx->membase) { 1273 netif_err(efx, probe, efx->net_dev, 1274 "could not map memory BAR at %llx+%x\n", 1275 (unsigned long long)efx->membase_phys, mem_map_size); 1276 rc = -ENOMEM; 1277 goto fail4; 1278 } 1279 netif_dbg(efx, probe, efx->net_dev, 1280 "memory BAR at %llx+%x (virtual %p)\n", 1281 (unsigned long long)efx->membase_phys, mem_map_size, 1282 efx->membase); 1283 1284 return 0; 1285 1286 fail4: 1287 pci_release_region(efx->pci_dev, bar); 1288 fail3: 1289 efx->membase_phys = 0; 1290 fail2: 1291 pci_disable_device(efx->pci_dev); 1292 fail1: 1293 return rc; 1294 } 1295 1296 static void efx_fini_io(struct efx_nic *efx) 1297 { 1298 int bar; 1299 1300 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); 1301 1302 if (efx->membase) { 1303 iounmap(efx->membase); 1304 efx->membase = NULL; 1305 } 1306 1307 if (efx->membase_phys) { 1308 bar = efx->type->mem_bar; 1309 pci_release_region(efx->pci_dev, bar); 1310 efx->membase_phys = 0; 1311 } 1312 1313 /* Don't disable bus-mastering if VFs are assigned */ 1314 if (!pci_vfs_assigned(efx->pci_dev)) 1315 pci_disable_device(efx->pci_dev); 1316 } 1317 1318 void efx_set_default_rx_indir_table(struct efx_nic *efx) 1319 { 1320 size_t i; 1321 1322 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) 1323 efx->rx_indir_table[i] = 1324 ethtool_rxfh_indir_default(i, efx->rss_spread); 1325 } 1326 1327 static unsigned int efx_wanted_parallelism(struct efx_nic *efx) 1328 { 1329 cpumask_var_t thread_mask; 1330 unsigned int count; 1331 int cpu; 1332 1333 if (rss_cpus) { 1334 count = rss_cpus; 1335 } else { 1336 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { 1337 netif_warn(efx, probe, efx->net_dev, 1338 "RSS disabled due to allocation failure\n"); 1339 return 1; 1340 } 1341 1342 count = 0; 1343 for_each_online_cpu(cpu) { 1344 if (!cpumask_test_cpu(cpu, thread_mask)) { 1345 ++count; 1346 cpumask_or(thread_mask, thread_mask, 1347 topology_sibling_cpumask(cpu)); 1348 } 1349 } 1350 1351 free_cpumask_var(thread_mask); 1352 } 1353 1354 /* If RSS is requested for the PF *and* VFs then we can't write RSS 1355 * table entries that are inaccessible to VFs 1356 */ 1357 #ifdef CONFIG_SFC_SRIOV 1358 if (efx->type->sriov_wanted) { 1359 if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 && 1360 count > efx_vf_size(efx)) { 1361 netif_warn(efx, probe, efx->net_dev, 1362 "Reducing number of RSS channels from %u to %u for " 1363 "VF support. Increase vf-msix-limit to use more " 1364 "channels on the PF.\n", 1365 count, efx_vf_size(efx)); 1366 count = efx_vf_size(efx); 1367 } 1368 } 1369 #endif 1370 1371 return count; 1372 } 1373 1374 /* Probe the number and type of interrupts we are able to obtain, and 1375 * the resulting numbers of channels and RX queues. 1376 */ 1377 static int efx_probe_interrupts(struct efx_nic *efx) 1378 { 1379 unsigned int extra_channels = 0; 1380 unsigned int i, j; 1381 int rc; 1382 1383 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) 1384 if (efx->extra_channel_type[i]) 1385 ++extra_channels; 1386 1387 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { 1388 struct msix_entry xentries[EFX_MAX_CHANNELS]; 1389 unsigned int n_channels; 1390 1391 n_channels = efx_wanted_parallelism(efx); 1392 if (efx_separate_tx_channels) 1393 n_channels *= 2; 1394 n_channels += extra_channels; 1395 n_channels = min(n_channels, efx->max_channels); 1396 1397 for (i = 0; i < n_channels; i++) 1398 xentries[i].entry = i; 1399 rc = pci_enable_msix_range(efx->pci_dev, 1400 xentries, 1, n_channels); 1401 if (rc < 0) { 1402 /* Fall back to single channel MSI */ 1403 efx->interrupt_mode = EFX_INT_MODE_MSI; 1404 netif_err(efx, drv, efx->net_dev, 1405 "could not enable MSI-X\n"); 1406 } else if (rc < n_channels) { 1407 netif_err(efx, drv, efx->net_dev, 1408 "WARNING: Insufficient MSI-X vectors" 1409 " available (%d < %u).\n", rc, n_channels); 1410 netif_err(efx, drv, efx->net_dev, 1411 "WARNING: Performance may be reduced.\n"); 1412 n_channels = rc; 1413 } 1414 1415 if (rc > 0) { 1416 efx->n_channels = n_channels; 1417 if (n_channels > extra_channels) 1418 n_channels -= extra_channels; 1419 if (efx_separate_tx_channels) { 1420 efx->n_tx_channels = min(max(n_channels / 2, 1421 1U), 1422 efx->max_tx_channels); 1423 efx->n_rx_channels = max(n_channels - 1424 efx->n_tx_channels, 1425 1U); 1426 } else { 1427 efx->n_tx_channels = min(n_channels, 1428 efx->max_tx_channels); 1429 efx->n_rx_channels = n_channels; 1430 } 1431 for (i = 0; i < efx->n_channels; i++) 1432 efx_get_channel(efx, i)->irq = 1433 xentries[i].vector; 1434 } 1435 } 1436 1437 /* Try single interrupt MSI */ 1438 if (efx->interrupt_mode == EFX_INT_MODE_MSI) { 1439 efx->n_channels = 1; 1440 efx->n_rx_channels = 1; 1441 efx->n_tx_channels = 1; 1442 rc = pci_enable_msi(efx->pci_dev); 1443 if (rc == 0) { 1444 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; 1445 } else { 1446 netif_err(efx, drv, efx->net_dev, 1447 "could not enable MSI\n"); 1448 efx->interrupt_mode = EFX_INT_MODE_LEGACY; 1449 } 1450 } 1451 1452 /* Assume legacy interrupts */ 1453 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { 1454 efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0); 1455 efx->n_rx_channels = 1; 1456 efx->n_tx_channels = 1; 1457 efx->legacy_irq = efx->pci_dev->irq; 1458 } 1459 1460 /* Assign extra channels if possible */ 1461 j = efx->n_channels; 1462 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) { 1463 if (!efx->extra_channel_type[i]) 1464 continue; 1465 if (efx->interrupt_mode != EFX_INT_MODE_MSIX || 1466 efx->n_channels <= extra_channels) { 1467 efx->extra_channel_type[i]->handle_no_channel(efx); 1468 } else { 1469 --j; 1470 efx_get_channel(efx, j)->type = 1471 efx->extra_channel_type[i]; 1472 } 1473 } 1474 1475 /* RSS might be usable on VFs even if it is disabled on the PF */ 1476 #ifdef CONFIG_SFC_SRIOV 1477 if (efx->type->sriov_wanted) { 1478 efx->rss_spread = ((efx->n_rx_channels > 1 || 1479 !efx->type->sriov_wanted(efx)) ? 1480 efx->n_rx_channels : efx_vf_size(efx)); 1481 return 0; 1482 } 1483 #endif 1484 efx->rss_spread = efx->n_rx_channels; 1485 1486 return 0; 1487 } 1488 1489 static int efx_soft_enable_interrupts(struct efx_nic *efx) 1490 { 1491 struct efx_channel *channel, *end_channel; 1492 int rc; 1493 1494 BUG_ON(efx->state == STATE_DISABLED); 1495 1496 efx->irq_soft_enabled = true; 1497 smp_wmb(); 1498 1499 efx_for_each_channel(channel, efx) { 1500 if (!channel->type->keep_eventq) { 1501 rc = efx_init_eventq(channel); 1502 if (rc) 1503 goto fail; 1504 } 1505 efx_start_eventq(channel); 1506 } 1507 1508 efx_mcdi_mode_event(efx); 1509 1510 return 0; 1511 fail: 1512 end_channel = channel; 1513 efx_for_each_channel(channel, efx) { 1514 if (channel == end_channel) 1515 break; 1516 efx_stop_eventq(channel); 1517 if (!channel->type->keep_eventq) 1518 efx_fini_eventq(channel); 1519 } 1520 1521 return rc; 1522 } 1523 1524 static void efx_soft_disable_interrupts(struct efx_nic *efx) 1525 { 1526 struct efx_channel *channel; 1527 1528 if (efx->state == STATE_DISABLED) 1529 return; 1530 1531 efx_mcdi_mode_poll(efx); 1532 1533 efx->irq_soft_enabled = false; 1534 smp_wmb(); 1535 1536 if (efx->legacy_irq) 1537 synchronize_irq(efx->legacy_irq); 1538 1539 efx_for_each_channel(channel, efx) { 1540 if (channel->irq) 1541 synchronize_irq(channel->irq); 1542 1543 efx_stop_eventq(channel); 1544 if (!channel->type->keep_eventq) 1545 efx_fini_eventq(channel); 1546 } 1547 1548 /* Flush the asynchronous MCDI request queue */ 1549 efx_mcdi_flush_async(efx); 1550 } 1551 1552 static int efx_enable_interrupts(struct efx_nic *efx) 1553 { 1554 struct efx_channel *channel, *end_channel; 1555 int rc; 1556 1557 BUG_ON(efx->state == STATE_DISABLED); 1558 1559 if (efx->eeh_disabled_legacy_irq) { 1560 enable_irq(efx->legacy_irq); 1561 efx->eeh_disabled_legacy_irq = false; 1562 } 1563 1564 efx->type->irq_enable_master(efx); 1565 1566 efx_for_each_channel(channel, efx) { 1567 if (channel->type->keep_eventq) { 1568 rc = efx_init_eventq(channel); 1569 if (rc) 1570 goto fail; 1571 } 1572 } 1573 1574 rc = efx_soft_enable_interrupts(efx); 1575 if (rc) 1576 goto fail; 1577 1578 return 0; 1579 1580 fail: 1581 end_channel = channel; 1582 efx_for_each_channel(channel, efx) { 1583 if (channel == end_channel) 1584 break; 1585 if (channel->type->keep_eventq) 1586 efx_fini_eventq(channel); 1587 } 1588 1589 efx->type->irq_disable_non_ev(efx); 1590 1591 return rc; 1592 } 1593 1594 static void efx_disable_interrupts(struct efx_nic *efx) 1595 { 1596 struct efx_channel *channel; 1597 1598 efx_soft_disable_interrupts(efx); 1599 1600 efx_for_each_channel(channel, efx) { 1601 if (channel->type->keep_eventq) 1602 efx_fini_eventq(channel); 1603 } 1604 1605 efx->type->irq_disable_non_ev(efx); 1606 } 1607 1608 static void efx_remove_interrupts(struct efx_nic *efx) 1609 { 1610 struct efx_channel *channel; 1611 1612 /* Remove MSI/MSI-X interrupts */ 1613 efx_for_each_channel(channel, efx) 1614 channel->irq = 0; 1615 pci_disable_msi(efx->pci_dev); 1616 pci_disable_msix(efx->pci_dev); 1617 1618 /* Remove legacy interrupt */ 1619 efx->legacy_irq = 0; 1620 } 1621 1622 static void efx_set_channels(struct efx_nic *efx) 1623 { 1624 struct efx_channel *channel; 1625 struct efx_tx_queue *tx_queue; 1626 1627 efx->tx_channel_offset = 1628 efx_separate_tx_channels ? 1629 efx->n_channels - efx->n_tx_channels : 0; 1630 1631 /* We need to mark which channels really have RX and TX 1632 * queues, and adjust the TX queue numbers if we have separate 1633 * RX-only and TX-only channels. 1634 */ 1635 efx_for_each_channel(channel, efx) { 1636 if (channel->channel < efx->n_rx_channels) 1637 channel->rx_queue.core_index = channel->channel; 1638 else 1639 channel->rx_queue.core_index = -1; 1640 1641 efx_for_each_channel_tx_queue(tx_queue, channel) 1642 tx_queue->queue -= (efx->tx_channel_offset * 1643 EFX_TXQ_TYPES); 1644 } 1645 } 1646 1647 static int efx_probe_nic(struct efx_nic *efx) 1648 { 1649 int rc; 1650 1651 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 1652 1653 /* Carry out hardware-type specific initialisation */ 1654 rc = efx->type->probe(efx); 1655 if (rc) 1656 return rc; 1657 1658 do { 1659 if (!efx->max_channels || !efx->max_tx_channels) { 1660 netif_err(efx, drv, efx->net_dev, 1661 "Insufficient resources to allocate" 1662 " any channels\n"); 1663 rc = -ENOSPC; 1664 goto fail1; 1665 } 1666 1667 /* Determine the number of channels and queues by trying 1668 * to hook in MSI-X interrupts. 1669 */ 1670 rc = efx_probe_interrupts(efx); 1671 if (rc) 1672 goto fail1; 1673 1674 efx_set_channels(efx); 1675 1676 /* dimension_resources can fail with EAGAIN */ 1677 rc = efx->type->dimension_resources(efx); 1678 if (rc != 0 && rc != -EAGAIN) 1679 goto fail2; 1680 1681 if (rc == -EAGAIN) 1682 /* try again with new max_channels */ 1683 efx_remove_interrupts(efx); 1684 1685 } while (rc == -EAGAIN); 1686 1687 if (efx->n_channels > 1) 1688 netdev_rss_key_fill(&efx->rx_hash_key, 1689 sizeof(efx->rx_hash_key)); 1690 efx_set_default_rx_indir_table(efx); 1691 1692 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 1693 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 1694 1695 /* Initialise the interrupt moderation settings */ 1696 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 1697 true); 1698 1699 return 0; 1700 1701 fail2: 1702 efx_remove_interrupts(efx); 1703 fail1: 1704 efx->type->remove(efx); 1705 return rc; 1706 } 1707 1708 static void efx_remove_nic(struct efx_nic *efx) 1709 { 1710 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 1711 1712 efx_remove_interrupts(efx); 1713 efx->type->remove(efx); 1714 } 1715 1716 static int efx_probe_filters(struct efx_nic *efx) 1717 { 1718 int rc; 1719 1720 spin_lock_init(&efx->filter_lock); 1721 init_rwsem(&efx->filter_sem); 1722 down_write(&efx->filter_sem); 1723 rc = efx->type->filter_table_probe(efx); 1724 if (rc) 1725 goto out_unlock; 1726 1727 #ifdef CONFIG_RFS_ACCEL 1728 if (efx->type->offload_features & NETIF_F_NTUPLE) { 1729 struct efx_channel *channel; 1730 int i, success = 1; 1731 1732 efx_for_each_channel(channel, efx) { 1733 channel->rps_flow_id = 1734 kcalloc(efx->type->max_rx_ip_filters, 1735 sizeof(*channel->rps_flow_id), 1736 GFP_KERNEL); 1737 if (!channel->rps_flow_id) 1738 success = 0; 1739 else 1740 for (i = 0; 1741 i < efx->type->max_rx_ip_filters; 1742 ++i) 1743 channel->rps_flow_id[i] = 1744 RPS_FLOW_ID_INVALID; 1745 } 1746 1747 if (!success) { 1748 efx_for_each_channel(channel, efx) 1749 kfree(channel->rps_flow_id); 1750 efx->type->filter_table_remove(efx); 1751 rc = -ENOMEM; 1752 goto out_unlock; 1753 } 1754 1755 efx->rps_expire_index = efx->rps_expire_channel = 0; 1756 } 1757 #endif 1758 out_unlock: 1759 up_write(&efx->filter_sem); 1760 return rc; 1761 } 1762 1763 static void efx_remove_filters(struct efx_nic *efx) 1764 { 1765 #ifdef CONFIG_RFS_ACCEL 1766 struct efx_channel *channel; 1767 1768 efx_for_each_channel(channel, efx) 1769 kfree(channel->rps_flow_id); 1770 #endif 1771 down_write(&efx->filter_sem); 1772 efx->type->filter_table_remove(efx); 1773 up_write(&efx->filter_sem); 1774 } 1775 1776 static void efx_restore_filters(struct efx_nic *efx) 1777 { 1778 down_read(&efx->filter_sem); 1779 efx->type->filter_table_restore(efx); 1780 up_read(&efx->filter_sem); 1781 } 1782 1783 /************************************************************************** 1784 * 1785 * NIC startup/shutdown 1786 * 1787 *************************************************************************/ 1788 1789 static int efx_probe_all(struct efx_nic *efx) 1790 { 1791 int rc; 1792 1793 rc = efx_probe_nic(efx); 1794 if (rc) { 1795 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 1796 goto fail1; 1797 } 1798 1799 rc = efx_probe_port(efx); 1800 if (rc) { 1801 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 1802 goto fail2; 1803 } 1804 1805 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); 1806 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { 1807 rc = -EINVAL; 1808 goto fail3; 1809 } 1810 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; 1811 1812 #ifdef CONFIG_SFC_SRIOV 1813 rc = efx->type->vswitching_probe(efx); 1814 if (rc) /* not fatal; the PF will still work fine */ 1815 netif_warn(efx, probe, efx->net_dev, 1816 "failed to setup vswitching rc=%d;" 1817 " VFs may not function\n", rc); 1818 #endif 1819 1820 rc = efx_probe_filters(efx); 1821 if (rc) { 1822 netif_err(efx, probe, efx->net_dev, 1823 "failed to create filter tables\n"); 1824 goto fail4; 1825 } 1826 1827 rc = efx_probe_channels(efx); 1828 if (rc) 1829 goto fail5; 1830 1831 return 0; 1832 1833 fail5: 1834 efx_remove_filters(efx); 1835 fail4: 1836 #ifdef CONFIG_SFC_SRIOV 1837 efx->type->vswitching_remove(efx); 1838 #endif 1839 fail3: 1840 efx_remove_port(efx); 1841 fail2: 1842 efx_remove_nic(efx); 1843 fail1: 1844 return rc; 1845 } 1846 1847 /* If the interface is supposed to be running but is not, start 1848 * the hardware and software data path, regular activity for the port 1849 * (MAC statistics, link polling, etc.) and schedule the port to be 1850 * reconfigured. Interrupts must already be enabled. This function 1851 * is safe to call multiple times, so long as the NIC is not disabled. 1852 * Requires the RTNL lock. 1853 */ 1854 static void efx_start_all(struct efx_nic *efx) 1855 { 1856 EFX_ASSERT_RESET_SERIALISED(efx); 1857 BUG_ON(efx->state == STATE_DISABLED); 1858 1859 /* Check that it is appropriate to restart the interface. All 1860 * of these flags are safe to read under just the rtnl lock */ 1861 if (efx->port_enabled || !netif_running(efx->net_dev) || 1862 efx->reset_pending) 1863 return; 1864 1865 efx_start_port(efx); 1866 efx_start_datapath(efx); 1867 1868 /* Start the hardware monitor if there is one */ 1869 if (efx->type->monitor != NULL) 1870 queue_delayed_work(efx->workqueue, &efx->monitor_work, 1871 efx_monitor_interval); 1872 1873 /* If link state detection is normally event-driven, we have 1874 * to poll now because we could have missed a change 1875 */ 1876 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { 1877 mutex_lock(&efx->mac_lock); 1878 if (efx->phy_op->poll(efx)) 1879 efx_link_status_changed(efx); 1880 mutex_unlock(&efx->mac_lock); 1881 } 1882 1883 efx->type->start_stats(efx); 1884 efx->type->pull_stats(efx); 1885 spin_lock_bh(&efx->stats_lock); 1886 efx->type->update_stats(efx, NULL, NULL); 1887 spin_unlock_bh(&efx->stats_lock); 1888 } 1889 1890 /* Quiesce the hardware and software data path, and regular activity 1891 * for the port without bringing the link down. Safe to call multiple 1892 * times with the NIC in almost any state, but interrupts should be 1893 * enabled. Requires the RTNL lock. 1894 */ 1895 static void efx_stop_all(struct efx_nic *efx) 1896 { 1897 EFX_ASSERT_RESET_SERIALISED(efx); 1898 1899 /* port_enabled can be read safely under the rtnl lock */ 1900 if (!efx->port_enabled) 1901 return; 1902 1903 /* update stats before we go down so we can accurately count 1904 * rx_nodesc_drops 1905 */ 1906 efx->type->pull_stats(efx); 1907 spin_lock_bh(&efx->stats_lock); 1908 efx->type->update_stats(efx, NULL, NULL); 1909 spin_unlock_bh(&efx->stats_lock); 1910 efx->type->stop_stats(efx); 1911 efx_stop_port(efx); 1912 1913 /* Stop the kernel transmit interface. This is only valid if 1914 * the device is stopped or detached; otherwise the watchdog 1915 * may fire immediately. 1916 */ 1917 WARN_ON(netif_running(efx->net_dev) && 1918 netif_device_present(efx->net_dev)); 1919 netif_tx_disable(efx->net_dev); 1920 1921 efx_stop_datapath(efx); 1922 } 1923 1924 static void efx_remove_all(struct efx_nic *efx) 1925 { 1926 efx_remove_channels(efx); 1927 efx_remove_filters(efx); 1928 #ifdef CONFIG_SFC_SRIOV 1929 efx->type->vswitching_remove(efx); 1930 #endif 1931 efx_remove_port(efx); 1932 efx_remove_nic(efx); 1933 } 1934 1935 /************************************************************************** 1936 * 1937 * Interrupt moderation 1938 * 1939 **************************************************************************/ 1940 1941 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns) 1942 { 1943 if (usecs == 0) 1944 return 0; 1945 if (usecs * 1000 < quantum_ns) 1946 return 1; /* never round down to 0 */ 1947 return usecs * 1000 / quantum_ns; 1948 } 1949 1950 /* Set interrupt moderation parameters */ 1951 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, 1952 unsigned int rx_usecs, bool rx_adaptive, 1953 bool rx_may_override_tx) 1954 { 1955 struct efx_channel *channel; 1956 unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max * 1957 efx->timer_quantum_ns, 1958 1000); 1959 unsigned int tx_ticks; 1960 unsigned int rx_ticks; 1961 1962 EFX_ASSERT_RESET_SERIALISED(efx); 1963 1964 if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max) 1965 return -EINVAL; 1966 1967 tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns); 1968 rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns); 1969 1970 if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 && 1971 !rx_may_override_tx) { 1972 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 1973 "RX and TX IRQ moderation must be equal\n"); 1974 return -EINVAL; 1975 } 1976 1977 efx->irq_rx_adaptive = rx_adaptive; 1978 efx->irq_rx_moderation = rx_ticks; 1979 efx_for_each_channel(channel, efx) { 1980 if (efx_channel_has_rx_queue(channel)) 1981 channel->irq_moderation = rx_ticks; 1982 else if (efx_channel_has_tx_queues(channel)) 1983 channel->irq_moderation = tx_ticks; 1984 } 1985 1986 return 0; 1987 } 1988 1989 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, 1990 unsigned int *rx_usecs, bool *rx_adaptive) 1991 { 1992 /* We must round up when converting ticks to microseconds 1993 * because we round down when converting the other way. 1994 */ 1995 1996 *rx_adaptive = efx->irq_rx_adaptive; 1997 *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation * 1998 efx->timer_quantum_ns, 1999 1000); 2000 2001 /* If channels are shared between RX and TX, so is IRQ 2002 * moderation. Otherwise, IRQ moderation is the same for all 2003 * TX channels and is not adaptive. 2004 */ 2005 if (efx->tx_channel_offset == 0) 2006 *tx_usecs = *rx_usecs; 2007 else 2008 *tx_usecs = DIV_ROUND_UP( 2009 efx->channel[efx->tx_channel_offset]->irq_moderation * 2010 efx->timer_quantum_ns, 2011 1000); 2012 } 2013 2014 /************************************************************************** 2015 * 2016 * Hardware monitor 2017 * 2018 **************************************************************************/ 2019 2020 /* Run periodically off the general workqueue */ 2021 static void efx_monitor(struct work_struct *data) 2022 { 2023 struct efx_nic *efx = container_of(data, struct efx_nic, 2024 monitor_work.work); 2025 2026 netif_vdbg(efx, timer, efx->net_dev, 2027 "hardware monitor executing on CPU %d\n", 2028 raw_smp_processor_id()); 2029 BUG_ON(efx->type->monitor == NULL); 2030 2031 /* If the mac_lock is already held then it is likely a port 2032 * reconfiguration is already in place, which will likely do 2033 * most of the work of monitor() anyway. */ 2034 if (mutex_trylock(&efx->mac_lock)) { 2035 if (efx->port_enabled) 2036 efx->type->monitor(efx); 2037 mutex_unlock(&efx->mac_lock); 2038 } 2039 2040 queue_delayed_work(efx->workqueue, &efx->monitor_work, 2041 efx_monitor_interval); 2042 } 2043 2044 /************************************************************************** 2045 * 2046 * ioctls 2047 * 2048 *************************************************************************/ 2049 2050 /* Net device ioctl 2051 * Context: process, rtnl_lock() held. 2052 */ 2053 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 2054 { 2055 struct efx_nic *efx = netdev_priv(net_dev); 2056 struct mii_ioctl_data *data = if_mii(ifr); 2057 2058 if (cmd == SIOCSHWTSTAMP) 2059 return efx_ptp_set_ts_config(efx, ifr); 2060 if (cmd == SIOCGHWTSTAMP) 2061 return efx_ptp_get_ts_config(efx, ifr); 2062 2063 /* Convert phy_id from older PRTAD/DEVAD format */ 2064 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 2065 (data->phy_id & 0xfc00) == 0x0400) 2066 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 2067 2068 return mdio_mii_ioctl(&efx->mdio, data, cmd); 2069 } 2070 2071 /************************************************************************** 2072 * 2073 * NAPI interface 2074 * 2075 **************************************************************************/ 2076 2077 static void efx_init_napi_channel(struct efx_channel *channel) 2078 { 2079 struct efx_nic *efx = channel->efx; 2080 2081 channel->napi_dev = efx->net_dev; 2082 netif_napi_add(channel->napi_dev, &channel->napi_str, 2083 efx_poll, napi_weight); 2084 efx_channel_busy_poll_init(channel); 2085 } 2086 2087 static void efx_init_napi(struct efx_nic *efx) 2088 { 2089 struct efx_channel *channel; 2090 2091 efx_for_each_channel(channel, efx) 2092 efx_init_napi_channel(channel); 2093 } 2094 2095 static void efx_fini_napi_channel(struct efx_channel *channel) 2096 { 2097 if (channel->napi_dev) { 2098 netif_napi_del(&channel->napi_str); 2099 napi_hash_del(&channel->napi_str); 2100 } 2101 channel->napi_dev = NULL; 2102 } 2103 2104 static void efx_fini_napi(struct efx_nic *efx) 2105 { 2106 struct efx_channel *channel; 2107 2108 efx_for_each_channel(channel, efx) 2109 efx_fini_napi_channel(channel); 2110 } 2111 2112 /************************************************************************** 2113 * 2114 * Kernel netpoll interface 2115 * 2116 *************************************************************************/ 2117 2118 #ifdef CONFIG_NET_POLL_CONTROLLER 2119 2120 /* Although in the common case interrupts will be disabled, this is not 2121 * guaranteed. However, all our work happens inside the NAPI callback, 2122 * so no locking is required. 2123 */ 2124 static void efx_netpoll(struct net_device *net_dev) 2125 { 2126 struct efx_nic *efx = netdev_priv(net_dev); 2127 struct efx_channel *channel; 2128 2129 efx_for_each_channel(channel, efx) 2130 efx_schedule_channel(channel); 2131 } 2132 2133 #endif 2134 2135 #ifdef CONFIG_NET_RX_BUSY_POLL 2136 static int efx_busy_poll(struct napi_struct *napi) 2137 { 2138 struct efx_channel *channel = 2139 container_of(napi, struct efx_channel, napi_str); 2140 struct efx_nic *efx = channel->efx; 2141 int budget = 4; 2142 int old_rx_packets, rx_packets; 2143 2144 if (!netif_running(efx->net_dev)) 2145 return LL_FLUSH_FAILED; 2146 2147 if (!efx_channel_try_lock_poll(channel)) 2148 return LL_FLUSH_BUSY; 2149 2150 old_rx_packets = channel->rx_queue.rx_packets; 2151 efx_process_channel(channel, budget); 2152 2153 rx_packets = channel->rx_queue.rx_packets - old_rx_packets; 2154 2155 /* There is no race condition with NAPI here. 2156 * NAPI will automatically be rescheduled if it yielded during busy 2157 * polling, because it was not able to take the lock and thus returned 2158 * the full budget. 2159 */ 2160 efx_channel_unlock_poll(channel); 2161 2162 return rx_packets; 2163 } 2164 #endif 2165 2166 /************************************************************************** 2167 * 2168 * Kernel net device interface 2169 * 2170 *************************************************************************/ 2171 2172 /* Context: process, rtnl_lock() held. */ 2173 int efx_net_open(struct net_device *net_dev) 2174 { 2175 struct efx_nic *efx = netdev_priv(net_dev); 2176 int rc; 2177 2178 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 2179 raw_smp_processor_id()); 2180 2181 rc = efx_check_disabled(efx); 2182 if (rc) 2183 return rc; 2184 if (efx->phy_mode & PHY_MODE_SPECIAL) 2185 return -EBUSY; 2186 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) 2187 return -EIO; 2188 2189 /* Notify the kernel of the link state polled during driver load, 2190 * before the monitor starts running */ 2191 efx_link_status_changed(efx); 2192 2193 efx_start_all(efx); 2194 efx_selftest_async_start(efx); 2195 return 0; 2196 } 2197 2198 /* Context: process, rtnl_lock() held. 2199 * Note that the kernel will ignore our return code; this method 2200 * should really be a void. 2201 */ 2202 int efx_net_stop(struct net_device *net_dev) 2203 { 2204 struct efx_nic *efx = netdev_priv(net_dev); 2205 2206 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 2207 raw_smp_processor_id()); 2208 2209 /* Stop the device and flush all the channels */ 2210 efx_stop_all(efx); 2211 2212 return 0; 2213 } 2214 2215 /* Context: process, dev_base_lock or RTNL held, non-blocking. */ 2216 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, 2217 struct rtnl_link_stats64 *stats) 2218 { 2219 struct efx_nic *efx = netdev_priv(net_dev); 2220 2221 spin_lock_bh(&efx->stats_lock); 2222 efx->type->update_stats(efx, NULL, stats); 2223 spin_unlock_bh(&efx->stats_lock); 2224 2225 return stats; 2226 } 2227 2228 /* Context: netif_tx_lock held, BHs disabled. */ 2229 static void efx_watchdog(struct net_device *net_dev) 2230 { 2231 struct efx_nic *efx = netdev_priv(net_dev); 2232 2233 netif_err(efx, tx_err, efx->net_dev, 2234 "TX stuck with port_enabled=%d: resetting channels\n", 2235 efx->port_enabled); 2236 2237 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 2238 } 2239 2240 2241 /* Context: process, rtnl_lock() held. */ 2242 static int efx_change_mtu(struct net_device *net_dev, int new_mtu) 2243 { 2244 struct efx_nic *efx = netdev_priv(net_dev); 2245 int rc; 2246 2247 rc = efx_check_disabled(efx); 2248 if (rc) 2249 return rc; 2250 if (new_mtu > EFX_MAX_MTU) 2251 return -EINVAL; 2252 2253 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); 2254 2255 efx_device_detach_sync(efx); 2256 efx_stop_all(efx); 2257 2258 mutex_lock(&efx->mac_lock); 2259 net_dev->mtu = new_mtu; 2260 efx_mac_reconfigure(efx); 2261 mutex_unlock(&efx->mac_lock); 2262 2263 efx_start_all(efx); 2264 netif_device_attach(efx->net_dev); 2265 return 0; 2266 } 2267 2268 static int efx_set_mac_address(struct net_device *net_dev, void *data) 2269 { 2270 struct efx_nic *efx = netdev_priv(net_dev); 2271 struct sockaddr *addr = data; 2272 u8 *new_addr = addr->sa_data; 2273 u8 old_addr[6]; 2274 int rc; 2275 2276 if (!is_valid_ether_addr(new_addr)) { 2277 netif_err(efx, drv, efx->net_dev, 2278 "invalid ethernet MAC address requested: %pM\n", 2279 new_addr); 2280 return -EADDRNOTAVAIL; 2281 } 2282 2283 /* save old address */ 2284 ether_addr_copy(old_addr, net_dev->dev_addr); 2285 ether_addr_copy(net_dev->dev_addr, new_addr); 2286 if (efx->type->set_mac_address) { 2287 rc = efx->type->set_mac_address(efx); 2288 if (rc) { 2289 ether_addr_copy(net_dev->dev_addr, old_addr); 2290 return rc; 2291 } 2292 } 2293 2294 /* Reconfigure the MAC */ 2295 mutex_lock(&efx->mac_lock); 2296 efx_mac_reconfigure(efx); 2297 mutex_unlock(&efx->mac_lock); 2298 2299 return 0; 2300 } 2301 2302 /* Context: netif_addr_lock held, BHs disabled. */ 2303 static void efx_set_rx_mode(struct net_device *net_dev) 2304 { 2305 struct efx_nic *efx = netdev_priv(net_dev); 2306 2307 if (efx->port_enabled) 2308 queue_work(efx->workqueue, &efx->mac_work); 2309 /* Otherwise efx_start_port() will do this */ 2310 } 2311 2312 static int efx_set_features(struct net_device *net_dev, netdev_features_t data) 2313 { 2314 struct efx_nic *efx = netdev_priv(net_dev); 2315 2316 /* If disabling RX n-tuple filtering, clear existing filters */ 2317 if (net_dev->features & ~data & NETIF_F_NTUPLE) 2318 return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); 2319 2320 return 0; 2321 } 2322 2323 static const struct net_device_ops efx_netdev_ops = { 2324 .ndo_open = efx_net_open, 2325 .ndo_stop = efx_net_stop, 2326 .ndo_get_stats64 = efx_net_stats, 2327 .ndo_tx_timeout = efx_watchdog, 2328 .ndo_start_xmit = efx_hard_start_xmit, 2329 .ndo_validate_addr = eth_validate_addr, 2330 .ndo_do_ioctl = efx_ioctl, 2331 .ndo_change_mtu = efx_change_mtu, 2332 .ndo_set_mac_address = efx_set_mac_address, 2333 .ndo_set_rx_mode = efx_set_rx_mode, 2334 .ndo_set_features = efx_set_features, 2335 #ifdef CONFIG_SFC_SRIOV 2336 .ndo_set_vf_mac = efx_sriov_set_vf_mac, 2337 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, 2338 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, 2339 .ndo_get_vf_config = efx_sriov_get_vf_config, 2340 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state, 2341 .ndo_get_phys_port_id = efx_sriov_get_phys_port_id, 2342 #endif 2343 #ifdef CONFIG_NET_POLL_CONTROLLER 2344 .ndo_poll_controller = efx_netpoll, 2345 #endif 2346 .ndo_setup_tc = efx_setup_tc, 2347 #ifdef CONFIG_NET_RX_BUSY_POLL 2348 .ndo_busy_poll = efx_busy_poll, 2349 #endif 2350 #ifdef CONFIG_RFS_ACCEL 2351 .ndo_rx_flow_steer = efx_filter_rfs, 2352 #endif 2353 }; 2354 2355 static void efx_update_name(struct efx_nic *efx) 2356 { 2357 strcpy(efx->name, efx->net_dev->name); 2358 efx_mtd_rename(efx); 2359 efx_set_channel_names(efx); 2360 } 2361 2362 static int efx_netdev_event(struct notifier_block *this, 2363 unsigned long event, void *ptr) 2364 { 2365 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 2366 2367 if ((net_dev->netdev_ops == &efx_netdev_ops) && 2368 event == NETDEV_CHANGENAME) 2369 efx_update_name(netdev_priv(net_dev)); 2370 2371 return NOTIFY_DONE; 2372 } 2373 2374 static struct notifier_block efx_netdev_notifier = { 2375 .notifier_call = efx_netdev_event, 2376 }; 2377 2378 static ssize_t 2379 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) 2380 { 2381 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2382 return sprintf(buf, "%d\n", efx->phy_type); 2383 } 2384 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); 2385 2386 #ifdef CONFIG_SFC_MCDI_LOGGING 2387 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr, 2388 char *buf) 2389 { 2390 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2391 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 2392 2393 return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled); 2394 } 2395 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr, 2396 const char *buf, size_t count) 2397 { 2398 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 2399 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 2400 bool enable = count > 0 && *buf != '0'; 2401 2402 mcdi->logging_enabled = enable; 2403 return count; 2404 } 2405 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log); 2406 #endif 2407 2408 static int efx_register_netdev(struct efx_nic *efx) 2409 { 2410 struct net_device *net_dev = efx->net_dev; 2411 struct efx_channel *channel; 2412 int rc; 2413 2414 net_dev->watchdog_timeo = 5 * HZ; 2415 net_dev->irq = efx->pci_dev->irq; 2416 net_dev->netdev_ops = &efx_netdev_ops; 2417 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) 2418 net_dev->priv_flags |= IFF_UNICAST_FLT; 2419 net_dev->ethtool_ops = &efx_ethtool_ops; 2420 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS; 2421 2422 rtnl_lock(); 2423 2424 /* Enable resets to be scheduled and check whether any were 2425 * already requested. If so, the NIC is probably hosed so we 2426 * abort. 2427 */ 2428 efx->state = STATE_READY; 2429 smp_mb(); /* ensure we change state before checking reset_pending */ 2430 if (efx->reset_pending) { 2431 netif_err(efx, probe, efx->net_dev, 2432 "aborting probe due to scheduled reset\n"); 2433 rc = -EIO; 2434 goto fail_locked; 2435 } 2436 2437 rc = dev_alloc_name(net_dev, net_dev->name); 2438 if (rc < 0) 2439 goto fail_locked; 2440 efx_update_name(efx); 2441 2442 /* Always start with carrier off; PHY events will detect the link */ 2443 netif_carrier_off(net_dev); 2444 2445 rc = register_netdevice(net_dev); 2446 if (rc) 2447 goto fail_locked; 2448 2449 efx_for_each_channel(channel, efx) { 2450 struct efx_tx_queue *tx_queue; 2451 efx_for_each_channel_tx_queue(tx_queue, channel) 2452 efx_init_tx_queue_core_txq(tx_queue); 2453 } 2454 2455 efx_associate(efx); 2456 2457 rtnl_unlock(); 2458 2459 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2460 if (rc) { 2461 netif_err(efx, drv, efx->net_dev, 2462 "failed to init net dev attributes\n"); 2463 goto fail_registered; 2464 } 2465 #ifdef CONFIG_SFC_MCDI_LOGGING 2466 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); 2467 if (rc) { 2468 netif_err(efx, drv, efx->net_dev, 2469 "failed to init net dev attributes\n"); 2470 goto fail_attr_mcdi_logging; 2471 } 2472 #endif 2473 2474 return 0; 2475 2476 #ifdef CONFIG_SFC_MCDI_LOGGING 2477 fail_attr_mcdi_logging: 2478 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2479 #endif 2480 fail_registered: 2481 rtnl_lock(); 2482 efx_dissociate(efx); 2483 unregister_netdevice(net_dev); 2484 fail_locked: 2485 efx->state = STATE_UNINIT; 2486 rtnl_unlock(); 2487 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 2488 return rc; 2489 } 2490 2491 static void efx_unregister_netdev(struct efx_nic *efx) 2492 { 2493 if (!efx->net_dev) 2494 return; 2495 2496 BUG_ON(netdev_priv(efx->net_dev) != efx); 2497 2498 if (efx_dev_registered(efx)) { 2499 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 2500 #ifdef CONFIG_SFC_MCDI_LOGGING 2501 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); 2502 #endif 2503 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2504 unregister_netdev(efx->net_dev); 2505 } 2506 } 2507 2508 /************************************************************************** 2509 * 2510 * Device reset and suspend 2511 * 2512 **************************************************************************/ 2513 2514 /* Tears down the entire software state and most of the hardware state 2515 * before reset. */ 2516 void efx_reset_down(struct efx_nic *efx, enum reset_type method) 2517 { 2518 EFX_ASSERT_RESET_SERIALISED(efx); 2519 2520 if (method == RESET_TYPE_MCDI_TIMEOUT) 2521 efx->type->prepare_flr(efx); 2522 2523 efx_stop_all(efx); 2524 efx_disable_interrupts(efx); 2525 2526 mutex_lock(&efx->mac_lock); 2527 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2528 method != RESET_TYPE_DATAPATH) 2529 efx->phy_op->fini(efx); 2530 efx->type->fini(efx); 2531 } 2532 2533 /* This function will always ensure that the locks acquired in 2534 * efx_reset_down() are released. A failure return code indicates 2535 * that we were unable to reinitialise the hardware, and the 2536 * driver should be disabled. If ok is false, then the rx and tx 2537 * engines are not restarted, pending a RESET_DISABLE. */ 2538 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) 2539 { 2540 int rc; 2541 2542 EFX_ASSERT_RESET_SERIALISED(efx); 2543 2544 if (method == RESET_TYPE_MCDI_TIMEOUT) 2545 efx->type->finish_flr(efx); 2546 2547 /* Ensure that SRAM is initialised even if we're disabling the device */ 2548 rc = efx->type->init(efx); 2549 if (rc) { 2550 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); 2551 goto fail; 2552 } 2553 2554 if (!ok) 2555 goto fail; 2556 2557 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2558 method != RESET_TYPE_DATAPATH) { 2559 rc = efx->phy_op->init(efx); 2560 if (rc) 2561 goto fail; 2562 rc = efx->phy_op->reconfigure(efx); 2563 if (rc && rc != -EPERM) 2564 netif_err(efx, drv, efx->net_dev, 2565 "could not restore PHY settings\n"); 2566 } 2567 2568 rc = efx_enable_interrupts(efx); 2569 if (rc) 2570 goto fail; 2571 2572 #ifdef CONFIG_SFC_SRIOV 2573 rc = efx->type->vswitching_restore(efx); 2574 if (rc) /* not fatal; the PF will still work fine */ 2575 netif_warn(efx, probe, efx->net_dev, 2576 "failed to restore vswitching rc=%d;" 2577 " VFs may not function\n", rc); 2578 #endif 2579 2580 down_read(&efx->filter_sem); 2581 efx_restore_filters(efx); 2582 up_read(&efx->filter_sem); 2583 if (efx->type->sriov_reset) 2584 efx->type->sriov_reset(efx); 2585 2586 mutex_unlock(&efx->mac_lock); 2587 2588 efx_start_all(efx); 2589 2590 return 0; 2591 2592 fail: 2593 efx->port_initialized = false; 2594 2595 mutex_unlock(&efx->mac_lock); 2596 2597 return rc; 2598 } 2599 2600 /* Reset the NIC using the specified method. Note that the reset may 2601 * fail, in which case the card will be left in an unusable state. 2602 * 2603 * Caller must hold the rtnl_lock. 2604 */ 2605 int efx_reset(struct efx_nic *efx, enum reset_type method) 2606 { 2607 int rc, rc2; 2608 bool disabled; 2609 2610 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", 2611 RESET_TYPE(method)); 2612 2613 efx_device_detach_sync(efx); 2614 efx_reset_down(efx, method); 2615 2616 rc = efx->type->reset(efx, method); 2617 if (rc) { 2618 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); 2619 goto out; 2620 } 2621 2622 /* Clear flags for the scopes we covered. We assume the NIC and 2623 * driver are now quiescent so that there is no race here. 2624 */ 2625 if (method < RESET_TYPE_MAX_METHOD) 2626 efx->reset_pending &= -(1 << (method + 1)); 2627 else /* it doesn't fit into the well-ordered scope hierarchy */ 2628 __clear_bit(method, &efx->reset_pending); 2629 2630 /* Reinitialise bus-mastering, which may have been turned off before 2631 * the reset was scheduled. This is still appropriate, even in the 2632 * RESET_TYPE_DISABLE since this driver generally assumes the hardware 2633 * can respond to requests. */ 2634 pci_set_master(efx->pci_dev); 2635 2636 out: 2637 /* Leave device stopped if necessary */ 2638 disabled = rc || 2639 method == RESET_TYPE_DISABLE || 2640 method == RESET_TYPE_RECOVER_OR_DISABLE; 2641 rc2 = efx_reset_up(efx, method, !disabled); 2642 if (rc2) { 2643 disabled = true; 2644 if (!rc) 2645 rc = rc2; 2646 } 2647 2648 if (disabled) { 2649 dev_close(efx->net_dev); 2650 netif_err(efx, drv, efx->net_dev, "has been disabled\n"); 2651 efx->state = STATE_DISABLED; 2652 } else { 2653 netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); 2654 netif_device_attach(efx->net_dev); 2655 } 2656 return rc; 2657 } 2658 2659 /* Try recovery mechanisms. 2660 * For now only EEH is supported. 2661 * Returns 0 if the recovery mechanisms are unsuccessful. 2662 * Returns a non-zero value otherwise. 2663 */ 2664 int efx_try_recovery(struct efx_nic *efx) 2665 { 2666 #ifdef CONFIG_EEH 2667 /* A PCI error can occur and not be seen by EEH because nothing 2668 * happens on the PCI bus. In this case the driver may fail and 2669 * schedule a 'recover or reset', leading to this recovery handler. 2670 * Manually call the eeh failure check function. 2671 */ 2672 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); 2673 if (eeh_dev_check_failure(eehdev)) { 2674 /* The EEH mechanisms will handle the error and reset the 2675 * device if necessary. 2676 */ 2677 return 1; 2678 } 2679 #endif 2680 return 0; 2681 } 2682 2683 static void efx_wait_for_bist_end(struct efx_nic *efx) 2684 { 2685 int i; 2686 2687 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) { 2688 if (efx_mcdi_poll_reboot(efx)) 2689 goto out; 2690 msleep(BIST_WAIT_DELAY_MS); 2691 } 2692 2693 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n"); 2694 out: 2695 /* Either way unset the BIST flag. If we found no reboot we probably 2696 * won't recover, but we should try. 2697 */ 2698 efx->mc_bist_for_other_fn = false; 2699 } 2700 2701 /* The worker thread exists so that code that cannot sleep can 2702 * schedule a reset for later. 2703 */ 2704 static void efx_reset_work(struct work_struct *data) 2705 { 2706 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); 2707 unsigned long pending; 2708 enum reset_type method; 2709 2710 pending = ACCESS_ONCE(efx->reset_pending); 2711 method = fls(pending) - 1; 2712 2713 if (method == RESET_TYPE_MC_BIST) 2714 efx_wait_for_bist_end(efx); 2715 2716 if ((method == RESET_TYPE_RECOVER_OR_DISABLE || 2717 method == RESET_TYPE_RECOVER_OR_ALL) && 2718 efx_try_recovery(efx)) 2719 return; 2720 2721 if (!pending) 2722 return; 2723 2724 rtnl_lock(); 2725 2726 /* We checked the state in efx_schedule_reset() but it may 2727 * have changed by now. Now that we have the RTNL lock, 2728 * it cannot change again. 2729 */ 2730 if (efx->state == STATE_READY) 2731 (void)efx_reset(efx, method); 2732 2733 rtnl_unlock(); 2734 } 2735 2736 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) 2737 { 2738 enum reset_type method; 2739 2740 if (efx->state == STATE_RECOVERY) { 2741 netif_dbg(efx, drv, efx->net_dev, 2742 "recovering: skip scheduling %s reset\n", 2743 RESET_TYPE(type)); 2744 return; 2745 } 2746 2747 switch (type) { 2748 case RESET_TYPE_INVISIBLE: 2749 case RESET_TYPE_ALL: 2750 case RESET_TYPE_RECOVER_OR_ALL: 2751 case RESET_TYPE_WORLD: 2752 case RESET_TYPE_DISABLE: 2753 case RESET_TYPE_RECOVER_OR_DISABLE: 2754 case RESET_TYPE_DATAPATH: 2755 case RESET_TYPE_MC_BIST: 2756 case RESET_TYPE_MCDI_TIMEOUT: 2757 method = type; 2758 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", 2759 RESET_TYPE(method)); 2760 break; 2761 default: 2762 method = efx->type->map_reset_reason(type); 2763 netif_dbg(efx, drv, efx->net_dev, 2764 "scheduling %s reset for %s\n", 2765 RESET_TYPE(method), RESET_TYPE(type)); 2766 break; 2767 } 2768 2769 set_bit(method, &efx->reset_pending); 2770 smp_mb(); /* ensure we change reset_pending before checking state */ 2771 2772 /* If we're not READY then just leave the flags set as the cue 2773 * to abort probing or reschedule the reset later. 2774 */ 2775 if (ACCESS_ONCE(efx->state) != STATE_READY) 2776 return; 2777 2778 /* efx_process_channel() will no longer read events once a 2779 * reset is scheduled. So switch back to poll'd MCDI completions. */ 2780 efx_mcdi_mode_poll(efx); 2781 2782 queue_work(reset_workqueue, &efx->reset_work); 2783 } 2784 2785 /************************************************************************** 2786 * 2787 * List of NICs we support 2788 * 2789 **************************************************************************/ 2790 2791 /* PCI device ID table */ 2792 static const struct pci_device_id efx_pci_table[] = { 2793 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2794 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), 2795 .driver_data = (unsigned long) &falcon_a1_nic_type}, 2796 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 2797 PCI_DEVICE_ID_SOLARFLARE_SFC4000B), 2798 .driver_data = (unsigned long) &falcon_b0_nic_type}, 2799 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ 2800 .driver_data = (unsigned long) &siena_a0_nic_type}, 2801 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ 2802 .driver_data = (unsigned long) &siena_a0_nic_type}, 2803 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */ 2804 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 2805 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */ 2806 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 2807 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */ 2808 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 2809 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */ 2810 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 2811 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */ 2812 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 2813 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */ 2814 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 2815 {0} /* end of list */ 2816 }; 2817 2818 /************************************************************************** 2819 * 2820 * Dummy PHY/MAC operations 2821 * 2822 * Can be used for some unimplemented operations 2823 * Needed so all function pointers are valid and do not have to be tested 2824 * before use 2825 * 2826 **************************************************************************/ 2827 int efx_port_dummy_op_int(struct efx_nic *efx) 2828 { 2829 return 0; 2830 } 2831 void efx_port_dummy_op_void(struct efx_nic *efx) {} 2832 2833 static bool efx_port_dummy_op_poll(struct efx_nic *efx) 2834 { 2835 return false; 2836 } 2837 2838 static const struct efx_phy_operations efx_dummy_phy_operations = { 2839 .init = efx_port_dummy_op_int, 2840 .reconfigure = efx_port_dummy_op_int, 2841 .poll = efx_port_dummy_op_poll, 2842 .fini = efx_port_dummy_op_void, 2843 }; 2844 2845 /************************************************************************** 2846 * 2847 * Data housekeeping 2848 * 2849 **************************************************************************/ 2850 2851 /* This zeroes out and then fills in the invariants in a struct 2852 * efx_nic (including all sub-structures). 2853 */ 2854 static int efx_init_struct(struct efx_nic *efx, 2855 struct pci_dev *pci_dev, struct net_device *net_dev) 2856 { 2857 int i; 2858 2859 /* Initialise common structures */ 2860 INIT_LIST_HEAD(&efx->node); 2861 INIT_LIST_HEAD(&efx->secondary_list); 2862 spin_lock_init(&efx->biu_lock); 2863 #ifdef CONFIG_SFC_MTD 2864 INIT_LIST_HEAD(&efx->mtd_list); 2865 #endif 2866 INIT_WORK(&efx->reset_work, efx_reset_work); 2867 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); 2868 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work); 2869 efx->pci_dev = pci_dev; 2870 efx->msg_enable = debug; 2871 efx->state = STATE_UNINIT; 2872 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); 2873 2874 efx->net_dev = net_dev; 2875 efx->rx_prefix_size = efx->type->rx_prefix_size; 2876 efx->rx_ip_align = 2877 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; 2878 efx->rx_packet_hash_offset = 2879 efx->type->rx_hash_offset - efx->type->rx_prefix_size; 2880 efx->rx_packet_ts_offset = 2881 efx->type->rx_ts_offset - efx->type->rx_prefix_size; 2882 spin_lock_init(&efx->stats_lock); 2883 mutex_init(&efx->mac_lock); 2884 efx->phy_op = &efx_dummy_phy_operations; 2885 efx->mdio.dev = net_dev; 2886 INIT_WORK(&efx->mac_work, efx_mac_work); 2887 init_waitqueue_head(&efx->flush_wq); 2888 2889 for (i = 0; i < EFX_MAX_CHANNELS; i++) { 2890 efx->channel[i] = efx_alloc_channel(efx, i, NULL); 2891 if (!efx->channel[i]) 2892 goto fail; 2893 efx->msi_context[i].efx = efx; 2894 efx->msi_context[i].index = i; 2895 } 2896 2897 /* Higher numbered interrupt modes are less capable! */ 2898 efx->interrupt_mode = max(efx->type->max_interrupt_mode, 2899 interrupt_mode); 2900 2901 /* Would be good to use the net_dev name, but we're too early */ 2902 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", 2903 pci_name(pci_dev)); 2904 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); 2905 if (!efx->workqueue) 2906 goto fail; 2907 2908 return 0; 2909 2910 fail: 2911 efx_fini_struct(efx); 2912 return -ENOMEM; 2913 } 2914 2915 static void efx_fini_struct(struct efx_nic *efx) 2916 { 2917 int i; 2918 2919 for (i = 0; i < EFX_MAX_CHANNELS; i++) 2920 kfree(efx->channel[i]); 2921 2922 kfree(efx->vpd_sn); 2923 2924 if (efx->workqueue) { 2925 destroy_workqueue(efx->workqueue); 2926 efx->workqueue = NULL; 2927 } 2928 } 2929 2930 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats) 2931 { 2932 u64 n_rx_nodesc_trunc = 0; 2933 struct efx_channel *channel; 2934 2935 efx_for_each_channel(channel, efx) 2936 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; 2937 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; 2938 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); 2939 } 2940 2941 /************************************************************************** 2942 * 2943 * PCI interface 2944 * 2945 **************************************************************************/ 2946 2947 /* Main body of final NIC shutdown code 2948 * This is called only at module unload (or hotplug removal). 2949 */ 2950 static void efx_pci_remove_main(struct efx_nic *efx) 2951 { 2952 /* Flush reset_work. It can no longer be scheduled since we 2953 * are not READY. 2954 */ 2955 BUG_ON(efx->state == STATE_READY); 2956 cancel_work_sync(&efx->reset_work); 2957 2958 efx_disable_interrupts(efx); 2959 efx_nic_fini_interrupt(efx); 2960 efx_fini_port(efx); 2961 efx->type->fini(efx); 2962 efx_fini_napi(efx); 2963 efx_remove_all(efx); 2964 } 2965 2966 /* Final NIC shutdown 2967 * This is called only at module unload (or hotplug removal). A PF can call 2968 * this on its VFs to ensure they are unbound first. 2969 */ 2970 static void efx_pci_remove(struct pci_dev *pci_dev) 2971 { 2972 struct efx_nic *efx; 2973 2974 efx = pci_get_drvdata(pci_dev); 2975 if (!efx) 2976 return; 2977 2978 /* Mark the NIC as fini, then stop the interface */ 2979 rtnl_lock(); 2980 efx_dissociate(efx); 2981 dev_close(efx->net_dev); 2982 efx_disable_interrupts(efx); 2983 efx->state = STATE_UNINIT; 2984 rtnl_unlock(); 2985 2986 if (efx->type->sriov_fini) 2987 efx->type->sriov_fini(efx); 2988 2989 efx_unregister_netdev(efx); 2990 2991 efx_mtd_remove(efx); 2992 2993 efx_pci_remove_main(efx); 2994 2995 efx_fini_io(efx); 2996 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 2997 2998 efx_fini_struct(efx); 2999 free_netdev(efx->net_dev); 3000 3001 pci_disable_pcie_error_reporting(pci_dev); 3002 }; 3003 3004 /* NIC VPD information 3005 * Called during probe to display the part number of the 3006 * installed NIC. VPD is potentially very large but this should 3007 * always appear within the first 512 bytes. 3008 */ 3009 #define SFC_VPD_LEN 512 3010 static void efx_probe_vpd_strings(struct efx_nic *efx) 3011 { 3012 struct pci_dev *dev = efx->pci_dev; 3013 char vpd_data[SFC_VPD_LEN]; 3014 ssize_t vpd_size; 3015 int ro_start, ro_size, i, j; 3016 3017 /* Get the vpd data from the device */ 3018 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 3019 if (vpd_size <= 0) { 3020 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); 3021 return; 3022 } 3023 3024 /* Get the Read only section */ 3025 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 3026 if (ro_start < 0) { 3027 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); 3028 return; 3029 } 3030 3031 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 3032 j = ro_size; 3033 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 3034 if (i + j > vpd_size) 3035 j = vpd_size - i; 3036 3037 /* Get the Part number */ 3038 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); 3039 if (i < 0) { 3040 netif_err(efx, drv, efx->net_dev, "Part number not found\n"); 3041 return; 3042 } 3043 3044 j = pci_vpd_info_field_size(&vpd_data[i]); 3045 i += PCI_VPD_INFO_FLD_HDR_SIZE; 3046 if (i + j > vpd_size) { 3047 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); 3048 return; 3049 } 3050 3051 netif_info(efx, drv, efx->net_dev, 3052 "Part Number : %.*s\n", j, &vpd_data[i]); 3053 3054 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 3055 j = ro_size; 3056 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); 3057 if (i < 0) { 3058 netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); 3059 return; 3060 } 3061 3062 j = pci_vpd_info_field_size(&vpd_data[i]); 3063 i += PCI_VPD_INFO_FLD_HDR_SIZE; 3064 if (i + j > vpd_size) { 3065 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); 3066 return; 3067 } 3068 3069 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); 3070 if (!efx->vpd_sn) 3071 return; 3072 3073 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); 3074 } 3075 3076 3077 /* Main body of NIC initialisation 3078 * This is called at module load (or hotplug insertion, theoretically). 3079 */ 3080 static int efx_pci_probe_main(struct efx_nic *efx) 3081 { 3082 int rc; 3083 3084 /* Do start-of-day initialisation */ 3085 rc = efx_probe_all(efx); 3086 if (rc) 3087 goto fail1; 3088 3089 efx_init_napi(efx); 3090 3091 rc = efx->type->init(efx); 3092 if (rc) { 3093 netif_err(efx, probe, efx->net_dev, 3094 "failed to initialise NIC\n"); 3095 goto fail3; 3096 } 3097 3098 rc = efx_init_port(efx); 3099 if (rc) { 3100 netif_err(efx, probe, efx->net_dev, 3101 "failed to initialise port\n"); 3102 goto fail4; 3103 } 3104 3105 rc = efx_nic_init_interrupt(efx); 3106 if (rc) 3107 goto fail5; 3108 rc = efx_enable_interrupts(efx); 3109 if (rc) 3110 goto fail6; 3111 3112 return 0; 3113 3114 fail6: 3115 efx_nic_fini_interrupt(efx); 3116 fail5: 3117 efx_fini_port(efx); 3118 fail4: 3119 efx->type->fini(efx); 3120 fail3: 3121 efx_fini_napi(efx); 3122 efx_remove_all(efx); 3123 fail1: 3124 return rc; 3125 } 3126 3127 /* NIC initialisation 3128 * 3129 * This is called at module load (or hotplug insertion, 3130 * theoretically). It sets up PCI mappings, resets the NIC, 3131 * sets up and registers the network devices with the kernel and hooks 3132 * the interrupt service routine. It does not prepare the device for 3133 * transmission; this is left to the first time one of the network 3134 * interfaces is brought up (i.e. efx_net_open). 3135 */ 3136 static int efx_pci_probe(struct pci_dev *pci_dev, 3137 const struct pci_device_id *entry) 3138 { 3139 struct net_device *net_dev; 3140 struct efx_nic *efx; 3141 int rc; 3142 3143 /* Allocate and initialise a struct net_device and struct efx_nic */ 3144 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, 3145 EFX_MAX_RX_QUEUES); 3146 if (!net_dev) 3147 return -ENOMEM; 3148 efx = netdev_priv(net_dev); 3149 efx->type = (const struct efx_nic_type *) entry->driver_data; 3150 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 3151 NETIF_F_HIGHDMA | NETIF_F_TSO | 3152 NETIF_F_RXCSUM); 3153 if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM)) 3154 net_dev->features |= NETIF_F_TSO6; 3155 /* Mask for features that also apply to VLAN devices */ 3156 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | 3157 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | 3158 NETIF_F_RXCSUM); 3159 /* All offloads can be toggled */ 3160 net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA; 3161 pci_set_drvdata(pci_dev, efx); 3162 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 3163 rc = efx_init_struct(efx, pci_dev, net_dev); 3164 if (rc) 3165 goto fail1; 3166 3167 netif_info(efx, probe, efx->net_dev, 3168 "Solarflare NIC detected\n"); 3169 3170 if (!efx->type->is_vf) 3171 efx_probe_vpd_strings(efx); 3172 3173 /* Set up basic I/O (BAR mappings etc) */ 3174 rc = efx_init_io(efx); 3175 if (rc) 3176 goto fail2; 3177 3178 rc = efx_pci_probe_main(efx); 3179 if (rc) 3180 goto fail3; 3181 3182 rc = efx_register_netdev(efx); 3183 if (rc) 3184 goto fail4; 3185 3186 if (efx->type->sriov_init) { 3187 rc = efx->type->sriov_init(efx); 3188 if (rc) 3189 netif_err(efx, probe, efx->net_dev, 3190 "SR-IOV can't be enabled rc %d\n", rc); 3191 } 3192 3193 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 3194 3195 /* Try to create MTDs, but allow this to fail */ 3196 rtnl_lock(); 3197 rc = efx_mtd_probe(efx); 3198 rtnl_unlock(); 3199 if (rc && rc != -EPERM) 3200 netif_warn(efx, probe, efx->net_dev, 3201 "failed to create MTDs (%d)\n", rc); 3202 3203 rc = pci_enable_pcie_error_reporting(pci_dev); 3204 if (rc && rc != -EINVAL) 3205 netif_notice(efx, probe, efx->net_dev, 3206 "PCIE error reporting unavailable (%d).\n", 3207 rc); 3208 3209 return 0; 3210 3211 fail4: 3212 efx_pci_remove_main(efx); 3213 fail3: 3214 efx_fini_io(efx); 3215 fail2: 3216 efx_fini_struct(efx); 3217 fail1: 3218 WARN_ON(rc > 0); 3219 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 3220 free_netdev(net_dev); 3221 return rc; 3222 } 3223 3224 /* efx_pci_sriov_configure returns the actual number of Virtual Functions 3225 * enabled on success 3226 */ 3227 #ifdef CONFIG_SFC_SRIOV 3228 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 3229 { 3230 int rc; 3231 struct efx_nic *efx = pci_get_drvdata(dev); 3232 3233 if (efx->type->sriov_configure) { 3234 rc = efx->type->sriov_configure(efx, num_vfs); 3235 if (rc) 3236 return rc; 3237 else 3238 return num_vfs; 3239 } else 3240 return -EOPNOTSUPP; 3241 } 3242 #endif 3243 3244 static int efx_pm_freeze(struct device *dev) 3245 { 3246 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 3247 3248 rtnl_lock(); 3249 3250 if (efx->state != STATE_DISABLED) { 3251 efx->state = STATE_UNINIT; 3252 3253 efx_device_detach_sync(efx); 3254 3255 efx_stop_all(efx); 3256 efx_disable_interrupts(efx); 3257 } 3258 3259 rtnl_unlock(); 3260 3261 return 0; 3262 } 3263 3264 static int efx_pm_thaw(struct device *dev) 3265 { 3266 int rc; 3267 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); 3268 3269 rtnl_lock(); 3270 3271 if (efx->state != STATE_DISABLED) { 3272 rc = efx_enable_interrupts(efx); 3273 if (rc) 3274 goto fail; 3275 3276 mutex_lock(&efx->mac_lock); 3277 efx->phy_op->reconfigure(efx); 3278 mutex_unlock(&efx->mac_lock); 3279 3280 efx_start_all(efx); 3281 3282 netif_device_attach(efx->net_dev); 3283 3284 efx->state = STATE_READY; 3285 3286 efx->type->resume_wol(efx); 3287 } 3288 3289 rtnl_unlock(); 3290 3291 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ 3292 queue_work(reset_workqueue, &efx->reset_work); 3293 3294 return 0; 3295 3296 fail: 3297 rtnl_unlock(); 3298 3299 return rc; 3300 } 3301 3302 static int efx_pm_poweroff(struct device *dev) 3303 { 3304 struct pci_dev *pci_dev = to_pci_dev(dev); 3305 struct efx_nic *efx = pci_get_drvdata(pci_dev); 3306 3307 efx->type->fini(efx); 3308 3309 efx->reset_pending = 0; 3310 3311 pci_save_state(pci_dev); 3312 return pci_set_power_state(pci_dev, PCI_D3hot); 3313 } 3314 3315 /* Used for both resume and restore */ 3316 static int efx_pm_resume(struct device *dev) 3317 { 3318 struct pci_dev *pci_dev = to_pci_dev(dev); 3319 struct efx_nic *efx = pci_get_drvdata(pci_dev); 3320 int rc; 3321 3322 rc = pci_set_power_state(pci_dev, PCI_D0); 3323 if (rc) 3324 return rc; 3325 pci_restore_state(pci_dev); 3326 rc = pci_enable_device(pci_dev); 3327 if (rc) 3328 return rc; 3329 pci_set_master(efx->pci_dev); 3330 rc = efx->type->reset(efx, RESET_TYPE_ALL); 3331 if (rc) 3332 return rc; 3333 rc = efx->type->init(efx); 3334 if (rc) 3335 return rc; 3336 rc = efx_pm_thaw(dev); 3337 return rc; 3338 } 3339 3340 static int efx_pm_suspend(struct device *dev) 3341 { 3342 int rc; 3343 3344 efx_pm_freeze(dev); 3345 rc = efx_pm_poweroff(dev); 3346 if (rc) 3347 efx_pm_resume(dev); 3348 return rc; 3349 } 3350 3351 static const struct dev_pm_ops efx_pm_ops = { 3352 .suspend = efx_pm_suspend, 3353 .resume = efx_pm_resume, 3354 .freeze = efx_pm_freeze, 3355 .thaw = efx_pm_thaw, 3356 .poweroff = efx_pm_poweroff, 3357 .restore = efx_pm_resume, 3358 }; 3359 3360 /* A PCI error affecting this device was detected. 3361 * At this point MMIO and DMA may be disabled. 3362 * Stop the software path and request a slot reset. 3363 */ 3364 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev, 3365 enum pci_channel_state state) 3366 { 3367 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3368 struct efx_nic *efx = pci_get_drvdata(pdev); 3369 3370 if (state == pci_channel_io_perm_failure) 3371 return PCI_ERS_RESULT_DISCONNECT; 3372 3373 rtnl_lock(); 3374 3375 if (efx->state != STATE_DISABLED) { 3376 efx->state = STATE_RECOVERY; 3377 efx->reset_pending = 0; 3378 3379 efx_device_detach_sync(efx); 3380 3381 efx_stop_all(efx); 3382 efx_disable_interrupts(efx); 3383 3384 status = PCI_ERS_RESULT_NEED_RESET; 3385 } else { 3386 /* If the interface is disabled we don't want to do anything 3387 * with it. 3388 */ 3389 status = PCI_ERS_RESULT_RECOVERED; 3390 } 3391 3392 rtnl_unlock(); 3393 3394 pci_disable_device(pdev); 3395 3396 return status; 3397 } 3398 3399 /* Fake a successful reset, which will be performed later in efx_io_resume. */ 3400 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev) 3401 { 3402 struct efx_nic *efx = pci_get_drvdata(pdev); 3403 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3404 int rc; 3405 3406 if (pci_enable_device(pdev)) { 3407 netif_err(efx, hw, efx->net_dev, 3408 "Cannot re-enable PCI device after reset.\n"); 3409 status = PCI_ERS_RESULT_DISCONNECT; 3410 } 3411 3412 rc = pci_cleanup_aer_uncorrect_error_status(pdev); 3413 if (rc) { 3414 netif_err(efx, hw, efx->net_dev, 3415 "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc); 3416 /* Non-fatal error. Continue. */ 3417 } 3418 3419 return status; 3420 } 3421 3422 /* Perform the actual reset and resume I/O operations. */ 3423 static void efx_io_resume(struct pci_dev *pdev) 3424 { 3425 struct efx_nic *efx = pci_get_drvdata(pdev); 3426 int rc; 3427 3428 rtnl_lock(); 3429 3430 if (efx->state == STATE_DISABLED) 3431 goto out; 3432 3433 rc = efx_reset(efx, RESET_TYPE_ALL); 3434 if (rc) { 3435 netif_err(efx, hw, efx->net_dev, 3436 "efx_reset failed after PCI error (%d)\n", rc); 3437 } else { 3438 efx->state = STATE_READY; 3439 netif_dbg(efx, hw, efx->net_dev, 3440 "Done resetting and resuming IO after PCI error.\n"); 3441 } 3442 3443 out: 3444 rtnl_unlock(); 3445 } 3446 3447 /* For simplicity and reliability, we always require a slot reset and try to 3448 * reset the hardware when a pci error affecting the device is detected. 3449 * We leave both the link_reset and mmio_enabled callback unimplemented: 3450 * with our request for slot reset the mmio_enabled callback will never be 3451 * called, and the link_reset callback is not used by AER or EEH mechanisms. 3452 */ 3453 static const struct pci_error_handlers efx_err_handlers = { 3454 .error_detected = efx_io_error_detected, 3455 .slot_reset = efx_io_slot_reset, 3456 .resume = efx_io_resume, 3457 }; 3458 3459 static struct pci_driver efx_pci_driver = { 3460 .name = KBUILD_MODNAME, 3461 .id_table = efx_pci_table, 3462 .probe = efx_pci_probe, 3463 .remove = efx_pci_remove, 3464 .driver.pm = &efx_pm_ops, 3465 .err_handler = &efx_err_handlers, 3466 #ifdef CONFIG_SFC_SRIOV 3467 .sriov_configure = efx_pci_sriov_configure, 3468 #endif 3469 }; 3470 3471 /************************************************************************** 3472 * 3473 * Kernel module interface 3474 * 3475 *************************************************************************/ 3476 3477 module_param(interrupt_mode, uint, 0444); 3478 MODULE_PARM_DESC(interrupt_mode, 3479 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 3480 3481 static int __init efx_init_module(void) 3482 { 3483 int rc; 3484 3485 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); 3486 3487 rc = register_netdevice_notifier(&efx_netdev_notifier); 3488 if (rc) 3489 goto err_notifier; 3490 3491 #ifdef CONFIG_SFC_SRIOV 3492 rc = efx_init_sriov(); 3493 if (rc) 3494 goto err_sriov; 3495 #endif 3496 3497 reset_workqueue = create_singlethread_workqueue("sfc_reset"); 3498 if (!reset_workqueue) { 3499 rc = -ENOMEM; 3500 goto err_reset; 3501 } 3502 3503 rc = pci_register_driver(&efx_pci_driver); 3504 if (rc < 0) 3505 goto err_pci; 3506 3507 return 0; 3508 3509 err_pci: 3510 destroy_workqueue(reset_workqueue); 3511 err_reset: 3512 #ifdef CONFIG_SFC_SRIOV 3513 efx_fini_sriov(); 3514 err_sriov: 3515 #endif 3516 unregister_netdevice_notifier(&efx_netdev_notifier); 3517 err_notifier: 3518 return rc; 3519 } 3520 3521 static void __exit efx_exit_module(void) 3522 { 3523 printk(KERN_INFO "Solarflare NET driver unloading\n"); 3524 3525 pci_unregister_driver(&efx_pci_driver); 3526 destroy_workqueue(reset_workqueue); 3527 #ifdef CONFIG_SFC_SRIOV 3528 efx_fini_sriov(); 3529 #endif 3530 unregister_netdevice_notifier(&efx_netdev_notifier); 3531 3532 } 3533 3534 module_init(efx_init_module); 3535 module_exit(efx_exit_module); 3536 3537 MODULE_AUTHOR("Solarflare Communications and " 3538 "Michael Brown <mbrown@fensystems.co.uk>"); 3539 MODULE_DESCRIPTION("Solarflare network driver"); 3540 MODULE_LICENSE("GPL"); 3541 MODULE_DEVICE_TABLE(pci, efx_pci_table); 3542