xref: /openbmc/linux/drivers/net/ethernet/sfc/efx.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/notifier.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/in.h>
17 #include <linux/ethtool.h>
18 #include <linux/topology.h>
19 #include <linux/gfp.h>
20 #include <linux/aer.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include <net/gre.h>
24 #include <net/udp_tunnel.h>
25 #include "efx.h"
26 #include "efx_common.h"
27 #include "efx_channels.h"
28 #include "ef100.h"
29 #include "rx_common.h"
30 #include "tx_common.h"
31 #include "nic.h"
32 #include "io.h"
33 #include "selftest.h"
34 #include "sriov.h"
35 
36 #include "mcdi_port_common.h"
37 #include "mcdi_pcol.h"
38 #include "workarounds.h"
39 
40 /**************************************************************************
41  *
42  * Configurable values
43  *
44  *************************************************************************/
45 
46 module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
47 MODULE_PARM_DESC(interrupt_mode,
48 		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
49 
50 module_param(rss_cpus, uint, 0444);
51 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
52 
53 /*
54  * Use separate channels for TX and RX events
55  *
56  * Set this to 1 to use separate channels for TX and RX. It allows us
57  * to control interrupt affinity separately for TX and RX.
58  *
59  * This is only used in MSI-X interrupt mode
60  */
61 bool efx_separate_tx_channels;
62 module_param(efx_separate_tx_channels, bool, 0444);
63 MODULE_PARM_DESC(efx_separate_tx_channels,
64 		 "Use separate channels for TX and RX");
65 
66 /* Initial interrupt moderation settings.  They can be modified after
67  * module load with ethtool.
68  *
69  * The default for RX should strike a balance between increasing the
70  * round-trip latency and reducing overhead.
71  */
72 static unsigned int rx_irq_mod_usec = 60;
73 
74 /* Initial interrupt moderation settings.  They can be modified after
75  * module load with ethtool.
76  *
77  * This default is chosen to ensure that a 10G link does not go idle
78  * while a TX queue is stopped after it has become full.  A queue is
79  * restarted when it drops below half full.  The time this takes (assuming
80  * worst case 3 descriptors per packet and 1024 descriptors) is
81  *   512 / 3 * 1.2 = 205 usec.
82  */
83 static unsigned int tx_irq_mod_usec = 150;
84 
85 static bool phy_flash_cfg;
86 module_param(phy_flash_cfg, bool, 0644);
87 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
88 
89 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
91 			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
92 			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
93 module_param(debug, uint, 0);
94 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
95 
96 /**************************************************************************
97  *
98  * Utility functions and prototypes
99  *
100  *************************************************************************/
101 
102 static void efx_remove_port(struct efx_nic *efx);
103 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
104 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
105 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
106 			u32 flags);
107 
108 #define EFX_ASSERT_RESET_SERIALISED(efx)		\
109 	do {						\
110 		if ((efx->state == STATE_READY) ||	\
111 		    (efx->state == STATE_RECOVERY) ||	\
112 		    (efx->state == STATE_DISABLED))	\
113 			ASSERT_RTNL();			\
114 	} while (0)
115 
116 /**************************************************************************
117  *
118  * Port handling
119  *
120  **************************************************************************/
121 
122 static void efx_fini_port(struct efx_nic *efx);
123 
124 static int efx_probe_port(struct efx_nic *efx)
125 {
126 	int rc;
127 
128 	netif_dbg(efx, probe, efx->net_dev, "create port\n");
129 
130 	if (phy_flash_cfg)
131 		efx->phy_mode = PHY_MODE_SPECIAL;
132 
133 	/* Connect up MAC/PHY operations table */
134 	rc = efx->type->probe_port(efx);
135 	if (rc)
136 		return rc;
137 
138 	/* Initialise MAC address to permanent address */
139 	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
140 
141 	return 0;
142 }
143 
144 static int efx_init_port(struct efx_nic *efx)
145 {
146 	int rc;
147 
148 	netif_dbg(efx, drv, efx->net_dev, "init port\n");
149 
150 	mutex_lock(&efx->mac_lock);
151 
152 	efx->port_initialized = true;
153 
154 	/* Ensure the PHY advertises the correct flow control settings */
155 	rc = efx_mcdi_port_reconfigure(efx);
156 	if (rc && rc != -EPERM)
157 		goto fail;
158 
159 	mutex_unlock(&efx->mac_lock);
160 	return 0;
161 
162 fail:
163 	mutex_unlock(&efx->mac_lock);
164 	return rc;
165 }
166 
167 static void efx_fini_port(struct efx_nic *efx)
168 {
169 	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
170 
171 	if (!efx->port_initialized)
172 		return;
173 
174 	efx->port_initialized = false;
175 
176 	efx->link_state.up = false;
177 	efx_link_status_changed(efx);
178 }
179 
180 static void efx_remove_port(struct efx_nic *efx)
181 {
182 	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
183 
184 	efx->type->remove_port(efx);
185 }
186 
187 /**************************************************************************
188  *
189  * NIC handling
190  *
191  **************************************************************************/
192 
193 static LIST_HEAD(efx_primary_list);
194 static LIST_HEAD(efx_unassociated_list);
195 
196 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
197 {
198 	return left->type == right->type &&
199 		left->vpd_sn && right->vpd_sn &&
200 		!strcmp(left->vpd_sn, right->vpd_sn);
201 }
202 
203 static void efx_associate(struct efx_nic *efx)
204 {
205 	struct efx_nic *other, *next;
206 
207 	if (efx->primary == efx) {
208 		/* Adding primary function; look for secondaries */
209 
210 		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
211 		list_add_tail(&efx->node, &efx_primary_list);
212 
213 		list_for_each_entry_safe(other, next, &efx_unassociated_list,
214 					 node) {
215 			if (efx_same_controller(efx, other)) {
216 				list_del(&other->node);
217 				netif_dbg(other, probe, other->net_dev,
218 					  "moving to secondary list of %s %s\n",
219 					  pci_name(efx->pci_dev),
220 					  efx->net_dev->name);
221 				list_add_tail(&other->node,
222 					      &efx->secondary_list);
223 				other->primary = efx;
224 			}
225 		}
226 	} else {
227 		/* Adding secondary function; look for primary */
228 
229 		list_for_each_entry(other, &efx_primary_list, node) {
230 			if (efx_same_controller(efx, other)) {
231 				netif_dbg(efx, probe, efx->net_dev,
232 					  "adding to secondary list of %s %s\n",
233 					  pci_name(other->pci_dev),
234 					  other->net_dev->name);
235 				list_add_tail(&efx->node,
236 					      &other->secondary_list);
237 				efx->primary = other;
238 				return;
239 			}
240 		}
241 
242 		netif_dbg(efx, probe, efx->net_dev,
243 			  "adding to unassociated list\n");
244 		list_add_tail(&efx->node, &efx_unassociated_list);
245 	}
246 }
247 
248 static void efx_dissociate(struct efx_nic *efx)
249 {
250 	struct efx_nic *other, *next;
251 
252 	list_del(&efx->node);
253 	efx->primary = NULL;
254 
255 	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
256 		list_del(&other->node);
257 		netif_dbg(other, probe, other->net_dev,
258 			  "moving to unassociated list\n");
259 		list_add_tail(&other->node, &efx_unassociated_list);
260 		other->primary = NULL;
261 	}
262 }
263 
264 static int efx_probe_nic(struct efx_nic *efx)
265 {
266 	int rc;
267 
268 	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
269 
270 	/* Carry out hardware-type specific initialisation */
271 	rc = efx->type->probe(efx);
272 	if (rc)
273 		return rc;
274 
275 	do {
276 		if (!efx->max_channels || !efx->max_tx_channels) {
277 			netif_err(efx, drv, efx->net_dev,
278 				  "Insufficient resources to allocate"
279 				  " any channels\n");
280 			rc = -ENOSPC;
281 			goto fail1;
282 		}
283 
284 		/* Determine the number of channels and queues by trying
285 		 * to hook in MSI-X interrupts.
286 		 */
287 		rc = efx_probe_interrupts(efx);
288 		if (rc)
289 			goto fail1;
290 
291 		rc = efx_set_channels(efx);
292 		if (rc)
293 			goto fail1;
294 
295 		/* dimension_resources can fail with EAGAIN */
296 		rc = efx->type->dimension_resources(efx);
297 		if (rc != 0 && rc != -EAGAIN)
298 			goto fail2;
299 
300 		if (rc == -EAGAIN)
301 			/* try again with new max_channels */
302 			efx_remove_interrupts(efx);
303 
304 	} while (rc == -EAGAIN);
305 
306 	if (efx->n_channels > 1)
307 		netdev_rss_key_fill(efx->rss_context.rx_hash_key,
308 				    sizeof(efx->rss_context.rx_hash_key));
309 	efx_set_default_rx_indir_table(efx, &efx->rss_context);
310 
311 	/* Initialise the interrupt moderation settings */
312 	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
313 	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
314 				true);
315 
316 	return 0;
317 
318 fail2:
319 	efx_remove_interrupts(efx);
320 fail1:
321 	efx->type->remove(efx);
322 	return rc;
323 }
324 
325 static void efx_remove_nic(struct efx_nic *efx)
326 {
327 	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
328 
329 	efx_remove_interrupts(efx);
330 	efx->type->remove(efx);
331 }
332 
333 /**************************************************************************
334  *
335  * NIC startup/shutdown
336  *
337  *************************************************************************/
338 
339 static int efx_probe_all(struct efx_nic *efx)
340 {
341 	int rc;
342 
343 	rc = efx_probe_nic(efx);
344 	if (rc) {
345 		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
346 		goto fail1;
347 	}
348 
349 	rc = efx_probe_port(efx);
350 	if (rc) {
351 		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
352 		goto fail2;
353 	}
354 
355 	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
356 	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
357 		rc = -EINVAL;
358 		goto fail3;
359 	}
360 
361 #ifdef CONFIG_SFC_SRIOV
362 	rc = efx->type->vswitching_probe(efx);
363 	if (rc) /* not fatal; the PF will still work fine */
364 		netif_warn(efx, probe, efx->net_dev,
365 			   "failed to setup vswitching rc=%d;"
366 			   " VFs may not function\n", rc);
367 #endif
368 
369 	rc = efx_probe_filters(efx);
370 	if (rc) {
371 		netif_err(efx, probe, efx->net_dev,
372 			  "failed to create filter tables\n");
373 		goto fail4;
374 	}
375 
376 	rc = efx_probe_channels(efx);
377 	if (rc)
378 		goto fail5;
379 
380 	return 0;
381 
382  fail5:
383 	efx_remove_filters(efx);
384  fail4:
385 #ifdef CONFIG_SFC_SRIOV
386 	efx->type->vswitching_remove(efx);
387 #endif
388  fail3:
389 	efx_remove_port(efx);
390  fail2:
391 	efx_remove_nic(efx);
392  fail1:
393 	return rc;
394 }
395 
396 static void efx_remove_all(struct efx_nic *efx)
397 {
398 	rtnl_lock();
399 	efx_xdp_setup_prog(efx, NULL);
400 	rtnl_unlock();
401 
402 	efx_remove_channels(efx);
403 	efx_remove_filters(efx);
404 #ifdef CONFIG_SFC_SRIOV
405 	efx->type->vswitching_remove(efx);
406 #endif
407 	efx_remove_port(efx);
408 	efx_remove_nic(efx);
409 }
410 
411 /**************************************************************************
412  *
413  * Interrupt moderation
414  *
415  **************************************************************************/
416 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
417 {
418 	if (usecs == 0)
419 		return 0;
420 	if (usecs * 1000 < efx->timer_quantum_ns)
421 		return 1; /* never round down to 0 */
422 	return usecs * 1000 / efx->timer_quantum_ns;
423 }
424 
425 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
426 {
427 	/* We must round up when converting ticks to microseconds
428 	 * because we round down when converting the other way.
429 	 */
430 	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
431 }
432 
433 /* Set interrupt moderation parameters */
434 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
435 			    unsigned int rx_usecs, bool rx_adaptive,
436 			    bool rx_may_override_tx)
437 {
438 	struct efx_channel *channel;
439 	unsigned int timer_max_us;
440 
441 	EFX_ASSERT_RESET_SERIALISED(efx);
442 
443 	timer_max_us = efx->timer_max_ns / 1000;
444 
445 	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
446 		return -EINVAL;
447 
448 	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
449 	    !rx_may_override_tx) {
450 		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
451 			  "RX and TX IRQ moderation must be equal\n");
452 		return -EINVAL;
453 	}
454 
455 	efx->irq_rx_adaptive = rx_adaptive;
456 	efx->irq_rx_moderation_us = rx_usecs;
457 	efx_for_each_channel(channel, efx) {
458 		if (efx_channel_has_rx_queue(channel))
459 			channel->irq_moderation_us = rx_usecs;
460 		else if (efx_channel_has_tx_queues(channel))
461 			channel->irq_moderation_us = tx_usecs;
462 		else if (efx_channel_is_xdp_tx(channel))
463 			channel->irq_moderation_us = tx_usecs;
464 	}
465 
466 	return 0;
467 }
468 
469 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
470 			    unsigned int *rx_usecs, bool *rx_adaptive)
471 {
472 	*rx_adaptive = efx->irq_rx_adaptive;
473 	*rx_usecs = efx->irq_rx_moderation_us;
474 
475 	/* If channels are shared between RX and TX, so is IRQ
476 	 * moderation.  Otherwise, IRQ moderation is the same for all
477 	 * TX channels and is not adaptive.
478 	 */
479 	if (efx->tx_channel_offset == 0) {
480 		*tx_usecs = *rx_usecs;
481 	} else {
482 		struct efx_channel *tx_channel;
483 
484 		tx_channel = efx->channel[efx->tx_channel_offset];
485 		*tx_usecs = tx_channel->irq_moderation_us;
486 	}
487 }
488 
489 /**************************************************************************
490  *
491  * ioctls
492  *
493  *************************************************************************/
494 
495 /* Net device ioctl
496  * Context: process, rtnl_lock() held.
497  */
498 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
499 {
500 	struct efx_nic *efx = netdev_priv(net_dev);
501 	struct mii_ioctl_data *data = if_mii(ifr);
502 
503 	if (cmd == SIOCSHWTSTAMP)
504 		return efx_ptp_set_ts_config(efx, ifr);
505 	if (cmd == SIOCGHWTSTAMP)
506 		return efx_ptp_get_ts_config(efx, ifr);
507 
508 	/* Convert phy_id from older PRTAD/DEVAD format */
509 	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
510 	    (data->phy_id & 0xfc00) == 0x0400)
511 		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
512 
513 	return mdio_mii_ioctl(&efx->mdio, data, cmd);
514 }
515 
516 /**************************************************************************
517  *
518  * Kernel net device interface
519  *
520  *************************************************************************/
521 
522 /* Context: process, rtnl_lock() held. */
523 int efx_net_open(struct net_device *net_dev)
524 {
525 	struct efx_nic *efx = netdev_priv(net_dev);
526 	int rc;
527 
528 	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
529 		  raw_smp_processor_id());
530 
531 	rc = efx_check_disabled(efx);
532 	if (rc)
533 		return rc;
534 	if (efx->phy_mode & PHY_MODE_SPECIAL)
535 		return -EBUSY;
536 	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
537 		return -EIO;
538 
539 	/* Notify the kernel of the link state polled during driver load,
540 	 * before the monitor starts running */
541 	efx_link_status_changed(efx);
542 
543 	efx_start_all(efx);
544 	if (efx->state == STATE_DISABLED || efx->reset_pending)
545 		netif_device_detach(efx->net_dev);
546 	efx_selftest_async_start(efx);
547 	return 0;
548 }
549 
550 /* Context: process, rtnl_lock() held.
551  * Note that the kernel will ignore our return code; this method
552  * should really be a void.
553  */
554 int efx_net_stop(struct net_device *net_dev)
555 {
556 	struct efx_nic *efx = netdev_priv(net_dev);
557 
558 	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
559 		  raw_smp_processor_id());
560 
561 	/* Stop the device and flush all the channels */
562 	efx_stop_all(efx);
563 
564 	return 0;
565 }
566 
567 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
568 {
569 	struct efx_nic *efx = netdev_priv(net_dev);
570 
571 	if (efx->type->vlan_rx_add_vid)
572 		return efx->type->vlan_rx_add_vid(efx, proto, vid);
573 	else
574 		return -EOPNOTSUPP;
575 }
576 
577 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
578 {
579 	struct efx_nic *efx = netdev_priv(net_dev);
580 
581 	if (efx->type->vlan_rx_kill_vid)
582 		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
583 	else
584 		return -EOPNOTSUPP;
585 }
586 
587 static const struct net_device_ops efx_netdev_ops = {
588 	.ndo_open		= efx_net_open,
589 	.ndo_stop		= efx_net_stop,
590 	.ndo_get_stats64	= efx_net_stats,
591 	.ndo_tx_timeout		= efx_watchdog,
592 	.ndo_start_xmit		= efx_hard_start_xmit,
593 	.ndo_validate_addr	= eth_validate_addr,
594 	.ndo_do_ioctl		= efx_ioctl,
595 	.ndo_change_mtu		= efx_change_mtu,
596 	.ndo_set_mac_address	= efx_set_mac_address,
597 	.ndo_set_rx_mode	= efx_set_rx_mode,
598 	.ndo_set_features	= efx_set_features,
599 	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
600 	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
601 #ifdef CONFIG_SFC_SRIOV
602 	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
603 	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
604 	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
605 	.ndo_get_vf_config	= efx_sriov_get_vf_config,
606 	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
607 #endif
608 	.ndo_get_phys_port_id   = efx_get_phys_port_id,
609 	.ndo_get_phys_port_name	= efx_get_phys_port_name,
610 	.ndo_setup_tc		= efx_setup_tc,
611 #ifdef CONFIG_RFS_ACCEL
612 	.ndo_rx_flow_steer	= efx_filter_rfs,
613 #endif
614 	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
615 	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
616 	.ndo_xdp_xmit		= efx_xdp_xmit,
617 	.ndo_bpf		= efx_xdp
618 };
619 
620 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
621 {
622 	struct bpf_prog *old_prog;
623 
624 	if (efx->xdp_rxq_info_failed) {
625 		netif_err(efx, drv, efx->net_dev,
626 			  "Unable to bind XDP program due to previous failure of rxq_info\n");
627 		return -EINVAL;
628 	}
629 
630 	if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
631 		netif_err(efx, drv, efx->net_dev,
632 			  "Unable to configure XDP with MTU of %d (max: %d)\n",
633 			  efx->net_dev->mtu, efx_xdp_max_mtu(efx));
634 		return -EINVAL;
635 	}
636 
637 	old_prog = rtnl_dereference(efx->xdp_prog);
638 	rcu_assign_pointer(efx->xdp_prog, prog);
639 	/* Release the reference that was originally passed by the caller. */
640 	if (old_prog)
641 		bpf_prog_put(old_prog);
642 
643 	return 0;
644 }
645 
646 /* Context: process, rtnl_lock() held. */
647 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
648 {
649 	struct efx_nic *efx = netdev_priv(dev);
650 
651 	switch (xdp->command) {
652 	case XDP_SETUP_PROG:
653 		return efx_xdp_setup_prog(efx, xdp->prog);
654 	default:
655 		return -EINVAL;
656 	}
657 }
658 
659 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
660 			u32 flags)
661 {
662 	struct efx_nic *efx = netdev_priv(dev);
663 
664 	if (!netif_running(dev))
665 		return -EINVAL;
666 
667 	return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
668 }
669 
670 static void efx_update_name(struct efx_nic *efx)
671 {
672 	strcpy(efx->name, efx->net_dev->name);
673 	efx_mtd_rename(efx);
674 	efx_set_channel_names(efx);
675 }
676 
677 static int efx_netdev_event(struct notifier_block *this,
678 			    unsigned long event, void *ptr)
679 {
680 	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
681 
682 	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
683 	    event == NETDEV_CHANGENAME)
684 		efx_update_name(netdev_priv(net_dev));
685 
686 	return NOTIFY_DONE;
687 }
688 
689 static struct notifier_block efx_netdev_notifier = {
690 	.notifier_call = efx_netdev_event,
691 };
692 
693 static ssize_t
694 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
695 {
696 	struct efx_nic *efx = dev_get_drvdata(dev);
697 	return sprintf(buf, "%d\n", efx->phy_type);
698 }
699 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
700 
701 static int efx_register_netdev(struct efx_nic *efx)
702 {
703 	struct net_device *net_dev = efx->net_dev;
704 	struct efx_channel *channel;
705 	int rc;
706 
707 	net_dev->watchdog_timeo = 5 * HZ;
708 	net_dev->irq = efx->pci_dev->irq;
709 	net_dev->netdev_ops = &efx_netdev_ops;
710 	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
711 		net_dev->priv_flags |= IFF_UNICAST_FLT;
712 	net_dev->ethtool_ops = &efx_ethtool_ops;
713 	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
714 	net_dev->min_mtu = EFX_MIN_MTU;
715 	net_dev->max_mtu = EFX_MAX_MTU;
716 
717 	rtnl_lock();
718 
719 	/* Enable resets to be scheduled and check whether any were
720 	 * already requested.  If so, the NIC is probably hosed so we
721 	 * abort.
722 	 */
723 	efx->state = STATE_READY;
724 	smp_mb(); /* ensure we change state before checking reset_pending */
725 	if (efx->reset_pending) {
726 		netif_err(efx, probe, efx->net_dev,
727 			  "aborting probe due to scheduled reset\n");
728 		rc = -EIO;
729 		goto fail_locked;
730 	}
731 
732 	rc = dev_alloc_name(net_dev, net_dev->name);
733 	if (rc < 0)
734 		goto fail_locked;
735 	efx_update_name(efx);
736 
737 	/* Always start with carrier off; PHY events will detect the link */
738 	netif_carrier_off(net_dev);
739 
740 	rc = register_netdevice(net_dev);
741 	if (rc)
742 		goto fail_locked;
743 
744 	efx_for_each_channel(channel, efx) {
745 		struct efx_tx_queue *tx_queue;
746 		efx_for_each_channel_tx_queue(tx_queue, channel)
747 			efx_init_tx_queue_core_txq(tx_queue);
748 	}
749 
750 	efx_associate(efx);
751 
752 	rtnl_unlock();
753 
754 	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
755 	if (rc) {
756 		netif_err(efx, drv, efx->net_dev,
757 			  "failed to init net dev attributes\n");
758 		goto fail_registered;
759 	}
760 
761 	efx_init_mcdi_logging(efx);
762 
763 	return 0;
764 
765 fail_registered:
766 	rtnl_lock();
767 	efx_dissociate(efx);
768 	unregister_netdevice(net_dev);
769 fail_locked:
770 	efx->state = STATE_UNINIT;
771 	rtnl_unlock();
772 	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
773 	return rc;
774 }
775 
776 static void efx_unregister_netdev(struct efx_nic *efx)
777 {
778 	if (!efx->net_dev)
779 		return;
780 
781 	BUG_ON(netdev_priv(efx->net_dev) != efx);
782 
783 	if (efx_dev_registered(efx)) {
784 		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
785 		efx_fini_mcdi_logging(efx);
786 		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
787 		unregister_netdev(efx->net_dev);
788 	}
789 }
790 
791 /**************************************************************************
792  *
793  * List of NICs we support
794  *
795  **************************************************************************/
796 
797 /* PCI device ID table */
798 static const struct pci_device_id efx_pci_table[] = {
799 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
800 	 .driver_data = (unsigned long) &siena_a0_nic_type},
801 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
802 	 .driver_data = (unsigned long) &siena_a0_nic_type},
803 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
804 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
805 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
806 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
807 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
808 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
809 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
810 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
811 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
812 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
813 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
814 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
815 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03),  /* SFC9250 PF */
816 	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
817 	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03),  /* SFC9250 VF */
818 	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
819 	{0}			/* end of list */
820 };
821 
822 /**************************************************************************
823  *
824  * Data housekeeping
825  *
826  **************************************************************************/
827 
828 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
829 {
830 	u64 n_rx_nodesc_trunc = 0;
831 	struct efx_channel *channel;
832 
833 	efx_for_each_channel(channel, efx)
834 		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
835 	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
836 	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
837 }
838 
839 /**************************************************************************
840  *
841  * PCI interface
842  *
843  **************************************************************************/
844 
845 /* Main body of final NIC shutdown code
846  * This is called only at module unload (or hotplug removal).
847  */
848 static void efx_pci_remove_main(struct efx_nic *efx)
849 {
850 	/* Flush reset_work. It can no longer be scheduled since we
851 	 * are not READY.
852 	 */
853 	BUG_ON(efx->state == STATE_READY);
854 	efx_flush_reset_workqueue(efx);
855 
856 	efx_disable_interrupts(efx);
857 	efx_clear_interrupt_affinity(efx);
858 	efx_nic_fini_interrupt(efx);
859 	efx_fini_port(efx);
860 	efx->type->fini(efx);
861 	efx_fini_napi(efx);
862 	efx_remove_all(efx);
863 }
864 
865 /* Final NIC shutdown
866  * This is called only at module unload (or hotplug removal).  A PF can call
867  * this on its VFs to ensure they are unbound first.
868  */
869 static void efx_pci_remove(struct pci_dev *pci_dev)
870 {
871 	struct efx_nic *efx;
872 
873 	efx = pci_get_drvdata(pci_dev);
874 	if (!efx)
875 		return;
876 
877 	/* Mark the NIC as fini, then stop the interface */
878 	rtnl_lock();
879 	efx_dissociate(efx);
880 	dev_close(efx->net_dev);
881 	efx_disable_interrupts(efx);
882 	efx->state = STATE_UNINIT;
883 	rtnl_unlock();
884 
885 	if (efx->type->sriov_fini)
886 		efx->type->sriov_fini(efx);
887 
888 	efx_unregister_netdev(efx);
889 
890 	efx_mtd_remove(efx);
891 
892 	efx_pci_remove_main(efx);
893 
894 	efx_fini_io(efx);
895 	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
896 
897 	efx_fini_struct(efx);
898 	free_netdev(efx->net_dev);
899 
900 	pci_disable_pcie_error_reporting(pci_dev);
901 };
902 
903 /* NIC VPD information
904  * Called during probe to display the part number of the
905  * installed NIC.  VPD is potentially very large but this should
906  * always appear within the first 512 bytes.
907  */
908 #define SFC_VPD_LEN 512
909 static void efx_probe_vpd_strings(struct efx_nic *efx)
910 {
911 	struct pci_dev *dev = efx->pci_dev;
912 	char vpd_data[SFC_VPD_LEN];
913 	ssize_t vpd_size;
914 	int ro_start, ro_size, i, j;
915 
916 	/* Get the vpd data from the device */
917 	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
918 	if (vpd_size <= 0) {
919 		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
920 		return;
921 	}
922 
923 	/* Get the Read only section */
924 	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
925 	if (ro_start < 0) {
926 		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
927 		return;
928 	}
929 
930 	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
931 	j = ro_size;
932 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
933 	if (i + j > vpd_size)
934 		j = vpd_size - i;
935 
936 	/* Get the Part number */
937 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
938 	if (i < 0) {
939 		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
940 		return;
941 	}
942 
943 	j = pci_vpd_info_field_size(&vpd_data[i]);
944 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
945 	if (i + j > vpd_size) {
946 		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
947 		return;
948 	}
949 
950 	netif_info(efx, drv, efx->net_dev,
951 		   "Part Number : %.*s\n", j, &vpd_data[i]);
952 
953 	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
954 	j = ro_size;
955 	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
956 	if (i < 0) {
957 		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
958 		return;
959 	}
960 
961 	j = pci_vpd_info_field_size(&vpd_data[i]);
962 	i += PCI_VPD_INFO_FLD_HDR_SIZE;
963 	if (i + j > vpd_size) {
964 		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
965 		return;
966 	}
967 
968 	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
969 	if (!efx->vpd_sn)
970 		return;
971 
972 	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
973 }
974 
975 
976 /* Main body of NIC initialisation
977  * This is called at module load (or hotplug insertion, theoretically).
978  */
979 static int efx_pci_probe_main(struct efx_nic *efx)
980 {
981 	int rc;
982 
983 	/* Do start-of-day initialisation */
984 	rc = efx_probe_all(efx);
985 	if (rc)
986 		goto fail1;
987 
988 	efx_init_napi(efx);
989 
990 	down_write(&efx->filter_sem);
991 	rc = efx->type->init(efx);
992 	up_write(&efx->filter_sem);
993 	if (rc) {
994 		netif_err(efx, probe, efx->net_dev,
995 			  "failed to initialise NIC\n");
996 		goto fail3;
997 	}
998 
999 	rc = efx_init_port(efx);
1000 	if (rc) {
1001 		netif_err(efx, probe, efx->net_dev,
1002 			  "failed to initialise port\n");
1003 		goto fail4;
1004 	}
1005 
1006 	rc = efx_nic_init_interrupt(efx);
1007 	if (rc)
1008 		goto fail5;
1009 
1010 	efx_set_interrupt_affinity(efx);
1011 	rc = efx_enable_interrupts(efx);
1012 	if (rc)
1013 		goto fail6;
1014 
1015 	return 0;
1016 
1017  fail6:
1018 	efx_clear_interrupt_affinity(efx);
1019 	efx_nic_fini_interrupt(efx);
1020  fail5:
1021 	efx_fini_port(efx);
1022  fail4:
1023 	efx->type->fini(efx);
1024  fail3:
1025 	efx_fini_napi(efx);
1026 	efx_remove_all(efx);
1027  fail1:
1028 	return rc;
1029 }
1030 
1031 static int efx_pci_probe_post_io(struct efx_nic *efx)
1032 {
1033 	struct net_device *net_dev = efx->net_dev;
1034 	int rc = efx_pci_probe_main(efx);
1035 
1036 	if (rc)
1037 		return rc;
1038 
1039 	if (efx->type->sriov_init) {
1040 		rc = efx->type->sriov_init(efx);
1041 		if (rc)
1042 			netif_err(efx, probe, efx->net_dev,
1043 				  "SR-IOV can't be enabled rc %d\n", rc);
1044 	}
1045 
1046 	/* Determine netdevice features */
1047 	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
1048 			      NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL);
1049 	if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
1050 		net_dev->features |= NETIF_F_TSO6;
1051 	/* Check whether device supports TSO */
1052 	if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
1053 		net_dev->features &= ~NETIF_F_ALL_TSO;
1054 	/* Mask for features that also apply to VLAN devices */
1055 	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1056 				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1057 				   NETIF_F_RXCSUM);
1058 
1059 	net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1060 
1061 	/* Disable receiving frames with bad FCS, by default. */
1062 	net_dev->features &= ~NETIF_F_RXALL;
1063 
1064 	/* Disable VLAN filtering by default.  It may be enforced if
1065 	 * the feature is fixed (i.e. VLAN filters are required to
1066 	 * receive VLAN tagged packets due to vPort restrictions).
1067 	 */
1068 	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1069 	net_dev->features |= efx->fixed_features;
1070 
1071 	rc = efx_register_netdev(efx);
1072 	if (!rc)
1073 		return 0;
1074 
1075 	efx_pci_remove_main(efx);
1076 	return rc;
1077 }
1078 
1079 /* NIC initialisation
1080  *
1081  * This is called at module load (or hotplug insertion,
1082  * theoretically).  It sets up PCI mappings, resets the NIC,
1083  * sets up and registers the network devices with the kernel and hooks
1084  * the interrupt service routine.  It does not prepare the device for
1085  * transmission; this is left to the first time one of the network
1086  * interfaces is brought up (i.e. efx_net_open).
1087  */
1088 static int efx_pci_probe(struct pci_dev *pci_dev,
1089 			 const struct pci_device_id *entry)
1090 {
1091 	struct net_device *net_dev;
1092 	struct efx_nic *efx;
1093 	int rc;
1094 
1095 	/* Allocate and initialise a struct net_device and struct efx_nic */
1096 	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
1097 				     EFX_MAX_RX_QUEUES);
1098 	if (!net_dev)
1099 		return -ENOMEM;
1100 	efx = netdev_priv(net_dev);
1101 	efx->type = (const struct efx_nic_type *) entry->driver_data;
1102 	efx->fixed_features |= NETIF_F_HIGHDMA;
1103 
1104 	pci_set_drvdata(pci_dev, efx);
1105 	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1106 	rc = efx_init_struct(efx, pci_dev, net_dev);
1107 	if (rc)
1108 		goto fail1;
1109 
1110 	netif_info(efx, probe, efx->net_dev,
1111 		   "Solarflare NIC detected\n");
1112 
1113 	if (!efx->type->is_vf)
1114 		efx_probe_vpd_strings(efx);
1115 
1116 	/* Set up basic I/O (BAR mappings etc) */
1117 	rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1118 			 efx->type->mem_map_size(efx));
1119 	if (rc)
1120 		goto fail2;
1121 
1122 	rc = efx_pci_probe_post_io(efx);
1123 	if (rc) {
1124 		/* On failure, retry once immediately.
1125 		 * If we aborted probe due to a scheduled reset, dismiss it.
1126 		 */
1127 		efx->reset_pending = 0;
1128 		rc = efx_pci_probe_post_io(efx);
1129 		if (rc) {
1130 			/* On another failure, retry once more
1131 			 * after a 50-305ms delay.
1132 			 */
1133 			unsigned char r;
1134 
1135 			get_random_bytes(&r, 1);
1136 			msleep((unsigned int)r + 50);
1137 			efx->reset_pending = 0;
1138 			rc = efx_pci_probe_post_io(efx);
1139 		}
1140 	}
1141 	if (rc)
1142 		goto fail3;
1143 
1144 	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1145 
1146 	/* Try to create MTDs, but allow this to fail */
1147 	rtnl_lock();
1148 	rc = efx_mtd_probe(efx);
1149 	rtnl_unlock();
1150 	if (rc && rc != -EPERM)
1151 		netif_warn(efx, probe, efx->net_dev,
1152 			   "failed to create MTDs (%d)\n", rc);
1153 
1154 	(void)pci_enable_pcie_error_reporting(pci_dev);
1155 
1156 	if (efx->type->udp_tnl_push_ports)
1157 		efx->type->udp_tnl_push_ports(efx);
1158 
1159 	return 0;
1160 
1161  fail3:
1162 	efx_fini_io(efx);
1163  fail2:
1164 	efx_fini_struct(efx);
1165  fail1:
1166 	WARN_ON(rc > 0);
1167 	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1168 	free_netdev(net_dev);
1169 	return rc;
1170 }
1171 
1172 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
1173  * enabled on success
1174  */
1175 #ifdef CONFIG_SFC_SRIOV
1176 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1177 {
1178 	int rc;
1179 	struct efx_nic *efx = pci_get_drvdata(dev);
1180 
1181 	if (efx->type->sriov_configure) {
1182 		rc = efx->type->sriov_configure(efx, num_vfs);
1183 		if (rc)
1184 			return rc;
1185 		else
1186 			return num_vfs;
1187 	} else
1188 		return -EOPNOTSUPP;
1189 }
1190 #endif
1191 
1192 static int efx_pm_freeze(struct device *dev)
1193 {
1194 	struct efx_nic *efx = dev_get_drvdata(dev);
1195 
1196 	rtnl_lock();
1197 
1198 	if (efx->state != STATE_DISABLED) {
1199 		efx->state = STATE_UNINIT;
1200 
1201 		efx_device_detach_sync(efx);
1202 
1203 		efx_stop_all(efx);
1204 		efx_disable_interrupts(efx);
1205 	}
1206 
1207 	rtnl_unlock();
1208 
1209 	return 0;
1210 }
1211 
1212 static int efx_pm_thaw(struct device *dev)
1213 {
1214 	int rc;
1215 	struct efx_nic *efx = dev_get_drvdata(dev);
1216 
1217 	rtnl_lock();
1218 
1219 	if (efx->state != STATE_DISABLED) {
1220 		rc = efx_enable_interrupts(efx);
1221 		if (rc)
1222 			goto fail;
1223 
1224 		mutex_lock(&efx->mac_lock);
1225 		efx_mcdi_port_reconfigure(efx);
1226 		mutex_unlock(&efx->mac_lock);
1227 
1228 		efx_start_all(efx);
1229 
1230 		efx_device_attach_if_not_resetting(efx);
1231 
1232 		efx->state = STATE_READY;
1233 
1234 		efx->type->resume_wol(efx);
1235 	}
1236 
1237 	rtnl_unlock();
1238 
1239 	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1240 	efx_queue_reset_work(efx);
1241 
1242 	return 0;
1243 
1244 fail:
1245 	rtnl_unlock();
1246 
1247 	return rc;
1248 }
1249 
1250 static int efx_pm_poweroff(struct device *dev)
1251 {
1252 	struct pci_dev *pci_dev = to_pci_dev(dev);
1253 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1254 
1255 	efx->type->fini(efx);
1256 
1257 	efx->reset_pending = 0;
1258 
1259 	pci_save_state(pci_dev);
1260 	return pci_set_power_state(pci_dev, PCI_D3hot);
1261 }
1262 
1263 /* Used for both resume and restore */
1264 static int efx_pm_resume(struct device *dev)
1265 {
1266 	struct pci_dev *pci_dev = to_pci_dev(dev);
1267 	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1268 	int rc;
1269 
1270 	rc = pci_set_power_state(pci_dev, PCI_D0);
1271 	if (rc)
1272 		return rc;
1273 	pci_restore_state(pci_dev);
1274 	rc = pci_enable_device(pci_dev);
1275 	if (rc)
1276 		return rc;
1277 	pci_set_master(efx->pci_dev);
1278 	rc = efx->type->reset(efx, RESET_TYPE_ALL);
1279 	if (rc)
1280 		return rc;
1281 	down_write(&efx->filter_sem);
1282 	rc = efx->type->init(efx);
1283 	up_write(&efx->filter_sem);
1284 	if (rc)
1285 		return rc;
1286 	rc = efx_pm_thaw(dev);
1287 	return rc;
1288 }
1289 
1290 static int efx_pm_suspend(struct device *dev)
1291 {
1292 	int rc;
1293 
1294 	efx_pm_freeze(dev);
1295 	rc = efx_pm_poweroff(dev);
1296 	if (rc)
1297 		efx_pm_resume(dev);
1298 	return rc;
1299 }
1300 
1301 static const struct dev_pm_ops efx_pm_ops = {
1302 	.suspend	= efx_pm_suspend,
1303 	.resume		= efx_pm_resume,
1304 	.freeze		= efx_pm_freeze,
1305 	.thaw		= efx_pm_thaw,
1306 	.poweroff	= efx_pm_poweroff,
1307 	.restore	= efx_pm_resume,
1308 };
1309 
1310 static struct pci_driver efx_pci_driver = {
1311 	.name		= KBUILD_MODNAME,
1312 	.id_table	= efx_pci_table,
1313 	.probe		= efx_pci_probe,
1314 	.remove		= efx_pci_remove,
1315 	.driver.pm	= &efx_pm_ops,
1316 	.err_handler	= &efx_err_handlers,
1317 #ifdef CONFIG_SFC_SRIOV
1318 	.sriov_configure = efx_pci_sriov_configure,
1319 #endif
1320 };
1321 
1322 /**************************************************************************
1323  *
1324  * Kernel module interface
1325  *
1326  *************************************************************************/
1327 
1328 static int __init efx_init_module(void)
1329 {
1330 	int rc;
1331 
1332 	printk(KERN_INFO "Solarflare NET driver\n");
1333 
1334 	rc = register_netdevice_notifier(&efx_netdev_notifier);
1335 	if (rc)
1336 		goto err_notifier;
1337 
1338 #ifdef CONFIG_SFC_SRIOV
1339 	rc = efx_init_sriov();
1340 	if (rc)
1341 		goto err_sriov;
1342 #endif
1343 
1344 	rc = efx_create_reset_workqueue();
1345 	if (rc)
1346 		goto err_reset;
1347 
1348 	rc = pci_register_driver(&efx_pci_driver);
1349 	if (rc < 0)
1350 		goto err_pci;
1351 
1352 	rc = pci_register_driver(&ef100_pci_driver);
1353 	if (rc < 0)
1354 		goto err_pci_ef100;
1355 
1356 	return 0;
1357 
1358  err_pci_ef100:
1359 	pci_unregister_driver(&efx_pci_driver);
1360  err_pci:
1361 	efx_destroy_reset_workqueue();
1362  err_reset:
1363 #ifdef CONFIG_SFC_SRIOV
1364 	efx_fini_sriov();
1365  err_sriov:
1366 #endif
1367 	unregister_netdevice_notifier(&efx_netdev_notifier);
1368  err_notifier:
1369 	return rc;
1370 }
1371 
1372 static void __exit efx_exit_module(void)
1373 {
1374 	printk(KERN_INFO "Solarflare NET driver unloading\n");
1375 
1376 	pci_unregister_driver(&ef100_pci_driver);
1377 	pci_unregister_driver(&efx_pci_driver);
1378 	efx_destroy_reset_workqueue();
1379 #ifdef CONFIG_SFC_SRIOV
1380 	efx_fini_sriov();
1381 #endif
1382 	unregister_netdevice_notifier(&efx_netdev_notifier);
1383 
1384 }
1385 
1386 module_init(efx_init_module);
1387 module_exit(efx_exit_module);
1388 
1389 MODULE_AUTHOR("Solarflare Communications and "
1390 	      "Michael Brown <mbrown@fensystems.co.uk>");
1391 MODULE_DESCRIPTION("Solarflare network driver");
1392 MODULE_LICENSE("GPL");
1393 MODULE_DEVICE_TABLE(pci, efx_pci_table);
1394