1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = virtchnl_struct_size(vfres, vsi_res, 0); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_VLAN; 444 445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 446 vsi = ice_get_vf_vsi(vf); 447 if (!vsi) { 448 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 449 goto err; 450 } 451 452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 453 vf->driver_caps); 454 455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) 456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 457 458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 460 461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 463 464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 465 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 466 467 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 468 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 469 470 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 471 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 472 473 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 474 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 475 476 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 477 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 478 479 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 480 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 481 482 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 483 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 484 485 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 486 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 487 488 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 489 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 490 491 vfres->num_vsis = 1; 492 /* Tx and Rx queue are equal for VF */ 493 vfres->num_queue_pairs = vsi->num_txq; 494 vfres->max_vectors = vf->pf->vfs.num_msix_per; 495 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 496 vfres->rss_lut_size = ICE_LUT_VSI_SIZE; 497 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 498 499 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID; 500 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 501 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 502 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 503 vf->hw_lan_addr); 504 505 /* match guest capabilities */ 506 vf->driver_caps = vfres->vf_cap_flags; 507 508 ice_vc_set_caps_allowlist(vf); 509 ice_vc_set_working_allowlist(vf); 510 511 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 512 513 err: 514 /* send the response back to the VF */ 515 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 516 (u8 *)vfres, len); 517 518 kfree(vfres); 519 return ret; 520 } 521 522 /** 523 * ice_vc_reset_vf_msg 524 * @vf: pointer to the VF info 525 * 526 * called from the VF to reset itself, 527 * unlike other virtchnl messages, PF driver 528 * doesn't send the response back to the VF 529 */ 530 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 531 { 532 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 533 ice_reset_vf(vf, 0); 534 } 535 536 /** 537 * ice_vc_isvalid_vsi_id 538 * @vf: pointer to the VF info 539 * @vsi_id: VF relative VSI ID 540 * 541 * check for the valid VSI ID 542 */ 543 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 544 { 545 return vsi_id == ICE_VF_VSI_ID; 546 } 547 548 /** 549 * ice_vc_isvalid_q_id 550 * @vsi: VSI to check queue ID against 551 * @qid: VSI relative queue ID 552 * 553 * check for the valid queue ID 554 */ 555 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid) 556 { 557 /* allocated Tx and Rx queues should be always equal for VF VSI */ 558 return qid < vsi->alloc_txq; 559 } 560 561 /** 562 * ice_vc_isvalid_ring_len 563 * @ring_len: length of ring 564 * 565 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 566 * or zero 567 */ 568 static bool ice_vc_isvalid_ring_len(u16 ring_len) 569 { 570 return ring_len == 0 || 571 (ring_len >= ICE_MIN_NUM_DESC && 572 ring_len <= ICE_MAX_NUM_DESC && 573 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 574 } 575 576 /** 577 * ice_vc_validate_pattern 578 * @vf: pointer to the VF info 579 * @proto: virtchnl protocol headers 580 * 581 * validate the pattern is supported or not. 582 * 583 * Return: true on success, false on error. 584 */ 585 bool 586 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 587 { 588 bool is_ipv4 = false; 589 bool is_ipv6 = false; 590 bool is_udp = false; 591 u16 ptype = -1; 592 int i = 0; 593 594 while (i < proto->count && 595 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 596 switch (proto->proto_hdr[i].type) { 597 case VIRTCHNL_PROTO_HDR_ETH: 598 ptype = ICE_PTYPE_MAC_PAY; 599 break; 600 case VIRTCHNL_PROTO_HDR_IPV4: 601 ptype = ICE_PTYPE_IPV4_PAY; 602 is_ipv4 = true; 603 break; 604 case VIRTCHNL_PROTO_HDR_IPV6: 605 ptype = ICE_PTYPE_IPV6_PAY; 606 is_ipv6 = true; 607 break; 608 case VIRTCHNL_PROTO_HDR_UDP: 609 if (is_ipv4) 610 ptype = ICE_PTYPE_IPV4_UDP_PAY; 611 else if (is_ipv6) 612 ptype = ICE_PTYPE_IPV6_UDP_PAY; 613 is_udp = true; 614 break; 615 case VIRTCHNL_PROTO_HDR_TCP: 616 if (is_ipv4) 617 ptype = ICE_PTYPE_IPV4_TCP_PAY; 618 else if (is_ipv6) 619 ptype = ICE_PTYPE_IPV6_TCP_PAY; 620 break; 621 case VIRTCHNL_PROTO_HDR_SCTP: 622 if (is_ipv4) 623 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 624 else if (is_ipv6) 625 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 626 break; 627 case VIRTCHNL_PROTO_HDR_GTPU_IP: 628 case VIRTCHNL_PROTO_HDR_GTPU_EH: 629 if (is_ipv4) 630 ptype = ICE_MAC_IPV4_GTPU; 631 else if (is_ipv6) 632 ptype = ICE_MAC_IPV6_GTPU; 633 goto out; 634 case VIRTCHNL_PROTO_HDR_L2TPV3: 635 if (is_ipv4) 636 ptype = ICE_MAC_IPV4_L2TPV3; 637 else if (is_ipv6) 638 ptype = ICE_MAC_IPV6_L2TPV3; 639 goto out; 640 case VIRTCHNL_PROTO_HDR_ESP: 641 if (is_ipv4) 642 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 643 ICE_MAC_IPV4_ESP; 644 else if (is_ipv6) 645 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 646 ICE_MAC_IPV6_ESP; 647 goto out; 648 case VIRTCHNL_PROTO_HDR_AH: 649 if (is_ipv4) 650 ptype = ICE_MAC_IPV4_AH; 651 else if (is_ipv6) 652 ptype = ICE_MAC_IPV6_AH; 653 goto out; 654 case VIRTCHNL_PROTO_HDR_PFCP: 655 if (is_ipv4) 656 ptype = ICE_MAC_IPV4_PFCP_SESSION; 657 else if (is_ipv6) 658 ptype = ICE_MAC_IPV6_PFCP_SESSION; 659 goto out; 660 default: 661 break; 662 } 663 i++; 664 } 665 666 out: 667 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 668 } 669 670 /** 671 * ice_vc_parse_rss_cfg - parses hash fields and headers from 672 * a specific virtchnl RSS cfg 673 * @hw: pointer to the hardware 674 * @rss_cfg: pointer to the virtchnl RSS cfg 675 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) 676 * to configure 677 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure 678 * 679 * Return true if all the protocol header and hash fields in the RSS cfg could 680 * be parsed, else return false 681 * 682 * This function parses the virtchnl RSS cfg to be the intended 683 * hash fields and the intended header for RSS configuration 684 */ 685 static bool 686 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, 687 u32 *addl_hdrs, u64 *hash_flds) 688 { 689 const struct ice_vc_hash_field_match_type *hf_list; 690 const struct ice_vc_hdr_match_type *hdr_list; 691 int i, hf_list_len, hdr_list_len; 692 693 hf_list = ice_vc_hash_field_list; 694 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 695 hdr_list = ice_vc_hdr_list; 696 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 697 698 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 699 struct virtchnl_proto_hdr *proto_hdr = 700 &rss_cfg->proto_hdrs.proto_hdr[i]; 701 bool hdr_found = false; 702 int j; 703 704 /* Find matched ice headers according to virtchnl headers. */ 705 for (j = 0; j < hdr_list_len; j++) { 706 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 707 708 if (proto_hdr->type == hdr_map.vc_hdr) { 709 *addl_hdrs |= hdr_map.ice_hdr; 710 hdr_found = true; 711 } 712 } 713 714 if (!hdr_found) 715 return false; 716 717 /* Find matched ice hash fields according to 718 * virtchnl hash fields. 719 */ 720 for (j = 0; j < hf_list_len; j++) { 721 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 722 723 if (proto_hdr->type == hf_map.vc_hdr && 724 proto_hdr->field_selector == hf_map.vc_hash_field) { 725 *hash_flds |= hf_map.ice_hash_field; 726 break; 727 } 728 } 729 } 730 731 return true; 732 } 733 734 /** 735 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 736 * RSS offloads 737 * @caps: VF driver negotiated capabilities 738 * 739 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 740 * else return false 741 */ 742 static bool ice_vf_adv_rss_offload_ena(u32 caps) 743 { 744 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 745 } 746 747 /** 748 * ice_vc_handle_rss_cfg 749 * @vf: pointer to the VF info 750 * @msg: pointer to the message buffer 751 * @add: add a RSS config if true, otherwise delete a RSS config 752 * 753 * This function adds/deletes a RSS config 754 */ 755 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 756 { 757 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 758 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 759 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 760 struct device *dev = ice_pf_to_dev(vf->pf); 761 struct ice_hw *hw = &vf->pf->hw; 762 struct ice_vsi *vsi; 763 764 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 765 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 766 vf->vf_id); 767 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 768 goto error_param; 769 } 770 771 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 772 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 773 vf->vf_id); 774 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 775 goto error_param; 776 } 777 778 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 779 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 780 goto error_param; 781 } 782 783 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 784 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 785 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 786 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 787 vf->vf_id); 788 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 789 goto error_param; 790 } 791 792 vsi = ice_get_vf_vsi(vf); 793 if (!vsi) { 794 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 795 goto error_param; 796 } 797 798 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 799 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 800 goto error_param; 801 } 802 803 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 804 struct ice_vsi_ctx *ctx; 805 u8 lut_type, hash_type; 806 int status; 807 808 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 809 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR : 810 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 811 812 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 813 if (!ctx) { 814 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 815 goto error_param; 816 } 817 818 ctx->info.q_opt_rss = 819 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 820 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 821 822 /* Preserve existing queueing option setting */ 823 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 824 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 825 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 826 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 827 828 ctx->info.valid_sections = 829 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 830 831 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 832 if (status) { 833 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 834 status, ice_aq_str(hw->adminq.sq_last_status)); 835 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 836 } else { 837 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 838 } 839 840 kfree(ctx); 841 } else { 842 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 843 u64 hash_flds = ICE_HASH_INVALID; 844 845 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, 846 &hash_flds)) { 847 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 848 goto error_param; 849 } 850 851 if (add) { 852 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, 853 addl_hdrs)) { 854 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 855 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 856 vsi->vsi_num, v_ret); 857 } 858 } else { 859 int status; 860 861 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, 862 addl_hdrs); 863 /* We just ignore -ENOENT, because if two configurations 864 * share the same profile remove one of them actually 865 * removes both, since the profile is deleted. 866 */ 867 if (status && status != -ENOENT) { 868 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 869 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 870 vf->vf_id, status); 871 } 872 } 873 } 874 875 error_param: 876 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 877 } 878 879 /** 880 * ice_vc_config_rss_key 881 * @vf: pointer to the VF info 882 * @msg: pointer to the msg buffer 883 * 884 * Configure the VF's RSS key 885 */ 886 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 887 { 888 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 889 struct virtchnl_rss_key *vrk = 890 (struct virtchnl_rss_key *)msg; 891 struct ice_vsi *vsi; 892 893 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 894 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 895 goto error_param; 896 } 897 898 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 899 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 900 goto error_param; 901 } 902 903 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 904 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 905 goto error_param; 906 } 907 908 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 909 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 910 goto error_param; 911 } 912 913 vsi = ice_get_vf_vsi(vf); 914 if (!vsi) { 915 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 916 goto error_param; 917 } 918 919 if (ice_set_rss_key(vsi, vrk->key)) 920 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 921 error_param: 922 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 923 NULL, 0); 924 } 925 926 /** 927 * ice_vc_config_rss_lut 928 * @vf: pointer to the VF info 929 * @msg: pointer to the msg buffer 930 * 931 * Configure the VF's RSS LUT 932 */ 933 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 934 { 935 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 936 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 937 struct ice_vsi *vsi; 938 939 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 940 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 941 goto error_param; 942 } 943 944 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 945 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 946 goto error_param; 947 } 948 949 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { 950 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 951 goto error_param; 952 } 953 954 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 955 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 956 goto error_param; 957 } 958 959 vsi = ice_get_vf_vsi(vf); 960 if (!vsi) { 961 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 962 goto error_param; 963 } 964 965 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) 966 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 967 error_param: 968 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 969 NULL, 0); 970 } 971 972 /** 973 * ice_vc_cfg_promiscuous_mode_msg 974 * @vf: pointer to the VF info 975 * @msg: pointer to the msg buffer 976 * 977 * called from the VF to configure VF VSIs promiscuous mode 978 */ 979 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 980 { 981 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 982 bool rm_promisc, alluni = false, allmulti = false; 983 struct virtchnl_promisc_info *info = 984 (struct virtchnl_promisc_info *)msg; 985 struct ice_vsi_vlan_ops *vlan_ops; 986 int mcast_err = 0, ucast_err = 0; 987 struct ice_pf *pf = vf->pf; 988 struct ice_vsi *vsi; 989 u8 mcast_m, ucast_m; 990 struct device *dev; 991 int ret = 0; 992 993 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 994 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 995 goto error_param; 996 } 997 998 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 999 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1000 goto error_param; 1001 } 1002 1003 vsi = ice_get_vf_vsi(vf); 1004 if (!vsi) { 1005 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1006 goto error_param; 1007 } 1008 1009 dev = ice_pf_to_dev(pf); 1010 if (!ice_is_vf_trusted(vf)) { 1011 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1012 vf->vf_id); 1013 /* Leave v_ret alone, lie to the VF on purpose. */ 1014 goto error_param; 1015 } 1016 1017 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1018 alluni = true; 1019 1020 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1021 allmulti = true; 1022 1023 rm_promisc = !allmulti && !alluni; 1024 1025 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1026 if (rm_promisc) 1027 ret = vlan_ops->ena_rx_filtering(vsi); 1028 else 1029 ret = vlan_ops->dis_rx_filtering(vsi); 1030 if (ret) { 1031 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1032 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1033 goto error_param; 1034 } 1035 1036 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1037 1038 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1039 if (alluni) { 1040 /* in this case we're turning on promiscuous mode */ 1041 ret = ice_set_dflt_vsi(vsi); 1042 } else { 1043 /* in this case we're turning off promiscuous mode */ 1044 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1045 ret = ice_clear_dflt_vsi(vsi); 1046 } 1047 1048 /* in this case we're turning on/off only 1049 * allmulticast 1050 */ 1051 if (allmulti) 1052 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1053 else 1054 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1055 1056 if (ret) { 1057 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1058 vf->vf_id, ret); 1059 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1060 goto error_param; 1061 } 1062 } else { 1063 if (alluni) 1064 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1065 else 1066 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1067 1068 if (allmulti) 1069 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1070 else 1071 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1072 1073 if (ucast_err || mcast_err) 1074 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1075 } 1076 1077 if (!mcast_err) { 1078 if (allmulti && 1079 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1080 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1081 vf->vf_id); 1082 else if (!allmulti && 1083 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1084 vf->vf_states)) 1085 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1086 vf->vf_id); 1087 } else { 1088 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1089 vf->vf_id, mcast_err); 1090 } 1091 1092 if (!ucast_err) { 1093 if (alluni && 1094 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1095 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1096 vf->vf_id); 1097 else if (!alluni && 1098 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1099 vf->vf_states)) 1100 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1101 vf->vf_id); 1102 } else { 1103 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1104 vf->vf_id, ucast_err); 1105 } 1106 1107 error_param: 1108 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1109 v_ret, NULL, 0); 1110 } 1111 1112 /** 1113 * ice_vc_get_stats_msg 1114 * @vf: pointer to the VF info 1115 * @msg: pointer to the msg buffer 1116 * 1117 * called from the VF to get VSI stats 1118 */ 1119 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1120 { 1121 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1122 struct virtchnl_queue_select *vqs = 1123 (struct virtchnl_queue_select *)msg; 1124 struct ice_eth_stats stats = { 0 }; 1125 struct ice_vsi *vsi; 1126 1127 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1128 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1129 goto error_param; 1130 } 1131 1132 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1133 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1134 goto error_param; 1135 } 1136 1137 vsi = ice_get_vf_vsi(vf); 1138 if (!vsi) { 1139 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1140 goto error_param; 1141 } 1142 1143 ice_update_eth_stats(vsi); 1144 1145 stats = vsi->eth_stats; 1146 1147 error_param: 1148 /* send the response to the VF */ 1149 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1150 (u8 *)&stats, sizeof(stats)); 1151 } 1152 1153 /** 1154 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1155 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1156 * 1157 * Return true on successful validation, else false 1158 */ 1159 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1160 { 1161 if ((!vqs->rx_queues && !vqs->tx_queues) || 1162 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1163 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1164 return false; 1165 1166 return true; 1167 } 1168 1169 /** 1170 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1171 * @vsi: VSI of the VF to configure 1172 * @q_idx: VF queue index used to determine the queue in the PF's space 1173 */ 1174 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1175 { 1176 struct ice_hw *hw = &vsi->back->hw; 1177 u32 pfq = vsi->txq_map[q_idx]; 1178 u32 reg; 1179 1180 reg = rd32(hw, QINT_TQCTL(pfq)); 1181 1182 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1183 * this is most likely a poll mode VF driver, so don't enable an 1184 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1185 */ 1186 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1187 return; 1188 1189 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1190 } 1191 1192 /** 1193 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1194 * @vsi: VSI of the VF to configure 1195 * @q_idx: VF queue index used to determine the queue in the PF's space 1196 */ 1197 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1198 { 1199 struct ice_hw *hw = &vsi->back->hw; 1200 u32 pfq = vsi->rxq_map[q_idx]; 1201 u32 reg; 1202 1203 reg = rd32(hw, QINT_RQCTL(pfq)); 1204 1205 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1206 * this is most likely a poll mode VF driver, so don't enable an 1207 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1208 */ 1209 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1210 return; 1211 1212 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1213 } 1214 1215 /** 1216 * ice_vc_ena_qs_msg 1217 * @vf: pointer to the VF info 1218 * @msg: pointer to the msg buffer 1219 * 1220 * called from the VF to enable all or specific queue(s) 1221 */ 1222 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1223 { 1224 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1225 struct virtchnl_queue_select *vqs = 1226 (struct virtchnl_queue_select *)msg; 1227 struct ice_vsi *vsi; 1228 unsigned long q_map; 1229 u16 vf_q_id; 1230 1231 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1232 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1233 goto error_param; 1234 } 1235 1236 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1237 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1238 goto error_param; 1239 } 1240 1241 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1242 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1243 goto error_param; 1244 } 1245 1246 vsi = ice_get_vf_vsi(vf); 1247 if (!vsi) { 1248 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1249 goto error_param; 1250 } 1251 1252 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1253 * Tx queue group list was configured and the context bits were 1254 * programmed using ice_vsi_cfg_txqs 1255 */ 1256 q_map = vqs->rx_queues; 1257 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1258 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1259 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1260 goto error_param; 1261 } 1262 1263 /* Skip queue if enabled */ 1264 if (test_bit(vf_q_id, vf->rxq_ena)) 1265 continue; 1266 1267 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1268 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1269 vf_q_id, vsi->vsi_num); 1270 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1271 goto error_param; 1272 } 1273 1274 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1275 set_bit(vf_q_id, vf->rxq_ena); 1276 } 1277 1278 q_map = vqs->tx_queues; 1279 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1280 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1281 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1282 goto error_param; 1283 } 1284 1285 /* Skip queue if enabled */ 1286 if (test_bit(vf_q_id, vf->txq_ena)) 1287 continue; 1288 1289 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1290 set_bit(vf_q_id, vf->txq_ena); 1291 } 1292 1293 /* Set flag to indicate that queues are enabled */ 1294 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1295 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1296 1297 error_param: 1298 /* send the response to the VF */ 1299 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1300 NULL, 0); 1301 } 1302 1303 /** 1304 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1305 * @vf: VF to disable queue for 1306 * @vsi: VSI for the VF 1307 * @q_id: VF relative (0-based) queue ID 1308 * 1309 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1310 * disabled then clear q_id bit in the enabled queues bitmap and return 1311 * success. Otherwise return error. 1312 */ 1313 static int 1314 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1315 { 1316 struct ice_txq_meta txq_meta = { 0 }; 1317 struct ice_tx_ring *ring; 1318 int err; 1319 1320 if (!test_bit(q_id, vf->txq_ena)) 1321 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1322 q_id, vsi->vsi_num); 1323 1324 ring = vsi->tx_rings[q_id]; 1325 if (!ring) 1326 return -EINVAL; 1327 1328 ice_fill_txq_meta(vsi, ring, &txq_meta); 1329 1330 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1331 if (err) { 1332 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1333 q_id, vsi->vsi_num); 1334 return err; 1335 } 1336 1337 /* Clear enabled queues flag */ 1338 clear_bit(q_id, vf->txq_ena); 1339 1340 return 0; 1341 } 1342 1343 /** 1344 * ice_vc_dis_qs_msg 1345 * @vf: pointer to the VF info 1346 * @msg: pointer to the msg buffer 1347 * 1348 * called from the VF to disable all or specific queue(s) 1349 */ 1350 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1351 { 1352 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1353 struct virtchnl_queue_select *vqs = 1354 (struct virtchnl_queue_select *)msg; 1355 struct ice_vsi *vsi; 1356 unsigned long q_map; 1357 u16 vf_q_id; 1358 1359 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1360 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1361 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1362 goto error_param; 1363 } 1364 1365 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1366 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1367 goto error_param; 1368 } 1369 1370 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1371 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1372 goto error_param; 1373 } 1374 1375 vsi = ice_get_vf_vsi(vf); 1376 if (!vsi) { 1377 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1378 goto error_param; 1379 } 1380 1381 if (vqs->tx_queues) { 1382 q_map = vqs->tx_queues; 1383 1384 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1385 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1386 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1387 goto error_param; 1388 } 1389 1390 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1391 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1392 goto error_param; 1393 } 1394 } 1395 } 1396 1397 q_map = vqs->rx_queues; 1398 /* speed up Rx queue disable by batching them if possible */ 1399 if (q_map && 1400 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1401 if (ice_vsi_stop_all_rx_rings(vsi)) { 1402 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1403 vsi->vsi_num); 1404 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1405 goto error_param; 1406 } 1407 1408 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1409 } else if (q_map) { 1410 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1411 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1412 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1413 goto error_param; 1414 } 1415 1416 /* Skip queue if not enabled */ 1417 if (!test_bit(vf_q_id, vf->rxq_ena)) 1418 continue; 1419 1420 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1421 true)) { 1422 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1423 vf_q_id, vsi->vsi_num); 1424 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1425 goto error_param; 1426 } 1427 1428 /* Clear enabled queues flag */ 1429 clear_bit(vf_q_id, vf->rxq_ena); 1430 } 1431 } 1432 1433 /* Clear enabled queues flag */ 1434 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1435 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1436 1437 error_param: 1438 /* send the response to the VF */ 1439 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1440 NULL, 0); 1441 } 1442 1443 /** 1444 * ice_cfg_interrupt 1445 * @vf: pointer to the VF info 1446 * @vsi: the VSI being configured 1447 * @vector_id: vector ID 1448 * @map: vector map for mapping vectors to queues 1449 * @q_vector: structure for interrupt vector 1450 * configure the IRQ to queue map 1451 */ 1452 static int 1453 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, 1454 struct virtchnl_vector_map *map, 1455 struct ice_q_vector *q_vector) 1456 { 1457 u16 vsi_q_id, vsi_q_id_idx; 1458 unsigned long qmap; 1459 1460 q_vector->num_ring_rx = 0; 1461 q_vector->num_ring_tx = 0; 1462 1463 qmap = map->rxq_map; 1464 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1465 vsi_q_id = vsi_q_id_idx; 1466 1467 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1468 return VIRTCHNL_STATUS_ERR_PARAM; 1469 1470 q_vector->num_ring_rx++; 1471 q_vector->rx.itr_idx = map->rxitr_idx; 1472 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1473 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, 1474 q_vector->rx.itr_idx); 1475 } 1476 1477 qmap = map->txq_map; 1478 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1479 vsi_q_id = vsi_q_id_idx; 1480 1481 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1482 return VIRTCHNL_STATUS_ERR_PARAM; 1483 1484 q_vector->num_ring_tx++; 1485 q_vector->tx.itr_idx = map->txitr_idx; 1486 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1487 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, 1488 q_vector->tx.itr_idx); 1489 } 1490 1491 return VIRTCHNL_STATUS_SUCCESS; 1492 } 1493 1494 /** 1495 * ice_vc_cfg_irq_map_msg 1496 * @vf: pointer to the VF info 1497 * @msg: pointer to the msg buffer 1498 * 1499 * called from the VF to configure the IRQ to queue map 1500 */ 1501 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1502 { 1503 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1504 u16 num_q_vectors_mapped, vsi_id, vector_id; 1505 struct virtchnl_irq_map_info *irqmap_info; 1506 struct virtchnl_vector_map *map; 1507 struct ice_pf *pf = vf->pf; 1508 struct ice_vsi *vsi; 1509 int i; 1510 1511 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1512 num_q_vectors_mapped = irqmap_info->num_vectors; 1513 1514 /* Check to make sure number of VF vectors mapped is not greater than 1515 * number of VF vectors originally allocated, and check that 1516 * there is actually at least a single VF queue vector mapped 1517 */ 1518 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1519 pf->vfs.num_msix_per < num_q_vectors_mapped || 1520 !num_q_vectors_mapped) { 1521 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1522 goto error_param; 1523 } 1524 1525 vsi = ice_get_vf_vsi(vf); 1526 if (!vsi) { 1527 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1528 goto error_param; 1529 } 1530 1531 for (i = 0; i < num_q_vectors_mapped; i++) { 1532 struct ice_q_vector *q_vector; 1533 1534 map = &irqmap_info->vecmap[i]; 1535 1536 vector_id = map->vector_id; 1537 vsi_id = map->vsi_id; 1538 /* vector_id is always 0-based for each VF, and can never be 1539 * larger than or equal to the max allowed interrupts per VF 1540 */ 1541 if (!(vector_id < pf->vfs.num_msix_per) || 1542 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1543 (!vector_id && (map->rxq_map || map->txq_map))) { 1544 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1545 goto error_param; 1546 } 1547 1548 /* No need to map VF miscellaneous or rogue vector */ 1549 if (!vector_id) 1550 continue; 1551 1552 /* Subtract non queue vector from vector_id passed by VF 1553 * to get actual number of VSI queue vector array index 1554 */ 1555 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1556 if (!q_vector) { 1557 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1558 goto error_param; 1559 } 1560 1561 /* lookout for the invalid queue index */ 1562 v_ret = (enum virtchnl_status_code) 1563 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); 1564 if (v_ret) 1565 goto error_param; 1566 } 1567 1568 error_param: 1569 /* send the response to the VF */ 1570 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1571 NULL, 0); 1572 } 1573 1574 /** 1575 * ice_vc_cfg_qs_msg 1576 * @vf: pointer to the VF info 1577 * @msg: pointer to the msg buffer 1578 * 1579 * called from the VF to configure the Rx/Tx queues 1580 */ 1581 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1582 { 1583 struct virtchnl_vsi_queue_config_info *qci = 1584 (struct virtchnl_vsi_queue_config_info *)msg; 1585 struct virtchnl_queue_pair_info *qpi; 1586 struct ice_pf *pf = vf->pf; 1587 struct ice_lag *lag; 1588 struct ice_vsi *vsi; 1589 u8 act_prt, pri_prt; 1590 int i = -1, q_idx; 1591 1592 lag = pf->lag; 1593 mutex_lock(&pf->lag_mutex); 1594 act_prt = ICE_LAG_INVALID_PORT; 1595 pri_prt = pf->hw.port_info->lport; 1596 if (lag && lag->bonded && lag->primary) { 1597 act_prt = lag->active_port; 1598 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT && 1599 lag->upper_netdev) 1600 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt); 1601 else 1602 act_prt = ICE_LAG_INVALID_PORT; 1603 } 1604 1605 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1606 goto error_param; 1607 1608 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1609 goto error_param; 1610 1611 vsi = ice_get_vf_vsi(vf); 1612 if (!vsi) 1613 goto error_param; 1614 1615 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1616 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1617 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1618 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1619 goto error_param; 1620 } 1621 1622 for (i = 0; i < qci->num_queue_pairs; i++) { 1623 qpi = &qci->qpair[i]; 1624 if (qpi->txq.vsi_id != qci->vsi_id || 1625 qpi->rxq.vsi_id != qci->vsi_id || 1626 qpi->rxq.queue_id != qpi->txq.queue_id || 1627 qpi->txq.headwb_enabled || 1628 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1629 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1630 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) { 1631 goto error_param; 1632 } 1633 1634 q_idx = qpi->rxq.queue_id; 1635 1636 /* make sure selected "q_idx" is in valid range of queues 1637 * for selected "vsi" 1638 */ 1639 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1640 goto error_param; 1641 } 1642 1643 /* copy Tx queue info from VF into VSI */ 1644 if (qpi->txq.ring_len > 0) { 1645 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1646 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1647 1648 /* Disable any existing queue first */ 1649 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 1650 goto error_param; 1651 1652 /* Configure a queue with the requested settings */ 1653 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1654 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 1655 vf->vf_id, i); 1656 goto error_param; 1657 } 1658 } 1659 1660 /* copy Rx queue info from VF into VSI */ 1661 if (qpi->rxq.ring_len > 0) { 1662 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1663 u32 rxdid; 1664 1665 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1666 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1667 1668 if (qpi->rxq.databuffer_size != 0 && 1669 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1670 qpi->rxq.databuffer_size < 1024)) 1671 goto error_param; 1672 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1673 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1674 if (qpi->rxq.max_pkt_size > max_frame_size || 1675 qpi->rxq.max_pkt_size < 64) 1676 goto error_param; 1677 1678 vsi->max_frame = qpi->rxq.max_pkt_size; 1679 /* add space for the port VLAN since the VF driver is 1680 * not expected to account for it in the MTU 1681 * calculation 1682 */ 1683 if (ice_vf_is_port_vlan_ena(vf)) 1684 vsi->max_frame += VLAN_HLEN; 1685 1686 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1687 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 1688 vf->vf_id, i); 1689 goto error_param; 1690 } 1691 1692 /* If Rx flex desc is supported, select RXDID for Rx 1693 * queues. Otherwise, use legacy 32byte descriptor 1694 * format. Legacy 16byte descriptor is not supported. 1695 * If this RXDID is selected, return error. 1696 */ 1697 if (vf->driver_caps & 1698 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 1699 rxdid = qpi->rxq.rxdid; 1700 if (!(BIT(rxdid) & pf->supported_rxdids)) 1701 goto error_param; 1702 } else { 1703 rxdid = ICE_RXDID_LEGACY_1; 1704 } 1705 1706 ice_write_qrxflxp_cntxt(&vsi->back->hw, 1707 vsi->rxq_map[q_idx], 1708 rxdid, 0x03, false); 1709 } 1710 } 1711 1712 if (lag && lag->bonded && lag->primary && 1713 act_prt != ICE_LAG_INVALID_PORT) 1714 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1715 mutex_unlock(&pf->lag_mutex); 1716 1717 /* send the response to the VF */ 1718 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1719 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 1720 error_param: 1721 /* disable whatever we can */ 1722 for (; i >= 0; i--) { 1723 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 1724 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 1725 vf->vf_id, i); 1726 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 1727 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 1728 vf->vf_id, i); 1729 } 1730 1731 if (lag && lag->bonded && lag->primary && 1732 act_prt != ICE_LAG_INVALID_PORT) 1733 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1734 mutex_unlock(&pf->lag_mutex); 1735 1736 ice_lag_move_new_vf_nodes(vf); 1737 1738 /* send the response to the VF */ 1739 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1740 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 1741 } 1742 1743 /** 1744 * ice_can_vf_change_mac 1745 * @vf: pointer to the VF info 1746 * 1747 * Return true if the VF is allowed to change its MAC filters, false otherwise 1748 */ 1749 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1750 { 1751 /* If the VF MAC address has been set administratively (via the 1752 * ndo_set_vf_mac command), then deny permission to the VF to 1753 * add/delete unicast MAC addresses, unless the VF is trusted 1754 */ 1755 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1756 return false; 1757 1758 return true; 1759 } 1760 1761 /** 1762 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1763 * @vc_ether_addr: used to extract the type 1764 */ 1765 static u8 1766 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1767 { 1768 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1769 } 1770 1771 /** 1772 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1773 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1774 */ 1775 static bool 1776 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1777 { 1778 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1779 1780 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1781 } 1782 1783 /** 1784 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1785 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1786 * 1787 * This function should only be called when the MAC address in 1788 * virtchnl_ether_addr is a valid unicast MAC 1789 */ 1790 static bool 1791 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1792 { 1793 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1794 1795 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1796 } 1797 1798 /** 1799 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1800 * @vf: VF to update 1801 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1802 */ 1803 static void 1804 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1805 { 1806 u8 *mac_addr = vc_ether_addr->addr; 1807 1808 if (!is_valid_ether_addr(mac_addr)) 1809 return; 1810 1811 /* only allow legacy VF drivers to set the device and hardware MAC if it 1812 * is zero and allow new VF drivers to set the hardware MAC if the type 1813 * was correctly specified over VIRTCHNL 1814 */ 1815 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1816 is_zero_ether_addr(vf->hw_lan_addr)) || 1817 ice_is_vc_addr_primary(vc_ether_addr)) { 1818 ether_addr_copy(vf->dev_lan_addr, mac_addr); 1819 ether_addr_copy(vf->hw_lan_addr, mac_addr); 1820 } 1821 1822 /* hardware and device MACs are already set, but its possible that the 1823 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1824 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1825 * away for the legacy VF driver case as it will be updated in the 1826 * delete flow for this case 1827 */ 1828 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1829 ether_addr_copy(vf->legacy_last_added_umac.addr, 1830 mac_addr); 1831 vf->legacy_last_added_umac.time_modified = jiffies; 1832 } 1833 } 1834 1835 /** 1836 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1837 * @vf: pointer to the VF info 1838 * @vsi: pointer to the VF's VSI 1839 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1840 */ 1841 static int 1842 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1843 struct virtchnl_ether_addr *vc_ether_addr) 1844 { 1845 struct device *dev = ice_pf_to_dev(vf->pf); 1846 u8 *mac_addr = vc_ether_addr->addr; 1847 int ret; 1848 1849 /* device MAC already added */ 1850 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 1851 return 0; 1852 1853 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1854 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1855 return -EPERM; 1856 } 1857 1858 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1859 if (ret == -EEXIST) { 1860 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1861 vf->vf_id); 1862 /* don't return since we might need to update 1863 * the primary MAC in ice_vfhw_mac_add() below 1864 */ 1865 } else if (ret) { 1866 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1867 mac_addr, vf->vf_id, ret); 1868 return ret; 1869 } else { 1870 vf->num_mac++; 1871 } 1872 1873 ice_vfhw_mac_add(vf, vc_ether_addr); 1874 1875 return ret; 1876 } 1877 1878 /** 1879 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1880 * @last_added_umac: structure used to check expiration 1881 */ 1882 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1883 { 1884 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1885 return time_is_before_jiffies(last_added_umac->time_modified + 1886 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1887 } 1888 1889 /** 1890 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1891 * @vf: VF to update 1892 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1893 * 1894 * only update cached hardware MAC for legacy VF drivers on delete 1895 * because we cannot guarantee order/type of MAC from the VF driver 1896 */ 1897 static void 1898 ice_update_legacy_cached_mac(struct ice_vf *vf, 1899 struct virtchnl_ether_addr *vc_ether_addr) 1900 { 1901 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1902 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1903 return; 1904 1905 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 1906 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 1907 } 1908 1909 /** 1910 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1911 * @vf: VF to update 1912 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1913 */ 1914 static void 1915 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1916 { 1917 u8 *mac_addr = vc_ether_addr->addr; 1918 1919 if (!is_valid_ether_addr(mac_addr) || 1920 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1921 return; 1922 1923 /* allow the device MAC to be repopulated in the add flow and don't 1924 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 1925 * to be persistent on VM reboot and across driver unload/load, which 1926 * won't work if we clear the hardware MAC here 1927 */ 1928 eth_zero_addr(vf->dev_lan_addr); 1929 1930 ice_update_legacy_cached_mac(vf, vc_ether_addr); 1931 } 1932 1933 /** 1934 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 1935 * @vf: pointer to the VF info 1936 * @vsi: pointer to the VF's VSI 1937 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 1938 */ 1939 static int 1940 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1941 struct virtchnl_ether_addr *vc_ether_addr) 1942 { 1943 struct device *dev = ice_pf_to_dev(vf->pf); 1944 u8 *mac_addr = vc_ether_addr->addr; 1945 int status; 1946 1947 if (!ice_can_vf_change_mac(vf) && 1948 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1949 return 0; 1950 1951 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1952 if (status == -ENOENT) { 1953 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 1954 vf->vf_id); 1955 return -ENOENT; 1956 } else if (status) { 1957 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 1958 mac_addr, vf->vf_id, status); 1959 return -EIO; 1960 } 1961 1962 ice_vfhw_mac_del(vf, vc_ether_addr); 1963 1964 vf->num_mac--; 1965 1966 return 0; 1967 } 1968 1969 /** 1970 * ice_vc_handle_mac_addr_msg 1971 * @vf: pointer to the VF info 1972 * @msg: pointer to the msg buffer 1973 * @set: true if MAC filters are being set, false otherwise 1974 * 1975 * add guest MAC address filter 1976 */ 1977 static int 1978 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 1979 { 1980 int (*ice_vc_cfg_mac) 1981 (struct ice_vf *vf, struct ice_vsi *vsi, 1982 struct virtchnl_ether_addr *virtchnl_ether_addr); 1983 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1984 struct virtchnl_ether_addr_list *al = 1985 (struct virtchnl_ether_addr_list *)msg; 1986 struct ice_pf *pf = vf->pf; 1987 enum virtchnl_ops vc_op; 1988 struct ice_vsi *vsi; 1989 int i; 1990 1991 if (set) { 1992 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 1993 ice_vc_cfg_mac = ice_vc_add_mac_addr; 1994 } else { 1995 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 1996 ice_vc_cfg_mac = ice_vc_del_mac_addr; 1997 } 1998 1999 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 2000 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 2001 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2002 goto handle_mac_exit; 2003 } 2004 2005 /* If this VF is not privileged, then we can't add more than a 2006 * limited number of addresses. Check to make sure that the 2007 * additions do not push us over the limit. 2008 */ 2009 if (set && !ice_is_vf_trusted(vf) && 2010 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2011 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2012 vf->vf_id); 2013 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2014 goto handle_mac_exit; 2015 } 2016 2017 vsi = ice_get_vf_vsi(vf); 2018 if (!vsi) { 2019 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2020 goto handle_mac_exit; 2021 } 2022 2023 for (i = 0; i < al->num_elements; i++) { 2024 u8 *mac_addr = al->list[i].addr; 2025 int result; 2026 2027 if (is_broadcast_ether_addr(mac_addr) || 2028 is_zero_ether_addr(mac_addr)) 2029 continue; 2030 2031 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2032 if (result == -EEXIST || result == -ENOENT) { 2033 continue; 2034 } else if (result) { 2035 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2036 goto handle_mac_exit; 2037 } 2038 } 2039 2040 handle_mac_exit: 2041 /* send the response to the VF */ 2042 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2043 } 2044 2045 /** 2046 * ice_vc_add_mac_addr_msg 2047 * @vf: pointer to the VF info 2048 * @msg: pointer to the msg buffer 2049 * 2050 * add guest MAC address filter 2051 */ 2052 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2053 { 2054 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2055 } 2056 2057 /** 2058 * ice_vc_del_mac_addr_msg 2059 * @vf: pointer to the VF info 2060 * @msg: pointer to the msg buffer 2061 * 2062 * remove guest MAC address filter 2063 */ 2064 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2065 { 2066 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2067 } 2068 2069 /** 2070 * ice_vc_request_qs_msg 2071 * @vf: pointer to the VF info 2072 * @msg: pointer to the msg buffer 2073 * 2074 * VFs get a default number of queues but can use this message to request a 2075 * different number. If the request is successful, PF will reset the VF and 2076 * return 0. If unsuccessful, PF will send message informing VF of number of 2077 * available queue pairs via virtchnl message response to VF. 2078 */ 2079 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2080 { 2081 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2082 struct virtchnl_vf_res_request *vfres = 2083 (struct virtchnl_vf_res_request *)msg; 2084 u16 req_queues = vfres->num_queue_pairs; 2085 struct ice_pf *pf = vf->pf; 2086 u16 max_allowed_vf_queues; 2087 u16 tx_rx_queue_left; 2088 struct device *dev; 2089 u16 cur_queues; 2090 2091 dev = ice_pf_to_dev(pf); 2092 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2093 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2094 goto error_param; 2095 } 2096 2097 cur_queues = vf->num_vf_qs; 2098 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2099 ice_get_avail_rxq_count(pf)); 2100 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2101 if (!req_queues) { 2102 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2103 vf->vf_id); 2104 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2105 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2106 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2107 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2108 } else if (req_queues > cur_queues && 2109 req_queues - cur_queues > tx_rx_queue_left) { 2110 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2111 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2112 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2113 ICE_MAX_RSS_QS_PER_VF); 2114 } else { 2115 /* request is successful, then reset VF */ 2116 vf->num_req_qs = req_queues; 2117 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2118 dev_info(dev, "VF %d granted request of %u queues.\n", 2119 vf->vf_id, req_queues); 2120 return 0; 2121 } 2122 2123 error_param: 2124 /* send the response to the VF */ 2125 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2126 v_ret, (u8 *)vfres, sizeof(*vfres)); 2127 } 2128 2129 /** 2130 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2131 * @caps: VF driver negotiated capabilities 2132 * 2133 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2134 */ 2135 static bool ice_vf_vlan_offload_ena(u32 caps) 2136 { 2137 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2138 } 2139 2140 /** 2141 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2142 * @vf: VF used to determine if VLAN promiscuous config is allowed 2143 */ 2144 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2145 { 2146 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2147 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2148 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2149 return true; 2150 2151 return false; 2152 } 2153 2154 /** 2155 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2156 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2157 * @vlan: VLAN used to enable VLAN promiscuous 2158 * 2159 * This function should only be called if VLAN promiscuous mode is allowed, 2160 * which can be determined via ice_is_vlan_promisc_allowed(). 2161 */ 2162 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2163 { 2164 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2165 int status; 2166 2167 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2168 vlan->vid); 2169 if (status && status != -EEXIST) 2170 return status; 2171 2172 return 0; 2173 } 2174 2175 /** 2176 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2177 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2178 * @vlan: VLAN used to disable VLAN promiscuous 2179 * 2180 * This function should only be called if VLAN promiscuous mode is allowed, 2181 * which can be determined via ice_is_vlan_promisc_allowed(). 2182 */ 2183 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2184 { 2185 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2186 int status; 2187 2188 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2189 vlan->vid); 2190 if (status && status != -ENOENT) 2191 return status; 2192 2193 return 0; 2194 } 2195 2196 /** 2197 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2198 * @vf: VF to check against 2199 * @vsi: VF's VSI 2200 * 2201 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2202 * wants to, so return false. 2203 * 2204 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2205 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2206 */ 2207 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2208 { 2209 if (ice_is_vf_trusted(vf)) 2210 return false; 2211 2212 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2213 return ((ice_vsi_num_non_zero_vlans(vsi) + 2214 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2215 } 2216 2217 /** 2218 * ice_vc_process_vlan_msg 2219 * @vf: pointer to the VF info 2220 * @msg: pointer to the msg buffer 2221 * @add_v: Add VLAN if true, otherwise delete VLAN 2222 * 2223 * Process virtchnl op to add or remove programmed guest VLAN ID 2224 */ 2225 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2226 { 2227 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2228 struct virtchnl_vlan_filter_list *vfl = 2229 (struct virtchnl_vlan_filter_list *)msg; 2230 struct ice_pf *pf = vf->pf; 2231 bool vlan_promisc = false; 2232 struct ice_vsi *vsi; 2233 struct device *dev; 2234 int status = 0; 2235 int i; 2236 2237 dev = ice_pf_to_dev(pf); 2238 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2239 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2240 goto error_param; 2241 } 2242 2243 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2244 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2245 goto error_param; 2246 } 2247 2248 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2249 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2250 goto error_param; 2251 } 2252 2253 for (i = 0; i < vfl->num_elements; i++) { 2254 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2255 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2256 dev_err(dev, "invalid VF VLAN id %d\n", 2257 vfl->vlan_id[i]); 2258 goto error_param; 2259 } 2260 } 2261 2262 vsi = ice_get_vf_vsi(vf); 2263 if (!vsi) { 2264 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2265 goto error_param; 2266 } 2267 2268 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2269 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2270 vf->vf_id); 2271 /* There is no need to let VF know about being not trusted, 2272 * so we can just return success message here 2273 */ 2274 goto error_param; 2275 } 2276 2277 /* in DVM a VF can add/delete inner VLAN filters when 2278 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2279 */ 2280 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2281 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2282 goto error_param; 2283 } 2284 2285 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2286 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2287 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2288 */ 2289 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2290 !ice_is_dvm_ena(&pf->hw) && 2291 !ice_vf_is_port_vlan_ena(vf); 2292 2293 if (add_v) { 2294 for (i = 0; i < vfl->num_elements; i++) { 2295 u16 vid = vfl->vlan_id[i]; 2296 struct ice_vlan vlan; 2297 2298 if (ice_vf_has_max_vlans(vf, vsi)) { 2299 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2300 vf->vf_id); 2301 /* There is no need to let VF know about being 2302 * not trusted, so we can just return success 2303 * message here as well. 2304 */ 2305 goto error_param; 2306 } 2307 2308 /* we add VLAN 0 by default for each VF so we can enable 2309 * Tx VLAN anti-spoof without triggering MDD events so 2310 * we don't need to add it again here 2311 */ 2312 if (!vid) 2313 continue; 2314 2315 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2316 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2317 if (status) { 2318 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2319 goto error_param; 2320 } 2321 2322 /* Enable VLAN filtering on first non-zero VLAN */ 2323 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2324 if (vf->spoofchk) { 2325 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2326 if (status) { 2327 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2328 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2329 vid, status); 2330 goto error_param; 2331 } 2332 } 2333 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2334 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2335 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2336 vid, status); 2337 goto error_param; 2338 } 2339 } else if (vlan_promisc) { 2340 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2341 if (status) { 2342 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2343 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2344 vid, status); 2345 } 2346 } 2347 } 2348 } else { 2349 /* In case of non_trusted VF, number of VLAN elements passed 2350 * to PF for removal might be greater than number of VLANs 2351 * filter programmed for that VF - So, use actual number of 2352 * VLANS added earlier with add VLAN opcode. In order to avoid 2353 * removing VLAN that doesn't exist, which result to sending 2354 * erroneous failed message back to the VF 2355 */ 2356 int num_vf_vlan; 2357 2358 num_vf_vlan = vsi->num_vlan; 2359 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2360 u16 vid = vfl->vlan_id[i]; 2361 struct ice_vlan vlan; 2362 2363 /* we add VLAN 0 by default for each VF so we can enable 2364 * Tx VLAN anti-spoof without triggering MDD events so 2365 * we don't want a VIRTCHNL request to remove it 2366 */ 2367 if (!vid) 2368 continue; 2369 2370 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2371 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2372 if (status) { 2373 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2374 goto error_param; 2375 } 2376 2377 /* Disable VLAN filtering when only VLAN 0 is left */ 2378 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2379 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2380 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2381 } 2382 2383 if (vlan_promisc) 2384 ice_vf_dis_vlan_promisc(vsi, &vlan); 2385 } 2386 } 2387 2388 error_param: 2389 /* send the response to the VF */ 2390 if (add_v) 2391 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2392 NULL, 0); 2393 else 2394 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2395 NULL, 0); 2396 } 2397 2398 /** 2399 * ice_vc_add_vlan_msg 2400 * @vf: pointer to the VF info 2401 * @msg: pointer to the msg buffer 2402 * 2403 * Add and program guest VLAN ID 2404 */ 2405 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2406 { 2407 return ice_vc_process_vlan_msg(vf, msg, true); 2408 } 2409 2410 /** 2411 * ice_vc_remove_vlan_msg 2412 * @vf: pointer to the VF info 2413 * @msg: pointer to the msg buffer 2414 * 2415 * remove programmed guest VLAN ID 2416 */ 2417 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2418 { 2419 return ice_vc_process_vlan_msg(vf, msg, false); 2420 } 2421 2422 /** 2423 * ice_vc_ena_vlan_stripping 2424 * @vf: pointer to the VF info 2425 * 2426 * Enable VLAN header stripping for a given VF 2427 */ 2428 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2429 { 2430 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2431 struct ice_vsi *vsi; 2432 2433 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2434 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2435 goto error_param; 2436 } 2437 2438 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2439 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2440 goto error_param; 2441 } 2442 2443 vsi = ice_get_vf_vsi(vf); 2444 if (!vsi) { 2445 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2446 goto error_param; 2447 } 2448 2449 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2450 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2451 2452 error_param: 2453 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2454 v_ret, NULL, 0); 2455 } 2456 2457 /** 2458 * ice_vc_dis_vlan_stripping 2459 * @vf: pointer to the VF info 2460 * 2461 * Disable VLAN header stripping for a given VF 2462 */ 2463 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2464 { 2465 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2466 struct ice_vsi *vsi; 2467 2468 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2469 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2470 goto error_param; 2471 } 2472 2473 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2474 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2475 goto error_param; 2476 } 2477 2478 vsi = ice_get_vf_vsi(vf); 2479 if (!vsi) { 2480 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2481 goto error_param; 2482 } 2483 2484 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2485 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2486 2487 error_param: 2488 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2489 v_ret, NULL, 0); 2490 } 2491 2492 /** 2493 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware 2494 * @vf: pointer to the VF info 2495 */ 2496 static int ice_vc_get_rss_hena(struct ice_vf *vf) 2497 { 2498 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2499 struct virtchnl_rss_hena *vrh = NULL; 2500 int len = 0, ret; 2501 2502 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2503 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2504 goto err; 2505 } 2506 2507 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 2508 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 2509 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2510 goto err; 2511 } 2512 2513 len = sizeof(struct virtchnl_rss_hena); 2514 vrh = kzalloc(len, GFP_KERNEL); 2515 if (!vrh) { 2516 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2517 len = 0; 2518 goto err; 2519 } 2520 2521 vrh->hena = ICE_DEFAULT_RSS_HENA; 2522 err: 2523 /* send the response back to the VF */ 2524 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, 2525 (u8 *)vrh, len); 2526 kfree(vrh); 2527 return ret; 2528 } 2529 2530 /** 2531 * ice_vc_set_rss_hena - set RSS HENA bits for the VF 2532 * @vf: pointer to the VF info 2533 * @msg: pointer to the msg buffer 2534 */ 2535 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) 2536 { 2537 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; 2538 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2539 struct ice_pf *pf = vf->pf; 2540 struct ice_vsi *vsi; 2541 struct device *dev; 2542 int status; 2543 2544 dev = ice_pf_to_dev(pf); 2545 2546 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2547 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2548 goto err; 2549 } 2550 2551 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2552 dev_err(dev, "RSS not supported by PF\n"); 2553 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2554 goto err; 2555 } 2556 2557 vsi = ice_get_vf_vsi(vf); 2558 if (!vsi) { 2559 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2560 goto err; 2561 } 2562 2563 /* clear all previously programmed RSS configuration to allow VF drivers 2564 * the ability to customize the RSS configuration and/or completely 2565 * disable RSS 2566 */ 2567 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 2568 if (status && !vrh->hena) { 2569 /* only report failure to clear the current RSS configuration if 2570 * that was clearly the VF's intention (i.e. vrh->hena = 0) 2571 */ 2572 v_ret = ice_err_to_virt_err(status); 2573 goto err; 2574 } else if (status) { 2575 /* allow the VF to update the RSS configuration even on failure 2576 * to clear the current RSS confguration in an attempt to keep 2577 * RSS in a working state 2578 */ 2579 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 2580 vf->vf_id); 2581 } 2582 2583 if (vrh->hena) { 2584 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena); 2585 v_ret = ice_err_to_virt_err(status); 2586 } 2587 2588 /* send the response to the VF */ 2589 err: 2590 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, 2591 NULL, 0); 2592 } 2593 2594 /** 2595 * ice_vc_query_rxdid - query RXDID supported by DDP package 2596 * @vf: pointer to VF info 2597 * 2598 * Called from VF to query a bitmap of supported flexible 2599 * descriptor RXDIDs of a DDP package. 2600 */ 2601 static int ice_vc_query_rxdid(struct ice_vf *vf) 2602 { 2603 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2604 struct virtchnl_supported_rxdids *rxdid = NULL; 2605 struct ice_hw *hw = &vf->pf->hw; 2606 struct ice_pf *pf = vf->pf; 2607 int len = 0; 2608 int ret, i; 2609 u32 regval; 2610 2611 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2612 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2613 goto err; 2614 } 2615 2616 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 2617 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2618 goto err; 2619 } 2620 2621 len = sizeof(struct virtchnl_supported_rxdids); 2622 rxdid = kzalloc(len, GFP_KERNEL); 2623 if (!rxdid) { 2624 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2625 len = 0; 2626 goto err; 2627 } 2628 2629 /* RXDIDs supported by DDP package can be read from the register 2630 * to get the supported RXDID bitmap. But the legacy 32byte RXDID 2631 * is not listed in DDP package, add it in the bitmap manually. 2632 * Legacy 16byte descriptor is not supported. 2633 */ 2634 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1); 2635 2636 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 2637 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 2638 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 2639 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 2640 rxdid->supported_rxdids |= BIT(i); 2641 } 2642 2643 pf->supported_rxdids = rxdid->supported_rxdids; 2644 2645 err: 2646 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 2647 v_ret, (u8 *)rxdid, len); 2648 kfree(rxdid); 2649 return ret; 2650 } 2651 2652 /** 2653 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2654 * @vf: VF to enable/disable VLAN stripping for on initialization 2655 * 2656 * Set the default for VLAN stripping based on whether a port VLAN is configured 2657 * and the current VLAN mode of the device. 2658 */ 2659 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2660 { 2661 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2662 2663 if (!vsi) 2664 return -EINVAL; 2665 2666 /* don't modify stripping if port VLAN is configured in SVM since the 2667 * port VLAN is based on the inner/single VLAN in SVM 2668 */ 2669 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2670 return 0; 2671 2672 if (ice_vf_vlan_offload_ena(vf->driver_caps)) 2673 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2674 else 2675 return vsi->inner_vlan_ops.dis_stripping(vsi); 2676 } 2677 2678 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2679 { 2680 if (vf->trusted) 2681 return VLAN_N_VID; 2682 else 2683 return ICE_MAX_VLAN_PER_VF; 2684 } 2685 2686 /** 2687 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2688 * @vf: VF that being checked for 2689 * 2690 * When the device is in double VLAN mode, check whether or not the outer VLAN 2691 * is allowed. 2692 */ 2693 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2694 { 2695 if (ice_vf_is_port_vlan_ena(vf)) 2696 return true; 2697 2698 return false; 2699 } 2700 2701 /** 2702 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2703 * @vf: VF that capabilities are being set for 2704 * @caps: VLAN capabilities to populate 2705 * 2706 * Determine VLAN capabilities support based on whether a port VLAN is 2707 * configured. If a port VLAN is configured then the VF should use the inner 2708 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2709 * capabilies. 2710 */ 2711 static void 2712 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2713 { 2714 struct virtchnl_vlan_supported_caps *supported_caps; 2715 2716 if (ice_vf_outer_vlan_not_allowed(vf)) { 2717 /* until support for inner VLAN filtering is added when a port 2718 * VLAN is configured, only support software offloaded inner 2719 * VLANs when a port VLAN is confgured in DVM 2720 */ 2721 supported_caps = &caps->filtering.filtering_support; 2722 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2723 2724 supported_caps = &caps->offloads.stripping_support; 2725 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2726 VIRTCHNL_VLAN_TOGGLE | 2727 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2728 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2729 2730 supported_caps = &caps->offloads.insertion_support; 2731 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2732 VIRTCHNL_VLAN_TOGGLE | 2733 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2734 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2735 2736 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2737 caps->offloads.ethertype_match = 2738 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2739 } else { 2740 supported_caps = &caps->filtering.filtering_support; 2741 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2742 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2743 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2744 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2745 VIRTCHNL_VLAN_ETHERTYPE_AND; 2746 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2747 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2748 VIRTCHNL_VLAN_ETHERTYPE_9100; 2749 2750 supported_caps = &caps->offloads.stripping_support; 2751 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2752 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2753 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2754 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2755 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2756 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2757 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2758 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2759 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2760 2761 supported_caps = &caps->offloads.insertion_support; 2762 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2763 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2764 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2765 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2766 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2767 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2768 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2769 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2770 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2771 2772 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2773 2774 caps->offloads.ethertype_match = 2775 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2776 } 2777 2778 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2779 } 2780 2781 /** 2782 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2783 * @vf: VF that capabilities are being set for 2784 * @caps: VLAN capabilities to populate 2785 * 2786 * Determine VLAN capabilities support based on whether a port VLAN is 2787 * configured. If a port VLAN is configured then the VF does not have any VLAN 2788 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2789 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2790 * VLAN fitlering and offload capabilities. 2791 */ 2792 static void 2793 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2794 { 2795 struct virtchnl_vlan_supported_caps *supported_caps; 2796 2797 if (ice_vf_is_port_vlan_ena(vf)) { 2798 supported_caps = &caps->filtering.filtering_support; 2799 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2800 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2801 2802 supported_caps = &caps->offloads.stripping_support; 2803 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2804 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2805 2806 supported_caps = &caps->offloads.insertion_support; 2807 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2808 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2809 2810 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2811 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2812 caps->filtering.max_filters = 0; 2813 } else { 2814 supported_caps = &caps->filtering.filtering_support; 2815 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2816 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2817 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2818 2819 supported_caps = &caps->offloads.stripping_support; 2820 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2821 VIRTCHNL_VLAN_TOGGLE | 2822 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2823 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2824 2825 supported_caps = &caps->offloads.insertion_support; 2826 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2827 VIRTCHNL_VLAN_TOGGLE | 2828 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2829 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2830 2831 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2832 caps->offloads.ethertype_match = 2833 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2834 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2835 } 2836 } 2837 2838 /** 2839 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2840 * @vf: VF to determine VLAN capabilities for 2841 * 2842 * This will only be called if the VF and PF successfully negotiated 2843 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2844 * 2845 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2846 * is configured or not. 2847 */ 2848 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2849 { 2850 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2851 struct virtchnl_vlan_caps *caps = NULL; 2852 int err, len = 0; 2853 2854 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2855 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2856 goto out; 2857 } 2858 2859 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2860 if (!caps) { 2861 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2862 goto out; 2863 } 2864 len = sizeof(*caps); 2865 2866 if (ice_is_dvm_ena(&vf->pf->hw)) 2867 ice_vc_set_dvm_caps(vf, caps); 2868 else 2869 ice_vc_set_svm_caps(vf, caps); 2870 2871 /* store negotiated caps to prevent invalid VF messages */ 2872 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2873 2874 out: 2875 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2876 v_ret, (u8 *)caps, len); 2877 kfree(caps); 2878 return err; 2879 } 2880 2881 /** 2882 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2883 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2884 * @tpid: VLAN TPID used for validation 2885 * 2886 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2887 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2888 */ 2889 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2890 { 2891 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2892 2893 switch (tpid) { 2894 case ETH_P_8021Q: 2895 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 2896 break; 2897 case ETH_P_8021AD: 2898 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 2899 break; 2900 case ETH_P_QINQ1: 2901 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 2902 break; 2903 } 2904 2905 if (!(filtering_caps & vlan_ethertype)) 2906 return false; 2907 2908 return true; 2909 } 2910 2911 /** 2912 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 2913 * @vc_vlan: virtchnl_vlan to validate 2914 * 2915 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 2916 * false. Otherwise return true. 2917 */ 2918 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 2919 { 2920 if (!vc_vlan->tci || !vc_vlan->tpid) 2921 return false; 2922 2923 return true; 2924 } 2925 2926 /** 2927 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 2928 * @vfc: negotiated/supported VLAN filtering capabilities 2929 * @vfl: VLAN filter list from VF to validate 2930 * 2931 * Validate all of the filters in the VLAN filter list from the VF. If any of 2932 * the checks fail then return false. Otherwise return true. 2933 */ 2934 static bool 2935 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 2936 struct virtchnl_vlan_filter_list_v2 *vfl) 2937 { 2938 u16 i; 2939 2940 if (!vfl->num_elements) 2941 return false; 2942 2943 for (i = 0; i < vfl->num_elements; i++) { 2944 struct virtchnl_vlan_supported_caps *filtering_support = 2945 &vfc->filtering_support; 2946 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2947 struct virtchnl_vlan *outer = &vlan_fltr->outer; 2948 struct virtchnl_vlan *inner = &vlan_fltr->inner; 2949 2950 if ((ice_vc_is_valid_vlan(outer) && 2951 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 2952 (ice_vc_is_valid_vlan(inner) && 2953 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 2954 return false; 2955 2956 if ((outer->tci_mask && 2957 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 2958 (inner->tci_mask && 2959 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 2960 return false; 2961 2962 if (((outer->tci & VLAN_PRIO_MASK) && 2963 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 2964 ((inner->tci & VLAN_PRIO_MASK) && 2965 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 2966 return false; 2967 2968 if ((ice_vc_is_valid_vlan(outer) && 2969 !ice_vc_validate_vlan_tpid(filtering_support->outer, 2970 outer->tpid)) || 2971 (ice_vc_is_valid_vlan(inner) && 2972 !ice_vc_validate_vlan_tpid(filtering_support->inner, 2973 inner->tpid))) 2974 return false; 2975 } 2976 2977 return true; 2978 } 2979 2980 /** 2981 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 2982 * @vc_vlan: struct virtchnl_vlan to transform 2983 */ 2984 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 2985 { 2986 struct ice_vlan vlan = { 0 }; 2987 2988 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2989 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 2990 vlan.tpid = vc_vlan->tpid; 2991 2992 return vlan; 2993 } 2994 2995 /** 2996 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 2997 * @vsi: VF's VSI used to perform the action 2998 * @vlan_action: function to perform the action with (i.e. add/del) 2999 * @vlan: VLAN filter to perform the action with 3000 */ 3001 static int 3002 ice_vc_vlan_action(struct ice_vsi *vsi, 3003 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 3004 struct ice_vlan *vlan) 3005 { 3006 int err; 3007 3008 err = vlan_action(vsi, vlan); 3009 if (err) 3010 return err; 3011 3012 return 0; 3013 } 3014 3015 /** 3016 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3017 * @vf: VF used to delete the VLAN(s) 3018 * @vsi: VF's VSI used to delete the VLAN(s) 3019 * @vfl: virthchnl filter list used to delete the filters 3020 */ 3021 static int 3022 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3023 struct virtchnl_vlan_filter_list_v2 *vfl) 3024 { 3025 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3026 int err; 3027 u16 i; 3028 3029 for (i = 0; i < vfl->num_elements; i++) { 3030 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3031 struct virtchnl_vlan *vc_vlan; 3032 3033 vc_vlan = &vlan_fltr->outer; 3034 if (ice_vc_is_valid_vlan(vc_vlan)) { 3035 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3036 3037 err = ice_vc_vlan_action(vsi, 3038 vsi->outer_vlan_ops.del_vlan, 3039 &vlan); 3040 if (err) 3041 return err; 3042 3043 if (vlan_promisc) 3044 ice_vf_dis_vlan_promisc(vsi, &vlan); 3045 3046 /* Disable VLAN filtering when only VLAN 0 is left */ 3047 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3048 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3049 if (err) 3050 return err; 3051 } 3052 } 3053 3054 vc_vlan = &vlan_fltr->inner; 3055 if (ice_vc_is_valid_vlan(vc_vlan)) { 3056 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3057 3058 err = ice_vc_vlan_action(vsi, 3059 vsi->inner_vlan_ops.del_vlan, 3060 &vlan); 3061 if (err) 3062 return err; 3063 3064 /* no support for VLAN promiscuous on inner VLAN unless 3065 * we are in Single VLAN Mode (SVM) 3066 */ 3067 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3068 if (vlan_promisc) 3069 ice_vf_dis_vlan_promisc(vsi, &vlan); 3070 3071 /* Disable VLAN filtering when only VLAN 0 is left */ 3072 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3073 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3074 if (err) 3075 return err; 3076 } 3077 } 3078 } 3079 } 3080 3081 return 0; 3082 } 3083 3084 /** 3085 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3086 * @vf: VF the message was received from 3087 * @msg: message received from the VF 3088 */ 3089 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3090 { 3091 struct virtchnl_vlan_filter_list_v2 *vfl = 3092 (struct virtchnl_vlan_filter_list_v2 *)msg; 3093 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3094 struct ice_vsi *vsi; 3095 3096 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3097 vfl)) { 3098 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3099 goto out; 3100 } 3101 3102 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3103 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3104 goto out; 3105 } 3106 3107 vsi = ice_get_vf_vsi(vf); 3108 if (!vsi) { 3109 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3110 goto out; 3111 } 3112 3113 if (ice_vc_del_vlans(vf, vsi, vfl)) 3114 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3115 3116 out: 3117 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3118 0); 3119 } 3120 3121 /** 3122 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3123 * @vf: VF used to add the VLAN(s) 3124 * @vsi: VF's VSI used to add the VLAN(s) 3125 * @vfl: virthchnl filter list used to add the filters 3126 */ 3127 static int 3128 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3129 struct virtchnl_vlan_filter_list_v2 *vfl) 3130 { 3131 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3132 int err; 3133 u16 i; 3134 3135 for (i = 0; i < vfl->num_elements; i++) { 3136 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3137 struct virtchnl_vlan *vc_vlan; 3138 3139 vc_vlan = &vlan_fltr->outer; 3140 if (ice_vc_is_valid_vlan(vc_vlan)) { 3141 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3142 3143 err = ice_vc_vlan_action(vsi, 3144 vsi->outer_vlan_ops.add_vlan, 3145 &vlan); 3146 if (err) 3147 return err; 3148 3149 if (vlan_promisc) { 3150 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3151 if (err) 3152 return err; 3153 } 3154 3155 /* Enable VLAN filtering on first non-zero VLAN */ 3156 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3157 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3158 if (err) 3159 return err; 3160 } 3161 } 3162 3163 vc_vlan = &vlan_fltr->inner; 3164 if (ice_vc_is_valid_vlan(vc_vlan)) { 3165 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3166 3167 err = ice_vc_vlan_action(vsi, 3168 vsi->inner_vlan_ops.add_vlan, 3169 &vlan); 3170 if (err) 3171 return err; 3172 3173 /* no support for VLAN promiscuous on inner VLAN unless 3174 * we are in Single VLAN Mode (SVM) 3175 */ 3176 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3177 if (vlan_promisc) { 3178 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3179 if (err) 3180 return err; 3181 } 3182 3183 /* Enable VLAN filtering on first non-zero VLAN */ 3184 if (vf->spoofchk && vlan.vid) { 3185 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3186 if (err) 3187 return err; 3188 } 3189 } 3190 } 3191 } 3192 3193 return 0; 3194 } 3195 3196 /** 3197 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3198 * @vsi: VF VSI used to get number of existing VLAN filters 3199 * @vfc: negotiated/supported VLAN filtering capabilities 3200 * @vfl: VLAN filter list from VF to validate 3201 * 3202 * Validate all of the filters in the VLAN filter list from the VF during the 3203 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3204 * Otherwise return true. 3205 */ 3206 static bool 3207 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3208 struct virtchnl_vlan_filtering_caps *vfc, 3209 struct virtchnl_vlan_filter_list_v2 *vfl) 3210 { 3211 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3212 vfl->num_elements; 3213 3214 if (num_requested_filters > vfc->max_filters) 3215 return false; 3216 3217 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3218 } 3219 3220 /** 3221 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3222 * @vf: VF the message was received from 3223 * @msg: message received from the VF 3224 */ 3225 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3226 { 3227 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3228 struct virtchnl_vlan_filter_list_v2 *vfl = 3229 (struct virtchnl_vlan_filter_list_v2 *)msg; 3230 struct ice_vsi *vsi; 3231 3232 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3233 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3234 goto out; 3235 } 3236 3237 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3238 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3239 goto out; 3240 } 3241 3242 vsi = ice_get_vf_vsi(vf); 3243 if (!vsi) { 3244 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3245 goto out; 3246 } 3247 3248 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3249 &vf->vlan_v2_caps.filtering, 3250 vfl)) { 3251 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3252 goto out; 3253 } 3254 3255 if (ice_vc_add_vlans(vf, vsi, vfl)) 3256 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3257 3258 out: 3259 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3260 0); 3261 } 3262 3263 /** 3264 * ice_vc_valid_vlan_setting - validate VLAN setting 3265 * @negotiated_settings: negotiated VLAN settings during VF init 3266 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3267 */ 3268 static bool 3269 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3270 { 3271 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3272 return false; 3273 3274 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3275 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3276 */ 3277 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3278 hweight32(ethertype_setting) > 1) 3279 return false; 3280 3281 /* ability to modify the VLAN setting was not negotiated */ 3282 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3283 return false; 3284 3285 return true; 3286 } 3287 3288 /** 3289 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3290 * @caps: negotiated VLAN settings during VF init 3291 * @msg: message to validate 3292 * 3293 * Used to validate any VLAN virtchnl message sent as a 3294 * virtchnl_vlan_setting structure. Validates the message against the 3295 * negotiated/supported caps during VF driver init. 3296 */ 3297 static bool 3298 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3299 struct virtchnl_vlan_setting *msg) 3300 { 3301 if ((!msg->outer_ethertype_setting && 3302 !msg->inner_ethertype_setting) || 3303 (!caps->outer && !caps->inner)) 3304 return false; 3305 3306 if (msg->outer_ethertype_setting && 3307 !ice_vc_valid_vlan_setting(caps->outer, 3308 msg->outer_ethertype_setting)) 3309 return false; 3310 3311 if (msg->inner_ethertype_setting && 3312 !ice_vc_valid_vlan_setting(caps->inner, 3313 msg->inner_ethertype_setting)) 3314 return false; 3315 3316 return true; 3317 } 3318 3319 /** 3320 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3321 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3322 * @tpid: VLAN TPID to populate 3323 */ 3324 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3325 { 3326 switch (ethertype_setting) { 3327 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3328 *tpid = ETH_P_8021Q; 3329 break; 3330 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3331 *tpid = ETH_P_8021AD; 3332 break; 3333 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3334 *tpid = ETH_P_QINQ1; 3335 break; 3336 default: 3337 *tpid = 0; 3338 return -EINVAL; 3339 } 3340 3341 return 0; 3342 } 3343 3344 /** 3345 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3346 * @vsi: VF's VSI used to enable the VLAN offload 3347 * @ena_offload: function used to enable the VLAN offload 3348 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3349 */ 3350 static int 3351 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3352 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3353 u32 ethertype_setting) 3354 { 3355 u16 tpid; 3356 int err; 3357 3358 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3359 if (err) 3360 return err; 3361 3362 err = ena_offload(vsi, tpid); 3363 if (err) 3364 return err; 3365 3366 return 0; 3367 } 3368 3369 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3370 #define ICE_L2TSEL_BIT_OFFSET 23 3371 enum ice_l2tsel { 3372 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3373 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3374 }; 3375 3376 /** 3377 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3378 * @vsi: VSI used to update l2tsel on 3379 * @l2tsel: l2tsel setting requested 3380 * 3381 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3382 * This will modify which descriptor field the first offloaded VLAN will be 3383 * stripped into. 3384 */ 3385 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3386 { 3387 struct ice_hw *hw = &vsi->back->hw; 3388 u32 l2tsel_bit; 3389 int i; 3390 3391 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3392 l2tsel_bit = 0; 3393 else 3394 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3395 3396 for (i = 0; i < vsi->alloc_rxq; i++) { 3397 u16 pfq = vsi->rxq_map[i]; 3398 u32 qrx_context_offset; 3399 u32 regval; 3400 3401 qrx_context_offset = 3402 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3403 3404 regval = rd32(hw, qrx_context_offset); 3405 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3406 regval |= l2tsel_bit; 3407 wr32(hw, qrx_context_offset, regval); 3408 } 3409 } 3410 3411 /** 3412 * ice_vc_ena_vlan_stripping_v2_msg 3413 * @vf: VF the message was received from 3414 * @msg: message received from the VF 3415 * 3416 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3417 */ 3418 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3419 { 3420 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3421 struct virtchnl_vlan_supported_caps *stripping_support; 3422 struct virtchnl_vlan_setting *strip_msg = 3423 (struct virtchnl_vlan_setting *)msg; 3424 u32 ethertype_setting; 3425 struct ice_vsi *vsi; 3426 3427 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3428 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3429 goto out; 3430 } 3431 3432 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3433 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3434 goto out; 3435 } 3436 3437 vsi = ice_get_vf_vsi(vf); 3438 if (!vsi) { 3439 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3440 goto out; 3441 } 3442 3443 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3444 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3445 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3446 goto out; 3447 } 3448 3449 ethertype_setting = strip_msg->outer_ethertype_setting; 3450 if (ethertype_setting) { 3451 if (ice_vc_ena_vlan_offload(vsi, 3452 vsi->outer_vlan_ops.ena_stripping, 3453 ethertype_setting)) { 3454 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3455 goto out; 3456 } else { 3457 enum ice_l2tsel l2tsel = 3458 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3459 3460 /* PF tells the VF that the outer VLAN tag is always 3461 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3462 * inner is always extracted to 3463 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3464 * support outer stripping so the first tag always ends 3465 * up in L2TAG2_2ND and the second/inner tag, if 3466 * enabled, is extracted in L2TAG1. 3467 */ 3468 ice_vsi_update_l2tsel(vsi, l2tsel); 3469 } 3470 } 3471 3472 ethertype_setting = strip_msg->inner_ethertype_setting; 3473 if (ethertype_setting && 3474 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3475 ethertype_setting)) { 3476 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3477 goto out; 3478 } 3479 3480 out: 3481 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3482 v_ret, NULL, 0); 3483 } 3484 3485 /** 3486 * ice_vc_dis_vlan_stripping_v2_msg 3487 * @vf: VF the message was received from 3488 * @msg: message received from the VF 3489 * 3490 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3491 */ 3492 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3493 { 3494 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3495 struct virtchnl_vlan_supported_caps *stripping_support; 3496 struct virtchnl_vlan_setting *strip_msg = 3497 (struct virtchnl_vlan_setting *)msg; 3498 u32 ethertype_setting; 3499 struct ice_vsi *vsi; 3500 3501 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3502 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3503 goto out; 3504 } 3505 3506 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3507 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3508 goto out; 3509 } 3510 3511 vsi = ice_get_vf_vsi(vf); 3512 if (!vsi) { 3513 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3514 goto out; 3515 } 3516 3517 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3518 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3519 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3520 goto out; 3521 } 3522 3523 ethertype_setting = strip_msg->outer_ethertype_setting; 3524 if (ethertype_setting) { 3525 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3526 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3527 goto out; 3528 } else { 3529 enum ice_l2tsel l2tsel = 3530 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3531 3532 /* PF tells the VF that the outer VLAN tag is always 3533 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3534 * inner is always extracted to 3535 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3536 * support inner stripping while outer stripping is 3537 * disabled so that the first and only tag is extracted 3538 * in L2TAG1. 3539 */ 3540 ice_vsi_update_l2tsel(vsi, l2tsel); 3541 } 3542 } 3543 3544 ethertype_setting = strip_msg->inner_ethertype_setting; 3545 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3546 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3547 goto out; 3548 } 3549 3550 out: 3551 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3552 v_ret, NULL, 0); 3553 } 3554 3555 /** 3556 * ice_vc_ena_vlan_insertion_v2_msg 3557 * @vf: VF the message was received from 3558 * @msg: message received from the VF 3559 * 3560 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3561 */ 3562 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3563 { 3564 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3565 struct virtchnl_vlan_supported_caps *insertion_support; 3566 struct virtchnl_vlan_setting *insertion_msg = 3567 (struct virtchnl_vlan_setting *)msg; 3568 u32 ethertype_setting; 3569 struct ice_vsi *vsi; 3570 3571 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3572 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3573 goto out; 3574 } 3575 3576 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3577 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3578 goto out; 3579 } 3580 3581 vsi = ice_get_vf_vsi(vf); 3582 if (!vsi) { 3583 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3584 goto out; 3585 } 3586 3587 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3588 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3589 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3590 goto out; 3591 } 3592 3593 ethertype_setting = insertion_msg->outer_ethertype_setting; 3594 if (ethertype_setting && 3595 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3596 ethertype_setting)) { 3597 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3598 goto out; 3599 } 3600 3601 ethertype_setting = insertion_msg->inner_ethertype_setting; 3602 if (ethertype_setting && 3603 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3604 ethertype_setting)) { 3605 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3606 goto out; 3607 } 3608 3609 out: 3610 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3611 v_ret, NULL, 0); 3612 } 3613 3614 /** 3615 * ice_vc_dis_vlan_insertion_v2_msg 3616 * @vf: VF the message was received from 3617 * @msg: message received from the VF 3618 * 3619 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3620 */ 3621 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3622 { 3623 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3624 struct virtchnl_vlan_supported_caps *insertion_support; 3625 struct virtchnl_vlan_setting *insertion_msg = 3626 (struct virtchnl_vlan_setting *)msg; 3627 u32 ethertype_setting; 3628 struct ice_vsi *vsi; 3629 3630 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3631 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3632 goto out; 3633 } 3634 3635 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3636 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3637 goto out; 3638 } 3639 3640 vsi = ice_get_vf_vsi(vf); 3641 if (!vsi) { 3642 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3643 goto out; 3644 } 3645 3646 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3647 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3648 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3649 goto out; 3650 } 3651 3652 ethertype_setting = insertion_msg->outer_ethertype_setting; 3653 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3654 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3655 goto out; 3656 } 3657 3658 ethertype_setting = insertion_msg->inner_ethertype_setting; 3659 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3660 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3661 goto out; 3662 } 3663 3664 out: 3665 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3666 v_ret, NULL, 0); 3667 } 3668 3669 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3670 .get_ver_msg = ice_vc_get_ver_msg, 3671 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3672 .reset_vf = ice_vc_reset_vf_msg, 3673 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3674 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3675 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3676 .ena_qs_msg = ice_vc_ena_qs_msg, 3677 .dis_qs_msg = ice_vc_dis_qs_msg, 3678 .request_qs_msg = ice_vc_request_qs_msg, 3679 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3680 .config_rss_key = ice_vc_config_rss_key, 3681 .config_rss_lut = ice_vc_config_rss_lut, 3682 .get_stats_msg = ice_vc_get_stats_msg, 3683 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3684 .add_vlan_msg = ice_vc_add_vlan_msg, 3685 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3686 .query_rxdid = ice_vc_query_rxdid, 3687 .get_rss_hena = ice_vc_get_rss_hena, 3688 .set_rss_hena_msg = ice_vc_set_rss_hena, 3689 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3690 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3691 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3692 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3693 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3694 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3695 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3696 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3697 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3698 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3699 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3700 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3701 }; 3702 3703 /** 3704 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3705 * @vf: the VF to switch ops 3706 */ 3707 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3708 { 3709 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3710 } 3711 3712 /** 3713 * ice_vc_repr_add_mac 3714 * @vf: pointer to VF 3715 * @msg: virtchannel message 3716 * 3717 * When port representors are created, we do not add MAC rule 3718 * to firmware, we store it so that PF could report same 3719 * MAC as VF. 3720 */ 3721 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3722 { 3723 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3724 struct virtchnl_ether_addr_list *al = 3725 (struct virtchnl_ether_addr_list *)msg; 3726 struct ice_vsi *vsi; 3727 struct ice_pf *pf; 3728 int i; 3729 3730 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3731 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3732 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3733 goto handle_mac_exit; 3734 } 3735 3736 pf = vf->pf; 3737 3738 vsi = ice_get_vf_vsi(vf); 3739 if (!vsi) { 3740 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3741 goto handle_mac_exit; 3742 } 3743 3744 for (i = 0; i < al->num_elements; i++) { 3745 u8 *mac_addr = al->list[i].addr; 3746 3747 if (!is_unicast_ether_addr(mac_addr) || 3748 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 3749 continue; 3750 3751 if (vf->pf_set_mac) { 3752 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3753 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3754 goto handle_mac_exit; 3755 } 3756 3757 ice_vfhw_mac_add(vf, &al->list[i]); 3758 vf->num_mac++; 3759 break; 3760 } 3761 3762 handle_mac_exit: 3763 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3764 v_ret, NULL, 0); 3765 } 3766 3767 /** 3768 * ice_vc_repr_del_mac - response with success for deleting MAC 3769 * @vf: pointer to VF 3770 * @msg: virtchannel message 3771 * 3772 * Respond with success to not break normal VF flow. 3773 * For legacy VF driver try to update cached MAC address. 3774 */ 3775 static int 3776 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3777 { 3778 struct virtchnl_ether_addr_list *al = 3779 (struct virtchnl_ether_addr_list *)msg; 3780 3781 ice_update_legacy_cached_mac(vf, &al->list[0]); 3782 3783 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3784 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3785 } 3786 3787 static int 3788 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3789 { 3790 dev_dbg(ice_pf_to_dev(vf->pf), 3791 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3792 vf->vf_id); 3793 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3794 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3795 NULL, 0); 3796 } 3797 3798 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3799 .get_ver_msg = ice_vc_get_ver_msg, 3800 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3801 .reset_vf = ice_vc_reset_vf_msg, 3802 .add_mac_addr_msg = ice_vc_repr_add_mac, 3803 .del_mac_addr_msg = ice_vc_repr_del_mac, 3804 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3805 .ena_qs_msg = ice_vc_ena_qs_msg, 3806 .dis_qs_msg = ice_vc_dis_qs_msg, 3807 .request_qs_msg = ice_vc_request_qs_msg, 3808 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3809 .config_rss_key = ice_vc_config_rss_key, 3810 .config_rss_lut = ice_vc_config_rss_lut, 3811 .get_stats_msg = ice_vc_get_stats_msg, 3812 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3813 .add_vlan_msg = ice_vc_add_vlan_msg, 3814 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3815 .query_rxdid = ice_vc_query_rxdid, 3816 .get_rss_hena = ice_vc_get_rss_hena, 3817 .set_rss_hena_msg = ice_vc_set_rss_hena, 3818 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3819 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3820 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3821 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3822 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3823 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3824 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3825 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3826 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3827 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3828 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3829 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3830 }; 3831 3832 /** 3833 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3834 * @vf: the VF to switch ops 3835 */ 3836 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3837 { 3838 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3839 } 3840 3841 /** 3842 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 3843 * @vf: the VF to check 3844 * @mbxdata: data about the state of the mailbox 3845 * 3846 * Detect if a given VF might be malicious and attempting to overflow the PF 3847 * mailbox. If so, log a warning message and ignore this event. 3848 */ 3849 static bool 3850 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 3851 { 3852 bool report_malvf = false; 3853 struct device *dev; 3854 struct ice_pf *pf; 3855 int status; 3856 3857 pf = vf->pf; 3858 dev = ice_pf_to_dev(pf); 3859 3860 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 3861 return vf->mbx_info.malicious; 3862 3863 /* check to see if we have a newly malicious VF */ 3864 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 3865 &report_malvf); 3866 if (status) 3867 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 3868 vf->vf_id, vf->dev_lan_addr, status); 3869 3870 if (report_malvf) { 3871 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3872 u8 zero_addr[ETH_ALEN] = {}; 3873 3874 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 3875 vf->dev_lan_addr, 3876 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 3877 } 3878 3879 return vf->mbx_info.malicious; 3880 } 3881 3882 /** 3883 * ice_vc_process_vf_msg - Process request from VF 3884 * @pf: pointer to the PF structure 3885 * @event: pointer to the AQ event 3886 * @mbxdata: information used to detect VF attempting mailbox overflow 3887 * 3888 * called from the common asq/arq handler to 3889 * process request from VF 3890 */ 3891 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 3892 struct ice_mbx_data *mbxdata) 3893 { 3894 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 3895 s16 vf_id = le16_to_cpu(event->desc.retval); 3896 const struct ice_virtchnl_ops *ops; 3897 u16 msglen = event->msg_len; 3898 u8 *msg = event->msg_buf; 3899 struct ice_vf *vf = NULL; 3900 struct device *dev; 3901 int err = 0; 3902 3903 dev = ice_pf_to_dev(pf); 3904 3905 vf = ice_get_vf_by_id(pf, vf_id); 3906 if (!vf) { 3907 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 3908 vf_id, v_opcode, msglen); 3909 return; 3910 } 3911 3912 mutex_lock(&vf->cfg_lock); 3913 3914 /* Check if the VF is trying to overflow the mailbox */ 3915 if (ice_is_malicious_vf(vf, mbxdata)) 3916 goto finish; 3917 3918 /* Check if VF is disabled. */ 3919 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 3920 err = -EPERM; 3921 goto error_handler; 3922 } 3923 3924 ops = vf->virtchnl_ops; 3925 3926 /* Perform basic checks on the msg */ 3927 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 3928 if (err) { 3929 if (err == VIRTCHNL_STATUS_ERR_PARAM) 3930 err = -EPERM; 3931 else 3932 err = -EINVAL; 3933 } 3934 3935 error_handler: 3936 if (err) { 3937 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 3938 NULL, 0); 3939 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 3940 vf_id, v_opcode, msglen, err); 3941 goto finish; 3942 } 3943 3944 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 3945 ice_vc_send_msg_to_vf(vf, v_opcode, 3946 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 3947 0); 3948 goto finish; 3949 } 3950 3951 switch (v_opcode) { 3952 case VIRTCHNL_OP_VERSION: 3953 err = ops->get_ver_msg(vf, msg); 3954 break; 3955 case VIRTCHNL_OP_GET_VF_RESOURCES: 3956 err = ops->get_vf_res_msg(vf, msg); 3957 if (ice_vf_init_vlan_stripping(vf)) 3958 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 3959 vf->vf_id); 3960 ice_vc_notify_vf_link_state(vf); 3961 break; 3962 case VIRTCHNL_OP_RESET_VF: 3963 ops->reset_vf(vf); 3964 break; 3965 case VIRTCHNL_OP_ADD_ETH_ADDR: 3966 err = ops->add_mac_addr_msg(vf, msg); 3967 break; 3968 case VIRTCHNL_OP_DEL_ETH_ADDR: 3969 err = ops->del_mac_addr_msg(vf, msg); 3970 break; 3971 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 3972 err = ops->cfg_qs_msg(vf, msg); 3973 break; 3974 case VIRTCHNL_OP_ENABLE_QUEUES: 3975 err = ops->ena_qs_msg(vf, msg); 3976 ice_vc_notify_vf_link_state(vf); 3977 break; 3978 case VIRTCHNL_OP_DISABLE_QUEUES: 3979 err = ops->dis_qs_msg(vf, msg); 3980 break; 3981 case VIRTCHNL_OP_REQUEST_QUEUES: 3982 err = ops->request_qs_msg(vf, msg); 3983 break; 3984 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 3985 err = ops->cfg_irq_map_msg(vf, msg); 3986 break; 3987 case VIRTCHNL_OP_CONFIG_RSS_KEY: 3988 err = ops->config_rss_key(vf, msg); 3989 break; 3990 case VIRTCHNL_OP_CONFIG_RSS_LUT: 3991 err = ops->config_rss_lut(vf, msg); 3992 break; 3993 case VIRTCHNL_OP_GET_STATS: 3994 err = ops->get_stats_msg(vf, msg); 3995 break; 3996 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 3997 err = ops->cfg_promiscuous_mode_msg(vf, msg); 3998 break; 3999 case VIRTCHNL_OP_ADD_VLAN: 4000 err = ops->add_vlan_msg(vf, msg); 4001 break; 4002 case VIRTCHNL_OP_DEL_VLAN: 4003 err = ops->remove_vlan_msg(vf, msg); 4004 break; 4005 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 4006 err = ops->query_rxdid(vf); 4007 break; 4008 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 4009 err = ops->get_rss_hena(vf); 4010 break; 4011 case VIRTCHNL_OP_SET_RSS_HENA: 4012 err = ops->set_rss_hena_msg(vf, msg); 4013 break; 4014 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4015 err = ops->ena_vlan_stripping(vf); 4016 break; 4017 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4018 err = ops->dis_vlan_stripping(vf); 4019 break; 4020 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4021 err = ops->add_fdir_fltr_msg(vf, msg); 4022 break; 4023 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4024 err = ops->del_fdir_fltr_msg(vf, msg); 4025 break; 4026 case VIRTCHNL_OP_ADD_RSS_CFG: 4027 err = ops->handle_rss_cfg_msg(vf, msg, true); 4028 break; 4029 case VIRTCHNL_OP_DEL_RSS_CFG: 4030 err = ops->handle_rss_cfg_msg(vf, msg, false); 4031 break; 4032 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4033 err = ops->get_offload_vlan_v2_caps(vf); 4034 break; 4035 case VIRTCHNL_OP_ADD_VLAN_V2: 4036 err = ops->add_vlan_v2_msg(vf, msg); 4037 break; 4038 case VIRTCHNL_OP_DEL_VLAN_V2: 4039 err = ops->remove_vlan_v2_msg(vf, msg); 4040 break; 4041 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4042 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4043 break; 4044 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4045 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4046 break; 4047 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4048 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4049 break; 4050 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4051 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4052 break; 4053 case VIRTCHNL_OP_UNKNOWN: 4054 default: 4055 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4056 vf_id); 4057 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4058 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4059 NULL, 0); 4060 break; 4061 } 4062 if (err) { 4063 /* Helper function cares less about error return values here 4064 * as it is busy with pending work. 4065 */ 4066 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4067 vf_id, v_opcode, err); 4068 } 4069 4070 finish: 4071 mutex_unlock(&vf->cfg_lock); 4072 ice_put_vf(vf); 4073 } 4074