// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2022, Intel Corporation. */ #include "ice_virtchnl.h" #include "ice_vf_lib_private.h" #include "ice.h" #include "ice_base.h" #include "ice_lib.h" #include "ice_fltr.h" #include "ice_virtchnl_allowlist.h" #include "ice_vf_vsi_vlan_ops.h" #include "ice_vlan.h" #include "ice_flex_pipe.h" #include "ice_dcb_lib.h" #define FIELD_SELECTOR(proto_hdr_field) \ BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) struct ice_vc_hdr_match_type { u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ }; static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER}, {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER}, {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, ICE_FLOW_SEG_HDR_GTPU_DWN}, {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, ICE_FLOW_SEG_HDR_GTPU_UP}, {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, }; struct ice_vc_hash_field_match_type { u32 vc_hdr; /* virtchnl headers * (VIRTCHNL_PROTO_HDR_XXX) */ u32 vc_hash_field; /* virtchnl hash fields selector * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) */ u64 ice_hash_field; /* ice hash fields * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) */ }; static const struct ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), ICE_FLOW_HASH_ETH}, {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, {VIRTCHNL_PROTO_HDR_S_VLAN, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, {VIRTCHNL_PROTO_HDR_C_VLAN, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), ICE_FLOW_HASH_IPV4}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), ICE_FLOW_HASH_IPV6}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, {VIRTCHNL_PROTO_HDR_TCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, {VIRTCHNL_PROTO_HDR_TCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, {VIRTCHNL_PROTO_HDR_TCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), ICE_FLOW_HASH_TCP_PORT}, {VIRTCHNL_PROTO_HDR_UDP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, {VIRTCHNL_PROTO_HDR_UDP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, {VIRTCHNL_PROTO_HDR_UDP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), ICE_FLOW_HASH_UDP_PORT}, {VIRTCHNL_PROTO_HDR_SCTP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, {VIRTCHNL_PROTO_HDR_SCTP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, {VIRTCHNL_PROTO_HDR_SCTP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), ICE_FLOW_HASH_SCTP_PORT}, {VIRTCHNL_PROTO_HDR_PPPOE, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, {VIRTCHNL_PROTO_HDR_GTPU_IP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, {VIRTCHNL_PROTO_HDR_L2TPV3, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, }; /** * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF * @pf: pointer to the PF structure * @v_opcode: operation code * @v_retval: return value * @msg: pointer to the msg buffer * @msglen: msg length */ static void ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) { struct ice_hw *hw = &pf->hw; struct ice_vf *vf; unsigned int bkt; mutex_lock(&pf->vfs.table_lock); ice_for_each_vf(pf, bkt, vf) { /* Not all vfs are enabled so skip the ones that are not */ if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) continue; /* Ignore return value on purpose - a given VF may fail, but * we need to keep going and send to all of them */ ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, msglen, NULL); } mutex_unlock(&pf->vfs.table_lock); } /** * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event * @vf: pointer to the VF structure * @pfe: pointer to the virtchnl_pf_event to set link speed/status for * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* * @link_up: whether or not to set the link up/down */ static void ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, int ice_link_speed, bool link_up) { if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { pfe->event_data.link_event_adv.link_status = link_up; /* Speed in Mbps */ pfe->event_data.link_event_adv.link_speed = ice_conv_link_speed_to_virtchnl(true, ice_link_speed); } else { pfe->event_data.link_event.link_status = link_up; /* Legacy method for virtchnl link speeds */ pfe->event_data.link_event.link_speed = (enum virtchnl_link_speed) ice_conv_link_speed_to_virtchnl(false, ice_link_speed); } } /** * ice_vc_notify_vf_link_state - Inform a VF of link status * @vf: pointer to the VF structure * * send a link status message to a single VF */ void ice_vc_notify_vf_link_state(struct ice_vf *vf) { struct virtchnl_pf_event pfe = { 0 }; struct ice_hw *hw = &vf->pf->hw; pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; pfe.severity = PF_EVENT_SEVERITY_INFO; if (ice_is_vf_link_up(vf)) ice_set_pfe_link(vf, &pfe, hw->port_info->phy.link_info.link_speed, true); else ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe), NULL); } /** * ice_vc_notify_link_state - Inform all VFs on a PF of link status * @pf: pointer to the PF structure */ void ice_vc_notify_link_state(struct ice_pf *pf) { struct ice_vf *vf; unsigned int bkt; mutex_lock(&pf->vfs.table_lock); ice_for_each_vf(pf, bkt, vf) ice_vc_notify_vf_link_state(vf); mutex_unlock(&pf->vfs.table_lock); } /** * ice_vc_notify_reset - Send pending reset message to all VFs * @pf: pointer to the PF structure * * indicate a pending reset to all VFs on a given PF */ void ice_vc_notify_reset(struct ice_pf *pf) { struct virtchnl_pf_event pfe; if (!ice_has_vfs(pf)) return; pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); } /** * ice_vc_send_msg_to_vf - Send message to VF * @vf: pointer to the VF info * @v_opcode: virtual channel opcode * @v_retval: virtual channel return value * @msg: pointer to the msg buffer * @msglen: msg length * * send msg to VF */ int ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) { struct device *dev; struct ice_pf *pf; int aq_ret; pf = vf->pf; dev = ice_pf_to_dev(pf); aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, msg, msglen, NULL); if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", vf->vf_id, aq_ret, ice_aq_str(pf->hw.mailboxq.sq_last_status)); return -EIO; } return 0; } /** * ice_vc_get_ver_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to request the API version used by the PF */ static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) { struct virtchnl_version_info info = { VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR }; vf->vf_ver = *(struct virtchnl_version_info *)msg; /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ if (VF_IS_V10(&vf->vf_ver)) info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, sizeof(struct virtchnl_version_info)); } /** * ice_vc_get_max_frame_size - get max frame size allowed for VF * @vf: VF used to determine max frame size * * Max frame size is determined based on the current port's max frame size and * whether a port VLAN is configured on this VF. The VF is not aware whether * it's in a port VLAN so the PF needs to account for this in max frame size * checks and sending the max frame size to the VF. */ static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) { struct ice_port_info *pi = ice_vf_get_port_info(vf); u16 max_frame_size; max_frame_size = pi->phy.link_info.max_frame_size; if (ice_vf_is_port_vlan_ena(vf)) max_frame_size -= VLAN_HLEN; return max_frame_size; } /** * ice_vc_get_vlan_caps * @hw: pointer to the hw * @vf: pointer to the VF info * @vsi: pointer to the VSI * @driver_caps: current driver caps * * Return 0 if there is no VLAN caps supported, or VLAN caps value */ static u32 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, u32 driver_caps) { if (ice_is_eswitch_mode_switchdev(vf->pf)) /* In switchdev setting VLAN from VF isn't supported */ return 0; if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { /* VLAN offloads based on current device configuration */ return VIRTCHNL_VF_OFFLOAD_VLAN_V2; } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for * these two conditions, which amounts to guest VLAN filtering * and offloads being based on the inner VLAN or the * inner/single VLAN respectively and don't allow VF to * negotiate VIRTCHNL_VF_OFFLOAD in any other cases */ if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { return VIRTCHNL_VF_OFFLOAD_VLAN; } else if (!ice_is_dvm_ena(hw) && !ice_vf_is_port_vlan_ena(vf)) { /* configure backward compatible support for VFs that * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is * configured in SVM, and no port VLAN is configured */ ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); return VIRTCHNL_VF_OFFLOAD_VLAN; } else if (ice_is_dvm_ena(hw)) { /* configure software offloaded VLAN support when DVM * is enabled, but no port VLAN is enabled */ ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); } } return 0; } /** * ice_vc_get_vf_res_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to request its resources */ static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vf_resource *vfres = NULL; struct ice_hw *hw = &vf->pf->hw; struct ice_vsi *vsi; int len = 0; int ret; if (ice_check_vf_init(vf)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto err; } len = virtchnl_struct_size(vfres, vsi_res, 0); vfres = kzalloc(len, GFP_KERNEL); if (!vfres) { v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; len = 0; goto err; } if (VF_IS_V11(&vf->vf_ver)) vf->driver_caps = *(u32 *)msg; else vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | VIRTCHNL_VF_OFFLOAD_VLAN; vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto err; } vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, vf->driver_caps); if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; vfres->num_vsis = 1; /* Tx and Rx queue are equal for VF */ vfres->num_queue_pairs = vsi->num_txq; vfres->max_vectors = vf->pf->vfs.num_msix_per; vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; vfres->rss_lut_size = ICE_LUT_VSI_SIZE; vfres->max_mtu = ice_vc_get_max_frame_size(vf); vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID; vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; ether_addr_copy(vfres->vsi_res[0].default_mac_addr, vf->hw_lan_addr); /* match guest capabilities */ vf->driver_caps = vfres->vf_cap_flags; ice_vc_set_caps_allowlist(vf); ice_vc_set_working_allowlist(vf); set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); err: /* send the response back to the VF */ ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, (u8 *)vfres, len); kfree(vfres); return ret; } /** * ice_vc_reset_vf_msg * @vf: pointer to the VF info * * called from the VF to reset itself, * unlike other virtchnl messages, PF driver * doesn't send the response back to the VF */ static void ice_vc_reset_vf_msg(struct ice_vf *vf) { if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) ice_reset_vf(vf, 0); } /** * ice_vc_isvalid_vsi_id * @vf: pointer to the VF info * @vsi_id: VF relative VSI ID * * check for the valid VSI ID */ bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) { return vsi_id == ICE_VF_VSI_ID; } /** * ice_vc_isvalid_q_id * @vsi: VSI to check queue ID against * @qid: VSI relative queue ID * * check for the valid queue ID */ static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid) { /* allocated Tx and Rx queues should be always equal for VF VSI */ return qid < vsi->alloc_txq; } /** * ice_vc_isvalid_ring_len * @ring_len: length of ring * * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE * or zero */ static bool ice_vc_isvalid_ring_len(u16 ring_len) { return ring_len == 0 || (ring_len >= ICE_MIN_NUM_DESC && ring_len <= ICE_MAX_NUM_DESC && !(ring_len % ICE_REQ_DESC_MULTIPLE)); } /** * ice_vc_validate_pattern * @vf: pointer to the VF info * @proto: virtchnl protocol headers * * validate the pattern is supported or not. * * Return: true on success, false on error. */ bool ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) { bool is_ipv4 = false; bool is_ipv6 = false; bool is_udp = false; u16 ptype = -1; int i = 0; while (i < proto->count && proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { switch (proto->proto_hdr[i].type) { case VIRTCHNL_PROTO_HDR_ETH: ptype = ICE_PTYPE_MAC_PAY; break; case VIRTCHNL_PROTO_HDR_IPV4: ptype = ICE_PTYPE_IPV4_PAY; is_ipv4 = true; break; case VIRTCHNL_PROTO_HDR_IPV6: ptype = ICE_PTYPE_IPV6_PAY; is_ipv6 = true; break; case VIRTCHNL_PROTO_HDR_UDP: if (is_ipv4) ptype = ICE_PTYPE_IPV4_UDP_PAY; else if (is_ipv6) ptype = ICE_PTYPE_IPV6_UDP_PAY; is_udp = true; break; case VIRTCHNL_PROTO_HDR_TCP: if (is_ipv4) ptype = ICE_PTYPE_IPV4_TCP_PAY; else if (is_ipv6) ptype = ICE_PTYPE_IPV6_TCP_PAY; break; case VIRTCHNL_PROTO_HDR_SCTP: if (is_ipv4) ptype = ICE_PTYPE_IPV4_SCTP_PAY; else if (is_ipv6) ptype = ICE_PTYPE_IPV6_SCTP_PAY; break; case VIRTCHNL_PROTO_HDR_GTPU_IP: case VIRTCHNL_PROTO_HDR_GTPU_EH: if (is_ipv4) ptype = ICE_MAC_IPV4_GTPU; else if (is_ipv6) ptype = ICE_MAC_IPV6_GTPU; goto out; case VIRTCHNL_PROTO_HDR_L2TPV3: if (is_ipv4) ptype = ICE_MAC_IPV4_L2TPV3; else if (is_ipv6) ptype = ICE_MAC_IPV6_L2TPV3; goto out; case VIRTCHNL_PROTO_HDR_ESP: if (is_ipv4) ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : ICE_MAC_IPV4_ESP; else if (is_ipv6) ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : ICE_MAC_IPV6_ESP; goto out; case VIRTCHNL_PROTO_HDR_AH: if (is_ipv4) ptype = ICE_MAC_IPV4_AH; else if (is_ipv6) ptype = ICE_MAC_IPV6_AH; goto out; case VIRTCHNL_PROTO_HDR_PFCP: if (is_ipv4) ptype = ICE_MAC_IPV4_PFCP_SESSION; else if (is_ipv6) ptype = ICE_MAC_IPV6_PFCP_SESSION; goto out; default: break; } i++; } out: return ice_hw_ptype_ena(&vf->pf->hw, ptype); } /** * ice_vc_parse_rss_cfg - parses hash fields and headers from * a specific virtchnl RSS cfg * @hw: pointer to the hardware * @rss_cfg: pointer to the virtchnl RSS cfg * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) * to configure * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure * * Return true if all the protocol header and hash fields in the RSS cfg could * be parsed, else return false * * This function parses the virtchnl RSS cfg to be the intended * hash fields and the intended header for RSS configuration */ static bool ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, u32 *addl_hdrs, u64 *hash_flds) { const struct ice_vc_hash_field_match_type *hf_list; const struct ice_vc_hdr_match_type *hdr_list; int i, hf_list_len, hdr_list_len; hf_list = ice_vc_hash_field_list; hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); hdr_list = ice_vc_hdr_list; hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { struct virtchnl_proto_hdr *proto_hdr = &rss_cfg->proto_hdrs.proto_hdr[i]; bool hdr_found = false; int j; /* Find matched ice headers according to virtchnl headers. */ for (j = 0; j < hdr_list_len; j++) { struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; if (proto_hdr->type == hdr_map.vc_hdr) { *addl_hdrs |= hdr_map.ice_hdr; hdr_found = true; } } if (!hdr_found) return false; /* Find matched ice hash fields according to * virtchnl hash fields. */ for (j = 0; j < hf_list_len; j++) { struct ice_vc_hash_field_match_type hf_map = hf_list[j]; if (proto_hdr->type == hf_map.vc_hdr && proto_hdr->field_selector == hf_map.vc_hash_field) { *hash_flds |= hf_map.ice_hash_field; break; } } } return true; } /** * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced * RSS offloads * @caps: VF driver negotiated capabilities * * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, * else return false */ static bool ice_vf_adv_rss_offload_ena(u32 caps) { return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); } /** * ice_vc_handle_rss_cfg * @vf: pointer to the VF info * @msg: pointer to the message buffer * @add: add a RSS config if true, otherwise delete a RSS config * * This function adds/deletes a RSS config */ static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) { u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct device *dev = ice_pf_to_dev(vf->pf); struct ice_hw *hw = &vf->pf->hw; struct ice_vsi *vsi; if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", vf->vf_id); v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; goto error_param; } if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", vf->vf_id); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", vf->vf_id); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { struct ice_vsi_ctx *ctx; u8 lut_type, hash_type; int status; lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR : ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) { v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; goto error_param; } ctx->info.q_opt_rss = FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); /* Preserve existing queueing option setting */ ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); ctx->info.q_opt_tc = vsi->info.q_opt_tc; ctx->info.q_opt_flags = vsi->info.q_opt_rss; ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); status = ice_update_vsi(hw, vsi->idx, ctx, NULL); if (status) { dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", status, ice_aq_str(hw->adminq.sq_last_status)); v_ret = VIRTCHNL_STATUS_ERR_PARAM; } else { vsi->info.q_opt_rss = ctx->info.q_opt_rss; } kfree(ctx); } else { u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; u64 hash_flds = ICE_HASH_INVALID; if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, &hash_flds)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (add) { if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, addl_hdrs)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", vsi->vsi_num, v_ret); } } else { int status; status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, addl_hdrs); /* We just ignore -ENOENT, because if two configurations * share the same profile remove one of them actually * removes both, since the profile is deleted. */ if (status && status != -ENOENT) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", vf->vf_id, status); } } } error_param: return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); } /** * ice_vc_config_rss_key * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * Configure the VF's RSS key */ static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_rss_key *vrk = (struct virtchnl_rss_key *)msg; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (ice_set_rss_key(vsi, vrk->key)) v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; error_param: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, NULL, 0); } /** * ice_vc_config_rss_lut * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * Configure the VF's RSS LUT */ static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) { struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; error_param: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, NULL, 0); } /** * ice_vc_cfg_promiscuous_mode_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to configure VF VSIs promiscuous mode */ static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; bool rm_promisc, alluni = false, allmulti = false; struct virtchnl_promisc_info *info = (struct virtchnl_promisc_info *)msg; struct ice_vsi_vlan_ops *vlan_ops; int mcast_err = 0, ucast_err = 0; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; u8 mcast_m, ucast_m; struct device *dev; int ret = 0; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } dev = ice_pf_to_dev(pf); if (!ice_is_vf_trusted(vf)) { dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", vf->vf_id); /* Leave v_ret alone, lie to the VF on purpose. */ goto error_param; } if (info->flags & FLAG_VF_UNICAST_PROMISC) alluni = true; if (info->flags & FLAG_VF_MULTICAST_PROMISC) allmulti = true; rm_promisc = !allmulti && !alluni; vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); if (rm_promisc) ret = vlan_ops->ena_rx_filtering(vsi); else ret = vlan_ops->dis_rx_filtering(vsi); if (ret) { dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { if (alluni) { /* in this case we're turning on promiscuous mode */ ret = ice_set_dflt_vsi(vsi); } else { /* in this case we're turning off promiscuous mode */ if (ice_is_dflt_vsi_in_use(vsi->port_info)) ret = ice_clear_dflt_vsi(vsi); } /* in this case we're turning on/off only * allmulticast */ if (allmulti) mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); else mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); if (ret) { dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", vf->vf_id, ret); v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; goto error_param; } } else { if (alluni) ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); else ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); if (allmulti) mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); else mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); if (ucast_err || mcast_err) v_ret = VIRTCHNL_STATUS_ERR_PARAM; } if (!mcast_err) { if (allmulti && !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", vf->vf_id); else if (!allmulti && test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", vf->vf_id); } else { dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", vf->vf_id, mcast_err); } if (!ucast_err) { if (alluni && !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", vf->vf_id); else if (!alluni && test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", vf->vf_id); } else { dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", vf->vf_id, ucast_err); } error_param: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, v_ret, NULL, 0); } /** * ice_vc_get_stats_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to get VSI stats */ static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_queue_select *vqs = (struct virtchnl_queue_select *)msg; struct ice_eth_stats stats = { 0 }; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } ice_update_eth_stats(vsi); stats = vsi->eth_stats; error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, (u8 *)&stats, sizeof(stats)); } /** * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL * @vqs: virtchnl_queue_select structure containing bitmaps to validate * * Return true on successful validation, else false */ static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) { if ((!vqs->rx_queues && !vqs->tx_queues) || vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) return false; return true; } /** * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL * @vsi: VSI of the VF to configure * @q_idx: VF queue index used to determine the queue in the PF's space */ static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) { struct ice_hw *hw = &vsi->back->hw; u32 pfq = vsi->txq_map[q_idx]; u32 reg; reg = rd32(hw, QINT_TQCTL(pfq)); /* MSI-X index 0 in the VF's space is always for the OICR, which means * this is most likely a poll mode VF driver, so don't enable an * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP */ if (!(reg & QINT_TQCTL_MSIX_INDX_M)) return; wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); } /** * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL * @vsi: VSI of the VF to configure * @q_idx: VF queue index used to determine the queue in the PF's space */ static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) { struct ice_hw *hw = &vsi->back->hw; u32 pfq = vsi->rxq_map[q_idx]; u32 reg; reg = rd32(hw, QINT_RQCTL(pfq)); /* MSI-X index 0 in the VF's space is always for the OICR, which means * this is most likely a poll mode VF driver, so don't enable an * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP */ if (!(reg & QINT_RQCTL_MSIX_INDX_M)) return; wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); } /** * ice_vc_ena_qs_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to enable all or specific queue(s) */ static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_queue_select *vqs = (struct virtchnl_queue_select *)msg; struct ice_vsi *vsi; unsigned long q_map; u16 vf_q_id; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_validate_vqs_bitmaps(vqs)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Enable only Rx rings, Tx rings were enabled by the FW when the * Tx queue group list was configured and the context bits were * programmed using ice_vsi_cfg_txqs */ q_map = vqs->rx_queues; for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Skip queue if enabled */ if (test_bit(vf_q_id, vf->rxq_ena)) continue; if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", vf_q_id, vsi->vsi_num); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } ice_vf_ena_rxq_interrupt(vsi, vf_q_id); set_bit(vf_q_id, vf->rxq_ena); } q_map = vqs->tx_queues; for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Skip queue if enabled */ if (test_bit(vf_q_id, vf->txq_ena)) continue; ice_vf_ena_txq_interrupt(vsi, vf_q_id); set_bit(vf_q_id, vf->txq_ena); } /* Set flag to indicate that queues are enabled */ if (v_ret == VIRTCHNL_STATUS_SUCCESS) set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, NULL, 0); } /** * ice_vf_vsi_dis_single_txq - disable a single Tx queue * @vf: VF to disable queue for * @vsi: VSI for the VF * @q_id: VF relative (0-based) queue ID * * Attempt to disable the Tx queue passed in. If the Tx queue was successfully * disabled then clear q_id bit in the enabled queues bitmap and return * success. Otherwise return error. */ static int ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) { struct ice_txq_meta txq_meta = { 0 }; struct ice_tx_ring *ring; int err; if (!test_bit(q_id, vf->txq_ena)) dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", q_id, vsi->vsi_num); ring = vsi->tx_rings[q_id]; if (!ring) return -EINVAL; ice_fill_txq_meta(vsi, ring, &txq_meta); err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); if (err) { dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", q_id, vsi->vsi_num); return err; } /* Clear enabled queues flag */ clear_bit(q_id, vf->txq_ena); return 0; } /** * ice_vc_dis_qs_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to disable all or specific queue(s) */ static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_queue_select *vqs = (struct virtchnl_queue_select *)msg; struct ice_vsi *vsi; unsigned long q_map; u16 vf_q_id; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_validate_vqs_bitmaps(vqs)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (vqs->tx_queues) { q_map = vqs->tx_queues; for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } } } q_map = vqs->rx_queues; /* speed up Rx queue disable by batching them if possible */ if (q_map && bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { if (ice_vsi_stop_all_rx_rings(vsi)) { dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", vsi->vsi_num); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); } else if (q_map) { for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Skip queue if not enabled */ if (!test_bit(vf_q_id, vf->rxq_ena)) continue; if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, true)) { dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", vf_q_id, vsi->vsi_num); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Clear enabled queues flag */ clear_bit(vf_q_id, vf->rxq_ena); } } /* Clear enabled queues flag */ if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, NULL, 0); } /** * ice_cfg_interrupt * @vf: pointer to the VF info * @vsi: the VSI being configured * @vector_id: vector ID * @map: vector map for mapping vectors to queues * @q_vector: structure for interrupt vector * configure the IRQ to queue map */ static int ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, struct virtchnl_vector_map *map, struct ice_q_vector *q_vector) { u16 vsi_q_id, vsi_q_id_idx; unsigned long qmap; q_vector->num_ring_rx = 0; q_vector->num_ring_tx = 0; qmap = map->rxq_map; for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { vsi_q_id = vsi_q_id_idx; if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) return VIRTCHNL_STATUS_ERR_PARAM; q_vector->num_ring_rx++; q_vector->rx.itr_idx = map->rxitr_idx; vsi->rx_rings[vsi_q_id]->q_vector = q_vector; ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, q_vector->rx.itr_idx); } qmap = map->txq_map; for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { vsi_q_id = vsi_q_id_idx; if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) return VIRTCHNL_STATUS_ERR_PARAM; q_vector->num_ring_tx++; q_vector->tx.itr_idx = map->txitr_idx; vsi->tx_rings[vsi_q_id]->q_vector = q_vector; ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, q_vector->tx.itr_idx); } return VIRTCHNL_STATUS_SUCCESS; } /** * ice_vc_cfg_irq_map_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to configure the IRQ to queue map */ static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; u16 num_q_vectors_mapped, vsi_id, vector_id; struct virtchnl_irq_map_info *irqmap_info; struct virtchnl_vector_map *map; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; int i; irqmap_info = (struct virtchnl_irq_map_info *)msg; num_q_vectors_mapped = irqmap_info->num_vectors; /* Check to make sure number of VF vectors mapped is not greater than * number of VF vectors originally allocated, and check that * there is actually at least a single VF queue vector mapped */ if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || pf->vfs.num_msix_per < num_q_vectors_mapped || !num_q_vectors_mapped) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } for (i = 0; i < num_q_vectors_mapped; i++) { struct ice_q_vector *q_vector; map = &irqmap_info->vecmap[i]; vector_id = map->vector_id; vsi_id = map->vsi_id; /* vector_id is always 0-based for each VF, and can never be * larger than or equal to the max allowed interrupts per VF */ if (!(vector_id < pf->vfs.num_msix_per) || !ice_vc_isvalid_vsi_id(vf, vsi_id) || (!vector_id && (map->rxq_map || map->txq_map))) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* No need to map VF miscellaneous or rogue vector */ if (!vector_id) continue; /* Subtract non queue vector from vector_id passed by VF * to get actual number of VSI queue vector array index */ q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; if (!q_vector) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* lookout for the invalid queue index */ v_ret = (enum virtchnl_status_code) ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); if (v_ret) goto error_param; } error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, NULL, 0); } /** * ice_vc_cfg_qs_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to configure the Rx/Tx queues */ static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) { struct virtchnl_vsi_queue_config_info *qci = (struct virtchnl_vsi_queue_config_info *)msg; struct virtchnl_queue_pair_info *qpi; struct ice_pf *pf = vf->pf; struct ice_lag *lag; struct ice_vsi *vsi; u8 act_prt, pri_prt; int i = -1, q_idx; lag = pf->lag; mutex_lock(&pf->lag_mutex); act_prt = ICE_LAG_INVALID_PORT; pri_prt = pf->hw.port_info->lport; if (lag && lag->bonded && lag->primary) { act_prt = lag->active_port; if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT && lag->upper_netdev) ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt); else act_prt = ICE_LAG_INVALID_PORT; } if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) goto error_param; if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) goto error_param; vsi = ice_get_vf_vsi(vf); if (!vsi) goto error_param; if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); goto error_param; } for (i = 0; i < qci->num_queue_pairs; i++) { qpi = &qci->qpair[i]; if (qpi->txq.vsi_id != qci->vsi_id || qpi->rxq.vsi_id != qci->vsi_id || qpi->rxq.queue_id != qpi->txq.queue_id || qpi->txq.headwb_enabled || !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) { goto error_param; } q_idx = qpi->rxq.queue_id; /* make sure selected "q_idx" is in valid range of queues * for selected "vsi" */ if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { goto error_param; } /* copy Tx queue info from VF into VSI */ if (qpi->txq.ring_len > 0) { vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; vsi->tx_rings[i]->count = qpi->txq.ring_len; /* Disable any existing queue first */ if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) goto error_param; /* Configure a queue with the requested settings */ if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", vf->vf_id, i); goto error_param; } } /* copy Rx queue info from VF into VSI */ if (qpi->rxq.ring_len > 0) { u16 max_frame_size = ice_vc_get_max_frame_size(vf); u32 rxdid; vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; vsi->rx_rings[i]->count = qpi->rxq.ring_len; if (qpi->rxq.databuffer_size != 0 && (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || qpi->rxq.databuffer_size < 1024)) goto error_param; vsi->rx_buf_len = qpi->rxq.databuffer_size; vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; if (qpi->rxq.max_pkt_size > max_frame_size || qpi->rxq.max_pkt_size < 64) goto error_param; vsi->max_frame = qpi->rxq.max_pkt_size; /* add space for the port VLAN since the VF driver is * not expected to account for it in the MTU * calculation */ if (ice_vf_is_port_vlan_ena(vf)) vsi->max_frame += VLAN_HLEN; if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", vf->vf_id, i); goto error_param; } /* If Rx flex desc is supported, select RXDID for Rx * queues. Otherwise, use legacy 32byte descriptor * format. Legacy 16byte descriptor is not supported. * If this RXDID is selected, return error. */ if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { rxdid = qpi->rxq.rxdid; if (!(BIT(rxdid) & pf->supported_rxdids)) goto error_param; } else { rxdid = ICE_RXDID_LEGACY_1; } ice_write_qrxflxp_cntxt(&vsi->back->hw, vsi->rxq_map[q_idx], rxdid, 0x03, false); } } if (lag && lag->bonded && lag->primary && act_prt != ICE_LAG_INVALID_PORT) ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); mutex_unlock(&pf->lag_mutex); /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, VIRTCHNL_STATUS_SUCCESS, NULL, 0); error_param: /* disable whatever we can */ for (; i >= 0; i--) { if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", vf->vf_id, i); if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", vf->vf_id, i); } if (lag && lag->bonded && lag->primary && act_prt != ICE_LAG_INVALID_PORT) ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); mutex_unlock(&pf->lag_mutex); ice_lag_move_new_vf_nodes(vf); /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); } /** * ice_can_vf_change_mac * @vf: pointer to the VF info * * Return true if the VF is allowed to change its MAC filters, false otherwise */ static bool ice_can_vf_change_mac(struct ice_vf *vf) { /* If the VF MAC address has been set administratively (via the * ndo_set_vf_mac command), then deny permission to the VF to * add/delete unicast MAC addresses, unless the VF is trusted */ if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) return false; return true; } /** * ice_vc_ether_addr_type - get type of virtchnl_ether_addr * @vc_ether_addr: used to extract the type */ static u8 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) { return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); } /** * ice_is_vc_addr_legacy - check if the MAC address is from an older VF * @vc_ether_addr: VIRTCHNL structure that contains MAC and type */ static bool ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) { u8 type = ice_vc_ether_addr_type(vc_ether_addr); return (type == VIRTCHNL_ETHER_ADDR_LEGACY); } /** * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC * @vc_ether_addr: VIRTCHNL structure that contains MAC and type * * This function should only be called when the MAC address in * virtchnl_ether_addr is a valid unicast MAC */ static bool ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) { u8 type = ice_vc_ether_addr_type(vc_ether_addr); return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); } /** * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed * @vf: VF to update * @vc_ether_addr: structure from VIRTCHNL with MAC to add */ static void ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) { u8 *mac_addr = vc_ether_addr->addr; if (!is_valid_ether_addr(mac_addr)) return; /* only allow legacy VF drivers to set the device and hardware MAC if it * is zero and allow new VF drivers to set the hardware MAC if the type * was correctly specified over VIRTCHNL */ if ((ice_is_vc_addr_legacy(vc_ether_addr) && is_zero_ether_addr(vf->hw_lan_addr)) || ice_is_vc_addr_primary(vc_ether_addr)) { ether_addr_copy(vf->dev_lan_addr, mac_addr); ether_addr_copy(vf->hw_lan_addr, mac_addr); } /* hardware and device MACs are already set, but its possible that the * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it * away for the legacy VF driver case as it will be updated in the * delete flow for this case */ if (ice_is_vc_addr_legacy(vc_ether_addr)) { ether_addr_copy(vf->legacy_last_added_umac.addr, mac_addr); vf->legacy_last_added_umac.time_modified = jiffies; } } /** * ice_vc_add_mac_addr - attempt to add the MAC address passed in * @vf: pointer to the VF info * @vsi: pointer to the VF's VSI * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC */ static int ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, struct virtchnl_ether_addr *vc_ether_addr) { struct device *dev = ice_pf_to_dev(vf->pf); u8 *mac_addr = vc_ether_addr->addr; int ret; /* device MAC already added */ if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) return 0; if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); return -EPERM; } ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); if (ret == -EEXIST) { dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, vf->vf_id); /* don't return since we might need to update * the primary MAC in ice_vfhw_mac_add() below */ } else if (ret) { dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", mac_addr, vf->vf_id, ret); return ret; } else { vf->num_mac++; } ice_vfhw_mac_add(vf, vc_ether_addr); return ret; } /** * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired * @last_added_umac: structure used to check expiration */ static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) { #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) return time_is_before_jiffies(last_added_umac->time_modified + ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); } /** * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF * @vf: VF to update * @vc_ether_addr: structure from VIRTCHNL with MAC to check * * only update cached hardware MAC for legacy VF drivers on delete * because we cannot guarantee order/type of MAC from the VF driver */ static void ice_update_legacy_cached_mac(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) { if (!ice_is_vc_addr_legacy(vc_ether_addr) || ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) return; ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); } /** * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed * @vf: VF to update * @vc_ether_addr: structure from VIRTCHNL with MAC to delete */ static void ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) { u8 *mac_addr = vc_ether_addr->addr; if (!is_valid_ether_addr(mac_addr) || !ether_addr_equal(vf->dev_lan_addr, mac_addr)) return; /* allow the device MAC to be repopulated in the add flow and don't * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant * to be persistent on VM reboot and across driver unload/load, which * won't work if we clear the hardware MAC here */ eth_zero_addr(vf->dev_lan_addr); ice_update_legacy_cached_mac(vf, vc_ether_addr); } /** * ice_vc_del_mac_addr - attempt to delete the MAC address passed in * @vf: pointer to the VF info * @vsi: pointer to the VF's VSI * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC */ static int ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, struct virtchnl_ether_addr *vc_ether_addr) { struct device *dev = ice_pf_to_dev(vf->pf); u8 *mac_addr = vc_ether_addr->addr; int status; if (!ice_can_vf_change_mac(vf) && ether_addr_equal(vf->dev_lan_addr, mac_addr)) return 0; status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); if (status == -ENOENT) { dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, vf->vf_id); return -ENOENT; } else if (status) { dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", mac_addr, vf->vf_id, status); return -EIO; } ice_vfhw_mac_del(vf, vc_ether_addr); vf->num_mac--; return 0; } /** * ice_vc_handle_mac_addr_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * @set: true if MAC filters are being set, false otherwise * * add guest MAC address filter */ static int ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) { int (*ice_vc_cfg_mac) (struct ice_vf *vf, struct ice_vsi *vsi, struct virtchnl_ether_addr *virtchnl_ether_addr); enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_ether_addr_list *al = (struct virtchnl_ether_addr_list *)msg; struct ice_pf *pf = vf->pf; enum virtchnl_ops vc_op; struct ice_vsi *vsi; int i; if (set) { vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; ice_vc_cfg_mac = ice_vc_add_mac_addr; } else { vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; ice_vc_cfg_mac = ice_vc_del_mac_addr; } if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto handle_mac_exit; } /* If this VF is not privileged, then we can't add more than a * limited number of addresses. Check to make sure that the * additions do not push us over the limit. */ if (set && !ice_is_vf_trusted(vf) && (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", vf->vf_id); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto handle_mac_exit; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto handle_mac_exit; } for (i = 0; i < al->num_elements; i++) { u8 *mac_addr = al->list[i].addr; int result; if (is_broadcast_ether_addr(mac_addr) || is_zero_ether_addr(mac_addr)) continue; result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); if (result == -EEXIST || result == -ENOENT) { continue; } else if (result) { v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; goto handle_mac_exit; } } handle_mac_exit: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); } /** * ice_vc_add_mac_addr_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * add guest MAC address filter */ static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) { return ice_vc_handle_mac_addr_msg(vf, msg, true); } /** * ice_vc_del_mac_addr_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * remove guest MAC address filter */ static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) { return ice_vc_handle_mac_addr_msg(vf, msg, false); } /** * ice_vc_request_qs_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * VFs get a default number of queues but can use this message to request a * different number. If the request is successful, PF will reset the VF and * return 0. If unsuccessful, PF will send message informing VF of number of * available queue pairs via virtchnl message response to VF. */ static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vf_res_request *vfres = (struct virtchnl_vf_res_request *)msg; u16 req_queues = vfres->num_queue_pairs; struct ice_pf *pf = vf->pf; u16 max_allowed_vf_queues; u16 tx_rx_queue_left; struct device *dev; u16 cur_queues; dev = ice_pf_to_dev(pf); if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } cur_queues = vf->num_vf_qs; tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), ice_get_avail_rxq_count(pf)); max_allowed_vf_queues = tx_rx_queue_left + cur_queues; if (!req_queues) { dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", vf->vf_id); } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { dev_err(dev, "VF %d tried to request more than %d queues.\n", vf->vf_id, ICE_MAX_RSS_QS_PER_VF); vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; } else if (req_queues > cur_queues && req_queues - cur_queues > tx_rx_queue_left) { dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, ICE_MAX_RSS_QS_PER_VF); } else { /* request is successful, then reset VF */ vf->num_req_qs = req_queues; ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); dev_info(dev, "VF %d granted request of %u queues.\n", vf->vf_id, req_queues); return 0; } error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, v_ret, (u8 *)vfres, sizeof(*vfres)); } /** * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads * @caps: VF driver negotiated capabilities * * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false */ static bool ice_vf_vlan_offload_ena(u32 caps) { return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); } /** * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed * @vf: VF used to determine if VLAN promiscuous config is allowed */ static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) { if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) return true; return false; } /** * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN * @vsi: VF's VSI used to enable VLAN promiscuous mode * @vlan: VLAN used to enable VLAN promiscuous * * This function should only be called if VLAN promiscuous mode is allowed, * which can be determined via ice_is_vlan_promisc_allowed(). */ static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) { u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; int status; status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, vlan->vid); if (status && status != -EEXIST) return status; return 0; } /** * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN * @vsi: VF's VSI used to disable VLAN promiscuous mode for * @vlan: VLAN used to disable VLAN promiscuous * * This function should only be called if VLAN promiscuous mode is allowed, * which can be determined via ice_is_vlan_promisc_allowed(). */ static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) { u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; int status; status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, vlan->vid); if (status && status != -ENOENT) return status; return 0; } /** * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters * @vf: VF to check against * @vsi: VF's VSI * * If the VF is trusted then the VF is allowed to add as many VLANs as it * wants to, so return false. * * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max * allowed VLANs for an untrusted VF. Return the result of this comparison. */ static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) { if (ice_is_vf_trusted(vf)) return false; #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 return ((ice_vsi_num_non_zero_vlans(vsi) + ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); } /** * ice_vc_process_vlan_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * @add_v: Add VLAN if true, otherwise delete VLAN * * Process virtchnl op to add or remove programmed guest VLAN ID */ static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vlan_filter_list *vfl = (struct virtchnl_vlan_filter_list *)msg; struct ice_pf *pf = vf->pf; bool vlan_promisc = false; struct ice_vsi *vsi; struct device *dev; int status = 0; int i; dev = ice_pf_to_dev(pf); if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } for (i = 0; i < vfl->num_elements; i++) { if (vfl->vlan_id[i] >= VLAN_N_VID) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; dev_err(dev, "invalid VF VLAN id %d\n", vfl->vlan_id[i]); goto error_param; } } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (add_v && ice_vf_has_max_vlans(vf, vsi)) { dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", vf->vf_id); /* There is no need to let VF know about being not trusted, * so we can just return success message here */ goto error_param; } /* in DVM a VF can add/delete inner VLAN filters when * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM */ if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* in DVM VLAN promiscuous is based on the outer VLAN, which would be * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only * allow vlan_promisc = true in SVM and if no port VLAN is configured */ vlan_promisc = ice_is_vlan_promisc_allowed(vf) && !ice_is_dvm_ena(&pf->hw) && !ice_vf_is_port_vlan_ena(vf); if (add_v) { for (i = 0; i < vfl->num_elements; i++) { u16 vid = vfl->vlan_id[i]; struct ice_vlan vlan; if (ice_vf_has_max_vlans(vf, vsi)) { dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", vf->vf_id); /* There is no need to let VF know about being * not trusted, so we can just return success * message here as well. */ goto error_param; } /* we add VLAN 0 by default for each VF so we can enable * Tx VLAN anti-spoof without triggering MDD events so * we don't need to add it again here */ if (!vid) continue; vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); if (status) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Enable VLAN filtering on first non-zero VLAN */ if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { if (vf->spoofchk) { status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); if (status) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", vid, status); goto error_param; } } if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", vid, status); goto error_param; } } else if (vlan_promisc) { status = ice_vf_ena_vlan_promisc(vsi, &vlan); if (status) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", vid, status); } } } } else { /* In case of non_trusted VF, number of VLAN elements passed * to PF for removal might be greater than number of VLANs * filter programmed for that VF - So, use actual number of * VLANS added earlier with add VLAN opcode. In order to avoid * removing VLAN that doesn't exist, which result to sending * erroneous failed message back to the VF */ int num_vf_vlan; num_vf_vlan = vsi->num_vlan; for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { u16 vid = vfl->vlan_id[i]; struct ice_vlan vlan; /* we add VLAN 0 by default for each VF so we can enable * Tx VLAN anti-spoof without triggering MDD events so * we don't want a VIRTCHNL request to remove it */ if (!vid) continue; vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); if (status) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Disable VLAN filtering when only VLAN 0 is left */ if (!ice_vsi_has_non_zero_vlans(vsi)) { vsi->inner_vlan_ops.dis_tx_filtering(vsi); vsi->inner_vlan_ops.dis_rx_filtering(vsi); } if (vlan_promisc) ice_vf_dis_vlan_promisc(vsi, &vlan); } } error_param: /* send the response to the VF */ if (add_v) return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, NULL, 0); else return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, NULL, 0); } /** * ice_vc_add_vlan_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * Add and program guest VLAN ID */ static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) { return ice_vc_process_vlan_msg(vf, msg, true); } /** * ice_vc_remove_vlan_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * remove programmed guest VLAN ID */ static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) { return ice_vc_process_vlan_msg(vf, msg, false); } /** * ice_vc_ena_vlan_stripping * @vf: pointer to the VF info * * Enable VLAN header stripping for a given VF */ static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) v_ret = VIRTCHNL_STATUS_ERR_PARAM; error_param: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, v_ret, NULL, 0); } /** * ice_vc_dis_vlan_stripping * @vf: pointer to the VF info * * Disable VLAN header stripping for a given VF */ static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (vsi->inner_vlan_ops.dis_stripping(vsi)) v_ret = VIRTCHNL_STATUS_ERR_PARAM; error_param: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, v_ret, NULL, 0); } /** * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware * @vf: pointer to the VF info */ static int ice_vc_get_rss_hena(struct ice_vf *vf) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_rss_hena *vrh = NULL; int len = 0, ret; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto err; } if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto err; } len = sizeof(struct virtchnl_rss_hena); vrh = kzalloc(len, GFP_KERNEL); if (!vrh) { v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; len = 0; goto err; } vrh->hena = ICE_DEFAULT_RSS_HENA; err: /* send the response back to the VF */ ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, (u8 *)vrh, len); kfree(vrh); return ret; } /** * ice_vc_set_rss_hena - set RSS HENA bits for the VF * @vf: pointer to the VF info * @msg: pointer to the msg buffer */ static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) { struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; struct device *dev; int status; dev = ice_pf_to_dev(pf); if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto err; } if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { dev_err(dev, "RSS not supported by PF\n"); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto err; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto err; } /* clear all previously programmed RSS configuration to allow VF drivers * the ability to customize the RSS configuration and/or completely * disable RSS */ status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); if (status && !vrh->hena) { /* only report failure to clear the current RSS configuration if * that was clearly the VF's intention (i.e. vrh->hena = 0) */ v_ret = ice_err_to_virt_err(status); goto err; } else if (status) { /* allow the VF to update the RSS configuration even on failure * to clear the current RSS confguration in an attempt to keep * RSS in a working state */ dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", vf->vf_id); } if (vrh->hena) { status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena); v_ret = ice_err_to_virt_err(status); } /* send the response to the VF */ err: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, NULL, 0); } /** * ice_vc_query_rxdid - query RXDID supported by DDP package * @vf: pointer to VF info * * Called from VF to query a bitmap of supported flexible * descriptor RXDIDs of a DDP package. */ static int ice_vc_query_rxdid(struct ice_vf *vf) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_supported_rxdids *rxdid = NULL; struct ice_hw *hw = &vf->pf->hw; struct ice_pf *pf = vf->pf; int len = 0; int ret, i; u32 regval; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto err; } if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto err; } len = sizeof(struct virtchnl_supported_rxdids); rxdid = kzalloc(len, GFP_KERNEL); if (!rxdid) { v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; len = 0; goto err; } /* RXDIDs supported by DDP package can be read from the register * to get the supported RXDID bitmap. But the legacy 32byte RXDID * is not listed in DDP package, add it in the bitmap manually. * Legacy 16byte descriptor is not supported. */ rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1); for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) rxdid->supported_rxdids |= BIT(i); } pf->supported_rxdids = rxdid->supported_rxdids; err: ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, v_ret, (u8 *)rxdid, len); kfree(rxdid); return ret; } /** * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization * @vf: VF to enable/disable VLAN stripping for on initialization * * Set the default for VLAN stripping based on whether a port VLAN is configured * and the current VLAN mode of the device. */ static int ice_vf_init_vlan_stripping(struct ice_vf *vf) { struct ice_vsi *vsi = ice_get_vf_vsi(vf); if (!vsi) return -EINVAL; /* don't modify stripping if port VLAN is configured in SVM since the * port VLAN is based on the inner/single VLAN in SVM */ if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) return 0; if (ice_vf_vlan_offload_ena(vf->driver_caps)) return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); else return vsi->inner_vlan_ops.dis_stripping(vsi); } static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) { if (vf->trusted) return VLAN_N_VID; else return ICE_MAX_VLAN_PER_VF; } /** * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used * @vf: VF that being checked for * * When the device is in double VLAN mode, check whether or not the outer VLAN * is allowed. */ static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) { if (ice_vf_is_port_vlan_ena(vf)) return true; return false; } /** * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM * @vf: VF that capabilities are being set for * @caps: VLAN capabilities to populate * * Determine VLAN capabilities support based on whether a port VLAN is * configured. If a port VLAN is configured then the VF should use the inner * filtering/offload capabilities since the port VLAN is using the outer VLAN * capabilies. */ static void ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) { struct virtchnl_vlan_supported_caps *supported_caps; if (ice_vf_outer_vlan_not_allowed(vf)) { /* until support for inner VLAN filtering is added when a port * VLAN is configured, only support software offloaded inner * VLANs when a port VLAN is confgured in DVM */ supported_caps = &caps->filtering.filtering_support; supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; supported_caps = &caps->offloads.stripping_support; supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | VIRTCHNL_VLAN_TOGGLE | VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; supported_caps = &caps->offloads.insertion_support; supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | VIRTCHNL_VLAN_TOGGLE | VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; caps->offloads.ethertype_match = VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; } else { supported_caps = &caps->filtering.filtering_support; supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | VIRTCHNL_VLAN_ETHERTYPE_88A8 | VIRTCHNL_VLAN_ETHERTYPE_9100 | VIRTCHNL_VLAN_ETHERTYPE_AND; caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | VIRTCHNL_VLAN_ETHERTYPE_88A8 | VIRTCHNL_VLAN_ETHERTYPE_9100; supported_caps = &caps->offloads.stripping_support; supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | VIRTCHNL_VLAN_ETHERTYPE_8100 | VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | VIRTCHNL_VLAN_ETHERTYPE_8100 | VIRTCHNL_VLAN_ETHERTYPE_88A8 | VIRTCHNL_VLAN_ETHERTYPE_9100 | VIRTCHNL_VLAN_ETHERTYPE_XOR | VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; supported_caps = &caps->offloads.insertion_support; supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | VIRTCHNL_VLAN_ETHERTYPE_8100 | VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | VIRTCHNL_VLAN_ETHERTYPE_8100 | VIRTCHNL_VLAN_ETHERTYPE_88A8 | VIRTCHNL_VLAN_ETHERTYPE_9100 | VIRTCHNL_VLAN_ETHERTYPE_XOR | VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; caps->offloads.ethertype_match = VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; } caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); } /** * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM * @vf: VF that capabilities are being set for * @caps: VLAN capabilities to populate * * Determine VLAN capabilities support based on whether a port VLAN is * configured. If a port VLAN is configured then the VF does not have any VLAN * filtering or offload capabilities since the port VLAN is using the inner VLAN * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner * VLAN fitlering and offload capabilities. */ static void ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) { struct virtchnl_vlan_supported_caps *supported_caps; if (ice_vf_is_port_vlan_ena(vf)) { supported_caps = &caps->filtering.filtering_support; supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; supported_caps = &caps->offloads.stripping_support; supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; supported_caps = &caps->offloads.insertion_support; supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; caps->filtering.max_filters = 0; } else { supported_caps = &caps->filtering.filtering_support; supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; supported_caps = &caps->offloads.stripping_support; supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | VIRTCHNL_VLAN_TOGGLE | VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; supported_caps = &caps->offloads.insertion_support; supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | VIRTCHNL_VLAN_TOGGLE | VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; caps->offloads.ethertype_match = VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); } } /** * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities * @vf: VF to determine VLAN capabilities for * * This will only be called if the VF and PF successfully negotiated * VIRTCHNL_VF_OFFLOAD_VLAN_V2. * * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN * is configured or not. */ static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vlan_caps *caps = NULL; int err, len = 0; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } caps = kzalloc(sizeof(*caps), GFP_KERNEL); if (!caps) { v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; goto out; } len = sizeof(*caps); if (ice_is_dvm_ena(&vf->pf->hw)) ice_vc_set_dvm_caps(vf, caps); else ice_vc_set_svm_caps(vf, caps); /* store negotiated caps to prevent invalid VF messages */ memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); out: err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, v_ret, (u8 *)caps, len); kfree(caps); return err; } /** * ice_vc_validate_vlan_tpid - validate VLAN TPID * @filtering_caps: negotiated/supported VLAN filtering capabilities * @tpid: VLAN TPID used for validation * * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against * the negotiated/supported filtering caps to see if the VLAN TPID is valid. */ static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) { enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; switch (tpid) { case ETH_P_8021Q: vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; break; case ETH_P_8021AD: vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; break; case ETH_P_QINQ1: vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; break; } if (!(filtering_caps & vlan_ethertype)) return false; return true; } /** * ice_vc_is_valid_vlan - validate the virtchnl_vlan * @vc_vlan: virtchnl_vlan to validate * * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return * false. Otherwise return true. */ static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) { if (!vc_vlan->tci || !vc_vlan->tpid) return false; return true; } /** * ice_vc_validate_vlan_filter_list - validate the filter list from the VF * @vfc: negotiated/supported VLAN filtering capabilities * @vfl: VLAN filter list from VF to validate * * Validate all of the filters in the VLAN filter list from the VF. If any of * the checks fail then return false. Otherwise return true. */ static bool ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, struct virtchnl_vlan_filter_list_v2 *vfl) { u16 i; if (!vfl->num_elements) return false; for (i = 0; i < vfl->num_elements; i++) { struct virtchnl_vlan_supported_caps *filtering_support = &vfc->filtering_support; struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; struct virtchnl_vlan *outer = &vlan_fltr->outer; struct virtchnl_vlan *inner = &vlan_fltr->inner; if ((ice_vc_is_valid_vlan(outer) && filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || (ice_vc_is_valid_vlan(inner) && filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) return false; if ((outer->tci_mask && !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || (inner->tci_mask && !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) return false; if (((outer->tci & VLAN_PRIO_MASK) && !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || ((inner->tci & VLAN_PRIO_MASK) && !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) return false; if ((ice_vc_is_valid_vlan(outer) && !ice_vc_validate_vlan_tpid(filtering_support->outer, outer->tpid)) || (ice_vc_is_valid_vlan(inner) && !ice_vc_validate_vlan_tpid(filtering_support->inner, inner->tpid))) return false; } return true; } /** * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan * @vc_vlan: struct virtchnl_vlan to transform */ static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) { struct ice_vlan vlan = { 0 }; vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; vlan.vid = vc_vlan->tci & VLAN_VID_MASK; vlan.tpid = vc_vlan->tpid; return vlan; } /** * ice_vc_vlan_action - action to perform on the virthcnl_vlan * @vsi: VF's VSI used to perform the action * @vlan_action: function to perform the action with (i.e. add/del) * @vlan: VLAN filter to perform the action with */ static int ice_vc_vlan_action(struct ice_vsi *vsi, int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), struct ice_vlan *vlan) { int err; err = vlan_action(vsi, vlan); if (err) return err; return 0; } /** * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list * @vf: VF used to delete the VLAN(s) * @vsi: VF's VSI used to delete the VLAN(s) * @vfl: virthchnl filter list used to delete the filters */ static int ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, struct virtchnl_vlan_filter_list_v2 *vfl) { bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); int err; u16 i; for (i = 0; i < vfl->num_elements; i++) { struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; struct virtchnl_vlan *vc_vlan; vc_vlan = &vlan_fltr->outer; if (ice_vc_is_valid_vlan(vc_vlan)) { struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); err = ice_vc_vlan_action(vsi, vsi->outer_vlan_ops.del_vlan, &vlan); if (err) return err; if (vlan_promisc) ice_vf_dis_vlan_promisc(vsi, &vlan); /* Disable VLAN filtering when only VLAN 0 is left */ if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); if (err) return err; } } vc_vlan = &vlan_fltr->inner; if (ice_vc_is_valid_vlan(vc_vlan)) { struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); err = ice_vc_vlan_action(vsi, vsi->inner_vlan_ops.del_vlan, &vlan); if (err) return err; /* no support for VLAN promiscuous on inner VLAN unless * we are in Single VLAN Mode (SVM) */ if (!ice_is_dvm_ena(&vsi->back->hw)) { if (vlan_promisc) ice_vf_dis_vlan_promisc(vsi, &vlan); /* Disable VLAN filtering when only VLAN 0 is left */ if (!ice_vsi_has_non_zero_vlans(vsi)) { err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); if (err) return err; } } } } return 0; } /** * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 * @vf: VF the message was received from * @msg: message received from the VF */ static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) { struct virtchnl_vlan_filter_list_v2 *vfl = (struct virtchnl_vlan_filter_list_v2 *)msg; enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct ice_vsi *vsi; if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, vfl)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } if (ice_vc_del_vlans(vf, vsi, vfl)) v_ret = VIRTCHNL_STATUS_ERR_PARAM; out: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 0); } /** * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list * @vf: VF used to add the VLAN(s) * @vsi: VF's VSI used to add the VLAN(s) * @vfl: virthchnl filter list used to add the filters */ static int ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, struct virtchnl_vlan_filter_list_v2 *vfl) { bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); int err; u16 i; for (i = 0; i < vfl->num_elements; i++) { struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; struct virtchnl_vlan *vc_vlan; vc_vlan = &vlan_fltr->outer; if (ice_vc_is_valid_vlan(vc_vlan)) { struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); err = ice_vc_vlan_action(vsi, vsi->outer_vlan_ops.add_vlan, &vlan); if (err) return err; if (vlan_promisc) { err = ice_vf_ena_vlan_promisc(vsi, &vlan); if (err) return err; } /* Enable VLAN filtering on first non-zero VLAN */ if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); if (err) return err; } } vc_vlan = &vlan_fltr->inner; if (ice_vc_is_valid_vlan(vc_vlan)) { struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); err = ice_vc_vlan_action(vsi, vsi->inner_vlan_ops.add_vlan, &vlan); if (err) return err; /* no support for VLAN promiscuous on inner VLAN unless * we are in Single VLAN Mode (SVM) */ if (!ice_is_dvm_ena(&vsi->back->hw)) { if (vlan_promisc) { err = ice_vf_ena_vlan_promisc(vsi, &vlan); if (err) return err; } /* Enable VLAN filtering on first non-zero VLAN */ if (vf->spoofchk && vlan.vid) { err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); if (err) return err; } } } } return 0; } /** * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF * @vsi: VF VSI used to get number of existing VLAN filters * @vfc: negotiated/supported VLAN filtering capabilities * @vfl: VLAN filter list from VF to validate * * Validate all of the filters in the VLAN filter list from the VF during the * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. * Otherwise return true. */ static bool ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, struct virtchnl_vlan_filtering_caps *vfc, struct virtchnl_vlan_filter_list_v2 *vfl) { u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + vfl->num_elements; if (num_requested_filters > vfc->max_filters) return false; return ice_vc_validate_vlan_filter_list(vfc, vfl); } /** * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 * @vf: VF the message was received from * @msg: message received from the VF */ static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vlan_filter_list_v2 *vfl = (struct virtchnl_vlan_filter_list_v2 *)msg; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } if (!ice_vc_validate_add_vlan_filter_list(vsi, &vf->vlan_v2_caps.filtering, vfl)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } if (ice_vc_add_vlans(vf, vsi, vfl)) v_ret = VIRTCHNL_STATUS_ERR_PARAM; out: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 0); } /** * ice_vc_valid_vlan_setting - validate VLAN setting * @negotiated_settings: negotiated VLAN settings during VF init * @ethertype_setting: ethertype(s) requested for the VLAN setting */ static bool ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) { if (ethertype_setting && !(negotiated_settings & ethertype_setting)) return false; /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported */ if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && hweight32(ethertype_setting) > 1) return false; /* ability to modify the VLAN setting was not negotiated */ if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) return false; return true; } /** * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message * @caps: negotiated VLAN settings during VF init * @msg: message to validate * * Used to validate any VLAN virtchnl message sent as a * virtchnl_vlan_setting structure. Validates the message against the * negotiated/supported caps during VF driver init. */ static bool ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, struct virtchnl_vlan_setting *msg) { if ((!msg->outer_ethertype_setting && !msg->inner_ethertype_setting) || (!caps->outer && !caps->inner)) return false; if (msg->outer_ethertype_setting && !ice_vc_valid_vlan_setting(caps->outer, msg->outer_ethertype_setting)) return false; if (msg->inner_ethertype_setting && !ice_vc_valid_vlan_setting(caps->inner, msg->inner_ethertype_setting)) return false; return true; } /** * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID * @tpid: VLAN TPID to populate */ static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) { switch (ethertype_setting) { case VIRTCHNL_VLAN_ETHERTYPE_8100: *tpid = ETH_P_8021Q; break; case VIRTCHNL_VLAN_ETHERTYPE_88A8: *tpid = ETH_P_8021AD; break; case VIRTCHNL_VLAN_ETHERTYPE_9100: *tpid = ETH_P_QINQ1; break; default: *tpid = 0; return -EINVAL; } return 0; } /** * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting * @vsi: VF's VSI used to enable the VLAN offload * @ena_offload: function used to enable the VLAN offload * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for */ static int ice_vc_ena_vlan_offload(struct ice_vsi *vsi, int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), u32 ethertype_setting) { u16 tpid; int err; err = ice_vc_get_tpid(ethertype_setting, &tpid); if (err) return err; err = ena_offload(vsi, tpid); if (err) return err; return 0; } #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 #define ICE_L2TSEL_BIT_OFFSET 23 enum ice_l2tsel { ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, }; /** * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI * @vsi: VSI used to update l2tsel on * @l2tsel: l2tsel setting requested * * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. * This will modify which descriptor field the first offloaded VLAN will be * stripped into. */ static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) { struct ice_hw *hw = &vsi->back->hw; u32 l2tsel_bit; int i; if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) l2tsel_bit = 0; else l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); for (i = 0; i < vsi->alloc_rxq; i++) { u16 pfq = vsi->rxq_map[i]; u32 qrx_context_offset; u32 regval; qrx_context_offset = QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); regval = rd32(hw, qrx_context_offset); regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); regval |= l2tsel_bit; wr32(hw, qrx_context_offset, regval); } } /** * ice_vc_ena_vlan_stripping_v2_msg * @vf: VF the message was received from * @msg: message received from the VF * * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 */ static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vlan_supported_caps *stripping_support; struct virtchnl_vlan_setting *strip_msg = (struct virtchnl_vlan_setting *)msg; u32 ethertype_setting; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } ethertype_setting = strip_msg->outer_ethertype_setting; if (ethertype_setting) { if (ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_stripping, ethertype_setting)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } else { enum ice_l2tsel l2tsel = ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; /* PF tells the VF that the outer VLAN tag is always * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and * inner is always extracted to * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to * support outer stripping so the first tag always ends * up in L2TAG2_2ND and the second/inner tag, if * enabled, is extracted in L2TAG1. */ ice_vsi_update_l2tsel(vsi, l2tsel); } } ethertype_setting = strip_msg->inner_ethertype_setting; if (ethertype_setting && ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, ethertype_setting)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } out: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, v_ret, NULL, 0); } /** * ice_vc_dis_vlan_stripping_v2_msg * @vf: VF the message was received from * @msg: message received from the VF * * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 */ static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vlan_supported_caps *stripping_support; struct virtchnl_vlan_setting *strip_msg = (struct virtchnl_vlan_setting *)msg; u32 ethertype_setting; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } ethertype_setting = strip_msg->outer_ethertype_setting; if (ethertype_setting) { if (vsi->outer_vlan_ops.dis_stripping(vsi)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } else { enum ice_l2tsel l2tsel = ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; /* PF tells the VF that the outer VLAN tag is always * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and * inner is always extracted to * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to * support inner stripping while outer stripping is * disabled so that the first and only tag is extracted * in L2TAG1. */ ice_vsi_update_l2tsel(vsi, l2tsel); } } ethertype_setting = strip_msg->inner_ethertype_setting; if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } out: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, v_ret, NULL, 0); } /** * ice_vc_ena_vlan_insertion_v2_msg * @vf: VF the message was received from * @msg: message received from the VF * * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 */ static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vlan_supported_caps *insertion_support; struct virtchnl_vlan_setting *insertion_msg = (struct virtchnl_vlan_setting *)msg; u32 ethertype_setting; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } ethertype_setting = insertion_msg->outer_ethertype_setting; if (ethertype_setting && ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, ethertype_setting)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } ethertype_setting = insertion_msg->inner_ethertype_setting; if (ethertype_setting && ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, ethertype_setting)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } out: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, v_ret, NULL, 0); } /** * ice_vc_dis_vlan_insertion_v2_msg * @vf: VF the message was received from * @msg: message received from the VF * * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 */ static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vlan_supported_caps *insertion_support; struct virtchnl_vlan_setting *insertion_msg = (struct virtchnl_vlan_setting *)msg; u32 ethertype_setting; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } ethertype_setting = insertion_msg->outer_ethertype_setting; if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } ethertype_setting = insertion_msg->inner_ethertype_setting; if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto out; } out: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, v_ret, NULL, 0); } static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { .get_ver_msg = ice_vc_get_ver_msg, .get_vf_res_msg = ice_vc_get_vf_res_msg, .reset_vf = ice_vc_reset_vf_msg, .add_mac_addr_msg = ice_vc_add_mac_addr_msg, .del_mac_addr_msg = ice_vc_del_mac_addr_msg, .cfg_qs_msg = ice_vc_cfg_qs_msg, .ena_qs_msg = ice_vc_ena_qs_msg, .dis_qs_msg = ice_vc_dis_qs_msg, .request_qs_msg = ice_vc_request_qs_msg, .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, .config_rss_key = ice_vc_config_rss_key, .config_rss_lut = ice_vc_config_rss_lut, .get_stats_msg = ice_vc_get_stats_msg, .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, .add_vlan_msg = ice_vc_add_vlan_msg, .remove_vlan_msg = ice_vc_remove_vlan_msg, .query_rxdid = ice_vc_query_rxdid, .get_rss_hena = ice_vc_get_rss_hena, .set_rss_hena_msg = ice_vc_set_rss_hena, .ena_vlan_stripping = ice_vc_ena_vlan_stripping, .dis_vlan_stripping = ice_vc_dis_vlan_stripping, .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, }; /** * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops * @vf: the VF to switch ops */ void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) { vf->virtchnl_ops = &ice_virtchnl_dflt_ops; } /** * ice_vc_repr_add_mac * @vf: pointer to VF * @msg: virtchannel message * * When port representors are created, we do not add MAC rule * to firmware, we store it so that PF could report same * MAC as VF. */ static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_ether_addr_list *al = (struct virtchnl_ether_addr_list *)msg; struct ice_vsi *vsi; struct ice_pf *pf; int i; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto handle_mac_exit; } pf = vf->pf; vsi = ice_get_vf_vsi(vf); if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto handle_mac_exit; } for (i = 0; i < al->num_elements; i++) { u8 *mac_addr = al->list[i].addr; if (!is_unicast_ether_addr(mac_addr) || ether_addr_equal(mac_addr, vf->hw_lan_addr)) continue; if (vf->pf_set_mac) { dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; goto handle_mac_exit; } ice_vfhw_mac_add(vf, &al->list[i]); vf->num_mac++; break; } handle_mac_exit: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, v_ret, NULL, 0); } /** * ice_vc_repr_del_mac - response with success for deleting MAC * @vf: pointer to VF * @msg: virtchannel message * * Respond with success to not break normal VF flow. * For legacy VF driver try to update cached MAC address. */ static int ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) { struct virtchnl_ether_addr_list *al = (struct virtchnl_ether_addr_list *)msg; ice_update_legacy_cached_mac(vf, &al->list[0]); return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, VIRTCHNL_STATUS_SUCCESS, NULL, 0); } static int ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) { dev_dbg(ice_pf_to_dev(vf->pf), "Can't config promiscuous mode in switchdev mode for VF %d\n", vf->vf_id); return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 0); } static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { .get_ver_msg = ice_vc_get_ver_msg, .get_vf_res_msg = ice_vc_get_vf_res_msg, .reset_vf = ice_vc_reset_vf_msg, .add_mac_addr_msg = ice_vc_repr_add_mac, .del_mac_addr_msg = ice_vc_repr_del_mac, .cfg_qs_msg = ice_vc_cfg_qs_msg, .ena_qs_msg = ice_vc_ena_qs_msg, .dis_qs_msg = ice_vc_dis_qs_msg, .request_qs_msg = ice_vc_request_qs_msg, .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, .config_rss_key = ice_vc_config_rss_key, .config_rss_lut = ice_vc_config_rss_lut, .get_stats_msg = ice_vc_get_stats_msg, .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, .add_vlan_msg = ice_vc_add_vlan_msg, .remove_vlan_msg = ice_vc_remove_vlan_msg, .query_rxdid = ice_vc_query_rxdid, .get_rss_hena = ice_vc_get_rss_hena, .set_rss_hena_msg = ice_vc_set_rss_hena, .ena_vlan_stripping = ice_vc_ena_vlan_stripping, .dis_vlan_stripping = ice_vc_dis_vlan_stripping, .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, }; /** * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops * @vf: the VF to switch ops */ void ice_virtchnl_set_repr_ops(struct ice_vf *vf) { vf->virtchnl_ops = &ice_virtchnl_repr_ops; } /** * ice_is_malicious_vf - check if this vf might be overflowing mailbox * @vf: the VF to check * @mbxdata: data about the state of the mailbox * * Detect if a given VF might be malicious and attempting to overflow the PF * mailbox. If so, log a warning message and ignore this event. */ static bool ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) { bool report_malvf = false; struct device *dev; struct ice_pf *pf; int status; pf = vf->pf; dev = ice_pf_to_dev(pf); if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) return vf->mbx_info.malicious; /* check to see if we have a newly malicious VF */ status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, &report_malvf); if (status) dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", vf->vf_id, vf->dev_lan_addr, status); if (report_malvf) { struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); u8 zero_addr[ETH_ALEN] = {}; dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", vf->dev_lan_addr, pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); } return vf->mbx_info.malicious; } /** * ice_vc_process_vf_msg - Process request from VF * @pf: pointer to the PF structure * @event: pointer to the AQ event * @mbxdata: information used to detect VF attempting mailbox overflow * * called from the common asq/arq handler to * process request from VF */ void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, struct ice_mbx_data *mbxdata) { u32 v_opcode = le32_to_cpu(event->desc.cookie_high); s16 vf_id = le16_to_cpu(event->desc.retval); const struct ice_virtchnl_ops *ops; u16 msglen = event->msg_len; u8 *msg = event->msg_buf; struct ice_vf *vf = NULL; struct device *dev; int err = 0; dev = ice_pf_to_dev(pf); vf = ice_get_vf_by_id(pf, vf_id); if (!vf) { dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", vf_id, v_opcode, msglen); return; } mutex_lock(&vf->cfg_lock); /* Check if the VF is trying to overflow the mailbox */ if (ice_is_malicious_vf(vf, mbxdata)) goto finish; /* Check if VF is disabled. */ if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { err = -EPERM; goto error_handler; } ops = vf->virtchnl_ops; /* Perform basic checks on the msg */ err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); if (err) { if (err == VIRTCHNL_STATUS_ERR_PARAM) err = -EPERM; else err = -EINVAL; } error_handler: if (err) { ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", vf_id, v_opcode, msglen, err); goto finish; } if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 0); goto finish; } switch (v_opcode) { case VIRTCHNL_OP_VERSION: err = ops->get_ver_msg(vf, msg); break; case VIRTCHNL_OP_GET_VF_RESOURCES: err = ops->get_vf_res_msg(vf, msg); if (ice_vf_init_vlan_stripping(vf)) dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", vf->vf_id); ice_vc_notify_vf_link_state(vf); break; case VIRTCHNL_OP_RESET_VF: ops->reset_vf(vf); break; case VIRTCHNL_OP_ADD_ETH_ADDR: err = ops->add_mac_addr_msg(vf, msg); break; case VIRTCHNL_OP_DEL_ETH_ADDR: err = ops->del_mac_addr_msg(vf, msg); break; case VIRTCHNL_OP_CONFIG_VSI_QUEUES: err = ops->cfg_qs_msg(vf, msg); break; case VIRTCHNL_OP_ENABLE_QUEUES: err = ops->ena_qs_msg(vf, msg); ice_vc_notify_vf_link_state(vf); break; case VIRTCHNL_OP_DISABLE_QUEUES: err = ops->dis_qs_msg(vf, msg); break; case VIRTCHNL_OP_REQUEST_QUEUES: err = ops->request_qs_msg(vf, msg); break; case VIRTCHNL_OP_CONFIG_IRQ_MAP: err = ops->cfg_irq_map_msg(vf, msg); break; case VIRTCHNL_OP_CONFIG_RSS_KEY: err = ops->config_rss_key(vf, msg); break; case VIRTCHNL_OP_CONFIG_RSS_LUT: err = ops->config_rss_lut(vf, msg); break; case VIRTCHNL_OP_GET_STATS: err = ops->get_stats_msg(vf, msg); break; case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: err = ops->cfg_promiscuous_mode_msg(vf, msg); break; case VIRTCHNL_OP_ADD_VLAN: err = ops->add_vlan_msg(vf, msg); break; case VIRTCHNL_OP_DEL_VLAN: err = ops->remove_vlan_msg(vf, msg); break; case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: err = ops->query_rxdid(vf); break; case VIRTCHNL_OP_GET_RSS_HENA_CAPS: err = ops->get_rss_hena(vf); break; case VIRTCHNL_OP_SET_RSS_HENA: err = ops->set_rss_hena_msg(vf, msg); break; case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: err = ops->ena_vlan_stripping(vf); break; case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: err = ops->dis_vlan_stripping(vf); break; case VIRTCHNL_OP_ADD_FDIR_FILTER: err = ops->add_fdir_fltr_msg(vf, msg); break; case VIRTCHNL_OP_DEL_FDIR_FILTER: err = ops->del_fdir_fltr_msg(vf, msg); break; case VIRTCHNL_OP_ADD_RSS_CFG: err = ops->handle_rss_cfg_msg(vf, msg, true); break; case VIRTCHNL_OP_DEL_RSS_CFG: err = ops->handle_rss_cfg_msg(vf, msg, false); break; case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: err = ops->get_offload_vlan_v2_caps(vf); break; case VIRTCHNL_OP_ADD_VLAN_V2: err = ops->add_vlan_v2_msg(vf, msg); break; case VIRTCHNL_OP_DEL_VLAN_V2: err = ops->remove_vlan_v2_msg(vf, msg); break; case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: err = ops->ena_vlan_stripping_v2_msg(vf, msg); break; case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: err = ops->dis_vlan_stripping_v2_msg(vf, msg); break; case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: err = ops->ena_vlan_insertion_v2_msg(vf, msg); break; case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: err = ops->dis_vlan_insertion_v2_msg(vf, msg); break; case VIRTCHNL_OP_UNKNOWN: default: dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, vf_id); err = ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 0); break; } if (err) { /* Helper function cares less about error return values here * as it is busy with pending work. */ dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", vf_id, v_opcode, err); } finish: mutex_unlock(&vf->cfg_lock); ice_put_vf(vf); }