1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/mpls.h>
7 #include <net/xdp.h>
8 #include "i40e.h"
9 #include "i40e_trace.h"
10 #include "i40e_prototype.h"
11 #include "i40e_txrx_common.h"
12 #include "i40e_xsk.h"
13 
14 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
15 /**
16  * i40e_fdir - Generate a Flow Director descriptor based on fdata
17  * @tx_ring: Tx ring to send buffer on
18  * @fdata: Flow director filter data
19  * @add: Indicate if we are adding a rule or deleting one
20  *
21  **/
22 static void i40e_fdir(struct i40e_ring *tx_ring,
23 		      struct i40e_fdir_filter *fdata, bool add)
24 {
25 	struct i40e_filter_program_desc *fdir_desc;
26 	struct i40e_pf *pf = tx_ring->vsi->back;
27 	u32 flex_ptype, dtype_cmd;
28 	u16 i;
29 
30 	/* grab the next descriptor */
31 	i = tx_ring->next_to_use;
32 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
33 
34 	i++;
35 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
36 
37 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
38 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
39 
40 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
41 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
42 
43 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
44 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
45 
46 	/* Use LAN VSI Id if not programmed by user */
47 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
48 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
49 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
50 
51 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
52 
53 	dtype_cmd |= add ?
54 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
55 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
56 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
57 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
58 
59 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
60 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
61 
62 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
63 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
64 
65 	if (fdata->cnt_index) {
66 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
67 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
68 			     ((u32)fdata->cnt_index <<
69 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
70 	}
71 
72 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
73 	fdir_desc->rsvd = cpu_to_le32(0);
74 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
75 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
76 }
77 
78 #define I40E_FD_CLEAN_DELAY 10
79 /**
80  * i40e_program_fdir_filter - Program a Flow Director filter
81  * @fdir_data: Packet data that will be filter parameters
82  * @raw_packet: the pre-allocated packet buffer for FDir
83  * @pf: The PF pointer
84  * @add: True for add/update, False for remove
85  **/
86 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
87 				    u8 *raw_packet, struct i40e_pf *pf,
88 				    bool add)
89 {
90 	struct i40e_tx_buffer *tx_buf, *first;
91 	struct i40e_tx_desc *tx_desc;
92 	struct i40e_ring *tx_ring;
93 	struct i40e_vsi *vsi;
94 	struct device *dev;
95 	dma_addr_t dma;
96 	u32 td_cmd = 0;
97 	u16 i;
98 
99 	/* find existing FDIR VSI */
100 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
101 	if (!vsi)
102 		return -ENOENT;
103 
104 	tx_ring = vsi->tx_rings[0];
105 	dev = tx_ring->dev;
106 
107 	/* we need two descriptors to add/del a filter and we can wait */
108 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
109 		if (!i)
110 			return -EAGAIN;
111 		msleep_interruptible(1);
112 	}
113 
114 	dma = dma_map_single(dev, raw_packet,
115 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
116 	if (dma_mapping_error(dev, dma))
117 		goto dma_fail;
118 
119 	/* grab the next descriptor */
120 	i = tx_ring->next_to_use;
121 	first = &tx_ring->tx_bi[i];
122 	i40e_fdir(tx_ring, fdir_data, add);
123 
124 	/* Now program a dummy descriptor */
125 	i = tx_ring->next_to_use;
126 	tx_desc = I40E_TX_DESC(tx_ring, i);
127 	tx_buf = &tx_ring->tx_bi[i];
128 
129 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
130 
131 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
132 
133 	/* record length, and DMA address */
134 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
135 	dma_unmap_addr_set(tx_buf, dma, dma);
136 
137 	tx_desc->buffer_addr = cpu_to_le64(dma);
138 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
139 
140 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
141 	tx_buf->raw_buf = (void *)raw_packet;
142 
143 	tx_desc->cmd_type_offset_bsz =
144 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
145 
146 	/* Force memory writes to complete before letting h/w
147 	 * know there are new descriptors to fetch.
148 	 */
149 	wmb();
150 
151 	/* Mark the data descriptor to be watched */
152 	first->next_to_watch = tx_desc;
153 
154 	writel(tx_ring->next_to_use, tx_ring->tail);
155 	return 0;
156 
157 dma_fail:
158 	return -1;
159 }
160 
161 /**
162  * i40e_create_dummy_packet - Constructs dummy packet for HW
163  * @dummy_packet: preallocated space for dummy packet
164  * @ipv4: is layer 3 packet of version 4 or 6
165  * @l4proto: next level protocol used in data portion of l3
166  * @data: filter data
167  *
168  * Returns address of layer 4 protocol dummy packet.
169  **/
170 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
171 				      struct i40e_fdir_filter *data)
172 {
173 	bool is_vlan = !!data->vlan_tag;
174 	struct vlan_hdr vlan = {};
175 	struct ipv6hdr ipv6 = {};
176 	struct ethhdr eth = {};
177 	struct iphdr ip = {};
178 	u8 *tmp;
179 
180 	if (ipv4) {
181 		eth.h_proto = cpu_to_be16(ETH_P_IP);
182 		ip.protocol = l4proto;
183 		ip.version = 0x4;
184 		ip.ihl = 0x5;
185 
186 		ip.daddr = data->dst_ip;
187 		ip.saddr = data->src_ip;
188 	} else {
189 		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
190 		ipv6.nexthdr = l4proto;
191 		ipv6.version = 0x6;
192 
193 		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
194 		       sizeof(__be32) * 4);
195 		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
196 		       sizeof(__be32) * 4);
197 	}
198 
199 	if (is_vlan) {
200 		vlan.h_vlan_TCI = data->vlan_tag;
201 		vlan.h_vlan_encapsulated_proto = eth.h_proto;
202 		eth.h_proto = data->vlan_etype;
203 	}
204 
205 	tmp = dummy_packet;
206 	memcpy(tmp, &eth, sizeof(eth));
207 	tmp += sizeof(eth);
208 
209 	if (is_vlan) {
210 		memcpy(tmp, &vlan, sizeof(vlan));
211 		tmp += sizeof(vlan);
212 	}
213 
214 	if (ipv4) {
215 		memcpy(tmp, &ip, sizeof(ip));
216 		tmp += sizeof(ip);
217 	} else {
218 		memcpy(tmp, &ipv6, sizeof(ipv6));
219 		tmp += sizeof(ipv6);
220 	}
221 
222 	return tmp;
223 }
224 
225 /**
226  * i40e_create_dummy_udp_packet - helper function to create UDP packet
227  * @raw_packet: preallocated space for dummy packet
228  * @ipv4: is layer 3 packet of version 4 or 6
229  * @l4proto: next level protocol used in data portion of l3
230  * @data: filter data
231  *
232  * Helper function to populate udp fields.
233  **/
234 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
235 					 struct i40e_fdir_filter *data)
236 {
237 	struct udphdr *udp;
238 	u8 *tmp;
239 
240 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
241 	udp = (struct udphdr *)(tmp);
242 	udp->dest = data->dst_port;
243 	udp->source = data->src_port;
244 }
245 
246 /**
247  * i40e_create_dummy_tcp_packet - helper function to create TCP packet
248  * @raw_packet: preallocated space for dummy packet
249  * @ipv4: is layer 3 packet of version 4 or 6
250  * @l4proto: next level protocol used in data portion of l3
251  * @data: filter data
252  *
253  * Helper function to populate tcp fields.
254  **/
255 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
256 					 struct i40e_fdir_filter *data)
257 {
258 	struct tcphdr *tcp;
259 	u8 *tmp;
260 	/* Dummy tcp packet */
261 	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
262 		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
263 
264 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
265 
266 	tcp = (struct tcphdr *)tmp;
267 	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
268 	tcp->dest = data->dst_port;
269 	tcp->source = data->src_port;
270 }
271 
272 /**
273  * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
274  * @raw_packet: preallocated space for dummy packet
275  * @ipv4: is layer 3 packet of version 4 or 6
276  * @l4proto: next level protocol used in data portion of l3
277  * @data: filter data
278  *
279  * Helper function to populate sctp fields.
280  **/
281 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
282 					  u8 l4proto,
283 					  struct i40e_fdir_filter *data)
284 {
285 	struct sctphdr *sctp;
286 	u8 *tmp;
287 
288 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
289 
290 	sctp = (struct sctphdr *)tmp;
291 	sctp->dest = data->dst_port;
292 	sctp->source = data->src_port;
293 }
294 
295 /**
296  * i40e_prepare_fdir_filter - Prepare and program fdir filter
297  * @pf: physical function to attach filter to
298  * @fd_data: filter data
299  * @add: add or delete filter
300  * @packet_addr: address of dummy packet, used in filtering
301  * @payload_offset: offset from dummy packet address to user defined data
302  * @pctype: Packet type for which filter is used
303  *
304  * Helper function to offset data of dummy packet, program it and
305  * handle errors.
306  **/
307 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
308 				    struct i40e_fdir_filter *fd_data,
309 				    bool add, char *packet_addr,
310 				    int payload_offset, u8 pctype)
311 {
312 	int ret;
313 
314 	if (fd_data->flex_filter) {
315 		u8 *payload;
316 		__be16 pattern = fd_data->flex_word;
317 		u16 off = fd_data->flex_offset;
318 
319 		payload = packet_addr + payload_offset;
320 
321 		/* If user provided vlan, offset payload by vlan header length */
322 		if (!!fd_data->vlan_tag)
323 			payload += VLAN_HLEN;
324 
325 		*((__force __be16 *)(payload + off)) = pattern;
326 	}
327 
328 	fd_data->pctype = pctype;
329 	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
330 	if (ret) {
331 		dev_info(&pf->pdev->dev,
332 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
333 			 fd_data->pctype, fd_data->fd_id, ret);
334 		/* Free the packet buffer since it wasn't added to the ring */
335 		return -EOPNOTSUPP;
336 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
337 		if (add)
338 			dev_info(&pf->pdev->dev,
339 				 "Filter OK for PCTYPE %d loc = %d\n",
340 				 fd_data->pctype, fd_data->fd_id);
341 		else
342 			dev_info(&pf->pdev->dev,
343 				 "Filter deleted for PCTYPE %d loc = %d\n",
344 				 fd_data->pctype, fd_data->fd_id);
345 	}
346 
347 	return ret;
348 }
349 
350 /**
351  * i40e_change_filter_num - Prepare and program fdir filter
352  * @ipv4: is layer 3 packet of version 4 or 6
353  * @add: add or delete filter
354  * @ipv4_filter_num: field to update
355  * @ipv6_filter_num: field to update
356  *
357  * Update filter number field for pf.
358  **/
359 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
360 				   u16 *ipv6_filter_num)
361 {
362 	if (add) {
363 		if (ipv4)
364 			(*ipv4_filter_num)++;
365 		else
366 			(*ipv6_filter_num)++;
367 	} else {
368 		if (ipv4)
369 			(*ipv4_filter_num)--;
370 		else
371 			(*ipv6_filter_num)--;
372 	}
373 }
374 
375 #define I40E_UDPIP_DUMMY_PACKET_LEN	42
376 #define I40E_UDPIP6_DUMMY_PACKET_LEN	62
377 /**
378  * i40e_add_del_fdir_udp - Add/Remove UDP filters
379  * @vsi: pointer to the targeted VSI
380  * @fd_data: the flow director data required for the FDir descriptor
381  * @add: true adds a filter, false removes it
382  * @ipv4: true is v4, false is v6
383  *
384  * Returns 0 if the filters were successfully added or removed
385  **/
386 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
387 				 struct i40e_fdir_filter *fd_data,
388 				 bool add,
389 				 bool ipv4)
390 {
391 	struct i40e_pf *pf = vsi->back;
392 	u8 *raw_packet;
393 	int ret;
394 
395 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
396 	if (!raw_packet)
397 		return -ENOMEM;
398 
399 	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
400 
401 	if (ipv4)
402 		ret = i40e_prepare_fdir_filter
403 			(pf, fd_data, add, raw_packet,
404 			 I40E_UDPIP_DUMMY_PACKET_LEN,
405 			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
406 	else
407 		ret = i40e_prepare_fdir_filter
408 			(pf, fd_data, add, raw_packet,
409 			 I40E_UDPIP6_DUMMY_PACKET_LEN,
410 			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
411 
412 	if (ret) {
413 		kfree(raw_packet);
414 		return ret;
415 	}
416 
417 	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
418 			       &pf->fd_udp6_filter_cnt);
419 
420 	return 0;
421 }
422 
423 #define I40E_TCPIP_DUMMY_PACKET_LEN	54
424 #define I40E_TCPIP6_DUMMY_PACKET_LEN	74
425 /**
426  * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
427  * @vsi: pointer to the targeted VSI
428  * @fd_data: the flow director data required for the FDir descriptor
429  * @add: true adds a filter, false removes it
430  * @ipv4: true is v4, false is v6
431  *
432  * Returns 0 if the filters were successfully added or removed
433  **/
434 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
435 				 struct i40e_fdir_filter *fd_data,
436 				 bool add,
437 				 bool ipv4)
438 {
439 	struct i40e_pf *pf = vsi->back;
440 	u8 *raw_packet;
441 	int ret;
442 
443 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
444 	if (!raw_packet)
445 		return -ENOMEM;
446 
447 	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
448 	if (ipv4)
449 		ret = i40e_prepare_fdir_filter
450 			(pf, fd_data, add, raw_packet,
451 			 I40E_TCPIP_DUMMY_PACKET_LEN,
452 			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
453 	else
454 		ret = i40e_prepare_fdir_filter
455 			(pf, fd_data, add, raw_packet,
456 			 I40E_TCPIP6_DUMMY_PACKET_LEN,
457 			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
458 
459 	if (ret) {
460 		kfree(raw_packet);
461 		return ret;
462 	}
463 
464 	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
465 			       &pf->fd_tcp6_filter_cnt);
466 
467 	if (add) {
468 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
469 		    I40E_DEBUG_FD & pf->hw.debug_mask)
470 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
471 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
472 	}
473 	return 0;
474 }
475 
476 #define I40E_SCTPIP_DUMMY_PACKET_LEN	46
477 #define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
478 /**
479  * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
480  * a specific flow spec
481  * @vsi: pointer to the targeted VSI
482  * @fd_data: the flow director data required for the FDir descriptor
483  * @add: true adds a filter, false removes it
484  * @ipv4: true is v4, false is v6
485  *
486  * Returns 0 if the filters were successfully added or removed
487  **/
488 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
489 				  struct i40e_fdir_filter *fd_data,
490 				  bool add,
491 				  bool ipv4)
492 {
493 	struct i40e_pf *pf = vsi->back;
494 	u8 *raw_packet;
495 	int ret;
496 
497 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
498 	if (!raw_packet)
499 		return -ENOMEM;
500 
501 	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
502 
503 	if (ipv4)
504 		ret = i40e_prepare_fdir_filter
505 			(pf, fd_data, add, raw_packet,
506 			 I40E_SCTPIP_DUMMY_PACKET_LEN,
507 			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
508 	else
509 		ret = i40e_prepare_fdir_filter
510 			(pf, fd_data, add, raw_packet,
511 			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
512 			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
513 
514 	if (ret) {
515 		kfree(raw_packet);
516 		return ret;
517 	}
518 
519 	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
520 			       &pf->fd_sctp6_filter_cnt);
521 
522 	return 0;
523 }
524 
525 #define I40E_IP_DUMMY_PACKET_LEN	34
526 #define I40E_IP6_DUMMY_PACKET_LEN	54
527 /**
528  * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
529  * a specific flow spec
530  * @vsi: pointer to the targeted VSI
531  * @fd_data: the flow director data required for the FDir descriptor
532  * @add: true adds a filter, false removes it
533  * @ipv4: true is v4, false is v6
534  *
535  * Returns 0 if the filters were successfully added or removed
536  **/
537 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
538 				struct i40e_fdir_filter *fd_data,
539 				bool add,
540 				bool ipv4)
541 {
542 	struct i40e_pf *pf = vsi->back;
543 	int payload_offset;
544 	u8 *raw_packet;
545 	int iter_start;
546 	int iter_end;
547 	int ret;
548 	int i;
549 
550 	if (ipv4) {
551 		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
552 		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
553 	} else {
554 		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
555 		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
556 	}
557 
558 	for (i = iter_start; i <= iter_end; i++) {
559 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
560 		if (!raw_packet)
561 			return -ENOMEM;
562 
563 		/* IPv6 no header option differs from IPv4 */
564 		(void)i40e_create_dummy_packet
565 			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
566 			 fd_data);
567 
568 		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
569 			I40E_IP6_DUMMY_PACKET_LEN;
570 		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
571 					       payload_offset, i);
572 		if (ret)
573 			goto err;
574 	}
575 
576 	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
577 			       &pf->fd_ip6_filter_cnt);
578 
579 	return 0;
580 err:
581 	kfree(raw_packet);
582 	return ret;
583 }
584 
585 /**
586  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
587  * @vsi: pointer to the targeted VSI
588  * @input: filter to add or delete
589  * @add: true adds a filter, false removes it
590  *
591  **/
592 int i40e_add_del_fdir(struct i40e_vsi *vsi,
593 		      struct i40e_fdir_filter *input, bool add)
594 {
595 	enum ip_ver { ipv6 = 0, ipv4 = 1 };
596 	struct i40e_pf *pf = vsi->back;
597 	int ret;
598 
599 	switch (input->flow_type & ~FLOW_EXT) {
600 	case TCP_V4_FLOW:
601 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
602 		break;
603 	case UDP_V4_FLOW:
604 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
605 		break;
606 	case SCTP_V4_FLOW:
607 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
608 		break;
609 	case TCP_V6_FLOW:
610 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
611 		break;
612 	case UDP_V6_FLOW:
613 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
614 		break;
615 	case SCTP_V6_FLOW:
616 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
617 		break;
618 	case IP_USER_FLOW:
619 		switch (input->ipl4_proto) {
620 		case IPPROTO_TCP:
621 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
622 			break;
623 		case IPPROTO_UDP:
624 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
625 			break;
626 		case IPPROTO_SCTP:
627 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
628 			break;
629 		case IPPROTO_IP:
630 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
631 			break;
632 		default:
633 			/* We cannot support masking based on protocol */
634 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
635 				 input->ipl4_proto);
636 			return -EINVAL;
637 		}
638 		break;
639 	case IPV6_USER_FLOW:
640 		switch (input->ipl4_proto) {
641 		case IPPROTO_TCP:
642 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
643 			break;
644 		case IPPROTO_UDP:
645 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
646 			break;
647 		case IPPROTO_SCTP:
648 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
649 			break;
650 		case IPPROTO_IP:
651 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
652 			break;
653 		default:
654 			/* We cannot support masking based on protocol */
655 			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
656 				 input->ipl4_proto);
657 			return -EINVAL;
658 		}
659 		break;
660 	default:
661 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
662 			 input->flow_type);
663 		return -EINVAL;
664 	}
665 
666 	/* The buffer allocated here will be normally be freed by
667 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
668 	 * completion. In the event of an error adding the buffer to the FDIR
669 	 * ring, it will immediately be freed. It may also be freed by
670 	 * i40e_clean_tx_ring() when closing the VSI.
671 	 */
672 	return ret;
673 }
674 
675 /**
676  * i40e_fd_handle_status - check the Programming Status for FD
677  * @rx_ring: the Rx ring for this descriptor
678  * @qword0_raw: qword0
679  * @qword1: qword1 after le_to_cpu
680  * @prog_id: the id originally used for programming
681  *
682  * This is used to verify if the FD programming or invalidation
683  * requested by SW to the HW is successful or not and take actions accordingly.
684  **/
685 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
686 				  u64 qword1, u8 prog_id)
687 {
688 	struct i40e_pf *pf = rx_ring->vsi->back;
689 	struct pci_dev *pdev = pf->pdev;
690 	struct i40e_16b_rx_wb_qw0 *qw0;
691 	u32 fcnt_prog, fcnt_avail;
692 	u32 error;
693 
694 	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
695 	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
696 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
697 
698 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
699 		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
700 		if (qw0->hi_dword.fd_id != 0 ||
701 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
702 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
703 				 pf->fd_inv);
704 
705 		/* Check if the programming error is for ATR.
706 		 * If so, auto disable ATR and set a state for
707 		 * flush in progress. Next time we come here if flush is in
708 		 * progress do nothing, once flush is complete the state will
709 		 * be cleared.
710 		 */
711 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
712 			return;
713 
714 		pf->fd_add_err++;
715 		/* store the current atr filter count */
716 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
717 
718 		if (qw0->hi_dword.fd_id == 0 &&
719 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
720 			/* These set_bit() calls aren't atomic with the
721 			 * test_bit() here, but worse case we potentially
722 			 * disable ATR and queue a flush right after SB
723 			 * support is re-enabled. That shouldn't cause an
724 			 * issue in practice
725 			 */
726 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
727 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
728 		}
729 
730 		/* filter programming failed most likely due to table full */
731 		fcnt_prog = i40e_get_global_fd_count(pf);
732 		fcnt_avail = pf->fdir_pf_filter_count;
733 		/* If ATR is running fcnt_prog can quickly change,
734 		 * if we are very close to full, it makes sense to disable
735 		 * FD ATR/SB and then re-enable it when there is room.
736 		 */
737 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
738 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
739 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
740 					      pf->state))
741 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
742 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
743 		}
744 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
745 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
746 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
747 				 qw0->hi_dword.fd_id);
748 	}
749 }
750 
751 /**
752  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
753  * @ring:      the ring that owns the buffer
754  * @tx_buffer: the buffer to free
755  **/
756 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
757 					    struct i40e_tx_buffer *tx_buffer)
758 {
759 	if (tx_buffer->skb) {
760 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
761 			kfree(tx_buffer->raw_buf);
762 		else if (ring_is_xdp(ring))
763 			xdp_return_frame(tx_buffer->xdpf);
764 		else
765 			dev_kfree_skb_any(tx_buffer->skb);
766 		if (dma_unmap_len(tx_buffer, len))
767 			dma_unmap_single(ring->dev,
768 					 dma_unmap_addr(tx_buffer, dma),
769 					 dma_unmap_len(tx_buffer, len),
770 					 DMA_TO_DEVICE);
771 	} else if (dma_unmap_len(tx_buffer, len)) {
772 		dma_unmap_page(ring->dev,
773 			       dma_unmap_addr(tx_buffer, dma),
774 			       dma_unmap_len(tx_buffer, len),
775 			       DMA_TO_DEVICE);
776 	}
777 
778 	tx_buffer->next_to_watch = NULL;
779 	tx_buffer->skb = NULL;
780 	dma_unmap_len_set(tx_buffer, len, 0);
781 	/* tx_buffer must be completely set up in the transmit path */
782 }
783 
784 /**
785  * i40e_clean_tx_ring - Free any empty Tx buffers
786  * @tx_ring: ring to be cleaned
787  **/
788 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
789 {
790 	unsigned long bi_size;
791 	u16 i;
792 
793 	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
794 		i40e_xsk_clean_tx_ring(tx_ring);
795 	} else {
796 		/* ring already cleared, nothing to do */
797 		if (!tx_ring->tx_bi)
798 			return;
799 
800 		/* Free all the Tx ring sk_buffs */
801 		for (i = 0; i < tx_ring->count; i++)
802 			i40e_unmap_and_free_tx_resource(tx_ring,
803 							&tx_ring->tx_bi[i]);
804 	}
805 
806 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
807 	memset(tx_ring->tx_bi, 0, bi_size);
808 
809 	/* Zero out the descriptor ring */
810 	memset(tx_ring->desc, 0, tx_ring->size);
811 
812 	tx_ring->next_to_use = 0;
813 	tx_ring->next_to_clean = 0;
814 
815 	if (!tx_ring->netdev)
816 		return;
817 
818 	/* cleanup Tx queue statistics */
819 	netdev_tx_reset_queue(txring_txq(tx_ring));
820 }
821 
822 /**
823  * i40e_free_tx_resources - Free Tx resources per queue
824  * @tx_ring: Tx descriptor ring for a specific queue
825  *
826  * Free all transmit software resources
827  **/
828 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
829 {
830 	i40e_clean_tx_ring(tx_ring);
831 	kfree(tx_ring->tx_bi);
832 	tx_ring->tx_bi = NULL;
833 
834 	if (tx_ring->desc) {
835 		dma_free_coherent(tx_ring->dev, tx_ring->size,
836 				  tx_ring->desc, tx_ring->dma);
837 		tx_ring->desc = NULL;
838 	}
839 }
840 
841 /**
842  * i40e_get_tx_pending - how many tx descriptors not processed
843  * @ring: the ring of descriptors
844  * @in_sw: use SW variables
845  *
846  * Since there is no access to the ring head register
847  * in XL710, we need to use our local copies
848  **/
849 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
850 {
851 	u32 head, tail;
852 
853 	if (!in_sw) {
854 		head = i40e_get_head(ring);
855 		tail = readl(ring->tail);
856 	} else {
857 		head = ring->next_to_clean;
858 		tail = ring->next_to_use;
859 	}
860 
861 	if (head != tail)
862 		return (head < tail) ?
863 			tail - head : (tail + ring->count - head);
864 
865 	return 0;
866 }
867 
868 /**
869  * i40e_detect_recover_hung - Function to detect and recover hung_queues
870  * @vsi:  pointer to vsi struct with tx queues
871  *
872  * VSI has netdev and netdev has TX queues. This function is to check each of
873  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
874  **/
875 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
876 {
877 	struct i40e_ring *tx_ring = NULL;
878 	struct net_device *netdev;
879 	unsigned int i;
880 	int packets;
881 
882 	if (!vsi)
883 		return;
884 
885 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
886 		return;
887 
888 	netdev = vsi->netdev;
889 	if (!netdev)
890 		return;
891 
892 	if (!netif_carrier_ok(netdev))
893 		return;
894 
895 	for (i = 0; i < vsi->num_queue_pairs; i++) {
896 		tx_ring = vsi->tx_rings[i];
897 		if (tx_ring && tx_ring->desc) {
898 			/* If packet counter has not changed the queue is
899 			 * likely stalled, so force an interrupt for this
900 			 * queue.
901 			 *
902 			 * prev_pkt_ctr would be negative if there was no
903 			 * pending work.
904 			 */
905 			packets = tx_ring->stats.packets & INT_MAX;
906 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
907 				i40e_force_wb(vsi, tx_ring->q_vector);
908 				continue;
909 			}
910 
911 			/* Memory barrier between read of packet count and call
912 			 * to i40e_get_tx_pending()
913 			 */
914 			smp_rmb();
915 			tx_ring->tx_stats.prev_pkt_ctr =
916 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
917 		}
918 	}
919 }
920 
921 /**
922  * i40e_clean_tx_irq - Reclaim resources after transmit completes
923  * @vsi: the VSI we care about
924  * @tx_ring: Tx ring to clean
925  * @napi_budget: Used to determine if we are in netpoll
926  * @tx_cleaned: Out parameter set to the number of TXes cleaned
927  *
928  * Returns true if there's any budget left (e.g. the clean is finished)
929  **/
930 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
931 			      struct i40e_ring *tx_ring, int napi_budget,
932 			      unsigned int *tx_cleaned)
933 {
934 	int i = tx_ring->next_to_clean;
935 	struct i40e_tx_buffer *tx_buf;
936 	struct i40e_tx_desc *tx_head;
937 	struct i40e_tx_desc *tx_desc;
938 	unsigned int total_bytes = 0, total_packets = 0;
939 	unsigned int budget = vsi->work_limit;
940 
941 	tx_buf = &tx_ring->tx_bi[i];
942 	tx_desc = I40E_TX_DESC(tx_ring, i);
943 	i -= tx_ring->count;
944 
945 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
946 
947 	do {
948 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
949 
950 		/* if next_to_watch is not set then there is no work pending */
951 		if (!eop_desc)
952 			break;
953 
954 		/* prevent any other reads prior to eop_desc */
955 		smp_rmb();
956 
957 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
958 		/* we have caught up to head, no work left to do */
959 		if (tx_head == tx_desc)
960 			break;
961 
962 		/* clear next_to_watch to prevent false hangs */
963 		tx_buf->next_to_watch = NULL;
964 
965 		/* update the statistics for this packet */
966 		total_bytes += tx_buf->bytecount;
967 		total_packets += tx_buf->gso_segs;
968 
969 		/* free the skb/XDP data */
970 		if (ring_is_xdp(tx_ring))
971 			xdp_return_frame(tx_buf->xdpf);
972 		else
973 			napi_consume_skb(tx_buf->skb, napi_budget);
974 
975 		/* unmap skb header data */
976 		dma_unmap_single(tx_ring->dev,
977 				 dma_unmap_addr(tx_buf, dma),
978 				 dma_unmap_len(tx_buf, len),
979 				 DMA_TO_DEVICE);
980 
981 		/* clear tx_buffer data */
982 		tx_buf->skb = NULL;
983 		dma_unmap_len_set(tx_buf, len, 0);
984 
985 		/* unmap remaining buffers */
986 		while (tx_desc != eop_desc) {
987 			i40e_trace(clean_tx_irq_unmap,
988 				   tx_ring, tx_desc, tx_buf);
989 
990 			tx_buf++;
991 			tx_desc++;
992 			i++;
993 			if (unlikely(!i)) {
994 				i -= tx_ring->count;
995 				tx_buf = tx_ring->tx_bi;
996 				tx_desc = I40E_TX_DESC(tx_ring, 0);
997 			}
998 
999 			/* unmap any remaining paged data */
1000 			if (dma_unmap_len(tx_buf, len)) {
1001 				dma_unmap_page(tx_ring->dev,
1002 					       dma_unmap_addr(tx_buf, dma),
1003 					       dma_unmap_len(tx_buf, len),
1004 					       DMA_TO_DEVICE);
1005 				dma_unmap_len_set(tx_buf, len, 0);
1006 			}
1007 		}
1008 
1009 		/* move us one more past the eop_desc for start of next pkt */
1010 		tx_buf++;
1011 		tx_desc++;
1012 		i++;
1013 		if (unlikely(!i)) {
1014 			i -= tx_ring->count;
1015 			tx_buf = tx_ring->tx_bi;
1016 			tx_desc = I40E_TX_DESC(tx_ring, 0);
1017 		}
1018 
1019 		prefetch(tx_desc);
1020 
1021 		/* update budget accounting */
1022 		budget--;
1023 	} while (likely(budget));
1024 
1025 	i += tx_ring->count;
1026 	tx_ring->next_to_clean = i;
1027 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1028 	i40e_arm_wb(tx_ring, vsi, budget);
1029 
1030 	if (ring_is_xdp(tx_ring))
1031 		return !!budget;
1032 
1033 	/* notify netdev of completed buffers */
1034 	netdev_tx_completed_queue(txring_txq(tx_ring),
1035 				  total_packets, total_bytes);
1036 
1037 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1038 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1039 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1040 		/* Make sure that anybody stopping the queue after this
1041 		 * sees the new next_to_clean.
1042 		 */
1043 		smp_mb();
1044 		if (__netif_subqueue_stopped(tx_ring->netdev,
1045 					     tx_ring->queue_index) &&
1046 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1047 			netif_wake_subqueue(tx_ring->netdev,
1048 					    tx_ring->queue_index);
1049 			++tx_ring->tx_stats.restart_queue;
1050 		}
1051 	}
1052 
1053 	*tx_cleaned = total_packets;
1054 	return !!budget;
1055 }
1056 
1057 /**
1058  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1059  * @vsi: the VSI we care about
1060  * @q_vector: the vector on which to enable writeback
1061  *
1062  **/
1063 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1064 				  struct i40e_q_vector *q_vector)
1065 {
1066 	u16 flags = q_vector->tx.ring[0].flags;
1067 	u32 val;
1068 
1069 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1070 		return;
1071 
1072 	if (q_vector->arm_wb_state)
1073 		return;
1074 
1075 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1076 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1077 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1078 
1079 		wr32(&vsi->back->hw,
1080 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1081 		     val);
1082 	} else {
1083 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1084 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1085 
1086 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1087 	}
1088 	q_vector->arm_wb_state = true;
1089 }
1090 
1091 /**
1092  * i40e_force_wb - Issue SW Interrupt so HW does a wb
1093  * @vsi: the VSI we care about
1094  * @q_vector: the vector  on which to force writeback
1095  *
1096  **/
1097 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1098 {
1099 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1100 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1101 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1102 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1103 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1104 			  /* allow 00 to be written to the index */
1105 
1106 		wr32(&vsi->back->hw,
1107 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1108 	} else {
1109 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1110 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1111 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1112 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1113 			/* allow 00 to be written to the index */
1114 
1115 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1116 	}
1117 }
1118 
1119 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1120 					struct i40e_ring_container *rc)
1121 {
1122 	return &q_vector->rx == rc;
1123 }
1124 
1125 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1126 {
1127 	unsigned int divisor;
1128 
1129 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1130 	case I40E_LINK_SPEED_40GB:
1131 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1132 		break;
1133 	case I40E_LINK_SPEED_25GB:
1134 	case I40E_LINK_SPEED_20GB:
1135 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1136 		break;
1137 	default:
1138 	case I40E_LINK_SPEED_10GB:
1139 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1140 		break;
1141 	case I40E_LINK_SPEED_1GB:
1142 	case I40E_LINK_SPEED_100MB:
1143 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1144 		break;
1145 	}
1146 
1147 	return divisor;
1148 }
1149 
1150 /**
1151  * i40e_update_itr - update the dynamic ITR value based on statistics
1152  * @q_vector: structure containing interrupt and ring information
1153  * @rc: structure containing ring performance data
1154  *
1155  * Stores a new ITR value based on packets and byte
1156  * counts during the last interrupt.  The advantage of per interrupt
1157  * computation is faster updates and more accurate ITR for the current
1158  * traffic pattern.  Constants in this function were computed
1159  * based on theoretical maximum wire speed and thresholds were set based
1160  * on testing data as well as attempting to minimize response time
1161  * while increasing bulk throughput.
1162  **/
1163 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1164 			    struct i40e_ring_container *rc)
1165 {
1166 	unsigned int avg_wire_size, packets, bytes, itr;
1167 	unsigned long next_update = jiffies;
1168 
1169 	/* If we don't have any rings just leave ourselves set for maximum
1170 	 * possible latency so we take ourselves out of the equation.
1171 	 */
1172 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1173 		return;
1174 
1175 	/* For Rx we want to push the delay up and default to low latency.
1176 	 * for Tx we want to pull the delay down and default to high latency.
1177 	 */
1178 	itr = i40e_container_is_rx(q_vector, rc) ?
1179 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1180 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1181 
1182 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1183 	 * that either packets are coming in so slow there hasn't been
1184 	 * any work, or that there is so much work that NAPI is dealing
1185 	 * with interrupt moderation and we don't need to do anything.
1186 	 */
1187 	if (time_after(next_update, rc->next_update))
1188 		goto clear_counts;
1189 
1190 	/* If itr_countdown is set it means we programmed an ITR within
1191 	 * the last 4 interrupt cycles. This has a side effect of us
1192 	 * potentially firing an early interrupt. In order to work around
1193 	 * this we need to throw out any data received for a few
1194 	 * interrupts following the update.
1195 	 */
1196 	if (q_vector->itr_countdown) {
1197 		itr = rc->target_itr;
1198 		goto clear_counts;
1199 	}
1200 
1201 	packets = rc->total_packets;
1202 	bytes = rc->total_bytes;
1203 
1204 	if (i40e_container_is_rx(q_vector, rc)) {
1205 		/* If Rx there are 1 to 4 packets and bytes are less than
1206 		 * 9000 assume insufficient data to use bulk rate limiting
1207 		 * approach unless Tx is already in bulk rate limiting. We
1208 		 * are likely latency driven.
1209 		 */
1210 		if (packets && packets < 4 && bytes < 9000 &&
1211 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1212 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1213 			goto adjust_by_size;
1214 		}
1215 	} else if (packets < 4) {
1216 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1217 		 * bulk mode and we are receiving 4 or fewer packets just
1218 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1219 		 * that the Rx can relax.
1220 		 */
1221 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1222 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1223 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1224 			goto clear_counts;
1225 	} else if (packets > 32) {
1226 		/* If we have processed over 32 packets in a single interrupt
1227 		 * for Tx assume we need to switch over to "bulk" mode.
1228 		 */
1229 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1230 	}
1231 
1232 	/* We have no packets to actually measure against. This means
1233 	 * either one of the other queues on this vector is active or
1234 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1235 	 *
1236 	 * Between 4 and 56 we can assume that our current interrupt delay
1237 	 * is only slightly too low. As such we should increase it by a small
1238 	 * fixed amount.
1239 	 */
1240 	if (packets < 56) {
1241 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1242 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1243 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1244 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1245 		}
1246 		goto clear_counts;
1247 	}
1248 
1249 	if (packets <= 256) {
1250 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1251 		itr &= I40E_ITR_MASK;
1252 
1253 		/* Between 56 and 112 is our "goldilocks" zone where we are
1254 		 * working out "just right". Just report that our current
1255 		 * ITR is good for us.
1256 		 */
1257 		if (packets <= 112)
1258 			goto clear_counts;
1259 
1260 		/* If packet count is 128 or greater we are likely looking
1261 		 * at a slight overrun of the delay we want. Try halving
1262 		 * our delay to see if that will cut the number of packets
1263 		 * in half per interrupt.
1264 		 */
1265 		itr /= 2;
1266 		itr &= I40E_ITR_MASK;
1267 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1268 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1269 
1270 		goto clear_counts;
1271 	}
1272 
1273 	/* The paths below assume we are dealing with a bulk ITR since
1274 	 * number of packets is greater than 256. We are just going to have
1275 	 * to compute a value and try to bring the count under control,
1276 	 * though for smaller packet sizes there isn't much we can do as
1277 	 * NAPI polling will likely be kicking in sooner rather than later.
1278 	 */
1279 	itr = I40E_ITR_ADAPTIVE_BULK;
1280 
1281 adjust_by_size:
1282 	/* If packet counts are 256 or greater we can assume we have a gross
1283 	 * overestimation of what the rate should be. Instead of trying to fine
1284 	 * tune it just use the formula below to try and dial in an exact value
1285 	 * give the current packet size of the frame.
1286 	 */
1287 	avg_wire_size = bytes / packets;
1288 
1289 	/* The following is a crude approximation of:
1290 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1291 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1292 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1293 	 *
1294 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1295 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1296 	 * formula down to
1297 	 *
1298 	 *  (170 * (size + 24)) / (size + 640) = ITR
1299 	 *
1300 	 * We first do some math on the packet size and then finally bitshift
1301 	 * by 8 after rounding up. We also have to account for PCIe link speed
1302 	 * difference as ITR scales based on this.
1303 	 */
1304 	if (avg_wire_size <= 60) {
1305 		/* Start at 250k ints/sec */
1306 		avg_wire_size = 4096;
1307 	} else if (avg_wire_size <= 380) {
1308 		/* 250K ints/sec to 60K ints/sec */
1309 		avg_wire_size *= 40;
1310 		avg_wire_size += 1696;
1311 	} else if (avg_wire_size <= 1084) {
1312 		/* 60K ints/sec to 36K ints/sec */
1313 		avg_wire_size *= 15;
1314 		avg_wire_size += 11452;
1315 	} else if (avg_wire_size <= 1980) {
1316 		/* 36K ints/sec to 30K ints/sec */
1317 		avg_wire_size *= 5;
1318 		avg_wire_size += 22420;
1319 	} else {
1320 		/* plateau at a limit of 30K ints/sec */
1321 		avg_wire_size = 32256;
1322 	}
1323 
1324 	/* If we are in low latency mode halve our delay which doubles the
1325 	 * rate to somewhere between 100K to 16K ints/sec
1326 	 */
1327 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1328 		avg_wire_size /= 2;
1329 
1330 	/* Resultant value is 256 times larger than it needs to be. This
1331 	 * gives us room to adjust the value as needed to either increase
1332 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1333 	 *
1334 	 * Use addition as we have already recorded the new latency flag
1335 	 * for the ITR value.
1336 	 */
1337 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1338 	       I40E_ITR_ADAPTIVE_MIN_INC;
1339 
1340 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1341 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1342 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1343 	}
1344 
1345 clear_counts:
1346 	/* write back value */
1347 	rc->target_itr = itr;
1348 
1349 	/* next update should occur within next jiffy */
1350 	rc->next_update = next_update + 1;
1351 
1352 	rc->total_bytes = 0;
1353 	rc->total_packets = 0;
1354 }
1355 
1356 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1357 {
1358 	return &rx_ring->rx_bi[idx];
1359 }
1360 
1361 /**
1362  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1363  * @rx_ring: rx descriptor ring to store buffers on
1364  * @old_buff: donor buffer to have page reused
1365  *
1366  * Synchronizes page for reuse by the adapter
1367  **/
1368 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1369 			       struct i40e_rx_buffer *old_buff)
1370 {
1371 	struct i40e_rx_buffer *new_buff;
1372 	u16 nta = rx_ring->next_to_alloc;
1373 
1374 	new_buff = i40e_rx_bi(rx_ring, nta);
1375 
1376 	/* update, and store next to alloc */
1377 	nta++;
1378 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1379 
1380 	/* transfer page from old buffer to new buffer */
1381 	new_buff->dma		= old_buff->dma;
1382 	new_buff->page		= old_buff->page;
1383 	new_buff->page_offset	= old_buff->page_offset;
1384 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1385 
1386 	/* clear contents of buffer_info */
1387 	old_buff->page = NULL;
1388 }
1389 
1390 /**
1391  * i40e_clean_programming_status - clean the programming status descriptor
1392  * @rx_ring: the rx ring that has this descriptor
1393  * @qword0_raw: qword0
1394  * @qword1: qword1 representing status_error_len in CPU ordering
1395  *
1396  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1397  * status being successful or not and take actions accordingly. FCoE should
1398  * handle its context/filter programming/invalidation status and take actions.
1399  *
1400  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1401  **/
1402 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1403 				   u64 qword1)
1404 {
1405 	u8 id;
1406 
1407 	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1408 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1409 
1410 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1411 		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1412 }
1413 
1414 /**
1415  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1416  * @tx_ring: the tx ring to set up
1417  *
1418  * Return 0 on success, negative on error
1419  **/
1420 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1421 {
1422 	struct device *dev = tx_ring->dev;
1423 	int bi_size;
1424 
1425 	if (!dev)
1426 		return -ENOMEM;
1427 
1428 	/* warn if we are about to overwrite the pointer */
1429 	WARN_ON(tx_ring->tx_bi);
1430 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1431 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1432 	if (!tx_ring->tx_bi)
1433 		goto err;
1434 
1435 	u64_stats_init(&tx_ring->syncp);
1436 
1437 	/* round up to nearest 4K */
1438 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1439 	/* add u32 for head writeback, align after this takes care of
1440 	 * guaranteeing this is at least one cache line in size
1441 	 */
1442 	tx_ring->size += sizeof(u32);
1443 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1444 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1445 					   &tx_ring->dma, GFP_KERNEL);
1446 	if (!tx_ring->desc) {
1447 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1448 			 tx_ring->size);
1449 		goto err;
1450 	}
1451 
1452 	tx_ring->next_to_use = 0;
1453 	tx_ring->next_to_clean = 0;
1454 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1455 	return 0;
1456 
1457 err:
1458 	kfree(tx_ring->tx_bi);
1459 	tx_ring->tx_bi = NULL;
1460 	return -ENOMEM;
1461 }
1462 
1463 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1464 {
1465 	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1466 }
1467 
1468 /**
1469  * i40e_clean_rx_ring - Free Rx buffers
1470  * @rx_ring: ring to be cleaned
1471  **/
1472 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1473 {
1474 	u16 i;
1475 
1476 	/* ring already cleared, nothing to do */
1477 	if (!rx_ring->rx_bi)
1478 		return;
1479 
1480 	if (rx_ring->xsk_pool) {
1481 		i40e_xsk_clean_rx_ring(rx_ring);
1482 		goto skip_free;
1483 	}
1484 
1485 	/* Free all the Rx ring sk_buffs */
1486 	for (i = 0; i < rx_ring->count; i++) {
1487 		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1488 
1489 		if (!rx_bi->page)
1490 			continue;
1491 
1492 		/* Invalidate cache lines that may have been written to by
1493 		 * device so that we avoid corrupting memory.
1494 		 */
1495 		dma_sync_single_range_for_cpu(rx_ring->dev,
1496 					      rx_bi->dma,
1497 					      rx_bi->page_offset,
1498 					      rx_ring->rx_buf_len,
1499 					      DMA_FROM_DEVICE);
1500 
1501 		/* free resources associated with mapping */
1502 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1503 				     i40e_rx_pg_size(rx_ring),
1504 				     DMA_FROM_DEVICE,
1505 				     I40E_RX_DMA_ATTR);
1506 
1507 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1508 
1509 		rx_bi->page = NULL;
1510 		rx_bi->page_offset = 0;
1511 	}
1512 
1513 skip_free:
1514 	if (rx_ring->xsk_pool)
1515 		i40e_clear_rx_bi_zc(rx_ring);
1516 	else
1517 		i40e_clear_rx_bi(rx_ring);
1518 
1519 	/* Zero out the descriptor ring */
1520 	memset(rx_ring->desc, 0, rx_ring->size);
1521 
1522 	rx_ring->next_to_alloc = 0;
1523 	rx_ring->next_to_clean = 0;
1524 	rx_ring->next_to_process = 0;
1525 	rx_ring->next_to_use = 0;
1526 }
1527 
1528 /**
1529  * i40e_free_rx_resources - Free Rx resources
1530  * @rx_ring: ring to clean the resources from
1531  *
1532  * Free all receive software resources
1533  **/
1534 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1535 {
1536 	i40e_clean_rx_ring(rx_ring);
1537 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1538 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1539 	rx_ring->xdp_prog = NULL;
1540 	kfree(rx_ring->rx_bi);
1541 	rx_ring->rx_bi = NULL;
1542 
1543 	if (rx_ring->desc) {
1544 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1545 				  rx_ring->desc, rx_ring->dma);
1546 		rx_ring->desc = NULL;
1547 	}
1548 }
1549 
1550 /**
1551  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1552  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1553  *
1554  * Returns 0 on success, negative on failure
1555  **/
1556 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1557 {
1558 	struct device *dev = rx_ring->dev;
1559 
1560 	u64_stats_init(&rx_ring->syncp);
1561 
1562 	/* Round up to nearest 4K */
1563 	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1564 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1565 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1566 					   &rx_ring->dma, GFP_KERNEL);
1567 
1568 	if (!rx_ring->desc) {
1569 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1570 			 rx_ring->size);
1571 		return -ENOMEM;
1572 	}
1573 
1574 	rx_ring->next_to_alloc = 0;
1575 	rx_ring->next_to_clean = 0;
1576 	rx_ring->next_to_process = 0;
1577 	rx_ring->next_to_use = 0;
1578 
1579 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1580 
1581 	rx_ring->rx_bi =
1582 		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1583 	if (!rx_ring->rx_bi)
1584 		return -ENOMEM;
1585 
1586 	return 0;
1587 }
1588 
1589 /**
1590  * i40e_release_rx_desc - Store the new tail and head values
1591  * @rx_ring: ring to bump
1592  * @val: new head index
1593  **/
1594 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1595 {
1596 	rx_ring->next_to_use = val;
1597 
1598 	/* update next to alloc since we have filled the ring */
1599 	rx_ring->next_to_alloc = val;
1600 
1601 	/* Force memory writes to complete before letting h/w
1602 	 * know there are new descriptors to fetch.  (Only
1603 	 * applicable for weak-ordered memory model archs,
1604 	 * such as IA-64).
1605 	 */
1606 	wmb();
1607 	writel(val, rx_ring->tail);
1608 }
1609 
1610 #if (PAGE_SIZE >= 8192)
1611 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1612 					   unsigned int size)
1613 {
1614 	unsigned int truesize;
1615 
1616 	truesize = rx_ring->rx_offset ?
1617 		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1618 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1619 		SKB_DATA_ALIGN(size);
1620 	return truesize;
1621 }
1622 #endif
1623 
1624 /**
1625  * i40e_alloc_mapped_page - recycle or make a new page
1626  * @rx_ring: ring to use
1627  * @bi: rx_buffer struct to modify
1628  *
1629  * Returns true if the page was successfully allocated or
1630  * reused.
1631  **/
1632 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1633 				   struct i40e_rx_buffer *bi)
1634 {
1635 	struct page *page = bi->page;
1636 	dma_addr_t dma;
1637 
1638 	/* since we are recycling buffers we should seldom need to alloc */
1639 	if (likely(page)) {
1640 		rx_ring->rx_stats.page_reuse_count++;
1641 		return true;
1642 	}
1643 
1644 	/* alloc new page for storage */
1645 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1646 	if (unlikely(!page)) {
1647 		rx_ring->rx_stats.alloc_page_failed++;
1648 		return false;
1649 	}
1650 
1651 	rx_ring->rx_stats.page_alloc_count++;
1652 
1653 	/* map page for use */
1654 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1655 				 i40e_rx_pg_size(rx_ring),
1656 				 DMA_FROM_DEVICE,
1657 				 I40E_RX_DMA_ATTR);
1658 
1659 	/* if mapping failed free memory back to system since
1660 	 * there isn't much point in holding memory we can't use
1661 	 */
1662 	if (dma_mapping_error(rx_ring->dev, dma)) {
1663 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1664 		rx_ring->rx_stats.alloc_page_failed++;
1665 		return false;
1666 	}
1667 
1668 	bi->dma = dma;
1669 	bi->page = page;
1670 	bi->page_offset = rx_ring->rx_offset;
1671 	page_ref_add(page, USHRT_MAX - 1);
1672 	bi->pagecnt_bias = USHRT_MAX;
1673 
1674 	return true;
1675 }
1676 
1677 /**
1678  * i40e_alloc_rx_buffers - Replace used receive buffers
1679  * @rx_ring: ring to place buffers on
1680  * @cleaned_count: number of buffers to replace
1681  *
1682  * Returns false if all allocations were successful, true if any fail
1683  **/
1684 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1685 {
1686 	u16 ntu = rx_ring->next_to_use;
1687 	union i40e_rx_desc *rx_desc;
1688 	struct i40e_rx_buffer *bi;
1689 
1690 	/* do nothing if no valid netdev defined */
1691 	if (!rx_ring->netdev || !cleaned_count)
1692 		return false;
1693 
1694 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1695 	bi = i40e_rx_bi(rx_ring, ntu);
1696 
1697 	do {
1698 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1699 			goto no_buffers;
1700 
1701 		/* sync the buffer for use by the device */
1702 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1703 						 bi->page_offset,
1704 						 rx_ring->rx_buf_len,
1705 						 DMA_FROM_DEVICE);
1706 
1707 		/* Refresh the desc even if buffer_addrs didn't change
1708 		 * because each write-back erases this info.
1709 		 */
1710 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1711 
1712 		rx_desc++;
1713 		bi++;
1714 		ntu++;
1715 		if (unlikely(ntu == rx_ring->count)) {
1716 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1717 			bi = i40e_rx_bi(rx_ring, 0);
1718 			ntu = 0;
1719 		}
1720 
1721 		/* clear the status bits for the next_to_use descriptor */
1722 		rx_desc->wb.qword1.status_error_len = 0;
1723 
1724 		cleaned_count--;
1725 	} while (cleaned_count);
1726 
1727 	if (rx_ring->next_to_use != ntu)
1728 		i40e_release_rx_desc(rx_ring, ntu);
1729 
1730 	return false;
1731 
1732 no_buffers:
1733 	if (rx_ring->next_to_use != ntu)
1734 		i40e_release_rx_desc(rx_ring, ntu);
1735 
1736 	/* make sure to come back via polling to try again after
1737 	 * allocation failure
1738 	 */
1739 	return true;
1740 }
1741 
1742 /**
1743  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1744  * @vsi: the VSI we care about
1745  * @skb: skb currently being received and modified
1746  * @rx_desc: the receive descriptor
1747  **/
1748 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1749 				    struct sk_buff *skb,
1750 				    union i40e_rx_desc *rx_desc)
1751 {
1752 	struct i40e_rx_ptype_decoded decoded;
1753 	u32 rx_error, rx_status;
1754 	bool ipv4, ipv6;
1755 	u8 ptype;
1756 	u64 qword;
1757 
1758 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1759 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1760 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1761 		   I40E_RXD_QW1_ERROR_SHIFT;
1762 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1763 		    I40E_RXD_QW1_STATUS_SHIFT;
1764 	decoded = decode_rx_desc_ptype(ptype);
1765 
1766 	skb->ip_summed = CHECKSUM_NONE;
1767 
1768 	skb_checksum_none_assert(skb);
1769 
1770 	/* Rx csum enabled and ip headers found? */
1771 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1772 		return;
1773 
1774 	/* did the hardware decode the packet and checksum? */
1775 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1776 		return;
1777 
1778 	/* both known and outer_ip must be set for the below code to work */
1779 	if (!(decoded.known && decoded.outer_ip))
1780 		return;
1781 
1782 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1783 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1784 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1785 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1786 
1787 	if (ipv4 &&
1788 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1789 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1790 		goto checksum_fail;
1791 
1792 	/* likely incorrect csum if alternate IP extension headers found */
1793 	if (ipv6 &&
1794 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1795 		/* don't increment checksum err here, non-fatal err */
1796 		return;
1797 
1798 	/* there was some L4 error, count error and punt packet to the stack */
1799 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1800 		goto checksum_fail;
1801 
1802 	/* handle packets that were not able to be checksummed due
1803 	 * to arrival speed, in this case the stack can compute
1804 	 * the csum.
1805 	 */
1806 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1807 		return;
1808 
1809 	/* If there is an outer header present that might contain a checksum
1810 	 * we need to bump the checksum level by 1 to reflect the fact that
1811 	 * we are indicating we validated the inner checksum.
1812 	 */
1813 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1814 		skb->csum_level = 1;
1815 
1816 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1817 	switch (decoded.inner_prot) {
1818 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1819 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1820 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1821 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1822 		fallthrough;
1823 	default:
1824 		break;
1825 	}
1826 
1827 	return;
1828 
1829 checksum_fail:
1830 	vsi->back->hw_csum_rx_error++;
1831 }
1832 
1833 /**
1834  * i40e_ptype_to_htype - get a hash type
1835  * @ptype: the ptype value from the descriptor
1836  *
1837  * Returns a hash type to be used by skb_set_hash
1838  **/
1839 static inline int i40e_ptype_to_htype(u8 ptype)
1840 {
1841 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1842 
1843 	if (!decoded.known)
1844 		return PKT_HASH_TYPE_NONE;
1845 
1846 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1847 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1848 		return PKT_HASH_TYPE_L4;
1849 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1850 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1851 		return PKT_HASH_TYPE_L3;
1852 	else
1853 		return PKT_HASH_TYPE_L2;
1854 }
1855 
1856 /**
1857  * i40e_rx_hash - set the hash value in the skb
1858  * @ring: descriptor ring
1859  * @rx_desc: specific descriptor
1860  * @skb: skb currently being received and modified
1861  * @rx_ptype: Rx packet type
1862  **/
1863 static inline void i40e_rx_hash(struct i40e_ring *ring,
1864 				union i40e_rx_desc *rx_desc,
1865 				struct sk_buff *skb,
1866 				u8 rx_ptype)
1867 {
1868 	u32 hash;
1869 	const __le64 rss_mask =
1870 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1871 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1872 
1873 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1874 		return;
1875 
1876 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1877 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1878 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1879 	}
1880 }
1881 
1882 /**
1883  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1884  * @rx_ring: rx descriptor ring packet is being transacted on
1885  * @rx_desc: pointer to the EOP Rx descriptor
1886  * @skb: pointer to current skb being populated
1887  *
1888  * This function checks the ring, descriptor, and packet information in
1889  * order to populate the hash, checksum, VLAN, protocol, and
1890  * other fields within the skb.
1891  **/
1892 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1893 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1894 {
1895 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1896 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1897 			I40E_RXD_QW1_STATUS_SHIFT;
1898 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1899 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1900 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1901 	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1902 		      I40E_RXD_QW1_PTYPE_SHIFT;
1903 
1904 	if (unlikely(tsynvalid))
1905 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1906 
1907 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1908 
1909 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1910 
1911 	skb_record_rx_queue(skb, rx_ring->queue_index);
1912 
1913 	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1914 		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1915 
1916 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1917 				       le16_to_cpu(vlan_tag));
1918 	}
1919 
1920 	/* modifies the skb - consumes the enet header */
1921 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1922 }
1923 
1924 /**
1925  * i40e_cleanup_headers - Correct empty headers
1926  * @rx_ring: rx descriptor ring packet is being transacted on
1927  * @skb: pointer to current skb being fixed
1928  * @rx_desc: pointer to the EOP Rx descriptor
1929  *
1930  * In addition if skb is not at least 60 bytes we need to pad it so that
1931  * it is large enough to qualify as a valid Ethernet frame.
1932  *
1933  * Returns true if an error was encountered and skb was freed.
1934  **/
1935 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1936 				 union i40e_rx_desc *rx_desc)
1937 
1938 {
1939 	/* ERR_MASK will only have valid bits if EOP set, and
1940 	 * what we are doing here is actually checking
1941 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1942 	 * the error field
1943 	 */
1944 	if (unlikely(i40e_test_staterr(rx_desc,
1945 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1946 		dev_kfree_skb_any(skb);
1947 		return true;
1948 	}
1949 
1950 	/* if eth_skb_pad returns an error the skb was freed */
1951 	if (eth_skb_pad(skb))
1952 		return true;
1953 
1954 	return false;
1955 }
1956 
1957 /**
1958  * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1959  * @rx_buffer: buffer containing the page
1960  * @rx_stats: rx stats structure for the rx ring
1961  *
1962  * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1963  * which will assign the current buffer to the buffer that next_to_alloc is
1964  * pointing to; otherwise, the DMA mapping needs to be destroyed and
1965  * page freed.
1966  *
1967  * rx_stats will be updated to indicate whether the page was waived
1968  * or busy if it could not be reused.
1969  */
1970 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1971 				   struct i40e_rx_queue_stats *rx_stats)
1972 {
1973 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1974 	struct page *page = rx_buffer->page;
1975 
1976 	/* Is any reuse possible? */
1977 	if (!dev_page_is_reusable(page)) {
1978 		rx_stats->page_waive_count++;
1979 		return false;
1980 	}
1981 
1982 #if (PAGE_SIZE < 8192)
1983 	/* if we are only owner of page we can reuse it */
1984 	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1985 		rx_stats->page_busy_count++;
1986 		return false;
1987 	}
1988 #else
1989 #define I40E_LAST_OFFSET \
1990 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1991 	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1992 		rx_stats->page_busy_count++;
1993 		return false;
1994 	}
1995 #endif
1996 
1997 	/* If we have drained the page fragment pool we need to update
1998 	 * the pagecnt_bias and page count so that we fully restock the
1999 	 * number of references the driver holds.
2000 	 */
2001 	if (unlikely(pagecnt_bias == 1)) {
2002 		page_ref_add(page, USHRT_MAX - 1);
2003 		rx_buffer->pagecnt_bias = USHRT_MAX;
2004 	}
2005 
2006 	return true;
2007 }
2008 
2009 /**
2010  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2011  * @rx_buffer: Rx buffer to adjust
2012  * @truesize: Size of adjustment
2013  **/
2014 static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2015 				unsigned int truesize)
2016 {
2017 #if (PAGE_SIZE < 8192)
2018 	rx_buffer->page_offset ^= truesize;
2019 #else
2020 	rx_buffer->page_offset += truesize;
2021 #endif
2022 }
2023 
2024 /**
2025  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2026  * @rx_ring: rx descriptor ring to transact packets on
2027  * @size: size of buffer to add to skb
2028  *
2029  * This function will pull an Rx buffer from the ring and synchronize it
2030  * for use by the CPU.
2031  */
2032 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2033 						 const unsigned int size)
2034 {
2035 	struct i40e_rx_buffer *rx_buffer;
2036 
2037 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2038 	rx_buffer->page_count =
2039 #if (PAGE_SIZE < 8192)
2040 		page_count(rx_buffer->page);
2041 #else
2042 		0;
2043 #endif
2044 	prefetch_page_address(rx_buffer->page);
2045 
2046 	/* we are reusing so sync this buffer for CPU use */
2047 	dma_sync_single_range_for_cpu(rx_ring->dev,
2048 				      rx_buffer->dma,
2049 				      rx_buffer->page_offset,
2050 				      size,
2051 				      DMA_FROM_DEVICE);
2052 
2053 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2054 	rx_buffer->pagecnt_bias--;
2055 
2056 	return rx_buffer;
2057 }
2058 
2059 /**
2060  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2061  * @rx_ring: rx descriptor ring to transact packets on
2062  * @rx_buffer: rx buffer to pull data from
2063  *
2064  * This function will clean up the contents of the rx_buffer.  It will
2065  * either recycle the buffer or unmap it and free the associated resources.
2066  */
2067 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2068 			       struct i40e_rx_buffer *rx_buffer)
2069 {
2070 	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2071 		/* hand second half of page back to the ring */
2072 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2073 	} else {
2074 		/* we are not reusing the buffer so unmap it */
2075 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2076 				     i40e_rx_pg_size(rx_ring),
2077 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2078 		__page_frag_cache_drain(rx_buffer->page,
2079 					rx_buffer->pagecnt_bias);
2080 		/* clear contents of buffer_info */
2081 		rx_buffer->page = NULL;
2082 	}
2083 }
2084 
2085 /**
2086  * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2087  * @rx_ring: Rx descriptor ring to transact packets on
2088  * @xdp_res: Result of the XDP program
2089  * @xdp: xdp_buff pointing to the data
2090  **/
2091 static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2092 				  struct xdp_buff *xdp)
2093 {
2094 	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2095 	u32 next = rx_ring->next_to_clean, i = 0;
2096 	struct i40e_rx_buffer *rx_buffer;
2097 
2098 	xdp->flags = 0;
2099 
2100 	while (1) {
2101 		rx_buffer = i40e_rx_bi(rx_ring, next);
2102 		if (++next == rx_ring->count)
2103 			next = 0;
2104 
2105 		if (!rx_buffer->page)
2106 			continue;
2107 
2108 		if (xdp_res != I40E_XDP_CONSUMED)
2109 			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2110 		else if (i++ <= nr_frags)
2111 			rx_buffer->pagecnt_bias++;
2112 
2113 		/* EOP buffer will be put in i40e_clean_rx_irq() */
2114 		if (next == rx_ring->next_to_process)
2115 			return;
2116 
2117 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2118 	}
2119 }
2120 
2121 /**
2122  * i40e_construct_skb - Allocate skb and populate it
2123  * @rx_ring: rx descriptor ring to transact packets on
2124  * @xdp: xdp_buff pointing to the data
2125  *
2126  * This function allocates an skb.  It then populates it with the page
2127  * data from the current receive descriptor, taking care to set up the
2128  * skb correctly.
2129  */
2130 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2131 					  struct xdp_buff *xdp)
2132 {
2133 	unsigned int size = xdp->data_end - xdp->data;
2134 	struct i40e_rx_buffer *rx_buffer;
2135 	struct skb_shared_info *sinfo;
2136 	unsigned int headlen;
2137 	struct sk_buff *skb;
2138 	u32 nr_frags = 0;
2139 
2140 	/* prefetch first cache line of first page */
2141 	net_prefetch(xdp->data);
2142 
2143 	/* Note, we get here by enabling legacy-rx via:
2144 	 *
2145 	 *    ethtool --set-priv-flags <dev> legacy-rx on
2146 	 *
2147 	 * In this mode, we currently get 0 extra XDP headroom as
2148 	 * opposed to having legacy-rx off, where we process XDP
2149 	 * packets going to stack via i40e_build_skb(). The latter
2150 	 * provides us currently with 192 bytes of headroom.
2151 	 *
2152 	 * For i40e_construct_skb() mode it means that the
2153 	 * xdp->data_meta will always point to xdp->data, since
2154 	 * the helper cannot expand the head. Should this ever
2155 	 * change in future for legacy-rx mode on, then lets also
2156 	 * add xdp->data_meta handling here.
2157 	 */
2158 
2159 	/* allocate a skb to store the frags */
2160 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2161 			       I40E_RX_HDR_SIZE,
2162 			       GFP_ATOMIC | __GFP_NOWARN);
2163 	if (unlikely(!skb))
2164 		return NULL;
2165 
2166 	/* Determine available headroom for copy */
2167 	headlen = size;
2168 	if (headlen > I40E_RX_HDR_SIZE)
2169 		headlen = eth_get_headlen(skb->dev, xdp->data,
2170 					  I40E_RX_HDR_SIZE);
2171 
2172 	/* align pull length to size of long to optimize memcpy performance */
2173 	memcpy(__skb_put(skb, headlen), xdp->data,
2174 	       ALIGN(headlen, sizeof(long)));
2175 
2176 	if (unlikely(xdp_buff_has_frags(xdp))) {
2177 		sinfo = xdp_get_shared_info_from_buff(xdp);
2178 		nr_frags = sinfo->nr_frags;
2179 	}
2180 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2181 	/* update all of the pointers */
2182 	size -= headlen;
2183 	if (size) {
2184 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2185 			dev_kfree_skb(skb);
2186 			return NULL;
2187 		}
2188 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2189 				rx_buffer->page_offset + headlen,
2190 				size, xdp->frame_sz);
2191 		/* buffer is used by skb, update page_offset */
2192 		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2193 	} else {
2194 		/* buffer is unused, reset bias back to rx_buffer */
2195 		rx_buffer->pagecnt_bias++;
2196 	}
2197 
2198 	if (unlikely(xdp_buff_has_frags(xdp))) {
2199 		struct skb_shared_info *skinfo = skb_shinfo(skb);
2200 
2201 		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2202 		       sizeof(skb_frag_t) * nr_frags);
2203 
2204 		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2205 					   sinfo->xdp_frags_size,
2206 					   nr_frags * xdp->frame_sz,
2207 					   xdp_buff_is_frag_pfmemalloc(xdp));
2208 
2209 		/* First buffer has already been processed, so bump ntc */
2210 		if (++rx_ring->next_to_clean == rx_ring->count)
2211 			rx_ring->next_to_clean = 0;
2212 
2213 		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2214 	}
2215 
2216 	return skb;
2217 }
2218 
2219 /**
2220  * i40e_build_skb - Build skb around an existing buffer
2221  * @rx_ring: Rx descriptor ring to transact packets on
2222  * @xdp: xdp_buff pointing to the data
2223  *
2224  * This function builds an skb around an existing Rx buffer, taking care
2225  * to set up the skb correctly and avoid any memcpy overhead.
2226  */
2227 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2228 				      struct xdp_buff *xdp)
2229 {
2230 	unsigned int metasize = xdp->data - xdp->data_meta;
2231 	struct skb_shared_info *sinfo;
2232 	struct sk_buff *skb;
2233 	u32 nr_frags;
2234 
2235 	/* Prefetch first cache line of first page. If xdp->data_meta
2236 	 * is unused, this points exactly as xdp->data, otherwise we
2237 	 * likely have a consumer accessing first few bytes of meta
2238 	 * data, and then actual data.
2239 	 */
2240 	net_prefetch(xdp->data_meta);
2241 
2242 	if (unlikely(xdp_buff_has_frags(xdp))) {
2243 		sinfo = xdp_get_shared_info_from_buff(xdp);
2244 		nr_frags = sinfo->nr_frags;
2245 	}
2246 
2247 	/* build an skb around the page buffer */
2248 	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2249 	if (unlikely(!skb))
2250 		return NULL;
2251 
2252 	/* update pointers within the skb to store the data */
2253 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2254 	__skb_put(skb, xdp->data_end - xdp->data);
2255 	if (metasize)
2256 		skb_metadata_set(skb, metasize);
2257 
2258 	if (unlikely(xdp_buff_has_frags(xdp))) {
2259 		xdp_update_skb_shared_info(skb, nr_frags,
2260 					   sinfo->xdp_frags_size,
2261 					   nr_frags * xdp->frame_sz,
2262 					   xdp_buff_is_frag_pfmemalloc(xdp));
2263 
2264 		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2265 	} else {
2266 		struct i40e_rx_buffer *rx_buffer;
2267 
2268 		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2269 		/* buffer is used by skb, update page_offset */
2270 		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2271 	}
2272 
2273 	return skb;
2274 }
2275 
2276 /**
2277  * i40e_is_non_eop - process handling of non-EOP buffers
2278  * @rx_ring: Rx ring being processed
2279  * @rx_desc: Rx descriptor for current buffer
2280  *
2281  * If the buffer is an EOP buffer, this function exits returning false,
2282  * otherwise return true indicating that this is in fact a non-EOP buffer.
2283  */
2284 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2285 		     union i40e_rx_desc *rx_desc)
2286 {
2287 	/* if we are the last buffer then there is nothing else to do */
2288 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2289 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2290 		return false;
2291 
2292 	rx_ring->rx_stats.non_eop_descs++;
2293 
2294 	return true;
2295 }
2296 
2297 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2298 			      struct i40e_ring *xdp_ring);
2299 
2300 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2301 {
2302 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2303 
2304 	if (unlikely(!xdpf))
2305 		return I40E_XDP_CONSUMED;
2306 
2307 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2308 }
2309 
2310 /**
2311  * i40e_run_xdp - run an XDP program
2312  * @rx_ring: Rx ring being processed
2313  * @xdp: XDP buffer containing the frame
2314  * @xdp_prog: XDP program to run
2315  **/
2316 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2317 {
2318 	int err, result = I40E_XDP_PASS;
2319 	struct i40e_ring *xdp_ring;
2320 	u32 act;
2321 
2322 	if (!xdp_prog)
2323 		goto xdp_out;
2324 
2325 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2326 
2327 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2328 	switch (act) {
2329 	case XDP_PASS:
2330 		break;
2331 	case XDP_TX:
2332 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2333 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2334 		if (result == I40E_XDP_CONSUMED)
2335 			goto out_failure;
2336 		break;
2337 	case XDP_REDIRECT:
2338 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2339 		if (err)
2340 			goto out_failure;
2341 		result = I40E_XDP_REDIR;
2342 		break;
2343 	default:
2344 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2345 		fallthrough;
2346 	case XDP_ABORTED:
2347 out_failure:
2348 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2349 		fallthrough; /* handle aborts by dropping packet */
2350 	case XDP_DROP:
2351 		result = I40E_XDP_CONSUMED;
2352 		break;
2353 	}
2354 xdp_out:
2355 	return result;
2356 }
2357 
2358 /**
2359  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2360  * @xdp_ring: XDP Tx ring
2361  *
2362  * This function updates the XDP Tx ring tail register.
2363  **/
2364 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2365 {
2366 	/* Force memory writes to complete before letting h/w
2367 	 * know there are new descriptors to fetch.
2368 	 */
2369 	wmb();
2370 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2371 }
2372 
2373 /**
2374  * i40e_update_rx_stats - Update Rx ring statistics
2375  * @rx_ring: rx descriptor ring
2376  * @total_rx_bytes: number of bytes received
2377  * @total_rx_packets: number of packets received
2378  *
2379  * This function updates the Rx ring statistics.
2380  **/
2381 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2382 			  unsigned int total_rx_bytes,
2383 			  unsigned int total_rx_packets)
2384 {
2385 	u64_stats_update_begin(&rx_ring->syncp);
2386 	rx_ring->stats.packets += total_rx_packets;
2387 	rx_ring->stats.bytes += total_rx_bytes;
2388 	u64_stats_update_end(&rx_ring->syncp);
2389 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2390 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2391 }
2392 
2393 /**
2394  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2395  * @rx_ring: Rx ring
2396  * @xdp_res: Result of the receive batch
2397  *
2398  * This function bumps XDP Tx tail and/or flush redirect map, and
2399  * should be called when a batch of packets has been processed in the
2400  * napi loop.
2401  **/
2402 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2403 {
2404 	if (xdp_res & I40E_XDP_REDIR)
2405 		xdp_do_flush_map();
2406 
2407 	if (xdp_res & I40E_XDP_TX) {
2408 		struct i40e_ring *xdp_ring =
2409 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2410 
2411 		i40e_xdp_ring_update_tail(xdp_ring);
2412 	}
2413 }
2414 
2415 /**
2416  * i40e_inc_ntp: Advance the next_to_process index
2417  * @rx_ring: Rx ring
2418  **/
2419 static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2420 {
2421 	u32 ntp = rx_ring->next_to_process + 1;
2422 
2423 	ntp = (ntp < rx_ring->count) ? ntp : 0;
2424 	rx_ring->next_to_process = ntp;
2425 	prefetch(I40E_RX_DESC(rx_ring, ntp));
2426 }
2427 
2428 /**
2429  * i40e_add_xdp_frag: Add a frag to xdp_buff
2430  * @xdp: xdp_buff pointing to the data
2431  * @nr_frags: return number of buffers for the packet
2432  * @rx_buffer: rx_buffer holding data of the current frag
2433  * @size: size of data of current frag
2434  */
2435 static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2436 			     struct i40e_rx_buffer *rx_buffer, u32 size)
2437 {
2438 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2439 
2440 	if (!xdp_buff_has_frags(xdp)) {
2441 		sinfo->nr_frags = 0;
2442 		sinfo->xdp_frags_size = 0;
2443 		xdp_buff_set_frags_flag(xdp);
2444 	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2445 		/* Overflowing packet: All frags need to be dropped */
2446 		return -ENOMEM;
2447 	}
2448 
2449 	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2450 				   rx_buffer->page_offset, size);
2451 
2452 	sinfo->xdp_frags_size += size;
2453 
2454 	if (page_is_pfmemalloc(rx_buffer->page))
2455 		xdp_buff_set_frag_pfmemalloc(xdp);
2456 	*nr_frags = sinfo->nr_frags;
2457 
2458 	return 0;
2459 }
2460 
2461 /**
2462  * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2463  * @rx_ring: rx descriptor ring to transact packets on
2464  * @xdp: xdp_buff pointing to the data
2465  * @rx_buffer: rx_buffer of eop desc
2466  */
2467 static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2468 				  struct xdp_buff *xdp,
2469 				  struct i40e_rx_buffer *rx_buffer)
2470 {
2471 	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2472 	i40e_put_rx_buffer(rx_ring, rx_buffer);
2473 	rx_ring->next_to_clean = rx_ring->next_to_process;
2474 	xdp->data = NULL;
2475 }
2476 
2477 /**
2478  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2479  * @rx_ring: rx descriptor ring to transact packets on
2480  * @budget: Total limit on number of packets to process
2481  * @rx_cleaned: Out parameter of the number of packets processed
2482  *
2483  * This function provides a "bounce buffer" approach to Rx interrupt
2484  * processing.  The advantage to this is that on systems that have
2485  * expensive overhead for IOMMU access this provides a means of avoiding
2486  * it by maintaining the mapping of the page to the system.
2487  *
2488  * Returns amount of work completed
2489  **/
2490 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2491 			     unsigned int *rx_cleaned)
2492 {
2493 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2494 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2495 	u16 clean_threshold = rx_ring->count / 2;
2496 	unsigned int offset = rx_ring->rx_offset;
2497 	struct xdp_buff *xdp = &rx_ring->xdp;
2498 	unsigned int xdp_xmit = 0;
2499 	struct bpf_prog *xdp_prog;
2500 	bool failure = false;
2501 	int xdp_res = 0;
2502 
2503 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2504 
2505 	while (likely(total_rx_packets < (unsigned int)budget)) {
2506 		u16 ntp = rx_ring->next_to_process;
2507 		struct i40e_rx_buffer *rx_buffer;
2508 		union i40e_rx_desc *rx_desc;
2509 		struct sk_buff *skb;
2510 		unsigned int size;
2511 		u32 nfrags = 0;
2512 		bool neop;
2513 		u64 qword;
2514 
2515 		/* return some buffers to hardware, one at a time is too slow */
2516 		if (cleaned_count >= clean_threshold) {
2517 			failure = failure ||
2518 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2519 			cleaned_count = 0;
2520 		}
2521 
2522 		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2523 
2524 		/* status_error_len will always be zero for unused descriptors
2525 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2526 		 * which is always zero because packet split isn't used, if the
2527 		 * hardware wrote DD then the length will be non-zero
2528 		 */
2529 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2530 
2531 		/* This memory barrier is needed to keep us from reading
2532 		 * any other fields out of the rx_desc until we have
2533 		 * verified the descriptor has been written back.
2534 		 */
2535 		dma_rmb();
2536 
2537 		if (i40e_rx_is_programming_status(qword)) {
2538 			i40e_clean_programming_status(rx_ring,
2539 						      rx_desc->raw.qword[0],
2540 						      qword);
2541 			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2542 			i40e_inc_ntp(rx_ring);
2543 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2544 			/* Update ntc and bump cleaned count if not in the
2545 			 * middle of mb packet.
2546 			 */
2547 			if (rx_ring->next_to_clean == ntp) {
2548 				rx_ring->next_to_clean =
2549 					rx_ring->next_to_process;
2550 				cleaned_count++;
2551 			}
2552 			continue;
2553 		}
2554 
2555 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2556 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2557 		if (!size)
2558 			break;
2559 
2560 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2561 		/* retrieve a buffer from the ring */
2562 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2563 
2564 		neop = i40e_is_non_eop(rx_ring, rx_desc);
2565 		i40e_inc_ntp(rx_ring);
2566 
2567 		if (!xdp->data) {
2568 			unsigned char *hard_start;
2569 
2570 			hard_start = page_address(rx_buffer->page) +
2571 				     rx_buffer->page_offset - offset;
2572 			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2573 #if (PAGE_SIZE > 4096)
2574 			/* At larger PAGE_SIZE, frame_sz depend on len size */
2575 			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2576 #endif
2577 		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2578 			   !neop) {
2579 			/* Overflowing packet: Drop all frags on EOP */
2580 			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2581 			break;
2582 		}
2583 
2584 		if (neop)
2585 			continue;
2586 
2587 		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2588 
2589 		if (xdp_res) {
2590 			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2591 
2592 			if (unlikely(xdp_buff_has_frags(xdp))) {
2593 				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2594 				size = xdp_get_buff_len(xdp);
2595 			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2596 				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2597 			} else {
2598 				rx_buffer->pagecnt_bias++;
2599 			}
2600 			total_rx_bytes += size;
2601 		} else {
2602 			if (ring_uses_build_skb(rx_ring))
2603 				skb = i40e_build_skb(rx_ring, xdp);
2604 			else
2605 				skb = i40e_construct_skb(rx_ring, xdp);
2606 
2607 			/* drop if we failed to retrieve a buffer */
2608 			if (!skb) {
2609 				rx_ring->rx_stats.alloc_buff_failed++;
2610 				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2611 				break;
2612 			}
2613 
2614 			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2615 				goto process_next;
2616 
2617 			/* probably a little skewed due to removing CRC */
2618 			total_rx_bytes += skb->len;
2619 
2620 			/* populate checksum, VLAN, and protocol */
2621 			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2622 
2623 			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2624 			napi_gro_receive(&rx_ring->q_vector->napi, skb);
2625 		}
2626 
2627 		/* update budget accounting */
2628 		total_rx_packets++;
2629 process_next:
2630 		cleaned_count += nfrags + 1;
2631 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2632 		rx_ring->next_to_clean = rx_ring->next_to_process;
2633 
2634 		xdp->data = NULL;
2635 	}
2636 
2637 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2638 
2639 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2640 
2641 	*rx_cleaned = total_rx_packets;
2642 
2643 	/* guarantee a trip back through this routine if there was a failure */
2644 	return failure ? budget : (int)total_rx_packets;
2645 }
2646 
2647 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2648 {
2649 	u32 val;
2650 
2651 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2652 	 * points out doing so is "meaningless since it was already
2653 	 * auto-cleared". The auto-clearing happens when the interrupt is
2654 	 * asserted.
2655 	 *
2656 	 * Hardware errata 28 for also indicates that writing to a
2657 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2658 	 * an event in the PBA anyway so we need to rely on the automask
2659 	 * to hold pending events for us until the interrupt is re-enabled
2660 	 *
2661 	 * The itr value is reported in microseconds, and the register
2662 	 * value is recorded in 2 microsecond units. For this reason we
2663 	 * only need to shift by the interval shift - 1 instead of the
2664 	 * full value.
2665 	 */
2666 	itr &= I40E_ITR_MASK;
2667 
2668 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2669 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2670 	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2671 
2672 	return val;
2673 }
2674 
2675 /* a small macro to shorten up some long lines */
2676 #define INTREG I40E_PFINT_DYN_CTLN
2677 
2678 /* The act of updating the ITR will cause it to immediately trigger. In order
2679  * to prevent this from throwing off adaptive update statistics we defer the
2680  * update so that it can only happen so often. So after either Tx or Rx are
2681  * updated we make the adaptive scheme wait until either the ITR completely
2682  * expires via the next_update expiration or we have been through at least
2683  * 3 interrupts.
2684  */
2685 #define ITR_COUNTDOWN_START 3
2686 
2687 /**
2688  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2689  * @vsi: the VSI we care about
2690  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2691  *
2692  **/
2693 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2694 					  struct i40e_q_vector *q_vector)
2695 {
2696 	struct i40e_hw *hw = &vsi->back->hw;
2697 	u32 intval;
2698 
2699 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2700 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2701 		i40e_irq_dynamic_enable_icr0(vsi->back);
2702 		return;
2703 	}
2704 
2705 	/* These will do nothing if dynamic updates are not enabled */
2706 	i40e_update_itr(q_vector, &q_vector->tx);
2707 	i40e_update_itr(q_vector, &q_vector->rx);
2708 
2709 	/* This block of logic allows us to get away with only updating
2710 	 * one ITR value with each interrupt. The idea is to perform a
2711 	 * pseudo-lazy update with the following criteria.
2712 	 *
2713 	 * 1. Rx is given higher priority than Tx if both are in same state
2714 	 * 2. If we must reduce an ITR that is given highest priority.
2715 	 * 3. We then give priority to increasing ITR based on amount.
2716 	 */
2717 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2718 		/* Rx ITR needs to be reduced, this is highest priority */
2719 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2720 					   q_vector->rx.target_itr);
2721 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2722 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2723 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2724 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2725 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2726 		/* Tx ITR needs to be reduced, this is second priority
2727 		 * Tx ITR needs to be increased more than Rx, fourth priority
2728 		 */
2729 		intval = i40e_buildreg_itr(I40E_TX_ITR,
2730 					   q_vector->tx.target_itr);
2731 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2732 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2733 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2734 		/* Rx ITR needs to be increased, third priority */
2735 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2736 					   q_vector->rx.target_itr);
2737 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2738 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2739 	} else {
2740 		/* No ITR update, lowest priority */
2741 		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2742 		if (q_vector->itr_countdown)
2743 			q_vector->itr_countdown--;
2744 	}
2745 
2746 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2747 		wr32(hw, INTREG(q_vector->reg_idx), intval);
2748 }
2749 
2750 /**
2751  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2752  * @napi: napi struct with our devices info in it
2753  * @budget: amount of work driver is allowed to do this pass, in packets
2754  *
2755  * This function will clean all queues associated with a q_vector.
2756  *
2757  * Returns the amount of work done
2758  **/
2759 int i40e_napi_poll(struct napi_struct *napi, int budget)
2760 {
2761 	struct i40e_q_vector *q_vector =
2762 			       container_of(napi, struct i40e_q_vector, napi);
2763 	struct i40e_vsi *vsi = q_vector->vsi;
2764 	struct i40e_ring *ring;
2765 	bool tx_clean_complete = true;
2766 	bool rx_clean_complete = true;
2767 	unsigned int tx_cleaned = 0;
2768 	unsigned int rx_cleaned = 0;
2769 	bool clean_complete = true;
2770 	bool arm_wb = false;
2771 	int budget_per_ring;
2772 	int work_done = 0;
2773 
2774 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2775 		napi_complete(napi);
2776 		return 0;
2777 	}
2778 
2779 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2780 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2781 	 */
2782 	i40e_for_each_ring(ring, q_vector->tx) {
2783 		bool wd = ring->xsk_pool ?
2784 			  i40e_clean_xdp_tx_irq(vsi, ring) :
2785 			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2786 
2787 		if (!wd) {
2788 			clean_complete = tx_clean_complete = false;
2789 			continue;
2790 		}
2791 		arm_wb |= ring->arm_wb;
2792 		ring->arm_wb = false;
2793 	}
2794 
2795 	/* Handle case where we are called by netpoll with a budget of 0 */
2796 	if (budget <= 0)
2797 		goto tx_only;
2798 
2799 	/* normally we have 1 Rx ring per q_vector */
2800 	if (unlikely(q_vector->num_ringpairs > 1))
2801 		/* We attempt to distribute budget to each Rx queue fairly, but
2802 		 * don't allow the budget to go below 1 because that would exit
2803 		 * polling early.
2804 		 */
2805 		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2806 	else
2807 		/* Max of 1 Rx ring in this q_vector so give it the budget */
2808 		budget_per_ring = budget;
2809 
2810 	i40e_for_each_ring(ring, q_vector->rx) {
2811 		int cleaned = ring->xsk_pool ?
2812 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2813 			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2814 
2815 		work_done += cleaned;
2816 		/* if we clean as many as budgeted, we must not be done */
2817 		if (cleaned >= budget_per_ring)
2818 			clean_complete = rx_clean_complete = false;
2819 	}
2820 
2821 	if (!i40e_enabled_xdp_vsi(vsi))
2822 		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2823 				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2824 
2825 	/* If work not completed, return budget and polling will return */
2826 	if (!clean_complete) {
2827 		int cpu_id = smp_processor_id();
2828 
2829 		/* It is possible that the interrupt affinity has changed but,
2830 		 * if the cpu is pegged at 100%, polling will never exit while
2831 		 * traffic continues and the interrupt will be stuck on this
2832 		 * cpu.  We check to make sure affinity is correct before we
2833 		 * continue to poll, otherwise we must stop polling so the
2834 		 * interrupt can move to the correct cpu.
2835 		 */
2836 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2837 			/* Tell napi that we are done polling */
2838 			napi_complete_done(napi, work_done);
2839 
2840 			/* Force an interrupt */
2841 			i40e_force_wb(vsi, q_vector);
2842 
2843 			/* Return budget-1 so that polling stops */
2844 			return budget - 1;
2845 		}
2846 tx_only:
2847 		if (arm_wb) {
2848 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2849 			i40e_enable_wb_on_itr(vsi, q_vector);
2850 		}
2851 		return budget;
2852 	}
2853 
2854 	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2855 		q_vector->arm_wb_state = false;
2856 
2857 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2858 	 * poll us due to busy-polling
2859 	 */
2860 	if (likely(napi_complete_done(napi, work_done)))
2861 		i40e_update_enable_itr(vsi, q_vector);
2862 
2863 	return min(work_done, budget - 1);
2864 }
2865 
2866 /**
2867  * i40e_atr - Add a Flow Director ATR filter
2868  * @tx_ring:  ring to add programming descriptor to
2869  * @skb:      send buffer
2870  * @tx_flags: send tx flags
2871  **/
2872 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2873 		     u32 tx_flags)
2874 {
2875 	struct i40e_filter_program_desc *fdir_desc;
2876 	struct i40e_pf *pf = tx_ring->vsi->back;
2877 	union {
2878 		unsigned char *network;
2879 		struct iphdr *ipv4;
2880 		struct ipv6hdr *ipv6;
2881 	} hdr;
2882 	struct tcphdr *th;
2883 	unsigned int hlen;
2884 	u32 flex_ptype, dtype_cmd;
2885 	int l4_proto;
2886 	u16 i;
2887 
2888 	/* make sure ATR is enabled */
2889 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2890 		return;
2891 
2892 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2893 		return;
2894 
2895 	/* if sampling is disabled do nothing */
2896 	if (!tx_ring->atr_sample_rate)
2897 		return;
2898 
2899 	/* Currently only IPv4/IPv6 with TCP is supported */
2900 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2901 		return;
2902 
2903 	/* snag network header to get L4 type and address */
2904 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2905 		      skb_inner_network_header(skb) : skb_network_header(skb);
2906 
2907 	/* Note: tx_flags gets modified to reflect inner protocols in
2908 	 * tx_enable_csum function if encap is enabled.
2909 	 */
2910 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2911 		/* access ihl as u8 to avoid unaligned access on ia64 */
2912 		hlen = (hdr.network[0] & 0x0F) << 2;
2913 		l4_proto = hdr.ipv4->protocol;
2914 	} else {
2915 		/* find the start of the innermost ipv6 header */
2916 		unsigned int inner_hlen = hdr.network - skb->data;
2917 		unsigned int h_offset = inner_hlen;
2918 
2919 		/* this function updates h_offset to the end of the header */
2920 		l4_proto =
2921 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2922 		/* hlen will contain our best estimate of the tcp header */
2923 		hlen = h_offset - inner_hlen;
2924 	}
2925 
2926 	if (l4_proto != IPPROTO_TCP)
2927 		return;
2928 
2929 	th = (struct tcphdr *)(hdr.network + hlen);
2930 
2931 	/* Due to lack of space, no more new filters can be programmed */
2932 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2933 		return;
2934 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2935 		/* HW ATR eviction will take care of removing filters on FIN
2936 		 * and RST packets.
2937 		 */
2938 		if (th->fin || th->rst)
2939 			return;
2940 	}
2941 
2942 	tx_ring->atr_count++;
2943 
2944 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2945 	if (!th->fin &&
2946 	    !th->syn &&
2947 	    !th->rst &&
2948 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2949 		return;
2950 
2951 	tx_ring->atr_count = 0;
2952 
2953 	/* grab the next descriptor */
2954 	i = tx_ring->next_to_use;
2955 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2956 
2957 	i++;
2958 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2959 
2960 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2961 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2962 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2963 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2964 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2965 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2966 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2967 
2968 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2969 
2970 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2971 
2972 	dtype_cmd |= (th->fin || th->rst) ?
2973 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2974 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2975 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2976 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2977 
2978 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2979 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2980 
2981 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2982 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2983 
2984 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2985 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2986 		dtype_cmd |=
2987 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2988 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2989 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2990 	else
2991 		dtype_cmd |=
2992 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2993 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2994 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2995 
2996 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2997 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2998 
2999 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
3000 	fdir_desc->rsvd = cpu_to_le32(0);
3001 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
3002 	fdir_desc->fd_id = cpu_to_le32(0);
3003 }
3004 
3005 /**
3006  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
3007  * @skb:     send buffer
3008  * @tx_ring: ring to send buffer on
3009  * @flags:   the tx flags to be set
3010  *
3011  * Checks the skb and set up correspondingly several generic transmit flags
3012  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
3013  *
3014  * Returns error code indicate the frame should be dropped upon error and the
3015  * otherwise  returns 0 to indicate the flags has been set properly.
3016  **/
3017 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3018 					     struct i40e_ring *tx_ring,
3019 					     u32 *flags)
3020 {
3021 	__be16 protocol = skb->protocol;
3022 	u32  tx_flags = 0;
3023 
3024 	if (protocol == htons(ETH_P_8021Q) &&
3025 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3026 		/* When HW VLAN acceleration is turned off by the user the
3027 		 * stack sets the protocol to 8021q so that the driver
3028 		 * can take any steps required to support the SW only
3029 		 * VLAN handling.  In our case the driver doesn't need
3030 		 * to take any further steps so just set the protocol
3031 		 * to the encapsulated ethertype.
3032 		 */
3033 		skb->protocol = vlan_get_protocol(skb);
3034 		goto out;
3035 	}
3036 
3037 	/* if we have a HW VLAN tag being added, default to the HW one */
3038 	if (skb_vlan_tag_present(skb)) {
3039 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3040 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3041 	/* else if it is a SW VLAN, check the next protocol and store the tag */
3042 	} else if (protocol == htons(ETH_P_8021Q)) {
3043 		struct vlan_hdr *vhdr, _vhdr;
3044 
3045 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3046 		if (!vhdr)
3047 			return -EINVAL;
3048 
3049 		protocol = vhdr->h_vlan_encapsulated_proto;
3050 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3051 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3052 	}
3053 
3054 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
3055 		goto out;
3056 
3057 	/* Insert 802.1p priority into VLAN header */
3058 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3059 	    (skb->priority != TC_PRIO_CONTROL)) {
3060 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3061 		tx_flags |= (skb->priority & 0x7) <<
3062 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3063 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3064 			struct vlan_ethhdr *vhdr;
3065 			int rc;
3066 
3067 			rc = skb_cow_head(skb, 0);
3068 			if (rc < 0)
3069 				return rc;
3070 			vhdr = skb_vlan_eth_hdr(skb);
3071 			vhdr->h_vlan_TCI = htons(tx_flags >>
3072 						 I40E_TX_FLAGS_VLAN_SHIFT);
3073 		} else {
3074 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3075 		}
3076 	}
3077 
3078 out:
3079 	*flags = tx_flags;
3080 	return 0;
3081 }
3082 
3083 /**
3084  * i40e_tso - set up the tso context descriptor
3085  * @first:    pointer to first Tx buffer for xmit
3086  * @hdr_len:  ptr to the size of the packet header
3087  * @cd_type_cmd_tso_mss: Quad Word 1
3088  *
3089  * Returns 0 if no TSO can happen, 1 if tso is going, or error
3090  **/
3091 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3092 		    u64 *cd_type_cmd_tso_mss)
3093 {
3094 	struct sk_buff *skb = first->skb;
3095 	u64 cd_cmd, cd_tso_len, cd_mss;
3096 	__be16 protocol;
3097 	union {
3098 		struct iphdr *v4;
3099 		struct ipv6hdr *v6;
3100 		unsigned char *hdr;
3101 	} ip;
3102 	union {
3103 		struct tcphdr *tcp;
3104 		struct udphdr *udp;
3105 		unsigned char *hdr;
3106 	} l4;
3107 	u32 paylen, l4_offset;
3108 	u16 gso_size;
3109 	int err;
3110 
3111 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3112 		return 0;
3113 
3114 	if (!skb_is_gso(skb))
3115 		return 0;
3116 
3117 	err = skb_cow_head(skb, 0);
3118 	if (err < 0)
3119 		return err;
3120 
3121 	protocol = vlan_get_protocol(skb);
3122 
3123 	if (eth_p_mpls(protocol))
3124 		ip.hdr = skb_inner_network_header(skb);
3125 	else
3126 		ip.hdr = skb_network_header(skb);
3127 	l4.hdr = skb_checksum_start(skb);
3128 
3129 	/* initialize outer IP header fields */
3130 	if (ip.v4->version == 4) {
3131 		ip.v4->tot_len = 0;
3132 		ip.v4->check = 0;
3133 
3134 		first->tx_flags |= I40E_TX_FLAGS_TSO;
3135 	} else {
3136 		ip.v6->payload_len = 0;
3137 		first->tx_flags |= I40E_TX_FLAGS_TSO;
3138 	}
3139 
3140 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3141 					 SKB_GSO_GRE_CSUM |
3142 					 SKB_GSO_IPXIP4 |
3143 					 SKB_GSO_IPXIP6 |
3144 					 SKB_GSO_UDP_TUNNEL |
3145 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3146 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3147 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3148 			l4.udp->len = 0;
3149 
3150 			/* determine offset of outer transport header */
3151 			l4_offset = l4.hdr - skb->data;
3152 
3153 			/* remove payload length from outer checksum */
3154 			paylen = skb->len - l4_offset;
3155 			csum_replace_by_diff(&l4.udp->check,
3156 					     (__force __wsum)htonl(paylen));
3157 		}
3158 
3159 		/* reset pointers to inner headers */
3160 		ip.hdr = skb_inner_network_header(skb);
3161 		l4.hdr = skb_inner_transport_header(skb);
3162 
3163 		/* initialize inner IP header fields */
3164 		if (ip.v4->version == 4) {
3165 			ip.v4->tot_len = 0;
3166 			ip.v4->check = 0;
3167 		} else {
3168 			ip.v6->payload_len = 0;
3169 		}
3170 	}
3171 
3172 	/* determine offset of inner transport header */
3173 	l4_offset = l4.hdr - skb->data;
3174 
3175 	/* remove payload length from inner checksum */
3176 	paylen = skb->len - l4_offset;
3177 
3178 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3179 		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3180 		/* compute length of segmentation header */
3181 		*hdr_len = sizeof(*l4.udp) + l4_offset;
3182 	} else {
3183 		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3184 		/* compute length of segmentation header */
3185 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3186 	}
3187 
3188 	/* pull values out of skb_shinfo */
3189 	gso_size = skb_shinfo(skb)->gso_size;
3190 
3191 	/* update GSO size and bytecount with header size */
3192 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3193 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3194 
3195 	/* find the field values */
3196 	cd_cmd = I40E_TX_CTX_DESC_TSO;
3197 	cd_tso_len = skb->len - *hdr_len;
3198 	cd_mss = gso_size;
3199 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3200 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3201 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3202 	return 1;
3203 }
3204 
3205 /**
3206  * i40e_tsyn - set up the tsyn context descriptor
3207  * @tx_ring:  ptr to the ring to send
3208  * @skb:      ptr to the skb we're sending
3209  * @tx_flags: the collected send information
3210  * @cd_type_cmd_tso_mss: Quad Word 1
3211  *
3212  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3213  **/
3214 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3215 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3216 {
3217 	struct i40e_pf *pf;
3218 
3219 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3220 		return 0;
3221 
3222 	/* Tx timestamps cannot be sampled when doing TSO */
3223 	if (tx_flags & I40E_TX_FLAGS_TSO)
3224 		return 0;
3225 
3226 	/* only timestamp the outbound packet if the user has requested it and
3227 	 * we are not already transmitting a packet to be timestamped
3228 	 */
3229 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3230 	if (!(pf->flags & I40E_FLAG_PTP))
3231 		return 0;
3232 
3233 	if (pf->ptp_tx &&
3234 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3235 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3236 		pf->ptp_tx_start = jiffies;
3237 		pf->ptp_tx_skb = skb_get(skb);
3238 	} else {
3239 		pf->tx_hwtstamp_skipped++;
3240 		return 0;
3241 	}
3242 
3243 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3244 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3245 
3246 	return 1;
3247 }
3248 
3249 /**
3250  * i40e_tx_enable_csum - Enable Tx checksum offloads
3251  * @skb: send buffer
3252  * @tx_flags: pointer to Tx flags currently set
3253  * @td_cmd: Tx descriptor command bits to set
3254  * @td_offset: Tx descriptor header offsets to set
3255  * @tx_ring: Tx descriptor ring
3256  * @cd_tunneling: ptr to context desc bits
3257  **/
3258 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3259 			       u32 *td_cmd, u32 *td_offset,
3260 			       struct i40e_ring *tx_ring,
3261 			       u32 *cd_tunneling)
3262 {
3263 	union {
3264 		struct iphdr *v4;
3265 		struct ipv6hdr *v6;
3266 		unsigned char *hdr;
3267 	} ip;
3268 	union {
3269 		struct tcphdr *tcp;
3270 		struct udphdr *udp;
3271 		unsigned char *hdr;
3272 	} l4;
3273 	unsigned char *exthdr;
3274 	u32 offset, cmd = 0;
3275 	__be16 frag_off;
3276 	__be16 protocol;
3277 	u8 l4_proto = 0;
3278 
3279 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3280 		return 0;
3281 
3282 	protocol = vlan_get_protocol(skb);
3283 
3284 	if (eth_p_mpls(protocol)) {
3285 		ip.hdr = skb_inner_network_header(skb);
3286 		l4.hdr = skb_checksum_start(skb);
3287 	} else {
3288 		ip.hdr = skb_network_header(skb);
3289 		l4.hdr = skb_transport_header(skb);
3290 	}
3291 
3292 	/* set the tx_flags to indicate the IP protocol type. this is
3293 	 * required so that checksum header computation below is accurate.
3294 	 */
3295 	if (ip.v4->version == 4)
3296 		*tx_flags |= I40E_TX_FLAGS_IPV4;
3297 	else
3298 		*tx_flags |= I40E_TX_FLAGS_IPV6;
3299 
3300 	/* compute outer L2 header size */
3301 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3302 
3303 	if (skb->encapsulation) {
3304 		u32 tunnel = 0;
3305 		/* define outer network header type */
3306 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3307 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3308 				  I40E_TX_CTX_EXT_IP_IPV4 :
3309 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3310 
3311 			l4_proto = ip.v4->protocol;
3312 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3313 			int ret;
3314 
3315 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3316 
3317 			exthdr = ip.hdr + sizeof(*ip.v6);
3318 			l4_proto = ip.v6->nexthdr;
3319 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3320 					       &l4_proto, &frag_off);
3321 			if (ret < 0)
3322 				return -1;
3323 		}
3324 
3325 		/* define outer transport */
3326 		switch (l4_proto) {
3327 		case IPPROTO_UDP:
3328 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3329 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3330 			break;
3331 		case IPPROTO_GRE:
3332 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3333 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3334 			break;
3335 		case IPPROTO_IPIP:
3336 		case IPPROTO_IPV6:
3337 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3338 			l4.hdr = skb_inner_network_header(skb);
3339 			break;
3340 		default:
3341 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3342 				return -1;
3343 
3344 			skb_checksum_help(skb);
3345 			return 0;
3346 		}
3347 
3348 		/* compute outer L3 header size */
3349 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3350 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3351 
3352 		/* switch IP header pointer from outer to inner header */
3353 		ip.hdr = skb_inner_network_header(skb);
3354 
3355 		/* compute tunnel header size */
3356 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3357 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3358 
3359 		/* indicate if we need to offload outer UDP header */
3360 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3361 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3362 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3363 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3364 
3365 		/* record tunnel offload values */
3366 		*cd_tunneling |= tunnel;
3367 
3368 		/* switch L4 header pointer from outer to inner */
3369 		l4.hdr = skb_inner_transport_header(skb);
3370 		l4_proto = 0;
3371 
3372 		/* reset type as we transition from outer to inner headers */
3373 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3374 		if (ip.v4->version == 4)
3375 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3376 		if (ip.v6->version == 6)
3377 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3378 	}
3379 
3380 	/* Enable IP checksum offloads */
3381 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3382 		l4_proto = ip.v4->protocol;
3383 		/* the stack computes the IP header already, the only time we
3384 		 * need the hardware to recompute it is in the case of TSO.
3385 		 */
3386 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3387 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3388 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3389 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3390 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3391 
3392 		exthdr = ip.hdr + sizeof(*ip.v6);
3393 		l4_proto = ip.v6->nexthdr;
3394 		if (l4.hdr != exthdr)
3395 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3396 					 &l4_proto, &frag_off);
3397 	}
3398 
3399 	/* compute inner L3 header size */
3400 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3401 
3402 	/* Enable L4 checksum offloads */
3403 	switch (l4_proto) {
3404 	case IPPROTO_TCP:
3405 		/* enable checksum offloads */
3406 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3407 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3408 		break;
3409 	case IPPROTO_SCTP:
3410 		/* enable SCTP checksum offload */
3411 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3412 		offset |= (sizeof(struct sctphdr) >> 2) <<
3413 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3414 		break;
3415 	case IPPROTO_UDP:
3416 		/* enable UDP checksum offload */
3417 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3418 		offset |= (sizeof(struct udphdr) >> 2) <<
3419 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3420 		break;
3421 	default:
3422 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3423 			return -1;
3424 		skb_checksum_help(skb);
3425 		return 0;
3426 	}
3427 
3428 	*td_cmd |= cmd;
3429 	*td_offset |= offset;
3430 
3431 	return 1;
3432 }
3433 
3434 /**
3435  * i40e_create_tx_ctx - Build the Tx context descriptor
3436  * @tx_ring:  ring to create the descriptor on
3437  * @cd_type_cmd_tso_mss: Quad Word 1
3438  * @cd_tunneling: Quad Word 0 - bits 0-31
3439  * @cd_l2tag2: Quad Word 0 - bits 32-63
3440  **/
3441 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3442 			       const u64 cd_type_cmd_tso_mss,
3443 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3444 {
3445 	struct i40e_tx_context_desc *context_desc;
3446 	int i = tx_ring->next_to_use;
3447 
3448 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3449 	    !cd_tunneling && !cd_l2tag2)
3450 		return;
3451 
3452 	/* grab the next descriptor */
3453 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3454 
3455 	i++;
3456 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3457 
3458 	/* cpu_to_le32 and assign to struct fields */
3459 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3460 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3461 	context_desc->rsvd = cpu_to_le16(0);
3462 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3463 }
3464 
3465 /**
3466  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3467  * @tx_ring: the ring to be checked
3468  * @size:    the size buffer we want to assure is available
3469  *
3470  * Returns -EBUSY if a stop is needed, else 0
3471  **/
3472 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3473 {
3474 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3475 	/* Memory barrier before checking head and tail */
3476 	smp_mb();
3477 
3478 	++tx_ring->tx_stats.tx_stopped;
3479 
3480 	/* Check again in a case another CPU has just made room available. */
3481 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3482 		return -EBUSY;
3483 
3484 	/* A reprieve! - use start_queue because it doesn't call schedule */
3485 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3486 	++tx_ring->tx_stats.restart_queue;
3487 	return 0;
3488 }
3489 
3490 /**
3491  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3492  * @skb:      send buffer
3493  *
3494  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3495  * and so we need to figure out the cases where we need to linearize the skb.
3496  *
3497  * For TSO we need to count the TSO header and segment payload separately.
3498  * As such we need to check cases where we have 7 fragments or more as we
3499  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3500  * the segment payload in the first descriptor, and another 7 for the
3501  * fragments.
3502  **/
3503 bool __i40e_chk_linearize(struct sk_buff *skb)
3504 {
3505 	const skb_frag_t *frag, *stale;
3506 	int nr_frags, sum;
3507 
3508 	/* no need to check if number of frags is less than 7 */
3509 	nr_frags = skb_shinfo(skb)->nr_frags;
3510 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3511 		return false;
3512 
3513 	/* We need to walk through the list and validate that each group
3514 	 * of 6 fragments totals at least gso_size.
3515 	 */
3516 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3517 	frag = &skb_shinfo(skb)->frags[0];
3518 
3519 	/* Initialize size to the negative value of gso_size minus 1.  We
3520 	 * use this as the worst case scenerio in which the frag ahead
3521 	 * of us only provides one byte which is why we are limited to 6
3522 	 * descriptors for a single transmit as the header and previous
3523 	 * fragment are already consuming 2 descriptors.
3524 	 */
3525 	sum = 1 - skb_shinfo(skb)->gso_size;
3526 
3527 	/* Add size of frags 0 through 4 to create our initial sum */
3528 	sum += skb_frag_size(frag++);
3529 	sum += skb_frag_size(frag++);
3530 	sum += skb_frag_size(frag++);
3531 	sum += skb_frag_size(frag++);
3532 	sum += skb_frag_size(frag++);
3533 
3534 	/* Walk through fragments adding latest fragment, testing it, and
3535 	 * then removing stale fragments from the sum.
3536 	 */
3537 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3538 		int stale_size = skb_frag_size(stale);
3539 
3540 		sum += skb_frag_size(frag++);
3541 
3542 		/* The stale fragment may present us with a smaller
3543 		 * descriptor than the actual fragment size. To account
3544 		 * for that we need to remove all the data on the front and
3545 		 * figure out what the remainder would be in the last
3546 		 * descriptor associated with the fragment.
3547 		 */
3548 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3549 			int align_pad = -(skb_frag_off(stale)) &
3550 					(I40E_MAX_READ_REQ_SIZE - 1);
3551 
3552 			sum -= align_pad;
3553 			stale_size -= align_pad;
3554 
3555 			do {
3556 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3557 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3558 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3559 		}
3560 
3561 		/* if sum is negative we failed to make sufficient progress */
3562 		if (sum < 0)
3563 			return true;
3564 
3565 		if (!nr_frags--)
3566 			break;
3567 
3568 		sum -= stale_size;
3569 	}
3570 
3571 	return false;
3572 }
3573 
3574 /**
3575  * i40e_tx_map - Build the Tx descriptor
3576  * @tx_ring:  ring to send buffer on
3577  * @skb:      send buffer
3578  * @first:    first buffer info buffer to use
3579  * @tx_flags: collected send information
3580  * @hdr_len:  size of the packet header
3581  * @td_cmd:   the command field in the descriptor
3582  * @td_offset: offset for checksum or crc
3583  *
3584  * Returns 0 on success, -1 on failure to DMA
3585  **/
3586 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3587 			      struct i40e_tx_buffer *first, u32 tx_flags,
3588 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3589 {
3590 	unsigned int data_len = skb->data_len;
3591 	unsigned int size = skb_headlen(skb);
3592 	skb_frag_t *frag;
3593 	struct i40e_tx_buffer *tx_bi;
3594 	struct i40e_tx_desc *tx_desc;
3595 	u16 i = tx_ring->next_to_use;
3596 	u32 td_tag = 0;
3597 	dma_addr_t dma;
3598 	u16 desc_count = 1;
3599 
3600 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3601 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3602 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3603 			 I40E_TX_FLAGS_VLAN_SHIFT;
3604 	}
3605 
3606 	first->tx_flags = tx_flags;
3607 
3608 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3609 
3610 	tx_desc = I40E_TX_DESC(tx_ring, i);
3611 	tx_bi = first;
3612 
3613 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3614 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3615 
3616 		if (dma_mapping_error(tx_ring->dev, dma))
3617 			goto dma_error;
3618 
3619 		/* record length, and DMA address */
3620 		dma_unmap_len_set(tx_bi, len, size);
3621 		dma_unmap_addr_set(tx_bi, dma, dma);
3622 
3623 		/* align size to end of page */
3624 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3625 		tx_desc->buffer_addr = cpu_to_le64(dma);
3626 
3627 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3628 			tx_desc->cmd_type_offset_bsz =
3629 				build_ctob(td_cmd, td_offset,
3630 					   max_data, td_tag);
3631 
3632 			tx_desc++;
3633 			i++;
3634 			desc_count++;
3635 
3636 			if (i == tx_ring->count) {
3637 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3638 				i = 0;
3639 			}
3640 
3641 			dma += max_data;
3642 			size -= max_data;
3643 
3644 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3645 			tx_desc->buffer_addr = cpu_to_le64(dma);
3646 		}
3647 
3648 		if (likely(!data_len))
3649 			break;
3650 
3651 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3652 							  size, td_tag);
3653 
3654 		tx_desc++;
3655 		i++;
3656 		desc_count++;
3657 
3658 		if (i == tx_ring->count) {
3659 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3660 			i = 0;
3661 		}
3662 
3663 		size = skb_frag_size(frag);
3664 		data_len -= size;
3665 
3666 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3667 				       DMA_TO_DEVICE);
3668 
3669 		tx_bi = &tx_ring->tx_bi[i];
3670 	}
3671 
3672 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3673 
3674 	i++;
3675 	if (i == tx_ring->count)
3676 		i = 0;
3677 
3678 	tx_ring->next_to_use = i;
3679 
3680 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3681 
3682 	/* write last descriptor with EOP bit */
3683 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3684 
3685 	/* We OR these values together to check both against 4 (WB_STRIDE)
3686 	 * below. This is safe since we don't re-use desc_count afterwards.
3687 	 */
3688 	desc_count |= ++tx_ring->packet_stride;
3689 
3690 	if (desc_count >= WB_STRIDE) {
3691 		/* write last descriptor with RS bit set */
3692 		td_cmd |= I40E_TX_DESC_CMD_RS;
3693 		tx_ring->packet_stride = 0;
3694 	}
3695 
3696 	tx_desc->cmd_type_offset_bsz =
3697 			build_ctob(td_cmd, td_offset, size, td_tag);
3698 
3699 	skb_tx_timestamp(skb);
3700 
3701 	/* Force memory writes to complete before letting h/w know there
3702 	 * are new descriptors to fetch.
3703 	 *
3704 	 * We also use this memory barrier to make certain all of the
3705 	 * status bits have been updated before next_to_watch is written.
3706 	 */
3707 	wmb();
3708 
3709 	/* set next_to_watch value indicating a packet is present */
3710 	first->next_to_watch = tx_desc;
3711 
3712 	/* notify HW of packet */
3713 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3714 		writel(i, tx_ring->tail);
3715 	}
3716 
3717 	return 0;
3718 
3719 dma_error:
3720 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3721 
3722 	/* clear dma mappings for failed tx_bi map */
3723 	for (;;) {
3724 		tx_bi = &tx_ring->tx_bi[i];
3725 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3726 		if (tx_bi == first)
3727 			break;
3728 		if (i == 0)
3729 			i = tx_ring->count;
3730 		i--;
3731 	}
3732 
3733 	tx_ring->next_to_use = i;
3734 
3735 	return -1;
3736 }
3737 
3738 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3739 				  const struct sk_buff *skb,
3740 				  u16 num_tx_queues)
3741 {
3742 	u32 jhash_initval_salt = 0xd631614b;
3743 	u32 hash;
3744 
3745 	if (skb->sk && skb->sk->sk_hash)
3746 		hash = skb->sk->sk_hash;
3747 	else
3748 		hash = (__force u16)skb->protocol ^ skb->hash;
3749 
3750 	hash = jhash_1word(hash, jhash_initval_salt);
3751 
3752 	return (u16)(((u64)hash * num_tx_queues) >> 32);
3753 }
3754 
3755 u16 i40e_lan_select_queue(struct net_device *netdev,
3756 			  struct sk_buff *skb,
3757 			  struct net_device __always_unused *sb_dev)
3758 {
3759 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3760 	struct i40e_vsi *vsi = np->vsi;
3761 	struct i40e_hw *hw;
3762 	u16 qoffset;
3763 	u16 qcount;
3764 	u8 tclass;
3765 	u16 hash;
3766 	u8 prio;
3767 
3768 	/* is DCB enabled at all? */
3769 	if (vsi->tc_config.numtc == 1 ||
3770 	    i40e_is_tc_mqprio_enabled(vsi->back))
3771 		return netdev_pick_tx(netdev, skb, sb_dev);
3772 
3773 	prio = skb->priority;
3774 	hw = &vsi->back->hw;
3775 	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3776 	/* sanity check */
3777 	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3778 		tclass = 0;
3779 
3780 	/* select a queue assigned for the given TC */
3781 	qcount = vsi->tc_config.tc_info[tclass].qcount;
3782 	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3783 
3784 	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3785 	return qoffset + hash;
3786 }
3787 
3788 /**
3789  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3790  * @xdpf: data to transmit
3791  * @xdp_ring: XDP Tx ring
3792  **/
3793 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3794 			      struct i40e_ring *xdp_ring)
3795 {
3796 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3797 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3798 	u16 i = 0, index = xdp_ring->next_to_use;
3799 	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3800 	struct i40e_tx_buffer *tx_bi = tx_head;
3801 	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3802 	void *data = xdpf->data;
3803 	u32 size = xdpf->len;
3804 
3805 	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3806 		xdp_ring->tx_stats.tx_busy++;
3807 		return I40E_XDP_CONSUMED;
3808 	}
3809 
3810 	tx_head->bytecount = xdp_get_frame_len(xdpf);
3811 	tx_head->gso_segs = 1;
3812 	tx_head->xdpf = xdpf;
3813 
3814 	for (;;) {
3815 		dma_addr_t dma;
3816 
3817 		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3818 		if (dma_mapping_error(xdp_ring->dev, dma))
3819 			goto unmap;
3820 
3821 		/* record length, and DMA address */
3822 		dma_unmap_len_set(tx_bi, len, size);
3823 		dma_unmap_addr_set(tx_bi, dma, dma);
3824 
3825 		tx_desc->buffer_addr = cpu_to_le64(dma);
3826 		tx_desc->cmd_type_offset_bsz =
3827 			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3828 
3829 		if (++index == xdp_ring->count)
3830 			index = 0;
3831 
3832 		if (i == nr_frags)
3833 			break;
3834 
3835 		tx_bi = &xdp_ring->tx_bi[index];
3836 		tx_desc = I40E_TX_DESC(xdp_ring, index);
3837 
3838 		data = skb_frag_address(&sinfo->frags[i]);
3839 		size = skb_frag_size(&sinfo->frags[i]);
3840 		i++;
3841 	}
3842 
3843 	tx_desc->cmd_type_offset_bsz |=
3844 		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3845 
3846 	/* Make certain all of the status bits have been updated
3847 	 * before next_to_watch is written.
3848 	 */
3849 	smp_wmb();
3850 
3851 	xdp_ring->xdp_tx_active++;
3852 
3853 	tx_head->next_to_watch = tx_desc;
3854 	xdp_ring->next_to_use = index;
3855 
3856 	return I40E_XDP_TX;
3857 
3858 unmap:
3859 	for (;;) {
3860 		tx_bi = &xdp_ring->tx_bi[index];
3861 		if (dma_unmap_len(tx_bi, len))
3862 			dma_unmap_page(xdp_ring->dev,
3863 				       dma_unmap_addr(tx_bi, dma),
3864 				       dma_unmap_len(tx_bi, len),
3865 				       DMA_TO_DEVICE);
3866 		dma_unmap_len_set(tx_bi, len, 0);
3867 		if (tx_bi == tx_head)
3868 			break;
3869 
3870 		if (!index)
3871 			index += xdp_ring->count;
3872 		index--;
3873 	}
3874 
3875 	return I40E_XDP_CONSUMED;
3876 }
3877 
3878 /**
3879  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3880  * @skb:     send buffer
3881  * @tx_ring: ring to send buffer on
3882  *
3883  * Returns NETDEV_TX_OK if sent, else an error code
3884  **/
3885 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3886 					struct i40e_ring *tx_ring)
3887 {
3888 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3889 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3890 	struct i40e_tx_buffer *first;
3891 	u32 td_offset = 0;
3892 	u32 tx_flags = 0;
3893 	u32 td_cmd = 0;
3894 	u8 hdr_len = 0;
3895 	int tso, count;
3896 	int tsyn;
3897 
3898 	/* prefetch the data, we'll need it later */
3899 	prefetch(skb->data);
3900 
3901 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3902 
3903 	count = i40e_xmit_descriptor_count(skb);
3904 	if (i40e_chk_linearize(skb, count)) {
3905 		if (__skb_linearize(skb)) {
3906 			dev_kfree_skb_any(skb);
3907 			return NETDEV_TX_OK;
3908 		}
3909 		count = i40e_txd_use_count(skb->len);
3910 		tx_ring->tx_stats.tx_linearize++;
3911 	}
3912 
3913 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3914 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3915 	 *       + 4 desc gap to avoid the cache line where head is,
3916 	 *       + 1 desc for context descriptor,
3917 	 * otherwise try next time
3918 	 */
3919 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3920 		tx_ring->tx_stats.tx_busy++;
3921 		return NETDEV_TX_BUSY;
3922 	}
3923 
3924 	/* record the location of the first descriptor for this packet */
3925 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3926 	first->skb = skb;
3927 	first->bytecount = skb->len;
3928 	first->gso_segs = 1;
3929 
3930 	/* prepare the xmit flags */
3931 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3932 		goto out_drop;
3933 
3934 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3935 
3936 	if (tso < 0)
3937 		goto out_drop;
3938 	else if (tso)
3939 		tx_flags |= I40E_TX_FLAGS_TSO;
3940 
3941 	/* Always offload the checksum, since it's in the data descriptor */
3942 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3943 				  tx_ring, &cd_tunneling);
3944 	if (tso < 0)
3945 		goto out_drop;
3946 
3947 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3948 
3949 	if (tsyn)
3950 		tx_flags |= I40E_TX_FLAGS_TSYN;
3951 
3952 	/* always enable CRC insertion offload */
3953 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3954 
3955 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3956 			   cd_tunneling, cd_l2tag2);
3957 
3958 	/* Add Flow Director ATR if it's enabled.
3959 	 *
3960 	 * NOTE: this must always be directly before the data descriptor.
3961 	 */
3962 	i40e_atr(tx_ring, skb, tx_flags);
3963 
3964 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3965 			td_cmd, td_offset))
3966 		goto cleanup_tx_tstamp;
3967 
3968 	return NETDEV_TX_OK;
3969 
3970 out_drop:
3971 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3972 	dev_kfree_skb_any(first->skb);
3973 	first->skb = NULL;
3974 cleanup_tx_tstamp:
3975 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3976 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3977 
3978 		dev_kfree_skb_any(pf->ptp_tx_skb);
3979 		pf->ptp_tx_skb = NULL;
3980 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3981 	}
3982 
3983 	return NETDEV_TX_OK;
3984 }
3985 
3986 /**
3987  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3988  * @skb:    send buffer
3989  * @netdev: network interface device structure
3990  *
3991  * Returns NETDEV_TX_OK if sent, else an error code
3992  **/
3993 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3994 {
3995 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3996 	struct i40e_vsi *vsi = np->vsi;
3997 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3998 
3999 	/* hardware can't handle really short frames, hardware padding works
4000 	 * beyond this point
4001 	 */
4002 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
4003 		return NETDEV_TX_OK;
4004 
4005 	return i40e_xmit_frame_ring(skb, tx_ring);
4006 }
4007 
4008 /**
4009  * i40e_xdp_xmit - Implements ndo_xdp_xmit
4010  * @dev: netdev
4011  * @n: number of frames
4012  * @frames: array of XDP buffer pointers
4013  * @flags: XDP extra info
4014  *
4015  * Returns number of frames successfully sent. Failed frames
4016  * will be free'ed by XDP core.
4017  *
4018  * For error cases, a negative errno code is returned and no-frames
4019  * are transmitted (caller must handle freeing frames).
4020  **/
4021 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4022 		  u32 flags)
4023 {
4024 	struct i40e_netdev_priv *np = netdev_priv(dev);
4025 	unsigned int queue_index = smp_processor_id();
4026 	struct i40e_vsi *vsi = np->vsi;
4027 	struct i40e_pf *pf = vsi->back;
4028 	struct i40e_ring *xdp_ring;
4029 	int nxmit = 0;
4030 	int i;
4031 
4032 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4033 		return -ENETDOWN;
4034 
4035 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4036 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4037 		return -ENXIO;
4038 
4039 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4040 		return -EINVAL;
4041 
4042 	xdp_ring = vsi->xdp_rings[queue_index];
4043 
4044 	for (i = 0; i < n; i++) {
4045 		struct xdp_frame *xdpf = frames[i];
4046 		int err;
4047 
4048 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4049 		if (err != I40E_XDP_TX)
4050 			break;
4051 		nxmit++;
4052 	}
4053 
4054 	if (unlikely(flags & XDP_XMIT_FLUSH))
4055 		i40e_xdp_ring_update_tail(xdp_ring);
4056 
4057 	return nxmit;
4058 }
4059