// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2013 - 2018 Intel Corporation. */ #include #include #include #include #include "i40e.h" #include "i40e_trace.h" #include "i40e_prototype.h" #include "i40e_txrx_common.h" #include "i40e_xsk.h" #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS) /** * i40e_fdir - Generate a Flow Director descriptor based on fdata * @tx_ring: Tx ring to send buffer on * @fdata: Flow director filter data * @add: Indicate if we are adding a rule or deleting one * **/ static void i40e_fdir(struct i40e_ring *tx_ring, struct i40e_fdir_filter *fdata, bool add) { struct i40e_filter_program_desc *fdir_desc; struct i40e_pf *pf = tx_ring->vsi->back; u32 flex_ptype, dtype_cmd; u16 i; /* grab the next descriptor */ i = tx_ring->next_to_use; fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); i++; tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK & (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT); flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK & (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT); flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK & (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); /* Use LAN VSI Id if not programmed by user */ flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK & ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT); dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; dtype_cmd |= add ? I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << I40E_TXD_FLTR_QW1_PCMD_SHIFT : I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << I40E_TXD_FLTR_QW1_PCMD_SHIFT; dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK & (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT); dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK & (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT); if (fdata->cnt_index) { dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK & ((u32)fdata->cnt_index << I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT); } fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); fdir_desc->rsvd = cpu_to_le32(0); fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); fdir_desc->fd_id = cpu_to_le32(fdata->fd_id); } #define I40E_FD_CLEAN_DELAY 10 /** * i40e_program_fdir_filter - Program a Flow Director filter * @fdir_data: Packet data that will be filter parameters * @raw_packet: the pre-allocated packet buffer for FDir * @pf: The PF pointer * @add: True for add/update, False for remove **/ static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet, struct i40e_pf *pf, bool add) { struct i40e_tx_buffer *tx_buf, *first; struct i40e_tx_desc *tx_desc; struct i40e_ring *tx_ring; struct i40e_vsi *vsi; struct device *dev; dma_addr_t dma; u32 td_cmd = 0; u16 i; /* find existing FDIR VSI */ vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR); if (!vsi) return -ENOENT; tx_ring = vsi->tx_rings[0]; dev = tx_ring->dev; /* we need two descriptors to add/del a filter and we can wait */ for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) { if (!i) return -EAGAIN; msleep_interruptible(1); } dma = dma_map_single(dev, raw_packet, I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dev, dma)) goto dma_fail; /* grab the next descriptor */ i = tx_ring->next_to_use; first = &tx_ring->tx_bi[i]; i40e_fdir(tx_ring, fdir_data, add); /* Now program a dummy descriptor */ i = tx_ring->next_to_use; tx_desc = I40E_TX_DESC(tx_ring, i); tx_buf = &tx_ring->tx_bi[i]; tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0; memset(tx_buf, 0, sizeof(struct i40e_tx_buffer)); /* record length, and DMA address */ dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE); dma_unmap_addr_set(tx_buf, dma, dma); tx_desc->buffer_addr = cpu_to_le64(dma); td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY; tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB; tx_buf->raw_buf = (void *)raw_packet; tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0); /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. */ wmb(); /* Mark the data descriptor to be watched */ first->next_to_watch = tx_desc; writel(tx_ring->next_to_use, tx_ring->tail); return 0; dma_fail: return -1; } /** * i40e_create_dummy_packet - Constructs dummy packet for HW * @dummy_packet: preallocated space for dummy packet * @ipv4: is layer 3 packet of version 4 or 6 * @l4proto: next level protocol used in data portion of l3 * @data: filter data * * Returns address of layer 4 protocol dummy packet. **/ static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto, struct i40e_fdir_filter *data) { bool is_vlan = !!data->vlan_tag; struct vlan_hdr vlan = {}; struct ipv6hdr ipv6 = {}; struct ethhdr eth = {}; struct iphdr ip = {}; u8 *tmp; if (ipv4) { eth.h_proto = cpu_to_be16(ETH_P_IP); ip.protocol = l4proto; ip.version = 0x4; ip.ihl = 0x5; ip.daddr = data->dst_ip; ip.saddr = data->src_ip; } else { eth.h_proto = cpu_to_be16(ETH_P_IPV6); ipv6.nexthdr = l4proto; ipv6.version = 0x6; memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6, sizeof(__be32) * 4); memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6, sizeof(__be32) * 4); } if (is_vlan) { vlan.h_vlan_TCI = data->vlan_tag; vlan.h_vlan_encapsulated_proto = eth.h_proto; eth.h_proto = data->vlan_etype; } tmp = dummy_packet; memcpy(tmp, ð, sizeof(eth)); tmp += sizeof(eth); if (is_vlan) { memcpy(tmp, &vlan, sizeof(vlan)); tmp += sizeof(vlan); } if (ipv4) { memcpy(tmp, &ip, sizeof(ip)); tmp += sizeof(ip); } else { memcpy(tmp, &ipv6, sizeof(ipv6)); tmp += sizeof(ipv6); } return tmp; } /** * i40e_create_dummy_udp_packet - helper function to create UDP packet * @raw_packet: preallocated space for dummy packet * @ipv4: is layer 3 packet of version 4 or 6 * @l4proto: next level protocol used in data portion of l3 * @data: filter data * * Helper function to populate udp fields. **/ static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto, struct i40e_fdir_filter *data) { struct udphdr *udp; u8 *tmp; tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data); udp = (struct udphdr *)(tmp); udp->dest = data->dst_port; udp->source = data->src_port; } /** * i40e_create_dummy_tcp_packet - helper function to create TCP packet * @raw_packet: preallocated space for dummy packet * @ipv4: is layer 3 packet of version 4 or 6 * @l4proto: next level protocol used in data portion of l3 * @data: filter data * * Helper function to populate tcp fields. **/ static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto, struct i40e_fdir_filter *data) { struct tcphdr *tcp; u8 *tmp; /* Dummy tcp packet */ static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0}; tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data); tcp = (struct tcphdr *)tmp; memcpy(tcp, tcp_packet, sizeof(tcp_packet)); tcp->dest = data->dst_port; tcp->source = data->src_port; } /** * i40e_create_dummy_sctp_packet - helper function to create SCTP packet * @raw_packet: preallocated space for dummy packet * @ipv4: is layer 3 packet of version 4 or 6 * @l4proto: next level protocol used in data portion of l3 * @data: filter data * * Helper function to populate sctp fields. **/ static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4, u8 l4proto, struct i40e_fdir_filter *data) { struct sctphdr *sctp; u8 *tmp; tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data); sctp = (struct sctphdr *)tmp; sctp->dest = data->dst_port; sctp->source = data->src_port; } /** * i40e_prepare_fdir_filter - Prepare and program fdir filter * @pf: physical function to attach filter to * @fd_data: filter data * @add: add or delete filter * @packet_addr: address of dummy packet, used in filtering * @payload_offset: offset from dummy packet address to user defined data * @pctype: Packet type for which filter is used * * Helper function to offset data of dummy packet, program it and * handle errors. **/ static int i40e_prepare_fdir_filter(struct i40e_pf *pf, struct i40e_fdir_filter *fd_data, bool add, char *packet_addr, int payload_offset, u8 pctype) { int ret; if (fd_data->flex_filter) { u8 *payload; __be16 pattern = fd_data->flex_word; u16 off = fd_data->flex_offset; payload = packet_addr + payload_offset; /* If user provided vlan, offset payload by vlan header length */ if (!!fd_data->vlan_tag) payload += VLAN_HLEN; *((__force __be16 *)(payload + off)) = pattern; } fd_data->pctype = pctype; ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add); if (ret) { dev_info(&pf->pdev->dev, "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n", fd_data->pctype, fd_data->fd_id, ret); /* Free the packet buffer since it wasn't added to the ring */ return -EOPNOTSUPP; } else if (I40E_DEBUG_FD & pf->hw.debug_mask) { if (add) dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d\n", fd_data->pctype, fd_data->fd_id); else dev_info(&pf->pdev->dev, "Filter deleted for PCTYPE %d loc = %d\n", fd_data->pctype, fd_data->fd_id); } return ret; } /** * i40e_change_filter_num - Prepare and program fdir filter * @ipv4: is layer 3 packet of version 4 or 6 * @add: add or delete filter * @ipv4_filter_num: field to update * @ipv6_filter_num: field to update * * Update filter number field for pf. **/ static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num, u16 *ipv6_filter_num) { if (add) { if (ipv4) (*ipv4_filter_num)++; else (*ipv6_filter_num)++; } else { if (ipv4) (*ipv4_filter_num)--; else (*ipv6_filter_num)--; } } #define I40E_UDPIP_DUMMY_PACKET_LEN 42 #define I40E_UDPIP6_DUMMY_PACKET_LEN 62 /** * i40e_add_del_fdir_udp - Add/Remove UDP filters * @vsi: pointer to the targeted VSI * @fd_data: the flow director data required for the FDir descriptor * @add: true adds a filter, false removes it * @ipv4: true is v4, false is v6 * * Returns 0 if the filters were successfully added or removed **/ static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi, struct i40e_fdir_filter *fd_data, bool add, bool ipv4) { struct i40e_pf *pf = vsi->back; u8 *raw_packet; int ret; raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); if (!raw_packet) return -ENOMEM; i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data); if (ipv4) ret = i40e_prepare_fdir_filter (pf, fd_data, add, raw_packet, I40E_UDPIP_DUMMY_PACKET_LEN, I40E_FILTER_PCTYPE_NONF_IPV4_UDP); else ret = i40e_prepare_fdir_filter (pf, fd_data, add, raw_packet, I40E_UDPIP6_DUMMY_PACKET_LEN, I40E_FILTER_PCTYPE_NONF_IPV6_UDP); if (ret) { kfree(raw_packet); return ret; } i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt, &pf->fd_udp6_filter_cnt); return 0; } #define I40E_TCPIP_DUMMY_PACKET_LEN 54 #define I40E_TCPIP6_DUMMY_PACKET_LEN 74 /** * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters * @vsi: pointer to the targeted VSI * @fd_data: the flow director data required for the FDir descriptor * @add: true adds a filter, false removes it * @ipv4: true is v4, false is v6 * * Returns 0 if the filters were successfully added or removed **/ static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi, struct i40e_fdir_filter *fd_data, bool add, bool ipv4) { struct i40e_pf *pf = vsi->back; u8 *raw_packet; int ret; raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); if (!raw_packet) return -ENOMEM; i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data); if (ipv4) ret = i40e_prepare_fdir_filter (pf, fd_data, add, raw_packet, I40E_TCPIP_DUMMY_PACKET_LEN, I40E_FILTER_PCTYPE_NONF_IPV4_TCP); else ret = i40e_prepare_fdir_filter (pf, fd_data, add, raw_packet, I40E_TCPIP6_DUMMY_PACKET_LEN, I40E_FILTER_PCTYPE_NONF_IPV6_TCP); if (ret) { kfree(raw_packet); return ret; } i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt, &pf->fd_tcp6_filter_cnt); if (add) { if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && I40E_DEBUG_FD & pf->hw.debug_mask) dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n"); set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); } return 0; } #define I40E_SCTPIP_DUMMY_PACKET_LEN 46 #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66 /** * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for * a specific flow spec * @vsi: pointer to the targeted VSI * @fd_data: the flow director data required for the FDir descriptor * @add: true adds a filter, false removes it * @ipv4: true is v4, false is v6 * * Returns 0 if the filters were successfully added or removed **/ static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi, struct i40e_fdir_filter *fd_data, bool add, bool ipv4) { struct i40e_pf *pf = vsi->back; u8 *raw_packet; int ret; raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); if (!raw_packet) return -ENOMEM; i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data); if (ipv4) ret = i40e_prepare_fdir_filter (pf, fd_data, add, raw_packet, I40E_SCTPIP_DUMMY_PACKET_LEN, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP); else ret = i40e_prepare_fdir_filter (pf, fd_data, add, raw_packet, I40E_SCTPIP6_DUMMY_PACKET_LEN, I40E_FILTER_PCTYPE_NONF_IPV6_SCTP); if (ret) { kfree(raw_packet); return ret; } i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt, &pf->fd_sctp6_filter_cnt); return 0; } #define I40E_IP_DUMMY_PACKET_LEN 34 #define I40E_IP6_DUMMY_PACKET_LEN 54 /** * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for * a specific flow spec * @vsi: pointer to the targeted VSI * @fd_data: the flow director data required for the FDir descriptor * @add: true adds a filter, false removes it * @ipv4: true is v4, false is v6 * * Returns 0 if the filters were successfully added or removed **/ static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi, struct i40e_fdir_filter *fd_data, bool add, bool ipv4) { struct i40e_pf *pf = vsi->back; int payload_offset; u8 *raw_packet; int iter_start; int iter_end; int ret; int i; if (ipv4) { iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER; iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4; } else { iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER; iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6; } for (i = iter_start; i <= iter_end; i++) { raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL); if (!raw_packet) return -ENOMEM; /* IPv6 no header option differs from IPv4 */ (void)i40e_create_dummy_packet (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE, fd_data); payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN : I40E_IP6_DUMMY_PACKET_LEN; ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet, payload_offset, i); if (ret) goto err; } i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt, &pf->fd_ip6_filter_cnt); return 0; err: kfree(raw_packet); return ret; } /** * i40e_add_del_fdir - Build raw packets to add/del fdir filter * @vsi: pointer to the targeted VSI * @input: filter to add or delete * @add: true adds a filter, false removes it * **/ int i40e_add_del_fdir(struct i40e_vsi *vsi, struct i40e_fdir_filter *input, bool add) { enum ip_ver { ipv6 = 0, ipv4 = 1 }; struct i40e_pf *pf = vsi->back; int ret; switch (input->flow_type & ~FLOW_EXT) { case TCP_V4_FLOW: ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4); break; case UDP_V4_FLOW: ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4); break; case SCTP_V4_FLOW: ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4); break; case TCP_V6_FLOW: ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6); break; case UDP_V6_FLOW: ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6); break; case SCTP_V6_FLOW: ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6); break; case IP_USER_FLOW: switch (input->ipl4_proto) { case IPPROTO_TCP: ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4); break; case IPPROTO_UDP: ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4); break; case IPPROTO_SCTP: ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4); break; case IPPROTO_IP: ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4); break; default: /* We cannot support masking based on protocol */ dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n", input->ipl4_proto); return -EINVAL; } break; case IPV6_USER_FLOW: switch (input->ipl4_proto) { case IPPROTO_TCP: ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6); break; case IPPROTO_UDP: ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6); break; case IPPROTO_SCTP: ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6); break; case IPPROTO_IP: ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6); break; default: /* We cannot support masking based on protocol */ dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n", input->ipl4_proto); return -EINVAL; } break; default: dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n", input->flow_type); return -EINVAL; } /* The buffer allocated here will be normally be freed by * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit * completion. In the event of an error adding the buffer to the FDIR * ring, it will immediately be freed. It may also be freed by * i40e_clean_tx_ring() when closing the VSI. */ return ret; } /** * i40e_fd_handle_status - check the Programming Status for FD * @rx_ring: the Rx ring for this descriptor * @qword0_raw: qword0 * @qword1: qword1 after le_to_cpu * @prog_id: the id originally used for programming * * This is used to verify if the FD programming or invalidation * requested by SW to the HW is successful or not and take actions accordingly. **/ static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw, u64 qword1, u8 prog_id) { struct i40e_pf *pf = rx_ring->vsi->back; struct pci_dev *pdev = pf->pdev; struct i40e_16b_rx_wb_qw0 *qw0; u32 fcnt_prog, fcnt_avail; u32 error; qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw; error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >> I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT; if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) { pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id); if (qw0->hi_dword.fd_id != 0 || (I40E_DEBUG_FD & pf->hw.debug_mask)) dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n", pf->fd_inv); /* Check if the programming error is for ATR. * If so, auto disable ATR and set a state for * flush in progress. Next time we come here if flush is in * progress do nothing, once flush is complete the state will * be cleared. */ if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state)) return; pf->fd_add_err++; /* store the current atr filter count */ pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf); if (qw0->hi_dword.fd_id == 0 && test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) { /* These set_bit() calls aren't atomic with the * test_bit() here, but worse case we potentially * disable ATR and queue a flush right after SB * support is re-enabled. That shouldn't cause an * issue in practice */ set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state); set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state); } /* filter programming failed most likely due to table full */ fcnt_prog = i40e_get_global_fd_count(pf); fcnt_avail = pf->fdir_pf_filter_count; /* If ATR is running fcnt_prog can quickly change, * if we are very close to full, it makes sense to disable * FD ATR/SB and then re-enable it when there is room. */ if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) { if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) if (I40E_DEBUG_FD & pf->hw.debug_mask) dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n"); } } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) { if (I40E_DEBUG_FD & pf->hw.debug_mask) dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n", qw0->hi_dword.fd_id); } } /** * i40e_unmap_and_free_tx_resource - Release a Tx buffer * @ring: the ring that owns the buffer * @tx_buffer: the buffer to free **/ static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring, struct i40e_tx_buffer *tx_buffer) { if (tx_buffer->skb) { if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB) kfree(tx_buffer->raw_buf); else if (ring_is_xdp(ring)) xdp_return_frame(tx_buffer->xdpf); else dev_kfree_skb_any(tx_buffer->skb); if (dma_unmap_len(tx_buffer, len)) dma_unmap_single(ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); } else if (dma_unmap_len(tx_buffer, len)) { dma_unmap_page(ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); } tx_buffer->next_to_watch = NULL; tx_buffer->skb = NULL; dma_unmap_len_set(tx_buffer, len, 0); /* tx_buffer must be completely set up in the transmit path */ } /** * i40e_clean_tx_ring - Free any empty Tx buffers * @tx_ring: ring to be cleaned **/ void i40e_clean_tx_ring(struct i40e_ring *tx_ring) { unsigned long bi_size; u16 i; if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { i40e_xsk_clean_tx_ring(tx_ring); } else { /* ring already cleared, nothing to do */ if (!tx_ring->tx_bi) return; /* Free all the Tx ring sk_buffs */ for (i = 0; i < tx_ring->count; i++) i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]); } bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; memset(tx_ring->tx_bi, 0, bi_size); /* Zero out the descriptor ring */ memset(tx_ring->desc, 0, tx_ring->size); tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; if (!tx_ring->netdev) return; /* cleanup Tx queue statistics */ netdev_tx_reset_queue(txring_txq(tx_ring)); } /** * i40e_free_tx_resources - Free Tx resources per queue * @tx_ring: Tx descriptor ring for a specific queue * * Free all transmit software resources **/ void i40e_free_tx_resources(struct i40e_ring *tx_ring) { i40e_clean_tx_ring(tx_ring); kfree(tx_ring->tx_bi); tx_ring->tx_bi = NULL; if (tx_ring->desc) { dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, tx_ring->dma); tx_ring->desc = NULL; } } /** * i40e_get_tx_pending - how many tx descriptors not processed * @ring: the ring of descriptors * @in_sw: use SW variables * * Since there is no access to the ring head register * in XL710, we need to use our local copies **/ u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw) { u32 head, tail; if (!in_sw) { head = i40e_get_head(ring); tail = readl(ring->tail); } else { head = ring->next_to_clean; tail = ring->next_to_use; } if (head != tail) return (head < tail) ? tail - head : (tail + ring->count - head); return 0; } /** * i40e_detect_recover_hung - Function to detect and recover hung_queues * @vsi: pointer to vsi struct with tx queues * * VSI has netdev and netdev has TX queues. This function is to check each of * those TX queues if they are hung, trigger recovery by issuing SW interrupt. **/ void i40e_detect_recover_hung(struct i40e_vsi *vsi) { struct i40e_ring *tx_ring = NULL; struct net_device *netdev; unsigned int i; int packets; if (!vsi) return; if (test_bit(__I40E_VSI_DOWN, vsi->state)) return; netdev = vsi->netdev; if (!netdev) return; if (!netif_carrier_ok(netdev)) return; for (i = 0; i < vsi->num_queue_pairs; i++) { tx_ring = vsi->tx_rings[i]; if (tx_ring && tx_ring->desc) { /* If packet counter has not changed the queue is * likely stalled, so force an interrupt for this * queue. * * prev_pkt_ctr would be negative if there was no * pending work. */ packets = tx_ring->stats.packets & INT_MAX; if (tx_ring->tx_stats.prev_pkt_ctr == packets) { i40e_force_wb(vsi, tx_ring->q_vector); continue; } /* Memory barrier between read of packet count and call * to i40e_get_tx_pending() */ smp_rmb(); tx_ring->tx_stats.prev_pkt_ctr = i40e_get_tx_pending(tx_ring, true) ? packets : -1; } } } /** * i40e_clean_tx_irq - Reclaim resources after transmit completes * @vsi: the VSI we care about * @tx_ring: Tx ring to clean * @napi_budget: Used to determine if we are in netpoll * @tx_cleaned: Out parameter set to the number of TXes cleaned * * Returns true if there's any budget left (e.g. the clean is finished) **/ static bool i40e_clean_tx_irq(struct i40e_vsi *vsi, struct i40e_ring *tx_ring, int napi_budget, unsigned int *tx_cleaned) { int i = tx_ring->next_to_clean; struct i40e_tx_buffer *tx_buf; struct i40e_tx_desc *tx_head; struct i40e_tx_desc *tx_desc; unsigned int total_bytes = 0, total_packets = 0; unsigned int budget = vsi->work_limit; tx_buf = &tx_ring->tx_bi[i]; tx_desc = I40E_TX_DESC(tx_ring, i); i -= tx_ring->count; tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring)); do { struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; /* if next_to_watch is not set then there is no work pending */ if (!eop_desc) break; /* prevent any other reads prior to eop_desc */ smp_rmb(); i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf); /* we have caught up to head, no work left to do */ if (tx_head == tx_desc) break; /* clear next_to_watch to prevent false hangs */ tx_buf->next_to_watch = NULL; /* update the statistics for this packet */ total_bytes += tx_buf->bytecount; total_packets += tx_buf->gso_segs; /* free the skb/XDP data */ if (ring_is_xdp(tx_ring)) xdp_return_frame(tx_buf->xdpf); else napi_consume_skb(tx_buf->skb, napi_budget); /* unmap skb header data */ dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_buf, dma), dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); /* clear tx_buffer data */ tx_buf->skb = NULL; dma_unmap_len_set(tx_buf, len, 0); /* unmap remaining buffers */ while (tx_desc != eop_desc) { i40e_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf); tx_buf++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buf = tx_ring->tx_bi; tx_desc = I40E_TX_DESC(tx_ring, 0); } /* unmap any remaining paged data */ if (dma_unmap_len(tx_buf, len)) { dma_unmap_page(tx_ring->dev, dma_unmap_addr(tx_buf, dma), dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_buf, len, 0); } } /* move us one more past the eop_desc for start of next pkt */ tx_buf++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buf = tx_ring->tx_bi; tx_desc = I40E_TX_DESC(tx_ring, 0); } prefetch(tx_desc); /* update budget accounting */ budget--; } while (likely(budget)); i += tx_ring->count; tx_ring->next_to_clean = i; i40e_update_tx_stats(tx_ring, total_packets, total_bytes); i40e_arm_wb(tx_ring, vsi, budget); if (ring_is_xdp(tx_ring)) return !!budget; /* notify netdev of completed buffers */ netdev_tx_completed_queue(txring_txq(tx_ring), total_packets, total_bytes); #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { /* Make sure that anybody stopping the queue after this * sees the new next_to_clean. */ smp_mb(); if (__netif_subqueue_stopped(tx_ring->netdev, tx_ring->queue_index) && !test_bit(__I40E_VSI_DOWN, vsi->state)) { netif_wake_subqueue(tx_ring->netdev, tx_ring->queue_index); ++tx_ring->tx_stats.restart_queue; } } *tx_cleaned = total_packets; return !!budget; } /** * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled * @vsi: the VSI we care about * @q_vector: the vector on which to enable writeback * **/ static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) { u16 flags = q_vector->tx.ring[0].flags; u32 val; if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR)) return; if (q_vector->arm_wb_state) return; if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK | I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */ wr32(&vsi->back->hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val); } else { val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK | I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */ wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); } q_vector->arm_wb_state = true; } /** * i40e_force_wb - Issue SW Interrupt so HW does a wb * @vsi: the VSI we care about * @q_vector: the vector on which to force writeback * **/ void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) { if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK | I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */ I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK; /* allow 00 to be written to the index */ wr32(&vsi->back->hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val); } else { u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK | I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */ I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK; /* allow 00 to be written to the index */ wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val); } } static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector, struct i40e_ring_container *rc) { return &q_vector->rx == rc; } static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector) { unsigned int divisor; switch (q_vector->vsi->back->hw.phy.link_info.link_speed) { case I40E_LINK_SPEED_40GB: divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024; break; case I40E_LINK_SPEED_25GB: case I40E_LINK_SPEED_20GB: divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512; break; default: case I40E_LINK_SPEED_10GB: divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256; break; case I40E_LINK_SPEED_1GB: case I40E_LINK_SPEED_100MB: divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32; break; } return divisor; } /** * i40e_update_itr - update the dynamic ITR value based on statistics * @q_vector: structure containing interrupt and ring information * @rc: structure containing ring performance data * * Stores a new ITR value based on packets and byte * counts during the last interrupt. The advantage of per interrupt * computation is faster updates and more accurate ITR for the current * traffic pattern. Constants in this function were computed * based on theoretical maximum wire speed and thresholds were set based * on testing data as well as attempting to minimize response time * while increasing bulk throughput. **/ static void i40e_update_itr(struct i40e_q_vector *q_vector, struct i40e_ring_container *rc) { unsigned int avg_wire_size, packets, bytes, itr; unsigned long next_update = jiffies; /* If we don't have any rings just leave ourselves set for maximum * possible latency so we take ourselves out of the equation. */ if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting)) return; /* For Rx we want to push the delay up and default to low latency. * for Tx we want to pull the delay down and default to high latency. */ itr = i40e_container_is_rx(q_vector, rc) ? I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY : I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY; /* If we didn't update within up to 1 - 2 jiffies we can assume * that either packets are coming in so slow there hasn't been * any work, or that there is so much work that NAPI is dealing * with interrupt moderation and we don't need to do anything. */ if (time_after(next_update, rc->next_update)) goto clear_counts; /* If itr_countdown is set it means we programmed an ITR within * the last 4 interrupt cycles. This has a side effect of us * potentially firing an early interrupt. In order to work around * this we need to throw out any data received for a few * interrupts following the update. */ if (q_vector->itr_countdown) { itr = rc->target_itr; goto clear_counts; } packets = rc->total_packets; bytes = rc->total_bytes; if (i40e_container_is_rx(q_vector, rc)) { /* If Rx there are 1 to 4 packets and bytes are less than * 9000 assume insufficient data to use bulk rate limiting * approach unless Tx is already in bulk rate limiting. We * are likely latency driven. */ if (packets && packets < 4 && bytes < 9000 && (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) { itr = I40E_ITR_ADAPTIVE_LATENCY; goto adjust_by_size; } } else if (packets < 4) { /* If we have Tx and Rx ITR maxed and Tx ITR is running in * bulk mode and we are receiving 4 or fewer packets just * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so * that the Rx can relax. */ if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS && (q_vector->rx.target_itr & I40E_ITR_MASK) == I40E_ITR_ADAPTIVE_MAX_USECS) goto clear_counts; } else if (packets > 32) { /* If we have processed over 32 packets in a single interrupt * for Tx assume we need to switch over to "bulk" mode. */ rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY; } /* We have no packets to actually measure against. This means * either one of the other queues on this vector is active or * we are a Tx queue doing TSO with too high of an interrupt rate. * * Between 4 and 56 we can assume that our current interrupt delay * is only slightly too low. As such we should increase it by a small * fixed amount. */ if (packets < 56) { itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC; if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { itr &= I40E_ITR_ADAPTIVE_LATENCY; itr += I40E_ITR_ADAPTIVE_MAX_USECS; } goto clear_counts; } if (packets <= 256) { itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); itr &= I40E_ITR_MASK; /* Between 56 and 112 is our "goldilocks" zone where we are * working out "just right". Just report that our current * ITR is good for us. */ if (packets <= 112) goto clear_counts; /* If packet count is 128 or greater we are likely looking * at a slight overrun of the delay we want. Try halving * our delay to see if that will cut the number of packets * in half per interrupt. */ itr /= 2; itr &= I40E_ITR_MASK; if (itr < I40E_ITR_ADAPTIVE_MIN_USECS) itr = I40E_ITR_ADAPTIVE_MIN_USECS; goto clear_counts; } /* The paths below assume we are dealing with a bulk ITR since * number of packets is greater than 256. We are just going to have * to compute a value and try to bring the count under control, * though for smaller packet sizes there isn't much we can do as * NAPI polling will likely be kicking in sooner rather than later. */ itr = I40E_ITR_ADAPTIVE_BULK; adjust_by_size: /* If packet counts are 256 or greater we can assume we have a gross * overestimation of what the rate should be. Instead of trying to fine * tune it just use the formula below to try and dial in an exact value * give the current packet size of the frame. */ avg_wire_size = bytes / packets; /* The following is a crude approximation of: * wmem_default / (size + overhead) = desired_pkts_per_int * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value * * Assuming wmem_default is 212992 and overhead is 640 bytes per * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the * formula down to * * (170 * (size + 24)) / (size + 640) = ITR * * We first do some math on the packet size and then finally bitshift * by 8 after rounding up. We also have to account for PCIe link speed * difference as ITR scales based on this. */ if (avg_wire_size <= 60) { /* Start at 250k ints/sec */ avg_wire_size = 4096; } else if (avg_wire_size <= 380) { /* 250K ints/sec to 60K ints/sec */ avg_wire_size *= 40; avg_wire_size += 1696; } else if (avg_wire_size <= 1084) { /* 60K ints/sec to 36K ints/sec */ avg_wire_size *= 15; avg_wire_size += 11452; } else if (avg_wire_size <= 1980) { /* 36K ints/sec to 30K ints/sec */ avg_wire_size *= 5; avg_wire_size += 22420; } else { /* plateau at a limit of 30K ints/sec */ avg_wire_size = 32256; } /* If we are in low latency mode halve our delay which doubles the * rate to somewhere between 100K to 16K ints/sec */ if (itr & I40E_ITR_ADAPTIVE_LATENCY) avg_wire_size /= 2; /* Resultant value is 256 times larger than it needs to be. This * gives us room to adjust the value as needed to either increase * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc. * * Use addition as we have already recorded the new latency flag * for the ITR value. */ itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) * I40E_ITR_ADAPTIVE_MIN_INC; if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) { itr &= I40E_ITR_ADAPTIVE_LATENCY; itr += I40E_ITR_ADAPTIVE_MAX_USECS; } clear_counts: /* write back value */ rc->target_itr = itr; /* next update should occur within next jiffy */ rc->next_update = next_update + 1; rc->total_bytes = 0; rc->total_packets = 0; } static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx) { return &rx_ring->rx_bi[idx]; } /** * i40e_reuse_rx_page - page flip buffer and store it back on the ring * @rx_ring: rx descriptor ring to store buffers on * @old_buff: donor buffer to have page reused * * Synchronizes page for reuse by the adapter **/ static void i40e_reuse_rx_page(struct i40e_ring *rx_ring, struct i40e_rx_buffer *old_buff) { struct i40e_rx_buffer *new_buff; u16 nta = rx_ring->next_to_alloc; new_buff = i40e_rx_bi(rx_ring, nta); /* update, and store next to alloc */ nta++; rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; /* transfer page from old buffer to new buffer */ new_buff->dma = old_buff->dma; new_buff->page = old_buff->page; new_buff->page_offset = old_buff->page_offset; new_buff->pagecnt_bias = old_buff->pagecnt_bias; /* clear contents of buffer_info */ old_buff->page = NULL; } /** * i40e_clean_programming_status - clean the programming status descriptor * @rx_ring: the rx ring that has this descriptor * @qword0_raw: qword0 * @qword1: qword1 representing status_error_len in CPU ordering * * Flow director should handle FD_FILTER_STATUS to check its filter programming * status being successful or not and take actions accordingly. FCoE should * handle its context/filter programming/invalidation status and take actions. * * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL. **/ void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw, u64 qword1) { u8 id; id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >> I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT; if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS) i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id); } /** * i40e_setup_tx_descriptors - Allocate the Tx descriptors * @tx_ring: the tx ring to set up * * Return 0 on success, negative on error **/ int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring) { struct device *dev = tx_ring->dev; int bi_size; if (!dev) return -ENOMEM; /* warn if we are about to overwrite the pointer */ WARN_ON(tx_ring->tx_bi); bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count; tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL); if (!tx_ring->tx_bi) goto err; u64_stats_init(&tx_ring->syncp); /* round up to nearest 4K */ tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc); /* add u32 for head writeback, align after this takes care of * guaranteeing this is at least one cache line in size */ tx_ring->size += sizeof(u32); tx_ring->size = ALIGN(tx_ring->size, 4096); tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, GFP_KERNEL); if (!tx_ring->desc) { dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", tx_ring->size); goto err; } tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; tx_ring->tx_stats.prev_pkt_ctr = -1; return 0; err: kfree(tx_ring->tx_bi); tx_ring->tx_bi = NULL; return -ENOMEM; } static void i40e_clear_rx_bi(struct i40e_ring *rx_ring) { memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count); } /** * i40e_clean_rx_ring - Free Rx buffers * @rx_ring: ring to be cleaned **/ void i40e_clean_rx_ring(struct i40e_ring *rx_ring) { u16 i; /* ring already cleared, nothing to do */ if (!rx_ring->rx_bi) return; if (rx_ring->xsk_pool) { i40e_xsk_clean_rx_ring(rx_ring); goto skip_free; } /* Free all the Rx ring sk_buffs */ for (i = 0; i < rx_ring->count; i++) { struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i); if (!rx_bi->page) continue; /* Invalidate cache lines that may have been written to by * device so that we avoid corrupting memory. */ dma_sync_single_range_for_cpu(rx_ring->dev, rx_bi->dma, rx_bi->page_offset, rx_ring->rx_buf_len, DMA_FROM_DEVICE); /* free resources associated with mapping */ dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma, i40e_rx_pg_size(rx_ring), DMA_FROM_DEVICE, I40E_RX_DMA_ATTR); __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias); rx_bi->page = NULL; rx_bi->page_offset = 0; } skip_free: if (rx_ring->xsk_pool) i40e_clear_rx_bi_zc(rx_ring); else i40e_clear_rx_bi(rx_ring); /* Zero out the descriptor ring */ memset(rx_ring->desc, 0, rx_ring->size); rx_ring->next_to_alloc = 0; rx_ring->next_to_clean = 0; rx_ring->next_to_process = 0; rx_ring->next_to_use = 0; } /** * i40e_free_rx_resources - Free Rx resources * @rx_ring: ring to clean the resources from * * Free all receive software resources **/ void i40e_free_rx_resources(struct i40e_ring *rx_ring) { i40e_clean_rx_ring(rx_ring); if (rx_ring->vsi->type == I40E_VSI_MAIN) xdp_rxq_info_unreg(&rx_ring->xdp_rxq); rx_ring->xdp_prog = NULL; kfree(rx_ring->rx_bi); rx_ring->rx_bi = NULL; if (rx_ring->desc) { dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, rx_ring->dma); rx_ring->desc = NULL; } } /** * i40e_setup_rx_descriptors - Allocate Rx descriptors * @rx_ring: Rx descriptor ring (for a specific queue) to setup * * Returns 0 on success, negative on failure **/ int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring) { struct device *dev = rx_ring->dev; u64_stats_init(&rx_ring->syncp); /* Round up to nearest 4K */ rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc); rx_ring->size = ALIGN(rx_ring->size, 4096); rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, GFP_KERNEL); if (!rx_ring->desc) { dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", rx_ring->size); return -ENOMEM; } rx_ring->next_to_alloc = 0; rx_ring->next_to_clean = 0; rx_ring->next_to_process = 0; rx_ring->next_to_use = 0; rx_ring->xdp_prog = rx_ring->vsi->xdp_prog; rx_ring->rx_bi = kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL); if (!rx_ring->rx_bi) return -ENOMEM; return 0; } /** * i40e_release_rx_desc - Store the new tail and head values * @rx_ring: ring to bump * @val: new head index **/ void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) { rx_ring->next_to_use = val; /* update next to alloc since we have filled the ring */ rx_ring->next_to_alloc = val; /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); writel(val, rx_ring->tail); } #if (PAGE_SIZE >= 8192) static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring, unsigned int size) { unsigned int truesize; truesize = rx_ring->rx_offset ? SKB_DATA_ALIGN(size + rx_ring->rx_offset) + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : SKB_DATA_ALIGN(size); return truesize; } #endif /** * i40e_alloc_mapped_page - recycle or make a new page * @rx_ring: ring to use * @bi: rx_buffer struct to modify * * Returns true if the page was successfully allocated or * reused. **/ static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring, struct i40e_rx_buffer *bi) { struct page *page = bi->page; dma_addr_t dma; /* since we are recycling buffers we should seldom need to alloc */ if (likely(page)) { rx_ring->rx_stats.page_reuse_count++; return true; } /* alloc new page for storage */ page = dev_alloc_pages(i40e_rx_pg_order(rx_ring)); if (unlikely(!page)) { rx_ring->rx_stats.alloc_page_failed++; return false; } rx_ring->rx_stats.page_alloc_count++; /* map page for use */ dma = dma_map_page_attrs(rx_ring->dev, page, 0, i40e_rx_pg_size(rx_ring), DMA_FROM_DEVICE, I40E_RX_DMA_ATTR); /* if mapping failed free memory back to system since * there isn't much point in holding memory we can't use */ if (dma_mapping_error(rx_ring->dev, dma)) { __free_pages(page, i40e_rx_pg_order(rx_ring)); rx_ring->rx_stats.alloc_page_failed++; return false; } bi->dma = dma; bi->page = page; bi->page_offset = rx_ring->rx_offset; page_ref_add(page, USHRT_MAX - 1); bi->pagecnt_bias = USHRT_MAX; return true; } /** * i40e_alloc_rx_buffers - Replace used receive buffers * @rx_ring: ring to place buffers on * @cleaned_count: number of buffers to replace * * Returns false if all allocations were successful, true if any fail **/ bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count) { u16 ntu = rx_ring->next_to_use; union i40e_rx_desc *rx_desc; struct i40e_rx_buffer *bi; /* do nothing if no valid netdev defined */ if (!rx_ring->netdev || !cleaned_count) return false; rx_desc = I40E_RX_DESC(rx_ring, ntu); bi = i40e_rx_bi(rx_ring, ntu); do { if (!i40e_alloc_mapped_page(rx_ring, bi)) goto no_buffers; /* sync the buffer for use by the device */ dma_sync_single_range_for_device(rx_ring->dev, bi->dma, bi->page_offset, rx_ring->rx_buf_len, DMA_FROM_DEVICE); /* Refresh the desc even if buffer_addrs didn't change * because each write-back erases this info. */ rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); rx_desc++; bi++; ntu++; if (unlikely(ntu == rx_ring->count)) { rx_desc = I40E_RX_DESC(rx_ring, 0); bi = i40e_rx_bi(rx_ring, 0); ntu = 0; } /* clear the status bits for the next_to_use descriptor */ rx_desc->wb.qword1.status_error_len = 0; cleaned_count--; } while (cleaned_count); if (rx_ring->next_to_use != ntu) i40e_release_rx_desc(rx_ring, ntu); return false; no_buffers: if (rx_ring->next_to_use != ntu) i40e_release_rx_desc(rx_ring, ntu); /* make sure to come back via polling to try again after * allocation failure */ return true; } /** * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum * @vsi: the VSI we care about * @skb: skb currently being received and modified * @rx_desc: the receive descriptor **/ static inline void i40e_rx_checksum(struct i40e_vsi *vsi, struct sk_buff *skb, union i40e_rx_desc *rx_desc) { struct i40e_rx_ptype_decoded decoded; u32 rx_error, rx_status; bool ipv4, ipv6; u8 ptype; u64 qword; qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT; rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >> I40E_RXD_QW1_ERROR_SHIFT; rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT; decoded = decode_rx_desc_ptype(ptype); skb->ip_summed = CHECKSUM_NONE; skb_checksum_none_assert(skb); /* Rx csum enabled and ip headers found? */ if (!(vsi->netdev->features & NETIF_F_RXCSUM)) return; /* did the hardware decode the packet and checksum? */ if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT))) return; /* both known and outer_ip must be set for the below code to work */ if (!(decoded.known && decoded.outer_ip)) return; ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4); ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) && (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6); if (ipv4 && (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) | BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT)))) goto checksum_fail; /* likely incorrect csum if alternate IP extension headers found */ if (ipv6 && rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT)) /* don't increment checksum err here, non-fatal err */ return; /* there was some L4 error, count error and punt packet to the stack */ if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT)) goto checksum_fail; /* handle packets that were not able to be checksummed due * to arrival speed, in this case the stack can compute * the csum. */ if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT)) return; /* If there is an outer header present that might contain a checksum * we need to bump the checksum level by 1 to reflect the fact that * we are indicating we validated the inner checksum. */ if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT) skb->csum_level = 1; /* Only report checksum unnecessary for TCP, UDP, or SCTP */ switch (decoded.inner_prot) { case I40E_RX_PTYPE_INNER_PROT_TCP: case I40E_RX_PTYPE_INNER_PROT_UDP: case I40E_RX_PTYPE_INNER_PROT_SCTP: skb->ip_summed = CHECKSUM_UNNECESSARY; fallthrough; default: break; } return; checksum_fail: vsi->back->hw_csum_rx_error++; } /** * i40e_ptype_to_htype - get a hash type * @ptype: the ptype value from the descriptor * * Returns a hash type to be used by skb_set_hash **/ static inline int i40e_ptype_to_htype(u8 ptype) { struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype); if (!decoded.known) return PKT_HASH_TYPE_NONE; if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4) return PKT_HASH_TYPE_L4; else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP && decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3) return PKT_HASH_TYPE_L3; else return PKT_HASH_TYPE_L2; } /** * i40e_rx_hash - set the hash value in the skb * @ring: descriptor ring * @rx_desc: specific descriptor * @skb: skb currently being received and modified * @rx_ptype: Rx packet type **/ static inline void i40e_rx_hash(struct i40e_ring *ring, union i40e_rx_desc *rx_desc, struct sk_buff *skb, u8 rx_ptype) { u32 hash; const __le64 rss_mask = cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH << I40E_RX_DESC_STATUS_FLTSTAT_SHIFT); if (!(ring->netdev->features & NETIF_F_RXHASH)) return; if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) { hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss); skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype)); } } /** * i40e_process_skb_fields - Populate skb header fields from Rx descriptor * @rx_ring: rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being populated * * This function checks the ring, descriptor, and packet information in * order to populate the hash, checksum, VLAN, protocol, and * other fields within the skb. **/ void i40e_process_skb_fields(struct i40e_ring *rx_ring, union i40e_rx_desc *rx_desc, struct sk_buff *skb) { u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT; u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK; u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >> I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT; u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT; if (unlikely(tsynvalid)) i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn); i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype); i40e_rx_checksum(rx_ring->vsi, skb, rx_desc); skb_record_rx_queue(skb, rx_ring->queue_index); if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) { __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1; __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), le16_to_cpu(vlan_tag)); } /* modifies the skb - consumes the enet header */ skb->protocol = eth_type_trans(skb, rx_ring->netdev); } /** * i40e_cleanup_headers - Correct empty headers * @rx_ring: rx descriptor ring packet is being transacted on * @skb: pointer to current skb being fixed * @rx_desc: pointer to the EOP Rx descriptor * * In addition if skb is not at least 60 bytes we need to pad it so that * it is large enough to qualify as a valid Ethernet frame. * * Returns true if an error was encountered and skb was freed. **/ static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb, union i40e_rx_desc *rx_desc) { /* ERR_MASK will only have valid bits if EOP set, and * what we are doing here is actually checking * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in * the error field */ if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) { dev_kfree_skb_any(skb); return true; } /* if eth_skb_pad returns an error the skb was freed */ if (eth_skb_pad(skb)) return true; return false; } /** * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx * @rx_buffer: buffer containing the page * @rx_stats: rx stats structure for the rx ring * * If page is reusable, we have a green light for calling i40e_reuse_rx_page, * which will assign the current buffer to the buffer that next_to_alloc is * pointing to; otherwise, the DMA mapping needs to be destroyed and * page freed. * * rx_stats will be updated to indicate whether the page was waived * or busy if it could not be reused. */ static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer, struct i40e_rx_queue_stats *rx_stats) { unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; struct page *page = rx_buffer->page; /* Is any reuse possible? */ if (!dev_page_is_reusable(page)) { rx_stats->page_waive_count++; return false; } #if (PAGE_SIZE < 8192) /* if we are only owner of page we can reuse it */ if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) { rx_stats->page_busy_count++; return false; } #else #define I40E_LAST_OFFSET \ (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048) if (rx_buffer->page_offset > I40E_LAST_OFFSET) { rx_stats->page_busy_count++; return false; } #endif /* If we have drained the page fragment pool we need to update * the pagecnt_bias and page count so that we fully restock the * number of references the driver holds. */ if (unlikely(pagecnt_bias == 1)) { page_ref_add(page, USHRT_MAX - 1); rx_buffer->pagecnt_bias = USHRT_MAX; } return true; } /** * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region * @rx_buffer: Rx buffer to adjust * @truesize: Size of adjustment **/ static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer, unsigned int truesize) { #if (PAGE_SIZE < 8192) rx_buffer->page_offset ^= truesize; #else rx_buffer->page_offset += truesize; #endif } /** * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use * @rx_ring: rx descriptor ring to transact packets on * @size: size of buffer to add to skb * * This function will pull an Rx buffer from the ring and synchronize it * for use by the CPU. */ static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring, const unsigned int size) { struct i40e_rx_buffer *rx_buffer; rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process); rx_buffer->page_count = #if (PAGE_SIZE < 8192) page_count(rx_buffer->page); #else 0; #endif prefetch_page_address(rx_buffer->page); /* we are reusing so sync this buffer for CPU use */ dma_sync_single_range_for_cpu(rx_ring->dev, rx_buffer->dma, rx_buffer->page_offset, size, DMA_FROM_DEVICE); /* We have pulled a buffer for use, so decrement pagecnt_bias */ rx_buffer->pagecnt_bias--; return rx_buffer; } /** * i40e_put_rx_buffer - Clean up used buffer and either recycle or free * @rx_ring: rx descriptor ring to transact packets on * @rx_buffer: rx buffer to pull data from * * This function will clean up the contents of the rx_buffer. It will * either recycle the buffer or unmap it and free the associated resources. */ static void i40e_put_rx_buffer(struct i40e_ring *rx_ring, struct i40e_rx_buffer *rx_buffer) { if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) { /* hand second half of page back to the ring */ i40e_reuse_rx_page(rx_ring, rx_buffer); } else { /* we are not reusing the buffer so unmap it */ dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, i40e_rx_pg_size(rx_ring), DMA_FROM_DEVICE, I40E_RX_DMA_ATTR); __page_frag_cache_drain(rx_buffer->page, rx_buffer->pagecnt_bias); /* clear contents of buffer_info */ rx_buffer->page = NULL; } } /** * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error * @rx_ring: Rx descriptor ring to transact packets on * @xdp_res: Result of the XDP program * @xdp: xdp_buff pointing to the data **/ static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res, struct xdp_buff *xdp) { u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags; u32 next = rx_ring->next_to_clean, i = 0; struct i40e_rx_buffer *rx_buffer; xdp->flags = 0; while (1) { rx_buffer = i40e_rx_bi(rx_ring, next); if (++next == rx_ring->count) next = 0; if (!rx_buffer->page) continue; if (xdp_res != I40E_XDP_CONSUMED) i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz); else if (i++ <= nr_frags) rx_buffer->pagecnt_bias++; /* EOP buffer will be put in i40e_clean_rx_irq() */ if (next == rx_ring->next_to_process) return; i40e_put_rx_buffer(rx_ring, rx_buffer); } } /** * i40e_construct_skb - Allocate skb and populate it * @rx_ring: rx descriptor ring to transact packets on * @xdp: xdp_buff pointing to the data * * This function allocates an skb. It then populates it with the page * data from the current receive descriptor, taking care to set up the * skb correctly. */ static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring, struct xdp_buff *xdp) { unsigned int size = xdp->data_end - xdp->data; struct i40e_rx_buffer *rx_buffer; struct skb_shared_info *sinfo; unsigned int headlen; struct sk_buff *skb; u32 nr_frags = 0; /* prefetch first cache line of first page */ net_prefetch(xdp->data); /* Note, we get here by enabling legacy-rx via: * * ethtool --set-priv-flags legacy-rx on * * In this mode, we currently get 0 extra XDP headroom as * opposed to having legacy-rx off, where we process XDP * packets going to stack via i40e_build_skb(). The latter * provides us currently with 192 bytes of headroom. * * For i40e_construct_skb() mode it means that the * xdp->data_meta will always point to xdp->data, since * the helper cannot expand the head. Should this ever * change in future for legacy-rx mode on, then lets also * add xdp->data_meta handling here. */ /* allocate a skb to store the frags */ skb = __napi_alloc_skb(&rx_ring->q_vector->napi, I40E_RX_HDR_SIZE, GFP_ATOMIC | __GFP_NOWARN); if (unlikely(!skb)) return NULL; /* Determine available headroom for copy */ headlen = size; if (headlen > I40E_RX_HDR_SIZE) headlen = eth_get_headlen(skb->dev, xdp->data, I40E_RX_HDR_SIZE); /* align pull length to size of long to optimize memcpy performance */ memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long))); if (unlikely(xdp_buff_has_frags(xdp))) { sinfo = xdp_get_shared_info_from_buff(xdp); nr_frags = sinfo->nr_frags; } rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); /* update all of the pointers */ size -= headlen; if (size) { if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { dev_kfree_skb(skb); return NULL; } skb_add_rx_frag(skb, 0, rx_buffer->page, rx_buffer->page_offset + headlen, size, xdp->frame_sz); /* buffer is used by skb, update page_offset */ i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz); } else { /* buffer is unused, reset bias back to rx_buffer */ rx_buffer->pagecnt_bias++; } if (unlikely(xdp_buff_has_frags(xdp))) { struct skb_shared_info *skinfo = skb_shinfo(skb); memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0], sizeof(skb_frag_t) * nr_frags); xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags, sinfo->xdp_frags_size, nr_frags * xdp->frame_sz, xdp_buff_is_frag_pfmemalloc(xdp)); /* First buffer has already been processed, so bump ntc */ if (++rx_ring->next_to_clean == rx_ring->count) rx_ring->next_to_clean = 0; i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp); } return skb; } /** * i40e_build_skb - Build skb around an existing buffer * @rx_ring: Rx descriptor ring to transact packets on * @xdp: xdp_buff pointing to the data * * This function builds an skb around an existing Rx buffer, taking care * to set up the skb correctly and avoid any memcpy overhead. */ static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring, struct xdp_buff *xdp) { unsigned int metasize = xdp->data - xdp->data_meta; struct skb_shared_info *sinfo; struct sk_buff *skb; u32 nr_frags; /* Prefetch first cache line of first page. If xdp->data_meta * is unused, this points exactly as xdp->data, otherwise we * likely have a consumer accessing first few bytes of meta * data, and then actual data. */ net_prefetch(xdp->data_meta); if (unlikely(xdp_buff_has_frags(xdp))) { sinfo = xdp_get_shared_info_from_buff(xdp); nr_frags = sinfo->nr_frags; } /* build an skb around the page buffer */ skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz); if (unlikely(!skb)) return NULL; /* update pointers within the skb to store the data */ skb_reserve(skb, xdp->data - xdp->data_hard_start); __skb_put(skb, xdp->data_end - xdp->data); if (metasize) skb_metadata_set(skb, metasize); if (unlikely(xdp_buff_has_frags(xdp))) { xdp_update_skb_shared_info(skb, nr_frags, sinfo->xdp_frags_size, nr_frags * xdp->frame_sz, xdp_buff_is_frag_pfmemalloc(xdp)); i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp); } else { struct i40e_rx_buffer *rx_buffer; rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean); /* buffer is used by skb, update page_offset */ i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz); } return skb; } /** * i40e_is_non_eop - process handling of non-EOP buffers * @rx_ring: Rx ring being processed * @rx_desc: Rx descriptor for current buffer * * If the buffer is an EOP buffer, this function exits returning false, * otherwise return true indicating that this is in fact a non-EOP buffer. */ bool i40e_is_non_eop(struct i40e_ring *rx_ring, union i40e_rx_desc *rx_desc) { /* if we are the last buffer then there is nothing else to do */ #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT) if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF))) return false; rx_ring->rx_stats.non_eop_descs++; return true; } static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, struct i40e_ring *xdp_ring); int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring) { struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); if (unlikely(!xdpf)) return I40E_XDP_CONSUMED; return i40e_xmit_xdp_ring(xdpf, xdp_ring); } /** * i40e_run_xdp - run an XDP program * @rx_ring: Rx ring being processed * @xdp: XDP buffer containing the frame * @xdp_prog: XDP program to run **/ static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog) { int err, result = I40E_XDP_PASS; struct i40e_ring *xdp_ring; u32 act; if (!xdp_prog) goto xdp_out; prefetchw(xdp->data_hard_start); /* xdp_frame write */ act = bpf_prog_run_xdp(xdp_prog, xdp); switch (act) { case XDP_PASS: break; case XDP_TX: xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring); if (result == I40E_XDP_CONSUMED) goto out_failure; break; case XDP_REDIRECT: err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); if (err) goto out_failure; result = I40E_XDP_REDIR; break; default: bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); fallthrough; case XDP_ABORTED: out_failure: trace_xdp_exception(rx_ring->netdev, xdp_prog, act); fallthrough; /* handle aborts by dropping packet */ case XDP_DROP: result = I40E_XDP_CONSUMED; break; } xdp_out: return result; } /** * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register * @xdp_ring: XDP Tx ring * * This function updates the XDP Tx ring tail register. **/ void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring) { /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. */ wmb(); writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail); } /** * i40e_update_rx_stats - Update Rx ring statistics * @rx_ring: rx descriptor ring * @total_rx_bytes: number of bytes received * @total_rx_packets: number of packets received * * This function updates the Rx ring statistics. **/ void i40e_update_rx_stats(struct i40e_ring *rx_ring, unsigned int total_rx_bytes, unsigned int total_rx_packets) { u64_stats_update_begin(&rx_ring->syncp); rx_ring->stats.packets += total_rx_packets; rx_ring->stats.bytes += total_rx_bytes; u64_stats_update_end(&rx_ring->syncp); rx_ring->q_vector->rx.total_packets += total_rx_packets; rx_ring->q_vector->rx.total_bytes += total_rx_bytes; } /** * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map * @rx_ring: Rx ring * @xdp_res: Result of the receive batch * * This function bumps XDP Tx tail and/or flush redirect map, and * should be called when a batch of packets has been processed in the * napi loop. **/ void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res) { if (xdp_res & I40E_XDP_REDIR) xdp_do_flush_map(); if (xdp_res & I40E_XDP_TX) { struct i40e_ring *xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index]; i40e_xdp_ring_update_tail(xdp_ring); } } /** * i40e_inc_ntp: Advance the next_to_process index * @rx_ring: Rx ring **/ static void i40e_inc_ntp(struct i40e_ring *rx_ring) { u32 ntp = rx_ring->next_to_process + 1; ntp = (ntp < rx_ring->count) ? ntp : 0; rx_ring->next_to_process = ntp; prefetch(I40E_RX_DESC(rx_ring, ntp)); } /** * i40e_add_xdp_frag: Add a frag to xdp_buff * @xdp: xdp_buff pointing to the data * @nr_frags: return number of buffers for the packet * @rx_buffer: rx_buffer holding data of the current frag * @size: size of data of current frag */ static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags, struct i40e_rx_buffer *rx_buffer, u32 size) { struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); if (!xdp_buff_has_frags(xdp)) { sinfo->nr_frags = 0; sinfo->xdp_frags_size = 0; xdp_buff_set_frags_flag(xdp); } else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) { /* Overflowing packet: All frags need to be dropped */ return -ENOMEM; } __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page, rx_buffer->page_offset, size); sinfo->xdp_frags_size += size; if (page_is_pfmemalloc(rx_buffer->page)) xdp_buff_set_frag_pfmemalloc(xdp); *nr_frags = sinfo->nr_frags; return 0; } /** * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc * @rx_ring: rx descriptor ring to transact packets on * @xdp: xdp_buff pointing to the data * @rx_buffer: rx_buffer of eop desc */ static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct i40e_rx_buffer *rx_buffer) { i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp); i40e_put_rx_buffer(rx_ring, rx_buffer); rx_ring->next_to_clean = rx_ring->next_to_process; xdp->data = NULL; } /** * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf * @rx_ring: rx descriptor ring to transact packets on * @budget: Total limit on number of packets to process * @rx_cleaned: Out parameter of the number of packets processed * * This function provides a "bounce buffer" approach to Rx interrupt * processing. The advantage to this is that on systems that have * expensive overhead for IOMMU access this provides a means of avoiding * it by maintaining the mapping of the page to the system. * * Returns amount of work completed **/ static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget, unsigned int *rx_cleaned) { unsigned int total_rx_bytes = 0, total_rx_packets = 0; u16 cleaned_count = I40E_DESC_UNUSED(rx_ring); u16 clean_threshold = rx_ring->count / 2; unsigned int offset = rx_ring->rx_offset; struct xdp_buff *xdp = &rx_ring->xdp; unsigned int xdp_xmit = 0; struct bpf_prog *xdp_prog; bool failure = false; int xdp_res = 0; xdp_prog = READ_ONCE(rx_ring->xdp_prog); while (likely(total_rx_packets < (unsigned int)budget)) { u16 ntp = rx_ring->next_to_process; struct i40e_rx_buffer *rx_buffer; union i40e_rx_desc *rx_desc; struct sk_buff *skb; unsigned int size; u32 nfrags = 0; bool neop; u64 qword; /* return some buffers to hardware, one at a time is too slow */ if (cleaned_count >= clean_threshold) { failure = failure || i40e_alloc_rx_buffers(rx_ring, cleaned_count); cleaned_count = 0; } rx_desc = I40E_RX_DESC(rx_ring, ntp); /* status_error_len will always be zero for unused descriptors * because it's cleared in cleanup, and overlaps with hdr_addr * which is always zero because packet split isn't used, if the * hardware wrote DD then the length will be non-zero */ qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len); /* This memory barrier is needed to keep us from reading * any other fields out of the rx_desc until we have * verified the descriptor has been written back. */ dma_rmb(); if (i40e_rx_is_programming_status(qword)) { i40e_clean_programming_status(rx_ring, rx_desc->raw.qword[0], qword); rx_buffer = i40e_rx_bi(rx_ring, ntp); i40e_inc_ntp(rx_ring); i40e_reuse_rx_page(rx_ring, rx_buffer); /* Update ntc and bump cleaned count if not in the * middle of mb packet. */ if (rx_ring->next_to_clean == ntp) { rx_ring->next_to_clean = rx_ring->next_to_process; cleaned_count++; } continue; } size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >> I40E_RXD_QW1_LENGTH_PBUF_SHIFT; if (!size) break; i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp); /* retrieve a buffer from the ring */ rx_buffer = i40e_get_rx_buffer(rx_ring, size); neop = i40e_is_non_eop(rx_ring, rx_desc); i40e_inc_ntp(rx_ring); if (!xdp->data) { unsigned char *hard_start; hard_start = page_address(rx_buffer->page) + rx_buffer->page_offset - offset; xdp_prepare_buff(xdp, hard_start, offset, size, true); #if (PAGE_SIZE > 4096) /* At larger PAGE_SIZE, frame_sz depend on len size */ xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size); #endif } else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) && !neop) { /* Overflowing packet: Drop all frags on EOP */ i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer); break; } if (neop) continue; xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog); if (xdp_res) { xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR); if (unlikely(xdp_buff_has_frags(xdp))) { i40e_process_rx_buffs(rx_ring, xdp_res, xdp); size = xdp_get_buff_len(xdp); } else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) { i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz); } else { rx_buffer->pagecnt_bias++; } total_rx_bytes += size; } else { if (ring_uses_build_skb(rx_ring)) skb = i40e_build_skb(rx_ring, xdp); else skb = i40e_construct_skb(rx_ring, xdp); /* drop if we failed to retrieve a buffer */ if (!skb) { rx_ring->rx_stats.alloc_buff_failed++; i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer); break; } if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) goto process_next; /* probably a little skewed due to removing CRC */ total_rx_bytes += skb->len; /* populate checksum, VLAN, and protocol */ i40e_process_skb_fields(rx_ring, rx_desc, skb); i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp); napi_gro_receive(&rx_ring->q_vector->napi, skb); } /* update budget accounting */ total_rx_packets++; process_next: cleaned_count += nfrags + 1; i40e_put_rx_buffer(rx_ring, rx_buffer); rx_ring->next_to_clean = rx_ring->next_to_process; xdp->data = NULL; } i40e_finalize_xdp_rx(rx_ring, xdp_xmit); i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets); *rx_cleaned = total_rx_packets; /* guarantee a trip back through this routine if there was a failure */ return failure ? budget : (int)total_rx_packets; } static inline u32 i40e_buildreg_itr(const int type, u16 itr) { u32 val; /* We don't bother with setting the CLEARPBA bit as the data sheet * points out doing so is "meaningless since it was already * auto-cleared". The auto-clearing happens when the interrupt is * asserted. * * Hardware errata 28 for also indicates that writing to a * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear * an event in the PBA anyway so we need to rely on the automask * to hold pending events for us until the interrupt is re-enabled * * The itr value is reported in microseconds, and the register * value is recorded in 2 microsecond units. For this reason we * only need to shift by the interval shift - 1 instead of the * full value. */ itr &= I40E_ITR_MASK; val = I40E_PFINT_DYN_CTLN_INTENA_MASK | (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) | (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1)); return val; } /* a small macro to shorten up some long lines */ #define INTREG I40E_PFINT_DYN_CTLN /* The act of updating the ITR will cause it to immediately trigger. In order * to prevent this from throwing off adaptive update statistics we defer the * update so that it can only happen so often. So after either Tx or Rx are * updated we make the adaptive scheme wait until either the ITR completely * expires via the next_update expiration or we have been through at least * 3 interrupts. */ #define ITR_COUNTDOWN_START 3 /** * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt * @vsi: the VSI we care about * @q_vector: q_vector for which itr is being updated and interrupt enabled * **/ static inline void i40e_update_enable_itr(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector) { struct i40e_hw *hw = &vsi->back->hw; u32 intval; /* If we don't have MSIX, then we only need to re-enable icr0 */ if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) { i40e_irq_dynamic_enable_icr0(vsi->back); return; } /* These will do nothing if dynamic updates are not enabled */ i40e_update_itr(q_vector, &q_vector->tx); i40e_update_itr(q_vector, &q_vector->rx); /* This block of logic allows us to get away with only updating * one ITR value with each interrupt. The idea is to perform a * pseudo-lazy update with the following criteria. * * 1. Rx is given higher priority than Tx if both are in same state * 2. If we must reduce an ITR that is given highest priority. * 3. We then give priority to increasing ITR based on amount. */ if (q_vector->rx.target_itr < q_vector->rx.current_itr) { /* Rx ITR needs to be reduced, this is highest priority */ intval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.target_itr); q_vector->rx.current_itr = q_vector->rx.target_itr; q_vector->itr_countdown = ITR_COUNTDOWN_START; } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) || ((q_vector->rx.target_itr - q_vector->rx.current_itr) < (q_vector->tx.target_itr - q_vector->tx.current_itr))) { /* Tx ITR needs to be reduced, this is second priority * Tx ITR needs to be increased more than Rx, fourth priority */ intval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.target_itr); q_vector->tx.current_itr = q_vector->tx.target_itr; q_vector->itr_countdown = ITR_COUNTDOWN_START; } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) { /* Rx ITR needs to be increased, third priority */ intval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.target_itr); q_vector->rx.current_itr = q_vector->rx.target_itr; q_vector->itr_countdown = ITR_COUNTDOWN_START; } else { /* No ITR update, lowest priority */ intval = i40e_buildreg_itr(I40E_ITR_NONE, 0); if (q_vector->itr_countdown) q_vector->itr_countdown--; } if (!test_bit(__I40E_VSI_DOWN, vsi->state)) wr32(hw, INTREG(q_vector->reg_idx), intval); } /** * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine * @napi: napi struct with our devices info in it * @budget: amount of work driver is allowed to do this pass, in packets * * This function will clean all queues associated with a q_vector. * * Returns the amount of work done **/ int i40e_napi_poll(struct napi_struct *napi, int budget) { struct i40e_q_vector *q_vector = container_of(napi, struct i40e_q_vector, napi); struct i40e_vsi *vsi = q_vector->vsi; struct i40e_ring *ring; bool tx_clean_complete = true; bool rx_clean_complete = true; unsigned int tx_cleaned = 0; unsigned int rx_cleaned = 0; bool clean_complete = true; bool arm_wb = false; int budget_per_ring; int work_done = 0; if (test_bit(__I40E_VSI_DOWN, vsi->state)) { napi_complete(napi); return 0; } /* Since the actual Tx work is minimal, we can give the Tx a larger * budget and be more aggressive about cleaning up the Tx descriptors. */ i40e_for_each_ring(ring, q_vector->tx) { bool wd = ring->xsk_pool ? i40e_clean_xdp_tx_irq(vsi, ring) : i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned); if (!wd) { clean_complete = tx_clean_complete = false; continue; } arm_wb |= ring->arm_wb; ring->arm_wb = false; } /* Handle case where we are called by netpoll with a budget of 0 */ if (budget <= 0) goto tx_only; /* normally we have 1 Rx ring per q_vector */ if (unlikely(q_vector->num_ringpairs > 1)) /* We attempt to distribute budget to each Rx queue fairly, but * don't allow the budget to go below 1 because that would exit * polling early. */ budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1); else /* Max of 1 Rx ring in this q_vector so give it the budget */ budget_per_ring = budget; i40e_for_each_ring(ring, q_vector->rx) { int cleaned = ring->xsk_pool ? i40e_clean_rx_irq_zc(ring, budget_per_ring) : i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned); work_done += cleaned; /* if we clean as many as budgeted, we must not be done */ if (cleaned >= budget_per_ring) clean_complete = rx_clean_complete = false; } if (!i40e_enabled_xdp_vsi(vsi)) trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned, tx_cleaned, rx_clean_complete, tx_clean_complete); /* If work not completed, return budget and polling will return */ if (!clean_complete) { int cpu_id = smp_processor_id(); /* It is possible that the interrupt affinity has changed but, * if the cpu is pegged at 100%, polling will never exit while * traffic continues and the interrupt will be stuck on this * cpu. We check to make sure affinity is correct before we * continue to poll, otherwise we must stop polling so the * interrupt can move to the correct cpu. */ if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) { /* Tell napi that we are done polling */ napi_complete_done(napi, work_done); /* Force an interrupt */ i40e_force_wb(vsi, q_vector); /* Return budget-1 so that polling stops */ return budget - 1; } tx_only: if (arm_wb) { q_vector->tx.ring[0].tx_stats.tx_force_wb++; i40e_enable_wb_on_itr(vsi, q_vector); } return budget; } if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR) q_vector->arm_wb_state = false; /* Exit the polling mode, but don't re-enable interrupts if stack might * poll us due to busy-polling */ if (likely(napi_complete_done(napi, work_done))) i40e_update_enable_itr(vsi, q_vector); return min(work_done, budget - 1); } /** * i40e_atr - Add a Flow Director ATR filter * @tx_ring: ring to add programming descriptor to * @skb: send buffer * @tx_flags: send tx flags **/ static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb, u32 tx_flags) { struct i40e_filter_program_desc *fdir_desc; struct i40e_pf *pf = tx_ring->vsi->back; union { unsigned char *network; struct iphdr *ipv4; struct ipv6hdr *ipv6; } hdr; struct tcphdr *th; unsigned int hlen; u32 flex_ptype, dtype_cmd; int l4_proto; u16 i; /* make sure ATR is enabled */ if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED)) return; if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) return; /* if sampling is disabled do nothing */ if (!tx_ring->atr_sample_rate) return; /* Currently only IPv4/IPv6 with TCP is supported */ if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6))) return; /* snag network header to get L4 type and address */ hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ? skb_inner_network_header(skb) : skb_network_header(skb); /* Note: tx_flags gets modified to reflect inner protocols in * tx_enable_csum function if encap is enabled. */ if (tx_flags & I40E_TX_FLAGS_IPV4) { /* access ihl as u8 to avoid unaligned access on ia64 */ hlen = (hdr.network[0] & 0x0F) << 2; l4_proto = hdr.ipv4->protocol; } else { /* find the start of the innermost ipv6 header */ unsigned int inner_hlen = hdr.network - skb->data; unsigned int h_offset = inner_hlen; /* this function updates h_offset to the end of the header */ l4_proto = ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL); /* hlen will contain our best estimate of the tcp header */ hlen = h_offset - inner_hlen; } if (l4_proto != IPPROTO_TCP) return; th = (struct tcphdr *)(hdr.network + hlen); /* Due to lack of space, no more new filters can be programmed */ if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state)) return; if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) { /* HW ATR eviction will take care of removing filters on FIN * and RST packets. */ if (th->fin || th->rst) return; } tx_ring->atr_count++; /* sample on all syn/fin/rst packets or once every atr sample rate */ if (!th->fin && !th->syn && !th->rst && (tx_ring->atr_count < tx_ring->atr_sample_rate)) return; tx_ring->atr_count = 0; /* grab the next descriptor */ i = tx_ring->next_to_use; fdir_desc = I40E_TX_FDIRDESC(tx_ring, i); i++; tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) & I40E_TXD_FLTR_QW0_QINDEX_MASK; flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ? (I40E_FILTER_PCTYPE_NONF_IPV4_TCP << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) : (I40E_FILTER_PCTYPE_NONF_IPV6_TCP << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT); flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT; dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG; dtype_cmd |= (th->fin || th->rst) ? (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE << I40E_TXD_FLTR_QW1_PCMD_SHIFT) : (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE << I40E_TXD_FLTR_QW1_PCMD_SHIFT); dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX << I40E_TXD_FLTR_QW1_DEST_SHIFT; dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT; dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK; if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL)) dtype_cmd |= ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) << I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & I40E_TXD_FLTR_QW1_CNTINDEX_MASK; else dtype_cmd |= ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) << I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) & I40E_TXD_FLTR_QW1_CNTINDEX_MASK; if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK; fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype); fdir_desc->rsvd = cpu_to_le32(0); fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd); fdir_desc->fd_id = cpu_to_le32(0); } /** * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW * @skb: send buffer * @tx_ring: ring to send buffer on * @flags: the tx flags to be set * * Checks the skb and set up correspondingly several generic transmit flags * related to VLAN tagging for the HW, such as VLAN, DCB, etc. * * Returns error code indicate the frame should be dropped upon error and the * otherwise returns 0 to indicate the flags has been set properly. **/ static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, struct i40e_ring *tx_ring, u32 *flags) { __be16 protocol = skb->protocol; u32 tx_flags = 0; if (protocol == htons(ETH_P_8021Q) && !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { /* When HW VLAN acceleration is turned off by the user the * stack sets the protocol to 8021q so that the driver * can take any steps required to support the SW only * VLAN handling. In our case the driver doesn't need * to take any further steps so just set the protocol * to the encapsulated ethertype. */ skb->protocol = vlan_get_protocol(skb); goto out; } /* if we have a HW VLAN tag being added, default to the HW one */ if (skb_vlan_tag_present(skb)) { tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT; tx_flags |= I40E_TX_FLAGS_HW_VLAN; /* else if it is a SW VLAN, check the next protocol and store the tag */ } else if (protocol == htons(ETH_P_8021Q)) { struct vlan_hdr *vhdr, _vhdr; vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr); if (!vhdr) return -EINVAL; protocol = vhdr->h_vlan_encapsulated_proto; tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT; tx_flags |= I40E_TX_FLAGS_SW_VLAN; } if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED)) goto out; /* Insert 802.1p priority into VLAN header */ if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) || (skb->priority != TC_PRIO_CONTROL)) { tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK; tx_flags |= (skb->priority & 0x7) << I40E_TX_FLAGS_VLAN_PRIO_SHIFT; if (tx_flags & I40E_TX_FLAGS_SW_VLAN) { struct vlan_ethhdr *vhdr; int rc; rc = skb_cow_head(skb, 0); if (rc < 0) return rc; vhdr = skb_vlan_eth_hdr(skb); vhdr->h_vlan_TCI = htons(tx_flags >> I40E_TX_FLAGS_VLAN_SHIFT); } else { tx_flags |= I40E_TX_FLAGS_HW_VLAN; } } out: *flags = tx_flags; return 0; } /** * i40e_tso - set up the tso context descriptor * @first: pointer to first Tx buffer for xmit * @hdr_len: ptr to the size of the packet header * @cd_type_cmd_tso_mss: Quad Word 1 * * Returns 0 if no TSO can happen, 1 if tso is going, or error **/ static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len, u64 *cd_type_cmd_tso_mss) { struct sk_buff *skb = first->skb; u64 cd_cmd, cd_tso_len, cd_mss; __be16 protocol; union { struct iphdr *v4; struct ipv6hdr *v6; unsigned char *hdr; } ip; union { struct tcphdr *tcp; struct udphdr *udp; unsigned char *hdr; } l4; u32 paylen, l4_offset; u16 gso_size; int err; if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; if (!skb_is_gso(skb)) return 0; err = skb_cow_head(skb, 0); if (err < 0) return err; protocol = vlan_get_protocol(skb); if (eth_p_mpls(protocol)) ip.hdr = skb_inner_network_header(skb); else ip.hdr = skb_network_header(skb); l4.hdr = skb_checksum_start(skb); /* initialize outer IP header fields */ if (ip.v4->version == 4) { ip.v4->tot_len = 0; ip.v4->check = 0; first->tx_flags |= I40E_TX_FLAGS_TSO; } else { ip.v6->payload_len = 0; first->tx_flags |= I40E_TX_FLAGS_TSO; } if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | SKB_GSO_GRE_CSUM | SKB_GSO_IPXIP4 | SKB_GSO_IPXIP6 | SKB_GSO_UDP_TUNNEL | SKB_GSO_UDP_TUNNEL_CSUM)) { if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { l4.udp->len = 0; /* determine offset of outer transport header */ l4_offset = l4.hdr - skb->data; /* remove payload length from outer checksum */ paylen = skb->len - l4_offset; csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen)); } /* reset pointers to inner headers */ ip.hdr = skb_inner_network_header(skb); l4.hdr = skb_inner_transport_header(skb); /* initialize inner IP header fields */ if (ip.v4->version == 4) { ip.v4->tot_len = 0; ip.v4->check = 0; } else { ip.v6->payload_len = 0; } } /* determine offset of inner transport header */ l4_offset = l4.hdr - skb->data; /* remove payload length from inner checksum */ paylen = skb->len - l4_offset; if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen)); /* compute length of segmentation header */ *hdr_len = sizeof(*l4.udp) + l4_offset; } else { csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); /* compute length of segmentation header */ *hdr_len = (l4.tcp->doff * 4) + l4_offset; } /* pull values out of skb_shinfo */ gso_size = skb_shinfo(skb)->gso_size; /* update GSO size and bytecount with header size */ first->gso_segs = skb_shinfo(skb)->gso_segs; first->bytecount += (first->gso_segs - 1) * *hdr_len; /* find the field values */ cd_cmd = I40E_TX_CTX_DESC_TSO; cd_tso_len = skb->len - *hdr_len; cd_mss = gso_size; *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) | (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) | (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT); return 1; } /** * i40e_tsyn - set up the tsyn context descriptor * @tx_ring: ptr to the ring to send * @skb: ptr to the skb we're sending * @tx_flags: the collected send information * @cd_type_cmd_tso_mss: Quad Word 1 * * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen **/ static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb, u32 tx_flags, u64 *cd_type_cmd_tso_mss) { struct i40e_pf *pf; if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) return 0; /* Tx timestamps cannot be sampled when doing TSO */ if (tx_flags & I40E_TX_FLAGS_TSO) return 0; /* only timestamp the outbound packet if the user has requested it and * we are not already transmitting a packet to be timestamped */ pf = i40e_netdev_to_pf(tx_ring->netdev); if (!(pf->flags & I40E_FLAG_PTP)) return 0; if (pf->ptp_tx && !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) { skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; pf->ptp_tx_start = jiffies; pf->ptp_tx_skb = skb_get(skb); } else { pf->tx_hwtstamp_skipped++; return 0; } *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN << I40E_TXD_CTX_QW1_CMD_SHIFT; return 1; } /** * i40e_tx_enable_csum - Enable Tx checksum offloads * @skb: send buffer * @tx_flags: pointer to Tx flags currently set * @td_cmd: Tx descriptor command bits to set * @td_offset: Tx descriptor header offsets to set * @tx_ring: Tx descriptor ring * @cd_tunneling: ptr to context desc bits **/ static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags, u32 *td_cmd, u32 *td_offset, struct i40e_ring *tx_ring, u32 *cd_tunneling) { union { struct iphdr *v4; struct ipv6hdr *v6; unsigned char *hdr; } ip; union { struct tcphdr *tcp; struct udphdr *udp; unsigned char *hdr; } l4; unsigned char *exthdr; u32 offset, cmd = 0; __be16 frag_off; __be16 protocol; u8 l4_proto = 0; if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; protocol = vlan_get_protocol(skb); if (eth_p_mpls(protocol)) { ip.hdr = skb_inner_network_header(skb); l4.hdr = skb_checksum_start(skb); } else { ip.hdr = skb_network_header(skb); l4.hdr = skb_transport_header(skb); } /* set the tx_flags to indicate the IP protocol type. this is * required so that checksum header computation below is accurate. */ if (ip.v4->version == 4) *tx_flags |= I40E_TX_FLAGS_IPV4; else *tx_flags |= I40E_TX_FLAGS_IPV6; /* compute outer L2 header size */ offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT; if (skb->encapsulation) { u32 tunnel = 0; /* define outer network header type */ if (*tx_flags & I40E_TX_FLAGS_IPV4) { tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ? I40E_TX_CTX_EXT_IP_IPV4 : I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM; l4_proto = ip.v4->protocol; } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { int ret; tunnel |= I40E_TX_CTX_EXT_IP_IPV6; exthdr = ip.hdr + sizeof(*ip.v6); l4_proto = ip.v6->nexthdr; ret = ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, &frag_off); if (ret < 0) return -1; } /* define outer transport */ switch (l4_proto) { case IPPROTO_UDP: tunnel |= I40E_TXD_CTX_UDP_TUNNELING; *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; break; case IPPROTO_GRE: tunnel |= I40E_TXD_CTX_GRE_TUNNELING; *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; break; case IPPROTO_IPIP: case IPPROTO_IPV6: *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL; l4.hdr = skb_inner_network_header(skb); break; default: if (*tx_flags & I40E_TX_FLAGS_TSO) return -1; skb_checksum_help(skb); return 0; } /* compute outer L3 header size */ tunnel |= ((l4.hdr - ip.hdr) / 4) << I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT; /* switch IP header pointer from outer to inner header */ ip.hdr = skb_inner_network_header(skb); /* compute tunnel header size */ tunnel |= ((ip.hdr - l4.hdr) / 2) << I40E_TXD_CTX_QW0_NATLEN_SHIFT; /* indicate if we need to offload outer UDP header */ if ((*tx_flags & I40E_TX_FLAGS_TSO) && !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK; /* record tunnel offload values */ *cd_tunneling |= tunnel; /* switch L4 header pointer from outer to inner */ l4.hdr = skb_inner_transport_header(skb); l4_proto = 0; /* reset type as we transition from outer to inner headers */ *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6); if (ip.v4->version == 4) *tx_flags |= I40E_TX_FLAGS_IPV4; if (ip.v6->version == 6) *tx_flags |= I40E_TX_FLAGS_IPV6; } /* Enable IP checksum offloads */ if (*tx_flags & I40E_TX_FLAGS_IPV4) { l4_proto = ip.v4->protocol; /* the stack computes the IP header already, the only time we * need the hardware to recompute it is in the case of TSO. */ cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ? I40E_TX_DESC_CMD_IIPT_IPV4_CSUM : I40E_TX_DESC_CMD_IIPT_IPV4; } else if (*tx_flags & I40E_TX_FLAGS_IPV6) { cmd |= I40E_TX_DESC_CMD_IIPT_IPV6; exthdr = ip.hdr + sizeof(*ip.v6); l4_proto = ip.v6->nexthdr; if (l4.hdr != exthdr) ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, &frag_off); } /* compute inner L3 header size */ offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT; /* Enable L4 checksum offloads */ switch (l4_proto) { case IPPROTO_TCP: /* enable checksum offloads */ cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP; offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; break; case IPPROTO_SCTP: /* enable SCTP checksum offload */ cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP; offset |= (sizeof(struct sctphdr) >> 2) << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; break; case IPPROTO_UDP: /* enable UDP checksum offload */ cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP; offset |= (sizeof(struct udphdr) >> 2) << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT; break; default: if (*tx_flags & I40E_TX_FLAGS_TSO) return -1; skb_checksum_help(skb); return 0; } *td_cmd |= cmd; *td_offset |= offset; return 1; } /** * i40e_create_tx_ctx - Build the Tx context descriptor * @tx_ring: ring to create the descriptor on * @cd_type_cmd_tso_mss: Quad Word 1 * @cd_tunneling: Quad Word 0 - bits 0-31 * @cd_l2tag2: Quad Word 0 - bits 32-63 **/ static void i40e_create_tx_ctx(struct i40e_ring *tx_ring, const u64 cd_type_cmd_tso_mss, const u32 cd_tunneling, const u32 cd_l2tag2) { struct i40e_tx_context_desc *context_desc; int i = tx_ring->next_to_use; if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) && !cd_tunneling && !cd_l2tag2) return; /* grab the next descriptor */ context_desc = I40E_TX_CTXTDESC(tx_ring, i); i++; tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; /* cpu_to_le32 and assign to struct fields */ context_desc->tunneling_params = cpu_to_le32(cd_tunneling); context_desc->l2tag2 = cpu_to_le16(cd_l2tag2); context_desc->rsvd = cpu_to_le16(0); context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss); } /** * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions * @tx_ring: the ring to be checked * @size: the size buffer we want to assure is available * * Returns -EBUSY if a stop is needed, else 0 **/ int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) { netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); /* Memory barrier before checking head and tail */ smp_mb(); ++tx_ring->tx_stats.tx_stopped; /* Check again in a case another CPU has just made room available. */ if (likely(I40E_DESC_UNUSED(tx_ring) < size)) return -EBUSY; /* A reprieve! - use start_queue because it doesn't call schedule */ netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); ++tx_ring->tx_stats.restart_queue; return 0; } /** * __i40e_chk_linearize - Check if there are more than 8 buffers per packet * @skb: send buffer * * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire * and so we need to figure out the cases where we need to linearize the skb. * * For TSO we need to count the TSO header and segment payload separately. * As such we need to check cases where we have 7 fragments or more as we * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for * the segment payload in the first descriptor, and another 7 for the * fragments. **/ bool __i40e_chk_linearize(struct sk_buff *skb) { const skb_frag_t *frag, *stale; int nr_frags, sum; /* no need to check if number of frags is less than 7 */ nr_frags = skb_shinfo(skb)->nr_frags; if (nr_frags < (I40E_MAX_BUFFER_TXD - 1)) return false; /* We need to walk through the list and validate that each group * of 6 fragments totals at least gso_size. */ nr_frags -= I40E_MAX_BUFFER_TXD - 2; frag = &skb_shinfo(skb)->frags[0]; /* Initialize size to the negative value of gso_size minus 1. We * use this as the worst case scenerio in which the frag ahead * of us only provides one byte which is why we are limited to 6 * descriptors for a single transmit as the header and previous * fragment are already consuming 2 descriptors. */ sum = 1 - skb_shinfo(skb)->gso_size; /* Add size of frags 0 through 4 to create our initial sum */ sum += skb_frag_size(frag++); sum += skb_frag_size(frag++); sum += skb_frag_size(frag++); sum += skb_frag_size(frag++); sum += skb_frag_size(frag++); /* Walk through fragments adding latest fragment, testing it, and * then removing stale fragments from the sum. */ for (stale = &skb_shinfo(skb)->frags[0];; stale++) { int stale_size = skb_frag_size(stale); sum += skb_frag_size(frag++); /* The stale fragment may present us with a smaller * descriptor than the actual fragment size. To account * for that we need to remove all the data on the front and * figure out what the remainder would be in the last * descriptor associated with the fragment. */ if (stale_size > I40E_MAX_DATA_PER_TXD) { int align_pad = -(skb_frag_off(stale)) & (I40E_MAX_READ_REQ_SIZE - 1); sum -= align_pad; stale_size -= align_pad; do { sum -= I40E_MAX_DATA_PER_TXD_ALIGNED; stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED; } while (stale_size > I40E_MAX_DATA_PER_TXD); } /* if sum is negative we failed to make sufficient progress */ if (sum < 0) return true; if (!nr_frags--) break; sum -= stale_size; } return false; } /** * i40e_tx_map - Build the Tx descriptor * @tx_ring: ring to send buffer on * @skb: send buffer * @first: first buffer info buffer to use * @tx_flags: collected send information * @hdr_len: size of the packet header * @td_cmd: the command field in the descriptor * @td_offset: offset for checksum or crc * * Returns 0 on success, -1 on failure to DMA **/ static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, struct i40e_tx_buffer *first, u32 tx_flags, const u8 hdr_len, u32 td_cmd, u32 td_offset) { unsigned int data_len = skb->data_len; unsigned int size = skb_headlen(skb); skb_frag_t *frag; struct i40e_tx_buffer *tx_bi; struct i40e_tx_desc *tx_desc; u16 i = tx_ring->next_to_use; u32 td_tag = 0; dma_addr_t dma; u16 desc_count = 1; if (tx_flags & I40E_TX_FLAGS_HW_VLAN) { td_cmd |= I40E_TX_DESC_CMD_IL2TAG1; td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >> I40E_TX_FLAGS_VLAN_SHIFT; } first->tx_flags = tx_flags; dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); tx_desc = I40E_TX_DESC(tx_ring, i); tx_bi = first; for (frag = &skb_shinfo(skb)->frags[0];; frag++) { unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; if (dma_mapping_error(tx_ring->dev, dma)) goto dma_error; /* record length, and DMA address */ dma_unmap_len_set(tx_bi, len, size); dma_unmap_addr_set(tx_bi, dma, dma); /* align size to end of page */ max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1); tx_desc->buffer_addr = cpu_to_le64(dma); while (unlikely(size > I40E_MAX_DATA_PER_TXD)) { tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, max_data, td_tag); tx_desc++; i++; desc_count++; if (i == tx_ring->count) { tx_desc = I40E_TX_DESC(tx_ring, 0); i = 0; } dma += max_data; size -= max_data; max_data = I40E_MAX_DATA_PER_TXD_ALIGNED; tx_desc->buffer_addr = cpu_to_le64(dma); } if (likely(!data_len)) break; tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, size, td_tag); tx_desc++; i++; desc_count++; if (i == tx_ring->count) { tx_desc = I40E_TX_DESC(tx_ring, 0); i = 0; } size = skb_frag_size(frag); data_len -= size; dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, DMA_TO_DEVICE); tx_bi = &tx_ring->tx_bi[i]; } netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); i++; if (i == tx_ring->count) i = 0; tx_ring->next_to_use = i; i40e_maybe_stop_tx(tx_ring, DESC_NEEDED); /* write last descriptor with EOP bit */ td_cmd |= I40E_TX_DESC_CMD_EOP; /* We OR these values together to check both against 4 (WB_STRIDE) * below. This is safe since we don't re-use desc_count afterwards. */ desc_count |= ++tx_ring->packet_stride; if (desc_count >= WB_STRIDE) { /* write last descriptor with RS bit set */ td_cmd |= I40E_TX_DESC_CMD_RS; tx_ring->packet_stride = 0; } tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, size, td_tag); skb_tx_timestamp(skb); /* Force memory writes to complete before letting h/w know there * are new descriptors to fetch. * * We also use this memory barrier to make certain all of the * status bits have been updated before next_to_watch is written. */ wmb(); /* set next_to_watch value indicating a packet is present */ first->next_to_watch = tx_desc; /* notify HW of packet */ if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { writel(i, tx_ring->tail); } return 0; dma_error: dev_info(tx_ring->dev, "TX DMA map failed\n"); /* clear dma mappings for failed tx_bi map */ for (;;) { tx_bi = &tx_ring->tx_bi[i]; i40e_unmap_and_free_tx_resource(tx_ring, tx_bi); if (tx_bi == first) break; if (i == 0) i = tx_ring->count; i--; } tx_ring->next_to_use = i; return -1; } static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev, const struct sk_buff *skb, u16 num_tx_queues) { u32 jhash_initval_salt = 0xd631614b; u32 hash; if (skb->sk && skb->sk->sk_hash) hash = skb->sk->sk_hash; else hash = (__force u16)skb->protocol ^ skb->hash; hash = jhash_1word(hash, jhash_initval_salt); return (u16)(((u64)hash * num_tx_queues) >> 32); } u16 i40e_lan_select_queue(struct net_device *netdev, struct sk_buff *skb, struct net_device __always_unused *sb_dev) { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; struct i40e_hw *hw; u16 qoffset; u16 qcount; u8 tclass; u16 hash; u8 prio; /* is DCB enabled at all? */ if (vsi->tc_config.numtc == 1 || i40e_is_tc_mqprio_enabled(vsi->back)) return netdev_pick_tx(netdev, skb, sb_dev); prio = skb->priority; hw = &vsi->back->hw; tclass = hw->local_dcbx_config.etscfg.prioritytable[prio]; /* sanity check */ if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass)))) tclass = 0; /* select a queue assigned for the given TC */ qcount = vsi->tc_config.tc_info[tclass].qcount; hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount); qoffset = vsi->tc_config.tc_info[tclass].qoffset; return qoffset + hash; } /** * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring * @xdpf: data to transmit * @xdp_ring: XDP Tx ring **/ static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf, struct i40e_ring *xdp_ring) { struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; u16 i = 0, index = xdp_ring->next_to_use; struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index]; struct i40e_tx_buffer *tx_bi = tx_head; struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index); void *data = xdpf->data; u32 size = xdpf->len; if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) { xdp_ring->tx_stats.tx_busy++; return I40E_XDP_CONSUMED; } tx_head->bytecount = xdp_get_frame_len(xdpf); tx_head->gso_segs = 1; tx_head->xdpf = xdpf; for (;;) { dma_addr_t dma; dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE); if (dma_mapping_error(xdp_ring->dev, dma)) goto unmap; /* record length, and DMA address */ dma_unmap_len_set(tx_bi, len, size); dma_unmap_addr_set(tx_bi, dma, dma); tx_desc->buffer_addr = cpu_to_le64(dma); tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0); if (++index == xdp_ring->count) index = 0; if (i == nr_frags) break; tx_bi = &xdp_ring->tx_bi[index]; tx_desc = I40E_TX_DESC(xdp_ring, index); data = skb_frag_address(&sinfo->frags[i]); size = skb_frag_size(&sinfo->frags[i]); i++; } tx_desc->cmd_type_offset_bsz |= cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT); /* Make certain all of the status bits have been updated * before next_to_watch is written. */ smp_wmb(); xdp_ring->xdp_tx_active++; tx_head->next_to_watch = tx_desc; xdp_ring->next_to_use = index; return I40E_XDP_TX; unmap: for (;;) { tx_bi = &xdp_ring->tx_bi[index]; if (dma_unmap_len(tx_bi, len)) dma_unmap_page(xdp_ring->dev, dma_unmap_addr(tx_bi, dma), dma_unmap_len(tx_bi, len), DMA_TO_DEVICE); dma_unmap_len_set(tx_bi, len, 0); if (tx_bi == tx_head) break; if (!index) index += xdp_ring->count; index--; } return I40E_XDP_CONSUMED; } /** * i40e_xmit_frame_ring - Sends buffer on Tx ring * @skb: send buffer * @tx_ring: ring to send buffer on * * Returns NETDEV_TX_OK if sent, else an error code **/ static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb, struct i40e_ring *tx_ring) { u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT; u32 cd_tunneling = 0, cd_l2tag2 = 0; struct i40e_tx_buffer *first; u32 td_offset = 0; u32 tx_flags = 0; u32 td_cmd = 0; u8 hdr_len = 0; int tso, count; int tsyn; /* prefetch the data, we'll need it later */ prefetch(skb->data); i40e_trace(xmit_frame_ring, skb, tx_ring); count = i40e_xmit_descriptor_count(skb); if (i40e_chk_linearize(skb, count)) { if (__skb_linearize(skb)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } count = i40e_txd_use_count(skb->len); tx_ring->tx_stats.tx_linearize++; } /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD, * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD, * + 4 desc gap to avoid the cache line where head is, * + 1 desc for context descriptor, * otherwise try next time */ if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) { tx_ring->tx_stats.tx_busy++; return NETDEV_TX_BUSY; } /* record the location of the first descriptor for this packet */ first = &tx_ring->tx_bi[tx_ring->next_to_use]; first->skb = skb; first->bytecount = skb->len; first->gso_segs = 1; /* prepare the xmit flags */ if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags)) goto out_drop; tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss); if (tso < 0) goto out_drop; else if (tso) tx_flags |= I40E_TX_FLAGS_TSO; /* Always offload the checksum, since it's in the data descriptor */ tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset, tx_ring, &cd_tunneling); if (tso < 0) goto out_drop; tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss); if (tsyn) tx_flags |= I40E_TX_FLAGS_TSYN; /* always enable CRC insertion offload */ td_cmd |= I40E_TX_DESC_CMD_ICRC; i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss, cd_tunneling, cd_l2tag2); /* Add Flow Director ATR if it's enabled. * * NOTE: this must always be directly before the data descriptor. */ i40e_atr(tx_ring, skb, tx_flags); if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len, td_cmd, td_offset)) goto cleanup_tx_tstamp; return NETDEV_TX_OK; out_drop: i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring); dev_kfree_skb_any(first->skb); first->skb = NULL; cleanup_tx_tstamp: if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) { struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev); dev_kfree_skb_any(pf->ptp_tx_skb); pf->ptp_tx_skb = NULL; clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state); } return NETDEV_TX_OK; } /** * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer * @skb: send buffer * @netdev: network interface device structure * * Returns NETDEV_TX_OK if sent, else an error code **/ netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping]; /* hardware can't handle really short frames, hardware padding works * beyond this point */ if (skb_put_padto(skb, I40E_MIN_TX_LEN)) return NETDEV_TX_OK; return i40e_xmit_frame_ring(skb, tx_ring); } /** * i40e_xdp_xmit - Implements ndo_xdp_xmit * @dev: netdev * @n: number of frames * @frames: array of XDP buffer pointers * @flags: XDP extra info * * Returns number of frames successfully sent. Failed frames * will be free'ed by XDP core. * * For error cases, a negative errno code is returned and no-frames * are transmitted (caller must handle freeing frames). **/ int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, u32 flags) { struct i40e_netdev_priv *np = netdev_priv(dev); unsigned int queue_index = smp_processor_id(); struct i40e_vsi *vsi = np->vsi; struct i40e_pf *pf = vsi->back; struct i40e_ring *xdp_ring; int nxmit = 0; int i; if (test_bit(__I40E_VSI_DOWN, vsi->state)) return -ENETDOWN; if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs || test_bit(__I40E_CONFIG_BUSY, pf->state)) return -ENXIO; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) return -EINVAL; xdp_ring = vsi->xdp_rings[queue_index]; for (i = 0; i < n; i++) { struct xdp_frame *xdpf = frames[i]; int err; err = i40e_xmit_xdp_ring(xdpf, xdp_ring); if (err != I40E_XDP_TX) break; nxmit++; } if (unlikely(flags & XDP_XMIT_FLUSH)) i40e_xdp_ring_update_tail(xdp_ring); return nxmit; }