1 /* Intel PRO/1000 Linux driver 2 * Copyright(c) 1999 - 2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * Linux NICS <linux.nics@intel.com> 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 */ 21 22 /* Linux PRO/1000 Ethernet Driver main header file */ 23 24 #ifndef _E1000_H_ 25 #define _E1000_H_ 26 27 #include <linux/bitops.h> 28 #include <linux/types.h> 29 #include <linux/timer.h> 30 #include <linux/workqueue.h> 31 #include <linux/io.h> 32 #include <linux/netdevice.h> 33 #include <linux/pci.h> 34 #include <linux/pci-aspm.h> 35 #include <linux/crc32.h> 36 #include <linux/if_vlan.h> 37 #include <linux/clocksource.h> 38 #include <linux/net_tstamp.h> 39 #include <linux/ptp_clock_kernel.h> 40 #include <linux/ptp_classify.h> 41 #include <linux/mii.h> 42 #include <linux/mdio.h> 43 #include "hw.h" 44 45 struct e1000_info; 46 47 #define e_dbg(format, arg...) \ 48 netdev_dbg(hw->adapter->netdev, format, ## arg) 49 #define e_err(format, arg...) \ 50 netdev_err(adapter->netdev, format, ## arg) 51 #define e_info(format, arg...) \ 52 netdev_info(adapter->netdev, format, ## arg) 53 #define e_warn(format, arg...) \ 54 netdev_warn(adapter->netdev, format, ## arg) 55 #define e_notice(format, arg...) \ 56 netdev_notice(adapter->netdev, format, ## arg) 57 58 /* Interrupt modes, as used by the IntMode parameter */ 59 #define E1000E_INT_MODE_LEGACY 0 60 #define E1000E_INT_MODE_MSI 1 61 #define E1000E_INT_MODE_MSIX 2 62 63 /* Tx/Rx descriptor defines */ 64 #define E1000_DEFAULT_TXD 256 65 #define E1000_MAX_TXD 4096 66 #define E1000_MIN_TXD 64 67 68 #define E1000_DEFAULT_RXD 256 69 #define E1000_MAX_RXD 4096 70 #define E1000_MIN_RXD 64 71 72 #define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */ 73 #define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */ 74 75 #define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */ 76 77 /* How many Tx Descriptors do we need to call netif_wake_queue ? */ 78 /* How many Rx Buffers do we bundle into one write to the hardware ? */ 79 #define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */ 80 81 #define AUTO_ALL_MODES 0 82 #define E1000_EEPROM_APME 0x0400 83 84 #define E1000_MNG_VLAN_NONE (-1) 85 86 #define DEFAULT_JUMBO 9234 87 88 /* Time to wait before putting the device into D3 if there's no link (in ms). */ 89 #define LINK_TIMEOUT 100 90 91 /* Count for polling __E1000_RESET condition every 10-20msec. 92 * Experimentation has shown the reset can take approximately 210msec. 93 */ 94 #define E1000_CHECK_RESET_COUNT 25 95 96 #define DEFAULT_RDTR 0 97 #define DEFAULT_RADV 8 98 #define BURST_RDTR 0x20 99 #define BURST_RADV 0x20 100 101 /* in the case of WTHRESH, it appears at least the 82571/2 hardware 102 * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when 103 * WTHRESH=4, so a setting of 5 gives the most efficient bus 104 * utilization but to avoid possible Tx stalls, set it to 1 105 */ 106 #define E1000_TXDCTL_DMA_BURST_ENABLE \ 107 (E1000_TXDCTL_GRAN | /* set descriptor granularity */ \ 108 E1000_TXDCTL_COUNT_DESC | \ 109 (1 << 16) | /* wthresh must be +1 more than desired */\ 110 (1 << 8) | /* hthresh */ \ 111 0x1f) /* pthresh */ 112 113 #define E1000_RXDCTL_DMA_BURST_ENABLE \ 114 (0x01000000 | /* set descriptor granularity */ \ 115 (4 << 16) | /* set writeback threshold */ \ 116 (4 << 8) | /* set prefetch threshold */ \ 117 0x20) /* set hthresh */ 118 119 #define E1000_TIDV_FPD (1 << 31) 120 #define E1000_RDTR_FPD (1 << 31) 121 122 enum e1000_boards { 123 board_82571, 124 board_82572, 125 board_82573, 126 board_82574, 127 board_82583, 128 board_80003es2lan, 129 board_ich8lan, 130 board_ich9lan, 131 board_ich10lan, 132 board_pchlan, 133 board_pch2lan, 134 board_pch_lpt, 135 }; 136 137 struct e1000_ps_page { 138 struct page *page; 139 u64 dma; /* must be u64 - written to hw */ 140 }; 141 142 /* wrappers around a pointer to a socket buffer, 143 * so a DMA handle can be stored along with the buffer 144 */ 145 struct e1000_buffer { 146 dma_addr_t dma; 147 struct sk_buff *skb; 148 union { 149 /* Tx */ 150 struct { 151 unsigned long time_stamp; 152 u16 length; 153 u16 next_to_watch; 154 unsigned int segs; 155 unsigned int bytecount; 156 u16 mapped_as_page; 157 }; 158 /* Rx */ 159 struct { 160 /* arrays of page information for packet split */ 161 struct e1000_ps_page *ps_pages; 162 struct page *page; 163 }; 164 }; 165 }; 166 167 struct e1000_ring { 168 struct e1000_adapter *adapter; /* back pointer to adapter */ 169 void *desc; /* pointer to ring memory */ 170 dma_addr_t dma; /* phys address of ring */ 171 unsigned int size; /* length of ring in bytes */ 172 unsigned int count; /* number of desc. in ring */ 173 174 u16 next_to_use; 175 u16 next_to_clean; 176 177 void __iomem *head; 178 void __iomem *tail; 179 180 /* array of buffer information structs */ 181 struct e1000_buffer *buffer_info; 182 183 char name[IFNAMSIZ + 5]; 184 u32 ims_val; 185 u32 itr_val; 186 void __iomem *itr_register; 187 int set_itr; 188 189 struct sk_buff *rx_skb_top; 190 }; 191 192 /* PHY register snapshot values */ 193 struct e1000_phy_regs { 194 u16 bmcr; /* basic mode control register */ 195 u16 bmsr; /* basic mode status register */ 196 u16 advertise; /* auto-negotiation advertisement */ 197 u16 lpa; /* link partner ability register */ 198 u16 expansion; /* auto-negotiation expansion reg */ 199 u16 ctrl1000; /* 1000BASE-T control register */ 200 u16 stat1000; /* 1000BASE-T status register */ 201 u16 estatus; /* extended status register */ 202 }; 203 204 /* board specific private data structure */ 205 struct e1000_adapter { 206 struct timer_list watchdog_timer; 207 struct timer_list phy_info_timer; 208 struct timer_list blink_timer; 209 210 struct work_struct reset_task; 211 struct work_struct watchdog_task; 212 213 const struct e1000_info *ei; 214 215 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; 216 u32 bd_number; 217 u32 rx_buffer_len; 218 u16 mng_vlan_id; 219 u16 link_speed; 220 u16 link_duplex; 221 u16 eeprom_vers; 222 223 /* track device up/down/testing state */ 224 unsigned long state; 225 226 /* Interrupt Throttle Rate */ 227 u32 itr; 228 u32 itr_setting; 229 u16 tx_itr; 230 u16 rx_itr; 231 232 /* Tx - one ring per active queue */ 233 struct e1000_ring *tx_ring ____cacheline_aligned_in_smp; 234 u32 tx_fifo_limit; 235 236 struct napi_struct napi; 237 238 unsigned int uncorr_errors; /* uncorrectable ECC errors */ 239 unsigned int corr_errors; /* correctable ECC errors */ 240 unsigned int restart_queue; 241 u32 txd_cmd; 242 243 bool detect_tx_hung; 244 bool tx_hang_recheck; 245 u8 tx_timeout_factor; 246 247 u32 tx_int_delay; 248 u32 tx_abs_int_delay; 249 250 unsigned int total_tx_bytes; 251 unsigned int total_tx_packets; 252 unsigned int total_rx_bytes; 253 unsigned int total_rx_packets; 254 255 /* Tx stats */ 256 u64 tpt_old; 257 u64 colc_old; 258 u32 gotc; 259 u64 gotc_old; 260 u32 tx_timeout_count; 261 u32 tx_fifo_head; 262 u32 tx_head_addr; 263 u32 tx_fifo_size; 264 u32 tx_dma_failed; 265 u32 tx_hwtstamp_timeouts; 266 267 /* Rx */ 268 bool (*clean_rx)(struct e1000_ring *ring, int *work_done, 269 int work_to_do) ____cacheline_aligned_in_smp; 270 void (*alloc_rx_buf)(struct e1000_ring *ring, int cleaned_count, 271 gfp_t gfp); 272 struct e1000_ring *rx_ring; 273 274 u32 rx_int_delay; 275 u32 rx_abs_int_delay; 276 277 /* Rx stats */ 278 u64 hw_csum_err; 279 u64 hw_csum_good; 280 u64 rx_hdr_split; 281 u32 gorc; 282 u64 gorc_old; 283 u32 alloc_rx_buff_failed; 284 u32 rx_dma_failed; 285 u32 rx_hwtstamp_cleared; 286 287 unsigned int rx_ps_pages; 288 u16 rx_ps_bsize0; 289 u32 max_frame_size; 290 u32 min_frame_size; 291 292 /* OS defined structs */ 293 struct net_device *netdev; 294 struct pci_dev *pdev; 295 296 /* structs defined in e1000_hw.h */ 297 struct e1000_hw hw; 298 299 spinlock_t stats64_lock; /* protects statistics counters */ 300 struct e1000_hw_stats stats; 301 struct e1000_phy_info phy_info; 302 struct e1000_phy_stats phy_stats; 303 304 /* Snapshot of PHY registers */ 305 struct e1000_phy_regs phy_regs; 306 307 struct e1000_ring test_tx_ring; 308 struct e1000_ring test_rx_ring; 309 u32 test_icr; 310 311 u32 msg_enable; 312 unsigned int num_vectors; 313 struct msix_entry *msix_entries; 314 int int_mode; 315 u32 eiac_mask; 316 317 u32 eeprom_wol; 318 u32 wol; 319 u32 pba; 320 u32 max_hw_frame_size; 321 322 bool fc_autoneg; 323 324 unsigned int flags; 325 unsigned int flags2; 326 struct work_struct downshift_task; 327 struct work_struct update_phy_task; 328 struct work_struct print_hang_task; 329 330 int phy_hang_count; 331 332 u16 tx_ring_count; 333 u16 rx_ring_count; 334 335 struct hwtstamp_config hwtstamp_config; 336 struct delayed_work systim_overflow_work; 337 struct sk_buff *tx_hwtstamp_skb; 338 unsigned long tx_hwtstamp_start; 339 struct work_struct tx_hwtstamp_work; 340 spinlock_t systim_lock; /* protects SYSTIML/H regsters */ 341 struct cyclecounter cc; 342 struct timecounter tc; 343 struct ptp_clock *ptp_clock; 344 struct ptp_clock_info ptp_clock_info; 345 346 u16 eee_advert; 347 }; 348 349 struct e1000_info { 350 enum e1000_mac_type mac; 351 unsigned int flags; 352 unsigned int flags2; 353 u32 pba; 354 u32 max_hw_frame_size; 355 s32 (*get_variants)(struct e1000_adapter *); 356 const struct e1000_mac_operations *mac_ops; 357 const struct e1000_phy_operations *phy_ops; 358 const struct e1000_nvm_operations *nvm_ops; 359 }; 360 361 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca); 362 363 /* The system time is maintained by a 64-bit counter comprised of the 32-bit 364 * SYSTIMH and SYSTIML registers. How the counter increments (and therefore 365 * its resolution) is based on the contents of the TIMINCA register - it 366 * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0). 367 * For the best accuracy, the incperiod should be as small as possible. The 368 * incvalue is scaled by a factor as large as possible (while still fitting 369 * in bits 23:0) so that relatively small clock corrections can be made. 370 * 371 * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of 372 * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n) 373 * bits to count nanoseconds leaving the rest for fractional nonseconds. 374 */ 375 #define INCVALUE_96MHz 125 376 #define INCVALUE_SHIFT_96MHz 17 377 #define INCPERIOD_SHIFT_96MHz 2 378 #define INCPERIOD_96MHz (12 >> INCPERIOD_SHIFT_96MHz) 379 380 #define INCVALUE_25MHz 40 381 #define INCVALUE_SHIFT_25MHz 18 382 #define INCPERIOD_25MHz 1 383 384 /* Another drawback of scaling the incvalue by a large factor is the 385 * 64-bit SYSTIM register overflows more quickly. This is dealt with 386 * by simply reading the clock before it overflows. 387 * 388 * Clock ns bits Overflows after 389 * ~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~ 390 * 96MHz 47-bit 2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs 391 * 25MHz 46-bit 2^46 / 10^9 / 3600 = 19.55 hours 392 */ 393 #define E1000_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 60 * 4) 394 #define E1000_MAX_82574_SYSTIM_REREADS 50 395 #define E1000_82574_SYSTIM_EPSILON (1ULL << 35ULL) 396 397 /* hardware capability, feature, and workaround flags */ 398 #define FLAG_HAS_AMT (1 << 0) 399 #define FLAG_HAS_FLASH (1 << 1) 400 #define FLAG_HAS_HW_VLAN_FILTER (1 << 2) 401 #define FLAG_HAS_WOL (1 << 3) 402 /* reserved bit4 */ 403 #define FLAG_HAS_CTRLEXT_ON_LOAD (1 << 5) 404 #define FLAG_HAS_SWSM_ON_LOAD (1 << 6) 405 #define FLAG_HAS_JUMBO_FRAMES (1 << 7) 406 #define FLAG_READ_ONLY_NVM (1 << 8) 407 #define FLAG_IS_ICH (1 << 9) 408 #define FLAG_HAS_MSIX (1 << 10) 409 #define FLAG_HAS_SMART_POWER_DOWN (1 << 11) 410 #define FLAG_IS_QUAD_PORT_A (1 << 12) 411 #define FLAG_IS_QUAD_PORT (1 << 13) 412 #define FLAG_HAS_HW_TIMESTAMP (1 << 14) 413 #define FLAG_APME_IN_WUC (1 << 15) 414 #define FLAG_APME_IN_CTRL3 (1 << 16) 415 #define FLAG_APME_CHECK_PORT_B (1 << 17) 416 #define FLAG_DISABLE_FC_PAUSE_TIME (1 << 18) 417 #define FLAG_NO_WAKE_UCAST (1 << 19) 418 #define FLAG_MNG_PT_ENABLED (1 << 20) 419 #define FLAG_RESET_OVERWRITES_LAA (1 << 21) 420 #define FLAG_TARC_SPEED_MODE_BIT (1 << 22) 421 #define FLAG_TARC_SET_BIT_ZERO (1 << 23) 422 #define FLAG_RX_NEEDS_RESTART (1 << 24) 423 #define FLAG_LSC_GIG_SPEED_DROP (1 << 25) 424 #define FLAG_SMART_POWER_DOWN (1 << 26) 425 #define FLAG_MSI_ENABLED (1 << 27) 426 /* reserved (1 << 28) */ 427 #define FLAG_TSO_FORCE (1 << 29) 428 #define FLAG_RESTART_NOW (1 << 30) 429 #define FLAG_MSI_TEST_FAILED (1 << 31) 430 431 #define FLAG2_CRC_STRIPPING (1 << 0) 432 #define FLAG2_HAS_PHY_WAKEUP (1 << 1) 433 #define FLAG2_IS_DISCARDING (1 << 2) 434 #define FLAG2_DISABLE_ASPM_L1 (1 << 3) 435 #define FLAG2_HAS_PHY_STATS (1 << 4) 436 #define FLAG2_HAS_EEE (1 << 5) 437 #define FLAG2_DMA_BURST (1 << 6) 438 #define FLAG2_DISABLE_ASPM_L0S (1 << 7) 439 #define FLAG2_DISABLE_AIM (1 << 8) 440 #define FLAG2_CHECK_PHY_HANG (1 << 9) 441 #define FLAG2_NO_DISABLE_RX (1 << 10) 442 #define FLAG2_PCIM2PCI_ARBITER_WA (1 << 11) 443 #define FLAG2_DFLT_CRC_STRIPPING (1 << 12) 444 #define FLAG2_CHECK_RX_HWTSTAMP (1 << 13) 445 446 #define E1000_RX_DESC_PS(R, i) \ 447 (&(((union e1000_rx_desc_packet_split *)((R).desc))[i])) 448 #define E1000_RX_DESC_EXT(R, i) \ 449 (&(((union e1000_rx_desc_extended *)((R).desc))[i])) 450 #define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) 451 #define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc) 452 #define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc) 453 454 enum e1000_state_t { 455 __E1000_TESTING, 456 __E1000_RESETTING, 457 __E1000_ACCESS_SHARED_RESOURCE, 458 __E1000_DOWN 459 }; 460 461 enum latency_range { 462 lowest_latency = 0, 463 low_latency = 1, 464 bulk_latency = 2, 465 latency_invalid = 255 466 }; 467 468 extern char e1000e_driver_name[]; 469 extern const char e1000e_driver_version[]; 470 471 void e1000e_check_options(struct e1000_adapter *adapter); 472 void e1000e_set_ethtool_ops(struct net_device *netdev); 473 474 int e1000e_up(struct e1000_adapter *adapter); 475 void e1000e_down(struct e1000_adapter *adapter, bool reset); 476 void e1000e_reinit_locked(struct e1000_adapter *adapter); 477 void e1000e_reset(struct e1000_adapter *adapter); 478 void e1000e_power_up_phy(struct e1000_adapter *adapter); 479 int e1000e_setup_rx_resources(struct e1000_ring *ring); 480 int e1000e_setup_tx_resources(struct e1000_ring *ring); 481 void e1000e_free_rx_resources(struct e1000_ring *ring); 482 void e1000e_free_tx_resources(struct e1000_ring *ring); 483 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev, 484 struct rtnl_link_stats64 *stats); 485 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter); 486 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter); 487 void e1000e_get_hw_control(struct e1000_adapter *adapter); 488 void e1000e_release_hw_control(struct e1000_adapter *adapter); 489 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr); 490 491 extern unsigned int copybreak; 492 493 extern const struct e1000_info e1000_82571_info; 494 extern const struct e1000_info e1000_82572_info; 495 extern const struct e1000_info e1000_82573_info; 496 extern const struct e1000_info e1000_82574_info; 497 extern const struct e1000_info e1000_82583_info; 498 extern const struct e1000_info e1000_ich8_info; 499 extern const struct e1000_info e1000_ich9_info; 500 extern const struct e1000_info e1000_ich10_info; 501 extern const struct e1000_info e1000_pch_info; 502 extern const struct e1000_info e1000_pch2_info; 503 extern const struct e1000_info e1000_pch_lpt_info; 504 extern const struct e1000_info e1000_es2_info; 505 506 void e1000e_ptp_init(struct e1000_adapter *adapter); 507 void e1000e_ptp_remove(struct e1000_adapter *adapter); 508 509 static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw) 510 { 511 return hw->phy.ops.reset(hw); 512 } 513 514 static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data) 515 { 516 return hw->phy.ops.read_reg(hw, offset, data); 517 } 518 519 static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data) 520 { 521 return hw->phy.ops.read_reg_locked(hw, offset, data); 522 } 523 524 static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data) 525 { 526 return hw->phy.ops.write_reg(hw, offset, data); 527 } 528 529 static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data) 530 { 531 return hw->phy.ops.write_reg_locked(hw, offset, data); 532 } 533 534 void e1000e_reload_nvm_generic(struct e1000_hw *hw); 535 536 static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw) 537 { 538 if (hw->mac.ops.read_mac_addr) 539 return hw->mac.ops.read_mac_addr(hw); 540 541 return e1000_read_mac_addr_generic(hw); 542 } 543 544 static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 545 { 546 return hw->nvm.ops.validate(hw); 547 } 548 549 static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw) 550 { 551 return hw->nvm.ops.update(hw); 552 } 553 554 static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, 555 u16 *data) 556 { 557 return hw->nvm.ops.read(hw, offset, words, data); 558 } 559 560 static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, 561 u16 *data) 562 { 563 return hw->nvm.ops.write(hw, offset, words, data); 564 } 565 566 static inline s32 e1000_get_phy_info(struct e1000_hw *hw) 567 { 568 return hw->phy.ops.get_info(hw); 569 } 570 571 static inline u32 __er32(struct e1000_hw *hw, unsigned long reg) 572 { 573 return readl(hw->hw_addr + reg); 574 } 575 576 #define er32(reg) __er32(hw, E1000_##reg) 577 578 s32 __ew32_prepare(struct e1000_hw *hw); 579 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val); 580 581 #define ew32(reg, val) __ew32(hw, E1000_##reg, (val)) 582 583 #define e1e_flush() er32(STATUS) 584 585 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \ 586 (__ew32((a), (reg + ((offset) << 2)), (value))) 587 588 #define E1000_READ_REG_ARRAY(a, reg, offset) \ 589 (readl((a)->hw_addr + reg + ((offset) << 2))) 590 591 #endif /* _E1000_H_ */ 592