1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* Linux PRO/1000 Ethernet Driver main header file */
5 
6 #ifndef _E1000_H_
7 #define _E1000_H_
8 
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/timer.h>
12 #include <linux/workqueue.h>
13 #include <linux/io.h>
14 #include <linux/netdevice.h>
15 #include <linux/pci.h>
16 #include <linux/crc32.h>
17 #include <linux/if_vlan.h>
18 #include <linux/timecounter.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/ptp_clock_kernel.h>
21 #include <linux/ptp_classify.h>
22 #include <linux/mii.h>
23 #include <linux/mdio.h>
24 #include <linux/pm_qos.h>
25 #include "hw.h"
26 
27 struct e1000_info;
28 
29 #define e_dbg(format, arg...) \
30 	netdev_dbg(hw->adapter->netdev, format, ## arg)
31 #define e_err(format, arg...) \
32 	netdev_err(adapter->netdev, format, ## arg)
33 #define e_info(format, arg...) \
34 	netdev_info(adapter->netdev, format, ## arg)
35 #define e_warn(format, arg...) \
36 	netdev_warn(adapter->netdev, format, ## arg)
37 #define e_notice(format, arg...) \
38 	netdev_notice(adapter->netdev, format, ## arg)
39 
40 /* Interrupt modes, as used by the IntMode parameter */
41 #define E1000E_INT_MODE_LEGACY		0
42 #define E1000E_INT_MODE_MSI		1
43 #define E1000E_INT_MODE_MSIX		2
44 
45 /* Tx/Rx descriptor defines */
46 #define E1000_DEFAULT_TXD		256
47 #define E1000_MAX_TXD			4096
48 #define E1000_MIN_TXD			64
49 
50 #define E1000_DEFAULT_RXD		256
51 #define E1000_MAX_RXD			4096
52 #define E1000_MIN_RXD			64
53 
54 #define E1000_MIN_ITR_USECS		10 /* 100000 irq/sec */
55 #define E1000_MAX_ITR_USECS		10000 /* 100    irq/sec */
56 
57 #define E1000_FC_PAUSE_TIME		0x0680 /* 858 usec */
58 
59 /* How many Tx Descriptors do we need to call netif_wake_queue ? */
60 /* How many Rx Buffers do we bundle into one write to the hardware ? */
61 #define E1000_RX_BUFFER_WRITE		16 /* Must be power of 2 */
62 
63 #define AUTO_ALL_MODES			0
64 #define E1000_EEPROM_APME		0x0400
65 
66 #define E1000_MNG_VLAN_NONE		(-1)
67 
68 #define DEFAULT_JUMBO			9234
69 
70 /* Time to wait before putting the device into D3 if there's no link (in ms). */
71 #define LINK_TIMEOUT		100
72 
73 /* Count for polling __E1000_RESET condition every 10-20msec.
74  * Experimentation has shown the reset can take approximately 210msec.
75  */
76 #define E1000_CHECK_RESET_COUNT		25
77 
78 #define PCICFG_DESC_RING_STATUS		0xe4
79 #define FLUSH_DESC_REQUIRED		0x100
80 
81 /* in the case of WTHRESH, it appears at least the 82571/2 hardware
82  * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
83  * WTHRESH=4, so a setting of 5 gives the most efficient bus
84  * utilization but to avoid possible Tx stalls, set it to 1
85  */
86 #define E1000_TXDCTL_DMA_BURST_ENABLE                          \
87 	(E1000_TXDCTL_GRAN | /* set descriptor granularity */  \
88 	 E1000_TXDCTL_COUNT_DESC |                             \
89 	 (1u << 16) | /* wthresh must be +1 more than desired */\
90 	 (1u << 8)  | /* hthresh */                             \
91 	 0x1f)        /* pthresh */
92 
93 #define E1000_RXDCTL_DMA_BURST_ENABLE                          \
94 	(0x01000000 | /* set descriptor granularity */         \
95 	 (4u << 16) | /* set writeback threshold    */         \
96 	 (4u << 8)  | /* set prefetch threshold     */         \
97 	 0x20)        /* set hthresh                */
98 
99 #define E1000_TIDV_FPD BIT(31)
100 #define E1000_RDTR_FPD BIT(31)
101 
102 enum e1000_boards {
103 	board_82571,
104 	board_82572,
105 	board_82573,
106 	board_82574,
107 	board_82583,
108 	board_80003es2lan,
109 	board_ich8lan,
110 	board_ich9lan,
111 	board_ich10lan,
112 	board_pchlan,
113 	board_pch2lan,
114 	board_pch_lpt,
115 	board_pch_spt,
116 	board_pch_cnp
117 };
118 
119 struct e1000_ps_page {
120 	struct page *page;
121 	u64 dma; /* must be u64 - written to hw */
122 };
123 
124 /* wrappers around a pointer to a socket buffer,
125  * so a DMA handle can be stored along with the buffer
126  */
127 struct e1000_buffer {
128 	dma_addr_t dma;
129 	struct sk_buff *skb;
130 	union {
131 		/* Tx */
132 		struct {
133 			unsigned long time_stamp;
134 			u16 length;
135 			u16 next_to_watch;
136 			unsigned int segs;
137 			unsigned int bytecount;
138 			u16 mapped_as_page;
139 		};
140 		/* Rx */
141 		struct {
142 			/* arrays of page information for packet split */
143 			struct e1000_ps_page *ps_pages;
144 			struct page *page;
145 		};
146 	};
147 };
148 
149 struct e1000_ring {
150 	struct e1000_adapter *adapter;	/* back pointer to adapter */
151 	void *desc;			/* pointer to ring memory  */
152 	dma_addr_t dma;			/* phys address of ring    */
153 	unsigned int size;		/* length of ring in bytes */
154 	unsigned int count;		/* number of desc. in ring */
155 
156 	u16 next_to_use;
157 	u16 next_to_clean;
158 
159 	void __iomem *head;
160 	void __iomem *tail;
161 
162 	/* array of buffer information structs */
163 	struct e1000_buffer *buffer_info;
164 
165 	char name[IFNAMSIZ + 5];
166 	u32 ims_val;
167 	u32 itr_val;
168 	void __iomem *itr_register;
169 	int set_itr;
170 
171 	struct sk_buff *rx_skb_top;
172 };
173 
174 /* PHY register snapshot values */
175 struct e1000_phy_regs {
176 	u16 bmcr;		/* basic mode control register    */
177 	u16 bmsr;		/* basic mode status register     */
178 	u16 advertise;		/* auto-negotiation advertisement */
179 	u16 lpa;		/* link partner ability register  */
180 	u16 expansion;		/* auto-negotiation expansion reg */
181 	u16 ctrl1000;		/* 1000BASE-T control register    */
182 	u16 stat1000;		/* 1000BASE-T status register     */
183 	u16 estatus;		/* extended status register       */
184 };
185 
186 /* board specific private data structure */
187 struct e1000_adapter {
188 	struct timer_list watchdog_timer;
189 	struct timer_list phy_info_timer;
190 	struct timer_list blink_timer;
191 
192 	struct work_struct reset_task;
193 	struct work_struct watchdog_task;
194 
195 	const struct e1000_info *ei;
196 
197 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
198 	u32 bd_number;
199 	u32 rx_buffer_len;
200 	u16 mng_vlan_id;
201 	u16 link_speed;
202 	u16 link_duplex;
203 	u16 eeprom_vers;
204 
205 	/* track device up/down/testing state */
206 	unsigned long state;
207 
208 	/* Interrupt Throttle Rate */
209 	u32 itr;
210 	u32 itr_setting;
211 	u16 tx_itr;
212 	u16 rx_itr;
213 
214 	/* Tx - one ring per active queue */
215 	struct e1000_ring *tx_ring ____cacheline_aligned_in_smp;
216 	u32 tx_fifo_limit;
217 
218 	struct napi_struct napi;
219 
220 	unsigned int uncorr_errors;	/* uncorrectable ECC errors */
221 	unsigned int corr_errors;	/* correctable ECC errors */
222 	unsigned int restart_queue;
223 	u32 txd_cmd;
224 
225 	bool detect_tx_hung;
226 	bool tx_hang_recheck;
227 	u8 tx_timeout_factor;
228 
229 	u32 tx_int_delay;
230 	u32 tx_abs_int_delay;
231 
232 	unsigned int total_tx_bytes;
233 	unsigned int total_tx_packets;
234 	unsigned int total_rx_bytes;
235 	unsigned int total_rx_packets;
236 
237 	/* Tx stats */
238 	u64 tpt_old;
239 	u64 colc_old;
240 	u32 gotc;
241 	u64 gotc_old;
242 	u32 tx_timeout_count;
243 	u32 tx_fifo_head;
244 	u32 tx_head_addr;
245 	u32 tx_fifo_size;
246 	u32 tx_dma_failed;
247 	u32 tx_hwtstamp_timeouts;
248 	u32 tx_hwtstamp_skipped;
249 
250 	/* Rx */
251 	bool (*clean_rx)(struct e1000_ring *ring, int *work_done,
252 			 int work_to_do) ____cacheline_aligned_in_smp;
253 	void (*alloc_rx_buf)(struct e1000_ring *ring, int cleaned_count,
254 			     gfp_t gfp);
255 	struct e1000_ring *rx_ring;
256 
257 	u32 rx_int_delay;
258 	u32 rx_abs_int_delay;
259 
260 	/* Rx stats */
261 	u64 hw_csum_err;
262 	u64 hw_csum_good;
263 	u64 rx_hdr_split;
264 	u32 gorc;
265 	u64 gorc_old;
266 	u32 alloc_rx_buff_failed;
267 	u32 rx_dma_failed;
268 	u32 rx_hwtstamp_cleared;
269 
270 	unsigned int rx_ps_pages;
271 	u16 rx_ps_bsize0;
272 	u32 max_frame_size;
273 	u32 min_frame_size;
274 
275 	/* OS defined structs */
276 	struct net_device *netdev;
277 	struct pci_dev *pdev;
278 
279 	/* structs defined in e1000_hw.h */
280 	struct e1000_hw hw;
281 
282 	spinlock_t stats64_lock;	/* protects statistics counters */
283 	struct e1000_hw_stats stats;
284 	struct e1000_phy_info phy_info;
285 	struct e1000_phy_stats phy_stats;
286 
287 	/* Snapshot of PHY registers */
288 	struct e1000_phy_regs phy_regs;
289 
290 	struct e1000_ring test_tx_ring;
291 	struct e1000_ring test_rx_ring;
292 	u32 test_icr;
293 
294 	u32 msg_enable;
295 	unsigned int num_vectors;
296 	struct msix_entry *msix_entries;
297 	int int_mode;
298 	u32 eiac_mask;
299 
300 	u32 eeprom_wol;
301 	u32 wol;
302 	u32 pba;
303 	u32 max_hw_frame_size;
304 
305 	bool fc_autoneg;
306 
307 	unsigned int flags;
308 	unsigned int flags2;
309 	struct work_struct downshift_task;
310 	struct work_struct update_phy_task;
311 	struct work_struct print_hang_task;
312 
313 	int phy_hang_count;
314 
315 	u16 tx_ring_count;
316 	u16 rx_ring_count;
317 
318 	struct hwtstamp_config hwtstamp_config;
319 	struct delayed_work systim_overflow_work;
320 	struct sk_buff *tx_hwtstamp_skb;
321 	unsigned long tx_hwtstamp_start;
322 	struct work_struct tx_hwtstamp_work;
323 	spinlock_t systim_lock;	/* protects SYSTIML/H regsters */
324 	struct cyclecounter cc;
325 	struct timecounter tc;
326 	struct ptp_clock *ptp_clock;
327 	struct ptp_clock_info ptp_clock_info;
328 	struct pm_qos_request pm_qos_req;
329 	s32 ptp_delta;
330 
331 	u16 eee_advert;
332 };
333 
334 struct e1000_info {
335 	enum e1000_mac_type	mac;
336 	unsigned int		flags;
337 	unsigned int		flags2;
338 	u32			pba;
339 	u32			max_hw_frame_size;
340 	s32			(*get_variants)(struct e1000_adapter *);
341 	const struct e1000_mac_operations *mac_ops;
342 	const struct e1000_phy_operations *phy_ops;
343 	const struct e1000_nvm_operations *nvm_ops;
344 };
345 
346 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca);
347 
348 /* The system time is maintained by a 64-bit counter comprised of the 32-bit
349  * SYSTIMH and SYSTIML registers.  How the counter increments (and therefore
350  * its resolution) is based on the contents of the TIMINCA register - it
351  * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0).
352  * For the best accuracy, the incperiod should be as small as possible.  The
353  * incvalue is scaled by a factor as large as possible (while still fitting
354  * in bits 23:0) so that relatively small clock corrections can be made.
355  *
356  * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of
357  * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n)
358  * bits to count nanoseconds leaving the rest for fractional nonseconds.
359  */
360 #define INCVALUE_96MHZ		125
361 #define INCVALUE_SHIFT_96MHZ	17
362 #define INCPERIOD_SHIFT_96MHZ	2
363 #define INCPERIOD_96MHZ		(12 >> INCPERIOD_SHIFT_96MHZ)
364 
365 #define INCVALUE_25MHZ		40
366 #define INCVALUE_SHIFT_25MHZ	18
367 #define INCPERIOD_25MHZ		1
368 
369 #define INCVALUE_24MHZ		125
370 #define INCVALUE_SHIFT_24MHZ	14
371 #define INCPERIOD_24MHZ		3
372 
373 #define INCVALUE_38400KHZ	26
374 #define INCVALUE_SHIFT_38400KHZ	19
375 #define INCPERIOD_38400KHZ	1
376 
377 /* Another drawback of scaling the incvalue by a large factor is the
378  * 64-bit SYSTIM register overflows more quickly.  This is dealt with
379  * by simply reading the clock before it overflows.
380  *
381  * Clock	ns bits	Overflows after
382  * ~~~~~~	~~~~~~~	~~~~~~~~~~~~~~~
383  * 96MHz	47-bit	2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs
384  * 25MHz	46-bit	2^46 / 10^9 / 3600 = 19.55 hours
385  */
386 #define E1000_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 60 * 4)
387 #define E1000_MAX_82574_SYSTIM_REREADS	50
388 #define E1000_82574_SYSTIM_EPSILON	(1ULL << 35ULL)
389 
390 /* hardware capability, feature, and workaround flags */
391 #define FLAG_HAS_AMT                      BIT(0)
392 #define FLAG_HAS_FLASH                    BIT(1)
393 #define FLAG_HAS_HW_VLAN_FILTER           BIT(2)
394 #define FLAG_HAS_WOL                      BIT(3)
395 /* reserved BIT(4) */
396 #define FLAG_HAS_CTRLEXT_ON_LOAD          BIT(5)
397 #define FLAG_HAS_SWSM_ON_LOAD             BIT(6)
398 #define FLAG_HAS_JUMBO_FRAMES             BIT(7)
399 #define FLAG_READ_ONLY_NVM                BIT(8)
400 #define FLAG_IS_ICH                       BIT(9)
401 #define FLAG_HAS_MSIX                     BIT(10)
402 #define FLAG_HAS_SMART_POWER_DOWN         BIT(11)
403 #define FLAG_IS_QUAD_PORT_A               BIT(12)
404 #define FLAG_IS_QUAD_PORT                 BIT(13)
405 #define FLAG_HAS_HW_TIMESTAMP             BIT(14)
406 #define FLAG_APME_IN_WUC                  BIT(15)
407 #define FLAG_APME_IN_CTRL3                BIT(16)
408 #define FLAG_APME_CHECK_PORT_B            BIT(17)
409 #define FLAG_DISABLE_FC_PAUSE_TIME        BIT(18)
410 #define FLAG_NO_WAKE_UCAST                BIT(19)
411 #define FLAG_MNG_PT_ENABLED               BIT(20)
412 #define FLAG_RESET_OVERWRITES_LAA         BIT(21)
413 #define FLAG_TARC_SPEED_MODE_BIT          BIT(22)
414 #define FLAG_TARC_SET_BIT_ZERO            BIT(23)
415 #define FLAG_RX_NEEDS_RESTART             BIT(24)
416 #define FLAG_LSC_GIG_SPEED_DROP           BIT(25)
417 #define FLAG_SMART_POWER_DOWN             BIT(26)
418 #define FLAG_MSI_ENABLED                  BIT(27)
419 /* reserved BIT(28) */
420 #define FLAG_TSO_FORCE                    BIT(29)
421 #define FLAG_RESTART_NOW                  BIT(30)
422 #define FLAG_MSI_TEST_FAILED              BIT(31)
423 
424 #define FLAG2_CRC_STRIPPING               BIT(0)
425 #define FLAG2_HAS_PHY_WAKEUP              BIT(1)
426 #define FLAG2_IS_DISCARDING               BIT(2)
427 #define FLAG2_DISABLE_ASPM_L1             BIT(3)
428 #define FLAG2_HAS_PHY_STATS               BIT(4)
429 #define FLAG2_HAS_EEE                     BIT(5)
430 #define FLAG2_DMA_BURST                   BIT(6)
431 #define FLAG2_DISABLE_ASPM_L0S            BIT(7)
432 #define FLAG2_DISABLE_AIM                 BIT(8)
433 #define FLAG2_CHECK_PHY_HANG              BIT(9)
434 #define FLAG2_NO_DISABLE_RX               BIT(10)
435 #define FLAG2_PCIM2PCI_ARBITER_WA         BIT(11)
436 #define FLAG2_DFLT_CRC_STRIPPING          BIT(12)
437 #define FLAG2_CHECK_RX_HWTSTAMP           BIT(13)
438 #define FLAG2_CHECK_SYSTIM_OVERFLOW       BIT(14)
439 
440 #define E1000_RX_DESC_PS(R, i)	    \
441 	(&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
442 #define E1000_RX_DESC_EXT(R, i)	    \
443 	(&(((union e1000_rx_desc_extended *)((R).desc))[i]))
444 #define E1000_GET_DESC(R, i, type)	(&(((struct type *)((R).desc))[i]))
445 #define E1000_TX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_tx_desc)
446 #define E1000_CONTEXT_DESC(R, i)	E1000_GET_DESC(R, i, e1000_context_desc)
447 
448 enum e1000_state_t {
449 	__E1000_TESTING,
450 	__E1000_RESETTING,
451 	__E1000_ACCESS_SHARED_RESOURCE,
452 	__E1000_DOWN
453 };
454 
455 enum latency_range {
456 	lowest_latency = 0,
457 	low_latency = 1,
458 	bulk_latency = 2,
459 	latency_invalid = 255
460 };
461 
462 extern char e1000e_driver_name[];
463 
464 void e1000e_check_options(struct e1000_adapter *adapter);
465 void e1000e_set_ethtool_ops(struct net_device *netdev);
466 
467 int e1000e_open(struct net_device *netdev);
468 int e1000e_close(struct net_device *netdev);
469 void e1000e_up(struct e1000_adapter *adapter);
470 void e1000e_down(struct e1000_adapter *adapter, bool reset);
471 void e1000e_reinit_locked(struct e1000_adapter *adapter);
472 void e1000e_reset(struct e1000_adapter *adapter);
473 void e1000e_power_up_phy(struct e1000_adapter *adapter);
474 int e1000e_setup_rx_resources(struct e1000_ring *ring);
475 int e1000e_setup_tx_resources(struct e1000_ring *ring);
476 void e1000e_free_rx_resources(struct e1000_ring *ring);
477 void e1000e_free_tx_resources(struct e1000_ring *ring);
478 void e1000e_get_stats64(struct net_device *netdev,
479 			struct rtnl_link_stats64 *stats);
480 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
481 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
482 void e1000e_get_hw_control(struct e1000_adapter *adapter);
483 void e1000e_release_hw_control(struct e1000_adapter *adapter);
484 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr);
485 
486 extern unsigned int copybreak;
487 
488 extern const struct e1000_info e1000_82571_info;
489 extern const struct e1000_info e1000_82572_info;
490 extern const struct e1000_info e1000_82573_info;
491 extern const struct e1000_info e1000_82574_info;
492 extern const struct e1000_info e1000_82583_info;
493 extern const struct e1000_info e1000_ich8_info;
494 extern const struct e1000_info e1000_ich9_info;
495 extern const struct e1000_info e1000_ich10_info;
496 extern const struct e1000_info e1000_pch_info;
497 extern const struct e1000_info e1000_pch2_info;
498 extern const struct e1000_info e1000_pch_lpt_info;
499 extern const struct e1000_info e1000_pch_spt_info;
500 extern const struct e1000_info e1000_pch_cnp_info;
501 extern const struct e1000_info e1000_es2_info;
502 
503 void e1000e_ptp_init(struct e1000_adapter *adapter);
504 void e1000e_ptp_remove(struct e1000_adapter *adapter);
505 
506 u64 e1000e_read_systim(struct e1000_adapter *adapter,
507 		       struct ptp_system_timestamp *sts);
508 
509 static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
510 {
511 	return hw->phy.ops.reset(hw);
512 }
513 
514 static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
515 {
516 	return hw->phy.ops.read_reg(hw, offset, data);
517 }
518 
519 static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data)
520 {
521 	return hw->phy.ops.read_reg_locked(hw, offset, data);
522 }
523 
524 static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
525 {
526 	return hw->phy.ops.write_reg(hw, offset, data);
527 }
528 
529 static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data)
530 {
531 	return hw->phy.ops.write_reg_locked(hw, offset, data);
532 }
533 
534 void e1000e_reload_nvm_generic(struct e1000_hw *hw);
535 
536 static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
537 {
538 	if (hw->mac.ops.read_mac_addr)
539 		return hw->mac.ops.read_mac_addr(hw);
540 
541 	return e1000_read_mac_addr_generic(hw);
542 }
543 
544 static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
545 {
546 	return hw->nvm.ops.validate(hw);
547 }
548 
549 static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
550 {
551 	return hw->nvm.ops.update(hw);
552 }
553 
554 static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words,
555 				 u16 *data)
556 {
557 	return hw->nvm.ops.read(hw, offset, words, data);
558 }
559 
560 static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
561 				  u16 *data)
562 {
563 	return hw->nvm.ops.write(hw, offset, words, data);
564 }
565 
566 static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
567 {
568 	return hw->phy.ops.get_info(hw);
569 }
570 
571 static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
572 {
573 	return readl(hw->hw_addr + reg);
574 }
575 
576 #define er32(reg)	__er32(hw, E1000_##reg)
577 
578 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val);
579 
580 #define ew32(reg, val)	__ew32(hw, E1000_##reg, (val))
581 
582 #define e1e_flush()	er32(STATUS)
583 
584 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
585 	(__ew32((a), (reg + ((offset) << 2)), (value)))
586 
587 #define E1000_READ_REG_ARRAY(a, reg, offset) \
588 	(readl((a)->hw_addr + reg + ((offset) << 2)))
589 
590 #endif /* _E1000_H_ */
591