1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* Linux PRO/1000 Ethernet Driver main header file */ 5 6 #ifndef _E1000_H_ 7 #define _E1000_H_ 8 9 #include <linux/bitops.h> 10 #include <linux/types.h> 11 #include <linux/timer.h> 12 #include <linux/workqueue.h> 13 #include <linux/io.h> 14 #include <linux/netdevice.h> 15 #include <linux/pci.h> 16 #include <linux/crc32.h> 17 #include <linux/if_vlan.h> 18 #include <linux/timecounter.h> 19 #include <linux/net_tstamp.h> 20 #include <linux/ptp_clock_kernel.h> 21 #include <linux/ptp_classify.h> 22 #include <linux/mii.h> 23 #include <linux/mdio.h> 24 #include <linux/pm_qos.h> 25 #include "hw.h" 26 27 struct e1000_info; 28 29 #define e_dbg(format, arg...) \ 30 netdev_dbg(hw->adapter->netdev, format, ## arg) 31 #define e_err(format, arg...) \ 32 netdev_err(adapter->netdev, format, ## arg) 33 #define e_info(format, arg...) \ 34 netdev_info(adapter->netdev, format, ## arg) 35 #define e_warn(format, arg...) \ 36 netdev_warn(adapter->netdev, format, ## arg) 37 #define e_notice(format, arg...) \ 38 netdev_notice(adapter->netdev, format, ## arg) 39 40 /* Interrupt modes, as used by the IntMode parameter */ 41 #define E1000E_INT_MODE_LEGACY 0 42 #define E1000E_INT_MODE_MSI 1 43 #define E1000E_INT_MODE_MSIX 2 44 45 /* Tx/Rx descriptor defines */ 46 #define E1000_DEFAULT_TXD 256 47 #define E1000_MAX_TXD 4096 48 #define E1000_MIN_TXD 64 49 50 #define E1000_DEFAULT_RXD 256 51 #define E1000_MAX_RXD 4096 52 #define E1000_MIN_RXD 64 53 54 #define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */ 55 #define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */ 56 57 #define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */ 58 59 /* How many Tx Descriptors do we need to call netif_wake_queue ? */ 60 /* How many Rx Buffers do we bundle into one write to the hardware ? */ 61 #define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */ 62 63 #define AUTO_ALL_MODES 0 64 #define E1000_EEPROM_APME 0x0400 65 66 #define E1000_MNG_VLAN_NONE (-1) 67 68 #define DEFAULT_JUMBO 9234 69 70 /* Time to wait before putting the device into D3 if there's no link (in ms). */ 71 #define LINK_TIMEOUT 100 72 73 /* Count for polling __E1000_RESET condition every 10-20msec. 74 * Experimentation has shown the reset can take approximately 210msec. 75 */ 76 #define E1000_CHECK_RESET_COUNT 25 77 78 #define PCICFG_DESC_RING_STATUS 0xe4 79 #define FLUSH_DESC_REQUIRED 0x100 80 81 /* in the case of WTHRESH, it appears at least the 82571/2 hardware 82 * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when 83 * WTHRESH=4, so a setting of 5 gives the most efficient bus 84 * utilization but to avoid possible Tx stalls, set it to 1 85 */ 86 #define E1000_TXDCTL_DMA_BURST_ENABLE \ 87 (E1000_TXDCTL_GRAN | /* set descriptor granularity */ \ 88 E1000_TXDCTL_COUNT_DESC | \ 89 (1u << 16) | /* wthresh must be +1 more than desired */\ 90 (1u << 8) | /* hthresh */ \ 91 0x1f) /* pthresh */ 92 93 #define E1000_RXDCTL_DMA_BURST_ENABLE \ 94 (0x01000000 | /* set descriptor granularity */ \ 95 (4u << 16) | /* set writeback threshold */ \ 96 (4u << 8) | /* set prefetch threshold */ \ 97 0x20) /* set hthresh */ 98 99 #define E1000_TIDV_FPD BIT(31) 100 #define E1000_RDTR_FPD BIT(31) 101 102 enum e1000_boards { 103 board_82571, 104 board_82572, 105 board_82573, 106 board_82574, 107 board_82583, 108 board_80003es2lan, 109 board_ich8lan, 110 board_ich9lan, 111 board_ich10lan, 112 board_pchlan, 113 board_pch2lan, 114 board_pch_lpt, 115 board_pch_spt, 116 board_pch_cnp 117 }; 118 119 struct e1000_ps_page { 120 struct page *page; 121 u64 dma; /* must be u64 - written to hw */ 122 }; 123 124 /* wrappers around a pointer to a socket buffer, 125 * so a DMA handle can be stored along with the buffer 126 */ 127 struct e1000_buffer { 128 dma_addr_t dma; 129 struct sk_buff *skb; 130 union { 131 /* Tx */ 132 struct { 133 unsigned long time_stamp; 134 u16 length; 135 u16 next_to_watch; 136 unsigned int segs; 137 unsigned int bytecount; 138 u16 mapped_as_page; 139 }; 140 /* Rx */ 141 struct { 142 /* arrays of page information for packet split */ 143 struct e1000_ps_page *ps_pages; 144 struct page *page; 145 }; 146 }; 147 }; 148 149 struct e1000_ring { 150 struct e1000_adapter *adapter; /* back pointer to adapter */ 151 void *desc; /* pointer to ring memory */ 152 dma_addr_t dma; /* phys address of ring */ 153 unsigned int size; /* length of ring in bytes */ 154 unsigned int count; /* number of desc. in ring */ 155 156 u16 next_to_use; 157 u16 next_to_clean; 158 159 void __iomem *head; 160 void __iomem *tail; 161 162 /* array of buffer information structs */ 163 struct e1000_buffer *buffer_info; 164 165 char name[IFNAMSIZ + 5]; 166 u32 ims_val; 167 u32 itr_val; 168 void __iomem *itr_register; 169 int set_itr; 170 171 struct sk_buff *rx_skb_top; 172 }; 173 174 /* PHY register snapshot values */ 175 struct e1000_phy_regs { 176 u16 bmcr; /* basic mode control register */ 177 u16 bmsr; /* basic mode status register */ 178 u16 advertise; /* auto-negotiation advertisement */ 179 u16 lpa; /* link partner ability register */ 180 u16 expansion; /* auto-negotiation expansion reg */ 181 u16 ctrl1000; /* 1000BASE-T control register */ 182 u16 stat1000; /* 1000BASE-T status register */ 183 u16 estatus; /* extended status register */ 184 }; 185 186 /* board specific private data structure */ 187 struct e1000_adapter { 188 struct timer_list watchdog_timer; 189 struct timer_list phy_info_timer; 190 struct timer_list blink_timer; 191 192 struct work_struct reset_task; 193 struct work_struct watchdog_task; 194 195 const struct e1000_info *ei; 196 197 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; 198 u32 bd_number; 199 u32 rx_buffer_len; 200 u16 mng_vlan_id; 201 u16 link_speed; 202 u16 link_duplex; 203 u16 eeprom_vers; 204 205 /* track device up/down/testing state */ 206 unsigned long state; 207 208 /* Interrupt Throttle Rate */ 209 u32 itr; 210 u32 itr_setting; 211 u16 tx_itr; 212 u16 rx_itr; 213 214 /* Tx - one ring per active queue */ 215 struct e1000_ring *tx_ring ____cacheline_aligned_in_smp; 216 u32 tx_fifo_limit; 217 218 struct napi_struct napi; 219 220 unsigned int uncorr_errors; /* uncorrectable ECC errors */ 221 unsigned int corr_errors; /* correctable ECC errors */ 222 unsigned int restart_queue; 223 u32 txd_cmd; 224 225 bool detect_tx_hung; 226 bool tx_hang_recheck; 227 u8 tx_timeout_factor; 228 229 u32 tx_int_delay; 230 u32 tx_abs_int_delay; 231 232 unsigned int total_tx_bytes; 233 unsigned int total_tx_packets; 234 unsigned int total_rx_bytes; 235 unsigned int total_rx_packets; 236 237 /* Tx stats */ 238 u64 tpt_old; 239 u64 colc_old; 240 u32 gotc; 241 u64 gotc_old; 242 u32 tx_timeout_count; 243 u32 tx_fifo_head; 244 u32 tx_head_addr; 245 u32 tx_fifo_size; 246 u32 tx_dma_failed; 247 u32 tx_hwtstamp_timeouts; 248 u32 tx_hwtstamp_skipped; 249 250 /* Rx */ 251 bool (*clean_rx)(struct e1000_ring *ring, int *work_done, 252 int work_to_do) ____cacheline_aligned_in_smp; 253 void (*alloc_rx_buf)(struct e1000_ring *ring, int cleaned_count, 254 gfp_t gfp); 255 struct e1000_ring *rx_ring; 256 257 u32 rx_int_delay; 258 u32 rx_abs_int_delay; 259 260 /* Rx stats */ 261 u64 hw_csum_err; 262 u64 hw_csum_good; 263 u64 rx_hdr_split; 264 u32 gorc; 265 u64 gorc_old; 266 u32 alloc_rx_buff_failed; 267 u32 rx_dma_failed; 268 u32 rx_hwtstamp_cleared; 269 270 unsigned int rx_ps_pages; 271 u16 rx_ps_bsize0; 272 u32 max_frame_size; 273 u32 min_frame_size; 274 275 /* OS defined structs */ 276 struct net_device *netdev; 277 struct pci_dev *pdev; 278 279 /* structs defined in e1000_hw.h */ 280 struct e1000_hw hw; 281 282 spinlock_t stats64_lock; /* protects statistics counters */ 283 struct e1000_hw_stats stats; 284 struct e1000_phy_info phy_info; 285 struct e1000_phy_stats phy_stats; 286 287 /* Snapshot of PHY registers */ 288 struct e1000_phy_regs phy_regs; 289 290 struct e1000_ring test_tx_ring; 291 struct e1000_ring test_rx_ring; 292 u32 test_icr; 293 294 u32 msg_enable; 295 unsigned int num_vectors; 296 struct msix_entry *msix_entries; 297 int int_mode; 298 u32 eiac_mask; 299 300 u32 eeprom_wol; 301 u32 wol; 302 u32 pba; 303 u32 max_hw_frame_size; 304 305 bool fc_autoneg; 306 307 unsigned int flags; 308 unsigned int flags2; 309 struct work_struct downshift_task; 310 struct work_struct update_phy_task; 311 struct work_struct print_hang_task; 312 313 int phy_hang_count; 314 315 u16 tx_ring_count; 316 u16 rx_ring_count; 317 318 struct hwtstamp_config hwtstamp_config; 319 struct delayed_work systim_overflow_work; 320 struct sk_buff *tx_hwtstamp_skb; 321 unsigned long tx_hwtstamp_start; 322 struct work_struct tx_hwtstamp_work; 323 spinlock_t systim_lock; /* protects SYSTIML/H regsters */ 324 struct cyclecounter cc; 325 struct timecounter tc; 326 struct ptp_clock *ptp_clock; 327 struct ptp_clock_info ptp_clock_info; 328 struct pm_qos_request pm_qos_req; 329 s32 ptp_delta; 330 331 u16 eee_advert; 332 }; 333 334 struct e1000_info { 335 enum e1000_mac_type mac; 336 unsigned int flags; 337 unsigned int flags2; 338 u32 pba; 339 u32 max_hw_frame_size; 340 s32 (*get_variants)(struct e1000_adapter *); 341 const struct e1000_mac_operations *mac_ops; 342 const struct e1000_phy_operations *phy_ops; 343 const struct e1000_nvm_operations *nvm_ops; 344 }; 345 346 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca); 347 348 /* The system time is maintained by a 64-bit counter comprised of the 32-bit 349 * SYSTIMH and SYSTIML registers. How the counter increments (and therefore 350 * its resolution) is based on the contents of the TIMINCA register - it 351 * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0). 352 * For the best accuracy, the incperiod should be as small as possible. The 353 * incvalue is scaled by a factor as large as possible (while still fitting 354 * in bits 23:0) so that relatively small clock corrections can be made. 355 * 356 * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of 357 * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n) 358 * bits to count nanoseconds leaving the rest for fractional nonseconds. 359 */ 360 #define INCVALUE_96MHZ 125 361 #define INCVALUE_SHIFT_96MHZ 17 362 #define INCPERIOD_SHIFT_96MHZ 2 363 #define INCPERIOD_96MHZ (12 >> INCPERIOD_SHIFT_96MHZ) 364 365 #define INCVALUE_25MHZ 40 366 #define INCVALUE_SHIFT_25MHZ 18 367 #define INCPERIOD_25MHZ 1 368 369 #define INCVALUE_24MHZ 125 370 #define INCVALUE_SHIFT_24MHZ 14 371 #define INCPERIOD_24MHZ 3 372 373 #define INCVALUE_38400KHZ 26 374 #define INCVALUE_SHIFT_38400KHZ 19 375 #define INCPERIOD_38400KHZ 1 376 377 /* Another drawback of scaling the incvalue by a large factor is the 378 * 64-bit SYSTIM register overflows more quickly. This is dealt with 379 * by simply reading the clock before it overflows. 380 * 381 * Clock ns bits Overflows after 382 * ~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~ 383 * 96MHz 47-bit 2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs 384 * 25MHz 46-bit 2^46 / 10^9 / 3600 = 19.55 hours 385 */ 386 #define E1000_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 60 * 4) 387 #define E1000_MAX_82574_SYSTIM_REREADS 50 388 #define E1000_82574_SYSTIM_EPSILON (1ULL << 35ULL) 389 390 /* hardware capability, feature, and workaround flags */ 391 #define FLAG_HAS_AMT BIT(0) 392 #define FLAG_HAS_FLASH BIT(1) 393 #define FLAG_HAS_HW_VLAN_FILTER BIT(2) 394 #define FLAG_HAS_WOL BIT(3) 395 /* reserved BIT(4) */ 396 #define FLAG_HAS_CTRLEXT_ON_LOAD BIT(5) 397 #define FLAG_HAS_SWSM_ON_LOAD BIT(6) 398 #define FLAG_HAS_JUMBO_FRAMES BIT(7) 399 #define FLAG_READ_ONLY_NVM BIT(8) 400 #define FLAG_IS_ICH BIT(9) 401 #define FLAG_HAS_MSIX BIT(10) 402 #define FLAG_HAS_SMART_POWER_DOWN BIT(11) 403 #define FLAG_IS_QUAD_PORT_A BIT(12) 404 #define FLAG_IS_QUAD_PORT BIT(13) 405 #define FLAG_HAS_HW_TIMESTAMP BIT(14) 406 #define FLAG_APME_IN_WUC BIT(15) 407 #define FLAG_APME_IN_CTRL3 BIT(16) 408 #define FLAG_APME_CHECK_PORT_B BIT(17) 409 #define FLAG_DISABLE_FC_PAUSE_TIME BIT(18) 410 #define FLAG_NO_WAKE_UCAST BIT(19) 411 #define FLAG_MNG_PT_ENABLED BIT(20) 412 #define FLAG_RESET_OVERWRITES_LAA BIT(21) 413 #define FLAG_TARC_SPEED_MODE_BIT BIT(22) 414 #define FLAG_TARC_SET_BIT_ZERO BIT(23) 415 #define FLAG_RX_NEEDS_RESTART BIT(24) 416 #define FLAG_LSC_GIG_SPEED_DROP BIT(25) 417 #define FLAG_SMART_POWER_DOWN BIT(26) 418 #define FLAG_MSI_ENABLED BIT(27) 419 /* reserved BIT(28) */ 420 #define FLAG_TSO_FORCE BIT(29) 421 #define FLAG_RESTART_NOW BIT(30) 422 #define FLAG_MSI_TEST_FAILED BIT(31) 423 424 #define FLAG2_CRC_STRIPPING BIT(0) 425 #define FLAG2_HAS_PHY_WAKEUP BIT(1) 426 #define FLAG2_IS_DISCARDING BIT(2) 427 #define FLAG2_DISABLE_ASPM_L1 BIT(3) 428 #define FLAG2_HAS_PHY_STATS BIT(4) 429 #define FLAG2_HAS_EEE BIT(5) 430 #define FLAG2_DMA_BURST BIT(6) 431 #define FLAG2_DISABLE_ASPM_L0S BIT(7) 432 #define FLAG2_DISABLE_AIM BIT(8) 433 #define FLAG2_CHECK_PHY_HANG BIT(9) 434 #define FLAG2_NO_DISABLE_RX BIT(10) 435 #define FLAG2_PCIM2PCI_ARBITER_WA BIT(11) 436 #define FLAG2_DFLT_CRC_STRIPPING BIT(12) 437 #define FLAG2_CHECK_RX_HWTSTAMP BIT(13) 438 #define FLAG2_CHECK_SYSTIM_OVERFLOW BIT(14) 439 #define FLAG2_ENABLE_S0IX_FLOWS BIT(15) 440 441 #define E1000_RX_DESC_PS(R, i) \ 442 (&(((union e1000_rx_desc_packet_split *)((R).desc))[i])) 443 #define E1000_RX_DESC_EXT(R, i) \ 444 (&(((union e1000_rx_desc_extended *)((R).desc))[i])) 445 #define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) 446 #define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc) 447 #define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc) 448 449 enum e1000_state_t { 450 __E1000_TESTING, 451 __E1000_RESETTING, 452 __E1000_ACCESS_SHARED_RESOURCE, 453 __E1000_DOWN 454 }; 455 456 enum latency_range { 457 lowest_latency = 0, 458 low_latency = 1, 459 bulk_latency = 2, 460 latency_invalid = 255 461 }; 462 463 extern char e1000e_driver_name[]; 464 465 void e1000e_check_options(struct e1000_adapter *adapter); 466 void e1000e_set_ethtool_ops(struct net_device *netdev); 467 468 int e1000e_open(struct net_device *netdev); 469 int e1000e_close(struct net_device *netdev); 470 void e1000e_up(struct e1000_adapter *adapter); 471 void e1000e_down(struct e1000_adapter *adapter, bool reset); 472 void e1000e_reinit_locked(struct e1000_adapter *adapter); 473 void e1000e_reset(struct e1000_adapter *adapter); 474 void e1000e_power_up_phy(struct e1000_adapter *adapter); 475 int e1000e_setup_rx_resources(struct e1000_ring *ring); 476 int e1000e_setup_tx_resources(struct e1000_ring *ring); 477 void e1000e_free_rx_resources(struct e1000_ring *ring); 478 void e1000e_free_tx_resources(struct e1000_ring *ring); 479 void e1000e_get_stats64(struct net_device *netdev, 480 struct rtnl_link_stats64 *stats); 481 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter); 482 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter); 483 void e1000e_get_hw_control(struct e1000_adapter *adapter); 484 void e1000e_release_hw_control(struct e1000_adapter *adapter); 485 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr); 486 487 extern unsigned int copybreak; 488 489 extern const struct e1000_info e1000_82571_info; 490 extern const struct e1000_info e1000_82572_info; 491 extern const struct e1000_info e1000_82573_info; 492 extern const struct e1000_info e1000_82574_info; 493 extern const struct e1000_info e1000_82583_info; 494 extern const struct e1000_info e1000_ich8_info; 495 extern const struct e1000_info e1000_ich9_info; 496 extern const struct e1000_info e1000_ich10_info; 497 extern const struct e1000_info e1000_pch_info; 498 extern const struct e1000_info e1000_pch2_info; 499 extern const struct e1000_info e1000_pch_lpt_info; 500 extern const struct e1000_info e1000_pch_spt_info; 501 extern const struct e1000_info e1000_pch_cnp_info; 502 extern const struct e1000_info e1000_es2_info; 503 504 void e1000e_ptp_init(struct e1000_adapter *adapter); 505 void e1000e_ptp_remove(struct e1000_adapter *adapter); 506 507 u64 e1000e_read_systim(struct e1000_adapter *adapter, 508 struct ptp_system_timestamp *sts); 509 510 static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw) 511 { 512 return hw->phy.ops.reset(hw); 513 } 514 515 static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data) 516 { 517 return hw->phy.ops.read_reg(hw, offset, data); 518 } 519 520 static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data) 521 { 522 return hw->phy.ops.read_reg_locked(hw, offset, data); 523 } 524 525 static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data) 526 { 527 return hw->phy.ops.write_reg(hw, offset, data); 528 } 529 530 static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data) 531 { 532 return hw->phy.ops.write_reg_locked(hw, offset, data); 533 } 534 535 void e1000e_reload_nvm_generic(struct e1000_hw *hw); 536 537 static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw) 538 { 539 if (hw->mac.ops.read_mac_addr) 540 return hw->mac.ops.read_mac_addr(hw); 541 542 return e1000_read_mac_addr_generic(hw); 543 } 544 545 static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 546 { 547 return hw->nvm.ops.validate(hw); 548 } 549 550 static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw) 551 { 552 return hw->nvm.ops.update(hw); 553 } 554 555 static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, 556 u16 *data) 557 { 558 return hw->nvm.ops.read(hw, offset, words, data); 559 } 560 561 static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, 562 u16 *data) 563 { 564 return hw->nvm.ops.write(hw, offset, words, data); 565 } 566 567 static inline s32 e1000_get_phy_info(struct e1000_hw *hw) 568 { 569 return hw->phy.ops.get_info(hw); 570 } 571 572 static inline u32 __er32(struct e1000_hw *hw, unsigned long reg) 573 { 574 return readl(hw->hw_addr + reg); 575 } 576 577 #define er32(reg) __er32(hw, E1000_##reg) 578 579 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val); 580 581 #define ew32(reg, val) __ew32(hw, E1000_##reg, (val)) 582 583 #define e1e_flush() er32(STATUS) 584 585 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \ 586 (__ew32((a), (reg + ((offset) << 2)), (value))) 587 588 #define E1000_READ_REG_ARRAY(a, reg, offset) \ 589 (readl((a)->hw_addr + reg + ((offset) << 2))) 590 591 #endif /* _E1000_H_ */ 592