1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2021 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include <linux/etherdevice.h>
11 
12 static void gve_rx_free_buffer(struct device *dev,
13 			       struct gve_rx_slot_page_info *page_info,
14 			       union gve_rx_data_slot *data_slot)
15 {
16 	dma_addr_t dma = (dma_addr_t)(be64_to_cpu(data_slot->addr) &
17 				      GVE_DATA_SLOT_ADDR_PAGE_MASK);
18 
19 	page_ref_sub(page_info->page, page_info->pagecnt_bias - 1);
20 	gve_free_page(dev, page_info->page, dma, DMA_FROM_DEVICE);
21 }
22 
23 static void gve_rx_unfill_pages(struct gve_priv *priv, struct gve_rx_ring *rx)
24 {
25 	u32 slots = rx->mask + 1;
26 	int i;
27 
28 	if (rx->data.raw_addressing) {
29 		for (i = 0; i < slots; i++)
30 			gve_rx_free_buffer(&priv->pdev->dev, &rx->data.page_info[i],
31 					   &rx->data.data_ring[i]);
32 	} else {
33 		for (i = 0; i < slots; i++)
34 			page_ref_sub(rx->data.page_info[i].page,
35 				     rx->data.page_info[i].pagecnt_bias - 1);
36 		gve_unassign_qpl(priv, rx->data.qpl->id);
37 		rx->data.qpl = NULL;
38 	}
39 	kvfree(rx->data.page_info);
40 	rx->data.page_info = NULL;
41 }
42 
43 static void gve_rx_free_ring(struct gve_priv *priv, int idx)
44 {
45 	struct gve_rx_ring *rx = &priv->rx[idx];
46 	struct device *dev = &priv->pdev->dev;
47 	u32 slots = rx->mask + 1;
48 	size_t bytes;
49 
50 	gve_rx_remove_from_block(priv, idx);
51 
52 	bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt;
53 	dma_free_coherent(dev, bytes, rx->desc.desc_ring, rx->desc.bus);
54 	rx->desc.desc_ring = NULL;
55 
56 	dma_free_coherent(dev, sizeof(*rx->q_resources),
57 			  rx->q_resources, rx->q_resources_bus);
58 	rx->q_resources = NULL;
59 
60 	gve_rx_unfill_pages(priv, rx);
61 
62 	bytes = sizeof(*rx->data.data_ring) * slots;
63 	dma_free_coherent(dev, bytes, rx->data.data_ring,
64 			  rx->data.data_bus);
65 	rx->data.data_ring = NULL;
66 	netif_dbg(priv, drv, priv->dev, "freed rx ring %d\n", idx);
67 }
68 
69 static void gve_setup_rx_buffer(struct gve_rx_slot_page_info *page_info,
70 			     dma_addr_t addr, struct page *page, __be64 *slot_addr)
71 {
72 	page_info->page = page;
73 	page_info->page_offset = 0;
74 	page_info->page_address = page_address(page);
75 	*slot_addr = cpu_to_be64(addr);
76 	/* The page already has 1 ref */
77 	page_ref_add(page, INT_MAX - 1);
78 	page_info->pagecnt_bias = INT_MAX;
79 }
80 
81 static int gve_rx_alloc_buffer(struct gve_priv *priv, struct device *dev,
82 			       struct gve_rx_slot_page_info *page_info,
83 			       union gve_rx_data_slot *data_slot)
84 {
85 	struct page *page;
86 	dma_addr_t dma;
87 	int err;
88 
89 	err = gve_alloc_page(priv, dev, &page, &dma, DMA_FROM_DEVICE,
90 			     GFP_ATOMIC);
91 	if (err)
92 		return err;
93 
94 	gve_setup_rx_buffer(page_info, dma, page, &data_slot->addr);
95 	return 0;
96 }
97 
98 static int gve_prefill_rx_pages(struct gve_rx_ring *rx)
99 {
100 	struct gve_priv *priv = rx->gve;
101 	u32 slots;
102 	int err;
103 	int i;
104 
105 	/* Allocate one page per Rx queue slot. Each page is split into two
106 	 * packet buffers, when possible we "page flip" between the two.
107 	 */
108 	slots = rx->mask + 1;
109 
110 	rx->data.page_info = kvzalloc(slots *
111 				      sizeof(*rx->data.page_info), GFP_KERNEL);
112 	if (!rx->data.page_info)
113 		return -ENOMEM;
114 
115 	if (!rx->data.raw_addressing) {
116 		rx->data.qpl = gve_assign_rx_qpl(priv);
117 		if (!rx->data.qpl) {
118 			kvfree(rx->data.page_info);
119 			rx->data.page_info = NULL;
120 			return -ENOMEM;
121 		}
122 	}
123 	for (i = 0; i < slots; i++) {
124 		if (!rx->data.raw_addressing) {
125 			struct page *page = rx->data.qpl->pages[i];
126 			dma_addr_t addr = i * PAGE_SIZE;
127 
128 			gve_setup_rx_buffer(&rx->data.page_info[i], addr, page,
129 					    &rx->data.data_ring[i].qpl_offset);
130 			continue;
131 		}
132 		err = gve_rx_alloc_buffer(priv, &priv->pdev->dev, &rx->data.page_info[i],
133 					  &rx->data.data_ring[i]);
134 		if (err)
135 			goto alloc_err;
136 	}
137 
138 	return slots;
139 alloc_err:
140 	while (i--)
141 		gve_rx_free_buffer(&priv->pdev->dev,
142 				   &rx->data.page_info[i],
143 				   &rx->data.data_ring[i]);
144 	return err;
145 }
146 
147 static void gve_rx_ctx_clear(struct gve_rx_ctx *ctx)
148 {
149 	ctx->curr_frag_cnt = 0;
150 	ctx->total_expected_size = 0;
151 	ctx->expected_frag_cnt = 0;
152 	ctx->skb_head = NULL;
153 	ctx->skb_tail = NULL;
154 	ctx->reuse_frags = false;
155 }
156 
157 static int gve_rx_alloc_ring(struct gve_priv *priv, int idx)
158 {
159 	struct gve_rx_ring *rx = &priv->rx[idx];
160 	struct device *hdev = &priv->pdev->dev;
161 	u32 slots, npages;
162 	int filled_pages;
163 	size_t bytes;
164 	int err;
165 
166 	netif_dbg(priv, drv, priv->dev, "allocating rx ring\n");
167 	/* Make sure everything is zeroed to start with */
168 	memset(rx, 0, sizeof(*rx));
169 
170 	rx->gve = priv;
171 	rx->q_num = idx;
172 
173 	slots = priv->rx_data_slot_cnt;
174 	rx->mask = slots - 1;
175 	rx->data.raw_addressing = priv->queue_format == GVE_GQI_RDA_FORMAT;
176 
177 	/* alloc rx data ring */
178 	bytes = sizeof(*rx->data.data_ring) * slots;
179 	rx->data.data_ring = dma_alloc_coherent(hdev, bytes,
180 						&rx->data.data_bus,
181 						GFP_KERNEL);
182 	if (!rx->data.data_ring)
183 		return -ENOMEM;
184 	filled_pages = gve_prefill_rx_pages(rx);
185 	if (filled_pages < 0) {
186 		err = -ENOMEM;
187 		goto abort_with_slots;
188 	}
189 	rx->fill_cnt = filled_pages;
190 	/* Ensure data ring slots (packet buffers) are visible. */
191 	dma_wmb();
192 
193 	/* Alloc gve_queue_resources */
194 	rx->q_resources =
195 		dma_alloc_coherent(hdev,
196 				   sizeof(*rx->q_resources),
197 				   &rx->q_resources_bus,
198 				   GFP_KERNEL);
199 	if (!rx->q_resources) {
200 		err = -ENOMEM;
201 		goto abort_filled;
202 	}
203 	netif_dbg(priv, drv, priv->dev, "rx[%d]->data.data_bus=%lx\n", idx,
204 		  (unsigned long)rx->data.data_bus);
205 
206 	/* alloc rx desc ring */
207 	bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt;
208 	npages = bytes / PAGE_SIZE;
209 	if (npages * PAGE_SIZE != bytes) {
210 		err = -EIO;
211 		goto abort_with_q_resources;
212 	}
213 
214 	rx->desc.desc_ring = dma_alloc_coherent(hdev, bytes, &rx->desc.bus,
215 						GFP_KERNEL);
216 	if (!rx->desc.desc_ring) {
217 		err = -ENOMEM;
218 		goto abort_with_q_resources;
219 	}
220 	rx->cnt = 0;
221 	rx->db_threshold = priv->rx_desc_cnt / 2;
222 	rx->desc.seqno = 1;
223 
224 	/* Allocating half-page buffers allows page-flipping which is faster
225 	 * than copying or allocating new pages.
226 	 */
227 	rx->packet_buffer_size = PAGE_SIZE / 2;
228 	gve_rx_ctx_clear(&rx->ctx);
229 	gve_rx_add_to_block(priv, idx);
230 
231 	return 0;
232 
233 abort_with_q_resources:
234 	dma_free_coherent(hdev, sizeof(*rx->q_resources),
235 			  rx->q_resources, rx->q_resources_bus);
236 	rx->q_resources = NULL;
237 abort_filled:
238 	gve_rx_unfill_pages(priv, rx);
239 abort_with_slots:
240 	bytes = sizeof(*rx->data.data_ring) * slots;
241 	dma_free_coherent(hdev, bytes, rx->data.data_ring, rx->data.data_bus);
242 	rx->data.data_ring = NULL;
243 
244 	return err;
245 }
246 
247 int gve_rx_alloc_rings(struct gve_priv *priv)
248 {
249 	int err = 0;
250 	int i;
251 
252 	for (i = 0; i < priv->rx_cfg.num_queues; i++) {
253 		err = gve_rx_alloc_ring(priv, i);
254 		if (err) {
255 			netif_err(priv, drv, priv->dev,
256 				  "Failed to alloc rx ring=%d: err=%d\n",
257 				  i, err);
258 			break;
259 		}
260 	}
261 	/* Unallocate if there was an error */
262 	if (err) {
263 		int j;
264 
265 		for (j = 0; j < i; j++)
266 			gve_rx_free_ring(priv, j);
267 	}
268 	return err;
269 }
270 
271 void gve_rx_free_rings_gqi(struct gve_priv *priv)
272 {
273 	int i;
274 
275 	for (i = 0; i < priv->rx_cfg.num_queues; i++)
276 		gve_rx_free_ring(priv, i);
277 }
278 
279 void gve_rx_write_doorbell(struct gve_priv *priv, struct gve_rx_ring *rx)
280 {
281 	u32 db_idx = be32_to_cpu(rx->q_resources->db_index);
282 
283 	iowrite32be(rx->fill_cnt, &priv->db_bar2[db_idx]);
284 }
285 
286 static enum pkt_hash_types gve_rss_type(__be16 pkt_flags)
287 {
288 	if (likely(pkt_flags & (GVE_RXF_TCP | GVE_RXF_UDP)))
289 		return PKT_HASH_TYPE_L4;
290 	if (pkt_flags & (GVE_RXF_IPV4 | GVE_RXF_IPV6))
291 		return PKT_HASH_TYPE_L3;
292 	return PKT_HASH_TYPE_L2;
293 }
294 
295 static u16 gve_rx_ctx_padding(struct gve_rx_ctx *ctx)
296 {
297 	return (ctx->curr_frag_cnt == 0) ? GVE_RX_PAD : 0;
298 }
299 
300 static struct sk_buff *gve_rx_add_frags(struct napi_struct *napi,
301 					struct gve_rx_slot_page_info *page_info,
302 					u16 packet_buffer_size, u16 len,
303 					struct gve_rx_ctx *ctx)
304 {
305 	u32 offset = page_info->page_offset +  gve_rx_ctx_padding(ctx);
306 	struct sk_buff *skb;
307 
308 	if (!ctx->skb_head)
309 		ctx->skb_head = napi_get_frags(napi);
310 
311 	if (unlikely(!ctx->skb_head))
312 		return NULL;
313 
314 	skb = ctx->skb_head;
315 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page_info->page,
316 			offset, len, packet_buffer_size);
317 
318 	return skb;
319 }
320 
321 static void gve_rx_flip_buff(struct gve_rx_slot_page_info *page_info, __be64 *slot_addr)
322 {
323 	const __be64 offset = cpu_to_be64(PAGE_SIZE / 2);
324 
325 	/* "flip" to other packet buffer on this page */
326 	page_info->page_offset ^= PAGE_SIZE / 2;
327 	*(slot_addr) ^= offset;
328 }
329 
330 static int gve_rx_can_recycle_buffer(struct gve_rx_slot_page_info *page_info)
331 {
332 	int pagecount = page_count(page_info->page);
333 
334 	/* This page is not being used by any SKBs - reuse */
335 	if (pagecount == page_info->pagecnt_bias)
336 		return 1;
337 	/* This page is still being used by an SKB - we can't reuse */
338 	else if (pagecount > page_info->pagecnt_bias)
339 		return 0;
340 	WARN(pagecount < page_info->pagecnt_bias,
341 	     "Pagecount should never be less than the bias.");
342 	return -1;
343 }
344 
345 static struct sk_buff *
346 gve_rx_raw_addressing(struct device *dev, struct net_device *netdev,
347 		      struct gve_rx_slot_page_info *page_info, u16 len,
348 		      struct napi_struct *napi,
349 		      union gve_rx_data_slot *data_slot,
350 		      u16 packet_buffer_size, struct gve_rx_ctx *ctx)
351 {
352 	struct sk_buff *skb = gve_rx_add_frags(napi, page_info, packet_buffer_size, len, ctx);
353 
354 	if (!skb)
355 		return NULL;
356 
357 	/* Optimistically stop the kernel from freeing the page.
358 	 * We will check again in refill to determine if we need to alloc a
359 	 * new page.
360 	 */
361 	gve_dec_pagecnt_bias(page_info);
362 
363 	return skb;
364 }
365 
366 static struct sk_buff *
367 gve_rx_qpl(struct device *dev, struct net_device *netdev,
368 	   struct gve_rx_ring *rx, struct gve_rx_slot_page_info *page_info,
369 	   u16 len, struct napi_struct *napi,
370 	   union gve_rx_data_slot *data_slot)
371 {
372 	struct gve_rx_ctx *ctx = &rx->ctx;
373 	struct sk_buff *skb;
374 
375 	/* if raw_addressing mode is not enabled gvnic can only receive into
376 	 * registered segments. If the buffer can't be recycled, our only
377 	 * choice is to copy the data out of it so that we can return it to the
378 	 * device.
379 	 */
380 	if (ctx->reuse_frags) {
381 		skb = gve_rx_add_frags(napi, page_info, rx->packet_buffer_size, len, ctx);
382 		/* No point in recycling if we didn't get the skb */
383 		if (skb) {
384 			/* Make sure that the page isn't freed. */
385 			gve_dec_pagecnt_bias(page_info);
386 			gve_rx_flip_buff(page_info, &data_slot->qpl_offset);
387 		}
388 	} else {
389 		const u16 padding = gve_rx_ctx_padding(ctx);
390 
391 		skb = gve_rx_copy(netdev, napi, page_info, len, padding, ctx);
392 		if (skb) {
393 			u64_stats_update_begin(&rx->statss);
394 			rx->rx_frag_copy_cnt++;
395 			u64_stats_update_end(&rx->statss);
396 		}
397 	}
398 	return skb;
399 }
400 
401 #define GVE_PKTCONT_BIT_IS_SET(x) (GVE_RXF_PKT_CONT & (x))
402 static u16 gve_rx_get_fragment_size(struct gve_rx_ctx *ctx, struct gve_rx_desc *desc)
403 {
404 	return be16_to_cpu(desc->len) - gve_rx_ctx_padding(ctx);
405 }
406 
407 static bool gve_rx_ctx_init(struct gve_rx_ctx *ctx, struct gve_rx_ring *rx)
408 {
409 	bool qpl_mode = !rx->data.raw_addressing, packet_size_error = false;
410 	bool buffer_error = false, desc_error = false, seqno_error = false;
411 	struct gve_rx_slot_page_info *page_info;
412 	struct gve_priv *priv = rx->gve;
413 	u32 idx = rx->cnt & rx->mask;
414 	bool reuse_frags, can_flip;
415 	struct gve_rx_desc *desc;
416 	u16 packet_size = 0;
417 	u16 n_frags = 0;
418 	int recycle;
419 
420 	/** In QPL mode, we only flip buffers when all buffers containing the packet
421 	 * can be flipped. RDA can_flip decisions will be made later, per frag.
422 	 */
423 	can_flip = qpl_mode;
424 	reuse_frags = can_flip;
425 	do {
426 		u16 frag_size;
427 
428 		n_frags++;
429 		desc = &rx->desc.desc_ring[idx];
430 		desc_error = unlikely(desc->flags_seq & GVE_RXF_ERR) || desc_error;
431 		if (GVE_SEQNO(desc->flags_seq) != rx->desc.seqno) {
432 			seqno_error = true;
433 			netdev_warn(priv->dev,
434 				    "RX seqno error: want=%d, got=%d, dropping packet and scheduling reset.",
435 				    rx->desc.seqno, GVE_SEQNO(desc->flags_seq));
436 		}
437 		frag_size = be16_to_cpu(desc->len);
438 		packet_size += frag_size;
439 		if (frag_size > rx->packet_buffer_size) {
440 			packet_size_error = true;
441 			netdev_warn(priv->dev,
442 				    "RX fragment error: packet_buffer_size=%d, frag_size=%d, droping packet.",
443 				    rx->packet_buffer_size, be16_to_cpu(desc->len));
444 		}
445 		page_info = &rx->data.page_info[idx];
446 		if (can_flip) {
447 			recycle = gve_rx_can_recycle_buffer(page_info);
448 			reuse_frags = reuse_frags && recycle > 0;
449 			buffer_error = buffer_error || unlikely(recycle < 0);
450 		}
451 		idx = (idx + 1) & rx->mask;
452 		rx->desc.seqno = gve_next_seqno(rx->desc.seqno);
453 	} while (GVE_PKTCONT_BIT_IS_SET(desc->flags_seq));
454 
455 	prefetch(rx->desc.desc_ring + idx);
456 
457 	ctx->curr_frag_cnt = 0;
458 	ctx->total_expected_size = packet_size - GVE_RX_PAD;
459 	ctx->expected_frag_cnt = n_frags;
460 	ctx->skb_head = NULL;
461 	ctx->reuse_frags = reuse_frags;
462 
463 	if (ctx->expected_frag_cnt > 1) {
464 		u64_stats_update_begin(&rx->statss);
465 		rx->rx_cont_packet_cnt++;
466 		u64_stats_update_end(&rx->statss);
467 	}
468 	if (ctx->total_expected_size > priv->rx_copybreak && !ctx->reuse_frags && qpl_mode) {
469 		u64_stats_update_begin(&rx->statss);
470 		rx->rx_copied_pkt++;
471 		u64_stats_update_end(&rx->statss);
472 	}
473 
474 	if (unlikely(buffer_error || seqno_error || packet_size_error)) {
475 		gve_schedule_reset(priv);
476 		return false;
477 	}
478 
479 	if (unlikely(desc_error)) {
480 		u64_stats_update_begin(&rx->statss);
481 		rx->rx_desc_err_dropped_pkt++;
482 		u64_stats_update_end(&rx->statss);
483 		return false;
484 	}
485 	return true;
486 }
487 
488 static struct sk_buff *gve_rx_skb(struct gve_priv *priv, struct gve_rx_ring *rx,
489 				  struct gve_rx_slot_page_info *page_info, struct napi_struct *napi,
490 				  u16 len, union gve_rx_data_slot *data_slot)
491 {
492 	struct net_device *netdev = priv->dev;
493 	struct gve_rx_ctx *ctx = &rx->ctx;
494 	struct sk_buff *skb = NULL;
495 
496 	if (len <= priv->rx_copybreak && ctx->expected_frag_cnt == 1) {
497 		/* Just copy small packets */
498 		skb = gve_rx_copy(netdev, napi, page_info, len, GVE_RX_PAD, ctx);
499 		if (skb) {
500 			u64_stats_update_begin(&rx->statss);
501 			rx->rx_copied_pkt++;
502 			rx->rx_frag_copy_cnt++;
503 			rx->rx_copybreak_pkt++;
504 			u64_stats_update_end(&rx->statss);
505 		}
506 	} else {
507 		if (rx->data.raw_addressing) {
508 			int recycle = gve_rx_can_recycle_buffer(page_info);
509 
510 			if (unlikely(recycle < 0)) {
511 				gve_schedule_reset(priv);
512 				return NULL;
513 			}
514 			page_info->can_flip = recycle;
515 			if (page_info->can_flip) {
516 				u64_stats_update_begin(&rx->statss);
517 				rx->rx_frag_flip_cnt++;
518 				u64_stats_update_end(&rx->statss);
519 			}
520 			skb = gve_rx_raw_addressing(&priv->pdev->dev, netdev,
521 						    page_info, len, napi,
522 						    data_slot,
523 						    rx->packet_buffer_size, ctx);
524 		} else {
525 			if (ctx->reuse_frags) {
526 				u64_stats_update_begin(&rx->statss);
527 				rx->rx_frag_flip_cnt++;
528 				u64_stats_update_end(&rx->statss);
529 			}
530 			skb = gve_rx_qpl(&priv->pdev->dev, netdev, rx,
531 					 page_info, len, napi, data_slot);
532 		}
533 	}
534 	return skb;
535 }
536 
537 static bool gve_rx(struct gve_rx_ring *rx, netdev_features_t feat,
538 		   u64 *packet_size_bytes, u32 *work_done)
539 {
540 	struct gve_rx_slot_page_info *page_info;
541 	struct gve_rx_ctx *ctx = &rx->ctx;
542 	union gve_rx_data_slot *data_slot;
543 	struct gve_priv *priv = rx->gve;
544 	struct gve_rx_desc *first_desc;
545 	struct sk_buff *skb = NULL;
546 	struct gve_rx_desc *desc;
547 	struct napi_struct *napi;
548 	dma_addr_t page_bus;
549 	u32 work_cnt = 0;
550 	void *va;
551 	u32 idx;
552 	u16 len;
553 
554 	idx = rx->cnt & rx->mask;
555 	first_desc = &rx->desc.desc_ring[idx];
556 	desc = first_desc;
557 	napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
558 
559 	if (unlikely(!gve_rx_ctx_init(ctx, rx)))
560 		goto skb_alloc_fail;
561 
562 	while (ctx->curr_frag_cnt < ctx->expected_frag_cnt) {
563 		/* Prefetch two packet buffers ahead, we will need it soon. */
564 		page_info = &rx->data.page_info[(idx + 2) & rx->mask];
565 		va = page_info->page_address + page_info->page_offset;
566 
567 		prefetch(page_info->page); /* Kernel page struct. */
568 		prefetch(va);              /* Packet header. */
569 		prefetch(va + 64);         /* Next cacheline too. */
570 
571 		len = gve_rx_get_fragment_size(ctx, desc);
572 
573 		page_info = &rx->data.page_info[idx];
574 		data_slot = &rx->data.data_ring[idx];
575 		page_bus = rx->data.raw_addressing ?
576 			   be64_to_cpu(data_slot->addr) - page_info->page_offset :
577 			   rx->data.qpl->page_buses[idx];
578 		dma_sync_single_for_cpu(&priv->pdev->dev, page_bus, PAGE_SIZE, DMA_FROM_DEVICE);
579 
580 		skb = gve_rx_skb(priv, rx, page_info, napi, len, data_slot);
581 		if (!skb) {
582 			u64_stats_update_begin(&rx->statss);
583 			rx->rx_skb_alloc_fail++;
584 			u64_stats_update_end(&rx->statss);
585 			goto skb_alloc_fail;
586 		}
587 
588 		ctx->curr_frag_cnt++;
589 		rx->cnt++;
590 		idx = rx->cnt & rx->mask;
591 		work_cnt++;
592 		desc = &rx->desc.desc_ring[idx];
593 	}
594 
595 	if (likely(feat & NETIF_F_RXCSUM)) {
596 		/* NIC passes up the partial sum */
597 		if (first_desc->csum)
598 			skb->ip_summed = CHECKSUM_COMPLETE;
599 		else
600 			skb->ip_summed = CHECKSUM_NONE;
601 		skb->csum = csum_unfold(first_desc->csum);
602 	}
603 
604 	/* parse flags & pass relevant info up */
605 	if (likely(feat & NETIF_F_RXHASH) &&
606 	    gve_needs_rss(first_desc->flags_seq))
607 		skb_set_hash(skb, be32_to_cpu(first_desc->rss_hash),
608 			     gve_rss_type(first_desc->flags_seq));
609 
610 	*packet_size_bytes = skb->len + (skb->protocol ? ETH_HLEN : 0);
611 	*work_done = work_cnt;
612 	if (skb_is_nonlinear(skb))
613 		napi_gro_frags(napi);
614 	else
615 		napi_gro_receive(napi, skb);
616 
617 	gve_rx_ctx_clear(ctx);
618 	return true;
619 
620 skb_alloc_fail:
621 	if (napi->skb)
622 		napi_free_frags(napi);
623 	*packet_size_bytes = 0;
624 	*work_done = ctx->expected_frag_cnt;
625 	while (ctx->curr_frag_cnt < ctx->expected_frag_cnt) {
626 		rx->cnt++;
627 		ctx->curr_frag_cnt++;
628 	}
629 	gve_rx_ctx_clear(ctx);
630 	return false;
631 }
632 
633 bool gve_rx_work_pending(struct gve_rx_ring *rx)
634 {
635 	struct gve_rx_desc *desc;
636 	__be16 flags_seq;
637 	u32 next_idx;
638 
639 	next_idx = rx->cnt & rx->mask;
640 	desc = rx->desc.desc_ring + next_idx;
641 
642 	flags_seq = desc->flags_seq;
643 
644 	return (GVE_SEQNO(flags_seq) == rx->desc.seqno);
645 }
646 
647 static bool gve_rx_refill_buffers(struct gve_priv *priv, struct gve_rx_ring *rx)
648 {
649 	int refill_target = rx->mask + 1;
650 	u32 fill_cnt = rx->fill_cnt;
651 
652 	while (fill_cnt - rx->cnt < refill_target) {
653 		struct gve_rx_slot_page_info *page_info;
654 		u32 idx = fill_cnt & rx->mask;
655 
656 		page_info = &rx->data.page_info[idx];
657 		if (page_info->can_flip) {
658 			/* The other half of the page is free because it was
659 			 * free when we processed the descriptor. Flip to it.
660 			 */
661 			union gve_rx_data_slot *data_slot =
662 						&rx->data.data_ring[idx];
663 
664 			gve_rx_flip_buff(page_info, &data_slot->addr);
665 			page_info->can_flip = 0;
666 		} else {
667 			/* It is possible that the networking stack has already
668 			 * finished processing all outstanding packets in the buffer
669 			 * and it can be reused.
670 			 * Flipping is unnecessary here - if the networking stack still
671 			 * owns half the page it is impossible to tell which half. Either
672 			 * the whole page is free or it needs to be replaced.
673 			 */
674 			int recycle = gve_rx_can_recycle_buffer(page_info);
675 
676 			if (recycle < 0) {
677 				if (!rx->data.raw_addressing)
678 					gve_schedule_reset(priv);
679 				return false;
680 			}
681 			if (!recycle) {
682 				/* We can't reuse the buffer - alloc a new one*/
683 				union gve_rx_data_slot *data_slot =
684 						&rx->data.data_ring[idx];
685 				struct device *dev = &priv->pdev->dev;
686 				gve_rx_free_buffer(dev, page_info, data_slot);
687 				page_info->page = NULL;
688 				if (gve_rx_alloc_buffer(priv, dev, page_info,
689 							data_slot)) {
690 					u64_stats_update_begin(&rx->statss);
691 					rx->rx_buf_alloc_fail++;
692 					u64_stats_update_end(&rx->statss);
693 					break;
694 				}
695 			}
696 		}
697 		fill_cnt++;
698 	}
699 	rx->fill_cnt = fill_cnt;
700 	return true;
701 }
702 
703 static int gve_clean_rx_done(struct gve_rx_ring *rx, int budget,
704 			     netdev_features_t feat)
705 {
706 	u32 work_done = 0, total_packet_cnt = 0, ok_packet_cnt = 0;
707 	struct gve_priv *priv = rx->gve;
708 	u32 idx = rx->cnt & rx->mask;
709 	struct gve_rx_desc *desc;
710 	u64 bytes = 0;
711 
712 	desc = &rx->desc.desc_ring[idx];
713 	while ((GVE_SEQNO(desc->flags_seq) == rx->desc.seqno) &&
714 	       work_done < budget) {
715 		u64 packet_size_bytes = 0;
716 		u32 work_cnt = 0;
717 		bool dropped;
718 
719 		netif_info(priv, rx_status, priv->dev,
720 			   "[%d] idx=%d desc=%p desc->flags_seq=0x%x\n",
721 			   rx->q_num, idx, desc, desc->flags_seq);
722 		netif_info(priv, rx_status, priv->dev,
723 			   "[%d] seqno=%d rx->desc.seqno=%d\n",
724 			   rx->q_num, GVE_SEQNO(desc->flags_seq),
725 			   rx->desc.seqno);
726 
727 		dropped = !gve_rx(rx, feat, &packet_size_bytes, &work_cnt);
728 		if (!dropped) {
729 			bytes += packet_size_bytes;
730 			ok_packet_cnt++;
731 		}
732 		total_packet_cnt++;
733 		idx = rx->cnt & rx->mask;
734 		desc = &rx->desc.desc_ring[idx];
735 		work_done += work_cnt;
736 	}
737 
738 	if (!work_done && rx->fill_cnt - rx->cnt > rx->db_threshold)
739 		return 0;
740 
741 	if (work_done) {
742 		u64_stats_update_begin(&rx->statss);
743 		rx->rpackets += ok_packet_cnt;
744 		rx->rbytes += bytes;
745 		u64_stats_update_end(&rx->statss);
746 	}
747 
748 	/* restock ring slots */
749 	if (!rx->data.raw_addressing) {
750 		/* In QPL mode buffs are refilled as the desc are processed */
751 		rx->fill_cnt += work_done;
752 	} else if (rx->fill_cnt - rx->cnt <= rx->db_threshold) {
753 		/* In raw addressing mode buffs are only refilled if the avail
754 		 * falls below a threshold.
755 		 */
756 		if (!gve_rx_refill_buffers(priv, rx))
757 			return 0;
758 
759 		/* If we were not able to completely refill buffers, we'll want
760 		 * to schedule this queue for work again to refill buffers.
761 		 */
762 		if (rx->fill_cnt - rx->cnt <= rx->db_threshold) {
763 			gve_rx_write_doorbell(priv, rx);
764 			return budget;
765 		}
766 	}
767 
768 	gve_rx_write_doorbell(priv, rx);
769 	return total_packet_cnt;
770 }
771 
772 int gve_rx_poll(struct gve_notify_block *block, int budget)
773 {
774 	struct gve_rx_ring *rx = block->rx;
775 	netdev_features_t feat;
776 	int work_done = 0;
777 
778 	feat = block->napi.dev->features;
779 
780 	/* If budget is 0, do all the work */
781 	if (budget == 0)
782 		budget = INT_MAX;
783 
784 	if (budget > 0)
785 		work_done = gve_clean_rx_done(rx, budget, feat);
786 
787 	return work_done;
788 }
789