xref: /openbmc/linux/drivers/net/ethernet/faraday/ftgmac100.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*
2  * Faraday FTGMAC100 Gigabit Ethernet
3  *
4  * (C) Copyright 2009-2011 Faraday Technology
5  * Po-Yu Chuang <ratbert@faraday-tech.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
23 
24 #include <linux/clk.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/etherdevice.h>
27 #include <linux/ethtool.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/module.h>
31 #include <linux/netdevice.h>
32 #include <linux/of.h>
33 #include <linux/phy.h>
34 #include <linux/platform_device.h>
35 #include <linux/property.h>
36 #include <linux/crc32.h>
37 #include <linux/if_vlan.h>
38 #include <linux/of_net.h>
39 #include <net/ip.h>
40 #include <net/ncsi.h>
41 
42 #include "ftgmac100.h"
43 
44 #define DRV_NAME	"ftgmac100"
45 #define DRV_VERSION	"0.7"
46 
47 /* Arbitrary values, I am not sure the HW has limits */
48 #define MAX_RX_QUEUE_ENTRIES	1024
49 #define MAX_TX_QUEUE_ENTRIES	1024
50 #define MIN_RX_QUEUE_ENTRIES	32
51 #define MIN_TX_QUEUE_ENTRIES	32
52 
53 /* Defaults */
54 #define DEF_RX_QUEUE_ENTRIES	128
55 #define DEF_TX_QUEUE_ENTRIES	128
56 
57 #define MAX_PKT_SIZE		1536
58 #define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
59 
60 /* Min number of tx ring entries before stopping queue */
61 #define TX_THRESHOLD		(MAX_SKB_FRAGS + 1)
62 
63 #define FTGMAC_100MHZ		100000000
64 #define FTGMAC_25MHZ		25000000
65 
66 struct ftgmac100 {
67 	/* Registers */
68 	struct resource *res;
69 	void __iomem *base;
70 
71 	/* Rx ring */
72 	unsigned int rx_q_entries;
73 	struct ftgmac100_rxdes *rxdes;
74 	dma_addr_t rxdes_dma;
75 	struct sk_buff **rx_skbs;
76 	unsigned int rx_pointer;
77 	u32 rxdes0_edorr_mask;
78 
79 	/* Tx ring */
80 	unsigned int tx_q_entries;
81 	struct ftgmac100_txdes *txdes;
82 	dma_addr_t txdes_dma;
83 	struct sk_buff **tx_skbs;
84 	unsigned int tx_clean_pointer;
85 	unsigned int tx_pointer;
86 	u32 txdes0_edotr_mask;
87 
88 	/* Used to signal the reset task of ring change request */
89 	unsigned int new_rx_q_entries;
90 	unsigned int new_tx_q_entries;
91 
92 	/* Scratch page to use when rx skb alloc fails */
93 	void *rx_scratch;
94 	dma_addr_t rx_scratch_dma;
95 
96 	/* Component structures */
97 	struct net_device *netdev;
98 	struct device *dev;
99 	struct ncsi_dev *ndev;
100 	struct napi_struct napi;
101 	struct work_struct reset_task;
102 	struct mii_bus *mii_bus;
103 	struct clk *clk;
104 
105 	/* Link management */
106 	int cur_speed;
107 	int cur_duplex;
108 	bool use_ncsi;
109 
110 	/* Multicast filter settings */
111 	u32 maht0;
112 	u32 maht1;
113 
114 	/* Flow control settings */
115 	bool tx_pause;
116 	bool rx_pause;
117 	bool aneg_pause;
118 
119 	/* Misc */
120 	bool need_mac_restart;
121 	bool is_aspeed;
122 };
123 
124 static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
125 {
126 	struct net_device *netdev = priv->netdev;
127 	int i;
128 
129 	/* NOTE: reset clears all registers */
130 	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
131 	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
132 		  priv->base + FTGMAC100_OFFSET_MACCR);
133 	for (i = 0; i < 200; i++) {
134 		unsigned int maccr;
135 
136 		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
137 		if (!(maccr & FTGMAC100_MACCR_SW_RST))
138 			return 0;
139 
140 		udelay(1);
141 	}
142 
143 	netdev_err(netdev, "Hardware reset failed\n");
144 	return -EIO;
145 }
146 
147 static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
148 {
149 	u32 maccr = 0;
150 
151 	switch (priv->cur_speed) {
152 	case SPEED_10:
153 	case 0: /* no link */
154 		break;
155 
156 	case SPEED_100:
157 		maccr |= FTGMAC100_MACCR_FAST_MODE;
158 		break;
159 
160 	case SPEED_1000:
161 		maccr |= FTGMAC100_MACCR_GIGA_MODE;
162 		break;
163 	default:
164 		netdev_err(priv->netdev, "Unknown speed %d !\n",
165 			   priv->cur_speed);
166 		break;
167 	}
168 
169 	/* (Re)initialize the queue pointers */
170 	priv->rx_pointer = 0;
171 	priv->tx_clean_pointer = 0;
172 	priv->tx_pointer = 0;
173 
174 	/* The doc says reset twice with 10us interval */
175 	if (ftgmac100_reset_mac(priv, maccr))
176 		return -EIO;
177 	usleep_range(10, 1000);
178 	return ftgmac100_reset_mac(priv, maccr);
179 }
180 
181 static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
182 {
183 	unsigned int maddr = mac[0] << 8 | mac[1];
184 	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
185 
186 	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
187 	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
188 }
189 
190 static void ftgmac100_initial_mac(struct ftgmac100 *priv)
191 {
192 	u8 mac[ETH_ALEN];
193 	unsigned int m;
194 	unsigned int l;
195 	void *addr;
196 
197 	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
198 	if (addr) {
199 		ether_addr_copy(priv->netdev->dev_addr, mac);
200 		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
201 			 mac);
202 		return;
203 	}
204 
205 	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
206 	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
207 
208 	mac[0] = (m >> 8) & 0xff;
209 	mac[1] = m & 0xff;
210 	mac[2] = (l >> 24) & 0xff;
211 	mac[3] = (l >> 16) & 0xff;
212 	mac[4] = (l >> 8) & 0xff;
213 	mac[5] = l & 0xff;
214 
215 	if (is_valid_ether_addr(mac)) {
216 		ether_addr_copy(priv->netdev->dev_addr, mac);
217 		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
218 	} else {
219 		eth_hw_addr_random(priv->netdev);
220 		dev_info(priv->dev, "Generated random MAC address %pM\n",
221 			 priv->netdev->dev_addr);
222 	}
223 }
224 
225 static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
226 {
227 	int ret;
228 
229 	ret = eth_prepare_mac_addr_change(dev, p);
230 	if (ret < 0)
231 		return ret;
232 
233 	eth_commit_mac_addr_change(dev, p);
234 	ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
235 
236 	return 0;
237 }
238 
239 static void ftgmac100_config_pause(struct ftgmac100 *priv)
240 {
241 	u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
242 
243 	/* Throttle tx queue when receiving pause frames */
244 	if (priv->rx_pause)
245 		fcr |= FTGMAC100_FCR_FC_EN;
246 
247 	/* Enables sending pause frames when the RX queue is past a
248 	 * certain threshold.
249 	 */
250 	if (priv->tx_pause)
251 		fcr |= FTGMAC100_FCR_FCTHR_EN;
252 
253 	iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
254 }
255 
256 static void ftgmac100_init_hw(struct ftgmac100 *priv)
257 {
258 	u32 reg, rfifo_sz, tfifo_sz;
259 
260 	/* Clear stale interrupts */
261 	reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
262 	iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
263 
264 	/* Setup RX ring buffer base */
265 	iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
266 
267 	/* Setup TX ring buffer base */
268 	iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
269 
270 	/* Configure RX buffer size */
271 	iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
272 		  priv->base + FTGMAC100_OFFSET_RBSR);
273 
274 	/* Set RX descriptor autopoll */
275 	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
276 		  priv->base + FTGMAC100_OFFSET_APTC);
277 
278 	/* Write MAC address */
279 	ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
280 
281 	/* Write multicast filter */
282 	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
283 	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
284 
285 	/* Configure descriptor sizes and increase burst sizes according
286 	 * to values in Aspeed SDK. The FIFO arbitration is enabled and
287 	 * the thresholds set based on the recommended values in the
288 	 * AST2400 specification.
289 	 */
290 	iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) |   /* 2*8 bytes RX descs */
291 		  FTGMAC100_DBLAC_TXDES_SIZE(2) |   /* 2*8 bytes TX descs */
292 		  FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
293 		  FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
294 		  FTGMAC100_DBLAC_RX_THR_EN |       /* Enable fifo threshold arb */
295 		  FTGMAC100_DBLAC_RXFIFO_HTHR(6) |  /* 6/8 of FIFO high threshold */
296 		  FTGMAC100_DBLAC_RXFIFO_LTHR(2),   /* 2/8 of FIFO low threshold */
297 		  priv->base + FTGMAC100_OFFSET_DBLAC);
298 
299 	/* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
300 	 * mitigation doesn't seem to provide any benefit with NAPI so leave
301 	 * it at that.
302 	 */
303 	iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
304 		  FTGMAC100_ITC_TXINT_THR(1),
305 		  priv->base + FTGMAC100_OFFSET_ITC);
306 
307 	/* Configure FIFO sizes in the TPAFCR register */
308 	reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
309 	rfifo_sz = reg & 0x00000007;
310 	tfifo_sz = (reg >> 3) & 0x00000007;
311 	reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
312 	reg &= ~0x3f000000;
313 	reg |= (tfifo_sz << 27);
314 	reg |= (rfifo_sz << 24);
315 	iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
316 }
317 
318 static void ftgmac100_start_hw(struct ftgmac100 *priv)
319 {
320 	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
321 
322 	/* Keep the original GMAC and FAST bits */
323 	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
324 
325 	/* Add all the main enable bits */
326 	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
327 		 FTGMAC100_MACCR_RXDMA_EN	|
328 		 FTGMAC100_MACCR_TXMAC_EN	|
329 		 FTGMAC100_MACCR_RXMAC_EN	|
330 		 FTGMAC100_MACCR_CRC_APD	|
331 		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
332 		 FTGMAC100_MACCR_RX_RUNT	|
333 		 FTGMAC100_MACCR_RX_BROADPKT;
334 
335 	/* Add other bits as needed */
336 	if (priv->cur_duplex == DUPLEX_FULL)
337 		maccr |= FTGMAC100_MACCR_FULLDUP;
338 	if (priv->netdev->flags & IFF_PROMISC)
339 		maccr |= FTGMAC100_MACCR_RX_ALL;
340 	if (priv->netdev->flags & IFF_ALLMULTI)
341 		maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
342 	else if (netdev_mc_count(priv->netdev))
343 		maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
344 
345 	/* Vlan filtering enabled */
346 	if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
347 		maccr |= FTGMAC100_MACCR_RM_VLAN;
348 
349 	/* Hit the HW */
350 	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
351 }
352 
353 static void ftgmac100_stop_hw(struct ftgmac100 *priv)
354 {
355 	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
356 }
357 
358 static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
359 {
360 	struct netdev_hw_addr *ha;
361 
362 	priv->maht1 = 0;
363 	priv->maht0 = 0;
364 	netdev_for_each_mc_addr(ha, priv->netdev) {
365 		u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
366 
367 		crc_val = (~(crc_val >> 2)) & 0x3f;
368 		if (crc_val >= 32)
369 			priv->maht1 |= 1ul << (crc_val - 32);
370 		else
371 			priv->maht0 |= 1ul << (crc_val);
372 	}
373 }
374 
375 static void ftgmac100_set_rx_mode(struct net_device *netdev)
376 {
377 	struct ftgmac100 *priv = netdev_priv(netdev);
378 
379 	/* Setup the hash filter */
380 	ftgmac100_calc_mc_hash(priv);
381 
382 	/* Interface down ? that's all there is to do */
383 	if (!netif_running(netdev))
384 		return;
385 
386 	/* Update the HW */
387 	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
388 	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
389 
390 	/* Reconfigure MACCR */
391 	ftgmac100_start_hw(priv);
392 }
393 
394 static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
395 				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
396 {
397 	struct net_device *netdev = priv->netdev;
398 	struct sk_buff *skb;
399 	dma_addr_t map;
400 	int err = 0;
401 
402 	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
403 	if (unlikely(!skb)) {
404 		if (net_ratelimit())
405 			netdev_warn(netdev, "failed to allocate rx skb\n");
406 		err = -ENOMEM;
407 		map = priv->rx_scratch_dma;
408 	} else {
409 		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
410 				     DMA_FROM_DEVICE);
411 		if (unlikely(dma_mapping_error(priv->dev, map))) {
412 			if (net_ratelimit())
413 				netdev_err(netdev, "failed to map rx page\n");
414 			dev_kfree_skb_any(skb);
415 			map = priv->rx_scratch_dma;
416 			skb = NULL;
417 			err = -ENOMEM;
418 		}
419 	}
420 
421 	/* Store skb */
422 	priv->rx_skbs[entry] = skb;
423 
424 	/* Store DMA address into RX desc */
425 	rxdes->rxdes3 = cpu_to_le32(map);
426 
427 	/* Ensure the above is ordered vs clearing the OWN bit */
428 	dma_wmb();
429 
430 	/* Clean status (which resets own bit) */
431 	if (entry == (priv->rx_q_entries - 1))
432 		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
433 	else
434 		rxdes->rxdes0 = 0;
435 
436 	return err;
437 }
438 
439 static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
440 					      unsigned int pointer)
441 {
442 	return (pointer + 1) & (priv->rx_q_entries - 1);
443 }
444 
445 static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
446 {
447 	struct net_device *netdev = priv->netdev;
448 
449 	if (status & FTGMAC100_RXDES0_RX_ERR)
450 		netdev->stats.rx_errors++;
451 
452 	if (status & FTGMAC100_RXDES0_CRC_ERR)
453 		netdev->stats.rx_crc_errors++;
454 
455 	if (status & (FTGMAC100_RXDES0_FTL |
456 		      FTGMAC100_RXDES0_RUNT |
457 		      FTGMAC100_RXDES0_RX_ODD_NB))
458 		netdev->stats.rx_length_errors++;
459 }
460 
461 static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
462 {
463 	struct net_device *netdev = priv->netdev;
464 	struct ftgmac100_rxdes *rxdes;
465 	struct sk_buff *skb;
466 	unsigned int pointer, size;
467 	u32 status, csum_vlan;
468 	dma_addr_t map;
469 
470 	/* Grab next RX descriptor */
471 	pointer = priv->rx_pointer;
472 	rxdes = &priv->rxdes[pointer];
473 
474 	/* Grab descriptor status */
475 	status = le32_to_cpu(rxdes->rxdes0);
476 
477 	/* Do we have a packet ? */
478 	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
479 		return false;
480 
481 	/* Order subsequent reads with the test for the ready bit */
482 	dma_rmb();
483 
484 	/* We don't cope with fragmented RX packets */
485 	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
486 		     !(status & FTGMAC100_RXDES0_LRS)))
487 		goto drop;
488 
489 	/* Grab received size and csum vlan field in the descriptor */
490 	size = status & FTGMAC100_RXDES0_VDBC;
491 	csum_vlan = le32_to_cpu(rxdes->rxdes1);
492 
493 	/* Any error (other than csum offload) flagged ? */
494 	if (unlikely(status & RXDES0_ANY_ERROR)) {
495 		/* Correct for incorrect flagging of runt packets
496 		 * with vlan tags... Just accept a runt packet that
497 		 * has been flagged as vlan and whose size is at
498 		 * least 60 bytes.
499 		 */
500 		if ((status & FTGMAC100_RXDES0_RUNT) &&
501 		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
502 		    (size >= 60))
503 			status &= ~FTGMAC100_RXDES0_RUNT;
504 
505 		/* Any error still in there ? */
506 		if (status & RXDES0_ANY_ERROR) {
507 			ftgmac100_rx_packet_error(priv, status);
508 			goto drop;
509 		}
510 	}
511 
512 	/* If the packet had no skb (failed to allocate earlier)
513 	 * then try to allocate one and skip
514 	 */
515 	skb = priv->rx_skbs[pointer];
516 	if (!unlikely(skb)) {
517 		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
518 		goto drop;
519 	}
520 
521 	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
522 		netdev->stats.multicast++;
523 
524 	/* If the HW found checksum errors, bounce it to software.
525 	 *
526 	 * If we didn't, we need to see if the packet was recognized
527 	 * by HW as one of the supported checksummed protocols before
528 	 * we accept the HW test results.
529 	 */
530 	if (netdev->features & NETIF_F_RXCSUM) {
531 		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
532 			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
533 			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
534 		if ((csum_vlan & err_bits) ||
535 		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
536 			skb->ip_summed = CHECKSUM_NONE;
537 		else
538 			skb->ip_summed = CHECKSUM_UNNECESSARY;
539 	}
540 
541 	/* Transfer received size to skb */
542 	skb_put(skb, size);
543 
544 	/* Extract vlan tag */
545 	if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
546 	    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
547 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
548 				       csum_vlan & 0xffff);
549 
550 	/* Tear down DMA mapping, do necessary cache management */
551 	map = le32_to_cpu(rxdes->rxdes3);
552 
553 #if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
554 	/* When we don't have an iommu, we can save cycles by not
555 	 * invalidating the cache for the part of the packet that
556 	 * wasn't received.
557 	 */
558 	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
559 #else
560 	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
561 #endif
562 
563 
564 	/* Resplenish rx ring */
565 	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
566 	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
567 
568 	skb->protocol = eth_type_trans(skb, netdev);
569 
570 	netdev->stats.rx_packets++;
571 	netdev->stats.rx_bytes += size;
572 
573 	/* push packet to protocol stack */
574 	if (skb->ip_summed == CHECKSUM_NONE)
575 		netif_receive_skb(skb);
576 	else
577 		napi_gro_receive(&priv->napi, skb);
578 
579 	(*processed)++;
580 	return true;
581 
582  drop:
583 	/* Clean rxdes0 (which resets own bit) */
584 	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
585 	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
586 	netdev->stats.rx_dropped++;
587 	return true;
588 }
589 
590 static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
591 				     unsigned int index)
592 {
593 	if (index == (priv->tx_q_entries - 1))
594 		return priv->txdes0_edotr_mask;
595 	else
596 		return 0;
597 }
598 
599 static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
600 					      unsigned int pointer)
601 {
602 	return (pointer + 1) & (priv->tx_q_entries - 1);
603 }
604 
605 static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
606 {
607 	/* Returns the number of available slots in the TX queue
608 	 *
609 	 * This always leaves one free slot so we don't have to
610 	 * worry about empty vs. full, and this simplifies the
611 	 * test for ftgmac100_tx_buf_cleanable() below
612 	 */
613 	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
614 		(priv->tx_q_entries - 1);
615 }
616 
617 static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
618 {
619 	return priv->tx_pointer != priv->tx_clean_pointer;
620 }
621 
622 static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
623 				     unsigned int pointer,
624 				     struct sk_buff *skb,
625 				     struct ftgmac100_txdes *txdes,
626 				     u32 ctl_stat)
627 {
628 	dma_addr_t map = le32_to_cpu(txdes->txdes3);
629 	size_t len;
630 
631 	if (ctl_stat & FTGMAC100_TXDES0_FTS) {
632 		len = skb_headlen(skb);
633 		dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
634 	} else {
635 		len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
636 		dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
637 	}
638 
639 	/* Free SKB on last segment */
640 	if (ctl_stat & FTGMAC100_TXDES0_LTS)
641 		dev_kfree_skb(skb);
642 	priv->tx_skbs[pointer] = NULL;
643 }
644 
645 static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
646 {
647 	struct net_device *netdev = priv->netdev;
648 	struct ftgmac100_txdes *txdes;
649 	struct sk_buff *skb;
650 	unsigned int pointer;
651 	u32 ctl_stat;
652 
653 	pointer = priv->tx_clean_pointer;
654 	txdes = &priv->txdes[pointer];
655 
656 	ctl_stat = le32_to_cpu(txdes->txdes0);
657 	if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
658 		return false;
659 
660 	skb = priv->tx_skbs[pointer];
661 	netdev->stats.tx_packets++;
662 	netdev->stats.tx_bytes += skb->len;
663 	ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
664 	txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
665 
666 	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
667 
668 	return true;
669 }
670 
671 static void ftgmac100_tx_complete(struct ftgmac100 *priv)
672 {
673 	struct net_device *netdev = priv->netdev;
674 
675 	/* Process all completed packets */
676 	while (ftgmac100_tx_buf_cleanable(priv) &&
677 	       ftgmac100_tx_complete_packet(priv))
678 		;
679 
680 	/* Restart queue if needed */
681 	smp_mb();
682 	if (unlikely(netif_queue_stopped(netdev) &&
683 		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
684 		struct netdev_queue *txq;
685 
686 		txq = netdev_get_tx_queue(netdev, 0);
687 		__netif_tx_lock(txq, smp_processor_id());
688 		if (netif_queue_stopped(netdev) &&
689 		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
690 			netif_wake_queue(netdev);
691 		__netif_tx_unlock(txq);
692 	}
693 }
694 
695 static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
696 {
697 	if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
698 		u8 ip_proto = ip_hdr(skb)->protocol;
699 
700 		*csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
701 		switch(ip_proto) {
702 		case IPPROTO_TCP:
703 			*csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
704 			return true;
705 		case IPPROTO_UDP:
706 			*csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
707 			return true;
708 		case IPPROTO_IP:
709 			return true;
710 		}
711 	}
712 	return skb_checksum_help(skb) == 0;
713 }
714 
715 static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
716 				     struct net_device *netdev)
717 {
718 	struct ftgmac100 *priv = netdev_priv(netdev);
719 	struct ftgmac100_txdes *txdes, *first;
720 	unsigned int pointer, nfrags, len, i, j;
721 	u32 f_ctl_stat, ctl_stat, csum_vlan;
722 	dma_addr_t map;
723 
724 	/* The HW doesn't pad small frames */
725 	if (eth_skb_pad(skb)) {
726 		netdev->stats.tx_dropped++;
727 		return NETDEV_TX_OK;
728 	}
729 
730 	/* Reject oversize packets */
731 	if (unlikely(skb->len > MAX_PKT_SIZE)) {
732 		if (net_ratelimit())
733 			netdev_dbg(netdev, "tx packet too big\n");
734 		goto drop;
735 	}
736 
737 	/* Do we have a limit on #fragments ? I yet have to get a reply
738 	 * from Aspeed. If there's one I haven't hit it.
739 	 */
740 	nfrags = skb_shinfo(skb)->nr_frags;
741 
742 	/* Get header len */
743 	len = skb_headlen(skb);
744 
745 	/* Map the packet head */
746 	map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
747 	if (dma_mapping_error(priv->dev, map)) {
748 		if (net_ratelimit())
749 			netdev_err(netdev, "map tx packet head failed\n");
750 		goto drop;
751 	}
752 
753 	/* Grab the next free tx descriptor */
754 	pointer = priv->tx_pointer;
755 	txdes = first = &priv->txdes[pointer];
756 
757 	/* Setup it up with the packet head. Don't write the head to the
758 	 * ring just yet
759 	 */
760 	priv->tx_skbs[pointer] = skb;
761 	f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
762 	f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
763 	f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
764 	f_ctl_stat |= FTGMAC100_TXDES0_FTS;
765 	if (nfrags == 0)
766 		f_ctl_stat |= FTGMAC100_TXDES0_LTS;
767 	txdes->txdes3 = cpu_to_le32(map);
768 
769 	/* Setup HW checksumming */
770 	csum_vlan = 0;
771 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
772 	    !ftgmac100_prep_tx_csum(skb, &csum_vlan))
773 		goto drop;
774 
775 	/* Add VLAN tag */
776 	if (skb_vlan_tag_present(skb)) {
777 		csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
778 		csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
779 	}
780 
781 	txdes->txdes1 = cpu_to_le32(csum_vlan);
782 
783 	/* Next descriptor */
784 	pointer = ftgmac100_next_tx_pointer(priv, pointer);
785 
786 	/* Add the fragments */
787 	for (i = 0; i < nfrags; i++) {
788 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
789 
790 		len = frag->size;
791 
792 		/* Map it */
793 		map = skb_frag_dma_map(priv->dev, frag, 0, len,
794 				       DMA_TO_DEVICE);
795 		if (dma_mapping_error(priv->dev, map))
796 			goto dma_err;
797 
798 		/* Setup descriptor */
799 		priv->tx_skbs[pointer] = skb;
800 		txdes = &priv->txdes[pointer];
801 		ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
802 		ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
803 		ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
804 		if (i == (nfrags - 1))
805 			ctl_stat |= FTGMAC100_TXDES0_LTS;
806 		txdes->txdes0 = cpu_to_le32(ctl_stat);
807 		txdes->txdes1 = 0;
808 		txdes->txdes3 = cpu_to_le32(map);
809 
810 		/* Next one */
811 		pointer = ftgmac100_next_tx_pointer(priv, pointer);
812 	}
813 
814 	/* Order the previous packet and descriptor udpates
815 	 * before setting the OWN bit on the first descriptor.
816 	 */
817 	dma_wmb();
818 	first->txdes0 = cpu_to_le32(f_ctl_stat);
819 
820 	/* Update next TX pointer */
821 	priv->tx_pointer = pointer;
822 
823 	/* If there isn't enough room for all the fragments of a new packet
824 	 * in the TX ring, stop the queue. The sequence below is race free
825 	 * vs. a concurrent restart in ftgmac100_poll()
826 	 */
827 	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
828 		netif_stop_queue(netdev);
829 		/* Order the queue stop with the test below */
830 		smp_mb();
831 		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
832 			netif_wake_queue(netdev);
833 	}
834 
835 	/* Poke transmitter to read the updated TX descriptors */
836 	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
837 
838 	return NETDEV_TX_OK;
839 
840  dma_err:
841 	if (net_ratelimit())
842 		netdev_err(netdev, "map tx fragment failed\n");
843 
844 	/* Free head */
845 	pointer = priv->tx_pointer;
846 	ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
847 	first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
848 
849 	/* Then all fragments */
850 	for (j = 0; j < i; j++) {
851 		pointer = ftgmac100_next_tx_pointer(priv, pointer);
852 		txdes = &priv->txdes[pointer];
853 		ctl_stat = le32_to_cpu(txdes->txdes0);
854 		ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
855 		txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
856 	}
857 
858 	/* This cannot be reached if we successfully mapped the
859 	 * last fragment, so we know ftgmac100_free_tx_packet()
860 	 * hasn't freed the skb yet.
861 	 */
862  drop:
863 	/* Drop the packet */
864 	dev_kfree_skb_any(skb);
865 	netdev->stats.tx_dropped++;
866 
867 	return NETDEV_TX_OK;
868 }
869 
870 static void ftgmac100_free_buffers(struct ftgmac100 *priv)
871 {
872 	int i;
873 
874 	/* Free all RX buffers */
875 	for (i = 0; i < priv->rx_q_entries; i++) {
876 		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
877 		struct sk_buff *skb = priv->rx_skbs[i];
878 		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
879 
880 		if (!skb)
881 			continue;
882 
883 		priv->rx_skbs[i] = NULL;
884 		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
885 		dev_kfree_skb_any(skb);
886 	}
887 
888 	/* Free all TX buffers */
889 	for (i = 0; i < priv->tx_q_entries; i++) {
890 		struct ftgmac100_txdes *txdes = &priv->txdes[i];
891 		struct sk_buff *skb = priv->tx_skbs[i];
892 
893 		if (!skb)
894 			continue;
895 		ftgmac100_free_tx_packet(priv, i, skb, txdes,
896 					 le32_to_cpu(txdes->txdes0));
897 	}
898 }
899 
900 static void ftgmac100_free_rings(struct ftgmac100 *priv)
901 {
902 	/* Free skb arrays */
903 	kfree(priv->rx_skbs);
904 	kfree(priv->tx_skbs);
905 
906 	/* Free descriptors */
907 	if (priv->rxdes)
908 		dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
909 				  sizeof(struct ftgmac100_rxdes),
910 				  priv->rxdes, priv->rxdes_dma);
911 	priv->rxdes = NULL;
912 
913 	if (priv->txdes)
914 		dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
915 				  sizeof(struct ftgmac100_txdes),
916 				  priv->txdes, priv->txdes_dma);
917 	priv->txdes = NULL;
918 
919 	/* Free scratch packet buffer */
920 	if (priv->rx_scratch)
921 		dma_free_coherent(priv->dev, RX_BUF_SIZE,
922 				  priv->rx_scratch, priv->rx_scratch_dma);
923 }
924 
925 static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
926 {
927 	/* Allocate skb arrays */
928 	priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
929 				GFP_KERNEL);
930 	if (!priv->rx_skbs)
931 		return -ENOMEM;
932 	priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
933 				GFP_KERNEL);
934 	if (!priv->tx_skbs)
935 		return -ENOMEM;
936 
937 	/* Allocate descriptors */
938 	priv->rxdes = dma_zalloc_coherent(priv->dev,
939 					  MAX_RX_QUEUE_ENTRIES *
940 					  sizeof(struct ftgmac100_rxdes),
941 					  &priv->rxdes_dma, GFP_KERNEL);
942 	if (!priv->rxdes)
943 		return -ENOMEM;
944 	priv->txdes = dma_zalloc_coherent(priv->dev,
945 					  MAX_TX_QUEUE_ENTRIES *
946 					  sizeof(struct ftgmac100_txdes),
947 					  &priv->txdes_dma, GFP_KERNEL);
948 	if (!priv->txdes)
949 		return -ENOMEM;
950 
951 	/* Allocate scratch packet buffer */
952 	priv->rx_scratch = dma_alloc_coherent(priv->dev,
953 					      RX_BUF_SIZE,
954 					      &priv->rx_scratch_dma,
955 					      GFP_KERNEL);
956 	if (!priv->rx_scratch)
957 		return -ENOMEM;
958 
959 	return 0;
960 }
961 
962 static void ftgmac100_init_rings(struct ftgmac100 *priv)
963 {
964 	struct ftgmac100_rxdes *rxdes = NULL;
965 	struct ftgmac100_txdes *txdes = NULL;
966 	int i;
967 
968 	/* Update entries counts */
969 	priv->rx_q_entries = priv->new_rx_q_entries;
970 	priv->tx_q_entries = priv->new_tx_q_entries;
971 
972 	if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
973 		return;
974 
975 	/* Initialize RX ring */
976 	for (i = 0; i < priv->rx_q_entries; i++) {
977 		rxdes = &priv->rxdes[i];
978 		rxdes->rxdes0 = 0;
979 		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
980 	}
981 	/* Mark the end of the ring */
982 	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
983 
984 	if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
985 		return;
986 
987 	/* Initialize TX ring */
988 	for (i = 0; i < priv->tx_q_entries; i++) {
989 		txdes = &priv->txdes[i];
990 		txdes->txdes0 = 0;
991 	}
992 	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
993 }
994 
995 static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
996 {
997 	int i;
998 
999 	for (i = 0; i < priv->rx_q_entries; i++) {
1000 		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
1001 
1002 		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
1003 			return -ENOMEM;
1004 	}
1005 	return 0;
1006 }
1007 
1008 static void ftgmac100_adjust_link(struct net_device *netdev)
1009 {
1010 	struct ftgmac100 *priv = netdev_priv(netdev);
1011 	struct phy_device *phydev = netdev->phydev;
1012 	bool tx_pause, rx_pause;
1013 	int new_speed;
1014 
1015 	/* We store "no link" as speed 0 */
1016 	if (!phydev->link)
1017 		new_speed = 0;
1018 	else
1019 		new_speed = phydev->speed;
1020 
1021 	/* Grab pause settings from PHY if configured to do so */
1022 	if (priv->aneg_pause) {
1023 		rx_pause = tx_pause = phydev->pause;
1024 		if (phydev->asym_pause)
1025 			tx_pause = !rx_pause;
1026 	} else {
1027 		rx_pause = priv->rx_pause;
1028 		tx_pause = priv->tx_pause;
1029 	}
1030 
1031 	/* Link hasn't changed, do nothing */
1032 	if (phydev->speed == priv->cur_speed &&
1033 	    phydev->duplex == priv->cur_duplex &&
1034 	    rx_pause == priv->rx_pause &&
1035 	    tx_pause == priv->tx_pause)
1036 		return;
1037 
1038 	/* Print status if we have a link or we had one and just lost it,
1039 	 * don't print otherwise.
1040 	 */
1041 	if (new_speed || priv->cur_speed)
1042 		phy_print_status(phydev);
1043 
1044 	priv->cur_speed = new_speed;
1045 	priv->cur_duplex = phydev->duplex;
1046 	priv->rx_pause = rx_pause;
1047 	priv->tx_pause = tx_pause;
1048 
1049 	/* Link is down, do nothing else */
1050 	if (!new_speed)
1051 		return;
1052 
1053 	/* Disable all interrupts */
1054 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1055 
1056 	/* Reset the adapter asynchronously */
1057 	schedule_work(&priv->reset_task);
1058 }
1059 
1060 static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1061 {
1062 	struct net_device *netdev = priv->netdev;
1063 	struct phy_device *phydev;
1064 
1065 	phydev = phy_find_first(priv->mii_bus);
1066 	if (!phydev) {
1067 		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1068 		return -ENODEV;
1069 	}
1070 
1071 	phydev = phy_connect(netdev, phydev_name(phydev),
1072 			     &ftgmac100_adjust_link, intf);
1073 
1074 	if (IS_ERR(phydev)) {
1075 		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1076 		return PTR_ERR(phydev);
1077 	}
1078 
1079 	/* Indicate that we support PAUSE frames (see comment in
1080 	 * Documentation/networking/phy.txt)
1081 	 */
1082 	phydev->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
1083 	phydev->advertising = phydev->supported;
1084 
1085 	/* Display what we found */
1086 	phy_attached_info(phydev);
1087 
1088 	return 0;
1089 }
1090 
1091 static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1092 {
1093 	struct net_device *netdev = bus->priv;
1094 	struct ftgmac100 *priv = netdev_priv(netdev);
1095 	unsigned int phycr;
1096 	int i;
1097 
1098 	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1099 
1100 	/* preserve MDC cycle threshold */
1101 	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1102 
1103 	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1104 		 FTGMAC100_PHYCR_REGAD(regnum) |
1105 		 FTGMAC100_PHYCR_MIIRD;
1106 
1107 	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1108 
1109 	for (i = 0; i < 10; i++) {
1110 		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1111 
1112 		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1113 			int data;
1114 
1115 			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1116 			return FTGMAC100_PHYDATA_MIIRDATA(data);
1117 		}
1118 
1119 		udelay(100);
1120 	}
1121 
1122 	netdev_err(netdev, "mdio read timed out\n");
1123 	return -EIO;
1124 }
1125 
1126 static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1127 				   int regnum, u16 value)
1128 {
1129 	struct net_device *netdev = bus->priv;
1130 	struct ftgmac100 *priv = netdev_priv(netdev);
1131 	unsigned int phycr;
1132 	int data;
1133 	int i;
1134 
1135 	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1136 
1137 	/* preserve MDC cycle threshold */
1138 	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1139 
1140 	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1141 		 FTGMAC100_PHYCR_REGAD(regnum) |
1142 		 FTGMAC100_PHYCR_MIIWR;
1143 
1144 	data = FTGMAC100_PHYDATA_MIIWDATA(value);
1145 
1146 	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1147 	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1148 
1149 	for (i = 0; i < 10; i++) {
1150 		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1151 
1152 		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1153 			return 0;
1154 
1155 		udelay(100);
1156 	}
1157 
1158 	netdev_err(netdev, "mdio write timed out\n");
1159 	return -EIO;
1160 }
1161 
1162 static void ftgmac100_get_drvinfo(struct net_device *netdev,
1163 				  struct ethtool_drvinfo *info)
1164 {
1165 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1166 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1167 	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1168 }
1169 
1170 static void ftgmac100_get_ringparam(struct net_device *netdev,
1171 				    struct ethtool_ringparam *ering)
1172 {
1173 	struct ftgmac100 *priv = netdev_priv(netdev);
1174 
1175 	memset(ering, 0, sizeof(*ering));
1176 	ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1177 	ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1178 	ering->rx_pending = priv->rx_q_entries;
1179 	ering->tx_pending = priv->tx_q_entries;
1180 }
1181 
1182 static int ftgmac100_set_ringparam(struct net_device *netdev,
1183 				   struct ethtool_ringparam *ering)
1184 {
1185 	struct ftgmac100 *priv = netdev_priv(netdev);
1186 
1187 	if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1188 	    ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1189 	    ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1190 	    ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1191 	    !is_power_of_2(ering->rx_pending) ||
1192 	    !is_power_of_2(ering->tx_pending))
1193 		return -EINVAL;
1194 
1195 	priv->new_rx_q_entries = ering->rx_pending;
1196 	priv->new_tx_q_entries = ering->tx_pending;
1197 	if (netif_running(netdev))
1198 		schedule_work(&priv->reset_task);
1199 
1200 	return 0;
1201 }
1202 
1203 static void ftgmac100_get_pauseparam(struct net_device *netdev,
1204 				     struct ethtool_pauseparam *pause)
1205 {
1206 	struct ftgmac100 *priv = netdev_priv(netdev);
1207 
1208 	pause->autoneg = priv->aneg_pause;
1209 	pause->tx_pause = priv->tx_pause;
1210 	pause->rx_pause = priv->rx_pause;
1211 }
1212 
1213 static int ftgmac100_set_pauseparam(struct net_device *netdev,
1214 				    struct ethtool_pauseparam *pause)
1215 {
1216 	struct ftgmac100 *priv = netdev_priv(netdev);
1217 	struct phy_device *phydev = netdev->phydev;
1218 
1219 	priv->aneg_pause = pause->autoneg;
1220 	priv->tx_pause = pause->tx_pause;
1221 	priv->rx_pause = pause->rx_pause;
1222 
1223 	if (phydev) {
1224 		phydev->advertising &= ~ADVERTISED_Pause;
1225 		phydev->advertising &= ~ADVERTISED_Asym_Pause;
1226 
1227 		if (pause->rx_pause) {
1228 			phydev->advertising |= ADVERTISED_Pause;
1229 			phydev->advertising |= ADVERTISED_Asym_Pause;
1230 		}
1231 
1232 		if (pause->tx_pause)
1233 			phydev->advertising ^= ADVERTISED_Asym_Pause;
1234 	}
1235 	if (netif_running(netdev)) {
1236 		if (phydev && priv->aneg_pause)
1237 			phy_start_aneg(phydev);
1238 		else
1239 			ftgmac100_config_pause(priv);
1240 	}
1241 
1242 	return 0;
1243 }
1244 
1245 static const struct ethtool_ops ftgmac100_ethtool_ops = {
1246 	.get_drvinfo		= ftgmac100_get_drvinfo,
1247 	.get_link		= ethtool_op_get_link,
1248 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1249 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1250 	.nway_reset		= phy_ethtool_nway_reset,
1251 	.get_ringparam		= ftgmac100_get_ringparam,
1252 	.set_ringparam		= ftgmac100_set_ringparam,
1253 	.get_pauseparam		= ftgmac100_get_pauseparam,
1254 	.set_pauseparam		= ftgmac100_set_pauseparam,
1255 };
1256 
1257 static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1258 {
1259 	struct net_device *netdev = dev_id;
1260 	struct ftgmac100 *priv = netdev_priv(netdev);
1261 	unsigned int status, new_mask = FTGMAC100_INT_BAD;
1262 
1263 	/* Fetch and clear interrupt bits, process abnormal ones */
1264 	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1265 	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1266 	if (unlikely(status & FTGMAC100_INT_BAD)) {
1267 
1268 		/* RX buffer unavailable */
1269 		if (status & FTGMAC100_INT_NO_RXBUF)
1270 			netdev->stats.rx_over_errors++;
1271 
1272 		/* received packet lost due to RX FIFO full */
1273 		if (status & FTGMAC100_INT_RPKT_LOST)
1274 			netdev->stats.rx_fifo_errors++;
1275 
1276 		/* sent packet lost due to excessive TX collision */
1277 		if (status & FTGMAC100_INT_XPKT_LOST)
1278 			netdev->stats.tx_fifo_errors++;
1279 
1280 		/* AHB error -> Reset the chip */
1281 		if (status & FTGMAC100_INT_AHB_ERR) {
1282 			if (net_ratelimit())
1283 				netdev_warn(netdev,
1284 					   "AHB bus error ! Resetting chip.\n");
1285 			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1286 			schedule_work(&priv->reset_task);
1287 			return IRQ_HANDLED;
1288 		}
1289 
1290 		/* We may need to restart the MAC after such errors, delay
1291 		 * this until after we have freed some Rx buffers though
1292 		 */
1293 		priv->need_mac_restart = true;
1294 
1295 		/* Disable those errors until we restart */
1296 		new_mask &= ~status;
1297 	}
1298 
1299 	/* Only enable "bad" interrupts while NAPI is on */
1300 	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1301 
1302 	/* Schedule NAPI bh */
1303 	napi_schedule_irqoff(&priv->napi);
1304 
1305 	return IRQ_HANDLED;
1306 }
1307 
1308 static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1309 {
1310 	struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1311 
1312 	/* Do we have a packet ? */
1313 	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1314 }
1315 
1316 static int ftgmac100_poll(struct napi_struct *napi, int budget)
1317 {
1318 	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1319 	int work_done = 0;
1320 	bool more;
1321 
1322 	/* Handle TX completions */
1323 	if (ftgmac100_tx_buf_cleanable(priv))
1324 		ftgmac100_tx_complete(priv);
1325 
1326 	/* Handle RX packets */
1327 	do {
1328 		more = ftgmac100_rx_packet(priv, &work_done);
1329 	} while (more && work_done < budget);
1330 
1331 
1332 	/* The interrupt is telling us to kick the MAC back to life
1333 	 * after an RX overflow
1334 	 */
1335 	if (unlikely(priv->need_mac_restart)) {
1336 		ftgmac100_start_hw(priv);
1337 
1338 		/* Re-enable "bad" interrupts */
1339 		iowrite32(FTGMAC100_INT_BAD,
1340 			  priv->base + FTGMAC100_OFFSET_IER);
1341 	}
1342 
1343 	/* As long as we are waiting for transmit packets to be
1344 	 * completed we keep NAPI going
1345 	 */
1346 	if (ftgmac100_tx_buf_cleanable(priv))
1347 		work_done = budget;
1348 
1349 	if (work_done < budget) {
1350 		/* We are about to re-enable all interrupts. However
1351 		 * the HW has been latching RX/TX packet interrupts while
1352 		 * they were masked. So we clear them first, then we need
1353 		 * to re-check if there's something to process
1354 		 */
1355 		iowrite32(FTGMAC100_INT_RXTX,
1356 			  priv->base + FTGMAC100_OFFSET_ISR);
1357 
1358 		/* Push the above (and provides a barrier vs. subsequent
1359 		 * reads of the descriptor).
1360 		 */
1361 		ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1362 
1363 		/* Check RX and TX descriptors for more work to do */
1364 		if (ftgmac100_check_rx(priv) ||
1365 		    ftgmac100_tx_buf_cleanable(priv))
1366 			return budget;
1367 
1368 		/* deschedule NAPI */
1369 		napi_complete(napi);
1370 
1371 		/* enable all interrupts */
1372 		iowrite32(FTGMAC100_INT_ALL,
1373 			  priv->base + FTGMAC100_OFFSET_IER);
1374 	}
1375 
1376 	return work_done;
1377 }
1378 
1379 static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1380 {
1381 	int err = 0;
1382 
1383 	/* Re-init descriptors (adjust queue sizes) */
1384 	ftgmac100_init_rings(priv);
1385 
1386 	/* Realloc rx descriptors */
1387 	err = ftgmac100_alloc_rx_buffers(priv);
1388 	if (err && !ignore_alloc_err)
1389 		return err;
1390 
1391 	/* Reinit and restart HW */
1392 	ftgmac100_init_hw(priv);
1393 	ftgmac100_config_pause(priv);
1394 	ftgmac100_start_hw(priv);
1395 
1396 	/* Re-enable the device */
1397 	napi_enable(&priv->napi);
1398 	netif_start_queue(priv->netdev);
1399 
1400 	/* Enable all interrupts */
1401 	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1402 
1403 	return err;
1404 }
1405 
1406 static void ftgmac100_reset_task(struct work_struct *work)
1407 {
1408 	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1409 					      reset_task);
1410 	struct net_device *netdev = priv->netdev;
1411 	int err;
1412 
1413 	netdev_dbg(netdev, "Resetting NIC...\n");
1414 
1415 	/* Lock the world */
1416 	rtnl_lock();
1417 	if (netdev->phydev)
1418 		mutex_lock(&netdev->phydev->lock);
1419 	if (priv->mii_bus)
1420 		mutex_lock(&priv->mii_bus->mdio_lock);
1421 
1422 
1423 	/* Check if the interface is still up */
1424 	if (!netif_running(netdev))
1425 		goto bail;
1426 
1427 	/* Stop the network stack */
1428 	netif_trans_update(netdev);
1429 	napi_disable(&priv->napi);
1430 	netif_tx_disable(netdev);
1431 
1432 	/* Stop and reset the MAC */
1433 	ftgmac100_stop_hw(priv);
1434 	err = ftgmac100_reset_and_config_mac(priv);
1435 	if (err) {
1436 		/* Not much we can do ... it might come back... */
1437 		netdev_err(netdev, "attempting to continue...\n");
1438 	}
1439 
1440 	/* Free all rx and tx buffers */
1441 	ftgmac100_free_buffers(priv);
1442 
1443 	/* Setup everything again and restart chip */
1444 	ftgmac100_init_all(priv, true);
1445 
1446 	netdev_dbg(netdev, "Reset done !\n");
1447  bail:
1448 	if (priv->mii_bus)
1449 		mutex_unlock(&priv->mii_bus->mdio_lock);
1450 	if (netdev->phydev)
1451 		mutex_unlock(&netdev->phydev->lock);
1452 	rtnl_unlock();
1453 }
1454 
1455 static int ftgmac100_open(struct net_device *netdev)
1456 {
1457 	struct ftgmac100 *priv = netdev_priv(netdev);
1458 	int err;
1459 
1460 	/* Allocate ring buffers  */
1461 	err = ftgmac100_alloc_rings(priv);
1462 	if (err) {
1463 		netdev_err(netdev, "Failed to allocate descriptors\n");
1464 		return err;
1465 	}
1466 
1467 	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
1468 	 *
1469 	 * Otherwise we leave it set to 0 (no link), the link
1470 	 * message from the PHY layer will handle setting it up to
1471 	 * something else if needed.
1472 	 */
1473 	if (priv->use_ncsi) {
1474 		priv->cur_duplex = DUPLEX_FULL;
1475 		priv->cur_speed = SPEED_100;
1476 	} else {
1477 		priv->cur_duplex = 0;
1478 		priv->cur_speed = 0;
1479 	}
1480 
1481 	/* Reset the hardware */
1482 	err = ftgmac100_reset_and_config_mac(priv);
1483 	if (err)
1484 		goto err_hw;
1485 
1486 	/* Initialize NAPI */
1487 	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1488 
1489 	/* Grab our interrupt */
1490 	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1491 	if (err) {
1492 		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1493 		goto err_irq;
1494 	}
1495 
1496 	/* Start things up */
1497 	err = ftgmac100_init_all(priv, false);
1498 	if (err) {
1499 		netdev_err(netdev, "Failed to allocate packet buffers\n");
1500 		goto err_alloc;
1501 	}
1502 
1503 	if (netdev->phydev) {
1504 		/* If we have a PHY, start polling */
1505 		phy_start(netdev->phydev);
1506 	} else if (priv->use_ncsi) {
1507 		/* If using NC-SI, set our carrier on and start the stack */
1508 		netif_carrier_on(netdev);
1509 
1510 		/* Start the NCSI device */
1511 		err = ncsi_start_dev(priv->ndev);
1512 		if (err)
1513 			goto err_ncsi;
1514 	}
1515 
1516 	return 0;
1517 
1518  err_ncsi:
1519 	napi_disable(&priv->napi);
1520 	netif_stop_queue(netdev);
1521  err_alloc:
1522 	ftgmac100_free_buffers(priv);
1523 	free_irq(netdev->irq, netdev);
1524  err_irq:
1525 	netif_napi_del(&priv->napi);
1526  err_hw:
1527 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1528 	ftgmac100_free_rings(priv);
1529 	return err;
1530 }
1531 
1532 static int ftgmac100_stop(struct net_device *netdev)
1533 {
1534 	struct ftgmac100 *priv = netdev_priv(netdev);
1535 
1536 	/* Note about the reset task: We are called with the rtnl lock
1537 	 * held, so we are synchronized against the core of the reset
1538 	 * task. We must not try to synchronously cancel it otherwise
1539 	 * we can deadlock. But since it will test for netif_running()
1540 	 * which has already been cleared by the net core, we don't
1541 	 * anything special to do.
1542 	 */
1543 
1544 	/* disable all interrupts */
1545 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1546 
1547 	netif_stop_queue(netdev);
1548 	napi_disable(&priv->napi);
1549 	netif_napi_del(&priv->napi);
1550 	if (netdev->phydev)
1551 		phy_stop(netdev->phydev);
1552 	else if (priv->use_ncsi)
1553 		ncsi_stop_dev(priv->ndev);
1554 
1555 	ftgmac100_stop_hw(priv);
1556 	free_irq(netdev->irq, netdev);
1557 	ftgmac100_free_buffers(priv);
1558 	ftgmac100_free_rings(priv);
1559 
1560 	return 0;
1561 }
1562 
1563 /* optional */
1564 static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1565 {
1566 	if (!netdev->phydev)
1567 		return -ENXIO;
1568 
1569 	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1570 }
1571 
1572 static void ftgmac100_tx_timeout(struct net_device *netdev)
1573 {
1574 	struct ftgmac100 *priv = netdev_priv(netdev);
1575 
1576 	/* Disable all interrupts */
1577 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1578 
1579 	/* Do the reset outside of interrupt context */
1580 	schedule_work(&priv->reset_task);
1581 }
1582 
1583 static int ftgmac100_set_features(struct net_device *netdev,
1584 				  netdev_features_t features)
1585 {
1586 	struct ftgmac100 *priv = netdev_priv(netdev);
1587 	netdev_features_t changed = netdev->features ^ features;
1588 
1589 	if (!netif_running(netdev))
1590 		return 0;
1591 
1592 	/* Update the vlan filtering bit */
1593 	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1594 		u32 maccr;
1595 
1596 		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1597 		if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1598 			maccr |= FTGMAC100_MACCR_RM_VLAN;
1599 		else
1600 			maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1601 		iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1602 	}
1603 
1604 	return 0;
1605 }
1606 
1607 #ifdef CONFIG_NET_POLL_CONTROLLER
1608 static void ftgmac100_poll_controller(struct net_device *netdev)
1609 {
1610 	unsigned long flags;
1611 
1612 	local_irq_save(flags);
1613 	ftgmac100_interrupt(netdev->irq, netdev);
1614 	local_irq_restore(flags);
1615 }
1616 #endif
1617 
1618 static const struct net_device_ops ftgmac100_netdev_ops = {
1619 	.ndo_open		= ftgmac100_open,
1620 	.ndo_stop		= ftgmac100_stop,
1621 	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1622 	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1623 	.ndo_validate_addr	= eth_validate_addr,
1624 	.ndo_do_ioctl		= ftgmac100_do_ioctl,
1625 	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1626 	.ndo_set_rx_mode	= ftgmac100_set_rx_mode,
1627 	.ndo_set_features	= ftgmac100_set_features,
1628 #ifdef CONFIG_NET_POLL_CONTROLLER
1629 	.ndo_poll_controller	= ftgmac100_poll_controller,
1630 #endif
1631 	.ndo_vlan_rx_add_vid	= ncsi_vlan_rx_add_vid,
1632 	.ndo_vlan_rx_kill_vid	= ncsi_vlan_rx_kill_vid,
1633 };
1634 
1635 static int ftgmac100_setup_mdio(struct net_device *netdev)
1636 {
1637 	struct ftgmac100 *priv = netdev_priv(netdev);
1638 	struct platform_device *pdev = to_platform_device(priv->dev);
1639 	int phy_intf = PHY_INTERFACE_MODE_RGMII;
1640 	struct device_node *np = pdev->dev.of_node;
1641 	int i, err = 0;
1642 	u32 reg;
1643 
1644 	/* initialize mdio bus */
1645 	priv->mii_bus = mdiobus_alloc();
1646 	if (!priv->mii_bus)
1647 		return -EIO;
1648 
1649 	if (priv->is_aspeed) {
1650 		/* This driver supports the old MDIO interface */
1651 		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1652 		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1653 		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1654 	};
1655 
1656 	/* Get PHY mode from device-tree */
1657 	if (np) {
1658 		/* Default to RGMII. It's a gigabit part after all */
1659 		phy_intf = of_get_phy_mode(np);
1660 		if (phy_intf < 0)
1661 			phy_intf = PHY_INTERFACE_MODE_RGMII;
1662 
1663 		/* Aspeed only supports these. I don't know about other IP
1664 		 * block vendors so I'm going to just let them through for
1665 		 * now. Note that this is only a warning if for some obscure
1666 		 * reason the DT really means to lie about it or it's a newer
1667 		 * part we don't know about.
1668 		 *
1669 		 * On the Aspeed SoC there are additionally straps and SCU
1670 		 * control bits that could tell us what the interface is
1671 		 * (or allow us to configure it while the IP block is held
1672 		 * in reset). For now I chose to keep this driver away from
1673 		 * those SoC specific bits and assume the device-tree is
1674 		 * right and the SCU has been configured properly by pinmux
1675 		 * or the firmware.
1676 		 */
1677 		if (priv->is_aspeed &&
1678 		    phy_intf != PHY_INTERFACE_MODE_RMII &&
1679 		    phy_intf != PHY_INTERFACE_MODE_RGMII &&
1680 		    phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
1681 		    phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
1682 		    phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
1683 			netdev_warn(netdev,
1684 				   "Unsupported PHY mode %s !\n",
1685 				   phy_modes(phy_intf));
1686 		}
1687 	}
1688 
1689 	priv->mii_bus->name = "ftgmac100_mdio";
1690 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1691 		 pdev->name, pdev->id);
1692 	priv->mii_bus->parent = priv->dev;
1693 	priv->mii_bus->priv = priv->netdev;
1694 	priv->mii_bus->read = ftgmac100_mdiobus_read;
1695 	priv->mii_bus->write = ftgmac100_mdiobus_write;
1696 
1697 	for (i = 0; i < PHY_MAX_ADDR; i++)
1698 		priv->mii_bus->irq[i] = PHY_POLL;
1699 
1700 	err = mdiobus_register(priv->mii_bus);
1701 	if (err) {
1702 		dev_err(priv->dev, "Cannot register MDIO bus!\n");
1703 		goto err_register_mdiobus;
1704 	}
1705 
1706 	err = ftgmac100_mii_probe(priv, phy_intf);
1707 	if (err) {
1708 		dev_err(priv->dev, "MII Probe failed!\n");
1709 		goto err_mii_probe;
1710 	}
1711 
1712 	return 0;
1713 
1714 err_mii_probe:
1715 	mdiobus_unregister(priv->mii_bus);
1716 err_register_mdiobus:
1717 	mdiobus_free(priv->mii_bus);
1718 	return err;
1719 }
1720 
1721 static void ftgmac100_destroy_mdio(struct net_device *netdev)
1722 {
1723 	struct ftgmac100 *priv = netdev_priv(netdev);
1724 
1725 	if (!netdev->phydev)
1726 		return;
1727 
1728 	phy_disconnect(netdev->phydev);
1729 	mdiobus_unregister(priv->mii_bus);
1730 	mdiobus_free(priv->mii_bus);
1731 }
1732 
1733 static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1734 {
1735 	if (unlikely(nd->state != ncsi_dev_state_functional))
1736 		return;
1737 
1738 	netdev_info(nd->dev, "NCSI interface %s\n",
1739 		    nd->link_up ? "up" : "down");
1740 }
1741 
1742 static void ftgmac100_setup_clk(struct ftgmac100 *priv)
1743 {
1744 	priv->clk = devm_clk_get(priv->dev, NULL);
1745 	if (IS_ERR(priv->clk))
1746 		return;
1747 
1748 	clk_prepare_enable(priv->clk);
1749 
1750 	/* Aspeed specifies a 100MHz clock is required for up to
1751 	 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1752 	 * is sufficient
1753 	 */
1754 	clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1755 			FTGMAC_100MHZ);
1756 }
1757 
1758 static int ftgmac100_probe(struct platform_device *pdev)
1759 {
1760 	struct resource *res;
1761 	int irq;
1762 	struct net_device *netdev;
1763 	struct ftgmac100 *priv;
1764 	struct device_node *np;
1765 	int err = 0;
1766 
1767 	if (!pdev)
1768 		return -ENODEV;
1769 
1770 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1771 	if (!res)
1772 		return -ENXIO;
1773 
1774 	irq = platform_get_irq(pdev, 0);
1775 	if (irq < 0)
1776 		return irq;
1777 
1778 	/* setup net_device */
1779 	netdev = alloc_etherdev(sizeof(*priv));
1780 	if (!netdev) {
1781 		err = -ENOMEM;
1782 		goto err_alloc_etherdev;
1783 	}
1784 
1785 	SET_NETDEV_DEV(netdev, &pdev->dev);
1786 
1787 	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1788 	netdev->netdev_ops = &ftgmac100_netdev_ops;
1789 	netdev->watchdog_timeo = 5 * HZ;
1790 
1791 	platform_set_drvdata(pdev, netdev);
1792 
1793 	/* setup private data */
1794 	priv = netdev_priv(netdev);
1795 	priv->netdev = netdev;
1796 	priv->dev = &pdev->dev;
1797 	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1798 
1799 	/* map io memory */
1800 	priv->res = request_mem_region(res->start, resource_size(res),
1801 				       dev_name(&pdev->dev));
1802 	if (!priv->res) {
1803 		dev_err(&pdev->dev, "Could not reserve memory region\n");
1804 		err = -ENOMEM;
1805 		goto err_req_mem;
1806 	}
1807 
1808 	priv->base = ioremap(res->start, resource_size(res));
1809 	if (!priv->base) {
1810 		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1811 		err = -EIO;
1812 		goto err_ioremap;
1813 	}
1814 
1815 	netdev->irq = irq;
1816 
1817 	/* Enable pause */
1818 	priv->tx_pause = true;
1819 	priv->rx_pause = true;
1820 	priv->aneg_pause = true;
1821 
1822 	/* MAC address from chip or random one */
1823 	ftgmac100_initial_mac(priv);
1824 
1825 	np = pdev->dev.of_node;
1826 	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1827 		   of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1828 		priv->rxdes0_edorr_mask = BIT(30);
1829 		priv->txdes0_edotr_mask = BIT(30);
1830 		priv->is_aspeed = true;
1831 	} else {
1832 		priv->rxdes0_edorr_mask = BIT(15);
1833 		priv->txdes0_edotr_mask = BIT(15);
1834 	}
1835 
1836 	if (np && of_get_property(np, "use-ncsi", NULL)) {
1837 		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1838 			dev_err(&pdev->dev, "NCSI stack not enabled\n");
1839 			goto err_ncsi_dev;
1840 		}
1841 
1842 		dev_info(&pdev->dev, "Using NCSI interface\n");
1843 		priv->use_ncsi = true;
1844 		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1845 		if (!priv->ndev)
1846 			goto err_ncsi_dev;
1847 	} else {
1848 		priv->use_ncsi = false;
1849 		err = ftgmac100_setup_mdio(netdev);
1850 		if (err)
1851 			goto err_setup_mdio;
1852 	}
1853 
1854 	if (priv->is_aspeed)
1855 		ftgmac100_setup_clk(priv);
1856 
1857 	/* Default ring sizes */
1858 	priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1859 	priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1860 
1861 	/* Base feature set */
1862 	netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1863 		NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1864 		NETIF_F_HW_VLAN_CTAG_TX;
1865 
1866 	if (priv->use_ncsi)
1867 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1868 
1869 	/* AST2400  doesn't have working HW checksum generation */
1870 	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1871 		netdev->hw_features &= ~NETIF_F_HW_CSUM;
1872 	if (np && of_get_property(np, "no-hw-checksum", NULL))
1873 		netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1874 	netdev->features |= netdev->hw_features;
1875 
1876 	/* register network device */
1877 	err = register_netdev(netdev);
1878 	if (err) {
1879 		dev_err(&pdev->dev, "Failed to register netdev\n");
1880 		goto err_register_netdev;
1881 	}
1882 
1883 	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1884 
1885 	return 0;
1886 
1887 err_ncsi_dev:
1888 err_register_netdev:
1889 	ftgmac100_destroy_mdio(netdev);
1890 err_setup_mdio:
1891 	iounmap(priv->base);
1892 err_ioremap:
1893 	release_resource(priv->res);
1894 err_req_mem:
1895 	free_netdev(netdev);
1896 err_alloc_etherdev:
1897 	return err;
1898 }
1899 
1900 static int ftgmac100_remove(struct platform_device *pdev)
1901 {
1902 	struct net_device *netdev;
1903 	struct ftgmac100 *priv;
1904 
1905 	netdev = platform_get_drvdata(pdev);
1906 	priv = netdev_priv(netdev);
1907 
1908 	unregister_netdev(netdev);
1909 
1910 	clk_disable_unprepare(priv->clk);
1911 
1912 	/* There's a small chance the reset task will have been re-queued,
1913 	 * during stop, make sure it's gone before we free the structure.
1914 	 */
1915 	cancel_work_sync(&priv->reset_task);
1916 
1917 	ftgmac100_destroy_mdio(netdev);
1918 
1919 	iounmap(priv->base);
1920 	release_resource(priv->res);
1921 
1922 	netif_napi_del(&priv->napi);
1923 	free_netdev(netdev);
1924 	return 0;
1925 }
1926 
1927 static const struct of_device_id ftgmac100_of_match[] = {
1928 	{ .compatible = "faraday,ftgmac100" },
1929 	{ }
1930 };
1931 MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1932 
1933 static struct platform_driver ftgmac100_driver = {
1934 	.probe	= ftgmac100_probe,
1935 	.remove	= ftgmac100_remove,
1936 	.driver	= {
1937 		.name		= DRV_NAME,
1938 		.of_match_table	= ftgmac100_of_match,
1939 	},
1940 };
1941 module_platform_driver(ftgmac100_driver);
1942 
1943 MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1944 MODULE_DESCRIPTION("FTGMAC100 driver");
1945 MODULE_LICENSE("GPL");
1946