xref: /openbmc/linux/drivers/net/ethernet/faraday/ftgmac100.c (revision 74ba9207e1adf1966c57450340534ae9742d00af)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Faraday FTGMAC100 Gigabit Ethernet
4  *
5  * (C) Copyright 2009-2011 Faraday Technology
6  * Po-Yu Chuang <ratbert@faraday-tech.com>
7  */
8 
9 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
10 
11 #include <linux/clk.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/etherdevice.h>
14 #include <linux/ethtool.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/netdevice.h>
19 #include <linux/of.h>
20 #include <linux/phy.h>
21 #include <linux/platform_device.h>
22 #include <linux/property.h>
23 #include <linux/crc32.h>
24 #include <linux/if_vlan.h>
25 #include <linux/of_net.h>
26 #include <net/ip.h>
27 #include <net/ncsi.h>
28 
29 #include "ftgmac100.h"
30 
31 #define DRV_NAME	"ftgmac100"
32 #define DRV_VERSION	"0.7"
33 
34 /* Arbitrary values, I am not sure the HW has limits */
35 #define MAX_RX_QUEUE_ENTRIES	1024
36 #define MAX_TX_QUEUE_ENTRIES	1024
37 #define MIN_RX_QUEUE_ENTRIES	32
38 #define MIN_TX_QUEUE_ENTRIES	32
39 
40 /* Defaults */
41 #define DEF_RX_QUEUE_ENTRIES	128
42 #define DEF_TX_QUEUE_ENTRIES	128
43 
44 #define MAX_PKT_SIZE		1536
45 #define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
46 
47 /* Min number of tx ring entries before stopping queue */
48 #define TX_THRESHOLD		(MAX_SKB_FRAGS + 1)
49 
50 #define FTGMAC_100MHZ		100000000
51 #define FTGMAC_25MHZ		25000000
52 
53 struct ftgmac100 {
54 	/* Registers */
55 	struct resource *res;
56 	void __iomem *base;
57 
58 	/* Rx ring */
59 	unsigned int rx_q_entries;
60 	struct ftgmac100_rxdes *rxdes;
61 	dma_addr_t rxdes_dma;
62 	struct sk_buff **rx_skbs;
63 	unsigned int rx_pointer;
64 	u32 rxdes0_edorr_mask;
65 
66 	/* Tx ring */
67 	unsigned int tx_q_entries;
68 	struct ftgmac100_txdes *txdes;
69 	dma_addr_t txdes_dma;
70 	struct sk_buff **tx_skbs;
71 	unsigned int tx_clean_pointer;
72 	unsigned int tx_pointer;
73 	u32 txdes0_edotr_mask;
74 
75 	/* Used to signal the reset task of ring change request */
76 	unsigned int new_rx_q_entries;
77 	unsigned int new_tx_q_entries;
78 
79 	/* Scratch page to use when rx skb alloc fails */
80 	void *rx_scratch;
81 	dma_addr_t rx_scratch_dma;
82 
83 	/* Component structures */
84 	struct net_device *netdev;
85 	struct device *dev;
86 	struct ncsi_dev *ndev;
87 	struct napi_struct napi;
88 	struct work_struct reset_task;
89 	struct mii_bus *mii_bus;
90 	struct clk *clk;
91 
92 	/* Link management */
93 	int cur_speed;
94 	int cur_duplex;
95 	bool use_ncsi;
96 
97 	/* Multicast filter settings */
98 	u32 maht0;
99 	u32 maht1;
100 
101 	/* Flow control settings */
102 	bool tx_pause;
103 	bool rx_pause;
104 	bool aneg_pause;
105 
106 	/* Misc */
107 	bool need_mac_restart;
108 	bool is_aspeed;
109 };
110 
111 static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
112 {
113 	struct net_device *netdev = priv->netdev;
114 	int i;
115 
116 	/* NOTE: reset clears all registers */
117 	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
118 	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
119 		  priv->base + FTGMAC100_OFFSET_MACCR);
120 	for (i = 0; i < 200; i++) {
121 		unsigned int maccr;
122 
123 		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
124 		if (!(maccr & FTGMAC100_MACCR_SW_RST))
125 			return 0;
126 
127 		udelay(1);
128 	}
129 
130 	netdev_err(netdev, "Hardware reset failed\n");
131 	return -EIO;
132 }
133 
134 static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
135 {
136 	u32 maccr = 0;
137 
138 	switch (priv->cur_speed) {
139 	case SPEED_10:
140 	case 0: /* no link */
141 		break;
142 
143 	case SPEED_100:
144 		maccr |= FTGMAC100_MACCR_FAST_MODE;
145 		break;
146 
147 	case SPEED_1000:
148 		maccr |= FTGMAC100_MACCR_GIGA_MODE;
149 		break;
150 	default:
151 		netdev_err(priv->netdev, "Unknown speed %d !\n",
152 			   priv->cur_speed);
153 		break;
154 	}
155 
156 	/* (Re)initialize the queue pointers */
157 	priv->rx_pointer = 0;
158 	priv->tx_clean_pointer = 0;
159 	priv->tx_pointer = 0;
160 
161 	/* The doc says reset twice with 10us interval */
162 	if (ftgmac100_reset_mac(priv, maccr))
163 		return -EIO;
164 	usleep_range(10, 1000);
165 	return ftgmac100_reset_mac(priv, maccr);
166 }
167 
168 static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
169 {
170 	unsigned int maddr = mac[0] << 8 | mac[1];
171 	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
172 
173 	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
174 	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
175 }
176 
177 static void ftgmac100_initial_mac(struct ftgmac100 *priv)
178 {
179 	u8 mac[ETH_ALEN];
180 	unsigned int m;
181 	unsigned int l;
182 	void *addr;
183 
184 	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
185 	if (addr) {
186 		ether_addr_copy(priv->netdev->dev_addr, mac);
187 		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
188 			 mac);
189 		return;
190 	}
191 
192 	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
193 	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
194 
195 	mac[0] = (m >> 8) & 0xff;
196 	mac[1] = m & 0xff;
197 	mac[2] = (l >> 24) & 0xff;
198 	mac[3] = (l >> 16) & 0xff;
199 	mac[4] = (l >> 8) & 0xff;
200 	mac[5] = l & 0xff;
201 
202 	if (is_valid_ether_addr(mac)) {
203 		ether_addr_copy(priv->netdev->dev_addr, mac);
204 		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
205 	} else {
206 		eth_hw_addr_random(priv->netdev);
207 		dev_info(priv->dev, "Generated random MAC address %pM\n",
208 			 priv->netdev->dev_addr);
209 	}
210 }
211 
212 static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
213 {
214 	int ret;
215 
216 	ret = eth_prepare_mac_addr_change(dev, p);
217 	if (ret < 0)
218 		return ret;
219 
220 	eth_commit_mac_addr_change(dev, p);
221 	ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
222 
223 	return 0;
224 }
225 
226 static void ftgmac100_config_pause(struct ftgmac100 *priv)
227 {
228 	u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
229 
230 	/* Throttle tx queue when receiving pause frames */
231 	if (priv->rx_pause)
232 		fcr |= FTGMAC100_FCR_FC_EN;
233 
234 	/* Enables sending pause frames when the RX queue is past a
235 	 * certain threshold.
236 	 */
237 	if (priv->tx_pause)
238 		fcr |= FTGMAC100_FCR_FCTHR_EN;
239 
240 	iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
241 }
242 
243 static void ftgmac100_init_hw(struct ftgmac100 *priv)
244 {
245 	u32 reg, rfifo_sz, tfifo_sz;
246 
247 	/* Clear stale interrupts */
248 	reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
249 	iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
250 
251 	/* Setup RX ring buffer base */
252 	iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
253 
254 	/* Setup TX ring buffer base */
255 	iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
256 
257 	/* Configure RX buffer size */
258 	iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
259 		  priv->base + FTGMAC100_OFFSET_RBSR);
260 
261 	/* Set RX descriptor autopoll */
262 	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
263 		  priv->base + FTGMAC100_OFFSET_APTC);
264 
265 	/* Write MAC address */
266 	ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
267 
268 	/* Write multicast filter */
269 	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
270 	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
271 
272 	/* Configure descriptor sizes and increase burst sizes according
273 	 * to values in Aspeed SDK. The FIFO arbitration is enabled and
274 	 * the thresholds set based on the recommended values in the
275 	 * AST2400 specification.
276 	 */
277 	iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) |   /* 2*8 bytes RX descs */
278 		  FTGMAC100_DBLAC_TXDES_SIZE(2) |   /* 2*8 bytes TX descs */
279 		  FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
280 		  FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
281 		  FTGMAC100_DBLAC_RX_THR_EN |       /* Enable fifo threshold arb */
282 		  FTGMAC100_DBLAC_RXFIFO_HTHR(6) |  /* 6/8 of FIFO high threshold */
283 		  FTGMAC100_DBLAC_RXFIFO_LTHR(2),   /* 2/8 of FIFO low threshold */
284 		  priv->base + FTGMAC100_OFFSET_DBLAC);
285 
286 	/* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
287 	 * mitigation doesn't seem to provide any benefit with NAPI so leave
288 	 * it at that.
289 	 */
290 	iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
291 		  FTGMAC100_ITC_TXINT_THR(1),
292 		  priv->base + FTGMAC100_OFFSET_ITC);
293 
294 	/* Configure FIFO sizes in the TPAFCR register */
295 	reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
296 	rfifo_sz = reg & 0x00000007;
297 	tfifo_sz = (reg >> 3) & 0x00000007;
298 	reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
299 	reg &= ~0x3f000000;
300 	reg |= (tfifo_sz << 27);
301 	reg |= (rfifo_sz << 24);
302 	iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
303 }
304 
305 static void ftgmac100_start_hw(struct ftgmac100 *priv)
306 {
307 	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
308 
309 	/* Keep the original GMAC and FAST bits */
310 	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
311 
312 	/* Add all the main enable bits */
313 	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
314 		 FTGMAC100_MACCR_RXDMA_EN	|
315 		 FTGMAC100_MACCR_TXMAC_EN	|
316 		 FTGMAC100_MACCR_RXMAC_EN	|
317 		 FTGMAC100_MACCR_CRC_APD	|
318 		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
319 		 FTGMAC100_MACCR_RX_RUNT	|
320 		 FTGMAC100_MACCR_RX_BROADPKT;
321 
322 	/* Add other bits as needed */
323 	if (priv->cur_duplex == DUPLEX_FULL)
324 		maccr |= FTGMAC100_MACCR_FULLDUP;
325 	if (priv->netdev->flags & IFF_PROMISC)
326 		maccr |= FTGMAC100_MACCR_RX_ALL;
327 	if (priv->netdev->flags & IFF_ALLMULTI)
328 		maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
329 	else if (netdev_mc_count(priv->netdev))
330 		maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
331 
332 	/* Vlan filtering enabled */
333 	if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
334 		maccr |= FTGMAC100_MACCR_RM_VLAN;
335 
336 	/* Hit the HW */
337 	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
338 }
339 
340 static void ftgmac100_stop_hw(struct ftgmac100 *priv)
341 {
342 	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
343 }
344 
345 static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
346 {
347 	struct netdev_hw_addr *ha;
348 
349 	priv->maht1 = 0;
350 	priv->maht0 = 0;
351 	netdev_for_each_mc_addr(ha, priv->netdev) {
352 		u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
353 
354 		crc_val = (~(crc_val >> 2)) & 0x3f;
355 		if (crc_val >= 32)
356 			priv->maht1 |= 1ul << (crc_val - 32);
357 		else
358 			priv->maht0 |= 1ul << (crc_val);
359 	}
360 }
361 
362 static void ftgmac100_set_rx_mode(struct net_device *netdev)
363 {
364 	struct ftgmac100 *priv = netdev_priv(netdev);
365 
366 	/* Setup the hash filter */
367 	ftgmac100_calc_mc_hash(priv);
368 
369 	/* Interface down ? that's all there is to do */
370 	if (!netif_running(netdev))
371 		return;
372 
373 	/* Update the HW */
374 	iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
375 	iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
376 
377 	/* Reconfigure MACCR */
378 	ftgmac100_start_hw(priv);
379 }
380 
381 static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
382 				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
383 {
384 	struct net_device *netdev = priv->netdev;
385 	struct sk_buff *skb;
386 	dma_addr_t map;
387 	int err = 0;
388 
389 	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
390 	if (unlikely(!skb)) {
391 		if (net_ratelimit())
392 			netdev_warn(netdev, "failed to allocate rx skb\n");
393 		err = -ENOMEM;
394 		map = priv->rx_scratch_dma;
395 	} else {
396 		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
397 				     DMA_FROM_DEVICE);
398 		if (unlikely(dma_mapping_error(priv->dev, map))) {
399 			if (net_ratelimit())
400 				netdev_err(netdev, "failed to map rx page\n");
401 			dev_kfree_skb_any(skb);
402 			map = priv->rx_scratch_dma;
403 			skb = NULL;
404 			err = -ENOMEM;
405 		}
406 	}
407 
408 	/* Store skb */
409 	priv->rx_skbs[entry] = skb;
410 
411 	/* Store DMA address into RX desc */
412 	rxdes->rxdes3 = cpu_to_le32(map);
413 
414 	/* Ensure the above is ordered vs clearing the OWN bit */
415 	dma_wmb();
416 
417 	/* Clean status (which resets own bit) */
418 	if (entry == (priv->rx_q_entries - 1))
419 		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
420 	else
421 		rxdes->rxdes0 = 0;
422 
423 	return err;
424 }
425 
426 static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
427 					      unsigned int pointer)
428 {
429 	return (pointer + 1) & (priv->rx_q_entries - 1);
430 }
431 
432 static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
433 {
434 	struct net_device *netdev = priv->netdev;
435 
436 	if (status & FTGMAC100_RXDES0_RX_ERR)
437 		netdev->stats.rx_errors++;
438 
439 	if (status & FTGMAC100_RXDES0_CRC_ERR)
440 		netdev->stats.rx_crc_errors++;
441 
442 	if (status & (FTGMAC100_RXDES0_FTL |
443 		      FTGMAC100_RXDES0_RUNT |
444 		      FTGMAC100_RXDES0_RX_ODD_NB))
445 		netdev->stats.rx_length_errors++;
446 }
447 
448 static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
449 {
450 	struct net_device *netdev = priv->netdev;
451 	struct ftgmac100_rxdes *rxdes;
452 	struct sk_buff *skb;
453 	unsigned int pointer, size;
454 	u32 status, csum_vlan;
455 	dma_addr_t map;
456 
457 	/* Grab next RX descriptor */
458 	pointer = priv->rx_pointer;
459 	rxdes = &priv->rxdes[pointer];
460 
461 	/* Grab descriptor status */
462 	status = le32_to_cpu(rxdes->rxdes0);
463 
464 	/* Do we have a packet ? */
465 	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
466 		return false;
467 
468 	/* Order subsequent reads with the test for the ready bit */
469 	dma_rmb();
470 
471 	/* We don't cope with fragmented RX packets */
472 	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
473 		     !(status & FTGMAC100_RXDES0_LRS)))
474 		goto drop;
475 
476 	/* Grab received size and csum vlan field in the descriptor */
477 	size = status & FTGMAC100_RXDES0_VDBC;
478 	csum_vlan = le32_to_cpu(rxdes->rxdes1);
479 
480 	/* Any error (other than csum offload) flagged ? */
481 	if (unlikely(status & RXDES0_ANY_ERROR)) {
482 		/* Correct for incorrect flagging of runt packets
483 		 * with vlan tags... Just accept a runt packet that
484 		 * has been flagged as vlan and whose size is at
485 		 * least 60 bytes.
486 		 */
487 		if ((status & FTGMAC100_RXDES0_RUNT) &&
488 		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
489 		    (size >= 60))
490 			status &= ~FTGMAC100_RXDES0_RUNT;
491 
492 		/* Any error still in there ? */
493 		if (status & RXDES0_ANY_ERROR) {
494 			ftgmac100_rx_packet_error(priv, status);
495 			goto drop;
496 		}
497 	}
498 
499 	/* If the packet had no skb (failed to allocate earlier)
500 	 * then try to allocate one and skip
501 	 */
502 	skb = priv->rx_skbs[pointer];
503 	if (!unlikely(skb)) {
504 		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
505 		goto drop;
506 	}
507 
508 	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
509 		netdev->stats.multicast++;
510 
511 	/* If the HW found checksum errors, bounce it to software.
512 	 *
513 	 * If we didn't, we need to see if the packet was recognized
514 	 * by HW as one of the supported checksummed protocols before
515 	 * we accept the HW test results.
516 	 */
517 	if (netdev->features & NETIF_F_RXCSUM) {
518 		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
519 			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
520 			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
521 		if ((csum_vlan & err_bits) ||
522 		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
523 			skb->ip_summed = CHECKSUM_NONE;
524 		else
525 			skb->ip_summed = CHECKSUM_UNNECESSARY;
526 	}
527 
528 	/* Transfer received size to skb */
529 	skb_put(skb, size);
530 
531 	/* Extract vlan tag */
532 	if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
533 	    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
534 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
535 				       csum_vlan & 0xffff);
536 
537 	/* Tear down DMA mapping, do necessary cache management */
538 	map = le32_to_cpu(rxdes->rxdes3);
539 
540 #if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
541 	/* When we don't have an iommu, we can save cycles by not
542 	 * invalidating the cache for the part of the packet that
543 	 * wasn't received.
544 	 */
545 	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
546 #else
547 	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
548 #endif
549 
550 
551 	/* Resplenish rx ring */
552 	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
553 	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
554 
555 	skb->protocol = eth_type_trans(skb, netdev);
556 
557 	netdev->stats.rx_packets++;
558 	netdev->stats.rx_bytes += size;
559 
560 	/* push packet to protocol stack */
561 	if (skb->ip_summed == CHECKSUM_NONE)
562 		netif_receive_skb(skb);
563 	else
564 		napi_gro_receive(&priv->napi, skb);
565 
566 	(*processed)++;
567 	return true;
568 
569  drop:
570 	/* Clean rxdes0 (which resets own bit) */
571 	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
572 	priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
573 	netdev->stats.rx_dropped++;
574 	return true;
575 }
576 
577 static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
578 				     unsigned int index)
579 {
580 	if (index == (priv->tx_q_entries - 1))
581 		return priv->txdes0_edotr_mask;
582 	else
583 		return 0;
584 }
585 
586 static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
587 					      unsigned int pointer)
588 {
589 	return (pointer + 1) & (priv->tx_q_entries - 1);
590 }
591 
592 static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
593 {
594 	/* Returns the number of available slots in the TX queue
595 	 *
596 	 * This always leaves one free slot so we don't have to
597 	 * worry about empty vs. full, and this simplifies the
598 	 * test for ftgmac100_tx_buf_cleanable() below
599 	 */
600 	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
601 		(priv->tx_q_entries - 1);
602 }
603 
604 static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
605 {
606 	return priv->tx_pointer != priv->tx_clean_pointer;
607 }
608 
609 static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
610 				     unsigned int pointer,
611 				     struct sk_buff *skb,
612 				     struct ftgmac100_txdes *txdes,
613 				     u32 ctl_stat)
614 {
615 	dma_addr_t map = le32_to_cpu(txdes->txdes3);
616 	size_t len;
617 
618 	if (ctl_stat & FTGMAC100_TXDES0_FTS) {
619 		len = skb_headlen(skb);
620 		dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
621 	} else {
622 		len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
623 		dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
624 	}
625 
626 	/* Free SKB on last segment */
627 	if (ctl_stat & FTGMAC100_TXDES0_LTS)
628 		dev_kfree_skb(skb);
629 	priv->tx_skbs[pointer] = NULL;
630 }
631 
632 static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
633 {
634 	struct net_device *netdev = priv->netdev;
635 	struct ftgmac100_txdes *txdes;
636 	struct sk_buff *skb;
637 	unsigned int pointer;
638 	u32 ctl_stat;
639 
640 	pointer = priv->tx_clean_pointer;
641 	txdes = &priv->txdes[pointer];
642 
643 	ctl_stat = le32_to_cpu(txdes->txdes0);
644 	if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
645 		return false;
646 
647 	skb = priv->tx_skbs[pointer];
648 	netdev->stats.tx_packets++;
649 	netdev->stats.tx_bytes += skb->len;
650 	ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
651 	txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
652 
653 	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
654 
655 	return true;
656 }
657 
658 static void ftgmac100_tx_complete(struct ftgmac100 *priv)
659 {
660 	struct net_device *netdev = priv->netdev;
661 
662 	/* Process all completed packets */
663 	while (ftgmac100_tx_buf_cleanable(priv) &&
664 	       ftgmac100_tx_complete_packet(priv))
665 		;
666 
667 	/* Restart queue if needed */
668 	smp_mb();
669 	if (unlikely(netif_queue_stopped(netdev) &&
670 		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
671 		struct netdev_queue *txq;
672 
673 		txq = netdev_get_tx_queue(netdev, 0);
674 		__netif_tx_lock(txq, smp_processor_id());
675 		if (netif_queue_stopped(netdev) &&
676 		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
677 			netif_wake_queue(netdev);
678 		__netif_tx_unlock(txq);
679 	}
680 }
681 
682 static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
683 {
684 	if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
685 		u8 ip_proto = ip_hdr(skb)->protocol;
686 
687 		*csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
688 		switch(ip_proto) {
689 		case IPPROTO_TCP:
690 			*csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
691 			return true;
692 		case IPPROTO_UDP:
693 			*csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
694 			return true;
695 		case IPPROTO_IP:
696 			return true;
697 		}
698 	}
699 	return skb_checksum_help(skb) == 0;
700 }
701 
702 static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
703 					     struct net_device *netdev)
704 {
705 	struct ftgmac100 *priv = netdev_priv(netdev);
706 	struct ftgmac100_txdes *txdes, *first;
707 	unsigned int pointer, nfrags, len, i, j;
708 	u32 f_ctl_stat, ctl_stat, csum_vlan;
709 	dma_addr_t map;
710 
711 	/* The HW doesn't pad small frames */
712 	if (eth_skb_pad(skb)) {
713 		netdev->stats.tx_dropped++;
714 		return NETDEV_TX_OK;
715 	}
716 
717 	/* Reject oversize packets */
718 	if (unlikely(skb->len > MAX_PKT_SIZE)) {
719 		if (net_ratelimit())
720 			netdev_dbg(netdev, "tx packet too big\n");
721 		goto drop;
722 	}
723 
724 	/* Do we have a limit on #fragments ? I yet have to get a reply
725 	 * from Aspeed. If there's one I haven't hit it.
726 	 */
727 	nfrags = skb_shinfo(skb)->nr_frags;
728 
729 	/* Get header len */
730 	len = skb_headlen(skb);
731 
732 	/* Map the packet head */
733 	map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
734 	if (dma_mapping_error(priv->dev, map)) {
735 		if (net_ratelimit())
736 			netdev_err(netdev, "map tx packet head failed\n");
737 		goto drop;
738 	}
739 
740 	/* Grab the next free tx descriptor */
741 	pointer = priv->tx_pointer;
742 	txdes = first = &priv->txdes[pointer];
743 
744 	/* Setup it up with the packet head. Don't write the head to the
745 	 * ring just yet
746 	 */
747 	priv->tx_skbs[pointer] = skb;
748 	f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
749 	f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
750 	f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
751 	f_ctl_stat |= FTGMAC100_TXDES0_FTS;
752 	if (nfrags == 0)
753 		f_ctl_stat |= FTGMAC100_TXDES0_LTS;
754 	txdes->txdes3 = cpu_to_le32(map);
755 
756 	/* Setup HW checksumming */
757 	csum_vlan = 0;
758 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
759 	    !ftgmac100_prep_tx_csum(skb, &csum_vlan))
760 		goto drop;
761 
762 	/* Add VLAN tag */
763 	if (skb_vlan_tag_present(skb)) {
764 		csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
765 		csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
766 	}
767 
768 	txdes->txdes1 = cpu_to_le32(csum_vlan);
769 
770 	/* Next descriptor */
771 	pointer = ftgmac100_next_tx_pointer(priv, pointer);
772 
773 	/* Add the fragments */
774 	for (i = 0; i < nfrags; i++) {
775 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
776 
777 		len = frag->size;
778 
779 		/* Map it */
780 		map = skb_frag_dma_map(priv->dev, frag, 0, len,
781 				       DMA_TO_DEVICE);
782 		if (dma_mapping_error(priv->dev, map))
783 			goto dma_err;
784 
785 		/* Setup descriptor */
786 		priv->tx_skbs[pointer] = skb;
787 		txdes = &priv->txdes[pointer];
788 		ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
789 		ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
790 		ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
791 		if (i == (nfrags - 1))
792 			ctl_stat |= FTGMAC100_TXDES0_LTS;
793 		txdes->txdes0 = cpu_to_le32(ctl_stat);
794 		txdes->txdes1 = 0;
795 		txdes->txdes3 = cpu_to_le32(map);
796 
797 		/* Next one */
798 		pointer = ftgmac100_next_tx_pointer(priv, pointer);
799 	}
800 
801 	/* Order the previous packet and descriptor udpates
802 	 * before setting the OWN bit on the first descriptor.
803 	 */
804 	dma_wmb();
805 	first->txdes0 = cpu_to_le32(f_ctl_stat);
806 
807 	/* Update next TX pointer */
808 	priv->tx_pointer = pointer;
809 
810 	/* If there isn't enough room for all the fragments of a new packet
811 	 * in the TX ring, stop the queue. The sequence below is race free
812 	 * vs. a concurrent restart in ftgmac100_poll()
813 	 */
814 	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
815 		netif_stop_queue(netdev);
816 		/* Order the queue stop with the test below */
817 		smp_mb();
818 		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
819 			netif_wake_queue(netdev);
820 	}
821 
822 	/* Poke transmitter to read the updated TX descriptors */
823 	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
824 
825 	return NETDEV_TX_OK;
826 
827  dma_err:
828 	if (net_ratelimit())
829 		netdev_err(netdev, "map tx fragment failed\n");
830 
831 	/* Free head */
832 	pointer = priv->tx_pointer;
833 	ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
834 	first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
835 
836 	/* Then all fragments */
837 	for (j = 0; j < i; j++) {
838 		pointer = ftgmac100_next_tx_pointer(priv, pointer);
839 		txdes = &priv->txdes[pointer];
840 		ctl_stat = le32_to_cpu(txdes->txdes0);
841 		ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
842 		txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
843 	}
844 
845 	/* This cannot be reached if we successfully mapped the
846 	 * last fragment, so we know ftgmac100_free_tx_packet()
847 	 * hasn't freed the skb yet.
848 	 */
849  drop:
850 	/* Drop the packet */
851 	dev_kfree_skb_any(skb);
852 	netdev->stats.tx_dropped++;
853 
854 	return NETDEV_TX_OK;
855 }
856 
857 static void ftgmac100_free_buffers(struct ftgmac100 *priv)
858 {
859 	int i;
860 
861 	/* Free all RX buffers */
862 	for (i = 0; i < priv->rx_q_entries; i++) {
863 		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
864 		struct sk_buff *skb = priv->rx_skbs[i];
865 		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
866 
867 		if (!skb)
868 			continue;
869 
870 		priv->rx_skbs[i] = NULL;
871 		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
872 		dev_kfree_skb_any(skb);
873 	}
874 
875 	/* Free all TX buffers */
876 	for (i = 0; i < priv->tx_q_entries; i++) {
877 		struct ftgmac100_txdes *txdes = &priv->txdes[i];
878 		struct sk_buff *skb = priv->tx_skbs[i];
879 
880 		if (!skb)
881 			continue;
882 		ftgmac100_free_tx_packet(priv, i, skb, txdes,
883 					 le32_to_cpu(txdes->txdes0));
884 	}
885 }
886 
887 static void ftgmac100_free_rings(struct ftgmac100 *priv)
888 {
889 	/* Free skb arrays */
890 	kfree(priv->rx_skbs);
891 	kfree(priv->tx_skbs);
892 
893 	/* Free descriptors */
894 	if (priv->rxdes)
895 		dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
896 				  sizeof(struct ftgmac100_rxdes),
897 				  priv->rxdes, priv->rxdes_dma);
898 	priv->rxdes = NULL;
899 
900 	if (priv->txdes)
901 		dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
902 				  sizeof(struct ftgmac100_txdes),
903 				  priv->txdes, priv->txdes_dma);
904 	priv->txdes = NULL;
905 
906 	/* Free scratch packet buffer */
907 	if (priv->rx_scratch)
908 		dma_free_coherent(priv->dev, RX_BUF_SIZE,
909 				  priv->rx_scratch, priv->rx_scratch_dma);
910 }
911 
912 static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
913 {
914 	/* Allocate skb arrays */
915 	priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
916 				GFP_KERNEL);
917 	if (!priv->rx_skbs)
918 		return -ENOMEM;
919 	priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
920 				GFP_KERNEL);
921 	if (!priv->tx_skbs)
922 		return -ENOMEM;
923 
924 	/* Allocate descriptors */
925 	priv->rxdes = dma_alloc_coherent(priv->dev,
926 					 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
927 					 &priv->rxdes_dma, GFP_KERNEL);
928 	if (!priv->rxdes)
929 		return -ENOMEM;
930 	priv->txdes = dma_alloc_coherent(priv->dev,
931 					 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
932 					 &priv->txdes_dma, GFP_KERNEL);
933 	if (!priv->txdes)
934 		return -ENOMEM;
935 
936 	/* Allocate scratch packet buffer */
937 	priv->rx_scratch = dma_alloc_coherent(priv->dev,
938 					      RX_BUF_SIZE,
939 					      &priv->rx_scratch_dma,
940 					      GFP_KERNEL);
941 	if (!priv->rx_scratch)
942 		return -ENOMEM;
943 
944 	return 0;
945 }
946 
947 static void ftgmac100_init_rings(struct ftgmac100 *priv)
948 {
949 	struct ftgmac100_rxdes *rxdes = NULL;
950 	struct ftgmac100_txdes *txdes = NULL;
951 	int i;
952 
953 	/* Update entries counts */
954 	priv->rx_q_entries = priv->new_rx_q_entries;
955 	priv->tx_q_entries = priv->new_tx_q_entries;
956 
957 	if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
958 		return;
959 
960 	/* Initialize RX ring */
961 	for (i = 0; i < priv->rx_q_entries; i++) {
962 		rxdes = &priv->rxdes[i];
963 		rxdes->rxdes0 = 0;
964 		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
965 	}
966 	/* Mark the end of the ring */
967 	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
968 
969 	if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
970 		return;
971 
972 	/* Initialize TX ring */
973 	for (i = 0; i < priv->tx_q_entries; i++) {
974 		txdes = &priv->txdes[i];
975 		txdes->txdes0 = 0;
976 	}
977 	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
978 }
979 
980 static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
981 {
982 	int i;
983 
984 	for (i = 0; i < priv->rx_q_entries; i++) {
985 		struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
986 
987 		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
988 			return -ENOMEM;
989 	}
990 	return 0;
991 }
992 
993 static void ftgmac100_adjust_link(struct net_device *netdev)
994 {
995 	struct ftgmac100 *priv = netdev_priv(netdev);
996 	struct phy_device *phydev = netdev->phydev;
997 	bool tx_pause, rx_pause;
998 	int new_speed;
999 
1000 	/* We store "no link" as speed 0 */
1001 	if (!phydev->link)
1002 		new_speed = 0;
1003 	else
1004 		new_speed = phydev->speed;
1005 
1006 	/* Grab pause settings from PHY if configured to do so */
1007 	if (priv->aneg_pause) {
1008 		rx_pause = tx_pause = phydev->pause;
1009 		if (phydev->asym_pause)
1010 			tx_pause = !rx_pause;
1011 	} else {
1012 		rx_pause = priv->rx_pause;
1013 		tx_pause = priv->tx_pause;
1014 	}
1015 
1016 	/* Link hasn't changed, do nothing */
1017 	if (phydev->speed == priv->cur_speed &&
1018 	    phydev->duplex == priv->cur_duplex &&
1019 	    rx_pause == priv->rx_pause &&
1020 	    tx_pause == priv->tx_pause)
1021 		return;
1022 
1023 	/* Print status if we have a link or we had one and just lost it,
1024 	 * don't print otherwise.
1025 	 */
1026 	if (new_speed || priv->cur_speed)
1027 		phy_print_status(phydev);
1028 
1029 	priv->cur_speed = new_speed;
1030 	priv->cur_duplex = phydev->duplex;
1031 	priv->rx_pause = rx_pause;
1032 	priv->tx_pause = tx_pause;
1033 
1034 	/* Link is down, do nothing else */
1035 	if (!new_speed)
1036 		return;
1037 
1038 	/* Disable all interrupts */
1039 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1040 
1041 	/* Reset the adapter asynchronously */
1042 	schedule_work(&priv->reset_task);
1043 }
1044 
1045 static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1046 {
1047 	struct net_device *netdev = priv->netdev;
1048 	struct phy_device *phydev;
1049 
1050 	phydev = phy_find_first(priv->mii_bus);
1051 	if (!phydev) {
1052 		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1053 		return -ENODEV;
1054 	}
1055 
1056 	phydev = phy_connect(netdev, phydev_name(phydev),
1057 			     &ftgmac100_adjust_link, intf);
1058 
1059 	if (IS_ERR(phydev)) {
1060 		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1061 		return PTR_ERR(phydev);
1062 	}
1063 
1064 	/* Indicate that we support PAUSE frames (see comment in
1065 	 * Documentation/networking/phy.txt)
1066 	 */
1067 	phy_support_asym_pause(phydev);
1068 
1069 	/* Display what we found */
1070 	phy_attached_info(phydev);
1071 
1072 	return 0;
1073 }
1074 
1075 static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1076 {
1077 	struct net_device *netdev = bus->priv;
1078 	struct ftgmac100 *priv = netdev_priv(netdev);
1079 	unsigned int phycr;
1080 	int i;
1081 
1082 	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1083 
1084 	/* preserve MDC cycle threshold */
1085 	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1086 
1087 	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1088 		 FTGMAC100_PHYCR_REGAD(regnum) |
1089 		 FTGMAC100_PHYCR_MIIRD;
1090 
1091 	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1092 
1093 	for (i = 0; i < 10; i++) {
1094 		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1095 
1096 		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1097 			int data;
1098 
1099 			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1100 			return FTGMAC100_PHYDATA_MIIRDATA(data);
1101 		}
1102 
1103 		udelay(100);
1104 	}
1105 
1106 	netdev_err(netdev, "mdio read timed out\n");
1107 	return -EIO;
1108 }
1109 
1110 static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1111 				   int regnum, u16 value)
1112 {
1113 	struct net_device *netdev = bus->priv;
1114 	struct ftgmac100 *priv = netdev_priv(netdev);
1115 	unsigned int phycr;
1116 	int data;
1117 	int i;
1118 
1119 	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1120 
1121 	/* preserve MDC cycle threshold */
1122 	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1123 
1124 	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1125 		 FTGMAC100_PHYCR_REGAD(regnum) |
1126 		 FTGMAC100_PHYCR_MIIWR;
1127 
1128 	data = FTGMAC100_PHYDATA_MIIWDATA(value);
1129 
1130 	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1131 	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1132 
1133 	for (i = 0; i < 10; i++) {
1134 		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1135 
1136 		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1137 			return 0;
1138 
1139 		udelay(100);
1140 	}
1141 
1142 	netdev_err(netdev, "mdio write timed out\n");
1143 	return -EIO;
1144 }
1145 
1146 static void ftgmac100_get_drvinfo(struct net_device *netdev,
1147 				  struct ethtool_drvinfo *info)
1148 {
1149 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1150 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1151 	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1152 }
1153 
1154 static void ftgmac100_get_ringparam(struct net_device *netdev,
1155 				    struct ethtool_ringparam *ering)
1156 {
1157 	struct ftgmac100 *priv = netdev_priv(netdev);
1158 
1159 	memset(ering, 0, sizeof(*ering));
1160 	ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1161 	ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1162 	ering->rx_pending = priv->rx_q_entries;
1163 	ering->tx_pending = priv->tx_q_entries;
1164 }
1165 
1166 static int ftgmac100_set_ringparam(struct net_device *netdev,
1167 				   struct ethtool_ringparam *ering)
1168 {
1169 	struct ftgmac100 *priv = netdev_priv(netdev);
1170 
1171 	if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1172 	    ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1173 	    ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1174 	    ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1175 	    !is_power_of_2(ering->rx_pending) ||
1176 	    !is_power_of_2(ering->tx_pending))
1177 		return -EINVAL;
1178 
1179 	priv->new_rx_q_entries = ering->rx_pending;
1180 	priv->new_tx_q_entries = ering->tx_pending;
1181 	if (netif_running(netdev))
1182 		schedule_work(&priv->reset_task);
1183 
1184 	return 0;
1185 }
1186 
1187 static void ftgmac100_get_pauseparam(struct net_device *netdev,
1188 				     struct ethtool_pauseparam *pause)
1189 {
1190 	struct ftgmac100 *priv = netdev_priv(netdev);
1191 
1192 	pause->autoneg = priv->aneg_pause;
1193 	pause->tx_pause = priv->tx_pause;
1194 	pause->rx_pause = priv->rx_pause;
1195 }
1196 
1197 static int ftgmac100_set_pauseparam(struct net_device *netdev,
1198 				    struct ethtool_pauseparam *pause)
1199 {
1200 	struct ftgmac100 *priv = netdev_priv(netdev);
1201 	struct phy_device *phydev = netdev->phydev;
1202 
1203 	priv->aneg_pause = pause->autoneg;
1204 	priv->tx_pause = pause->tx_pause;
1205 	priv->rx_pause = pause->rx_pause;
1206 
1207 	if (phydev)
1208 		phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1209 
1210 	if (netif_running(netdev)) {
1211 		if (!(phydev && priv->aneg_pause))
1212 			ftgmac100_config_pause(priv);
1213 	}
1214 
1215 	return 0;
1216 }
1217 
1218 static const struct ethtool_ops ftgmac100_ethtool_ops = {
1219 	.get_drvinfo		= ftgmac100_get_drvinfo,
1220 	.get_link		= ethtool_op_get_link,
1221 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1222 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1223 	.nway_reset		= phy_ethtool_nway_reset,
1224 	.get_ringparam		= ftgmac100_get_ringparam,
1225 	.set_ringparam		= ftgmac100_set_ringparam,
1226 	.get_pauseparam		= ftgmac100_get_pauseparam,
1227 	.set_pauseparam		= ftgmac100_set_pauseparam,
1228 };
1229 
1230 static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1231 {
1232 	struct net_device *netdev = dev_id;
1233 	struct ftgmac100 *priv = netdev_priv(netdev);
1234 	unsigned int status, new_mask = FTGMAC100_INT_BAD;
1235 
1236 	/* Fetch and clear interrupt bits, process abnormal ones */
1237 	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1238 	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1239 	if (unlikely(status & FTGMAC100_INT_BAD)) {
1240 
1241 		/* RX buffer unavailable */
1242 		if (status & FTGMAC100_INT_NO_RXBUF)
1243 			netdev->stats.rx_over_errors++;
1244 
1245 		/* received packet lost due to RX FIFO full */
1246 		if (status & FTGMAC100_INT_RPKT_LOST)
1247 			netdev->stats.rx_fifo_errors++;
1248 
1249 		/* sent packet lost due to excessive TX collision */
1250 		if (status & FTGMAC100_INT_XPKT_LOST)
1251 			netdev->stats.tx_fifo_errors++;
1252 
1253 		/* AHB error -> Reset the chip */
1254 		if (status & FTGMAC100_INT_AHB_ERR) {
1255 			if (net_ratelimit())
1256 				netdev_warn(netdev,
1257 					   "AHB bus error ! Resetting chip.\n");
1258 			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1259 			schedule_work(&priv->reset_task);
1260 			return IRQ_HANDLED;
1261 		}
1262 
1263 		/* We may need to restart the MAC after such errors, delay
1264 		 * this until after we have freed some Rx buffers though
1265 		 */
1266 		priv->need_mac_restart = true;
1267 
1268 		/* Disable those errors until we restart */
1269 		new_mask &= ~status;
1270 	}
1271 
1272 	/* Only enable "bad" interrupts while NAPI is on */
1273 	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1274 
1275 	/* Schedule NAPI bh */
1276 	napi_schedule_irqoff(&priv->napi);
1277 
1278 	return IRQ_HANDLED;
1279 }
1280 
1281 static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1282 {
1283 	struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1284 
1285 	/* Do we have a packet ? */
1286 	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1287 }
1288 
1289 static int ftgmac100_poll(struct napi_struct *napi, int budget)
1290 {
1291 	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1292 	int work_done = 0;
1293 	bool more;
1294 
1295 	/* Handle TX completions */
1296 	if (ftgmac100_tx_buf_cleanable(priv))
1297 		ftgmac100_tx_complete(priv);
1298 
1299 	/* Handle RX packets */
1300 	do {
1301 		more = ftgmac100_rx_packet(priv, &work_done);
1302 	} while (more && work_done < budget);
1303 
1304 
1305 	/* The interrupt is telling us to kick the MAC back to life
1306 	 * after an RX overflow
1307 	 */
1308 	if (unlikely(priv->need_mac_restart)) {
1309 		ftgmac100_start_hw(priv);
1310 
1311 		/* Re-enable "bad" interrupts */
1312 		iowrite32(FTGMAC100_INT_BAD,
1313 			  priv->base + FTGMAC100_OFFSET_IER);
1314 	}
1315 
1316 	/* As long as we are waiting for transmit packets to be
1317 	 * completed we keep NAPI going
1318 	 */
1319 	if (ftgmac100_tx_buf_cleanable(priv))
1320 		work_done = budget;
1321 
1322 	if (work_done < budget) {
1323 		/* We are about to re-enable all interrupts. However
1324 		 * the HW has been latching RX/TX packet interrupts while
1325 		 * they were masked. So we clear them first, then we need
1326 		 * to re-check if there's something to process
1327 		 */
1328 		iowrite32(FTGMAC100_INT_RXTX,
1329 			  priv->base + FTGMAC100_OFFSET_ISR);
1330 
1331 		/* Push the above (and provides a barrier vs. subsequent
1332 		 * reads of the descriptor).
1333 		 */
1334 		ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1335 
1336 		/* Check RX and TX descriptors for more work to do */
1337 		if (ftgmac100_check_rx(priv) ||
1338 		    ftgmac100_tx_buf_cleanable(priv))
1339 			return budget;
1340 
1341 		/* deschedule NAPI */
1342 		napi_complete(napi);
1343 
1344 		/* enable all interrupts */
1345 		iowrite32(FTGMAC100_INT_ALL,
1346 			  priv->base + FTGMAC100_OFFSET_IER);
1347 	}
1348 
1349 	return work_done;
1350 }
1351 
1352 static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1353 {
1354 	int err = 0;
1355 
1356 	/* Re-init descriptors (adjust queue sizes) */
1357 	ftgmac100_init_rings(priv);
1358 
1359 	/* Realloc rx descriptors */
1360 	err = ftgmac100_alloc_rx_buffers(priv);
1361 	if (err && !ignore_alloc_err)
1362 		return err;
1363 
1364 	/* Reinit and restart HW */
1365 	ftgmac100_init_hw(priv);
1366 	ftgmac100_config_pause(priv);
1367 	ftgmac100_start_hw(priv);
1368 
1369 	/* Re-enable the device */
1370 	napi_enable(&priv->napi);
1371 	netif_start_queue(priv->netdev);
1372 
1373 	/* Enable all interrupts */
1374 	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1375 
1376 	return err;
1377 }
1378 
1379 static void ftgmac100_reset_task(struct work_struct *work)
1380 {
1381 	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1382 					      reset_task);
1383 	struct net_device *netdev = priv->netdev;
1384 	int err;
1385 
1386 	netdev_dbg(netdev, "Resetting NIC...\n");
1387 
1388 	/* Lock the world */
1389 	rtnl_lock();
1390 	if (netdev->phydev)
1391 		mutex_lock(&netdev->phydev->lock);
1392 	if (priv->mii_bus)
1393 		mutex_lock(&priv->mii_bus->mdio_lock);
1394 
1395 
1396 	/* Check if the interface is still up */
1397 	if (!netif_running(netdev))
1398 		goto bail;
1399 
1400 	/* Stop the network stack */
1401 	netif_trans_update(netdev);
1402 	napi_disable(&priv->napi);
1403 	netif_tx_disable(netdev);
1404 
1405 	/* Stop and reset the MAC */
1406 	ftgmac100_stop_hw(priv);
1407 	err = ftgmac100_reset_and_config_mac(priv);
1408 	if (err) {
1409 		/* Not much we can do ... it might come back... */
1410 		netdev_err(netdev, "attempting to continue...\n");
1411 	}
1412 
1413 	/* Free all rx and tx buffers */
1414 	ftgmac100_free_buffers(priv);
1415 
1416 	/* Setup everything again and restart chip */
1417 	ftgmac100_init_all(priv, true);
1418 
1419 	netdev_dbg(netdev, "Reset done !\n");
1420  bail:
1421 	if (priv->mii_bus)
1422 		mutex_unlock(&priv->mii_bus->mdio_lock);
1423 	if (netdev->phydev)
1424 		mutex_unlock(&netdev->phydev->lock);
1425 	rtnl_unlock();
1426 }
1427 
1428 static int ftgmac100_open(struct net_device *netdev)
1429 {
1430 	struct ftgmac100 *priv = netdev_priv(netdev);
1431 	int err;
1432 
1433 	/* Allocate ring buffers  */
1434 	err = ftgmac100_alloc_rings(priv);
1435 	if (err) {
1436 		netdev_err(netdev, "Failed to allocate descriptors\n");
1437 		return err;
1438 	}
1439 
1440 	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
1441 	 *
1442 	 * Otherwise we leave it set to 0 (no link), the link
1443 	 * message from the PHY layer will handle setting it up to
1444 	 * something else if needed.
1445 	 */
1446 	if (priv->use_ncsi) {
1447 		priv->cur_duplex = DUPLEX_FULL;
1448 		priv->cur_speed = SPEED_100;
1449 	} else {
1450 		priv->cur_duplex = 0;
1451 		priv->cur_speed = 0;
1452 	}
1453 
1454 	/* Reset the hardware */
1455 	err = ftgmac100_reset_and_config_mac(priv);
1456 	if (err)
1457 		goto err_hw;
1458 
1459 	/* Initialize NAPI */
1460 	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1461 
1462 	/* Grab our interrupt */
1463 	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1464 	if (err) {
1465 		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1466 		goto err_irq;
1467 	}
1468 
1469 	/* Start things up */
1470 	err = ftgmac100_init_all(priv, false);
1471 	if (err) {
1472 		netdev_err(netdev, "Failed to allocate packet buffers\n");
1473 		goto err_alloc;
1474 	}
1475 
1476 	if (netdev->phydev) {
1477 		/* If we have a PHY, start polling */
1478 		phy_start(netdev->phydev);
1479 	} else if (priv->use_ncsi) {
1480 		/* If using NC-SI, set our carrier on and start the stack */
1481 		netif_carrier_on(netdev);
1482 
1483 		/* Start the NCSI device */
1484 		err = ncsi_start_dev(priv->ndev);
1485 		if (err)
1486 			goto err_ncsi;
1487 	}
1488 
1489 	return 0;
1490 
1491  err_ncsi:
1492 	napi_disable(&priv->napi);
1493 	netif_stop_queue(netdev);
1494  err_alloc:
1495 	ftgmac100_free_buffers(priv);
1496 	free_irq(netdev->irq, netdev);
1497  err_irq:
1498 	netif_napi_del(&priv->napi);
1499  err_hw:
1500 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1501 	ftgmac100_free_rings(priv);
1502 	return err;
1503 }
1504 
1505 static int ftgmac100_stop(struct net_device *netdev)
1506 {
1507 	struct ftgmac100 *priv = netdev_priv(netdev);
1508 
1509 	/* Note about the reset task: We are called with the rtnl lock
1510 	 * held, so we are synchronized against the core of the reset
1511 	 * task. We must not try to synchronously cancel it otherwise
1512 	 * we can deadlock. But since it will test for netif_running()
1513 	 * which has already been cleared by the net core, we don't
1514 	 * anything special to do.
1515 	 */
1516 
1517 	/* disable all interrupts */
1518 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1519 
1520 	netif_stop_queue(netdev);
1521 	napi_disable(&priv->napi);
1522 	netif_napi_del(&priv->napi);
1523 	if (netdev->phydev)
1524 		phy_stop(netdev->phydev);
1525 	else if (priv->use_ncsi)
1526 		ncsi_stop_dev(priv->ndev);
1527 
1528 	ftgmac100_stop_hw(priv);
1529 	free_irq(netdev->irq, netdev);
1530 	ftgmac100_free_buffers(priv);
1531 	ftgmac100_free_rings(priv);
1532 
1533 	return 0;
1534 }
1535 
1536 /* optional */
1537 static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1538 {
1539 	if (!netdev->phydev)
1540 		return -ENXIO;
1541 
1542 	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1543 }
1544 
1545 static void ftgmac100_tx_timeout(struct net_device *netdev)
1546 {
1547 	struct ftgmac100 *priv = netdev_priv(netdev);
1548 
1549 	/* Disable all interrupts */
1550 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1551 
1552 	/* Do the reset outside of interrupt context */
1553 	schedule_work(&priv->reset_task);
1554 }
1555 
1556 static int ftgmac100_set_features(struct net_device *netdev,
1557 				  netdev_features_t features)
1558 {
1559 	struct ftgmac100 *priv = netdev_priv(netdev);
1560 	netdev_features_t changed = netdev->features ^ features;
1561 
1562 	if (!netif_running(netdev))
1563 		return 0;
1564 
1565 	/* Update the vlan filtering bit */
1566 	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1567 		u32 maccr;
1568 
1569 		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1570 		if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1571 			maccr |= FTGMAC100_MACCR_RM_VLAN;
1572 		else
1573 			maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1574 		iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 #ifdef CONFIG_NET_POLL_CONTROLLER
1581 static void ftgmac100_poll_controller(struct net_device *netdev)
1582 {
1583 	unsigned long flags;
1584 
1585 	local_irq_save(flags);
1586 	ftgmac100_interrupt(netdev->irq, netdev);
1587 	local_irq_restore(flags);
1588 }
1589 #endif
1590 
1591 static const struct net_device_ops ftgmac100_netdev_ops = {
1592 	.ndo_open		= ftgmac100_open,
1593 	.ndo_stop		= ftgmac100_stop,
1594 	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1595 	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1596 	.ndo_validate_addr	= eth_validate_addr,
1597 	.ndo_do_ioctl		= ftgmac100_do_ioctl,
1598 	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1599 	.ndo_set_rx_mode	= ftgmac100_set_rx_mode,
1600 	.ndo_set_features	= ftgmac100_set_features,
1601 #ifdef CONFIG_NET_POLL_CONTROLLER
1602 	.ndo_poll_controller	= ftgmac100_poll_controller,
1603 #endif
1604 	.ndo_vlan_rx_add_vid	= ncsi_vlan_rx_add_vid,
1605 	.ndo_vlan_rx_kill_vid	= ncsi_vlan_rx_kill_vid,
1606 };
1607 
1608 static int ftgmac100_setup_mdio(struct net_device *netdev)
1609 {
1610 	struct ftgmac100 *priv = netdev_priv(netdev);
1611 	struct platform_device *pdev = to_platform_device(priv->dev);
1612 	int phy_intf = PHY_INTERFACE_MODE_RGMII;
1613 	struct device_node *np = pdev->dev.of_node;
1614 	int i, err = 0;
1615 	u32 reg;
1616 
1617 	/* initialize mdio bus */
1618 	priv->mii_bus = mdiobus_alloc();
1619 	if (!priv->mii_bus)
1620 		return -EIO;
1621 
1622 	if (priv->is_aspeed) {
1623 		/* This driver supports the old MDIO interface */
1624 		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1625 		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1626 		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1627 	}
1628 
1629 	/* Get PHY mode from device-tree */
1630 	if (np) {
1631 		/* Default to RGMII. It's a gigabit part after all */
1632 		phy_intf = of_get_phy_mode(np);
1633 		if (phy_intf < 0)
1634 			phy_intf = PHY_INTERFACE_MODE_RGMII;
1635 
1636 		/* Aspeed only supports these. I don't know about other IP
1637 		 * block vendors so I'm going to just let them through for
1638 		 * now. Note that this is only a warning if for some obscure
1639 		 * reason the DT really means to lie about it or it's a newer
1640 		 * part we don't know about.
1641 		 *
1642 		 * On the Aspeed SoC there are additionally straps and SCU
1643 		 * control bits that could tell us what the interface is
1644 		 * (or allow us to configure it while the IP block is held
1645 		 * in reset). For now I chose to keep this driver away from
1646 		 * those SoC specific bits and assume the device-tree is
1647 		 * right and the SCU has been configured properly by pinmux
1648 		 * or the firmware.
1649 		 */
1650 		if (priv->is_aspeed &&
1651 		    phy_intf != PHY_INTERFACE_MODE_RMII &&
1652 		    phy_intf != PHY_INTERFACE_MODE_RGMII &&
1653 		    phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
1654 		    phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
1655 		    phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
1656 			netdev_warn(netdev,
1657 				   "Unsupported PHY mode %s !\n",
1658 				   phy_modes(phy_intf));
1659 		}
1660 	}
1661 
1662 	priv->mii_bus->name = "ftgmac100_mdio";
1663 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1664 		 pdev->name, pdev->id);
1665 	priv->mii_bus->parent = priv->dev;
1666 	priv->mii_bus->priv = priv->netdev;
1667 	priv->mii_bus->read = ftgmac100_mdiobus_read;
1668 	priv->mii_bus->write = ftgmac100_mdiobus_write;
1669 
1670 	for (i = 0; i < PHY_MAX_ADDR; i++)
1671 		priv->mii_bus->irq[i] = PHY_POLL;
1672 
1673 	err = mdiobus_register(priv->mii_bus);
1674 	if (err) {
1675 		dev_err(priv->dev, "Cannot register MDIO bus!\n");
1676 		goto err_register_mdiobus;
1677 	}
1678 
1679 	err = ftgmac100_mii_probe(priv, phy_intf);
1680 	if (err) {
1681 		dev_err(priv->dev, "MII Probe failed!\n");
1682 		goto err_mii_probe;
1683 	}
1684 
1685 	return 0;
1686 
1687 err_mii_probe:
1688 	mdiobus_unregister(priv->mii_bus);
1689 err_register_mdiobus:
1690 	mdiobus_free(priv->mii_bus);
1691 	return err;
1692 }
1693 
1694 static void ftgmac100_destroy_mdio(struct net_device *netdev)
1695 {
1696 	struct ftgmac100 *priv = netdev_priv(netdev);
1697 
1698 	if (!netdev->phydev)
1699 		return;
1700 
1701 	phy_disconnect(netdev->phydev);
1702 	mdiobus_unregister(priv->mii_bus);
1703 	mdiobus_free(priv->mii_bus);
1704 }
1705 
1706 static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1707 {
1708 	if (unlikely(nd->state != ncsi_dev_state_functional))
1709 		return;
1710 
1711 	netdev_dbg(nd->dev, "NCSI interface %s\n",
1712 		   nd->link_up ? "up" : "down");
1713 }
1714 
1715 static void ftgmac100_setup_clk(struct ftgmac100 *priv)
1716 {
1717 	priv->clk = devm_clk_get(priv->dev, NULL);
1718 	if (IS_ERR(priv->clk))
1719 		return;
1720 
1721 	clk_prepare_enable(priv->clk);
1722 
1723 	/* Aspeed specifies a 100MHz clock is required for up to
1724 	 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1725 	 * is sufficient
1726 	 */
1727 	clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1728 			FTGMAC_100MHZ);
1729 }
1730 
1731 static int ftgmac100_probe(struct platform_device *pdev)
1732 {
1733 	struct resource *res;
1734 	int irq;
1735 	struct net_device *netdev;
1736 	struct ftgmac100 *priv;
1737 	struct device_node *np;
1738 	int err = 0;
1739 
1740 	if (!pdev)
1741 		return -ENODEV;
1742 
1743 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1744 	if (!res)
1745 		return -ENXIO;
1746 
1747 	irq = platform_get_irq(pdev, 0);
1748 	if (irq < 0)
1749 		return irq;
1750 
1751 	/* setup net_device */
1752 	netdev = alloc_etherdev(sizeof(*priv));
1753 	if (!netdev) {
1754 		err = -ENOMEM;
1755 		goto err_alloc_etherdev;
1756 	}
1757 
1758 	SET_NETDEV_DEV(netdev, &pdev->dev);
1759 
1760 	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1761 	netdev->netdev_ops = &ftgmac100_netdev_ops;
1762 	netdev->watchdog_timeo = 5 * HZ;
1763 
1764 	platform_set_drvdata(pdev, netdev);
1765 
1766 	/* setup private data */
1767 	priv = netdev_priv(netdev);
1768 	priv->netdev = netdev;
1769 	priv->dev = &pdev->dev;
1770 	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1771 
1772 	/* map io memory */
1773 	priv->res = request_mem_region(res->start, resource_size(res),
1774 				       dev_name(&pdev->dev));
1775 	if (!priv->res) {
1776 		dev_err(&pdev->dev, "Could not reserve memory region\n");
1777 		err = -ENOMEM;
1778 		goto err_req_mem;
1779 	}
1780 
1781 	priv->base = ioremap(res->start, resource_size(res));
1782 	if (!priv->base) {
1783 		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1784 		err = -EIO;
1785 		goto err_ioremap;
1786 	}
1787 
1788 	netdev->irq = irq;
1789 
1790 	/* Enable pause */
1791 	priv->tx_pause = true;
1792 	priv->rx_pause = true;
1793 	priv->aneg_pause = true;
1794 
1795 	/* MAC address from chip or random one */
1796 	ftgmac100_initial_mac(priv);
1797 
1798 	np = pdev->dev.of_node;
1799 	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1800 		   of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1801 		priv->rxdes0_edorr_mask = BIT(30);
1802 		priv->txdes0_edotr_mask = BIT(30);
1803 		priv->is_aspeed = true;
1804 	} else {
1805 		priv->rxdes0_edorr_mask = BIT(15);
1806 		priv->txdes0_edotr_mask = BIT(15);
1807 	}
1808 
1809 	if (np && of_get_property(np, "use-ncsi", NULL)) {
1810 		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1811 			dev_err(&pdev->dev, "NCSI stack not enabled\n");
1812 			goto err_ncsi_dev;
1813 		}
1814 
1815 		dev_info(&pdev->dev, "Using NCSI interface\n");
1816 		priv->use_ncsi = true;
1817 		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1818 		if (!priv->ndev)
1819 			goto err_ncsi_dev;
1820 	} else {
1821 		priv->use_ncsi = false;
1822 		err = ftgmac100_setup_mdio(netdev);
1823 		if (err)
1824 			goto err_setup_mdio;
1825 	}
1826 
1827 	if (priv->is_aspeed)
1828 		ftgmac100_setup_clk(priv);
1829 
1830 	/* Default ring sizes */
1831 	priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1832 	priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1833 
1834 	/* Base feature set */
1835 	netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1836 		NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1837 		NETIF_F_HW_VLAN_CTAG_TX;
1838 
1839 	if (priv->use_ncsi)
1840 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1841 
1842 	/* AST2400  doesn't have working HW checksum generation */
1843 	if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1844 		netdev->hw_features &= ~NETIF_F_HW_CSUM;
1845 	if (np && of_get_property(np, "no-hw-checksum", NULL))
1846 		netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1847 	netdev->features |= netdev->hw_features;
1848 
1849 	/* register network device */
1850 	err = register_netdev(netdev);
1851 	if (err) {
1852 		dev_err(&pdev->dev, "Failed to register netdev\n");
1853 		goto err_register_netdev;
1854 	}
1855 
1856 	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1857 
1858 	return 0;
1859 
1860 err_ncsi_dev:
1861 err_register_netdev:
1862 	ftgmac100_destroy_mdio(netdev);
1863 err_setup_mdio:
1864 	iounmap(priv->base);
1865 err_ioremap:
1866 	release_resource(priv->res);
1867 err_req_mem:
1868 	free_netdev(netdev);
1869 err_alloc_etherdev:
1870 	return err;
1871 }
1872 
1873 static int ftgmac100_remove(struct platform_device *pdev)
1874 {
1875 	struct net_device *netdev;
1876 	struct ftgmac100 *priv;
1877 
1878 	netdev = platform_get_drvdata(pdev);
1879 	priv = netdev_priv(netdev);
1880 
1881 	unregister_netdev(netdev);
1882 
1883 	clk_disable_unprepare(priv->clk);
1884 
1885 	/* There's a small chance the reset task will have been re-queued,
1886 	 * during stop, make sure it's gone before we free the structure.
1887 	 */
1888 	cancel_work_sync(&priv->reset_task);
1889 
1890 	ftgmac100_destroy_mdio(netdev);
1891 
1892 	iounmap(priv->base);
1893 	release_resource(priv->res);
1894 
1895 	netif_napi_del(&priv->napi);
1896 	free_netdev(netdev);
1897 	return 0;
1898 }
1899 
1900 static const struct of_device_id ftgmac100_of_match[] = {
1901 	{ .compatible = "faraday,ftgmac100" },
1902 	{ }
1903 };
1904 MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1905 
1906 static struct platform_driver ftgmac100_driver = {
1907 	.probe	= ftgmac100_probe,
1908 	.remove	= ftgmac100_remove,
1909 	.driver	= {
1910 		.name		= DRV_NAME,
1911 		.of_match_table	= ftgmac100_of_match,
1912 	},
1913 };
1914 module_platform_driver(ftgmac100_driver);
1915 
1916 MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1917 MODULE_DESCRIPTION("FTGMAC100 driver");
1918 MODULE_LICENSE("GPL");
1919