1 /*
2  * Faraday FTGMAC100 Gigabit Ethernet
3  *
4  * (C) Copyright 2009-2011 Faraday Technology
5  * Po-Yu Chuang <ratbert@faraday-tech.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
23 
24 #include <linux/dma-mapping.h>
25 #include <linux/etherdevice.h>
26 #include <linux/ethtool.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/module.h>
30 #include <linux/netdevice.h>
31 #include <linux/of.h>
32 #include <linux/phy.h>
33 #include <linux/platform_device.h>
34 #include <linux/property.h>
35 #include <net/ip.h>
36 #include <net/ncsi.h>
37 
38 #include "ftgmac100.h"
39 
40 #define DRV_NAME	"ftgmac100"
41 #define DRV_VERSION	"0.7"
42 
43 #define RX_QUEUE_ENTRIES	256	/* must be power of 2 */
44 #define TX_QUEUE_ENTRIES	512	/* must be power of 2 */
45 
46 #define MAX_PKT_SIZE		1536
47 #define RX_BUF_SIZE		MAX_PKT_SIZE	/* must be smaller than 0x3fff */
48 
49 /* Min number of tx ring entries before stopping queue */
50 #define TX_THRESHOLD		(1)
51 
52 struct ftgmac100_descs {
53 	struct ftgmac100_rxdes rxdes[RX_QUEUE_ENTRIES];
54 	struct ftgmac100_txdes txdes[TX_QUEUE_ENTRIES];
55 };
56 
57 struct ftgmac100 {
58 	/* Registers */
59 	struct resource *res;
60 	void __iomem *base;
61 
62 	struct ftgmac100_descs *descs;
63 	dma_addr_t descs_dma_addr;
64 
65 	/* Rx ring */
66 	struct sk_buff *rx_skbs[RX_QUEUE_ENTRIES];
67 	unsigned int rx_pointer;
68 	u32 rxdes0_edorr_mask;
69 
70 	/* Tx ring */
71 	struct sk_buff *tx_skbs[TX_QUEUE_ENTRIES];
72 	unsigned int tx_clean_pointer;
73 	unsigned int tx_pointer;
74 	u32 txdes0_edotr_mask;
75 
76 	/* Scratch page to use when rx skb alloc fails */
77 	void *rx_scratch;
78 	dma_addr_t rx_scratch_dma;
79 
80 	/* Component structures */
81 	struct net_device *netdev;
82 	struct device *dev;
83 	struct ncsi_dev *ndev;
84 	struct napi_struct napi;
85 	struct work_struct reset_task;
86 	struct mii_bus *mii_bus;
87 
88 	/* Link management */
89 	int cur_speed;
90 	int cur_duplex;
91 	bool use_ncsi;
92 
93 	/* Misc */
94 	bool need_mac_restart;
95 };
96 
97 static void ftgmac100_set_rx_ring_base(struct ftgmac100 *priv, dma_addr_t addr)
98 {
99 	iowrite32(addr, priv->base + FTGMAC100_OFFSET_RXR_BADR);
100 }
101 
102 static void ftgmac100_set_rx_buffer_size(struct ftgmac100 *priv,
103 		unsigned int size)
104 {
105 	size = FTGMAC100_RBSR_SIZE(size);
106 	iowrite32(size, priv->base + FTGMAC100_OFFSET_RBSR);
107 }
108 
109 static void ftgmac100_set_normal_prio_tx_ring_base(struct ftgmac100 *priv,
110 						   dma_addr_t addr)
111 {
112 	iowrite32(addr, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
113 }
114 
115 static void ftgmac100_txdma_normal_prio_start_polling(struct ftgmac100 *priv)
116 {
117 	iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
118 }
119 
120 static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
121 {
122 	struct net_device *netdev = priv->netdev;
123 	int i;
124 
125 	/* NOTE: reset clears all registers */
126 	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
127 	iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
128 		  priv->base + FTGMAC100_OFFSET_MACCR);
129 	for (i = 0; i < 50; i++) {
130 		unsigned int maccr;
131 
132 		maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
133 		if (!(maccr & FTGMAC100_MACCR_SW_RST))
134 			return 0;
135 
136 		udelay(1);
137 	}
138 
139 	netdev_err(netdev, "Hardware reset failed\n");
140 	return -EIO;
141 }
142 
143 static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
144 {
145 	u32 maccr = 0;
146 
147 	switch (priv->cur_speed) {
148 	case SPEED_10:
149 	case 0: /* no link */
150 		break;
151 
152 	case SPEED_100:
153 		maccr |= FTGMAC100_MACCR_FAST_MODE;
154 		break;
155 
156 	case SPEED_1000:
157 		maccr |= FTGMAC100_MACCR_GIGA_MODE;
158 		break;
159 	default:
160 		netdev_err(priv->netdev, "Unknown speed %d !\n",
161 			   priv->cur_speed);
162 		break;
163 	}
164 
165 	/* (Re)initialize the queue pointers */
166 	priv->rx_pointer = 0;
167 	priv->tx_clean_pointer = 0;
168 	priv->tx_pointer = 0;
169 
170 	/* The doc says reset twice with 10us interval */
171 	if (ftgmac100_reset_mac(priv, maccr))
172 		return -EIO;
173 	usleep_range(10, 1000);
174 	return ftgmac100_reset_mac(priv, maccr);
175 }
176 
177 static void ftgmac100_set_mac(struct ftgmac100 *priv, const unsigned char *mac)
178 {
179 	unsigned int maddr = mac[0] << 8 | mac[1];
180 	unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
181 
182 	iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
183 	iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
184 }
185 
186 static void ftgmac100_setup_mac(struct ftgmac100 *priv)
187 {
188 	u8 mac[ETH_ALEN];
189 	unsigned int m;
190 	unsigned int l;
191 	void *addr;
192 
193 	addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
194 	if (addr) {
195 		ether_addr_copy(priv->netdev->dev_addr, mac);
196 		dev_info(priv->dev, "Read MAC address %pM from device tree\n",
197 			 mac);
198 		return;
199 	}
200 
201 	m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
202 	l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
203 
204 	mac[0] = (m >> 8) & 0xff;
205 	mac[1] = m & 0xff;
206 	mac[2] = (l >> 24) & 0xff;
207 	mac[3] = (l >> 16) & 0xff;
208 	mac[4] = (l >> 8) & 0xff;
209 	mac[5] = l & 0xff;
210 
211 	if (is_valid_ether_addr(mac)) {
212 		ether_addr_copy(priv->netdev->dev_addr, mac);
213 		dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
214 	} else {
215 		eth_hw_addr_random(priv->netdev);
216 		dev_info(priv->dev, "Generated random MAC address %pM\n",
217 			 priv->netdev->dev_addr);
218 	}
219 }
220 
221 static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
222 {
223 	int ret;
224 
225 	ret = eth_prepare_mac_addr_change(dev, p);
226 	if (ret < 0)
227 		return ret;
228 
229 	eth_commit_mac_addr_change(dev, p);
230 	ftgmac100_set_mac(netdev_priv(dev), dev->dev_addr);
231 
232 	return 0;
233 }
234 
235 static void ftgmac100_init_hw(struct ftgmac100 *priv)
236 {
237 	/* setup ring buffer base registers */
238 	ftgmac100_set_rx_ring_base(priv,
239 				   priv->descs_dma_addr +
240 				   offsetof(struct ftgmac100_descs, rxdes));
241 	ftgmac100_set_normal_prio_tx_ring_base(priv,
242 					       priv->descs_dma_addr +
243 					       offsetof(struct ftgmac100_descs, txdes));
244 
245 	ftgmac100_set_rx_buffer_size(priv, RX_BUF_SIZE);
246 
247 	iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1), priv->base + FTGMAC100_OFFSET_APTC);
248 
249 	ftgmac100_set_mac(priv, priv->netdev->dev_addr);
250 }
251 
252 static void ftgmac100_start_hw(struct ftgmac100 *priv)
253 {
254 	u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
255 
256 	/* Keep the original GMAC and FAST bits */
257 	maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
258 
259 	/* Add all the main enable bits */
260 	maccr |= FTGMAC100_MACCR_TXDMA_EN	|
261 		 FTGMAC100_MACCR_RXDMA_EN	|
262 		 FTGMAC100_MACCR_TXMAC_EN	|
263 		 FTGMAC100_MACCR_RXMAC_EN	|
264 		 FTGMAC100_MACCR_CRC_APD	|
265 		 FTGMAC100_MACCR_PHY_LINK_LEVEL	|
266 		 FTGMAC100_MACCR_RX_RUNT	|
267 		 FTGMAC100_MACCR_RX_BROADPKT;
268 
269 	/* Add other bits as needed */
270 	if (priv->cur_duplex == DUPLEX_FULL)
271 		maccr |= FTGMAC100_MACCR_FULLDUP;
272 
273 	/* Hit the HW */
274 	iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
275 }
276 
277 static void ftgmac100_stop_hw(struct ftgmac100 *priv)
278 {
279 	iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
280 }
281 
282 static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
283 				  struct ftgmac100_rxdes *rxdes, gfp_t gfp)
284 {
285 	struct net_device *netdev = priv->netdev;
286 	struct sk_buff *skb;
287 	dma_addr_t map;
288 	int err;
289 
290 	skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
291 	if (unlikely(!skb)) {
292 		if (net_ratelimit())
293 			netdev_warn(netdev, "failed to allocate rx skb\n");
294 		err = -ENOMEM;
295 		map = priv->rx_scratch_dma;
296 	} else {
297 		map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
298 				     DMA_FROM_DEVICE);
299 		if (unlikely(dma_mapping_error(priv->dev, map))) {
300 			if (net_ratelimit())
301 				netdev_err(netdev, "failed to map rx page\n");
302 			dev_kfree_skb_any(skb);
303 			map = priv->rx_scratch_dma;
304 			skb = NULL;
305 			err = -ENOMEM;
306 		}
307 	}
308 
309 	/* Store skb */
310 	priv->rx_skbs[entry] = skb;
311 
312 	/* Store DMA address into RX desc */
313 	rxdes->rxdes3 = cpu_to_le32(map);
314 
315 	/* Ensure the above is ordered vs clearing the OWN bit */
316 	dma_wmb();
317 
318 	/* Clean status (which resets own bit) */
319 	if (entry == (RX_QUEUE_ENTRIES - 1))
320 		rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
321 	else
322 		rxdes->rxdes0 = 0;
323 
324 	return 0;
325 }
326 
327 static int ftgmac100_next_rx_pointer(int pointer)
328 {
329 	return (pointer + 1) & (RX_QUEUE_ENTRIES - 1);
330 }
331 
332 static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
333 {
334 	struct net_device *netdev = priv->netdev;
335 
336 	if (status & FTGMAC100_RXDES0_RX_ERR)
337 		netdev->stats.rx_errors++;
338 
339 	if (status & FTGMAC100_RXDES0_CRC_ERR)
340 		netdev->stats.rx_crc_errors++;
341 
342 	if (status & (FTGMAC100_RXDES0_FTL |
343 		      FTGMAC100_RXDES0_RUNT |
344 		      FTGMAC100_RXDES0_RX_ODD_NB))
345 		netdev->stats.rx_length_errors++;
346 }
347 
348 static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
349 {
350 	struct net_device *netdev = priv->netdev;
351 	struct ftgmac100_rxdes *rxdes;
352 	struct sk_buff *skb;
353 	unsigned int pointer, size;
354 	u32 status, csum_vlan;
355 	dma_addr_t map;
356 
357 	/* Grab next RX descriptor */
358 	pointer = priv->rx_pointer;
359 	rxdes = &priv->descs->rxdes[pointer];
360 
361 	/* Grab descriptor status */
362 	status = le32_to_cpu(rxdes->rxdes0);
363 
364 	/* Do we have a packet ? */
365 	if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
366 		return false;
367 
368 	/* Order subsequent reads with the test for the ready bit */
369 	dma_rmb();
370 
371 	/* We don't cope with fragmented RX packets */
372 	if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
373 		     !(status & FTGMAC100_RXDES0_LRS)))
374 		goto drop;
375 
376 	/* Grab received size and csum vlan field in the descriptor */
377 	size = status & FTGMAC100_RXDES0_VDBC;
378 	csum_vlan = le32_to_cpu(rxdes->rxdes1);
379 
380 	/* Any error (other than csum offload) flagged ? */
381 	if (unlikely(status & RXDES0_ANY_ERROR)) {
382 		/* Correct for incorrect flagging of runt packets
383 		 * with vlan tags... Just accept a runt packet that
384 		 * has been flagged as vlan and whose size is at
385 		 * least 60 bytes.
386 		 */
387 		if ((status & FTGMAC100_RXDES0_RUNT) &&
388 		    (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
389 		    (size >= 60))
390 			status &= ~FTGMAC100_RXDES0_RUNT;
391 
392 		/* Any error still in there ? */
393 		if (status & RXDES0_ANY_ERROR) {
394 			ftgmac100_rx_packet_error(priv, status);
395 			goto drop;
396 		}
397 	}
398 
399 	/* If the packet had no skb (failed to allocate earlier)
400 	 * then try to allocate one and skip
401 	 */
402 	skb = priv->rx_skbs[pointer];
403 	if (!unlikely(skb)) {
404 		ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
405 		goto drop;
406 	}
407 
408 	if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
409 		netdev->stats.multicast++;
410 
411 	/* If the HW found checksum errors, bounce it to software.
412 	 *
413 	 * If we didn't, we need to see if the packet was recognized
414 	 * by HW as one of the supported checksummed protocols before
415 	 * we accept the HW test results.
416 	 */
417 	if (netdev->features & NETIF_F_RXCSUM) {
418 		u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
419 			FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
420 			FTGMAC100_RXDES1_IP_CHKSUM_ERR;
421 		if ((csum_vlan & err_bits) ||
422 		    !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
423 			skb->ip_summed = CHECKSUM_NONE;
424 		else
425 			skb->ip_summed = CHECKSUM_UNNECESSARY;
426 	}
427 
428 	/* Transfer received size to skb */
429 	skb_put(skb, size);
430 
431 	/* Tear down DMA mapping, do necessary cache management */
432 	map = le32_to_cpu(rxdes->rxdes3);
433 
434 #if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
435 	/* When we don't have an iommu, we can save cycles by not
436 	 * invalidating the cache for the part of the packet that
437 	 * wasn't received.
438 	 */
439 	dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
440 #else
441 	dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
442 #endif
443 
444 
445 	/* Resplenish rx ring */
446 	ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
447 	priv->rx_pointer = ftgmac100_next_rx_pointer(pointer);
448 
449 	skb->protocol = eth_type_trans(skb, netdev);
450 
451 	netdev->stats.rx_packets++;
452 	netdev->stats.rx_bytes += size;
453 
454 	/* push packet to protocol stack */
455 	if (skb->ip_summed == CHECKSUM_NONE)
456 		netif_receive_skb(skb);
457 	else
458 		napi_gro_receive(&priv->napi, skb);
459 
460 	(*processed)++;
461 	return true;
462 
463  drop:
464 	/* Clean rxdes0 (which resets own bit) */
465 	rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
466 	priv->rx_pointer = ftgmac100_next_rx_pointer(pointer);
467 	netdev->stats.rx_dropped++;
468 	return true;
469 }
470 
471 static void ftgmac100_txdes_reset(const struct ftgmac100 *priv,
472 				  struct ftgmac100_txdes *txdes)
473 {
474 	/* clear all except end of ring bit */
475 	txdes->txdes0 &= cpu_to_le32(priv->txdes0_edotr_mask);
476 	txdes->txdes1 = 0;
477 	txdes->txdes2 = 0;
478 	txdes->txdes3 = 0;
479 }
480 
481 static bool ftgmac100_txdes_owned_by_dma(struct ftgmac100_txdes *txdes)
482 {
483 	return txdes->txdes0 & cpu_to_le32(FTGMAC100_TXDES0_TXDMA_OWN);
484 }
485 
486 static void ftgmac100_txdes_set_dma_own(struct ftgmac100_txdes *txdes)
487 {
488 	txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_TXDMA_OWN);
489 }
490 
491 static void ftgmac100_txdes_set_end_of_ring(const struct ftgmac100 *priv,
492 					    struct ftgmac100_txdes *txdes)
493 {
494 	txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
495 }
496 
497 static void ftgmac100_txdes_set_first_segment(struct ftgmac100_txdes *txdes)
498 {
499 	txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_FTS);
500 }
501 
502 static void ftgmac100_txdes_set_last_segment(struct ftgmac100_txdes *txdes)
503 {
504 	txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_LTS);
505 }
506 
507 static void ftgmac100_txdes_set_buffer_size(struct ftgmac100_txdes *txdes,
508 					    unsigned int len)
509 {
510 	txdes->txdes0 |= cpu_to_le32(FTGMAC100_TXDES0_TXBUF_SIZE(len));
511 }
512 
513 static void ftgmac100_txdes_set_txint(struct ftgmac100_txdes *txdes)
514 {
515 	txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_TXIC);
516 }
517 
518 static void ftgmac100_txdes_set_tcpcs(struct ftgmac100_txdes *txdes)
519 {
520 	txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_TCP_CHKSUM);
521 }
522 
523 static void ftgmac100_txdes_set_udpcs(struct ftgmac100_txdes *txdes)
524 {
525 	txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_UDP_CHKSUM);
526 }
527 
528 static void ftgmac100_txdes_set_ipcs(struct ftgmac100_txdes *txdes)
529 {
530 	txdes->txdes1 |= cpu_to_le32(FTGMAC100_TXDES1_IP_CHKSUM);
531 }
532 
533 static void ftgmac100_txdes_set_dma_addr(struct ftgmac100_txdes *txdes,
534 					 dma_addr_t addr)
535 {
536 	txdes->txdes3 = cpu_to_le32(addr);
537 }
538 
539 static dma_addr_t ftgmac100_txdes_get_dma_addr(struct ftgmac100_txdes *txdes)
540 {
541 	return le32_to_cpu(txdes->txdes3);
542 }
543 
544 static int ftgmac100_next_tx_pointer(int pointer)
545 {
546 	return (pointer + 1) & (TX_QUEUE_ENTRIES - 1);
547 }
548 
549 static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
550 {
551 	/* Returns the number of available slots in the TX queue
552 	 *
553 	 * This always leaves one free slot so we don't have to
554 	 * worry about empty vs. full, and this simplifies the
555 	 * test for ftgmac100_tx_buf_cleanable() below
556 	 */
557 	return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
558 		(TX_QUEUE_ENTRIES - 1);
559 }
560 
561 static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
562 {
563 	return priv->tx_pointer != priv->tx_clean_pointer;
564 }
565 
566 static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
567 				     unsigned int pointer,
568 				     struct sk_buff *skb,
569 				     struct ftgmac100_txdes *txdes)
570 {
571 	dma_addr_t map;
572 
573 	map = ftgmac100_txdes_get_dma_addr(txdes);
574 
575 	dma_unmap_single(priv->dev, map, skb_headlen(skb), DMA_TO_DEVICE);
576 
577 	dev_kfree_skb(skb);
578 	priv->tx_skbs[pointer] = NULL;
579 
580 	ftgmac100_txdes_reset(priv, txdes);
581 }
582 
583 static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
584 {
585 	struct net_device *netdev = priv->netdev;
586 	struct ftgmac100_txdes *txdes;
587 	struct sk_buff *skb;
588 	unsigned int pointer;
589 
590 	pointer = priv->tx_clean_pointer;
591 	txdes = &priv->descs->txdes[pointer];
592 
593 	if (ftgmac100_txdes_owned_by_dma(txdes))
594 		return false;
595 
596 	skb = priv->tx_skbs[pointer];
597 	netdev->stats.tx_packets++;
598 	netdev->stats.tx_bytes += skb->len;
599 	ftgmac100_free_tx_packet(priv, pointer, skb, txdes);
600 
601 	priv->tx_clean_pointer = ftgmac100_next_tx_pointer(pointer);
602 
603 	return true;
604 }
605 
606 static void ftgmac100_tx_complete(struct ftgmac100 *priv)
607 {
608 	struct net_device *netdev = priv->netdev;
609 
610 	/* Process all completed packets */
611 	while (ftgmac100_tx_buf_cleanable(priv) &&
612 	       ftgmac100_tx_complete_packet(priv))
613 		;
614 
615 	/* Restart queue if needed */
616 	smp_mb();
617 	if (unlikely(netif_queue_stopped(netdev) &&
618 		     ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
619 		struct netdev_queue *txq;
620 
621 		txq = netdev_get_tx_queue(netdev, 0);
622 		__netif_tx_lock(txq, smp_processor_id());
623 		if (netif_queue_stopped(netdev) &&
624 		    ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
625 			netif_wake_queue(netdev);
626 		__netif_tx_unlock(txq);
627 	}
628 }
629 
630 static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
631 				     struct net_device *netdev)
632 {
633 	struct ftgmac100 *priv = netdev_priv(netdev);
634 	struct ftgmac100_txdes *txdes;
635 	unsigned int pointer;
636 	dma_addr_t map;
637 
638 	/* The HW doesn't pad small frames */
639 	if (eth_skb_pad(skb)) {
640 		netdev->stats.tx_dropped++;
641 		return NETDEV_TX_OK;
642 	}
643 
644 	/* Reject oversize packets */
645 	if (unlikely(skb->len > MAX_PKT_SIZE)) {
646 		if (net_ratelimit())
647 			netdev_dbg(netdev, "tx packet too big\n");
648 		goto drop;
649 	}
650 
651 	map = dma_map_single(priv->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
652 	if (unlikely(dma_mapping_error(priv->dev, map))) {
653 		/* drop packet */
654 		if (net_ratelimit())
655 			netdev_err(netdev, "map socket buffer failed\n");
656 		goto drop;
657 	}
658 
659 	/* Grab the next free tx descriptor */
660 	pointer = priv->tx_pointer;
661 	txdes = &priv->descs->txdes[pointer];
662 
663 	/* setup TX descriptor */
664 	priv->tx_skbs[pointer] = skb;
665 	ftgmac100_txdes_set_dma_addr(txdes, map);
666 	ftgmac100_txdes_set_buffer_size(txdes, skb->len);
667 
668 	ftgmac100_txdes_set_first_segment(txdes);
669 	ftgmac100_txdes_set_last_segment(txdes);
670 	ftgmac100_txdes_set_txint(txdes);
671 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
672 		__be16 protocol = skb->protocol;
673 
674 		if (protocol == cpu_to_be16(ETH_P_IP)) {
675 			u8 ip_proto = ip_hdr(skb)->protocol;
676 
677 			ftgmac100_txdes_set_ipcs(txdes);
678 			if (ip_proto == IPPROTO_TCP)
679 				ftgmac100_txdes_set_tcpcs(txdes);
680 			else if (ip_proto == IPPROTO_UDP)
681 				ftgmac100_txdes_set_udpcs(txdes);
682 		}
683 	}
684 
685 	/* Order the previous packet and descriptor udpates
686 	 * before setting the OWN bit.
687 	 */
688 	dma_wmb();
689 	ftgmac100_txdes_set_dma_own(txdes);
690 
691 	/* Update next TX pointer */
692 	priv->tx_pointer = ftgmac100_next_tx_pointer(pointer);
693 
694 	/* If there isn't enough room for all the fragments of a new packet
695 	 * in the TX ring, stop the queue. The sequence below is race free
696 	 * vs. a concurrent restart in ftgmac100_poll()
697 	 */
698 	if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
699 		netif_stop_queue(netdev);
700 		/* Order the queue stop with the test below */
701 		smp_mb();
702 		if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
703 			netif_wake_queue(netdev);
704 	}
705 
706 	ftgmac100_txdma_normal_prio_start_polling(priv);
707 
708 	return NETDEV_TX_OK;
709 
710  drop:
711 	/* Drop the packet */
712 	dev_kfree_skb_any(skb);
713 	netdev->stats.tx_dropped++;
714 
715 	return NETDEV_TX_OK;
716 }
717 
718 static void ftgmac100_free_buffers(struct ftgmac100 *priv)
719 {
720 	int i;
721 
722 	/* Free all RX buffers */
723 	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
724 		struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[i];
725 		struct sk_buff *skb = priv->rx_skbs[i];
726 		dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
727 
728 		if (!skb)
729 			continue;
730 
731 		priv->rx_skbs[i] = NULL;
732 		dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
733 		dev_kfree_skb_any(skb);
734 	}
735 
736 	/* Free all TX buffers */
737 	for (i = 0; i < TX_QUEUE_ENTRIES; i++) {
738 		struct ftgmac100_txdes *txdes = &priv->descs->txdes[i];
739 		struct sk_buff *skb = priv->tx_skbs[i];
740 
741 		if (skb)
742 			ftgmac100_free_tx_packet(priv, i, skb, txdes);
743 	}
744 }
745 
746 static void ftgmac100_free_rings(struct ftgmac100 *priv)
747 {
748 	/* Free descriptors */
749 	if (priv->descs)
750 		dma_free_coherent(priv->dev, sizeof(struct ftgmac100_descs),
751 				  priv->descs, priv->descs_dma_addr);
752 
753 	/* Free scratch packet buffer */
754 	if (priv->rx_scratch)
755 		dma_free_coherent(priv->dev, RX_BUF_SIZE,
756 				  priv->rx_scratch, priv->rx_scratch_dma);
757 }
758 
759 static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
760 {
761 	/* Allocate descriptors */
762 	priv->descs = dma_zalloc_coherent(priv->dev,
763 					  sizeof(struct ftgmac100_descs),
764 					  &priv->descs_dma_addr, GFP_KERNEL);
765 	if (!priv->descs)
766 		return -ENOMEM;
767 
768 	/* Allocate scratch packet buffer */
769 	priv->rx_scratch = dma_alloc_coherent(priv->dev,
770 					      RX_BUF_SIZE,
771 					      &priv->rx_scratch_dma,
772 					      GFP_KERNEL);
773 	if (!priv->rx_scratch)
774 		return -ENOMEM;
775 
776 	return 0;
777 }
778 
779 static void ftgmac100_init_rings(struct ftgmac100 *priv)
780 {
781 	struct ftgmac100_rxdes *rxdes;
782 	int i;
783 
784 	/* Initialize RX ring */
785 	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
786 		rxdes = &priv->descs->rxdes[i];
787 		rxdes->rxdes0 = 0;
788 		rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
789 	}
790 	/* Mark the end of the ring */
791 	rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
792 
793 	/* Initialize TX ring */
794 	for (i = 0; i < TX_QUEUE_ENTRIES; i++)
795 		priv->descs->txdes[i].txdes0 = 0;
796 	ftgmac100_txdes_set_end_of_ring(priv, &priv->descs->txdes[i -1]);
797 }
798 
799 static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
800 {
801 	int i;
802 
803 	for (i = 0; i < RX_QUEUE_ENTRIES; i++) {
804 		struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[i];
805 
806 		if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
807 			return -ENOMEM;
808 	}
809 	return 0;
810 }
811 
812 static void ftgmac100_adjust_link(struct net_device *netdev)
813 {
814 	struct ftgmac100 *priv = netdev_priv(netdev);
815 	struct phy_device *phydev = netdev->phydev;
816 	int new_speed;
817 
818 	/* We store "no link" as speed 0 */
819 	if (!phydev->link)
820 		new_speed = 0;
821 	else
822 		new_speed = phydev->speed;
823 
824 	if (phydev->speed == priv->cur_speed &&
825 	    phydev->duplex == priv->cur_duplex)
826 		return;
827 
828 	/* Print status if we have a link or we had one and just lost it,
829 	 * don't print otherwise.
830 	 */
831 	if (new_speed || priv->cur_speed)
832 		phy_print_status(phydev);
833 
834 	priv->cur_speed = new_speed;
835 	priv->cur_duplex = phydev->duplex;
836 
837 	/* Link is down, do nothing else */
838 	if (!new_speed)
839 		return;
840 
841 	/* Disable all interrupts */
842 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
843 
844 	/* Reset the adapter asynchronously */
845 	schedule_work(&priv->reset_task);
846 }
847 
848 static int ftgmac100_mii_probe(struct ftgmac100 *priv)
849 {
850 	struct net_device *netdev = priv->netdev;
851 	struct phy_device *phydev;
852 
853 	phydev = phy_find_first(priv->mii_bus);
854 	if (!phydev) {
855 		netdev_info(netdev, "%s: no PHY found\n", netdev->name);
856 		return -ENODEV;
857 	}
858 
859 	phydev = phy_connect(netdev, phydev_name(phydev),
860 			     &ftgmac100_adjust_link, PHY_INTERFACE_MODE_GMII);
861 
862 	if (IS_ERR(phydev)) {
863 		netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
864 		return PTR_ERR(phydev);
865 	}
866 
867 	return 0;
868 }
869 
870 static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
871 {
872 	struct net_device *netdev = bus->priv;
873 	struct ftgmac100 *priv = netdev_priv(netdev);
874 	unsigned int phycr;
875 	int i;
876 
877 	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
878 
879 	/* preserve MDC cycle threshold */
880 	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
881 
882 	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
883 		 FTGMAC100_PHYCR_REGAD(regnum) |
884 		 FTGMAC100_PHYCR_MIIRD;
885 
886 	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
887 
888 	for (i = 0; i < 10; i++) {
889 		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
890 
891 		if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
892 			int data;
893 
894 			data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
895 			return FTGMAC100_PHYDATA_MIIRDATA(data);
896 		}
897 
898 		udelay(100);
899 	}
900 
901 	netdev_err(netdev, "mdio read timed out\n");
902 	return -EIO;
903 }
904 
905 static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
906 				   int regnum, u16 value)
907 {
908 	struct net_device *netdev = bus->priv;
909 	struct ftgmac100 *priv = netdev_priv(netdev);
910 	unsigned int phycr;
911 	int data;
912 	int i;
913 
914 	phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
915 
916 	/* preserve MDC cycle threshold */
917 	phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
918 
919 	phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
920 		 FTGMAC100_PHYCR_REGAD(regnum) |
921 		 FTGMAC100_PHYCR_MIIWR;
922 
923 	data = FTGMAC100_PHYDATA_MIIWDATA(value);
924 
925 	iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
926 	iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
927 
928 	for (i = 0; i < 10; i++) {
929 		phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
930 
931 		if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
932 			return 0;
933 
934 		udelay(100);
935 	}
936 
937 	netdev_err(netdev, "mdio write timed out\n");
938 	return -EIO;
939 }
940 
941 static void ftgmac100_get_drvinfo(struct net_device *netdev,
942 				  struct ethtool_drvinfo *info)
943 {
944 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
945 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
946 	strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
947 }
948 
949 static const struct ethtool_ops ftgmac100_ethtool_ops = {
950 	.get_drvinfo		= ftgmac100_get_drvinfo,
951 	.get_link		= ethtool_op_get_link,
952 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
953 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
954 };
955 
956 static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
957 {
958 	struct net_device *netdev = dev_id;
959 	struct ftgmac100 *priv = netdev_priv(netdev);
960 	unsigned int status, new_mask = FTGMAC100_INT_BAD;
961 
962 	/* Fetch and clear interrupt bits, process abnormal ones */
963 	status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
964 	iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
965 	if (unlikely(status & FTGMAC100_INT_BAD)) {
966 
967 		/* RX buffer unavailable */
968 		if (status & FTGMAC100_INT_NO_RXBUF)
969 			netdev->stats.rx_over_errors++;
970 
971 		/* received packet lost due to RX FIFO full */
972 		if (status & FTGMAC100_INT_RPKT_LOST)
973 			netdev->stats.rx_fifo_errors++;
974 
975 		/* sent packet lost due to excessive TX collision */
976 		if (status & FTGMAC100_INT_XPKT_LOST)
977 			netdev->stats.tx_fifo_errors++;
978 
979 		/* AHB error -> Reset the chip */
980 		if (status & FTGMAC100_INT_AHB_ERR) {
981 			if (net_ratelimit())
982 				netdev_warn(netdev,
983 					   "AHB bus error ! Resetting chip.\n");
984 			iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
985 			schedule_work(&priv->reset_task);
986 			return IRQ_HANDLED;
987 		}
988 
989 		/* We may need to restart the MAC after such errors, delay
990 		 * this until after we have freed some Rx buffers though
991 		 */
992 		priv->need_mac_restart = true;
993 
994 		/* Disable those errors until we restart */
995 		new_mask &= ~status;
996 	}
997 
998 	/* Only enable "bad" interrupts while NAPI is on */
999 	iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1000 
1001 	/* Schedule NAPI bh */
1002 	napi_schedule_irqoff(&priv->napi);
1003 
1004 	return IRQ_HANDLED;
1005 }
1006 
1007 static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1008 {
1009 	struct ftgmac100_rxdes *rxdes = &priv->descs->rxdes[priv->rx_pointer];
1010 
1011 	/* Do we have a packet ? */
1012 	return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1013 }
1014 
1015 static int ftgmac100_poll(struct napi_struct *napi, int budget)
1016 {
1017 	struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1018 	int work_done = 0;
1019 	bool more;
1020 
1021 	/* Handle TX completions */
1022 	if (ftgmac100_tx_buf_cleanable(priv))
1023 		ftgmac100_tx_complete(priv);
1024 
1025 	/* Handle RX packets */
1026 	do {
1027 		more = ftgmac100_rx_packet(priv, &work_done);
1028 	} while (more && work_done < budget);
1029 
1030 
1031 	/* The interrupt is telling us to kick the MAC back to life
1032 	 * after an RX overflow
1033 	 */
1034 	if (unlikely(priv->need_mac_restart)) {
1035 		ftgmac100_start_hw(priv);
1036 
1037 		/* Re-enable "bad" interrupts */
1038 		iowrite32(FTGMAC100_INT_BAD,
1039 			  priv->base + FTGMAC100_OFFSET_IER);
1040 	}
1041 
1042 	/* As long as we are waiting for transmit packets to be
1043 	 * completed we keep NAPI going
1044 	 */
1045 	if (ftgmac100_tx_buf_cleanable(priv))
1046 		work_done = budget;
1047 
1048 	if (work_done < budget) {
1049 		/* We are about to re-enable all interrupts. However
1050 		 * the HW has been latching RX/TX packet interrupts while
1051 		 * they were masked. So we clear them first, then we need
1052 		 * to re-check if there's something to process
1053 		 */
1054 		iowrite32(FTGMAC100_INT_RXTX,
1055 			  priv->base + FTGMAC100_OFFSET_ISR);
1056 		if (ftgmac100_check_rx(priv) ||
1057 		    ftgmac100_tx_buf_cleanable(priv))
1058 			return budget;
1059 
1060 		/* deschedule NAPI */
1061 		napi_complete(napi);
1062 
1063 		/* enable all interrupts */
1064 		iowrite32(FTGMAC100_INT_ALL,
1065 			  priv->base + FTGMAC100_OFFSET_IER);
1066 	}
1067 
1068 	return work_done;
1069 }
1070 
1071 static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1072 {
1073 	int err = 0;
1074 
1075 	/* Re-init descriptors (adjust queue sizes) */
1076 	ftgmac100_init_rings(priv);
1077 
1078 	/* Realloc rx descriptors */
1079 	err = ftgmac100_alloc_rx_buffers(priv);
1080 	if (err && !ignore_alloc_err)
1081 		return err;
1082 
1083 	/* Reinit and restart HW */
1084 	ftgmac100_init_hw(priv);
1085 	ftgmac100_start_hw(priv);
1086 
1087 	/* Re-enable the device */
1088 	napi_enable(&priv->napi);
1089 	netif_start_queue(priv->netdev);
1090 
1091 	/* Enable all interrupts */
1092 	iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1093 
1094 	return err;
1095 }
1096 
1097 static void ftgmac100_reset_task(struct work_struct *work)
1098 {
1099 	struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1100 					      reset_task);
1101 	struct net_device *netdev = priv->netdev;
1102 	int err;
1103 
1104 	netdev_dbg(netdev, "Resetting NIC...\n");
1105 
1106 	/* Lock the world */
1107 	rtnl_lock();
1108 	if (netdev->phydev)
1109 		mutex_lock(&netdev->phydev->lock);
1110 	if (priv->mii_bus)
1111 		mutex_lock(&priv->mii_bus->mdio_lock);
1112 
1113 
1114 	/* Check if the interface is still up */
1115 	if (!netif_running(netdev))
1116 		goto bail;
1117 
1118 	/* Stop the network stack */
1119 	netif_trans_update(netdev);
1120 	napi_disable(&priv->napi);
1121 	netif_tx_disable(netdev);
1122 
1123 	/* Stop and reset the MAC */
1124 	ftgmac100_stop_hw(priv);
1125 	err = ftgmac100_reset_and_config_mac(priv);
1126 	if (err) {
1127 		/* Not much we can do ... it might come back... */
1128 		netdev_err(netdev, "attempting to continue...\n");
1129 	}
1130 
1131 	/* Free all rx and tx buffers */
1132 	ftgmac100_free_buffers(priv);
1133 
1134 	/* Setup everything again and restart chip */
1135 	ftgmac100_init_all(priv, true);
1136 
1137 	netdev_dbg(netdev, "Reset done !\n");
1138  bail:
1139 	if (priv->mii_bus)
1140 		mutex_unlock(&priv->mii_bus->mdio_lock);
1141 	if (netdev->phydev)
1142 		mutex_unlock(&netdev->phydev->lock);
1143 	rtnl_unlock();
1144 }
1145 
1146 static int ftgmac100_open(struct net_device *netdev)
1147 {
1148 	struct ftgmac100 *priv = netdev_priv(netdev);
1149 	int err;
1150 
1151 	/* Allocate ring buffers  */
1152 	err = ftgmac100_alloc_rings(priv);
1153 	if (err) {
1154 		netdev_err(netdev, "Failed to allocate descriptors\n");
1155 		return err;
1156 	}
1157 
1158 	/* When using NC-SI we force the speed to 100Mbit/s full duplex,
1159 	 *
1160 	 * Otherwise we leave it set to 0 (no link), the link
1161 	 * message from the PHY layer will handle setting it up to
1162 	 * something else if needed.
1163 	 */
1164 	if (priv->use_ncsi) {
1165 		priv->cur_duplex = DUPLEX_FULL;
1166 		priv->cur_speed = SPEED_100;
1167 	} else {
1168 		priv->cur_duplex = 0;
1169 		priv->cur_speed = 0;
1170 	}
1171 
1172 	/* Reset the hardware */
1173 	err = ftgmac100_reset_and_config_mac(priv);
1174 	if (err)
1175 		goto err_hw;
1176 
1177 	/* Initialize NAPI */
1178 	netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1179 
1180 	/* Grab our interrupt */
1181 	err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1182 	if (err) {
1183 		netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1184 		goto err_irq;
1185 	}
1186 
1187 	/* Start things up */
1188 	err = ftgmac100_init_all(priv, false);
1189 	if (err) {
1190 		netdev_err(netdev, "Failed to allocate packet buffers\n");
1191 		goto err_alloc;
1192 	}
1193 
1194 	if (netdev->phydev) {
1195 		/* If we have a PHY, start polling */
1196 		phy_start(netdev->phydev);
1197 	} else if (priv->use_ncsi) {
1198 		/* If using NC-SI, set our carrier on and start the stack */
1199 		netif_carrier_on(netdev);
1200 
1201 		/* Start the NCSI device */
1202 		err = ncsi_start_dev(priv->ndev);
1203 		if (err)
1204 			goto err_ncsi;
1205 	}
1206 
1207 	return 0;
1208 
1209  err_ncsi:
1210 	napi_disable(&priv->napi);
1211 	netif_stop_queue(netdev);
1212  err_alloc:
1213 	ftgmac100_free_buffers(priv);
1214 	free_irq(netdev->irq, netdev);
1215  err_irq:
1216 	netif_napi_del(&priv->napi);
1217  err_hw:
1218 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1219 	ftgmac100_free_rings(priv);
1220 	return err;
1221 }
1222 
1223 static int ftgmac100_stop(struct net_device *netdev)
1224 {
1225 	struct ftgmac100 *priv = netdev_priv(netdev);
1226 
1227 	/* Note about the reset task: We are called with the rtnl lock
1228 	 * held, so we are synchronized against the core of the reset
1229 	 * task. We must not try to synchronously cancel it otherwise
1230 	 * we can deadlock. But since it will test for netif_running()
1231 	 * which has already been cleared by the net core, we don't
1232 	 * anything special to do.
1233 	 */
1234 
1235 	/* disable all interrupts */
1236 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1237 
1238 	netif_stop_queue(netdev);
1239 	napi_disable(&priv->napi);
1240 	netif_napi_del(&priv->napi);
1241 	if (netdev->phydev)
1242 		phy_stop(netdev->phydev);
1243 	else if (priv->use_ncsi)
1244 		ncsi_stop_dev(priv->ndev);
1245 
1246 	ftgmac100_stop_hw(priv);
1247 	free_irq(netdev->irq, netdev);
1248 	ftgmac100_free_buffers(priv);
1249 	ftgmac100_free_rings(priv);
1250 
1251 	return 0;
1252 }
1253 
1254 /* optional */
1255 static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1256 {
1257 	if (!netdev->phydev)
1258 		return -ENXIO;
1259 
1260 	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1261 }
1262 
1263 static void ftgmac100_tx_timeout(struct net_device *netdev)
1264 {
1265 	struct ftgmac100 *priv = netdev_priv(netdev);
1266 
1267 	/* Disable all interrupts */
1268 	iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1269 
1270 	/* Do the reset outside of interrupt context */
1271 	schedule_work(&priv->reset_task);
1272 }
1273 
1274 static const struct net_device_ops ftgmac100_netdev_ops = {
1275 	.ndo_open		= ftgmac100_open,
1276 	.ndo_stop		= ftgmac100_stop,
1277 	.ndo_start_xmit		= ftgmac100_hard_start_xmit,
1278 	.ndo_set_mac_address	= ftgmac100_set_mac_addr,
1279 	.ndo_validate_addr	= eth_validate_addr,
1280 	.ndo_do_ioctl		= ftgmac100_do_ioctl,
1281 	.ndo_tx_timeout		= ftgmac100_tx_timeout,
1282 };
1283 
1284 static int ftgmac100_setup_mdio(struct net_device *netdev)
1285 {
1286 	struct ftgmac100 *priv = netdev_priv(netdev);
1287 	struct platform_device *pdev = to_platform_device(priv->dev);
1288 	int i, err = 0;
1289 	u32 reg;
1290 
1291 	/* initialize mdio bus */
1292 	priv->mii_bus = mdiobus_alloc();
1293 	if (!priv->mii_bus)
1294 		return -EIO;
1295 
1296 	if (of_machine_is_compatible("aspeed,ast2400") ||
1297 	    of_machine_is_compatible("aspeed,ast2500")) {
1298 		/* This driver supports the old MDIO interface */
1299 		reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1300 		reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1301 		iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1302 	};
1303 
1304 	priv->mii_bus->name = "ftgmac100_mdio";
1305 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1306 		 pdev->name, pdev->id);
1307 	priv->mii_bus->priv = priv->netdev;
1308 	priv->mii_bus->read = ftgmac100_mdiobus_read;
1309 	priv->mii_bus->write = ftgmac100_mdiobus_write;
1310 
1311 	for (i = 0; i < PHY_MAX_ADDR; i++)
1312 		priv->mii_bus->irq[i] = PHY_POLL;
1313 
1314 	err = mdiobus_register(priv->mii_bus);
1315 	if (err) {
1316 		dev_err(priv->dev, "Cannot register MDIO bus!\n");
1317 		goto err_register_mdiobus;
1318 	}
1319 
1320 	err = ftgmac100_mii_probe(priv);
1321 	if (err) {
1322 		dev_err(priv->dev, "MII Probe failed!\n");
1323 		goto err_mii_probe;
1324 	}
1325 
1326 	return 0;
1327 
1328 err_mii_probe:
1329 	mdiobus_unregister(priv->mii_bus);
1330 err_register_mdiobus:
1331 	mdiobus_free(priv->mii_bus);
1332 	return err;
1333 }
1334 
1335 static void ftgmac100_destroy_mdio(struct net_device *netdev)
1336 {
1337 	struct ftgmac100 *priv = netdev_priv(netdev);
1338 
1339 	if (!netdev->phydev)
1340 		return;
1341 
1342 	phy_disconnect(netdev->phydev);
1343 	mdiobus_unregister(priv->mii_bus);
1344 	mdiobus_free(priv->mii_bus);
1345 }
1346 
1347 static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1348 {
1349 	if (unlikely(nd->state != ncsi_dev_state_functional))
1350 		return;
1351 
1352 	netdev_info(nd->dev, "NCSI interface %s\n",
1353 		    nd->link_up ? "up" : "down");
1354 }
1355 
1356 static int ftgmac100_probe(struct platform_device *pdev)
1357 {
1358 	struct resource *res;
1359 	int irq;
1360 	struct net_device *netdev;
1361 	struct ftgmac100 *priv;
1362 	int err = 0;
1363 
1364 	if (!pdev)
1365 		return -ENODEV;
1366 
1367 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1368 	if (!res)
1369 		return -ENXIO;
1370 
1371 	irq = platform_get_irq(pdev, 0);
1372 	if (irq < 0)
1373 		return irq;
1374 
1375 	/* setup net_device */
1376 	netdev = alloc_etherdev(sizeof(*priv));
1377 	if (!netdev) {
1378 		err = -ENOMEM;
1379 		goto err_alloc_etherdev;
1380 	}
1381 
1382 	SET_NETDEV_DEV(netdev, &pdev->dev);
1383 
1384 	netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1385 	netdev->netdev_ops = &ftgmac100_netdev_ops;
1386 	netdev->watchdog_timeo = 5 * HZ;
1387 
1388 	platform_set_drvdata(pdev, netdev);
1389 
1390 	/* setup private data */
1391 	priv = netdev_priv(netdev);
1392 	priv->netdev = netdev;
1393 	priv->dev = &pdev->dev;
1394 	INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1395 
1396 	/* map io memory */
1397 	priv->res = request_mem_region(res->start, resource_size(res),
1398 				       dev_name(&pdev->dev));
1399 	if (!priv->res) {
1400 		dev_err(&pdev->dev, "Could not reserve memory region\n");
1401 		err = -ENOMEM;
1402 		goto err_req_mem;
1403 	}
1404 
1405 	priv->base = ioremap(res->start, resource_size(res));
1406 	if (!priv->base) {
1407 		dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1408 		err = -EIO;
1409 		goto err_ioremap;
1410 	}
1411 
1412 	netdev->irq = irq;
1413 
1414 	/* MAC address from chip or random one */
1415 	ftgmac100_setup_mac(priv);
1416 
1417 	if (of_machine_is_compatible("aspeed,ast2400") ||
1418 	    of_machine_is_compatible("aspeed,ast2500")) {
1419 		priv->rxdes0_edorr_mask = BIT(30);
1420 		priv->txdes0_edotr_mask = BIT(30);
1421 	} else {
1422 		priv->rxdes0_edorr_mask = BIT(15);
1423 		priv->txdes0_edotr_mask = BIT(15);
1424 	}
1425 
1426 	if (pdev->dev.of_node &&
1427 	    of_get_property(pdev->dev.of_node, "use-ncsi", NULL)) {
1428 		if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1429 			dev_err(&pdev->dev, "NCSI stack not enabled\n");
1430 			goto err_ncsi_dev;
1431 		}
1432 
1433 		dev_info(&pdev->dev, "Using NCSI interface\n");
1434 		priv->use_ncsi = true;
1435 		priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1436 		if (!priv->ndev)
1437 			goto err_ncsi_dev;
1438 	} else {
1439 		priv->use_ncsi = false;
1440 		err = ftgmac100_setup_mdio(netdev);
1441 		if (err)
1442 			goto err_setup_mdio;
1443 	}
1444 
1445 	/* We have to disable on-chip IP checksum functionality
1446 	 * when NCSI is enabled on the interface. It doesn't work
1447 	 * in that case.
1448 	 */
1449 	netdev->features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_GRO;
1450 	if (priv->use_ncsi &&
1451 	    of_get_property(pdev->dev.of_node, "no-hw-checksum", NULL))
1452 		netdev->features &= ~NETIF_F_IP_CSUM;
1453 
1454 
1455 	/* register network device */
1456 	err = register_netdev(netdev);
1457 	if (err) {
1458 		dev_err(&pdev->dev, "Failed to register netdev\n");
1459 		goto err_register_netdev;
1460 	}
1461 
1462 	netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1463 
1464 	return 0;
1465 
1466 err_ncsi_dev:
1467 err_register_netdev:
1468 	ftgmac100_destroy_mdio(netdev);
1469 err_setup_mdio:
1470 	iounmap(priv->base);
1471 err_ioremap:
1472 	release_resource(priv->res);
1473 err_req_mem:
1474 	netif_napi_del(&priv->napi);
1475 	free_netdev(netdev);
1476 err_alloc_etherdev:
1477 	return err;
1478 }
1479 
1480 static int ftgmac100_remove(struct platform_device *pdev)
1481 {
1482 	struct net_device *netdev;
1483 	struct ftgmac100 *priv;
1484 
1485 	netdev = platform_get_drvdata(pdev);
1486 	priv = netdev_priv(netdev);
1487 
1488 	unregister_netdev(netdev);
1489 
1490 	/* There's a small chance the reset task will have been re-queued,
1491 	 * during stop, make sure it's gone before we free the structure.
1492 	 */
1493 	cancel_work_sync(&priv->reset_task);
1494 
1495 	ftgmac100_destroy_mdio(netdev);
1496 
1497 	iounmap(priv->base);
1498 	release_resource(priv->res);
1499 
1500 	netif_napi_del(&priv->napi);
1501 	free_netdev(netdev);
1502 	return 0;
1503 }
1504 
1505 static const struct of_device_id ftgmac100_of_match[] = {
1506 	{ .compatible = "faraday,ftgmac100" },
1507 	{ }
1508 };
1509 MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1510 
1511 static struct platform_driver ftgmac100_driver = {
1512 	.probe	= ftgmac100_probe,
1513 	.remove	= ftgmac100_remove,
1514 	.driver	= {
1515 		.name		= DRV_NAME,
1516 		.of_match_table	= ftgmac100_of_match,
1517 	},
1518 };
1519 module_platform_driver(ftgmac100_driver);
1520 
1521 MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1522 MODULE_DESCRIPTION("FTGMAC100 driver");
1523 MODULE_LICENSE("GPL");
1524