1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~CXGB4_FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rarely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boundaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9810, 0x9864,
1383 		0x9c00, 0x9c6c,
1384 		0x9c80, 0x9cec,
1385 		0x9d00, 0x9d6c,
1386 		0x9d80, 0x9dec,
1387 		0x9e00, 0x9e6c,
1388 		0x9e80, 0x9eec,
1389 		0x9f00, 0x9f6c,
1390 		0x9f80, 0xa020,
1391 		0xd000, 0xd004,
1392 		0xd010, 0xd03c,
1393 		0xdfc0, 0xdfe0,
1394 		0xe000, 0x1106c,
1395 		0x11074, 0x11088,
1396 		0x1109c, 0x1117c,
1397 		0x11190, 0x11204,
1398 		0x19040, 0x1906c,
1399 		0x19078, 0x19080,
1400 		0x1908c, 0x190e8,
1401 		0x190f0, 0x190f8,
1402 		0x19100, 0x19110,
1403 		0x19120, 0x19124,
1404 		0x19150, 0x19194,
1405 		0x1919c, 0x191b0,
1406 		0x191d0, 0x191e8,
1407 		0x19238, 0x19290,
1408 		0x193f8, 0x19428,
1409 		0x19430, 0x19444,
1410 		0x1944c, 0x1946c,
1411 		0x19474, 0x19474,
1412 		0x19490, 0x194cc,
1413 		0x194f0, 0x194f8,
1414 		0x19c00, 0x19c08,
1415 		0x19c10, 0x19c60,
1416 		0x19c94, 0x19ce4,
1417 		0x19cf0, 0x19d40,
1418 		0x19d50, 0x19d94,
1419 		0x19da0, 0x19de8,
1420 		0x19df0, 0x19e10,
1421 		0x19e50, 0x19e90,
1422 		0x19ea0, 0x19f24,
1423 		0x19f34, 0x19f34,
1424 		0x19f40, 0x19f50,
1425 		0x19f90, 0x19fb4,
1426 		0x19fc4, 0x19fe4,
1427 		0x1a000, 0x1a004,
1428 		0x1a010, 0x1a06c,
1429 		0x1a0b0, 0x1a0e4,
1430 		0x1a0ec, 0x1a0f8,
1431 		0x1a100, 0x1a108,
1432 		0x1a114, 0x1a130,
1433 		0x1a138, 0x1a1c4,
1434 		0x1a1fc, 0x1a1fc,
1435 		0x1e008, 0x1e00c,
1436 		0x1e040, 0x1e044,
1437 		0x1e04c, 0x1e04c,
1438 		0x1e284, 0x1e290,
1439 		0x1e2c0, 0x1e2c0,
1440 		0x1e2e0, 0x1e2e0,
1441 		0x1e300, 0x1e384,
1442 		0x1e3c0, 0x1e3c8,
1443 		0x1e408, 0x1e40c,
1444 		0x1e440, 0x1e444,
1445 		0x1e44c, 0x1e44c,
1446 		0x1e684, 0x1e690,
1447 		0x1e6c0, 0x1e6c0,
1448 		0x1e6e0, 0x1e6e0,
1449 		0x1e700, 0x1e784,
1450 		0x1e7c0, 0x1e7c8,
1451 		0x1e808, 0x1e80c,
1452 		0x1e840, 0x1e844,
1453 		0x1e84c, 0x1e84c,
1454 		0x1ea84, 0x1ea90,
1455 		0x1eac0, 0x1eac0,
1456 		0x1eae0, 0x1eae0,
1457 		0x1eb00, 0x1eb84,
1458 		0x1ebc0, 0x1ebc8,
1459 		0x1ec08, 0x1ec0c,
1460 		0x1ec40, 0x1ec44,
1461 		0x1ec4c, 0x1ec4c,
1462 		0x1ee84, 0x1ee90,
1463 		0x1eec0, 0x1eec0,
1464 		0x1eee0, 0x1eee0,
1465 		0x1ef00, 0x1ef84,
1466 		0x1efc0, 0x1efc8,
1467 		0x1f008, 0x1f00c,
1468 		0x1f040, 0x1f044,
1469 		0x1f04c, 0x1f04c,
1470 		0x1f284, 0x1f290,
1471 		0x1f2c0, 0x1f2c0,
1472 		0x1f2e0, 0x1f2e0,
1473 		0x1f300, 0x1f384,
1474 		0x1f3c0, 0x1f3c8,
1475 		0x1f408, 0x1f40c,
1476 		0x1f440, 0x1f444,
1477 		0x1f44c, 0x1f44c,
1478 		0x1f684, 0x1f690,
1479 		0x1f6c0, 0x1f6c0,
1480 		0x1f6e0, 0x1f6e0,
1481 		0x1f700, 0x1f784,
1482 		0x1f7c0, 0x1f7c8,
1483 		0x1f808, 0x1f80c,
1484 		0x1f840, 0x1f844,
1485 		0x1f84c, 0x1f84c,
1486 		0x1fa84, 0x1fa90,
1487 		0x1fac0, 0x1fac0,
1488 		0x1fae0, 0x1fae0,
1489 		0x1fb00, 0x1fb84,
1490 		0x1fbc0, 0x1fbc8,
1491 		0x1fc08, 0x1fc0c,
1492 		0x1fc40, 0x1fc44,
1493 		0x1fc4c, 0x1fc4c,
1494 		0x1fe84, 0x1fe90,
1495 		0x1fec0, 0x1fec0,
1496 		0x1fee0, 0x1fee0,
1497 		0x1ff00, 0x1ff84,
1498 		0x1ffc0, 0x1ffc8,
1499 		0x30000, 0x30030,
1500 		0x30100, 0x30144,
1501 		0x30190, 0x301a0,
1502 		0x301a8, 0x301b8,
1503 		0x301c4, 0x301c8,
1504 		0x301d0, 0x301d0,
1505 		0x30200, 0x30318,
1506 		0x30400, 0x304b4,
1507 		0x304c0, 0x3052c,
1508 		0x30540, 0x3061c,
1509 		0x30800, 0x30828,
1510 		0x30834, 0x30834,
1511 		0x308c0, 0x30908,
1512 		0x30910, 0x309ac,
1513 		0x30a00, 0x30a14,
1514 		0x30a1c, 0x30a2c,
1515 		0x30a44, 0x30a50,
1516 		0x30a74, 0x30a74,
1517 		0x30a7c, 0x30afc,
1518 		0x30b08, 0x30c24,
1519 		0x30d00, 0x30d00,
1520 		0x30d08, 0x30d14,
1521 		0x30d1c, 0x30d20,
1522 		0x30d3c, 0x30d3c,
1523 		0x30d48, 0x30d50,
1524 		0x31200, 0x3120c,
1525 		0x31220, 0x31220,
1526 		0x31240, 0x31240,
1527 		0x31600, 0x3160c,
1528 		0x31a00, 0x31a1c,
1529 		0x31e00, 0x31e20,
1530 		0x31e38, 0x31e3c,
1531 		0x31e80, 0x31e80,
1532 		0x31e88, 0x31ea8,
1533 		0x31eb0, 0x31eb4,
1534 		0x31ec8, 0x31ed4,
1535 		0x31fb8, 0x32004,
1536 		0x32200, 0x32200,
1537 		0x32208, 0x32240,
1538 		0x32248, 0x32280,
1539 		0x32288, 0x322c0,
1540 		0x322c8, 0x322fc,
1541 		0x32600, 0x32630,
1542 		0x32a00, 0x32abc,
1543 		0x32b00, 0x32b10,
1544 		0x32b20, 0x32b30,
1545 		0x32b40, 0x32b50,
1546 		0x32b60, 0x32b70,
1547 		0x33000, 0x33028,
1548 		0x33030, 0x33048,
1549 		0x33060, 0x33068,
1550 		0x33070, 0x3309c,
1551 		0x330f0, 0x33128,
1552 		0x33130, 0x33148,
1553 		0x33160, 0x33168,
1554 		0x33170, 0x3319c,
1555 		0x331f0, 0x33238,
1556 		0x33240, 0x33240,
1557 		0x33248, 0x33250,
1558 		0x3325c, 0x33264,
1559 		0x33270, 0x332b8,
1560 		0x332c0, 0x332e4,
1561 		0x332f8, 0x33338,
1562 		0x33340, 0x33340,
1563 		0x33348, 0x33350,
1564 		0x3335c, 0x33364,
1565 		0x33370, 0x333b8,
1566 		0x333c0, 0x333e4,
1567 		0x333f8, 0x33428,
1568 		0x33430, 0x33448,
1569 		0x33460, 0x33468,
1570 		0x33470, 0x3349c,
1571 		0x334f0, 0x33528,
1572 		0x33530, 0x33548,
1573 		0x33560, 0x33568,
1574 		0x33570, 0x3359c,
1575 		0x335f0, 0x33638,
1576 		0x33640, 0x33640,
1577 		0x33648, 0x33650,
1578 		0x3365c, 0x33664,
1579 		0x33670, 0x336b8,
1580 		0x336c0, 0x336e4,
1581 		0x336f8, 0x33738,
1582 		0x33740, 0x33740,
1583 		0x33748, 0x33750,
1584 		0x3375c, 0x33764,
1585 		0x33770, 0x337b8,
1586 		0x337c0, 0x337e4,
1587 		0x337f8, 0x337fc,
1588 		0x33814, 0x33814,
1589 		0x3382c, 0x3382c,
1590 		0x33880, 0x3388c,
1591 		0x338e8, 0x338ec,
1592 		0x33900, 0x33928,
1593 		0x33930, 0x33948,
1594 		0x33960, 0x33968,
1595 		0x33970, 0x3399c,
1596 		0x339f0, 0x33a38,
1597 		0x33a40, 0x33a40,
1598 		0x33a48, 0x33a50,
1599 		0x33a5c, 0x33a64,
1600 		0x33a70, 0x33ab8,
1601 		0x33ac0, 0x33ae4,
1602 		0x33af8, 0x33b10,
1603 		0x33b28, 0x33b28,
1604 		0x33b3c, 0x33b50,
1605 		0x33bf0, 0x33c10,
1606 		0x33c28, 0x33c28,
1607 		0x33c3c, 0x33c50,
1608 		0x33cf0, 0x33cfc,
1609 		0x34000, 0x34030,
1610 		0x34100, 0x34144,
1611 		0x34190, 0x341a0,
1612 		0x341a8, 0x341b8,
1613 		0x341c4, 0x341c8,
1614 		0x341d0, 0x341d0,
1615 		0x34200, 0x34318,
1616 		0x34400, 0x344b4,
1617 		0x344c0, 0x3452c,
1618 		0x34540, 0x3461c,
1619 		0x34800, 0x34828,
1620 		0x34834, 0x34834,
1621 		0x348c0, 0x34908,
1622 		0x34910, 0x349ac,
1623 		0x34a00, 0x34a14,
1624 		0x34a1c, 0x34a2c,
1625 		0x34a44, 0x34a50,
1626 		0x34a74, 0x34a74,
1627 		0x34a7c, 0x34afc,
1628 		0x34b08, 0x34c24,
1629 		0x34d00, 0x34d00,
1630 		0x34d08, 0x34d14,
1631 		0x34d1c, 0x34d20,
1632 		0x34d3c, 0x34d3c,
1633 		0x34d48, 0x34d50,
1634 		0x35200, 0x3520c,
1635 		0x35220, 0x35220,
1636 		0x35240, 0x35240,
1637 		0x35600, 0x3560c,
1638 		0x35a00, 0x35a1c,
1639 		0x35e00, 0x35e20,
1640 		0x35e38, 0x35e3c,
1641 		0x35e80, 0x35e80,
1642 		0x35e88, 0x35ea8,
1643 		0x35eb0, 0x35eb4,
1644 		0x35ec8, 0x35ed4,
1645 		0x35fb8, 0x36004,
1646 		0x36200, 0x36200,
1647 		0x36208, 0x36240,
1648 		0x36248, 0x36280,
1649 		0x36288, 0x362c0,
1650 		0x362c8, 0x362fc,
1651 		0x36600, 0x36630,
1652 		0x36a00, 0x36abc,
1653 		0x36b00, 0x36b10,
1654 		0x36b20, 0x36b30,
1655 		0x36b40, 0x36b50,
1656 		0x36b60, 0x36b70,
1657 		0x37000, 0x37028,
1658 		0x37030, 0x37048,
1659 		0x37060, 0x37068,
1660 		0x37070, 0x3709c,
1661 		0x370f0, 0x37128,
1662 		0x37130, 0x37148,
1663 		0x37160, 0x37168,
1664 		0x37170, 0x3719c,
1665 		0x371f0, 0x37238,
1666 		0x37240, 0x37240,
1667 		0x37248, 0x37250,
1668 		0x3725c, 0x37264,
1669 		0x37270, 0x372b8,
1670 		0x372c0, 0x372e4,
1671 		0x372f8, 0x37338,
1672 		0x37340, 0x37340,
1673 		0x37348, 0x37350,
1674 		0x3735c, 0x37364,
1675 		0x37370, 0x373b8,
1676 		0x373c0, 0x373e4,
1677 		0x373f8, 0x37428,
1678 		0x37430, 0x37448,
1679 		0x37460, 0x37468,
1680 		0x37470, 0x3749c,
1681 		0x374f0, 0x37528,
1682 		0x37530, 0x37548,
1683 		0x37560, 0x37568,
1684 		0x37570, 0x3759c,
1685 		0x375f0, 0x37638,
1686 		0x37640, 0x37640,
1687 		0x37648, 0x37650,
1688 		0x3765c, 0x37664,
1689 		0x37670, 0x376b8,
1690 		0x376c0, 0x376e4,
1691 		0x376f8, 0x37738,
1692 		0x37740, 0x37740,
1693 		0x37748, 0x37750,
1694 		0x3775c, 0x37764,
1695 		0x37770, 0x377b8,
1696 		0x377c0, 0x377e4,
1697 		0x377f8, 0x377fc,
1698 		0x37814, 0x37814,
1699 		0x3782c, 0x3782c,
1700 		0x37880, 0x3788c,
1701 		0x378e8, 0x378ec,
1702 		0x37900, 0x37928,
1703 		0x37930, 0x37948,
1704 		0x37960, 0x37968,
1705 		0x37970, 0x3799c,
1706 		0x379f0, 0x37a38,
1707 		0x37a40, 0x37a40,
1708 		0x37a48, 0x37a50,
1709 		0x37a5c, 0x37a64,
1710 		0x37a70, 0x37ab8,
1711 		0x37ac0, 0x37ae4,
1712 		0x37af8, 0x37b10,
1713 		0x37b28, 0x37b28,
1714 		0x37b3c, 0x37b50,
1715 		0x37bf0, 0x37c10,
1716 		0x37c28, 0x37c28,
1717 		0x37c3c, 0x37c50,
1718 		0x37cf0, 0x37cfc,
1719 		0x38000, 0x38030,
1720 		0x38100, 0x38144,
1721 		0x38190, 0x381a0,
1722 		0x381a8, 0x381b8,
1723 		0x381c4, 0x381c8,
1724 		0x381d0, 0x381d0,
1725 		0x38200, 0x38318,
1726 		0x38400, 0x384b4,
1727 		0x384c0, 0x3852c,
1728 		0x38540, 0x3861c,
1729 		0x38800, 0x38828,
1730 		0x38834, 0x38834,
1731 		0x388c0, 0x38908,
1732 		0x38910, 0x389ac,
1733 		0x38a00, 0x38a14,
1734 		0x38a1c, 0x38a2c,
1735 		0x38a44, 0x38a50,
1736 		0x38a74, 0x38a74,
1737 		0x38a7c, 0x38afc,
1738 		0x38b08, 0x38c24,
1739 		0x38d00, 0x38d00,
1740 		0x38d08, 0x38d14,
1741 		0x38d1c, 0x38d20,
1742 		0x38d3c, 0x38d3c,
1743 		0x38d48, 0x38d50,
1744 		0x39200, 0x3920c,
1745 		0x39220, 0x39220,
1746 		0x39240, 0x39240,
1747 		0x39600, 0x3960c,
1748 		0x39a00, 0x39a1c,
1749 		0x39e00, 0x39e20,
1750 		0x39e38, 0x39e3c,
1751 		0x39e80, 0x39e80,
1752 		0x39e88, 0x39ea8,
1753 		0x39eb0, 0x39eb4,
1754 		0x39ec8, 0x39ed4,
1755 		0x39fb8, 0x3a004,
1756 		0x3a200, 0x3a200,
1757 		0x3a208, 0x3a240,
1758 		0x3a248, 0x3a280,
1759 		0x3a288, 0x3a2c0,
1760 		0x3a2c8, 0x3a2fc,
1761 		0x3a600, 0x3a630,
1762 		0x3aa00, 0x3aabc,
1763 		0x3ab00, 0x3ab10,
1764 		0x3ab20, 0x3ab30,
1765 		0x3ab40, 0x3ab50,
1766 		0x3ab60, 0x3ab70,
1767 		0x3b000, 0x3b028,
1768 		0x3b030, 0x3b048,
1769 		0x3b060, 0x3b068,
1770 		0x3b070, 0x3b09c,
1771 		0x3b0f0, 0x3b128,
1772 		0x3b130, 0x3b148,
1773 		0x3b160, 0x3b168,
1774 		0x3b170, 0x3b19c,
1775 		0x3b1f0, 0x3b238,
1776 		0x3b240, 0x3b240,
1777 		0x3b248, 0x3b250,
1778 		0x3b25c, 0x3b264,
1779 		0x3b270, 0x3b2b8,
1780 		0x3b2c0, 0x3b2e4,
1781 		0x3b2f8, 0x3b338,
1782 		0x3b340, 0x3b340,
1783 		0x3b348, 0x3b350,
1784 		0x3b35c, 0x3b364,
1785 		0x3b370, 0x3b3b8,
1786 		0x3b3c0, 0x3b3e4,
1787 		0x3b3f8, 0x3b428,
1788 		0x3b430, 0x3b448,
1789 		0x3b460, 0x3b468,
1790 		0x3b470, 0x3b49c,
1791 		0x3b4f0, 0x3b528,
1792 		0x3b530, 0x3b548,
1793 		0x3b560, 0x3b568,
1794 		0x3b570, 0x3b59c,
1795 		0x3b5f0, 0x3b638,
1796 		0x3b640, 0x3b640,
1797 		0x3b648, 0x3b650,
1798 		0x3b65c, 0x3b664,
1799 		0x3b670, 0x3b6b8,
1800 		0x3b6c0, 0x3b6e4,
1801 		0x3b6f8, 0x3b738,
1802 		0x3b740, 0x3b740,
1803 		0x3b748, 0x3b750,
1804 		0x3b75c, 0x3b764,
1805 		0x3b770, 0x3b7b8,
1806 		0x3b7c0, 0x3b7e4,
1807 		0x3b7f8, 0x3b7fc,
1808 		0x3b814, 0x3b814,
1809 		0x3b82c, 0x3b82c,
1810 		0x3b880, 0x3b88c,
1811 		0x3b8e8, 0x3b8ec,
1812 		0x3b900, 0x3b928,
1813 		0x3b930, 0x3b948,
1814 		0x3b960, 0x3b968,
1815 		0x3b970, 0x3b99c,
1816 		0x3b9f0, 0x3ba38,
1817 		0x3ba40, 0x3ba40,
1818 		0x3ba48, 0x3ba50,
1819 		0x3ba5c, 0x3ba64,
1820 		0x3ba70, 0x3bab8,
1821 		0x3bac0, 0x3bae4,
1822 		0x3baf8, 0x3bb10,
1823 		0x3bb28, 0x3bb28,
1824 		0x3bb3c, 0x3bb50,
1825 		0x3bbf0, 0x3bc10,
1826 		0x3bc28, 0x3bc28,
1827 		0x3bc3c, 0x3bc50,
1828 		0x3bcf0, 0x3bcfc,
1829 		0x3c000, 0x3c030,
1830 		0x3c100, 0x3c144,
1831 		0x3c190, 0x3c1a0,
1832 		0x3c1a8, 0x3c1b8,
1833 		0x3c1c4, 0x3c1c8,
1834 		0x3c1d0, 0x3c1d0,
1835 		0x3c200, 0x3c318,
1836 		0x3c400, 0x3c4b4,
1837 		0x3c4c0, 0x3c52c,
1838 		0x3c540, 0x3c61c,
1839 		0x3c800, 0x3c828,
1840 		0x3c834, 0x3c834,
1841 		0x3c8c0, 0x3c908,
1842 		0x3c910, 0x3c9ac,
1843 		0x3ca00, 0x3ca14,
1844 		0x3ca1c, 0x3ca2c,
1845 		0x3ca44, 0x3ca50,
1846 		0x3ca74, 0x3ca74,
1847 		0x3ca7c, 0x3cafc,
1848 		0x3cb08, 0x3cc24,
1849 		0x3cd00, 0x3cd00,
1850 		0x3cd08, 0x3cd14,
1851 		0x3cd1c, 0x3cd20,
1852 		0x3cd3c, 0x3cd3c,
1853 		0x3cd48, 0x3cd50,
1854 		0x3d200, 0x3d20c,
1855 		0x3d220, 0x3d220,
1856 		0x3d240, 0x3d240,
1857 		0x3d600, 0x3d60c,
1858 		0x3da00, 0x3da1c,
1859 		0x3de00, 0x3de20,
1860 		0x3de38, 0x3de3c,
1861 		0x3de80, 0x3de80,
1862 		0x3de88, 0x3dea8,
1863 		0x3deb0, 0x3deb4,
1864 		0x3dec8, 0x3ded4,
1865 		0x3dfb8, 0x3e004,
1866 		0x3e200, 0x3e200,
1867 		0x3e208, 0x3e240,
1868 		0x3e248, 0x3e280,
1869 		0x3e288, 0x3e2c0,
1870 		0x3e2c8, 0x3e2fc,
1871 		0x3e600, 0x3e630,
1872 		0x3ea00, 0x3eabc,
1873 		0x3eb00, 0x3eb10,
1874 		0x3eb20, 0x3eb30,
1875 		0x3eb40, 0x3eb50,
1876 		0x3eb60, 0x3eb70,
1877 		0x3f000, 0x3f028,
1878 		0x3f030, 0x3f048,
1879 		0x3f060, 0x3f068,
1880 		0x3f070, 0x3f09c,
1881 		0x3f0f0, 0x3f128,
1882 		0x3f130, 0x3f148,
1883 		0x3f160, 0x3f168,
1884 		0x3f170, 0x3f19c,
1885 		0x3f1f0, 0x3f238,
1886 		0x3f240, 0x3f240,
1887 		0x3f248, 0x3f250,
1888 		0x3f25c, 0x3f264,
1889 		0x3f270, 0x3f2b8,
1890 		0x3f2c0, 0x3f2e4,
1891 		0x3f2f8, 0x3f338,
1892 		0x3f340, 0x3f340,
1893 		0x3f348, 0x3f350,
1894 		0x3f35c, 0x3f364,
1895 		0x3f370, 0x3f3b8,
1896 		0x3f3c0, 0x3f3e4,
1897 		0x3f3f8, 0x3f428,
1898 		0x3f430, 0x3f448,
1899 		0x3f460, 0x3f468,
1900 		0x3f470, 0x3f49c,
1901 		0x3f4f0, 0x3f528,
1902 		0x3f530, 0x3f548,
1903 		0x3f560, 0x3f568,
1904 		0x3f570, 0x3f59c,
1905 		0x3f5f0, 0x3f638,
1906 		0x3f640, 0x3f640,
1907 		0x3f648, 0x3f650,
1908 		0x3f65c, 0x3f664,
1909 		0x3f670, 0x3f6b8,
1910 		0x3f6c0, 0x3f6e4,
1911 		0x3f6f8, 0x3f738,
1912 		0x3f740, 0x3f740,
1913 		0x3f748, 0x3f750,
1914 		0x3f75c, 0x3f764,
1915 		0x3f770, 0x3f7b8,
1916 		0x3f7c0, 0x3f7e4,
1917 		0x3f7f8, 0x3f7fc,
1918 		0x3f814, 0x3f814,
1919 		0x3f82c, 0x3f82c,
1920 		0x3f880, 0x3f88c,
1921 		0x3f8e8, 0x3f8ec,
1922 		0x3f900, 0x3f928,
1923 		0x3f930, 0x3f948,
1924 		0x3f960, 0x3f968,
1925 		0x3f970, 0x3f99c,
1926 		0x3f9f0, 0x3fa38,
1927 		0x3fa40, 0x3fa40,
1928 		0x3fa48, 0x3fa50,
1929 		0x3fa5c, 0x3fa64,
1930 		0x3fa70, 0x3fab8,
1931 		0x3fac0, 0x3fae4,
1932 		0x3faf8, 0x3fb10,
1933 		0x3fb28, 0x3fb28,
1934 		0x3fb3c, 0x3fb50,
1935 		0x3fbf0, 0x3fc10,
1936 		0x3fc28, 0x3fc28,
1937 		0x3fc3c, 0x3fc50,
1938 		0x3fcf0, 0x3fcfc,
1939 		0x40000, 0x4000c,
1940 		0x40040, 0x40050,
1941 		0x40060, 0x40068,
1942 		0x4007c, 0x4008c,
1943 		0x40094, 0x400b0,
1944 		0x400c0, 0x40144,
1945 		0x40180, 0x4018c,
1946 		0x40200, 0x40254,
1947 		0x40260, 0x40264,
1948 		0x40270, 0x40288,
1949 		0x40290, 0x40298,
1950 		0x402ac, 0x402c8,
1951 		0x402d0, 0x402e0,
1952 		0x402f0, 0x402f0,
1953 		0x40300, 0x4033c,
1954 		0x403f8, 0x403fc,
1955 		0x41304, 0x413c4,
1956 		0x41400, 0x4140c,
1957 		0x41414, 0x4141c,
1958 		0x41480, 0x414d0,
1959 		0x44000, 0x44054,
1960 		0x4405c, 0x44078,
1961 		0x440c0, 0x44174,
1962 		0x44180, 0x441ac,
1963 		0x441b4, 0x441b8,
1964 		0x441c0, 0x44254,
1965 		0x4425c, 0x44278,
1966 		0x442c0, 0x44374,
1967 		0x44380, 0x443ac,
1968 		0x443b4, 0x443b8,
1969 		0x443c0, 0x44454,
1970 		0x4445c, 0x44478,
1971 		0x444c0, 0x44574,
1972 		0x44580, 0x445ac,
1973 		0x445b4, 0x445b8,
1974 		0x445c0, 0x44654,
1975 		0x4465c, 0x44678,
1976 		0x446c0, 0x44774,
1977 		0x44780, 0x447ac,
1978 		0x447b4, 0x447b8,
1979 		0x447c0, 0x44854,
1980 		0x4485c, 0x44878,
1981 		0x448c0, 0x44974,
1982 		0x44980, 0x449ac,
1983 		0x449b4, 0x449b8,
1984 		0x449c0, 0x449fc,
1985 		0x45000, 0x45004,
1986 		0x45010, 0x45030,
1987 		0x45040, 0x45060,
1988 		0x45068, 0x45068,
1989 		0x45080, 0x45084,
1990 		0x450a0, 0x450b0,
1991 		0x45200, 0x45204,
1992 		0x45210, 0x45230,
1993 		0x45240, 0x45260,
1994 		0x45268, 0x45268,
1995 		0x45280, 0x45284,
1996 		0x452a0, 0x452b0,
1997 		0x460c0, 0x460e4,
1998 		0x47000, 0x4703c,
1999 		0x47044, 0x4708c,
2000 		0x47200, 0x47250,
2001 		0x47400, 0x47408,
2002 		0x47414, 0x47420,
2003 		0x47600, 0x47618,
2004 		0x47800, 0x47814,
2005 		0x48000, 0x4800c,
2006 		0x48040, 0x48050,
2007 		0x48060, 0x48068,
2008 		0x4807c, 0x4808c,
2009 		0x48094, 0x480b0,
2010 		0x480c0, 0x48144,
2011 		0x48180, 0x4818c,
2012 		0x48200, 0x48254,
2013 		0x48260, 0x48264,
2014 		0x48270, 0x48288,
2015 		0x48290, 0x48298,
2016 		0x482ac, 0x482c8,
2017 		0x482d0, 0x482e0,
2018 		0x482f0, 0x482f0,
2019 		0x48300, 0x4833c,
2020 		0x483f8, 0x483fc,
2021 		0x49304, 0x493c4,
2022 		0x49400, 0x4940c,
2023 		0x49414, 0x4941c,
2024 		0x49480, 0x494d0,
2025 		0x4c000, 0x4c054,
2026 		0x4c05c, 0x4c078,
2027 		0x4c0c0, 0x4c174,
2028 		0x4c180, 0x4c1ac,
2029 		0x4c1b4, 0x4c1b8,
2030 		0x4c1c0, 0x4c254,
2031 		0x4c25c, 0x4c278,
2032 		0x4c2c0, 0x4c374,
2033 		0x4c380, 0x4c3ac,
2034 		0x4c3b4, 0x4c3b8,
2035 		0x4c3c0, 0x4c454,
2036 		0x4c45c, 0x4c478,
2037 		0x4c4c0, 0x4c574,
2038 		0x4c580, 0x4c5ac,
2039 		0x4c5b4, 0x4c5b8,
2040 		0x4c5c0, 0x4c654,
2041 		0x4c65c, 0x4c678,
2042 		0x4c6c0, 0x4c774,
2043 		0x4c780, 0x4c7ac,
2044 		0x4c7b4, 0x4c7b8,
2045 		0x4c7c0, 0x4c854,
2046 		0x4c85c, 0x4c878,
2047 		0x4c8c0, 0x4c974,
2048 		0x4c980, 0x4c9ac,
2049 		0x4c9b4, 0x4c9b8,
2050 		0x4c9c0, 0x4c9fc,
2051 		0x4d000, 0x4d004,
2052 		0x4d010, 0x4d030,
2053 		0x4d040, 0x4d060,
2054 		0x4d068, 0x4d068,
2055 		0x4d080, 0x4d084,
2056 		0x4d0a0, 0x4d0b0,
2057 		0x4d200, 0x4d204,
2058 		0x4d210, 0x4d230,
2059 		0x4d240, 0x4d260,
2060 		0x4d268, 0x4d268,
2061 		0x4d280, 0x4d284,
2062 		0x4d2a0, 0x4d2b0,
2063 		0x4e0c0, 0x4e0e4,
2064 		0x4f000, 0x4f03c,
2065 		0x4f044, 0x4f08c,
2066 		0x4f200, 0x4f250,
2067 		0x4f400, 0x4f408,
2068 		0x4f414, 0x4f420,
2069 		0x4f600, 0x4f618,
2070 		0x4f800, 0x4f814,
2071 		0x50000, 0x50084,
2072 		0x50090, 0x500cc,
2073 		0x50400, 0x50400,
2074 		0x50800, 0x50884,
2075 		0x50890, 0x508cc,
2076 		0x50c00, 0x50c00,
2077 		0x51000, 0x5101c,
2078 		0x51300, 0x51308,
2079 	};
2080 
2081 	static const unsigned int t6_reg_ranges[] = {
2082 		0x1008, 0x101c,
2083 		0x1024, 0x10a8,
2084 		0x10b4, 0x10f8,
2085 		0x1100, 0x1114,
2086 		0x111c, 0x112c,
2087 		0x1138, 0x113c,
2088 		0x1144, 0x114c,
2089 		0x1180, 0x1184,
2090 		0x1190, 0x1194,
2091 		0x11a0, 0x11a4,
2092 		0x11b0, 0x11b4,
2093 		0x11fc, 0x123c,
2094 		0x1254, 0x1274,
2095 		0x1280, 0x133c,
2096 		0x1800, 0x18fc,
2097 		0x3000, 0x302c,
2098 		0x3060, 0x30b0,
2099 		0x30b8, 0x30d8,
2100 		0x30e0, 0x30fc,
2101 		0x3140, 0x357c,
2102 		0x35a8, 0x35cc,
2103 		0x35ec, 0x35ec,
2104 		0x3600, 0x5624,
2105 		0x56cc, 0x56ec,
2106 		0x56f4, 0x5720,
2107 		0x5728, 0x575c,
2108 		0x580c, 0x5814,
2109 		0x5890, 0x589c,
2110 		0x58a4, 0x58ac,
2111 		0x58b8, 0x58bc,
2112 		0x5940, 0x595c,
2113 		0x5980, 0x598c,
2114 		0x59b0, 0x59c8,
2115 		0x59d0, 0x59dc,
2116 		0x59fc, 0x5a18,
2117 		0x5a60, 0x5a6c,
2118 		0x5a80, 0x5a8c,
2119 		0x5a94, 0x5a9c,
2120 		0x5b94, 0x5bfc,
2121 		0x5c10, 0x5e48,
2122 		0x5e50, 0x5e94,
2123 		0x5ea0, 0x5eb0,
2124 		0x5ec0, 0x5ec0,
2125 		0x5ec8, 0x5ed0,
2126 		0x5ee0, 0x5ee0,
2127 		0x5ef0, 0x5ef0,
2128 		0x5f00, 0x5f00,
2129 		0x6000, 0x6020,
2130 		0x6028, 0x6040,
2131 		0x6058, 0x609c,
2132 		0x60a8, 0x619c,
2133 		0x7700, 0x7798,
2134 		0x77c0, 0x7880,
2135 		0x78cc, 0x78fc,
2136 		0x7b00, 0x7b58,
2137 		0x7b60, 0x7b84,
2138 		0x7b8c, 0x7c54,
2139 		0x7d00, 0x7d38,
2140 		0x7d40, 0x7d84,
2141 		0x7d8c, 0x7ddc,
2142 		0x7de4, 0x7e04,
2143 		0x7e10, 0x7e1c,
2144 		0x7e24, 0x7e38,
2145 		0x7e40, 0x7e44,
2146 		0x7e4c, 0x7e78,
2147 		0x7e80, 0x7edc,
2148 		0x7ee8, 0x7efc,
2149 		0x8dc0, 0x8de4,
2150 		0x8df8, 0x8e04,
2151 		0x8e10, 0x8e84,
2152 		0x8ea0, 0x8f88,
2153 		0x8fb8, 0x9058,
2154 		0x9060, 0x9060,
2155 		0x9068, 0x90f8,
2156 		0x9100, 0x9124,
2157 		0x9400, 0x9470,
2158 		0x9600, 0x9600,
2159 		0x9608, 0x9638,
2160 		0x9640, 0x9704,
2161 		0x9710, 0x971c,
2162 		0x9800, 0x9808,
2163 		0x9810, 0x9864,
2164 		0x9c00, 0x9c6c,
2165 		0x9c80, 0x9cec,
2166 		0x9d00, 0x9d6c,
2167 		0x9d80, 0x9dec,
2168 		0x9e00, 0x9e6c,
2169 		0x9e80, 0x9eec,
2170 		0x9f00, 0x9f6c,
2171 		0x9f80, 0xa020,
2172 		0xd000, 0xd03c,
2173 		0xd100, 0xd118,
2174 		0xd200, 0xd214,
2175 		0xd220, 0xd234,
2176 		0xd240, 0xd254,
2177 		0xd260, 0xd274,
2178 		0xd280, 0xd294,
2179 		0xd2a0, 0xd2b4,
2180 		0xd2c0, 0xd2d4,
2181 		0xd2e0, 0xd2f4,
2182 		0xd300, 0xd31c,
2183 		0xdfc0, 0xdfe0,
2184 		0xe000, 0xf008,
2185 		0xf010, 0xf018,
2186 		0xf020, 0xf028,
2187 		0x11000, 0x11014,
2188 		0x11048, 0x1106c,
2189 		0x11074, 0x11088,
2190 		0x11098, 0x11120,
2191 		0x1112c, 0x1117c,
2192 		0x11190, 0x112e0,
2193 		0x11300, 0x1130c,
2194 		0x12000, 0x1206c,
2195 		0x19040, 0x1906c,
2196 		0x19078, 0x19080,
2197 		0x1908c, 0x190e8,
2198 		0x190f0, 0x190f8,
2199 		0x19100, 0x19110,
2200 		0x19120, 0x19124,
2201 		0x19150, 0x19194,
2202 		0x1919c, 0x191b0,
2203 		0x191d0, 0x191e8,
2204 		0x19238, 0x19290,
2205 		0x192a4, 0x192b0,
2206 		0x192bc, 0x192bc,
2207 		0x19348, 0x1934c,
2208 		0x193f8, 0x19418,
2209 		0x19420, 0x19428,
2210 		0x19430, 0x19444,
2211 		0x1944c, 0x1946c,
2212 		0x19474, 0x19474,
2213 		0x19490, 0x194cc,
2214 		0x194f0, 0x194f8,
2215 		0x19c00, 0x19c48,
2216 		0x19c50, 0x19c80,
2217 		0x19c94, 0x19c98,
2218 		0x19ca0, 0x19cbc,
2219 		0x19ce4, 0x19ce4,
2220 		0x19cf0, 0x19cf8,
2221 		0x19d00, 0x19d28,
2222 		0x19d50, 0x19d78,
2223 		0x19d94, 0x19d98,
2224 		0x19da0, 0x19dc8,
2225 		0x19df0, 0x19e10,
2226 		0x19e50, 0x19e6c,
2227 		0x19ea0, 0x19ebc,
2228 		0x19ec4, 0x19ef4,
2229 		0x19f04, 0x19f2c,
2230 		0x19f34, 0x19f34,
2231 		0x19f40, 0x19f50,
2232 		0x19f90, 0x19fac,
2233 		0x19fc4, 0x19fc8,
2234 		0x19fd0, 0x19fe4,
2235 		0x1a000, 0x1a004,
2236 		0x1a010, 0x1a06c,
2237 		0x1a0b0, 0x1a0e4,
2238 		0x1a0ec, 0x1a0f8,
2239 		0x1a100, 0x1a108,
2240 		0x1a114, 0x1a130,
2241 		0x1a138, 0x1a1c4,
2242 		0x1a1fc, 0x1a1fc,
2243 		0x1e008, 0x1e00c,
2244 		0x1e040, 0x1e044,
2245 		0x1e04c, 0x1e04c,
2246 		0x1e284, 0x1e290,
2247 		0x1e2c0, 0x1e2c0,
2248 		0x1e2e0, 0x1e2e0,
2249 		0x1e300, 0x1e384,
2250 		0x1e3c0, 0x1e3c8,
2251 		0x1e408, 0x1e40c,
2252 		0x1e440, 0x1e444,
2253 		0x1e44c, 0x1e44c,
2254 		0x1e684, 0x1e690,
2255 		0x1e6c0, 0x1e6c0,
2256 		0x1e6e0, 0x1e6e0,
2257 		0x1e700, 0x1e784,
2258 		0x1e7c0, 0x1e7c8,
2259 		0x1e808, 0x1e80c,
2260 		0x1e840, 0x1e844,
2261 		0x1e84c, 0x1e84c,
2262 		0x1ea84, 0x1ea90,
2263 		0x1eac0, 0x1eac0,
2264 		0x1eae0, 0x1eae0,
2265 		0x1eb00, 0x1eb84,
2266 		0x1ebc0, 0x1ebc8,
2267 		0x1ec08, 0x1ec0c,
2268 		0x1ec40, 0x1ec44,
2269 		0x1ec4c, 0x1ec4c,
2270 		0x1ee84, 0x1ee90,
2271 		0x1eec0, 0x1eec0,
2272 		0x1eee0, 0x1eee0,
2273 		0x1ef00, 0x1ef84,
2274 		0x1efc0, 0x1efc8,
2275 		0x1f008, 0x1f00c,
2276 		0x1f040, 0x1f044,
2277 		0x1f04c, 0x1f04c,
2278 		0x1f284, 0x1f290,
2279 		0x1f2c0, 0x1f2c0,
2280 		0x1f2e0, 0x1f2e0,
2281 		0x1f300, 0x1f384,
2282 		0x1f3c0, 0x1f3c8,
2283 		0x1f408, 0x1f40c,
2284 		0x1f440, 0x1f444,
2285 		0x1f44c, 0x1f44c,
2286 		0x1f684, 0x1f690,
2287 		0x1f6c0, 0x1f6c0,
2288 		0x1f6e0, 0x1f6e0,
2289 		0x1f700, 0x1f784,
2290 		0x1f7c0, 0x1f7c8,
2291 		0x1f808, 0x1f80c,
2292 		0x1f840, 0x1f844,
2293 		0x1f84c, 0x1f84c,
2294 		0x1fa84, 0x1fa90,
2295 		0x1fac0, 0x1fac0,
2296 		0x1fae0, 0x1fae0,
2297 		0x1fb00, 0x1fb84,
2298 		0x1fbc0, 0x1fbc8,
2299 		0x1fc08, 0x1fc0c,
2300 		0x1fc40, 0x1fc44,
2301 		0x1fc4c, 0x1fc4c,
2302 		0x1fe84, 0x1fe90,
2303 		0x1fec0, 0x1fec0,
2304 		0x1fee0, 0x1fee0,
2305 		0x1ff00, 0x1ff84,
2306 		0x1ffc0, 0x1ffc8,
2307 		0x30000, 0x30030,
2308 		0x30100, 0x30168,
2309 		0x30190, 0x301a0,
2310 		0x301a8, 0x301b8,
2311 		0x301c4, 0x301c8,
2312 		0x301d0, 0x301d0,
2313 		0x30200, 0x30320,
2314 		0x30400, 0x304b4,
2315 		0x304c0, 0x3052c,
2316 		0x30540, 0x3061c,
2317 		0x30800, 0x308a0,
2318 		0x308c0, 0x30908,
2319 		0x30910, 0x309b8,
2320 		0x30a00, 0x30a04,
2321 		0x30a0c, 0x30a14,
2322 		0x30a1c, 0x30a2c,
2323 		0x30a44, 0x30a50,
2324 		0x30a74, 0x30a74,
2325 		0x30a7c, 0x30afc,
2326 		0x30b08, 0x30c24,
2327 		0x30d00, 0x30d14,
2328 		0x30d1c, 0x30d3c,
2329 		0x30d44, 0x30d4c,
2330 		0x30d54, 0x30d74,
2331 		0x30d7c, 0x30d7c,
2332 		0x30de0, 0x30de0,
2333 		0x30e00, 0x30ed4,
2334 		0x30f00, 0x30fa4,
2335 		0x30fc0, 0x30fc4,
2336 		0x31000, 0x31004,
2337 		0x31080, 0x310fc,
2338 		0x31208, 0x31220,
2339 		0x3123c, 0x31254,
2340 		0x31300, 0x31300,
2341 		0x31308, 0x3131c,
2342 		0x31338, 0x3133c,
2343 		0x31380, 0x31380,
2344 		0x31388, 0x313a8,
2345 		0x313b4, 0x313b4,
2346 		0x31400, 0x31420,
2347 		0x31438, 0x3143c,
2348 		0x31480, 0x31480,
2349 		0x314a8, 0x314a8,
2350 		0x314b0, 0x314b4,
2351 		0x314c8, 0x314d4,
2352 		0x31a40, 0x31a4c,
2353 		0x31af0, 0x31b20,
2354 		0x31b38, 0x31b3c,
2355 		0x31b80, 0x31b80,
2356 		0x31ba8, 0x31ba8,
2357 		0x31bb0, 0x31bb4,
2358 		0x31bc8, 0x31bd4,
2359 		0x32140, 0x3218c,
2360 		0x321f0, 0x321f4,
2361 		0x32200, 0x32200,
2362 		0x32218, 0x32218,
2363 		0x32400, 0x32400,
2364 		0x32408, 0x3241c,
2365 		0x32618, 0x32620,
2366 		0x32664, 0x32664,
2367 		0x326a8, 0x326a8,
2368 		0x326ec, 0x326ec,
2369 		0x32a00, 0x32abc,
2370 		0x32b00, 0x32b18,
2371 		0x32b20, 0x32b38,
2372 		0x32b40, 0x32b58,
2373 		0x32b60, 0x32b78,
2374 		0x32c00, 0x32c00,
2375 		0x32c08, 0x32c3c,
2376 		0x33000, 0x3302c,
2377 		0x33034, 0x33050,
2378 		0x33058, 0x33058,
2379 		0x33060, 0x3308c,
2380 		0x3309c, 0x330ac,
2381 		0x330c0, 0x330c0,
2382 		0x330c8, 0x330d0,
2383 		0x330d8, 0x330e0,
2384 		0x330ec, 0x3312c,
2385 		0x33134, 0x33150,
2386 		0x33158, 0x33158,
2387 		0x33160, 0x3318c,
2388 		0x3319c, 0x331ac,
2389 		0x331c0, 0x331c0,
2390 		0x331c8, 0x331d0,
2391 		0x331d8, 0x331e0,
2392 		0x331ec, 0x33290,
2393 		0x33298, 0x332c4,
2394 		0x332e4, 0x33390,
2395 		0x33398, 0x333c4,
2396 		0x333e4, 0x3342c,
2397 		0x33434, 0x33450,
2398 		0x33458, 0x33458,
2399 		0x33460, 0x3348c,
2400 		0x3349c, 0x334ac,
2401 		0x334c0, 0x334c0,
2402 		0x334c8, 0x334d0,
2403 		0x334d8, 0x334e0,
2404 		0x334ec, 0x3352c,
2405 		0x33534, 0x33550,
2406 		0x33558, 0x33558,
2407 		0x33560, 0x3358c,
2408 		0x3359c, 0x335ac,
2409 		0x335c0, 0x335c0,
2410 		0x335c8, 0x335d0,
2411 		0x335d8, 0x335e0,
2412 		0x335ec, 0x33690,
2413 		0x33698, 0x336c4,
2414 		0x336e4, 0x33790,
2415 		0x33798, 0x337c4,
2416 		0x337e4, 0x337fc,
2417 		0x33814, 0x33814,
2418 		0x33854, 0x33868,
2419 		0x33880, 0x3388c,
2420 		0x338c0, 0x338d0,
2421 		0x338e8, 0x338ec,
2422 		0x33900, 0x3392c,
2423 		0x33934, 0x33950,
2424 		0x33958, 0x33958,
2425 		0x33960, 0x3398c,
2426 		0x3399c, 0x339ac,
2427 		0x339c0, 0x339c0,
2428 		0x339c8, 0x339d0,
2429 		0x339d8, 0x339e0,
2430 		0x339ec, 0x33a90,
2431 		0x33a98, 0x33ac4,
2432 		0x33ae4, 0x33b10,
2433 		0x33b24, 0x33b28,
2434 		0x33b38, 0x33b50,
2435 		0x33bf0, 0x33c10,
2436 		0x33c24, 0x33c28,
2437 		0x33c38, 0x33c50,
2438 		0x33cf0, 0x33cfc,
2439 		0x34000, 0x34030,
2440 		0x34100, 0x34168,
2441 		0x34190, 0x341a0,
2442 		0x341a8, 0x341b8,
2443 		0x341c4, 0x341c8,
2444 		0x341d0, 0x341d0,
2445 		0x34200, 0x34320,
2446 		0x34400, 0x344b4,
2447 		0x344c0, 0x3452c,
2448 		0x34540, 0x3461c,
2449 		0x34800, 0x348a0,
2450 		0x348c0, 0x34908,
2451 		0x34910, 0x349b8,
2452 		0x34a00, 0x34a04,
2453 		0x34a0c, 0x34a14,
2454 		0x34a1c, 0x34a2c,
2455 		0x34a44, 0x34a50,
2456 		0x34a74, 0x34a74,
2457 		0x34a7c, 0x34afc,
2458 		0x34b08, 0x34c24,
2459 		0x34d00, 0x34d14,
2460 		0x34d1c, 0x34d3c,
2461 		0x34d44, 0x34d4c,
2462 		0x34d54, 0x34d74,
2463 		0x34d7c, 0x34d7c,
2464 		0x34de0, 0x34de0,
2465 		0x34e00, 0x34ed4,
2466 		0x34f00, 0x34fa4,
2467 		0x34fc0, 0x34fc4,
2468 		0x35000, 0x35004,
2469 		0x35080, 0x350fc,
2470 		0x35208, 0x35220,
2471 		0x3523c, 0x35254,
2472 		0x35300, 0x35300,
2473 		0x35308, 0x3531c,
2474 		0x35338, 0x3533c,
2475 		0x35380, 0x35380,
2476 		0x35388, 0x353a8,
2477 		0x353b4, 0x353b4,
2478 		0x35400, 0x35420,
2479 		0x35438, 0x3543c,
2480 		0x35480, 0x35480,
2481 		0x354a8, 0x354a8,
2482 		0x354b0, 0x354b4,
2483 		0x354c8, 0x354d4,
2484 		0x35a40, 0x35a4c,
2485 		0x35af0, 0x35b20,
2486 		0x35b38, 0x35b3c,
2487 		0x35b80, 0x35b80,
2488 		0x35ba8, 0x35ba8,
2489 		0x35bb0, 0x35bb4,
2490 		0x35bc8, 0x35bd4,
2491 		0x36140, 0x3618c,
2492 		0x361f0, 0x361f4,
2493 		0x36200, 0x36200,
2494 		0x36218, 0x36218,
2495 		0x36400, 0x36400,
2496 		0x36408, 0x3641c,
2497 		0x36618, 0x36620,
2498 		0x36664, 0x36664,
2499 		0x366a8, 0x366a8,
2500 		0x366ec, 0x366ec,
2501 		0x36a00, 0x36abc,
2502 		0x36b00, 0x36b18,
2503 		0x36b20, 0x36b38,
2504 		0x36b40, 0x36b58,
2505 		0x36b60, 0x36b78,
2506 		0x36c00, 0x36c00,
2507 		0x36c08, 0x36c3c,
2508 		0x37000, 0x3702c,
2509 		0x37034, 0x37050,
2510 		0x37058, 0x37058,
2511 		0x37060, 0x3708c,
2512 		0x3709c, 0x370ac,
2513 		0x370c0, 0x370c0,
2514 		0x370c8, 0x370d0,
2515 		0x370d8, 0x370e0,
2516 		0x370ec, 0x3712c,
2517 		0x37134, 0x37150,
2518 		0x37158, 0x37158,
2519 		0x37160, 0x3718c,
2520 		0x3719c, 0x371ac,
2521 		0x371c0, 0x371c0,
2522 		0x371c8, 0x371d0,
2523 		0x371d8, 0x371e0,
2524 		0x371ec, 0x37290,
2525 		0x37298, 0x372c4,
2526 		0x372e4, 0x37390,
2527 		0x37398, 0x373c4,
2528 		0x373e4, 0x3742c,
2529 		0x37434, 0x37450,
2530 		0x37458, 0x37458,
2531 		0x37460, 0x3748c,
2532 		0x3749c, 0x374ac,
2533 		0x374c0, 0x374c0,
2534 		0x374c8, 0x374d0,
2535 		0x374d8, 0x374e0,
2536 		0x374ec, 0x3752c,
2537 		0x37534, 0x37550,
2538 		0x37558, 0x37558,
2539 		0x37560, 0x3758c,
2540 		0x3759c, 0x375ac,
2541 		0x375c0, 0x375c0,
2542 		0x375c8, 0x375d0,
2543 		0x375d8, 0x375e0,
2544 		0x375ec, 0x37690,
2545 		0x37698, 0x376c4,
2546 		0x376e4, 0x37790,
2547 		0x37798, 0x377c4,
2548 		0x377e4, 0x377fc,
2549 		0x37814, 0x37814,
2550 		0x37854, 0x37868,
2551 		0x37880, 0x3788c,
2552 		0x378c0, 0x378d0,
2553 		0x378e8, 0x378ec,
2554 		0x37900, 0x3792c,
2555 		0x37934, 0x37950,
2556 		0x37958, 0x37958,
2557 		0x37960, 0x3798c,
2558 		0x3799c, 0x379ac,
2559 		0x379c0, 0x379c0,
2560 		0x379c8, 0x379d0,
2561 		0x379d8, 0x379e0,
2562 		0x379ec, 0x37a90,
2563 		0x37a98, 0x37ac4,
2564 		0x37ae4, 0x37b10,
2565 		0x37b24, 0x37b28,
2566 		0x37b38, 0x37b50,
2567 		0x37bf0, 0x37c10,
2568 		0x37c24, 0x37c28,
2569 		0x37c38, 0x37c50,
2570 		0x37cf0, 0x37cfc,
2571 		0x40040, 0x40040,
2572 		0x40080, 0x40084,
2573 		0x40100, 0x40100,
2574 		0x40140, 0x401bc,
2575 		0x40200, 0x40214,
2576 		0x40228, 0x40228,
2577 		0x40240, 0x40258,
2578 		0x40280, 0x40280,
2579 		0x40304, 0x40304,
2580 		0x40330, 0x4033c,
2581 		0x41304, 0x413c8,
2582 		0x413d0, 0x413dc,
2583 		0x413f0, 0x413f0,
2584 		0x41400, 0x4140c,
2585 		0x41414, 0x4141c,
2586 		0x41480, 0x414d0,
2587 		0x44000, 0x4407c,
2588 		0x440c0, 0x441ac,
2589 		0x441b4, 0x4427c,
2590 		0x442c0, 0x443ac,
2591 		0x443b4, 0x4447c,
2592 		0x444c0, 0x445ac,
2593 		0x445b4, 0x4467c,
2594 		0x446c0, 0x447ac,
2595 		0x447b4, 0x4487c,
2596 		0x448c0, 0x449ac,
2597 		0x449b4, 0x44a7c,
2598 		0x44ac0, 0x44bac,
2599 		0x44bb4, 0x44c7c,
2600 		0x44cc0, 0x44dac,
2601 		0x44db4, 0x44e7c,
2602 		0x44ec0, 0x44fac,
2603 		0x44fb4, 0x4507c,
2604 		0x450c0, 0x451ac,
2605 		0x451b4, 0x451fc,
2606 		0x45800, 0x45804,
2607 		0x45810, 0x45830,
2608 		0x45840, 0x45860,
2609 		0x45868, 0x45868,
2610 		0x45880, 0x45884,
2611 		0x458a0, 0x458b0,
2612 		0x45a00, 0x45a04,
2613 		0x45a10, 0x45a30,
2614 		0x45a40, 0x45a60,
2615 		0x45a68, 0x45a68,
2616 		0x45a80, 0x45a84,
2617 		0x45aa0, 0x45ab0,
2618 		0x460c0, 0x460e4,
2619 		0x47000, 0x4703c,
2620 		0x47044, 0x4708c,
2621 		0x47200, 0x47250,
2622 		0x47400, 0x47408,
2623 		0x47414, 0x47420,
2624 		0x47600, 0x47618,
2625 		0x47800, 0x47814,
2626 		0x47820, 0x4782c,
2627 		0x50000, 0x50084,
2628 		0x50090, 0x500cc,
2629 		0x50300, 0x50384,
2630 		0x50400, 0x50400,
2631 		0x50800, 0x50884,
2632 		0x50890, 0x508cc,
2633 		0x50b00, 0x50b84,
2634 		0x50c00, 0x50c00,
2635 		0x51000, 0x51020,
2636 		0x51028, 0x510b0,
2637 		0x51300, 0x51324,
2638 	};
2639 
2640 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2641 	const unsigned int *reg_ranges;
2642 	int reg_ranges_size, range;
2643 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2644 
2645 	/* Select the right set of register ranges to dump depending on the
2646 	 * adapter chip type.
2647 	 */
2648 	switch (chip_version) {
2649 	case CHELSIO_T4:
2650 		reg_ranges = t4_reg_ranges;
2651 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2652 		break;
2653 
2654 	case CHELSIO_T5:
2655 		reg_ranges = t5_reg_ranges;
2656 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2657 		break;
2658 
2659 	case CHELSIO_T6:
2660 		reg_ranges = t6_reg_ranges;
2661 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2662 		break;
2663 
2664 	default:
2665 		dev_err(adap->pdev_dev,
2666 			"Unsupported chip version %d\n", chip_version);
2667 		return;
2668 	}
2669 
2670 	/* Clear the register buffer and insert the appropriate register
2671 	 * values selected by the above register ranges.
2672 	 */
2673 	memset(buf, 0, buf_size);
2674 	for (range = 0; range < reg_ranges_size; range += 2) {
2675 		unsigned int reg = reg_ranges[range];
2676 		unsigned int last_reg = reg_ranges[range + 1];
2677 		u32 *bufp = (u32 *)((char *)buf + reg);
2678 
2679 		/* Iterate across the register range filling in the register
2680 		 * buffer but don't write past the end of the register buffer.
2681 		 */
2682 		while (reg <= last_reg && bufp < buf_end) {
2683 			*bufp++ = t4_read_reg(adap, reg);
2684 			reg += sizeof(u32);
2685 		}
2686 	}
2687 }
2688 
2689 #define EEPROM_STAT_ADDR   0x7bfc
2690 #define VPD_BASE           0x400
2691 #define VPD_BASE_OLD       0
2692 #define VPD_LEN            1024
2693 
2694 /**
2695  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696  * @phys_addr: the physical EEPROM address
2697  * @fn: the PCI function number
2698  * @sz: size of function-specific area
2699  *
2700  * Translate a physical EEPROM address to virtual.  The first 1K is
2701  * accessed through virtual addresses starting at 31K, the rest is
2702  * accessed through virtual addresses starting at 0.
2703  *
2704  * The mapping is as follows:
2705  * [0..1K) -> [31K..32K)
2706  * [1K..1K+A) -> [31K-A..31K)
2707  * [1K+A..ES) -> [0..ES-A-1K)
2708  *
2709  * where A = @fn * @sz, and ES = EEPROM size.
2710  */
2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712 {
2713 	fn *= sz;
2714 	if (phys_addr < 1024)
2715 		return phys_addr + (31 << 10);
2716 	if (phys_addr < 1024 + fn)
2717 		return 31744 - fn + phys_addr - 1024;
2718 	if (phys_addr < EEPROMSIZE)
2719 		return phys_addr - 1024 - fn;
2720 	return -EINVAL;
2721 }
2722 
2723 /**
2724  *	t4_seeprom_wp - enable/disable EEPROM write protection
2725  *	@adapter: the adapter
2726  *	@enable: whether to enable or disable write protection
2727  *
2728  *	Enables or disables write protection on the serial EEPROM.
2729  */
2730 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731 {
2732 	unsigned int v = enable ? 0xc : 0;
2733 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734 	return ret < 0 ? ret : 0;
2735 }
2736 
2737 /**
2738  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739  *	@adapter: adapter to read
2740  *	@p: where to store the parameters
2741  *
2742  *	Reads card parameters stored in VPD EEPROM.
2743  */
2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746 	unsigned int id_len, pn_len, sn_len, na_len;
2747 	int id, sn, pn, na, addr, ret = 0;
2748 	u8 *vpd, base_val = 0;
2749 
2750 	vpd = vmalloc(VPD_LEN);
2751 	if (!vpd)
2752 		return -ENOMEM;
2753 
2754 	/* Card information normally starts at VPD_BASE but early cards had
2755 	 * it at 0.
2756 	 */
2757 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val);
2758 	if (ret < 0)
2759 		goto out;
2760 
2761 	addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD;
2762 
2763 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2764 	if (ret < 0)
2765 		goto out;
2766 
2767 	ret = pci_vpd_find_id_string(vpd, VPD_LEN, &id_len);
2768 	if (ret < 0)
2769 		goto out;
2770 	id = ret;
2771 
2772 	ret = pci_vpd_check_csum(vpd, VPD_LEN);
2773 	if (ret) {
2774 		dev_err(adapter->pdev_dev, "VPD checksum incorrect or missing\n");
2775 		ret = -EINVAL;
2776 		goto out;
2777 	}
2778 
2779 	ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN,
2780 					   PCI_VPD_RO_KEYWORD_SERIALNO, &sn_len);
2781 	if (ret < 0)
2782 		goto out;
2783 	sn = ret;
2784 
2785 	ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN,
2786 					   PCI_VPD_RO_KEYWORD_PARTNO, &pn_len);
2787 	if (ret < 0)
2788 		goto out;
2789 	pn = ret;
2790 
2791 	ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN, "NA", &na_len);
2792 	if (ret < 0)
2793 		goto out;
2794 	na = ret;
2795 
2796 	memcpy(p->id, vpd + id, min_t(int, id_len, ID_LEN));
2797 	strim(p->id);
2798 	memcpy(p->sn, vpd + sn, min_t(int, sn_len, SERNUM_LEN));
2799 	strim(p->sn);
2800 	memcpy(p->pn, vpd + pn, min_t(int, pn_len, PN_LEN));
2801 	strim(p->pn);
2802 	memcpy(p->na, vpd + na, min_t(int, na_len, MACADDR_LEN));
2803 	strim((char *)p->na);
2804 
2805 out:
2806 	vfree(vpd);
2807 	if (ret < 0) {
2808 		dev_err(adapter->pdev_dev, "error reading VPD\n");
2809 		return ret;
2810 	}
2811 
2812 	return 0;
2813 }
2814 
2815 /**
2816  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2817  *	@adapter: adapter to read
2818  *	@p: where to store the parameters
2819  *
2820  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2821  *	Clock.  This can only be called after a connection to the firmware
2822  *	is established.
2823  */
2824 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2825 {
2826 	u32 cclk_param, cclk_val;
2827 	int ret;
2828 
2829 	/* Grab the raw VPD parameters.
2830 	 */
2831 	ret = t4_get_raw_vpd_params(adapter, p);
2832 	if (ret)
2833 		return ret;
2834 
2835 	/* Ask firmware for the Core Clock since it knows how to translate the
2836 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2837 	 */
2838 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2839 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2840 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2841 			      1, &cclk_param, &cclk_val);
2842 
2843 	if (ret)
2844 		return ret;
2845 	p->cclk = cclk_val;
2846 
2847 	return 0;
2848 }
2849 
2850 /**
2851  *	t4_get_pfres - retrieve VF resource limits
2852  *	@adapter: the adapter
2853  *
2854  *	Retrieves configured resource limits and capabilities for a physical
2855  *	function.  The results are stored in @adapter->pfres.
2856  */
2857 int t4_get_pfres(struct adapter *adapter)
2858 {
2859 	struct pf_resources *pfres = &adapter->params.pfres;
2860 	struct fw_pfvf_cmd cmd, rpl;
2861 	int v;
2862 	u32 word;
2863 
2864 	/* Execute PFVF Read command to get VF resource limits; bail out early
2865 	 * with error on command failure.
2866 	 */
2867 	memset(&cmd, 0, sizeof(cmd));
2868 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2869 				    FW_CMD_REQUEST_F |
2870 				    FW_CMD_READ_F |
2871 				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2872 				    FW_PFVF_CMD_VFN_V(0));
2873 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2874 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2875 	if (v != FW_SUCCESS)
2876 		return v;
2877 
2878 	/* Extract PF resource limits and return success.
2879 	 */
2880 	word = be32_to_cpu(rpl.niqflint_niq);
2881 	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2882 	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2883 
2884 	word = be32_to_cpu(rpl.type_to_neq);
2885 	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2886 	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2887 
2888 	word = be32_to_cpu(rpl.tc_to_nexactf);
2889 	pfres->tc = FW_PFVF_CMD_TC_G(word);
2890 	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2891 	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2892 
2893 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2894 	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2895 	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2896 	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2897 
2898 	return 0;
2899 }
2900 
2901 /* serial flash and firmware constants */
2902 enum {
2903 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2904 
2905 	/* flash command opcodes */
2906 	SF_PROG_PAGE    = 2,          /* program page */
2907 	SF_WR_DISABLE   = 4,          /* disable writes */
2908 	SF_RD_STATUS    = 5,          /* read status register */
2909 	SF_WR_ENABLE    = 6,          /* enable writes */
2910 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2911 	SF_RD_ID        = 0x9f,       /* read ID */
2912 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2913 };
2914 
2915 /**
2916  *	sf1_read - read data from the serial flash
2917  *	@adapter: the adapter
2918  *	@byte_cnt: number of bytes to read
2919  *	@cont: whether another operation will be chained
2920  *	@lock: whether to lock SF for PL access only
2921  *	@valp: where to store the read data
2922  *
2923  *	Reads up to 4 bytes of data from the serial flash.  The location of
2924  *	the read needs to be specified prior to calling this by issuing the
2925  *	appropriate commands to the serial flash.
2926  */
2927 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2928 		    int lock, u32 *valp)
2929 {
2930 	int ret;
2931 
2932 	if (!byte_cnt || byte_cnt > 4)
2933 		return -EINVAL;
2934 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2935 		return -EBUSY;
2936 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2937 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2938 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2939 	if (!ret)
2940 		*valp = t4_read_reg(adapter, SF_DATA_A);
2941 	return ret;
2942 }
2943 
2944 /**
2945  *	sf1_write - write data to the serial flash
2946  *	@adapter: the adapter
2947  *	@byte_cnt: number of bytes to write
2948  *	@cont: whether another operation will be chained
2949  *	@lock: whether to lock SF for PL access only
2950  *	@val: value to write
2951  *
2952  *	Writes up to 4 bytes of data to the serial flash.  The location of
2953  *	the write needs to be specified prior to calling this by issuing the
2954  *	appropriate commands to the serial flash.
2955  */
2956 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2957 		     int lock, u32 val)
2958 {
2959 	if (!byte_cnt || byte_cnt > 4)
2960 		return -EINVAL;
2961 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2962 		return -EBUSY;
2963 	t4_write_reg(adapter, SF_DATA_A, val);
2964 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2965 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2966 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2967 }
2968 
2969 /**
2970  *	flash_wait_op - wait for a flash operation to complete
2971  *	@adapter: the adapter
2972  *	@attempts: max number of polls of the status register
2973  *	@delay: delay between polls in ms
2974  *
2975  *	Wait for a flash operation to complete by polling the status register.
2976  */
2977 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2978 {
2979 	int ret;
2980 	u32 status;
2981 
2982 	while (1) {
2983 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2984 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2985 			return ret;
2986 		if (!(status & 1))
2987 			return 0;
2988 		if (--attempts == 0)
2989 			return -EAGAIN;
2990 		if (delay)
2991 			msleep(delay);
2992 	}
2993 }
2994 
2995 /**
2996  *	t4_read_flash - read words from serial flash
2997  *	@adapter: the adapter
2998  *	@addr: the start address for the read
2999  *	@nwords: how many 32-bit words to read
3000  *	@data: where to store the read data
3001  *	@byte_oriented: whether to store data as bytes or as words
3002  *
3003  *	Read the specified number of 32-bit words from the serial flash.
3004  *	If @byte_oriented is set the read data is stored as a byte array
3005  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3006  *	natural endianness.
3007  */
3008 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3009 		  unsigned int nwords, u32 *data, int byte_oriented)
3010 {
3011 	int ret;
3012 
3013 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3014 		return -EINVAL;
3015 
3016 	addr = swab32(addr) | SF_RD_DATA_FAST;
3017 
3018 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3019 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3020 		return ret;
3021 
3022 	for ( ; nwords; nwords--, data++) {
3023 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3024 		if (nwords == 1)
3025 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3026 		if (ret)
3027 			return ret;
3028 		if (byte_oriented)
3029 			*data = (__force __u32)(cpu_to_be32(*data));
3030 	}
3031 	return 0;
3032 }
3033 
3034 /**
3035  *	t4_write_flash - write up to a page of data to the serial flash
3036  *	@adapter: the adapter
3037  *	@addr: the start address to write
3038  *	@n: length of data to write in bytes
3039  *	@data: the data to write
3040  *	@byte_oriented: whether to store data as bytes or as words
3041  *
3042  *	Writes up to a page of data (256 bytes) to the serial flash starting
3043  *	at the given address.  All the data must be written to the same page.
3044  *	If @byte_oriented is set the write data is stored as byte stream
3045  *	(i.e. matches what on disk), otherwise in big-endian.
3046  */
3047 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3048 			  unsigned int n, const u8 *data, bool byte_oriented)
3049 {
3050 	unsigned int i, c, left, val, offset = addr & 0xff;
3051 	u32 buf[64];
3052 	int ret;
3053 
3054 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3055 		return -EINVAL;
3056 
3057 	val = swab32(addr) | SF_PROG_PAGE;
3058 
3059 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3060 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3061 		goto unlock;
3062 
3063 	for (left = n; left; left -= c, data += c) {
3064 		c = min(left, 4U);
3065 		for (val = 0, i = 0; i < c; ++i) {
3066 			if (byte_oriented)
3067 				val = (val << 8) + data[i];
3068 			else
3069 				val = (val << 8) + data[c - i - 1];
3070 		}
3071 
3072 		ret = sf1_write(adapter, c, c != left, 1, val);
3073 		if (ret)
3074 			goto unlock;
3075 	}
3076 	ret = flash_wait_op(adapter, 8, 1);
3077 	if (ret)
3078 		goto unlock;
3079 
3080 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3081 
3082 	/* Read the page to verify the write succeeded */
3083 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3084 			    byte_oriented);
3085 	if (ret)
3086 		return ret;
3087 
3088 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3089 		dev_err(adapter->pdev_dev,
3090 			"failed to correctly write the flash page at %#x\n",
3091 			addr);
3092 		return -EIO;
3093 	}
3094 	return 0;
3095 
3096 unlock:
3097 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3098 	return ret;
3099 }
3100 
3101 /**
3102  *	t4_get_fw_version - read the firmware version
3103  *	@adapter: the adapter
3104  *	@vers: where to place the version
3105  *
3106  *	Reads the FW version from flash.
3107  */
3108 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3109 {
3110 	return t4_read_flash(adapter, FLASH_FW_START +
3111 			     offsetof(struct fw_hdr, fw_ver), 1,
3112 			     vers, 0);
3113 }
3114 
3115 /**
3116  *	t4_get_bs_version - read the firmware bootstrap version
3117  *	@adapter: the adapter
3118  *	@vers: where to place the version
3119  *
3120  *	Reads the FW Bootstrap version from flash.
3121  */
3122 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3123 {
3124 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3125 			     offsetof(struct fw_hdr, fw_ver), 1,
3126 			     vers, 0);
3127 }
3128 
3129 /**
3130  *	t4_get_tp_version - read the TP microcode version
3131  *	@adapter: the adapter
3132  *	@vers: where to place the version
3133  *
3134  *	Reads the TP microcode version from flash.
3135  */
3136 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3137 {
3138 	return t4_read_flash(adapter, FLASH_FW_START +
3139 			     offsetof(struct fw_hdr, tp_microcode_ver),
3140 			     1, vers, 0);
3141 }
3142 
3143 /**
3144  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3145  *	@adap: the adapter
3146  *	@vers: where to place the version
3147  *
3148  *	Reads the Expansion ROM header from FLASH and returns the version
3149  *	number (if present) through the @vers return value pointer.  We return
3150  *	this in the Firmware Version Format since it's convenient.  Return
3151  *	0 on success, -ENOENT if no Expansion ROM is present.
3152  */
3153 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3154 {
3155 	struct exprom_header {
3156 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3157 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3158 	} *hdr;
3159 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3160 					   sizeof(u32))];
3161 	int ret;
3162 
3163 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3164 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3165 			    0);
3166 	if (ret)
3167 		return ret;
3168 
3169 	hdr = (struct exprom_header *)exprom_header_buf;
3170 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3171 		return -ENOENT;
3172 
3173 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3174 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3175 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3176 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3177 	return 0;
3178 }
3179 
3180 /**
3181  *      t4_get_vpd_version - return the VPD version
3182  *      @adapter: the adapter
3183  *      @vers: where to place the version
3184  *
3185  *      Reads the VPD via the Firmware interface (thus this can only be called
3186  *      once we're ready to issue Firmware commands).  The format of the
3187  *      VPD version is adapter specific.  Returns 0 on success, an error on
3188  *      failure.
3189  *
3190  *      Note that early versions of the Firmware didn't include the ability
3191  *      to retrieve the VPD version, so we zero-out the return-value parameter
3192  *      in that case to avoid leaving it with garbage in it.
3193  *
3194  *      Also note that the Firmware will return its cached copy of the VPD
3195  *      Revision ID, not the actual Revision ID as written in the Serial
3196  *      EEPROM.  This is only an issue if a new VPD has been written and the
3197  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3198  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3199  *      if the Host Driver will be performing a full adapter initialization.
3200  */
3201 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3202 {
3203 	u32 vpdrev_param;
3204 	int ret;
3205 
3206 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3207 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3208 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3209 			      1, &vpdrev_param, vers);
3210 	if (ret)
3211 		*vers = 0;
3212 	return ret;
3213 }
3214 
3215 /**
3216  *      t4_get_scfg_version - return the Serial Configuration version
3217  *      @adapter: the adapter
3218  *      @vers: where to place the version
3219  *
3220  *      Reads the Serial Configuration Version via the Firmware interface
3221  *      (thus this can only be called once we're ready to issue Firmware
3222  *      commands).  The format of the Serial Configuration version is
3223  *      adapter specific.  Returns 0 on success, an error on failure.
3224  *
3225  *      Note that early versions of the Firmware didn't include the ability
3226  *      to retrieve the Serial Configuration version, so we zero-out the
3227  *      return-value parameter in that case to avoid leaving it with
3228  *      garbage in it.
3229  *
3230  *      Also note that the Firmware will return its cached copy of the Serial
3231  *      Initialization Revision ID, not the actual Revision ID as written in
3232  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3233  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3234  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3235  *      been issued if the Host Driver will be performing a full adapter
3236  *      initialization.
3237  */
3238 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3239 {
3240 	u32 scfgrev_param;
3241 	int ret;
3242 
3243 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3244 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3245 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3246 			      1, &scfgrev_param, vers);
3247 	if (ret)
3248 		*vers = 0;
3249 	return ret;
3250 }
3251 
3252 /**
3253  *      t4_get_version_info - extract various chip/firmware version information
3254  *      @adapter: the adapter
3255  *
3256  *      Reads various chip/firmware version numbers and stores them into the
3257  *      adapter Adapter Parameters structure.  If any of the efforts fails
3258  *      the first failure will be returned, but all of the version numbers
3259  *      will be read.
3260  */
3261 int t4_get_version_info(struct adapter *adapter)
3262 {
3263 	int ret = 0;
3264 
3265 	#define FIRST_RET(__getvinfo) \
3266 	do { \
3267 		int __ret = __getvinfo; \
3268 		if (__ret && !ret) \
3269 			ret = __ret; \
3270 	} while (0)
3271 
3272 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3273 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3274 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3275 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3276 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3277 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3278 
3279 	#undef FIRST_RET
3280 	return ret;
3281 }
3282 
3283 /**
3284  *      t4_dump_version_info - dump all of the adapter configuration IDs
3285  *      @adapter: the adapter
3286  *
3287  *      Dumps all of the various bits of adapter configuration version/revision
3288  *      IDs information.  This is typically called at some point after
3289  *      t4_get_version_info() has been called.
3290  */
3291 void t4_dump_version_info(struct adapter *adapter)
3292 {
3293 	/* Device information */
3294 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3295 		 adapter->params.vpd.id,
3296 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3297 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3298 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3299 
3300 	/* Firmware Version */
3301 	if (!adapter->params.fw_vers)
3302 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3303 	else
3304 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3305 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3306 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3307 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3308 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3309 
3310 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3311 	 * Firmware, so dev_info() is more appropriate here.)
3312 	 */
3313 	if (!adapter->params.bs_vers)
3314 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3315 	else
3316 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3317 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3318 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3319 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3320 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3321 
3322 	/* TP Microcode Version */
3323 	if (!adapter->params.tp_vers)
3324 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3325 	else
3326 		dev_info(adapter->pdev_dev,
3327 			 "TP Microcode version: %u.%u.%u.%u\n",
3328 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3329 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3330 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3331 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3332 
3333 	/* Expansion ROM version */
3334 	if (!adapter->params.er_vers)
3335 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3336 	else
3337 		dev_info(adapter->pdev_dev,
3338 			 "Expansion ROM version: %u.%u.%u.%u\n",
3339 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3340 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3341 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3342 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3343 
3344 	/* Serial Configuration version */
3345 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3346 		 adapter->params.scfg_vers);
3347 
3348 	/* VPD Version */
3349 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3350 		 adapter->params.vpd_vers);
3351 }
3352 
3353 /**
3354  *	t4_check_fw_version - check if the FW is supported with this driver
3355  *	@adap: the adapter
3356  *
3357  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3358  *	if there's exact match, a negative error if the version could not be
3359  *	read or there's a major version mismatch
3360  */
3361 int t4_check_fw_version(struct adapter *adap)
3362 {
3363 	int i, ret, major, minor, micro;
3364 	int exp_major, exp_minor, exp_micro;
3365 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3366 
3367 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3368 	/* Try multiple times before returning error */
3369 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3370 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3371 
3372 	if (ret)
3373 		return ret;
3374 
3375 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3376 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3377 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3378 
3379 	switch (chip_version) {
3380 	case CHELSIO_T4:
3381 		exp_major = T4FW_MIN_VERSION_MAJOR;
3382 		exp_minor = T4FW_MIN_VERSION_MINOR;
3383 		exp_micro = T4FW_MIN_VERSION_MICRO;
3384 		break;
3385 	case CHELSIO_T5:
3386 		exp_major = T5FW_MIN_VERSION_MAJOR;
3387 		exp_minor = T5FW_MIN_VERSION_MINOR;
3388 		exp_micro = T5FW_MIN_VERSION_MICRO;
3389 		break;
3390 	case CHELSIO_T6:
3391 		exp_major = T6FW_MIN_VERSION_MAJOR;
3392 		exp_minor = T6FW_MIN_VERSION_MINOR;
3393 		exp_micro = T6FW_MIN_VERSION_MICRO;
3394 		break;
3395 	default:
3396 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3397 			adap->chip);
3398 		return -EINVAL;
3399 	}
3400 
3401 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3402 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3403 		dev_err(adap->pdev_dev,
3404 			"Card has firmware version %u.%u.%u, minimum "
3405 			"supported firmware is %u.%u.%u.\n", major, minor,
3406 			micro, exp_major, exp_minor, exp_micro);
3407 		return -EFAULT;
3408 	}
3409 	return 0;
3410 }
3411 
3412 /* Is the given firmware API compatible with the one the driver was compiled
3413  * with?
3414  */
3415 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3416 {
3417 
3418 	/* short circuit if it's the exact same firmware version */
3419 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3420 		return 1;
3421 
3422 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3423 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3424 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3425 		return 1;
3426 #undef SAME_INTF
3427 
3428 	return 0;
3429 }
3430 
3431 /* The firmware in the filesystem is usable, but should it be installed?
3432  * This routine explains itself in detail if it indicates the filesystem
3433  * firmware should be installed.
3434  */
3435 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3436 				int k, int c)
3437 {
3438 	const char *reason;
3439 
3440 	if (!card_fw_usable) {
3441 		reason = "incompatible or unusable";
3442 		goto install;
3443 	}
3444 
3445 	if (k > c) {
3446 		reason = "older than the version supported with this driver";
3447 		goto install;
3448 	}
3449 
3450 	return 0;
3451 
3452 install:
3453 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3454 		"installing firmware %u.%u.%u.%u on card.\n",
3455 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3456 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3457 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3458 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3459 
3460 	return 1;
3461 }
3462 
3463 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3464 	       const u8 *fw_data, unsigned int fw_size,
3465 	       struct fw_hdr *card_fw, enum dev_state state,
3466 	       int *reset)
3467 {
3468 	int ret, card_fw_usable, fs_fw_usable;
3469 	const struct fw_hdr *fs_fw;
3470 	const struct fw_hdr *drv_fw;
3471 
3472 	drv_fw = &fw_info->fw_hdr;
3473 
3474 	/* Read the header of the firmware on the card */
3475 	ret = t4_read_flash(adap, FLASH_FW_START,
3476 			    sizeof(*card_fw) / sizeof(uint32_t),
3477 			    (uint32_t *)card_fw, 1);
3478 	if (ret == 0) {
3479 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3480 	} else {
3481 		dev_err(adap->pdev_dev,
3482 			"Unable to read card's firmware header: %d\n", ret);
3483 		card_fw_usable = 0;
3484 	}
3485 
3486 	if (fw_data != NULL) {
3487 		fs_fw = (const void *)fw_data;
3488 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3489 	} else {
3490 		fs_fw = NULL;
3491 		fs_fw_usable = 0;
3492 	}
3493 
3494 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3495 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3496 		/* Common case: the firmware on the card is an exact match and
3497 		 * the filesystem one is an exact match too, or the filesystem
3498 		 * one is absent/incompatible.
3499 		 */
3500 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3501 		   should_install_fs_fw(adap, card_fw_usable,
3502 					be32_to_cpu(fs_fw->fw_ver),
3503 					be32_to_cpu(card_fw->fw_ver))) {
3504 		ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3505 				    fw_size, 0);
3506 		if (ret != 0) {
3507 			dev_err(adap->pdev_dev,
3508 				"failed to install firmware: %d\n", ret);
3509 			goto bye;
3510 		}
3511 
3512 		/* Installed successfully, update the cached header too. */
3513 		*card_fw = *fs_fw;
3514 		card_fw_usable = 1;
3515 		*reset = 0;	/* already reset as part of load_fw */
3516 	}
3517 
3518 	if (!card_fw_usable) {
3519 		uint32_t d, c, k;
3520 
3521 		d = be32_to_cpu(drv_fw->fw_ver);
3522 		c = be32_to_cpu(card_fw->fw_ver);
3523 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3524 
3525 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3526 			"chip state %d, "
3527 			"driver compiled with %d.%d.%d.%d, "
3528 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3529 			state,
3530 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3531 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3532 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3533 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3534 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3535 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3536 		ret = -EINVAL;
3537 		goto bye;
3538 	}
3539 
3540 	/* We're using whatever's on the card and it's known to be good. */
3541 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3542 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3543 
3544 bye:
3545 	return ret;
3546 }
3547 
3548 /**
3549  *	t4_flash_erase_sectors - erase a range of flash sectors
3550  *	@adapter: the adapter
3551  *	@start: the first sector to erase
3552  *	@end: the last sector to erase
3553  *
3554  *	Erases the sectors in the given inclusive range.
3555  */
3556 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3557 {
3558 	int ret = 0;
3559 
3560 	if (end >= adapter->params.sf_nsec)
3561 		return -EINVAL;
3562 
3563 	while (start <= end) {
3564 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3565 		    (ret = sf1_write(adapter, 4, 0, 1,
3566 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3567 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3568 			dev_err(adapter->pdev_dev,
3569 				"erase of flash sector %d failed, error %d\n",
3570 				start, ret);
3571 			break;
3572 		}
3573 		start++;
3574 	}
3575 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3576 	return ret;
3577 }
3578 
3579 /**
3580  *	t4_flash_cfg_addr - return the address of the flash configuration file
3581  *	@adapter: the adapter
3582  *
3583  *	Return the address within the flash where the Firmware Configuration
3584  *	File is stored.
3585  */
3586 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3587 {
3588 	if (adapter->params.sf_size == 0x100000)
3589 		return FLASH_FPGA_CFG_START;
3590 	else
3591 		return FLASH_CFG_START;
3592 }
3593 
3594 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3595  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3596  * and emit an error message for mismatched firmware to save our caller the
3597  * effort ...
3598  */
3599 static bool t4_fw_matches_chip(const struct adapter *adap,
3600 			       const struct fw_hdr *hdr)
3601 {
3602 	/* The expression below will return FALSE for any unsupported adapter
3603 	 * which will keep us "honest" in the future ...
3604 	 */
3605 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3606 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3607 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3608 		return true;
3609 
3610 	dev_err(adap->pdev_dev,
3611 		"FW image (%d) is not suitable for this adapter (%d)\n",
3612 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3613 	return false;
3614 }
3615 
3616 /**
3617  *	t4_load_fw - download firmware
3618  *	@adap: the adapter
3619  *	@fw_data: the firmware image to write
3620  *	@size: image size
3621  *
3622  *	Write the supplied firmware image to the card's serial flash.
3623  */
3624 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3625 {
3626 	u32 csum;
3627 	int ret, addr;
3628 	unsigned int i;
3629 	u8 first_page[SF_PAGE_SIZE];
3630 	const __be32 *p = (const __be32 *)fw_data;
3631 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3632 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3633 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3634 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3635 	unsigned int fw_start = FLASH_FW_START;
3636 
3637 	if (!size) {
3638 		dev_err(adap->pdev_dev, "FW image has no data\n");
3639 		return -EINVAL;
3640 	}
3641 	if (size & 511) {
3642 		dev_err(adap->pdev_dev,
3643 			"FW image size not multiple of 512 bytes\n");
3644 		return -EINVAL;
3645 	}
3646 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3647 		dev_err(adap->pdev_dev,
3648 			"FW image size differs from size in FW header\n");
3649 		return -EINVAL;
3650 	}
3651 	if (size > fw_size) {
3652 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3653 			fw_size);
3654 		return -EFBIG;
3655 	}
3656 	if (!t4_fw_matches_chip(adap, hdr))
3657 		return -EINVAL;
3658 
3659 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3660 		csum += be32_to_cpu(p[i]);
3661 
3662 	if (csum != 0xffffffff) {
3663 		dev_err(adap->pdev_dev,
3664 			"corrupted firmware image, checksum %#x\n", csum);
3665 		return -EINVAL;
3666 	}
3667 
3668 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3669 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3670 	if (ret)
3671 		goto out;
3672 
3673 	/*
3674 	 * We write the correct version at the end so the driver can see a bad
3675 	 * version if the FW write fails.  Start by writing a copy of the
3676 	 * first page with a bad version.
3677 	 */
3678 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3679 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3680 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true);
3681 	if (ret)
3682 		goto out;
3683 
3684 	addr = fw_start;
3685 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3686 		addr += SF_PAGE_SIZE;
3687 		fw_data += SF_PAGE_SIZE;
3688 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true);
3689 		if (ret)
3690 			goto out;
3691 	}
3692 
3693 	ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver),
3694 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver,
3695 			     true);
3696 out:
3697 	if (ret)
3698 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3699 			ret);
3700 	else
3701 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3702 	return ret;
3703 }
3704 
3705 /**
3706  *	t4_phy_fw_ver - return current PHY firmware version
3707  *	@adap: the adapter
3708  *	@phy_fw_ver: return value buffer for PHY firmware version
3709  *
3710  *	Returns the current version of external PHY firmware on the
3711  *	adapter.
3712  */
3713 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3714 {
3715 	u32 param, val;
3716 	int ret;
3717 
3718 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3719 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3720 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3721 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3722 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3723 			      &param, &val);
3724 	if (ret)
3725 		return ret;
3726 	*phy_fw_ver = val;
3727 	return 0;
3728 }
3729 
3730 /**
3731  *	t4_load_phy_fw - download port PHY firmware
3732  *	@adap: the adapter
3733  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3734  *	@phy_fw_version: function to check PHY firmware versions
3735  *	@phy_fw_data: the PHY firmware image to write
3736  *	@phy_fw_size: image size
3737  *
3738  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3739  *	@phy_fw_version is supplied, then it will be used to determine if
3740  *	it's necessary to perform the transfer by comparing the version
3741  *	of any existing adapter PHY firmware with that of the passed in
3742  *	PHY firmware image.
3743  *
3744  *	A negative error number will be returned if an error occurs.  If
3745  *	version number support is available and there's no need to upgrade
3746  *	the firmware, 0 will be returned.  If firmware is successfully
3747  *	transferred to the adapter, 1 will be returned.
3748  *
3749  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3750  *	a result, a RESET of the adapter would cause that RAM to lose its
3751  *	contents.  Thus, loading PHY firmware on such adapters must happen
3752  *	after any FW_RESET_CMDs ...
3753  */
3754 int t4_load_phy_fw(struct adapter *adap, int win,
3755 		   int (*phy_fw_version)(const u8 *, size_t),
3756 		   const u8 *phy_fw_data, size_t phy_fw_size)
3757 {
3758 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3759 	unsigned long mtype = 0, maddr = 0;
3760 	u32 param, val;
3761 	int ret;
3762 
3763 	/* If we have version number support, then check to see if the adapter
3764 	 * already has up-to-date PHY firmware loaded.
3765 	 */
3766 	if (phy_fw_version) {
3767 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3768 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3769 		if (ret < 0)
3770 			return ret;
3771 
3772 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3773 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3774 				"version %#x\n", cur_phy_fw_ver);
3775 			return 0;
3776 		}
3777 	}
3778 
3779 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3780 	 * The size of the file requires a special version of the READ command
3781 	 * which will pass the file size via the values field in PARAMS_CMD and
3782 	 * retrieve the return value from firmware and place it in the same
3783 	 * buffer values
3784 	 */
3785 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3786 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3787 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3788 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3789 	val = phy_fw_size;
3790 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3791 				 &param, &val, 1, true);
3792 	if (ret < 0)
3793 		return ret;
3794 	mtype = val >> 8;
3795 	maddr = (val & 0xff) << 16;
3796 
3797 	/* Copy the supplied PHY Firmware image to the adapter memory location
3798 	 * allocated by the adapter firmware.
3799 	 */
3800 	spin_lock_bh(&adap->win0_lock);
3801 	ret = t4_memory_rw(adap, win, mtype, maddr,
3802 			   phy_fw_size, (__be32 *)phy_fw_data,
3803 			   T4_MEMORY_WRITE);
3804 	spin_unlock_bh(&adap->win0_lock);
3805 	if (ret)
3806 		return ret;
3807 
3808 	/* Tell the firmware that the PHY firmware image has been written to
3809 	 * RAM and it can now start copying it over to the PHYs.  The chip
3810 	 * firmware will RESET the affected PHYs as part of this operation
3811 	 * leaving them running the new PHY firmware image.
3812 	 */
3813 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3814 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3815 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3816 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3817 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3818 				    &param, &val, 30000);
3819 
3820 	/* If we have version number support, then check to see that the new
3821 	 * firmware got loaded properly.
3822 	 */
3823 	if (phy_fw_version) {
3824 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3825 		if (ret < 0)
3826 			return ret;
3827 
3828 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3829 			CH_WARN(adap, "PHY Firmware did not update: "
3830 				"version on adapter %#x, "
3831 				"version flashed %#x\n",
3832 				cur_phy_fw_ver, new_phy_fw_vers);
3833 			return -ENXIO;
3834 		}
3835 	}
3836 
3837 	return 1;
3838 }
3839 
3840 /**
3841  *	t4_fwcache - firmware cache operation
3842  *	@adap: the adapter
3843  *	@op  : the operation (flush or flush and invalidate)
3844  */
3845 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3846 {
3847 	struct fw_params_cmd c;
3848 
3849 	memset(&c, 0, sizeof(c));
3850 	c.op_to_vfn =
3851 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3852 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3853 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3854 			    FW_PARAMS_CMD_VFN_V(0));
3855 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3856 	c.param[0].mnem =
3857 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3858 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3859 	c.param[0].val = cpu_to_be32(op);
3860 
3861 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3862 }
3863 
3864 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3865 			unsigned int *pif_req_wrptr,
3866 			unsigned int *pif_rsp_wrptr)
3867 {
3868 	int i, j;
3869 	u32 cfg, val, req, rsp;
3870 
3871 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3872 	if (cfg & LADBGEN_F)
3873 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3874 
3875 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3876 	req = POLADBGWRPTR_G(val);
3877 	rsp = PILADBGWRPTR_G(val);
3878 	if (pif_req_wrptr)
3879 		*pif_req_wrptr = req;
3880 	if (pif_rsp_wrptr)
3881 		*pif_rsp_wrptr = rsp;
3882 
3883 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3884 		for (j = 0; j < 6; j++) {
3885 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3886 				     PILADBGRDPTR_V(rsp));
3887 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3888 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3889 			req++;
3890 			rsp++;
3891 		}
3892 		req = (req + 2) & POLADBGRDPTR_M;
3893 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3894 	}
3895 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3896 }
3897 
3898 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3899 {
3900 	u32 cfg;
3901 	int i, j, idx;
3902 
3903 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3904 	if (cfg & LADBGEN_F)
3905 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3906 
3907 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3908 		for (j = 0; j < 5; j++) {
3909 			idx = 8 * i + j;
3910 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3911 				     PILADBGRDPTR_V(idx));
3912 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3913 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3914 		}
3915 	}
3916 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3917 }
3918 
3919 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3920 {
3921 	unsigned int i, j;
3922 
3923 	for (i = 0; i < 8; i++) {
3924 		u32 *p = la_buf + i;
3925 
3926 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3927 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3928 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3929 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3930 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3931 	}
3932 }
3933 
3934 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3935  * Capabilities which we control with separate controls -- see, for instance,
3936  * Pause Frames and Forward Error Correction.  In order to determine what the
3937  * full set of Advertised Port Capabilities are, the base Advertised Port
3938  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3939  * Port Capabilities associated with those other controls.  See
3940  * t4_link_acaps() for how this is done.
3941  */
3942 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3943 		     FW_PORT_CAP32_ANEG)
3944 
3945 /**
3946  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3947  *	@caps16: a 16-bit Port Capabilities value
3948  *
3949  *	Returns the equivalent 32-bit Port Capabilities value.
3950  */
3951 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3952 {
3953 	fw_port_cap32_t caps32 = 0;
3954 
3955 	#define CAP16_TO_CAP32(__cap) \
3956 		do { \
3957 			if (caps16 & FW_PORT_CAP_##__cap) \
3958 				caps32 |= FW_PORT_CAP32_##__cap; \
3959 		} while (0)
3960 
3961 	CAP16_TO_CAP32(SPEED_100M);
3962 	CAP16_TO_CAP32(SPEED_1G);
3963 	CAP16_TO_CAP32(SPEED_25G);
3964 	CAP16_TO_CAP32(SPEED_10G);
3965 	CAP16_TO_CAP32(SPEED_40G);
3966 	CAP16_TO_CAP32(SPEED_100G);
3967 	CAP16_TO_CAP32(FC_RX);
3968 	CAP16_TO_CAP32(FC_TX);
3969 	CAP16_TO_CAP32(ANEG);
3970 	CAP16_TO_CAP32(FORCE_PAUSE);
3971 	CAP16_TO_CAP32(MDIAUTO);
3972 	CAP16_TO_CAP32(MDISTRAIGHT);
3973 	CAP16_TO_CAP32(FEC_RS);
3974 	CAP16_TO_CAP32(FEC_BASER_RS);
3975 	CAP16_TO_CAP32(802_3_PAUSE);
3976 	CAP16_TO_CAP32(802_3_ASM_DIR);
3977 
3978 	#undef CAP16_TO_CAP32
3979 
3980 	return caps32;
3981 }
3982 
3983 /**
3984  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3985  *	@caps32: a 32-bit Port Capabilities value
3986  *
3987  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3988  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3989  *	Port Capabilities and some fields/values may not make it.
3990  */
3991 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3992 {
3993 	fw_port_cap16_t caps16 = 0;
3994 
3995 	#define CAP32_TO_CAP16(__cap) \
3996 		do { \
3997 			if (caps32 & FW_PORT_CAP32_##__cap) \
3998 				caps16 |= FW_PORT_CAP_##__cap; \
3999 		} while (0)
4000 
4001 	CAP32_TO_CAP16(SPEED_100M);
4002 	CAP32_TO_CAP16(SPEED_1G);
4003 	CAP32_TO_CAP16(SPEED_10G);
4004 	CAP32_TO_CAP16(SPEED_25G);
4005 	CAP32_TO_CAP16(SPEED_40G);
4006 	CAP32_TO_CAP16(SPEED_100G);
4007 	CAP32_TO_CAP16(FC_RX);
4008 	CAP32_TO_CAP16(FC_TX);
4009 	CAP32_TO_CAP16(802_3_PAUSE);
4010 	CAP32_TO_CAP16(802_3_ASM_DIR);
4011 	CAP32_TO_CAP16(ANEG);
4012 	CAP32_TO_CAP16(FORCE_PAUSE);
4013 	CAP32_TO_CAP16(MDIAUTO);
4014 	CAP32_TO_CAP16(MDISTRAIGHT);
4015 	CAP32_TO_CAP16(FEC_RS);
4016 	CAP32_TO_CAP16(FEC_BASER_RS);
4017 
4018 	#undef CAP32_TO_CAP16
4019 
4020 	return caps16;
4021 }
4022 
4023 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4024 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4025 {
4026 	enum cc_pause cc_pause = 0;
4027 
4028 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4029 		cc_pause |= PAUSE_RX;
4030 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4031 		cc_pause |= PAUSE_TX;
4032 
4033 	return cc_pause;
4034 }
4035 
4036 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4037 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4038 {
4039 	/* Translate orthogonal RX/TX Pause Controls for L1 Configure
4040 	 * commands, etc.
4041 	 */
4042 	fw_port_cap32_t fw_pause = 0;
4043 
4044 	if (cc_pause & PAUSE_RX)
4045 		fw_pause |= FW_PORT_CAP32_FC_RX;
4046 	if (cc_pause & PAUSE_TX)
4047 		fw_pause |= FW_PORT_CAP32_FC_TX;
4048 	if (!(cc_pause & PAUSE_AUTONEG))
4049 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4050 
4051 	/* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4052 	 * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4053 	 * Note that these bits are ignored in L1 Configure commands.
4054 	 */
4055 	if (cc_pause & PAUSE_RX) {
4056 		if (cc_pause & PAUSE_TX)
4057 			fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4058 		else
4059 			fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4060 				    FW_PORT_CAP32_802_3_PAUSE;
4061 	} else if (cc_pause & PAUSE_TX) {
4062 		fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4063 	}
4064 
4065 	return fw_pause;
4066 }
4067 
4068 /* Translate Firmware Forward Error Correction specification to Common Code */
4069 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4070 {
4071 	enum cc_fec cc_fec = 0;
4072 
4073 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4074 		cc_fec |= FEC_RS;
4075 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4076 		cc_fec |= FEC_BASER_RS;
4077 
4078 	return cc_fec;
4079 }
4080 
4081 /* Translate Common Code Forward Error Correction specification to Firmware */
4082 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4083 {
4084 	fw_port_cap32_t fw_fec = 0;
4085 
4086 	if (cc_fec & FEC_RS)
4087 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4088 	if (cc_fec & FEC_BASER_RS)
4089 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4090 
4091 	return fw_fec;
4092 }
4093 
4094 /**
4095  *	t4_link_acaps - compute Link Advertised Port Capabilities
4096  *	@adapter: the adapter
4097  *	@port: the Port ID
4098  *	@lc: the Port's Link Configuration
4099  *
4100  *	Synthesize the Advertised Port Capabilities we'll be using based on
4101  *	the base Advertised Port Capabilities (which have been filtered by
4102  *	ADVERT_MASK) plus the individual controls for things like Pause
4103  *	Frames, Forward Error Correction, MDI, etc.
4104  */
4105 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4106 			      struct link_config *lc)
4107 {
4108 	fw_port_cap32_t fw_fc, fw_fec, acaps;
4109 	unsigned int fw_mdi;
4110 	char cc_fec;
4111 
4112 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4113 
4114 	/* Convert driver coding of Pause Frame Flow Control settings into the
4115 	 * Firmware's API.
4116 	 */
4117 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4118 
4119 	/* Convert Common Code Forward Error Control settings into the
4120 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4121 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4122 	 * sent us as part of its IEEE 802.3-based interpretation of
4123 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4124 	 * use whatever is in the current Requested FEC settings.
4125 	 */
4126 	if (lc->requested_fec & FEC_AUTO)
4127 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4128 	else
4129 		cc_fec = lc->requested_fec;
4130 	fw_fec = cc_to_fwcap_fec(cc_fec);
4131 
4132 	/* Figure out what our Requested Port Capabilities are going to be.
4133 	 * Note parallel structure in t4_handle_get_port_info() and
4134 	 * init_link_config().
4135 	 */
4136 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4137 		acaps = lc->acaps | fw_fc | fw_fec;
4138 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4139 		lc->fec = cc_fec;
4140 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4141 		acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4142 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4143 		lc->fec = cc_fec;
4144 	} else {
4145 		acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4146 	}
4147 
4148 	/* Some Requested Port Capabilities are trivially wrong if they exceed
4149 	 * the Physical Port Capabilities.  We can check that here and provide
4150 	 * moderately useful feedback in the system log.
4151 	 *
4152 	 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4153 	 * we need to exclude this from this check in order to maintain
4154 	 * compatibility ...
4155 	 */
4156 	if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4157 		dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4158 			acaps, lc->pcaps);
4159 		return -EINVAL;
4160 	}
4161 
4162 	return acaps;
4163 }
4164 
4165 /**
4166  *	t4_link_l1cfg_core - apply link configuration to MAC/PHY
4167  *	@adapter: the adapter
4168  *	@mbox: the Firmware Mailbox to use
4169  *	@port: the Port ID
4170  *	@lc: the Port's Link Configuration
4171  *	@sleep_ok: if true we may sleep while awaiting command completion
4172  *	@timeout: time to wait for command to finish before timing out
4173  *		(negative implies @sleep_ok=false)
4174  *
4175  *	Set up a port's MAC and PHY according to a desired link configuration.
4176  *	- If the PHY can auto-negotiate first decide what to advertise, then
4177  *	  enable/disable auto-negotiation as desired, and reset.
4178  *	- If the PHY does not auto-negotiate just reset it.
4179  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4180  *	  otherwise do it later based on the outcome of auto-negotiation.
4181  */
4182 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4183 		       unsigned int port, struct link_config *lc,
4184 		       u8 sleep_ok, int timeout)
4185 {
4186 	unsigned int fw_caps = adapter->params.fw_caps_support;
4187 	struct fw_port_cmd cmd;
4188 	fw_port_cap32_t rcap;
4189 	int ret;
4190 
4191 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4192 	    lc->autoneg == AUTONEG_ENABLE) {
4193 		return -EINVAL;
4194 	}
4195 
4196 	/* Compute our Requested Port Capabilities and send that on to the
4197 	 * Firmware.
4198 	 */
4199 	rcap = t4_link_acaps(adapter, port, lc);
4200 	memset(&cmd, 0, sizeof(cmd));
4201 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4202 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4203 				       FW_PORT_CMD_PORTID_V(port));
4204 	cmd.action_to_len16 =
4205 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4206 						 ? FW_PORT_ACTION_L1_CFG
4207 						 : FW_PORT_ACTION_L1_CFG32) |
4208 						 FW_LEN16(cmd));
4209 	if (fw_caps == FW_CAPS16)
4210 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4211 	else
4212 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4213 
4214 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4215 				      sleep_ok, timeout);
4216 
4217 	/* Unfortunately, even if the Requested Port Capabilities "fit" within
4218 	 * the Physical Port Capabilities, some combinations of features may
4219 	 * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4220 	 * Error Correction.  So if the Firmware rejects the L1 Configure
4221 	 * request, flag that here.
4222 	 */
4223 	if (ret) {
4224 		dev_err(adapter->pdev_dev,
4225 			"Requested Port Capabilities %#x rejected, error %d\n",
4226 			rcap, -ret);
4227 		return ret;
4228 	}
4229 	return 0;
4230 }
4231 
4232 /**
4233  *	t4_restart_aneg - restart autonegotiation
4234  *	@adap: the adapter
4235  *	@mbox: mbox to use for the FW command
4236  *	@port: the port id
4237  *
4238  *	Restarts autonegotiation for the selected port.
4239  */
4240 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4241 {
4242 	unsigned int fw_caps = adap->params.fw_caps_support;
4243 	struct fw_port_cmd c;
4244 
4245 	memset(&c, 0, sizeof(c));
4246 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4247 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4248 				     FW_PORT_CMD_PORTID_V(port));
4249 	c.action_to_len16 =
4250 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4251 						 ? FW_PORT_ACTION_L1_CFG
4252 						 : FW_PORT_ACTION_L1_CFG32) |
4253 			    FW_LEN16(c));
4254 	if (fw_caps == FW_CAPS16)
4255 		c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4256 	else
4257 		c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4258 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4259 }
4260 
4261 typedef void (*int_handler_t)(struct adapter *adap);
4262 
4263 struct intr_info {
4264 	unsigned int mask;       /* bits to check in interrupt status */
4265 	const char *msg;         /* message to print or NULL */
4266 	short stat_idx;          /* stat counter to increment or -1 */
4267 	unsigned short fatal;    /* whether the condition reported is fatal */
4268 	int_handler_t int_handler; /* platform-specific int handler */
4269 };
4270 
4271 /**
4272  *	t4_handle_intr_status - table driven interrupt handler
4273  *	@adapter: the adapter that generated the interrupt
4274  *	@reg: the interrupt status register to process
4275  *	@acts: table of interrupt actions
4276  *
4277  *	A table driven interrupt handler that applies a set of masks to an
4278  *	interrupt status word and performs the corresponding actions if the
4279  *	interrupts described by the mask have occurred.  The actions include
4280  *	optionally emitting a warning or alert message.  The table is terminated
4281  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4282  *	conditions.
4283  */
4284 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4285 				 const struct intr_info *acts)
4286 {
4287 	int fatal = 0;
4288 	unsigned int mask = 0;
4289 	unsigned int status = t4_read_reg(adapter, reg);
4290 
4291 	for ( ; acts->mask; ++acts) {
4292 		if (!(status & acts->mask))
4293 			continue;
4294 		if (acts->fatal) {
4295 			fatal++;
4296 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4297 				  status & acts->mask);
4298 		} else if (acts->msg && printk_ratelimit())
4299 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4300 				 status & acts->mask);
4301 		if (acts->int_handler)
4302 			acts->int_handler(adapter);
4303 		mask |= acts->mask;
4304 	}
4305 	status &= mask;
4306 	if (status)                           /* clear processed interrupts */
4307 		t4_write_reg(adapter, reg, status);
4308 	return fatal;
4309 }
4310 
4311 /*
4312  * Interrupt handler for the PCIE module.
4313  */
4314 static void pcie_intr_handler(struct adapter *adapter)
4315 {
4316 	static const struct intr_info sysbus_intr_info[] = {
4317 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4318 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4319 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4320 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4321 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4322 		{ 0 }
4323 	};
4324 	static const struct intr_info pcie_port_intr_info[] = {
4325 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4326 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4327 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4328 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4329 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4330 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4331 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4332 		{ RDPE_F, "Rx data parity error", -1, 1 },
4333 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4334 		{ 0 }
4335 	};
4336 	static const struct intr_info pcie_intr_info[] = {
4337 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4338 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4339 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4340 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4341 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4342 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4343 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4344 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4345 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4346 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4347 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4348 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4349 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4350 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4351 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4352 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4353 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4354 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4355 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4356 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4357 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4358 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4359 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4360 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4361 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4362 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4363 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4364 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4365 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4366 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4367 		  -1, 0 },
4368 		{ 0 }
4369 	};
4370 
4371 	static struct intr_info t5_pcie_intr_info[] = {
4372 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4373 		  -1, 1 },
4374 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4375 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4376 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4377 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4378 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4379 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4380 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4381 		  -1, 1 },
4382 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4383 		  -1, 1 },
4384 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4385 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4386 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4387 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4388 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4389 		  -1, 1 },
4390 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4391 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4392 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4393 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4394 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4395 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4396 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4397 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4398 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4399 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4400 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4401 		  -1, 1 },
4402 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4403 		  -1, 1 },
4404 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4405 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4406 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4407 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4408 		{ 0 }
4409 	};
4410 
4411 	int fat;
4412 
4413 	if (is_t4(adapter->params.chip))
4414 		fat = t4_handle_intr_status(adapter,
4415 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4416 				sysbus_intr_info) +
4417 			t4_handle_intr_status(adapter,
4418 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4419 					pcie_port_intr_info) +
4420 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4421 					      pcie_intr_info);
4422 	else
4423 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4424 					    t5_pcie_intr_info);
4425 
4426 	if (fat)
4427 		t4_fatal_err(adapter);
4428 }
4429 
4430 /*
4431  * TP interrupt handler.
4432  */
4433 static void tp_intr_handler(struct adapter *adapter)
4434 {
4435 	static const struct intr_info tp_intr_info[] = {
4436 		{ 0x3fffffff, "TP parity error", -1, 1 },
4437 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4438 		{ 0 }
4439 	};
4440 
4441 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4442 		t4_fatal_err(adapter);
4443 }
4444 
4445 /*
4446  * SGE interrupt handler.
4447  */
4448 static void sge_intr_handler(struct adapter *adapter)
4449 {
4450 	u32 v = 0, perr;
4451 	u32 err;
4452 
4453 	static const struct intr_info sge_intr_info[] = {
4454 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4455 		  "SGE received CPL exceeding IQE size", -1, 1 },
4456 		{ ERR_INVALID_CIDX_INC_F,
4457 		  "SGE GTS CIDX increment too large", -1, 0 },
4458 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4459 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4460 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4461 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4462 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4463 		  0 },
4464 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4465 		  0 },
4466 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4467 		  0 },
4468 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4469 		  0 },
4470 		{ ERR_ING_CTXT_PRIO_F,
4471 		  "SGE too many priority ingress contexts", -1, 0 },
4472 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4473 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4474 		{ 0 }
4475 	};
4476 
4477 	static struct intr_info t4t5_sge_intr_info[] = {
4478 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4479 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4480 		{ ERR_EGR_CTXT_PRIO_F,
4481 		  "SGE too many priority egress contexts", -1, 0 },
4482 		{ 0 }
4483 	};
4484 
4485 	perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4486 	if (perr) {
4487 		v |= perr;
4488 		dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4489 			  perr);
4490 	}
4491 
4492 	perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4493 	if (perr) {
4494 		v |= perr;
4495 		dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4496 			  perr);
4497 	}
4498 
4499 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4500 		perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4501 		/* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4502 		perr &= ~ERR_T_RXCRC_F;
4503 		if (perr) {
4504 			v |= perr;
4505 			dev_alert(adapter->pdev_dev,
4506 				  "SGE Cause5 Parity Error %#x\n", perr);
4507 		}
4508 	}
4509 
4510 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4511 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4512 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4513 					   t4t5_sge_intr_info);
4514 
4515 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4516 	if (err & ERROR_QID_VALID_F) {
4517 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4518 			ERROR_QID_G(err));
4519 		if (err & UNCAPTURED_ERROR_F)
4520 			dev_err(adapter->pdev_dev,
4521 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4522 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4523 			     UNCAPTURED_ERROR_F);
4524 	}
4525 
4526 	if (v != 0)
4527 		t4_fatal_err(adapter);
4528 }
4529 
4530 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4531 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4532 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4533 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4534 
4535 /*
4536  * CIM interrupt handler.
4537  */
4538 static void cim_intr_handler(struct adapter *adapter)
4539 {
4540 	static const struct intr_info cim_intr_info[] = {
4541 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4542 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4543 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4544 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4545 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4546 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4547 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4548 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4549 		{ 0 }
4550 	};
4551 	static const struct intr_info cim_upintr_info[] = {
4552 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4553 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4554 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4555 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4556 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4557 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4558 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4559 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4560 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4561 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4562 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4563 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4564 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4565 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4566 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4567 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4568 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4569 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4570 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4571 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4572 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4573 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4574 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4575 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4576 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4577 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4578 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4579 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4580 		{ 0 }
4581 	};
4582 
4583 	u32 val, fw_err;
4584 	int fat;
4585 
4586 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4587 	if (fw_err & PCIE_FW_ERR_F)
4588 		t4_report_fw_error(adapter);
4589 
4590 	/* When the Firmware detects an internal error which normally
4591 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4592 	 * in order to make sure the Host sees the Firmware Crash.  So
4593 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4594 	 * ignore the Timer0 interrupt.
4595 	 */
4596 
4597 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4598 	if (val & TIMER0INT_F)
4599 		if (!(fw_err & PCIE_FW_ERR_F) ||
4600 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4601 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4602 				     TIMER0INT_F);
4603 
4604 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4605 				    cim_intr_info) +
4606 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4607 				    cim_upintr_info);
4608 	if (fat)
4609 		t4_fatal_err(adapter);
4610 }
4611 
4612 /*
4613  * ULP RX interrupt handler.
4614  */
4615 static void ulprx_intr_handler(struct adapter *adapter)
4616 {
4617 	static const struct intr_info ulprx_intr_info[] = {
4618 		{ 0x1800000, "ULPRX context error", -1, 1 },
4619 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4620 		{ 0 }
4621 	};
4622 
4623 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4624 		t4_fatal_err(adapter);
4625 }
4626 
4627 /*
4628  * ULP TX interrupt handler.
4629  */
4630 static void ulptx_intr_handler(struct adapter *adapter)
4631 {
4632 	static const struct intr_info ulptx_intr_info[] = {
4633 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4634 		  0 },
4635 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4636 		  0 },
4637 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4638 		  0 },
4639 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4640 		  0 },
4641 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4642 		{ 0 }
4643 	};
4644 
4645 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4646 		t4_fatal_err(adapter);
4647 }
4648 
4649 /*
4650  * PM TX interrupt handler.
4651  */
4652 static void pmtx_intr_handler(struct adapter *adapter)
4653 {
4654 	static const struct intr_info pmtx_intr_info[] = {
4655 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4656 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4657 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4658 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4659 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4660 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4661 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4662 		  -1, 1 },
4663 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4664 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4665 		{ 0 }
4666 	};
4667 
4668 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4669 		t4_fatal_err(adapter);
4670 }
4671 
4672 /*
4673  * PM RX interrupt handler.
4674  */
4675 static void pmrx_intr_handler(struct adapter *adapter)
4676 {
4677 	static const struct intr_info pmrx_intr_info[] = {
4678 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4679 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4680 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4681 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4682 		  -1, 1 },
4683 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4684 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4685 		{ 0 }
4686 	};
4687 
4688 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4689 		t4_fatal_err(adapter);
4690 }
4691 
4692 /*
4693  * CPL switch interrupt handler.
4694  */
4695 static void cplsw_intr_handler(struct adapter *adapter)
4696 {
4697 	static const struct intr_info cplsw_intr_info[] = {
4698 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4699 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4700 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4701 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4702 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4703 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4704 		{ 0 }
4705 	};
4706 
4707 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4708 		t4_fatal_err(adapter);
4709 }
4710 
4711 /*
4712  * LE interrupt handler.
4713  */
4714 static void le_intr_handler(struct adapter *adap)
4715 {
4716 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4717 	static const struct intr_info le_intr_info[] = {
4718 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4719 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4720 		{ PARITYERR_F, "LE parity error", -1, 1 },
4721 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4722 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4723 		{ 0 }
4724 	};
4725 
4726 	static struct intr_info t6_le_intr_info[] = {
4727 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4728 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4729 		{ CMDTIDERR_F, "LE cmd tid error", -1, 1 },
4730 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4731 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4732 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4733 		{ HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 },
4734 		{ 0 }
4735 	};
4736 
4737 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4738 				  (chip <= CHELSIO_T5) ?
4739 				  le_intr_info : t6_le_intr_info))
4740 		t4_fatal_err(adap);
4741 }
4742 
4743 /*
4744  * MPS interrupt handler.
4745  */
4746 static void mps_intr_handler(struct adapter *adapter)
4747 {
4748 	static const struct intr_info mps_rx_intr_info[] = {
4749 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4750 		{ 0 }
4751 	};
4752 	static const struct intr_info mps_tx_intr_info[] = {
4753 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4754 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4755 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4756 		  -1, 1 },
4757 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4758 		  -1, 1 },
4759 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4760 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4761 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4762 		{ 0 }
4763 	};
4764 	static const struct intr_info t6_mps_tx_intr_info[] = {
4765 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4766 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4767 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4768 		  -1, 1 },
4769 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4770 		  -1, 1 },
4771 		/* MPS Tx Bubble is normal for T6 */
4772 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4773 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4774 		{ 0 }
4775 	};
4776 	static const struct intr_info mps_trc_intr_info[] = {
4777 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4778 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4779 		  -1, 1 },
4780 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4781 		{ 0 }
4782 	};
4783 	static const struct intr_info mps_stat_sram_intr_info[] = {
4784 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4785 		{ 0 }
4786 	};
4787 	static const struct intr_info mps_stat_tx_intr_info[] = {
4788 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4789 		{ 0 }
4790 	};
4791 	static const struct intr_info mps_stat_rx_intr_info[] = {
4792 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4793 		{ 0 }
4794 	};
4795 	static const struct intr_info mps_cls_intr_info[] = {
4796 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4797 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4798 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4799 		{ 0 }
4800 	};
4801 
4802 	int fat;
4803 
4804 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4805 				    mps_rx_intr_info) +
4806 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4807 				    is_t6(adapter->params.chip)
4808 				    ? t6_mps_tx_intr_info
4809 				    : mps_tx_intr_info) +
4810 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4811 				    mps_trc_intr_info) +
4812 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4813 				    mps_stat_sram_intr_info) +
4814 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4815 				    mps_stat_tx_intr_info) +
4816 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4817 				    mps_stat_rx_intr_info) +
4818 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4819 				    mps_cls_intr_info);
4820 
4821 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4822 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4823 	if (fat)
4824 		t4_fatal_err(adapter);
4825 }
4826 
4827 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4828 		      ECC_UE_INT_CAUSE_F)
4829 
4830 /*
4831  * EDC/MC interrupt handler.
4832  */
4833 static void mem_intr_handler(struct adapter *adapter, int idx)
4834 {
4835 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4836 
4837 	unsigned int addr, cnt_addr, v;
4838 
4839 	if (idx <= MEM_EDC1) {
4840 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4841 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4842 	} else if (idx == MEM_MC) {
4843 		if (is_t4(adapter->params.chip)) {
4844 			addr = MC_INT_CAUSE_A;
4845 			cnt_addr = MC_ECC_STATUS_A;
4846 		} else {
4847 			addr = MC_P_INT_CAUSE_A;
4848 			cnt_addr = MC_P_ECC_STATUS_A;
4849 		}
4850 	} else {
4851 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4852 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4853 	}
4854 
4855 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4856 	if (v & PERR_INT_CAUSE_F)
4857 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4858 			  name[idx]);
4859 	if (v & ECC_CE_INT_CAUSE_F) {
4860 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4861 
4862 		t4_edc_err_read(adapter, idx);
4863 
4864 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4865 		if (printk_ratelimit())
4866 			dev_warn(adapter->pdev_dev,
4867 				 "%u %s correctable ECC data error%s\n",
4868 				 cnt, name[idx], cnt > 1 ? "s" : "");
4869 	}
4870 	if (v & ECC_UE_INT_CAUSE_F)
4871 		dev_alert(adapter->pdev_dev,
4872 			  "%s uncorrectable ECC data error\n", name[idx]);
4873 
4874 	t4_write_reg(adapter, addr, v);
4875 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4876 		t4_fatal_err(adapter);
4877 }
4878 
4879 /*
4880  * MA interrupt handler.
4881  */
4882 static void ma_intr_handler(struct adapter *adap)
4883 {
4884 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4885 
4886 	if (status & MEM_PERR_INT_CAUSE_F) {
4887 		dev_alert(adap->pdev_dev,
4888 			  "MA parity error, parity status %#x\n",
4889 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4890 		if (is_t5(adap->params.chip))
4891 			dev_alert(adap->pdev_dev,
4892 				  "MA parity error, parity status %#x\n",
4893 				  t4_read_reg(adap,
4894 					      MA_PARITY_ERROR_STATUS2_A));
4895 	}
4896 	if (status & MEM_WRAP_INT_CAUSE_F) {
4897 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4898 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4899 			  "client %u to address %#x\n",
4900 			  MEM_WRAP_CLIENT_NUM_G(v),
4901 			  MEM_WRAP_ADDRESS_G(v) << 4);
4902 	}
4903 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4904 	t4_fatal_err(adap);
4905 }
4906 
4907 /*
4908  * SMB interrupt handler.
4909  */
4910 static void smb_intr_handler(struct adapter *adap)
4911 {
4912 	static const struct intr_info smb_intr_info[] = {
4913 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4914 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4915 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4916 		{ 0 }
4917 	};
4918 
4919 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4920 		t4_fatal_err(adap);
4921 }
4922 
4923 /*
4924  * NC-SI interrupt handler.
4925  */
4926 static void ncsi_intr_handler(struct adapter *adap)
4927 {
4928 	static const struct intr_info ncsi_intr_info[] = {
4929 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4930 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4931 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4932 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4933 		{ 0 }
4934 	};
4935 
4936 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4937 		t4_fatal_err(adap);
4938 }
4939 
4940 /*
4941  * XGMAC interrupt handler.
4942  */
4943 static void xgmac_intr_handler(struct adapter *adap, int port)
4944 {
4945 	u32 v, int_cause_reg;
4946 
4947 	if (is_t4(adap->params.chip))
4948 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4949 	else
4950 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4951 
4952 	v = t4_read_reg(adap, int_cause_reg);
4953 
4954 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4955 	if (!v)
4956 		return;
4957 
4958 	if (v & TXFIFO_PRTY_ERR_F)
4959 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4960 			  port);
4961 	if (v & RXFIFO_PRTY_ERR_F)
4962 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4963 			  port);
4964 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4965 	t4_fatal_err(adap);
4966 }
4967 
4968 /*
4969  * PL interrupt handler.
4970  */
4971 static void pl_intr_handler(struct adapter *adap)
4972 {
4973 	static const struct intr_info pl_intr_info[] = {
4974 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4975 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4976 		{ 0 }
4977 	};
4978 
4979 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4980 		t4_fatal_err(adap);
4981 }
4982 
4983 #define PF_INTR_MASK (PFSW_F)
4984 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4985 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4986 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4987 
4988 /**
4989  *	t4_slow_intr_handler - control path interrupt handler
4990  *	@adapter: the adapter
4991  *
4992  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4993  *	The designation 'slow' is because it involves register reads, while
4994  *	data interrupts typically don't involve any MMIOs.
4995  */
4996 int t4_slow_intr_handler(struct adapter *adapter)
4997 {
4998 	/* There are rare cases where a PL_INT_CAUSE bit may end up getting
4999 	 * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5000 	 * easiest just to mask that case here.
5001 	 */
5002 	u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5003 	u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5004 	u32 cause = raw_cause & enable;
5005 
5006 	if (!(cause & GLBL_INTR_MASK))
5007 		return 0;
5008 	if (cause & CIM_F)
5009 		cim_intr_handler(adapter);
5010 	if (cause & MPS_F)
5011 		mps_intr_handler(adapter);
5012 	if (cause & NCSI_F)
5013 		ncsi_intr_handler(adapter);
5014 	if (cause & PL_F)
5015 		pl_intr_handler(adapter);
5016 	if (cause & SMB_F)
5017 		smb_intr_handler(adapter);
5018 	if (cause & XGMAC0_F)
5019 		xgmac_intr_handler(adapter, 0);
5020 	if (cause & XGMAC1_F)
5021 		xgmac_intr_handler(adapter, 1);
5022 	if (cause & XGMAC_KR0_F)
5023 		xgmac_intr_handler(adapter, 2);
5024 	if (cause & XGMAC_KR1_F)
5025 		xgmac_intr_handler(adapter, 3);
5026 	if (cause & PCIE_F)
5027 		pcie_intr_handler(adapter);
5028 	if (cause & MC_F)
5029 		mem_intr_handler(adapter, MEM_MC);
5030 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
5031 		mem_intr_handler(adapter, MEM_MC1);
5032 	if (cause & EDC0_F)
5033 		mem_intr_handler(adapter, MEM_EDC0);
5034 	if (cause & EDC1_F)
5035 		mem_intr_handler(adapter, MEM_EDC1);
5036 	if (cause & LE_F)
5037 		le_intr_handler(adapter);
5038 	if (cause & TP_F)
5039 		tp_intr_handler(adapter);
5040 	if (cause & MA_F)
5041 		ma_intr_handler(adapter);
5042 	if (cause & PM_TX_F)
5043 		pmtx_intr_handler(adapter);
5044 	if (cause & PM_RX_F)
5045 		pmrx_intr_handler(adapter);
5046 	if (cause & ULP_RX_F)
5047 		ulprx_intr_handler(adapter);
5048 	if (cause & CPL_SWITCH_F)
5049 		cplsw_intr_handler(adapter);
5050 	if (cause & SGE_F)
5051 		sge_intr_handler(adapter);
5052 	if (cause & ULP_TX_F)
5053 		ulptx_intr_handler(adapter);
5054 
5055 	/* Clear the interrupts just processed for which we are the master. */
5056 	t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5057 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5058 	return 1;
5059 }
5060 
5061 /**
5062  *	t4_intr_enable - enable interrupts
5063  *	@adapter: the adapter whose interrupts should be enabled
5064  *
5065  *	Enable PF-specific interrupts for the calling function and the top-level
5066  *	interrupt concentrator for global interrupts.  Interrupts are already
5067  *	enabled at each module,	here we just enable the roots of the interrupt
5068  *	hierarchies.
5069  *
5070  *	Note: this function should be called only when the driver manages
5071  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5072  *	function at a time should be doing this.
5073  */
5074 void t4_intr_enable(struct adapter *adapter)
5075 {
5076 	u32 val = 0;
5077 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5078 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5079 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5080 
5081 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5082 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5083 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5084 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5085 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5086 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5087 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5088 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5089 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5090 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5091 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5092 }
5093 
5094 /**
5095  *	t4_intr_disable - disable interrupts
5096  *	@adapter: the adapter whose interrupts should be disabled
5097  *
5098  *	Disable interrupts.  We only disable the top-level interrupt
5099  *	concentrators.  The caller must be a PCI function managing global
5100  *	interrupts.
5101  */
5102 void t4_intr_disable(struct adapter *adapter)
5103 {
5104 	u32 whoami, pf;
5105 
5106 	if (pci_channel_offline(adapter->pdev))
5107 		return;
5108 
5109 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5110 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5111 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5112 
5113 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5114 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5115 }
5116 
5117 unsigned int t4_chip_rss_size(struct adapter *adap)
5118 {
5119 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5120 		return RSS_NENTRIES;
5121 	else
5122 		return T6_RSS_NENTRIES;
5123 }
5124 
5125 /**
5126  *	t4_config_rss_range - configure a portion of the RSS mapping table
5127  *	@adapter: the adapter
5128  *	@mbox: mbox to use for the FW command
5129  *	@viid: virtual interface whose RSS subtable is to be written
5130  *	@start: start entry in the table to write
5131  *	@n: how many table entries to write
5132  *	@rspq: values for the response queue lookup table
5133  *	@nrspq: number of values in @rspq
5134  *
5135  *	Programs the selected part of the VI's RSS mapping table with the
5136  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5137  *	until the full table range is populated.
5138  *
5139  *	The caller must ensure the values in @rspq are in the range allowed for
5140  *	@viid.
5141  */
5142 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5143 			int start, int n, const u16 *rspq, unsigned int nrspq)
5144 {
5145 	int ret;
5146 	const u16 *rsp = rspq;
5147 	const u16 *rsp_end = rspq + nrspq;
5148 	struct fw_rss_ind_tbl_cmd cmd;
5149 
5150 	memset(&cmd, 0, sizeof(cmd));
5151 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5152 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5153 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5154 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5155 
5156 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5157 	while (n > 0) {
5158 		int nq = min(n, 32);
5159 		__be32 *qp = &cmd.iq0_to_iq2;
5160 
5161 		cmd.niqid = cpu_to_be16(nq);
5162 		cmd.startidx = cpu_to_be16(start);
5163 
5164 		start += nq;
5165 		n -= nq;
5166 
5167 		while (nq > 0) {
5168 			unsigned int v;
5169 
5170 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5171 			if (++rsp >= rsp_end)
5172 				rsp = rspq;
5173 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5174 			if (++rsp >= rsp_end)
5175 				rsp = rspq;
5176 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5177 			if (++rsp >= rsp_end)
5178 				rsp = rspq;
5179 
5180 			*qp++ = cpu_to_be32(v);
5181 			nq -= 3;
5182 		}
5183 
5184 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5185 		if (ret)
5186 			return ret;
5187 	}
5188 	return 0;
5189 }
5190 
5191 /**
5192  *	t4_config_glbl_rss - configure the global RSS mode
5193  *	@adapter: the adapter
5194  *	@mbox: mbox to use for the FW command
5195  *	@mode: global RSS mode
5196  *	@flags: mode-specific flags
5197  *
5198  *	Sets the global RSS mode.
5199  */
5200 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5201 		       unsigned int flags)
5202 {
5203 	struct fw_rss_glb_config_cmd c;
5204 
5205 	memset(&c, 0, sizeof(c));
5206 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5207 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5208 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5209 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5210 		c.u.manual.mode_pkd =
5211 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5212 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5213 		c.u.basicvirtual.mode_pkd =
5214 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5215 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5216 	} else
5217 		return -EINVAL;
5218 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5219 }
5220 
5221 /**
5222  *	t4_config_vi_rss - configure per VI RSS settings
5223  *	@adapter: the adapter
5224  *	@mbox: mbox to use for the FW command
5225  *	@viid: the VI id
5226  *	@flags: RSS flags
5227  *	@defq: id of the default RSS queue for the VI.
5228  *
5229  *	Configures VI-specific RSS properties.
5230  */
5231 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5232 		     unsigned int flags, unsigned int defq)
5233 {
5234 	struct fw_rss_vi_config_cmd c;
5235 
5236 	memset(&c, 0, sizeof(c));
5237 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5238 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5239 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5240 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5241 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5242 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5243 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5244 }
5245 
5246 /* Read an RSS table row */
5247 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5248 {
5249 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5250 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5251 				   5, 0, val);
5252 }
5253 
5254 /**
5255  *	t4_read_rss - read the contents of the RSS mapping table
5256  *	@adapter: the adapter
5257  *	@map: holds the contents of the RSS mapping table
5258  *
5259  *	Reads the contents of the RSS hash->queue mapping table.
5260  */
5261 int t4_read_rss(struct adapter *adapter, u16 *map)
5262 {
5263 	int i, ret, nentries;
5264 	u32 val;
5265 
5266 	nentries = t4_chip_rss_size(adapter);
5267 	for (i = 0; i < nentries / 2; ++i) {
5268 		ret = rd_rss_row(adapter, i, &val);
5269 		if (ret)
5270 			return ret;
5271 		*map++ = LKPTBLQUEUE0_G(val);
5272 		*map++ = LKPTBLQUEUE1_G(val);
5273 	}
5274 	return 0;
5275 }
5276 
5277 static unsigned int t4_use_ldst(struct adapter *adap)
5278 {
5279 	return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5280 }
5281 
5282 /**
5283  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5284  * @adap: the adapter
5285  * @cmd: TP fw ldst address space type
5286  * @vals: where the indirect register values are stored/written
5287  * @nregs: how many indirect registers to read/write
5288  * @start_index: index of first indirect register to read/write
5289  * @rw: Read (1) or Write (0)
5290  * @sleep_ok: if true we may sleep while awaiting command completion
5291  *
5292  * Access TP indirect registers through LDST
5293  */
5294 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5295 			    unsigned int nregs, unsigned int start_index,
5296 			    unsigned int rw, bool sleep_ok)
5297 {
5298 	int ret = 0;
5299 	unsigned int i;
5300 	struct fw_ldst_cmd c;
5301 
5302 	for (i = 0; i < nregs; i++) {
5303 		memset(&c, 0, sizeof(c));
5304 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5305 						FW_CMD_REQUEST_F |
5306 						(rw ? FW_CMD_READ_F :
5307 						      FW_CMD_WRITE_F) |
5308 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5309 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5310 
5311 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5312 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5313 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5314 				      sleep_ok);
5315 		if (ret)
5316 			return ret;
5317 
5318 		if (rw)
5319 			vals[i] = be32_to_cpu(c.u.addrval.val);
5320 	}
5321 	return 0;
5322 }
5323 
5324 /**
5325  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5326  * @adap: the adapter
5327  * @reg_addr: Address Register
5328  * @reg_data: Data register
5329  * @buff: where the indirect register values are stored/written
5330  * @nregs: how many indirect registers to read/write
5331  * @start_index: index of first indirect register to read/write
5332  * @rw: READ(1) or WRITE(0)
5333  * @sleep_ok: if true we may sleep while awaiting command completion
5334  *
5335  * Read/Write TP indirect registers through LDST if possible.
5336  * Else, use backdoor access
5337  **/
5338 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5339 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5340 			      bool sleep_ok)
5341 {
5342 	int rc = -EINVAL;
5343 	int cmd;
5344 
5345 	switch (reg_addr) {
5346 	case TP_PIO_ADDR_A:
5347 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5348 		break;
5349 	case TP_TM_PIO_ADDR_A:
5350 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5351 		break;
5352 	case TP_MIB_INDEX_A:
5353 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5354 		break;
5355 	default:
5356 		goto indirect_access;
5357 	}
5358 
5359 	if (t4_use_ldst(adap))
5360 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5361 				      sleep_ok);
5362 
5363 indirect_access:
5364 
5365 	if (rc) {
5366 		if (rw)
5367 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5368 					 start_index);
5369 		else
5370 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5371 					  start_index);
5372 	}
5373 }
5374 
5375 /**
5376  * t4_tp_pio_read - Read TP PIO registers
5377  * @adap: the adapter
5378  * @buff: where the indirect register values are written
5379  * @nregs: how many indirect registers to read
5380  * @start_index: index of first indirect register to read
5381  * @sleep_ok: if true we may sleep while awaiting command completion
5382  *
5383  * Read TP PIO Registers
5384  **/
5385 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5386 		    u32 start_index, bool sleep_ok)
5387 {
5388 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5389 			  start_index, 1, sleep_ok);
5390 }
5391 
5392 /**
5393  * t4_tp_pio_write - Write TP PIO registers
5394  * @adap: the adapter
5395  * @buff: where the indirect register values are stored
5396  * @nregs: how many indirect registers to write
5397  * @start_index: index of first indirect register to write
5398  * @sleep_ok: if true we may sleep while awaiting command completion
5399  *
5400  * Write TP PIO Registers
5401  **/
5402 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5403 			    u32 start_index, bool sleep_ok)
5404 {
5405 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5406 			  start_index, 0, sleep_ok);
5407 }
5408 
5409 /**
5410  * t4_tp_tm_pio_read - Read TP TM PIO registers
5411  * @adap: the adapter
5412  * @buff: where the indirect register values are written
5413  * @nregs: how many indirect registers to read
5414  * @start_index: index of first indirect register to read
5415  * @sleep_ok: if true we may sleep while awaiting command completion
5416  *
5417  * Read TP TM PIO Registers
5418  **/
5419 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5420 		       u32 start_index, bool sleep_ok)
5421 {
5422 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5423 			  nregs, start_index, 1, sleep_ok);
5424 }
5425 
5426 /**
5427  * t4_tp_mib_read - Read TP MIB registers
5428  * @adap: the adapter
5429  * @buff: where the indirect register values are written
5430  * @nregs: how many indirect registers to read
5431  * @start_index: index of first indirect register to read
5432  * @sleep_ok: if true we may sleep while awaiting command completion
5433  *
5434  * Read TP MIB Registers
5435  **/
5436 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5437 		    bool sleep_ok)
5438 {
5439 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5440 			  start_index, 1, sleep_ok);
5441 }
5442 
5443 /**
5444  *	t4_read_rss_key - read the global RSS key
5445  *	@adap: the adapter
5446  *	@key: 10-entry array holding the 320-bit RSS key
5447  *      @sleep_ok: if true we may sleep while awaiting command completion
5448  *
5449  *	Reads the global 320-bit RSS key.
5450  */
5451 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5452 {
5453 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5454 }
5455 
5456 /**
5457  *	t4_write_rss_key - program one of the RSS keys
5458  *	@adap: the adapter
5459  *	@key: 10-entry array holding the 320-bit RSS key
5460  *	@idx: which RSS key to write
5461  *      @sleep_ok: if true we may sleep while awaiting command completion
5462  *
5463  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5464  *	0..15 the corresponding entry in the RSS key table is written,
5465  *	otherwise the global RSS key is written.
5466  */
5467 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5468 		      bool sleep_ok)
5469 {
5470 	u8 rss_key_addr_cnt = 16;
5471 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5472 
5473 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5474 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5475 	 * as index[5:4](upper 2) into key table
5476 	 */
5477 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5478 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5479 		rss_key_addr_cnt = 32;
5480 
5481 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5482 
5483 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5484 		if (rss_key_addr_cnt > 16)
5485 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5486 				     KEYWRADDRX_V(idx >> 4) |
5487 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5488 		else
5489 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5490 				     KEYWRADDR_V(idx) | KEYWREN_F);
5491 	}
5492 }
5493 
5494 /**
5495  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5496  *	@adapter: the adapter
5497  *	@index: the entry in the PF RSS table to read
5498  *	@valp: where to store the returned value
5499  *      @sleep_ok: if true we may sleep while awaiting command completion
5500  *
5501  *	Reads the PF RSS Configuration Table at the specified index and returns
5502  *	the value found there.
5503  */
5504 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5505 			   u32 *valp, bool sleep_ok)
5506 {
5507 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5508 }
5509 
5510 /**
5511  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5512  *	@adapter: the adapter
5513  *	@index: the entry in the VF RSS table to read
5514  *	@vfl: where to store the returned VFL
5515  *	@vfh: where to store the returned VFH
5516  *      @sleep_ok: if true we may sleep while awaiting command completion
5517  *
5518  *	Reads the VF RSS Configuration Table at the specified index and returns
5519  *	the (VFL, VFH) values found there.
5520  */
5521 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5522 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5523 {
5524 	u32 vrt, mask, data;
5525 
5526 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5527 		mask = VFWRADDR_V(VFWRADDR_M);
5528 		data = VFWRADDR_V(index);
5529 	} else {
5530 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5531 		 data = T6_VFWRADDR_V(index);
5532 	}
5533 
5534 	/* Request that the index'th VF Table values be read into VFL/VFH.
5535 	 */
5536 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5537 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5538 	vrt |= data | VFRDEN_F;
5539 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5540 
5541 	/* Grab the VFL/VFH values ...
5542 	 */
5543 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5544 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5545 }
5546 
5547 /**
5548  *	t4_read_rss_pf_map - read PF RSS Map
5549  *	@adapter: the adapter
5550  *      @sleep_ok: if true we may sleep while awaiting command completion
5551  *
5552  *	Reads the PF RSS Map register and returns its value.
5553  */
5554 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5555 {
5556 	u32 pfmap;
5557 
5558 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5559 	return pfmap;
5560 }
5561 
5562 /**
5563  *	t4_read_rss_pf_mask - read PF RSS Mask
5564  *	@adapter: the adapter
5565  *      @sleep_ok: if true we may sleep while awaiting command completion
5566  *
5567  *	Reads the PF RSS Mask register and returns its value.
5568  */
5569 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5570 {
5571 	u32 pfmask;
5572 
5573 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5574 	return pfmask;
5575 }
5576 
5577 /**
5578  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5579  *	@adap: the adapter
5580  *	@v4: holds the TCP/IP counter values
5581  *	@v6: holds the TCP/IPv6 counter values
5582  *      @sleep_ok: if true we may sleep while awaiting command completion
5583  *
5584  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5585  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5586  */
5587 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5588 			 struct tp_tcp_stats *v6, bool sleep_ok)
5589 {
5590 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5591 
5592 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5593 #define STAT(x)     val[STAT_IDX(x)]
5594 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5595 
5596 	if (v4) {
5597 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5598 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5599 		v4->tcp_out_rsts = STAT(OUT_RST);
5600 		v4->tcp_in_segs  = STAT64(IN_SEG);
5601 		v4->tcp_out_segs = STAT64(OUT_SEG);
5602 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5603 	}
5604 	if (v6) {
5605 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5606 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5607 		v6->tcp_out_rsts = STAT(OUT_RST);
5608 		v6->tcp_in_segs  = STAT64(IN_SEG);
5609 		v6->tcp_out_segs = STAT64(OUT_SEG);
5610 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5611 	}
5612 #undef STAT64
5613 #undef STAT
5614 #undef STAT_IDX
5615 }
5616 
5617 /**
5618  *	t4_tp_get_err_stats - read TP's error MIB counters
5619  *	@adap: the adapter
5620  *	@st: holds the counter values
5621  *      @sleep_ok: if true we may sleep while awaiting command completion
5622  *
5623  *	Returns the values of TP's error counters.
5624  */
5625 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5626 			 bool sleep_ok)
5627 {
5628 	int nchan = adap->params.arch.nchan;
5629 
5630 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5631 		       sleep_ok);
5632 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5633 		       sleep_ok);
5634 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5635 		       sleep_ok);
5636 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5637 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5638 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5639 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5640 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5641 		       sleep_ok);
5642 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5643 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5644 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5645 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5646 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5647 		       sleep_ok);
5648 }
5649 
5650 /**
5651  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5652  *	@adap: the adapter
5653  *	@st: holds the counter values
5654  *      @sleep_ok: if true we may sleep while awaiting command completion
5655  *
5656  *	Returns the values of TP's CPL counters.
5657  */
5658 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5659 			 bool sleep_ok)
5660 {
5661 	int nchan = adap->params.arch.nchan;
5662 
5663 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5664 
5665 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5666 }
5667 
5668 /**
5669  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5670  *	@adap: the adapter
5671  *	@st: holds the counter values
5672  *      @sleep_ok: if true we may sleep while awaiting command completion
5673  *
5674  *	Returns the values of TP's RDMA counters.
5675  */
5676 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5677 			  bool sleep_ok)
5678 {
5679 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5680 		       sleep_ok);
5681 }
5682 
5683 /**
5684  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5685  *	@adap: the adapter
5686  *	@idx: the port index
5687  *	@st: holds the counter values
5688  *      @sleep_ok: if true we may sleep while awaiting command completion
5689  *
5690  *	Returns the values of TP's FCoE counters for the selected port.
5691  */
5692 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5693 		       struct tp_fcoe_stats *st, bool sleep_ok)
5694 {
5695 	u32 val[2];
5696 
5697 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5698 		       sleep_ok);
5699 
5700 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5701 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5702 
5703 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5704 		       sleep_ok);
5705 
5706 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5707 }
5708 
5709 /**
5710  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5711  *	@adap: the adapter
5712  *	@st: holds the counter values
5713  *      @sleep_ok: if true we may sleep while awaiting command completion
5714  *
5715  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5716  */
5717 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5718 		      bool sleep_ok)
5719 {
5720 	u32 val[4];
5721 
5722 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5723 	st->frames = val[0];
5724 	st->drops = val[1];
5725 	st->octets = ((u64)val[2] << 32) | val[3];
5726 }
5727 
5728 /**
5729  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5730  *	@adap: the adapter
5731  *	@mtus: where to store the MTU values
5732  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5733  *
5734  *	Reads the HW path MTU table.
5735  */
5736 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5737 {
5738 	u32 v;
5739 	int i;
5740 
5741 	for (i = 0; i < NMTUS; ++i) {
5742 		t4_write_reg(adap, TP_MTU_TABLE_A,
5743 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5744 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5745 		mtus[i] = MTUVALUE_G(v);
5746 		if (mtu_log)
5747 			mtu_log[i] = MTUWIDTH_G(v);
5748 	}
5749 }
5750 
5751 /**
5752  *	t4_read_cong_tbl - reads the congestion control table
5753  *	@adap: the adapter
5754  *	@incr: where to store the alpha values
5755  *
5756  *	Reads the additive increments programmed into the HW congestion
5757  *	control table.
5758  */
5759 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5760 {
5761 	unsigned int mtu, w;
5762 
5763 	for (mtu = 0; mtu < NMTUS; ++mtu)
5764 		for (w = 0; w < NCCTRL_WIN; ++w) {
5765 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5766 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5767 			incr[mtu][w] = (u16)t4_read_reg(adap,
5768 						TP_CCTRL_TABLE_A) & 0x1fff;
5769 		}
5770 }
5771 
5772 /**
5773  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5774  *	@adap: the adapter
5775  *	@addr: the indirect TP register address
5776  *	@mask: specifies the field within the register to modify
5777  *	@val: new value for the field
5778  *
5779  *	Sets a field of an indirect TP register to the given value.
5780  */
5781 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5782 			    unsigned int mask, unsigned int val)
5783 {
5784 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5785 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5786 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5787 }
5788 
5789 /**
5790  *	init_cong_ctrl - initialize congestion control parameters
5791  *	@a: the alpha values for congestion control
5792  *	@b: the beta values for congestion control
5793  *
5794  *	Initialize the congestion control parameters.
5795  */
5796 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5797 {
5798 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5799 	a[9] = 2;
5800 	a[10] = 3;
5801 	a[11] = 4;
5802 	a[12] = 5;
5803 	a[13] = 6;
5804 	a[14] = 7;
5805 	a[15] = 8;
5806 	a[16] = 9;
5807 	a[17] = 10;
5808 	a[18] = 14;
5809 	a[19] = 17;
5810 	a[20] = 21;
5811 	a[21] = 25;
5812 	a[22] = 30;
5813 	a[23] = 35;
5814 	a[24] = 45;
5815 	a[25] = 60;
5816 	a[26] = 80;
5817 	a[27] = 100;
5818 	a[28] = 200;
5819 	a[29] = 300;
5820 	a[30] = 400;
5821 	a[31] = 500;
5822 
5823 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5824 	b[9] = b[10] = 1;
5825 	b[11] = b[12] = 2;
5826 	b[13] = b[14] = b[15] = b[16] = 3;
5827 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5828 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5829 	b[28] = b[29] = 6;
5830 	b[30] = b[31] = 7;
5831 }
5832 
5833 /* The minimum additive increment value for the congestion control table */
5834 #define CC_MIN_INCR 2U
5835 
5836 /**
5837  *	t4_load_mtus - write the MTU and congestion control HW tables
5838  *	@adap: the adapter
5839  *	@mtus: the values for the MTU table
5840  *	@alpha: the values for the congestion control alpha parameter
5841  *	@beta: the values for the congestion control beta parameter
5842  *
5843  *	Write the HW MTU table with the supplied MTUs and the high-speed
5844  *	congestion control table with the supplied alpha, beta, and MTUs.
5845  *	We write the two tables together because the additive increments
5846  *	depend on the MTUs.
5847  */
5848 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5849 		  const unsigned short *alpha, const unsigned short *beta)
5850 {
5851 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5852 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5853 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5854 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5855 	};
5856 
5857 	unsigned int i, w;
5858 
5859 	for (i = 0; i < NMTUS; ++i) {
5860 		unsigned int mtu = mtus[i];
5861 		unsigned int log2 = fls(mtu);
5862 
5863 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5864 			log2--;
5865 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5866 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5867 
5868 		for (w = 0; w < NCCTRL_WIN; ++w) {
5869 			unsigned int inc;
5870 
5871 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5872 				  CC_MIN_INCR);
5873 
5874 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5875 				     (w << 16) | (beta[w] << 13) | inc);
5876 		}
5877 	}
5878 }
5879 
5880 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5881  * clocks.  The formula is
5882  *
5883  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5884  *
5885  * which is equivalent to
5886  *
5887  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5888  */
5889 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5890 {
5891 	u64 v = bytes256 * adap->params.vpd.cclk;
5892 
5893 	return v * 62 + v / 2;
5894 }
5895 
5896 /**
5897  *	t4_get_chan_txrate - get the current per channel Tx rates
5898  *	@adap: the adapter
5899  *	@nic_rate: rates for NIC traffic
5900  *	@ofld_rate: rates for offloaded traffic
5901  *
5902  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5903  *	for each channel.
5904  */
5905 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5906 {
5907 	u32 v;
5908 
5909 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5910 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5911 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5912 	if (adap->params.arch.nchan == NCHAN) {
5913 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5914 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5915 	}
5916 
5917 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5918 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5919 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5920 	if (adap->params.arch.nchan == NCHAN) {
5921 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5922 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5923 	}
5924 }
5925 
5926 /**
5927  *	t4_set_trace_filter - configure one of the tracing filters
5928  *	@adap: the adapter
5929  *	@tp: the desired trace filter parameters
5930  *	@idx: which filter to configure
5931  *	@enable: whether to enable or disable the filter
5932  *
5933  *	Configures one of the tracing filters available in HW.  If @enable is
5934  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5935  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5936  */
5937 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5938 			int idx, int enable)
5939 {
5940 	int i, ofst = idx * 4;
5941 	u32 data_reg, mask_reg, cfg;
5942 
5943 	if (!enable) {
5944 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5945 		return 0;
5946 	}
5947 
5948 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5949 	if (cfg & TRCMULTIFILTER_F) {
5950 		/* If multiple tracers are enabled, then maximum
5951 		 * capture size is 2.5KB (FIFO size of a single channel)
5952 		 * minus 2 flits for CPL_TRACE_PKT header.
5953 		 */
5954 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5955 			return -EINVAL;
5956 	} else {
5957 		/* If multiple tracers are disabled, to avoid deadlocks
5958 		 * maximum packet capture size of 9600 bytes is recommended.
5959 		 * Also in this mode, only trace0 can be enabled and running.
5960 		 */
5961 		if (tp->snap_len > 9600 || idx)
5962 			return -EINVAL;
5963 	}
5964 
5965 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5966 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5967 	    tp->min_len > TFMINPKTSIZE_M)
5968 		return -EINVAL;
5969 
5970 	/* stop the tracer we'll be changing */
5971 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5972 
5973 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5974 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5975 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5976 
5977 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5978 		t4_write_reg(adap, data_reg, tp->data[i]);
5979 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5980 	}
5981 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5982 		     TFCAPTUREMAX_V(tp->snap_len) |
5983 		     TFMINPKTSIZE_V(tp->min_len));
5984 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5985 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5986 		     (is_t4(adap->params.chip) ?
5987 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5988 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5989 		     T5_TFINVERTMATCH_V(tp->invert)));
5990 
5991 	return 0;
5992 }
5993 
5994 /**
5995  *	t4_get_trace_filter - query one of the tracing filters
5996  *	@adap: the adapter
5997  *	@tp: the current trace filter parameters
5998  *	@idx: which trace filter to query
5999  *	@enabled: non-zero if the filter is enabled
6000  *
6001  *	Returns the current settings of one of the HW tracing filters.
6002  */
6003 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6004 			 int *enabled)
6005 {
6006 	u32 ctla, ctlb;
6007 	int i, ofst = idx * 4;
6008 	u32 data_reg, mask_reg;
6009 
6010 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6011 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6012 
6013 	if (is_t4(adap->params.chip)) {
6014 		*enabled = !!(ctla & TFEN_F);
6015 		tp->port =  TFPORT_G(ctla);
6016 		tp->invert = !!(ctla & TFINVERTMATCH_F);
6017 	} else {
6018 		*enabled = !!(ctla & T5_TFEN_F);
6019 		tp->port = T5_TFPORT_G(ctla);
6020 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6021 	}
6022 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
6023 	tp->min_len = TFMINPKTSIZE_G(ctlb);
6024 	tp->skip_ofst = TFOFFSET_G(ctla);
6025 	tp->skip_len = TFLENGTH_G(ctla);
6026 
6027 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6028 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6029 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6030 
6031 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6032 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6033 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6034 	}
6035 }
6036 
6037 /**
6038  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6039  *	@adap: the adapter
6040  *	@cnt: where to store the count statistics
6041  *	@cycles: where to store the cycle statistics
6042  *
6043  *	Returns performance statistics from PMTX.
6044  */
6045 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6046 {
6047 	int i;
6048 	u32 data[2];
6049 
6050 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6051 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6052 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6053 		if (is_t4(adap->params.chip)) {
6054 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6055 		} else {
6056 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6057 					 PM_TX_DBG_DATA_A, data, 2,
6058 					 PM_TX_DBG_STAT_MSB_A);
6059 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6060 		}
6061 	}
6062 }
6063 
6064 /**
6065  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6066  *	@adap: the adapter
6067  *	@cnt: where to store the count statistics
6068  *	@cycles: where to store the cycle statistics
6069  *
6070  *	Returns performance statistics from PMRX.
6071  */
6072 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6073 {
6074 	int i;
6075 	u32 data[2];
6076 
6077 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6078 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6079 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6080 		if (is_t4(adap->params.chip)) {
6081 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6082 		} else {
6083 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6084 					 PM_RX_DBG_DATA_A, data, 2,
6085 					 PM_RX_DBG_STAT_MSB_A);
6086 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6087 		}
6088 	}
6089 }
6090 
6091 /**
6092  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6093  *	@adapter: the adapter
6094  *	@pidx: the port index
6095  *
6096  *	Computes and returns a bitmap indicating which MPS buffer groups are
6097  *	associated with the given Port.  Bit i is set if buffer group i is
6098  *	used by the Port.
6099  */
6100 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6101 					      int pidx)
6102 {
6103 	unsigned int chip_version, nports;
6104 
6105 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6106 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6107 
6108 	switch (chip_version) {
6109 	case CHELSIO_T4:
6110 	case CHELSIO_T5:
6111 		switch (nports) {
6112 		case 1: return 0xf;
6113 		case 2: return 3 << (2 * pidx);
6114 		case 4: return 1 << pidx;
6115 		}
6116 		break;
6117 
6118 	case CHELSIO_T6:
6119 		switch (nports) {
6120 		case 2: return 1 << (2 * pidx);
6121 		}
6122 		break;
6123 	}
6124 
6125 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6126 		chip_version, nports);
6127 
6128 	return 0;
6129 }
6130 
6131 /**
6132  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6133  *	@adapter: the adapter
6134  *	@pidx: the port index
6135  *
6136  *	Returns a bitmap indicating which MPS buffer groups are associated
6137  *	with the given Port.  Bit i is set if buffer group i is used by the
6138  *	Port.
6139  */
6140 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6141 {
6142 	u8 *mps_bg_map;
6143 	unsigned int nports;
6144 
6145 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6146 	if (pidx >= nports) {
6147 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6148 			pidx, nports);
6149 		return 0;
6150 	}
6151 
6152 	/* If we've already retrieved/computed this, just return the result.
6153 	 */
6154 	mps_bg_map = adapter->params.mps_bg_map;
6155 	if (mps_bg_map[pidx])
6156 		return mps_bg_map[pidx];
6157 
6158 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6159 	 * If we're talking to such Firmware, let it tell us.  If the new
6160 	 * API isn't supported, revert back to old hardcoded way.  The value
6161 	 * obtained from Firmware is encoded in below format:
6162 	 *
6163 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6164 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6165 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6166 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6167 	 */
6168 	if (adapter->flags & CXGB4_FW_OK) {
6169 		u32 param, val;
6170 		int ret;
6171 
6172 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6173 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6174 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6175 					 0, 1, &param, &val);
6176 		if (!ret) {
6177 			int p;
6178 
6179 			/* Store the BG Map for all of the Ports in order to
6180 			 * avoid more calls to the Firmware in the future.
6181 			 */
6182 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6183 				mps_bg_map[p] = val & 0xff;
6184 
6185 			return mps_bg_map[pidx];
6186 		}
6187 	}
6188 
6189 	/* Either we're not talking to the Firmware or we're dealing with
6190 	 * older Firmware which doesn't support the new API to get the MPS
6191 	 * Buffer Group Map.  Fall back to computing it ourselves.
6192 	 */
6193 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6194 	return mps_bg_map[pidx];
6195 }
6196 
6197 /**
6198  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6199  *      @adapter: the adapter
6200  *      @pidx: the port index
6201  */
6202 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6203 {
6204 	unsigned int nports;
6205 	u32 param, val = 0;
6206 	int ret;
6207 
6208 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6209 	if (pidx >= nports) {
6210 		CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6211 			pidx, nports);
6212 		return 0;
6213 	}
6214 
6215 	/* FW version >= 1.16.44.0 can determine E2C channel map using
6216 	 * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6217 	 */
6218 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6219 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6220 	ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6221 				 0, 1, &param, &val);
6222 	if (!ret)
6223 		return (val >> (8 * pidx)) & 0xff;
6224 
6225 	return 0;
6226 }
6227 
6228 /**
6229  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6230  *	@adap: the adapter
6231  *	@pidx: the port index
6232  *
6233  *	Returns a bitmap indicating which TP Ingress Channels are associated
6234  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6235  *	the Port.
6236  */
6237 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6238 {
6239 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6240 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6241 
6242 	if (pidx >= nports) {
6243 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6244 			 pidx, nports);
6245 		return 0;
6246 	}
6247 
6248 	switch (chip_version) {
6249 	case CHELSIO_T4:
6250 	case CHELSIO_T5:
6251 		/* Note that this happens to be the same values as the MPS
6252 		 * Buffer Group Map for these Chips.  But we replicate the code
6253 		 * here because they're really separate concepts.
6254 		 */
6255 		switch (nports) {
6256 		case 1: return 0xf;
6257 		case 2: return 3 << (2 * pidx);
6258 		case 4: return 1 << pidx;
6259 		}
6260 		break;
6261 
6262 	case CHELSIO_T6:
6263 		switch (nports) {
6264 		case 1:
6265 		case 2: return 1 << pidx;
6266 		}
6267 		break;
6268 	}
6269 
6270 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6271 		chip_version, nports);
6272 	return 0;
6273 }
6274 
6275 /**
6276  *      t4_get_port_type_description - return Port Type string description
6277  *      @port_type: firmware Port Type enumeration
6278  */
6279 const char *t4_get_port_type_description(enum fw_port_type port_type)
6280 {
6281 	static const char *const port_type_description[] = {
6282 		"Fiber_XFI",
6283 		"Fiber_XAUI",
6284 		"BT_SGMII",
6285 		"BT_XFI",
6286 		"BT_XAUI",
6287 		"KX4",
6288 		"CX4",
6289 		"KX",
6290 		"KR",
6291 		"SFP",
6292 		"BP_AP",
6293 		"BP4_AP",
6294 		"QSFP_10G",
6295 		"QSA",
6296 		"QSFP",
6297 		"BP40_BA",
6298 		"KR4_100G",
6299 		"CR4_QSFP",
6300 		"CR_QSFP",
6301 		"CR2_QSFP",
6302 		"SFP28",
6303 		"KR_SFP28",
6304 		"KR_XLAUI"
6305 	};
6306 
6307 	if (port_type < ARRAY_SIZE(port_type_description))
6308 		return port_type_description[port_type];
6309 	return "UNKNOWN";
6310 }
6311 
6312 /**
6313  *      t4_get_port_stats_offset - collect port stats relative to a previous
6314  *                                 snapshot
6315  *      @adap: The adapter
6316  *      @idx: The port
6317  *      @stats: Current stats to fill
6318  *      @offset: Previous stats snapshot
6319  */
6320 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6321 			      struct port_stats *stats,
6322 			      struct port_stats *offset)
6323 {
6324 	u64 *s, *o;
6325 	int i;
6326 
6327 	t4_get_port_stats(adap, idx, stats);
6328 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6329 			i < (sizeof(struct port_stats) / sizeof(u64));
6330 			i++, s++, o++)
6331 		*s -= *o;
6332 }
6333 
6334 /**
6335  *	t4_get_port_stats - collect port statistics
6336  *	@adap: the adapter
6337  *	@idx: the port index
6338  *	@p: the stats structure to fill
6339  *
6340  *	Collect statistics related to the given port from HW.
6341  */
6342 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6343 {
6344 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6345 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6346 
6347 #define GET_STAT(name) \
6348 	t4_read_reg64(adap, \
6349 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6350 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6351 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6352 
6353 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6354 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6355 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6356 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6357 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6358 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6359 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6360 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6361 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6362 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6363 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6364 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6365 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6366 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6367 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6368 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6369 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6370 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6371 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6372 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6373 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6374 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6375 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6376 
6377 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6378 		if (stat_ctl & COUNTPAUSESTATTX_F)
6379 			p->tx_frames_64 -= p->tx_pause;
6380 		if (stat_ctl & COUNTPAUSEMCTX_F)
6381 			p->tx_mcast_frames -= p->tx_pause;
6382 	}
6383 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6384 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6385 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6386 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6387 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6388 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6389 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6390 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6391 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6392 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6393 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6394 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6395 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6396 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6397 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6398 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6399 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6400 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6401 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6402 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6403 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6404 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6405 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6406 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6407 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6408 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6409 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6410 
6411 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6412 		if (stat_ctl & COUNTPAUSESTATRX_F)
6413 			p->rx_frames_64 -= p->rx_pause;
6414 		if (stat_ctl & COUNTPAUSEMCRX_F)
6415 			p->rx_mcast_frames -= p->rx_pause;
6416 	}
6417 
6418 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6419 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6420 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6421 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6422 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6423 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6424 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6425 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6426 
6427 #undef GET_STAT
6428 #undef GET_STAT_COM
6429 }
6430 
6431 /**
6432  *	t4_get_lb_stats - collect loopback port statistics
6433  *	@adap: the adapter
6434  *	@idx: the loopback port index
6435  *	@p: the stats structure to fill
6436  *
6437  *	Return HW statistics for the given loopback port.
6438  */
6439 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6440 {
6441 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6442 
6443 #define GET_STAT(name) \
6444 	t4_read_reg64(adap, \
6445 	(is_t4(adap->params.chip) ? \
6446 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6447 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6448 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6449 
6450 	p->octets           = GET_STAT(BYTES);
6451 	p->frames           = GET_STAT(FRAMES);
6452 	p->bcast_frames     = GET_STAT(BCAST);
6453 	p->mcast_frames     = GET_STAT(MCAST);
6454 	p->ucast_frames     = GET_STAT(UCAST);
6455 	p->error_frames     = GET_STAT(ERROR);
6456 
6457 	p->frames_64        = GET_STAT(64B);
6458 	p->frames_65_127    = GET_STAT(65B_127B);
6459 	p->frames_128_255   = GET_STAT(128B_255B);
6460 	p->frames_256_511   = GET_STAT(256B_511B);
6461 	p->frames_512_1023  = GET_STAT(512B_1023B);
6462 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6463 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6464 	p->drop             = GET_STAT(DROP_FRAMES);
6465 
6466 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6467 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6468 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6469 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6470 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6471 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6472 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6473 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6474 
6475 #undef GET_STAT
6476 #undef GET_STAT_COM
6477 }
6478 
6479 /*     t4_mk_filtdelwr - create a delete filter WR
6480  *     @ftid: the filter ID
6481  *     @wr: the filter work request to populate
6482  *     @qid: ingress queue to receive the delete notification
6483  *
6484  *     Creates a filter work request to delete the supplied filter.  If @qid is
6485  *     negative the delete notification is suppressed.
6486  */
6487 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6488 {
6489 	memset(wr, 0, sizeof(*wr));
6490 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6491 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6492 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6493 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6494 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6495 	if (qid >= 0)
6496 		wr->rx_chan_rx_rpl_iq =
6497 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6498 }
6499 
6500 #define INIT_CMD(var, cmd, rd_wr) do { \
6501 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6502 					FW_CMD_REQUEST_F | \
6503 					FW_CMD_##rd_wr##_F); \
6504 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6505 } while (0)
6506 
6507 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6508 			  u32 addr, u32 val)
6509 {
6510 	u32 ldst_addrspace;
6511 	struct fw_ldst_cmd c;
6512 
6513 	memset(&c, 0, sizeof(c));
6514 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6515 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6516 					FW_CMD_REQUEST_F |
6517 					FW_CMD_WRITE_F |
6518 					ldst_addrspace);
6519 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6520 	c.u.addrval.addr = cpu_to_be32(addr);
6521 	c.u.addrval.val = cpu_to_be32(val);
6522 
6523 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6524 }
6525 
6526 /**
6527  *	t4_mdio_rd - read a PHY register through MDIO
6528  *	@adap: the adapter
6529  *	@mbox: mailbox to use for the FW command
6530  *	@phy_addr: the PHY address
6531  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6532  *	@reg: the register to read
6533  *	@valp: where to store the value
6534  *
6535  *	Issues a FW command through the given mailbox to read a PHY register.
6536  */
6537 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6538 	       unsigned int mmd, unsigned int reg, u16 *valp)
6539 {
6540 	int ret;
6541 	u32 ldst_addrspace;
6542 	struct fw_ldst_cmd c;
6543 
6544 	memset(&c, 0, sizeof(c));
6545 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6546 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6547 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6548 					ldst_addrspace);
6549 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6550 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6551 					 FW_LDST_CMD_MMD_V(mmd));
6552 	c.u.mdio.raddr = cpu_to_be16(reg);
6553 
6554 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6555 	if (ret == 0)
6556 		*valp = be16_to_cpu(c.u.mdio.rval);
6557 	return ret;
6558 }
6559 
6560 /**
6561  *	t4_mdio_wr - write a PHY register through MDIO
6562  *	@adap: the adapter
6563  *	@mbox: mailbox to use for the FW command
6564  *	@phy_addr: the PHY address
6565  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6566  *	@reg: the register to write
6567  *	@val: value to write
6568  *
6569  *	Issues a FW command through the given mailbox to write a PHY register.
6570  */
6571 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6572 	       unsigned int mmd, unsigned int reg, u16 val)
6573 {
6574 	u32 ldst_addrspace;
6575 	struct fw_ldst_cmd c;
6576 
6577 	memset(&c, 0, sizeof(c));
6578 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6579 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6580 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6581 					ldst_addrspace);
6582 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6583 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6584 					 FW_LDST_CMD_MMD_V(mmd));
6585 	c.u.mdio.raddr = cpu_to_be16(reg);
6586 	c.u.mdio.rval = cpu_to_be16(val);
6587 
6588 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6589 }
6590 
6591 /**
6592  *	t4_sge_decode_idma_state - decode the idma state
6593  *	@adapter: the adapter
6594  *	@state: the state idma is stuck in
6595  */
6596 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6597 {
6598 	static const char * const t4_decode[] = {
6599 		"IDMA_IDLE",
6600 		"IDMA_PUSH_MORE_CPL_FIFO",
6601 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6602 		"Not used",
6603 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6604 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6605 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6606 		"IDMA_SEND_FIFO_TO_IMSG",
6607 		"IDMA_FL_REQ_DATA_FL_PREP",
6608 		"IDMA_FL_REQ_DATA_FL",
6609 		"IDMA_FL_DROP",
6610 		"IDMA_FL_H_REQ_HEADER_FL",
6611 		"IDMA_FL_H_SEND_PCIEHDR",
6612 		"IDMA_FL_H_PUSH_CPL_FIFO",
6613 		"IDMA_FL_H_SEND_CPL",
6614 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6615 		"IDMA_FL_H_SEND_IP_HDR",
6616 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6617 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6618 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6619 		"IDMA_FL_D_SEND_PCIEHDR",
6620 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6621 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6622 		"IDMA_FL_SEND_PCIEHDR",
6623 		"IDMA_FL_PUSH_CPL_FIFO",
6624 		"IDMA_FL_SEND_CPL",
6625 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6626 		"IDMA_FL_SEND_PAYLOAD",
6627 		"IDMA_FL_REQ_NEXT_DATA_FL",
6628 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6629 		"IDMA_FL_SEND_PADDING",
6630 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6631 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6632 		"IDMA_FL_REQ_DATAFL_DONE",
6633 		"IDMA_FL_REQ_HEADERFL_DONE",
6634 	};
6635 	static const char * const t5_decode[] = {
6636 		"IDMA_IDLE",
6637 		"IDMA_ALMOST_IDLE",
6638 		"IDMA_PUSH_MORE_CPL_FIFO",
6639 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6640 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6641 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6642 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6643 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6644 		"IDMA_SEND_FIFO_TO_IMSG",
6645 		"IDMA_FL_REQ_DATA_FL",
6646 		"IDMA_FL_DROP",
6647 		"IDMA_FL_DROP_SEND_INC",
6648 		"IDMA_FL_H_REQ_HEADER_FL",
6649 		"IDMA_FL_H_SEND_PCIEHDR",
6650 		"IDMA_FL_H_PUSH_CPL_FIFO",
6651 		"IDMA_FL_H_SEND_CPL",
6652 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6653 		"IDMA_FL_H_SEND_IP_HDR",
6654 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6655 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6656 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6657 		"IDMA_FL_D_SEND_PCIEHDR",
6658 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6659 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6660 		"IDMA_FL_SEND_PCIEHDR",
6661 		"IDMA_FL_PUSH_CPL_FIFO",
6662 		"IDMA_FL_SEND_CPL",
6663 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6664 		"IDMA_FL_SEND_PAYLOAD",
6665 		"IDMA_FL_REQ_NEXT_DATA_FL",
6666 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6667 		"IDMA_FL_SEND_PADDING",
6668 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6669 	};
6670 	static const char * const t6_decode[] = {
6671 		"IDMA_IDLE",
6672 		"IDMA_PUSH_MORE_CPL_FIFO",
6673 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6674 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6675 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6676 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6677 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6678 		"IDMA_FL_REQ_DATA_FL",
6679 		"IDMA_FL_DROP",
6680 		"IDMA_FL_DROP_SEND_INC",
6681 		"IDMA_FL_H_REQ_HEADER_FL",
6682 		"IDMA_FL_H_SEND_PCIEHDR",
6683 		"IDMA_FL_H_PUSH_CPL_FIFO",
6684 		"IDMA_FL_H_SEND_CPL",
6685 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6686 		"IDMA_FL_H_SEND_IP_HDR",
6687 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6688 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6689 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6690 		"IDMA_FL_D_SEND_PCIEHDR",
6691 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6692 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6693 		"IDMA_FL_SEND_PCIEHDR",
6694 		"IDMA_FL_PUSH_CPL_FIFO",
6695 		"IDMA_FL_SEND_CPL",
6696 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6697 		"IDMA_FL_SEND_PAYLOAD",
6698 		"IDMA_FL_REQ_NEXT_DATA_FL",
6699 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6700 		"IDMA_FL_SEND_PADDING",
6701 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6702 	};
6703 	static const u32 sge_regs[] = {
6704 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6705 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6706 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6707 	};
6708 	const char **sge_idma_decode;
6709 	int sge_idma_decode_nstates;
6710 	int i;
6711 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6712 
6713 	/* Select the right set of decode strings to dump depending on the
6714 	 * adapter chip type.
6715 	 */
6716 	switch (chip_version) {
6717 	case CHELSIO_T4:
6718 		sge_idma_decode = (const char **)t4_decode;
6719 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6720 		break;
6721 
6722 	case CHELSIO_T5:
6723 		sge_idma_decode = (const char **)t5_decode;
6724 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6725 		break;
6726 
6727 	case CHELSIO_T6:
6728 		sge_idma_decode = (const char **)t6_decode;
6729 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6730 		break;
6731 
6732 	default:
6733 		dev_err(adapter->pdev_dev,
6734 			"Unsupported chip version %d\n", chip_version);
6735 		return;
6736 	}
6737 
6738 	if (is_t4(adapter->params.chip)) {
6739 		sge_idma_decode = (const char **)t4_decode;
6740 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6741 	} else {
6742 		sge_idma_decode = (const char **)t5_decode;
6743 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6744 	}
6745 
6746 	if (state < sge_idma_decode_nstates)
6747 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6748 	else
6749 		CH_WARN(adapter, "idma state %d unknown\n", state);
6750 
6751 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6752 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6753 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6754 }
6755 
6756 /**
6757  *      t4_sge_ctxt_flush - flush the SGE context cache
6758  *      @adap: the adapter
6759  *      @mbox: mailbox to use for the FW command
6760  *      @ctxt_type: Egress or Ingress
6761  *
6762  *      Issues a FW command through the given mailbox to flush the
6763  *      SGE context cache.
6764  */
6765 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6766 {
6767 	int ret;
6768 	u32 ldst_addrspace;
6769 	struct fw_ldst_cmd c;
6770 
6771 	memset(&c, 0, sizeof(c));
6772 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6773 						 FW_LDST_ADDRSPC_SGE_EGRC :
6774 						 FW_LDST_ADDRSPC_SGE_INGC);
6775 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6776 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6777 					ldst_addrspace);
6778 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6779 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6780 
6781 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6782 	return ret;
6783 }
6784 
6785 /**
6786  *	t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6787  *	@adap: the adapter
6788  *	@ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6789  *	@dbqtimers: SGE Doorbell Queue Timer table
6790  *
6791  *	Reads the SGE Doorbell Queue Timer values into the provided table.
6792  *	Returns 0 on success (Firmware and Hardware support this feature),
6793  *	an error on failure.
6794  */
6795 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6796 			  u16 *dbqtimers)
6797 {
6798 	int ret, dbqtimerix;
6799 
6800 	ret = 0;
6801 	dbqtimerix = 0;
6802 	while (dbqtimerix < ndbqtimers) {
6803 		int nparams, param;
6804 		u32 params[7], vals[7];
6805 
6806 		nparams = ndbqtimers - dbqtimerix;
6807 		if (nparams > ARRAY_SIZE(params))
6808 			nparams = ARRAY_SIZE(params);
6809 
6810 		for (param = 0; param < nparams; param++)
6811 			params[param] =
6812 			  (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6813 			   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6814 			   FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6815 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6816 				      nparams, params, vals);
6817 		if (ret)
6818 			break;
6819 
6820 		for (param = 0; param < nparams; param++)
6821 			dbqtimers[dbqtimerix++] = vals[param];
6822 	}
6823 	return ret;
6824 }
6825 
6826 /**
6827  *      t4_fw_hello - establish communication with FW
6828  *      @adap: the adapter
6829  *      @mbox: mailbox to use for the FW command
6830  *      @evt_mbox: mailbox to receive async FW events
6831  *      @master: specifies the caller's willingness to be the device master
6832  *	@state: returns the current device state (if non-NULL)
6833  *
6834  *	Issues a command to establish communication with FW.  Returns either
6835  *	an error (negative integer) or the mailbox of the Master PF.
6836  */
6837 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6838 		enum dev_master master, enum dev_state *state)
6839 {
6840 	int ret;
6841 	struct fw_hello_cmd c;
6842 	u32 v;
6843 	unsigned int master_mbox;
6844 	int retries = FW_CMD_HELLO_RETRIES;
6845 
6846 retry:
6847 	memset(&c, 0, sizeof(c));
6848 	INIT_CMD(c, HELLO, WRITE);
6849 	c.err_to_clearinit = cpu_to_be32(
6850 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6851 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6852 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6853 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6854 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6855 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6856 		FW_HELLO_CMD_CLEARINIT_F);
6857 
6858 	/*
6859 	 * Issue the HELLO command to the firmware.  If it's not successful
6860 	 * but indicates that we got a "busy" or "timeout" condition, retry
6861 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6862 	 * retry limit, check to see if the firmware left us any error
6863 	 * information and report that if so.
6864 	 */
6865 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6866 	if (ret < 0) {
6867 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6868 			goto retry;
6869 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6870 			t4_report_fw_error(adap);
6871 		return ret;
6872 	}
6873 
6874 	v = be32_to_cpu(c.err_to_clearinit);
6875 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6876 	if (state) {
6877 		if (v & FW_HELLO_CMD_ERR_F)
6878 			*state = DEV_STATE_ERR;
6879 		else if (v & FW_HELLO_CMD_INIT_F)
6880 			*state = DEV_STATE_INIT;
6881 		else
6882 			*state = DEV_STATE_UNINIT;
6883 	}
6884 
6885 	/*
6886 	 * If we're not the Master PF then we need to wait around for the
6887 	 * Master PF Driver to finish setting up the adapter.
6888 	 *
6889 	 * Note that we also do this wait if we're a non-Master-capable PF and
6890 	 * there is no current Master PF; a Master PF may show up momentarily
6891 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6892 	 * OS loads lots of different drivers rapidly at the same time).  In
6893 	 * this case, the Master PF returned by the firmware will be
6894 	 * PCIE_FW_MASTER_M so the test below will work ...
6895 	 */
6896 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6897 	    master_mbox != mbox) {
6898 		int waiting = FW_CMD_HELLO_TIMEOUT;
6899 
6900 		/*
6901 		 * Wait for the firmware to either indicate an error or
6902 		 * initialized state.  If we see either of these we bail out
6903 		 * and report the issue to the caller.  If we exhaust the
6904 		 * "hello timeout" and we haven't exhausted our retries, try
6905 		 * again.  Otherwise bail with a timeout error.
6906 		 */
6907 		for (;;) {
6908 			u32 pcie_fw;
6909 
6910 			msleep(50);
6911 			waiting -= 50;
6912 
6913 			/*
6914 			 * If neither Error nor Initialized are indicated
6915 			 * by the firmware keep waiting till we exhaust our
6916 			 * timeout ... and then retry if we haven't exhausted
6917 			 * our retries ...
6918 			 */
6919 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6920 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6921 				if (waiting <= 0) {
6922 					if (retries-- > 0)
6923 						goto retry;
6924 
6925 					return -ETIMEDOUT;
6926 				}
6927 				continue;
6928 			}
6929 
6930 			/*
6931 			 * We either have an Error or Initialized condition
6932 			 * report errors preferentially.
6933 			 */
6934 			if (state) {
6935 				if (pcie_fw & PCIE_FW_ERR_F)
6936 					*state = DEV_STATE_ERR;
6937 				else if (pcie_fw & PCIE_FW_INIT_F)
6938 					*state = DEV_STATE_INIT;
6939 			}
6940 
6941 			/*
6942 			 * If we arrived before a Master PF was selected and
6943 			 * there's not a valid Master PF, grab its identity
6944 			 * for our caller.
6945 			 */
6946 			if (master_mbox == PCIE_FW_MASTER_M &&
6947 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6948 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6949 			break;
6950 		}
6951 	}
6952 
6953 	return master_mbox;
6954 }
6955 
6956 /**
6957  *	t4_fw_bye - end communication with FW
6958  *	@adap: the adapter
6959  *	@mbox: mailbox to use for the FW command
6960  *
6961  *	Issues a command to terminate communication with FW.
6962  */
6963 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6964 {
6965 	struct fw_bye_cmd c;
6966 
6967 	memset(&c, 0, sizeof(c));
6968 	INIT_CMD(c, BYE, WRITE);
6969 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6970 }
6971 
6972 /**
6973  *	t4_early_init - ask FW to initialize the device
6974  *	@adap: the adapter
6975  *	@mbox: mailbox to use for the FW command
6976  *
6977  *	Issues a command to FW to partially initialize the device.  This
6978  *	performs initialization that generally doesn't depend on user input.
6979  */
6980 int t4_early_init(struct adapter *adap, unsigned int mbox)
6981 {
6982 	struct fw_initialize_cmd c;
6983 
6984 	memset(&c, 0, sizeof(c));
6985 	INIT_CMD(c, INITIALIZE, WRITE);
6986 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6987 }
6988 
6989 /**
6990  *	t4_fw_reset - issue a reset to FW
6991  *	@adap: the adapter
6992  *	@mbox: mailbox to use for the FW command
6993  *	@reset: specifies the type of reset to perform
6994  *
6995  *	Issues a reset command of the specified type to FW.
6996  */
6997 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6998 {
6999 	struct fw_reset_cmd c;
7000 
7001 	memset(&c, 0, sizeof(c));
7002 	INIT_CMD(c, RESET, WRITE);
7003 	c.val = cpu_to_be32(reset);
7004 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7005 }
7006 
7007 /**
7008  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7009  *	@adap: the adapter
7010  *	@mbox: mailbox to use for the FW RESET command (if desired)
7011  *	@force: force uP into RESET even if FW RESET command fails
7012  *
7013  *	Issues a RESET command to firmware (if desired) with a HALT indication
7014  *	and then puts the microprocessor into RESET state.  The RESET command
7015  *	will only be issued if a legitimate mailbox is provided (mbox <=
7016  *	PCIE_FW_MASTER_M).
7017  *
7018  *	This is generally used in order for the host to safely manipulate the
7019  *	adapter without fear of conflicting with whatever the firmware might
7020  *	be doing.  The only way out of this state is to RESTART the firmware
7021  *	...
7022  */
7023 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7024 {
7025 	int ret = 0;
7026 
7027 	/*
7028 	 * If a legitimate mailbox is provided, issue a RESET command
7029 	 * with a HALT indication.
7030 	 */
7031 	if (mbox <= PCIE_FW_MASTER_M) {
7032 		struct fw_reset_cmd c;
7033 
7034 		memset(&c, 0, sizeof(c));
7035 		INIT_CMD(c, RESET, WRITE);
7036 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7037 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7038 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7039 	}
7040 
7041 	/*
7042 	 * Normally we won't complete the operation if the firmware RESET
7043 	 * command fails but if our caller insists we'll go ahead and put the
7044 	 * uP into RESET.  This can be useful if the firmware is hung or even
7045 	 * missing ...  We'll have to take the risk of putting the uP into
7046 	 * RESET without the cooperation of firmware in that case.
7047 	 *
7048 	 * We also force the firmware's HALT flag to be on in case we bypassed
7049 	 * the firmware RESET command above or we're dealing with old firmware
7050 	 * which doesn't have the HALT capability.  This will serve as a flag
7051 	 * for the incoming firmware to know that it's coming out of a HALT
7052 	 * rather than a RESET ... if it's new enough to understand that ...
7053 	 */
7054 	if (ret == 0 || force) {
7055 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7056 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7057 				 PCIE_FW_HALT_F);
7058 	}
7059 
7060 	/*
7061 	 * And we always return the result of the firmware RESET command
7062 	 * even when we force the uP into RESET ...
7063 	 */
7064 	return ret;
7065 }
7066 
7067 /**
7068  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7069  *	@adap: the adapter
7070  *	@mbox: mailbox to use for the FW command
7071  *	@reset: if we want to do a RESET to restart things
7072  *
7073  *	Restart firmware previously halted by t4_fw_halt().  On successful
7074  *	return the previous PF Master remains as the new PF Master and there
7075  *	is no need to issue a new HELLO command, etc.
7076  *
7077  *	We do this in two ways:
7078  *
7079  *	 1. If we're dealing with newer firmware we'll simply want to take
7080  *	    the chip's microprocessor out of RESET.  This will cause the
7081  *	    firmware to start up from its start vector.  And then we'll loop
7082  *	    until the firmware indicates it's started again (PCIE_FW.HALT
7083  *	    reset to 0) or we timeout.
7084  *
7085  *	 2. If we're dealing with older firmware then we'll need to RESET
7086  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
7087  *	    flag and automatically RESET itself on startup.
7088  */
7089 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7090 {
7091 	if (reset) {
7092 		/*
7093 		 * Since we're directing the RESET instead of the firmware
7094 		 * doing it automatically, we need to clear the PCIE_FW.HALT
7095 		 * bit.
7096 		 */
7097 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7098 
7099 		/*
7100 		 * If we've been given a valid mailbox, first try to get the
7101 		 * firmware to do the RESET.  If that works, great and we can
7102 		 * return success.  Otherwise, if we haven't been given a
7103 		 * valid mailbox or the RESET command failed, fall back to
7104 		 * hitting the chip with a hammer.
7105 		 */
7106 		if (mbox <= PCIE_FW_MASTER_M) {
7107 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7108 			msleep(100);
7109 			if (t4_fw_reset(adap, mbox,
7110 					PIORST_F | PIORSTMODE_F) == 0)
7111 				return 0;
7112 		}
7113 
7114 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7115 		msleep(2000);
7116 	} else {
7117 		int ms;
7118 
7119 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7120 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7121 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7122 				return 0;
7123 			msleep(100);
7124 			ms += 100;
7125 		}
7126 		return -ETIMEDOUT;
7127 	}
7128 	return 0;
7129 }
7130 
7131 /**
7132  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7133  *	@adap: the adapter
7134  *	@mbox: mailbox to use for the FW RESET command (if desired)
7135  *	@fw_data: the firmware image to write
7136  *	@size: image size
7137  *	@force: force upgrade even if firmware doesn't cooperate
7138  *
7139  *	Perform all of the steps necessary for upgrading an adapter's
7140  *	firmware image.  Normally this requires the cooperation of the
7141  *	existing firmware in order to halt all existing activities
7142  *	but if an invalid mailbox token is passed in we skip that step
7143  *	(though we'll still put the adapter microprocessor into RESET in
7144  *	that case).
7145  *
7146  *	On successful return the new firmware will have been loaded and
7147  *	the adapter will have been fully RESET losing all previous setup
7148  *	state.  On unsuccessful return the adapter may be completely hosed ...
7149  *	positive errno indicates that the adapter is ~probably~ intact, a
7150  *	negative errno indicates that things are looking bad ...
7151  */
7152 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7153 		  const u8 *fw_data, unsigned int size, int force)
7154 {
7155 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7156 	int reset, ret;
7157 
7158 	if (!t4_fw_matches_chip(adap, fw_hdr))
7159 		return -EINVAL;
7160 
7161 	/* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7162 	 * set wont be sent when we are flashing FW.
7163 	 */
7164 	adap->flags &= ~CXGB4_FW_OK;
7165 
7166 	ret = t4_fw_halt(adap, mbox, force);
7167 	if (ret < 0 && !force)
7168 		goto out;
7169 
7170 	ret = t4_load_fw(adap, fw_data, size);
7171 	if (ret < 0)
7172 		goto out;
7173 
7174 	/*
7175 	 * If there was a Firmware Configuration File stored in FLASH,
7176 	 * there's a good chance that it won't be compatible with the new
7177 	 * Firmware.  In order to prevent difficult to diagnose adapter
7178 	 * initialization issues, we clear out the Firmware Configuration File
7179 	 * portion of the FLASH .  The user will need to re-FLASH a new
7180 	 * Firmware Configuration File which is compatible with the new
7181 	 * Firmware if that's desired.
7182 	 */
7183 	(void)t4_load_cfg(adap, NULL, 0);
7184 
7185 	/*
7186 	 * Older versions of the firmware don't understand the new
7187 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7188 	 * restart.  So for newly loaded older firmware we'll have to do the
7189 	 * RESET for it so it starts up on a clean slate.  We can tell if
7190 	 * the newly loaded firmware will handle this right by checking
7191 	 * its header flags to see if it advertises the capability.
7192 	 */
7193 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7194 	ret = t4_fw_restart(adap, mbox, reset);
7195 
7196 	/* Grab potentially new Firmware Device Log parameters so we can see
7197 	 * how healthy the new Firmware is.  It's okay to contact the new
7198 	 * Firmware for these parameters even though, as far as it's
7199 	 * concerned, we've never said "HELLO" to it ...
7200 	 */
7201 	(void)t4_init_devlog_params(adap);
7202 out:
7203 	adap->flags |= CXGB4_FW_OK;
7204 	return ret;
7205 }
7206 
7207 /**
7208  *	t4_fl_pkt_align - return the fl packet alignment
7209  *	@adap: the adapter
7210  *
7211  *	T4 has a single field to specify the packing and padding boundary.
7212  *	T5 onwards has separate fields for this and hence the alignment for
7213  *	next packet offset is maximum of these two.
7214  *
7215  */
7216 int t4_fl_pkt_align(struct adapter *adap)
7217 {
7218 	u32 sge_control, sge_control2;
7219 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7220 
7221 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7222 
7223 	/* T4 uses a single control field to specify both the PCIe Padding and
7224 	 * Packing Boundary.  T5 introduced the ability to specify these
7225 	 * separately.  The actual Ingress Packet Data alignment boundary
7226 	 * within Packed Buffer Mode is the maximum of these two
7227 	 * specifications.  (Note that it makes no real practical sense to
7228 	 * have the Padding Boundary be larger than the Packing Boundary but you
7229 	 * could set the chip up that way and, in fact, legacy T4 code would
7230 	 * end doing this because it would initialize the Padding Boundary and
7231 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7232 	 * Padding Boundary values in T6 starts from 8B,
7233 	 * where as it is 32B for T4 and T5.
7234 	 */
7235 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7236 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7237 	else
7238 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7239 
7240 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7241 
7242 	fl_align = ingpadboundary;
7243 	if (!is_t4(adap->params.chip)) {
7244 		/* T5 has a weird interpretation of one of the PCIe Packing
7245 		 * Boundary values.  No idea why ...
7246 		 */
7247 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7248 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7249 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7250 			ingpackboundary = 16;
7251 		else
7252 			ingpackboundary = 1 << (ingpackboundary +
7253 						INGPACKBOUNDARY_SHIFT_X);
7254 
7255 		fl_align = max(ingpadboundary, ingpackboundary);
7256 	}
7257 	return fl_align;
7258 }
7259 
7260 /**
7261  *	t4_fixup_host_params - fix up host-dependent parameters
7262  *	@adap: the adapter
7263  *	@page_size: the host's Base Page Size
7264  *	@cache_line_size: the host's Cache Line Size
7265  *
7266  *	Various registers in T4 contain values which are dependent on the
7267  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7268  *	those registers with the appropriate values as passed in ...
7269  */
7270 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7271 			 unsigned int cache_line_size)
7272 {
7273 	unsigned int page_shift = fls(page_size) - 1;
7274 	unsigned int sge_hps = page_shift - 10;
7275 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7276 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7277 	unsigned int fl_align_log = fls(fl_align) - 1;
7278 
7279 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7280 		     HOSTPAGESIZEPF0_V(sge_hps) |
7281 		     HOSTPAGESIZEPF1_V(sge_hps) |
7282 		     HOSTPAGESIZEPF2_V(sge_hps) |
7283 		     HOSTPAGESIZEPF3_V(sge_hps) |
7284 		     HOSTPAGESIZEPF4_V(sge_hps) |
7285 		     HOSTPAGESIZEPF5_V(sge_hps) |
7286 		     HOSTPAGESIZEPF6_V(sge_hps) |
7287 		     HOSTPAGESIZEPF7_V(sge_hps));
7288 
7289 	if (is_t4(adap->params.chip)) {
7290 		t4_set_reg_field(adap, SGE_CONTROL_A,
7291 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7292 				 EGRSTATUSPAGESIZE_F,
7293 				 INGPADBOUNDARY_V(fl_align_log -
7294 						  INGPADBOUNDARY_SHIFT_X) |
7295 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7296 	} else {
7297 		unsigned int pack_align;
7298 		unsigned int ingpad, ingpack;
7299 
7300 		/* T5 introduced the separation of the Free List Padding and
7301 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7302 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7303 		 * Bandwidth, and use a Packing Boundary which is large enough
7304 		 * to avoid false sharing between CPUs, etc.
7305 		 *
7306 		 * For the PCI Link, the smaller the Padding Boundary the
7307 		 * better.  For the Memory Controller, a smaller Padding
7308 		 * Boundary is better until we cross under the Memory Line
7309 		 * Size (the minimum unit of transfer to/from Memory).  If we
7310 		 * have a Padding Boundary which is smaller than the Memory
7311 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7312 		 * Memory Controller which is never good.
7313 		 */
7314 
7315 		/* We want the Packing Boundary to be based on the Cache Line
7316 		 * Size in order to help avoid False Sharing performance
7317 		 * issues between CPUs, etc.  We also want the Packing
7318 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7319 		 * get best performance when the Packing Boundary is a
7320 		 * multiple of the Maximum Payload Size.
7321 		 */
7322 		pack_align = fl_align;
7323 		if (pci_is_pcie(adap->pdev)) {
7324 			unsigned int mps, mps_log;
7325 			u16 devctl;
7326 
7327 			/* The PCIe Device Control Maximum Payload Size field
7328 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7329 			 * 128 bytes.
7330 			 */
7331 			pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7332 						  &devctl);
7333 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7334 			mps = 1 << mps_log;
7335 			if (mps > pack_align)
7336 				pack_align = mps;
7337 		}
7338 
7339 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7340 		 * value for the Packing Boundary.  This corresponds to 16
7341 		 * bytes instead of the expected 32 bytes.  So if we want 32
7342 		 * bytes, the best we can really do is 64 bytes ...
7343 		 */
7344 		if (pack_align <= 16) {
7345 			ingpack = INGPACKBOUNDARY_16B_X;
7346 			fl_align = 16;
7347 		} else if (pack_align == 32) {
7348 			ingpack = INGPACKBOUNDARY_64B_X;
7349 			fl_align = 64;
7350 		} else {
7351 			unsigned int pack_align_log = fls(pack_align) - 1;
7352 
7353 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7354 			fl_align = pack_align;
7355 		}
7356 
7357 		/* Use the smallest Ingress Padding which isn't smaller than
7358 		 * the Memory Controller Read/Write Size.  We'll take that as
7359 		 * being 8 bytes since we don't know of any system with a
7360 		 * wider Memory Controller Bus Width.
7361 		 */
7362 		if (is_t5(adap->params.chip))
7363 			ingpad = INGPADBOUNDARY_32B_X;
7364 		else
7365 			ingpad = T6_INGPADBOUNDARY_8B_X;
7366 
7367 		t4_set_reg_field(adap, SGE_CONTROL_A,
7368 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7369 				 EGRSTATUSPAGESIZE_F,
7370 				 INGPADBOUNDARY_V(ingpad) |
7371 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7372 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7373 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7374 				 INGPACKBOUNDARY_V(ingpack));
7375 	}
7376 	/*
7377 	 * Adjust various SGE Free List Host Buffer Sizes.
7378 	 *
7379 	 * This is something of a crock since we're using fixed indices into
7380 	 * the array which are also known by the sge.c code and the T4
7381 	 * Firmware Configuration File.  We need to come up with a much better
7382 	 * approach to managing this array.  For now, the first four entries
7383 	 * are:
7384 	 *
7385 	 *   0: Host Page Size
7386 	 *   1: 64KB
7387 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7388 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7389 	 *
7390 	 * For the single-MTU buffers in unpacked mode we need to include
7391 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7392 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7393 	 * Padding boundary.  All of these are accommodated in the Factory
7394 	 * Default Firmware Configuration File but we need to adjust it for
7395 	 * this host's cache line size.
7396 	 */
7397 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7398 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7399 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7400 		     & ~(fl_align-1));
7401 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7402 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7403 		     & ~(fl_align-1));
7404 
7405 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7406 
7407 	return 0;
7408 }
7409 
7410 /**
7411  *	t4_fw_initialize - ask FW to initialize the device
7412  *	@adap: the adapter
7413  *	@mbox: mailbox to use for the FW command
7414  *
7415  *	Issues a command to FW to partially initialize the device.  This
7416  *	performs initialization that generally doesn't depend on user input.
7417  */
7418 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7419 {
7420 	struct fw_initialize_cmd c;
7421 
7422 	memset(&c, 0, sizeof(c));
7423 	INIT_CMD(c, INITIALIZE, WRITE);
7424 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7425 }
7426 
7427 /**
7428  *	t4_query_params_rw - query FW or device parameters
7429  *	@adap: the adapter
7430  *	@mbox: mailbox to use for the FW command
7431  *	@pf: the PF
7432  *	@vf: the VF
7433  *	@nparams: the number of parameters
7434  *	@params: the parameter names
7435  *	@val: the parameter values
7436  *	@rw: Write and read flag
7437  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7438  *
7439  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7440  *	queried at once.
7441  */
7442 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7443 		       unsigned int vf, unsigned int nparams, const u32 *params,
7444 		       u32 *val, int rw, bool sleep_ok)
7445 {
7446 	int i, ret;
7447 	struct fw_params_cmd c;
7448 	__be32 *p = &c.param[0].mnem;
7449 
7450 	if (nparams > 7)
7451 		return -EINVAL;
7452 
7453 	memset(&c, 0, sizeof(c));
7454 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7455 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7456 				  FW_PARAMS_CMD_PFN_V(pf) |
7457 				  FW_PARAMS_CMD_VFN_V(vf));
7458 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7459 
7460 	for (i = 0; i < nparams; i++) {
7461 		*p++ = cpu_to_be32(*params++);
7462 		if (rw)
7463 			*p = cpu_to_be32(*(val + i));
7464 		p++;
7465 	}
7466 
7467 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7468 	if (ret == 0)
7469 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7470 			*val++ = be32_to_cpu(*p);
7471 	return ret;
7472 }
7473 
7474 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7475 		    unsigned int vf, unsigned int nparams, const u32 *params,
7476 		    u32 *val)
7477 {
7478 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7479 				  true);
7480 }
7481 
7482 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7483 		       unsigned int vf, unsigned int nparams, const u32 *params,
7484 		       u32 *val)
7485 {
7486 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7487 				  false);
7488 }
7489 
7490 /**
7491  *      t4_set_params_timeout - sets FW or device parameters
7492  *      @adap: the adapter
7493  *      @mbox: mailbox to use for the FW command
7494  *      @pf: the PF
7495  *      @vf: the VF
7496  *      @nparams: the number of parameters
7497  *      @params: the parameter names
7498  *      @val: the parameter values
7499  *      @timeout: the timeout time
7500  *
7501  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7502  *      specified at once.
7503  */
7504 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7505 			  unsigned int pf, unsigned int vf,
7506 			  unsigned int nparams, const u32 *params,
7507 			  const u32 *val, int timeout)
7508 {
7509 	struct fw_params_cmd c;
7510 	__be32 *p = &c.param[0].mnem;
7511 
7512 	if (nparams > 7)
7513 		return -EINVAL;
7514 
7515 	memset(&c, 0, sizeof(c));
7516 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7517 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7518 				  FW_PARAMS_CMD_PFN_V(pf) |
7519 				  FW_PARAMS_CMD_VFN_V(vf));
7520 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7521 
7522 	while (nparams--) {
7523 		*p++ = cpu_to_be32(*params++);
7524 		*p++ = cpu_to_be32(*val++);
7525 	}
7526 
7527 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7528 }
7529 
7530 /**
7531  *	t4_set_params - sets FW or device parameters
7532  *	@adap: the adapter
7533  *	@mbox: mailbox to use for the FW command
7534  *	@pf: the PF
7535  *	@vf: the VF
7536  *	@nparams: the number of parameters
7537  *	@params: the parameter names
7538  *	@val: the parameter values
7539  *
7540  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7541  *	specified at once.
7542  */
7543 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7544 		  unsigned int vf, unsigned int nparams, const u32 *params,
7545 		  const u32 *val)
7546 {
7547 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7548 				     FW_CMD_MAX_TIMEOUT);
7549 }
7550 
7551 /**
7552  *	t4_cfg_pfvf - configure PF/VF resource limits
7553  *	@adap: the adapter
7554  *	@mbox: mailbox to use for the FW command
7555  *	@pf: the PF being configured
7556  *	@vf: the VF being configured
7557  *	@txq: the max number of egress queues
7558  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7559  *	@rxqi: the max number of interrupt-capable ingress queues
7560  *	@rxq: the max number of interruptless ingress queues
7561  *	@tc: the PCI traffic class
7562  *	@vi: the max number of virtual interfaces
7563  *	@cmask: the channel access rights mask for the PF/VF
7564  *	@pmask: the port access rights mask for the PF/VF
7565  *	@nexact: the maximum number of exact MPS filters
7566  *	@rcaps: read capabilities
7567  *	@wxcaps: write/execute capabilities
7568  *
7569  *	Configures resource limits and capabilities for a physical or virtual
7570  *	function.
7571  */
7572 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7573 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7574 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7575 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7576 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7577 {
7578 	struct fw_pfvf_cmd c;
7579 
7580 	memset(&c, 0, sizeof(c));
7581 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7582 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7583 				  FW_PFVF_CMD_VFN_V(vf));
7584 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7585 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7586 				     FW_PFVF_CMD_NIQ_V(rxq));
7587 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7588 				    FW_PFVF_CMD_PMASK_V(pmask) |
7589 				    FW_PFVF_CMD_NEQ_V(txq));
7590 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7591 				      FW_PFVF_CMD_NVI_V(vi) |
7592 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7593 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7594 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7595 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7596 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7597 }
7598 
7599 /**
7600  *	t4_alloc_vi - allocate a virtual interface
7601  *	@adap: the adapter
7602  *	@mbox: mailbox to use for the FW command
7603  *	@port: physical port associated with the VI
7604  *	@pf: the PF owning the VI
7605  *	@vf: the VF owning the VI
7606  *	@nmac: number of MAC addresses needed (1 to 5)
7607  *	@mac: the MAC addresses of the VI
7608  *	@rss_size: size of RSS table slice associated with this VI
7609  *	@vivld: the destination to store the VI Valid value.
7610  *	@vin: the destination to store the VIN value.
7611  *
7612  *	Allocates a virtual interface for the given physical port.  If @mac is
7613  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7614  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7615  *	stored consecutively so the space needed is @nmac * 6 bytes.
7616  *	Returns a negative error number or the non-negative VI id.
7617  */
7618 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7619 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7620 		unsigned int *rss_size, u8 *vivld, u8 *vin)
7621 {
7622 	int ret;
7623 	struct fw_vi_cmd c;
7624 
7625 	memset(&c, 0, sizeof(c));
7626 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7627 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7628 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7629 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7630 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7631 	c.nmac = nmac - 1;
7632 
7633 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7634 	if (ret)
7635 		return ret;
7636 
7637 	if (mac) {
7638 		memcpy(mac, c.mac, sizeof(c.mac));
7639 		switch (nmac) {
7640 		case 5:
7641 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7642 			fallthrough;
7643 		case 4:
7644 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7645 			fallthrough;
7646 		case 3:
7647 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7648 			fallthrough;
7649 		case 2:
7650 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7651 		}
7652 	}
7653 	if (rss_size)
7654 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7655 
7656 	if (vivld)
7657 		*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7658 
7659 	if (vin)
7660 		*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7661 
7662 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7663 }
7664 
7665 /**
7666  *	t4_free_vi - free a virtual interface
7667  *	@adap: the adapter
7668  *	@mbox: mailbox to use for the FW command
7669  *	@pf: the PF owning the VI
7670  *	@vf: the VF owning the VI
7671  *	@viid: virtual interface identifiler
7672  *
7673  *	Free a previously allocated virtual interface.
7674  */
7675 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7676 	       unsigned int vf, unsigned int viid)
7677 {
7678 	struct fw_vi_cmd c;
7679 
7680 	memset(&c, 0, sizeof(c));
7681 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7682 				  FW_CMD_REQUEST_F |
7683 				  FW_CMD_EXEC_F |
7684 				  FW_VI_CMD_PFN_V(pf) |
7685 				  FW_VI_CMD_VFN_V(vf));
7686 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7687 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7688 
7689 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7690 }
7691 
7692 /**
7693  *	t4_set_rxmode - set Rx properties of a virtual interface
7694  *	@adap: the adapter
7695  *	@mbox: mailbox to use for the FW command
7696  *	@viid: the VI id
7697  *	@viid_mirror: the mirror VI id
7698  *	@mtu: the new MTU or -1
7699  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7700  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7701  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7702  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7703  *	@sleep_ok: if true we may sleep while awaiting command completion
7704  *
7705  *	Sets Rx properties of a virtual interface.
7706  */
7707 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7708 		  unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7709 		  int bcast, int vlanex, bool sleep_ok)
7710 {
7711 	struct fw_vi_rxmode_cmd c, c_mirror;
7712 	int ret;
7713 
7714 	/* convert to FW values */
7715 	if (mtu < 0)
7716 		mtu = FW_RXMODE_MTU_NO_CHG;
7717 	if (promisc < 0)
7718 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7719 	if (all_multi < 0)
7720 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7721 	if (bcast < 0)
7722 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7723 	if (vlanex < 0)
7724 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7725 
7726 	memset(&c, 0, sizeof(c));
7727 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7728 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7729 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7730 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7731 	c.mtu_to_vlanexen =
7732 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7733 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7734 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7735 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7736 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7737 
7738 	if (viid_mirror) {
7739 		memcpy(&c_mirror, &c, sizeof(c_mirror));
7740 		c_mirror.op_to_viid =
7741 			cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7742 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7743 				    FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7744 	}
7745 
7746 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7747 	if (ret)
7748 		return ret;
7749 
7750 	if (viid_mirror)
7751 		ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7752 				      NULL, sleep_ok);
7753 
7754 	return ret;
7755 }
7756 
7757 /**
7758  *      t4_free_encap_mac_filt - frees MPS entry at given index
7759  *      @adap: the adapter
7760  *      @viid: the VI id
7761  *      @idx: index of MPS entry to be freed
7762  *      @sleep_ok: call is allowed to sleep
7763  *
7764  *      Frees the MPS entry at supplied index
7765  *
7766  *      Returns a negative error number or zero on success
7767  */
7768 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7769 			   int idx, bool sleep_ok)
7770 {
7771 	struct fw_vi_mac_exact *p;
7772 	struct fw_vi_mac_cmd c;
7773 	int ret = 0;
7774 	u32 exact;
7775 
7776 	memset(&c, 0, sizeof(c));
7777 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7778 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7779 				   FW_CMD_EXEC_V(0) |
7780 				   FW_VI_MAC_CMD_VIID_V(viid));
7781 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7782 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7783 					  exact |
7784 					  FW_CMD_LEN16_V(1));
7785 	p = c.u.exact;
7786 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7787 				      FW_VI_MAC_CMD_IDX_V(idx));
7788 	eth_zero_addr(p->macaddr);
7789 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7790 	return ret;
7791 }
7792 
7793 /**
7794  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7795  *	@adap: the adapter
7796  *	@viid: the VI id
7797  *	@addr: the MAC address
7798  *	@mask: the mask
7799  *	@idx: index of the entry in mps tcam
7800  *	@lookup_type: MAC address for inner (1) or outer (0) header
7801  *	@port_id: the port index
7802  *	@sleep_ok: call is allowed to sleep
7803  *
7804  *	Removes the mac entry at the specified index using raw mac interface.
7805  *
7806  *	Returns a negative error number on failure.
7807  */
7808 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7809 			 const u8 *addr, const u8 *mask, unsigned int idx,
7810 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7811 {
7812 	struct fw_vi_mac_cmd c;
7813 	struct fw_vi_mac_raw *p = &c.u.raw;
7814 	u32 val;
7815 
7816 	memset(&c, 0, sizeof(c));
7817 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7818 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7819 				   FW_CMD_EXEC_V(0) |
7820 				   FW_VI_MAC_CMD_VIID_V(viid));
7821 	val = FW_CMD_LEN16_V(1) |
7822 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7823 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7824 					  FW_CMD_LEN16_V(val));
7825 
7826 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7827 				     FW_VI_MAC_ID_BASED_FREE);
7828 
7829 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7830 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7831 				   DATAPORTNUM_V(port_id));
7832 	/* Lookup mask and port mask */
7833 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7834 				    DATAPORTNUM_V(DATAPORTNUM_M));
7835 
7836 	/* Copy the address and the mask */
7837 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7838 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7839 
7840 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7841 }
7842 
7843 /**
7844  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7845  *      @adap: the adapter
7846  *      @viid: the VI id
7847  *      @addr: the MAC address
7848  *      @mask: the mask
7849  *      @vni: the VNI id for the tunnel protocol
7850  *      @vni_mask: mask for the VNI id
7851  *      @dip_hit: to enable DIP match for the MPS entry
7852  *      @lookup_type: MAC address for inner (1) or outer (0) header
7853  *      @sleep_ok: call is allowed to sleep
7854  *
7855  *      Allocates an MPS entry with specified MAC address and VNI value.
7856  *
7857  *      Returns a negative error number or the allocated index for this mac.
7858  */
7859 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7860 			    const u8 *addr, const u8 *mask, unsigned int vni,
7861 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7862 			    bool sleep_ok)
7863 {
7864 	struct fw_vi_mac_cmd c;
7865 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7866 	int ret = 0;
7867 	u32 val;
7868 
7869 	memset(&c, 0, sizeof(c));
7870 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7871 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7872 				   FW_VI_MAC_CMD_VIID_V(viid));
7873 	val = FW_CMD_LEN16_V(1) |
7874 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7875 	c.freemacs_to_len16 = cpu_to_be32(val);
7876 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7877 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7878 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7879 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7880 
7881 	p->lookup_type_to_vni =
7882 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7883 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7884 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7885 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7886 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7887 	if (ret == 0)
7888 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7889 	return ret;
7890 }
7891 
7892 /**
7893  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7894  *	@adap: the adapter
7895  *	@viid: the VI id
7896  *	@addr: the MAC address
7897  *	@mask: the mask
7898  *	@idx: index at which to add this entry
7899  *	@lookup_type: MAC address for inner (1) or outer (0) header
7900  *	@port_id: the port index
7901  *	@sleep_ok: call is allowed to sleep
7902  *
7903  *	Adds the mac entry at the specified index using raw mac interface.
7904  *
7905  *	Returns a negative error number or the allocated index for this mac.
7906  */
7907 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7908 			  const u8 *addr, const u8 *mask, unsigned int idx,
7909 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7910 {
7911 	int ret = 0;
7912 	struct fw_vi_mac_cmd c;
7913 	struct fw_vi_mac_raw *p = &c.u.raw;
7914 	u32 val;
7915 
7916 	memset(&c, 0, sizeof(c));
7917 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7918 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7919 				   FW_VI_MAC_CMD_VIID_V(viid));
7920 	val = FW_CMD_LEN16_V(1) |
7921 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7922 	c.freemacs_to_len16 = cpu_to_be32(val);
7923 
7924 	/* Specify that this is an inner mac address */
7925 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7926 
7927 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7928 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7929 				   DATAPORTNUM_V(port_id));
7930 	/* Lookup mask and port mask */
7931 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7932 				    DATAPORTNUM_V(DATAPORTNUM_M));
7933 
7934 	/* Copy the address and the mask */
7935 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7936 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7937 
7938 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7939 	if (ret == 0) {
7940 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7941 		if (ret != idx)
7942 			ret = -ENOMEM;
7943 	}
7944 
7945 	return ret;
7946 }
7947 
7948 /**
7949  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7950  *	@adap: the adapter
7951  *	@mbox: mailbox to use for the FW command
7952  *	@viid: the VI id
7953  *	@free: if true any existing filters for this VI id are first removed
7954  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7955  *	@addr: the MAC address(es)
7956  *	@idx: where to store the index of each allocated filter
7957  *	@hash: pointer to hash address filter bitmap
7958  *	@sleep_ok: call is allowed to sleep
7959  *
7960  *	Allocates an exact-match filter for each of the supplied addresses and
7961  *	sets it to the corresponding address.  If @idx is not %NULL it should
7962  *	have at least @naddr entries, each of which will be set to the index of
7963  *	the filter allocated for the corresponding MAC address.  If a filter
7964  *	could not be allocated for an address its index is set to 0xffff.
7965  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7966  *	are hashed and update the hash filter bitmap pointed at by @hash.
7967  *
7968  *	Returns a negative error number or the number of filters allocated.
7969  */
7970 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7971 		      unsigned int viid, bool free, unsigned int naddr,
7972 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7973 {
7974 	int offset, ret = 0;
7975 	struct fw_vi_mac_cmd c;
7976 	unsigned int nfilters = 0;
7977 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7978 	unsigned int rem = naddr;
7979 
7980 	if (naddr > max_naddr)
7981 		return -EINVAL;
7982 
7983 	for (offset = 0; offset < naddr ; /**/) {
7984 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7985 					 rem : ARRAY_SIZE(c.u.exact));
7986 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7987 						     u.exact[fw_naddr]), 16);
7988 		struct fw_vi_mac_exact *p;
7989 		int i;
7990 
7991 		memset(&c, 0, sizeof(c));
7992 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7993 					   FW_CMD_REQUEST_F |
7994 					   FW_CMD_WRITE_F |
7995 					   FW_CMD_EXEC_V(free) |
7996 					   FW_VI_MAC_CMD_VIID_V(viid));
7997 		c.freemacs_to_len16 =
7998 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
7999 				    FW_CMD_LEN16_V(len16));
8000 
8001 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8002 			p->valid_to_idx =
8003 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8004 					    FW_VI_MAC_CMD_IDX_V(
8005 						    FW_VI_MAC_ADD_MAC));
8006 			memcpy(p->macaddr, addr[offset + i],
8007 			       sizeof(p->macaddr));
8008 		}
8009 
8010 		/* It's okay if we run out of space in our MAC address arena.
8011 		 * Some of the addresses we submit may get stored so we need
8012 		 * to run through the reply to see what the results were ...
8013 		 */
8014 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8015 		if (ret && ret != -FW_ENOMEM)
8016 			break;
8017 
8018 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8019 			u16 index = FW_VI_MAC_CMD_IDX_G(
8020 					be16_to_cpu(p->valid_to_idx));
8021 
8022 			if (idx)
8023 				idx[offset + i] = (index >= max_naddr ?
8024 						   0xffff : index);
8025 			if (index < max_naddr)
8026 				nfilters++;
8027 			else if (hash)
8028 				*hash |= (1ULL <<
8029 					  hash_mac_addr(addr[offset + i]));
8030 		}
8031 
8032 		free = false;
8033 		offset += fw_naddr;
8034 		rem -= fw_naddr;
8035 	}
8036 
8037 	if (ret == 0 || ret == -FW_ENOMEM)
8038 		ret = nfilters;
8039 	return ret;
8040 }
8041 
8042 /**
8043  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8044  *	@adap: the adapter
8045  *	@mbox: mailbox to use for the FW command
8046  *	@viid: the VI id
8047  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8048  *	@addr: the MAC address(es)
8049  *	@sleep_ok: call is allowed to sleep
8050  *
8051  *	Frees the exact-match filter for each of the supplied addresses
8052  *
8053  *	Returns a negative error number or the number of filters freed.
8054  */
8055 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8056 		     unsigned int viid, unsigned int naddr,
8057 		     const u8 **addr, bool sleep_ok)
8058 {
8059 	int offset, ret = 0;
8060 	struct fw_vi_mac_cmd c;
8061 	unsigned int nfilters = 0;
8062 	unsigned int max_naddr = is_t4(adap->params.chip) ?
8063 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
8064 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8065 	unsigned int rem = naddr;
8066 
8067 	if (naddr > max_naddr)
8068 		return -EINVAL;
8069 
8070 	for (offset = 0; offset < (int)naddr ; /**/) {
8071 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8072 					 ? rem
8073 					 : ARRAY_SIZE(c.u.exact));
8074 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8075 						     u.exact[fw_naddr]), 16);
8076 		struct fw_vi_mac_exact *p;
8077 		int i;
8078 
8079 		memset(&c, 0, sizeof(c));
8080 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8081 				     FW_CMD_REQUEST_F |
8082 				     FW_CMD_WRITE_F |
8083 				     FW_CMD_EXEC_V(0) |
8084 				     FW_VI_MAC_CMD_VIID_V(viid));
8085 		c.freemacs_to_len16 =
8086 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8087 					    FW_CMD_LEN16_V(len16));
8088 
8089 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8090 			p->valid_to_idx = cpu_to_be16(
8091 				FW_VI_MAC_CMD_VALID_F |
8092 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8093 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8094 		}
8095 
8096 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8097 		if (ret)
8098 			break;
8099 
8100 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8101 			u16 index = FW_VI_MAC_CMD_IDX_G(
8102 						be16_to_cpu(p->valid_to_idx));
8103 
8104 			if (index < max_naddr)
8105 				nfilters++;
8106 		}
8107 
8108 		offset += fw_naddr;
8109 		rem -= fw_naddr;
8110 	}
8111 
8112 	if (ret == 0)
8113 		ret = nfilters;
8114 	return ret;
8115 }
8116 
8117 /**
8118  *	t4_change_mac - modifies the exact-match filter for a MAC address
8119  *	@adap: the adapter
8120  *	@mbox: mailbox to use for the FW command
8121  *	@viid: the VI id
8122  *	@idx: index of existing filter for old value of MAC address, or -1
8123  *	@addr: the new MAC address value
8124  *	@persist: whether a new MAC allocation should be persistent
8125  *	@smt_idx: the destination to store the new SMT index.
8126  *
8127  *	Modifies an exact-match filter and sets it to the new MAC address.
8128  *	Note that in general it is not possible to modify the value of a given
8129  *	filter so the generic way to modify an address filter is to free the one
8130  *	being used by the old address value and allocate a new filter for the
8131  *	new address value.  @idx can be -1 if the address is a new addition.
8132  *
8133  *	Returns a negative error number or the index of the filter with the new
8134  *	MAC value.
8135  */
8136 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8137 		  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8138 {
8139 	int ret, mode;
8140 	struct fw_vi_mac_cmd c;
8141 	struct fw_vi_mac_exact *p = c.u.exact;
8142 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8143 
8144 	if (idx < 0)                             /* new allocation */
8145 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8146 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8147 
8148 	memset(&c, 0, sizeof(c));
8149 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8150 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8151 				   FW_VI_MAC_CMD_VIID_V(viid));
8152 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8153 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8154 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8155 				      FW_VI_MAC_CMD_IDX_V(idx));
8156 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8157 
8158 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8159 	if (ret == 0) {
8160 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8161 		if (ret >= max_mac_addr)
8162 			ret = -ENOMEM;
8163 		if (smt_idx) {
8164 			if (adap->params.viid_smt_extn_support) {
8165 				*smt_idx = FW_VI_MAC_CMD_SMTID_G
8166 						    (be32_to_cpu(c.op_to_viid));
8167 			} else {
8168 				/* In T4/T5, SMT contains 256 SMAC entries
8169 				 * organized in 128 rows of 2 entries each.
8170 				 * In T6, SMT contains 256 SMAC entries in
8171 				 * 256 rows.
8172 				 */
8173 				if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8174 								     CHELSIO_T5)
8175 					*smt_idx = (viid & FW_VIID_VIN_M) << 1;
8176 				else
8177 					*smt_idx = (viid & FW_VIID_VIN_M);
8178 			}
8179 		}
8180 	}
8181 	return ret;
8182 }
8183 
8184 /**
8185  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8186  *	@adap: the adapter
8187  *	@mbox: mailbox to use for the FW command
8188  *	@viid: the VI id
8189  *	@ucast: whether the hash filter should also match unicast addresses
8190  *	@vec: the value to be written to the hash filter
8191  *	@sleep_ok: call is allowed to sleep
8192  *
8193  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8194  */
8195 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8196 		     bool ucast, u64 vec, bool sleep_ok)
8197 {
8198 	struct fw_vi_mac_cmd c;
8199 
8200 	memset(&c, 0, sizeof(c));
8201 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8202 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8203 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8204 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8205 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8206 					  FW_CMD_LEN16_V(1));
8207 	c.u.hash.hashvec = cpu_to_be64(vec);
8208 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8209 }
8210 
8211 /**
8212  *      t4_enable_vi_params - enable/disable a virtual interface
8213  *      @adap: the adapter
8214  *      @mbox: mailbox to use for the FW command
8215  *      @viid: the VI id
8216  *      @rx_en: 1=enable Rx, 0=disable Rx
8217  *      @tx_en: 1=enable Tx, 0=disable Tx
8218  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8219  *
8220  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8221  *      only makes sense when enabling a Virtual Interface ...
8222  */
8223 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8224 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8225 {
8226 	struct fw_vi_enable_cmd c;
8227 
8228 	memset(&c, 0, sizeof(c));
8229 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8230 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8231 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8232 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8233 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8234 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8235 				     FW_LEN16(c));
8236 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8237 }
8238 
8239 /**
8240  *	t4_enable_vi - enable/disable a virtual interface
8241  *	@adap: the adapter
8242  *	@mbox: mailbox to use for the FW command
8243  *	@viid: the VI id
8244  *	@rx_en: 1=enable Rx, 0=disable Rx
8245  *	@tx_en: 1=enable Tx, 0=disable Tx
8246  *
8247  *	Enables/disables a virtual interface.
8248  */
8249 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8250 		 bool rx_en, bool tx_en)
8251 {
8252 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8253 }
8254 
8255 /**
8256  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8257  *      @adap: the adapter
8258  *      @mbox: mailbox to use for the FW command
8259  *      @pi: the Port Information structure
8260  *      @rx_en: 1=enable Rx, 0=disable Rx
8261  *      @tx_en: 1=enable Tx, 0=disable Tx
8262  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8263  *
8264  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8265  *	Enable only makes sense when enabling a Virtual Interface ...
8266  *	If the Virtual Interface enable/disable operation is successful,
8267  *	we notify the OS-specific code of a potential Link Status change
8268  *	via the OS Contract API t4_os_link_changed().
8269  */
8270 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8271 			struct port_info *pi,
8272 			bool rx_en, bool tx_en, bool dcb_en)
8273 {
8274 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8275 				      rx_en, tx_en, dcb_en);
8276 	if (ret)
8277 		return ret;
8278 	t4_os_link_changed(adap, pi->port_id,
8279 			   rx_en && tx_en && pi->link_cfg.link_ok);
8280 	return 0;
8281 }
8282 
8283 /**
8284  *	t4_identify_port - identify a VI's port by blinking its LED
8285  *	@adap: the adapter
8286  *	@mbox: mailbox to use for the FW command
8287  *	@viid: the VI id
8288  *	@nblinks: how many times to blink LED at 2.5 Hz
8289  *
8290  *	Identifies a VI's port by blinking its LED.
8291  */
8292 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8293 		     unsigned int nblinks)
8294 {
8295 	struct fw_vi_enable_cmd c;
8296 
8297 	memset(&c, 0, sizeof(c));
8298 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8299 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8300 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8301 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8302 	c.blinkdur = cpu_to_be16(nblinks);
8303 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8304 }
8305 
8306 /**
8307  *	t4_iq_stop - stop an ingress queue and its FLs
8308  *	@adap: the adapter
8309  *	@mbox: mailbox to use for the FW command
8310  *	@pf: the PF owning the queues
8311  *	@vf: the VF owning the queues
8312  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8313  *	@iqid: ingress queue id
8314  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8315  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8316  *
8317  *	Stops an ingress queue and its associated FLs, if any.  This causes
8318  *	any current or future data/messages destined for these queues to be
8319  *	tossed.
8320  */
8321 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8322 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8323 	       unsigned int fl0id, unsigned int fl1id)
8324 {
8325 	struct fw_iq_cmd c;
8326 
8327 	memset(&c, 0, sizeof(c));
8328 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8329 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8330 				  FW_IQ_CMD_VFN_V(vf));
8331 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8332 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8333 	c.iqid = cpu_to_be16(iqid);
8334 	c.fl0id = cpu_to_be16(fl0id);
8335 	c.fl1id = cpu_to_be16(fl1id);
8336 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8337 }
8338 
8339 /**
8340  *	t4_iq_free - free an ingress queue and its FLs
8341  *	@adap: the adapter
8342  *	@mbox: mailbox to use for the FW command
8343  *	@pf: the PF owning the queues
8344  *	@vf: the VF owning the queues
8345  *	@iqtype: the ingress queue type
8346  *	@iqid: ingress queue id
8347  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8348  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8349  *
8350  *	Frees an ingress queue and its associated FLs, if any.
8351  */
8352 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8353 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8354 	       unsigned int fl0id, unsigned int fl1id)
8355 {
8356 	struct fw_iq_cmd c;
8357 
8358 	memset(&c, 0, sizeof(c));
8359 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8360 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8361 				  FW_IQ_CMD_VFN_V(vf));
8362 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8363 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8364 	c.iqid = cpu_to_be16(iqid);
8365 	c.fl0id = cpu_to_be16(fl0id);
8366 	c.fl1id = cpu_to_be16(fl1id);
8367 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8368 }
8369 
8370 /**
8371  *	t4_eth_eq_free - free an Ethernet egress queue
8372  *	@adap: the adapter
8373  *	@mbox: mailbox to use for the FW command
8374  *	@pf: the PF owning the queue
8375  *	@vf: the VF owning the queue
8376  *	@eqid: egress queue id
8377  *
8378  *	Frees an Ethernet egress queue.
8379  */
8380 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8381 		   unsigned int vf, unsigned int eqid)
8382 {
8383 	struct fw_eq_eth_cmd c;
8384 
8385 	memset(&c, 0, sizeof(c));
8386 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8387 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8388 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8389 				  FW_EQ_ETH_CMD_VFN_V(vf));
8390 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8391 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8392 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8393 }
8394 
8395 /**
8396  *	t4_ctrl_eq_free - free a control egress queue
8397  *	@adap: the adapter
8398  *	@mbox: mailbox to use for the FW command
8399  *	@pf: the PF owning the queue
8400  *	@vf: the VF owning the queue
8401  *	@eqid: egress queue id
8402  *
8403  *	Frees a control egress queue.
8404  */
8405 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8406 		    unsigned int vf, unsigned int eqid)
8407 {
8408 	struct fw_eq_ctrl_cmd c;
8409 
8410 	memset(&c, 0, sizeof(c));
8411 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8412 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8413 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8414 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8415 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8416 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8417 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8418 }
8419 
8420 /**
8421  *	t4_ofld_eq_free - free an offload egress queue
8422  *	@adap: the adapter
8423  *	@mbox: mailbox to use for the FW command
8424  *	@pf: the PF owning the queue
8425  *	@vf: the VF owning the queue
8426  *	@eqid: egress queue id
8427  *
8428  *	Frees a control egress queue.
8429  */
8430 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8431 		    unsigned int vf, unsigned int eqid)
8432 {
8433 	struct fw_eq_ofld_cmd c;
8434 
8435 	memset(&c, 0, sizeof(c));
8436 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8437 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8438 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8439 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8440 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8441 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8442 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8443 }
8444 
8445 /**
8446  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8447  *	@link_down_rc: Link Down Reason Code
8448  *
8449  *	Returns a string representation of the Link Down Reason Code.
8450  */
8451 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8452 {
8453 	static const char * const reason[] = {
8454 		"Link Down",
8455 		"Remote Fault",
8456 		"Auto-negotiation Failure",
8457 		"Reserved",
8458 		"Insufficient Airflow",
8459 		"Unable To Determine Reason",
8460 		"No RX Signal Detected",
8461 		"Reserved",
8462 	};
8463 
8464 	if (link_down_rc >= ARRAY_SIZE(reason))
8465 		return "Bad Reason Code";
8466 
8467 	return reason[link_down_rc];
8468 }
8469 
8470 /* Return the highest speed set in the port capabilities, in Mb/s. */
8471 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8472 {
8473 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8474 		do { \
8475 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8476 				return __speed; \
8477 		} while (0)
8478 
8479 	TEST_SPEED_RETURN(400G, 400000);
8480 	TEST_SPEED_RETURN(200G, 200000);
8481 	TEST_SPEED_RETURN(100G, 100000);
8482 	TEST_SPEED_RETURN(50G,   50000);
8483 	TEST_SPEED_RETURN(40G,   40000);
8484 	TEST_SPEED_RETURN(25G,   25000);
8485 	TEST_SPEED_RETURN(10G,   10000);
8486 	TEST_SPEED_RETURN(1G,     1000);
8487 	TEST_SPEED_RETURN(100M,    100);
8488 
8489 	#undef TEST_SPEED_RETURN
8490 
8491 	return 0;
8492 }
8493 
8494 /**
8495  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8496  *	@acaps: advertised Port Capabilities
8497  *
8498  *	Get the highest speed for the port from the advertised Port
8499  *	Capabilities.  It will be either the highest speed from the list of
8500  *	speeds or whatever user has set using ethtool.
8501  */
8502 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8503 {
8504 	#define TEST_SPEED_RETURN(__caps_speed) \
8505 		do { \
8506 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8507 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8508 		} while (0)
8509 
8510 	TEST_SPEED_RETURN(400G);
8511 	TEST_SPEED_RETURN(200G);
8512 	TEST_SPEED_RETURN(100G);
8513 	TEST_SPEED_RETURN(50G);
8514 	TEST_SPEED_RETURN(40G);
8515 	TEST_SPEED_RETURN(25G);
8516 	TEST_SPEED_RETURN(10G);
8517 	TEST_SPEED_RETURN(1G);
8518 	TEST_SPEED_RETURN(100M);
8519 
8520 	#undef TEST_SPEED_RETURN
8521 
8522 	return 0;
8523 }
8524 
8525 /**
8526  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8527  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8528  *
8529  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8530  *	32-bit Port Capabilities value.
8531  */
8532 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8533 {
8534 	fw_port_cap32_t linkattr = 0;
8535 
8536 	/* Unfortunately the format of the Link Status in the old
8537 	 * 16-bit Port Information message isn't the same as the
8538 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8539 	 */
8540 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8541 		linkattr |= FW_PORT_CAP32_FC_RX;
8542 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8543 		linkattr |= FW_PORT_CAP32_FC_TX;
8544 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8545 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8546 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8547 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8548 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8549 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8550 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8551 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8552 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8553 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8554 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8555 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8556 
8557 	return linkattr;
8558 }
8559 
8560 /**
8561  *	t4_handle_get_port_info - process a FW reply message
8562  *	@pi: the port info
8563  *	@rpl: start of the FW message
8564  *
8565  *	Processes a GET_PORT_INFO FW reply message.
8566  */
8567 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8568 {
8569 	const struct fw_port_cmd *cmd = (const void *)rpl;
8570 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8571 	struct link_config *lc = &pi->link_cfg;
8572 	struct adapter *adapter = pi->adapter;
8573 	unsigned int speed, fc, fec, adv_fc;
8574 	enum fw_port_module_type mod_type;
8575 	int action, link_ok, linkdnrc;
8576 	enum fw_port_type port_type;
8577 
8578 	/* Extract the various fields from the Port Information message.
8579 	 */
8580 	action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8581 	switch (action) {
8582 	case FW_PORT_ACTION_GET_PORT_INFO: {
8583 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8584 
8585 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8586 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8587 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8588 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8589 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8590 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8591 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8592 		linkattr = lstatus_to_fwcap(lstatus);
8593 		break;
8594 	}
8595 
8596 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8597 		u32 lstatus32;
8598 
8599 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8600 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8601 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8602 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8603 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8604 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8605 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8606 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8607 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8608 		break;
8609 	}
8610 
8611 	default:
8612 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8613 			be32_to_cpu(cmd->action_to_len16));
8614 		return;
8615 	}
8616 
8617 	fec = fwcap_to_cc_fec(acaps);
8618 	adv_fc = fwcap_to_cc_pause(acaps);
8619 	fc = fwcap_to_cc_pause(linkattr);
8620 	speed = fwcap_to_speed(linkattr);
8621 
8622 	/* Reset state for communicating new Transceiver Module status and
8623 	 * whether the OS-dependent layer wants us to redo the current
8624 	 * "sticky" L1 Configure Link Parameters.
8625 	 */
8626 	lc->new_module = false;
8627 	lc->redo_l1cfg = false;
8628 
8629 	if (mod_type != pi->mod_type) {
8630 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8631 		 * various fundamental Port Capabilities which used to be
8632 		 * immutable can now change radically.  We can now have
8633 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8634 		 * all change based on what Transceiver Module is inserted.
8635 		 * So we need to record the Physical "Port" Capabilities on
8636 		 * every Transceiver Module change.
8637 		 */
8638 		lc->pcaps = pcaps;
8639 
8640 		/* When a new Transceiver Module is inserted, the Firmware
8641 		 * will examine its i2c EPROM to determine its type and
8642 		 * general operating parameters including things like Forward
8643 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8644 		 * how to interpret these i2c values to determine default
8645 		 * "sutomatic" settings.  We record these for future use when
8646 		 * the user explicitly requests these standards-based values.
8647 		 */
8648 		lc->def_acaps = acaps;
8649 
8650 		/* Some versions of the early T6 Firmware "cheated" when
8651 		 * handling different Transceiver Modules by changing the
8652 		 * underlaying Port Type reported to the Host Drivers.  As
8653 		 * such we need to capture whatever Port Type the Firmware
8654 		 * sends us and record it in case it's different from what we
8655 		 * were told earlier.  Unfortunately, since Firmware is
8656 		 * forever, we'll need to keep this code here forever, but in
8657 		 * later T6 Firmware it should just be an assignment of the
8658 		 * same value already recorded.
8659 		 */
8660 		pi->port_type = port_type;
8661 
8662 		/* Record new Module Type information.
8663 		 */
8664 		pi->mod_type = mod_type;
8665 
8666 		/* Let the OS-dependent layer know if we have a new
8667 		 * Transceiver Module inserted.
8668 		 */
8669 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8670 
8671 		t4_os_portmod_changed(adapter, pi->port_id);
8672 	}
8673 
8674 	if (link_ok != lc->link_ok || speed != lc->speed ||
8675 	    fc != lc->fc || adv_fc != lc->advertised_fc ||
8676 	    fec != lc->fec) {
8677 		/* something changed */
8678 		if (!link_ok && lc->link_ok) {
8679 			lc->link_down_rc = linkdnrc;
8680 			dev_warn_ratelimited(adapter->pdev_dev,
8681 					     "Port %d link down, reason: %s\n",
8682 					     pi->tx_chan,
8683 					     t4_link_down_rc_str(linkdnrc));
8684 		}
8685 		lc->link_ok = link_ok;
8686 		lc->speed = speed;
8687 		lc->advertised_fc = adv_fc;
8688 		lc->fc = fc;
8689 		lc->fec = fec;
8690 
8691 		lc->lpacaps = lpacaps;
8692 		lc->acaps = acaps & ADVERT_MASK;
8693 
8694 		/* If we're not physically capable of Auto-Negotiation, note
8695 		 * this as Auto-Negotiation disabled.  Otherwise, we track
8696 		 * what Auto-Negotiation settings we have.  Note parallel
8697 		 * structure in t4_link_l1cfg_core() and init_link_config().
8698 		 */
8699 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8700 			lc->autoneg = AUTONEG_DISABLE;
8701 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8702 			lc->autoneg = AUTONEG_ENABLE;
8703 		} else {
8704 			/* When Autoneg is disabled, user needs to set
8705 			 * single speed.
8706 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8707 			 */
8708 			lc->acaps = 0;
8709 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8710 			lc->autoneg = AUTONEG_DISABLE;
8711 		}
8712 
8713 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8714 	}
8715 
8716 	/* If we have a new Transceiver Module and the OS-dependent code has
8717 	 * told us that it wants us to redo whatever "sticky" L1 Configuration
8718 	 * Link Parameters are set, do that now.
8719 	 */
8720 	if (lc->new_module && lc->redo_l1cfg) {
8721 		struct link_config old_lc;
8722 		int ret;
8723 
8724 		/* Save the current L1 Configuration and restore it if an
8725 		 * error occurs.  We probably should fix the l1_cfg*()
8726 		 * routines not to change the link_config when an error
8727 		 * occurs ...
8728 		 */
8729 		old_lc = *lc;
8730 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8731 		if (ret) {
8732 			*lc = old_lc;
8733 			dev_warn(adapter->pdev_dev,
8734 				 "Attempt to update new Transceiver Module settings failed\n");
8735 		}
8736 	}
8737 	lc->new_module = false;
8738 	lc->redo_l1cfg = false;
8739 }
8740 
8741 /**
8742  *	t4_update_port_info - retrieve and update port information if changed
8743  *	@pi: the port_info
8744  *
8745  *	We issue a Get Port Information Command to the Firmware and, if
8746  *	successful, we check to see if anything is different from what we
8747  *	last recorded and update things accordingly.
8748  */
8749 int t4_update_port_info(struct port_info *pi)
8750 {
8751 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8752 	struct fw_port_cmd port_cmd;
8753 	int ret;
8754 
8755 	memset(&port_cmd, 0, sizeof(port_cmd));
8756 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8757 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8758 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8759 	port_cmd.action_to_len16 = cpu_to_be32(
8760 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8761 				     ? FW_PORT_ACTION_GET_PORT_INFO
8762 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8763 		FW_LEN16(port_cmd));
8764 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8765 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8766 	if (ret)
8767 		return ret;
8768 
8769 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8770 	return 0;
8771 }
8772 
8773 /**
8774  *	t4_get_link_params - retrieve basic link parameters for given port
8775  *	@pi: the port
8776  *	@link_okp: value return pointer for link up/down
8777  *	@speedp: value return pointer for speed (Mb/s)
8778  *	@mtup: value return pointer for mtu
8779  *
8780  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8781  *	and MTU for a specified port.  A negative error is returned on
8782  *	failure; 0 on success.
8783  */
8784 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8785 		       unsigned int *speedp, unsigned int *mtup)
8786 {
8787 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8788 	unsigned int action, link_ok, mtu;
8789 	struct fw_port_cmd port_cmd;
8790 	fw_port_cap32_t linkattr;
8791 	int ret;
8792 
8793 	memset(&port_cmd, 0, sizeof(port_cmd));
8794 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8795 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8796 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8797 	action = (fw_caps == FW_CAPS16
8798 		  ? FW_PORT_ACTION_GET_PORT_INFO
8799 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8800 	port_cmd.action_to_len16 = cpu_to_be32(
8801 		FW_PORT_CMD_ACTION_V(action) |
8802 		FW_LEN16(port_cmd));
8803 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8804 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8805 	if (ret)
8806 		return ret;
8807 
8808 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8809 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8810 
8811 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8812 		linkattr = lstatus_to_fwcap(lstatus);
8813 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8814 	} else {
8815 		u32 lstatus32 =
8816 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8817 
8818 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8819 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8820 		mtu = FW_PORT_CMD_MTU32_G(
8821 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8822 	}
8823 
8824 	if (link_okp)
8825 		*link_okp = link_ok;
8826 	if (speedp)
8827 		*speedp = fwcap_to_speed(linkattr);
8828 	if (mtup)
8829 		*mtup = mtu;
8830 
8831 	return 0;
8832 }
8833 
8834 /**
8835  *      t4_handle_fw_rpl - process a FW reply message
8836  *      @adap: the adapter
8837  *      @rpl: start of the FW message
8838  *
8839  *      Processes a FW message, such as link state change messages.
8840  */
8841 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8842 {
8843 	u8 opcode = *(const u8 *)rpl;
8844 
8845 	/* This might be a port command ... this simplifies the following
8846 	 * conditionals ...  We can get away with pre-dereferencing
8847 	 * action_to_len16 because it's in the first 16 bytes and all messages
8848 	 * will be at least that long.
8849 	 */
8850 	const struct fw_port_cmd *p = (const void *)rpl;
8851 	unsigned int action =
8852 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8853 
8854 	if (opcode == FW_PORT_CMD &&
8855 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8856 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8857 		int i;
8858 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8859 		struct port_info *pi = NULL;
8860 
8861 		for_each_port(adap, i) {
8862 			pi = adap2pinfo(adap, i);
8863 			if (pi->tx_chan == chan)
8864 				break;
8865 		}
8866 
8867 		t4_handle_get_port_info(pi, rpl);
8868 	} else {
8869 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8870 			 opcode);
8871 		return -EINVAL;
8872 	}
8873 	return 0;
8874 }
8875 
8876 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8877 {
8878 	u16 val;
8879 
8880 	if (pci_is_pcie(adapter->pdev)) {
8881 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8882 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8883 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8884 	}
8885 }
8886 
8887 /**
8888  *	init_link_config - initialize a link's SW state
8889  *	@lc: pointer to structure holding the link state
8890  *	@pcaps: link Port Capabilities
8891  *	@acaps: link current Advertised Port Capabilities
8892  *
8893  *	Initializes the SW state maintained for each link, including the link's
8894  *	capabilities and default speed/flow-control/autonegotiation settings.
8895  */
8896 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8897 			     fw_port_cap32_t acaps)
8898 {
8899 	lc->pcaps = pcaps;
8900 	lc->def_acaps = acaps;
8901 	lc->lpacaps = 0;
8902 	lc->speed_caps = 0;
8903 	lc->speed = 0;
8904 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8905 
8906 	/* For Forward Error Control, we default to whatever the Firmware
8907 	 * tells us the Link is currently advertising.
8908 	 */
8909 	lc->requested_fec = FEC_AUTO;
8910 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8911 
8912 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8913 	 * "enabled" and copy over all of the Physical Port Capabilities
8914 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8915 	 * Auto-Negotiate disabled and select the highest supported speed
8916 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8917 	 * and t4_handle_get_port_info().
8918 	 */
8919 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8920 		lc->acaps = lc->pcaps & ADVERT_MASK;
8921 		lc->autoneg = AUTONEG_ENABLE;
8922 		lc->requested_fc |= PAUSE_AUTONEG;
8923 	} else {
8924 		lc->acaps = 0;
8925 		lc->autoneg = AUTONEG_DISABLE;
8926 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8927 	}
8928 }
8929 
8930 #define CIM_PF_NOACCESS 0xeeeeeeee
8931 
8932 int t4_wait_dev_ready(void __iomem *regs)
8933 {
8934 	u32 whoami;
8935 
8936 	whoami = readl(regs + PL_WHOAMI_A);
8937 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8938 		return 0;
8939 
8940 	msleep(500);
8941 	whoami = readl(regs + PL_WHOAMI_A);
8942 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8943 }
8944 
8945 struct flash_desc {
8946 	u32 vendor_and_model_id;
8947 	u32 size_mb;
8948 };
8949 
8950 static int t4_get_flash_params(struct adapter *adap)
8951 {
8952 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8953 	 * to the preexisting code.  All flash parts have 64KB sectors.
8954 	 */
8955 	static struct flash_desc supported_flash[] = {
8956 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8957 	};
8958 
8959 	unsigned int part, manufacturer;
8960 	unsigned int density, size = 0;
8961 	u32 flashid = 0;
8962 	int ret;
8963 
8964 	/* Issue a Read ID Command to the Flash part.  We decode supported
8965 	 * Flash parts and their sizes from this.  There's a newer Query
8966 	 * Command which can retrieve detailed geometry information but many
8967 	 * Flash parts don't support it.
8968 	 */
8969 
8970 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8971 	if (!ret)
8972 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8973 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8974 	if (ret)
8975 		return ret;
8976 
8977 	/* Check to see if it's one of our non-standard supported Flash parts.
8978 	 */
8979 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8980 		if (supported_flash[part].vendor_and_model_id == flashid) {
8981 			adap->params.sf_size = supported_flash[part].size_mb;
8982 			adap->params.sf_nsec =
8983 				adap->params.sf_size / SF_SEC_SIZE;
8984 			goto found;
8985 		}
8986 
8987 	/* Decode Flash part size.  The code below looks repetitive with
8988 	 * common encodings, but that's not guaranteed in the JEDEC
8989 	 * specification for the Read JEDEC ID command.  The only thing that
8990 	 * we're guaranteed by the JEDEC specification is where the
8991 	 * Manufacturer ID is in the returned result.  After that each
8992 	 * Manufacturer ~could~ encode things completely differently.
8993 	 * Note, all Flash parts must have 64KB sectors.
8994 	 */
8995 	manufacturer = flashid & 0xff;
8996 	switch (manufacturer) {
8997 	case 0x20: { /* Micron/Numonix */
8998 		/* This Density -> Size decoding table is taken from Micron
8999 		 * Data Sheets.
9000 		 */
9001 		density = (flashid >> 16) & 0xff;
9002 		switch (density) {
9003 		case 0x14: /* 1MB */
9004 			size = 1 << 20;
9005 			break;
9006 		case 0x15: /* 2MB */
9007 			size = 1 << 21;
9008 			break;
9009 		case 0x16: /* 4MB */
9010 			size = 1 << 22;
9011 			break;
9012 		case 0x17: /* 8MB */
9013 			size = 1 << 23;
9014 			break;
9015 		case 0x18: /* 16MB */
9016 			size = 1 << 24;
9017 			break;
9018 		case 0x19: /* 32MB */
9019 			size = 1 << 25;
9020 			break;
9021 		case 0x20: /* 64MB */
9022 			size = 1 << 26;
9023 			break;
9024 		case 0x21: /* 128MB */
9025 			size = 1 << 27;
9026 			break;
9027 		case 0x22: /* 256MB */
9028 			size = 1 << 28;
9029 			break;
9030 		}
9031 		break;
9032 	}
9033 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9034 		/* This Density -> Size decoding table is taken from ISSI
9035 		 * Data Sheets.
9036 		 */
9037 		density = (flashid >> 16) & 0xff;
9038 		switch (density) {
9039 		case 0x16: /* 32 MB */
9040 			size = 1 << 25;
9041 			break;
9042 		case 0x17: /* 64MB */
9043 			size = 1 << 26;
9044 			break;
9045 		}
9046 		break;
9047 	}
9048 	case 0xc2: { /* Macronix */
9049 		/* This Density -> Size decoding table is taken from Macronix
9050 		 * Data Sheets.
9051 		 */
9052 		density = (flashid >> 16) & 0xff;
9053 		switch (density) {
9054 		case 0x17: /* 8MB */
9055 			size = 1 << 23;
9056 			break;
9057 		case 0x18: /* 16MB */
9058 			size = 1 << 24;
9059 			break;
9060 		}
9061 		break;
9062 	}
9063 	case 0xef: { /* Winbond */
9064 		/* This Density -> Size decoding table is taken from Winbond
9065 		 * Data Sheets.
9066 		 */
9067 		density = (flashid >> 16) & 0xff;
9068 		switch (density) {
9069 		case 0x17: /* 8MB */
9070 			size = 1 << 23;
9071 			break;
9072 		case 0x18: /* 16MB */
9073 			size = 1 << 24;
9074 			break;
9075 		}
9076 		break;
9077 	}
9078 	}
9079 
9080 	/* If we didn't recognize the FLASH part, that's no real issue: the
9081 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9082 	 * use a FLASH part which is at least 4MB in size and has 64KB
9083 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9084 	 * than 4MB, but that's all we really need.
9085 	 */
9086 	if (size == 0) {
9087 		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9088 			 flashid);
9089 		size = 1 << 22;
9090 	}
9091 
9092 	/* Store decoded Flash size and fall through into vetting code. */
9093 	adap->params.sf_size = size;
9094 	adap->params.sf_nsec = size / SF_SEC_SIZE;
9095 
9096 found:
9097 	if (adap->params.sf_size < FLASH_MIN_SIZE)
9098 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9099 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9100 	return 0;
9101 }
9102 
9103 /**
9104  *	t4_prep_adapter - prepare SW and HW for operation
9105  *	@adapter: the adapter
9106  *
9107  *	Initialize adapter SW state for the various HW modules, set initial
9108  *	values for some adapter tunables, take PHYs out of reset, and
9109  *	initialize the MDIO interface.
9110  */
9111 int t4_prep_adapter(struct adapter *adapter)
9112 {
9113 	int ret, ver;
9114 	uint16_t device_id;
9115 	u32 pl_rev;
9116 
9117 	get_pci_mode(adapter, &adapter->params.pci);
9118 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9119 
9120 	ret = t4_get_flash_params(adapter);
9121 	if (ret < 0) {
9122 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9123 		return ret;
9124 	}
9125 
9126 	/* Retrieve adapter's device ID
9127 	 */
9128 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9129 	ver = device_id >> 12;
9130 	adapter->params.chip = 0;
9131 	switch (ver) {
9132 	case CHELSIO_T4:
9133 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9134 		adapter->params.arch.sge_fl_db = DBPRIO_F;
9135 		adapter->params.arch.mps_tcam_size =
9136 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
9137 		adapter->params.arch.mps_rplc_size = 128;
9138 		adapter->params.arch.nchan = NCHAN;
9139 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9140 		adapter->params.arch.vfcount = 128;
9141 		/* Congestion map is for 4 channels so that
9142 		 * MPS can have 4 priority per port.
9143 		 */
9144 		adapter->params.arch.cng_ch_bits_log = 2;
9145 		break;
9146 	case CHELSIO_T5:
9147 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9148 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9149 		adapter->params.arch.mps_tcam_size =
9150 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9151 		adapter->params.arch.mps_rplc_size = 128;
9152 		adapter->params.arch.nchan = NCHAN;
9153 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9154 		adapter->params.arch.vfcount = 128;
9155 		adapter->params.arch.cng_ch_bits_log = 2;
9156 		break;
9157 	case CHELSIO_T6:
9158 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9159 		adapter->params.arch.sge_fl_db = 0;
9160 		adapter->params.arch.mps_tcam_size =
9161 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9162 		adapter->params.arch.mps_rplc_size = 256;
9163 		adapter->params.arch.nchan = 2;
9164 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9165 		adapter->params.arch.vfcount = 256;
9166 		/* Congestion map will be for 2 channels so that
9167 		 * MPS can have 8 priority per port.
9168 		 */
9169 		adapter->params.arch.cng_ch_bits_log = 3;
9170 		break;
9171 	default:
9172 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9173 			device_id);
9174 		return -EINVAL;
9175 	}
9176 
9177 	adapter->params.cim_la_size = CIMLA_SIZE;
9178 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9179 
9180 	/*
9181 	 * Default port for debugging in case we can't reach FW.
9182 	 */
9183 	adapter->params.nports = 1;
9184 	adapter->params.portvec = 1;
9185 	adapter->params.vpd.cclk = 50000;
9186 
9187 	/* Set PCIe completion timeout to 4 seconds. */
9188 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9189 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9190 	return 0;
9191 }
9192 
9193 /**
9194  *	t4_shutdown_adapter - shut down adapter, host & wire
9195  *	@adapter: the adapter
9196  *
9197  *	Perform an emergency shutdown of the adapter and stop it from
9198  *	continuing any further communication on the ports or DMA to the
9199  *	host.  This is typically used when the adapter and/or firmware
9200  *	have crashed and we want to prevent any further accidental
9201  *	communication with the rest of the world.  This will also force
9202  *	the port Link Status to go down -- if register writes work --
9203  *	which should help our peers figure out that we're down.
9204  */
9205 int t4_shutdown_adapter(struct adapter *adapter)
9206 {
9207 	int port;
9208 
9209 	t4_intr_disable(adapter);
9210 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9211 	for_each_port(adapter, port) {
9212 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9213 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9214 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9215 
9216 		t4_write_reg(adapter, a_port_cfg,
9217 			     t4_read_reg(adapter, a_port_cfg)
9218 			     & ~SIGNAL_DET_V(1));
9219 	}
9220 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9221 
9222 	return 0;
9223 }
9224 
9225 /**
9226  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9227  *	@adapter: the adapter
9228  *	@qid: the Queue ID
9229  *	@qtype: the Ingress or Egress type for @qid
9230  *	@user: true if this request is for a user mode queue
9231  *	@pbar2_qoffset: BAR2 Queue Offset
9232  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9233  *
9234  *	Returns the BAR2 SGE Queue Registers information associated with the
9235  *	indicated Absolute Queue ID.  These are passed back in return value
9236  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9237  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9238  *
9239  *	This may return an error which indicates that BAR2 SGE Queue
9240  *	registers aren't available.  If an error is not returned, then the
9241  *	following values are returned:
9242  *
9243  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9244  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9245  *
9246  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9247  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9248  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9249  *	then these "Inferred Queue ID" register may not be used.
9250  */
9251 int t4_bar2_sge_qregs(struct adapter *adapter,
9252 		      unsigned int qid,
9253 		      enum t4_bar2_qtype qtype,
9254 		      int user,
9255 		      u64 *pbar2_qoffset,
9256 		      unsigned int *pbar2_qid)
9257 {
9258 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9259 	u64 bar2_page_offset, bar2_qoffset;
9260 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9261 
9262 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9263 	if (!user && is_t4(adapter->params.chip))
9264 		return -EINVAL;
9265 
9266 	/* Get our SGE Page Size parameters.
9267 	 */
9268 	page_shift = adapter->params.sge.hps + 10;
9269 	page_size = 1 << page_shift;
9270 
9271 	/* Get the right Queues per Page parameters for our Queue.
9272 	 */
9273 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9274 		     ? adapter->params.sge.eq_qpp
9275 		     : adapter->params.sge.iq_qpp);
9276 	qpp_mask = (1 << qpp_shift) - 1;
9277 
9278 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9279 	 *  o The BAR2 page the Queue registers will be in.
9280 	 *  o The BAR2 Queue ID.
9281 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9282 	 */
9283 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9284 	bar2_qid = qid & qpp_mask;
9285 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9286 
9287 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9288 	 * hardware will infer the Absolute Queue ID simply from the writes to
9289 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9290 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9291 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9292 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9293 	 * from the BAR2 Page and BAR2 Queue ID.
9294 	 *
9295 	 * One important censequence of this is that some BAR2 SGE registers
9296 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9297 	 * there.  But other registers synthesize the SGE Queue ID purely
9298 	 * from the writes to the registers -- the Write Combined Doorbell
9299 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9300 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9301 	 * Queue ID can be inferred from simple writes.
9302 	 */
9303 	bar2_qoffset = bar2_page_offset;
9304 	bar2_qinferred = (bar2_qid_offset < page_size);
9305 	if (bar2_qinferred) {
9306 		bar2_qoffset += bar2_qid_offset;
9307 		bar2_qid = 0;
9308 	}
9309 
9310 	*pbar2_qoffset = bar2_qoffset;
9311 	*pbar2_qid = bar2_qid;
9312 	return 0;
9313 }
9314 
9315 /**
9316  *	t4_init_devlog_params - initialize adapter->params.devlog
9317  *	@adap: the adapter
9318  *
9319  *	Initialize various fields of the adapter's Firmware Device Log
9320  *	Parameters structure.
9321  */
9322 int t4_init_devlog_params(struct adapter *adap)
9323 {
9324 	struct devlog_params *dparams = &adap->params.devlog;
9325 	u32 pf_dparams;
9326 	unsigned int devlog_meminfo;
9327 	struct fw_devlog_cmd devlog_cmd;
9328 	int ret;
9329 
9330 	/* If we're dealing with newer firmware, the Device Log Parameters
9331 	 * are stored in a designated register which allows us to access the
9332 	 * Device Log even if we can't talk to the firmware.
9333 	 */
9334 	pf_dparams =
9335 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9336 	if (pf_dparams) {
9337 		unsigned int nentries, nentries128;
9338 
9339 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9340 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9341 
9342 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9343 		nentries = (nentries128 + 1) * 128;
9344 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9345 
9346 		return 0;
9347 	}
9348 
9349 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9350 	 */
9351 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9352 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9353 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9354 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9355 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9356 			 &devlog_cmd);
9357 	if (ret)
9358 		return ret;
9359 
9360 	devlog_meminfo =
9361 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9362 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9363 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9364 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9365 
9366 	return 0;
9367 }
9368 
9369 /**
9370  *	t4_init_sge_params - initialize adap->params.sge
9371  *	@adapter: the adapter
9372  *
9373  *	Initialize various fields of the adapter's SGE Parameters structure.
9374  */
9375 int t4_init_sge_params(struct adapter *adapter)
9376 {
9377 	struct sge_params *sge_params = &adapter->params.sge;
9378 	u32 hps, qpp;
9379 	unsigned int s_hps, s_qpp;
9380 
9381 	/* Extract the SGE Page Size for our PF.
9382 	 */
9383 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9384 	s_hps = (HOSTPAGESIZEPF0_S +
9385 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9386 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9387 
9388 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9389 	 */
9390 	s_qpp = (QUEUESPERPAGEPF0_S +
9391 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9392 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9393 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9394 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9395 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9396 
9397 	return 0;
9398 }
9399 
9400 /**
9401  *      t4_init_tp_params - initialize adap->params.tp
9402  *      @adap: the adapter
9403  *      @sleep_ok: if true we may sleep while awaiting command completion
9404  *
9405  *      Initialize various fields of the adapter's TP Parameters structure.
9406  */
9407 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9408 {
9409 	u32 param, val, v;
9410 	int chan, ret;
9411 
9412 
9413 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9414 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9415 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9416 
9417 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9418 	for (chan = 0; chan < NCHAN; chan++)
9419 		adap->params.tp.tx_modq[chan] = chan;
9420 
9421 	/* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9422 	 * Configuration.
9423 	 */
9424 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9425 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9426 		 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9427 
9428 	/* Read current value */
9429 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9430 			      &param, &val);
9431 	if (ret == 0) {
9432 		dev_info(adap->pdev_dev,
9433 			 "Current filter mode/mask 0x%x:0x%x\n",
9434 			 FW_PARAMS_PARAM_FILTER_MODE_G(val),
9435 			 FW_PARAMS_PARAM_FILTER_MASK_G(val));
9436 		adap->params.tp.vlan_pri_map =
9437 			FW_PARAMS_PARAM_FILTER_MODE_G(val);
9438 		adap->params.tp.filter_mask =
9439 			FW_PARAMS_PARAM_FILTER_MASK_G(val);
9440 	} else {
9441 		dev_info(adap->pdev_dev,
9442 			 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9443 
9444 		/* Incase of older-fw (which doesn't expose the api
9445 		 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9446 		 * the fw api) combination, fall-back to older method of reading
9447 		 * the filter mode from indirect-register
9448 		 */
9449 		t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9450 			       TP_VLAN_PRI_MAP_A, sleep_ok);
9451 
9452 		/* With the older-fw and newer-driver combination we might run
9453 		 * into an issue when user wants to use hash filter region but
9454 		 * the filter_mask is zero, in this case filter_mask validation
9455 		 * is tough. To avoid that we set the filter_mask same as filter
9456 		 * mode, which will behave exactly as the older way of ignoring
9457 		 * the filter mask validation.
9458 		 */
9459 		adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9460 	}
9461 
9462 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9463 		       TP_INGRESS_CONFIG_A, sleep_ok);
9464 
9465 	/* For T6, cache the adapter's compressed error vector
9466 	 * and passing outer header info for encapsulated packets.
9467 	 */
9468 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9469 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9470 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9471 	}
9472 
9473 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9474 	 * shift positions of several elements of the Compressed Filter Tuple
9475 	 * for this adapter which we need frequently ...
9476 	 */
9477 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9478 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9479 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9480 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9481 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9482 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9483 							       PROTOCOL_F);
9484 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9485 								ETHERTYPE_F);
9486 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9487 							       MACMATCH_F);
9488 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9489 								MPSHITTYPE_F);
9490 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9491 							   FRAGMENTATION_F);
9492 
9493 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9494 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9495 	 */
9496 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9497 		adap->params.tp.vnic_shift = -1;
9498 
9499 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9500 	adap->params.tp.hash_filter_mask = v;
9501 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9502 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9503 	return 0;
9504 }
9505 
9506 /**
9507  *      t4_filter_field_shift - calculate filter field shift
9508  *      @adap: the adapter
9509  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9510  *
9511  *      Return the shift position of a filter field within the Compressed
9512  *      Filter Tuple.  The filter field is specified via its selection bit
9513  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9514  */
9515 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9516 {
9517 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9518 	unsigned int sel;
9519 	int field_shift;
9520 
9521 	if ((filter_mode & filter_sel) == 0)
9522 		return -1;
9523 
9524 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9525 		switch (filter_mode & sel) {
9526 		case FCOE_F:
9527 			field_shift += FT_FCOE_W;
9528 			break;
9529 		case PORT_F:
9530 			field_shift += FT_PORT_W;
9531 			break;
9532 		case VNIC_ID_F:
9533 			field_shift += FT_VNIC_ID_W;
9534 			break;
9535 		case VLAN_F:
9536 			field_shift += FT_VLAN_W;
9537 			break;
9538 		case TOS_F:
9539 			field_shift += FT_TOS_W;
9540 			break;
9541 		case PROTOCOL_F:
9542 			field_shift += FT_PROTOCOL_W;
9543 			break;
9544 		case ETHERTYPE_F:
9545 			field_shift += FT_ETHERTYPE_W;
9546 			break;
9547 		case MACMATCH_F:
9548 			field_shift += FT_MACMATCH_W;
9549 			break;
9550 		case MPSHITTYPE_F:
9551 			field_shift += FT_MPSHITTYPE_W;
9552 			break;
9553 		case FRAGMENTATION_F:
9554 			field_shift += FT_FRAGMENTATION_W;
9555 			break;
9556 		}
9557 	}
9558 	return field_shift;
9559 }
9560 
9561 int t4_init_rss_mode(struct adapter *adap, int mbox)
9562 {
9563 	int i, ret;
9564 	struct fw_rss_vi_config_cmd rvc;
9565 
9566 	memset(&rvc, 0, sizeof(rvc));
9567 
9568 	for_each_port(adap, i) {
9569 		struct port_info *p = adap2pinfo(adap, i);
9570 
9571 		rvc.op_to_viid =
9572 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9573 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9574 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9575 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9576 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9577 		if (ret)
9578 			return ret;
9579 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9580 	}
9581 	return 0;
9582 }
9583 
9584 /**
9585  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9586  *	@pi: the port_info
9587  *	@mbox: mailbox to use for the FW command
9588  *	@port: physical port associated with the VI
9589  *	@pf: the PF owning the VI
9590  *	@vf: the VF owning the VI
9591  *	@mac: the MAC address of the VI
9592  *
9593  *	Allocates a virtual interface for the given physical port.  If @mac is
9594  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9595  *	@mac should be large enough to hold an Ethernet address.
9596  *	Returns < 0 on error.
9597  */
9598 int t4_init_portinfo(struct port_info *pi, int mbox,
9599 		     int port, int pf, int vf, u8 mac[])
9600 {
9601 	struct adapter *adapter = pi->adapter;
9602 	unsigned int fw_caps = adapter->params.fw_caps_support;
9603 	struct fw_port_cmd cmd;
9604 	unsigned int rss_size;
9605 	enum fw_port_type port_type;
9606 	int mdio_addr;
9607 	fw_port_cap32_t pcaps, acaps;
9608 	u8 vivld = 0, vin = 0;
9609 	int ret;
9610 
9611 	/* If we haven't yet determined whether we're talking to Firmware
9612 	 * which knows the new 32-bit Port Capabilities, it's time to find
9613 	 * out now.  This will also tell new Firmware to send us Port Status
9614 	 * Updates using the new 32-bit Port Capabilities version of the
9615 	 * Port Information message.
9616 	 */
9617 	if (fw_caps == FW_CAPS_UNKNOWN) {
9618 		u32 param, val;
9619 
9620 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9621 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9622 		val = 1;
9623 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9624 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9625 		adapter->params.fw_caps_support = fw_caps;
9626 	}
9627 
9628 	memset(&cmd, 0, sizeof(cmd));
9629 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9630 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9631 				       FW_PORT_CMD_PORTID_V(port));
9632 	cmd.action_to_len16 = cpu_to_be32(
9633 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9634 				     ? FW_PORT_ACTION_GET_PORT_INFO
9635 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9636 		FW_LEN16(cmd));
9637 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9638 	if (ret)
9639 		return ret;
9640 
9641 	/* Extract the various fields from the Port Information message.
9642 	 */
9643 	if (fw_caps == FW_CAPS16) {
9644 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9645 
9646 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9647 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9648 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9649 			     : -1);
9650 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9651 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9652 	} else {
9653 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9654 
9655 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9656 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9657 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9658 			     : -1);
9659 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9660 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9661 	}
9662 
9663 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9664 			  &vivld, &vin);
9665 	if (ret < 0)
9666 		return ret;
9667 
9668 	pi->viid = ret;
9669 	pi->tx_chan = port;
9670 	pi->lport = port;
9671 	pi->rss_size = rss_size;
9672 	pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9673 
9674 	/* If fw supports returning the VIN as part of FW_VI_CMD,
9675 	 * save the returned values.
9676 	 */
9677 	if (adapter->params.viid_smt_extn_support) {
9678 		pi->vivld = vivld;
9679 		pi->vin = vin;
9680 	} else {
9681 		/* Retrieve the values from VIID */
9682 		pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9683 		pi->vin =  FW_VIID_VIN_G(pi->viid);
9684 	}
9685 
9686 	pi->port_type = port_type;
9687 	pi->mdio_addr = mdio_addr;
9688 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9689 
9690 	init_link_config(&pi->link_cfg, pcaps, acaps);
9691 	return 0;
9692 }
9693 
9694 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9695 {
9696 	u8 addr[6];
9697 	int ret, i, j = 0;
9698 
9699 	for_each_port(adap, i) {
9700 		struct port_info *pi = adap2pinfo(adap, i);
9701 
9702 		while ((adap->params.portvec & (1 << j)) == 0)
9703 			j++;
9704 
9705 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9706 		if (ret)
9707 			return ret;
9708 
9709 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
9710 		j++;
9711 	}
9712 	return 0;
9713 }
9714 
9715 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9716 			u16 *mirror_viid)
9717 {
9718 	int ret;
9719 
9720 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9721 			  NULL, NULL);
9722 	if (ret < 0)
9723 		return ret;
9724 
9725 	if (mirror_viid)
9726 		*mirror_viid = ret;
9727 
9728 	return 0;
9729 }
9730 
9731 /**
9732  *	t4_read_cimq_cfg - read CIM queue configuration
9733  *	@adap: the adapter
9734  *	@base: holds the queue base addresses in bytes
9735  *	@size: holds the queue sizes in bytes
9736  *	@thres: holds the queue full thresholds in bytes
9737  *
9738  *	Returns the current configuration of the CIM queues, starting with
9739  *	the IBQs, then the OBQs.
9740  */
9741 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9742 {
9743 	unsigned int i, v;
9744 	int cim_num_obq = is_t4(adap->params.chip) ?
9745 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9746 
9747 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9748 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9749 			     QUENUMSELECT_V(i));
9750 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9751 		/* value is in 256-byte units */
9752 		*base++ = CIMQBASE_G(v) * 256;
9753 		*size++ = CIMQSIZE_G(v) * 256;
9754 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9755 	}
9756 	for (i = 0; i < cim_num_obq; i++) {
9757 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9758 			     QUENUMSELECT_V(i));
9759 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9760 		/* value is in 256-byte units */
9761 		*base++ = CIMQBASE_G(v) * 256;
9762 		*size++ = CIMQSIZE_G(v) * 256;
9763 	}
9764 }
9765 
9766 /**
9767  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9768  *	@adap: the adapter
9769  *	@qid: the queue index
9770  *	@data: where to store the queue contents
9771  *	@n: capacity of @data in 32-bit words
9772  *
9773  *	Reads the contents of the selected CIM queue starting at address 0 up
9774  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9775  *	error and the number of 32-bit words actually read on success.
9776  */
9777 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9778 {
9779 	int i, err, attempts;
9780 	unsigned int addr;
9781 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9782 
9783 	if (qid > 5 || (n & 3))
9784 		return -EINVAL;
9785 
9786 	addr = qid * nwords;
9787 	if (n > nwords)
9788 		n = nwords;
9789 
9790 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9791 	 * Wait for 1 Sec with a delay of 1 usec.
9792 	 */
9793 	attempts = 1000000;
9794 
9795 	for (i = 0; i < n; i++, addr++) {
9796 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9797 			     IBQDBGEN_F);
9798 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9799 				      attempts, 1);
9800 		if (err)
9801 			return err;
9802 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9803 	}
9804 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9805 	return i;
9806 }
9807 
9808 /**
9809  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9810  *	@adap: the adapter
9811  *	@qid: the queue index
9812  *	@data: where to store the queue contents
9813  *	@n: capacity of @data in 32-bit words
9814  *
9815  *	Reads the contents of the selected CIM queue starting at address 0 up
9816  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9817  *	error and the number of 32-bit words actually read on success.
9818  */
9819 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9820 {
9821 	int i, err;
9822 	unsigned int addr, v, nwords;
9823 	int cim_num_obq = is_t4(adap->params.chip) ?
9824 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9825 
9826 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9827 		return -EINVAL;
9828 
9829 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9830 		     QUENUMSELECT_V(qid));
9831 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9832 
9833 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9834 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9835 	if (n > nwords)
9836 		n = nwords;
9837 
9838 	for (i = 0; i < n; i++, addr++) {
9839 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9840 			     OBQDBGEN_F);
9841 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9842 				      2, 1);
9843 		if (err)
9844 			return err;
9845 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9846 	}
9847 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9848 	return i;
9849 }
9850 
9851 /**
9852  *	t4_cim_read - read a block from CIM internal address space
9853  *	@adap: the adapter
9854  *	@addr: the start address within the CIM address space
9855  *	@n: number of words to read
9856  *	@valp: where to store the result
9857  *
9858  *	Reads a block of 4-byte words from the CIM intenal address space.
9859  */
9860 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9861 		unsigned int *valp)
9862 {
9863 	int ret = 0;
9864 
9865 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9866 		return -EBUSY;
9867 
9868 	for ( ; !ret && n--; addr += 4) {
9869 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9870 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9871 				      0, 5, 2);
9872 		if (!ret)
9873 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9874 	}
9875 	return ret;
9876 }
9877 
9878 /**
9879  *	t4_cim_write - write a block into CIM internal address space
9880  *	@adap: the adapter
9881  *	@addr: the start address within the CIM address space
9882  *	@n: number of words to write
9883  *	@valp: set of values to write
9884  *
9885  *	Writes a block of 4-byte words into the CIM intenal address space.
9886  */
9887 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9888 		 const unsigned int *valp)
9889 {
9890 	int ret = 0;
9891 
9892 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9893 		return -EBUSY;
9894 
9895 	for ( ; !ret && n--; addr += 4) {
9896 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9897 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9898 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9899 				      0, 5, 2);
9900 	}
9901 	return ret;
9902 }
9903 
9904 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9905 			 unsigned int val)
9906 {
9907 	return t4_cim_write(adap, addr, 1, &val);
9908 }
9909 
9910 /**
9911  *	t4_cim_read_la - read CIM LA capture buffer
9912  *	@adap: the adapter
9913  *	@la_buf: where to store the LA data
9914  *	@wrptr: the HW write pointer within the capture buffer
9915  *
9916  *	Reads the contents of the CIM LA buffer with the most recent entry at
9917  *	the end	of the returned data and with the entry at @wrptr first.
9918  *	We try to leave the LA in the running state we find it in.
9919  */
9920 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9921 {
9922 	int i, ret;
9923 	unsigned int cfg, val, idx;
9924 
9925 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9926 	if (ret)
9927 		return ret;
9928 
9929 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9930 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9931 		if (ret)
9932 			return ret;
9933 	}
9934 
9935 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9936 	if (ret)
9937 		goto restart;
9938 
9939 	idx = UPDBGLAWRPTR_G(val);
9940 	if (wrptr)
9941 		*wrptr = idx;
9942 
9943 	for (i = 0; i < adap->params.cim_la_size; i++) {
9944 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9945 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9946 		if (ret)
9947 			break;
9948 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9949 		if (ret)
9950 			break;
9951 		if (val & UPDBGLARDEN_F) {
9952 			ret = -ETIMEDOUT;
9953 			break;
9954 		}
9955 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9956 		if (ret)
9957 			break;
9958 
9959 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9960 		 * identify the 32-bit portion of the full 312-bit data
9961 		 */
9962 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9963 			idx = (idx & 0xff0) + 0x10;
9964 		else
9965 			idx++;
9966 		/* address can't exceed 0xfff */
9967 		idx &= UPDBGLARDPTR_M;
9968 	}
9969 restart:
9970 	if (cfg & UPDBGLAEN_F) {
9971 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9972 				      cfg & ~UPDBGLARDEN_F);
9973 		if (!ret)
9974 			ret = r;
9975 	}
9976 	return ret;
9977 }
9978 
9979 /**
9980  *	t4_tp_read_la - read TP LA capture buffer
9981  *	@adap: the adapter
9982  *	@la_buf: where to store the LA data
9983  *	@wrptr: the HW write pointer within the capture buffer
9984  *
9985  *	Reads the contents of the TP LA buffer with the most recent entry at
9986  *	the end	of the returned data and with the entry at @wrptr first.
9987  *	We leave the LA in the running state we find it in.
9988  */
9989 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9990 {
9991 	bool last_incomplete;
9992 	unsigned int i, cfg, val, idx;
9993 
9994 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9995 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9996 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9997 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
9998 
9999 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10000 	idx = DBGLAWPTR_G(val);
10001 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10002 	if (last_incomplete)
10003 		idx = (idx + 1) & DBGLARPTR_M;
10004 	if (wrptr)
10005 		*wrptr = idx;
10006 
10007 	val &= 0xffff;
10008 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
10009 	val |= adap->params.tp.la_mask;
10010 
10011 	for (i = 0; i < TPLA_SIZE; i++) {
10012 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10013 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10014 		idx = (idx + 1) & DBGLARPTR_M;
10015 	}
10016 
10017 	/* Wipe out last entry if it isn't valid */
10018 	if (last_incomplete)
10019 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10020 
10021 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
10022 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10023 			     cfg | adap->params.tp.la_mask);
10024 }
10025 
10026 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10027  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10028  * state for more than the Warning Threshold then we'll issue a warning about
10029  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10030  * appears to be hung every Warning Repeat second till the situation clears.
10031  * If the situation clears, we'll note that as well.
10032  */
10033 #define SGE_IDMA_WARN_THRESH 1
10034 #define SGE_IDMA_WARN_REPEAT 300
10035 
10036 /**
10037  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10038  *	@adapter: the adapter
10039  *	@idma: the adapter IDMA Monitor state
10040  *
10041  *	Initialize the state of an SGE Ingress DMA Monitor.
10042  */
10043 void t4_idma_monitor_init(struct adapter *adapter,
10044 			  struct sge_idma_monitor_state *idma)
10045 {
10046 	/* Initialize the state variables for detecting an SGE Ingress DMA
10047 	 * hang.  The SGE has internal counters which count up on each clock
10048 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10049 	 * same state they were on the previous clock tick.  The clock used is
10050 	 * the Core Clock so we have a limit on the maximum "time" they can
10051 	 * record; typically a very small number of seconds.  For instance,
10052 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10053 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10054 	 * risk of having the "timers" overflow and give us the flexibility to
10055 	 * maintain a Hung SGE State Machine of our own which operates across
10056 	 * a longer time frame.
10057 	 */
10058 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10059 	idma->idma_stalled[0] = 0;
10060 	idma->idma_stalled[1] = 0;
10061 }
10062 
10063 /**
10064  *	t4_idma_monitor - monitor SGE Ingress DMA state
10065  *	@adapter: the adapter
10066  *	@idma: the adapter IDMA Monitor state
10067  *	@hz: number of ticks/second
10068  *	@ticks: number of ticks since the last IDMA Monitor call
10069  */
10070 void t4_idma_monitor(struct adapter *adapter,
10071 		     struct sge_idma_monitor_state *idma,
10072 		     int hz, int ticks)
10073 {
10074 	int i, idma_same_state_cnt[2];
10075 
10076 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10077 	  * are counters inside the SGE which count up on each clock when the
10078 	  * SGE finds its Ingress DMA State Engines in the same states they
10079 	  * were in the previous clock.  The counters will peg out at
10080 	  * 0xffffffff without wrapping around so once they pass the 1s
10081 	  * threshold they'll stay above that till the IDMA state changes.
10082 	  */
10083 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10084 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10085 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10086 
10087 	for (i = 0; i < 2; i++) {
10088 		u32 debug0, debug11;
10089 
10090 		/* If the Ingress DMA Same State Counter ("timer") is less
10091 		 * than 1s, then we can reset our synthesized Stall Timer and
10092 		 * continue.  If we have previously emitted warnings about a
10093 		 * potential stalled Ingress Queue, issue a note indicating
10094 		 * that the Ingress Queue has resumed forward progress.
10095 		 */
10096 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10097 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10098 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10099 					 "resumed after %d seconds\n",
10100 					 i, idma->idma_qid[i],
10101 					 idma->idma_stalled[i] / hz);
10102 			idma->idma_stalled[i] = 0;
10103 			continue;
10104 		}
10105 
10106 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10107 		 * domain.  The first time we get here it'll be because we
10108 		 * passed the 1s Threshold; each additional time it'll be
10109 		 * because the RX Timer Callback is being fired on its regular
10110 		 * schedule.
10111 		 *
10112 		 * If the stall is below our Potential Hung Ingress Queue
10113 		 * Warning Threshold, continue.
10114 		 */
10115 		if (idma->idma_stalled[i] == 0) {
10116 			idma->idma_stalled[i] = hz;
10117 			idma->idma_warn[i] = 0;
10118 		} else {
10119 			idma->idma_stalled[i] += ticks;
10120 			idma->idma_warn[i] -= ticks;
10121 		}
10122 
10123 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10124 			continue;
10125 
10126 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10127 		 */
10128 		if (idma->idma_warn[i] > 0)
10129 			continue;
10130 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10131 
10132 		/* Read and save the SGE IDMA State and Queue ID information.
10133 		 * We do this every time in case it changes across time ...
10134 		 * can't be too careful ...
10135 		 */
10136 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10137 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10138 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10139 
10140 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10141 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10142 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10143 
10144 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10145 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10146 			 i, idma->idma_qid[i], idma->idma_state[i],
10147 			 idma->idma_stalled[i] / hz,
10148 			 debug0, debug11);
10149 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10150 	}
10151 }
10152 
10153 /**
10154  *	t4_load_cfg - download config file
10155  *	@adap: the adapter
10156  *	@cfg_data: the cfg text file to write
10157  *	@size: text file size
10158  *
10159  *	Write the supplied config text file to the card's serial flash.
10160  */
10161 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10162 {
10163 	int ret, i, n, cfg_addr;
10164 	unsigned int addr;
10165 	unsigned int flash_cfg_start_sec;
10166 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10167 
10168 	cfg_addr = t4_flash_cfg_addr(adap);
10169 	if (cfg_addr < 0)
10170 		return cfg_addr;
10171 
10172 	addr = cfg_addr;
10173 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10174 
10175 	if (size > FLASH_CFG_MAX_SIZE) {
10176 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10177 			FLASH_CFG_MAX_SIZE);
10178 		return -EFBIG;
10179 	}
10180 
10181 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10182 			 sf_sec_size);
10183 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10184 				     flash_cfg_start_sec + i - 1);
10185 	/* If size == 0 then we're simply erasing the FLASH sectors associated
10186 	 * with the on-adapter Firmware Configuration File.
10187 	 */
10188 	if (ret || size == 0)
10189 		goto out;
10190 
10191 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10192 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10193 		if ((size - i) <  SF_PAGE_SIZE)
10194 			n = size - i;
10195 		else
10196 			n = SF_PAGE_SIZE;
10197 		ret = t4_write_flash(adap, addr, n, cfg_data, true);
10198 		if (ret)
10199 			goto out;
10200 
10201 		addr += SF_PAGE_SIZE;
10202 		cfg_data += SF_PAGE_SIZE;
10203 	}
10204 
10205 out:
10206 	if (ret)
10207 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
10208 			(size == 0 ? "clear" : "download"), ret);
10209 	return ret;
10210 }
10211 
10212 /**
10213  *	t4_set_vf_mac_acl - Set MAC address for the specified VF
10214  *	@adapter: The adapter
10215  *	@vf: one of the VFs instantiated by the specified PF
10216  *	@naddr: the number of MAC addresses
10217  *	@addr: the MAC address(es) to be set to the specified VF
10218  */
10219 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10220 		      unsigned int naddr, u8 *addr)
10221 {
10222 	struct fw_acl_mac_cmd cmd;
10223 
10224 	memset(&cmd, 0, sizeof(cmd));
10225 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10226 				    FW_CMD_REQUEST_F |
10227 				    FW_CMD_WRITE_F |
10228 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10229 				    FW_ACL_MAC_CMD_VFN_V(vf));
10230 
10231 	/* Note: Do not enable the ACL */
10232 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10233 	cmd.nmac = naddr;
10234 
10235 	switch (adapter->pf) {
10236 	case 3:
10237 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10238 		break;
10239 	case 2:
10240 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10241 		break;
10242 	case 1:
10243 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10244 		break;
10245 	case 0:
10246 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10247 		break;
10248 	}
10249 
10250 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10251 }
10252 
10253 /**
10254  * t4_read_pace_tbl - read the pace table
10255  * @adap: the adapter
10256  * @pace_vals: holds the returned values
10257  *
10258  * Returns the values of TP's pace table in microseconds.
10259  */
10260 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10261 {
10262 	unsigned int i, v;
10263 
10264 	for (i = 0; i < NTX_SCHED; i++) {
10265 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10266 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10267 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10268 	}
10269 }
10270 
10271 /**
10272  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10273  * @adap: the adapter
10274  * @sched: the scheduler index
10275  * @kbps: the byte rate in Kbps
10276  * @ipg: the interpacket delay in tenths of nanoseconds
10277  * @sleep_ok: if true we may sleep while awaiting command completion
10278  *
10279  * Return the current configuration of a HW Tx scheduler.
10280  */
10281 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10282 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10283 {
10284 	unsigned int v, addr, bpt, cpt;
10285 
10286 	if (kbps) {
10287 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10288 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10289 		if (sched & 1)
10290 			v >>= 16;
10291 		bpt = (v >> 8) & 0xff;
10292 		cpt = v & 0xff;
10293 		if (!cpt) {
10294 			*kbps = 0;	/* scheduler disabled */
10295 		} else {
10296 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10297 			*kbps = (v * bpt) / 125;
10298 		}
10299 	}
10300 	if (ipg) {
10301 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10302 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10303 		if (sched & 1)
10304 			v >>= 16;
10305 		v &= 0xffff;
10306 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10307 	}
10308 }
10309 
10310 /* t4_sge_ctxt_rd - read an SGE context through FW
10311  * @adap: the adapter
10312  * @mbox: mailbox to use for the FW command
10313  * @cid: the context id
10314  * @ctype: the context type
10315  * @data: where to store the context data
10316  *
10317  * Issues a FW command through the given mailbox to read an SGE context.
10318  */
10319 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10320 		   enum ctxt_type ctype, u32 *data)
10321 {
10322 	struct fw_ldst_cmd c;
10323 	int ret;
10324 
10325 	if (ctype == CTXT_FLM)
10326 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10327 	else
10328 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10329 
10330 	memset(&c, 0, sizeof(c));
10331 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10332 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10333 					FW_LDST_CMD_ADDRSPACE_V(ret));
10334 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10335 	c.u.idctxt.physid = cpu_to_be32(cid);
10336 
10337 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10338 	if (ret == 0) {
10339 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10340 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10341 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10342 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10343 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10344 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10345 	}
10346 	return ret;
10347 }
10348 
10349 /**
10350  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10351  * @adap: the adapter
10352  * @cid: the context id
10353  * @ctype: the context type
10354  * @data: where to store the context data
10355  *
10356  * Reads an SGE context directly, bypassing FW.  This is only for
10357  * debugging when FW is unavailable.
10358  */
10359 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10360 		      enum ctxt_type ctype, u32 *data)
10361 {
10362 	int i, ret;
10363 
10364 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10365 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10366 	if (!ret)
10367 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10368 			*data++ = t4_read_reg(adap, i);
10369 	return ret;
10370 }
10371 
10372 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10373 		    u8 rateunit, u8 ratemode, u8 channel, u8 class,
10374 		    u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10375 		    u16 burstsize)
10376 {
10377 	struct fw_sched_cmd cmd;
10378 
10379 	memset(&cmd, 0, sizeof(cmd));
10380 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10381 				      FW_CMD_REQUEST_F |
10382 				      FW_CMD_WRITE_F);
10383 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10384 
10385 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10386 	cmd.u.params.type = type;
10387 	cmd.u.params.level = level;
10388 	cmd.u.params.mode = mode;
10389 	cmd.u.params.ch = channel;
10390 	cmd.u.params.cl = class;
10391 	cmd.u.params.unit = rateunit;
10392 	cmd.u.params.rate = ratemode;
10393 	cmd.u.params.min = cpu_to_be32(minrate);
10394 	cmd.u.params.max = cpu_to_be32(maxrate);
10395 	cmd.u.params.weight = cpu_to_be16(weight);
10396 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10397 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10398 
10399 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10400 			       NULL, 1);
10401 }
10402 
10403 /**
10404  *	t4_i2c_rd - read I2C data from adapter
10405  *	@adap: the adapter
10406  *	@mbox: mailbox to use for the FW command
10407  *	@port: Port number if per-port device; <0 if not
10408  *	@devid: per-port device ID or absolute device ID
10409  *	@offset: byte offset into device I2C space
10410  *	@len: byte length of I2C space data
10411  *	@buf: buffer in which to return I2C data
10412  *
10413  *	Reads the I2C data from the indicated device and location.
10414  */
10415 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10416 	      unsigned int devid, unsigned int offset,
10417 	      unsigned int len, u8 *buf)
10418 {
10419 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10420 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10421 	int ret = 0;
10422 
10423 	if (len > I2C_PAGE_SIZE)
10424 		return -EINVAL;
10425 
10426 	/* Dont allow reads that spans multiple pages */
10427 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10428 		return -EINVAL;
10429 
10430 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10431 	ldst_cmd.op_to_addrspace =
10432 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10433 			    FW_CMD_REQUEST_F |
10434 			    FW_CMD_READ_F |
10435 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10436 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10437 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10438 	ldst_cmd.u.i2c.did = devid;
10439 
10440 	while (len > 0) {
10441 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10442 
10443 		ldst_cmd.u.i2c.boffset = offset;
10444 		ldst_cmd.u.i2c.blen = i2c_len;
10445 
10446 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10447 				 &ldst_rpl);
10448 		if (ret)
10449 			break;
10450 
10451 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10452 		offset += i2c_len;
10453 		buf += i2c_len;
10454 		len -= i2c_len;
10455 	}
10456 
10457 	return ret;
10458 }
10459 
10460 /**
10461  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10462  *      @adap: the adapter
10463  *      @mbox: mailbox to use for the FW command
10464  *      @vf: one of the VFs instantiated by the specified PF
10465  *      @vlan: The vlanid to be set
10466  */
10467 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10468 		    u16 vlan)
10469 {
10470 	struct fw_acl_vlan_cmd vlan_cmd;
10471 	unsigned int enable;
10472 
10473 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10474 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10475 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10476 					 FW_CMD_REQUEST_F |
10477 					 FW_CMD_WRITE_F |
10478 					 FW_CMD_EXEC_F |
10479 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10480 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10481 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10482 	/* Drop all packets that donot match vlan id */
10483 	vlan_cmd.dropnovlan_fm = (enable
10484 				  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10485 				     FW_ACL_VLAN_CMD_FM_F) : 0);
10486 	if (enable != 0) {
10487 		vlan_cmd.nvlan = 1;
10488 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10489 	}
10490 
10491 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10492 }
10493 
10494 /**
10495  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10496  *	@device_id: the device ID to write.
10497  *	@boot_data: the boot image to modify.
10498  *
10499  *	Write the supplied device ID to the boot BIOS image.
10500  */
10501 static void modify_device_id(int device_id, u8 *boot_data)
10502 {
10503 	struct cxgb4_pcir_data *pcir_header;
10504 	struct legacy_pci_rom_hdr *header;
10505 	u8 *cur_header = boot_data;
10506 	u16 pcir_offset;
10507 
10508 	 /* Loop through all chained images and change the device ID's */
10509 	do {
10510 		header = (struct legacy_pci_rom_hdr *)cur_header;
10511 		pcir_offset = le16_to_cpu(header->pcir_offset);
10512 		pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10513 			      pcir_offset);
10514 
10515 		/**
10516 		 * Only modify the Device ID if code type is Legacy or HP.
10517 		 * 0x00: Okay to modify
10518 		 * 0x01: FCODE. Do not modify
10519 		 * 0x03: Okay to modify
10520 		 * 0x04-0xFF: Do not modify
10521 		 */
10522 		if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10523 			u8 csum = 0;
10524 			int i;
10525 
10526 			/**
10527 			 * Modify Device ID to match current adatper
10528 			 */
10529 			pcir_header->device_id = cpu_to_le16(device_id);
10530 
10531 			/**
10532 			 * Set checksum temporarily to 0.
10533 			 * We will recalculate it later.
10534 			 */
10535 			header->cksum = 0x0;
10536 
10537 			/**
10538 			 * Calculate and update checksum
10539 			 */
10540 			for (i = 0; i < (header->size512 * 512); i++)
10541 				csum += cur_header[i];
10542 
10543 			/**
10544 			 * Invert summed value to create the checksum
10545 			 * Writing new checksum value directly to the boot data
10546 			 */
10547 			cur_header[7] = -csum;
10548 
10549 		} else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10550 			/**
10551 			 * Modify Device ID to match current adatper
10552 			 */
10553 			pcir_header->device_id = cpu_to_le16(device_id);
10554 		}
10555 
10556 		/**
10557 		 * Move header pointer up to the next image in the ROM.
10558 		 */
10559 		cur_header += header->size512 * 512;
10560 	} while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10561 }
10562 
10563 /**
10564  *	t4_load_boot - download boot flash
10565  *	@adap: the adapter
10566  *	@boot_data: the boot image to write
10567  *	@boot_addr: offset in flash to write boot_data
10568  *	@size: image size
10569  *
10570  *	Write the supplied boot image to the card's serial flash.
10571  *	The boot image has the following sections: a 28-byte header and the
10572  *	boot image.
10573  */
10574 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10575 		 unsigned int boot_addr, unsigned int size)
10576 {
10577 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10578 	unsigned int boot_sector = (boot_addr * 1024);
10579 	struct cxgb4_pci_exp_rom_header *header;
10580 	struct cxgb4_pcir_data *pcir_header;
10581 	int pcir_offset;
10582 	unsigned int i;
10583 	u16 device_id;
10584 	int ret, addr;
10585 
10586 	/**
10587 	 * Make sure the boot image does not encroach on the firmware region
10588 	 */
10589 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10590 		dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10591 		return -EFBIG;
10592 	}
10593 
10594 	/* Get boot header */
10595 	header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10596 	pcir_offset = le16_to_cpu(header->pcir_offset);
10597 	/* PCIR Data Structure */
10598 	pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10599 
10600 	/**
10601 	 * Perform some primitive sanity testing to avoid accidentally
10602 	 * writing garbage over the boot sectors.  We ought to check for
10603 	 * more but it's not worth it for now ...
10604 	 */
10605 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10606 		dev_err(adap->pdev_dev, "boot image too small/large\n");
10607 		return -EFBIG;
10608 	}
10609 
10610 	if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10611 		dev_err(adap->pdev_dev, "Boot image missing signature\n");
10612 		return -EINVAL;
10613 	}
10614 
10615 	/* Check PCI header signature */
10616 	if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10617 		dev_err(adap->pdev_dev, "PCI header missing signature\n");
10618 		return -EINVAL;
10619 	}
10620 
10621 	/* Check Vendor ID matches Chelsio ID*/
10622 	if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10623 		dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10624 		return -EINVAL;
10625 	}
10626 
10627 	/**
10628 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10629 	 * and Boot configuration data sections. These 3 boot sections span
10630 	 * sectors 0 to 7 in flash and live right before the FW image location.
10631 	 */
10632 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10633 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10634 				     (boot_sector >> 16) + i - 1);
10635 
10636 	/**
10637 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10638 	 * with the on-adapter option ROM file
10639 	 */
10640 	if (ret || size == 0)
10641 		goto out;
10642 	/* Retrieve adapter's device ID */
10643 	pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10644        /* Want to deal with PF 0 so I strip off PF 4 indicator */
10645 	device_id = device_id & 0xf0ff;
10646 
10647 	 /* Check PCIE Device ID */
10648 	if (le16_to_cpu(pcir_header->device_id) != device_id) {
10649 		/**
10650 		 * Change the device ID in the Boot BIOS image to match
10651 		 * the Device ID of the current adapter.
10652 		 */
10653 		modify_device_id(device_id, boot_data);
10654 	}
10655 
10656 	/**
10657 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10658 	 * we finish copying the rest of the boot image. This will ensure
10659 	 * that the BIOS boot header will only be written if the boot image
10660 	 * was written in full.
10661 	 */
10662 	addr = boot_sector;
10663 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10664 		addr += SF_PAGE_SIZE;
10665 		boot_data += SF_PAGE_SIZE;
10666 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data,
10667 				     false);
10668 		if (ret)
10669 			goto out;
10670 	}
10671 
10672 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10673 			     (const u8 *)header, false);
10674 
10675 out:
10676 	if (ret)
10677 		dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10678 			ret);
10679 	return ret;
10680 }
10681 
10682 /**
10683  *	t4_flash_bootcfg_addr - return the address of the flash
10684  *	optionrom configuration
10685  *	@adapter: the adapter
10686  *
10687  *	Return the address within the flash where the OptionROM Configuration
10688  *	is stored, or an error if the device FLASH is too small to contain
10689  *	a OptionROM Configuration.
10690  */
10691 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10692 {
10693 	/**
10694 	 * If the device FLASH isn't large enough to hold a Firmware
10695 	 * Configuration File, return an error.
10696 	 */
10697 	if (adapter->params.sf_size <
10698 	    FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10699 		return -ENOSPC;
10700 
10701 	return FLASH_BOOTCFG_START;
10702 }
10703 
10704 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10705 {
10706 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10707 	struct cxgb4_bootcfg_data *header;
10708 	unsigned int flash_cfg_start_sec;
10709 	unsigned int addr, npad;
10710 	int ret, i, n, cfg_addr;
10711 
10712 	cfg_addr = t4_flash_bootcfg_addr(adap);
10713 	if (cfg_addr < 0)
10714 		return cfg_addr;
10715 
10716 	addr = cfg_addr;
10717 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10718 
10719 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10720 		dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10721 			FLASH_BOOTCFG_MAX_SIZE);
10722 		return -EFBIG;
10723 	}
10724 
10725 	header = (struct cxgb4_bootcfg_data *)cfg_data;
10726 	if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10727 		dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10728 		ret = -EINVAL;
10729 		goto out;
10730 	}
10731 
10732 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10733 			 sf_sec_size);
10734 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10735 				     flash_cfg_start_sec + i - 1);
10736 
10737 	/**
10738 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10739 	 * with the on-adapter OptionROM Configuration File.
10740 	 */
10741 	if (ret || size == 0)
10742 		goto out;
10743 
10744 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10745 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10746 		n = min_t(u32, size - i, SF_PAGE_SIZE);
10747 
10748 		ret = t4_write_flash(adap, addr, n, cfg_data, false);
10749 		if (ret)
10750 			goto out;
10751 
10752 		addr += SF_PAGE_SIZE;
10753 		cfg_data += SF_PAGE_SIZE;
10754 	}
10755 
10756 	npad = ((size + 4 - 1) & ~3) - size;
10757 	for (i = 0; i < npad; i++) {
10758 		u8 data = 0;
10759 
10760 		ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data,
10761 				     false);
10762 		if (ret)
10763 			goto out;
10764 	}
10765 
10766 out:
10767 	if (ret)
10768 		dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10769 			(size == 0 ? "clear" : "download"), ret);
10770 	return ret;
10771 }
10772