/* * This file is part of the Chelsio T4 Ethernet driver for Linux. * * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include "cxgb4.h" #include "t4_regs.h" #include "t4_values.h" #include "t4fw_api.h" #include "t4fw_version.h" /** * t4_wait_op_done_val - wait until an operation is completed * @adapter: the adapter performing the operation * @reg: the register to check for completion * @mask: a single-bit field within @reg that indicates completion * @polarity: the value of the field when the operation is completed * @attempts: number of check iterations * @delay: delay in usecs between iterations * @valp: where to store the value of the register at completion time * * Wait until an operation is completed by checking a bit in a register * up to @attempts times. If @valp is not NULL the value of the register * at the time it indicated completion is stored there. Returns 0 if the * operation completes and -EAGAIN otherwise. */ static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, int polarity, int attempts, int delay, u32 *valp) { while (1) { u32 val = t4_read_reg(adapter, reg); if (!!(val & mask) == polarity) { if (valp) *valp = val; return 0; } if (--attempts == 0) return -EAGAIN; if (delay) udelay(delay); } } static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, int polarity, int attempts, int delay) { return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, delay, NULL); } /** * t4_set_reg_field - set a register field to a value * @adapter: the adapter to program * @addr: the register address * @mask: specifies the portion of the register to modify * @val: the new value for the register field * * Sets a register field specified by the supplied mask to the * given value. */ void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, u32 val) { u32 v = t4_read_reg(adapter, addr) & ~mask; t4_write_reg(adapter, addr, v | val); (void) t4_read_reg(adapter, addr); /* flush */ } /** * t4_read_indirect - read indirectly addressed registers * @adap: the adapter * @addr_reg: register holding the indirect address * @data_reg: register holding the value of the indirect register * @vals: where the read register values are stored * @nregs: how many indirect registers to read * @start_idx: index of first indirect register to read * * Reads registers that are accessed indirectly through an address/data * register pair. */ void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, unsigned int data_reg, u32 *vals, unsigned int nregs, unsigned int start_idx) { while (nregs--) { t4_write_reg(adap, addr_reg, start_idx); *vals++ = t4_read_reg(adap, data_reg); start_idx++; } } /** * t4_write_indirect - write indirectly addressed registers * @adap: the adapter * @addr_reg: register holding the indirect addresses * @data_reg: register holding the value for the indirect registers * @vals: values to write * @nregs: how many indirect registers to write * @start_idx: address of first indirect register to write * * Writes a sequential block of registers that are accessed indirectly * through an address/data register pair. */ void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, unsigned int data_reg, const u32 *vals, unsigned int nregs, unsigned int start_idx) { while (nregs--) { t4_write_reg(adap, addr_reg, start_idx++); t4_write_reg(adap, data_reg, *vals++); } } /* * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor * mechanism. This guarantees that we get the real value even if we're * operating within a Virtual Machine and the Hypervisor is trapping our * Configuration Space accesses. */ void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) { u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) req |= ENABLE_F; else req |= T6_ENABLE_F; if (is_t4(adap->params.chip)) req |= LOCALCFG_F; t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a * Configuration Space read. (None of the other fields matter when * ENABLE is 0 so a simple register write is easier than a * read-modify-write via t4_set_reg_field().) */ t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); } /* * t4_report_fw_error - report firmware error * @adap: the adapter * * The adapter firmware can indicate error conditions to the host. * If the firmware has indicated an error, print out the reason for * the firmware error. */ static void t4_report_fw_error(struct adapter *adap) { static const char *const reason[] = { "Crash", /* PCIE_FW_EVAL_CRASH */ "During Device Preparation", /* PCIE_FW_EVAL_PREP */ "During Device Configuration", /* PCIE_FW_EVAL_CONF */ "During Device Initialization", /* PCIE_FW_EVAL_INIT */ "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ "Reserved", /* reserved */ }; u32 pcie_fw; pcie_fw = t4_read_reg(adap, PCIE_FW_A); if (pcie_fw & PCIE_FW_ERR_F) { dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", reason[PCIE_FW_EVAL_G(pcie_fw)]); adap->flags &= ~CXGB4_FW_OK; } } /* * Get the reply to a mailbox command and store it in @rpl in big-endian order. */ static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, u32 mbox_addr) { for ( ; nflit; nflit--, mbox_addr += 8) *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); } /* * Handle a FW assertion reported in a mailbox. */ static void fw_asrt(struct adapter *adap, u32 mbox_addr) { struct fw_debug_cmd asrt; get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); dev_alert(adap->pdev_dev, "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); } /** * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log * @adapter: the adapter * @cmd: the Firmware Mailbox Command or Reply * @size: command length in bytes * @access: the time (ms) needed to access the Firmware Mailbox * @execute: the time (ms) the command spent being executed */ static void t4_record_mbox(struct adapter *adapter, const __be64 *cmd, unsigned int size, int access, int execute) { struct mbox_cmd_log *log = adapter->mbox_log; struct mbox_cmd *entry; int i; entry = mbox_cmd_log_entry(log, log->cursor++); if (log->cursor == log->size) log->cursor = 0; for (i = 0; i < size / 8; i++) entry->cmd[i] = be64_to_cpu(cmd[i]); while (i < MBOX_LEN / 8) entry->cmd[i++] = 0; entry->timestamp = jiffies; entry->seqno = log->seqno++; entry->access = access; entry->execute = execute; } /** * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox * @adap: the adapter * @mbox: index of the mailbox to use * @cmd: the command to write * @size: command length in bytes * @rpl: where to optionally store the reply * @sleep_ok: if true we may sleep while awaiting command completion * @timeout: time to wait for command to finish before timing out * * Sends the given command to FW through the selected mailbox and waits * for the FW to execute the command. If @rpl is not %NULL it is used to * store the FW's reply to the command. The command and its optional * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms * to respond. @sleep_ok determines whether we may sleep while awaiting * the response. If sleeping is allowed we use progressive backoff * otherwise we spin. * * The return value is 0 on success or a negative errno on failure. A * failure can happen either because we are not able to execute the * command or FW executes it but signals an error. In the latter case * the return value is the error code indicated by FW (negated). */ int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, int size, void *rpl, bool sleep_ok, int timeout) { static const int delay[] = { 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 }; struct mbox_list entry; u16 access = 0; u16 execute = 0; u32 v; u64 res; int i, ms, delay_idx, ret; const __be64 *p = cmd; u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); __be64 cmd_rpl[MBOX_LEN / 8]; u32 pcie_fw; if ((size & 15) || size > MBOX_LEN) return -EINVAL; /* * If the device is off-line, as in EEH, commands will time out. * Fail them early so we don't waste time waiting. */ if (adap->pdev->error_state != pci_channel_io_normal) return -EIO; /* If we have a negative timeout, that implies that we can't sleep. */ if (timeout < 0) { sleep_ok = false; timeout = -timeout; } /* Queue ourselves onto the mailbox access list. When our entry is at * the front of the list, we have rights to access the mailbox. So we * wait [for a while] till we're at the front [or bail out with an * EBUSY] ... */ spin_lock_bh(&adap->mbox_lock); list_add_tail(&entry.list, &adap->mlist.list); spin_unlock_bh(&adap->mbox_lock); delay_idx = 0; ms = delay[0]; for (i = 0; ; i += ms) { /* If we've waited too long, return a busy indication. This * really ought to be based on our initial position in the * mailbox access list but this is a start. We very rarely * contend on access to the mailbox ... */ pcie_fw = t4_read_reg(adap, PCIE_FW_A); if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { spin_lock_bh(&adap->mbox_lock); list_del(&entry.list); spin_unlock_bh(&adap->mbox_lock); ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; t4_record_mbox(adap, cmd, size, access, ret); return ret; } /* If we're at the head, break out and start the mailbox * protocol. */ if (list_first_entry(&adap->mlist.list, struct mbox_list, list) == &entry) break; /* Delay for a bit before checking again ... */ if (sleep_ok) { ms = delay[delay_idx]; /* last element may repeat */ if (delay_idx < ARRAY_SIZE(delay) - 1) delay_idx++; msleep(ms); } else { mdelay(ms); } } /* Loop trying to get ownership of the mailbox. Return an error * if we can't gain ownership. */ v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); if (v != MBOX_OWNER_DRV) { spin_lock_bh(&adap->mbox_lock); list_del(&entry.list); spin_unlock_bh(&adap->mbox_lock); ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; t4_record_mbox(adap, cmd, size, access, ret); return ret; } /* Copy in the new mailbox command and send it on its way ... */ t4_record_mbox(adap, cmd, size, access, 0); for (i = 0; i < size; i += 8) t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); t4_read_reg(adap, ctl_reg); /* flush write */ delay_idx = 0; ms = delay[0]; for (i = 0; !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && i < timeout; i += ms) { if (sleep_ok) { ms = delay[delay_idx]; /* last element may repeat */ if (delay_idx < ARRAY_SIZE(delay) - 1) delay_idx++; msleep(ms); } else mdelay(ms); v = t4_read_reg(adap, ctl_reg); if (MBOWNER_G(v) == MBOX_OWNER_DRV) { if (!(v & MBMSGVALID_F)) { t4_write_reg(adap, ctl_reg, 0); continue; } get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); res = be64_to_cpu(cmd_rpl[0]); if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { fw_asrt(adap, data_reg); res = FW_CMD_RETVAL_V(EIO); } else if (rpl) { memcpy(rpl, cmd_rpl, size); } t4_write_reg(adap, ctl_reg, 0); execute = i + ms; t4_record_mbox(adap, cmd_rpl, MBOX_LEN, access, execute); spin_lock_bh(&adap->mbox_lock); list_del(&entry.list); spin_unlock_bh(&adap->mbox_lock); return -FW_CMD_RETVAL_G((int)res); } } ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; t4_record_mbox(adap, cmd, size, access, ret); dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", *(const u8 *)cmd, mbox); t4_report_fw_error(adap); spin_lock_bh(&adap->mbox_lock); list_del(&entry.list); spin_unlock_bh(&adap->mbox_lock); t4_fatal_err(adap); return ret; } int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, void *rpl, bool sleep_ok) { return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, FW_CMD_MAX_TIMEOUT); } static int t4_edc_err_read(struct adapter *adap, int idx) { u32 edc_ecc_err_addr_reg; u32 rdata_reg; if (is_t4(adap->params.chip)) { CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); return 0; } if (idx != 0 && idx != 1) { CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); return 0; } edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); CH_WARN(adap, "edc%d err addr 0x%x: 0x%x.\n", idx, edc_ecc_err_addr_reg, t4_read_reg(adap, edc_ecc_err_addr_reg)); CH_WARN(adap, "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", rdata_reg, (unsigned long long)t4_read_reg64(adap, rdata_reg), (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); return 0; } /** * t4_memory_rw_init - Get memory window relative offset, base, and size. * @adap: the adapter * @win: PCI-E Memory Window to use * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC * @mem_off: memory relative offset with respect to @mtype. * @mem_base: configured memory base address. * @mem_aperture: configured memory window aperture. * * Get the configured memory window's relative offset, base, and size. */ int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, u32 *mem_base, u32 *mem_aperture) { u32 edc_size, mc_size, mem_reg; /* Offset into the region of memory which is being accessed * MEM_EDC0 = 0 * MEM_EDC1 = 1 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) * MEM_HMA = 4 */ edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); if (mtype == MEM_HMA) { *mem_off = 2 * (edc_size * 1024 * 1024); } else if (mtype != MEM_MC1) { *mem_off = (mtype * (edc_size * 1024 * 1024)); } else { mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A)); *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; } /* Each PCI-E Memory Window is programmed with a window size -- or * "aperture" -- which controls the granularity of its mapping onto * adapter memory. We need to grab that aperture in order to know * how to use the specified window. The window is also programmed * with the base address of the Memory Window in BAR0's address * space. For T4 this is an absolute PCI-E Bus Address. For T5 * the address is relative to BAR0. */ mem_reg = t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win)); /* a dead adapter will return 0xffffffff for PIO reads */ if (mem_reg == 0xffffffff) return -ENXIO; *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; if (is_t4(adap->params.chip)) *mem_base -= adap->t4_bar0; return 0; } /** * t4_memory_update_win - Move memory window to specified address. * @adap: the adapter * @win: PCI-E Memory Window to use * @addr: location to move. * * Move memory window to specified address. */ void t4_memory_update_win(struct adapter *adap, int win, u32 addr) { t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), addr); /* Read it back to ensure that changes propagate before we * attempt to use the new value. */ t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); } /** * t4_memory_rw_residual - Read/Write residual data. * @adap: the adapter * @off: relative offset within residual to start read/write. * @addr: address within indicated memory type. * @buf: host memory buffer * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) * * Read/Write residual data less than 32-bits. */ void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, int dir) { union { u32 word; char byte[4]; } last; unsigned char *bp; int i; if (dir == T4_MEMORY_READ) { last.word = le32_to_cpu((__force __le32) t4_read_reg(adap, addr)); for (bp = (unsigned char *)buf, i = off; i < 4; i++) bp[i] = last.byte[i]; } else { last.word = *buf; for (i = off; i < 4; i++) last.byte[i] = 0; t4_write_reg(adap, addr, (__force u32)cpu_to_le32(last.word)); } } /** * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window * @adap: the adapter * @win: PCI-E Memory Window to use * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC * @addr: address within indicated memory type * @len: amount of memory to transfer * @hbuf: host memory buffer * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) * * Reads/writes an [almost] arbitrary memory region in the firmware: the * firmware memory address and host buffer must be aligned on 32-bit * boundaries; the length may be arbitrary. The memory is transferred as * a raw byte sequence from/to the firmware's memory. If this memory * contains data structures which contain multi-byte integers, it's the * caller's responsibility to perform appropriate byte order conversions. */ int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, u32 len, void *hbuf, int dir) { u32 pos, offset, resid, memoffset; u32 win_pf, mem_aperture, mem_base; u32 *buf; int ret; /* Argument sanity checks ... */ if (addr & 0x3 || (uintptr_t)hbuf & 0x3) return -EINVAL; buf = (u32 *)hbuf; /* It's convenient to be able to handle lengths which aren't a * multiple of 32-bits because we often end up transferring files to * the firmware. So we'll handle that by normalizing the length here * and then handling any residual transfer at the end. */ resid = len & 0x3; len -= resid; ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, &mem_aperture); if (ret) return ret; /* Determine the PCIE_MEM_ACCESS_OFFSET */ addr = addr + memoffset; win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); /* Calculate our initial PCI-E Memory Window Position and Offset into * that Window. */ pos = addr & ~(mem_aperture - 1); offset = addr - pos; /* Set up initial PCI-E Memory Window to cover the start of our * transfer. */ t4_memory_update_win(adap, win, pos | win_pf); /* Transfer data to/from the adapter as long as there's an integral * number of 32-bit transfers to complete. * * A note on Endianness issues: * * The "register" reads and writes below from/to the PCI-E Memory * Window invoke the standard adapter Big-Endian to PCI-E Link * Little-Endian "swizzel." As a result, if we have the following * data in adapter memory: * * Memory: ... | b0 | b1 | b2 | b3 | ... * Address: i+0 i+1 i+2 i+3 * * Then a read of the adapter memory via the PCI-E Memory Window * will yield: * * x = readl(i) * 31 0 * [ b3 | b2 | b1 | b0 ] * * If this value is stored into local memory on a Little-Endian system * it will show up correctly in local memory as: * * ( ..., b0, b1, b2, b3, ... ) * * But on a Big-Endian system, the store will show up in memory * incorrectly swizzled as: * * ( ..., b3, b2, b1, b0, ... ) * * So we need to account for this in the reads and writes to the * PCI-E Memory Window below by undoing the register read/write * swizzels. */ while (len > 0) { if (dir == T4_MEMORY_READ) *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, mem_base + offset)); else t4_write_reg(adap, mem_base + offset, (__force u32)cpu_to_le32(*buf++)); offset += sizeof(__be32); len -= sizeof(__be32); /* If we've reached the end of our current window aperture, * move the PCI-E Memory Window on to the next. Note that * doing this here after "len" may be 0 allows us to set up * the PCI-E Memory Window for a possible final residual * transfer below ... */ if (offset == mem_aperture) { pos += mem_aperture; offset = 0; t4_memory_update_win(adap, win, pos | win_pf); } } /* If the original transfer had a length which wasn't a multiple of * 32-bits, now's where we need to finish off the transfer of the * residual amount. The PCI-E Memory Window has already been moved * above (if necessary) to cover this final transfer. */ if (resid) t4_memory_rw_residual(adap, resid, mem_base + offset, (u8 *)buf, dir); return 0; } /* Return the specified PCI-E Configuration Space register from our Physical * Function. We try first via a Firmware LDST Command since we prefer to let * the firmware own all of these registers, but if that fails we go for it * directly ourselves. */ u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) { u32 val, ldst_addrspace; /* If fw_attach != 0, construct and send the Firmware LDST Command to * retrieve the specified PCI-E Configuration Space register. */ struct fw_ldst_cmd ldst_cmd; int ret; memset(&ldst_cmd, 0, sizeof(ldst_cmd)); ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | ldst_addrspace); ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); ldst_cmd.u.pcie.ctrl_to_fn = (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); ldst_cmd.u.pcie.r = reg; /* If the LDST Command succeeds, return the result, otherwise * fall through to reading it directly ourselves ... */ ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), &ldst_cmd); if (ret == 0) val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); else /* Read the desired Configuration Space register via the PCI-E * Backdoor mechanism. */ t4_hw_pci_read_cfg4(adap, reg, &val); return val; } /* Get the window based on base passed to it. * Window aperture is currently unhandled, but there is no use case for it * right now */ static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, u32 memwin_base) { u32 ret; if (is_t4(adap->params.chip)) { u32 bar0; /* Truncation intentional: we only read the bottom 32-bits of * the 64-bit BAR0/BAR1 ... We use the hardware backdoor * mechanism to read BAR0 instead of using * pci_resource_start() because we could be operating from * within a Virtual Machine which is trapping our accesses to * our Configuration Space and we need to set up the PCI-E * Memory Window decoders with the actual addresses which will * be coming across the PCI-E link. */ bar0 = t4_read_pcie_cfg4(adap, pci_base); bar0 &= pci_mask; adap->t4_bar0 = bar0; ret = bar0 + memwin_base; } else { /* For T5, only relative offset inside the PCIe BAR is passed */ ret = memwin_base; } return ret; } /* Get the default utility window (win0) used by everyone */ u32 t4_get_util_window(struct adapter *adap) { return t4_get_window(adap, PCI_BASE_ADDRESS_0, PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); } /* Set up memory window for accessing adapter memory ranges. (Read * back MA register to ensure that changes propagate before we attempt * to use the new values.) */ void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) { t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), memwin_base | BIR_V(0) | WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); } /** * t4_get_regs_len - return the size of the chips register set * @adapter: the adapter * * Returns the size of the chip's BAR0 register space. */ unsigned int t4_get_regs_len(struct adapter *adapter) { unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); switch (chip_version) { case CHELSIO_T4: return T4_REGMAP_SIZE; case CHELSIO_T5: case CHELSIO_T6: return T5_REGMAP_SIZE; } dev_err(adapter->pdev_dev, "Unsupported chip version %d\n", chip_version); return 0; } /** * t4_get_regs - read chip registers into provided buffer * @adap: the adapter * @buf: register buffer * @buf_size: size (in bytes) of register buffer * * If the provided register buffer isn't large enough for the chip's * full register range, the register dump will be truncated to the * register buffer's size. */ void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) { static const unsigned int t4_reg_ranges[] = { 0x1008, 0x1108, 0x1180, 0x1184, 0x1190, 0x1194, 0x11a0, 0x11a4, 0x11b0, 0x11b4, 0x11fc, 0x123c, 0x1300, 0x173c, 0x1800, 0x18fc, 0x3000, 0x30d8, 0x30e0, 0x30e4, 0x30ec, 0x5910, 0x5920, 0x5924, 0x5960, 0x5960, 0x5968, 0x5968, 0x5970, 0x5970, 0x5978, 0x5978, 0x5980, 0x5980, 0x5988, 0x5988, 0x5990, 0x5990, 0x5998, 0x5998, 0x59a0, 0x59d4, 0x5a00, 0x5ae0, 0x5ae8, 0x5ae8, 0x5af0, 0x5af0, 0x5af8, 0x5af8, 0x6000, 0x6098, 0x6100, 0x6150, 0x6200, 0x6208, 0x6240, 0x6248, 0x6280, 0x62b0, 0x62c0, 0x6338, 0x6370, 0x638c, 0x6400, 0x643c, 0x6500, 0x6524, 0x6a00, 0x6a04, 0x6a14, 0x6a38, 0x6a60, 0x6a70, 0x6a78, 0x6a78, 0x6b00, 0x6b0c, 0x6b1c, 0x6b84, 0x6bf0, 0x6bf8, 0x6c00, 0x6c0c, 0x6c1c, 0x6c84, 0x6cf0, 0x6cf8, 0x6d00, 0x6d0c, 0x6d1c, 0x6d84, 0x6df0, 0x6df8, 0x6e00, 0x6e0c, 0x6e1c, 0x6e84, 0x6ef0, 0x6ef8, 0x6f00, 0x6f0c, 0x6f1c, 0x6f84, 0x6ff0, 0x6ff8, 0x7000, 0x700c, 0x701c, 0x7084, 0x70f0, 0x70f8, 0x7100, 0x710c, 0x711c, 0x7184, 0x71f0, 0x71f8, 0x7200, 0x720c, 0x721c, 0x7284, 0x72f0, 0x72f8, 0x7300, 0x730c, 0x731c, 0x7384, 0x73f0, 0x73f8, 0x7400, 0x7450, 0x7500, 0x7530, 0x7600, 0x760c, 0x7614, 0x761c, 0x7680, 0x76cc, 0x7700, 0x7798, 0x77c0, 0x77fc, 0x7900, 0x79fc, 0x7b00, 0x7b58, 0x7b60, 0x7b84, 0x7b8c, 0x7c38, 0x7d00, 0x7d38, 0x7d40, 0x7d80, 0x7d8c, 0x7ddc, 0x7de4, 0x7e04, 0x7e10, 0x7e1c, 0x7e24, 0x7e38, 0x7e40, 0x7e44, 0x7e4c, 0x7e78, 0x7e80, 0x7ea4, 0x7eac, 0x7edc, 0x7ee8, 0x7efc, 0x8dc0, 0x8e04, 0x8e10, 0x8e1c, 0x8e30, 0x8e78, 0x8ea0, 0x8eb8, 0x8ec0, 0x8f6c, 0x8fc0, 0x9008, 0x9010, 0x9058, 0x9060, 0x9060, 0x9068, 0x9074, 0x90fc, 0x90fc, 0x9400, 0x9408, 0x9410, 0x9458, 0x9600, 0x9600, 0x9608, 0x9638, 0x9640, 0x96bc, 0x9800, 0x9808, 0x9820, 0x983c, 0x9850, 0x9864, 0x9c00, 0x9c6c, 0x9c80, 0x9cec, 0x9d00, 0x9d6c, 0x9d80, 0x9dec, 0x9e00, 0x9e6c, 0x9e80, 0x9eec, 0x9f00, 0x9f6c, 0x9f80, 0x9fec, 0xd004, 0xd004, 0xd010, 0xd03c, 0xdfc0, 0xdfe0, 0xe000, 0xea7c, 0xf000, 0x11110, 0x11118, 0x11190, 0x19040, 0x1906c, 0x19078, 0x19080, 0x1908c, 0x190e4, 0x190f0, 0x190f8, 0x19100, 0x19110, 0x19120, 0x19124, 0x19150, 0x19194, 0x1919c, 0x191b0, 0x191d0, 0x191e8, 0x19238, 0x1924c, 0x193f8, 0x1943c, 0x1944c, 0x19474, 0x19490, 0x194e0, 0x194f0, 0x194f8, 0x19800, 0x19c08, 0x19c10, 0x19c90, 0x19ca0, 0x19ce4, 0x19cf0, 0x19d40, 0x19d50, 0x19d94, 0x19da0, 0x19de8, 0x19df0, 0x19e40, 0x19e50, 0x19e90, 0x19ea0, 0x19f4c, 0x1a000, 0x1a004, 0x1a010, 0x1a06c, 0x1a0b0, 0x1a0e4, 0x1a0ec, 0x1a0f4, 0x1a100, 0x1a108, 0x1a114, 0x1a120, 0x1a128, 0x1a130, 0x1a138, 0x1a138, 0x1a190, 0x1a1c4, 0x1a1fc, 0x1a1fc, 0x1e040, 0x1e04c, 0x1e284, 0x1e28c, 0x1e2c0, 0x1e2c0, 0x1e2e0, 0x1e2e0, 0x1e300, 0x1e384, 0x1e3c0, 0x1e3c8, 0x1e440, 0x1e44c, 0x1e684, 0x1e68c, 0x1e6c0, 0x1e6c0, 0x1e6e0, 0x1e6e0, 0x1e700, 0x1e784, 0x1e7c0, 0x1e7c8, 0x1e840, 0x1e84c, 0x1ea84, 0x1ea8c, 0x1eac0, 0x1eac0, 0x1eae0, 0x1eae0, 0x1eb00, 0x1eb84, 0x1ebc0, 0x1ebc8, 0x1ec40, 0x1ec4c, 0x1ee84, 0x1ee8c, 0x1eec0, 0x1eec0, 0x1eee0, 0x1eee0, 0x1ef00, 0x1ef84, 0x1efc0, 0x1efc8, 0x1f040, 0x1f04c, 0x1f284, 0x1f28c, 0x1f2c0, 0x1f2c0, 0x1f2e0, 0x1f2e0, 0x1f300, 0x1f384, 0x1f3c0, 0x1f3c8, 0x1f440, 0x1f44c, 0x1f684, 0x1f68c, 0x1f6c0, 0x1f6c0, 0x1f6e0, 0x1f6e0, 0x1f700, 0x1f784, 0x1f7c0, 0x1f7c8, 0x1f840, 0x1f84c, 0x1fa84, 0x1fa8c, 0x1fac0, 0x1fac0, 0x1fae0, 0x1fae0, 0x1fb00, 0x1fb84, 0x1fbc0, 0x1fbc8, 0x1fc40, 0x1fc4c, 0x1fe84, 0x1fe8c, 0x1fec0, 0x1fec0, 0x1fee0, 0x1fee0, 0x1ff00, 0x1ff84, 0x1ffc0, 0x1ffc8, 0x20000, 0x2002c, 0x20100, 0x2013c, 0x20190, 0x201a0, 0x201a8, 0x201b8, 0x201c4, 0x201c8, 0x20200, 0x20318, 0x20400, 0x204b4, 0x204c0, 0x20528, 0x20540, 0x20614, 0x21000, 0x21040, 0x2104c, 0x21060, 0x210c0, 0x210ec, 0x21200, 0x21268, 0x21270, 0x21284, 0x212fc, 0x21388, 0x21400, 0x21404, 0x21500, 0x21500, 0x21510, 0x21518, 0x2152c, 0x21530, 0x2153c, 0x2153c, 0x21550, 0x21554, 0x21600, 0x21600, 0x21608, 0x2161c, 0x21624, 0x21628, 0x21630, 0x21634, 0x2163c, 0x2163c, 0x21700, 0x2171c, 0x21780, 0x2178c, 0x21800, 0x21818, 0x21820, 0x21828, 0x21830, 0x21848, 0x21850, 0x21854, 0x21860, 0x21868, 0x21870, 0x21870, 0x21878, 0x21898, 0x218a0, 0x218a8, 0x218b0, 0x218c8, 0x218d0, 0x218d4, 0x218e0, 0x218e8, 0x218f0, 0x218f0, 0x218f8, 0x21a18, 0x21a20, 0x21a28, 0x21a30, 0x21a48, 0x21a50, 0x21a54, 0x21a60, 0x21a68, 0x21a70, 0x21a70, 0x21a78, 0x21a98, 0x21aa0, 0x21aa8, 0x21ab0, 0x21ac8, 0x21ad0, 0x21ad4, 0x21ae0, 0x21ae8, 0x21af0, 0x21af0, 0x21af8, 0x21c18, 0x21c20, 0x21c20, 0x21c28, 0x21c30, 0x21c38, 0x21c38, 0x21c80, 0x21c98, 0x21ca0, 0x21ca8, 0x21cb0, 0x21cc8, 0x21cd0, 0x21cd4, 0x21ce0, 0x21ce8, 0x21cf0, 0x21cf0, 0x21cf8, 0x21d7c, 0x21e00, 0x21e04, 0x22000, 0x2202c, 0x22100, 0x2213c, 0x22190, 0x221a0, 0x221a8, 0x221b8, 0x221c4, 0x221c8, 0x22200, 0x22318, 0x22400, 0x224b4, 0x224c0, 0x22528, 0x22540, 0x22614, 0x23000, 0x23040, 0x2304c, 0x23060, 0x230c0, 0x230ec, 0x23200, 0x23268, 0x23270, 0x23284, 0x232fc, 0x23388, 0x23400, 0x23404, 0x23500, 0x23500, 0x23510, 0x23518, 0x2352c, 0x23530, 0x2353c, 0x2353c, 0x23550, 0x23554, 0x23600, 0x23600, 0x23608, 0x2361c, 0x23624, 0x23628, 0x23630, 0x23634, 0x2363c, 0x2363c, 0x23700, 0x2371c, 0x23780, 0x2378c, 0x23800, 0x23818, 0x23820, 0x23828, 0x23830, 0x23848, 0x23850, 0x23854, 0x23860, 0x23868, 0x23870, 0x23870, 0x23878, 0x23898, 0x238a0, 0x238a8, 0x238b0, 0x238c8, 0x238d0, 0x238d4, 0x238e0, 0x238e8, 0x238f0, 0x238f0, 0x238f8, 0x23a18, 0x23a20, 0x23a28, 0x23a30, 0x23a48, 0x23a50, 0x23a54, 0x23a60, 0x23a68, 0x23a70, 0x23a70, 0x23a78, 0x23a98, 0x23aa0, 0x23aa8, 0x23ab0, 0x23ac8, 0x23ad0, 0x23ad4, 0x23ae0, 0x23ae8, 0x23af0, 0x23af0, 0x23af8, 0x23c18, 0x23c20, 0x23c20, 0x23c28, 0x23c30, 0x23c38, 0x23c38, 0x23c80, 0x23c98, 0x23ca0, 0x23ca8, 0x23cb0, 0x23cc8, 0x23cd0, 0x23cd4, 0x23ce0, 0x23ce8, 0x23cf0, 0x23cf0, 0x23cf8, 0x23d7c, 0x23e00, 0x23e04, 0x24000, 0x2402c, 0x24100, 0x2413c, 0x24190, 0x241a0, 0x241a8, 0x241b8, 0x241c4, 0x241c8, 0x24200, 0x24318, 0x24400, 0x244b4, 0x244c0, 0x24528, 0x24540, 0x24614, 0x25000, 0x25040, 0x2504c, 0x25060, 0x250c0, 0x250ec, 0x25200, 0x25268, 0x25270, 0x25284, 0x252fc, 0x25388, 0x25400, 0x25404, 0x25500, 0x25500, 0x25510, 0x25518, 0x2552c, 0x25530, 0x2553c, 0x2553c, 0x25550, 0x25554, 0x25600, 0x25600, 0x25608, 0x2561c, 0x25624, 0x25628, 0x25630, 0x25634, 0x2563c, 0x2563c, 0x25700, 0x2571c, 0x25780, 0x2578c, 0x25800, 0x25818, 0x25820, 0x25828, 0x25830, 0x25848, 0x25850, 0x25854, 0x25860, 0x25868, 0x25870, 0x25870, 0x25878, 0x25898, 0x258a0, 0x258a8, 0x258b0, 0x258c8, 0x258d0, 0x258d4, 0x258e0, 0x258e8, 0x258f0, 0x258f0, 0x258f8, 0x25a18, 0x25a20, 0x25a28, 0x25a30, 0x25a48, 0x25a50, 0x25a54, 0x25a60, 0x25a68, 0x25a70, 0x25a70, 0x25a78, 0x25a98, 0x25aa0, 0x25aa8, 0x25ab0, 0x25ac8, 0x25ad0, 0x25ad4, 0x25ae0, 0x25ae8, 0x25af0, 0x25af0, 0x25af8, 0x25c18, 0x25c20, 0x25c20, 0x25c28, 0x25c30, 0x25c38, 0x25c38, 0x25c80, 0x25c98, 0x25ca0, 0x25ca8, 0x25cb0, 0x25cc8, 0x25cd0, 0x25cd4, 0x25ce0, 0x25ce8, 0x25cf0, 0x25cf0, 0x25cf8, 0x25d7c, 0x25e00, 0x25e04, 0x26000, 0x2602c, 0x26100, 0x2613c, 0x26190, 0x261a0, 0x261a8, 0x261b8, 0x261c4, 0x261c8, 0x26200, 0x26318, 0x26400, 0x264b4, 0x264c0, 0x26528, 0x26540, 0x26614, 0x27000, 0x27040, 0x2704c, 0x27060, 0x270c0, 0x270ec, 0x27200, 0x27268, 0x27270, 0x27284, 0x272fc, 0x27388, 0x27400, 0x27404, 0x27500, 0x27500, 0x27510, 0x27518, 0x2752c, 0x27530, 0x2753c, 0x2753c, 0x27550, 0x27554, 0x27600, 0x27600, 0x27608, 0x2761c, 0x27624, 0x27628, 0x27630, 0x27634, 0x2763c, 0x2763c, 0x27700, 0x2771c, 0x27780, 0x2778c, 0x27800, 0x27818, 0x27820, 0x27828, 0x27830, 0x27848, 0x27850, 0x27854, 0x27860, 0x27868, 0x27870, 0x27870, 0x27878, 0x27898, 0x278a0, 0x278a8, 0x278b0, 0x278c8, 0x278d0, 0x278d4, 0x278e0, 0x278e8, 0x278f0, 0x278f0, 0x278f8, 0x27a18, 0x27a20, 0x27a28, 0x27a30, 0x27a48, 0x27a50, 0x27a54, 0x27a60, 0x27a68, 0x27a70, 0x27a70, 0x27a78, 0x27a98, 0x27aa0, 0x27aa8, 0x27ab0, 0x27ac8, 0x27ad0, 0x27ad4, 0x27ae0, 0x27ae8, 0x27af0, 0x27af0, 0x27af8, 0x27c18, 0x27c20, 0x27c20, 0x27c28, 0x27c30, 0x27c38, 0x27c38, 0x27c80, 0x27c98, 0x27ca0, 0x27ca8, 0x27cb0, 0x27cc8, 0x27cd0, 0x27cd4, 0x27ce0, 0x27ce8, 0x27cf0, 0x27cf0, 0x27cf8, 0x27d7c, 0x27e00, 0x27e04, }; static const unsigned int t5_reg_ranges[] = { 0x1008, 0x10c0, 0x10cc, 0x10f8, 0x1100, 0x1100, 0x110c, 0x1148, 0x1180, 0x1184, 0x1190, 0x1194, 0x11a0, 0x11a4, 0x11b0, 0x11b4, 0x11fc, 0x123c, 0x1280, 0x173c, 0x1800, 0x18fc, 0x3000, 0x3028, 0x3060, 0x30b0, 0x30b8, 0x30d8, 0x30e0, 0x30fc, 0x3140, 0x357c, 0x35a8, 0x35cc, 0x35ec, 0x35ec, 0x3600, 0x5624, 0x56cc, 0x56ec, 0x56f4, 0x5720, 0x5728, 0x575c, 0x580c, 0x5814, 0x5890, 0x589c, 0x58a4, 0x58ac, 0x58b8, 0x58bc, 0x5940, 0x59c8, 0x59d0, 0x59dc, 0x59fc, 0x5a18, 0x5a60, 0x5a70, 0x5a80, 0x5a9c, 0x5b94, 0x5bfc, 0x6000, 0x6020, 0x6028, 0x6040, 0x6058, 0x609c, 0x60a8, 0x614c, 0x7700, 0x7798, 0x77c0, 0x78fc, 0x7b00, 0x7b58, 0x7b60, 0x7b84, 0x7b8c, 0x7c54, 0x7d00, 0x7d38, 0x7d40, 0x7d80, 0x7d8c, 0x7ddc, 0x7de4, 0x7e04, 0x7e10, 0x7e1c, 0x7e24, 0x7e38, 0x7e40, 0x7e44, 0x7e4c, 0x7e78, 0x7e80, 0x7edc, 0x7ee8, 0x7efc, 0x8dc0, 0x8de0, 0x8df8, 0x8e04, 0x8e10, 0x8e84, 0x8ea0, 0x8f84, 0x8fc0, 0x9058, 0x9060, 0x9060, 0x9068, 0x90f8, 0x9400, 0x9408, 0x9410, 0x9470, 0x9600, 0x9600, 0x9608, 0x9638, 0x9640, 0x96f4, 0x9800, 0x9808, 0x9810, 0x9864, 0x9c00, 0x9c6c, 0x9c80, 0x9cec, 0x9d00, 0x9d6c, 0x9d80, 0x9dec, 0x9e00, 0x9e6c, 0x9e80, 0x9eec, 0x9f00, 0x9f6c, 0x9f80, 0xa020, 0xd000, 0xd004, 0xd010, 0xd03c, 0xdfc0, 0xdfe0, 0xe000, 0x1106c, 0x11074, 0x11088, 0x1109c, 0x1117c, 0x11190, 0x11204, 0x19040, 0x1906c, 0x19078, 0x19080, 0x1908c, 0x190e8, 0x190f0, 0x190f8, 0x19100, 0x19110, 0x19120, 0x19124, 0x19150, 0x19194, 0x1919c, 0x191b0, 0x191d0, 0x191e8, 0x19238, 0x19290, 0x193f8, 0x19428, 0x19430, 0x19444, 0x1944c, 0x1946c, 0x19474, 0x19474, 0x19490, 0x194cc, 0x194f0, 0x194f8, 0x19c00, 0x19c08, 0x19c10, 0x19c60, 0x19c94, 0x19ce4, 0x19cf0, 0x19d40, 0x19d50, 0x19d94, 0x19da0, 0x19de8, 0x19df0, 0x19e10, 0x19e50, 0x19e90, 0x19ea0, 0x19f24, 0x19f34, 0x19f34, 0x19f40, 0x19f50, 0x19f90, 0x19fb4, 0x19fc4, 0x19fe4, 0x1a000, 0x1a004, 0x1a010, 0x1a06c, 0x1a0b0, 0x1a0e4, 0x1a0ec, 0x1a0f8, 0x1a100, 0x1a108, 0x1a114, 0x1a130, 0x1a138, 0x1a1c4, 0x1a1fc, 0x1a1fc, 0x1e008, 0x1e00c, 0x1e040, 0x1e044, 0x1e04c, 0x1e04c, 0x1e284, 0x1e290, 0x1e2c0, 0x1e2c0, 0x1e2e0, 0x1e2e0, 0x1e300, 0x1e384, 0x1e3c0, 0x1e3c8, 0x1e408, 0x1e40c, 0x1e440, 0x1e444, 0x1e44c, 0x1e44c, 0x1e684, 0x1e690, 0x1e6c0, 0x1e6c0, 0x1e6e0, 0x1e6e0, 0x1e700, 0x1e784, 0x1e7c0, 0x1e7c8, 0x1e808, 0x1e80c, 0x1e840, 0x1e844, 0x1e84c, 0x1e84c, 0x1ea84, 0x1ea90, 0x1eac0, 0x1eac0, 0x1eae0, 0x1eae0, 0x1eb00, 0x1eb84, 0x1ebc0, 0x1ebc8, 0x1ec08, 0x1ec0c, 0x1ec40, 0x1ec44, 0x1ec4c, 0x1ec4c, 0x1ee84, 0x1ee90, 0x1eec0, 0x1eec0, 0x1eee0, 0x1eee0, 0x1ef00, 0x1ef84, 0x1efc0, 0x1efc8, 0x1f008, 0x1f00c, 0x1f040, 0x1f044, 0x1f04c, 0x1f04c, 0x1f284, 0x1f290, 0x1f2c0, 0x1f2c0, 0x1f2e0, 0x1f2e0, 0x1f300, 0x1f384, 0x1f3c0, 0x1f3c8, 0x1f408, 0x1f40c, 0x1f440, 0x1f444, 0x1f44c, 0x1f44c, 0x1f684, 0x1f690, 0x1f6c0, 0x1f6c0, 0x1f6e0, 0x1f6e0, 0x1f700, 0x1f784, 0x1f7c0, 0x1f7c8, 0x1f808, 0x1f80c, 0x1f840, 0x1f844, 0x1f84c, 0x1f84c, 0x1fa84, 0x1fa90, 0x1fac0, 0x1fac0, 0x1fae0, 0x1fae0, 0x1fb00, 0x1fb84, 0x1fbc0, 0x1fbc8, 0x1fc08, 0x1fc0c, 0x1fc40, 0x1fc44, 0x1fc4c, 0x1fc4c, 0x1fe84, 0x1fe90, 0x1fec0, 0x1fec0, 0x1fee0, 0x1fee0, 0x1ff00, 0x1ff84, 0x1ffc0, 0x1ffc8, 0x30000, 0x30030, 0x30100, 0x30144, 0x30190, 0x301a0, 0x301a8, 0x301b8, 0x301c4, 0x301c8, 0x301d0, 0x301d0, 0x30200, 0x30318, 0x30400, 0x304b4, 0x304c0, 0x3052c, 0x30540, 0x3061c, 0x30800, 0x30828, 0x30834, 0x30834, 0x308c0, 0x30908, 0x30910, 0x309ac, 0x30a00, 0x30a14, 0x30a1c, 0x30a2c, 0x30a44, 0x30a50, 0x30a74, 0x30a74, 0x30a7c, 0x30afc, 0x30b08, 0x30c24, 0x30d00, 0x30d00, 0x30d08, 0x30d14, 0x30d1c, 0x30d20, 0x30d3c, 0x30d3c, 0x30d48, 0x30d50, 0x31200, 0x3120c, 0x31220, 0x31220, 0x31240, 0x31240, 0x31600, 0x3160c, 0x31a00, 0x31a1c, 0x31e00, 0x31e20, 0x31e38, 0x31e3c, 0x31e80, 0x31e80, 0x31e88, 0x31ea8, 0x31eb0, 0x31eb4, 0x31ec8, 0x31ed4, 0x31fb8, 0x32004, 0x32200, 0x32200, 0x32208, 0x32240, 0x32248, 0x32280, 0x32288, 0x322c0, 0x322c8, 0x322fc, 0x32600, 0x32630, 0x32a00, 0x32abc, 0x32b00, 0x32b10, 0x32b20, 0x32b30, 0x32b40, 0x32b50, 0x32b60, 0x32b70, 0x33000, 0x33028, 0x33030, 0x33048, 0x33060, 0x33068, 0x33070, 0x3309c, 0x330f0, 0x33128, 0x33130, 0x33148, 0x33160, 0x33168, 0x33170, 0x3319c, 0x331f0, 0x33238, 0x33240, 0x33240, 0x33248, 0x33250, 0x3325c, 0x33264, 0x33270, 0x332b8, 0x332c0, 0x332e4, 0x332f8, 0x33338, 0x33340, 0x33340, 0x33348, 0x33350, 0x3335c, 0x33364, 0x33370, 0x333b8, 0x333c0, 0x333e4, 0x333f8, 0x33428, 0x33430, 0x33448, 0x33460, 0x33468, 0x33470, 0x3349c, 0x334f0, 0x33528, 0x33530, 0x33548, 0x33560, 0x33568, 0x33570, 0x3359c, 0x335f0, 0x33638, 0x33640, 0x33640, 0x33648, 0x33650, 0x3365c, 0x33664, 0x33670, 0x336b8, 0x336c0, 0x336e4, 0x336f8, 0x33738, 0x33740, 0x33740, 0x33748, 0x33750, 0x3375c, 0x33764, 0x33770, 0x337b8, 0x337c0, 0x337e4, 0x337f8, 0x337fc, 0x33814, 0x33814, 0x3382c, 0x3382c, 0x33880, 0x3388c, 0x338e8, 0x338ec, 0x33900, 0x33928, 0x33930, 0x33948, 0x33960, 0x33968, 0x33970, 0x3399c, 0x339f0, 0x33a38, 0x33a40, 0x33a40, 0x33a48, 0x33a50, 0x33a5c, 0x33a64, 0x33a70, 0x33ab8, 0x33ac0, 0x33ae4, 0x33af8, 0x33b10, 0x33b28, 0x33b28, 0x33b3c, 0x33b50, 0x33bf0, 0x33c10, 0x33c28, 0x33c28, 0x33c3c, 0x33c50, 0x33cf0, 0x33cfc, 0x34000, 0x34030, 0x34100, 0x34144, 0x34190, 0x341a0, 0x341a8, 0x341b8, 0x341c4, 0x341c8, 0x341d0, 0x341d0, 0x34200, 0x34318, 0x34400, 0x344b4, 0x344c0, 0x3452c, 0x34540, 0x3461c, 0x34800, 0x34828, 0x34834, 0x34834, 0x348c0, 0x34908, 0x34910, 0x349ac, 0x34a00, 0x34a14, 0x34a1c, 0x34a2c, 0x34a44, 0x34a50, 0x34a74, 0x34a74, 0x34a7c, 0x34afc, 0x34b08, 0x34c24, 0x34d00, 0x34d00, 0x34d08, 0x34d14, 0x34d1c, 0x34d20, 0x34d3c, 0x34d3c, 0x34d48, 0x34d50, 0x35200, 0x3520c, 0x35220, 0x35220, 0x35240, 0x35240, 0x35600, 0x3560c, 0x35a00, 0x35a1c, 0x35e00, 0x35e20, 0x35e38, 0x35e3c, 0x35e80, 0x35e80, 0x35e88, 0x35ea8, 0x35eb0, 0x35eb4, 0x35ec8, 0x35ed4, 0x35fb8, 0x36004, 0x36200, 0x36200, 0x36208, 0x36240, 0x36248, 0x36280, 0x36288, 0x362c0, 0x362c8, 0x362fc, 0x36600, 0x36630, 0x36a00, 0x36abc, 0x36b00, 0x36b10, 0x36b20, 0x36b30, 0x36b40, 0x36b50, 0x36b60, 0x36b70, 0x37000, 0x37028, 0x37030, 0x37048, 0x37060, 0x37068, 0x37070, 0x3709c, 0x370f0, 0x37128, 0x37130, 0x37148, 0x37160, 0x37168, 0x37170, 0x3719c, 0x371f0, 0x37238, 0x37240, 0x37240, 0x37248, 0x37250, 0x3725c, 0x37264, 0x37270, 0x372b8, 0x372c0, 0x372e4, 0x372f8, 0x37338, 0x37340, 0x37340, 0x37348, 0x37350, 0x3735c, 0x37364, 0x37370, 0x373b8, 0x373c0, 0x373e4, 0x373f8, 0x37428, 0x37430, 0x37448, 0x37460, 0x37468, 0x37470, 0x3749c, 0x374f0, 0x37528, 0x37530, 0x37548, 0x37560, 0x37568, 0x37570, 0x3759c, 0x375f0, 0x37638, 0x37640, 0x37640, 0x37648, 0x37650, 0x3765c, 0x37664, 0x37670, 0x376b8, 0x376c0, 0x376e4, 0x376f8, 0x37738, 0x37740, 0x37740, 0x37748, 0x37750, 0x3775c, 0x37764, 0x37770, 0x377b8, 0x377c0, 0x377e4, 0x377f8, 0x377fc, 0x37814, 0x37814, 0x3782c, 0x3782c, 0x37880, 0x3788c, 0x378e8, 0x378ec, 0x37900, 0x37928, 0x37930, 0x37948, 0x37960, 0x37968, 0x37970, 0x3799c, 0x379f0, 0x37a38, 0x37a40, 0x37a40, 0x37a48, 0x37a50, 0x37a5c, 0x37a64, 0x37a70, 0x37ab8, 0x37ac0, 0x37ae4, 0x37af8, 0x37b10, 0x37b28, 0x37b28, 0x37b3c, 0x37b50, 0x37bf0, 0x37c10, 0x37c28, 0x37c28, 0x37c3c, 0x37c50, 0x37cf0, 0x37cfc, 0x38000, 0x38030, 0x38100, 0x38144, 0x38190, 0x381a0, 0x381a8, 0x381b8, 0x381c4, 0x381c8, 0x381d0, 0x381d0, 0x38200, 0x38318, 0x38400, 0x384b4, 0x384c0, 0x3852c, 0x38540, 0x3861c, 0x38800, 0x38828, 0x38834, 0x38834, 0x388c0, 0x38908, 0x38910, 0x389ac, 0x38a00, 0x38a14, 0x38a1c, 0x38a2c, 0x38a44, 0x38a50, 0x38a74, 0x38a74, 0x38a7c, 0x38afc, 0x38b08, 0x38c24, 0x38d00, 0x38d00, 0x38d08, 0x38d14, 0x38d1c, 0x38d20, 0x38d3c, 0x38d3c, 0x38d48, 0x38d50, 0x39200, 0x3920c, 0x39220, 0x39220, 0x39240, 0x39240, 0x39600, 0x3960c, 0x39a00, 0x39a1c, 0x39e00, 0x39e20, 0x39e38, 0x39e3c, 0x39e80, 0x39e80, 0x39e88, 0x39ea8, 0x39eb0, 0x39eb4, 0x39ec8, 0x39ed4, 0x39fb8, 0x3a004, 0x3a200, 0x3a200, 0x3a208, 0x3a240, 0x3a248, 0x3a280, 0x3a288, 0x3a2c0, 0x3a2c8, 0x3a2fc, 0x3a600, 0x3a630, 0x3aa00, 0x3aabc, 0x3ab00, 0x3ab10, 0x3ab20, 0x3ab30, 0x3ab40, 0x3ab50, 0x3ab60, 0x3ab70, 0x3b000, 0x3b028, 0x3b030, 0x3b048, 0x3b060, 0x3b068, 0x3b070, 0x3b09c, 0x3b0f0, 0x3b128, 0x3b130, 0x3b148, 0x3b160, 0x3b168, 0x3b170, 0x3b19c, 0x3b1f0, 0x3b238, 0x3b240, 0x3b240, 0x3b248, 0x3b250, 0x3b25c, 0x3b264, 0x3b270, 0x3b2b8, 0x3b2c0, 0x3b2e4, 0x3b2f8, 0x3b338, 0x3b340, 0x3b340, 0x3b348, 0x3b350, 0x3b35c, 0x3b364, 0x3b370, 0x3b3b8, 0x3b3c0, 0x3b3e4, 0x3b3f8, 0x3b428, 0x3b430, 0x3b448, 0x3b460, 0x3b468, 0x3b470, 0x3b49c, 0x3b4f0, 0x3b528, 0x3b530, 0x3b548, 0x3b560, 0x3b568, 0x3b570, 0x3b59c, 0x3b5f0, 0x3b638, 0x3b640, 0x3b640, 0x3b648, 0x3b650, 0x3b65c, 0x3b664, 0x3b670, 0x3b6b8, 0x3b6c0, 0x3b6e4, 0x3b6f8, 0x3b738, 0x3b740, 0x3b740, 0x3b748, 0x3b750, 0x3b75c, 0x3b764, 0x3b770, 0x3b7b8, 0x3b7c0, 0x3b7e4, 0x3b7f8, 0x3b7fc, 0x3b814, 0x3b814, 0x3b82c, 0x3b82c, 0x3b880, 0x3b88c, 0x3b8e8, 0x3b8ec, 0x3b900, 0x3b928, 0x3b930, 0x3b948, 0x3b960, 0x3b968, 0x3b970, 0x3b99c, 0x3b9f0, 0x3ba38, 0x3ba40, 0x3ba40, 0x3ba48, 0x3ba50, 0x3ba5c, 0x3ba64, 0x3ba70, 0x3bab8, 0x3bac0, 0x3bae4, 0x3baf8, 0x3bb10, 0x3bb28, 0x3bb28, 0x3bb3c, 0x3bb50, 0x3bbf0, 0x3bc10, 0x3bc28, 0x3bc28, 0x3bc3c, 0x3bc50, 0x3bcf0, 0x3bcfc, 0x3c000, 0x3c030, 0x3c100, 0x3c144, 0x3c190, 0x3c1a0, 0x3c1a8, 0x3c1b8, 0x3c1c4, 0x3c1c8, 0x3c1d0, 0x3c1d0, 0x3c200, 0x3c318, 0x3c400, 0x3c4b4, 0x3c4c0, 0x3c52c, 0x3c540, 0x3c61c, 0x3c800, 0x3c828, 0x3c834, 0x3c834, 0x3c8c0, 0x3c908, 0x3c910, 0x3c9ac, 0x3ca00, 0x3ca14, 0x3ca1c, 0x3ca2c, 0x3ca44, 0x3ca50, 0x3ca74, 0x3ca74, 0x3ca7c, 0x3cafc, 0x3cb08, 0x3cc24, 0x3cd00, 0x3cd00, 0x3cd08, 0x3cd14, 0x3cd1c, 0x3cd20, 0x3cd3c, 0x3cd3c, 0x3cd48, 0x3cd50, 0x3d200, 0x3d20c, 0x3d220, 0x3d220, 0x3d240, 0x3d240, 0x3d600, 0x3d60c, 0x3da00, 0x3da1c, 0x3de00, 0x3de20, 0x3de38, 0x3de3c, 0x3de80, 0x3de80, 0x3de88, 0x3dea8, 0x3deb0, 0x3deb4, 0x3dec8, 0x3ded4, 0x3dfb8, 0x3e004, 0x3e200, 0x3e200, 0x3e208, 0x3e240, 0x3e248, 0x3e280, 0x3e288, 0x3e2c0, 0x3e2c8, 0x3e2fc, 0x3e600, 0x3e630, 0x3ea00, 0x3eabc, 0x3eb00, 0x3eb10, 0x3eb20, 0x3eb30, 0x3eb40, 0x3eb50, 0x3eb60, 0x3eb70, 0x3f000, 0x3f028, 0x3f030, 0x3f048, 0x3f060, 0x3f068, 0x3f070, 0x3f09c, 0x3f0f0, 0x3f128, 0x3f130, 0x3f148, 0x3f160, 0x3f168, 0x3f170, 0x3f19c, 0x3f1f0, 0x3f238, 0x3f240, 0x3f240, 0x3f248, 0x3f250, 0x3f25c, 0x3f264, 0x3f270, 0x3f2b8, 0x3f2c0, 0x3f2e4, 0x3f2f8, 0x3f338, 0x3f340, 0x3f340, 0x3f348, 0x3f350, 0x3f35c, 0x3f364, 0x3f370, 0x3f3b8, 0x3f3c0, 0x3f3e4, 0x3f3f8, 0x3f428, 0x3f430, 0x3f448, 0x3f460, 0x3f468, 0x3f470, 0x3f49c, 0x3f4f0, 0x3f528, 0x3f530, 0x3f548, 0x3f560, 0x3f568, 0x3f570, 0x3f59c, 0x3f5f0, 0x3f638, 0x3f640, 0x3f640, 0x3f648, 0x3f650, 0x3f65c, 0x3f664, 0x3f670, 0x3f6b8, 0x3f6c0, 0x3f6e4, 0x3f6f8, 0x3f738, 0x3f740, 0x3f740, 0x3f748, 0x3f750, 0x3f75c, 0x3f764, 0x3f770, 0x3f7b8, 0x3f7c0, 0x3f7e4, 0x3f7f8, 0x3f7fc, 0x3f814, 0x3f814, 0x3f82c, 0x3f82c, 0x3f880, 0x3f88c, 0x3f8e8, 0x3f8ec, 0x3f900, 0x3f928, 0x3f930, 0x3f948, 0x3f960, 0x3f968, 0x3f970, 0x3f99c, 0x3f9f0, 0x3fa38, 0x3fa40, 0x3fa40, 0x3fa48, 0x3fa50, 0x3fa5c, 0x3fa64, 0x3fa70, 0x3fab8, 0x3fac0, 0x3fae4, 0x3faf8, 0x3fb10, 0x3fb28, 0x3fb28, 0x3fb3c, 0x3fb50, 0x3fbf0, 0x3fc10, 0x3fc28, 0x3fc28, 0x3fc3c, 0x3fc50, 0x3fcf0, 0x3fcfc, 0x40000, 0x4000c, 0x40040, 0x40050, 0x40060, 0x40068, 0x4007c, 0x4008c, 0x40094, 0x400b0, 0x400c0, 0x40144, 0x40180, 0x4018c, 0x40200, 0x40254, 0x40260, 0x40264, 0x40270, 0x40288, 0x40290, 0x40298, 0x402ac, 0x402c8, 0x402d0, 0x402e0, 0x402f0, 0x402f0, 0x40300, 0x4033c, 0x403f8, 0x403fc, 0x41304, 0x413c4, 0x41400, 0x4140c, 0x41414, 0x4141c, 0x41480, 0x414d0, 0x44000, 0x44054, 0x4405c, 0x44078, 0x440c0, 0x44174, 0x44180, 0x441ac, 0x441b4, 0x441b8, 0x441c0, 0x44254, 0x4425c, 0x44278, 0x442c0, 0x44374, 0x44380, 0x443ac, 0x443b4, 0x443b8, 0x443c0, 0x44454, 0x4445c, 0x44478, 0x444c0, 0x44574, 0x44580, 0x445ac, 0x445b4, 0x445b8, 0x445c0, 0x44654, 0x4465c, 0x44678, 0x446c0, 0x44774, 0x44780, 0x447ac, 0x447b4, 0x447b8, 0x447c0, 0x44854, 0x4485c, 0x44878, 0x448c0, 0x44974, 0x44980, 0x449ac, 0x449b4, 0x449b8, 0x449c0, 0x449fc, 0x45000, 0x45004, 0x45010, 0x45030, 0x45040, 0x45060, 0x45068, 0x45068, 0x45080, 0x45084, 0x450a0, 0x450b0, 0x45200, 0x45204, 0x45210, 0x45230, 0x45240, 0x45260, 0x45268, 0x45268, 0x45280, 0x45284, 0x452a0, 0x452b0, 0x460c0, 0x460e4, 0x47000, 0x4703c, 0x47044, 0x4708c, 0x47200, 0x47250, 0x47400, 0x47408, 0x47414, 0x47420, 0x47600, 0x47618, 0x47800, 0x47814, 0x48000, 0x4800c, 0x48040, 0x48050, 0x48060, 0x48068, 0x4807c, 0x4808c, 0x48094, 0x480b0, 0x480c0, 0x48144, 0x48180, 0x4818c, 0x48200, 0x48254, 0x48260, 0x48264, 0x48270, 0x48288, 0x48290, 0x48298, 0x482ac, 0x482c8, 0x482d0, 0x482e0, 0x482f0, 0x482f0, 0x48300, 0x4833c, 0x483f8, 0x483fc, 0x49304, 0x493c4, 0x49400, 0x4940c, 0x49414, 0x4941c, 0x49480, 0x494d0, 0x4c000, 0x4c054, 0x4c05c, 0x4c078, 0x4c0c0, 0x4c174, 0x4c180, 0x4c1ac, 0x4c1b4, 0x4c1b8, 0x4c1c0, 0x4c254, 0x4c25c, 0x4c278, 0x4c2c0, 0x4c374, 0x4c380, 0x4c3ac, 0x4c3b4, 0x4c3b8, 0x4c3c0, 0x4c454, 0x4c45c, 0x4c478, 0x4c4c0, 0x4c574, 0x4c580, 0x4c5ac, 0x4c5b4, 0x4c5b8, 0x4c5c0, 0x4c654, 0x4c65c, 0x4c678, 0x4c6c0, 0x4c774, 0x4c780, 0x4c7ac, 0x4c7b4, 0x4c7b8, 0x4c7c0, 0x4c854, 0x4c85c, 0x4c878, 0x4c8c0, 0x4c974, 0x4c980, 0x4c9ac, 0x4c9b4, 0x4c9b8, 0x4c9c0, 0x4c9fc, 0x4d000, 0x4d004, 0x4d010, 0x4d030, 0x4d040, 0x4d060, 0x4d068, 0x4d068, 0x4d080, 0x4d084, 0x4d0a0, 0x4d0b0, 0x4d200, 0x4d204, 0x4d210, 0x4d230, 0x4d240, 0x4d260, 0x4d268, 0x4d268, 0x4d280, 0x4d284, 0x4d2a0, 0x4d2b0, 0x4e0c0, 0x4e0e4, 0x4f000, 0x4f03c, 0x4f044, 0x4f08c, 0x4f200, 0x4f250, 0x4f400, 0x4f408, 0x4f414, 0x4f420, 0x4f600, 0x4f618, 0x4f800, 0x4f814, 0x50000, 0x50084, 0x50090, 0x500cc, 0x50400, 0x50400, 0x50800, 0x50884, 0x50890, 0x508cc, 0x50c00, 0x50c00, 0x51000, 0x5101c, 0x51300, 0x51308, }; static const unsigned int t6_reg_ranges[] = { 0x1008, 0x101c, 0x1024, 0x10a8, 0x10b4, 0x10f8, 0x1100, 0x1114, 0x111c, 0x112c, 0x1138, 0x113c, 0x1144, 0x114c, 0x1180, 0x1184, 0x1190, 0x1194, 0x11a0, 0x11a4, 0x11b0, 0x11b4, 0x11fc, 0x123c, 0x1254, 0x1274, 0x1280, 0x133c, 0x1800, 0x18fc, 0x3000, 0x302c, 0x3060, 0x30b0, 0x30b8, 0x30d8, 0x30e0, 0x30fc, 0x3140, 0x357c, 0x35a8, 0x35cc, 0x35ec, 0x35ec, 0x3600, 0x5624, 0x56cc, 0x56ec, 0x56f4, 0x5720, 0x5728, 0x575c, 0x580c, 0x5814, 0x5890, 0x589c, 0x58a4, 0x58ac, 0x58b8, 0x58bc, 0x5940, 0x595c, 0x5980, 0x598c, 0x59b0, 0x59c8, 0x59d0, 0x59dc, 0x59fc, 0x5a18, 0x5a60, 0x5a6c, 0x5a80, 0x5a8c, 0x5a94, 0x5a9c, 0x5b94, 0x5bfc, 0x5c10, 0x5e48, 0x5e50, 0x5e94, 0x5ea0, 0x5eb0, 0x5ec0, 0x5ec0, 0x5ec8, 0x5ed0, 0x5ee0, 0x5ee0, 0x5ef0, 0x5ef0, 0x5f00, 0x5f00, 0x6000, 0x6020, 0x6028, 0x6040, 0x6058, 0x609c, 0x60a8, 0x619c, 0x7700, 0x7798, 0x77c0, 0x7880, 0x78cc, 0x78fc, 0x7b00, 0x7b58, 0x7b60, 0x7b84, 0x7b8c, 0x7c54, 0x7d00, 0x7d38, 0x7d40, 0x7d84, 0x7d8c, 0x7ddc, 0x7de4, 0x7e04, 0x7e10, 0x7e1c, 0x7e24, 0x7e38, 0x7e40, 0x7e44, 0x7e4c, 0x7e78, 0x7e80, 0x7edc, 0x7ee8, 0x7efc, 0x8dc0, 0x8de4, 0x8df8, 0x8e04, 0x8e10, 0x8e84, 0x8ea0, 0x8f88, 0x8fb8, 0x9058, 0x9060, 0x9060, 0x9068, 0x90f8, 0x9100, 0x9124, 0x9400, 0x9470, 0x9600, 0x9600, 0x9608, 0x9638, 0x9640, 0x9704, 0x9710, 0x971c, 0x9800, 0x9808, 0x9810, 0x9864, 0x9c00, 0x9c6c, 0x9c80, 0x9cec, 0x9d00, 0x9d6c, 0x9d80, 0x9dec, 0x9e00, 0x9e6c, 0x9e80, 0x9eec, 0x9f00, 0x9f6c, 0x9f80, 0xa020, 0xd000, 0xd03c, 0xd100, 0xd118, 0xd200, 0xd214, 0xd220, 0xd234, 0xd240, 0xd254, 0xd260, 0xd274, 0xd280, 0xd294, 0xd2a0, 0xd2b4, 0xd2c0, 0xd2d4, 0xd2e0, 0xd2f4, 0xd300, 0xd31c, 0xdfc0, 0xdfe0, 0xe000, 0xf008, 0xf010, 0xf018, 0xf020, 0xf028, 0x11000, 0x11014, 0x11048, 0x1106c, 0x11074, 0x11088, 0x11098, 0x11120, 0x1112c, 0x1117c, 0x11190, 0x112e0, 0x11300, 0x1130c, 0x12000, 0x1206c, 0x19040, 0x1906c, 0x19078, 0x19080, 0x1908c, 0x190e8, 0x190f0, 0x190f8, 0x19100, 0x19110, 0x19120, 0x19124, 0x19150, 0x19194, 0x1919c, 0x191b0, 0x191d0, 0x191e8, 0x19238, 0x19290, 0x192a4, 0x192b0, 0x192bc, 0x192bc, 0x19348, 0x1934c, 0x193f8, 0x19418, 0x19420, 0x19428, 0x19430, 0x19444, 0x1944c, 0x1946c, 0x19474, 0x19474, 0x19490, 0x194cc, 0x194f0, 0x194f8, 0x19c00, 0x19c48, 0x19c50, 0x19c80, 0x19c94, 0x19c98, 0x19ca0, 0x19cbc, 0x19ce4, 0x19ce4, 0x19cf0, 0x19cf8, 0x19d00, 0x19d28, 0x19d50, 0x19d78, 0x19d94, 0x19d98, 0x19da0, 0x19dc8, 0x19df0, 0x19e10, 0x19e50, 0x19e6c, 0x19ea0, 0x19ebc, 0x19ec4, 0x19ef4, 0x19f04, 0x19f2c, 0x19f34, 0x19f34, 0x19f40, 0x19f50, 0x19f90, 0x19fac, 0x19fc4, 0x19fc8, 0x19fd0, 0x19fe4, 0x1a000, 0x1a004, 0x1a010, 0x1a06c, 0x1a0b0, 0x1a0e4, 0x1a0ec, 0x1a0f8, 0x1a100, 0x1a108, 0x1a114, 0x1a130, 0x1a138, 0x1a1c4, 0x1a1fc, 0x1a1fc, 0x1e008, 0x1e00c, 0x1e040, 0x1e044, 0x1e04c, 0x1e04c, 0x1e284, 0x1e290, 0x1e2c0, 0x1e2c0, 0x1e2e0, 0x1e2e0, 0x1e300, 0x1e384, 0x1e3c0, 0x1e3c8, 0x1e408, 0x1e40c, 0x1e440, 0x1e444, 0x1e44c, 0x1e44c, 0x1e684, 0x1e690, 0x1e6c0, 0x1e6c0, 0x1e6e0, 0x1e6e0, 0x1e700, 0x1e784, 0x1e7c0, 0x1e7c8, 0x1e808, 0x1e80c, 0x1e840, 0x1e844, 0x1e84c, 0x1e84c, 0x1ea84, 0x1ea90, 0x1eac0, 0x1eac0, 0x1eae0, 0x1eae0, 0x1eb00, 0x1eb84, 0x1ebc0, 0x1ebc8, 0x1ec08, 0x1ec0c, 0x1ec40, 0x1ec44, 0x1ec4c, 0x1ec4c, 0x1ee84, 0x1ee90, 0x1eec0, 0x1eec0, 0x1eee0, 0x1eee0, 0x1ef00, 0x1ef84, 0x1efc0, 0x1efc8, 0x1f008, 0x1f00c, 0x1f040, 0x1f044, 0x1f04c, 0x1f04c, 0x1f284, 0x1f290, 0x1f2c0, 0x1f2c0, 0x1f2e0, 0x1f2e0, 0x1f300, 0x1f384, 0x1f3c0, 0x1f3c8, 0x1f408, 0x1f40c, 0x1f440, 0x1f444, 0x1f44c, 0x1f44c, 0x1f684, 0x1f690, 0x1f6c0, 0x1f6c0, 0x1f6e0, 0x1f6e0, 0x1f700, 0x1f784, 0x1f7c0, 0x1f7c8, 0x1f808, 0x1f80c, 0x1f840, 0x1f844, 0x1f84c, 0x1f84c, 0x1fa84, 0x1fa90, 0x1fac0, 0x1fac0, 0x1fae0, 0x1fae0, 0x1fb00, 0x1fb84, 0x1fbc0, 0x1fbc8, 0x1fc08, 0x1fc0c, 0x1fc40, 0x1fc44, 0x1fc4c, 0x1fc4c, 0x1fe84, 0x1fe90, 0x1fec0, 0x1fec0, 0x1fee0, 0x1fee0, 0x1ff00, 0x1ff84, 0x1ffc0, 0x1ffc8, 0x30000, 0x30030, 0x30100, 0x30168, 0x30190, 0x301a0, 0x301a8, 0x301b8, 0x301c4, 0x301c8, 0x301d0, 0x301d0, 0x30200, 0x30320, 0x30400, 0x304b4, 0x304c0, 0x3052c, 0x30540, 0x3061c, 0x30800, 0x308a0, 0x308c0, 0x30908, 0x30910, 0x309b8, 0x30a00, 0x30a04, 0x30a0c, 0x30a14, 0x30a1c, 0x30a2c, 0x30a44, 0x30a50, 0x30a74, 0x30a74, 0x30a7c, 0x30afc, 0x30b08, 0x30c24, 0x30d00, 0x30d14, 0x30d1c, 0x30d3c, 0x30d44, 0x30d4c, 0x30d54, 0x30d74, 0x30d7c, 0x30d7c, 0x30de0, 0x30de0, 0x30e00, 0x30ed4, 0x30f00, 0x30fa4, 0x30fc0, 0x30fc4, 0x31000, 0x31004, 0x31080, 0x310fc, 0x31208, 0x31220, 0x3123c, 0x31254, 0x31300, 0x31300, 0x31308, 0x3131c, 0x31338, 0x3133c, 0x31380, 0x31380, 0x31388, 0x313a8, 0x313b4, 0x313b4, 0x31400, 0x31420, 0x31438, 0x3143c, 0x31480, 0x31480, 0x314a8, 0x314a8, 0x314b0, 0x314b4, 0x314c8, 0x314d4, 0x31a40, 0x31a4c, 0x31af0, 0x31b20, 0x31b38, 0x31b3c, 0x31b80, 0x31b80, 0x31ba8, 0x31ba8, 0x31bb0, 0x31bb4, 0x31bc8, 0x31bd4, 0x32140, 0x3218c, 0x321f0, 0x321f4, 0x32200, 0x32200, 0x32218, 0x32218, 0x32400, 0x32400, 0x32408, 0x3241c, 0x32618, 0x32620, 0x32664, 0x32664, 0x326a8, 0x326a8, 0x326ec, 0x326ec, 0x32a00, 0x32abc, 0x32b00, 0x32b18, 0x32b20, 0x32b38, 0x32b40, 0x32b58, 0x32b60, 0x32b78, 0x32c00, 0x32c00, 0x32c08, 0x32c3c, 0x33000, 0x3302c, 0x33034, 0x33050, 0x33058, 0x33058, 0x33060, 0x3308c, 0x3309c, 0x330ac, 0x330c0, 0x330c0, 0x330c8, 0x330d0, 0x330d8, 0x330e0, 0x330ec, 0x3312c, 0x33134, 0x33150, 0x33158, 0x33158, 0x33160, 0x3318c, 0x3319c, 0x331ac, 0x331c0, 0x331c0, 0x331c8, 0x331d0, 0x331d8, 0x331e0, 0x331ec, 0x33290, 0x33298, 0x332c4, 0x332e4, 0x33390, 0x33398, 0x333c4, 0x333e4, 0x3342c, 0x33434, 0x33450, 0x33458, 0x33458, 0x33460, 0x3348c, 0x3349c, 0x334ac, 0x334c0, 0x334c0, 0x334c8, 0x334d0, 0x334d8, 0x334e0, 0x334ec, 0x3352c, 0x33534, 0x33550, 0x33558, 0x33558, 0x33560, 0x3358c, 0x3359c, 0x335ac, 0x335c0, 0x335c0, 0x335c8, 0x335d0, 0x335d8, 0x335e0, 0x335ec, 0x33690, 0x33698, 0x336c4, 0x336e4, 0x33790, 0x33798, 0x337c4, 0x337e4, 0x337fc, 0x33814, 0x33814, 0x33854, 0x33868, 0x33880, 0x3388c, 0x338c0, 0x338d0, 0x338e8, 0x338ec, 0x33900, 0x3392c, 0x33934, 0x33950, 0x33958, 0x33958, 0x33960, 0x3398c, 0x3399c, 0x339ac, 0x339c0, 0x339c0, 0x339c8, 0x339d0, 0x339d8, 0x339e0, 0x339ec, 0x33a90, 0x33a98, 0x33ac4, 0x33ae4, 0x33b10, 0x33b24, 0x33b28, 0x33b38, 0x33b50, 0x33bf0, 0x33c10, 0x33c24, 0x33c28, 0x33c38, 0x33c50, 0x33cf0, 0x33cfc, 0x34000, 0x34030, 0x34100, 0x34168, 0x34190, 0x341a0, 0x341a8, 0x341b8, 0x341c4, 0x341c8, 0x341d0, 0x341d0, 0x34200, 0x34320, 0x34400, 0x344b4, 0x344c0, 0x3452c, 0x34540, 0x3461c, 0x34800, 0x348a0, 0x348c0, 0x34908, 0x34910, 0x349b8, 0x34a00, 0x34a04, 0x34a0c, 0x34a14, 0x34a1c, 0x34a2c, 0x34a44, 0x34a50, 0x34a74, 0x34a74, 0x34a7c, 0x34afc, 0x34b08, 0x34c24, 0x34d00, 0x34d14, 0x34d1c, 0x34d3c, 0x34d44, 0x34d4c, 0x34d54, 0x34d74, 0x34d7c, 0x34d7c, 0x34de0, 0x34de0, 0x34e00, 0x34ed4, 0x34f00, 0x34fa4, 0x34fc0, 0x34fc4, 0x35000, 0x35004, 0x35080, 0x350fc, 0x35208, 0x35220, 0x3523c, 0x35254, 0x35300, 0x35300, 0x35308, 0x3531c, 0x35338, 0x3533c, 0x35380, 0x35380, 0x35388, 0x353a8, 0x353b4, 0x353b4, 0x35400, 0x35420, 0x35438, 0x3543c, 0x35480, 0x35480, 0x354a8, 0x354a8, 0x354b0, 0x354b4, 0x354c8, 0x354d4, 0x35a40, 0x35a4c, 0x35af0, 0x35b20, 0x35b38, 0x35b3c, 0x35b80, 0x35b80, 0x35ba8, 0x35ba8, 0x35bb0, 0x35bb4, 0x35bc8, 0x35bd4, 0x36140, 0x3618c, 0x361f0, 0x361f4, 0x36200, 0x36200, 0x36218, 0x36218, 0x36400, 0x36400, 0x36408, 0x3641c, 0x36618, 0x36620, 0x36664, 0x36664, 0x366a8, 0x366a8, 0x366ec, 0x366ec, 0x36a00, 0x36abc, 0x36b00, 0x36b18, 0x36b20, 0x36b38, 0x36b40, 0x36b58, 0x36b60, 0x36b78, 0x36c00, 0x36c00, 0x36c08, 0x36c3c, 0x37000, 0x3702c, 0x37034, 0x37050, 0x37058, 0x37058, 0x37060, 0x3708c, 0x3709c, 0x370ac, 0x370c0, 0x370c0, 0x370c8, 0x370d0, 0x370d8, 0x370e0, 0x370ec, 0x3712c, 0x37134, 0x37150, 0x37158, 0x37158, 0x37160, 0x3718c, 0x3719c, 0x371ac, 0x371c0, 0x371c0, 0x371c8, 0x371d0, 0x371d8, 0x371e0, 0x371ec, 0x37290, 0x37298, 0x372c4, 0x372e4, 0x37390, 0x37398, 0x373c4, 0x373e4, 0x3742c, 0x37434, 0x37450, 0x37458, 0x37458, 0x37460, 0x3748c, 0x3749c, 0x374ac, 0x374c0, 0x374c0, 0x374c8, 0x374d0, 0x374d8, 0x374e0, 0x374ec, 0x3752c, 0x37534, 0x37550, 0x37558, 0x37558, 0x37560, 0x3758c, 0x3759c, 0x375ac, 0x375c0, 0x375c0, 0x375c8, 0x375d0, 0x375d8, 0x375e0, 0x375ec, 0x37690, 0x37698, 0x376c4, 0x376e4, 0x37790, 0x37798, 0x377c4, 0x377e4, 0x377fc, 0x37814, 0x37814, 0x37854, 0x37868, 0x37880, 0x3788c, 0x378c0, 0x378d0, 0x378e8, 0x378ec, 0x37900, 0x3792c, 0x37934, 0x37950, 0x37958, 0x37958, 0x37960, 0x3798c, 0x3799c, 0x379ac, 0x379c0, 0x379c0, 0x379c8, 0x379d0, 0x379d8, 0x379e0, 0x379ec, 0x37a90, 0x37a98, 0x37ac4, 0x37ae4, 0x37b10, 0x37b24, 0x37b28, 0x37b38, 0x37b50, 0x37bf0, 0x37c10, 0x37c24, 0x37c28, 0x37c38, 0x37c50, 0x37cf0, 0x37cfc, 0x40040, 0x40040, 0x40080, 0x40084, 0x40100, 0x40100, 0x40140, 0x401bc, 0x40200, 0x40214, 0x40228, 0x40228, 0x40240, 0x40258, 0x40280, 0x40280, 0x40304, 0x40304, 0x40330, 0x4033c, 0x41304, 0x413c8, 0x413d0, 0x413dc, 0x413f0, 0x413f0, 0x41400, 0x4140c, 0x41414, 0x4141c, 0x41480, 0x414d0, 0x44000, 0x4407c, 0x440c0, 0x441ac, 0x441b4, 0x4427c, 0x442c0, 0x443ac, 0x443b4, 0x4447c, 0x444c0, 0x445ac, 0x445b4, 0x4467c, 0x446c0, 0x447ac, 0x447b4, 0x4487c, 0x448c0, 0x449ac, 0x449b4, 0x44a7c, 0x44ac0, 0x44bac, 0x44bb4, 0x44c7c, 0x44cc0, 0x44dac, 0x44db4, 0x44e7c, 0x44ec0, 0x44fac, 0x44fb4, 0x4507c, 0x450c0, 0x451ac, 0x451b4, 0x451fc, 0x45800, 0x45804, 0x45810, 0x45830, 0x45840, 0x45860, 0x45868, 0x45868, 0x45880, 0x45884, 0x458a0, 0x458b0, 0x45a00, 0x45a04, 0x45a10, 0x45a30, 0x45a40, 0x45a60, 0x45a68, 0x45a68, 0x45a80, 0x45a84, 0x45aa0, 0x45ab0, 0x460c0, 0x460e4, 0x47000, 0x4703c, 0x47044, 0x4708c, 0x47200, 0x47250, 0x47400, 0x47408, 0x47414, 0x47420, 0x47600, 0x47618, 0x47800, 0x47814, 0x47820, 0x4782c, 0x50000, 0x50084, 0x50090, 0x500cc, 0x50300, 0x50384, 0x50400, 0x50400, 0x50800, 0x50884, 0x50890, 0x508cc, 0x50b00, 0x50b84, 0x50c00, 0x50c00, 0x51000, 0x51020, 0x51028, 0x510b0, 0x51300, 0x51324, }; u32 *buf_end = (u32 *)((char *)buf + buf_size); const unsigned int *reg_ranges; int reg_ranges_size, range; unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); /* Select the right set of register ranges to dump depending on the * adapter chip type. */ switch (chip_version) { case CHELSIO_T4: reg_ranges = t4_reg_ranges; reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); break; case CHELSIO_T5: reg_ranges = t5_reg_ranges; reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); break; case CHELSIO_T6: reg_ranges = t6_reg_ranges; reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); break; default: dev_err(adap->pdev_dev, "Unsupported chip version %d\n", chip_version); return; } /* Clear the register buffer and insert the appropriate register * values selected by the above register ranges. */ memset(buf, 0, buf_size); for (range = 0; range < reg_ranges_size; range += 2) { unsigned int reg = reg_ranges[range]; unsigned int last_reg = reg_ranges[range + 1]; u32 *bufp = (u32 *)((char *)buf + reg); /* Iterate across the register range filling in the register * buffer but don't write past the end of the register buffer. */ while (reg <= last_reg && bufp < buf_end) { *bufp++ = t4_read_reg(adap, reg); reg += sizeof(u32); } } } #define EEPROM_STAT_ADDR 0x7bfc #define VPD_BASE 0x400 #define VPD_BASE_OLD 0 #define VPD_LEN 1024 /** * t4_eeprom_ptov - translate a physical EEPROM address to virtual * @phys_addr: the physical EEPROM address * @fn: the PCI function number * @sz: size of function-specific area * * Translate a physical EEPROM address to virtual. The first 1K is * accessed through virtual addresses starting at 31K, the rest is * accessed through virtual addresses starting at 0. * * The mapping is as follows: * [0..1K) -> [31K..32K) * [1K..1K+A) -> [31K-A..31K) * [1K+A..ES) -> [0..ES-A-1K) * * where A = @fn * @sz, and ES = EEPROM size. */ int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) { fn *= sz; if (phys_addr < 1024) return phys_addr + (31 << 10); if (phys_addr < 1024 + fn) return 31744 - fn + phys_addr - 1024; if (phys_addr < EEPROMSIZE) return phys_addr - 1024 - fn; return -EINVAL; } /** * t4_seeprom_wp - enable/disable EEPROM write protection * @adapter: the adapter * @enable: whether to enable or disable write protection * * Enables or disables write protection on the serial EEPROM. */ int t4_seeprom_wp(struct adapter *adapter, bool enable) { unsigned int v = enable ? 0xc : 0; int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); return ret < 0 ? ret : 0; } /** * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM * @adapter: adapter to read * @p: where to store the parameters * * Reads card parameters stored in VPD EEPROM. */ int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) { unsigned int id_len, pn_len, sn_len, na_len; int id, sn, pn, na, addr, ret = 0; u8 *vpd, base_val = 0; vpd = vmalloc(VPD_LEN); if (!vpd) return -ENOMEM; /* Card information normally starts at VPD_BASE but early cards had * it at 0. */ ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val); if (ret < 0) goto out; addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD; ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); if (ret < 0) goto out; ret = pci_vpd_find_id_string(vpd, VPD_LEN, &id_len); if (ret < 0) goto out; id = ret; ret = pci_vpd_check_csum(vpd, VPD_LEN); if (ret) { dev_err(adapter->pdev_dev, "VPD checksum incorrect or missing\n"); ret = -EINVAL; goto out; } ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN, PCI_VPD_RO_KEYWORD_SERIALNO, &sn_len); if (ret < 0) goto out; sn = ret; ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN, PCI_VPD_RO_KEYWORD_PARTNO, &pn_len); if (ret < 0) goto out; pn = ret; ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN, "NA", &na_len); if (ret < 0) goto out; na = ret; memcpy(p->id, vpd + id, min_t(int, id_len, ID_LEN)); strim(p->id); memcpy(p->sn, vpd + sn, min_t(int, sn_len, SERNUM_LEN)); strim(p->sn); memcpy(p->pn, vpd + pn, min_t(int, pn_len, PN_LEN)); strim(p->pn); memcpy(p->na, vpd + na, min_t(int, na_len, MACADDR_LEN)); strim((char *)p->na); out: vfree(vpd); if (ret < 0) { dev_err(adapter->pdev_dev, "error reading VPD\n"); return ret; } return 0; } /** * t4_get_vpd_params - read VPD parameters & retrieve Core Clock * @adapter: adapter to read * @p: where to store the parameters * * Reads card parameters stored in VPD EEPROM and retrieves the Core * Clock. This can only be called after a connection to the firmware * is established. */ int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) { u32 cclk_param, cclk_val; int ret; /* Grab the raw VPD parameters. */ ret = t4_get_raw_vpd_params(adapter, p); if (ret) return ret; /* Ask firmware for the Core Clock since it knows how to translate the * Reference Clock ('V2') VPD field into a Core Clock value ... */ cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1, &cclk_param, &cclk_val); if (ret) return ret; p->cclk = cclk_val; return 0; } /** * t4_get_pfres - retrieve VF resource limits * @adapter: the adapter * * Retrieves configured resource limits and capabilities for a physical * function. The results are stored in @adapter->pfres. */ int t4_get_pfres(struct adapter *adapter) { struct pf_resources *pfres = &adapter->params.pfres; struct fw_pfvf_cmd cmd, rpl; int v; u32 word; /* Execute PFVF Read command to get VF resource limits; bail out early * with error on command failure. */ memset(&cmd, 0, sizeof(cmd)); cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | FW_PFVF_CMD_PFN_V(adapter->pf) | FW_PFVF_CMD_VFN_V(0)); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl); if (v != FW_SUCCESS) return v; /* Extract PF resource limits and return success. */ word = be32_to_cpu(rpl.niqflint_niq); pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); pfres->niq = FW_PFVF_CMD_NIQ_G(word); word = be32_to_cpu(rpl.type_to_neq); pfres->neq = FW_PFVF_CMD_NEQ_G(word); pfres->pmask = FW_PFVF_CMD_PMASK_G(word); word = be32_to_cpu(rpl.tc_to_nexactf); pfres->tc = FW_PFVF_CMD_TC_G(word); pfres->nvi = FW_PFVF_CMD_NVI_G(word); pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); word = be32_to_cpu(rpl.r_caps_to_nethctrl); pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); return 0; } /* serial flash and firmware constants */ enum { SF_ATTEMPTS = 10, /* max retries for SF operations */ /* flash command opcodes */ SF_PROG_PAGE = 2, /* program page */ SF_WR_DISABLE = 4, /* disable writes */ SF_RD_STATUS = 5, /* read status register */ SF_WR_ENABLE = 6, /* enable writes */ SF_RD_DATA_FAST = 0xb, /* read flash */ SF_RD_ID = 0x9f, /* read ID */ SF_ERASE_SECTOR = 0xd8, /* erase sector */ }; /** * sf1_read - read data from the serial flash * @adapter: the adapter * @byte_cnt: number of bytes to read * @cont: whether another operation will be chained * @lock: whether to lock SF for PL access only * @valp: where to store the read data * * Reads up to 4 bytes of data from the serial flash. The location of * the read needs to be specified prior to calling this by issuing the * appropriate commands to the serial flash. */ static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, int lock, u32 *valp) { int ret; if (!byte_cnt || byte_cnt > 4) return -EINVAL; if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) return -EBUSY; t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); if (!ret) *valp = t4_read_reg(adapter, SF_DATA_A); return ret; } /** * sf1_write - write data to the serial flash * @adapter: the adapter * @byte_cnt: number of bytes to write * @cont: whether another operation will be chained * @lock: whether to lock SF for PL access only * @val: value to write * * Writes up to 4 bytes of data to the serial flash. The location of * the write needs to be specified prior to calling this by issuing the * appropriate commands to the serial flash. */ static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, int lock, u32 val) { if (!byte_cnt || byte_cnt > 4) return -EINVAL; if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) return -EBUSY; t4_write_reg(adapter, SF_DATA_A, val); t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); } /** * flash_wait_op - wait for a flash operation to complete * @adapter: the adapter * @attempts: max number of polls of the status register * @delay: delay between polls in ms * * Wait for a flash operation to complete by polling the status register. */ static int flash_wait_op(struct adapter *adapter, int attempts, int delay) { int ret; u32 status; while (1) { if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) return ret; if (!(status & 1)) return 0; if (--attempts == 0) return -EAGAIN; if (delay) msleep(delay); } } /** * t4_read_flash - read words from serial flash * @adapter: the adapter * @addr: the start address for the read * @nwords: how many 32-bit words to read * @data: where to store the read data * @byte_oriented: whether to store data as bytes or as words * * Read the specified number of 32-bit words from the serial flash. * If @byte_oriented is set the read data is stored as a byte array * (i.e., big-endian), otherwise as 32-bit words in the platform's * natural endianness. */ int t4_read_flash(struct adapter *adapter, unsigned int addr, unsigned int nwords, u32 *data, int byte_oriented) { int ret; if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) return -EINVAL; addr = swab32(addr) | SF_RD_DATA_FAST; if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) return ret; for ( ; nwords; nwords--, data++) { ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); if (nwords == 1) t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ if (ret) return ret; if (byte_oriented) *data = (__force __u32)(cpu_to_be32(*data)); } return 0; } /** * t4_write_flash - write up to a page of data to the serial flash * @adapter: the adapter * @addr: the start address to write * @n: length of data to write in bytes * @data: the data to write * @byte_oriented: whether to store data as bytes or as words * * Writes up to a page of data (256 bytes) to the serial flash starting * at the given address. All the data must be written to the same page. * If @byte_oriented is set the write data is stored as byte stream * (i.e. matches what on disk), otherwise in big-endian. */ static int t4_write_flash(struct adapter *adapter, unsigned int addr, unsigned int n, const u8 *data, bool byte_oriented) { unsigned int i, c, left, val, offset = addr & 0xff; u32 buf[64]; int ret; if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) return -EINVAL; val = swab32(addr) | SF_PROG_PAGE; if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) goto unlock; for (left = n; left; left -= c, data += c) { c = min(left, 4U); for (val = 0, i = 0; i < c; ++i) { if (byte_oriented) val = (val << 8) + data[i]; else val = (val << 8) + data[c - i - 1]; } ret = sf1_write(adapter, c, c != left, 1, val); if (ret) goto unlock; } ret = flash_wait_op(adapter, 8, 1); if (ret) goto unlock; t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ /* Read the page to verify the write succeeded */ ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, byte_oriented); if (ret) return ret; if (memcmp(data - n, (u8 *)buf + offset, n)) { dev_err(adapter->pdev_dev, "failed to correctly write the flash page at %#x\n", addr); return -EIO; } return 0; unlock: t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ return ret; } /** * t4_get_fw_version - read the firmware version * @adapter: the adapter * @vers: where to place the version * * Reads the FW version from flash. */ int t4_get_fw_version(struct adapter *adapter, u32 *vers) { return t4_read_flash(adapter, FLASH_FW_START + offsetof(struct fw_hdr, fw_ver), 1, vers, 0); } /** * t4_get_bs_version - read the firmware bootstrap version * @adapter: the adapter * @vers: where to place the version * * Reads the FW Bootstrap version from flash. */ int t4_get_bs_version(struct adapter *adapter, u32 *vers) { return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + offsetof(struct fw_hdr, fw_ver), 1, vers, 0); } /** * t4_get_tp_version - read the TP microcode version * @adapter: the adapter * @vers: where to place the version * * Reads the TP microcode version from flash. */ int t4_get_tp_version(struct adapter *adapter, u32 *vers) { return t4_read_flash(adapter, FLASH_FW_START + offsetof(struct fw_hdr, tp_microcode_ver), 1, vers, 0); } /** * t4_get_exprom_version - return the Expansion ROM version (if any) * @adap: the adapter * @vers: where to place the version * * Reads the Expansion ROM header from FLASH and returns the version * number (if present) through the @vers return value pointer. We return * this in the Firmware Version Format since it's convenient. Return * 0 on success, -ENOENT if no Expansion ROM is present. */ int t4_get_exprom_version(struct adapter *adap, u32 *vers) { struct exprom_header { unsigned char hdr_arr[16]; /* must start with 0x55aa */ unsigned char hdr_ver[4]; /* Expansion ROM version */ } *hdr; u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), sizeof(u32))]; int ret; ret = t4_read_flash(adap, FLASH_EXP_ROM_START, ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 0); if (ret) return ret; hdr = (struct exprom_header *)exprom_header_buf; if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) return -ENOENT; *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); return 0; } /** * t4_get_vpd_version - return the VPD version * @adapter: the adapter * @vers: where to place the version * * Reads the VPD via the Firmware interface (thus this can only be called * once we're ready to issue Firmware commands). The format of the * VPD version is adapter specific. Returns 0 on success, an error on * failure. * * Note that early versions of the Firmware didn't include the ability * to retrieve the VPD version, so we zero-out the return-value parameter * in that case to avoid leaving it with garbage in it. * * Also note that the Firmware will return its cached copy of the VPD * Revision ID, not the actual Revision ID as written in the Serial * EEPROM. This is only an issue if a new VPD has been written and the * Firmware/Chip haven't yet gone through a RESET sequence. So it's best * to defer calling this routine till after a FW_RESET_CMD has been issued * if the Host Driver will be performing a full adapter initialization. */ int t4_get_vpd_version(struct adapter *adapter, u32 *vers) { u32 vpdrev_param; int ret; vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1, &vpdrev_param, vers); if (ret) *vers = 0; return ret; } /** * t4_get_scfg_version - return the Serial Configuration version * @adapter: the adapter * @vers: where to place the version * * Reads the Serial Configuration Version via the Firmware interface * (thus this can only be called once we're ready to issue Firmware * commands). The format of the Serial Configuration version is * adapter specific. Returns 0 on success, an error on failure. * * Note that early versions of the Firmware didn't include the ability * to retrieve the Serial Configuration version, so we zero-out the * return-value parameter in that case to avoid leaving it with * garbage in it. * * Also note that the Firmware will return its cached copy of the Serial * Initialization Revision ID, not the actual Revision ID as written in * the Serial EEPROM. This is only an issue if a new VPD has been written * and the Firmware/Chip haven't yet gone through a RESET sequence. So * it's best to defer calling this routine till after a FW_RESET_CMD has * been issued if the Host Driver will be performing a full adapter * initialization. */ int t4_get_scfg_version(struct adapter *adapter, u32 *vers) { u32 scfgrev_param; int ret; scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1, &scfgrev_param, vers); if (ret) *vers = 0; return ret; } /** * t4_get_version_info - extract various chip/firmware version information * @adapter: the adapter * * Reads various chip/firmware version numbers and stores them into the * adapter Adapter Parameters structure. If any of the efforts fails * the first failure will be returned, but all of the version numbers * will be read. */ int t4_get_version_info(struct adapter *adapter) { int ret = 0; #define FIRST_RET(__getvinfo) \ do { \ int __ret = __getvinfo; \ if (__ret && !ret) \ ret = __ret; \ } while (0) FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); #undef FIRST_RET return ret; } /** * t4_dump_version_info - dump all of the adapter configuration IDs * @adapter: the adapter * * Dumps all of the various bits of adapter configuration version/revision * IDs information. This is typically called at some point after * t4_get_version_info() has been called. */ void t4_dump_version_info(struct adapter *adapter) { /* Device information */ dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", adapter->params.vpd.id, CHELSIO_CHIP_RELEASE(adapter->params.chip)); dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", adapter->params.vpd.sn, adapter->params.vpd.pn); /* Firmware Version */ if (!adapter->params.fw_vers) dev_warn(adapter->pdev_dev, "No firmware loaded\n"); else dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap * Firmware, so dev_info() is more appropriate here.) */ if (!adapter->params.bs_vers) dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); else dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); /* TP Microcode Version */ if (!adapter->params.tp_vers) dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); else dev_info(adapter->pdev_dev, "TP Microcode version: %u.%u.%u.%u\n", FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); /* Expansion ROM version */ if (!adapter->params.er_vers) dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); else dev_info(adapter->pdev_dev, "Expansion ROM version: %u.%u.%u.%u\n", FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); /* Serial Configuration version */ dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", adapter->params.scfg_vers); /* VPD Version */ dev_info(adapter->pdev_dev, "VPD version: %#x\n", adapter->params.vpd_vers); } /** * t4_check_fw_version - check if the FW is supported with this driver * @adap: the adapter * * Checks if an adapter's FW is compatible with the driver. Returns 0 * if there's exact match, a negative error if the version could not be * read or there's a major version mismatch */ int t4_check_fw_version(struct adapter *adap) { int i, ret, major, minor, micro; int exp_major, exp_minor, exp_micro; unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); ret = t4_get_fw_version(adap, &adap->params.fw_vers); /* Try multiple times before returning error */ for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) ret = t4_get_fw_version(adap, &adap->params.fw_vers); if (ret) return ret; major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); switch (chip_version) { case CHELSIO_T4: exp_major = T4FW_MIN_VERSION_MAJOR; exp_minor = T4FW_MIN_VERSION_MINOR; exp_micro = T4FW_MIN_VERSION_MICRO; break; case CHELSIO_T5: exp_major = T5FW_MIN_VERSION_MAJOR; exp_minor = T5FW_MIN_VERSION_MINOR; exp_micro = T5FW_MIN_VERSION_MICRO; break; case CHELSIO_T6: exp_major = T6FW_MIN_VERSION_MAJOR; exp_minor = T6FW_MIN_VERSION_MINOR; exp_micro = T6FW_MIN_VERSION_MICRO; break; default: dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", adap->chip); return -EINVAL; } if (major < exp_major || (major == exp_major && minor < exp_minor) || (major == exp_major && minor == exp_minor && micro < exp_micro)) { dev_err(adap->pdev_dev, "Card has firmware version %u.%u.%u, minimum " "supported firmware is %u.%u.%u.\n", major, minor, micro, exp_major, exp_minor, exp_micro); return -EFAULT; } return 0; } /* Is the given firmware API compatible with the one the driver was compiled * with? */ static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) { /* short circuit if it's the exact same firmware version */ if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) return 1; #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) return 1; #undef SAME_INTF return 0; } /* The firmware in the filesystem is usable, but should it be installed? * This routine explains itself in detail if it indicates the filesystem * firmware should be installed. */ static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, int k, int c) { const char *reason; if (!card_fw_usable) { reason = "incompatible or unusable"; goto install; } if (k > c) { reason = "older than the version supported with this driver"; goto install; } return 0; install: dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " "installing firmware %u.%u.%u.%u on card.\n", FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); return 1; } int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, const u8 *fw_data, unsigned int fw_size, struct fw_hdr *card_fw, enum dev_state state, int *reset) { int ret, card_fw_usable, fs_fw_usable; const struct fw_hdr *fs_fw; const struct fw_hdr *drv_fw; drv_fw = &fw_info->fw_hdr; /* Read the header of the firmware on the card */ ret = t4_read_flash(adap, FLASH_FW_START, sizeof(*card_fw) / sizeof(uint32_t), (uint32_t *)card_fw, 1); if (ret == 0) { card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); } else { dev_err(adap->pdev_dev, "Unable to read card's firmware header: %d\n", ret); card_fw_usable = 0; } if (fw_data != NULL) { fs_fw = (const void *)fw_data; fs_fw_usable = fw_compatible(drv_fw, fs_fw); } else { fs_fw = NULL; fs_fw_usable = 0; } if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { /* Common case: the firmware on the card is an exact match and * the filesystem one is an exact match too, or the filesystem * one is absent/incompatible. */ } else if (fs_fw_usable && state == DEV_STATE_UNINIT && should_install_fs_fw(adap, card_fw_usable, be32_to_cpu(fs_fw->fw_ver), be32_to_cpu(card_fw->fw_ver))) { ret = t4_fw_upgrade(adap, adap->mbox, fw_data, fw_size, 0); if (ret != 0) { dev_err(adap->pdev_dev, "failed to install firmware: %d\n", ret); goto bye; } /* Installed successfully, update the cached header too. */ *card_fw = *fs_fw; card_fw_usable = 1; *reset = 0; /* already reset as part of load_fw */ } if (!card_fw_usable) { uint32_t d, c, k; d = be32_to_cpu(drv_fw->fw_ver); c = be32_to_cpu(card_fw->fw_ver); k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; dev_err(adap->pdev_dev, "Cannot find a usable firmware: " "chip state %d, " "driver compiled with %d.%d.%d.%d, " "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", state, FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); ret = -EINVAL; goto bye; } /* We're using whatever's on the card and it's known to be good. */ adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); bye: return ret; } /** * t4_flash_erase_sectors - erase a range of flash sectors * @adapter: the adapter * @start: the first sector to erase * @end: the last sector to erase * * Erases the sectors in the given inclusive range. */ static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) { int ret = 0; if (end >= adapter->params.sf_nsec) return -EINVAL; while (start <= end) { if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || (ret = sf1_write(adapter, 4, 0, 1, SF_ERASE_SECTOR | (start << 8))) != 0 || (ret = flash_wait_op(adapter, 14, 500)) != 0) { dev_err(adapter->pdev_dev, "erase of flash sector %d failed, error %d\n", start, ret); break; } start++; } t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ return ret; } /** * t4_flash_cfg_addr - return the address of the flash configuration file * @adapter: the adapter * * Return the address within the flash where the Firmware Configuration * File is stored. */ unsigned int t4_flash_cfg_addr(struct adapter *adapter) { if (adapter->params.sf_size == 0x100000) return FLASH_FPGA_CFG_START; else return FLASH_CFG_START; } /* Return TRUE if the specified firmware matches the adapter. I.e. T4 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead * and emit an error message for mismatched firmware to save our caller the * effort ... */ static bool t4_fw_matches_chip(const struct adapter *adap, const struct fw_hdr *hdr) { /* The expression below will return FALSE for any unsupported adapter * which will keep us "honest" in the future ... */ if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) return true; dev_err(adap->pdev_dev, "FW image (%d) is not suitable for this adapter (%d)\n", hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); return false; } /** * t4_load_fw - download firmware * @adap: the adapter * @fw_data: the firmware image to write * @size: image size * * Write the supplied firmware image to the card's serial flash. */ int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) { u32 csum; int ret, addr; unsigned int i; u8 first_page[SF_PAGE_SIZE]; const __be32 *p = (const __be32 *)fw_data; const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; unsigned int fw_start_sec = FLASH_FW_START_SEC; unsigned int fw_size = FLASH_FW_MAX_SIZE; unsigned int fw_start = FLASH_FW_START; if (!size) { dev_err(adap->pdev_dev, "FW image has no data\n"); return -EINVAL; } if (size & 511) { dev_err(adap->pdev_dev, "FW image size not multiple of 512 bytes\n"); return -EINVAL; } if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { dev_err(adap->pdev_dev, "FW image size differs from size in FW header\n"); return -EINVAL; } if (size > fw_size) { dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", fw_size); return -EFBIG; } if (!t4_fw_matches_chip(adap, hdr)) return -EINVAL; for (csum = 0, i = 0; i < size / sizeof(csum); i++) csum += be32_to_cpu(p[i]); if (csum != 0xffffffff) { dev_err(adap->pdev_dev, "corrupted firmware image, checksum %#x\n", csum); return -EINVAL; } i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); if (ret) goto out; /* * We write the correct version at the end so the driver can see a bad * version if the FW write fails. Start by writing a copy of the * first page with a bad version. */ memcpy(first_page, fw_data, SF_PAGE_SIZE); ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true); if (ret) goto out; addr = fw_start; for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { addr += SF_PAGE_SIZE; fw_data += SF_PAGE_SIZE; ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true); if (ret) goto out; } ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver), sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, true); out: if (ret) dev_err(adap->pdev_dev, "firmware download failed, error %d\n", ret); else ret = t4_get_fw_version(adap, &adap->params.fw_vers); return ret; } /** * t4_phy_fw_ver - return current PHY firmware version * @adap: the adapter * @phy_fw_ver: return value buffer for PHY firmware version * * Returns the current version of external PHY firmware on the * adapter. */ int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) { u32 param, val; int ret; param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | FW_PARAMS_PARAM_Y_V(adap->params.portvec) | FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); if (ret) return ret; *phy_fw_ver = val; return 0; } /** * t4_load_phy_fw - download port PHY firmware * @adap: the adapter * @win: the PCI-E Memory Window index to use for t4_memory_rw() * @phy_fw_version: function to check PHY firmware versions * @phy_fw_data: the PHY firmware image to write * @phy_fw_size: image size * * Transfer the specified PHY firmware to the adapter. If a non-NULL * @phy_fw_version is supplied, then it will be used to determine if * it's necessary to perform the transfer by comparing the version * of any existing adapter PHY firmware with that of the passed in * PHY firmware image. * * A negative error number will be returned if an error occurs. If * version number support is available and there's no need to upgrade * the firmware, 0 will be returned. If firmware is successfully * transferred to the adapter, 1 will be returned. * * NOTE: some adapters only have local RAM to store the PHY firmware. As * a result, a RESET of the adapter would cause that RAM to lose its * contents. Thus, loading PHY firmware on such adapters must happen * after any FW_RESET_CMDs ... */ int t4_load_phy_fw(struct adapter *adap, int win, int (*phy_fw_version)(const u8 *, size_t), const u8 *phy_fw_data, size_t phy_fw_size) { int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; unsigned long mtype = 0, maddr = 0; u32 param, val; int ret; /* If we have version number support, then check to see if the adapter * already has up-to-date PHY firmware loaded. */ if (phy_fw_version) { new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); if (ret < 0) return ret; if (cur_phy_fw_ver >= new_phy_fw_vers) { CH_WARN(adap, "PHY Firmware already up-to-date, " "version %#x\n", cur_phy_fw_ver); return 0; } } /* Ask the firmware where it wants us to copy the PHY firmware image. * The size of the file requires a special version of the READ command * which will pass the file size via the values field in PARAMS_CMD and * retrieve the return value from firmware and place it in the same * buffer values */ param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | FW_PARAMS_PARAM_Y_V(adap->params.portvec) | FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); val = phy_fw_size; ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val, 1, true); if (ret < 0) return ret; mtype = val >> 8; maddr = (val & 0xff) << 16; /* Copy the supplied PHY Firmware image to the adapter memory location * allocated by the adapter firmware. */ spin_lock_bh(&adap->win0_lock); ret = t4_memory_rw(adap, win, mtype, maddr, phy_fw_size, (__be32 *)phy_fw_data, T4_MEMORY_WRITE); spin_unlock_bh(&adap->win0_lock); if (ret) return ret; /* Tell the firmware that the PHY firmware image has been written to * RAM and it can now start copying it over to the PHYs. The chip * firmware will RESET the affected PHYs as part of this operation * leaving them running the new PHY firmware image. */ param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | FW_PARAMS_PARAM_Y_V(adap->params.portvec) | FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val, 30000); /* If we have version number support, then check to see that the new * firmware got loaded properly. */ if (phy_fw_version) { ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); if (ret < 0) return ret; if (cur_phy_fw_ver != new_phy_fw_vers) { CH_WARN(adap, "PHY Firmware did not update: " "version on adapter %#x, " "version flashed %#x\n", cur_phy_fw_ver, new_phy_fw_vers); return -ENXIO; } } return 1; } /** * t4_fwcache - firmware cache operation * @adap: the adapter * @op : the operation (flush or flush and invalidate) */ int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) { struct fw_params_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_PARAMS_CMD_PFN_V(adap->pf) | FW_PARAMS_CMD_VFN_V(0)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); c.param[0].mnem = cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); c.param[0].val = cpu_to_be32(op); return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); } void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, unsigned int *pif_req_wrptr, unsigned int *pif_rsp_wrptr) { int i, j; u32 cfg, val, req, rsp; cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); if (cfg & LADBGEN_F) t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); val = t4_read_reg(adap, CIM_DEBUGSTS_A); req = POLADBGWRPTR_G(val); rsp = PILADBGWRPTR_G(val); if (pif_req_wrptr) *pif_req_wrptr = req; if (pif_rsp_wrptr) *pif_rsp_wrptr = rsp; for (i = 0; i < CIM_PIFLA_SIZE; i++) { for (j = 0; j < 6; j++) { t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | PILADBGRDPTR_V(rsp)); *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); req++; rsp++; } req = (req + 2) & POLADBGRDPTR_M; rsp = (rsp + 2) & PILADBGRDPTR_M; } t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); } void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) { u32 cfg; int i, j, idx; cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); if (cfg & LADBGEN_F) t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); for (i = 0; i < CIM_MALA_SIZE; i++) { for (j = 0; j < 5; j++) { idx = 8 * i + j; t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | PILADBGRDPTR_V(idx)); *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); } } t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); } void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) { unsigned int i, j; for (i = 0; i < 8; i++) { u32 *p = la_buf + i; t4_write_reg(adap, ULP_RX_LA_CTL_A, i); j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); } } /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port * Capabilities which we control with separate controls -- see, for instance, * Pause Frames and Forward Error Correction. In order to determine what the * full set of Advertised Port Capabilities are, the base Advertised Port * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised * Port Capabilities associated with those other controls. See * t4_link_acaps() for how this is done. */ #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ FW_PORT_CAP32_ANEG) /** * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits * @caps16: a 16-bit Port Capabilities value * * Returns the equivalent 32-bit Port Capabilities value. */ static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) { fw_port_cap32_t caps32 = 0; #define CAP16_TO_CAP32(__cap) \ do { \ if (caps16 & FW_PORT_CAP_##__cap) \ caps32 |= FW_PORT_CAP32_##__cap; \ } while (0) CAP16_TO_CAP32(SPEED_100M); CAP16_TO_CAP32(SPEED_1G); CAP16_TO_CAP32(SPEED_25G); CAP16_TO_CAP32(SPEED_10G); CAP16_TO_CAP32(SPEED_40G); CAP16_TO_CAP32(SPEED_100G); CAP16_TO_CAP32(FC_RX); CAP16_TO_CAP32(FC_TX); CAP16_TO_CAP32(ANEG); CAP16_TO_CAP32(FORCE_PAUSE); CAP16_TO_CAP32(MDIAUTO); CAP16_TO_CAP32(MDISTRAIGHT); CAP16_TO_CAP32(FEC_RS); CAP16_TO_CAP32(FEC_BASER_RS); CAP16_TO_CAP32(802_3_PAUSE); CAP16_TO_CAP32(802_3_ASM_DIR); #undef CAP16_TO_CAP32 return caps32; } /** * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits * @caps32: a 32-bit Port Capabilities value * * Returns the equivalent 16-bit Port Capabilities value. Note that * not all 32-bit Port Capabilities can be represented in the 16-bit * Port Capabilities and some fields/values may not make it. */ static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) { fw_port_cap16_t caps16 = 0; #define CAP32_TO_CAP16(__cap) \ do { \ if (caps32 & FW_PORT_CAP32_##__cap) \ caps16 |= FW_PORT_CAP_##__cap; \ } while (0) CAP32_TO_CAP16(SPEED_100M); CAP32_TO_CAP16(SPEED_1G); CAP32_TO_CAP16(SPEED_10G); CAP32_TO_CAP16(SPEED_25G); CAP32_TO_CAP16(SPEED_40G); CAP32_TO_CAP16(SPEED_100G); CAP32_TO_CAP16(FC_RX); CAP32_TO_CAP16(FC_TX); CAP32_TO_CAP16(802_3_PAUSE); CAP32_TO_CAP16(802_3_ASM_DIR); CAP32_TO_CAP16(ANEG); CAP32_TO_CAP16(FORCE_PAUSE); CAP32_TO_CAP16(MDIAUTO); CAP32_TO_CAP16(MDISTRAIGHT); CAP32_TO_CAP16(FEC_RS); CAP32_TO_CAP16(FEC_BASER_RS); #undef CAP32_TO_CAP16 return caps16; } /* Translate Firmware Port Capabilities Pause specification to Common Code */ static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) { enum cc_pause cc_pause = 0; if (fw_pause & FW_PORT_CAP32_FC_RX) cc_pause |= PAUSE_RX; if (fw_pause & FW_PORT_CAP32_FC_TX) cc_pause |= PAUSE_TX; return cc_pause; } /* Translate Common Code Pause specification into Firmware Port Capabilities */ static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) { /* Translate orthogonal RX/TX Pause Controls for L1 Configure * commands, etc. */ fw_port_cap32_t fw_pause = 0; if (cc_pause & PAUSE_RX) fw_pause |= FW_PORT_CAP32_FC_RX; if (cc_pause & PAUSE_TX) fw_pause |= FW_PORT_CAP32_FC_TX; if (!(cc_pause & PAUSE_AUTONEG)) fw_pause |= FW_PORT_CAP32_FORCE_PAUSE; /* Translate orthogonal Pause controls into IEEE 802.3 Pause, * Asymmetrical Pause for use in reporting to upper layer OS code, etc. * Note that these bits are ignored in L1 Configure commands. */ if (cc_pause & PAUSE_RX) { if (cc_pause & PAUSE_TX) fw_pause |= FW_PORT_CAP32_802_3_PAUSE; else fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR | FW_PORT_CAP32_802_3_PAUSE; } else if (cc_pause & PAUSE_TX) { fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR; } return fw_pause; } /* Translate Firmware Forward Error Correction specification to Common Code */ static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) { enum cc_fec cc_fec = 0; if (fw_fec & FW_PORT_CAP32_FEC_RS) cc_fec |= FEC_RS; if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) cc_fec |= FEC_BASER_RS; return cc_fec; } /* Translate Common Code Forward Error Correction specification to Firmware */ static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) { fw_port_cap32_t fw_fec = 0; if (cc_fec & FEC_RS) fw_fec |= FW_PORT_CAP32_FEC_RS; if (cc_fec & FEC_BASER_RS) fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; return fw_fec; } /** * t4_link_acaps - compute Link Advertised Port Capabilities * @adapter: the adapter * @port: the Port ID * @lc: the Port's Link Configuration * * Synthesize the Advertised Port Capabilities we'll be using based on * the base Advertised Port Capabilities (which have been filtered by * ADVERT_MASK) plus the individual controls for things like Pause * Frames, Forward Error Correction, MDI, etc. */ fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port, struct link_config *lc) { fw_port_cap32_t fw_fc, fw_fec, acaps; unsigned int fw_mdi; char cc_fec; fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); /* Convert driver coding of Pause Frame Flow Control settings into the * Firmware's API. */ fw_fc = cc_to_fwcap_pause(lc->requested_fc); /* Convert Common Code Forward Error Control settings into the * Firmware's API. If the current Requested FEC has "Automatic" * (IEEE 802.3) specified, then we use whatever the Firmware * sent us as part of its IEEE 802.3-based interpretation of * the Transceiver Module EPROM FEC parameters. Otherwise we * use whatever is in the current Requested FEC settings. */ if (lc->requested_fec & FEC_AUTO) cc_fec = fwcap_to_cc_fec(lc->def_acaps); else cc_fec = lc->requested_fec; fw_fec = cc_to_fwcap_fec(cc_fec); /* Figure out what our Requested Port Capabilities are going to be. * Note parallel structure in t4_handle_get_port_info() and * init_link_config(). */ if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { acaps = lc->acaps | fw_fc | fw_fec; lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; lc->fec = cc_fec; } else if (lc->autoneg == AUTONEG_DISABLE) { acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi; lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; lc->fec = cc_fec; } else { acaps = lc->acaps | fw_fc | fw_fec | fw_mdi; } /* Some Requested Port Capabilities are trivially wrong if they exceed * the Physical Port Capabilities. We can check that here and provide * moderately useful feedback in the system log. * * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so * we need to exclude this from this check in order to maintain * compatibility ... */ if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) { dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", acaps, lc->pcaps); return -EINVAL; } return acaps; } /** * t4_link_l1cfg_core - apply link configuration to MAC/PHY * @adapter: the adapter * @mbox: the Firmware Mailbox to use * @port: the Port ID * @lc: the Port's Link Configuration * @sleep_ok: if true we may sleep while awaiting command completion * @timeout: time to wait for command to finish before timing out * (negative implies @sleep_ok=false) * * Set up a port's MAC and PHY according to a desired link configuration. * - If the PHY can auto-negotiate first decide what to advertise, then * enable/disable auto-negotiation as desired, and reset. * - If the PHY does not auto-negotiate just reset it. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, * otherwise do it later based on the outcome of auto-negotiation. */ int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, unsigned int port, struct link_config *lc, u8 sleep_ok, int timeout) { unsigned int fw_caps = adapter->params.fw_caps_support; struct fw_port_cmd cmd; fw_port_cap32_t rcap; int ret; if (!(lc->pcaps & FW_PORT_CAP32_ANEG) && lc->autoneg == AUTONEG_ENABLE) { return -EINVAL; } /* Compute our Requested Port Capabilities and send that on to the * Firmware. */ rcap = t4_link_acaps(adapter, port, lc); memset(&cmd, 0, sizeof(cmd)); cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port)); cmd.action_to_len16 = cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 ? FW_PORT_ACTION_L1_CFG : FW_PORT_ACTION_L1_CFG32) | FW_LEN16(cmd)); if (fw_caps == FW_CAPS16) cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); else cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, sleep_ok, timeout); /* Unfortunately, even if the Requested Port Capabilities "fit" within * the Physical Port Capabilities, some combinations of features may * still not be legal. For example, 40Gb/s and Reed-Solomon Forward * Error Correction. So if the Firmware rejects the L1 Configure * request, flag that here. */ if (ret) { dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x rejected, error %d\n", rcap, -ret); return ret; } return 0; } /** * t4_restart_aneg - restart autonegotiation * @adap: the adapter * @mbox: mbox to use for the FW command * @port: the port id * * Restarts autonegotiation for the selected port. */ int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) { unsigned int fw_caps = adap->params.fw_caps_support; struct fw_port_cmd c; memset(&c, 0, sizeof(c)); c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port)); c.action_to_len16 = cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 ? FW_PORT_ACTION_L1_CFG : FW_PORT_ACTION_L1_CFG32) | FW_LEN16(c)); if (fw_caps == FW_CAPS16) c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); else c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } typedef void (*int_handler_t)(struct adapter *adap); struct intr_info { unsigned int mask; /* bits to check in interrupt status */ const char *msg; /* message to print or NULL */ short stat_idx; /* stat counter to increment or -1 */ unsigned short fatal; /* whether the condition reported is fatal */ int_handler_t int_handler; /* platform-specific int handler */ }; /** * t4_handle_intr_status - table driven interrupt handler * @adapter: the adapter that generated the interrupt * @reg: the interrupt status register to process * @acts: table of interrupt actions * * A table driven interrupt handler that applies a set of masks to an * interrupt status word and performs the corresponding actions if the * interrupts described by the mask have occurred. The actions include * optionally emitting a warning or alert message. The table is terminated * by an entry specifying mask 0. Returns the number of fatal interrupt * conditions. */ static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, const struct intr_info *acts) { int fatal = 0; unsigned int mask = 0; unsigned int status = t4_read_reg(adapter, reg); for ( ; acts->mask; ++acts) { if (!(status & acts->mask)) continue; if (acts->fatal) { fatal++; dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, status & acts->mask); } else if (acts->msg && printk_ratelimit()) dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, status & acts->mask); if (acts->int_handler) acts->int_handler(adapter); mask |= acts->mask; } status &= mask; if (status) /* clear processed interrupts */ t4_write_reg(adapter, reg, status); return fatal; } /* * Interrupt handler for the PCIE module. */ static void pcie_intr_handler(struct adapter *adapter) { static const struct intr_info sysbus_intr_info[] = { { RNPP_F, "RXNP array parity error", -1, 1 }, { RPCP_F, "RXPC array parity error", -1, 1 }, { RCIP_F, "RXCIF array parity error", -1, 1 }, { RCCP_F, "Rx completions control array parity error", -1, 1 }, { RFTP_F, "RXFT array parity error", -1, 1 }, { 0 } }; static const struct intr_info pcie_port_intr_info[] = { { TPCP_F, "TXPC array parity error", -1, 1 }, { TNPP_F, "TXNP array parity error", -1, 1 }, { TFTP_F, "TXFT array parity error", -1, 1 }, { TCAP_F, "TXCA array parity error", -1, 1 }, { TCIP_F, "TXCIF array parity error", -1, 1 }, { RCAP_F, "RXCA array parity error", -1, 1 }, { OTDD_F, "outbound request TLP discarded", -1, 1 }, { RDPE_F, "Rx data parity error", -1, 1 }, { TDUE_F, "Tx uncorrectable data error", -1, 1 }, { 0 } }; static const struct intr_info pcie_intr_info[] = { { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, { FIDPERR_F, "PCI FID parity error", -1, 1 }, { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, { PCIESINT_F, "PCI core secondary fault", -1, 1 }, { PCIEPINT_F, "PCI core primary fault", -1, 1 }, { UNXSPLCPLERR_F, "PCI unexpected split completion error", -1, 0 }, { 0 } }; static struct intr_info t5_pcie_intr_info[] = { { MSTGRPPERR_F, "Master Response Read Queue parity error", -1, 1 }, { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", -1, 1 }, { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", -1, 1 }, { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, { DREQWRPERR_F, "PCI DMA channel write request parity error", -1, 1 }, { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, { FIDPERR_F, "PCI FID parity error", -1, 1 }, { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", -1, 1 }, { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", -1, 1 }, { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, { READRSPERR_F, "Outbound read error", -1, 0 }, { 0 } }; int fat; if (is_t4(adapter->params.chip)) fat = t4_handle_intr_status(adapter, PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, sysbus_intr_info) + t4_handle_intr_status(adapter, PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, pcie_port_intr_info) + t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, pcie_intr_info); else fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, t5_pcie_intr_info); if (fat) t4_fatal_err(adapter); } /* * TP interrupt handler. */ static void tp_intr_handler(struct adapter *adapter) { static const struct intr_info tp_intr_info[] = { { 0x3fffffff, "TP parity error", -1, 1 }, { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) t4_fatal_err(adapter); } /* * SGE interrupt handler. */ static void sge_intr_handler(struct adapter *adapter) { u32 v = 0, perr; u32 err; static const struct intr_info sge_intr_info[] = { { ERR_CPL_EXCEED_IQE_SIZE_F, "SGE received CPL exceeding IQE size", -1, 1 }, { ERR_INVALID_CIDX_INC_F, "SGE GTS CIDX increment too large", -1, 0 }, { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, "SGE IQID > 1023 received CPL for FL", -1, 0 }, { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 0 }, { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 0 }, { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 0 }, { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 0 }, { ERR_ING_CTXT_PRIO_F, "SGE too many priority ingress contexts", -1, 0 }, { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, { 0 } }; static struct intr_info t4t5_sge_intr_info[] = { { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, { ERR_EGR_CTXT_PRIO_F, "SGE too many priority egress contexts", -1, 0 }, { 0 } }; perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A); if (perr) { v |= perr; dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n", perr); } perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A); if (perr) { v |= perr; dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n", perr); } if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) { perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A); /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */ perr &= ~ERR_T_RXCRC_F; if (perr) { v |= perr; dev_alert(adapter->pdev_dev, "SGE Cause5 Parity Error %#x\n", perr); } } v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, t4t5_sge_intr_info); err = t4_read_reg(adapter, SGE_ERROR_STATS_A); if (err & ERROR_QID_VALID_F) { dev_err(adapter->pdev_dev, "SGE error for queue %u\n", ERROR_QID_G(err)); if (err & UNCAPTURED_ERROR_F) dev_err(adapter->pdev_dev, "SGE UNCAPTURED_ERROR set (clearing)\n"); t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | UNCAPTURED_ERROR_F); } if (v != 0) t4_fatal_err(adapter); } #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) /* * CIM interrupt handler. */ static void cim_intr_handler(struct adapter *adapter) { static const struct intr_info cim_intr_info[] = { { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, { 0 } }; static const struct intr_info cim_upintr_info[] = { { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, { ILLWRINT_F, "CIM illegal write", -1, 1 }, { ILLRDINT_F, "CIM illegal read", -1, 1 }, { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, { 0 } }; u32 val, fw_err; int fat; fw_err = t4_read_reg(adapter, PCIE_FW_A); if (fw_err & PCIE_FW_ERR_F) t4_report_fw_error(adapter); /* When the Firmware detects an internal error which normally * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt * in order to make sure the Host sees the Firmware Crash. So * if we have a Timer0 interrupt and don't see a Firmware Crash, * ignore the Timer0 interrupt. */ val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); if (val & TIMER0INT_F) if (!(fw_err & PCIE_FW_ERR_F) || (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, TIMER0INT_F); fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, cim_intr_info) + t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, cim_upintr_info); if (fat) t4_fatal_err(adapter); } /* * ULP RX interrupt handler. */ static void ulprx_intr_handler(struct adapter *adapter) { static const struct intr_info ulprx_intr_info[] = { { 0x1800000, "ULPRX context error", -1, 1 }, { 0x7fffff, "ULPRX parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) t4_fatal_err(adapter); } /* * ULP TX interrupt handler. */ static void ulptx_intr_handler(struct adapter *adapter) { static const struct intr_info ulptx_intr_info[] = { { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 0 }, { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 0 }, { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 0 }, { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 0 }, { 0xfffffff, "ULPTX parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) t4_fatal_err(adapter); } /* * PM TX interrupt handler. */ static void pmtx_intr_handler(struct adapter *adapter) { static const struct intr_info pmtx_intr_info[] = { { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1, 1 }, { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, { 0 } }; if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) t4_fatal_err(adapter); } /* * PM RX interrupt handler. */ static void pmrx_intr_handler(struct adapter *adapter) { static const struct intr_info pmrx_intr_info[] = { { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1, 1 }, { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, { 0 } }; if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) t4_fatal_err(adapter); } /* * CPL switch interrupt handler. */ static void cplsw_intr_handler(struct adapter *adapter) { static const struct intr_info cplsw_intr_info[] = { { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) t4_fatal_err(adapter); } /* * LE interrupt handler. */ static void le_intr_handler(struct adapter *adap) { enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); static const struct intr_info le_intr_info[] = { { LIPMISS_F, "LE LIP miss", -1, 0 }, { LIP0_F, "LE 0 LIP error", -1, 0 }, { PARITYERR_F, "LE parity error", -1, 1 }, { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, { REQQPARERR_F, "LE request queue parity error", -1, 1 }, { 0 } }; static struct intr_info t6_le_intr_info[] = { { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, { CMDTIDERR_F, "LE cmd tid error", -1, 1 }, { TCAMINTPERR_F, "LE parity error", -1, 1 }, { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, { HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 }, { 0 } }; if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, (chip <= CHELSIO_T5) ? le_intr_info : t6_le_intr_info)) t4_fatal_err(adap); } /* * MPS interrupt handler. */ static void mps_intr_handler(struct adapter *adapter) { static const struct intr_info mps_rx_intr_info[] = { { 0xffffff, "MPS Rx parity error", -1, 1 }, { 0 } }; static const struct intr_info mps_tx_intr_info[] = { { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", -1, 1 }, { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", -1, 1 }, { BUBBLE_F, "MPS Tx underflow", -1, 1 }, { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, { FRMERR_F, "MPS Tx framing error", -1, 1 }, { 0 } }; static const struct intr_info t6_mps_tx_intr_info[] = { { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", -1, 1 }, { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", -1, 1 }, /* MPS Tx Bubble is normal for T6 */ { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, { FRMERR_F, "MPS Tx framing error", -1, 1 }, { 0 } }; static const struct intr_info mps_trc_intr_info[] = { { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", -1, 1 }, { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, { 0 } }; static const struct intr_info mps_stat_sram_intr_info[] = { { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, { 0 } }; static const struct intr_info mps_stat_tx_intr_info[] = { { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, { 0 } }; static const struct intr_info mps_stat_rx_intr_info[] = { { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, { 0 } }; static const struct intr_info mps_cls_intr_info[] = { { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, { 0 } }; int fat; fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, mps_rx_intr_info) + t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, is_t6(adapter->params.chip) ? t6_mps_tx_intr_info : mps_tx_intr_info) + t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, mps_trc_intr_info) + t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, mps_stat_sram_intr_info) + t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, mps_stat_tx_intr_info) + t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, mps_stat_rx_intr_info) + t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, mps_cls_intr_info); t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ if (fat) t4_fatal_err(adapter); } #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ ECC_UE_INT_CAUSE_F) /* * EDC/MC interrupt handler. */ static void mem_intr_handler(struct adapter *adapter, int idx) { static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; unsigned int addr, cnt_addr, v; if (idx <= MEM_EDC1) { addr = EDC_REG(EDC_INT_CAUSE_A, idx); cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); } else if (idx == MEM_MC) { if (is_t4(adapter->params.chip)) { addr = MC_INT_CAUSE_A; cnt_addr = MC_ECC_STATUS_A; } else { addr = MC_P_INT_CAUSE_A; cnt_addr = MC_P_ECC_STATUS_A; } } else { addr = MC_REG(MC_P_INT_CAUSE_A, 1); cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); } v = t4_read_reg(adapter, addr) & MEM_INT_MASK; if (v & PERR_INT_CAUSE_F) dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", name[idx]); if (v & ECC_CE_INT_CAUSE_F) { u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); t4_edc_err_read(adapter, idx); t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); if (printk_ratelimit()) dev_warn(adapter->pdev_dev, "%u %s correctable ECC data error%s\n", cnt, name[idx], cnt > 1 ? "s" : ""); } if (v & ECC_UE_INT_CAUSE_F) dev_alert(adapter->pdev_dev, "%s uncorrectable ECC data error\n", name[idx]); t4_write_reg(adapter, addr, v); if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) t4_fatal_err(adapter); } /* * MA interrupt handler. */ static void ma_intr_handler(struct adapter *adap) { u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); if (status & MEM_PERR_INT_CAUSE_F) { dev_alert(adap->pdev_dev, "MA parity error, parity status %#x\n", t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); if (is_t5(adap->params.chip)) dev_alert(adap->pdev_dev, "MA parity error, parity status %#x\n", t4_read_reg(adap, MA_PARITY_ERROR_STATUS2_A)); } if (status & MEM_WRAP_INT_CAUSE_F) { v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); dev_alert(adap->pdev_dev, "MA address wrap-around error by " "client %u to address %#x\n", MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4); } t4_write_reg(adap, MA_INT_CAUSE_A, status); t4_fatal_err(adap); } /* * SMB interrupt handler. */ static void smb_intr_handler(struct adapter *adap) { static const struct intr_info smb_intr_info[] = { { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) t4_fatal_err(adap); } /* * NC-SI interrupt handler. */ static void ncsi_intr_handler(struct adapter *adap) { static const struct intr_info ncsi_intr_info[] = { { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) t4_fatal_err(adap); } /* * XGMAC interrupt handler. */ static void xgmac_intr_handler(struct adapter *adap, int port) { u32 v, int_cause_reg; if (is_t4(adap->params.chip)) int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); else int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); v = t4_read_reg(adap, int_cause_reg); v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; if (!v) return; if (v & TXFIFO_PRTY_ERR_F) dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", port); if (v & RXFIFO_PRTY_ERR_F) dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", port); t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); t4_fatal_err(adap); } /* * PL interrupt handler. */ static void pl_intr_handler(struct adapter *adap) { static const struct intr_info pl_intr_info[] = { { FATALPERR_F, "T4 fatal parity error", -1, 1 }, { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) t4_fatal_err(adap); } #define PF_INTR_MASK (PFSW_F) #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) /** * t4_slow_intr_handler - control path interrupt handler * @adapter: the adapter * * T4 interrupt handler for non-data global interrupt events, e.g., errors. * The designation 'slow' is because it involves register reads, while * data interrupts typically don't involve any MMIOs. */ int t4_slow_intr_handler(struct adapter *adapter) { /* There are rare cases where a PL_INT_CAUSE bit may end up getting * set when the corresponding PL_INT_ENABLE bit isn't set. It's * easiest just to mask that case here. */ u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A); u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A); u32 cause = raw_cause & enable; if (!(cause & GLBL_INTR_MASK)) return 0; if (cause & CIM_F) cim_intr_handler(adapter); if (cause & MPS_F) mps_intr_handler(adapter); if (cause & NCSI_F) ncsi_intr_handler(adapter); if (cause & PL_F) pl_intr_handler(adapter); if (cause & SMB_F) smb_intr_handler(adapter); if (cause & XGMAC0_F) xgmac_intr_handler(adapter, 0); if (cause & XGMAC1_F) xgmac_intr_handler(adapter, 1); if (cause & XGMAC_KR0_F) xgmac_intr_handler(adapter, 2); if (cause & XGMAC_KR1_F) xgmac_intr_handler(adapter, 3); if (cause & PCIE_F) pcie_intr_handler(adapter); if (cause & MC_F) mem_intr_handler(adapter, MEM_MC); if (is_t5(adapter->params.chip) && (cause & MC1_F)) mem_intr_handler(adapter, MEM_MC1); if (cause & EDC0_F) mem_intr_handler(adapter, MEM_EDC0); if (cause & EDC1_F) mem_intr_handler(adapter, MEM_EDC1); if (cause & LE_F) le_intr_handler(adapter); if (cause & TP_F) tp_intr_handler(adapter); if (cause & MA_F) ma_intr_handler(adapter); if (cause & PM_TX_F) pmtx_intr_handler(adapter); if (cause & PM_RX_F) pmrx_intr_handler(adapter); if (cause & ULP_RX_F) ulprx_intr_handler(adapter); if (cause & CPL_SWITCH_F) cplsw_intr_handler(adapter); if (cause & SGE_F) sge_intr_handler(adapter); if (cause & ULP_TX_F) ulptx_intr_handler(adapter); /* Clear the interrupts just processed for which we are the master. */ t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK); (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ return 1; } /** * t4_intr_enable - enable interrupts * @adapter: the adapter whose interrupts should be enabled * * Enable PF-specific interrupts for the calling function and the top-level * interrupt concentrator for global interrupts. Interrupts are already * enabled at each module, here we just enable the roots of the interrupt * hierarchies. * * Note: this function should be called only when the driver manages * non PF-specific interrupts from the various HW modules. Only one PCI * function at a time should be doing this. */ void t4_intr_enable(struct adapter *adapter) { u32 val = 0; u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); } /** * t4_intr_disable - disable interrupts * @adapter: the adapter whose interrupts should be disabled * * Disable interrupts. We only disable the top-level interrupt * concentrators. The caller must be a PCI function managing global * interrupts. */ void t4_intr_disable(struct adapter *adapter) { u32 whoami, pf; if (pci_channel_offline(adapter->pdev)) return; whoami = t4_read_reg(adapter, PL_WHOAMI_A); pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); } unsigned int t4_chip_rss_size(struct adapter *adap) { if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) return RSS_NENTRIES; else return T6_RSS_NENTRIES; } /** * t4_config_rss_range - configure a portion of the RSS mapping table * @adapter: the adapter * @mbox: mbox to use for the FW command * @viid: virtual interface whose RSS subtable is to be written * @start: start entry in the table to write * @n: how many table entries to write * @rspq: values for the response queue lookup table * @nrspq: number of values in @rspq * * Programs the selected part of the VI's RSS mapping table with the * provided values. If @nrspq < @n the supplied values are used repeatedly * until the full table range is populated. * * The caller must ensure the values in @rspq are in the range allowed for * @viid. */ int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, int start, int n, const u16 *rspq, unsigned int nrspq) { int ret; const u16 *rsp = rspq; const u16 *rsp_end = rspq + nrspq; struct fw_rss_ind_tbl_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_RSS_IND_TBL_CMD_VIID_V(viid)); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ while (n > 0) { int nq = min(n, 32); __be32 *qp = &cmd.iq0_to_iq2; cmd.niqid = cpu_to_be16(nq); cmd.startidx = cpu_to_be16(start); start += nq; n -= nq; while (nq > 0) { unsigned int v; v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); if (++rsp >= rsp_end) rsp = rspq; v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); if (++rsp >= rsp_end) rsp = rspq; v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); if (++rsp >= rsp_end) rsp = rspq; *qp++ = cpu_to_be32(v); nq -= 3; } ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); if (ret) return ret; } return 0; } /** * t4_config_glbl_rss - configure the global RSS mode * @adapter: the adapter * @mbox: mbox to use for the FW command * @mode: global RSS mode * @flags: mode-specific flags * * Sets the global RSS mode. */ int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, unsigned int flags) { struct fw_rss_glb_config_cmd c; memset(&c, 0, sizeof(c)); c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { c.u.manual.mode_pkd = cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { c.u.basicvirtual.mode_pkd = cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); } else return -EINVAL; return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); } /** * t4_config_vi_rss - configure per VI RSS settings * @adapter: the adapter * @mbox: mbox to use for the FW command * @viid: the VI id * @flags: RSS flags * @defq: id of the default RSS queue for the VI. * * Configures VI-specific RSS properties. */ int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, unsigned int flags, unsigned int defq) { struct fw_rss_vi_config_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); } /* Read an RSS table row */ static int rd_rss_row(struct adapter *adap, int row, u32 *val) { t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5, 0, val); } /** * t4_read_rss - read the contents of the RSS mapping table * @adapter: the adapter * @map: holds the contents of the RSS mapping table * * Reads the contents of the RSS hash->queue mapping table. */ int t4_read_rss(struct adapter *adapter, u16 *map) { int i, ret, nentries; u32 val; nentries = t4_chip_rss_size(adapter); for (i = 0; i < nentries / 2; ++i) { ret = rd_rss_row(adapter, i, &val); if (ret) return ret; *map++ = LKPTBLQUEUE0_G(val); *map++ = LKPTBLQUEUE1_G(val); } return 0; } static unsigned int t4_use_ldst(struct adapter *adap) { return (adap->flags & CXGB4_FW_OK) && !adap->use_bd; } /** * t4_tp_fw_ldst_rw - Access TP indirect register through LDST * @adap: the adapter * @cmd: TP fw ldst address space type * @vals: where the indirect register values are stored/written * @nregs: how many indirect registers to read/write * @start_index: index of first indirect register to read/write * @rw: Read (1) or Write (0) * @sleep_ok: if true we may sleep while awaiting command completion * * Access TP indirect registers through LDST */ static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, unsigned int nregs, unsigned int start_index, unsigned int rw, bool sleep_ok) { int ret = 0; unsigned int i; struct fw_ldst_cmd c; for (i = 0; i < nregs; i++) { memset(&c, 0, sizeof(c)); c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | (rw ? FW_CMD_READ_F : FW_CMD_WRITE_F) | FW_LDST_CMD_ADDRSPACE_V(cmd)); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.addrval.addr = cpu_to_be32(start_index + i); c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); if (ret) return ret; if (rw) vals[i] = be32_to_cpu(c.u.addrval.val); } return 0; } /** * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor * @adap: the adapter * @reg_addr: Address Register * @reg_data: Data register * @buff: where the indirect register values are stored/written * @nregs: how many indirect registers to read/write * @start_index: index of first indirect register to read/write * @rw: READ(1) or WRITE(0) * @sleep_ok: if true we may sleep while awaiting command completion * * Read/Write TP indirect registers through LDST if possible. * Else, use backdoor access **/ static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, u32 *buff, u32 nregs, u32 start_index, int rw, bool sleep_ok) { int rc = -EINVAL; int cmd; switch (reg_addr) { case TP_PIO_ADDR_A: cmd = FW_LDST_ADDRSPC_TP_PIO; break; case TP_TM_PIO_ADDR_A: cmd = FW_LDST_ADDRSPC_TP_TM_PIO; break; case TP_MIB_INDEX_A: cmd = FW_LDST_ADDRSPC_TP_MIB; break; default: goto indirect_access; } if (t4_use_ldst(adap)) rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, sleep_ok); indirect_access: if (rc) { if (rw) t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, start_index); else t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, start_index); } } /** * t4_tp_pio_read - Read TP PIO registers * @adap: the adapter * @buff: where the indirect register values are written * @nregs: how many indirect registers to read * @start_index: index of first indirect register to read * @sleep_ok: if true we may sleep while awaiting command completion * * Read TP PIO Registers **/ void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, bool sleep_ok) { t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, start_index, 1, sleep_ok); } /** * t4_tp_pio_write - Write TP PIO registers * @adap: the adapter * @buff: where the indirect register values are stored * @nregs: how many indirect registers to write * @start_index: index of first indirect register to write * @sleep_ok: if true we may sleep while awaiting command completion * * Write TP PIO Registers **/ static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, bool sleep_ok) { t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, start_index, 0, sleep_ok); } /** * t4_tp_tm_pio_read - Read TP TM PIO registers * @adap: the adapter * @buff: where the indirect register values are written * @nregs: how many indirect registers to read * @start_index: index of first indirect register to read * @sleep_ok: if true we may sleep while awaiting command completion * * Read TP TM PIO Registers **/ void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, bool sleep_ok) { t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, nregs, start_index, 1, sleep_ok); } /** * t4_tp_mib_read - Read TP MIB registers * @adap: the adapter * @buff: where the indirect register values are written * @nregs: how many indirect registers to read * @start_index: index of first indirect register to read * @sleep_ok: if true we may sleep while awaiting command completion * * Read TP MIB Registers **/ void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, bool sleep_ok) { t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, start_index, 1, sleep_ok); } /** * t4_read_rss_key - read the global RSS key * @adap: the adapter * @key: 10-entry array holding the 320-bit RSS key * @sleep_ok: if true we may sleep while awaiting command completion * * Reads the global 320-bit RSS key. */ void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) { t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); } /** * t4_write_rss_key - program one of the RSS keys * @adap: the adapter * @key: 10-entry array holding the 320-bit RSS key * @idx: which RSS key to write * @sleep_ok: if true we may sleep while awaiting command completion * * Writes one of the RSS keys with the given 320-bit value. If @idx is * 0..15 the corresponding entry in the RSS key table is written, * otherwise the global RSS key is written. */ void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, bool sleep_ok) { u8 rss_key_addr_cnt = 16; u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), * allows access to key addresses 16-63 by using KeyWrAddrX * as index[5:4](upper 2) into key table */ if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) rss_key_addr_cnt = 32; t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); if (idx >= 0 && idx < rss_key_addr_cnt) { if (rss_key_addr_cnt > 16) t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, KEYWRADDRX_V(idx >> 4) | T6_VFWRADDR_V(idx) | KEYWREN_F); else t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, KEYWRADDR_V(idx) | KEYWREN_F); } } /** * t4_read_rss_pf_config - read PF RSS Configuration Table * @adapter: the adapter * @index: the entry in the PF RSS table to read * @valp: where to store the returned value * @sleep_ok: if true we may sleep while awaiting command completion * * Reads the PF RSS Configuration Table at the specified index and returns * the value found there. */ void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, u32 *valp, bool sleep_ok) { t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); } /** * t4_read_rss_vf_config - read VF RSS Configuration Table * @adapter: the adapter * @index: the entry in the VF RSS table to read * @vfl: where to store the returned VFL * @vfh: where to store the returned VFH * @sleep_ok: if true we may sleep while awaiting command completion * * Reads the VF RSS Configuration Table at the specified index and returns * the (VFL, VFH) values found there. */ void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, u32 *vfl, u32 *vfh, bool sleep_ok) { u32 vrt, mask, data; if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { mask = VFWRADDR_V(VFWRADDR_M); data = VFWRADDR_V(index); } else { mask = T6_VFWRADDR_V(T6_VFWRADDR_M); data = T6_VFWRADDR_V(index); } /* Request that the index'th VF Table values be read into VFL/VFH. */ vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); vrt |= data | VFRDEN_F; t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); /* Grab the VFL/VFH values ... */ t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); } /** * t4_read_rss_pf_map - read PF RSS Map * @adapter: the adapter * @sleep_ok: if true we may sleep while awaiting command completion * * Reads the PF RSS Map register and returns its value. */ u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) { u32 pfmap; t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); return pfmap; } /** * t4_read_rss_pf_mask - read PF RSS Mask * @adapter: the adapter * @sleep_ok: if true we may sleep while awaiting command completion * * Reads the PF RSS Mask register and returns its value. */ u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) { u32 pfmask; t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); return pfmask; } /** * t4_tp_get_tcp_stats - read TP's TCP MIB counters * @adap: the adapter * @v4: holds the TCP/IP counter values * @v6: holds the TCP/IPv6 counter values * @sleep_ok: if true we may sleep while awaiting command completion * * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. * Either @v4 or @v6 may be %NULL to skip the corresponding stats. */ void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, struct tp_tcp_stats *v6, bool sleep_ok) { u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) #define STAT(x) val[STAT_IDX(x)] #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) if (v4) { t4_tp_mib_read(adap, val, ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A, sleep_ok); v4->tcp_out_rsts = STAT(OUT_RST); v4->tcp_in_segs = STAT64(IN_SEG); v4->tcp_out_segs = STAT64(OUT_SEG); v4->tcp_retrans_segs = STAT64(RXT_SEG); } if (v6) { t4_tp_mib_read(adap, val, ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A, sleep_ok); v6->tcp_out_rsts = STAT(OUT_RST); v6->tcp_in_segs = STAT64(IN_SEG); v6->tcp_out_segs = STAT64(OUT_SEG); v6->tcp_retrans_segs = STAT64(RXT_SEG); } #undef STAT64 #undef STAT #undef STAT_IDX } /** * t4_tp_get_err_stats - read TP's error MIB counters * @adap: the adapter * @st: holds the counter values * @sleep_ok: if true we may sleep while awaiting command completion * * Returns the values of TP's error counters. */ void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, bool sleep_ok) { int nchan = adap->params.arch.nchan; t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, sleep_ok); t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, sleep_ok); t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, sleep_ok); t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, sleep_ok); t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, sleep_ok); } /** * t4_tp_get_cpl_stats - read TP's CPL MIB counters * @adap: the adapter * @st: holds the counter values * @sleep_ok: if true we may sleep while awaiting command completion * * Returns the values of TP's CPL counters. */ void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, bool sleep_ok) { int nchan = adap->params.arch.nchan; t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); } /** * t4_tp_get_rdma_stats - read TP's RDMA MIB counters * @adap: the adapter * @st: holds the counter values * @sleep_ok: if true we may sleep while awaiting command completion * * Returns the values of TP's RDMA counters. */ void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, bool sleep_ok) { t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, sleep_ok); } /** * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port * @adap: the adapter * @idx: the port index * @st: holds the counter values * @sleep_ok: if true we may sleep while awaiting command completion * * Returns the values of TP's FCoE counters for the selected port. */ void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, struct tp_fcoe_stats *st, bool sleep_ok) { u32 val[2]; t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, sleep_ok); t4_tp_mib_read(adap, &st->frames_drop, 1, TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, sleep_ok); st->octets_ddp = ((u64)val[0] << 32) | val[1]; } /** * t4_get_usm_stats - read TP's non-TCP DDP MIB counters * @adap: the adapter * @st: holds the counter values * @sleep_ok: if true we may sleep while awaiting command completion * * Returns the values of TP's counters for non-TCP directly-placed packets. */ void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, bool sleep_ok) { u32 val[4]; t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); st->frames = val[0]; st->drops = val[1]; st->octets = ((u64)val[2] << 32) | val[3]; } /** * t4_read_mtu_tbl - returns the values in the HW path MTU table * @adap: the adapter * @mtus: where to store the MTU values * @mtu_log: where to store the MTU base-2 log (may be %NULL) * * Reads the HW path MTU table. */ void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) { u32 v; int i; for (i = 0; i < NMTUS; ++i) { t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(0xff) | MTUVALUE_V(i)); v = t4_read_reg(adap, TP_MTU_TABLE_A); mtus[i] = MTUVALUE_G(v); if (mtu_log) mtu_log[i] = MTUWIDTH_G(v); } } /** * t4_read_cong_tbl - reads the congestion control table * @adap: the adapter * @incr: where to store the alpha values * * Reads the additive increments programmed into the HW congestion * control table. */ void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) { unsigned int mtu, w; for (mtu = 0; mtu < NMTUS; ++mtu) for (w = 0; w < NCCTRL_WIN; ++w) { t4_write_reg(adap, TP_CCTRL_TABLE_A, ROWINDEX_V(0xffff) | (mtu << 5) | w); incr[mtu][w] = (u16)t4_read_reg(adap, TP_CCTRL_TABLE_A) & 0x1fff; } } /** * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register * @adap: the adapter * @addr: the indirect TP register address * @mask: specifies the field within the register to modify * @val: new value for the field * * Sets a field of an indirect TP register to the given value. */ void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, unsigned int mask, unsigned int val) { t4_write_reg(adap, TP_PIO_ADDR_A, addr); val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; t4_write_reg(adap, TP_PIO_DATA_A, val); } /** * init_cong_ctrl - initialize congestion control parameters * @a: the alpha values for congestion control * @b: the beta values for congestion control * * Initialize the congestion control parameters. */ static void init_cong_ctrl(unsigned short *a, unsigned short *b) { a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; a[9] = 2; a[10] = 3; a[11] = 4; a[12] = 5; a[13] = 6; a[14] = 7; a[15] = 8; a[16] = 9; a[17] = 10; a[18] = 14; a[19] = 17; a[20] = 21; a[21] = 25; a[22] = 30; a[23] = 35; a[24] = 45; a[25] = 60; a[26] = 80; a[27] = 100; a[28] = 200; a[29] = 300; a[30] = 400; a[31] = 500; b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; b[9] = b[10] = 1; b[11] = b[12] = 2; b[13] = b[14] = b[15] = b[16] = 3; b[17] = b[18] = b[19] = b[20] = b[21] = 4; b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; b[28] = b[29] = 6; b[30] = b[31] = 7; } /* The minimum additive increment value for the congestion control table */ #define CC_MIN_INCR 2U /** * t4_load_mtus - write the MTU and congestion control HW tables * @adap: the adapter * @mtus: the values for the MTU table * @alpha: the values for the congestion control alpha parameter * @beta: the values for the congestion control beta parameter * * Write the HW MTU table with the supplied MTUs and the high-speed * congestion control table with the supplied alpha, beta, and MTUs. * We write the two tables together because the additive increments * depend on the MTUs. */ void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, const unsigned short *alpha, const unsigned short *beta) { static const unsigned int avg_pkts[NCCTRL_WIN] = { 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 28672, 40960, 57344, 81920, 114688, 163840, 229376 }; unsigned int i, w; for (i = 0; i < NMTUS; ++i) { unsigned int mtu = mtus[i]; unsigned int log2 = fls(mtu); if (!(mtu & ((1 << log2) >> 2))) /* round */ log2--; t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); for (w = 0; w < NCCTRL_WIN; ++w) { unsigned int inc; inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], CC_MIN_INCR); t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | (w << 16) | (beta[w] << 13) | inc); } } } /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core * clocks. The formula is * * bytes/s = bytes256 * 256 * ClkFreq / 4096 * * which is equivalent to * * bytes/s = 62.5 * bytes256 * ClkFreq_ms */ static u64 chan_rate(struct adapter *adap, unsigned int bytes256) { u64 v = bytes256 * adap->params.vpd.cclk; return v * 62 + v / 2; } /** * t4_get_chan_txrate - get the current per channel Tx rates * @adap: the adapter * @nic_rate: rates for NIC traffic * @ofld_rate: rates for offloaded traffic * * Return the current Tx rates in bytes/s for NIC and offloaded traffic * for each channel. */ void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) { u32 v; v = t4_read_reg(adap, TP_TX_TRATE_A); nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); if (adap->params.arch.nchan == NCHAN) { nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); } v = t4_read_reg(adap, TP_TX_ORATE_A); ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); if (adap->params.arch.nchan == NCHAN) { ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); } } /** * t4_set_trace_filter - configure one of the tracing filters * @adap: the adapter * @tp: the desired trace filter parameters * @idx: which filter to configure * @enable: whether to enable or disable the filter * * Configures one of the tracing filters available in HW. If @enable is * %0 @tp is not examined and may be %NULL. The user is responsible to * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register */ int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, int idx, int enable) { int i, ofst = idx * 4; u32 data_reg, mask_reg, cfg; if (!enable) { t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); return 0; } cfg = t4_read_reg(adap, MPS_TRC_CFG_A); if (cfg & TRCMULTIFILTER_F) { /* If multiple tracers are enabled, then maximum * capture size is 2.5KB (FIFO size of a single channel) * minus 2 flits for CPL_TRACE_PKT header. */ if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) return -EINVAL; } else { /* If multiple tracers are disabled, to avoid deadlocks * maximum packet capture size of 9600 bytes is recommended. * Also in this mode, only trace0 can be enabled and running. */ if (tp->snap_len > 9600 || idx) return -EINVAL; } if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || tp->min_len > TFMINPKTSIZE_M) return -EINVAL; /* stop the tracer we'll be changing */ t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); data_reg = MPS_TRC_FILTER0_MATCH_A + idx; mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { t4_write_reg(adap, data_reg, tp->data[i]); t4_write_reg(adap, mask_reg, ~tp->mask[i]); } t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, TFCAPTUREMAX_V(tp->snap_len) | TFMINPKTSIZE_V(tp->min_len)); t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | (is_t4(adap->params.chip) ? TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : T5_TFPORT_V(tp->port) | T5_TFEN_F | T5_TFINVERTMATCH_V(tp->invert))); return 0; } /** * t4_get_trace_filter - query one of the tracing filters * @adap: the adapter * @tp: the current trace filter parameters * @idx: which trace filter to query * @enabled: non-zero if the filter is enabled * * Returns the current settings of one of the HW tracing filters. */ void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, int *enabled) { u32 ctla, ctlb; int i, ofst = idx * 4; u32 data_reg, mask_reg; ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); if (is_t4(adap->params.chip)) { *enabled = !!(ctla & TFEN_F); tp->port = TFPORT_G(ctla); tp->invert = !!(ctla & TFINVERTMATCH_F); } else { *enabled = !!(ctla & T5_TFEN_F); tp->port = T5_TFPORT_G(ctla); tp->invert = !!(ctla & T5_TFINVERTMATCH_F); } tp->snap_len = TFCAPTUREMAX_G(ctlb); tp->min_len = TFMINPKTSIZE_G(ctlb); tp->skip_ofst = TFOFFSET_G(ctla); tp->skip_len = TFLENGTH_G(ctla); ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { tp->mask[i] = ~t4_read_reg(adap, mask_reg); tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; } } /** * t4_pmtx_get_stats - returns the HW stats from PMTX * @adap: the adapter * @cnt: where to store the count statistics * @cycles: where to store the cycle statistics * * Returns performance statistics from PMTX. */ void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) { int i; u32 data[2]; for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); if (is_t4(adap->params.chip)) { cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); } else { t4_read_indirect(adap, PM_TX_DBG_CTRL_A, PM_TX_DBG_DATA_A, data, 2, PM_TX_DBG_STAT_MSB_A); cycles[i] = (((u64)data[0] << 32) | data[1]); } } } /** * t4_pmrx_get_stats - returns the HW stats from PMRX * @adap: the adapter * @cnt: where to store the count statistics * @cycles: where to store the cycle statistics * * Returns performance statistics from PMRX. */ void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) { int i; u32 data[2]; for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); if (is_t4(adap->params.chip)) { cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); } else { t4_read_indirect(adap, PM_RX_DBG_CTRL_A, PM_RX_DBG_DATA_A, data, 2, PM_RX_DBG_STAT_MSB_A); cycles[i] = (((u64)data[0] << 32) | data[1]); } } } /** * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port * @adapter: the adapter * @pidx: the port index * * Computes and returns a bitmap indicating which MPS buffer groups are * associated with the given Port. Bit i is set if buffer group i is * used by the Port. */ static inline unsigned int compute_mps_bg_map(struct adapter *adapter, int pidx) { unsigned int chip_version, nports; chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); switch (chip_version) { case CHELSIO_T4: case CHELSIO_T5: switch (nports) { case 1: return 0xf; case 2: return 3 << (2 * pidx); case 4: return 1 << pidx; } break; case CHELSIO_T6: switch (nports) { case 2: return 1 << (2 * pidx); } break; } dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", chip_version, nports); return 0; } /** * t4_get_mps_bg_map - return the buffer groups associated with a port * @adapter: the adapter * @pidx: the port index * * Returns a bitmap indicating which MPS buffer groups are associated * with the given Port. Bit i is set if buffer group i is used by the * Port. */ unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) { u8 *mps_bg_map; unsigned int nports; nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); if (pidx >= nports) { CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", pidx, nports); return 0; } /* If we've already retrieved/computed this, just return the result. */ mps_bg_map = adapter->params.mps_bg_map; if (mps_bg_map[pidx]) return mps_bg_map[pidx]; /* Newer Firmware can tell us what the MPS Buffer Group Map is. * If we're talking to such Firmware, let it tell us. If the new * API isn't supported, revert back to old hardcoded way. The value * obtained from Firmware is encoded in below format: * * val = (( MPSBGMAP[Port 3] << 24 ) | * ( MPSBGMAP[Port 2] << 16 ) | * ( MPSBGMAP[Port 1] << 8 ) | * ( MPSBGMAP[Port 0] << 0 )) */ if (adapter->flags & CXGB4_FW_OK) { u32 param, val; int ret; param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 0, 1, ¶m, &val); if (!ret) { int p; /* Store the BG Map for all of the Ports in order to * avoid more calls to the Firmware in the future. */ for (p = 0; p < MAX_NPORTS; p++, val >>= 8) mps_bg_map[p] = val & 0xff; return mps_bg_map[pidx]; } } /* Either we're not talking to the Firmware or we're dealing with * older Firmware which doesn't support the new API to get the MPS * Buffer Group Map. Fall back to computing it ourselves. */ mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); return mps_bg_map[pidx]; } /** * t4_get_tp_e2c_map - return the E2C channel map associated with a port * @adapter: the adapter * @pidx: the port index */ static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx) { unsigned int nports; u32 param, val = 0; int ret; nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); if (pidx >= nports) { CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n", pidx, nports); return 0; } /* FW version >= 1.16.44.0 can determine E2C channel map using * FW_PARAMS_PARAM_DEV_TPCHMAP API. */ param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP)); ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 0, 1, ¶m, &val); if (!ret) return (val >> (8 * pidx)) & 0xff; return 0; } /** * t4_get_tp_ch_map - return TP ingress channels associated with a port * @adap: the adapter * @pidx: the port index * * Returns a bitmap indicating which TP Ingress Channels are associated * with a given Port. Bit i is set if TP Ingress Channel i is used by * the Port. */ unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) { unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); if (pidx >= nports) { dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", pidx, nports); return 0; } switch (chip_version) { case CHELSIO_T4: case CHELSIO_T5: /* Note that this happens to be the same values as the MPS * Buffer Group Map for these Chips. But we replicate the code * here because they're really separate concepts. */ switch (nports) { case 1: return 0xf; case 2: return 3 << (2 * pidx); case 4: return 1 << pidx; } break; case CHELSIO_T6: switch (nports) { case 1: case 2: return 1 << pidx; } break; } dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", chip_version, nports); return 0; } /** * t4_get_port_type_description - return Port Type string description * @port_type: firmware Port Type enumeration */ const char *t4_get_port_type_description(enum fw_port_type port_type) { static const char *const port_type_description[] = { "Fiber_XFI", "Fiber_XAUI", "BT_SGMII", "BT_XFI", "BT_XAUI", "KX4", "CX4", "KX", "KR", "SFP", "BP_AP", "BP4_AP", "QSFP_10G", "QSA", "QSFP", "BP40_BA", "KR4_100G", "CR4_QSFP", "CR_QSFP", "CR2_QSFP", "SFP28", "KR_SFP28", "KR_XLAUI" }; if (port_type < ARRAY_SIZE(port_type_description)) return port_type_description[port_type]; return "UNKNOWN"; } /** * t4_get_port_stats_offset - collect port stats relative to a previous * snapshot * @adap: The adapter * @idx: The port * @stats: Current stats to fill * @offset: Previous stats snapshot */ void t4_get_port_stats_offset(struct adapter *adap, int idx, struct port_stats *stats, struct port_stats *offset) { u64 *s, *o; int i; t4_get_port_stats(adap, idx, stats); for (i = 0, s = (u64 *)stats, o = (u64 *)offset; i < (sizeof(struct port_stats) / sizeof(u64)); i++, s++, o++) *s -= *o; } /** * t4_get_port_stats - collect port statistics * @adap: the adapter * @idx: the port index * @p: the stats structure to fill * * Collect statistics related to the given port from HW. */ void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) { u32 bgmap = t4_get_mps_bg_map(adap, idx); u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); #define GET_STAT(name) \ t4_read_reg64(adap, \ (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) p->tx_octets = GET_STAT(TX_PORT_BYTES); p->tx_frames = GET_STAT(TX_PORT_FRAMES); p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); p->tx_error_frames = GET_STAT(TX_PORT_ERROR); p->tx_frames_64 = GET_STAT(TX_PORT_64B); p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); p->tx_drop = GET_STAT(TX_PORT_DROP); p->tx_pause = GET_STAT(TX_PORT_PAUSE); p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { if (stat_ctl & COUNTPAUSESTATTX_F) p->tx_frames_64 -= p->tx_pause; if (stat_ctl & COUNTPAUSEMCTX_F) p->tx_mcast_frames -= p->tx_pause; } p->rx_octets = GET_STAT(RX_PORT_BYTES); p->rx_frames = GET_STAT(RX_PORT_FRAMES); p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); p->rx_runt = GET_STAT(RX_PORT_LESS_64B); p->rx_frames_64 = GET_STAT(RX_PORT_64B); p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); p->rx_pause = GET_STAT(RX_PORT_PAUSE); p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { if (stat_ctl & COUNTPAUSESTATRX_F) p->rx_frames_64 -= p->rx_pause; if (stat_ctl & COUNTPAUSEMCRX_F) p->rx_mcast_frames -= p->rx_pause; } p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; #undef GET_STAT #undef GET_STAT_COM } /** * t4_get_lb_stats - collect loopback port statistics * @adap: the adapter * @idx: the loopback port index * @p: the stats structure to fill * * Return HW statistics for the given loopback port. */ void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) { u32 bgmap = t4_get_mps_bg_map(adap, idx); #define GET_STAT(name) \ t4_read_reg64(adap, \ (is_t4(adap->params.chip) ? \ PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) p->octets = GET_STAT(BYTES); p->frames = GET_STAT(FRAMES); p->bcast_frames = GET_STAT(BCAST); p->mcast_frames = GET_STAT(MCAST); p->ucast_frames = GET_STAT(UCAST); p->error_frames = GET_STAT(ERROR); p->frames_64 = GET_STAT(64B); p->frames_65_127 = GET_STAT(65B_127B); p->frames_128_255 = GET_STAT(128B_255B); p->frames_256_511 = GET_STAT(256B_511B); p->frames_512_1023 = GET_STAT(512B_1023B); p->frames_1024_1518 = GET_STAT(1024B_1518B); p->frames_1519_max = GET_STAT(1519B_MAX); p->drop = GET_STAT(DROP_FRAMES); p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; #undef GET_STAT #undef GET_STAT_COM } /* t4_mk_filtdelwr - create a delete filter WR * @ftid: the filter ID * @wr: the filter work request to populate * @qid: ingress queue to receive the delete notification * * Creates a filter work request to delete the supplied filter. If @qid is * negative the delete notification is suppressed. */ void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) { memset(wr, 0, sizeof(*wr)); wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | FW_FILTER_WR_NOREPLY_V(qid < 0)); wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); if (qid >= 0) wr->rx_chan_rx_rpl_iq = cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); } #define INIT_CMD(var, cmd, rd_wr) do { \ (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ FW_CMD_REQUEST_F | \ FW_CMD_##rd_wr##_F); \ (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ } while (0) int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, u32 addr, u32 val) { u32 ldst_addrspace; struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | ldst_addrspace); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.addrval.addr = cpu_to_be32(addr); c.u.addrval.val = cpu_to_be32(val); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_mdio_rd - read a PHY register through MDIO * @adap: the adapter * @mbox: mailbox to use for the FW command * @phy_addr: the PHY address * @mmd: the PHY MMD to access (0 for clause 22 PHYs) * @reg: the register to read * @valp: where to store the value * * Issues a FW command through the given mailbox to read a PHY register. */ int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, unsigned int mmd, unsigned int reg, u16 *valp) { int ret; u32 ldst_addrspace; struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | ldst_addrspace); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | FW_LDST_CMD_MMD_V(mmd)); c.u.mdio.raddr = cpu_to_be16(reg); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) *valp = be16_to_cpu(c.u.mdio.rval); return ret; } /** * t4_mdio_wr - write a PHY register through MDIO * @adap: the adapter * @mbox: mailbox to use for the FW command * @phy_addr: the PHY address * @mmd: the PHY MMD to access (0 for clause 22 PHYs) * @reg: the register to write * @val: value to write * * Issues a FW command through the given mailbox to write a PHY register. */ int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, unsigned int mmd, unsigned int reg, u16 val) { u32 ldst_addrspace; struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | ldst_addrspace); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | FW_LDST_CMD_MMD_V(mmd)); c.u.mdio.raddr = cpu_to_be16(reg); c.u.mdio.rval = cpu_to_be16(val); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_sge_decode_idma_state - decode the idma state * @adapter: the adapter * @state: the state idma is stuck in */ void t4_sge_decode_idma_state(struct adapter *adapter, int state) { static const char * const t4_decode[] = { "IDMA_IDLE", "IDMA_PUSH_MORE_CPL_FIFO", "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", "Not used", "IDMA_PHYSADDR_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", "IDMA_PHYSADDR_SEND_PAYLOAD", "IDMA_SEND_FIFO_TO_IMSG", "IDMA_FL_REQ_DATA_FL_PREP", "IDMA_FL_REQ_DATA_FL", "IDMA_FL_DROP", "IDMA_FL_H_REQ_HEADER_FL", "IDMA_FL_H_SEND_PCIEHDR", "IDMA_FL_H_PUSH_CPL_FIFO", "IDMA_FL_H_SEND_CPL", "IDMA_FL_H_SEND_IP_HDR_FIRST", "IDMA_FL_H_SEND_IP_HDR", "IDMA_FL_H_REQ_NEXT_HEADER_FL", "IDMA_FL_H_SEND_NEXT_PCIEHDR", "IDMA_FL_H_SEND_IP_HDR_PADDING", "IDMA_FL_D_SEND_PCIEHDR", "IDMA_FL_D_SEND_CPL_AND_IP_HDR", "IDMA_FL_D_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_PCIEHDR", "IDMA_FL_PUSH_CPL_FIFO", "IDMA_FL_SEND_CPL", "IDMA_FL_SEND_PAYLOAD_FIRST", "IDMA_FL_SEND_PAYLOAD", "IDMA_FL_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_NEXT_PCIEHDR", "IDMA_FL_SEND_PADDING", "IDMA_FL_SEND_COMPLETION_TO_IMSG", "IDMA_FL_SEND_FIFO_TO_IMSG", "IDMA_FL_REQ_DATAFL_DONE", "IDMA_FL_REQ_HEADERFL_DONE", }; static const char * const t5_decode[] = { "IDMA_IDLE", "IDMA_ALMOST_IDLE", "IDMA_PUSH_MORE_CPL_FIFO", "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", "IDMA_PHYSADDR_SEND_PAYLOAD", "IDMA_SEND_FIFO_TO_IMSG", "IDMA_FL_REQ_DATA_FL", "IDMA_FL_DROP", "IDMA_FL_DROP_SEND_INC", "IDMA_FL_H_REQ_HEADER_FL", "IDMA_FL_H_SEND_PCIEHDR", "IDMA_FL_H_PUSH_CPL_FIFO", "IDMA_FL_H_SEND_CPL", "IDMA_FL_H_SEND_IP_HDR_FIRST", "IDMA_FL_H_SEND_IP_HDR", "IDMA_FL_H_REQ_NEXT_HEADER_FL", "IDMA_FL_H_SEND_NEXT_PCIEHDR", "IDMA_FL_H_SEND_IP_HDR_PADDING", "IDMA_FL_D_SEND_PCIEHDR", "IDMA_FL_D_SEND_CPL_AND_IP_HDR", "IDMA_FL_D_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_PCIEHDR", "IDMA_FL_PUSH_CPL_FIFO", "IDMA_FL_SEND_CPL", "IDMA_FL_SEND_PAYLOAD_FIRST", "IDMA_FL_SEND_PAYLOAD", "IDMA_FL_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_NEXT_PCIEHDR", "IDMA_FL_SEND_PADDING", "IDMA_FL_SEND_COMPLETION_TO_IMSG", }; static const char * const t6_decode[] = { "IDMA_IDLE", "IDMA_PUSH_MORE_CPL_FIFO", "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", "IDMA_PHYSADDR_SEND_PAYLOAD", "IDMA_FL_REQ_DATA_FL", "IDMA_FL_DROP", "IDMA_FL_DROP_SEND_INC", "IDMA_FL_H_REQ_HEADER_FL", "IDMA_FL_H_SEND_PCIEHDR", "IDMA_FL_H_PUSH_CPL_FIFO", "IDMA_FL_H_SEND_CPL", "IDMA_FL_H_SEND_IP_HDR_FIRST", "IDMA_FL_H_SEND_IP_HDR", "IDMA_FL_H_REQ_NEXT_HEADER_FL", "IDMA_FL_H_SEND_NEXT_PCIEHDR", "IDMA_FL_H_SEND_IP_HDR_PADDING", "IDMA_FL_D_SEND_PCIEHDR", "IDMA_FL_D_SEND_CPL_AND_IP_HDR", "IDMA_FL_D_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_PCIEHDR", "IDMA_FL_PUSH_CPL_FIFO", "IDMA_FL_SEND_CPL", "IDMA_FL_SEND_PAYLOAD_FIRST", "IDMA_FL_SEND_PAYLOAD", "IDMA_FL_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_NEXT_PCIEHDR", "IDMA_FL_SEND_PADDING", "IDMA_FL_SEND_COMPLETION_TO_IMSG", }; static const u32 sge_regs[] = { SGE_DEBUG_DATA_LOW_INDEX_2_A, SGE_DEBUG_DATA_LOW_INDEX_3_A, SGE_DEBUG_DATA_HIGH_INDEX_10_A, }; const char **sge_idma_decode; int sge_idma_decode_nstates; int i; unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); /* Select the right set of decode strings to dump depending on the * adapter chip type. */ switch (chip_version) { case CHELSIO_T4: sge_idma_decode = (const char **)t4_decode; sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); break; case CHELSIO_T5: sge_idma_decode = (const char **)t5_decode; sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); break; case CHELSIO_T6: sge_idma_decode = (const char **)t6_decode; sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); break; default: dev_err(adapter->pdev_dev, "Unsupported chip version %d\n", chip_version); return; } if (is_t4(adapter->params.chip)) { sge_idma_decode = (const char **)t4_decode; sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); } else { sge_idma_decode = (const char **)t5_decode; sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); } if (state < sge_idma_decode_nstates) CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); else CH_WARN(adapter, "idma state %d unknown\n", state); for (i = 0; i < ARRAY_SIZE(sge_regs); i++) CH_WARN(adapter, "SGE register %#x value %#x\n", sge_regs[i], t4_read_reg(adapter, sge_regs[i])); } /** * t4_sge_ctxt_flush - flush the SGE context cache * @adap: the adapter * @mbox: mailbox to use for the FW command * @ctxt_type: Egress or Ingress * * Issues a FW command through the given mailbox to flush the * SGE context cache. */ int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) { int ret; u32 ldst_addrspace; struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? FW_LDST_ADDRSPC_SGE_EGRC : FW_LDST_ADDRSPC_SGE_INGC); c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | ldst_addrspace); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); return ret; } /** * t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values * @adap: the adapter * @ndbqtimers: size of the provided SGE Doorbell Queue Timer table * @dbqtimers: SGE Doorbell Queue Timer table * * Reads the SGE Doorbell Queue Timer values into the provided table. * Returns 0 on success (Firmware and Hardware support this feature), * an error on failure. */ int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers, u16 *dbqtimers) { int ret, dbqtimerix; ret = 0; dbqtimerix = 0; while (dbqtimerix < ndbqtimers) { int nparams, param; u32 params[7], vals[7]; nparams = ndbqtimers - dbqtimerix; if (nparams > ARRAY_SIZE(params)) nparams = ARRAY_SIZE(params); for (param = 0; param < nparams; param++) params[param] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) | FW_PARAMS_PARAM_Y_V(dbqtimerix + param)); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, nparams, params, vals); if (ret) break; for (param = 0; param < nparams; param++) dbqtimers[dbqtimerix++] = vals[param]; } return ret; } /** * t4_fw_hello - establish communication with FW * @adap: the adapter * @mbox: mailbox to use for the FW command * @evt_mbox: mailbox to receive async FW events * @master: specifies the caller's willingness to be the device master * @state: returns the current device state (if non-NULL) * * Issues a command to establish communication with FW. Returns either * an error (negative integer) or the mailbox of the Master PF. */ int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, enum dev_master master, enum dev_state *state) { int ret; struct fw_hello_cmd c; u32 v; unsigned int master_mbox; int retries = FW_CMD_HELLO_RETRIES; retry: memset(&c, 0, sizeof(c)); INIT_CMD(c, HELLO, WRITE); c.err_to_clearinit = cpu_to_be32( FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? mbox : FW_HELLO_CMD_MBMASTER_M) | FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | FW_HELLO_CMD_CLEARINIT_F); /* * Issue the HELLO command to the firmware. If it's not successful * but indicates that we got a "busy" or "timeout" condition, retry * the HELLO until we exhaust our retry limit. If we do exceed our * retry limit, check to see if the firmware left us any error * information and report that if so. */ ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret < 0) { if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) goto retry; if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) t4_report_fw_error(adap); return ret; } v = be32_to_cpu(c.err_to_clearinit); master_mbox = FW_HELLO_CMD_MBMASTER_G(v); if (state) { if (v & FW_HELLO_CMD_ERR_F) *state = DEV_STATE_ERR; else if (v & FW_HELLO_CMD_INIT_F) *state = DEV_STATE_INIT; else *state = DEV_STATE_UNINIT; } /* * If we're not the Master PF then we need to wait around for the * Master PF Driver to finish setting up the adapter. * * Note that we also do this wait if we're a non-Master-capable PF and * there is no current Master PF; a Master PF may show up momentarily * and we wouldn't want to fail pointlessly. (This can happen when an * OS loads lots of different drivers rapidly at the same time). In * this case, the Master PF returned by the firmware will be * PCIE_FW_MASTER_M so the test below will work ... */ if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && master_mbox != mbox) { int waiting = FW_CMD_HELLO_TIMEOUT; /* * Wait for the firmware to either indicate an error or * initialized state. If we see either of these we bail out * and report the issue to the caller. If we exhaust the * "hello timeout" and we haven't exhausted our retries, try * again. Otherwise bail with a timeout error. */ for (;;) { u32 pcie_fw; msleep(50); waiting -= 50; /* * If neither Error nor Initialized are indicated * by the firmware keep waiting till we exhaust our * timeout ... and then retry if we haven't exhausted * our retries ... */ pcie_fw = t4_read_reg(adap, PCIE_FW_A); if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { if (waiting <= 0) { if (retries-- > 0) goto retry; return -ETIMEDOUT; } continue; } /* * We either have an Error or Initialized condition * report errors preferentially. */ if (state) { if (pcie_fw & PCIE_FW_ERR_F) *state = DEV_STATE_ERR; else if (pcie_fw & PCIE_FW_INIT_F) *state = DEV_STATE_INIT; } /* * If we arrived before a Master PF was selected and * there's not a valid Master PF, grab its identity * for our caller. */ if (master_mbox == PCIE_FW_MASTER_M && (pcie_fw & PCIE_FW_MASTER_VLD_F)) master_mbox = PCIE_FW_MASTER_G(pcie_fw); break; } } return master_mbox; } /** * t4_fw_bye - end communication with FW * @adap: the adapter * @mbox: mailbox to use for the FW command * * Issues a command to terminate communication with FW. */ int t4_fw_bye(struct adapter *adap, unsigned int mbox) { struct fw_bye_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, BYE, WRITE); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_early_init - ask FW to initialize the device * @adap: the adapter * @mbox: mailbox to use for the FW command * * Issues a command to FW to partially initialize the device. This * performs initialization that generally doesn't depend on user input. */ int t4_early_init(struct adapter *adap, unsigned int mbox) { struct fw_initialize_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, INITIALIZE, WRITE); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_fw_reset - issue a reset to FW * @adap: the adapter * @mbox: mailbox to use for the FW command * @reset: specifies the type of reset to perform * * Issues a reset command of the specified type to FW. */ int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) { struct fw_reset_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, RESET, WRITE); c.val = cpu_to_be32(reset); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_fw_halt - issue a reset/halt to FW and put uP into RESET * @adap: the adapter * @mbox: mailbox to use for the FW RESET command (if desired) * @force: force uP into RESET even if FW RESET command fails * * Issues a RESET command to firmware (if desired) with a HALT indication * and then puts the microprocessor into RESET state. The RESET command * will only be issued if a legitimate mailbox is provided (mbox <= * PCIE_FW_MASTER_M). * * This is generally used in order for the host to safely manipulate the * adapter without fear of conflicting with whatever the firmware might * be doing. The only way out of this state is to RESTART the firmware * ... */ static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) { int ret = 0; /* * If a legitimate mailbox is provided, issue a RESET command * with a HALT indication. */ if (mbox <= PCIE_FW_MASTER_M) { struct fw_reset_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, RESET, WRITE); c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /* * Normally we won't complete the operation if the firmware RESET * command fails but if our caller insists we'll go ahead and put the * uP into RESET. This can be useful if the firmware is hung or even * missing ... We'll have to take the risk of putting the uP into * RESET without the cooperation of firmware in that case. * * We also force the firmware's HALT flag to be on in case we bypassed * the firmware RESET command above or we're dealing with old firmware * which doesn't have the HALT capability. This will serve as a flag * for the incoming firmware to know that it's coming out of a HALT * rather than a RESET ... if it's new enough to understand that ... */ if (ret == 0 || force) { t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, PCIE_FW_HALT_F); } /* * And we always return the result of the firmware RESET command * even when we force the uP into RESET ... */ return ret; } /** * t4_fw_restart - restart the firmware by taking the uP out of RESET * @adap: the adapter * @mbox: mailbox to use for the FW command * @reset: if we want to do a RESET to restart things * * Restart firmware previously halted by t4_fw_halt(). On successful * return the previous PF Master remains as the new PF Master and there * is no need to issue a new HELLO command, etc. * * We do this in two ways: * * 1. If we're dealing with newer firmware we'll simply want to take * the chip's microprocessor out of RESET. This will cause the * firmware to start up from its start vector. And then we'll loop * until the firmware indicates it's started again (PCIE_FW.HALT * reset to 0) or we timeout. * * 2. If we're dealing with older firmware then we'll need to RESET * the chip since older firmware won't recognize the PCIE_FW.HALT * flag and automatically RESET itself on startup. */ static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) { if (reset) { /* * Since we're directing the RESET instead of the firmware * doing it automatically, we need to clear the PCIE_FW.HALT * bit. */ t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); /* * If we've been given a valid mailbox, first try to get the * firmware to do the RESET. If that works, great and we can * return success. Otherwise, if we haven't been given a * valid mailbox or the RESET command failed, fall back to * hitting the chip with a hammer. */ if (mbox <= PCIE_FW_MASTER_M) { t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); msleep(100); if (t4_fw_reset(adap, mbox, PIORST_F | PIORSTMODE_F) == 0) return 0; } t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); msleep(2000); } else { int ms; t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) return 0; msleep(100); ms += 100; } return -ETIMEDOUT; } return 0; } /** * t4_fw_upgrade - perform all of the steps necessary to upgrade FW * @adap: the adapter * @mbox: mailbox to use for the FW RESET command (if desired) * @fw_data: the firmware image to write * @size: image size * @force: force upgrade even if firmware doesn't cooperate * * Perform all of the steps necessary for upgrading an adapter's * firmware image. Normally this requires the cooperation of the * existing firmware in order to halt all existing activities * but if an invalid mailbox token is passed in we skip that step * (though we'll still put the adapter microprocessor into RESET in * that case). * * On successful return the new firmware will have been loaded and * the adapter will have been fully RESET losing all previous setup * state. On unsuccessful return the adapter may be completely hosed ... * positive errno indicates that the adapter is ~probably~ intact, a * negative errno indicates that things are looking bad ... */ int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, const u8 *fw_data, unsigned int size, int force) { const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; int reset, ret; if (!t4_fw_matches_chip(adap, fw_hdr)) return -EINVAL; /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag * set wont be sent when we are flashing FW. */ adap->flags &= ~CXGB4_FW_OK; ret = t4_fw_halt(adap, mbox, force); if (ret < 0 && !force) goto out; ret = t4_load_fw(adap, fw_data, size); if (ret < 0) goto out; /* * If there was a Firmware Configuration File stored in FLASH, * there's a good chance that it won't be compatible with the new * Firmware. In order to prevent difficult to diagnose adapter * initialization issues, we clear out the Firmware Configuration File * portion of the FLASH . The user will need to re-FLASH a new * Firmware Configuration File which is compatible with the new * Firmware if that's desired. */ (void)t4_load_cfg(adap, NULL, 0); /* * Older versions of the firmware don't understand the new * PCIE_FW.HALT flag and so won't know to perform a RESET when they * restart. So for newly loaded older firmware we'll have to do the * RESET for it so it starts up on a clean slate. We can tell if * the newly loaded firmware will handle this right by checking * its header flags to see if it advertises the capability. */ reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); ret = t4_fw_restart(adap, mbox, reset); /* Grab potentially new Firmware Device Log parameters so we can see * how healthy the new Firmware is. It's okay to contact the new * Firmware for these parameters even though, as far as it's * concerned, we've never said "HELLO" to it ... */ (void)t4_init_devlog_params(adap); out: adap->flags |= CXGB4_FW_OK; return ret; } /** * t4_fl_pkt_align - return the fl packet alignment * @adap: the adapter * * T4 has a single field to specify the packing and padding boundary. * T5 onwards has separate fields for this and hence the alignment for * next packet offset is maximum of these two. * */ int t4_fl_pkt_align(struct adapter *adap) { u32 sge_control, sge_control2; unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; sge_control = t4_read_reg(adap, SGE_CONTROL_A); /* T4 uses a single control field to specify both the PCIe Padding and * Packing Boundary. T5 introduced the ability to specify these * separately. The actual Ingress Packet Data alignment boundary * within Packed Buffer Mode is the maximum of these two * specifications. (Note that it makes no real practical sense to * have the Padding Boundary be larger than the Packing Boundary but you * could set the chip up that way and, in fact, legacy T4 code would * end doing this because it would initialize the Padding Boundary and * leave the Packing Boundary initialized to 0 (16 bytes).) * Padding Boundary values in T6 starts from 8B, * where as it is 32B for T4 and T5. */ if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) ingpad_shift = INGPADBOUNDARY_SHIFT_X; else ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); fl_align = ingpadboundary; if (!is_t4(adap->params.chip)) { /* T5 has a weird interpretation of one of the PCIe Packing * Boundary values. No idea why ... */ sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); ingpackboundary = INGPACKBOUNDARY_G(sge_control2); if (ingpackboundary == INGPACKBOUNDARY_16B_X) ingpackboundary = 16; else ingpackboundary = 1 << (ingpackboundary + INGPACKBOUNDARY_SHIFT_X); fl_align = max(ingpadboundary, ingpackboundary); } return fl_align; } /** * t4_fixup_host_params - fix up host-dependent parameters * @adap: the adapter * @page_size: the host's Base Page Size * @cache_line_size: the host's Cache Line Size * * Various registers in T4 contain values which are dependent on the * host's Base Page and Cache Line Sizes. This function will fix all of * those registers with the appropriate values as passed in ... */ int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, unsigned int cache_line_size) { unsigned int page_shift = fls(page_size) - 1; unsigned int sge_hps = page_shift - 10; unsigned int stat_len = cache_line_size > 64 ? 128 : 64; unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; unsigned int fl_align_log = fls(fl_align) - 1; t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, HOSTPAGESIZEPF0_V(sge_hps) | HOSTPAGESIZEPF1_V(sge_hps) | HOSTPAGESIZEPF2_V(sge_hps) | HOSTPAGESIZEPF3_V(sge_hps) | HOSTPAGESIZEPF4_V(sge_hps) | HOSTPAGESIZEPF5_V(sge_hps) | HOSTPAGESIZEPF6_V(sge_hps) | HOSTPAGESIZEPF7_V(sge_hps)); if (is_t4(adap->params.chip)) { t4_set_reg_field(adap, SGE_CONTROL_A, INGPADBOUNDARY_V(INGPADBOUNDARY_M) | EGRSTATUSPAGESIZE_F, INGPADBOUNDARY_V(fl_align_log - INGPADBOUNDARY_SHIFT_X) | EGRSTATUSPAGESIZE_V(stat_len != 64)); } else { unsigned int pack_align; unsigned int ingpad, ingpack; /* T5 introduced the separation of the Free List Padding and * Packing Boundaries. Thus, we can select a smaller Padding * Boundary to avoid uselessly chewing up PCIe Link and Memory * Bandwidth, and use a Packing Boundary which is large enough * to avoid false sharing between CPUs, etc. * * For the PCI Link, the smaller the Padding Boundary the * better. For the Memory Controller, a smaller Padding * Boundary is better until we cross under the Memory Line * Size (the minimum unit of transfer to/from Memory). If we * have a Padding Boundary which is smaller than the Memory * Line Size, that'll involve a Read-Modify-Write cycle on the * Memory Controller which is never good. */ /* We want the Packing Boundary to be based on the Cache Line * Size in order to help avoid False Sharing performance * issues between CPUs, etc. We also want the Packing * Boundary to incorporate the PCI-E Maximum Payload Size. We * get best performance when the Packing Boundary is a * multiple of the Maximum Payload Size. */ pack_align = fl_align; if (pci_is_pcie(adap->pdev)) { unsigned int mps, mps_log; u16 devctl; /* The PCIe Device Control Maximum Payload Size field * [bits 7:5] encodes sizes as powers of 2 starting at * 128 bytes. */ pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL, &devctl); mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; mps = 1 << mps_log; if (mps > pack_align) pack_align = mps; } /* N.B. T5/T6 have a crazy special interpretation of the "0" * value for the Packing Boundary. This corresponds to 16 * bytes instead of the expected 32 bytes. So if we want 32 * bytes, the best we can really do is 64 bytes ... */ if (pack_align <= 16) { ingpack = INGPACKBOUNDARY_16B_X; fl_align = 16; } else if (pack_align == 32) { ingpack = INGPACKBOUNDARY_64B_X; fl_align = 64; } else { unsigned int pack_align_log = fls(pack_align) - 1; ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; fl_align = pack_align; } /* Use the smallest Ingress Padding which isn't smaller than * the Memory Controller Read/Write Size. We'll take that as * being 8 bytes since we don't know of any system with a * wider Memory Controller Bus Width. */ if (is_t5(adap->params.chip)) ingpad = INGPADBOUNDARY_32B_X; else ingpad = T6_INGPADBOUNDARY_8B_X; t4_set_reg_field(adap, SGE_CONTROL_A, INGPADBOUNDARY_V(INGPADBOUNDARY_M) | EGRSTATUSPAGESIZE_F, INGPADBOUNDARY_V(ingpad) | EGRSTATUSPAGESIZE_V(stat_len != 64)); t4_set_reg_field(adap, SGE_CONTROL2_A, INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), INGPACKBOUNDARY_V(ingpack)); } /* * Adjust various SGE Free List Host Buffer Sizes. * * This is something of a crock since we're using fixed indices into * the array which are also known by the sge.c code and the T4 * Firmware Configuration File. We need to come up with a much better * approach to managing this array. For now, the first four entries * are: * * 0: Host Page Size * 1: 64KB * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) * * For the single-MTU buffers in unpacked mode we need to include * space for the SGE Control Packet Shift, 14 byte Ethernet header, * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet * Padding boundary. All of these are accommodated in the Factory * Default Firmware Configuration File but we need to adjust it for * this host's cache line size. */ t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) & ~(fl_align-1)); t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) & ~(fl_align-1)); t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); return 0; } /** * t4_fw_initialize - ask FW to initialize the device * @adap: the adapter * @mbox: mailbox to use for the FW command * * Issues a command to FW to partially initialize the device. This * performs initialization that generally doesn't depend on user input. */ int t4_fw_initialize(struct adapter *adap, unsigned int mbox) { struct fw_initialize_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, INITIALIZE, WRITE); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_query_params_rw - query FW or device parameters * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF * @vf: the VF * @nparams: the number of parameters * @params: the parameter names * @val: the parameter values * @rw: Write and read flag * @sleep_ok: if true, we may sleep awaiting mbox cmd completion * * Reads the value of FW or device parameters. Up to 7 parameters can be * queried at once. */ int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, u32 *val, int rw, bool sleep_ok) { int i, ret; struct fw_params_cmd c; __be32 *p = &c.param[0].mnem; if (nparams > 7) return -EINVAL; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | FW_PARAMS_CMD_PFN_V(pf) | FW_PARAMS_CMD_VFN_V(vf)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); for (i = 0; i < nparams; i++) { *p++ = cpu_to_be32(*params++); if (rw) *p = cpu_to_be32(*(val + i)); p++; } ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); if (ret == 0) for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) *val++ = be32_to_cpu(*p); return ret; } int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, u32 *val) { return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, true); } int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, u32 *val) { return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, false); } /** * t4_set_params_timeout - sets FW or device parameters * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF * @vf: the VF * @nparams: the number of parameters * @params: the parameter names * @val: the parameter values * @timeout: the timeout time * * Sets the value of FW or device parameters. Up to 7 parameters can be * specified at once. */ int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, const u32 *val, int timeout) { struct fw_params_cmd c; __be32 *p = &c.param[0].mnem; if (nparams > 7) return -EINVAL; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_PARAMS_CMD_PFN_V(pf) | FW_PARAMS_CMD_VFN_V(vf)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); while (nparams--) { *p++ = cpu_to_be32(*params++); *p++ = cpu_to_be32(*val++); } return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); } /** * t4_set_params - sets FW or device parameters * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF * @vf: the VF * @nparams: the number of parameters * @params: the parameter names * @val: the parameter values * * Sets the value of FW or device parameters. Up to 7 parameters can be * specified at once. */ int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, const u32 *val) { return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, FW_CMD_MAX_TIMEOUT); } /** * t4_cfg_pfvf - configure PF/VF resource limits * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF being configured * @vf: the VF being configured * @txq: the max number of egress queues * @txq_eth_ctrl: the max number of egress Ethernet or control queues * @rxqi: the max number of interrupt-capable ingress queues * @rxq: the max number of interruptless ingress queues * @tc: the PCI traffic class * @vi: the max number of virtual interfaces * @cmask: the channel access rights mask for the PF/VF * @pmask: the port access rights mask for the PF/VF * @nexact: the maximum number of exact MPS filters * @rcaps: read capabilities * @wxcaps: write/execute capabilities * * Configures resource limits and capabilities for a physical or virtual * function. */ int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, unsigned int rxqi, unsigned int rxq, unsigned int tc, unsigned int vi, unsigned int cmask, unsigned int pmask, unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) { struct fw_pfvf_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | FW_PFVF_CMD_VFN_V(vf)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | FW_PFVF_CMD_NIQ_V(rxq)); c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | FW_PFVF_CMD_PMASK_V(pmask) | FW_PFVF_CMD_NEQ_V(txq)); c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | FW_PFVF_CMD_NVI_V(vi) | FW_PFVF_CMD_NEXACTF_V(nexact)); c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | FW_PFVF_CMD_WX_CAPS_V(wxcaps) | FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_alloc_vi - allocate a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @port: physical port associated with the VI * @pf: the PF owning the VI * @vf: the VF owning the VI * @nmac: number of MAC addresses needed (1 to 5) * @mac: the MAC addresses of the VI * @rss_size: size of RSS table slice associated with this VI * @vivld: the destination to store the VI Valid value. * @vin: the destination to store the VIN value. * * Allocates a virtual interface for the given physical port. If @mac is * not %NULL it contains the MAC addresses of the VI as assigned by FW. * @mac should be large enough to hold @nmac Ethernet addresses, they are * stored consecutively so the space needed is @nmac * 6 bytes. * Returns a negative error number or the non-negative VI id. */ int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, unsigned int *rss_size, u8 *vivld, u8 *vin) { int ret; struct fw_vi_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_F | FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); c.portid_pkd = FW_VI_CMD_PORTID_V(port); c.nmac = nmac - 1; ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret) return ret; if (mac) { memcpy(mac, c.mac, sizeof(c.mac)); switch (nmac) { case 5: memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); fallthrough; case 4: memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); fallthrough; case 3: memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); fallthrough; case 2: memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); } } if (rss_size) *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); if (vivld) *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16)); if (vin) *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16)); return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); } /** * t4_free_vi - free a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the VI * @vf: the VF owning the VI * @viid: virtual interface identifiler * * Free a previously allocated virtual interface. */ int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int viid) { struct fw_vi_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); } /** * t4_set_rxmode - set Rx properties of a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @viid_mirror: the mirror VI id * @mtu: the new MTU or -1 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change * @sleep_ok: if true we may sleep while awaiting command completion * * Sets Rx properties of a virtual interface. */ int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, unsigned int viid_mirror, int mtu, int promisc, int all_multi, int bcast, int vlanex, bool sleep_ok) { struct fw_vi_rxmode_cmd c, c_mirror; int ret; /* convert to FW values */ if (mtu < 0) mtu = FW_RXMODE_MTU_NO_CHG; if (promisc < 0) promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; if (all_multi < 0) all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; if (bcast < 0) bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; if (vlanex < 0) vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_VI_RXMODE_CMD_VIID_V(viid)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); c.mtu_to_vlanexen = cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); if (viid_mirror) { memcpy(&c_mirror, &c, sizeof(c_mirror)); c_mirror.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_VI_RXMODE_CMD_VIID_V(viid_mirror)); } ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); if (ret) return ret; if (viid_mirror) ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror), NULL, sleep_ok); return ret; } /** * t4_free_encap_mac_filt - frees MPS entry at given index * @adap: the adapter * @viid: the VI id * @idx: index of MPS entry to be freed * @sleep_ok: call is allowed to sleep * * Frees the MPS entry at supplied index * * Returns a negative error number or zero on success */ int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, int idx, bool sleep_ok) { struct fw_vi_mac_exact *p; struct fw_vi_mac_cmd c; int ret = 0; u32 exact; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_V(0) | FW_VI_MAC_CMD_VIID_V(viid)); exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | exact | FW_CMD_LEN16_V(1)); p = c.u.exact; p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | FW_VI_MAC_CMD_IDX_V(idx)); eth_zero_addr(p->macaddr); ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); return ret; } /** * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam * @adap: the adapter * @viid: the VI id * @addr: the MAC address * @mask: the mask * @idx: index of the entry in mps tcam * @lookup_type: MAC address for inner (1) or outer (0) header * @port_id: the port index * @sleep_ok: call is allowed to sleep * * Removes the mac entry at the specified index using raw mac interface. * * Returns a negative error number on failure. */ int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, const u8 *addr, const u8 *mask, unsigned int idx, u8 lookup_type, u8 port_id, bool sleep_ok) { struct fw_vi_mac_cmd c; struct fw_vi_mac_raw *p = &c.u.raw; u32 val; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_V(0) | FW_VI_MAC_CMD_VIID_V(viid)); val = FW_CMD_LEN16_V(1) | FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | FW_CMD_LEN16_V(val)); p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | FW_VI_MAC_ID_BASED_FREE); /* Lookup Type. Outer header: 0, Inner header: 1 */ p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | DATAPORTNUM_V(port_id)); /* Lookup mask and port mask */ p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | DATAPORTNUM_V(DATAPORTNUM_M)); /* Copy the address and the mask */ memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); } /** * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support * @adap: the adapter * @viid: the VI id * @addr: the MAC address * @mask: the mask * @vni: the VNI id for the tunnel protocol * @vni_mask: mask for the VNI id * @dip_hit: to enable DIP match for the MPS entry * @lookup_type: MAC address for inner (1) or outer (0) header * @sleep_ok: call is allowed to sleep * * Allocates an MPS entry with specified MAC address and VNI value. * * Returns a negative error number or the allocated index for this mac. */ int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, const u8 *addr, const u8 *mask, unsigned int vni, unsigned int vni_mask, u8 dip_hit, u8 lookup_type, bool sleep_ok) { struct fw_vi_mac_cmd c; struct fw_vi_mac_vni *p = c.u.exact_vni; int ret = 0; u32 val; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_VI_MAC_CMD_VIID_V(viid)); val = FW_CMD_LEN16_V(1) | FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); c.freemacs_to_len16 = cpu_to_be32(val); p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); memcpy(p->macaddr, addr, sizeof(p->macaddr)); memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); p->lookup_type_to_vni = cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); if (ret == 0) ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); return ret; } /** * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam * @adap: the adapter * @viid: the VI id * @addr: the MAC address * @mask: the mask * @idx: index at which to add this entry * @lookup_type: MAC address for inner (1) or outer (0) header * @port_id: the port index * @sleep_ok: call is allowed to sleep * * Adds the mac entry at the specified index using raw mac interface. * * Returns a negative error number or the allocated index for this mac. */ int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, const u8 *addr, const u8 *mask, unsigned int idx, u8 lookup_type, u8 port_id, bool sleep_ok) { int ret = 0; struct fw_vi_mac_cmd c; struct fw_vi_mac_raw *p = &c.u.raw; u32 val; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_VI_MAC_CMD_VIID_V(viid)); val = FW_CMD_LEN16_V(1) | FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); c.freemacs_to_len16 = cpu_to_be32(val); /* Specify that this is an inner mac address */ p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); /* Lookup Type. Outer header: 0, Inner header: 1 */ p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | DATAPORTNUM_V(port_id)); /* Lookup mask and port mask */ p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | DATAPORTNUM_V(DATAPORTNUM_M)); /* Copy the address and the mask */ memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); if (ret == 0) { ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); if (ret != idx) ret = -ENOMEM; } return ret; } /** * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @free: if true any existing filters for this VI id are first removed * @naddr: the number of MAC addresses to allocate filters for (up to 7) * @addr: the MAC address(es) * @idx: where to store the index of each allocated filter * @hash: pointer to hash address filter bitmap * @sleep_ok: call is allowed to sleep * * Allocates an exact-match filter for each of the supplied addresses and * sets it to the corresponding address. If @idx is not %NULL it should * have at least @naddr entries, each of which will be set to the index of * the filter allocated for the corresponding MAC address. If a filter * could not be allocated for an address its index is set to 0xffff. * If @hash is not %NULL addresses that fail to allocate an exact filter * are hashed and update the hash filter bitmap pointed at by @hash. * * Returns a negative error number or the number of filters allocated. */ int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, unsigned int viid, bool free, unsigned int naddr, const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) { int offset, ret = 0; struct fw_vi_mac_cmd c; unsigned int nfilters = 0; unsigned int max_naddr = adap->params.arch.mps_tcam_size; unsigned int rem = naddr; if (naddr > max_naddr) return -EINVAL; for (offset = 0; offset < naddr ; /**/) { unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? rem : ARRAY_SIZE(c.u.exact)); size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, u.exact[fw_naddr]), 16); struct fw_vi_mac_exact *p; int i; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_V(free) | FW_VI_MAC_CMD_VIID_V(viid)); c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | FW_CMD_LEN16_V(len16)); for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | FW_VI_MAC_CMD_IDX_V( FW_VI_MAC_ADD_MAC)); memcpy(p->macaddr, addr[offset + i], sizeof(p->macaddr)); } /* It's okay if we run out of space in our MAC address arena. * Some of the addresses we submit may get stored so we need * to run through the reply to see what the results were ... */ ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); if (ret && ret != -FW_ENOMEM) break; for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { u16 index = FW_VI_MAC_CMD_IDX_G( be16_to_cpu(p->valid_to_idx)); if (idx) idx[offset + i] = (index >= max_naddr ? 0xffff : index); if (index < max_naddr) nfilters++; else if (hash) *hash |= (1ULL << hash_mac_addr(addr[offset + i])); } free = false; offset += fw_naddr; rem -= fw_naddr; } if (ret == 0 || ret == -FW_ENOMEM) ret = nfilters; return ret; } /** * t4_free_mac_filt - frees exact-match filters of given MAC addresses * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @naddr: the number of MAC addresses to allocate filters for (up to 7) * @addr: the MAC address(es) * @sleep_ok: call is allowed to sleep * * Frees the exact-match filter for each of the supplied addresses * * Returns a negative error number or the number of filters freed. */ int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, unsigned int viid, unsigned int naddr, const u8 **addr, bool sleep_ok) { int offset, ret = 0; struct fw_vi_mac_cmd c; unsigned int nfilters = 0; unsigned int max_naddr = is_t4(adap->params.chip) ? NUM_MPS_CLS_SRAM_L_INSTANCES : NUM_MPS_T5_CLS_SRAM_L_INSTANCES; unsigned int rem = naddr; if (naddr > max_naddr) return -EINVAL; for (offset = 0; offset < (int)naddr ; /**/) { unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? rem : ARRAY_SIZE(c.u.exact)); size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, u.exact[fw_naddr]), 16); struct fw_vi_mac_exact *p; int i; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_V(0) | FW_VI_MAC_CMD_VIID_V(viid)); c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | FW_CMD_LEN16_V(len16)); for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { p->valid_to_idx = cpu_to_be16( FW_VI_MAC_CMD_VALID_F | FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); } ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); if (ret) break; for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { u16 index = FW_VI_MAC_CMD_IDX_G( be16_to_cpu(p->valid_to_idx)); if (index < max_naddr) nfilters++; } offset += fw_naddr; rem -= fw_naddr; } if (ret == 0) ret = nfilters; return ret; } /** * t4_change_mac - modifies the exact-match filter for a MAC address * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @idx: index of existing filter for old value of MAC address, or -1 * @addr: the new MAC address value * @persist: whether a new MAC allocation should be persistent * @smt_idx: the destination to store the new SMT index. * * Modifies an exact-match filter and sets it to the new MAC address. * Note that in general it is not possible to modify the value of a given * filter so the generic way to modify an address filter is to free the one * being used by the old address value and allocate a new filter for the * new address value. @idx can be -1 if the address is a new addition. * * Returns a negative error number or the index of the filter with the new * MAC value. */ int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, int idx, const u8 *addr, bool persist, u8 *smt_idx) { int ret, mode; struct fw_vi_mac_cmd c; struct fw_vi_mac_exact *p = c.u.exact; unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; if (idx < 0) /* new allocation */ idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_VI_MAC_CMD_VIID_V(viid)); c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | FW_VI_MAC_CMD_IDX_V(idx)); memcpy(p->macaddr, addr, sizeof(p->macaddr)); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) { ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); if (ret >= max_mac_addr) ret = -ENOMEM; if (smt_idx) { if (adap->params.viid_smt_extn_support) { *smt_idx = FW_VI_MAC_CMD_SMTID_G (be32_to_cpu(c.op_to_viid)); } else { /* In T4/T5, SMT contains 256 SMAC entries * organized in 128 rows of 2 entries each. * In T6, SMT contains 256 SMAC entries in * 256 rows. */ if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) *smt_idx = (viid & FW_VIID_VIN_M) << 1; else *smt_idx = (viid & FW_VIID_VIN_M); } } } return ret; } /** * t4_set_addr_hash - program the MAC inexact-match hash filter * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @ucast: whether the hash filter should also match unicast addresses * @vec: the value to be written to the hash filter * @sleep_ok: call is allowed to sleep * * Sets the 64-bit inexact-match hash filter for a virtual interface. */ int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, bool ucast, u64 vec, bool sleep_ok) { struct fw_vi_mac_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_VI_ENABLE_CMD_VIID_V(viid)); c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | FW_CMD_LEN16_V(1)); c.u.hash.hashvec = cpu_to_be64(vec); return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); } /** * t4_enable_vi_params - enable/disable a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @rx_en: 1=enable Rx, 0=disable Rx * @tx_en: 1=enable Tx, 0=disable Tx * @dcb_en: 1=enable delivery of Data Center Bridging messages. * * Enables/disables a virtual interface. Note that setting DCB Enable * only makes sense when enabling a Virtual Interface ... */ int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) { struct fw_vi_enable_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid)); c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | FW_VI_ENABLE_CMD_EEN_V(tx_en) | FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | FW_LEN16(c)); return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); } /** * t4_enable_vi - enable/disable a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @rx_en: 1=enable Rx, 0=disable Rx * @tx_en: 1=enable Tx, 0=disable Tx * * Enables/disables a virtual interface. */ int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, bool rx_en, bool tx_en) { return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); } /** * t4_enable_pi_params - enable/disable a Port's Virtual Interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @pi: the Port Information structure * @rx_en: 1=enable Rx, 0=disable Rx * @tx_en: 1=enable Tx, 0=disable Tx * @dcb_en: 1=enable delivery of Data Center Bridging messages. * * Enables/disables a Port's Virtual Interface. Note that setting DCB * Enable only makes sense when enabling a Virtual Interface ... * If the Virtual Interface enable/disable operation is successful, * we notify the OS-specific code of a potential Link Status change * via the OS Contract API t4_os_link_changed(). */ int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, struct port_info *pi, bool rx_en, bool tx_en, bool dcb_en) { int ret = t4_enable_vi_params(adap, mbox, pi->viid, rx_en, tx_en, dcb_en); if (ret) return ret; t4_os_link_changed(adap, pi->port_id, rx_en && tx_en && pi->link_cfg.link_ok); return 0; } /** * t4_identify_port - identify a VI's port by blinking its LED * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @nblinks: how many times to blink LED at 2.5 Hz * * Identifies a VI's port by blinking its LED. */ int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, unsigned int nblinks) { struct fw_vi_enable_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid)); c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); c.blinkdur = cpu_to_be16(nblinks); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_iq_stop - stop an ingress queue and its FLs * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queues * @vf: the VF owning the queues * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) * @iqid: ingress queue id * @fl0id: FL0 queue id or 0xffff if no attached FL0 * @fl1id: FL1 queue id or 0xffff if no attached FL1 * * Stops an ingress queue and its associated FLs, if any. This causes * any current or future data/messages destined for these queues to be * tossed. */ int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int iqtype, unsigned int iqid, unsigned int fl0id, unsigned int fl1id) { struct fw_iq_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | FW_IQ_CMD_VFN_V(vf)); c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); c.iqid = cpu_to_be16(iqid); c.fl0id = cpu_to_be16(fl0id); c.fl1id = cpu_to_be16(fl1id); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_iq_free - free an ingress queue and its FLs * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queues * @vf: the VF owning the queues * @iqtype: the ingress queue type * @iqid: ingress queue id * @fl0id: FL0 queue id or 0xffff if no attached FL0 * @fl1id: FL1 queue id or 0xffff if no attached FL1 * * Frees an ingress queue and its associated FLs, if any. */ int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int iqtype, unsigned int iqid, unsigned int fl0id, unsigned int fl1id) { struct fw_iq_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | FW_IQ_CMD_VFN_V(vf)); c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); c.iqid = cpu_to_be16(iqid); c.fl0id = cpu_to_be16(fl0id); c.fl1id = cpu_to_be16(fl1id); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_eth_eq_free - free an Ethernet egress queue * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @eqid: egress queue id * * Frees an Ethernet egress queue. */ int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid) { struct fw_eq_eth_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_EQ_ETH_CMD_PFN_V(pf) | FW_EQ_ETH_CMD_VFN_V(vf)); c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_ctrl_eq_free - free a control egress queue * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @eqid: egress queue id * * Frees a control egress queue. */ int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid) { struct fw_eq_ctrl_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_EQ_CTRL_CMD_PFN_V(pf) | FW_EQ_CTRL_CMD_VFN_V(vf)); c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_ofld_eq_free - free an offload egress queue * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @eqid: egress queue id * * Frees a control egress queue. */ int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid) { struct fw_eq_ofld_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_EQ_OFLD_CMD_PFN_V(pf) | FW_EQ_OFLD_CMD_VFN_V(vf)); c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_link_down_rc_str - return a string for a Link Down Reason Code * @link_down_rc: Link Down Reason Code * * Returns a string representation of the Link Down Reason Code. */ static const char *t4_link_down_rc_str(unsigned char link_down_rc) { static const char * const reason[] = { "Link Down", "Remote Fault", "Auto-negotiation Failure", "Reserved", "Insufficient Airflow", "Unable To Determine Reason", "No RX Signal Detected", "Reserved", }; if (link_down_rc >= ARRAY_SIZE(reason)) return "Bad Reason Code"; return reason[link_down_rc]; } /* Return the highest speed set in the port capabilities, in Mb/s. */ static unsigned int fwcap_to_speed(fw_port_cap32_t caps) { #define TEST_SPEED_RETURN(__caps_speed, __speed) \ do { \ if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ return __speed; \ } while (0) TEST_SPEED_RETURN(400G, 400000); TEST_SPEED_RETURN(200G, 200000); TEST_SPEED_RETURN(100G, 100000); TEST_SPEED_RETURN(50G, 50000); TEST_SPEED_RETURN(40G, 40000); TEST_SPEED_RETURN(25G, 25000); TEST_SPEED_RETURN(10G, 10000); TEST_SPEED_RETURN(1G, 1000); TEST_SPEED_RETURN(100M, 100); #undef TEST_SPEED_RETURN return 0; } /** * fwcap_to_fwspeed - return highest speed in Port Capabilities * @acaps: advertised Port Capabilities * * Get the highest speed for the port from the advertised Port * Capabilities. It will be either the highest speed from the list of * speeds or whatever user has set using ethtool. */ static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) { #define TEST_SPEED_RETURN(__caps_speed) \ do { \ if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ return FW_PORT_CAP32_SPEED_##__caps_speed; \ } while (0) TEST_SPEED_RETURN(400G); TEST_SPEED_RETURN(200G); TEST_SPEED_RETURN(100G); TEST_SPEED_RETURN(50G); TEST_SPEED_RETURN(40G); TEST_SPEED_RETURN(25G); TEST_SPEED_RETURN(10G); TEST_SPEED_RETURN(1G); TEST_SPEED_RETURN(100M); #undef TEST_SPEED_RETURN return 0; } /** * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value * * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new * 32-bit Port Capabilities value. */ static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) { fw_port_cap32_t linkattr = 0; /* Unfortunately the format of the Link Status in the old * 16-bit Port Information message isn't the same as the * 16-bit Port Capabilities bitfield used everywhere else ... */ if (lstatus & FW_PORT_CMD_RXPAUSE_F) linkattr |= FW_PORT_CAP32_FC_RX; if (lstatus & FW_PORT_CMD_TXPAUSE_F) linkattr |= FW_PORT_CAP32_FC_TX; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) linkattr |= FW_PORT_CAP32_SPEED_100M; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) linkattr |= FW_PORT_CAP32_SPEED_1G; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) linkattr |= FW_PORT_CAP32_SPEED_10G; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) linkattr |= FW_PORT_CAP32_SPEED_25G; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) linkattr |= FW_PORT_CAP32_SPEED_40G; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) linkattr |= FW_PORT_CAP32_SPEED_100G; return linkattr; } /** * t4_handle_get_port_info - process a FW reply message * @pi: the port info * @rpl: start of the FW message * * Processes a GET_PORT_INFO FW reply message. */ void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) { const struct fw_port_cmd *cmd = (const void *)rpl; fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; struct link_config *lc = &pi->link_cfg; struct adapter *adapter = pi->adapter; unsigned int speed, fc, fec, adv_fc; enum fw_port_module_type mod_type; int action, link_ok, linkdnrc; enum fw_port_type port_type; /* Extract the various fields from the Port Information message. */ action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); switch (action) { case FW_PORT_ACTION_GET_PORT_INFO: { u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); port_type = FW_PORT_CMD_PTYPE_G(lstatus); mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); linkattr = lstatus_to_fwcap(lstatus); break; } case FW_PORT_ACTION_GET_PORT_INFO32: { u32 lstatus32; lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); pcaps = be32_to_cpu(cmd->u.info32.pcaps32); acaps = be32_to_cpu(cmd->u.info32.acaps32); lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); linkattr = be32_to_cpu(cmd->u.info32.linkattr32); break; } default: dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", be32_to_cpu(cmd->action_to_len16)); return; } fec = fwcap_to_cc_fec(acaps); adv_fc = fwcap_to_cc_pause(acaps); fc = fwcap_to_cc_pause(linkattr); speed = fwcap_to_speed(linkattr); /* Reset state for communicating new Transceiver Module status and * whether the OS-dependent layer wants us to redo the current * "sticky" L1 Configure Link Parameters. */ lc->new_module = false; lc->redo_l1cfg = false; if (mod_type != pi->mod_type) { /* With the newer SFP28 and QSFP28 Transceiver Module Types, * various fundamental Port Capabilities which used to be * immutable can now change radically. We can now have * Speeds, Auto-Negotiation, Forward Error Correction, etc. * all change based on what Transceiver Module is inserted. * So we need to record the Physical "Port" Capabilities on * every Transceiver Module change. */ lc->pcaps = pcaps; /* When a new Transceiver Module is inserted, the Firmware * will examine its i2c EPROM to determine its type and * general operating parameters including things like Forward * Error Control, etc. Various IEEE 802.3 standards dictate * how to interpret these i2c values to determine default * "sutomatic" settings. We record these for future use when * the user explicitly requests these standards-based values. */ lc->def_acaps = acaps; /* Some versions of the early T6 Firmware "cheated" when * handling different Transceiver Modules by changing the * underlaying Port Type reported to the Host Drivers. As * such we need to capture whatever Port Type the Firmware * sends us and record it in case it's different from what we * were told earlier. Unfortunately, since Firmware is * forever, we'll need to keep this code here forever, but in * later T6 Firmware it should just be an assignment of the * same value already recorded. */ pi->port_type = port_type; /* Record new Module Type information. */ pi->mod_type = mod_type; /* Let the OS-dependent layer know if we have a new * Transceiver Module inserted. */ lc->new_module = t4_is_inserted_mod_type(mod_type); t4_os_portmod_changed(adapter, pi->port_id); } if (link_ok != lc->link_ok || speed != lc->speed || fc != lc->fc || adv_fc != lc->advertised_fc || fec != lc->fec) { /* something changed */ if (!link_ok && lc->link_ok) { lc->link_down_rc = linkdnrc; dev_warn_ratelimited(adapter->pdev_dev, "Port %d link down, reason: %s\n", pi->tx_chan, t4_link_down_rc_str(linkdnrc)); } lc->link_ok = link_ok; lc->speed = speed; lc->advertised_fc = adv_fc; lc->fc = fc; lc->fec = fec; lc->lpacaps = lpacaps; lc->acaps = acaps & ADVERT_MASK; /* If we're not physically capable of Auto-Negotiation, note * this as Auto-Negotiation disabled. Otherwise, we track * what Auto-Negotiation settings we have. Note parallel * structure in t4_link_l1cfg_core() and init_link_config(). */ if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { lc->autoneg = AUTONEG_DISABLE; } else if (lc->acaps & FW_PORT_CAP32_ANEG) { lc->autoneg = AUTONEG_ENABLE; } else { /* When Autoneg is disabled, user needs to set * single speed. * Similar to cxgb4_ethtool.c: set_link_ksettings */ lc->acaps = 0; lc->speed_caps = fwcap_to_fwspeed(acaps); lc->autoneg = AUTONEG_DISABLE; } t4_os_link_changed(adapter, pi->port_id, link_ok); } /* If we have a new Transceiver Module and the OS-dependent code has * told us that it wants us to redo whatever "sticky" L1 Configuration * Link Parameters are set, do that now. */ if (lc->new_module && lc->redo_l1cfg) { struct link_config old_lc; int ret; /* Save the current L1 Configuration and restore it if an * error occurs. We probably should fix the l1_cfg*() * routines not to change the link_config when an error * occurs ... */ old_lc = *lc; ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); if (ret) { *lc = old_lc; dev_warn(adapter->pdev_dev, "Attempt to update new Transceiver Module settings failed\n"); } } lc->new_module = false; lc->redo_l1cfg = false; } /** * t4_update_port_info - retrieve and update port information if changed * @pi: the port_info * * We issue a Get Port Information Command to the Firmware and, if * successful, we check to see if anything is different from what we * last recorded and update things accordingly. */ int t4_update_port_info(struct port_info *pi) { unsigned int fw_caps = pi->adapter->params.fw_caps_support; struct fw_port_cmd port_cmd; int ret; memset(&port_cmd, 0, sizeof(port_cmd)); port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | FW_PORT_CMD_PORTID_V(pi->tx_chan)); port_cmd.action_to_len16 = cpu_to_be32( FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 ? FW_PORT_ACTION_GET_PORT_INFO : FW_PORT_ACTION_GET_PORT_INFO32) | FW_LEN16(port_cmd)); ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, &port_cmd, sizeof(port_cmd), &port_cmd); if (ret) return ret; t4_handle_get_port_info(pi, (__be64 *)&port_cmd); return 0; } /** * t4_get_link_params - retrieve basic link parameters for given port * @pi: the port * @link_okp: value return pointer for link up/down * @speedp: value return pointer for speed (Mb/s) * @mtup: value return pointer for mtu * * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), * and MTU for a specified port. A negative error is returned on * failure; 0 on success. */ int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, unsigned int *speedp, unsigned int *mtup) { unsigned int fw_caps = pi->adapter->params.fw_caps_support; unsigned int action, link_ok, mtu; struct fw_port_cmd port_cmd; fw_port_cap32_t linkattr; int ret; memset(&port_cmd, 0, sizeof(port_cmd)); port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | FW_PORT_CMD_PORTID_V(pi->tx_chan)); action = (fw_caps == FW_CAPS16 ? FW_PORT_ACTION_GET_PORT_INFO : FW_PORT_ACTION_GET_PORT_INFO32); port_cmd.action_to_len16 = cpu_to_be32( FW_PORT_CMD_ACTION_V(action) | FW_LEN16(port_cmd)); ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, &port_cmd, sizeof(port_cmd), &port_cmd); if (ret) return ret; if (action == FW_PORT_ACTION_GET_PORT_INFO) { u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); linkattr = lstatus_to_fwcap(lstatus); mtu = be16_to_cpu(port_cmd.u.info.mtu); } else { u32 lstatus32 = be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); mtu = FW_PORT_CMD_MTU32_G( be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); } if (link_okp) *link_okp = link_ok; if (speedp) *speedp = fwcap_to_speed(linkattr); if (mtup) *mtup = mtu; return 0; } /** * t4_handle_fw_rpl - process a FW reply message * @adap: the adapter * @rpl: start of the FW message * * Processes a FW message, such as link state change messages. */ int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) { u8 opcode = *(const u8 *)rpl; /* This might be a port command ... this simplifies the following * conditionals ... We can get away with pre-dereferencing * action_to_len16 because it's in the first 16 bytes and all messages * will be at least that long. */ const struct fw_port_cmd *p = (const void *)rpl; unsigned int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); if (opcode == FW_PORT_CMD && (action == FW_PORT_ACTION_GET_PORT_INFO || action == FW_PORT_ACTION_GET_PORT_INFO32)) { int i; int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); struct port_info *pi = NULL; for_each_port(adap, i) { pi = adap2pinfo(adap, i); if (pi->tx_chan == chan) break; } t4_handle_get_port_info(pi, rpl); } else { dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", opcode); return -EINVAL; } return 0; } static void get_pci_mode(struct adapter *adapter, struct pci_params *p) { u16 val; if (pci_is_pcie(adapter->pdev)) { pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); p->speed = val & PCI_EXP_LNKSTA_CLS; p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; } } /** * init_link_config - initialize a link's SW state * @lc: pointer to structure holding the link state * @pcaps: link Port Capabilities * @acaps: link current Advertised Port Capabilities * * Initializes the SW state maintained for each link, including the link's * capabilities and default speed/flow-control/autonegotiation settings. */ static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, fw_port_cap32_t acaps) { lc->pcaps = pcaps; lc->def_acaps = acaps; lc->lpacaps = 0; lc->speed_caps = 0; lc->speed = 0; lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; /* For Forward Error Control, we default to whatever the Firmware * tells us the Link is currently advertising. */ lc->requested_fec = FEC_AUTO; lc->fec = fwcap_to_cc_fec(lc->def_acaps); /* If the Port is capable of Auto-Negtotiation, initialize it as * "enabled" and copy over all of the Physical Port Capabilities * to the Advertised Port Capabilities. Otherwise mark it as * Auto-Negotiate disabled and select the highest supported speed * for the link. Note parallel structure in t4_link_l1cfg_core() * and t4_handle_get_port_info(). */ if (lc->pcaps & FW_PORT_CAP32_ANEG) { lc->acaps = lc->pcaps & ADVERT_MASK; lc->autoneg = AUTONEG_ENABLE; lc->requested_fc |= PAUSE_AUTONEG; } else { lc->acaps = 0; lc->autoneg = AUTONEG_DISABLE; lc->speed_caps = fwcap_to_fwspeed(acaps); } } #define CIM_PF_NOACCESS 0xeeeeeeee int t4_wait_dev_ready(void __iomem *regs) { u32 whoami; whoami = readl(regs + PL_WHOAMI_A); if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) return 0; msleep(500); whoami = readl(regs + PL_WHOAMI_A); return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); } struct flash_desc { u32 vendor_and_model_id; u32 size_mb; }; static int t4_get_flash_params(struct adapter *adap) { /* Table for non-Numonix supported flash parts. Numonix parts are left * to the preexisting code. All flash parts have 64KB sectors. */ static struct flash_desc supported_flash[] = { { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ }; unsigned int part, manufacturer; unsigned int density, size = 0; u32 flashid = 0; int ret; /* Issue a Read ID Command to the Flash part. We decode supported * Flash parts and their sizes from this. There's a newer Query * Command which can retrieve detailed geometry information but many * Flash parts don't support it. */ ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); if (!ret) ret = sf1_read(adap, 3, 0, 1, &flashid); t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ if (ret) return ret; /* Check to see if it's one of our non-standard supported Flash parts. */ for (part = 0; part < ARRAY_SIZE(supported_flash); part++) if (supported_flash[part].vendor_and_model_id == flashid) { adap->params.sf_size = supported_flash[part].size_mb; adap->params.sf_nsec = adap->params.sf_size / SF_SEC_SIZE; goto found; } /* Decode Flash part size. The code below looks repetitive with * common encodings, but that's not guaranteed in the JEDEC * specification for the Read JEDEC ID command. The only thing that * we're guaranteed by the JEDEC specification is where the * Manufacturer ID is in the returned result. After that each * Manufacturer ~could~ encode things completely differently. * Note, all Flash parts must have 64KB sectors. */ manufacturer = flashid & 0xff; switch (manufacturer) { case 0x20: { /* Micron/Numonix */ /* This Density -> Size decoding table is taken from Micron * Data Sheets. */ density = (flashid >> 16) & 0xff; switch (density) { case 0x14: /* 1MB */ size = 1 << 20; break; case 0x15: /* 2MB */ size = 1 << 21; break; case 0x16: /* 4MB */ size = 1 << 22; break; case 0x17: /* 8MB */ size = 1 << 23; break; case 0x18: /* 16MB */ size = 1 << 24; break; case 0x19: /* 32MB */ size = 1 << 25; break; case 0x20: /* 64MB */ size = 1 << 26; break; case 0x21: /* 128MB */ size = 1 << 27; break; case 0x22: /* 256MB */ size = 1 << 28; break; } break; } case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ /* This Density -> Size decoding table is taken from ISSI * Data Sheets. */ density = (flashid >> 16) & 0xff; switch (density) { case 0x16: /* 32 MB */ size = 1 << 25; break; case 0x17: /* 64MB */ size = 1 << 26; break; } break; } case 0xc2: { /* Macronix */ /* This Density -> Size decoding table is taken from Macronix * Data Sheets. */ density = (flashid >> 16) & 0xff; switch (density) { case 0x17: /* 8MB */ size = 1 << 23; break; case 0x18: /* 16MB */ size = 1 << 24; break; } break; } case 0xef: { /* Winbond */ /* This Density -> Size decoding table is taken from Winbond * Data Sheets. */ density = (flashid >> 16) & 0xff; switch (density) { case 0x17: /* 8MB */ size = 1 << 23; break; case 0x18: /* 16MB */ size = 1 << 24; break; } break; } } /* If we didn't recognize the FLASH part, that's no real issue: the * Hardware/Software contract says that Hardware will _*ALWAYS*_ * use a FLASH part which is at least 4MB in size and has 64KB * sectors. The unrecognized FLASH part is likely to be much larger * than 4MB, but that's all we really need. */ if (size == 0) { dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid); size = 1 << 22; } /* Store decoded Flash size and fall through into vetting code. */ adap->params.sf_size = size; adap->params.sf_nsec = size / SF_SEC_SIZE; found: if (adap->params.sf_size < FLASH_MIN_SIZE) dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", flashid, adap->params.sf_size, FLASH_MIN_SIZE); return 0; } /** * t4_prep_adapter - prepare SW and HW for operation * @adapter: the adapter * * Initialize adapter SW state for the various HW modules, set initial * values for some adapter tunables, take PHYs out of reset, and * initialize the MDIO interface. */ int t4_prep_adapter(struct adapter *adapter) { int ret, ver; uint16_t device_id; u32 pl_rev; get_pci_mode(adapter, &adapter->params.pci); pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); ret = t4_get_flash_params(adapter); if (ret < 0) { dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); return ret; } /* Retrieve adapter's device ID */ pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); ver = device_id >> 12; adapter->params.chip = 0; switch (ver) { case CHELSIO_T4: adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); adapter->params.arch.sge_fl_db = DBPRIO_F; adapter->params.arch.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES; adapter->params.arch.mps_rplc_size = 128; adapter->params.arch.nchan = NCHAN; adapter->params.arch.pm_stats_cnt = PM_NSTATS; adapter->params.arch.vfcount = 128; /* Congestion map is for 4 channels so that * MPS can have 4 priority per port. */ adapter->params.arch.cng_ch_bits_log = 2; break; case CHELSIO_T5: adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; adapter->params.arch.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES; adapter->params.arch.mps_rplc_size = 128; adapter->params.arch.nchan = NCHAN; adapter->params.arch.pm_stats_cnt = PM_NSTATS; adapter->params.arch.vfcount = 128; adapter->params.arch.cng_ch_bits_log = 2; break; case CHELSIO_T6: adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); adapter->params.arch.sge_fl_db = 0; adapter->params.arch.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES; adapter->params.arch.mps_rplc_size = 256; adapter->params.arch.nchan = 2; adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; adapter->params.arch.vfcount = 256; /* Congestion map will be for 2 channels so that * MPS can have 8 priority per port. */ adapter->params.arch.cng_ch_bits_log = 3; break; default: dev_err(adapter->pdev_dev, "Device %d is not supported\n", device_id); return -EINVAL; } adapter->params.cim_la_size = CIMLA_SIZE; init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); /* * Default port for debugging in case we can't reach FW. */ adapter->params.nports = 1; adapter->params.portvec = 1; adapter->params.vpd.cclk = 50000; /* Set PCIe completion timeout to 4 seconds. */ pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); return 0; } /** * t4_shutdown_adapter - shut down adapter, host & wire * @adapter: the adapter * * Perform an emergency shutdown of the adapter and stop it from * continuing any further communication on the ports or DMA to the * host. This is typically used when the adapter and/or firmware * have crashed and we want to prevent any further accidental * communication with the rest of the world. This will also force * the port Link Status to go down -- if register writes work -- * which should help our peers figure out that we're down. */ int t4_shutdown_adapter(struct adapter *adapter) { int port; t4_intr_disable(adapter); t4_write_reg(adapter, DBG_GPIO_EN_A, 0); for_each_port(adapter, port) { u32 a_port_cfg = is_t4(adapter->params.chip) ? PORT_REG(port, XGMAC_PORT_CFG_A) : T5_PORT_REG(port, MAC_PORT_CFG_A); t4_write_reg(adapter, a_port_cfg, t4_read_reg(adapter, a_port_cfg) & ~SIGNAL_DET_V(1)); } t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); return 0; } /** * t4_bar2_sge_qregs - return BAR2 SGE Queue register information * @adapter: the adapter * @qid: the Queue ID * @qtype: the Ingress or Egress type for @qid * @user: true if this request is for a user mode queue * @pbar2_qoffset: BAR2 Queue Offset * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues * * Returns the BAR2 SGE Queue Registers information associated with the * indicated Absolute Queue ID. These are passed back in return value * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. * * This may return an error which indicates that BAR2 SGE Queue * registers aren't available. If an error is not returned, then the * following values are returned: * * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid * * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which * require the "Inferred Queue ID" ability may be used. E.g. the * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, * then these "Inferred Queue ID" register may not be used. */ int t4_bar2_sge_qregs(struct adapter *adapter, unsigned int qid, enum t4_bar2_qtype qtype, int user, u64 *pbar2_qoffset, unsigned int *pbar2_qid) { unsigned int page_shift, page_size, qpp_shift, qpp_mask; u64 bar2_page_offset, bar2_qoffset; unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ if (!user && is_t4(adapter->params.chip)) return -EINVAL; /* Get our SGE Page Size parameters. */ page_shift = adapter->params.sge.hps + 10; page_size = 1 << page_shift; /* Get the right Queues per Page parameters for our Queue. */ qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS ? adapter->params.sge.eq_qpp : adapter->params.sge.iq_qpp); qpp_mask = (1 << qpp_shift) - 1; /* Calculate the basics of the BAR2 SGE Queue register area: * o The BAR2 page the Queue registers will be in. * o The BAR2 Queue ID. * o The BAR2 Queue ID Offset into the BAR2 page. */ bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); bar2_qid = qid & qpp_mask; bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; /* If the BAR2 Queue ID Offset is less than the Page Size, then the * hardware will infer the Absolute Queue ID simply from the writes to * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply * write to the first BAR2 SGE Queue Area within the BAR2 Page with * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID * from the BAR2 Page and BAR2 Queue ID. * * One important censequence of this is that some BAR2 SGE registers * have a "Queue ID" field and we can write the BAR2 SGE Queue ID * there. But other registers synthesize the SGE Queue ID purely * from the writes to the registers -- the Write Combined Doorbell * Buffer is a good example. These BAR2 SGE Registers are only * available for those BAR2 SGE Register areas where the SGE Absolute * Queue ID can be inferred from simple writes. */ bar2_qoffset = bar2_page_offset; bar2_qinferred = (bar2_qid_offset < page_size); if (bar2_qinferred) { bar2_qoffset += bar2_qid_offset; bar2_qid = 0; } *pbar2_qoffset = bar2_qoffset; *pbar2_qid = bar2_qid; return 0; } /** * t4_init_devlog_params - initialize adapter->params.devlog * @adap: the adapter * * Initialize various fields of the adapter's Firmware Device Log * Parameters structure. */ int t4_init_devlog_params(struct adapter *adap) { struct devlog_params *dparams = &adap->params.devlog; u32 pf_dparams; unsigned int devlog_meminfo; struct fw_devlog_cmd devlog_cmd; int ret; /* If we're dealing with newer firmware, the Device Log Parameters * are stored in a designated register which allows us to access the * Device Log even if we can't talk to the firmware. */ pf_dparams = t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); if (pf_dparams) { unsigned int nentries, nentries128; dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); nentries = (nentries128 + 1) * 128; dparams->size = nentries * sizeof(struct fw_devlog_e); return 0; } /* Otherwise, ask the firmware for it's Device Log Parameters. */ memset(&devlog_cmd, 0, sizeof(devlog_cmd)); devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F); devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), &devlog_cmd); if (ret) return ret; devlog_meminfo = be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); return 0; } /** * t4_init_sge_params - initialize adap->params.sge * @adapter: the adapter * * Initialize various fields of the adapter's SGE Parameters structure. */ int t4_init_sge_params(struct adapter *adapter) { struct sge_params *sge_params = &adapter->params.sge; u32 hps, qpp; unsigned int s_hps, s_qpp; /* Extract the SGE Page Size for our PF. */ hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); s_hps = (HOSTPAGESIZEPF0_S + (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); /* Extract the SGE Egress and Ingess Queues Per Page for our PF. */ s_qpp = (QUEUESPERPAGEPF0_S + (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); return 0; } /** * t4_init_tp_params - initialize adap->params.tp * @adap: the adapter * @sleep_ok: if true we may sleep while awaiting command completion * * Initialize various fields of the adapter's TP Parameters structure. */ int t4_init_tp_params(struct adapter *adap, bool sleep_ok) { u32 param, val, v; int chan, ret; v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); adap->params.tp.tre = TIMERRESOLUTION_G(v); adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ for (chan = 0; chan < NCHAN; chan++) adap->params.tp.tx_modq[chan] = chan; /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress * Configuration. */ param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) | FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK)); /* Read current value */ ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); if (ret == 0) { dev_info(adap->pdev_dev, "Current filter mode/mask 0x%x:0x%x\n", FW_PARAMS_PARAM_FILTER_MODE_G(val), FW_PARAMS_PARAM_FILTER_MASK_G(val)); adap->params.tp.vlan_pri_map = FW_PARAMS_PARAM_FILTER_MODE_G(val); adap->params.tp.filter_mask = FW_PARAMS_PARAM_FILTER_MASK_G(val); } else { dev_info(adap->pdev_dev, "Failed to read filter mode/mask via fw api, using indirect-reg-read\n"); /* Incase of older-fw (which doesn't expose the api * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses * the fw api) combination, fall-back to older method of reading * the filter mode from indirect-register */ t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, TP_VLAN_PRI_MAP_A, sleep_ok); /* With the older-fw and newer-driver combination we might run * into an issue when user wants to use hash filter region but * the filter_mask is zero, in this case filter_mask validation * is tough. To avoid that we set the filter_mask same as filter * mode, which will behave exactly as the older way of ignoring * the filter mask validation. */ adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map; } t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, TP_INGRESS_CONFIG_A, sleep_ok); /* For T6, cache the adapter's compressed error vector * and passing outer header info for encapsulated packets. */ if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { v = t4_read_reg(adap, TP_OUT_CONFIG_A); adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; } /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field * shift positions of several elements of the Compressed Filter Tuple * for this adapter which we need frequently ... */ adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); adap->params.tp.protocol_shift = t4_filter_field_shift(adap, PROTOCOL_F); adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, ETHERTYPE_F); adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, MACMATCH_F); adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, MPSHITTYPE_F); adap->params.tp.frag_shift = t4_filter_field_shift(adap, FRAGMENTATION_F); /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID * represents the presence of an Outer VLAN instead of a VNIC ID. */ if ((adap->params.tp.ingress_config & VNIC_F) == 0) adap->params.tp.vnic_shift = -1; v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); adap->params.tp.hash_filter_mask = v; v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); adap->params.tp.hash_filter_mask |= ((u64)v << 32); return 0; } /** * t4_filter_field_shift - calculate filter field shift * @adap: the adapter * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) * * Return the shift position of a filter field within the Compressed * Filter Tuple. The filter field is specified via its selection bit * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. */ int t4_filter_field_shift(const struct adapter *adap, int filter_sel) { unsigned int filter_mode = adap->params.tp.vlan_pri_map; unsigned int sel; int field_shift; if ((filter_mode & filter_sel) == 0) return -1; for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { switch (filter_mode & sel) { case FCOE_F: field_shift += FT_FCOE_W; break; case PORT_F: field_shift += FT_PORT_W; break; case VNIC_ID_F: field_shift += FT_VNIC_ID_W; break; case VLAN_F: field_shift += FT_VLAN_W; break; case TOS_F: field_shift += FT_TOS_W; break; case PROTOCOL_F: field_shift += FT_PROTOCOL_W; break; case ETHERTYPE_F: field_shift += FT_ETHERTYPE_W; break; case MACMATCH_F: field_shift += FT_MACMATCH_W; break; case MPSHITTYPE_F: field_shift += FT_MPSHITTYPE_W; break; case FRAGMENTATION_F: field_shift += FT_FRAGMENTATION_W; break; } } return field_shift; } int t4_init_rss_mode(struct adapter *adap, int mbox) { int i, ret; struct fw_rss_vi_config_cmd rvc; memset(&rvc, 0, sizeof(rvc)); for_each_port(adap, i) { struct port_info *p = adap2pinfo(adap, i); rvc.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); if (ret) return ret; p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); } return 0; } /** * t4_init_portinfo - allocate a virtual interface and initialize port_info * @pi: the port_info * @mbox: mailbox to use for the FW command * @port: physical port associated with the VI * @pf: the PF owning the VI * @vf: the VF owning the VI * @mac: the MAC address of the VI * * Allocates a virtual interface for the given physical port. If @mac is * not %NULL it contains the MAC address of the VI as assigned by FW. * @mac should be large enough to hold an Ethernet address. * Returns < 0 on error. */ int t4_init_portinfo(struct port_info *pi, int mbox, int port, int pf, int vf, u8 mac[]) { struct adapter *adapter = pi->adapter; unsigned int fw_caps = adapter->params.fw_caps_support; struct fw_port_cmd cmd; unsigned int rss_size; enum fw_port_type port_type; int mdio_addr; fw_port_cap32_t pcaps, acaps; u8 vivld = 0, vin = 0; int ret; /* If we haven't yet determined whether we're talking to Firmware * which knows the new 32-bit Port Capabilities, it's time to find * out now. This will also tell new Firmware to send us Port Status * Updates using the new 32-bit Port Capabilities version of the * Port Information message. */ if (fw_caps == FW_CAPS_UNKNOWN) { u32 param, val; param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); val = 1; ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); adapter->params.fw_caps_support = fw_caps; } memset(&cmd, 0, sizeof(cmd)); cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | FW_PORT_CMD_PORTID_V(port)); cmd.action_to_len16 = cpu_to_be32( FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 ? FW_PORT_ACTION_GET_PORT_INFO : FW_PORT_ACTION_GET_PORT_INFO32) | FW_LEN16(cmd)); ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); if (ret) return ret; /* Extract the various fields from the Port Information message. */ if (fw_caps == FW_CAPS16) { u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); port_type = FW_PORT_CMD_PTYPE_G(lstatus); mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) ? FW_PORT_CMD_MDIOADDR_G(lstatus) : -1); pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); } else { u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) : -1); pcaps = be32_to_cpu(cmd.u.info32.pcaps32); acaps = be32_to_cpu(cmd.u.info32.acaps32); } ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size, &vivld, &vin); if (ret < 0) return ret; pi->viid = ret; pi->tx_chan = port; pi->lport = port; pi->rss_size = rss_size; pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port); /* If fw supports returning the VIN as part of FW_VI_CMD, * save the returned values. */ if (adapter->params.viid_smt_extn_support) { pi->vivld = vivld; pi->vin = vin; } else { /* Retrieve the values from VIID */ pi->vivld = FW_VIID_VIVLD_G(pi->viid); pi->vin = FW_VIID_VIN_G(pi->viid); } pi->port_type = port_type; pi->mdio_addr = mdio_addr; pi->mod_type = FW_PORT_MOD_TYPE_NA; init_link_config(&pi->link_cfg, pcaps, acaps); return 0; } int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) { u8 addr[6]; int ret, i, j = 0; for_each_port(adap, i) { struct port_info *pi = adap2pinfo(adap, i); while ((adap->params.portvec & (1 << j)) == 0) j++; ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); if (ret) return ret; memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); j++; } return 0; } int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf, u16 *mirror_viid) { int ret; ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL, NULL, NULL); if (ret < 0) return ret; if (mirror_viid) *mirror_viid = ret; return 0; } /** * t4_read_cimq_cfg - read CIM queue configuration * @adap: the adapter * @base: holds the queue base addresses in bytes * @size: holds the queue sizes in bytes * @thres: holds the queue full thresholds in bytes * * Returns the current configuration of the CIM queues, starting with * the IBQs, then the OBQs. */ void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) { unsigned int i, v; int cim_num_obq = is_t4(adap->params.chip) ? CIM_NUM_OBQ : CIM_NUM_OBQ_T5; for (i = 0; i < CIM_NUM_IBQ; i++) { t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | QUENUMSELECT_V(i)); v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); /* value is in 256-byte units */ *base++ = CIMQBASE_G(v) * 256; *size++ = CIMQSIZE_G(v) * 256; *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ } for (i = 0; i < cim_num_obq; i++) { t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | QUENUMSELECT_V(i)); v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); /* value is in 256-byte units */ *base++ = CIMQBASE_G(v) * 256; *size++ = CIMQSIZE_G(v) * 256; } } /** * t4_read_cim_ibq - read the contents of a CIM inbound queue * @adap: the adapter * @qid: the queue index * @data: where to store the queue contents * @n: capacity of @data in 32-bit words * * Reads the contents of the selected CIM queue starting at address 0 up * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on * error and the number of 32-bit words actually read on success. */ int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) { int i, err, attempts; unsigned int addr; const unsigned int nwords = CIM_IBQ_SIZE * 4; if (qid > 5 || (n & 3)) return -EINVAL; addr = qid * nwords; if (n > nwords) n = nwords; /* It might take 3-10ms before the IBQ debug read access is allowed. * Wait for 1 Sec with a delay of 1 usec. */ attempts = 1000000; for (i = 0; i < n; i++, addr++) { t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | IBQDBGEN_F); err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, attempts, 1); if (err) return err; *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); } t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); return i; } /** * t4_read_cim_obq - read the contents of a CIM outbound queue * @adap: the adapter * @qid: the queue index * @data: where to store the queue contents * @n: capacity of @data in 32-bit words * * Reads the contents of the selected CIM queue starting at address 0 up * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on * error and the number of 32-bit words actually read on success. */ int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) { int i, err; unsigned int addr, v, nwords; int cim_num_obq = is_t4(adap->params.chip) ? CIM_NUM_OBQ : CIM_NUM_OBQ_T5; if ((qid > (cim_num_obq - 1)) || (n & 3)) return -EINVAL; t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | QUENUMSELECT_V(qid)); v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ nwords = CIMQSIZE_G(v) * 64; /* same */ if (n > nwords) n = nwords; for (i = 0; i < n; i++, addr++) { t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | OBQDBGEN_F); err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 2, 1); if (err) return err; *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); } t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); return i; } /** * t4_cim_read - read a block from CIM internal address space * @adap: the adapter * @addr: the start address within the CIM address space * @n: number of words to read * @valp: where to store the result * * Reads a block of 4-byte words from the CIM intenal address space. */ int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, unsigned int *valp) { int ret = 0; if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) return -EBUSY; for ( ; !ret && n--; addr += 4) { t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 0, 5, 2); if (!ret) *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); } return ret; } /** * t4_cim_write - write a block into CIM internal address space * @adap: the adapter * @addr: the start address within the CIM address space * @n: number of words to write * @valp: set of values to write * * Writes a block of 4-byte words into the CIM intenal address space. */ int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, const unsigned int *valp) { int ret = 0; if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) return -EBUSY; for ( ; !ret && n--; addr += 4) { t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 0, 5, 2); } return ret; } static int t4_cim_write1(struct adapter *adap, unsigned int addr, unsigned int val) { return t4_cim_write(adap, addr, 1, &val); } /** * t4_cim_read_la - read CIM LA capture buffer * @adap: the adapter * @la_buf: where to store the LA data * @wrptr: the HW write pointer within the capture buffer * * Reads the contents of the CIM LA buffer with the most recent entry at * the end of the returned data and with the entry at @wrptr first. * We try to leave the LA in the running state we find it in. */ int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) { int i, ret; unsigned int cfg, val, idx; ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); if (ret) return ret; if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); if (ret) return ret; } ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); if (ret) goto restart; idx = UPDBGLAWRPTR_G(val); if (wrptr) *wrptr = idx; for (i = 0; i < adap->params.cim_la_size; i++) { ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); if (ret) break; ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); if (ret) break; if (val & UPDBGLARDEN_F) { ret = -ETIMEDOUT; break; } ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); if (ret) break; /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to * identify the 32-bit portion of the full 312-bit data */ if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) idx = (idx & 0xff0) + 0x10; else idx++; /* address can't exceed 0xfff */ idx &= UPDBGLARDPTR_M; } restart: if (cfg & UPDBGLAEN_F) { int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, cfg & ~UPDBGLARDEN_F); if (!ret) ret = r; } return ret; } /** * t4_tp_read_la - read TP LA capture buffer * @adap: the adapter * @la_buf: where to store the LA data * @wrptr: the HW write pointer within the capture buffer * * Reads the contents of the TP LA buffer with the most recent entry at * the end of the returned data and with the entry at @wrptr first. * We leave the LA in the running state we find it in. */ void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) { bool last_incomplete; unsigned int i, cfg, val, idx; cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; if (cfg & DBGLAENABLE_F) /* freeze LA */ t4_write_reg(adap, TP_DBG_LA_CONFIG_A, adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); idx = DBGLAWPTR_G(val); last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; if (last_incomplete) idx = (idx + 1) & DBGLARPTR_M; if (wrptr) *wrptr = idx; val &= 0xffff; val &= ~DBGLARPTR_V(DBGLARPTR_M); val |= adap->params.tp.la_mask; for (i = 0; i < TPLA_SIZE; i++) { t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); idx = (idx + 1) & DBGLARPTR_M; } /* Wipe out last entry if it isn't valid */ if (last_incomplete) la_buf[TPLA_SIZE - 1] = ~0ULL; if (cfg & DBGLAENABLE_F) /* restore running state */ t4_write_reg(adap, TP_DBG_LA_CONFIG_A, cfg | adap->params.tp.la_mask); } /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in * seconds). If we find one of the SGE Ingress DMA State Machines in the same * state for more than the Warning Threshold then we'll issue a warning about * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel * appears to be hung every Warning Repeat second till the situation clears. * If the situation clears, we'll note that as well. */ #define SGE_IDMA_WARN_THRESH 1 #define SGE_IDMA_WARN_REPEAT 300 /** * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor * @adapter: the adapter * @idma: the adapter IDMA Monitor state * * Initialize the state of an SGE Ingress DMA Monitor. */ void t4_idma_monitor_init(struct adapter *adapter, struct sge_idma_monitor_state *idma) { /* Initialize the state variables for detecting an SGE Ingress DMA * hang. The SGE has internal counters which count up on each clock * tick whenever the SGE finds its Ingress DMA State Engines in the * same state they were on the previous clock tick. The clock used is * the Core Clock so we have a limit on the maximum "time" they can * record; typically a very small number of seconds. For instance, * with a 600MHz Core Clock, we can only count up to a bit more than * 7s. So we'll synthesize a larger counter in order to not run the * risk of having the "timers" overflow and give us the flexibility to * maintain a Hung SGE State Machine of our own which operates across * a longer time frame. */ idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ idma->idma_stalled[0] = 0; idma->idma_stalled[1] = 0; } /** * t4_idma_monitor - monitor SGE Ingress DMA state * @adapter: the adapter * @idma: the adapter IDMA Monitor state * @hz: number of ticks/second * @ticks: number of ticks since the last IDMA Monitor call */ void t4_idma_monitor(struct adapter *adapter, struct sge_idma_monitor_state *idma, int hz, int ticks) { int i, idma_same_state_cnt[2]; /* Read the SGE Debug Ingress DMA Same State Count registers. These * are counters inside the SGE which count up on each clock when the * SGE finds its Ingress DMA State Engines in the same states they * were in the previous clock. The counters will peg out at * 0xffffffff without wrapping around so once they pass the 1s * threshold they'll stay above that till the IDMA state changes. */ t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); for (i = 0; i < 2; i++) { u32 debug0, debug11; /* If the Ingress DMA Same State Counter ("timer") is less * than 1s, then we can reset our synthesized Stall Timer and * continue. If we have previously emitted warnings about a * potential stalled Ingress Queue, issue a note indicating * that the Ingress Queue has resumed forward progress. */ if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " "resumed after %d seconds\n", i, idma->idma_qid[i], idma->idma_stalled[i] / hz); idma->idma_stalled[i] = 0; continue; } /* Synthesize an SGE Ingress DMA Same State Timer in the Hz * domain. The first time we get here it'll be because we * passed the 1s Threshold; each additional time it'll be * because the RX Timer Callback is being fired on its regular * schedule. * * If the stall is below our Potential Hung Ingress Queue * Warning Threshold, continue. */ if (idma->idma_stalled[i] == 0) { idma->idma_stalled[i] = hz; idma->idma_warn[i] = 0; } else { idma->idma_stalled[i] += ticks; idma->idma_warn[i] -= ticks; } if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) continue; /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. */ if (idma->idma_warn[i] > 0) continue; idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; /* Read and save the SGE IDMA State and Queue ID information. * We do this every time in case it changes across time ... * can't be too careful ... */ t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", i, idma->idma_qid[i], idma->idma_state[i], idma->idma_stalled[i] / hz, debug0, debug11); t4_sge_decode_idma_state(adapter, idma->idma_state[i]); } } /** * t4_load_cfg - download config file * @adap: the adapter * @cfg_data: the cfg text file to write * @size: text file size * * Write the supplied config text file to the card's serial flash. */ int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) { int ret, i, n, cfg_addr; unsigned int addr; unsigned int flash_cfg_start_sec; unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; cfg_addr = t4_flash_cfg_addr(adap); if (cfg_addr < 0) return cfg_addr; addr = cfg_addr; flash_cfg_start_sec = addr / SF_SEC_SIZE; if (size > FLASH_CFG_MAX_SIZE) { dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", FLASH_CFG_MAX_SIZE); return -EFBIG; } i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ sf_sec_size); ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, flash_cfg_start_sec + i - 1); /* If size == 0 then we're simply erasing the FLASH sectors associated * with the on-adapter Firmware Configuration File. */ if (ret || size == 0) goto out; /* this will write to the flash up to SF_PAGE_SIZE at a time */ for (i = 0; i < size; i += SF_PAGE_SIZE) { if ((size - i) < SF_PAGE_SIZE) n = size - i; else n = SF_PAGE_SIZE; ret = t4_write_flash(adap, addr, n, cfg_data, true); if (ret) goto out; addr += SF_PAGE_SIZE; cfg_data += SF_PAGE_SIZE; } out: if (ret) dev_err(adap->pdev_dev, "config file %s failed %d\n", (size == 0 ? "clear" : "download"), ret); return ret; } /** * t4_set_vf_mac_acl - Set MAC address for the specified VF * @adapter: The adapter * @vf: one of the VFs instantiated by the specified PF * @naddr: the number of MAC addresses * @addr: the MAC address(es) to be set to the specified VF */ int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, unsigned int naddr, u8 *addr) { struct fw_acl_mac_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_ACL_MAC_CMD_PFN_V(adapter->pf) | FW_ACL_MAC_CMD_VFN_V(vf)); /* Note: Do not enable the ACL */ cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); cmd.nmac = naddr; switch (adapter->pf) { case 3: memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); break; case 2: memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); break; case 1: memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); break; case 0: memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); break; } return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); } /** * t4_read_pace_tbl - read the pace table * @adap: the adapter * @pace_vals: holds the returned values * * Returns the values of TP's pace table in microseconds. */ void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) { unsigned int i, v; for (i = 0; i < NTX_SCHED; i++) { t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); v = t4_read_reg(adap, TP_PACE_TABLE_A); pace_vals[i] = dack_ticks_to_usec(adap, v); } } /** * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler * @adap: the adapter * @sched: the scheduler index * @kbps: the byte rate in Kbps * @ipg: the interpacket delay in tenths of nanoseconds * @sleep_ok: if true we may sleep while awaiting command completion * * Return the current configuration of a HW Tx scheduler. */ void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps, unsigned int *ipg, bool sleep_ok) { unsigned int v, addr, bpt, cpt; if (kbps) { addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); if (sched & 1) v >>= 16; bpt = (v >> 8) & 0xff; cpt = v & 0xff; if (!cpt) { *kbps = 0; /* scheduler disabled */ } else { v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ *kbps = (v * bpt) / 125; } } if (ipg) { addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); if (sched & 1) v >>= 16; v &= 0xffff; *ipg = (10000 * v) / core_ticks_per_usec(adap); } } /* t4_sge_ctxt_rd - read an SGE context through FW * @adap: the adapter * @mbox: mailbox to use for the FW command * @cid: the context id * @ctype: the context type * @data: where to store the context data * * Issues a FW command through the given mailbox to read an SGE context. */ int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, enum ctxt_type ctype, u32 *data) { struct fw_ldst_cmd c; int ret; if (ctype == CTXT_FLM) ret = FW_LDST_ADDRSPC_SGE_FLMC; else ret = FW_LDST_ADDRSPC_SGE_CONMC; memset(&c, 0, sizeof(c)); c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | FW_LDST_CMD_ADDRSPACE_V(ret)); c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); c.u.idctxt.physid = cpu_to_be32(cid); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) { data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); } return ret; } /** * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW * @adap: the adapter * @cid: the context id * @ctype: the context type * @data: where to store the context data * * Reads an SGE context directly, bypassing FW. This is only for * debugging when FW is unavailable. */ int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype, u32 *data) { int i, ret; t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); if (!ret) for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) *data++ = t4_read_reg(adap, i); return ret; } int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode, u8 rateunit, u8 ratemode, u8 channel, u8 class, u32 minrate, u32 maxrate, u16 weight, u16 pktsize, u16 burstsize) { struct fw_sched_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); cmd.u.params.sc = FW_SCHED_SC_PARAMS; cmd.u.params.type = type; cmd.u.params.level = level; cmd.u.params.mode = mode; cmd.u.params.ch = channel; cmd.u.params.cl = class; cmd.u.params.unit = rateunit; cmd.u.params.rate = ratemode; cmd.u.params.min = cpu_to_be32(minrate); cmd.u.params.max = cpu_to_be32(maxrate); cmd.u.params.weight = cpu_to_be16(weight); cmd.u.params.pktsize = cpu_to_be16(pktsize); cmd.u.params.burstsize = cpu_to_be16(burstsize); return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), NULL, 1); } /** * t4_i2c_rd - read I2C data from adapter * @adap: the adapter * @mbox: mailbox to use for the FW command * @port: Port number if per-port device; <0 if not * @devid: per-port device ID or absolute device ID * @offset: byte offset into device I2C space * @len: byte length of I2C space data * @buf: buffer in which to return I2C data * * Reads the I2C data from the indicated device and location. */ int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, unsigned int devid, unsigned int offset, unsigned int len, u8 *buf) { struct fw_ldst_cmd ldst_cmd, ldst_rpl; unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); int ret = 0; if (len > I2C_PAGE_SIZE) return -EINVAL; /* Dont allow reads that spans multiple pages */ if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) return -EINVAL; memset(&ldst_cmd, 0, sizeof(ldst_cmd)); ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); ldst_cmd.u.i2c.did = devid; while (len > 0) { unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; ldst_cmd.u.i2c.boffset = offset; ldst_cmd.u.i2c.blen = i2c_len; ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), &ldst_rpl); if (ret) break; memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); offset += i2c_len; buf += i2c_len; len -= i2c_len; } return ret; } /** * t4_set_vlan_acl - Set a VLAN id for the specified VF * @adap: the adapter * @mbox: mailbox to use for the FW command * @vf: one of the VFs instantiated by the specified PF * @vlan: The vlanid to be set */ int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, u16 vlan) { struct fw_acl_vlan_cmd vlan_cmd; unsigned int enable; enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); memset(&vlan_cmd, 0, sizeof(vlan_cmd)); vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_F | FW_ACL_VLAN_CMD_PFN_V(adap->pf) | FW_ACL_VLAN_CMD_VFN_V(vf)); vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); /* Drop all packets that donot match vlan id */ vlan_cmd.dropnovlan_fm = (enable ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F | FW_ACL_VLAN_CMD_FM_F) : 0); if (enable != 0) { vlan_cmd.nvlan = 1; vlan_cmd.vlanid[0] = cpu_to_be16(vlan); } return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); } /** * modify_device_id - Modifies the device ID of the Boot BIOS image * @device_id: the device ID to write. * @boot_data: the boot image to modify. * * Write the supplied device ID to the boot BIOS image. */ static void modify_device_id(int device_id, u8 *boot_data) { struct cxgb4_pcir_data *pcir_header; struct legacy_pci_rom_hdr *header; u8 *cur_header = boot_data; u16 pcir_offset; /* Loop through all chained images and change the device ID's */ do { header = (struct legacy_pci_rom_hdr *)cur_header; pcir_offset = le16_to_cpu(header->pcir_offset); pcir_header = (struct cxgb4_pcir_data *)(cur_header + pcir_offset); /** * Only modify the Device ID if code type is Legacy or HP. * 0x00: Okay to modify * 0x01: FCODE. Do not modify * 0x03: Okay to modify * 0x04-0xFF: Do not modify */ if (pcir_header->code_type == CXGB4_HDR_CODE1) { u8 csum = 0; int i; /** * Modify Device ID to match current adatper */ pcir_header->device_id = cpu_to_le16(device_id); /** * Set checksum temporarily to 0. * We will recalculate it later. */ header->cksum = 0x0; /** * Calculate and update checksum */ for (i = 0; i < (header->size512 * 512); i++) csum += cur_header[i]; /** * Invert summed value to create the checksum * Writing new checksum value directly to the boot data */ cur_header[7] = -csum; } else if (pcir_header->code_type == CXGB4_HDR_CODE2) { /** * Modify Device ID to match current adatper */ pcir_header->device_id = cpu_to_le16(device_id); } /** * Move header pointer up to the next image in the ROM. */ cur_header += header->size512 * 512; } while (!(pcir_header->indicator & CXGB4_HDR_INDI)); } /** * t4_load_boot - download boot flash * @adap: the adapter * @boot_data: the boot image to write * @boot_addr: offset in flash to write boot_data * @size: image size * * Write the supplied boot image to the card's serial flash. * The boot image has the following sections: a 28-byte header and the * boot image. */ int t4_load_boot(struct adapter *adap, u8 *boot_data, unsigned int boot_addr, unsigned int size) { unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; unsigned int boot_sector = (boot_addr * 1024); struct cxgb4_pci_exp_rom_header *header; struct cxgb4_pcir_data *pcir_header; int pcir_offset; unsigned int i; u16 device_id; int ret, addr; /** * Make sure the boot image does not encroach on the firmware region */ if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n"); return -EFBIG; } /* Get boot header */ header = (struct cxgb4_pci_exp_rom_header *)boot_data; pcir_offset = le16_to_cpu(header->pcir_offset); /* PCIR Data Structure */ pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset]; /** * Perform some primitive sanity testing to avoid accidentally * writing garbage over the boot sectors. We ought to check for * more but it's not worth it for now ... */ if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { dev_err(adap->pdev_dev, "boot image too small/large\n"); return -EFBIG; } if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) { dev_err(adap->pdev_dev, "Boot image missing signature\n"); return -EINVAL; } /* Check PCI header signature */ if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) { dev_err(adap->pdev_dev, "PCI header missing signature\n"); return -EINVAL; } /* Check Vendor ID matches Chelsio ID*/ if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) { dev_err(adap->pdev_dev, "Vendor ID missing signature\n"); return -EINVAL; } /** * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot, * and Boot configuration data sections. These 3 boot sections span * sectors 0 to 7 in flash and live right before the FW image location. */ i = DIV_ROUND_UP(size ? size : FLASH_FW_START, sf_sec_size); ret = t4_flash_erase_sectors(adap, boot_sector >> 16, (boot_sector >> 16) + i - 1); /** * If size == 0 then we're simply erasing the FLASH sectors associated * with the on-adapter option ROM file */ if (ret || size == 0) goto out; /* Retrieve adapter's device ID */ pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id); /* Want to deal with PF 0 so I strip off PF 4 indicator */ device_id = device_id & 0xf0ff; /* Check PCIE Device ID */ if (le16_to_cpu(pcir_header->device_id) != device_id) { /** * Change the device ID in the Boot BIOS image to match * the Device ID of the current adapter. */ modify_device_id(device_id, boot_data); } /** * Skip over the first SF_PAGE_SIZE worth of data and write it after * we finish copying the rest of the boot image. This will ensure * that the BIOS boot header will only be written if the boot image * was written in full. */ addr = boot_sector; for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { addr += SF_PAGE_SIZE; boot_data += SF_PAGE_SIZE; ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, false); if (ret) goto out; } ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, (const u8 *)header, false); out: if (ret) dev_err(adap->pdev_dev, "boot image load failed, error %d\n", ret); return ret; } /** * t4_flash_bootcfg_addr - return the address of the flash * optionrom configuration * @adapter: the adapter * * Return the address within the flash where the OptionROM Configuration * is stored, or an error if the device FLASH is too small to contain * a OptionROM Configuration. */ static int t4_flash_bootcfg_addr(struct adapter *adapter) { /** * If the device FLASH isn't large enough to hold a Firmware * Configuration File, return an error. */ if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE) return -ENOSPC; return FLASH_BOOTCFG_START; } int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) { unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; struct cxgb4_bootcfg_data *header; unsigned int flash_cfg_start_sec; unsigned int addr, npad; int ret, i, n, cfg_addr; cfg_addr = t4_flash_bootcfg_addr(adap); if (cfg_addr < 0) return cfg_addr; addr = cfg_addr; flash_cfg_start_sec = addr / SF_SEC_SIZE; if (size > FLASH_BOOTCFG_MAX_SIZE) { dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n", FLASH_BOOTCFG_MAX_SIZE); return -EFBIG; } header = (struct cxgb4_bootcfg_data *)cfg_data; if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) { dev_err(adap->pdev_dev, "Wrong bootcfg signature\n"); ret = -EINVAL; goto out; } i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE, sf_sec_size); ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, flash_cfg_start_sec + i - 1); /** * If size == 0 then we're simply erasing the FLASH sectors associated * with the on-adapter OptionROM Configuration File. */ if (ret || size == 0) goto out; /* this will write to the flash up to SF_PAGE_SIZE at a time */ for (i = 0; i < size; i += SF_PAGE_SIZE) { n = min_t(u32, size - i, SF_PAGE_SIZE); ret = t4_write_flash(adap, addr, n, cfg_data, false); if (ret) goto out; addr += SF_PAGE_SIZE; cfg_data += SF_PAGE_SIZE; } npad = ((size + 4 - 1) & ~3) - size; for (i = 0; i < npad; i++) { u8 data = 0; ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data, false); if (ret) goto out; } out: if (ret) dev_err(adap->pdev_dev, "boot config data %s failed %d\n", (size == 0 ? "clear" : "download"), ret); return ret; }