1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/rtnetlink.h> 55 #include <linux/sched.h> 56 #include <linux/seq_file.h> 57 #include <linux/sockios.h> 58 #include <linux/vmalloc.h> 59 #include <linux/workqueue.h> 60 #include <net/neighbour.h> 61 #include <net/netevent.h> 62 #include <net/addrconf.h> 63 #include <net/bonding.h> 64 #include <linux/uaccess.h> 65 #include <linux/crash_dump.h> 66 #include <net/udp_tunnel.h> 67 #include <net/xfrm.h> 68 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 69 #include <net/tls.h> 70 #endif 71 72 #include "cxgb4.h" 73 #include "cxgb4_filter.h" 74 #include "t4_regs.h" 75 #include "t4_values.h" 76 #include "t4_msg.h" 77 #include "t4fw_api.h" 78 #include "t4fw_version.h" 79 #include "cxgb4_dcb.h" 80 #include "srq.h" 81 #include "cxgb4_debugfs.h" 82 #include "clip_tbl.h" 83 #include "l2t.h" 84 #include "smt.h" 85 #include "sched.h" 86 #include "cxgb4_tc_u32.h" 87 #include "cxgb4_tc_flower.h" 88 #include "cxgb4_tc_mqprio.h" 89 #include "cxgb4_tc_matchall.h" 90 #include "cxgb4_ptp.h" 91 #include "cxgb4_cudbg.h" 92 93 char cxgb4_driver_name[] = KBUILD_MODNAME; 94 95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 96 97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 98 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 99 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 100 101 /* Macros needed to support the PCI Device ID Table ... 102 */ 103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 104 static const struct pci_device_id cxgb4_pci_tbl[] = { 105 #define CXGB4_UNIFIED_PF 0x4 106 107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 108 109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 110 * called for both. 111 */ 112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 113 114 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 115 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 116 117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 118 { 0, } \ 119 } 120 121 #include "t4_pci_id_tbl.h" 122 123 #define FW4_FNAME "cxgb4/t4fw.bin" 124 #define FW5_FNAME "cxgb4/t5fw.bin" 125 #define FW6_FNAME "cxgb4/t6fw.bin" 126 #define FW4_CFNAME "cxgb4/t4-config.txt" 127 #define FW5_CFNAME "cxgb4/t5-config.txt" 128 #define FW6_CFNAME "cxgb4/t6-config.txt" 129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 131 #define PHY_AQ1202_DEVICEID 0x4409 132 #define PHY_BCM84834_DEVICEID 0x4486 133 134 MODULE_DESCRIPTION(DRV_DESC); 135 MODULE_AUTHOR("Chelsio Communications"); 136 MODULE_LICENSE("Dual BSD/GPL"); 137 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 138 MODULE_FIRMWARE(FW4_FNAME); 139 MODULE_FIRMWARE(FW5_FNAME); 140 MODULE_FIRMWARE(FW6_FNAME); 141 142 /* 143 * The driver uses the best interrupt scheme available on a platform in the 144 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 145 * of these schemes the driver may consider as follows: 146 * 147 * msi = 2: choose from among all three options 148 * msi = 1: only consider MSI and INTx interrupts 149 * msi = 0: force INTx interrupts 150 */ 151 static int msi = 2; 152 153 module_param(msi, int, 0644); 154 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 155 156 /* 157 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 158 * offset by 2 bytes in order to have the IP headers line up on 4-byte 159 * boundaries. This is a requirement for many architectures which will throw 160 * a machine check fault if an attempt is made to access one of the 4-byte IP 161 * header fields on a non-4-byte boundary. And it's a major performance issue 162 * even on some architectures which allow it like some implementations of the 163 * x86 ISA. However, some architectures don't mind this and for some very 164 * edge-case performance sensitive applications (like forwarding large volumes 165 * of small packets), setting this DMA offset to 0 will decrease the number of 166 * PCI-E Bus transfers enough to measurably affect performance. 167 */ 168 static int rx_dma_offset = 2; 169 170 /* TX Queue select used to determine what algorithm to use for selecting TX 171 * queue. Select between the kernel provided function (select_queue=0) or user 172 * cxgb_select_queue function (select_queue=1) 173 * 174 * Default: select_queue=0 175 */ 176 static int select_queue; 177 module_param(select_queue, int, 0644); 178 MODULE_PARM_DESC(select_queue, 179 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 180 181 static struct dentry *cxgb4_debugfs_root; 182 183 LIST_HEAD(adapter_list); 184 DEFINE_MUTEX(uld_mutex); 185 LIST_HEAD(uld_list); 186 187 static int cfg_queues(struct adapter *adap); 188 189 static void link_report(struct net_device *dev) 190 { 191 if (!netif_carrier_ok(dev)) 192 netdev_info(dev, "link down\n"); 193 else { 194 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 195 196 const char *s; 197 const struct port_info *p = netdev_priv(dev); 198 199 switch (p->link_cfg.speed) { 200 case 100: 201 s = "100Mbps"; 202 break; 203 case 1000: 204 s = "1Gbps"; 205 break; 206 case 10000: 207 s = "10Gbps"; 208 break; 209 case 25000: 210 s = "25Gbps"; 211 break; 212 case 40000: 213 s = "40Gbps"; 214 break; 215 case 50000: 216 s = "50Gbps"; 217 break; 218 case 100000: 219 s = "100Gbps"; 220 break; 221 default: 222 pr_info("%s: unsupported speed: %d\n", 223 dev->name, p->link_cfg.speed); 224 return; 225 } 226 227 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 228 fc[p->link_cfg.fc]); 229 } 230 } 231 232 #ifdef CONFIG_CHELSIO_T4_DCB 233 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 234 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 235 { 236 struct port_info *pi = netdev_priv(dev); 237 struct adapter *adap = pi->adapter; 238 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 239 int i; 240 241 /* We use a simple mapping of Port TX Queue Index to DCB 242 * Priority when we're enabling DCB. 243 */ 244 for (i = 0; i < pi->nqsets; i++, txq++) { 245 u32 name, value; 246 int err; 247 248 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 249 FW_PARAMS_PARAM_X_V( 250 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 251 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 252 value = enable ? i : 0xffffffff; 253 254 /* Since we can be called while atomic (from "interrupt 255 * level") we need to issue the Set Parameters Commannd 256 * without sleeping (timeout < 0). 257 */ 258 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 259 &name, &value, 260 -FW_CMD_MAX_TIMEOUT); 261 262 if (err) 263 dev_err(adap->pdev_dev, 264 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 265 enable ? "set" : "unset", pi->port_id, i, -err); 266 else 267 txq->dcb_prio = enable ? value : 0; 268 } 269 } 270 271 int cxgb4_dcb_enabled(const struct net_device *dev) 272 { 273 struct port_info *pi = netdev_priv(dev); 274 275 if (!pi->dcb.enabled) 276 return 0; 277 278 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 279 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 280 } 281 #endif /* CONFIG_CHELSIO_T4_DCB */ 282 283 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 284 { 285 struct net_device *dev = adapter->port[port_id]; 286 287 /* Skip changes from disabled ports. */ 288 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 289 if (link_stat) 290 netif_carrier_on(dev); 291 else { 292 #ifdef CONFIG_CHELSIO_T4_DCB 293 if (cxgb4_dcb_enabled(dev)) { 294 cxgb4_dcb_reset(dev); 295 dcb_tx_queue_prio_enable(dev, false); 296 } 297 #endif /* CONFIG_CHELSIO_T4_DCB */ 298 netif_carrier_off(dev); 299 } 300 301 link_report(dev); 302 } 303 } 304 305 void t4_os_portmod_changed(struct adapter *adap, int port_id) 306 { 307 static const char *mod_str[] = { 308 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 309 }; 310 311 struct net_device *dev = adap->port[port_id]; 312 struct port_info *pi = netdev_priv(dev); 313 314 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 315 netdev_info(dev, "port module unplugged\n"); 316 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 317 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 318 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 319 netdev_info(dev, "%s: unsupported port module inserted\n", 320 dev->name); 321 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 322 netdev_info(dev, "%s: unknown port module inserted\n", 323 dev->name); 324 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 325 netdev_info(dev, "%s: transceiver module error\n", dev->name); 326 else 327 netdev_info(dev, "%s: unknown module type %d inserted\n", 328 dev->name, pi->mod_type); 329 330 /* If the interface is running, then we'll need any "sticky" Link 331 * Parameters redone with a new Transceiver Module. 332 */ 333 pi->link_cfg.redo_l1cfg = netif_running(dev); 334 } 335 336 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 337 module_param(dbfifo_int_thresh, int, 0644); 338 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 339 340 /* 341 * usecs to sleep while draining the dbfifo 342 */ 343 static int dbfifo_drain_delay = 1000; 344 module_param(dbfifo_drain_delay, int, 0644); 345 MODULE_PARM_DESC(dbfifo_drain_delay, 346 "usecs to sleep while draining the dbfifo"); 347 348 static inline int cxgb4_set_addr_hash(struct port_info *pi) 349 { 350 struct adapter *adap = pi->adapter; 351 u64 vec = 0; 352 bool ucast = false; 353 struct hash_mac_addr *entry; 354 355 /* Calculate the hash vector for the updated list and program it */ 356 list_for_each_entry(entry, &adap->mac_hlist, list) { 357 ucast |= is_unicast_ether_addr(entry->addr); 358 vec |= (1ULL << hash_mac_addr(entry->addr)); 359 } 360 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 361 vec, false); 362 } 363 364 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 365 { 366 struct port_info *pi = netdev_priv(netdev); 367 struct adapter *adap = pi->adapter; 368 int ret; 369 u64 mhash = 0; 370 u64 uhash = 0; 371 /* idx stores the index of allocated filters, 372 * its size should be modified based on the number of 373 * MAC addresses that we allocate filters for 374 */ 375 376 u16 idx[1] = {}; 377 bool free = false; 378 bool ucast = is_unicast_ether_addr(mac_addr); 379 const u8 *maclist[1] = {mac_addr}; 380 struct hash_mac_addr *new_entry; 381 382 ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist, 383 idx, ucast ? &uhash : &mhash, false); 384 if (ret < 0) 385 goto out; 386 /* if hash != 0, then add the addr to hash addr list 387 * so on the end we will calculate the hash for the 388 * list and program it 389 */ 390 if (uhash || mhash) { 391 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 392 if (!new_entry) 393 return -ENOMEM; 394 ether_addr_copy(new_entry->addr, mac_addr); 395 list_add_tail(&new_entry->list, &adap->mac_hlist); 396 ret = cxgb4_set_addr_hash(pi); 397 } 398 out: 399 return ret < 0 ? ret : 0; 400 } 401 402 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 403 { 404 struct port_info *pi = netdev_priv(netdev); 405 struct adapter *adap = pi->adapter; 406 int ret; 407 const u8 *maclist[1] = {mac_addr}; 408 struct hash_mac_addr *entry, *tmp; 409 410 /* If the MAC address to be removed is in the hash addr 411 * list, delete it from the list and update hash vector 412 */ 413 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 414 if (ether_addr_equal(entry->addr, mac_addr)) { 415 list_del(&entry->list); 416 kfree(entry); 417 return cxgb4_set_addr_hash(pi); 418 } 419 } 420 421 ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false); 422 return ret < 0 ? -EINVAL : 0; 423 } 424 425 /* 426 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 427 * If @mtu is -1 it is left unchanged. 428 */ 429 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 430 { 431 struct port_info *pi = netdev_priv(dev); 432 struct adapter *adapter = pi->adapter; 433 434 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 435 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 436 437 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror, 438 mtu, (dev->flags & IFF_PROMISC) ? 1 : 0, 439 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 440 sleep_ok); 441 } 442 443 /** 444 * cxgb4_change_mac - Update match filter for a MAC address. 445 * @pi: the port_info 446 * @viid: the VI id 447 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 448 * or -1 449 * @addr: the new MAC address value 450 * @persist: whether a new MAC allocation should be persistent 451 * @smt_idx: the destination to store the new SMT index. 452 * 453 * Modifies an MPS filter and sets it to the new MAC address if 454 * @tcam_idx >= 0, or adds the MAC address to a new filter if 455 * @tcam_idx < 0. In the latter case the address is added persistently 456 * if @persist is %true. 457 * Addresses are programmed to hash region, if tcam runs out of entries. 458 * 459 */ 460 int cxgb4_change_mac(struct port_info *pi, unsigned int viid, 461 int *tcam_idx, const u8 *addr, bool persist, 462 u8 *smt_idx) 463 { 464 struct adapter *adapter = pi->adapter; 465 struct hash_mac_addr *entry, *new_entry; 466 int ret; 467 468 ret = t4_change_mac(adapter, adapter->mbox, viid, 469 *tcam_idx, addr, persist, smt_idx); 470 /* We ran out of TCAM entries. try programming hash region. */ 471 if (ret == -ENOMEM) { 472 /* If the MAC address to be updated is in the hash addr 473 * list, update it from the list 474 */ 475 list_for_each_entry(entry, &adapter->mac_hlist, list) { 476 if (entry->iface_mac) { 477 ether_addr_copy(entry->addr, addr); 478 goto set_hash; 479 } 480 } 481 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 482 if (!new_entry) 483 return -ENOMEM; 484 ether_addr_copy(new_entry->addr, addr); 485 new_entry->iface_mac = true; 486 list_add_tail(&new_entry->list, &adapter->mac_hlist); 487 set_hash: 488 ret = cxgb4_set_addr_hash(pi); 489 } else if (ret >= 0) { 490 *tcam_idx = ret; 491 ret = 0; 492 } 493 494 return ret; 495 } 496 497 /* 498 * link_start - enable a port 499 * @dev: the port to enable 500 * 501 * Performs the MAC and PHY actions needed to enable a port. 502 */ 503 static int link_start(struct net_device *dev) 504 { 505 struct port_info *pi = netdev_priv(dev); 506 unsigned int mb = pi->adapter->mbox; 507 int ret; 508 509 /* 510 * We do not set address filters and promiscuity here, the stack does 511 * that step explicitly. 512 */ 513 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror, 514 dev->mtu, -1, -1, -1, 515 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 516 if (ret == 0) 517 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 518 dev->dev_addr, true, &pi->smt_idx); 519 if (ret == 0) 520 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 521 &pi->link_cfg); 522 if (ret == 0) { 523 local_bh_disable(); 524 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 525 true, CXGB4_DCB_ENABLED); 526 local_bh_enable(); 527 } 528 529 return ret; 530 } 531 532 #ifdef CONFIG_CHELSIO_T4_DCB 533 /* Handle a Data Center Bridging update message from the firmware. */ 534 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 535 { 536 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 537 struct net_device *dev = adap->port[adap->chan_map[port]]; 538 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 539 int new_dcb_enabled; 540 541 cxgb4_dcb_handle_fw_update(adap, pcmd); 542 new_dcb_enabled = cxgb4_dcb_enabled(dev); 543 544 /* If the DCB has become enabled or disabled on the port then we're 545 * going to need to set up/tear down DCB Priority parameters for the 546 * TX Queues associated with the port. 547 */ 548 if (new_dcb_enabled != old_dcb_enabled) 549 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 550 } 551 #endif /* CONFIG_CHELSIO_T4_DCB */ 552 553 /* Response queue handler for the FW event queue. 554 */ 555 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 556 const struct pkt_gl *gl) 557 { 558 u8 opcode = ((const struct rss_header *)rsp)->opcode; 559 560 rsp++; /* skip RSS header */ 561 562 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 563 */ 564 if (unlikely(opcode == CPL_FW4_MSG && 565 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 566 rsp++; 567 opcode = ((const struct rss_header *)rsp)->opcode; 568 rsp++; 569 if (opcode != CPL_SGE_EGR_UPDATE) { 570 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 571 , opcode); 572 goto out; 573 } 574 } 575 576 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 577 const struct cpl_sge_egr_update *p = (void *)rsp; 578 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 579 struct sge_txq *txq; 580 581 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 582 txq->restarts++; 583 if (txq->q_type == CXGB4_TXQ_ETH) { 584 struct sge_eth_txq *eq; 585 586 eq = container_of(txq, struct sge_eth_txq, q); 587 t4_sge_eth_txq_egress_update(q->adap, eq, -1); 588 } else { 589 struct sge_uld_txq *oq; 590 591 oq = container_of(txq, struct sge_uld_txq, q); 592 tasklet_schedule(&oq->qresume_tsk); 593 } 594 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 595 const struct cpl_fw6_msg *p = (void *)rsp; 596 597 #ifdef CONFIG_CHELSIO_T4_DCB 598 const struct fw_port_cmd *pcmd = (const void *)p->data; 599 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 600 unsigned int action = 601 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 602 603 if (cmd == FW_PORT_CMD && 604 (action == FW_PORT_ACTION_GET_PORT_INFO || 605 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 606 int port = FW_PORT_CMD_PORTID_G( 607 be32_to_cpu(pcmd->op_to_portid)); 608 struct net_device *dev; 609 int dcbxdis, state_input; 610 611 dev = q->adap->port[q->adap->chan_map[port]]; 612 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 613 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) 614 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) 615 & FW_PORT_CMD_DCBXDIS32_F)); 616 state_input = (dcbxdis 617 ? CXGB4_DCB_INPUT_FW_DISABLED 618 : CXGB4_DCB_INPUT_FW_ENABLED); 619 620 cxgb4_dcb_state_fsm(dev, state_input); 621 } 622 623 if (cmd == FW_PORT_CMD && 624 action == FW_PORT_ACTION_L2_DCB_CFG) 625 dcb_rpl(q->adap, pcmd); 626 else 627 #endif 628 if (p->type == 0) 629 t4_handle_fw_rpl(q->adap, p->data); 630 } else if (opcode == CPL_L2T_WRITE_RPL) { 631 const struct cpl_l2t_write_rpl *p = (void *)rsp; 632 633 do_l2t_write_rpl(q->adap, p); 634 } else if (opcode == CPL_SMT_WRITE_RPL) { 635 const struct cpl_smt_write_rpl *p = (void *)rsp; 636 637 do_smt_write_rpl(q->adap, p); 638 } else if (opcode == CPL_SET_TCB_RPL) { 639 const struct cpl_set_tcb_rpl *p = (void *)rsp; 640 641 filter_rpl(q->adap, p); 642 } else if (opcode == CPL_ACT_OPEN_RPL) { 643 const struct cpl_act_open_rpl *p = (void *)rsp; 644 645 hash_filter_rpl(q->adap, p); 646 } else if (opcode == CPL_ABORT_RPL_RSS) { 647 const struct cpl_abort_rpl_rss *p = (void *)rsp; 648 649 hash_del_filter_rpl(q->adap, p); 650 } else if (opcode == CPL_SRQ_TABLE_RPL) { 651 const struct cpl_srq_table_rpl *p = (void *)rsp; 652 653 do_srq_table_rpl(q->adap, p); 654 } else 655 dev_err(q->adap->pdev_dev, 656 "unexpected CPL %#x on FW event queue\n", opcode); 657 out: 658 return 0; 659 } 660 661 static void disable_msi(struct adapter *adapter) 662 { 663 if (adapter->flags & CXGB4_USING_MSIX) { 664 pci_disable_msix(adapter->pdev); 665 adapter->flags &= ~CXGB4_USING_MSIX; 666 } else if (adapter->flags & CXGB4_USING_MSI) { 667 pci_disable_msi(adapter->pdev); 668 adapter->flags &= ~CXGB4_USING_MSI; 669 } 670 } 671 672 /* 673 * Interrupt handler for non-data events used with MSI-X. 674 */ 675 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 676 { 677 struct adapter *adap = cookie; 678 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 679 680 if (v & PFSW_F) { 681 adap->swintr = 1; 682 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 683 } 684 if (adap->flags & CXGB4_MASTER_PF) 685 t4_slow_intr_handler(adap); 686 return IRQ_HANDLED; 687 } 688 689 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec, 690 cpumask_var_t *aff_mask, int idx) 691 { 692 int rv; 693 694 if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) { 695 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n"); 696 return -ENOMEM; 697 } 698 699 cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)), 700 *aff_mask); 701 702 rv = irq_set_affinity_hint(vec, *aff_mask); 703 if (rv) 704 dev_warn(adap->pdev_dev, 705 "irq_set_affinity_hint %u failed %d\n", 706 vec, rv); 707 708 return 0; 709 } 710 711 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask) 712 { 713 irq_set_affinity_hint(vec, NULL); 714 free_cpumask_var(aff_mask); 715 } 716 717 static int request_msix_queue_irqs(struct adapter *adap) 718 { 719 struct sge *s = &adap->sge; 720 struct msix_info *minfo; 721 int err, ethqidx; 722 723 if (s->fwevtq_msix_idx < 0) 724 return -ENOMEM; 725 726 err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec, 727 t4_sge_intr_msix, 0, 728 adap->msix_info[s->fwevtq_msix_idx].desc, 729 &s->fw_evtq); 730 if (err) 731 return err; 732 733 for_each_ethrxq(s, ethqidx) { 734 minfo = s->ethrxq[ethqidx].msix; 735 err = request_irq(minfo->vec, 736 t4_sge_intr_msix, 0, 737 minfo->desc, 738 &s->ethrxq[ethqidx].rspq); 739 if (err) 740 goto unwind; 741 742 cxgb4_set_msix_aff(adap, minfo->vec, 743 &minfo->aff_mask, ethqidx); 744 } 745 return 0; 746 747 unwind: 748 while (--ethqidx >= 0) { 749 minfo = s->ethrxq[ethqidx].msix; 750 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 751 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq); 752 } 753 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); 754 return err; 755 } 756 757 static void free_msix_queue_irqs(struct adapter *adap) 758 { 759 struct sge *s = &adap->sge; 760 struct msix_info *minfo; 761 int i; 762 763 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); 764 for_each_ethrxq(s, i) { 765 minfo = s->ethrxq[i].msix; 766 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 767 free_irq(minfo->vec, &s->ethrxq[i].rspq); 768 } 769 } 770 771 static int setup_ppod_edram(struct adapter *adap) 772 { 773 unsigned int param, val; 774 int ret; 775 776 /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check 777 * if firmware supports ppod edram feature or not. If firmware 778 * returns 1, then driver can enable this feature by sending 779 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to 780 * enable ppod edram feature. 781 */ 782 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 783 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM)); 784 785 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 786 if (ret < 0) { 787 dev_warn(adap->pdev_dev, 788 "querying PPOD_EDRAM support failed: %d\n", 789 ret); 790 return -1; 791 } 792 793 if (val != 1) 794 return -1; 795 796 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 797 if (ret < 0) { 798 dev_err(adap->pdev_dev, 799 "setting PPOD_EDRAM failed: %d\n", ret); 800 return -1; 801 } 802 return 0; 803 } 804 805 static void adap_config_hpfilter(struct adapter *adapter) 806 { 807 u32 param, val = 0; 808 int ret; 809 810 /* Enable HP filter region. Older fw will fail this request and 811 * it is fine. 812 */ 813 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 814 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 815 1, ¶m, &val); 816 817 /* An error means FW doesn't know about HP filter support, 818 * it's not a problem, don't return an error. 819 */ 820 if (ret < 0) 821 dev_err(adapter->pdev_dev, 822 "HP filter region isn't supported by FW\n"); 823 } 824 825 static int cxgb4_config_rss(const struct port_info *pi, u16 *rss, 826 u16 rss_size, u16 viid) 827 { 828 struct adapter *adap = pi->adapter; 829 int ret; 830 831 ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss, 832 rss_size); 833 if (ret) 834 return ret; 835 836 /* If Tunnel All Lookup isn't specified in the global RSS 837 * Configuration, then we need to specify a default Ingress 838 * Queue for any ingress packets which aren't hashed. We'll 839 * use our first ingress queue ... 840 */ 841 return t4_config_vi_rss(adap, adap->mbox, viid, 842 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 843 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 844 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 845 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 846 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 847 rss[0]); 848 } 849 850 /** 851 * cxgb4_write_rss - write the RSS table for a given port 852 * @pi: the port 853 * @queues: array of queue indices for RSS 854 * 855 * Sets up the portion of the HW RSS table for the port's VI to distribute 856 * packets to the Rx queues in @queues. 857 * Should never be called before setting up sge eth rx queues 858 */ 859 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 860 { 861 struct adapter *adapter = pi->adapter; 862 const struct sge_eth_rxq *rxq; 863 int i, err; 864 u16 *rss; 865 866 rxq = &adapter->sge.ethrxq[pi->first_qset]; 867 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 868 if (!rss) 869 return -ENOMEM; 870 871 /* map the queue indices to queue ids */ 872 for (i = 0; i < pi->rss_size; i++, queues++) 873 rss[i] = rxq[*queues].rspq.abs_id; 874 875 err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid); 876 kfree(rss); 877 return err; 878 } 879 880 /** 881 * setup_rss - configure RSS 882 * @adap: the adapter 883 * 884 * Sets up RSS for each port. 885 */ 886 static int setup_rss(struct adapter *adap) 887 { 888 int i, j, err; 889 890 for_each_port(adap, i) { 891 const struct port_info *pi = adap2pinfo(adap, i); 892 893 /* Fill default values with equal distribution */ 894 for (j = 0; j < pi->rss_size; j++) 895 pi->rss[j] = j % pi->nqsets; 896 897 err = cxgb4_write_rss(pi, pi->rss); 898 if (err) 899 return err; 900 } 901 return 0; 902 } 903 904 /* 905 * Return the channel of the ingress queue with the given qid. 906 */ 907 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 908 { 909 qid -= p->ingr_start; 910 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 911 } 912 913 void cxgb4_quiesce_rx(struct sge_rspq *q) 914 { 915 if (q->handler) 916 napi_disable(&q->napi); 917 } 918 919 /* 920 * Wait until all NAPI handlers are descheduled. 921 */ 922 static void quiesce_rx(struct adapter *adap) 923 { 924 int i; 925 926 for (i = 0; i < adap->sge.ingr_sz; i++) { 927 struct sge_rspq *q = adap->sge.ingr_map[i]; 928 929 if (!q) 930 continue; 931 932 cxgb4_quiesce_rx(q); 933 } 934 } 935 936 /* Disable interrupt and napi handler */ 937 static void disable_interrupts(struct adapter *adap) 938 { 939 struct sge *s = &adap->sge; 940 941 if (adap->flags & CXGB4_FULL_INIT_DONE) { 942 t4_intr_disable(adap); 943 if (adap->flags & CXGB4_USING_MSIX) { 944 free_msix_queue_irqs(adap); 945 free_irq(adap->msix_info[s->nd_msix_idx].vec, 946 adap); 947 } else { 948 free_irq(adap->pdev->irq, adap); 949 } 950 quiesce_rx(adap); 951 } 952 } 953 954 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q) 955 { 956 if (q->handler) 957 napi_enable(&q->napi); 958 959 /* 0-increment GTS to start the timer and enable interrupts */ 960 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 961 SEINTARM_V(q->intr_params) | 962 INGRESSQID_V(q->cntxt_id)); 963 } 964 965 /* 966 * Enable NAPI scheduling and interrupt generation for all Rx queues. 967 */ 968 static void enable_rx(struct adapter *adap) 969 { 970 int i; 971 972 for (i = 0; i < adap->sge.ingr_sz; i++) { 973 struct sge_rspq *q = adap->sge.ingr_map[i]; 974 975 if (!q) 976 continue; 977 978 cxgb4_enable_rx(adap, q); 979 } 980 } 981 982 static int setup_non_data_intr(struct adapter *adap) 983 { 984 int msix; 985 986 adap->sge.nd_msix_idx = -1; 987 if (!(adap->flags & CXGB4_USING_MSIX)) 988 return 0; 989 990 /* Request MSI-X vector for non-data interrupt */ 991 msix = cxgb4_get_msix_idx_from_bmap(adap); 992 if (msix < 0) 993 return -ENOMEM; 994 995 snprintf(adap->msix_info[msix].desc, 996 sizeof(adap->msix_info[msix].desc), 997 "%s", adap->port[0]->name); 998 999 adap->sge.nd_msix_idx = msix; 1000 return 0; 1001 } 1002 1003 static int setup_fw_sge_queues(struct adapter *adap) 1004 { 1005 struct sge *s = &adap->sge; 1006 int msix, err = 0; 1007 1008 bitmap_zero(s->starving_fl, s->egr_sz); 1009 bitmap_zero(s->txq_maperr, s->egr_sz); 1010 1011 if (adap->flags & CXGB4_USING_MSIX) { 1012 s->fwevtq_msix_idx = -1; 1013 msix = cxgb4_get_msix_idx_from_bmap(adap); 1014 if (msix < 0) 1015 return -ENOMEM; 1016 1017 snprintf(adap->msix_info[msix].desc, 1018 sizeof(adap->msix_info[msix].desc), 1019 "%s-FWeventq", adap->port[0]->name); 1020 } else { 1021 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 1022 NULL, NULL, NULL, -1); 1023 if (err) 1024 return err; 1025 msix = -((int)s->intrq.abs_id + 1); 1026 } 1027 1028 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 1029 msix, NULL, fwevtq_handler, NULL, -1); 1030 if (err && msix >= 0) 1031 cxgb4_free_msix_idx_in_bmap(adap, msix); 1032 1033 s->fwevtq_msix_idx = msix; 1034 return err; 1035 } 1036 1037 /** 1038 * setup_sge_queues - configure SGE Tx/Rx/response queues 1039 * @adap: the adapter 1040 * 1041 * Determines how many sets of SGE queues to use and initializes them. 1042 * We support multiple queue sets per port if we have MSI-X, otherwise 1043 * just one queue set per port. 1044 */ 1045 static int setup_sge_queues(struct adapter *adap) 1046 { 1047 struct sge_uld_rxq_info *rxq_info = NULL; 1048 struct sge *s = &adap->sge; 1049 unsigned int cmplqid = 0; 1050 int err, i, j, msix = 0; 1051 1052 if (is_uld(adap)) 1053 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 1054 1055 if (!(adap->flags & CXGB4_USING_MSIX)) 1056 msix = -((int)s->intrq.abs_id + 1); 1057 1058 for_each_port(adap, i) { 1059 struct net_device *dev = adap->port[i]; 1060 struct port_info *pi = netdev_priv(dev); 1061 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1062 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1063 1064 for (j = 0; j < pi->nqsets; j++, q++) { 1065 if (msix >= 0) { 1066 msix = cxgb4_get_msix_idx_from_bmap(adap); 1067 if (msix < 0) { 1068 err = msix; 1069 goto freeout; 1070 } 1071 1072 snprintf(adap->msix_info[msix].desc, 1073 sizeof(adap->msix_info[msix].desc), 1074 "%s-Rx%d", dev->name, j); 1075 q->msix = &adap->msix_info[msix]; 1076 } 1077 1078 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1079 msix, &q->fl, 1080 t4_ethrx_handler, 1081 NULL, 1082 t4_get_tp_ch_map(adap, 1083 pi->tx_chan)); 1084 if (err) 1085 goto freeout; 1086 q->rspq.idx = j; 1087 memset(&q->stats, 0, sizeof(q->stats)); 1088 } 1089 1090 q = &s->ethrxq[pi->first_qset]; 1091 for (j = 0; j < pi->nqsets; j++, t++, q++) { 1092 err = t4_sge_alloc_eth_txq(adap, t, dev, 1093 netdev_get_tx_queue(dev, j), 1094 q->rspq.cntxt_id, 1095 !!(adap->flags & CXGB4_SGE_DBQ_TIMER)); 1096 if (err) 1097 goto freeout; 1098 } 1099 } 1100 1101 for_each_port(adap, i) { 1102 /* Note that cmplqid below is 0 if we don't 1103 * have RDMA queues, and that's the right value. 1104 */ 1105 if (rxq_info) 1106 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 1107 1108 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1109 s->fw_evtq.cntxt_id, cmplqid); 1110 if (err) 1111 goto freeout; 1112 } 1113 1114 if (!is_t4(adap->params.chip)) { 1115 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 1116 netdev_get_tx_queue(adap->port[0], 0) 1117 , s->fw_evtq.cntxt_id, false); 1118 if (err) 1119 goto freeout; 1120 } 1121 1122 t4_write_reg(adap, is_t4(adap->params.chip) ? 1123 MPS_TRC_RSS_CONTROL_A : 1124 MPS_T5_TRC_RSS_CONTROL_A, 1125 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 1126 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 1127 return 0; 1128 freeout: 1129 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 1130 t4_free_sge_resources(adap); 1131 return err; 1132 } 1133 1134 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 1135 struct net_device *sb_dev) 1136 { 1137 int txq; 1138 1139 #ifdef CONFIG_CHELSIO_T4_DCB 1140 /* If a Data Center Bridging has been successfully negotiated on this 1141 * link then we'll use the skb's priority to map it to a TX Queue. 1142 * The skb's priority is determined via the VLAN Tag Priority Code 1143 * Point field. 1144 */ 1145 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 1146 u16 vlan_tci; 1147 int err; 1148 1149 err = vlan_get_tag(skb, &vlan_tci); 1150 if (unlikely(err)) { 1151 if (net_ratelimit()) 1152 netdev_warn(dev, 1153 "TX Packet without VLAN Tag on DCB Link\n"); 1154 txq = 0; 1155 } else { 1156 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1157 #ifdef CONFIG_CHELSIO_T4_FCOE 1158 if (skb->protocol == htons(ETH_P_FCOE)) 1159 txq = skb->priority & 0x7; 1160 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1161 } 1162 return txq; 1163 } 1164 #endif /* CONFIG_CHELSIO_T4_DCB */ 1165 1166 if (dev->num_tc) { 1167 struct port_info *pi = netdev2pinfo(dev); 1168 u8 ver, proto; 1169 1170 ver = ip_hdr(skb)->version; 1171 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : 1172 ip_hdr(skb)->protocol; 1173 1174 /* Send unsupported traffic pattern to normal NIC queues. */ 1175 txq = netdev_pick_tx(dev, skb, sb_dev); 1176 if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) || 1177 skb->encapsulation || 1178 cxgb4_is_ktls_skb(skb) || 1179 (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) 1180 txq = txq % pi->nqsets; 1181 1182 return txq; 1183 } 1184 1185 if (select_queue) { 1186 txq = (skb_rx_queue_recorded(skb) 1187 ? skb_get_rx_queue(skb) 1188 : smp_processor_id()); 1189 1190 while (unlikely(txq >= dev->real_num_tx_queues)) 1191 txq -= dev->real_num_tx_queues; 1192 1193 return txq; 1194 } 1195 1196 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 1197 } 1198 1199 static int closest_timer(const struct sge *s, int time) 1200 { 1201 int i, delta, match = 0, min_delta = INT_MAX; 1202 1203 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1204 delta = time - s->timer_val[i]; 1205 if (delta < 0) 1206 delta = -delta; 1207 if (delta < min_delta) { 1208 min_delta = delta; 1209 match = i; 1210 } 1211 } 1212 return match; 1213 } 1214 1215 static int closest_thres(const struct sge *s, int thres) 1216 { 1217 int i, delta, match = 0, min_delta = INT_MAX; 1218 1219 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1220 delta = thres - s->counter_val[i]; 1221 if (delta < 0) 1222 delta = -delta; 1223 if (delta < min_delta) { 1224 min_delta = delta; 1225 match = i; 1226 } 1227 } 1228 return match; 1229 } 1230 1231 /** 1232 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1233 * @q: the Rx queue 1234 * @us: the hold-off time in us, or 0 to disable timer 1235 * @cnt: the hold-off packet count, or 0 to disable counter 1236 * 1237 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1238 * one of the two needs to be enabled for the queue to generate interrupts. 1239 */ 1240 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1241 unsigned int us, unsigned int cnt) 1242 { 1243 struct adapter *adap = q->adap; 1244 1245 if ((us | cnt) == 0) 1246 cnt = 1; 1247 1248 if (cnt) { 1249 int err; 1250 u32 v, new_idx; 1251 1252 new_idx = closest_thres(&adap->sge, cnt); 1253 if (q->desc && q->pktcnt_idx != new_idx) { 1254 /* the queue has already been created, update it */ 1255 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1256 FW_PARAMS_PARAM_X_V( 1257 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1258 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1259 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1260 &v, &new_idx); 1261 if (err) 1262 return err; 1263 } 1264 q->pktcnt_idx = new_idx; 1265 } 1266 1267 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1268 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1269 return 0; 1270 } 1271 1272 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1273 { 1274 netdev_features_t changed = dev->features ^ features; 1275 const struct port_info *pi = netdev_priv(dev); 1276 int err; 1277 1278 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1279 return 0; 1280 1281 err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid, 1282 pi->viid_mirror, -1, -1, -1, -1, 1283 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1284 if (unlikely(err)) 1285 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1286 return err; 1287 } 1288 1289 static int setup_debugfs(struct adapter *adap) 1290 { 1291 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1292 return -1; 1293 1294 #ifdef CONFIG_DEBUG_FS 1295 t4_setup_debugfs(adap); 1296 #endif 1297 return 0; 1298 } 1299 1300 static void cxgb4_port_mirror_free_rxq(struct adapter *adap, 1301 struct sge_eth_rxq *mirror_rxq) 1302 { 1303 if ((adap->flags & CXGB4_FULL_INIT_DONE) && 1304 !(adap->flags & CXGB4_SHUTTING_DOWN)) 1305 cxgb4_quiesce_rx(&mirror_rxq->rspq); 1306 1307 if (adap->flags & CXGB4_USING_MSIX) { 1308 cxgb4_clear_msix_aff(mirror_rxq->msix->vec, 1309 mirror_rxq->msix->aff_mask); 1310 free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq); 1311 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx); 1312 } 1313 1314 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl); 1315 } 1316 1317 static int cxgb4_port_mirror_alloc_queues(struct net_device *dev) 1318 { 1319 struct port_info *pi = netdev2pinfo(dev); 1320 struct adapter *adap = netdev2adap(dev); 1321 struct sge_eth_rxq *mirror_rxq; 1322 struct sge *s = &adap->sge; 1323 int ret = 0, msix = 0; 1324 u16 i, rxqid; 1325 u16 *rss; 1326 1327 if (!pi->vi_mirror_count) 1328 return 0; 1329 1330 if (s->mirror_rxq[pi->port_id]) 1331 return 0; 1332 1333 mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL); 1334 if (!mirror_rxq) 1335 return -ENOMEM; 1336 1337 s->mirror_rxq[pi->port_id] = mirror_rxq; 1338 1339 if (!(adap->flags & CXGB4_USING_MSIX)) 1340 msix = -((int)adap->sge.intrq.abs_id + 1); 1341 1342 for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) { 1343 mirror_rxq = &s->mirror_rxq[pi->port_id][i]; 1344 1345 /* Allocate Mirror Rxqs */ 1346 if (msix >= 0) { 1347 msix = cxgb4_get_msix_idx_from_bmap(adap); 1348 if (msix < 0) { 1349 ret = msix; 1350 goto out_free_queues; 1351 } 1352 1353 mirror_rxq->msix = &adap->msix_info[msix]; 1354 snprintf(mirror_rxq->msix->desc, 1355 sizeof(mirror_rxq->msix->desc), 1356 "%s-mirrorrxq%d", dev->name, i); 1357 } 1358 1359 init_rspq(adap, &mirror_rxq->rspq, 1360 CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC, 1361 CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT, 1362 CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM, 1363 CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE); 1364 1365 mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM; 1366 1367 ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false, 1368 dev, msix, &mirror_rxq->fl, 1369 t4_ethrx_handler, NULL, 0); 1370 if (ret) 1371 goto out_free_msix_idx; 1372 1373 /* Setup MSI-X vectors for Mirror Rxqs */ 1374 if (adap->flags & CXGB4_USING_MSIX) { 1375 ret = request_irq(mirror_rxq->msix->vec, 1376 t4_sge_intr_msix, 0, 1377 mirror_rxq->msix->desc, 1378 &mirror_rxq->rspq); 1379 if (ret) 1380 goto out_free_rxq; 1381 1382 cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec, 1383 &mirror_rxq->msix->aff_mask, i); 1384 } 1385 1386 /* Start NAPI for Mirror Rxqs */ 1387 cxgb4_enable_rx(adap, &mirror_rxq->rspq); 1388 } 1389 1390 /* Setup RSS for Mirror Rxqs */ 1391 rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 1392 if (!rss) { 1393 ret = -ENOMEM; 1394 goto out_free_queues; 1395 } 1396 1397 mirror_rxq = &s->mirror_rxq[pi->port_id][0]; 1398 for (i = 0; i < pi->rss_size; i++) 1399 rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id; 1400 1401 ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror); 1402 kfree(rss); 1403 if (ret) 1404 goto out_free_queues; 1405 1406 return 0; 1407 1408 out_free_rxq: 1409 free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl); 1410 1411 out_free_msix_idx: 1412 cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx); 1413 1414 out_free_queues: 1415 while (rxqid-- > 0) 1416 cxgb4_port_mirror_free_rxq(adap, 1417 &s->mirror_rxq[pi->port_id][rxqid]); 1418 1419 kfree(s->mirror_rxq[pi->port_id]); 1420 s->mirror_rxq[pi->port_id] = NULL; 1421 return ret; 1422 } 1423 1424 static void cxgb4_port_mirror_free_queues(struct net_device *dev) 1425 { 1426 struct port_info *pi = netdev2pinfo(dev); 1427 struct adapter *adap = netdev2adap(dev); 1428 struct sge *s = &adap->sge; 1429 u16 i; 1430 1431 if (!pi->vi_mirror_count) 1432 return; 1433 1434 if (!s->mirror_rxq[pi->port_id]) 1435 return; 1436 1437 for (i = 0; i < pi->nmirrorqsets; i++) 1438 cxgb4_port_mirror_free_rxq(adap, 1439 &s->mirror_rxq[pi->port_id][i]); 1440 1441 kfree(s->mirror_rxq[pi->port_id]); 1442 s->mirror_rxq[pi->port_id] = NULL; 1443 } 1444 1445 static int cxgb4_port_mirror_start(struct net_device *dev) 1446 { 1447 struct port_info *pi = netdev2pinfo(dev); 1448 struct adapter *adap = netdev2adap(dev); 1449 int ret, idx = -1; 1450 1451 if (!pi->vi_mirror_count) 1452 return 0; 1453 1454 /* Mirror VIs can be created dynamically after stack had 1455 * already setup Rx modes like MTU, promisc, allmulti, etc. 1456 * on main VI. So, parse what the stack had setup on the 1457 * main VI and update the same on the mirror VI. 1458 */ 1459 ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror, 1460 dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0, 1461 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, 1462 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 1463 if (ret) { 1464 dev_err(adap->pdev_dev, 1465 "Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n", 1466 pi->viid_mirror, ret); 1467 return ret; 1468 } 1469 1470 /* Enable replication bit for the device's MAC address 1471 * in MPS TCAM, so that the packets for the main VI are 1472 * replicated to mirror VI. 1473 */ 1474 ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx, 1475 dev->dev_addr, true, NULL); 1476 if (ret) { 1477 dev_err(adap->pdev_dev, 1478 "Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n", 1479 pi->viid_mirror, ret); 1480 return ret; 1481 } 1482 1483 /* Enabling a Virtual Interface can result in an interrupt 1484 * during the processing of the VI Enable command and, in some 1485 * paths, result in an attempt to issue another command in the 1486 * interrupt context. Thus, we disable interrupts during the 1487 * course of the VI Enable command ... 1488 */ 1489 local_bh_disable(); 1490 ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true, 1491 false); 1492 local_bh_enable(); 1493 if (ret) 1494 dev_err(adap->pdev_dev, 1495 "Failed starting Mirror VI 0x%x, ret: %d\n", 1496 pi->viid_mirror, ret); 1497 1498 return ret; 1499 } 1500 1501 static void cxgb4_port_mirror_stop(struct net_device *dev) 1502 { 1503 struct port_info *pi = netdev2pinfo(dev); 1504 struct adapter *adap = netdev2adap(dev); 1505 1506 if (!pi->vi_mirror_count) 1507 return; 1508 1509 t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false, 1510 false); 1511 } 1512 1513 int cxgb4_port_mirror_alloc(struct net_device *dev) 1514 { 1515 struct port_info *pi = netdev2pinfo(dev); 1516 struct adapter *adap = netdev2adap(dev); 1517 int ret = 0; 1518 1519 if (!pi->nmirrorqsets) 1520 return -EOPNOTSUPP; 1521 1522 mutex_lock(&pi->vi_mirror_mutex); 1523 if (pi->viid_mirror) { 1524 pi->vi_mirror_count++; 1525 goto out_unlock; 1526 } 1527 1528 ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0, 1529 &pi->viid_mirror); 1530 if (ret) 1531 goto out_unlock; 1532 1533 pi->vi_mirror_count = 1; 1534 1535 if (adap->flags & CXGB4_FULL_INIT_DONE) { 1536 ret = cxgb4_port_mirror_alloc_queues(dev); 1537 if (ret) 1538 goto out_free_vi; 1539 1540 ret = cxgb4_port_mirror_start(dev); 1541 if (ret) 1542 goto out_free_queues; 1543 } 1544 1545 mutex_unlock(&pi->vi_mirror_mutex); 1546 return 0; 1547 1548 out_free_queues: 1549 cxgb4_port_mirror_free_queues(dev); 1550 1551 out_free_vi: 1552 pi->vi_mirror_count = 0; 1553 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror); 1554 pi->viid_mirror = 0; 1555 1556 out_unlock: 1557 mutex_unlock(&pi->vi_mirror_mutex); 1558 return ret; 1559 } 1560 1561 void cxgb4_port_mirror_free(struct net_device *dev) 1562 { 1563 struct port_info *pi = netdev2pinfo(dev); 1564 struct adapter *adap = netdev2adap(dev); 1565 1566 mutex_lock(&pi->vi_mirror_mutex); 1567 if (!pi->viid_mirror) 1568 goto out_unlock; 1569 1570 if (pi->vi_mirror_count > 1) { 1571 pi->vi_mirror_count--; 1572 goto out_unlock; 1573 } 1574 1575 cxgb4_port_mirror_stop(dev); 1576 cxgb4_port_mirror_free_queues(dev); 1577 1578 pi->vi_mirror_count = 0; 1579 t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror); 1580 pi->viid_mirror = 0; 1581 1582 out_unlock: 1583 mutex_unlock(&pi->vi_mirror_mutex); 1584 } 1585 1586 /* 1587 * upper-layer driver support 1588 */ 1589 1590 /* 1591 * Allocate an active-open TID and set it to the supplied value. 1592 */ 1593 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1594 { 1595 int atid = -1; 1596 1597 spin_lock_bh(&t->atid_lock); 1598 if (t->afree) { 1599 union aopen_entry *p = t->afree; 1600 1601 atid = (p - t->atid_tab) + t->atid_base; 1602 t->afree = p->next; 1603 p->data = data; 1604 t->atids_in_use++; 1605 } 1606 spin_unlock_bh(&t->atid_lock); 1607 return atid; 1608 } 1609 EXPORT_SYMBOL(cxgb4_alloc_atid); 1610 1611 /* 1612 * Release an active-open TID. 1613 */ 1614 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1615 { 1616 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1617 1618 spin_lock_bh(&t->atid_lock); 1619 p->next = t->afree; 1620 t->afree = p; 1621 t->atids_in_use--; 1622 spin_unlock_bh(&t->atid_lock); 1623 } 1624 EXPORT_SYMBOL(cxgb4_free_atid); 1625 1626 /* 1627 * Allocate a server TID and set it to the supplied value. 1628 */ 1629 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1630 { 1631 int stid; 1632 1633 spin_lock_bh(&t->stid_lock); 1634 if (family == PF_INET) { 1635 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1636 if (stid < t->nstids) 1637 __set_bit(stid, t->stid_bmap); 1638 else 1639 stid = -1; 1640 } else { 1641 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1642 if (stid < 0) 1643 stid = -1; 1644 } 1645 if (stid >= 0) { 1646 t->stid_tab[stid].data = data; 1647 stid += t->stid_base; 1648 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1649 * This is equivalent to 4 TIDs. With CLIP enabled it 1650 * needs 2 TIDs. 1651 */ 1652 if (family == PF_INET6) { 1653 t->stids_in_use += 2; 1654 t->v6_stids_in_use += 2; 1655 } else { 1656 t->stids_in_use++; 1657 } 1658 } 1659 spin_unlock_bh(&t->stid_lock); 1660 return stid; 1661 } 1662 EXPORT_SYMBOL(cxgb4_alloc_stid); 1663 1664 /* Allocate a server filter TID and set it to the supplied value. 1665 */ 1666 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1667 { 1668 int stid; 1669 1670 spin_lock_bh(&t->stid_lock); 1671 if (family == PF_INET) { 1672 stid = find_next_zero_bit(t->stid_bmap, 1673 t->nstids + t->nsftids, t->nstids); 1674 if (stid < (t->nstids + t->nsftids)) 1675 __set_bit(stid, t->stid_bmap); 1676 else 1677 stid = -1; 1678 } else { 1679 stid = -1; 1680 } 1681 if (stid >= 0) { 1682 t->stid_tab[stid].data = data; 1683 stid -= t->nstids; 1684 stid += t->sftid_base; 1685 t->sftids_in_use++; 1686 } 1687 spin_unlock_bh(&t->stid_lock); 1688 return stid; 1689 } 1690 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1691 1692 /* Release a server TID. 1693 */ 1694 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1695 { 1696 /* Is it a server filter TID? */ 1697 if (t->nsftids && (stid >= t->sftid_base)) { 1698 stid -= t->sftid_base; 1699 stid += t->nstids; 1700 } else { 1701 stid -= t->stid_base; 1702 } 1703 1704 spin_lock_bh(&t->stid_lock); 1705 if (family == PF_INET) 1706 __clear_bit(stid, t->stid_bmap); 1707 else 1708 bitmap_release_region(t->stid_bmap, stid, 1); 1709 t->stid_tab[stid].data = NULL; 1710 if (stid < t->nstids) { 1711 if (family == PF_INET6) { 1712 t->stids_in_use -= 2; 1713 t->v6_stids_in_use -= 2; 1714 } else { 1715 t->stids_in_use--; 1716 } 1717 } else { 1718 t->sftids_in_use--; 1719 } 1720 1721 spin_unlock_bh(&t->stid_lock); 1722 } 1723 EXPORT_SYMBOL(cxgb4_free_stid); 1724 1725 /* 1726 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1727 */ 1728 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1729 unsigned int tid) 1730 { 1731 struct cpl_tid_release *req; 1732 1733 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1734 req = __skb_put(skb, sizeof(*req)); 1735 INIT_TP_WR(req, tid); 1736 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1737 } 1738 1739 /* 1740 * Queue a TID release request and if necessary schedule a work queue to 1741 * process it. 1742 */ 1743 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1744 unsigned int tid) 1745 { 1746 struct adapter *adap = container_of(t, struct adapter, tids); 1747 void **p = &t->tid_tab[tid - t->tid_base]; 1748 1749 spin_lock_bh(&adap->tid_release_lock); 1750 *p = adap->tid_release_head; 1751 /* Low 2 bits encode the Tx channel number */ 1752 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1753 if (!adap->tid_release_task_busy) { 1754 adap->tid_release_task_busy = true; 1755 queue_work(adap->workq, &adap->tid_release_task); 1756 } 1757 spin_unlock_bh(&adap->tid_release_lock); 1758 } 1759 1760 /* 1761 * Process the list of pending TID release requests. 1762 */ 1763 static void process_tid_release_list(struct work_struct *work) 1764 { 1765 struct sk_buff *skb; 1766 struct adapter *adap; 1767 1768 adap = container_of(work, struct adapter, tid_release_task); 1769 1770 spin_lock_bh(&adap->tid_release_lock); 1771 while (adap->tid_release_head) { 1772 void **p = adap->tid_release_head; 1773 unsigned int chan = (uintptr_t)p & 3; 1774 p = (void *)p - chan; 1775 1776 adap->tid_release_head = *p; 1777 *p = NULL; 1778 spin_unlock_bh(&adap->tid_release_lock); 1779 1780 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1781 GFP_KERNEL))) 1782 schedule_timeout_uninterruptible(1); 1783 1784 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1785 t4_ofld_send(adap, skb); 1786 spin_lock_bh(&adap->tid_release_lock); 1787 } 1788 adap->tid_release_task_busy = false; 1789 spin_unlock_bh(&adap->tid_release_lock); 1790 } 1791 1792 /* 1793 * Release a TID and inform HW. If we are unable to allocate the release 1794 * message we defer to a work queue. 1795 */ 1796 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1797 unsigned short family) 1798 { 1799 struct adapter *adap = container_of(t, struct adapter, tids); 1800 struct sk_buff *skb; 1801 1802 WARN_ON(tid_out_of_range(&adap->tids, tid)); 1803 1804 if (t->tid_tab[tid - adap->tids.tid_base]) { 1805 t->tid_tab[tid - adap->tids.tid_base] = NULL; 1806 atomic_dec(&t->conns_in_use); 1807 if (t->hash_base && (tid >= t->hash_base)) { 1808 if (family == AF_INET6) 1809 atomic_sub(2, &t->hash_tids_in_use); 1810 else 1811 atomic_dec(&t->hash_tids_in_use); 1812 } else { 1813 if (family == AF_INET6) 1814 atomic_sub(2, &t->tids_in_use); 1815 else 1816 atomic_dec(&t->tids_in_use); 1817 } 1818 } 1819 1820 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1821 if (likely(skb)) { 1822 mk_tid_release(skb, chan, tid); 1823 t4_ofld_send(adap, skb); 1824 } else 1825 cxgb4_queue_tid_release(t, chan, tid); 1826 } 1827 EXPORT_SYMBOL(cxgb4_remove_tid); 1828 1829 /* 1830 * Allocate and initialize the TID tables. Returns 0 on success. 1831 */ 1832 static int tid_init(struct tid_info *t) 1833 { 1834 struct adapter *adap = container_of(t, struct adapter, tids); 1835 unsigned int max_ftids = t->nftids + t->nsftids; 1836 unsigned int natids = t->natids; 1837 unsigned int hpftid_bmap_size; 1838 unsigned int eotid_bmap_size; 1839 unsigned int stid_bmap_size; 1840 unsigned int ftid_bmap_size; 1841 size_t size; 1842 1843 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1844 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1845 hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids); 1846 eotid_bmap_size = BITS_TO_LONGS(t->neotids); 1847 size = t->ntids * sizeof(*t->tid_tab) + 1848 natids * sizeof(*t->atid_tab) + 1849 t->nstids * sizeof(*t->stid_tab) + 1850 t->nsftids * sizeof(*t->stid_tab) + 1851 stid_bmap_size * sizeof(long) + 1852 t->nhpftids * sizeof(*t->hpftid_tab) + 1853 hpftid_bmap_size * sizeof(long) + 1854 max_ftids * sizeof(*t->ftid_tab) + 1855 ftid_bmap_size * sizeof(long) + 1856 t->neotids * sizeof(*t->eotid_tab) + 1857 eotid_bmap_size * sizeof(long); 1858 1859 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1860 if (!t->tid_tab) 1861 return -ENOMEM; 1862 1863 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1864 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1865 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1866 t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1867 t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids]; 1868 t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size]; 1869 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1870 t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size]; 1871 t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids]; 1872 spin_lock_init(&t->stid_lock); 1873 spin_lock_init(&t->atid_lock); 1874 spin_lock_init(&t->ftid_lock); 1875 1876 t->stids_in_use = 0; 1877 t->v6_stids_in_use = 0; 1878 t->sftids_in_use = 0; 1879 t->afree = NULL; 1880 t->atids_in_use = 0; 1881 atomic_set(&t->tids_in_use, 0); 1882 atomic_set(&t->conns_in_use, 0); 1883 atomic_set(&t->hash_tids_in_use, 0); 1884 atomic_set(&t->eotids_in_use, 0); 1885 1886 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1887 if (natids) { 1888 while (--natids) 1889 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1890 t->afree = t->atid_tab; 1891 } 1892 1893 if (is_offload(adap)) { 1894 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1895 /* Reserve stid 0 for T4/T5 adapters */ 1896 if (!t->stid_base && 1897 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1898 __set_bit(0, t->stid_bmap); 1899 1900 if (t->neotids) 1901 bitmap_zero(t->eotid_bmap, t->neotids); 1902 } 1903 1904 if (t->nhpftids) 1905 bitmap_zero(t->hpftid_bmap, t->nhpftids); 1906 bitmap_zero(t->ftid_bmap, t->nftids); 1907 return 0; 1908 } 1909 1910 /** 1911 * cxgb4_create_server - create an IP server 1912 * @dev: the device 1913 * @stid: the server TID 1914 * @sip: local IP address to bind server to 1915 * @sport: the server's TCP port 1916 * @vlan: the VLAN header information 1917 * @queue: queue to direct messages from this server to 1918 * 1919 * Create an IP server for the given port and address. 1920 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1921 */ 1922 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1923 __be32 sip, __be16 sport, __be16 vlan, 1924 unsigned int queue) 1925 { 1926 unsigned int chan; 1927 struct sk_buff *skb; 1928 struct adapter *adap; 1929 struct cpl_pass_open_req *req; 1930 int ret; 1931 1932 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1933 if (!skb) 1934 return -ENOMEM; 1935 1936 adap = netdev2adap(dev); 1937 req = __skb_put(skb, sizeof(*req)); 1938 INIT_TP_WR(req, 0); 1939 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1940 req->local_port = sport; 1941 req->peer_port = htons(0); 1942 req->local_ip = sip; 1943 req->peer_ip = htonl(0); 1944 chan = rxq_to_chan(&adap->sge, queue); 1945 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1946 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1947 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1948 ret = t4_mgmt_tx(adap, skb); 1949 return net_xmit_eval(ret); 1950 } 1951 EXPORT_SYMBOL(cxgb4_create_server); 1952 1953 /* cxgb4_create_server6 - create an IPv6 server 1954 * @dev: the device 1955 * @stid: the server TID 1956 * @sip: local IPv6 address to bind server to 1957 * @sport: the server's TCP port 1958 * @queue: queue to direct messages from this server to 1959 * 1960 * Create an IPv6 server for the given port and address. 1961 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1962 */ 1963 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1964 const struct in6_addr *sip, __be16 sport, 1965 unsigned int queue) 1966 { 1967 unsigned int chan; 1968 struct sk_buff *skb; 1969 struct adapter *adap; 1970 struct cpl_pass_open_req6 *req; 1971 int ret; 1972 1973 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1974 if (!skb) 1975 return -ENOMEM; 1976 1977 adap = netdev2adap(dev); 1978 req = __skb_put(skb, sizeof(*req)); 1979 INIT_TP_WR(req, 0); 1980 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1981 req->local_port = sport; 1982 req->peer_port = htons(0); 1983 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1984 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1985 req->peer_ip_hi = cpu_to_be64(0); 1986 req->peer_ip_lo = cpu_to_be64(0); 1987 chan = rxq_to_chan(&adap->sge, queue); 1988 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1989 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1990 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1991 ret = t4_mgmt_tx(adap, skb); 1992 return net_xmit_eval(ret); 1993 } 1994 EXPORT_SYMBOL(cxgb4_create_server6); 1995 1996 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1997 unsigned int queue, bool ipv6) 1998 { 1999 struct sk_buff *skb; 2000 struct adapter *adap; 2001 struct cpl_close_listsvr_req *req; 2002 int ret; 2003 2004 adap = netdev2adap(dev); 2005 2006 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 2007 if (!skb) 2008 return -ENOMEM; 2009 2010 req = __skb_put(skb, sizeof(*req)); 2011 INIT_TP_WR(req, 0); 2012 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 2013 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 2014 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 2015 ret = t4_mgmt_tx(adap, skb); 2016 return net_xmit_eval(ret); 2017 } 2018 EXPORT_SYMBOL(cxgb4_remove_server); 2019 2020 /** 2021 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 2022 * @mtus: the HW MTU table 2023 * @mtu: the target MTU 2024 * @idx: index of selected entry in the MTU table 2025 * 2026 * Returns the index and the value in the HW MTU table that is closest to 2027 * but does not exceed @mtu, unless @mtu is smaller than any value in the 2028 * table, in which case that smallest available value is selected. 2029 */ 2030 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 2031 unsigned int *idx) 2032 { 2033 unsigned int i = 0; 2034 2035 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 2036 ++i; 2037 if (idx) 2038 *idx = i; 2039 return mtus[i]; 2040 } 2041 EXPORT_SYMBOL(cxgb4_best_mtu); 2042 2043 /** 2044 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 2045 * @mtus: the HW MTU table 2046 * @header_size: Header Size 2047 * @data_size_max: maximum Data Segment Size 2048 * @data_size_align: desired Data Segment Size Alignment (2^N) 2049 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 2050 * 2051 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 2052 * MTU Table based solely on a Maximum MTU parameter, we break that 2053 * parameter up into a Header Size and Maximum Data Segment Size, and 2054 * provide a desired Data Segment Size Alignment. If we find an MTU in 2055 * the Hardware MTU Table which will result in a Data Segment Size with 2056 * the requested alignment _and_ that MTU isn't "too far" from the 2057 * closest MTU, then we'll return that rather than the closest MTU. 2058 */ 2059 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 2060 unsigned short header_size, 2061 unsigned short data_size_max, 2062 unsigned short data_size_align, 2063 unsigned int *mtu_idxp) 2064 { 2065 unsigned short max_mtu = header_size + data_size_max; 2066 unsigned short data_size_align_mask = data_size_align - 1; 2067 int mtu_idx, aligned_mtu_idx; 2068 2069 /* Scan the MTU Table till we find an MTU which is larger than our 2070 * Maximum MTU or we reach the end of the table. Along the way, 2071 * record the last MTU found, if any, which will result in a Data 2072 * Segment Length matching the requested alignment. 2073 */ 2074 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 2075 unsigned short data_size = mtus[mtu_idx] - header_size; 2076 2077 /* If this MTU minus the Header Size would result in a 2078 * Data Segment Size of the desired alignment, remember it. 2079 */ 2080 if ((data_size & data_size_align_mask) == 0) 2081 aligned_mtu_idx = mtu_idx; 2082 2083 /* If we're not at the end of the Hardware MTU Table and the 2084 * next element is larger than our Maximum MTU, drop out of 2085 * the loop. 2086 */ 2087 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 2088 break; 2089 } 2090 2091 /* If we fell out of the loop because we ran to the end of the table, 2092 * then we just have to use the last [largest] entry. 2093 */ 2094 if (mtu_idx == NMTUS) 2095 mtu_idx--; 2096 2097 /* If we found an MTU which resulted in the requested Data Segment 2098 * Length alignment and that's "not far" from the largest MTU which is 2099 * less than or equal to the maximum MTU, then use that. 2100 */ 2101 if (aligned_mtu_idx >= 0 && 2102 mtu_idx - aligned_mtu_idx <= 1) 2103 mtu_idx = aligned_mtu_idx; 2104 2105 /* If the caller has passed in an MTU Index pointer, pass the 2106 * MTU Index back. Return the MTU value. 2107 */ 2108 if (mtu_idxp) 2109 *mtu_idxp = mtu_idx; 2110 return mtus[mtu_idx]; 2111 } 2112 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 2113 2114 /** 2115 * cxgb4_port_chan - get the HW channel of a port 2116 * @dev: the net device for the port 2117 * 2118 * Return the HW Tx channel of the given port. 2119 */ 2120 unsigned int cxgb4_port_chan(const struct net_device *dev) 2121 { 2122 return netdev2pinfo(dev)->tx_chan; 2123 } 2124 EXPORT_SYMBOL(cxgb4_port_chan); 2125 2126 /** 2127 * cxgb4_port_e2cchan - get the HW c-channel of a port 2128 * @dev: the net device for the port 2129 * 2130 * Return the HW RX c-channel of the given port. 2131 */ 2132 unsigned int cxgb4_port_e2cchan(const struct net_device *dev) 2133 { 2134 return netdev2pinfo(dev)->rx_cchan; 2135 } 2136 EXPORT_SYMBOL(cxgb4_port_e2cchan); 2137 2138 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 2139 { 2140 struct adapter *adap = netdev2adap(dev); 2141 u32 v1, v2, lp_count, hp_count; 2142 2143 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2144 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2145 if (is_t4(adap->params.chip)) { 2146 lp_count = LP_COUNT_G(v1); 2147 hp_count = HP_COUNT_G(v1); 2148 } else { 2149 lp_count = LP_COUNT_T5_G(v1); 2150 hp_count = HP_COUNT_T5_G(v2); 2151 } 2152 return lpfifo ? lp_count : hp_count; 2153 } 2154 EXPORT_SYMBOL(cxgb4_dbfifo_count); 2155 2156 /** 2157 * cxgb4_port_viid - get the VI id of a port 2158 * @dev: the net device for the port 2159 * 2160 * Return the VI id of the given port. 2161 */ 2162 unsigned int cxgb4_port_viid(const struct net_device *dev) 2163 { 2164 return netdev2pinfo(dev)->viid; 2165 } 2166 EXPORT_SYMBOL(cxgb4_port_viid); 2167 2168 /** 2169 * cxgb4_port_idx - get the index of a port 2170 * @dev: the net device for the port 2171 * 2172 * Return the index of the given port. 2173 */ 2174 unsigned int cxgb4_port_idx(const struct net_device *dev) 2175 { 2176 return netdev2pinfo(dev)->port_id; 2177 } 2178 EXPORT_SYMBOL(cxgb4_port_idx); 2179 2180 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 2181 struct tp_tcp_stats *v6) 2182 { 2183 struct adapter *adap = pci_get_drvdata(pdev); 2184 2185 spin_lock(&adap->stats_lock); 2186 t4_tp_get_tcp_stats(adap, v4, v6, false); 2187 spin_unlock(&adap->stats_lock); 2188 } 2189 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 2190 2191 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 2192 const unsigned int *pgsz_order) 2193 { 2194 struct adapter *adap = netdev2adap(dev); 2195 2196 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 2197 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 2198 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 2199 HPZ3_V(pgsz_order[3])); 2200 } 2201 EXPORT_SYMBOL(cxgb4_iscsi_init); 2202 2203 int cxgb4_flush_eq_cache(struct net_device *dev) 2204 { 2205 struct adapter *adap = netdev2adap(dev); 2206 2207 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 2208 } 2209 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 2210 2211 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 2212 { 2213 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 2214 __be64 indices; 2215 int ret; 2216 2217 spin_lock(&adap->win0_lock); 2218 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 2219 sizeof(indices), (__be32 *)&indices, 2220 T4_MEMORY_READ); 2221 spin_unlock(&adap->win0_lock); 2222 if (!ret) { 2223 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 2224 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 2225 } 2226 return ret; 2227 } 2228 2229 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 2230 u16 size) 2231 { 2232 struct adapter *adap = netdev2adap(dev); 2233 u16 hw_pidx, hw_cidx; 2234 int ret; 2235 2236 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 2237 if (ret) 2238 goto out; 2239 2240 if (pidx != hw_pidx) { 2241 u16 delta; 2242 u32 val; 2243 2244 if (pidx >= hw_pidx) 2245 delta = pidx - hw_pidx; 2246 else 2247 delta = size - hw_pidx + pidx; 2248 2249 if (is_t4(adap->params.chip)) 2250 val = PIDX_V(delta); 2251 else 2252 val = PIDX_T5_V(delta); 2253 wmb(); 2254 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2255 QID_V(qid) | val); 2256 } 2257 out: 2258 return ret; 2259 } 2260 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 2261 2262 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 2263 { 2264 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 2265 u32 edc0_end, edc1_end, mc0_end, mc1_end; 2266 u32 offset, memtype, memaddr; 2267 struct adapter *adap; 2268 u32 hma_size = 0; 2269 int ret; 2270 2271 adap = netdev2adap(dev); 2272 2273 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 2274 2275 /* Figure out where the offset lands in the Memory Type/Address scheme. 2276 * This code assumes that the memory is laid out starting at offset 0 2277 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 2278 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 2279 * MC0, and some have both MC0 and MC1. 2280 */ 2281 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 2282 edc0_size = EDRAM0_SIZE_G(size) << 20; 2283 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 2284 edc1_size = EDRAM1_SIZE_G(size) << 20; 2285 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 2286 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 2287 2288 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 2289 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2290 hma_size = EXT_MEM1_SIZE_G(size) << 20; 2291 } 2292 edc0_end = edc0_size; 2293 edc1_end = edc0_end + edc1_size; 2294 mc0_end = edc1_end + mc0_size; 2295 2296 if (offset < edc0_end) { 2297 memtype = MEM_EDC0; 2298 memaddr = offset; 2299 } else if (offset < edc1_end) { 2300 memtype = MEM_EDC1; 2301 memaddr = offset - edc0_end; 2302 } else { 2303 if (hma_size && (offset < (edc1_end + hma_size))) { 2304 memtype = MEM_HMA; 2305 memaddr = offset - edc1_end; 2306 } else if (offset < mc0_end) { 2307 memtype = MEM_MC0; 2308 memaddr = offset - edc1_end; 2309 } else if (is_t5(adap->params.chip)) { 2310 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2311 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 2312 mc1_end = mc0_end + mc1_size; 2313 if (offset < mc1_end) { 2314 memtype = MEM_MC1; 2315 memaddr = offset - mc0_end; 2316 } else { 2317 /* offset beyond the end of any memory */ 2318 goto err; 2319 } 2320 } else { 2321 /* T4/T6 only has a single memory channel */ 2322 goto err; 2323 } 2324 } 2325 2326 spin_lock(&adap->win0_lock); 2327 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 2328 spin_unlock(&adap->win0_lock); 2329 return ret; 2330 2331 err: 2332 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 2333 stag, offset); 2334 return -EINVAL; 2335 } 2336 EXPORT_SYMBOL(cxgb4_read_tpte); 2337 2338 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 2339 { 2340 u32 hi, lo; 2341 struct adapter *adap; 2342 2343 adap = netdev2adap(dev); 2344 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 2345 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 2346 2347 return ((u64)hi << 32) | (u64)lo; 2348 } 2349 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 2350 2351 int cxgb4_bar2_sge_qregs(struct net_device *dev, 2352 unsigned int qid, 2353 enum cxgb4_bar2_qtype qtype, 2354 int user, 2355 u64 *pbar2_qoffset, 2356 unsigned int *pbar2_qid) 2357 { 2358 return t4_bar2_sge_qregs(netdev2adap(dev), 2359 qid, 2360 (qtype == CXGB4_BAR2_QTYPE_EGRESS 2361 ? T4_BAR2_QTYPE_EGRESS 2362 : T4_BAR2_QTYPE_INGRESS), 2363 user, 2364 pbar2_qoffset, 2365 pbar2_qid); 2366 } 2367 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 2368 2369 static struct pci_driver cxgb4_driver; 2370 2371 static void check_neigh_update(struct neighbour *neigh) 2372 { 2373 const struct device *parent; 2374 const struct net_device *netdev = neigh->dev; 2375 2376 if (is_vlan_dev(netdev)) 2377 netdev = vlan_dev_real_dev(netdev); 2378 parent = netdev->dev.parent; 2379 if (parent && parent->driver == &cxgb4_driver.driver) 2380 t4_l2t_update(dev_get_drvdata(parent), neigh); 2381 } 2382 2383 static int netevent_cb(struct notifier_block *nb, unsigned long event, 2384 void *data) 2385 { 2386 switch (event) { 2387 case NETEVENT_NEIGH_UPDATE: 2388 check_neigh_update(data); 2389 break; 2390 case NETEVENT_REDIRECT: 2391 default: 2392 break; 2393 } 2394 return 0; 2395 } 2396 2397 static bool netevent_registered; 2398 static struct notifier_block cxgb4_netevent_nb = { 2399 .notifier_call = netevent_cb 2400 }; 2401 2402 static void drain_db_fifo(struct adapter *adap, int usecs) 2403 { 2404 u32 v1, v2, lp_count, hp_count; 2405 2406 do { 2407 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2408 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2409 if (is_t4(adap->params.chip)) { 2410 lp_count = LP_COUNT_G(v1); 2411 hp_count = HP_COUNT_G(v1); 2412 } else { 2413 lp_count = LP_COUNT_T5_G(v1); 2414 hp_count = HP_COUNT_T5_G(v2); 2415 } 2416 2417 if (lp_count == 0 && hp_count == 0) 2418 break; 2419 set_current_state(TASK_UNINTERRUPTIBLE); 2420 schedule_timeout(usecs_to_jiffies(usecs)); 2421 } while (1); 2422 } 2423 2424 static void disable_txq_db(struct sge_txq *q) 2425 { 2426 unsigned long flags; 2427 2428 spin_lock_irqsave(&q->db_lock, flags); 2429 q->db_disabled = 1; 2430 spin_unlock_irqrestore(&q->db_lock, flags); 2431 } 2432 2433 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 2434 { 2435 spin_lock_irq(&q->db_lock); 2436 if (q->db_pidx_inc) { 2437 /* Make sure that all writes to the TX descriptors 2438 * are committed before we tell HW about them. 2439 */ 2440 wmb(); 2441 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2442 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 2443 q->db_pidx_inc = 0; 2444 } 2445 q->db_disabled = 0; 2446 spin_unlock_irq(&q->db_lock); 2447 } 2448 2449 static void disable_dbs(struct adapter *adap) 2450 { 2451 int i; 2452 2453 for_each_ethrxq(&adap->sge, i) 2454 disable_txq_db(&adap->sge.ethtxq[i].q); 2455 if (is_offload(adap)) { 2456 struct sge_uld_txq_info *txq_info = 2457 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2458 2459 if (txq_info) { 2460 for_each_ofldtxq(&adap->sge, i) { 2461 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2462 2463 disable_txq_db(&txq->q); 2464 } 2465 } 2466 } 2467 for_each_port(adap, i) 2468 disable_txq_db(&adap->sge.ctrlq[i].q); 2469 } 2470 2471 static void enable_dbs(struct adapter *adap) 2472 { 2473 int i; 2474 2475 for_each_ethrxq(&adap->sge, i) 2476 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 2477 if (is_offload(adap)) { 2478 struct sge_uld_txq_info *txq_info = 2479 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2480 2481 if (txq_info) { 2482 for_each_ofldtxq(&adap->sge, i) { 2483 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2484 2485 enable_txq_db(adap, &txq->q); 2486 } 2487 } 2488 } 2489 for_each_port(adap, i) 2490 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2491 } 2492 2493 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2494 { 2495 enum cxgb4_uld type = CXGB4_ULD_RDMA; 2496 2497 if (adap->uld && adap->uld[type].handle) 2498 adap->uld[type].control(adap->uld[type].handle, cmd); 2499 } 2500 2501 static void process_db_full(struct work_struct *work) 2502 { 2503 struct adapter *adap; 2504 2505 adap = container_of(work, struct adapter, db_full_task); 2506 2507 drain_db_fifo(adap, dbfifo_drain_delay); 2508 enable_dbs(adap); 2509 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2510 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2511 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2512 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2513 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2514 else 2515 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2516 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2517 } 2518 2519 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2520 { 2521 u16 hw_pidx, hw_cidx; 2522 int ret; 2523 2524 spin_lock_irq(&q->db_lock); 2525 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2526 if (ret) 2527 goto out; 2528 if (q->db_pidx != hw_pidx) { 2529 u16 delta; 2530 u32 val; 2531 2532 if (q->db_pidx >= hw_pidx) 2533 delta = q->db_pidx - hw_pidx; 2534 else 2535 delta = q->size - hw_pidx + q->db_pidx; 2536 2537 if (is_t4(adap->params.chip)) 2538 val = PIDX_V(delta); 2539 else 2540 val = PIDX_T5_V(delta); 2541 wmb(); 2542 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2543 QID_V(q->cntxt_id) | val); 2544 } 2545 out: 2546 q->db_disabled = 0; 2547 q->db_pidx_inc = 0; 2548 spin_unlock_irq(&q->db_lock); 2549 if (ret) 2550 CH_WARN(adap, "DB drop recovery failed.\n"); 2551 } 2552 2553 static void recover_all_queues(struct adapter *adap) 2554 { 2555 int i; 2556 2557 for_each_ethrxq(&adap->sge, i) 2558 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2559 if (is_offload(adap)) { 2560 struct sge_uld_txq_info *txq_info = 2561 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2562 if (txq_info) { 2563 for_each_ofldtxq(&adap->sge, i) { 2564 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2565 2566 sync_txq_pidx(adap, &txq->q); 2567 } 2568 } 2569 } 2570 for_each_port(adap, i) 2571 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2572 } 2573 2574 static void process_db_drop(struct work_struct *work) 2575 { 2576 struct adapter *adap; 2577 2578 adap = container_of(work, struct adapter, db_drop_task); 2579 2580 if (is_t4(adap->params.chip)) { 2581 drain_db_fifo(adap, dbfifo_drain_delay); 2582 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2583 drain_db_fifo(adap, dbfifo_drain_delay); 2584 recover_all_queues(adap); 2585 drain_db_fifo(adap, dbfifo_drain_delay); 2586 enable_dbs(adap); 2587 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2588 } else if (is_t5(adap->params.chip)) { 2589 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2590 u16 qid = (dropped_db >> 15) & 0x1ffff; 2591 u16 pidx_inc = dropped_db & 0x1fff; 2592 u64 bar2_qoffset; 2593 unsigned int bar2_qid; 2594 int ret; 2595 2596 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2597 0, &bar2_qoffset, &bar2_qid); 2598 if (ret) 2599 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2600 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2601 else 2602 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2603 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2604 2605 /* Re-enable BAR2 WC */ 2606 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2607 } 2608 2609 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2610 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2611 } 2612 2613 void t4_db_full(struct adapter *adap) 2614 { 2615 if (is_t4(adap->params.chip)) { 2616 disable_dbs(adap); 2617 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2618 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2619 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2620 queue_work(adap->workq, &adap->db_full_task); 2621 } 2622 } 2623 2624 void t4_db_dropped(struct adapter *adap) 2625 { 2626 if (is_t4(adap->params.chip)) { 2627 disable_dbs(adap); 2628 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2629 } 2630 queue_work(adap->workq, &adap->db_drop_task); 2631 } 2632 2633 void t4_register_netevent_notifier(void) 2634 { 2635 if (!netevent_registered) { 2636 register_netevent_notifier(&cxgb4_netevent_nb); 2637 netevent_registered = true; 2638 } 2639 } 2640 2641 static void detach_ulds(struct adapter *adap) 2642 { 2643 unsigned int i; 2644 2645 if (!is_uld(adap)) 2646 return; 2647 2648 mutex_lock(&uld_mutex); 2649 list_del(&adap->list_node); 2650 2651 for (i = 0; i < CXGB4_ULD_MAX; i++) 2652 if (adap->uld && adap->uld[i].handle) 2653 adap->uld[i].state_change(adap->uld[i].handle, 2654 CXGB4_STATE_DETACH); 2655 2656 if (netevent_registered && list_empty(&adapter_list)) { 2657 unregister_netevent_notifier(&cxgb4_netevent_nb); 2658 netevent_registered = false; 2659 } 2660 mutex_unlock(&uld_mutex); 2661 } 2662 2663 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2664 { 2665 unsigned int i; 2666 2667 mutex_lock(&uld_mutex); 2668 for (i = 0; i < CXGB4_ULD_MAX; i++) 2669 if (adap->uld && adap->uld[i].handle) 2670 adap->uld[i].state_change(adap->uld[i].handle, 2671 new_state); 2672 mutex_unlock(&uld_mutex); 2673 } 2674 2675 #if IS_ENABLED(CONFIG_IPV6) 2676 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2677 unsigned long event, void *data) 2678 { 2679 struct inet6_ifaddr *ifa = data; 2680 struct net_device *event_dev = ifa->idev->dev; 2681 const struct device *parent = NULL; 2682 #if IS_ENABLED(CONFIG_BONDING) 2683 struct adapter *adap; 2684 #endif 2685 if (is_vlan_dev(event_dev)) 2686 event_dev = vlan_dev_real_dev(event_dev); 2687 #if IS_ENABLED(CONFIG_BONDING) 2688 if (event_dev->flags & IFF_MASTER) { 2689 list_for_each_entry(adap, &adapter_list, list_node) { 2690 switch (event) { 2691 case NETDEV_UP: 2692 cxgb4_clip_get(adap->port[0], 2693 (const u32 *)ifa, 1); 2694 break; 2695 case NETDEV_DOWN: 2696 cxgb4_clip_release(adap->port[0], 2697 (const u32 *)ifa, 1); 2698 break; 2699 default: 2700 break; 2701 } 2702 } 2703 return NOTIFY_OK; 2704 } 2705 #endif 2706 2707 if (event_dev) 2708 parent = event_dev->dev.parent; 2709 2710 if (parent && parent->driver == &cxgb4_driver.driver) { 2711 switch (event) { 2712 case NETDEV_UP: 2713 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2714 break; 2715 case NETDEV_DOWN: 2716 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2717 break; 2718 default: 2719 break; 2720 } 2721 } 2722 return NOTIFY_OK; 2723 } 2724 2725 static bool inet6addr_registered; 2726 static struct notifier_block cxgb4_inet6addr_notifier = { 2727 .notifier_call = cxgb4_inet6addr_handler 2728 }; 2729 2730 static void update_clip(const struct adapter *adap) 2731 { 2732 int i; 2733 struct net_device *dev; 2734 int ret; 2735 2736 rcu_read_lock(); 2737 2738 for (i = 0; i < MAX_NPORTS; i++) { 2739 dev = adap->port[i]; 2740 ret = 0; 2741 2742 if (dev) 2743 ret = cxgb4_update_root_dev_clip(dev); 2744 2745 if (ret < 0) 2746 break; 2747 } 2748 rcu_read_unlock(); 2749 } 2750 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2751 2752 /** 2753 * cxgb_up - enable the adapter 2754 * @adap: adapter being enabled 2755 * 2756 * Called when the first port is enabled, this function performs the 2757 * actions necessary to make an adapter operational, such as completing 2758 * the initialization of HW modules, and enabling interrupts. 2759 * 2760 * Must be called with the rtnl lock held. 2761 */ 2762 static int cxgb_up(struct adapter *adap) 2763 { 2764 struct sge *s = &adap->sge; 2765 int err; 2766 2767 mutex_lock(&uld_mutex); 2768 err = setup_sge_queues(adap); 2769 if (err) 2770 goto rel_lock; 2771 err = setup_rss(adap); 2772 if (err) 2773 goto freeq; 2774 2775 if (adap->flags & CXGB4_USING_MSIX) { 2776 if (s->nd_msix_idx < 0) { 2777 err = -ENOMEM; 2778 goto irq_err; 2779 } 2780 2781 err = request_irq(adap->msix_info[s->nd_msix_idx].vec, 2782 t4_nondata_intr, 0, 2783 adap->msix_info[s->nd_msix_idx].desc, adap); 2784 if (err) 2785 goto irq_err; 2786 2787 err = request_msix_queue_irqs(adap); 2788 if (err) 2789 goto irq_err_free_nd_msix; 2790 } else { 2791 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2792 (adap->flags & CXGB4_USING_MSI) ? 0 2793 : IRQF_SHARED, 2794 adap->port[0]->name, adap); 2795 if (err) 2796 goto irq_err; 2797 } 2798 2799 enable_rx(adap); 2800 t4_sge_start(adap); 2801 t4_intr_enable(adap); 2802 adap->flags |= CXGB4_FULL_INIT_DONE; 2803 mutex_unlock(&uld_mutex); 2804 2805 notify_ulds(adap, CXGB4_STATE_UP); 2806 #if IS_ENABLED(CONFIG_IPV6) 2807 update_clip(adap); 2808 #endif 2809 return err; 2810 2811 irq_err_free_nd_msix: 2812 free_irq(adap->msix_info[s->nd_msix_idx].vec, adap); 2813 irq_err: 2814 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2815 freeq: 2816 t4_free_sge_resources(adap); 2817 rel_lock: 2818 mutex_unlock(&uld_mutex); 2819 return err; 2820 } 2821 2822 static void cxgb_down(struct adapter *adapter) 2823 { 2824 cancel_work_sync(&adapter->tid_release_task); 2825 cancel_work_sync(&adapter->db_full_task); 2826 cancel_work_sync(&adapter->db_drop_task); 2827 adapter->tid_release_task_busy = false; 2828 adapter->tid_release_head = NULL; 2829 2830 t4_sge_stop(adapter); 2831 t4_free_sge_resources(adapter); 2832 2833 adapter->flags &= ~CXGB4_FULL_INIT_DONE; 2834 } 2835 2836 /* 2837 * net_device operations 2838 */ 2839 static int cxgb_open(struct net_device *dev) 2840 { 2841 struct port_info *pi = netdev_priv(dev); 2842 struct adapter *adapter = pi->adapter; 2843 int err; 2844 2845 netif_carrier_off(dev); 2846 2847 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) { 2848 err = cxgb_up(adapter); 2849 if (err < 0) 2850 return err; 2851 } 2852 2853 /* It's possible that the basic port information could have 2854 * changed since we first read it. 2855 */ 2856 err = t4_update_port_info(pi); 2857 if (err < 0) 2858 return err; 2859 2860 err = link_start(dev); 2861 if (err) 2862 return err; 2863 2864 if (pi->nmirrorqsets) { 2865 mutex_lock(&pi->vi_mirror_mutex); 2866 err = cxgb4_port_mirror_alloc_queues(dev); 2867 if (err) 2868 goto out_unlock; 2869 2870 err = cxgb4_port_mirror_start(dev); 2871 if (err) 2872 goto out_free_queues; 2873 mutex_unlock(&pi->vi_mirror_mutex); 2874 } 2875 2876 netif_tx_start_all_queues(dev); 2877 return 0; 2878 2879 out_free_queues: 2880 cxgb4_port_mirror_free_queues(dev); 2881 2882 out_unlock: 2883 mutex_unlock(&pi->vi_mirror_mutex); 2884 return err; 2885 } 2886 2887 static int cxgb_close(struct net_device *dev) 2888 { 2889 struct port_info *pi = netdev_priv(dev); 2890 struct adapter *adapter = pi->adapter; 2891 int ret; 2892 2893 netif_tx_stop_all_queues(dev); 2894 netif_carrier_off(dev); 2895 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2896 false, false, false); 2897 #ifdef CONFIG_CHELSIO_T4_DCB 2898 cxgb4_dcb_reset(dev); 2899 dcb_tx_queue_prio_enable(dev, false); 2900 #endif 2901 if (ret) 2902 return ret; 2903 2904 if (pi->nmirrorqsets) { 2905 mutex_lock(&pi->vi_mirror_mutex); 2906 cxgb4_port_mirror_stop(dev); 2907 cxgb4_port_mirror_free_queues(dev); 2908 mutex_unlock(&pi->vi_mirror_mutex); 2909 } 2910 2911 return 0; 2912 } 2913 2914 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2915 __be32 sip, __be16 sport, __be16 vlan, 2916 unsigned int queue, unsigned char port, unsigned char mask) 2917 { 2918 int ret; 2919 struct filter_entry *f; 2920 struct adapter *adap; 2921 int i; 2922 u8 *val; 2923 2924 adap = netdev2adap(dev); 2925 2926 /* Adjust stid to correct filter index */ 2927 stid -= adap->tids.sftid_base; 2928 stid += adap->tids.nftids; 2929 2930 /* Check to make sure the filter requested is writable ... 2931 */ 2932 f = &adap->tids.ftid_tab[stid]; 2933 ret = writable_filter(f); 2934 if (ret) 2935 return ret; 2936 2937 /* Clear out any old resources being used by the filter before 2938 * we start constructing the new filter. 2939 */ 2940 if (f->valid) 2941 clear_filter(adap, f); 2942 2943 /* Clear out filter specifications */ 2944 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2945 f->fs.val.lport = be16_to_cpu(sport); 2946 f->fs.mask.lport = ~0; 2947 val = (u8 *)&sip; 2948 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2949 for (i = 0; i < 4; i++) { 2950 f->fs.val.lip[i] = val[i]; 2951 f->fs.mask.lip[i] = ~0; 2952 } 2953 if (adap->params.tp.vlan_pri_map & PORT_F) { 2954 f->fs.val.iport = port; 2955 f->fs.mask.iport = mask; 2956 } 2957 } 2958 2959 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2960 f->fs.val.proto = IPPROTO_TCP; 2961 f->fs.mask.proto = ~0; 2962 } 2963 2964 f->fs.dirsteer = 1; 2965 f->fs.iq = queue; 2966 /* Mark filter as locked */ 2967 f->locked = 1; 2968 f->fs.rpttid = 1; 2969 2970 /* Save the actual tid. We need this to get the corresponding 2971 * filter entry structure in filter_rpl. 2972 */ 2973 f->tid = stid + adap->tids.ftid_base; 2974 ret = set_filter_wr(adap, stid); 2975 if (ret) { 2976 clear_filter(adap, f); 2977 return ret; 2978 } 2979 2980 return 0; 2981 } 2982 EXPORT_SYMBOL(cxgb4_create_server_filter); 2983 2984 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2985 unsigned int queue, bool ipv6) 2986 { 2987 struct filter_entry *f; 2988 struct adapter *adap; 2989 2990 adap = netdev2adap(dev); 2991 2992 /* Adjust stid to correct filter index */ 2993 stid -= adap->tids.sftid_base; 2994 stid += adap->tids.nftids; 2995 2996 f = &adap->tids.ftid_tab[stid]; 2997 /* Unlock the filter */ 2998 f->locked = 0; 2999 3000 return delete_filter(adap, stid); 3001 } 3002 EXPORT_SYMBOL(cxgb4_remove_server_filter); 3003 3004 static void cxgb_get_stats(struct net_device *dev, 3005 struct rtnl_link_stats64 *ns) 3006 { 3007 struct port_stats stats; 3008 struct port_info *p = netdev_priv(dev); 3009 struct adapter *adapter = p->adapter; 3010 3011 /* Block retrieving statistics during EEH error 3012 * recovery. Otherwise, the recovery might fail 3013 * and the PCI device will be removed permanently 3014 */ 3015 spin_lock(&adapter->stats_lock); 3016 if (!netif_device_present(dev)) { 3017 spin_unlock(&adapter->stats_lock); 3018 return; 3019 } 3020 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 3021 &p->stats_base); 3022 spin_unlock(&adapter->stats_lock); 3023 3024 ns->tx_bytes = stats.tx_octets; 3025 ns->tx_packets = stats.tx_frames; 3026 ns->rx_bytes = stats.rx_octets; 3027 ns->rx_packets = stats.rx_frames; 3028 ns->multicast = stats.rx_mcast_frames; 3029 3030 /* detailed rx_errors */ 3031 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 3032 stats.rx_runt; 3033 ns->rx_over_errors = 0; 3034 ns->rx_crc_errors = stats.rx_fcs_err; 3035 ns->rx_frame_errors = stats.rx_symbol_err; 3036 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 3037 stats.rx_ovflow2 + stats.rx_ovflow3 + 3038 stats.rx_trunc0 + stats.rx_trunc1 + 3039 stats.rx_trunc2 + stats.rx_trunc3; 3040 ns->rx_missed_errors = 0; 3041 3042 /* detailed tx_errors */ 3043 ns->tx_aborted_errors = 0; 3044 ns->tx_carrier_errors = 0; 3045 ns->tx_fifo_errors = 0; 3046 ns->tx_heartbeat_errors = 0; 3047 ns->tx_window_errors = 0; 3048 3049 ns->tx_errors = stats.tx_error_frames; 3050 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 3051 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 3052 } 3053 3054 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 3055 { 3056 unsigned int mbox; 3057 int ret = 0, prtad, devad; 3058 struct port_info *pi = netdev_priv(dev); 3059 struct adapter *adapter = pi->adapter; 3060 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 3061 3062 switch (cmd) { 3063 case SIOCGMIIPHY: 3064 if (pi->mdio_addr < 0) 3065 return -EOPNOTSUPP; 3066 data->phy_id = pi->mdio_addr; 3067 break; 3068 case SIOCGMIIREG: 3069 case SIOCSMIIREG: 3070 if (mdio_phy_id_is_c45(data->phy_id)) { 3071 prtad = mdio_phy_id_prtad(data->phy_id); 3072 devad = mdio_phy_id_devad(data->phy_id); 3073 } else if (data->phy_id < 32) { 3074 prtad = data->phy_id; 3075 devad = 0; 3076 data->reg_num &= 0x1f; 3077 } else 3078 return -EINVAL; 3079 3080 mbox = pi->adapter->pf; 3081 if (cmd == SIOCGMIIREG) 3082 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 3083 data->reg_num, &data->val_out); 3084 else 3085 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 3086 data->reg_num, data->val_in); 3087 break; 3088 case SIOCGHWTSTAMP: 3089 return copy_to_user(req->ifr_data, &pi->tstamp_config, 3090 sizeof(pi->tstamp_config)) ? 3091 -EFAULT : 0; 3092 case SIOCSHWTSTAMP: 3093 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 3094 sizeof(pi->tstamp_config))) 3095 return -EFAULT; 3096 3097 if (!is_t4(adapter->params.chip)) { 3098 switch (pi->tstamp_config.tx_type) { 3099 case HWTSTAMP_TX_OFF: 3100 case HWTSTAMP_TX_ON: 3101 break; 3102 default: 3103 return -ERANGE; 3104 } 3105 3106 switch (pi->tstamp_config.rx_filter) { 3107 case HWTSTAMP_FILTER_NONE: 3108 pi->rxtstamp = false; 3109 break; 3110 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 3111 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3112 cxgb4_ptprx_timestamping(pi, pi->port_id, 3113 PTP_TS_L4); 3114 break; 3115 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3116 cxgb4_ptprx_timestamping(pi, pi->port_id, 3117 PTP_TS_L2_L4); 3118 break; 3119 case HWTSTAMP_FILTER_ALL: 3120 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 3121 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 3122 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3123 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3124 pi->rxtstamp = true; 3125 break; 3126 default: 3127 pi->tstamp_config.rx_filter = 3128 HWTSTAMP_FILTER_NONE; 3129 return -ERANGE; 3130 } 3131 3132 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 3133 (pi->tstamp_config.rx_filter == 3134 HWTSTAMP_FILTER_NONE)) { 3135 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 3136 pi->ptp_enable = false; 3137 } 3138 3139 if (pi->tstamp_config.rx_filter != 3140 HWTSTAMP_FILTER_NONE) { 3141 if (cxgb4_ptp_redirect_rx_packet(adapter, 3142 pi) >= 0) 3143 pi->ptp_enable = true; 3144 } 3145 } else { 3146 /* For T4 Adapters */ 3147 switch (pi->tstamp_config.rx_filter) { 3148 case HWTSTAMP_FILTER_NONE: 3149 pi->rxtstamp = false; 3150 break; 3151 case HWTSTAMP_FILTER_ALL: 3152 pi->rxtstamp = true; 3153 break; 3154 default: 3155 pi->tstamp_config.rx_filter = 3156 HWTSTAMP_FILTER_NONE; 3157 return -ERANGE; 3158 } 3159 } 3160 return copy_to_user(req->ifr_data, &pi->tstamp_config, 3161 sizeof(pi->tstamp_config)) ? 3162 -EFAULT : 0; 3163 default: 3164 return -EOPNOTSUPP; 3165 } 3166 return ret; 3167 } 3168 3169 static void cxgb_set_rxmode(struct net_device *dev) 3170 { 3171 /* unfortunately we can't return errors to the stack */ 3172 set_rxmode(dev, -1, false); 3173 } 3174 3175 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 3176 { 3177 struct port_info *pi = netdev_priv(dev); 3178 int ret; 3179 3180 ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid, 3181 pi->viid_mirror, new_mtu, -1, -1, -1, -1, true); 3182 if (!ret) 3183 dev->mtu = new_mtu; 3184 return ret; 3185 } 3186 3187 #ifdef CONFIG_PCI_IOV 3188 static int cxgb4_mgmt_open(struct net_device *dev) 3189 { 3190 /* Turn carrier off since we don't have to transmit anything on this 3191 * interface. 3192 */ 3193 netif_carrier_off(dev); 3194 return 0; 3195 } 3196 3197 /* Fill MAC address that will be assigned by the FW */ 3198 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 3199 { 3200 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 3201 unsigned int i, vf, nvfs; 3202 u16 a, b; 3203 int err; 3204 u8 *na; 3205 3206 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 3207 if (err) 3208 return; 3209 3210 na = adap->params.vpd.na; 3211 for (i = 0; i < ETH_ALEN; i++) 3212 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 3213 hex2val(na[2 * i + 1])); 3214 3215 a = (hw_addr[0] << 8) | hw_addr[1]; 3216 b = (hw_addr[1] << 8) | hw_addr[2]; 3217 a ^= b; 3218 a |= 0x0200; /* locally assigned Ethernet MAC address */ 3219 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 3220 macaddr[0] = a >> 8; 3221 macaddr[1] = a & 0xff; 3222 3223 for (i = 2; i < 5; i++) 3224 macaddr[i] = hw_addr[i + 1]; 3225 3226 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 3227 vf < nvfs; vf++) { 3228 macaddr[5] = adap->pf * nvfs + vf; 3229 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 3230 } 3231 } 3232 3233 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 3234 { 3235 struct port_info *pi = netdev_priv(dev); 3236 struct adapter *adap = pi->adapter; 3237 int ret; 3238 3239 /* verify MAC addr is valid */ 3240 if (!is_valid_ether_addr(mac)) { 3241 dev_err(pi->adapter->pdev_dev, 3242 "Invalid Ethernet address %pM for VF %d\n", 3243 mac, vf); 3244 return -EINVAL; 3245 } 3246 3247 dev_info(pi->adapter->pdev_dev, 3248 "Setting MAC %pM on VF %d\n", mac, vf); 3249 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 3250 if (!ret) 3251 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 3252 return ret; 3253 } 3254 3255 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 3256 int vf, struct ifla_vf_info *ivi) 3257 { 3258 struct port_info *pi = netdev_priv(dev); 3259 struct adapter *adap = pi->adapter; 3260 struct vf_info *vfinfo; 3261 3262 if (vf >= adap->num_vfs) 3263 return -EINVAL; 3264 vfinfo = &adap->vfinfo[vf]; 3265 3266 ivi->vf = vf; 3267 ivi->max_tx_rate = vfinfo->tx_rate; 3268 ivi->min_tx_rate = 0; 3269 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 3270 ivi->vlan = vfinfo->vlan; 3271 ivi->linkstate = vfinfo->link_state; 3272 return 0; 3273 } 3274 3275 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 3276 struct netdev_phys_item_id *ppid) 3277 { 3278 struct port_info *pi = netdev_priv(dev); 3279 unsigned int phy_port_id; 3280 3281 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 3282 ppid->id_len = sizeof(phy_port_id); 3283 memcpy(ppid->id, &phy_port_id, ppid->id_len); 3284 return 0; 3285 } 3286 3287 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 3288 int min_tx_rate, int max_tx_rate) 3289 { 3290 struct port_info *pi = netdev_priv(dev); 3291 struct adapter *adap = pi->adapter; 3292 unsigned int link_ok, speed, mtu; 3293 u32 fw_pfvf, fw_class; 3294 int class_id = vf; 3295 int ret; 3296 u16 pktsize; 3297 3298 if (vf >= adap->num_vfs) 3299 return -EINVAL; 3300 3301 if (min_tx_rate) { 3302 dev_err(adap->pdev_dev, 3303 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 3304 min_tx_rate, vf); 3305 return -EINVAL; 3306 } 3307 3308 if (max_tx_rate == 0) { 3309 /* unbind VF to to any Traffic Class */ 3310 fw_pfvf = 3311 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3312 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 3313 fw_class = 0xffffffff; 3314 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 3315 &fw_pfvf, &fw_class); 3316 if (ret) { 3317 dev_err(adap->pdev_dev, 3318 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n", 3319 ret, adap->pf, vf); 3320 return -EINVAL; 3321 } 3322 dev_info(adap->pdev_dev, 3323 "PF %d VF %d is unbound from TX Rate Limiting\n", 3324 adap->pf, vf); 3325 adap->vfinfo[vf].tx_rate = 0; 3326 return 0; 3327 } 3328 3329 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 3330 if (ret != FW_SUCCESS) { 3331 dev_err(adap->pdev_dev, 3332 "Failed to get link information for VF %d\n", vf); 3333 return -EINVAL; 3334 } 3335 3336 if (!link_ok) { 3337 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 3338 return -EINVAL; 3339 } 3340 3341 if (max_tx_rate > speed) { 3342 dev_err(adap->pdev_dev, 3343 "Max tx rate %d for VF %d can't be > link-speed %u", 3344 max_tx_rate, vf, speed); 3345 return -EINVAL; 3346 } 3347 3348 pktsize = mtu; 3349 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 3350 pktsize = pktsize - sizeof(struct ethhdr) - 4; 3351 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 3352 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 3353 /* configure Traffic Class for rate-limiting */ 3354 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 3355 SCHED_CLASS_LEVEL_CL_RL, 3356 SCHED_CLASS_MODE_CLASS, 3357 SCHED_CLASS_RATEUNIT_BITS, 3358 SCHED_CLASS_RATEMODE_ABS, 3359 pi->tx_chan, class_id, 0, 3360 max_tx_rate * 1000, 0, pktsize, 0); 3361 if (ret) { 3362 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 3363 ret); 3364 return -EINVAL; 3365 } 3366 dev_info(adap->pdev_dev, 3367 "Class %d with MSS %u configured with rate %u\n", 3368 class_id, pktsize, max_tx_rate); 3369 3370 /* bind VF to configured Traffic Class */ 3371 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3372 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 3373 fw_class = class_id; 3374 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 3375 &fw_class); 3376 if (ret) { 3377 dev_err(adap->pdev_dev, 3378 "Err %d in binding PF %d VF %d to Traffic Class %d\n", 3379 ret, adap->pf, vf, class_id); 3380 return -EINVAL; 3381 } 3382 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 3383 adap->pf, vf, class_id); 3384 adap->vfinfo[vf].tx_rate = max_tx_rate; 3385 return 0; 3386 } 3387 3388 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 3389 u16 vlan, u8 qos, __be16 vlan_proto) 3390 { 3391 struct port_info *pi = netdev_priv(dev); 3392 struct adapter *adap = pi->adapter; 3393 int ret; 3394 3395 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 3396 return -EINVAL; 3397 3398 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 3399 return -EPROTONOSUPPORT; 3400 3401 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 3402 if (!ret) { 3403 adap->vfinfo[vf].vlan = vlan; 3404 return 0; 3405 } 3406 3407 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 3408 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 3409 return ret; 3410 } 3411 3412 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf, 3413 int link) 3414 { 3415 struct port_info *pi = netdev_priv(dev); 3416 struct adapter *adap = pi->adapter; 3417 u32 param, val; 3418 int ret = 0; 3419 3420 if (vf >= adap->num_vfs) 3421 return -EINVAL; 3422 3423 switch (link) { 3424 case IFLA_VF_LINK_STATE_AUTO: 3425 val = FW_VF_LINK_STATE_AUTO; 3426 break; 3427 3428 case IFLA_VF_LINK_STATE_ENABLE: 3429 val = FW_VF_LINK_STATE_ENABLE; 3430 break; 3431 3432 case IFLA_VF_LINK_STATE_DISABLE: 3433 val = FW_VF_LINK_STATE_DISABLE; 3434 break; 3435 3436 default: 3437 return -EINVAL; 3438 } 3439 3440 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3441 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE)); 3442 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 3443 ¶m, &val); 3444 if (ret) { 3445 dev_err(adap->pdev_dev, 3446 "Error %d in setting PF %d VF %d link state\n", 3447 ret, adap->pf, vf); 3448 return -EINVAL; 3449 } 3450 3451 adap->vfinfo[vf].link_state = link; 3452 return ret; 3453 } 3454 #endif /* CONFIG_PCI_IOV */ 3455 3456 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 3457 { 3458 int ret; 3459 struct sockaddr *addr = p; 3460 struct port_info *pi = netdev_priv(dev); 3461 3462 if (!is_valid_ether_addr(addr->sa_data)) 3463 return -EADDRNOTAVAIL; 3464 3465 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 3466 addr->sa_data, true, &pi->smt_idx); 3467 if (ret < 0) 3468 return ret; 3469 3470 eth_hw_addr_set(dev, addr->sa_data); 3471 return 0; 3472 } 3473 3474 #ifdef CONFIG_NET_POLL_CONTROLLER 3475 static void cxgb_netpoll(struct net_device *dev) 3476 { 3477 struct port_info *pi = netdev_priv(dev); 3478 struct adapter *adap = pi->adapter; 3479 3480 if (adap->flags & CXGB4_USING_MSIX) { 3481 int i; 3482 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 3483 3484 for (i = pi->nqsets; i; i--, rx++) 3485 t4_sge_intr_msix(0, &rx->rspq); 3486 } else 3487 t4_intr_handler(adap)(0, adap); 3488 } 3489 #endif 3490 3491 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 3492 { 3493 struct port_info *pi = netdev_priv(dev); 3494 struct adapter *adap = pi->adapter; 3495 struct ch_sched_queue qe = { 0 }; 3496 struct ch_sched_params p = { 0 }; 3497 struct sched_class *e; 3498 u32 req_rate; 3499 int err = 0; 3500 3501 if (!can_sched(dev)) 3502 return -ENOTSUPP; 3503 3504 if (index < 0 || index > pi->nqsets - 1) 3505 return -EINVAL; 3506 3507 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3508 dev_err(adap->pdev_dev, 3509 "Failed to rate limit on queue %d. Link Down?\n", 3510 index); 3511 return -EINVAL; 3512 } 3513 3514 qe.queue = index; 3515 e = cxgb4_sched_queue_lookup(dev, &qe); 3516 if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) { 3517 dev_err(adap->pdev_dev, 3518 "Queue %u already bound to class %u of type: %u\n", 3519 index, e->idx, e->info.u.params.level); 3520 return -EBUSY; 3521 } 3522 3523 /* Convert from Mbps to Kbps */ 3524 req_rate = rate * 1000; 3525 3526 /* Max rate is 100 Gbps */ 3527 if (req_rate > SCHED_MAX_RATE_KBPS) { 3528 dev_err(adap->pdev_dev, 3529 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 3530 rate, SCHED_MAX_RATE_KBPS / 1000); 3531 return -ERANGE; 3532 } 3533 3534 /* First unbind the queue from any existing class */ 3535 memset(&qe, 0, sizeof(qe)); 3536 qe.queue = index; 3537 qe.class = SCHED_CLS_NONE; 3538 3539 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 3540 if (err) { 3541 dev_err(adap->pdev_dev, 3542 "Unbinding Queue %d on port %d fail. Err: %d\n", 3543 index, pi->port_id, err); 3544 return err; 3545 } 3546 3547 /* Queue already unbound */ 3548 if (!req_rate) 3549 return 0; 3550 3551 /* Fetch any available unused or matching scheduling class */ 3552 p.type = SCHED_CLASS_TYPE_PACKET; 3553 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 3554 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 3555 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 3556 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 3557 p.u.params.channel = pi->tx_chan; 3558 p.u.params.class = SCHED_CLS_NONE; 3559 p.u.params.minrate = 0; 3560 p.u.params.maxrate = req_rate; 3561 p.u.params.weight = 0; 3562 p.u.params.pktsize = dev->mtu; 3563 3564 e = cxgb4_sched_class_alloc(dev, &p); 3565 if (!e) 3566 return -ENOMEM; 3567 3568 /* Bind the queue to a scheduling class */ 3569 memset(&qe, 0, sizeof(qe)); 3570 qe.queue = index; 3571 qe.class = e->idx; 3572 3573 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 3574 if (err) 3575 dev_err(adap->pdev_dev, 3576 "Queue rate limiting failed. Err: %d\n", err); 3577 return err; 3578 } 3579 3580 static int cxgb_setup_tc_flower(struct net_device *dev, 3581 struct flow_cls_offload *cls_flower) 3582 { 3583 switch (cls_flower->command) { 3584 case FLOW_CLS_REPLACE: 3585 return cxgb4_tc_flower_replace(dev, cls_flower); 3586 case FLOW_CLS_DESTROY: 3587 return cxgb4_tc_flower_destroy(dev, cls_flower); 3588 case FLOW_CLS_STATS: 3589 return cxgb4_tc_flower_stats(dev, cls_flower); 3590 default: 3591 return -EOPNOTSUPP; 3592 } 3593 } 3594 3595 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 3596 struct tc_cls_u32_offload *cls_u32) 3597 { 3598 switch (cls_u32->command) { 3599 case TC_CLSU32_NEW_KNODE: 3600 case TC_CLSU32_REPLACE_KNODE: 3601 return cxgb4_config_knode(dev, cls_u32); 3602 case TC_CLSU32_DELETE_KNODE: 3603 return cxgb4_delete_knode(dev, cls_u32); 3604 default: 3605 return -EOPNOTSUPP; 3606 } 3607 } 3608 3609 static int cxgb_setup_tc_matchall(struct net_device *dev, 3610 struct tc_cls_matchall_offload *cls_matchall, 3611 bool ingress) 3612 { 3613 struct adapter *adap = netdev2adap(dev); 3614 3615 if (!adap->tc_matchall) 3616 return -ENOMEM; 3617 3618 switch (cls_matchall->command) { 3619 case TC_CLSMATCHALL_REPLACE: 3620 return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress); 3621 case TC_CLSMATCHALL_DESTROY: 3622 return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress); 3623 case TC_CLSMATCHALL_STATS: 3624 if (ingress) 3625 return cxgb4_tc_matchall_stats(dev, cls_matchall); 3626 break; 3627 default: 3628 break; 3629 } 3630 3631 return -EOPNOTSUPP; 3632 } 3633 3634 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type, 3635 void *type_data, void *cb_priv) 3636 { 3637 struct net_device *dev = cb_priv; 3638 struct port_info *pi = netdev2pinfo(dev); 3639 struct adapter *adap = netdev2adap(dev); 3640 3641 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3642 dev_err(adap->pdev_dev, 3643 "Failed to setup tc on port %d. Link Down?\n", 3644 pi->port_id); 3645 return -EINVAL; 3646 } 3647 3648 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3649 return -EOPNOTSUPP; 3650 3651 switch (type) { 3652 case TC_SETUP_CLSU32: 3653 return cxgb_setup_tc_cls_u32(dev, type_data); 3654 case TC_SETUP_CLSFLOWER: 3655 return cxgb_setup_tc_flower(dev, type_data); 3656 case TC_SETUP_CLSMATCHALL: 3657 return cxgb_setup_tc_matchall(dev, type_data, true); 3658 default: 3659 return -EOPNOTSUPP; 3660 } 3661 } 3662 3663 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type, 3664 void *type_data, void *cb_priv) 3665 { 3666 struct net_device *dev = cb_priv; 3667 struct port_info *pi = netdev2pinfo(dev); 3668 struct adapter *adap = netdev2adap(dev); 3669 3670 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3671 dev_err(adap->pdev_dev, 3672 "Failed to setup tc on port %d. Link Down?\n", 3673 pi->port_id); 3674 return -EINVAL; 3675 } 3676 3677 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3678 return -EOPNOTSUPP; 3679 3680 switch (type) { 3681 case TC_SETUP_CLSMATCHALL: 3682 return cxgb_setup_tc_matchall(dev, type_data, false); 3683 default: 3684 break; 3685 } 3686 3687 return -EOPNOTSUPP; 3688 } 3689 3690 static int cxgb_setup_tc_mqprio(struct net_device *dev, 3691 struct tc_mqprio_qopt_offload *mqprio) 3692 { 3693 struct adapter *adap = netdev2adap(dev); 3694 3695 if (!is_ethofld(adap) || !adap->tc_mqprio) 3696 return -ENOMEM; 3697 3698 return cxgb4_setup_tc_mqprio(dev, mqprio); 3699 } 3700 3701 static LIST_HEAD(cxgb_block_cb_list); 3702 3703 static int cxgb_setup_tc_block(struct net_device *dev, 3704 struct flow_block_offload *f) 3705 { 3706 struct port_info *pi = netdev_priv(dev); 3707 flow_setup_cb_t *cb; 3708 bool ingress_only; 3709 3710 pi->tc_block_shared = f->block_shared; 3711 if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) { 3712 cb = cxgb_setup_tc_block_egress_cb; 3713 ingress_only = false; 3714 } else { 3715 cb = cxgb_setup_tc_block_ingress_cb; 3716 ingress_only = true; 3717 } 3718 3719 return flow_block_cb_setup_simple(f, &cxgb_block_cb_list, 3720 cb, pi, dev, ingress_only); 3721 } 3722 3723 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3724 void *type_data) 3725 { 3726 switch (type) { 3727 case TC_SETUP_QDISC_MQPRIO: 3728 return cxgb_setup_tc_mqprio(dev, type_data); 3729 case TC_SETUP_BLOCK: 3730 return cxgb_setup_tc_block(dev, type_data); 3731 default: 3732 return -EOPNOTSUPP; 3733 } 3734 } 3735 3736 static int cxgb_udp_tunnel_unset_port(struct net_device *netdev, 3737 unsigned int table, unsigned int entry, 3738 struct udp_tunnel_info *ti) 3739 { 3740 struct port_info *pi = netdev_priv(netdev); 3741 struct adapter *adapter = pi->adapter; 3742 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3743 int ret = 0, i; 3744 3745 switch (ti->type) { 3746 case UDP_TUNNEL_TYPE_VXLAN: 3747 adapter->vxlan_port = 0; 3748 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3749 break; 3750 case UDP_TUNNEL_TYPE_GENEVE: 3751 adapter->geneve_port = 0; 3752 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3753 break; 3754 default: 3755 return -EINVAL; 3756 } 3757 3758 /* Matchall mac entries can be deleted only after all tunnel ports 3759 * are brought down or removed. 3760 */ 3761 if (!adapter->rawf_cnt) 3762 return 0; 3763 for_each_port(adapter, i) { 3764 pi = adap2pinfo(adapter, i); 3765 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3766 match_all_mac, match_all_mac, 3767 adapter->rawf_start + pi->port_id, 3768 1, pi->port_id, false); 3769 if (ret < 0) { 3770 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3771 i); 3772 return ret; 3773 } 3774 } 3775 3776 return 0; 3777 } 3778 3779 static int cxgb_udp_tunnel_set_port(struct net_device *netdev, 3780 unsigned int table, unsigned int entry, 3781 struct udp_tunnel_info *ti) 3782 { 3783 struct port_info *pi = netdev_priv(netdev); 3784 struct adapter *adapter = pi->adapter; 3785 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3786 int i, ret; 3787 3788 switch (ti->type) { 3789 case UDP_TUNNEL_TYPE_VXLAN: 3790 adapter->vxlan_port = ti->port; 3791 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3792 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3793 break; 3794 case UDP_TUNNEL_TYPE_GENEVE: 3795 adapter->geneve_port = ti->port; 3796 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3797 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3798 break; 3799 default: 3800 return -EINVAL; 3801 } 3802 3803 /* Create a 'match all' mac filter entry for inner mac, 3804 * if raw mac interface is supported. Once the linux kernel provides 3805 * driver entry points for adding/deleting the inner mac addresses, 3806 * we will remove this 'match all' entry and fallback to adding 3807 * exact match filters. 3808 */ 3809 for_each_port(adapter, i) { 3810 pi = adap2pinfo(adapter, i); 3811 3812 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3813 match_all_mac, 3814 match_all_mac, 3815 adapter->rawf_start + pi->port_id, 3816 1, pi->port_id, false); 3817 if (ret < 0) { 3818 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3819 be16_to_cpu(ti->port)); 3820 return ret; 3821 } 3822 } 3823 3824 return 0; 3825 } 3826 3827 static const struct udp_tunnel_nic_info cxgb_udp_tunnels = { 3828 .set_port = cxgb_udp_tunnel_set_port, 3829 .unset_port = cxgb_udp_tunnel_unset_port, 3830 .tables = { 3831 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 3832 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 3833 }, 3834 }; 3835 3836 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3837 struct net_device *dev, 3838 netdev_features_t features) 3839 { 3840 struct port_info *pi = netdev_priv(dev); 3841 struct adapter *adapter = pi->adapter; 3842 3843 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3844 return features; 3845 3846 /* Check if hw supports offload for this packet */ 3847 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3848 return features; 3849 3850 /* Offload is not supported for this encapsulated packet */ 3851 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3852 } 3853 3854 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3855 netdev_features_t features) 3856 { 3857 /* Disable GRO, if RX_CSUM is disabled */ 3858 if (!(features & NETIF_F_RXCSUM)) 3859 features &= ~NETIF_F_GRO; 3860 3861 return features; 3862 } 3863 3864 static const struct net_device_ops cxgb4_netdev_ops = { 3865 .ndo_open = cxgb_open, 3866 .ndo_stop = cxgb_close, 3867 .ndo_start_xmit = t4_start_xmit, 3868 .ndo_select_queue = cxgb_select_queue, 3869 .ndo_get_stats64 = cxgb_get_stats, 3870 .ndo_set_rx_mode = cxgb_set_rxmode, 3871 .ndo_set_mac_address = cxgb_set_mac_addr, 3872 .ndo_set_features = cxgb_set_features, 3873 .ndo_validate_addr = eth_validate_addr, 3874 .ndo_eth_ioctl = cxgb_ioctl, 3875 .ndo_change_mtu = cxgb_change_mtu, 3876 #ifdef CONFIG_NET_POLL_CONTROLLER 3877 .ndo_poll_controller = cxgb_netpoll, 3878 #endif 3879 #ifdef CONFIG_CHELSIO_T4_FCOE 3880 .ndo_fcoe_enable = cxgb_fcoe_enable, 3881 .ndo_fcoe_disable = cxgb_fcoe_disable, 3882 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3883 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3884 .ndo_setup_tc = cxgb_setup_tc, 3885 .ndo_features_check = cxgb_features_check, 3886 .ndo_fix_features = cxgb_fix_features, 3887 }; 3888 3889 #ifdef CONFIG_PCI_IOV 3890 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3891 .ndo_open = cxgb4_mgmt_open, 3892 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3893 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3894 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3895 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3896 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3897 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state, 3898 }; 3899 3900 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3901 struct ethtool_drvinfo *info) 3902 { 3903 struct adapter *adapter = netdev2adap(dev); 3904 3905 strscpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3906 strscpy(info->bus_info, pci_name(adapter->pdev), 3907 sizeof(info->bus_info)); 3908 } 3909 3910 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3911 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3912 }; 3913 #endif 3914 3915 static void notify_fatal_err(struct work_struct *work) 3916 { 3917 struct adapter *adap; 3918 3919 adap = container_of(work, struct adapter, fatal_err_notify_task); 3920 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3921 } 3922 3923 void t4_fatal_err(struct adapter *adap) 3924 { 3925 int port; 3926 3927 if (pci_channel_offline(adap->pdev)) 3928 return; 3929 3930 /* Disable the SGE since ULDs are going to free resources that 3931 * could be exposed to the adapter. RDMA MWs for example... 3932 */ 3933 t4_shutdown_adapter(adap); 3934 for_each_port(adap, port) { 3935 struct net_device *dev = adap->port[port]; 3936 3937 /* If we get here in very early initialization the network 3938 * devices may not have been set up yet. 3939 */ 3940 if (!dev) 3941 continue; 3942 3943 netif_tx_stop_all_queues(dev); 3944 netif_carrier_off(dev); 3945 } 3946 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3947 queue_work(adap->workq, &adap->fatal_err_notify_task); 3948 } 3949 3950 static void setup_memwin(struct adapter *adap) 3951 { 3952 u32 nic_win_base = t4_get_util_window(adap); 3953 3954 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3955 } 3956 3957 static void setup_memwin_rdma(struct adapter *adap) 3958 { 3959 if (adap->vres.ocq.size) { 3960 u32 start; 3961 unsigned int sz_kb; 3962 3963 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3964 start &= PCI_BASE_ADDRESS_MEM_MASK; 3965 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3966 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3967 t4_write_reg(adap, 3968 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3969 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3970 t4_write_reg(adap, 3971 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3972 adap->vres.ocq.start); 3973 t4_read_reg(adap, 3974 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3975 } 3976 } 3977 3978 /* HMA Definitions */ 3979 3980 /* The maximum number of address that can be send in a single FW cmd */ 3981 #define HMA_MAX_ADDR_IN_CMD 5 3982 3983 #define HMA_PAGE_SIZE PAGE_SIZE 3984 3985 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3986 3987 #define HMA_PAGE_ORDER \ 3988 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3989 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3990 3991 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3992 * configuration(in units of MB). 3993 */ 3994 #define HMA_MIN_TOTAL_SIZE 1 3995 #define HMA_MAX_TOTAL_SIZE \ 3996 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3997 HMA_MAX_NO_FW_ADDRESS) >> 20) 3998 3999 static void adap_free_hma_mem(struct adapter *adapter) 4000 { 4001 struct scatterlist *iter; 4002 struct page *page; 4003 int i; 4004 4005 if (!adapter->hma.sgt) 4006 return; 4007 4008 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 4009 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 4010 adapter->hma.sgt->nents, DMA_BIDIRECTIONAL); 4011 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 4012 } 4013 4014 for_each_sg(adapter->hma.sgt->sgl, iter, 4015 adapter->hma.sgt->orig_nents, i) { 4016 page = sg_page(iter); 4017 if (page) 4018 __free_pages(page, HMA_PAGE_ORDER); 4019 } 4020 4021 kfree(adapter->hma.phy_addr); 4022 sg_free_table(adapter->hma.sgt); 4023 kfree(adapter->hma.sgt); 4024 adapter->hma.sgt = NULL; 4025 } 4026 4027 static int adap_config_hma(struct adapter *adapter) 4028 { 4029 struct scatterlist *sgl, *iter; 4030 struct sg_table *sgt; 4031 struct page *newpage; 4032 unsigned int i, j, k; 4033 u32 param, hma_size; 4034 unsigned int ncmds; 4035 size_t page_size; 4036 u32 page_order; 4037 int node, ret; 4038 4039 /* HMA is supported only for T6+ cards. 4040 * Avoid initializing HMA in kdump kernels. 4041 */ 4042 if (is_kdump_kernel() || 4043 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 4044 return 0; 4045 4046 /* Get the HMA region size required by fw */ 4047 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4048 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 4049 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 4050 1, ¶m, &hma_size); 4051 /* An error means card has its own memory or HMA is not supported by 4052 * the firmware. Return without any errors. 4053 */ 4054 if (ret || !hma_size) 4055 return 0; 4056 4057 if (hma_size < HMA_MIN_TOTAL_SIZE || 4058 hma_size > HMA_MAX_TOTAL_SIZE) { 4059 dev_err(adapter->pdev_dev, 4060 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 4061 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 4062 return -EINVAL; 4063 } 4064 4065 page_size = HMA_PAGE_SIZE; 4066 page_order = HMA_PAGE_ORDER; 4067 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 4068 if (unlikely(!adapter->hma.sgt)) { 4069 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 4070 return -ENOMEM; 4071 } 4072 sgt = adapter->hma.sgt; 4073 /* FW returned value will be in MB's 4074 */ 4075 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 4076 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 4077 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 4078 kfree(adapter->hma.sgt); 4079 adapter->hma.sgt = NULL; 4080 return -ENOMEM; 4081 } 4082 4083 sgl = adapter->hma.sgt->sgl; 4084 node = dev_to_node(adapter->pdev_dev); 4085 for_each_sg(sgl, iter, sgt->orig_nents, i) { 4086 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 4087 __GFP_ZERO, page_order); 4088 if (!newpage) { 4089 dev_err(adapter->pdev_dev, 4090 "Not enough memory for HMA page allocation\n"); 4091 ret = -ENOMEM; 4092 goto free_hma; 4093 } 4094 sg_set_page(iter, newpage, page_size << page_order, 0); 4095 } 4096 4097 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 4098 DMA_BIDIRECTIONAL); 4099 if (!sgt->nents) { 4100 dev_err(adapter->pdev_dev, 4101 "Not enough memory for HMA DMA mapping"); 4102 ret = -ENOMEM; 4103 goto free_hma; 4104 } 4105 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 4106 4107 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 4108 GFP_KERNEL); 4109 if (unlikely(!adapter->hma.phy_addr)) 4110 goto free_hma; 4111 4112 for_each_sg(sgl, iter, sgt->nents, i) { 4113 newpage = sg_page(iter); 4114 adapter->hma.phy_addr[i] = sg_dma_address(iter); 4115 } 4116 4117 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 4118 /* Pass on the addresses to firmware */ 4119 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 4120 struct fw_hma_cmd hma_cmd; 4121 u8 naddr = HMA_MAX_ADDR_IN_CMD; 4122 u8 soc = 0, eoc = 0; 4123 u8 hma_mode = 1; /* Presently we support only Page table mode */ 4124 4125 soc = (i == 0) ? 1 : 0; 4126 eoc = (i == ncmds - 1) ? 1 : 0; 4127 4128 /* For last cmd, set naddr corresponding to remaining 4129 * addresses 4130 */ 4131 if (i == ncmds - 1) { 4132 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 4133 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 4134 } 4135 memset(&hma_cmd, 0, sizeof(hma_cmd)); 4136 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 4137 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 4138 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 4139 4140 hma_cmd.mode_to_pcie_params = 4141 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 4142 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 4143 4144 /* HMA cmd size specified in MB's */ 4145 hma_cmd.naddr_size = 4146 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 4147 FW_HMA_CMD_NADDR_V(naddr)); 4148 4149 /* Total Page size specified in units of 4K */ 4150 hma_cmd.addr_size_pkd = 4151 htonl(FW_HMA_CMD_ADDR_SIZE_V 4152 ((page_size << page_order) >> 12)); 4153 4154 /* Fill the 5 addresses */ 4155 for (j = 0; j < naddr; j++) { 4156 hma_cmd.phy_address[j] = 4157 cpu_to_be64(adapter->hma.phy_addr[j + k]); 4158 } 4159 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 4160 sizeof(hma_cmd), &hma_cmd); 4161 if (ret) { 4162 dev_err(adapter->pdev_dev, 4163 "HMA FW command failed with err %d\n", ret); 4164 goto free_hma; 4165 } 4166 } 4167 4168 if (!ret) 4169 dev_info(adapter->pdev_dev, 4170 "Reserved %uMB host memory for HMA\n", hma_size); 4171 return ret; 4172 4173 free_hma: 4174 adap_free_hma_mem(adapter); 4175 return ret; 4176 } 4177 4178 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 4179 { 4180 u32 v; 4181 int ret; 4182 4183 /* Now that we've successfully configured and initialized the adapter 4184 * can ask the Firmware what resources it has provisioned for us. 4185 */ 4186 ret = t4_get_pfres(adap); 4187 if (ret) { 4188 dev_err(adap->pdev_dev, 4189 "Unable to retrieve resource provisioning information\n"); 4190 return ret; 4191 } 4192 4193 /* get device capabilities */ 4194 memset(c, 0, sizeof(*c)); 4195 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4196 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4197 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 4198 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 4199 if (ret < 0) 4200 return ret; 4201 4202 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4203 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 4204 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 4205 if (ret < 0) 4206 return ret; 4207 4208 ret = t4_config_glbl_rss(adap, adap->pf, 4209 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 4210 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 4211 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 4212 if (ret < 0) 4213 return ret; 4214 4215 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 4216 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 4217 FW_CMD_CAP_PF); 4218 if (ret < 0) 4219 return ret; 4220 4221 t4_sge_init(adap); 4222 4223 /* tweak some settings */ 4224 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 4225 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 4226 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 4227 v = t4_read_reg(adap, TP_PIO_DATA_A); 4228 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 4229 4230 /* first 4 Tx modulation queues point to consecutive Tx channels */ 4231 adap->params.tp.tx_modq_map = 0xE4; 4232 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 4233 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 4234 4235 /* associate each Tx modulation queue with consecutive Tx channels */ 4236 v = 0x84218421; 4237 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4238 &v, 1, TP_TX_SCHED_HDR_A); 4239 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4240 &v, 1, TP_TX_SCHED_FIFO_A); 4241 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 4242 &v, 1, TP_TX_SCHED_PCMD_A); 4243 4244 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 4245 if (is_offload(adap)) { 4246 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 4247 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4248 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4249 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4250 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 4251 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 4252 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4253 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4254 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 4255 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 4256 } 4257 4258 /* get basic stuff going */ 4259 return t4_early_init(adap, adap->pf); 4260 } 4261 4262 /* 4263 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 4264 */ 4265 #define MAX_ATIDS 8192U 4266 4267 /* 4268 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4269 * 4270 * If the firmware we're dealing with has Configuration File support, then 4271 * we use that to perform all configuration 4272 */ 4273 4274 /* 4275 * Tweak configuration based on module parameters, etc. Most of these have 4276 * defaults assigned to them by Firmware Configuration Files (if we're using 4277 * them) but need to be explicitly set if we're using hard-coded 4278 * initialization. But even in the case of using Firmware Configuration 4279 * Files, we'd like to expose the ability to change these via module 4280 * parameters so these are essentially common tweaks/settings for 4281 * Configuration Files and hard-coded initialization ... 4282 */ 4283 static int adap_init0_tweaks(struct adapter *adapter) 4284 { 4285 /* 4286 * Fix up various Host-Dependent Parameters like Page Size, Cache 4287 * Line Size, etc. The firmware default is for a 4KB Page Size and 4288 * 64B Cache Line Size ... 4289 */ 4290 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 4291 4292 /* 4293 * Process module parameters which affect early initialization. 4294 */ 4295 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 4296 dev_err(&adapter->pdev->dev, 4297 "Ignoring illegal rx_dma_offset=%d, using 2\n", 4298 rx_dma_offset); 4299 rx_dma_offset = 2; 4300 } 4301 t4_set_reg_field(adapter, SGE_CONTROL_A, 4302 PKTSHIFT_V(PKTSHIFT_M), 4303 PKTSHIFT_V(rx_dma_offset)); 4304 4305 /* 4306 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 4307 * adds the pseudo header itself. 4308 */ 4309 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 4310 CSUM_HAS_PSEUDO_HDR_F, 0); 4311 4312 return 0; 4313 } 4314 4315 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 4316 * unto themselves and they contain their own firmware to perform their 4317 * tasks ... 4318 */ 4319 static int phy_aq1202_version(const u8 *phy_fw_data, 4320 size_t phy_fw_size) 4321 { 4322 int offset; 4323 4324 /* At offset 0x8 you're looking for the primary image's 4325 * starting offset which is 3 Bytes wide 4326 * 4327 * At offset 0xa of the primary image, you look for the offset 4328 * of the DRAM segment which is 3 Bytes wide. 4329 * 4330 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 4331 * wide 4332 */ 4333 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 4334 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 4335 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 4336 4337 offset = le24(phy_fw_data + 0x8) << 12; 4338 offset = le24(phy_fw_data + offset + 0xa); 4339 return be16(phy_fw_data + offset + 0x27e); 4340 4341 #undef be16 4342 #undef le16 4343 #undef le24 4344 } 4345 4346 static struct info_10gbt_phy_fw { 4347 unsigned int phy_fw_id; /* PCI Device ID */ 4348 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 4349 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 4350 int phy_flash; /* Has FLASH for PHY Firmware */ 4351 } phy_info_array[] = { 4352 { 4353 PHY_AQ1202_DEVICEID, 4354 PHY_AQ1202_FIRMWARE, 4355 phy_aq1202_version, 4356 1, 4357 }, 4358 { 4359 PHY_BCM84834_DEVICEID, 4360 PHY_BCM84834_FIRMWARE, 4361 NULL, 4362 0, 4363 }, 4364 { 0, NULL, NULL }, 4365 }; 4366 4367 static struct info_10gbt_phy_fw *find_phy_info(int devid) 4368 { 4369 int i; 4370 4371 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 4372 if (phy_info_array[i].phy_fw_id == devid) 4373 return &phy_info_array[i]; 4374 } 4375 return NULL; 4376 } 4377 4378 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 4379 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 4380 * we return a negative error number. If we transfer new firmware we return 1 4381 * (from t4_load_phy_fw()). If we don't do anything we return 0. 4382 */ 4383 static int adap_init0_phy(struct adapter *adap) 4384 { 4385 const struct firmware *phyf; 4386 int ret; 4387 struct info_10gbt_phy_fw *phy_info; 4388 4389 /* Use the device ID to determine which PHY file to flash. 4390 */ 4391 phy_info = find_phy_info(adap->pdev->device); 4392 if (!phy_info) { 4393 dev_warn(adap->pdev_dev, 4394 "No PHY Firmware file found for this PHY\n"); 4395 return -EOPNOTSUPP; 4396 } 4397 4398 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 4399 * use that. The adapter firmware provides us with a memory buffer 4400 * where we can load a PHY firmware file from the host if we want to 4401 * override the PHY firmware File in flash. 4402 */ 4403 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 4404 adap->pdev_dev); 4405 if (ret < 0) { 4406 /* For adapters without FLASH attached to PHY for their 4407 * firmware, it's obviously a fatal error if we can't get the 4408 * firmware to the adapter. For adapters with PHY firmware 4409 * FLASH storage, it's worth a warning if we can't find the 4410 * PHY Firmware but we'll neuter the error ... 4411 */ 4412 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 4413 "/lib/firmware/%s, error %d\n", 4414 phy_info->phy_fw_file, -ret); 4415 if (phy_info->phy_flash) { 4416 int cur_phy_fw_ver = 0; 4417 4418 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 4419 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 4420 "FLASH copy, version %#x\n", cur_phy_fw_ver); 4421 ret = 0; 4422 } 4423 4424 return ret; 4425 } 4426 4427 /* Load PHY Firmware onto adapter. 4428 */ 4429 ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version, 4430 (u8 *)phyf->data, phyf->size); 4431 if (ret < 0) 4432 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 4433 -ret); 4434 else if (ret > 0) { 4435 int new_phy_fw_ver = 0; 4436 4437 if (phy_info->phy_fw_version) 4438 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 4439 phyf->size); 4440 dev_info(adap->pdev_dev, "Successfully transferred PHY " 4441 "Firmware /lib/firmware/%s, version %#x\n", 4442 phy_info->phy_fw_file, new_phy_fw_ver); 4443 } 4444 4445 release_firmware(phyf); 4446 4447 return ret; 4448 } 4449 4450 /* 4451 * Attempt to initialize the adapter via a Firmware Configuration File. 4452 */ 4453 static int adap_init0_config(struct adapter *adapter, int reset) 4454 { 4455 char *fw_config_file, fw_config_file_path[256]; 4456 u32 finiver, finicsum, cfcsum, param, val; 4457 struct fw_caps_config_cmd caps_cmd; 4458 unsigned long mtype = 0, maddr = 0; 4459 const struct firmware *cf; 4460 char *config_name = NULL; 4461 int config_issued = 0; 4462 int ret; 4463 4464 /* 4465 * Reset device if necessary. 4466 */ 4467 if (reset) { 4468 ret = t4_fw_reset(adapter, adapter->mbox, 4469 PIORSTMODE_F | PIORST_F); 4470 if (ret < 0) 4471 goto bye; 4472 } 4473 4474 /* If this is a 10Gb/s-BT adapter make sure the chip-external 4475 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 4476 * to be performed after any global adapter RESET above since some 4477 * PHYs only have local RAM copies of the PHY firmware. 4478 */ 4479 if (is_10gbt_device(adapter->pdev->device)) { 4480 ret = adap_init0_phy(adapter); 4481 if (ret < 0) 4482 goto bye; 4483 } 4484 /* 4485 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 4486 * then use that. Otherwise, use the configuration file stored 4487 * in the adapter flash ... 4488 */ 4489 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 4490 case CHELSIO_T4: 4491 fw_config_file = FW4_CFNAME; 4492 break; 4493 case CHELSIO_T5: 4494 fw_config_file = FW5_CFNAME; 4495 break; 4496 case CHELSIO_T6: 4497 fw_config_file = FW6_CFNAME; 4498 break; 4499 default: 4500 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 4501 adapter->pdev->device); 4502 ret = -EINVAL; 4503 goto bye; 4504 } 4505 4506 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 4507 if (ret < 0) { 4508 config_name = "On FLASH"; 4509 mtype = FW_MEMTYPE_CF_FLASH; 4510 maddr = t4_flash_cfg_addr(adapter); 4511 } else { 4512 u32 params[7], val[7]; 4513 4514 sprintf(fw_config_file_path, 4515 "/lib/firmware/%s", fw_config_file); 4516 config_name = fw_config_file_path; 4517 4518 if (cf->size >= FLASH_CFG_MAX_SIZE) 4519 ret = -ENOMEM; 4520 else { 4521 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4522 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4523 ret = t4_query_params(adapter, adapter->mbox, 4524 adapter->pf, 0, 1, params, val); 4525 if (ret == 0) { 4526 /* 4527 * For t4_memory_rw() below addresses and 4528 * sizes have to be in terms of multiples of 4 4529 * bytes. So, if the Configuration File isn't 4530 * a multiple of 4 bytes in length we'll have 4531 * to write that out separately since we can't 4532 * guarantee that the bytes following the 4533 * residual byte in the buffer returned by 4534 * request_firmware() are zeroed out ... 4535 */ 4536 size_t resid = cf->size & 0x3; 4537 size_t size = cf->size & ~0x3; 4538 __be32 *data = (__be32 *)cf->data; 4539 4540 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 4541 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 4542 4543 spin_lock(&adapter->win0_lock); 4544 ret = t4_memory_rw(adapter, 0, mtype, maddr, 4545 size, data, T4_MEMORY_WRITE); 4546 if (ret == 0 && resid != 0) { 4547 union { 4548 __be32 word; 4549 char buf[4]; 4550 } last; 4551 int i; 4552 4553 last.word = data[size >> 2]; 4554 for (i = resid; i < 4; i++) 4555 last.buf[i] = 0; 4556 ret = t4_memory_rw(adapter, 0, mtype, 4557 maddr + size, 4558 4, &last.word, 4559 T4_MEMORY_WRITE); 4560 } 4561 spin_unlock(&adapter->win0_lock); 4562 } 4563 } 4564 4565 release_firmware(cf); 4566 if (ret) 4567 goto bye; 4568 } 4569 4570 val = 0; 4571 4572 /* Ofld + Hash filter is supported. Older fw will fail this request and 4573 * it is fine. 4574 */ 4575 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4576 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD)); 4577 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 4578 1, ¶m, &val); 4579 4580 /* FW doesn't know about Hash filter + ofld support, 4581 * it's not a problem, don't return an error. 4582 */ 4583 if (ret < 0) { 4584 dev_warn(adapter->pdev_dev, 4585 "Hash filter with ofld is not supported by FW\n"); 4586 } 4587 4588 /* 4589 * Issue a Capability Configuration command to the firmware to get it 4590 * to parse the Configuration File. We don't use t4_fw_config_file() 4591 * because we want the ability to modify various features after we've 4592 * processed the configuration file ... 4593 */ 4594 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4595 caps_cmd.op_to_write = 4596 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4597 FW_CMD_REQUEST_F | 4598 FW_CMD_READ_F); 4599 caps_cmd.cfvalid_to_len16 = 4600 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 4601 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 4602 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 4603 FW_LEN16(caps_cmd)); 4604 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4605 &caps_cmd); 4606 4607 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 4608 * Configuration File in FLASH), our last gasp effort is to use the 4609 * Firmware Configuration File which is embedded in the firmware. A 4610 * very few early versions of the firmware didn't have one embedded 4611 * but we can ignore those. 4612 */ 4613 if (ret == -ENOENT) { 4614 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4615 caps_cmd.op_to_write = 4616 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4617 FW_CMD_REQUEST_F | 4618 FW_CMD_READ_F); 4619 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4620 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 4621 sizeof(caps_cmd), &caps_cmd); 4622 config_name = "Firmware Default"; 4623 } 4624 4625 config_issued = 1; 4626 if (ret < 0) 4627 goto bye; 4628 4629 finiver = ntohl(caps_cmd.finiver); 4630 finicsum = ntohl(caps_cmd.finicsum); 4631 cfcsum = ntohl(caps_cmd.cfcsum); 4632 if (finicsum != cfcsum) 4633 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 4634 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 4635 finicsum, cfcsum); 4636 4637 /* 4638 * And now tell the firmware to use the configuration we just loaded. 4639 */ 4640 caps_cmd.op_to_write = 4641 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4642 FW_CMD_REQUEST_F | 4643 FW_CMD_WRITE_F); 4644 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4645 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4646 NULL); 4647 if (ret < 0) 4648 goto bye; 4649 4650 /* 4651 * Tweak configuration based on system architecture, module 4652 * parameters, etc. 4653 */ 4654 ret = adap_init0_tweaks(adapter); 4655 if (ret < 0) 4656 goto bye; 4657 4658 /* We will proceed even if HMA init fails. */ 4659 ret = adap_config_hma(adapter); 4660 if (ret) 4661 dev_err(adapter->pdev_dev, 4662 "HMA configuration failed with error %d\n", ret); 4663 4664 if (is_t6(adapter->params.chip)) { 4665 adap_config_hpfilter(adapter); 4666 ret = setup_ppod_edram(adapter); 4667 if (!ret) 4668 dev_info(adapter->pdev_dev, "Successfully enabled " 4669 "ppod edram feature\n"); 4670 } 4671 4672 /* 4673 * And finally tell the firmware to initialize itself using the 4674 * parameters from the Configuration File. 4675 */ 4676 ret = t4_fw_initialize(adapter, adapter->mbox); 4677 if (ret < 0) 4678 goto bye; 4679 4680 /* Emit Firmware Configuration File information and return 4681 * successfully. 4682 */ 4683 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4684 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4685 config_name, finiver, cfcsum); 4686 return 0; 4687 4688 /* 4689 * Something bad happened. Return the error ... (If the "error" 4690 * is that there's no Configuration File on the adapter we don't 4691 * want to issue a warning since this is fairly common.) 4692 */ 4693 bye: 4694 if (config_issued && ret != -ENOENT) 4695 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4696 config_name, -ret); 4697 return ret; 4698 } 4699 4700 static struct fw_info fw_info_array[] = { 4701 { 4702 .chip = CHELSIO_T4, 4703 .fs_name = FW4_CFNAME, 4704 .fw_mod_name = FW4_FNAME, 4705 .fw_hdr = { 4706 .chip = FW_HDR_CHIP_T4, 4707 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4708 .intfver_nic = FW_INTFVER(T4, NIC), 4709 .intfver_vnic = FW_INTFVER(T4, VNIC), 4710 .intfver_ri = FW_INTFVER(T4, RI), 4711 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4712 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4713 }, 4714 }, { 4715 .chip = CHELSIO_T5, 4716 .fs_name = FW5_CFNAME, 4717 .fw_mod_name = FW5_FNAME, 4718 .fw_hdr = { 4719 .chip = FW_HDR_CHIP_T5, 4720 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4721 .intfver_nic = FW_INTFVER(T5, NIC), 4722 .intfver_vnic = FW_INTFVER(T5, VNIC), 4723 .intfver_ri = FW_INTFVER(T5, RI), 4724 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4725 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4726 }, 4727 }, { 4728 .chip = CHELSIO_T6, 4729 .fs_name = FW6_CFNAME, 4730 .fw_mod_name = FW6_FNAME, 4731 .fw_hdr = { 4732 .chip = FW_HDR_CHIP_T6, 4733 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4734 .intfver_nic = FW_INTFVER(T6, NIC), 4735 .intfver_vnic = FW_INTFVER(T6, VNIC), 4736 .intfver_ofld = FW_INTFVER(T6, OFLD), 4737 .intfver_ri = FW_INTFVER(T6, RI), 4738 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4739 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4740 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4741 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4742 }, 4743 } 4744 4745 }; 4746 4747 static struct fw_info *find_fw_info(int chip) 4748 { 4749 int i; 4750 4751 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4752 if (fw_info_array[i].chip == chip) 4753 return &fw_info_array[i]; 4754 } 4755 return NULL; 4756 } 4757 4758 /* 4759 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4760 */ 4761 static int adap_init0(struct adapter *adap, int vpd_skip) 4762 { 4763 struct fw_caps_config_cmd caps_cmd; 4764 u32 params[7], val[7]; 4765 enum dev_state state; 4766 u32 v, port_vec; 4767 int reset = 1; 4768 int ret; 4769 4770 /* Grab Firmware Device Log parameters as early as possible so we have 4771 * access to it for debugging, etc. 4772 */ 4773 ret = t4_init_devlog_params(adap); 4774 if (ret < 0) 4775 return ret; 4776 4777 /* Contact FW, advertising Master capability */ 4778 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4779 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4780 if (ret < 0) { 4781 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4782 ret); 4783 return ret; 4784 } 4785 if (ret == adap->mbox) 4786 adap->flags |= CXGB4_MASTER_PF; 4787 4788 /* 4789 * If we're the Master PF Driver and the device is uninitialized, 4790 * then let's consider upgrading the firmware ... (We always want 4791 * to check the firmware version number in order to A. get it for 4792 * later reporting and B. to warn if the currently loaded firmware 4793 * is excessively mismatched relative to the driver.) 4794 */ 4795 4796 t4_get_version_info(adap); 4797 ret = t4_check_fw_version(adap); 4798 /* If firmware is too old (not supported by driver) force an update. */ 4799 if (ret) 4800 state = DEV_STATE_UNINIT; 4801 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) { 4802 struct fw_info *fw_info; 4803 struct fw_hdr *card_fw; 4804 const struct firmware *fw; 4805 const u8 *fw_data = NULL; 4806 unsigned int fw_size = 0; 4807 4808 /* This is the firmware whose headers the driver was compiled 4809 * against 4810 */ 4811 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4812 if (fw_info == NULL) { 4813 dev_err(adap->pdev_dev, 4814 "unable to get firmware info for chip %d.\n", 4815 CHELSIO_CHIP_VERSION(adap->params.chip)); 4816 return -EINVAL; 4817 } 4818 4819 /* allocate memory to read the header of the firmware on the 4820 * card 4821 */ 4822 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4823 if (!card_fw) { 4824 ret = -ENOMEM; 4825 goto bye; 4826 } 4827 4828 /* Get FW from from /lib/firmware/ */ 4829 ret = request_firmware(&fw, fw_info->fw_mod_name, 4830 adap->pdev_dev); 4831 if (ret < 0) { 4832 dev_err(adap->pdev_dev, 4833 "unable to load firmware image %s, error %d\n", 4834 fw_info->fw_mod_name, ret); 4835 } else { 4836 fw_data = fw->data; 4837 fw_size = fw->size; 4838 } 4839 4840 /* upgrade FW logic */ 4841 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4842 state, &reset); 4843 4844 /* Cleaning up */ 4845 release_firmware(fw); 4846 kvfree(card_fw); 4847 4848 if (ret < 0) 4849 goto bye; 4850 } 4851 4852 /* If the firmware is initialized already, emit a simply note to that 4853 * effect. Otherwise, it's time to try initializing the adapter. 4854 */ 4855 if (state == DEV_STATE_INIT) { 4856 ret = adap_config_hma(adap); 4857 if (ret) 4858 dev_err(adap->pdev_dev, 4859 "HMA configuration failed with error %d\n", 4860 ret); 4861 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4862 "Adapter already initialized\n", 4863 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE"); 4864 } else { 4865 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4866 "Initializing adapter\n"); 4867 4868 /* Find out whether we're dealing with a version of the 4869 * firmware which has configuration file support. 4870 */ 4871 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4872 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4873 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4874 params, val); 4875 4876 /* If the firmware doesn't support Configuration Files, 4877 * return an error. 4878 */ 4879 if (ret < 0) { 4880 dev_err(adap->pdev_dev, "firmware doesn't support " 4881 "Firmware Configuration Files\n"); 4882 goto bye; 4883 } 4884 4885 /* The firmware provides us with a memory buffer where we can 4886 * load a Configuration File from the host if we want to 4887 * override the Configuration File in flash. 4888 */ 4889 ret = adap_init0_config(adap, reset); 4890 if (ret == -ENOENT) { 4891 dev_err(adap->pdev_dev, "no Configuration File " 4892 "present on adapter.\n"); 4893 goto bye; 4894 } 4895 if (ret < 0) { 4896 dev_err(adap->pdev_dev, "could not initialize " 4897 "adapter, error %d\n", -ret); 4898 goto bye; 4899 } 4900 } 4901 4902 /* Now that we've successfully configured and initialized the adapter 4903 * (or found it already initialized), we can ask the Firmware what 4904 * resources it has provisioned for us. 4905 */ 4906 ret = t4_get_pfres(adap); 4907 if (ret) { 4908 dev_err(adap->pdev_dev, 4909 "Unable to retrieve resource provisioning information\n"); 4910 goto bye; 4911 } 4912 4913 /* Grab VPD parameters. This should be done after we establish a 4914 * connection to the firmware since some of the VPD parameters 4915 * (notably the Core Clock frequency) are retrieved via requests to 4916 * the firmware. On the other hand, we need these fairly early on 4917 * so we do this right after getting ahold of the firmware. 4918 * 4919 * We need to do this after initializing the adapter because someone 4920 * could have FLASHed a new VPD which won't be read by the firmware 4921 * until we do the RESET ... 4922 */ 4923 if (!vpd_skip) { 4924 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4925 if (ret < 0) 4926 goto bye; 4927 } 4928 4929 /* Find out what ports are available to us. Note that we need to do 4930 * this before calling adap_init0_no_config() since it needs nports 4931 * and portvec ... 4932 */ 4933 v = 4934 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4935 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4936 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4937 if (ret < 0) 4938 goto bye; 4939 4940 adap->params.nports = hweight32(port_vec); 4941 adap->params.portvec = port_vec; 4942 4943 /* Give the SGE code a chance to pull in anything that it needs ... 4944 * Note that this must be called after we retrieve our VPD parameters 4945 * in order to know how to convert core ticks to seconds, etc. 4946 */ 4947 ret = t4_sge_init(adap); 4948 if (ret < 0) 4949 goto bye; 4950 4951 /* Grab the SGE Doorbell Queue Timer values. If successful, that 4952 * indicates that the Firmware and Hardware support this. 4953 */ 4954 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4955 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK)); 4956 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4957 1, params, val); 4958 4959 if (!ret) { 4960 adap->sge.dbqtimer_tick = val[0]; 4961 ret = t4_read_sge_dbqtimers(adap, 4962 ARRAY_SIZE(adap->sge.dbqtimer_val), 4963 adap->sge.dbqtimer_val); 4964 } 4965 4966 if (!ret) 4967 adap->flags |= CXGB4_SGE_DBQ_TIMER; 4968 4969 if (is_bypass_device(adap->pdev->device)) 4970 adap->params.bypass = 1; 4971 4972 /* 4973 * Grab some of our basic fundamental operating parameters. 4974 */ 4975 params[0] = FW_PARAM_PFVF(EQ_START); 4976 params[1] = FW_PARAM_PFVF(L2T_START); 4977 params[2] = FW_PARAM_PFVF(L2T_END); 4978 params[3] = FW_PARAM_PFVF(FILTER_START); 4979 params[4] = FW_PARAM_PFVF(FILTER_END); 4980 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4981 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4982 if (ret < 0) 4983 goto bye; 4984 adap->sge.egr_start = val[0]; 4985 adap->l2t_start = val[1]; 4986 adap->l2t_end = val[2]; 4987 adap->tids.ftid_base = val[3]; 4988 adap->tids.nftids = val[4] - val[3] + 1; 4989 adap->sge.ingr_start = val[5]; 4990 4991 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4992 params[0] = FW_PARAM_PFVF(HPFILTER_START); 4993 params[1] = FW_PARAM_PFVF(HPFILTER_END); 4994 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4995 params, val); 4996 if (ret < 0) 4997 goto bye; 4998 4999 adap->tids.hpftid_base = val[0]; 5000 adap->tids.nhpftids = val[1] - val[0] + 1; 5001 5002 /* Read the raw mps entries. In T6, the last 2 tcam entries 5003 * are reserved for raw mac addresses (rawf = 2, one per port). 5004 */ 5005 params[0] = FW_PARAM_PFVF(RAWF_START); 5006 params[1] = FW_PARAM_PFVF(RAWF_END); 5007 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5008 params, val); 5009 if (ret == 0) { 5010 adap->rawf_start = val[0]; 5011 adap->rawf_cnt = val[1] - val[0] + 1; 5012 } 5013 5014 adap->tids.tid_base = 5015 t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A); 5016 } 5017 5018 /* qids (ingress/egress) returned from firmware can be anywhere 5019 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 5020 * Hence driver needs to allocate memory for this range to 5021 * store the queue info. Get the highest IQFLINT/EQ index returned 5022 * in FW_EQ_*_CMD.alloc command. 5023 */ 5024 params[0] = FW_PARAM_PFVF(EQ_END); 5025 params[1] = FW_PARAM_PFVF(IQFLINT_END); 5026 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 5027 if (ret < 0) 5028 goto bye; 5029 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 5030 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 5031 5032 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 5033 sizeof(*adap->sge.egr_map), GFP_KERNEL); 5034 if (!adap->sge.egr_map) { 5035 ret = -ENOMEM; 5036 goto bye; 5037 } 5038 5039 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 5040 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 5041 if (!adap->sge.ingr_map) { 5042 ret = -ENOMEM; 5043 goto bye; 5044 } 5045 5046 /* Allocate the memory for the vaious egress queue bitmaps 5047 * ie starving_fl, txq_maperr and blocked_fl. 5048 */ 5049 adap->sge.starving_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL); 5050 if (!adap->sge.starving_fl) { 5051 ret = -ENOMEM; 5052 goto bye; 5053 } 5054 5055 adap->sge.txq_maperr = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL); 5056 if (!adap->sge.txq_maperr) { 5057 ret = -ENOMEM; 5058 goto bye; 5059 } 5060 5061 #ifdef CONFIG_DEBUG_FS 5062 adap->sge.blocked_fl = bitmap_zalloc(adap->sge.egr_sz, GFP_KERNEL); 5063 if (!adap->sge.blocked_fl) { 5064 ret = -ENOMEM; 5065 goto bye; 5066 } 5067 #endif 5068 5069 params[0] = FW_PARAM_PFVF(CLIP_START); 5070 params[1] = FW_PARAM_PFVF(CLIP_END); 5071 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 5072 if (ret < 0) 5073 goto bye; 5074 adap->clipt_start = val[0]; 5075 adap->clipt_end = val[1]; 5076 5077 /* Get the supported number of traffic classes */ 5078 params[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5079 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 5080 if (ret < 0) { 5081 /* We couldn't retrieve the number of Traffic Classes 5082 * supported by the hardware/firmware. So we hard 5083 * code it here. 5084 */ 5085 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 5086 } else { 5087 adap->params.nsched_cls = val[0]; 5088 } 5089 5090 /* query params related to active filter region */ 5091 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 5092 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 5093 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 5094 /* If Active filter size is set we enable establishing 5095 * offload connection through firmware work request 5096 */ 5097 if ((val[0] != val[1]) && (ret >= 0)) { 5098 adap->flags |= CXGB4_FW_OFLD_CONN; 5099 adap->tids.aftid_base = val[0]; 5100 adap->tids.aftid_end = val[1]; 5101 } 5102 5103 /* If we're running on newer firmware, let it know that we're 5104 * prepared to deal with encapsulated CPL messages. Older 5105 * firmware won't understand this and we'll just get 5106 * unencapsulated messages ... 5107 */ 5108 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5109 val[0] = 1; 5110 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 5111 5112 /* 5113 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 5114 * capability. Earlier versions of the firmware didn't have the 5115 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 5116 * permission to use ULPTX MEMWRITE DSGL. 5117 */ 5118 if (is_t4(adap->params.chip)) { 5119 adap->params.ulptx_memwrite_dsgl = false; 5120 } else { 5121 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5122 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5123 1, params, val); 5124 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 5125 } 5126 5127 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 5128 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5129 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5130 1, params, val); 5131 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 5132 5133 /* See if FW supports FW_FILTER2 work request */ 5134 if (is_t4(adap->params.chip)) { 5135 adap->params.filter2_wr_support = false; 5136 } else { 5137 params[0] = FW_PARAM_DEV(FILTER2_WR); 5138 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5139 1, params, val); 5140 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 5141 } 5142 5143 /* Check if FW supports returning vin and smt index. 5144 * If this is not supported, driver will interpret 5145 * these values from viid. 5146 */ 5147 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5148 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5149 1, params, val); 5150 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0); 5151 5152 /* 5153 * Get device capabilities so we can determine what resources we need 5154 * to manage. 5155 */ 5156 memset(&caps_cmd, 0, sizeof(caps_cmd)); 5157 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 5158 FW_CMD_REQUEST_F | FW_CMD_READ_F); 5159 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 5160 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 5161 &caps_cmd); 5162 if (ret < 0) 5163 goto bye; 5164 5165 /* hash filter has some mandatory register settings to be tested and for 5166 * that it needs to test whether offload is enabled or not, hence 5167 * checking and setting it here. 5168 */ 5169 if (caps_cmd.ofldcaps) 5170 adap->params.offload = 1; 5171 5172 if (caps_cmd.ofldcaps || 5173 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) || 5174 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) { 5175 /* query offload-related parameters */ 5176 params[0] = FW_PARAM_DEV(NTID); 5177 params[1] = FW_PARAM_PFVF(SERVER_START); 5178 params[2] = FW_PARAM_PFVF(SERVER_END); 5179 params[3] = FW_PARAM_PFVF(TDDP_START); 5180 params[4] = FW_PARAM_PFVF(TDDP_END); 5181 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5182 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 5183 params, val); 5184 if (ret < 0) 5185 goto bye; 5186 adap->tids.ntids = val[0]; 5187 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 5188 adap->tids.stid_base = val[1]; 5189 adap->tids.nstids = val[2] - val[1] + 1; 5190 /* 5191 * Setup server filter region. Divide the available filter 5192 * region into two parts. Regular filters get 1/3rd and server 5193 * filters get 2/3rd part. This is only enabled if workarond 5194 * path is enabled. 5195 * 1. For regular filters. 5196 * 2. Server filter: This are special filters which are used 5197 * to redirect SYN packets to offload queue. 5198 */ 5199 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) { 5200 adap->tids.sftid_base = adap->tids.ftid_base + 5201 DIV_ROUND_UP(adap->tids.nftids, 3); 5202 adap->tids.nsftids = adap->tids.nftids - 5203 DIV_ROUND_UP(adap->tids.nftids, 3); 5204 adap->tids.nftids = adap->tids.sftid_base - 5205 adap->tids.ftid_base; 5206 } 5207 adap->vres.ddp.start = val[3]; 5208 adap->vres.ddp.size = val[4] - val[3] + 1; 5209 adap->params.ofldq_wr_cred = val[5]; 5210 5211 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5212 init_hash_filter(adap); 5213 } else { 5214 adap->num_ofld_uld += 1; 5215 } 5216 5217 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) { 5218 params[0] = FW_PARAM_PFVF(ETHOFLD_START); 5219 params[1] = FW_PARAM_PFVF(ETHOFLD_END); 5220 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5221 params, val); 5222 if (!ret) { 5223 adap->tids.eotid_base = val[0]; 5224 adap->tids.neotids = min_t(u32, MAX_ATIDS, 5225 val[1] - val[0] + 1); 5226 adap->params.ethofld = 1; 5227 } 5228 } 5229 } 5230 if (caps_cmd.rdmacaps) { 5231 params[0] = FW_PARAM_PFVF(STAG_START); 5232 params[1] = FW_PARAM_PFVF(STAG_END); 5233 params[2] = FW_PARAM_PFVF(RQ_START); 5234 params[3] = FW_PARAM_PFVF(RQ_END); 5235 params[4] = FW_PARAM_PFVF(PBL_START); 5236 params[5] = FW_PARAM_PFVF(PBL_END); 5237 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 5238 params, val); 5239 if (ret < 0) 5240 goto bye; 5241 adap->vres.stag.start = val[0]; 5242 adap->vres.stag.size = val[1] - val[0] + 1; 5243 adap->vres.rq.start = val[2]; 5244 adap->vres.rq.size = val[3] - val[2] + 1; 5245 adap->vres.pbl.start = val[4]; 5246 adap->vres.pbl.size = val[5] - val[4] + 1; 5247 5248 params[0] = FW_PARAM_PFVF(SRQ_START); 5249 params[1] = FW_PARAM_PFVF(SRQ_END); 5250 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5251 params, val); 5252 if (!ret) { 5253 adap->vres.srq.start = val[0]; 5254 adap->vres.srq.size = val[1] - val[0] + 1; 5255 } 5256 if (adap->vres.srq.size) { 5257 adap->srq = t4_init_srq(adap->vres.srq.size); 5258 if (!adap->srq) 5259 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 5260 } 5261 5262 params[0] = FW_PARAM_PFVF(SQRQ_START); 5263 params[1] = FW_PARAM_PFVF(SQRQ_END); 5264 params[2] = FW_PARAM_PFVF(CQ_START); 5265 params[3] = FW_PARAM_PFVF(CQ_END); 5266 params[4] = FW_PARAM_PFVF(OCQ_START); 5267 params[5] = FW_PARAM_PFVF(OCQ_END); 5268 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 5269 val); 5270 if (ret < 0) 5271 goto bye; 5272 adap->vres.qp.start = val[0]; 5273 adap->vres.qp.size = val[1] - val[0] + 1; 5274 adap->vres.cq.start = val[2]; 5275 adap->vres.cq.size = val[3] - val[2] + 1; 5276 adap->vres.ocq.start = val[4]; 5277 adap->vres.ocq.size = val[5] - val[4] + 1; 5278 5279 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 5280 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5281 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 5282 val); 5283 if (ret < 0) { 5284 adap->params.max_ordird_qp = 8; 5285 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 5286 ret = 0; 5287 } else { 5288 adap->params.max_ordird_qp = val[0]; 5289 adap->params.max_ird_adapter = val[1]; 5290 } 5291 dev_info(adap->pdev_dev, 5292 "max_ordird_qp %d max_ird_adapter %d\n", 5293 adap->params.max_ordird_qp, 5294 adap->params.max_ird_adapter); 5295 5296 /* Enable write_with_immediate if FW supports it */ 5297 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 5298 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 5299 val); 5300 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 5301 5302 /* Enable write_cmpl if FW supports it */ 5303 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 5304 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 5305 val); 5306 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 5307 adap->num_ofld_uld += 2; 5308 } 5309 if (caps_cmd.iscsicaps) { 5310 params[0] = FW_PARAM_PFVF(ISCSI_START); 5311 params[1] = FW_PARAM_PFVF(ISCSI_END); 5312 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5313 params, val); 5314 if (ret < 0) 5315 goto bye; 5316 adap->vres.iscsi.start = val[0]; 5317 adap->vres.iscsi.size = val[1] - val[0] + 1; 5318 if (is_t6(adap->params.chip)) { 5319 params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START); 5320 params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END); 5321 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5322 params, val); 5323 if (!ret) { 5324 adap->vres.ppod_edram.start = val[0]; 5325 adap->vres.ppod_edram.size = 5326 val[1] - val[0] + 1; 5327 5328 dev_info(adap->pdev_dev, 5329 "ppod edram start 0x%x end 0x%x size 0x%x\n", 5330 val[0], val[1], 5331 adap->vres.ppod_edram.size); 5332 } 5333 } 5334 /* LIO target and cxgb4i initiaitor */ 5335 adap->num_ofld_uld += 2; 5336 } 5337 if (caps_cmd.cryptocaps) { 5338 if (ntohs(caps_cmd.cryptocaps) & 5339 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 5340 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 5341 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5342 2, params, val); 5343 if (ret < 0) { 5344 if (ret != -EINVAL) 5345 goto bye; 5346 } else { 5347 adap->vres.ncrypto_fc = val[0]; 5348 } 5349 adap->num_ofld_uld += 1; 5350 } 5351 if (ntohs(caps_cmd.cryptocaps) & 5352 FW_CAPS_CONFIG_TLS_INLINE) { 5353 params[0] = FW_PARAM_PFVF(TLS_START); 5354 params[1] = FW_PARAM_PFVF(TLS_END); 5355 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5356 2, params, val); 5357 if (ret < 0) 5358 goto bye; 5359 adap->vres.key.start = val[0]; 5360 adap->vres.key.size = val[1] - val[0] + 1; 5361 adap->num_uld += 1; 5362 } 5363 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 5364 } 5365 5366 /* The MTU/MSS Table is initialized by now, so load their values. If 5367 * we're initializing the adapter, then we'll make any modifications 5368 * we want to the MTU/MSS Table and also initialize the congestion 5369 * parameters. 5370 */ 5371 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 5372 if (state != DEV_STATE_INIT) { 5373 int i; 5374 5375 /* The default MTU Table contains values 1492 and 1500. 5376 * However, for TCP, it's better to have two values which are 5377 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 5378 * This allows us to have a TCP Data Payload which is a 5379 * multiple of 8 regardless of what combination of TCP Options 5380 * are in use (always a multiple of 4 bytes) which is 5381 * important for performance reasons. For instance, if no 5382 * options are in use, then we have a 20-byte IP header and a 5383 * 20-byte TCP header. In this case, a 1500-byte MSS would 5384 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 5385 * which is not a multiple of 8. So using an MSS of 1488 in 5386 * this case results in a TCP Data Payload of 1448 bytes which 5387 * is a multiple of 8. On the other hand, if 12-byte TCP Time 5388 * Stamps have been negotiated, then an MTU of 1500 bytes 5389 * results in a TCP Data Payload of 1448 bytes which, as 5390 * above, is a multiple of 8 bytes ... 5391 */ 5392 for (i = 0; i < NMTUS; i++) 5393 if (adap->params.mtus[i] == 1492) { 5394 adap->params.mtus[i] = 1488; 5395 break; 5396 } 5397 5398 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5399 adap->params.b_wnd); 5400 } 5401 t4_init_sge_params(adap); 5402 adap->flags |= CXGB4_FW_OK; 5403 t4_init_tp_params(adap, true); 5404 return 0; 5405 5406 /* 5407 * Something bad happened. If a command timed out or failed with EIO 5408 * FW does not operate within its spec or something catastrophic 5409 * happened to HW/FW, stop issuing commands. 5410 */ 5411 bye: 5412 adap_free_hma_mem(adap); 5413 kfree(adap->sge.egr_map); 5414 kfree(adap->sge.ingr_map); 5415 bitmap_free(adap->sge.starving_fl); 5416 bitmap_free(adap->sge.txq_maperr); 5417 #ifdef CONFIG_DEBUG_FS 5418 bitmap_free(adap->sge.blocked_fl); 5419 #endif 5420 if (ret != -ETIMEDOUT && ret != -EIO) 5421 t4_fw_bye(adap, adap->mbox); 5422 return ret; 5423 } 5424 5425 /* EEH callbacks */ 5426 5427 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 5428 pci_channel_state_t state) 5429 { 5430 int i; 5431 struct adapter *adap = pci_get_drvdata(pdev); 5432 5433 if (!adap) 5434 goto out; 5435 5436 rtnl_lock(); 5437 adap->flags &= ~CXGB4_FW_OK; 5438 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 5439 spin_lock(&adap->stats_lock); 5440 for_each_port(adap, i) { 5441 struct net_device *dev = adap->port[i]; 5442 if (dev) { 5443 netif_device_detach(dev); 5444 netif_carrier_off(dev); 5445 } 5446 } 5447 spin_unlock(&adap->stats_lock); 5448 disable_interrupts(adap); 5449 if (adap->flags & CXGB4_FULL_INIT_DONE) 5450 cxgb_down(adap); 5451 rtnl_unlock(); 5452 if ((adap->flags & CXGB4_DEV_ENABLED)) { 5453 pci_disable_device(pdev); 5454 adap->flags &= ~CXGB4_DEV_ENABLED; 5455 } 5456 out: return state == pci_channel_io_perm_failure ? 5457 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 5458 } 5459 5460 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 5461 { 5462 int i, ret; 5463 struct fw_caps_config_cmd c; 5464 struct adapter *adap = pci_get_drvdata(pdev); 5465 5466 if (!adap) { 5467 pci_restore_state(pdev); 5468 pci_save_state(pdev); 5469 return PCI_ERS_RESULT_RECOVERED; 5470 } 5471 5472 if (!(adap->flags & CXGB4_DEV_ENABLED)) { 5473 if (pci_enable_device(pdev)) { 5474 dev_err(&pdev->dev, "Cannot reenable PCI " 5475 "device after reset\n"); 5476 return PCI_ERS_RESULT_DISCONNECT; 5477 } 5478 adap->flags |= CXGB4_DEV_ENABLED; 5479 } 5480 5481 pci_set_master(pdev); 5482 pci_restore_state(pdev); 5483 pci_save_state(pdev); 5484 5485 if (t4_wait_dev_ready(adap->regs) < 0) 5486 return PCI_ERS_RESULT_DISCONNECT; 5487 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 5488 return PCI_ERS_RESULT_DISCONNECT; 5489 adap->flags |= CXGB4_FW_OK; 5490 if (adap_init1(adap, &c)) 5491 return PCI_ERS_RESULT_DISCONNECT; 5492 5493 for_each_port(adap, i) { 5494 struct port_info *pi = adap2pinfo(adap, i); 5495 u8 vivld = 0, vin = 0; 5496 5497 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1, 5498 NULL, NULL, &vivld, &vin); 5499 if (ret < 0) 5500 return PCI_ERS_RESULT_DISCONNECT; 5501 pi->viid = ret; 5502 pi->xact_addr_filt = -1; 5503 /* If fw supports returning the VIN as part of FW_VI_CMD, 5504 * save the returned values. 5505 */ 5506 if (adap->params.viid_smt_extn_support) { 5507 pi->vivld = vivld; 5508 pi->vin = vin; 5509 } else { 5510 /* Retrieve the values from VIID */ 5511 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 5512 pi->vin = FW_VIID_VIN_G(pi->viid); 5513 } 5514 } 5515 5516 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5517 adap->params.b_wnd); 5518 setup_memwin(adap); 5519 if (cxgb_up(adap)) 5520 return PCI_ERS_RESULT_DISCONNECT; 5521 return PCI_ERS_RESULT_RECOVERED; 5522 } 5523 5524 static void eeh_resume(struct pci_dev *pdev) 5525 { 5526 int i; 5527 struct adapter *adap = pci_get_drvdata(pdev); 5528 5529 if (!adap) 5530 return; 5531 5532 rtnl_lock(); 5533 for_each_port(adap, i) { 5534 struct net_device *dev = adap->port[i]; 5535 if (dev) { 5536 if (netif_running(dev)) { 5537 link_start(dev); 5538 cxgb_set_rxmode(dev); 5539 } 5540 netif_device_attach(dev); 5541 } 5542 } 5543 rtnl_unlock(); 5544 } 5545 5546 static void eeh_reset_prepare(struct pci_dev *pdev) 5547 { 5548 struct adapter *adapter = pci_get_drvdata(pdev); 5549 int i; 5550 5551 if (adapter->pf != 4) 5552 return; 5553 5554 adapter->flags &= ~CXGB4_FW_OK; 5555 5556 notify_ulds(adapter, CXGB4_STATE_DOWN); 5557 5558 for_each_port(adapter, i) 5559 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5560 cxgb_close(adapter->port[i]); 5561 5562 disable_interrupts(adapter); 5563 cxgb4_free_mps_ref_entries(adapter); 5564 5565 adap_free_hma_mem(adapter); 5566 5567 if (adapter->flags & CXGB4_FULL_INIT_DONE) 5568 cxgb_down(adapter); 5569 } 5570 5571 static void eeh_reset_done(struct pci_dev *pdev) 5572 { 5573 struct adapter *adapter = pci_get_drvdata(pdev); 5574 int err, i; 5575 5576 if (adapter->pf != 4) 5577 return; 5578 5579 err = t4_wait_dev_ready(adapter->regs); 5580 if (err < 0) { 5581 dev_err(adapter->pdev_dev, 5582 "Device not ready, err %d", err); 5583 return; 5584 } 5585 5586 setup_memwin(adapter); 5587 5588 err = adap_init0(adapter, 1); 5589 if (err) { 5590 dev_err(adapter->pdev_dev, 5591 "Adapter init failed, err %d", err); 5592 return; 5593 } 5594 5595 setup_memwin_rdma(adapter); 5596 5597 if (adapter->flags & CXGB4_FW_OK) { 5598 err = t4_port_init(adapter, adapter->pf, adapter->pf, 0); 5599 if (err) { 5600 dev_err(adapter->pdev_dev, 5601 "Port init failed, err %d", err); 5602 return; 5603 } 5604 } 5605 5606 err = cfg_queues(adapter); 5607 if (err) { 5608 dev_err(adapter->pdev_dev, 5609 "Config queues failed, err %d", err); 5610 return; 5611 } 5612 5613 cxgb4_init_mps_ref_entries(adapter); 5614 5615 err = setup_fw_sge_queues(adapter); 5616 if (err) { 5617 dev_err(adapter->pdev_dev, 5618 "FW sge queue allocation failed, err %d", err); 5619 return; 5620 } 5621 5622 for_each_port(adapter, i) 5623 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5624 cxgb_open(adapter->port[i]); 5625 } 5626 5627 static const struct pci_error_handlers cxgb4_eeh = { 5628 .error_detected = eeh_err_detected, 5629 .slot_reset = eeh_slot_reset, 5630 .resume = eeh_resume, 5631 .reset_prepare = eeh_reset_prepare, 5632 .reset_done = eeh_reset_done, 5633 }; 5634 5635 /* Return true if the Link Configuration supports "High Speeds" (those greater 5636 * than 1Gb/s). 5637 */ 5638 static inline bool is_x_10g_port(const struct link_config *lc) 5639 { 5640 unsigned int speeds, high_speeds; 5641 5642 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 5643 high_speeds = speeds & 5644 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 5645 5646 return high_speeds != 0; 5647 } 5648 5649 /* Perform default configuration of DMA queues depending on the number and type 5650 * of ports we found and the number of available CPUs. Most settings can be 5651 * modified by the admin prior to actual use. 5652 */ 5653 static int cfg_queues(struct adapter *adap) 5654 { 5655 u32 avail_qsets, avail_eth_qsets, avail_uld_qsets; 5656 u32 ncpus = num_online_cpus(); 5657 u32 niqflint, neq, num_ulds; 5658 struct sge *s = &adap->sge; 5659 u32 i, n10g = 0, qidx = 0; 5660 u32 q10g = 0, q1g; 5661 5662 /* Reduce memory usage in kdump environment, disable all offload. */ 5663 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 5664 adap->params.offload = 0; 5665 adap->params.crypto = 0; 5666 adap->params.ethofld = 0; 5667 } 5668 5669 /* Calculate the number of Ethernet Queue Sets available based on 5670 * resources provisioned for us. We always have an Asynchronous 5671 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 5672 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 5673 * Ingress Queue. Meanwhile, we need two Egress Queues for each 5674 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 5675 * 5676 * Note that we should also take into account all of the various 5677 * Offload Queues. But, in any situation where we're operating in 5678 * a Resource Constrained Provisioning environment, doing any Offload 5679 * at all is problematic ... 5680 */ 5681 niqflint = adap->params.pfres.niqflint - 1; 5682 if (!(adap->flags & CXGB4_USING_MSIX)) 5683 niqflint--; 5684 neq = adap->params.pfres.neq / 2; 5685 avail_qsets = min(niqflint, neq); 5686 5687 if (avail_qsets < adap->params.nports) { 5688 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 5689 avail_qsets, adap->params.nports); 5690 return -ENOMEM; 5691 } 5692 5693 /* Count the number of 10Gb/s or better ports */ 5694 for_each_port(adap, i) 5695 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 5696 5697 avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS); 5698 5699 /* We default to 1 queue per non-10G port and up to # of cores queues 5700 * per 10G port. 5701 */ 5702 if (n10g) 5703 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 5704 5705 #ifdef CONFIG_CHELSIO_T4_DCB 5706 /* For Data Center Bridging support we need to be able to support up 5707 * to 8 Traffic Priorities; each of which will be assigned to its 5708 * own TX Queue in order to prevent Head-Of-Line Blocking. 5709 */ 5710 q1g = 8; 5711 if (adap->params.nports * 8 > avail_eth_qsets) { 5712 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 5713 avail_eth_qsets, adap->params.nports * 8); 5714 return -ENOMEM; 5715 } 5716 5717 if (adap->params.nports * ncpus < avail_eth_qsets) 5718 q10g = max(8U, ncpus); 5719 else 5720 q10g = max(8U, q10g); 5721 5722 while ((q10g * n10g) > 5723 (avail_eth_qsets - (adap->params.nports - n10g) * q1g)) 5724 q10g--; 5725 5726 #else /* !CONFIG_CHELSIO_T4_DCB */ 5727 q1g = 1; 5728 q10g = min(q10g, ncpus); 5729 #endif /* !CONFIG_CHELSIO_T4_DCB */ 5730 if (is_kdump_kernel()) { 5731 q10g = 1; 5732 q1g = 1; 5733 } 5734 5735 for_each_port(adap, i) { 5736 struct port_info *pi = adap2pinfo(adap, i); 5737 5738 pi->first_qset = qidx; 5739 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g; 5740 qidx += pi->nqsets; 5741 } 5742 5743 s->ethqsets = qidx; 5744 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 5745 avail_qsets -= qidx; 5746 5747 if (is_uld(adap)) { 5748 /* For offload we use 1 queue/channel if all ports are up to 1G, 5749 * otherwise we divide all available queues amongst the channels 5750 * capped by the number of available cores. 5751 */ 5752 num_ulds = adap->num_uld + adap->num_ofld_uld; 5753 i = min_t(u32, MAX_OFLD_QSETS, ncpus); 5754 avail_uld_qsets = roundup(i, adap->params.nports); 5755 if (avail_qsets < num_ulds * adap->params.nports) { 5756 adap->params.offload = 0; 5757 adap->params.crypto = 0; 5758 s->ofldqsets = 0; 5759 } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) { 5760 s->ofldqsets = adap->params.nports; 5761 } else { 5762 s->ofldqsets = avail_uld_qsets; 5763 } 5764 5765 avail_qsets -= num_ulds * s->ofldqsets; 5766 } 5767 5768 /* ETHOFLD Queues used for QoS offload should follow same 5769 * allocation scheme as normal Ethernet Queues. 5770 */ 5771 if (is_ethofld(adap)) { 5772 if (avail_qsets < s->max_ethqsets) { 5773 adap->params.ethofld = 0; 5774 s->eoqsets = 0; 5775 } else { 5776 s->eoqsets = s->max_ethqsets; 5777 } 5778 avail_qsets -= s->eoqsets; 5779 } 5780 5781 /* Mirror queues must follow same scheme as normal Ethernet 5782 * Queues, when there are enough queues available. Otherwise, 5783 * allocate at least 1 queue per port. If even 1 queue is not 5784 * available, then disable mirror queues support. 5785 */ 5786 if (avail_qsets >= s->max_ethqsets) 5787 s->mirrorqsets = s->max_ethqsets; 5788 else if (avail_qsets >= adap->params.nports) 5789 s->mirrorqsets = adap->params.nports; 5790 else 5791 s->mirrorqsets = 0; 5792 avail_qsets -= s->mirrorqsets; 5793 5794 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 5795 struct sge_eth_rxq *r = &s->ethrxq[i]; 5796 5797 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 5798 r->fl.size = 72; 5799 } 5800 5801 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 5802 s->ethtxq[i].q.size = 1024; 5803 5804 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 5805 s->ctrlq[i].q.size = 512; 5806 5807 if (!is_t4(adap->params.chip)) 5808 s->ptptxq.q.size = 8; 5809 5810 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 5811 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 5812 5813 return 0; 5814 } 5815 5816 /* 5817 * Reduce the number of Ethernet queues across all ports to at most n. 5818 * n provides at least one queue per port. 5819 */ 5820 static void reduce_ethqs(struct adapter *adap, int n) 5821 { 5822 int i; 5823 struct port_info *pi; 5824 5825 while (n < adap->sge.ethqsets) 5826 for_each_port(adap, i) { 5827 pi = adap2pinfo(adap, i); 5828 if (pi->nqsets > 1) { 5829 pi->nqsets--; 5830 adap->sge.ethqsets--; 5831 if (adap->sge.ethqsets <= n) 5832 break; 5833 } 5834 } 5835 5836 n = 0; 5837 for_each_port(adap, i) { 5838 pi = adap2pinfo(adap, i); 5839 pi->first_qset = n; 5840 n += pi->nqsets; 5841 } 5842 } 5843 5844 static int alloc_msix_info(struct adapter *adap, u32 num_vec) 5845 { 5846 struct msix_info *msix_info; 5847 5848 msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL); 5849 if (!msix_info) 5850 return -ENOMEM; 5851 5852 adap->msix_bmap.msix_bmap = bitmap_zalloc(num_vec, GFP_KERNEL); 5853 if (!adap->msix_bmap.msix_bmap) { 5854 kfree(msix_info); 5855 return -ENOMEM; 5856 } 5857 5858 spin_lock_init(&adap->msix_bmap.lock); 5859 adap->msix_bmap.mapsize = num_vec; 5860 5861 adap->msix_info = msix_info; 5862 return 0; 5863 } 5864 5865 static void free_msix_info(struct adapter *adap) 5866 { 5867 bitmap_free(adap->msix_bmap.msix_bmap); 5868 kfree(adap->msix_info); 5869 } 5870 5871 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap) 5872 { 5873 struct msix_bmap *bmap = &adap->msix_bmap; 5874 unsigned int msix_idx; 5875 unsigned long flags; 5876 5877 spin_lock_irqsave(&bmap->lock, flags); 5878 msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize); 5879 if (msix_idx < bmap->mapsize) { 5880 __set_bit(msix_idx, bmap->msix_bmap); 5881 } else { 5882 spin_unlock_irqrestore(&bmap->lock, flags); 5883 return -ENOSPC; 5884 } 5885 5886 spin_unlock_irqrestore(&bmap->lock, flags); 5887 return msix_idx; 5888 } 5889 5890 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap, 5891 unsigned int msix_idx) 5892 { 5893 struct msix_bmap *bmap = &adap->msix_bmap; 5894 unsigned long flags; 5895 5896 spin_lock_irqsave(&bmap->lock, flags); 5897 __clear_bit(msix_idx, bmap->msix_bmap); 5898 spin_unlock_irqrestore(&bmap->lock, flags); 5899 } 5900 5901 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5902 #define EXTRA_VECS 2 5903 5904 static int enable_msix(struct adapter *adap) 5905 { 5906 u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0; 5907 u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0; 5908 u8 num_uld = 0, nchan = adap->params.nports; 5909 u32 i, want, need, num_vec; 5910 struct sge *s = &adap->sge; 5911 struct msix_entry *entries; 5912 struct port_info *pi; 5913 int allocated, ret; 5914 5915 want = s->max_ethqsets; 5916 #ifdef CONFIG_CHELSIO_T4_DCB 5917 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5918 * each port. 5919 */ 5920 need = 8 * nchan; 5921 #else 5922 need = nchan; 5923 #endif 5924 eth_need = need; 5925 if (is_uld(adap)) { 5926 num_uld = adap->num_ofld_uld + adap->num_uld; 5927 want += num_uld * s->ofldqsets; 5928 uld_need = num_uld * nchan; 5929 need += uld_need; 5930 } 5931 5932 if (is_ethofld(adap)) { 5933 want += s->eoqsets; 5934 ethofld_need = eth_need; 5935 need += ethofld_need; 5936 } 5937 5938 if (s->mirrorqsets) { 5939 want += s->mirrorqsets; 5940 mirror_need = nchan; 5941 need += mirror_need; 5942 } 5943 5944 want += EXTRA_VECS; 5945 need += EXTRA_VECS; 5946 5947 entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL); 5948 if (!entries) 5949 return -ENOMEM; 5950 5951 for (i = 0; i < want; i++) 5952 entries[i].entry = i; 5953 5954 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5955 if (allocated < 0) { 5956 /* Disable offload and attempt to get vectors for NIC 5957 * only mode. 5958 */ 5959 want = s->max_ethqsets + EXTRA_VECS; 5960 need = eth_need + EXTRA_VECS; 5961 allocated = pci_enable_msix_range(adap->pdev, entries, 5962 need, want); 5963 if (allocated < 0) { 5964 dev_info(adap->pdev_dev, 5965 "Disabling MSI-X due to insufficient MSI-X vectors\n"); 5966 ret = allocated; 5967 goto out_free; 5968 } 5969 5970 dev_info(adap->pdev_dev, 5971 "Disabling offload due to insufficient MSI-X vectors\n"); 5972 adap->params.offload = 0; 5973 adap->params.crypto = 0; 5974 adap->params.ethofld = 0; 5975 s->ofldqsets = 0; 5976 s->eoqsets = 0; 5977 s->mirrorqsets = 0; 5978 uld_need = 0; 5979 ethofld_need = 0; 5980 mirror_need = 0; 5981 } 5982 5983 num_vec = allocated; 5984 if (num_vec < want) { 5985 /* Distribute available vectors to the various queue groups. 5986 * Every group gets its minimum requirement and NIC gets top 5987 * priority for leftovers. 5988 */ 5989 ethqsets = eth_need; 5990 if (is_uld(adap)) 5991 ofldqsets = nchan; 5992 if (is_ethofld(adap)) 5993 eoqsets = ethofld_need; 5994 if (s->mirrorqsets) 5995 mirrorqsets = mirror_need; 5996 5997 num_vec -= need; 5998 while (num_vec) { 5999 if (num_vec < eth_need + ethofld_need || 6000 ethqsets > s->max_ethqsets) 6001 break; 6002 6003 for_each_port(adap, i) { 6004 pi = adap2pinfo(adap, i); 6005 if (pi->nqsets < 2) 6006 continue; 6007 6008 ethqsets++; 6009 num_vec--; 6010 if (ethofld_need) { 6011 eoqsets++; 6012 num_vec--; 6013 } 6014 } 6015 } 6016 6017 if (is_uld(adap)) { 6018 while (num_vec) { 6019 if (num_vec < uld_need || 6020 ofldqsets > s->ofldqsets) 6021 break; 6022 6023 ofldqsets++; 6024 num_vec -= uld_need; 6025 } 6026 } 6027 6028 if (s->mirrorqsets) { 6029 while (num_vec) { 6030 if (num_vec < mirror_need || 6031 mirrorqsets > s->mirrorqsets) 6032 break; 6033 6034 mirrorqsets++; 6035 num_vec -= mirror_need; 6036 } 6037 } 6038 } else { 6039 ethqsets = s->max_ethqsets; 6040 if (is_uld(adap)) 6041 ofldqsets = s->ofldqsets; 6042 if (is_ethofld(adap)) 6043 eoqsets = s->eoqsets; 6044 if (s->mirrorqsets) 6045 mirrorqsets = s->mirrorqsets; 6046 } 6047 6048 if (ethqsets < s->max_ethqsets) { 6049 s->max_ethqsets = ethqsets; 6050 reduce_ethqs(adap, ethqsets); 6051 } 6052 6053 if (is_uld(adap)) { 6054 s->ofldqsets = ofldqsets; 6055 s->nqs_per_uld = s->ofldqsets; 6056 } 6057 6058 if (is_ethofld(adap)) 6059 s->eoqsets = eoqsets; 6060 6061 if (s->mirrorqsets) { 6062 s->mirrorqsets = mirrorqsets; 6063 for_each_port(adap, i) { 6064 pi = adap2pinfo(adap, i); 6065 pi->nmirrorqsets = s->mirrorqsets / nchan; 6066 mutex_init(&pi->vi_mirror_mutex); 6067 } 6068 } 6069 6070 /* map for msix */ 6071 ret = alloc_msix_info(adap, allocated); 6072 if (ret) 6073 goto out_disable_msix; 6074 6075 for (i = 0; i < allocated; i++) { 6076 adap->msix_info[i].vec = entries[i].vector; 6077 adap->msix_info[i].idx = i; 6078 } 6079 6080 dev_info(adap->pdev_dev, 6081 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n", 6082 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld, 6083 s->mirrorqsets); 6084 6085 kfree(entries); 6086 return 0; 6087 6088 out_disable_msix: 6089 pci_disable_msix(adap->pdev); 6090 6091 out_free: 6092 kfree(entries); 6093 return ret; 6094 } 6095 6096 #undef EXTRA_VECS 6097 6098 static int init_rss(struct adapter *adap) 6099 { 6100 unsigned int i; 6101 int err; 6102 6103 err = t4_init_rss_mode(adap, adap->mbox); 6104 if (err) 6105 return err; 6106 6107 for_each_port(adap, i) { 6108 struct port_info *pi = adap2pinfo(adap, i); 6109 6110 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 6111 if (!pi->rss) 6112 return -ENOMEM; 6113 } 6114 return 0; 6115 } 6116 6117 /* Dump basic information about the adapter */ 6118 static void print_adapter_info(struct adapter *adapter) 6119 { 6120 /* Hardware/Firmware/etc. Version/Revision IDs */ 6121 t4_dump_version_info(adapter); 6122 6123 /* Software/Hardware configuration */ 6124 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 6125 is_offload(adapter) ? "R" : "", 6126 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" : 6127 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""), 6128 is_offload(adapter) ? "Offload" : "non-Offload"); 6129 } 6130 6131 static void print_port_info(const struct net_device *dev) 6132 { 6133 char buf[80]; 6134 char *bufp = buf; 6135 const struct port_info *pi = netdev_priv(dev); 6136 const struct adapter *adap = pi->adapter; 6137 6138 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 6139 bufp += sprintf(bufp, "100M/"); 6140 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 6141 bufp += sprintf(bufp, "1G/"); 6142 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 6143 bufp += sprintf(bufp, "10G/"); 6144 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 6145 bufp += sprintf(bufp, "25G/"); 6146 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 6147 bufp += sprintf(bufp, "40G/"); 6148 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 6149 bufp += sprintf(bufp, "50G/"); 6150 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 6151 bufp += sprintf(bufp, "100G/"); 6152 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 6153 bufp += sprintf(bufp, "200G/"); 6154 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 6155 bufp += sprintf(bufp, "400G/"); 6156 if (bufp != buf) 6157 --bufp; 6158 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 6159 6160 netdev_info(dev, "Chelsio %s %s\n", adap->params.vpd.id, buf); 6161 } 6162 6163 /* 6164 * Free the following resources: 6165 * - memory used for tables 6166 * - MSI/MSI-X 6167 * - net devices 6168 * - resources FW is holding for us 6169 */ 6170 static void free_some_resources(struct adapter *adapter) 6171 { 6172 unsigned int i; 6173 6174 kvfree(adapter->smt); 6175 kvfree(adapter->l2t); 6176 kvfree(adapter->srq); 6177 t4_cleanup_sched(adapter); 6178 kvfree(adapter->tids.tid_tab); 6179 cxgb4_cleanup_tc_matchall(adapter); 6180 cxgb4_cleanup_tc_mqprio(adapter); 6181 cxgb4_cleanup_tc_flower(adapter); 6182 cxgb4_cleanup_tc_u32(adapter); 6183 cxgb4_cleanup_ethtool_filters(adapter); 6184 kfree(adapter->sge.egr_map); 6185 kfree(adapter->sge.ingr_map); 6186 bitmap_free(adapter->sge.starving_fl); 6187 bitmap_free(adapter->sge.txq_maperr); 6188 #ifdef CONFIG_DEBUG_FS 6189 bitmap_free(adapter->sge.blocked_fl); 6190 #endif 6191 disable_msi(adapter); 6192 6193 for_each_port(adapter, i) 6194 if (adapter->port[i]) { 6195 struct port_info *pi = adap2pinfo(adapter, i); 6196 6197 if (pi->viid != 0) 6198 t4_free_vi(adapter, adapter->mbox, adapter->pf, 6199 0, pi->viid); 6200 kfree(adap2pinfo(adapter, i)->rss); 6201 free_netdev(adapter->port[i]); 6202 } 6203 if (adapter->flags & CXGB4_FW_OK) 6204 t4_fw_bye(adapter, adapter->pf); 6205 } 6206 6207 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \ 6208 NETIF_F_GSO_UDP_L4) 6209 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 6210 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 6211 #define SEGMENT_SIZE 128 6212 6213 static int t4_get_chip_type(struct adapter *adap, int ver) 6214 { 6215 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 6216 6217 switch (ver) { 6218 case CHELSIO_T4: 6219 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 6220 case CHELSIO_T5: 6221 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 6222 case CHELSIO_T6: 6223 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 6224 default: 6225 break; 6226 } 6227 return -EINVAL; 6228 } 6229 6230 #ifdef CONFIG_PCI_IOV 6231 static void cxgb4_mgmt_setup(struct net_device *dev) 6232 { 6233 dev->type = ARPHRD_NONE; 6234 dev->mtu = 0; 6235 dev->hard_header_len = 0; 6236 dev->addr_len = 0; 6237 dev->tx_queue_len = 0; 6238 dev->flags |= IFF_NOARP; 6239 dev->priv_flags |= IFF_NO_QUEUE; 6240 6241 /* Initialize the device structure. */ 6242 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 6243 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 6244 } 6245 6246 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 6247 { 6248 struct adapter *adap = pci_get_drvdata(pdev); 6249 int err = 0; 6250 int current_vfs = pci_num_vf(pdev); 6251 u32 pcie_fw; 6252 6253 pcie_fw = readl(adap->regs + PCIE_FW_A); 6254 /* Check if fw is initialized */ 6255 if (!(pcie_fw & PCIE_FW_INIT_F)) { 6256 dev_warn(&pdev->dev, "Device not initialized\n"); 6257 return -EOPNOTSUPP; 6258 } 6259 6260 /* If any of the VF's is already assigned to Guest OS, then 6261 * SRIOV for the same cannot be modified 6262 */ 6263 if (current_vfs && pci_vfs_assigned(pdev)) { 6264 dev_err(&pdev->dev, 6265 "Cannot modify SR-IOV while VFs are assigned\n"); 6266 return current_vfs; 6267 } 6268 /* Note that the upper-level code ensures that we're never called with 6269 * a non-zero "num_vfs" when we already have VFs instantiated. But 6270 * it never hurts to code defensively. 6271 */ 6272 if (num_vfs != 0 && current_vfs != 0) 6273 return -EBUSY; 6274 6275 /* Nothing to do for no change. */ 6276 if (num_vfs == current_vfs) 6277 return num_vfs; 6278 6279 /* Disable SRIOV when zero is passed. */ 6280 if (!num_vfs) { 6281 pci_disable_sriov(pdev); 6282 /* free VF Management Interface */ 6283 unregister_netdev(adap->port[0]); 6284 free_netdev(adap->port[0]); 6285 adap->port[0] = NULL; 6286 6287 /* free VF resources */ 6288 adap->num_vfs = 0; 6289 kfree(adap->vfinfo); 6290 adap->vfinfo = NULL; 6291 return 0; 6292 } 6293 6294 if (!current_vfs) { 6295 struct fw_pfvf_cmd port_cmd, port_rpl; 6296 struct net_device *netdev; 6297 unsigned int pmask, port; 6298 struct pci_dev *pbridge; 6299 struct port_info *pi; 6300 char name[IFNAMSIZ]; 6301 u32 devcap2; 6302 u16 flags; 6303 6304 /* If we want to instantiate Virtual Functions, then our 6305 * parent bridge's PCI-E needs to support Alternative Routing 6306 * ID (ARI) because our VFs will show up at function offset 8 6307 * and above. 6308 */ 6309 pbridge = pdev->bus->self; 6310 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags); 6311 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2); 6312 6313 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 6314 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 6315 /* Our parent bridge does not support ARI so issue a 6316 * warning and skip instantiating the VFs. They 6317 * won't be reachable. 6318 */ 6319 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 6320 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 6321 PCI_FUNC(pbridge->devfn)); 6322 return -ENOTSUPP; 6323 } 6324 memset(&port_cmd, 0, sizeof(port_cmd)); 6325 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 6326 FW_CMD_REQUEST_F | 6327 FW_CMD_READ_F | 6328 FW_PFVF_CMD_PFN_V(adap->pf) | 6329 FW_PFVF_CMD_VFN_V(0)); 6330 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 6331 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 6332 &port_rpl); 6333 if (err) 6334 return err; 6335 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 6336 port = ffs(pmask) - 1; 6337 /* Allocate VF Management Interface. */ 6338 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 6339 adap->pf); 6340 netdev = alloc_netdev(sizeof(struct port_info), 6341 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 6342 if (!netdev) 6343 return -ENOMEM; 6344 6345 pi = netdev_priv(netdev); 6346 pi->adapter = adap; 6347 pi->lport = port; 6348 pi->tx_chan = port; 6349 SET_NETDEV_DEV(netdev, &pdev->dev); 6350 6351 adap->port[0] = netdev; 6352 pi->port_id = 0; 6353 6354 err = register_netdev(adap->port[0]); 6355 if (err) { 6356 pr_info("Unable to register VF mgmt netdev %s\n", name); 6357 free_netdev(adap->port[0]); 6358 adap->port[0] = NULL; 6359 return err; 6360 } 6361 /* Allocate and set up VF Information. */ 6362 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 6363 sizeof(struct vf_info), GFP_KERNEL); 6364 if (!adap->vfinfo) { 6365 unregister_netdev(adap->port[0]); 6366 free_netdev(adap->port[0]); 6367 adap->port[0] = NULL; 6368 return -ENOMEM; 6369 } 6370 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 6371 } 6372 /* Instantiate the requested number of VFs. */ 6373 err = pci_enable_sriov(pdev, num_vfs); 6374 if (err) { 6375 pr_info("Unable to instantiate %d VFs\n", num_vfs); 6376 if (!current_vfs) { 6377 unregister_netdev(adap->port[0]); 6378 free_netdev(adap->port[0]); 6379 adap->port[0] = NULL; 6380 kfree(adap->vfinfo); 6381 adap->vfinfo = NULL; 6382 } 6383 return err; 6384 } 6385 6386 adap->num_vfs = num_vfs; 6387 return num_vfs; 6388 } 6389 #endif /* CONFIG_PCI_IOV */ 6390 6391 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 6392 6393 static int chcr_offload_state(struct adapter *adap, 6394 enum cxgb4_netdev_tls_ops op_val) 6395 { 6396 switch (op_val) { 6397 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 6398 case CXGB4_TLSDEV_OPS: 6399 if (!adap->uld[CXGB4_ULD_KTLS].handle) { 6400 dev_dbg(adap->pdev_dev, "ch_ktls driver is not loaded\n"); 6401 return -EOPNOTSUPP; 6402 } 6403 if (!adap->uld[CXGB4_ULD_KTLS].tlsdev_ops) { 6404 dev_dbg(adap->pdev_dev, 6405 "ch_ktls driver has no registered tlsdev_ops\n"); 6406 return -EOPNOTSUPP; 6407 } 6408 break; 6409 #endif /* CONFIG_CHELSIO_TLS_DEVICE */ 6410 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 6411 case CXGB4_XFRMDEV_OPS: 6412 if (!adap->uld[CXGB4_ULD_IPSEC].handle) { 6413 dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n"); 6414 return -EOPNOTSUPP; 6415 } 6416 if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) { 6417 dev_dbg(adap->pdev_dev, 6418 "chipsec driver has no registered xfrmdev_ops\n"); 6419 return -EOPNOTSUPP; 6420 } 6421 break; 6422 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */ 6423 default: 6424 dev_dbg(adap->pdev_dev, 6425 "driver has no support for offload %d\n", op_val); 6426 return -EOPNOTSUPP; 6427 } 6428 6429 return 0; 6430 } 6431 6432 #endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */ 6433 6434 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 6435 6436 static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk, 6437 enum tls_offload_ctx_dir direction, 6438 struct tls_crypto_info *crypto_info, 6439 u32 tcp_sn) 6440 { 6441 struct adapter *adap = netdev2adap(netdev); 6442 int ret; 6443 6444 mutex_lock(&uld_mutex); 6445 ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS); 6446 if (ret) 6447 goto out_unlock; 6448 6449 ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE); 6450 if (ret) 6451 goto out_unlock; 6452 6453 ret = adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_add(netdev, sk, 6454 direction, 6455 crypto_info, 6456 tcp_sn); 6457 /* if there is a failure, clear the refcount */ 6458 if (ret) 6459 cxgb4_set_ktls_feature(adap, 6460 FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE); 6461 out_unlock: 6462 mutex_unlock(&uld_mutex); 6463 return ret; 6464 } 6465 6466 static void cxgb4_ktls_dev_del(struct net_device *netdev, 6467 struct tls_context *tls_ctx, 6468 enum tls_offload_ctx_dir direction) 6469 { 6470 struct adapter *adap = netdev2adap(netdev); 6471 6472 mutex_lock(&uld_mutex); 6473 if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS)) 6474 goto out_unlock; 6475 6476 adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_del(netdev, tls_ctx, 6477 direction); 6478 6479 out_unlock: 6480 cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE); 6481 mutex_unlock(&uld_mutex); 6482 } 6483 6484 static const struct tlsdev_ops cxgb4_ktls_ops = { 6485 .tls_dev_add = cxgb4_ktls_dev_add, 6486 .tls_dev_del = cxgb4_ktls_dev_del, 6487 }; 6488 #endif /* CONFIG_CHELSIO_TLS_DEVICE */ 6489 6490 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 6491 6492 static int cxgb4_xfrm_add_state(struct xfrm_state *x, 6493 struct netlink_ext_ack *extack) 6494 { 6495 struct adapter *adap = netdev2adap(x->xso.dev); 6496 int ret; 6497 6498 if (!mutex_trylock(&uld_mutex)) { 6499 NL_SET_ERR_MSG_MOD(extack, "crypto uld critical resource is under use"); 6500 return -EBUSY; 6501 } 6502 ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS); 6503 if (ret) 6504 goto out_unlock; 6505 6506 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x, extack); 6507 6508 out_unlock: 6509 mutex_unlock(&uld_mutex); 6510 6511 return ret; 6512 } 6513 6514 static void cxgb4_xfrm_del_state(struct xfrm_state *x) 6515 { 6516 struct adapter *adap = netdev2adap(x->xso.dev); 6517 6518 if (!mutex_trylock(&uld_mutex)) { 6519 dev_dbg(adap->pdev_dev, 6520 "crypto uld critical resource is under use\n"); 6521 return; 6522 } 6523 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS)) 6524 goto out_unlock; 6525 6526 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x); 6527 6528 out_unlock: 6529 mutex_unlock(&uld_mutex); 6530 } 6531 6532 static void cxgb4_xfrm_free_state(struct xfrm_state *x) 6533 { 6534 struct adapter *adap = netdev2adap(x->xso.dev); 6535 6536 if (!mutex_trylock(&uld_mutex)) { 6537 dev_dbg(adap->pdev_dev, 6538 "crypto uld critical resource is under use\n"); 6539 return; 6540 } 6541 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS)) 6542 goto out_unlock; 6543 6544 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x); 6545 6546 out_unlock: 6547 mutex_unlock(&uld_mutex); 6548 } 6549 6550 static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x) 6551 { 6552 struct adapter *adap = netdev2adap(x->xso.dev); 6553 bool ret = false; 6554 6555 if (!mutex_trylock(&uld_mutex)) { 6556 dev_dbg(adap->pdev_dev, 6557 "crypto uld critical resource is under use\n"); 6558 return ret; 6559 } 6560 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS)) 6561 goto out_unlock; 6562 6563 ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x); 6564 6565 out_unlock: 6566 mutex_unlock(&uld_mutex); 6567 return ret; 6568 } 6569 6570 static void cxgb4_advance_esn_state(struct xfrm_state *x) 6571 { 6572 struct adapter *adap = netdev2adap(x->xso.dev); 6573 6574 if (!mutex_trylock(&uld_mutex)) { 6575 dev_dbg(adap->pdev_dev, 6576 "crypto uld critical resource is under use\n"); 6577 return; 6578 } 6579 if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS)) 6580 goto out_unlock; 6581 6582 adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x); 6583 6584 out_unlock: 6585 mutex_unlock(&uld_mutex); 6586 } 6587 6588 static const struct xfrmdev_ops cxgb4_xfrmdev_ops = { 6589 .xdo_dev_state_add = cxgb4_xfrm_add_state, 6590 .xdo_dev_state_delete = cxgb4_xfrm_del_state, 6591 .xdo_dev_state_free = cxgb4_xfrm_free_state, 6592 .xdo_dev_offload_ok = cxgb4_ipsec_offload_ok, 6593 .xdo_dev_state_advance_esn = cxgb4_advance_esn_state, 6594 }; 6595 6596 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */ 6597 6598 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 6599 { 6600 struct net_device *netdev; 6601 struct adapter *adapter; 6602 static int adap_idx = 1; 6603 int s_qpp, qpp, num_seg; 6604 struct port_info *pi; 6605 enum chip_type chip; 6606 void __iomem *regs; 6607 int func, chip_ver; 6608 u16 device_id; 6609 int i, err; 6610 u32 whoami; 6611 6612 err = pci_request_regions(pdev, KBUILD_MODNAME); 6613 if (err) { 6614 /* Just info, some other driver may have claimed the device. */ 6615 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 6616 return err; 6617 } 6618 6619 err = pci_enable_device(pdev); 6620 if (err) { 6621 dev_err(&pdev->dev, "cannot enable PCI device\n"); 6622 goto out_release_regions; 6623 } 6624 6625 regs = pci_ioremap_bar(pdev, 0); 6626 if (!regs) { 6627 dev_err(&pdev->dev, "cannot map device registers\n"); 6628 err = -ENOMEM; 6629 goto out_disable_device; 6630 } 6631 6632 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 6633 if (!adapter) { 6634 err = -ENOMEM; 6635 goto out_unmap_bar0; 6636 } 6637 6638 adapter->regs = regs; 6639 err = t4_wait_dev_ready(regs); 6640 if (err < 0) 6641 goto out_free_adapter; 6642 6643 /* We control everything through one PF */ 6644 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 6645 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 6646 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 6647 if ((int)chip < 0) { 6648 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 6649 err = chip; 6650 goto out_free_adapter; 6651 } 6652 chip_ver = CHELSIO_CHIP_VERSION(chip); 6653 func = chip_ver <= CHELSIO_T5 ? 6654 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 6655 6656 adapter->pdev = pdev; 6657 adapter->pdev_dev = &pdev->dev; 6658 adapter->name = pci_name(pdev); 6659 adapter->mbox = func; 6660 adapter->pf = func; 6661 adapter->params.chip = chip; 6662 adapter->adap_idx = adap_idx; 6663 adapter->msg_enable = DFLT_MSG_ENABLE; 6664 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 6665 (sizeof(struct mbox_cmd) * 6666 T4_OS_LOG_MBOX_CMDS), 6667 GFP_KERNEL); 6668 if (!adapter->mbox_log) { 6669 err = -ENOMEM; 6670 goto out_free_adapter; 6671 } 6672 spin_lock_init(&adapter->mbox_lock); 6673 INIT_LIST_HEAD(&adapter->mlist.list); 6674 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 6675 pci_set_drvdata(pdev, adapter); 6676 6677 if (func != ent->driver_data) { 6678 pci_disable_device(pdev); 6679 pci_save_state(pdev); /* to restore SR-IOV later */ 6680 return 0; 6681 } 6682 6683 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6684 if (err) { 6685 dev_err(&pdev->dev, "no usable DMA configuration\n"); 6686 goto out_free_adapter; 6687 } 6688 6689 pci_set_master(pdev); 6690 pci_save_state(pdev); 6691 adap_idx++; 6692 adapter->workq = create_singlethread_workqueue("cxgb4"); 6693 if (!adapter->workq) { 6694 err = -ENOMEM; 6695 goto out_free_adapter; 6696 } 6697 6698 /* PCI device has been enabled */ 6699 adapter->flags |= CXGB4_DEV_ENABLED; 6700 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 6701 6702 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 6703 * Ingress Packet Data to Free List Buffers in order to allow for 6704 * chipset performance optimizations between the Root Complex and 6705 * Memory Controllers. (Messages to the associated Ingress Queue 6706 * notifying new Packet Placement in the Free Lists Buffers will be 6707 * send without the Relaxed Ordering Attribute thus guaranteeing that 6708 * all preceding PCIe Transaction Layer Packets will be processed 6709 * first.) But some Root Complexes have various issues with Upstream 6710 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 6711 * The PCIe devices which under the Root Complexes will be cleared the 6712 * Relaxed Ordering bit in the configuration space, So we check our 6713 * PCIe configuration space to see if it's flagged with advice against 6714 * using Relaxed Ordering. 6715 */ 6716 if (!pcie_relaxed_ordering_enabled(pdev)) 6717 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING; 6718 6719 spin_lock_init(&adapter->stats_lock); 6720 spin_lock_init(&adapter->tid_release_lock); 6721 spin_lock_init(&adapter->win0_lock); 6722 6723 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 6724 INIT_WORK(&adapter->db_full_task, process_db_full); 6725 INIT_WORK(&adapter->db_drop_task, process_db_drop); 6726 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 6727 6728 err = t4_prep_adapter(adapter); 6729 if (err) 6730 goto out_free_adapter; 6731 6732 if (is_kdump_kernel()) { 6733 /* Collect hardware state and append to /proc/vmcore */ 6734 err = cxgb4_cudbg_vmcore_add_dump(adapter); 6735 if (err) { 6736 dev_warn(adapter->pdev_dev, 6737 "Fail collecting vmcore device dump, err: %d. Continuing\n", 6738 err); 6739 err = 0; 6740 } 6741 } 6742 6743 if (!is_t4(adapter->params.chip)) { 6744 s_qpp = (QUEUESPERPAGEPF0_S + 6745 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 6746 adapter->pf); 6747 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 6748 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 6749 num_seg = PAGE_SIZE / SEGMENT_SIZE; 6750 6751 /* Each segment size is 128B. Write coalescing is enabled only 6752 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 6753 * queue is less no of segments that can be accommodated in 6754 * a page size. 6755 */ 6756 if (qpp > num_seg) { 6757 dev_err(&pdev->dev, 6758 "Incorrect number of egress queues per page\n"); 6759 err = -EINVAL; 6760 goto out_free_adapter; 6761 } 6762 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 6763 pci_resource_len(pdev, 2)); 6764 if (!adapter->bar2) { 6765 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 6766 err = -ENOMEM; 6767 goto out_free_adapter; 6768 } 6769 } 6770 6771 setup_memwin(adapter); 6772 err = adap_init0(adapter, 0); 6773 if (err) 6774 goto out_unmap_bar; 6775 6776 setup_memwin_rdma(adapter); 6777 6778 /* configure SGE_STAT_CFG_A to read WC stats */ 6779 if (!is_t4(adapter->params.chip)) 6780 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 6781 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 6782 T6_STATMODE_V(0))); 6783 6784 /* Initialize hash mac addr list */ 6785 INIT_LIST_HEAD(&adapter->mac_hlist); 6786 6787 for_each_port(adapter, i) { 6788 /* For supporting MQPRIO Offload, need some extra 6789 * queues for each ETHOFLD TIDs. Keep it equal to 6790 * MAX_ATIDs for now. Once we connect to firmware 6791 * later and query the EOTID params, we'll come to 6792 * know the actual # of EOTIDs supported. 6793 */ 6794 netdev = alloc_etherdev_mq(sizeof(struct port_info), 6795 MAX_ETH_QSETS + MAX_ATIDS); 6796 if (!netdev) { 6797 err = -ENOMEM; 6798 goto out_free_dev; 6799 } 6800 6801 SET_NETDEV_DEV(netdev, &pdev->dev); 6802 6803 adapter->port[i] = netdev; 6804 pi = netdev_priv(netdev); 6805 pi->adapter = adapter; 6806 pi->xact_addr_filt = -1; 6807 pi->port_id = i; 6808 netdev->irq = pdev->irq; 6809 6810 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 6811 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 6812 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO | 6813 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 6814 NETIF_F_HW_TC | NETIF_F_NTUPLE | NETIF_F_HIGHDMA; 6815 6816 if (chip_ver > CHELSIO_T5) { 6817 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 6818 NETIF_F_IPV6_CSUM | 6819 NETIF_F_RXCSUM | 6820 NETIF_F_GSO_UDP_TUNNEL | 6821 NETIF_F_GSO_UDP_TUNNEL_CSUM | 6822 NETIF_F_TSO | NETIF_F_TSO6; 6823 6824 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 6825 NETIF_F_GSO_UDP_TUNNEL_CSUM | 6826 NETIF_F_HW_TLS_RECORD; 6827 6828 if (adapter->rawf_cnt) 6829 netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels; 6830 } 6831 6832 netdev->features |= netdev->hw_features; 6833 netdev->vlan_features = netdev->features & VLAN_FEAT; 6834 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 6835 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) { 6836 netdev->hw_features |= NETIF_F_HW_TLS_TX; 6837 netdev->tlsdev_ops = &cxgb4_ktls_ops; 6838 /* initialize the refcount */ 6839 refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0); 6840 } 6841 #endif /* CONFIG_CHELSIO_TLS_DEVICE */ 6842 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 6843 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) { 6844 netdev->hw_enc_features |= NETIF_F_HW_ESP; 6845 netdev->features |= NETIF_F_HW_ESP; 6846 netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops; 6847 } 6848 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */ 6849 6850 netdev->priv_flags |= IFF_UNICAST_FLT; 6851 6852 /* MTU range: 81 - 9600 */ 6853 netdev->min_mtu = 81; /* accommodate SACK */ 6854 netdev->max_mtu = MAX_MTU; 6855 6856 netdev->netdev_ops = &cxgb4_netdev_ops; 6857 #ifdef CONFIG_CHELSIO_T4_DCB 6858 netdev->dcbnl_ops = &cxgb4_dcb_ops; 6859 cxgb4_dcb_state_init(netdev); 6860 cxgb4_dcb_version_init(netdev); 6861 #endif 6862 cxgb4_set_ethtool_ops(netdev); 6863 } 6864 6865 cxgb4_init_ethtool_dump(adapter); 6866 6867 pci_set_drvdata(pdev, adapter); 6868 6869 if (adapter->flags & CXGB4_FW_OK) { 6870 err = t4_port_init(adapter, func, func, 0); 6871 if (err) 6872 goto out_free_dev; 6873 } else if (adapter->params.nports == 1) { 6874 /* If we don't have a connection to the firmware -- possibly 6875 * because of an error -- grab the raw VPD parameters so we 6876 * can set the proper MAC Address on the debug network 6877 * interface that we've created. 6878 */ 6879 u8 hw_addr[ETH_ALEN]; 6880 u8 *na = adapter->params.vpd.na; 6881 6882 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 6883 if (!err) { 6884 for (i = 0; i < ETH_ALEN; i++) 6885 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 6886 hex2val(na[2 * i + 1])); 6887 t4_set_hw_addr(adapter, 0, hw_addr); 6888 } 6889 } 6890 6891 if (!(adapter->flags & CXGB4_FW_OK)) 6892 goto fw_attach_fail; 6893 6894 /* Configure queues and allocate tables now, they can be needed as 6895 * soon as the first register_netdev completes. 6896 */ 6897 err = cfg_queues(adapter); 6898 if (err) 6899 goto out_free_dev; 6900 6901 adapter->smt = t4_init_smt(); 6902 if (!adapter->smt) { 6903 /* We tolerate a lack of SMT, giving up some functionality */ 6904 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 6905 } 6906 6907 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 6908 if (!adapter->l2t) { 6909 /* We tolerate a lack of L2T, giving up some functionality */ 6910 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 6911 adapter->params.offload = 0; 6912 } 6913 6914 #if IS_ENABLED(CONFIG_IPV6) 6915 if (chip_ver <= CHELSIO_T5 && 6916 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 6917 /* CLIP functionality is not present in hardware, 6918 * hence disable all offload features 6919 */ 6920 dev_warn(&pdev->dev, 6921 "CLIP not enabled in hardware, continuing\n"); 6922 adapter->params.offload = 0; 6923 } else { 6924 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 6925 adapter->clipt_end); 6926 if (!adapter->clipt) { 6927 /* We tolerate a lack of clip_table, giving up 6928 * some functionality 6929 */ 6930 dev_warn(&pdev->dev, 6931 "could not allocate Clip table, continuing\n"); 6932 adapter->params.offload = 0; 6933 } 6934 } 6935 #endif 6936 6937 for_each_port(adapter, i) { 6938 pi = adap2pinfo(adapter, i); 6939 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 6940 if (!pi->sched_tbl) 6941 dev_warn(&pdev->dev, 6942 "could not activate scheduling on port %d\n", 6943 i); 6944 } 6945 6946 if (is_offload(adapter) || is_hashfilter(adapter)) { 6947 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 6948 u32 v; 6949 6950 v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A); 6951 if (chip_ver <= CHELSIO_T5) { 6952 adapter->tids.nhash = 1 << HASHTIDSIZE_G(v); 6953 v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A); 6954 adapter->tids.hash_base = v / 4; 6955 } else { 6956 adapter->tids.nhash = HASHTBLSIZE_G(v) << 3; 6957 v = t4_read_reg(adapter, 6958 T6_LE_DB_HASH_TID_BASE_A); 6959 adapter->tids.hash_base = v; 6960 } 6961 } 6962 } 6963 6964 if (tid_init(&adapter->tids) < 0) { 6965 dev_warn(&pdev->dev, "could not allocate TID table, " 6966 "continuing\n"); 6967 adapter->params.offload = 0; 6968 } else { 6969 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 6970 if (!adapter->tc_u32) 6971 dev_warn(&pdev->dev, 6972 "could not offload tc u32, continuing\n"); 6973 6974 if (cxgb4_init_tc_flower(adapter)) 6975 dev_warn(&pdev->dev, 6976 "could not offload tc flower, continuing\n"); 6977 6978 if (cxgb4_init_tc_mqprio(adapter)) 6979 dev_warn(&pdev->dev, 6980 "could not offload tc mqprio, continuing\n"); 6981 6982 if (cxgb4_init_tc_matchall(adapter)) 6983 dev_warn(&pdev->dev, 6984 "could not offload tc matchall, continuing\n"); 6985 if (cxgb4_init_ethtool_filters(adapter)) 6986 dev_warn(&pdev->dev, 6987 "could not initialize ethtool filters, continuing\n"); 6988 } 6989 6990 /* See what interrupts we'll be using */ 6991 if (msi > 1 && enable_msix(adapter) == 0) 6992 adapter->flags |= CXGB4_USING_MSIX; 6993 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 6994 adapter->flags |= CXGB4_USING_MSI; 6995 if (msi > 1) 6996 free_msix_info(adapter); 6997 } 6998 6999 /* check for PCI Express bandwidth capabiltites */ 7000 pcie_print_link_status(pdev); 7001 7002 cxgb4_init_mps_ref_entries(adapter); 7003 7004 err = init_rss(adapter); 7005 if (err) 7006 goto out_free_dev; 7007 7008 err = setup_non_data_intr(adapter); 7009 if (err) { 7010 dev_err(adapter->pdev_dev, 7011 "Non Data interrupt allocation failed, err: %d\n", err); 7012 goto out_free_dev; 7013 } 7014 7015 err = setup_fw_sge_queues(adapter); 7016 if (err) { 7017 dev_err(adapter->pdev_dev, 7018 "FW sge queue allocation failed, err %d", err); 7019 goto out_free_dev; 7020 } 7021 7022 fw_attach_fail: 7023 /* 7024 * The card is now ready to go. If any errors occur during device 7025 * registration we do not fail the whole card but rather proceed only 7026 * with the ports we manage to register successfully. However we must 7027 * register at least one net device. 7028 */ 7029 for_each_port(adapter, i) { 7030 pi = adap2pinfo(adapter, i); 7031 adapter->port[i]->dev_port = pi->lport; 7032 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 7033 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 7034 7035 netif_carrier_off(adapter->port[i]); 7036 7037 err = register_netdev(adapter->port[i]); 7038 if (err) 7039 break; 7040 adapter->chan_map[pi->tx_chan] = i; 7041 print_port_info(adapter->port[i]); 7042 } 7043 if (i == 0) { 7044 dev_err(&pdev->dev, "could not register any net devices\n"); 7045 goto out_free_dev; 7046 } 7047 if (err) { 7048 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 7049 err = 0; 7050 } 7051 7052 if (cxgb4_debugfs_root) { 7053 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 7054 cxgb4_debugfs_root); 7055 setup_debugfs(adapter); 7056 } 7057 7058 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 7059 pdev->needs_freset = 1; 7060 7061 if (is_uld(adapter)) 7062 cxgb4_uld_enable(adapter); 7063 7064 if (!is_t4(adapter->params.chip)) 7065 cxgb4_ptp_init(adapter); 7066 7067 if (IS_REACHABLE(CONFIG_THERMAL) && 7068 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK)) 7069 cxgb4_thermal_init(adapter); 7070 7071 print_adapter_info(adapter); 7072 return 0; 7073 7074 out_free_dev: 7075 t4_free_sge_resources(adapter); 7076 free_some_resources(adapter); 7077 if (adapter->flags & CXGB4_USING_MSIX) 7078 free_msix_info(adapter); 7079 if (adapter->num_uld || adapter->num_ofld_uld) 7080 t4_uld_mem_free(adapter); 7081 out_unmap_bar: 7082 if (!is_t4(adapter->params.chip)) 7083 iounmap(adapter->bar2); 7084 out_free_adapter: 7085 if (adapter->workq) 7086 destroy_workqueue(adapter->workq); 7087 7088 kfree(adapter->mbox_log); 7089 kfree(adapter); 7090 out_unmap_bar0: 7091 iounmap(regs); 7092 out_disable_device: 7093 pci_disable_device(pdev); 7094 out_release_regions: 7095 pci_release_regions(pdev); 7096 return err; 7097 } 7098 7099 static void remove_one(struct pci_dev *pdev) 7100 { 7101 struct adapter *adapter = pci_get_drvdata(pdev); 7102 struct hash_mac_addr *entry, *tmp; 7103 7104 if (!adapter) { 7105 pci_release_regions(pdev); 7106 return; 7107 } 7108 7109 /* If we allocated filters, free up state associated with any 7110 * valid filters ... 7111 */ 7112 clear_all_filters(adapter); 7113 7114 adapter->flags |= CXGB4_SHUTTING_DOWN; 7115 7116 if (adapter->pf == 4) { 7117 int i; 7118 7119 /* Tear down per-adapter Work Queue first since it can contain 7120 * references to our adapter data structure. 7121 */ 7122 destroy_workqueue(adapter->workq); 7123 7124 detach_ulds(adapter); 7125 7126 for_each_port(adapter, i) 7127 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 7128 unregister_netdev(adapter->port[i]); 7129 7130 t4_uld_clean_up(adapter); 7131 7132 adap_free_hma_mem(adapter); 7133 7134 disable_interrupts(adapter); 7135 7136 cxgb4_free_mps_ref_entries(adapter); 7137 7138 debugfs_remove_recursive(adapter->debugfs_root); 7139 7140 if (!is_t4(adapter->params.chip)) 7141 cxgb4_ptp_stop(adapter); 7142 if (IS_REACHABLE(CONFIG_THERMAL)) 7143 cxgb4_thermal_remove(adapter); 7144 7145 if (adapter->flags & CXGB4_FULL_INIT_DONE) 7146 cxgb_down(adapter); 7147 7148 if (adapter->flags & CXGB4_USING_MSIX) 7149 free_msix_info(adapter); 7150 if (adapter->num_uld || adapter->num_ofld_uld) 7151 t4_uld_mem_free(adapter); 7152 free_some_resources(adapter); 7153 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 7154 list) { 7155 list_del(&entry->list); 7156 kfree(entry); 7157 } 7158 7159 #if IS_ENABLED(CONFIG_IPV6) 7160 t4_cleanup_clip_tbl(adapter); 7161 #endif 7162 if (!is_t4(adapter->params.chip)) 7163 iounmap(adapter->bar2); 7164 } 7165 #ifdef CONFIG_PCI_IOV 7166 else { 7167 cxgb4_iov_configure(adapter->pdev, 0); 7168 } 7169 #endif 7170 iounmap(adapter->regs); 7171 if ((adapter->flags & CXGB4_DEV_ENABLED)) { 7172 pci_disable_device(pdev); 7173 adapter->flags &= ~CXGB4_DEV_ENABLED; 7174 } 7175 pci_release_regions(pdev); 7176 kfree(adapter->mbox_log); 7177 synchronize_rcu(); 7178 kfree(adapter); 7179 } 7180 7181 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 7182 * delivery. This is essentially a stripped down version of the PCI remove() 7183 * function where we do the minimal amount of work necessary to shutdown any 7184 * further activity. 7185 */ 7186 static void shutdown_one(struct pci_dev *pdev) 7187 { 7188 struct adapter *adapter = pci_get_drvdata(pdev); 7189 7190 /* As with remove_one() above (see extended comment), we only want do 7191 * do cleanup on PCI Devices which went all the way through init_one() 7192 * ... 7193 */ 7194 if (!adapter) { 7195 pci_release_regions(pdev); 7196 return; 7197 } 7198 7199 adapter->flags |= CXGB4_SHUTTING_DOWN; 7200 7201 if (adapter->pf == 4) { 7202 int i; 7203 7204 for_each_port(adapter, i) 7205 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 7206 cxgb_close(adapter->port[i]); 7207 7208 rtnl_lock(); 7209 cxgb4_mqprio_stop_offload(adapter); 7210 rtnl_unlock(); 7211 7212 if (is_uld(adapter)) { 7213 detach_ulds(adapter); 7214 t4_uld_clean_up(adapter); 7215 } 7216 7217 disable_interrupts(adapter); 7218 disable_msi(adapter); 7219 7220 t4_sge_stop(adapter); 7221 if (adapter->flags & CXGB4_FW_OK) 7222 t4_fw_bye(adapter, adapter->mbox); 7223 } 7224 } 7225 7226 static struct pci_driver cxgb4_driver = { 7227 .name = KBUILD_MODNAME, 7228 .id_table = cxgb4_pci_tbl, 7229 .probe = init_one, 7230 .remove = remove_one, 7231 .shutdown = shutdown_one, 7232 #ifdef CONFIG_PCI_IOV 7233 .sriov_configure = cxgb4_iov_configure, 7234 #endif 7235 .err_handler = &cxgb4_eeh, 7236 }; 7237 7238 static int __init cxgb4_init_module(void) 7239 { 7240 int ret; 7241 7242 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 7243 7244 ret = pci_register_driver(&cxgb4_driver); 7245 if (ret < 0) 7246 goto err_pci; 7247 7248 #if IS_ENABLED(CONFIG_IPV6) 7249 if (!inet6addr_registered) { 7250 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 7251 if (ret) 7252 pci_unregister_driver(&cxgb4_driver); 7253 else 7254 inet6addr_registered = true; 7255 } 7256 #endif 7257 7258 if (ret == 0) 7259 return ret; 7260 7261 err_pci: 7262 debugfs_remove(cxgb4_debugfs_root); 7263 7264 return ret; 7265 } 7266 7267 static void __exit cxgb4_cleanup_module(void) 7268 { 7269 #if IS_ENABLED(CONFIG_IPV6) 7270 if (inet6addr_registered) { 7271 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 7272 inet6addr_registered = false; 7273 } 7274 #endif 7275 pci_unregister_driver(&cxgb4_driver); 7276 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 7277 } 7278 7279 module_init(cxgb4_init_module); 7280 module_exit(cxgb4_cleanup_module); 7281