xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c (revision fcbd8037f7df694aa7bfb7ce82c0c7f5e53e7b7b)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <linux/uaccess.h>
66 #include <linux/crash_dump.h>
67 #include <net/udp_tunnel.h>
68 
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "srq.h"
78 #include "cxgb4_debugfs.h"
79 #include "clip_tbl.h"
80 #include "l2t.h"
81 #include "smt.h"
82 #include "sched.h"
83 #include "cxgb4_tc_u32.h"
84 #include "cxgb4_tc_flower.h"
85 #include "cxgb4_ptp.h"
86 #include "cxgb4_cudbg.h"
87 
88 char cxgb4_driver_name[] = KBUILD_MODNAME;
89 
90 #ifdef DRV_VERSION
91 #undef DRV_VERSION
92 #endif
93 #define DRV_VERSION "2.0.0-ko"
94 const char cxgb4_driver_version[] = DRV_VERSION;
95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
96 
97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
98 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
99 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
100 
101 /* Macros needed to support the PCI Device ID Table ...
102  */
103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
104 	static const struct pci_device_id cxgb4_pci_tbl[] = {
105 #define CXGB4_UNIFIED_PF 0x4
106 
107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
108 
109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
110  * called for both.
111  */
112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
113 
114 #define CH_PCI_ID_TABLE_ENTRY(devid) \
115 		{PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
116 
117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
118 		{ 0, } \
119 	}
120 
121 #include "t4_pci_id_tbl.h"
122 
123 #define FW4_FNAME "cxgb4/t4fw.bin"
124 #define FW5_FNAME "cxgb4/t5fw.bin"
125 #define FW6_FNAME "cxgb4/t6fw.bin"
126 #define FW4_CFNAME "cxgb4/t4-config.txt"
127 #define FW5_CFNAME "cxgb4/t5-config.txt"
128 #define FW6_CFNAME "cxgb4/t6-config.txt"
129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
131 #define PHY_AQ1202_DEVICEID 0x4409
132 #define PHY_BCM84834_DEVICEID 0x4486
133 
134 MODULE_DESCRIPTION(DRV_DESC);
135 MODULE_AUTHOR("Chelsio Communications");
136 MODULE_LICENSE("Dual BSD/GPL");
137 MODULE_VERSION(DRV_VERSION);
138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
139 MODULE_FIRMWARE(FW4_FNAME);
140 MODULE_FIRMWARE(FW5_FNAME);
141 MODULE_FIRMWARE(FW6_FNAME);
142 
143 /*
144  * The driver uses the best interrupt scheme available on a platform in the
145  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
146  * of these schemes the driver may consider as follows:
147  *
148  * msi = 2: choose from among all three options
149  * msi = 1: only consider MSI and INTx interrupts
150  * msi = 0: force INTx interrupts
151  */
152 static int msi = 2;
153 
154 module_param(msi, int, 0644);
155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
156 
157 /*
158  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
159  * offset by 2 bytes in order to have the IP headers line up on 4-byte
160  * boundaries.  This is a requirement for many architectures which will throw
161  * a machine check fault if an attempt is made to access one of the 4-byte IP
162  * header fields on a non-4-byte boundary.  And it's a major performance issue
163  * even on some architectures which allow it like some implementations of the
164  * x86 ISA.  However, some architectures don't mind this and for some very
165  * edge-case performance sensitive applications (like forwarding large volumes
166  * of small packets), setting this DMA offset to 0 will decrease the number of
167  * PCI-E Bus transfers enough to measurably affect performance.
168  */
169 static int rx_dma_offset = 2;
170 
171 /* TX Queue select used to determine what algorithm to use for selecting TX
172  * queue. Select between the kernel provided function (select_queue=0) or user
173  * cxgb_select_queue function (select_queue=1)
174  *
175  * Default: select_queue=0
176  */
177 static int select_queue;
178 module_param(select_queue, int, 0644);
179 MODULE_PARM_DESC(select_queue,
180 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
181 
182 static struct dentry *cxgb4_debugfs_root;
183 
184 LIST_HEAD(adapter_list);
185 DEFINE_MUTEX(uld_mutex);
186 
187 static void link_report(struct net_device *dev)
188 {
189 	if (!netif_carrier_ok(dev))
190 		netdev_info(dev, "link down\n");
191 	else {
192 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
193 
194 		const char *s;
195 		const struct port_info *p = netdev_priv(dev);
196 
197 		switch (p->link_cfg.speed) {
198 		case 100:
199 			s = "100Mbps";
200 			break;
201 		case 1000:
202 			s = "1Gbps";
203 			break;
204 		case 10000:
205 			s = "10Gbps";
206 			break;
207 		case 25000:
208 			s = "25Gbps";
209 			break;
210 		case 40000:
211 			s = "40Gbps";
212 			break;
213 		case 50000:
214 			s = "50Gbps";
215 			break;
216 		case 100000:
217 			s = "100Gbps";
218 			break;
219 		default:
220 			pr_info("%s: unsupported speed: %d\n",
221 				dev->name, p->link_cfg.speed);
222 			return;
223 		}
224 
225 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
226 			    fc[p->link_cfg.fc]);
227 	}
228 }
229 
230 #ifdef CONFIG_CHELSIO_T4_DCB
231 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
232 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
233 {
234 	struct port_info *pi = netdev_priv(dev);
235 	struct adapter *adap = pi->adapter;
236 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
237 	int i;
238 
239 	/* We use a simple mapping of Port TX Queue Index to DCB
240 	 * Priority when we're enabling DCB.
241 	 */
242 	for (i = 0; i < pi->nqsets; i++, txq++) {
243 		u32 name, value;
244 		int err;
245 
246 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
247 			FW_PARAMS_PARAM_X_V(
248 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
249 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
250 		value = enable ? i : 0xffffffff;
251 
252 		/* Since we can be called while atomic (from "interrupt
253 		 * level") we need to issue the Set Parameters Commannd
254 		 * without sleeping (timeout < 0).
255 		 */
256 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
257 					    &name, &value,
258 					    -FW_CMD_MAX_TIMEOUT);
259 
260 		if (err)
261 			dev_err(adap->pdev_dev,
262 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
263 				enable ? "set" : "unset", pi->port_id, i, -err);
264 		else
265 			txq->dcb_prio = enable ? value : 0;
266 	}
267 }
268 
269 int cxgb4_dcb_enabled(const struct net_device *dev)
270 {
271 	struct port_info *pi = netdev_priv(dev);
272 
273 	if (!pi->dcb.enabled)
274 		return 0;
275 
276 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
277 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
278 }
279 #endif /* CONFIG_CHELSIO_T4_DCB */
280 
281 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
282 {
283 	struct net_device *dev = adapter->port[port_id];
284 
285 	/* Skip changes from disabled ports. */
286 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
287 		if (link_stat)
288 			netif_carrier_on(dev);
289 		else {
290 #ifdef CONFIG_CHELSIO_T4_DCB
291 			if (cxgb4_dcb_enabled(dev)) {
292 				cxgb4_dcb_reset(dev);
293 				dcb_tx_queue_prio_enable(dev, false);
294 			}
295 #endif /* CONFIG_CHELSIO_T4_DCB */
296 			netif_carrier_off(dev);
297 		}
298 
299 		link_report(dev);
300 	}
301 }
302 
303 void t4_os_portmod_changed(struct adapter *adap, int port_id)
304 {
305 	static const char *mod_str[] = {
306 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
307 	};
308 
309 	struct net_device *dev = adap->port[port_id];
310 	struct port_info *pi = netdev_priv(dev);
311 
312 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
313 		netdev_info(dev, "port module unplugged\n");
314 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
315 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
316 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
317 		netdev_info(dev, "%s: unsupported port module inserted\n",
318 			    dev->name);
319 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
320 		netdev_info(dev, "%s: unknown port module inserted\n",
321 			    dev->name);
322 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
323 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
324 	else
325 		netdev_info(dev, "%s: unknown module type %d inserted\n",
326 			    dev->name, pi->mod_type);
327 
328 	/* If the interface is running, then we'll need any "sticky" Link
329 	 * Parameters redone with a new Transceiver Module.
330 	 */
331 	pi->link_cfg.redo_l1cfg = netif_running(dev);
332 }
333 
334 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
335 module_param(dbfifo_int_thresh, int, 0644);
336 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
337 
338 /*
339  * usecs to sleep while draining the dbfifo
340  */
341 static int dbfifo_drain_delay = 1000;
342 module_param(dbfifo_drain_delay, int, 0644);
343 MODULE_PARM_DESC(dbfifo_drain_delay,
344 		 "usecs to sleep while draining the dbfifo");
345 
346 static inline int cxgb4_set_addr_hash(struct port_info *pi)
347 {
348 	struct adapter *adap = pi->adapter;
349 	u64 vec = 0;
350 	bool ucast = false;
351 	struct hash_mac_addr *entry;
352 
353 	/* Calculate the hash vector for the updated list and program it */
354 	list_for_each_entry(entry, &adap->mac_hlist, list) {
355 		ucast |= is_unicast_ether_addr(entry->addr);
356 		vec |= (1ULL << hash_mac_addr(entry->addr));
357 	}
358 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
359 				vec, false);
360 }
361 
362 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
363 {
364 	struct port_info *pi = netdev_priv(netdev);
365 	struct adapter *adap = pi->adapter;
366 	int ret;
367 	u64 mhash = 0;
368 	u64 uhash = 0;
369 	/* idx stores the index of allocated filters,
370 	 * its size should be modified based on the number of
371 	 * MAC addresses that we allocate filters for
372 	 */
373 
374 	u16 idx[1] = {};
375 	bool free = false;
376 	bool ucast = is_unicast_ether_addr(mac_addr);
377 	const u8 *maclist[1] = {mac_addr};
378 	struct hash_mac_addr *new_entry;
379 
380 	ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
381 				   idx, ucast ? &uhash : &mhash, false);
382 	if (ret < 0)
383 		goto out;
384 	/* if hash != 0, then add the addr to hash addr list
385 	 * so on the end we will calculate the hash for the
386 	 * list and program it
387 	 */
388 	if (uhash || mhash) {
389 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
390 		if (!new_entry)
391 			return -ENOMEM;
392 		ether_addr_copy(new_entry->addr, mac_addr);
393 		list_add_tail(&new_entry->list, &adap->mac_hlist);
394 		ret = cxgb4_set_addr_hash(pi);
395 	}
396 out:
397 	return ret < 0 ? ret : 0;
398 }
399 
400 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
401 {
402 	struct port_info *pi = netdev_priv(netdev);
403 	struct adapter *adap = pi->adapter;
404 	int ret;
405 	const u8 *maclist[1] = {mac_addr};
406 	struct hash_mac_addr *entry, *tmp;
407 
408 	/* If the MAC address to be removed is in the hash addr
409 	 * list, delete it from the list and update hash vector
410 	 */
411 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
412 		if (ether_addr_equal(entry->addr, mac_addr)) {
413 			list_del(&entry->list);
414 			kfree(entry);
415 			return cxgb4_set_addr_hash(pi);
416 		}
417 	}
418 
419 	ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
420 	return ret < 0 ? -EINVAL : 0;
421 }
422 
423 /*
424  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
425  * If @mtu is -1 it is left unchanged.
426  */
427 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
428 {
429 	struct port_info *pi = netdev_priv(dev);
430 	struct adapter *adapter = pi->adapter;
431 
432 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
433 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
434 
435 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
436 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
437 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
438 			     sleep_ok);
439 }
440 
441 /**
442  *	cxgb4_change_mac - Update match filter for a MAC address.
443  *	@pi: the port_info
444  *	@viid: the VI id
445  *	@tcam_idx: TCAM index of existing filter for old value of MAC address,
446  *		   or -1
447  *	@addr: the new MAC address value
448  *	@persist: whether a new MAC allocation should be persistent
449  *	@add_smt: if true also add the address to the HW SMT
450  *
451  *	Modifies an MPS filter and sets it to the new MAC address if
452  *	@tcam_idx >= 0, or adds the MAC address to a new filter if
453  *	@tcam_idx < 0. In the latter case the address is added persistently
454  *	if @persist is %true.
455  *	Addresses are programmed to hash region, if tcam runs out of entries.
456  *
457  */
458 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
459 		     int *tcam_idx, const u8 *addr, bool persist,
460 		     u8 *smt_idx)
461 {
462 	struct adapter *adapter = pi->adapter;
463 	struct hash_mac_addr *entry, *new_entry;
464 	int ret;
465 
466 	ret = t4_change_mac(adapter, adapter->mbox, viid,
467 			    *tcam_idx, addr, persist, smt_idx);
468 	/* We ran out of TCAM entries. try programming hash region. */
469 	if (ret == -ENOMEM) {
470 		/* If the MAC address to be updated is in the hash addr
471 		 * list, update it from the list
472 		 */
473 		list_for_each_entry(entry, &adapter->mac_hlist, list) {
474 			if (entry->iface_mac) {
475 				ether_addr_copy(entry->addr, addr);
476 				goto set_hash;
477 			}
478 		}
479 		new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
480 		if (!new_entry)
481 			return -ENOMEM;
482 		ether_addr_copy(new_entry->addr, addr);
483 		new_entry->iface_mac = true;
484 		list_add_tail(&new_entry->list, &adapter->mac_hlist);
485 set_hash:
486 		ret = cxgb4_set_addr_hash(pi);
487 	} else if (ret >= 0) {
488 		*tcam_idx = ret;
489 		ret = 0;
490 	}
491 
492 	return ret;
493 }
494 
495 /*
496  *	link_start - enable a port
497  *	@dev: the port to enable
498  *
499  *	Performs the MAC and PHY actions needed to enable a port.
500  */
501 static int link_start(struct net_device *dev)
502 {
503 	int ret;
504 	struct port_info *pi = netdev_priv(dev);
505 	unsigned int mb = pi->adapter->pf;
506 
507 	/*
508 	 * We do not set address filters and promiscuity here, the stack does
509 	 * that step explicitly.
510 	 */
511 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
512 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
513 	if (ret == 0)
514 		ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
515 					    dev->dev_addr, true, &pi->smt_idx);
516 	if (ret == 0)
517 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
518 				    &pi->link_cfg);
519 	if (ret == 0) {
520 		local_bh_disable();
521 		ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
522 					  true, CXGB4_DCB_ENABLED);
523 		local_bh_enable();
524 	}
525 
526 	return ret;
527 }
528 
529 #ifdef CONFIG_CHELSIO_T4_DCB
530 /* Handle a Data Center Bridging update message from the firmware. */
531 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
532 {
533 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
534 	struct net_device *dev = adap->port[adap->chan_map[port]];
535 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
536 	int new_dcb_enabled;
537 
538 	cxgb4_dcb_handle_fw_update(adap, pcmd);
539 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
540 
541 	/* If the DCB has become enabled or disabled on the port then we're
542 	 * going to need to set up/tear down DCB Priority parameters for the
543 	 * TX Queues associated with the port.
544 	 */
545 	if (new_dcb_enabled != old_dcb_enabled)
546 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
547 }
548 #endif /* CONFIG_CHELSIO_T4_DCB */
549 
550 /* Response queue handler for the FW event queue.
551  */
552 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
553 			  const struct pkt_gl *gl)
554 {
555 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
556 
557 	rsp++;                                          /* skip RSS header */
558 
559 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
560 	 */
561 	if (unlikely(opcode == CPL_FW4_MSG &&
562 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
563 		rsp++;
564 		opcode = ((const struct rss_header *)rsp)->opcode;
565 		rsp++;
566 		if (opcode != CPL_SGE_EGR_UPDATE) {
567 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
568 				, opcode);
569 			goto out;
570 		}
571 	}
572 
573 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
574 		const struct cpl_sge_egr_update *p = (void *)rsp;
575 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
576 		struct sge_txq *txq;
577 
578 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
579 		txq->restarts++;
580 		if (txq->q_type == CXGB4_TXQ_ETH) {
581 			struct sge_eth_txq *eq;
582 
583 			eq = container_of(txq, struct sge_eth_txq, q);
584 			t4_sge_eth_txq_egress_update(q->adap, eq, -1);
585 		} else {
586 			struct sge_uld_txq *oq;
587 
588 			oq = container_of(txq, struct sge_uld_txq, q);
589 			tasklet_schedule(&oq->qresume_tsk);
590 		}
591 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
592 		const struct cpl_fw6_msg *p = (void *)rsp;
593 
594 #ifdef CONFIG_CHELSIO_T4_DCB
595 		const struct fw_port_cmd *pcmd = (const void *)p->data;
596 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
597 		unsigned int action =
598 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
599 
600 		if (cmd == FW_PORT_CMD &&
601 		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
602 		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
603 			int port = FW_PORT_CMD_PORTID_G(
604 					be32_to_cpu(pcmd->op_to_portid));
605 			struct net_device *dev;
606 			int dcbxdis, state_input;
607 
608 			dev = q->adap->port[q->adap->chan_map[port]];
609 			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
610 			  ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
611 			  : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
612 			       & FW_PORT_CMD_DCBXDIS32_F));
613 			state_input = (dcbxdis
614 				       ? CXGB4_DCB_INPUT_FW_DISABLED
615 				       : CXGB4_DCB_INPUT_FW_ENABLED);
616 
617 			cxgb4_dcb_state_fsm(dev, state_input);
618 		}
619 
620 		if (cmd == FW_PORT_CMD &&
621 		    action == FW_PORT_ACTION_L2_DCB_CFG)
622 			dcb_rpl(q->adap, pcmd);
623 		else
624 #endif
625 			if (p->type == 0)
626 				t4_handle_fw_rpl(q->adap, p->data);
627 	} else if (opcode == CPL_L2T_WRITE_RPL) {
628 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
629 
630 		do_l2t_write_rpl(q->adap, p);
631 	} else if (opcode == CPL_SMT_WRITE_RPL) {
632 		const struct cpl_smt_write_rpl *p = (void *)rsp;
633 
634 		do_smt_write_rpl(q->adap, p);
635 	} else if (opcode == CPL_SET_TCB_RPL) {
636 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
637 
638 		filter_rpl(q->adap, p);
639 	} else if (opcode == CPL_ACT_OPEN_RPL) {
640 		const struct cpl_act_open_rpl *p = (void *)rsp;
641 
642 		hash_filter_rpl(q->adap, p);
643 	} else if (opcode == CPL_ABORT_RPL_RSS) {
644 		const struct cpl_abort_rpl_rss *p = (void *)rsp;
645 
646 		hash_del_filter_rpl(q->adap, p);
647 	} else if (opcode == CPL_SRQ_TABLE_RPL) {
648 		const struct cpl_srq_table_rpl *p = (void *)rsp;
649 
650 		do_srq_table_rpl(q->adap, p);
651 	} else
652 		dev_err(q->adap->pdev_dev,
653 			"unexpected CPL %#x on FW event queue\n", opcode);
654 out:
655 	return 0;
656 }
657 
658 static void disable_msi(struct adapter *adapter)
659 {
660 	if (adapter->flags & CXGB4_USING_MSIX) {
661 		pci_disable_msix(adapter->pdev);
662 		adapter->flags &= ~CXGB4_USING_MSIX;
663 	} else if (adapter->flags & CXGB4_USING_MSI) {
664 		pci_disable_msi(adapter->pdev);
665 		adapter->flags &= ~CXGB4_USING_MSI;
666 	}
667 }
668 
669 /*
670  * Interrupt handler for non-data events used with MSI-X.
671  */
672 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
673 {
674 	struct adapter *adap = cookie;
675 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
676 
677 	if (v & PFSW_F) {
678 		adap->swintr = 1;
679 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
680 	}
681 	if (adap->flags & CXGB4_MASTER_PF)
682 		t4_slow_intr_handler(adap);
683 	return IRQ_HANDLED;
684 }
685 
686 /*
687  * Name the MSI-X interrupts.
688  */
689 static void name_msix_vecs(struct adapter *adap)
690 {
691 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
692 
693 	/* non-data interrupts */
694 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
695 
696 	/* FW events */
697 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
698 		 adap->port[0]->name);
699 
700 	/* Ethernet queues */
701 	for_each_port(adap, j) {
702 		struct net_device *d = adap->port[j];
703 		const struct port_info *pi = netdev_priv(d);
704 
705 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
706 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
707 				 d->name, i);
708 	}
709 }
710 
711 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
712 		       cpumask_var_t *aff_mask, int idx)
713 {
714 	int rv;
715 
716 	if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
717 		dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
718 		return -ENOMEM;
719 	}
720 
721 	cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
722 			*aff_mask);
723 
724 	rv = irq_set_affinity_hint(vec, *aff_mask);
725 	if (rv)
726 		dev_warn(adap->pdev_dev,
727 			 "irq_set_affinity_hint %u failed %d\n",
728 			 vec, rv);
729 
730 	return 0;
731 }
732 
733 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
734 {
735 	irq_set_affinity_hint(vec, NULL);
736 	free_cpumask_var(aff_mask);
737 }
738 
739 static int request_msix_queue_irqs(struct adapter *adap)
740 {
741 	struct sge *s = &adap->sge;
742 	struct msix_info *minfo;
743 	int err, ethqidx;
744 	int msi_index = 2;
745 
746 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
747 			  adap->msix_info[1].desc, &s->fw_evtq);
748 	if (err)
749 		return err;
750 
751 	for_each_ethrxq(s, ethqidx) {
752 		minfo = &adap->msix_info[msi_index];
753 		err = request_irq(minfo->vec,
754 				  t4_sge_intr_msix, 0,
755 				  minfo->desc,
756 				  &s->ethrxq[ethqidx].rspq);
757 		if (err)
758 			goto unwind;
759 
760 		cxgb4_set_msix_aff(adap, minfo->vec,
761 				   &minfo->aff_mask, ethqidx);
762 		msi_index++;
763 	}
764 	return 0;
765 
766 unwind:
767 	while (--ethqidx >= 0) {
768 		msi_index--;
769 		minfo = &adap->msix_info[msi_index];
770 		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
771 		free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
772 	}
773 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
774 	return err;
775 }
776 
777 static void free_msix_queue_irqs(struct adapter *adap)
778 {
779 	struct sge *s = &adap->sge;
780 	struct msix_info *minfo;
781 	int i, msi_index = 2;
782 
783 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
784 	for_each_ethrxq(s, i) {
785 		minfo = &adap->msix_info[msi_index++];
786 		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
787 		free_irq(minfo->vec, &s->ethrxq[i].rspq);
788 	}
789 }
790 
791 static int setup_ppod_edram(struct adapter *adap)
792 {
793 	unsigned int param, val;
794 	int ret;
795 
796 	/* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
797 	 * if firmware supports ppod edram feature or not. If firmware
798 	 * returns 1, then driver can enable this feature by sending
799 	 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
800 	 * enable ppod edram feature.
801 	 */
802 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
803 		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
804 
805 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
806 	if (ret < 0) {
807 		dev_warn(adap->pdev_dev,
808 			 "querying PPOD_EDRAM support failed: %d\n",
809 			 ret);
810 		return -1;
811 	}
812 
813 	if (val != 1)
814 		return -1;
815 
816 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
817 	if (ret < 0) {
818 		dev_err(adap->pdev_dev,
819 			"setting PPOD_EDRAM failed: %d\n", ret);
820 		return -1;
821 	}
822 	return 0;
823 }
824 
825 /**
826  *	cxgb4_write_rss - write the RSS table for a given port
827  *	@pi: the port
828  *	@queues: array of queue indices for RSS
829  *
830  *	Sets up the portion of the HW RSS table for the port's VI to distribute
831  *	packets to the Rx queues in @queues.
832  *	Should never be called before setting up sge eth rx queues
833  */
834 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
835 {
836 	u16 *rss;
837 	int i, err;
838 	struct adapter *adapter = pi->adapter;
839 	const struct sge_eth_rxq *rxq;
840 
841 	rxq = &adapter->sge.ethrxq[pi->first_qset];
842 	rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
843 	if (!rss)
844 		return -ENOMEM;
845 
846 	/* map the queue indices to queue ids */
847 	for (i = 0; i < pi->rss_size; i++, queues++)
848 		rss[i] = rxq[*queues].rspq.abs_id;
849 
850 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
851 				  pi->rss_size, rss, pi->rss_size);
852 	/* If Tunnel All Lookup isn't specified in the global RSS
853 	 * Configuration, then we need to specify a default Ingress
854 	 * Queue for any ingress packets which aren't hashed.  We'll
855 	 * use our first ingress queue ...
856 	 */
857 	if (!err)
858 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
859 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
860 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
861 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
862 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
863 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
864 				       rss[0]);
865 	kfree(rss);
866 	return err;
867 }
868 
869 /**
870  *	setup_rss - configure RSS
871  *	@adap: the adapter
872  *
873  *	Sets up RSS for each port.
874  */
875 static int setup_rss(struct adapter *adap)
876 {
877 	int i, j, err;
878 
879 	for_each_port(adap, i) {
880 		const struct port_info *pi = adap2pinfo(adap, i);
881 
882 		/* Fill default values with equal distribution */
883 		for (j = 0; j < pi->rss_size; j++)
884 			pi->rss[j] = j % pi->nqsets;
885 
886 		err = cxgb4_write_rss(pi, pi->rss);
887 		if (err)
888 			return err;
889 	}
890 	return 0;
891 }
892 
893 /*
894  * Return the channel of the ingress queue with the given qid.
895  */
896 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
897 {
898 	qid -= p->ingr_start;
899 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
900 }
901 
902 /*
903  * Wait until all NAPI handlers are descheduled.
904  */
905 static void quiesce_rx(struct adapter *adap)
906 {
907 	int i;
908 
909 	for (i = 0; i < adap->sge.ingr_sz; i++) {
910 		struct sge_rspq *q = adap->sge.ingr_map[i];
911 
912 		if (q && q->handler)
913 			napi_disable(&q->napi);
914 	}
915 }
916 
917 /* Disable interrupt and napi handler */
918 static void disable_interrupts(struct adapter *adap)
919 {
920 	if (adap->flags & CXGB4_FULL_INIT_DONE) {
921 		t4_intr_disable(adap);
922 		if (adap->flags & CXGB4_USING_MSIX) {
923 			free_msix_queue_irqs(adap);
924 			free_irq(adap->msix_info[0].vec, adap);
925 		} else {
926 			free_irq(adap->pdev->irq, adap);
927 		}
928 		quiesce_rx(adap);
929 	}
930 }
931 
932 /*
933  * Enable NAPI scheduling and interrupt generation for all Rx queues.
934  */
935 static void enable_rx(struct adapter *adap)
936 {
937 	int i;
938 
939 	for (i = 0; i < adap->sge.ingr_sz; i++) {
940 		struct sge_rspq *q = adap->sge.ingr_map[i];
941 
942 		if (!q)
943 			continue;
944 		if (q->handler)
945 			napi_enable(&q->napi);
946 
947 		/* 0-increment GTS to start the timer and enable interrupts */
948 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
949 			     SEINTARM_V(q->intr_params) |
950 			     INGRESSQID_V(q->cntxt_id));
951 	}
952 }
953 
954 
955 static int setup_fw_sge_queues(struct adapter *adap)
956 {
957 	struct sge *s = &adap->sge;
958 	int err = 0;
959 
960 	bitmap_zero(s->starving_fl, s->egr_sz);
961 	bitmap_zero(s->txq_maperr, s->egr_sz);
962 
963 	if (adap->flags & CXGB4_USING_MSIX)
964 		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
965 	else {
966 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
967 				       NULL, NULL, NULL, -1);
968 		if (err)
969 			return err;
970 		adap->msi_idx = -((int)s->intrq.abs_id + 1);
971 	}
972 
973 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
974 			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
975 	return err;
976 }
977 
978 /**
979  *	setup_sge_queues - configure SGE Tx/Rx/response queues
980  *	@adap: the adapter
981  *
982  *	Determines how many sets of SGE queues to use and initializes them.
983  *	We support multiple queue sets per port if we have MSI-X, otherwise
984  *	just one queue set per port.
985  */
986 static int setup_sge_queues(struct adapter *adap)
987 {
988 	int err, i, j;
989 	struct sge *s = &adap->sge;
990 	struct sge_uld_rxq_info *rxq_info = NULL;
991 	unsigned int cmplqid = 0;
992 
993 	if (is_uld(adap))
994 		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
995 
996 	for_each_port(adap, i) {
997 		struct net_device *dev = adap->port[i];
998 		struct port_info *pi = netdev_priv(dev);
999 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1000 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1001 
1002 		for (j = 0; j < pi->nqsets; j++, q++) {
1003 			if (adap->msi_idx > 0)
1004 				adap->msi_idx++;
1005 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1006 					       adap->msi_idx, &q->fl,
1007 					       t4_ethrx_handler,
1008 					       NULL,
1009 					       t4_get_tp_ch_map(adap,
1010 								pi->tx_chan));
1011 			if (err)
1012 				goto freeout;
1013 			q->rspq.idx = j;
1014 			memset(&q->stats, 0, sizeof(q->stats));
1015 		}
1016 
1017 		q = &s->ethrxq[pi->first_qset];
1018 		for (j = 0; j < pi->nqsets; j++, t++, q++) {
1019 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1020 					netdev_get_tx_queue(dev, j),
1021 					q->rspq.cntxt_id,
1022 					!!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1023 			if (err)
1024 				goto freeout;
1025 		}
1026 	}
1027 
1028 	for_each_port(adap, i) {
1029 		/* Note that cmplqid below is 0 if we don't
1030 		 * have RDMA queues, and that's the right value.
1031 		 */
1032 		if (rxq_info)
1033 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
1034 
1035 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1036 					    s->fw_evtq.cntxt_id, cmplqid);
1037 		if (err)
1038 			goto freeout;
1039 	}
1040 
1041 	if (!is_t4(adap->params.chip)) {
1042 		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1043 					   netdev_get_tx_queue(adap->port[0], 0)
1044 					   , s->fw_evtq.cntxt_id, false);
1045 		if (err)
1046 			goto freeout;
1047 	}
1048 
1049 	t4_write_reg(adap, is_t4(adap->params.chip) ?
1050 				MPS_TRC_RSS_CONTROL_A :
1051 				MPS_T5_TRC_RSS_CONTROL_A,
1052 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1053 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1054 	return 0;
1055 freeout:
1056 	dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1057 	t4_free_sge_resources(adap);
1058 	return err;
1059 }
1060 
1061 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1062 			     struct net_device *sb_dev)
1063 {
1064 	int txq;
1065 
1066 #ifdef CONFIG_CHELSIO_T4_DCB
1067 	/* If a Data Center Bridging has been successfully negotiated on this
1068 	 * link then we'll use the skb's priority to map it to a TX Queue.
1069 	 * The skb's priority is determined via the VLAN Tag Priority Code
1070 	 * Point field.
1071 	 */
1072 	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1073 		u16 vlan_tci;
1074 		int err;
1075 
1076 		err = vlan_get_tag(skb, &vlan_tci);
1077 		if (unlikely(err)) {
1078 			if (net_ratelimit())
1079 				netdev_warn(dev,
1080 					    "TX Packet without VLAN Tag on DCB Link\n");
1081 			txq = 0;
1082 		} else {
1083 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1084 #ifdef CONFIG_CHELSIO_T4_FCOE
1085 			if (skb->protocol == htons(ETH_P_FCOE))
1086 				txq = skb->priority & 0x7;
1087 #endif /* CONFIG_CHELSIO_T4_FCOE */
1088 		}
1089 		return txq;
1090 	}
1091 #endif /* CONFIG_CHELSIO_T4_DCB */
1092 
1093 	if (select_queue) {
1094 		txq = (skb_rx_queue_recorded(skb)
1095 			? skb_get_rx_queue(skb)
1096 			: smp_processor_id());
1097 
1098 		while (unlikely(txq >= dev->real_num_tx_queues))
1099 			txq -= dev->real_num_tx_queues;
1100 
1101 		return txq;
1102 	}
1103 
1104 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1105 }
1106 
1107 static int closest_timer(const struct sge *s, int time)
1108 {
1109 	int i, delta, match = 0, min_delta = INT_MAX;
1110 
1111 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1112 		delta = time - s->timer_val[i];
1113 		if (delta < 0)
1114 			delta = -delta;
1115 		if (delta < min_delta) {
1116 			min_delta = delta;
1117 			match = i;
1118 		}
1119 	}
1120 	return match;
1121 }
1122 
1123 static int closest_thres(const struct sge *s, int thres)
1124 {
1125 	int i, delta, match = 0, min_delta = INT_MAX;
1126 
1127 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1128 		delta = thres - s->counter_val[i];
1129 		if (delta < 0)
1130 			delta = -delta;
1131 		if (delta < min_delta) {
1132 			min_delta = delta;
1133 			match = i;
1134 		}
1135 	}
1136 	return match;
1137 }
1138 
1139 /**
1140  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1141  *	@q: the Rx queue
1142  *	@us: the hold-off time in us, or 0 to disable timer
1143  *	@cnt: the hold-off packet count, or 0 to disable counter
1144  *
1145  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1146  *	one of the two needs to be enabled for the queue to generate interrupts.
1147  */
1148 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1149 			       unsigned int us, unsigned int cnt)
1150 {
1151 	struct adapter *adap = q->adap;
1152 
1153 	if ((us | cnt) == 0)
1154 		cnt = 1;
1155 
1156 	if (cnt) {
1157 		int err;
1158 		u32 v, new_idx;
1159 
1160 		new_idx = closest_thres(&adap->sge, cnt);
1161 		if (q->desc && q->pktcnt_idx != new_idx) {
1162 			/* the queue has already been created, update it */
1163 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1164 			    FW_PARAMS_PARAM_X_V(
1165 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1166 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1167 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1168 					    &v, &new_idx);
1169 			if (err)
1170 				return err;
1171 		}
1172 		q->pktcnt_idx = new_idx;
1173 	}
1174 
1175 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1176 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1177 	return 0;
1178 }
1179 
1180 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1181 {
1182 	const struct port_info *pi = netdev_priv(dev);
1183 	netdev_features_t changed = dev->features ^ features;
1184 	int err;
1185 
1186 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1187 		return 0;
1188 
1189 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1190 			    -1, -1, -1,
1191 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1192 	if (unlikely(err))
1193 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1194 	return err;
1195 }
1196 
1197 static int setup_debugfs(struct adapter *adap)
1198 {
1199 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1200 		return -1;
1201 
1202 #ifdef CONFIG_DEBUG_FS
1203 	t4_setup_debugfs(adap);
1204 #endif
1205 	return 0;
1206 }
1207 
1208 /*
1209  * upper-layer driver support
1210  */
1211 
1212 /*
1213  * Allocate an active-open TID and set it to the supplied value.
1214  */
1215 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1216 {
1217 	int atid = -1;
1218 
1219 	spin_lock_bh(&t->atid_lock);
1220 	if (t->afree) {
1221 		union aopen_entry *p = t->afree;
1222 
1223 		atid = (p - t->atid_tab) + t->atid_base;
1224 		t->afree = p->next;
1225 		p->data = data;
1226 		t->atids_in_use++;
1227 	}
1228 	spin_unlock_bh(&t->atid_lock);
1229 	return atid;
1230 }
1231 EXPORT_SYMBOL(cxgb4_alloc_atid);
1232 
1233 /*
1234  * Release an active-open TID.
1235  */
1236 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1237 {
1238 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1239 
1240 	spin_lock_bh(&t->atid_lock);
1241 	p->next = t->afree;
1242 	t->afree = p;
1243 	t->atids_in_use--;
1244 	spin_unlock_bh(&t->atid_lock);
1245 }
1246 EXPORT_SYMBOL(cxgb4_free_atid);
1247 
1248 /*
1249  * Allocate a server TID and set it to the supplied value.
1250  */
1251 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1252 {
1253 	int stid;
1254 
1255 	spin_lock_bh(&t->stid_lock);
1256 	if (family == PF_INET) {
1257 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1258 		if (stid < t->nstids)
1259 			__set_bit(stid, t->stid_bmap);
1260 		else
1261 			stid = -1;
1262 	} else {
1263 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1264 		if (stid < 0)
1265 			stid = -1;
1266 	}
1267 	if (stid >= 0) {
1268 		t->stid_tab[stid].data = data;
1269 		stid += t->stid_base;
1270 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1271 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1272 		 * needs 2 TIDs.
1273 		 */
1274 		if (family == PF_INET6) {
1275 			t->stids_in_use += 2;
1276 			t->v6_stids_in_use += 2;
1277 		} else {
1278 			t->stids_in_use++;
1279 		}
1280 	}
1281 	spin_unlock_bh(&t->stid_lock);
1282 	return stid;
1283 }
1284 EXPORT_SYMBOL(cxgb4_alloc_stid);
1285 
1286 /* Allocate a server filter TID and set it to the supplied value.
1287  */
1288 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1289 {
1290 	int stid;
1291 
1292 	spin_lock_bh(&t->stid_lock);
1293 	if (family == PF_INET) {
1294 		stid = find_next_zero_bit(t->stid_bmap,
1295 				t->nstids + t->nsftids, t->nstids);
1296 		if (stid < (t->nstids + t->nsftids))
1297 			__set_bit(stid, t->stid_bmap);
1298 		else
1299 			stid = -1;
1300 	} else {
1301 		stid = -1;
1302 	}
1303 	if (stid >= 0) {
1304 		t->stid_tab[stid].data = data;
1305 		stid -= t->nstids;
1306 		stid += t->sftid_base;
1307 		t->sftids_in_use++;
1308 	}
1309 	spin_unlock_bh(&t->stid_lock);
1310 	return stid;
1311 }
1312 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1313 
1314 /* Release a server TID.
1315  */
1316 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1317 {
1318 	/* Is it a server filter TID? */
1319 	if (t->nsftids && (stid >= t->sftid_base)) {
1320 		stid -= t->sftid_base;
1321 		stid += t->nstids;
1322 	} else {
1323 		stid -= t->stid_base;
1324 	}
1325 
1326 	spin_lock_bh(&t->stid_lock);
1327 	if (family == PF_INET)
1328 		__clear_bit(stid, t->stid_bmap);
1329 	else
1330 		bitmap_release_region(t->stid_bmap, stid, 1);
1331 	t->stid_tab[stid].data = NULL;
1332 	if (stid < t->nstids) {
1333 		if (family == PF_INET6) {
1334 			t->stids_in_use -= 2;
1335 			t->v6_stids_in_use -= 2;
1336 		} else {
1337 			t->stids_in_use--;
1338 		}
1339 	} else {
1340 		t->sftids_in_use--;
1341 	}
1342 
1343 	spin_unlock_bh(&t->stid_lock);
1344 }
1345 EXPORT_SYMBOL(cxgb4_free_stid);
1346 
1347 /*
1348  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1349  */
1350 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1351 			   unsigned int tid)
1352 {
1353 	struct cpl_tid_release *req;
1354 
1355 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1356 	req = __skb_put(skb, sizeof(*req));
1357 	INIT_TP_WR(req, tid);
1358 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1359 }
1360 
1361 /*
1362  * Queue a TID release request and if necessary schedule a work queue to
1363  * process it.
1364  */
1365 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1366 				    unsigned int tid)
1367 {
1368 	void **p = &t->tid_tab[tid];
1369 	struct adapter *adap = container_of(t, struct adapter, tids);
1370 
1371 	spin_lock_bh(&adap->tid_release_lock);
1372 	*p = adap->tid_release_head;
1373 	/* Low 2 bits encode the Tx channel number */
1374 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1375 	if (!adap->tid_release_task_busy) {
1376 		adap->tid_release_task_busy = true;
1377 		queue_work(adap->workq, &adap->tid_release_task);
1378 	}
1379 	spin_unlock_bh(&adap->tid_release_lock);
1380 }
1381 
1382 /*
1383  * Process the list of pending TID release requests.
1384  */
1385 static void process_tid_release_list(struct work_struct *work)
1386 {
1387 	struct sk_buff *skb;
1388 	struct adapter *adap;
1389 
1390 	adap = container_of(work, struct adapter, tid_release_task);
1391 
1392 	spin_lock_bh(&adap->tid_release_lock);
1393 	while (adap->tid_release_head) {
1394 		void **p = adap->tid_release_head;
1395 		unsigned int chan = (uintptr_t)p & 3;
1396 		p = (void *)p - chan;
1397 
1398 		adap->tid_release_head = *p;
1399 		*p = NULL;
1400 		spin_unlock_bh(&adap->tid_release_lock);
1401 
1402 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1403 					 GFP_KERNEL)))
1404 			schedule_timeout_uninterruptible(1);
1405 
1406 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1407 		t4_ofld_send(adap, skb);
1408 		spin_lock_bh(&adap->tid_release_lock);
1409 	}
1410 	adap->tid_release_task_busy = false;
1411 	spin_unlock_bh(&adap->tid_release_lock);
1412 }
1413 
1414 /*
1415  * Release a TID and inform HW.  If we are unable to allocate the release
1416  * message we defer to a work queue.
1417  */
1418 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1419 		      unsigned short family)
1420 {
1421 	struct sk_buff *skb;
1422 	struct adapter *adap = container_of(t, struct adapter, tids);
1423 
1424 	WARN_ON(tid >= t->ntids);
1425 
1426 	if (t->tid_tab[tid]) {
1427 		t->tid_tab[tid] = NULL;
1428 		atomic_dec(&t->conns_in_use);
1429 		if (t->hash_base && (tid >= t->hash_base)) {
1430 			if (family == AF_INET6)
1431 				atomic_sub(2, &t->hash_tids_in_use);
1432 			else
1433 				atomic_dec(&t->hash_tids_in_use);
1434 		} else {
1435 			if (family == AF_INET6)
1436 				atomic_sub(2, &t->tids_in_use);
1437 			else
1438 				atomic_dec(&t->tids_in_use);
1439 		}
1440 	}
1441 
1442 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1443 	if (likely(skb)) {
1444 		mk_tid_release(skb, chan, tid);
1445 		t4_ofld_send(adap, skb);
1446 	} else
1447 		cxgb4_queue_tid_release(t, chan, tid);
1448 }
1449 EXPORT_SYMBOL(cxgb4_remove_tid);
1450 
1451 /*
1452  * Allocate and initialize the TID tables.  Returns 0 on success.
1453  */
1454 static int tid_init(struct tid_info *t)
1455 {
1456 	struct adapter *adap = container_of(t, struct adapter, tids);
1457 	unsigned int max_ftids = t->nftids + t->nsftids;
1458 	unsigned int natids = t->natids;
1459 	unsigned int stid_bmap_size;
1460 	unsigned int ftid_bmap_size;
1461 	size_t size;
1462 
1463 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1464 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1465 	size = t->ntids * sizeof(*t->tid_tab) +
1466 	       natids * sizeof(*t->atid_tab) +
1467 	       t->nstids * sizeof(*t->stid_tab) +
1468 	       t->nsftids * sizeof(*t->stid_tab) +
1469 	       stid_bmap_size * sizeof(long) +
1470 	       max_ftids * sizeof(*t->ftid_tab) +
1471 	       ftid_bmap_size * sizeof(long);
1472 
1473 	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1474 	if (!t->tid_tab)
1475 		return -ENOMEM;
1476 
1477 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1478 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1479 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1480 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1481 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1482 	spin_lock_init(&t->stid_lock);
1483 	spin_lock_init(&t->atid_lock);
1484 	spin_lock_init(&t->ftid_lock);
1485 
1486 	t->stids_in_use = 0;
1487 	t->v6_stids_in_use = 0;
1488 	t->sftids_in_use = 0;
1489 	t->afree = NULL;
1490 	t->atids_in_use = 0;
1491 	atomic_set(&t->tids_in_use, 0);
1492 	atomic_set(&t->conns_in_use, 0);
1493 	atomic_set(&t->hash_tids_in_use, 0);
1494 
1495 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1496 	if (natids) {
1497 		while (--natids)
1498 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1499 		t->afree = t->atid_tab;
1500 	}
1501 
1502 	if (is_offload(adap)) {
1503 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1504 		/* Reserve stid 0 for T4/T5 adapters */
1505 		if (!t->stid_base &&
1506 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1507 			__set_bit(0, t->stid_bmap);
1508 	}
1509 
1510 	bitmap_zero(t->ftid_bmap, t->nftids);
1511 	return 0;
1512 }
1513 
1514 /**
1515  *	cxgb4_create_server - create an IP server
1516  *	@dev: the device
1517  *	@stid: the server TID
1518  *	@sip: local IP address to bind server to
1519  *	@sport: the server's TCP port
1520  *	@queue: queue to direct messages from this server to
1521  *
1522  *	Create an IP server for the given port and address.
1523  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1524  */
1525 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1526 			__be32 sip, __be16 sport, __be16 vlan,
1527 			unsigned int queue)
1528 {
1529 	unsigned int chan;
1530 	struct sk_buff *skb;
1531 	struct adapter *adap;
1532 	struct cpl_pass_open_req *req;
1533 	int ret;
1534 
1535 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1536 	if (!skb)
1537 		return -ENOMEM;
1538 
1539 	adap = netdev2adap(dev);
1540 	req = __skb_put(skb, sizeof(*req));
1541 	INIT_TP_WR(req, 0);
1542 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1543 	req->local_port = sport;
1544 	req->peer_port = htons(0);
1545 	req->local_ip = sip;
1546 	req->peer_ip = htonl(0);
1547 	chan = rxq_to_chan(&adap->sge, queue);
1548 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1549 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1550 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1551 	ret = t4_mgmt_tx(adap, skb);
1552 	return net_xmit_eval(ret);
1553 }
1554 EXPORT_SYMBOL(cxgb4_create_server);
1555 
1556 /*	cxgb4_create_server6 - create an IPv6 server
1557  *	@dev: the device
1558  *	@stid: the server TID
1559  *	@sip: local IPv6 address to bind server to
1560  *	@sport: the server's TCP port
1561  *	@queue: queue to direct messages from this server to
1562  *
1563  *	Create an IPv6 server for the given port and address.
1564  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1565  */
1566 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1567 			 const struct in6_addr *sip, __be16 sport,
1568 			 unsigned int queue)
1569 {
1570 	unsigned int chan;
1571 	struct sk_buff *skb;
1572 	struct adapter *adap;
1573 	struct cpl_pass_open_req6 *req;
1574 	int ret;
1575 
1576 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1577 	if (!skb)
1578 		return -ENOMEM;
1579 
1580 	adap = netdev2adap(dev);
1581 	req = __skb_put(skb, sizeof(*req));
1582 	INIT_TP_WR(req, 0);
1583 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1584 	req->local_port = sport;
1585 	req->peer_port = htons(0);
1586 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1587 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1588 	req->peer_ip_hi = cpu_to_be64(0);
1589 	req->peer_ip_lo = cpu_to_be64(0);
1590 	chan = rxq_to_chan(&adap->sge, queue);
1591 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1592 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1593 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1594 	ret = t4_mgmt_tx(adap, skb);
1595 	return net_xmit_eval(ret);
1596 }
1597 EXPORT_SYMBOL(cxgb4_create_server6);
1598 
1599 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1600 			unsigned int queue, bool ipv6)
1601 {
1602 	struct sk_buff *skb;
1603 	struct adapter *adap;
1604 	struct cpl_close_listsvr_req *req;
1605 	int ret;
1606 
1607 	adap = netdev2adap(dev);
1608 
1609 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1610 	if (!skb)
1611 		return -ENOMEM;
1612 
1613 	req = __skb_put(skb, sizeof(*req));
1614 	INIT_TP_WR(req, 0);
1615 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1616 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1617 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1618 	ret = t4_mgmt_tx(adap, skb);
1619 	return net_xmit_eval(ret);
1620 }
1621 EXPORT_SYMBOL(cxgb4_remove_server);
1622 
1623 /**
1624  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1625  *	@mtus: the HW MTU table
1626  *	@mtu: the target MTU
1627  *	@idx: index of selected entry in the MTU table
1628  *
1629  *	Returns the index and the value in the HW MTU table that is closest to
1630  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1631  *	table, in which case that smallest available value is selected.
1632  */
1633 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1634 			    unsigned int *idx)
1635 {
1636 	unsigned int i = 0;
1637 
1638 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1639 		++i;
1640 	if (idx)
1641 		*idx = i;
1642 	return mtus[i];
1643 }
1644 EXPORT_SYMBOL(cxgb4_best_mtu);
1645 
1646 /**
1647  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1648  *     @mtus: the HW MTU table
1649  *     @header_size: Header Size
1650  *     @data_size_max: maximum Data Segment Size
1651  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1652  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1653  *
1654  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1655  *     MTU Table based solely on a Maximum MTU parameter, we break that
1656  *     parameter up into a Header Size and Maximum Data Segment Size, and
1657  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1658  *     the Hardware MTU Table which will result in a Data Segment Size with
1659  *     the requested alignment _and_ that MTU isn't "too far" from the
1660  *     closest MTU, then we'll return that rather than the closest MTU.
1661  */
1662 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1663 				    unsigned short header_size,
1664 				    unsigned short data_size_max,
1665 				    unsigned short data_size_align,
1666 				    unsigned int *mtu_idxp)
1667 {
1668 	unsigned short max_mtu = header_size + data_size_max;
1669 	unsigned short data_size_align_mask = data_size_align - 1;
1670 	int mtu_idx, aligned_mtu_idx;
1671 
1672 	/* Scan the MTU Table till we find an MTU which is larger than our
1673 	 * Maximum MTU or we reach the end of the table.  Along the way,
1674 	 * record the last MTU found, if any, which will result in a Data
1675 	 * Segment Length matching the requested alignment.
1676 	 */
1677 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1678 		unsigned short data_size = mtus[mtu_idx] - header_size;
1679 
1680 		/* If this MTU minus the Header Size would result in a
1681 		 * Data Segment Size of the desired alignment, remember it.
1682 		 */
1683 		if ((data_size & data_size_align_mask) == 0)
1684 			aligned_mtu_idx = mtu_idx;
1685 
1686 		/* If we're not at the end of the Hardware MTU Table and the
1687 		 * next element is larger than our Maximum MTU, drop out of
1688 		 * the loop.
1689 		 */
1690 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1691 			break;
1692 	}
1693 
1694 	/* If we fell out of the loop because we ran to the end of the table,
1695 	 * then we just have to use the last [largest] entry.
1696 	 */
1697 	if (mtu_idx == NMTUS)
1698 		mtu_idx--;
1699 
1700 	/* If we found an MTU which resulted in the requested Data Segment
1701 	 * Length alignment and that's "not far" from the largest MTU which is
1702 	 * less than or equal to the maximum MTU, then use that.
1703 	 */
1704 	if (aligned_mtu_idx >= 0 &&
1705 	    mtu_idx - aligned_mtu_idx <= 1)
1706 		mtu_idx = aligned_mtu_idx;
1707 
1708 	/* If the caller has passed in an MTU Index pointer, pass the
1709 	 * MTU Index back.  Return the MTU value.
1710 	 */
1711 	if (mtu_idxp)
1712 		*mtu_idxp = mtu_idx;
1713 	return mtus[mtu_idx];
1714 }
1715 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1716 
1717 /**
1718  *	cxgb4_port_chan - get the HW channel of a port
1719  *	@dev: the net device for the port
1720  *
1721  *	Return the HW Tx channel of the given port.
1722  */
1723 unsigned int cxgb4_port_chan(const struct net_device *dev)
1724 {
1725 	return netdev2pinfo(dev)->tx_chan;
1726 }
1727 EXPORT_SYMBOL(cxgb4_port_chan);
1728 
1729 /**
1730  *      cxgb4_port_e2cchan - get the HW c-channel of a port
1731  *      @dev: the net device for the port
1732  *
1733  *      Return the HW RX c-channel of the given port.
1734  */
1735 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
1736 {
1737 	return netdev2pinfo(dev)->rx_cchan;
1738 }
1739 EXPORT_SYMBOL(cxgb4_port_e2cchan);
1740 
1741 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1742 {
1743 	struct adapter *adap = netdev2adap(dev);
1744 	u32 v1, v2, lp_count, hp_count;
1745 
1746 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1747 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1748 	if (is_t4(adap->params.chip)) {
1749 		lp_count = LP_COUNT_G(v1);
1750 		hp_count = HP_COUNT_G(v1);
1751 	} else {
1752 		lp_count = LP_COUNT_T5_G(v1);
1753 		hp_count = HP_COUNT_T5_G(v2);
1754 	}
1755 	return lpfifo ? lp_count : hp_count;
1756 }
1757 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1758 
1759 /**
1760  *	cxgb4_port_viid - get the VI id of a port
1761  *	@dev: the net device for the port
1762  *
1763  *	Return the VI id of the given port.
1764  */
1765 unsigned int cxgb4_port_viid(const struct net_device *dev)
1766 {
1767 	return netdev2pinfo(dev)->viid;
1768 }
1769 EXPORT_SYMBOL(cxgb4_port_viid);
1770 
1771 /**
1772  *	cxgb4_port_idx - get the index of a port
1773  *	@dev: the net device for the port
1774  *
1775  *	Return the index of the given port.
1776  */
1777 unsigned int cxgb4_port_idx(const struct net_device *dev)
1778 {
1779 	return netdev2pinfo(dev)->port_id;
1780 }
1781 EXPORT_SYMBOL(cxgb4_port_idx);
1782 
1783 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1784 			 struct tp_tcp_stats *v6)
1785 {
1786 	struct adapter *adap = pci_get_drvdata(pdev);
1787 
1788 	spin_lock(&adap->stats_lock);
1789 	t4_tp_get_tcp_stats(adap, v4, v6, false);
1790 	spin_unlock(&adap->stats_lock);
1791 }
1792 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1793 
1794 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1795 		      const unsigned int *pgsz_order)
1796 {
1797 	struct adapter *adap = netdev2adap(dev);
1798 
1799 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1800 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1801 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1802 		     HPZ3_V(pgsz_order[3]));
1803 }
1804 EXPORT_SYMBOL(cxgb4_iscsi_init);
1805 
1806 int cxgb4_flush_eq_cache(struct net_device *dev)
1807 {
1808 	struct adapter *adap = netdev2adap(dev);
1809 
1810 	return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1811 }
1812 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1813 
1814 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1815 {
1816 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1817 	__be64 indices;
1818 	int ret;
1819 
1820 	spin_lock(&adap->win0_lock);
1821 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1822 			   sizeof(indices), (__be32 *)&indices,
1823 			   T4_MEMORY_READ);
1824 	spin_unlock(&adap->win0_lock);
1825 	if (!ret) {
1826 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1827 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1828 	}
1829 	return ret;
1830 }
1831 
1832 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1833 			u16 size)
1834 {
1835 	struct adapter *adap = netdev2adap(dev);
1836 	u16 hw_pidx, hw_cidx;
1837 	int ret;
1838 
1839 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1840 	if (ret)
1841 		goto out;
1842 
1843 	if (pidx != hw_pidx) {
1844 		u16 delta;
1845 		u32 val;
1846 
1847 		if (pidx >= hw_pidx)
1848 			delta = pidx - hw_pidx;
1849 		else
1850 			delta = size - hw_pidx + pidx;
1851 
1852 		if (is_t4(adap->params.chip))
1853 			val = PIDX_V(delta);
1854 		else
1855 			val = PIDX_T5_V(delta);
1856 		wmb();
1857 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1858 			     QID_V(qid) | val);
1859 	}
1860 out:
1861 	return ret;
1862 }
1863 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1864 
1865 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1866 {
1867 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1868 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1869 	u32 offset, memtype, memaddr;
1870 	struct adapter *adap;
1871 	u32 hma_size = 0;
1872 	int ret;
1873 
1874 	adap = netdev2adap(dev);
1875 
1876 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1877 
1878 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1879 	 * This code assumes that the memory is laid out starting at offset 0
1880 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1881 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1882 	 * MC0, and some have both MC0 and MC1.
1883 	 */
1884 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1885 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1886 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1887 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1888 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1889 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1890 
1891 	if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1892 		size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1893 		hma_size = EXT_MEM1_SIZE_G(size) << 20;
1894 	}
1895 	edc0_end = edc0_size;
1896 	edc1_end = edc0_end + edc1_size;
1897 	mc0_end = edc1_end + mc0_size;
1898 
1899 	if (offset < edc0_end) {
1900 		memtype = MEM_EDC0;
1901 		memaddr = offset;
1902 	} else if (offset < edc1_end) {
1903 		memtype = MEM_EDC1;
1904 		memaddr = offset - edc0_end;
1905 	} else {
1906 		if (hma_size && (offset < (edc1_end + hma_size))) {
1907 			memtype = MEM_HMA;
1908 			memaddr = offset - edc1_end;
1909 		} else if (offset < mc0_end) {
1910 			memtype = MEM_MC0;
1911 			memaddr = offset - edc1_end;
1912 		} else if (is_t5(adap->params.chip)) {
1913 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1914 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1915 			mc1_end = mc0_end + mc1_size;
1916 			if (offset < mc1_end) {
1917 				memtype = MEM_MC1;
1918 				memaddr = offset - mc0_end;
1919 			} else {
1920 				/* offset beyond the end of any memory */
1921 				goto err;
1922 			}
1923 		} else {
1924 			/* T4/T6 only has a single memory channel */
1925 			goto err;
1926 		}
1927 	}
1928 
1929 	spin_lock(&adap->win0_lock);
1930 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1931 	spin_unlock(&adap->win0_lock);
1932 	return ret;
1933 
1934 err:
1935 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1936 		stag, offset);
1937 	return -EINVAL;
1938 }
1939 EXPORT_SYMBOL(cxgb4_read_tpte);
1940 
1941 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1942 {
1943 	u32 hi, lo;
1944 	struct adapter *adap;
1945 
1946 	adap = netdev2adap(dev);
1947 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1948 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1949 
1950 	return ((u64)hi << 32) | (u64)lo;
1951 }
1952 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1953 
1954 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1955 			 unsigned int qid,
1956 			 enum cxgb4_bar2_qtype qtype,
1957 			 int user,
1958 			 u64 *pbar2_qoffset,
1959 			 unsigned int *pbar2_qid)
1960 {
1961 	return t4_bar2_sge_qregs(netdev2adap(dev),
1962 				 qid,
1963 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1964 				  ? T4_BAR2_QTYPE_EGRESS
1965 				  : T4_BAR2_QTYPE_INGRESS),
1966 				 user,
1967 				 pbar2_qoffset,
1968 				 pbar2_qid);
1969 }
1970 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1971 
1972 static struct pci_driver cxgb4_driver;
1973 
1974 static void check_neigh_update(struct neighbour *neigh)
1975 {
1976 	const struct device *parent;
1977 	const struct net_device *netdev = neigh->dev;
1978 
1979 	if (is_vlan_dev(netdev))
1980 		netdev = vlan_dev_real_dev(netdev);
1981 	parent = netdev->dev.parent;
1982 	if (parent && parent->driver == &cxgb4_driver.driver)
1983 		t4_l2t_update(dev_get_drvdata(parent), neigh);
1984 }
1985 
1986 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1987 		       void *data)
1988 {
1989 	switch (event) {
1990 	case NETEVENT_NEIGH_UPDATE:
1991 		check_neigh_update(data);
1992 		break;
1993 	case NETEVENT_REDIRECT:
1994 	default:
1995 		break;
1996 	}
1997 	return 0;
1998 }
1999 
2000 static bool netevent_registered;
2001 static struct notifier_block cxgb4_netevent_nb = {
2002 	.notifier_call = netevent_cb
2003 };
2004 
2005 static void drain_db_fifo(struct adapter *adap, int usecs)
2006 {
2007 	u32 v1, v2, lp_count, hp_count;
2008 
2009 	do {
2010 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2011 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2012 		if (is_t4(adap->params.chip)) {
2013 			lp_count = LP_COUNT_G(v1);
2014 			hp_count = HP_COUNT_G(v1);
2015 		} else {
2016 			lp_count = LP_COUNT_T5_G(v1);
2017 			hp_count = HP_COUNT_T5_G(v2);
2018 		}
2019 
2020 		if (lp_count == 0 && hp_count == 0)
2021 			break;
2022 		set_current_state(TASK_UNINTERRUPTIBLE);
2023 		schedule_timeout(usecs_to_jiffies(usecs));
2024 	} while (1);
2025 }
2026 
2027 static void disable_txq_db(struct sge_txq *q)
2028 {
2029 	unsigned long flags;
2030 
2031 	spin_lock_irqsave(&q->db_lock, flags);
2032 	q->db_disabled = 1;
2033 	spin_unlock_irqrestore(&q->db_lock, flags);
2034 }
2035 
2036 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2037 {
2038 	spin_lock_irq(&q->db_lock);
2039 	if (q->db_pidx_inc) {
2040 		/* Make sure that all writes to the TX descriptors
2041 		 * are committed before we tell HW about them.
2042 		 */
2043 		wmb();
2044 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2045 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2046 		q->db_pidx_inc = 0;
2047 	}
2048 	q->db_disabled = 0;
2049 	spin_unlock_irq(&q->db_lock);
2050 }
2051 
2052 static void disable_dbs(struct adapter *adap)
2053 {
2054 	int i;
2055 
2056 	for_each_ethrxq(&adap->sge, i)
2057 		disable_txq_db(&adap->sge.ethtxq[i].q);
2058 	if (is_offload(adap)) {
2059 		struct sge_uld_txq_info *txq_info =
2060 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2061 
2062 		if (txq_info) {
2063 			for_each_ofldtxq(&adap->sge, i) {
2064 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2065 
2066 				disable_txq_db(&txq->q);
2067 			}
2068 		}
2069 	}
2070 	for_each_port(adap, i)
2071 		disable_txq_db(&adap->sge.ctrlq[i].q);
2072 }
2073 
2074 static void enable_dbs(struct adapter *adap)
2075 {
2076 	int i;
2077 
2078 	for_each_ethrxq(&adap->sge, i)
2079 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2080 	if (is_offload(adap)) {
2081 		struct sge_uld_txq_info *txq_info =
2082 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2083 
2084 		if (txq_info) {
2085 			for_each_ofldtxq(&adap->sge, i) {
2086 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2087 
2088 				enable_txq_db(adap, &txq->q);
2089 			}
2090 		}
2091 	}
2092 	for_each_port(adap, i)
2093 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2094 }
2095 
2096 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2097 {
2098 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
2099 
2100 	if (adap->uld && adap->uld[type].handle)
2101 		adap->uld[type].control(adap->uld[type].handle, cmd);
2102 }
2103 
2104 static void process_db_full(struct work_struct *work)
2105 {
2106 	struct adapter *adap;
2107 
2108 	adap = container_of(work, struct adapter, db_full_task);
2109 
2110 	drain_db_fifo(adap, dbfifo_drain_delay);
2111 	enable_dbs(adap);
2112 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2113 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2114 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2115 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2116 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2117 	else
2118 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2119 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2120 }
2121 
2122 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2123 {
2124 	u16 hw_pidx, hw_cidx;
2125 	int ret;
2126 
2127 	spin_lock_irq(&q->db_lock);
2128 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2129 	if (ret)
2130 		goto out;
2131 	if (q->db_pidx != hw_pidx) {
2132 		u16 delta;
2133 		u32 val;
2134 
2135 		if (q->db_pidx >= hw_pidx)
2136 			delta = q->db_pidx - hw_pidx;
2137 		else
2138 			delta = q->size - hw_pidx + q->db_pidx;
2139 
2140 		if (is_t4(adap->params.chip))
2141 			val = PIDX_V(delta);
2142 		else
2143 			val = PIDX_T5_V(delta);
2144 		wmb();
2145 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2146 			     QID_V(q->cntxt_id) | val);
2147 	}
2148 out:
2149 	q->db_disabled = 0;
2150 	q->db_pidx_inc = 0;
2151 	spin_unlock_irq(&q->db_lock);
2152 	if (ret)
2153 		CH_WARN(adap, "DB drop recovery failed.\n");
2154 }
2155 
2156 static void recover_all_queues(struct adapter *adap)
2157 {
2158 	int i;
2159 
2160 	for_each_ethrxq(&adap->sge, i)
2161 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2162 	if (is_offload(adap)) {
2163 		struct sge_uld_txq_info *txq_info =
2164 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2165 		if (txq_info) {
2166 			for_each_ofldtxq(&adap->sge, i) {
2167 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2168 
2169 				sync_txq_pidx(adap, &txq->q);
2170 			}
2171 		}
2172 	}
2173 	for_each_port(adap, i)
2174 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2175 }
2176 
2177 static void process_db_drop(struct work_struct *work)
2178 {
2179 	struct adapter *adap;
2180 
2181 	adap = container_of(work, struct adapter, db_drop_task);
2182 
2183 	if (is_t4(adap->params.chip)) {
2184 		drain_db_fifo(adap, dbfifo_drain_delay);
2185 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2186 		drain_db_fifo(adap, dbfifo_drain_delay);
2187 		recover_all_queues(adap);
2188 		drain_db_fifo(adap, dbfifo_drain_delay);
2189 		enable_dbs(adap);
2190 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2191 	} else if (is_t5(adap->params.chip)) {
2192 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2193 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2194 		u16 pidx_inc = dropped_db & 0x1fff;
2195 		u64 bar2_qoffset;
2196 		unsigned int bar2_qid;
2197 		int ret;
2198 
2199 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2200 					0, &bar2_qoffset, &bar2_qid);
2201 		if (ret)
2202 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2203 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2204 		else
2205 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2206 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2207 
2208 		/* Re-enable BAR2 WC */
2209 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2210 	}
2211 
2212 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2213 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2214 }
2215 
2216 void t4_db_full(struct adapter *adap)
2217 {
2218 	if (is_t4(adap->params.chip)) {
2219 		disable_dbs(adap);
2220 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2221 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2222 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2223 		queue_work(adap->workq, &adap->db_full_task);
2224 	}
2225 }
2226 
2227 void t4_db_dropped(struct adapter *adap)
2228 {
2229 	if (is_t4(adap->params.chip)) {
2230 		disable_dbs(adap);
2231 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2232 	}
2233 	queue_work(adap->workq, &adap->db_drop_task);
2234 }
2235 
2236 void t4_register_netevent_notifier(void)
2237 {
2238 	if (!netevent_registered) {
2239 		register_netevent_notifier(&cxgb4_netevent_nb);
2240 		netevent_registered = true;
2241 	}
2242 }
2243 
2244 static void detach_ulds(struct adapter *adap)
2245 {
2246 	unsigned int i;
2247 
2248 	mutex_lock(&uld_mutex);
2249 	list_del(&adap->list_node);
2250 
2251 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2252 		if (adap->uld && adap->uld[i].handle)
2253 			adap->uld[i].state_change(adap->uld[i].handle,
2254 					     CXGB4_STATE_DETACH);
2255 
2256 	if (netevent_registered && list_empty(&adapter_list)) {
2257 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2258 		netevent_registered = false;
2259 	}
2260 	mutex_unlock(&uld_mutex);
2261 }
2262 
2263 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2264 {
2265 	unsigned int i;
2266 
2267 	mutex_lock(&uld_mutex);
2268 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2269 		if (adap->uld && adap->uld[i].handle)
2270 			adap->uld[i].state_change(adap->uld[i].handle,
2271 						  new_state);
2272 	mutex_unlock(&uld_mutex);
2273 }
2274 
2275 #if IS_ENABLED(CONFIG_IPV6)
2276 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2277 				   unsigned long event, void *data)
2278 {
2279 	struct inet6_ifaddr *ifa = data;
2280 	struct net_device *event_dev = ifa->idev->dev;
2281 	const struct device *parent = NULL;
2282 #if IS_ENABLED(CONFIG_BONDING)
2283 	struct adapter *adap;
2284 #endif
2285 	if (is_vlan_dev(event_dev))
2286 		event_dev = vlan_dev_real_dev(event_dev);
2287 #if IS_ENABLED(CONFIG_BONDING)
2288 	if (event_dev->flags & IFF_MASTER) {
2289 		list_for_each_entry(adap, &adapter_list, list_node) {
2290 			switch (event) {
2291 			case NETDEV_UP:
2292 				cxgb4_clip_get(adap->port[0],
2293 					       (const u32 *)ifa, 1);
2294 				break;
2295 			case NETDEV_DOWN:
2296 				cxgb4_clip_release(adap->port[0],
2297 						   (const u32 *)ifa, 1);
2298 				break;
2299 			default:
2300 				break;
2301 			}
2302 		}
2303 		return NOTIFY_OK;
2304 	}
2305 #endif
2306 
2307 	if (event_dev)
2308 		parent = event_dev->dev.parent;
2309 
2310 	if (parent && parent->driver == &cxgb4_driver.driver) {
2311 		switch (event) {
2312 		case NETDEV_UP:
2313 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2314 			break;
2315 		case NETDEV_DOWN:
2316 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2317 			break;
2318 		default:
2319 			break;
2320 		}
2321 	}
2322 	return NOTIFY_OK;
2323 }
2324 
2325 static bool inet6addr_registered;
2326 static struct notifier_block cxgb4_inet6addr_notifier = {
2327 	.notifier_call = cxgb4_inet6addr_handler
2328 };
2329 
2330 static void update_clip(const struct adapter *adap)
2331 {
2332 	int i;
2333 	struct net_device *dev;
2334 	int ret;
2335 
2336 	rcu_read_lock();
2337 
2338 	for (i = 0; i < MAX_NPORTS; i++) {
2339 		dev = adap->port[i];
2340 		ret = 0;
2341 
2342 		if (dev)
2343 			ret = cxgb4_update_root_dev_clip(dev);
2344 
2345 		if (ret < 0)
2346 			break;
2347 	}
2348 	rcu_read_unlock();
2349 }
2350 #endif /* IS_ENABLED(CONFIG_IPV6) */
2351 
2352 /**
2353  *	cxgb_up - enable the adapter
2354  *	@adap: adapter being enabled
2355  *
2356  *	Called when the first port is enabled, this function performs the
2357  *	actions necessary to make an adapter operational, such as completing
2358  *	the initialization of HW modules, and enabling interrupts.
2359  *
2360  *	Must be called with the rtnl lock held.
2361  */
2362 static int cxgb_up(struct adapter *adap)
2363 {
2364 	int err;
2365 
2366 	mutex_lock(&uld_mutex);
2367 	err = setup_sge_queues(adap);
2368 	if (err)
2369 		goto rel_lock;
2370 	err = setup_rss(adap);
2371 	if (err)
2372 		goto freeq;
2373 
2374 	if (adap->flags & CXGB4_USING_MSIX) {
2375 		name_msix_vecs(adap);
2376 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2377 				  adap->msix_info[0].desc, adap);
2378 		if (err)
2379 			goto irq_err;
2380 		err = request_msix_queue_irqs(adap);
2381 		if (err) {
2382 			free_irq(adap->msix_info[0].vec, adap);
2383 			goto irq_err;
2384 		}
2385 	} else {
2386 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2387 				  (adap->flags & CXGB4_USING_MSI) ? 0
2388 								  : IRQF_SHARED,
2389 				  adap->port[0]->name, adap);
2390 		if (err)
2391 			goto irq_err;
2392 	}
2393 
2394 	enable_rx(adap);
2395 	t4_sge_start(adap);
2396 	t4_intr_enable(adap);
2397 	adap->flags |= CXGB4_FULL_INIT_DONE;
2398 	mutex_unlock(&uld_mutex);
2399 
2400 	notify_ulds(adap, CXGB4_STATE_UP);
2401 #if IS_ENABLED(CONFIG_IPV6)
2402 	update_clip(adap);
2403 #endif
2404 	return err;
2405 
2406  irq_err:
2407 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2408  freeq:
2409 	t4_free_sge_resources(adap);
2410  rel_lock:
2411 	mutex_unlock(&uld_mutex);
2412 	return err;
2413 }
2414 
2415 static void cxgb_down(struct adapter *adapter)
2416 {
2417 	cancel_work_sync(&adapter->tid_release_task);
2418 	cancel_work_sync(&adapter->db_full_task);
2419 	cancel_work_sync(&adapter->db_drop_task);
2420 	adapter->tid_release_task_busy = false;
2421 	adapter->tid_release_head = NULL;
2422 
2423 	t4_sge_stop(adapter);
2424 	t4_free_sge_resources(adapter);
2425 
2426 	adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2427 }
2428 
2429 /*
2430  * net_device operations
2431  */
2432 static int cxgb_open(struct net_device *dev)
2433 {
2434 	int err;
2435 	struct port_info *pi = netdev_priv(dev);
2436 	struct adapter *adapter = pi->adapter;
2437 
2438 	netif_carrier_off(dev);
2439 
2440 	if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2441 		err = cxgb_up(adapter);
2442 		if (err < 0)
2443 			return err;
2444 	}
2445 
2446 	/* It's possible that the basic port information could have
2447 	 * changed since we first read it.
2448 	 */
2449 	err = t4_update_port_info(pi);
2450 	if (err < 0)
2451 		return err;
2452 
2453 	err = link_start(dev);
2454 	if (!err)
2455 		netif_tx_start_all_queues(dev);
2456 	return err;
2457 }
2458 
2459 static int cxgb_close(struct net_device *dev)
2460 {
2461 	struct port_info *pi = netdev_priv(dev);
2462 	struct adapter *adapter = pi->adapter;
2463 	int ret;
2464 
2465 	netif_tx_stop_all_queues(dev);
2466 	netif_carrier_off(dev);
2467 	ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2468 				  false, false, false);
2469 #ifdef CONFIG_CHELSIO_T4_DCB
2470 	cxgb4_dcb_reset(dev);
2471 	dcb_tx_queue_prio_enable(dev, false);
2472 #endif
2473 	return ret;
2474 }
2475 
2476 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2477 		__be32 sip, __be16 sport, __be16 vlan,
2478 		unsigned int queue, unsigned char port, unsigned char mask)
2479 {
2480 	int ret;
2481 	struct filter_entry *f;
2482 	struct adapter *adap;
2483 	int i;
2484 	u8 *val;
2485 
2486 	adap = netdev2adap(dev);
2487 
2488 	/* Adjust stid to correct filter index */
2489 	stid -= adap->tids.sftid_base;
2490 	stid += adap->tids.nftids;
2491 
2492 	/* Check to make sure the filter requested is writable ...
2493 	 */
2494 	f = &adap->tids.ftid_tab[stid];
2495 	ret = writable_filter(f);
2496 	if (ret)
2497 		return ret;
2498 
2499 	/* Clear out any old resources being used by the filter before
2500 	 * we start constructing the new filter.
2501 	 */
2502 	if (f->valid)
2503 		clear_filter(adap, f);
2504 
2505 	/* Clear out filter specifications */
2506 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2507 	f->fs.val.lport = cpu_to_be16(sport);
2508 	f->fs.mask.lport  = ~0;
2509 	val = (u8 *)&sip;
2510 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2511 		for (i = 0; i < 4; i++) {
2512 			f->fs.val.lip[i] = val[i];
2513 			f->fs.mask.lip[i] = ~0;
2514 		}
2515 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2516 			f->fs.val.iport = port;
2517 			f->fs.mask.iport = mask;
2518 		}
2519 	}
2520 
2521 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2522 		f->fs.val.proto = IPPROTO_TCP;
2523 		f->fs.mask.proto = ~0;
2524 	}
2525 
2526 	f->fs.dirsteer = 1;
2527 	f->fs.iq = queue;
2528 	/* Mark filter as locked */
2529 	f->locked = 1;
2530 	f->fs.rpttid = 1;
2531 
2532 	/* Save the actual tid. We need this to get the corresponding
2533 	 * filter entry structure in filter_rpl.
2534 	 */
2535 	f->tid = stid + adap->tids.ftid_base;
2536 	ret = set_filter_wr(adap, stid);
2537 	if (ret) {
2538 		clear_filter(adap, f);
2539 		return ret;
2540 	}
2541 
2542 	return 0;
2543 }
2544 EXPORT_SYMBOL(cxgb4_create_server_filter);
2545 
2546 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2547 		unsigned int queue, bool ipv6)
2548 {
2549 	struct filter_entry *f;
2550 	struct adapter *adap;
2551 
2552 	adap = netdev2adap(dev);
2553 
2554 	/* Adjust stid to correct filter index */
2555 	stid -= adap->tids.sftid_base;
2556 	stid += adap->tids.nftids;
2557 
2558 	f = &adap->tids.ftid_tab[stid];
2559 	/* Unlock the filter */
2560 	f->locked = 0;
2561 
2562 	return delete_filter(adap, stid);
2563 }
2564 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2565 
2566 static void cxgb_get_stats(struct net_device *dev,
2567 			   struct rtnl_link_stats64 *ns)
2568 {
2569 	struct port_stats stats;
2570 	struct port_info *p = netdev_priv(dev);
2571 	struct adapter *adapter = p->adapter;
2572 
2573 	/* Block retrieving statistics during EEH error
2574 	 * recovery. Otherwise, the recovery might fail
2575 	 * and the PCI device will be removed permanently
2576 	 */
2577 	spin_lock(&adapter->stats_lock);
2578 	if (!netif_device_present(dev)) {
2579 		spin_unlock(&adapter->stats_lock);
2580 		return;
2581 	}
2582 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2583 				 &p->stats_base);
2584 	spin_unlock(&adapter->stats_lock);
2585 
2586 	ns->tx_bytes   = stats.tx_octets;
2587 	ns->tx_packets = stats.tx_frames;
2588 	ns->rx_bytes   = stats.rx_octets;
2589 	ns->rx_packets = stats.rx_frames;
2590 	ns->multicast  = stats.rx_mcast_frames;
2591 
2592 	/* detailed rx_errors */
2593 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2594 			       stats.rx_runt;
2595 	ns->rx_over_errors   = 0;
2596 	ns->rx_crc_errors    = stats.rx_fcs_err;
2597 	ns->rx_frame_errors  = stats.rx_symbol_err;
2598 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2599 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2600 			       stats.rx_trunc0 + stats.rx_trunc1 +
2601 			       stats.rx_trunc2 + stats.rx_trunc3;
2602 	ns->rx_missed_errors = 0;
2603 
2604 	/* detailed tx_errors */
2605 	ns->tx_aborted_errors   = 0;
2606 	ns->tx_carrier_errors   = 0;
2607 	ns->tx_fifo_errors      = 0;
2608 	ns->tx_heartbeat_errors = 0;
2609 	ns->tx_window_errors    = 0;
2610 
2611 	ns->tx_errors = stats.tx_error_frames;
2612 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2613 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2614 }
2615 
2616 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2617 {
2618 	unsigned int mbox;
2619 	int ret = 0, prtad, devad;
2620 	struct port_info *pi = netdev_priv(dev);
2621 	struct adapter *adapter = pi->adapter;
2622 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2623 
2624 	switch (cmd) {
2625 	case SIOCGMIIPHY:
2626 		if (pi->mdio_addr < 0)
2627 			return -EOPNOTSUPP;
2628 		data->phy_id = pi->mdio_addr;
2629 		break;
2630 	case SIOCGMIIREG:
2631 	case SIOCSMIIREG:
2632 		if (mdio_phy_id_is_c45(data->phy_id)) {
2633 			prtad = mdio_phy_id_prtad(data->phy_id);
2634 			devad = mdio_phy_id_devad(data->phy_id);
2635 		} else if (data->phy_id < 32) {
2636 			prtad = data->phy_id;
2637 			devad = 0;
2638 			data->reg_num &= 0x1f;
2639 		} else
2640 			return -EINVAL;
2641 
2642 		mbox = pi->adapter->pf;
2643 		if (cmd == SIOCGMIIREG)
2644 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2645 					 data->reg_num, &data->val_out);
2646 		else
2647 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2648 					 data->reg_num, data->val_in);
2649 		break;
2650 	case SIOCGHWTSTAMP:
2651 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2652 				    sizeof(pi->tstamp_config)) ?
2653 			-EFAULT : 0;
2654 	case SIOCSHWTSTAMP:
2655 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2656 				   sizeof(pi->tstamp_config)))
2657 			return -EFAULT;
2658 
2659 		if (!is_t4(adapter->params.chip)) {
2660 			switch (pi->tstamp_config.tx_type) {
2661 			case HWTSTAMP_TX_OFF:
2662 			case HWTSTAMP_TX_ON:
2663 				break;
2664 			default:
2665 				return -ERANGE;
2666 			}
2667 
2668 			switch (pi->tstamp_config.rx_filter) {
2669 			case HWTSTAMP_FILTER_NONE:
2670 				pi->rxtstamp = false;
2671 				break;
2672 			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2673 			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2674 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2675 							 PTP_TS_L4);
2676 				break;
2677 			case HWTSTAMP_FILTER_PTP_V2_EVENT:
2678 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2679 							 PTP_TS_L2_L4);
2680 				break;
2681 			case HWTSTAMP_FILTER_ALL:
2682 			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2683 			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2684 			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2685 			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2686 				pi->rxtstamp = true;
2687 				break;
2688 			default:
2689 				pi->tstamp_config.rx_filter =
2690 					HWTSTAMP_FILTER_NONE;
2691 				return -ERANGE;
2692 			}
2693 
2694 			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2695 			    (pi->tstamp_config.rx_filter ==
2696 				HWTSTAMP_FILTER_NONE)) {
2697 				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2698 					pi->ptp_enable = false;
2699 			}
2700 
2701 			if (pi->tstamp_config.rx_filter !=
2702 				HWTSTAMP_FILTER_NONE) {
2703 				if (cxgb4_ptp_redirect_rx_packet(adapter,
2704 								 pi) >= 0)
2705 					pi->ptp_enable = true;
2706 			}
2707 		} else {
2708 			/* For T4 Adapters */
2709 			switch (pi->tstamp_config.rx_filter) {
2710 			case HWTSTAMP_FILTER_NONE:
2711 			pi->rxtstamp = false;
2712 			break;
2713 			case HWTSTAMP_FILTER_ALL:
2714 			pi->rxtstamp = true;
2715 			break;
2716 			default:
2717 			pi->tstamp_config.rx_filter =
2718 			HWTSTAMP_FILTER_NONE;
2719 			return -ERANGE;
2720 			}
2721 		}
2722 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2723 				    sizeof(pi->tstamp_config)) ?
2724 			-EFAULT : 0;
2725 	default:
2726 		return -EOPNOTSUPP;
2727 	}
2728 	return ret;
2729 }
2730 
2731 static void cxgb_set_rxmode(struct net_device *dev)
2732 {
2733 	/* unfortunately we can't return errors to the stack */
2734 	set_rxmode(dev, -1, false);
2735 }
2736 
2737 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2738 {
2739 	int ret;
2740 	struct port_info *pi = netdev_priv(dev);
2741 
2742 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2743 			    -1, -1, -1, true);
2744 	if (!ret)
2745 		dev->mtu = new_mtu;
2746 	return ret;
2747 }
2748 
2749 #ifdef CONFIG_PCI_IOV
2750 static int cxgb4_mgmt_open(struct net_device *dev)
2751 {
2752 	/* Turn carrier off since we don't have to transmit anything on this
2753 	 * interface.
2754 	 */
2755 	netif_carrier_off(dev);
2756 	return 0;
2757 }
2758 
2759 /* Fill MAC address that will be assigned by the FW */
2760 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2761 {
2762 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2763 	unsigned int i, vf, nvfs;
2764 	u16 a, b;
2765 	int err;
2766 	u8 *na;
2767 
2768 	adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2769 							    PCI_CAP_ID_VPD);
2770 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2771 	if (err)
2772 		return;
2773 
2774 	na = adap->params.vpd.na;
2775 	for (i = 0; i < ETH_ALEN; i++)
2776 		hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2777 			      hex2val(na[2 * i + 1]));
2778 
2779 	a = (hw_addr[0] << 8) | hw_addr[1];
2780 	b = (hw_addr[1] << 8) | hw_addr[2];
2781 	a ^= b;
2782 	a |= 0x0200;    /* locally assigned Ethernet MAC address */
2783 	a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2784 	macaddr[0] = a >> 8;
2785 	macaddr[1] = a & 0xff;
2786 
2787 	for (i = 2; i < 5; i++)
2788 		macaddr[i] = hw_addr[i + 1];
2789 
2790 	for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2791 		vf < nvfs; vf++) {
2792 		macaddr[5] = adap->pf * nvfs + vf;
2793 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2794 	}
2795 }
2796 
2797 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2798 {
2799 	struct port_info *pi = netdev_priv(dev);
2800 	struct adapter *adap = pi->adapter;
2801 	int ret;
2802 
2803 	/* verify MAC addr is valid */
2804 	if (!is_valid_ether_addr(mac)) {
2805 		dev_err(pi->adapter->pdev_dev,
2806 			"Invalid Ethernet address %pM for VF %d\n",
2807 			mac, vf);
2808 		return -EINVAL;
2809 	}
2810 
2811 	dev_info(pi->adapter->pdev_dev,
2812 		 "Setting MAC %pM on VF %d\n", mac, vf);
2813 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2814 	if (!ret)
2815 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2816 	return ret;
2817 }
2818 
2819 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2820 				    int vf, struct ifla_vf_info *ivi)
2821 {
2822 	struct port_info *pi = netdev_priv(dev);
2823 	struct adapter *adap = pi->adapter;
2824 	struct vf_info *vfinfo;
2825 
2826 	if (vf >= adap->num_vfs)
2827 		return -EINVAL;
2828 	vfinfo = &adap->vfinfo[vf];
2829 
2830 	ivi->vf = vf;
2831 	ivi->max_tx_rate = vfinfo->tx_rate;
2832 	ivi->min_tx_rate = 0;
2833 	ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2834 	ivi->vlan = vfinfo->vlan;
2835 	ivi->linkstate = vfinfo->link_state;
2836 	return 0;
2837 }
2838 
2839 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2840 				       struct netdev_phys_item_id *ppid)
2841 {
2842 	struct port_info *pi = netdev_priv(dev);
2843 	unsigned int phy_port_id;
2844 
2845 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2846 	ppid->id_len = sizeof(phy_port_id);
2847 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
2848 	return 0;
2849 }
2850 
2851 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2852 				  int min_tx_rate, int max_tx_rate)
2853 {
2854 	struct port_info *pi = netdev_priv(dev);
2855 	struct adapter *adap = pi->adapter;
2856 	unsigned int link_ok, speed, mtu;
2857 	u32 fw_pfvf, fw_class;
2858 	int class_id = vf;
2859 	int ret;
2860 	u16 pktsize;
2861 
2862 	if (vf >= adap->num_vfs)
2863 		return -EINVAL;
2864 
2865 	if (min_tx_rate) {
2866 		dev_err(adap->pdev_dev,
2867 			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2868 			min_tx_rate, vf);
2869 		return -EINVAL;
2870 	}
2871 
2872 	if (max_tx_rate == 0) {
2873 		/* unbind VF to to any Traffic Class */
2874 		fw_pfvf =
2875 		    (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2876 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2877 		fw_class = 0xffffffff;
2878 		ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
2879 				    &fw_pfvf, &fw_class);
2880 		if (ret) {
2881 			dev_err(adap->pdev_dev,
2882 				"Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
2883 				ret, adap->pf, vf);
2884 			return -EINVAL;
2885 		}
2886 		dev_info(adap->pdev_dev,
2887 			 "PF %d VF %d is unbound from TX Rate Limiting\n",
2888 			 adap->pf, vf);
2889 		adap->vfinfo[vf].tx_rate = 0;
2890 		return 0;
2891 	}
2892 
2893 	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2894 	if (ret != FW_SUCCESS) {
2895 		dev_err(adap->pdev_dev,
2896 			"Failed to get link information for VF %d\n", vf);
2897 		return -EINVAL;
2898 	}
2899 
2900 	if (!link_ok) {
2901 		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2902 		return -EINVAL;
2903 	}
2904 
2905 	if (max_tx_rate > speed) {
2906 		dev_err(adap->pdev_dev,
2907 			"Max tx rate %d for VF %d can't be > link-speed %u",
2908 			max_tx_rate, vf, speed);
2909 		return -EINVAL;
2910 	}
2911 
2912 	pktsize = mtu;
2913 	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2914 	pktsize = pktsize - sizeof(struct ethhdr) - 4;
2915 	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2916 	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2917 	/* configure Traffic Class for rate-limiting */
2918 	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2919 			      SCHED_CLASS_LEVEL_CL_RL,
2920 			      SCHED_CLASS_MODE_CLASS,
2921 			      SCHED_CLASS_RATEUNIT_BITS,
2922 			      SCHED_CLASS_RATEMODE_ABS,
2923 			      pi->tx_chan, class_id, 0,
2924 			      max_tx_rate * 1000, 0, pktsize);
2925 	if (ret) {
2926 		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2927 			ret);
2928 		return -EINVAL;
2929 	}
2930 	dev_info(adap->pdev_dev,
2931 		 "Class %d with MSS %u configured with rate %u\n",
2932 		 class_id, pktsize, max_tx_rate);
2933 
2934 	/* bind VF to configured Traffic Class */
2935 	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2936 		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2937 	fw_class = class_id;
2938 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2939 			    &fw_class);
2940 	if (ret) {
2941 		dev_err(adap->pdev_dev,
2942 			"Err %d in binding PF %d VF %d to Traffic Class %d\n",
2943 			ret, adap->pf, vf, class_id);
2944 		return -EINVAL;
2945 	}
2946 	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2947 		 adap->pf, vf, class_id);
2948 	adap->vfinfo[vf].tx_rate = max_tx_rate;
2949 	return 0;
2950 }
2951 
2952 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
2953 				  u16 vlan, u8 qos, __be16 vlan_proto)
2954 {
2955 	struct port_info *pi = netdev_priv(dev);
2956 	struct adapter *adap = pi->adapter;
2957 	int ret;
2958 
2959 	if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
2960 		return -EINVAL;
2961 
2962 	if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
2963 		return -EPROTONOSUPPORT;
2964 
2965 	ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
2966 	if (!ret) {
2967 		adap->vfinfo[vf].vlan = vlan;
2968 		return 0;
2969 	}
2970 
2971 	dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
2972 		ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
2973 	return ret;
2974 }
2975 
2976 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
2977 					int link)
2978 {
2979 	struct port_info *pi = netdev_priv(dev);
2980 	struct adapter *adap = pi->adapter;
2981 	u32 param, val;
2982 	int ret = 0;
2983 
2984 	if (vf >= adap->num_vfs)
2985 		return -EINVAL;
2986 
2987 	switch (link) {
2988 	case IFLA_VF_LINK_STATE_AUTO:
2989 		val = FW_VF_LINK_STATE_AUTO;
2990 		break;
2991 
2992 	case IFLA_VF_LINK_STATE_ENABLE:
2993 		val = FW_VF_LINK_STATE_ENABLE;
2994 		break;
2995 
2996 	case IFLA_VF_LINK_STATE_DISABLE:
2997 		val = FW_VF_LINK_STATE_DISABLE;
2998 		break;
2999 
3000 	default:
3001 		return -EINVAL;
3002 	}
3003 
3004 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3005 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3006 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3007 			    &param, &val);
3008 	if (ret) {
3009 		dev_err(adap->pdev_dev,
3010 			"Error %d in setting PF %d VF %d link state\n",
3011 			ret, adap->pf, vf);
3012 		return -EINVAL;
3013 	}
3014 
3015 	adap->vfinfo[vf].link_state = link;
3016 	return ret;
3017 }
3018 #endif /* CONFIG_PCI_IOV */
3019 
3020 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3021 {
3022 	int ret;
3023 	struct sockaddr *addr = p;
3024 	struct port_info *pi = netdev_priv(dev);
3025 
3026 	if (!is_valid_ether_addr(addr->sa_data))
3027 		return -EADDRNOTAVAIL;
3028 
3029 	ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3030 				    addr->sa_data, true, &pi->smt_idx);
3031 	if (ret < 0)
3032 		return ret;
3033 
3034 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3035 	pi->xact_addr_filt = ret;
3036 	return 0;
3037 }
3038 
3039 #ifdef CONFIG_NET_POLL_CONTROLLER
3040 static void cxgb_netpoll(struct net_device *dev)
3041 {
3042 	struct port_info *pi = netdev_priv(dev);
3043 	struct adapter *adap = pi->adapter;
3044 
3045 	if (adap->flags & CXGB4_USING_MSIX) {
3046 		int i;
3047 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3048 
3049 		for (i = pi->nqsets; i; i--, rx++)
3050 			t4_sge_intr_msix(0, &rx->rspq);
3051 	} else
3052 		t4_intr_handler(adap)(0, adap);
3053 }
3054 #endif
3055 
3056 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3057 {
3058 	struct port_info *pi = netdev_priv(dev);
3059 	struct adapter *adap = pi->adapter;
3060 	struct sched_class *e;
3061 	struct ch_sched_params p;
3062 	struct ch_sched_queue qe;
3063 	u32 req_rate;
3064 	int err = 0;
3065 
3066 	if (!can_sched(dev))
3067 		return -ENOTSUPP;
3068 
3069 	if (index < 0 || index > pi->nqsets - 1)
3070 		return -EINVAL;
3071 
3072 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3073 		dev_err(adap->pdev_dev,
3074 			"Failed to rate limit on queue %d. Link Down?\n",
3075 			index);
3076 		return -EINVAL;
3077 	}
3078 
3079 	/* Convert from Mbps to Kbps */
3080 	req_rate = rate * 1000;
3081 
3082 	/* Max rate is 100 Gbps */
3083 	if (req_rate > SCHED_MAX_RATE_KBPS) {
3084 		dev_err(adap->pdev_dev,
3085 			"Invalid rate %u Mbps, Max rate is %u Mbps\n",
3086 			rate, SCHED_MAX_RATE_KBPS / 1000);
3087 		return -ERANGE;
3088 	}
3089 
3090 	/* First unbind the queue from any existing class */
3091 	memset(&qe, 0, sizeof(qe));
3092 	qe.queue = index;
3093 	qe.class = SCHED_CLS_NONE;
3094 
3095 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3096 	if (err) {
3097 		dev_err(adap->pdev_dev,
3098 			"Unbinding Queue %d on port %d fail. Err: %d\n",
3099 			index, pi->port_id, err);
3100 		return err;
3101 	}
3102 
3103 	/* Queue already unbound */
3104 	if (!req_rate)
3105 		return 0;
3106 
3107 	/* Fetch any available unused or matching scheduling class */
3108 	memset(&p, 0, sizeof(p));
3109 	p.type = SCHED_CLASS_TYPE_PACKET;
3110 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3111 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3112 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3113 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3114 	p.u.params.channel  = pi->tx_chan;
3115 	p.u.params.class    = SCHED_CLS_NONE;
3116 	p.u.params.minrate  = 0;
3117 	p.u.params.maxrate  = req_rate;
3118 	p.u.params.weight   = 0;
3119 	p.u.params.pktsize  = dev->mtu;
3120 
3121 	e = cxgb4_sched_class_alloc(dev, &p);
3122 	if (!e)
3123 		return -ENOMEM;
3124 
3125 	/* Bind the queue to a scheduling class */
3126 	memset(&qe, 0, sizeof(qe));
3127 	qe.queue = index;
3128 	qe.class = e->idx;
3129 
3130 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3131 	if (err)
3132 		dev_err(adap->pdev_dev,
3133 			"Queue rate limiting failed. Err: %d\n", err);
3134 	return err;
3135 }
3136 
3137 static int cxgb_setup_tc_flower(struct net_device *dev,
3138 				struct flow_cls_offload *cls_flower)
3139 {
3140 	switch (cls_flower->command) {
3141 	case FLOW_CLS_REPLACE:
3142 		return cxgb4_tc_flower_replace(dev, cls_flower);
3143 	case FLOW_CLS_DESTROY:
3144 		return cxgb4_tc_flower_destroy(dev, cls_flower);
3145 	case FLOW_CLS_STATS:
3146 		return cxgb4_tc_flower_stats(dev, cls_flower);
3147 	default:
3148 		return -EOPNOTSUPP;
3149 	}
3150 }
3151 
3152 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3153 				 struct tc_cls_u32_offload *cls_u32)
3154 {
3155 	switch (cls_u32->command) {
3156 	case TC_CLSU32_NEW_KNODE:
3157 	case TC_CLSU32_REPLACE_KNODE:
3158 		return cxgb4_config_knode(dev, cls_u32);
3159 	case TC_CLSU32_DELETE_KNODE:
3160 		return cxgb4_delete_knode(dev, cls_u32);
3161 	default:
3162 		return -EOPNOTSUPP;
3163 	}
3164 }
3165 
3166 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3167 				  void *cb_priv)
3168 {
3169 	struct net_device *dev = cb_priv;
3170 	struct port_info *pi = netdev2pinfo(dev);
3171 	struct adapter *adap = netdev2adap(dev);
3172 
3173 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3174 		dev_err(adap->pdev_dev,
3175 			"Failed to setup tc on port %d. Link Down?\n",
3176 			pi->port_id);
3177 		return -EINVAL;
3178 	}
3179 
3180 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3181 		return -EOPNOTSUPP;
3182 
3183 	switch (type) {
3184 	case TC_SETUP_CLSU32:
3185 		return cxgb_setup_tc_cls_u32(dev, type_data);
3186 	case TC_SETUP_CLSFLOWER:
3187 		return cxgb_setup_tc_flower(dev, type_data);
3188 	default:
3189 		return -EOPNOTSUPP;
3190 	}
3191 }
3192 
3193 static LIST_HEAD(cxgb_block_cb_list);
3194 
3195 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3196 			 void *type_data)
3197 {
3198 	struct port_info *pi = netdev2pinfo(dev);
3199 
3200 	switch (type) {
3201 	case TC_SETUP_BLOCK:
3202 		return flow_block_cb_setup_simple(type_data,
3203 						  &cxgb_block_cb_list,
3204 						  cxgb_setup_tc_block_cb,
3205 						  pi, dev, true);
3206 	default:
3207 		return -EOPNOTSUPP;
3208 	}
3209 }
3210 
3211 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3212 				struct udp_tunnel_info *ti)
3213 {
3214 	struct port_info *pi = netdev_priv(netdev);
3215 	struct adapter *adapter = pi->adapter;
3216 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3217 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3218 	int ret = 0, i;
3219 
3220 	if (chip_ver < CHELSIO_T6)
3221 		return;
3222 
3223 	switch (ti->type) {
3224 	case UDP_TUNNEL_TYPE_VXLAN:
3225 		if (!adapter->vxlan_port_cnt ||
3226 		    adapter->vxlan_port != ti->port)
3227 			return; /* Invalid VxLAN destination port */
3228 
3229 		adapter->vxlan_port_cnt--;
3230 		if (adapter->vxlan_port_cnt)
3231 			return;
3232 
3233 		adapter->vxlan_port = 0;
3234 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3235 		break;
3236 	case UDP_TUNNEL_TYPE_GENEVE:
3237 		if (!adapter->geneve_port_cnt ||
3238 		    adapter->geneve_port != ti->port)
3239 			return; /* Invalid GENEVE destination port */
3240 
3241 		adapter->geneve_port_cnt--;
3242 		if (adapter->geneve_port_cnt)
3243 			return;
3244 
3245 		adapter->geneve_port = 0;
3246 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3247 		break;
3248 	default:
3249 		return;
3250 	}
3251 
3252 	/* Matchall mac entries can be deleted only after all tunnel ports
3253 	 * are brought down or removed.
3254 	 */
3255 	if (!adapter->rawf_cnt)
3256 		return;
3257 	for_each_port(adapter, i) {
3258 		pi = adap2pinfo(adapter, i);
3259 		ret = t4_free_raw_mac_filt(adapter, pi->viid,
3260 					   match_all_mac, match_all_mac,
3261 					   adapter->rawf_start +
3262 					    pi->port_id,
3263 					   1, pi->port_id, false);
3264 		if (ret < 0) {
3265 			netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3266 				    i);
3267 			return;
3268 		}
3269 	}
3270 }
3271 
3272 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3273 				struct udp_tunnel_info *ti)
3274 {
3275 	struct port_info *pi = netdev_priv(netdev);
3276 	struct adapter *adapter = pi->adapter;
3277 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3278 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3279 	int i, ret;
3280 
3281 	if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3282 		return;
3283 
3284 	switch (ti->type) {
3285 	case UDP_TUNNEL_TYPE_VXLAN:
3286 		/* Callback for adding vxlan port can be called with the same
3287 		 * port for both IPv4 and IPv6. We should not disable the
3288 		 * offloading when the same port for both protocols is added
3289 		 * and later one of them is removed.
3290 		 */
3291 		if (adapter->vxlan_port_cnt &&
3292 		    adapter->vxlan_port == ti->port) {
3293 			adapter->vxlan_port_cnt++;
3294 			return;
3295 		}
3296 
3297 		/* We will support only one VxLAN port */
3298 		if (adapter->vxlan_port_cnt) {
3299 			netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3300 				    be16_to_cpu(adapter->vxlan_port),
3301 				    be16_to_cpu(ti->port));
3302 			return;
3303 		}
3304 
3305 		adapter->vxlan_port = ti->port;
3306 		adapter->vxlan_port_cnt = 1;
3307 
3308 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3309 			     VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3310 		break;
3311 	case UDP_TUNNEL_TYPE_GENEVE:
3312 		if (adapter->geneve_port_cnt &&
3313 		    adapter->geneve_port == ti->port) {
3314 			adapter->geneve_port_cnt++;
3315 			return;
3316 		}
3317 
3318 		/* We will support only one GENEVE port */
3319 		if (adapter->geneve_port_cnt) {
3320 			netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3321 				    be16_to_cpu(adapter->geneve_port),
3322 				    be16_to_cpu(ti->port));
3323 			return;
3324 		}
3325 
3326 		adapter->geneve_port = ti->port;
3327 		adapter->geneve_port_cnt = 1;
3328 
3329 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3330 			     GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3331 		break;
3332 	default:
3333 		return;
3334 	}
3335 
3336 	/* Create a 'match all' mac filter entry for inner mac,
3337 	 * if raw mac interface is supported. Once the linux kernel provides
3338 	 * driver entry points for adding/deleting the inner mac addresses,
3339 	 * we will remove this 'match all' entry and fallback to adding
3340 	 * exact match filters.
3341 	 */
3342 	for_each_port(adapter, i) {
3343 		pi = adap2pinfo(adapter, i);
3344 
3345 		ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3346 					    match_all_mac,
3347 					    match_all_mac,
3348 					    adapter->rawf_start +
3349 					    pi->port_id,
3350 					    1, pi->port_id, false);
3351 		if (ret < 0) {
3352 			netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3353 				    be16_to_cpu(ti->port));
3354 			cxgb_del_udp_tunnel(netdev, ti);
3355 			return;
3356 		}
3357 	}
3358 }
3359 
3360 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3361 					     struct net_device *dev,
3362 					     netdev_features_t features)
3363 {
3364 	struct port_info *pi = netdev_priv(dev);
3365 	struct adapter *adapter = pi->adapter;
3366 
3367 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3368 		return features;
3369 
3370 	/* Check if hw supports offload for this packet */
3371 	if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3372 		return features;
3373 
3374 	/* Offload is not supported for this encapsulated packet */
3375 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3376 }
3377 
3378 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3379 					   netdev_features_t features)
3380 {
3381 	/* Disable GRO, if RX_CSUM is disabled */
3382 	if (!(features & NETIF_F_RXCSUM))
3383 		features &= ~NETIF_F_GRO;
3384 
3385 	return features;
3386 }
3387 
3388 static const struct net_device_ops cxgb4_netdev_ops = {
3389 	.ndo_open             = cxgb_open,
3390 	.ndo_stop             = cxgb_close,
3391 	.ndo_start_xmit       = t4_start_xmit,
3392 	.ndo_select_queue     =	cxgb_select_queue,
3393 	.ndo_get_stats64      = cxgb_get_stats,
3394 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3395 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3396 	.ndo_set_features     = cxgb_set_features,
3397 	.ndo_validate_addr    = eth_validate_addr,
3398 	.ndo_do_ioctl         = cxgb_ioctl,
3399 	.ndo_change_mtu       = cxgb_change_mtu,
3400 #ifdef CONFIG_NET_POLL_CONTROLLER
3401 	.ndo_poll_controller  = cxgb_netpoll,
3402 #endif
3403 #ifdef CONFIG_CHELSIO_T4_FCOE
3404 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3405 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3406 #endif /* CONFIG_CHELSIO_T4_FCOE */
3407 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3408 	.ndo_setup_tc         = cxgb_setup_tc,
3409 	.ndo_udp_tunnel_add   = cxgb_add_udp_tunnel,
3410 	.ndo_udp_tunnel_del   = cxgb_del_udp_tunnel,
3411 	.ndo_features_check   = cxgb_features_check,
3412 	.ndo_fix_features     = cxgb_fix_features,
3413 };
3414 
3415 #ifdef CONFIG_PCI_IOV
3416 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3417 	.ndo_open               = cxgb4_mgmt_open,
3418 	.ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3419 	.ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3420 	.ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3421 	.ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3422 	.ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3423 	.ndo_set_vf_link_state	= cxgb4_mgmt_set_vf_link_state,
3424 };
3425 #endif
3426 
3427 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3428 				   struct ethtool_drvinfo *info)
3429 {
3430 	struct adapter *adapter = netdev2adap(dev);
3431 
3432 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3433 	strlcpy(info->version, cxgb4_driver_version,
3434 		sizeof(info->version));
3435 	strlcpy(info->bus_info, pci_name(adapter->pdev),
3436 		sizeof(info->bus_info));
3437 }
3438 
3439 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3440 	.get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3441 };
3442 
3443 static void notify_fatal_err(struct work_struct *work)
3444 {
3445 	struct adapter *adap;
3446 
3447 	adap = container_of(work, struct adapter, fatal_err_notify_task);
3448 	notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3449 }
3450 
3451 void t4_fatal_err(struct adapter *adap)
3452 {
3453 	int port;
3454 
3455 	if (pci_channel_offline(adap->pdev))
3456 		return;
3457 
3458 	/* Disable the SGE since ULDs are going to free resources that
3459 	 * could be exposed to the adapter.  RDMA MWs for example...
3460 	 */
3461 	t4_shutdown_adapter(adap);
3462 	for_each_port(adap, port) {
3463 		struct net_device *dev = adap->port[port];
3464 
3465 		/* If we get here in very early initialization the network
3466 		 * devices may not have been set up yet.
3467 		 */
3468 		if (!dev)
3469 			continue;
3470 
3471 		netif_tx_stop_all_queues(dev);
3472 		netif_carrier_off(dev);
3473 	}
3474 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3475 	queue_work(adap->workq, &adap->fatal_err_notify_task);
3476 }
3477 
3478 static void setup_memwin(struct adapter *adap)
3479 {
3480 	u32 nic_win_base = t4_get_util_window(adap);
3481 
3482 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3483 }
3484 
3485 static void setup_memwin_rdma(struct adapter *adap)
3486 {
3487 	if (adap->vres.ocq.size) {
3488 		u32 start;
3489 		unsigned int sz_kb;
3490 
3491 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3492 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3493 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3494 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3495 		t4_write_reg(adap,
3496 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3497 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3498 		t4_write_reg(adap,
3499 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3500 			     adap->vres.ocq.start);
3501 		t4_read_reg(adap,
3502 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3503 	}
3504 }
3505 
3506 /* HMA Definitions */
3507 
3508 /* The maximum number of address that can be send in a single FW cmd */
3509 #define HMA_MAX_ADDR_IN_CMD	5
3510 
3511 #define HMA_PAGE_SIZE		PAGE_SIZE
3512 
3513 #define HMA_MAX_NO_FW_ADDRESS	(16 << 10)  /* FW supports 16K addresses */
3514 
3515 #define HMA_PAGE_ORDER					\
3516 	((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?	\
3517 	ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3518 
3519 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3520  * configuration(in units of MB).
3521  */
3522 #define HMA_MIN_TOTAL_SIZE	1
3523 #define HMA_MAX_TOTAL_SIZE				\
3524 	(((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *		\
3525 	  HMA_MAX_NO_FW_ADDRESS) >> 20)
3526 
3527 static void adap_free_hma_mem(struct adapter *adapter)
3528 {
3529 	struct scatterlist *iter;
3530 	struct page *page;
3531 	int i;
3532 
3533 	if (!adapter->hma.sgt)
3534 		return;
3535 
3536 	if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3537 		dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3538 			     adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3539 		adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3540 	}
3541 
3542 	for_each_sg(adapter->hma.sgt->sgl, iter,
3543 		    adapter->hma.sgt->orig_nents, i) {
3544 		page = sg_page(iter);
3545 		if (page)
3546 			__free_pages(page, HMA_PAGE_ORDER);
3547 	}
3548 
3549 	kfree(adapter->hma.phy_addr);
3550 	sg_free_table(adapter->hma.sgt);
3551 	kfree(adapter->hma.sgt);
3552 	adapter->hma.sgt = NULL;
3553 }
3554 
3555 static int adap_config_hma(struct adapter *adapter)
3556 {
3557 	struct scatterlist *sgl, *iter;
3558 	struct sg_table *sgt;
3559 	struct page *newpage;
3560 	unsigned int i, j, k;
3561 	u32 param, hma_size;
3562 	unsigned int ncmds;
3563 	size_t page_size;
3564 	u32 page_order;
3565 	int node, ret;
3566 
3567 	/* HMA is supported only for T6+ cards.
3568 	 * Avoid initializing HMA in kdump kernels.
3569 	 */
3570 	if (is_kdump_kernel() ||
3571 	    CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3572 		return 0;
3573 
3574 	/* Get the HMA region size required by fw */
3575 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3576 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3577 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3578 			      1, &param, &hma_size);
3579 	/* An error means card has its own memory or HMA is not supported by
3580 	 * the firmware. Return without any errors.
3581 	 */
3582 	if (ret || !hma_size)
3583 		return 0;
3584 
3585 	if (hma_size < HMA_MIN_TOTAL_SIZE ||
3586 	    hma_size > HMA_MAX_TOTAL_SIZE) {
3587 		dev_err(adapter->pdev_dev,
3588 			"HMA size %uMB beyond bounds(%u-%lu)MB\n",
3589 			hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3590 		return -EINVAL;
3591 	}
3592 
3593 	page_size = HMA_PAGE_SIZE;
3594 	page_order = HMA_PAGE_ORDER;
3595 	adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3596 	if (unlikely(!adapter->hma.sgt)) {
3597 		dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3598 		return -ENOMEM;
3599 	}
3600 	sgt = adapter->hma.sgt;
3601 	/* FW returned value will be in MB's
3602 	 */
3603 	sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3604 	if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3605 		dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3606 		kfree(adapter->hma.sgt);
3607 		adapter->hma.sgt = NULL;
3608 		return -ENOMEM;
3609 	}
3610 
3611 	sgl = adapter->hma.sgt->sgl;
3612 	node = dev_to_node(adapter->pdev_dev);
3613 	for_each_sg(sgl, iter, sgt->orig_nents, i) {
3614 		newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3615 					   __GFP_ZERO, page_order);
3616 		if (!newpage) {
3617 			dev_err(adapter->pdev_dev,
3618 				"Not enough memory for HMA page allocation\n");
3619 			ret = -ENOMEM;
3620 			goto free_hma;
3621 		}
3622 		sg_set_page(iter, newpage, page_size << page_order, 0);
3623 	}
3624 
3625 	sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3626 				DMA_BIDIRECTIONAL);
3627 	if (!sgt->nents) {
3628 		dev_err(adapter->pdev_dev,
3629 			"Not enough memory for HMA DMA mapping");
3630 		ret = -ENOMEM;
3631 		goto free_hma;
3632 	}
3633 	adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3634 
3635 	adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3636 					GFP_KERNEL);
3637 	if (unlikely(!adapter->hma.phy_addr))
3638 		goto free_hma;
3639 
3640 	for_each_sg(sgl, iter, sgt->nents, i) {
3641 		newpage = sg_page(iter);
3642 		adapter->hma.phy_addr[i] = sg_dma_address(iter);
3643 	}
3644 
3645 	ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3646 	/* Pass on the addresses to firmware */
3647 	for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3648 		struct fw_hma_cmd hma_cmd;
3649 		u8 naddr = HMA_MAX_ADDR_IN_CMD;
3650 		u8 soc = 0, eoc = 0;
3651 		u8 hma_mode = 1; /* Presently we support only Page table mode */
3652 
3653 		soc = (i == 0) ? 1 : 0;
3654 		eoc = (i == ncmds - 1) ? 1 : 0;
3655 
3656 		/* For last cmd, set naddr corresponding to remaining
3657 		 * addresses
3658 		 */
3659 		if (i == ncmds - 1) {
3660 			naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3661 			naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3662 		}
3663 		memset(&hma_cmd, 0, sizeof(hma_cmd));
3664 		hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3665 				       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3666 		hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3667 
3668 		hma_cmd.mode_to_pcie_params =
3669 			htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3670 			      FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3671 
3672 		/* HMA cmd size specified in MB's */
3673 		hma_cmd.naddr_size =
3674 			htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3675 			      FW_HMA_CMD_NADDR_V(naddr));
3676 
3677 		/* Total Page size specified in units of 4K */
3678 		hma_cmd.addr_size_pkd =
3679 			htonl(FW_HMA_CMD_ADDR_SIZE_V
3680 				((page_size << page_order) >> 12));
3681 
3682 		/* Fill the 5 addresses */
3683 		for (j = 0; j < naddr; j++) {
3684 			hma_cmd.phy_address[j] =
3685 				cpu_to_be64(adapter->hma.phy_addr[j + k]);
3686 		}
3687 		ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3688 				 sizeof(hma_cmd), &hma_cmd);
3689 		if (ret) {
3690 			dev_err(adapter->pdev_dev,
3691 				"HMA FW command failed with err %d\n", ret);
3692 			goto free_hma;
3693 		}
3694 	}
3695 
3696 	if (!ret)
3697 		dev_info(adapter->pdev_dev,
3698 			 "Reserved %uMB host memory for HMA\n", hma_size);
3699 	return ret;
3700 
3701 free_hma:
3702 	adap_free_hma_mem(adapter);
3703 	return ret;
3704 }
3705 
3706 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3707 {
3708 	u32 v;
3709 	int ret;
3710 
3711 	/* Now that we've successfully configured and initialized the adapter
3712 	 * can ask the Firmware what resources it has provisioned for us.
3713 	 */
3714 	ret = t4_get_pfres(adap);
3715 	if (ret) {
3716 		dev_err(adap->pdev_dev,
3717 			"Unable to retrieve resource provisioning information\n");
3718 		return ret;
3719 	}
3720 
3721 	/* get device capabilities */
3722 	memset(c, 0, sizeof(*c));
3723 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3724 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3725 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3726 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3727 	if (ret < 0)
3728 		return ret;
3729 
3730 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3731 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3732 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3733 	if (ret < 0)
3734 		return ret;
3735 
3736 	ret = t4_config_glbl_rss(adap, adap->pf,
3737 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3738 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3739 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3740 	if (ret < 0)
3741 		return ret;
3742 
3743 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3744 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3745 			  FW_CMD_CAP_PF);
3746 	if (ret < 0)
3747 		return ret;
3748 
3749 	t4_sge_init(adap);
3750 
3751 	/* tweak some settings */
3752 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3753 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3754 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3755 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3756 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3757 
3758 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3759 	adap->params.tp.tx_modq_map = 0xE4;
3760 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3761 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3762 
3763 	/* associate each Tx modulation queue with consecutive Tx channels */
3764 	v = 0x84218421;
3765 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3766 			  &v, 1, TP_TX_SCHED_HDR_A);
3767 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3768 			  &v, 1, TP_TX_SCHED_FIFO_A);
3769 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3770 			  &v, 1, TP_TX_SCHED_PCMD_A);
3771 
3772 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3773 	if (is_offload(adap)) {
3774 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3775 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3776 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3777 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3778 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3779 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3780 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3781 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3782 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3783 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3784 	}
3785 
3786 	/* get basic stuff going */
3787 	return t4_early_init(adap, adap->pf);
3788 }
3789 
3790 /*
3791  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3792  */
3793 #define MAX_ATIDS 8192U
3794 
3795 /*
3796  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3797  *
3798  * If the firmware we're dealing with has Configuration File support, then
3799  * we use that to perform all configuration
3800  */
3801 
3802 /*
3803  * Tweak configuration based on module parameters, etc.  Most of these have
3804  * defaults assigned to them by Firmware Configuration Files (if we're using
3805  * them) but need to be explicitly set if we're using hard-coded
3806  * initialization.  But even in the case of using Firmware Configuration
3807  * Files, we'd like to expose the ability to change these via module
3808  * parameters so these are essentially common tweaks/settings for
3809  * Configuration Files and hard-coded initialization ...
3810  */
3811 static int adap_init0_tweaks(struct adapter *adapter)
3812 {
3813 	/*
3814 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3815 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3816 	 * 64B Cache Line Size ...
3817 	 */
3818 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3819 
3820 	/*
3821 	 * Process module parameters which affect early initialization.
3822 	 */
3823 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3824 		dev_err(&adapter->pdev->dev,
3825 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3826 			rx_dma_offset);
3827 		rx_dma_offset = 2;
3828 	}
3829 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3830 			 PKTSHIFT_V(PKTSHIFT_M),
3831 			 PKTSHIFT_V(rx_dma_offset));
3832 
3833 	/*
3834 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3835 	 * adds the pseudo header itself.
3836 	 */
3837 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3838 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3839 
3840 	return 0;
3841 }
3842 
3843 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3844  * unto themselves and they contain their own firmware to perform their
3845  * tasks ...
3846  */
3847 static int phy_aq1202_version(const u8 *phy_fw_data,
3848 			      size_t phy_fw_size)
3849 {
3850 	int offset;
3851 
3852 	/* At offset 0x8 you're looking for the primary image's
3853 	 * starting offset which is 3 Bytes wide
3854 	 *
3855 	 * At offset 0xa of the primary image, you look for the offset
3856 	 * of the DRAM segment which is 3 Bytes wide.
3857 	 *
3858 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3859 	 * wide
3860 	 */
3861 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
3862 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3863 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
3864 
3865 	offset = le24(phy_fw_data + 0x8) << 12;
3866 	offset = le24(phy_fw_data + offset + 0xa);
3867 	return be16(phy_fw_data + offset + 0x27e);
3868 
3869 	#undef be16
3870 	#undef le16
3871 	#undef le24
3872 }
3873 
3874 static struct info_10gbt_phy_fw {
3875 	unsigned int phy_fw_id;		/* PCI Device ID */
3876 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
3877 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3878 	int phy_flash;			/* Has FLASH for PHY Firmware */
3879 } phy_info_array[] = {
3880 	{
3881 		PHY_AQ1202_DEVICEID,
3882 		PHY_AQ1202_FIRMWARE,
3883 		phy_aq1202_version,
3884 		1,
3885 	},
3886 	{
3887 		PHY_BCM84834_DEVICEID,
3888 		PHY_BCM84834_FIRMWARE,
3889 		NULL,
3890 		0,
3891 	},
3892 	{ 0, NULL, NULL },
3893 };
3894 
3895 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3896 {
3897 	int i;
3898 
3899 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3900 		if (phy_info_array[i].phy_fw_id == devid)
3901 			return &phy_info_array[i];
3902 	}
3903 	return NULL;
3904 }
3905 
3906 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3907  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3908  * we return a negative error number.  If we transfer new firmware we return 1
3909  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3910  */
3911 static int adap_init0_phy(struct adapter *adap)
3912 {
3913 	const struct firmware *phyf;
3914 	int ret;
3915 	struct info_10gbt_phy_fw *phy_info;
3916 
3917 	/* Use the device ID to determine which PHY file to flash.
3918 	 */
3919 	phy_info = find_phy_info(adap->pdev->device);
3920 	if (!phy_info) {
3921 		dev_warn(adap->pdev_dev,
3922 			 "No PHY Firmware file found for this PHY\n");
3923 		return -EOPNOTSUPP;
3924 	}
3925 
3926 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3927 	 * use that. The adapter firmware provides us with a memory buffer
3928 	 * where we can load a PHY firmware file from the host if we want to
3929 	 * override the PHY firmware File in flash.
3930 	 */
3931 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3932 				      adap->pdev_dev);
3933 	if (ret < 0) {
3934 		/* For adapters without FLASH attached to PHY for their
3935 		 * firmware, it's obviously a fatal error if we can't get the
3936 		 * firmware to the adapter.  For adapters with PHY firmware
3937 		 * FLASH storage, it's worth a warning if we can't find the
3938 		 * PHY Firmware but we'll neuter the error ...
3939 		 */
3940 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3941 			"/lib/firmware/%s, error %d\n",
3942 			phy_info->phy_fw_file, -ret);
3943 		if (phy_info->phy_flash) {
3944 			int cur_phy_fw_ver = 0;
3945 
3946 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3947 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3948 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3949 			ret = 0;
3950 		}
3951 
3952 		return ret;
3953 	}
3954 
3955 	/* Load PHY Firmware onto adapter.
3956 	 */
3957 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3958 			     phy_info->phy_fw_version,
3959 			     (u8 *)phyf->data, phyf->size);
3960 	if (ret < 0)
3961 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3962 			-ret);
3963 	else if (ret > 0) {
3964 		int new_phy_fw_ver = 0;
3965 
3966 		if (phy_info->phy_fw_version)
3967 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3968 								  phyf->size);
3969 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3970 			 "Firmware /lib/firmware/%s, version %#x\n",
3971 			 phy_info->phy_fw_file, new_phy_fw_ver);
3972 	}
3973 
3974 	release_firmware(phyf);
3975 
3976 	return ret;
3977 }
3978 
3979 /*
3980  * Attempt to initialize the adapter via a Firmware Configuration File.
3981  */
3982 static int adap_init0_config(struct adapter *adapter, int reset)
3983 {
3984 	char *fw_config_file, fw_config_file_path[256];
3985 	u32 finiver, finicsum, cfcsum, param, val;
3986 	struct fw_caps_config_cmd caps_cmd;
3987 	unsigned long mtype = 0, maddr = 0;
3988 	const struct firmware *cf;
3989 	char *config_name = NULL;
3990 	int config_issued = 0;
3991 	int ret;
3992 
3993 	/*
3994 	 * Reset device if necessary.
3995 	 */
3996 	if (reset) {
3997 		ret = t4_fw_reset(adapter, adapter->mbox,
3998 				  PIORSTMODE_F | PIORST_F);
3999 		if (ret < 0)
4000 			goto bye;
4001 	}
4002 
4003 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
4004 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
4005 	 * to be performed after any global adapter RESET above since some
4006 	 * PHYs only have local RAM copies of the PHY firmware.
4007 	 */
4008 	if (is_10gbt_device(adapter->pdev->device)) {
4009 		ret = adap_init0_phy(adapter);
4010 		if (ret < 0)
4011 			goto bye;
4012 	}
4013 	/*
4014 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4015 	 * then use that.  Otherwise, use the configuration file stored
4016 	 * in the adapter flash ...
4017 	 */
4018 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4019 	case CHELSIO_T4:
4020 		fw_config_file = FW4_CFNAME;
4021 		break;
4022 	case CHELSIO_T5:
4023 		fw_config_file = FW5_CFNAME;
4024 		break;
4025 	case CHELSIO_T6:
4026 		fw_config_file = FW6_CFNAME;
4027 		break;
4028 	default:
4029 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4030 		       adapter->pdev->device);
4031 		ret = -EINVAL;
4032 		goto bye;
4033 	}
4034 
4035 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4036 	if (ret < 0) {
4037 		config_name = "On FLASH";
4038 		mtype = FW_MEMTYPE_CF_FLASH;
4039 		maddr = t4_flash_cfg_addr(adapter);
4040 	} else {
4041 		u32 params[7], val[7];
4042 
4043 		sprintf(fw_config_file_path,
4044 			"/lib/firmware/%s", fw_config_file);
4045 		config_name = fw_config_file_path;
4046 
4047 		if (cf->size >= FLASH_CFG_MAX_SIZE)
4048 			ret = -ENOMEM;
4049 		else {
4050 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4051 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4052 			ret = t4_query_params(adapter, adapter->mbox,
4053 					      adapter->pf, 0, 1, params, val);
4054 			if (ret == 0) {
4055 				/*
4056 				 * For t4_memory_rw() below addresses and
4057 				 * sizes have to be in terms of multiples of 4
4058 				 * bytes.  So, if the Configuration File isn't
4059 				 * a multiple of 4 bytes in length we'll have
4060 				 * to write that out separately since we can't
4061 				 * guarantee that the bytes following the
4062 				 * residual byte in the buffer returned by
4063 				 * request_firmware() are zeroed out ...
4064 				 */
4065 				size_t resid = cf->size & 0x3;
4066 				size_t size = cf->size & ~0x3;
4067 				__be32 *data = (__be32 *)cf->data;
4068 
4069 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4070 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4071 
4072 				spin_lock(&adapter->win0_lock);
4073 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
4074 						   size, data, T4_MEMORY_WRITE);
4075 				if (ret == 0 && resid != 0) {
4076 					union {
4077 						__be32 word;
4078 						char buf[4];
4079 					} last;
4080 					int i;
4081 
4082 					last.word = data[size >> 2];
4083 					for (i = resid; i < 4; i++)
4084 						last.buf[i] = 0;
4085 					ret = t4_memory_rw(adapter, 0, mtype,
4086 							   maddr + size,
4087 							   4, &last.word,
4088 							   T4_MEMORY_WRITE);
4089 				}
4090 				spin_unlock(&adapter->win0_lock);
4091 			}
4092 		}
4093 
4094 		release_firmware(cf);
4095 		if (ret)
4096 			goto bye;
4097 	}
4098 
4099 	val = 0;
4100 
4101 	/* Ofld + Hash filter is supported. Older fw will fail this request and
4102 	 * it is fine.
4103 	 */
4104 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4105 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4106 	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4107 			    1, &param, &val);
4108 
4109 	/* FW doesn't know about Hash filter + ofld support,
4110 	 * it's not a problem, don't return an error.
4111 	 */
4112 	if (ret < 0) {
4113 		dev_warn(adapter->pdev_dev,
4114 			 "Hash filter with ofld is not supported by FW\n");
4115 	}
4116 
4117 	/*
4118 	 * Issue a Capability Configuration command to the firmware to get it
4119 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
4120 	 * because we want the ability to modify various features after we've
4121 	 * processed the configuration file ...
4122 	 */
4123 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4124 	caps_cmd.op_to_write =
4125 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4126 		      FW_CMD_REQUEST_F |
4127 		      FW_CMD_READ_F);
4128 	caps_cmd.cfvalid_to_len16 =
4129 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4130 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4131 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4132 		      FW_LEN16(caps_cmd));
4133 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4134 			 &caps_cmd);
4135 
4136 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4137 	 * Configuration File in FLASH), our last gasp effort is to use the
4138 	 * Firmware Configuration File which is embedded in the firmware.  A
4139 	 * very few early versions of the firmware didn't have one embedded
4140 	 * but we can ignore those.
4141 	 */
4142 	if (ret == -ENOENT) {
4143 		memset(&caps_cmd, 0, sizeof(caps_cmd));
4144 		caps_cmd.op_to_write =
4145 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4146 					FW_CMD_REQUEST_F |
4147 					FW_CMD_READ_F);
4148 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4149 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4150 				sizeof(caps_cmd), &caps_cmd);
4151 		config_name = "Firmware Default";
4152 	}
4153 
4154 	config_issued = 1;
4155 	if (ret < 0)
4156 		goto bye;
4157 
4158 	finiver = ntohl(caps_cmd.finiver);
4159 	finicsum = ntohl(caps_cmd.finicsum);
4160 	cfcsum = ntohl(caps_cmd.cfcsum);
4161 	if (finicsum != cfcsum)
4162 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4163 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4164 			 finicsum, cfcsum);
4165 
4166 	/*
4167 	 * And now tell the firmware to use the configuration we just loaded.
4168 	 */
4169 	caps_cmd.op_to_write =
4170 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4171 		      FW_CMD_REQUEST_F |
4172 		      FW_CMD_WRITE_F);
4173 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4174 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4175 			 NULL);
4176 	if (ret < 0)
4177 		goto bye;
4178 
4179 	/*
4180 	 * Tweak configuration based on system architecture, module
4181 	 * parameters, etc.
4182 	 */
4183 	ret = adap_init0_tweaks(adapter);
4184 	if (ret < 0)
4185 		goto bye;
4186 
4187 	/* We will proceed even if HMA init fails. */
4188 	ret = adap_config_hma(adapter);
4189 	if (ret)
4190 		dev_err(adapter->pdev_dev,
4191 			"HMA configuration failed with error %d\n", ret);
4192 
4193 	if (is_t6(adapter->params.chip)) {
4194 		ret = setup_ppod_edram(adapter);
4195 		if (!ret)
4196 			dev_info(adapter->pdev_dev, "Successfully enabled "
4197 				 "ppod edram feature\n");
4198 	}
4199 
4200 	/*
4201 	 * And finally tell the firmware to initialize itself using the
4202 	 * parameters from the Configuration File.
4203 	 */
4204 	ret = t4_fw_initialize(adapter, adapter->mbox);
4205 	if (ret < 0)
4206 		goto bye;
4207 
4208 	/* Emit Firmware Configuration File information and return
4209 	 * successfully.
4210 	 */
4211 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4212 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4213 		 config_name, finiver, cfcsum);
4214 	return 0;
4215 
4216 	/*
4217 	 * Something bad happened.  Return the error ...  (If the "error"
4218 	 * is that there's no Configuration File on the adapter we don't
4219 	 * want to issue a warning since this is fairly common.)
4220 	 */
4221 bye:
4222 	if (config_issued && ret != -ENOENT)
4223 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4224 			 config_name, -ret);
4225 	return ret;
4226 }
4227 
4228 static struct fw_info fw_info_array[] = {
4229 	{
4230 		.chip = CHELSIO_T4,
4231 		.fs_name = FW4_CFNAME,
4232 		.fw_mod_name = FW4_FNAME,
4233 		.fw_hdr = {
4234 			.chip = FW_HDR_CHIP_T4,
4235 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4236 			.intfver_nic = FW_INTFVER(T4, NIC),
4237 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4238 			.intfver_ri = FW_INTFVER(T4, RI),
4239 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4240 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4241 		},
4242 	}, {
4243 		.chip = CHELSIO_T5,
4244 		.fs_name = FW5_CFNAME,
4245 		.fw_mod_name = FW5_FNAME,
4246 		.fw_hdr = {
4247 			.chip = FW_HDR_CHIP_T5,
4248 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4249 			.intfver_nic = FW_INTFVER(T5, NIC),
4250 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4251 			.intfver_ri = FW_INTFVER(T5, RI),
4252 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4253 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4254 		},
4255 	}, {
4256 		.chip = CHELSIO_T6,
4257 		.fs_name = FW6_CFNAME,
4258 		.fw_mod_name = FW6_FNAME,
4259 		.fw_hdr = {
4260 			.chip = FW_HDR_CHIP_T6,
4261 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4262 			.intfver_nic = FW_INTFVER(T6, NIC),
4263 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4264 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4265 			.intfver_ri = FW_INTFVER(T6, RI),
4266 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4267 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4268 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4269 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4270 		},
4271 	}
4272 
4273 };
4274 
4275 static struct fw_info *find_fw_info(int chip)
4276 {
4277 	int i;
4278 
4279 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4280 		if (fw_info_array[i].chip == chip)
4281 			return &fw_info_array[i];
4282 	}
4283 	return NULL;
4284 }
4285 
4286 /*
4287  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4288  */
4289 static int adap_init0(struct adapter *adap)
4290 {
4291 	int ret;
4292 	u32 v, port_vec;
4293 	enum dev_state state;
4294 	u32 params[7], val[7];
4295 	struct fw_caps_config_cmd caps_cmd;
4296 	int reset = 1;
4297 
4298 	/* Grab Firmware Device Log parameters as early as possible so we have
4299 	 * access to it for debugging, etc.
4300 	 */
4301 	ret = t4_init_devlog_params(adap);
4302 	if (ret < 0)
4303 		return ret;
4304 
4305 	/* Contact FW, advertising Master capability */
4306 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4307 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4308 	if (ret < 0) {
4309 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4310 			ret);
4311 		return ret;
4312 	}
4313 	if (ret == adap->mbox)
4314 		adap->flags |= CXGB4_MASTER_PF;
4315 
4316 	/*
4317 	 * If we're the Master PF Driver and the device is uninitialized,
4318 	 * then let's consider upgrading the firmware ...  (We always want
4319 	 * to check the firmware version number in order to A. get it for
4320 	 * later reporting and B. to warn if the currently loaded firmware
4321 	 * is excessively mismatched relative to the driver.)
4322 	 */
4323 
4324 	t4_get_version_info(adap);
4325 	ret = t4_check_fw_version(adap);
4326 	/* If firmware is too old (not supported by driver) force an update. */
4327 	if (ret)
4328 		state = DEV_STATE_UNINIT;
4329 	if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4330 		struct fw_info *fw_info;
4331 		struct fw_hdr *card_fw;
4332 		const struct firmware *fw;
4333 		const u8 *fw_data = NULL;
4334 		unsigned int fw_size = 0;
4335 
4336 		/* This is the firmware whose headers the driver was compiled
4337 		 * against
4338 		 */
4339 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4340 		if (fw_info == NULL) {
4341 			dev_err(adap->pdev_dev,
4342 				"unable to get firmware info for chip %d.\n",
4343 				CHELSIO_CHIP_VERSION(adap->params.chip));
4344 			return -EINVAL;
4345 		}
4346 
4347 		/* allocate memory to read the header of the firmware on the
4348 		 * card
4349 		 */
4350 		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4351 		if (!card_fw) {
4352 			ret = -ENOMEM;
4353 			goto bye;
4354 		}
4355 
4356 		/* Get FW from from /lib/firmware/ */
4357 		ret = request_firmware(&fw, fw_info->fw_mod_name,
4358 				       adap->pdev_dev);
4359 		if (ret < 0) {
4360 			dev_err(adap->pdev_dev,
4361 				"unable to load firmware image %s, error %d\n",
4362 				fw_info->fw_mod_name, ret);
4363 		} else {
4364 			fw_data = fw->data;
4365 			fw_size = fw->size;
4366 		}
4367 
4368 		/* upgrade FW logic */
4369 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4370 				 state, &reset);
4371 
4372 		/* Cleaning up */
4373 		release_firmware(fw);
4374 		kvfree(card_fw);
4375 
4376 		if (ret < 0)
4377 			goto bye;
4378 	}
4379 
4380 	/* If the firmware is initialized already, emit a simply note to that
4381 	 * effect. Otherwise, it's time to try initializing the adapter.
4382 	 */
4383 	if (state == DEV_STATE_INIT) {
4384 		ret = adap_config_hma(adap);
4385 		if (ret)
4386 			dev_err(adap->pdev_dev,
4387 				"HMA configuration failed with error %d\n",
4388 				ret);
4389 		dev_info(adap->pdev_dev, "Coming up as %s: "\
4390 			 "Adapter already initialized\n",
4391 			 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4392 	} else {
4393 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4394 			 "Initializing adapter\n");
4395 
4396 		/* Find out whether we're dealing with a version of the
4397 		 * firmware which has configuration file support.
4398 		 */
4399 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4400 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4401 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4402 				      params, val);
4403 
4404 		/* If the firmware doesn't support Configuration Files,
4405 		 * return an error.
4406 		 */
4407 		if (ret < 0) {
4408 			dev_err(adap->pdev_dev, "firmware doesn't support "
4409 				"Firmware Configuration Files\n");
4410 			goto bye;
4411 		}
4412 
4413 		/* The firmware provides us with a memory buffer where we can
4414 		 * load a Configuration File from the host if we want to
4415 		 * override the Configuration File in flash.
4416 		 */
4417 		ret = adap_init0_config(adap, reset);
4418 		if (ret == -ENOENT) {
4419 			dev_err(adap->pdev_dev, "no Configuration File "
4420 				"present on adapter.\n");
4421 			goto bye;
4422 		}
4423 		if (ret < 0) {
4424 			dev_err(adap->pdev_dev, "could not initialize "
4425 				"adapter, error %d\n", -ret);
4426 			goto bye;
4427 		}
4428 	}
4429 
4430 	/* Now that we've successfully configured and initialized the adapter
4431 	 * (or found it already initialized), we can ask the Firmware what
4432 	 * resources it has provisioned for us.
4433 	 */
4434 	ret = t4_get_pfres(adap);
4435 	if (ret) {
4436 		dev_err(adap->pdev_dev,
4437 			"Unable to retrieve resource provisioning information\n");
4438 		goto bye;
4439 	}
4440 
4441 	/* Grab VPD parameters.  This should be done after we establish a
4442 	 * connection to the firmware since some of the VPD parameters
4443 	 * (notably the Core Clock frequency) are retrieved via requests to
4444 	 * the firmware.  On the other hand, we need these fairly early on
4445 	 * so we do this right after getting ahold of the firmware.
4446 	 *
4447 	 * We need to do this after initializing the adapter because someone
4448 	 * could have FLASHed a new VPD which won't be read by the firmware
4449 	 * until we do the RESET ...
4450 	 */
4451 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
4452 	if (ret < 0)
4453 		goto bye;
4454 
4455 	/* Find out what ports are available to us.  Note that we need to do
4456 	 * this before calling adap_init0_no_config() since it needs nports
4457 	 * and portvec ...
4458 	 */
4459 	v =
4460 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4461 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4462 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4463 	if (ret < 0)
4464 		goto bye;
4465 
4466 	adap->params.nports = hweight32(port_vec);
4467 	adap->params.portvec = port_vec;
4468 
4469 	/* Give the SGE code a chance to pull in anything that it needs ...
4470 	 * Note that this must be called after we retrieve our VPD parameters
4471 	 * in order to know how to convert core ticks to seconds, etc.
4472 	 */
4473 	ret = t4_sge_init(adap);
4474 	if (ret < 0)
4475 		goto bye;
4476 
4477 	/* Grab the SGE Doorbell Queue Timer values.  If successful, that
4478 	 * indicates that the Firmware and Hardware support this.
4479 	 */
4480 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4481 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4482 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4483 			      1, params, val);
4484 
4485 	if (!ret) {
4486 		adap->sge.dbqtimer_tick = val[0];
4487 		ret = t4_read_sge_dbqtimers(adap,
4488 					    ARRAY_SIZE(adap->sge.dbqtimer_val),
4489 					    adap->sge.dbqtimer_val);
4490 	}
4491 
4492 	if (!ret)
4493 		adap->flags |= CXGB4_SGE_DBQ_TIMER;
4494 
4495 	if (is_bypass_device(adap->pdev->device))
4496 		adap->params.bypass = 1;
4497 
4498 	/*
4499 	 * Grab some of our basic fundamental operating parameters.
4500 	 */
4501 #define FW_PARAM_DEV(param) \
4502 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4503 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4504 
4505 #define FW_PARAM_PFVF(param) \
4506 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4507 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
4508 	FW_PARAMS_PARAM_Y_V(0) | \
4509 	FW_PARAMS_PARAM_Z_V(0)
4510 
4511 	params[0] = FW_PARAM_PFVF(EQ_START);
4512 	params[1] = FW_PARAM_PFVF(L2T_START);
4513 	params[2] = FW_PARAM_PFVF(L2T_END);
4514 	params[3] = FW_PARAM_PFVF(FILTER_START);
4515 	params[4] = FW_PARAM_PFVF(FILTER_END);
4516 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
4517 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4518 	if (ret < 0)
4519 		goto bye;
4520 	adap->sge.egr_start = val[0];
4521 	adap->l2t_start = val[1];
4522 	adap->l2t_end = val[2];
4523 	adap->tids.ftid_base = val[3];
4524 	adap->tids.nftids = val[4] - val[3] + 1;
4525 	adap->sge.ingr_start = val[5];
4526 
4527 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4528 		/* Read the raw mps entries. In T6, the last 2 tcam entries
4529 		 * are reserved for raw mac addresses (rawf = 2, one per port).
4530 		 */
4531 		params[0] = FW_PARAM_PFVF(RAWF_START);
4532 		params[1] = FW_PARAM_PFVF(RAWF_END);
4533 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4534 				      params, val);
4535 		if (ret == 0) {
4536 			adap->rawf_start = val[0];
4537 			adap->rawf_cnt = val[1] - val[0] + 1;
4538 		}
4539 	}
4540 
4541 	/* qids (ingress/egress) returned from firmware can be anywhere
4542 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4543 	 * Hence driver needs to allocate memory for this range to
4544 	 * store the queue info. Get the highest IQFLINT/EQ index returned
4545 	 * in FW_EQ_*_CMD.alloc command.
4546 	 */
4547 	params[0] = FW_PARAM_PFVF(EQ_END);
4548 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
4549 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4550 	if (ret < 0)
4551 		goto bye;
4552 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4553 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4554 
4555 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4556 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
4557 	if (!adap->sge.egr_map) {
4558 		ret = -ENOMEM;
4559 		goto bye;
4560 	}
4561 
4562 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4563 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4564 	if (!adap->sge.ingr_map) {
4565 		ret = -ENOMEM;
4566 		goto bye;
4567 	}
4568 
4569 	/* Allocate the memory for the vaious egress queue bitmaps
4570 	 * ie starving_fl, txq_maperr and blocked_fl.
4571 	 */
4572 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4573 					sizeof(long), GFP_KERNEL);
4574 	if (!adap->sge.starving_fl) {
4575 		ret = -ENOMEM;
4576 		goto bye;
4577 	}
4578 
4579 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4580 				       sizeof(long), GFP_KERNEL);
4581 	if (!adap->sge.txq_maperr) {
4582 		ret = -ENOMEM;
4583 		goto bye;
4584 	}
4585 
4586 #ifdef CONFIG_DEBUG_FS
4587 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4588 				       sizeof(long), GFP_KERNEL);
4589 	if (!adap->sge.blocked_fl) {
4590 		ret = -ENOMEM;
4591 		goto bye;
4592 	}
4593 #endif
4594 
4595 	params[0] = FW_PARAM_PFVF(CLIP_START);
4596 	params[1] = FW_PARAM_PFVF(CLIP_END);
4597 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4598 	if (ret < 0)
4599 		goto bye;
4600 	adap->clipt_start = val[0];
4601 	adap->clipt_end = val[1];
4602 
4603 	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
4604 	 * Classes supported by the hardware/firmware so we hard code it here
4605 	 * for now.
4606 	 */
4607 	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4608 
4609 	/* query params related to active filter region */
4610 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4611 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4612 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4613 	/* If Active filter size is set we enable establishing
4614 	 * offload connection through firmware work request
4615 	 */
4616 	if ((val[0] != val[1]) && (ret >= 0)) {
4617 		adap->flags |= CXGB4_FW_OFLD_CONN;
4618 		adap->tids.aftid_base = val[0];
4619 		adap->tids.aftid_end = val[1];
4620 	}
4621 
4622 	/* If we're running on newer firmware, let it know that we're
4623 	 * prepared to deal with encapsulated CPL messages.  Older
4624 	 * firmware won't understand this and we'll just get
4625 	 * unencapsulated messages ...
4626 	 */
4627 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4628 	val[0] = 1;
4629 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4630 
4631 	/*
4632 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4633 	 * capability.  Earlier versions of the firmware didn't have the
4634 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4635 	 * permission to use ULPTX MEMWRITE DSGL.
4636 	 */
4637 	if (is_t4(adap->params.chip)) {
4638 		adap->params.ulptx_memwrite_dsgl = false;
4639 	} else {
4640 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4641 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4642 				      1, params, val);
4643 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4644 	}
4645 
4646 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4647 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4648 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4649 			      1, params, val);
4650 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4651 
4652 	/* See if FW supports FW_FILTER2 work request */
4653 	if (is_t4(adap->params.chip)) {
4654 		adap->params.filter2_wr_support = 0;
4655 	} else {
4656 		params[0] = FW_PARAM_DEV(FILTER2_WR);
4657 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4658 				      1, params, val);
4659 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4660 	}
4661 
4662 	/* Check if FW supports returning vin and smt index.
4663 	 * If this is not supported, driver will interpret
4664 	 * these values from viid.
4665 	 */
4666 	params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
4667 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4668 			      1, params, val);
4669 	adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
4670 
4671 	/*
4672 	 * Get device capabilities so we can determine what resources we need
4673 	 * to manage.
4674 	 */
4675 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4676 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4677 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
4678 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4679 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4680 			 &caps_cmd);
4681 	if (ret < 0)
4682 		goto bye;
4683 
4684 	/* hash filter has some mandatory register settings to be tested and for
4685 	 * that it needs to test whether offload is enabled or not, hence
4686 	 * checking and setting it here.
4687 	 */
4688 	if (caps_cmd.ofldcaps)
4689 		adap->params.offload = 1;
4690 
4691 	if (caps_cmd.ofldcaps ||
4692 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
4693 		/* query offload-related parameters */
4694 		params[0] = FW_PARAM_DEV(NTID);
4695 		params[1] = FW_PARAM_PFVF(SERVER_START);
4696 		params[2] = FW_PARAM_PFVF(SERVER_END);
4697 		params[3] = FW_PARAM_PFVF(TDDP_START);
4698 		params[4] = FW_PARAM_PFVF(TDDP_END);
4699 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4700 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4701 				      params, val);
4702 		if (ret < 0)
4703 			goto bye;
4704 		adap->tids.ntids = val[0];
4705 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4706 		adap->tids.stid_base = val[1];
4707 		adap->tids.nstids = val[2] - val[1] + 1;
4708 		/*
4709 		 * Setup server filter region. Divide the available filter
4710 		 * region into two parts. Regular filters get 1/3rd and server
4711 		 * filters get 2/3rd part. This is only enabled if workarond
4712 		 * path is enabled.
4713 		 * 1. For regular filters.
4714 		 * 2. Server filter: This are special filters which are used
4715 		 * to redirect SYN packets to offload queue.
4716 		 */
4717 		if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
4718 			adap->tids.sftid_base = adap->tids.ftid_base +
4719 					DIV_ROUND_UP(adap->tids.nftids, 3);
4720 			adap->tids.nsftids = adap->tids.nftids -
4721 					 DIV_ROUND_UP(adap->tids.nftids, 3);
4722 			adap->tids.nftids = adap->tids.sftid_base -
4723 						adap->tids.ftid_base;
4724 		}
4725 		adap->vres.ddp.start = val[3];
4726 		adap->vres.ddp.size = val[4] - val[3] + 1;
4727 		adap->params.ofldq_wr_cred = val[5];
4728 
4729 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4730 			init_hash_filter(adap);
4731 		} else {
4732 			adap->num_ofld_uld += 1;
4733 		}
4734 	}
4735 	if (caps_cmd.rdmacaps) {
4736 		params[0] = FW_PARAM_PFVF(STAG_START);
4737 		params[1] = FW_PARAM_PFVF(STAG_END);
4738 		params[2] = FW_PARAM_PFVF(RQ_START);
4739 		params[3] = FW_PARAM_PFVF(RQ_END);
4740 		params[4] = FW_PARAM_PFVF(PBL_START);
4741 		params[5] = FW_PARAM_PFVF(PBL_END);
4742 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4743 				      params, val);
4744 		if (ret < 0)
4745 			goto bye;
4746 		adap->vres.stag.start = val[0];
4747 		adap->vres.stag.size = val[1] - val[0] + 1;
4748 		adap->vres.rq.start = val[2];
4749 		adap->vres.rq.size = val[3] - val[2] + 1;
4750 		adap->vres.pbl.start = val[4];
4751 		adap->vres.pbl.size = val[5] - val[4] + 1;
4752 
4753 		params[0] = FW_PARAM_PFVF(SRQ_START);
4754 		params[1] = FW_PARAM_PFVF(SRQ_END);
4755 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4756 				      params, val);
4757 		if (!ret) {
4758 			adap->vres.srq.start = val[0];
4759 			adap->vres.srq.size = val[1] - val[0] + 1;
4760 		}
4761 		if (adap->vres.srq.size) {
4762 			adap->srq = t4_init_srq(adap->vres.srq.size);
4763 			if (!adap->srq)
4764 				dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4765 		}
4766 
4767 		params[0] = FW_PARAM_PFVF(SQRQ_START);
4768 		params[1] = FW_PARAM_PFVF(SQRQ_END);
4769 		params[2] = FW_PARAM_PFVF(CQ_START);
4770 		params[3] = FW_PARAM_PFVF(CQ_END);
4771 		params[4] = FW_PARAM_PFVF(OCQ_START);
4772 		params[5] = FW_PARAM_PFVF(OCQ_END);
4773 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4774 				      val);
4775 		if (ret < 0)
4776 			goto bye;
4777 		adap->vres.qp.start = val[0];
4778 		adap->vres.qp.size = val[1] - val[0] + 1;
4779 		adap->vres.cq.start = val[2];
4780 		adap->vres.cq.size = val[3] - val[2] + 1;
4781 		adap->vres.ocq.start = val[4];
4782 		adap->vres.ocq.size = val[5] - val[4] + 1;
4783 
4784 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4785 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4786 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4787 				      val);
4788 		if (ret < 0) {
4789 			adap->params.max_ordird_qp = 8;
4790 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4791 			ret = 0;
4792 		} else {
4793 			adap->params.max_ordird_qp = val[0];
4794 			adap->params.max_ird_adapter = val[1];
4795 		}
4796 		dev_info(adap->pdev_dev,
4797 			 "max_ordird_qp %d max_ird_adapter %d\n",
4798 			 adap->params.max_ordird_qp,
4799 			 adap->params.max_ird_adapter);
4800 
4801 		/* Enable write_with_immediate if FW supports it */
4802 		params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
4803 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4804 				      val);
4805 		adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
4806 
4807 		/* Enable write_cmpl if FW supports it */
4808 		params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
4809 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4810 				      val);
4811 		adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
4812 		adap->num_ofld_uld += 2;
4813 	}
4814 	if (caps_cmd.iscsicaps) {
4815 		params[0] = FW_PARAM_PFVF(ISCSI_START);
4816 		params[1] = FW_PARAM_PFVF(ISCSI_END);
4817 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4818 				      params, val);
4819 		if (ret < 0)
4820 			goto bye;
4821 		adap->vres.iscsi.start = val[0];
4822 		adap->vres.iscsi.size = val[1] - val[0] + 1;
4823 		if (is_t6(adap->params.chip)) {
4824 			params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
4825 			params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
4826 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4827 					      params, val);
4828 			if (!ret) {
4829 				adap->vres.ppod_edram.start = val[0];
4830 				adap->vres.ppod_edram.size =
4831 					val[1] - val[0] + 1;
4832 
4833 				dev_info(adap->pdev_dev,
4834 					 "ppod edram start 0x%x end 0x%x size 0x%x\n",
4835 					 val[0], val[1],
4836 					 adap->vres.ppod_edram.size);
4837 			}
4838 		}
4839 		/* LIO target and cxgb4i initiaitor */
4840 		adap->num_ofld_uld += 2;
4841 	}
4842 	if (caps_cmd.cryptocaps) {
4843 		if (ntohs(caps_cmd.cryptocaps) &
4844 		    FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
4845 			params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4846 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4847 					      2, params, val);
4848 			if (ret < 0) {
4849 				if (ret != -EINVAL)
4850 					goto bye;
4851 			} else {
4852 				adap->vres.ncrypto_fc = val[0];
4853 			}
4854 			adap->num_ofld_uld += 1;
4855 		}
4856 		if (ntohs(caps_cmd.cryptocaps) &
4857 		    FW_CAPS_CONFIG_TLS_INLINE) {
4858 			params[0] = FW_PARAM_PFVF(TLS_START);
4859 			params[1] = FW_PARAM_PFVF(TLS_END);
4860 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4861 					      2, params, val);
4862 			if (ret < 0)
4863 				goto bye;
4864 			adap->vres.key.start = val[0];
4865 			adap->vres.key.size = val[1] - val[0] + 1;
4866 			adap->num_uld += 1;
4867 		}
4868 		adap->params.crypto = ntohs(caps_cmd.cryptocaps);
4869 	}
4870 #undef FW_PARAM_PFVF
4871 #undef FW_PARAM_DEV
4872 
4873 	/* The MTU/MSS Table is initialized by now, so load their values.  If
4874 	 * we're initializing the adapter, then we'll make any modifications
4875 	 * we want to the MTU/MSS Table and also initialize the congestion
4876 	 * parameters.
4877 	 */
4878 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4879 	if (state != DEV_STATE_INIT) {
4880 		int i;
4881 
4882 		/* The default MTU Table contains values 1492 and 1500.
4883 		 * However, for TCP, it's better to have two values which are
4884 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4885 		 * This allows us to have a TCP Data Payload which is a
4886 		 * multiple of 8 regardless of what combination of TCP Options
4887 		 * are in use (always a multiple of 4 bytes) which is
4888 		 * important for performance reasons.  For instance, if no
4889 		 * options are in use, then we have a 20-byte IP header and a
4890 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4891 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4892 		 * which is not a multiple of 8.  So using an MSS of 1488 in
4893 		 * this case results in a TCP Data Payload of 1448 bytes which
4894 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4895 		 * Stamps have been negotiated, then an MTU of 1500 bytes
4896 		 * results in a TCP Data Payload of 1448 bytes which, as
4897 		 * above, is a multiple of 8 bytes ...
4898 		 */
4899 		for (i = 0; i < NMTUS; i++)
4900 			if (adap->params.mtus[i] == 1492) {
4901 				adap->params.mtus[i] = 1488;
4902 				break;
4903 			}
4904 
4905 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4906 			     adap->params.b_wnd);
4907 	}
4908 	t4_init_sge_params(adap);
4909 	adap->flags |= CXGB4_FW_OK;
4910 	t4_init_tp_params(adap, true);
4911 	return 0;
4912 
4913 	/*
4914 	 * Something bad happened.  If a command timed out or failed with EIO
4915 	 * FW does not operate within its spec or something catastrophic
4916 	 * happened to HW/FW, stop issuing commands.
4917 	 */
4918 bye:
4919 	adap_free_hma_mem(adap);
4920 	kfree(adap->sge.egr_map);
4921 	kfree(adap->sge.ingr_map);
4922 	kfree(adap->sge.starving_fl);
4923 	kfree(adap->sge.txq_maperr);
4924 #ifdef CONFIG_DEBUG_FS
4925 	kfree(adap->sge.blocked_fl);
4926 #endif
4927 	if (ret != -ETIMEDOUT && ret != -EIO)
4928 		t4_fw_bye(adap, adap->mbox);
4929 	return ret;
4930 }
4931 
4932 /* EEH callbacks */
4933 
4934 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4935 					 pci_channel_state_t state)
4936 {
4937 	int i;
4938 	struct adapter *adap = pci_get_drvdata(pdev);
4939 
4940 	if (!adap)
4941 		goto out;
4942 
4943 	rtnl_lock();
4944 	adap->flags &= ~CXGB4_FW_OK;
4945 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4946 	spin_lock(&adap->stats_lock);
4947 	for_each_port(adap, i) {
4948 		struct net_device *dev = adap->port[i];
4949 		if (dev) {
4950 			netif_device_detach(dev);
4951 			netif_carrier_off(dev);
4952 		}
4953 	}
4954 	spin_unlock(&adap->stats_lock);
4955 	disable_interrupts(adap);
4956 	if (adap->flags & CXGB4_FULL_INIT_DONE)
4957 		cxgb_down(adap);
4958 	rtnl_unlock();
4959 	if ((adap->flags & CXGB4_DEV_ENABLED)) {
4960 		pci_disable_device(pdev);
4961 		adap->flags &= ~CXGB4_DEV_ENABLED;
4962 	}
4963 out:	return state == pci_channel_io_perm_failure ?
4964 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4965 }
4966 
4967 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4968 {
4969 	int i, ret;
4970 	struct fw_caps_config_cmd c;
4971 	struct adapter *adap = pci_get_drvdata(pdev);
4972 
4973 	if (!adap) {
4974 		pci_restore_state(pdev);
4975 		pci_save_state(pdev);
4976 		return PCI_ERS_RESULT_RECOVERED;
4977 	}
4978 
4979 	if (!(adap->flags & CXGB4_DEV_ENABLED)) {
4980 		if (pci_enable_device(pdev)) {
4981 			dev_err(&pdev->dev, "Cannot reenable PCI "
4982 					    "device after reset\n");
4983 			return PCI_ERS_RESULT_DISCONNECT;
4984 		}
4985 		adap->flags |= CXGB4_DEV_ENABLED;
4986 	}
4987 
4988 	pci_set_master(pdev);
4989 	pci_restore_state(pdev);
4990 	pci_save_state(pdev);
4991 
4992 	if (t4_wait_dev_ready(adap->regs) < 0)
4993 		return PCI_ERS_RESULT_DISCONNECT;
4994 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4995 		return PCI_ERS_RESULT_DISCONNECT;
4996 	adap->flags |= CXGB4_FW_OK;
4997 	if (adap_init1(adap, &c))
4998 		return PCI_ERS_RESULT_DISCONNECT;
4999 
5000 	for_each_port(adap, i) {
5001 		struct port_info *pi = adap2pinfo(adap, i);
5002 		u8 vivld = 0, vin = 0;
5003 
5004 		ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5005 				  NULL, NULL, &vivld, &vin);
5006 		if (ret < 0)
5007 			return PCI_ERS_RESULT_DISCONNECT;
5008 		pi->viid = ret;
5009 		pi->xact_addr_filt = -1;
5010 		/* If fw supports returning the VIN as part of FW_VI_CMD,
5011 		 * save the returned values.
5012 		 */
5013 		if (adap->params.viid_smt_extn_support) {
5014 			pi->vivld = vivld;
5015 			pi->vin = vin;
5016 		} else {
5017 			/* Retrieve the values from VIID */
5018 			pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5019 			pi->vin = FW_VIID_VIN_G(pi->viid);
5020 		}
5021 	}
5022 
5023 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5024 		     adap->params.b_wnd);
5025 	setup_memwin(adap);
5026 	if (cxgb_up(adap))
5027 		return PCI_ERS_RESULT_DISCONNECT;
5028 	return PCI_ERS_RESULT_RECOVERED;
5029 }
5030 
5031 static void eeh_resume(struct pci_dev *pdev)
5032 {
5033 	int i;
5034 	struct adapter *adap = pci_get_drvdata(pdev);
5035 
5036 	if (!adap)
5037 		return;
5038 
5039 	rtnl_lock();
5040 	for_each_port(adap, i) {
5041 		struct net_device *dev = adap->port[i];
5042 		if (dev) {
5043 			if (netif_running(dev)) {
5044 				link_start(dev);
5045 				cxgb_set_rxmode(dev);
5046 			}
5047 			netif_device_attach(dev);
5048 		}
5049 	}
5050 	rtnl_unlock();
5051 }
5052 
5053 static const struct pci_error_handlers cxgb4_eeh = {
5054 	.error_detected = eeh_err_detected,
5055 	.slot_reset     = eeh_slot_reset,
5056 	.resume         = eeh_resume,
5057 };
5058 
5059 /* Return true if the Link Configuration supports "High Speeds" (those greater
5060  * than 1Gb/s).
5061  */
5062 static inline bool is_x_10g_port(const struct link_config *lc)
5063 {
5064 	unsigned int speeds, high_speeds;
5065 
5066 	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5067 	high_speeds = speeds &
5068 			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5069 
5070 	return high_speeds != 0;
5071 }
5072 
5073 /*
5074  * Perform default configuration of DMA queues depending on the number and type
5075  * of ports we found and the number of available CPUs.  Most settings can be
5076  * modified by the admin prior to actual use.
5077  */
5078 static int cfg_queues(struct adapter *adap)
5079 {
5080 	struct sge *s = &adap->sge;
5081 	int i, n10g = 0, qidx = 0;
5082 	int niqflint, neq, avail_eth_qsets;
5083 	int max_eth_qsets = 32;
5084 #ifndef CONFIG_CHELSIO_T4_DCB
5085 	int q10g = 0;
5086 #endif
5087 
5088 	/* Reduce memory usage in kdump environment, disable all offload.
5089 	 */
5090 	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5091 		adap->params.offload = 0;
5092 		adap->params.crypto = 0;
5093 	}
5094 
5095 	/* Calculate the number of Ethernet Queue Sets available based on
5096 	 * resources provisioned for us.  We always have an Asynchronous
5097 	 * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
5098 	 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5099 	 * Ingress Queue.  Meanwhile, we need two Egress Queues for each
5100 	 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5101 	 *
5102 	 * Note that we should also take into account all of the various
5103 	 * Offload Queues.  But, in any situation where we're operating in
5104 	 * a Resource Constrained Provisioning environment, doing any Offload
5105 	 * at all is problematic ...
5106 	 */
5107 	niqflint = adap->params.pfres.niqflint - 1;
5108 	if (!(adap->flags & CXGB4_USING_MSIX))
5109 		niqflint--;
5110 	neq = adap->params.pfres.neq / 2;
5111 	avail_eth_qsets = min(niqflint, neq);
5112 
5113 	if (avail_eth_qsets > max_eth_qsets)
5114 		avail_eth_qsets = max_eth_qsets;
5115 
5116 	if (avail_eth_qsets < adap->params.nports) {
5117 		dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5118 			avail_eth_qsets, adap->params.nports);
5119 		return -ENOMEM;
5120 	}
5121 
5122 	/* Count the number of 10Gb/s or better ports */
5123 	for_each_port(adap, i)
5124 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5125 
5126 #ifdef CONFIG_CHELSIO_T4_DCB
5127 	/* For Data Center Bridging support we need to be able to support up
5128 	 * to 8 Traffic Priorities; each of which will be assigned to its
5129 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
5130 	 */
5131 	if (adap->params.nports * 8 > avail_eth_qsets) {
5132 		dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5133 			avail_eth_qsets, adap->params.nports * 8);
5134 		return -ENOMEM;
5135 	}
5136 
5137 	for_each_port(adap, i) {
5138 		struct port_info *pi = adap2pinfo(adap, i);
5139 
5140 		pi->first_qset = qidx;
5141 		pi->nqsets = is_kdump_kernel() ? 1 : 8;
5142 		qidx += pi->nqsets;
5143 	}
5144 #else /* !CONFIG_CHELSIO_T4_DCB */
5145 	/*
5146 	 * We default to 1 queue per non-10G port and up to # of cores queues
5147 	 * per 10G port.
5148 	 */
5149 	if (n10g)
5150 		q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5151 	if (q10g > netif_get_num_default_rss_queues())
5152 		q10g = netif_get_num_default_rss_queues();
5153 
5154 	if (is_kdump_kernel())
5155 		q10g = 1;
5156 
5157 	for_each_port(adap, i) {
5158 		struct port_info *pi = adap2pinfo(adap, i);
5159 
5160 		pi->first_qset = qidx;
5161 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
5162 		qidx += pi->nqsets;
5163 	}
5164 #endif /* !CONFIG_CHELSIO_T4_DCB */
5165 
5166 	s->ethqsets = qidx;
5167 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5168 
5169 	if (is_uld(adap)) {
5170 		/*
5171 		 * For offload we use 1 queue/channel if all ports are up to 1G,
5172 		 * otherwise we divide all available queues amongst the channels
5173 		 * capped by the number of available cores.
5174 		 */
5175 		if (n10g) {
5176 			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
5177 			s->ofldqsets = roundup(i, adap->params.nports);
5178 		} else {
5179 			s->ofldqsets = adap->params.nports;
5180 		}
5181 	}
5182 
5183 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5184 		struct sge_eth_rxq *r = &s->ethrxq[i];
5185 
5186 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5187 		r->fl.size = 72;
5188 	}
5189 
5190 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5191 		s->ethtxq[i].q.size = 1024;
5192 
5193 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5194 		s->ctrlq[i].q.size = 512;
5195 
5196 	if (!is_t4(adap->params.chip))
5197 		s->ptptxq.q.size = 8;
5198 
5199 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5200 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5201 
5202 	return 0;
5203 }
5204 
5205 /*
5206  * Reduce the number of Ethernet queues across all ports to at most n.
5207  * n provides at least one queue per port.
5208  */
5209 static void reduce_ethqs(struct adapter *adap, int n)
5210 {
5211 	int i;
5212 	struct port_info *pi;
5213 
5214 	while (n < adap->sge.ethqsets)
5215 		for_each_port(adap, i) {
5216 			pi = adap2pinfo(adap, i);
5217 			if (pi->nqsets > 1) {
5218 				pi->nqsets--;
5219 				adap->sge.ethqsets--;
5220 				if (adap->sge.ethqsets <= n)
5221 					break;
5222 			}
5223 		}
5224 
5225 	n = 0;
5226 	for_each_port(adap, i) {
5227 		pi = adap2pinfo(adap, i);
5228 		pi->first_qset = n;
5229 		n += pi->nqsets;
5230 	}
5231 }
5232 
5233 static int get_msix_info(struct adapter *adap)
5234 {
5235 	struct uld_msix_info *msix_info;
5236 	unsigned int max_ingq = 0;
5237 
5238 	if (is_offload(adap))
5239 		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
5240 	if (is_pci_uld(adap))
5241 		max_ingq += MAX_OFLD_QSETS * adap->num_uld;
5242 
5243 	if (!max_ingq)
5244 		goto out;
5245 
5246 	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
5247 	if (!msix_info)
5248 		return -ENOMEM;
5249 
5250 	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
5251 						 sizeof(long), GFP_KERNEL);
5252 	if (!adap->msix_bmap_ulds.msix_bmap) {
5253 		kfree(msix_info);
5254 		return -ENOMEM;
5255 	}
5256 	spin_lock_init(&adap->msix_bmap_ulds.lock);
5257 	adap->msix_info_ulds = msix_info;
5258 out:
5259 	return 0;
5260 }
5261 
5262 static void free_msix_info(struct adapter *adap)
5263 {
5264 	if (!(adap->num_uld && adap->num_ofld_uld))
5265 		return;
5266 
5267 	kfree(adap->msix_info_ulds);
5268 	kfree(adap->msix_bmap_ulds.msix_bmap);
5269 }
5270 
5271 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5272 #define EXTRA_VECS 2
5273 
5274 static int enable_msix(struct adapter *adap)
5275 {
5276 	int ofld_need = 0, uld_need = 0;
5277 	int i, j, want, need, allocated;
5278 	struct sge *s = &adap->sge;
5279 	unsigned int nchan = adap->params.nports;
5280 	struct msix_entry *entries;
5281 	int max_ingq = MAX_INGQ;
5282 
5283 	if (is_pci_uld(adap))
5284 		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
5285 	if (is_offload(adap))
5286 		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
5287 	entries = kmalloc_array(max_ingq + 1, sizeof(*entries),
5288 				GFP_KERNEL);
5289 	if (!entries)
5290 		return -ENOMEM;
5291 
5292 	/* map for msix */
5293 	if (get_msix_info(adap)) {
5294 		adap->params.offload = 0;
5295 		adap->params.crypto = 0;
5296 	}
5297 
5298 	for (i = 0; i < max_ingq + 1; ++i)
5299 		entries[i].entry = i;
5300 
5301 	want = s->max_ethqsets + EXTRA_VECS;
5302 	if (is_offload(adap)) {
5303 		want += adap->num_ofld_uld * s->ofldqsets;
5304 		ofld_need = adap->num_ofld_uld * nchan;
5305 	}
5306 	if (is_pci_uld(adap)) {
5307 		want += adap->num_uld * s->ofldqsets;
5308 		uld_need = adap->num_uld * nchan;
5309 	}
5310 #ifdef CONFIG_CHELSIO_T4_DCB
5311 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5312 	 * each port.
5313 	 */
5314 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5315 #else
5316 	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5317 #endif
5318 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5319 	if (allocated < 0) {
5320 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
5321 			 " not using MSI-X\n");
5322 		kfree(entries);
5323 		return allocated;
5324 	}
5325 
5326 	/* Distribute available vectors to the various queue groups.
5327 	 * Every group gets its minimum requirement and NIC gets top
5328 	 * priority for leftovers.
5329 	 */
5330 	i = allocated - EXTRA_VECS - ofld_need - uld_need;
5331 	if (i < s->max_ethqsets) {
5332 		s->max_ethqsets = i;
5333 		if (i < s->ethqsets)
5334 			reduce_ethqs(adap, i);
5335 	}
5336 	if (is_uld(adap)) {
5337 		if (allocated < want)
5338 			s->nqs_per_uld = nchan;
5339 		else
5340 			s->nqs_per_uld = s->ofldqsets;
5341 	}
5342 
5343 	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
5344 		adap->msix_info[i].vec = entries[i].vector;
5345 	if (is_uld(adap)) {
5346 		for (j = 0 ; i < allocated; ++i, j++) {
5347 			adap->msix_info_ulds[j].vec = entries[i].vector;
5348 			adap->msix_info_ulds[j].idx = i;
5349 		}
5350 		adap->msix_bmap_ulds.mapsize = j;
5351 	}
5352 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
5353 		 "nic %d per uld %d\n",
5354 		 allocated, s->max_ethqsets, s->nqs_per_uld);
5355 
5356 	kfree(entries);
5357 	return 0;
5358 }
5359 
5360 #undef EXTRA_VECS
5361 
5362 static int init_rss(struct adapter *adap)
5363 {
5364 	unsigned int i;
5365 	int err;
5366 
5367 	err = t4_init_rss_mode(adap, adap->mbox);
5368 	if (err)
5369 		return err;
5370 
5371 	for_each_port(adap, i) {
5372 		struct port_info *pi = adap2pinfo(adap, i);
5373 
5374 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5375 		if (!pi->rss)
5376 			return -ENOMEM;
5377 	}
5378 	return 0;
5379 }
5380 
5381 /* Dump basic information about the adapter */
5382 static void print_adapter_info(struct adapter *adapter)
5383 {
5384 	/* Hardware/Firmware/etc. Version/Revision IDs */
5385 	t4_dump_version_info(adapter);
5386 
5387 	/* Software/Hardware configuration */
5388 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5389 		 is_offload(adapter) ? "R" : "",
5390 		 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
5391 		  (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
5392 		 is_offload(adapter) ? "Offload" : "non-Offload");
5393 }
5394 
5395 static void print_port_info(const struct net_device *dev)
5396 {
5397 	char buf[80];
5398 	char *bufp = buf;
5399 	const struct port_info *pi = netdev_priv(dev);
5400 	const struct adapter *adap = pi->adapter;
5401 
5402 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5403 		bufp += sprintf(bufp, "100M/");
5404 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5405 		bufp += sprintf(bufp, "1G/");
5406 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5407 		bufp += sprintf(bufp, "10G/");
5408 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5409 		bufp += sprintf(bufp, "25G/");
5410 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5411 		bufp += sprintf(bufp, "40G/");
5412 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5413 		bufp += sprintf(bufp, "50G/");
5414 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5415 		bufp += sprintf(bufp, "100G/");
5416 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5417 		bufp += sprintf(bufp, "200G/");
5418 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5419 		bufp += sprintf(bufp, "400G/");
5420 	if (bufp != buf)
5421 		--bufp;
5422 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5423 
5424 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5425 		    dev->name, adap->params.vpd.id, adap->name, buf);
5426 }
5427 
5428 /*
5429  * Free the following resources:
5430  * - memory used for tables
5431  * - MSI/MSI-X
5432  * - net devices
5433  * - resources FW is holding for us
5434  */
5435 static void free_some_resources(struct adapter *adapter)
5436 {
5437 	unsigned int i;
5438 
5439 	kvfree(adapter->smt);
5440 	kvfree(adapter->l2t);
5441 	kvfree(adapter->srq);
5442 	t4_cleanup_sched(adapter);
5443 	kvfree(adapter->tids.tid_tab);
5444 	cxgb4_cleanup_tc_flower(adapter);
5445 	cxgb4_cleanup_tc_u32(adapter);
5446 	kfree(adapter->sge.egr_map);
5447 	kfree(adapter->sge.ingr_map);
5448 	kfree(adapter->sge.starving_fl);
5449 	kfree(adapter->sge.txq_maperr);
5450 #ifdef CONFIG_DEBUG_FS
5451 	kfree(adapter->sge.blocked_fl);
5452 #endif
5453 	disable_msi(adapter);
5454 
5455 	for_each_port(adapter, i)
5456 		if (adapter->port[i]) {
5457 			struct port_info *pi = adap2pinfo(adapter, i);
5458 
5459 			if (pi->viid != 0)
5460 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
5461 					   0, pi->viid);
5462 			kfree(adap2pinfo(adapter, i)->rss);
5463 			free_netdev(adapter->port[i]);
5464 		}
5465 	if (adapter->flags & CXGB4_FW_OK)
5466 		t4_fw_bye(adapter, adapter->pf);
5467 }
5468 
5469 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5470 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5471 		   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5472 #define SEGMENT_SIZE 128
5473 
5474 static int t4_get_chip_type(struct adapter *adap, int ver)
5475 {
5476 	u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5477 
5478 	switch (ver) {
5479 	case CHELSIO_T4:
5480 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5481 	case CHELSIO_T5:
5482 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5483 	case CHELSIO_T6:
5484 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5485 	default:
5486 		break;
5487 	}
5488 	return -EINVAL;
5489 }
5490 
5491 #ifdef CONFIG_PCI_IOV
5492 static void cxgb4_mgmt_setup(struct net_device *dev)
5493 {
5494 	dev->type = ARPHRD_NONE;
5495 	dev->mtu = 0;
5496 	dev->hard_header_len = 0;
5497 	dev->addr_len = 0;
5498 	dev->tx_queue_len = 0;
5499 	dev->flags |= IFF_NOARP;
5500 	dev->priv_flags |= IFF_NO_QUEUE;
5501 
5502 	/* Initialize the device structure. */
5503 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5504 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5505 }
5506 
5507 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5508 {
5509 	struct adapter *adap = pci_get_drvdata(pdev);
5510 	int err = 0;
5511 	int current_vfs = pci_num_vf(pdev);
5512 	u32 pcie_fw;
5513 
5514 	pcie_fw = readl(adap->regs + PCIE_FW_A);
5515 	/* Check if fw is initialized */
5516 	if (!(pcie_fw & PCIE_FW_INIT_F)) {
5517 		dev_warn(&pdev->dev, "Device not initialized\n");
5518 		return -EOPNOTSUPP;
5519 	}
5520 
5521 	/* If any of the VF's is already assigned to Guest OS, then
5522 	 * SRIOV for the same cannot be modified
5523 	 */
5524 	if (current_vfs && pci_vfs_assigned(pdev)) {
5525 		dev_err(&pdev->dev,
5526 			"Cannot modify SR-IOV while VFs are assigned\n");
5527 		return current_vfs;
5528 	}
5529 	/* Note that the upper-level code ensures that we're never called with
5530 	 * a non-zero "num_vfs" when we already have VFs instantiated.  But
5531 	 * it never hurts to code defensively.
5532 	 */
5533 	if (num_vfs != 0 && current_vfs != 0)
5534 		return -EBUSY;
5535 
5536 	/* Nothing to do for no change. */
5537 	if (num_vfs == current_vfs)
5538 		return num_vfs;
5539 
5540 	/* Disable SRIOV when zero is passed. */
5541 	if (!num_vfs) {
5542 		pci_disable_sriov(pdev);
5543 		/* free VF Management Interface */
5544 		unregister_netdev(adap->port[0]);
5545 		free_netdev(adap->port[0]);
5546 		adap->port[0] = NULL;
5547 
5548 		/* free VF resources */
5549 		adap->num_vfs = 0;
5550 		kfree(adap->vfinfo);
5551 		adap->vfinfo = NULL;
5552 		return 0;
5553 	}
5554 
5555 	if (!current_vfs) {
5556 		struct fw_pfvf_cmd port_cmd, port_rpl;
5557 		struct net_device *netdev;
5558 		unsigned int pmask, port;
5559 		struct pci_dev *pbridge;
5560 		struct port_info *pi;
5561 		char name[IFNAMSIZ];
5562 		u32 devcap2;
5563 		u16 flags;
5564 
5565 		/* If we want to instantiate Virtual Functions, then our
5566 		 * parent bridge's PCI-E needs to support Alternative Routing
5567 		 * ID (ARI) because our VFs will show up at function offset 8
5568 		 * and above.
5569 		 */
5570 		pbridge = pdev->bus->self;
5571 		pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
5572 		pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
5573 
5574 		if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5575 		    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5576 			/* Our parent bridge does not support ARI so issue a
5577 			 * warning and skip instantiating the VFs.  They
5578 			 * won't be reachable.
5579 			 */
5580 			dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5581 				 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5582 				 PCI_FUNC(pbridge->devfn));
5583 			return -ENOTSUPP;
5584 		}
5585 		memset(&port_cmd, 0, sizeof(port_cmd));
5586 		port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5587 						 FW_CMD_REQUEST_F |
5588 						 FW_CMD_READ_F |
5589 						 FW_PFVF_CMD_PFN_V(adap->pf) |
5590 						 FW_PFVF_CMD_VFN_V(0));
5591 		port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
5592 		err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
5593 				 &port_rpl);
5594 		if (err)
5595 			return err;
5596 		pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
5597 		port = ffs(pmask) - 1;
5598 		/* Allocate VF Management Interface. */
5599 		snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
5600 			 adap->pf);
5601 		netdev = alloc_netdev(sizeof(struct port_info),
5602 				      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
5603 		if (!netdev)
5604 			return -ENOMEM;
5605 
5606 		pi = netdev_priv(netdev);
5607 		pi->adapter = adap;
5608 		pi->lport = port;
5609 		pi->tx_chan = port;
5610 		SET_NETDEV_DEV(netdev, &pdev->dev);
5611 
5612 		adap->port[0] = netdev;
5613 		pi->port_id = 0;
5614 
5615 		err = register_netdev(adap->port[0]);
5616 		if (err) {
5617 			pr_info("Unable to register VF mgmt netdev %s\n", name);
5618 			free_netdev(adap->port[0]);
5619 			adap->port[0] = NULL;
5620 			return err;
5621 		}
5622 		/* Allocate and set up VF Information. */
5623 		adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
5624 				       sizeof(struct vf_info), GFP_KERNEL);
5625 		if (!adap->vfinfo) {
5626 			unregister_netdev(adap->port[0]);
5627 			free_netdev(adap->port[0]);
5628 			adap->port[0] = NULL;
5629 			return -ENOMEM;
5630 		}
5631 		cxgb4_mgmt_fill_vf_station_mac_addr(adap);
5632 	}
5633 	/* Instantiate the requested number of VFs. */
5634 	err = pci_enable_sriov(pdev, num_vfs);
5635 	if (err) {
5636 		pr_info("Unable to instantiate %d VFs\n", num_vfs);
5637 		if (!current_vfs) {
5638 			unregister_netdev(adap->port[0]);
5639 			free_netdev(adap->port[0]);
5640 			adap->port[0] = NULL;
5641 			kfree(adap->vfinfo);
5642 			adap->vfinfo = NULL;
5643 		}
5644 		return err;
5645 	}
5646 
5647 	adap->num_vfs = num_vfs;
5648 	return num_vfs;
5649 }
5650 #endif /* CONFIG_PCI_IOV */
5651 
5652 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5653 {
5654 	struct net_device *netdev;
5655 	struct adapter *adapter;
5656 	static int adap_idx = 1;
5657 	int s_qpp, qpp, num_seg;
5658 	struct port_info *pi;
5659 	bool highdma = false;
5660 	enum chip_type chip;
5661 	void __iomem *regs;
5662 	int func, chip_ver;
5663 	u16 device_id;
5664 	int i, err;
5665 	u32 whoami;
5666 
5667 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5668 
5669 	err = pci_request_regions(pdev, KBUILD_MODNAME);
5670 	if (err) {
5671 		/* Just info, some other driver may have claimed the device. */
5672 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5673 		return err;
5674 	}
5675 
5676 	err = pci_enable_device(pdev);
5677 	if (err) {
5678 		dev_err(&pdev->dev, "cannot enable PCI device\n");
5679 		goto out_release_regions;
5680 	}
5681 
5682 	regs = pci_ioremap_bar(pdev, 0);
5683 	if (!regs) {
5684 		dev_err(&pdev->dev, "cannot map device registers\n");
5685 		err = -ENOMEM;
5686 		goto out_disable_device;
5687 	}
5688 
5689 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5690 	if (!adapter) {
5691 		err = -ENOMEM;
5692 		goto out_unmap_bar0;
5693 	}
5694 
5695 	adapter->regs = regs;
5696 	err = t4_wait_dev_ready(regs);
5697 	if (err < 0)
5698 		goto out_free_adapter;
5699 
5700 	/* We control everything through one PF */
5701 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5702 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
5703 	chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
5704 	if ((int)chip < 0) {
5705 		dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
5706 		err = chip;
5707 		goto out_free_adapter;
5708 	}
5709 	chip_ver = CHELSIO_CHIP_VERSION(chip);
5710 	func = chip_ver <= CHELSIO_T5 ?
5711 	       SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5712 
5713 	adapter->pdev = pdev;
5714 	adapter->pdev_dev = &pdev->dev;
5715 	adapter->name = pci_name(pdev);
5716 	adapter->mbox = func;
5717 	adapter->pf = func;
5718 	adapter->params.chip = chip;
5719 	adapter->adap_idx = adap_idx;
5720 	adapter->msg_enable = DFLT_MSG_ENABLE;
5721 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5722 				    (sizeof(struct mbox_cmd) *
5723 				     T4_OS_LOG_MBOX_CMDS),
5724 				    GFP_KERNEL);
5725 	if (!adapter->mbox_log) {
5726 		err = -ENOMEM;
5727 		goto out_free_adapter;
5728 	}
5729 	spin_lock_init(&adapter->mbox_lock);
5730 	INIT_LIST_HEAD(&adapter->mlist.list);
5731 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5732 	pci_set_drvdata(pdev, adapter);
5733 
5734 	if (func != ent->driver_data) {
5735 		pci_disable_device(pdev);
5736 		pci_save_state(pdev);        /* to restore SR-IOV later */
5737 		return 0;
5738 	}
5739 
5740 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5741 		highdma = true;
5742 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5743 		if (err) {
5744 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5745 				"coherent allocations\n");
5746 			goto out_free_adapter;
5747 		}
5748 	} else {
5749 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5750 		if (err) {
5751 			dev_err(&pdev->dev, "no usable DMA configuration\n");
5752 			goto out_free_adapter;
5753 		}
5754 	}
5755 
5756 	pci_enable_pcie_error_reporting(pdev);
5757 	pci_set_master(pdev);
5758 	pci_save_state(pdev);
5759 	adap_idx++;
5760 	adapter->workq = create_singlethread_workqueue("cxgb4");
5761 	if (!adapter->workq) {
5762 		err = -ENOMEM;
5763 		goto out_free_adapter;
5764 	}
5765 
5766 	/* PCI device has been enabled */
5767 	adapter->flags |= CXGB4_DEV_ENABLED;
5768 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5769 
5770 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
5771 	 * Ingress Packet Data to Free List Buffers in order to allow for
5772 	 * chipset performance optimizations between the Root Complex and
5773 	 * Memory Controllers.  (Messages to the associated Ingress Queue
5774 	 * notifying new Packet Placement in the Free Lists Buffers will be
5775 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
5776 	 * all preceding PCIe Transaction Layer Packets will be processed
5777 	 * first.)  But some Root Complexes have various issues with Upstream
5778 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
5779 	 * The PCIe devices which under the Root Complexes will be cleared the
5780 	 * Relaxed Ordering bit in the configuration space, So we check our
5781 	 * PCIe configuration space to see if it's flagged with advice against
5782 	 * using Relaxed Ordering.
5783 	 */
5784 	if (!pcie_relaxed_ordering_enabled(pdev))
5785 		adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
5786 
5787 	spin_lock_init(&adapter->stats_lock);
5788 	spin_lock_init(&adapter->tid_release_lock);
5789 	spin_lock_init(&adapter->win0_lock);
5790 
5791 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5792 	INIT_WORK(&adapter->db_full_task, process_db_full);
5793 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
5794 	INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
5795 
5796 	err = t4_prep_adapter(adapter);
5797 	if (err)
5798 		goto out_free_adapter;
5799 
5800 	if (is_kdump_kernel()) {
5801 		/* Collect hardware state and append to /proc/vmcore */
5802 		err = cxgb4_cudbg_vmcore_add_dump(adapter);
5803 		if (err) {
5804 			dev_warn(adapter->pdev_dev,
5805 				 "Fail collecting vmcore device dump, err: %d. Continuing\n",
5806 				 err);
5807 			err = 0;
5808 		}
5809 	}
5810 
5811 	if (!is_t4(adapter->params.chip)) {
5812 		s_qpp = (QUEUESPERPAGEPF0_S +
5813 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5814 			adapter->pf);
5815 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5816 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5817 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
5818 
5819 		/* Each segment size is 128B. Write coalescing is enabled only
5820 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5821 		 * queue is less no of segments that can be accommodated in
5822 		 * a page size.
5823 		 */
5824 		if (qpp > num_seg) {
5825 			dev_err(&pdev->dev,
5826 				"Incorrect number of egress queues per page\n");
5827 			err = -EINVAL;
5828 			goto out_free_adapter;
5829 		}
5830 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5831 		pci_resource_len(pdev, 2));
5832 		if (!adapter->bar2) {
5833 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
5834 			err = -ENOMEM;
5835 			goto out_free_adapter;
5836 		}
5837 	}
5838 
5839 	setup_memwin(adapter);
5840 	err = adap_init0(adapter);
5841 #ifdef CONFIG_DEBUG_FS
5842 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5843 #endif
5844 	setup_memwin_rdma(adapter);
5845 	if (err)
5846 		goto out_unmap_bar;
5847 
5848 	/* configure SGE_STAT_CFG_A to read WC stats */
5849 	if (!is_t4(adapter->params.chip))
5850 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5851 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5852 			      T6_STATMODE_V(0)));
5853 
5854 	/* Initialize hash mac addr list */
5855 	INIT_LIST_HEAD(&adapter->mac_hlist);
5856 
5857 	for_each_port(adapter, i) {
5858 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
5859 					   MAX_ETH_QSETS);
5860 		if (!netdev) {
5861 			err = -ENOMEM;
5862 			goto out_free_dev;
5863 		}
5864 
5865 		SET_NETDEV_DEV(netdev, &pdev->dev);
5866 
5867 		adapter->port[i] = netdev;
5868 		pi = netdev_priv(netdev);
5869 		pi->adapter = adapter;
5870 		pi->xact_addr_filt = -1;
5871 		pi->port_id = i;
5872 		netdev->irq = pdev->irq;
5873 
5874 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5875 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5876 			NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
5877 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5878 			NETIF_F_HW_TC;
5879 
5880 		if (chip_ver > CHELSIO_T5) {
5881 			netdev->hw_enc_features |= NETIF_F_IP_CSUM |
5882 						   NETIF_F_IPV6_CSUM |
5883 						   NETIF_F_RXCSUM |
5884 						   NETIF_F_GSO_UDP_TUNNEL |
5885 						   NETIF_F_GSO_UDP_TUNNEL_CSUM |
5886 						   NETIF_F_TSO | NETIF_F_TSO6;
5887 
5888 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
5889 					       NETIF_F_GSO_UDP_TUNNEL_CSUM |
5890 					       NETIF_F_HW_TLS_RECORD;
5891 		}
5892 
5893 		if (highdma)
5894 			netdev->hw_features |= NETIF_F_HIGHDMA;
5895 		netdev->features |= netdev->hw_features;
5896 		netdev->vlan_features = netdev->features & VLAN_FEAT;
5897 
5898 		netdev->priv_flags |= IFF_UNICAST_FLT;
5899 
5900 		/* MTU range: 81 - 9600 */
5901 		netdev->min_mtu = 81;              /* accommodate SACK */
5902 		netdev->max_mtu = MAX_MTU;
5903 
5904 		netdev->netdev_ops = &cxgb4_netdev_ops;
5905 #ifdef CONFIG_CHELSIO_T4_DCB
5906 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
5907 		cxgb4_dcb_state_init(netdev);
5908 		cxgb4_dcb_version_init(netdev);
5909 #endif
5910 		cxgb4_set_ethtool_ops(netdev);
5911 	}
5912 
5913 	cxgb4_init_ethtool_dump(adapter);
5914 
5915 	pci_set_drvdata(pdev, adapter);
5916 
5917 	if (adapter->flags & CXGB4_FW_OK) {
5918 		err = t4_port_init(adapter, func, func, 0);
5919 		if (err)
5920 			goto out_free_dev;
5921 	} else if (adapter->params.nports == 1) {
5922 		/* If we don't have a connection to the firmware -- possibly
5923 		 * because of an error -- grab the raw VPD parameters so we
5924 		 * can set the proper MAC Address on the debug network
5925 		 * interface that we've created.
5926 		 */
5927 		u8 hw_addr[ETH_ALEN];
5928 		u8 *na = adapter->params.vpd.na;
5929 
5930 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5931 		if (!err) {
5932 			for (i = 0; i < ETH_ALEN; i++)
5933 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5934 					      hex2val(na[2 * i + 1]));
5935 			t4_set_hw_addr(adapter, 0, hw_addr);
5936 		}
5937 	}
5938 
5939 	if (!(adapter->flags & CXGB4_FW_OK))
5940 		goto fw_attach_fail;
5941 
5942 	/* Configure queues and allocate tables now, they can be needed as
5943 	 * soon as the first register_netdev completes.
5944 	 */
5945 	err = cfg_queues(adapter);
5946 	if (err)
5947 		goto out_free_dev;
5948 
5949 	adapter->smt = t4_init_smt();
5950 	if (!adapter->smt) {
5951 		/* We tolerate a lack of SMT, giving up some functionality */
5952 		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
5953 	}
5954 
5955 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5956 	if (!adapter->l2t) {
5957 		/* We tolerate a lack of L2T, giving up some functionality */
5958 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5959 		adapter->params.offload = 0;
5960 	}
5961 
5962 #if IS_ENABLED(CONFIG_IPV6)
5963 	if (chip_ver <= CHELSIO_T5 &&
5964 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5965 		/* CLIP functionality is not present in hardware,
5966 		 * hence disable all offload features
5967 		 */
5968 		dev_warn(&pdev->dev,
5969 			 "CLIP not enabled in hardware, continuing\n");
5970 		adapter->params.offload = 0;
5971 	} else {
5972 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5973 						  adapter->clipt_end);
5974 		if (!adapter->clipt) {
5975 			/* We tolerate a lack of clip_table, giving up
5976 			 * some functionality
5977 			 */
5978 			dev_warn(&pdev->dev,
5979 				 "could not allocate Clip table, continuing\n");
5980 			adapter->params.offload = 0;
5981 		}
5982 	}
5983 #endif
5984 
5985 	for_each_port(adapter, i) {
5986 		pi = adap2pinfo(adapter, i);
5987 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5988 		if (!pi->sched_tbl)
5989 			dev_warn(&pdev->dev,
5990 				 "could not activate scheduling on port %d\n",
5991 				 i);
5992 	}
5993 
5994 	if (tid_init(&adapter->tids) < 0) {
5995 		dev_warn(&pdev->dev, "could not allocate TID table, "
5996 			 "continuing\n");
5997 		adapter->params.offload = 0;
5998 	} else {
5999 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6000 		if (!adapter->tc_u32)
6001 			dev_warn(&pdev->dev,
6002 				 "could not offload tc u32, continuing\n");
6003 
6004 		if (cxgb4_init_tc_flower(adapter))
6005 			dev_warn(&pdev->dev,
6006 				 "could not offload tc flower, continuing\n");
6007 	}
6008 
6009 	if (is_offload(adapter) || is_hashfilter(adapter)) {
6010 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6011 			u32 hash_base, hash_reg;
6012 
6013 			if (chip_ver <= CHELSIO_T5) {
6014 				hash_reg = LE_DB_TID_HASHBASE_A;
6015 				hash_base = t4_read_reg(adapter, hash_reg);
6016 				adapter->tids.hash_base = hash_base / 4;
6017 			} else {
6018 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
6019 				hash_base = t4_read_reg(adapter, hash_reg);
6020 				adapter->tids.hash_base = hash_base;
6021 			}
6022 		}
6023 	}
6024 
6025 	/* See what interrupts we'll be using */
6026 	if (msi > 1 && enable_msix(adapter) == 0)
6027 		adapter->flags |= CXGB4_USING_MSIX;
6028 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6029 		adapter->flags |= CXGB4_USING_MSI;
6030 		if (msi > 1)
6031 			free_msix_info(adapter);
6032 	}
6033 
6034 	/* check for PCI Express bandwidth capabiltites */
6035 	pcie_print_link_status(pdev);
6036 
6037 	cxgb4_init_mps_ref_entries(adapter);
6038 
6039 	err = init_rss(adapter);
6040 	if (err)
6041 		goto out_free_dev;
6042 
6043 	err = setup_fw_sge_queues(adapter);
6044 	if (err) {
6045 		dev_err(adapter->pdev_dev,
6046 			"FW sge queue allocation failed, err %d", err);
6047 		goto out_free_dev;
6048 	}
6049 
6050 fw_attach_fail:
6051 	/*
6052 	 * The card is now ready to go.  If any errors occur during device
6053 	 * registration we do not fail the whole card but rather proceed only
6054 	 * with the ports we manage to register successfully.  However we must
6055 	 * register at least one net device.
6056 	 */
6057 	for_each_port(adapter, i) {
6058 		pi = adap2pinfo(adapter, i);
6059 		adapter->port[i]->dev_port = pi->lport;
6060 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6061 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6062 
6063 		netif_carrier_off(adapter->port[i]);
6064 
6065 		err = register_netdev(adapter->port[i]);
6066 		if (err)
6067 			break;
6068 		adapter->chan_map[pi->tx_chan] = i;
6069 		print_port_info(adapter->port[i]);
6070 	}
6071 	if (i == 0) {
6072 		dev_err(&pdev->dev, "could not register any net devices\n");
6073 		goto out_free_dev;
6074 	}
6075 	if (err) {
6076 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6077 		err = 0;
6078 	}
6079 
6080 	if (cxgb4_debugfs_root) {
6081 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6082 							   cxgb4_debugfs_root);
6083 		setup_debugfs(adapter);
6084 	}
6085 
6086 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6087 	pdev->needs_freset = 1;
6088 
6089 	if (is_uld(adapter)) {
6090 		mutex_lock(&uld_mutex);
6091 		list_add_tail(&adapter->list_node, &adapter_list);
6092 		mutex_unlock(&uld_mutex);
6093 	}
6094 
6095 	if (!is_t4(adapter->params.chip))
6096 		cxgb4_ptp_init(adapter);
6097 
6098 	if (IS_REACHABLE(CONFIG_THERMAL) &&
6099 	    !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
6100 		cxgb4_thermal_init(adapter);
6101 
6102 	print_adapter_info(adapter);
6103 	return 0;
6104 
6105  out_free_dev:
6106 	t4_free_sge_resources(adapter);
6107 	free_some_resources(adapter);
6108 	if (adapter->flags & CXGB4_USING_MSIX)
6109 		free_msix_info(adapter);
6110 	if (adapter->num_uld || adapter->num_ofld_uld)
6111 		t4_uld_mem_free(adapter);
6112  out_unmap_bar:
6113 	if (!is_t4(adapter->params.chip))
6114 		iounmap(adapter->bar2);
6115  out_free_adapter:
6116 	if (adapter->workq)
6117 		destroy_workqueue(adapter->workq);
6118 
6119 	kfree(adapter->mbox_log);
6120 	kfree(adapter);
6121  out_unmap_bar0:
6122 	iounmap(regs);
6123  out_disable_device:
6124 	pci_disable_pcie_error_reporting(pdev);
6125 	pci_disable_device(pdev);
6126  out_release_regions:
6127 	pci_release_regions(pdev);
6128 	return err;
6129 }
6130 
6131 static void remove_one(struct pci_dev *pdev)
6132 {
6133 	struct adapter *adapter = pci_get_drvdata(pdev);
6134 	struct hash_mac_addr *entry, *tmp;
6135 
6136 	if (!adapter) {
6137 		pci_release_regions(pdev);
6138 		return;
6139 	}
6140 
6141 	/* If we allocated filters, free up state associated with any
6142 	 * valid filters ...
6143 	 */
6144 	clear_all_filters(adapter);
6145 
6146 	adapter->flags |= CXGB4_SHUTTING_DOWN;
6147 
6148 	if (adapter->pf == 4) {
6149 		int i;
6150 
6151 		/* Tear down per-adapter Work Queue first since it can contain
6152 		 * references to our adapter data structure.
6153 		 */
6154 		destroy_workqueue(adapter->workq);
6155 
6156 		if (is_uld(adapter)) {
6157 			detach_ulds(adapter);
6158 			t4_uld_clean_up(adapter);
6159 		}
6160 
6161 		adap_free_hma_mem(adapter);
6162 
6163 		disable_interrupts(adapter);
6164 
6165 		cxgb4_free_mps_ref_entries(adapter);
6166 
6167 		for_each_port(adapter, i)
6168 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6169 				unregister_netdev(adapter->port[i]);
6170 
6171 		debugfs_remove_recursive(adapter->debugfs_root);
6172 
6173 		if (!is_t4(adapter->params.chip))
6174 			cxgb4_ptp_stop(adapter);
6175 		if (IS_REACHABLE(CONFIG_THERMAL))
6176 			cxgb4_thermal_remove(adapter);
6177 
6178 		if (adapter->flags & CXGB4_FULL_INIT_DONE)
6179 			cxgb_down(adapter);
6180 
6181 		if (adapter->flags & CXGB4_USING_MSIX)
6182 			free_msix_info(adapter);
6183 		if (adapter->num_uld || adapter->num_ofld_uld)
6184 			t4_uld_mem_free(adapter);
6185 		free_some_resources(adapter);
6186 		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
6187 					 list) {
6188 			list_del(&entry->list);
6189 			kfree(entry);
6190 		}
6191 
6192 #if IS_ENABLED(CONFIG_IPV6)
6193 		t4_cleanup_clip_tbl(adapter);
6194 #endif
6195 		if (!is_t4(adapter->params.chip))
6196 			iounmap(adapter->bar2);
6197 	}
6198 #ifdef CONFIG_PCI_IOV
6199 	else {
6200 		cxgb4_iov_configure(adapter->pdev, 0);
6201 	}
6202 #endif
6203 	iounmap(adapter->regs);
6204 	pci_disable_pcie_error_reporting(pdev);
6205 	if ((adapter->flags & CXGB4_DEV_ENABLED)) {
6206 		pci_disable_device(pdev);
6207 		adapter->flags &= ~CXGB4_DEV_ENABLED;
6208 	}
6209 	pci_release_regions(pdev);
6210 	kfree(adapter->mbox_log);
6211 	synchronize_rcu();
6212 	kfree(adapter);
6213 }
6214 
6215 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
6216  * delivery.  This is essentially a stripped down version of the PCI remove()
6217  * function where we do the minimal amount of work necessary to shutdown any
6218  * further activity.
6219  */
6220 static void shutdown_one(struct pci_dev *pdev)
6221 {
6222 	struct adapter *adapter = pci_get_drvdata(pdev);
6223 
6224 	/* As with remove_one() above (see extended comment), we only want do
6225 	 * do cleanup on PCI Devices which went all the way through init_one()
6226 	 * ...
6227 	 */
6228 	if (!adapter) {
6229 		pci_release_regions(pdev);
6230 		return;
6231 	}
6232 
6233 	adapter->flags |= CXGB4_SHUTTING_DOWN;
6234 
6235 	if (adapter->pf == 4) {
6236 		int i;
6237 
6238 		for_each_port(adapter, i)
6239 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6240 				cxgb_close(adapter->port[i]);
6241 
6242 		if (is_uld(adapter)) {
6243 			detach_ulds(adapter);
6244 			t4_uld_clean_up(adapter);
6245 		}
6246 
6247 		disable_interrupts(adapter);
6248 		disable_msi(adapter);
6249 
6250 		t4_sge_stop(adapter);
6251 		if (adapter->flags & CXGB4_FW_OK)
6252 			t4_fw_bye(adapter, adapter->mbox);
6253 	}
6254 }
6255 
6256 static struct pci_driver cxgb4_driver = {
6257 	.name     = KBUILD_MODNAME,
6258 	.id_table = cxgb4_pci_tbl,
6259 	.probe    = init_one,
6260 	.remove   = remove_one,
6261 	.shutdown = shutdown_one,
6262 #ifdef CONFIG_PCI_IOV
6263 	.sriov_configure = cxgb4_iov_configure,
6264 #endif
6265 	.err_handler = &cxgb4_eeh,
6266 };
6267 
6268 static int __init cxgb4_init_module(void)
6269 {
6270 	int ret;
6271 
6272 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6273 
6274 	ret = pci_register_driver(&cxgb4_driver);
6275 	if (ret < 0)
6276 		goto err_pci;
6277 
6278 #if IS_ENABLED(CONFIG_IPV6)
6279 	if (!inet6addr_registered) {
6280 		ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6281 		if (ret)
6282 			pci_unregister_driver(&cxgb4_driver);
6283 		else
6284 			inet6addr_registered = true;
6285 	}
6286 #endif
6287 
6288 	if (ret == 0)
6289 		return ret;
6290 
6291 err_pci:
6292 	debugfs_remove(cxgb4_debugfs_root);
6293 
6294 	return ret;
6295 }
6296 
6297 static void __exit cxgb4_cleanup_module(void)
6298 {
6299 #if IS_ENABLED(CONFIG_IPV6)
6300 	if (inet6addr_registered) {
6301 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6302 		inet6addr_registered = false;
6303 	}
6304 #endif
6305 	pci_unregister_driver(&cxgb4_driver);
6306 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6307 }
6308 
6309 module_init(cxgb4_init_module);
6310 module_exit(cxgb4_cleanup_module);
6311