1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67 
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78 
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80 
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5 Network Driver"
87 
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95 	/* Administrative fields for filter.
96 	 */
97 	u32 valid:1;            /* filter allocated and valid */
98 	u32 locked:1;           /* filter is administratively locked */
99 
100 	u32 pending:1;          /* filter action is pending firmware reply */
101 	u32 smtidx:8;           /* Source MAC Table index for smac */
102 	struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103 
104 	/* The filter itself.  Most of this is a straight copy of information
105 	 * provided by the extended ioctl().  Some fields are translated to
106 	 * internal forms -- for instance the Ingress Queue ID passed in from
107 	 * the ioctl() is translated into the Absolute Ingress Queue ID.
108 	 */
109 	struct ch_filter_specification fs;
110 };
111 
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115 
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119 	static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121 
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126 
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
129 
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131 		{ 0, } \
132 	}
133 
134 #include "t4_pci_id_tbl.h"
135 
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW6_FNAME "cxgb4/t6fw.bin"
139 #define FW4_CFNAME "cxgb4/t4-config.txt"
140 #define FW5_CFNAME "cxgb4/t5-config.txt"
141 #define FW6_CFNAME "cxgb4/t6-config.txt"
142 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144 #define PHY_AQ1202_DEVICEID 0x4409
145 #define PHY_BCM84834_DEVICEID 0x4486
146 
147 MODULE_DESCRIPTION(DRV_DESC);
148 MODULE_AUTHOR("Chelsio Communications");
149 MODULE_LICENSE("Dual BSD/GPL");
150 MODULE_VERSION(DRV_VERSION);
151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
152 MODULE_FIRMWARE(FW4_FNAME);
153 MODULE_FIRMWARE(FW5_FNAME);
154 
155 /*
156  * Normally we're willing to become the firmware's Master PF but will be happy
157  * if another PF has already become the Master and initialized the adapter.
158  * Setting "force_init" will cause this driver to forcibly establish itself as
159  * the Master PF and initialize the adapter.
160  */
161 static uint force_init;
162 
163 module_param(force_init, uint, 0644);
164 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
165 
166 /*
167  * Normally if the firmware we connect to has Configuration File support, we
168  * use that and only fall back to the old Driver-based initialization if the
169  * Configuration File fails for some reason.  If force_old_init is set, then
170  * we'll always use the old Driver-based initialization sequence.
171  */
172 static uint force_old_init;
173 
174 module_param(force_old_init, uint, 0644);
175 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
176 		 " parameter");
177 
178 static int dflt_msg_enable = DFLT_MSG_ENABLE;
179 
180 module_param(dflt_msg_enable, int, 0644);
181 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
182 
183 /*
184  * The driver uses the best interrupt scheme available on a platform in the
185  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
186  * of these schemes the driver may consider as follows:
187  *
188  * msi = 2: choose from among all three options
189  * msi = 1: only consider MSI and INTx interrupts
190  * msi = 0: force INTx interrupts
191  */
192 static int msi = 2;
193 
194 module_param(msi, int, 0644);
195 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
196 
197 /*
198  * Queue interrupt hold-off timer values.  Queues default to the first of these
199  * upon creation.
200  */
201 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
202 
203 module_param_array(intr_holdoff, uint, NULL, 0644);
204 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
205 		 "0..4 in microseconds, deprecated parameter");
206 
207 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
208 
209 module_param_array(intr_cnt, uint, NULL, 0644);
210 MODULE_PARM_DESC(intr_cnt,
211 		 "thresholds 1..3 for queue interrupt packet counters, "
212 		 "deprecated parameter");
213 
214 /*
215  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
216  * offset by 2 bytes in order to have the IP headers line up on 4-byte
217  * boundaries.  This is a requirement for many architectures which will throw
218  * a machine check fault if an attempt is made to access one of the 4-byte IP
219  * header fields on a non-4-byte boundary.  And it's a major performance issue
220  * even on some architectures which allow it like some implementations of the
221  * x86 ISA.  However, some architectures don't mind this and for some very
222  * edge-case performance sensitive applications (like forwarding large volumes
223  * of small packets), setting this DMA offset to 0 will decrease the number of
224  * PCI-E Bus transfers enough to measurably affect performance.
225  */
226 static int rx_dma_offset = 2;
227 
228 static bool vf_acls;
229 
230 #ifdef CONFIG_PCI_IOV
231 module_param(vf_acls, bool, 0644);
232 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
233 		 "deprecated parameter");
234 
235 /* Configure the number of PCI-E Virtual Function which are to be instantiated
236  * on SR-IOV Capable Physical Functions.
237  */
238 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
239 
240 module_param_array(num_vf, uint, NULL, 0644);
241 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
242 #endif
243 
244 /* TX Queue select used to determine what algorithm to use for selecting TX
245  * queue. Select between the kernel provided function (select_queue=0) or user
246  * cxgb_select_queue function (select_queue=1)
247  *
248  * Default: select_queue=0
249  */
250 static int select_queue;
251 module_param(select_queue, int, 0644);
252 MODULE_PARM_DESC(select_queue,
253 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
254 
255 static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
256 
257 module_param(tp_vlan_pri_map, uint, 0644);
258 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
259 		 "deprecated parameter");
260 
261 static struct dentry *cxgb4_debugfs_root;
262 
263 static LIST_HEAD(adapter_list);
264 static DEFINE_MUTEX(uld_mutex);
265 /* Adapter list to be accessed from atomic context */
266 static LIST_HEAD(adap_rcu_list);
267 static DEFINE_SPINLOCK(adap_rcu_lock);
268 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
269 static const char *uld_str[] = { "RDMA", "iSCSI" };
270 
271 static void link_report(struct net_device *dev)
272 {
273 	if (!netif_carrier_ok(dev))
274 		netdev_info(dev, "link down\n");
275 	else {
276 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
277 
278 		const char *s = "10Mbps";
279 		const struct port_info *p = netdev_priv(dev);
280 
281 		switch (p->link_cfg.speed) {
282 		case 10000:
283 			s = "10Gbps";
284 			break;
285 		case 1000:
286 			s = "1000Mbps";
287 			break;
288 		case 100:
289 			s = "100Mbps";
290 			break;
291 		case 40000:
292 			s = "40Gbps";
293 			break;
294 		}
295 
296 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
297 			    fc[p->link_cfg.fc]);
298 	}
299 }
300 
301 #ifdef CONFIG_CHELSIO_T4_DCB
302 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
303 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
304 {
305 	struct port_info *pi = netdev_priv(dev);
306 	struct adapter *adap = pi->adapter;
307 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
308 	int i;
309 
310 	/* We use a simple mapping of Port TX Queue Index to DCB
311 	 * Priority when we're enabling DCB.
312 	 */
313 	for (i = 0; i < pi->nqsets; i++, txq++) {
314 		u32 name, value;
315 		int err;
316 
317 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
318 			FW_PARAMS_PARAM_X_V(
319 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
320 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
321 		value = enable ? i : 0xffffffff;
322 
323 		/* Since we can be called while atomic (from "interrupt
324 		 * level") we need to issue the Set Parameters Commannd
325 		 * without sleeping (timeout < 0).
326 		 */
327 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
328 					    &name, &value,
329 					    -FW_CMD_MAX_TIMEOUT);
330 
331 		if (err)
332 			dev_err(adap->pdev_dev,
333 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
334 				enable ? "set" : "unset", pi->port_id, i, -err);
335 		else
336 			txq->dcb_prio = value;
337 	}
338 }
339 #endif /* CONFIG_CHELSIO_T4_DCB */
340 
341 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
342 {
343 	struct net_device *dev = adapter->port[port_id];
344 
345 	/* Skip changes from disabled ports. */
346 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
347 		if (link_stat)
348 			netif_carrier_on(dev);
349 		else {
350 #ifdef CONFIG_CHELSIO_T4_DCB
351 			cxgb4_dcb_state_init(dev);
352 			dcb_tx_queue_prio_enable(dev, false);
353 #endif /* CONFIG_CHELSIO_T4_DCB */
354 			netif_carrier_off(dev);
355 		}
356 
357 		link_report(dev);
358 	}
359 }
360 
361 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
362 {
363 	static const char *mod_str[] = {
364 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
365 	};
366 
367 	const struct net_device *dev = adap->port[port_id];
368 	const struct port_info *pi = netdev_priv(dev);
369 
370 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
371 		netdev_info(dev, "port module unplugged\n");
372 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
373 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
374 }
375 
376 /*
377  * Configure the exact and hash address filters to handle a port's multicast
378  * and secondary unicast MAC addresses.
379  */
380 static int set_addr_filters(const struct net_device *dev, bool sleep)
381 {
382 	u64 mhash = 0;
383 	u64 uhash = 0;
384 	bool free = true;
385 	u16 filt_idx[7];
386 	const u8 *addr[7];
387 	int ret, naddr = 0;
388 	const struct netdev_hw_addr *ha;
389 	int uc_cnt = netdev_uc_count(dev);
390 	int mc_cnt = netdev_mc_count(dev);
391 	const struct port_info *pi = netdev_priv(dev);
392 	unsigned int mb = pi->adapter->pf;
393 
394 	/* first do the secondary unicast addresses */
395 	netdev_for_each_uc_addr(ha, dev) {
396 		addr[naddr++] = ha->addr;
397 		if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
398 			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
399 					naddr, addr, filt_idx, &uhash, sleep);
400 			if (ret < 0)
401 				return ret;
402 
403 			free = false;
404 			naddr = 0;
405 		}
406 	}
407 
408 	/* next set up the multicast addresses */
409 	netdev_for_each_mc_addr(ha, dev) {
410 		addr[naddr++] = ha->addr;
411 		if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
412 			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
413 					naddr, addr, filt_idx, &mhash, sleep);
414 			if (ret < 0)
415 				return ret;
416 
417 			free = false;
418 			naddr = 0;
419 		}
420 	}
421 
422 	return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
423 				uhash | mhash, sleep);
424 }
425 
426 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
427 module_param(dbfifo_int_thresh, int, 0644);
428 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
429 
430 /*
431  * usecs to sleep while draining the dbfifo
432  */
433 static int dbfifo_drain_delay = 1000;
434 module_param(dbfifo_drain_delay, int, 0644);
435 MODULE_PARM_DESC(dbfifo_drain_delay,
436 		 "usecs to sleep while draining the dbfifo");
437 
438 /*
439  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
440  * If @mtu is -1 it is left unchanged.
441  */
442 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
443 {
444 	int ret;
445 	struct port_info *pi = netdev_priv(dev);
446 
447 	ret = set_addr_filters(dev, sleep_ok);
448 	if (ret == 0)
449 		ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu,
450 				    (dev->flags & IFF_PROMISC) ? 1 : 0,
451 				    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
452 				    sleep_ok);
453 	return ret;
454 }
455 
456 /**
457  *	link_start - enable a port
458  *	@dev: the port to enable
459  *
460  *	Performs the MAC and PHY actions needed to enable a port.
461  */
462 static int link_start(struct net_device *dev)
463 {
464 	int ret;
465 	struct port_info *pi = netdev_priv(dev);
466 	unsigned int mb = pi->adapter->pf;
467 
468 	/*
469 	 * We do not set address filters and promiscuity here, the stack does
470 	 * that step explicitly.
471 	 */
472 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
473 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
474 	if (ret == 0) {
475 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
476 				    pi->xact_addr_filt, dev->dev_addr, true,
477 				    true);
478 		if (ret >= 0) {
479 			pi->xact_addr_filt = ret;
480 			ret = 0;
481 		}
482 	}
483 	if (ret == 0)
484 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
485 				    &pi->link_cfg);
486 	if (ret == 0) {
487 		local_bh_disable();
488 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
489 					  true, CXGB4_DCB_ENABLED);
490 		local_bh_enable();
491 	}
492 
493 	return ret;
494 }
495 
496 int cxgb4_dcb_enabled(const struct net_device *dev)
497 {
498 #ifdef CONFIG_CHELSIO_T4_DCB
499 	struct port_info *pi = netdev_priv(dev);
500 
501 	if (!pi->dcb.enabled)
502 		return 0;
503 
504 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
505 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
506 #else
507 	return 0;
508 #endif
509 }
510 EXPORT_SYMBOL(cxgb4_dcb_enabled);
511 
512 #ifdef CONFIG_CHELSIO_T4_DCB
513 /* Handle a Data Center Bridging update message from the firmware. */
514 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
515 {
516 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
517 	struct net_device *dev = adap->port[port];
518 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
519 	int new_dcb_enabled;
520 
521 	cxgb4_dcb_handle_fw_update(adap, pcmd);
522 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
523 
524 	/* If the DCB has become enabled or disabled on the port then we're
525 	 * going to need to set up/tear down DCB Priority parameters for the
526 	 * TX Queues associated with the port.
527 	 */
528 	if (new_dcb_enabled != old_dcb_enabled)
529 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
530 }
531 #endif /* CONFIG_CHELSIO_T4_DCB */
532 
533 /* Clear a filter and release any of its resources that we own.  This also
534  * clears the filter's "pending" status.
535  */
536 static void clear_filter(struct adapter *adap, struct filter_entry *f)
537 {
538 	/* If the new or old filter have loopback rewriteing rules then we'll
539 	 * need to free any existing Layer Two Table (L2T) entries of the old
540 	 * filter rule.  The firmware will handle freeing up any Source MAC
541 	 * Table (SMT) entries used for rewriting Source MAC Addresses in
542 	 * loopback rules.
543 	 */
544 	if (f->l2t)
545 		cxgb4_l2t_release(f->l2t);
546 
547 	/* The zeroing of the filter rule below clears the filter valid,
548 	 * pending, locked flags, l2t pointer, etc. so it's all we need for
549 	 * this operation.
550 	 */
551 	memset(f, 0, sizeof(*f));
552 }
553 
554 /* Handle a filter write/deletion reply.
555  */
556 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
557 {
558 	unsigned int idx = GET_TID(rpl);
559 	unsigned int nidx = idx - adap->tids.ftid_base;
560 	unsigned int ret;
561 	struct filter_entry *f;
562 
563 	if (idx >= adap->tids.ftid_base && nidx <
564 	   (adap->tids.nftids + adap->tids.nsftids)) {
565 		idx = nidx;
566 		ret = TCB_COOKIE_G(rpl->cookie);
567 		f = &adap->tids.ftid_tab[idx];
568 
569 		if (ret == FW_FILTER_WR_FLT_DELETED) {
570 			/* Clear the filter when we get confirmation from the
571 			 * hardware that the filter has been deleted.
572 			 */
573 			clear_filter(adap, f);
574 		} else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
575 			dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
576 				idx);
577 			clear_filter(adap, f);
578 		} else if (ret == FW_FILTER_WR_FLT_ADDED) {
579 			f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
580 			f->pending = 0;  /* asynchronous setup completed */
581 			f->valid = 1;
582 		} else {
583 			/* Something went wrong.  Issue a warning about the
584 			 * problem and clear everything out.
585 			 */
586 			dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
587 				idx, ret);
588 			clear_filter(adap, f);
589 		}
590 	}
591 }
592 
593 /* Response queue handler for the FW event queue.
594  */
595 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
596 			  const struct pkt_gl *gl)
597 {
598 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
599 
600 	rsp++;                                          /* skip RSS header */
601 
602 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
603 	 */
604 	if (unlikely(opcode == CPL_FW4_MSG &&
605 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
606 		rsp++;
607 		opcode = ((const struct rss_header *)rsp)->opcode;
608 		rsp++;
609 		if (opcode != CPL_SGE_EGR_UPDATE) {
610 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
611 				, opcode);
612 			goto out;
613 		}
614 	}
615 
616 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
617 		const struct cpl_sge_egr_update *p = (void *)rsp;
618 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
619 		struct sge_txq *txq;
620 
621 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
622 		txq->restarts++;
623 		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
624 			struct sge_eth_txq *eq;
625 
626 			eq = container_of(txq, struct sge_eth_txq, q);
627 			netif_tx_wake_queue(eq->txq);
628 		} else {
629 			struct sge_ofld_txq *oq;
630 
631 			oq = container_of(txq, struct sge_ofld_txq, q);
632 			tasklet_schedule(&oq->qresume_tsk);
633 		}
634 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
635 		const struct cpl_fw6_msg *p = (void *)rsp;
636 
637 #ifdef CONFIG_CHELSIO_T4_DCB
638 		const struct fw_port_cmd *pcmd = (const void *)p->data;
639 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
640 		unsigned int action =
641 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
642 
643 		if (cmd == FW_PORT_CMD &&
644 		    action == FW_PORT_ACTION_GET_PORT_INFO) {
645 			int port = FW_PORT_CMD_PORTID_G(
646 					be32_to_cpu(pcmd->op_to_portid));
647 			struct net_device *dev = q->adap->port[port];
648 			int state_input = ((pcmd->u.info.dcbxdis_pkd &
649 					    FW_PORT_CMD_DCBXDIS_F)
650 					   ? CXGB4_DCB_INPUT_FW_DISABLED
651 					   : CXGB4_DCB_INPUT_FW_ENABLED);
652 
653 			cxgb4_dcb_state_fsm(dev, state_input);
654 		}
655 
656 		if (cmd == FW_PORT_CMD &&
657 		    action == FW_PORT_ACTION_L2_DCB_CFG)
658 			dcb_rpl(q->adap, pcmd);
659 		else
660 #endif
661 			if (p->type == 0)
662 				t4_handle_fw_rpl(q->adap, p->data);
663 	} else if (opcode == CPL_L2T_WRITE_RPL) {
664 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
665 
666 		do_l2t_write_rpl(q->adap, p);
667 	} else if (opcode == CPL_SET_TCB_RPL) {
668 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
669 
670 		filter_rpl(q->adap, p);
671 	} else
672 		dev_err(q->adap->pdev_dev,
673 			"unexpected CPL %#x on FW event queue\n", opcode);
674 out:
675 	return 0;
676 }
677 
678 /**
679  *	uldrx_handler - response queue handler for ULD queues
680  *	@q: the response queue that received the packet
681  *	@rsp: the response queue descriptor holding the offload message
682  *	@gl: the gather list of packet fragments
683  *
684  *	Deliver an ingress offload packet to a ULD.  All processing is done by
685  *	the ULD, we just maintain statistics.
686  */
687 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
688 			 const struct pkt_gl *gl)
689 {
690 	struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
691 
692 	/* FW can send CPLs encapsulated in a CPL_FW4_MSG.
693 	 */
694 	if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
695 	    ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
696 		rsp += 2;
697 
698 	if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
699 		rxq->stats.nomem++;
700 		return -1;
701 	}
702 	if (gl == NULL)
703 		rxq->stats.imm++;
704 	else if (gl == CXGB4_MSG_AN)
705 		rxq->stats.an++;
706 	else
707 		rxq->stats.pkts++;
708 	return 0;
709 }
710 
711 static void disable_msi(struct adapter *adapter)
712 {
713 	if (adapter->flags & USING_MSIX) {
714 		pci_disable_msix(adapter->pdev);
715 		adapter->flags &= ~USING_MSIX;
716 	} else if (adapter->flags & USING_MSI) {
717 		pci_disable_msi(adapter->pdev);
718 		adapter->flags &= ~USING_MSI;
719 	}
720 }
721 
722 /*
723  * Interrupt handler for non-data events used with MSI-X.
724  */
725 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
726 {
727 	struct adapter *adap = cookie;
728 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
729 
730 	if (v & PFSW_F) {
731 		adap->swintr = 1;
732 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
733 	}
734 	if (adap->flags & MASTER_PF)
735 		t4_slow_intr_handler(adap);
736 	return IRQ_HANDLED;
737 }
738 
739 /*
740  * Name the MSI-X interrupts.
741  */
742 static void name_msix_vecs(struct adapter *adap)
743 {
744 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
745 
746 	/* non-data interrupts */
747 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
748 
749 	/* FW events */
750 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
751 		 adap->port[0]->name);
752 
753 	/* Ethernet queues */
754 	for_each_port(adap, j) {
755 		struct net_device *d = adap->port[j];
756 		const struct port_info *pi = netdev_priv(d);
757 
758 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
759 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
760 				 d->name, i);
761 	}
762 
763 	/* offload queues */
764 	for_each_ofldrxq(&adap->sge, i)
765 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
766 			 adap->port[0]->name, i);
767 
768 	for_each_rdmarxq(&adap->sge, i)
769 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
770 			 adap->port[0]->name, i);
771 
772 	for_each_rdmaciq(&adap->sge, i)
773 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
774 			 adap->port[0]->name, i);
775 }
776 
777 static int request_msix_queue_irqs(struct adapter *adap)
778 {
779 	struct sge *s = &adap->sge;
780 	int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
781 	int msi_index = 2;
782 
783 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
784 			  adap->msix_info[1].desc, &s->fw_evtq);
785 	if (err)
786 		return err;
787 
788 	for_each_ethrxq(s, ethqidx) {
789 		err = request_irq(adap->msix_info[msi_index].vec,
790 				  t4_sge_intr_msix, 0,
791 				  adap->msix_info[msi_index].desc,
792 				  &s->ethrxq[ethqidx].rspq);
793 		if (err)
794 			goto unwind;
795 		msi_index++;
796 	}
797 	for_each_ofldrxq(s, ofldqidx) {
798 		err = request_irq(adap->msix_info[msi_index].vec,
799 				  t4_sge_intr_msix, 0,
800 				  adap->msix_info[msi_index].desc,
801 				  &s->ofldrxq[ofldqidx].rspq);
802 		if (err)
803 			goto unwind;
804 		msi_index++;
805 	}
806 	for_each_rdmarxq(s, rdmaqidx) {
807 		err = request_irq(adap->msix_info[msi_index].vec,
808 				  t4_sge_intr_msix, 0,
809 				  adap->msix_info[msi_index].desc,
810 				  &s->rdmarxq[rdmaqidx].rspq);
811 		if (err)
812 			goto unwind;
813 		msi_index++;
814 	}
815 	for_each_rdmaciq(s, rdmaciqqidx) {
816 		err = request_irq(adap->msix_info[msi_index].vec,
817 				  t4_sge_intr_msix, 0,
818 				  adap->msix_info[msi_index].desc,
819 				  &s->rdmaciq[rdmaciqqidx].rspq);
820 		if (err)
821 			goto unwind;
822 		msi_index++;
823 	}
824 	return 0;
825 
826 unwind:
827 	while (--rdmaciqqidx >= 0)
828 		free_irq(adap->msix_info[--msi_index].vec,
829 			 &s->rdmaciq[rdmaciqqidx].rspq);
830 	while (--rdmaqidx >= 0)
831 		free_irq(adap->msix_info[--msi_index].vec,
832 			 &s->rdmarxq[rdmaqidx].rspq);
833 	while (--ofldqidx >= 0)
834 		free_irq(adap->msix_info[--msi_index].vec,
835 			 &s->ofldrxq[ofldqidx].rspq);
836 	while (--ethqidx >= 0)
837 		free_irq(adap->msix_info[--msi_index].vec,
838 			 &s->ethrxq[ethqidx].rspq);
839 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
840 	return err;
841 }
842 
843 static void free_msix_queue_irqs(struct adapter *adap)
844 {
845 	int i, msi_index = 2;
846 	struct sge *s = &adap->sge;
847 
848 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
849 	for_each_ethrxq(s, i)
850 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
851 	for_each_ofldrxq(s, i)
852 		free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
853 	for_each_rdmarxq(s, i)
854 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
855 	for_each_rdmaciq(s, i)
856 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
857 }
858 
859 /**
860  *	cxgb4_write_rss - write the RSS table for a given port
861  *	@pi: the port
862  *	@queues: array of queue indices for RSS
863  *
864  *	Sets up the portion of the HW RSS table for the port's VI to distribute
865  *	packets to the Rx queues in @queues.
866  *	Should never be called before setting up sge eth rx queues
867  */
868 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
869 {
870 	u16 *rss;
871 	int i, err;
872 	struct adapter *adapter = pi->adapter;
873 	const struct sge_eth_rxq *rxq;
874 
875 	rxq = &adapter->sge.ethrxq[pi->first_qset];
876 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
877 	if (!rss)
878 		return -ENOMEM;
879 
880 	/* map the queue indices to queue ids */
881 	for (i = 0; i < pi->rss_size; i++, queues++)
882 		rss[i] = rxq[*queues].rspq.abs_id;
883 
884 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
885 				  pi->rss_size, rss, pi->rss_size);
886 	/* If Tunnel All Lookup isn't specified in the global RSS
887 	 * Configuration, then we need to specify a default Ingress
888 	 * Queue for any ingress packets which aren't hashed.  We'll
889 	 * use our first ingress queue ...
890 	 */
891 	if (!err)
892 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
893 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
894 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
895 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
896 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
897 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
898 				       rss[0]);
899 	kfree(rss);
900 	return err;
901 }
902 
903 /**
904  *	setup_rss - configure RSS
905  *	@adap: the adapter
906  *
907  *	Sets up RSS for each port.
908  */
909 static int setup_rss(struct adapter *adap)
910 {
911 	int i, j, err;
912 
913 	for_each_port(adap, i) {
914 		const struct port_info *pi = adap2pinfo(adap, i);
915 
916 		/* Fill default values with equal distribution */
917 		for (j = 0; j < pi->rss_size; j++)
918 			pi->rss[j] = j % pi->nqsets;
919 
920 		err = cxgb4_write_rss(pi, pi->rss);
921 		if (err)
922 			return err;
923 	}
924 	return 0;
925 }
926 
927 /*
928  * Return the channel of the ingress queue with the given qid.
929  */
930 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
931 {
932 	qid -= p->ingr_start;
933 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
934 }
935 
936 /*
937  * Wait until all NAPI handlers are descheduled.
938  */
939 static void quiesce_rx(struct adapter *adap)
940 {
941 	int i;
942 
943 	for (i = 0; i < adap->sge.ingr_sz; i++) {
944 		struct sge_rspq *q = adap->sge.ingr_map[i];
945 
946 		if (q && q->handler) {
947 			napi_disable(&q->napi);
948 			local_bh_disable();
949 			while (!cxgb_poll_lock_napi(q))
950 				mdelay(1);
951 			local_bh_enable();
952 		}
953 
954 	}
955 }
956 
957 /* Disable interrupt and napi handler */
958 static void disable_interrupts(struct adapter *adap)
959 {
960 	if (adap->flags & FULL_INIT_DONE) {
961 		t4_intr_disable(adap);
962 		if (adap->flags & USING_MSIX) {
963 			free_msix_queue_irqs(adap);
964 			free_irq(adap->msix_info[0].vec, adap);
965 		} else {
966 			free_irq(adap->pdev->irq, adap);
967 		}
968 		quiesce_rx(adap);
969 	}
970 }
971 
972 /*
973  * Enable NAPI scheduling and interrupt generation for all Rx queues.
974  */
975 static void enable_rx(struct adapter *adap)
976 {
977 	int i;
978 
979 	for (i = 0; i < adap->sge.ingr_sz; i++) {
980 		struct sge_rspq *q = adap->sge.ingr_map[i];
981 
982 		if (!q)
983 			continue;
984 		if (q->handler) {
985 			cxgb_busy_poll_init_lock(q);
986 			napi_enable(&q->napi);
987 		}
988 		/* 0-increment GTS to start the timer and enable interrupts */
989 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
990 			     SEINTARM_V(q->intr_params) |
991 			     INGRESSQID_V(q->cntxt_id));
992 	}
993 }
994 
995 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
996 			   unsigned int nq, unsigned int per_chan, int msi_idx,
997 			   u16 *ids)
998 {
999 	int i, err;
1000 
1001 	for (i = 0; i < nq; i++, q++) {
1002 		if (msi_idx > 0)
1003 			msi_idx++;
1004 		err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1005 				       adap->port[i / per_chan],
1006 				       msi_idx, q->fl.size ? &q->fl : NULL,
1007 				       uldrx_handler, 0);
1008 		if (err)
1009 			return err;
1010 		memset(&q->stats, 0, sizeof(q->stats));
1011 		if (ids)
1012 			ids[i] = q->rspq.abs_id;
1013 	}
1014 	return 0;
1015 }
1016 
1017 /**
1018  *	setup_sge_queues - configure SGE Tx/Rx/response queues
1019  *	@adap: the adapter
1020  *
1021  *	Determines how many sets of SGE queues to use and initializes them.
1022  *	We support multiple queue sets per port if we have MSI-X, otherwise
1023  *	just one queue set per port.
1024  */
1025 static int setup_sge_queues(struct adapter *adap)
1026 {
1027 	int err, msi_idx, i, j;
1028 	struct sge *s = &adap->sge;
1029 
1030 	bitmap_zero(s->starving_fl, s->egr_sz);
1031 	bitmap_zero(s->txq_maperr, s->egr_sz);
1032 
1033 	if (adap->flags & USING_MSIX)
1034 		msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1035 	else {
1036 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1037 				       NULL, NULL, -1);
1038 		if (err)
1039 			return err;
1040 		msi_idx = -((int)s->intrq.abs_id + 1);
1041 	}
1042 
1043 	/* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1044 	 * don't forget to update the following which need to be
1045 	 * synchronized to and changes here.
1046 	 *
1047 	 * 1. The calculations of MAX_INGQ in cxgb4.h.
1048 	 *
1049 	 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1050 	 *    to accommodate any new/deleted Ingress Queues
1051 	 *    which need MSI-X Vectors.
1052 	 *
1053 	 * 3. Update sge_qinfo_show() to include information on the
1054 	 *    new/deleted queues.
1055 	 */
1056 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1057 			       msi_idx, NULL, fwevtq_handler, -1);
1058 	if (err) {
1059 freeout:	t4_free_sge_resources(adap);
1060 		return err;
1061 	}
1062 
1063 	for_each_port(adap, i) {
1064 		struct net_device *dev = adap->port[i];
1065 		struct port_info *pi = netdev_priv(dev);
1066 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1067 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1068 
1069 		for (j = 0; j < pi->nqsets; j++, q++) {
1070 			if (msi_idx > 0)
1071 				msi_idx++;
1072 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1073 					       msi_idx, &q->fl,
1074 					       t4_ethrx_handler,
1075 					       t4_get_mps_bg_map(adap,
1076 								 pi->tx_chan));
1077 			if (err)
1078 				goto freeout;
1079 			q->rspq.idx = j;
1080 			memset(&q->stats, 0, sizeof(q->stats));
1081 		}
1082 		for (j = 0; j < pi->nqsets; j++, t++) {
1083 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1084 					netdev_get_tx_queue(dev, j),
1085 					s->fw_evtq.cntxt_id);
1086 			if (err)
1087 				goto freeout;
1088 		}
1089 	}
1090 
1091 	j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1092 	for_each_ofldrxq(s, i) {
1093 		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1094 					    adap->port[i / j],
1095 					    s->fw_evtq.cntxt_id);
1096 		if (err)
1097 			goto freeout;
1098 	}
1099 
1100 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1101 	err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1102 	if (err) \
1103 		goto freeout; \
1104 	if (msi_idx > 0) \
1105 		msi_idx += nq; \
1106 } while (0)
1107 
1108 	ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1109 	ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1110 	j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1111 	ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1112 
1113 #undef ALLOC_OFLD_RXQS
1114 
1115 	for_each_port(adap, i) {
1116 		/*
1117 		 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1118 		 * have RDMA queues, and that's the right value.
1119 		 */
1120 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1121 					    s->fw_evtq.cntxt_id,
1122 					    s->rdmarxq[i].rspq.cntxt_id);
1123 		if (err)
1124 			goto freeout;
1125 	}
1126 
1127 	t4_write_reg(adap, is_t4(adap->params.chip) ?
1128 				MPS_TRC_RSS_CONTROL_A :
1129 				MPS_T5_TRC_RSS_CONTROL_A,
1130 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1131 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1132 	return 0;
1133 }
1134 
1135 /*
1136  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1137  * The allocated memory is cleared.
1138  */
1139 void *t4_alloc_mem(size_t size)
1140 {
1141 	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1142 
1143 	if (!p)
1144 		p = vzalloc(size);
1145 	return p;
1146 }
1147 
1148 /*
1149  * Free memory allocated through alloc_mem().
1150  */
1151 void t4_free_mem(void *addr)
1152 {
1153 	kvfree(addr);
1154 }
1155 
1156 /* Send a Work Request to write the filter at a specified index.  We construct
1157  * a Firmware Filter Work Request to have the work done and put the indicated
1158  * filter into "pending" mode which will prevent any further actions against
1159  * it till we get a reply from the firmware on the completion status of the
1160  * request.
1161  */
1162 static int set_filter_wr(struct adapter *adapter, int fidx)
1163 {
1164 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1165 	struct sk_buff *skb;
1166 	struct fw_filter_wr *fwr;
1167 	unsigned int ftid;
1168 
1169 	skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1170 	if (!skb)
1171 		return -ENOMEM;
1172 
1173 	/* If the new filter requires loopback Destination MAC and/or VLAN
1174 	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1175 	 * the filter.
1176 	 */
1177 	if (f->fs.newdmac || f->fs.newvlan) {
1178 		/* allocate L2T entry for new filter */
1179 		f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1180 		if (f->l2t == NULL) {
1181 			kfree_skb(skb);
1182 			return -EAGAIN;
1183 		}
1184 		if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1185 					f->fs.eport, f->fs.dmac)) {
1186 			cxgb4_l2t_release(f->l2t);
1187 			f->l2t = NULL;
1188 			kfree_skb(skb);
1189 			return -ENOMEM;
1190 		}
1191 	}
1192 
1193 	ftid = adapter->tids.ftid_base + fidx;
1194 
1195 	fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1196 	memset(fwr, 0, sizeof(*fwr));
1197 
1198 	/* It would be nice to put most of the following in t4_hw.c but most
1199 	 * of the work is translating the cxgbtool ch_filter_specification
1200 	 * into the Work Request and the definition of that structure is
1201 	 * currently in cxgbtool.h which isn't appropriate to pull into the
1202 	 * common code.  We may eventually try to come up with a more neutral
1203 	 * filter specification structure but for now it's easiest to simply
1204 	 * put this fairly direct code in line ...
1205 	 */
1206 	fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1207 	fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1208 	fwr->tid_to_iq =
1209 		htonl(FW_FILTER_WR_TID_V(ftid) |
1210 		      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1211 		      FW_FILTER_WR_NOREPLY_V(0) |
1212 		      FW_FILTER_WR_IQ_V(f->fs.iq));
1213 	fwr->del_filter_to_l2tix =
1214 		htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1215 		      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1216 		      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1217 		      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1218 		      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1219 		      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1220 		      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1221 		      FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1222 		      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1223 					     f->fs.newvlan == VLAN_REWRITE) |
1224 		      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1225 					    f->fs.newvlan == VLAN_REWRITE) |
1226 		      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1227 		      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1228 		      FW_FILTER_WR_PRIO_V(f->fs.prio) |
1229 		      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1230 	fwr->ethtype = htons(f->fs.val.ethtype);
1231 	fwr->ethtypem = htons(f->fs.mask.ethtype);
1232 	fwr->frag_to_ovlan_vldm =
1233 		(FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1234 		 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1235 		 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1236 		 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1237 		 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1238 		 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1239 	fwr->smac_sel = 0;
1240 	fwr->rx_chan_rx_rpl_iq =
1241 		htons(FW_FILTER_WR_RX_CHAN_V(0) |
1242 		      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1243 	fwr->maci_to_matchtypem =
1244 		htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1245 		      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1246 		      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1247 		      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1248 		      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1249 		      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1250 		      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1251 		      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1252 	fwr->ptcl = f->fs.val.proto;
1253 	fwr->ptclm = f->fs.mask.proto;
1254 	fwr->ttyp = f->fs.val.tos;
1255 	fwr->ttypm = f->fs.mask.tos;
1256 	fwr->ivlan = htons(f->fs.val.ivlan);
1257 	fwr->ivlanm = htons(f->fs.mask.ivlan);
1258 	fwr->ovlan = htons(f->fs.val.ovlan);
1259 	fwr->ovlanm = htons(f->fs.mask.ovlan);
1260 	memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1261 	memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1262 	memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1263 	memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1264 	fwr->lp = htons(f->fs.val.lport);
1265 	fwr->lpm = htons(f->fs.mask.lport);
1266 	fwr->fp = htons(f->fs.val.fport);
1267 	fwr->fpm = htons(f->fs.mask.fport);
1268 	if (f->fs.newsmac)
1269 		memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1270 
1271 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1272 	 * When we get the Work Request Reply we'll clear the pending status.
1273 	 */
1274 	f->pending = 1;
1275 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1276 	t4_ofld_send(adapter, skb);
1277 	return 0;
1278 }
1279 
1280 /* Delete the filter at a specified index.
1281  */
1282 static int del_filter_wr(struct adapter *adapter, int fidx)
1283 {
1284 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1285 	struct sk_buff *skb;
1286 	struct fw_filter_wr *fwr;
1287 	unsigned int len, ftid;
1288 
1289 	len = sizeof(*fwr);
1290 	ftid = adapter->tids.ftid_base + fidx;
1291 
1292 	skb = alloc_skb(len, GFP_KERNEL);
1293 	if (!skb)
1294 		return -ENOMEM;
1295 
1296 	fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1297 	t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1298 
1299 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1300 	 * When we get the Work Request Reply we'll clear the pending status.
1301 	 */
1302 	f->pending = 1;
1303 	t4_mgmt_tx(adapter, skb);
1304 	return 0;
1305 }
1306 
1307 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1308 			     void *accel_priv, select_queue_fallback_t fallback)
1309 {
1310 	int txq;
1311 
1312 #ifdef CONFIG_CHELSIO_T4_DCB
1313 	/* If a Data Center Bridging has been successfully negotiated on this
1314 	 * link then we'll use the skb's priority to map it to a TX Queue.
1315 	 * The skb's priority is determined via the VLAN Tag Priority Code
1316 	 * Point field.
1317 	 */
1318 	if (cxgb4_dcb_enabled(dev)) {
1319 		u16 vlan_tci;
1320 		int err;
1321 
1322 		err = vlan_get_tag(skb, &vlan_tci);
1323 		if (unlikely(err)) {
1324 			if (net_ratelimit())
1325 				netdev_warn(dev,
1326 					    "TX Packet without VLAN Tag on DCB Link\n");
1327 			txq = 0;
1328 		} else {
1329 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1330 #ifdef CONFIG_CHELSIO_T4_FCOE
1331 			if (skb->protocol == htons(ETH_P_FCOE))
1332 				txq = skb->priority & 0x7;
1333 #endif /* CONFIG_CHELSIO_T4_FCOE */
1334 		}
1335 		return txq;
1336 	}
1337 #endif /* CONFIG_CHELSIO_T4_DCB */
1338 
1339 	if (select_queue) {
1340 		txq = (skb_rx_queue_recorded(skb)
1341 			? skb_get_rx_queue(skb)
1342 			: smp_processor_id());
1343 
1344 		while (unlikely(txq >= dev->real_num_tx_queues))
1345 			txq -= dev->real_num_tx_queues;
1346 
1347 		return txq;
1348 	}
1349 
1350 	return fallback(dev, skb) % dev->real_num_tx_queues;
1351 }
1352 
1353 static int closest_timer(const struct sge *s, int time)
1354 {
1355 	int i, delta, match = 0, min_delta = INT_MAX;
1356 
1357 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1358 		delta = time - s->timer_val[i];
1359 		if (delta < 0)
1360 			delta = -delta;
1361 		if (delta < min_delta) {
1362 			min_delta = delta;
1363 			match = i;
1364 		}
1365 	}
1366 	return match;
1367 }
1368 
1369 static int closest_thres(const struct sge *s, int thres)
1370 {
1371 	int i, delta, match = 0, min_delta = INT_MAX;
1372 
1373 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1374 		delta = thres - s->counter_val[i];
1375 		if (delta < 0)
1376 			delta = -delta;
1377 		if (delta < min_delta) {
1378 			min_delta = delta;
1379 			match = i;
1380 		}
1381 	}
1382 	return match;
1383 }
1384 
1385 /**
1386  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1387  *	@q: the Rx queue
1388  *	@us: the hold-off time in us, or 0 to disable timer
1389  *	@cnt: the hold-off packet count, or 0 to disable counter
1390  *
1391  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1392  *	one of the two needs to be enabled for the queue to generate interrupts.
1393  */
1394 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1395 			       unsigned int us, unsigned int cnt)
1396 {
1397 	struct adapter *adap = q->adap;
1398 
1399 	if ((us | cnt) == 0)
1400 		cnt = 1;
1401 
1402 	if (cnt) {
1403 		int err;
1404 		u32 v, new_idx;
1405 
1406 		new_idx = closest_thres(&adap->sge, cnt);
1407 		if (q->desc && q->pktcnt_idx != new_idx) {
1408 			/* the queue has already been created, update it */
1409 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1410 			    FW_PARAMS_PARAM_X_V(
1411 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1412 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1413 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1414 					    &v, &new_idx);
1415 			if (err)
1416 				return err;
1417 		}
1418 		q->pktcnt_idx = new_idx;
1419 	}
1420 
1421 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1422 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1423 	return 0;
1424 }
1425 
1426 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1427 {
1428 	const struct port_info *pi = netdev_priv(dev);
1429 	netdev_features_t changed = dev->features ^ features;
1430 	int err;
1431 
1432 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1433 		return 0;
1434 
1435 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1436 			    -1, -1, -1,
1437 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1438 	if (unlikely(err))
1439 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1440 	return err;
1441 }
1442 
1443 static int setup_debugfs(struct adapter *adap)
1444 {
1445 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1446 		return -1;
1447 
1448 #ifdef CONFIG_DEBUG_FS
1449 	t4_setup_debugfs(adap);
1450 #endif
1451 	return 0;
1452 }
1453 
1454 /*
1455  * upper-layer driver support
1456  */
1457 
1458 /*
1459  * Allocate an active-open TID and set it to the supplied value.
1460  */
1461 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1462 {
1463 	int atid = -1;
1464 
1465 	spin_lock_bh(&t->atid_lock);
1466 	if (t->afree) {
1467 		union aopen_entry *p = t->afree;
1468 
1469 		atid = (p - t->atid_tab) + t->atid_base;
1470 		t->afree = p->next;
1471 		p->data = data;
1472 		t->atids_in_use++;
1473 	}
1474 	spin_unlock_bh(&t->atid_lock);
1475 	return atid;
1476 }
1477 EXPORT_SYMBOL(cxgb4_alloc_atid);
1478 
1479 /*
1480  * Release an active-open TID.
1481  */
1482 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1483 {
1484 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1485 
1486 	spin_lock_bh(&t->atid_lock);
1487 	p->next = t->afree;
1488 	t->afree = p;
1489 	t->atids_in_use--;
1490 	spin_unlock_bh(&t->atid_lock);
1491 }
1492 EXPORT_SYMBOL(cxgb4_free_atid);
1493 
1494 /*
1495  * Allocate a server TID and set it to the supplied value.
1496  */
1497 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1498 {
1499 	int stid;
1500 
1501 	spin_lock_bh(&t->stid_lock);
1502 	if (family == PF_INET) {
1503 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1504 		if (stid < t->nstids)
1505 			__set_bit(stid, t->stid_bmap);
1506 		else
1507 			stid = -1;
1508 	} else {
1509 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1510 		if (stid < 0)
1511 			stid = -1;
1512 	}
1513 	if (stid >= 0) {
1514 		t->stid_tab[stid].data = data;
1515 		stid += t->stid_base;
1516 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1517 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1518 		 * needs 2 TIDs.
1519 		 */
1520 		if (family == PF_INET)
1521 			t->stids_in_use++;
1522 		else
1523 			t->stids_in_use += 4;
1524 	}
1525 	spin_unlock_bh(&t->stid_lock);
1526 	return stid;
1527 }
1528 EXPORT_SYMBOL(cxgb4_alloc_stid);
1529 
1530 /* Allocate a server filter TID and set it to the supplied value.
1531  */
1532 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1533 {
1534 	int stid;
1535 
1536 	spin_lock_bh(&t->stid_lock);
1537 	if (family == PF_INET) {
1538 		stid = find_next_zero_bit(t->stid_bmap,
1539 				t->nstids + t->nsftids, t->nstids);
1540 		if (stid < (t->nstids + t->nsftids))
1541 			__set_bit(stid, t->stid_bmap);
1542 		else
1543 			stid = -1;
1544 	} else {
1545 		stid = -1;
1546 	}
1547 	if (stid >= 0) {
1548 		t->stid_tab[stid].data = data;
1549 		stid -= t->nstids;
1550 		stid += t->sftid_base;
1551 		t->stids_in_use++;
1552 	}
1553 	spin_unlock_bh(&t->stid_lock);
1554 	return stid;
1555 }
1556 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1557 
1558 /* Release a server TID.
1559  */
1560 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1561 {
1562 	/* Is it a server filter TID? */
1563 	if (t->nsftids && (stid >= t->sftid_base)) {
1564 		stid -= t->sftid_base;
1565 		stid += t->nstids;
1566 	} else {
1567 		stid -= t->stid_base;
1568 	}
1569 
1570 	spin_lock_bh(&t->stid_lock);
1571 	if (family == PF_INET)
1572 		__clear_bit(stid, t->stid_bmap);
1573 	else
1574 		bitmap_release_region(t->stid_bmap, stid, 2);
1575 	t->stid_tab[stid].data = NULL;
1576 	if (family == PF_INET)
1577 		t->stids_in_use--;
1578 	else
1579 		t->stids_in_use -= 4;
1580 	spin_unlock_bh(&t->stid_lock);
1581 }
1582 EXPORT_SYMBOL(cxgb4_free_stid);
1583 
1584 /*
1585  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1586  */
1587 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1588 			   unsigned int tid)
1589 {
1590 	struct cpl_tid_release *req;
1591 
1592 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1593 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1594 	INIT_TP_WR(req, tid);
1595 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1596 }
1597 
1598 /*
1599  * Queue a TID release request and if necessary schedule a work queue to
1600  * process it.
1601  */
1602 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1603 				    unsigned int tid)
1604 {
1605 	void **p = &t->tid_tab[tid];
1606 	struct adapter *adap = container_of(t, struct adapter, tids);
1607 
1608 	spin_lock_bh(&adap->tid_release_lock);
1609 	*p = adap->tid_release_head;
1610 	/* Low 2 bits encode the Tx channel number */
1611 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1612 	if (!adap->tid_release_task_busy) {
1613 		adap->tid_release_task_busy = true;
1614 		queue_work(adap->workq, &adap->tid_release_task);
1615 	}
1616 	spin_unlock_bh(&adap->tid_release_lock);
1617 }
1618 
1619 /*
1620  * Process the list of pending TID release requests.
1621  */
1622 static void process_tid_release_list(struct work_struct *work)
1623 {
1624 	struct sk_buff *skb;
1625 	struct adapter *adap;
1626 
1627 	adap = container_of(work, struct adapter, tid_release_task);
1628 
1629 	spin_lock_bh(&adap->tid_release_lock);
1630 	while (adap->tid_release_head) {
1631 		void **p = adap->tid_release_head;
1632 		unsigned int chan = (uintptr_t)p & 3;
1633 		p = (void *)p - chan;
1634 
1635 		adap->tid_release_head = *p;
1636 		*p = NULL;
1637 		spin_unlock_bh(&adap->tid_release_lock);
1638 
1639 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1640 					 GFP_KERNEL)))
1641 			schedule_timeout_uninterruptible(1);
1642 
1643 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1644 		t4_ofld_send(adap, skb);
1645 		spin_lock_bh(&adap->tid_release_lock);
1646 	}
1647 	adap->tid_release_task_busy = false;
1648 	spin_unlock_bh(&adap->tid_release_lock);
1649 }
1650 
1651 /*
1652  * Release a TID and inform HW.  If we are unable to allocate the release
1653  * message we defer to a work queue.
1654  */
1655 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1656 {
1657 	void *old;
1658 	struct sk_buff *skb;
1659 	struct adapter *adap = container_of(t, struct adapter, tids);
1660 
1661 	old = t->tid_tab[tid];
1662 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1663 	if (likely(skb)) {
1664 		t->tid_tab[tid] = NULL;
1665 		mk_tid_release(skb, chan, tid);
1666 		t4_ofld_send(adap, skb);
1667 	} else
1668 		cxgb4_queue_tid_release(t, chan, tid);
1669 	if (old)
1670 		atomic_dec(&t->tids_in_use);
1671 }
1672 EXPORT_SYMBOL(cxgb4_remove_tid);
1673 
1674 /*
1675  * Allocate and initialize the TID tables.  Returns 0 on success.
1676  */
1677 static int tid_init(struct tid_info *t)
1678 {
1679 	size_t size;
1680 	unsigned int stid_bmap_size;
1681 	unsigned int natids = t->natids;
1682 	struct adapter *adap = container_of(t, struct adapter, tids);
1683 
1684 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1685 	size = t->ntids * sizeof(*t->tid_tab) +
1686 	       natids * sizeof(*t->atid_tab) +
1687 	       t->nstids * sizeof(*t->stid_tab) +
1688 	       t->nsftids * sizeof(*t->stid_tab) +
1689 	       stid_bmap_size * sizeof(long) +
1690 	       t->nftids * sizeof(*t->ftid_tab) +
1691 	       t->nsftids * sizeof(*t->ftid_tab);
1692 
1693 	t->tid_tab = t4_alloc_mem(size);
1694 	if (!t->tid_tab)
1695 		return -ENOMEM;
1696 
1697 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1698 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1699 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1700 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1701 	spin_lock_init(&t->stid_lock);
1702 	spin_lock_init(&t->atid_lock);
1703 
1704 	t->stids_in_use = 0;
1705 	t->afree = NULL;
1706 	t->atids_in_use = 0;
1707 	atomic_set(&t->tids_in_use, 0);
1708 
1709 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1710 	if (natids) {
1711 		while (--natids)
1712 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1713 		t->afree = t->atid_tab;
1714 	}
1715 	bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1716 	/* Reserve stid 0 for T4/T5 adapters */
1717 	if (!t->stid_base &&
1718 	    (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1719 		__set_bit(0, t->stid_bmap);
1720 
1721 	return 0;
1722 }
1723 
1724 /**
1725  *	cxgb4_create_server - create an IP server
1726  *	@dev: the device
1727  *	@stid: the server TID
1728  *	@sip: local IP address to bind server to
1729  *	@sport: the server's TCP port
1730  *	@queue: queue to direct messages from this server to
1731  *
1732  *	Create an IP server for the given port and address.
1733  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1734  */
1735 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1736 			__be32 sip, __be16 sport, __be16 vlan,
1737 			unsigned int queue)
1738 {
1739 	unsigned int chan;
1740 	struct sk_buff *skb;
1741 	struct adapter *adap;
1742 	struct cpl_pass_open_req *req;
1743 	int ret;
1744 
1745 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1746 	if (!skb)
1747 		return -ENOMEM;
1748 
1749 	adap = netdev2adap(dev);
1750 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1751 	INIT_TP_WR(req, 0);
1752 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1753 	req->local_port = sport;
1754 	req->peer_port = htons(0);
1755 	req->local_ip = sip;
1756 	req->peer_ip = htonl(0);
1757 	chan = rxq_to_chan(&adap->sge, queue);
1758 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1759 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1760 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1761 	ret = t4_mgmt_tx(adap, skb);
1762 	return net_xmit_eval(ret);
1763 }
1764 EXPORT_SYMBOL(cxgb4_create_server);
1765 
1766 /*	cxgb4_create_server6 - create an IPv6 server
1767  *	@dev: the device
1768  *	@stid: the server TID
1769  *	@sip: local IPv6 address to bind server to
1770  *	@sport: the server's TCP port
1771  *	@queue: queue to direct messages from this server to
1772  *
1773  *	Create an IPv6 server for the given port and address.
1774  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1775  */
1776 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1777 			 const struct in6_addr *sip, __be16 sport,
1778 			 unsigned int queue)
1779 {
1780 	unsigned int chan;
1781 	struct sk_buff *skb;
1782 	struct adapter *adap;
1783 	struct cpl_pass_open_req6 *req;
1784 	int ret;
1785 
1786 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1787 	if (!skb)
1788 		return -ENOMEM;
1789 
1790 	adap = netdev2adap(dev);
1791 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1792 	INIT_TP_WR(req, 0);
1793 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1794 	req->local_port = sport;
1795 	req->peer_port = htons(0);
1796 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1797 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1798 	req->peer_ip_hi = cpu_to_be64(0);
1799 	req->peer_ip_lo = cpu_to_be64(0);
1800 	chan = rxq_to_chan(&adap->sge, queue);
1801 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1802 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1803 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1804 	ret = t4_mgmt_tx(adap, skb);
1805 	return net_xmit_eval(ret);
1806 }
1807 EXPORT_SYMBOL(cxgb4_create_server6);
1808 
1809 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1810 			unsigned int queue, bool ipv6)
1811 {
1812 	struct sk_buff *skb;
1813 	struct adapter *adap;
1814 	struct cpl_close_listsvr_req *req;
1815 	int ret;
1816 
1817 	adap = netdev2adap(dev);
1818 
1819 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1820 	if (!skb)
1821 		return -ENOMEM;
1822 
1823 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1824 	INIT_TP_WR(req, 0);
1825 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1826 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1827 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1828 	ret = t4_mgmt_tx(adap, skb);
1829 	return net_xmit_eval(ret);
1830 }
1831 EXPORT_SYMBOL(cxgb4_remove_server);
1832 
1833 /**
1834  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1835  *	@mtus: the HW MTU table
1836  *	@mtu: the target MTU
1837  *	@idx: index of selected entry in the MTU table
1838  *
1839  *	Returns the index and the value in the HW MTU table that is closest to
1840  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1841  *	table, in which case that smallest available value is selected.
1842  */
1843 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1844 			    unsigned int *idx)
1845 {
1846 	unsigned int i = 0;
1847 
1848 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1849 		++i;
1850 	if (idx)
1851 		*idx = i;
1852 	return mtus[i];
1853 }
1854 EXPORT_SYMBOL(cxgb4_best_mtu);
1855 
1856 /**
1857  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1858  *     @mtus: the HW MTU table
1859  *     @header_size: Header Size
1860  *     @data_size_max: maximum Data Segment Size
1861  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1862  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1863  *
1864  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1865  *     MTU Table based solely on a Maximum MTU parameter, we break that
1866  *     parameter up into a Header Size and Maximum Data Segment Size, and
1867  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1868  *     the Hardware MTU Table which will result in a Data Segment Size with
1869  *     the requested alignment _and_ that MTU isn't "too far" from the
1870  *     closest MTU, then we'll return that rather than the closest MTU.
1871  */
1872 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1873 				    unsigned short header_size,
1874 				    unsigned short data_size_max,
1875 				    unsigned short data_size_align,
1876 				    unsigned int *mtu_idxp)
1877 {
1878 	unsigned short max_mtu = header_size + data_size_max;
1879 	unsigned short data_size_align_mask = data_size_align - 1;
1880 	int mtu_idx, aligned_mtu_idx;
1881 
1882 	/* Scan the MTU Table till we find an MTU which is larger than our
1883 	 * Maximum MTU or we reach the end of the table.  Along the way,
1884 	 * record the last MTU found, if any, which will result in a Data
1885 	 * Segment Length matching the requested alignment.
1886 	 */
1887 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1888 		unsigned short data_size = mtus[mtu_idx] - header_size;
1889 
1890 		/* If this MTU minus the Header Size would result in a
1891 		 * Data Segment Size of the desired alignment, remember it.
1892 		 */
1893 		if ((data_size & data_size_align_mask) == 0)
1894 			aligned_mtu_idx = mtu_idx;
1895 
1896 		/* If we're not at the end of the Hardware MTU Table and the
1897 		 * next element is larger than our Maximum MTU, drop out of
1898 		 * the loop.
1899 		 */
1900 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1901 			break;
1902 	}
1903 
1904 	/* If we fell out of the loop because we ran to the end of the table,
1905 	 * then we just have to use the last [largest] entry.
1906 	 */
1907 	if (mtu_idx == NMTUS)
1908 		mtu_idx--;
1909 
1910 	/* If we found an MTU which resulted in the requested Data Segment
1911 	 * Length alignment and that's "not far" from the largest MTU which is
1912 	 * less than or equal to the maximum MTU, then use that.
1913 	 */
1914 	if (aligned_mtu_idx >= 0 &&
1915 	    mtu_idx - aligned_mtu_idx <= 1)
1916 		mtu_idx = aligned_mtu_idx;
1917 
1918 	/* If the caller has passed in an MTU Index pointer, pass the
1919 	 * MTU Index back.  Return the MTU value.
1920 	 */
1921 	if (mtu_idxp)
1922 		*mtu_idxp = mtu_idx;
1923 	return mtus[mtu_idx];
1924 }
1925 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1926 
1927 /**
1928  *	cxgb4_port_chan - get the HW channel of a port
1929  *	@dev: the net device for the port
1930  *
1931  *	Return the HW Tx channel of the given port.
1932  */
1933 unsigned int cxgb4_port_chan(const struct net_device *dev)
1934 {
1935 	return netdev2pinfo(dev)->tx_chan;
1936 }
1937 EXPORT_SYMBOL(cxgb4_port_chan);
1938 
1939 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1940 {
1941 	struct adapter *adap = netdev2adap(dev);
1942 	u32 v1, v2, lp_count, hp_count;
1943 
1944 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1945 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1946 	if (is_t4(adap->params.chip)) {
1947 		lp_count = LP_COUNT_G(v1);
1948 		hp_count = HP_COUNT_G(v1);
1949 	} else {
1950 		lp_count = LP_COUNT_T5_G(v1);
1951 		hp_count = HP_COUNT_T5_G(v2);
1952 	}
1953 	return lpfifo ? lp_count : hp_count;
1954 }
1955 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1956 
1957 /**
1958  *	cxgb4_port_viid - get the VI id of a port
1959  *	@dev: the net device for the port
1960  *
1961  *	Return the VI id of the given port.
1962  */
1963 unsigned int cxgb4_port_viid(const struct net_device *dev)
1964 {
1965 	return netdev2pinfo(dev)->viid;
1966 }
1967 EXPORT_SYMBOL(cxgb4_port_viid);
1968 
1969 /**
1970  *	cxgb4_port_idx - get the index of a port
1971  *	@dev: the net device for the port
1972  *
1973  *	Return the index of the given port.
1974  */
1975 unsigned int cxgb4_port_idx(const struct net_device *dev)
1976 {
1977 	return netdev2pinfo(dev)->port_id;
1978 }
1979 EXPORT_SYMBOL(cxgb4_port_idx);
1980 
1981 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1982 			 struct tp_tcp_stats *v6)
1983 {
1984 	struct adapter *adap = pci_get_drvdata(pdev);
1985 
1986 	spin_lock(&adap->stats_lock);
1987 	t4_tp_get_tcp_stats(adap, v4, v6);
1988 	spin_unlock(&adap->stats_lock);
1989 }
1990 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1991 
1992 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1993 		      const unsigned int *pgsz_order)
1994 {
1995 	struct adapter *adap = netdev2adap(dev);
1996 
1997 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1998 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1999 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2000 		     HPZ3_V(pgsz_order[3]));
2001 }
2002 EXPORT_SYMBOL(cxgb4_iscsi_init);
2003 
2004 int cxgb4_flush_eq_cache(struct net_device *dev)
2005 {
2006 	struct adapter *adap = netdev2adap(dev);
2007 
2008 	return t4_sge_ctxt_flush(adap, adap->mbox);
2009 }
2010 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2011 
2012 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2013 {
2014 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2015 	__be64 indices;
2016 	int ret;
2017 
2018 	spin_lock(&adap->win0_lock);
2019 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2020 			   sizeof(indices), (__be32 *)&indices,
2021 			   T4_MEMORY_READ);
2022 	spin_unlock(&adap->win0_lock);
2023 	if (!ret) {
2024 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2025 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2026 	}
2027 	return ret;
2028 }
2029 
2030 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2031 			u16 size)
2032 {
2033 	struct adapter *adap = netdev2adap(dev);
2034 	u16 hw_pidx, hw_cidx;
2035 	int ret;
2036 
2037 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2038 	if (ret)
2039 		goto out;
2040 
2041 	if (pidx != hw_pidx) {
2042 		u16 delta;
2043 		u32 val;
2044 
2045 		if (pidx >= hw_pidx)
2046 			delta = pidx - hw_pidx;
2047 		else
2048 			delta = size - hw_pidx + pidx;
2049 
2050 		if (is_t4(adap->params.chip))
2051 			val = PIDX_V(delta);
2052 		else
2053 			val = PIDX_T5_V(delta);
2054 		wmb();
2055 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2056 			     QID_V(qid) | val);
2057 	}
2058 out:
2059 	return ret;
2060 }
2061 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2062 
2063 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2064 {
2065 	struct adapter *adap;
2066 	u32 offset, memtype, memaddr;
2067 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2068 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
2069 	int ret;
2070 
2071 	adap = netdev2adap(dev);
2072 
2073 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2074 
2075 	/* Figure out where the offset lands in the Memory Type/Address scheme.
2076 	 * This code assumes that the memory is laid out starting at offset 0
2077 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2078 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2079 	 * MC0, and some have both MC0 and MC1.
2080 	 */
2081 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2082 	edc0_size = EDRAM0_SIZE_G(size) << 20;
2083 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2084 	edc1_size = EDRAM1_SIZE_G(size) << 20;
2085 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2086 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2087 
2088 	edc0_end = edc0_size;
2089 	edc1_end = edc0_end + edc1_size;
2090 	mc0_end = edc1_end + mc0_size;
2091 
2092 	if (offset < edc0_end) {
2093 		memtype = MEM_EDC0;
2094 		memaddr = offset;
2095 	} else if (offset < edc1_end) {
2096 		memtype = MEM_EDC1;
2097 		memaddr = offset - edc0_end;
2098 	} else {
2099 		if (offset < mc0_end) {
2100 			memtype = MEM_MC0;
2101 			memaddr = offset - edc1_end;
2102 		} else if (is_t5(adap->params.chip)) {
2103 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2104 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2105 			mc1_end = mc0_end + mc1_size;
2106 			if (offset < mc1_end) {
2107 				memtype = MEM_MC1;
2108 				memaddr = offset - mc0_end;
2109 			} else {
2110 				/* offset beyond the end of any memory */
2111 				goto err;
2112 			}
2113 		} else {
2114 			/* T4/T6 only has a single memory channel */
2115 			goto err;
2116 		}
2117 	}
2118 
2119 	spin_lock(&adap->win0_lock);
2120 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2121 	spin_unlock(&adap->win0_lock);
2122 	return ret;
2123 
2124 err:
2125 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2126 		stag, offset);
2127 	return -EINVAL;
2128 }
2129 EXPORT_SYMBOL(cxgb4_read_tpte);
2130 
2131 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2132 {
2133 	u32 hi, lo;
2134 	struct adapter *adap;
2135 
2136 	adap = netdev2adap(dev);
2137 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2138 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2139 
2140 	return ((u64)hi << 32) | (u64)lo;
2141 }
2142 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2143 
2144 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2145 			 unsigned int qid,
2146 			 enum cxgb4_bar2_qtype qtype,
2147 			 int user,
2148 			 u64 *pbar2_qoffset,
2149 			 unsigned int *pbar2_qid)
2150 {
2151 	return t4_bar2_sge_qregs(netdev2adap(dev),
2152 				 qid,
2153 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2154 				  ? T4_BAR2_QTYPE_EGRESS
2155 				  : T4_BAR2_QTYPE_INGRESS),
2156 				 user,
2157 				 pbar2_qoffset,
2158 				 pbar2_qid);
2159 }
2160 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2161 
2162 static struct pci_driver cxgb4_driver;
2163 
2164 static void check_neigh_update(struct neighbour *neigh)
2165 {
2166 	const struct device *parent;
2167 	const struct net_device *netdev = neigh->dev;
2168 
2169 	if (netdev->priv_flags & IFF_802_1Q_VLAN)
2170 		netdev = vlan_dev_real_dev(netdev);
2171 	parent = netdev->dev.parent;
2172 	if (parent && parent->driver == &cxgb4_driver.driver)
2173 		t4_l2t_update(dev_get_drvdata(parent), neigh);
2174 }
2175 
2176 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2177 		       void *data)
2178 {
2179 	switch (event) {
2180 	case NETEVENT_NEIGH_UPDATE:
2181 		check_neigh_update(data);
2182 		break;
2183 	case NETEVENT_REDIRECT:
2184 	default:
2185 		break;
2186 	}
2187 	return 0;
2188 }
2189 
2190 static bool netevent_registered;
2191 static struct notifier_block cxgb4_netevent_nb = {
2192 	.notifier_call = netevent_cb
2193 };
2194 
2195 static void drain_db_fifo(struct adapter *adap, int usecs)
2196 {
2197 	u32 v1, v2, lp_count, hp_count;
2198 
2199 	do {
2200 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2201 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2202 		if (is_t4(adap->params.chip)) {
2203 			lp_count = LP_COUNT_G(v1);
2204 			hp_count = HP_COUNT_G(v1);
2205 		} else {
2206 			lp_count = LP_COUNT_T5_G(v1);
2207 			hp_count = HP_COUNT_T5_G(v2);
2208 		}
2209 
2210 		if (lp_count == 0 && hp_count == 0)
2211 			break;
2212 		set_current_state(TASK_UNINTERRUPTIBLE);
2213 		schedule_timeout(usecs_to_jiffies(usecs));
2214 	} while (1);
2215 }
2216 
2217 static void disable_txq_db(struct sge_txq *q)
2218 {
2219 	unsigned long flags;
2220 
2221 	spin_lock_irqsave(&q->db_lock, flags);
2222 	q->db_disabled = 1;
2223 	spin_unlock_irqrestore(&q->db_lock, flags);
2224 }
2225 
2226 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2227 {
2228 	spin_lock_irq(&q->db_lock);
2229 	if (q->db_pidx_inc) {
2230 		/* Make sure that all writes to the TX descriptors
2231 		 * are committed before we tell HW about them.
2232 		 */
2233 		wmb();
2234 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2235 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2236 		q->db_pidx_inc = 0;
2237 	}
2238 	q->db_disabled = 0;
2239 	spin_unlock_irq(&q->db_lock);
2240 }
2241 
2242 static void disable_dbs(struct adapter *adap)
2243 {
2244 	int i;
2245 
2246 	for_each_ethrxq(&adap->sge, i)
2247 		disable_txq_db(&adap->sge.ethtxq[i].q);
2248 	for_each_ofldrxq(&adap->sge, i)
2249 		disable_txq_db(&adap->sge.ofldtxq[i].q);
2250 	for_each_port(adap, i)
2251 		disable_txq_db(&adap->sge.ctrlq[i].q);
2252 }
2253 
2254 static void enable_dbs(struct adapter *adap)
2255 {
2256 	int i;
2257 
2258 	for_each_ethrxq(&adap->sge, i)
2259 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2260 	for_each_ofldrxq(&adap->sge, i)
2261 		enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2262 	for_each_port(adap, i)
2263 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2264 }
2265 
2266 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2267 {
2268 	if (adap->uld_handle[CXGB4_ULD_RDMA])
2269 		ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2270 				cmd);
2271 }
2272 
2273 static void process_db_full(struct work_struct *work)
2274 {
2275 	struct adapter *adap;
2276 
2277 	adap = container_of(work, struct adapter, db_full_task);
2278 
2279 	drain_db_fifo(adap, dbfifo_drain_delay);
2280 	enable_dbs(adap);
2281 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2282 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2283 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2284 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2285 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2286 	else
2287 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2288 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2289 }
2290 
2291 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2292 {
2293 	u16 hw_pidx, hw_cidx;
2294 	int ret;
2295 
2296 	spin_lock_irq(&q->db_lock);
2297 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2298 	if (ret)
2299 		goto out;
2300 	if (q->db_pidx != hw_pidx) {
2301 		u16 delta;
2302 		u32 val;
2303 
2304 		if (q->db_pidx >= hw_pidx)
2305 			delta = q->db_pidx - hw_pidx;
2306 		else
2307 			delta = q->size - hw_pidx + q->db_pidx;
2308 
2309 		if (is_t4(adap->params.chip))
2310 			val = PIDX_V(delta);
2311 		else
2312 			val = PIDX_T5_V(delta);
2313 		wmb();
2314 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2315 			     QID_V(q->cntxt_id) | val);
2316 	}
2317 out:
2318 	q->db_disabled = 0;
2319 	q->db_pidx_inc = 0;
2320 	spin_unlock_irq(&q->db_lock);
2321 	if (ret)
2322 		CH_WARN(adap, "DB drop recovery failed.\n");
2323 }
2324 static void recover_all_queues(struct adapter *adap)
2325 {
2326 	int i;
2327 
2328 	for_each_ethrxq(&adap->sge, i)
2329 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2330 	for_each_ofldrxq(&adap->sge, i)
2331 		sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2332 	for_each_port(adap, i)
2333 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2334 }
2335 
2336 static void process_db_drop(struct work_struct *work)
2337 {
2338 	struct adapter *adap;
2339 
2340 	adap = container_of(work, struct adapter, db_drop_task);
2341 
2342 	if (is_t4(adap->params.chip)) {
2343 		drain_db_fifo(adap, dbfifo_drain_delay);
2344 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2345 		drain_db_fifo(adap, dbfifo_drain_delay);
2346 		recover_all_queues(adap);
2347 		drain_db_fifo(adap, dbfifo_drain_delay);
2348 		enable_dbs(adap);
2349 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2350 	} else if (is_t5(adap->params.chip)) {
2351 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2352 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2353 		u16 pidx_inc = dropped_db & 0x1fff;
2354 		u64 bar2_qoffset;
2355 		unsigned int bar2_qid;
2356 		int ret;
2357 
2358 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2359 					0, &bar2_qoffset, &bar2_qid);
2360 		if (ret)
2361 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2362 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2363 		else
2364 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2365 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2366 
2367 		/* Re-enable BAR2 WC */
2368 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2369 	}
2370 
2371 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2372 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2373 }
2374 
2375 void t4_db_full(struct adapter *adap)
2376 {
2377 	if (is_t4(adap->params.chip)) {
2378 		disable_dbs(adap);
2379 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2380 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2381 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2382 		queue_work(adap->workq, &adap->db_full_task);
2383 	}
2384 }
2385 
2386 void t4_db_dropped(struct adapter *adap)
2387 {
2388 	if (is_t4(adap->params.chip)) {
2389 		disable_dbs(adap);
2390 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2391 	}
2392 	queue_work(adap->workq, &adap->db_drop_task);
2393 }
2394 
2395 static void uld_attach(struct adapter *adap, unsigned int uld)
2396 {
2397 	void *handle;
2398 	struct cxgb4_lld_info lli;
2399 	unsigned short i;
2400 
2401 	lli.pdev = adap->pdev;
2402 	lli.pf = adap->pf;
2403 	lli.l2t = adap->l2t;
2404 	lli.tids = &adap->tids;
2405 	lli.ports = adap->port;
2406 	lli.vr = &adap->vres;
2407 	lli.mtus = adap->params.mtus;
2408 	if (uld == CXGB4_ULD_RDMA) {
2409 		lli.rxq_ids = adap->sge.rdma_rxq;
2410 		lli.ciq_ids = adap->sge.rdma_ciq;
2411 		lli.nrxq = adap->sge.rdmaqs;
2412 		lli.nciq = adap->sge.rdmaciqs;
2413 	} else if (uld == CXGB4_ULD_ISCSI) {
2414 		lli.rxq_ids = adap->sge.ofld_rxq;
2415 		lli.nrxq = adap->sge.ofldqsets;
2416 	}
2417 	lli.ntxq = adap->sge.ofldqsets;
2418 	lli.nchan = adap->params.nports;
2419 	lli.nports = adap->params.nports;
2420 	lli.wr_cred = adap->params.ofldq_wr_cred;
2421 	lli.adapter_type = adap->params.chip;
2422 	lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2423 	lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2424 	lli.udb_density = 1 << adap->params.sge.eq_qpp;
2425 	lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2426 	lli.filt_mode = adap->params.tp.vlan_pri_map;
2427 	/* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2428 	for (i = 0; i < NCHAN; i++)
2429 		lli.tx_modq[i] = i;
2430 	lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2431 	lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2432 	lli.fw_vers = adap->params.fw_vers;
2433 	lli.dbfifo_int_thresh = dbfifo_int_thresh;
2434 	lli.sge_ingpadboundary = adap->sge.fl_align;
2435 	lli.sge_egrstatuspagesize = adap->sge.stat_len;
2436 	lli.sge_pktshift = adap->sge.pktshift;
2437 	lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2438 	lli.max_ordird_qp = adap->params.max_ordird_qp;
2439 	lli.max_ird_adapter = adap->params.max_ird_adapter;
2440 	lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2441 	lli.nodeid = dev_to_node(adap->pdev_dev);
2442 
2443 	handle = ulds[uld].add(&lli);
2444 	if (IS_ERR(handle)) {
2445 		dev_warn(adap->pdev_dev,
2446 			 "could not attach to the %s driver, error %ld\n",
2447 			 uld_str[uld], PTR_ERR(handle));
2448 		return;
2449 	}
2450 
2451 	adap->uld_handle[uld] = handle;
2452 
2453 	if (!netevent_registered) {
2454 		register_netevent_notifier(&cxgb4_netevent_nb);
2455 		netevent_registered = true;
2456 	}
2457 
2458 	if (adap->flags & FULL_INIT_DONE)
2459 		ulds[uld].state_change(handle, CXGB4_STATE_UP);
2460 }
2461 
2462 static void attach_ulds(struct adapter *adap)
2463 {
2464 	unsigned int i;
2465 
2466 	spin_lock(&adap_rcu_lock);
2467 	list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2468 	spin_unlock(&adap_rcu_lock);
2469 
2470 	mutex_lock(&uld_mutex);
2471 	list_add_tail(&adap->list_node, &adapter_list);
2472 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2473 		if (ulds[i].add)
2474 			uld_attach(adap, i);
2475 	mutex_unlock(&uld_mutex);
2476 }
2477 
2478 static void detach_ulds(struct adapter *adap)
2479 {
2480 	unsigned int i;
2481 
2482 	mutex_lock(&uld_mutex);
2483 	list_del(&adap->list_node);
2484 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2485 		if (adap->uld_handle[i]) {
2486 			ulds[i].state_change(adap->uld_handle[i],
2487 					     CXGB4_STATE_DETACH);
2488 			adap->uld_handle[i] = NULL;
2489 		}
2490 	if (netevent_registered && list_empty(&adapter_list)) {
2491 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2492 		netevent_registered = false;
2493 	}
2494 	mutex_unlock(&uld_mutex);
2495 
2496 	spin_lock(&adap_rcu_lock);
2497 	list_del_rcu(&adap->rcu_node);
2498 	spin_unlock(&adap_rcu_lock);
2499 }
2500 
2501 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2502 {
2503 	unsigned int i;
2504 
2505 	mutex_lock(&uld_mutex);
2506 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2507 		if (adap->uld_handle[i])
2508 			ulds[i].state_change(adap->uld_handle[i], new_state);
2509 	mutex_unlock(&uld_mutex);
2510 }
2511 
2512 /**
2513  *	cxgb4_register_uld - register an upper-layer driver
2514  *	@type: the ULD type
2515  *	@p: the ULD methods
2516  *
2517  *	Registers an upper-layer driver with this driver and notifies the ULD
2518  *	about any presently available devices that support its type.  Returns
2519  *	%-EBUSY if a ULD of the same type is already registered.
2520  */
2521 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2522 {
2523 	int ret = 0;
2524 	struct adapter *adap;
2525 
2526 	if (type >= CXGB4_ULD_MAX)
2527 		return -EINVAL;
2528 	mutex_lock(&uld_mutex);
2529 	if (ulds[type].add) {
2530 		ret = -EBUSY;
2531 		goto out;
2532 	}
2533 	ulds[type] = *p;
2534 	list_for_each_entry(adap, &adapter_list, list_node)
2535 		uld_attach(adap, type);
2536 out:	mutex_unlock(&uld_mutex);
2537 	return ret;
2538 }
2539 EXPORT_SYMBOL(cxgb4_register_uld);
2540 
2541 /**
2542  *	cxgb4_unregister_uld - unregister an upper-layer driver
2543  *	@type: the ULD type
2544  *
2545  *	Unregisters an existing upper-layer driver.
2546  */
2547 int cxgb4_unregister_uld(enum cxgb4_uld type)
2548 {
2549 	struct adapter *adap;
2550 
2551 	if (type >= CXGB4_ULD_MAX)
2552 		return -EINVAL;
2553 	mutex_lock(&uld_mutex);
2554 	list_for_each_entry(adap, &adapter_list, list_node)
2555 		adap->uld_handle[type] = NULL;
2556 	ulds[type].add = NULL;
2557 	mutex_unlock(&uld_mutex);
2558 	return 0;
2559 }
2560 EXPORT_SYMBOL(cxgb4_unregister_uld);
2561 
2562 #if IS_ENABLED(CONFIG_IPV6)
2563 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2564 				   unsigned long event, void *data)
2565 {
2566 	struct inet6_ifaddr *ifa = data;
2567 	struct net_device *event_dev = ifa->idev->dev;
2568 	const struct device *parent = NULL;
2569 #if IS_ENABLED(CONFIG_BONDING)
2570 	struct adapter *adap;
2571 #endif
2572 	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2573 		event_dev = vlan_dev_real_dev(event_dev);
2574 #if IS_ENABLED(CONFIG_BONDING)
2575 	if (event_dev->flags & IFF_MASTER) {
2576 		list_for_each_entry(adap, &adapter_list, list_node) {
2577 			switch (event) {
2578 			case NETDEV_UP:
2579 				cxgb4_clip_get(adap->port[0],
2580 					       (const u32 *)ifa, 1);
2581 				break;
2582 			case NETDEV_DOWN:
2583 				cxgb4_clip_release(adap->port[0],
2584 						   (const u32 *)ifa, 1);
2585 				break;
2586 			default:
2587 				break;
2588 			}
2589 		}
2590 		return NOTIFY_OK;
2591 	}
2592 #endif
2593 
2594 	if (event_dev)
2595 		parent = event_dev->dev.parent;
2596 
2597 	if (parent && parent->driver == &cxgb4_driver.driver) {
2598 		switch (event) {
2599 		case NETDEV_UP:
2600 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2601 			break;
2602 		case NETDEV_DOWN:
2603 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2604 			break;
2605 		default:
2606 			break;
2607 		}
2608 	}
2609 	return NOTIFY_OK;
2610 }
2611 
2612 static bool inet6addr_registered;
2613 static struct notifier_block cxgb4_inet6addr_notifier = {
2614 	.notifier_call = cxgb4_inet6addr_handler
2615 };
2616 
2617 static void update_clip(const struct adapter *adap)
2618 {
2619 	int i;
2620 	struct net_device *dev;
2621 	int ret;
2622 
2623 	rcu_read_lock();
2624 
2625 	for (i = 0; i < MAX_NPORTS; i++) {
2626 		dev = adap->port[i];
2627 		ret = 0;
2628 
2629 		if (dev)
2630 			ret = cxgb4_update_root_dev_clip(dev);
2631 
2632 		if (ret < 0)
2633 			break;
2634 	}
2635 	rcu_read_unlock();
2636 }
2637 #endif /* IS_ENABLED(CONFIG_IPV6) */
2638 
2639 /**
2640  *	cxgb_up - enable the adapter
2641  *	@adap: adapter being enabled
2642  *
2643  *	Called when the first port is enabled, this function performs the
2644  *	actions necessary to make an adapter operational, such as completing
2645  *	the initialization of HW modules, and enabling interrupts.
2646  *
2647  *	Must be called with the rtnl lock held.
2648  */
2649 static int cxgb_up(struct adapter *adap)
2650 {
2651 	int err;
2652 
2653 	err = setup_sge_queues(adap);
2654 	if (err)
2655 		goto out;
2656 	err = setup_rss(adap);
2657 	if (err)
2658 		goto freeq;
2659 
2660 	if (adap->flags & USING_MSIX) {
2661 		name_msix_vecs(adap);
2662 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2663 				  adap->msix_info[0].desc, adap);
2664 		if (err)
2665 			goto irq_err;
2666 
2667 		err = request_msix_queue_irqs(adap);
2668 		if (err) {
2669 			free_irq(adap->msix_info[0].vec, adap);
2670 			goto irq_err;
2671 		}
2672 	} else {
2673 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2674 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2675 				  adap->port[0]->name, adap);
2676 		if (err)
2677 			goto irq_err;
2678 	}
2679 	enable_rx(adap);
2680 	t4_sge_start(adap);
2681 	t4_intr_enable(adap);
2682 	adap->flags |= FULL_INIT_DONE;
2683 	notify_ulds(adap, CXGB4_STATE_UP);
2684 #if IS_ENABLED(CONFIG_IPV6)
2685 	update_clip(adap);
2686 #endif
2687  out:
2688 	return err;
2689  irq_err:
2690 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2691  freeq:
2692 	t4_free_sge_resources(adap);
2693 	goto out;
2694 }
2695 
2696 static void cxgb_down(struct adapter *adapter)
2697 {
2698 	cancel_work_sync(&adapter->tid_release_task);
2699 	cancel_work_sync(&adapter->db_full_task);
2700 	cancel_work_sync(&adapter->db_drop_task);
2701 	adapter->tid_release_task_busy = false;
2702 	adapter->tid_release_head = NULL;
2703 
2704 	t4_sge_stop(adapter);
2705 	t4_free_sge_resources(adapter);
2706 	adapter->flags &= ~FULL_INIT_DONE;
2707 }
2708 
2709 /*
2710  * net_device operations
2711  */
2712 static int cxgb_open(struct net_device *dev)
2713 {
2714 	int err;
2715 	struct port_info *pi = netdev_priv(dev);
2716 	struct adapter *adapter = pi->adapter;
2717 
2718 	netif_carrier_off(dev);
2719 
2720 	if (!(adapter->flags & FULL_INIT_DONE)) {
2721 		err = cxgb_up(adapter);
2722 		if (err < 0)
2723 			return err;
2724 	}
2725 
2726 	err = link_start(dev);
2727 	if (!err)
2728 		netif_tx_start_all_queues(dev);
2729 	return err;
2730 }
2731 
2732 static int cxgb_close(struct net_device *dev)
2733 {
2734 	struct port_info *pi = netdev_priv(dev);
2735 	struct adapter *adapter = pi->adapter;
2736 
2737 	netif_tx_stop_all_queues(dev);
2738 	netif_carrier_off(dev);
2739 	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2740 }
2741 
2742 /* Return an error number if the indicated filter isn't writable ...
2743  */
2744 static int writable_filter(struct filter_entry *f)
2745 {
2746 	if (f->locked)
2747 		return -EPERM;
2748 	if (f->pending)
2749 		return -EBUSY;
2750 
2751 	return 0;
2752 }
2753 
2754 /* Delete the filter at the specified index (if valid).  The checks for all
2755  * the common problems with doing this like the filter being locked, currently
2756  * pending in another operation, etc.
2757  */
2758 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2759 {
2760 	struct filter_entry *f;
2761 	int ret;
2762 
2763 	if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2764 		return -EINVAL;
2765 
2766 	f = &adapter->tids.ftid_tab[fidx];
2767 	ret = writable_filter(f);
2768 	if (ret)
2769 		return ret;
2770 	if (f->valid)
2771 		return del_filter_wr(adapter, fidx);
2772 
2773 	return 0;
2774 }
2775 
2776 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2777 		__be32 sip, __be16 sport, __be16 vlan,
2778 		unsigned int queue, unsigned char port, unsigned char mask)
2779 {
2780 	int ret;
2781 	struct filter_entry *f;
2782 	struct adapter *adap;
2783 	int i;
2784 	u8 *val;
2785 
2786 	adap = netdev2adap(dev);
2787 
2788 	/* Adjust stid to correct filter index */
2789 	stid -= adap->tids.sftid_base;
2790 	stid += adap->tids.nftids;
2791 
2792 	/* Check to make sure the filter requested is writable ...
2793 	 */
2794 	f = &adap->tids.ftid_tab[stid];
2795 	ret = writable_filter(f);
2796 	if (ret)
2797 		return ret;
2798 
2799 	/* Clear out any old resources being used by the filter before
2800 	 * we start constructing the new filter.
2801 	 */
2802 	if (f->valid)
2803 		clear_filter(adap, f);
2804 
2805 	/* Clear out filter specifications */
2806 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2807 	f->fs.val.lport = cpu_to_be16(sport);
2808 	f->fs.mask.lport  = ~0;
2809 	val = (u8 *)&sip;
2810 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2811 		for (i = 0; i < 4; i++) {
2812 			f->fs.val.lip[i] = val[i];
2813 			f->fs.mask.lip[i] = ~0;
2814 		}
2815 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2816 			f->fs.val.iport = port;
2817 			f->fs.mask.iport = mask;
2818 		}
2819 	}
2820 
2821 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2822 		f->fs.val.proto = IPPROTO_TCP;
2823 		f->fs.mask.proto = ~0;
2824 	}
2825 
2826 	f->fs.dirsteer = 1;
2827 	f->fs.iq = queue;
2828 	/* Mark filter as locked */
2829 	f->locked = 1;
2830 	f->fs.rpttid = 1;
2831 
2832 	ret = set_filter_wr(adap, stid);
2833 	if (ret) {
2834 		clear_filter(adap, f);
2835 		return ret;
2836 	}
2837 
2838 	return 0;
2839 }
2840 EXPORT_SYMBOL(cxgb4_create_server_filter);
2841 
2842 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2843 		unsigned int queue, bool ipv6)
2844 {
2845 	int ret;
2846 	struct filter_entry *f;
2847 	struct adapter *adap;
2848 
2849 	adap = netdev2adap(dev);
2850 
2851 	/* Adjust stid to correct filter index */
2852 	stid -= adap->tids.sftid_base;
2853 	stid += adap->tids.nftids;
2854 
2855 	f = &adap->tids.ftid_tab[stid];
2856 	/* Unlock the filter */
2857 	f->locked = 0;
2858 
2859 	ret = delete_filter(adap, stid);
2860 	if (ret)
2861 		return ret;
2862 
2863 	return 0;
2864 }
2865 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2866 
2867 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2868 						struct rtnl_link_stats64 *ns)
2869 {
2870 	struct port_stats stats;
2871 	struct port_info *p = netdev_priv(dev);
2872 	struct adapter *adapter = p->adapter;
2873 
2874 	/* Block retrieving statistics during EEH error
2875 	 * recovery. Otherwise, the recovery might fail
2876 	 * and the PCI device will be removed permanently
2877 	 */
2878 	spin_lock(&adapter->stats_lock);
2879 	if (!netif_device_present(dev)) {
2880 		spin_unlock(&adapter->stats_lock);
2881 		return ns;
2882 	}
2883 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2884 				 &p->stats_base);
2885 	spin_unlock(&adapter->stats_lock);
2886 
2887 	ns->tx_bytes   = stats.tx_octets;
2888 	ns->tx_packets = stats.tx_frames;
2889 	ns->rx_bytes   = stats.rx_octets;
2890 	ns->rx_packets = stats.rx_frames;
2891 	ns->multicast  = stats.rx_mcast_frames;
2892 
2893 	/* detailed rx_errors */
2894 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2895 			       stats.rx_runt;
2896 	ns->rx_over_errors   = 0;
2897 	ns->rx_crc_errors    = stats.rx_fcs_err;
2898 	ns->rx_frame_errors  = stats.rx_symbol_err;
2899 	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2900 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2901 			       stats.rx_trunc0 + stats.rx_trunc1 +
2902 			       stats.rx_trunc2 + stats.rx_trunc3;
2903 	ns->rx_missed_errors = 0;
2904 
2905 	/* detailed tx_errors */
2906 	ns->tx_aborted_errors   = 0;
2907 	ns->tx_carrier_errors   = 0;
2908 	ns->tx_fifo_errors      = 0;
2909 	ns->tx_heartbeat_errors = 0;
2910 	ns->tx_window_errors    = 0;
2911 
2912 	ns->tx_errors = stats.tx_error_frames;
2913 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2914 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2915 	return ns;
2916 }
2917 
2918 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2919 {
2920 	unsigned int mbox;
2921 	int ret = 0, prtad, devad;
2922 	struct port_info *pi = netdev_priv(dev);
2923 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2924 
2925 	switch (cmd) {
2926 	case SIOCGMIIPHY:
2927 		if (pi->mdio_addr < 0)
2928 			return -EOPNOTSUPP;
2929 		data->phy_id = pi->mdio_addr;
2930 		break;
2931 	case SIOCGMIIREG:
2932 	case SIOCSMIIREG:
2933 		if (mdio_phy_id_is_c45(data->phy_id)) {
2934 			prtad = mdio_phy_id_prtad(data->phy_id);
2935 			devad = mdio_phy_id_devad(data->phy_id);
2936 		} else if (data->phy_id < 32) {
2937 			prtad = data->phy_id;
2938 			devad = 0;
2939 			data->reg_num &= 0x1f;
2940 		} else
2941 			return -EINVAL;
2942 
2943 		mbox = pi->adapter->pf;
2944 		if (cmd == SIOCGMIIREG)
2945 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2946 					 data->reg_num, &data->val_out);
2947 		else
2948 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2949 					 data->reg_num, data->val_in);
2950 		break;
2951 	default:
2952 		return -EOPNOTSUPP;
2953 	}
2954 	return ret;
2955 }
2956 
2957 static void cxgb_set_rxmode(struct net_device *dev)
2958 {
2959 	/* unfortunately we can't return errors to the stack */
2960 	set_rxmode(dev, -1, false);
2961 }
2962 
2963 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2964 {
2965 	int ret;
2966 	struct port_info *pi = netdev_priv(dev);
2967 
2968 	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2969 		return -EINVAL;
2970 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2971 			    -1, -1, -1, true);
2972 	if (!ret)
2973 		dev->mtu = new_mtu;
2974 	return ret;
2975 }
2976 
2977 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2978 {
2979 	int ret;
2980 	struct sockaddr *addr = p;
2981 	struct port_info *pi = netdev_priv(dev);
2982 
2983 	if (!is_valid_ether_addr(addr->sa_data))
2984 		return -EADDRNOTAVAIL;
2985 
2986 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2987 			    pi->xact_addr_filt, addr->sa_data, true, true);
2988 	if (ret < 0)
2989 		return ret;
2990 
2991 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2992 	pi->xact_addr_filt = ret;
2993 	return 0;
2994 }
2995 
2996 #ifdef CONFIG_NET_POLL_CONTROLLER
2997 static void cxgb_netpoll(struct net_device *dev)
2998 {
2999 	struct port_info *pi = netdev_priv(dev);
3000 	struct adapter *adap = pi->adapter;
3001 
3002 	if (adap->flags & USING_MSIX) {
3003 		int i;
3004 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3005 
3006 		for (i = pi->nqsets; i; i--, rx++)
3007 			t4_sge_intr_msix(0, &rx->rspq);
3008 	} else
3009 		t4_intr_handler(adap)(0, adap);
3010 }
3011 #endif
3012 
3013 static const struct net_device_ops cxgb4_netdev_ops = {
3014 	.ndo_open             = cxgb_open,
3015 	.ndo_stop             = cxgb_close,
3016 	.ndo_start_xmit       = t4_eth_xmit,
3017 	.ndo_select_queue     =	cxgb_select_queue,
3018 	.ndo_get_stats64      = cxgb_get_stats,
3019 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3020 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3021 	.ndo_set_features     = cxgb_set_features,
3022 	.ndo_validate_addr    = eth_validate_addr,
3023 	.ndo_do_ioctl         = cxgb_ioctl,
3024 	.ndo_change_mtu       = cxgb_change_mtu,
3025 #ifdef CONFIG_NET_POLL_CONTROLLER
3026 	.ndo_poll_controller  = cxgb_netpoll,
3027 #endif
3028 #ifdef CONFIG_CHELSIO_T4_FCOE
3029 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3030 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3031 #endif /* CONFIG_CHELSIO_T4_FCOE */
3032 #ifdef CONFIG_NET_RX_BUSY_POLL
3033 	.ndo_busy_poll        = cxgb_busy_poll,
3034 #endif
3035 
3036 };
3037 
3038 void t4_fatal_err(struct adapter *adap)
3039 {
3040 	t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3041 	t4_intr_disable(adap);
3042 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3043 }
3044 
3045 static void setup_memwin(struct adapter *adap)
3046 {
3047 	u32 nic_win_base = t4_get_util_window(adap);
3048 
3049 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3050 }
3051 
3052 static void setup_memwin_rdma(struct adapter *adap)
3053 {
3054 	if (adap->vres.ocq.size) {
3055 		u32 start;
3056 		unsigned int sz_kb;
3057 
3058 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3059 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3060 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3061 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3062 		t4_write_reg(adap,
3063 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3064 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3065 		t4_write_reg(adap,
3066 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3067 			     adap->vres.ocq.start);
3068 		t4_read_reg(adap,
3069 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3070 	}
3071 }
3072 
3073 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3074 {
3075 	u32 v;
3076 	int ret;
3077 
3078 	/* get device capabilities */
3079 	memset(c, 0, sizeof(*c));
3080 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3081 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3082 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3083 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3084 	if (ret < 0)
3085 		return ret;
3086 
3087 	/* select capabilities we'll be using */
3088 	if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3089 		if (!vf_acls)
3090 			c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3091 		else
3092 			c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3093 	} else if (vf_acls) {
3094 		dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3095 		return ret;
3096 	}
3097 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3098 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3099 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3100 	if (ret < 0)
3101 		return ret;
3102 
3103 	ret = t4_config_glbl_rss(adap, adap->pf,
3104 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3105 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3106 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3107 	if (ret < 0)
3108 		return ret;
3109 
3110 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3111 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3112 			  FW_CMD_CAP_PF);
3113 	if (ret < 0)
3114 		return ret;
3115 
3116 	t4_sge_init(adap);
3117 
3118 	/* tweak some settings */
3119 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3120 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3121 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3122 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3123 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3124 
3125 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3126 	adap->params.tp.tx_modq_map = 0xE4;
3127 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3128 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3129 
3130 	/* associate each Tx modulation queue with consecutive Tx channels */
3131 	v = 0x84218421;
3132 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3133 			  &v, 1, TP_TX_SCHED_HDR_A);
3134 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3135 			  &v, 1, TP_TX_SCHED_FIFO_A);
3136 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3137 			  &v, 1, TP_TX_SCHED_PCMD_A);
3138 
3139 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3140 	if (is_offload(adap)) {
3141 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3142 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3143 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3144 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3145 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3146 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3147 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3148 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3149 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3150 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3151 	}
3152 
3153 	/* get basic stuff going */
3154 	return t4_early_init(adap, adap->pf);
3155 }
3156 
3157 /*
3158  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3159  */
3160 #define MAX_ATIDS 8192U
3161 
3162 /*
3163  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3164  *
3165  * If the firmware we're dealing with has Configuration File support, then
3166  * we use that to perform all configuration
3167  */
3168 
3169 /*
3170  * Tweak configuration based on module parameters, etc.  Most of these have
3171  * defaults assigned to them by Firmware Configuration Files (if we're using
3172  * them) but need to be explicitly set if we're using hard-coded
3173  * initialization.  But even in the case of using Firmware Configuration
3174  * Files, we'd like to expose the ability to change these via module
3175  * parameters so these are essentially common tweaks/settings for
3176  * Configuration Files and hard-coded initialization ...
3177  */
3178 static int adap_init0_tweaks(struct adapter *adapter)
3179 {
3180 	/*
3181 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3182 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3183 	 * 64B Cache Line Size ...
3184 	 */
3185 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3186 
3187 	/*
3188 	 * Process module parameters which affect early initialization.
3189 	 */
3190 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3191 		dev_err(&adapter->pdev->dev,
3192 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3193 			rx_dma_offset);
3194 		rx_dma_offset = 2;
3195 	}
3196 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3197 			 PKTSHIFT_V(PKTSHIFT_M),
3198 			 PKTSHIFT_V(rx_dma_offset));
3199 
3200 	/*
3201 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3202 	 * adds the pseudo header itself.
3203 	 */
3204 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3205 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3206 
3207 	return 0;
3208 }
3209 
3210 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3211  * unto themselves and they contain their own firmware to perform their
3212  * tasks ...
3213  */
3214 static int phy_aq1202_version(const u8 *phy_fw_data,
3215 			      size_t phy_fw_size)
3216 {
3217 	int offset;
3218 
3219 	/* At offset 0x8 you're looking for the primary image's
3220 	 * starting offset which is 3 Bytes wide
3221 	 *
3222 	 * At offset 0xa of the primary image, you look for the offset
3223 	 * of the DRAM segment which is 3 Bytes wide.
3224 	 *
3225 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3226 	 * wide
3227 	 */
3228 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
3229 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3230 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
3231 
3232 	offset = le24(phy_fw_data + 0x8) << 12;
3233 	offset = le24(phy_fw_data + offset + 0xa);
3234 	return be16(phy_fw_data + offset + 0x27e);
3235 
3236 	#undef be16
3237 	#undef le16
3238 	#undef le24
3239 }
3240 
3241 static struct info_10gbt_phy_fw {
3242 	unsigned int phy_fw_id;		/* PCI Device ID */
3243 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
3244 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3245 	int phy_flash;			/* Has FLASH for PHY Firmware */
3246 } phy_info_array[] = {
3247 	{
3248 		PHY_AQ1202_DEVICEID,
3249 		PHY_AQ1202_FIRMWARE,
3250 		phy_aq1202_version,
3251 		1,
3252 	},
3253 	{
3254 		PHY_BCM84834_DEVICEID,
3255 		PHY_BCM84834_FIRMWARE,
3256 		NULL,
3257 		0,
3258 	},
3259 	{ 0, NULL, NULL },
3260 };
3261 
3262 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3263 {
3264 	int i;
3265 
3266 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3267 		if (phy_info_array[i].phy_fw_id == devid)
3268 			return &phy_info_array[i];
3269 	}
3270 	return NULL;
3271 }
3272 
3273 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3274  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3275  * we return a negative error number.  If we transfer new firmware we return 1
3276  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3277  */
3278 static int adap_init0_phy(struct adapter *adap)
3279 {
3280 	const struct firmware *phyf;
3281 	int ret;
3282 	struct info_10gbt_phy_fw *phy_info;
3283 
3284 	/* Use the device ID to determine which PHY file to flash.
3285 	 */
3286 	phy_info = find_phy_info(adap->pdev->device);
3287 	if (!phy_info) {
3288 		dev_warn(adap->pdev_dev,
3289 			 "No PHY Firmware file found for this PHY\n");
3290 		return -EOPNOTSUPP;
3291 	}
3292 
3293 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3294 	 * use that. The adapter firmware provides us with a memory buffer
3295 	 * where we can load a PHY firmware file from the host if we want to
3296 	 * override the PHY firmware File in flash.
3297 	 */
3298 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3299 				      adap->pdev_dev);
3300 	if (ret < 0) {
3301 		/* For adapters without FLASH attached to PHY for their
3302 		 * firmware, it's obviously a fatal error if we can't get the
3303 		 * firmware to the adapter.  For adapters with PHY firmware
3304 		 * FLASH storage, it's worth a warning if we can't find the
3305 		 * PHY Firmware but we'll neuter the error ...
3306 		 */
3307 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3308 			"/lib/firmware/%s, error %d\n",
3309 			phy_info->phy_fw_file, -ret);
3310 		if (phy_info->phy_flash) {
3311 			int cur_phy_fw_ver = 0;
3312 
3313 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3314 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3315 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3316 			ret = 0;
3317 		}
3318 
3319 		return ret;
3320 	}
3321 
3322 	/* Load PHY Firmware onto adapter.
3323 	 */
3324 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3325 			     phy_info->phy_fw_version,
3326 			     (u8 *)phyf->data, phyf->size);
3327 	if (ret < 0)
3328 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3329 			-ret);
3330 	else if (ret > 0) {
3331 		int new_phy_fw_ver = 0;
3332 
3333 		if (phy_info->phy_fw_version)
3334 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3335 								  phyf->size);
3336 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3337 			 "Firmware /lib/firmware/%s, version %#x\n",
3338 			 phy_info->phy_fw_file, new_phy_fw_ver);
3339 	}
3340 
3341 	release_firmware(phyf);
3342 
3343 	return ret;
3344 }
3345 
3346 /*
3347  * Attempt to initialize the adapter via a Firmware Configuration File.
3348  */
3349 static int adap_init0_config(struct adapter *adapter, int reset)
3350 {
3351 	struct fw_caps_config_cmd caps_cmd;
3352 	const struct firmware *cf;
3353 	unsigned long mtype = 0, maddr = 0;
3354 	u32 finiver, finicsum, cfcsum;
3355 	int ret;
3356 	int config_issued = 0;
3357 	char *fw_config_file, fw_config_file_path[256];
3358 	char *config_name = NULL;
3359 
3360 	/*
3361 	 * Reset device if necessary.
3362 	 */
3363 	if (reset) {
3364 		ret = t4_fw_reset(adapter, adapter->mbox,
3365 				  PIORSTMODE_F | PIORST_F);
3366 		if (ret < 0)
3367 			goto bye;
3368 	}
3369 
3370 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3371 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3372 	 * to be performed after any global adapter RESET above since some
3373 	 * PHYs only have local RAM copies of the PHY firmware.
3374 	 */
3375 	if (is_10gbt_device(adapter->pdev->device)) {
3376 		ret = adap_init0_phy(adapter);
3377 		if (ret < 0)
3378 			goto bye;
3379 	}
3380 	/*
3381 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3382 	 * then use that.  Otherwise, use the configuration file stored
3383 	 * in the adapter flash ...
3384 	 */
3385 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3386 	case CHELSIO_T4:
3387 		fw_config_file = FW4_CFNAME;
3388 		break;
3389 	case CHELSIO_T5:
3390 		fw_config_file = FW5_CFNAME;
3391 		break;
3392 	case CHELSIO_T6:
3393 		fw_config_file = FW6_CFNAME;
3394 		break;
3395 	default:
3396 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3397 		       adapter->pdev->device);
3398 		ret = -EINVAL;
3399 		goto bye;
3400 	}
3401 
3402 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3403 	if (ret < 0) {
3404 		config_name = "On FLASH";
3405 		mtype = FW_MEMTYPE_CF_FLASH;
3406 		maddr = t4_flash_cfg_addr(adapter);
3407 	} else {
3408 		u32 params[7], val[7];
3409 
3410 		sprintf(fw_config_file_path,
3411 			"/lib/firmware/%s", fw_config_file);
3412 		config_name = fw_config_file_path;
3413 
3414 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3415 			ret = -ENOMEM;
3416 		else {
3417 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3418 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3419 			ret = t4_query_params(adapter, adapter->mbox,
3420 					      adapter->pf, 0, 1, params, val);
3421 			if (ret == 0) {
3422 				/*
3423 				 * For t4_memory_rw() below addresses and
3424 				 * sizes have to be in terms of multiples of 4
3425 				 * bytes.  So, if the Configuration File isn't
3426 				 * a multiple of 4 bytes in length we'll have
3427 				 * to write that out separately since we can't
3428 				 * guarantee that the bytes following the
3429 				 * residual byte in the buffer returned by
3430 				 * request_firmware() are zeroed out ...
3431 				 */
3432 				size_t resid = cf->size & 0x3;
3433 				size_t size = cf->size & ~0x3;
3434 				__be32 *data = (__be32 *)cf->data;
3435 
3436 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3437 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3438 
3439 				spin_lock(&adapter->win0_lock);
3440 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3441 						   size, data, T4_MEMORY_WRITE);
3442 				if (ret == 0 && resid != 0) {
3443 					union {
3444 						__be32 word;
3445 						char buf[4];
3446 					} last;
3447 					int i;
3448 
3449 					last.word = data[size >> 2];
3450 					for (i = resid; i < 4; i++)
3451 						last.buf[i] = 0;
3452 					ret = t4_memory_rw(adapter, 0, mtype,
3453 							   maddr + size,
3454 							   4, &last.word,
3455 							   T4_MEMORY_WRITE);
3456 				}
3457 				spin_unlock(&adapter->win0_lock);
3458 			}
3459 		}
3460 
3461 		release_firmware(cf);
3462 		if (ret)
3463 			goto bye;
3464 	}
3465 
3466 	/*
3467 	 * Issue a Capability Configuration command to the firmware to get it
3468 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3469 	 * because we want the ability to modify various features after we've
3470 	 * processed the configuration file ...
3471 	 */
3472 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3473 	caps_cmd.op_to_write =
3474 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3475 		      FW_CMD_REQUEST_F |
3476 		      FW_CMD_READ_F);
3477 	caps_cmd.cfvalid_to_len16 =
3478 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3479 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3480 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3481 		      FW_LEN16(caps_cmd));
3482 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3483 			 &caps_cmd);
3484 
3485 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3486 	 * Configuration File in FLASH), our last gasp effort is to use the
3487 	 * Firmware Configuration File which is embedded in the firmware.  A
3488 	 * very few early versions of the firmware didn't have one embedded
3489 	 * but we can ignore those.
3490 	 */
3491 	if (ret == -ENOENT) {
3492 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3493 		caps_cmd.op_to_write =
3494 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3495 					FW_CMD_REQUEST_F |
3496 					FW_CMD_READ_F);
3497 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3498 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3499 				sizeof(caps_cmd), &caps_cmd);
3500 		config_name = "Firmware Default";
3501 	}
3502 
3503 	config_issued = 1;
3504 	if (ret < 0)
3505 		goto bye;
3506 
3507 	finiver = ntohl(caps_cmd.finiver);
3508 	finicsum = ntohl(caps_cmd.finicsum);
3509 	cfcsum = ntohl(caps_cmd.cfcsum);
3510 	if (finicsum != cfcsum)
3511 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3512 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3513 			 finicsum, cfcsum);
3514 
3515 	/*
3516 	 * And now tell the firmware to use the configuration we just loaded.
3517 	 */
3518 	caps_cmd.op_to_write =
3519 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3520 		      FW_CMD_REQUEST_F |
3521 		      FW_CMD_WRITE_F);
3522 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3523 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3524 			 NULL);
3525 	if (ret < 0)
3526 		goto bye;
3527 
3528 	/*
3529 	 * Tweak configuration based on system architecture, module
3530 	 * parameters, etc.
3531 	 */
3532 	ret = adap_init0_tweaks(adapter);
3533 	if (ret < 0)
3534 		goto bye;
3535 
3536 	/*
3537 	 * And finally tell the firmware to initialize itself using the
3538 	 * parameters from the Configuration File.
3539 	 */
3540 	ret = t4_fw_initialize(adapter, adapter->mbox);
3541 	if (ret < 0)
3542 		goto bye;
3543 
3544 	/* Emit Firmware Configuration File information and return
3545 	 * successfully.
3546 	 */
3547 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3548 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3549 		 config_name, finiver, cfcsum);
3550 	return 0;
3551 
3552 	/*
3553 	 * Something bad happened.  Return the error ...  (If the "error"
3554 	 * is that there's no Configuration File on the adapter we don't
3555 	 * want to issue a warning since this is fairly common.)
3556 	 */
3557 bye:
3558 	if (config_issued && ret != -ENOENT)
3559 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3560 			 config_name, -ret);
3561 	return ret;
3562 }
3563 
3564 static struct fw_info fw_info_array[] = {
3565 	{
3566 		.chip = CHELSIO_T4,
3567 		.fs_name = FW4_CFNAME,
3568 		.fw_mod_name = FW4_FNAME,
3569 		.fw_hdr = {
3570 			.chip = FW_HDR_CHIP_T4,
3571 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3572 			.intfver_nic = FW_INTFVER(T4, NIC),
3573 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3574 			.intfver_ri = FW_INTFVER(T4, RI),
3575 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3576 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3577 		},
3578 	}, {
3579 		.chip = CHELSIO_T5,
3580 		.fs_name = FW5_CFNAME,
3581 		.fw_mod_name = FW5_FNAME,
3582 		.fw_hdr = {
3583 			.chip = FW_HDR_CHIP_T5,
3584 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3585 			.intfver_nic = FW_INTFVER(T5, NIC),
3586 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3587 			.intfver_ri = FW_INTFVER(T5, RI),
3588 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3589 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3590 		},
3591 	}, {
3592 		.chip = CHELSIO_T6,
3593 		.fs_name = FW6_CFNAME,
3594 		.fw_mod_name = FW6_FNAME,
3595 		.fw_hdr = {
3596 			.chip = FW_HDR_CHIP_T6,
3597 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3598 			.intfver_nic = FW_INTFVER(T6, NIC),
3599 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3600 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3601 			.intfver_ri = FW_INTFVER(T6, RI),
3602 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3603 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3604 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3605 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3606 		},
3607 	}
3608 
3609 };
3610 
3611 static struct fw_info *find_fw_info(int chip)
3612 {
3613 	int i;
3614 
3615 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3616 		if (fw_info_array[i].chip == chip)
3617 			return &fw_info_array[i];
3618 	}
3619 	return NULL;
3620 }
3621 
3622 /*
3623  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3624  */
3625 static int adap_init0(struct adapter *adap)
3626 {
3627 	int ret;
3628 	u32 v, port_vec;
3629 	enum dev_state state;
3630 	u32 params[7], val[7];
3631 	struct fw_caps_config_cmd caps_cmd;
3632 	int reset = 1;
3633 
3634 	/* Grab Firmware Device Log parameters as early as possible so we have
3635 	 * access to it for debugging, etc.
3636 	 */
3637 	ret = t4_init_devlog_params(adap);
3638 	if (ret < 0)
3639 		return ret;
3640 
3641 	/* Contact FW, advertising Master capability */
3642 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3643 	if (ret < 0) {
3644 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3645 			ret);
3646 		return ret;
3647 	}
3648 	if (ret == adap->mbox)
3649 		adap->flags |= MASTER_PF;
3650 
3651 	/*
3652 	 * If we're the Master PF Driver and the device is uninitialized,
3653 	 * then let's consider upgrading the firmware ...  (We always want
3654 	 * to check the firmware version number in order to A. get it for
3655 	 * later reporting and B. to warn if the currently loaded firmware
3656 	 * is excessively mismatched relative to the driver.)
3657 	 */
3658 	t4_get_fw_version(adap, &adap->params.fw_vers);
3659 	t4_get_tp_version(adap, &adap->params.tp_vers);
3660 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3661 		struct fw_info *fw_info;
3662 		struct fw_hdr *card_fw;
3663 		const struct firmware *fw;
3664 		const u8 *fw_data = NULL;
3665 		unsigned int fw_size = 0;
3666 
3667 		/* This is the firmware whose headers the driver was compiled
3668 		 * against
3669 		 */
3670 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3671 		if (fw_info == NULL) {
3672 			dev_err(adap->pdev_dev,
3673 				"unable to get firmware info for chip %d.\n",
3674 				CHELSIO_CHIP_VERSION(adap->params.chip));
3675 			return -EINVAL;
3676 		}
3677 
3678 		/* allocate memory to read the header of the firmware on the
3679 		 * card
3680 		 */
3681 		card_fw = t4_alloc_mem(sizeof(*card_fw));
3682 
3683 		/* Get FW from from /lib/firmware/ */
3684 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3685 				       adap->pdev_dev);
3686 		if (ret < 0) {
3687 			dev_err(adap->pdev_dev,
3688 				"unable to load firmware image %s, error %d\n",
3689 				fw_info->fw_mod_name, ret);
3690 		} else {
3691 			fw_data = fw->data;
3692 			fw_size = fw->size;
3693 		}
3694 
3695 		/* upgrade FW logic */
3696 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3697 				 state, &reset);
3698 
3699 		/* Cleaning up */
3700 		release_firmware(fw);
3701 		t4_free_mem(card_fw);
3702 
3703 		if (ret < 0)
3704 			goto bye;
3705 	}
3706 
3707 	/*
3708 	 * Grab VPD parameters.  This should be done after we establish a
3709 	 * connection to the firmware since some of the VPD parameters
3710 	 * (notably the Core Clock frequency) are retrieved via requests to
3711 	 * the firmware.  On the other hand, we need these fairly early on
3712 	 * so we do this right after getting ahold of the firmware.
3713 	 */
3714 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3715 	if (ret < 0)
3716 		goto bye;
3717 
3718 	/*
3719 	 * Find out what ports are available to us.  Note that we need to do
3720 	 * this before calling adap_init0_no_config() since it needs nports
3721 	 * and portvec ...
3722 	 */
3723 	v =
3724 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3725 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3726 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3727 	if (ret < 0)
3728 		goto bye;
3729 
3730 	adap->params.nports = hweight32(port_vec);
3731 	adap->params.portvec = port_vec;
3732 
3733 	/* If the firmware is initialized already, emit a simply note to that
3734 	 * effect. Otherwise, it's time to try initializing the adapter.
3735 	 */
3736 	if (state == DEV_STATE_INIT) {
3737 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3738 			 "Adapter already initialized\n",
3739 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3740 	} else {
3741 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3742 			 "Initializing adapter\n");
3743 
3744 		/* Find out whether we're dealing with a version of the
3745 		 * firmware which has configuration file support.
3746 		 */
3747 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3748 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3749 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3750 				      params, val);
3751 
3752 		/* If the firmware doesn't support Configuration Files,
3753 		 * return an error.
3754 		 */
3755 		if (ret < 0) {
3756 			dev_err(adap->pdev_dev, "firmware doesn't support "
3757 				"Firmware Configuration Files\n");
3758 			goto bye;
3759 		}
3760 
3761 		/* The firmware provides us with a memory buffer where we can
3762 		 * load a Configuration File from the host if we want to
3763 		 * override the Configuration File in flash.
3764 		 */
3765 		ret = adap_init0_config(adap, reset);
3766 		if (ret == -ENOENT) {
3767 			dev_err(adap->pdev_dev, "no Configuration File "
3768 				"present on adapter.\n");
3769 			goto bye;
3770 		}
3771 		if (ret < 0) {
3772 			dev_err(adap->pdev_dev, "could not initialize "
3773 				"adapter, error %d\n", -ret);
3774 			goto bye;
3775 		}
3776 	}
3777 
3778 	/* Give the SGE code a chance to pull in anything that it needs ...
3779 	 * Note that this must be called after we retrieve our VPD parameters
3780 	 * in order to know how to convert core ticks to seconds, etc.
3781 	 */
3782 	ret = t4_sge_init(adap);
3783 	if (ret < 0)
3784 		goto bye;
3785 
3786 	if (is_bypass_device(adap->pdev->device))
3787 		adap->params.bypass = 1;
3788 
3789 	/*
3790 	 * Grab some of our basic fundamental operating parameters.
3791 	 */
3792 #define FW_PARAM_DEV(param) \
3793 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3794 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3795 
3796 #define FW_PARAM_PFVF(param) \
3797 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3798 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3799 	FW_PARAMS_PARAM_Y_V(0) | \
3800 	FW_PARAMS_PARAM_Z_V(0)
3801 
3802 	params[0] = FW_PARAM_PFVF(EQ_START);
3803 	params[1] = FW_PARAM_PFVF(L2T_START);
3804 	params[2] = FW_PARAM_PFVF(L2T_END);
3805 	params[3] = FW_PARAM_PFVF(FILTER_START);
3806 	params[4] = FW_PARAM_PFVF(FILTER_END);
3807 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3808 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3809 	if (ret < 0)
3810 		goto bye;
3811 	adap->sge.egr_start = val[0];
3812 	adap->l2t_start = val[1];
3813 	adap->l2t_end = val[2];
3814 	adap->tids.ftid_base = val[3];
3815 	adap->tids.nftids = val[4] - val[3] + 1;
3816 	adap->sge.ingr_start = val[5];
3817 
3818 	/* qids (ingress/egress) returned from firmware can be anywhere
3819 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3820 	 * Hence driver needs to allocate memory for this range to
3821 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3822 	 * in FW_EQ_*_CMD.alloc command.
3823 	 */
3824 	params[0] = FW_PARAM_PFVF(EQ_END);
3825 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3826 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3827 	if (ret < 0)
3828 		goto bye;
3829 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3830 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3831 
3832 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3833 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3834 	if (!adap->sge.egr_map) {
3835 		ret = -ENOMEM;
3836 		goto bye;
3837 	}
3838 
3839 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3840 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3841 	if (!adap->sge.ingr_map) {
3842 		ret = -ENOMEM;
3843 		goto bye;
3844 	}
3845 
3846 	/* Allocate the memory for the vaious egress queue bitmaps
3847 	 * ie starving_fl, txq_maperr and blocked_fl.
3848 	 */
3849 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3850 					sizeof(long), GFP_KERNEL);
3851 	if (!adap->sge.starving_fl) {
3852 		ret = -ENOMEM;
3853 		goto bye;
3854 	}
3855 
3856 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3857 				       sizeof(long), GFP_KERNEL);
3858 	if (!adap->sge.txq_maperr) {
3859 		ret = -ENOMEM;
3860 		goto bye;
3861 	}
3862 
3863 #ifdef CONFIG_DEBUG_FS
3864 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3865 				       sizeof(long), GFP_KERNEL);
3866 	if (!adap->sge.blocked_fl) {
3867 		ret = -ENOMEM;
3868 		goto bye;
3869 	}
3870 #endif
3871 
3872 	params[0] = FW_PARAM_PFVF(CLIP_START);
3873 	params[1] = FW_PARAM_PFVF(CLIP_END);
3874 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3875 	if (ret < 0)
3876 		goto bye;
3877 	adap->clipt_start = val[0];
3878 	adap->clipt_end = val[1];
3879 
3880 	/* query params related to active filter region */
3881 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3882 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3883 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3884 	/* If Active filter size is set we enable establishing
3885 	 * offload connection through firmware work request
3886 	 */
3887 	if ((val[0] != val[1]) && (ret >= 0)) {
3888 		adap->flags |= FW_OFLD_CONN;
3889 		adap->tids.aftid_base = val[0];
3890 		adap->tids.aftid_end = val[1];
3891 	}
3892 
3893 	/* If we're running on newer firmware, let it know that we're
3894 	 * prepared to deal with encapsulated CPL messages.  Older
3895 	 * firmware won't understand this and we'll just get
3896 	 * unencapsulated messages ...
3897 	 */
3898 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3899 	val[0] = 1;
3900 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3901 
3902 	/*
3903 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3904 	 * capability.  Earlier versions of the firmware didn't have the
3905 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3906 	 * permission to use ULPTX MEMWRITE DSGL.
3907 	 */
3908 	if (is_t4(adap->params.chip)) {
3909 		adap->params.ulptx_memwrite_dsgl = false;
3910 	} else {
3911 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3912 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3913 				      1, params, val);
3914 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3915 	}
3916 
3917 	/*
3918 	 * Get device capabilities so we can determine what resources we need
3919 	 * to manage.
3920 	 */
3921 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3922 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3923 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3924 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3925 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3926 			 &caps_cmd);
3927 	if (ret < 0)
3928 		goto bye;
3929 
3930 	if (caps_cmd.ofldcaps) {
3931 		/* query offload-related parameters */
3932 		params[0] = FW_PARAM_DEV(NTID);
3933 		params[1] = FW_PARAM_PFVF(SERVER_START);
3934 		params[2] = FW_PARAM_PFVF(SERVER_END);
3935 		params[3] = FW_PARAM_PFVF(TDDP_START);
3936 		params[4] = FW_PARAM_PFVF(TDDP_END);
3937 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3938 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3939 				      params, val);
3940 		if (ret < 0)
3941 			goto bye;
3942 		adap->tids.ntids = val[0];
3943 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3944 		adap->tids.stid_base = val[1];
3945 		adap->tids.nstids = val[2] - val[1] + 1;
3946 		/*
3947 		 * Setup server filter region. Divide the available filter
3948 		 * region into two parts. Regular filters get 1/3rd and server
3949 		 * filters get 2/3rd part. This is only enabled if workarond
3950 		 * path is enabled.
3951 		 * 1. For regular filters.
3952 		 * 2. Server filter: This are special filters which are used
3953 		 * to redirect SYN packets to offload queue.
3954 		 */
3955 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3956 			adap->tids.sftid_base = adap->tids.ftid_base +
3957 					DIV_ROUND_UP(adap->tids.nftids, 3);
3958 			adap->tids.nsftids = adap->tids.nftids -
3959 					 DIV_ROUND_UP(adap->tids.nftids, 3);
3960 			adap->tids.nftids = adap->tids.sftid_base -
3961 						adap->tids.ftid_base;
3962 		}
3963 		adap->vres.ddp.start = val[3];
3964 		adap->vres.ddp.size = val[4] - val[3] + 1;
3965 		adap->params.ofldq_wr_cred = val[5];
3966 
3967 		adap->params.offload = 1;
3968 	}
3969 	if (caps_cmd.rdmacaps) {
3970 		params[0] = FW_PARAM_PFVF(STAG_START);
3971 		params[1] = FW_PARAM_PFVF(STAG_END);
3972 		params[2] = FW_PARAM_PFVF(RQ_START);
3973 		params[3] = FW_PARAM_PFVF(RQ_END);
3974 		params[4] = FW_PARAM_PFVF(PBL_START);
3975 		params[5] = FW_PARAM_PFVF(PBL_END);
3976 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3977 				      params, val);
3978 		if (ret < 0)
3979 			goto bye;
3980 		adap->vres.stag.start = val[0];
3981 		adap->vres.stag.size = val[1] - val[0] + 1;
3982 		adap->vres.rq.start = val[2];
3983 		adap->vres.rq.size = val[3] - val[2] + 1;
3984 		adap->vres.pbl.start = val[4];
3985 		adap->vres.pbl.size = val[5] - val[4] + 1;
3986 
3987 		params[0] = FW_PARAM_PFVF(SQRQ_START);
3988 		params[1] = FW_PARAM_PFVF(SQRQ_END);
3989 		params[2] = FW_PARAM_PFVF(CQ_START);
3990 		params[3] = FW_PARAM_PFVF(CQ_END);
3991 		params[4] = FW_PARAM_PFVF(OCQ_START);
3992 		params[5] = FW_PARAM_PFVF(OCQ_END);
3993 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3994 				      val);
3995 		if (ret < 0)
3996 			goto bye;
3997 		adap->vres.qp.start = val[0];
3998 		adap->vres.qp.size = val[1] - val[0] + 1;
3999 		adap->vres.cq.start = val[2];
4000 		adap->vres.cq.size = val[3] - val[2] + 1;
4001 		adap->vres.ocq.start = val[4];
4002 		adap->vres.ocq.size = val[5] - val[4] + 1;
4003 
4004 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4005 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4006 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4007 				      val);
4008 		if (ret < 0) {
4009 			adap->params.max_ordird_qp = 8;
4010 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4011 			ret = 0;
4012 		} else {
4013 			adap->params.max_ordird_qp = val[0];
4014 			adap->params.max_ird_adapter = val[1];
4015 		}
4016 		dev_info(adap->pdev_dev,
4017 			 "max_ordird_qp %d max_ird_adapter %d\n",
4018 			 adap->params.max_ordird_qp,
4019 			 adap->params.max_ird_adapter);
4020 	}
4021 	if (caps_cmd.iscsicaps) {
4022 		params[0] = FW_PARAM_PFVF(ISCSI_START);
4023 		params[1] = FW_PARAM_PFVF(ISCSI_END);
4024 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4025 				      params, val);
4026 		if (ret < 0)
4027 			goto bye;
4028 		adap->vres.iscsi.start = val[0];
4029 		adap->vres.iscsi.size = val[1] - val[0] + 1;
4030 	}
4031 #undef FW_PARAM_PFVF
4032 #undef FW_PARAM_DEV
4033 
4034 	/* The MTU/MSS Table is initialized by now, so load their values.  If
4035 	 * we're initializing the adapter, then we'll make any modifications
4036 	 * we want to the MTU/MSS Table and also initialize the congestion
4037 	 * parameters.
4038 	 */
4039 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4040 	if (state != DEV_STATE_INIT) {
4041 		int i;
4042 
4043 		/* The default MTU Table contains values 1492 and 1500.
4044 		 * However, for TCP, it's better to have two values which are
4045 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4046 		 * This allows us to have a TCP Data Payload which is a
4047 		 * multiple of 8 regardless of what combination of TCP Options
4048 		 * are in use (always a multiple of 4 bytes) which is
4049 		 * important for performance reasons.  For instance, if no
4050 		 * options are in use, then we have a 20-byte IP header and a
4051 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4052 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4053 		 * which is not a multiple of 8.  So using an MSS of 1488 in
4054 		 * this case results in a TCP Data Payload of 1448 bytes which
4055 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4056 		 * Stamps have been negotiated, then an MTU of 1500 bytes
4057 		 * results in a TCP Data Payload of 1448 bytes which, as
4058 		 * above, is a multiple of 8 bytes ...
4059 		 */
4060 		for (i = 0; i < NMTUS; i++)
4061 			if (adap->params.mtus[i] == 1492) {
4062 				adap->params.mtus[i] = 1488;
4063 				break;
4064 			}
4065 
4066 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4067 			     adap->params.b_wnd);
4068 	}
4069 	t4_init_sge_params(adap);
4070 	adap->flags |= FW_OK;
4071 	t4_init_tp_params(adap);
4072 	return 0;
4073 
4074 	/*
4075 	 * Something bad happened.  If a command timed out or failed with EIO
4076 	 * FW does not operate within its spec or something catastrophic
4077 	 * happened to HW/FW, stop issuing commands.
4078 	 */
4079 bye:
4080 	kfree(adap->sge.egr_map);
4081 	kfree(adap->sge.ingr_map);
4082 	kfree(adap->sge.starving_fl);
4083 	kfree(adap->sge.txq_maperr);
4084 #ifdef CONFIG_DEBUG_FS
4085 	kfree(adap->sge.blocked_fl);
4086 #endif
4087 	if (ret != -ETIMEDOUT && ret != -EIO)
4088 		t4_fw_bye(adap, adap->mbox);
4089 	return ret;
4090 }
4091 
4092 /* EEH callbacks */
4093 
4094 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4095 					 pci_channel_state_t state)
4096 {
4097 	int i;
4098 	struct adapter *adap = pci_get_drvdata(pdev);
4099 
4100 	if (!adap)
4101 		goto out;
4102 
4103 	rtnl_lock();
4104 	adap->flags &= ~FW_OK;
4105 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4106 	spin_lock(&adap->stats_lock);
4107 	for_each_port(adap, i) {
4108 		struct net_device *dev = adap->port[i];
4109 
4110 		netif_device_detach(dev);
4111 		netif_carrier_off(dev);
4112 	}
4113 	spin_unlock(&adap->stats_lock);
4114 	disable_interrupts(adap);
4115 	if (adap->flags & FULL_INIT_DONE)
4116 		cxgb_down(adap);
4117 	rtnl_unlock();
4118 	if ((adap->flags & DEV_ENABLED)) {
4119 		pci_disable_device(pdev);
4120 		adap->flags &= ~DEV_ENABLED;
4121 	}
4122 out:	return state == pci_channel_io_perm_failure ?
4123 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4124 }
4125 
4126 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4127 {
4128 	int i, ret;
4129 	struct fw_caps_config_cmd c;
4130 	struct adapter *adap = pci_get_drvdata(pdev);
4131 
4132 	if (!adap) {
4133 		pci_restore_state(pdev);
4134 		pci_save_state(pdev);
4135 		return PCI_ERS_RESULT_RECOVERED;
4136 	}
4137 
4138 	if (!(adap->flags & DEV_ENABLED)) {
4139 		if (pci_enable_device(pdev)) {
4140 			dev_err(&pdev->dev, "Cannot reenable PCI "
4141 					    "device after reset\n");
4142 			return PCI_ERS_RESULT_DISCONNECT;
4143 		}
4144 		adap->flags |= DEV_ENABLED;
4145 	}
4146 
4147 	pci_set_master(pdev);
4148 	pci_restore_state(pdev);
4149 	pci_save_state(pdev);
4150 	pci_cleanup_aer_uncorrect_error_status(pdev);
4151 
4152 	if (t4_wait_dev_ready(adap->regs) < 0)
4153 		return PCI_ERS_RESULT_DISCONNECT;
4154 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4155 		return PCI_ERS_RESULT_DISCONNECT;
4156 	adap->flags |= FW_OK;
4157 	if (adap_init1(adap, &c))
4158 		return PCI_ERS_RESULT_DISCONNECT;
4159 
4160 	for_each_port(adap, i) {
4161 		struct port_info *p = adap2pinfo(adap, i);
4162 
4163 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4164 				  NULL, NULL);
4165 		if (ret < 0)
4166 			return PCI_ERS_RESULT_DISCONNECT;
4167 		p->viid = ret;
4168 		p->xact_addr_filt = -1;
4169 	}
4170 
4171 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4172 		     adap->params.b_wnd);
4173 	setup_memwin(adap);
4174 	if (cxgb_up(adap))
4175 		return PCI_ERS_RESULT_DISCONNECT;
4176 	return PCI_ERS_RESULT_RECOVERED;
4177 }
4178 
4179 static void eeh_resume(struct pci_dev *pdev)
4180 {
4181 	int i;
4182 	struct adapter *adap = pci_get_drvdata(pdev);
4183 
4184 	if (!adap)
4185 		return;
4186 
4187 	rtnl_lock();
4188 	for_each_port(adap, i) {
4189 		struct net_device *dev = adap->port[i];
4190 
4191 		if (netif_running(dev)) {
4192 			link_start(dev);
4193 			cxgb_set_rxmode(dev);
4194 		}
4195 		netif_device_attach(dev);
4196 	}
4197 	rtnl_unlock();
4198 }
4199 
4200 static const struct pci_error_handlers cxgb4_eeh = {
4201 	.error_detected = eeh_err_detected,
4202 	.slot_reset     = eeh_slot_reset,
4203 	.resume         = eeh_resume,
4204 };
4205 
4206 static inline bool is_x_10g_port(const struct link_config *lc)
4207 {
4208 	return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4209 	       (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4210 }
4211 
4212 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4213 			     unsigned int us, unsigned int cnt,
4214 			     unsigned int size, unsigned int iqe_size)
4215 {
4216 	q->adap = adap;
4217 	cxgb4_set_rspq_intr_params(q, us, cnt);
4218 	q->iqe_len = iqe_size;
4219 	q->size = size;
4220 }
4221 
4222 /*
4223  * Perform default configuration of DMA queues depending on the number and type
4224  * of ports we found and the number of available CPUs.  Most settings can be
4225  * modified by the admin prior to actual use.
4226  */
4227 static void cfg_queues(struct adapter *adap)
4228 {
4229 	struct sge *s = &adap->sge;
4230 	int i, n10g = 0, qidx = 0;
4231 #ifndef CONFIG_CHELSIO_T4_DCB
4232 	int q10g = 0;
4233 #endif
4234 	int ciq_size;
4235 
4236 	for_each_port(adap, i)
4237 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4238 #ifdef CONFIG_CHELSIO_T4_DCB
4239 	/* For Data Center Bridging support we need to be able to support up
4240 	 * to 8 Traffic Priorities; each of which will be assigned to its
4241 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4242 	 */
4243 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4244 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4245 			MAX_ETH_QSETS, adap->params.nports * 8);
4246 		BUG_ON(1);
4247 	}
4248 
4249 	for_each_port(adap, i) {
4250 		struct port_info *pi = adap2pinfo(adap, i);
4251 
4252 		pi->first_qset = qidx;
4253 		pi->nqsets = 8;
4254 		qidx += pi->nqsets;
4255 	}
4256 #else /* !CONFIG_CHELSIO_T4_DCB */
4257 	/*
4258 	 * We default to 1 queue per non-10G port and up to # of cores queues
4259 	 * per 10G port.
4260 	 */
4261 	if (n10g)
4262 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4263 	if (q10g > netif_get_num_default_rss_queues())
4264 		q10g = netif_get_num_default_rss_queues();
4265 
4266 	for_each_port(adap, i) {
4267 		struct port_info *pi = adap2pinfo(adap, i);
4268 
4269 		pi->first_qset = qidx;
4270 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4271 		qidx += pi->nqsets;
4272 	}
4273 #endif /* !CONFIG_CHELSIO_T4_DCB */
4274 
4275 	s->ethqsets = qidx;
4276 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4277 
4278 	if (is_offload(adap)) {
4279 		/*
4280 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4281 		 * otherwise we divide all available queues amongst the channels
4282 		 * capped by the number of available cores.
4283 		 */
4284 		if (n10g) {
4285 			i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4286 				  num_online_cpus());
4287 			s->ofldqsets = roundup(i, adap->params.nports);
4288 		} else
4289 			s->ofldqsets = adap->params.nports;
4290 		/* For RDMA one Rx queue per channel suffices */
4291 		s->rdmaqs = adap->params.nports;
4292 		/* Try and allow at least 1 CIQ per cpu rounding down
4293 		 * to the number of ports, with a minimum of 1 per port.
4294 		 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4295 		 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4296 		 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4297 		 */
4298 		s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4299 		s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4300 				adap->params.nports;
4301 		s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4302 	}
4303 
4304 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4305 		struct sge_eth_rxq *r = &s->ethrxq[i];
4306 
4307 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4308 		r->fl.size = 72;
4309 	}
4310 
4311 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4312 		s->ethtxq[i].q.size = 1024;
4313 
4314 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4315 		s->ctrlq[i].q.size = 512;
4316 
4317 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4318 		s->ofldtxq[i].q.size = 1024;
4319 
4320 	for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4321 		struct sge_ofld_rxq *r = &s->ofldrxq[i];
4322 
4323 		init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4324 		r->rspq.uld = CXGB4_ULD_ISCSI;
4325 		r->fl.size = 72;
4326 	}
4327 
4328 	for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4329 		struct sge_ofld_rxq *r = &s->rdmarxq[i];
4330 
4331 		init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4332 		r->rspq.uld = CXGB4_ULD_RDMA;
4333 		r->fl.size = 72;
4334 	}
4335 
4336 	ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4337 	if (ciq_size > SGE_MAX_IQ_SIZE) {
4338 		CH_WARN(adap, "CIQ size too small for available IQs\n");
4339 		ciq_size = SGE_MAX_IQ_SIZE;
4340 	}
4341 
4342 	for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4343 		struct sge_ofld_rxq *r = &s->rdmaciq[i];
4344 
4345 		init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4346 		r->rspq.uld = CXGB4_ULD_RDMA;
4347 	}
4348 
4349 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4350 	init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4351 }
4352 
4353 /*
4354  * Reduce the number of Ethernet queues across all ports to at most n.
4355  * n provides at least one queue per port.
4356  */
4357 static void reduce_ethqs(struct adapter *adap, int n)
4358 {
4359 	int i;
4360 	struct port_info *pi;
4361 
4362 	while (n < adap->sge.ethqsets)
4363 		for_each_port(adap, i) {
4364 			pi = adap2pinfo(adap, i);
4365 			if (pi->nqsets > 1) {
4366 				pi->nqsets--;
4367 				adap->sge.ethqsets--;
4368 				if (adap->sge.ethqsets <= n)
4369 					break;
4370 			}
4371 		}
4372 
4373 	n = 0;
4374 	for_each_port(adap, i) {
4375 		pi = adap2pinfo(adap, i);
4376 		pi->first_qset = n;
4377 		n += pi->nqsets;
4378 	}
4379 }
4380 
4381 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4382 #define EXTRA_VECS 2
4383 
4384 static int enable_msix(struct adapter *adap)
4385 {
4386 	int ofld_need = 0;
4387 	int i, want, need, allocated;
4388 	struct sge *s = &adap->sge;
4389 	unsigned int nchan = adap->params.nports;
4390 	struct msix_entry *entries;
4391 
4392 	entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4393 			  GFP_KERNEL);
4394 	if (!entries)
4395 		return -ENOMEM;
4396 
4397 	for (i = 0; i < MAX_INGQ + 1; ++i)
4398 		entries[i].entry = i;
4399 
4400 	want = s->max_ethqsets + EXTRA_VECS;
4401 	if (is_offload(adap)) {
4402 		want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4403 		/* need nchan for each possible ULD */
4404 		ofld_need = 3 * nchan;
4405 	}
4406 #ifdef CONFIG_CHELSIO_T4_DCB
4407 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4408 	 * each port.
4409 	 */
4410 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4411 #else
4412 	need = adap->params.nports + EXTRA_VECS + ofld_need;
4413 #endif
4414 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4415 	if (allocated < 0) {
4416 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4417 			 " not using MSI-X\n");
4418 		kfree(entries);
4419 		return allocated;
4420 	}
4421 
4422 	/* Distribute available vectors to the various queue groups.
4423 	 * Every group gets its minimum requirement and NIC gets top
4424 	 * priority for leftovers.
4425 	 */
4426 	i = allocated - EXTRA_VECS - ofld_need;
4427 	if (i < s->max_ethqsets) {
4428 		s->max_ethqsets = i;
4429 		if (i < s->ethqsets)
4430 			reduce_ethqs(adap, i);
4431 	}
4432 	if (is_offload(adap)) {
4433 		if (allocated < want) {
4434 			s->rdmaqs = nchan;
4435 			s->rdmaciqs = nchan;
4436 		}
4437 
4438 		/* leftovers go to OFLD */
4439 		i = allocated - EXTRA_VECS - s->max_ethqsets -
4440 		    s->rdmaqs - s->rdmaciqs;
4441 		s->ofldqsets = (i / nchan) * nchan;  /* round down */
4442 	}
4443 	for (i = 0; i < allocated; ++i)
4444 		adap->msix_info[i].vec = entries[i].vector;
4445 
4446 	kfree(entries);
4447 	return 0;
4448 }
4449 
4450 #undef EXTRA_VECS
4451 
4452 static int init_rss(struct adapter *adap)
4453 {
4454 	unsigned int i;
4455 	int err;
4456 
4457 	err = t4_init_rss_mode(adap, adap->mbox);
4458 	if (err)
4459 		return err;
4460 
4461 	for_each_port(adap, i) {
4462 		struct port_info *pi = adap2pinfo(adap, i);
4463 
4464 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4465 		if (!pi->rss)
4466 			return -ENOMEM;
4467 	}
4468 	return 0;
4469 }
4470 
4471 static void print_port_info(const struct net_device *dev)
4472 {
4473 	char buf[80];
4474 	char *bufp = buf;
4475 	const char *spd = "";
4476 	const struct port_info *pi = netdev_priv(dev);
4477 	const struct adapter *adap = pi->adapter;
4478 
4479 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4480 		spd = " 2.5 GT/s";
4481 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4482 		spd = " 5 GT/s";
4483 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4484 		spd = " 8 GT/s";
4485 
4486 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4487 		bufp += sprintf(bufp, "100/");
4488 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4489 		bufp += sprintf(bufp, "1000/");
4490 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4491 		bufp += sprintf(bufp, "10G/");
4492 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4493 		bufp += sprintf(bufp, "40G/");
4494 	if (bufp != buf)
4495 		--bufp;
4496 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4497 
4498 	netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
4499 		    adap->params.vpd.id,
4500 		    CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4501 		    is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4502 		    (adap->flags & USING_MSIX) ? " MSI-X" :
4503 		    (adap->flags & USING_MSI) ? " MSI" : "");
4504 	netdev_info(dev, "S/N: %s, P/N: %s\n",
4505 		    adap->params.vpd.sn, adap->params.vpd.pn);
4506 }
4507 
4508 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4509 {
4510 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4511 }
4512 
4513 /*
4514  * Free the following resources:
4515  * - memory used for tables
4516  * - MSI/MSI-X
4517  * - net devices
4518  * - resources FW is holding for us
4519  */
4520 static void free_some_resources(struct adapter *adapter)
4521 {
4522 	unsigned int i;
4523 
4524 	t4_free_mem(adapter->l2t);
4525 	t4_free_mem(adapter->tids.tid_tab);
4526 	kfree(adapter->sge.egr_map);
4527 	kfree(adapter->sge.ingr_map);
4528 	kfree(adapter->sge.starving_fl);
4529 	kfree(adapter->sge.txq_maperr);
4530 #ifdef CONFIG_DEBUG_FS
4531 	kfree(adapter->sge.blocked_fl);
4532 #endif
4533 	disable_msi(adapter);
4534 
4535 	for_each_port(adapter, i)
4536 		if (adapter->port[i]) {
4537 			struct port_info *pi = adap2pinfo(adapter, i);
4538 
4539 			if (pi->viid != 0)
4540 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
4541 					   0, pi->viid);
4542 			kfree(adap2pinfo(adapter, i)->rss);
4543 			free_netdev(adapter->port[i]);
4544 		}
4545 	if (adapter->flags & FW_OK)
4546 		t4_fw_bye(adapter, adapter->pf);
4547 }
4548 
4549 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4550 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4551 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4552 #define SEGMENT_SIZE 128
4553 
4554 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4555 {
4556 	int func, i, err, s_qpp, qpp, num_seg;
4557 	struct port_info *pi;
4558 	bool highdma = false;
4559 	struct adapter *adapter = NULL;
4560 	void __iomem *regs;
4561 
4562 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4563 
4564 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4565 	if (err) {
4566 		/* Just info, some other driver may have claimed the device. */
4567 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4568 		return err;
4569 	}
4570 
4571 	err = pci_enable_device(pdev);
4572 	if (err) {
4573 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4574 		goto out_release_regions;
4575 	}
4576 
4577 	regs = pci_ioremap_bar(pdev, 0);
4578 	if (!regs) {
4579 		dev_err(&pdev->dev, "cannot map device registers\n");
4580 		err = -ENOMEM;
4581 		goto out_disable_device;
4582 	}
4583 
4584 	err = t4_wait_dev_ready(regs);
4585 	if (err < 0)
4586 		goto out_unmap_bar0;
4587 
4588 	/* We control everything through one PF */
4589 	func = SOURCEPF_G(readl(regs + PL_WHOAMI_A));
4590 	if (func != ent->driver_data) {
4591 		iounmap(regs);
4592 		pci_disable_device(pdev);
4593 		pci_save_state(pdev);        /* to restore SR-IOV later */
4594 		goto sriov;
4595 	}
4596 
4597 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4598 		highdma = true;
4599 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4600 		if (err) {
4601 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4602 				"coherent allocations\n");
4603 			goto out_unmap_bar0;
4604 		}
4605 	} else {
4606 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4607 		if (err) {
4608 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4609 			goto out_unmap_bar0;
4610 		}
4611 	}
4612 
4613 	pci_enable_pcie_error_reporting(pdev);
4614 	enable_pcie_relaxed_ordering(pdev);
4615 	pci_set_master(pdev);
4616 	pci_save_state(pdev);
4617 
4618 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4619 	if (!adapter) {
4620 		err = -ENOMEM;
4621 		goto out_unmap_bar0;
4622 	}
4623 
4624 	adapter->workq = create_singlethread_workqueue("cxgb4");
4625 	if (!adapter->workq) {
4626 		err = -ENOMEM;
4627 		goto out_free_adapter;
4628 	}
4629 
4630 	/* PCI device has been enabled */
4631 	adapter->flags |= DEV_ENABLED;
4632 
4633 	adapter->regs = regs;
4634 	adapter->pdev = pdev;
4635 	adapter->pdev_dev = &pdev->dev;
4636 	adapter->mbox = func;
4637 	adapter->pf = func;
4638 	adapter->msg_enable = dflt_msg_enable;
4639 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4640 
4641 	spin_lock_init(&adapter->stats_lock);
4642 	spin_lock_init(&adapter->tid_release_lock);
4643 	spin_lock_init(&adapter->win0_lock);
4644 
4645 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4646 	INIT_WORK(&adapter->db_full_task, process_db_full);
4647 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4648 
4649 	err = t4_prep_adapter(adapter);
4650 	if (err)
4651 		goto out_free_adapter;
4652 
4653 
4654 	if (!is_t4(adapter->params.chip)) {
4655 		s_qpp = (QUEUESPERPAGEPF0_S +
4656 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4657 			adapter->pf);
4658 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4659 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4660 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
4661 
4662 		/* Each segment size is 128B. Write coalescing is enabled only
4663 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4664 		 * queue is less no of segments that can be accommodated in
4665 		 * a page size.
4666 		 */
4667 		if (qpp > num_seg) {
4668 			dev_err(&pdev->dev,
4669 				"Incorrect number of egress queues per page\n");
4670 			err = -EINVAL;
4671 			goto out_free_adapter;
4672 		}
4673 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4674 		pci_resource_len(pdev, 2));
4675 		if (!adapter->bar2) {
4676 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
4677 			err = -ENOMEM;
4678 			goto out_free_adapter;
4679 		}
4680 		t4_write_reg(adapter, SGE_STAT_CFG_A,
4681 			     STATSOURCE_T5_V(7) | STATMODE_V(0));
4682 	}
4683 
4684 	setup_memwin(adapter);
4685 	err = adap_init0(adapter);
4686 #ifdef CONFIG_DEBUG_FS
4687 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4688 #endif
4689 	setup_memwin_rdma(adapter);
4690 	if (err)
4691 		goto out_unmap_bar;
4692 
4693 	for_each_port(adapter, i) {
4694 		struct net_device *netdev;
4695 
4696 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
4697 					   MAX_ETH_QSETS);
4698 		if (!netdev) {
4699 			err = -ENOMEM;
4700 			goto out_free_dev;
4701 		}
4702 
4703 		SET_NETDEV_DEV(netdev, &pdev->dev);
4704 
4705 		adapter->port[i] = netdev;
4706 		pi = netdev_priv(netdev);
4707 		pi->adapter = adapter;
4708 		pi->xact_addr_filt = -1;
4709 		pi->port_id = i;
4710 		netdev->irq = pdev->irq;
4711 
4712 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4713 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4714 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4715 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4716 		if (highdma)
4717 			netdev->hw_features |= NETIF_F_HIGHDMA;
4718 		netdev->features |= netdev->hw_features;
4719 		netdev->vlan_features = netdev->features & VLAN_FEAT;
4720 
4721 		netdev->priv_flags |= IFF_UNICAST_FLT;
4722 
4723 		netdev->netdev_ops = &cxgb4_netdev_ops;
4724 #ifdef CONFIG_CHELSIO_T4_DCB
4725 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
4726 		cxgb4_dcb_state_init(netdev);
4727 #endif
4728 		cxgb4_set_ethtool_ops(netdev);
4729 	}
4730 
4731 	pci_set_drvdata(pdev, adapter);
4732 
4733 	if (adapter->flags & FW_OK) {
4734 		err = t4_port_init(adapter, func, func, 0);
4735 		if (err)
4736 			goto out_free_dev;
4737 	} else if (adapter->params.nports == 1) {
4738 		/* If we don't have a connection to the firmware -- possibly
4739 		 * because of an error -- grab the raw VPD parameters so we
4740 		 * can set the proper MAC Address on the debug network
4741 		 * interface that we've created.
4742 		 */
4743 		u8 hw_addr[ETH_ALEN];
4744 		u8 *na = adapter->params.vpd.na;
4745 
4746 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4747 		if (!err) {
4748 			for (i = 0; i < ETH_ALEN; i++)
4749 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4750 					      hex2val(na[2 * i + 1]));
4751 			t4_set_hw_addr(adapter, 0, hw_addr);
4752 		}
4753 	}
4754 
4755 	/* Configure queues and allocate tables now, they can be needed as
4756 	 * soon as the first register_netdev completes.
4757 	 */
4758 	cfg_queues(adapter);
4759 
4760 	adapter->l2t = t4_init_l2t();
4761 	if (!adapter->l2t) {
4762 		/* We tolerate a lack of L2T, giving up some functionality */
4763 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4764 		adapter->params.offload = 0;
4765 	}
4766 
4767 #if IS_ENABLED(CONFIG_IPV6)
4768 	adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4769 					  adapter->clipt_end);
4770 	if (!adapter->clipt) {
4771 		/* We tolerate a lack of clip_table, giving up
4772 		 * some functionality
4773 		 */
4774 		dev_warn(&pdev->dev,
4775 			 "could not allocate Clip table, continuing\n");
4776 		adapter->params.offload = 0;
4777 	}
4778 #endif
4779 	if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4780 		dev_warn(&pdev->dev, "could not allocate TID table, "
4781 			 "continuing\n");
4782 		adapter->params.offload = 0;
4783 	}
4784 
4785 	/* See what interrupts we'll be using */
4786 	if (msi > 1 && enable_msix(adapter) == 0)
4787 		adapter->flags |= USING_MSIX;
4788 	else if (msi > 0 && pci_enable_msi(pdev) == 0)
4789 		adapter->flags |= USING_MSI;
4790 
4791 	err = init_rss(adapter);
4792 	if (err)
4793 		goto out_free_dev;
4794 
4795 	/*
4796 	 * The card is now ready to go.  If any errors occur during device
4797 	 * registration we do not fail the whole card but rather proceed only
4798 	 * with the ports we manage to register successfully.  However we must
4799 	 * register at least one net device.
4800 	 */
4801 	for_each_port(adapter, i) {
4802 		pi = adap2pinfo(adapter, i);
4803 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4804 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4805 
4806 		err = register_netdev(adapter->port[i]);
4807 		if (err)
4808 			break;
4809 		adapter->chan_map[pi->tx_chan] = i;
4810 		print_port_info(adapter->port[i]);
4811 	}
4812 	if (i == 0) {
4813 		dev_err(&pdev->dev, "could not register any net devices\n");
4814 		goto out_free_dev;
4815 	}
4816 	if (err) {
4817 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4818 		err = 0;
4819 	}
4820 
4821 	if (cxgb4_debugfs_root) {
4822 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4823 							   cxgb4_debugfs_root);
4824 		setup_debugfs(adapter);
4825 	}
4826 
4827 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4828 	pdev->needs_freset = 1;
4829 
4830 	if (is_offload(adapter))
4831 		attach_ulds(adapter);
4832 
4833 sriov:
4834 #ifdef CONFIG_PCI_IOV
4835 	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4836 		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4837 			dev_info(&pdev->dev,
4838 				 "instantiated %u virtual functions\n",
4839 				 num_vf[func]);
4840 #endif
4841 	return 0;
4842 
4843  out_free_dev:
4844 	free_some_resources(adapter);
4845  out_unmap_bar:
4846 	if (!is_t4(adapter->params.chip))
4847 		iounmap(adapter->bar2);
4848  out_free_adapter:
4849 	if (adapter->workq)
4850 		destroy_workqueue(adapter->workq);
4851 
4852 	kfree(adapter);
4853  out_unmap_bar0:
4854 	iounmap(regs);
4855  out_disable_device:
4856 	pci_disable_pcie_error_reporting(pdev);
4857 	pci_disable_device(pdev);
4858  out_release_regions:
4859 	pci_release_regions(pdev);
4860 	return err;
4861 }
4862 
4863 static void remove_one(struct pci_dev *pdev)
4864 {
4865 	struct adapter *adapter = pci_get_drvdata(pdev);
4866 
4867 #ifdef CONFIG_PCI_IOV
4868 	pci_disable_sriov(pdev);
4869 
4870 #endif
4871 
4872 	if (adapter) {
4873 		int i;
4874 
4875 		/* Tear down per-adapter Work Queue first since it can contain
4876 		 * references to our adapter data structure.
4877 		 */
4878 		destroy_workqueue(adapter->workq);
4879 
4880 		if (is_offload(adapter))
4881 			detach_ulds(adapter);
4882 
4883 		disable_interrupts(adapter);
4884 
4885 		for_each_port(adapter, i)
4886 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
4887 				unregister_netdev(adapter->port[i]);
4888 
4889 		debugfs_remove_recursive(adapter->debugfs_root);
4890 
4891 		/* If we allocated filters, free up state associated with any
4892 		 * valid filters ...
4893 		 */
4894 		if (adapter->tids.ftid_tab) {
4895 			struct filter_entry *f = &adapter->tids.ftid_tab[0];
4896 			for (i = 0; i < (adapter->tids.nftids +
4897 					adapter->tids.nsftids); i++, f++)
4898 				if (f->valid)
4899 					clear_filter(adapter, f);
4900 		}
4901 
4902 		if (adapter->flags & FULL_INIT_DONE)
4903 			cxgb_down(adapter);
4904 
4905 		free_some_resources(adapter);
4906 #if IS_ENABLED(CONFIG_IPV6)
4907 		t4_cleanup_clip_tbl(adapter);
4908 #endif
4909 		iounmap(adapter->regs);
4910 		if (!is_t4(adapter->params.chip))
4911 			iounmap(adapter->bar2);
4912 		pci_disable_pcie_error_reporting(pdev);
4913 		if ((adapter->flags & DEV_ENABLED)) {
4914 			pci_disable_device(pdev);
4915 			adapter->flags &= ~DEV_ENABLED;
4916 		}
4917 		pci_release_regions(pdev);
4918 		synchronize_rcu();
4919 		kfree(adapter);
4920 	} else
4921 		pci_release_regions(pdev);
4922 }
4923 
4924 static struct pci_driver cxgb4_driver = {
4925 	.name     = KBUILD_MODNAME,
4926 	.id_table = cxgb4_pci_tbl,
4927 	.probe    = init_one,
4928 	.remove   = remove_one,
4929 	.shutdown = remove_one,
4930 	.err_handler = &cxgb4_eeh,
4931 };
4932 
4933 static int __init cxgb4_init_module(void)
4934 {
4935 	int ret;
4936 
4937 	/* Debugfs support is optional, just warn if this fails */
4938 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
4939 	if (!cxgb4_debugfs_root)
4940 		pr_warn("could not create debugfs entry, continuing\n");
4941 
4942 	ret = pci_register_driver(&cxgb4_driver);
4943 	if (ret < 0)
4944 		debugfs_remove(cxgb4_debugfs_root);
4945 
4946 #if IS_ENABLED(CONFIG_IPV6)
4947 	if (!inet6addr_registered) {
4948 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4949 		inet6addr_registered = true;
4950 	}
4951 #endif
4952 
4953 	return ret;
4954 }
4955 
4956 static void __exit cxgb4_cleanup_module(void)
4957 {
4958 #if IS_ENABLED(CONFIG_IPV6)
4959 	if (inet6addr_registered) {
4960 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4961 		inet6addr_registered = false;
4962 	}
4963 #endif
4964 	pci_unregister_driver(&cxgb4_driver);
4965 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
4966 }
4967 
4968 module_init(cxgb4_init_module);
4969 module_exit(cxgb4_cleanup_module);
4970