1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67 #include <linux/crash_dump.h>
68 
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "cxgb4_debugfs.h"
78 #include "clip_tbl.h"
79 #include "l2t.h"
80 #include "sched.h"
81 #include "cxgb4_tc_u32.h"
82 
83 char cxgb4_driver_name[] = KBUILD_MODNAME;
84 
85 #ifdef DRV_VERSION
86 #undef DRV_VERSION
87 #endif
88 #define DRV_VERSION "2.0.0-ko"
89 const char cxgb4_driver_version[] = DRV_VERSION;
90 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
91 
92 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
93 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
94 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
95 
96 /* Macros needed to support the PCI Device ID Table ...
97  */
98 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
99 	static const struct pci_device_id cxgb4_pci_tbl[] = {
100 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
101 
102 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
103  * called for both.
104  */
105 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
106 
107 #define CH_PCI_ID_TABLE_ENTRY(devid) \
108 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
109 
110 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
111 		{ 0, } \
112 	}
113 
114 #include "t4_pci_id_tbl.h"
115 
116 #define FW4_FNAME "cxgb4/t4fw.bin"
117 #define FW5_FNAME "cxgb4/t5fw.bin"
118 #define FW6_FNAME "cxgb4/t6fw.bin"
119 #define FW4_CFNAME "cxgb4/t4-config.txt"
120 #define FW5_CFNAME "cxgb4/t5-config.txt"
121 #define FW6_CFNAME "cxgb4/t6-config.txt"
122 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
123 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
124 #define PHY_AQ1202_DEVICEID 0x4409
125 #define PHY_BCM84834_DEVICEID 0x4486
126 
127 MODULE_DESCRIPTION(DRV_DESC);
128 MODULE_AUTHOR("Chelsio Communications");
129 MODULE_LICENSE("Dual BSD/GPL");
130 MODULE_VERSION(DRV_VERSION);
131 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
132 MODULE_FIRMWARE(FW4_FNAME);
133 MODULE_FIRMWARE(FW5_FNAME);
134 MODULE_FIRMWARE(FW6_FNAME);
135 
136 /*
137  * Normally we're willing to become the firmware's Master PF but will be happy
138  * if another PF has already become the Master and initialized the adapter.
139  * Setting "force_init" will cause this driver to forcibly establish itself as
140  * the Master PF and initialize the adapter.
141  */
142 static uint force_init;
143 
144 module_param(force_init, uint, 0644);
145 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
146 		 "deprecated parameter");
147 
148 static int dflt_msg_enable = DFLT_MSG_ENABLE;
149 
150 module_param(dflt_msg_enable, int, 0644);
151 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap, "
152 		 "deprecated parameter");
153 
154 /*
155  * The driver uses the best interrupt scheme available on a platform in the
156  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
157  * of these schemes the driver may consider as follows:
158  *
159  * msi = 2: choose from among all three options
160  * msi = 1: only consider MSI and INTx interrupts
161  * msi = 0: force INTx interrupts
162  */
163 static int msi = 2;
164 
165 module_param(msi, int, 0644);
166 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
167 
168 /*
169  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
170  * offset by 2 bytes in order to have the IP headers line up on 4-byte
171  * boundaries.  This is a requirement for many architectures which will throw
172  * a machine check fault if an attempt is made to access one of the 4-byte IP
173  * header fields on a non-4-byte boundary.  And it's a major performance issue
174  * even on some architectures which allow it like some implementations of the
175  * x86 ISA.  However, some architectures don't mind this and for some very
176  * edge-case performance sensitive applications (like forwarding large volumes
177  * of small packets), setting this DMA offset to 0 will decrease the number of
178  * PCI-E Bus transfers enough to measurably affect performance.
179  */
180 static int rx_dma_offset = 2;
181 
182 #ifdef CONFIG_PCI_IOV
183 /* Configure the number of PCI-E Virtual Function which are to be instantiated
184  * on SR-IOV Capable Physical Functions.
185  */
186 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
187 
188 module_param_array(num_vf, uint, NULL, 0644);
189 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3, deprecated parameter - please use the pci sysfs interface.");
190 #endif
191 
192 /* TX Queue select used to determine what algorithm to use for selecting TX
193  * queue. Select between the kernel provided function (select_queue=0) or user
194  * cxgb_select_queue function (select_queue=1)
195  *
196  * Default: select_queue=0
197  */
198 static int select_queue;
199 module_param(select_queue, int, 0644);
200 MODULE_PARM_DESC(select_queue,
201 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
202 
203 static struct dentry *cxgb4_debugfs_root;
204 
205 LIST_HEAD(adapter_list);
206 DEFINE_MUTEX(uld_mutex);
207 
208 static void link_report(struct net_device *dev)
209 {
210 	if (!netif_carrier_ok(dev))
211 		netdev_info(dev, "link down\n");
212 	else {
213 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
214 
215 		const char *s;
216 		const struct port_info *p = netdev_priv(dev);
217 
218 		switch (p->link_cfg.speed) {
219 		case 10000:
220 			s = "10Gbps";
221 			break;
222 		case 1000:
223 			s = "1000Mbps";
224 			break;
225 		case 100:
226 			s = "100Mbps";
227 			break;
228 		case 40000:
229 			s = "40Gbps";
230 			break;
231 		default:
232 			pr_info("%s: unsupported speed: %d\n",
233 				dev->name, p->link_cfg.speed);
234 			return;
235 		}
236 
237 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
238 			    fc[p->link_cfg.fc]);
239 	}
240 }
241 
242 #ifdef CONFIG_CHELSIO_T4_DCB
243 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
244 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
245 {
246 	struct port_info *pi = netdev_priv(dev);
247 	struct adapter *adap = pi->adapter;
248 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
249 	int i;
250 
251 	/* We use a simple mapping of Port TX Queue Index to DCB
252 	 * Priority when we're enabling DCB.
253 	 */
254 	for (i = 0; i < pi->nqsets; i++, txq++) {
255 		u32 name, value;
256 		int err;
257 
258 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
259 			FW_PARAMS_PARAM_X_V(
260 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
261 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
262 		value = enable ? i : 0xffffffff;
263 
264 		/* Since we can be called while atomic (from "interrupt
265 		 * level") we need to issue the Set Parameters Commannd
266 		 * without sleeping (timeout < 0).
267 		 */
268 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
269 					    &name, &value,
270 					    -FW_CMD_MAX_TIMEOUT);
271 
272 		if (err)
273 			dev_err(adap->pdev_dev,
274 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
275 				enable ? "set" : "unset", pi->port_id, i, -err);
276 		else
277 			txq->dcb_prio = value;
278 	}
279 }
280 
281 static int cxgb4_dcb_enabled(const struct net_device *dev)
282 {
283 	struct port_info *pi = netdev_priv(dev);
284 
285 	if (!pi->dcb.enabled)
286 		return 0;
287 
288 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
289 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
290 }
291 #endif /* CONFIG_CHELSIO_T4_DCB */
292 
293 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
294 {
295 	struct net_device *dev = adapter->port[port_id];
296 
297 	/* Skip changes from disabled ports. */
298 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
299 		if (link_stat)
300 			netif_carrier_on(dev);
301 		else {
302 #ifdef CONFIG_CHELSIO_T4_DCB
303 			if (cxgb4_dcb_enabled(dev)) {
304 				cxgb4_dcb_state_init(dev);
305 				dcb_tx_queue_prio_enable(dev, false);
306 			}
307 #endif /* CONFIG_CHELSIO_T4_DCB */
308 			netif_carrier_off(dev);
309 		}
310 
311 		link_report(dev);
312 	}
313 }
314 
315 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
316 {
317 	static const char *mod_str[] = {
318 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
319 	};
320 
321 	const struct net_device *dev = adap->port[port_id];
322 	const struct port_info *pi = netdev_priv(dev);
323 
324 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
325 		netdev_info(dev, "port module unplugged\n");
326 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
327 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
328 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
329 		netdev_info(dev, "%s: unsupported port module inserted\n",
330 			    dev->name);
331 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
332 		netdev_info(dev, "%s: unknown port module inserted\n",
333 			    dev->name);
334 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
335 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
336 	else
337 		netdev_info(dev, "%s: unknown module type %d inserted\n",
338 			    dev->name, pi->mod_type);
339 }
340 
341 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
342 module_param(dbfifo_int_thresh, int, 0644);
343 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
344 
345 /*
346  * usecs to sleep while draining the dbfifo
347  */
348 static int dbfifo_drain_delay = 1000;
349 module_param(dbfifo_drain_delay, int, 0644);
350 MODULE_PARM_DESC(dbfifo_drain_delay,
351 		 "usecs to sleep while draining the dbfifo");
352 
353 static inline int cxgb4_set_addr_hash(struct port_info *pi)
354 {
355 	struct adapter *adap = pi->adapter;
356 	u64 vec = 0;
357 	bool ucast = false;
358 	struct hash_mac_addr *entry;
359 
360 	/* Calculate the hash vector for the updated list and program it */
361 	list_for_each_entry(entry, &adap->mac_hlist, list) {
362 		ucast |= is_unicast_ether_addr(entry->addr);
363 		vec |= (1ULL << hash_mac_addr(entry->addr));
364 	}
365 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
366 				vec, false);
367 }
368 
369 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
370 {
371 	struct port_info *pi = netdev_priv(netdev);
372 	struct adapter *adap = pi->adapter;
373 	int ret;
374 	u64 mhash = 0;
375 	u64 uhash = 0;
376 	bool free = false;
377 	bool ucast = is_unicast_ether_addr(mac_addr);
378 	const u8 *maclist[1] = {mac_addr};
379 	struct hash_mac_addr *new_entry;
380 
381 	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
382 				NULL, ucast ? &uhash : &mhash, false);
383 	if (ret < 0)
384 		goto out;
385 	/* if hash != 0, then add the addr to hash addr list
386 	 * so on the end we will calculate the hash for the
387 	 * list and program it
388 	 */
389 	if (uhash || mhash) {
390 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
391 		if (!new_entry)
392 			return -ENOMEM;
393 		ether_addr_copy(new_entry->addr, mac_addr);
394 		list_add_tail(&new_entry->list, &adap->mac_hlist);
395 		ret = cxgb4_set_addr_hash(pi);
396 	}
397 out:
398 	return ret < 0 ? ret : 0;
399 }
400 
401 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
402 {
403 	struct port_info *pi = netdev_priv(netdev);
404 	struct adapter *adap = pi->adapter;
405 	int ret;
406 	const u8 *maclist[1] = {mac_addr};
407 	struct hash_mac_addr *entry, *tmp;
408 
409 	/* If the MAC address to be removed is in the hash addr
410 	 * list, delete it from the list and update hash vector
411 	 */
412 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
413 		if (ether_addr_equal(entry->addr, mac_addr)) {
414 			list_del(&entry->list);
415 			kfree(entry);
416 			return cxgb4_set_addr_hash(pi);
417 		}
418 	}
419 
420 	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
421 	return ret < 0 ? -EINVAL : 0;
422 }
423 
424 /*
425  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
426  * If @mtu is -1 it is left unchanged.
427  */
428 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
429 {
430 	struct port_info *pi = netdev_priv(dev);
431 	struct adapter *adapter = pi->adapter;
432 
433 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
434 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
435 
436 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
437 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
438 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
439 			     sleep_ok);
440 }
441 
442 /**
443  *	link_start - enable a port
444  *	@dev: the port to enable
445  *
446  *	Performs the MAC and PHY actions needed to enable a port.
447  */
448 static int link_start(struct net_device *dev)
449 {
450 	int ret;
451 	struct port_info *pi = netdev_priv(dev);
452 	unsigned int mb = pi->adapter->pf;
453 
454 	/*
455 	 * We do not set address filters and promiscuity here, the stack does
456 	 * that step explicitly.
457 	 */
458 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
459 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
460 	if (ret == 0) {
461 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
462 				    pi->xact_addr_filt, dev->dev_addr, true,
463 				    true);
464 		if (ret >= 0) {
465 			pi->xact_addr_filt = ret;
466 			ret = 0;
467 		}
468 	}
469 	if (ret == 0)
470 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
471 				    &pi->link_cfg);
472 	if (ret == 0) {
473 		local_bh_disable();
474 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
475 					  true, CXGB4_DCB_ENABLED);
476 		local_bh_enable();
477 	}
478 
479 	return ret;
480 }
481 
482 #ifdef CONFIG_CHELSIO_T4_DCB
483 /* Handle a Data Center Bridging update message from the firmware. */
484 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
485 {
486 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
487 	struct net_device *dev = adap->port[adap->chan_map[port]];
488 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
489 	int new_dcb_enabled;
490 
491 	cxgb4_dcb_handle_fw_update(adap, pcmd);
492 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
493 
494 	/* If the DCB has become enabled or disabled on the port then we're
495 	 * going to need to set up/tear down DCB Priority parameters for the
496 	 * TX Queues associated with the port.
497 	 */
498 	if (new_dcb_enabled != old_dcb_enabled)
499 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
500 }
501 #endif /* CONFIG_CHELSIO_T4_DCB */
502 
503 /* Response queue handler for the FW event queue.
504  */
505 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
506 			  const struct pkt_gl *gl)
507 {
508 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
509 
510 	rsp++;                                          /* skip RSS header */
511 
512 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
513 	 */
514 	if (unlikely(opcode == CPL_FW4_MSG &&
515 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
516 		rsp++;
517 		opcode = ((const struct rss_header *)rsp)->opcode;
518 		rsp++;
519 		if (opcode != CPL_SGE_EGR_UPDATE) {
520 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
521 				, opcode);
522 			goto out;
523 		}
524 	}
525 
526 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
527 		const struct cpl_sge_egr_update *p = (void *)rsp;
528 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
529 		struct sge_txq *txq;
530 
531 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
532 		txq->restarts++;
533 		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
534 			struct sge_eth_txq *eq;
535 
536 			eq = container_of(txq, struct sge_eth_txq, q);
537 			netif_tx_wake_queue(eq->txq);
538 		} else {
539 			struct sge_ofld_txq *oq;
540 
541 			oq = container_of(txq, struct sge_ofld_txq, q);
542 			tasklet_schedule(&oq->qresume_tsk);
543 		}
544 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
545 		const struct cpl_fw6_msg *p = (void *)rsp;
546 
547 #ifdef CONFIG_CHELSIO_T4_DCB
548 		const struct fw_port_cmd *pcmd = (const void *)p->data;
549 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
550 		unsigned int action =
551 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
552 
553 		if (cmd == FW_PORT_CMD &&
554 		    action == FW_PORT_ACTION_GET_PORT_INFO) {
555 			int port = FW_PORT_CMD_PORTID_G(
556 					be32_to_cpu(pcmd->op_to_portid));
557 			struct net_device *dev =
558 				q->adap->port[q->adap->chan_map[port]];
559 			int state_input = ((pcmd->u.info.dcbxdis_pkd &
560 					    FW_PORT_CMD_DCBXDIS_F)
561 					   ? CXGB4_DCB_INPUT_FW_DISABLED
562 					   : CXGB4_DCB_INPUT_FW_ENABLED);
563 
564 			cxgb4_dcb_state_fsm(dev, state_input);
565 		}
566 
567 		if (cmd == FW_PORT_CMD &&
568 		    action == FW_PORT_ACTION_L2_DCB_CFG)
569 			dcb_rpl(q->adap, pcmd);
570 		else
571 #endif
572 			if (p->type == 0)
573 				t4_handle_fw_rpl(q->adap, p->data);
574 	} else if (opcode == CPL_L2T_WRITE_RPL) {
575 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
576 
577 		do_l2t_write_rpl(q->adap, p);
578 	} else if (opcode == CPL_SET_TCB_RPL) {
579 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
580 
581 		filter_rpl(q->adap, p);
582 	} else
583 		dev_err(q->adap->pdev_dev,
584 			"unexpected CPL %#x on FW event queue\n", opcode);
585 out:
586 	return 0;
587 }
588 
589 static void disable_msi(struct adapter *adapter)
590 {
591 	if (adapter->flags & USING_MSIX) {
592 		pci_disable_msix(adapter->pdev);
593 		adapter->flags &= ~USING_MSIX;
594 	} else if (adapter->flags & USING_MSI) {
595 		pci_disable_msi(adapter->pdev);
596 		adapter->flags &= ~USING_MSI;
597 	}
598 }
599 
600 /*
601  * Interrupt handler for non-data events used with MSI-X.
602  */
603 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
604 {
605 	struct adapter *adap = cookie;
606 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
607 
608 	if (v & PFSW_F) {
609 		adap->swintr = 1;
610 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
611 	}
612 	if (adap->flags & MASTER_PF)
613 		t4_slow_intr_handler(adap);
614 	return IRQ_HANDLED;
615 }
616 
617 /*
618  * Name the MSI-X interrupts.
619  */
620 static void name_msix_vecs(struct adapter *adap)
621 {
622 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
623 
624 	/* non-data interrupts */
625 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
626 
627 	/* FW events */
628 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
629 		 adap->port[0]->name);
630 
631 	/* Ethernet queues */
632 	for_each_port(adap, j) {
633 		struct net_device *d = adap->port[j];
634 		const struct port_info *pi = netdev_priv(d);
635 
636 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
637 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
638 				 d->name, i);
639 	}
640 }
641 
642 static int request_msix_queue_irqs(struct adapter *adap)
643 {
644 	struct sge *s = &adap->sge;
645 	int err, ethqidx;
646 	int msi_index = 2;
647 
648 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
649 			  adap->msix_info[1].desc, &s->fw_evtq);
650 	if (err)
651 		return err;
652 
653 	for_each_ethrxq(s, ethqidx) {
654 		err = request_irq(adap->msix_info[msi_index].vec,
655 				  t4_sge_intr_msix, 0,
656 				  adap->msix_info[msi_index].desc,
657 				  &s->ethrxq[ethqidx].rspq);
658 		if (err)
659 			goto unwind;
660 		msi_index++;
661 	}
662 	return 0;
663 
664 unwind:
665 	while (--ethqidx >= 0)
666 		free_irq(adap->msix_info[--msi_index].vec,
667 			 &s->ethrxq[ethqidx].rspq);
668 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
669 	return err;
670 }
671 
672 static void free_msix_queue_irqs(struct adapter *adap)
673 {
674 	int i, msi_index = 2;
675 	struct sge *s = &adap->sge;
676 
677 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
678 	for_each_ethrxq(s, i)
679 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
680 }
681 
682 /**
683  *	cxgb4_write_rss - write the RSS table for a given port
684  *	@pi: the port
685  *	@queues: array of queue indices for RSS
686  *
687  *	Sets up the portion of the HW RSS table for the port's VI to distribute
688  *	packets to the Rx queues in @queues.
689  *	Should never be called before setting up sge eth rx queues
690  */
691 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
692 {
693 	u16 *rss;
694 	int i, err;
695 	struct adapter *adapter = pi->adapter;
696 	const struct sge_eth_rxq *rxq;
697 
698 	rxq = &adapter->sge.ethrxq[pi->first_qset];
699 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
700 	if (!rss)
701 		return -ENOMEM;
702 
703 	/* map the queue indices to queue ids */
704 	for (i = 0; i < pi->rss_size; i++, queues++)
705 		rss[i] = rxq[*queues].rspq.abs_id;
706 
707 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
708 				  pi->rss_size, rss, pi->rss_size);
709 	/* If Tunnel All Lookup isn't specified in the global RSS
710 	 * Configuration, then we need to specify a default Ingress
711 	 * Queue for any ingress packets which aren't hashed.  We'll
712 	 * use our first ingress queue ...
713 	 */
714 	if (!err)
715 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
716 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
717 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
718 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
719 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
720 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
721 				       rss[0]);
722 	kfree(rss);
723 	return err;
724 }
725 
726 /**
727  *	setup_rss - configure RSS
728  *	@adap: the adapter
729  *
730  *	Sets up RSS for each port.
731  */
732 static int setup_rss(struct adapter *adap)
733 {
734 	int i, j, err;
735 
736 	for_each_port(adap, i) {
737 		const struct port_info *pi = adap2pinfo(adap, i);
738 
739 		/* Fill default values with equal distribution */
740 		for (j = 0; j < pi->rss_size; j++)
741 			pi->rss[j] = j % pi->nqsets;
742 
743 		err = cxgb4_write_rss(pi, pi->rss);
744 		if (err)
745 			return err;
746 	}
747 	return 0;
748 }
749 
750 /*
751  * Return the channel of the ingress queue with the given qid.
752  */
753 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
754 {
755 	qid -= p->ingr_start;
756 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
757 }
758 
759 /*
760  * Wait until all NAPI handlers are descheduled.
761  */
762 static void quiesce_rx(struct adapter *adap)
763 {
764 	int i;
765 
766 	for (i = 0; i < adap->sge.ingr_sz; i++) {
767 		struct sge_rspq *q = adap->sge.ingr_map[i];
768 
769 		if (q && q->handler) {
770 			napi_disable(&q->napi);
771 			local_bh_disable();
772 			while (!cxgb_poll_lock_napi(q))
773 				mdelay(1);
774 			local_bh_enable();
775 		}
776 
777 	}
778 }
779 
780 /* Disable interrupt and napi handler */
781 static void disable_interrupts(struct adapter *adap)
782 {
783 	if (adap->flags & FULL_INIT_DONE) {
784 		t4_intr_disable(adap);
785 		if (adap->flags & USING_MSIX) {
786 			free_msix_queue_irqs(adap);
787 			free_irq(adap->msix_info[0].vec, adap);
788 		} else {
789 			free_irq(adap->pdev->irq, adap);
790 		}
791 		quiesce_rx(adap);
792 	}
793 }
794 
795 /*
796  * Enable NAPI scheduling and interrupt generation for all Rx queues.
797  */
798 static void enable_rx(struct adapter *adap)
799 {
800 	int i;
801 
802 	for (i = 0; i < adap->sge.ingr_sz; i++) {
803 		struct sge_rspq *q = adap->sge.ingr_map[i];
804 
805 		if (!q)
806 			continue;
807 		if (q->handler) {
808 			cxgb_busy_poll_init_lock(q);
809 			napi_enable(&q->napi);
810 		}
811 		/* 0-increment GTS to start the timer and enable interrupts */
812 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
813 			     SEINTARM_V(q->intr_params) |
814 			     INGRESSQID_V(q->cntxt_id));
815 	}
816 }
817 
818 
819 static int setup_fw_sge_queues(struct adapter *adap)
820 {
821 	struct sge *s = &adap->sge;
822 	int err = 0;
823 
824 	bitmap_zero(s->starving_fl, s->egr_sz);
825 	bitmap_zero(s->txq_maperr, s->egr_sz);
826 
827 	if (adap->flags & USING_MSIX)
828 		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
829 	else {
830 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
831 				       NULL, NULL, NULL, -1);
832 		if (err)
833 			return err;
834 		adap->msi_idx = -((int)s->intrq.abs_id + 1);
835 	}
836 
837 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
838 			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
839 	if (err)
840 		t4_free_sge_resources(adap);
841 	return err;
842 }
843 
844 /**
845  *	setup_sge_queues - configure SGE Tx/Rx/response queues
846  *	@adap: the adapter
847  *
848  *	Determines how many sets of SGE queues to use and initializes them.
849  *	We support multiple queue sets per port if we have MSI-X, otherwise
850  *	just one queue set per port.
851  */
852 static int setup_sge_queues(struct adapter *adap)
853 {
854 	int err, i, j;
855 	struct sge *s = &adap->sge;
856 	struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
857 	unsigned int cmplqid = 0;
858 
859 	for_each_port(adap, i) {
860 		struct net_device *dev = adap->port[i];
861 		struct port_info *pi = netdev_priv(dev);
862 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
863 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
864 
865 		for (j = 0; j < pi->nqsets; j++, q++) {
866 			if (adap->msi_idx > 0)
867 				adap->msi_idx++;
868 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
869 					       adap->msi_idx, &q->fl,
870 					       t4_ethrx_handler,
871 					       NULL,
872 					       t4_get_mps_bg_map(adap,
873 								 pi->tx_chan));
874 			if (err)
875 				goto freeout;
876 			q->rspq.idx = j;
877 			memset(&q->stats, 0, sizeof(q->stats));
878 		}
879 		for (j = 0; j < pi->nqsets; j++, t++) {
880 			err = t4_sge_alloc_eth_txq(adap, t, dev,
881 					netdev_get_tx_queue(dev, j),
882 					s->fw_evtq.cntxt_id);
883 			if (err)
884 				goto freeout;
885 		}
886 	}
887 
888 	j = s->ofldqsets / adap->params.nports; /* iscsi queues per channel */
889 	for_each_ofldtxq(s, i) {
890 		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
891 					    adap->port[i / j],
892 					    s->fw_evtq.cntxt_id);
893 		if (err)
894 			goto freeout;
895 	}
896 
897 	for_each_port(adap, i) {
898 		/* Note that cmplqid below is 0 if we don't
899 		 * have RDMA queues, and that's the right value.
900 		 */
901 		if (rxq_info)
902 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
903 
904 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
905 					    s->fw_evtq.cntxt_id, cmplqid);
906 		if (err)
907 			goto freeout;
908 	}
909 
910 	t4_write_reg(adap, is_t4(adap->params.chip) ?
911 				MPS_TRC_RSS_CONTROL_A :
912 				MPS_T5_TRC_RSS_CONTROL_A,
913 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
914 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
915 	return 0;
916 freeout:
917 	t4_free_sge_resources(adap);
918 	return err;
919 }
920 
921 /*
922  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
923  * The allocated memory is cleared.
924  */
925 void *t4_alloc_mem(size_t size)
926 {
927 	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
928 
929 	if (!p)
930 		p = vzalloc(size);
931 	return p;
932 }
933 
934 /*
935  * Free memory allocated through alloc_mem().
936  */
937 void t4_free_mem(void *addr)
938 {
939 	kvfree(addr);
940 }
941 
942 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
943 			     void *accel_priv, select_queue_fallback_t fallback)
944 {
945 	int txq;
946 
947 #ifdef CONFIG_CHELSIO_T4_DCB
948 	/* If a Data Center Bridging has been successfully negotiated on this
949 	 * link then we'll use the skb's priority to map it to a TX Queue.
950 	 * The skb's priority is determined via the VLAN Tag Priority Code
951 	 * Point field.
952 	 */
953 	if (cxgb4_dcb_enabled(dev)) {
954 		u16 vlan_tci;
955 		int err;
956 
957 		err = vlan_get_tag(skb, &vlan_tci);
958 		if (unlikely(err)) {
959 			if (net_ratelimit())
960 				netdev_warn(dev,
961 					    "TX Packet without VLAN Tag on DCB Link\n");
962 			txq = 0;
963 		} else {
964 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
965 #ifdef CONFIG_CHELSIO_T4_FCOE
966 			if (skb->protocol == htons(ETH_P_FCOE))
967 				txq = skb->priority & 0x7;
968 #endif /* CONFIG_CHELSIO_T4_FCOE */
969 		}
970 		return txq;
971 	}
972 #endif /* CONFIG_CHELSIO_T4_DCB */
973 
974 	if (select_queue) {
975 		txq = (skb_rx_queue_recorded(skb)
976 			? skb_get_rx_queue(skb)
977 			: smp_processor_id());
978 
979 		while (unlikely(txq >= dev->real_num_tx_queues))
980 			txq -= dev->real_num_tx_queues;
981 
982 		return txq;
983 	}
984 
985 	return fallback(dev, skb) % dev->real_num_tx_queues;
986 }
987 
988 static int closest_timer(const struct sge *s, int time)
989 {
990 	int i, delta, match = 0, min_delta = INT_MAX;
991 
992 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
993 		delta = time - s->timer_val[i];
994 		if (delta < 0)
995 			delta = -delta;
996 		if (delta < min_delta) {
997 			min_delta = delta;
998 			match = i;
999 		}
1000 	}
1001 	return match;
1002 }
1003 
1004 static int closest_thres(const struct sge *s, int thres)
1005 {
1006 	int i, delta, match = 0, min_delta = INT_MAX;
1007 
1008 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1009 		delta = thres - s->counter_val[i];
1010 		if (delta < 0)
1011 			delta = -delta;
1012 		if (delta < min_delta) {
1013 			min_delta = delta;
1014 			match = i;
1015 		}
1016 	}
1017 	return match;
1018 }
1019 
1020 /**
1021  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1022  *	@q: the Rx queue
1023  *	@us: the hold-off time in us, or 0 to disable timer
1024  *	@cnt: the hold-off packet count, or 0 to disable counter
1025  *
1026  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1027  *	one of the two needs to be enabled for the queue to generate interrupts.
1028  */
1029 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1030 			       unsigned int us, unsigned int cnt)
1031 {
1032 	struct adapter *adap = q->adap;
1033 
1034 	if ((us | cnt) == 0)
1035 		cnt = 1;
1036 
1037 	if (cnt) {
1038 		int err;
1039 		u32 v, new_idx;
1040 
1041 		new_idx = closest_thres(&adap->sge, cnt);
1042 		if (q->desc && q->pktcnt_idx != new_idx) {
1043 			/* the queue has already been created, update it */
1044 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1045 			    FW_PARAMS_PARAM_X_V(
1046 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1047 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1048 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1049 					    &v, &new_idx);
1050 			if (err)
1051 				return err;
1052 		}
1053 		q->pktcnt_idx = new_idx;
1054 	}
1055 
1056 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1057 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1058 	return 0;
1059 }
1060 
1061 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1062 {
1063 	const struct port_info *pi = netdev_priv(dev);
1064 	netdev_features_t changed = dev->features ^ features;
1065 	int err;
1066 
1067 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1068 		return 0;
1069 
1070 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1071 			    -1, -1, -1,
1072 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1073 	if (unlikely(err))
1074 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1075 	return err;
1076 }
1077 
1078 static int setup_debugfs(struct adapter *adap)
1079 {
1080 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1081 		return -1;
1082 
1083 #ifdef CONFIG_DEBUG_FS
1084 	t4_setup_debugfs(adap);
1085 #endif
1086 	return 0;
1087 }
1088 
1089 /*
1090  * upper-layer driver support
1091  */
1092 
1093 /*
1094  * Allocate an active-open TID and set it to the supplied value.
1095  */
1096 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1097 {
1098 	int atid = -1;
1099 
1100 	spin_lock_bh(&t->atid_lock);
1101 	if (t->afree) {
1102 		union aopen_entry *p = t->afree;
1103 
1104 		atid = (p - t->atid_tab) + t->atid_base;
1105 		t->afree = p->next;
1106 		p->data = data;
1107 		t->atids_in_use++;
1108 	}
1109 	spin_unlock_bh(&t->atid_lock);
1110 	return atid;
1111 }
1112 EXPORT_SYMBOL(cxgb4_alloc_atid);
1113 
1114 /*
1115  * Release an active-open TID.
1116  */
1117 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1118 {
1119 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1120 
1121 	spin_lock_bh(&t->atid_lock);
1122 	p->next = t->afree;
1123 	t->afree = p;
1124 	t->atids_in_use--;
1125 	spin_unlock_bh(&t->atid_lock);
1126 }
1127 EXPORT_SYMBOL(cxgb4_free_atid);
1128 
1129 /*
1130  * Allocate a server TID and set it to the supplied value.
1131  */
1132 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1133 {
1134 	int stid;
1135 
1136 	spin_lock_bh(&t->stid_lock);
1137 	if (family == PF_INET) {
1138 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1139 		if (stid < t->nstids)
1140 			__set_bit(stid, t->stid_bmap);
1141 		else
1142 			stid = -1;
1143 	} else {
1144 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1145 		if (stid < 0)
1146 			stid = -1;
1147 	}
1148 	if (stid >= 0) {
1149 		t->stid_tab[stid].data = data;
1150 		stid += t->stid_base;
1151 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1152 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1153 		 * needs 2 TIDs.
1154 		 */
1155 		if (family == PF_INET)
1156 			t->stids_in_use++;
1157 		else
1158 			t->stids_in_use += 2;
1159 	}
1160 	spin_unlock_bh(&t->stid_lock);
1161 	return stid;
1162 }
1163 EXPORT_SYMBOL(cxgb4_alloc_stid);
1164 
1165 /* Allocate a server filter TID and set it to the supplied value.
1166  */
1167 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1168 {
1169 	int stid;
1170 
1171 	spin_lock_bh(&t->stid_lock);
1172 	if (family == PF_INET) {
1173 		stid = find_next_zero_bit(t->stid_bmap,
1174 				t->nstids + t->nsftids, t->nstids);
1175 		if (stid < (t->nstids + t->nsftids))
1176 			__set_bit(stid, t->stid_bmap);
1177 		else
1178 			stid = -1;
1179 	} else {
1180 		stid = -1;
1181 	}
1182 	if (stid >= 0) {
1183 		t->stid_tab[stid].data = data;
1184 		stid -= t->nstids;
1185 		stid += t->sftid_base;
1186 		t->sftids_in_use++;
1187 	}
1188 	spin_unlock_bh(&t->stid_lock);
1189 	return stid;
1190 }
1191 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1192 
1193 /* Release a server TID.
1194  */
1195 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1196 {
1197 	/* Is it a server filter TID? */
1198 	if (t->nsftids && (stid >= t->sftid_base)) {
1199 		stid -= t->sftid_base;
1200 		stid += t->nstids;
1201 	} else {
1202 		stid -= t->stid_base;
1203 	}
1204 
1205 	spin_lock_bh(&t->stid_lock);
1206 	if (family == PF_INET)
1207 		__clear_bit(stid, t->stid_bmap);
1208 	else
1209 		bitmap_release_region(t->stid_bmap, stid, 1);
1210 	t->stid_tab[stid].data = NULL;
1211 	if (stid < t->nstids) {
1212 		if (family == PF_INET)
1213 			t->stids_in_use--;
1214 		else
1215 			t->stids_in_use -= 2;
1216 	} else {
1217 		t->sftids_in_use--;
1218 	}
1219 	spin_unlock_bh(&t->stid_lock);
1220 }
1221 EXPORT_SYMBOL(cxgb4_free_stid);
1222 
1223 /*
1224  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1225  */
1226 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1227 			   unsigned int tid)
1228 {
1229 	struct cpl_tid_release *req;
1230 
1231 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1232 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1233 	INIT_TP_WR(req, tid);
1234 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1235 }
1236 
1237 /*
1238  * Queue a TID release request and if necessary schedule a work queue to
1239  * process it.
1240  */
1241 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1242 				    unsigned int tid)
1243 {
1244 	void **p = &t->tid_tab[tid];
1245 	struct adapter *adap = container_of(t, struct adapter, tids);
1246 
1247 	spin_lock_bh(&adap->tid_release_lock);
1248 	*p = adap->tid_release_head;
1249 	/* Low 2 bits encode the Tx channel number */
1250 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1251 	if (!adap->tid_release_task_busy) {
1252 		adap->tid_release_task_busy = true;
1253 		queue_work(adap->workq, &adap->tid_release_task);
1254 	}
1255 	spin_unlock_bh(&adap->tid_release_lock);
1256 }
1257 
1258 /*
1259  * Process the list of pending TID release requests.
1260  */
1261 static void process_tid_release_list(struct work_struct *work)
1262 {
1263 	struct sk_buff *skb;
1264 	struct adapter *adap;
1265 
1266 	adap = container_of(work, struct adapter, tid_release_task);
1267 
1268 	spin_lock_bh(&adap->tid_release_lock);
1269 	while (adap->tid_release_head) {
1270 		void **p = adap->tid_release_head;
1271 		unsigned int chan = (uintptr_t)p & 3;
1272 		p = (void *)p - chan;
1273 
1274 		adap->tid_release_head = *p;
1275 		*p = NULL;
1276 		spin_unlock_bh(&adap->tid_release_lock);
1277 
1278 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1279 					 GFP_KERNEL)))
1280 			schedule_timeout_uninterruptible(1);
1281 
1282 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1283 		t4_ofld_send(adap, skb);
1284 		spin_lock_bh(&adap->tid_release_lock);
1285 	}
1286 	adap->tid_release_task_busy = false;
1287 	spin_unlock_bh(&adap->tid_release_lock);
1288 }
1289 
1290 /*
1291  * Release a TID and inform HW.  If we are unable to allocate the release
1292  * message we defer to a work queue.
1293  */
1294 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1295 {
1296 	struct sk_buff *skb;
1297 	struct adapter *adap = container_of(t, struct adapter, tids);
1298 
1299 	WARN_ON(tid >= t->ntids);
1300 
1301 	if (t->tid_tab[tid]) {
1302 		t->tid_tab[tid] = NULL;
1303 		if (t->hash_base && (tid >= t->hash_base))
1304 			atomic_dec(&t->hash_tids_in_use);
1305 		else
1306 			atomic_dec(&t->tids_in_use);
1307 	}
1308 
1309 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1310 	if (likely(skb)) {
1311 		mk_tid_release(skb, chan, tid);
1312 		t4_ofld_send(adap, skb);
1313 	} else
1314 		cxgb4_queue_tid_release(t, chan, tid);
1315 }
1316 EXPORT_SYMBOL(cxgb4_remove_tid);
1317 
1318 /*
1319  * Allocate and initialize the TID tables.  Returns 0 on success.
1320  */
1321 static int tid_init(struct tid_info *t)
1322 {
1323 	struct adapter *adap = container_of(t, struct adapter, tids);
1324 	unsigned int max_ftids = t->nftids + t->nsftids;
1325 	unsigned int natids = t->natids;
1326 	unsigned int stid_bmap_size;
1327 	unsigned int ftid_bmap_size;
1328 	size_t size;
1329 
1330 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1331 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1332 	size = t->ntids * sizeof(*t->tid_tab) +
1333 	       natids * sizeof(*t->atid_tab) +
1334 	       t->nstids * sizeof(*t->stid_tab) +
1335 	       t->nsftids * sizeof(*t->stid_tab) +
1336 	       stid_bmap_size * sizeof(long) +
1337 	       max_ftids * sizeof(*t->ftid_tab) +
1338 	       ftid_bmap_size * sizeof(long);
1339 
1340 	t->tid_tab = t4_alloc_mem(size);
1341 	if (!t->tid_tab)
1342 		return -ENOMEM;
1343 
1344 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1345 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1346 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1347 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1348 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1349 	spin_lock_init(&t->stid_lock);
1350 	spin_lock_init(&t->atid_lock);
1351 	spin_lock_init(&t->ftid_lock);
1352 
1353 	t->stids_in_use = 0;
1354 	t->sftids_in_use = 0;
1355 	t->afree = NULL;
1356 	t->atids_in_use = 0;
1357 	atomic_set(&t->tids_in_use, 0);
1358 	atomic_set(&t->hash_tids_in_use, 0);
1359 
1360 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1361 	if (natids) {
1362 		while (--natids)
1363 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1364 		t->afree = t->atid_tab;
1365 	}
1366 
1367 	if (is_offload(adap)) {
1368 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1369 		/* Reserve stid 0 for T4/T5 adapters */
1370 		if (!t->stid_base &&
1371 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1372 			__set_bit(0, t->stid_bmap);
1373 	}
1374 
1375 	bitmap_zero(t->ftid_bmap, t->nftids);
1376 	return 0;
1377 }
1378 
1379 /**
1380  *	cxgb4_create_server - create an IP server
1381  *	@dev: the device
1382  *	@stid: the server TID
1383  *	@sip: local IP address to bind server to
1384  *	@sport: the server's TCP port
1385  *	@queue: queue to direct messages from this server to
1386  *
1387  *	Create an IP server for the given port and address.
1388  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1389  */
1390 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1391 			__be32 sip, __be16 sport, __be16 vlan,
1392 			unsigned int queue)
1393 {
1394 	unsigned int chan;
1395 	struct sk_buff *skb;
1396 	struct adapter *adap;
1397 	struct cpl_pass_open_req *req;
1398 	int ret;
1399 
1400 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1401 	if (!skb)
1402 		return -ENOMEM;
1403 
1404 	adap = netdev2adap(dev);
1405 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1406 	INIT_TP_WR(req, 0);
1407 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1408 	req->local_port = sport;
1409 	req->peer_port = htons(0);
1410 	req->local_ip = sip;
1411 	req->peer_ip = htonl(0);
1412 	chan = rxq_to_chan(&adap->sge, queue);
1413 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1414 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1415 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1416 	ret = t4_mgmt_tx(adap, skb);
1417 	return net_xmit_eval(ret);
1418 }
1419 EXPORT_SYMBOL(cxgb4_create_server);
1420 
1421 /*	cxgb4_create_server6 - create an IPv6 server
1422  *	@dev: the device
1423  *	@stid: the server TID
1424  *	@sip: local IPv6 address to bind server to
1425  *	@sport: the server's TCP port
1426  *	@queue: queue to direct messages from this server to
1427  *
1428  *	Create an IPv6 server for the given port and address.
1429  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1430  */
1431 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1432 			 const struct in6_addr *sip, __be16 sport,
1433 			 unsigned int queue)
1434 {
1435 	unsigned int chan;
1436 	struct sk_buff *skb;
1437 	struct adapter *adap;
1438 	struct cpl_pass_open_req6 *req;
1439 	int ret;
1440 
1441 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1442 	if (!skb)
1443 		return -ENOMEM;
1444 
1445 	adap = netdev2adap(dev);
1446 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1447 	INIT_TP_WR(req, 0);
1448 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1449 	req->local_port = sport;
1450 	req->peer_port = htons(0);
1451 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1452 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1453 	req->peer_ip_hi = cpu_to_be64(0);
1454 	req->peer_ip_lo = cpu_to_be64(0);
1455 	chan = rxq_to_chan(&adap->sge, queue);
1456 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1457 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1458 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1459 	ret = t4_mgmt_tx(adap, skb);
1460 	return net_xmit_eval(ret);
1461 }
1462 EXPORT_SYMBOL(cxgb4_create_server6);
1463 
1464 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1465 			unsigned int queue, bool ipv6)
1466 {
1467 	struct sk_buff *skb;
1468 	struct adapter *adap;
1469 	struct cpl_close_listsvr_req *req;
1470 	int ret;
1471 
1472 	adap = netdev2adap(dev);
1473 
1474 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1475 	if (!skb)
1476 		return -ENOMEM;
1477 
1478 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1479 	INIT_TP_WR(req, 0);
1480 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1481 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1482 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1483 	ret = t4_mgmt_tx(adap, skb);
1484 	return net_xmit_eval(ret);
1485 }
1486 EXPORT_SYMBOL(cxgb4_remove_server);
1487 
1488 /**
1489  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1490  *	@mtus: the HW MTU table
1491  *	@mtu: the target MTU
1492  *	@idx: index of selected entry in the MTU table
1493  *
1494  *	Returns the index and the value in the HW MTU table that is closest to
1495  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1496  *	table, in which case that smallest available value is selected.
1497  */
1498 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1499 			    unsigned int *idx)
1500 {
1501 	unsigned int i = 0;
1502 
1503 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1504 		++i;
1505 	if (idx)
1506 		*idx = i;
1507 	return mtus[i];
1508 }
1509 EXPORT_SYMBOL(cxgb4_best_mtu);
1510 
1511 /**
1512  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1513  *     @mtus: the HW MTU table
1514  *     @header_size: Header Size
1515  *     @data_size_max: maximum Data Segment Size
1516  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1517  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1518  *
1519  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1520  *     MTU Table based solely on a Maximum MTU parameter, we break that
1521  *     parameter up into a Header Size and Maximum Data Segment Size, and
1522  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1523  *     the Hardware MTU Table which will result in a Data Segment Size with
1524  *     the requested alignment _and_ that MTU isn't "too far" from the
1525  *     closest MTU, then we'll return that rather than the closest MTU.
1526  */
1527 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1528 				    unsigned short header_size,
1529 				    unsigned short data_size_max,
1530 				    unsigned short data_size_align,
1531 				    unsigned int *mtu_idxp)
1532 {
1533 	unsigned short max_mtu = header_size + data_size_max;
1534 	unsigned short data_size_align_mask = data_size_align - 1;
1535 	int mtu_idx, aligned_mtu_idx;
1536 
1537 	/* Scan the MTU Table till we find an MTU which is larger than our
1538 	 * Maximum MTU or we reach the end of the table.  Along the way,
1539 	 * record the last MTU found, if any, which will result in a Data
1540 	 * Segment Length matching the requested alignment.
1541 	 */
1542 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1543 		unsigned short data_size = mtus[mtu_idx] - header_size;
1544 
1545 		/* If this MTU minus the Header Size would result in a
1546 		 * Data Segment Size of the desired alignment, remember it.
1547 		 */
1548 		if ((data_size & data_size_align_mask) == 0)
1549 			aligned_mtu_idx = mtu_idx;
1550 
1551 		/* If we're not at the end of the Hardware MTU Table and the
1552 		 * next element is larger than our Maximum MTU, drop out of
1553 		 * the loop.
1554 		 */
1555 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1556 			break;
1557 	}
1558 
1559 	/* If we fell out of the loop because we ran to the end of the table,
1560 	 * then we just have to use the last [largest] entry.
1561 	 */
1562 	if (mtu_idx == NMTUS)
1563 		mtu_idx--;
1564 
1565 	/* If we found an MTU which resulted in the requested Data Segment
1566 	 * Length alignment and that's "not far" from the largest MTU which is
1567 	 * less than or equal to the maximum MTU, then use that.
1568 	 */
1569 	if (aligned_mtu_idx >= 0 &&
1570 	    mtu_idx - aligned_mtu_idx <= 1)
1571 		mtu_idx = aligned_mtu_idx;
1572 
1573 	/* If the caller has passed in an MTU Index pointer, pass the
1574 	 * MTU Index back.  Return the MTU value.
1575 	 */
1576 	if (mtu_idxp)
1577 		*mtu_idxp = mtu_idx;
1578 	return mtus[mtu_idx];
1579 }
1580 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1581 
1582 /**
1583  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1584  *	@chip: chip type
1585  *	@viid: VI id of the given port
1586  *
1587  *	Return the SMT index for this VI.
1588  */
1589 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1590 {
1591 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1592 	 * 128 rows of 2 entries each.
1593 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1594 	 * TODO: The below code needs to be updated when we add support
1595 	 * for 256 VFs.
1596 	 */
1597 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1598 		return ((viid & 0x7f) << 1);
1599 	else
1600 		return (viid & 0x7f);
1601 }
1602 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1603 
1604 /**
1605  *	cxgb4_port_chan - get the HW channel of a port
1606  *	@dev: the net device for the port
1607  *
1608  *	Return the HW Tx channel of the given port.
1609  */
1610 unsigned int cxgb4_port_chan(const struct net_device *dev)
1611 {
1612 	return netdev2pinfo(dev)->tx_chan;
1613 }
1614 EXPORT_SYMBOL(cxgb4_port_chan);
1615 
1616 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1617 {
1618 	struct adapter *adap = netdev2adap(dev);
1619 	u32 v1, v2, lp_count, hp_count;
1620 
1621 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1622 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1623 	if (is_t4(adap->params.chip)) {
1624 		lp_count = LP_COUNT_G(v1);
1625 		hp_count = HP_COUNT_G(v1);
1626 	} else {
1627 		lp_count = LP_COUNT_T5_G(v1);
1628 		hp_count = HP_COUNT_T5_G(v2);
1629 	}
1630 	return lpfifo ? lp_count : hp_count;
1631 }
1632 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1633 
1634 /**
1635  *	cxgb4_port_viid - get the VI id of a port
1636  *	@dev: the net device for the port
1637  *
1638  *	Return the VI id of the given port.
1639  */
1640 unsigned int cxgb4_port_viid(const struct net_device *dev)
1641 {
1642 	return netdev2pinfo(dev)->viid;
1643 }
1644 EXPORT_SYMBOL(cxgb4_port_viid);
1645 
1646 /**
1647  *	cxgb4_port_idx - get the index of a port
1648  *	@dev: the net device for the port
1649  *
1650  *	Return the index of the given port.
1651  */
1652 unsigned int cxgb4_port_idx(const struct net_device *dev)
1653 {
1654 	return netdev2pinfo(dev)->port_id;
1655 }
1656 EXPORT_SYMBOL(cxgb4_port_idx);
1657 
1658 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1659 			 struct tp_tcp_stats *v6)
1660 {
1661 	struct adapter *adap = pci_get_drvdata(pdev);
1662 
1663 	spin_lock(&adap->stats_lock);
1664 	t4_tp_get_tcp_stats(adap, v4, v6);
1665 	spin_unlock(&adap->stats_lock);
1666 }
1667 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1668 
1669 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1670 		      const unsigned int *pgsz_order)
1671 {
1672 	struct adapter *adap = netdev2adap(dev);
1673 
1674 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1675 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1676 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1677 		     HPZ3_V(pgsz_order[3]));
1678 }
1679 EXPORT_SYMBOL(cxgb4_iscsi_init);
1680 
1681 int cxgb4_flush_eq_cache(struct net_device *dev)
1682 {
1683 	struct adapter *adap = netdev2adap(dev);
1684 
1685 	return t4_sge_ctxt_flush(adap, adap->mbox);
1686 }
1687 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1688 
1689 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1690 {
1691 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1692 	__be64 indices;
1693 	int ret;
1694 
1695 	spin_lock(&adap->win0_lock);
1696 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1697 			   sizeof(indices), (__be32 *)&indices,
1698 			   T4_MEMORY_READ);
1699 	spin_unlock(&adap->win0_lock);
1700 	if (!ret) {
1701 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1702 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1703 	}
1704 	return ret;
1705 }
1706 
1707 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1708 			u16 size)
1709 {
1710 	struct adapter *adap = netdev2adap(dev);
1711 	u16 hw_pidx, hw_cidx;
1712 	int ret;
1713 
1714 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1715 	if (ret)
1716 		goto out;
1717 
1718 	if (pidx != hw_pidx) {
1719 		u16 delta;
1720 		u32 val;
1721 
1722 		if (pidx >= hw_pidx)
1723 			delta = pidx - hw_pidx;
1724 		else
1725 			delta = size - hw_pidx + pidx;
1726 
1727 		if (is_t4(adap->params.chip))
1728 			val = PIDX_V(delta);
1729 		else
1730 			val = PIDX_T5_V(delta);
1731 		wmb();
1732 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1733 			     QID_V(qid) | val);
1734 	}
1735 out:
1736 	return ret;
1737 }
1738 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1739 
1740 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1741 {
1742 	struct adapter *adap;
1743 	u32 offset, memtype, memaddr;
1744 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1745 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1746 	int ret;
1747 
1748 	adap = netdev2adap(dev);
1749 
1750 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1751 
1752 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1753 	 * This code assumes that the memory is laid out starting at offset 0
1754 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1755 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1756 	 * MC0, and some have both MC0 and MC1.
1757 	 */
1758 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1759 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1760 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1761 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1762 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1763 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1764 
1765 	edc0_end = edc0_size;
1766 	edc1_end = edc0_end + edc1_size;
1767 	mc0_end = edc1_end + mc0_size;
1768 
1769 	if (offset < edc0_end) {
1770 		memtype = MEM_EDC0;
1771 		memaddr = offset;
1772 	} else if (offset < edc1_end) {
1773 		memtype = MEM_EDC1;
1774 		memaddr = offset - edc0_end;
1775 	} else {
1776 		if (offset < mc0_end) {
1777 			memtype = MEM_MC0;
1778 			memaddr = offset - edc1_end;
1779 		} else if (is_t5(adap->params.chip)) {
1780 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1781 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1782 			mc1_end = mc0_end + mc1_size;
1783 			if (offset < mc1_end) {
1784 				memtype = MEM_MC1;
1785 				memaddr = offset - mc0_end;
1786 			} else {
1787 				/* offset beyond the end of any memory */
1788 				goto err;
1789 			}
1790 		} else {
1791 			/* T4/T6 only has a single memory channel */
1792 			goto err;
1793 		}
1794 	}
1795 
1796 	spin_lock(&adap->win0_lock);
1797 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1798 	spin_unlock(&adap->win0_lock);
1799 	return ret;
1800 
1801 err:
1802 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1803 		stag, offset);
1804 	return -EINVAL;
1805 }
1806 EXPORT_SYMBOL(cxgb4_read_tpte);
1807 
1808 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1809 {
1810 	u32 hi, lo;
1811 	struct adapter *adap;
1812 
1813 	adap = netdev2adap(dev);
1814 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1815 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1816 
1817 	return ((u64)hi << 32) | (u64)lo;
1818 }
1819 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1820 
1821 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1822 			 unsigned int qid,
1823 			 enum cxgb4_bar2_qtype qtype,
1824 			 int user,
1825 			 u64 *pbar2_qoffset,
1826 			 unsigned int *pbar2_qid)
1827 {
1828 	return t4_bar2_sge_qregs(netdev2adap(dev),
1829 				 qid,
1830 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1831 				  ? T4_BAR2_QTYPE_EGRESS
1832 				  : T4_BAR2_QTYPE_INGRESS),
1833 				 user,
1834 				 pbar2_qoffset,
1835 				 pbar2_qid);
1836 }
1837 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1838 
1839 static struct pci_driver cxgb4_driver;
1840 
1841 static void check_neigh_update(struct neighbour *neigh)
1842 {
1843 	const struct device *parent;
1844 	const struct net_device *netdev = neigh->dev;
1845 
1846 	if (netdev->priv_flags & IFF_802_1Q_VLAN)
1847 		netdev = vlan_dev_real_dev(netdev);
1848 	parent = netdev->dev.parent;
1849 	if (parent && parent->driver == &cxgb4_driver.driver)
1850 		t4_l2t_update(dev_get_drvdata(parent), neigh);
1851 }
1852 
1853 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1854 		       void *data)
1855 {
1856 	switch (event) {
1857 	case NETEVENT_NEIGH_UPDATE:
1858 		check_neigh_update(data);
1859 		break;
1860 	case NETEVENT_REDIRECT:
1861 	default:
1862 		break;
1863 	}
1864 	return 0;
1865 }
1866 
1867 static bool netevent_registered;
1868 static struct notifier_block cxgb4_netevent_nb = {
1869 	.notifier_call = netevent_cb
1870 };
1871 
1872 static void drain_db_fifo(struct adapter *adap, int usecs)
1873 {
1874 	u32 v1, v2, lp_count, hp_count;
1875 
1876 	do {
1877 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1878 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1879 		if (is_t4(adap->params.chip)) {
1880 			lp_count = LP_COUNT_G(v1);
1881 			hp_count = HP_COUNT_G(v1);
1882 		} else {
1883 			lp_count = LP_COUNT_T5_G(v1);
1884 			hp_count = HP_COUNT_T5_G(v2);
1885 		}
1886 
1887 		if (lp_count == 0 && hp_count == 0)
1888 			break;
1889 		set_current_state(TASK_UNINTERRUPTIBLE);
1890 		schedule_timeout(usecs_to_jiffies(usecs));
1891 	} while (1);
1892 }
1893 
1894 static void disable_txq_db(struct sge_txq *q)
1895 {
1896 	unsigned long flags;
1897 
1898 	spin_lock_irqsave(&q->db_lock, flags);
1899 	q->db_disabled = 1;
1900 	spin_unlock_irqrestore(&q->db_lock, flags);
1901 }
1902 
1903 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1904 {
1905 	spin_lock_irq(&q->db_lock);
1906 	if (q->db_pidx_inc) {
1907 		/* Make sure that all writes to the TX descriptors
1908 		 * are committed before we tell HW about them.
1909 		 */
1910 		wmb();
1911 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1912 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1913 		q->db_pidx_inc = 0;
1914 	}
1915 	q->db_disabled = 0;
1916 	spin_unlock_irq(&q->db_lock);
1917 }
1918 
1919 static void disable_dbs(struct adapter *adap)
1920 {
1921 	int i;
1922 
1923 	for_each_ethrxq(&adap->sge, i)
1924 		disable_txq_db(&adap->sge.ethtxq[i].q);
1925 	for_each_ofldtxq(&adap->sge, i)
1926 		disable_txq_db(&adap->sge.ofldtxq[i].q);
1927 	for_each_port(adap, i)
1928 		disable_txq_db(&adap->sge.ctrlq[i].q);
1929 }
1930 
1931 static void enable_dbs(struct adapter *adap)
1932 {
1933 	int i;
1934 
1935 	for_each_ethrxq(&adap->sge, i)
1936 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1937 	for_each_ofldtxq(&adap->sge, i)
1938 		enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
1939 	for_each_port(adap, i)
1940 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1941 }
1942 
1943 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1944 {
1945 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
1946 
1947 	if (adap->uld && adap->uld[type].handle)
1948 		adap->uld[type].control(adap->uld[type].handle, cmd);
1949 }
1950 
1951 static void process_db_full(struct work_struct *work)
1952 {
1953 	struct adapter *adap;
1954 
1955 	adap = container_of(work, struct adapter, db_full_task);
1956 
1957 	drain_db_fifo(adap, dbfifo_drain_delay);
1958 	enable_dbs(adap);
1959 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1960 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1961 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1962 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1963 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1964 	else
1965 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1966 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1967 }
1968 
1969 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1970 {
1971 	u16 hw_pidx, hw_cidx;
1972 	int ret;
1973 
1974 	spin_lock_irq(&q->db_lock);
1975 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1976 	if (ret)
1977 		goto out;
1978 	if (q->db_pidx != hw_pidx) {
1979 		u16 delta;
1980 		u32 val;
1981 
1982 		if (q->db_pidx >= hw_pidx)
1983 			delta = q->db_pidx - hw_pidx;
1984 		else
1985 			delta = q->size - hw_pidx + q->db_pidx;
1986 
1987 		if (is_t4(adap->params.chip))
1988 			val = PIDX_V(delta);
1989 		else
1990 			val = PIDX_T5_V(delta);
1991 		wmb();
1992 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1993 			     QID_V(q->cntxt_id) | val);
1994 	}
1995 out:
1996 	q->db_disabled = 0;
1997 	q->db_pidx_inc = 0;
1998 	spin_unlock_irq(&q->db_lock);
1999 	if (ret)
2000 		CH_WARN(adap, "DB drop recovery failed.\n");
2001 }
2002 
2003 static void recover_all_queues(struct adapter *adap)
2004 {
2005 	int i;
2006 
2007 	for_each_ethrxq(&adap->sge, i)
2008 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2009 	for_each_ofldtxq(&adap->sge, i)
2010 		sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2011 	for_each_port(adap, i)
2012 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2013 }
2014 
2015 static void process_db_drop(struct work_struct *work)
2016 {
2017 	struct adapter *adap;
2018 
2019 	adap = container_of(work, struct adapter, db_drop_task);
2020 
2021 	if (is_t4(adap->params.chip)) {
2022 		drain_db_fifo(adap, dbfifo_drain_delay);
2023 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2024 		drain_db_fifo(adap, dbfifo_drain_delay);
2025 		recover_all_queues(adap);
2026 		drain_db_fifo(adap, dbfifo_drain_delay);
2027 		enable_dbs(adap);
2028 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2029 	} else if (is_t5(adap->params.chip)) {
2030 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2031 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2032 		u16 pidx_inc = dropped_db & 0x1fff;
2033 		u64 bar2_qoffset;
2034 		unsigned int bar2_qid;
2035 		int ret;
2036 
2037 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2038 					0, &bar2_qoffset, &bar2_qid);
2039 		if (ret)
2040 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2041 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2042 		else
2043 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2044 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2045 
2046 		/* Re-enable BAR2 WC */
2047 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2048 	}
2049 
2050 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2051 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2052 }
2053 
2054 void t4_db_full(struct adapter *adap)
2055 {
2056 	if (is_t4(adap->params.chip)) {
2057 		disable_dbs(adap);
2058 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2059 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2060 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2061 		queue_work(adap->workq, &adap->db_full_task);
2062 	}
2063 }
2064 
2065 void t4_db_dropped(struct adapter *adap)
2066 {
2067 	if (is_t4(adap->params.chip)) {
2068 		disable_dbs(adap);
2069 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2070 	}
2071 	queue_work(adap->workq, &adap->db_drop_task);
2072 }
2073 
2074 void t4_register_netevent_notifier(void)
2075 {
2076 	if (!netevent_registered) {
2077 		register_netevent_notifier(&cxgb4_netevent_nb);
2078 		netevent_registered = true;
2079 	}
2080 }
2081 
2082 static void detach_ulds(struct adapter *adap)
2083 {
2084 	unsigned int i;
2085 
2086 	mutex_lock(&uld_mutex);
2087 	list_del(&adap->list_node);
2088 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2089 		if (adap->uld && adap->uld[i].handle) {
2090 			adap->uld[i].state_change(adap->uld[i].handle,
2091 					     CXGB4_STATE_DETACH);
2092 			adap->uld[i].handle = NULL;
2093 		}
2094 	if (netevent_registered && list_empty(&adapter_list)) {
2095 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2096 		netevent_registered = false;
2097 	}
2098 	mutex_unlock(&uld_mutex);
2099 }
2100 
2101 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2102 {
2103 	unsigned int i;
2104 
2105 	mutex_lock(&uld_mutex);
2106 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2107 		if (adap->uld && adap->uld[i].handle)
2108 			adap->uld[i].state_change(adap->uld[i].handle,
2109 						  new_state);
2110 	mutex_unlock(&uld_mutex);
2111 }
2112 
2113 #if IS_ENABLED(CONFIG_IPV6)
2114 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2115 				   unsigned long event, void *data)
2116 {
2117 	struct inet6_ifaddr *ifa = data;
2118 	struct net_device *event_dev = ifa->idev->dev;
2119 	const struct device *parent = NULL;
2120 #if IS_ENABLED(CONFIG_BONDING)
2121 	struct adapter *adap;
2122 #endif
2123 	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2124 		event_dev = vlan_dev_real_dev(event_dev);
2125 #if IS_ENABLED(CONFIG_BONDING)
2126 	if (event_dev->flags & IFF_MASTER) {
2127 		list_for_each_entry(adap, &adapter_list, list_node) {
2128 			switch (event) {
2129 			case NETDEV_UP:
2130 				cxgb4_clip_get(adap->port[0],
2131 					       (const u32 *)ifa, 1);
2132 				break;
2133 			case NETDEV_DOWN:
2134 				cxgb4_clip_release(adap->port[0],
2135 						   (const u32 *)ifa, 1);
2136 				break;
2137 			default:
2138 				break;
2139 			}
2140 		}
2141 		return NOTIFY_OK;
2142 	}
2143 #endif
2144 
2145 	if (event_dev)
2146 		parent = event_dev->dev.parent;
2147 
2148 	if (parent && parent->driver == &cxgb4_driver.driver) {
2149 		switch (event) {
2150 		case NETDEV_UP:
2151 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2152 			break;
2153 		case NETDEV_DOWN:
2154 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2155 			break;
2156 		default:
2157 			break;
2158 		}
2159 	}
2160 	return NOTIFY_OK;
2161 }
2162 
2163 static bool inet6addr_registered;
2164 static struct notifier_block cxgb4_inet6addr_notifier = {
2165 	.notifier_call = cxgb4_inet6addr_handler
2166 };
2167 
2168 static void update_clip(const struct adapter *adap)
2169 {
2170 	int i;
2171 	struct net_device *dev;
2172 	int ret;
2173 
2174 	rcu_read_lock();
2175 
2176 	for (i = 0; i < MAX_NPORTS; i++) {
2177 		dev = adap->port[i];
2178 		ret = 0;
2179 
2180 		if (dev)
2181 			ret = cxgb4_update_root_dev_clip(dev);
2182 
2183 		if (ret < 0)
2184 			break;
2185 	}
2186 	rcu_read_unlock();
2187 }
2188 #endif /* IS_ENABLED(CONFIG_IPV6) */
2189 
2190 /**
2191  *	cxgb_up - enable the adapter
2192  *	@adap: adapter being enabled
2193  *
2194  *	Called when the first port is enabled, this function performs the
2195  *	actions necessary to make an adapter operational, such as completing
2196  *	the initialization of HW modules, and enabling interrupts.
2197  *
2198  *	Must be called with the rtnl lock held.
2199  */
2200 static int cxgb_up(struct adapter *adap)
2201 {
2202 	int err;
2203 
2204 	err = setup_sge_queues(adap);
2205 	if (err)
2206 		goto out;
2207 	err = setup_rss(adap);
2208 	if (err)
2209 		goto freeq;
2210 
2211 	if (adap->flags & USING_MSIX) {
2212 		name_msix_vecs(adap);
2213 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2214 				  adap->msix_info[0].desc, adap);
2215 		if (err)
2216 			goto irq_err;
2217 		err = request_msix_queue_irqs(adap);
2218 		if (err) {
2219 			free_irq(adap->msix_info[0].vec, adap);
2220 			goto irq_err;
2221 		}
2222 	} else {
2223 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2224 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2225 				  adap->port[0]->name, adap);
2226 		if (err)
2227 			goto irq_err;
2228 	}
2229 	enable_rx(adap);
2230 	t4_sge_start(adap);
2231 	t4_intr_enable(adap);
2232 	adap->flags |= FULL_INIT_DONE;
2233 	notify_ulds(adap, CXGB4_STATE_UP);
2234 #if IS_ENABLED(CONFIG_IPV6)
2235 	update_clip(adap);
2236 #endif
2237 	/* Initialize hash mac addr list*/
2238 	INIT_LIST_HEAD(&adap->mac_hlist);
2239  out:
2240 	return err;
2241  irq_err:
2242 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2243  freeq:
2244 	t4_free_sge_resources(adap);
2245 	goto out;
2246 }
2247 
2248 static void cxgb_down(struct adapter *adapter)
2249 {
2250 	cancel_work_sync(&adapter->tid_release_task);
2251 	cancel_work_sync(&adapter->db_full_task);
2252 	cancel_work_sync(&adapter->db_drop_task);
2253 	adapter->tid_release_task_busy = false;
2254 	adapter->tid_release_head = NULL;
2255 
2256 	t4_sge_stop(adapter);
2257 	t4_free_sge_resources(adapter);
2258 	adapter->flags &= ~FULL_INIT_DONE;
2259 }
2260 
2261 /*
2262  * net_device operations
2263  */
2264 static int cxgb_open(struct net_device *dev)
2265 {
2266 	int err;
2267 	struct port_info *pi = netdev_priv(dev);
2268 	struct adapter *adapter = pi->adapter;
2269 
2270 	netif_carrier_off(dev);
2271 
2272 	if (!(adapter->flags & FULL_INIT_DONE)) {
2273 		err = cxgb_up(adapter);
2274 		if (err < 0)
2275 			return err;
2276 	}
2277 
2278 	err = link_start(dev);
2279 	if (!err)
2280 		netif_tx_start_all_queues(dev);
2281 	return err;
2282 }
2283 
2284 static int cxgb_close(struct net_device *dev)
2285 {
2286 	struct port_info *pi = netdev_priv(dev);
2287 	struct adapter *adapter = pi->adapter;
2288 
2289 	netif_tx_stop_all_queues(dev);
2290 	netif_carrier_off(dev);
2291 	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2292 }
2293 
2294 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2295 		__be32 sip, __be16 sport, __be16 vlan,
2296 		unsigned int queue, unsigned char port, unsigned char mask)
2297 {
2298 	int ret;
2299 	struct filter_entry *f;
2300 	struct adapter *adap;
2301 	int i;
2302 	u8 *val;
2303 
2304 	adap = netdev2adap(dev);
2305 
2306 	/* Adjust stid to correct filter index */
2307 	stid -= adap->tids.sftid_base;
2308 	stid += adap->tids.nftids;
2309 
2310 	/* Check to make sure the filter requested is writable ...
2311 	 */
2312 	f = &adap->tids.ftid_tab[stid];
2313 	ret = writable_filter(f);
2314 	if (ret)
2315 		return ret;
2316 
2317 	/* Clear out any old resources being used by the filter before
2318 	 * we start constructing the new filter.
2319 	 */
2320 	if (f->valid)
2321 		clear_filter(adap, f);
2322 
2323 	/* Clear out filter specifications */
2324 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2325 	f->fs.val.lport = cpu_to_be16(sport);
2326 	f->fs.mask.lport  = ~0;
2327 	val = (u8 *)&sip;
2328 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2329 		for (i = 0; i < 4; i++) {
2330 			f->fs.val.lip[i] = val[i];
2331 			f->fs.mask.lip[i] = ~0;
2332 		}
2333 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2334 			f->fs.val.iport = port;
2335 			f->fs.mask.iport = mask;
2336 		}
2337 	}
2338 
2339 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2340 		f->fs.val.proto = IPPROTO_TCP;
2341 		f->fs.mask.proto = ~0;
2342 	}
2343 
2344 	f->fs.dirsteer = 1;
2345 	f->fs.iq = queue;
2346 	/* Mark filter as locked */
2347 	f->locked = 1;
2348 	f->fs.rpttid = 1;
2349 
2350 	ret = set_filter_wr(adap, stid);
2351 	if (ret) {
2352 		clear_filter(adap, f);
2353 		return ret;
2354 	}
2355 
2356 	return 0;
2357 }
2358 EXPORT_SYMBOL(cxgb4_create_server_filter);
2359 
2360 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2361 		unsigned int queue, bool ipv6)
2362 {
2363 	struct filter_entry *f;
2364 	struct adapter *adap;
2365 
2366 	adap = netdev2adap(dev);
2367 
2368 	/* Adjust stid to correct filter index */
2369 	stid -= adap->tids.sftid_base;
2370 	stid += adap->tids.nftids;
2371 
2372 	f = &adap->tids.ftid_tab[stid];
2373 	/* Unlock the filter */
2374 	f->locked = 0;
2375 
2376 	return delete_filter(adap, stid);
2377 }
2378 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2379 
2380 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2381 						struct rtnl_link_stats64 *ns)
2382 {
2383 	struct port_stats stats;
2384 	struct port_info *p = netdev_priv(dev);
2385 	struct adapter *adapter = p->adapter;
2386 
2387 	/* Block retrieving statistics during EEH error
2388 	 * recovery. Otherwise, the recovery might fail
2389 	 * and the PCI device will be removed permanently
2390 	 */
2391 	spin_lock(&adapter->stats_lock);
2392 	if (!netif_device_present(dev)) {
2393 		spin_unlock(&adapter->stats_lock);
2394 		return ns;
2395 	}
2396 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2397 				 &p->stats_base);
2398 	spin_unlock(&adapter->stats_lock);
2399 
2400 	ns->tx_bytes   = stats.tx_octets;
2401 	ns->tx_packets = stats.tx_frames;
2402 	ns->rx_bytes   = stats.rx_octets;
2403 	ns->rx_packets = stats.rx_frames;
2404 	ns->multicast  = stats.rx_mcast_frames;
2405 
2406 	/* detailed rx_errors */
2407 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2408 			       stats.rx_runt;
2409 	ns->rx_over_errors   = 0;
2410 	ns->rx_crc_errors    = stats.rx_fcs_err;
2411 	ns->rx_frame_errors  = stats.rx_symbol_err;
2412 	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2413 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2414 			       stats.rx_trunc0 + stats.rx_trunc1 +
2415 			       stats.rx_trunc2 + stats.rx_trunc3;
2416 	ns->rx_missed_errors = 0;
2417 
2418 	/* detailed tx_errors */
2419 	ns->tx_aborted_errors   = 0;
2420 	ns->tx_carrier_errors   = 0;
2421 	ns->tx_fifo_errors      = 0;
2422 	ns->tx_heartbeat_errors = 0;
2423 	ns->tx_window_errors    = 0;
2424 
2425 	ns->tx_errors = stats.tx_error_frames;
2426 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2427 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2428 	return ns;
2429 }
2430 
2431 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2432 {
2433 	unsigned int mbox;
2434 	int ret = 0, prtad, devad;
2435 	struct port_info *pi = netdev_priv(dev);
2436 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2437 
2438 	switch (cmd) {
2439 	case SIOCGMIIPHY:
2440 		if (pi->mdio_addr < 0)
2441 			return -EOPNOTSUPP;
2442 		data->phy_id = pi->mdio_addr;
2443 		break;
2444 	case SIOCGMIIREG:
2445 	case SIOCSMIIREG:
2446 		if (mdio_phy_id_is_c45(data->phy_id)) {
2447 			prtad = mdio_phy_id_prtad(data->phy_id);
2448 			devad = mdio_phy_id_devad(data->phy_id);
2449 		} else if (data->phy_id < 32) {
2450 			prtad = data->phy_id;
2451 			devad = 0;
2452 			data->reg_num &= 0x1f;
2453 		} else
2454 			return -EINVAL;
2455 
2456 		mbox = pi->adapter->pf;
2457 		if (cmd == SIOCGMIIREG)
2458 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2459 					 data->reg_num, &data->val_out);
2460 		else
2461 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2462 					 data->reg_num, data->val_in);
2463 		break;
2464 	case SIOCGHWTSTAMP:
2465 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2466 				    sizeof(pi->tstamp_config)) ?
2467 			-EFAULT : 0;
2468 	case SIOCSHWTSTAMP:
2469 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2470 				   sizeof(pi->tstamp_config)))
2471 			return -EFAULT;
2472 
2473 		switch (pi->tstamp_config.rx_filter) {
2474 		case HWTSTAMP_FILTER_NONE:
2475 			pi->rxtstamp = false;
2476 			break;
2477 		case HWTSTAMP_FILTER_ALL:
2478 			pi->rxtstamp = true;
2479 			break;
2480 		default:
2481 			pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2482 			return -ERANGE;
2483 		}
2484 
2485 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2486 				    sizeof(pi->tstamp_config)) ?
2487 			-EFAULT : 0;
2488 	default:
2489 		return -EOPNOTSUPP;
2490 	}
2491 	return ret;
2492 }
2493 
2494 static void cxgb_set_rxmode(struct net_device *dev)
2495 {
2496 	/* unfortunately we can't return errors to the stack */
2497 	set_rxmode(dev, -1, false);
2498 }
2499 
2500 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2501 {
2502 	int ret;
2503 	struct port_info *pi = netdev_priv(dev);
2504 
2505 	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2506 		return -EINVAL;
2507 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2508 			    -1, -1, -1, true);
2509 	if (!ret)
2510 		dev->mtu = new_mtu;
2511 	return ret;
2512 }
2513 
2514 #ifdef CONFIG_PCI_IOV
2515 static int dummy_open(struct net_device *dev)
2516 {
2517 	/* Turn carrier off since we don't have to transmit anything on this
2518 	 * interface.
2519 	 */
2520 	netif_carrier_off(dev);
2521 	return 0;
2522 }
2523 
2524 /* Fill MAC address that will be assigned by the FW */
2525 static void fill_vf_station_mac_addr(struct adapter *adap)
2526 {
2527 	unsigned int i;
2528 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2529 	int err;
2530 	u8 *na;
2531 	u16 a, b;
2532 
2533 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2534 	if (!err) {
2535 		na = adap->params.vpd.na;
2536 		for (i = 0; i < ETH_ALEN; i++)
2537 			hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2538 				      hex2val(na[2 * i + 1]));
2539 		a = (hw_addr[0] << 8) | hw_addr[1];
2540 		b = (hw_addr[1] << 8) | hw_addr[2];
2541 		a ^= b;
2542 		a |= 0x0200;    /* locally assigned Ethernet MAC address */
2543 		a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2544 		macaddr[0] = a >> 8;
2545 		macaddr[1] = a & 0xff;
2546 
2547 		for (i = 2; i < 5; i++)
2548 			macaddr[i] = hw_addr[i + 1];
2549 
2550 		for (i = 0; i < adap->num_vfs; i++) {
2551 			macaddr[5] = adap->pf * 16 + i;
2552 			ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2553 		}
2554 	}
2555 }
2556 
2557 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2558 {
2559 	struct port_info *pi = netdev_priv(dev);
2560 	struct adapter *adap = pi->adapter;
2561 	int ret;
2562 
2563 	/* verify MAC addr is valid */
2564 	if (!is_valid_ether_addr(mac)) {
2565 		dev_err(pi->adapter->pdev_dev,
2566 			"Invalid Ethernet address %pM for VF %d\n",
2567 			mac, vf);
2568 		return -EINVAL;
2569 	}
2570 
2571 	dev_info(pi->adapter->pdev_dev,
2572 		 "Setting MAC %pM on VF %d\n", mac, vf);
2573 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2574 	if (!ret)
2575 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2576 	return ret;
2577 }
2578 
2579 static int cxgb_get_vf_config(struct net_device *dev,
2580 			      int vf, struct ifla_vf_info *ivi)
2581 {
2582 	struct port_info *pi = netdev_priv(dev);
2583 	struct adapter *adap = pi->adapter;
2584 
2585 	if (vf >= adap->num_vfs)
2586 		return -EINVAL;
2587 	ivi->vf = vf;
2588 	ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2589 	return 0;
2590 }
2591 #endif
2592 
2593 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2594 {
2595 	int ret;
2596 	struct sockaddr *addr = p;
2597 	struct port_info *pi = netdev_priv(dev);
2598 
2599 	if (!is_valid_ether_addr(addr->sa_data))
2600 		return -EADDRNOTAVAIL;
2601 
2602 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2603 			    pi->xact_addr_filt, addr->sa_data, true, true);
2604 	if (ret < 0)
2605 		return ret;
2606 
2607 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2608 	pi->xact_addr_filt = ret;
2609 	return 0;
2610 }
2611 
2612 #ifdef CONFIG_NET_POLL_CONTROLLER
2613 static void cxgb_netpoll(struct net_device *dev)
2614 {
2615 	struct port_info *pi = netdev_priv(dev);
2616 	struct adapter *adap = pi->adapter;
2617 
2618 	if (adap->flags & USING_MSIX) {
2619 		int i;
2620 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2621 
2622 		for (i = pi->nqsets; i; i--, rx++)
2623 			t4_sge_intr_msix(0, &rx->rspq);
2624 	} else
2625 		t4_intr_handler(adap)(0, adap);
2626 }
2627 #endif
2628 
2629 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2630 {
2631 	struct port_info *pi = netdev_priv(dev);
2632 	struct adapter *adap = pi->adapter;
2633 	struct sched_class *e;
2634 	struct ch_sched_params p;
2635 	struct ch_sched_queue qe;
2636 	u32 req_rate;
2637 	int err = 0;
2638 
2639 	if (!can_sched(dev))
2640 		return -ENOTSUPP;
2641 
2642 	if (index < 0 || index > pi->nqsets - 1)
2643 		return -EINVAL;
2644 
2645 	if (!(adap->flags & FULL_INIT_DONE)) {
2646 		dev_err(adap->pdev_dev,
2647 			"Failed to rate limit on queue %d. Link Down?\n",
2648 			index);
2649 		return -EINVAL;
2650 	}
2651 
2652 	/* Convert from Mbps to Kbps */
2653 	req_rate = rate << 10;
2654 
2655 	/* Max rate is 10 Gbps */
2656 	if (req_rate >= SCHED_MAX_RATE_KBPS) {
2657 		dev_err(adap->pdev_dev,
2658 			"Invalid rate %u Mbps, Max rate is %u Gbps\n",
2659 			rate, SCHED_MAX_RATE_KBPS);
2660 		return -ERANGE;
2661 	}
2662 
2663 	/* First unbind the queue from any existing class */
2664 	memset(&qe, 0, sizeof(qe));
2665 	qe.queue = index;
2666 	qe.class = SCHED_CLS_NONE;
2667 
2668 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2669 	if (err) {
2670 		dev_err(adap->pdev_dev,
2671 			"Unbinding Queue %d on port %d fail. Err: %d\n",
2672 			index, pi->port_id, err);
2673 		return err;
2674 	}
2675 
2676 	/* Queue already unbound */
2677 	if (!req_rate)
2678 		return 0;
2679 
2680 	/* Fetch any available unused or matching scheduling class */
2681 	memset(&p, 0, sizeof(p));
2682 	p.type = SCHED_CLASS_TYPE_PACKET;
2683 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2684 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2685 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2686 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2687 	p.u.params.channel  = pi->tx_chan;
2688 	p.u.params.class    = SCHED_CLS_NONE;
2689 	p.u.params.minrate  = 0;
2690 	p.u.params.maxrate  = req_rate;
2691 	p.u.params.weight   = 0;
2692 	p.u.params.pktsize  = dev->mtu;
2693 
2694 	e = cxgb4_sched_class_alloc(dev, &p);
2695 	if (!e)
2696 		return -ENOMEM;
2697 
2698 	/* Bind the queue to a scheduling class */
2699 	memset(&qe, 0, sizeof(qe));
2700 	qe.queue = index;
2701 	qe.class = e->idx;
2702 
2703 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2704 	if (err)
2705 		dev_err(adap->pdev_dev,
2706 			"Queue rate limiting failed. Err: %d\n", err);
2707 	return err;
2708 }
2709 
2710 static int cxgb_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
2711 			 struct tc_to_netdev *tc)
2712 {
2713 	struct port_info *pi = netdev2pinfo(dev);
2714 	struct adapter *adap = netdev2adap(dev);
2715 
2716 	if (!(adap->flags & FULL_INIT_DONE)) {
2717 		dev_err(adap->pdev_dev,
2718 			"Failed to setup tc on port %d. Link Down?\n",
2719 			pi->port_id);
2720 		return -EINVAL;
2721 	}
2722 
2723 	if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) &&
2724 	    tc->type == TC_SETUP_CLSU32) {
2725 		switch (tc->cls_u32->command) {
2726 		case TC_CLSU32_NEW_KNODE:
2727 		case TC_CLSU32_REPLACE_KNODE:
2728 			return cxgb4_config_knode(dev, proto, tc->cls_u32);
2729 		case TC_CLSU32_DELETE_KNODE:
2730 			return cxgb4_delete_knode(dev, proto, tc->cls_u32);
2731 		default:
2732 			return -EOPNOTSUPP;
2733 		}
2734 	}
2735 
2736 	return -EOPNOTSUPP;
2737 }
2738 
2739 static const struct net_device_ops cxgb4_netdev_ops = {
2740 	.ndo_open             = cxgb_open,
2741 	.ndo_stop             = cxgb_close,
2742 	.ndo_start_xmit       = t4_eth_xmit,
2743 	.ndo_select_queue     =	cxgb_select_queue,
2744 	.ndo_get_stats64      = cxgb_get_stats,
2745 	.ndo_set_rx_mode      = cxgb_set_rxmode,
2746 	.ndo_set_mac_address  = cxgb_set_mac_addr,
2747 	.ndo_set_features     = cxgb_set_features,
2748 	.ndo_validate_addr    = eth_validate_addr,
2749 	.ndo_do_ioctl         = cxgb_ioctl,
2750 	.ndo_change_mtu       = cxgb_change_mtu,
2751 #ifdef CONFIG_NET_POLL_CONTROLLER
2752 	.ndo_poll_controller  = cxgb_netpoll,
2753 #endif
2754 #ifdef CONFIG_CHELSIO_T4_FCOE
2755 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
2756 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
2757 #endif /* CONFIG_CHELSIO_T4_FCOE */
2758 #ifdef CONFIG_NET_RX_BUSY_POLL
2759 	.ndo_busy_poll        = cxgb_busy_poll,
2760 #endif
2761 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
2762 	.ndo_setup_tc         = cxgb_setup_tc,
2763 };
2764 
2765 #ifdef CONFIG_PCI_IOV
2766 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
2767 	.ndo_open             = dummy_open,
2768 	.ndo_set_vf_mac       = cxgb_set_vf_mac,
2769 	.ndo_get_vf_config    = cxgb_get_vf_config,
2770 };
2771 #endif
2772 
2773 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2774 {
2775 	struct adapter *adapter = netdev2adap(dev);
2776 
2777 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
2778 	strlcpy(info->version, cxgb4_driver_version,
2779 		sizeof(info->version));
2780 	strlcpy(info->bus_info, pci_name(adapter->pdev),
2781 		sizeof(info->bus_info));
2782 }
2783 
2784 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
2785 	.get_drvinfo       = get_drvinfo,
2786 };
2787 
2788 void t4_fatal_err(struct adapter *adap)
2789 {
2790 	t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2791 	t4_intr_disable(adap);
2792 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2793 }
2794 
2795 static void setup_memwin(struct adapter *adap)
2796 {
2797 	u32 nic_win_base = t4_get_util_window(adap);
2798 
2799 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
2800 }
2801 
2802 static void setup_memwin_rdma(struct adapter *adap)
2803 {
2804 	if (adap->vres.ocq.size) {
2805 		u32 start;
2806 		unsigned int sz_kb;
2807 
2808 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
2809 		start &= PCI_BASE_ADDRESS_MEM_MASK;
2810 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2811 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
2812 		t4_write_reg(adap,
2813 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
2814 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
2815 		t4_write_reg(adap,
2816 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
2817 			     adap->vres.ocq.start);
2818 		t4_read_reg(adap,
2819 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
2820 	}
2821 }
2822 
2823 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
2824 {
2825 	u32 v;
2826 	int ret;
2827 
2828 	/* get device capabilities */
2829 	memset(c, 0, sizeof(*c));
2830 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2831 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
2832 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
2833 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
2834 	if (ret < 0)
2835 		return ret;
2836 
2837 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2838 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
2839 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
2840 	if (ret < 0)
2841 		return ret;
2842 
2843 	ret = t4_config_glbl_rss(adap, adap->pf,
2844 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2845 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
2846 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
2847 	if (ret < 0)
2848 		return ret;
2849 
2850 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
2851 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
2852 			  FW_CMD_CAP_PF);
2853 	if (ret < 0)
2854 		return ret;
2855 
2856 	t4_sge_init(adap);
2857 
2858 	/* tweak some settings */
2859 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
2860 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
2861 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
2862 	v = t4_read_reg(adap, TP_PIO_DATA_A);
2863 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
2864 
2865 	/* first 4 Tx modulation queues point to consecutive Tx channels */
2866 	adap->params.tp.tx_modq_map = 0xE4;
2867 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
2868 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
2869 
2870 	/* associate each Tx modulation queue with consecutive Tx channels */
2871 	v = 0x84218421;
2872 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2873 			  &v, 1, TP_TX_SCHED_HDR_A);
2874 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2875 			  &v, 1, TP_TX_SCHED_FIFO_A);
2876 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2877 			  &v, 1, TP_TX_SCHED_PCMD_A);
2878 
2879 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
2880 	if (is_offload(adap)) {
2881 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
2882 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2883 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2884 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2885 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2886 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
2887 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2888 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2889 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2890 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2891 	}
2892 
2893 	/* get basic stuff going */
2894 	return t4_early_init(adap, adap->pf);
2895 }
2896 
2897 /*
2898  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
2899  */
2900 #define MAX_ATIDS 8192U
2901 
2902 /*
2903  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2904  *
2905  * If the firmware we're dealing with has Configuration File support, then
2906  * we use that to perform all configuration
2907  */
2908 
2909 /*
2910  * Tweak configuration based on module parameters, etc.  Most of these have
2911  * defaults assigned to them by Firmware Configuration Files (if we're using
2912  * them) but need to be explicitly set if we're using hard-coded
2913  * initialization.  But even in the case of using Firmware Configuration
2914  * Files, we'd like to expose the ability to change these via module
2915  * parameters so these are essentially common tweaks/settings for
2916  * Configuration Files and hard-coded initialization ...
2917  */
2918 static int adap_init0_tweaks(struct adapter *adapter)
2919 {
2920 	/*
2921 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
2922 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
2923 	 * 64B Cache Line Size ...
2924 	 */
2925 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
2926 
2927 	/*
2928 	 * Process module parameters which affect early initialization.
2929 	 */
2930 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
2931 		dev_err(&adapter->pdev->dev,
2932 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
2933 			rx_dma_offset);
2934 		rx_dma_offset = 2;
2935 	}
2936 	t4_set_reg_field(adapter, SGE_CONTROL_A,
2937 			 PKTSHIFT_V(PKTSHIFT_M),
2938 			 PKTSHIFT_V(rx_dma_offset));
2939 
2940 	/*
2941 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
2942 	 * adds the pseudo header itself.
2943 	 */
2944 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
2945 			       CSUM_HAS_PSEUDO_HDR_F, 0);
2946 
2947 	return 0;
2948 }
2949 
2950 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
2951  * unto themselves and they contain their own firmware to perform their
2952  * tasks ...
2953  */
2954 static int phy_aq1202_version(const u8 *phy_fw_data,
2955 			      size_t phy_fw_size)
2956 {
2957 	int offset;
2958 
2959 	/* At offset 0x8 you're looking for the primary image's
2960 	 * starting offset which is 3 Bytes wide
2961 	 *
2962 	 * At offset 0xa of the primary image, you look for the offset
2963 	 * of the DRAM segment which is 3 Bytes wide.
2964 	 *
2965 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
2966 	 * wide
2967 	 */
2968 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
2969 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
2970 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
2971 
2972 	offset = le24(phy_fw_data + 0x8) << 12;
2973 	offset = le24(phy_fw_data + offset + 0xa);
2974 	return be16(phy_fw_data + offset + 0x27e);
2975 
2976 	#undef be16
2977 	#undef le16
2978 	#undef le24
2979 }
2980 
2981 static struct info_10gbt_phy_fw {
2982 	unsigned int phy_fw_id;		/* PCI Device ID */
2983 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
2984 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
2985 	int phy_flash;			/* Has FLASH for PHY Firmware */
2986 } phy_info_array[] = {
2987 	{
2988 		PHY_AQ1202_DEVICEID,
2989 		PHY_AQ1202_FIRMWARE,
2990 		phy_aq1202_version,
2991 		1,
2992 	},
2993 	{
2994 		PHY_BCM84834_DEVICEID,
2995 		PHY_BCM84834_FIRMWARE,
2996 		NULL,
2997 		0,
2998 	},
2999 	{ 0, NULL, NULL },
3000 };
3001 
3002 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3003 {
3004 	int i;
3005 
3006 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3007 		if (phy_info_array[i].phy_fw_id == devid)
3008 			return &phy_info_array[i];
3009 	}
3010 	return NULL;
3011 }
3012 
3013 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3014  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3015  * we return a negative error number.  If we transfer new firmware we return 1
3016  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3017  */
3018 static int adap_init0_phy(struct adapter *adap)
3019 {
3020 	const struct firmware *phyf;
3021 	int ret;
3022 	struct info_10gbt_phy_fw *phy_info;
3023 
3024 	/* Use the device ID to determine which PHY file to flash.
3025 	 */
3026 	phy_info = find_phy_info(adap->pdev->device);
3027 	if (!phy_info) {
3028 		dev_warn(adap->pdev_dev,
3029 			 "No PHY Firmware file found for this PHY\n");
3030 		return -EOPNOTSUPP;
3031 	}
3032 
3033 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3034 	 * use that. The adapter firmware provides us with a memory buffer
3035 	 * where we can load a PHY firmware file from the host if we want to
3036 	 * override the PHY firmware File in flash.
3037 	 */
3038 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3039 				      adap->pdev_dev);
3040 	if (ret < 0) {
3041 		/* For adapters without FLASH attached to PHY for their
3042 		 * firmware, it's obviously a fatal error if we can't get the
3043 		 * firmware to the adapter.  For adapters with PHY firmware
3044 		 * FLASH storage, it's worth a warning if we can't find the
3045 		 * PHY Firmware but we'll neuter the error ...
3046 		 */
3047 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3048 			"/lib/firmware/%s, error %d\n",
3049 			phy_info->phy_fw_file, -ret);
3050 		if (phy_info->phy_flash) {
3051 			int cur_phy_fw_ver = 0;
3052 
3053 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3054 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3055 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3056 			ret = 0;
3057 		}
3058 
3059 		return ret;
3060 	}
3061 
3062 	/* Load PHY Firmware onto adapter.
3063 	 */
3064 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3065 			     phy_info->phy_fw_version,
3066 			     (u8 *)phyf->data, phyf->size);
3067 	if (ret < 0)
3068 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3069 			-ret);
3070 	else if (ret > 0) {
3071 		int new_phy_fw_ver = 0;
3072 
3073 		if (phy_info->phy_fw_version)
3074 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3075 								  phyf->size);
3076 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3077 			 "Firmware /lib/firmware/%s, version %#x\n",
3078 			 phy_info->phy_fw_file, new_phy_fw_ver);
3079 	}
3080 
3081 	release_firmware(phyf);
3082 
3083 	return ret;
3084 }
3085 
3086 /*
3087  * Attempt to initialize the adapter via a Firmware Configuration File.
3088  */
3089 static int adap_init0_config(struct adapter *adapter, int reset)
3090 {
3091 	struct fw_caps_config_cmd caps_cmd;
3092 	const struct firmware *cf;
3093 	unsigned long mtype = 0, maddr = 0;
3094 	u32 finiver, finicsum, cfcsum;
3095 	int ret;
3096 	int config_issued = 0;
3097 	char *fw_config_file, fw_config_file_path[256];
3098 	char *config_name = NULL;
3099 
3100 	/*
3101 	 * Reset device if necessary.
3102 	 */
3103 	if (reset) {
3104 		ret = t4_fw_reset(adapter, adapter->mbox,
3105 				  PIORSTMODE_F | PIORST_F);
3106 		if (ret < 0)
3107 			goto bye;
3108 	}
3109 
3110 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3111 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3112 	 * to be performed after any global adapter RESET above since some
3113 	 * PHYs only have local RAM copies of the PHY firmware.
3114 	 */
3115 	if (is_10gbt_device(adapter->pdev->device)) {
3116 		ret = adap_init0_phy(adapter);
3117 		if (ret < 0)
3118 			goto bye;
3119 	}
3120 	/*
3121 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3122 	 * then use that.  Otherwise, use the configuration file stored
3123 	 * in the adapter flash ...
3124 	 */
3125 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3126 	case CHELSIO_T4:
3127 		fw_config_file = FW4_CFNAME;
3128 		break;
3129 	case CHELSIO_T5:
3130 		fw_config_file = FW5_CFNAME;
3131 		break;
3132 	case CHELSIO_T6:
3133 		fw_config_file = FW6_CFNAME;
3134 		break;
3135 	default:
3136 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3137 		       adapter->pdev->device);
3138 		ret = -EINVAL;
3139 		goto bye;
3140 	}
3141 
3142 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3143 	if (ret < 0) {
3144 		config_name = "On FLASH";
3145 		mtype = FW_MEMTYPE_CF_FLASH;
3146 		maddr = t4_flash_cfg_addr(adapter);
3147 	} else {
3148 		u32 params[7], val[7];
3149 
3150 		sprintf(fw_config_file_path,
3151 			"/lib/firmware/%s", fw_config_file);
3152 		config_name = fw_config_file_path;
3153 
3154 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3155 			ret = -ENOMEM;
3156 		else {
3157 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3158 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3159 			ret = t4_query_params(adapter, adapter->mbox,
3160 					      adapter->pf, 0, 1, params, val);
3161 			if (ret == 0) {
3162 				/*
3163 				 * For t4_memory_rw() below addresses and
3164 				 * sizes have to be in terms of multiples of 4
3165 				 * bytes.  So, if the Configuration File isn't
3166 				 * a multiple of 4 bytes in length we'll have
3167 				 * to write that out separately since we can't
3168 				 * guarantee that the bytes following the
3169 				 * residual byte in the buffer returned by
3170 				 * request_firmware() are zeroed out ...
3171 				 */
3172 				size_t resid = cf->size & 0x3;
3173 				size_t size = cf->size & ~0x3;
3174 				__be32 *data = (__be32 *)cf->data;
3175 
3176 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3177 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3178 
3179 				spin_lock(&adapter->win0_lock);
3180 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3181 						   size, data, T4_MEMORY_WRITE);
3182 				if (ret == 0 && resid != 0) {
3183 					union {
3184 						__be32 word;
3185 						char buf[4];
3186 					} last;
3187 					int i;
3188 
3189 					last.word = data[size >> 2];
3190 					for (i = resid; i < 4; i++)
3191 						last.buf[i] = 0;
3192 					ret = t4_memory_rw(adapter, 0, mtype,
3193 							   maddr + size,
3194 							   4, &last.word,
3195 							   T4_MEMORY_WRITE);
3196 				}
3197 				spin_unlock(&adapter->win0_lock);
3198 			}
3199 		}
3200 
3201 		release_firmware(cf);
3202 		if (ret)
3203 			goto bye;
3204 	}
3205 
3206 	/*
3207 	 * Issue a Capability Configuration command to the firmware to get it
3208 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3209 	 * because we want the ability to modify various features after we've
3210 	 * processed the configuration file ...
3211 	 */
3212 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3213 	caps_cmd.op_to_write =
3214 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3215 		      FW_CMD_REQUEST_F |
3216 		      FW_CMD_READ_F);
3217 	caps_cmd.cfvalid_to_len16 =
3218 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3219 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3220 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3221 		      FW_LEN16(caps_cmd));
3222 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3223 			 &caps_cmd);
3224 
3225 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3226 	 * Configuration File in FLASH), our last gasp effort is to use the
3227 	 * Firmware Configuration File which is embedded in the firmware.  A
3228 	 * very few early versions of the firmware didn't have one embedded
3229 	 * but we can ignore those.
3230 	 */
3231 	if (ret == -ENOENT) {
3232 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3233 		caps_cmd.op_to_write =
3234 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3235 					FW_CMD_REQUEST_F |
3236 					FW_CMD_READ_F);
3237 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3238 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3239 				sizeof(caps_cmd), &caps_cmd);
3240 		config_name = "Firmware Default";
3241 	}
3242 
3243 	config_issued = 1;
3244 	if (ret < 0)
3245 		goto bye;
3246 
3247 	finiver = ntohl(caps_cmd.finiver);
3248 	finicsum = ntohl(caps_cmd.finicsum);
3249 	cfcsum = ntohl(caps_cmd.cfcsum);
3250 	if (finicsum != cfcsum)
3251 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3252 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3253 			 finicsum, cfcsum);
3254 
3255 	/*
3256 	 * And now tell the firmware to use the configuration we just loaded.
3257 	 */
3258 	caps_cmd.op_to_write =
3259 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3260 		      FW_CMD_REQUEST_F |
3261 		      FW_CMD_WRITE_F);
3262 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3263 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3264 			 NULL);
3265 	if (ret < 0)
3266 		goto bye;
3267 
3268 	/*
3269 	 * Tweak configuration based on system architecture, module
3270 	 * parameters, etc.
3271 	 */
3272 	ret = adap_init0_tweaks(adapter);
3273 	if (ret < 0)
3274 		goto bye;
3275 
3276 	/*
3277 	 * And finally tell the firmware to initialize itself using the
3278 	 * parameters from the Configuration File.
3279 	 */
3280 	ret = t4_fw_initialize(adapter, adapter->mbox);
3281 	if (ret < 0)
3282 		goto bye;
3283 
3284 	/* Emit Firmware Configuration File information and return
3285 	 * successfully.
3286 	 */
3287 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3288 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3289 		 config_name, finiver, cfcsum);
3290 	return 0;
3291 
3292 	/*
3293 	 * Something bad happened.  Return the error ...  (If the "error"
3294 	 * is that there's no Configuration File on the adapter we don't
3295 	 * want to issue a warning since this is fairly common.)
3296 	 */
3297 bye:
3298 	if (config_issued && ret != -ENOENT)
3299 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3300 			 config_name, -ret);
3301 	return ret;
3302 }
3303 
3304 static struct fw_info fw_info_array[] = {
3305 	{
3306 		.chip = CHELSIO_T4,
3307 		.fs_name = FW4_CFNAME,
3308 		.fw_mod_name = FW4_FNAME,
3309 		.fw_hdr = {
3310 			.chip = FW_HDR_CHIP_T4,
3311 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3312 			.intfver_nic = FW_INTFVER(T4, NIC),
3313 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3314 			.intfver_ri = FW_INTFVER(T4, RI),
3315 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3316 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3317 		},
3318 	}, {
3319 		.chip = CHELSIO_T5,
3320 		.fs_name = FW5_CFNAME,
3321 		.fw_mod_name = FW5_FNAME,
3322 		.fw_hdr = {
3323 			.chip = FW_HDR_CHIP_T5,
3324 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3325 			.intfver_nic = FW_INTFVER(T5, NIC),
3326 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3327 			.intfver_ri = FW_INTFVER(T5, RI),
3328 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3329 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3330 		},
3331 	}, {
3332 		.chip = CHELSIO_T6,
3333 		.fs_name = FW6_CFNAME,
3334 		.fw_mod_name = FW6_FNAME,
3335 		.fw_hdr = {
3336 			.chip = FW_HDR_CHIP_T6,
3337 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3338 			.intfver_nic = FW_INTFVER(T6, NIC),
3339 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3340 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3341 			.intfver_ri = FW_INTFVER(T6, RI),
3342 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3343 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3344 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3345 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3346 		},
3347 	}
3348 
3349 };
3350 
3351 static struct fw_info *find_fw_info(int chip)
3352 {
3353 	int i;
3354 
3355 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3356 		if (fw_info_array[i].chip == chip)
3357 			return &fw_info_array[i];
3358 	}
3359 	return NULL;
3360 }
3361 
3362 /*
3363  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3364  */
3365 static int adap_init0(struct adapter *adap)
3366 {
3367 	int ret;
3368 	u32 v, port_vec;
3369 	enum dev_state state;
3370 	u32 params[7], val[7];
3371 	struct fw_caps_config_cmd caps_cmd;
3372 	int reset = 1;
3373 
3374 	/* Grab Firmware Device Log parameters as early as possible so we have
3375 	 * access to it for debugging, etc.
3376 	 */
3377 	ret = t4_init_devlog_params(adap);
3378 	if (ret < 0)
3379 		return ret;
3380 
3381 	/* Contact FW, advertising Master capability */
3382 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3383 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3384 	if (ret < 0) {
3385 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3386 			ret);
3387 		return ret;
3388 	}
3389 	if (ret == adap->mbox)
3390 		adap->flags |= MASTER_PF;
3391 
3392 	/*
3393 	 * If we're the Master PF Driver and the device is uninitialized,
3394 	 * then let's consider upgrading the firmware ...  (We always want
3395 	 * to check the firmware version number in order to A. get it for
3396 	 * later reporting and B. to warn if the currently loaded firmware
3397 	 * is excessively mismatched relative to the driver.)
3398 	 */
3399 	t4_get_fw_version(adap, &adap->params.fw_vers);
3400 	t4_get_bs_version(adap, &adap->params.bs_vers);
3401 	t4_get_tp_version(adap, &adap->params.tp_vers);
3402 	t4_get_exprom_version(adap, &adap->params.er_vers);
3403 
3404 	ret = t4_check_fw_version(adap);
3405 	/* If firmware is too old (not supported by driver) force an update. */
3406 	if (ret)
3407 		state = DEV_STATE_UNINIT;
3408 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3409 		struct fw_info *fw_info;
3410 		struct fw_hdr *card_fw;
3411 		const struct firmware *fw;
3412 		const u8 *fw_data = NULL;
3413 		unsigned int fw_size = 0;
3414 
3415 		/* This is the firmware whose headers the driver was compiled
3416 		 * against
3417 		 */
3418 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3419 		if (fw_info == NULL) {
3420 			dev_err(adap->pdev_dev,
3421 				"unable to get firmware info for chip %d.\n",
3422 				CHELSIO_CHIP_VERSION(adap->params.chip));
3423 			return -EINVAL;
3424 		}
3425 
3426 		/* allocate memory to read the header of the firmware on the
3427 		 * card
3428 		 */
3429 		card_fw = t4_alloc_mem(sizeof(*card_fw));
3430 
3431 		/* Get FW from from /lib/firmware/ */
3432 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3433 				       adap->pdev_dev);
3434 		if (ret < 0) {
3435 			dev_err(adap->pdev_dev,
3436 				"unable to load firmware image %s, error %d\n",
3437 				fw_info->fw_mod_name, ret);
3438 		} else {
3439 			fw_data = fw->data;
3440 			fw_size = fw->size;
3441 		}
3442 
3443 		/* upgrade FW logic */
3444 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3445 				 state, &reset);
3446 
3447 		/* Cleaning up */
3448 		release_firmware(fw);
3449 		t4_free_mem(card_fw);
3450 
3451 		if (ret < 0)
3452 			goto bye;
3453 	}
3454 
3455 	/*
3456 	 * Grab VPD parameters.  This should be done after we establish a
3457 	 * connection to the firmware since some of the VPD parameters
3458 	 * (notably the Core Clock frequency) are retrieved via requests to
3459 	 * the firmware.  On the other hand, we need these fairly early on
3460 	 * so we do this right after getting ahold of the firmware.
3461 	 */
3462 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3463 	if (ret < 0)
3464 		goto bye;
3465 
3466 	/*
3467 	 * Find out what ports are available to us.  Note that we need to do
3468 	 * this before calling adap_init0_no_config() since it needs nports
3469 	 * and portvec ...
3470 	 */
3471 	v =
3472 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3473 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3474 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3475 	if (ret < 0)
3476 		goto bye;
3477 
3478 	adap->params.nports = hweight32(port_vec);
3479 	adap->params.portvec = port_vec;
3480 
3481 	/* If the firmware is initialized already, emit a simply note to that
3482 	 * effect. Otherwise, it's time to try initializing the adapter.
3483 	 */
3484 	if (state == DEV_STATE_INIT) {
3485 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3486 			 "Adapter already initialized\n",
3487 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3488 	} else {
3489 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3490 			 "Initializing adapter\n");
3491 
3492 		/* Find out whether we're dealing with a version of the
3493 		 * firmware which has configuration file support.
3494 		 */
3495 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3496 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3497 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3498 				      params, val);
3499 
3500 		/* If the firmware doesn't support Configuration Files,
3501 		 * return an error.
3502 		 */
3503 		if (ret < 0) {
3504 			dev_err(adap->pdev_dev, "firmware doesn't support "
3505 				"Firmware Configuration Files\n");
3506 			goto bye;
3507 		}
3508 
3509 		/* The firmware provides us with a memory buffer where we can
3510 		 * load a Configuration File from the host if we want to
3511 		 * override the Configuration File in flash.
3512 		 */
3513 		ret = adap_init0_config(adap, reset);
3514 		if (ret == -ENOENT) {
3515 			dev_err(adap->pdev_dev, "no Configuration File "
3516 				"present on adapter.\n");
3517 			goto bye;
3518 		}
3519 		if (ret < 0) {
3520 			dev_err(adap->pdev_dev, "could not initialize "
3521 				"adapter, error %d\n", -ret);
3522 			goto bye;
3523 		}
3524 	}
3525 
3526 	/* Give the SGE code a chance to pull in anything that it needs ...
3527 	 * Note that this must be called after we retrieve our VPD parameters
3528 	 * in order to know how to convert core ticks to seconds, etc.
3529 	 */
3530 	ret = t4_sge_init(adap);
3531 	if (ret < 0)
3532 		goto bye;
3533 
3534 	if (is_bypass_device(adap->pdev->device))
3535 		adap->params.bypass = 1;
3536 
3537 	/*
3538 	 * Grab some of our basic fundamental operating parameters.
3539 	 */
3540 #define FW_PARAM_DEV(param) \
3541 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3542 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3543 
3544 #define FW_PARAM_PFVF(param) \
3545 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3546 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3547 	FW_PARAMS_PARAM_Y_V(0) | \
3548 	FW_PARAMS_PARAM_Z_V(0)
3549 
3550 	params[0] = FW_PARAM_PFVF(EQ_START);
3551 	params[1] = FW_PARAM_PFVF(L2T_START);
3552 	params[2] = FW_PARAM_PFVF(L2T_END);
3553 	params[3] = FW_PARAM_PFVF(FILTER_START);
3554 	params[4] = FW_PARAM_PFVF(FILTER_END);
3555 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3556 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3557 	if (ret < 0)
3558 		goto bye;
3559 	adap->sge.egr_start = val[0];
3560 	adap->l2t_start = val[1];
3561 	adap->l2t_end = val[2];
3562 	adap->tids.ftid_base = val[3];
3563 	adap->tids.nftids = val[4] - val[3] + 1;
3564 	adap->sge.ingr_start = val[5];
3565 
3566 	/* qids (ingress/egress) returned from firmware can be anywhere
3567 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3568 	 * Hence driver needs to allocate memory for this range to
3569 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3570 	 * in FW_EQ_*_CMD.alloc command.
3571 	 */
3572 	params[0] = FW_PARAM_PFVF(EQ_END);
3573 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3574 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3575 	if (ret < 0)
3576 		goto bye;
3577 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3578 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3579 
3580 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3581 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3582 	if (!adap->sge.egr_map) {
3583 		ret = -ENOMEM;
3584 		goto bye;
3585 	}
3586 
3587 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3588 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3589 	if (!adap->sge.ingr_map) {
3590 		ret = -ENOMEM;
3591 		goto bye;
3592 	}
3593 
3594 	/* Allocate the memory for the vaious egress queue bitmaps
3595 	 * ie starving_fl, txq_maperr and blocked_fl.
3596 	 */
3597 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3598 					sizeof(long), GFP_KERNEL);
3599 	if (!adap->sge.starving_fl) {
3600 		ret = -ENOMEM;
3601 		goto bye;
3602 	}
3603 
3604 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3605 				       sizeof(long), GFP_KERNEL);
3606 	if (!adap->sge.txq_maperr) {
3607 		ret = -ENOMEM;
3608 		goto bye;
3609 	}
3610 
3611 #ifdef CONFIG_DEBUG_FS
3612 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3613 				       sizeof(long), GFP_KERNEL);
3614 	if (!adap->sge.blocked_fl) {
3615 		ret = -ENOMEM;
3616 		goto bye;
3617 	}
3618 #endif
3619 
3620 	params[0] = FW_PARAM_PFVF(CLIP_START);
3621 	params[1] = FW_PARAM_PFVF(CLIP_END);
3622 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3623 	if (ret < 0)
3624 		goto bye;
3625 	adap->clipt_start = val[0];
3626 	adap->clipt_end = val[1];
3627 
3628 	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
3629 	 * Classes supported by the hardware/firmware so we hard code it here
3630 	 * for now.
3631 	 */
3632 	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3633 
3634 	/* query params related to active filter region */
3635 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3636 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3637 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3638 	/* If Active filter size is set we enable establishing
3639 	 * offload connection through firmware work request
3640 	 */
3641 	if ((val[0] != val[1]) && (ret >= 0)) {
3642 		adap->flags |= FW_OFLD_CONN;
3643 		adap->tids.aftid_base = val[0];
3644 		adap->tids.aftid_end = val[1];
3645 	}
3646 
3647 	/* If we're running on newer firmware, let it know that we're
3648 	 * prepared to deal with encapsulated CPL messages.  Older
3649 	 * firmware won't understand this and we'll just get
3650 	 * unencapsulated messages ...
3651 	 */
3652 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3653 	val[0] = 1;
3654 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3655 
3656 	/*
3657 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3658 	 * capability.  Earlier versions of the firmware didn't have the
3659 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3660 	 * permission to use ULPTX MEMWRITE DSGL.
3661 	 */
3662 	if (is_t4(adap->params.chip)) {
3663 		adap->params.ulptx_memwrite_dsgl = false;
3664 	} else {
3665 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3666 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3667 				      1, params, val);
3668 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3669 	}
3670 
3671 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
3672 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
3673 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3674 			      1, params, val);
3675 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
3676 
3677 	/*
3678 	 * Get device capabilities so we can determine what resources we need
3679 	 * to manage.
3680 	 */
3681 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3682 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3683 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3684 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3685 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3686 			 &caps_cmd);
3687 	if (ret < 0)
3688 		goto bye;
3689 
3690 	if (caps_cmd.ofldcaps) {
3691 		/* query offload-related parameters */
3692 		params[0] = FW_PARAM_DEV(NTID);
3693 		params[1] = FW_PARAM_PFVF(SERVER_START);
3694 		params[2] = FW_PARAM_PFVF(SERVER_END);
3695 		params[3] = FW_PARAM_PFVF(TDDP_START);
3696 		params[4] = FW_PARAM_PFVF(TDDP_END);
3697 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3698 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3699 				      params, val);
3700 		if (ret < 0)
3701 			goto bye;
3702 		adap->tids.ntids = val[0];
3703 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3704 		adap->tids.stid_base = val[1];
3705 		adap->tids.nstids = val[2] - val[1] + 1;
3706 		/*
3707 		 * Setup server filter region. Divide the available filter
3708 		 * region into two parts. Regular filters get 1/3rd and server
3709 		 * filters get 2/3rd part. This is only enabled if workarond
3710 		 * path is enabled.
3711 		 * 1. For regular filters.
3712 		 * 2. Server filter: This are special filters which are used
3713 		 * to redirect SYN packets to offload queue.
3714 		 */
3715 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3716 			adap->tids.sftid_base = adap->tids.ftid_base +
3717 					DIV_ROUND_UP(adap->tids.nftids, 3);
3718 			adap->tids.nsftids = adap->tids.nftids -
3719 					 DIV_ROUND_UP(adap->tids.nftids, 3);
3720 			adap->tids.nftids = adap->tids.sftid_base -
3721 						adap->tids.ftid_base;
3722 		}
3723 		adap->vres.ddp.start = val[3];
3724 		adap->vres.ddp.size = val[4] - val[3] + 1;
3725 		adap->params.ofldq_wr_cred = val[5];
3726 
3727 		adap->params.offload = 1;
3728 		adap->num_ofld_uld += 1;
3729 	}
3730 	if (caps_cmd.rdmacaps) {
3731 		params[0] = FW_PARAM_PFVF(STAG_START);
3732 		params[1] = FW_PARAM_PFVF(STAG_END);
3733 		params[2] = FW_PARAM_PFVF(RQ_START);
3734 		params[3] = FW_PARAM_PFVF(RQ_END);
3735 		params[4] = FW_PARAM_PFVF(PBL_START);
3736 		params[5] = FW_PARAM_PFVF(PBL_END);
3737 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3738 				      params, val);
3739 		if (ret < 0)
3740 			goto bye;
3741 		adap->vres.stag.start = val[0];
3742 		adap->vres.stag.size = val[1] - val[0] + 1;
3743 		adap->vres.rq.start = val[2];
3744 		adap->vres.rq.size = val[3] - val[2] + 1;
3745 		adap->vres.pbl.start = val[4];
3746 		adap->vres.pbl.size = val[5] - val[4] + 1;
3747 
3748 		params[0] = FW_PARAM_PFVF(SQRQ_START);
3749 		params[1] = FW_PARAM_PFVF(SQRQ_END);
3750 		params[2] = FW_PARAM_PFVF(CQ_START);
3751 		params[3] = FW_PARAM_PFVF(CQ_END);
3752 		params[4] = FW_PARAM_PFVF(OCQ_START);
3753 		params[5] = FW_PARAM_PFVF(OCQ_END);
3754 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3755 				      val);
3756 		if (ret < 0)
3757 			goto bye;
3758 		adap->vres.qp.start = val[0];
3759 		adap->vres.qp.size = val[1] - val[0] + 1;
3760 		adap->vres.cq.start = val[2];
3761 		adap->vres.cq.size = val[3] - val[2] + 1;
3762 		adap->vres.ocq.start = val[4];
3763 		adap->vres.ocq.size = val[5] - val[4] + 1;
3764 
3765 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3766 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3767 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3768 				      val);
3769 		if (ret < 0) {
3770 			adap->params.max_ordird_qp = 8;
3771 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3772 			ret = 0;
3773 		} else {
3774 			adap->params.max_ordird_qp = val[0];
3775 			adap->params.max_ird_adapter = val[1];
3776 		}
3777 		dev_info(adap->pdev_dev,
3778 			 "max_ordird_qp %d max_ird_adapter %d\n",
3779 			 adap->params.max_ordird_qp,
3780 			 adap->params.max_ird_adapter);
3781 		adap->num_ofld_uld += 2;
3782 	}
3783 	if (caps_cmd.iscsicaps) {
3784 		params[0] = FW_PARAM_PFVF(ISCSI_START);
3785 		params[1] = FW_PARAM_PFVF(ISCSI_END);
3786 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3787 				      params, val);
3788 		if (ret < 0)
3789 			goto bye;
3790 		adap->vres.iscsi.start = val[0];
3791 		adap->vres.iscsi.size = val[1] - val[0] + 1;
3792 		/* LIO target and cxgb4i initiaitor */
3793 		adap->num_ofld_uld += 2;
3794 	}
3795 	if (caps_cmd.cryptocaps) {
3796 		/* Should query params here...TODO */
3797 		adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
3798 		adap->num_uld += 1;
3799 	}
3800 #undef FW_PARAM_PFVF
3801 #undef FW_PARAM_DEV
3802 
3803 	/* The MTU/MSS Table is initialized by now, so load their values.  If
3804 	 * we're initializing the adapter, then we'll make any modifications
3805 	 * we want to the MTU/MSS Table and also initialize the congestion
3806 	 * parameters.
3807 	 */
3808 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3809 	if (state != DEV_STATE_INIT) {
3810 		int i;
3811 
3812 		/* The default MTU Table contains values 1492 and 1500.
3813 		 * However, for TCP, it's better to have two values which are
3814 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3815 		 * This allows us to have a TCP Data Payload which is a
3816 		 * multiple of 8 regardless of what combination of TCP Options
3817 		 * are in use (always a multiple of 4 bytes) which is
3818 		 * important for performance reasons.  For instance, if no
3819 		 * options are in use, then we have a 20-byte IP header and a
3820 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
3821 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3822 		 * which is not a multiple of 8.  So using an MSS of 1488 in
3823 		 * this case results in a TCP Data Payload of 1448 bytes which
3824 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
3825 		 * Stamps have been negotiated, then an MTU of 1500 bytes
3826 		 * results in a TCP Data Payload of 1448 bytes which, as
3827 		 * above, is a multiple of 8 bytes ...
3828 		 */
3829 		for (i = 0; i < NMTUS; i++)
3830 			if (adap->params.mtus[i] == 1492) {
3831 				adap->params.mtus[i] = 1488;
3832 				break;
3833 			}
3834 
3835 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3836 			     adap->params.b_wnd);
3837 	}
3838 	t4_init_sge_params(adap);
3839 	adap->flags |= FW_OK;
3840 	t4_init_tp_params(adap);
3841 	return 0;
3842 
3843 	/*
3844 	 * Something bad happened.  If a command timed out or failed with EIO
3845 	 * FW does not operate within its spec or something catastrophic
3846 	 * happened to HW/FW, stop issuing commands.
3847 	 */
3848 bye:
3849 	kfree(adap->sge.egr_map);
3850 	kfree(adap->sge.ingr_map);
3851 	kfree(adap->sge.starving_fl);
3852 	kfree(adap->sge.txq_maperr);
3853 #ifdef CONFIG_DEBUG_FS
3854 	kfree(adap->sge.blocked_fl);
3855 #endif
3856 	if (ret != -ETIMEDOUT && ret != -EIO)
3857 		t4_fw_bye(adap, adap->mbox);
3858 	return ret;
3859 }
3860 
3861 /* EEH callbacks */
3862 
3863 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3864 					 pci_channel_state_t state)
3865 {
3866 	int i;
3867 	struct adapter *adap = pci_get_drvdata(pdev);
3868 
3869 	if (!adap)
3870 		goto out;
3871 
3872 	rtnl_lock();
3873 	adap->flags &= ~FW_OK;
3874 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3875 	spin_lock(&adap->stats_lock);
3876 	for_each_port(adap, i) {
3877 		struct net_device *dev = adap->port[i];
3878 
3879 		netif_device_detach(dev);
3880 		netif_carrier_off(dev);
3881 	}
3882 	spin_unlock(&adap->stats_lock);
3883 	disable_interrupts(adap);
3884 	if (adap->flags & FULL_INIT_DONE)
3885 		cxgb_down(adap);
3886 	rtnl_unlock();
3887 	if ((adap->flags & DEV_ENABLED)) {
3888 		pci_disable_device(pdev);
3889 		adap->flags &= ~DEV_ENABLED;
3890 	}
3891 out:	return state == pci_channel_io_perm_failure ?
3892 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3893 }
3894 
3895 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3896 {
3897 	int i, ret;
3898 	struct fw_caps_config_cmd c;
3899 	struct adapter *adap = pci_get_drvdata(pdev);
3900 
3901 	if (!adap) {
3902 		pci_restore_state(pdev);
3903 		pci_save_state(pdev);
3904 		return PCI_ERS_RESULT_RECOVERED;
3905 	}
3906 
3907 	if (!(adap->flags & DEV_ENABLED)) {
3908 		if (pci_enable_device(pdev)) {
3909 			dev_err(&pdev->dev, "Cannot reenable PCI "
3910 					    "device after reset\n");
3911 			return PCI_ERS_RESULT_DISCONNECT;
3912 		}
3913 		adap->flags |= DEV_ENABLED;
3914 	}
3915 
3916 	pci_set_master(pdev);
3917 	pci_restore_state(pdev);
3918 	pci_save_state(pdev);
3919 	pci_cleanup_aer_uncorrect_error_status(pdev);
3920 
3921 	if (t4_wait_dev_ready(adap->regs) < 0)
3922 		return PCI_ERS_RESULT_DISCONNECT;
3923 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
3924 		return PCI_ERS_RESULT_DISCONNECT;
3925 	adap->flags |= FW_OK;
3926 	if (adap_init1(adap, &c))
3927 		return PCI_ERS_RESULT_DISCONNECT;
3928 
3929 	for_each_port(adap, i) {
3930 		struct port_info *p = adap2pinfo(adap, i);
3931 
3932 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
3933 				  NULL, NULL);
3934 		if (ret < 0)
3935 			return PCI_ERS_RESULT_DISCONNECT;
3936 		p->viid = ret;
3937 		p->xact_addr_filt = -1;
3938 	}
3939 
3940 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3941 		     adap->params.b_wnd);
3942 	setup_memwin(adap);
3943 	if (cxgb_up(adap))
3944 		return PCI_ERS_RESULT_DISCONNECT;
3945 	return PCI_ERS_RESULT_RECOVERED;
3946 }
3947 
3948 static void eeh_resume(struct pci_dev *pdev)
3949 {
3950 	int i;
3951 	struct adapter *adap = pci_get_drvdata(pdev);
3952 
3953 	if (!adap)
3954 		return;
3955 
3956 	rtnl_lock();
3957 	for_each_port(adap, i) {
3958 		struct net_device *dev = adap->port[i];
3959 
3960 		if (netif_running(dev)) {
3961 			link_start(dev);
3962 			cxgb_set_rxmode(dev);
3963 		}
3964 		netif_device_attach(dev);
3965 	}
3966 	rtnl_unlock();
3967 }
3968 
3969 static const struct pci_error_handlers cxgb4_eeh = {
3970 	.error_detected = eeh_err_detected,
3971 	.slot_reset     = eeh_slot_reset,
3972 	.resume         = eeh_resume,
3973 };
3974 
3975 /* Return true if the Link Configuration supports "High Speeds" (those greater
3976  * than 1Gb/s).
3977  */
3978 static inline bool is_x_10g_port(const struct link_config *lc)
3979 {
3980 	unsigned int speeds, high_speeds;
3981 
3982 	speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
3983 	high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);
3984 
3985 	return high_speeds != 0;
3986 }
3987 
3988 /*
3989  * Perform default configuration of DMA queues depending on the number and type
3990  * of ports we found and the number of available CPUs.  Most settings can be
3991  * modified by the admin prior to actual use.
3992  */
3993 static void cfg_queues(struct adapter *adap)
3994 {
3995 	struct sge *s = &adap->sge;
3996 	int i, n10g = 0, qidx = 0;
3997 #ifndef CONFIG_CHELSIO_T4_DCB
3998 	int q10g = 0;
3999 #endif
4000 
4001 	/* Reduce memory usage in kdump environment, disable all offload.
4002 	 */
4003 	if (is_kdump_kernel()) {
4004 		adap->params.offload = 0;
4005 		adap->params.crypto = 0;
4006 	} else if (is_uld(adap) && t4_uld_mem_alloc(adap)) {
4007 		adap->params.offload = 0;
4008 		adap->params.crypto = 0;
4009 	}
4010 
4011 	for_each_port(adap, i)
4012 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4013 #ifdef CONFIG_CHELSIO_T4_DCB
4014 	/* For Data Center Bridging support we need to be able to support up
4015 	 * to 8 Traffic Priorities; each of which will be assigned to its
4016 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4017 	 */
4018 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4019 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4020 			MAX_ETH_QSETS, adap->params.nports * 8);
4021 		BUG_ON(1);
4022 	}
4023 
4024 	for_each_port(adap, i) {
4025 		struct port_info *pi = adap2pinfo(adap, i);
4026 
4027 		pi->first_qset = qidx;
4028 		pi->nqsets = 8;
4029 		qidx += pi->nqsets;
4030 	}
4031 #else /* !CONFIG_CHELSIO_T4_DCB */
4032 	/*
4033 	 * We default to 1 queue per non-10G port and up to # of cores queues
4034 	 * per 10G port.
4035 	 */
4036 	if (n10g)
4037 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4038 	if (q10g > netif_get_num_default_rss_queues())
4039 		q10g = netif_get_num_default_rss_queues();
4040 
4041 	for_each_port(adap, i) {
4042 		struct port_info *pi = adap2pinfo(adap, i);
4043 
4044 		pi->first_qset = qidx;
4045 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4046 		qidx += pi->nqsets;
4047 	}
4048 #endif /* !CONFIG_CHELSIO_T4_DCB */
4049 
4050 	s->ethqsets = qidx;
4051 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4052 
4053 	if (is_uld(adap)) {
4054 		/*
4055 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4056 		 * otherwise we divide all available queues amongst the channels
4057 		 * capped by the number of available cores.
4058 		 */
4059 		if (n10g) {
4060 			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4061 			s->ofldqsets = roundup(i, adap->params.nports);
4062 		} else {
4063 			s->ofldqsets = adap->params.nports;
4064 		}
4065 	}
4066 
4067 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4068 		struct sge_eth_rxq *r = &s->ethrxq[i];
4069 
4070 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4071 		r->fl.size = 72;
4072 	}
4073 
4074 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4075 		s->ethtxq[i].q.size = 1024;
4076 
4077 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4078 		s->ctrlq[i].q.size = 512;
4079 
4080 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4081 		s->ofldtxq[i].q.size = 1024;
4082 
4083 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4084 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4085 }
4086 
4087 /*
4088  * Reduce the number of Ethernet queues across all ports to at most n.
4089  * n provides at least one queue per port.
4090  */
4091 static void reduce_ethqs(struct adapter *adap, int n)
4092 {
4093 	int i;
4094 	struct port_info *pi;
4095 
4096 	while (n < adap->sge.ethqsets)
4097 		for_each_port(adap, i) {
4098 			pi = adap2pinfo(adap, i);
4099 			if (pi->nqsets > 1) {
4100 				pi->nqsets--;
4101 				adap->sge.ethqsets--;
4102 				if (adap->sge.ethqsets <= n)
4103 					break;
4104 			}
4105 		}
4106 
4107 	n = 0;
4108 	for_each_port(adap, i) {
4109 		pi = adap2pinfo(adap, i);
4110 		pi->first_qset = n;
4111 		n += pi->nqsets;
4112 	}
4113 }
4114 
4115 static int get_msix_info(struct adapter *adap)
4116 {
4117 	struct uld_msix_info *msix_info;
4118 	unsigned int max_ingq = 0;
4119 
4120 	if (is_offload(adap))
4121 		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4122 	if (is_pci_uld(adap))
4123 		max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4124 
4125 	if (!max_ingq)
4126 		goto out;
4127 
4128 	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4129 	if (!msix_info)
4130 		return -ENOMEM;
4131 
4132 	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4133 						 sizeof(long), GFP_KERNEL);
4134 	if (!adap->msix_bmap_ulds.msix_bmap) {
4135 		kfree(msix_info);
4136 		return -ENOMEM;
4137 	}
4138 	spin_lock_init(&adap->msix_bmap_ulds.lock);
4139 	adap->msix_info_ulds = msix_info;
4140 out:
4141 	return 0;
4142 }
4143 
4144 static void free_msix_info(struct adapter *adap)
4145 {
4146 	if (!(adap->num_uld && adap->num_ofld_uld))
4147 		return;
4148 
4149 	kfree(adap->msix_info_ulds);
4150 	kfree(adap->msix_bmap_ulds.msix_bmap);
4151 }
4152 
4153 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4154 #define EXTRA_VECS 2
4155 
4156 static int enable_msix(struct adapter *adap)
4157 {
4158 	int ofld_need = 0, uld_need = 0;
4159 	int i, j, want, need, allocated;
4160 	struct sge *s = &adap->sge;
4161 	unsigned int nchan = adap->params.nports;
4162 	struct msix_entry *entries;
4163 	int max_ingq = MAX_INGQ;
4164 
4165 	if (is_pci_uld(adap))
4166 		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4167 	if (is_offload(adap))
4168 		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4169 	entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4170 			  GFP_KERNEL);
4171 	if (!entries)
4172 		return -ENOMEM;
4173 
4174 	/* map for msix */
4175 	if (get_msix_info(adap)) {
4176 		adap->params.offload = 0;
4177 		adap->params.crypto = 0;
4178 	}
4179 
4180 	for (i = 0; i < max_ingq + 1; ++i)
4181 		entries[i].entry = i;
4182 
4183 	want = s->max_ethqsets + EXTRA_VECS;
4184 	if (is_offload(adap)) {
4185 		want += adap->num_ofld_uld * s->ofldqsets;
4186 		ofld_need = adap->num_ofld_uld * nchan;
4187 	}
4188 	if (is_pci_uld(adap)) {
4189 		want += adap->num_uld * s->ofldqsets;
4190 		uld_need = adap->num_uld * nchan;
4191 	}
4192 #ifdef CONFIG_CHELSIO_T4_DCB
4193 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4194 	 * each port.
4195 	 */
4196 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4197 #else
4198 	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4199 #endif
4200 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4201 	if (allocated < 0) {
4202 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4203 			 " not using MSI-X\n");
4204 		kfree(entries);
4205 		return allocated;
4206 	}
4207 
4208 	/* Distribute available vectors to the various queue groups.
4209 	 * Every group gets its minimum requirement and NIC gets top
4210 	 * priority for leftovers.
4211 	 */
4212 	i = allocated - EXTRA_VECS - ofld_need - uld_need;
4213 	if (i < s->max_ethqsets) {
4214 		s->max_ethqsets = i;
4215 		if (i < s->ethqsets)
4216 			reduce_ethqs(adap, i);
4217 	}
4218 	if (is_uld(adap)) {
4219 		if (allocated < want)
4220 			s->nqs_per_uld = nchan;
4221 		else
4222 			s->nqs_per_uld = s->ofldqsets;
4223 	}
4224 
4225 	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4226 		adap->msix_info[i].vec = entries[i].vector;
4227 	if (is_uld(adap)) {
4228 		for (j = 0 ; i < allocated; ++i, j++) {
4229 			adap->msix_info_ulds[j].vec = entries[i].vector;
4230 			adap->msix_info_ulds[j].idx = i;
4231 		}
4232 		adap->msix_bmap_ulds.mapsize = j;
4233 	}
4234 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4235 		 "nic %d per uld %d\n",
4236 		 allocated, s->max_ethqsets, s->nqs_per_uld);
4237 
4238 	kfree(entries);
4239 	return 0;
4240 }
4241 
4242 #undef EXTRA_VECS
4243 
4244 static int init_rss(struct adapter *adap)
4245 {
4246 	unsigned int i;
4247 	int err;
4248 
4249 	err = t4_init_rss_mode(adap, adap->mbox);
4250 	if (err)
4251 		return err;
4252 
4253 	for_each_port(adap, i) {
4254 		struct port_info *pi = adap2pinfo(adap, i);
4255 
4256 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4257 		if (!pi->rss)
4258 			return -ENOMEM;
4259 	}
4260 	return 0;
4261 }
4262 
4263 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4264 					enum pci_bus_speed *speed,
4265 					enum pcie_link_width *width)
4266 {
4267 	u32 lnkcap1, lnkcap2;
4268 	int err1, err2;
4269 
4270 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4271 
4272 	*speed = PCI_SPEED_UNKNOWN;
4273 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4274 
4275 	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4276 					  &lnkcap1);
4277 	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4278 					  &lnkcap2);
4279 	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4280 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4281 			*speed = PCIE_SPEED_8_0GT;
4282 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4283 			*speed = PCIE_SPEED_5_0GT;
4284 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4285 			*speed = PCIE_SPEED_2_5GT;
4286 	}
4287 	if (!err1) {
4288 		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4289 		if (!lnkcap2) { /* pre-r3.0 */
4290 			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4291 				*speed = PCIE_SPEED_5_0GT;
4292 			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4293 				*speed = PCIE_SPEED_2_5GT;
4294 		}
4295 	}
4296 
4297 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4298 		return err1 ? err1 : err2 ? err2 : -EINVAL;
4299 	return 0;
4300 }
4301 
4302 static void cxgb4_check_pcie_caps(struct adapter *adap)
4303 {
4304 	enum pcie_link_width width, width_cap;
4305 	enum pci_bus_speed speed, speed_cap;
4306 
4307 #define PCIE_SPEED_STR(speed) \
4308 	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4309 	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4310 	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4311 	 "Unknown")
4312 
4313 	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4314 		dev_warn(adap->pdev_dev,
4315 			 "Unable to determine PCIe device BW capabilities\n");
4316 		return;
4317 	}
4318 
4319 	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4320 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4321 		dev_warn(adap->pdev_dev,
4322 			 "Unable to determine PCI Express bandwidth.\n");
4323 		return;
4324 	}
4325 
4326 	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4327 		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4328 	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4329 		 width, width_cap);
4330 	if (speed < speed_cap || width < width_cap)
4331 		dev_info(adap->pdev_dev,
4332 			 "A slot with more lanes and/or higher speed is "
4333 			 "suggested for optimal performance.\n");
4334 }
4335 
4336 /* Dump basic information about the adapter */
4337 static void print_adapter_info(struct adapter *adapter)
4338 {
4339 	/* Device information */
4340 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4341 		 adapter->params.vpd.id,
4342 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4343 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4344 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
4345 
4346 	/* Firmware Version */
4347 	if (!adapter->params.fw_vers)
4348 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4349 	else
4350 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4351 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4352 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4353 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4354 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4355 
4356 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4357 	 * Firmware, so dev_info() is more appropriate here.)
4358 	 */
4359 	if (!adapter->params.bs_vers)
4360 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4361 	else
4362 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4363 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4364 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4365 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4366 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4367 
4368 	/* TP Microcode Version */
4369 	if (!adapter->params.tp_vers)
4370 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4371 	else
4372 		dev_info(adapter->pdev_dev,
4373 			 "TP Microcode version: %u.%u.%u.%u\n",
4374 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4375 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4376 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4377 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4378 
4379 	/* Expansion ROM version */
4380 	if (!adapter->params.er_vers)
4381 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4382 	else
4383 		dev_info(adapter->pdev_dev,
4384 			 "Expansion ROM version: %u.%u.%u.%u\n",
4385 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4386 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4387 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4388 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4389 
4390 	/* Software/Hardware configuration */
4391 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4392 		 is_offload(adapter) ? "R" : "",
4393 		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4394 		  (adapter->flags & USING_MSI) ? "MSI" : ""),
4395 		 is_offload(adapter) ? "Offload" : "non-Offload");
4396 }
4397 
4398 static void print_port_info(const struct net_device *dev)
4399 {
4400 	char buf[80];
4401 	char *bufp = buf;
4402 	const char *spd = "";
4403 	const struct port_info *pi = netdev_priv(dev);
4404 	const struct adapter *adap = pi->adapter;
4405 
4406 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4407 		spd = " 2.5 GT/s";
4408 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4409 		spd = " 5 GT/s";
4410 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4411 		spd = " 8 GT/s";
4412 
4413 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4414 		bufp += sprintf(bufp, "100/");
4415 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4416 		bufp += sprintf(bufp, "1000/");
4417 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4418 		bufp += sprintf(bufp, "10G/");
4419 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
4420 		bufp += sprintf(bufp, "25G/");
4421 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4422 		bufp += sprintf(bufp, "40G/");
4423 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
4424 		bufp += sprintf(bufp, "100G/");
4425 	if (bufp != buf)
4426 		--bufp;
4427 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4428 
4429 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4430 		    dev->name, adap->params.vpd.id, adap->name, buf);
4431 }
4432 
4433 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4434 {
4435 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4436 }
4437 
4438 /*
4439  * Free the following resources:
4440  * - memory used for tables
4441  * - MSI/MSI-X
4442  * - net devices
4443  * - resources FW is holding for us
4444  */
4445 static void free_some_resources(struct adapter *adapter)
4446 {
4447 	unsigned int i;
4448 
4449 	t4_free_mem(adapter->l2t);
4450 	t4_cleanup_sched(adapter);
4451 	t4_free_mem(adapter->tids.tid_tab);
4452 	cxgb4_cleanup_tc_u32(adapter);
4453 	kfree(adapter->sge.egr_map);
4454 	kfree(adapter->sge.ingr_map);
4455 	kfree(adapter->sge.starving_fl);
4456 	kfree(adapter->sge.txq_maperr);
4457 #ifdef CONFIG_DEBUG_FS
4458 	kfree(adapter->sge.blocked_fl);
4459 #endif
4460 	disable_msi(adapter);
4461 
4462 	for_each_port(adapter, i)
4463 		if (adapter->port[i]) {
4464 			struct port_info *pi = adap2pinfo(adapter, i);
4465 
4466 			if (pi->viid != 0)
4467 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
4468 					   0, pi->viid);
4469 			kfree(adap2pinfo(adapter, i)->rss);
4470 			free_netdev(adapter->port[i]);
4471 		}
4472 	if (adapter->flags & FW_OK)
4473 		t4_fw_bye(adapter, adapter->pf);
4474 }
4475 
4476 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4477 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4478 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4479 #define SEGMENT_SIZE 128
4480 
4481 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4482 {
4483 	u16 device_id;
4484 
4485 	/* Retrieve adapter's device ID */
4486 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4487 
4488 	switch (device_id >> 12) {
4489 	case CHELSIO_T4:
4490 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4491 	case CHELSIO_T5:
4492 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4493 	case CHELSIO_T6:
4494 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4495 	default:
4496 		dev_err(&pdev->dev, "Device %d is not supported\n",
4497 			device_id);
4498 	}
4499 	return -EINVAL;
4500 }
4501 
4502 #ifdef CONFIG_PCI_IOV
4503 static void dummy_setup(struct net_device *dev)
4504 {
4505 	dev->type = ARPHRD_NONE;
4506 	dev->mtu = 0;
4507 	dev->hard_header_len = 0;
4508 	dev->addr_len = 0;
4509 	dev->tx_queue_len = 0;
4510 	dev->flags |= IFF_NOARP;
4511 	dev->priv_flags |= IFF_NO_QUEUE;
4512 
4513 	/* Initialize the device structure. */
4514 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4515 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4516 	dev->destructor = free_netdev;
4517 }
4518 
4519 static int config_mgmt_dev(struct pci_dev *pdev)
4520 {
4521 	struct adapter *adap = pci_get_drvdata(pdev);
4522 	struct net_device *netdev;
4523 	struct port_info *pi;
4524 	char name[IFNAMSIZ];
4525 	int err;
4526 
4527 	snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4528 	netdev = alloc_netdev(0, name, NET_NAME_UNKNOWN, dummy_setup);
4529 	if (!netdev)
4530 		return -ENOMEM;
4531 
4532 	pi = netdev_priv(netdev);
4533 	pi->adapter = adap;
4534 	SET_NETDEV_DEV(netdev, &pdev->dev);
4535 
4536 	adap->port[0] = netdev;
4537 
4538 	err = register_netdev(adap->port[0]);
4539 	if (err) {
4540 		pr_info("Unable to register VF mgmt netdev %s\n", name);
4541 		free_netdev(adap->port[0]);
4542 		adap->port[0] = NULL;
4543 		return err;
4544 	}
4545 	return 0;
4546 }
4547 
4548 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4549 {
4550 	struct adapter *adap = pci_get_drvdata(pdev);
4551 	int err = 0;
4552 	int current_vfs = pci_num_vf(pdev);
4553 	u32 pcie_fw;
4554 
4555 	pcie_fw = readl(adap->regs + PCIE_FW_A);
4556 	/* Check if cxgb4 is the MASTER and fw is initialized */
4557 	if (!(pcie_fw & PCIE_FW_INIT_F) ||
4558 	    !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4559 	    PCIE_FW_MASTER_G(pcie_fw) != 4) {
4560 		dev_warn(&pdev->dev,
4561 			 "cxgb4 driver needs to be MASTER to support SRIOV\n");
4562 		return -EOPNOTSUPP;
4563 	}
4564 
4565 	/* If any of the VF's is already assigned to Guest OS, then
4566 	 * SRIOV for the same cannot be modified
4567 	 */
4568 	if (current_vfs && pci_vfs_assigned(pdev)) {
4569 		dev_err(&pdev->dev,
4570 			"Cannot modify SR-IOV while VFs are assigned\n");
4571 		num_vfs = current_vfs;
4572 		return num_vfs;
4573 	}
4574 
4575 	/* Disable SRIOV when zero is passed.
4576 	 * One needs to disable SRIOV before modifying it, else
4577 	 * stack throws the below warning:
4578 	 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4579 	 */
4580 	if (!num_vfs) {
4581 		pci_disable_sriov(pdev);
4582 		if (adap->port[0]) {
4583 			unregister_netdev(adap->port[0]);
4584 			adap->port[0] = NULL;
4585 		}
4586 		/* free VF resources */
4587 		kfree(adap->vfinfo);
4588 		adap->vfinfo = NULL;
4589 		adap->num_vfs = 0;
4590 		return num_vfs;
4591 	}
4592 
4593 	if (num_vfs != current_vfs) {
4594 		err = pci_enable_sriov(pdev, num_vfs);
4595 		if (err)
4596 			return err;
4597 
4598 		adap->num_vfs = num_vfs;
4599 		err = config_mgmt_dev(pdev);
4600 		if (err)
4601 			return err;
4602 	}
4603 
4604 	adap->vfinfo = kcalloc(adap->num_vfs,
4605 			       sizeof(struct vf_info), GFP_KERNEL);
4606 	if (adap->vfinfo)
4607 		fill_vf_station_mac_addr(adap);
4608 	return num_vfs;
4609 }
4610 #endif
4611 
4612 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4613 {
4614 	int func, i, err, s_qpp, qpp, num_seg;
4615 	struct port_info *pi;
4616 	bool highdma = false;
4617 	struct adapter *adapter = NULL;
4618 	struct net_device *netdev;
4619 	void __iomem *regs;
4620 	u32 whoami, pl_rev;
4621 	enum chip_type chip;
4622 	static int adap_idx = 1;
4623 
4624 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4625 
4626 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4627 	if (err) {
4628 		/* Just info, some other driver may have claimed the device. */
4629 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4630 		return err;
4631 	}
4632 
4633 	err = pci_enable_device(pdev);
4634 	if (err) {
4635 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4636 		goto out_release_regions;
4637 	}
4638 
4639 	regs = pci_ioremap_bar(pdev, 0);
4640 	if (!regs) {
4641 		dev_err(&pdev->dev, "cannot map device registers\n");
4642 		err = -ENOMEM;
4643 		goto out_disable_device;
4644 	}
4645 
4646 	err = t4_wait_dev_ready(regs);
4647 	if (err < 0)
4648 		goto out_unmap_bar0;
4649 
4650 	/* We control everything through one PF */
4651 	whoami = readl(regs + PL_WHOAMI_A);
4652 	pl_rev = REV_G(readl(regs + PL_REV_A));
4653 	chip = get_chip_type(pdev, pl_rev);
4654 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4655 		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4656 	if (func != ent->driver_data) {
4657 #ifndef CONFIG_PCI_IOV
4658 		iounmap(regs);
4659 #endif
4660 		pci_disable_device(pdev);
4661 		pci_save_state(pdev);        /* to restore SR-IOV later */
4662 		goto sriov;
4663 	}
4664 
4665 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4666 		highdma = true;
4667 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4668 		if (err) {
4669 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4670 				"coherent allocations\n");
4671 			goto out_unmap_bar0;
4672 		}
4673 	} else {
4674 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4675 		if (err) {
4676 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4677 			goto out_unmap_bar0;
4678 		}
4679 	}
4680 
4681 	pci_enable_pcie_error_reporting(pdev);
4682 	enable_pcie_relaxed_ordering(pdev);
4683 	pci_set_master(pdev);
4684 	pci_save_state(pdev);
4685 
4686 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4687 	if (!adapter) {
4688 		err = -ENOMEM;
4689 		goto out_unmap_bar0;
4690 	}
4691 	adap_idx++;
4692 
4693 	adapter->workq = create_singlethread_workqueue("cxgb4");
4694 	if (!adapter->workq) {
4695 		err = -ENOMEM;
4696 		goto out_free_adapter;
4697 	}
4698 
4699 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4700 				    (sizeof(struct mbox_cmd) *
4701 				     T4_OS_LOG_MBOX_CMDS),
4702 				    GFP_KERNEL);
4703 	if (!adapter->mbox_log) {
4704 		err = -ENOMEM;
4705 		goto out_free_adapter;
4706 	}
4707 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4708 
4709 	/* PCI device has been enabled */
4710 	adapter->flags |= DEV_ENABLED;
4711 
4712 	adapter->regs = regs;
4713 	adapter->pdev = pdev;
4714 	adapter->pdev_dev = &pdev->dev;
4715 	adapter->name = pci_name(pdev);
4716 	adapter->mbox = func;
4717 	adapter->pf = func;
4718 	adapter->msg_enable = dflt_msg_enable;
4719 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4720 
4721 	spin_lock_init(&adapter->stats_lock);
4722 	spin_lock_init(&adapter->tid_release_lock);
4723 	spin_lock_init(&adapter->win0_lock);
4724 
4725 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4726 	INIT_WORK(&adapter->db_full_task, process_db_full);
4727 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4728 
4729 	err = t4_prep_adapter(adapter);
4730 	if (err)
4731 		goto out_free_adapter;
4732 
4733 
4734 	if (!is_t4(adapter->params.chip)) {
4735 		s_qpp = (QUEUESPERPAGEPF0_S +
4736 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4737 			adapter->pf);
4738 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4739 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4740 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
4741 
4742 		/* Each segment size is 128B. Write coalescing is enabled only
4743 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4744 		 * queue is less no of segments that can be accommodated in
4745 		 * a page size.
4746 		 */
4747 		if (qpp > num_seg) {
4748 			dev_err(&pdev->dev,
4749 				"Incorrect number of egress queues per page\n");
4750 			err = -EINVAL;
4751 			goto out_free_adapter;
4752 		}
4753 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4754 		pci_resource_len(pdev, 2));
4755 		if (!adapter->bar2) {
4756 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
4757 			err = -ENOMEM;
4758 			goto out_free_adapter;
4759 		}
4760 	}
4761 
4762 	setup_memwin(adapter);
4763 	err = adap_init0(adapter);
4764 #ifdef CONFIG_DEBUG_FS
4765 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4766 #endif
4767 	setup_memwin_rdma(adapter);
4768 	if (err)
4769 		goto out_unmap_bar;
4770 
4771 	/* configure SGE_STAT_CFG_A to read WC stats */
4772 	if (!is_t4(adapter->params.chip))
4773 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4774 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4775 			      T6_STATMODE_V(0)));
4776 
4777 	for_each_port(adapter, i) {
4778 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
4779 					   MAX_ETH_QSETS);
4780 		if (!netdev) {
4781 			err = -ENOMEM;
4782 			goto out_free_dev;
4783 		}
4784 
4785 		SET_NETDEV_DEV(netdev, &pdev->dev);
4786 
4787 		adapter->port[i] = netdev;
4788 		pi = netdev_priv(netdev);
4789 		pi->adapter = adapter;
4790 		pi->xact_addr_filt = -1;
4791 		pi->port_id = i;
4792 		netdev->irq = pdev->irq;
4793 
4794 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4795 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4796 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4797 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
4798 			NETIF_F_HW_TC;
4799 		if (highdma)
4800 			netdev->hw_features |= NETIF_F_HIGHDMA;
4801 		netdev->features |= netdev->hw_features;
4802 		netdev->vlan_features = netdev->features & VLAN_FEAT;
4803 
4804 		netdev->priv_flags |= IFF_UNICAST_FLT;
4805 
4806 		netdev->netdev_ops = &cxgb4_netdev_ops;
4807 #ifdef CONFIG_CHELSIO_T4_DCB
4808 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
4809 		cxgb4_dcb_state_init(netdev);
4810 #endif
4811 		cxgb4_set_ethtool_ops(netdev);
4812 	}
4813 
4814 	pci_set_drvdata(pdev, adapter);
4815 
4816 	if (adapter->flags & FW_OK) {
4817 		err = t4_port_init(adapter, func, func, 0);
4818 		if (err)
4819 			goto out_free_dev;
4820 	} else if (adapter->params.nports == 1) {
4821 		/* If we don't have a connection to the firmware -- possibly
4822 		 * because of an error -- grab the raw VPD parameters so we
4823 		 * can set the proper MAC Address on the debug network
4824 		 * interface that we've created.
4825 		 */
4826 		u8 hw_addr[ETH_ALEN];
4827 		u8 *na = adapter->params.vpd.na;
4828 
4829 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4830 		if (!err) {
4831 			for (i = 0; i < ETH_ALEN; i++)
4832 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4833 					      hex2val(na[2 * i + 1]));
4834 			t4_set_hw_addr(adapter, 0, hw_addr);
4835 		}
4836 	}
4837 
4838 	/* Configure queues and allocate tables now, they can be needed as
4839 	 * soon as the first register_netdev completes.
4840 	 */
4841 	cfg_queues(adapter);
4842 
4843 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4844 	if (!adapter->l2t) {
4845 		/* We tolerate a lack of L2T, giving up some functionality */
4846 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4847 		adapter->params.offload = 0;
4848 	}
4849 
4850 #if IS_ENABLED(CONFIG_IPV6)
4851 	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4852 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4853 		/* CLIP functionality is not present in hardware,
4854 		 * hence disable all offload features
4855 		 */
4856 		dev_warn(&pdev->dev,
4857 			 "CLIP not enabled in hardware, continuing\n");
4858 		adapter->params.offload = 0;
4859 	} else {
4860 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4861 						  adapter->clipt_end);
4862 		if (!adapter->clipt) {
4863 			/* We tolerate a lack of clip_table, giving up
4864 			 * some functionality
4865 			 */
4866 			dev_warn(&pdev->dev,
4867 				 "could not allocate Clip table, continuing\n");
4868 			adapter->params.offload = 0;
4869 		}
4870 	}
4871 #endif
4872 
4873 	for_each_port(adapter, i) {
4874 		pi = adap2pinfo(adapter, i);
4875 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
4876 		if (!pi->sched_tbl)
4877 			dev_warn(&pdev->dev,
4878 				 "could not activate scheduling on port %d\n",
4879 				 i);
4880 	}
4881 
4882 	if (tid_init(&adapter->tids) < 0) {
4883 		dev_warn(&pdev->dev, "could not allocate TID table, "
4884 			 "continuing\n");
4885 		adapter->params.offload = 0;
4886 	} else {
4887 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter,
4888 						    CXGB4_MAX_LINK_HANDLE);
4889 		if (!adapter->tc_u32)
4890 			dev_warn(&pdev->dev,
4891 				 "could not offload tc u32, continuing\n");
4892 	}
4893 
4894 	if (is_offload(adapter)) {
4895 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4896 			u32 hash_base, hash_reg;
4897 
4898 			if (chip <= CHELSIO_T5) {
4899 				hash_reg = LE_DB_TID_HASHBASE_A;
4900 				hash_base = t4_read_reg(adapter, hash_reg);
4901 				adapter->tids.hash_base = hash_base / 4;
4902 			} else {
4903 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4904 				hash_base = t4_read_reg(adapter, hash_reg);
4905 				adapter->tids.hash_base = hash_base;
4906 			}
4907 		}
4908 	}
4909 
4910 	/* See what interrupts we'll be using */
4911 	if (msi > 1 && enable_msix(adapter) == 0)
4912 		adapter->flags |= USING_MSIX;
4913 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
4914 		adapter->flags |= USING_MSI;
4915 		if (msi > 1)
4916 			free_msix_info(adapter);
4917 	}
4918 
4919 	/* check for PCI Express bandwidth capabiltites */
4920 	cxgb4_check_pcie_caps(adapter);
4921 
4922 	err = init_rss(adapter);
4923 	if (err)
4924 		goto out_free_dev;
4925 
4926 	/*
4927 	 * The card is now ready to go.  If any errors occur during device
4928 	 * registration we do not fail the whole card but rather proceed only
4929 	 * with the ports we manage to register successfully.  However we must
4930 	 * register at least one net device.
4931 	 */
4932 	for_each_port(adapter, i) {
4933 		pi = adap2pinfo(adapter, i);
4934 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4935 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4936 
4937 		err = register_netdev(adapter->port[i]);
4938 		if (err)
4939 			break;
4940 		adapter->chan_map[pi->tx_chan] = i;
4941 		print_port_info(adapter->port[i]);
4942 	}
4943 	if (i == 0) {
4944 		dev_err(&pdev->dev, "could not register any net devices\n");
4945 		goto out_free_dev;
4946 	}
4947 	if (err) {
4948 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4949 		err = 0;
4950 	}
4951 
4952 	if (cxgb4_debugfs_root) {
4953 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4954 							   cxgb4_debugfs_root);
4955 		setup_debugfs(adapter);
4956 	}
4957 
4958 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4959 	pdev->needs_freset = 1;
4960 
4961 	if (is_uld(adapter)) {
4962 		mutex_lock(&uld_mutex);
4963 		list_add_tail(&adapter->list_node, &adapter_list);
4964 		mutex_unlock(&uld_mutex);
4965 	}
4966 
4967 	print_adapter_info(adapter);
4968 	setup_fw_sge_queues(adapter);
4969 	return 0;
4970 
4971 sriov:
4972 #ifdef CONFIG_PCI_IOV
4973 	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) {
4974 		dev_warn(&pdev->dev,
4975 			 "Enabling SR-IOV VFs using the num_vf module "
4976 			 "parameter is deprecated - please use the pci sysfs "
4977 			 "interface instead.\n");
4978 		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4979 			dev_info(&pdev->dev,
4980 				 "instantiated %u virtual functions\n",
4981 				 num_vf[func]);
4982 	}
4983 
4984 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4985 	if (!adapter) {
4986 		err = -ENOMEM;
4987 		goto free_pci_region;
4988 	}
4989 
4990 	adapter->pdev = pdev;
4991 	adapter->pdev_dev = &pdev->dev;
4992 	adapter->name = pci_name(pdev);
4993 	adapter->mbox = func;
4994 	adapter->pf = func;
4995 	adapter->regs = regs;
4996 	adapter->adap_idx = adap_idx;
4997 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4998 				    (sizeof(struct mbox_cmd) *
4999 				     T4_OS_LOG_MBOX_CMDS),
5000 				    GFP_KERNEL);
5001 	if (!adapter->mbox_log) {
5002 		err = -ENOMEM;
5003 		goto free_adapter;
5004 	}
5005 	pci_set_drvdata(pdev, adapter);
5006 	return 0;
5007 
5008  free_adapter:
5009 	kfree(adapter);
5010  free_pci_region:
5011 	iounmap(regs);
5012 	pci_disable_sriov(pdev);
5013 	pci_release_regions(pdev);
5014 	return err;
5015 #else
5016 	return 0;
5017 #endif
5018 
5019  out_free_dev:
5020 	free_some_resources(adapter);
5021 	if (adapter->flags & USING_MSIX)
5022 		free_msix_info(adapter);
5023 	if (adapter->num_uld || adapter->num_ofld_uld)
5024 		t4_uld_mem_free(adapter);
5025  out_unmap_bar:
5026 	if (!is_t4(adapter->params.chip))
5027 		iounmap(adapter->bar2);
5028  out_free_adapter:
5029 	if (adapter->workq)
5030 		destroy_workqueue(adapter->workq);
5031 
5032 	kfree(adapter->mbox_log);
5033 	kfree(adapter);
5034  out_unmap_bar0:
5035 	iounmap(regs);
5036  out_disable_device:
5037 	pci_disable_pcie_error_reporting(pdev);
5038 	pci_disable_device(pdev);
5039  out_release_regions:
5040 	pci_release_regions(pdev);
5041 	return err;
5042 }
5043 
5044 static void remove_one(struct pci_dev *pdev)
5045 {
5046 	struct adapter *adapter = pci_get_drvdata(pdev);
5047 
5048 	if (!adapter) {
5049 		pci_release_regions(pdev);
5050 		return;
5051 	}
5052 
5053 	if (adapter->pf == 4) {
5054 		int i;
5055 
5056 		/* Tear down per-adapter Work Queue first since it can contain
5057 		 * references to our adapter data structure.
5058 		 */
5059 		destroy_workqueue(adapter->workq);
5060 
5061 		if (is_uld(adapter))
5062 			detach_ulds(adapter);
5063 
5064 		disable_interrupts(adapter);
5065 
5066 		for_each_port(adapter, i)
5067 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5068 				unregister_netdev(adapter->port[i]);
5069 
5070 		debugfs_remove_recursive(adapter->debugfs_root);
5071 
5072 		/* If we allocated filters, free up state associated with any
5073 		 * valid filters ...
5074 		 */
5075 		clear_all_filters(adapter);
5076 
5077 		if (adapter->flags & FULL_INIT_DONE)
5078 			cxgb_down(adapter);
5079 
5080 		if (adapter->flags & USING_MSIX)
5081 			free_msix_info(adapter);
5082 		if (adapter->num_uld || adapter->num_ofld_uld)
5083 			t4_uld_mem_free(adapter);
5084 		free_some_resources(adapter);
5085 #if IS_ENABLED(CONFIG_IPV6)
5086 		t4_cleanup_clip_tbl(adapter);
5087 #endif
5088 		iounmap(adapter->regs);
5089 		if (!is_t4(adapter->params.chip))
5090 			iounmap(adapter->bar2);
5091 		pci_disable_pcie_error_reporting(pdev);
5092 		if ((adapter->flags & DEV_ENABLED)) {
5093 			pci_disable_device(pdev);
5094 			adapter->flags &= ~DEV_ENABLED;
5095 		}
5096 		pci_release_regions(pdev);
5097 		kfree(adapter->mbox_log);
5098 		synchronize_rcu();
5099 		kfree(adapter);
5100 	}
5101 #ifdef CONFIG_PCI_IOV
5102 	else {
5103 		if (adapter->port[0])
5104 			unregister_netdev(adapter->port[0]);
5105 		iounmap(adapter->regs);
5106 		kfree(adapter->vfinfo);
5107 		kfree(adapter);
5108 		pci_disable_sriov(pdev);
5109 		pci_release_regions(pdev);
5110 	}
5111 #endif
5112 }
5113 
5114 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5115  * delivery.  This is essentially a stripped down version of the PCI remove()
5116  * function where we do the minimal amount of work necessary to shutdown any
5117  * further activity.
5118  */
5119 static void shutdown_one(struct pci_dev *pdev)
5120 {
5121 	struct adapter *adapter = pci_get_drvdata(pdev);
5122 
5123 	/* As with remove_one() above (see extended comment), we only want do
5124 	 * do cleanup on PCI Devices which went all the way through init_one()
5125 	 * ...
5126 	 */
5127 	if (!adapter) {
5128 		pci_release_regions(pdev);
5129 		return;
5130 	}
5131 
5132 	if (adapter->pf == 4) {
5133 		int i;
5134 
5135 		for_each_port(adapter, i)
5136 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5137 				cxgb_close(adapter->port[i]);
5138 
5139 		t4_uld_clean_up(adapter);
5140 		disable_interrupts(adapter);
5141 		disable_msi(adapter);
5142 
5143 		t4_sge_stop(adapter);
5144 		if (adapter->flags & FW_OK)
5145 			t4_fw_bye(adapter, adapter->mbox);
5146 	}
5147 #ifdef CONFIG_PCI_IOV
5148 	else {
5149 		if (adapter->port[0])
5150 			unregister_netdev(adapter->port[0]);
5151 		iounmap(adapter->regs);
5152 		kfree(adapter->vfinfo);
5153 		kfree(adapter);
5154 		pci_disable_sriov(pdev);
5155 		pci_release_regions(pdev);
5156 	}
5157 #endif
5158 }
5159 
5160 static struct pci_driver cxgb4_driver = {
5161 	.name     = KBUILD_MODNAME,
5162 	.id_table = cxgb4_pci_tbl,
5163 	.probe    = init_one,
5164 	.remove   = remove_one,
5165 	.shutdown = shutdown_one,
5166 #ifdef CONFIG_PCI_IOV
5167 	.sriov_configure = cxgb4_iov_configure,
5168 #endif
5169 	.err_handler = &cxgb4_eeh,
5170 };
5171 
5172 static int __init cxgb4_init_module(void)
5173 {
5174 	int ret;
5175 
5176 	/* Debugfs support is optional, just warn if this fails */
5177 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5178 	if (!cxgb4_debugfs_root)
5179 		pr_warn("could not create debugfs entry, continuing\n");
5180 
5181 	ret = pci_register_driver(&cxgb4_driver);
5182 	if (ret < 0)
5183 		debugfs_remove(cxgb4_debugfs_root);
5184 
5185 #if IS_ENABLED(CONFIG_IPV6)
5186 	if (!inet6addr_registered) {
5187 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5188 		inet6addr_registered = true;
5189 	}
5190 #endif
5191 
5192 	return ret;
5193 }
5194 
5195 static void __exit cxgb4_cleanup_module(void)
5196 {
5197 #if IS_ENABLED(CONFIG_IPV6)
5198 	if (inet6addr_registered) {
5199 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5200 		inet6addr_registered = false;
5201 	}
5202 #endif
5203 	pci_unregister_driver(&cxgb4_driver);
5204 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5205 }
5206 
5207 module_init(cxgb4_init_module);
5208 module_exit(cxgb4_cleanup_module);
5209