1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <asm/uaccess.h> 67 #include <linux/crash_dump.h> 68 69 #include "cxgb4.h" 70 #include "cxgb4_filter.h" 71 #include "t4_regs.h" 72 #include "t4_values.h" 73 #include "t4_msg.h" 74 #include "t4fw_api.h" 75 #include "t4fw_version.h" 76 #include "cxgb4_dcb.h" 77 #include "cxgb4_debugfs.h" 78 #include "clip_tbl.h" 79 #include "l2t.h" 80 #include "sched.h" 81 #include "cxgb4_tc_u32.h" 82 83 char cxgb4_driver_name[] = KBUILD_MODNAME; 84 85 #ifdef DRV_VERSION 86 #undef DRV_VERSION 87 #endif 88 #define DRV_VERSION "2.0.0-ko" 89 const char cxgb4_driver_version[] = DRV_VERSION; 90 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 91 92 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 93 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 94 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 95 96 /* Macros needed to support the PCI Device ID Table ... 97 */ 98 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 99 static const struct pci_device_id cxgb4_pci_tbl[] = { 100 #define CH_PCI_DEVICE_ID_FUNCTION 0x4 101 102 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 103 * called for both. 104 */ 105 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 106 107 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 108 {PCI_VDEVICE(CHELSIO, (devid)), 4} 109 110 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 111 { 0, } \ 112 } 113 114 #include "t4_pci_id_tbl.h" 115 116 #define FW4_FNAME "cxgb4/t4fw.bin" 117 #define FW5_FNAME "cxgb4/t5fw.bin" 118 #define FW6_FNAME "cxgb4/t6fw.bin" 119 #define FW4_CFNAME "cxgb4/t4-config.txt" 120 #define FW5_CFNAME "cxgb4/t5-config.txt" 121 #define FW6_CFNAME "cxgb4/t6-config.txt" 122 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 123 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 124 #define PHY_AQ1202_DEVICEID 0x4409 125 #define PHY_BCM84834_DEVICEID 0x4486 126 127 MODULE_DESCRIPTION(DRV_DESC); 128 MODULE_AUTHOR("Chelsio Communications"); 129 MODULE_LICENSE("Dual BSD/GPL"); 130 MODULE_VERSION(DRV_VERSION); 131 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 132 MODULE_FIRMWARE(FW4_FNAME); 133 MODULE_FIRMWARE(FW5_FNAME); 134 MODULE_FIRMWARE(FW6_FNAME); 135 136 /* 137 * Normally we're willing to become the firmware's Master PF but will be happy 138 * if another PF has already become the Master and initialized the adapter. 139 * Setting "force_init" will cause this driver to forcibly establish itself as 140 * the Master PF and initialize the adapter. 141 */ 142 static uint force_init; 143 144 module_param(force_init, uint, 0644); 145 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter," 146 "deprecated parameter"); 147 148 static int dflt_msg_enable = DFLT_MSG_ENABLE; 149 150 module_param(dflt_msg_enable, int, 0644); 151 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap, " 152 "deprecated parameter"); 153 154 /* 155 * The driver uses the best interrupt scheme available on a platform in the 156 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 157 * of these schemes the driver may consider as follows: 158 * 159 * msi = 2: choose from among all three options 160 * msi = 1: only consider MSI and INTx interrupts 161 * msi = 0: force INTx interrupts 162 */ 163 static int msi = 2; 164 165 module_param(msi, int, 0644); 166 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 167 168 /* 169 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 170 * offset by 2 bytes in order to have the IP headers line up on 4-byte 171 * boundaries. This is a requirement for many architectures which will throw 172 * a machine check fault if an attempt is made to access one of the 4-byte IP 173 * header fields on a non-4-byte boundary. And it's a major performance issue 174 * even on some architectures which allow it like some implementations of the 175 * x86 ISA. However, some architectures don't mind this and for some very 176 * edge-case performance sensitive applications (like forwarding large volumes 177 * of small packets), setting this DMA offset to 0 will decrease the number of 178 * PCI-E Bus transfers enough to measurably affect performance. 179 */ 180 static int rx_dma_offset = 2; 181 182 #ifdef CONFIG_PCI_IOV 183 /* Configure the number of PCI-E Virtual Function which are to be instantiated 184 * on SR-IOV Capable Physical Functions. 185 */ 186 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV]; 187 188 module_param_array(num_vf, uint, NULL, 0644); 189 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3, deprecated parameter - please use the pci sysfs interface."); 190 #endif 191 192 /* TX Queue select used to determine what algorithm to use for selecting TX 193 * queue. Select between the kernel provided function (select_queue=0) or user 194 * cxgb_select_queue function (select_queue=1) 195 * 196 * Default: select_queue=0 197 */ 198 static int select_queue; 199 module_param(select_queue, int, 0644); 200 MODULE_PARM_DESC(select_queue, 201 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 202 203 static struct dentry *cxgb4_debugfs_root; 204 205 LIST_HEAD(adapter_list); 206 DEFINE_MUTEX(uld_mutex); 207 208 static void link_report(struct net_device *dev) 209 { 210 if (!netif_carrier_ok(dev)) 211 netdev_info(dev, "link down\n"); 212 else { 213 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 214 215 const char *s; 216 const struct port_info *p = netdev_priv(dev); 217 218 switch (p->link_cfg.speed) { 219 case 10000: 220 s = "10Gbps"; 221 break; 222 case 1000: 223 s = "1000Mbps"; 224 break; 225 case 100: 226 s = "100Mbps"; 227 break; 228 case 40000: 229 s = "40Gbps"; 230 break; 231 default: 232 pr_info("%s: unsupported speed: %d\n", 233 dev->name, p->link_cfg.speed); 234 return; 235 } 236 237 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 238 fc[p->link_cfg.fc]); 239 } 240 } 241 242 #ifdef CONFIG_CHELSIO_T4_DCB 243 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 244 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 245 { 246 struct port_info *pi = netdev_priv(dev); 247 struct adapter *adap = pi->adapter; 248 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 249 int i; 250 251 /* We use a simple mapping of Port TX Queue Index to DCB 252 * Priority when we're enabling DCB. 253 */ 254 for (i = 0; i < pi->nqsets; i++, txq++) { 255 u32 name, value; 256 int err; 257 258 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 259 FW_PARAMS_PARAM_X_V( 260 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 261 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 262 value = enable ? i : 0xffffffff; 263 264 /* Since we can be called while atomic (from "interrupt 265 * level") we need to issue the Set Parameters Commannd 266 * without sleeping (timeout < 0). 267 */ 268 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 269 &name, &value, 270 -FW_CMD_MAX_TIMEOUT); 271 272 if (err) 273 dev_err(adap->pdev_dev, 274 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 275 enable ? "set" : "unset", pi->port_id, i, -err); 276 else 277 txq->dcb_prio = value; 278 } 279 } 280 281 static int cxgb4_dcb_enabled(const struct net_device *dev) 282 { 283 struct port_info *pi = netdev_priv(dev); 284 285 if (!pi->dcb.enabled) 286 return 0; 287 288 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 289 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 290 } 291 #endif /* CONFIG_CHELSIO_T4_DCB */ 292 293 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 294 { 295 struct net_device *dev = adapter->port[port_id]; 296 297 /* Skip changes from disabled ports. */ 298 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 299 if (link_stat) 300 netif_carrier_on(dev); 301 else { 302 #ifdef CONFIG_CHELSIO_T4_DCB 303 if (cxgb4_dcb_enabled(dev)) { 304 cxgb4_dcb_state_init(dev); 305 dcb_tx_queue_prio_enable(dev, false); 306 } 307 #endif /* CONFIG_CHELSIO_T4_DCB */ 308 netif_carrier_off(dev); 309 } 310 311 link_report(dev); 312 } 313 } 314 315 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 316 { 317 static const char *mod_str[] = { 318 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 319 }; 320 321 const struct net_device *dev = adap->port[port_id]; 322 const struct port_info *pi = netdev_priv(dev); 323 324 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 325 netdev_info(dev, "port module unplugged\n"); 326 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 327 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 328 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 329 netdev_info(dev, "%s: unsupported port module inserted\n", 330 dev->name); 331 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 332 netdev_info(dev, "%s: unknown port module inserted\n", 333 dev->name); 334 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 335 netdev_info(dev, "%s: transceiver module error\n", dev->name); 336 else 337 netdev_info(dev, "%s: unknown module type %d inserted\n", 338 dev->name, pi->mod_type); 339 } 340 341 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 342 module_param(dbfifo_int_thresh, int, 0644); 343 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 344 345 /* 346 * usecs to sleep while draining the dbfifo 347 */ 348 static int dbfifo_drain_delay = 1000; 349 module_param(dbfifo_drain_delay, int, 0644); 350 MODULE_PARM_DESC(dbfifo_drain_delay, 351 "usecs to sleep while draining the dbfifo"); 352 353 static inline int cxgb4_set_addr_hash(struct port_info *pi) 354 { 355 struct adapter *adap = pi->adapter; 356 u64 vec = 0; 357 bool ucast = false; 358 struct hash_mac_addr *entry; 359 360 /* Calculate the hash vector for the updated list and program it */ 361 list_for_each_entry(entry, &adap->mac_hlist, list) { 362 ucast |= is_unicast_ether_addr(entry->addr); 363 vec |= (1ULL << hash_mac_addr(entry->addr)); 364 } 365 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 366 vec, false); 367 } 368 369 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 370 { 371 struct port_info *pi = netdev_priv(netdev); 372 struct adapter *adap = pi->adapter; 373 int ret; 374 u64 mhash = 0; 375 u64 uhash = 0; 376 bool free = false; 377 bool ucast = is_unicast_ether_addr(mac_addr); 378 const u8 *maclist[1] = {mac_addr}; 379 struct hash_mac_addr *new_entry; 380 381 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 382 NULL, ucast ? &uhash : &mhash, false); 383 if (ret < 0) 384 goto out; 385 /* if hash != 0, then add the addr to hash addr list 386 * so on the end we will calculate the hash for the 387 * list and program it 388 */ 389 if (uhash || mhash) { 390 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 391 if (!new_entry) 392 return -ENOMEM; 393 ether_addr_copy(new_entry->addr, mac_addr); 394 list_add_tail(&new_entry->list, &adap->mac_hlist); 395 ret = cxgb4_set_addr_hash(pi); 396 } 397 out: 398 return ret < 0 ? ret : 0; 399 } 400 401 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 402 { 403 struct port_info *pi = netdev_priv(netdev); 404 struct adapter *adap = pi->adapter; 405 int ret; 406 const u8 *maclist[1] = {mac_addr}; 407 struct hash_mac_addr *entry, *tmp; 408 409 /* If the MAC address to be removed is in the hash addr 410 * list, delete it from the list and update hash vector 411 */ 412 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 413 if (ether_addr_equal(entry->addr, mac_addr)) { 414 list_del(&entry->list); 415 kfree(entry); 416 return cxgb4_set_addr_hash(pi); 417 } 418 } 419 420 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 421 return ret < 0 ? -EINVAL : 0; 422 } 423 424 /* 425 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 426 * If @mtu is -1 it is left unchanged. 427 */ 428 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 429 { 430 struct port_info *pi = netdev_priv(dev); 431 struct adapter *adapter = pi->adapter; 432 433 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 434 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 435 436 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 437 (dev->flags & IFF_PROMISC) ? 1 : 0, 438 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 439 sleep_ok); 440 } 441 442 /** 443 * link_start - enable a port 444 * @dev: the port to enable 445 * 446 * Performs the MAC and PHY actions needed to enable a port. 447 */ 448 static int link_start(struct net_device *dev) 449 { 450 int ret; 451 struct port_info *pi = netdev_priv(dev); 452 unsigned int mb = pi->adapter->pf; 453 454 /* 455 * We do not set address filters and promiscuity here, the stack does 456 * that step explicitly. 457 */ 458 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 459 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 460 if (ret == 0) { 461 ret = t4_change_mac(pi->adapter, mb, pi->viid, 462 pi->xact_addr_filt, dev->dev_addr, true, 463 true); 464 if (ret >= 0) { 465 pi->xact_addr_filt = ret; 466 ret = 0; 467 } 468 } 469 if (ret == 0) 470 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 471 &pi->link_cfg); 472 if (ret == 0) { 473 local_bh_disable(); 474 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true, 475 true, CXGB4_DCB_ENABLED); 476 local_bh_enable(); 477 } 478 479 return ret; 480 } 481 482 #ifdef CONFIG_CHELSIO_T4_DCB 483 /* Handle a Data Center Bridging update message from the firmware. */ 484 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 485 { 486 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 487 struct net_device *dev = adap->port[adap->chan_map[port]]; 488 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 489 int new_dcb_enabled; 490 491 cxgb4_dcb_handle_fw_update(adap, pcmd); 492 new_dcb_enabled = cxgb4_dcb_enabled(dev); 493 494 /* If the DCB has become enabled or disabled on the port then we're 495 * going to need to set up/tear down DCB Priority parameters for the 496 * TX Queues associated with the port. 497 */ 498 if (new_dcb_enabled != old_dcb_enabled) 499 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 500 } 501 #endif /* CONFIG_CHELSIO_T4_DCB */ 502 503 /* Response queue handler for the FW event queue. 504 */ 505 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 506 const struct pkt_gl *gl) 507 { 508 u8 opcode = ((const struct rss_header *)rsp)->opcode; 509 510 rsp++; /* skip RSS header */ 511 512 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 513 */ 514 if (unlikely(opcode == CPL_FW4_MSG && 515 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 516 rsp++; 517 opcode = ((const struct rss_header *)rsp)->opcode; 518 rsp++; 519 if (opcode != CPL_SGE_EGR_UPDATE) { 520 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 521 , opcode); 522 goto out; 523 } 524 } 525 526 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 527 const struct cpl_sge_egr_update *p = (void *)rsp; 528 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 529 struct sge_txq *txq; 530 531 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 532 txq->restarts++; 533 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) { 534 struct sge_eth_txq *eq; 535 536 eq = container_of(txq, struct sge_eth_txq, q); 537 netif_tx_wake_queue(eq->txq); 538 } else { 539 struct sge_ofld_txq *oq; 540 541 oq = container_of(txq, struct sge_ofld_txq, q); 542 tasklet_schedule(&oq->qresume_tsk); 543 } 544 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 545 const struct cpl_fw6_msg *p = (void *)rsp; 546 547 #ifdef CONFIG_CHELSIO_T4_DCB 548 const struct fw_port_cmd *pcmd = (const void *)p->data; 549 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 550 unsigned int action = 551 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 552 553 if (cmd == FW_PORT_CMD && 554 action == FW_PORT_ACTION_GET_PORT_INFO) { 555 int port = FW_PORT_CMD_PORTID_G( 556 be32_to_cpu(pcmd->op_to_portid)); 557 struct net_device *dev = 558 q->adap->port[q->adap->chan_map[port]]; 559 int state_input = ((pcmd->u.info.dcbxdis_pkd & 560 FW_PORT_CMD_DCBXDIS_F) 561 ? CXGB4_DCB_INPUT_FW_DISABLED 562 : CXGB4_DCB_INPUT_FW_ENABLED); 563 564 cxgb4_dcb_state_fsm(dev, state_input); 565 } 566 567 if (cmd == FW_PORT_CMD && 568 action == FW_PORT_ACTION_L2_DCB_CFG) 569 dcb_rpl(q->adap, pcmd); 570 else 571 #endif 572 if (p->type == 0) 573 t4_handle_fw_rpl(q->adap, p->data); 574 } else if (opcode == CPL_L2T_WRITE_RPL) { 575 const struct cpl_l2t_write_rpl *p = (void *)rsp; 576 577 do_l2t_write_rpl(q->adap, p); 578 } else if (opcode == CPL_SET_TCB_RPL) { 579 const struct cpl_set_tcb_rpl *p = (void *)rsp; 580 581 filter_rpl(q->adap, p); 582 } else 583 dev_err(q->adap->pdev_dev, 584 "unexpected CPL %#x on FW event queue\n", opcode); 585 out: 586 return 0; 587 } 588 589 static void disable_msi(struct adapter *adapter) 590 { 591 if (adapter->flags & USING_MSIX) { 592 pci_disable_msix(adapter->pdev); 593 adapter->flags &= ~USING_MSIX; 594 } else if (adapter->flags & USING_MSI) { 595 pci_disable_msi(adapter->pdev); 596 adapter->flags &= ~USING_MSI; 597 } 598 } 599 600 /* 601 * Interrupt handler for non-data events used with MSI-X. 602 */ 603 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 604 { 605 struct adapter *adap = cookie; 606 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 607 608 if (v & PFSW_F) { 609 adap->swintr = 1; 610 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 611 } 612 if (adap->flags & MASTER_PF) 613 t4_slow_intr_handler(adap); 614 return IRQ_HANDLED; 615 } 616 617 /* 618 * Name the MSI-X interrupts. 619 */ 620 static void name_msix_vecs(struct adapter *adap) 621 { 622 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 623 624 /* non-data interrupts */ 625 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 626 627 /* FW events */ 628 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 629 adap->port[0]->name); 630 631 /* Ethernet queues */ 632 for_each_port(adap, j) { 633 struct net_device *d = adap->port[j]; 634 const struct port_info *pi = netdev_priv(d); 635 636 for (i = 0; i < pi->nqsets; i++, msi_idx++) 637 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 638 d->name, i); 639 } 640 } 641 642 static int request_msix_queue_irqs(struct adapter *adap) 643 { 644 struct sge *s = &adap->sge; 645 int err, ethqidx; 646 int msi_index = 2; 647 648 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 649 adap->msix_info[1].desc, &s->fw_evtq); 650 if (err) 651 return err; 652 653 for_each_ethrxq(s, ethqidx) { 654 err = request_irq(adap->msix_info[msi_index].vec, 655 t4_sge_intr_msix, 0, 656 adap->msix_info[msi_index].desc, 657 &s->ethrxq[ethqidx].rspq); 658 if (err) 659 goto unwind; 660 msi_index++; 661 } 662 return 0; 663 664 unwind: 665 while (--ethqidx >= 0) 666 free_irq(adap->msix_info[--msi_index].vec, 667 &s->ethrxq[ethqidx].rspq); 668 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 669 return err; 670 } 671 672 static void free_msix_queue_irqs(struct adapter *adap) 673 { 674 int i, msi_index = 2; 675 struct sge *s = &adap->sge; 676 677 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 678 for_each_ethrxq(s, i) 679 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 680 } 681 682 /** 683 * cxgb4_write_rss - write the RSS table for a given port 684 * @pi: the port 685 * @queues: array of queue indices for RSS 686 * 687 * Sets up the portion of the HW RSS table for the port's VI to distribute 688 * packets to the Rx queues in @queues. 689 * Should never be called before setting up sge eth rx queues 690 */ 691 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 692 { 693 u16 *rss; 694 int i, err; 695 struct adapter *adapter = pi->adapter; 696 const struct sge_eth_rxq *rxq; 697 698 rxq = &adapter->sge.ethrxq[pi->first_qset]; 699 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 700 if (!rss) 701 return -ENOMEM; 702 703 /* map the queue indices to queue ids */ 704 for (i = 0; i < pi->rss_size; i++, queues++) 705 rss[i] = rxq[*queues].rspq.abs_id; 706 707 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 708 pi->rss_size, rss, pi->rss_size); 709 /* If Tunnel All Lookup isn't specified in the global RSS 710 * Configuration, then we need to specify a default Ingress 711 * Queue for any ingress packets which aren't hashed. We'll 712 * use our first ingress queue ... 713 */ 714 if (!err) 715 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 716 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 717 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 718 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 719 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 720 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 721 rss[0]); 722 kfree(rss); 723 return err; 724 } 725 726 /** 727 * setup_rss - configure RSS 728 * @adap: the adapter 729 * 730 * Sets up RSS for each port. 731 */ 732 static int setup_rss(struct adapter *adap) 733 { 734 int i, j, err; 735 736 for_each_port(adap, i) { 737 const struct port_info *pi = adap2pinfo(adap, i); 738 739 /* Fill default values with equal distribution */ 740 for (j = 0; j < pi->rss_size; j++) 741 pi->rss[j] = j % pi->nqsets; 742 743 err = cxgb4_write_rss(pi, pi->rss); 744 if (err) 745 return err; 746 } 747 return 0; 748 } 749 750 /* 751 * Return the channel of the ingress queue with the given qid. 752 */ 753 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 754 { 755 qid -= p->ingr_start; 756 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 757 } 758 759 /* 760 * Wait until all NAPI handlers are descheduled. 761 */ 762 static void quiesce_rx(struct adapter *adap) 763 { 764 int i; 765 766 for (i = 0; i < adap->sge.ingr_sz; i++) { 767 struct sge_rspq *q = adap->sge.ingr_map[i]; 768 769 if (q && q->handler) { 770 napi_disable(&q->napi); 771 local_bh_disable(); 772 while (!cxgb_poll_lock_napi(q)) 773 mdelay(1); 774 local_bh_enable(); 775 } 776 777 } 778 } 779 780 /* Disable interrupt and napi handler */ 781 static void disable_interrupts(struct adapter *adap) 782 { 783 if (adap->flags & FULL_INIT_DONE) { 784 t4_intr_disable(adap); 785 if (adap->flags & USING_MSIX) { 786 free_msix_queue_irqs(adap); 787 free_irq(adap->msix_info[0].vec, adap); 788 } else { 789 free_irq(adap->pdev->irq, adap); 790 } 791 quiesce_rx(adap); 792 } 793 } 794 795 /* 796 * Enable NAPI scheduling and interrupt generation for all Rx queues. 797 */ 798 static void enable_rx(struct adapter *adap) 799 { 800 int i; 801 802 for (i = 0; i < adap->sge.ingr_sz; i++) { 803 struct sge_rspq *q = adap->sge.ingr_map[i]; 804 805 if (!q) 806 continue; 807 if (q->handler) { 808 cxgb_busy_poll_init_lock(q); 809 napi_enable(&q->napi); 810 } 811 /* 0-increment GTS to start the timer and enable interrupts */ 812 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 813 SEINTARM_V(q->intr_params) | 814 INGRESSQID_V(q->cntxt_id)); 815 } 816 } 817 818 819 static int setup_fw_sge_queues(struct adapter *adap) 820 { 821 struct sge *s = &adap->sge; 822 int err = 0; 823 824 bitmap_zero(s->starving_fl, s->egr_sz); 825 bitmap_zero(s->txq_maperr, s->egr_sz); 826 827 if (adap->flags & USING_MSIX) 828 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 829 else { 830 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 831 NULL, NULL, NULL, -1); 832 if (err) 833 return err; 834 adap->msi_idx = -((int)s->intrq.abs_id + 1); 835 } 836 837 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 838 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 839 if (err) 840 t4_free_sge_resources(adap); 841 return err; 842 } 843 844 /** 845 * setup_sge_queues - configure SGE Tx/Rx/response queues 846 * @adap: the adapter 847 * 848 * Determines how many sets of SGE queues to use and initializes them. 849 * We support multiple queue sets per port if we have MSI-X, otherwise 850 * just one queue set per port. 851 */ 852 static int setup_sge_queues(struct adapter *adap) 853 { 854 int err, i, j; 855 struct sge *s = &adap->sge; 856 struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 857 unsigned int cmplqid = 0; 858 859 for_each_port(adap, i) { 860 struct net_device *dev = adap->port[i]; 861 struct port_info *pi = netdev_priv(dev); 862 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 863 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 864 865 for (j = 0; j < pi->nqsets; j++, q++) { 866 if (adap->msi_idx > 0) 867 adap->msi_idx++; 868 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 869 adap->msi_idx, &q->fl, 870 t4_ethrx_handler, 871 NULL, 872 t4_get_mps_bg_map(adap, 873 pi->tx_chan)); 874 if (err) 875 goto freeout; 876 q->rspq.idx = j; 877 memset(&q->stats, 0, sizeof(q->stats)); 878 } 879 for (j = 0; j < pi->nqsets; j++, t++) { 880 err = t4_sge_alloc_eth_txq(adap, t, dev, 881 netdev_get_tx_queue(dev, j), 882 s->fw_evtq.cntxt_id); 883 if (err) 884 goto freeout; 885 } 886 } 887 888 j = s->ofldqsets / adap->params.nports; /* iscsi queues per channel */ 889 for_each_ofldtxq(s, i) { 890 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], 891 adap->port[i / j], 892 s->fw_evtq.cntxt_id); 893 if (err) 894 goto freeout; 895 } 896 897 for_each_port(adap, i) { 898 /* Note that cmplqid below is 0 if we don't 899 * have RDMA queues, and that's the right value. 900 */ 901 if (rxq_info) 902 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 903 904 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 905 s->fw_evtq.cntxt_id, cmplqid); 906 if (err) 907 goto freeout; 908 } 909 910 t4_write_reg(adap, is_t4(adap->params.chip) ? 911 MPS_TRC_RSS_CONTROL_A : 912 MPS_T5_TRC_RSS_CONTROL_A, 913 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 914 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 915 return 0; 916 freeout: 917 t4_free_sge_resources(adap); 918 return err; 919 } 920 921 /* 922 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 923 * The allocated memory is cleared. 924 */ 925 void *t4_alloc_mem(size_t size) 926 { 927 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 928 929 if (!p) 930 p = vzalloc(size); 931 return p; 932 } 933 934 /* 935 * Free memory allocated through alloc_mem(). 936 */ 937 void t4_free_mem(void *addr) 938 { 939 kvfree(addr); 940 } 941 942 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 943 void *accel_priv, select_queue_fallback_t fallback) 944 { 945 int txq; 946 947 #ifdef CONFIG_CHELSIO_T4_DCB 948 /* If a Data Center Bridging has been successfully negotiated on this 949 * link then we'll use the skb's priority to map it to a TX Queue. 950 * The skb's priority is determined via the VLAN Tag Priority Code 951 * Point field. 952 */ 953 if (cxgb4_dcb_enabled(dev)) { 954 u16 vlan_tci; 955 int err; 956 957 err = vlan_get_tag(skb, &vlan_tci); 958 if (unlikely(err)) { 959 if (net_ratelimit()) 960 netdev_warn(dev, 961 "TX Packet without VLAN Tag on DCB Link\n"); 962 txq = 0; 963 } else { 964 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 965 #ifdef CONFIG_CHELSIO_T4_FCOE 966 if (skb->protocol == htons(ETH_P_FCOE)) 967 txq = skb->priority & 0x7; 968 #endif /* CONFIG_CHELSIO_T4_FCOE */ 969 } 970 return txq; 971 } 972 #endif /* CONFIG_CHELSIO_T4_DCB */ 973 974 if (select_queue) { 975 txq = (skb_rx_queue_recorded(skb) 976 ? skb_get_rx_queue(skb) 977 : smp_processor_id()); 978 979 while (unlikely(txq >= dev->real_num_tx_queues)) 980 txq -= dev->real_num_tx_queues; 981 982 return txq; 983 } 984 985 return fallback(dev, skb) % dev->real_num_tx_queues; 986 } 987 988 static int closest_timer(const struct sge *s, int time) 989 { 990 int i, delta, match = 0, min_delta = INT_MAX; 991 992 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 993 delta = time - s->timer_val[i]; 994 if (delta < 0) 995 delta = -delta; 996 if (delta < min_delta) { 997 min_delta = delta; 998 match = i; 999 } 1000 } 1001 return match; 1002 } 1003 1004 static int closest_thres(const struct sge *s, int thres) 1005 { 1006 int i, delta, match = 0, min_delta = INT_MAX; 1007 1008 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1009 delta = thres - s->counter_val[i]; 1010 if (delta < 0) 1011 delta = -delta; 1012 if (delta < min_delta) { 1013 min_delta = delta; 1014 match = i; 1015 } 1016 } 1017 return match; 1018 } 1019 1020 /** 1021 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1022 * @q: the Rx queue 1023 * @us: the hold-off time in us, or 0 to disable timer 1024 * @cnt: the hold-off packet count, or 0 to disable counter 1025 * 1026 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1027 * one of the two needs to be enabled for the queue to generate interrupts. 1028 */ 1029 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1030 unsigned int us, unsigned int cnt) 1031 { 1032 struct adapter *adap = q->adap; 1033 1034 if ((us | cnt) == 0) 1035 cnt = 1; 1036 1037 if (cnt) { 1038 int err; 1039 u32 v, new_idx; 1040 1041 new_idx = closest_thres(&adap->sge, cnt); 1042 if (q->desc && q->pktcnt_idx != new_idx) { 1043 /* the queue has already been created, update it */ 1044 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1045 FW_PARAMS_PARAM_X_V( 1046 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1047 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1048 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1049 &v, &new_idx); 1050 if (err) 1051 return err; 1052 } 1053 q->pktcnt_idx = new_idx; 1054 } 1055 1056 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1057 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1058 return 0; 1059 } 1060 1061 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1062 { 1063 const struct port_info *pi = netdev_priv(dev); 1064 netdev_features_t changed = dev->features ^ features; 1065 int err; 1066 1067 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1068 return 0; 1069 1070 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1071 -1, -1, -1, 1072 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1073 if (unlikely(err)) 1074 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1075 return err; 1076 } 1077 1078 static int setup_debugfs(struct adapter *adap) 1079 { 1080 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1081 return -1; 1082 1083 #ifdef CONFIG_DEBUG_FS 1084 t4_setup_debugfs(adap); 1085 #endif 1086 return 0; 1087 } 1088 1089 /* 1090 * upper-layer driver support 1091 */ 1092 1093 /* 1094 * Allocate an active-open TID and set it to the supplied value. 1095 */ 1096 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1097 { 1098 int atid = -1; 1099 1100 spin_lock_bh(&t->atid_lock); 1101 if (t->afree) { 1102 union aopen_entry *p = t->afree; 1103 1104 atid = (p - t->atid_tab) + t->atid_base; 1105 t->afree = p->next; 1106 p->data = data; 1107 t->atids_in_use++; 1108 } 1109 spin_unlock_bh(&t->atid_lock); 1110 return atid; 1111 } 1112 EXPORT_SYMBOL(cxgb4_alloc_atid); 1113 1114 /* 1115 * Release an active-open TID. 1116 */ 1117 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1118 { 1119 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1120 1121 spin_lock_bh(&t->atid_lock); 1122 p->next = t->afree; 1123 t->afree = p; 1124 t->atids_in_use--; 1125 spin_unlock_bh(&t->atid_lock); 1126 } 1127 EXPORT_SYMBOL(cxgb4_free_atid); 1128 1129 /* 1130 * Allocate a server TID and set it to the supplied value. 1131 */ 1132 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1133 { 1134 int stid; 1135 1136 spin_lock_bh(&t->stid_lock); 1137 if (family == PF_INET) { 1138 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1139 if (stid < t->nstids) 1140 __set_bit(stid, t->stid_bmap); 1141 else 1142 stid = -1; 1143 } else { 1144 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1145 if (stid < 0) 1146 stid = -1; 1147 } 1148 if (stid >= 0) { 1149 t->stid_tab[stid].data = data; 1150 stid += t->stid_base; 1151 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1152 * This is equivalent to 4 TIDs. With CLIP enabled it 1153 * needs 2 TIDs. 1154 */ 1155 if (family == PF_INET) 1156 t->stids_in_use++; 1157 else 1158 t->stids_in_use += 2; 1159 } 1160 spin_unlock_bh(&t->stid_lock); 1161 return stid; 1162 } 1163 EXPORT_SYMBOL(cxgb4_alloc_stid); 1164 1165 /* Allocate a server filter TID and set it to the supplied value. 1166 */ 1167 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1168 { 1169 int stid; 1170 1171 spin_lock_bh(&t->stid_lock); 1172 if (family == PF_INET) { 1173 stid = find_next_zero_bit(t->stid_bmap, 1174 t->nstids + t->nsftids, t->nstids); 1175 if (stid < (t->nstids + t->nsftids)) 1176 __set_bit(stid, t->stid_bmap); 1177 else 1178 stid = -1; 1179 } else { 1180 stid = -1; 1181 } 1182 if (stid >= 0) { 1183 t->stid_tab[stid].data = data; 1184 stid -= t->nstids; 1185 stid += t->sftid_base; 1186 t->sftids_in_use++; 1187 } 1188 spin_unlock_bh(&t->stid_lock); 1189 return stid; 1190 } 1191 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1192 1193 /* Release a server TID. 1194 */ 1195 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1196 { 1197 /* Is it a server filter TID? */ 1198 if (t->nsftids && (stid >= t->sftid_base)) { 1199 stid -= t->sftid_base; 1200 stid += t->nstids; 1201 } else { 1202 stid -= t->stid_base; 1203 } 1204 1205 spin_lock_bh(&t->stid_lock); 1206 if (family == PF_INET) 1207 __clear_bit(stid, t->stid_bmap); 1208 else 1209 bitmap_release_region(t->stid_bmap, stid, 1); 1210 t->stid_tab[stid].data = NULL; 1211 if (stid < t->nstids) { 1212 if (family == PF_INET) 1213 t->stids_in_use--; 1214 else 1215 t->stids_in_use -= 2; 1216 } else { 1217 t->sftids_in_use--; 1218 } 1219 spin_unlock_bh(&t->stid_lock); 1220 } 1221 EXPORT_SYMBOL(cxgb4_free_stid); 1222 1223 /* 1224 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1225 */ 1226 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1227 unsigned int tid) 1228 { 1229 struct cpl_tid_release *req; 1230 1231 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1232 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 1233 INIT_TP_WR(req, tid); 1234 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1235 } 1236 1237 /* 1238 * Queue a TID release request and if necessary schedule a work queue to 1239 * process it. 1240 */ 1241 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1242 unsigned int tid) 1243 { 1244 void **p = &t->tid_tab[tid]; 1245 struct adapter *adap = container_of(t, struct adapter, tids); 1246 1247 spin_lock_bh(&adap->tid_release_lock); 1248 *p = adap->tid_release_head; 1249 /* Low 2 bits encode the Tx channel number */ 1250 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1251 if (!adap->tid_release_task_busy) { 1252 adap->tid_release_task_busy = true; 1253 queue_work(adap->workq, &adap->tid_release_task); 1254 } 1255 spin_unlock_bh(&adap->tid_release_lock); 1256 } 1257 1258 /* 1259 * Process the list of pending TID release requests. 1260 */ 1261 static void process_tid_release_list(struct work_struct *work) 1262 { 1263 struct sk_buff *skb; 1264 struct adapter *adap; 1265 1266 adap = container_of(work, struct adapter, tid_release_task); 1267 1268 spin_lock_bh(&adap->tid_release_lock); 1269 while (adap->tid_release_head) { 1270 void **p = adap->tid_release_head; 1271 unsigned int chan = (uintptr_t)p & 3; 1272 p = (void *)p - chan; 1273 1274 adap->tid_release_head = *p; 1275 *p = NULL; 1276 spin_unlock_bh(&adap->tid_release_lock); 1277 1278 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1279 GFP_KERNEL))) 1280 schedule_timeout_uninterruptible(1); 1281 1282 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1283 t4_ofld_send(adap, skb); 1284 spin_lock_bh(&adap->tid_release_lock); 1285 } 1286 adap->tid_release_task_busy = false; 1287 spin_unlock_bh(&adap->tid_release_lock); 1288 } 1289 1290 /* 1291 * Release a TID and inform HW. If we are unable to allocate the release 1292 * message we defer to a work queue. 1293 */ 1294 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) 1295 { 1296 struct sk_buff *skb; 1297 struct adapter *adap = container_of(t, struct adapter, tids); 1298 1299 WARN_ON(tid >= t->ntids); 1300 1301 if (t->tid_tab[tid]) { 1302 t->tid_tab[tid] = NULL; 1303 if (t->hash_base && (tid >= t->hash_base)) 1304 atomic_dec(&t->hash_tids_in_use); 1305 else 1306 atomic_dec(&t->tids_in_use); 1307 } 1308 1309 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1310 if (likely(skb)) { 1311 mk_tid_release(skb, chan, tid); 1312 t4_ofld_send(adap, skb); 1313 } else 1314 cxgb4_queue_tid_release(t, chan, tid); 1315 } 1316 EXPORT_SYMBOL(cxgb4_remove_tid); 1317 1318 /* 1319 * Allocate and initialize the TID tables. Returns 0 on success. 1320 */ 1321 static int tid_init(struct tid_info *t) 1322 { 1323 struct adapter *adap = container_of(t, struct adapter, tids); 1324 unsigned int max_ftids = t->nftids + t->nsftids; 1325 unsigned int natids = t->natids; 1326 unsigned int stid_bmap_size; 1327 unsigned int ftid_bmap_size; 1328 size_t size; 1329 1330 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1331 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1332 size = t->ntids * sizeof(*t->tid_tab) + 1333 natids * sizeof(*t->atid_tab) + 1334 t->nstids * sizeof(*t->stid_tab) + 1335 t->nsftids * sizeof(*t->stid_tab) + 1336 stid_bmap_size * sizeof(long) + 1337 max_ftids * sizeof(*t->ftid_tab) + 1338 ftid_bmap_size * sizeof(long); 1339 1340 t->tid_tab = t4_alloc_mem(size); 1341 if (!t->tid_tab) 1342 return -ENOMEM; 1343 1344 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1345 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1346 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1347 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1348 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1349 spin_lock_init(&t->stid_lock); 1350 spin_lock_init(&t->atid_lock); 1351 spin_lock_init(&t->ftid_lock); 1352 1353 t->stids_in_use = 0; 1354 t->sftids_in_use = 0; 1355 t->afree = NULL; 1356 t->atids_in_use = 0; 1357 atomic_set(&t->tids_in_use, 0); 1358 atomic_set(&t->hash_tids_in_use, 0); 1359 1360 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1361 if (natids) { 1362 while (--natids) 1363 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1364 t->afree = t->atid_tab; 1365 } 1366 1367 if (is_offload(adap)) { 1368 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1369 /* Reserve stid 0 for T4/T5 adapters */ 1370 if (!t->stid_base && 1371 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1372 __set_bit(0, t->stid_bmap); 1373 } 1374 1375 bitmap_zero(t->ftid_bmap, t->nftids); 1376 return 0; 1377 } 1378 1379 /** 1380 * cxgb4_create_server - create an IP server 1381 * @dev: the device 1382 * @stid: the server TID 1383 * @sip: local IP address to bind server to 1384 * @sport: the server's TCP port 1385 * @queue: queue to direct messages from this server to 1386 * 1387 * Create an IP server for the given port and address. 1388 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1389 */ 1390 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1391 __be32 sip, __be16 sport, __be16 vlan, 1392 unsigned int queue) 1393 { 1394 unsigned int chan; 1395 struct sk_buff *skb; 1396 struct adapter *adap; 1397 struct cpl_pass_open_req *req; 1398 int ret; 1399 1400 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1401 if (!skb) 1402 return -ENOMEM; 1403 1404 adap = netdev2adap(dev); 1405 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); 1406 INIT_TP_WR(req, 0); 1407 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1408 req->local_port = sport; 1409 req->peer_port = htons(0); 1410 req->local_ip = sip; 1411 req->peer_ip = htonl(0); 1412 chan = rxq_to_chan(&adap->sge, queue); 1413 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1414 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1415 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1416 ret = t4_mgmt_tx(adap, skb); 1417 return net_xmit_eval(ret); 1418 } 1419 EXPORT_SYMBOL(cxgb4_create_server); 1420 1421 /* cxgb4_create_server6 - create an IPv6 server 1422 * @dev: the device 1423 * @stid: the server TID 1424 * @sip: local IPv6 address to bind server to 1425 * @sport: the server's TCP port 1426 * @queue: queue to direct messages from this server to 1427 * 1428 * Create an IPv6 server for the given port and address. 1429 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1430 */ 1431 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1432 const struct in6_addr *sip, __be16 sport, 1433 unsigned int queue) 1434 { 1435 unsigned int chan; 1436 struct sk_buff *skb; 1437 struct adapter *adap; 1438 struct cpl_pass_open_req6 *req; 1439 int ret; 1440 1441 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1442 if (!skb) 1443 return -ENOMEM; 1444 1445 adap = netdev2adap(dev); 1446 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req)); 1447 INIT_TP_WR(req, 0); 1448 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1449 req->local_port = sport; 1450 req->peer_port = htons(0); 1451 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1452 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1453 req->peer_ip_hi = cpu_to_be64(0); 1454 req->peer_ip_lo = cpu_to_be64(0); 1455 chan = rxq_to_chan(&adap->sge, queue); 1456 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1457 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1458 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1459 ret = t4_mgmt_tx(adap, skb); 1460 return net_xmit_eval(ret); 1461 } 1462 EXPORT_SYMBOL(cxgb4_create_server6); 1463 1464 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1465 unsigned int queue, bool ipv6) 1466 { 1467 struct sk_buff *skb; 1468 struct adapter *adap; 1469 struct cpl_close_listsvr_req *req; 1470 int ret; 1471 1472 adap = netdev2adap(dev); 1473 1474 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1475 if (!skb) 1476 return -ENOMEM; 1477 1478 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req)); 1479 INIT_TP_WR(req, 0); 1480 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1481 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1482 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1483 ret = t4_mgmt_tx(adap, skb); 1484 return net_xmit_eval(ret); 1485 } 1486 EXPORT_SYMBOL(cxgb4_remove_server); 1487 1488 /** 1489 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1490 * @mtus: the HW MTU table 1491 * @mtu: the target MTU 1492 * @idx: index of selected entry in the MTU table 1493 * 1494 * Returns the index and the value in the HW MTU table that is closest to 1495 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1496 * table, in which case that smallest available value is selected. 1497 */ 1498 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1499 unsigned int *idx) 1500 { 1501 unsigned int i = 0; 1502 1503 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1504 ++i; 1505 if (idx) 1506 *idx = i; 1507 return mtus[i]; 1508 } 1509 EXPORT_SYMBOL(cxgb4_best_mtu); 1510 1511 /** 1512 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1513 * @mtus: the HW MTU table 1514 * @header_size: Header Size 1515 * @data_size_max: maximum Data Segment Size 1516 * @data_size_align: desired Data Segment Size Alignment (2^N) 1517 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1518 * 1519 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1520 * MTU Table based solely on a Maximum MTU parameter, we break that 1521 * parameter up into a Header Size and Maximum Data Segment Size, and 1522 * provide a desired Data Segment Size Alignment. If we find an MTU in 1523 * the Hardware MTU Table which will result in a Data Segment Size with 1524 * the requested alignment _and_ that MTU isn't "too far" from the 1525 * closest MTU, then we'll return that rather than the closest MTU. 1526 */ 1527 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1528 unsigned short header_size, 1529 unsigned short data_size_max, 1530 unsigned short data_size_align, 1531 unsigned int *mtu_idxp) 1532 { 1533 unsigned short max_mtu = header_size + data_size_max; 1534 unsigned short data_size_align_mask = data_size_align - 1; 1535 int mtu_idx, aligned_mtu_idx; 1536 1537 /* Scan the MTU Table till we find an MTU which is larger than our 1538 * Maximum MTU or we reach the end of the table. Along the way, 1539 * record the last MTU found, if any, which will result in a Data 1540 * Segment Length matching the requested alignment. 1541 */ 1542 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1543 unsigned short data_size = mtus[mtu_idx] - header_size; 1544 1545 /* If this MTU minus the Header Size would result in a 1546 * Data Segment Size of the desired alignment, remember it. 1547 */ 1548 if ((data_size & data_size_align_mask) == 0) 1549 aligned_mtu_idx = mtu_idx; 1550 1551 /* If we're not at the end of the Hardware MTU Table and the 1552 * next element is larger than our Maximum MTU, drop out of 1553 * the loop. 1554 */ 1555 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1556 break; 1557 } 1558 1559 /* If we fell out of the loop because we ran to the end of the table, 1560 * then we just have to use the last [largest] entry. 1561 */ 1562 if (mtu_idx == NMTUS) 1563 mtu_idx--; 1564 1565 /* If we found an MTU which resulted in the requested Data Segment 1566 * Length alignment and that's "not far" from the largest MTU which is 1567 * less than or equal to the maximum MTU, then use that. 1568 */ 1569 if (aligned_mtu_idx >= 0 && 1570 mtu_idx - aligned_mtu_idx <= 1) 1571 mtu_idx = aligned_mtu_idx; 1572 1573 /* If the caller has passed in an MTU Index pointer, pass the 1574 * MTU Index back. Return the MTU value. 1575 */ 1576 if (mtu_idxp) 1577 *mtu_idxp = mtu_idx; 1578 return mtus[mtu_idx]; 1579 } 1580 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1581 1582 /** 1583 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1584 * @chip: chip type 1585 * @viid: VI id of the given port 1586 * 1587 * Return the SMT index for this VI. 1588 */ 1589 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1590 { 1591 /* In T4/T5, SMT contains 256 SMAC entries organized in 1592 * 128 rows of 2 entries each. 1593 * In T6, SMT contains 256 SMAC entries in 256 rows. 1594 * TODO: The below code needs to be updated when we add support 1595 * for 256 VFs. 1596 */ 1597 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1598 return ((viid & 0x7f) << 1); 1599 else 1600 return (viid & 0x7f); 1601 } 1602 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1603 1604 /** 1605 * cxgb4_port_chan - get the HW channel of a port 1606 * @dev: the net device for the port 1607 * 1608 * Return the HW Tx channel of the given port. 1609 */ 1610 unsigned int cxgb4_port_chan(const struct net_device *dev) 1611 { 1612 return netdev2pinfo(dev)->tx_chan; 1613 } 1614 EXPORT_SYMBOL(cxgb4_port_chan); 1615 1616 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1617 { 1618 struct adapter *adap = netdev2adap(dev); 1619 u32 v1, v2, lp_count, hp_count; 1620 1621 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1622 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1623 if (is_t4(adap->params.chip)) { 1624 lp_count = LP_COUNT_G(v1); 1625 hp_count = HP_COUNT_G(v1); 1626 } else { 1627 lp_count = LP_COUNT_T5_G(v1); 1628 hp_count = HP_COUNT_T5_G(v2); 1629 } 1630 return lpfifo ? lp_count : hp_count; 1631 } 1632 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1633 1634 /** 1635 * cxgb4_port_viid - get the VI id of a port 1636 * @dev: the net device for the port 1637 * 1638 * Return the VI id of the given port. 1639 */ 1640 unsigned int cxgb4_port_viid(const struct net_device *dev) 1641 { 1642 return netdev2pinfo(dev)->viid; 1643 } 1644 EXPORT_SYMBOL(cxgb4_port_viid); 1645 1646 /** 1647 * cxgb4_port_idx - get the index of a port 1648 * @dev: the net device for the port 1649 * 1650 * Return the index of the given port. 1651 */ 1652 unsigned int cxgb4_port_idx(const struct net_device *dev) 1653 { 1654 return netdev2pinfo(dev)->port_id; 1655 } 1656 EXPORT_SYMBOL(cxgb4_port_idx); 1657 1658 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1659 struct tp_tcp_stats *v6) 1660 { 1661 struct adapter *adap = pci_get_drvdata(pdev); 1662 1663 spin_lock(&adap->stats_lock); 1664 t4_tp_get_tcp_stats(adap, v4, v6); 1665 spin_unlock(&adap->stats_lock); 1666 } 1667 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1668 1669 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1670 const unsigned int *pgsz_order) 1671 { 1672 struct adapter *adap = netdev2adap(dev); 1673 1674 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1675 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1676 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1677 HPZ3_V(pgsz_order[3])); 1678 } 1679 EXPORT_SYMBOL(cxgb4_iscsi_init); 1680 1681 int cxgb4_flush_eq_cache(struct net_device *dev) 1682 { 1683 struct adapter *adap = netdev2adap(dev); 1684 1685 return t4_sge_ctxt_flush(adap, adap->mbox); 1686 } 1687 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1688 1689 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1690 { 1691 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1692 __be64 indices; 1693 int ret; 1694 1695 spin_lock(&adap->win0_lock); 1696 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1697 sizeof(indices), (__be32 *)&indices, 1698 T4_MEMORY_READ); 1699 spin_unlock(&adap->win0_lock); 1700 if (!ret) { 1701 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1702 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1703 } 1704 return ret; 1705 } 1706 1707 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1708 u16 size) 1709 { 1710 struct adapter *adap = netdev2adap(dev); 1711 u16 hw_pidx, hw_cidx; 1712 int ret; 1713 1714 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1715 if (ret) 1716 goto out; 1717 1718 if (pidx != hw_pidx) { 1719 u16 delta; 1720 u32 val; 1721 1722 if (pidx >= hw_pidx) 1723 delta = pidx - hw_pidx; 1724 else 1725 delta = size - hw_pidx + pidx; 1726 1727 if (is_t4(adap->params.chip)) 1728 val = PIDX_V(delta); 1729 else 1730 val = PIDX_T5_V(delta); 1731 wmb(); 1732 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1733 QID_V(qid) | val); 1734 } 1735 out: 1736 return ret; 1737 } 1738 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1739 1740 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1741 { 1742 struct adapter *adap; 1743 u32 offset, memtype, memaddr; 1744 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1745 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1746 int ret; 1747 1748 adap = netdev2adap(dev); 1749 1750 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1751 1752 /* Figure out where the offset lands in the Memory Type/Address scheme. 1753 * This code assumes that the memory is laid out starting at offset 0 1754 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1755 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1756 * MC0, and some have both MC0 and MC1. 1757 */ 1758 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1759 edc0_size = EDRAM0_SIZE_G(size) << 20; 1760 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1761 edc1_size = EDRAM1_SIZE_G(size) << 20; 1762 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1763 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1764 1765 edc0_end = edc0_size; 1766 edc1_end = edc0_end + edc1_size; 1767 mc0_end = edc1_end + mc0_size; 1768 1769 if (offset < edc0_end) { 1770 memtype = MEM_EDC0; 1771 memaddr = offset; 1772 } else if (offset < edc1_end) { 1773 memtype = MEM_EDC1; 1774 memaddr = offset - edc0_end; 1775 } else { 1776 if (offset < mc0_end) { 1777 memtype = MEM_MC0; 1778 memaddr = offset - edc1_end; 1779 } else if (is_t5(adap->params.chip)) { 1780 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1781 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1782 mc1_end = mc0_end + mc1_size; 1783 if (offset < mc1_end) { 1784 memtype = MEM_MC1; 1785 memaddr = offset - mc0_end; 1786 } else { 1787 /* offset beyond the end of any memory */ 1788 goto err; 1789 } 1790 } else { 1791 /* T4/T6 only has a single memory channel */ 1792 goto err; 1793 } 1794 } 1795 1796 spin_lock(&adap->win0_lock); 1797 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1798 spin_unlock(&adap->win0_lock); 1799 return ret; 1800 1801 err: 1802 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1803 stag, offset); 1804 return -EINVAL; 1805 } 1806 EXPORT_SYMBOL(cxgb4_read_tpte); 1807 1808 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1809 { 1810 u32 hi, lo; 1811 struct adapter *adap; 1812 1813 adap = netdev2adap(dev); 1814 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1815 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1816 1817 return ((u64)hi << 32) | (u64)lo; 1818 } 1819 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1820 1821 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1822 unsigned int qid, 1823 enum cxgb4_bar2_qtype qtype, 1824 int user, 1825 u64 *pbar2_qoffset, 1826 unsigned int *pbar2_qid) 1827 { 1828 return t4_bar2_sge_qregs(netdev2adap(dev), 1829 qid, 1830 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1831 ? T4_BAR2_QTYPE_EGRESS 1832 : T4_BAR2_QTYPE_INGRESS), 1833 user, 1834 pbar2_qoffset, 1835 pbar2_qid); 1836 } 1837 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1838 1839 static struct pci_driver cxgb4_driver; 1840 1841 static void check_neigh_update(struct neighbour *neigh) 1842 { 1843 const struct device *parent; 1844 const struct net_device *netdev = neigh->dev; 1845 1846 if (netdev->priv_flags & IFF_802_1Q_VLAN) 1847 netdev = vlan_dev_real_dev(netdev); 1848 parent = netdev->dev.parent; 1849 if (parent && parent->driver == &cxgb4_driver.driver) 1850 t4_l2t_update(dev_get_drvdata(parent), neigh); 1851 } 1852 1853 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1854 void *data) 1855 { 1856 switch (event) { 1857 case NETEVENT_NEIGH_UPDATE: 1858 check_neigh_update(data); 1859 break; 1860 case NETEVENT_REDIRECT: 1861 default: 1862 break; 1863 } 1864 return 0; 1865 } 1866 1867 static bool netevent_registered; 1868 static struct notifier_block cxgb4_netevent_nb = { 1869 .notifier_call = netevent_cb 1870 }; 1871 1872 static void drain_db_fifo(struct adapter *adap, int usecs) 1873 { 1874 u32 v1, v2, lp_count, hp_count; 1875 1876 do { 1877 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1878 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1879 if (is_t4(adap->params.chip)) { 1880 lp_count = LP_COUNT_G(v1); 1881 hp_count = HP_COUNT_G(v1); 1882 } else { 1883 lp_count = LP_COUNT_T5_G(v1); 1884 hp_count = HP_COUNT_T5_G(v2); 1885 } 1886 1887 if (lp_count == 0 && hp_count == 0) 1888 break; 1889 set_current_state(TASK_UNINTERRUPTIBLE); 1890 schedule_timeout(usecs_to_jiffies(usecs)); 1891 } while (1); 1892 } 1893 1894 static void disable_txq_db(struct sge_txq *q) 1895 { 1896 unsigned long flags; 1897 1898 spin_lock_irqsave(&q->db_lock, flags); 1899 q->db_disabled = 1; 1900 spin_unlock_irqrestore(&q->db_lock, flags); 1901 } 1902 1903 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1904 { 1905 spin_lock_irq(&q->db_lock); 1906 if (q->db_pidx_inc) { 1907 /* Make sure that all writes to the TX descriptors 1908 * are committed before we tell HW about them. 1909 */ 1910 wmb(); 1911 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1912 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1913 q->db_pidx_inc = 0; 1914 } 1915 q->db_disabled = 0; 1916 spin_unlock_irq(&q->db_lock); 1917 } 1918 1919 static void disable_dbs(struct adapter *adap) 1920 { 1921 int i; 1922 1923 for_each_ethrxq(&adap->sge, i) 1924 disable_txq_db(&adap->sge.ethtxq[i].q); 1925 for_each_ofldtxq(&adap->sge, i) 1926 disable_txq_db(&adap->sge.ofldtxq[i].q); 1927 for_each_port(adap, i) 1928 disable_txq_db(&adap->sge.ctrlq[i].q); 1929 } 1930 1931 static void enable_dbs(struct adapter *adap) 1932 { 1933 int i; 1934 1935 for_each_ethrxq(&adap->sge, i) 1936 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1937 for_each_ofldtxq(&adap->sge, i) 1938 enable_txq_db(adap, &adap->sge.ofldtxq[i].q); 1939 for_each_port(adap, i) 1940 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 1941 } 1942 1943 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 1944 { 1945 enum cxgb4_uld type = CXGB4_ULD_RDMA; 1946 1947 if (adap->uld && adap->uld[type].handle) 1948 adap->uld[type].control(adap->uld[type].handle, cmd); 1949 } 1950 1951 static void process_db_full(struct work_struct *work) 1952 { 1953 struct adapter *adap; 1954 1955 adap = container_of(work, struct adapter, db_full_task); 1956 1957 drain_db_fifo(adap, dbfifo_drain_delay); 1958 enable_dbs(adap); 1959 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 1960 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1961 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1962 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 1963 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 1964 else 1965 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1966 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 1967 } 1968 1969 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 1970 { 1971 u16 hw_pidx, hw_cidx; 1972 int ret; 1973 1974 spin_lock_irq(&q->db_lock); 1975 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 1976 if (ret) 1977 goto out; 1978 if (q->db_pidx != hw_pidx) { 1979 u16 delta; 1980 u32 val; 1981 1982 if (q->db_pidx >= hw_pidx) 1983 delta = q->db_pidx - hw_pidx; 1984 else 1985 delta = q->size - hw_pidx + q->db_pidx; 1986 1987 if (is_t4(adap->params.chip)) 1988 val = PIDX_V(delta); 1989 else 1990 val = PIDX_T5_V(delta); 1991 wmb(); 1992 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1993 QID_V(q->cntxt_id) | val); 1994 } 1995 out: 1996 q->db_disabled = 0; 1997 q->db_pidx_inc = 0; 1998 spin_unlock_irq(&q->db_lock); 1999 if (ret) 2000 CH_WARN(adap, "DB drop recovery failed.\n"); 2001 } 2002 2003 static void recover_all_queues(struct adapter *adap) 2004 { 2005 int i; 2006 2007 for_each_ethrxq(&adap->sge, i) 2008 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2009 for_each_ofldtxq(&adap->sge, i) 2010 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q); 2011 for_each_port(adap, i) 2012 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2013 } 2014 2015 static void process_db_drop(struct work_struct *work) 2016 { 2017 struct adapter *adap; 2018 2019 adap = container_of(work, struct adapter, db_drop_task); 2020 2021 if (is_t4(adap->params.chip)) { 2022 drain_db_fifo(adap, dbfifo_drain_delay); 2023 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2024 drain_db_fifo(adap, dbfifo_drain_delay); 2025 recover_all_queues(adap); 2026 drain_db_fifo(adap, dbfifo_drain_delay); 2027 enable_dbs(adap); 2028 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2029 } else if (is_t5(adap->params.chip)) { 2030 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2031 u16 qid = (dropped_db >> 15) & 0x1ffff; 2032 u16 pidx_inc = dropped_db & 0x1fff; 2033 u64 bar2_qoffset; 2034 unsigned int bar2_qid; 2035 int ret; 2036 2037 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2038 0, &bar2_qoffset, &bar2_qid); 2039 if (ret) 2040 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2041 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2042 else 2043 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2044 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2045 2046 /* Re-enable BAR2 WC */ 2047 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2048 } 2049 2050 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2051 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2052 } 2053 2054 void t4_db_full(struct adapter *adap) 2055 { 2056 if (is_t4(adap->params.chip)) { 2057 disable_dbs(adap); 2058 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2059 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2060 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2061 queue_work(adap->workq, &adap->db_full_task); 2062 } 2063 } 2064 2065 void t4_db_dropped(struct adapter *adap) 2066 { 2067 if (is_t4(adap->params.chip)) { 2068 disable_dbs(adap); 2069 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2070 } 2071 queue_work(adap->workq, &adap->db_drop_task); 2072 } 2073 2074 void t4_register_netevent_notifier(void) 2075 { 2076 if (!netevent_registered) { 2077 register_netevent_notifier(&cxgb4_netevent_nb); 2078 netevent_registered = true; 2079 } 2080 } 2081 2082 static void detach_ulds(struct adapter *adap) 2083 { 2084 unsigned int i; 2085 2086 mutex_lock(&uld_mutex); 2087 list_del(&adap->list_node); 2088 for (i = 0; i < CXGB4_ULD_MAX; i++) 2089 if (adap->uld && adap->uld[i].handle) { 2090 adap->uld[i].state_change(adap->uld[i].handle, 2091 CXGB4_STATE_DETACH); 2092 adap->uld[i].handle = NULL; 2093 } 2094 if (netevent_registered && list_empty(&adapter_list)) { 2095 unregister_netevent_notifier(&cxgb4_netevent_nb); 2096 netevent_registered = false; 2097 } 2098 mutex_unlock(&uld_mutex); 2099 } 2100 2101 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2102 { 2103 unsigned int i; 2104 2105 mutex_lock(&uld_mutex); 2106 for (i = 0; i < CXGB4_ULD_MAX; i++) 2107 if (adap->uld && adap->uld[i].handle) 2108 adap->uld[i].state_change(adap->uld[i].handle, 2109 new_state); 2110 mutex_unlock(&uld_mutex); 2111 } 2112 2113 #if IS_ENABLED(CONFIG_IPV6) 2114 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2115 unsigned long event, void *data) 2116 { 2117 struct inet6_ifaddr *ifa = data; 2118 struct net_device *event_dev = ifa->idev->dev; 2119 const struct device *parent = NULL; 2120 #if IS_ENABLED(CONFIG_BONDING) 2121 struct adapter *adap; 2122 #endif 2123 if (event_dev->priv_flags & IFF_802_1Q_VLAN) 2124 event_dev = vlan_dev_real_dev(event_dev); 2125 #if IS_ENABLED(CONFIG_BONDING) 2126 if (event_dev->flags & IFF_MASTER) { 2127 list_for_each_entry(adap, &adapter_list, list_node) { 2128 switch (event) { 2129 case NETDEV_UP: 2130 cxgb4_clip_get(adap->port[0], 2131 (const u32 *)ifa, 1); 2132 break; 2133 case NETDEV_DOWN: 2134 cxgb4_clip_release(adap->port[0], 2135 (const u32 *)ifa, 1); 2136 break; 2137 default: 2138 break; 2139 } 2140 } 2141 return NOTIFY_OK; 2142 } 2143 #endif 2144 2145 if (event_dev) 2146 parent = event_dev->dev.parent; 2147 2148 if (parent && parent->driver == &cxgb4_driver.driver) { 2149 switch (event) { 2150 case NETDEV_UP: 2151 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2152 break; 2153 case NETDEV_DOWN: 2154 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2155 break; 2156 default: 2157 break; 2158 } 2159 } 2160 return NOTIFY_OK; 2161 } 2162 2163 static bool inet6addr_registered; 2164 static struct notifier_block cxgb4_inet6addr_notifier = { 2165 .notifier_call = cxgb4_inet6addr_handler 2166 }; 2167 2168 static void update_clip(const struct adapter *adap) 2169 { 2170 int i; 2171 struct net_device *dev; 2172 int ret; 2173 2174 rcu_read_lock(); 2175 2176 for (i = 0; i < MAX_NPORTS; i++) { 2177 dev = adap->port[i]; 2178 ret = 0; 2179 2180 if (dev) 2181 ret = cxgb4_update_root_dev_clip(dev); 2182 2183 if (ret < 0) 2184 break; 2185 } 2186 rcu_read_unlock(); 2187 } 2188 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2189 2190 /** 2191 * cxgb_up - enable the adapter 2192 * @adap: adapter being enabled 2193 * 2194 * Called when the first port is enabled, this function performs the 2195 * actions necessary to make an adapter operational, such as completing 2196 * the initialization of HW modules, and enabling interrupts. 2197 * 2198 * Must be called with the rtnl lock held. 2199 */ 2200 static int cxgb_up(struct adapter *adap) 2201 { 2202 int err; 2203 2204 err = setup_sge_queues(adap); 2205 if (err) 2206 goto out; 2207 err = setup_rss(adap); 2208 if (err) 2209 goto freeq; 2210 2211 if (adap->flags & USING_MSIX) { 2212 name_msix_vecs(adap); 2213 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2214 adap->msix_info[0].desc, adap); 2215 if (err) 2216 goto irq_err; 2217 err = request_msix_queue_irqs(adap); 2218 if (err) { 2219 free_irq(adap->msix_info[0].vec, adap); 2220 goto irq_err; 2221 } 2222 } else { 2223 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2224 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2225 adap->port[0]->name, adap); 2226 if (err) 2227 goto irq_err; 2228 } 2229 enable_rx(adap); 2230 t4_sge_start(adap); 2231 t4_intr_enable(adap); 2232 adap->flags |= FULL_INIT_DONE; 2233 notify_ulds(adap, CXGB4_STATE_UP); 2234 #if IS_ENABLED(CONFIG_IPV6) 2235 update_clip(adap); 2236 #endif 2237 /* Initialize hash mac addr list*/ 2238 INIT_LIST_HEAD(&adap->mac_hlist); 2239 out: 2240 return err; 2241 irq_err: 2242 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2243 freeq: 2244 t4_free_sge_resources(adap); 2245 goto out; 2246 } 2247 2248 static void cxgb_down(struct adapter *adapter) 2249 { 2250 cancel_work_sync(&adapter->tid_release_task); 2251 cancel_work_sync(&adapter->db_full_task); 2252 cancel_work_sync(&adapter->db_drop_task); 2253 adapter->tid_release_task_busy = false; 2254 adapter->tid_release_head = NULL; 2255 2256 t4_sge_stop(adapter); 2257 t4_free_sge_resources(adapter); 2258 adapter->flags &= ~FULL_INIT_DONE; 2259 } 2260 2261 /* 2262 * net_device operations 2263 */ 2264 static int cxgb_open(struct net_device *dev) 2265 { 2266 int err; 2267 struct port_info *pi = netdev_priv(dev); 2268 struct adapter *adapter = pi->adapter; 2269 2270 netif_carrier_off(dev); 2271 2272 if (!(adapter->flags & FULL_INIT_DONE)) { 2273 err = cxgb_up(adapter); 2274 if (err < 0) 2275 return err; 2276 } 2277 2278 err = link_start(dev); 2279 if (!err) 2280 netif_tx_start_all_queues(dev); 2281 return err; 2282 } 2283 2284 static int cxgb_close(struct net_device *dev) 2285 { 2286 struct port_info *pi = netdev_priv(dev); 2287 struct adapter *adapter = pi->adapter; 2288 2289 netif_tx_stop_all_queues(dev); 2290 netif_carrier_off(dev); 2291 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false); 2292 } 2293 2294 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2295 __be32 sip, __be16 sport, __be16 vlan, 2296 unsigned int queue, unsigned char port, unsigned char mask) 2297 { 2298 int ret; 2299 struct filter_entry *f; 2300 struct adapter *adap; 2301 int i; 2302 u8 *val; 2303 2304 adap = netdev2adap(dev); 2305 2306 /* Adjust stid to correct filter index */ 2307 stid -= adap->tids.sftid_base; 2308 stid += adap->tids.nftids; 2309 2310 /* Check to make sure the filter requested is writable ... 2311 */ 2312 f = &adap->tids.ftid_tab[stid]; 2313 ret = writable_filter(f); 2314 if (ret) 2315 return ret; 2316 2317 /* Clear out any old resources being used by the filter before 2318 * we start constructing the new filter. 2319 */ 2320 if (f->valid) 2321 clear_filter(adap, f); 2322 2323 /* Clear out filter specifications */ 2324 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2325 f->fs.val.lport = cpu_to_be16(sport); 2326 f->fs.mask.lport = ~0; 2327 val = (u8 *)&sip; 2328 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2329 for (i = 0; i < 4; i++) { 2330 f->fs.val.lip[i] = val[i]; 2331 f->fs.mask.lip[i] = ~0; 2332 } 2333 if (adap->params.tp.vlan_pri_map & PORT_F) { 2334 f->fs.val.iport = port; 2335 f->fs.mask.iport = mask; 2336 } 2337 } 2338 2339 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2340 f->fs.val.proto = IPPROTO_TCP; 2341 f->fs.mask.proto = ~0; 2342 } 2343 2344 f->fs.dirsteer = 1; 2345 f->fs.iq = queue; 2346 /* Mark filter as locked */ 2347 f->locked = 1; 2348 f->fs.rpttid = 1; 2349 2350 ret = set_filter_wr(adap, stid); 2351 if (ret) { 2352 clear_filter(adap, f); 2353 return ret; 2354 } 2355 2356 return 0; 2357 } 2358 EXPORT_SYMBOL(cxgb4_create_server_filter); 2359 2360 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2361 unsigned int queue, bool ipv6) 2362 { 2363 struct filter_entry *f; 2364 struct adapter *adap; 2365 2366 adap = netdev2adap(dev); 2367 2368 /* Adjust stid to correct filter index */ 2369 stid -= adap->tids.sftid_base; 2370 stid += adap->tids.nftids; 2371 2372 f = &adap->tids.ftid_tab[stid]; 2373 /* Unlock the filter */ 2374 f->locked = 0; 2375 2376 return delete_filter(adap, stid); 2377 } 2378 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2379 2380 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev, 2381 struct rtnl_link_stats64 *ns) 2382 { 2383 struct port_stats stats; 2384 struct port_info *p = netdev_priv(dev); 2385 struct adapter *adapter = p->adapter; 2386 2387 /* Block retrieving statistics during EEH error 2388 * recovery. Otherwise, the recovery might fail 2389 * and the PCI device will be removed permanently 2390 */ 2391 spin_lock(&adapter->stats_lock); 2392 if (!netif_device_present(dev)) { 2393 spin_unlock(&adapter->stats_lock); 2394 return ns; 2395 } 2396 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2397 &p->stats_base); 2398 spin_unlock(&adapter->stats_lock); 2399 2400 ns->tx_bytes = stats.tx_octets; 2401 ns->tx_packets = stats.tx_frames; 2402 ns->rx_bytes = stats.rx_octets; 2403 ns->rx_packets = stats.rx_frames; 2404 ns->multicast = stats.rx_mcast_frames; 2405 2406 /* detailed rx_errors */ 2407 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2408 stats.rx_runt; 2409 ns->rx_over_errors = 0; 2410 ns->rx_crc_errors = stats.rx_fcs_err; 2411 ns->rx_frame_errors = stats.rx_symbol_err; 2412 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 + 2413 stats.rx_ovflow2 + stats.rx_ovflow3 + 2414 stats.rx_trunc0 + stats.rx_trunc1 + 2415 stats.rx_trunc2 + stats.rx_trunc3; 2416 ns->rx_missed_errors = 0; 2417 2418 /* detailed tx_errors */ 2419 ns->tx_aborted_errors = 0; 2420 ns->tx_carrier_errors = 0; 2421 ns->tx_fifo_errors = 0; 2422 ns->tx_heartbeat_errors = 0; 2423 ns->tx_window_errors = 0; 2424 2425 ns->tx_errors = stats.tx_error_frames; 2426 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2427 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2428 return ns; 2429 } 2430 2431 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2432 { 2433 unsigned int mbox; 2434 int ret = 0, prtad, devad; 2435 struct port_info *pi = netdev_priv(dev); 2436 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2437 2438 switch (cmd) { 2439 case SIOCGMIIPHY: 2440 if (pi->mdio_addr < 0) 2441 return -EOPNOTSUPP; 2442 data->phy_id = pi->mdio_addr; 2443 break; 2444 case SIOCGMIIREG: 2445 case SIOCSMIIREG: 2446 if (mdio_phy_id_is_c45(data->phy_id)) { 2447 prtad = mdio_phy_id_prtad(data->phy_id); 2448 devad = mdio_phy_id_devad(data->phy_id); 2449 } else if (data->phy_id < 32) { 2450 prtad = data->phy_id; 2451 devad = 0; 2452 data->reg_num &= 0x1f; 2453 } else 2454 return -EINVAL; 2455 2456 mbox = pi->adapter->pf; 2457 if (cmd == SIOCGMIIREG) 2458 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2459 data->reg_num, &data->val_out); 2460 else 2461 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2462 data->reg_num, data->val_in); 2463 break; 2464 case SIOCGHWTSTAMP: 2465 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2466 sizeof(pi->tstamp_config)) ? 2467 -EFAULT : 0; 2468 case SIOCSHWTSTAMP: 2469 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2470 sizeof(pi->tstamp_config))) 2471 return -EFAULT; 2472 2473 switch (pi->tstamp_config.rx_filter) { 2474 case HWTSTAMP_FILTER_NONE: 2475 pi->rxtstamp = false; 2476 break; 2477 case HWTSTAMP_FILTER_ALL: 2478 pi->rxtstamp = true; 2479 break; 2480 default: 2481 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 2482 return -ERANGE; 2483 } 2484 2485 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2486 sizeof(pi->tstamp_config)) ? 2487 -EFAULT : 0; 2488 default: 2489 return -EOPNOTSUPP; 2490 } 2491 return ret; 2492 } 2493 2494 static void cxgb_set_rxmode(struct net_device *dev) 2495 { 2496 /* unfortunately we can't return errors to the stack */ 2497 set_rxmode(dev, -1, false); 2498 } 2499 2500 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2501 { 2502 int ret; 2503 struct port_info *pi = netdev_priv(dev); 2504 2505 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */ 2506 return -EINVAL; 2507 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2508 -1, -1, -1, true); 2509 if (!ret) 2510 dev->mtu = new_mtu; 2511 return ret; 2512 } 2513 2514 #ifdef CONFIG_PCI_IOV 2515 static int dummy_open(struct net_device *dev) 2516 { 2517 /* Turn carrier off since we don't have to transmit anything on this 2518 * interface. 2519 */ 2520 netif_carrier_off(dev); 2521 return 0; 2522 } 2523 2524 /* Fill MAC address that will be assigned by the FW */ 2525 static void fill_vf_station_mac_addr(struct adapter *adap) 2526 { 2527 unsigned int i; 2528 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2529 int err; 2530 u8 *na; 2531 u16 a, b; 2532 2533 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2534 if (!err) { 2535 na = adap->params.vpd.na; 2536 for (i = 0; i < ETH_ALEN; i++) 2537 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2538 hex2val(na[2 * i + 1])); 2539 a = (hw_addr[0] << 8) | hw_addr[1]; 2540 b = (hw_addr[1] << 8) | hw_addr[2]; 2541 a ^= b; 2542 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2543 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2544 macaddr[0] = a >> 8; 2545 macaddr[1] = a & 0xff; 2546 2547 for (i = 2; i < 5; i++) 2548 macaddr[i] = hw_addr[i + 1]; 2549 2550 for (i = 0; i < adap->num_vfs; i++) { 2551 macaddr[5] = adap->pf * 16 + i; 2552 ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr); 2553 } 2554 } 2555 } 2556 2557 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2558 { 2559 struct port_info *pi = netdev_priv(dev); 2560 struct adapter *adap = pi->adapter; 2561 int ret; 2562 2563 /* verify MAC addr is valid */ 2564 if (!is_valid_ether_addr(mac)) { 2565 dev_err(pi->adapter->pdev_dev, 2566 "Invalid Ethernet address %pM for VF %d\n", 2567 mac, vf); 2568 return -EINVAL; 2569 } 2570 2571 dev_info(pi->adapter->pdev_dev, 2572 "Setting MAC %pM on VF %d\n", mac, vf); 2573 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2574 if (!ret) 2575 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2576 return ret; 2577 } 2578 2579 static int cxgb_get_vf_config(struct net_device *dev, 2580 int vf, struct ifla_vf_info *ivi) 2581 { 2582 struct port_info *pi = netdev_priv(dev); 2583 struct adapter *adap = pi->adapter; 2584 2585 if (vf >= adap->num_vfs) 2586 return -EINVAL; 2587 ivi->vf = vf; 2588 ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr); 2589 return 0; 2590 } 2591 #endif 2592 2593 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2594 { 2595 int ret; 2596 struct sockaddr *addr = p; 2597 struct port_info *pi = netdev_priv(dev); 2598 2599 if (!is_valid_ether_addr(addr->sa_data)) 2600 return -EADDRNOTAVAIL; 2601 2602 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 2603 pi->xact_addr_filt, addr->sa_data, true, true); 2604 if (ret < 0) 2605 return ret; 2606 2607 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2608 pi->xact_addr_filt = ret; 2609 return 0; 2610 } 2611 2612 #ifdef CONFIG_NET_POLL_CONTROLLER 2613 static void cxgb_netpoll(struct net_device *dev) 2614 { 2615 struct port_info *pi = netdev_priv(dev); 2616 struct adapter *adap = pi->adapter; 2617 2618 if (adap->flags & USING_MSIX) { 2619 int i; 2620 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2621 2622 for (i = pi->nqsets; i; i--, rx++) 2623 t4_sge_intr_msix(0, &rx->rspq); 2624 } else 2625 t4_intr_handler(adap)(0, adap); 2626 } 2627 #endif 2628 2629 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2630 { 2631 struct port_info *pi = netdev_priv(dev); 2632 struct adapter *adap = pi->adapter; 2633 struct sched_class *e; 2634 struct ch_sched_params p; 2635 struct ch_sched_queue qe; 2636 u32 req_rate; 2637 int err = 0; 2638 2639 if (!can_sched(dev)) 2640 return -ENOTSUPP; 2641 2642 if (index < 0 || index > pi->nqsets - 1) 2643 return -EINVAL; 2644 2645 if (!(adap->flags & FULL_INIT_DONE)) { 2646 dev_err(adap->pdev_dev, 2647 "Failed to rate limit on queue %d. Link Down?\n", 2648 index); 2649 return -EINVAL; 2650 } 2651 2652 /* Convert from Mbps to Kbps */ 2653 req_rate = rate << 10; 2654 2655 /* Max rate is 10 Gbps */ 2656 if (req_rate >= SCHED_MAX_RATE_KBPS) { 2657 dev_err(adap->pdev_dev, 2658 "Invalid rate %u Mbps, Max rate is %u Gbps\n", 2659 rate, SCHED_MAX_RATE_KBPS); 2660 return -ERANGE; 2661 } 2662 2663 /* First unbind the queue from any existing class */ 2664 memset(&qe, 0, sizeof(qe)); 2665 qe.queue = index; 2666 qe.class = SCHED_CLS_NONE; 2667 2668 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 2669 if (err) { 2670 dev_err(adap->pdev_dev, 2671 "Unbinding Queue %d on port %d fail. Err: %d\n", 2672 index, pi->port_id, err); 2673 return err; 2674 } 2675 2676 /* Queue already unbound */ 2677 if (!req_rate) 2678 return 0; 2679 2680 /* Fetch any available unused or matching scheduling class */ 2681 memset(&p, 0, sizeof(p)); 2682 p.type = SCHED_CLASS_TYPE_PACKET; 2683 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 2684 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 2685 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 2686 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 2687 p.u.params.channel = pi->tx_chan; 2688 p.u.params.class = SCHED_CLS_NONE; 2689 p.u.params.minrate = 0; 2690 p.u.params.maxrate = req_rate; 2691 p.u.params.weight = 0; 2692 p.u.params.pktsize = dev->mtu; 2693 2694 e = cxgb4_sched_class_alloc(dev, &p); 2695 if (!e) 2696 return -ENOMEM; 2697 2698 /* Bind the queue to a scheduling class */ 2699 memset(&qe, 0, sizeof(qe)); 2700 qe.queue = index; 2701 qe.class = e->idx; 2702 2703 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 2704 if (err) 2705 dev_err(adap->pdev_dev, 2706 "Queue rate limiting failed. Err: %d\n", err); 2707 return err; 2708 } 2709 2710 static int cxgb_setup_tc(struct net_device *dev, u32 handle, __be16 proto, 2711 struct tc_to_netdev *tc) 2712 { 2713 struct port_info *pi = netdev2pinfo(dev); 2714 struct adapter *adap = netdev2adap(dev); 2715 2716 if (!(adap->flags & FULL_INIT_DONE)) { 2717 dev_err(adap->pdev_dev, 2718 "Failed to setup tc on port %d. Link Down?\n", 2719 pi->port_id); 2720 return -EINVAL; 2721 } 2722 2723 if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) && 2724 tc->type == TC_SETUP_CLSU32) { 2725 switch (tc->cls_u32->command) { 2726 case TC_CLSU32_NEW_KNODE: 2727 case TC_CLSU32_REPLACE_KNODE: 2728 return cxgb4_config_knode(dev, proto, tc->cls_u32); 2729 case TC_CLSU32_DELETE_KNODE: 2730 return cxgb4_delete_knode(dev, proto, tc->cls_u32); 2731 default: 2732 return -EOPNOTSUPP; 2733 } 2734 } 2735 2736 return -EOPNOTSUPP; 2737 } 2738 2739 static const struct net_device_ops cxgb4_netdev_ops = { 2740 .ndo_open = cxgb_open, 2741 .ndo_stop = cxgb_close, 2742 .ndo_start_xmit = t4_eth_xmit, 2743 .ndo_select_queue = cxgb_select_queue, 2744 .ndo_get_stats64 = cxgb_get_stats, 2745 .ndo_set_rx_mode = cxgb_set_rxmode, 2746 .ndo_set_mac_address = cxgb_set_mac_addr, 2747 .ndo_set_features = cxgb_set_features, 2748 .ndo_validate_addr = eth_validate_addr, 2749 .ndo_do_ioctl = cxgb_ioctl, 2750 .ndo_change_mtu = cxgb_change_mtu, 2751 #ifdef CONFIG_NET_POLL_CONTROLLER 2752 .ndo_poll_controller = cxgb_netpoll, 2753 #endif 2754 #ifdef CONFIG_CHELSIO_T4_FCOE 2755 .ndo_fcoe_enable = cxgb_fcoe_enable, 2756 .ndo_fcoe_disable = cxgb_fcoe_disable, 2757 #endif /* CONFIG_CHELSIO_T4_FCOE */ 2758 #ifdef CONFIG_NET_RX_BUSY_POLL 2759 .ndo_busy_poll = cxgb_busy_poll, 2760 #endif 2761 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 2762 .ndo_setup_tc = cxgb_setup_tc, 2763 }; 2764 2765 #ifdef CONFIG_PCI_IOV 2766 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 2767 .ndo_open = dummy_open, 2768 .ndo_set_vf_mac = cxgb_set_vf_mac, 2769 .ndo_get_vf_config = cxgb_get_vf_config, 2770 }; 2771 #endif 2772 2773 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2774 { 2775 struct adapter *adapter = netdev2adap(dev); 2776 2777 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 2778 strlcpy(info->version, cxgb4_driver_version, 2779 sizeof(info->version)); 2780 strlcpy(info->bus_info, pci_name(adapter->pdev), 2781 sizeof(info->bus_info)); 2782 } 2783 2784 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 2785 .get_drvinfo = get_drvinfo, 2786 }; 2787 2788 void t4_fatal_err(struct adapter *adap) 2789 { 2790 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0); 2791 t4_intr_disable(adap); 2792 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 2793 } 2794 2795 static void setup_memwin(struct adapter *adap) 2796 { 2797 u32 nic_win_base = t4_get_util_window(adap); 2798 2799 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 2800 } 2801 2802 static void setup_memwin_rdma(struct adapter *adap) 2803 { 2804 if (adap->vres.ocq.size) { 2805 u32 start; 2806 unsigned int sz_kb; 2807 2808 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 2809 start &= PCI_BASE_ADDRESS_MEM_MASK; 2810 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 2811 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 2812 t4_write_reg(adap, 2813 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 2814 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 2815 t4_write_reg(adap, 2816 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 2817 adap->vres.ocq.start); 2818 t4_read_reg(adap, 2819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 2820 } 2821 } 2822 2823 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 2824 { 2825 u32 v; 2826 int ret; 2827 2828 /* get device capabilities */ 2829 memset(c, 0, sizeof(*c)); 2830 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 2831 FW_CMD_REQUEST_F | FW_CMD_READ_F); 2832 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 2833 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 2834 if (ret < 0) 2835 return ret; 2836 2837 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 2838 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 2839 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 2840 if (ret < 0) 2841 return ret; 2842 2843 ret = t4_config_glbl_rss(adap, adap->pf, 2844 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 2845 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 2846 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 2847 if (ret < 0) 2848 return ret; 2849 2850 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 2851 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 2852 FW_CMD_CAP_PF); 2853 if (ret < 0) 2854 return ret; 2855 2856 t4_sge_init(adap); 2857 2858 /* tweak some settings */ 2859 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 2860 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 2861 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 2862 v = t4_read_reg(adap, TP_PIO_DATA_A); 2863 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 2864 2865 /* first 4 Tx modulation queues point to consecutive Tx channels */ 2866 adap->params.tp.tx_modq_map = 0xE4; 2867 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 2868 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 2869 2870 /* associate each Tx modulation queue with consecutive Tx channels */ 2871 v = 0x84218421; 2872 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 2873 &v, 1, TP_TX_SCHED_HDR_A); 2874 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 2875 &v, 1, TP_TX_SCHED_FIFO_A); 2876 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 2877 &v, 1, TP_TX_SCHED_PCMD_A); 2878 2879 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 2880 if (is_offload(adap)) { 2881 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 2882 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2883 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2884 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2885 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 2886 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 2887 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2888 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2889 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2890 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 2891 } 2892 2893 /* get basic stuff going */ 2894 return t4_early_init(adap, adap->pf); 2895 } 2896 2897 /* 2898 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 2899 */ 2900 #define MAX_ATIDS 8192U 2901 2902 /* 2903 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 2904 * 2905 * If the firmware we're dealing with has Configuration File support, then 2906 * we use that to perform all configuration 2907 */ 2908 2909 /* 2910 * Tweak configuration based on module parameters, etc. Most of these have 2911 * defaults assigned to them by Firmware Configuration Files (if we're using 2912 * them) but need to be explicitly set if we're using hard-coded 2913 * initialization. But even in the case of using Firmware Configuration 2914 * Files, we'd like to expose the ability to change these via module 2915 * parameters so these are essentially common tweaks/settings for 2916 * Configuration Files and hard-coded initialization ... 2917 */ 2918 static int adap_init0_tweaks(struct adapter *adapter) 2919 { 2920 /* 2921 * Fix up various Host-Dependent Parameters like Page Size, Cache 2922 * Line Size, etc. The firmware default is for a 4KB Page Size and 2923 * 64B Cache Line Size ... 2924 */ 2925 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 2926 2927 /* 2928 * Process module parameters which affect early initialization. 2929 */ 2930 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 2931 dev_err(&adapter->pdev->dev, 2932 "Ignoring illegal rx_dma_offset=%d, using 2\n", 2933 rx_dma_offset); 2934 rx_dma_offset = 2; 2935 } 2936 t4_set_reg_field(adapter, SGE_CONTROL_A, 2937 PKTSHIFT_V(PKTSHIFT_M), 2938 PKTSHIFT_V(rx_dma_offset)); 2939 2940 /* 2941 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 2942 * adds the pseudo header itself. 2943 */ 2944 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 2945 CSUM_HAS_PSEUDO_HDR_F, 0); 2946 2947 return 0; 2948 } 2949 2950 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 2951 * unto themselves and they contain their own firmware to perform their 2952 * tasks ... 2953 */ 2954 static int phy_aq1202_version(const u8 *phy_fw_data, 2955 size_t phy_fw_size) 2956 { 2957 int offset; 2958 2959 /* At offset 0x8 you're looking for the primary image's 2960 * starting offset which is 3 Bytes wide 2961 * 2962 * At offset 0xa of the primary image, you look for the offset 2963 * of the DRAM segment which is 3 Bytes wide. 2964 * 2965 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 2966 * wide 2967 */ 2968 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 2969 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 2970 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 2971 2972 offset = le24(phy_fw_data + 0x8) << 12; 2973 offset = le24(phy_fw_data + offset + 0xa); 2974 return be16(phy_fw_data + offset + 0x27e); 2975 2976 #undef be16 2977 #undef le16 2978 #undef le24 2979 } 2980 2981 static struct info_10gbt_phy_fw { 2982 unsigned int phy_fw_id; /* PCI Device ID */ 2983 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 2984 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 2985 int phy_flash; /* Has FLASH for PHY Firmware */ 2986 } phy_info_array[] = { 2987 { 2988 PHY_AQ1202_DEVICEID, 2989 PHY_AQ1202_FIRMWARE, 2990 phy_aq1202_version, 2991 1, 2992 }, 2993 { 2994 PHY_BCM84834_DEVICEID, 2995 PHY_BCM84834_FIRMWARE, 2996 NULL, 2997 0, 2998 }, 2999 { 0, NULL, NULL }, 3000 }; 3001 3002 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3003 { 3004 int i; 3005 3006 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3007 if (phy_info_array[i].phy_fw_id == devid) 3008 return &phy_info_array[i]; 3009 } 3010 return NULL; 3011 } 3012 3013 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3014 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3015 * we return a negative error number. If we transfer new firmware we return 1 3016 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3017 */ 3018 static int adap_init0_phy(struct adapter *adap) 3019 { 3020 const struct firmware *phyf; 3021 int ret; 3022 struct info_10gbt_phy_fw *phy_info; 3023 3024 /* Use the device ID to determine which PHY file to flash. 3025 */ 3026 phy_info = find_phy_info(adap->pdev->device); 3027 if (!phy_info) { 3028 dev_warn(adap->pdev_dev, 3029 "No PHY Firmware file found for this PHY\n"); 3030 return -EOPNOTSUPP; 3031 } 3032 3033 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3034 * use that. The adapter firmware provides us with a memory buffer 3035 * where we can load a PHY firmware file from the host if we want to 3036 * override the PHY firmware File in flash. 3037 */ 3038 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3039 adap->pdev_dev); 3040 if (ret < 0) { 3041 /* For adapters without FLASH attached to PHY for their 3042 * firmware, it's obviously a fatal error if we can't get the 3043 * firmware to the adapter. For adapters with PHY firmware 3044 * FLASH storage, it's worth a warning if we can't find the 3045 * PHY Firmware but we'll neuter the error ... 3046 */ 3047 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3048 "/lib/firmware/%s, error %d\n", 3049 phy_info->phy_fw_file, -ret); 3050 if (phy_info->phy_flash) { 3051 int cur_phy_fw_ver = 0; 3052 3053 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3054 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3055 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3056 ret = 0; 3057 } 3058 3059 return ret; 3060 } 3061 3062 /* Load PHY Firmware onto adapter. 3063 */ 3064 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3065 phy_info->phy_fw_version, 3066 (u8 *)phyf->data, phyf->size); 3067 if (ret < 0) 3068 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3069 -ret); 3070 else if (ret > 0) { 3071 int new_phy_fw_ver = 0; 3072 3073 if (phy_info->phy_fw_version) 3074 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3075 phyf->size); 3076 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3077 "Firmware /lib/firmware/%s, version %#x\n", 3078 phy_info->phy_fw_file, new_phy_fw_ver); 3079 } 3080 3081 release_firmware(phyf); 3082 3083 return ret; 3084 } 3085 3086 /* 3087 * Attempt to initialize the adapter via a Firmware Configuration File. 3088 */ 3089 static int adap_init0_config(struct adapter *adapter, int reset) 3090 { 3091 struct fw_caps_config_cmd caps_cmd; 3092 const struct firmware *cf; 3093 unsigned long mtype = 0, maddr = 0; 3094 u32 finiver, finicsum, cfcsum; 3095 int ret; 3096 int config_issued = 0; 3097 char *fw_config_file, fw_config_file_path[256]; 3098 char *config_name = NULL; 3099 3100 /* 3101 * Reset device if necessary. 3102 */ 3103 if (reset) { 3104 ret = t4_fw_reset(adapter, adapter->mbox, 3105 PIORSTMODE_F | PIORST_F); 3106 if (ret < 0) 3107 goto bye; 3108 } 3109 3110 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3111 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3112 * to be performed after any global adapter RESET above since some 3113 * PHYs only have local RAM copies of the PHY firmware. 3114 */ 3115 if (is_10gbt_device(adapter->pdev->device)) { 3116 ret = adap_init0_phy(adapter); 3117 if (ret < 0) 3118 goto bye; 3119 } 3120 /* 3121 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3122 * then use that. Otherwise, use the configuration file stored 3123 * in the adapter flash ... 3124 */ 3125 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3126 case CHELSIO_T4: 3127 fw_config_file = FW4_CFNAME; 3128 break; 3129 case CHELSIO_T5: 3130 fw_config_file = FW5_CFNAME; 3131 break; 3132 case CHELSIO_T6: 3133 fw_config_file = FW6_CFNAME; 3134 break; 3135 default: 3136 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3137 adapter->pdev->device); 3138 ret = -EINVAL; 3139 goto bye; 3140 } 3141 3142 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3143 if (ret < 0) { 3144 config_name = "On FLASH"; 3145 mtype = FW_MEMTYPE_CF_FLASH; 3146 maddr = t4_flash_cfg_addr(adapter); 3147 } else { 3148 u32 params[7], val[7]; 3149 3150 sprintf(fw_config_file_path, 3151 "/lib/firmware/%s", fw_config_file); 3152 config_name = fw_config_file_path; 3153 3154 if (cf->size >= FLASH_CFG_MAX_SIZE) 3155 ret = -ENOMEM; 3156 else { 3157 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3158 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3159 ret = t4_query_params(adapter, adapter->mbox, 3160 adapter->pf, 0, 1, params, val); 3161 if (ret == 0) { 3162 /* 3163 * For t4_memory_rw() below addresses and 3164 * sizes have to be in terms of multiples of 4 3165 * bytes. So, if the Configuration File isn't 3166 * a multiple of 4 bytes in length we'll have 3167 * to write that out separately since we can't 3168 * guarantee that the bytes following the 3169 * residual byte in the buffer returned by 3170 * request_firmware() are zeroed out ... 3171 */ 3172 size_t resid = cf->size & 0x3; 3173 size_t size = cf->size & ~0x3; 3174 __be32 *data = (__be32 *)cf->data; 3175 3176 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3177 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3178 3179 spin_lock(&adapter->win0_lock); 3180 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3181 size, data, T4_MEMORY_WRITE); 3182 if (ret == 0 && resid != 0) { 3183 union { 3184 __be32 word; 3185 char buf[4]; 3186 } last; 3187 int i; 3188 3189 last.word = data[size >> 2]; 3190 for (i = resid; i < 4; i++) 3191 last.buf[i] = 0; 3192 ret = t4_memory_rw(adapter, 0, mtype, 3193 maddr + size, 3194 4, &last.word, 3195 T4_MEMORY_WRITE); 3196 } 3197 spin_unlock(&adapter->win0_lock); 3198 } 3199 } 3200 3201 release_firmware(cf); 3202 if (ret) 3203 goto bye; 3204 } 3205 3206 /* 3207 * Issue a Capability Configuration command to the firmware to get it 3208 * to parse the Configuration File. We don't use t4_fw_config_file() 3209 * because we want the ability to modify various features after we've 3210 * processed the configuration file ... 3211 */ 3212 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3213 caps_cmd.op_to_write = 3214 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3215 FW_CMD_REQUEST_F | 3216 FW_CMD_READ_F); 3217 caps_cmd.cfvalid_to_len16 = 3218 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3219 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3220 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3221 FW_LEN16(caps_cmd)); 3222 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3223 &caps_cmd); 3224 3225 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3226 * Configuration File in FLASH), our last gasp effort is to use the 3227 * Firmware Configuration File which is embedded in the firmware. A 3228 * very few early versions of the firmware didn't have one embedded 3229 * but we can ignore those. 3230 */ 3231 if (ret == -ENOENT) { 3232 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3233 caps_cmd.op_to_write = 3234 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3235 FW_CMD_REQUEST_F | 3236 FW_CMD_READ_F); 3237 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3238 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3239 sizeof(caps_cmd), &caps_cmd); 3240 config_name = "Firmware Default"; 3241 } 3242 3243 config_issued = 1; 3244 if (ret < 0) 3245 goto bye; 3246 3247 finiver = ntohl(caps_cmd.finiver); 3248 finicsum = ntohl(caps_cmd.finicsum); 3249 cfcsum = ntohl(caps_cmd.cfcsum); 3250 if (finicsum != cfcsum) 3251 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3252 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3253 finicsum, cfcsum); 3254 3255 /* 3256 * And now tell the firmware to use the configuration we just loaded. 3257 */ 3258 caps_cmd.op_to_write = 3259 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3260 FW_CMD_REQUEST_F | 3261 FW_CMD_WRITE_F); 3262 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3263 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3264 NULL); 3265 if (ret < 0) 3266 goto bye; 3267 3268 /* 3269 * Tweak configuration based on system architecture, module 3270 * parameters, etc. 3271 */ 3272 ret = adap_init0_tweaks(adapter); 3273 if (ret < 0) 3274 goto bye; 3275 3276 /* 3277 * And finally tell the firmware to initialize itself using the 3278 * parameters from the Configuration File. 3279 */ 3280 ret = t4_fw_initialize(adapter, adapter->mbox); 3281 if (ret < 0) 3282 goto bye; 3283 3284 /* Emit Firmware Configuration File information and return 3285 * successfully. 3286 */ 3287 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 3288 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 3289 config_name, finiver, cfcsum); 3290 return 0; 3291 3292 /* 3293 * Something bad happened. Return the error ... (If the "error" 3294 * is that there's no Configuration File on the adapter we don't 3295 * want to issue a warning since this is fairly common.) 3296 */ 3297 bye: 3298 if (config_issued && ret != -ENOENT) 3299 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 3300 config_name, -ret); 3301 return ret; 3302 } 3303 3304 static struct fw_info fw_info_array[] = { 3305 { 3306 .chip = CHELSIO_T4, 3307 .fs_name = FW4_CFNAME, 3308 .fw_mod_name = FW4_FNAME, 3309 .fw_hdr = { 3310 .chip = FW_HDR_CHIP_T4, 3311 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 3312 .intfver_nic = FW_INTFVER(T4, NIC), 3313 .intfver_vnic = FW_INTFVER(T4, VNIC), 3314 .intfver_ri = FW_INTFVER(T4, RI), 3315 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3316 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3317 }, 3318 }, { 3319 .chip = CHELSIO_T5, 3320 .fs_name = FW5_CFNAME, 3321 .fw_mod_name = FW5_FNAME, 3322 .fw_hdr = { 3323 .chip = FW_HDR_CHIP_T5, 3324 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 3325 .intfver_nic = FW_INTFVER(T5, NIC), 3326 .intfver_vnic = FW_INTFVER(T5, VNIC), 3327 .intfver_ri = FW_INTFVER(T5, RI), 3328 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3329 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3330 }, 3331 }, { 3332 .chip = CHELSIO_T6, 3333 .fs_name = FW6_CFNAME, 3334 .fw_mod_name = FW6_FNAME, 3335 .fw_hdr = { 3336 .chip = FW_HDR_CHIP_T6, 3337 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 3338 .intfver_nic = FW_INTFVER(T6, NIC), 3339 .intfver_vnic = FW_INTFVER(T6, VNIC), 3340 .intfver_ofld = FW_INTFVER(T6, OFLD), 3341 .intfver_ri = FW_INTFVER(T6, RI), 3342 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 3343 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 3344 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 3345 .intfver_fcoe = FW_INTFVER(T6, FCOE), 3346 }, 3347 } 3348 3349 }; 3350 3351 static struct fw_info *find_fw_info(int chip) 3352 { 3353 int i; 3354 3355 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 3356 if (fw_info_array[i].chip == chip) 3357 return &fw_info_array[i]; 3358 } 3359 return NULL; 3360 } 3361 3362 /* 3363 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3364 */ 3365 static int adap_init0(struct adapter *adap) 3366 { 3367 int ret; 3368 u32 v, port_vec; 3369 enum dev_state state; 3370 u32 params[7], val[7]; 3371 struct fw_caps_config_cmd caps_cmd; 3372 int reset = 1; 3373 3374 /* Grab Firmware Device Log parameters as early as possible so we have 3375 * access to it for debugging, etc. 3376 */ 3377 ret = t4_init_devlog_params(adap); 3378 if (ret < 0) 3379 return ret; 3380 3381 /* Contact FW, advertising Master capability */ 3382 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 3383 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 3384 if (ret < 0) { 3385 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 3386 ret); 3387 return ret; 3388 } 3389 if (ret == adap->mbox) 3390 adap->flags |= MASTER_PF; 3391 3392 /* 3393 * If we're the Master PF Driver and the device is uninitialized, 3394 * then let's consider upgrading the firmware ... (We always want 3395 * to check the firmware version number in order to A. get it for 3396 * later reporting and B. to warn if the currently loaded firmware 3397 * is excessively mismatched relative to the driver.) 3398 */ 3399 t4_get_fw_version(adap, &adap->params.fw_vers); 3400 t4_get_bs_version(adap, &adap->params.bs_vers); 3401 t4_get_tp_version(adap, &adap->params.tp_vers); 3402 t4_get_exprom_version(adap, &adap->params.er_vers); 3403 3404 ret = t4_check_fw_version(adap); 3405 /* If firmware is too old (not supported by driver) force an update. */ 3406 if (ret) 3407 state = DEV_STATE_UNINIT; 3408 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 3409 struct fw_info *fw_info; 3410 struct fw_hdr *card_fw; 3411 const struct firmware *fw; 3412 const u8 *fw_data = NULL; 3413 unsigned int fw_size = 0; 3414 3415 /* This is the firmware whose headers the driver was compiled 3416 * against 3417 */ 3418 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 3419 if (fw_info == NULL) { 3420 dev_err(adap->pdev_dev, 3421 "unable to get firmware info for chip %d.\n", 3422 CHELSIO_CHIP_VERSION(adap->params.chip)); 3423 return -EINVAL; 3424 } 3425 3426 /* allocate memory to read the header of the firmware on the 3427 * card 3428 */ 3429 card_fw = t4_alloc_mem(sizeof(*card_fw)); 3430 3431 /* Get FW from from /lib/firmware/ */ 3432 ret = request_firmware(&fw, fw_info->fw_mod_name, 3433 adap->pdev_dev); 3434 if (ret < 0) { 3435 dev_err(adap->pdev_dev, 3436 "unable to load firmware image %s, error %d\n", 3437 fw_info->fw_mod_name, ret); 3438 } else { 3439 fw_data = fw->data; 3440 fw_size = fw->size; 3441 } 3442 3443 /* upgrade FW logic */ 3444 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 3445 state, &reset); 3446 3447 /* Cleaning up */ 3448 release_firmware(fw); 3449 t4_free_mem(card_fw); 3450 3451 if (ret < 0) 3452 goto bye; 3453 } 3454 3455 /* 3456 * Grab VPD parameters. This should be done after we establish a 3457 * connection to the firmware since some of the VPD parameters 3458 * (notably the Core Clock frequency) are retrieved via requests to 3459 * the firmware. On the other hand, we need these fairly early on 3460 * so we do this right after getting ahold of the firmware. 3461 */ 3462 ret = t4_get_vpd_params(adap, &adap->params.vpd); 3463 if (ret < 0) 3464 goto bye; 3465 3466 /* 3467 * Find out what ports are available to us. Note that we need to do 3468 * this before calling adap_init0_no_config() since it needs nports 3469 * and portvec ... 3470 */ 3471 v = 3472 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3473 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 3474 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 3475 if (ret < 0) 3476 goto bye; 3477 3478 adap->params.nports = hweight32(port_vec); 3479 adap->params.portvec = port_vec; 3480 3481 /* If the firmware is initialized already, emit a simply note to that 3482 * effect. Otherwise, it's time to try initializing the adapter. 3483 */ 3484 if (state == DEV_STATE_INIT) { 3485 dev_info(adap->pdev_dev, "Coming up as %s: "\ 3486 "Adapter already initialized\n", 3487 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 3488 } else { 3489 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 3490 "Initializing adapter\n"); 3491 3492 /* Find out whether we're dealing with a version of the 3493 * firmware which has configuration file support. 3494 */ 3495 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3496 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3497 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3498 params, val); 3499 3500 /* If the firmware doesn't support Configuration Files, 3501 * return an error. 3502 */ 3503 if (ret < 0) { 3504 dev_err(adap->pdev_dev, "firmware doesn't support " 3505 "Firmware Configuration Files\n"); 3506 goto bye; 3507 } 3508 3509 /* The firmware provides us with a memory buffer where we can 3510 * load a Configuration File from the host if we want to 3511 * override the Configuration File in flash. 3512 */ 3513 ret = adap_init0_config(adap, reset); 3514 if (ret == -ENOENT) { 3515 dev_err(adap->pdev_dev, "no Configuration File " 3516 "present on adapter.\n"); 3517 goto bye; 3518 } 3519 if (ret < 0) { 3520 dev_err(adap->pdev_dev, "could not initialize " 3521 "adapter, error %d\n", -ret); 3522 goto bye; 3523 } 3524 } 3525 3526 /* Give the SGE code a chance to pull in anything that it needs ... 3527 * Note that this must be called after we retrieve our VPD parameters 3528 * in order to know how to convert core ticks to seconds, etc. 3529 */ 3530 ret = t4_sge_init(adap); 3531 if (ret < 0) 3532 goto bye; 3533 3534 if (is_bypass_device(adap->pdev->device)) 3535 adap->params.bypass = 1; 3536 3537 /* 3538 * Grab some of our basic fundamental operating parameters. 3539 */ 3540 #define FW_PARAM_DEV(param) \ 3541 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 3542 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 3543 3544 #define FW_PARAM_PFVF(param) \ 3545 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 3546 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 3547 FW_PARAMS_PARAM_Y_V(0) | \ 3548 FW_PARAMS_PARAM_Z_V(0) 3549 3550 params[0] = FW_PARAM_PFVF(EQ_START); 3551 params[1] = FW_PARAM_PFVF(L2T_START); 3552 params[2] = FW_PARAM_PFVF(L2T_END); 3553 params[3] = FW_PARAM_PFVF(FILTER_START); 3554 params[4] = FW_PARAM_PFVF(FILTER_END); 3555 params[5] = FW_PARAM_PFVF(IQFLINT_START); 3556 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 3557 if (ret < 0) 3558 goto bye; 3559 adap->sge.egr_start = val[0]; 3560 adap->l2t_start = val[1]; 3561 adap->l2t_end = val[2]; 3562 adap->tids.ftid_base = val[3]; 3563 adap->tids.nftids = val[4] - val[3] + 1; 3564 adap->sge.ingr_start = val[5]; 3565 3566 /* qids (ingress/egress) returned from firmware can be anywhere 3567 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 3568 * Hence driver needs to allocate memory for this range to 3569 * store the queue info. Get the highest IQFLINT/EQ index returned 3570 * in FW_EQ_*_CMD.alloc command. 3571 */ 3572 params[0] = FW_PARAM_PFVF(EQ_END); 3573 params[1] = FW_PARAM_PFVF(IQFLINT_END); 3574 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3575 if (ret < 0) 3576 goto bye; 3577 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 3578 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 3579 3580 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 3581 sizeof(*adap->sge.egr_map), GFP_KERNEL); 3582 if (!adap->sge.egr_map) { 3583 ret = -ENOMEM; 3584 goto bye; 3585 } 3586 3587 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 3588 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 3589 if (!adap->sge.ingr_map) { 3590 ret = -ENOMEM; 3591 goto bye; 3592 } 3593 3594 /* Allocate the memory for the vaious egress queue bitmaps 3595 * ie starving_fl, txq_maperr and blocked_fl. 3596 */ 3597 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3598 sizeof(long), GFP_KERNEL); 3599 if (!adap->sge.starving_fl) { 3600 ret = -ENOMEM; 3601 goto bye; 3602 } 3603 3604 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3605 sizeof(long), GFP_KERNEL); 3606 if (!adap->sge.txq_maperr) { 3607 ret = -ENOMEM; 3608 goto bye; 3609 } 3610 3611 #ifdef CONFIG_DEBUG_FS 3612 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3613 sizeof(long), GFP_KERNEL); 3614 if (!adap->sge.blocked_fl) { 3615 ret = -ENOMEM; 3616 goto bye; 3617 } 3618 #endif 3619 3620 params[0] = FW_PARAM_PFVF(CLIP_START); 3621 params[1] = FW_PARAM_PFVF(CLIP_END); 3622 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3623 if (ret < 0) 3624 goto bye; 3625 adap->clipt_start = val[0]; 3626 adap->clipt_end = val[1]; 3627 3628 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 3629 * Classes supported by the hardware/firmware so we hard code it here 3630 * for now. 3631 */ 3632 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 3633 3634 /* query params related to active filter region */ 3635 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 3636 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 3637 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3638 /* If Active filter size is set we enable establishing 3639 * offload connection through firmware work request 3640 */ 3641 if ((val[0] != val[1]) && (ret >= 0)) { 3642 adap->flags |= FW_OFLD_CONN; 3643 adap->tids.aftid_base = val[0]; 3644 adap->tids.aftid_end = val[1]; 3645 } 3646 3647 /* If we're running on newer firmware, let it know that we're 3648 * prepared to deal with encapsulated CPL messages. Older 3649 * firmware won't understand this and we'll just get 3650 * unencapsulated messages ... 3651 */ 3652 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 3653 val[0] = 1; 3654 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 3655 3656 /* 3657 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 3658 * capability. Earlier versions of the firmware didn't have the 3659 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 3660 * permission to use ULPTX MEMWRITE DSGL. 3661 */ 3662 if (is_t4(adap->params.chip)) { 3663 adap->params.ulptx_memwrite_dsgl = false; 3664 } else { 3665 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 3666 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3667 1, params, val); 3668 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 3669 } 3670 3671 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 3672 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 3673 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3674 1, params, val); 3675 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 3676 3677 /* 3678 * Get device capabilities so we can determine what resources we need 3679 * to manage. 3680 */ 3681 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3682 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3683 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3684 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3685 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 3686 &caps_cmd); 3687 if (ret < 0) 3688 goto bye; 3689 3690 if (caps_cmd.ofldcaps) { 3691 /* query offload-related parameters */ 3692 params[0] = FW_PARAM_DEV(NTID); 3693 params[1] = FW_PARAM_PFVF(SERVER_START); 3694 params[2] = FW_PARAM_PFVF(SERVER_END); 3695 params[3] = FW_PARAM_PFVF(TDDP_START); 3696 params[4] = FW_PARAM_PFVF(TDDP_END); 3697 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3698 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3699 params, val); 3700 if (ret < 0) 3701 goto bye; 3702 adap->tids.ntids = val[0]; 3703 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 3704 adap->tids.stid_base = val[1]; 3705 adap->tids.nstids = val[2] - val[1] + 1; 3706 /* 3707 * Setup server filter region. Divide the available filter 3708 * region into two parts. Regular filters get 1/3rd and server 3709 * filters get 2/3rd part. This is only enabled if workarond 3710 * path is enabled. 3711 * 1. For regular filters. 3712 * 2. Server filter: This are special filters which are used 3713 * to redirect SYN packets to offload queue. 3714 */ 3715 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 3716 adap->tids.sftid_base = adap->tids.ftid_base + 3717 DIV_ROUND_UP(adap->tids.nftids, 3); 3718 adap->tids.nsftids = adap->tids.nftids - 3719 DIV_ROUND_UP(adap->tids.nftids, 3); 3720 adap->tids.nftids = adap->tids.sftid_base - 3721 adap->tids.ftid_base; 3722 } 3723 adap->vres.ddp.start = val[3]; 3724 adap->vres.ddp.size = val[4] - val[3] + 1; 3725 adap->params.ofldq_wr_cred = val[5]; 3726 3727 adap->params.offload = 1; 3728 adap->num_ofld_uld += 1; 3729 } 3730 if (caps_cmd.rdmacaps) { 3731 params[0] = FW_PARAM_PFVF(STAG_START); 3732 params[1] = FW_PARAM_PFVF(STAG_END); 3733 params[2] = FW_PARAM_PFVF(RQ_START); 3734 params[3] = FW_PARAM_PFVF(RQ_END); 3735 params[4] = FW_PARAM_PFVF(PBL_START); 3736 params[5] = FW_PARAM_PFVF(PBL_END); 3737 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3738 params, val); 3739 if (ret < 0) 3740 goto bye; 3741 adap->vres.stag.start = val[0]; 3742 adap->vres.stag.size = val[1] - val[0] + 1; 3743 adap->vres.rq.start = val[2]; 3744 adap->vres.rq.size = val[3] - val[2] + 1; 3745 adap->vres.pbl.start = val[4]; 3746 adap->vres.pbl.size = val[5] - val[4] + 1; 3747 3748 params[0] = FW_PARAM_PFVF(SQRQ_START); 3749 params[1] = FW_PARAM_PFVF(SQRQ_END); 3750 params[2] = FW_PARAM_PFVF(CQ_START); 3751 params[3] = FW_PARAM_PFVF(CQ_END); 3752 params[4] = FW_PARAM_PFVF(OCQ_START); 3753 params[5] = FW_PARAM_PFVF(OCQ_END); 3754 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 3755 val); 3756 if (ret < 0) 3757 goto bye; 3758 adap->vres.qp.start = val[0]; 3759 adap->vres.qp.size = val[1] - val[0] + 1; 3760 adap->vres.cq.start = val[2]; 3761 adap->vres.cq.size = val[3] - val[2] + 1; 3762 adap->vres.ocq.start = val[4]; 3763 adap->vres.ocq.size = val[5] - val[4] + 1; 3764 3765 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 3766 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 3767 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 3768 val); 3769 if (ret < 0) { 3770 adap->params.max_ordird_qp = 8; 3771 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 3772 ret = 0; 3773 } else { 3774 adap->params.max_ordird_qp = val[0]; 3775 adap->params.max_ird_adapter = val[1]; 3776 } 3777 dev_info(adap->pdev_dev, 3778 "max_ordird_qp %d max_ird_adapter %d\n", 3779 adap->params.max_ordird_qp, 3780 adap->params.max_ird_adapter); 3781 adap->num_ofld_uld += 2; 3782 } 3783 if (caps_cmd.iscsicaps) { 3784 params[0] = FW_PARAM_PFVF(ISCSI_START); 3785 params[1] = FW_PARAM_PFVF(ISCSI_END); 3786 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 3787 params, val); 3788 if (ret < 0) 3789 goto bye; 3790 adap->vres.iscsi.start = val[0]; 3791 adap->vres.iscsi.size = val[1] - val[0] + 1; 3792 /* LIO target and cxgb4i initiaitor */ 3793 adap->num_ofld_uld += 2; 3794 } 3795 if (caps_cmd.cryptocaps) { 3796 /* Should query params here...TODO */ 3797 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE; 3798 adap->num_uld += 1; 3799 } 3800 #undef FW_PARAM_PFVF 3801 #undef FW_PARAM_DEV 3802 3803 /* The MTU/MSS Table is initialized by now, so load their values. If 3804 * we're initializing the adapter, then we'll make any modifications 3805 * we want to the MTU/MSS Table and also initialize the congestion 3806 * parameters. 3807 */ 3808 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 3809 if (state != DEV_STATE_INIT) { 3810 int i; 3811 3812 /* The default MTU Table contains values 1492 and 1500. 3813 * However, for TCP, it's better to have two values which are 3814 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 3815 * This allows us to have a TCP Data Payload which is a 3816 * multiple of 8 regardless of what combination of TCP Options 3817 * are in use (always a multiple of 4 bytes) which is 3818 * important for performance reasons. For instance, if no 3819 * options are in use, then we have a 20-byte IP header and a 3820 * 20-byte TCP header. In this case, a 1500-byte MSS would 3821 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 3822 * which is not a multiple of 8. So using an MSS of 1488 in 3823 * this case results in a TCP Data Payload of 1448 bytes which 3824 * is a multiple of 8. On the other hand, if 12-byte TCP Time 3825 * Stamps have been negotiated, then an MTU of 1500 bytes 3826 * results in a TCP Data Payload of 1448 bytes which, as 3827 * above, is a multiple of 8 bytes ... 3828 */ 3829 for (i = 0; i < NMTUS; i++) 3830 if (adap->params.mtus[i] == 1492) { 3831 adap->params.mtus[i] = 1488; 3832 break; 3833 } 3834 3835 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 3836 adap->params.b_wnd); 3837 } 3838 t4_init_sge_params(adap); 3839 adap->flags |= FW_OK; 3840 t4_init_tp_params(adap); 3841 return 0; 3842 3843 /* 3844 * Something bad happened. If a command timed out or failed with EIO 3845 * FW does not operate within its spec or something catastrophic 3846 * happened to HW/FW, stop issuing commands. 3847 */ 3848 bye: 3849 kfree(adap->sge.egr_map); 3850 kfree(adap->sge.ingr_map); 3851 kfree(adap->sge.starving_fl); 3852 kfree(adap->sge.txq_maperr); 3853 #ifdef CONFIG_DEBUG_FS 3854 kfree(adap->sge.blocked_fl); 3855 #endif 3856 if (ret != -ETIMEDOUT && ret != -EIO) 3857 t4_fw_bye(adap, adap->mbox); 3858 return ret; 3859 } 3860 3861 /* EEH callbacks */ 3862 3863 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 3864 pci_channel_state_t state) 3865 { 3866 int i; 3867 struct adapter *adap = pci_get_drvdata(pdev); 3868 3869 if (!adap) 3870 goto out; 3871 3872 rtnl_lock(); 3873 adap->flags &= ~FW_OK; 3874 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 3875 spin_lock(&adap->stats_lock); 3876 for_each_port(adap, i) { 3877 struct net_device *dev = adap->port[i]; 3878 3879 netif_device_detach(dev); 3880 netif_carrier_off(dev); 3881 } 3882 spin_unlock(&adap->stats_lock); 3883 disable_interrupts(adap); 3884 if (adap->flags & FULL_INIT_DONE) 3885 cxgb_down(adap); 3886 rtnl_unlock(); 3887 if ((adap->flags & DEV_ENABLED)) { 3888 pci_disable_device(pdev); 3889 adap->flags &= ~DEV_ENABLED; 3890 } 3891 out: return state == pci_channel_io_perm_failure ? 3892 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 3893 } 3894 3895 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 3896 { 3897 int i, ret; 3898 struct fw_caps_config_cmd c; 3899 struct adapter *adap = pci_get_drvdata(pdev); 3900 3901 if (!adap) { 3902 pci_restore_state(pdev); 3903 pci_save_state(pdev); 3904 return PCI_ERS_RESULT_RECOVERED; 3905 } 3906 3907 if (!(adap->flags & DEV_ENABLED)) { 3908 if (pci_enable_device(pdev)) { 3909 dev_err(&pdev->dev, "Cannot reenable PCI " 3910 "device after reset\n"); 3911 return PCI_ERS_RESULT_DISCONNECT; 3912 } 3913 adap->flags |= DEV_ENABLED; 3914 } 3915 3916 pci_set_master(pdev); 3917 pci_restore_state(pdev); 3918 pci_save_state(pdev); 3919 pci_cleanup_aer_uncorrect_error_status(pdev); 3920 3921 if (t4_wait_dev_ready(adap->regs) < 0) 3922 return PCI_ERS_RESULT_DISCONNECT; 3923 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 3924 return PCI_ERS_RESULT_DISCONNECT; 3925 adap->flags |= FW_OK; 3926 if (adap_init1(adap, &c)) 3927 return PCI_ERS_RESULT_DISCONNECT; 3928 3929 for_each_port(adap, i) { 3930 struct port_info *p = adap2pinfo(adap, i); 3931 3932 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 3933 NULL, NULL); 3934 if (ret < 0) 3935 return PCI_ERS_RESULT_DISCONNECT; 3936 p->viid = ret; 3937 p->xact_addr_filt = -1; 3938 } 3939 3940 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 3941 adap->params.b_wnd); 3942 setup_memwin(adap); 3943 if (cxgb_up(adap)) 3944 return PCI_ERS_RESULT_DISCONNECT; 3945 return PCI_ERS_RESULT_RECOVERED; 3946 } 3947 3948 static void eeh_resume(struct pci_dev *pdev) 3949 { 3950 int i; 3951 struct adapter *adap = pci_get_drvdata(pdev); 3952 3953 if (!adap) 3954 return; 3955 3956 rtnl_lock(); 3957 for_each_port(adap, i) { 3958 struct net_device *dev = adap->port[i]; 3959 3960 if (netif_running(dev)) { 3961 link_start(dev); 3962 cxgb_set_rxmode(dev); 3963 } 3964 netif_device_attach(dev); 3965 } 3966 rtnl_unlock(); 3967 } 3968 3969 static const struct pci_error_handlers cxgb4_eeh = { 3970 .error_detected = eeh_err_detected, 3971 .slot_reset = eeh_slot_reset, 3972 .resume = eeh_resume, 3973 }; 3974 3975 /* Return true if the Link Configuration supports "High Speeds" (those greater 3976 * than 1Gb/s). 3977 */ 3978 static inline bool is_x_10g_port(const struct link_config *lc) 3979 { 3980 unsigned int speeds, high_speeds; 3981 3982 speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported)); 3983 high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G); 3984 3985 return high_speeds != 0; 3986 } 3987 3988 /* 3989 * Perform default configuration of DMA queues depending on the number and type 3990 * of ports we found and the number of available CPUs. Most settings can be 3991 * modified by the admin prior to actual use. 3992 */ 3993 static void cfg_queues(struct adapter *adap) 3994 { 3995 struct sge *s = &adap->sge; 3996 int i, n10g = 0, qidx = 0; 3997 #ifndef CONFIG_CHELSIO_T4_DCB 3998 int q10g = 0; 3999 #endif 4000 4001 /* Reduce memory usage in kdump environment, disable all offload. 4002 */ 4003 if (is_kdump_kernel()) { 4004 adap->params.offload = 0; 4005 adap->params.crypto = 0; 4006 } else if (is_uld(adap) && t4_uld_mem_alloc(adap)) { 4007 adap->params.offload = 0; 4008 adap->params.crypto = 0; 4009 } 4010 4011 for_each_port(adap, i) 4012 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4013 #ifdef CONFIG_CHELSIO_T4_DCB 4014 /* For Data Center Bridging support we need to be able to support up 4015 * to 8 Traffic Priorities; each of which will be assigned to its 4016 * own TX Queue in order to prevent Head-Of-Line Blocking. 4017 */ 4018 if (adap->params.nports * 8 > MAX_ETH_QSETS) { 4019 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n", 4020 MAX_ETH_QSETS, adap->params.nports * 8); 4021 BUG_ON(1); 4022 } 4023 4024 for_each_port(adap, i) { 4025 struct port_info *pi = adap2pinfo(adap, i); 4026 4027 pi->first_qset = qidx; 4028 pi->nqsets = 8; 4029 qidx += pi->nqsets; 4030 } 4031 #else /* !CONFIG_CHELSIO_T4_DCB */ 4032 /* 4033 * We default to 1 queue per non-10G port and up to # of cores queues 4034 * per 10G port. 4035 */ 4036 if (n10g) 4037 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 4038 if (q10g > netif_get_num_default_rss_queues()) 4039 q10g = netif_get_num_default_rss_queues(); 4040 4041 for_each_port(adap, i) { 4042 struct port_info *pi = adap2pinfo(adap, i); 4043 4044 pi->first_qset = qidx; 4045 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4046 qidx += pi->nqsets; 4047 } 4048 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4049 4050 s->ethqsets = qidx; 4051 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4052 4053 if (is_uld(adap)) { 4054 /* 4055 * For offload we use 1 queue/channel if all ports are up to 1G, 4056 * otherwise we divide all available queues amongst the channels 4057 * capped by the number of available cores. 4058 */ 4059 if (n10g) { 4060 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 4061 s->ofldqsets = roundup(i, adap->params.nports); 4062 } else { 4063 s->ofldqsets = adap->params.nports; 4064 } 4065 } 4066 4067 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4068 struct sge_eth_rxq *r = &s->ethrxq[i]; 4069 4070 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4071 r->fl.size = 72; 4072 } 4073 4074 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4075 s->ethtxq[i].q.size = 1024; 4076 4077 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4078 s->ctrlq[i].q.size = 512; 4079 4080 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) 4081 s->ofldtxq[i].q.size = 1024; 4082 4083 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4084 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 4085 } 4086 4087 /* 4088 * Reduce the number of Ethernet queues across all ports to at most n. 4089 * n provides at least one queue per port. 4090 */ 4091 static void reduce_ethqs(struct adapter *adap, int n) 4092 { 4093 int i; 4094 struct port_info *pi; 4095 4096 while (n < adap->sge.ethqsets) 4097 for_each_port(adap, i) { 4098 pi = adap2pinfo(adap, i); 4099 if (pi->nqsets > 1) { 4100 pi->nqsets--; 4101 adap->sge.ethqsets--; 4102 if (adap->sge.ethqsets <= n) 4103 break; 4104 } 4105 } 4106 4107 n = 0; 4108 for_each_port(adap, i) { 4109 pi = adap2pinfo(adap, i); 4110 pi->first_qset = n; 4111 n += pi->nqsets; 4112 } 4113 } 4114 4115 static int get_msix_info(struct adapter *adap) 4116 { 4117 struct uld_msix_info *msix_info; 4118 unsigned int max_ingq = 0; 4119 4120 if (is_offload(adap)) 4121 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 4122 if (is_pci_uld(adap)) 4123 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 4124 4125 if (!max_ingq) 4126 goto out; 4127 4128 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 4129 if (!msix_info) 4130 return -ENOMEM; 4131 4132 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 4133 sizeof(long), GFP_KERNEL); 4134 if (!adap->msix_bmap_ulds.msix_bmap) { 4135 kfree(msix_info); 4136 return -ENOMEM; 4137 } 4138 spin_lock_init(&adap->msix_bmap_ulds.lock); 4139 adap->msix_info_ulds = msix_info; 4140 out: 4141 return 0; 4142 } 4143 4144 static void free_msix_info(struct adapter *adap) 4145 { 4146 if (!(adap->num_uld && adap->num_ofld_uld)) 4147 return; 4148 4149 kfree(adap->msix_info_ulds); 4150 kfree(adap->msix_bmap_ulds.msix_bmap); 4151 } 4152 4153 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 4154 #define EXTRA_VECS 2 4155 4156 static int enable_msix(struct adapter *adap) 4157 { 4158 int ofld_need = 0, uld_need = 0; 4159 int i, j, want, need, allocated; 4160 struct sge *s = &adap->sge; 4161 unsigned int nchan = adap->params.nports; 4162 struct msix_entry *entries; 4163 int max_ingq = MAX_INGQ; 4164 4165 if (is_pci_uld(adap)) 4166 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 4167 if (is_offload(adap)) 4168 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 4169 entries = kmalloc(sizeof(*entries) * (max_ingq + 1), 4170 GFP_KERNEL); 4171 if (!entries) 4172 return -ENOMEM; 4173 4174 /* map for msix */ 4175 if (get_msix_info(adap)) { 4176 adap->params.offload = 0; 4177 adap->params.crypto = 0; 4178 } 4179 4180 for (i = 0; i < max_ingq + 1; ++i) 4181 entries[i].entry = i; 4182 4183 want = s->max_ethqsets + EXTRA_VECS; 4184 if (is_offload(adap)) { 4185 want += adap->num_ofld_uld * s->ofldqsets; 4186 ofld_need = adap->num_ofld_uld * nchan; 4187 } 4188 if (is_pci_uld(adap)) { 4189 want += adap->num_uld * s->ofldqsets; 4190 uld_need = adap->num_uld * nchan; 4191 } 4192 #ifdef CONFIG_CHELSIO_T4_DCB 4193 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 4194 * each port. 4195 */ 4196 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4197 #else 4198 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4199 #endif 4200 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 4201 if (allocated < 0) { 4202 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 4203 " not using MSI-X\n"); 4204 kfree(entries); 4205 return allocated; 4206 } 4207 4208 /* Distribute available vectors to the various queue groups. 4209 * Every group gets its minimum requirement and NIC gets top 4210 * priority for leftovers. 4211 */ 4212 i = allocated - EXTRA_VECS - ofld_need - uld_need; 4213 if (i < s->max_ethqsets) { 4214 s->max_ethqsets = i; 4215 if (i < s->ethqsets) 4216 reduce_ethqs(adap, i); 4217 } 4218 if (is_uld(adap)) { 4219 if (allocated < want) 4220 s->nqs_per_uld = nchan; 4221 else 4222 s->nqs_per_uld = s->ofldqsets; 4223 } 4224 4225 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 4226 adap->msix_info[i].vec = entries[i].vector; 4227 if (is_uld(adap)) { 4228 for (j = 0 ; i < allocated; ++i, j++) { 4229 adap->msix_info_ulds[j].vec = entries[i].vector; 4230 adap->msix_info_ulds[j].idx = i; 4231 } 4232 adap->msix_bmap_ulds.mapsize = j; 4233 } 4234 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 4235 "nic %d per uld %d\n", 4236 allocated, s->max_ethqsets, s->nqs_per_uld); 4237 4238 kfree(entries); 4239 return 0; 4240 } 4241 4242 #undef EXTRA_VECS 4243 4244 static int init_rss(struct adapter *adap) 4245 { 4246 unsigned int i; 4247 int err; 4248 4249 err = t4_init_rss_mode(adap, adap->mbox); 4250 if (err) 4251 return err; 4252 4253 for_each_port(adap, i) { 4254 struct port_info *pi = adap2pinfo(adap, i); 4255 4256 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 4257 if (!pi->rss) 4258 return -ENOMEM; 4259 } 4260 return 0; 4261 } 4262 4263 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap, 4264 enum pci_bus_speed *speed, 4265 enum pcie_link_width *width) 4266 { 4267 u32 lnkcap1, lnkcap2; 4268 int err1, err2; 4269 4270 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */ 4271 4272 *speed = PCI_SPEED_UNKNOWN; 4273 *width = PCIE_LNK_WIDTH_UNKNOWN; 4274 4275 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP, 4276 &lnkcap1); 4277 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2, 4278 &lnkcap2); 4279 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */ 4280 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 4281 *speed = PCIE_SPEED_8_0GT; 4282 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 4283 *speed = PCIE_SPEED_5_0GT; 4284 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 4285 *speed = PCIE_SPEED_2_5GT; 4286 } 4287 if (!err1) { 4288 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT; 4289 if (!lnkcap2) { /* pre-r3.0 */ 4290 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB) 4291 *speed = PCIE_SPEED_5_0GT; 4292 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB) 4293 *speed = PCIE_SPEED_2_5GT; 4294 } 4295 } 4296 4297 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 4298 return err1 ? err1 : err2 ? err2 : -EINVAL; 4299 return 0; 4300 } 4301 4302 static void cxgb4_check_pcie_caps(struct adapter *adap) 4303 { 4304 enum pcie_link_width width, width_cap; 4305 enum pci_bus_speed speed, speed_cap; 4306 4307 #define PCIE_SPEED_STR(speed) \ 4308 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \ 4309 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \ 4310 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \ 4311 "Unknown") 4312 4313 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) { 4314 dev_warn(adap->pdev_dev, 4315 "Unable to determine PCIe device BW capabilities\n"); 4316 return; 4317 } 4318 4319 if (pcie_get_minimum_link(adap->pdev, &speed, &width) || 4320 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) { 4321 dev_warn(adap->pdev_dev, 4322 "Unable to determine PCI Express bandwidth.\n"); 4323 return; 4324 } 4325 4326 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n", 4327 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap)); 4328 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n", 4329 width, width_cap); 4330 if (speed < speed_cap || width < width_cap) 4331 dev_info(adap->pdev_dev, 4332 "A slot with more lanes and/or higher speed is " 4333 "suggested for optimal performance.\n"); 4334 } 4335 4336 /* Dump basic information about the adapter */ 4337 static void print_adapter_info(struct adapter *adapter) 4338 { 4339 /* Device information */ 4340 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 4341 adapter->params.vpd.id, 4342 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 4343 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 4344 adapter->params.vpd.sn, adapter->params.vpd.pn); 4345 4346 /* Firmware Version */ 4347 if (!adapter->params.fw_vers) 4348 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 4349 else 4350 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 4351 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 4352 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 4353 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 4354 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 4355 4356 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 4357 * Firmware, so dev_info() is more appropriate here.) 4358 */ 4359 if (!adapter->params.bs_vers) 4360 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 4361 else 4362 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 4363 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 4364 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 4365 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 4366 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 4367 4368 /* TP Microcode Version */ 4369 if (!adapter->params.tp_vers) 4370 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 4371 else 4372 dev_info(adapter->pdev_dev, 4373 "TP Microcode version: %u.%u.%u.%u\n", 4374 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 4375 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 4376 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 4377 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 4378 4379 /* Expansion ROM version */ 4380 if (!adapter->params.er_vers) 4381 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 4382 else 4383 dev_info(adapter->pdev_dev, 4384 "Expansion ROM version: %u.%u.%u.%u\n", 4385 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 4386 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 4387 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 4388 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 4389 4390 /* Software/Hardware configuration */ 4391 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 4392 is_offload(adapter) ? "R" : "", 4393 ((adapter->flags & USING_MSIX) ? "MSI-X" : 4394 (adapter->flags & USING_MSI) ? "MSI" : ""), 4395 is_offload(adapter) ? "Offload" : "non-Offload"); 4396 } 4397 4398 static void print_port_info(const struct net_device *dev) 4399 { 4400 char buf[80]; 4401 char *bufp = buf; 4402 const char *spd = ""; 4403 const struct port_info *pi = netdev_priv(dev); 4404 const struct adapter *adap = pi->adapter; 4405 4406 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 4407 spd = " 2.5 GT/s"; 4408 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 4409 spd = " 5 GT/s"; 4410 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 4411 spd = " 8 GT/s"; 4412 4413 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 4414 bufp += sprintf(bufp, "100/"); 4415 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 4416 bufp += sprintf(bufp, "1000/"); 4417 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 4418 bufp += sprintf(bufp, "10G/"); 4419 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G) 4420 bufp += sprintf(bufp, "25G/"); 4421 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G) 4422 bufp += sprintf(bufp, "40G/"); 4423 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G) 4424 bufp += sprintf(bufp, "100G/"); 4425 if (bufp != buf) 4426 --bufp; 4427 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 4428 4429 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 4430 dev->name, adap->params.vpd.id, adap->name, buf); 4431 } 4432 4433 static void enable_pcie_relaxed_ordering(struct pci_dev *dev) 4434 { 4435 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 4436 } 4437 4438 /* 4439 * Free the following resources: 4440 * - memory used for tables 4441 * - MSI/MSI-X 4442 * - net devices 4443 * - resources FW is holding for us 4444 */ 4445 static void free_some_resources(struct adapter *adapter) 4446 { 4447 unsigned int i; 4448 4449 t4_free_mem(adapter->l2t); 4450 t4_cleanup_sched(adapter); 4451 t4_free_mem(adapter->tids.tid_tab); 4452 cxgb4_cleanup_tc_u32(adapter); 4453 kfree(adapter->sge.egr_map); 4454 kfree(adapter->sge.ingr_map); 4455 kfree(adapter->sge.starving_fl); 4456 kfree(adapter->sge.txq_maperr); 4457 #ifdef CONFIG_DEBUG_FS 4458 kfree(adapter->sge.blocked_fl); 4459 #endif 4460 disable_msi(adapter); 4461 4462 for_each_port(adapter, i) 4463 if (adapter->port[i]) { 4464 struct port_info *pi = adap2pinfo(adapter, i); 4465 4466 if (pi->viid != 0) 4467 t4_free_vi(adapter, adapter->mbox, adapter->pf, 4468 0, pi->viid); 4469 kfree(adap2pinfo(adapter, i)->rss); 4470 free_netdev(adapter->port[i]); 4471 } 4472 if (adapter->flags & FW_OK) 4473 t4_fw_bye(adapter, adapter->pf); 4474 } 4475 4476 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 4477 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 4478 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 4479 #define SEGMENT_SIZE 128 4480 4481 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev) 4482 { 4483 u16 device_id; 4484 4485 /* Retrieve adapter's device ID */ 4486 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 4487 4488 switch (device_id >> 12) { 4489 case CHELSIO_T4: 4490 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 4491 case CHELSIO_T5: 4492 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 4493 case CHELSIO_T6: 4494 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 4495 default: 4496 dev_err(&pdev->dev, "Device %d is not supported\n", 4497 device_id); 4498 } 4499 return -EINVAL; 4500 } 4501 4502 #ifdef CONFIG_PCI_IOV 4503 static void dummy_setup(struct net_device *dev) 4504 { 4505 dev->type = ARPHRD_NONE; 4506 dev->mtu = 0; 4507 dev->hard_header_len = 0; 4508 dev->addr_len = 0; 4509 dev->tx_queue_len = 0; 4510 dev->flags |= IFF_NOARP; 4511 dev->priv_flags |= IFF_NO_QUEUE; 4512 4513 /* Initialize the device structure. */ 4514 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 4515 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 4516 dev->destructor = free_netdev; 4517 } 4518 4519 static int config_mgmt_dev(struct pci_dev *pdev) 4520 { 4521 struct adapter *adap = pci_get_drvdata(pdev); 4522 struct net_device *netdev; 4523 struct port_info *pi; 4524 char name[IFNAMSIZ]; 4525 int err; 4526 4527 snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf); 4528 netdev = alloc_netdev(0, name, NET_NAME_UNKNOWN, dummy_setup); 4529 if (!netdev) 4530 return -ENOMEM; 4531 4532 pi = netdev_priv(netdev); 4533 pi->adapter = adap; 4534 SET_NETDEV_DEV(netdev, &pdev->dev); 4535 4536 adap->port[0] = netdev; 4537 4538 err = register_netdev(adap->port[0]); 4539 if (err) { 4540 pr_info("Unable to register VF mgmt netdev %s\n", name); 4541 free_netdev(adap->port[0]); 4542 adap->port[0] = NULL; 4543 return err; 4544 } 4545 return 0; 4546 } 4547 4548 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 4549 { 4550 struct adapter *adap = pci_get_drvdata(pdev); 4551 int err = 0; 4552 int current_vfs = pci_num_vf(pdev); 4553 u32 pcie_fw; 4554 4555 pcie_fw = readl(adap->regs + PCIE_FW_A); 4556 /* Check if cxgb4 is the MASTER and fw is initialized */ 4557 if (!(pcie_fw & PCIE_FW_INIT_F) || 4558 !(pcie_fw & PCIE_FW_MASTER_VLD_F) || 4559 PCIE_FW_MASTER_G(pcie_fw) != 4) { 4560 dev_warn(&pdev->dev, 4561 "cxgb4 driver needs to be MASTER to support SRIOV\n"); 4562 return -EOPNOTSUPP; 4563 } 4564 4565 /* If any of the VF's is already assigned to Guest OS, then 4566 * SRIOV for the same cannot be modified 4567 */ 4568 if (current_vfs && pci_vfs_assigned(pdev)) { 4569 dev_err(&pdev->dev, 4570 "Cannot modify SR-IOV while VFs are assigned\n"); 4571 num_vfs = current_vfs; 4572 return num_vfs; 4573 } 4574 4575 /* Disable SRIOV when zero is passed. 4576 * One needs to disable SRIOV before modifying it, else 4577 * stack throws the below warning: 4578 * " 'n' VFs already enabled. Disable before enabling 'm' VFs." 4579 */ 4580 if (!num_vfs) { 4581 pci_disable_sriov(pdev); 4582 if (adap->port[0]) { 4583 unregister_netdev(adap->port[0]); 4584 adap->port[0] = NULL; 4585 } 4586 /* free VF resources */ 4587 kfree(adap->vfinfo); 4588 adap->vfinfo = NULL; 4589 adap->num_vfs = 0; 4590 return num_vfs; 4591 } 4592 4593 if (num_vfs != current_vfs) { 4594 err = pci_enable_sriov(pdev, num_vfs); 4595 if (err) 4596 return err; 4597 4598 adap->num_vfs = num_vfs; 4599 err = config_mgmt_dev(pdev); 4600 if (err) 4601 return err; 4602 } 4603 4604 adap->vfinfo = kcalloc(adap->num_vfs, 4605 sizeof(struct vf_info), GFP_KERNEL); 4606 if (adap->vfinfo) 4607 fill_vf_station_mac_addr(adap); 4608 return num_vfs; 4609 } 4610 #endif 4611 4612 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4613 { 4614 int func, i, err, s_qpp, qpp, num_seg; 4615 struct port_info *pi; 4616 bool highdma = false; 4617 struct adapter *adapter = NULL; 4618 struct net_device *netdev; 4619 void __iomem *regs; 4620 u32 whoami, pl_rev; 4621 enum chip_type chip; 4622 static int adap_idx = 1; 4623 4624 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 4625 4626 err = pci_request_regions(pdev, KBUILD_MODNAME); 4627 if (err) { 4628 /* Just info, some other driver may have claimed the device. */ 4629 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 4630 return err; 4631 } 4632 4633 err = pci_enable_device(pdev); 4634 if (err) { 4635 dev_err(&pdev->dev, "cannot enable PCI device\n"); 4636 goto out_release_regions; 4637 } 4638 4639 regs = pci_ioremap_bar(pdev, 0); 4640 if (!regs) { 4641 dev_err(&pdev->dev, "cannot map device registers\n"); 4642 err = -ENOMEM; 4643 goto out_disable_device; 4644 } 4645 4646 err = t4_wait_dev_ready(regs); 4647 if (err < 0) 4648 goto out_unmap_bar0; 4649 4650 /* We control everything through one PF */ 4651 whoami = readl(regs + PL_WHOAMI_A); 4652 pl_rev = REV_G(readl(regs + PL_REV_A)); 4653 chip = get_chip_type(pdev, pl_rev); 4654 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ? 4655 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4656 if (func != ent->driver_data) { 4657 #ifndef CONFIG_PCI_IOV 4658 iounmap(regs); 4659 #endif 4660 pci_disable_device(pdev); 4661 pci_save_state(pdev); /* to restore SR-IOV later */ 4662 goto sriov; 4663 } 4664 4665 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4666 highdma = true; 4667 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4668 if (err) { 4669 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 4670 "coherent allocations\n"); 4671 goto out_unmap_bar0; 4672 } 4673 } else { 4674 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4675 if (err) { 4676 dev_err(&pdev->dev, "no usable DMA configuration\n"); 4677 goto out_unmap_bar0; 4678 } 4679 } 4680 4681 pci_enable_pcie_error_reporting(pdev); 4682 enable_pcie_relaxed_ordering(pdev); 4683 pci_set_master(pdev); 4684 pci_save_state(pdev); 4685 4686 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4687 if (!adapter) { 4688 err = -ENOMEM; 4689 goto out_unmap_bar0; 4690 } 4691 adap_idx++; 4692 4693 adapter->workq = create_singlethread_workqueue("cxgb4"); 4694 if (!adapter->workq) { 4695 err = -ENOMEM; 4696 goto out_free_adapter; 4697 } 4698 4699 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 4700 (sizeof(struct mbox_cmd) * 4701 T4_OS_LOG_MBOX_CMDS), 4702 GFP_KERNEL); 4703 if (!adapter->mbox_log) { 4704 err = -ENOMEM; 4705 goto out_free_adapter; 4706 } 4707 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 4708 4709 /* PCI device has been enabled */ 4710 adapter->flags |= DEV_ENABLED; 4711 4712 adapter->regs = regs; 4713 adapter->pdev = pdev; 4714 adapter->pdev_dev = &pdev->dev; 4715 adapter->name = pci_name(pdev); 4716 adapter->mbox = func; 4717 adapter->pf = func; 4718 adapter->msg_enable = dflt_msg_enable; 4719 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 4720 4721 spin_lock_init(&adapter->stats_lock); 4722 spin_lock_init(&adapter->tid_release_lock); 4723 spin_lock_init(&adapter->win0_lock); 4724 4725 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 4726 INIT_WORK(&adapter->db_full_task, process_db_full); 4727 INIT_WORK(&adapter->db_drop_task, process_db_drop); 4728 4729 err = t4_prep_adapter(adapter); 4730 if (err) 4731 goto out_free_adapter; 4732 4733 4734 if (!is_t4(adapter->params.chip)) { 4735 s_qpp = (QUEUESPERPAGEPF0_S + 4736 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 4737 adapter->pf); 4738 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 4739 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 4740 num_seg = PAGE_SIZE / SEGMENT_SIZE; 4741 4742 /* Each segment size is 128B. Write coalescing is enabled only 4743 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 4744 * queue is less no of segments that can be accommodated in 4745 * a page size. 4746 */ 4747 if (qpp > num_seg) { 4748 dev_err(&pdev->dev, 4749 "Incorrect number of egress queues per page\n"); 4750 err = -EINVAL; 4751 goto out_free_adapter; 4752 } 4753 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 4754 pci_resource_len(pdev, 2)); 4755 if (!adapter->bar2) { 4756 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 4757 err = -ENOMEM; 4758 goto out_free_adapter; 4759 } 4760 } 4761 4762 setup_memwin(adapter); 4763 err = adap_init0(adapter); 4764 #ifdef CONFIG_DEBUG_FS 4765 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 4766 #endif 4767 setup_memwin_rdma(adapter); 4768 if (err) 4769 goto out_unmap_bar; 4770 4771 /* configure SGE_STAT_CFG_A to read WC stats */ 4772 if (!is_t4(adapter->params.chip)) 4773 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 4774 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 4775 T6_STATMODE_V(0))); 4776 4777 for_each_port(adapter, i) { 4778 netdev = alloc_etherdev_mq(sizeof(struct port_info), 4779 MAX_ETH_QSETS); 4780 if (!netdev) { 4781 err = -ENOMEM; 4782 goto out_free_dev; 4783 } 4784 4785 SET_NETDEV_DEV(netdev, &pdev->dev); 4786 4787 adapter->port[i] = netdev; 4788 pi = netdev_priv(netdev); 4789 pi->adapter = adapter; 4790 pi->xact_addr_filt = -1; 4791 pi->port_id = i; 4792 netdev->irq = pdev->irq; 4793 4794 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 4795 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4796 NETIF_F_RXCSUM | NETIF_F_RXHASH | 4797 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 4798 NETIF_F_HW_TC; 4799 if (highdma) 4800 netdev->hw_features |= NETIF_F_HIGHDMA; 4801 netdev->features |= netdev->hw_features; 4802 netdev->vlan_features = netdev->features & VLAN_FEAT; 4803 4804 netdev->priv_flags |= IFF_UNICAST_FLT; 4805 4806 netdev->netdev_ops = &cxgb4_netdev_ops; 4807 #ifdef CONFIG_CHELSIO_T4_DCB 4808 netdev->dcbnl_ops = &cxgb4_dcb_ops; 4809 cxgb4_dcb_state_init(netdev); 4810 #endif 4811 cxgb4_set_ethtool_ops(netdev); 4812 } 4813 4814 pci_set_drvdata(pdev, adapter); 4815 4816 if (adapter->flags & FW_OK) { 4817 err = t4_port_init(adapter, func, func, 0); 4818 if (err) 4819 goto out_free_dev; 4820 } else if (adapter->params.nports == 1) { 4821 /* If we don't have a connection to the firmware -- possibly 4822 * because of an error -- grab the raw VPD parameters so we 4823 * can set the proper MAC Address on the debug network 4824 * interface that we've created. 4825 */ 4826 u8 hw_addr[ETH_ALEN]; 4827 u8 *na = adapter->params.vpd.na; 4828 4829 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 4830 if (!err) { 4831 for (i = 0; i < ETH_ALEN; i++) 4832 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 4833 hex2val(na[2 * i + 1])); 4834 t4_set_hw_addr(adapter, 0, hw_addr); 4835 } 4836 } 4837 4838 /* Configure queues and allocate tables now, they can be needed as 4839 * soon as the first register_netdev completes. 4840 */ 4841 cfg_queues(adapter); 4842 4843 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 4844 if (!adapter->l2t) { 4845 /* We tolerate a lack of L2T, giving up some functionality */ 4846 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 4847 adapter->params.offload = 0; 4848 } 4849 4850 #if IS_ENABLED(CONFIG_IPV6) 4851 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) && 4852 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 4853 /* CLIP functionality is not present in hardware, 4854 * hence disable all offload features 4855 */ 4856 dev_warn(&pdev->dev, 4857 "CLIP not enabled in hardware, continuing\n"); 4858 adapter->params.offload = 0; 4859 } else { 4860 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 4861 adapter->clipt_end); 4862 if (!adapter->clipt) { 4863 /* We tolerate a lack of clip_table, giving up 4864 * some functionality 4865 */ 4866 dev_warn(&pdev->dev, 4867 "could not allocate Clip table, continuing\n"); 4868 adapter->params.offload = 0; 4869 } 4870 } 4871 #endif 4872 4873 for_each_port(adapter, i) { 4874 pi = adap2pinfo(adapter, i); 4875 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 4876 if (!pi->sched_tbl) 4877 dev_warn(&pdev->dev, 4878 "could not activate scheduling on port %d\n", 4879 i); 4880 } 4881 4882 if (tid_init(&adapter->tids) < 0) { 4883 dev_warn(&pdev->dev, "could not allocate TID table, " 4884 "continuing\n"); 4885 adapter->params.offload = 0; 4886 } else { 4887 adapter->tc_u32 = cxgb4_init_tc_u32(adapter, 4888 CXGB4_MAX_LINK_HANDLE); 4889 if (!adapter->tc_u32) 4890 dev_warn(&pdev->dev, 4891 "could not offload tc u32, continuing\n"); 4892 } 4893 4894 if (is_offload(adapter)) { 4895 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 4896 u32 hash_base, hash_reg; 4897 4898 if (chip <= CHELSIO_T5) { 4899 hash_reg = LE_DB_TID_HASHBASE_A; 4900 hash_base = t4_read_reg(adapter, hash_reg); 4901 adapter->tids.hash_base = hash_base / 4; 4902 } else { 4903 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 4904 hash_base = t4_read_reg(adapter, hash_reg); 4905 adapter->tids.hash_base = hash_base; 4906 } 4907 } 4908 } 4909 4910 /* See what interrupts we'll be using */ 4911 if (msi > 1 && enable_msix(adapter) == 0) 4912 adapter->flags |= USING_MSIX; 4913 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 4914 adapter->flags |= USING_MSI; 4915 if (msi > 1) 4916 free_msix_info(adapter); 4917 } 4918 4919 /* check for PCI Express bandwidth capabiltites */ 4920 cxgb4_check_pcie_caps(adapter); 4921 4922 err = init_rss(adapter); 4923 if (err) 4924 goto out_free_dev; 4925 4926 /* 4927 * The card is now ready to go. If any errors occur during device 4928 * registration we do not fail the whole card but rather proceed only 4929 * with the ports we manage to register successfully. However we must 4930 * register at least one net device. 4931 */ 4932 for_each_port(adapter, i) { 4933 pi = adap2pinfo(adapter, i); 4934 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 4935 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 4936 4937 err = register_netdev(adapter->port[i]); 4938 if (err) 4939 break; 4940 adapter->chan_map[pi->tx_chan] = i; 4941 print_port_info(adapter->port[i]); 4942 } 4943 if (i == 0) { 4944 dev_err(&pdev->dev, "could not register any net devices\n"); 4945 goto out_free_dev; 4946 } 4947 if (err) { 4948 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 4949 err = 0; 4950 } 4951 4952 if (cxgb4_debugfs_root) { 4953 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 4954 cxgb4_debugfs_root); 4955 setup_debugfs(adapter); 4956 } 4957 4958 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 4959 pdev->needs_freset = 1; 4960 4961 if (is_uld(adapter)) { 4962 mutex_lock(&uld_mutex); 4963 list_add_tail(&adapter->list_node, &adapter_list); 4964 mutex_unlock(&uld_mutex); 4965 } 4966 4967 print_adapter_info(adapter); 4968 setup_fw_sge_queues(adapter); 4969 return 0; 4970 4971 sriov: 4972 #ifdef CONFIG_PCI_IOV 4973 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) { 4974 dev_warn(&pdev->dev, 4975 "Enabling SR-IOV VFs using the num_vf module " 4976 "parameter is deprecated - please use the pci sysfs " 4977 "interface instead.\n"); 4978 if (pci_enable_sriov(pdev, num_vf[func]) == 0) 4979 dev_info(&pdev->dev, 4980 "instantiated %u virtual functions\n", 4981 num_vf[func]); 4982 } 4983 4984 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4985 if (!adapter) { 4986 err = -ENOMEM; 4987 goto free_pci_region; 4988 } 4989 4990 adapter->pdev = pdev; 4991 adapter->pdev_dev = &pdev->dev; 4992 adapter->name = pci_name(pdev); 4993 adapter->mbox = func; 4994 adapter->pf = func; 4995 adapter->regs = regs; 4996 adapter->adap_idx = adap_idx; 4997 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 4998 (sizeof(struct mbox_cmd) * 4999 T4_OS_LOG_MBOX_CMDS), 5000 GFP_KERNEL); 5001 if (!adapter->mbox_log) { 5002 err = -ENOMEM; 5003 goto free_adapter; 5004 } 5005 pci_set_drvdata(pdev, adapter); 5006 return 0; 5007 5008 free_adapter: 5009 kfree(adapter); 5010 free_pci_region: 5011 iounmap(regs); 5012 pci_disable_sriov(pdev); 5013 pci_release_regions(pdev); 5014 return err; 5015 #else 5016 return 0; 5017 #endif 5018 5019 out_free_dev: 5020 free_some_resources(adapter); 5021 if (adapter->flags & USING_MSIX) 5022 free_msix_info(adapter); 5023 if (adapter->num_uld || adapter->num_ofld_uld) 5024 t4_uld_mem_free(adapter); 5025 out_unmap_bar: 5026 if (!is_t4(adapter->params.chip)) 5027 iounmap(adapter->bar2); 5028 out_free_adapter: 5029 if (adapter->workq) 5030 destroy_workqueue(adapter->workq); 5031 5032 kfree(adapter->mbox_log); 5033 kfree(adapter); 5034 out_unmap_bar0: 5035 iounmap(regs); 5036 out_disable_device: 5037 pci_disable_pcie_error_reporting(pdev); 5038 pci_disable_device(pdev); 5039 out_release_regions: 5040 pci_release_regions(pdev); 5041 return err; 5042 } 5043 5044 static void remove_one(struct pci_dev *pdev) 5045 { 5046 struct adapter *adapter = pci_get_drvdata(pdev); 5047 5048 if (!adapter) { 5049 pci_release_regions(pdev); 5050 return; 5051 } 5052 5053 if (adapter->pf == 4) { 5054 int i; 5055 5056 /* Tear down per-adapter Work Queue first since it can contain 5057 * references to our adapter data structure. 5058 */ 5059 destroy_workqueue(adapter->workq); 5060 5061 if (is_uld(adapter)) 5062 detach_ulds(adapter); 5063 5064 disable_interrupts(adapter); 5065 5066 for_each_port(adapter, i) 5067 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5068 unregister_netdev(adapter->port[i]); 5069 5070 debugfs_remove_recursive(adapter->debugfs_root); 5071 5072 /* If we allocated filters, free up state associated with any 5073 * valid filters ... 5074 */ 5075 clear_all_filters(adapter); 5076 5077 if (adapter->flags & FULL_INIT_DONE) 5078 cxgb_down(adapter); 5079 5080 if (adapter->flags & USING_MSIX) 5081 free_msix_info(adapter); 5082 if (adapter->num_uld || adapter->num_ofld_uld) 5083 t4_uld_mem_free(adapter); 5084 free_some_resources(adapter); 5085 #if IS_ENABLED(CONFIG_IPV6) 5086 t4_cleanup_clip_tbl(adapter); 5087 #endif 5088 iounmap(adapter->regs); 5089 if (!is_t4(adapter->params.chip)) 5090 iounmap(adapter->bar2); 5091 pci_disable_pcie_error_reporting(pdev); 5092 if ((adapter->flags & DEV_ENABLED)) { 5093 pci_disable_device(pdev); 5094 adapter->flags &= ~DEV_ENABLED; 5095 } 5096 pci_release_regions(pdev); 5097 kfree(adapter->mbox_log); 5098 synchronize_rcu(); 5099 kfree(adapter); 5100 } 5101 #ifdef CONFIG_PCI_IOV 5102 else { 5103 if (adapter->port[0]) 5104 unregister_netdev(adapter->port[0]); 5105 iounmap(adapter->regs); 5106 kfree(adapter->vfinfo); 5107 kfree(adapter); 5108 pci_disable_sriov(pdev); 5109 pci_release_regions(pdev); 5110 } 5111 #endif 5112 } 5113 5114 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 5115 * delivery. This is essentially a stripped down version of the PCI remove() 5116 * function where we do the minimal amount of work necessary to shutdown any 5117 * further activity. 5118 */ 5119 static void shutdown_one(struct pci_dev *pdev) 5120 { 5121 struct adapter *adapter = pci_get_drvdata(pdev); 5122 5123 /* As with remove_one() above (see extended comment), we only want do 5124 * do cleanup on PCI Devices which went all the way through init_one() 5125 * ... 5126 */ 5127 if (!adapter) { 5128 pci_release_regions(pdev); 5129 return; 5130 } 5131 5132 if (adapter->pf == 4) { 5133 int i; 5134 5135 for_each_port(adapter, i) 5136 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5137 cxgb_close(adapter->port[i]); 5138 5139 t4_uld_clean_up(adapter); 5140 disable_interrupts(adapter); 5141 disable_msi(adapter); 5142 5143 t4_sge_stop(adapter); 5144 if (adapter->flags & FW_OK) 5145 t4_fw_bye(adapter, adapter->mbox); 5146 } 5147 #ifdef CONFIG_PCI_IOV 5148 else { 5149 if (adapter->port[0]) 5150 unregister_netdev(adapter->port[0]); 5151 iounmap(adapter->regs); 5152 kfree(adapter->vfinfo); 5153 kfree(adapter); 5154 pci_disable_sriov(pdev); 5155 pci_release_regions(pdev); 5156 } 5157 #endif 5158 } 5159 5160 static struct pci_driver cxgb4_driver = { 5161 .name = KBUILD_MODNAME, 5162 .id_table = cxgb4_pci_tbl, 5163 .probe = init_one, 5164 .remove = remove_one, 5165 .shutdown = shutdown_one, 5166 #ifdef CONFIG_PCI_IOV 5167 .sriov_configure = cxgb4_iov_configure, 5168 #endif 5169 .err_handler = &cxgb4_eeh, 5170 }; 5171 5172 static int __init cxgb4_init_module(void) 5173 { 5174 int ret; 5175 5176 /* Debugfs support is optional, just warn if this fails */ 5177 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 5178 if (!cxgb4_debugfs_root) 5179 pr_warn("could not create debugfs entry, continuing\n"); 5180 5181 ret = pci_register_driver(&cxgb4_driver); 5182 if (ret < 0) 5183 debugfs_remove(cxgb4_debugfs_root); 5184 5185 #if IS_ENABLED(CONFIG_IPV6) 5186 if (!inet6addr_registered) { 5187 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5188 inet6addr_registered = true; 5189 } 5190 #endif 5191 5192 return ret; 5193 } 5194 5195 static void __exit cxgb4_cleanup_module(void) 5196 { 5197 #if IS_ENABLED(CONFIG_IPV6) 5198 if (inet6addr_registered) { 5199 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5200 inet6addr_registered = false; 5201 } 5202 #endif 5203 pci_unregister_driver(&cxgb4_driver); 5204 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 5205 } 5206 5207 module_init(cxgb4_init_module); 5208 module_exit(cxgb4_cleanup_module); 5209