1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <linux/uaccess.h>
66 #include <linux/crash_dump.h>
67 #include <net/udp_tunnel.h>
68 #include <net/xfrm.h>
69 
70 #include "cxgb4.h"
71 #include "cxgb4_filter.h"
72 #include "t4_regs.h"
73 #include "t4_values.h"
74 #include "t4_msg.h"
75 #include "t4fw_api.h"
76 #include "t4fw_version.h"
77 #include "cxgb4_dcb.h"
78 #include "srq.h"
79 #include "cxgb4_debugfs.h"
80 #include "clip_tbl.h"
81 #include "l2t.h"
82 #include "smt.h"
83 #include "sched.h"
84 #include "cxgb4_tc_u32.h"
85 #include "cxgb4_tc_flower.h"
86 #include "cxgb4_tc_mqprio.h"
87 #include "cxgb4_tc_matchall.h"
88 #include "cxgb4_ptp.h"
89 #include "cxgb4_cudbg.h"
90 
91 char cxgb4_driver_name[] = KBUILD_MODNAME;
92 
93 #ifdef DRV_VERSION
94 #undef DRV_VERSION
95 #endif
96 #define DRV_VERSION "2.0.0-ko"
97 const char cxgb4_driver_version[] = DRV_VERSION;
98 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
99 
100 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
101 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
102 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
103 
104 /* Macros needed to support the PCI Device ID Table ...
105  */
106 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
107 	static const struct pci_device_id cxgb4_pci_tbl[] = {
108 #define CXGB4_UNIFIED_PF 0x4
109 
110 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
111 
112 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
113  * called for both.
114  */
115 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
116 
117 #define CH_PCI_ID_TABLE_ENTRY(devid) \
118 		{PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
119 
120 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
121 		{ 0, } \
122 	}
123 
124 #include "t4_pci_id_tbl.h"
125 
126 #define FW4_FNAME "cxgb4/t4fw.bin"
127 #define FW5_FNAME "cxgb4/t5fw.bin"
128 #define FW6_FNAME "cxgb4/t6fw.bin"
129 #define FW4_CFNAME "cxgb4/t4-config.txt"
130 #define FW5_CFNAME "cxgb4/t5-config.txt"
131 #define FW6_CFNAME "cxgb4/t6-config.txt"
132 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
133 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
134 #define PHY_AQ1202_DEVICEID 0x4409
135 #define PHY_BCM84834_DEVICEID 0x4486
136 
137 MODULE_DESCRIPTION(DRV_DESC);
138 MODULE_AUTHOR("Chelsio Communications");
139 MODULE_LICENSE("Dual BSD/GPL");
140 MODULE_VERSION(DRV_VERSION);
141 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
142 MODULE_FIRMWARE(FW4_FNAME);
143 MODULE_FIRMWARE(FW5_FNAME);
144 MODULE_FIRMWARE(FW6_FNAME);
145 
146 /*
147  * The driver uses the best interrupt scheme available on a platform in the
148  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
149  * of these schemes the driver may consider as follows:
150  *
151  * msi = 2: choose from among all three options
152  * msi = 1: only consider MSI and INTx interrupts
153  * msi = 0: force INTx interrupts
154  */
155 static int msi = 2;
156 
157 module_param(msi, int, 0644);
158 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
159 
160 /*
161  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
162  * offset by 2 bytes in order to have the IP headers line up on 4-byte
163  * boundaries.  This is a requirement for many architectures which will throw
164  * a machine check fault if an attempt is made to access one of the 4-byte IP
165  * header fields on a non-4-byte boundary.  And it's a major performance issue
166  * even on some architectures which allow it like some implementations of the
167  * x86 ISA.  However, some architectures don't mind this and for some very
168  * edge-case performance sensitive applications (like forwarding large volumes
169  * of small packets), setting this DMA offset to 0 will decrease the number of
170  * PCI-E Bus transfers enough to measurably affect performance.
171  */
172 static int rx_dma_offset = 2;
173 
174 /* TX Queue select used to determine what algorithm to use for selecting TX
175  * queue. Select between the kernel provided function (select_queue=0) or user
176  * cxgb_select_queue function (select_queue=1)
177  *
178  * Default: select_queue=0
179  */
180 static int select_queue;
181 module_param(select_queue, int, 0644);
182 MODULE_PARM_DESC(select_queue,
183 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
184 
185 static struct dentry *cxgb4_debugfs_root;
186 
187 LIST_HEAD(adapter_list);
188 DEFINE_MUTEX(uld_mutex);
189 
190 static int cfg_queues(struct adapter *adap);
191 
192 static void link_report(struct net_device *dev)
193 {
194 	if (!netif_carrier_ok(dev))
195 		netdev_info(dev, "link down\n");
196 	else {
197 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
198 
199 		const char *s;
200 		const struct port_info *p = netdev_priv(dev);
201 
202 		switch (p->link_cfg.speed) {
203 		case 100:
204 			s = "100Mbps";
205 			break;
206 		case 1000:
207 			s = "1Gbps";
208 			break;
209 		case 10000:
210 			s = "10Gbps";
211 			break;
212 		case 25000:
213 			s = "25Gbps";
214 			break;
215 		case 40000:
216 			s = "40Gbps";
217 			break;
218 		case 50000:
219 			s = "50Gbps";
220 			break;
221 		case 100000:
222 			s = "100Gbps";
223 			break;
224 		default:
225 			pr_info("%s: unsupported speed: %d\n",
226 				dev->name, p->link_cfg.speed);
227 			return;
228 		}
229 
230 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
231 			    fc[p->link_cfg.fc]);
232 	}
233 }
234 
235 #ifdef CONFIG_CHELSIO_T4_DCB
236 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
237 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
238 {
239 	struct port_info *pi = netdev_priv(dev);
240 	struct adapter *adap = pi->adapter;
241 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
242 	int i;
243 
244 	/* We use a simple mapping of Port TX Queue Index to DCB
245 	 * Priority when we're enabling DCB.
246 	 */
247 	for (i = 0; i < pi->nqsets; i++, txq++) {
248 		u32 name, value;
249 		int err;
250 
251 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
252 			FW_PARAMS_PARAM_X_V(
253 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
254 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
255 		value = enable ? i : 0xffffffff;
256 
257 		/* Since we can be called while atomic (from "interrupt
258 		 * level") we need to issue the Set Parameters Commannd
259 		 * without sleeping (timeout < 0).
260 		 */
261 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
262 					    &name, &value,
263 					    -FW_CMD_MAX_TIMEOUT);
264 
265 		if (err)
266 			dev_err(adap->pdev_dev,
267 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
268 				enable ? "set" : "unset", pi->port_id, i, -err);
269 		else
270 			txq->dcb_prio = enable ? value : 0;
271 	}
272 }
273 
274 int cxgb4_dcb_enabled(const struct net_device *dev)
275 {
276 	struct port_info *pi = netdev_priv(dev);
277 
278 	if (!pi->dcb.enabled)
279 		return 0;
280 
281 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
282 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
283 }
284 #endif /* CONFIG_CHELSIO_T4_DCB */
285 
286 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
287 {
288 	struct net_device *dev = adapter->port[port_id];
289 
290 	/* Skip changes from disabled ports. */
291 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
292 		if (link_stat)
293 			netif_carrier_on(dev);
294 		else {
295 #ifdef CONFIG_CHELSIO_T4_DCB
296 			if (cxgb4_dcb_enabled(dev)) {
297 				cxgb4_dcb_reset(dev);
298 				dcb_tx_queue_prio_enable(dev, false);
299 			}
300 #endif /* CONFIG_CHELSIO_T4_DCB */
301 			netif_carrier_off(dev);
302 		}
303 
304 		link_report(dev);
305 	}
306 }
307 
308 void t4_os_portmod_changed(struct adapter *adap, int port_id)
309 {
310 	static const char *mod_str[] = {
311 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
312 	};
313 
314 	struct net_device *dev = adap->port[port_id];
315 	struct port_info *pi = netdev_priv(dev);
316 
317 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
318 		netdev_info(dev, "port module unplugged\n");
319 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
320 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
321 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
322 		netdev_info(dev, "%s: unsupported port module inserted\n",
323 			    dev->name);
324 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
325 		netdev_info(dev, "%s: unknown port module inserted\n",
326 			    dev->name);
327 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
328 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
329 	else
330 		netdev_info(dev, "%s: unknown module type %d inserted\n",
331 			    dev->name, pi->mod_type);
332 
333 	/* If the interface is running, then we'll need any "sticky" Link
334 	 * Parameters redone with a new Transceiver Module.
335 	 */
336 	pi->link_cfg.redo_l1cfg = netif_running(dev);
337 }
338 
339 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
340 module_param(dbfifo_int_thresh, int, 0644);
341 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
342 
343 /*
344  * usecs to sleep while draining the dbfifo
345  */
346 static int dbfifo_drain_delay = 1000;
347 module_param(dbfifo_drain_delay, int, 0644);
348 MODULE_PARM_DESC(dbfifo_drain_delay,
349 		 "usecs to sleep while draining the dbfifo");
350 
351 static inline int cxgb4_set_addr_hash(struct port_info *pi)
352 {
353 	struct adapter *adap = pi->adapter;
354 	u64 vec = 0;
355 	bool ucast = false;
356 	struct hash_mac_addr *entry;
357 
358 	/* Calculate the hash vector for the updated list and program it */
359 	list_for_each_entry(entry, &adap->mac_hlist, list) {
360 		ucast |= is_unicast_ether_addr(entry->addr);
361 		vec |= (1ULL << hash_mac_addr(entry->addr));
362 	}
363 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
364 				vec, false);
365 }
366 
367 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
368 {
369 	struct port_info *pi = netdev_priv(netdev);
370 	struct adapter *adap = pi->adapter;
371 	int ret;
372 	u64 mhash = 0;
373 	u64 uhash = 0;
374 	/* idx stores the index of allocated filters,
375 	 * its size should be modified based on the number of
376 	 * MAC addresses that we allocate filters for
377 	 */
378 
379 	u16 idx[1] = {};
380 	bool free = false;
381 	bool ucast = is_unicast_ether_addr(mac_addr);
382 	const u8 *maclist[1] = {mac_addr};
383 	struct hash_mac_addr *new_entry;
384 
385 	ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
386 				   idx, ucast ? &uhash : &mhash, false);
387 	if (ret < 0)
388 		goto out;
389 	/* if hash != 0, then add the addr to hash addr list
390 	 * so on the end we will calculate the hash for the
391 	 * list and program it
392 	 */
393 	if (uhash || mhash) {
394 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
395 		if (!new_entry)
396 			return -ENOMEM;
397 		ether_addr_copy(new_entry->addr, mac_addr);
398 		list_add_tail(&new_entry->list, &adap->mac_hlist);
399 		ret = cxgb4_set_addr_hash(pi);
400 	}
401 out:
402 	return ret < 0 ? ret : 0;
403 }
404 
405 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
406 {
407 	struct port_info *pi = netdev_priv(netdev);
408 	struct adapter *adap = pi->adapter;
409 	int ret;
410 	const u8 *maclist[1] = {mac_addr};
411 	struct hash_mac_addr *entry, *tmp;
412 
413 	/* If the MAC address to be removed is in the hash addr
414 	 * list, delete it from the list and update hash vector
415 	 */
416 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
417 		if (ether_addr_equal(entry->addr, mac_addr)) {
418 			list_del(&entry->list);
419 			kfree(entry);
420 			return cxgb4_set_addr_hash(pi);
421 		}
422 	}
423 
424 	ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
425 	return ret < 0 ? -EINVAL : 0;
426 }
427 
428 /*
429  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
430  * If @mtu is -1 it is left unchanged.
431  */
432 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
433 {
434 	struct port_info *pi = netdev_priv(dev);
435 	struct adapter *adapter = pi->adapter;
436 
437 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
438 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
439 
440 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
441 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
442 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
443 			     sleep_ok);
444 }
445 
446 /**
447  *	cxgb4_change_mac - Update match filter for a MAC address.
448  *	@pi: the port_info
449  *	@viid: the VI id
450  *	@tcam_idx: TCAM index of existing filter for old value of MAC address,
451  *		   or -1
452  *	@addr: the new MAC address value
453  *	@persist: whether a new MAC allocation should be persistent
454  *	@add_smt: if true also add the address to the HW SMT
455  *
456  *	Modifies an MPS filter and sets it to the new MAC address if
457  *	@tcam_idx >= 0, or adds the MAC address to a new filter if
458  *	@tcam_idx < 0. In the latter case the address is added persistently
459  *	if @persist is %true.
460  *	Addresses are programmed to hash region, if tcam runs out of entries.
461  *
462  */
463 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
464 		     int *tcam_idx, const u8 *addr, bool persist,
465 		     u8 *smt_idx)
466 {
467 	struct adapter *adapter = pi->adapter;
468 	struct hash_mac_addr *entry, *new_entry;
469 	int ret;
470 
471 	ret = t4_change_mac(adapter, adapter->mbox, viid,
472 			    *tcam_idx, addr, persist, smt_idx);
473 	/* We ran out of TCAM entries. try programming hash region. */
474 	if (ret == -ENOMEM) {
475 		/* If the MAC address to be updated is in the hash addr
476 		 * list, update it from the list
477 		 */
478 		list_for_each_entry(entry, &adapter->mac_hlist, list) {
479 			if (entry->iface_mac) {
480 				ether_addr_copy(entry->addr, addr);
481 				goto set_hash;
482 			}
483 		}
484 		new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
485 		if (!new_entry)
486 			return -ENOMEM;
487 		ether_addr_copy(new_entry->addr, addr);
488 		new_entry->iface_mac = true;
489 		list_add_tail(&new_entry->list, &adapter->mac_hlist);
490 set_hash:
491 		ret = cxgb4_set_addr_hash(pi);
492 	} else if (ret >= 0) {
493 		*tcam_idx = ret;
494 		ret = 0;
495 	}
496 
497 	return ret;
498 }
499 
500 /*
501  *	link_start - enable a port
502  *	@dev: the port to enable
503  *
504  *	Performs the MAC and PHY actions needed to enable a port.
505  */
506 static int link_start(struct net_device *dev)
507 {
508 	int ret;
509 	struct port_info *pi = netdev_priv(dev);
510 	unsigned int mb = pi->adapter->pf;
511 
512 	/*
513 	 * We do not set address filters and promiscuity here, the stack does
514 	 * that step explicitly.
515 	 */
516 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
517 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
518 	if (ret == 0)
519 		ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
520 					    dev->dev_addr, true, &pi->smt_idx);
521 	if (ret == 0)
522 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
523 				    &pi->link_cfg);
524 	if (ret == 0) {
525 		local_bh_disable();
526 		ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
527 					  true, CXGB4_DCB_ENABLED);
528 		local_bh_enable();
529 	}
530 
531 	return ret;
532 }
533 
534 #ifdef CONFIG_CHELSIO_T4_DCB
535 /* Handle a Data Center Bridging update message from the firmware. */
536 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
537 {
538 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
539 	struct net_device *dev = adap->port[adap->chan_map[port]];
540 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
541 	int new_dcb_enabled;
542 
543 	cxgb4_dcb_handle_fw_update(adap, pcmd);
544 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
545 
546 	/* If the DCB has become enabled or disabled on the port then we're
547 	 * going to need to set up/tear down DCB Priority parameters for the
548 	 * TX Queues associated with the port.
549 	 */
550 	if (new_dcb_enabled != old_dcb_enabled)
551 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
552 }
553 #endif /* CONFIG_CHELSIO_T4_DCB */
554 
555 /* Response queue handler for the FW event queue.
556  */
557 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
558 			  const struct pkt_gl *gl)
559 {
560 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
561 
562 	rsp++;                                          /* skip RSS header */
563 
564 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
565 	 */
566 	if (unlikely(opcode == CPL_FW4_MSG &&
567 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
568 		rsp++;
569 		opcode = ((const struct rss_header *)rsp)->opcode;
570 		rsp++;
571 		if (opcode != CPL_SGE_EGR_UPDATE) {
572 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
573 				, opcode);
574 			goto out;
575 		}
576 	}
577 
578 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
579 		const struct cpl_sge_egr_update *p = (void *)rsp;
580 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
581 		struct sge_txq *txq;
582 
583 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
584 		txq->restarts++;
585 		if (txq->q_type == CXGB4_TXQ_ETH) {
586 			struct sge_eth_txq *eq;
587 
588 			eq = container_of(txq, struct sge_eth_txq, q);
589 			t4_sge_eth_txq_egress_update(q->adap, eq, -1);
590 		} else {
591 			struct sge_uld_txq *oq;
592 
593 			oq = container_of(txq, struct sge_uld_txq, q);
594 			tasklet_schedule(&oq->qresume_tsk);
595 		}
596 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
597 		const struct cpl_fw6_msg *p = (void *)rsp;
598 
599 #ifdef CONFIG_CHELSIO_T4_DCB
600 		const struct fw_port_cmd *pcmd = (const void *)p->data;
601 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
602 		unsigned int action =
603 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
604 
605 		if (cmd == FW_PORT_CMD &&
606 		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
607 		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
608 			int port = FW_PORT_CMD_PORTID_G(
609 					be32_to_cpu(pcmd->op_to_portid));
610 			struct net_device *dev;
611 			int dcbxdis, state_input;
612 
613 			dev = q->adap->port[q->adap->chan_map[port]];
614 			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
615 			  ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
616 			  : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
617 			       & FW_PORT_CMD_DCBXDIS32_F));
618 			state_input = (dcbxdis
619 				       ? CXGB4_DCB_INPUT_FW_DISABLED
620 				       : CXGB4_DCB_INPUT_FW_ENABLED);
621 
622 			cxgb4_dcb_state_fsm(dev, state_input);
623 		}
624 
625 		if (cmd == FW_PORT_CMD &&
626 		    action == FW_PORT_ACTION_L2_DCB_CFG)
627 			dcb_rpl(q->adap, pcmd);
628 		else
629 #endif
630 			if (p->type == 0)
631 				t4_handle_fw_rpl(q->adap, p->data);
632 	} else if (opcode == CPL_L2T_WRITE_RPL) {
633 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
634 
635 		do_l2t_write_rpl(q->adap, p);
636 	} else if (opcode == CPL_SMT_WRITE_RPL) {
637 		const struct cpl_smt_write_rpl *p = (void *)rsp;
638 
639 		do_smt_write_rpl(q->adap, p);
640 	} else if (opcode == CPL_SET_TCB_RPL) {
641 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
642 
643 		filter_rpl(q->adap, p);
644 	} else if (opcode == CPL_ACT_OPEN_RPL) {
645 		const struct cpl_act_open_rpl *p = (void *)rsp;
646 
647 		hash_filter_rpl(q->adap, p);
648 	} else if (opcode == CPL_ABORT_RPL_RSS) {
649 		const struct cpl_abort_rpl_rss *p = (void *)rsp;
650 
651 		hash_del_filter_rpl(q->adap, p);
652 	} else if (opcode == CPL_SRQ_TABLE_RPL) {
653 		const struct cpl_srq_table_rpl *p = (void *)rsp;
654 
655 		do_srq_table_rpl(q->adap, p);
656 	} else
657 		dev_err(q->adap->pdev_dev,
658 			"unexpected CPL %#x on FW event queue\n", opcode);
659 out:
660 	return 0;
661 }
662 
663 static void disable_msi(struct adapter *adapter)
664 {
665 	if (adapter->flags & CXGB4_USING_MSIX) {
666 		pci_disable_msix(adapter->pdev);
667 		adapter->flags &= ~CXGB4_USING_MSIX;
668 	} else if (adapter->flags & CXGB4_USING_MSI) {
669 		pci_disable_msi(adapter->pdev);
670 		adapter->flags &= ~CXGB4_USING_MSI;
671 	}
672 }
673 
674 /*
675  * Interrupt handler for non-data events used with MSI-X.
676  */
677 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
678 {
679 	struct adapter *adap = cookie;
680 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
681 
682 	if (v & PFSW_F) {
683 		adap->swintr = 1;
684 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
685 	}
686 	if (adap->flags & CXGB4_MASTER_PF)
687 		t4_slow_intr_handler(adap);
688 	return IRQ_HANDLED;
689 }
690 
691 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
692 		       cpumask_var_t *aff_mask, int idx)
693 {
694 	int rv;
695 
696 	if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
697 		dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
698 		return -ENOMEM;
699 	}
700 
701 	cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
702 			*aff_mask);
703 
704 	rv = irq_set_affinity_hint(vec, *aff_mask);
705 	if (rv)
706 		dev_warn(adap->pdev_dev,
707 			 "irq_set_affinity_hint %u failed %d\n",
708 			 vec, rv);
709 
710 	return 0;
711 }
712 
713 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
714 {
715 	irq_set_affinity_hint(vec, NULL);
716 	free_cpumask_var(aff_mask);
717 }
718 
719 static int request_msix_queue_irqs(struct adapter *adap)
720 {
721 	struct sge *s = &adap->sge;
722 	struct msix_info *minfo;
723 	int err, ethqidx;
724 
725 	if (s->fwevtq_msix_idx < 0)
726 		return -ENOMEM;
727 
728 	err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
729 			  t4_sge_intr_msix, 0,
730 			  adap->msix_info[s->fwevtq_msix_idx].desc,
731 			  &s->fw_evtq);
732 	if (err)
733 		return err;
734 
735 	for_each_ethrxq(s, ethqidx) {
736 		minfo = s->ethrxq[ethqidx].msix;
737 		err = request_irq(minfo->vec,
738 				  t4_sge_intr_msix, 0,
739 				  minfo->desc,
740 				  &s->ethrxq[ethqidx].rspq);
741 		if (err)
742 			goto unwind;
743 
744 		cxgb4_set_msix_aff(adap, minfo->vec,
745 				   &minfo->aff_mask, ethqidx);
746 	}
747 	return 0;
748 
749 unwind:
750 	while (--ethqidx >= 0) {
751 		minfo = s->ethrxq[ethqidx].msix;
752 		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
753 		free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
754 	}
755 	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
756 	return err;
757 }
758 
759 static void free_msix_queue_irqs(struct adapter *adap)
760 {
761 	struct sge *s = &adap->sge;
762 	struct msix_info *minfo;
763 	int i;
764 
765 	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
766 	for_each_ethrxq(s, i) {
767 		minfo = s->ethrxq[i].msix;
768 		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
769 		free_irq(minfo->vec, &s->ethrxq[i].rspq);
770 	}
771 }
772 
773 static int setup_ppod_edram(struct adapter *adap)
774 {
775 	unsigned int param, val;
776 	int ret;
777 
778 	/* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
779 	 * if firmware supports ppod edram feature or not. If firmware
780 	 * returns 1, then driver can enable this feature by sending
781 	 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
782 	 * enable ppod edram feature.
783 	 */
784 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
785 		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
786 
787 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
788 	if (ret < 0) {
789 		dev_warn(adap->pdev_dev,
790 			 "querying PPOD_EDRAM support failed: %d\n",
791 			 ret);
792 		return -1;
793 	}
794 
795 	if (val != 1)
796 		return -1;
797 
798 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
799 	if (ret < 0) {
800 		dev_err(adap->pdev_dev,
801 			"setting PPOD_EDRAM failed: %d\n", ret);
802 		return -1;
803 	}
804 	return 0;
805 }
806 
807 static void adap_config_hpfilter(struct adapter *adapter)
808 {
809 	u32 param, val = 0;
810 	int ret;
811 
812 	/* Enable HP filter region. Older fw will fail this request and
813 	 * it is fine.
814 	 */
815 	param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
816 	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
817 			    1, &param, &val);
818 
819 	/* An error means FW doesn't know about HP filter support,
820 	 * it's not a problem, don't return an error.
821 	 */
822 	if (ret < 0)
823 		dev_err(adapter->pdev_dev,
824 			"HP filter region isn't supported by FW\n");
825 }
826 
827 /**
828  *	cxgb4_write_rss - write the RSS table for a given port
829  *	@pi: the port
830  *	@queues: array of queue indices for RSS
831  *
832  *	Sets up the portion of the HW RSS table for the port's VI to distribute
833  *	packets to the Rx queues in @queues.
834  *	Should never be called before setting up sge eth rx queues
835  */
836 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
837 {
838 	u16 *rss;
839 	int i, err;
840 	struct adapter *adapter = pi->adapter;
841 	const struct sge_eth_rxq *rxq;
842 
843 	rxq = &adapter->sge.ethrxq[pi->first_qset];
844 	rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
845 	if (!rss)
846 		return -ENOMEM;
847 
848 	/* map the queue indices to queue ids */
849 	for (i = 0; i < pi->rss_size; i++, queues++)
850 		rss[i] = rxq[*queues].rspq.abs_id;
851 
852 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
853 				  pi->rss_size, rss, pi->rss_size);
854 	/* If Tunnel All Lookup isn't specified in the global RSS
855 	 * Configuration, then we need to specify a default Ingress
856 	 * Queue for any ingress packets which aren't hashed.  We'll
857 	 * use our first ingress queue ...
858 	 */
859 	if (!err)
860 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
861 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
862 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
863 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
864 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
865 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
866 				       rss[0]);
867 	kfree(rss);
868 	return err;
869 }
870 
871 /**
872  *	setup_rss - configure RSS
873  *	@adap: the adapter
874  *
875  *	Sets up RSS for each port.
876  */
877 static int setup_rss(struct adapter *adap)
878 {
879 	int i, j, err;
880 
881 	for_each_port(adap, i) {
882 		const struct port_info *pi = adap2pinfo(adap, i);
883 
884 		/* Fill default values with equal distribution */
885 		for (j = 0; j < pi->rss_size; j++)
886 			pi->rss[j] = j % pi->nqsets;
887 
888 		err = cxgb4_write_rss(pi, pi->rss);
889 		if (err)
890 			return err;
891 	}
892 	return 0;
893 }
894 
895 /*
896  * Return the channel of the ingress queue with the given qid.
897  */
898 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
899 {
900 	qid -= p->ingr_start;
901 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
902 }
903 
904 void cxgb4_quiesce_rx(struct sge_rspq *q)
905 {
906 	if (q->handler)
907 		napi_disable(&q->napi);
908 }
909 
910 /*
911  * Wait until all NAPI handlers are descheduled.
912  */
913 static void quiesce_rx(struct adapter *adap)
914 {
915 	int i;
916 
917 	for (i = 0; i < adap->sge.ingr_sz; i++) {
918 		struct sge_rspq *q = adap->sge.ingr_map[i];
919 
920 		if (!q)
921 			continue;
922 
923 		cxgb4_quiesce_rx(q);
924 	}
925 }
926 
927 /* Disable interrupt and napi handler */
928 static void disable_interrupts(struct adapter *adap)
929 {
930 	struct sge *s = &adap->sge;
931 
932 	if (adap->flags & CXGB4_FULL_INIT_DONE) {
933 		t4_intr_disable(adap);
934 		if (adap->flags & CXGB4_USING_MSIX) {
935 			free_msix_queue_irqs(adap);
936 			free_irq(adap->msix_info[s->nd_msix_idx].vec,
937 				 adap);
938 		} else {
939 			free_irq(adap->pdev->irq, adap);
940 		}
941 		quiesce_rx(adap);
942 	}
943 }
944 
945 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
946 {
947 	if (q->handler)
948 		napi_enable(&q->napi);
949 
950 	/* 0-increment GTS to start the timer and enable interrupts */
951 	t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
952 		     SEINTARM_V(q->intr_params) |
953 		     INGRESSQID_V(q->cntxt_id));
954 }
955 
956 /*
957  * Enable NAPI scheduling and interrupt generation for all Rx queues.
958  */
959 static void enable_rx(struct adapter *adap)
960 {
961 	int i;
962 
963 	for (i = 0; i < adap->sge.ingr_sz; i++) {
964 		struct sge_rspq *q = adap->sge.ingr_map[i];
965 
966 		if (!q)
967 			continue;
968 
969 		cxgb4_enable_rx(adap, q);
970 	}
971 }
972 
973 static int setup_non_data_intr(struct adapter *adap)
974 {
975 	int msix;
976 
977 	adap->sge.nd_msix_idx = -1;
978 	if (!(adap->flags & CXGB4_USING_MSIX))
979 		return 0;
980 
981 	/* Request MSI-X vector for non-data interrupt */
982 	msix = cxgb4_get_msix_idx_from_bmap(adap);
983 	if (msix < 0)
984 		return -ENOMEM;
985 
986 	snprintf(adap->msix_info[msix].desc,
987 		 sizeof(adap->msix_info[msix].desc),
988 		 "%s", adap->port[0]->name);
989 
990 	adap->sge.nd_msix_idx = msix;
991 	return 0;
992 }
993 
994 static int setup_fw_sge_queues(struct adapter *adap)
995 {
996 	struct sge *s = &adap->sge;
997 	int msix, err = 0;
998 
999 	bitmap_zero(s->starving_fl, s->egr_sz);
1000 	bitmap_zero(s->txq_maperr, s->egr_sz);
1001 
1002 	if (adap->flags & CXGB4_USING_MSIX) {
1003 		s->fwevtq_msix_idx = -1;
1004 		msix = cxgb4_get_msix_idx_from_bmap(adap);
1005 		if (msix < 0)
1006 			return -ENOMEM;
1007 
1008 		snprintf(adap->msix_info[msix].desc,
1009 			 sizeof(adap->msix_info[msix].desc),
1010 			 "%s-FWeventq", adap->port[0]->name);
1011 	} else {
1012 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1013 				       NULL, NULL, NULL, -1);
1014 		if (err)
1015 			return err;
1016 		msix = -((int)s->intrq.abs_id + 1);
1017 	}
1018 
1019 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1020 			       msix, NULL, fwevtq_handler, NULL, -1);
1021 	if (err && msix >= 0)
1022 		cxgb4_free_msix_idx_in_bmap(adap, msix);
1023 
1024 	s->fwevtq_msix_idx = msix;
1025 	return err;
1026 }
1027 
1028 /**
1029  *	setup_sge_queues - configure SGE Tx/Rx/response queues
1030  *	@adap: the adapter
1031  *
1032  *	Determines how many sets of SGE queues to use and initializes them.
1033  *	We support multiple queue sets per port if we have MSI-X, otherwise
1034  *	just one queue set per port.
1035  */
1036 static int setup_sge_queues(struct adapter *adap)
1037 {
1038 	struct sge_uld_rxq_info *rxq_info = NULL;
1039 	struct sge *s = &adap->sge;
1040 	unsigned int cmplqid = 0;
1041 	int err, i, j, msix = 0;
1042 
1043 	if (is_uld(adap))
1044 		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1045 
1046 	if (!(adap->flags & CXGB4_USING_MSIX))
1047 		msix = -((int)s->intrq.abs_id + 1);
1048 
1049 	for_each_port(adap, i) {
1050 		struct net_device *dev = adap->port[i];
1051 		struct port_info *pi = netdev_priv(dev);
1052 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1053 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1054 
1055 		for (j = 0; j < pi->nqsets; j++, q++) {
1056 			if (msix >= 0) {
1057 				msix = cxgb4_get_msix_idx_from_bmap(adap);
1058 				if (msix < 0) {
1059 					err = msix;
1060 					goto freeout;
1061 				}
1062 
1063 				snprintf(adap->msix_info[msix].desc,
1064 					 sizeof(adap->msix_info[msix].desc),
1065 					 "%s-Rx%d", dev->name, j);
1066 				q->msix = &adap->msix_info[msix];
1067 			}
1068 
1069 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1070 					       msix, &q->fl,
1071 					       t4_ethrx_handler,
1072 					       NULL,
1073 					       t4_get_tp_ch_map(adap,
1074 								pi->tx_chan));
1075 			if (err)
1076 				goto freeout;
1077 			q->rspq.idx = j;
1078 			memset(&q->stats, 0, sizeof(q->stats));
1079 		}
1080 
1081 		q = &s->ethrxq[pi->first_qset];
1082 		for (j = 0; j < pi->nqsets; j++, t++, q++) {
1083 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1084 					netdev_get_tx_queue(dev, j),
1085 					q->rspq.cntxt_id,
1086 					!!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1087 			if (err)
1088 				goto freeout;
1089 		}
1090 	}
1091 
1092 	for_each_port(adap, i) {
1093 		/* Note that cmplqid below is 0 if we don't
1094 		 * have RDMA queues, and that's the right value.
1095 		 */
1096 		if (rxq_info)
1097 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
1098 
1099 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1100 					    s->fw_evtq.cntxt_id, cmplqid);
1101 		if (err)
1102 			goto freeout;
1103 	}
1104 
1105 	if (!is_t4(adap->params.chip)) {
1106 		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1107 					   netdev_get_tx_queue(adap->port[0], 0)
1108 					   , s->fw_evtq.cntxt_id, false);
1109 		if (err)
1110 			goto freeout;
1111 	}
1112 
1113 	t4_write_reg(adap, is_t4(adap->params.chip) ?
1114 				MPS_TRC_RSS_CONTROL_A :
1115 				MPS_T5_TRC_RSS_CONTROL_A,
1116 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1117 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1118 	return 0;
1119 freeout:
1120 	dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1121 	t4_free_sge_resources(adap);
1122 	return err;
1123 }
1124 
1125 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1126 			     struct net_device *sb_dev)
1127 {
1128 	int txq;
1129 
1130 #ifdef CONFIG_CHELSIO_T4_DCB
1131 	/* If a Data Center Bridging has been successfully negotiated on this
1132 	 * link then we'll use the skb's priority to map it to a TX Queue.
1133 	 * The skb's priority is determined via the VLAN Tag Priority Code
1134 	 * Point field.
1135 	 */
1136 	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1137 		u16 vlan_tci;
1138 		int err;
1139 
1140 		err = vlan_get_tag(skb, &vlan_tci);
1141 		if (unlikely(err)) {
1142 			if (net_ratelimit())
1143 				netdev_warn(dev,
1144 					    "TX Packet without VLAN Tag on DCB Link\n");
1145 			txq = 0;
1146 		} else {
1147 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1148 #ifdef CONFIG_CHELSIO_T4_FCOE
1149 			if (skb->protocol == htons(ETH_P_FCOE))
1150 				txq = skb->priority & 0x7;
1151 #endif /* CONFIG_CHELSIO_T4_FCOE */
1152 		}
1153 		return txq;
1154 	}
1155 #endif /* CONFIG_CHELSIO_T4_DCB */
1156 
1157 	if (dev->num_tc) {
1158 		struct port_info *pi = netdev2pinfo(dev);
1159 		u8 ver, proto;
1160 
1161 		ver = ip_hdr(skb)->version;
1162 		proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1163 				     ip_hdr(skb)->protocol;
1164 
1165 		/* Send unsupported traffic pattern to normal NIC queues. */
1166 		txq = netdev_pick_tx(dev, skb, sb_dev);
1167 		if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1168 		    skb->encapsulation ||
1169 		    (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1170 			txq = txq % pi->nqsets;
1171 
1172 		return txq;
1173 	}
1174 
1175 	if (select_queue) {
1176 		txq = (skb_rx_queue_recorded(skb)
1177 			? skb_get_rx_queue(skb)
1178 			: smp_processor_id());
1179 
1180 		while (unlikely(txq >= dev->real_num_tx_queues))
1181 			txq -= dev->real_num_tx_queues;
1182 
1183 		return txq;
1184 	}
1185 
1186 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1187 }
1188 
1189 static int closest_timer(const struct sge *s, int time)
1190 {
1191 	int i, delta, match = 0, min_delta = INT_MAX;
1192 
1193 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1194 		delta = time - s->timer_val[i];
1195 		if (delta < 0)
1196 			delta = -delta;
1197 		if (delta < min_delta) {
1198 			min_delta = delta;
1199 			match = i;
1200 		}
1201 	}
1202 	return match;
1203 }
1204 
1205 static int closest_thres(const struct sge *s, int thres)
1206 {
1207 	int i, delta, match = 0, min_delta = INT_MAX;
1208 
1209 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1210 		delta = thres - s->counter_val[i];
1211 		if (delta < 0)
1212 			delta = -delta;
1213 		if (delta < min_delta) {
1214 			min_delta = delta;
1215 			match = i;
1216 		}
1217 	}
1218 	return match;
1219 }
1220 
1221 /**
1222  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1223  *	@q: the Rx queue
1224  *	@us: the hold-off time in us, or 0 to disable timer
1225  *	@cnt: the hold-off packet count, or 0 to disable counter
1226  *
1227  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1228  *	one of the two needs to be enabled for the queue to generate interrupts.
1229  */
1230 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1231 			       unsigned int us, unsigned int cnt)
1232 {
1233 	struct adapter *adap = q->adap;
1234 
1235 	if ((us | cnt) == 0)
1236 		cnt = 1;
1237 
1238 	if (cnt) {
1239 		int err;
1240 		u32 v, new_idx;
1241 
1242 		new_idx = closest_thres(&adap->sge, cnt);
1243 		if (q->desc && q->pktcnt_idx != new_idx) {
1244 			/* the queue has already been created, update it */
1245 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1246 			    FW_PARAMS_PARAM_X_V(
1247 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1248 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1249 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1250 					    &v, &new_idx);
1251 			if (err)
1252 				return err;
1253 		}
1254 		q->pktcnt_idx = new_idx;
1255 	}
1256 
1257 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1258 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1259 	return 0;
1260 }
1261 
1262 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1263 {
1264 	const struct port_info *pi = netdev_priv(dev);
1265 	netdev_features_t changed = dev->features ^ features;
1266 	int err;
1267 
1268 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1269 		return 0;
1270 
1271 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1272 			    -1, -1, -1,
1273 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1274 	if (unlikely(err))
1275 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1276 	return err;
1277 }
1278 
1279 static int setup_debugfs(struct adapter *adap)
1280 {
1281 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1282 		return -1;
1283 
1284 #ifdef CONFIG_DEBUG_FS
1285 	t4_setup_debugfs(adap);
1286 #endif
1287 	return 0;
1288 }
1289 
1290 /*
1291  * upper-layer driver support
1292  */
1293 
1294 /*
1295  * Allocate an active-open TID and set it to the supplied value.
1296  */
1297 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1298 {
1299 	int atid = -1;
1300 
1301 	spin_lock_bh(&t->atid_lock);
1302 	if (t->afree) {
1303 		union aopen_entry *p = t->afree;
1304 
1305 		atid = (p - t->atid_tab) + t->atid_base;
1306 		t->afree = p->next;
1307 		p->data = data;
1308 		t->atids_in_use++;
1309 	}
1310 	spin_unlock_bh(&t->atid_lock);
1311 	return atid;
1312 }
1313 EXPORT_SYMBOL(cxgb4_alloc_atid);
1314 
1315 /*
1316  * Release an active-open TID.
1317  */
1318 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1319 {
1320 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1321 
1322 	spin_lock_bh(&t->atid_lock);
1323 	p->next = t->afree;
1324 	t->afree = p;
1325 	t->atids_in_use--;
1326 	spin_unlock_bh(&t->atid_lock);
1327 }
1328 EXPORT_SYMBOL(cxgb4_free_atid);
1329 
1330 /*
1331  * Allocate a server TID and set it to the supplied value.
1332  */
1333 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1334 {
1335 	int stid;
1336 
1337 	spin_lock_bh(&t->stid_lock);
1338 	if (family == PF_INET) {
1339 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1340 		if (stid < t->nstids)
1341 			__set_bit(stid, t->stid_bmap);
1342 		else
1343 			stid = -1;
1344 	} else {
1345 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1346 		if (stid < 0)
1347 			stid = -1;
1348 	}
1349 	if (stid >= 0) {
1350 		t->stid_tab[stid].data = data;
1351 		stid += t->stid_base;
1352 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1353 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1354 		 * needs 2 TIDs.
1355 		 */
1356 		if (family == PF_INET6) {
1357 			t->stids_in_use += 2;
1358 			t->v6_stids_in_use += 2;
1359 		} else {
1360 			t->stids_in_use++;
1361 		}
1362 	}
1363 	spin_unlock_bh(&t->stid_lock);
1364 	return stid;
1365 }
1366 EXPORT_SYMBOL(cxgb4_alloc_stid);
1367 
1368 /* Allocate a server filter TID and set it to the supplied value.
1369  */
1370 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1371 {
1372 	int stid;
1373 
1374 	spin_lock_bh(&t->stid_lock);
1375 	if (family == PF_INET) {
1376 		stid = find_next_zero_bit(t->stid_bmap,
1377 				t->nstids + t->nsftids, t->nstids);
1378 		if (stid < (t->nstids + t->nsftids))
1379 			__set_bit(stid, t->stid_bmap);
1380 		else
1381 			stid = -1;
1382 	} else {
1383 		stid = -1;
1384 	}
1385 	if (stid >= 0) {
1386 		t->stid_tab[stid].data = data;
1387 		stid -= t->nstids;
1388 		stid += t->sftid_base;
1389 		t->sftids_in_use++;
1390 	}
1391 	spin_unlock_bh(&t->stid_lock);
1392 	return stid;
1393 }
1394 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1395 
1396 /* Release a server TID.
1397  */
1398 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1399 {
1400 	/* Is it a server filter TID? */
1401 	if (t->nsftids && (stid >= t->sftid_base)) {
1402 		stid -= t->sftid_base;
1403 		stid += t->nstids;
1404 	} else {
1405 		stid -= t->stid_base;
1406 	}
1407 
1408 	spin_lock_bh(&t->stid_lock);
1409 	if (family == PF_INET)
1410 		__clear_bit(stid, t->stid_bmap);
1411 	else
1412 		bitmap_release_region(t->stid_bmap, stid, 1);
1413 	t->stid_tab[stid].data = NULL;
1414 	if (stid < t->nstids) {
1415 		if (family == PF_INET6) {
1416 			t->stids_in_use -= 2;
1417 			t->v6_stids_in_use -= 2;
1418 		} else {
1419 			t->stids_in_use--;
1420 		}
1421 	} else {
1422 		t->sftids_in_use--;
1423 	}
1424 
1425 	spin_unlock_bh(&t->stid_lock);
1426 }
1427 EXPORT_SYMBOL(cxgb4_free_stid);
1428 
1429 /*
1430  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1431  */
1432 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1433 			   unsigned int tid)
1434 {
1435 	struct cpl_tid_release *req;
1436 
1437 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1438 	req = __skb_put(skb, sizeof(*req));
1439 	INIT_TP_WR(req, tid);
1440 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1441 }
1442 
1443 /*
1444  * Queue a TID release request and if necessary schedule a work queue to
1445  * process it.
1446  */
1447 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1448 				    unsigned int tid)
1449 {
1450 	struct adapter *adap = container_of(t, struct adapter, tids);
1451 	void **p = &t->tid_tab[tid - t->tid_base];
1452 
1453 	spin_lock_bh(&adap->tid_release_lock);
1454 	*p = adap->tid_release_head;
1455 	/* Low 2 bits encode the Tx channel number */
1456 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1457 	if (!adap->tid_release_task_busy) {
1458 		adap->tid_release_task_busy = true;
1459 		queue_work(adap->workq, &adap->tid_release_task);
1460 	}
1461 	spin_unlock_bh(&adap->tid_release_lock);
1462 }
1463 
1464 /*
1465  * Process the list of pending TID release requests.
1466  */
1467 static void process_tid_release_list(struct work_struct *work)
1468 {
1469 	struct sk_buff *skb;
1470 	struct adapter *adap;
1471 
1472 	adap = container_of(work, struct adapter, tid_release_task);
1473 
1474 	spin_lock_bh(&adap->tid_release_lock);
1475 	while (adap->tid_release_head) {
1476 		void **p = adap->tid_release_head;
1477 		unsigned int chan = (uintptr_t)p & 3;
1478 		p = (void *)p - chan;
1479 
1480 		adap->tid_release_head = *p;
1481 		*p = NULL;
1482 		spin_unlock_bh(&adap->tid_release_lock);
1483 
1484 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1485 					 GFP_KERNEL)))
1486 			schedule_timeout_uninterruptible(1);
1487 
1488 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1489 		t4_ofld_send(adap, skb);
1490 		spin_lock_bh(&adap->tid_release_lock);
1491 	}
1492 	adap->tid_release_task_busy = false;
1493 	spin_unlock_bh(&adap->tid_release_lock);
1494 }
1495 
1496 /*
1497  * Release a TID and inform HW.  If we are unable to allocate the release
1498  * message we defer to a work queue.
1499  */
1500 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1501 		      unsigned short family)
1502 {
1503 	struct adapter *adap = container_of(t, struct adapter, tids);
1504 	struct sk_buff *skb;
1505 
1506 	WARN_ON(tid_out_of_range(&adap->tids, tid));
1507 
1508 	if (t->tid_tab[tid - adap->tids.tid_base]) {
1509 		t->tid_tab[tid - adap->tids.tid_base] = NULL;
1510 		atomic_dec(&t->conns_in_use);
1511 		if (t->hash_base && (tid >= t->hash_base)) {
1512 			if (family == AF_INET6)
1513 				atomic_sub(2, &t->hash_tids_in_use);
1514 			else
1515 				atomic_dec(&t->hash_tids_in_use);
1516 		} else {
1517 			if (family == AF_INET6)
1518 				atomic_sub(2, &t->tids_in_use);
1519 			else
1520 				atomic_dec(&t->tids_in_use);
1521 		}
1522 	}
1523 
1524 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1525 	if (likely(skb)) {
1526 		mk_tid_release(skb, chan, tid);
1527 		t4_ofld_send(adap, skb);
1528 	} else
1529 		cxgb4_queue_tid_release(t, chan, tid);
1530 }
1531 EXPORT_SYMBOL(cxgb4_remove_tid);
1532 
1533 /*
1534  * Allocate and initialize the TID tables.  Returns 0 on success.
1535  */
1536 static int tid_init(struct tid_info *t)
1537 {
1538 	struct adapter *adap = container_of(t, struct adapter, tids);
1539 	unsigned int max_ftids = t->nftids + t->nsftids;
1540 	unsigned int natids = t->natids;
1541 	unsigned int hpftid_bmap_size;
1542 	unsigned int eotid_bmap_size;
1543 	unsigned int stid_bmap_size;
1544 	unsigned int ftid_bmap_size;
1545 	size_t size;
1546 
1547 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1548 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1549 	hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1550 	eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1551 	size = t->ntids * sizeof(*t->tid_tab) +
1552 	       natids * sizeof(*t->atid_tab) +
1553 	       t->nstids * sizeof(*t->stid_tab) +
1554 	       t->nsftids * sizeof(*t->stid_tab) +
1555 	       stid_bmap_size * sizeof(long) +
1556 	       t->nhpftids * sizeof(*t->hpftid_tab) +
1557 	       hpftid_bmap_size * sizeof(long) +
1558 	       max_ftids * sizeof(*t->ftid_tab) +
1559 	       ftid_bmap_size * sizeof(long) +
1560 	       t->neotids * sizeof(*t->eotid_tab) +
1561 	       eotid_bmap_size * sizeof(long);
1562 
1563 	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1564 	if (!t->tid_tab)
1565 		return -ENOMEM;
1566 
1567 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1568 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1569 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1570 	t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1571 	t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1572 	t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1573 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1574 	t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1575 	t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1576 	spin_lock_init(&t->stid_lock);
1577 	spin_lock_init(&t->atid_lock);
1578 	spin_lock_init(&t->ftid_lock);
1579 
1580 	t->stids_in_use = 0;
1581 	t->v6_stids_in_use = 0;
1582 	t->sftids_in_use = 0;
1583 	t->afree = NULL;
1584 	t->atids_in_use = 0;
1585 	atomic_set(&t->tids_in_use, 0);
1586 	atomic_set(&t->conns_in_use, 0);
1587 	atomic_set(&t->hash_tids_in_use, 0);
1588 
1589 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1590 	if (natids) {
1591 		while (--natids)
1592 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1593 		t->afree = t->atid_tab;
1594 	}
1595 
1596 	if (is_offload(adap)) {
1597 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1598 		/* Reserve stid 0 for T4/T5 adapters */
1599 		if (!t->stid_base &&
1600 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1601 			__set_bit(0, t->stid_bmap);
1602 
1603 		if (t->neotids)
1604 			bitmap_zero(t->eotid_bmap, t->neotids);
1605 	}
1606 
1607 	if (t->nhpftids)
1608 		bitmap_zero(t->hpftid_bmap, t->nhpftids);
1609 	bitmap_zero(t->ftid_bmap, t->nftids);
1610 	return 0;
1611 }
1612 
1613 /**
1614  *	cxgb4_create_server - create an IP server
1615  *	@dev: the device
1616  *	@stid: the server TID
1617  *	@sip: local IP address to bind server to
1618  *	@sport: the server's TCP port
1619  *	@queue: queue to direct messages from this server to
1620  *
1621  *	Create an IP server for the given port and address.
1622  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1623  */
1624 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1625 			__be32 sip, __be16 sport, __be16 vlan,
1626 			unsigned int queue)
1627 {
1628 	unsigned int chan;
1629 	struct sk_buff *skb;
1630 	struct adapter *adap;
1631 	struct cpl_pass_open_req *req;
1632 	int ret;
1633 
1634 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1635 	if (!skb)
1636 		return -ENOMEM;
1637 
1638 	adap = netdev2adap(dev);
1639 	req = __skb_put(skb, sizeof(*req));
1640 	INIT_TP_WR(req, 0);
1641 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1642 	req->local_port = sport;
1643 	req->peer_port = htons(0);
1644 	req->local_ip = sip;
1645 	req->peer_ip = htonl(0);
1646 	chan = rxq_to_chan(&adap->sge, queue);
1647 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1648 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1649 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1650 	ret = t4_mgmt_tx(adap, skb);
1651 	return net_xmit_eval(ret);
1652 }
1653 EXPORT_SYMBOL(cxgb4_create_server);
1654 
1655 /*	cxgb4_create_server6 - create an IPv6 server
1656  *	@dev: the device
1657  *	@stid: the server TID
1658  *	@sip: local IPv6 address to bind server to
1659  *	@sport: the server's TCP port
1660  *	@queue: queue to direct messages from this server to
1661  *
1662  *	Create an IPv6 server for the given port and address.
1663  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1664  */
1665 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1666 			 const struct in6_addr *sip, __be16 sport,
1667 			 unsigned int queue)
1668 {
1669 	unsigned int chan;
1670 	struct sk_buff *skb;
1671 	struct adapter *adap;
1672 	struct cpl_pass_open_req6 *req;
1673 	int ret;
1674 
1675 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1676 	if (!skb)
1677 		return -ENOMEM;
1678 
1679 	adap = netdev2adap(dev);
1680 	req = __skb_put(skb, sizeof(*req));
1681 	INIT_TP_WR(req, 0);
1682 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1683 	req->local_port = sport;
1684 	req->peer_port = htons(0);
1685 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1686 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1687 	req->peer_ip_hi = cpu_to_be64(0);
1688 	req->peer_ip_lo = cpu_to_be64(0);
1689 	chan = rxq_to_chan(&adap->sge, queue);
1690 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1691 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1692 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1693 	ret = t4_mgmt_tx(adap, skb);
1694 	return net_xmit_eval(ret);
1695 }
1696 EXPORT_SYMBOL(cxgb4_create_server6);
1697 
1698 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1699 			unsigned int queue, bool ipv6)
1700 {
1701 	struct sk_buff *skb;
1702 	struct adapter *adap;
1703 	struct cpl_close_listsvr_req *req;
1704 	int ret;
1705 
1706 	adap = netdev2adap(dev);
1707 
1708 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1709 	if (!skb)
1710 		return -ENOMEM;
1711 
1712 	req = __skb_put(skb, sizeof(*req));
1713 	INIT_TP_WR(req, 0);
1714 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1715 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1716 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1717 	ret = t4_mgmt_tx(adap, skb);
1718 	return net_xmit_eval(ret);
1719 }
1720 EXPORT_SYMBOL(cxgb4_remove_server);
1721 
1722 /**
1723  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1724  *	@mtus: the HW MTU table
1725  *	@mtu: the target MTU
1726  *	@idx: index of selected entry in the MTU table
1727  *
1728  *	Returns the index and the value in the HW MTU table that is closest to
1729  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1730  *	table, in which case that smallest available value is selected.
1731  */
1732 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1733 			    unsigned int *idx)
1734 {
1735 	unsigned int i = 0;
1736 
1737 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1738 		++i;
1739 	if (idx)
1740 		*idx = i;
1741 	return mtus[i];
1742 }
1743 EXPORT_SYMBOL(cxgb4_best_mtu);
1744 
1745 /**
1746  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1747  *     @mtus: the HW MTU table
1748  *     @header_size: Header Size
1749  *     @data_size_max: maximum Data Segment Size
1750  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1751  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1752  *
1753  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1754  *     MTU Table based solely on a Maximum MTU parameter, we break that
1755  *     parameter up into a Header Size and Maximum Data Segment Size, and
1756  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1757  *     the Hardware MTU Table which will result in a Data Segment Size with
1758  *     the requested alignment _and_ that MTU isn't "too far" from the
1759  *     closest MTU, then we'll return that rather than the closest MTU.
1760  */
1761 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1762 				    unsigned short header_size,
1763 				    unsigned short data_size_max,
1764 				    unsigned short data_size_align,
1765 				    unsigned int *mtu_idxp)
1766 {
1767 	unsigned short max_mtu = header_size + data_size_max;
1768 	unsigned short data_size_align_mask = data_size_align - 1;
1769 	int mtu_idx, aligned_mtu_idx;
1770 
1771 	/* Scan the MTU Table till we find an MTU which is larger than our
1772 	 * Maximum MTU or we reach the end of the table.  Along the way,
1773 	 * record the last MTU found, if any, which will result in a Data
1774 	 * Segment Length matching the requested alignment.
1775 	 */
1776 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1777 		unsigned short data_size = mtus[mtu_idx] - header_size;
1778 
1779 		/* If this MTU minus the Header Size would result in a
1780 		 * Data Segment Size of the desired alignment, remember it.
1781 		 */
1782 		if ((data_size & data_size_align_mask) == 0)
1783 			aligned_mtu_idx = mtu_idx;
1784 
1785 		/* If we're not at the end of the Hardware MTU Table and the
1786 		 * next element is larger than our Maximum MTU, drop out of
1787 		 * the loop.
1788 		 */
1789 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1790 			break;
1791 	}
1792 
1793 	/* If we fell out of the loop because we ran to the end of the table,
1794 	 * then we just have to use the last [largest] entry.
1795 	 */
1796 	if (mtu_idx == NMTUS)
1797 		mtu_idx--;
1798 
1799 	/* If we found an MTU which resulted in the requested Data Segment
1800 	 * Length alignment and that's "not far" from the largest MTU which is
1801 	 * less than or equal to the maximum MTU, then use that.
1802 	 */
1803 	if (aligned_mtu_idx >= 0 &&
1804 	    mtu_idx - aligned_mtu_idx <= 1)
1805 		mtu_idx = aligned_mtu_idx;
1806 
1807 	/* If the caller has passed in an MTU Index pointer, pass the
1808 	 * MTU Index back.  Return the MTU value.
1809 	 */
1810 	if (mtu_idxp)
1811 		*mtu_idxp = mtu_idx;
1812 	return mtus[mtu_idx];
1813 }
1814 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1815 
1816 /**
1817  *	cxgb4_port_chan - get the HW channel of a port
1818  *	@dev: the net device for the port
1819  *
1820  *	Return the HW Tx channel of the given port.
1821  */
1822 unsigned int cxgb4_port_chan(const struct net_device *dev)
1823 {
1824 	return netdev2pinfo(dev)->tx_chan;
1825 }
1826 EXPORT_SYMBOL(cxgb4_port_chan);
1827 
1828 /**
1829  *      cxgb4_port_e2cchan - get the HW c-channel of a port
1830  *      @dev: the net device for the port
1831  *
1832  *      Return the HW RX c-channel of the given port.
1833  */
1834 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
1835 {
1836 	return netdev2pinfo(dev)->rx_cchan;
1837 }
1838 EXPORT_SYMBOL(cxgb4_port_e2cchan);
1839 
1840 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1841 {
1842 	struct adapter *adap = netdev2adap(dev);
1843 	u32 v1, v2, lp_count, hp_count;
1844 
1845 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1846 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1847 	if (is_t4(adap->params.chip)) {
1848 		lp_count = LP_COUNT_G(v1);
1849 		hp_count = HP_COUNT_G(v1);
1850 	} else {
1851 		lp_count = LP_COUNT_T5_G(v1);
1852 		hp_count = HP_COUNT_T5_G(v2);
1853 	}
1854 	return lpfifo ? lp_count : hp_count;
1855 }
1856 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1857 
1858 /**
1859  *	cxgb4_port_viid - get the VI id of a port
1860  *	@dev: the net device for the port
1861  *
1862  *	Return the VI id of the given port.
1863  */
1864 unsigned int cxgb4_port_viid(const struct net_device *dev)
1865 {
1866 	return netdev2pinfo(dev)->viid;
1867 }
1868 EXPORT_SYMBOL(cxgb4_port_viid);
1869 
1870 /**
1871  *	cxgb4_port_idx - get the index of a port
1872  *	@dev: the net device for the port
1873  *
1874  *	Return the index of the given port.
1875  */
1876 unsigned int cxgb4_port_idx(const struct net_device *dev)
1877 {
1878 	return netdev2pinfo(dev)->port_id;
1879 }
1880 EXPORT_SYMBOL(cxgb4_port_idx);
1881 
1882 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1883 			 struct tp_tcp_stats *v6)
1884 {
1885 	struct adapter *adap = pci_get_drvdata(pdev);
1886 
1887 	spin_lock(&adap->stats_lock);
1888 	t4_tp_get_tcp_stats(adap, v4, v6, false);
1889 	spin_unlock(&adap->stats_lock);
1890 }
1891 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1892 
1893 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1894 		      const unsigned int *pgsz_order)
1895 {
1896 	struct adapter *adap = netdev2adap(dev);
1897 
1898 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1899 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1900 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1901 		     HPZ3_V(pgsz_order[3]));
1902 }
1903 EXPORT_SYMBOL(cxgb4_iscsi_init);
1904 
1905 int cxgb4_flush_eq_cache(struct net_device *dev)
1906 {
1907 	struct adapter *adap = netdev2adap(dev);
1908 
1909 	return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1910 }
1911 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1912 
1913 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1914 {
1915 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1916 	__be64 indices;
1917 	int ret;
1918 
1919 	spin_lock(&adap->win0_lock);
1920 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1921 			   sizeof(indices), (__be32 *)&indices,
1922 			   T4_MEMORY_READ);
1923 	spin_unlock(&adap->win0_lock);
1924 	if (!ret) {
1925 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1926 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1927 	}
1928 	return ret;
1929 }
1930 
1931 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1932 			u16 size)
1933 {
1934 	struct adapter *adap = netdev2adap(dev);
1935 	u16 hw_pidx, hw_cidx;
1936 	int ret;
1937 
1938 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1939 	if (ret)
1940 		goto out;
1941 
1942 	if (pidx != hw_pidx) {
1943 		u16 delta;
1944 		u32 val;
1945 
1946 		if (pidx >= hw_pidx)
1947 			delta = pidx - hw_pidx;
1948 		else
1949 			delta = size - hw_pidx + pidx;
1950 
1951 		if (is_t4(adap->params.chip))
1952 			val = PIDX_V(delta);
1953 		else
1954 			val = PIDX_T5_V(delta);
1955 		wmb();
1956 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1957 			     QID_V(qid) | val);
1958 	}
1959 out:
1960 	return ret;
1961 }
1962 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1963 
1964 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1965 {
1966 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1967 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1968 	u32 offset, memtype, memaddr;
1969 	struct adapter *adap;
1970 	u32 hma_size = 0;
1971 	int ret;
1972 
1973 	adap = netdev2adap(dev);
1974 
1975 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1976 
1977 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1978 	 * This code assumes that the memory is laid out starting at offset 0
1979 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1980 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1981 	 * MC0, and some have both MC0 and MC1.
1982 	 */
1983 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1984 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1985 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1986 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1987 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1988 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1989 
1990 	if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1991 		size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1992 		hma_size = EXT_MEM1_SIZE_G(size) << 20;
1993 	}
1994 	edc0_end = edc0_size;
1995 	edc1_end = edc0_end + edc1_size;
1996 	mc0_end = edc1_end + mc0_size;
1997 
1998 	if (offset < edc0_end) {
1999 		memtype = MEM_EDC0;
2000 		memaddr = offset;
2001 	} else if (offset < edc1_end) {
2002 		memtype = MEM_EDC1;
2003 		memaddr = offset - edc0_end;
2004 	} else {
2005 		if (hma_size && (offset < (edc1_end + hma_size))) {
2006 			memtype = MEM_HMA;
2007 			memaddr = offset - edc1_end;
2008 		} else if (offset < mc0_end) {
2009 			memtype = MEM_MC0;
2010 			memaddr = offset - edc1_end;
2011 		} else if (is_t5(adap->params.chip)) {
2012 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2013 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2014 			mc1_end = mc0_end + mc1_size;
2015 			if (offset < mc1_end) {
2016 				memtype = MEM_MC1;
2017 				memaddr = offset - mc0_end;
2018 			} else {
2019 				/* offset beyond the end of any memory */
2020 				goto err;
2021 			}
2022 		} else {
2023 			/* T4/T6 only has a single memory channel */
2024 			goto err;
2025 		}
2026 	}
2027 
2028 	spin_lock(&adap->win0_lock);
2029 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2030 	spin_unlock(&adap->win0_lock);
2031 	return ret;
2032 
2033 err:
2034 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2035 		stag, offset);
2036 	return -EINVAL;
2037 }
2038 EXPORT_SYMBOL(cxgb4_read_tpte);
2039 
2040 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2041 {
2042 	u32 hi, lo;
2043 	struct adapter *adap;
2044 
2045 	adap = netdev2adap(dev);
2046 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2047 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2048 
2049 	return ((u64)hi << 32) | (u64)lo;
2050 }
2051 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2052 
2053 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2054 			 unsigned int qid,
2055 			 enum cxgb4_bar2_qtype qtype,
2056 			 int user,
2057 			 u64 *pbar2_qoffset,
2058 			 unsigned int *pbar2_qid)
2059 {
2060 	return t4_bar2_sge_qregs(netdev2adap(dev),
2061 				 qid,
2062 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2063 				  ? T4_BAR2_QTYPE_EGRESS
2064 				  : T4_BAR2_QTYPE_INGRESS),
2065 				 user,
2066 				 pbar2_qoffset,
2067 				 pbar2_qid);
2068 }
2069 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2070 
2071 static struct pci_driver cxgb4_driver;
2072 
2073 static void check_neigh_update(struct neighbour *neigh)
2074 {
2075 	const struct device *parent;
2076 	const struct net_device *netdev = neigh->dev;
2077 
2078 	if (is_vlan_dev(netdev))
2079 		netdev = vlan_dev_real_dev(netdev);
2080 	parent = netdev->dev.parent;
2081 	if (parent && parent->driver == &cxgb4_driver.driver)
2082 		t4_l2t_update(dev_get_drvdata(parent), neigh);
2083 }
2084 
2085 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2086 		       void *data)
2087 {
2088 	switch (event) {
2089 	case NETEVENT_NEIGH_UPDATE:
2090 		check_neigh_update(data);
2091 		break;
2092 	case NETEVENT_REDIRECT:
2093 	default:
2094 		break;
2095 	}
2096 	return 0;
2097 }
2098 
2099 static bool netevent_registered;
2100 static struct notifier_block cxgb4_netevent_nb = {
2101 	.notifier_call = netevent_cb
2102 };
2103 
2104 static void drain_db_fifo(struct adapter *adap, int usecs)
2105 {
2106 	u32 v1, v2, lp_count, hp_count;
2107 
2108 	do {
2109 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2110 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2111 		if (is_t4(adap->params.chip)) {
2112 			lp_count = LP_COUNT_G(v1);
2113 			hp_count = HP_COUNT_G(v1);
2114 		} else {
2115 			lp_count = LP_COUNT_T5_G(v1);
2116 			hp_count = HP_COUNT_T5_G(v2);
2117 		}
2118 
2119 		if (lp_count == 0 && hp_count == 0)
2120 			break;
2121 		set_current_state(TASK_UNINTERRUPTIBLE);
2122 		schedule_timeout(usecs_to_jiffies(usecs));
2123 	} while (1);
2124 }
2125 
2126 static void disable_txq_db(struct sge_txq *q)
2127 {
2128 	unsigned long flags;
2129 
2130 	spin_lock_irqsave(&q->db_lock, flags);
2131 	q->db_disabled = 1;
2132 	spin_unlock_irqrestore(&q->db_lock, flags);
2133 }
2134 
2135 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2136 {
2137 	spin_lock_irq(&q->db_lock);
2138 	if (q->db_pidx_inc) {
2139 		/* Make sure that all writes to the TX descriptors
2140 		 * are committed before we tell HW about them.
2141 		 */
2142 		wmb();
2143 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2144 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2145 		q->db_pidx_inc = 0;
2146 	}
2147 	q->db_disabled = 0;
2148 	spin_unlock_irq(&q->db_lock);
2149 }
2150 
2151 static void disable_dbs(struct adapter *adap)
2152 {
2153 	int i;
2154 
2155 	for_each_ethrxq(&adap->sge, i)
2156 		disable_txq_db(&adap->sge.ethtxq[i].q);
2157 	if (is_offload(adap)) {
2158 		struct sge_uld_txq_info *txq_info =
2159 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2160 
2161 		if (txq_info) {
2162 			for_each_ofldtxq(&adap->sge, i) {
2163 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2164 
2165 				disable_txq_db(&txq->q);
2166 			}
2167 		}
2168 	}
2169 	for_each_port(adap, i)
2170 		disable_txq_db(&adap->sge.ctrlq[i].q);
2171 }
2172 
2173 static void enable_dbs(struct adapter *adap)
2174 {
2175 	int i;
2176 
2177 	for_each_ethrxq(&adap->sge, i)
2178 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2179 	if (is_offload(adap)) {
2180 		struct sge_uld_txq_info *txq_info =
2181 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2182 
2183 		if (txq_info) {
2184 			for_each_ofldtxq(&adap->sge, i) {
2185 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2186 
2187 				enable_txq_db(adap, &txq->q);
2188 			}
2189 		}
2190 	}
2191 	for_each_port(adap, i)
2192 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2193 }
2194 
2195 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2196 {
2197 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
2198 
2199 	if (adap->uld && adap->uld[type].handle)
2200 		adap->uld[type].control(adap->uld[type].handle, cmd);
2201 }
2202 
2203 static void process_db_full(struct work_struct *work)
2204 {
2205 	struct adapter *adap;
2206 
2207 	adap = container_of(work, struct adapter, db_full_task);
2208 
2209 	drain_db_fifo(adap, dbfifo_drain_delay);
2210 	enable_dbs(adap);
2211 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2212 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2213 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2214 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2215 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2216 	else
2217 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2218 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2219 }
2220 
2221 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2222 {
2223 	u16 hw_pidx, hw_cidx;
2224 	int ret;
2225 
2226 	spin_lock_irq(&q->db_lock);
2227 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2228 	if (ret)
2229 		goto out;
2230 	if (q->db_pidx != hw_pidx) {
2231 		u16 delta;
2232 		u32 val;
2233 
2234 		if (q->db_pidx >= hw_pidx)
2235 			delta = q->db_pidx - hw_pidx;
2236 		else
2237 			delta = q->size - hw_pidx + q->db_pidx;
2238 
2239 		if (is_t4(adap->params.chip))
2240 			val = PIDX_V(delta);
2241 		else
2242 			val = PIDX_T5_V(delta);
2243 		wmb();
2244 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2245 			     QID_V(q->cntxt_id) | val);
2246 	}
2247 out:
2248 	q->db_disabled = 0;
2249 	q->db_pidx_inc = 0;
2250 	spin_unlock_irq(&q->db_lock);
2251 	if (ret)
2252 		CH_WARN(adap, "DB drop recovery failed.\n");
2253 }
2254 
2255 static void recover_all_queues(struct adapter *adap)
2256 {
2257 	int i;
2258 
2259 	for_each_ethrxq(&adap->sge, i)
2260 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2261 	if (is_offload(adap)) {
2262 		struct sge_uld_txq_info *txq_info =
2263 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2264 		if (txq_info) {
2265 			for_each_ofldtxq(&adap->sge, i) {
2266 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2267 
2268 				sync_txq_pidx(adap, &txq->q);
2269 			}
2270 		}
2271 	}
2272 	for_each_port(adap, i)
2273 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2274 }
2275 
2276 static void process_db_drop(struct work_struct *work)
2277 {
2278 	struct adapter *adap;
2279 
2280 	adap = container_of(work, struct adapter, db_drop_task);
2281 
2282 	if (is_t4(adap->params.chip)) {
2283 		drain_db_fifo(adap, dbfifo_drain_delay);
2284 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2285 		drain_db_fifo(adap, dbfifo_drain_delay);
2286 		recover_all_queues(adap);
2287 		drain_db_fifo(adap, dbfifo_drain_delay);
2288 		enable_dbs(adap);
2289 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2290 	} else if (is_t5(adap->params.chip)) {
2291 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2292 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2293 		u16 pidx_inc = dropped_db & 0x1fff;
2294 		u64 bar2_qoffset;
2295 		unsigned int bar2_qid;
2296 		int ret;
2297 
2298 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2299 					0, &bar2_qoffset, &bar2_qid);
2300 		if (ret)
2301 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2302 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2303 		else
2304 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2305 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2306 
2307 		/* Re-enable BAR2 WC */
2308 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2309 	}
2310 
2311 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2312 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2313 }
2314 
2315 void t4_db_full(struct adapter *adap)
2316 {
2317 	if (is_t4(adap->params.chip)) {
2318 		disable_dbs(adap);
2319 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2320 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2321 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2322 		queue_work(adap->workq, &adap->db_full_task);
2323 	}
2324 }
2325 
2326 void t4_db_dropped(struct adapter *adap)
2327 {
2328 	if (is_t4(adap->params.chip)) {
2329 		disable_dbs(adap);
2330 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2331 	}
2332 	queue_work(adap->workq, &adap->db_drop_task);
2333 }
2334 
2335 void t4_register_netevent_notifier(void)
2336 {
2337 	if (!netevent_registered) {
2338 		register_netevent_notifier(&cxgb4_netevent_nb);
2339 		netevent_registered = true;
2340 	}
2341 }
2342 
2343 static void detach_ulds(struct adapter *adap)
2344 {
2345 	unsigned int i;
2346 
2347 	mutex_lock(&uld_mutex);
2348 	list_del(&adap->list_node);
2349 
2350 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2351 		if (adap->uld && adap->uld[i].handle)
2352 			adap->uld[i].state_change(adap->uld[i].handle,
2353 					     CXGB4_STATE_DETACH);
2354 
2355 	if (netevent_registered && list_empty(&adapter_list)) {
2356 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2357 		netevent_registered = false;
2358 	}
2359 	mutex_unlock(&uld_mutex);
2360 }
2361 
2362 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2363 {
2364 	unsigned int i;
2365 
2366 	mutex_lock(&uld_mutex);
2367 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2368 		if (adap->uld && adap->uld[i].handle)
2369 			adap->uld[i].state_change(adap->uld[i].handle,
2370 						  new_state);
2371 	mutex_unlock(&uld_mutex);
2372 }
2373 
2374 #if IS_ENABLED(CONFIG_IPV6)
2375 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2376 				   unsigned long event, void *data)
2377 {
2378 	struct inet6_ifaddr *ifa = data;
2379 	struct net_device *event_dev = ifa->idev->dev;
2380 	const struct device *parent = NULL;
2381 #if IS_ENABLED(CONFIG_BONDING)
2382 	struct adapter *adap;
2383 #endif
2384 	if (is_vlan_dev(event_dev))
2385 		event_dev = vlan_dev_real_dev(event_dev);
2386 #if IS_ENABLED(CONFIG_BONDING)
2387 	if (event_dev->flags & IFF_MASTER) {
2388 		list_for_each_entry(adap, &adapter_list, list_node) {
2389 			switch (event) {
2390 			case NETDEV_UP:
2391 				cxgb4_clip_get(adap->port[0],
2392 					       (const u32 *)ifa, 1);
2393 				break;
2394 			case NETDEV_DOWN:
2395 				cxgb4_clip_release(adap->port[0],
2396 						   (const u32 *)ifa, 1);
2397 				break;
2398 			default:
2399 				break;
2400 			}
2401 		}
2402 		return NOTIFY_OK;
2403 	}
2404 #endif
2405 
2406 	if (event_dev)
2407 		parent = event_dev->dev.parent;
2408 
2409 	if (parent && parent->driver == &cxgb4_driver.driver) {
2410 		switch (event) {
2411 		case NETDEV_UP:
2412 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2413 			break;
2414 		case NETDEV_DOWN:
2415 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2416 			break;
2417 		default:
2418 			break;
2419 		}
2420 	}
2421 	return NOTIFY_OK;
2422 }
2423 
2424 static bool inet6addr_registered;
2425 static struct notifier_block cxgb4_inet6addr_notifier = {
2426 	.notifier_call = cxgb4_inet6addr_handler
2427 };
2428 
2429 static void update_clip(const struct adapter *adap)
2430 {
2431 	int i;
2432 	struct net_device *dev;
2433 	int ret;
2434 
2435 	rcu_read_lock();
2436 
2437 	for (i = 0; i < MAX_NPORTS; i++) {
2438 		dev = adap->port[i];
2439 		ret = 0;
2440 
2441 		if (dev)
2442 			ret = cxgb4_update_root_dev_clip(dev);
2443 
2444 		if (ret < 0)
2445 			break;
2446 	}
2447 	rcu_read_unlock();
2448 }
2449 #endif /* IS_ENABLED(CONFIG_IPV6) */
2450 
2451 /**
2452  *	cxgb_up - enable the adapter
2453  *	@adap: adapter being enabled
2454  *
2455  *	Called when the first port is enabled, this function performs the
2456  *	actions necessary to make an adapter operational, such as completing
2457  *	the initialization of HW modules, and enabling interrupts.
2458  *
2459  *	Must be called with the rtnl lock held.
2460  */
2461 static int cxgb_up(struct adapter *adap)
2462 {
2463 	struct sge *s = &adap->sge;
2464 	int err;
2465 
2466 	mutex_lock(&uld_mutex);
2467 	err = setup_sge_queues(adap);
2468 	if (err)
2469 		goto rel_lock;
2470 	err = setup_rss(adap);
2471 	if (err)
2472 		goto freeq;
2473 
2474 	if (adap->flags & CXGB4_USING_MSIX) {
2475 		if (s->nd_msix_idx < 0) {
2476 			err = -ENOMEM;
2477 			goto irq_err;
2478 		}
2479 
2480 		err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2481 				  t4_nondata_intr, 0,
2482 				  adap->msix_info[s->nd_msix_idx].desc, adap);
2483 		if (err)
2484 			goto irq_err;
2485 
2486 		err = request_msix_queue_irqs(adap);
2487 		if (err)
2488 			goto irq_err_free_nd_msix;
2489 	} else {
2490 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2491 				  (adap->flags & CXGB4_USING_MSI) ? 0
2492 								  : IRQF_SHARED,
2493 				  adap->port[0]->name, adap);
2494 		if (err)
2495 			goto irq_err;
2496 	}
2497 
2498 	enable_rx(adap);
2499 	t4_sge_start(adap);
2500 	t4_intr_enable(adap);
2501 	adap->flags |= CXGB4_FULL_INIT_DONE;
2502 	mutex_unlock(&uld_mutex);
2503 
2504 	notify_ulds(adap, CXGB4_STATE_UP);
2505 #if IS_ENABLED(CONFIG_IPV6)
2506 	update_clip(adap);
2507 #endif
2508 	return err;
2509 
2510 irq_err_free_nd_msix:
2511 	free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2512 irq_err:
2513 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2514 freeq:
2515 	t4_free_sge_resources(adap);
2516 rel_lock:
2517 	mutex_unlock(&uld_mutex);
2518 	return err;
2519 }
2520 
2521 static void cxgb_down(struct adapter *adapter)
2522 {
2523 	cancel_work_sync(&adapter->tid_release_task);
2524 	cancel_work_sync(&adapter->db_full_task);
2525 	cancel_work_sync(&adapter->db_drop_task);
2526 	adapter->tid_release_task_busy = false;
2527 	adapter->tid_release_head = NULL;
2528 
2529 	t4_sge_stop(adapter);
2530 	t4_free_sge_resources(adapter);
2531 
2532 	adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2533 }
2534 
2535 /*
2536  * net_device operations
2537  */
2538 int cxgb_open(struct net_device *dev)
2539 {
2540 	struct port_info *pi = netdev_priv(dev);
2541 	struct adapter *adapter = pi->adapter;
2542 	int err;
2543 
2544 	netif_carrier_off(dev);
2545 
2546 	if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2547 		err = cxgb_up(adapter);
2548 		if (err < 0)
2549 			return err;
2550 	}
2551 
2552 	/* It's possible that the basic port information could have
2553 	 * changed since we first read it.
2554 	 */
2555 	err = t4_update_port_info(pi);
2556 	if (err < 0)
2557 		return err;
2558 
2559 	err = link_start(dev);
2560 	if (!err)
2561 		netif_tx_start_all_queues(dev);
2562 	return err;
2563 }
2564 
2565 int cxgb_close(struct net_device *dev)
2566 {
2567 	struct port_info *pi = netdev_priv(dev);
2568 	struct adapter *adapter = pi->adapter;
2569 	int ret;
2570 
2571 	netif_tx_stop_all_queues(dev);
2572 	netif_carrier_off(dev);
2573 	ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2574 				  false, false, false);
2575 #ifdef CONFIG_CHELSIO_T4_DCB
2576 	cxgb4_dcb_reset(dev);
2577 	dcb_tx_queue_prio_enable(dev, false);
2578 #endif
2579 	return ret;
2580 }
2581 
2582 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2583 		__be32 sip, __be16 sport, __be16 vlan,
2584 		unsigned int queue, unsigned char port, unsigned char mask)
2585 {
2586 	int ret;
2587 	struct filter_entry *f;
2588 	struct adapter *adap;
2589 	int i;
2590 	u8 *val;
2591 
2592 	adap = netdev2adap(dev);
2593 
2594 	/* Adjust stid to correct filter index */
2595 	stid -= adap->tids.sftid_base;
2596 	stid += adap->tids.nftids;
2597 
2598 	/* Check to make sure the filter requested is writable ...
2599 	 */
2600 	f = &adap->tids.ftid_tab[stid];
2601 	ret = writable_filter(f);
2602 	if (ret)
2603 		return ret;
2604 
2605 	/* Clear out any old resources being used by the filter before
2606 	 * we start constructing the new filter.
2607 	 */
2608 	if (f->valid)
2609 		clear_filter(adap, f);
2610 
2611 	/* Clear out filter specifications */
2612 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2613 	f->fs.val.lport = cpu_to_be16(sport);
2614 	f->fs.mask.lport  = ~0;
2615 	val = (u8 *)&sip;
2616 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2617 		for (i = 0; i < 4; i++) {
2618 			f->fs.val.lip[i] = val[i];
2619 			f->fs.mask.lip[i] = ~0;
2620 		}
2621 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2622 			f->fs.val.iport = port;
2623 			f->fs.mask.iport = mask;
2624 		}
2625 	}
2626 
2627 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2628 		f->fs.val.proto = IPPROTO_TCP;
2629 		f->fs.mask.proto = ~0;
2630 	}
2631 
2632 	f->fs.dirsteer = 1;
2633 	f->fs.iq = queue;
2634 	/* Mark filter as locked */
2635 	f->locked = 1;
2636 	f->fs.rpttid = 1;
2637 
2638 	/* Save the actual tid. We need this to get the corresponding
2639 	 * filter entry structure in filter_rpl.
2640 	 */
2641 	f->tid = stid + adap->tids.ftid_base;
2642 	ret = set_filter_wr(adap, stid);
2643 	if (ret) {
2644 		clear_filter(adap, f);
2645 		return ret;
2646 	}
2647 
2648 	return 0;
2649 }
2650 EXPORT_SYMBOL(cxgb4_create_server_filter);
2651 
2652 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2653 		unsigned int queue, bool ipv6)
2654 {
2655 	struct filter_entry *f;
2656 	struct adapter *adap;
2657 
2658 	adap = netdev2adap(dev);
2659 
2660 	/* Adjust stid to correct filter index */
2661 	stid -= adap->tids.sftid_base;
2662 	stid += adap->tids.nftids;
2663 
2664 	f = &adap->tids.ftid_tab[stid];
2665 	/* Unlock the filter */
2666 	f->locked = 0;
2667 
2668 	return delete_filter(adap, stid);
2669 }
2670 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2671 
2672 static void cxgb_get_stats(struct net_device *dev,
2673 			   struct rtnl_link_stats64 *ns)
2674 {
2675 	struct port_stats stats;
2676 	struct port_info *p = netdev_priv(dev);
2677 	struct adapter *adapter = p->adapter;
2678 
2679 	/* Block retrieving statistics during EEH error
2680 	 * recovery. Otherwise, the recovery might fail
2681 	 * and the PCI device will be removed permanently
2682 	 */
2683 	spin_lock(&adapter->stats_lock);
2684 	if (!netif_device_present(dev)) {
2685 		spin_unlock(&adapter->stats_lock);
2686 		return;
2687 	}
2688 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2689 				 &p->stats_base);
2690 	spin_unlock(&adapter->stats_lock);
2691 
2692 	ns->tx_bytes   = stats.tx_octets;
2693 	ns->tx_packets = stats.tx_frames;
2694 	ns->rx_bytes   = stats.rx_octets;
2695 	ns->rx_packets = stats.rx_frames;
2696 	ns->multicast  = stats.rx_mcast_frames;
2697 
2698 	/* detailed rx_errors */
2699 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2700 			       stats.rx_runt;
2701 	ns->rx_over_errors   = 0;
2702 	ns->rx_crc_errors    = stats.rx_fcs_err;
2703 	ns->rx_frame_errors  = stats.rx_symbol_err;
2704 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2705 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2706 			       stats.rx_trunc0 + stats.rx_trunc1 +
2707 			       stats.rx_trunc2 + stats.rx_trunc3;
2708 	ns->rx_missed_errors = 0;
2709 
2710 	/* detailed tx_errors */
2711 	ns->tx_aborted_errors   = 0;
2712 	ns->tx_carrier_errors   = 0;
2713 	ns->tx_fifo_errors      = 0;
2714 	ns->tx_heartbeat_errors = 0;
2715 	ns->tx_window_errors    = 0;
2716 
2717 	ns->tx_errors = stats.tx_error_frames;
2718 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2719 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2720 }
2721 
2722 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2723 {
2724 	unsigned int mbox;
2725 	int ret = 0, prtad, devad;
2726 	struct port_info *pi = netdev_priv(dev);
2727 	struct adapter *adapter = pi->adapter;
2728 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2729 
2730 	switch (cmd) {
2731 	case SIOCGMIIPHY:
2732 		if (pi->mdio_addr < 0)
2733 			return -EOPNOTSUPP;
2734 		data->phy_id = pi->mdio_addr;
2735 		break;
2736 	case SIOCGMIIREG:
2737 	case SIOCSMIIREG:
2738 		if (mdio_phy_id_is_c45(data->phy_id)) {
2739 			prtad = mdio_phy_id_prtad(data->phy_id);
2740 			devad = mdio_phy_id_devad(data->phy_id);
2741 		} else if (data->phy_id < 32) {
2742 			prtad = data->phy_id;
2743 			devad = 0;
2744 			data->reg_num &= 0x1f;
2745 		} else
2746 			return -EINVAL;
2747 
2748 		mbox = pi->adapter->pf;
2749 		if (cmd == SIOCGMIIREG)
2750 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2751 					 data->reg_num, &data->val_out);
2752 		else
2753 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2754 					 data->reg_num, data->val_in);
2755 		break;
2756 	case SIOCGHWTSTAMP:
2757 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2758 				    sizeof(pi->tstamp_config)) ?
2759 			-EFAULT : 0;
2760 	case SIOCSHWTSTAMP:
2761 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2762 				   sizeof(pi->tstamp_config)))
2763 			return -EFAULT;
2764 
2765 		if (!is_t4(adapter->params.chip)) {
2766 			switch (pi->tstamp_config.tx_type) {
2767 			case HWTSTAMP_TX_OFF:
2768 			case HWTSTAMP_TX_ON:
2769 				break;
2770 			default:
2771 				return -ERANGE;
2772 			}
2773 
2774 			switch (pi->tstamp_config.rx_filter) {
2775 			case HWTSTAMP_FILTER_NONE:
2776 				pi->rxtstamp = false;
2777 				break;
2778 			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2779 			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2780 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2781 							 PTP_TS_L4);
2782 				break;
2783 			case HWTSTAMP_FILTER_PTP_V2_EVENT:
2784 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2785 							 PTP_TS_L2_L4);
2786 				break;
2787 			case HWTSTAMP_FILTER_ALL:
2788 			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2789 			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2790 			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2791 			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2792 				pi->rxtstamp = true;
2793 				break;
2794 			default:
2795 				pi->tstamp_config.rx_filter =
2796 					HWTSTAMP_FILTER_NONE;
2797 				return -ERANGE;
2798 			}
2799 
2800 			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2801 			    (pi->tstamp_config.rx_filter ==
2802 				HWTSTAMP_FILTER_NONE)) {
2803 				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2804 					pi->ptp_enable = false;
2805 			}
2806 
2807 			if (pi->tstamp_config.rx_filter !=
2808 				HWTSTAMP_FILTER_NONE) {
2809 				if (cxgb4_ptp_redirect_rx_packet(adapter,
2810 								 pi) >= 0)
2811 					pi->ptp_enable = true;
2812 			}
2813 		} else {
2814 			/* For T4 Adapters */
2815 			switch (pi->tstamp_config.rx_filter) {
2816 			case HWTSTAMP_FILTER_NONE:
2817 			pi->rxtstamp = false;
2818 			break;
2819 			case HWTSTAMP_FILTER_ALL:
2820 			pi->rxtstamp = true;
2821 			break;
2822 			default:
2823 			pi->tstamp_config.rx_filter =
2824 			HWTSTAMP_FILTER_NONE;
2825 			return -ERANGE;
2826 			}
2827 		}
2828 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2829 				    sizeof(pi->tstamp_config)) ?
2830 			-EFAULT : 0;
2831 	default:
2832 		return -EOPNOTSUPP;
2833 	}
2834 	return ret;
2835 }
2836 
2837 static void cxgb_set_rxmode(struct net_device *dev)
2838 {
2839 	/* unfortunately we can't return errors to the stack */
2840 	set_rxmode(dev, -1, false);
2841 }
2842 
2843 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2844 {
2845 	int ret;
2846 	struct port_info *pi = netdev_priv(dev);
2847 
2848 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2849 			    -1, -1, -1, true);
2850 	if (!ret)
2851 		dev->mtu = new_mtu;
2852 	return ret;
2853 }
2854 
2855 #ifdef CONFIG_PCI_IOV
2856 static int cxgb4_mgmt_open(struct net_device *dev)
2857 {
2858 	/* Turn carrier off since we don't have to transmit anything on this
2859 	 * interface.
2860 	 */
2861 	netif_carrier_off(dev);
2862 	return 0;
2863 }
2864 
2865 /* Fill MAC address that will be assigned by the FW */
2866 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2867 {
2868 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2869 	unsigned int i, vf, nvfs;
2870 	u16 a, b;
2871 	int err;
2872 	u8 *na;
2873 
2874 	adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2875 							    PCI_CAP_ID_VPD);
2876 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2877 	if (err)
2878 		return;
2879 
2880 	na = adap->params.vpd.na;
2881 	for (i = 0; i < ETH_ALEN; i++)
2882 		hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2883 			      hex2val(na[2 * i + 1]));
2884 
2885 	a = (hw_addr[0] << 8) | hw_addr[1];
2886 	b = (hw_addr[1] << 8) | hw_addr[2];
2887 	a ^= b;
2888 	a |= 0x0200;    /* locally assigned Ethernet MAC address */
2889 	a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2890 	macaddr[0] = a >> 8;
2891 	macaddr[1] = a & 0xff;
2892 
2893 	for (i = 2; i < 5; i++)
2894 		macaddr[i] = hw_addr[i + 1];
2895 
2896 	for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2897 		vf < nvfs; vf++) {
2898 		macaddr[5] = adap->pf * nvfs + vf;
2899 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2900 	}
2901 }
2902 
2903 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2904 {
2905 	struct port_info *pi = netdev_priv(dev);
2906 	struct adapter *adap = pi->adapter;
2907 	int ret;
2908 
2909 	/* verify MAC addr is valid */
2910 	if (!is_valid_ether_addr(mac)) {
2911 		dev_err(pi->adapter->pdev_dev,
2912 			"Invalid Ethernet address %pM for VF %d\n",
2913 			mac, vf);
2914 		return -EINVAL;
2915 	}
2916 
2917 	dev_info(pi->adapter->pdev_dev,
2918 		 "Setting MAC %pM on VF %d\n", mac, vf);
2919 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2920 	if (!ret)
2921 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2922 	return ret;
2923 }
2924 
2925 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2926 				    int vf, struct ifla_vf_info *ivi)
2927 {
2928 	struct port_info *pi = netdev_priv(dev);
2929 	struct adapter *adap = pi->adapter;
2930 	struct vf_info *vfinfo;
2931 
2932 	if (vf >= adap->num_vfs)
2933 		return -EINVAL;
2934 	vfinfo = &adap->vfinfo[vf];
2935 
2936 	ivi->vf = vf;
2937 	ivi->max_tx_rate = vfinfo->tx_rate;
2938 	ivi->min_tx_rate = 0;
2939 	ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2940 	ivi->vlan = vfinfo->vlan;
2941 	ivi->linkstate = vfinfo->link_state;
2942 	return 0;
2943 }
2944 
2945 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2946 				       struct netdev_phys_item_id *ppid)
2947 {
2948 	struct port_info *pi = netdev_priv(dev);
2949 	unsigned int phy_port_id;
2950 
2951 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2952 	ppid->id_len = sizeof(phy_port_id);
2953 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
2954 	return 0;
2955 }
2956 
2957 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2958 				  int min_tx_rate, int max_tx_rate)
2959 {
2960 	struct port_info *pi = netdev_priv(dev);
2961 	struct adapter *adap = pi->adapter;
2962 	unsigned int link_ok, speed, mtu;
2963 	u32 fw_pfvf, fw_class;
2964 	int class_id = vf;
2965 	int ret;
2966 	u16 pktsize;
2967 
2968 	if (vf >= adap->num_vfs)
2969 		return -EINVAL;
2970 
2971 	if (min_tx_rate) {
2972 		dev_err(adap->pdev_dev,
2973 			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2974 			min_tx_rate, vf);
2975 		return -EINVAL;
2976 	}
2977 
2978 	if (max_tx_rate == 0) {
2979 		/* unbind VF to to any Traffic Class */
2980 		fw_pfvf =
2981 		    (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2982 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2983 		fw_class = 0xffffffff;
2984 		ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
2985 				    &fw_pfvf, &fw_class);
2986 		if (ret) {
2987 			dev_err(adap->pdev_dev,
2988 				"Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
2989 				ret, adap->pf, vf);
2990 			return -EINVAL;
2991 		}
2992 		dev_info(adap->pdev_dev,
2993 			 "PF %d VF %d is unbound from TX Rate Limiting\n",
2994 			 adap->pf, vf);
2995 		adap->vfinfo[vf].tx_rate = 0;
2996 		return 0;
2997 	}
2998 
2999 	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
3000 	if (ret != FW_SUCCESS) {
3001 		dev_err(adap->pdev_dev,
3002 			"Failed to get link information for VF %d\n", vf);
3003 		return -EINVAL;
3004 	}
3005 
3006 	if (!link_ok) {
3007 		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3008 		return -EINVAL;
3009 	}
3010 
3011 	if (max_tx_rate > speed) {
3012 		dev_err(adap->pdev_dev,
3013 			"Max tx rate %d for VF %d can't be > link-speed %u",
3014 			max_tx_rate, vf, speed);
3015 		return -EINVAL;
3016 	}
3017 
3018 	pktsize = mtu;
3019 	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3020 	pktsize = pktsize - sizeof(struct ethhdr) - 4;
3021 	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3022 	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3023 	/* configure Traffic Class for rate-limiting */
3024 	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3025 			      SCHED_CLASS_LEVEL_CL_RL,
3026 			      SCHED_CLASS_MODE_CLASS,
3027 			      SCHED_CLASS_RATEUNIT_BITS,
3028 			      SCHED_CLASS_RATEMODE_ABS,
3029 			      pi->tx_chan, class_id, 0,
3030 			      max_tx_rate * 1000, 0, pktsize);
3031 	if (ret) {
3032 		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3033 			ret);
3034 		return -EINVAL;
3035 	}
3036 	dev_info(adap->pdev_dev,
3037 		 "Class %d with MSS %u configured with rate %u\n",
3038 		 class_id, pktsize, max_tx_rate);
3039 
3040 	/* bind VF to configured Traffic Class */
3041 	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3042 		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3043 	fw_class = class_id;
3044 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3045 			    &fw_class);
3046 	if (ret) {
3047 		dev_err(adap->pdev_dev,
3048 			"Err %d in binding PF %d VF %d to Traffic Class %d\n",
3049 			ret, adap->pf, vf, class_id);
3050 		return -EINVAL;
3051 	}
3052 	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3053 		 adap->pf, vf, class_id);
3054 	adap->vfinfo[vf].tx_rate = max_tx_rate;
3055 	return 0;
3056 }
3057 
3058 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3059 				  u16 vlan, u8 qos, __be16 vlan_proto)
3060 {
3061 	struct port_info *pi = netdev_priv(dev);
3062 	struct adapter *adap = pi->adapter;
3063 	int ret;
3064 
3065 	if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3066 		return -EINVAL;
3067 
3068 	if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3069 		return -EPROTONOSUPPORT;
3070 
3071 	ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3072 	if (!ret) {
3073 		adap->vfinfo[vf].vlan = vlan;
3074 		return 0;
3075 	}
3076 
3077 	dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3078 		ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3079 	return ret;
3080 }
3081 
3082 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3083 					int link)
3084 {
3085 	struct port_info *pi = netdev_priv(dev);
3086 	struct adapter *adap = pi->adapter;
3087 	u32 param, val;
3088 	int ret = 0;
3089 
3090 	if (vf >= adap->num_vfs)
3091 		return -EINVAL;
3092 
3093 	switch (link) {
3094 	case IFLA_VF_LINK_STATE_AUTO:
3095 		val = FW_VF_LINK_STATE_AUTO;
3096 		break;
3097 
3098 	case IFLA_VF_LINK_STATE_ENABLE:
3099 		val = FW_VF_LINK_STATE_ENABLE;
3100 		break;
3101 
3102 	case IFLA_VF_LINK_STATE_DISABLE:
3103 		val = FW_VF_LINK_STATE_DISABLE;
3104 		break;
3105 
3106 	default:
3107 		return -EINVAL;
3108 	}
3109 
3110 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3111 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3112 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3113 			    &param, &val);
3114 	if (ret) {
3115 		dev_err(adap->pdev_dev,
3116 			"Error %d in setting PF %d VF %d link state\n",
3117 			ret, adap->pf, vf);
3118 		return -EINVAL;
3119 	}
3120 
3121 	adap->vfinfo[vf].link_state = link;
3122 	return ret;
3123 }
3124 #endif /* CONFIG_PCI_IOV */
3125 
3126 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3127 {
3128 	int ret;
3129 	struct sockaddr *addr = p;
3130 	struct port_info *pi = netdev_priv(dev);
3131 
3132 	if (!is_valid_ether_addr(addr->sa_data))
3133 		return -EADDRNOTAVAIL;
3134 
3135 	ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3136 				    addr->sa_data, true, &pi->smt_idx);
3137 	if (ret < 0)
3138 		return ret;
3139 
3140 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3141 	pi->xact_addr_filt = ret;
3142 	return 0;
3143 }
3144 
3145 #ifdef CONFIG_NET_POLL_CONTROLLER
3146 static void cxgb_netpoll(struct net_device *dev)
3147 {
3148 	struct port_info *pi = netdev_priv(dev);
3149 	struct adapter *adap = pi->adapter;
3150 
3151 	if (adap->flags & CXGB4_USING_MSIX) {
3152 		int i;
3153 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3154 
3155 		for (i = pi->nqsets; i; i--, rx++)
3156 			t4_sge_intr_msix(0, &rx->rspq);
3157 	} else
3158 		t4_intr_handler(adap)(0, adap);
3159 }
3160 #endif
3161 
3162 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3163 {
3164 	struct port_info *pi = netdev_priv(dev);
3165 	struct adapter *adap = pi->adapter;
3166 	struct ch_sched_queue qe = { 0 };
3167 	struct ch_sched_params p = { 0 };
3168 	struct sched_class *e;
3169 	u32 req_rate;
3170 	int err = 0;
3171 
3172 	if (!can_sched(dev))
3173 		return -ENOTSUPP;
3174 
3175 	if (index < 0 || index > pi->nqsets - 1)
3176 		return -EINVAL;
3177 
3178 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3179 		dev_err(adap->pdev_dev,
3180 			"Failed to rate limit on queue %d. Link Down?\n",
3181 			index);
3182 		return -EINVAL;
3183 	}
3184 
3185 	qe.queue = index;
3186 	e = cxgb4_sched_queue_lookup(dev, &qe);
3187 	if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3188 		dev_err(adap->pdev_dev,
3189 			"Queue %u already bound to class %u of type: %u\n",
3190 			index, e->idx, e->info.u.params.level);
3191 		return -EBUSY;
3192 	}
3193 
3194 	/* Convert from Mbps to Kbps */
3195 	req_rate = rate * 1000;
3196 
3197 	/* Max rate is 100 Gbps */
3198 	if (req_rate > SCHED_MAX_RATE_KBPS) {
3199 		dev_err(adap->pdev_dev,
3200 			"Invalid rate %u Mbps, Max rate is %u Mbps\n",
3201 			rate, SCHED_MAX_RATE_KBPS / 1000);
3202 		return -ERANGE;
3203 	}
3204 
3205 	/* First unbind the queue from any existing class */
3206 	memset(&qe, 0, sizeof(qe));
3207 	qe.queue = index;
3208 	qe.class = SCHED_CLS_NONE;
3209 
3210 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3211 	if (err) {
3212 		dev_err(adap->pdev_dev,
3213 			"Unbinding Queue %d on port %d fail. Err: %d\n",
3214 			index, pi->port_id, err);
3215 		return err;
3216 	}
3217 
3218 	/* Queue already unbound */
3219 	if (!req_rate)
3220 		return 0;
3221 
3222 	/* Fetch any available unused or matching scheduling class */
3223 	p.type = SCHED_CLASS_TYPE_PACKET;
3224 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3225 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3226 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3227 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3228 	p.u.params.channel  = pi->tx_chan;
3229 	p.u.params.class    = SCHED_CLS_NONE;
3230 	p.u.params.minrate  = 0;
3231 	p.u.params.maxrate  = req_rate;
3232 	p.u.params.weight   = 0;
3233 	p.u.params.pktsize  = dev->mtu;
3234 
3235 	e = cxgb4_sched_class_alloc(dev, &p);
3236 	if (!e)
3237 		return -ENOMEM;
3238 
3239 	/* Bind the queue to a scheduling class */
3240 	memset(&qe, 0, sizeof(qe));
3241 	qe.queue = index;
3242 	qe.class = e->idx;
3243 
3244 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3245 	if (err)
3246 		dev_err(adap->pdev_dev,
3247 			"Queue rate limiting failed. Err: %d\n", err);
3248 	return err;
3249 }
3250 
3251 static int cxgb_setup_tc_flower(struct net_device *dev,
3252 				struct flow_cls_offload *cls_flower)
3253 {
3254 	switch (cls_flower->command) {
3255 	case FLOW_CLS_REPLACE:
3256 		return cxgb4_tc_flower_replace(dev, cls_flower);
3257 	case FLOW_CLS_DESTROY:
3258 		return cxgb4_tc_flower_destroy(dev, cls_flower);
3259 	case FLOW_CLS_STATS:
3260 		return cxgb4_tc_flower_stats(dev, cls_flower);
3261 	default:
3262 		return -EOPNOTSUPP;
3263 	}
3264 }
3265 
3266 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3267 				 struct tc_cls_u32_offload *cls_u32)
3268 {
3269 	switch (cls_u32->command) {
3270 	case TC_CLSU32_NEW_KNODE:
3271 	case TC_CLSU32_REPLACE_KNODE:
3272 		return cxgb4_config_knode(dev, cls_u32);
3273 	case TC_CLSU32_DELETE_KNODE:
3274 		return cxgb4_delete_knode(dev, cls_u32);
3275 	default:
3276 		return -EOPNOTSUPP;
3277 	}
3278 }
3279 
3280 static int cxgb_setup_tc_matchall(struct net_device *dev,
3281 				  struct tc_cls_matchall_offload *cls_matchall,
3282 				  bool ingress)
3283 {
3284 	struct adapter *adap = netdev2adap(dev);
3285 
3286 	if (!adap->tc_matchall)
3287 		return -ENOMEM;
3288 
3289 	switch (cls_matchall->command) {
3290 	case TC_CLSMATCHALL_REPLACE:
3291 		return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3292 	case TC_CLSMATCHALL_DESTROY:
3293 		return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3294 	case TC_CLSMATCHALL_STATS:
3295 		if (ingress)
3296 			return cxgb4_tc_matchall_stats(dev, cls_matchall);
3297 		break;
3298 	default:
3299 		break;
3300 	}
3301 
3302 	return -EOPNOTSUPP;
3303 }
3304 
3305 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3306 					  void *type_data, void *cb_priv)
3307 {
3308 	struct net_device *dev = cb_priv;
3309 	struct port_info *pi = netdev2pinfo(dev);
3310 	struct adapter *adap = netdev2adap(dev);
3311 
3312 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3313 		dev_err(adap->pdev_dev,
3314 			"Failed to setup tc on port %d. Link Down?\n",
3315 			pi->port_id);
3316 		return -EINVAL;
3317 	}
3318 
3319 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3320 		return -EOPNOTSUPP;
3321 
3322 	switch (type) {
3323 	case TC_SETUP_CLSU32:
3324 		return cxgb_setup_tc_cls_u32(dev, type_data);
3325 	case TC_SETUP_CLSFLOWER:
3326 		return cxgb_setup_tc_flower(dev, type_data);
3327 	case TC_SETUP_CLSMATCHALL:
3328 		return cxgb_setup_tc_matchall(dev, type_data, true);
3329 	default:
3330 		return -EOPNOTSUPP;
3331 	}
3332 }
3333 
3334 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3335 					 void *type_data, void *cb_priv)
3336 {
3337 	struct net_device *dev = cb_priv;
3338 	struct port_info *pi = netdev2pinfo(dev);
3339 	struct adapter *adap = netdev2adap(dev);
3340 
3341 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3342 		dev_err(adap->pdev_dev,
3343 			"Failed to setup tc on port %d. Link Down?\n",
3344 			pi->port_id);
3345 		return -EINVAL;
3346 	}
3347 
3348 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3349 		return -EOPNOTSUPP;
3350 
3351 	switch (type) {
3352 	case TC_SETUP_CLSMATCHALL:
3353 		return cxgb_setup_tc_matchall(dev, type_data, false);
3354 	default:
3355 		break;
3356 	}
3357 
3358 	return -EOPNOTSUPP;
3359 }
3360 
3361 static int cxgb_setup_tc_mqprio(struct net_device *dev,
3362 				struct tc_mqprio_qopt_offload *mqprio)
3363 {
3364 	struct adapter *adap = netdev2adap(dev);
3365 
3366 	if (!is_ethofld(adap) || !adap->tc_mqprio)
3367 		return -ENOMEM;
3368 
3369 	return cxgb4_setup_tc_mqprio(dev, mqprio);
3370 }
3371 
3372 static LIST_HEAD(cxgb_block_cb_list);
3373 
3374 static int cxgb_setup_tc_block(struct net_device *dev,
3375 			       struct flow_block_offload *f)
3376 {
3377 	struct port_info *pi = netdev_priv(dev);
3378 	flow_setup_cb_t *cb;
3379 	bool ingress_only;
3380 
3381 	pi->tc_block_shared = f->block_shared;
3382 	if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3383 		cb = cxgb_setup_tc_block_egress_cb;
3384 		ingress_only = false;
3385 	} else {
3386 		cb = cxgb_setup_tc_block_ingress_cb;
3387 		ingress_only = true;
3388 	}
3389 
3390 	return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3391 					  cb, pi, dev, ingress_only);
3392 }
3393 
3394 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3395 			 void *type_data)
3396 {
3397 	switch (type) {
3398 	case TC_SETUP_QDISC_MQPRIO:
3399 		return cxgb_setup_tc_mqprio(dev, type_data);
3400 	case TC_SETUP_BLOCK:
3401 		return cxgb_setup_tc_block(dev, type_data);
3402 	default:
3403 		return -EOPNOTSUPP;
3404 	}
3405 }
3406 
3407 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3408 				struct udp_tunnel_info *ti)
3409 {
3410 	struct port_info *pi = netdev_priv(netdev);
3411 	struct adapter *adapter = pi->adapter;
3412 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3413 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3414 	int ret = 0, i;
3415 
3416 	if (chip_ver < CHELSIO_T6)
3417 		return;
3418 
3419 	switch (ti->type) {
3420 	case UDP_TUNNEL_TYPE_VXLAN:
3421 		if (!adapter->vxlan_port_cnt ||
3422 		    adapter->vxlan_port != ti->port)
3423 			return; /* Invalid VxLAN destination port */
3424 
3425 		adapter->vxlan_port_cnt--;
3426 		if (adapter->vxlan_port_cnt)
3427 			return;
3428 
3429 		adapter->vxlan_port = 0;
3430 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3431 		break;
3432 	case UDP_TUNNEL_TYPE_GENEVE:
3433 		if (!adapter->geneve_port_cnt ||
3434 		    adapter->geneve_port != ti->port)
3435 			return; /* Invalid GENEVE destination port */
3436 
3437 		adapter->geneve_port_cnt--;
3438 		if (adapter->geneve_port_cnt)
3439 			return;
3440 
3441 		adapter->geneve_port = 0;
3442 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3443 		break;
3444 	default:
3445 		return;
3446 	}
3447 
3448 	/* Matchall mac entries can be deleted only after all tunnel ports
3449 	 * are brought down or removed.
3450 	 */
3451 	if (!adapter->rawf_cnt)
3452 		return;
3453 	for_each_port(adapter, i) {
3454 		pi = adap2pinfo(adapter, i);
3455 		ret = t4_free_raw_mac_filt(adapter, pi->viid,
3456 					   match_all_mac, match_all_mac,
3457 					   adapter->rawf_start +
3458 					    pi->port_id,
3459 					   1, pi->port_id, false);
3460 		if (ret < 0) {
3461 			netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3462 				    i);
3463 			return;
3464 		}
3465 	}
3466 }
3467 
3468 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3469 				struct udp_tunnel_info *ti)
3470 {
3471 	struct port_info *pi = netdev_priv(netdev);
3472 	struct adapter *adapter = pi->adapter;
3473 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3474 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3475 	int i, ret;
3476 
3477 	if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3478 		return;
3479 
3480 	switch (ti->type) {
3481 	case UDP_TUNNEL_TYPE_VXLAN:
3482 		/* Callback for adding vxlan port can be called with the same
3483 		 * port for both IPv4 and IPv6. We should not disable the
3484 		 * offloading when the same port for both protocols is added
3485 		 * and later one of them is removed.
3486 		 */
3487 		if (adapter->vxlan_port_cnt &&
3488 		    adapter->vxlan_port == ti->port) {
3489 			adapter->vxlan_port_cnt++;
3490 			return;
3491 		}
3492 
3493 		/* We will support only one VxLAN port */
3494 		if (adapter->vxlan_port_cnt) {
3495 			netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3496 				    be16_to_cpu(adapter->vxlan_port),
3497 				    be16_to_cpu(ti->port));
3498 			return;
3499 		}
3500 
3501 		adapter->vxlan_port = ti->port;
3502 		adapter->vxlan_port_cnt = 1;
3503 
3504 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3505 			     VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3506 		break;
3507 	case UDP_TUNNEL_TYPE_GENEVE:
3508 		if (adapter->geneve_port_cnt &&
3509 		    adapter->geneve_port == ti->port) {
3510 			adapter->geneve_port_cnt++;
3511 			return;
3512 		}
3513 
3514 		/* We will support only one GENEVE port */
3515 		if (adapter->geneve_port_cnt) {
3516 			netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3517 				    be16_to_cpu(adapter->geneve_port),
3518 				    be16_to_cpu(ti->port));
3519 			return;
3520 		}
3521 
3522 		adapter->geneve_port = ti->port;
3523 		adapter->geneve_port_cnt = 1;
3524 
3525 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3526 			     GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3527 		break;
3528 	default:
3529 		return;
3530 	}
3531 
3532 	/* Create a 'match all' mac filter entry for inner mac,
3533 	 * if raw mac interface is supported. Once the linux kernel provides
3534 	 * driver entry points for adding/deleting the inner mac addresses,
3535 	 * we will remove this 'match all' entry and fallback to adding
3536 	 * exact match filters.
3537 	 */
3538 	for_each_port(adapter, i) {
3539 		pi = adap2pinfo(adapter, i);
3540 
3541 		ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3542 					    match_all_mac,
3543 					    match_all_mac,
3544 					    adapter->rawf_start +
3545 					    pi->port_id,
3546 					    1, pi->port_id, false);
3547 		if (ret < 0) {
3548 			netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3549 				    be16_to_cpu(ti->port));
3550 			cxgb_del_udp_tunnel(netdev, ti);
3551 			return;
3552 		}
3553 	}
3554 }
3555 
3556 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3557 					     struct net_device *dev,
3558 					     netdev_features_t features)
3559 {
3560 	struct port_info *pi = netdev_priv(dev);
3561 	struct adapter *adapter = pi->adapter;
3562 
3563 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3564 		return features;
3565 
3566 	/* Check if hw supports offload for this packet */
3567 	if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3568 		return features;
3569 
3570 	/* Offload is not supported for this encapsulated packet */
3571 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3572 }
3573 
3574 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3575 					   netdev_features_t features)
3576 {
3577 	/* Disable GRO, if RX_CSUM is disabled */
3578 	if (!(features & NETIF_F_RXCSUM))
3579 		features &= ~NETIF_F_GRO;
3580 
3581 	return features;
3582 }
3583 
3584 static const struct net_device_ops cxgb4_netdev_ops = {
3585 	.ndo_open             = cxgb_open,
3586 	.ndo_stop             = cxgb_close,
3587 	.ndo_start_xmit       = t4_start_xmit,
3588 	.ndo_select_queue     =	cxgb_select_queue,
3589 	.ndo_get_stats64      = cxgb_get_stats,
3590 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3591 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3592 	.ndo_set_features     = cxgb_set_features,
3593 	.ndo_validate_addr    = eth_validate_addr,
3594 	.ndo_do_ioctl         = cxgb_ioctl,
3595 	.ndo_change_mtu       = cxgb_change_mtu,
3596 #ifdef CONFIG_NET_POLL_CONTROLLER
3597 	.ndo_poll_controller  = cxgb_netpoll,
3598 #endif
3599 #ifdef CONFIG_CHELSIO_T4_FCOE
3600 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3601 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3602 #endif /* CONFIG_CHELSIO_T4_FCOE */
3603 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3604 	.ndo_setup_tc         = cxgb_setup_tc,
3605 	.ndo_udp_tunnel_add   = cxgb_add_udp_tunnel,
3606 	.ndo_udp_tunnel_del   = cxgb_del_udp_tunnel,
3607 	.ndo_features_check   = cxgb_features_check,
3608 	.ndo_fix_features     = cxgb_fix_features,
3609 };
3610 
3611 #ifdef CONFIG_PCI_IOV
3612 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3613 	.ndo_open               = cxgb4_mgmt_open,
3614 	.ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3615 	.ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3616 	.ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3617 	.ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3618 	.ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3619 	.ndo_set_vf_link_state	= cxgb4_mgmt_set_vf_link_state,
3620 };
3621 #endif
3622 
3623 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3624 				   struct ethtool_drvinfo *info)
3625 {
3626 	struct adapter *adapter = netdev2adap(dev);
3627 
3628 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3629 	strlcpy(info->version, cxgb4_driver_version,
3630 		sizeof(info->version));
3631 	strlcpy(info->bus_info, pci_name(adapter->pdev),
3632 		sizeof(info->bus_info));
3633 }
3634 
3635 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3636 	.get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3637 };
3638 
3639 static void notify_fatal_err(struct work_struct *work)
3640 {
3641 	struct adapter *adap;
3642 
3643 	adap = container_of(work, struct adapter, fatal_err_notify_task);
3644 	notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3645 }
3646 
3647 void t4_fatal_err(struct adapter *adap)
3648 {
3649 	int port;
3650 
3651 	if (pci_channel_offline(adap->pdev))
3652 		return;
3653 
3654 	/* Disable the SGE since ULDs are going to free resources that
3655 	 * could be exposed to the adapter.  RDMA MWs for example...
3656 	 */
3657 	t4_shutdown_adapter(adap);
3658 	for_each_port(adap, port) {
3659 		struct net_device *dev = adap->port[port];
3660 
3661 		/* If we get here in very early initialization the network
3662 		 * devices may not have been set up yet.
3663 		 */
3664 		if (!dev)
3665 			continue;
3666 
3667 		netif_tx_stop_all_queues(dev);
3668 		netif_carrier_off(dev);
3669 	}
3670 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3671 	queue_work(adap->workq, &adap->fatal_err_notify_task);
3672 }
3673 
3674 static void setup_memwin(struct adapter *adap)
3675 {
3676 	u32 nic_win_base = t4_get_util_window(adap);
3677 
3678 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3679 }
3680 
3681 static void setup_memwin_rdma(struct adapter *adap)
3682 {
3683 	if (adap->vres.ocq.size) {
3684 		u32 start;
3685 		unsigned int sz_kb;
3686 
3687 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3688 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3689 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3690 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3691 		t4_write_reg(adap,
3692 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3693 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3694 		t4_write_reg(adap,
3695 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3696 			     adap->vres.ocq.start);
3697 		t4_read_reg(adap,
3698 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3699 	}
3700 }
3701 
3702 /* HMA Definitions */
3703 
3704 /* The maximum number of address that can be send in a single FW cmd */
3705 #define HMA_MAX_ADDR_IN_CMD	5
3706 
3707 #define HMA_PAGE_SIZE		PAGE_SIZE
3708 
3709 #define HMA_MAX_NO_FW_ADDRESS	(16 << 10)  /* FW supports 16K addresses */
3710 
3711 #define HMA_PAGE_ORDER					\
3712 	((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?	\
3713 	ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3714 
3715 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3716  * configuration(in units of MB).
3717  */
3718 #define HMA_MIN_TOTAL_SIZE	1
3719 #define HMA_MAX_TOTAL_SIZE				\
3720 	(((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *		\
3721 	  HMA_MAX_NO_FW_ADDRESS) >> 20)
3722 
3723 static void adap_free_hma_mem(struct adapter *adapter)
3724 {
3725 	struct scatterlist *iter;
3726 	struct page *page;
3727 	int i;
3728 
3729 	if (!adapter->hma.sgt)
3730 		return;
3731 
3732 	if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3733 		dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3734 			     adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3735 		adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3736 	}
3737 
3738 	for_each_sg(adapter->hma.sgt->sgl, iter,
3739 		    adapter->hma.sgt->orig_nents, i) {
3740 		page = sg_page(iter);
3741 		if (page)
3742 			__free_pages(page, HMA_PAGE_ORDER);
3743 	}
3744 
3745 	kfree(adapter->hma.phy_addr);
3746 	sg_free_table(adapter->hma.sgt);
3747 	kfree(adapter->hma.sgt);
3748 	adapter->hma.sgt = NULL;
3749 }
3750 
3751 static int adap_config_hma(struct adapter *adapter)
3752 {
3753 	struct scatterlist *sgl, *iter;
3754 	struct sg_table *sgt;
3755 	struct page *newpage;
3756 	unsigned int i, j, k;
3757 	u32 param, hma_size;
3758 	unsigned int ncmds;
3759 	size_t page_size;
3760 	u32 page_order;
3761 	int node, ret;
3762 
3763 	/* HMA is supported only for T6+ cards.
3764 	 * Avoid initializing HMA in kdump kernels.
3765 	 */
3766 	if (is_kdump_kernel() ||
3767 	    CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3768 		return 0;
3769 
3770 	/* Get the HMA region size required by fw */
3771 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3772 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3773 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3774 			      1, &param, &hma_size);
3775 	/* An error means card has its own memory or HMA is not supported by
3776 	 * the firmware. Return without any errors.
3777 	 */
3778 	if (ret || !hma_size)
3779 		return 0;
3780 
3781 	if (hma_size < HMA_MIN_TOTAL_SIZE ||
3782 	    hma_size > HMA_MAX_TOTAL_SIZE) {
3783 		dev_err(adapter->pdev_dev,
3784 			"HMA size %uMB beyond bounds(%u-%lu)MB\n",
3785 			hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3786 		return -EINVAL;
3787 	}
3788 
3789 	page_size = HMA_PAGE_SIZE;
3790 	page_order = HMA_PAGE_ORDER;
3791 	adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3792 	if (unlikely(!adapter->hma.sgt)) {
3793 		dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3794 		return -ENOMEM;
3795 	}
3796 	sgt = adapter->hma.sgt;
3797 	/* FW returned value will be in MB's
3798 	 */
3799 	sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3800 	if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3801 		dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3802 		kfree(adapter->hma.sgt);
3803 		adapter->hma.sgt = NULL;
3804 		return -ENOMEM;
3805 	}
3806 
3807 	sgl = adapter->hma.sgt->sgl;
3808 	node = dev_to_node(adapter->pdev_dev);
3809 	for_each_sg(sgl, iter, sgt->orig_nents, i) {
3810 		newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3811 					   __GFP_ZERO, page_order);
3812 		if (!newpage) {
3813 			dev_err(adapter->pdev_dev,
3814 				"Not enough memory for HMA page allocation\n");
3815 			ret = -ENOMEM;
3816 			goto free_hma;
3817 		}
3818 		sg_set_page(iter, newpage, page_size << page_order, 0);
3819 	}
3820 
3821 	sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3822 				DMA_BIDIRECTIONAL);
3823 	if (!sgt->nents) {
3824 		dev_err(adapter->pdev_dev,
3825 			"Not enough memory for HMA DMA mapping");
3826 		ret = -ENOMEM;
3827 		goto free_hma;
3828 	}
3829 	adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3830 
3831 	adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3832 					GFP_KERNEL);
3833 	if (unlikely(!adapter->hma.phy_addr))
3834 		goto free_hma;
3835 
3836 	for_each_sg(sgl, iter, sgt->nents, i) {
3837 		newpage = sg_page(iter);
3838 		adapter->hma.phy_addr[i] = sg_dma_address(iter);
3839 	}
3840 
3841 	ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3842 	/* Pass on the addresses to firmware */
3843 	for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3844 		struct fw_hma_cmd hma_cmd;
3845 		u8 naddr = HMA_MAX_ADDR_IN_CMD;
3846 		u8 soc = 0, eoc = 0;
3847 		u8 hma_mode = 1; /* Presently we support only Page table mode */
3848 
3849 		soc = (i == 0) ? 1 : 0;
3850 		eoc = (i == ncmds - 1) ? 1 : 0;
3851 
3852 		/* For last cmd, set naddr corresponding to remaining
3853 		 * addresses
3854 		 */
3855 		if (i == ncmds - 1) {
3856 			naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3857 			naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3858 		}
3859 		memset(&hma_cmd, 0, sizeof(hma_cmd));
3860 		hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3861 				       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3862 		hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3863 
3864 		hma_cmd.mode_to_pcie_params =
3865 			htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3866 			      FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3867 
3868 		/* HMA cmd size specified in MB's */
3869 		hma_cmd.naddr_size =
3870 			htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3871 			      FW_HMA_CMD_NADDR_V(naddr));
3872 
3873 		/* Total Page size specified in units of 4K */
3874 		hma_cmd.addr_size_pkd =
3875 			htonl(FW_HMA_CMD_ADDR_SIZE_V
3876 				((page_size << page_order) >> 12));
3877 
3878 		/* Fill the 5 addresses */
3879 		for (j = 0; j < naddr; j++) {
3880 			hma_cmd.phy_address[j] =
3881 				cpu_to_be64(adapter->hma.phy_addr[j + k]);
3882 		}
3883 		ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3884 				 sizeof(hma_cmd), &hma_cmd);
3885 		if (ret) {
3886 			dev_err(adapter->pdev_dev,
3887 				"HMA FW command failed with err %d\n", ret);
3888 			goto free_hma;
3889 		}
3890 	}
3891 
3892 	if (!ret)
3893 		dev_info(adapter->pdev_dev,
3894 			 "Reserved %uMB host memory for HMA\n", hma_size);
3895 	return ret;
3896 
3897 free_hma:
3898 	adap_free_hma_mem(adapter);
3899 	return ret;
3900 }
3901 
3902 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3903 {
3904 	u32 v;
3905 	int ret;
3906 
3907 	/* Now that we've successfully configured and initialized the adapter
3908 	 * can ask the Firmware what resources it has provisioned for us.
3909 	 */
3910 	ret = t4_get_pfres(adap);
3911 	if (ret) {
3912 		dev_err(adap->pdev_dev,
3913 			"Unable to retrieve resource provisioning information\n");
3914 		return ret;
3915 	}
3916 
3917 	/* get device capabilities */
3918 	memset(c, 0, sizeof(*c));
3919 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3920 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3921 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3922 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3923 	if (ret < 0)
3924 		return ret;
3925 
3926 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3927 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3928 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3929 	if (ret < 0)
3930 		return ret;
3931 
3932 	ret = t4_config_glbl_rss(adap, adap->pf,
3933 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3934 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3935 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3936 	if (ret < 0)
3937 		return ret;
3938 
3939 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3940 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3941 			  FW_CMD_CAP_PF);
3942 	if (ret < 0)
3943 		return ret;
3944 
3945 	t4_sge_init(adap);
3946 
3947 	/* tweak some settings */
3948 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3949 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3950 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3951 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3952 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3953 
3954 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3955 	adap->params.tp.tx_modq_map = 0xE4;
3956 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3957 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3958 
3959 	/* associate each Tx modulation queue with consecutive Tx channels */
3960 	v = 0x84218421;
3961 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3962 			  &v, 1, TP_TX_SCHED_HDR_A);
3963 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3964 			  &v, 1, TP_TX_SCHED_FIFO_A);
3965 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3966 			  &v, 1, TP_TX_SCHED_PCMD_A);
3967 
3968 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3969 	if (is_offload(adap)) {
3970 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3971 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3972 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3973 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3974 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3975 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3976 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3977 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3978 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3979 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3980 	}
3981 
3982 	/* get basic stuff going */
3983 	return t4_early_init(adap, adap->pf);
3984 }
3985 
3986 /*
3987  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3988  */
3989 #define MAX_ATIDS 8192U
3990 
3991 /*
3992  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3993  *
3994  * If the firmware we're dealing with has Configuration File support, then
3995  * we use that to perform all configuration
3996  */
3997 
3998 /*
3999  * Tweak configuration based on module parameters, etc.  Most of these have
4000  * defaults assigned to them by Firmware Configuration Files (if we're using
4001  * them) but need to be explicitly set if we're using hard-coded
4002  * initialization.  But even in the case of using Firmware Configuration
4003  * Files, we'd like to expose the ability to change these via module
4004  * parameters so these are essentially common tweaks/settings for
4005  * Configuration Files and hard-coded initialization ...
4006  */
4007 static int adap_init0_tweaks(struct adapter *adapter)
4008 {
4009 	/*
4010 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
4011 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
4012 	 * 64B Cache Line Size ...
4013 	 */
4014 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4015 
4016 	/*
4017 	 * Process module parameters which affect early initialization.
4018 	 */
4019 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4020 		dev_err(&adapter->pdev->dev,
4021 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
4022 			rx_dma_offset);
4023 		rx_dma_offset = 2;
4024 	}
4025 	t4_set_reg_field(adapter, SGE_CONTROL_A,
4026 			 PKTSHIFT_V(PKTSHIFT_M),
4027 			 PKTSHIFT_V(rx_dma_offset));
4028 
4029 	/*
4030 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4031 	 * adds the pseudo header itself.
4032 	 */
4033 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4034 			       CSUM_HAS_PSEUDO_HDR_F, 0);
4035 
4036 	return 0;
4037 }
4038 
4039 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4040  * unto themselves and they contain their own firmware to perform their
4041  * tasks ...
4042  */
4043 static int phy_aq1202_version(const u8 *phy_fw_data,
4044 			      size_t phy_fw_size)
4045 {
4046 	int offset;
4047 
4048 	/* At offset 0x8 you're looking for the primary image's
4049 	 * starting offset which is 3 Bytes wide
4050 	 *
4051 	 * At offset 0xa of the primary image, you look for the offset
4052 	 * of the DRAM segment which is 3 Bytes wide.
4053 	 *
4054 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4055 	 * wide
4056 	 */
4057 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
4058 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4059 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
4060 
4061 	offset = le24(phy_fw_data + 0x8) << 12;
4062 	offset = le24(phy_fw_data + offset + 0xa);
4063 	return be16(phy_fw_data + offset + 0x27e);
4064 
4065 	#undef be16
4066 	#undef le16
4067 	#undef le24
4068 }
4069 
4070 static struct info_10gbt_phy_fw {
4071 	unsigned int phy_fw_id;		/* PCI Device ID */
4072 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
4073 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4074 	int phy_flash;			/* Has FLASH for PHY Firmware */
4075 } phy_info_array[] = {
4076 	{
4077 		PHY_AQ1202_DEVICEID,
4078 		PHY_AQ1202_FIRMWARE,
4079 		phy_aq1202_version,
4080 		1,
4081 	},
4082 	{
4083 		PHY_BCM84834_DEVICEID,
4084 		PHY_BCM84834_FIRMWARE,
4085 		NULL,
4086 		0,
4087 	},
4088 	{ 0, NULL, NULL },
4089 };
4090 
4091 static struct info_10gbt_phy_fw *find_phy_info(int devid)
4092 {
4093 	int i;
4094 
4095 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4096 		if (phy_info_array[i].phy_fw_id == devid)
4097 			return &phy_info_array[i];
4098 	}
4099 	return NULL;
4100 }
4101 
4102 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
4103  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
4104  * we return a negative error number.  If we transfer new firmware we return 1
4105  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
4106  */
4107 static int adap_init0_phy(struct adapter *adap)
4108 {
4109 	const struct firmware *phyf;
4110 	int ret;
4111 	struct info_10gbt_phy_fw *phy_info;
4112 
4113 	/* Use the device ID to determine which PHY file to flash.
4114 	 */
4115 	phy_info = find_phy_info(adap->pdev->device);
4116 	if (!phy_info) {
4117 		dev_warn(adap->pdev_dev,
4118 			 "No PHY Firmware file found for this PHY\n");
4119 		return -EOPNOTSUPP;
4120 	}
4121 
4122 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4123 	 * use that. The adapter firmware provides us with a memory buffer
4124 	 * where we can load a PHY firmware file from the host if we want to
4125 	 * override the PHY firmware File in flash.
4126 	 */
4127 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4128 				      adap->pdev_dev);
4129 	if (ret < 0) {
4130 		/* For adapters without FLASH attached to PHY for their
4131 		 * firmware, it's obviously a fatal error if we can't get the
4132 		 * firmware to the adapter.  For adapters with PHY firmware
4133 		 * FLASH storage, it's worth a warning if we can't find the
4134 		 * PHY Firmware but we'll neuter the error ...
4135 		 */
4136 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4137 			"/lib/firmware/%s, error %d\n",
4138 			phy_info->phy_fw_file, -ret);
4139 		if (phy_info->phy_flash) {
4140 			int cur_phy_fw_ver = 0;
4141 
4142 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4143 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4144 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
4145 			ret = 0;
4146 		}
4147 
4148 		return ret;
4149 	}
4150 
4151 	/* Load PHY Firmware onto adapter.
4152 	 */
4153 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
4154 			     phy_info->phy_fw_version,
4155 			     (u8 *)phyf->data, phyf->size);
4156 	if (ret < 0)
4157 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4158 			-ret);
4159 	else if (ret > 0) {
4160 		int new_phy_fw_ver = 0;
4161 
4162 		if (phy_info->phy_fw_version)
4163 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4164 								  phyf->size);
4165 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
4166 			 "Firmware /lib/firmware/%s, version %#x\n",
4167 			 phy_info->phy_fw_file, new_phy_fw_ver);
4168 	}
4169 
4170 	release_firmware(phyf);
4171 
4172 	return ret;
4173 }
4174 
4175 /*
4176  * Attempt to initialize the adapter via a Firmware Configuration File.
4177  */
4178 static int adap_init0_config(struct adapter *adapter, int reset)
4179 {
4180 	char *fw_config_file, fw_config_file_path[256];
4181 	u32 finiver, finicsum, cfcsum, param, val;
4182 	struct fw_caps_config_cmd caps_cmd;
4183 	unsigned long mtype = 0, maddr = 0;
4184 	const struct firmware *cf;
4185 	char *config_name = NULL;
4186 	int config_issued = 0;
4187 	int ret;
4188 
4189 	/*
4190 	 * Reset device if necessary.
4191 	 */
4192 	if (reset) {
4193 		ret = t4_fw_reset(adapter, adapter->mbox,
4194 				  PIORSTMODE_F | PIORST_F);
4195 		if (ret < 0)
4196 			goto bye;
4197 	}
4198 
4199 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
4200 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
4201 	 * to be performed after any global adapter RESET above since some
4202 	 * PHYs only have local RAM copies of the PHY firmware.
4203 	 */
4204 	if (is_10gbt_device(adapter->pdev->device)) {
4205 		ret = adap_init0_phy(adapter);
4206 		if (ret < 0)
4207 			goto bye;
4208 	}
4209 	/*
4210 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4211 	 * then use that.  Otherwise, use the configuration file stored
4212 	 * in the adapter flash ...
4213 	 */
4214 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4215 	case CHELSIO_T4:
4216 		fw_config_file = FW4_CFNAME;
4217 		break;
4218 	case CHELSIO_T5:
4219 		fw_config_file = FW5_CFNAME;
4220 		break;
4221 	case CHELSIO_T6:
4222 		fw_config_file = FW6_CFNAME;
4223 		break;
4224 	default:
4225 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4226 		       adapter->pdev->device);
4227 		ret = -EINVAL;
4228 		goto bye;
4229 	}
4230 
4231 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4232 	if (ret < 0) {
4233 		config_name = "On FLASH";
4234 		mtype = FW_MEMTYPE_CF_FLASH;
4235 		maddr = t4_flash_cfg_addr(adapter);
4236 	} else {
4237 		u32 params[7], val[7];
4238 
4239 		sprintf(fw_config_file_path,
4240 			"/lib/firmware/%s", fw_config_file);
4241 		config_name = fw_config_file_path;
4242 
4243 		if (cf->size >= FLASH_CFG_MAX_SIZE)
4244 			ret = -ENOMEM;
4245 		else {
4246 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4247 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4248 			ret = t4_query_params(adapter, adapter->mbox,
4249 					      adapter->pf, 0, 1, params, val);
4250 			if (ret == 0) {
4251 				/*
4252 				 * For t4_memory_rw() below addresses and
4253 				 * sizes have to be in terms of multiples of 4
4254 				 * bytes.  So, if the Configuration File isn't
4255 				 * a multiple of 4 bytes in length we'll have
4256 				 * to write that out separately since we can't
4257 				 * guarantee that the bytes following the
4258 				 * residual byte in the buffer returned by
4259 				 * request_firmware() are zeroed out ...
4260 				 */
4261 				size_t resid = cf->size & 0x3;
4262 				size_t size = cf->size & ~0x3;
4263 				__be32 *data = (__be32 *)cf->data;
4264 
4265 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4266 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4267 
4268 				spin_lock(&adapter->win0_lock);
4269 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
4270 						   size, data, T4_MEMORY_WRITE);
4271 				if (ret == 0 && resid != 0) {
4272 					union {
4273 						__be32 word;
4274 						char buf[4];
4275 					} last;
4276 					int i;
4277 
4278 					last.word = data[size >> 2];
4279 					for (i = resid; i < 4; i++)
4280 						last.buf[i] = 0;
4281 					ret = t4_memory_rw(adapter, 0, mtype,
4282 							   maddr + size,
4283 							   4, &last.word,
4284 							   T4_MEMORY_WRITE);
4285 				}
4286 				spin_unlock(&adapter->win0_lock);
4287 			}
4288 		}
4289 
4290 		release_firmware(cf);
4291 		if (ret)
4292 			goto bye;
4293 	}
4294 
4295 	val = 0;
4296 
4297 	/* Ofld + Hash filter is supported. Older fw will fail this request and
4298 	 * it is fine.
4299 	 */
4300 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4301 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4302 	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4303 			    1, &param, &val);
4304 
4305 	/* FW doesn't know about Hash filter + ofld support,
4306 	 * it's not a problem, don't return an error.
4307 	 */
4308 	if (ret < 0) {
4309 		dev_warn(adapter->pdev_dev,
4310 			 "Hash filter with ofld is not supported by FW\n");
4311 	}
4312 
4313 	/*
4314 	 * Issue a Capability Configuration command to the firmware to get it
4315 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
4316 	 * because we want the ability to modify various features after we've
4317 	 * processed the configuration file ...
4318 	 */
4319 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4320 	caps_cmd.op_to_write =
4321 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4322 		      FW_CMD_REQUEST_F |
4323 		      FW_CMD_READ_F);
4324 	caps_cmd.cfvalid_to_len16 =
4325 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4326 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4327 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4328 		      FW_LEN16(caps_cmd));
4329 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4330 			 &caps_cmd);
4331 
4332 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4333 	 * Configuration File in FLASH), our last gasp effort is to use the
4334 	 * Firmware Configuration File which is embedded in the firmware.  A
4335 	 * very few early versions of the firmware didn't have one embedded
4336 	 * but we can ignore those.
4337 	 */
4338 	if (ret == -ENOENT) {
4339 		memset(&caps_cmd, 0, sizeof(caps_cmd));
4340 		caps_cmd.op_to_write =
4341 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4342 					FW_CMD_REQUEST_F |
4343 					FW_CMD_READ_F);
4344 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4345 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4346 				sizeof(caps_cmd), &caps_cmd);
4347 		config_name = "Firmware Default";
4348 	}
4349 
4350 	config_issued = 1;
4351 	if (ret < 0)
4352 		goto bye;
4353 
4354 	finiver = ntohl(caps_cmd.finiver);
4355 	finicsum = ntohl(caps_cmd.finicsum);
4356 	cfcsum = ntohl(caps_cmd.cfcsum);
4357 	if (finicsum != cfcsum)
4358 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4359 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4360 			 finicsum, cfcsum);
4361 
4362 	/*
4363 	 * And now tell the firmware to use the configuration we just loaded.
4364 	 */
4365 	caps_cmd.op_to_write =
4366 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4367 		      FW_CMD_REQUEST_F |
4368 		      FW_CMD_WRITE_F);
4369 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4370 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4371 			 NULL);
4372 	if (ret < 0)
4373 		goto bye;
4374 
4375 	/*
4376 	 * Tweak configuration based on system architecture, module
4377 	 * parameters, etc.
4378 	 */
4379 	ret = adap_init0_tweaks(adapter);
4380 	if (ret < 0)
4381 		goto bye;
4382 
4383 	/* We will proceed even if HMA init fails. */
4384 	ret = adap_config_hma(adapter);
4385 	if (ret)
4386 		dev_err(adapter->pdev_dev,
4387 			"HMA configuration failed with error %d\n", ret);
4388 
4389 	if (is_t6(adapter->params.chip)) {
4390 		adap_config_hpfilter(adapter);
4391 		ret = setup_ppod_edram(adapter);
4392 		if (!ret)
4393 			dev_info(adapter->pdev_dev, "Successfully enabled "
4394 				 "ppod edram feature\n");
4395 	}
4396 
4397 	/*
4398 	 * And finally tell the firmware to initialize itself using the
4399 	 * parameters from the Configuration File.
4400 	 */
4401 	ret = t4_fw_initialize(adapter, adapter->mbox);
4402 	if (ret < 0)
4403 		goto bye;
4404 
4405 	/* Emit Firmware Configuration File information and return
4406 	 * successfully.
4407 	 */
4408 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4409 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4410 		 config_name, finiver, cfcsum);
4411 	return 0;
4412 
4413 	/*
4414 	 * Something bad happened.  Return the error ...  (If the "error"
4415 	 * is that there's no Configuration File on the adapter we don't
4416 	 * want to issue a warning since this is fairly common.)
4417 	 */
4418 bye:
4419 	if (config_issued && ret != -ENOENT)
4420 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4421 			 config_name, -ret);
4422 	return ret;
4423 }
4424 
4425 static struct fw_info fw_info_array[] = {
4426 	{
4427 		.chip = CHELSIO_T4,
4428 		.fs_name = FW4_CFNAME,
4429 		.fw_mod_name = FW4_FNAME,
4430 		.fw_hdr = {
4431 			.chip = FW_HDR_CHIP_T4,
4432 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4433 			.intfver_nic = FW_INTFVER(T4, NIC),
4434 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4435 			.intfver_ri = FW_INTFVER(T4, RI),
4436 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4437 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4438 		},
4439 	}, {
4440 		.chip = CHELSIO_T5,
4441 		.fs_name = FW5_CFNAME,
4442 		.fw_mod_name = FW5_FNAME,
4443 		.fw_hdr = {
4444 			.chip = FW_HDR_CHIP_T5,
4445 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4446 			.intfver_nic = FW_INTFVER(T5, NIC),
4447 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4448 			.intfver_ri = FW_INTFVER(T5, RI),
4449 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4450 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4451 		},
4452 	}, {
4453 		.chip = CHELSIO_T6,
4454 		.fs_name = FW6_CFNAME,
4455 		.fw_mod_name = FW6_FNAME,
4456 		.fw_hdr = {
4457 			.chip = FW_HDR_CHIP_T6,
4458 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4459 			.intfver_nic = FW_INTFVER(T6, NIC),
4460 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4461 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4462 			.intfver_ri = FW_INTFVER(T6, RI),
4463 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4464 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4465 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4466 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4467 		},
4468 	}
4469 
4470 };
4471 
4472 static struct fw_info *find_fw_info(int chip)
4473 {
4474 	int i;
4475 
4476 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4477 		if (fw_info_array[i].chip == chip)
4478 			return &fw_info_array[i];
4479 	}
4480 	return NULL;
4481 }
4482 
4483 /*
4484  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4485  */
4486 static int adap_init0(struct adapter *adap, int vpd_skip)
4487 {
4488 	struct fw_caps_config_cmd caps_cmd;
4489 	u32 params[7], val[7];
4490 	enum dev_state state;
4491 	u32 v, port_vec;
4492 	int reset = 1;
4493 	int ret;
4494 
4495 	/* Grab Firmware Device Log parameters as early as possible so we have
4496 	 * access to it for debugging, etc.
4497 	 */
4498 	ret = t4_init_devlog_params(adap);
4499 	if (ret < 0)
4500 		return ret;
4501 
4502 	/* Contact FW, advertising Master capability */
4503 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4504 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4505 	if (ret < 0) {
4506 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4507 			ret);
4508 		return ret;
4509 	}
4510 	if (ret == adap->mbox)
4511 		adap->flags |= CXGB4_MASTER_PF;
4512 
4513 	/*
4514 	 * If we're the Master PF Driver and the device is uninitialized,
4515 	 * then let's consider upgrading the firmware ...  (We always want
4516 	 * to check the firmware version number in order to A. get it for
4517 	 * later reporting and B. to warn if the currently loaded firmware
4518 	 * is excessively mismatched relative to the driver.)
4519 	 */
4520 
4521 	t4_get_version_info(adap);
4522 	ret = t4_check_fw_version(adap);
4523 	/* If firmware is too old (not supported by driver) force an update. */
4524 	if (ret)
4525 		state = DEV_STATE_UNINIT;
4526 	if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4527 		struct fw_info *fw_info;
4528 		struct fw_hdr *card_fw;
4529 		const struct firmware *fw;
4530 		const u8 *fw_data = NULL;
4531 		unsigned int fw_size = 0;
4532 
4533 		/* This is the firmware whose headers the driver was compiled
4534 		 * against
4535 		 */
4536 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4537 		if (fw_info == NULL) {
4538 			dev_err(adap->pdev_dev,
4539 				"unable to get firmware info for chip %d.\n",
4540 				CHELSIO_CHIP_VERSION(adap->params.chip));
4541 			return -EINVAL;
4542 		}
4543 
4544 		/* allocate memory to read the header of the firmware on the
4545 		 * card
4546 		 */
4547 		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4548 		if (!card_fw) {
4549 			ret = -ENOMEM;
4550 			goto bye;
4551 		}
4552 
4553 		/* Get FW from from /lib/firmware/ */
4554 		ret = request_firmware(&fw, fw_info->fw_mod_name,
4555 				       adap->pdev_dev);
4556 		if (ret < 0) {
4557 			dev_err(adap->pdev_dev,
4558 				"unable to load firmware image %s, error %d\n",
4559 				fw_info->fw_mod_name, ret);
4560 		} else {
4561 			fw_data = fw->data;
4562 			fw_size = fw->size;
4563 		}
4564 
4565 		/* upgrade FW logic */
4566 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4567 				 state, &reset);
4568 
4569 		/* Cleaning up */
4570 		release_firmware(fw);
4571 		kvfree(card_fw);
4572 
4573 		if (ret < 0)
4574 			goto bye;
4575 	}
4576 
4577 	/* If the firmware is initialized already, emit a simply note to that
4578 	 * effect. Otherwise, it's time to try initializing the adapter.
4579 	 */
4580 	if (state == DEV_STATE_INIT) {
4581 		ret = adap_config_hma(adap);
4582 		if (ret)
4583 			dev_err(adap->pdev_dev,
4584 				"HMA configuration failed with error %d\n",
4585 				ret);
4586 		dev_info(adap->pdev_dev, "Coming up as %s: "\
4587 			 "Adapter already initialized\n",
4588 			 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4589 	} else {
4590 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4591 			 "Initializing adapter\n");
4592 
4593 		/* Find out whether we're dealing with a version of the
4594 		 * firmware which has configuration file support.
4595 		 */
4596 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4597 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4598 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4599 				      params, val);
4600 
4601 		/* If the firmware doesn't support Configuration Files,
4602 		 * return an error.
4603 		 */
4604 		if (ret < 0) {
4605 			dev_err(adap->pdev_dev, "firmware doesn't support "
4606 				"Firmware Configuration Files\n");
4607 			goto bye;
4608 		}
4609 
4610 		/* The firmware provides us with a memory buffer where we can
4611 		 * load a Configuration File from the host if we want to
4612 		 * override the Configuration File in flash.
4613 		 */
4614 		ret = adap_init0_config(adap, reset);
4615 		if (ret == -ENOENT) {
4616 			dev_err(adap->pdev_dev, "no Configuration File "
4617 				"present on adapter.\n");
4618 			goto bye;
4619 		}
4620 		if (ret < 0) {
4621 			dev_err(adap->pdev_dev, "could not initialize "
4622 				"adapter, error %d\n", -ret);
4623 			goto bye;
4624 		}
4625 	}
4626 
4627 	/* Now that we've successfully configured and initialized the adapter
4628 	 * (or found it already initialized), we can ask the Firmware what
4629 	 * resources it has provisioned for us.
4630 	 */
4631 	ret = t4_get_pfres(adap);
4632 	if (ret) {
4633 		dev_err(adap->pdev_dev,
4634 			"Unable to retrieve resource provisioning information\n");
4635 		goto bye;
4636 	}
4637 
4638 	/* Grab VPD parameters.  This should be done after we establish a
4639 	 * connection to the firmware since some of the VPD parameters
4640 	 * (notably the Core Clock frequency) are retrieved via requests to
4641 	 * the firmware.  On the other hand, we need these fairly early on
4642 	 * so we do this right after getting ahold of the firmware.
4643 	 *
4644 	 * We need to do this after initializing the adapter because someone
4645 	 * could have FLASHed a new VPD which won't be read by the firmware
4646 	 * until we do the RESET ...
4647 	 */
4648 	if (!vpd_skip) {
4649 		ret = t4_get_vpd_params(adap, &adap->params.vpd);
4650 		if (ret < 0)
4651 			goto bye;
4652 	}
4653 
4654 	/* Find out what ports are available to us.  Note that we need to do
4655 	 * this before calling adap_init0_no_config() since it needs nports
4656 	 * and portvec ...
4657 	 */
4658 	v =
4659 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4660 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4661 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4662 	if (ret < 0)
4663 		goto bye;
4664 
4665 	adap->params.nports = hweight32(port_vec);
4666 	adap->params.portvec = port_vec;
4667 
4668 	/* Give the SGE code a chance to pull in anything that it needs ...
4669 	 * Note that this must be called after we retrieve our VPD parameters
4670 	 * in order to know how to convert core ticks to seconds, etc.
4671 	 */
4672 	ret = t4_sge_init(adap);
4673 	if (ret < 0)
4674 		goto bye;
4675 
4676 	/* Grab the SGE Doorbell Queue Timer values.  If successful, that
4677 	 * indicates that the Firmware and Hardware support this.
4678 	 */
4679 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4680 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4681 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4682 			      1, params, val);
4683 
4684 	if (!ret) {
4685 		adap->sge.dbqtimer_tick = val[0];
4686 		ret = t4_read_sge_dbqtimers(adap,
4687 					    ARRAY_SIZE(adap->sge.dbqtimer_val),
4688 					    adap->sge.dbqtimer_val);
4689 	}
4690 
4691 	if (!ret)
4692 		adap->flags |= CXGB4_SGE_DBQ_TIMER;
4693 
4694 	if (is_bypass_device(adap->pdev->device))
4695 		adap->params.bypass = 1;
4696 
4697 	/*
4698 	 * Grab some of our basic fundamental operating parameters.
4699 	 */
4700 	params[0] = FW_PARAM_PFVF(EQ_START);
4701 	params[1] = FW_PARAM_PFVF(L2T_START);
4702 	params[2] = FW_PARAM_PFVF(L2T_END);
4703 	params[3] = FW_PARAM_PFVF(FILTER_START);
4704 	params[4] = FW_PARAM_PFVF(FILTER_END);
4705 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
4706 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4707 	if (ret < 0)
4708 		goto bye;
4709 	adap->sge.egr_start = val[0];
4710 	adap->l2t_start = val[1];
4711 	adap->l2t_end = val[2];
4712 	adap->tids.ftid_base = val[3];
4713 	adap->tids.nftids = val[4] - val[3] + 1;
4714 	adap->sge.ingr_start = val[5];
4715 
4716 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4717 		params[0] = FW_PARAM_PFVF(HPFILTER_START);
4718 		params[1] = FW_PARAM_PFVF(HPFILTER_END);
4719 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4720 				      params, val);
4721 		if (ret < 0)
4722 			goto bye;
4723 
4724 		adap->tids.hpftid_base = val[0];
4725 		adap->tids.nhpftids = val[1] - val[0] + 1;
4726 
4727 		/* Read the raw mps entries. In T6, the last 2 tcam entries
4728 		 * are reserved for raw mac addresses (rawf = 2, one per port).
4729 		 */
4730 		params[0] = FW_PARAM_PFVF(RAWF_START);
4731 		params[1] = FW_PARAM_PFVF(RAWF_END);
4732 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4733 				      params, val);
4734 		if (ret == 0) {
4735 			adap->rawf_start = val[0];
4736 			adap->rawf_cnt = val[1] - val[0] + 1;
4737 		}
4738 
4739 		adap->tids.tid_base =
4740 			t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
4741 	}
4742 
4743 	/* qids (ingress/egress) returned from firmware can be anywhere
4744 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4745 	 * Hence driver needs to allocate memory for this range to
4746 	 * store the queue info. Get the highest IQFLINT/EQ index returned
4747 	 * in FW_EQ_*_CMD.alloc command.
4748 	 */
4749 	params[0] = FW_PARAM_PFVF(EQ_END);
4750 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
4751 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4752 	if (ret < 0)
4753 		goto bye;
4754 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4755 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4756 
4757 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4758 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
4759 	if (!adap->sge.egr_map) {
4760 		ret = -ENOMEM;
4761 		goto bye;
4762 	}
4763 
4764 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4765 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4766 	if (!adap->sge.ingr_map) {
4767 		ret = -ENOMEM;
4768 		goto bye;
4769 	}
4770 
4771 	/* Allocate the memory for the vaious egress queue bitmaps
4772 	 * ie starving_fl, txq_maperr and blocked_fl.
4773 	 */
4774 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4775 					sizeof(long), GFP_KERNEL);
4776 	if (!adap->sge.starving_fl) {
4777 		ret = -ENOMEM;
4778 		goto bye;
4779 	}
4780 
4781 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4782 				       sizeof(long), GFP_KERNEL);
4783 	if (!adap->sge.txq_maperr) {
4784 		ret = -ENOMEM;
4785 		goto bye;
4786 	}
4787 
4788 #ifdef CONFIG_DEBUG_FS
4789 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4790 				       sizeof(long), GFP_KERNEL);
4791 	if (!adap->sge.blocked_fl) {
4792 		ret = -ENOMEM;
4793 		goto bye;
4794 	}
4795 #endif
4796 
4797 	params[0] = FW_PARAM_PFVF(CLIP_START);
4798 	params[1] = FW_PARAM_PFVF(CLIP_END);
4799 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4800 	if (ret < 0)
4801 		goto bye;
4802 	adap->clipt_start = val[0];
4803 	adap->clipt_end = val[1];
4804 
4805 	/* Get the supported number of traffic classes */
4806 	params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
4807 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4808 	if (ret < 0) {
4809 		/* We couldn't retrieve the number of Traffic Classes
4810 		 * supported by the hardware/firmware. So we hard
4811 		 * code it here.
4812 		 */
4813 		adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4814 	} else {
4815 		adap->params.nsched_cls = val[0];
4816 	}
4817 
4818 	/* query params related to active filter region */
4819 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4820 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4821 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4822 	/* If Active filter size is set we enable establishing
4823 	 * offload connection through firmware work request
4824 	 */
4825 	if ((val[0] != val[1]) && (ret >= 0)) {
4826 		adap->flags |= CXGB4_FW_OFLD_CONN;
4827 		adap->tids.aftid_base = val[0];
4828 		adap->tids.aftid_end = val[1];
4829 	}
4830 
4831 	/* If we're running on newer firmware, let it know that we're
4832 	 * prepared to deal with encapsulated CPL messages.  Older
4833 	 * firmware won't understand this and we'll just get
4834 	 * unencapsulated messages ...
4835 	 */
4836 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4837 	val[0] = 1;
4838 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4839 
4840 	/*
4841 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4842 	 * capability.  Earlier versions of the firmware didn't have the
4843 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4844 	 * permission to use ULPTX MEMWRITE DSGL.
4845 	 */
4846 	if (is_t4(adap->params.chip)) {
4847 		adap->params.ulptx_memwrite_dsgl = false;
4848 	} else {
4849 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4850 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4851 				      1, params, val);
4852 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4853 	}
4854 
4855 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4856 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4857 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4858 			      1, params, val);
4859 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4860 
4861 	/* See if FW supports FW_FILTER2 work request */
4862 	if (is_t4(adap->params.chip)) {
4863 		adap->params.filter2_wr_support = 0;
4864 	} else {
4865 		params[0] = FW_PARAM_DEV(FILTER2_WR);
4866 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4867 				      1, params, val);
4868 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4869 	}
4870 
4871 	/* Check if FW supports returning vin and smt index.
4872 	 * If this is not supported, driver will interpret
4873 	 * these values from viid.
4874 	 */
4875 	params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
4876 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4877 			      1, params, val);
4878 	adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
4879 
4880 	/*
4881 	 * Get device capabilities so we can determine what resources we need
4882 	 * to manage.
4883 	 */
4884 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4885 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4886 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
4887 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4888 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4889 			 &caps_cmd);
4890 	if (ret < 0)
4891 		goto bye;
4892 
4893 	/* hash filter has some mandatory register settings to be tested and for
4894 	 * that it needs to test whether offload is enabled or not, hence
4895 	 * checking and setting it here.
4896 	 */
4897 	if (caps_cmd.ofldcaps)
4898 		adap->params.offload = 1;
4899 
4900 	if (caps_cmd.ofldcaps ||
4901 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
4902 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
4903 		/* query offload-related parameters */
4904 		params[0] = FW_PARAM_DEV(NTID);
4905 		params[1] = FW_PARAM_PFVF(SERVER_START);
4906 		params[2] = FW_PARAM_PFVF(SERVER_END);
4907 		params[3] = FW_PARAM_PFVF(TDDP_START);
4908 		params[4] = FW_PARAM_PFVF(TDDP_END);
4909 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4910 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4911 				      params, val);
4912 		if (ret < 0)
4913 			goto bye;
4914 		adap->tids.ntids = val[0];
4915 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4916 		adap->tids.stid_base = val[1];
4917 		adap->tids.nstids = val[2] - val[1] + 1;
4918 		/*
4919 		 * Setup server filter region. Divide the available filter
4920 		 * region into two parts. Regular filters get 1/3rd and server
4921 		 * filters get 2/3rd part. This is only enabled if workarond
4922 		 * path is enabled.
4923 		 * 1. For regular filters.
4924 		 * 2. Server filter: This are special filters which are used
4925 		 * to redirect SYN packets to offload queue.
4926 		 */
4927 		if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
4928 			adap->tids.sftid_base = adap->tids.ftid_base +
4929 					DIV_ROUND_UP(adap->tids.nftids, 3);
4930 			adap->tids.nsftids = adap->tids.nftids -
4931 					 DIV_ROUND_UP(adap->tids.nftids, 3);
4932 			adap->tids.nftids = adap->tids.sftid_base -
4933 						adap->tids.ftid_base;
4934 		}
4935 		adap->vres.ddp.start = val[3];
4936 		adap->vres.ddp.size = val[4] - val[3] + 1;
4937 		adap->params.ofldq_wr_cred = val[5];
4938 
4939 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4940 			init_hash_filter(adap);
4941 		} else {
4942 			adap->num_ofld_uld += 1;
4943 		}
4944 
4945 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
4946 			params[0] = FW_PARAM_PFVF(ETHOFLD_START);
4947 			params[1] = FW_PARAM_PFVF(ETHOFLD_END);
4948 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4949 					      params, val);
4950 			if (!ret) {
4951 				adap->tids.eotid_base = val[0];
4952 				adap->tids.neotids = min_t(u32, MAX_ATIDS,
4953 							   val[1] - val[0] + 1);
4954 				adap->params.ethofld = 1;
4955 			}
4956 		}
4957 	}
4958 	if (caps_cmd.rdmacaps) {
4959 		params[0] = FW_PARAM_PFVF(STAG_START);
4960 		params[1] = FW_PARAM_PFVF(STAG_END);
4961 		params[2] = FW_PARAM_PFVF(RQ_START);
4962 		params[3] = FW_PARAM_PFVF(RQ_END);
4963 		params[4] = FW_PARAM_PFVF(PBL_START);
4964 		params[5] = FW_PARAM_PFVF(PBL_END);
4965 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4966 				      params, val);
4967 		if (ret < 0)
4968 			goto bye;
4969 		adap->vres.stag.start = val[0];
4970 		adap->vres.stag.size = val[1] - val[0] + 1;
4971 		adap->vres.rq.start = val[2];
4972 		adap->vres.rq.size = val[3] - val[2] + 1;
4973 		adap->vres.pbl.start = val[4];
4974 		adap->vres.pbl.size = val[5] - val[4] + 1;
4975 
4976 		params[0] = FW_PARAM_PFVF(SRQ_START);
4977 		params[1] = FW_PARAM_PFVF(SRQ_END);
4978 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4979 				      params, val);
4980 		if (!ret) {
4981 			adap->vres.srq.start = val[0];
4982 			adap->vres.srq.size = val[1] - val[0] + 1;
4983 		}
4984 		if (adap->vres.srq.size) {
4985 			adap->srq = t4_init_srq(adap->vres.srq.size);
4986 			if (!adap->srq)
4987 				dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4988 		}
4989 
4990 		params[0] = FW_PARAM_PFVF(SQRQ_START);
4991 		params[1] = FW_PARAM_PFVF(SQRQ_END);
4992 		params[2] = FW_PARAM_PFVF(CQ_START);
4993 		params[3] = FW_PARAM_PFVF(CQ_END);
4994 		params[4] = FW_PARAM_PFVF(OCQ_START);
4995 		params[5] = FW_PARAM_PFVF(OCQ_END);
4996 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4997 				      val);
4998 		if (ret < 0)
4999 			goto bye;
5000 		adap->vres.qp.start = val[0];
5001 		adap->vres.qp.size = val[1] - val[0] + 1;
5002 		adap->vres.cq.start = val[2];
5003 		adap->vres.cq.size = val[3] - val[2] + 1;
5004 		adap->vres.ocq.start = val[4];
5005 		adap->vres.ocq.size = val[5] - val[4] + 1;
5006 
5007 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5008 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5009 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5010 				      val);
5011 		if (ret < 0) {
5012 			adap->params.max_ordird_qp = 8;
5013 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5014 			ret = 0;
5015 		} else {
5016 			adap->params.max_ordird_qp = val[0];
5017 			adap->params.max_ird_adapter = val[1];
5018 		}
5019 		dev_info(adap->pdev_dev,
5020 			 "max_ordird_qp %d max_ird_adapter %d\n",
5021 			 adap->params.max_ordird_qp,
5022 			 adap->params.max_ird_adapter);
5023 
5024 		/* Enable write_with_immediate if FW supports it */
5025 		params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5026 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5027 				      val);
5028 		adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5029 
5030 		/* Enable write_cmpl if FW supports it */
5031 		params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5032 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5033 				      val);
5034 		adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5035 		adap->num_ofld_uld += 2;
5036 	}
5037 	if (caps_cmd.iscsicaps) {
5038 		params[0] = FW_PARAM_PFVF(ISCSI_START);
5039 		params[1] = FW_PARAM_PFVF(ISCSI_END);
5040 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5041 				      params, val);
5042 		if (ret < 0)
5043 			goto bye;
5044 		adap->vres.iscsi.start = val[0];
5045 		adap->vres.iscsi.size = val[1] - val[0] + 1;
5046 		if (is_t6(adap->params.chip)) {
5047 			params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5048 			params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5049 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5050 					      params, val);
5051 			if (!ret) {
5052 				adap->vres.ppod_edram.start = val[0];
5053 				adap->vres.ppod_edram.size =
5054 					val[1] - val[0] + 1;
5055 
5056 				dev_info(adap->pdev_dev,
5057 					 "ppod edram start 0x%x end 0x%x size 0x%x\n",
5058 					 val[0], val[1],
5059 					 adap->vres.ppod_edram.size);
5060 			}
5061 		}
5062 		/* LIO target and cxgb4i initiaitor */
5063 		adap->num_ofld_uld += 2;
5064 	}
5065 	if (caps_cmd.cryptocaps) {
5066 		if (ntohs(caps_cmd.cryptocaps) &
5067 		    FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5068 			params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5069 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5070 					      2, params, val);
5071 			if (ret < 0) {
5072 				if (ret != -EINVAL)
5073 					goto bye;
5074 			} else {
5075 				adap->vres.ncrypto_fc = val[0];
5076 			}
5077 			adap->num_ofld_uld += 1;
5078 		}
5079 		if (ntohs(caps_cmd.cryptocaps) &
5080 		    FW_CAPS_CONFIG_TLS_INLINE) {
5081 			params[0] = FW_PARAM_PFVF(TLS_START);
5082 			params[1] = FW_PARAM_PFVF(TLS_END);
5083 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5084 					      2, params, val);
5085 			if (ret < 0)
5086 				goto bye;
5087 			adap->vres.key.start = val[0];
5088 			adap->vres.key.size = val[1] - val[0] + 1;
5089 			adap->num_uld += 1;
5090 		}
5091 		adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5092 	}
5093 
5094 	/* The MTU/MSS Table is initialized by now, so load their values.  If
5095 	 * we're initializing the adapter, then we'll make any modifications
5096 	 * we want to the MTU/MSS Table and also initialize the congestion
5097 	 * parameters.
5098 	 */
5099 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5100 	if (state != DEV_STATE_INIT) {
5101 		int i;
5102 
5103 		/* The default MTU Table contains values 1492 and 1500.
5104 		 * However, for TCP, it's better to have two values which are
5105 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5106 		 * This allows us to have a TCP Data Payload which is a
5107 		 * multiple of 8 regardless of what combination of TCP Options
5108 		 * are in use (always a multiple of 4 bytes) which is
5109 		 * important for performance reasons.  For instance, if no
5110 		 * options are in use, then we have a 20-byte IP header and a
5111 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
5112 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5113 		 * which is not a multiple of 8.  So using an MSS of 1488 in
5114 		 * this case results in a TCP Data Payload of 1448 bytes which
5115 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5116 		 * Stamps have been negotiated, then an MTU of 1500 bytes
5117 		 * results in a TCP Data Payload of 1448 bytes which, as
5118 		 * above, is a multiple of 8 bytes ...
5119 		 */
5120 		for (i = 0; i < NMTUS; i++)
5121 			if (adap->params.mtus[i] == 1492) {
5122 				adap->params.mtus[i] = 1488;
5123 				break;
5124 			}
5125 
5126 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5127 			     adap->params.b_wnd);
5128 	}
5129 	t4_init_sge_params(adap);
5130 	adap->flags |= CXGB4_FW_OK;
5131 	t4_init_tp_params(adap, true);
5132 	return 0;
5133 
5134 	/*
5135 	 * Something bad happened.  If a command timed out or failed with EIO
5136 	 * FW does not operate within its spec or something catastrophic
5137 	 * happened to HW/FW, stop issuing commands.
5138 	 */
5139 bye:
5140 	adap_free_hma_mem(adap);
5141 	kfree(adap->sge.egr_map);
5142 	kfree(adap->sge.ingr_map);
5143 	kfree(adap->sge.starving_fl);
5144 	kfree(adap->sge.txq_maperr);
5145 #ifdef CONFIG_DEBUG_FS
5146 	kfree(adap->sge.blocked_fl);
5147 #endif
5148 	if (ret != -ETIMEDOUT && ret != -EIO)
5149 		t4_fw_bye(adap, adap->mbox);
5150 	return ret;
5151 }
5152 
5153 /* EEH callbacks */
5154 
5155 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5156 					 pci_channel_state_t state)
5157 {
5158 	int i;
5159 	struct adapter *adap = pci_get_drvdata(pdev);
5160 
5161 	if (!adap)
5162 		goto out;
5163 
5164 	rtnl_lock();
5165 	adap->flags &= ~CXGB4_FW_OK;
5166 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5167 	spin_lock(&adap->stats_lock);
5168 	for_each_port(adap, i) {
5169 		struct net_device *dev = adap->port[i];
5170 		if (dev) {
5171 			netif_device_detach(dev);
5172 			netif_carrier_off(dev);
5173 		}
5174 	}
5175 	spin_unlock(&adap->stats_lock);
5176 	disable_interrupts(adap);
5177 	if (adap->flags & CXGB4_FULL_INIT_DONE)
5178 		cxgb_down(adap);
5179 	rtnl_unlock();
5180 	if ((adap->flags & CXGB4_DEV_ENABLED)) {
5181 		pci_disable_device(pdev);
5182 		adap->flags &= ~CXGB4_DEV_ENABLED;
5183 	}
5184 out:	return state == pci_channel_io_perm_failure ?
5185 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5186 }
5187 
5188 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5189 {
5190 	int i, ret;
5191 	struct fw_caps_config_cmd c;
5192 	struct adapter *adap = pci_get_drvdata(pdev);
5193 
5194 	if (!adap) {
5195 		pci_restore_state(pdev);
5196 		pci_save_state(pdev);
5197 		return PCI_ERS_RESULT_RECOVERED;
5198 	}
5199 
5200 	if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5201 		if (pci_enable_device(pdev)) {
5202 			dev_err(&pdev->dev, "Cannot reenable PCI "
5203 					    "device after reset\n");
5204 			return PCI_ERS_RESULT_DISCONNECT;
5205 		}
5206 		adap->flags |= CXGB4_DEV_ENABLED;
5207 	}
5208 
5209 	pci_set_master(pdev);
5210 	pci_restore_state(pdev);
5211 	pci_save_state(pdev);
5212 
5213 	if (t4_wait_dev_ready(adap->regs) < 0)
5214 		return PCI_ERS_RESULT_DISCONNECT;
5215 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5216 		return PCI_ERS_RESULT_DISCONNECT;
5217 	adap->flags |= CXGB4_FW_OK;
5218 	if (adap_init1(adap, &c))
5219 		return PCI_ERS_RESULT_DISCONNECT;
5220 
5221 	for_each_port(adap, i) {
5222 		struct port_info *pi = adap2pinfo(adap, i);
5223 		u8 vivld = 0, vin = 0;
5224 
5225 		ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5226 				  NULL, NULL, &vivld, &vin);
5227 		if (ret < 0)
5228 			return PCI_ERS_RESULT_DISCONNECT;
5229 		pi->viid = ret;
5230 		pi->xact_addr_filt = -1;
5231 		/* If fw supports returning the VIN as part of FW_VI_CMD,
5232 		 * save the returned values.
5233 		 */
5234 		if (adap->params.viid_smt_extn_support) {
5235 			pi->vivld = vivld;
5236 			pi->vin = vin;
5237 		} else {
5238 			/* Retrieve the values from VIID */
5239 			pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5240 			pi->vin = FW_VIID_VIN_G(pi->viid);
5241 		}
5242 	}
5243 
5244 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5245 		     adap->params.b_wnd);
5246 	setup_memwin(adap);
5247 	if (cxgb_up(adap))
5248 		return PCI_ERS_RESULT_DISCONNECT;
5249 	return PCI_ERS_RESULT_RECOVERED;
5250 }
5251 
5252 static void eeh_resume(struct pci_dev *pdev)
5253 {
5254 	int i;
5255 	struct adapter *adap = pci_get_drvdata(pdev);
5256 
5257 	if (!adap)
5258 		return;
5259 
5260 	rtnl_lock();
5261 	for_each_port(adap, i) {
5262 		struct net_device *dev = adap->port[i];
5263 		if (dev) {
5264 			if (netif_running(dev)) {
5265 				link_start(dev);
5266 				cxgb_set_rxmode(dev);
5267 			}
5268 			netif_device_attach(dev);
5269 		}
5270 	}
5271 	rtnl_unlock();
5272 }
5273 
5274 static void eeh_reset_prepare(struct pci_dev *pdev)
5275 {
5276 	struct adapter *adapter = pci_get_drvdata(pdev);
5277 	int i;
5278 
5279 	if (adapter->pf != 4)
5280 		return;
5281 
5282 	adapter->flags &= ~CXGB4_FW_OK;
5283 
5284 	notify_ulds(adapter, CXGB4_STATE_DOWN);
5285 
5286 	for_each_port(adapter, i)
5287 		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5288 			cxgb_close(adapter->port[i]);
5289 
5290 	disable_interrupts(adapter);
5291 	cxgb4_free_mps_ref_entries(adapter);
5292 
5293 	adap_free_hma_mem(adapter);
5294 
5295 	if (adapter->flags & CXGB4_FULL_INIT_DONE)
5296 		cxgb_down(adapter);
5297 }
5298 
5299 static void eeh_reset_done(struct pci_dev *pdev)
5300 {
5301 	struct adapter *adapter = pci_get_drvdata(pdev);
5302 	int err, i;
5303 
5304 	if (adapter->pf != 4)
5305 		return;
5306 
5307 	err = t4_wait_dev_ready(adapter->regs);
5308 	if (err < 0) {
5309 		dev_err(adapter->pdev_dev,
5310 			"Device not ready, err %d", err);
5311 		return;
5312 	}
5313 
5314 	setup_memwin(adapter);
5315 
5316 	err = adap_init0(adapter, 1);
5317 	if (err) {
5318 		dev_err(adapter->pdev_dev,
5319 			"Adapter init failed, err %d", err);
5320 		return;
5321 	}
5322 
5323 	setup_memwin_rdma(adapter);
5324 
5325 	if (adapter->flags & CXGB4_FW_OK) {
5326 		err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5327 		if (err) {
5328 			dev_err(adapter->pdev_dev,
5329 				"Port init failed, err %d", err);
5330 			return;
5331 		}
5332 	}
5333 
5334 	err = cfg_queues(adapter);
5335 	if (err) {
5336 		dev_err(adapter->pdev_dev,
5337 			"Config queues failed, err %d", err);
5338 		return;
5339 	}
5340 
5341 	cxgb4_init_mps_ref_entries(adapter);
5342 
5343 	err = setup_fw_sge_queues(adapter);
5344 	if (err) {
5345 		dev_err(adapter->pdev_dev,
5346 			"FW sge queue allocation failed, err %d", err);
5347 		return;
5348 	}
5349 
5350 	for_each_port(adapter, i)
5351 		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5352 			cxgb_open(adapter->port[i]);
5353 }
5354 
5355 static const struct pci_error_handlers cxgb4_eeh = {
5356 	.error_detected = eeh_err_detected,
5357 	.slot_reset     = eeh_slot_reset,
5358 	.resume         = eeh_resume,
5359 	.reset_prepare  = eeh_reset_prepare,
5360 	.reset_done     = eeh_reset_done,
5361 };
5362 
5363 /* Return true if the Link Configuration supports "High Speeds" (those greater
5364  * than 1Gb/s).
5365  */
5366 static inline bool is_x_10g_port(const struct link_config *lc)
5367 {
5368 	unsigned int speeds, high_speeds;
5369 
5370 	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5371 	high_speeds = speeds &
5372 			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5373 
5374 	return high_speeds != 0;
5375 }
5376 
5377 /* Perform default configuration of DMA queues depending on the number and type
5378  * of ports we found and the number of available CPUs.  Most settings can be
5379  * modified by the admin prior to actual use.
5380  */
5381 static int cfg_queues(struct adapter *adap)
5382 {
5383 	u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5384 	u32 niqflint, neq, num_ulds;
5385 	struct sge *s = &adap->sge;
5386 	u32 i, n10g = 0, qidx = 0;
5387 #ifndef CONFIG_CHELSIO_T4_DCB
5388 	int q10g = 0;
5389 #endif
5390 
5391 	/* Reduce memory usage in kdump environment, disable all offload. */
5392 	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5393 		adap->params.offload = 0;
5394 		adap->params.crypto = 0;
5395 		adap->params.ethofld = 0;
5396 	}
5397 
5398 	/* Calculate the number of Ethernet Queue Sets available based on
5399 	 * resources provisioned for us.  We always have an Asynchronous
5400 	 * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
5401 	 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5402 	 * Ingress Queue.  Meanwhile, we need two Egress Queues for each
5403 	 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5404 	 *
5405 	 * Note that we should also take into account all of the various
5406 	 * Offload Queues.  But, in any situation where we're operating in
5407 	 * a Resource Constrained Provisioning environment, doing any Offload
5408 	 * at all is problematic ...
5409 	 */
5410 	niqflint = adap->params.pfres.niqflint - 1;
5411 	if (!(adap->flags & CXGB4_USING_MSIX))
5412 		niqflint--;
5413 	neq = adap->params.pfres.neq / 2;
5414 	avail_qsets = min(niqflint, neq);
5415 
5416 	if (avail_qsets < adap->params.nports) {
5417 		dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5418 			avail_qsets, adap->params.nports);
5419 		return -ENOMEM;
5420 	}
5421 
5422 	/* Count the number of 10Gb/s or better ports */
5423 	for_each_port(adap, i)
5424 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5425 
5426 	avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5427 #ifdef CONFIG_CHELSIO_T4_DCB
5428 	/* For Data Center Bridging support we need to be able to support up
5429 	 * to 8 Traffic Priorities; each of which will be assigned to its
5430 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
5431 	 */
5432 	if (adap->params.nports * 8 > avail_eth_qsets) {
5433 		dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5434 			avail_eth_qsets, adap->params.nports * 8);
5435 		return -ENOMEM;
5436 	}
5437 
5438 	for_each_port(adap, i) {
5439 		struct port_info *pi = adap2pinfo(adap, i);
5440 
5441 		pi->first_qset = qidx;
5442 		pi->nqsets = is_kdump_kernel() ? 1 : 8;
5443 		qidx += pi->nqsets;
5444 	}
5445 #else /* !CONFIG_CHELSIO_T4_DCB */
5446 	/* We default to 1 queue per non-10G port and up to # of cores queues
5447 	 * per 10G port.
5448 	 */
5449 	if (n10g)
5450 		q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5451 	if (q10g > netif_get_num_default_rss_queues())
5452 		q10g = netif_get_num_default_rss_queues();
5453 
5454 	if (is_kdump_kernel())
5455 		q10g = 1;
5456 
5457 	for_each_port(adap, i) {
5458 		struct port_info *pi = adap2pinfo(adap, i);
5459 
5460 		pi->first_qset = qidx;
5461 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
5462 		qidx += pi->nqsets;
5463 	}
5464 #endif /* !CONFIG_CHELSIO_T4_DCB */
5465 
5466 	s->ethqsets = qidx;
5467 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5468 	avail_qsets -= qidx;
5469 
5470 	if (is_uld(adap)) {
5471 		/* For offload we use 1 queue/channel if all ports are up to 1G,
5472 		 * otherwise we divide all available queues amongst the channels
5473 		 * capped by the number of available cores.
5474 		 */
5475 		num_ulds = adap->num_uld + adap->num_ofld_uld;
5476 		i = min_t(u32, MAX_OFLD_QSETS, num_online_cpus());
5477 		avail_uld_qsets = roundup(i, adap->params.nports);
5478 		if (avail_qsets < num_ulds * adap->params.nports) {
5479 			adap->params.offload = 0;
5480 			adap->params.crypto = 0;
5481 			s->ofldqsets = 0;
5482 		} else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5483 			s->ofldqsets = adap->params.nports;
5484 		} else {
5485 			s->ofldqsets = avail_uld_qsets;
5486 		}
5487 
5488 		avail_qsets -= num_ulds * s->ofldqsets;
5489 	}
5490 
5491 	/* ETHOFLD Queues used for QoS offload should follow same
5492 	 * allocation scheme as normal Ethernet Queues.
5493 	 */
5494 	if (is_ethofld(adap)) {
5495 		if (avail_qsets < s->max_ethqsets) {
5496 			adap->params.ethofld = 0;
5497 			s->eoqsets = 0;
5498 		} else {
5499 			s->eoqsets = s->max_ethqsets;
5500 		}
5501 		avail_qsets -= s->eoqsets;
5502 	}
5503 
5504 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5505 		struct sge_eth_rxq *r = &s->ethrxq[i];
5506 
5507 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5508 		r->fl.size = 72;
5509 	}
5510 
5511 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5512 		s->ethtxq[i].q.size = 1024;
5513 
5514 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5515 		s->ctrlq[i].q.size = 512;
5516 
5517 	if (!is_t4(adap->params.chip))
5518 		s->ptptxq.q.size = 8;
5519 
5520 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5521 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5522 
5523 	return 0;
5524 }
5525 
5526 /*
5527  * Reduce the number of Ethernet queues across all ports to at most n.
5528  * n provides at least one queue per port.
5529  */
5530 static void reduce_ethqs(struct adapter *adap, int n)
5531 {
5532 	int i;
5533 	struct port_info *pi;
5534 
5535 	while (n < adap->sge.ethqsets)
5536 		for_each_port(adap, i) {
5537 			pi = adap2pinfo(adap, i);
5538 			if (pi->nqsets > 1) {
5539 				pi->nqsets--;
5540 				adap->sge.ethqsets--;
5541 				if (adap->sge.ethqsets <= n)
5542 					break;
5543 			}
5544 		}
5545 
5546 	n = 0;
5547 	for_each_port(adap, i) {
5548 		pi = adap2pinfo(adap, i);
5549 		pi->first_qset = n;
5550 		n += pi->nqsets;
5551 	}
5552 }
5553 
5554 static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5555 {
5556 	struct msix_info *msix_info;
5557 
5558 	msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5559 	if (!msix_info)
5560 		return -ENOMEM;
5561 
5562 	adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec),
5563 					    sizeof(long), GFP_KERNEL);
5564 	if (!adap->msix_bmap.msix_bmap) {
5565 		kfree(msix_info);
5566 		return -ENOMEM;
5567 	}
5568 
5569 	spin_lock_init(&adap->msix_bmap.lock);
5570 	adap->msix_bmap.mapsize = num_vec;
5571 
5572 	adap->msix_info = msix_info;
5573 	return 0;
5574 }
5575 
5576 static void free_msix_info(struct adapter *adap)
5577 {
5578 	kfree(adap->msix_bmap.msix_bmap);
5579 	kfree(adap->msix_info);
5580 }
5581 
5582 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5583 {
5584 	struct msix_bmap *bmap = &adap->msix_bmap;
5585 	unsigned int msix_idx;
5586 	unsigned long flags;
5587 
5588 	spin_lock_irqsave(&bmap->lock, flags);
5589 	msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5590 	if (msix_idx < bmap->mapsize) {
5591 		__set_bit(msix_idx, bmap->msix_bmap);
5592 	} else {
5593 		spin_unlock_irqrestore(&bmap->lock, flags);
5594 		return -ENOSPC;
5595 	}
5596 
5597 	spin_unlock_irqrestore(&bmap->lock, flags);
5598 	return msix_idx;
5599 }
5600 
5601 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5602 				 unsigned int msix_idx)
5603 {
5604 	struct msix_bmap *bmap = &adap->msix_bmap;
5605 	unsigned long flags;
5606 
5607 	spin_lock_irqsave(&bmap->lock, flags);
5608 	__clear_bit(msix_idx, bmap->msix_bmap);
5609 	spin_unlock_irqrestore(&bmap->lock, flags);
5610 }
5611 
5612 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5613 #define EXTRA_VECS 2
5614 
5615 static int enable_msix(struct adapter *adap)
5616 {
5617 	u32 eth_need, uld_need = 0, ethofld_need = 0;
5618 	u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0;
5619 	u8 num_uld = 0, nchan = adap->params.nports;
5620 	u32 i, want, need, num_vec;
5621 	struct sge *s = &adap->sge;
5622 	struct msix_entry *entries;
5623 	struct port_info *pi;
5624 	int allocated, ret;
5625 
5626 	want = s->max_ethqsets;
5627 #ifdef CONFIG_CHELSIO_T4_DCB
5628 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5629 	 * each port.
5630 	 */
5631 	need = 8 * nchan;
5632 #else
5633 	need = nchan;
5634 #endif
5635 	eth_need = need;
5636 	if (is_uld(adap)) {
5637 		num_uld = adap->num_ofld_uld + adap->num_uld;
5638 		want += num_uld * s->ofldqsets;
5639 		uld_need = num_uld * nchan;
5640 		need += uld_need;
5641 	}
5642 
5643 	if (is_ethofld(adap)) {
5644 		want += s->eoqsets;
5645 		ethofld_need = eth_need;
5646 		need += ethofld_need;
5647 	}
5648 
5649 	want += EXTRA_VECS;
5650 	need += EXTRA_VECS;
5651 
5652 	entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5653 	if (!entries)
5654 		return -ENOMEM;
5655 
5656 	for (i = 0; i < want; i++)
5657 		entries[i].entry = i;
5658 
5659 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5660 	if (allocated < 0) {
5661 		/* Disable offload and attempt to get vectors for NIC
5662 		 * only mode.
5663 		 */
5664 		want = s->max_ethqsets + EXTRA_VECS;
5665 		need = eth_need + EXTRA_VECS;
5666 		allocated = pci_enable_msix_range(adap->pdev, entries,
5667 						  need, want);
5668 		if (allocated < 0) {
5669 			dev_info(adap->pdev_dev,
5670 				 "Disabling MSI-X due to insufficient MSI-X vectors\n");
5671 			ret = allocated;
5672 			goto out_free;
5673 		}
5674 
5675 		dev_info(adap->pdev_dev,
5676 			 "Disabling offload due to insufficient MSI-X vectors\n");
5677 		adap->params.offload = 0;
5678 		adap->params.crypto = 0;
5679 		adap->params.ethofld = 0;
5680 		s->ofldqsets = 0;
5681 		s->eoqsets = 0;
5682 		uld_need = 0;
5683 		ethofld_need = 0;
5684 	}
5685 
5686 	num_vec = allocated;
5687 	if (num_vec < want) {
5688 		/* Distribute available vectors to the various queue groups.
5689 		 * Every group gets its minimum requirement and NIC gets top
5690 		 * priority for leftovers.
5691 		 */
5692 		ethqsets = eth_need;
5693 		if (is_uld(adap))
5694 			ofldqsets = nchan;
5695 		if (is_ethofld(adap))
5696 			eoqsets = ethofld_need;
5697 
5698 		num_vec -= need;
5699 		while (num_vec) {
5700 			if (num_vec < eth_need + ethofld_need ||
5701 			    ethqsets > s->max_ethqsets)
5702 				break;
5703 
5704 			for_each_port(adap, i) {
5705 				pi = adap2pinfo(adap, i);
5706 				if (pi->nqsets < 2)
5707 					continue;
5708 
5709 				ethqsets++;
5710 				num_vec--;
5711 				if (ethofld_need) {
5712 					eoqsets++;
5713 					num_vec--;
5714 				}
5715 			}
5716 		}
5717 
5718 		if (is_uld(adap)) {
5719 			while (num_vec) {
5720 				if (num_vec < uld_need ||
5721 				    ofldqsets > s->ofldqsets)
5722 					break;
5723 
5724 				ofldqsets++;
5725 				num_vec -= uld_need;
5726 			}
5727 		}
5728 	} else {
5729 		ethqsets = s->max_ethqsets;
5730 		if (is_uld(adap))
5731 			ofldqsets = s->ofldqsets;
5732 		if (is_ethofld(adap))
5733 			eoqsets = s->eoqsets;
5734 	}
5735 
5736 	if (ethqsets < s->max_ethqsets) {
5737 		s->max_ethqsets = ethqsets;
5738 		reduce_ethqs(adap, ethqsets);
5739 	}
5740 
5741 	if (is_uld(adap)) {
5742 		s->ofldqsets = ofldqsets;
5743 		s->nqs_per_uld = s->ofldqsets;
5744 	}
5745 
5746 	if (is_ethofld(adap))
5747 		s->eoqsets = eoqsets;
5748 
5749 	/* map for msix */
5750 	ret = alloc_msix_info(adap, allocated);
5751 	if (ret)
5752 		goto out_disable_msix;
5753 
5754 	for (i = 0; i < allocated; i++) {
5755 		adap->msix_info[i].vec = entries[i].vector;
5756 		adap->msix_info[i].idx = i;
5757 	}
5758 
5759 	dev_info(adap->pdev_dev,
5760 		 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d\n",
5761 		 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld);
5762 
5763 	kfree(entries);
5764 	return 0;
5765 
5766 out_disable_msix:
5767 	pci_disable_msix(adap->pdev);
5768 
5769 out_free:
5770 	kfree(entries);
5771 	return ret;
5772 }
5773 
5774 #undef EXTRA_VECS
5775 
5776 static int init_rss(struct adapter *adap)
5777 {
5778 	unsigned int i;
5779 	int err;
5780 
5781 	err = t4_init_rss_mode(adap, adap->mbox);
5782 	if (err)
5783 		return err;
5784 
5785 	for_each_port(adap, i) {
5786 		struct port_info *pi = adap2pinfo(adap, i);
5787 
5788 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5789 		if (!pi->rss)
5790 			return -ENOMEM;
5791 	}
5792 	return 0;
5793 }
5794 
5795 /* Dump basic information about the adapter */
5796 static void print_adapter_info(struct adapter *adapter)
5797 {
5798 	/* Hardware/Firmware/etc. Version/Revision IDs */
5799 	t4_dump_version_info(adapter);
5800 
5801 	/* Software/Hardware configuration */
5802 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5803 		 is_offload(adapter) ? "R" : "",
5804 		 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
5805 		  (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
5806 		 is_offload(adapter) ? "Offload" : "non-Offload");
5807 }
5808 
5809 static void print_port_info(const struct net_device *dev)
5810 {
5811 	char buf[80];
5812 	char *bufp = buf;
5813 	const struct port_info *pi = netdev_priv(dev);
5814 	const struct adapter *adap = pi->adapter;
5815 
5816 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5817 		bufp += sprintf(bufp, "100M/");
5818 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5819 		bufp += sprintf(bufp, "1G/");
5820 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5821 		bufp += sprintf(bufp, "10G/");
5822 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5823 		bufp += sprintf(bufp, "25G/");
5824 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5825 		bufp += sprintf(bufp, "40G/");
5826 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5827 		bufp += sprintf(bufp, "50G/");
5828 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5829 		bufp += sprintf(bufp, "100G/");
5830 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5831 		bufp += sprintf(bufp, "200G/");
5832 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5833 		bufp += sprintf(bufp, "400G/");
5834 	if (bufp != buf)
5835 		--bufp;
5836 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5837 
5838 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5839 		    dev->name, adap->params.vpd.id, adap->name, buf);
5840 }
5841 
5842 /*
5843  * Free the following resources:
5844  * - memory used for tables
5845  * - MSI/MSI-X
5846  * - net devices
5847  * - resources FW is holding for us
5848  */
5849 static void free_some_resources(struct adapter *adapter)
5850 {
5851 	unsigned int i;
5852 
5853 	kvfree(adapter->smt);
5854 	kvfree(adapter->l2t);
5855 	kvfree(adapter->srq);
5856 	t4_cleanup_sched(adapter);
5857 	kvfree(adapter->tids.tid_tab);
5858 	cxgb4_cleanup_tc_matchall(adapter);
5859 	cxgb4_cleanup_tc_mqprio(adapter);
5860 	cxgb4_cleanup_tc_flower(adapter);
5861 	cxgb4_cleanup_tc_u32(adapter);
5862 	kfree(adapter->sge.egr_map);
5863 	kfree(adapter->sge.ingr_map);
5864 	kfree(adapter->sge.starving_fl);
5865 	kfree(adapter->sge.txq_maperr);
5866 #ifdef CONFIG_DEBUG_FS
5867 	kfree(adapter->sge.blocked_fl);
5868 #endif
5869 	disable_msi(adapter);
5870 
5871 	for_each_port(adapter, i)
5872 		if (adapter->port[i]) {
5873 			struct port_info *pi = adap2pinfo(adapter, i);
5874 
5875 			if (pi->viid != 0)
5876 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
5877 					   0, pi->viid);
5878 			kfree(adap2pinfo(adapter, i)->rss);
5879 			free_netdev(adapter->port[i]);
5880 		}
5881 	if (adapter->flags & CXGB4_FW_OK)
5882 		t4_fw_bye(adapter, adapter->pf);
5883 }
5884 
5885 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
5886 		   NETIF_F_GSO_UDP_L4)
5887 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5888 		   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5889 #define SEGMENT_SIZE 128
5890 
5891 static int t4_get_chip_type(struct adapter *adap, int ver)
5892 {
5893 	u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5894 
5895 	switch (ver) {
5896 	case CHELSIO_T4:
5897 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5898 	case CHELSIO_T5:
5899 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5900 	case CHELSIO_T6:
5901 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5902 	default:
5903 		break;
5904 	}
5905 	return -EINVAL;
5906 }
5907 
5908 #ifdef CONFIG_PCI_IOV
5909 static void cxgb4_mgmt_setup(struct net_device *dev)
5910 {
5911 	dev->type = ARPHRD_NONE;
5912 	dev->mtu = 0;
5913 	dev->hard_header_len = 0;
5914 	dev->addr_len = 0;
5915 	dev->tx_queue_len = 0;
5916 	dev->flags |= IFF_NOARP;
5917 	dev->priv_flags |= IFF_NO_QUEUE;
5918 
5919 	/* Initialize the device structure. */
5920 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5921 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5922 }
5923 
5924 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5925 {
5926 	struct adapter *adap = pci_get_drvdata(pdev);
5927 	int err = 0;
5928 	int current_vfs = pci_num_vf(pdev);
5929 	u32 pcie_fw;
5930 
5931 	pcie_fw = readl(adap->regs + PCIE_FW_A);
5932 	/* Check if fw is initialized */
5933 	if (!(pcie_fw & PCIE_FW_INIT_F)) {
5934 		dev_warn(&pdev->dev, "Device not initialized\n");
5935 		return -EOPNOTSUPP;
5936 	}
5937 
5938 	/* If any of the VF's is already assigned to Guest OS, then
5939 	 * SRIOV for the same cannot be modified
5940 	 */
5941 	if (current_vfs && pci_vfs_assigned(pdev)) {
5942 		dev_err(&pdev->dev,
5943 			"Cannot modify SR-IOV while VFs are assigned\n");
5944 		return current_vfs;
5945 	}
5946 	/* Note that the upper-level code ensures that we're never called with
5947 	 * a non-zero "num_vfs" when we already have VFs instantiated.  But
5948 	 * it never hurts to code defensively.
5949 	 */
5950 	if (num_vfs != 0 && current_vfs != 0)
5951 		return -EBUSY;
5952 
5953 	/* Nothing to do for no change. */
5954 	if (num_vfs == current_vfs)
5955 		return num_vfs;
5956 
5957 	/* Disable SRIOV when zero is passed. */
5958 	if (!num_vfs) {
5959 		pci_disable_sriov(pdev);
5960 		/* free VF Management Interface */
5961 		unregister_netdev(adap->port[0]);
5962 		free_netdev(adap->port[0]);
5963 		adap->port[0] = NULL;
5964 
5965 		/* free VF resources */
5966 		adap->num_vfs = 0;
5967 		kfree(adap->vfinfo);
5968 		adap->vfinfo = NULL;
5969 		return 0;
5970 	}
5971 
5972 	if (!current_vfs) {
5973 		struct fw_pfvf_cmd port_cmd, port_rpl;
5974 		struct net_device *netdev;
5975 		unsigned int pmask, port;
5976 		struct pci_dev *pbridge;
5977 		struct port_info *pi;
5978 		char name[IFNAMSIZ];
5979 		u32 devcap2;
5980 		u16 flags;
5981 
5982 		/* If we want to instantiate Virtual Functions, then our
5983 		 * parent bridge's PCI-E needs to support Alternative Routing
5984 		 * ID (ARI) because our VFs will show up at function offset 8
5985 		 * and above.
5986 		 */
5987 		pbridge = pdev->bus->self;
5988 		pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
5989 		pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
5990 
5991 		if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5992 		    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5993 			/* Our parent bridge does not support ARI so issue a
5994 			 * warning and skip instantiating the VFs.  They
5995 			 * won't be reachable.
5996 			 */
5997 			dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5998 				 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5999 				 PCI_FUNC(pbridge->devfn));
6000 			return -ENOTSUPP;
6001 		}
6002 		memset(&port_cmd, 0, sizeof(port_cmd));
6003 		port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
6004 						 FW_CMD_REQUEST_F |
6005 						 FW_CMD_READ_F |
6006 						 FW_PFVF_CMD_PFN_V(adap->pf) |
6007 						 FW_PFVF_CMD_VFN_V(0));
6008 		port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6009 		err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6010 				 &port_rpl);
6011 		if (err)
6012 			return err;
6013 		pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6014 		port = ffs(pmask) - 1;
6015 		/* Allocate VF Management Interface. */
6016 		snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6017 			 adap->pf);
6018 		netdev = alloc_netdev(sizeof(struct port_info),
6019 				      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6020 		if (!netdev)
6021 			return -ENOMEM;
6022 
6023 		pi = netdev_priv(netdev);
6024 		pi->adapter = adap;
6025 		pi->lport = port;
6026 		pi->tx_chan = port;
6027 		SET_NETDEV_DEV(netdev, &pdev->dev);
6028 
6029 		adap->port[0] = netdev;
6030 		pi->port_id = 0;
6031 
6032 		err = register_netdev(adap->port[0]);
6033 		if (err) {
6034 			pr_info("Unable to register VF mgmt netdev %s\n", name);
6035 			free_netdev(adap->port[0]);
6036 			adap->port[0] = NULL;
6037 			return err;
6038 		}
6039 		/* Allocate and set up VF Information. */
6040 		adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6041 				       sizeof(struct vf_info), GFP_KERNEL);
6042 		if (!adap->vfinfo) {
6043 			unregister_netdev(adap->port[0]);
6044 			free_netdev(adap->port[0]);
6045 			adap->port[0] = NULL;
6046 			return -ENOMEM;
6047 		}
6048 		cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6049 	}
6050 	/* Instantiate the requested number of VFs. */
6051 	err = pci_enable_sriov(pdev, num_vfs);
6052 	if (err) {
6053 		pr_info("Unable to instantiate %d VFs\n", num_vfs);
6054 		if (!current_vfs) {
6055 			unregister_netdev(adap->port[0]);
6056 			free_netdev(adap->port[0]);
6057 			adap->port[0] = NULL;
6058 			kfree(adap->vfinfo);
6059 			adap->vfinfo = NULL;
6060 		}
6061 		return err;
6062 	}
6063 
6064 	adap->num_vfs = num_vfs;
6065 	return num_vfs;
6066 }
6067 #endif /* CONFIG_PCI_IOV */
6068 
6069 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6070 {
6071 	struct net_device *netdev;
6072 	struct adapter *adapter;
6073 	static int adap_idx = 1;
6074 	int s_qpp, qpp, num_seg;
6075 	struct port_info *pi;
6076 	bool highdma = false;
6077 	enum chip_type chip;
6078 	void __iomem *regs;
6079 	int func, chip_ver;
6080 	u16 device_id;
6081 	int i, err;
6082 	u32 whoami;
6083 
6084 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6085 
6086 	err = pci_request_regions(pdev, KBUILD_MODNAME);
6087 	if (err) {
6088 		/* Just info, some other driver may have claimed the device. */
6089 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6090 		return err;
6091 	}
6092 
6093 	err = pci_enable_device(pdev);
6094 	if (err) {
6095 		dev_err(&pdev->dev, "cannot enable PCI device\n");
6096 		goto out_release_regions;
6097 	}
6098 
6099 	regs = pci_ioremap_bar(pdev, 0);
6100 	if (!regs) {
6101 		dev_err(&pdev->dev, "cannot map device registers\n");
6102 		err = -ENOMEM;
6103 		goto out_disable_device;
6104 	}
6105 
6106 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6107 	if (!adapter) {
6108 		err = -ENOMEM;
6109 		goto out_unmap_bar0;
6110 	}
6111 
6112 	adapter->regs = regs;
6113 	err = t4_wait_dev_ready(regs);
6114 	if (err < 0)
6115 		goto out_free_adapter;
6116 
6117 	/* We control everything through one PF */
6118 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6119 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6120 	chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6121 	if ((int)chip < 0) {
6122 		dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6123 		err = chip;
6124 		goto out_free_adapter;
6125 	}
6126 	chip_ver = CHELSIO_CHIP_VERSION(chip);
6127 	func = chip_ver <= CHELSIO_T5 ?
6128 	       SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6129 
6130 	adapter->pdev = pdev;
6131 	adapter->pdev_dev = &pdev->dev;
6132 	adapter->name = pci_name(pdev);
6133 	adapter->mbox = func;
6134 	adapter->pf = func;
6135 	adapter->params.chip = chip;
6136 	adapter->adap_idx = adap_idx;
6137 	adapter->msg_enable = DFLT_MSG_ENABLE;
6138 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6139 				    (sizeof(struct mbox_cmd) *
6140 				     T4_OS_LOG_MBOX_CMDS),
6141 				    GFP_KERNEL);
6142 	if (!adapter->mbox_log) {
6143 		err = -ENOMEM;
6144 		goto out_free_adapter;
6145 	}
6146 	spin_lock_init(&adapter->mbox_lock);
6147 	INIT_LIST_HEAD(&adapter->mlist.list);
6148 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6149 	pci_set_drvdata(pdev, adapter);
6150 
6151 	if (func != ent->driver_data) {
6152 		pci_disable_device(pdev);
6153 		pci_save_state(pdev);        /* to restore SR-IOV later */
6154 		return 0;
6155 	}
6156 
6157 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6158 		highdma = true;
6159 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6160 		if (err) {
6161 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6162 				"coherent allocations\n");
6163 			goto out_free_adapter;
6164 		}
6165 	} else {
6166 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6167 		if (err) {
6168 			dev_err(&pdev->dev, "no usable DMA configuration\n");
6169 			goto out_free_adapter;
6170 		}
6171 	}
6172 
6173 	pci_enable_pcie_error_reporting(pdev);
6174 	pci_set_master(pdev);
6175 	pci_save_state(pdev);
6176 	adap_idx++;
6177 	adapter->workq = create_singlethread_workqueue("cxgb4");
6178 	if (!adapter->workq) {
6179 		err = -ENOMEM;
6180 		goto out_free_adapter;
6181 	}
6182 
6183 	/* PCI device has been enabled */
6184 	adapter->flags |= CXGB4_DEV_ENABLED;
6185 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6186 
6187 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6188 	 * Ingress Packet Data to Free List Buffers in order to allow for
6189 	 * chipset performance optimizations between the Root Complex and
6190 	 * Memory Controllers.  (Messages to the associated Ingress Queue
6191 	 * notifying new Packet Placement in the Free Lists Buffers will be
6192 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
6193 	 * all preceding PCIe Transaction Layer Packets will be processed
6194 	 * first.)  But some Root Complexes have various issues with Upstream
6195 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6196 	 * The PCIe devices which under the Root Complexes will be cleared the
6197 	 * Relaxed Ordering bit in the configuration space, So we check our
6198 	 * PCIe configuration space to see if it's flagged with advice against
6199 	 * using Relaxed Ordering.
6200 	 */
6201 	if (!pcie_relaxed_ordering_enabled(pdev))
6202 		adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6203 
6204 	spin_lock_init(&adapter->stats_lock);
6205 	spin_lock_init(&adapter->tid_release_lock);
6206 	spin_lock_init(&adapter->win0_lock);
6207 
6208 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6209 	INIT_WORK(&adapter->db_full_task, process_db_full);
6210 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
6211 	INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6212 
6213 	err = t4_prep_adapter(adapter);
6214 	if (err)
6215 		goto out_free_adapter;
6216 
6217 	if (is_kdump_kernel()) {
6218 		/* Collect hardware state and append to /proc/vmcore */
6219 		err = cxgb4_cudbg_vmcore_add_dump(adapter);
6220 		if (err) {
6221 			dev_warn(adapter->pdev_dev,
6222 				 "Fail collecting vmcore device dump, err: %d. Continuing\n",
6223 				 err);
6224 			err = 0;
6225 		}
6226 	}
6227 
6228 	if (!is_t4(adapter->params.chip)) {
6229 		s_qpp = (QUEUESPERPAGEPF0_S +
6230 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6231 			adapter->pf);
6232 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6233 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6234 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
6235 
6236 		/* Each segment size is 128B. Write coalescing is enabled only
6237 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6238 		 * queue is less no of segments that can be accommodated in
6239 		 * a page size.
6240 		 */
6241 		if (qpp > num_seg) {
6242 			dev_err(&pdev->dev,
6243 				"Incorrect number of egress queues per page\n");
6244 			err = -EINVAL;
6245 			goto out_free_adapter;
6246 		}
6247 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6248 		pci_resource_len(pdev, 2));
6249 		if (!adapter->bar2) {
6250 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
6251 			err = -ENOMEM;
6252 			goto out_free_adapter;
6253 		}
6254 	}
6255 
6256 	setup_memwin(adapter);
6257 	err = adap_init0(adapter, 0);
6258 #ifdef CONFIG_DEBUG_FS
6259 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
6260 #endif
6261 	setup_memwin_rdma(adapter);
6262 	if (err)
6263 		goto out_unmap_bar;
6264 
6265 	/* configure SGE_STAT_CFG_A to read WC stats */
6266 	if (!is_t4(adapter->params.chip))
6267 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6268 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6269 			      T6_STATMODE_V(0)));
6270 
6271 	/* Initialize hash mac addr list */
6272 	INIT_LIST_HEAD(&adapter->mac_hlist);
6273 
6274 	for_each_port(adapter, i) {
6275 		/* For supporting MQPRIO Offload, need some extra
6276 		 * queues for each ETHOFLD TIDs. Keep it equal to
6277 		 * MAX_ATIDs for now. Once we connect to firmware
6278 		 * later and query the EOTID params, we'll come to
6279 		 * know the actual # of EOTIDs supported.
6280 		 */
6281 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
6282 					   MAX_ETH_QSETS + MAX_ATIDS);
6283 		if (!netdev) {
6284 			err = -ENOMEM;
6285 			goto out_free_dev;
6286 		}
6287 
6288 		SET_NETDEV_DEV(netdev, &pdev->dev);
6289 
6290 		adapter->port[i] = netdev;
6291 		pi = netdev_priv(netdev);
6292 		pi->adapter = adapter;
6293 		pi->xact_addr_filt = -1;
6294 		pi->port_id = i;
6295 		netdev->irq = pdev->irq;
6296 
6297 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6298 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6299 			NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6300 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6301 			NETIF_F_HW_TC;
6302 
6303 		if (chip_ver > CHELSIO_T5) {
6304 			netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6305 						   NETIF_F_IPV6_CSUM |
6306 						   NETIF_F_RXCSUM |
6307 						   NETIF_F_GSO_UDP_TUNNEL |
6308 						   NETIF_F_GSO_UDP_TUNNEL_CSUM |
6309 						   NETIF_F_TSO | NETIF_F_TSO6;
6310 
6311 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6312 					       NETIF_F_GSO_UDP_TUNNEL_CSUM |
6313 					       NETIF_F_HW_TLS_RECORD;
6314 		}
6315 
6316 		if (highdma)
6317 			netdev->hw_features |= NETIF_F_HIGHDMA;
6318 		netdev->features |= netdev->hw_features;
6319 		netdev->vlan_features = netdev->features & VLAN_FEAT;
6320 
6321 		netdev->priv_flags |= IFF_UNICAST_FLT;
6322 
6323 		/* MTU range: 81 - 9600 */
6324 		netdev->min_mtu = 81;              /* accommodate SACK */
6325 		netdev->max_mtu = MAX_MTU;
6326 
6327 		netdev->netdev_ops = &cxgb4_netdev_ops;
6328 #ifdef CONFIG_CHELSIO_T4_DCB
6329 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
6330 		cxgb4_dcb_state_init(netdev);
6331 		cxgb4_dcb_version_init(netdev);
6332 #endif
6333 		cxgb4_set_ethtool_ops(netdev);
6334 	}
6335 
6336 	cxgb4_init_ethtool_dump(adapter);
6337 
6338 	pci_set_drvdata(pdev, adapter);
6339 
6340 	if (adapter->flags & CXGB4_FW_OK) {
6341 		err = t4_port_init(adapter, func, func, 0);
6342 		if (err)
6343 			goto out_free_dev;
6344 	} else if (adapter->params.nports == 1) {
6345 		/* If we don't have a connection to the firmware -- possibly
6346 		 * because of an error -- grab the raw VPD parameters so we
6347 		 * can set the proper MAC Address on the debug network
6348 		 * interface that we've created.
6349 		 */
6350 		u8 hw_addr[ETH_ALEN];
6351 		u8 *na = adapter->params.vpd.na;
6352 
6353 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6354 		if (!err) {
6355 			for (i = 0; i < ETH_ALEN; i++)
6356 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6357 					      hex2val(na[2 * i + 1]));
6358 			t4_set_hw_addr(adapter, 0, hw_addr);
6359 		}
6360 	}
6361 
6362 	if (!(adapter->flags & CXGB4_FW_OK))
6363 		goto fw_attach_fail;
6364 
6365 	/* Configure queues and allocate tables now, they can be needed as
6366 	 * soon as the first register_netdev completes.
6367 	 */
6368 	err = cfg_queues(adapter);
6369 	if (err)
6370 		goto out_free_dev;
6371 
6372 	adapter->smt = t4_init_smt();
6373 	if (!adapter->smt) {
6374 		/* We tolerate a lack of SMT, giving up some functionality */
6375 		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6376 	}
6377 
6378 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6379 	if (!adapter->l2t) {
6380 		/* We tolerate a lack of L2T, giving up some functionality */
6381 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6382 		adapter->params.offload = 0;
6383 	}
6384 
6385 #if IS_ENABLED(CONFIG_IPV6)
6386 	if (chip_ver <= CHELSIO_T5 &&
6387 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6388 		/* CLIP functionality is not present in hardware,
6389 		 * hence disable all offload features
6390 		 */
6391 		dev_warn(&pdev->dev,
6392 			 "CLIP not enabled in hardware, continuing\n");
6393 		adapter->params.offload = 0;
6394 	} else {
6395 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6396 						  adapter->clipt_end);
6397 		if (!adapter->clipt) {
6398 			/* We tolerate a lack of clip_table, giving up
6399 			 * some functionality
6400 			 */
6401 			dev_warn(&pdev->dev,
6402 				 "could not allocate Clip table, continuing\n");
6403 			adapter->params.offload = 0;
6404 		}
6405 	}
6406 #endif
6407 
6408 	for_each_port(adapter, i) {
6409 		pi = adap2pinfo(adapter, i);
6410 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6411 		if (!pi->sched_tbl)
6412 			dev_warn(&pdev->dev,
6413 				 "could not activate scheduling on port %d\n",
6414 				 i);
6415 	}
6416 
6417 	if (tid_init(&adapter->tids) < 0) {
6418 		dev_warn(&pdev->dev, "could not allocate TID table, "
6419 			 "continuing\n");
6420 		adapter->params.offload = 0;
6421 	} else {
6422 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6423 		if (!adapter->tc_u32)
6424 			dev_warn(&pdev->dev,
6425 				 "could not offload tc u32, continuing\n");
6426 
6427 		if (cxgb4_init_tc_flower(adapter))
6428 			dev_warn(&pdev->dev,
6429 				 "could not offload tc flower, continuing\n");
6430 
6431 		if (cxgb4_init_tc_mqprio(adapter))
6432 			dev_warn(&pdev->dev,
6433 				 "could not offload tc mqprio, continuing\n");
6434 
6435 		if (cxgb4_init_tc_matchall(adapter))
6436 			dev_warn(&pdev->dev,
6437 				 "could not offload tc matchall, continuing\n");
6438 	}
6439 
6440 	if (is_offload(adapter) || is_hashfilter(adapter)) {
6441 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6442 			u32 hash_base, hash_reg;
6443 
6444 			if (chip_ver <= CHELSIO_T5) {
6445 				hash_reg = LE_DB_TID_HASHBASE_A;
6446 				hash_base = t4_read_reg(adapter, hash_reg);
6447 				adapter->tids.hash_base = hash_base / 4;
6448 			} else {
6449 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
6450 				hash_base = t4_read_reg(adapter, hash_reg);
6451 				adapter->tids.hash_base = hash_base;
6452 			}
6453 		}
6454 	}
6455 
6456 	/* See what interrupts we'll be using */
6457 	if (msi > 1 && enable_msix(adapter) == 0)
6458 		adapter->flags |= CXGB4_USING_MSIX;
6459 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6460 		adapter->flags |= CXGB4_USING_MSI;
6461 		if (msi > 1)
6462 			free_msix_info(adapter);
6463 	}
6464 
6465 	/* check for PCI Express bandwidth capabiltites */
6466 	pcie_print_link_status(pdev);
6467 
6468 	cxgb4_init_mps_ref_entries(adapter);
6469 
6470 	err = init_rss(adapter);
6471 	if (err)
6472 		goto out_free_dev;
6473 
6474 	err = setup_non_data_intr(adapter);
6475 	if (err) {
6476 		dev_err(adapter->pdev_dev,
6477 			"Non Data interrupt allocation failed, err: %d\n", err);
6478 		goto out_free_dev;
6479 	}
6480 
6481 	err = setup_fw_sge_queues(adapter);
6482 	if (err) {
6483 		dev_err(adapter->pdev_dev,
6484 			"FW sge queue allocation failed, err %d", err);
6485 		goto out_free_dev;
6486 	}
6487 
6488 fw_attach_fail:
6489 	/*
6490 	 * The card is now ready to go.  If any errors occur during device
6491 	 * registration we do not fail the whole card but rather proceed only
6492 	 * with the ports we manage to register successfully.  However we must
6493 	 * register at least one net device.
6494 	 */
6495 	for_each_port(adapter, i) {
6496 		pi = adap2pinfo(adapter, i);
6497 		adapter->port[i]->dev_port = pi->lport;
6498 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6499 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6500 
6501 		netif_carrier_off(adapter->port[i]);
6502 
6503 		err = register_netdev(adapter->port[i]);
6504 		if (err)
6505 			break;
6506 		adapter->chan_map[pi->tx_chan] = i;
6507 		print_port_info(adapter->port[i]);
6508 	}
6509 	if (i == 0) {
6510 		dev_err(&pdev->dev, "could not register any net devices\n");
6511 		goto out_free_dev;
6512 	}
6513 	if (err) {
6514 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6515 		err = 0;
6516 	}
6517 
6518 	if (cxgb4_debugfs_root) {
6519 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6520 							   cxgb4_debugfs_root);
6521 		setup_debugfs(adapter);
6522 	}
6523 
6524 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6525 	pdev->needs_freset = 1;
6526 
6527 	if (is_uld(adapter)) {
6528 		mutex_lock(&uld_mutex);
6529 		list_add_tail(&adapter->list_node, &adapter_list);
6530 		mutex_unlock(&uld_mutex);
6531 	}
6532 
6533 	if (!is_t4(adapter->params.chip))
6534 		cxgb4_ptp_init(adapter);
6535 
6536 	if (IS_REACHABLE(CONFIG_THERMAL) &&
6537 	    !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
6538 		cxgb4_thermal_init(adapter);
6539 
6540 	print_adapter_info(adapter);
6541 	return 0;
6542 
6543  out_free_dev:
6544 	t4_free_sge_resources(adapter);
6545 	free_some_resources(adapter);
6546 	if (adapter->flags & CXGB4_USING_MSIX)
6547 		free_msix_info(adapter);
6548 	if (adapter->num_uld || adapter->num_ofld_uld)
6549 		t4_uld_mem_free(adapter);
6550  out_unmap_bar:
6551 	if (!is_t4(adapter->params.chip))
6552 		iounmap(adapter->bar2);
6553  out_free_adapter:
6554 	if (adapter->workq)
6555 		destroy_workqueue(adapter->workq);
6556 
6557 	kfree(adapter->mbox_log);
6558 	kfree(adapter);
6559  out_unmap_bar0:
6560 	iounmap(regs);
6561  out_disable_device:
6562 	pci_disable_pcie_error_reporting(pdev);
6563 	pci_disable_device(pdev);
6564  out_release_regions:
6565 	pci_release_regions(pdev);
6566 	return err;
6567 }
6568 
6569 static void remove_one(struct pci_dev *pdev)
6570 {
6571 	struct adapter *adapter = pci_get_drvdata(pdev);
6572 	struct hash_mac_addr *entry, *tmp;
6573 
6574 	if (!adapter) {
6575 		pci_release_regions(pdev);
6576 		return;
6577 	}
6578 
6579 	/* If we allocated filters, free up state associated with any
6580 	 * valid filters ...
6581 	 */
6582 	clear_all_filters(adapter);
6583 
6584 	adapter->flags |= CXGB4_SHUTTING_DOWN;
6585 
6586 	if (adapter->pf == 4) {
6587 		int i;
6588 
6589 		/* Tear down per-adapter Work Queue first since it can contain
6590 		 * references to our adapter data structure.
6591 		 */
6592 		destroy_workqueue(adapter->workq);
6593 
6594 		if (is_uld(adapter)) {
6595 			detach_ulds(adapter);
6596 			t4_uld_clean_up(adapter);
6597 		}
6598 
6599 		adap_free_hma_mem(adapter);
6600 
6601 		disable_interrupts(adapter);
6602 
6603 		cxgb4_free_mps_ref_entries(adapter);
6604 
6605 		for_each_port(adapter, i)
6606 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6607 				unregister_netdev(adapter->port[i]);
6608 
6609 		debugfs_remove_recursive(adapter->debugfs_root);
6610 
6611 		if (!is_t4(adapter->params.chip))
6612 			cxgb4_ptp_stop(adapter);
6613 		if (IS_REACHABLE(CONFIG_THERMAL))
6614 			cxgb4_thermal_remove(adapter);
6615 
6616 		if (adapter->flags & CXGB4_FULL_INIT_DONE)
6617 			cxgb_down(adapter);
6618 
6619 		if (adapter->flags & CXGB4_USING_MSIX)
6620 			free_msix_info(adapter);
6621 		if (adapter->num_uld || adapter->num_ofld_uld)
6622 			t4_uld_mem_free(adapter);
6623 		free_some_resources(adapter);
6624 		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
6625 					 list) {
6626 			list_del(&entry->list);
6627 			kfree(entry);
6628 		}
6629 
6630 #if IS_ENABLED(CONFIG_IPV6)
6631 		t4_cleanup_clip_tbl(adapter);
6632 #endif
6633 		if (!is_t4(adapter->params.chip))
6634 			iounmap(adapter->bar2);
6635 	}
6636 #ifdef CONFIG_PCI_IOV
6637 	else {
6638 		cxgb4_iov_configure(adapter->pdev, 0);
6639 	}
6640 #endif
6641 	iounmap(adapter->regs);
6642 	pci_disable_pcie_error_reporting(pdev);
6643 	if ((adapter->flags & CXGB4_DEV_ENABLED)) {
6644 		pci_disable_device(pdev);
6645 		adapter->flags &= ~CXGB4_DEV_ENABLED;
6646 	}
6647 	pci_release_regions(pdev);
6648 	kfree(adapter->mbox_log);
6649 	synchronize_rcu();
6650 	kfree(adapter);
6651 }
6652 
6653 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
6654  * delivery.  This is essentially a stripped down version of the PCI remove()
6655  * function where we do the minimal amount of work necessary to shutdown any
6656  * further activity.
6657  */
6658 static void shutdown_one(struct pci_dev *pdev)
6659 {
6660 	struct adapter *adapter = pci_get_drvdata(pdev);
6661 
6662 	/* As with remove_one() above (see extended comment), we only want do
6663 	 * do cleanup on PCI Devices which went all the way through init_one()
6664 	 * ...
6665 	 */
6666 	if (!adapter) {
6667 		pci_release_regions(pdev);
6668 		return;
6669 	}
6670 
6671 	adapter->flags |= CXGB4_SHUTTING_DOWN;
6672 
6673 	if (adapter->pf == 4) {
6674 		int i;
6675 
6676 		for_each_port(adapter, i)
6677 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6678 				cxgb_close(adapter->port[i]);
6679 
6680 		if (is_uld(adapter)) {
6681 			detach_ulds(adapter);
6682 			t4_uld_clean_up(adapter);
6683 		}
6684 
6685 		disable_interrupts(adapter);
6686 		disable_msi(adapter);
6687 
6688 		t4_sge_stop(adapter);
6689 		if (adapter->flags & CXGB4_FW_OK)
6690 			t4_fw_bye(adapter, adapter->mbox);
6691 	}
6692 }
6693 
6694 static struct pci_driver cxgb4_driver = {
6695 	.name     = KBUILD_MODNAME,
6696 	.id_table = cxgb4_pci_tbl,
6697 	.probe    = init_one,
6698 	.remove   = remove_one,
6699 	.shutdown = shutdown_one,
6700 #ifdef CONFIG_PCI_IOV
6701 	.sriov_configure = cxgb4_iov_configure,
6702 #endif
6703 	.err_handler = &cxgb4_eeh,
6704 };
6705 
6706 static int __init cxgb4_init_module(void)
6707 {
6708 	int ret;
6709 
6710 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6711 
6712 	ret = pci_register_driver(&cxgb4_driver);
6713 	if (ret < 0)
6714 		goto err_pci;
6715 
6716 #if IS_ENABLED(CONFIG_IPV6)
6717 	if (!inet6addr_registered) {
6718 		ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6719 		if (ret)
6720 			pci_unregister_driver(&cxgb4_driver);
6721 		else
6722 			inet6addr_registered = true;
6723 	}
6724 #endif
6725 
6726 	if (ret == 0)
6727 		return ret;
6728 
6729 err_pci:
6730 	debugfs_remove(cxgb4_debugfs_root);
6731 
6732 	return ret;
6733 }
6734 
6735 static void __exit cxgb4_cleanup_module(void)
6736 {
6737 #if IS_ENABLED(CONFIG_IPV6)
6738 	if (inet6addr_registered) {
6739 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6740 		inet6addr_registered = false;
6741 	}
6742 #endif
6743 	pci_unregister_driver(&cxgb4_driver);
6744 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6745 }
6746 
6747 module_init(cxgb4_init_module);
6748 module_exit(cxgb4_cleanup_module);
6749