1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <linux/uaccess.h> 66 #include <linux/crash_dump.h> 67 #include <net/udp_tunnel.h> 68 #include <net/xfrm.h> 69 70 #include "cxgb4.h" 71 #include "cxgb4_filter.h" 72 #include "t4_regs.h" 73 #include "t4_values.h" 74 #include "t4_msg.h" 75 #include "t4fw_api.h" 76 #include "t4fw_version.h" 77 #include "cxgb4_dcb.h" 78 #include "srq.h" 79 #include "cxgb4_debugfs.h" 80 #include "clip_tbl.h" 81 #include "l2t.h" 82 #include "smt.h" 83 #include "sched.h" 84 #include "cxgb4_tc_u32.h" 85 #include "cxgb4_tc_flower.h" 86 #include "cxgb4_tc_mqprio.h" 87 #include "cxgb4_tc_matchall.h" 88 #include "cxgb4_ptp.h" 89 #include "cxgb4_cudbg.h" 90 91 char cxgb4_driver_name[] = KBUILD_MODNAME; 92 93 #ifdef DRV_VERSION 94 #undef DRV_VERSION 95 #endif 96 #define DRV_VERSION "2.0.0-ko" 97 const char cxgb4_driver_version[] = DRV_VERSION; 98 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 99 100 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 101 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 102 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 103 104 /* Macros needed to support the PCI Device ID Table ... 105 */ 106 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 107 static const struct pci_device_id cxgb4_pci_tbl[] = { 108 #define CXGB4_UNIFIED_PF 0x4 109 110 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 111 112 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 113 * called for both. 114 */ 115 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 116 117 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 118 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 119 120 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 121 { 0, } \ 122 } 123 124 #include "t4_pci_id_tbl.h" 125 126 #define FW4_FNAME "cxgb4/t4fw.bin" 127 #define FW5_FNAME "cxgb4/t5fw.bin" 128 #define FW6_FNAME "cxgb4/t6fw.bin" 129 #define FW4_CFNAME "cxgb4/t4-config.txt" 130 #define FW5_CFNAME "cxgb4/t5-config.txt" 131 #define FW6_CFNAME "cxgb4/t6-config.txt" 132 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 133 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 134 #define PHY_AQ1202_DEVICEID 0x4409 135 #define PHY_BCM84834_DEVICEID 0x4486 136 137 MODULE_DESCRIPTION(DRV_DESC); 138 MODULE_AUTHOR("Chelsio Communications"); 139 MODULE_LICENSE("Dual BSD/GPL"); 140 MODULE_VERSION(DRV_VERSION); 141 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 142 MODULE_FIRMWARE(FW4_FNAME); 143 MODULE_FIRMWARE(FW5_FNAME); 144 MODULE_FIRMWARE(FW6_FNAME); 145 146 /* 147 * The driver uses the best interrupt scheme available on a platform in the 148 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 149 * of these schemes the driver may consider as follows: 150 * 151 * msi = 2: choose from among all three options 152 * msi = 1: only consider MSI and INTx interrupts 153 * msi = 0: force INTx interrupts 154 */ 155 static int msi = 2; 156 157 module_param(msi, int, 0644); 158 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 159 160 /* 161 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 162 * offset by 2 bytes in order to have the IP headers line up on 4-byte 163 * boundaries. This is a requirement for many architectures which will throw 164 * a machine check fault if an attempt is made to access one of the 4-byte IP 165 * header fields on a non-4-byte boundary. And it's a major performance issue 166 * even on some architectures which allow it like some implementations of the 167 * x86 ISA. However, some architectures don't mind this and for some very 168 * edge-case performance sensitive applications (like forwarding large volumes 169 * of small packets), setting this DMA offset to 0 will decrease the number of 170 * PCI-E Bus transfers enough to measurably affect performance. 171 */ 172 static int rx_dma_offset = 2; 173 174 /* TX Queue select used to determine what algorithm to use for selecting TX 175 * queue. Select between the kernel provided function (select_queue=0) or user 176 * cxgb_select_queue function (select_queue=1) 177 * 178 * Default: select_queue=0 179 */ 180 static int select_queue; 181 module_param(select_queue, int, 0644); 182 MODULE_PARM_DESC(select_queue, 183 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 184 185 static struct dentry *cxgb4_debugfs_root; 186 187 LIST_HEAD(adapter_list); 188 DEFINE_MUTEX(uld_mutex); 189 190 static int cfg_queues(struct adapter *adap); 191 192 static void link_report(struct net_device *dev) 193 { 194 if (!netif_carrier_ok(dev)) 195 netdev_info(dev, "link down\n"); 196 else { 197 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 198 199 const char *s; 200 const struct port_info *p = netdev_priv(dev); 201 202 switch (p->link_cfg.speed) { 203 case 100: 204 s = "100Mbps"; 205 break; 206 case 1000: 207 s = "1Gbps"; 208 break; 209 case 10000: 210 s = "10Gbps"; 211 break; 212 case 25000: 213 s = "25Gbps"; 214 break; 215 case 40000: 216 s = "40Gbps"; 217 break; 218 case 50000: 219 s = "50Gbps"; 220 break; 221 case 100000: 222 s = "100Gbps"; 223 break; 224 default: 225 pr_info("%s: unsupported speed: %d\n", 226 dev->name, p->link_cfg.speed); 227 return; 228 } 229 230 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 231 fc[p->link_cfg.fc]); 232 } 233 } 234 235 #ifdef CONFIG_CHELSIO_T4_DCB 236 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 237 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 238 { 239 struct port_info *pi = netdev_priv(dev); 240 struct adapter *adap = pi->adapter; 241 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 242 int i; 243 244 /* We use a simple mapping of Port TX Queue Index to DCB 245 * Priority when we're enabling DCB. 246 */ 247 for (i = 0; i < pi->nqsets; i++, txq++) { 248 u32 name, value; 249 int err; 250 251 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 252 FW_PARAMS_PARAM_X_V( 253 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 254 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 255 value = enable ? i : 0xffffffff; 256 257 /* Since we can be called while atomic (from "interrupt 258 * level") we need to issue the Set Parameters Commannd 259 * without sleeping (timeout < 0). 260 */ 261 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 262 &name, &value, 263 -FW_CMD_MAX_TIMEOUT); 264 265 if (err) 266 dev_err(adap->pdev_dev, 267 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 268 enable ? "set" : "unset", pi->port_id, i, -err); 269 else 270 txq->dcb_prio = enable ? value : 0; 271 } 272 } 273 274 int cxgb4_dcb_enabled(const struct net_device *dev) 275 { 276 struct port_info *pi = netdev_priv(dev); 277 278 if (!pi->dcb.enabled) 279 return 0; 280 281 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 282 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 283 } 284 #endif /* CONFIG_CHELSIO_T4_DCB */ 285 286 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 287 { 288 struct net_device *dev = adapter->port[port_id]; 289 290 /* Skip changes from disabled ports. */ 291 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 292 if (link_stat) 293 netif_carrier_on(dev); 294 else { 295 #ifdef CONFIG_CHELSIO_T4_DCB 296 if (cxgb4_dcb_enabled(dev)) { 297 cxgb4_dcb_reset(dev); 298 dcb_tx_queue_prio_enable(dev, false); 299 } 300 #endif /* CONFIG_CHELSIO_T4_DCB */ 301 netif_carrier_off(dev); 302 } 303 304 link_report(dev); 305 } 306 } 307 308 void t4_os_portmod_changed(struct adapter *adap, int port_id) 309 { 310 static const char *mod_str[] = { 311 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 312 }; 313 314 struct net_device *dev = adap->port[port_id]; 315 struct port_info *pi = netdev_priv(dev); 316 317 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 318 netdev_info(dev, "port module unplugged\n"); 319 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 320 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 321 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 322 netdev_info(dev, "%s: unsupported port module inserted\n", 323 dev->name); 324 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 325 netdev_info(dev, "%s: unknown port module inserted\n", 326 dev->name); 327 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 328 netdev_info(dev, "%s: transceiver module error\n", dev->name); 329 else 330 netdev_info(dev, "%s: unknown module type %d inserted\n", 331 dev->name, pi->mod_type); 332 333 /* If the interface is running, then we'll need any "sticky" Link 334 * Parameters redone with a new Transceiver Module. 335 */ 336 pi->link_cfg.redo_l1cfg = netif_running(dev); 337 } 338 339 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 340 module_param(dbfifo_int_thresh, int, 0644); 341 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 342 343 /* 344 * usecs to sleep while draining the dbfifo 345 */ 346 static int dbfifo_drain_delay = 1000; 347 module_param(dbfifo_drain_delay, int, 0644); 348 MODULE_PARM_DESC(dbfifo_drain_delay, 349 "usecs to sleep while draining the dbfifo"); 350 351 static inline int cxgb4_set_addr_hash(struct port_info *pi) 352 { 353 struct adapter *adap = pi->adapter; 354 u64 vec = 0; 355 bool ucast = false; 356 struct hash_mac_addr *entry; 357 358 /* Calculate the hash vector for the updated list and program it */ 359 list_for_each_entry(entry, &adap->mac_hlist, list) { 360 ucast |= is_unicast_ether_addr(entry->addr); 361 vec |= (1ULL << hash_mac_addr(entry->addr)); 362 } 363 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 364 vec, false); 365 } 366 367 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 368 { 369 struct port_info *pi = netdev_priv(netdev); 370 struct adapter *adap = pi->adapter; 371 int ret; 372 u64 mhash = 0; 373 u64 uhash = 0; 374 /* idx stores the index of allocated filters, 375 * its size should be modified based on the number of 376 * MAC addresses that we allocate filters for 377 */ 378 379 u16 idx[1] = {}; 380 bool free = false; 381 bool ucast = is_unicast_ether_addr(mac_addr); 382 const u8 *maclist[1] = {mac_addr}; 383 struct hash_mac_addr *new_entry; 384 385 ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist, 386 idx, ucast ? &uhash : &mhash, false); 387 if (ret < 0) 388 goto out; 389 /* if hash != 0, then add the addr to hash addr list 390 * so on the end we will calculate the hash for the 391 * list and program it 392 */ 393 if (uhash || mhash) { 394 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 395 if (!new_entry) 396 return -ENOMEM; 397 ether_addr_copy(new_entry->addr, mac_addr); 398 list_add_tail(&new_entry->list, &adap->mac_hlist); 399 ret = cxgb4_set_addr_hash(pi); 400 } 401 out: 402 return ret < 0 ? ret : 0; 403 } 404 405 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 406 { 407 struct port_info *pi = netdev_priv(netdev); 408 struct adapter *adap = pi->adapter; 409 int ret; 410 const u8 *maclist[1] = {mac_addr}; 411 struct hash_mac_addr *entry, *tmp; 412 413 /* If the MAC address to be removed is in the hash addr 414 * list, delete it from the list and update hash vector 415 */ 416 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 417 if (ether_addr_equal(entry->addr, mac_addr)) { 418 list_del(&entry->list); 419 kfree(entry); 420 return cxgb4_set_addr_hash(pi); 421 } 422 } 423 424 ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false); 425 return ret < 0 ? -EINVAL : 0; 426 } 427 428 /* 429 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 430 * If @mtu is -1 it is left unchanged. 431 */ 432 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 433 { 434 struct port_info *pi = netdev_priv(dev); 435 struct adapter *adapter = pi->adapter; 436 437 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 438 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 439 440 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 441 (dev->flags & IFF_PROMISC) ? 1 : 0, 442 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 443 sleep_ok); 444 } 445 446 /** 447 * cxgb4_change_mac - Update match filter for a MAC address. 448 * @pi: the port_info 449 * @viid: the VI id 450 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 451 * or -1 452 * @addr: the new MAC address value 453 * @persist: whether a new MAC allocation should be persistent 454 * @add_smt: if true also add the address to the HW SMT 455 * 456 * Modifies an MPS filter and sets it to the new MAC address if 457 * @tcam_idx >= 0, or adds the MAC address to a new filter if 458 * @tcam_idx < 0. In the latter case the address is added persistently 459 * if @persist is %true. 460 * Addresses are programmed to hash region, if tcam runs out of entries. 461 * 462 */ 463 int cxgb4_change_mac(struct port_info *pi, unsigned int viid, 464 int *tcam_idx, const u8 *addr, bool persist, 465 u8 *smt_idx) 466 { 467 struct adapter *adapter = pi->adapter; 468 struct hash_mac_addr *entry, *new_entry; 469 int ret; 470 471 ret = t4_change_mac(adapter, adapter->mbox, viid, 472 *tcam_idx, addr, persist, smt_idx); 473 /* We ran out of TCAM entries. try programming hash region. */ 474 if (ret == -ENOMEM) { 475 /* If the MAC address to be updated is in the hash addr 476 * list, update it from the list 477 */ 478 list_for_each_entry(entry, &adapter->mac_hlist, list) { 479 if (entry->iface_mac) { 480 ether_addr_copy(entry->addr, addr); 481 goto set_hash; 482 } 483 } 484 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 485 if (!new_entry) 486 return -ENOMEM; 487 ether_addr_copy(new_entry->addr, addr); 488 new_entry->iface_mac = true; 489 list_add_tail(&new_entry->list, &adapter->mac_hlist); 490 set_hash: 491 ret = cxgb4_set_addr_hash(pi); 492 } else if (ret >= 0) { 493 *tcam_idx = ret; 494 ret = 0; 495 } 496 497 return ret; 498 } 499 500 /* 501 * link_start - enable a port 502 * @dev: the port to enable 503 * 504 * Performs the MAC and PHY actions needed to enable a port. 505 */ 506 static int link_start(struct net_device *dev) 507 { 508 int ret; 509 struct port_info *pi = netdev_priv(dev); 510 unsigned int mb = pi->adapter->pf; 511 512 /* 513 * We do not set address filters and promiscuity here, the stack does 514 * that step explicitly. 515 */ 516 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 517 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 518 if (ret == 0) 519 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 520 dev->dev_addr, true, &pi->smt_idx); 521 if (ret == 0) 522 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 523 &pi->link_cfg); 524 if (ret == 0) { 525 local_bh_disable(); 526 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 527 true, CXGB4_DCB_ENABLED); 528 local_bh_enable(); 529 } 530 531 return ret; 532 } 533 534 #ifdef CONFIG_CHELSIO_T4_DCB 535 /* Handle a Data Center Bridging update message from the firmware. */ 536 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 537 { 538 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 539 struct net_device *dev = adap->port[adap->chan_map[port]]; 540 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 541 int new_dcb_enabled; 542 543 cxgb4_dcb_handle_fw_update(adap, pcmd); 544 new_dcb_enabled = cxgb4_dcb_enabled(dev); 545 546 /* If the DCB has become enabled or disabled on the port then we're 547 * going to need to set up/tear down DCB Priority parameters for the 548 * TX Queues associated with the port. 549 */ 550 if (new_dcb_enabled != old_dcb_enabled) 551 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 552 } 553 #endif /* CONFIG_CHELSIO_T4_DCB */ 554 555 /* Response queue handler for the FW event queue. 556 */ 557 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 558 const struct pkt_gl *gl) 559 { 560 u8 opcode = ((const struct rss_header *)rsp)->opcode; 561 562 rsp++; /* skip RSS header */ 563 564 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 565 */ 566 if (unlikely(opcode == CPL_FW4_MSG && 567 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 568 rsp++; 569 opcode = ((const struct rss_header *)rsp)->opcode; 570 rsp++; 571 if (opcode != CPL_SGE_EGR_UPDATE) { 572 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 573 , opcode); 574 goto out; 575 } 576 } 577 578 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 579 const struct cpl_sge_egr_update *p = (void *)rsp; 580 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 581 struct sge_txq *txq; 582 583 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 584 txq->restarts++; 585 if (txq->q_type == CXGB4_TXQ_ETH) { 586 struct sge_eth_txq *eq; 587 588 eq = container_of(txq, struct sge_eth_txq, q); 589 t4_sge_eth_txq_egress_update(q->adap, eq, -1); 590 } else { 591 struct sge_uld_txq *oq; 592 593 oq = container_of(txq, struct sge_uld_txq, q); 594 tasklet_schedule(&oq->qresume_tsk); 595 } 596 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 597 const struct cpl_fw6_msg *p = (void *)rsp; 598 599 #ifdef CONFIG_CHELSIO_T4_DCB 600 const struct fw_port_cmd *pcmd = (const void *)p->data; 601 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 602 unsigned int action = 603 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 604 605 if (cmd == FW_PORT_CMD && 606 (action == FW_PORT_ACTION_GET_PORT_INFO || 607 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 608 int port = FW_PORT_CMD_PORTID_G( 609 be32_to_cpu(pcmd->op_to_portid)); 610 struct net_device *dev; 611 int dcbxdis, state_input; 612 613 dev = q->adap->port[q->adap->chan_map[port]]; 614 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 615 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) 616 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) 617 & FW_PORT_CMD_DCBXDIS32_F)); 618 state_input = (dcbxdis 619 ? CXGB4_DCB_INPUT_FW_DISABLED 620 : CXGB4_DCB_INPUT_FW_ENABLED); 621 622 cxgb4_dcb_state_fsm(dev, state_input); 623 } 624 625 if (cmd == FW_PORT_CMD && 626 action == FW_PORT_ACTION_L2_DCB_CFG) 627 dcb_rpl(q->adap, pcmd); 628 else 629 #endif 630 if (p->type == 0) 631 t4_handle_fw_rpl(q->adap, p->data); 632 } else if (opcode == CPL_L2T_WRITE_RPL) { 633 const struct cpl_l2t_write_rpl *p = (void *)rsp; 634 635 do_l2t_write_rpl(q->adap, p); 636 } else if (opcode == CPL_SMT_WRITE_RPL) { 637 const struct cpl_smt_write_rpl *p = (void *)rsp; 638 639 do_smt_write_rpl(q->adap, p); 640 } else if (opcode == CPL_SET_TCB_RPL) { 641 const struct cpl_set_tcb_rpl *p = (void *)rsp; 642 643 filter_rpl(q->adap, p); 644 } else if (opcode == CPL_ACT_OPEN_RPL) { 645 const struct cpl_act_open_rpl *p = (void *)rsp; 646 647 hash_filter_rpl(q->adap, p); 648 } else if (opcode == CPL_ABORT_RPL_RSS) { 649 const struct cpl_abort_rpl_rss *p = (void *)rsp; 650 651 hash_del_filter_rpl(q->adap, p); 652 } else if (opcode == CPL_SRQ_TABLE_RPL) { 653 const struct cpl_srq_table_rpl *p = (void *)rsp; 654 655 do_srq_table_rpl(q->adap, p); 656 } else 657 dev_err(q->adap->pdev_dev, 658 "unexpected CPL %#x on FW event queue\n", opcode); 659 out: 660 return 0; 661 } 662 663 static void disable_msi(struct adapter *adapter) 664 { 665 if (adapter->flags & CXGB4_USING_MSIX) { 666 pci_disable_msix(adapter->pdev); 667 adapter->flags &= ~CXGB4_USING_MSIX; 668 } else if (adapter->flags & CXGB4_USING_MSI) { 669 pci_disable_msi(adapter->pdev); 670 adapter->flags &= ~CXGB4_USING_MSI; 671 } 672 } 673 674 /* 675 * Interrupt handler for non-data events used with MSI-X. 676 */ 677 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 678 { 679 struct adapter *adap = cookie; 680 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 681 682 if (v & PFSW_F) { 683 adap->swintr = 1; 684 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 685 } 686 if (adap->flags & CXGB4_MASTER_PF) 687 t4_slow_intr_handler(adap); 688 return IRQ_HANDLED; 689 } 690 691 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec, 692 cpumask_var_t *aff_mask, int idx) 693 { 694 int rv; 695 696 if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) { 697 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n"); 698 return -ENOMEM; 699 } 700 701 cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)), 702 *aff_mask); 703 704 rv = irq_set_affinity_hint(vec, *aff_mask); 705 if (rv) 706 dev_warn(adap->pdev_dev, 707 "irq_set_affinity_hint %u failed %d\n", 708 vec, rv); 709 710 return 0; 711 } 712 713 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask) 714 { 715 irq_set_affinity_hint(vec, NULL); 716 free_cpumask_var(aff_mask); 717 } 718 719 static int request_msix_queue_irqs(struct adapter *adap) 720 { 721 struct sge *s = &adap->sge; 722 struct msix_info *minfo; 723 int err, ethqidx; 724 725 if (s->fwevtq_msix_idx < 0) 726 return -ENOMEM; 727 728 err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec, 729 t4_sge_intr_msix, 0, 730 adap->msix_info[s->fwevtq_msix_idx].desc, 731 &s->fw_evtq); 732 if (err) 733 return err; 734 735 for_each_ethrxq(s, ethqidx) { 736 minfo = s->ethrxq[ethqidx].msix; 737 err = request_irq(minfo->vec, 738 t4_sge_intr_msix, 0, 739 minfo->desc, 740 &s->ethrxq[ethqidx].rspq); 741 if (err) 742 goto unwind; 743 744 cxgb4_set_msix_aff(adap, minfo->vec, 745 &minfo->aff_mask, ethqidx); 746 } 747 return 0; 748 749 unwind: 750 while (--ethqidx >= 0) { 751 minfo = s->ethrxq[ethqidx].msix; 752 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 753 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq); 754 } 755 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); 756 return err; 757 } 758 759 static void free_msix_queue_irqs(struct adapter *adap) 760 { 761 struct sge *s = &adap->sge; 762 struct msix_info *minfo; 763 int i; 764 765 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); 766 for_each_ethrxq(s, i) { 767 minfo = s->ethrxq[i].msix; 768 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 769 free_irq(minfo->vec, &s->ethrxq[i].rspq); 770 } 771 } 772 773 static int setup_ppod_edram(struct adapter *adap) 774 { 775 unsigned int param, val; 776 int ret; 777 778 /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check 779 * if firmware supports ppod edram feature or not. If firmware 780 * returns 1, then driver can enable this feature by sending 781 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to 782 * enable ppod edram feature. 783 */ 784 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 785 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM)); 786 787 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 788 if (ret < 0) { 789 dev_warn(adap->pdev_dev, 790 "querying PPOD_EDRAM support failed: %d\n", 791 ret); 792 return -1; 793 } 794 795 if (val != 1) 796 return -1; 797 798 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 799 if (ret < 0) { 800 dev_err(adap->pdev_dev, 801 "setting PPOD_EDRAM failed: %d\n", ret); 802 return -1; 803 } 804 return 0; 805 } 806 807 static void adap_config_hpfilter(struct adapter *adapter) 808 { 809 u32 param, val = 0; 810 int ret; 811 812 /* Enable HP filter region. Older fw will fail this request and 813 * it is fine. 814 */ 815 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 816 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 817 1, ¶m, &val); 818 819 /* An error means FW doesn't know about HP filter support, 820 * it's not a problem, don't return an error. 821 */ 822 if (ret < 0) 823 dev_err(adapter->pdev_dev, 824 "HP filter region isn't supported by FW\n"); 825 } 826 827 /** 828 * cxgb4_write_rss - write the RSS table for a given port 829 * @pi: the port 830 * @queues: array of queue indices for RSS 831 * 832 * Sets up the portion of the HW RSS table for the port's VI to distribute 833 * packets to the Rx queues in @queues. 834 * Should never be called before setting up sge eth rx queues 835 */ 836 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 837 { 838 u16 *rss; 839 int i, err; 840 struct adapter *adapter = pi->adapter; 841 const struct sge_eth_rxq *rxq; 842 843 rxq = &adapter->sge.ethrxq[pi->first_qset]; 844 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 845 if (!rss) 846 return -ENOMEM; 847 848 /* map the queue indices to queue ids */ 849 for (i = 0; i < pi->rss_size; i++, queues++) 850 rss[i] = rxq[*queues].rspq.abs_id; 851 852 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 853 pi->rss_size, rss, pi->rss_size); 854 /* If Tunnel All Lookup isn't specified in the global RSS 855 * Configuration, then we need to specify a default Ingress 856 * Queue for any ingress packets which aren't hashed. We'll 857 * use our first ingress queue ... 858 */ 859 if (!err) 860 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 861 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 862 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 863 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 864 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 865 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 866 rss[0]); 867 kfree(rss); 868 return err; 869 } 870 871 /** 872 * setup_rss - configure RSS 873 * @adap: the adapter 874 * 875 * Sets up RSS for each port. 876 */ 877 static int setup_rss(struct adapter *adap) 878 { 879 int i, j, err; 880 881 for_each_port(adap, i) { 882 const struct port_info *pi = adap2pinfo(adap, i); 883 884 /* Fill default values with equal distribution */ 885 for (j = 0; j < pi->rss_size; j++) 886 pi->rss[j] = j % pi->nqsets; 887 888 err = cxgb4_write_rss(pi, pi->rss); 889 if (err) 890 return err; 891 } 892 return 0; 893 } 894 895 /* 896 * Return the channel of the ingress queue with the given qid. 897 */ 898 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 899 { 900 qid -= p->ingr_start; 901 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 902 } 903 904 void cxgb4_quiesce_rx(struct sge_rspq *q) 905 { 906 if (q->handler) 907 napi_disable(&q->napi); 908 } 909 910 /* 911 * Wait until all NAPI handlers are descheduled. 912 */ 913 static void quiesce_rx(struct adapter *adap) 914 { 915 int i; 916 917 for (i = 0; i < adap->sge.ingr_sz; i++) { 918 struct sge_rspq *q = adap->sge.ingr_map[i]; 919 920 if (!q) 921 continue; 922 923 cxgb4_quiesce_rx(q); 924 } 925 } 926 927 /* Disable interrupt and napi handler */ 928 static void disable_interrupts(struct adapter *adap) 929 { 930 struct sge *s = &adap->sge; 931 932 if (adap->flags & CXGB4_FULL_INIT_DONE) { 933 t4_intr_disable(adap); 934 if (adap->flags & CXGB4_USING_MSIX) { 935 free_msix_queue_irqs(adap); 936 free_irq(adap->msix_info[s->nd_msix_idx].vec, 937 adap); 938 } else { 939 free_irq(adap->pdev->irq, adap); 940 } 941 quiesce_rx(adap); 942 } 943 } 944 945 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q) 946 { 947 if (q->handler) 948 napi_enable(&q->napi); 949 950 /* 0-increment GTS to start the timer and enable interrupts */ 951 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 952 SEINTARM_V(q->intr_params) | 953 INGRESSQID_V(q->cntxt_id)); 954 } 955 956 /* 957 * Enable NAPI scheduling and interrupt generation for all Rx queues. 958 */ 959 static void enable_rx(struct adapter *adap) 960 { 961 int i; 962 963 for (i = 0; i < adap->sge.ingr_sz; i++) { 964 struct sge_rspq *q = adap->sge.ingr_map[i]; 965 966 if (!q) 967 continue; 968 969 cxgb4_enable_rx(adap, q); 970 } 971 } 972 973 static int setup_non_data_intr(struct adapter *adap) 974 { 975 int msix; 976 977 adap->sge.nd_msix_idx = -1; 978 if (!(adap->flags & CXGB4_USING_MSIX)) 979 return 0; 980 981 /* Request MSI-X vector for non-data interrupt */ 982 msix = cxgb4_get_msix_idx_from_bmap(adap); 983 if (msix < 0) 984 return -ENOMEM; 985 986 snprintf(adap->msix_info[msix].desc, 987 sizeof(adap->msix_info[msix].desc), 988 "%s", adap->port[0]->name); 989 990 adap->sge.nd_msix_idx = msix; 991 return 0; 992 } 993 994 static int setup_fw_sge_queues(struct adapter *adap) 995 { 996 struct sge *s = &adap->sge; 997 int msix, err = 0; 998 999 bitmap_zero(s->starving_fl, s->egr_sz); 1000 bitmap_zero(s->txq_maperr, s->egr_sz); 1001 1002 if (adap->flags & CXGB4_USING_MSIX) { 1003 s->fwevtq_msix_idx = -1; 1004 msix = cxgb4_get_msix_idx_from_bmap(adap); 1005 if (msix < 0) 1006 return -ENOMEM; 1007 1008 snprintf(adap->msix_info[msix].desc, 1009 sizeof(adap->msix_info[msix].desc), 1010 "%s-FWeventq", adap->port[0]->name); 1011 } else { 1012 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 1013 NULL, NULL, NULL, -1); 1014 if (err) 1015 return err; 1016 msix = -((int)s->intrq.abs_id + 1); 1017 } 1018 1019 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 1020 msix, NULL, fwevtq_handler, NULL, -1); 1021 if (err && msix >= 0) 1022 cxgb4_free_msix_idx_in_bmap(adap, msix); 1023 1024 s->fwevtq_msix_idx = msix; 1025 return err; 1026 } 1027 1028 /** 1029 * setup_sge_queues - configure SGE Tx/Rx/response queues 1030 * @adap: the adapter 1031 * 1032 * Determines how many sets of SGE queues to use and initializes them. 1033 * We support multiple queue sets per port if we have MSI-X, otherwise 1034 * just one queue set per port. 1035 */ 1036 static int setup_sge_queues(struct adapter *adap) 1037 { 1038 struct sge_uld_rxq_info *rxq_info = NULL; 1039 struct sge *s = &adap->sge; 1040 unsigned int cmplqid = 0; 1041 int err, i, j, msix = 0; 1042 1043 if (is_uld(adap)) 1044 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 1045 1046 if (!(adap->flags & CXGB4_USING_MSIX)) 1047 msix = -((int)s->intrq.abs_id + 1); 1048 1049 for_each_port(adap, i) { 1050 struct net_device *dev = adap->port[i]; 1051 struct port_info *pi = netdev_priv(dev); 1052 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1053 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1054 1055 for (j = 0; j < pi->nqsets; j++, q++) { 1056 if (msix >= 0) { 1057 msix = cxgb4_get_msix_idx_from_bmap(adap); 1058 if (msix < 0) { 1059 err = msix; 1060 goto freeout; 1061 } 1062 1063 snprintf(adap->msix_info[msix].desc, 1064 sizeof(adap->msix_info[msix].desc), 1065 "%s-Rx%d", dev->name, j); 1066 q->msix = &adap->msix_info[msix]; 1067 } 1068 1069 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1070 msix, &q->fl, 1071 t4_ethrx_handler, 1072 NULL, 1073 t4_get_tp_ch_map(adap, 1074 pi->tx_chan)); 1075 if (err) 1076 goto freeout; 1077 q->rspq.idx = j; 1078 memset(&q->stats, 0, sizeof(q->stats)); 1079 } 1080 1081 q = &s->ethrxq[pi->first_qset]; 1082 for (j = 0; j < pi->nqsets; j++, t++, q++) { 1083 err = t4_sge_alloc_eth_txq(adap, t, dev, 1084 netdev_get_tx_queue(dev, j), 1085 q->rspq.cntxt_id, 1086 !!(adap->flags & CXGB4_SGE_DBQ_TIMER)); 1087 if (err) 1088 goto freeout; 1089 } 1090 } 1091 1092 for_each_port(adap, i) { 1093 /* Note that cmplqid below is 0 if we don't 1094 * have RDMA queues, and that's the right value. 1095 */ 1096 if (rxq_info) 1097 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 1098 1099 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1100 s->fw_evtq.cntxt_id, cmplqid); 1101 if (err) 1102 goto freeout; 1103 } 1104 1105 if (!is_t4(adap->params.chip)) { 1106 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 1107 netdev_get_tx_queue(adap->port[0], 0) 1108 , s->fw_evtq.cntxt_id, false); 1109 if (err) 1110 goto freeout; 1111 } 1112 1113 t4_write_reg(adap, is_t4(adap->params.chip) ? 1114 MPS_TRC_RSS_CONTROL_A : 1115 MPS_T5_TRC_RSS_CONTROL_A, 1116 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 1117 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 1118 return 0; 1119 freeout: 1120 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 1121 t4_free_sge_resources(adap); 1122 return err; 1123 } 1124 1125 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 1126 struct net_device *sb_dev) 1127 { 1128 int txq; 1129 1130 #ifdef CONFIG_CHELSIO_T4_DCB 1131 /* If a Data Center Bridging has been successfully negotiated on this 1132 * link then we'll use the skb's priority to map it to a TX Queue. 1133 * The skb's priority is determined via the VLAN Tag Priority Code 1134 * Point field. 1135 */ 1136 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 1137 u16 vlan_tci; 1138 int err; 1139 1140 err = vlan_get_tag(skb, &vlan_tci); 1141 if (unlikely(err)) { 1142 if (net_ratelimit()) 1143 netdev_warn(dev, 1144 "TX Packet without VLAN Tag on DCB Link\n"); 1145 txq = 0; 1146 } else { 1147 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1148 #ifdef CONFIG_CHELSIO_T4_FCOE 1149 if (skb->protocol == htons(ETH_P_FCOE)) 1150 txq = skb->priority & 0x7; 1151 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1152 } 1153 return txq; 1154 } 1155 #endif /* CONFIG_CHELSIO_T4_DCB */ 1156 1157 if (dev->num_tc) { 1158 struct port_info *pi = netdev2pinfo(dev); 1159 u8 ver, proto; 1160 1161 ver = ip_hdr(skb)->version; 1162 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : 1163 ip_hdr(skb)->protocol; 1164 1165 /* Send unsupported traffic pattern to normal NIC queues. */ 1166 txq = netdev_pick_tx(dev, skb, sb_dev); 1167 if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) || 1168 skb->encapsulation || 1169 (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) 1170 txq = txq % pi->nqsets; 1171 1172 return txq; 1173 } 1174 1175 if (select_queue) { 1176 txq = (skb_rx_queue_recorded(skb) 1177 ? skb_get_rx_queue(skb) 1178 : smp_processor_id()); 1179 1180 while (unlikely(txq >= dev->real_num_tx_queues)) 1181 txq -= dev->real_num_tx_queues; 1182 1183 return txq; 1184 } 1185 1186 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 1187 } 1188 1189 static int closest_timer(const struct sge *s, int time) 1190 { 1191 int i, delta, match = 0, min_delta = INT_MAX; 1192 1193 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1194 delta = time - s->timer_val[i]; 1195 if (delta < 0) 1196 delta = -delta; 1197 if (delta < min_delta) { 1198 min_delta = delta; 1199 match = i; 1200 } 1201 } 1202 return match; 1203 } 1204 1205 static int closest_thres(const struct sge *s, int thres) 1206 { 1207 int i, delta, match = 0, min_delta = INT_MAX; 1208 1209 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1210 delta = thres - s->counter_val[i]; 1211 if (delta < 0) 1212 delta = -delta; 1213 if (delta < min_delta) { 1214 min_delta = delta; 1215 match = i; 1216 } 1217 } 1218 return match; 1219 } 1220 1221 /** 1222 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1223 * @q: the Rx queue 1224 * @us: the hold-off time in us, or 0 to disable timer 1225 * @cnt: the hold-off packet count, or 0 to disable counter 1226 * 1227 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1228 * one of the two needs to be enabled for the queue to generate interrupts. 1229 */ 1230 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1231 unsigned int us, unsigned int cnt) 1232 { 1233 struct adapter *adap = q->adap; 1234 1235 if ((us | cnt) == 0) 1236 cnt = 1; 1237 1238 if (cnt) { 1239 int err; 1240 u32 v, new_idx; 1241 1242 new_idx = closest_thres(&adap->sge, cnt); 1243 if (q->desc && q->pktcnt_idx != new_idx) { 1244 /* the queue has already been created, update it */ 1245 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1246 FW_PARAMS_PARAM_X_V( 1247 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1248 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1249 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1250 &v, &new_idx); 1251 if (err) 1252 return err; 1253 } 1254 q->pktcnt_idx = new_idx; 1255 } 1256 1257 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1258 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1259 return 0; 1260 } 1261 1262 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1263 { 1264 const struct port_info *pi = netdev_priv(dev); 1265 netdev_features_t changed = dev->features ^ features; 1266 int err; 1267 1268 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1269 return 0; 1270 1271 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1272 -1, -1, -1, 1273 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1274 if (unlikely(err)) 1275 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1276 return err; 1277 } 1278 1279 static int setup_debugfs(struct adapter *adap) 1280 { 1281 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1282 return -1; 1283 1284 #ifdef CONFIG_DEBUG_FS 1285 t4_setup_debugfs(adap); 1286 #endif 1287 return 0; 1288 } 1289 1290 /* 1291 * upper-layer driver support 1292 */ 1293 1294 /* 1295 * Allocate an active-open TID and set it to the supplied value. 1296 */ 1297 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1298 { 1299 int atid = -1; 1300 1301 spin_lock_bh(&t->atid_lock); 1302 if (t->afree) { 1303 union aopen_entry *p = t->afree; 1304 1305 atid = (p - t->atid_tab) + t->atid_base; 1306 t->afree = p->next; 1307 p->data = data; 1308 t->atids_in_use++; 1309 } 1310 spin_unlock_bh(&t->atid_lock); 1311 return atid; 1312 } 1313 EXPORT_SYMBOL(cxgb4_alloc_atid); 1314 1315 /* 1316 * Release an active-open TID. 1317 */ 1318 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1319 { 1320 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1321 1322 spin_lock_bh(&t->atid_lock); 1323 p->next = t->afree; 1324 t->afree = p; 1325 t->atids_in_use--; 1326 spin_unlock_bh(&t->atid_lock); 1327 } 1328 EXPORT_SYMBOL(cxgb4_free_atid); 1329 1330 /* 1331 * Allocate a server TID and set it to the supplied value. 1332 */ 1333 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1334 { 1335 int stid; 1336 1337 spin_lock_bh(&t->stid_lock); 1338 if (family == PF_INET) { 1339 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1340 if (stid < t->nstids) 1341 __set_bit(stid, t->stid_bmap); 1342 else 1343 stid = -1; 1344 } else { 1345 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1346 if (stid < 0) 1347 stid = -1; 1348 } 1349 if (stid >= 0) { 1350 t->stid_tab[stid].data = data; 1351 stid += t->stid_base; 1352 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1353 * This is equivalent to 4 TIDs. With CLIP enabled it 1354 * needs 2 TIDs. 1355 */ 1356 if (family == PF_INET6) { 1357 t->stids_in_use += 2; 1358 t->v6_stids_in_use += 2; 1359 } else { 1360 t->stids_in_use++; 1361 } 1362 } 1363 spin_unlock_bh(&t->stid_lock); 1364 return stid; 1365 } 1366 EXPORT_SYMBOL(cxgb4_alloc_stid); 1367 1368 /* Allocate a server filter TID and set it to the supplied value. 1369 */ 1370 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1371 { 1372 int stid; 1373 1374 spin_lock_bh(&t->stid_lock); 1375 if (family == PF_INET) { 1376 stid = find_next_zero_bit(t->stid_bmap, 1377 t->nstids + t->nsftids, t->nstids); 1378 if (stid < (t->nstids + t->nsftids)) 1379 __set_bit(stid, t->stid_bmap); 1380 else 1381 stid = -1; 1382 } else { 1383 stid = -1; 1384 } 1385 if (stid >= 0) { 1386 t->stid_tab[stid].data = data; 1387 stid -= t->nstids; 1388 stid += t->sftid_base; 1389 t->sftids_in_use++; 1390 } 1391 spin_unlock_bh(&t->stid_lock); 1392 return stid; 1393 } 1394 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1395 1396 /* Release a server TID. 1397 */ 1398 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1399 { 1400 /* Is it a server filter TID? */ 1401 if (t->nsftids && (stid >= t->sftid_base)) { 1402 stid -= t->sftid_base; 1403 stid += t->nstids; 1404 } else { 1405 stid -= t->stid_base; 1406 } 1407 1408 spin_lock_bh(&t->stid_lock); 1409 if (family == PF_INET) 1410 __clear_bit(stid, t->stid_bmap); 1411 else 1412 bitmap_release_region(t->stid_bmap, stid, 1); 1413 t->stid_tab[stid].data = NULL; 1414 if (stid < t->nstids) { 1415 if (family == PF_INET6) { 1416 t->stids_in_use -= 2; 1417 t->v6_stids_in_use -= 2; 1418 } else { 1419 t->stids_in_use--; 1420 } 1421 } else { 1422 t->sftids_in_use--; 1423 } 1424 1425 spin_unlock_bh(&t->stid_lock); 1426 } 1427 EXPORT_SYMBOL(cxgb4_free_stid); 1428 1429 /* 1430 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1431 */ 1432 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1433 unsigned int tid) 1434 { 1435 struct cpl_tid_release *req; 1436 1437 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1438 req = __skb_put(skb, sizeof(*req)); 1439 INIT_TP_WR(req, tid); 1440 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1441 } 1442 1443 /* 1444 * Queue a TID release request and if necessary schedule a work queue to 1445 * process it. 1446 */ 1447 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1448 unsigned int tid) 1449 { 1450 struct adapter *adap = container_of(t, struct adapter, tids); 1451 void **p = &t->tid_tab[tid - t->tid_base]; 1452 1453 spin_lock_bh(&adap->tid_release_lock); 1454 *p = adap->tid_release_head; 1455 /* Low 2 bits encode the Tx channel number */ 1456 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1457 if (!adap->tid_release_task_busy) { 1458 adap->tid_release_task_busy = true; 1459 queue_work(adap->workq, &adap->tid_release_task); 1460 } 1461 spin_unlock_bh(&adap->tid_release_lock); 1462 } 1463 1464 /* 1465 * Process the list of pending TID release requests. 1466 */ 1467 static void process_tid_release_list(struct work_struct *work) 1468 { 1469 struct sk_buff *skb; 1470 struct adapter *adap; 1471 1472 adap = container_of(work, struct adapter, tid_release_task); 1473 1474 spin_lock_bh(&adap->tid_release_lock); 1475 while (adap->tid_release_head) { 1476 void **p = adap->tid_release_head; 1477 unsigned int chan = (uintptr_t)p & 3; 1478 p = (void *)p - chan; 1479 1480 adap->tid_release_head = *p; 1481 *p = NULL; 1482 spin_unlock_bh(&adap->tid_release_lock); 1483 1484 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1485 GFP_KERNEL))) 1486 schedule_timeout_uninterruptible(1); 1487 1488 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1489 t4_ofld_send(adap, skb); 1490 spin_lock_bh(&adap->tid_release_lock); 1491 } 1492 adap->tid_release_task_busy = false; 1493 spin_unlock_bh(&adap->tid_release_lock); 1494 } 1495 1496 /* 1497 * Release a TID and inform HW. If we are unable to allocate the release 1498 * message we defer to a work queue. 1499 */ 1500 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1501 unsigned short family) 1502 { 1503 struct adapter *adap = container_of(t, struct adapter, tids); 1504 struct sk_buff *skb; 1505 1506 WARN_ON(tid_out_of_range(&adap->tids, tid)); 1507 1508 if (t->tid_tab[tid - adap->tids.tid_base]) { 1509 t->tid_tab[tid - adap->tids.tid_base] = NULL; 1510 atomic_dec(&t->conns_in_use); 1511 if (t->hash_base && (tid >= t->hash_base)) { 1512 if (family == AF_INET6) 1513 atomic_sub(2, &t->hash_tids_in_use); 1514 else 1515 atomic_dec(&t->hash_tids_in_use); 1516 } else { 1517 if (family == AF_INET6) 1518 atomic_sub(2, &t->tids_in_use); 1519 else 1520 atomic_dec(&t->tids_in_use); 1521 } 1522 } 1523 1524 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1525 if (likely(skb)) { 1526 mk_tid_release(skb, chan, tid); 1527 t4_ofld_send(adap, skb); 1528 } else 1529 cxgb4_queue_tid_release(t, chan, tid); 1530 } 1531 EXPORT_SYMBOL(cxgb4_remove_tid); 1532 1533 /* 1534 * Allocate and initialize the TID tables. Returns 0 on success. 1535 */ 1536 static int tid_init(struct tid_info *t) 1537 { 1538 struct adapter *adap = container_of(t, struct adapter, tids); 1539 unsigned int max_ftids = t->nftids + t->nsftids; 1540 unsigned int natids = t->natids; 1541 unsigned int hpftid_bmap_size; 1542 unsigned int eotid_bmap_size; 1543 unsigned int stid_bmap_size; 1544 unsigned int ftid_bmap_size; 1545 size_t size; 1546 1547 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1548 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1549 hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids); 1550 eotid_bmap_size = BITS_TO_LONGS(t->neotids); 1551 size = t->ntids * sizeof(*t->tid_tab) + 1552 natids * sizeof(*t->atid_tab) + 1553 t->nstids * sizeof(*t->stid_tab) + 1554 t->nsftids * sizeof(*t->stid_tab) + 1555 stid_bmap_size * sizeof(long) + 1556 t->nhpftids * sizeof(*t->hpftid_tab) + 1557 hpftid_bmap_size * sizeof(long) + 1558 max_ftids * sizeof(*t->ftid_tab) + 1559 ftid_bmap_size * sizeof(long) + 1560 t->neotids * sizeof(*t->eotid_tab) + 1561 eotid_bmap_size * sizeof(long); 1562 1563 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1564 if (!t->tid_tab) 1565 return -ENOMEM; 1566 1567 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1568 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1569 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1570 t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1571 t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids]; 1572 t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size]; 1573 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1574 t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size]; 1575 t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids]; 1576 spin_lock_init(&t->stid_lock); 1577 spin_lock_init(&t->atid_lock); 1578 spin_lock_init(&t->ftid_lock); 1579 1580 t->stids_in_use = 0; 1581 t->v6_stids_in_use = 0; 1582 t->sftids_in_use = 0; 1583 t->afree = NULL; 1584 t->atids_in_use = 0; 1585 atomic_set(&t->tids_in_use, 0); 1586 atomic_set(&t->conns_in_use, 0); 1587 atomic_set(&t->hash_tids_in_use, 0); 1588 1589 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1590 if (natids) { 1591 while (--natids) 1592 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1593 t->afree = t->atid_tab; 1594 } 1595 1596 if (is_offload(adap)) { 1597 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1598 /* Reserve stid 0 for T4/T5 adapters */ 1599 if (!t->stid_base && 1600 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1601 __set_bit(0, t->stid_bmap); 1602 1603 if (t->neotids) 1604 bitmap_zero(t->eotid_bmap, t->neotids); 1605 } 1606 1607 if (t->nhpftids) 1608 bitmap_zero(t->hpftid_bmap, t->nhpftids); 1609 bitmap_zero(t->ftid_bmap, t->nftids); 1610 return 0; 1611 } 1612 1613 /** 1614 * cxgb4_create_server - create an IP server 1615 * @dev: the device 1616 * @stid: the server TID 1617 * @sip: local IP address to bind server to 1618 * @sport: the server's TCP port 1619 * @queue: queue to direct messages from this server to 1620 * 1621 * Create an IP server for the given port and address. 1622 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1623 */ 1624 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1625 __be32 sip, __be16 sport, __be16 vlan, 1626 unsigned int queue) 1627 { 1628 unsigned int chan; 1629 struct sk_buff *skb; 1630 struct adapter *adap; 1631 struct cpl_pass_open_req *req; 1632 int ret; 1633 1634 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1635 if (!skb) 1636 return -ENOMEM; 1637 1638 adap = netdev2adap(dev); 1639 req = __skb_put(skb, sizeof(*req)); 1640 INIT_TP_WR(req, 0); 1641 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1642 req->local_port = sport; 1643 req->peer_port = htons(0); 1644 req->local_ip = sip; 1645 req->peer_ip = htonl(0); 1646 chan = rxq_to_chan(&adap->sge, queue); 1647 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1648 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1649 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1650 ret = t4_mgmt_tx(adap, skb); 1651 return net_xmit_eval(ret); 1652 } 1653 EXPORT_SYMBOL(cxgb4_create_server); 1654 1655 /* cxgb4_create_server6 - create an IPv6 server 1656 * @dev: the device 1657 * @stid: the server TID 1658 * @sip: local IPv6 address to bind server to 1659 * @sport: the server's TCP port 1660 * @queue: queue to direct messages from this server to 1661 * 1662 * Create an IPv6 server for the given port and address. 1663 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1664 */ 1665 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1666 const struct in6_addr *sip, __be16 sport, 1667 unsigned int queue) 1668 { 1669 unsigned int chan; 1670 struct sk_buff *skb; 1671 struct adapter *adap; 1672 struct cpl_pass_open_req6 *req; 1673 int ret; 1674 1675 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1676 if (!skb) 1677 return -ENOMEM; 1678 1679 adap = netdev2adap(dev); 1680 req = __skb_put(skb, sizeof(*req)); 1681 INIT_TP_WR(req, 0); 1682 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1683 req->local_port = sport; 1684 req->peer_port = htons(0); 1685 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1686 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1687 req->peer_ip_hi = cpu_to_be64(0); 1688 req->peer_ip_lo = cpu_to_be64(0); 1689 chan = rxq_to_chan(&adap->sge, queue); 1690 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1691 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1692 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1693 ret = t4_mgmt_tx(adap, skb); 1694 return net_xmit_eval(ret); 1695 } 1696 EXPORT_SYMBOL(cxgb4_create_server6); 1697 1698 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1699 unsigned int queue, bool ipv6) 1700 { 1701 struct sk_buff *skb; 1702 struct adapter *adap; 1703 struct cpl_close_listsvr_req *req; 1704 int ret; 1705 1706 adap = netdev2adap(dev); 1707 1708 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1709 if (!skb) 1710 return -ENOMEM; 1711 1712 req = __skb_put(skb, sizeof(*req)); 1713 INIT_TP_WR(req, 0); 1714 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1715 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1716 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1717 ret = t4_mgmt_tx(adap, skb); 1718 return net_xmit_eval(ret); 1719 } 1720 EXPORT_SYMBOL(cxgb4_remove_server); 1721 1722 /** 1723 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1724 * @mtus: the HW MTU table 1725 * @mtu: the target MTU 1726 * @idx: index of selected entry in the MTU table 1727 * 1728 * Returns the index and the value in the HW MTU table that is closest to 1729 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1730 * table, in which case that smallest available value is selected. 1731 */ 1732 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1733 unsigned int *idx) 1734 { 1735 unsigned int i = 0; 1736 1737 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1738 ++i; 1739 if (idx) 1740 *idx = i; 1741 return mtus[i]; 1742 } 1743 EXPORT_SYMBOL(cxgb4_best_mtu); 1744 1745 /** 1746 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1747 * @mtus: the HW MTU table 1748 * @header_size: Header Size 1749 * @data_size_max: maximum Data Segment Size 1750 * @data_size_align: desired Data Segment Size Alignment (2^N) 1751 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1752 * 1753 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1754 * MTU Table based solely on a Maximum MTU parameter, we break that 1755 * parameter up into a Header Size and Maximum Data Segment Size, and 1756 * provide a desired Data Segment Size Alignment. If we find an MTU in 1757 * the Hardware MTU Table which will result in a Data Segment Size with 1758 * the requested alignment _and_ that MTU isn't "too far" from the 1759 * closest MTU, then we'll return that rather than the closest MTU. 1760 */ 1761 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1762 unsigned short header_size, 1763 unsigned short data_size_max, 1764 unsigned short data_size_align, 1765 unsigned int *mtu_idxp) 1766 { 1767 unsigned short max_mtu = header_size + data_size_max; 1768 unsigned short data_size_align_mask = data_size_align - 1; 1769 int mtu_idx, aligned_mtu_idx; 1770 1771 /* Scan the MTU Table till we find an MTU which is larger than our 1772 * Maximum MTU or we reach the end of the table. Along the way, 1773 * record the last MTU found, if any, which will result in a Data 1774 * Segment Length matching the requested alignment. 1775 */ 1776 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1777 unsigned short data_size = mtus[mtu_idx] - header_size; 1778 1779 /* If this MTU minus the Header Size would result in a 1780 * Data Segment Size of the desired alignment, remember it. 1781 */ 1782 if ((data_size & data_size_align_mask) == 0) 1783 aligned_mtu_idx = mtu_idx; 1784 1785 /* If we're not at the end of the Hardware MTU Table and the 1786 * next element is larger than our Maximum MTU, drop out of 1787 * the loop. 1788 */ 1789 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1790 break; 1791 } 1792 1793 /* If we fell out of the loop because we ran to the end of the table, 1794 * then we just have to use the last [largest] entry. 1795 */ 1796 if (mtu_idx == NMTUS) 1797 mtu_idx--; 1798 1799 /* If we found an MTU which resulted in the requested Data Segment 1800 * Length alignment and that's "not far" from the largest MTU which is 1801 * less than or equal to the maximum MTU, then use that. 1802 */ 1803 if (aligned_mtu_idx >= 0 && 1804 mtu_idx - aligned_mtu_idx <= 1) 1805 mtu_idx = aligned_mtu_idx; 1806 1807 /* If the caller has passed in an MTU Index pointer, pass the 1808 * MTU Index back. Return the MTU value. 1809 */ 1810 if (mtu_idxp) 1811 *mtu_idxp = mtu_idx; 1812 return mtus[mtu_idx]; 1813 } 1814 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1815 1816 /** 1817 * cxgb4_port_chan - get the HW channel of a port 1818 * @dev: the net device for the port 1819 * 1820 * Return the HW Tx channel of the given port. 1821 */ 1822 unsigned int cxgb4_port_chan(const struct net_device *dev) 1823 { 1824 return netdev2pinfo(dev)->tx_chan; 1825 } 1826 EXPORT_SYMBOL(cxgb4_port_chan); 1827 1828 /** 1829 * cxgb4_port_e2cchan - get the HW c-channel of a port 1830 * @dev: the net device for the port 1831 * 1832 * Return the HW RX c-channel of the given port. 1833 */ 1834 unsigned int cxgb4_port_e2cchan(const struct net_device *dev) 1835 { 1836 return netdev2pinfo(dev)->rx_cchan; 1837 } 1838 EXPORT_SYMBOL(cxgb4_port_e2cchan); 1839 1840 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1841 { 1842 struct adapter *adap = netdev2adap(dev); 1843 u32 v1, v2, lp_count, hp_count; 1844 1845 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1846 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1847 if (is_t4(adap->params.chip)) { 1848 lp_count = LP_COUNT_G(v1); 1849 hp_count = HP_COUNT_G(v1); 1850 } else { 1851 lp_count = LP_COUNT_T5_G(v1); 1852 hp_count = HP_COUNT_T5_G(v2); 1853 } 1854 return lpfifo ? lp_count : hp_count; 1855 } 1856 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1857 1858 /** 1859 * cxgb4_port_viid - get the VI id of a port 1860 * @dev: the net device for the port 1861 * 1862 * Return the VI id of the given port. 1863 */ 1864 unsigned int cxgb4_port_viid(const struct net_device *dev) 1865 { 1866 return netdev2pinfo(dev)->viid; 1867 } 1868 EXPORT_SYMBOL(cxgb4_port_viid); 1869 1870 /** 1871 * cxgb4_port_idx - get the index of a port 1872 * @dev: the net device for the port 1873 * 1874 * Return the index of the given port. 1875 */ 1876 unsigned int cxgb4_port_idx(const struct net_device *dev) 1877 { 1878 return netdev2pinfo(dev)->port_id; 1879 } 1880 EXPORT_SYMBOL(cxgb4_port_idx); 1881 1882 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1883 struct tp_tcp_stats *v6) 1884 { 1885 struct adapter *adap = pci_get_drvdata(pdev); 1886 1887 spin_lock(&adap->stats_lock); 1888 t4_tp_get_tcp_stats(adap, v4, v6, false); 1889 spin_unlock(&adap->stats_lock); 1890 } 1891 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1892 1893 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1894 const unsigned int *pgsz_order) 1895 { 1896 struct adapter *adap = netdev2adap(dev); 1897 1898 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1899 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1900 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1901 HPZ3_V(pgsz_order[3])); 1902 } 1903 EXPORT_SYMBOL(cxgb4_iscsi_init); 1904 1905 int cxgb4_flush_eq_cache(struct net_device *dev) 1906 { 1907 struct adapter *adap = netdev2adap(dev); 1908 1909 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 1910 } 1911 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1912 1913 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1914 { 1915 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1916 __be64 indices; 1917 int ret; 1918 1919 spin_lock(&adap->win0_lock); 1920 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1921 sizeof(indices), (__be32 *)&indices, 1922 T4_MEMORY_READ); 1923 spin_unlock(&adap->win0_lock); 1924 if (!ret) { 1925 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1926 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1927 } 1928 return ret; 1929 } 1930 1931 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1932 u16 size) 1933 { 1934 struct adapter *adap = netdev2adap(dev); 1935 u16 hw_pidx, hw_cidx; 1936 int ret; 1937 1938 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1939 if (ret) 1940 goto out; 1941 1942 if (pidx != hw_pidx) { 1943 u16 delta; 1944 u32 val; 1945 1946 if (pidx >= hw_pidx) 1947 delta = pidx - hw_pidx; 1948 else 1949 delta = size - hw_pidx + pidx; 1950 1951 if (is_t4(adap->params.chip)) 1952 val = PIDX_V(delta); 1953 else 1954 val = PIDX_T5_V(delta); 1955 wmb(); 1956 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1957 QID_V(qid) | val); 1958 } 1959 out: 1960 return ret; 1961 } 1962 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1963 1964 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1965 { 1966 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1967 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1968 u32 offset, memtype, memaddr; 1969 struct adapter *adap; 1970 u32 hma_size = 0; 1971 int ret; 1972 1973 adap = netdev2adap(dev); 1974 1975 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1976 1977 /* Figure out where the offset lands in the Memory Type/Address scheme. 1978 * This code assumes that the memory is laid out starting at offset 0 1979 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1980 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1981 * MC0, and some have both MC0 and MC1. 1982 */ 1983 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1984 edc0_size = EDRAM0_SIZE_G(size) << 20; 1985 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1986 edc1_size = EDRAM1_SIZE_G(size) << 20; 1987 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1988 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1989 1990 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 1991 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1992 hma_size = EXT_MEM1_SIZE_G(size) << 20; 1993 } 1994 edc0_end = edc0_size; 1995 edc1_end = edc0_end + edc1_size; 1996 mc0_end = edc1_end + mc0_size; 1997 1998 if (offset < edc0_end) { 1999 memtype = MEM_EDC0; 2000 memaddr = offset; 2001 } else if (offset < edc1_end) { 2002 memtype = MEM_EDC1; 2003 memaddr = offset - edc0_end; 2004 } else { 2005 if (hma_size && (offset < (edc1_end + hma_size))) { 2006 memtype = MEM_HMA; 2007 memaddr = offset - edc1_end; 2008 } else if (offset < mc0_end) { 2009 memtype = MEM_MC0; 2010 memaddr = offset - edc1_end; 2011 } else if (is_t5(adap->params.chip)) { 2012 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2013 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 2014 mc1_end = mc0_end + mc1_size; 2015 if (offset < mc1_end) { 2016 memtype = MEM_MC1; 2017 memaddr = offset - mc0_end; 2018 } else { 2019 /* offset beyond the end of any memory */ 2020 goto err; 2021 } 2022 } else { 2023 /* T4/T6 only has a single memory channel */ 2024 goto err; 2025 } 2026 } 2027 2028 spin_lock(&adap->win0_lock); 2029 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 2030 spin_unlock(&adap->win0_lock); 2031 return ret; 2032 2033 err: 2034 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 2035 stag, offset); 2036 return -EINVAL; 2037 } 2038 EXPORT_SYMBOL(cxgb4_read_tpte); 2039 2040 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 2041 { 2042 u32 hi, lo; 2043 struct adapter *adap; 2044 2045 adap = netdev2adap(dev); 2046 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 2047 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 2048 2049 return ((u64)hi << 32) | (u64)lo; 2050 } 2051 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 2052 2053 int cxgb4_bar2_sge_qregs(struct net_device *dev, 2054 unsigned int qid, 2055 enum cxgb4_bar2_qtype qtype, 2056 int user, 2057 u64 *pbar2_qoffset, 2058 unsigned int *pbar2_qid) 2059 { 2060 return t4_bar2_sge_qregs(netdev2adap(dev), 2061 qid, 2062 (qtype == CXGB4_BAR2_QTYPE_EGRESS 2063 ? T4_BAR2_QTYPE_EGRESS 2064 : T4_BAR2_QTYPE_INGRESS), 2065 user, 2066 pbar2_qoffset, 2067 pbar2_qid); 2068 } 2069 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 2070 2071 static struct pci_driver cxgb4_driver; 2072 2073 static void check_neigh_update(struct neighbour *neigh) 2074 { 2075 const struct device *parent; 2076 const struct net_device *netdev = neigh->dev; 2077 2078 if (is_vlan_dev(netdev)) 2079 netdev = vlan_dev_real_dev(netdev); 2080 parent = netdev->dev.parent; 2081 if (parent && parent->driver == &cxgb4_driver.driver) 2082 t4_l2t_update(dev_get_drvdata(parent), neigh); 2083 } 2084 2085 static int netevent_cb(struct notifier_block *nb, unsigned long event, 2086 void *data) 2087 { 2088 switch (event) { 2089 case NETEVENT_NEIGH_UPDATE: 2090 check_neigh_update(data); 2091 break; 2092 case NETEVENT_REDIRECT: 2093 default: 2094 break; 2095 } 2096 return 0; 2097 } 2098 2099 static bool netevent_registered; 2100 static struct notifier_block cxgb4_netevent_nb = { 2101 .notifier_call = netevent_cb 2102 }; 2103 2104 static void drain_db_fifo(struct adapter *adap, int usecs) 2105 { 2106 u32 v1, v2, lp_count, hp_count; 2107 2108 do { 2109 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2110 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2111 if (is_t4(adap->params.chip)) { 2112 lp_count = LP_COUNT_G(v1); 2113 hp_count = HP_COUNT_G(v1); 2114 } else { 2115 lp_count = LP_COUNT_T5_G(v1); 2116 hp_count = HP_COUNT_T5_G(v2); 2117 } 2118 2119 if (lp_count == 0 && hp_count == 0) 2120 break; 2121 set_current_state(TASK_UNINTERRUPTIBLE); 2122 schedule_timeout(usecs_to_jiffies(usecs)); 2123 } while (1); 2124 } 2125 2126 static void disable_txq_db(struct sge_txq *q) 2127 { 2128 unsigned long flags; 2129 2130 spin_lock_irqsave(&q->db_lock, flags); 2131 q->db_disabled = 1; 2132 spin_unlock_irqrestore(&q->db_lock, flags); 2133 } 2134 2135 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 2136 { 2137 spin_lock_irq(&q->db_lock); 2138 if (q->db_pidx_inc) { 2139 /* Make sure that all writes to the TX descriptors 2140 * are committed before we tell HW about them. 2141 */ 2142 wmb(); 2143 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2144 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 2145 q->db_pidx_inc = 0; 2146 } 2147 q->db_disabled = 0; 2148 spin_unlock_irq(&q->db_lock); 2149 } 2150 2151 static void disable_dbs(struct adapter *adap) 2152 { 2153 int i; 2154 2155 for_each_ethrxq(&adap->sge, i) 2156 disable_txq_db(&adap->sge.ethtxq[i].q); 2157 if (is_offload(adap)) { 2158 struct sge_uld_txq_info *txq_info = 2159 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2160 2161 if (txq_info) { 2162 for_each_ofldtxq(&adap->sge, i) { 2163 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2164 2165 disable_txq_db(&txq->q); 2166 } 2167 } 2168 } 2169 for_each_port(adap, i) 2170 disable_txq_db(&adap->sge.ctrlq[i].q); 2171 } 2172 2173 static void enable_dbs(struct adapter *adap) 2174 { 2175 int i; 2176 2177 for_each_ethrxq(&adap->sge, i) 2178 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 2179 if (is_offload(adap)) { 2180 struct sge_uld_txq_info *txq_info = 2181 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2182 2183 if (txq_info) { 2184 for_each_ofldtxq(&adap->sge, i) { 2185 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2186 2187 enable_txq_db(adap, &txq->q); 2188 } 2189 } 2190 } 2191 for_each_port(adap, i) 2192 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2193 } 2194 2195 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2196 { 2197 enum cxgb4_uld type = CXGB4_ULD_RDMA; 2198 2199 if (adap->uld && adap->uld[type].handle) 2200 adap->uld[type].control(adap->uld[type].handle, cmd); 2201 } 2202 2203 static void process_db_full(struct work_struct *work) 2204 { 2205 struct adapter *adap; 2206 2207 adap = container_of(work, struct adapter, db_full_task); 2208 2209 drain_db_fifo(adap, dbfifo_drain_delay); 2210 enable_dbs(adap); 2211 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2212 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2213 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2214 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2215 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2216 else 2217 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2218 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2219 } 2220 2221 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2222 { 2223 u16 hw_pidx, hw_cidx; 2224 int ret; 2225 2226 spin_lock_irq(&q->db_lock); 2227 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2228 if (ret) 2229 goto out; 2230 if (q->db_pidx != hw_pidx) { 2231 u16 delta; 2232 u32 val; 2233 2234 if (q->db_pidx >= hw_pidx) 2235 delta = q->db_pidx - hw_pidx; 2236 else 2237 delta = q->size - hw_pidx + q->db_pidx; 2238 2239 if (is_t4(adap->params.chip)) 2240 val = PIDX_V(delta); 2241 else 2242 val = PIDX_T5_V(delta); 2243 wmb(); 2244 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2245 QID_V(q->cntxt_id) | val); 2246 } 2247 out: 2248 q->db_disabled = 0; 2249 q->db_pidx_inc = 0; 2250 spin_unlock_irq(&q->db_lock); 2251 if (ret) 2252 CH_WARN(adap, "DB drop recovery failed.\n"); 2253 } 2254 2255 static void recover_all_queues(struct adapter *adap) 2256 { 2257 int i; 2258 2259 for_each_ethrxq(&adap->sge, i) 2260 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2261 if (is_offload(adap)) { 2262 struct sge_uld_txq_info *txq_info = 2263 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2264 if (txq_info) { 2265 for_each_ofldtxq(&adap->sge, i) { 2266 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2267 2268 sync_txq_pidx(adap, &txq->q); 2269 } 2270 } 2271 } 2272 for_each_port(adap, i) 2273 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2274 } 2275 2276 static void process_db_drop(struct work_struct *work) 2277 { 2278 struct adapter *adap; 2279 2280 adap = container_of(work, struct adapter, db_drop_task); 2281 2282 if (is_t4(adap->params.chip)) { 2283 drain_db_fifo(adap, dbfifo_drain_delay); 2284 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2285 drain_db_fifo(adap, dbfifo_drain_delay); 2286 recover_all_queues(adap); 2287 drain_db_fifo(adap, dbfifo_drain_delay); 2288 enable_dbs(adap); 2289 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2290 } else if (is_t5(adap->params.chip)) { 2291 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2292 u16 qid = (dropped_db >> 15) & 0x1ffff; 2293 u16 pidx_inc = dropped_db & 0x1fff; 2294 u64 bar2_qoffset; 2295 unsigned int bar2_qid; 2296 int ret; 2297 2298 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2299 0, &bar2_qoffset, &bar2_qid); 2300 if (ret) 2301 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2302 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2303 else 2304 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2305 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2306 2307 /* Re-enable BAR2 WC */ 2308 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2309 } 2310 2311 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2312 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2313 } 2314 2315 void t4_db_full(struct adapter *adap) 2316 { 2317 if (is_t4(adap->params.chip)) { 2318 disable_dbs(adap); 2319 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2320 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2321 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2322 queue_work(adap->workq, &adap->db_full_task); 2323 } 2324 } 2325 2326 void t4_db_dropped(struct adapter *adap) 2327 { 2328 if (is_t4(adap->params.chip)) { 2329 disable_dbs(adap); 2330 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2331 } 2332 queue_work(adap->workq, &adap->db_drop_task); 2333 } 2334 2335 void t4_register_netevent_notifier(void) 2336 { 2337 if (!netevent_registered) { 2338 register_netevent_notifier(&cxgb4_netevent_nb); 2339 netevent_registered = true; 2340 } 2341 } 2342 2343 static void detach_ulds(struct adapter *adap) 2344 { 2345 unsigned int i; 2346 2347 mutex_lock(&uld_mutex); 2348 list_del(&adap->list_node); 2349 2350 for (i = 0; i < CXGB4_ULD_MAX; i++) 2351 if (adap->uld && adap->uld[i].handle) 2352 adap->uld[i].state_change(adap->uld[i].handle, 2353 CXGB4_STATE_DETACH); 2354 2355 if (netevent_registered && list_empty(&adapter_list)) { 2356 unregister_netevent_notifier(&cxgb4_netevent_nb); 2357 netevent_registered = false; 2358 } 2359 mutex_unlock(&uld_mutex); 2360 } 2361 2362 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2363 { 2364 unsigned int i; 2365 2366 mutex_lock(&uld_mutex); 2367 for (i = 0; i < CXGB4_ULD_MAX; i++) 2368 if (adap->uld && adap->uld[i].handle) 2369 adap->uld[i].state_change(adap->uld[i].handle, 2370 new_state); 2371 mutex_unlock(&uld_mutex); 2372 } 2373 2374 #if IS_ENABLED(CONFIG_IPV6) 2375 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2376 unsigned long event, void *data) 2377 { 2378 struct inet6_ifaddr *ifa = data; 2379 struct net_device *event_dev = ifa->idev->dev; 2380 const struct device *parent = NULL; 2381 #if IS_ENABLED(CONFIG_BONDING) 2382 struct adapter *adap; 2383 #endif 2384 if (is_vlan_dev(event_dev)) 2385 event_dev = vlan_dev_real_dev(event_dev); 2386 #if IS_ENABLED(CONFIG_BONDING) 2387 if (event_dev->flags & IFF_MASTER) { 2388 list_for_each_entry(adap, &adapter_list, list_node) { 2389 switch (event) { 2390 case NETDEV_UP: 2391 cxgb4_clip_get(adap->port[0], 2392 (const u32 *)ifa, 1); 2393 break; 2394 case NETDEV_DOWN: 2395 cxgb4_clip_release(adap->port[0], 2396 (const u32 *)ifa, 1); 2397 break; 2398 default: 2399 break; 2400 } 2401 } 2402 return NOTIFY_OK; 2403 } 2404 #endif 2405 2406 if (event_dev) 2407 parent = event_dev->dev.parent; 2408 2409 if (parent && parent->driver == &cxgb4_driver.driver) { 2410 switch (event) { 2411 case NETDEV_UP: 2412 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2413 break; 2414 case NETDEV_DOWN: 2415 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2416 break; 2417 default: 2418 break; 2419 } 2420 } 2421 return NOTIFY_OK; 2422 } 2423 2424 static bool inet6addr_registered; 2425 static struct notifier_block cxgb4_inet6addr_notifier = { 2426 .notifier_call = cxgb4_inet6addr_handler 2427 }; 2428 2429 static void update_clip(const struct adapter *adap) 2430 { 2431 int i; 2432 struct net_device *dev; 2433 int ret; 2434 2435 rcu_read_lock(); 2436 2437 for (i = 0; i < MAX_NPORTS; i++) { 2438 dev = adap->port[i]; 2439 ret = 0; 2440 2441 if (dev) 2442 ret = cxgb4_update_root_dev_clip(dev); 2443 2444 if (ret < 0) 2445 break; 2446 } 2447 rcu_read_unlock(); 2448 } 2449 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2450 2451 /** 2452 * cxgb_up - enable the adapter 2453 * @adap: adapter being enabled 2454 * 2455 * Called when the first port is enabled, this function performs the 2456 * actions necessary to make an adapter operational, such as completing 2457 * the initialization of HW modules, and enabling interrupts. 2458 * 2459 * Must be called with the rtnl lock held. 2460 */ 2461 static int cxgb_up(struct adapter *adap) 2462 { 2463 struct sge *s = &adap->sge; 2464 int err; 2465 2466 mutex_lock(&uld_mutex); 2467 err = setup_sge_queues(adap); 2468 if (err) 2469 goto rel_lock; 2470 err = setup_rss(adap); 2471 if (err) 2472 goto freeq; 2473 2474 if (adap->flags & CXGB4_USING_MSIX) { 2475 if (s->nd_msix_idx < 0) { 2476 err = -ENOMEM; 2477 goto irq_err; 2478 } 2479 2480 err = request_irq(adap->msix_info[s->nd_msix_idx].vec, 2481 t4_nondata_intr, 0, 2482 adap->msix_info[s->nd_msix_idx].desc, adap); 2483 if (err) 2484 goto irq_err; 2485 2486 err = request_msix_queue_irqs(adap); 2487 if (err) 2488 goto irq_err_free_nd_msix; 2489 } else { 2490 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2491 (adap->flags & CXGB4_USING_MSI) ? 0 2492 : IRQF_SHARED, 2493 adap->port[0]->name, adap); 2494 if (err) 2495 goto irq_err; 2496 } 2497 2498 enable_rx(adap); 2499 t4_sge_start(adap); 2500 t4_intr_enable(adap); 2501 adap->flags |= CXGB4_FULL_INIT_DONE; 2502 mutex_unlock(&uld_mutex); 2503 2504 notify_ulds(adap, CXGB4_STATE_UP); 2505 #if IS_ENABLED(CONFIG_IPV6) 2506 update_clip(adap); 2507 #endif 2508 return err; 2509 2510 irq_err_free_nd_msix: 2511 free_irq(adap->msix_info[s->nd_msix_idx].vec, adap); 2512 irq_err: 2513 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2514 freeq: 2515 t4_free_sge_resources(adap); 2516 rel_lock: 2517 mutex_unlock(&uld_mutex); 2518 return err; 2519 } 2520 2521 static void cxgb_down(struct adapter *adapter) 2522 { 2523 cancel_work_sync(&adapter->tid_release_task); 2524 cancel_work_sync(&adapter->db_full_task); 2525 cancel_work_sync(&adapter->db_drop_task); 2526 adapter->tid_release_task_busy = false; 2527 adapter->tid_release_head = NULL; 2528 2529 t4_sge_stop(adapter); 2530 t4_free_sge_resources(adapter); 2531 2532 adapter->flags &= ~CXGB4_FULL_INIT_DONE; 2533 } 2534 2535 /* 2536 * net_device operations 2537 */ 2538 int cxgb_open(struct net_device *dev) 2539 { 2540 struct port_info *pi = netdev_priv(dev); 2541 struct adapter *adapter = pi->adapter; 2542 int err; 2543 2544 netif_carrier_off(dev); 2545 2546 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) { 2547 err = cxgb_up(adapter); 2548 if (err < 0) 2549 return err; 2550 } 2551 2552 /* It's possible that the basic port information could have 2553 * changed since we first read it. 2554 */ 2555 err = t4_update_port_info(pi); 2556 if (err < 0) 2557 return err; 2558 2559 err = link_start(dev); 2560 if (!err) 2561 netif_tx_start_all_queues(dev); 2562 return err; 2563 } 2564 2565 int cxgb_close(struct net_device *dev) 2566 { 2567 struct port_info *pi = netdev_priv(dev); 2568 struct adapter *adapter = pi->adapter; 2569 int ret; 2570 2571 netif_tx_stop_all_queues(dev); 2572 netif_carrier_off(dev); 2573 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2574 false, false, false); 2575 #ifdef CONFIG_CHELSIO_T4_DCB 2576 cxgb4_dcb_reset(dev); 2577 dcb_tx_queue_prio_enable(dev, false); 2578 #endif 2579 return ret; 2580 } 2581 2582 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2583 __be32 sip, __be16 sport, __be16 vlan, 2584 unsigned int queue, unsigned char port, unsigned char mask) 2585 { 2586 int ret; 2587 struct filter_entry *f; 2588 struct adapter *adap; 2589 int i; 2590 u8 *val; 2591 2592 adap = netdev2adap(dev); 2593 2594 /* Adjust stid to correct filter index */ 2595 stid -= adap->tids.sftid_base; 2596 stid += adap->tids.nftids; 2597 2598 /* Check to make sure the filter requested is writable ... 2599 */ 2600 f = &adap->tids.ftid_tab[stid]; 2601 ret = writable_filter(f); 2602 if (ret) 2603 return ret; 2604 2605 /* Clear out any old resources being used by the filter before 2606 * we start constructing the new filter. 2607 */ 2608 if (f->valid) 2609 clear_filter(adap, f); 2610 2611 /* Clear out filter specifications */ 2612 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2613 f->fs.val.lport = cpu_to_be16(sport); 2614 f->fs.mask.lport = ~0; 2615 val = (u8 *)&sip; 2616 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2617 for (i = 0; i < 4; i++) { 2618 f->fs.val.lip[i] = val[i]; 2619 f->fs.mask.lip[i] = ~0; 2620 } 2621 if (adap->params.tp.vlan_pri_map & PORT_F) { 2622 f->fs.val.iport = port; 2623 f->fs.mask.iport = mask; 2624 } 2625 } 2626 2627 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2628 f->fs.val.proto = IPPROTO_TCP; 2629 f->fs.mask.proto = ~0; 2630 } 2631 2632 f->fs.dirsteer = 1; 2633 f->fs.iq = queue; 2634 /* Mark filter as locked */ 2635 f->locked = 1; 2636 f->fs.rpttid = 1; 2637 2638 /* Save the actual tid. We need this to get the corresponding 2639 * filter entry structure in filter_rpl. 2640 */ 2641 f->tid = stid + adap->tids.ftid_base; 2642 ret = set_filter_wr(adap, stid); 2643 if (ret) { 2644 clear_filter(adap, f); 2645 return ret; 2646 } 2647 2648 return 0; 2649 } 2650 EXPORT_SYMBOL(cxgb4_create_server_filter); 2651 2652 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2653 unsigned int queue, bool ipv6) 2654 { 2655 struct filter_entry *f; 2656 struct adapter *adap; 2657 2658 adap = netdev2adap(dev); 2659 2660 /* Adjust stid to correct filter index */ 2661 stid -= adap->tids.sftid_base; 2662 stid += adap->tids.nftids; 2663 2664 f = &adap->tids.ftid_tab[stid]; 2665 /* Unlock the filter */ 2666 f->locked = 0; 2667 2668 return delete_filter(adap, stid); 2669 } 2670 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2671 2672 static void cxgb_get_stats(struct net_device *dev, 2673 struct rtnl_link_stats64 *ns) 2674 { 2675 struct port_stats stats; 2676 struct port_info *p = netdev_priv(dev); 2677 struct adapter *adapter = p->adapter; 2678 2679 /* Block retrieving statistics during EEH error 2680 * recovery. Otherwise, the recovery might fail 2681 * and the PCI device will be removed permanently 2682 */ 2683 spin_lock(&adapter->stats_lock); 2684 if (!netif_device_present(dev)) { 2685 spin_unlock(&adapter->stats_lock); 2686 return; 2687 } 2688 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2689 &p->stats_base); 2690 spin_unlock(&adapter->stats_lock); 2691 2692 ns->tx_bytes = stats.tx_octets; 2693 ns->tx_packets = stats.tx_frames; 2694 ns->rx_bytes = stats.rx_octets; 2695 ns->rx_packets = stats.rx_frames; 2696 ns->multicast = stats.rx_mcast_frames; 2697 2698 /* detailed rx_errors */ 2699 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2700 stats.rx_runt; 2701 ns->rx_over_errors = 0; 2702 ns->rx_crc_errors = stats.rx_fcs_err; 2703 ns->rx_frame_errors = stats.rx_symbol_err; 2704 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2705 stats.rx_ovflow2 + stats.rx_ovflow3 + 2706 stats.rx_trunc0 + stats.rx_trunc1 + 2707 stats.rx_trunc2 + stats.rx_trunc3; 2708 ns->rx_missed_errors = 0; 2709 2710 /* detailed tx_errors */ 2711 ns->tx_aborted_errors = 0; 2712 ns->tx_carrier_errors = 0; 2713 ns->tx_fifo_errors = 0; 2714 ns->tx_heartbeat_errors = 0; 2715 ns->tx_window_errors = 0; 2716 2717 ns->tx_errors = stats.tx_error_frames; 2718 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2719 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2720 } 2721 2722 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2723 { 2724 unsigned int mbox; 2725 int ret = 0, prtad, devad; 2726 struct port_info *pi = netdev_priv(dev); 2727 struct adapter *adapter = pi->adapter; 2728 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2729 2730 switch (cmd) { 2731 case SIOCGMIIPHY: 2732 if (pi->mdio_addr < 0) 2733 return -EOPNOTSUPP; 2734 data->phy_id = pi->mdio_addr; 2735 break; 2736 case SIOCGMIIREG: 2737 case SIOCSMIIREG: 2738 if (mdio_phy_id_is_c45(data->phy_id)) { 2739 prtad = mdio_phy_id_prtad(data->phy_id); 2740 devad = mdio_phy_id_devad(data->phy_id); 2741 } else if (data->phy_id < 32) { 2742 prtad = data->phy_id; 2743 devad = 0; 2744 data->reg_num &= 0x1f; 2745 } else 2746 return -EINVAL; 2747 2748 mbox = pi->adapter->pf; 2749 if (cmd == SIOCGMIIREG) 2750 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2751 data->reg_num, &data->val_out); 2752 else 2753 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2754 data->reg_num, data->val_in); 2755 break; 2756 case SIOCGHWTSTAMP: 2757 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2758 sizeof(pi->tstamp_config)) ? 2759 -EFAULT : 0; 2760 case SIOCSHWTSTAMP: 2761 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2762 sizeof(pi->tstamp_config))) 2763 return -EFAULT; 2764 2765 if (!is_t4(adapter->params.chip)) { 2766 switch (pi->tstamp_config.tx_type) { 2767 case HWTSTAMP_TX_OFF: 2768 case HWTSTAMP_TX_ON: 2769 break; 2770 default: 2771 return -ERANGE; 2772 } 2773 2774 switch (pi->tstamp_config.rx_filter) { 2775 case HWTSTAMP_FILTER_NONE: 2776 pi->rxtstamp = false; 2777 break; 2778 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2779 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2780 cxgb4_ptprx_timestamping(pi, pi->port_id, 2781 PTP_TS_L4); 2782 break; 2783 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2784 cxgb4_ptprx_timestamping(pi, pi->port_id, 2785 PTP_TS_L2_L4); 2786 break; 2787 case HWTSTAMP_FILTER_ALL: 2788 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2789 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2790 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2791 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2792 pi->rxtstamp = true; 2793 break; 2794 default: 2795 pi->tstamp_config.rx_filter = 2796 HWTSTAMP_FILTER_NONE; 2797 return -ERANGE; 2798 } 2799 2800 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2801 (pi->tstamp_config.rx_filter == 2802 HWTSTAMP_FILTER_NONE)) { 2803 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2804 pi->ptp_enable = false; 2805 } 2806 2807 if (pi->tstamp_config.rx_filter != 2808 HWTSTAMP_FILTER_NONE) { 2809 if (cxgb4_ptp_redirect_rx_packet(adapter, 2810 pi) >= 0) 2811 pi->ptp_enable = true; 2812 } 2813 } else { 2814 /* For T4 Adapters */ 2815 switch (pi->tstamp_config.rx_filter) { 2816 case HWTSTAMP_FILTER_NONE: 2817 pi->rxtstamp = false; 2818 break; 2819 case HWTSTAMP_FILTER_ALL: 2820 pi->rxtstamp = true; 2821 break; 2822 default: 2823 pi->tstamp_config.rx_filter = 2824 HWTSTAMP_FILTER_NONE; 2825 return -ERANGE; 2826 } 2827 } 2828 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2829 sizeof(pi->tstamp_config)) ? 2830 -EFAULT : 0; 2831 default: 2832 return -EOPNOTSUPP; 2833 } 2834 return ret; 2835 } 2836 2837 static void cxgb_set_rxmode(struct net_device *dev) 2838 { 2839 /* unfortunately we can't return errors to the stack */ 2840 set_rxmode(dev, -1, false); 2841 } 2842 2843 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2844 { 2845 int ret; 2846 struct port_info *pi = netdev_priv(dev); 2847 2848 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2849 -1, -1, -1, true); 2850 if (!ret) 2851 dev->mtu = new_mtu; 2852 return ret; 2853 } 2854 2855 #ifdef CONFIG_PCI_IOV 2856 static int cxgb4_mgmt_open(struct net_device *dev) 2857 { 2858 /* Turn carrier off since we don't have to transmit anything on this 2859 * interface. 2860 */ 2861 netif_carrier_off(dev); 2862 return 0; 2863 } 2864 2865 /* Fill MAC address that will be assigned by the FW */ 2866 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 2867 { 2868 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2869 unsigned int i, vf, nvfs; 2870 u16 a, b; 2871 int err; 2872 u8 *na; 2873 2874 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, 2875 PCI_CAP_ID_VPD); 2876 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2877 if (err) 2878 return; 2879 2880 na = adap->params.vpd.na; 2881 for (i = 0; i < ETH_ALEN; i++) 2882 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2883 hex2val(na[2 * i + 1])); 2884 2885 a = (hw_addr[0] << 8) | hw_addr[1]; 2886 b = (hw_addr[1] << 8) | hw_addr[2]; 2887 a ^= b; 2888 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2889 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2890 macaddr[0] = a >> 8; 2891 macaddr[1] = a & 0xff; 2892 2893 for (i = 2; i < 5; i++) 2894 macaddr[i] = hw_addr[i + 1]; 2895 2896 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 2897 vf < nvfs; vf++) { 2898 macaddr[5] = adap->pf * nvfs + vf; 2899 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 2900 } 2901 } 2902 2903 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2904 { 2905 struct port_info *pi = netdev_priv(dev); 2906 struct adapter *adap = pi->adapter; 2907 int ret; 2908 2909 /* verify MAC addr is valid */ 2910 if (!is_valid_ether_addr(mac)) { 2911 dev_err(pi->adapter->pdev_dev, 2912 "Invalid Ethernet address %pM for VF %d\n", 2913 mac, vf); 2914 return -EINVAL; 2915 } 2916 2917 dev_info(pi->adapter->pdev_dev, 2918 "Setting MAC %pM on VF %d\n", mac, vf); 2919 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2920 if (!ret) 2921 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2922 return ret; 2923 } 2924 2925 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 2926 int vf, struct ifla_vf_info *ivi) 2927 { 2928 struct port_info *pi = netdev_priv(dev); 2929 struct adapter *adap = pi->adapter; 2930 struct vf_info *vfinfo; 2931 2932 if (vf >= adap->num_vfs) 2933 return -EINVAL; 2934 vfinfo = &adap->vfinfo[vf]; 2935 2936 ivi->vf = vf; 2937 ivi->max_tx_rate = vfinfo->tx_rate; 2938 ivi->min_tx_rate = 0; 2939 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 2940 ivi->vlan = vfinfo->vlan; 2941 ivi->linkstate = vfinfo->link_state; 2942 return 0; 2943 } 2944 2945 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 2946 struct netdev_phys_item_id *ppid) 2947 { 2948 struct port_info *pi = netdev_priv(dev); 2949 unsigned int phy_port_id; 2950 2951 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2952 ppid->id_len = sizeof(phy_port_id); 2953 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2954 return 0; 2955 } 2956 2957 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 2958 int min_tx_rate, int max_tx_rate) 2959 { 2960 struct port_info *pi = netdev_priv(dev); 2961 struct adapter *adap = pi->adapter; 2962 unsigned int link_ok, speed, mtu; 2963 u32 fw_pfvf, fw_class; 2964 int class_id = vf; 2965 int ret; 2966 u16 pktsize; 2967 2968 if (vf >= adap->num_vfs) 2969 return -EINVAL; 2970 2971 if (min_tx_rate) { 2972 dev_err(adap->pdev_dev, 2973 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2974 min_tx_rate, vf); 2975 return -EINVAL; 2976 } 2977 2978 if (max_tx_rate == 0) { 2979 /* unbind VF to to any Traffic Class */ 2980 fw_pfvf = 2981 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2982 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2983 fw_class = 0xffffffff; 2984 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 2985 &fw_pfvf, &fw_class); 2986 if (ret) { 2987 dev_err(adap->pdev_dev, 2988 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n", 2989 ret, adap->pf, vf); 2990 return -EINVAL; 2991 } 2992 dev_info(adap->pdev_dev, 2993 "PF %d VF %d is unbound from TX Rate Limiting\n", 2994 adap->pf, vf); 2995 adap->vfinfo[vf].tx_rate = 0; 2996 return 0; 2997 } 2998 2999 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 3000 if (ret != FW_SUCCESS) { 3001 dev_err(adap->pdev_dev, 3002 "Failed to get link information for VF %d\n", vf); 3003 return -EINVAL; 3004 } 3005 3006 if (!link_ok) { 3007 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 3008 return -EINVAL; 3009 } 3010 3011 if (max_tx_rate > speed) { 3012 dev_err(adap->pdev_dev, 3013 "Max tx rate %d for VF %d can't be > link-speed %u", 3014 max_tx_rate, vf, speed); 3015 return -EINVAL; 3016 } 3017 3018 pktsize = mtu; 3019 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 3020 pktsize = pktsize - sizeof(struct ethhdr) - 4; 3021 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 3022 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 3023 /* configure Traffic Class for rate-limiting */ 3024 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 3025 SCHED_CLASS_LEVEL_CL_RL, 3026 SCHED_CLASS_MODE_CLASS, 3027 SCHED_CLASS_RATEUNIT_BITS, 3028 SCHED_CLASS_RATEMODE_ABS, 3029 pi->tx_chan, class_id, 0, 3030 max_tx_rate * 1000, 0, pktsize); 3031 if (ret) { 3032 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 3033 ret); 3034 return -EINVAL; 3035 } 3036 dev_info(adap->pdev_dev, 3037 "Class %d with MSS %u configured with rate %u\n", 3038 class_id, pktsize, max_tx_rate); 3039 3040 /* bind VF to configured Traffic Class */ 3041 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3042 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 3043 fw_class = class_id; 3044 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 3045 &fw_class); 3046 if (ret) { 3047 dev_err(adap->pdev_dev, 3048 "Err %d in binding PF %d VF %d to Traffic Class %d\n", 3049 ret, adap->pf, vf, class_id); 3050 return -EINVAL; 3051 } 3052 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 3053 adap->pf, vf, class_id); 3054 adap->vfinfo[vf].tx_rate = max_tx_rate; 3055 return 0; 3056 } 3057 3058 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 3059 u16 vlan, u8 qos, __be16 vlan_proto) 3060 { 3061 struct port_info *pi = netdev_priv(dev); 3062 struct adapter *adap = pi->adapter; 3063 int ret; 3064 3065 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 3066 return -EINVAL; 3067 3068 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 3069 return -EPROTONOSUPPORT; 3070 3071 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 3072 if (!ret) { 3073 adap->vfinfo[vf].vlan = vlan; 3074 return 0; 3075 } 3076 3077 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 3078 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 3079 return ret; 3080 } 3081 3082 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf, 3083 int link) 3084 { 3085 struct port_info *pi = netdev_priv(dev); 3086 struct adapter *adap = pi->adapter; 3087 u32 param, val; 3088 int ret = 0; 3089 3090 if (vf >= adap->num_vfs) 3091 return -EINVAL; 3092 3093 switch (link) { 3094 case IFLA_VF_LINK_STATE_AUTO: 3095 val = FW_VF_LINK_STATE_AUTO; 3096 break; 3097 3098 case IFLA_VF_LINK_STATE_ENABLE: 3099 val = FW_VF_LINK_STATE_ENABLE; 3100 break; 3101 3102 case IFLA_VF_LINK_STATE_DISABLE: 3103 val = FW_VF_LINK_STATE_DISABLE; 3104 break; 3105 3106 default: 3107 return -EINVAL; 3108 } 3109 3110 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3111 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE)); 3112 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 3113 ¶m, &val); 3114 if (ret) { 3115 dev_err(adap->pdev_dev, 3116 "Error %d in setting PF %d VF %d link state\n", 3117 ret, adap->pf, vf); 3118 return -EINVAL; 3119 } 3120 3121 adap->vfinfo[vf].link_state = link; 3122 return ret; 3123 } 3124 #endif /* CONFIG_PCI_IOV */ 3125 3126 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 3127 { 3128 int ret; 3129 struct sockaddr *addr = p; 3130 struct port_info *pi = netdev_priv(dev); 3131 3132 if (!is_valid_ether_addr(addr->sa_data)) 3133 return -EADDRNOTAVAIL; 3134 3135 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 3136 addr->sa_data, true, &pi->smt_idx); 3137 if (ret < 0) 3138 return ret; 3139 3140 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 3141 pi->xact_addr_filt = ret; 3142 return 0; 3143 } 3144 3145 #ifdef CONFIG_NET_POLL_CONTROLLER 3146 static void cxgb_netpoll(struct net_device *dev) 3147 { 3148 struct port_info *pi = netdev_priv(dev); 3149 struct adapter *adap = pi->adapter; 3150 3151 if (adap->flags & CXGB4_USING_MSIX) { 3152 int i; 3153 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 3154 3155 for (i = pi->nqsets; i; i--, rx++) 3156 t4_sge_intr_msix(0, &rx->rspq); 3157 } else 3158 t4_intr_handler(adap)(0, adap); 3159 } 3160 #endif 3161 3162 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 3163 { 3164 struct port_info *pi = netdev_priv(dev); 3165 struct adapter *adap = pi->adapter; 3166 struct ch_sched_queue qe = { 0 }; 3167 struct ch_sched_params p = { 0 }; 3168 struct sched_class *e; 3169 u32 req_rate; 3170 int err = 0; 3171 3172 if (!can_sched(dev)) 3173 return -ENOTSUPP; 3174 3175 if (index < 0 || index > pi->nqsets - 1) 3176 return -EINVAL; 3177 3178 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3179 dev_err(adap->pdev_dev, 3180 "Failed to rate limit on queue %d. Link Down?\n", 3181 index); 3182 return -EINVAL; 3183 } 3184 3185 qe.queue = index; 3186 e = cxgb4_sched_queue_lookup(dev, &qe); 3187 if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) { 3188 dev_err(adap->pdev_dev, 3189 "Queue %u already bound to class %u of type: %u\n", 3190 index, e->idx, e->info.u.params.level); 3191 return -EBUSY; 3192 } 3193 3194 /* Convert from Mbps to Kbps */ 3195 req_rate = rate * 1000; 3196 3197 /* Max rate is 100 Gbps */ 3198 if (req_rate > SCHED_MAX_RATE_KBPS) { 3199 dev_err(adap->pdev_dev, 3200 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 3201 rate, SCHED_MAX_RATE_KBPS / 1000); 3202 return -ERANGE; 3203 } 3204 3205 /* First unbind the queue from any existing class */ 3206 memset(&qe, 0, sizeof(qe)); 3207 qe.queue = index; 3208 qe.class = SCHED_CLS_NONE; 3209 3210 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 3211 if (err) { 3212 dev_err(adap->pdev_dev, 3213 "Unbinding Queue %d on port %d fail. Err: %d\n", 3214 index, pi->port_id, err); 3215 return err; 3216 } 3217 3218 /* Queue already unbound */ 3219 if (!req_rate) 3220 return 0; 3221 3222 /* Fetch any available unused or matching scheduling class */ 3223 p.type = SCHED_CLASS_TYPE_PACKET; 3224 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 3225 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 3226 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 3227 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 3228 p.u.params.channel = pi->tx_chan; 3229 p.u.params.class = SCHED_CLS_NONE; 3230 p.u.params.minrate = 0; 3231 p.u.params.maxrate = req_rate; 3232 p.u.params.weight = 0; 3233 p.u.params.pktsize = dev->mtu; 3234 3235 e = cxgb4_sched_class_alloc(dev, &p); 3236 if (!e) 3237 return -ENOMEM; 3238 3239 /* Bind the queue to a scheduling class */ 3240 memset(&qe, 0, sizeof(qe)); 3241 qe.queue = index; 3242 qe.class = e->idx; 3243 3244 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 3245 if (err) 3246 dev_err(adap->pdev_dev, 3247 "Queue rate limiting failed. Err: %d\n", err); 3248 return err; 3249 } 3250 3251 static int cxgb_setup_tc_flower(struct net_device *dev, 3252 struct flow_cls_offload *cls_flower) 3253 { 3254 switch (cls_flower->command) { 3255 case FLOW_CLS_REPLACE: 3256 return cxgb4_tc_flower_replace(dev, cls_flower); 3257 case FLOW_CLS_DESTROY: 3258 return cxgb4_tc_flower_destroy(dev, cls_flower); 3259 case FLOW_CLS_STATS: 3260 return cxgb4_tc_flower_stats(dev, cls_flower); 3261 default: 3262 return -EOPNOTSUPP; 3263 } 3264 } 3265 3266 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 3267 struct tc_cls_u32_offload *cls_u32) 3268 { 3269 switch (cls_u32->command) { 3270 case TC_CLSU32_NEW_KNODE: 3271 case TC_CLSU32_REPLACE_KNODE: 3272 return cxgb4_config_knode(dev, cls_u32); 3273 case TC_CLSU32_DELETE_KNODE: 3274 return cxgb4_delete_knode(dev, cls_u32); 3275 default: 3276 return -EOPNOTSUPP; 3277 } 3278 } 3279 3280 static int cxgb_setup_tc_matchall(struct net_device *dev, 3281 struct tc_cls_matchall_offload *cls_matchall, 3282 bool ingress) 3283 { 3284 struct adapter *adap = netdev2adap(dev); 3285 3286 if (!adap->tc_matchall) 3287 return -ENOMEM; 3288 3289 switch (cls_matchall->command) { 3290 case TC_CLSMATCHALL_REPLACE: 3291 return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress); 3292 case TC_CLSMATCHALL_DESTROY: 3293 return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress); 3294 case TC_CLSMATCHALL_STATS: 3295 if (ingress) 3296 return cxgb4_tc_matchall_stats(dev, cls_matchall); 3297 break; 3298 default: 3299 break; 3300 } 3301 3302 return -EOPNOTSUPP; 3303 } 3304 3305 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type, 3306 void *type_data, void *cb_priv) 3307 { 3308 struct net_device *dev = cb_priv; 3309 struct port_info *pi = netdev2pinfo(dev); 3310 struct adapter *adap = netdev2adap(dev); 3311 3312 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3313 dev_err(adap->pdev_dev, 3314 "Failed to setup tc on port %d. Link Down?\n", 3315 pi->port_id); 3316 return -EINVAL; 3317 } 3318 3319 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3320 return -EOPNOTSUPP; 3321 3322 switch (type) { 3323 case TC_SETUP_CLSU32: 3324 return cxgb_setup_tc_cls_u32(dev, type_data); 3325 case TC_SETUP_CLSFLOWER: 3326 return cxgb_setup_tc_flower(dev, type_data); 3327 case TC_SETUP_CLSMATCHALL: 3328 return cxgb_setup_tc_matchall(dev, type_data, true); 3329 default: 3330 return -EOPNOTSUPP; 3331 } 3332 } 3333 3334 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type, 3335 void *type_data, void *cb_priv) 3336 { 3337 struct net_device *dev = cb_priv; 3338 struct port_info *pi = netdev2pinfo(dev); 3339 struct adapter *adap = netdev2adap(dev); 3340 3341 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3342 dev_err(adap->pdev_dev, 3343 "Failed to setup tc on port %d. Link Down?\n", 3344 pi->port_id); 3345 return -EINVAL; 3346 } 3347 3348 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3349 return -EOPNOTSUPP; 3350 3351 switch (type) { 3352 case TC_SETUP_CLSMATCHALL: 3353 return cxgb_setup_tc_matchall(dev, type_data, false); 3354 default: 3355 break; 3356 } 3357 3358 return -EOPNOTSUPP; 3359 } 3360 3361 static int cxgb_setup_tc_mqprio(struct net_device *dev, 3362 struct tc_mqprio_qopt_offload *mqprio) 3363 { 3364 struct adapter *adap = netdev2adap(dev); 3365 3366 if (!is_ethofld(adap) || !adap->tc_mqprio) 3367 return -ENOMEM; 3368 3369 return cxgb4_setup_tc_mqprio(dev, mqprio); 3370 } 3371 3372 static LIST_HEAD(cxgb_block_cb_list); 3373 3374 static int cxgb_setup_tc_block(struct net_device *dev, 3375 struct flow_block_offload *f) 3376 { 3377 struct port_info *pi = netdev_priv(dev); 3378 flow_setup_cb_t *cb; 3379 bool ingress_only; 3380 3381 pi->tc_block_shared = f->block_shared; 3382 if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) { 3383 cb = cxgb_setup_tc_block_egress_cb; 3384 ingress_only = false; 3385 } else { 3386 cb = cxgb_setup_tc_block_ingress_cb; 3387 ingress_only = true; 3388 } 3389 3390 return flow_block_cb_setup_simple(f, &cxgb_block_cb_list, 3391 cb, pi, dev, ingress_only); 3392 } 3393 3394 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3395 void *type_data) 3396 { 3397 switch (type) { 3398 case TC_SETUP_QDISC_MQPRIO: 3399 return cxgb_setup_tc_mqprio(dev, type_data); 3400 case TC_SETUP_BLOCK: 3401 return cxgb_setup_tc_block(dev, type_data); 3402 default: 3403 return -EOPNOTSUPP; 3404 } 3405 } 3406 3407 static void cxgb_del_udp_tunnel(struct net_device *netdev, 3408 struct udp_tunnel_info *ti) 3409 { 3410 struct port_info *pi = netdev_priv(netdev); 3411 struct adapter *adapter = pi->adapter; 3412 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3413 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3414 int ret = 0, i; 3415 3416 if (chip_ver < CHELSIO_T6) 3417 return; 3418 3419 switch (ti->type) { 3420 case UDP_TUNNEL_TYPE_VXLAN: 3421 if (!adapter->vxlan_port_cnt || 3422 adapter->vxlan_port != ti->port) 3423 return; /* Invalid VxLAN destination port */ 3424 3425 adapter->vxlan_port_cnt--; 3426 if (adapter->vxlan_port_cnt) 3427 return; 3428 3429 adapter->vxlan_port = 0; 3430 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3431 break; 3432 case UDP_TUNNEL_TYPE_GENEVE: 3433 if (!adapter->geneve_port_cnt || 3434 adapter->geneve_port != ti->port) 3435 return; /* Invalid GENEVE destination port */ 3436 3437 adapter->geneve_port_cnt--; 3438 if (adapter->geneve_port_cnt) 3439 return; 3440 3441 adapter->geneve_port = 0; 3442 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3443 break; 3444 default: 3445 return; 3446 } 3447 3448 /* Matchall mac entries can be deleted only after all tunnel ports 3449 * are brought down or removed. 3450 */ 3451 if (!adapter->rawf_cnt) 3452 return; 3453 for_each_port(adapter, i) { 3454 pi = adap2pinfo(adapter, i); 3455 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3456 match_all_mac, match_all_mac, 3457 adapter->rawf_start + 3458 pi->port_id, 3459 1, pi->port_id, false); 3460 if (ret < 0) { 3461 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3462 i); 3463 return; 3464 } 3465 } 3466 } 3467 3468 static void cxgb_add_udp_tunnel(struct net_device *netdev, 3469 struct udp_tunnel_info *ti) 3470 { 3471 struct port_info *pi = netdev_priv(netdev); 3472 struct adapter *adapter = pi->adapter; 3473 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3474 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3475 int i, ret; 3476 3477 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt) 3478 return; 3479 3480 switch (ti->type) { 3481 case UDP_TUNNEL_TYPE_VXLAN: 3482 /* Callback for adding vxlan port can be called with the same 3483 * port for both IPv4 and IPv6. We should not disable the 3484 * offloading when the same port for both protocols is added 3485 * and later one of them is removed. 3486 */ 3487 if (adapter->vxlan_port_cnt && 3488 adapter->vxlan_port == ti->port) { 3489 adapter->vxlan_port_cnt++; 3490 return; 3491 } 3492 3493 /* We will support only one VxLAN port */ 3494 if (adapter->vxlan_port_cnt) { 3495 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3496 be16_to_cpu(adapter->vxlan_port), 3497 be16_to_cpu(ti->port)); 3498 return; 3499 } 3500 3501 adapter->vxlan_port = ti->port; 3502 adapter->vxlan_port_cnt = 1; 3503 3504 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3505 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3506 break; 3507 case UDP_TUNNEL_TYPE_GENEVE: 3508 if (adapter->geneve_port_cnt && 3509 adapter->geneve_port == ti->port) { 3510 adapter->geneve_port_cnt++; 3511 return; 3512 } 3513 3514 /* We will support only one GENEVE port */ 3515 if (adapter->geneve_port_cnt) { 3516 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3517 be16_to_cpu(adapter->geneve_port), 3518 be16_to_cpu(ti->port)); 3519 return; 3520 } 3521 3522 adapter->geneve_port = ti->port; 3523 adapter->geneve_port_cnt = 1; 3524 3525 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3526 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3527 break; 3528 default: 3529 return; 3530 } 3531 3532 /* Create a 'match all' mac filter entry for inner mac, 3533 * if raw mac interface is supported. Once the linux kernel provides 3534 * driver entry points for adding/deleting the inner mac addresses, 3535 * we will remove this 'match all' entry and fallback to adding 3536 * exact match filters. 3537 */ 3538 for_each_port(adapter, i) { 3539 pi = adap2pinfo(adapter, i); 3540 3541 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3542 match_all_mac, 3543 match_all_mac, 3544 adapter->rawf_start + 3545 pi->port_id, 3546 1, pi->port_id, false); 3547 if (ret < 0) { 3548 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3549 be16_to_cpu(ti->port)); 3550 cxgb_del_udp_tunnel(netdev, ti); 3551 return; 3552 } 3553 } 3554 } 3555 3556 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3557 struct net_device *dev, 3558 netdev_features_t features) 3559 { 3560 struct port_info *pi = netdev_priv(dev); 3561 struct adapter *adapter = pi->adapter; 3562 3563 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3564 return features; 3565 3566 /* Check if hw supports offload for this packet */ 3567 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3568 return features; 3569 3570 /* Offload is not supported for this encapsulated packet */ 3571 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3572 } 3573 3574 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3575 netdev_features_t features) 3576 { 3577 /* Disable GRO, if RX_CSUM is disabled */ 3578 if (!(features & NETIF_F_RXCSUM)) 3579 features &= ~NETIF_F_GRO; 3580 3581 return features; 3582 } 3583 3584 static const struct net_device_ops cxgb4_netdev_ops = { 3585 .ndo_open = cxgb_open, 3586 .ndo_stop = cxgb_close, 3587 .ndo_start_xmit = t4_start_xmit, 3588 .ndo_select_queue = cxgb_select_queue, 3589 .ndo_get_stats64 = cxgb_get_stats, 3590 .ndo_set_rx_mode = cxgb_set_rxmode, 3591 .ndo_set_mac_address = cxgb_set_mac_addr, 3592 .ndo_set_features = cxgb_set_features, 3593 .ndo_validate_addr = eth_validate_addr, 3594 .ndo_do_ioctl = cxgb_ioctl, 3595 .ndo_change_mtu = cxgb_change_mtu, 3596 #ifdef CONFIG_NET_POLL_CONTROLLER 3597 .ndo_poll_controller = cxgb_netpoll, 3598 #endif 3599 #ifdef CONFIG_CHELSIO_T4_FCOE 3600 .ndo_fcoe_enable = cxgb_fcoe_enable, 3601 .ndo_fcoe_disable = cxgb_fcoe_disable, 3602 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3603 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3604 .ndo_setup_tc = cxgb_setup_tc, 3605 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel, 3606 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel, 3607 .ndo_features_check = cxgb_features_check, 3608 .ndo_fix_features = cxgb_fix_features, 3609 }; 3610 3611 #ifdef CONFIG_PCI_IOV 3612 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3613 .ndo_open = cxgb4_mgmt_open, 3614 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3615 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3616 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3617 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3618 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3619 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state, 3620 }; 3621 #endif 3622 3623 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3624 struct ethtool_drvinfo *info) 3625 { 3626 struct adapter *adapter = netdev2adap(dev); 3627 3628 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3629 strlcpy(info->version, cxgb4_driver_version, 3630 sizeof(info->version)); 3631 strlcpy(info->bus_info, pci_name(adapter->pdev), 3632 sizeof(info->bus_info)); 3633 } 3634 3635 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3636 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3637 }; 3638 3639 static void notify_fatal_err(struct work_struct *work) 3640 { 3641 struct adapter *adap; 3642 3643 adap = container_of(work, struct adapter, fatal_err_notify_task); 3644 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3645 } 3646 3647 void t4_fatal_err(struct adapter *adap) 3648 { 3649 int port; 3650 3651 if (pci_channel_offline(adap->pdev)) 3652 return; 3653 3654 /* Disable the SGE since ULDs are going to free resources that 3655 * could be exposed to the adapter. RDMA MWs for example... 3656 */ 3657 t4_shutdown_adapter(adap); 3658 for_each_port(adap, port) { 3659 struct net_device *dev = adap->port[port]; 3660 3661 /* If we get here in very early initialization the network 3662 * devices may not have been set up yet. 3663 */ 3664 if (!dev) 3665 continue; 3666 3667 netif_tx_stop_all_queues(dev); 3668 netif_carrier_off(dev); 3669 } 3670 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3671 queue_work(adap->workq, &adap->fatal_err_notify_task); 3672 } 3673 3674 static void setup_memwin(struct adapter *adap) 3675 { 3676 u32 nic_win_base = t4_get_util_window(adap); 3677 3678 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3679 } 3680 3681 static void setup_memwin_rdma(struct adapter *adap) 3682 { 3683 if (adap->vres.ocq.size) { 3684 u32 start; 3685 unsigned int sz_kb; 3686 3687 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3688 start &= PCI_BASE_ADDRESS_MEM_MASK; 3689 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3690 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3691 t4_write_reg(adap, 3692 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3693 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3694 t4_write_reg(adap, 3695 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3696 adap->vres.ocq.start); 3697 t4_read_reg(adap, 3698 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3699 } 3700 } 3701 3702 /* HMA Definitions */ 3703 3704 /* The maximum number of address that can be send in a single FW cmd */ 3705 #define HMA_MAX_ADDR_IN_CMD 5 3706 3707 #define HMA_PAGE_SIZE PAGE_SIZE 3708 3709 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3710 3711 #define HMA_PAGE_ORDER \ 3712 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3713 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3714 3715 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3716 * configuration(in units of MB). 3717 */ 3718 #define HMA_MIN_TOTAL_SIZE 1 3719 #define HMA_MAX_TOTAL_SIZE \ 3720 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3721 HMA_MAX_NO_FW_ADDRESS) >> 20) 3722 3723 static void adap_free_hma_mem(struct adapter *adapter) 3724 { 3725 struct scatterlist *iter; 3726 struct page *page; 3727 int i; 3728 3729 if (!adapter->hma.sgt) 3730 return; 3731 3732 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 3733 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 3734 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 3735 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 3736 } 3737 3738 for_each_sg(adapter->hma.sgt->sgl, iter, 3739 adapter->hma.sgt->orig_nents, i) { 3740 page = sg_page(iter); 3741 if (page) 3742 __free_pages(page, HMA_PAGE_ORDER); 3743 } 3744 3745 kfree(adapter->hma.phy_addr); 3746 sg_free_table(adapter->hma.sgt); 3747 kfree(adapter->hma.sgt); 3748 adapter->hma.sgt = NULL; 3749 } 3750 3751 static int adap_config_hma(struct adapter *adapter) 3752 { 3753 struct scatterlist *sgl, *iter; 3754 struct sg_table *sgt; 3755 struct page *newpage; 3756 unsigned int i, j, k; 3757 u32 param, hma_size; 3758 unsigned int ncmds; 3759 size_t page_size; 3760 u32 page_order; 3761 int node, ret; 3762 3763 /* HMA is supported only for T6+ cards. 3764 * Avoid initializing HMA in kdump kernels. 3765 */ 3766 if (is_kdump_kernel() || 3767 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3768 return 0; 3769 3770 /* Get the HMA region size required by fw */ 3771 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3772 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 3773 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3774 1, ¶m, &hma_size); 3775 /* An error means card has its own memory or HMA is not supported by 3776 * the firmware. Return without any errors. 3777 */ 3778 if (ret || !hma_size) 3779 return 0; 3780 3781 if (hma_size < HMA_MIN_TOTAL_SIZE || 3782 hma_size > HMA_MAX_TOTAL_SIZE) { 3783 dev_err(adapter->pdev_dev, 3784 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 3785 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 3786 return -EINVAL; 3787 } 3788 3789 page_size = HMA_PAGE_SIZE; 3790 page_order = HMA_PAGE_ORDER; 3791 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 3792 if (unlikely(!adapter->hma.sgt)) { 3793 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 3794 return -ENOMEM; 3795 } 3796 sgt = adapter->hma.sgt; 3797 /* FW returned value will be in MB's 3798 */ 3799 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 3800 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 3801 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 3802 kfree(adapter->hma.sgt); 3803 adapter->hma.sgt = NULL; 3804 return -ENOMEM; 3805 } 3806 3807 sgl = adapter->hma.sgt->sgl; 3808 node = dev_to_node(adapter->pdev_dev); 3809 for_each_sg(sgl, iter, sgt->orig_nents, i) { 3810 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 3811 __GFP_ZERO, page_order); 3812 if (!newpage) { 3813 dev_err(adapter->pdev_dev, 3814 "Not enough memory for HMA page allocation\n"); 3815 ret = -ENOMEM; 3816 goto free_hma; 3817 } 3818 sg_set_page(iter, newpage, page_size << page_order, 0); 3819 } 3820 3821 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 3822 DMA_BIDIRECTIONAL); 3823 if (!sgt->nents) { 3824 dev_err(adapter->pdev_dev, 3825 "Not enough memory for HMA DMA mapping"); 3826 ret = -ENOMEM; 3827 goto free_hma; 3828 } 3829 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 3830 3831 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 3832 GFP_KERNEL); 3833 if (unlikely(!adapter->hma.phy_addr)) 3834 goto free_hma; 3835 3836 for_each_sg(sgl, iter, sgt->nents, i) { 3837 newpage = sg_page(iter); 3838 adapter->hma.phy_addr[i] = sg_dma_address(iter); 3839 } 3840 3841 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 3842 /* Pass on the addresses to firmware */ 3843 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 3844 struct fw_hma_cmd hma_cmd; 3845 u8 naddr = HMA_MAX_ADDR_IN_CMD; 3846 u8 soc = 0, eoc = 0; 3847 u8 hma_mode = 1; /* Presently we support only Page table mode */ 3848 3849 soc = (i == 0) ? 1 : 0; 3850 eoc = (i == ncmds - 1) ? 1 : 0; 3851 3852 /* For last cmd, set naddr corresponding to remaining 3853 * addresses 3854 */ 3855 if (i == ncmds - 1) { 3856 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 3857 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 3858 } 3859 memset(&hma_cmd, 0, sizeof(hma_cmd)); 3860 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 3861 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3862 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 3863 3864 hma_cmd.mode_to_pcie_params = 3865 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 3866 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 3867 3868 /* HMA cmd size specified in MB's */ 3869 hma_cmd.naddr_size = 3870 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 3871 FW_HMA_CMD_NADDR_V(naddr)); 3872 3873 /* Total Page size specified in units of 4K */ 3874 hma_cmd.addr_size_pkd = 3875 htonl(FW_HMA_CMD_ADDR_SIZE_V 3876 ((page_size << page_order) >> 12)); 3877 3878 /* Fill the 5 addresses */ 3879 for (j = 0; j < naddr; j++) { 3880 hma_cmd.phy_address[j] = 3881 cpu_to_be64(adapter->hma.phy_addr[j + k]); 3882 } 3883 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 3884 sizeof(hma_cmd), &hma_cmd); 3885 if (ret) { 3886 dev_err(adapter->pdev_dev, 3887 "HMA FW command failed with err %d\n", ret); 3888 goto free_hma; 3889 } 3890 } 3891 3892 if (!ret) 3893 dev_info(adapter->pdev_dev, 3894 "Reserved %uMB host memory for HMA\n", hma_size); 3895 return ret; 3896 3897 free_hma: 3898 adap_free_hma_mem(adapter); 3899 return ret; 3900 } 3901 3902 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3903 { 3904 u32 v; 3905 int ret; 3906 3907 /* Now that we've successfully configured and initialized the adapter 3908 * can ask the Firmware what resources it has provisioned for us. 3909 */ 3910 ret = t4_get_pfres(adap); 3911 if (ret) { 3912 dev_err(adap->pdev_dev, 3913 "Unable to retrieve resource provisioning information\n"); 3914 return ret; 3915 } 3916 3917 /* get device capabilities */ 3918 memset(c, 0, sizeof(*c)); 3919 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3920 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3921 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3922 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3923 if (ret < 0) 3924 return ret; 3925 3926 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3927 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3928 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3929 if (ret < 0) 3930 return ret; 3931 3932 ret = t4_config_glbl_rss(adap, adap->pf, 3933 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3934 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3935 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3936 if (ret < 0) 3937 return ret; 3938 3939 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3940 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3941 FW_CMD_CAP_PF); 3942 if (ret < 0) 3943 return ret; 3944 3945 t4_sge_init(adap); 3946 3947 /* tweak some settings */ 3948 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3949 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3950 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3951 v = t4_read_reg(adap, TP_PIO_DATA_A); 3952 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3953 3954 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3955 adap->params.tp.tx_modq_map = 0xE4; 3956 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3957 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3958 3959 /* associate each Tx modulation queue with consecutive Tx channels */ 3960 v = 0x84218421; 3961 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3962 &v, 1, TP_TX_SCHED_HDR_A); 3963 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3964 &v, 1, TP_TX_SCHED_FIFO_A); 3965 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3966 &v, 1, TP_TX_SCHED_PCMD_A); 3967 3968 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3969 if (is_offload(adap)) { 3970 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3971 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3972 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3973 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3974 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3975 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3976 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3977 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3978 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3979 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3980 } 3981 3982 /* get basic stuff going */ 3983 return t4_early_init(adap, adap->pf); 3984 } 3985 3986 /* 3987 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3988 */ 3989 #define MAX_ATIDS 8192U 3990 3991 /* 3992 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3993 * 3994 * If the firmware we're dealing with has Configuration File support, then 3995 * we use that to perform all configuration 3996 */ 3997 3998 /* 3999 * Tweak configuration based on module parameters, etc. Most of these have 4000 * defaults assigned to them by Firmware Configuration Files (if we're using 4001 * them) but need to be explicitly set if we're using hard-coded 4002 * initialization. But even in the case of using Firmware Configuration 4003 * Files, we'd like to expose the ability to change these via module 4004 * parameters so these are essentially common tweaks/settings for 4005 * Configuration Files and hard-coded initialization ... 4006 */ 4007 static int adap_init0_tweaks(struct adapter *adapter) 4008 { 4009 /* 4010 * Fix up various Host-Dependent Parameters like Page Size, Cache 4011 * Line Size, etc. The firmware default is for a 4KB Page Size and 4012 * 64B Cache Line Size ... 4013 */ 4014 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 4015 4016 /* 4017 * Process module parameters which affect early initialization. 4018 */ 4019 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 4020 dev_err(&adapter->pdev->dev, 4021 "Ignoring illegal rx_dma_offset=%d, using 2\n", 4022 rx_dma_offset); 4023 rx_dma_offset = 2; 4024 } 4025 t4_set_reg_field(adapter, SGE_CONTROL_A, 4026 PKTSHIFT_V(PKTSHIFT_M), 4027 PKTSHIFT_V(rx_dma_offset)); 4028 4029 /* 4030 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 4031 * adds the pseudo header itself. 4032 */ 4033 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 4034 CSUM_HAS_PSEUDO_HDR_F, 0); 4035 4036 return 0; 4037 } 4038 4039 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 4040 * unto themselves and they contain their own firmware to perform their 4041 * tasks ... 4042 */ 4043 static int phy_aq1202_version(const u8 *phy_fw_data, 4044 size_t phy_fw_size) 4045 { 4046 int offset; 4047 4048 /* At offset 0x8 you're looking for the primary image's 4049 * starting offset which is 3 Bytes wide 4050 * 4051 * At offset 0xa of the primary image, you look for the offset 4052 * of the DRAM segment which is 3 Bytes wide. 4053 * 4054 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 4055 * wide 4056 */ 4057 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 4058 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 4059 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 4060 4061 offset = le24(phy_fw_data + 0x8) << 12; 4062 offset = le24(phy_fw_data + offset + 0xa); 4063 return be16(phy_fw_data + offset + 0x27e); 4064 4065 #undef be16 4066 #undef le16 4067 #undef le24 4068 } 4069 4070 static struct info_10gbt_phy_fw { 4071 unsigned int phy_fw_id; /* PCI Device ID */ 4072 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 4073 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 4074 int phy_flash; /* Has FLASH for PHY Firmware */ 4075 } phy_info_array[] = { 4076 { 4077 PHY_AQ1202_DEVICEID, 4078 PHY_AQ1202_FIRMWARE, 4079 phy_aq1202_version, 4080 1, 4081 }, 4082 { 4083 PHY_BCM84834_DEVICEID, 4084 PHY_BCM84834_FIRMWARE, 4085 NULL, 4086 0, 4087 }, 4088 { 0, NULL, NULL }, 4089 }; 4090 4091 static struct info_10gbt_phy_fw *find_phy_info(int devid) 4092 { 4093 int i; 4094 4095 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 4096 if (phy_info_array[i].phy_fw_id == devid) 4097 return &phy_info_array[i]; 4098 } 4099 return NULL; 4100 } 4101 4102 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 4103 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 4104 * we return a negative error number. If we transfer new firmware we return 1 4105 * (from t4_load_phy_fw()). If we don't do anything we return 0. 4106 */ 4107 static int adap_init0_phy(struct adapter *adap) 4108 { 4109 const struct firmware *phyf; 4110 int ret; 4111 struct info_10gbt_phy_fw *phy_info; 4112 4113 /* Use the device ID to determine which PHY file to flash. 4114 */ 4115 phy_info = find_phy_info(adap->pdev->device); 4116 if (!phy_info) { 4117 dev_warn(adap->pdev_dev, 4118 "No PHY Firmware file found for this PHY\n"); 4119 return -EOPNOTSUPP; 4120 } 4121 4122 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 4123 * use that. The adapter firmware provides us with a memory buffer 4124 * where we can load a PHY firmware file from the host if we want to 4125 * override the PHY firmware File in flash. 4126 */ 4127 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 4128 adap->pdev_dev); 4129 if (ret < 0) { 4130 /* For adapters without FLASH attached to PHY for their 4131 * firmware, it's obviously a fatal error if we can't get the 4132 * firmware to the adapter. For adapters with PHY firmware 4133 * FLASH storage, it's worth a warning if we can't find the 4134 * PHY Firmware but we'll neuter the error ... 4135 */ 4136 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 4137 "/lib/firmware/%s, error %d\n", 4138 phy_info->phy_fw_file, -ret); 4139 if (phy_info->phy_flash) { 4140 int cur_phy_fw_ver = 0; 4141 4142 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 4143 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 4144 "FLASH copy, version %#x\n", cur_phy_fw_ver); 4145 ret = 0; 4146 } 4147 4148 return ret; 4149 } 4150 4151 /* Load PHY Firmware onto adapter. 4152 */ 4153 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 4154 phy_info->phy_fw_version, 4155 (u8 *)phyf->data, phyf->size); 4156 if (ret < 0) 4157 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 4158 -ret); 4159 else if (ret > 0) { 4160 int new_phy_fw_ver = 0; 4161 4162 if (phy_info->phy_fw_version) 4163 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 4164 phyf->size); 4165 dev_info(adap->pdev_dev, "Successfully transferred PHY " 4166 "Firmware /lib/firmware/%s, version %#x\n", 4167 phy_info->phy_fw_file, new_phy_fw_ver); 4168 } 4169 4170 release_firmware(phyf); 4171 4172 return ret; 4173 } 4174 4175 /* 4176 * Attempt to initialize the adapter via a Firmware Configuration File. 4177 */ 4178 static int adap_init0_config(struct adapter *adapter, int reset) 4179 { 4180 char *fw_config_file, fw_config_file_path[256]; 4181 u32 finiver, finicsum, cfcsum, param, val; 4182 struct fw_caps_config_cmd caps_cmd; 4183 unsigned long mtype = 0, maddr = 0; 4184 const struct firmware *cf; 4185 char *config_name = NULL; 4186 int config_issued = 0; 4187 int ret; 4188 4189 /* 4190 * Reset device if necessary. 4191 */ 4192 if (reset) { 4193 ret = t4_fw_reset(adapter, adapter->mbox, 4194 PIORSTMODE_F | PIORST_F); 4195 if (ret < 0) 4196 goto bye; 4197 } 4198 4199 /* If this is a 10Gb/s-BT adapter make sure the chip-external 4200 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 4201 * to be performed after any global adapter RESET above since some 4202 * PHYs only have local RAM copies of the PHY firmware. 4203 */ 4204 if (is_10gbt_device(adapter->pdev->device)) { 4205 ret = adap_init0_phy(adapter); 4206 if (ret < 0) 4207 goto bye; 4208 } 4209 /* 4210 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 4211 * then use that. Otherwise, use the configuration file stored 4212 * in the adapter flash ... 4213 */ 4214 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 4215 case CHELSIO_T4: 4216 fw_config_file = FW4_CFNAME; 4217 break; 4218 case CHELSIO_T5: 4219 fw_config_file = FW5_CFNAME; 4220 break; 4221 case CHELSIO_T6: 4222 fw_config_file = FW6_CFNAME; 4223 break; 4224 default: 4225 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 4226 adapter->pdev->device); 4227 ret = -EINVAL; 4228 goto bye; 4229 } 4230 4231 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 4232 if (ret < 0) { 4233 config_name = "On FLASH"; 4234 mtype = FW_MEMTYPE_CF_FLASH; 4235 maddr = t4_flash_cfg_addr(adapter); 4236 } else { 4237 u32 params[7], val[7]; 4238 4239 sprintf(fw_config_file_path, 4240 "/lib/firmware/%s", fw_config_file); 4241 config_name = fw_config_file_path; 4242 4243 if (cf->size >= FLASH_CFG_MAX_SIZE) 4244 ret = -ENOMEM; 4245 else { 4246 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4247 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4248 ret = t4_query_params(adapter, adapter->mbox, 4249 adapter->pf, 0, 1, params, val); 4250 if (ret == 0) { 4251 /* 4252 * For t4_memory_rw() below addresses and 4253 * sizes have to be in terms of multiples of 4 4254 * bytes. So, if the Configuration File isn't 4255 * a multiple of 4 bytes in length we'll have 4256 * to write that out separately since we can't 4257 * guarantee that the bytes following the 4258 * residual byte in the buffer returned by 4259 * request_firmware() are zeroed out ... 4260 */ 4261 size_t resid = cf->size & 0x3; 4262 size_t size = cf->size & ~0x3; 4263 __be32 *data = (__be32 *)cf->data; 4264 4265 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 4266 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 4267 4268 spin_lock(&adapter->win0_lock); 4269 ret = t4_memory_rw(adapter, 0, mtype, maddr, 4270 size, data, T4_MEMORY_WRITE); 4271 if (ret == 0 && resid != 0) { 4272 union { 4273 __be32 word; 4274 char buf[4]; 4275 } last; 4276 int i; 4277 4278 last.word = data[size >> 2]; 4279 for (i = resid; i < 4; i++) 4280 last.buf[i] = 0; 4281 ret = t4_memory_rw(adapter, 0, mtype, 4282 maddr + size, 4283 4, &last.word, 4284 T4_MEMORY_WRITE); 4285 } 4286 spin_unlock(&adapter->win0_lock); 4287 } 4288 } 4289 4290 release_firmware(cf); 4291 if (ret) 4292 goto bye; 4293 } 4294 4295 val = 0; 4296 4297 /* Ofld + Hash filter is supported. Older fw will fail this request and 4298 * it is fine. 4299 */ 4300 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4301 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD)); 4302 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 4303 1, ¶m, &val); 4304 4305 /* FW doesn't know about Hash filter + ofld support, 4306 * it's not a problem, don't return an error. 4307 */ 4308 if (ret < 0) { 4309 dev_warn(adapter->pdev_dev, 4310 "Hash filter with ofld is not supported by FW\n"); 4311 } 4312 4313 /* 4314 * Issue a Capability Configuration command to the firmware to get it 4315 * to parse the Configuration File. We don't use t4_fw_config_file() 4316 * because we want the ability to modify various features after we've 4317 * processed the configuration file ... 4318 */ 4319 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4320 caps_cmd.op_to_write = 4321 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4322 FW_CMD_REQUEST_F | 4323 FW_CMD_READ_F); 4324 caps_cmd.cfvalid_to_len16 = 4325 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 4326 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 4327 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 4328 FW_LEN16(caps_cmd)); 4329 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4330 &caps_cmd); 4331 4332 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 4333 * Configuration File in FLASH), our last gasp effort is to use the 4334 * Firmware Configuration File which is embedded in the firmware. A 4335 * very few early versions of the firmware didn't have one embedded 4336 * but we can ignore those. 4337 */ 4338 if (ret == -ENOENT) { 4339 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4340 caps_cmd.op_to_write = 4341 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4342 FW_CMD_REQUEST_F | 4343 FW_CMD_READ_F); 4344 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4345 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 4346 sizeof(caps_cmd), &caps_cmd); 4347 config_name = "Firmware Default"; 4348 } 4349 4350 config_issued = 1; 4351 if (ret < 0) 4352 goto bye; 4353 4354 finiver = ntohl(caps_cmd.finiver); 4355 finicsum = ntohl(caps_cmd.finicsum); 4356 cfcsum = ntohl(caps_cmd.cfcsum); 4357 if (finicsum != cfcsum) 4358 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 4359 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 4360 finicsum, cfcsum); 4361 4362 /* 4363 * And now tell the firmware to use the configuration we just loaded. 4364 */ 4365 caps_cmd.op_to_write = 4366 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4367 FW_CMD_REQUEST_F | 4368 FW_CMD_WRITE_F); 4369 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4370 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4371 NULL); 4372 if (ret < 0) 4373 goto bye; 4374 4375 /* 4376 * Tweak configuration based on system architecture, module 4377 * parameters, etc. 4378 */ 4379 ret = adap_init0_tweaks(adapter); 4380 if (ret < 0) 4381 goto bye; 4382 4383 /* We will proceed even if HMA init fails. */ 4384 ret = adap_config_hma(adapter); 4385 if (ret) 4386 dev_err(adapter->pdev_dev, 4387 "HMA configuration failed with error %d\n", ret); 4388 4389 if (is_t6(adapter->params.chip)) { 4390 adap_config_hpfilter(adapter); 4391 ret = setup_ppod_edram(adapter); 4392 if (!ret) 4393 dev_info(adapter->pdev_dev, "Successfully enabled " 4394 "ppod edram feature\n"); 4395 } 4396 4397 /* 4398 * And finally tell the firmware to initialize itself using the 4399 * parameters from the Configuration File. 4400 */ 4401 ret = t4_fw_initialize(adapter, adapter->mbox); 4402 if (ret < 0) 4403 goto bye; 4404 4405 /* Emit Firmware Configuration File information and return 4406 * successfully. 4407 */ 4408 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4409 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4410 config_name, finiver, cfcsum); 4411 return 0; 4412 4413 /* 4414 * Something bad happened. Return the error ... (If the "error" 4415 * is that there's no Configuration File on the adapter we don't 4416 * want to issue a warning since this is fairly common.) 4417 */ 4418 bye: 4419 if (config_issued && ret != -ENOENT) 4420 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4421 config_name, -ret); 4422 return ret; 4423 } 4424 4425 static struct fw_info fw_info_array[] = { 4426 { 4427 .chip = CHELSIO_T4, 4428 .fs_name = FW4_CFNAME, 4429 .fw_mod_name = FW4_FNAME, 4430 .fw_hdr = { 4431 .chip = FW_HDR_CHIP_T4, 4432 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4433 .intfver_nic = FW_INTFVER(T4, NIC), 4434 .intfver_vnic = FW_INTFVER(T4, VNIC), 4435 .intfver_ri = FW_INTFVER(T4, RI), 4436 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4437 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4438 }, 4439 }, { 4440 .chip = CHELSIO_T5, 4441 .fs_name = FW5_CFNAME, 4442 .fw_mod_name = FW5_FNAME, 4443 .fw_hdr = { 4444 .chip = FW_HDR_CHIP_T5, 4445 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4446 .intfver_nic = FW_INTFVER(T5, NIC), 4447 .intfver_vnic = FW_INTFVER(T5, VNIC), 4448 .intfver_ri = FW_INTFVER(T5, RI), 4449 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4450 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4451 }, 4452 }, { 4453 .chip = CHELSIO_T6, 4454 .fs_name = FW6_CFNAME, 4455 .fw_mod_name = FW6_FNAME, 4456 .fw_hdr = { 4457 .chip = FW_HDR_CHIP_T6, 4458 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4459 .intfver_nic = FW_INTFVER(T6, NIC), 4460 .intfver_vnic = FW_INTFVER(T6, VNIC), 4461 .intfver_ofld = FW_INTFVER(T6, OFLD), 4462 .intfver_ri = FW_INTFVER(T6, RI), 4463 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4464 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4465 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4466 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4467 }, 4468 } 4469 4470 }; 4471 4472 static struct fw_info *find_fw_info(int chip) 4473 { 4474 int i; 4475 4476 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4477 if (fw_info_array[i].chip == chip) 4478 return &fw_info_array[i]; 4479 } 4480 return NULL; 4481 } 4482 4483 /* 4484 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4485 */ 4486 static int adap_init0(struct adapter *adap, int vpd_skip) 4487 { 4488 struct fw_caps_config_cmd caps_cmd; 4489 u32 params[7], val[7]; 4490 enum dev_state state; 4491 u32 v, port_vec; 4492 int reset = 1; 4493 int ret; 4494 4495 /* Grab Firmware Device Log parameters as early as possible so we have 4496 * access to it for debugging, etc. 4497 */ 4498 ret = t4_init_devlog_params(adap); 4499 if (ret < 0) 4500 return ret; 4501 4502 /* Contact FW, advertising Master capability */ 4503 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4504 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4505 if (ret < 0) { 4506 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4507 ret); 4508 return ret; 4509 } 4510 if (ret == adap->mbox) 4511 adap->flags |= CXGB4_MASTER_PF; 4512 4513 /* 4514 * If we're the Master PF Driver and the device is uninitialized, 4515 * then let's consider upgrading the firmware ... (We always want 4516 * to check the firmware version number in order to A. get it for 4517 * later reporting and B. to warn if the currently loaded firmware 4518 * is excessively mismatched relative to the driver.) 4519 */ 4520 4521 t4_get_version_info(adap); 4522 ret = t4_check_fw_version(adap); 4523 /* If firmware is too old (not supported by driver) force an update. */ 4524 if (ret) 4525 state = DEV_STATE_UNINIT; 4526 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) { 4527 struct fw_info *fw_info; 4528 struct fw_hdr *card_fw; 4529 const struct firmware *fw; 4530 const u8 *fw_data = NULL; 4531 unsigned int fw_size = 0; 4532 4533 /* This is the firmware whose headers the driver was compiled 4534 * against 4535 */ 4536 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4537 if (fw_info == NULL) { 4538 dev_err(adap->pdev_dev, 4539 "unable to get firmware info for chip %d.\n", 4540 CHELSIO_CHIP_VERSION(adap->params.chip)); 4541 return -EINVAL; 4542 } 4543 4544 /* allocate memory to read the header of the firmware on the 4545 * card 4546 */ 4547 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4548 if (!card_fw) { 4549 ret = -ENOMEM; 4550 goto bye; 4551 } 4552 4553 /* Get FW from from /lib/firmware/ */ 4554 ret = request_firmware(&fw, fw_info->fw_mod_name, 4555 adap->pdev_dev); 4556 if (ret < 0) { 4557 dev_err(adap->pdev_dev, 4558 "unable to load firmware image %s, error %d\n", 4559 fw_info->fw_mod_name, ret); 4560 } else { 4561 fw_data = fw->data; 4562 fw_size = fw->size; 4563 } 4564 4565 /* upgrade FW logic */ 4566 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4567 state, &reset); 4568 4569 /* Cleaning up */ 4570 release_firmware(fw); 4571 kvfree(card_fw); 4572 4573 if (ret < 0) 4574 goto bye; 4575 } 4576 4577 /* If the firmware is initialized already, emit a simply note to that 4578 * effect. Otherwise, it's time to try initializing the adapter. 4579 */ 4580 if (state == DEV_STATE_INIT) { 4581 ret = adap_config_hma(adap); 4582 if (ret) 4583 dev_err(adap->pdev_dev, 4584 "HMA configuration failed with error %d\n", 4585 ret); 4586 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4587 "Adapter already initialized\n", 4588 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE"); 4589 } else { 4590 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4591 "Initializing adapter\n"); 4592 4593 /* Find out whether we're dealing with a version of the 4594 * firmware which has configuration file support. 4595 */ 4596 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4597 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4598 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4599 params, val); 4600 4601 /* If the firmware doesn't support Configuration Files, 4602 * return an error. 4603 */ 4604 if (ret < 0) { 4605 dev_err(adap->pdev_dev, "firmware doesn't support " 4606 "Firmware Configuration Files\n"); 4607 goto bye; 4608 } 4609 4610 /* The firmware provides us with a memory buffer where we can 4611 * load a Configuration File from the host if we want to 4612 * override the Configuration File in flash. 4613 */ 4614 ret = adap_init0_config(adap, reset); 4615 if (ret == -ENOENT) { 4616 dev_err(adap->pdev_dev, "no Configuration File " 4617 "present on adapter.\n"); 4618 goto bye; 4619 } 4620 if (ret < 0) { 4621 dev_err(adap->pdev_dev, "could not initialize " 4622 "adapter, error %d\n", -ret); 4623 goto bye; 4624 } 4625 } 4626 4627 /* Now that we've successfully configured and initialized the adapter 4628 * (or found it already initialized), we can ask the Firmware what 4629 * resources it has provisioned for us. 4630 */ 4631 ret = t4_get_pfres(adap); 4632 if (ret) { 4633 dev_err(adap->pdev_dev, 4634 "Unable to retrieve resource provisioning information\n"); 4635 goto bye; 4636 } 4637 4638 /* Grab VPD parameters. This should be done after we establish a 4639 * connection to the firmware since some of the VPD parameters 4640 * (notably the Core Clock frequency) are retrieved via requests to 4641 * the firmware. On the other hand, we need these fairly early on 4642 * so we do this right after getting ahold of the firmware. 4643 * 4644 * We need to do this after initializing the adapter because someone 4645 * could have FLASHed a new VPD which won't be read by the firmware 4646 * until we do the RESET ... 4647 */ 4648 if (!vpd_skip) { 4649 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4650 if (ret < 0) 4651 goto bye; 4652 } 4653 4654 /* Find out what ports are available to us. Note that we need to do 4655 * this before calling adap_init0_no_config() since it needs nports 4656 * and portvec ... 4657 */ 4658 v = 4659 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4660 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4661 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4662 if (ret < 0) 4663 goto bye; 4664 4665 adap->params.nports = hweight32(port_vec); 4666 adap->params.portvec = port_vec; 4667 4668 /* Give the SGE code a chance to pull in anything that it needs ... 4669 * Note that this must be called after we retrieve our VPD parameters 4670 * in order to know how to convert core ticks to seconds, etc. 4671 */ 4672 ret = t4_sge_init(adap); 4673 if (ret < 0) 4674 goto bye; 4675 4676 /* Grab the SGE Doorbell Queue Timer values. If successful, that 4677 * indicates that the Firmware and Hardware support this. 4678 */ 4679 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4680 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK)); 4681 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4682 1, params, val); 4683 4684 if (!ret) { 4685 adap->sge.dbqtimer_tick = val[0]; 4686 ret = t4_read_sge_dbqtimers(adap, 4687 ARRAY_SIZE(adap->sge.dbqtimer_val), 4688 adap->sge.dbqtimer_val); 4689 } 4690 4691 if (!ret) 4692 adap->flags |= CXGB4_SGE_DBQ_TIMER; 4693 4694 if (is_bypass_device(adap->pdev->device)) 4695 adap->params.bypass = 1; 4696 4697 /* 4698 * Grab some of our basic fundamental operating parameters. 4699 */ 4700 params[0] = FW_PARAM_PFVF(EQ_START); 4701 params[1] = FW_PARAM_PFVF(L2T_START); 4702 params[2] = FW_PARAM_PFVF(L2T_END); 4703 params[3] = FW_PARAM_PFVF(FILTER_START); 4704 params[4] = FW_PARAM_PFVF(FILTER_END); 4705 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4706 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4707 if (ret < 0) 4708 goto bye; 4709 adap->sge.egr_start = val[0]; 4710 adap->l2t_start = val[1]; 4711 adap->l2t_end = val[2]; 4712 adap->tids.ftid_base = val[3]; 4713 adap->tids.nftids = val[4] - val[3] + 1; 4714 adap->sge.ingr_start = val[5]; 4715 4716 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4717 params[0] = FW_PARAM_PFVF(HPFILTER_START); 4718 params[1] = FW_PARAM_PFVF(HPFILTER_END); 4719 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4720 params, val); 4721 if (ret < 0) 4722 goto bye; 4723 4724 adap->tids.hpftid_base = val[0]; 4725 adap->tids.nhpftids = val[1] - val[0] + 1; 4726 4727 /* Read the raw mps entries. In T6, the last 2 tcam entries 4728 * are reserved for raw mac addresses (rawf = 2, one per port). 4729 */ 4730 params[0] = FW_PARAM_PFVF(RAWF_START); 4731 params[1] = FW_PARAM_PFVF(RAWF_END); 4732 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4733 params, val); 4734 if (ret == 0) { 4735 adap->rawf_start = val[0]; 4736 adap->rawf_cnt = val[1] - val[0] + 1; 4737 } 4738 4739 adap->tids.tid_base = 4740 t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A); 4741 } 4742 4743 /* qids (ingress/egress) returned from firmware can be anywhere 4744 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 4745 * Hence driver needs to allocate memory for this range to 4746 * store the queue info. Get the highest IQFLINT/EQ index returned 4747 * in FW_EQ_*_CMD.alloc command. 4748 */ 4749 params[0] = FW_PARAM_PFVF(EQ_END); 4750 params[1] = FW_PARAM_PFVF(IQFLINT_END); 4751 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4752 if (ret < 0) 4753 goto bye; 4754 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 4755 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 4756 4757 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 4758 sizeof(*adap->sge.egr_map), GFP_KERNEL); 4759 if (!adap->sge.egr_map) { 4760 ret = -ENOMEM; 4761 goto bye; 4762 } 4763 4764 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 4765 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 4766 if (!adap->sge.ingr_map) { 4767 ret = -ENOMEM; 4768 goto bye; 4769 } 4770 4771 /* Allocate the memory for the vaious egress queue bitmaps 4772 * ie starving_fl, txq_maperr and blocked_fl. 4773 */ 4774 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4775 sizeof(long), GFP_KERNEL); 4776 if (!adap->sge.starving_fl) { 4777 ret = -ENOMEM; 4778 goto bye; 4779 } 4780 4781 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4782 sizeof(long), GFP_KERNEL); 4783 if (!adap->sge.txq_maperr) { 4784 ret = -ENOMEM; 4785 goto bye; 4786 } 4787 4788 #ifdef CONFIG_DEBUG_FS 4789 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4790 sizeof(long), GFP_KERNEL); 4791 if (!adap->sge.blocked_fl) { 4792 ret = -ENOMEM; 4793 goto bye; 4794 } 4795 #endif 4796 4797 params[0] = FW_PARAM_PFVF(CLIP_START); 4798 params[1] = FW_PARAM_PFVF(CLIP_END); 4799 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4800 if (ret < 0) 4801 goto bye; 4802 adap->clipt_start = val[0]; 4803 adap->clipt_end = val[1]; 4804 4805 /* Get the supported number of traffic classes */ 4806 params[0] = FW_PARAM_DEV(NUM_TM_CLASS); 4807 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4808 if (ret < 0) { 4809 /* We couldn't retrieve the number of Traffic Classes 4810 * supported by the hardware/firmware. So we hard 4811 * code it here. 4812 */ 4813 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 4814 } else { 4815 adap->params.nsched_cls = val[0]; 4816 } 4817 4818 /* query params related to active filter region */ 4819 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 4820 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 4821 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4822 /* If Active filter size is set we enable establishing 4823 * offload connection through firmware work request 4824 */ 4825 if ((val[0] != val[1]) && (ret >= 0)) { 4826 adap->flags |= CXGB4_FW_OFLD_CONN; 4827 adap->tids.aftid_base = val[0]; 4828 adap->tids.aftid_end = val[1]; 4829 } 4830 4831 /* If we're running on newer firmware, let it know that we're 4832 * prepared to deal with encapsulated CPL messages. Older 4833 * firmware won't understand this and we'll just get 4834 * unencapsulated messages ... 4835 */ 4836 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4837 val[0] = 1; 4838 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4839 4840 /* 4841 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 4842 * capability. Earlier versions of the firmware didn't have the 4843 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 4844 * permission to use ULPTX MEMWRITE DSGL. 4845 */ 4846 if (is_t4(adap->params.chip)) { 4847 adap->params.ulptx_memwrite_dsgl = false; 4848 } else { 4849 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4850 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4851 1, params, val); 4852 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4853 } 4854 4855 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 4856 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4857 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4858 1, params, val); 4859 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 4860 4861 /* See if FW supports FW_FILTER2 work request */ 4862 if (is_t4(adap->params.chip)) { 4863 adap->params.filter2_wr_support = 0; 4864 } else { 4865 params[0] = FW_PARAM_DEV(FILTER2_WR); 4866 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4867 1, params, val); 4868 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 4869 } 4870 4871 /* Check if FW supports returning vin and smt index. 4872 * If this is not supported, driver will interpret 4873 * these values from viid. 4874 */ 4875 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 4876 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4877 1, params, val); 4878 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0); 4879 4880 /* 4881 * Get device capabilities so we can determine what resources we need 4882 * to manage. 4883 */ 4884 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4885 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4886 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4887 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4888 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4889 &caps_cmd); 4890 if (ret < 0) 4891 goto bye; 4892 4893 /* hash filter has some mandatory register settings to be tested and for 4894 * that it needs to test whether offload is enabled or not, hence 4895 * checking and setting it here. 4896 */ 4897 if (caps_cmd.ofldcaps) 4898 adap->params.offload = 1; 4899 4900 if (caps_cmd.ofldcaps || 4901 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) || 4902 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) { 4903 /* query offload-related parameters */ 4904 params[0] = FW_PARAM_DEV(NTID); 4905 params[1] = FW_PARAM_PFVF(SERVER_START); 4906 params[2] = FW_PARAM_PFVF(SERVER_END); 4907 params[3] = FW_PARAM_PFVF(TDDP_START); 4908 params[4] = FW_PARAM_PFVF(TDDP_END); 4909 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4910 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4911 params, val); 4912 if (ret < 0) 4913 goto bye; 4914 adap->tids.ntids = val[0]; 4915 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4916 adap->tids.stid_base = val[1]; 4917 adap->tids.nstids = val[2] - val[1] + 1; 4918 /* 4919 * Setup server filter region. Divide the available filter 4920 * region into two parts. Regular filters get 1/3rd and server 4921 * filters get 2/3rd part. This is only enabled if workarond 4922 * path is enabled. 4923 * 1. For regular filters. 4924 * 2. Server filter: This are special filters which are used 4925 * to redirect SYN packets to offload queue. 4926 */ 4927 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) { 4928 adap->tids.sftid_base = adap->tids.ftid_base + 4929 DIV_ROUND_UP(adap->tids.nftids, 3); 4930 adap->tids.nsftids = adap->tids.nftids - 4931 DIV_ROUND_UP(adap->tids.nftids, 3); 4932 adap->tids.nftids = adap->tids.sftid_base - 4933 adap->tids.ftid_base; 4934 } 4935 adap->vres.ddp.start = val[3]; 4936 adap->vres.ddp.size = val[4] - val[3] + 1; 4937 adap->params.ofldq_wr_cred = val[5]; 4938 4939 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4940 init_hash_filter(adap); 4941 } else { 4942 adap->num_ofld_uld += 1; 4943 } 4944 4945 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) { 4946 params[0] = FW_PARAM_PFVF(ETHOFLD_START); 4947 params[1] = FW_PARAM_PFVF(ETHOFLD_END); 4948 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4949 params, val); 4950 if (!ret) { 4951 adap->tids.eotid_base = val[0]; 4952 adap->tids.neotids = min_t(u32, MAX_ATIDS, 4953 val[1] - val[0] + 1); 4954 adap->params.ethofld = 1; 4955 } 4956 } 4957 } 4958 if (caps_cmd.rdmacaps) { 4959 params[0] = FW_PARAM_PFVF(STAG_START); 4960 params[1] = FW_PARAM_PFVF(STAG_END); 4961 params[2] = FW_PARAM_PFVF(RQ_START); 4962 params[3] = FW_PARAM_PFVF(RQ_END); 4963 params[4] = FW_PARAM_PFVF(PBL_START); 4964 params[5] = FW_PARAM_PFVF(PBL_END); 4965 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4966 params, val); 4967 if (ret < 0) 4968 goto bye; 4969 adap->vres.stag.start = val[0]; 4970 adap->vres.stag.size = val[1] - val[0] + 1; 4971 adap->vres.rq.start = val[2]; 4972 adap->vres.rq.size = val[3] - val[2] + 1; 4973 adap->vres.pbl.start = val[4]; 4974 adap->vres.pbl.size = val[5] - val[4] + 1; 4975 4976 params[0] = FW_PARAM_PFVF(SRQ_START); 4977 params[1] = FW_PARAM_PFVF(SRQ_END); 4978 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4979 params, val); 4980 if (!ret) { 4981 adap->vres.srq.start = val[0]; 4982 adap->vres.srq.size = val[1] - val[0] + 1; 4983 } 4984 if (adap->vres.srq.size) { 4985 adap->srq = t4_init_srq(adap->vres.srq.size); 4986 if (!adap->srq) 4987 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 4988 } 4989 4990 params[0] = FW_PARAM_PFVF(SQRQ_START); 4991 params[1] = FW_PARAM_PFVF(SQRQ_END); 4992 params[2] = FW_PARAM_PFVF(CQ_START); 4993 params[3] = FW_PARAM_PFVF(CQ_END); 4994 params[4] = FW_PARAM_PFVF(OCQ_START); 4995 params[5] = FW_PARAM_PFVF(OCQ_END); 4996 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4997 val); 4998 if (ret < 0) 4999 goto bye; 5000 adap->vres.qp.start = val[0]; 5001 adap->vres.qp.size = val[1] - val[0] + 1; 5002 adap->vres.cq.start = val[2]; 5003 adap->vres.cq.size = val[3] - val[2] + 1; 5004 adap->vres.ocq.start = val[4]; 5005 adap->vres.ocq.size = val[5] - val[4] + 1; 5006 5007 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 5008 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5009 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 5010 val); 5011 if (ret < 0) { 5012 adap->params.max_ordird_qp = 8; 5013 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 5014 ret = 0; 5015 } else { 5016 adap->params.max_ordird_qp = val[0]; 5017 adap->params.max_ird_adapter = val[1]; 5018 } 5019 dev_info(adap->pdev_dev, 5020 "max_ordird_qp %d max_ird_adapter %d\n", 5021 adap->params.max_ordird_qp, 5022 adap->params.max_ird_adapter); 5023 5024 /* Enable write_with_immediate if FW supports it */ 5025 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 5026 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 5027 val); 5028 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 5029 5030 /* Enable write_cmpl if FW supports it */ 5031 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 5032 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 5033 val); 5034 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 5035 adap->num_ofld_uld += 2; 5036 } 5037 if (caps_cmd.iscsicaps) { 5038 params[0] = FW_PARAM_PFVF(ISCSI_START); 5039 params[1] = FW_PARAM_PFVF(ISCSI_END); 5040 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5041 params, val); 5042 if (ret < 0) 5043 goto bye; 5044 adap->vres.iscsi.start = val[0]; 5045 adap->vres.iscsi.size = val[1] - val[0] + 1; 5046 if (is_t6(adap->params.chip)) { 5047 params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START); 5048 params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END); 5049 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5050 params, val); 5051 if (!ret) { 5052 adap->vres.ppod_edram.start = val[0]; 5053 adap->vres.ppod_edram.size = 5054 val[1] - val[0] + 1; 5055 5056 dev_info(adap->pdev_dev, 5057 "ppod edram start 0x%x end 0x%x size 0x%x\n", 5058 val[0], val[1], 5059 adap->vres.ppod_edram.size); 5060 } 5061 } 5062 /* LIO target and cxgb4i initiaitor */ 5063 adap->num_ofld_uld += 2; 5064 } 5065 if (caps_cmd.cryptocaps) { 5066 if (ntohs(caps_cmd.cryptocaps) & 5067 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 5068 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 5069 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5070 2, params, val); 5071 if (ret < 0) { 5072 if (ret != -EINVAL) 5073 goto bye; 5074 } else { 5075 adap->vres.ncrypto_fc = val[0]; 5076 } 5077 adap->num_ofld_uld += 1; 5078 } 5079 if (ntohs(caps_cmd.cryptocaps) & 5080 FW_CAPS_CONFIG_TLS_INLINE) { 5081 params[0] = FW_PARAM_PFVF(TLS_START); 5082 params[1] = FW_PARAM_PFVF(TLS_END); 5083 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5084 2, params, val); 5085 if (ret < 0) 5086 goto bye; 5087 adap->vres.key.start = val[0]; 5088 adap->vres.key.size = val[1] - val[0] + 1; 5089 adap->num_uld += 1; 5090 } 5091 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 5092 } 5093 5094 /* The MTU/MSS Table is initialized by now, so load their values. If 5095 * we're initializing the adapter, then we'll make any modifications 5096 * we want to the MTU/MSS Table and also initialize the congestion 5097 * parameters. 5098 */ 5099 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 5100 if (state != DEV_STATE_INIT) { 5101 int i; 5102 5103 /* The default MTU Table contains values 1492 and 1500. 5104 * However, for TCP, it's better to have two values which are 5105 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 5106 * This allows us to have a TCP Data Payload which is a 5107 * multiple of 8 regardless of what combination of TCP Options 5108 * are in use (always a multiple of 4 bytes) which is 5109 * important for performance reasons. For instance, if no 5110 * options are in use, then we have a 20-byte IP header and a 5111 * 20-byte TCP header. In this case, a 1500-byte MSS would 5112 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 5113 * which is not a multiple of 8. So using an MSS of 1488 in 5114 * this case results in a TCP Data Payload of 1448 bytes which 5115 * is a multiple of 8. On the other hand, if 12-byte TCP Time 5116 * Stamps have been negotiated, then an MTU of 1500 bytes 5117 * results in a TCP Data Payload of 1448 bytes which, as 5118 * above, is a multiple of 8 bytes ... 5119 */ 5120 for (i = 0; i < NMTUS; i++) 5121 if (adap->params.mtus[i] == 1492) { 5122 adap->params.mtus[i] = 1488; 5123 break; 5124 } 5125 5126 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5127 adap->params.b_wnd); 5128 } 5129 t4_init_sge_params(adap); 5130 adap->flags |= CXGB4_FW_OK; 5131 t4_init_tp_params(adap, true); 5132 return 0; 5133 5134 /* 5135 * Something bad happened. If a command timed out or failed with EIO 5136 * FW does not operate within its spec or something catastrophic 5137 * happened to HW/FW, stop issuing commands. 5138 */ 5139 bye: 5140 adap_free_hma_mem(adap); 5141 kfree(adap->sge.egr_map); 5142 kfree(adap->sge.ingr_map); 5143 kfree(adap->sge.starving_fl); 5144 kfree(adap->sge.txq_maperr); 5145 #ifdef CONFIG_DEBUG_FS 5146 kfree(adap->sge.blocked_fl); 5147 #endif 5148 if (ret != -ETIMEDOUT && ret != -EIO) 5149 t4_fw_bye(adap, adap->mbox); 5150 return ret; 5151 } 5152 5153 /* EEH callbacks */ 5154 5155 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 5156 pci_channel_state_t state) 5157 { 5158 int i; 5159 struct adapter *adap = pci_get_drvdata(pdev); 5160 5161 if (!adap) 5162 goto out; 5163 5164 rtnl_lock(); 5165 adap->flags &= ~CXGB4_FW_OK; 5166 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 5167 spin_lock(&adap->stats_lock); 5168 for_each_port(adap, i) { 5169 struct net_device *dev = adap->port[i]; 5170 if (dev) { 5171 netif_device_detach(dev); 5172 netif_carrier_off(dev); 5173 } 5174 } 5175 spin_unlock(&adap->stats_lock); 5176 disable_interrupts(adap); 5177 if (adap->flags & CXGB4_FULL_INIT_DONE) 5178 cxgb_down(adap); 5179 rtnl_unlock(); 5180 if ((adap->flags & CXGB4_DEV_ENABLED)) { 5181 pci_disable_device(pdev); 5182 adap->flags &= ~CXGB4_DEV_ENABLED; 5183 } 5184 out: return state == pci_channel_io_perm_failure ? 5185 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 5186 } 5187 5188 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 5189 { 5190 int i, ret; 5191 struct fw_caps_config_cmd c; 5192 struct adapter *adap = pci_get_drvdata(pdev); 5193 5194 if (!adap) { 5195 pci_restore_state(pdev); 5196 pci_save_state(pdev); 5197 return PCI_ERS_RESULT_RECOVERED; 5198 } 5199 5200 if (!(adap->flags & CXGB4_DEV_ENABLED)) { 5201 if (pci_enable_device(pdev)) { 5202 dev_err(&pdev->dev, "Cannot reenable PCI " 5203 "device after reset\n"); 5204 return PCI_ERS_RESULT_DISCONNECT; 5205 } 5206 adap->flags |= CXGB4_DEV_ENABLED; 5207 } 5208 5209 pci_set_master(pdev); 5210 pci_restore_state(pdev); 5211 pci_save_state(pdev); 5212 5213 if (t4_wait_dev_ready(adap->regs) < 0) 5214 return PCI_ERS_RESULT_DISCONNECT; 5215 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 5216 return PCI_ERS_RESULT_DISCONNECT; 5217 adap->flags |= CXGB4_FW_OK; 5218 if (adap_init1(adap, &c)) 5219 return PCI_ERS_RESULT_DISCONNECT; 5220 5221 for_each_port(adap, i) { 5222 struct port_info *pi = adap2pinfo(adap, i); 5223 u8 vivld = 0, vin = 0; 5224 5225 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1, 5226 NULL, NULL, &vivld, &vin); 5227 if (ret < 0) 5228 return PCI_ERS_RESULT_DISCONNECT; 5229 pi->viid = ret; 5230 pi->xact_addr_filt = -1; 5231 /* If fw supports returning the VIN as part of FW_VI_CMD, 5232 * save the returned values. 5233 */ 5234 if (adap->params.viid_smt_extn_support) { 5235 pi->vivld = vivld; 5236 pi->vin = vin; 5237 } else { 5238 /* Retrieve the values from VIID */ 5239 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 5240 pi->vin = FW_VIID_VIN_G(pi->viid); 5241 } 5242 } 5243 5244 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5245 adap->params.b_wnd); 5246 setup_memwin(adap); 5247 if (cxgb_up(adap)) 5248 return PCI_ERS_RESULT_DISCONNECT; 5249 return PCI_ERS_RESULT_RECOVERED; 5250 } 5251 5252 static void eeh_resume(struct pci_dev *pdev) 5253 { 5254 int i; 5255 struct adapter *adap = pci_get_drvdata(pdev); 5256 5257 if (!adap) 5258 return; 5259 5260 rtnl_lock(); 5261 for_each_port(adap, i) { 5262 struct net_device *dev = adap->port[i]; 5263 if (dev) { 5264 if (netif_running(dev)) { 5265 link_start(dev); 5266 cxgb_set_rxmode(dev); 5267 } 5268 netif_device_attach(dev); 5269 } 5270 } 5271 rtnl_unlock(); 5272 } 5273 5274 static void eeh_reset_prepare(struct pci_dev *pdev) 5275 { 5276 struct adapter *adapter = pci_get_drvdata(pdev); 5277 int i; 5278 5279 if (adapter->pf != 4) 5280 return; 5281 5282 adapter->flags &= ~CXGB4_FW_OK; 5283 5284 notify_ulds(adapter, CXGB4_STATE_DOWN); 5285 5286 for_each_port(adapter, i) 5287 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5288 cxgb_close(adapter->port[i]); 5289 5290 disable_interrupts(adapter); 5291 cxgb4_free_mps_ref_entries(adapter); 5292 5293 adap_free_hma_mem(adapter); 5294 5295 if (adapter->flags & CXGB4_FULL_INIT_DONE) 5296 cxgb_down(adapter); 5297 } 5298 5299 static void eeh_reset_done(struct pci_dev *pdev) 5300 { 5301 struct adapter *adapter = pci_get_drvdata(pdev); 5302 int err, i; 5303 5304 if (adapter->pf != 4) 5305 return; 5306 5307 err = t4_wait_dev_ready(adapter->regs); 5308 if (err < 0) { 5309 dev_err(adapter->pdev_dev, 5310 "Device not ready, err %d", err); 5311 return; 5312 } 5313 5314 setup_memwin(adapter); 5315 5316 err = adap_init0(adapter, 1); 5317 if (err) { 5318 dev_err(adapter->pdev_dev, 5319 "Adapter init failed, err %d", err); 5320 return; 5321 } 5322 5323 setup_memwin_rdma(adapter); 5324 5325 if (adapter->flags & CXGB4_FW_OK) { 5326 err = t4_port_init(adapter, adapter->pf, adapter->pf, 0); 5327 if (err) { 5328 dev_err(adapter->pdev_dev, 5329 "Port init failed, err %d", err); 5330 return; 5331 } 5332 } 5333 5334 err = cfg_queues(adapter); 5335 if (err) { 5336 dev_err(adapter->pdev_dev, 5337 "Config queues failed, err %d", err); 5338 return; 5339 } 5340 5341 cxgb4_init_mps_ref_entries(adapter); 5342 5343 err = setup_fw_sge_queues(adapter); 5344 if (err) { 5345 dev_err(adapter->pdev_dev, 5346 "FW sge queue allocation failed, err %d", err); 5347 return; 5348 } 5349 5350 for_each_port(adapter, i) 5351 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5352 cxgb_open(adapter->port[i]); 5353 } 5354 5355 static const struct pci_error_handlers cxgb4_eeh = { 5356 .error_detected = eeh_err_detected, 5357 .slot_reset = eeh_slot_reset, 5358 .resume = eeh_resume, 5359 .reset_prepare = eeh_reset_prepare, 5360 .reset_done = eeh_reset_done, 5361 }; 5362 5363 /* Return true if the Link Configuration supports "High Speeds" (those greater 5364 * than 1Gb/s). 5365 */ 5366 static inline bool is_x_10g_port(const struct link_config *lc) 5367 { 5368 unsigned int speeds, high_speeds; 5369 5370 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 5371 high_speeds = speeds & 5372 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 5373 5374 return high_speeds != 0; 5375 } 5376 5377 /* Perform default configuration of DMA queues depending on the number and type 5378 * of ports we found and the number of available CPUs. Most settings can be 5379 * modified by the admin prior to actual use. 5380 */ 5381 static int cfg_queues(struct adapter *adap) 5382 { 5383 u32 avail_qsets, avail_eth_qsets, avail_uld_qsets; 5384 u32 niqflint, neq, num_ulds; 5385 struct sge *s = &adap->sge; 5386 u32 i, n10g = 0, qidx = 0; 5387 #ifndef CONFIG_CHELSIO_T4_DCB 5388 int q10g = 0; 5389 #endif 5390 5391 /* Reduce memory usage in kdump environment, disable all offload. */ 5392 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 5393 adap->params.offload = 0; 5394 adap->params.crypto = 0; 5395 adap->params.ethofld = 0; 5396 } 5397 5398 /* Calculate the number of Ethernet Queue Sets available based on 5399 * resources provisioned for us. We always have an Asynchronous 5400 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 5401 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 5402 * Ingress Queue. Meanwhile, we need two Egress Queues for each 5403 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 5404 * 5405 * Note that we should also take into account all of the various 5406 * Offload Queues. But, in any situation where we're operating in 5407 * a Resource Constrained Provisioning environment, doing any Offload 5408 * at all is problematic ... 5409 */ 5410 niqflint = adap->params.pfres.niqflint - 1; 5411 if (!(adap->flags & CXGB4_USING_MSIX)) 5412 niqflint--; 5413 neq = adap->params.pfres.neq / 2; 5414 avail_qsets = min(niqflint, neq); 5415 5416 if (avail_qsets < adap->params.nports) { 5417 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 5418 avail_qsets, adap->params.nports); 5419 return -ENOMEM; 5420 } 5421 5422 /* Count the number of 10Gb/s or better ports */ 5423 for_each_port(adap, i) 5424 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 5425 5426 avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS); 5427 #ifdef CONFIG_CHELSIO_T4_DCB 5428 /* For Data Center Bridging support we need to be able to support up 5429 * to 8 Traffic Priorities; each of which will be assigned to its 5430 * own TX Queue in order to prevent Head-Of-Line Blocking. 5431 */ 5432 if (adap->params.nports * 8 > avail_eth_qsets) { 5433 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 5434 avail_eth_qsets, adap->params.nports * 8); 5435 return -ENOMEM; 5436 } 5437 5438 for_each_port(adap, i) { 5439 struct port_info *pi = adap2pinfo(adap, i); 5440 5441 pi->first_qset = qidx; 5442 pi->nqsets = is_kdump_kernel() ? 1 : 8; 5443 qidx += pi->nqsets; 5444 } 5445 #else /* !CONFIG_CHELSIO_T4_DCB */ 5446 /* We default to 1 queue per non-10G port and up to # of cores queues 5447 * per 10G port. 5448 */ 5449 if (n10g) 5450 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 5451 if (q10g > netif_get_num_default_rss_queues()) 5452 q10g = netif_get_num_default_rss_queues(); 5453 5454 if (is_kdump_kernel()) 5455 q10g = 1; 5456 5457 for_each_port(adap, i) { 5458 struct port_info *pi = adap2pinfo(adap, i); 5459 5460 pi->first_qset = qidx; 5461 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 5462 qidx += pi->nqsets; 5463 } 5464 #endif /* !CONFIG_CHELSIO_T4_DCB */ 5465 5466 s->ethqsets = qidx; 5467 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 5468 avail_qsets -= qidx; 5469 5470 if (is_uld(adap)) { 5471 /* For offload we use 1 queue/channel if all ports are up to 1G, 5472 * otherwise we divide all available queues amongst the channels 5473 * capped by the number of available cores. 5474 */ 5475 num_ulds = adap->num_uld + adap->num_ofld_uld; 5476 i = min_t(u32, MAX_OFLD_QSETS, num_online_cpus()); 5477 avail_uld_qsets = roundup(i, adap->params.nports); 5478 if (avail_qsets < num_ulds * adap->params.nports) { 5479 adap->params.offload = 0; 5480 adap->params.crypto = 0; 5481 s->ofldqsets = 0; 5482 } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) { 5483 s->ofldqsets = adap->params.nports; 5484 } else { 5485 s->ofldqsets = avail_uld_qsets; 5486 } 5487 5488 avail_qsets -= num_ulds * s->ofldqsets; 5489 } 5490 5491 /* ETHOFLD Queues used for QoS offload should follow same 5492 * allocation scheme as normal Ethernet Queues. 5493 */ 5494 if (is_ethofld(adap)) { 5495 if (avail_qsets < s->max_ethqsets) { 5496 adap->params.ethofld = 0; 5497 s->eoqsets = 0; 5498 } else { 5499 s->eoqsets = s->max_ethqsets; 5500 } 5501 avail_qsets -= s->eoqsets; 5502 } 5503 5504 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 5505 struct sge_eth_rxq *r = &s->ethrxq[i]; 5506 5507 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 5508 r->fl.size = 72; 5509 } 5510 5511 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 5512 s->ethtxq[i].q.size = 1024; 5513 5514 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 5515 s->ctrlq[i].q.size = 512; 5516 5517 if (!is_t4(adap->params.chip)) 5518 s->ptptxq.q.size = 8; 5519 5520 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 5521 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 5522 5523 return 0; 5524 } 5525 5526 /* 5527 * Reduce the number of Ethernet queues across all ports to at most n. 5528 * n provides at least one queue per port. 5529 */ 5530 static void reduce_ethqs(struct adapter *adap, int n) 5531 { 5532 int i; 5533 struct port_info *pi; 5534 5535 while (n < adap->sge.ethqsets) 5536 for_each_port(adap, i) { 5537 pi = adap2pinfo(adap, i); 5538 if (pi->nqsets > 1) { 5539 pi->nqsets--; 5540 adap->sge.ethqsets--; 5541 if (adap->sge.ethqsets <= n) 5542 break; 5543 } 5544 } 5545 5546 n = 0; 5547 for_each_port(adap, i) { 5548 pi = adap2pinfo(adap, i); 5549 pi->first_qset = n; 5550 n += pi->nqsets; 5551 } 5552 } 5553 5554 static int alloc_msix_info(struct adapter *adap, u32 num_vec) 5555 { 5556 struct msix_info *msix_info; 5557 5558 msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL); 5559 if (!msix_info) 5560 return -ENOMEM; 5561 5562 adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec), 5563 sizeof(long), GFP_KERNEL); 5564 if (!adap->msix_bmap.msix_bmap) { 5565 kfree(msix_info); 5566 return -ENOMEM; 5567 } 5568 5569 spin_lock_init(&adap->msix_bmap.lock); 5570 adap->msix_bmap.mapsize = num_vec; 5571 5572 adap->msix_info = msix_info; 5573 return 0; 5574 } 5575 5576 static void free_msix_info(struct adapter *adap) 5577 { 5578 kfree(adap->msix_bmap.msix_bmap); 5579 kfree(adap->msix_info); 5580 } 5581 5582 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap) 5583 { 5584 struct msix_bmap *bmap = &adap->msix_bmap; 5585 unsigned int msix_idx; 5586 unsigned long flags; 5587 5588 spin_lock_irqsave(&bmap->lock, flags); 5589 msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize); 5590 if (msix_idx < bmap->mapsize) { 5591 __set_bit(msix_idx, bmap->msix_bmap); 5592 } else { 5593 spin_unlock_irqrestore(&bmap->lock, flags); 5594 return -ENOSPC; 5595 } 5596 5597 spin_unlock_irqrestore(&bmap->lock, flags); 5598 return msix_idx; 5599 } 5600 5601 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap, 5602 unsigned int msix_idx) 5603 { 5604 struct msix_bmap *bmap = &adap->msix_bmap; 5605 unsigned long flags; 5606 5607 spin_lock_irqsave(&bmap->lock, flags); 5608 __clear_bit(msix_idx, bmap->msix_bmap); 5609 spin_unlock_irqrestore(&bmap->lock, flags); 5610 } 5611 5612 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5613 #define EXTRA_VECS 2 5614 5615 static int enable_msix(struct adapter *adap) 5616 { 5617 u32 eth_need, uld_need = 0, ethofld_need = 0; 5618 u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0; 5619 u8 num_uld = 0, nchan = adap->params.nports; 5620 u32 i, want, need, num_vec; 5621 struct sge *s = &adap->sge; 5622 struct msix_entry *entries; 5623 struct port_info *pi; 5624 int allocated, ret; 5625 5626 want = s->max_ethqsets; 5627 #ifdef CONFIG_CHELSIO_T4_DCB 5628 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5629 * each port. 5630 */ 5631 need = 8 * nchan; 5632 #else 5633 need = nchan; 5634 #endif 5635 eth_need = need; 5636 if (is_uld(adap)) { 5637 num_uld = adap->num_ofld_uld + adap->num_uld; 5638 want += num_uld * s->ofldqsets; 5639 uld_need = num_uld * nchan; 5640 need += uld_need; 5641 } 5642 5643 if (is_ethofld(adap)) { 5644 want += s->eoqsets; 5645 ethofld_need = eth_need; 5646 need += ethofld_need; 5647 } 5648 5649 want += EXTRA_VECS; 5650 need += EXTRA_VECS; 5651 5652 entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL); 5653 if (!entries) 5654 return -ENOMEM; 5655 5656 for (i = 0; i < want; i++) 5657 entries[i].entry = i; 5658 5659 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5660 if (allocated < 0) { 5661 /* Disable offload and attempt to get vectors for NIC 5662 * only mode. 5663 */ 5664 want = s->max_ethqsets + EXTRA_VECS; 5665 need = eth_need + EXTRA_VECS; 5666 allocated = pci_enable_msix_range(adap->pdev, entries, 5667 need, want); 5668 if (allocated < 0) { 5669 dev_info(adap->pdev_dev, 5670 "Disabling MSI-X due to insufficient MSI-X vectors\n"); 5671 ret = allocated; 5672 goto out_free; 5673 } 5674 5675 dev_info(adap->pdev_dev, 5676 "Disabling offload due to insufficient MSI-X vectors\n"); 5677 adap->params.offload = 0; 5678 adap->params.crypto = 0; 5679 adap->params.ethofld = 0; 5680 s->ofldqsets = 0; 5681 s->eoqsets = 0; 5682 uld_need = 0; 5683 ethofld_need = 0; 5684 } 5685 5686 num_vec = allocated; 5687 if (num_vec < want) { 5688 /* Distribute available vectors to the various queue groups. 5689 * Every group gets its minimum requirement and NIC gets top 5690 * priority for leftovers. 5691 */ 5692 ethqsets = eth_need; 5693 if (is_uld(adap)) 5694 ofldqsets = nchan; 5695 if (is_ethofld(adap)) 5696 eoqsets = ethofld_need; 5697 5698 num_vec -= need; 5699 while (num_vec) { 5700 if (num_vec < eth_need + ethofld_need || 5701 ethqsets > s->max_ethqsets) 5702 break; 5703 5704 for_each_port(adap, i) { 5705 pi = adap2pinfo(adap, i); 5706 if (pi->nqsets < 2) 5707 continue; 5708 5709 ethqsets++; 5710 num_vec--; 5711 if (ethofld_need) { 5712 eoqsets++; 5713 num_vec--; 5714 } 5715 } 5716 } 5717 5718 if (is_uld(adap)) { 5719 while (num_vec) { 5720 if (num_vec < uld_need || 5721 ofldqsets > s->ofldqsets) 5722 break; 5723 5724 ofldqsets++; 5725 num_vec -= uld_need; 5726 } 5727 } 5728 } else { 5729 ethqsets = s->max_ethqsets; 5730 if (is_uld(adap)) 5731 ofldqsets = s->ofldqsets; 5732 if (is_ethofld(adap)) 5733 eoqsets = s->eoqsets; 5734 } 5735 5736 if (ethqsets < s->max_ethqsets) { 5737 s->max_ethqsets = ethqsets; 5738 reduce_ethqs(adap, ethqsets); 5739 } 5740 5741 if (is_uld(adap)) { 5742 s->ofldqsets = ofldqsets; 5743 s->nqs_per_uld = s->ofldqsets; 5744 } 5745 5746 if (is_ethofld(adap)) 5747 s->eoqsets = eoqsets; 5748 5749 /* map for msix */ 5750 ret = alloc_msix_info(adap, allocated); 5751 if (ret) 5752 goto out_disable_msix; 5753 5754 for (i = 0; i < allocated; i++) { 5755 adap->msix_info[i].vec = entries[i].vector; 5756 adap->msix_info[i].idx = i; 5757 } 5758 5759 dev_info(adap->pdev_dev, 5760 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d\n", 5761 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld); 5762 5763 kfree(entries); 5764 return 0; 5765 5766 out_disable_msix: 5767 pci_disable_msix(adap->pdev); 5768 5769 out_free: 5770 kfree(entries); 5771 return ret; 5772 } 5773 5774 #undef EXTRA_VECS 5775 5776 static int init_rss(struct adapter *adap) 5777 { 5778 unsigned int i; 5779 int err; 5780 5781 err = t4_init_rss_mode(adap, adap->mbox); 5782 if (err) 5783 return err; 5784 5785 for_each_port(adap, i) { 5786 struct port_info *pi = adap2pinfo(adap, i); 5787 5788 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5789 if (!pi->rss) 5790 return -ENOMEM; 5791 } 5792 return 0; 5793 } 5794 5795 /* Dump basic information about the adapter */ 5796 static void print_adapter_info(struct adapter *adapter) 5797 { 5798 /* Hardware/Firmware/etc. Version/Revision IDs */ 5799 t4_dump_version_info(adapter); 5800 5801 /* Software/Hardware configuration */ 5802 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 5803 is_offload(adapter) ? "R" : "", 5804 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" : 5805 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""), 5806 is_offload(adapter) ? "Offload" : "non-Offload"); 5807 } 5808 5809 static void print_port_info(const struct net_device *dev) 5810 { 5811 char buf[80]; 5812 char *bufp = buf; 5813 const struct port_info *pi = netdev_priv(dev); 5814 const struct adapter *adap = pi->adapter; 5815 5816 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 5817 bufp += sprintf(bufp, "100M/"); 5818 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 5819 bufp += sprintf(bufp, "1G/"); 5820 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 5821 bufp += sprintf(bufp, "10G/"); 5822 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 5823 bufp += sprintf(bufp, "25G/"); 5824 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 5825 bufp += sprintf(bufp, "40G/"); 5826 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 5827 bufp += sprintf(bufp, "50G/"); 5828 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 5829 bufp += sprintf(bufp, "100G/"); 5830 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 5831 bufp += sprintf(bufp, "200G/"); 5832 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 5833 bufp += sprintf(bufp, "400G/"); 5834 if (bufp != buf) 5835 --bufp; 5836 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 5837 5838 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 5839 dev->name, adap->params.vpd.id, adap->name, buf); 5840 } 5841 5842 /* 5843 * Free the following resources: 5844 * - memory used for tables 5845 * - MSI/MSI-X 5846 * - net devices 5847 * - resources FW is holding for us 5848 */ 5849 static void free_some_resources(struct adapter *adapter) 5850 { 5851 unsigned int i; 5852 5853 kvfree(adapter->smt); 5854 kvfree(adapter->l2t); 5855 kvfree(adapter->srq); 5856 t4_cleanup_sched(adapter); 5857 kvfree(adapter->tids.tid_tab); 5858 cxgb4_cleanup_tc_matchall(adapter); 5859 cxgb4_cleanup_tc_mqprio(adapter); 5860 cxgb4_cleanup_tc_flower(adapter); 5861 cxgb4_cleanup_tc_u32(adapter); 5862 kfree(adapter->sge.egr_map); 5863 kfree(adapter->sge.ingr_map); 5864 kfree(adapter->sge.starving_fl); 5865 kfree(adapter->sge.txq_maperr); 5866 #ifdef CONFIG_DEBUG_FS 5867 kfree(adapter->sge.blocked_fl); 5868 #endif 5869 disable_msi(adapter); 5870 5871 for_each_port(adapter, i) 5872 if (adapter->port[i]) { 5873 struct port_info *pi = adap2pinfo(adapter, i); 5874 5875 if (pi->viid != 0) 5876 t4_free_vi(adapter, adapter->mbox, adapter->pf, 5877 0, pi->viid); 5878 kfree(adap2pinfo(adapter, i)->rss); 5879 free_netdev(adapter->port[i]); 5880 } 5881 if (adapter->flags & CXGB4_FW_OK) 5882 t4_fw_bye(adapter, adapter->pf); 5883 } 5884 5885 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \ 5886 NETIF_F_GSO_UDP_L4) 5887 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5888 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5889 #define SEGMENT_SIZE 128 5890 5891 static int t4_get_chip_type(struct adapter *adap, int ver) 5892 { 5893 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 5894 5895 switch (ver) { 5896 case CHELSIO_T4: 5897 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 5898 case CHELSIO_T5: 5899 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 5900 case CHELSIO_T6: 5901 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 5902 default: 5903 break; 5904 } 5905 return -EINVAL; 5906 } 5907 5908 #ifdef CONFIG_PCI_IOV 5909 static void cxgb4_mgmt_setup(struct net_device *dev) 5910 { 5911 dev->type = ARPHRD_NONE; 5912 dev->mtu = 0; 5913 dev->hard_header_len = 0; 5914 dev->addr_len = 0; 5915 dev->tx_queue_len = 0; 5916 dev->flags |= IFF_NOARP; 5917 dev->priv_flags |= IFF_NO_QUEUE; 5918 5919 /* Initialize the device structure. */ 5920 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 5921 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 5922 } 5923 5924 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 5925 { 5926 struct adapter *adap = pci_get_drvdata(pdev); 5927 int err = 0; 5928 int current_vfs = pci_num_vf(pdev); 5929 u32 pcie_fw; 5930 5931 pcie_fw = readl(adap->regs + PCIE_FW_A); 5932 /* Check if fw is initialized */ 5933 if (!(pcie_fw & PCIE_FW_INIT_F)) { 5934 dev_warn(&pdev->dev, "Device not initialized\n"); 5935 return -EOPNOTSUPP; 5936 } 5937 5938 /* If any of the VF's is already assigned to Guest OS, then 5939 * SRIOV for the same cannot be modified 5940 */ 5941 if (current_vfs && pci_vfs_assigned(pdev)) { 5942 dev_err(&pdev->dev, 5943 "Cannot modify SR-IOV while VFs are assigned\n"); 5944 return current_vfs; 5945 } 5946 /* Note that the upper-level code ensures that we're never called with 5947 * a non-zero "num_vfs" when we already have VFs instantiated. But 5948 * it never hurts to code defensively. 5949 */ 5950 if (num_vfs != 0 && current_vfs != 0) 5951 return -EBUSY; 5952 5953 /* Nothing to do for no change. */ 5954 if (num_vfs == current_vfs) 5955 return num_vfs; 5956 5957 /* Disable SRIOV when zero is passed. */ 5958 if (!num_vfs) { 5959 pci_disable_sriov(pdev); 5960 /* free VF Management Interface */ 5961 unregister_netdev(adap->port[0]); 5962 free_netdev(adap->port[0]); 5963 adap->port[0] = NULL; 5964 5965 /* free VF resources */ 5966 adap->num_vfs = 0; 5967 kfree(adap->vfinfo); 5968 adap->vfinfo = NULL; 5969 return 0; 5970 } 5971 5972 if (!current_vfs) { 5973 struct fw_pfvf_cmd port_cmd, port_rpl; 5974 struct net_device *netdev; 5975 unsigned int pmask, port; 5976 struct pci_dev *pbridge; 5977 struct port_info *pi; 5978 char name[IFNAMSIZ]; 5979 u32 devcap2; 5980 u16 flags; 5981 5982 /* If we want to instantiate Virtual Functions, then our 5983 * parent bridge's PCI-E needs to support Alternative Routing 5984 * ID (ARI) because our VFs will show up at function offset 8 5985 * and above. 5986 */ 5987 pbridge = pdev->bus->self; 5988 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags); 5989 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2); 5990 5991 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 5992 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 5993 /* Our parent bridge does not support ARI so issue a 5994 * warning and skip instantiating the VFs. They 5995 * won't be reachable. 5996 */ 5997 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 5998 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 5999 PCI_FUNC(pbridge->devfn)); 6000 return -ENOTSUPP; 6001 } 6002 memset(&port_cmd, 0, sizeof(port_cmd)); 6003 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 6004 FW_CMD_REQUEST_F | 6005 FW_CMD_READ_F | 6006 FW_PFVF_CMD_PFN_V(adap->pf) | 6007 FW_PFVF_CMD_VFN_V(0)); 6008 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 6009 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 6010 &port_rpl); 6011 if (err) 6012 return err; 6013 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 6014 port = ffs(pmask) - 1; 6015 /* Allocate VF Management Interface. */ 6016 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 6017 adap->pf); 6018 netdev = alloc_netdev(sizeof(struct port_info), 6019 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 6020 if (!netdev) 6021 return -ENOMEM; 6022 6023 pi = netdev_priv(netdev); 6024 pi->adapter = adap; 6025 pi->lport = port; 6026 pi->tx_chan = port; 6027 SET_NETDEV_DEV(netdev, &pdev->dev); 6028 6029 adap->port[0] = netdev; 6030 pi->port_id = 0; 6031 6032 err = register_netdev(adap->port[0]); 6033 if (err) { 6034 pr_info("Unable to register VF mgmt netdev %s\n", name); 6035 free_netdev(adap->port[0]); 6036 adap->port[0] = NULL; 6037 return err; 6038 } 6039 /* Allocate and set up VF Information. */ 6040 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 6041 sizeof(struct vf_info), GFP_KERNEL); 6042 if (!adap->vfinfo) { 6043 unregister_netdev(adap->port[0]); 6044 free_netdev(adap->port[0]); 6045 adap->port[0] = NULL; 6046 return -ENOMEM; 6047 } 6048 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 6049 } 6050 /* Instantiate the requested number of VFs. */ 6051 err = pci_enable_sriov(pdev, num_vfs); 6052 if (err) { 6053 pr_info("Unable to instantiate %d VFs\n", num_vfs); 6054 if (!current_vfs) { 6055 unregister_netdev(adap->port[0]); 6056 free_netdev(adap->port[0]); 6057 adap->port[0] = NULL; 6058 kfree(adap->vfinfo); 6059 adap->vfinfo = NULL; 6060 } 6061 return err; 6062 } 6063 6064 adap->num_vfs = num_vfs; 6065 return num_vfs; 6066 } 6067 #endif /* CONFIG_PCI_IOV */ 6068 6069 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 6070 { 6071 struct net_device *netdev; 6072 struct adapter *adapter; 6073 static int adap_idx = 1; 6074 int s_qpp, qpp, num_seg; 6075 struct port_info *pi; 6076 bool highdma = false; 6077 enum chip_type chip; 6078 void __iomem *regs; 6079 int func, chip_ver; 6080 u16 device_id; 6081 int i, err; 6082 u32 whoami; 6083 6084 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 6085 6086 err = pci_request_regions(pdev, KBUILD_MODNAME); 6087 if (err) { 6088 /* Just info, some other driver may have claimed the device. */ 6089 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 6090 return err; 6091 } 6092 6093 err = pci_enable_device(pdev); 6094 if (err) { 6095 dev_err(&pdev->dev, "cannot enable PCI device\n"); 6096 goto out_release_regions; 6097 } 6098 6099 regs = pci_ioremap_bar(pdev, 0); 6100 if (!regs) { 6101 dev_err(&pdev->dev, "cannot map device registers\n"); 6102 err = -ENOMEM; 6103 goto out_disable_device; 6104 } 6105 6106 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 6107 if (!adapter) { 6108 err = -ENOMEM; 6109 goto out_unmap_bar0; 6110 } 6111 6112 adapter->regs = regs; 6113 err = t4_wait_dev_ready(regs); 6114 if (err < 0) 6115 goto out_free_adapter; 6116 6117 /* We control everything through one PF */ 6118 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 6119 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 6120 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 6121 if ((int)chip < 0) { 6122 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 6123 err = chip; 6124 goto out_free_adapter; 6125 } 6126 chip_ver = CHELSIO_CHIP_VERSION(chip); 6127 func = chip_ver <= CHELSIO_T5 ? 6128 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 6129 6130 adapter->pdev = pdev; 6131 adapter->pdev_dev = &pdev->dev; 6132 adapter->name = pci_name(pdev); 6133 adapter->mbox = func; 6134 adapter->pf = func; 6135 adapter->params.chip = chip; 6136 adapter->adap_idx = adap_idx; 6137 adapter->msg_enable = DFLT_MSG_ENABLE; 6138 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 6139 (sizeof(struct mbox_cmd) * 6140 T4_OS_LOG_MBOX_CMDS), 6141 GFP_KERNEL); 6142 if (!adapter->mbox_log) { 6143 err = -ENOMEM; 6144 goto out_free_adapter; 6145 } 6146 spin_lock_init(&adapter->mbox_lock); 6147 INIT_LIST_HEAD(&adapter->mlist.list); 6148 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 6149 pci_set_drvdata(pdev, adapter); 6150 6151 if (func != ent->driver_data) { 6152 pci_disable_device(pdev); 6153 pci_save_state(pdev); /* to restore SR-IOV later */ 6154 return 0; 6155 } 6156 6157 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 6158 highdma = true; 6159 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 6160 if (err) { 6161 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 6162 "coherent allocations\n"); 6163 goto out_free_adapter; 6164 } 6165 } else { 6166 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 6167 if (err) { 6168 dev_err(&pdev->dev, "no usable DMA configuration\n"); 6169 goto out_free_adapter; 6170 } 6171 } 6172 6173 pci_enable_pcie_error_reporting(pdev); 6174 pci_set_master(pdev); 6175 pci_save_state(pdev); 6176 adap_idx++; 6177 adapter->workq = create_singlethread_workqueue("cxgb4"); 6178 if (!adapter->workq) { 6179 err = -ENOMEM; 6180 goto out_free_adapter; 6181 } 6182 6183 /* PCI device has been enabled */ 6184 adapter->flags |= CXGB4_DEV_ENABLED; 6185 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 6186 6187 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 6188 * Ingress Packet Data to Free List Buffers in order to allow for 6189 * chipset performance optimizations between the Root Complex and 6190 * Memory Controllers. (Messages to the associated Ingress Queue 6191 * notifying new Packet Placement in the Free Lists Buffers will be 6192 * send without the Relaxed Ordering Attribute thus guaranteeing that 6193 * all preceding PCIe Transaction Layer Packets will be processed 6194 * first.) But some Root Complexes have various issues with Upstream 6195 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 6196 * The PCIe devices which under the Root Complexes will be cleared the 6197 * Relaxed Ordering bit in the configuration space, So we check our 6198 * PCIe configuration space to see if it's flagged with advice against 6199 * using Relaxed Ordering. 6200 */ 6201 if (!pcie_relaxed_ordering_enabled(pdev)) 6202 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING; 6203 6204 spin_lock_init(&adapter->stats_lock); 6205 spin_lock_init(&adapter->tid_release_lock); 6206 spin_lock_init(&adapter->win0_lock); 6207 6208 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 6209 INIT_WORK(&adapter->db_full_task, process_db_full); 6210 INIT_WORK(&adapter->db_drop_task, process_db_drop); 6211 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 6212 6213 err = t4_prep_adapter(adapter); 6214 if (err) 6215 goto out_free_adapter; 6216 6217 if (is_kdump_kernel()) { 6218 /* Collect hardware state and append to /proc/vmcore */ 6219 err = cxgb4_cudbg_vmcore_add_dump(adapter); 6220 if (err) { 6221 dev_warn(adapter->pdev_dev, 6222 "Fail collecting vmcore device dump, err: %d. Continuing\n", 6223 err); 6224 err = 0; 6225 } 6226 } 6227 6228 if (!is_t4(adapter->params.chip)) { 6229 s_qpp = (QUEUESPERPAGEPF0_S + 6230 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 6231 adapter->pf); 6232 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 6233 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 6234 num_seg = PAGE_SIZE / SEGMENT_SIZE; 6235 6236 /* Each segment size is 128B. Write coalescing is enabled only 6237 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 6238 * queue is less no of segments that can be accommodated in 6239 * a page size. 6240 */ 6241 if (qpp > num_seg) { 6242 dev_err(&pdev->dev, 6243 "Incorrect number of egress queues per page\n"); 6244 err = -EINVAL; 6245 goto out_free_adapter; 6246 } 6247 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 6248 pci_resource_len(pdev, 2)); 6249 if (!adapter->bar2) { 6250 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 6251 err = -ENOMEM; 6252 goto out_free_adapter; 6253 } 6254 } 6255 6256 setup_memwin(adapter); 6257 err = adap_init0(adapter, 0); 6258 #ifdef CONFIG_DEBUG_FS 6259 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 6260 #endif 6261 setup_memwin_rdma(adapter); 6262 if (err) 6263 goto out_unmap_bar; 6264 6265 /* configure SGE_STAT_CFG_A to read WC stats */ 6266 if (!is_t4(adapter->params.chip)) 6267 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 6268 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 6269 T6_STATMODE_V(0))); 6270 6271 /* Initialize hash mac addr list */ 6272 INIT_LIST_HEAD(&adapter->mac_hlist); 6273 6274 for_each_port(adapter, i) { 6275 /* For supporting MQPRIO Offload, need some extra 6276 * queues for each ETHOFLD TIDs. Keep it equal to 6277 * MAX_ATIDs for now. Once we connect to firmware 6278 * later and query the EOTID params, we'll come to 6279 * know the actual # of EOTIDs supported. 6280 */ 6281 netdev = alloc_etherdev_mq(sizeof(struct port_info), 6282 MAX_ETH_QSETS + MAX_ATIDS); 6283 if (!netdev) { 6284 err = -ENOMEM; 6285 goto out_free_dev; 6286 } 6287 6288 SET_NETDEV_DEV(netdev, &pdev->dev); 6289 6290 adapter->port[i] = netdev; 6291 pi = netdev_priv(netdev); 6292 pi->adapter = adapter; 6293 pi->xact_addr_filt = -1; 6294 pi->port_id = i; 6295 netdev->irq = pdev->irq; 6296 6297 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 6298 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 6299 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO | 6300 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 6301 NETIF_F_HW_TC; 6302 6303 if (chip_ver > CHELSIO_T5) { 6304 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 6305 NETIF_F_IPV6_CSUM | 6306 NETIF_F_RXCSUM | 6307 NETIF_F_GSO_UDP_TUNNEL | 6308 NETIF_F_GSO_UDP_TUNNEL_CSUM | 6309 NETIF_F_TSO | NETIF_F_TSO6; 6310 6311 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 6312 NETIF_F_GSO_UDP_TUNNEL_CSUM | 6313 NETIF_F_HW_TLS_RECORD; 6314 } 6315 6316 if (highdma) 6317 netdev->hw_features |= NETIF_F_HIGHDMA; 6318 netdev->features |= netdev->hw_features; 6319 netdev->vlan_features = netdev->features & VLAN_FEAT; 6320 6321 netdev->priv_flags |= IFF_UNICAST_FLT; 6322 6323 /* MTU range: 81 - 9600 */ 6324 netdev->min_mtu = 81; /* accommodate SACK */ 6325 netdev->max_mtu = MAX_MTU; 6326 6327 netdev->netdev_ops = &cxgb4_netdev_ops; 6328 #ifdef CONFIG_CHELSIO_T4_DCB 6329 netdev->dcbnl_ops = &cxgb4_dcb_ops; 6330 cxgb4_dcb_state_init(netdev); 6331 cxgb4_dcb_version_init(netdev); 6332 #endif 6333 cxgb4_set_ethtool_ops(netdev); 6334 } 6335 6336 cxgb4_init_ethtool_dump(adapter); 6337 6338 pci_set_drvdata(pdev, adapter); 6339 6340 if (adapter->flags & CXGB4_FW_OK) { 6341 err = t4_port_init(adapter, func, func, 0); 6342 if (err) 6343 goto out_free_dev; 6344 } else if (adapter->params.nports == 1) { 6345 /* If we don't have a connection to the firmware -- possibly 6346 * because of an error -- grab the raw VPD parameters so we 6347 * can set the proper MAC Address on the debug network 6348 * interface that we've created. 6349 */ 6350 u8 hw_addr[ETH_ALEN]; 6351 u8 *na = adapter->params.vpd.na; 6352 6353 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 6354 if (!err) { 6355 for (i = 0; i < ETH_ALEN; i++) 6356 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 6357 hex2val(na[2 * i + 1])); 6358 t4_set_hw_addr(adapter, 0, hw_addr); 6359 } 6360 } 6361 6362 if (!(adapter->flags & CXGB4_FW_OK)) 6363 goto fw_attach_fail; 6364 6365 /* Configure queues and allocate tables now, they can be needed as 6366 * soon as the first register_netdev completes. 6367 */ 6368 err = cfg_queues(adapter); 6369 if (err) 6370 goto out_free_dev; 6371 6372 adapter->smt = t4_init_smt(); 6373 if (!adapter->smt) { 6374 /* We tolerate a lack of SMT, giving up some functionality */ 6375 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 6376 } 6377 6378 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 6379 if (!adapter->l2t) { 6380 /* We tolerate a lack of L2T, giving up some functionality */ 6381 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 6382 adapter->params.offload = 0; 6383 } 6384 6385 #if IS_ENABLED(CONFIG_IPV6) 6386 if (chip_ver <= CHELSIO_T5 && 6387 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 6388 /* CLIP functionality is not present in hardware, 6389 * hence disable all offload features 6390 */ 6391 dev_warn(&pdev->dev, 6392 "CLIP not enabled in hardware, continuing\n"); 6393 adapter->params.offload = 0; 6394 } else { 6395 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 6396 adapter->clipt_end); 6397 if (!adapter->clipt) { 6398 /* We tolerate a lack of clip_table, giving up 6399 * some functionality 6400 */ 6401 dev_warn(&pdev->dev, 6402 "could not allocate Clip table, continuing\n"); 6403 adapter->params.offload = 0; 6404 } 6405 } 6406 #endif 6407 6408 for_each_port(adapter, i) { 6409 pi = adap2pinfo(adapter, i); 6410 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 6411 if (!pi->sched_tbl) 6412 dev_warn(&pdev->dev, 6413 "could not activate scheduling on port %d\n", 6414 i); 6415 } 6416 6417 if (tid_init(&adapter->tids) < 0) { 6418 dev_warn(&pdev->dev, "could not allocate TID table, " 6419 "continuing\n"); 6420 adapter->params.offload = 0; 6421 } else { 6422 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 6423 if (!adapter->tc_u32) 6424 dev_warn(&pdev->dev, 6425 "could not offload tc u32, continuing\n"); 6426 6427 if (cxgb4_init_tc_flower(adapter)) 6428 dev_warn(&pdev->dev, 6429 "could not offload tc flower, continuing\n"); 6430 6431 if (cxgb4_init_tc_mqprio(adapter)) 6432 dev_warn(&pdev->dev, 6433 "could not offload tc mqprio, continuing\n"); 6434 6435 if (cxgb4_init_tc_matchall(adapter)) 6436 dev_warn(&pdev->dev, 6437 "could not offload tc matchall, continuing\n"); 6438 } 6439 6440 if (is_offload(adapter) || is_hashfilter(adapter)) { 6441 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 6442 u32 hash_base, hash_reg; 6443 6444 if (chip_ver <= CHELSIO_T5) { 6445 hash_reg = LE_DB_TID_HASHBASE_A; 6446 hash_base = t4_read_reg(adapter, hash_reg); 6447 adapter->tids.hash_base = hash_base / 4; 6448 } else { 6449 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 6450 hash_base = t4_read_reg(adapter, hash_reg); 6451 adapter->tids.hash_base = hash_base; 6452 } 6453 } 6454 } 6455 6456 /* See what interrupts we'll be using */ 6457 if (msi > 1 && enable_msix(adapter) == 0) 6458 adapter->flags |= CXGB4_USING_MSIX; 6459 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 6460 adapter->flags |= CXGB4_USING_MSI; 6461 if (msi > 1) 6462 free_msix_info(adapter); 6463 } 6464 6465 /* check for PCI Express bandwidth capabiltites */ 6466 pcie_print_link_status(pdev); 6467 6468 cxgb4_init_mps_ref_entries(adapter); 6469 6470 err = init_rss(adapter); 6471 if (err) 6472 goto out_free_dev; 6473 6474 err = setup_non_data_intr(adapter); 6475 if (err) { 6476 dev_err(adapter->pdev_dev, 6477 "Non Data interrupt allocation failed, err: %d\n", err); 6478 goto out_free_dev; 6479 } 6480 6481 err = setup_fw_sge_queues(adapter); 6482 if (err) { 6483 dev_err(adapter->pdev_dev, 6484 "FW sge queue allocation failed, err %d", err); 6485 goto out_free_dev; 6486 } 6487 6488 fw_attach_fail: 6489 /* 6490 * The card is now ready to go. If any errors occur during device 6491 * registration we do not fail the whole card but rather proceed only 6492 * with the ports we manage to register successfully. However we must 6493 * register at least one net device. 6494 */ 6495 for_each_port(adapter, i) { 6496 pi = adap2pinfo(adapter, i); 6497 adapter->port[i]->dev_port = pi->lport; 6498 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 6499 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 6500 6501 netif_carrier_off(adapter->port[i]); 6502 6503 err = register_netdev(adapter->port[i]); 6504 if (err) 6505 break; 6506 adapter->chan_map[pi->tx_chan] = i; 6507 print_port_info(adapter->port[i]); 6508 } 6509 if (i == 0) { 6510 dev_err(&pdev->dev, "could not register any net devices\n"); 6511 goto out_free_dev; 6512 } 6513 if (err) { 6514 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 6515 err = 0; 6516 } 6517 6518 if (cxgb4_debugfs_root) { 6519 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 6520 cxgb4_debugfs_root); 6521 setup_debugfs(adapter); 6522 } 6523 6524 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 6525 pdev->needs_freset = 1; 6526 6527 if (is_uld(adapter)) { 6528 mutex_lock(&uld_mutex); 6529 list_add_tail(&adapter->list_node, &adapter_list); 6530 mutex_unlock(&uld_mutex); 6531 } 6532 6533 if (!is_t4(adapter->params.chip)) 6534 cxgb4_ptp_init(adapter); 6535 6536 if (IS_REACHABLE(CONFIG_THERMAL) && 6537 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK)) 6538 cxgb4_thermal_init(adapter); 6539 6540 print_adapter_info(adapter); 6541 return 0; 6542 6543 out_free_dev: 6544 t4_free_sge_resources(adapter); 6545 free_some_resources(adapter); 6546 if (adapter->flags & CXGB4_USING_MSIX) 6547 free_msix_info(adapter); 6548 if (adapter->num_uld || adapter->num_ofld_uld) 6549 t4_uld_mem_free(adapter); 6550 out_unmap_bar: 6551 if (!is_t4(adapter->params.chip)) 6552 iounmap(adapter->bar2); 6553 out_free_adapter: 6554 if (adapter->workq) 6555 destroy_workqueue(adapter->workq); 6556 6557 kfree(adapter->mbox_log); 6558 kfree(adapter); 6559 out_unmap_bar0: 6560 iounmap(regs); 6561 out_disable_device: 6562 pci_disable_pcie_error_reporting(pdev); 6563 pci_disable_device(pdev); 6564 out_release_regions: 6565 pci_release_regions(pdev); 6566 return err; 6567 } 6568 6569 static void remove_one(struct pci_dev *pdev) 6570 { 6571 struct adapter *adapter = pci_get_drvdata(pdev); 6572 struct hash_mac_addr *entry, *tmp; 6573 6574 if (!adapter) { 6575 pci_release_regions(pdev); 6576 return; 6577 } 6578 6579 /* If we allocated filters, free up state associated with any 6580 * valid filters ... 6581 */ 6582 clear_all_filters(adapter); 6583 6584 adapter->flags |= CXGB4_SHUTTING_DOWN; 6585 6586 if (adapter->pf == 4) { 6587 int i; 6588 6589 /* Tear down per-adapter Work Queue first since it can contain 6590 * references to our adapter data structure. 6591 */ 6592 destroy_workqueue(adapter->workq); 6593 6594 if (is_uld(adapter)) { 6595 detach_ulds(adapter); 6596 t4_uld_clean_up(adapter); 6597 } 6598 6599 adap_free_hma_mem(adapter); 6600 6601 disable_interrupts(adapter); 6602 6603 cxgb4_free_mps_ref_entries(adapter); 6604 6605 for_each_port(adapter, i) 6606 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6607 unregister_netdev(adapter->port[i]); 6608 6609 debugfs_remove_recursive(adapter->debugfs_root); 6610 6611 if (!is_t4(adapter->params.chip)) 6612 cxgb4_ptp_stop(adapter); 6613 if (IS_REACHABLE(CONFIG_THERMAL)) 6614 cxgb4_thermal_remove(adapter); 6615 6616 if (adapter->flags & CXGB4_FULL_INIT_DONE) 6617 cxgb_down(adapter); 6618 6619 if (adapter->flags & CXGB4_USING_MSIX) 6620 free_msix_info(adapter); 6621 if (adapter->num_uld || adapter->num_ofld_uld) 6622 t4_uld_mem_free(adapter); 6623 free_some_resources(adapter); 6624 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 6625 list) { 6626 list_del(&entry->list); 6627 kfree(entry); 6628 } 6629 6630 #if IS_ENABLED(CONFIG_IPV6) 6631 t4_cleanup_clip_tbl(adapter); 6632 #endif 6633 if (!is_t4(adapter->params.chip)) 6634 iounmap(adapter->bar2); 6635 } 6636 #ifdef CONFIG_PCI_IOV 6637 else { 6638 cxgb4_iov_configure(adapter->pdev, 0); 6639 } 6640 #endif 6641 iounmap(adapter->regs); 6642 pci_disable_pcie_error_reporting(pdev); 6643 if ((adapter->flags & CXGB4_DEV_ENABLED)) { 6644 pci_disable_device(pdev); 6645 adapter->flags &= ~CXGB4_DEV_ENABLED; 6646 } 6647 pci_release_regions(pdev); 6648 kfree(adapter->mbox_log); 6649 synchronize_rcu(); 6650 kfree(adapter); 6651 } 6652 6653 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 6654 * delivery. This is essentially a stripped down version of the PCI remove() 6655 * function where we do the minimal amount of work necessary to shutdown any 6656 * further activity. 6657 */ 6658 static void shutdown_one(struct pci_dev *pdev) 6659 { 6660 struct adapter *adapter = pci_get_drvdata(pdev); 6661 6662 /* As with remove_one() above (see extended comment), we only want do 6663 * do cleanup on PCI Devices which went all the way through init_one() 6664 * ... 6665 */ 6666 if (!adapter) { 6667 pci_release_regions(pdev); 6668 return; 6669 } 6670 6671 adapter->flags |= CXGB4_SHUTTING_DOWN; 6672 6673 if (adapter->pf == 4) { 6674 int i; 6675 6676 for_each_port(adapter, i) 6677 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6678 cxgb_close(adapter->port[i]); 6679 6680 if (is_uld(adapter)) { 6681 detach_ulds(adapter); 6682 t4_uld_clean_up(adapter); 6683 } 6684 6685 disable_interrupts(adapter); 6686 disable_msi(adapter); 6687 6688 t4_sge_stop(adapter); 6689 if (adapter->flags & CXGB4_FW_OK) 6690 t4_fw_bye(adapter, adapter->mbox); 6691 } 6692 } 6693 6694 static struct pci_driver cxgb4_driver = { 6695 .name = KBUILD_MODNAME, 6696 .id_table = cxgb4_pci_tbl, 6697 .probe = init_one, 6698 .remove = remove_one, 6699 .shutdown = shutdown_one, 6700 #ifdef CONFIG_PCI_IOV 6701 .sriov_configure = cxgb4_iov_configure, 6702 #endif 6703 .err_handler = &cxgb4_eeh, 6704 }; 6705 6706 static int __init cxgb4_init_module(void) 6707 { 6708 int ret; 6709 6710 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6711 6712 ret = pci_register_driver(&cxgb4_driver); 6713 if (ret < 0) 6714 goto err_pci; 6715 6716 #if IS_ENABLED(CONFIG_IPV6) 6717 if (!inet6addr_registered) { 6718 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6719 if (ret) 6720 pci_unregister_driver(&cxgb4_driver); 6721 else 6722 inet6addr_registered = true; 6723 } 6724 #endif 6725 6726 if (ret == 0) 6727 return ret; 6728 6729 err_pci: 6730 debugfs_remove(cxgb4_debugfs_root); 6731 6732 return ret; 6733 } 6734 6735 static void __exit cxgb4_cleanup_module(void) 6736 { 6737 #if IS_ENABLED(CONFIG_IPV6) 6738 if (inet6addr_registered) { 6739 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6740 inet6addr_registered = false; 6741 } 6742 #endif 6743 pci_unregister_driver(&cxgb4_driver); 6744 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6745 } 6746 6747 module_init(cxgb4_init_module); 6748 module_exit(cxgb4_cleanup_module); 6749