1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68 
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "cxgb4_debugfs.h"
78 #include "clip_tbl.h"
79 #include "l2t.h"
80 #include "sched.h"
81 #include "cxgb4_tc_u32.h"
82 
83 char cxgb4_driver_name[] = KBUILD_MODNAME;
84 
85 #ifdef DRV_VERSION
86 #undef DRV_VERSION
87 #endif
88 #define DRV_VERSION "2.0.0-ko"
89 const char cxgb4_driver_version[] = DRV_VERSION;
90 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
91 
92 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
93 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
94 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
95 
96 /* Macros needed to support the PCI Device ID Table ...
97  */
98 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
99 	static const struct pci_device_id cxgb4_pci_tbl[] = {
100 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
101 
102 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
103  * called for both.
104  */
105 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
106 
107 #define CH_PCI_ID_TABLE_ENTRY(devid) \
108 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
109 
110 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
111 		{ 0, } \
112 	}
113 
114 #include "t4_pci_id_tbl.h"
115 
116 #define FW4_FNAME "cxgb4/t4fw.bin"
117 #define FW5_FNAME "cxgb4/t5fw.bin"
118 #define FW6_FNAME "cxgb4/t6fw.bin"
119 #define FW4_CFNAME "cxgb4/t4-config.txt"
120 #define FW5_CFNAME "cxgb4/t5-config.txt"
121 #define FW6_CFNAME "cxgb4/t6-config.txt"
122 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
123 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
124 #define PHY_AQ1202_DEVICEID 0x4409
125 #define PHY_BCM84834_DEVICEID 0x4486
126 
127 MODULE_DESCRIPTION(DRV_DESC);
128 MODULE_AUTHOR("Chelsio Communications");
129 MODULE_LICENSE("Dual BSD/GPL");
130 MODULE_VERSION(DRV_VERSION);
131 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
132 MODULE_FIRMWARE(FW4_FNAME);
133 MODULE_FIRMWARE(FW5_FNAME);
134 MODULE_FIRMWARE(FW6_FNAME);
135 
136 /*
137  * The driver uses the best interrupt scheme available on a platform in the
138  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
139  * of these schemes the driver may consider as follows:
140  *
141  * msi = 2: choose from among all three options
142  * msi = 1: only consider MSI and INTx interrupts
143  * msi = 0: force INTx interrupts
144  */
145 static int msi = 2;
146 
147 module_param(msi, int, 0644);
148 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
149 
150 /*
151  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
152  * offset by 2 bytes in order to have the IP headers line up on 4-byte
153  * boundaries.  This is a requirement for many architectures which will throw
154  * a machine check fault if an attempt is made to access one of the 4-byte IP
155  * header fields on a non-4-byte boundary.  And it's a major performance issue
156  * even on some architectures which allow it like some implementations of the
157  * x86 ISA.  However, some architectures don't mind this and for some very
158  * edge-case performance sensitive applications (like forwarding large volumes
159  * of small packets), setting this DMA offset to 0 will decrease the number of
160  * PCI-E Bus transfers enough to measurably affect performance.
161  */
162 static int rx_dma_offset = 2;
163 
164 /* TX Queue select used to determine what algorithm to use for selecting TX
165  * queue. Select between the kernel provided function (select_queue=0) or user
166  * cxgb_select_queue function (select_queue=1)
167  *
168  * Default: select_queue=0
169  */
170 static int select_queue;
171 module_param(select_queue, int, 0644);
172 MODULE_PARM_DESC(select_queue,
173 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
174 
175 static struct dentry *cxgb4_debugfs_root;
176 
177 LIST_HEAD(adapter_list);
178 DEFINE_MUTEX(uld_mutex);
179 
180 static void link_report(struct net_device *dev)
181 {
182 	if (!netif_carrier_ok(dev))
183 		netdev_info(dev, "link down\n");
184 	else {
185 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
186 
187 		const char *s;
188 		const struct port_info *p = netdev_priv(dev);
189 
190 		switch (p->link_cfg.speed) {
191 		case 100:
192 			s = "100Mbps";
193 			break;
194 		case 1000:
195 			s = "1Gbps";
196 			break;
197 		case 10000:
198 			s = "10Gbps";
199 			break;
200 		case 25000:
201 			s = "25Gbps";
202 			break;
203 		case 40000:
204 			s = "40Gbps";
205 			break;
206 		case 100000:
207 			s = "100Gbps";
208 			break;
209 		default:
210 			pr_info("%s: unsupported speed: %d\n",
211 				dev->name, p->link_cfg.speed);
212 			return;
213 		}
214 
215 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
216 			    fc[p->link_cfg.fc]);
217 	}
218 }
219 
220 #ifdef CONFIG_CHELSIO_T4_DCB
221 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
222 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
223 {
224 	struct port_info *pi = netdev_priv(dev);
225 	struct adapter *adap = pi->adapter;
226 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
227 	int i;
228 
229 	/* We use a simple mapping of Port TX Queue Index to DCB
230 	 * Priority when we're enabling DCB.
231 	 */
232 	for (i = 0; i < pi->nqsets; i++, txq++) {
233 		u32 name, value;
234 		int err;
235 
236 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
237 			FW_PARAMS_PARAM_X_V(
238 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
239 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
240 		value = enable ? i : 0xffffffff;
241 
242 		/* Since we can be called while atomic (from "interrupt
243 		 * level") we need to issue the Set Parameters Commannd
244 		 * without sleeping (timeout < 0).
245 		 */
246 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
247 					    &name, &value,
248 					    -FW_CMD_MAX_TIMEOUT);
249 
250 		if (err)
251 			dev_err(adap->pdev_dev,
252 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
253 				enable ? "set" : "unset", pi->port_id, i, -err);
254 		else
255 			txq->dcb_prio = value;
256 	}
257 }
258 
259 static int cxgb4_dcb_enabled(const struct net_device *dev)
260 {
261 	struct port_info *pi = netdev_priv(dev);
262 
263 	if (!pi->dcb.enabled)
264 		return 0;
265 
266 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
267 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
268 }
269 #endif /* CONFIG_CHELSIO_T4_DCB */
270 
271 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
272 {
273 	struct net_device *dev = adapter->port[port_id];
274 
275 	/* Skip changes from disabled ports. */
276 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
277 		if (link_stat)
278 			netif_carrier_on(dev);
279 		else {
280 #ifdef CONFIG_CHELSIO_T4_DCB
281 			if (cxgb4_dcb_enabled(dev)) {
282 				cxgb4_dcb_state_init(dev);
283 				dcb_tx_queue_prio_enable(dev, false);
284 			}
285 #endif /* CONFIG_CHELSIO_T4_DCB */
286 			netif_carrier_off(dev);
287 		}
288 
289 		link_report(dev);
290 	}
291 }
292 
293 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
294 {
295 	static const char *mod_str[] = {
296 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
297 	};
298 
299 	const struct net_device *dev = adap->port[port_id];
300 	const struct port_info *pi = netdev_priv(dev);
301 
302 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
303 		netdev_info(dev, "port module unplugged\n");
304 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
305 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
306 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
307 		netdev_info(dev, "%s: unsupported port module inserted\n",
308 			    dev->name);
309 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
310 		netdev_info(dev, "%s: unknown port module inserted\n",
311 			    dev->name);
312 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
313 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
314 	else
315 		netdev_info(dev, "%s: unknown module type %d inserted\n",
316 			    dev->name, pi->mod_type);
317 }
318 
319 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
320 module_param(dbfifo_int_thresh, int, 0644);
321 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
322 
323 /*
324  * usecs to sleep while draining the dbfifo
325  */
326 static int dbfifo_drain_delay = 1000;
327 module_param(dbfifo_drain_delay, int, 0644);
328 MODULE_PARM_DESC(dbfifo_drain_delay,
329 		 "usecs to sleep while draining the dbfifo");
330 
331 static inline int cxgb4_set_addr_hash(struct port_info *pi)
332 {
333 	struct adapter *adap = pi->adapter;
334 	u64 vec = 0;
335 	bool ucast = false;
336 	struct hash_mac_addr *entry;
337 
338 	/* Calculate the hash vector for the updated list and program it */
339 	list_for_each_entry(entry, &adap->mac_hlist, list) {
340 		ucast |= is_unicast_ether_addr(entry->addr);
341 		vec |= (1ULL << hash_mac_addr(entry->addr));
342 	}
343 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
344 				vec, false);
345 }
346 
347 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
348 {
349 	struct port_info *pi = netdev_priv(netdev);
350 	struct adapter *adap = pi->adapter;
351 	int ret;
352 	u64 mhash = 0;
353 	u64 uhash = 0;
354 	bool free = false;
355 	bool ucast = is_unicast_ether_addr(mac_addr);
356 	const u8 *maclist[1] = {mac_addr};
357 	struct hash_mac_addr *new_entry;
358 
359 	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
360 				NULL, ucast ? &uhash : &mhash, false);
361 	if (ret < 0)
362 		goto out;
363 	/* if hash != 0, then add the addr to hash addr list
364 	 * so on the end we will calculate the hash for the
365 	 * list and program it
366 	 */
367 	if (uhash || mhash) {
368 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
369 		if (!new_entry)
370 			return -ENOMEM;
371 		ether_addr_copy(new_entry->addr, mac_addr);
372 		list_add_tail(&new_entry->list, &adap->mac_hlist);
373 		ret = cxgb4_set_addr_hash(pi);
374 	}
375 out:
376 	return ret < 0 ? ret : 0;
377 }
378 
379 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
380 {
381 	struct port_info *pi = netdev_priv(netdev);
382 	struct adapter *adap = pi->adapter;
383 	int ret;
384 	const u8 *maclist[1] = {mac_addr};
385 	struct hash_mac_addr *entry, *tmp;
386 
387 	/* If the MAC address to be removed is in the hash addr
388 	 * list, delete it from the list and update hash vector
389 	 */
390 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
391 		if (ether_addr_equal(entry->addr, mac_addr)) {
392 			list_del(&entry->list);
393 			kfree(entry);
394 			return cxgb4_set_addr_hash(pi);
395 		}
396 	}
397 
398 	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
399 	return ret < 0 ? -EINVAL : 0;
400 }
401 
402 /*
403  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
404  * If @mtu is -1 it is left unchanged.
405  */
406 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
407 {
408 	struct port_info *pi = netdev_priv(dev);
409 	struct adapter *adapter = pi->adapter;
410 
411 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
412 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
413 
414 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
415 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
416 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
417 			     sleep_ok);
418 }
419 
420 /**
421  *	link_start - enable a port
422  *	@dev: the port to enable
423  *
424  *	Performs the MAC and PHY actions needed to enable a port.
425  */
426 static int link_start(struct net_device *dev)
427 {
428 	int ret;
429 	struct port_info *pi = netdev_priv(dev);
430 	unsigned int mb = pi->adapter->pf;
431 
432 	/*
433 	 * We do not set address filters and promiscuity here, the stack does
434 	 * that step explicitly.
435 	 */
436 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
437 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
438 	if (ret == 0) {
439 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
440 				    pi->xact_addr_filt, dev->dev_addr, true,
441 				    true);
442 		if (ret >= 0) {
443 			pi->xact_addr_filt = ret;
444 			ret = 0;
445 		}
446 	}
447 	if (ret == 0)
448 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
449 				    &pi->link_cfg);
450 	if (ret == 0) {
451 		local_bh_disable();
452 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
453 					  true, CXGB4_DCB_ENABLED);
454 		local_bh_enable();
455 	}
456 
457 	return ret;
458 }
459 
460 #ifdef CONFIG_CHELSIO_T4_DCB
461 /* Handle a Data Center Bridging update message from the firmware. */
462 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
463 {
464 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
465 	struct net_device *dev = adap->port[adap->chan_map[port]];
466 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
467 	int new_dcb_enabled;
468 
469 	cxgb4_dcb_handle_fw_update(adap, pcmd);
470 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
471 
472 	/* If the DCB has become enabled or disabled on the port then we're
473 	 * going to need to set up/tear down DCB Priority parameters for the
474 	 * TX Queues associated with the port.
475 	 */
476 	if (new_dcb_enabled != old_dcb_enabled)
477 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
478 }
479 #endif /* CONFIG_CHELSIO_T4_DCB */
480 
481 /* Response queue handler for the FW event queue.
482  */
483 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
484 			  const struct pkt_gl *gl)
485 {
486 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
487 
488 	rsp++;                                          /* skip RSS header */
489 
490 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
491 	 */
492 	if (unlikely(opcode == CPL_FW4_MSG &&
493 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
494 		rsp++;
495 		opcode = ((const struct rss_header *)rsp)->opcode;
496 		rsp++;
497 		if (opcode != CPL_SGE_EGR_UPDATE) {
498 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
499 				, opcode);
500 			goto out;
501 		}
502 	}
503 
504 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
505 		const struct cpl_sge_egr_update *p = (void *)rsp;
506 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
507 		struct sge_txq *txq;
508 
509 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
510 		txq->restarts++;
511 		if (txq->q_type == CXGB4_TXQ_ETH) {
512 			struct sge_eth_txq *eq;
513 
514 			eq = container_of(txq, struct sge_eth_txq, q);
515 			netif_tx_wake_queue(eq->txq);
516 		} else {
517 			struct sge_uld_txq *oq;
518 
519 			oq = container_of(txq, struct sge_uld_txq, q);
520 			tasklet_schedule(&oq->qresume_tsk);
521 		}
522 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
523 		const struct cpl_fw6_msg *p = (void *)rsp;
524 
525 #ifdef CONFIG_CHELSIO_T4_DCB
526 		const struct fw_port_cmd *pcmd = (const void *)p->data;
527 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
528 		unsigned int action =
529 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
530 
531 		if (cmd == FW_PORT_CMD &&
532 		    action == FW_PORT_ACTION_GET_PORT_INFO) {
533 			int port = FW_PORT_CMD_PORTID_G(
534 					be32_to_cpu(pcmd->op_to_portid));
535 			struct net_device *dev =
536 				q->adap->port[q->adap->chan_map[port]];
537 			int state_input = ((pcmd->u.info.dcbxdis_pkd &
538 					    FW_PORT_CMD_DCBXDIS_F)
539 					   ? CXGB4_DCB_INPUT_FW_DISABLED
540 					   : CXGB4_DCB_INPUT_FW_ENABLED);
541 
542 			cxgb4_dcb_state_fsm(dev, state_input);
543 		}
544 
545 		if (cmd == FW_PORT_CMD &&
546 		    action == FW_PORT_ACTION_L2_DCB_CFG)
547 			dcb_rpl(q->adap, pcmd);
548 		else
549 #endif
550 			if (p->type == 0)
551 				t4_handle_fw_rpl(q->adap, p->data);
552 	} else if (opcode == CPL_L2T_WRITE_RPL) {
553 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
554 
555 		do_l2t_write_rpl(q->adap, p);
556 	} else if (opcode == CPL_SET_TCB_RPL) {
557 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
558 
559 		filter_rpl(q->adap, p);
560 	} else
561 		dev_err(q->adap->pdev_dev,
562 			"unexpected CPL %#x on FW event queue\n", opcode);
563 out:
564 	return 0;
565 }
566 
567 static void disable_msi(struct adapter *adapter)
568 {
569 	if (adapter->flags & USING_MSIX) {
570 		pci_disable_msix(adapter->pdev);
571 		adapter->flags &= ~USING_MSIX;
572 	} else if (adapter->flags & USING_MSI) {
573 		pci_disable_msi(adapter->pdev);
574 		adapter->flags &= ~USING_MSI;
575 	}
576 }
577 
578 /*
579  * Interrupt handler for non-data events used with MSI-X.
580  */
581 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
582 {
583 	struct adapter *adap = cookie;
584 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
585 
586 	if (v & PFSW_F) {
587 		adap->swintr = 1;
588 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
589 	}
590 	if (adap->flags & MASTER_PF)
591 		t4_slow_intr_handler(adap);
592 	return IRQ_HANDLED;
593 }
594 
595 /*
596  * Name the MSI-X interrupts.
597  */
598 static void name_msix_vecs(struct adapter *adap)
599 {
600 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
601 
602 	/* non-data interrupts */
603 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
604 
605 	/* FW events */
606 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
607 		 adap->port[0]->name);
608 
609 	/* Ethernet queues */
610 	for_each_port(adap, j) {
611 		struct net_device *d = adap->port[j];
612 		const struct port_info *pi = netdev_priv(d);
613 
614 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
615 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
616 				 d->name, i);
617 	}
618 }
619 
620 static int request_msix_queue_irqs(struct adapter *adap)
621 {
622 	struct sge *s = &adap->sge;
623 	int err, ethqidx;
624 	int msi_index = 2;
625 
626 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
627 			  adap->msix_info[1].desc, &s->fw_evtq);
628 	if (err)
629 		return err;
630 
631 	for_each_ethrxq(s, ethqidx) {
632 		err = request_irq(adap->msix_info[msi_index].vec,
633 				  t4_sge_intr_msix, 0,
634 				  adap->msix_info[msi_index].desc,
635 				  &s->ethrxq[ethqidx].rspq);
636 		if (err)
637 			goto unwind;
638 		msi_index++;
639 	}
640 	return 0;
641 
642 unwind:
643 	while (--ethqidx >= 0)
644 		free_irq(adap->msix_info[--msi_index].vec,
645 			 &s->ethrxq[ethqidx].rspq);
646 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
647 	return err;
648 }
649 
650 static void free_msix_queue_irqs(struct adapter *adap)
651 {
652 	int i, msi_index = 2;
653 	struct sge *s = &adap->sge;
654 
655 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
656 	for_each_ethrxq(s, i)
657 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
658 }
659 
660 /**
661  *	cxgb4_write_rss - write the RSS table for a given port
662  *	@pi: the port
663  *	@queues: array of queue indices for RSS
664  *
665  *	Sets up the portion of the HW RSS table for the port's VI to distribute
666  *	packets to the Rx queues in @queues.
667  *	Should never be called before setting up sge eth rx queues
668  */
669 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
670 {
671 	u16 *rss;
672 	int i, err;
673 	struct adapter *adapter = pi->adapter;
674 	const struct sge_eth_rxq *rxq;
675 
676 	rxq = &adapter->sge.ethrxq[pi->first_qset];
677 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
678 	if (!rss)
679 		return -ENOMEM;
680 
681 	/* map the queue indices to queue ids */
682 	for (i = 0; i < pi->rss_size; i++, queues++)
683 		rss[i] = rxq[*queues].rspq.abs_id;
684 
685 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
686 				  pi->rss_size, rss, pi->rss_size);
687 	/* If Tunnel All Lookup isn't specified in the global RSS
688 	 * Configuration, then we need to specify a default Ingress
689 	 * Queue for any ingress packets which aren't hashed.  We'll
690 	 * use our first ingress queue ...
691 	 */
692 	if (!err)
693 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
694 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
695 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
696 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
697 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
698 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
699 				       rss[0]);
700 	kfree(rss);
701 	return err;
702 }
703 
704 /**
705  *	setup_rss - configure RSS
706  *	@adap: the adapter
707  *
708  *	Sets up RSS for each port.
709  */
710 static int setup_rss(struct adapter *adap)
711 {
712 	int i, j, err;
713 
714 	for_each_port(adap, i) {
715 		const struct port_info *pi = adap2pinfo(adap, i);
716 
717 		/* Fill default values with equal distribution */
718 		for (j = 0; j < pi->rss_size; j++)
719 			pi->rss[j] = j % pi->nqsets;
720 
721 		err = cxgb4_write_rss(pi, pi->rss);
722 		if (err)
723 			return err;
724 	}
725 	return 0;
726 }
727 
728 /*
729  * Return the channel of the ingress queue with the given qid.
730  */
731 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
732 {
733 	qid -= p->ingr_start;
734 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
735 }
736 
737 /*
738  * Wait until all NAPI handlers are descheduled.
739  */
740 static void quiesce_rx(struct adapter *adap)
741 {
742 	int i;
743 
744 	for (i = 0; i < adap->sge.ingr_sz; i++) {
745 		struct sge_rspq *q = adap->sge.ingr_map[i];
746 
747 		if (q && q->handler)
748 			napi_disable(&q->napi);
749 	}
750 }
751 
752 /* Disable interrupt and napi handler */
753 static void disable_interrupts(struct adapter *adap)
754 {
755 	if (adap->flags & FULL_INIT_DONE) {
756 		t4_intr_disable(adap);
757 		if (adap->flags & USING_MSIX) {
758 			free_msix_queue_irqs(adap);
759 			free_irq(adap->msix_info[0].vec, adap);
760 		} else {
761 			free_irq(adap->pdev->irq, adap);
762 		}
763 		quiesce_rx(adap);
764 	}
765 }
766 
767 /*
768  * Enable NAPI scheduling and interrupt generation for all Rx queues.
769  */
770 static void enable_rx(struct adapter *adap)
771 {
772 	int i;
773 
774 	for (i = 0; i < adap->sge.ingr_sz; i++) {
775 		struct sge_rspq *q = adap->sge.ingr_map[i];
776 
777 		if (!q)
778 			continue;
779 		if (q->handler)
780 			napi_enable(&q->napi);
781 
782 		/* 0-increment GTS to start the timer and enable interrupts */
783 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
784 			     SEINTARM_V(q->intr_params) |
785 			     INGRESSQID_V(q->cntxt_id));
786 	}
787 }
788 
789 
790 static int setup_fw_sge_queues(struct adapter *adap)
791 {
792 	struct sge *s = &adap->sge;
793 	int err = 0;
794 
795 	bitmap_zero(s->starving_fl, s->egr_sz);
796 	bitmap_zero(s->txq_maperr, s->egr_sz);
797 
798 	if (adap->flags & USING_MSIX)
799 		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
800 	else {
801 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
802 				       NULL, NULL, NULL, -1);
803 		if (err)
804 			return err;
805 		adap->msi_idx = -((int)s->intrq.abs_id + 1);
806 	}
807 
808 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
809 			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
810 	if (err)
811 		t4_free_sge_resources(adap);
812 	return err;
813 }
814 
815 /**
816  *	setup_sge_queues - configure SGE Tx/Rx/response queues
817  *	@adap: the adapter
818  *
819  *	Determines how many sets of SGE queues to use and initializes them.
820  *	We support multiple queue sets per port if we have MSI-X, otherwise
821  *	just one queue set per port.
822  */
823 static int setup_sge_queues(struct adapter *adap)
824 {
825 	int err, i, j;
826 	struct sge *s = &adap->sge;
827 	struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
828 	unsigned int cmplqid = 0;
829 
830 	for_each_port(adap, i) {
831 		struct net_device *dev = adap->port[i];
832 		struct port_info *pi = netdev_priv(dev);
833 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
834 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
835 
836 		for (j = 0; j < pi->nqsets; j++, q++) {
837 			if (adap->msi_idx > 0)
838 				adap->msi_idx++;
839 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
840 					       adap->msi_idx, &q->fl,
841 					       t4_ethrx_handler,
842 					       NULL,
843 					       t4_get_mps_bg_map(adap,
844 								 pi->tx_chan));
845 			if (err)
846 				goto freeout;
847 			q->rspq.idx = j;
848 			memset(&q->stats, 0, sizeof(q->stats));
849 		}
850 		for (j = 0; j < pi->nqsets; j++, t++) {
851 			err = t4_sge_alloc_eth_txq(adap, t, dev,
852 					netdev_get_tx_queue(dev, j),
853 					s->fw_evtq.cntxt_id);
854 			if (err)
855 				goto freeout;
856 		}
857 	}
858 
859 	for_each_port(adap, i) {
860 		/* Note that cmplqid below is 0 if we don't
861 		 * have RDMA queues, and that's the right value.
862 		 */
863 		if (rxq_info)
864 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
865 
866 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
867 					    s->fw_evtq.cntxt_id, cmplqid);
868 		if (err)
869 			goto freeout;
870 	}
871 
872 	t4_write_reg(adap, is_t4(adap->params.chip) ?
873 				MPS_TRC_RSS_CONTROL_A :
874 				MPS_T5_TRC_RSS_CONTROL_A,
875 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
876 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
877 	return 0;
878 freeout:
879 	t4_free_sge_resources(adap);
880 	return err;
881 }
882 
883 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
884 			     void *accel_priv, select_queue_fallback_t fallback)
885 {
886 	int txq;
887 
888 #ifdef CONFIG_CHELSIO_T4_DCB
889 	/* If a Data Center Bridging has been successfully negotiated on this
890 	 * link then we'll use the skb's priority to map it to a TX Queue.
891 	 * The skb's priority is determined via the VLAN Tag Priority Code
892 	 * Point field.
893 	 */
894 	if (cxgb4_dcb_enabled(dev)) {
895 		u16 vlan_tci;
896 		int err;
897 
898 		err = vlan_get_tag(skb, &vlan_tci);
899 		if (unlikely(err)) {
900 			if (net_ratelimit())
901 				netdev_warn(dev,
902 					    "TX Packet without VLAN Tag on DCB Link\n");
903 			txq = 0;
904 		} else {
905 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
906 #ifdef CONFIG_CHELSIO_T4_FCOE
907 			if (skb->protocol == htons(ETH_P_FCOE))
908 				txq = skb->priority & 0x7;
909 #endif /* CONFIG_CHELSIO_T4_FCOE */
910 		}
911 		return txq;
912 	}
913 #endif /* CONFIG_CHELSIO_T4_DCB */
914 
915 	if (select_queue) {
916 		txq = (skb_rx_queue_recorded(skb)
917 			? skb_get_rx_queue(skb)
918 			: smp_processor_id());
919 
920 		while (unlikely(txq >= dev->real_num_tx_queues))
921 			txq -= dev->real_num_tx_queues;
922 
923 		return txq;
924 	}
925 
926 	return fallback(dev, skb) % dev->real_num_tx_queues;
927 }
928 
929 static int closest_timer(const struct sge *s, int time)
930 {
931 	int i, delta, match = 0, min_delta = INT_MAX;
932 
933 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
934 		delta = time - s->timer_val[i];
935 		if (delta < 0)
936 			delta = -delta;
937 		if (delta < min_delta) {
938 			min_delta = delta;
939 			match = i;
940 		}
941 	}
942 	return match;
943 }
944 
945 static int closest_thres(const struct sge *s, int thres)
946 {
947 	int i, delta, match = 0, min_delta = INT_MAX;
948 
949 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
950 		delta = thres - s->counter_val[i];
951 		if (delta < 0)
952 			delta = -delta;
953 		if (delta < min_delta) {
954 			min_delta = delta;
955 			match = i;
956 		}
957 	}
958 	return match;
959 }
960 
961 /**
962  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
963  *	@q: the Rx queue
964  *	@us: the hold-off time in us, or 0 to disable timer
965  *	@cnt: the hold-off packet count, or 0 to disable counter
966  *
967  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
968  *	one of the two needs to be enabled for the queue to generate interrupts.
969  */
970 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
971 			       unsigned int us, unsigned int cnt)
972 {
973 	struct adapter *adap = q->adap;
974 
975 	if ((us | cnt) == 0)
976 		cnt = 1;
977 
978 	if (cnt) {
979 		int err;
980 		u32 v, new_idx;
981 
982 		new_idx = closest_thres(&adap->sge, cnt);
983 		if (q->desc && q->pktcnt_idx != new_idx) {
984 			/* the queue has already been created, update it */
985 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
986 			    FW_PARAMS_PARAM_X_V(
987 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
988 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
989 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
990 					    &v, &new_idx);
991 			if (err)
992 				return err;
993 		}
994 		q->pktcnt_idx = new_idx;
995 	}
996 
997 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
998 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
999 	return 0;
1000 }
1001 
1002 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1003 {
1004 	const struct port_info *pi = netdev_priv(dev);
1005 	netdev_features_t changed = dev->features ^ features;
1006 	int err;
1007 
1008 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1009 		return 0;
1010 
1011 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1012 			    -1, -1, -1,
1013 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1014 	if (unlikely(err))
1015 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1016 	return err;
1017 }
1018 
1019 static int setup_debugfs(struct adapter *adap)
1020 {
1021 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1022 		return -1;
1023 
1024 #ifdef CONFIG_DEBUG_FS
1025 	t4_setup_debugfs(adap);
1026 #endif
1027 	return 0;
1028 }
1029 
1030 /*
1031  * upper-layer driver support
1032  */
1033 
1034 /*
1035  * Allocate an active-open TID and set it to the supplied value.
1036  */
1037 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1038 {
1039 	int atid = -1;
1040 
1041 	spin_lock_bh(&t->atid_lock);
1042 	if (t->afree) {
1043 		union aopen_entry *p = t->afree;
1044 
1045 		atid = (p - t->atid_tab) + t->atid_base;
1046 		t->afree = p->next;
1047 		p->data = data;
1048 		t->atids_in_use++;
1049 	}
1050 	spin_unlock_bh(&t->atid_lock);
1051 	return atid;
1052 }
1053 EXPORT_SYMBOL(cxgb4_alloc_atid);
1054 
1055 /*
1056  * Release an active-open TID.
1057  */
1058 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1059 {
1060 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1061 
1062 	spin_lock_bh(&t->atid_lock);
1063 	p->next = t->afree;
1064 	t->afree = p;
1065 	t->atids_in_use--;
1066 	spin_unlock_bh(&t->atid_lock);
1067 }
1068 EXPORT_SYMBOL(cxgb4_free_atid);
1069 
1070 /*
1071  * Allocate a server TID and set it to the supplied value.
1072  */
1073 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1074 {
1075 	int stid;
1076 
1077 	spin_lock_bh(&t->stid_lock);
1078 	if (family == PF_INET) {
1079 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1080 		if (stid < t->nstids)
1081 			__set_bit(stid, t->stid_bmap);
1082 		else
1083 			stid = -1;
1084 	} else {
1085 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1086 		if (stid < 0)
1087 			stid = -1;
1088 	}
1089 	if (stid >= 0) {
1090 		t->stid_tab[stid].data = data;
1091 		stid += t->stid_base;
1092 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1093 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1094 		 * needs 2 TIDs.
1095 		 */
1096 		if (family == PF_INET)
1097 			t->stids_in_use++;
1098 		else
1099 			t->stids_in_use += 2;
1100 	}
1101 	spin_unlock_bh(&t->stid_lock);
1102 	return stid;
1103 }
1104 EXPORT_SYMBOL(cxgb4_alloc_stid);
1105 
1106 /* Allocate a server filter TID and set it to the supplied value.
1107  */
1108 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1109 {
1110 	int stid;
1111 
1112 	spin_lock_bh(&t->stid_lock);
1113 	if (family == PF_INET) {
1114 		stid = find_next_zero_bit(t->stid_bmap,
1115 				t->nstids + t->nsftids, t->nstids);
1116 		if (stid < (t->nstids + t->nsftids))
1117 			__set_bit(stid, t->stid_bmap);
1118 		else
1119 			stid = -1;
1120 	} else {
1121 		stid = -1;
1122 	}
1123 	if (stid >= 0) {
1124 		t->stid_tab[stid].data = data;
1125 		stid -= t->nstids;
1126 		stid += t->sftid_base;
1127 		t->sftids_in_use++;
1128 	}
1129 	spin_unlock_bh(&t->stid_lock);
1130 	return stid;
1131 }
1132 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1133 
1134 /* Release a server TID.
1135  */
1136 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1137 {
1138 	/* Is it a server filter TID? */
1139 	if (t->nsftids && (stid >= t->sftid_base)) {
1140 		stid -= t->sftid_base;
1141 		stid += t->nstids;
1142 	} else {
1143 		stid -= t->stid_base;
1144 	}
1145 
1146 	spin_lock_bh(&t->stid_lock);
1147 	if (family == PF_INET)
1148 		__clear_bit(stid, t->stid_bmap);
1149 	else
1150 		bitmap_release_region(t->stid_bmap, stid, 1);
1151 	t->stid_tab[stid].data = NULL;
1152 	if (stid < t->nstids) {
1153 		if (family == PF_INET)
1154 			t->stids_in_use--;
1155 		else
1156 			t->stids_in_use -= 2;
1157 	} else {
1158 		t->sftids_in_use--;
1159 	}
1160 	spin_unlock_bh(&t->stid_lock);
1161 }
1162 EXPORT_SYMBOL(cxgb4_free_stid);
1163 
1164 /*
1165  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1166  */
1167 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1168 			   unsigned int tid)
1169 {
1170 	struct cpl_tid_release *req;
1171 
1172 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1173 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1174 	INIT_TP_WR(req, tid);
1175 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1176 }
1177 
1178 /*
1179  * Queue a TID release request and if necessary schedule a work queue to
1180  * process it.
1181  */
1182 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1183 				    unsigned int tid)
1184 {
1185 	void **p = &t->tid_tab[tid];
1186 	struct adapter *adap = container_of(t, struct adapter, tids);
1187 
1188 	spin_lock_bh(&adap->tid_release_lock);
1189 	*p = adap->tid_release_head;
1190 	/* Low 2 bits encode the Tx channel number */
1191 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1192 	if (!adap->tid_release_task_busy) {
1193 		adap->tid_release_task_busy = true;
1194 		queue_work(adap->workq, &adap->tid_release_task);
1195 	}
1196 	spin_unlock_bh(&adap->tid_release_lock);
1197 }
1198 
1199 /*
1200  * Process the list of pending TID release requests.
1201  */
1202 static void process_tid_release_list(struct work_struct *work)
1203 {
1204 	struct sk_buff *skb;
1205 	struct adapter *adap;
1206 
1207 	adap = container_of(work, struct adapter, tid_release_task);
1208 
1209 	spin_lock_bh(&adap->tid_release_lock);
1210 	while (adap->tid_release_head) {
1211 		void **p = adap->tid_release_head;
1212 		unsigned int chan = (uintptr_t)p & 3;
1213 		p = (void *)p - chan;
1214 
1215 		adap->tid_release_head = *p;
1216 		*p = NULL;
1217 		spin_unlock_bh(&adap->tid_release_lock);
1218 
1219 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1220 					 GFP_KERNEL)))
1221 			schedule_timeout_uninterruptible(1);
1222 
1223 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1224 		t4_ofld_send(adap, skb);
1225 		spin_lock_bh(&adap->tid_release_lock);
1226 	}
1227 	adap->tid_release_task_busy = false;
1228 	spin_unlock_bh(&adap->tid_release_lock);
1229 }
1230 
1231 /*
1232  * Release a TID and inform HW.  If we are unable to allocate the release
1233  * message we defer to a work queue.
1234  */
1235 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1236 {
1237 	struct sk_buff *skb;
1238 	struct adapter *adap = container_of(t, struct adapter, tids);
1239 
1240 	WARN_ON(tid >= t->ntids);
1241 
1242 	if (t->tid_tab[tid]) {
1243 		t->tid_tab[tid] = NULL;
1244 		if (t->hash_base && (tid >= t->hash_base))
1245 			atomic_dec(&t->hash_tids_in_use);
1246 		else
1247 			atomic_dec(&t->tids_in_use);
1248 	}
1249 
1250 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1251 	if (likely(skb)) {
1252 		mk_tid_release(skb, chan, tid);
1253 		t4_ofld_send(adap, skb);
1254 	} else
1255 		cxgb4_queue_tid_release(t, chan, tid);
1256 }
1257 EXPORT_SYMBOL(cxgb4_remove_tid);
1258 
1259 /*
1260  * Allocate and initialize the TID tables.  Returns 0 on success.
1261  */
1262 static int tid_init(struct tid_info *t)
1263 {
1264 	struct adapter *adap = container_of(t, struct adapter, tids);
1265 	unsigned int max_ftids = t->nftids + t->nsftids;
1266 	unsigned int natids = t->natids;
1267 	unsigned int stid_bmap_size;
1268 	unsigned int ftid_bmap_size;
1269 	size_t size;
1270 
1271 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1272 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1273 	size = t->ntids * sizeof(*t->tid_tab) +
1274 	       natids * sizeof(*t->atid_tab) +
1275 	       t->nstids * sizeof(*t->stid_tab) +
1276 	       t->nsftids * sizeof(*t->stid_tab) +
1277 	       stid_bmap_size * sizeof(long) +
1278 	       max_ftids * sizeof(*t->ftid_tab) +
1279 	       ftid_bmap_size * sizeof(long);
1280 
1281 	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1282 	if (!t->tid_tab)
1283 		return -ENOMEM;
1284 
1285 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1286 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1287 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1288 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1289 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1290 	spin_lock_init(&t->stid_lock);
1291 	spin_lock_init(&t->atid_lock);
1292 	spin_lock_init(&t->ftid_lock);
1293 
1294 	t->stids_in_use = 0;
1295 	t->sftids_in_use = 0;
1296 	t->afree = NULL;
1297 	t->atids_in_use = 0;
1298 	atomic_set(&t->tids_in_use, 0);
1299 	atomic_set(&t->hash_tids_in_use, 0);
1300 
1301 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1302 	if (natids) {
1303 		while (--natids)
1304 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1305 		t->afree = t->atid_tab;
1306 	}
1307 
1308 	if (is_offload(adap)) {
1309 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1310 		/* Reserve stid 0 for T4/T5 adapters */
1311 		if (!t->stid_base &&
1312 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1313 			__set_bit(0, t->stid_bmap);
1314 	}
1315 
1316 	bitmap_zero(t->ftid_bmap, t->nftids);
1317 	return 0;
1318 }
1319 
1320 /**
1321  *	cxgb4_create_server - create an IP server
1322  *	@dev: the device
1323  *	@stid: the server TID
1324  *	@sip: local IP address to bind server to
1325  *	@sport: the server's TCP port
1326  *	@queue: queue to direct messages from this server to
1327  *
1328  *	Create an IP server for the given port and address.
1329  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1330  */
1331 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1332 			__be32 sip, __be16 sport, __be16 vlan,
1333 			unsigned int queue)
1334 {
1335 	unsigned int chan;
1336 	struct sk_buff *skb;
1337 	struct adapter *adap;
1338 	struct cpl_pass_open_req *req;
1339 	int ret;
1340 
1341 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1342 	if (!skb)
1343 		return -ENOMEM;
1344 
1345 	adap = netdev2adap(dev);
1346 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1347 	INIT_TP_WR(req, 0);
1348 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1349 	req->local_port = sport;
1350 	req->peer_port = htons(0);
1351 	req->local_ip = sip;
1352 	req->peer_ip = htonl(0);
1353 	chan = rxq_to_chan(&adap->sge, queue);
1354 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1355 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1356 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1357 	ret = t4_mgmt_tx(adap, skb);
1358 	return net_xmit_eval(ret);
1359 }
1360 EXPORT_SYMBOL(cxgb4_create_server);
1361 
1362 /*	cxgb4_create_server6 - create an IPv6 server
1363  *	@dev: the device
1364  *	@stid: the server TID
1365  *	@sip: local IPv6 address to bind server to
1366  *	@sport: the server's TCP port
1367  *	@queue: queue to direct messages from this server to
1368  *
1369  *	Create an IPv6 server for the given port and address.
1370  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1371  */
1372 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1373 			 const struct in6_addr *sip, __be16 sport,
1374 			 unsigned int queue)
1375 {
1376 	unsigned int chan;
1377 	struct sk_buff *skb;
1378 	struct adapter *adap;
1379 	struct cpl_pass_open_req6 *req;
1380 	int ret;
1381 
1382 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1383 	if (!skb)
1384 		return -ENOMEM;
1385 
1386 	adap = netdev2adap(dev);
1387 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1388 	INIT_TP_WR(req, 0);
1389 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1390 	req->local_port = sport;
1391 	req->peer_port = htons(0);
1392 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1393 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1394 	req->peer_ip_hi = cpu_to_be64(0);
1395 	req->peer_ip_lo = cpu_to_be64(0);
1396 	chan = rxq_to_chan(&adap->sge, queue);
1397 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1398 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1399 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1400 	ret = t4_mgmt_tx(adap, skb);
1401 	return net_xmit_eval(ret);
1402 }
1403 EXPORT_SYMBOL(cxgb4_create_server6);
1404 
1405 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1406 			unsigned int queue, bool ipv6)
1407 {
1408 	struct sk_buff *skb;
1409 	struct adapter *adap;
1410 	struct cpl_close_listsvr_req *req;
1411 	int ret;
1412 
1413 	adap = netdev2adap(dev);
1414 
1415 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1416 	if (!skb)
1417 		return -ENOMEM;
1418 
1419 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1420 	INIT_TP_WR(req, 0);
1421 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1422 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1423 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1424 	ret = t4_mgmt_tx(adap, skb);
1425 	return net_xmit_eval(ret);
1426 }
1427 EXPORT_SYMBOL(cxgb4_remove_server);
1428 
1429 /**
1430  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1431  *	@mtus: the HW MTU table
1432  *	@mtu: the target MTU
1433  *	@idx: index of selected entry in the MTU table
1434  *
1435  *	Returns the index and the value in the HW MTU table that is closest to
1436  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1437  *	table, in which case that smallest available value is selected.
1438  */
1439 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1440 			    unsigned int *idx)
1441 {
1442 	unsigned int i = 0;
1443 
1444 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1445 		++i;
1446 	if (idx)
1447 		*idx = i;
1448 	return mtus[i];
1449 }
1450 EXPORT_SYMBOL(cxgb4_best_mtu);
1451 
1452 /**
1453  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1454  *     @mtus: the HW MTU table
1455  *     @header_size: Header Size
1456  *     @data_size_max: maximum Data Segment Size
1457  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1458  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1459  *
1460  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1461  *     MTU Table based solely on a Maximum MTU parameter, we break that
1462  *     parameter up into a Header Size and Maximum Data Segment Size, and
1463  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1464  *     the Hardware MTU Table which will result in a Data Segment Size with
1465  *     the requested alignment _and_ that MTU isn't "too far" from the
1466  *     closest MTU, then we'll return that rather than the closest MTU.
1467  */
1468 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1469 				    unsigned short header_size,
1470 				    unsigned short data_size_max,
1471 				    unsigned short data_size_align,
1472 				    unsigned int *mtu_idxp)
1473 {
1474 	unsigned short max_mtu = header_size + data_size_max;
1475 	unsigned short data_size_align_mask = data_size_align - 1;
1476 	int mtu_idx, aligned_mtu_idx;
1477 
1478 	/* Scan the MTU Table till we find an MTU which is larger than our
1479 	 * Maximum MTU or we reach the end of the table.  Along the way,
1480 	 * record the last MTU found, if any, which will result in a Data
1481 	 * Segment Length matching the requested alignment.
1482 	 */
1483 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1484 		unsigned short data_size = mtus[mtu_idx] - header_size;
1485 
1486 		/* If this MTU minus the Header Size would result in a
1487 		 * Data Segment Size of the desired alignment, remember it.
1488 		 */
1489 		if ((data_size & data_size_align_mask) == 0)
1490 			aligned_mtu_idx = mtu_idx;
1491 
1492 		/* If we're not at the end of the Hardware MTU Table and the
1493 		 * next element is larger than our Maximum MTU, drop out of
1494 		 * the loop.
1495 		 */
1496 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1497 			break;
1498 	}
1499 
1500 	/* If we fell out of the loop because we ran to the end of the table,
1501 	 * then we just have to use the last [largest] entry.
1502 	 */
1503 	if (mtu_idx == NMTUS)
1504 		mtu_idx--;
1505 
1506 	/* If we found an MTU which resulted in the requested Data Segment
1507 	 * Length alignment and that's "not far" from the largest MTU which is
1508 	 * less than or equal to the maximum MTU, then use that.
1509 	 */
1510 	if (aligned_mtu_idx >= 0 &&
1511 	    mtu_idx - aligned_mtu_idx <= 1)
1512 		mtu_idx = aligned_mtu_idx;
1513 
1514 	/* If the caller has passed in an MTU Index pointer, pass the
1515 	 * MTU Index back.  Return the MTU value.
1516 	 */
1517 	if (mtu_idxp)
1518 		*mtu_idxp = mtu_idx;
1519 	return mtus[mtu_idx];
1520 }
1521 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1522 
1523 /**
1524  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1525  *	@chip: chip type
1526  *	@viid: VI id of the given port
1527  *
1528  *	Return the SMT index for this VI.
1529  */
1530 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1531 {
1532 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1533 	 * 128 rows of 2 entries each.
1534 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1535 	 * TODO: The below code needs to be updated when we add support
1536 	 * for 256 VFs.
1537 	 */
1538 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1539 		return ((viid & 0x7f) << 1);
1540 	else
1541 		return (viid & 0x7f);
1542 }
1543 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1544 
1545 /**
1546  *	cxgb4_port_chan - get the HW channel of a port
1547  *	@dev: the net device for the port
1548  *
1549  *	Return the HW Tx channel of the given port.
1550  */
1551 unsigned int cxgb4_port_chan(const struct net_device *dev)
1552 {
1553 	return netdev2pinfo(dev)->tx_chan;
1554 }
1555 EXPORT_SYMBOL(cxgb4_port_chan);
1556 
1557 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1558 {
1559 	struct adapter *adap = netdev2adap(dev);
1560 	u32 v1, v2, lp_count, hp_count;
1561 
1562 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1563 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1564 	if (is_t4(adap->params.chip)) {
1565 		lp_count = LP_COUNT_G(v1);
1566 		hp_count = HP_COUNT_G(v1);
1567 	} else {
1568 		lp_count = LP_COUNT_T5_G(v1);
1569 		hp_count = HP_COUNT_T5_G(v2);
1570 	}
1571 	return lpfifo ? lp_count : hp_count;
1572 }
1573 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1574 
1575 /**
1576  *	cxgb4_port_viid - get the VI id of a port
1577  *	@dev: the net device for the port
1578  *
1579  *	Return the VI id of the given port.
1580  */
1581 unsigned int cxgb4_port_viid(const struct net_device *dev)
1582 {
1583 	return netdev2pinfo(dev)->viid;
1584 }
1585 EXPORT_SYMBOL(cxgb4_port_viid);
1586 
1587 /**
1588  *	cxgb4_port_idx - get the index of a port
1589  *	@dev: the net device for the port
1590  *
1591  *	Return the index of the given port.
1592  */
1593 unsigned int cxgb4_port_idx(const struct net_device *dev)
1594 {
1595 	return netdev2pinfo(dev)->port_id;
1596 }
1597 EXPORT_SYMBOL(cxgb4_port_idx);
1598 
1599 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1600 			 struct tp_tcp_stats *v6)
1601 {
1602 	struct adapter *adap = pci_get_drvdata(pdev);
1603 
1604 	spin_lock(&adap->stats_lock);
1605 	t4_tp_get_tcp_stats(adap, v4, v6);
1606 	spin_unlock(&adap->stats_lock);
1607 }
1608 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1609 
1610 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1611 		      const unsigned int *pgsz_order)
1612 {
1613 	struct adapter *adap = netdev2adap(dev);
1614 
1615 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1616 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1617 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1618 		     HPZ3_V(pgsz_order[3]));
1619 }
1620 EXPORT_SYMBOL(cxgb4_iscsi_init);
1621 
1622 int cxgb4_flush_eq_cache(struct net_device *dev)
1623 {
1624 	struct adapter *adap = netdev2adap(dev);
1625 
1626 	return t4_sge_ctxt_flush(adap, adap->mbox);
1627 }
1628 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1629 
1630 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1631 {
1632 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1633 	__be64 indices;
1634 	int ret;
1635 
1636 	spin_lock(&adap->win0_lock);
1637 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1638 			   sizeof(indices), (__be32 *)&indices,
1639 			   T4_MEMORY_READ);
1640 	spin_unlock(&adap->win0_lock);
1641 	if (!ret) {
1642 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1643 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1644 	}
1645 	return ret;
1646 }
1647 
1648 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1649 			u16 size)
1650 {
1651 	struct adapter *adap = netdev2adap(dev);
1652 	u16 hw_pidx, hw_cidx;
1653 	int ret;
1654 
1655 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1656 	if (ret)
1657 		goto out;
1658 
1659 	if (pidx != hw_pidx) {
1660 		u16 delta;
1661 		u32 val;
1662 
1663 		if (pidx >= hw_pidx)
1664 			delta = pidx - hw_pidx;
1665 		else
1666 			delta = size - hw_pidx + pidx;
1667 
1668 		if (is_t4(adap->params.chip))
1669 			val = PIDX_V(delta);
1670 		else
1671 			val = PIDX_T5_V(delta);
1672 		wmb();
1673 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1674 			     QID_V(qid) | val);
1675 	}
1676 out:
1677 	return ret;
1678 }
1679 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1680 
1681 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1682 {
1683 	struct adapter *adap;
1684 	u32 offset, memtype, memaddr;
1685 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1686 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1687 	int ret;
1688 
1689 	adap = netdev2adap(dev);
1690 
1691 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1692 
1693 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1694 	 * This code assumes that the memory is laid out starting at offset 0
1695 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1696 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1697 	 * MC0, and some have both MC0 and MC1.
1698 	 */
1699 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1700 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1701 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1702 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1703 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1704 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1705 
1706 	edc0_end = edc0_size;
1707 	edc1_end = edc0_end + edc1_size;
1708 	mc0_end = edc1_end + mc0_size;
1709 
1710 	if (offset < edc0_end) {
1711 		memtype = MEM_EDC0;
1712 		memaddr = offset;
1713 	} else if (offset < edc1_end) {
1714 		memtype = MEM_EDC1;
1715 		memaddr = offset - edc0_end;
1716 	} else {
1717 		if (offset < mc0_end) {
1718 			memtype = MEM_MC0;
1719 			memaddr = offset - edc1_end;
1720 		} else if (is_t5(adap->params.chip)) {
1721 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1722 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1723 			mc1_end = mc0_end + mc1_size;
1724 			if (offset < mc1_end) {
1725 				memtype = MEM_MC1;
1726 				memaddr = offset - mc0_end;
1727 			} else {
1728 				/* offset beyond the end of any memory */
1729 				goto err;
1730 			}
1731 		} else {
1732 			/* T4/T6 only has a single memory channel */
1733 			goto err;
1734 		}
1735 	}
1736 
1737 	spin_lock(&adap->win0_lock);
1738 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1739 	spin_unlock(&adap->win0_lock);
1740 	return ret;
1741 
1742 err:
1743 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1744 		stag, offset);
1745 	return -EINVAL;
1746 }
1747 EXPORT_SYMBOL(cxgb4_read_tpte);
1748 
1749 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1750 {
1751 	u32 hi, lo;
1752 	struct adapter *adap;
1753 
1754 	adap = netdev2adap(dev);
1755 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1756 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1757 
1758 	return ((u64)hi << 32) | (u64)lo;
1759 }
1760 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1761 
1762 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1763 			 unsigned int qid,
1764 			 enum cxgb4_bar2_qtype qtype,
1765 			 int user,
1766 			 u64 *pbar2_qoffset,
1767 			 unsigned int *pbar2_qid)
1768 {
1769 	return t4_bar2_sge_qregs(netdev2adap(dev),
1770 				 qid,
1771 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1772 				  ? T4_BAR2_QTYPE_EGRESS
1773 				  : T4_BAR2_QTYPE_INGRESS),
1774 				 user,
1775 				 pbar2_qoffset,
1776 				 pbar2_qid);
1777 }
1778 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1779 
1780 static struct pci_driver cxgb4_driver;
1781 
1782 static void check_neigh_update(struct neighbour *neigh)
1783 {
1784 	const struct device *parent;
1785 	const struct net_device *netdev = neigh->dev;
1786 
1787 	if (is_vlan_dev(netdev))
1788 		netdev = vlan_dev_real_dev(netdev);
1789 	parent = netdev->dev.parent;
1790 	if (parent && parent->driver == &cxgb4_driver.driver)
1791 		t4_l2t_update(dev_get_drvdata(parent), neigh);
1792 }
1793 
1794 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1795 		       void *data)
1796 {
1797 	switch (event) {
1798 	case NETEVENT_NEIGH_UPDATE:
1799 		check_neigh_update(data);
1800 		break;
1801 	case NETEVENT_REDIRECT:
1802 	default:
1803 		break;
1804 	}
1805 	return 0;
1806 }
1807 
1808 static bool netevent_registered;
1809 static struct notifier_block cxgb4_netevent_nb = {
1810 	.notifier_call = netevent_cb
1811 };
1812 
1813 static void drain_db_fifo(struct adapter *adap, int usecs)
1814 {
1815 	u32 v1, v2, lp_count, hp_count;
1816 
1817 	do {
1818 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1819 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1820 		if (is_t4(adap->params.chip)) {
1821 			lp_count = LP_COUNT_G(v1);
1822 			hp_count = HP_COUNT_G(v1);
1823 		} else {
1824 			lp_count = LP_COUNT_T5_G(v1);
1825 			hp_count = HP_COUNT_T5_G(v2);
1826 		}
1827 
1828 		if (lp_count == 0 && hp_count == 0)
1829 			break;
1830 		set_current_state(TASK_UNINTERRUPTIBLE);
1831 		schedule_timeout(usecs_to_jiffies(usecs));
1832 	} while (1);
1833 }
1834 
1835 static void disable_txq_db(struct sge_txq *q)
1836 {
1837 	unsigned long flags;
1838 
1839 	spin_lock_irqsave(&q->db_lock, flags);
1840 	q->db_disabled = 1;
1841 	spin_unlock_irqrestore(&q->db_lock, flags);
1842 }
1843 
1844 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1845 {
1846 	spin_lock_irq(&q->db_lock);
1847 	if (q->db_pidx_inc) {
1848 		/* Make sure that all writes to the TX descriptors
1849 		 * are committed before we tell HW about them.
1850 		 */
1851 		wmb();
1852 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1853 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1854 		q->db_pidx_inc = 0;
1855 	}
1856 	q->db_disabled = 0;
1857 	spin_unlock_irq(&q->db_lock);
1858 }
1859 
1860 static void disable_dbs(struct adapter *adap)
1861 {
1862 	int i;
1863 
1864 	for_each_ethrxq(&adap->sge, i)
1865 		disable_txq_db(&adap->sge.ethtxq[i].q);
1866 	if (is_offload(adap)) {
1867 		struct sge_uld_txq_info *txq_info =
1868 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1869 
1870 		if (txq_info) {
1871 			for_each_ofldtxq(&adap->sge, i) {
1872 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1873 
1874 				disable_txq_db(&txq->q);
1875 			}
1876 		}
1877 	}
1878 	for_each_port(adap, i)
1879 		disable_txq_db(&adap->sge.ctrlq[i].q);
1880 }
1881 
1882 static void enable_dbs(struct adapter *adap)
1883 {
1884 	int i;
1885 
1886 	for_each_ethrxq(&adap->sge, i)
1887 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1888 	if (is_offload(adap)) {
1889 		struct sge_uld_txq_info *txq_info =
1890 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1891 
1892 		if (txq_info) {
1893 			for_each_ofldtxq(&adap->sge, i) {
1894 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1895 
1896 				enable_txq_db(adap, &txq->q);
1897 			}
1898 		}
1899 	}
1900 	for_each_port(adap, i)
1901 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1902 }
1903 
1904 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1905 {
1906 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
1907 
1908 	if (adap->uld && adap->uld[type].handle)
1909 		adap->uld[type].control(adap->uld[type].handle, cmd);
1910 }
1911 
1912 static void process_db_full(struct work_struct *work)
1913 {
1914 	struct adapter *adap;
1915 
1916 	adap = container_of(work, struct adapter, db_full_task);
1917 
1918 	drain_db_fifo(adap, dbfifo_drain_delay);
1919 	enable_dbs(adap);
1920 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1921 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1922 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1923 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1924 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1925 	else
1926 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1927 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1928 }
1929 
1930 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1931 {
1932 	u16 hw_pidx, hw_cidx;
1933 	int ret;
1934 
1935 	spin_lock_irq(&q->db_lock);
1936 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1937 	if (ret)
1938 		goto out;
1939 	if (q->db_pidx != hw_pidx) {
1940 		u16 delta;
1941 		u32 val;
1942 
1943 		if (q->db_pidx >= hw_pidx)
1944 			delta = q->db_pidx - hw_pidx;
1945 		else
1946 			delta = q->size - hw_pidx + q->db_pidx;
1947 
1948 		if (is_t4(adap->params.chip))
1949 			val = PIDX_V(delta);
1950 		else
1951 			val = PIDX_T5_V(delta);
1952 		wmb();
1953 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1954 			     QID_V(q->cntxt_id) | val);
1955 	}
1956 out:
1957 	q->db_disabled = 0;
1958 	q->db_pidx_inc = 0;
1959 	spin_unlock_irq(&q->db_lock);
1960 	if (ret)
1961 		CH_WARN(adap, "DB drop recovery failed.\n");
1962 }
1963 
1964 static void recover_all_queues(struct adapter *adap)
1965 {
1966 	int i;
1967 
1968 	for_each_ethrxq(&adap->sge, i)
1969 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
1970 	if (is_offload(adap)) {
1971 		struct sge_uld_txq_info *txq_info =
1972 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1973 		if (txq_info) {
1974 			for_each_ofldtxq(&adap->sge, i) {
1975 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1976 
1977 				sync_txq_pidx(adap, &txq->q);
1978 			}
1979 		}
1980 	}
1981 	for_each_port(adap, i)
1982 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
1983 }
1984 
1985 static void process_db_drop(struct work_struct *work)
1986 {
1987 	struct adapter *adap;
1988 
1989 	adap = container_of(work, struct adapter, db_drop_task);
1990 
1991 	if (is_t4(adap->params.chip)) {
1992 		drain_db_fifo(adap, dbfifo_drain_delay);
1993 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
1994 		drain_db_fifo(adap, dbfifo_drain_delay);
1995 		recover_all_queues(adap);
1996 		drain_db_fifo(adap, dbfifo_drain_delay);
1997 		enable_dbs(adap);
1998 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1999 	} else if (is_t5(adap->params.chip)) {
2000 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2001 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2002 		u16 pidx_inc = dropped_db & 0x1fff;
2003 		u64 bar2_qoffset;
2004 		unsigned int bar2_qid;
2005 		int ret;
2006 
2007 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2008 					0, &bar2_qoffset, &bar2_qid);
2009 		if (ret)
2010 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2011 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2012 		else
2013 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2014 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2015 
2016 		/* Re-enable BAR2 WC */
2017 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2018 	}
2019 
2020 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2021 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2022 }
2023 
2024 void t4_db_full(struct adapter *adap)
2025 {
2026 	if (is_t4(adap->params.chip)) {
2027 		disable_dbs(adap);
2028 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2029 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2030 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2031 		queue_work(adap->workq, &adap->db_full_task);
2032 	}
2033 }
2034 
2035 void t4_db_dropped(struct adapter *adap)
2036 {
2037 	if (is_t4(adap->params.chip)) {
2038 		disable_dbs(adap);
2039 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2040 	}
2041 	queue_work(adap->workq, &adap->db_drop_task);
2042 }
2043 
2044 void t4_register_netevent_notifier(void)
2045 {
2046 	if (!netevent_registered) {
2047 		register_netevent_notifier(&cxgb4_netevent_nb);
2048 		netevent_registered = true;
2049 	}
2050 }
2051 
2052 static void detach_ulds(struct adapter *adap)
2053 {
2054 	unsigned int i;
2055 
2056 	mutex_lock(&uld_mutex);
2057 	list_del(&adap->list_node);
2058 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2059 		if (adap->uld && adap->uld[i].handle) {
2060 			adap->uld[i].state_change(adap->uld[i].handle,
2061 					     CXGB4_STATE_DETACH);
2062 			adap->uld[i].handle = NULL;
2063 		}
2064 	if (netevent_registered && list_empty(&adapter_list)) {
2065 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2066 		netevent_registered = false;
2067 	}
2068 	mutex_unlock(&uld_mutex);
2069 }
2070 
2071 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2072 {
2073 	unsigned int i;
2074 
2075 	mutex_lock(&uld_mutex);
2076 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2077 		if (adap->uld && adap->uld[i].handle)
2078 			adap->uld[i].state_change(adap->uld[i].handle,
2079 						  new_state);
2080 	mutex_unlock(&uld_mutex);
2081 }
2082 
2083 #if IS_ENABLED(CONFIG_IPV6)
2084 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2085 				   unsigned long event, void *data)
2086 {
2087 	struct inet6_ifaddr *ifa = data;
2088 	struct net_device *event_dev = ifa->idev->dev;
2089 	const struct device *parent = NULL;
2090 #if IS_ENABLED(CONFIG_BONDING)
2091 	struct adapter *adap;
2092 #endif
2093 	if (is_vlan_dev(event_dev))
2094 		event_dev = vlan_dev_real_dev(event_dev);
2095 #if IS_ENABLED(CONFIG_BONDING)
2096 	if (event_dev->flags & IFF_MASTER) {
2097 		list_for_each_entry(adap, &adapter_list, list_node) {
2098 			switch (event) {
2099 			case NETDEV_UP:
2100 				cxgb4_clip_get(adap->port[0],
2101 					       (const u32 *)ifa, 1);
2102 				break;
2103 			case NETDEV_DOWN:
2104 				cxgb4_clip_release(adap->port[0],
2105 						   (const u32 *)ifa, 1);
2106 				break;
2107 			default:
2108 				break;
2109 			}
2110 		}
2111 		return NOTIFY_OK;
2112 	}
2113 #endif
2114 
2115 	if (event_dev)
2116 		parent = event_dev->dev.parent;
2117 
2118 	if (parent && parent->driver == &cxgb4_driver.driver) {
2119 		switch (event) {
2120 		case NETDEV_UP:
2121 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2122 			break;
2123 		case NETDEV_DOWN:
2124 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2125 			break;
2126 		default:
2127 			break;
2128 		}
2129 	}
2130 	return NOTIFY_OK;
2131 }
2132 
2133 static bool inet6addr_registered;
2134 static struct notifier_block cxgb4_inet6addr_notifier = {
2135 	.notifier_call = cxgb4_inet6addr_handler
2136 };
2137 
2138 static void update_clip(const struct adapter *adap)
2139 {
2140 	int i;
2141 	struct net_device *dev;
2142 	int ret;
2143 
2144 	rcu_read_lock();
2145 
2146 	for (i = 0; i < MAX_NPORTS; i++) {
2147 		dev = adap->port[i];
2148 		ret = 0;
2149 
2150 		if (dev)
2151 			ret = cxgb4_update_root_dev_clip(dev);
2152 
2153 		if (ret < 0)
2154 			break;
2155 	}
2156 	rcu_read_unlock();
2157 }
2158 #endif /* IS_ENABLED(CONFIG_IPV6) */
2159 
2160 /**
2161  *	cxgb_up - enable the adapter
2162  *	@adap: adapter being enabled
2163  *
2164  *	Called when the first port is enabled, this function performs the
2165  *	actions necessary to make an adapter operational, such as completing
2166  *	the initialization of HW modules, and enabling interrupts.
2167  *
2168  *	Must be called with the rtnl lock held.
2169  */
2170 static int cxgb_up(struct adapter *adap)
2171 {
2172 	int err;
2173 
2174 	err = setup_sge_queues(adap);
2175 	if (err)
2176 		goto out;
2177 	err = setup_rss(adap);
2178 	if (err)
2179 		goto freeq;
2180 
2181 	if (adap->flags & USING_MSIX) {
2182 		name_msix_vecs(adap);
2183 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2184 				  adap->msix_info[0].desc, adap);
2185 		if (err)
2186 			goto irq_err;
2187 		err = request_msix_queue_irqs(adap);
2188 		if (err) {
2189 			free_irq(adap->msix_info[0].vec, adap);
2190 			goto irq_err;
2191 		}
2192 	} else {
2193 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2194 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2195 				  adap->port[0]->name, adap);
2196 		if (err)
2197 			goto irq_err;
2198 	}
2199 	enable_rx(adap);
2200 	t4_sge_start(adap);
2201 	t4_intr_enable(adap);
2202 	adap->flags |= FULL_INIT_DONE;
2203 	notify_ulds(adap, CXGB4_STATE_UP);
2204 #if IS_ENABLED(CONFIG_IPV6)
2205 	update_clip(adap);
2206 #endif
2207 	/* Initialize hash mac addr list*/
2208 	INIT_LIST_HEAD(&adap->mac_hlist);
2209  out:
2210 	return err;
2211  irq_err:
2212 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2213  freeq:
2214 	t4_free_sge_resources(adap);
2215 	goto out;
2216 }
2217 
2218 static void cxgb_down(struct adapter *adapter)
2219 {
2220 	cancel_work_sync(&adapter->tid_release_task);
2221 	cancel_work_sync(&adapter->db_full_task);
2222 	cancel_work_sync(&adapter->db_drop_task);
2223 	adapter->tid_release_task_busy = false;
2224 	adapter->tid_release_head = NULL;
2225 
2226 	t4_sge_stop(adapter);
2227 	t4_free_sge_resources(adapter);
2228 	adapter->flags &= ~FULL_INIT_DONE;
2229 }
2230 
2231 /*
2232  * net_device operations
2233  */
2234 static int cxgb_open(struct net_device *dev)
2235 {
2236 	int err;
2237 	struct port_info *pi = netdev_priv(dev);
2238 	struct adapter *adapter = pi->adapter;
2239 
2240 	netif_carrier_off(dev);
2241 
2242 	if (!(adapter->flags & FULL_INIT_DONE)) {
2243 		err = cxgb_up(adapter);
2244 		if (err < 0)
2245 			return err;
2246 	}
2247 
2248 	err = link_start(dev);
2249 	if (!err)
2250 		netif_tx_start_all_queues(dev);
2251 	return err;
2252 }
2253 
2254 static int cxgb_close(struct net_device *dev)
2255 {
2256 	struct port_info *pi = netdev_priv(dev);
2257 	struct adapter *adapter = pi->adapter;
2258 
2259 	netif_tx_stop_all_queues(dev);
2260 	netif_carrier_off(dev);
2261 	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2262 }
2263 
2264 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2265 		__be32 sip, __be16 sport, __be16 vlan,
2266 		unsigned int queue, unsigned char port, unsigned char mask)
2267 {
2268 	int ret;
2269 	struct filter_entry *f;
2270 	struct adapter *adap;
2271 	int i;
2272 	u8 *val;
2273 
2274 	adap = netdev2adap(dev);
2275 
2276 	/* Adjust stid to correct filter index */
2277 	stid -= adap->tids.sftid_base;
2278 	stid += adap->tids.nftids;
2279 
2280 	/* Check to make sure the filter requested is writable ...
2281 	 */
2282 	f = &adap->tids.ftid_tab[stid];
2283 	ret = writable_filter(f);
2284 	if (ret)
2285 		return ret;
2286 
2287 	/* Clear out any old resources being used by the filter before
2288 	 * we start constructing the new filter.
2289 	 */
2290 	if (f->valid)
2291 		clear_filter(adap, f);
2292 
2293 	/* Clear out filter specifications */
2294 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2295 	f->fs.val.lport = cpu_to_be16(sport);
2296 	f->fs.mask.lport  = ~0;
2297 	val = (u8 *)&sip;
2298 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2299 		for (i = 0; i < 4; i++) {
2300 			f->fs.val.lip[i] = val[i];
2301 			f->fs.mask.lip[i] = ~0;
2302 		}
2303 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2304 			f->fs.val.iport = port;
2305 			f->fs.mask.iport = mask;
2306 		}
2307 	}
2308 
2309 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2310 		f->fs.val.proto = IPPROTO_TCP;
2311 		f->fs.mask.proto = ~0;
2312 	}
2313 
2314 	f->fs.dirsteer = 1;
2315 	f->fs.iq = queue;
2316 	/* Mark filter as locked */
2317 	f->locked = 1;
2318 	f->fs.rpttid = 1;
2319 
2320 	/* Save the actual tid. We need this to get the corresponding
2321 	 * filter entry structure in filter_rpl.
2322 	 */
2323 	f->tid = stid + adap->tids.ftid_base;
2324 	ret = set_filter_wr(adap, stid);
2325 	if (ret) {
2326 		clear_filter(adap, f);
2327 		return ret;
2328 	}
2329 
2330 	return 0;
2331 }
2332 EXPORT_SYMBOL(cxgb4_create_server_filter);
2333 
2334 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2335 		unsigned int queue, bool ipv6)
2336 {
2337 	struct filter_entry *f;
2338 	struct adapter *adap;
2339 
2340 	adap = netdev2adap(dev);
2341 
2342 	/* Adjust stid to correct filter index */
2343 	stid -= adap->tids.sftid_base;
2344 	stid += adap->tids.nftids;
2345 
2346 	f = &adap->tids.ftid_tab[stid];
2347 	/* Unlock the filter */
2348 	f->locked = 0;
2349 
2350 	return delete_filter(adap, stid);
2351 }
2352 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2353 
2354 static void cxgb_get_stats(struct net_device *dev,
2355 			   struct rtnl_link_stats64 *ns)
2356 {
2357 	struct port_stats stats;
2358 	struct port_info *p = netdev_priv(dev);
2359 	struct adapter *adapter = p->adapter;
2360 
2361 	/* Block retrieving statistics during EEH error
2362 	 * recovery. Otherwise, the recovery might fail
2363 	 * and the PCI device will be removed permanently
2364 	 */
2365 	spin_lock(&adapter->stats_lock);
2366 	if (!netif_device_present(dev)) {
2367 		spin_unlock(&adapter->stats_lock);
2368 		return;
2369 	}
2370 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2371 				 &p->stats_base);
2372 	spin_unlock(&adapter->stats_lock);
2373 
2374 	ns->tx_bytes   = stats.tx_octets;
2375 	ns->tx_packets = stats.tx_frames;
2376 	ns->rx_bytes   = stats.rx_octets;
2377 	ns->rx_packets = stats.rx_frames;
2378 	ns->multicast  = stats.rx_mcast_frames;
2379 
2380 	/* detailed rx_errors */
2381 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2382 			       stats.rx_runt;
2383 	ns->rx_over_errors   = 0;
2384 	ns->rx_crc_errors    = stats.rx_fcs_err;
2385 	ns->rx_frame_errors  = stats.rx_symbol_err;
2386 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2387 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2388 			       stats.rx_trunc0 + stats.rx_trunc1 +
2389 			       stats.rx_trunc2 + stats.rx_trunc3;
2390 	ns->rx_missed_errors = 0;
2391 
2392 	/* detailed tx_errors */
2393 	ns->tx_aborted_errors   = 0;
2394 	ns->tx_carrier_errors   = 0;
2395 	ns->tx_fifo_errors      = 0;
2396 	ns->tx_heartbeat_errors = 0;
2397 	ns->tx_window_errors    = 0;
2398 
2399 	ns->tx_errors = stats.tx_error_frames;
2400 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2401 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2402 }
2403 
2404 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2405 {
2406 	unsigned int mbox;
2407 	int ret = 0, prtad, devad;
2408 	struct port_info *pi = netdev_priv(dev);
2409 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2410 
2411 	switch (cmd) {
2412 	case SIOCGMIIPHY:
2413 		if (pi->mdio_addr < 0)
2414 			return -EOPNOTSUPP;
2415 		data->phy_id = pi->mdio_addr;
2416 		break;
2417 	case SIOCGMIIREG:
2418 	case SIOCSMIIREG:
2419 		if (mdio_phy_id_is_c45(data->phy_id)) {
2420 			prtad = mdio_phy_id_prtad(data->phy_id);
2421 			devad = mdio_phy_id_devad(data->phy_id);
2422 		} else if (data->phy_id < 32) {
2423 			prtad = data->phy_id;
2424 			devad = 0;
2425 			data->reg_num &= 0x1f;
2426 		} else
2427 			return -EINVAL;
2428 
2429 		mbox = pi->adapter->pf;
2430 		if (cmd == SIOCGMIIREG)
2431 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2432 					 data->reg_num, &data->val_out);
2433 		else
2434 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2435 					 data->reg_num, data->val_in);
2436 		break;
2437 	case SIOCGHWTSTAMP:
2438 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2439 				    sizeof(pi->tstamp_config)) ?
2440 			-EFAULT : 0;
2441 	case SIOCSHWTSTAMP:
2442 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2443 				   sizeof(pi->tstamp_config)))
2444 			return -EFAULT;
2445 
2446 		switch (pi->tstamp_config.rx_filter) {
2447 		case HWTSTAMP_FILTER_NONE:
2448 			pi->rxtstamp = false;
2449 			break;
2450 		case HWTSTAMP_FILTER_ALL:
2451 			pi->rxtstamp = true;
2452 			break;
2453 		default:
2454 			pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2455 			return -ERANGE;
2456 		}
2457 
2458 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2459 				    sizeof(pi->tstamp_config)) ?
2460 			-EFAULT : 0;
2461 	default:
2462 		return -EOPNOTSUPP;
2463 	}
2464 	return ret;
2465 }
2466 
2467 static void cxgb_set_rxmode(struct net_device *dev)
2468 {
2469 	/* unfortunately we can't return errors to the stack */
2470 	set_rxmode(dev, -1, false);
2471 }
2472 
2473 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2474 {
2475 	int ret;
2476 	struct port_info *pi = netdev_priv(dev);
2477 
2478 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2479 			    -1, -1, -1, true);
2480 	if (!ret)
2481 		dev->mtu = new_mtu;
2482 	return ret;
2483 }
2484 
2485 #ifdef CONFIG_PCI_IOV
2486 static int dummy_open(struct net_device *dev)
2487 {
2488 	/* Turn carrier off since we don't have to transmit anything on this
2489 	 * interface.
2490 	 */
2491 	netif_carrier_off(dev);
2492 	return 0;
2493 }
2494 
2495 /* Fill MAC address that will be assigned by the FW */
2496 static void fill_vf_station_mac_addr(struct adapter *adap)
2497 {
2498 	unsigned int i;
2499 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2500 	int err;
2501 	u8 *na;
2502 	u16 a, b;
2503 
2504 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2505 	if (!err) {
2506 		na = adap->params.vpd.na;
2507 		for (i = 0; i < ETH_ALEN; i++)
2508 			hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2509 				      hex2val(na[2 * i + 1]));
2510 		a = (hw_addr[0] << 8) | hw_addr[1];
2511 		b = (hw_addr[1] << 8) | hw_addr[2];
2512 		a ^= b;
2513 		a |= 0x0200;    /* locally assigned Ethernet MAC address */
2514 		a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2515 		macaddr[0] = a >> 8;
2516 		macaddr[1] = a & 0xff;
2517 
2518 		for (i = 2; i < 5; i++)
2519 			macaddr[i] = hw_addr[i + 1];
2520 
2521 		for (i = 0; i < adap->num_vfs; i++) {
2522 			macaddr[5] = adap->pf * 16 + i;
2523 			ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2524 		}
2525 	}
2526 }
2527 
2528 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2529 {
2530 	struct port_info *pi = netdev_priv(dev);
2531 	struct adapter *adap = pi->adapter;
2532 	int ret;
2533 
2534 	/* verify MAC addr is valid */
2535 	if (!is_valid_ether_addr(mac)) {
2536 		dev_err(pi->adapter->pdev_dev,
2537 			"Invalid Ethernet address %pM for VF %d\n",
2538 			mac, vf);
2539 		return -EINVAL;
2540 	}
2541 
2542 	dev_info(pi->adapter->pdev_dev,
2543 		 "Setting MAC %pM on VF %d\n", mac, vf);
2544 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2545 	if (!ret)
2546 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2547 	return ret;
2548 }
2549 
2550 static int cxgb_get_vf_config(struct net_device *dev,
2551 			      int vf, struct ifla_vf_info *ivi)
2552 {
2553 	struct port_info *pi = netdev_priv(dev);
2554 	struct adapter *adap = pi->adapter;
2555 
2556 	if (vf >= adap->num_vfs)
2557 		return -EINVAL;
2558 	ivi->vf = vf;
2559 	ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2560 	return 0;
2561 }
2562 
2563 static int cxgb_get_phys_port_id(struct net_device *dev,
2564 				 struct netdev_phys_item_id *ppid)
2565 {
2566 	struct port_info *pi = netdev_priv(dev);
2567 	unsigned int phy_port_id;
2568 
2569 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2570 	ppid->id_len = sizeof(phy_port_id);
2571 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
2572 	return 0;
2573 }
2574 
2575 #endif
2576 
2577 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2578 {
2579 	int ret;
2580 	struct sockaddr *addr = p;
2581 	struct port_info *pi = netdev_priv(dev);
2582 
2583 	if (!is_valid_ether_addr(addr->sa_data))
2584 		return -EADDRNOTAVAIL;
2585 
2586 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2587 			    pi->xact_addr_filt, addr->sa_data, true, true);
2588 	if (ret < 0)
2589 		return ret;
2590 
2591 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2592 	pi->xact_addr_filt = ret;
2593 	return 0;
2594 }
2595 
2596 #ifdef CONFIG_NET_POLL_CONTROLLER
2597 static void cxgb_netpoll(struct net_device *dev)
2598 {
2599 	struct port_info *pi = netdev_priv(dev);
2600 	struct adapter *adap = pi->adapter;
2601 
2602 	if (adap->flags & USING_MSIX) {
2603 		int i;
2604 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2605 
2606 		for (i = pi->nqsets; i; i--, rx++)
2607 			t4_sge_intr_msix(0, &rx->rspq);
2608 	} else
2609 		t4_intr_handler(adap)(0, adap);
2610 }
2611 #endif
2612 
2613 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2614 {
2615 	struct port_info *pi = netdev_priv(dev);
2616 	struct adapter *adap = pi->adapter;
2617 	struct sched_class *e;
2618 	struct ch_sched_params p;
2619 	struct ch_sched_queue qe;
2620 	u32 req_rate;
2621 	int err = 0;
2622 
2623 	if (!can_sched(dev))
2624 		return -ENOTSUPP;
2625 
2626 	if (index < 0 || index > pi->nqsets - 1)
2627 		return -EINVAL;
2628 
2629 	if (!(adap->flags & FULL_INIT_DONE)) {
2630 		dev_err(adap->pdev_dev,
2631 			"Failed to rate limit on queue %d. Link Down?\n",
2632 			index);
2633 		return -EINVAL;
2634 	}
2635 
2636 	/* Convert from Mbps to Kbps */
2637 	req_rate = rate << 10;
2638 
2639 	/* Max rate is 10 Gbps */
2640 	if (req_rate >= SCHED_MAX_RATE_KBPS) {
2641 		dev_err(adap->pdev_dev,
2642 			"Invalid rate %u Mbps, Max rate is %u Gbps\n",
2643 			rate, SCHED_MAX_RATE_KBPS);
2644 		return -ERANGE;
2645 	}
2646 
2647 	/* First unbind the queue from any existing class */
2648 	memset(&qe, 0, sizeof(qe));
2649 	qe.queue = index;
2650 	qe.class = SCHED_CLS_NONE;
2651 
2652 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2653 	if (err) {
2654 		dev_err(adap->pdev_dev,
2655 			"Unbinding Queue %d on port %d fail. Err: %d\n",
2656 			index, pi->port_id, err);
2657 		return err;
2658 	}
2659 
2660 	/* Queue already unbound */
2661 	if (!req_rate)
2662 		return 0;
2663 
2664 	/* Fetch any available unused or matching scheduling class */
2665 	memset(&p, 0, sizeof(p));
2666 	p.type = SCHED_CLASS_TYPE_PACKET;
2667 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2668 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2669 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2670 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2671 	p.u.params.channel  = pi->tx_chan;
2672 	p.u.params.class    = SCHED_CLS_NONE;
2673 	p.u.params.minrate  = 0;
2674 	p.u.params.maxrate  = req_rate;
2675 	p.u.params.weight   = 0;
2676 	p.u.params.pktsize  = dev->mtu;
2677 
2678 	e = cxgb4_sched_class_alloc(dev, &p);
2679 	if (!e)
2680 		return -ENOMEM;
2681 
2682 	/* Bind the queue to a scheduling class */
2683 	memset(&qe, 0, sizeof(qe));
2684 	qe.queue = index;
2685 	qe.class = e->idx;
2686 
2687 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2688 	if (err)
2689 		dev_err(adap->pdev_dev,
2690 			"Queue rate limiting failed. Err: %d\n", err);
2691 	return err;
2692 }
2693 
2694 static int cxgb_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
2695 			 struct tc_to_netdev *tc)
2696 {
2697 	struct port_info *pi = netdev2pinfo(dev);
2698 	struct adapter *adap = netdev2adap(dev);
2699 
2700 	if (!(adap->flags & FULL_INIT_DONE)) {
2701 		dev_err(adap->pdev_dev,
2702 			"Failed to setup tc on port %d. Link Down?\n",
2703 			pi->port_id);
2704 		return -EINVAL;
2705 	}
2706 
2707 	if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) &&
2708 	    tc->type == TC_SETUP_CLSU32) {
2709 		switch (tc->cls_u32->command) {
2710 		case TC_CLSU32_NEW_KNODE:
2711 		case TC_CLSU32_REPLACE_KNODE:
2712 			return cxgb4_config_knode(dev, proto, tc->cls_u32);
2713 		case TC_CLSU32_DELETE_KNODE:
2714 			return cxgb4_delete_knode(dev, proto, tc->cls_u32);
2715 		default:
2716 			return -EOPNOTSUPP;
2717 		}
2718 	}
2719 
2720 	return -EOPNOTSUPP;
2721 }
2722 
2723 static const struct net_device_ops cxgb4_netdev_ops = {
2724 	.ndo_open             = cxgb_open,
2725 	.ndo_stop             = cxgb_close,
2726 	.ndo_start_xmit       = t4_eth_xmit,
2727 	.ndo_select_queue     =	cxgb_select_queue,
2728 	.ndo_get_stats64      = cxgb_get_stats,
2729 	.ndo_set_rx_mode      = cxgb_set_rxmode,
2730 	.ndo_set_mac_address  = cxgb_set_mac_addr,
2731 	.ndo_set_features     = cxgb_set_features,
2732 	.ndo_validate_addr    = eth_validate_addr,
2733 	.ndo_do_ioctl         = cxgb_ioctl,
2734 	.ndo_change_mtu       = cxgb_change_mtu,
2735 #ifdef CONFIG_NET_POLL_CONTROLLER
2736 	.ndo_poll_controller  = cxgb_netpoll,
2737 #endif
2738 #ifdef CONFIG_CHELSIO_T4_FCOE
2739 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
2740 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
2741 #endif /* CONFIG_CHELSIO_T4_FCOE */
2742 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
2743 	.ndo_setup_tc         = cxgb_setup_tc,
2744 };
2745 
2746 #ifdef CONFIG_PCI_IOV
2747 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
2748 	.ndo_open             = dummy_open,
2749 	.ndo_set_vf_mac       = cxgb_set_vf_mac,
2750 	.ndo_get_vf_config    = cxgb_get_vf_config,
2751 	.ndo_get_phys_port_id = cxgb_get_phys_port_id,
2752 };
2753 #endif
2754 
2755 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2756 {
2757 	struct adapter *adapter = netdev2adap(dev);
2758 
2759 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
2760 	strlcpy(info->version, cxgb4_driver_version,
2761 		sizeof(info->version));
2762 	strlcpy(info->bus_info, pci_name(adapter->pdev),
2763 		sizeof(info->bus_info));
2764 }
2765 
2766 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
2767 	.get_drvinfo       = get_drvinfo,
2768 };
2769 
2770 void t4_fatal_err(struct adapter *adap)
2771 {
2772 	int port;
2773 
2774 	/* Disable the SGE since ULDs are going to free resources that
2775 	 * could be exposed to the adapter.  RDMA MWs for example...
2776 	 */
2777 	t4_shutdown_adapter(adap);
2778 	for_each_port(adap, port) {
2779 		struct net_device *dev = adap->port[port];
2780 
2781 		/* If we get here in very early initialization the network
2782 		 * devices may not have been set up yet.
2783 		 */
2784 		if (!dev)
2785 			continue;
2786 
2787 		netif_tx_stop_all_queues(dev);
2788 		netif_carrier_off(dev);
2789 	}
2790 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2791 }
2792 
2793 static void setup_memwin(struct adapter *adap)
2794 {
2795 	u32 nic_win_base = t4_get_util_window(adap);
2796 
2797 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
2798 }
2799 
2800 static void setup_memwin_rdma(struct adapter *adap)
2801 {
2802 	if (adap->vres.ocq.size) {
2803 		u32 start;
2804 		unsigned int sz_kb;
2805 
2806 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
2807 		start &= PCI_BASE_ADDRESS_MEM_MASK;
2808 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2809 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
2810 		t4_write_reg(adap,
2811 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
2812 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
2813 		t4_write_reg(adap,
2814 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
2815 			     adap->vres.ocq.start);
2816 		t4_read_reg(adap,
2817 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
2818 	}
2819 }
2820 
2821 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
2822 {
2823 	u32 v;
2824 	int ret;
2825 
2826 	/* get device capabilities */
2827 	memset(c, 0, sizeof(*c));
2828 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2829 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
2830 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
2831 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
2832 	if (ret < 0)
2833 		return ret;
2834 
2835 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2836 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
2837 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
2838 	if (ret < 0)
2839 		return ret;
2840 
2841 	ret = t4_config_glbl_rss(adap, adap->pf,
2842 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2843 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
2844 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
2845 	if (ret < 0)
2846 		return ret;
2847 
2848 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
2849 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
2850 			  FW_CMD_CAP_PF);
2851 	if (ret < 0)
2852 		return ret;
2853 
2854 	t4_sge_init(adap);
2855 
2856 	/* tweak some settings */
2857 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
2858 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
2859 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
2860 	v = t4_read_reg(adap, TP_PIO_DATA_A);
2861 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
2862 
2863 	/* first 4 Tx modulation queues point to consecutive Tx channels */
2864 	adap->params.tp.tx_modq_map = 0xE4;
2865 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
2866 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
2867 
2868 	/* associate each Tx modulation queue with consecutive Tx channels */
2869 	v = 0x84218421;
2870 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2871 			  &v, 1, TP_TX_SCHED_HDR_A);
2872 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2873 			  &v, 1, TP_TX_SCHED_FIFO_A);
2874 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2875 			  &v, 1, TP_TX_SCHED_PCMD_A);
2876 
2877 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
2878 	if (is_offload(adap)) {
2879 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
2880 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2881 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2882 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2883 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2884 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
2885 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2886 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2887 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2888 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2889 	}
2890 
2891 	/* get basic stuff going */
2892 	return t4_early_init(adap, adap->pf);
2893 }
2894 
2895 /*
2896  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
2897  */
2898 #define MAX_ATIDS 8192U
2899 
2900 /*
2901  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2902  *
2903  * If the firmware we're dealing with has Configuration File support, then
2904  * we use that to perform all configuration
2905  */
2906 
2907 /*
2908  * Tweak configuration based on module parameters, etc.  Most of these have
2909  * defaults assigned to them by Firmware Configuration Files (if we're using
2910  * them) but need to be explicitly set if we're using hard-coded
2911  * initialization.  But even in the case of using Firmware Configuration
2912  * Files, we'd like to expose the ability to change these via module
2913  * parameters so these are essentially common tweaks/settings for
2914  * Configuration Files and hard-coded initialization ...
2915  */
2916 static int adap_init0_tweaks(struct adapter *adapter)
2917 {
2918 	/*
2919 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
2920 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
2921 	 * 64B Cache Line Size ...
2922 	 */
2923 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
2924 
2925 	/*
2926 	 * Process module parameters which affect early initialization.
2927 	 */
2928 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
2929 		dev_err(&adapter->pdev->dev,
2930 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
2931 			rx_dma_offset);
2932 		rx_dma_offset = 2;
2933 	}
2934 	t4_set_reg_field(adapter, SGE_CONTROL_A,
2935 			 PKTSHIFT_V(PKTSHIFT_M),
2936 			 PKTSHIFT_V(rx_dma_offset));
2937 
2938 	/*
2939 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
2940 	 * adds the pseudo header itself.
2941 	 */
2942 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
2943 			       CSUM_HAS_PSEUDO_HDR_F, 0);
2944 
2945 	return 0;
2946 }
2947 
2948 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
2949  * unto themselves and they contain their own firmware to perform their
2950  * tasks ...
2951  */
2952 static int phy_aq1202_version(const u8 *phy_fw_data,
2953 			      size_t phy_fw_size)
2954 {
2955 	int offset;
2956 
2957 	/* At offset 0x8 you're looking for the primary image's
2958 	 * starting offset which is 3 Bytes wide
2959 	 *
2960 	 * At offset 0xa of the primary image, you look for the offset
2961 	 * of the DRAM segment which is 3 Bytes wide.
2962 	 *
2963 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
2964 	 * wide
2965 	 */
2966 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
2967 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
2968 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
2969 
2970 	offset = le24(phy_fw_data + 0x8) << 12;
2971 	offset = le24(phy_fw_data + offset + 0xa);
2972 	return be16(phy_fw_data + offset + 0x27e);
2973 
2974 	#undef be16
2975 	#undef le16
2976 	#undef le24
2977 }
2978 
2979 static struct info_10gbt_phy_fw {
2980 	unsigned int phy_fw_id;		/* PCI Device ID */
2981 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
2982 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
2983 	int phy_flash;			/* Has FLASH for PHY Firmware */
2984 } phy_info_array[] = {
2985 	{
2986 		PHY_AQ1202_DEVICEID,
2987 		PHY_AQ1202_FIRMWARE,
2988 		phy_aq1202_version,
2989 		1,
2990 	},
2991 	{
2992 		PHY_BCM84834_DEVICEID,
2993 		PHY_BCM84834_FIRMWARE,
2994 		NULL,
2995 		0,
2996 	},
2997 	{ 0, NULL, NULL },
2998 };
2999 
3000 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3001 {
3002 	int i;
3003 
3004 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3005 		if (phy_info_array[i].phy_fw_id == devid)
3006 			return &phy_info_array[i];
3007 	}
3008 	return NULL;
3009 }
3010 
3011 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3012  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3013  * we return a negative error number.  If we transfer new firmware we return 1
3014  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3015  */
3016 static int adap_init0_phy(struct adapter *adap)
3017 {
3018 	const struct firmware *phyf;
3019 	int ret;
3020 	struct info_10gbt_phy_fw *phy_info;
3021 
3022 	/* Use the device ID to determine which PHY file to flash.
3023 	 */
3024 	phy_info = find_phy_info(adap->pdev->device);
3025 	if (!phy_info) {
3026 		dev_warn(adap->pdev_dev,
3027 			 "No PHY Firmware file found for this PHY\n");
3028 		return -EOPNOTSUPP;
3029 	}
3030 
3031 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3032 	 * use that. The adapter firmware provides us with a memory buffer
3033 	 * where we can load a PHY firmware file from the host if we want to
3034 	 * override the PHY firmware File in flash.
3035 	 */
3036 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3037 				      adap->pdev_dev);
3038 	if (ret < 0) {
3039 		/* For adapters without FLASH attached to PHY for their
3040 		 * firmware, it's obviously a fatal error if we can't get the
3041 		 * firmware to the adapter.  For adapters with PHY firmware
3042 		 * FLASH storage, it's worth a warning if we can't find the
3043 		 * PHY Firmware but we'll neuter the error ...
3044 		 */
3045 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3046 			"/lib/firmware/%s, error %d\n",
3047 			phy_info->phy_fw_file, -ret);
3048 		if (phy_info->phy_flash) {
3049 			int cur_phy_fw_ver = 0;
3050 
3051 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3052 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3053 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3054 			ret = 0;
3055 		}
3056 
3057 		return ret;
3058 	}
3059 
3060 	/* Load PHY Firmware onto adapter.
3061 	 */
3062 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3063 			     phy_info->phy_fw_version,
3064 			     (u8 *)phyf->data, phyf->size);
3065 	if (ret < 0)
3066 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3067 			-ret);
3068 	else if (ret > 0) {
3069 		int new_phy_fw_ver = 0;
3070 
3071 		if (phy_info->phy_fw_version)
3072 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3073 								  phyf->size);
3074 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3075 			 "Firmware /lib/firmware/%s, version %#x\n",
3076 			 phy_info->phy_fw_file, new_phy_fw_ver);
3077 	}
3078 
3079 	release_firmware(phyf);
3080 
3081 	return ret;
3082 }
3083 
3084 /*
3085  * Attempt to initialize the adapter via a Firmware Configuration File.
3086  */
3087 static int adap_init0_config(struct adapter *adapter, int reset)
3088 {
3089 	struct fw_caps_config_cmd caps_cmd;
3090 	const struct firmware *cf;
3091 	unsigned long mtype = 0, maddr = 0;
3092 	u32 finiver, finicsum, cfcsum;
3093 	int ret;
3094 	int config_issued = 0;
3095 	char *fw_config_file, fw_config_file_path[256];
3096 	char *config_name = NULL;
3097 
3098 	/*
3099 	 * Reset device if necessary.
3100 	 */
3101 	if (reset) {
3102 		ret = t4_fw_reset(adapter, adapter->mbox,
3103 				  PIORSTMODE_F | PIORST_F);
3104 		if (ret < 0)
3105 			goto bye;
3106 	}
3107 
3108 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3109 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3110 	 * to be performed after any global adapter RESET above since some
3111 	 * PHYs only have local RAM copies of the PHY firmware.
3112 	 */
3113 	if (is_10gbt_device(adapter->pdev->device)) {
3114 		ret = adap_init0_phy(adapter);
3115 		if (ret < 0)
3116 			goto bye;
3117 	}
3118 	/*
3119 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3120 	 * then use that.  Otherwise, use the configuration file stored
3121 	 * in the adapter flash ...
3122 	 */
3123 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3124 	case CHELSIO_T4:
3125 		fw_config_file = FW4_CFNAME;
3126 		break;
3127 	case CHELSIO_T5:
3128 		fw_config_file = FW5_CFNAME;
3129 		break;
3130 	case CHELSIO_T6:
3131 		fw_config_file = FW6_CFNAME;
3132 		break;
3133 	default:
3134 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3135 		       adapter->pdev->device);
3136 		ret = -EINVAL;
3137 		goto bye;
3138 	}
3139 
3140 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3141 	if (ret < 0) {
3142 		config_name = "On FLASH";
3143 		mtype = FW_MEMTYPE_CF_FLASH;
3144 		maddr = t4_flash_cfg_addr(adapter);
3145 	} else {
3146 		u32 params[7], val[7];
3147 
3148 		sprintf(fw_config_file_path,
3149 			"/lib/firmware/%s", fw_config_file);
3150 		config_name = fw_config_file_path;
3151 
3152 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3153 			ret = -ENOMEM;
3154 		else {
3155 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3156 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3157 			ret = t4_query_params(adapter, adapter->mbox,
3158 					      adapter->pf, 0, 1, params, val);
3159 			if (ret == 0) {
3160 				/*
3161 				 * For t4_memory_rw() below addresses and
3162 				 * sizes have to be in terms of multiples of 4
3163 				 * bytes.  So, if the Configuration File isn't
3164 				 * a multiple of 4 bytes in length we'll have
3165 				 * to write that out separately since we can't
3166 				 * guarantee that the bytes following the
3167 				 * residual byte in the buffer returned by
3168 				 * request_firmware() are zeroed out ...
3169 				 */
3170 				size_t resid = cf->size & 0x3;
3171 				size_t size = cf->size & ~0x3;
3172 				__be32 *data = (__be32 *)cf->data;
3173 
3174 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3175 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3176 
3177 				spin_lock(&adapter->win0_lock);
3178 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3179 						   size, data, T4_MEMORY_WRITE);
3180 				if (ret == 0 && resid != 0) {
3181 					union {
3182 						__be32 word;
3183 						char buf[4];
3184 					} last;
3185 					int i;
3186 
3187 					last.word = data[size >> 2];
3188 					for (i = resid; i < 4; i++)
3189 						last.buf[i] = 0;
3190 					ret = t4_memory_rw(adapter, 0, mtype,
3191 							   maddr + size,
3192 							   4, &last.word,
3193 							   T4_MEMORY_WRITE);
3194 				}
3195 				spin_unlock(&adapter->win0_lock);
3196 			}
3197 		}
3198 
3199 		release_firmware(cf);
3200 		if (ret)
3201 			goto bye;
3202 	}
3203 
3204 	/*
3205 	 * Issue a Capability Configuration command to the firmware to get it
3206 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3207 	 * because we want the ability to modify various features after we've
3208 	 * processed the configuration file ...
3209 	 */
3210 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3211 	caps_cmd.op_to_write =
3212 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3213 		      FW_CMD_REQUEST_F |
3214 		      FW_CMD_READ_F);
3215 	caps_cmd.cfvalid_to_len16 =
3216 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3217 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3218 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3219 		      FW_LEN16(caps_cmd));
3220 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3221 			 &caps_cmd);
3222 
3223 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3224 	 * Configuration File in FLASH), our last gasp effort is to use the
3225 	 * Firmware Configuration File which is embedded in the firmware.  A
3226 	 * very few early versions of the firmware didn't have one embedded
3227 	 * but we can ignore those.
3228 	 */
3229 	if (ret == -ENOENT) {
3230 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3231 		caps_cmd.op_to_write =
3232 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3233 					FW_CMD_REQUEST_F |
3234 					FW_CMD_READ_F);
3235 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3236 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3237 				sizeof(caps_cmd), &caps_cmd);
3238 		config_name = "Firmware Default";
3239 	}
3240 
3241 	config_issued = 1;
3242 	if (ret < 0)
3243 		goto bye;
3244 
3245 	finiver = ntohl(caps_cmd.finiver);
3246 	finicsum = ntohl(caps_cmd.finicsum);
3247 	cfcsum = ntohl(caps_cmd.cfcsum);
3248 	if (finicsum != cfcsum)
3249 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3250 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3251 			 finicsum, cfcsum);
3252 
3253 	/*
3254 	 * And now tell the firmware to use the configuration we just loaded.
3255 	 */
3256 	caps_cmd.op_to_write =
3257 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3258 		      FW_CMD_REQUEST_F |
3259 		      FW_CMD_WRITE_F);
3260 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3261 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3262 			 NULL);
3263 	if (ret < 0)
3264 		goto bye;
3265 
3266 	/*
3267 	 * Tweak configuration based on system architecture, module
3268 	 * parameters, etc.
3269 	 */
3270 	ret = adap_init0_tweaks(adapter);
3271 	if (ret < 0)
3272 		goto bye;
3273 
3274 	/*
3275 	 * And finally tell the firmware to initialize itself using the
3276 	 * parameters from the Configuration File.
3277 	 */
3278 	ret = t4_fw_initialize(adapter, adapter->mbox);
3279 	if (ret < 0)
3280 		goto bye;
3281 
3282 	/* Emit Firmware Configuration File information and return
3283 	 * successfully.
3284 	 */
3285 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3286 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3287 		 config_name, finiver, cfcsum);
3288 	return 0;
3289 
3290 	/*
3291 	 * Something bad happened.  Return the error ...  (If the "error"
3292 	 * is that there's no Configuration File on the adapter we don't
3293 	 * want to issue a warning since this is fairly common.)
3294 	 */
3295 bye:
3296 	if (config_issued && ret != -ENOENT)
3297 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3298 			 config_name, -ret);
3299 	return ret;
3300 }
3301 
3302 static struct fw_info fw_info_array[] = {
3303 	{
3304 		.chip = CHELSIO_T4,
3305 		.fs_name = FW4_CFNAME,
3306 		.fw_mod_name = FW4_FNAME,
3307 		.fw_hdr = {
3308 			.chip = FW_HDR_CHIP_T4,
3309 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3310 			.intfver_nic = FW_INTFVER(T4, NIC),
3311 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3312 			.intfver_ri = FW_INTFVER(T4, RI),
3313 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3314 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3315 		},
3316 	}, {
3317 		.chip = CHELSIO_T5,
3318 		.fs_name = FW5_CFNAME,
3319 		.fw_mod_name = FW5_FNAME,
3320 		.fw_hdr = {
3321 			.chip = FW_HDR_CHIP_T5,
3322 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3323 			.intfver_nic = FW_INTFVER(T5, NIC),
3324 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3325 			.intfver_ri = FW_INTFVER(T5, RI),
3326 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3327 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3328 		},
3329 	}, {
3330 		.chip = CHELSIO_T6,
3331 		.fs_name = FW6_CFNAME,
3332 		.fw_mod_name = FW6_FNAME,
3333 		.fw_hdr = {
3334 			.chip = FW_HDR_CHIP_T6,
3335 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3336 			.intfver_nic = FW_INTFVER(T6, NIC),
3337 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3338 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3339 			.intfver_ri = FW_INTFVER(T6, RI),
3340 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3341 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3342 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3343 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3344 		},
3345 	}
3346 
3347 };
3348 
3349 static struct fw_info *find_fw_info(int chip)
3350 {
3351 	int i;
3352 
3353 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3354 		if (fw_info_array[i].chip == chip)
3355 			return &fw_info_array[i];
3356 	}
3357 	return NULL;
3358 }
3359 
3360 /*
3361  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3362  */
3363 static int adap_init0(struct adapter *adap)
3364 {
3365 	int ret;
3366 	u32 v, port_vec;
3367 	enum dev_state state;
3368 	u32 params[7], val[7];
3369 	struct fw_caps_config_cmd caps_cmd;
3370 	int reset = 1;
3371 
3372 	/* Grab Firmware Device Log parameters as early as possible so we have
3373 	 * access to it for debugging, etc.
3374 	 */
3375 	ret = t4_init_devlog_params(adap);
3376 	if (ret < 0)
3377 		return ret;
3378 
3379 	/* Contact FW, advertising Master capability */
3380 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3381 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3382 	if (ret < 0) {
3383 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3384 			ret);
3385 		return ret;
3386 	}
3387 	if (ret == adap->mbox)
3388 		adap->flags |= MASTER_PF;
3389 
3390 	/*
3391 	 * If we're the Master PF Driver and the device is uninitialized,
3392 	 * then let's consider upgrading the firmware ...  (We always want
3393 	 * to check the firmware version number in order to A. get it for
3394 	 * later reporting and B. to warn if the currently loaded firmware
3395 	 * is excessively mismatched relative to the driver.)
3396 	 */
3397 	t4_get_fw_version(adap, &adap->params.fw_vers);
3398 	t4_get_bs_version(adap, &adap->params.bs_vers);
3399 	t4_get_tp_version(adap, &adap->params.tp_vers);
3400 	t4_get_exprom_version(adap, &adap->params.er_vers);
3401 
3402 	ret = t4_check_fw_version(adap);
3403 	/* If firmware is too old (not supported by driver) force an update. */
3404 	if (ret)
3405 		state = DEV_STATE_UNINIT;
3406 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3407 		struct fw_info *fw_info;
3408 		struct fw_hdr *card_fw;
3409 		const struct firmware *fw;
3410 		const u8 *fw_data = NULL;
3411 		unsigned int fw_size = 0;
3412 
3413 		/* This is the firmware whose headers the driver was compiled
3414 		 * against
3415 		 */
3416 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3417 		if (fw_info == NULL) {
3418 			dev_err(adap->pdev_dev,
3419 				"unable to get firmware info for chip %d.\n",
3420 				CHELSIO_CHIP_VERSION(adap->params.chip));
3421 			return -EINVAL;
3422 		}
3423 
3424 		/* allocate memory to read the header of the firmware on the
3425 		 * card
3426 		 */
3427 		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
3428 
3429 		/* Get FW from from /lib/firmware/ */
3430 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3431 				       adap->pdev_dev);
3432 		if (ret < 0) {
3433 			dev_err(adap->pdev_dev,
3434 				"unable to load firmware image %s, error %d\n",
3435 				fw_info->fw_mod_name, ret);
3436 		} else {
3437 			fw_data = fw->data;
3438 			fw_size = fw->size;
3439 		}
3440 
3441 		/* upgrade FW logic */
3442 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3443 				 state, &reset);
3444 
3445 		/* Cleaning up */
3446 		release_firmware(fw);
3447 		kvfree(card_fw);
3448 
3449 		if (ret < 0)
3450 			goto bye;
3451 	}
3452 
3453 	/*
3454 	 * Grab VPD parameters.  This should be done after we establish a
3455 	 * connection to the firmware since some of the VPD parameters
3456 	 * (notably the Core Clock frequency) are retrieved via requests to
3457 	 * the firmware.  On the other hand, we need these fairly early on
3458 	 * so we do this right after getting ahold of the firmware.
3459 	 */
3460 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3461 	if (ret < 0)
3462 		goto bye;
3463 
3464 	/*
3465 	 * Find out what ports are available to us.  Note that we need to do
3466 	 * this before calling adap_init0_no_config() since it needs nports
3467 	 * and portvec ...
3468 	 */
3469 	v =
3470 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3471 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3472 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3473 	if (ret < 0)
3474 		goto bye;
3475 
3476 	adap->params.nports = hweight32(port_vec);
3477 	adap->params.portvec = port_vec;
3478 
3479 	/* If the firmware is initialized already, emit a simply note to that
3480 	 * effect. Otherwise, it's time to try initializing the adapter.
3481 	 */
3482 	if (state == DEV_STATE_INIT) {
3483 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3484 			 "Adapter already initialized\n",
3485 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3486 	} else {
3487 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3488 			 "Initializing adapter\n");
3489 
3490 		/* Find out whether we're dealing with a version of the
3491 		 * firmware which has configuration file support.
3492 		 */
3493 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3494 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3495 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3496 				      params, val);
3497 
3498 		/* If the firmware doesn't support Configuration Files,
3499 		 * return an error.
3500 		 */
3501 		if (ret < 0) {
3502 			dev_err(adap->pdev_dev, "firmware doesn't support "
3503 				"Firmware Configuration Files\n");
3504 			goto bye;
3505 		}
3506 
3507 		/* The firmware provides us with a memory buffer where we can
3508 		 * load a Configuration File from the host if we want to
3509 		 * override the Configuration File in flash.
3510 		 */
3511 		ret = adap_init0_config(adap, reset);
3512 		if (ret == -ENOENT) {
3513 			dev_err(adap->pdev_dev, "no Configuration File "
3514 				"present on adapter.\n");
3515 			goto bye;
3516 		}
3517 		if (ret < 0) {
3518 			dev_err(adap->pdev_dev, "could not initialize "
3519 				"adapter, error %d\n", -ret);
3520 			goto bye;
3521 		}
3522 	}
3523 
3524 	/* Give the SGE code a chance to pull in anything that it needs ...
3525 	 * Note that this must be called after we retrieve our VPD parameters
3526 	 * in order to know how to convert core ticks to seconds, etc.
3527 	 */
3528 	ret = t4_sge_init(adap);
3529 	if (ret < 0)
3530 		goto bye;
3531 
3532 	if (is_bypass_device(adap->pdev->device))
3533 		adap->params.bypass = 1;
3534 
3535 	/*
3536 	 * Grab some of our basic fundamental operating parameters.
3537 	 */
3538 #define FW_PARAM_DEV(param) \
3539 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3540 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3541 
3542 #define FW_PARAM_PFVF(param) \
3543 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3544 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3545 	FW_PARAMS_PARAM_Y_V(0) | \
3546 	FW_PARAMS_PARAM_Z_V(0)
3547 
3548 	params[0] = FW_PARAM_PFVF(EQ_START);
3549 	params[1] = FW_PARAM_PFVF(L2T_START);
3550 	params[2] = FW_PARAM_PFVF(L2T_END);
3551 	params[3] = FW_PARAM_PFVF(FILTER_START);
3552 	params[4] = FW_PARAM_PFVF(FILTER_END);
3553 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3554 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3555 	if (ret < 0)
3556 		goto bye;
3557 	adap->sge.egr_start = val[0];
3558 	adap->l2t_start = val[1];
3559 	adap->l2t_end = val[2];
3560 	adap->tids.ftid_base = val[3];
3561 	adap->tids.nftids = val[4] - val[3] + 1;
3562 	adap->sge.ingr_start = val[5];
3563 
3564 	/* qids (ingress/egress) returned from firmware can be anywhere
3565 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3566 	 * Hence driver needs to allocate memory for this range to
3567 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3568 	 * in FW_EQ_*_CMD.alloc command.
3569 	 */
3570 	params[0] = FW_PARAM_PFVF(EQ_END);
3571 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3572 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3573 	if (ret < 0)
3574 		goto bye;
3575 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3576 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3577 
3578 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3579 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3580 	if (!adap->sge.egr_map) {
3581 		ret = -ENOMEM;
3582 		goto bye;
3583 	}
3584 
3585 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3586 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3587 	if (!adap->sge.ingr_map) {
3588 		ret = -ENOMEM;
3589 		goto bye;
3590 	}
3591 
3592 	/* Allocate the memory for the vaious egress queue bitmaps
3593 	 * ie starving_fl, txq_maperr and blocked_fl.
3594 	 */
3595 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3596 					sizeof(long), GFP_KERNEL);
3597 	if (!adap->sge.starving_fl) {
3598 		ret = -ENOMEM;
3599 		goto bye;
3600 	}
3601 
3602 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3603 				       sizeof(long), GFP_KERNEL);
3604 	if (!adap->sge.txq_maperr) {
3605 		ret = -ENOMEM;
3606 		goto bye;
3607 	}
3608 
3609 #ifdef CONFIG_DEBUG_FS
3610 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3611 				       sizeof(long), GFP_KERNEL);
3612 	if (!adap->sge.blocked_fl) {
3613 		ret = -ENOMEM;
3614 		goto bye;
3615 	}
3616 #endif
3617 
3618 	params[0] = FW_PARAM_PFVF(CLIP_START);
3619 	params[1] = FW_PARAM_PFVF(CLIP_END);
3620 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3621 	if (ret < 0)
3622 		goto bye;
3623 	adap->clipt_start = val[0];
3624 	adap->clipt_end = val[1];
3625 
3626 	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
3627 	 * Classes supported by the hardware/firmware so we hard code it here
3628 	 * for now.
3629 	 */
3630 	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3631 
3632 	/* query params related to active filter region */
3633 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3634 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3635 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3636 	/* If Active filter size is set we enable establishing
3637 	 * offload connection through firmware work request
3638 	 */
3639 	if ((val[0] != val[1]) && (ret >= 0)) {
3640 		adap->flags |= FW_OFLD_CONN;
3641 		adap->tids.aftid_base = val[0];
3642 		adap->tids.aftid_end = val[1];
3643 	}
3644 
3645 	/* If we're running on newer firmware, let it know that we're
3646 	 * prepared to deal with encapsulated CPL messages.  Older
3647 	 * firmware won't understand this and we'll just get
3648 	 * unencapsulated messages ...
3649 	 */
3650 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3651 	val[0] = 1;
3652 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3653 
3654 	/*
3655 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3656 	 * capability.  Earlier versions of the firmware didn't have the
3657 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3658 	 * permission to use ULPTX MEMWRITE DSGL.
3659 	 */
3660 	if (is_t4(adap->params.chip)) {
3661 		adap->params.ulptx_memwrite_dsgl = false;
3662 	} else {
3663 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3664 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3665 				      1, params, val);
3666 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3667 	}
3668 
3669 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
3670 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
3671 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3672 			      1, params, val);
3673 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
3674 
3675 	/*
3676 	 * Get device capabilities so we can determine what resources we need
3677 	 * to manage.
3678 	 */
3679 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3680 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3681 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3682 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3683 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3684 			 &caps_cmd);
3685 	if (ret < 0)
3686 		goto bye;
3687 
3688 	if (caps_cmd.ofldcaps) {
3689 		/* query offload-related parameters */
3690 		params[0] = FW_PARAM_DEV(NTID);
3691 		params[1] = FW_PARAM_PFVF(SERVER_START);
3692 		params[2] = FW_PARAM_PFVF(SERVER_END);
3693 		params[3] = FW_PARAM_PFVF(TDDP_START);
3694 		params[4] = FW_PARAM_PFVF(TDDP_END);
3695 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3696 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3697 				      params, val);
3698 		if (ret < 0)
3699 			goto bye;
3700 		adap->tids.ntids = val[0];
3701 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3702 		adap->tids.stid_base = val[1];
3703 		adap->tids.nstids = val[2] - val[1] + 1;
3704 		/*
3705 		 * Setup server filter region. Divide the available filter
3706 		 * region into two parts. Regular filters get 1/3rd and server
3707 		 * filters get 2/3rd part. This is only enabled if workarond
3708 		 * path is enabled.
3709 		 * 1. For regular filters.
3710 		 * 2. Server filter: This are special filters which are used
3711 		 * to redirect SYN packets to offload queue.
3712 		 */
3713 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3714 			adap->tids.sftid_base = adap->tids.ftid_base +
3715 					DIV_ROUND_UP(adap->tids.nftids, 3);
3716 			adap->tids.nsftids = adap->tids.nftids -
3717 					 DIV_ROUND_UP(adap->tids.nftids, 3);
3718 			adap->tids.nftids = adap->tids.sftid_base -
3719 						adap->tids.ftid_base;
3720 		}
3721 		adap->vres.ddp.start = val[3];
3722 		adap->vres.ddp.size = val[4] - val[3] + 1;
3723 		adap->params.ofldq_wr_cred = val[5];
3724 
3725 		adap->params.offload = 1;
3726 		adap->num_ofld_uld += 1;
3727 	}
3728 	if (caps_cmd.rdmacaps) {
3729 		params[0] = FW_PARAM_PFVF(STAG_START);
3730 		params[1] = FW_PARAM_PFVF(STAG_END);
3731 		params[2] = FW_PARAM_PFVF(RQ_START);
3732 		params[3] = FW_PARAM_PFVF(RQ_END);
3733 		params[4] = FW_PARAM_PFVF(PBL_START);
3734 		params[5] = FW_PARAM_PFVF(PBL_END);
3735 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3736 				      params, val);
3737 		if (ret < 0)
3738 			goto bye;
3739 		adap->vres.stag.start = val[0];
3740 		adap->vres.stag.size = val[1] - val[0] + 1;
3741 		adap->vres.rq.start = val[2];
3742 		adap->vres.rq.size = val[3] - val[2] + 1;
3743 		adap->vres.pbl.start = val[4];
3744 		adap->vres.pbl.size = val[5] - val[4] + 1;
3745 
3746 		params[0] = FW_PARAM_PFVF(SQRQ_START);
3747 		params[1] = FW_PARAM_PFVF(SQRQ_END);
3748 		params[2] = FW_PARAM_PFVF(CQ_START);
3749 		params[3] = FW_PARAM_PFVF(CQ_END);
3750 		params[4] = FW_PARAM_PFVF(OCQ_START);
3751 		params[5] = FW_PARAM_PFVF(OCQ_END);
3752 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3753 				      val);
3754 		if (ret < 0)
3755 			goto bye;
3756 		adap->vres.qp.start = val[0];
3757 		adap->vres.qp.size = val[1] - val[0] + 1;
3758 		adap->vres.cq.start = val[2];
3759 		adap->vres.cq.size = val[3] - val[2] + 1;
3760 		adap->vres.ocq.start = val[4];
3761 		adap->vres.ocq.size = val[5] - val[4] + 1;
3762 
3763 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3764 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3765 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3766 				      val);
3767 		if (ret < 0) {
3768 			adap->params.max_ordird_qp = 8;
3769 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3770 			ret = 0;
3771 		} else {
3772 			adap->params.max_ordird_qp = val[0];
3773 			adap->params.max_ird_adapter = val[1];
3774 		}
3775 		dev_info(adap->pdev_dev,
3776 			 "max_ordird_qp %d max_ird_adapter %d\n",
3777 			 adap->params.max_ordird_qp,
3778 			 adap->params.max_ird_adapter);
3779 		adap->num_ofld_uld += 2;
3780 	}
3781 	if (caps_cmd.iscsicaps) {
3782 		params[0] = FW_PARAM_PFVF(ISCSI_START);
3783 		params[1] = FW_PARAM_PFVF(ISCSI_END);
3784 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3785 				      params, val);
3786 		if (ret < 0)
3787 			goto bye;
3788 		adap->vres.iscsi.start = val[0];
3789 		adap->vres.iscsi.size = val[1] - val[0] + 1;
3790 		/* LIO target and cxgb4i initiaitor */
3791 		adap->num_ofld_uld += 2;
3792 	}
3793 	if (caps_cmd.cryptocaps) {
3794 		/* Should query params here...TODO */
3795 		params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
3796 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3797 				      params, val);
3798 		if (ret < 0) {
3799 			if (ret != -EINVAL)
3800 				goto bye;
3801 		} else {
3802 			adap->vres.ncrypto_fc = val[0];
3803 		}
3804 		adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
3805 		adap->num_uld += 1;
3806 	}
3807 #undef FW_PARAM_PFVF
3808 #undef FW_PARAM_DEV
3809 
3810 	/* The MTU/MSS Table is initialized by now, so load their values.  If
3811 	 * we're initializing the adapter, then we'll make any modifications
3812 	 * we want to the MTU/MSS Table and also initialize the congestion
3813 	 * parameters.
3814 	 */
3815 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3816 	if (state != DEV_STATE_INIT) {
3817 		int i;
3818 
3819 		/* The default MTU Table contains values 1492 and 1500.
3820 		 * However, for TCP, it's better to have two values which are
3821 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3822 		 * This allows us to have a TCP Data Payload which is a
3823 		 * multiple of 8 regardless of what combination of TCP Options
3824 		 * are in use (always a multiple of 4 bytes) which is
3825 		 * important for performance reasons.  For instance, if no
3826 		 * options are in use, then we have a 20-byte IP header and a
3827 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
3828 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3829 		 * which is not a multiple of 8.  So using an MSS of 1488 in
3830 		 * this case results in a TCP Data Payload of 1448 bytes which
3831 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
3832 		 * Stamps have been negotiated, then an MTU of 1500 bytes
3833 		 * results in a TCP Data Payload of 1448 bytes which, as
3834 		 * above, is a multiple of 8 bytes ...
3835 		 */
3836 		for (i = 0; i < NMTUS; i++)
3837 			if (adap->params.mtus[i] == 1492) {
3838 				adap->params.mtus[i] = 1488;
3839 				break;
3840 			}
3841 
3842 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3843 			     adap->params.b_wnd);
3844 	}
3845 	t4_init_sge_params(adap);
3846 	adap->flags |= FW_OK;
3847 	t4_init_tp_params(adap);
3848 	return 0;
3849 
3850 	/*
3851 	 * Something bad happened.  If a command timed out or failed with EIO
3852 	 * FW does not operate within its spec or something catastrophic
3853 	 * happened to HW/FW, stop issuing commands.
3854 	 */
3855 bye:
3856 	kfree(adap->sge.egr_map);
3857 	kfree(adap->sge.ingr_map);
3858 	kfree(adap->sge.starving_fl);
3859 	kfree(adap->sge.txq_maperr);
3860 #ifdef CONFIG_DEBUG_FS
3861 	kfree(adap->sge.blocked_fl);
3862 #endif
3863 	if (ret != -ETIMEDOUT && ret != -EIO)
3864 		t4_fw_bye(adap, adap->mbox);
3865 	return ret;
3866 }
3867 
3868 /* EEH callbacks */
3869 
3870 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3871 					 pci_channel_state_t state)
3872 {
3873 	int i;
3874 	struct adapter *adap = pci_get_drvdata(pdev);
3875 
3876 	if (!adap)
3877 		goto out;
3878 
3879 	rtnl_lock();
3880 	adap->flags &= ~FW_OK;
3881 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3882 	spin_lock(&adap->stats_lock);
3883 	for_each_port(adap, i) {
3884 		struct net_device *dev = adap->port[i];
3885 
3886 		netif_device_detach(dev);
3887 		netif_carrier_off(dev);
3888 	}
3889 	spin_unlock(&adap->stats_lock);
3890 	disable_interrupts(adap);
3891 	if (adap->flags & FULL_INIT_DONE)
3892 		cxgb_down(adap);
3893 	rtnl_unlock();
3894 	if ((adap->flags & DEV_ENABLED)) {
3895 		pci_disable_device(pdev);
3896 		adap->flags &= ~DEV_ENABLED;
3897 	}
3898 out:	return state == pci_channel_io_perm_failure ?
3899 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3900 }
3901 
3902 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3903 {
3904 	int i, ret;
3905 	struct fw_caps_config_cmd c;
3906 	struct adapter *adap = pci_get_drvdata(pdev);
3907 
3908 	if (!adap) {
3909 		pci_restore_state(pdev);
3910 		pci_save_state(pdev);
3911 		return PCI_ERS_RESULT_RECOVERED;
3912 	}
3913 
3914 	if (!(adap->flags & DEV_ENABLED)) {
3915 		if (pci_enable_device(pdev)) {
3916 			dev_err(&pdev->dev, "Cannot reenable PCI "
3917 					    "device after reset\n");
3918 			return PCI_ERS_RESULT_DISCONNECT;
3919 		}
3920 		adap->flags |= DEV_ENABLED;
3921 	}
3922 
3923 	pci_set_master(pdev);
3924 	pci_restore_state(pdev);
3925 	pci_save_state(pdev);
3926 	pci_cleanup_aer_uncorrect_error_status(pdev);
3927 
3928 	if (t4_wait_dev_ready(adap->regs) < 0)
3929 		return PCI_ERS_RESULT_DISCONNECT;
3930 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
3931 		return PCI_ERS_RESULT_DISCONNECT;
3932 	adap->flags |= FW_OK;
3933 	if (adap_init1(adap, &c))
3934 		return PCI_ERS_RESULT_DISCONNECT;
3935 
3936 	for_each_port(adap, i) {
3937 		struct port_info *p = adap2pinfo(adap, i);
3938 
3939 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
3940 				  NULL, NULL);
3941 		if (ret < 0)
3942 			return PCI_ERS_RESULT_DISCONNECT;
3943 		p->viid = ret;
3944 		p->xact_addr_filt = -1;
3945 	}
3946 
3947 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3948 		     adap->params.b_wnd);
3949 	setup_memwin(adap);
3950 	if (cxgb_up(adap))
3951 		return PCI_ERS_RESULT_DISCONNECT;
3952 	return PCI_ERS_RESULT_RECOVERED;
3953 }
3954 
3955 static void eeh_resume(struct pci_dev *pdev)
3956 {
3957 	int i;
3958 	struct adapter *adap = pci_get_drvdata(pdev);
3959 
3960 	if (!adap)
3961 		return;
3962 
3963 	rtnl_lock();
3964 	for_each_port(adap, i) {
3965 		struct net_device *dev = adap->port[i];
3966 
3967 		if (netif_running(dev)) {
3968 			link_start(dev);
3969 			cxgb_set_rxmode(dev);
3970 		}
3971 		netif_device_attach(dev);
3972 	}
3973 	rtnl_unlock();
3974 }
3975 
3976 static const struct pci_error_handlers cxgb4_eeh = {
3977 	.error_detected = eeh_err_detected,
3978 	.slot_reset     = eeh_slot_reset,
3979 	.resume         = eeh_resume,
3980 };
3981 
3982 /* Return true if the Link Configuration supports "High Speeds" (those greater
3983  * than 1Gb/s).
3984  */
3985 static inline bool is_x_10g_port(const struct link_config *lc)
3986 {
3987 	unsigned int speeds, high_speeds;
3988 
3989 	speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
3990 	high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);
3991 
3992 	return high_speeds != 0;
3993 }
3994 
3995 /*
3996  * Perform default configuration of DMA queues depending on the number and type
3997  * of ports we found and the number of available CPUs.  Most settings can be
3998  * modified by the admin prior to actual use.
3999  */
4000 static void cfg_queues(struct adapter *adap)
4001 {
4002 	struct sge *s = &adap->sge;
4003 	int i = 0, n10g = 0, qidx = 0;
4004 #ifndef CONFIG_CHELSIO_T4_DCB
4005 	int q10g = 0;
4006 #endif
4007 
4008 	/* Reduce memory usage in kdump environment, disable all offload.
4009 	 */
4010 	if (is_kdump_kernel()) {
4011 		adap->params.offload = 0;
4012 		adap->params.crypto = 0;
4013 	} else if (is_uld(adap) && t4_uld_mem_alloc(adap)) {
4014 		adap->params.offload = 0;
4015 		adap->params.crypto = 0;
4016 	}
4017 
4018 	n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4019 #ifdef CONFIG_CHELSIO_T4_DCB
4020 	/* For Data Center Bridging support we need to be able to support up
4021 	 * to 8 Traffic Priorities; each of which will be assigned to its
4022 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4023 	 */
4024 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4025 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4026 			MAX_ETH_QSETS, adap->params.nports * 8);
4027 		BUG_ON(1);
4028 	}
4029 
4030 	for_each_port(adap, i) {
4031 		struct port_info *pi = adap2pinfo(adap, i);
4032 
4033 		pi->first_qset = qidx;
4034 		pi->nqsets = 8;
4035 		qidx += pi->nqsets;
4036 	}
4037 #else /* !CONFIG_CHELSIO_T4_DCB */
4038 	/*
4039 	 * We default to 1 queue per non-10G port and up to # of cores queues
4040 	 * per 10G port.
4041 	 */
4042 	if (n10g)
4043 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4044 	if (q10g > netif_get_num_default_rss_queues())
4045 		q10g = netif_get_num_default_rss_queues();
4046 
4047 	for_each_port(adap, i) {
4048 		struct port_info *pi = adap2pinfo(adap, i);
4049 
4050 		pi->first_qset = qidx;
4051 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4052 		qidx += pi->nqsets;
4053 	}
4054 #endif /* !CONFIG_CHELSIO_T4_DCB */
4055 
4056 	s->ethqsets = qidx;
4057 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4058 
4059 	if (is_uld(adap)) {
4060 		/*
4061 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4062 		 * otherwise we divide all available queues amongst the channels
4063 		 * capped by the number of available cores.
4064 		 */
4065 		if (n10g) {
4066 			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4067 			s->ofldqsets = roundup(i, adap->params.nports);
4068 		} else {
4069 			s->ofldqsets = adap->params.nports;
4070 		}
4071 	}
4072 
4073 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4074 		struct sge_eth_rxq *r = &s->ethrxq[i];
4075 
4076 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4077 		r->fl.size = 72;
4078 	}
4079 
4080 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4081 		s->ethtxq[i].q.size = 1024;
4082 
4083 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4084 		s->ctrlq[i].q.size = 512;
4085 
4086 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4087 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4088 }
4089 
4090 /*
4091  * Reduce the number of Ethernet queues across all ports to at most n.
4092  * n provides at least one queue per port.
4093  */
4094 static void reduce_ethqs(struct adapter *adap, int n)
4095 {
4096 	int i;
4097 	struct port_info *pi;
4098 
4099 	while (n < adap->sge.ethqsets)
4100 		for_each_port(adap, i) {
4101 			pi = adap2pinfo(adap, i);
4102 			if (pi->nqsets > 1) {
4103 				pi->nqsets--;
4104 				adap->sge.ethqsets--;
4105 				if (adap->sge.ethqsets <= n)
4106 					break;
4107 			}
4108 		}
4109 
4110 	n = 0;
4111 	for_each_port(adap, i) {
4112 		pi = adap2pinfo(adap, i);
4113 		pi->first_qset = n;
4114 		n += pi->nqsets;
4115 	}
4116 }
4117 
4118 static int get_msix_info(struct adapter *adap)
4119 {
4120 	struct uld_msix_info *msix_info;
4121 	unsigned int max_ingq = 0;
4122 
4123 	if (is_offload(adap))
4124 		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4125 	if (is_pci_uld(adap))
4126 		max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4127 
4128 	if (!max_ingq)
4129 		goto out;
4130 
4131 	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4132 	if (!msix_info)
4133 		return -ENOMEM;
4134 
4135 	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4136 						 sizeof(long), GFP_KERNEL);
4137 	if (!adap->msix_bmap_ulds.msix_bmap) {
4138 		kfree(msix_info);
4139 		return -ENOMEM;
4140 	}
4141 	spin_lock_init(&adap->msix_bmap_ulds.lock);
4142 	adap->msix_info_ulds = msix_info;
4143 out:
4144 	return 0;
4145 }
4146 
4147 static void free_msix_info(struct adapter *adap)
4148 {
4149 	if (!(adap->num_uld && adap->num_ofld_uld))
4150 		return;
4151 
4152 	kfree(adap->msix_info_ulds);
4153 	kfree(adap->msix_bmap_ulds.msix_bmap);
4154 }
4155 
4156 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4157 #define EXTRA_VECS 2
4158 
4159 static int enable_msix(struct adapter *adap)
4160 {
4161 	int ofld_need = 0, uld_need = 0;
4162 	int i, j, want, need, allocated;
4163 	struct sge *s = &adap->sge;
4164 	unsigned int nchan = adap->params.nports;
4165 	struct msix_entry *entries;
4166 	int max_ingq = MAX_INGQ;
4167 
4168 	if (is_pci_uld(adap))
4169 		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4170 	if (is_offload(adap))
4171 		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4172 	entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4173 			  GFP_KERNEL);
4174 	if (!entries)
4175 		return -ENOMEM;
4176 
4177 	/* map for msix */
4178 	if (get_msix_info(adap)) {
4179 		adap->params.offload = 0;
4180 		adap->params.crypto = 0;
4181 	}
4182 
4183 	for (i = 0; i < max_ingq + 1; ++i)
4184 		entries[i].entry = i;
4185 
4186 	want = s->max_ethqsets + EXTRA_VECS;
4187 	if (is_offload(adap)) {
4188 		want += adap->num_ofld_uld * s->ofldqsets;
4189 		ofld_need = adap->num_ofld_uld * nchan;
4190 	}
4191 	if (is_pci_uld(adap)) {
4192 		want += adap->num_uld * s->ofldqsets;
4193 		uld_need = adap->num_uld * nchan;
4194 	}
4195 #ifdef CONFIG_CHELSIO_T4_DCB
4196 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4197 	 * each port.
4198 	 */
4199 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4200 #else
4201 	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4202 #endif
4203 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4204 	if (allocated < 0) {
4205 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4206 			 " not using MSI-X\n");
4207 		kfree(entries);
4208 		return allocated;
4209 	}
4210 
4211 	/* Distribute available vectors to the various queue groups.
4212 	 * Every group gets its minimum requirement and NIC gets top
4213 	 * priority for leftovers.
4214 	 */
4215 	i = allocated - EXTRA_VECS - ofld_need - uld_need;
4216 	if (i < s->max_ethqsets) {
4217 		s->max_ethqsets = i;
4218 		if (i < s->ethqsets)
4219 			reduce_ethqs(adap, i);
4220 	}
4221 	if (is_uld(adap)) {
4222 		if (allocated < want)
4223 			s->nqs_per_uld = nchan;
4224 		else
4225 			s->nqs_per_uld = s->ofldqsets;
4226 	}
4227 
4228 	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4229 		adap->msix_info[i].vec = entries[i].vector;
4230 	if (is_uld(adap)) {
4231 		for (j = 0 ; i < allocated; ++i, j++) {
4232 			adap->msix_info_ulds[j].vec = entries[i].vector;
4233 			adap->msix_info_ulds[j].idx = i;
4234 		}
4235 		adap->msix_bmap_ulds.mapsize = j;
4236 	}
4237 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4238 		 "nic %d per uld %d\n",
4239 		 allocated, s->max_ethqsets, s->nqs_per_uld);
4240 
4241 	kfree(entries);
4242 	return 0;
4243 }
4244 
4245 #undef EXTRA_VECS
4246 
4247 static int init_rss(struct adapter *adap)
4248 {
4249 	unsigned int i;
4250 	int err;
4251 
4252 	err = t4_init_rss_mode(adap, adap->mbox);
4253 	if (err)
4254 		return err;
4255 
4256 	for_each_port(adap, i) {
4257 		struct port_info *pi = adap2pinfo(adap, i);
4258 
4259 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4260 		if (!pi->rss)
4261 			return -ENOMEM;
4262 	}
4263 	return 0;
4264 }
4265 
4266 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4267 					enum pci_bus_speed *speed,
4268 					enum pcie_link_width *width)
4269 {
4270 	u32 lnkcap1, lnkcap2;
4271 	int err1, err2;
4272 
4273 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4274 
4275 	*speed = PCI_SPEED_UNKNOWN;
4276 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4277 
4278 	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4279 					  &lnkcap1);
4280 	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4281 					  &lnkcap2);
4282 	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4283 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4284 			*speed = PCIE_SPEED_8_0GT;
4285 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4286 			*speed = PCIE_SPEED_5_0GT;
4287 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4288 			*speed = PCIE_SPEED_2_5GT;
4289 	}
4290 	if (!err1) {
4291 		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4292 		if (!lnkcap2) { /* pre-r3.0 */
4293 			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4294 				*speed = PCIE_SPEED_5_0GT;
4295 			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4296 				*speed = PCIE_SPEED_2_5GT;
4297 		}
4298 	}
4299 
4300 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4301 		return err1 ? err1 : err2 ? err2 : -EINVAL;
4302 	return 0;
4303 }
4304 
4305 static void cxgb4_check_pcie_caps(struct adapter *adap)
4306 {
4307 	enum pcie_link_width width, width_cap;
4308 	enum pci_bus_speed speed, speed_cap;
4309 
4310 #define PCIE_SPEED_STR(speed) \
4311 	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4312 	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4313 	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4314 	 "Unknown")
4315 
4316 	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4317 		dev_warn(adap->pdev_dev,
4318 			 "Unable to determine PCIe device BW capabilities\n");
4319 		return;
4320 	}
4321 
4322 	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4323 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4324 		dev_warn(adap->pdev_dev,
4325 			 "Unable to determine PCI Express bandwidth.\n");
4326 		return;
4327 	}
4328 
4329 	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4330 		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4331 	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4332 		 width, width_cap);
4333 	if (speed < speed_cap || width < width_cap)
4334 		dev_info(adap->pdev_dev,
4335 			 "A slot with more lanes and/or higher speed is "
4336 			 "suggested for optimal performance.\n");
4337 }
4338 
4339 /* Dump basic information about the adapter */
4340 static void print_adapter_info(struct adapter *adapter)
4341 {
4342 	/* Device information */
4343 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4344 		 adapter->params.vpd.id,
4345 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4346 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4347 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
4348 
4349 	/* Firmware Version */
4350 	if (!adapter->params.fw_vers)
4351 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4352 	else
4353 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4354 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4355 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4356 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4357 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4358 
4359 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4360 	 * Firmware, so dev_info() is more appropriate here.)
4361 	 */
4362 	if (!adapter->params.bs_vers)
4363 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4364 	else
4365 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4366 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4367 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4368 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4369 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4370 
4371 	/* TP Microcode Version */
4372 	if (!adapter->params.tp_vers)
4373 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4374 	else
4375 		dev_info(adapter->pdev_dev,
4376 			 "TP Microcode version: %u.%u.%u.%u\n",
4377 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4378 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4379 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4380 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4381 
4382 	/* Expansion ROM version */
4383 	if (!adapter->params.er_vers)
4384 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4385 	else
4386 		dev_info(adapter->pdev_dev,
4387 			 "Expansion ROM version: %u.%u.%u.%u\n",
4388 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4389 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4390 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4391 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4392 
4393 	/* Software/Hardware configuration */
4394 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4395 		 is_offload(adapter) ? "R" : "",
4396 		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4397 		  (adapter->flags & USING_MSI) ? "MSI" : ""),
4398 		 is_offload(adapter) ? "Offload" : "non-Offload");
4399 }
4400 
4401 static void print_port_info(const struct net_device *dev)
4402 {
4403 	char buf[80];
4404 	char *bufp = buf;
4405 	const char *spd = "";
4406 	const struct port_info *pi = netdev_priv(dev);
4407 	const struct adapter *adap = pi->adapter;
4408 
4409 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4410 		spd = " 2.5 GT/s";
4411 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4412 		spd = " 5 GT/s";
4413 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4414 		spd = " 8 GT/s";
4415 
4416 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4417 		bufp += sprintf(bufp, "100M/");
4418 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4419 		bufp += sprintf(bufp, "1G/");
4420 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4421 		bufp += sprintf(bufp, "10G/");
4422 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
4423 		bufp += sprintf(bufp, "25G/");
4424 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4425 		bufp += sprintf(bufp, "40G/");
4426 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
4427 		bufp += sprintf(bufp, "100G/");
4428 	if (bufp != buf)
4429 		--bufp;
4430 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4431 
4432 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4433 		    dev->name, adap->params.vpd.id, adap->name, buf);
4434 }
4435 
4436 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4437 {
4438 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4439 }
4440 
4441 /*
4442  * Free the following resources:
4443  * - memory used for tables
4444  * - MSI/MSI-X
4445  * - net devices
4446  * - resources FW is holding for us
4447  */
4448 static void free_some_resources(struct adapter *adapter)
4449 {
4450 	unsigned int i;
4451 
4452 	kvfree(adapter->l2t);
4453 	t4_cleanup_sched(adapter);
4454 	kvfree(adapter->tids.tid_tab);
4455 	cxgb4_cleanup_tc_u32(adapter);
4456 	kfree(adapter->sge.egr_map);
4457 	kfree(adapter->sge.ingr_map);
4458 	kfree(adapter->sge.starving_fl);
4459 	kfree(adapter->sge.txq_maperr);
4460 #ifdef CONFIG_DEBUG_FS
4461 	kfree(adapter->sge.blocked_fl);
4462 #endif
4463 	disable_msi(adapter);
4464 
4465 	for_each_port(adapter, i)
4466 		if (adapter->port[i]) {
4467 			struct port_info *pi = adap2pinfo(adapter, i);
4468 
4469 			if (pi->viid != 0)
4470 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
4471 					   0, pi->viid);
4472 			kfree(adap2pinfo(adapter, i)->rss);
4473 			free_netdev(adapter->port[i]);
4474 		}
4475 	if (adapter->flags & FW_OK)
4476 		t4_fw_bye(adapter, adapter->pf);
4477 }
4478 
4479 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4480 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4481 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4482 #define SEGMENT_SIZE 128
4483 
4484 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4485 {
4486 	u16 device_id;
4487 
4488 	/* Retrieve adapter's device ID */
4489 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4490 
4491 	switch (device_id >> 12) {
4492 	case CHELSIO_T4:
4493 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4494 	case CHELSIO_T5:
4495 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4496 	case CHELSIO_T6:
4497 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4498 	default:
4499 		dev_err(&pdev->dev, "Device %d is not supported\n",
4500 			device_id);
4501 	}
4502 	return -EINVAL;
4503 }
4504 
4505 #ifdef CONFIG_PCI_IOV
4506 static void dummy_setup(struct net_device *dev)
4507 {
4508 	dev->type = ARPHRD_NONE;
4509 	dev->mtu = 0;
4510 	dev->hard_header_len = 0;
4511 	dev->addr_len = 0;
4512 	dev->tx_queue_len = 0;
4513 	dev->flags |= IFF_NOARP;
4514 	dev->priv_flags |= IFF_NO_QUEUE;
4515 
4516 	/* Initialize the device structure. */
4517 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4518 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4519 	dev->destructor = free_netdev;
4520 }
4521 
4522 static int config_mgmt_dev(struct pci_dev *pdev)
4523 {
4524 	struct adapter *adap = pci_get_drvdata(pdev);
4525 	struct net_device *netdev;
4526 	struct port_info *pi;
4527 	char name[IFNAMSIZ];
4528 	int err;
4529 
4530 	snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4531 	netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN,
4532 			      dummy_setup);
4533 	if (!netdev)
4534 		return -ENOMEM;
4535 
4536 	pi = netdev_priv(netdev);
4537 	pi->adapter = adap;
4538 	pi->port_id = adap->pf % adap->params.nports;
4539 	SET_NETDEV_DEV(netdev, &pdev->dev);
4540 
4541 	adap->port[0] = netdev;
4542 
4543 	err = register_netdev(adap->port[0]);
4544 	if (err) {
4545 		pr_info("Unable to register VF mgmt netdev %s\n", name);
4546 		free_netdev(adap->port[0]);
4547 		adap->port[0] = NULL;
4548 		return err;
4549 	}
4550 	return 0;
4551 }
4552 
4553 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4554 {
4555 	struct adapter *adap = pci_get_drvdata(pdev);
4556 	int err = 0;
4557 	int current_vfs = pci_num_vf(pdev);
4558 	u32 pcie_fw;
4559 
4560 	pcie_fw = readl(adap->regs + PCIE_FW_A);
4561 	/* Check if cxgb4 is the MASTER and fw is initialized */
4562 	if (!(pcie_fw & PCIE_FW_INIT_F) ||
4563 	    !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4564 	    PCIE_FW_MASTER_G(pcie_fw) != 4) {
4565 		dev_warn(&pdev->dev,
4566 			 "cxgb4 driver needs to be MASTER to support SRIOV\n");
4567 		return -EOPNOTSUPP;
4568 	}
4569 
4570 	/* If any of the VF's is already assigned to Guest OS, then
4571 	 * SRIOV for the same cannot be modified
4572 	 */
4573 	if (current_vfs && pci_vfs_assigned(pdev)) {
4574 		dev_err(&pdev->dev,
4575 			"Cannot modify SR-IOV while VFs are assigned\n");
4576 		num_vfs = current_vfs;
4577 		return num_vfs;
4578 	}
4579 
4580 	/* Disable SRIOV when zero is passed.
4581 	 * One needs to disable SRIOV before modifying it, else
4582 	 * stack throws the below warning:
4583 	 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4584 	 */
4585 	if (!num_vfs) {
4586 		pci_disable_sriov(pdev);
4587 		if (adap->port[0]) {
4588 			unregister_netdev(adap->port[0]);
4589 			adap->port[0] = NULL;
4590 		}
4591 		/* free VF resources */
4592 		kfree(adap->vfinfo);
4593 		adap->vfinfo = NULL;
4594 		adap->num_vfs = 0;
4595 		return num_vfs;
4596 	}
4597 
4598 	if (num_vfs != current_vfs) {
4599 		err = pci_enable_sriov(pdev, num_vfs);
4600 		if (err)
4601 			return err;
4602 
4603 		adap->num_vfs = num_vfs;
4604 		err = config_mgmt_dev(pdev);
4605 		if (err)
4606 			return err;
4607 	}
4608 
4609 	adap->vfinfo = kcalloc(adap->num_vfs,
4610 			       sizeof(struct vf_info), GFP_KERNEL);
4611 	if (adap->vfinfo)
4612 		fill_vf_station_mac_addr(adap);
4613 	return num_vfs;
4614 }
4615 #endif
4616 
4617 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4618 {
4619 	int func, i, err, s_qpp, qpp, num_seg;
4620 	struct port_info *pi;
4621 	bool highdma = false;
4622 	struct adapter *adapter = NULL;
4623 	struct net_device *netdev;
4624 	void __iomem *regs;
4625 	u32 whoami, pl_rev;
4626 	enum chip_type chip;
4627 	static int adap_idx = 1;
4628 #ifdef CONFIG_PCI_IOV
4629 	u32 v, port_vec;
4630 #endif
4631 
4632 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4633 
4634 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4635 	if (err) {
4636 		/* Just info, some other driver may have claimed the device. */
4637 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4638 		return err;
4639 	}
4640 
4641 	err = pci_enable_device(pdev);
4642 	if (err) {
4643 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4644 		goto out_release_regions;
4645 	}
4646 
4647 	regs = pci_ioremap_bar(pdev, 0);
4648 	if (!regs) {
4649 		dev_err(&pdev->dev, "cannot map device registers\n");
4650 		err = -ENOMEM;
4651 		goto out_disable_device;
4652 	}
4653 
4654 	err = t4_wait_dev_ready(regs);
4655 	if (err < 0)
4656 		goto out_unmap_bar0;
4657 
4658 	/* We control everything through one PF */
4659 	whoami = readl(regs + PL_WHOAMI_A);
4660 	pl_rev = REV_G(readl(regs + PL_REV_A));
4661 	chip = get_chip_type(pdev, pl_rev);
4662 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4663 		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4664 	if (func != ent->driver_data) {
4665 #ifndef CONFIG_PCI_IOV
4666 		iounmap(regs);
4667 #endif
4668 		pci_disable_device(pdev);
4669 		pci_save_state(pdev);        /* to restore SR-IOV later */
4670 		goto sriov;
4671 	}
4672 
4673 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4674 		highdma = true;
4675 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4676 		if (err) {
4677 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4678 				"coherent allocations\n");
4679 			goto out_unmap_bar0;
4680 		}
4681 	} else {
4682 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4683 		if (err) {
4684 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4685 			goto out_unmap_bar0;
4686 		}
4687 	}
4688 
4689 	pci_enable_pcie_error_reporting(pdev);
4690 	enable_pcie_relaxed_ordering(pdev);
4691 	pci_set_master(pdev);
4692 	pci_save_state(pdev);
4693 
4694 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4695 	if (!adapter) {
4696 		err = -ENOMEM;
4697 		goto out_unmap_bar0;
4698 	}
4699 	adap_idx++;
4700 
4701 	adapter->workq = create_singlethread_workqueue("cxgb4");
4702 	if (!adapter->workq) {
4703 		err = -ENOMEM;
4704 		goto out_free_adapter;
4705 	}
4706 
4707 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4708 				    (sizeof(struct mbox_cmd) *
4709 				     T4_OS_LOG_MBOX_CMDS),
4710 				    GFP_KERNEL);
4711 	if (!adapter->mbox_log) {
4712 		err = -ENOMEM;
4713 		goto out_free_adapter;
4714 	}
4715 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4716 
4717 	/* PCI device has been enabled */
4718 	adapter->flags |= DEV_ENABLED;
4719 
4720 	adapter->regs = regs;
4721 	adapter->pdev = pdev;
4722 	adapter->pdev_dev = &pdev->dev;
4723 	adapter->name = pci_name(pdev);
4724 	adapter->mbox = func;
4725 	adapter->pf = func;
4726 	adapter->msg_enable = DFLT_MSG_ENABLE;
4727 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4728 
4729 	spin_lock_init(&adapter->stats_lock);
4730 	spin_lock_init(&adapter->tid_release_lock);
4731 	spin_lock_init(&adapter->win0_lock);
4732 	spin_lock_init(&adapter->mbox_lock);
4733 
4734 	INIT_LIST_HEAD(&adapter->mlist.list);
4735 
4736 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4737 	INIT_WORK(&adapter->db_full_task, process_db_full);
4738 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4739 
4740 	err = t4_prep_adapter(adapter);
4741 	if (err)
4742 		goto out_free_adapter;
4743 
4744 
4745 	if (!is_t4(adapter->params.chip)) {
4746 		s_qpp = (QUEUESPERPAGEPF0_S +
4747 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4748 			adapter->pf);
4749 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4750 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4751 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
4752 
4753 		/* Each segment size is 128B. Write coalescing is enabled only
4754 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4755 		 * queue is less no of segments that can be accommodated in
4756 		 * a page size.
4757 		 */
4758 		if (qpp > num_seg) {
4759 			dev_err(&pdev->dev,
4760 				"Incorrect number of egress queues per page\n");
4761 			err = -EINVAL;
4762 			goto out_free_adapter;
4763 		}
4764 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4765 		pci_resource_len(pdev, 2));
4766 		if (!adapter->bar2) {
4767 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
4768 			err = -ENOMEM;
4769 			goto out_free_adapter;
4770 		}
4771 	}
4772 
4773 	setup_memwin(adapter);
4774 	err = adap_init0(adapter);
4775 #ifdef CONFIG_DEBUG_FS
4776 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4777 #endif
4778 	setup_memwin_rdma(adapter);
4779 	if (err)
4780 		goto out_unmap_bar;
4781 
4782 	/* configure SGE_STAT_CFG_A to read WC stats */
4783 	if (!is_t4(adapter->params.chip))
4784 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4785 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4786 			      T6_STATMODE_V(0)));
4787 
4788 	for_each_port(adapter, i) {
4789 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
4790 					   MAX_ETH_QSETS);
4791 		if (!netdev) {
4792 			err = -ENOMEM;
4793 			goto out_free_dev;
4794 		}
4795 
4796 		SET_NETDEV_DEV(netdev, &pdev->dev);
4797 
4798 		adapter->port[i] = netdev;
4799 		pi = netdev_priv(netdev);
4800 		pi->adapter = adapter;
4801 		pi->xact_addr_filt = -1;
4802 		pi->port_id = i;
4803 		netdev->irq = pdev->irq;
4804 
4805 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4806 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4807 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4808 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
4809 			NETIF_F_HW_TC;
4810 		if (highdma)
4811 			netdev->hw_features |= NETIF_F_HIGHDMA;
4812 		netdev->features |= netdev->hw_features;
4813 		netdev->vlan_features = netdev->features & VLAN_FEAT;
4814 
4815 		netdev->priv_flags |= IFF_UNICAST_FLT;
4816 
4817 		/* MTU range: 81 - 9600 */
4818 		netdev->min_mtu = 81;
4819 		netdev->max_mtu = MAX_MTU;
4820 
4821 		netdev->netdev_ops = &cxgb4_netdev_ops;
4822 #ifdef CONFIG_CHELSIO_T4_DCB
4823 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
4824 		cxgb4_dcb_state_init(netdev);
4825 #endif
4826 		cxgb4_set_ethtool_ops(netdev);
4827 	}
4828 
4829 	pci_set_drvdata(pdev, adapter);
4830 
4831 	if (adapter->flags & FW_OK) {
4832 		err = t4_port_init(adapter, func, func, 0);
4833 		if (err)
4834 			goto out_free_dev;
4835 	} else if (adapter->params.nports == 1) {
4836 		/* If we don't have a connection to the firmware -- possibly
4837 		 * because of an error -- grab the raw VPD parameters so we
4838 		 * can set the proper MAC Address on the debug network
4839 		 * interface that we've created.
4840 		 */
4841 		u8 hw_addr[ETH_ALEN];
4842 		u8 *na = adapter->params.vpd.na;
4843 
4844 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4845 		if (!err) {
4846 			for (i = 0; i < ETH_ALEN; i++)
4847 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4848 					      hex2val(na[2 * i + 1]));
4849 			t4_set_hw_addr(adapter, 0, hw_addr);
4850 		}
4851 	}
4852 
4853 	/* Configure queues and allocate tables now, they can be needed as
4854 	 * soon as the first register_netdev completes.
4855 	 */
4856 	cfg_queues(adapter);
4857 
4858 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4859 	if (!adapter->l2t) {
4860 		/* We tolerate a lack of L2T, giving up some functionality */
4861 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4862 		adapter->params.offload = 0;
4863 	}
4864 
4865 #if IS_ENABLED(CONFIG_IPV6)
4866 	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4867 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4868 		/* CLIP functionality is not present in hardware,
4869 		 * hence disable all offload features
4870 		 */
4871 		dev_warn(&pdev->dev,
4872 			 "CLIP not enabled in hardware, continuing\n");
4873 		adapter->params.offload = 0;
4874 	} else {
4875 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4876 						  adapter->clipt_end);
4877 		if (!adapter->clipt) {
4878 			/* We tolerate a lack of clip_table, giving up
4879 			 * some functionality
4880 			 */
4881 			dev_warn(&pdev->dev,
4882 				 "could not allocate Clip table, continuing\n");
4883 			adapter->params.offload = 0;
4884 		}
4885 	}
4886 #endif
4887 
4888 	for_each_port(adapter, i) {
4889 		pi = adap2pinfo(adapter, i);
4890 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
4891 		if (!pi->sched_tbl)
4892 			dev_warn(&pdev->dev,
4893 				 "could not activate scheduling on port %d\n",
4894 				 i);
4895 	}
4896 
4897 	if (tid_init(&adapter->tids) < 0) {
4898 		dev_warn(&pdev->dev, "could not allocate TID table, "
4899 			 "continuing\n");
4900 		adapter->params.offload = 0;
4901 	} else {
4902 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
4903 		if (!adapter->tc_u32)
4904 			dev_warn(&pdev->dev,
4905 				 "could not offload tc u32, continuing\n");
4906 	}
4907 
4908 	if (is_offload(adapter)) {
4909 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4910 			u32 hash_base, hash_reg;
4911 
4912 			if (chip <= CHELSIO_T5) {
4913 				hash_reg = LE_DB_TID_HASHBASE_A;
4914 				hash_base = t4_read_reg(adapter, hash_reg);
4915 				adapter->tids.hash_base = hash_base / 4;
4916 			} else {
4917 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4918 				hash_base = t4_read_reg(adapter, hash_reg);
4919 				adapter->tids.hash_base = hash_base;
4920 			}
4921 		}
4922 	}
4923 
4924 	/* See what interrupts we'll be using */
4925 	if (msi > 1 && enable_msix(adapter) == 0)
4926 		adapter->flags |= USING_MSIX;
4927 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
4928 		adapter->flags |= USING_MSI;
4929 		if (msi > 1)
4930 			free_msix_info(adapter);
4931 	}
4932 
4933 	/* check for PCI Express bandwidth capabiltites */
4934 	cxgb4_check_pcie_caps(adapter);
4935 
4936 	err = init_rss(adapter);
4937 	if (err)
4938 		goto out_free_dev;
4939 
4940 	/*
4941 	 * The card is now ready to go.  If any errors occur during device
4942 	 * registration we do not fail the whole card but rather proceed only
4943 	 * with the ports we manage to register successfully.  However we must
4944 	 * register at least one net device.
4945 	 */
4946 	for_each_port(adapter, i) {
4947 		pi = adap2pinfo(adapter, i);
4948 		adapter->port[i]->dev_port = pi->lport;
4949 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4950 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4951 
4952 		err = register_netdev(adapter->port[i]);
4953 		if (err)
4954 			break;
4955 		adapter->chan_map[pi->tx_chan] = i;
4956 		print_port_info(adapter->port[i]);
4957 	}
4958 	if (i == 0) {
4959 		dev_err(&pdev->dev, "could not register any net devices\n");
4960 		goto out_free_dev;
4961 	}
4962 	if (err) {
4963 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4964 		err = 0;
4965 	}
4966 
4967 	if (cxgb4_debugfs_root) {
4968 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4969 							   cxgb4_debugfs_root);
4970 		setup_debugfs(adapter);
4971 	}
4972 
4973 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4974 	pdev->needs_freset = 1;
4975 
4976 	if (is_uld(adapter)) {
4977 		mutex_lock(&uld_mutex);
4978 		list_add_tail(&adapter->list_node, &adapter_list);
4979 		mutex_unlock(&uld_mutex);
4980 	}
4981 
4982 	print_adapter_info(adapter);
4983 	setup_fw_sge_queues(adapter);
4984 	return 0;
4985 
4986 sriov:
4987 #ifdef CONFIG_PCI_IOV
4988 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4989 	if (!adapter) {
4990 		err = -ENOMEM;
4991 		goto free_pci_region;
4992 	}
4993 
4994 	adapter->pdev = pdev;
4995 	adapter->pdev_dev = &pdev->dev;
4996 	adapter->name = pci_name(pdev);
4997 	adapter->mbox = func;
4998 	adapter->pf = func;
4999 	adapter->regs = regs;
5000 	adapter->adap_idx = adap_idx;
5001 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5002 				    (sizeof(struct mbox_cmd) *
5003 				     T4_OS_LOG_MBOX_CMDS),
5004 				    GFP_KERNEL);
5005 	if (!adapter->mbox_log) {
5006 		err = -ENOMEM;
5007 		goto free_adapter;
5008 	}
5009 	spin_lock_init(&adapter->mbox_lock);
5010 	INIT_LIST_HEAD(&adapter->mlist.list);
5011 
5012 	v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5013 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
5014 	err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1,
5015 			      &v, &port_vec);
5016 	if (err < 0) {
5017 		dev_err(adapter->pdev_dev, "Could not fetch port params\n");
5018 		goto free_adapter;
5019 	}
5020 
5021 	adapter->params.nports = hweight32(port_vec);
5022 	pci_set_drvdata(pdev, adapter);
5023 	return 0;
5024 
5025  free_adapter:
5026 	kfree(adapter);
5027  free_pci_region:
5028 	iounmap(regs);
5029 	pci_disable_sriov(pdev);
5030 	pci_release_regions(pdev);
5031 	return err;
5032 #else
5033 	return 0;
5034 #endif
5035 
5036  out_free_dev:
5037 	free_some_resources(adapter);
5038 	if (adapter->flags & USING_MSIX)
5039 		free_msix_info(adapter);
5040 	if (adapter->num_uld || adapter->num_ofld_uld)
5041 		t4_uld_mem_free(adapter);
5042  out_unmap_bar:
5043 	if (!is_t4(adapter->params.chip))
5044 		iounmap(adapter->bar2);
5045  out_free_adapter:
5046 	if (adapter->workq)
5047 		destroy_workqueue(adapter->workq);
5048 
5049 	kfree(adapter->mbox_log);
5050 	kfree(adapter);
5051  out_unmap_bar0:
5052 	iounmap(regs);
5053  out_disable_device:
5054 	pci_disable_pcie_error_reporting(pdev);
5055 	pci_disable_device(pdev);
5056  out_release_regions:
5057 	pci_release_regions(pdev);
5058 	return err;
5059 }
5060 
5061 static void remove_one(struct pci_dev *pdev)
5062 {
5063 	struct adapter *adapter = pci_get_drvdata(pdev);
5064 
5065 	if (!adapter) {
5066 		pci_release_regions(pdev);
5067 		return;
5068 	}
5069 
5070 	if (adapter->pf == 4) {
5071 		int i;
5072 
5073 		/* Tear down per-adapter Work Queue first since it can contain
5074 		 * references to our adapter data structure.
5075 		 */
5076 		destroy_workqueue(adapter->workq);
5077 
5078 		if (is_uld(adapter))
5079 			detach_ulds(adapter);
5080 
5081 		disable_interrupts(adapter);
5082 
5083 		for_each_port(adapter, i)
5084 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5085 				unregister_netdev(adapter->port[i]);
5086 
5087 		debugfs_remove_recursive(adapter->debugfs_root);
5088 
5089 		/* If we allocated filters, free up state associated with any
5090 		 * valid filters ...
5091 		 */
5092 		clear_all_filters(adapter);
5093 
5094 		if (adapter->flags & FULL_INIT_DONE)
5095 			cxgb_down(adapter);
5096 
5097 		if (adapter->flags & USING_MSIX)
5098 			free_msix_info(adapter);
5099 		if (adapter->num_uld || adapter->num_ofld_uld)
5100 			t4_uld_mem_free(adapter);
5101 		free_some_resources(adapter);
5102 #if IS_ENABLED(CONFIG_IPV6)
5103 		t4_cleanup_clip_tbl(adapter);
5104 #endif
5105 		iounmap(adapter->regs);
5106 		if (!is_t4(adapter->params.chip))
5107 			iounmap(adapter->bar2);
5108 		pci_disable_pcie_error_reporting(pdev);
5109 		if ((adapter->flags & DEV_ENABLED)) {
5110 			pci_disable_device(pdev);
5111 			adapter->flags &= ~DEV_ENABLED;
5112 		}
5113 		pci_release_regions(pdev);
5114 		kfree(adapter->mbox_log);
5115 		synchronize_rcu();
5116 		kfree(adapter);
5117 	}
5118 #ifdef CONFIG_PCI_IOV
5119 	else {
5120 		if (adapter->port[0])
5121 			unregister_netdev(adapter->port[0]);
5122 		iounmap(adapter->regs);
5123 		kfree(adapter->vfinfo);
5124 		kfree(adapter);
5125 		pci_disable_sriov(pdev);
5126 		pci_release_regions(pdev);
5127 	}
5128 #endif
5129 }
5130 
5131 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5132  * delivery.  This is essentially a stripped down version of the PCI remove()
5133  * function where we do the minimal amount of work necessary to shutdown any
5134  * further activity.
5135  */
5136 static void shutdown_one(struct pci_dev *pdev)
5137 {
5138 	struct adapter *adapter = pci_get_drvdata(pdev);
5139 
5140 	/* As with remove_one() above (see extended comment), we only want do
5141 	 * do cleanup on PCI Devices which went all the way through init_one()
5142 	 * ...
5143 	 */
5144 	if (!adapter) {
5145 		pci_release_regions(pdev);
5146 		return;
5147 	}
5148 
5149 	if (adapter->pf == 4) {
5150 		int i;
5151 
5152 		for_each_port(adapter, i)
5153 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5154 				cxgb_close(adapter->port[i]);
5155 
5156 		t4_uld_clean_up(adapter);
5157 		disable_interrupts(adapter);
5158 		disable_msi(adapter);
5159 
5160 		t4_sge_stop(adapter);
5161 		if (adapter->flags & FW_OK)
5162 			t4_fw_bye(adapter, adapter->mbox);
5163 	}
5164 #ifdef CONFIG_PCI_IOV
5165 	else {
5166 		if (adapter->port[0])
5167 			unregister_netdev(adapter->port[0]);
5168 		iounmap(adapter->regs);
5169 		kfree(adapter->vfinfo);
5170 		kfree(adapter);
5171 		pci_disable_sriov(pdev);
5172 		pci_release_regions(pdev);
5173 	}
5174 #endif
5175 }
5176 
5177 static struct pci_driver cxgb4_driver = {
5178 	.name     = KBUILD_MODNAME,
5179 	.id_table = cxgb4_pci_tbl,
5180 	.probe    = init_one,
5181 	.remove   = remove_one,
5182 	.shutdown = shutdown_one,
5183 #ifdef CONFIG_PCI_IOV
5184 	.sriov_configure = cxgb4_iov_configure,
5185 #endif
5186 	.err_handler = &cxgb4_eeh,
5187 };
5188 
5189 static int __init cxgb4_init_module(void)
5190 {
5191 	int ret;
5192 
5193 	/* Debugfs support is optional, just warn if this fails */
5194 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5195 	if (!cxgb4_debugfs_root)
5196 		pr_warn("could not create debugfs entry, continuing\n");
5197 
5198 	ret = pci_register_driver(&cxgb4_driver);
5199 	if (ret < 0)
5200 		debugfs_remove(cxgb4_debugfs_root);
5201 
5202 #if IS_ENABLED(CONFIG_IPV6)
5203 	if (!inet6addr_registered) {
5204 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5205 		inet6addr_registered = true;
5206 	}
5207 #endif
5208 
5209 	return ret;
5210 }
5211 
5212 static void __exit cxgb4_cleanup_module(void)
5213 {
5214 #if IS_ENABLED(CONFIG_IPV6)
5215 	if (inet6addr_registered) {
5216 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5217 		inet6addr_registered = false;
5218 	}
5219 #endif
5220 	pci_unregister_driver(&cxgb4_driver);
5221 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5222 }
5223 
5224 module_init(cxgb4_init_module);
5225 module_exit(cxgb4_cleanup_module);
5226