1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68 #include <net/udp_tunnel.h>
69 
70 #include "cxgb4.h"
71 #include "cxgb4_filter.h"
72 #include "t4_regs.h"
73 #include "t4_values.h"
74 #include "t4_msg.h"
75 #include "t4fw_api.h"
76 #include "t4fw_version.h"
77 #include "cxgb4_dcb.h"
78 #include "cxgb4_debugfs.h"
79 #include "clip_tbl.h"
80 #include "l2t.h"
81 #include "smt.h"
82 #include "sched.h"
83 #include "cxgb4_tc_u32.h"
84 #include "cxgb4_tc_flower.h"
85 #include "cxgb4_ptp.h"
86 #include "cxgb4_cudbg.h"
87 
88 char cxgb4_driver_name[] = KBUILD_MODNAME;
89 
90 #ifdef DRV_VERSION
91 #undef DRV_VERSION
92 #endif
93 #define DRV_VERSION "2.0.0-ko"
94 const char cxgb4_driver_version[] = DRV_VERSION;
95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
96 
97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
98 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
99 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
100 
101 /* Macros needed to support the PCI Device ID Table ...
102  */
103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
104 	static const struct pci_device_id cxgb4_pci_tbl[] = {
105 #define CXGB4_UNIFIED_PF 0x4
106 
107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
108 
109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
110  * called for both.
111  */
112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
113 
114 #define CH_PCI_ID_TABLE_ENTRY(devid) \
115 		{PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
116 
117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
118 		{ 0, } \
119 	}
120 
121 #include "t4_pci_id_tbl.h"
122 
123 #define FW4_FNAME "cxgb4/t4fw.bin"
124 #define FW5_FNAME "cxgb4/t5fw.bin"
125 #define FW6_FNAME "cxgb4/t6fw.bin"
126 #define FW4_CFNAME "cxgb4/t4-config.txt"
127 #define FW5_CFNAME "cxgb4/t5-config.txt"
128 #define FW6_CFNAME "cxgb4/t6-config.txt"
129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
131 #define PHY_AQ1202_DEVICEID 0x4409
132 #define PHY_BCM84834_DEVICEID 0x4486
133 
134 MODULE_DESCRIPTION(DRV_DESC);
135 MODULE_AUTHOR("Chelsio Communications");
136 MODULE_LICENSE("Dual BSD/GPL");
137 MODULE_VERSION(DRV_VERSION);
138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
139 MODULE_FIRMWARE(FW4_FNAME);
140 MODULE_FIRMWARE(FW5_FNAME);
141 MODULE_FIRMWARE(FW6_FNAME);
142 
143 /*
144  * The driver uses the best interrupt scheme available on a platform in the
145  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
146  * of these schemes the driver may consider as follows:
147  *
148  * msi = 2: choose from among all three options
149  * msi = 1: only consider MSI and INTx interrupts
150  * msi = 0: force INTx interrupts
151  */
152 static int msi = 2;
153 
154 module_param(msi, int, 0644);
155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
156 
157 /*
158  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
159  * offset by 2 bytes in order to have the IP headers line up on 4-byte
160  * boundaries.  This is a requirement for many architectures which will throw
161  * a machine check fault if an attempt is made to access one of the 4-byte IP
162  * header fields on a non-4-byte boundary.  And it's a major performance issue
163  * even on some architectures which allow it like some implementations of the
164  * x86 ISA.  However, some architectures don't mind this and for some very
165  * edge-case performance sensitive applications (like forwarding large volumes
166  * of small packets), setting this DMA offset to 0 will decrease the number of
167  * PCI-E Bus transfers enough to measurably affect performance.
168  */
169 static int rx_dma_offset = 2;
170 
171 /* TX Queue select used to determine what algorithm to use for selecting TX
172  * queue. Select between the kernel provided function (select_queue=0) or user
173  * cxgb_select_queue function (select_queue=1)
174  *
175  * Default: select_queue=0
176  */
177 static int select_queue;
178 module_param(select_queue, int, 0644);
179 MODULE_PARM_DESC(select_queue,
180 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
181 
182 static struct dentry *cxgb4_debugfs_root;
183 
184 LIST_HEAD(adapter_list);
185 DEFINE_MUTEX(uld_mutex);
186 
187 static void link_report(struct net_device *dev)
188 {
189 	if (!netif_carrier_ok(dev))
190 		netdev_info(dev, "link down\n");
191 	else {
192 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
193 
194 		const char *s;
195 		const struct port_info *p = netdev_priv(dev);
196 
197 		switch (p->link_cfg.speed) {
198 		case 100:
199 			s = "100Mbps";
200 			break;
201 		case 1000:
202 			s = "1Gbps";
203 			break;
204 		case 10000:
205 			s = "10Gbps";
206 			break;
207 		case 25000:
208 			s = "25Gbps";
209 			break;
210 		case 40000:
211 			s = "40Gbps";
212 			break;
213 		case 100000:
214 			s = "100Gbps";
215 			break;
216 		default:
217 			pr_info("%s: unsupported speed: %d\n",
218 				dev->name, p->link_cfg.speed);
219 			return;
220 		}
221 
222 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
223 			    fc[p->link_cfg.fc]);
224 	}
225 }
226 
227 #ifdef CONFIG_CHELSIO_T4_DCB
228 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
229 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
230 {
231 	struct port_info *pi = netdev_priv(dev);
232 	struct adapter *adap = pi->adapter;
233 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
234 	int i;
235 
236 	/* We use a simple mapping of Port TX Queue Index to DCB
237 	 * Priority when we're enabling DCB.
238 	 */
239 	for (i = 0; i < pi->nqsets; i++, txq++) {
240 		u32 name, value;
241 		int err;
242 
243 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
244 			FW_PARAMS_PARAM_X_V(
245 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
246 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
247 		value = enable ? i : 0xffffffff;
248 
249 		/* Since we can be called while atomic (from "interrupt
250 		 * level") we need to issue the Set Parameters Commannd
251 		 * without sleeping (timeout < 0).
252 		 */
253 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
254 					    &name, &value,
255 					    -FW_CMD_MAX_TIMEOUT);
256 
257 		if (err)
258 			dev_err(adap->pdev_dev,
259 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
260 				enable ? "set" : "unset", pi->port_id, i, -err);
261 		else
262 			txq->dcb_prio = value;
263 	}
264 }
265 
266 static int cxgb4_dcb_enabled(const struct net_device *dev)
267 {
268 	struct port_info *pi = netdev_priv(dev);
269 
270 	if (!pi->dcb.enabled)
271 		return 0;
272 
273 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
274 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
275 }
276 #endif /* CONFIG_CHELSIO_T4_DCB */
277 
278 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
279 {
280 	struct net_device *dev = adapter->port[port_id];
281 
282 	/* Skip changes from disabled ports. */
283 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
284 		if (link_stat)
285 			netif_carrier_on(dev);
286 		else {
287 #ifdef CONFIG_CHELSIO_T4_DCB
288 			if (cxgb4_dcb_enabled(dev)) {
289 				cxgb4_dcb_reset(dev);
290 				dcb_tx_queue_prio_enable(dev, false);
291 			}
292 #endif /* CONFIG_CHELSIO_T4_DCB */
293 			netif_carrier_off(dev);
294 		}
295 
296 		link_report(dev);
297 	}
298 }
299 
300 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
301 {
302 	static const char *mod_str[] = {
303 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
304 	};
305 
306 	const struct net_device *dev = adap->port[port_id];
307 	const struct port_info *pi = netdev_priv(dev);
308 
309 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
310 		netdev_info(dev, "port module unplugged\n");
311 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
312 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
313 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
314 		netdev_info(dev, "%s: unsupported port module inserted\n",
315 			    dev->name);
316 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
317 		netdev_info(dev, "%s: unknown port module inserted\n",
318 			    dev->name);
319 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
320 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
321 	else
322 		netdev_info(dev, "%s: unknown module type %d inserted\n",
323 			    dev->name, pi->mod_type);
324 }
325 
326 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
327 module_param(dbfifo_int_thresh, int, 0644);
328 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
329 
330 /*
331  * usecs to sleep while draining the dbfifo
332  */
333 static int dbfifo_drain_delay = 1000;
334 module_param(dbfifo_drain_delay, int, 0644);
335 MODULE_PARM_DESC(dbfifo_drain_delay,
336 		 "usecs to sleep while draining the dbfifo");
337 
338 static inline int cxgb4_set_addr_hash(struct port_info *pi)
339 {
340 	struct adapter *adap = pi->adapter;
341 	u64 vec = 0;
342 	bool ucast = false;
343 	struct hash_mac_addr *entry;
344 
345 	/* Calculate the hash vector for the updated list and program it */
346 	list_for_each_entry(entry, &adap->mac_hlist, list) {
347 		ucast |= is_unicast_ether_addr(entry->addr);
348 		vec |= (1ULL << hash_mac_addr(entry->addr));
349 	}
350 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
351 				vec, false);
352 }
353 
354 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
355 {
356 	struct port_info *pi = netdev_priv(netdev);
357 	struct adapter *adap = pi->adapter;
358 	int ret;
359 	u64 mhash = 0;
360 	u64 uhash = 0;
361 	bool free = false;
362 	bool ucast = is_unicast_ether_addr(mac_addr);
363 	const u8 *maclist[1] = {mac_addr};
364 	struct hash_mac_addr *new_entry;
365 
366 	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
367 				NULL, ucast ? &uhash : &mhash, false);
368 	if (ret < 0)
369 		goto out;
370 	/* if hash != 0, then add the addr to hash addr list
371 	 * so on the end we will calculate the hash for the
372 	 * list and program it
373 	 */
374 	if (uhash || mhash) {
375 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
376 		if (!new_entry)
377 			return -ENOMEM;
378 		ether_addr_copy(new_entry->addr, mac_addr);
379 		list_add_tail(&new_entry->list, &adap->mac_hlist);
380 		ret = cxgb4_set_addr_hash(pi);
381 	}
382 out:
383 	return ret < 0 ? ret : 0;
384 }
385 
386 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
387 {
388 	struct port_info *pi = netdev_priv(netdev);
389 	struct adapter *adap = pi->adapter;
390 	int ret;
391 	const u8 *maclist[1] = {mac_addr};
392 	struct hash_mac_addr *entry, *tmp;
393 
394 	/* If the MAC address to be removed is in the hash addr
395 	 * list, delete it from the list and update hash vector
396 	 */
397 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
398 		if (ether_addr_equal(entry->addr, mac_addr)) {
399 			list_del(&entry->list);
400 			kfree(entry);
401 			return cxgb4_set_addr_hash(pi);
402 		}
403 	}
404 
405 	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
406 	return ret < 0 ? -EINVAL : 0;
407 }
408 
409 /*
410  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
411  * If @mtu is -1 it is left unchanged.
412  */
413 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
414 {
415 	struct port_info *pi = netdev_priv(dev);
416 	struct adapter *adapter = pi->adapter;
417 
418 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
419 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
420 
421 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
422 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
423 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
424 			     sleep_ok);
425 }
426 
427 /**
428  *	link_start - enable a port
429  *	@dev: the port to enable
430  *
431  *	Performs the MAC and PHY actions needed to enable a port.
432  */
433 static int link_start(struct net_device *dev)
434 {
435 	int ret;
436 	struct port_info *pi = netdev_priv(dev);
437 	unsigned int mb = pi->adapter->pf;
438 
439 	/*
440 	 * We do not set address filters and promiscuity here, the stack does
441 	 * that step explicitly.
442 	 */
443 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
444 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
445 	if (ret == 0) {
446 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
447 				    pi->xact_addr_filt, dev->dev_addr, true,
448 				    true);
449 		if (ret >= 0) {
450 			pi->xact_addr_filt = ret;
451 			ret = 0;
452 		}
453 	}
454 	if (ret == 0)
455 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
456 				    &pi->link_cfg);
457 	if (ret == 0) {
458 		local_bh_disable();
459 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
460 					  true, CXGB4_DCB_ENABLED);
461 		local_bh_enable();
462 	}
463 
464 	return ret;
465 }
466 
467 #ifdef CONFIG_CHELSIO_T4_DCB
468 /* Handle a Data Center Bridging update message from the firmware. */
469 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
470 {
471 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
472 	struct net_device *dev = adap->port[adap->chan_map[port]];
473 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
474 	int new_dcb_enabled;
475 
476 	cxgb4_dcb_handle_fw_update(adap, pcmd);
477 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
478 
479 	/* If the DCB has become enabled or disabled on the port then we're
480 	 * going to need to set up/tear down DCB Priority parameters for the
481 	 * TX Queues associated with the port.
482 	 */
483 	if (new_dcb_enabled != old_dcb_enabled)
484 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
485 }
486 #endif /* CONFIG_CHELSIO_T4_DCB */
487 
488 /* Response queue handler for the FW event queue.
489  */
490 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
491 			  const struct pkt_gl *gl)
492 {
493 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
494 
495 	rsp++;                                          /* skip RSS header */
496 
497 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
498 	 */
499 	if (unlikely(opcode == CPL_FW4_MSG &&
500 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
501 		rsp++;
502 		opcode = ((const struct rss_header *)rsp)->opcode;
503 		rsp++;
504 		if (opcode != CPL_SGE_EGR_UPDATE) {
505 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
506 				, opcode);
507 			goto out;
508 		}
509 	}
510 
511 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
512 		const struct cpl_sge_egr_update *p = (void *)rsp;
513 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
514 		struct sge_txq *txq;
515 
516 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
517 		txq->restarts++;
518 		if (txq->q_type == CXGB4_TXQ_ETH) {
519 			struct sge_eth_txq *eq;
520 
521 			eq = container_of(txq, struct sge_eth_txq, q);
522 			netif_tx_wake_queue(eq->txq);
523 		} else {
524 			struct sge_uld_txq *oq;
525 
526 			oq = container_of(txq, struct sge_uld_txq, q);
527 			tasklet_schedule(&oq->qresume_tsk);
528 		}
529 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
530 		const struct cpl_fw6_msg *p = (void *)rsp;
531 
532 #ifdef CONFIG_CHELSIO_T4_DCB
533 		const struct fw_port_cmd *pcmd = (const void *)p->data;
534 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
535 		unsigned int action =
536 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
537 
538 		if (cmd == FW_PORT_CMD &&
539 		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
540 		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
541 			int port = FW_PORT_CMD_PORTID_G(
542 					be32_to_cpu(pcmd->op_to_portid));
543 			struct net_device *dev;
544 			int dcbxdis, state_input;
545 
546 			dev = q->adap->port[q->adap->chan_map[port]];
547 			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
548 				   ? !!(pcmd->u.info.dcbxdis_pkd &
549 					FW_PORT_CMD_DCBXDIS_F)
550 				   : !!(pcmd->u.info32.lstatus32_to_cbllen32 &
551 					FW_PORT_CMD_DCBXDIS32_F));
552 			state_input = (dcbxdis
553 				       ? CXGB4_DCB_INPUT_FW_DISABLED
554 				       : CXGB4_DCB_INPUT_FW_ENABLED);
555 
556 			cxgb4_dcb_state_fsm(dev, state_input);
557 		}
558 
559 		if (cmd == FW_PORT_CMD &&
560 		    action == FW_PORT_ACTION_L2_DCB_CFG)
561 			dcb_rpl(q->adap, pcmd);
562 		else
563 #endif
564 			if (p->type == 0)
565 				t4_handle_fw_rpl(q->adap, p->data);
566 	} else if (opcode == CPL_L2T_WRITE_RPL) {
567 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
568 
569 		do_l2t_write_rpl(q->adap, p);
570 	} else if (opcode == CPL_SMT_WRITE_RPL) {
571 		const struct cpl_smt_write_rpl *p = (void *)rsp;
572 
573 		do_smt_write_rpl(q->adap, p);
574 	} else if (opcode == CPL_SET_TCB_RPL) {
575 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
576 
577 		filter_rpl(q->adap, p);
578 	} else if (opcode == CPL_ACT_OPEN_RPL) {
579 		const struct cpl_act_open_rpl *p = (void *)rsp;
580 
581 		hash_filter_rpl(q->adap, p);
582 	} else if (opcode == CPL_ABORT_RPL_RSS) {
583 		const struct cpl_abort_rpl_rss *p = (void *)rsp;
584 
585 		hash_del_filter_rpl(q->adap, p);
586 	} else
587 		dev_err(q->adap->pdev_dev,
588 			"unexpected CPL %#x on FW event queue\n", opcode);
589 out:
590 	return 0;
591 }
592 
593 static void disable_msi(struct adapter *adapter)
594 {
595 	if (adapter->flags & USING_MSIX) {
596 		pci_disable_msix(adapter->pdev);
597 		adapter->flags &= ~USING_MSIX;
598 	} else if (adapter->flags & USING_MSI) {
599 		pci_disable_msi(adapter->pdev);
600 		adapter->flags &= ~USING_MSI;
601 	}
602 }
603 
604 /*
605  * Interrupt handler for non-data events used with MSI-X.
606  */
607 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
608 {
609 	struct adapter *adap = cookie;
610 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
611 
612 	if (v & PFSW_F) {
613 		adap->swintr = 1;
614 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
615 	}
616 	if (adap->flags & MASTER_PF)
617 		t4_slow_intr_handler(adap);
618 	return IRQ_HANDLED;
619 }
620 
621 /*
622  * Name the MSI-X interrupts.
623  */
624 static void name_msix_vecs(struct adapter *adap)
625 {
626 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
627 
628 	/* non-data interrupts */
629 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
630 
631 	/* FW events */
632 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
633 		 adap->port[0]->name);
634 
635 	/* Ethernet queues */
636 	for_each_port(adap, j) {
637 		struct net_device *d = adap->port[j];
638 		const struct port_info *pi = netdev_priv(d);
639 
640 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
641 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
642 				 d->name, i);
643 	}
644 }
645 
646 static int request_msix_queue_irqs(struct adapter *adap)
647 {
648 	struct sge *s = &adap->sge;
649 	int err, ethqidx;
650 	int msi_index = 2;
651 
652 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
653 			  adap->msix_info[1].desc, &s->fw_evtq);
654 	if (err)
655 		return err;
656 
657 	for_each_ethrxq(s, ethqidx) {
658 		err = request_irq(adap->msix_info[msi_index].vec,
659 				  t4_sge_intr_msix, 0,
660 				  adap->msix_info[msi_index].desc,
661 				  &s->ethrxq[ethqidx].rspq);
662 		if (err)
663 			goto unwind;
664 		msi_index++;
665 	}
666 	return 0;
667 
668 unwind:
669 	while (--ethqidx >= 0)
670 		free_irq(adap->msix_info[--msi_index].vec,
671 			 &s->ethrxq[ethqidx].rspq);
672 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
673 	return err;
674 }
675 
676 static void free_msix_queue_irqs(struct adapter *adap)
677 {
678 	int i, msi_index = 2;
679 	struct sge *s = &adap->sge;
680 
681 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
682 	for_each_ethrxq(s, i)
683 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
684 }
685 
686 /**
687  *	cxgb4_write_rss - write the RSS table for a given port
688  *	@pi: the port
689  *	@queues: array of queue indices for RSS
690  *
691  *	Sets up the portion of the HW RSS table for the port's VI to distribute
692  *	packets to the Rx queues in @queues.
693  *	Should never be called before setting up sge eth rx queues
694  */
695 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
696 {
697 	u16 *rss;
698 	int i, err;
699 	struct adapter *adapter = pi->adapter;
700 	const struct sge_eth_rxq *rxq;
701 
702 	rxq = &adapter->sge.ethrxq[pi->first_qset];
703 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
704 	if (!rss)
705 		return -ENOMEM;
706 
707 	/* map the queue indices to queue ids */
708 	for (i = 0; i < pi->rss_size; i++, queues++)
709 		rss[i] = rxq[*queues].rspq.abs_id;
710 
711 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
712 				  pi->rss_size, rss, pi->rss_size);
713 	/* If Tunnel All Lookup isn't specified in the global RSS
714 	 * Configuration, then we need to specify a default Ingress
715 	 * Queue for any ingress packets which aren't hashed.  We'll
716 	 * use our first ingress queue ...
717 	 */
718 	if (!err)
719 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
720 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
721 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
722 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
723 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
724 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
725 				       rss[0]);
726 	kfree(rss);
727 	return err;
728 }
729 
730 /**
731  *	setup_rss - configure RSS
732  *	@adap: the adapter
733  *
734  *	Sets up RSS for each port.
735  */
736 static int setup_rss(struct adapter *adap)
737 {
738 	int i, j, err;
739 
740 	for_each_port(adap, i) {
741 		const struct port_info *pi = adap2pinfo(adap, i);
742 
743 		/* Fill default values with equal distribution */
744 		for (j = 0; j < pi->rss_size; j++)
745 			pi->rss[j] = j % pi->nqsets;
746 
747 		err = cxgb4_write_rss(pi, pi->rss);
748 		if (err)
749 			return err;
750 	}
751 	return 0;
752 }
753 
754 /*
755  * Return the channel of the ingress queue with the given qid.
756  */
757 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
758 {
759 	qid -= p->ingr_start;
760 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
761 }
762 
763 /*
764  * Wait until all NAPI handlers are descheduled.
765  */
766 static void quiesce_rx(struct adapter *adap)
767 {
768 	int i;
769 
770 	for (i = 0; i < adap->sge.ingr_sz; i++) {
771 		struct sge_rspq *q = adap->sge.ingr_map[i];
772 
773 		if (q && q->handler)
774 			napi_disable(&q->napi);
775 	}
776 }
777 
778 /* Disable interrupt and napi handler */
779 static void disable_interrupts(struct adapter *adap)
780 {
781 	if (adap->flags & FULL_INIT_DONE) {
782 		t4_intr_disable(adap);
783 		if (adap->flags & USING_MSIX) {
784 			free_msix_queue_irqs(adap);
785 			free_irq(adap->msix_info[0].vec, adap);
786 		} else {
787 			free_irq(adap->pdev->irq, adap);
788 		}
789 		quiesce_rx(adap);
790 	}
791 }
792 
793 /*
794  * Enable NAPI scheduling and interrupt generation for all Rx queues.
795  */
796 static void enable_rx(struct adapter *adap)
797 {
798 	int i;
799 
800 	for (i = 0; i < adap->sge.ingr_sz; i++) {
801 		struct sge_rspq *q = adap->sge.ingr_map[i];
802 
803 		if (!q)
804 			continue;
805 		if (q->handler)
806 			napi_enable(&q->napi);
807 
808 		/* 0-increment GTS to start the timer and enable interrupts */
809 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
810 			     SEINTARM_V(q->intr_params) |
811 			     INGRESSQID_V(q->cntxt_id));
812 	}
813 }
814 
815 
816 static int setup_fw_sge_queues(struct adapter *adap)
817 {
818 	struct sge *s = &adap->sge;
819 	int err = 0;
820 
821 	bitmap_zero(s->starving_fl, s->egr_sz);
822 	bitmap_zero(s->txq_maperr, s->egr_sz);
823 
824 	if (adap->flags & USING_MSIX)
825 		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
826 	else {
827 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
828 				       NULL, NULL, NULL, -1);
829 		if (err)
830 			return err;
831 		adap->msi_idx = -((int)s->intrq.abs_id + 1);
832 	}
833 
834 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
835 			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
836 	if (err)
837 		t4_free_sge_resources(adap);
838 	return err;
839 }
840 
841 /**
842  *	setup_sge_queues - configure SGE Tx/Rx/response queues
843  *	@adap: the adapter
844  *
845  *	Determines how many sets of SGE queues to use and initializes them.
846  *	We support multiple queue sets per port if we have MSI-X, otherwise
847  *	just one queue set per port.
848  */
849 static int setup_sge_queues(struct adapter *adap)
850 {
851 	int err, i, j;
852 	struct sge *s = &adap->sge;
853 	struct sge_uld_rxq_info *rxq_info = NULL;
854 	unsigned int cmplqid = 0;
855 
856 	if (is_uld(adap))
857 		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
858 
859 	for_each_port(adap, i) {
860 		struct net_device *dev = adap->port[i];
861 		struct port_info *pi = netdev_priv(dev);
862 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
863 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
864 
865 		for (j = 0; j < pi->nqsets; j++, q++) {
866 			if (adap->msi_idx > 0)
867 				adap->msi_idx++;
868 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
869 					       adap->msi_idx, &q->fl,
870 					       t4_ethrx_handler,
871 					       NULL,
872 					       t4_get_tp_ch_map(adap,
873 								pi->tx_chan));
874 			if (err)
875 				goto freeout;
876 			q->rspq.idx = j;
877 			memset(&q->stats, 0, sizeof(q->stats));
878 		}
879 		for (j = 0; j < pi->nqsets; j++, t++) {
880 			err = t4_sge_alloc_eth_txq(adap, t, dev,
881 					netdev_get_tx_queue(dev, j),
882 					s->fw_evtq.cntxt_id);
883 			if (err)
884 				goto freeout;
885 		}
886 	}
887 
888 	for_each_port(adap, i) {
889 		/* Note that cmplqid below is 0 if we don't
890 		 * have RDMA queues, and that's the right value.
891 		 */
892 		if (rxq_info)
893 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
894 
895 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
896 					    s->fw_evtq.cntxt_id, cmplqid);
897 		if (err)
898 			goto freeout;
899 	}
900 
901 	if (!is_t4(adap->params.chip)) {
902 		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
903 					   netdev_get_tx_queue(adap->port[0], 0)
904 					   , s->fw_evtq.cntxt_id);
905 		if (err)
906 			goto freeout;
907 	}
908 
909 	t4_write_reg(adap, is_t4(adap->params.chip) ?
910 				MPS_TRC_RSS_CONTROL_A :
911 				MPS_T5_TRC_RSS_CONTROL_A,
912 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
913 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
914 	return 0;
915 freeout:
916 	t4_free_sge_resources(adap);
917 	return err;
918 }
919 
920 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
921 			     void *accel_priv, select_queue_fallback_t fallback)
922 {
923 	int txq;
924 
925 #ifdef CONFIG_CHELSIO_T4_DCB
926 	/* If a Data Center Bridging has been successfully negotiated on this
927 	 * link then we'll use the skb's priority to map it to a TX Queue.
928 	 * The skb's priority is determined via the VLAN Tag Priority Code
929 	 * Point field.
930 	 */
931 	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
932 		u16 vlan_tci;
933 		int err;
934 
935 		err = vlan_get_tag(skb, &vlan_tci);
936 		if (unlikely(err)) {
937 			if (net_ratelimit())
938 				netdev_warn(dev,
939 					    "TX Packet without VLAN Tag on DCB Link\n");
940 			txq = 0;
941 		} else {
942 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
943 #ifdef CONFIG_CHELSIO_T4_FCOE
944 			if (skb->protocol == htons(ETH_P_FCOE))
945 				txq = skb->priority & 0x7;
946 #endif /* CONFIG_CHELSIO_T4_FCOE */
947 		}
948 		return txq;
949 	}
950 #endif /* CONFIG_CHELSIO_T4_DCB */
951 
952 	if (select_queue) {
953 		txq = (skb_rx_queue_recorded(skb)
954 			? skb_get_rx_queue(skb)
955 			: smp_processor_id());
956 
957 		while (unlikely(txq >= dev->real_num_tx_queues))
958 			txq -= dev->real_num_tx_queues;
959 
960 		return txq;
961 	}
962 
963 	return fallback(dev, skb) % dev->real_num_tx_queues;
964 }
965 
966 static int closest_timer(const struct sge *s, int time)
967 {
968 	int i, delta, match = 0, min_delta = INT_MAX;
969 
970 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
971 		delta = time - s->timer_val[i];
972 		if (delta < 0)
973 			delta = -delta;
974 		if (delta < min_delta) {
975 			min_delta = delta;
976 			match = i;
977 		}
978 	}
979 	return match;
980 }
981 
982 static int closest_thres(const struct sge *s, int thres)
983 {
984 	int i, delta, match = 0, min_delta = INT_MAX;
985 
986 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
987 		delta = thres - s->counter_val[i];
988 		if (delta < 0)
989 			delta = -delta;
990 		if (delta < min_delta) {
991 			min_delta = delta;
992 			match = i;
993 		}
994 	}
995 	return match;
996 }
997 
998 /**
999  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1000  *	@q: the Rx queue
1001  *	@us: the hold-off time in us, or 0 to disable timer
1002  *	@cnt: the hold-off packet count, or 0 to disable counter
1003  *
1004  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1005  *	one of the two needs to be enabled for the queue to generate interrupts.
1006  */
1007 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1008 			       unsigned int us, unsigned int cnt)
1009 {
1010 	struct adapter *adap = q->adap;
1011 
1012 	if ((us | cnt) == 0)
1013 		cnt = 1;
1014 
1015 	if (cnt) {
1016 		int err;
1017 		u32 v, new_idx;
1018 
1019 		new_idx = closest_thres(&adap->sge, cnt);
1020 		if (q->desc && q->pktcnt_idx != new_idx) {
1021 			/* the queue has already been created, update it */
1022 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1023 			    FW_PARAMS_PARAM_X_V(
1024 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1025 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1026 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1027 					    &v, &new_idx);
1028 			if (err)
1029 				return err;
1030 		}
1031 		q->pktcnt_idx = new_idx;
1032 	}
1033 
1034 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1035 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1036 	return 0;
1037 }
1038 
1039 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1040 {
1041 	const struct port_info *pi = netdev_priv(dev);
1042 	netdev_features_t changed = dev->features ^ features;
1043 	int err;
1044 
1045 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1046 		return 0;
1047 
1048 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1049 			    -1, -1, -1,
1050 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1051 	if (unlikely(err))
1052 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1053 	return err;
1054 }
1055 
1056 static int setup_debugfs(struct adapter *adap)
1057 {
1058 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1059 		return -1;
1060 
1061 #ifdef CONFIG_DEBUG_FS
1062 	t4_setup_debugfs(adap);
1063 #endif
1064 	return 0;
1065 }
1066 
1067 /*
1068  * upper-layer driver support
1069  */
1070 
1071 /*
1072  * Allocate an active-open TID and set it to the supplied value.
1073  */
1074 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1075 {
1076 	int atid = -1;
1077 
1078 	spin_lock_bh(&t->atid_lock);
1079 	if (t->afree) {
1080 		union aopen_entry *p = t->afree;
1081 
1082 		atid = (p - t->atid_tab) + t->atid_base;
1083 		t->afree = p->next;
1084 		p->data = data;
1085 		t->atids_in_use++;
1086 	}
1087 	spin_unlock_bh(&t->atid_lock);
1088 	return atid;
1089 }
1090 EXPORT_SYMBOL(cxgb4_alloc_atid);
1091 
1092 /*
1093  * Release an active-open TID.
1094  */
1095 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1096 {
1097 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1098 
1099 	spin_lock_bh(&t->atid_lock);
1100 	p->next = t->afree;
1101 	t->afree = p;
1102 	t->atids_in_use--;
1103 	spin_unlock_bh(&t->atid_lock);
1104 }
1105 EXPORT_SYMBOL(cxgb4_free_atid);
1106 
1107 /*
1108  * Allocate a server TID and set it to the supplied value.
1109  */
1110 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1111 {
1112 	int stid;
1113 
1114 	spin_lock_bh(&t->stid_lock);
1115 	if (family == PF_INET) {
1116 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1117 		if (stid < t->nstids)
1118 			__set_bit(stid, t->stid_bmap);
1119 		else
1120 			stid = -1;
1121 	} else {
1122 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1123 		if (stid < 0)
1124 			stid = -1;
1125 	}
1126 	if (stid >= 0) {
1127 		t->stid_tab[stid].data = data;
1128 		stid += t->stid_base;
1129 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1130 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1131 		 * needs 2 TIDs.
1132 		 */
1133 		if (family == PF_INET6) {
1134 			t->stids_in_use += 2;
1135 			t->v6_stids_in_use += 2;
1136 		} else {
1137 			t->stids_in_use++;
1138 		}
1139 	}
1140 	spin_unlock_bh(&t->stid_lock);
1141 	return stid;
1142 }
1143 EXPORT_SYMBOL(cxgb4_alloc_stid);
1144 
1145 /* Allocate a server filter TID and set it to the supplied value.
1146  */
1147 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1148 {
1149 	int stid;
1150 
1151 	spin_lock_bh(&t->stid_lock);
1152 	if (family == PF_INET) {
1153 		stid = find_next_zero_bit(t->stid_bmap,
1154 				t->nstids + t->nsftids, t->nstids);
1155 		if (stid < (t->nstids + t->nsftids))
1156 			__set_bit(stid, t->stid_bmap);
1157 		else
1158 			stid = -1;
1159 	} else {
1160 		stid = -1;
1161 	}
1162 	if (stid >= 0) {
1163 		t->stid_tab[stid].data = data;
1164 		stid -= t->nstids;
1165 		stid += t->sftid_base;
1166 		t->sftids_in_use++;
1167 	}
1168 	spin_unlock_bh(&t->stid_lock);
1169 	return stid;
1170 }
1171 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1172 
1173 /* Release a server TID.
1174  */
1175 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1176 {
1177 	/* Is it a server filter TID? */
1178 	if (t->nsftids && (stid >= t->sftid_base)) {
1179 		stid -= t->sftid_base;
1180 		stid += t->nstids;
1181 	} else {
1182 		stid -= t->stid_base;
1183 	}
1184 
1185 	spin_lock_bh(&t->stid_lock);
1186 	if (family == PF_INET)
1187 		__clear_bit(stid, t->stid_bmap);
1188 	else
1189 		bitmap_release_region(t->stid_bmap, stid, 1);
1190 	t->stid_tab[stid].data = NULL;
1191 	if (stid < t->nstids) {
1192 		if (family == PF_INET6) {
1193 			t->stids_in_use -= 2;
1194 			t->v6_stids_in_use -= 2;
1195 		} else {
1196 			t->stids_in_use--;
1197 		}
1198 	} else {
1199 		t->sftids_in_use--;
1200 	}
1201 
1202 	spin_unlock_bh(&t->stid_lock);
1203 }
1204 EXPORT_SYMBOL(cxgb4_free_stid);
1205 
1206 /*
1207  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1208  */
1209 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1210 			   unsigned int tid)
1211 {
1212 	struct cpl_tid_release *req;
1213 
1214 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1215 	req = __skb_put(skb, sizeof(*req));
1216 	INIT_TP_WR(req, tid);
1217 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1218 }
1219 
1220 /*
1221  * Queue a TID release request and if necessary schedule a work queue to
1222  * process it.
1223  */
1224 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1225 				    unsigned int tid)
1226 {
1227 	void **p = &t->tid_tab[tid];
1228 	struct adapter *adap = container_of(t, struct adapter, tids);
1229 
1230 	spin_lock_bh(&adap->tid_release_lock);
1231 	*p = adap->tid_release_head;
1232 	/* Low 2 bits encode the Tx channel number */
1233 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1234 	if (!adap->tid_release_task_busy) {
1235 		adap->tid_release_task_busy = true;
1236 		queue_work(adap->workq, &adap->tid_release_task);
1237 	}
1238 	spin_unlock_bh(&adap->tid_release_lock);
1239 }
1240 
1241 /*
1242  * Process the list of pending TID release requests.
1243  */
1244 static void process_tid_release_list(struct work_struct *work)
1245 {
1246 	struct sk_buff *skb;
1247 	struct adapter *adap;
1248 
1249 	adap = container_of(work, struct adapter, tid_release_task);
1250 
1251 	spin_lock_bh(&adap->tid_release_lock);
1252 	while (adap->tid_release_head) {
1253 		void **p = adap->tid_release_head;
1254 		unsigned int chan = (uintptr_t)p & 3;
1255 		p = (void *)p - chan;
1256 
1257 		adap->tid_release_head = *p;
1258 		*p = NULL;
1259 		spin_unlock_bh(&adap->tid_release_lock);
1260 
1261 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1262 					 GFP_KERNEL)))
1263 			schedule_timeout_uninterruptible(1);
1264 
1265 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1266 		t4_ofld_send(adap, skb);
1267 		spin_lock_bh(&adap->tid_release_lock);
1268 	}
1269 	adap->tid_release_task_busy = false;
1270 	spin_unlock_bh(&adap->tid_release_lock);
1271 }
1272 
1273 /*
1274  * Release a TID and inform HW.  If we are unable to allocate the release
1275  * message we defer to a work queue.
1276  */
1277 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1278 		      unsigned short family)
1279 {
1280 	struct sk_buff *skb;
1281 	struct adapter *adap = container_of(t, struct adapter, tids);
1282 
1283 	WARN_ON(tid >= t->ntids);
1284 
1285 	if (t->tid_tab[tid]) {
1286 		t->tid_tab[tid] = NULL;
1287 		atomic_dec(&t->conns_in_use);
1288 		if (t->hash_base && (tid >= t->hash_base)) {
1289 			if (family == AF_INET6)
1290 				atomic_sub(2, &t->hash_tids_in_use);
1291 			else
1292 				atomic_dec(&t->hash_tids_in_use);
1293 		} else {
1294 			if (family == AF_INET6)
1295 				atomic_sub(2, &t->tids_in_use);
1296 			else
1297 				atomic_dec(&t->tids_in_use);
1298 		}
1299 	}
1300 
1301 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1302 	if (likely(skb)) {
1303 		mk_tid_release(skb, chan, tid);
1304 		t4_ofld_send(adap, skb);
1305 	} else
1306 		cxgb4_queue_tid_release(t, chan, tid);
1307 }
1308 EXPORT_SYMBOL(cxgb4_remove_tid);
1309 
1310 /*
1311  * Allocate and initialize the TID tables.  Returns 0 on success.
1312  */
1313 static int tid_init(struct tid_info *t)
1314 {
1315 	struct adapter *adap = container_of(t, struct adapter, tids);
1316 	unsigned int max_ftids = t->nftids + t->nsftids;
1317 	unsigned int natids = t->natids;
1318 	unsigned int stid_bmap_size;
1319 	unsigned int ftid_bmap_size;
1320 	size_t size;
1321 
1322 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1323 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1324 	size = t->ntids * sizeof(*t->tid_tab) +
1325 	       natids * sizeof(*t->atid_tab) +
1326 	       t->nstids * sizeof(*t->stid_tab) +
1327 	       t->nsftids * sizeof(*t->stid_tab) +
1328 	       stid_bmap_size * sizeof(long) +
1329 	       max_ftids * sizeof(*t->ftid_tab) +
1330 	       ftid_bmap_size * sizeof(long);
1331 
1332 	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1333 	if (!t->tid_tab)
1334 		return -ENOMEM;
1335 
1336 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1337 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1338 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1339 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1340 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1341 	spin_lock_init(&t->stid_lock);
1342 	spin_lock_init(&t->atid_lock);
1343 	spin_lock_init(&t->ftid_lock);
1344 
1345 	t->stids_in_use = 0;
1346 	t->v6_stids_in_use = 0;
1347 	t->sftids_in_use = 0;
1348 	t->afree = NULL;
1349 	t->atids_in_use = 0;
1350 	atomic_set(&t->tids_in_use, 0);
1351 	atomic_set(&t->conns_in_use, 0);
1352 	atomic_set(&t->hash_tids_in_use, 0);
1353 
1354 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1355 	if (natids) {
1356 		while (--natids)
1357 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1358 		t->afree = t->atid_tab;
1359 	}
1360 
1361 	if (is_offload(adap)) {
1362 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1363 		/* Reserve stid 0 for T4/T5 adapters */
1364 		if (!t->stid_base &&
1365 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1366 			__set_bit(0, t->stid_bmap);
1367 	}
1368 
1369 	bitmap_zero(t->ftid_bmap, t->nftids);
1370 	return 0;
1371 }
1372 
1373 /**
1374  *	cxgb4_create_server - create an IP server
1375  *	@dev: the device
1376  *	@stid: the server TID
1377  *	@sip: local IP address to bind server to
1378  *	@sport: the server's TCP port
1379  *	@queue: queue to direct messages from this server to
1380  *
1381  *	Create an IP server for the given port and address.
1382  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1383  */
1384 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1385 			__be32 sip, __be16 sport, __be16 vlan,
1386 			unsigned int queue)
1387 {
1388 	unsigned int chan;
1389 	struct sk_buff *skb;
1390 	struct adapter *adap;
1391 	struct cpl_pass_open_req *req;
1392 	int ret;
1393 
1394 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1395 	if (!skb)
1396 		return -ENOMEM;
1397 
1398 	adap = netdev2adap(dev);
1399 	req = __skb_put(skb, sizeof(*req));
1400 	INIT_TP_WR(req, 0);
1401 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1402 	req->local_port = sport;
1403 	req->peer_port = htons(0);
1404 	req->local_ip = sip;
1405 	req->peer_ip = htonl(0);
1406 	chan = rxq_to_chan(&adap->sge, queue);
1407 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1408 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1409 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1410 	ret = t4_mgmt_tx(adap, skb);
1411 	return net_xmit_eval(ret);
1412 }
1413 EXPORT_SYMBOL(cxgb4_create_server);
1414 
1415 /*	cxgb4_create_server6 - create an IPv6 server
1416  *	@dev: the device
1417  *	@stid: the server TID
1418  *	@sip: local IPv6 address to bind server to
1419  *	@sport: the server's TCP port
1420  *	@queue: queue to direct messages from this server to
1421  *
1422  *	Create an IPv6 server for the given port and address.
1423  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1424  */
1425 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1426 			 const struct in6_addr *sip, __be16 sport,
1427 			 unsigned int queue)
1428 {
1429 	unsigned int chan;
1430 	struct sk_buff *skb;
1431 	struct adapter *adap;
1432 	struct cpl_pass_open_req6 *req;
1433 	int ret;
1434 
1435 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1436 	if (!skb)
1437 		return -ENOMEM;
1438 
1439 	adap = netdev2adap(dev);
1440 	req = __skb_put(skb, sizeof(*req));
1441 	INIT_TP_WR(req, 0);
1442 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1443 	req->local_port = sport;
1444 	req->peer_port = htons(0);
1445 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1446 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1447 	req->peer_ip_hi = cpu_to_be64(0);
1448 	req->peer_ip_lo = cpu_to_be64(0);
1449 	chan = rxq_to_chan(&adap->sge, queue);
1450 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1451 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1452 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1453 	ret = t4_mgmt_tx(adap, skb);
1454 	return net_xmit_eval(ret);
1455 }
1456 EXPORT_SYMBOL(cxgb4_create_server6);
1457 
1458 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1459 			unsigned int queue, bool ipv6)
1460 {
1461 	struct sk_buff *skb;
1462 	struct adapter *adap;
1463 	struct cpl_close_listsvr_req *req;
1464 	int ret;
1465 
1466 	adap = netdev2adap(dev);
1467 
1468 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1469 	if (!skb)
1470 		return -ENOMEM;
1471 
1472 	req = __skb_put(skb, sizeof(*req));
1473 	INIT_TP_WR(req, 0);
1474 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1475 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1476 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1477 	ret = t4_mgmt_tx(adap, skb);
1478 	return net_xmit_eval(ret);
1479 }
1480 EXPORT_SYMBOL(cxgb4_remove_server);
1481 
1482 /**
1483  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1484  *	@mtus: the HW MTU table
1485  *	@mtu: the target MTU
1486  *	@idx: index of selected entry in the MTU table
1487  *
1488  *	Returns the index and the value in the HW MTU table that is closest to
1489  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1490  *	table, in which case that smallest available value is selected.
1491  */
1492 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1493 			    unsigned int *idx)
1494 {
1495 	unsigned int i = 0;
1496 
1497 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1498 		++i;
1499 	if (idx)
1500 		*idx = i;
1501 	return mtus[i];
1502 }
1503 EXPORT_SYMBOL(cxgb4_best_mtu);
1504 
1505 /**
1506  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1507  *     @mtus: the HW MTU table
1508  *     @header_size: Header Size
1509  *     @data_size_max: maximum Data Segment Size
1510  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1511  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1512  *
1513  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1514  *     MTU Table based solely on a Maximum MTU parameter, we break that
1515  *     parameter up into a Header Size and Maximum Data Segment Size, and
1516  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1517  *     the Hardware MTU Table which will result in a Data Segment Size with
1518  *     the requested alignment _and_ that MTU isn't "too far" from the
1519  *     closest MTU, then we'll return that rather than the closest MTU.
1520  */
1521 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1522 				    unsigned short header_size,
1523 				    unsigned short data_size_max,
1524 				    unsigned short data_size_align,
1525 				    unsigned int *mtu_idxp)
1526 {
1527 	unsigned short max_mtu = header_size + data_size_max;
1528 	unsigned short data_size_align_mask = data_size_align - 1;
1529 	int mtu_idx, aligned_mtu_idx;
1530 
1531 	/* Scan the MTU Table till we find an MTU which is larger than our
1532 	 * Maximum MTU or we reach the end of the table.  Along the way,
1533 	 * record the last MTU found, if any, which will result in a Data
1534 	 * Segment Length matching the requested alignment.
1535 	 */
1536 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1537 		unsigned short data_size = mtus[mtu_idx] - header_size;
1538 
1539 		/* If this MTU minus the Header Size would result in a
1540 		 * Data Segment Size of the desired alignment, remember it.
1541 		 */
1542 		if ((data_size & data_size_align_mask) == 0)
1543 			aligned_mtu_idx = mtu_idx;
1544 
1545 		/* If we're not at the end of the Hardware MTU Table and the
1546 		 * next element is larger than our Maximum MTU, drop out of
1547 		 * the loop.
1548 		 */
1549 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1550 			break;
1551 	}
1552 
1553 	/* If we fell out of the loop because we ran to the end of the table,
1554 	 * then we just have to use the last [largest] entry.
1555 	 */
1556 	if (mtu_idx == NMTUS)
1557 		mtu_idx--;
1558 
1559 	/* If we found an MTU which resulted in the requested Data Segment
1560 	 * Length alignment and that's "not far" from the largest MTU which is
1561 	 * less than or equal to the maximum MTU, then use that.
1562 	 */
1563 	if (aligned_mtu_idx >= 0 &&
1564 	    mtu_idx - aligned_mtu_idx <= 1)
1565 		mtu_idx = aligned_mtu_idx;
1566 
1567 	/* If the caller has passed in an MTU Index pointer, pass the
1568 	 * MTU Index back.  Return the MTU value.
1569 	 */
1570 	if (mtu_idxp)
1571 		*mtu_idxp = mtu_idx;
1572 	return mtus[mtu_idx];
1573 }
1574 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1575 
1576 /**
1577  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1578  *	@chip: chip type
1579  *	@viid: VI id of the given port
1580  *
1581  *	Return the SMT index for this VI.
1582  */
1583 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1584 {
1585 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1586 	 * 128 rows of 2 entries each.
1587 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1588 	 * TODO: The below code needs to be updated when we add support
1589 	 * for 256 VFs.
1590 	 */
1591 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1592 		return ((viid & 0x7f) << 1);
1593 	else
1594 		return (viid & 0x7f);
1595 }
1596 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1597 
1598 /**
1599  *	cxgb4_port_chan - get the HW channel of a port
1600  *	@dev: the net device for the port
1601  *
1602  *	Return the HW Tx channel of the given port.
1603  */
1604 unsigned int cxgb4_port_chan(const struct net_device *dev)
1605 {
1606 	return netdev2pinfo(dev)->tx_chan;
1607 }
1608 EXPORT_SYMBOL(cxgb4_port_chan);
1609 
1610 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1611 {
1612 	struct adapter *adap = netdev2adap(dev);
1613 	u32 v1, v2, lp_count, hp_count;
1614 
1615 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1616 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1617 	if (is_t4(adap->params.chip)) {
1618 		lp_count = LP_COUNT_G(v1);
1619 		hp_count = HP_COUNT_G(v1);
1620 	} else {
1621 		lp_count = LP_COUNT_T5_G(v1);
1622 		hp_count = HP_COUNT_T5_G(v2);
1623 	}
1624 	return lpfifo ? lp_count : hp_count;
1625 }
1626 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1627 
1628 /**
1629  *	cxgb4_port_viid - get the VI id of a port
1630  *	@dev: the net device for the port
1631  *
1632  *	Return the VI id of the given port.
1633  */
1634 unsigned int cxgb4_port_viid(const struct net_device *dev)
1635 {
1636 	return netdev2pinfo(dev)->viid;
1637 }
1638 EXPORT_SYMBOL(cxgb4_port_viid);
1639 
1640 /**
1641  *	cxgb4_port_idx - get the index of a port
1642  *	@dev: the net device for the port
1643  *
1644  *	Return the index of the given port.
1645  */
1646 unsigned int cxgb4_port_idx(const struct net_device *dev)
1647 {
1648 	return netdev2pinfo(dev)->port_id;
1649 }
1650 EXPORT_SYMBOL(cxgb4_port_idx);
1651 
1652 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1653 			 struct tp_tcp_stats *v6)
1654 {
1655 	struct adapter *adap = pci_get_drvdata(pdev);
1656 
1657 	spin_lock(&adap->stats_lock);
1658 	t4_tp_get_tcp_stats(adap, v4, v6, false);
1659 	spin_unlock(&adap->stats_lock);
1660 }
1661 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1662 
1663 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1664 		      const unsigned int *pgsz_order)
1665 {
1666 	struct adapter *adap = netdev2adap(dev);
1667 
1668 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1669 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1670 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1671 		     HPZ3_V(pgsz_order[3]));
1672 }
1673 EXPORT_SYMBOL(cxgb4_iscsi_init);
1674 
1675 int cxgb4_flush_eq_cache(struct net_device *dev)
1676 {
1677 	struct adapter *adap = netdev2adap(dev);
1678 
1679 	return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1680 }
1681 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1682 
1683 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1684 {
1685 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1686 	__be64 indices;
1687 	int ret;
1688 
1689 	spin_lock(&adap->win0_lock);
1690 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1691 			   sizeof(indices), (__be32 *)&indices,
1692 			   T4_MEMORY_READ);
1693 	spin_unlock(&adap->win0_lock);
1694 	if (!ret) {
1695 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1696 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1697 	}
1698 	return ret;
1699 }
1700 
1701 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1702 			u16 size)
1703 {
1704 	struct adapter *adap = netdev2adap(dev);
1705 	u16 hw_pidx, hw_cidx;
1706 	int ret;
1707 
1708 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1709 	if (ret)
1710 		goto out;
1711 
1712 	if (pidx != hw_pidx) {
1713 		u16 delta;
1714 		u32 val;
1715 
1716 		if (pidx >= hw_pidx)
1717 			delta = pidx - hw_pidx;
1718 		else
1719 			delta = size - hw_pidx + pidx;
1720 
1721 		if (is_t4(adap->params.chip))
1722 			val = PIDX_V(delta);
1723 		else
1724 			val = PIDX_T5_V(delta);
1725 		wmb();
1726 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1727 			     QID_V(qid) | val);
1728 	}
1729 out:
1730 	return ret;
1731 }
1732 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1733 
1734 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1735 {
1736 	struct adapter *adap;
1737 	u32 offset, memtype, memaddr;
1738 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1739 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1740 	int ret;
1741 
1742 	adap = netdev2adap(dev);
1743 
1744 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1745 
1746 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1747 	 * This code assumes that the memory is laid out starting at offset 0
1748 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1749 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1750 	 * MC0, and some have both MC0 and MC1.
1751 	 */
1752 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1753 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1754 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1755 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1756 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1757 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1758 
1759 	edc0_end = edc0_size;
1760 	edc1_end = edc0_end + edc1_size;
1761 	mc0_end = edc1_end + mc0_size;
1762 
1763 	if (offset < edc0_end) {
1764 		memtype = MEM_EDC0;
1765 		memaddr = offset;
1766 	} else if (offset < edc1_end) {
1767 		memtype = MEM_EDC1;
1768 		memaddr = offset - edc0_end;
1769 	} else {
1770 		if (offset < mc0_end) {
1771 			memtype = MEM_MC0;
1772 			memaddr = offset - edc1_end;
1773 		} else if (is_t5(adap->params.chip)) {
1774 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1775 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1776 			mc1_end = mc0_end + mc1_size;
1777 			if (offset < mc1_end) {
1778 				memtype = MEM_MC1;
1779 				memaddr = offset - mc0_end;
1780 			} else {
1781 				/* offset beyond the end of any memory */
1782 				goto err;
1783 			}
1784 		} else {
1785 			/* T4/T6 only has a single memory channel */
1786 			goto err;
1787 		}
1788 	}
1789 
1790 	spin_lock(&adap->win0_lock);
1791 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1792 	spin_unlock(&adap->win0_lock);
1793 	return ret;
1794 
1795 err:
1796 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1797 		stag, offset);
1798 	return -EINVAL;
1799 }
1800 EXPORT_SYMBOL(cxgb4_read_tpte);
1801 
1802 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1803 {
1804 	u32 hi, lo;
1805 	struct adapter *adap;
1806 
1807 	adap = netdev2adap(dev);
1808 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1809 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1810 
1811 	return ((u64)hi << 32) | (u64)lo;
1812 }
1813 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1814 
1815 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1816 			 unsigned int qid,
1817 			 enum cxgb4_bar2_qtype qtype,
1818 			 int user,
1819 			 u64 *pbar2_qoffset,
1820 			 unsigned int *pbar2_qid)
1821 {
1822 	return t4_bar2_sge_qregs(netdev2adap(dev),
1823 				 qid,
1824 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1825 				  ? T4_BAR2_QTYPE_EGRESS
1826 				  : T4_BAR2_QTYPE_INGRESS),
1827 				 user,
1828 				 pbar2_qoffset,
1829 				 pbar2_qid);
1830 }
1831 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1832 
1833 static struct pci_driver cxgb4_driver;
1834 
1835 static void check_neigh_update(struct neighbour *neigh)
1836 {
1837 	const struct device *parent;
1838 	const struct net_device *netdev = neigh->dev;
1839 
1840 	if (is_vlan_dev(netdev))
1841 		netdev = vlan_dev_real_dev(netdev);
1842 	parent = netdev->dev.parent;
1843 	if (parent && parent->driver == &cxgb4_driver.driver)
1844 		t4_l2t_update(dev_get_drvdata(parent), neigh);
1845 }
1846 
1847 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1848 		       void *data)
1849 {
1850 	switch (event) {
1851 	case NETEVENT_NEIGH_UPDATE:
1852 		check_neigh_update(data);
1853 		break;
1854 	case NETEVENT_REDIRECT:
1855 	default:
1856 		break;
1857 	}
1858 	return 0;
1859 }
1860 
1861 static bool netevent_registered;
1862 static struct notifier_block cxgb4_netevent_nb = {
1863 	.notifier_call = netevent_cb
1864 };
1865 
1866 static void drain_db_fifo(struct adapter *adap, int usecs)
1867 {
1868 	u32 v1, v2, lp_count, hp_count;
1869 
1870 	do {
1871 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1872 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1873 		if (is_t4(adap->params.chip)) {
1874 			lp_count = LP_COUNT_G(v1);
1875 			hp_count = HP_COUNT_G(v1);
1876 		} else {
1877 			lp_count = LP_COUNT_T5_G(v1);
1878 			hp_count = HP_COUNT_T5_G(v2);
1879 		}
1880 
1881 		if (lp_count == 0 && hp_count == 0)
1882 			break;
1883 		set_current_state(TASK_UNINTERRUPTIBLE);
1884 		schedule_timeout(usecs_to_jiffies(usecs));
1885 	} while (1);
1886 }
1887 
1888 static void disable_txq_db(struct sge_txq *q)
1889 {
1890 	unsigned long flags;
1891 
1892 	spin_lock_irqsave(&q->db_lock, flags);
1893 	q->db_disabled = 1;
1894 	spin_unlock_irqrestore(&q->db_lock, flags);
1895 }
1896 
1897 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1898 {
1899 	spin_lock_irq(&q->db_lock);
1900 	if (q->db_pidx_inc) {
1901 		/* Make sure that all writes to the TX descriptors
1902 		 * are committed before we tell HW about them.
1903 		 */
1904 		wmb();
1905 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1906 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1907 		q->db_pidx_inc = 0;
1908 	}
1909 	q->db_disabled = 0;
1910 	spin_unlock_irq(&q->db_lock);
1911 }
1912 
1913 static void disable_dbs(struct adapter *adap)
1914 {
1915 	int i;
1916 
1917 	for_each_ethrxq(&adap->sge, i)
1918 		disable_txq_db(&adap->sge.ethtxq[i].q);
1919 	if (is_offload(adap)) {
1920 		struct sge_uld_txq_info *txq_info =
1921 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1922 
1923 		if (txq_info) {
1924 			for_each_ofldtxq(&adap->sge, i) {
1925 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1926 
1927 				disable_txq_db(&txq->q);
1928 			}
1929 		}
1930 	}
1931 	for_each_port(adap, i)
1932 		disable_txq_db(&adap->sge.ctrlq[i].q);
1933 }
1934 
1935 static void enable_dbs(struct adapter *adap)
1936 {
1937 	int i;
1938 
1939 	for_each_ethrxq(&adap->sge, i)
1940 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1941 	if (is_offload(adap)) {
1942 		struct sge_uld_txq_info *txq_info =
1943 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1944 
1945 		if (txq_info) {
1946 			for_each_ofldtxq(&adap->sge, i) {
1947 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1948 
1949 				enable_txq_db(adap, &txq->q);
1950 			}
1951 		}
1952 	}
1953 	for_each_port(adap, i)
1954 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1955 }
1956 
1957 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1958 {
1959 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
1960 
1961 	if (adap->uld && adap->uld[type].handle)
1962 		adap->uld[type].control(adap->uld[type].handle, cmd);
1963 }
1964 
1965 static void process_db_full(struct work_struct *work)
1966 {
1967 	struct adapter *adap;
1968 
1969 	adap = container_of(work, struct adapter, db_full_task);
1970 
1971 	drain_db_fifo(adap, dbfifo_drain_delay);
1972 	enable_dbs(adap);
1973 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1974 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1975 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1976 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1977 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1978 	else
1979 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1980 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1981 }
1982 
1983 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1984 {
1985 	u16 hw_pidx, hw_cidx;
1986 	int ret;
1987 
1988 	spin_lock_irq(&q->db_lock);
1989 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1990 	if (ret)
1991 		goto out;
1992 	if (q->db_pidx != hw_pidx) {
1993 		u16 delta;
1994 		u32 val;
1995 
1996 		if (q->db_pidx >= hw_pidx)
1997 			delta = q->db_pidx - hw_pidx;
1998 		else
1999 			delta = q->size - hw_pidx + q->db_pidx;
2000 
2001 		if (is_t4(adap->params.chip))
2002 			val = PIDX_V(delta);
2003 		else
2004 			val = PIDX_T5_V(delta);
2005 		wmb();
2006 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2007 			     QID_V(q->cntxt_id) | val);
2008 	}
2009 out:
2010 	q->db_disabled = 0;
2011 	q->db_pidx_inc = 0;
2012 	spin_unlock_irq(&q->db_lock);
2013 	if (ret)
2014 		CH_WARN(adap, "DB drop recovery failed.\n");
2015 }
2016 
2017 static void recover_all_queues(struct adapter *adap)
2018 {
2019 	int i;
2020 
2021 	for_each_ethrxq(&adap->sge, i)
2022 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2023 	if (is_offload(adap)) {
2024 		struct sge_uld_txq_info *txq_info =
2025 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2026 		if (txq_info) {
2027 			for_each_ofldtxq(&adap->sge, i) {
2028 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2029 
2030 				sync_txq_pidx(adap, &txq->q);
2031 			}
2032 		}
2033 	}
2034 	for_each_port(adap, i)
2035 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2036 }
2037 
2038 static void process_db_drop(struct work_struct *work)
2039 {
2040 	struct adapter *adap;
2041 
2042 	adap = container_of(work, struct adapter, db_drop_task);
2043 
2044 	if (is_t4(adap->params.chip)) {
2045 		drain_db_fifo(adap, dbfifo_drain_delay);
2046 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2047 		drain_db_fifo(adap, dbfifo_drain_delay);
2048 		recover_all_queues(adap);
2049 		drain_db_fifo(adap, dbfifo_drain_delay);
2050 		enable_dbs(adap);
2051 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2052 	} else if (is_t5(adap->params.chip)) {
2053 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2054 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2055 		u16 pidx_inc = dropped_db & 0x1fff;
2056 		u64 bar2_qoffset;
2057 		unsigned int bar2_qid;
2058 		int ret;
2059 
2060 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2061 					0, &bar2_qoffset, &bar2_qid);
2062 		if (ret)
2063 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2064 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2065 		else
2066 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2067 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2068 
2069 		/* Re-enable BAR2 WC */
2070 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2071 	}
2072 
2073 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2074 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2075 }
2076 
2077 void t4_db_full(struct adapter *adap)
2078 {
2079 	if (is_t4(adap->params.chip)) {
2080 		disable_dbs(adap);
2081 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2082 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2083 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2084 		queue_work(adap->workq, &adap->db_full_task);
2085 	}
2086 }
2087 
2088 void t4_db_dropped(struct adapter *adap)
2089 {
2090 	if (is_t4(adap->params.chip)) {
2091 		disable_dbs(adap);
2092 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2093 	}
2094 	queue_work(adap->workq, &adap->db_drop_task);
2095 }
2096 
2097 void t4_register_netevent_notifier(void)
2098 {
2099 	if (!netevent_registered) {
2100 		register_netevent_notifier(&cxgb4_netevent_nb);
2101 		netevent_registered = true;
2102 	}
2103 }
2104 
2105 static void detach_ulds(struct adapter *adap)
2106 {
2107 	unsigned int i;
2108 
2109 	mutex_lock(&uld_mutex);
2110 	list_del(&adap->list_node);
2111 
2112 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2113 		if (adap->uld && adap->uld[i].handle)
2114 			adap->uld[i].state_change(adap->uld[i].handle,
2115 					     CXGB4_STATE_DETACH);
2116 
2117 	if (netevent_registered && list_empty(&adapter_list)) {
2118 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2119 		netevent_registered = false;
2120 	}
2121 	mutex_unlock(&uld_mutex);
2122 }
2123 
2124 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2125 {
2126 	unsigned int i;
2127 
2128 	mutex_lock(&uld_mutex);
2129 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2130 		if (adap->uld && adap->uld[i].handle)
2131 			adap->uld[i].state_change(adap->uld[i].handle,
2132 						  new_state);
2133 	mutex_unlock(&uld_mutex);
2134 }
2135 
2136 #if IS_ENABLED(CONFIG_IPV6)
2137 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2138 				   unsigned long event, void *data)
2139 {
2140 	struct inet6_ifaddr *ifa = data;
2141 	struct net_device *event_dev = ifa->idev->dev;
2142 	const struct device *parent = NULL;
2143 #if IS_ENABLED(CONFIG_BONDING)
2144 	struct adapter *adap;
2145 #endif
2146 	if (is_vlan_dev(event_dev))
2147 		event_dev = vlan_dev_real_dev(event_dev);
2148 #if IS_ENABLED(CONFIG_BONDING)
2149 	if (event_dev->flags & IFF_MASTER) {
2150 		list_for_each_entry(adap, &adapter_list, list_node) {
2151 			switch (event) {
2152 			case NETDEV_UP:
2153 				cxgb4_clip_get(adap->port[0],
2154 					       (const u32 *)ifa, 1);
2155 				break;
2156 			case NETDEV_DOWN:
2157 				cxgb4_clip_release(adap->port[0],
2158 						   (const u32 *)ifa, 1);
2159 				break;
2160 			default:
2161 				break;
2162 			}
2163 		}
2164 		return NOTIFY_OK;
2165 	}
2166 #endif
2167 
2168 	if (event_dev)
2169 		parent = event_dev->dev.parent;
2170 
2171 	if (parent && parent->driver == &cxgb4_driver.driver) {
2172 		switch (event) {
2173 		case NETDEV_UP:
2174 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2175 			break;
2176 		case NETDEV_DOWN:
2177 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2178 			break;
2179 		default:
2180 			break;
2181 		}
2182 	}
2183 	return NOTIFY_OK;
2184 }
2185 
2186 static bool inet6addr_registered;
2187 static struct notifier_block cxgb4_inet6addr_notifier = {
2188 	.notifier_call = cxgb4_inet6addr_handler
2189 };
2190 
2191 static void update_clip(const struct adapter *adap)
2192 {
2193 	int i;
2194 	struct net_device *dev;
2195 	int ret;
2196 
2197 	rcu_read_lock();
2198 
2199 	for (i = 0; i < MAX_NPORTS; i++) {
2200 		dev = adap->port[i];
2201 		ret = 0;
2202 
2203 		if (dev)
2204 			ret = cxgb4_update_root_dev_clip(dev);
2205 
2206 		if (ret < 0)
2207 			break;
2208 	}
2209 	rcu_read_unlock();
2210 }
2211 #endif /* IS_ENABLED(CONFIG_IPV6) */
2212 
2213 /**
2214  *	cxgb_up - enable the adapter
2215  *	@adap: adapter being enabled
2216  *
2217  *	Called when the first port is enabled, this function performs the
2218  *	actions necessary to make an adapter operational, such as completing
2219  *	the initialization of HW modules, and enabling interrupts.
2220  *
2221  *	Must be called with the rtnl lock held.
2222  */
2223 static int cxgb_up(struct adapter *adap)
2224 {
2225 	int err;
2226 
2227 	mutex_lock(&uld_mutex);
2228 	err = setup_sge_queues(adap);
2229 	if (err)
2230 		goto rel_lock;
2231 	err = setup_rss(adap);
2232 	if (err)
2233 		goto freeq;
2234 
2235 	if (adap->flags & USING_MSIX) {
2236 		name_msix_vecs(adap);
2237 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2238 				  adap->msix_info[0].desc, adap);
2239 		if (err)
2240 			goto irq_err;
2241 		err = request_msix_queue_irqs(adap);
2242 		if (err) {
2243 			free_irq(adap->msix_info[0].vec, adap);
2244 			goto irq_err;
2245 		}
2246 	} else {
2247 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2248 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2249 				  adap->port[0]->name, adap);
2250 		if (err)
2251 			goto irq_err;
2252 	}
2253 
2254 	enable_rx(adap);
2255 	t4_sge_start(adap);
2256 	t4_intr_enable(adap);
2257 	adap->flags |= FULL_INIT_DONE;
2258 	mutex_unlock(&uld_mutex);
2259 
2260 	notify_ulds(adap, CXGB4_STATE_UP);
2261 #if IS_ENABLED(CONFIG_IPV6)
2262 	update_clip(adap);
2263 #endif
2264 	/* Initialize hash mac addr list*/
2265 	INIT_LIST_HEAD(&adap->mac_hlist);
2266 	return err;
2267 
2268  irq_err:
2269 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2270  freeq:
2271 	t4_free_sge_resources(adap);
2272  rel_lock:
2273 	mutex_unlock(&uld_mutex);
2274 	return err;
2275 }
2276 
2277 static void cxgb_down(struct adapter *adapter)
2278 {
2279 	cancel_work_sync(&adapter->tid_release_task);
2280 	cancel_work_sync(&adapter->db_full_task);
2281 	cancel_work_sync(&adapter->db_drop_task);
2282 	adapter->tid_release_task_busy = false;
2283 	adapter->tid_release_head = NULL;
2284 
2285 	t4_sge_stop(adapter);
2286 	t4_free_sge_resources(adapter);
2287 	adapter->flags &= ~FULL_INIT_DONE;
2288 }
2289 
2290 /*
2291  * net_device operations
2292  */
2293 static int cxgb_open(struct net_device *dev)
2294 {
2295 	int err;
2296 	struct port_info *pi = netdev_priv(dev);
2297 	struct adapter *adapter = pi->adapter;
2298 
2299 	netif_carrier_off(dev);
2300 
2301 	if (!(adapter->flags & FULL_INIT_DONE)) {
2302 		err = cxgb_up(adapter);
2303 		if (err < 0)
2304 			return err;
2305 	}
2306 
2307 	/* It's possible that the basic port information could have
2308 	 * changed since we first read it.
2309 	 */
2310 	err = t4_update_port_info(pi);
2311 	if (err < 0)
2312 		return err;
2313 
2314 	err = link_start(dev);
2315 	if (!err)
2316 		netif_tx_start_all_queues(dev);
2317 	return err;
2318 }
2319 
2320 static int cxgb_close(struct net_device *dev)
2321 {
2322 	struct port_info *pi = netdev_priv(dev);
2323 	struct adapter *adapter = pi->adapter;
2324 	int ret;
2325 
2326 	netif_tx_stop_all_queues(dev);
2327 	netif_carrier_off(dev);
2328 	ret = t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2329 #ifdef CONFIG_CHELSIO_T4_DCB
2330 	cxgb4_dcb_reset(dev);
2331 	dcb_tx_queue_prio_enable(dev, false);
2332 #endif
2333 	return ret;
2334 }
2335 
2336 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2337 		__be32 sip, __be16 sport, __be16 vlan,
2338 		unsigned int queue, unsigned char port, unsigned char mask)
2339 {
2340 	int ret;
2341 	struct filter_entry *f;
2342 	struct adapter *adap;
2343 	int i;
2344 	u8 *val;
2345 
2346 	adap = netdev2adap(dev);
2347 
2348 	/* Adjust stid to correct filter index */
2349 	stid -= adap->tids.sftid_base;
2350 	stid += adap->tids.nftids;
2351 
2352 	/* Check to make sure the filter requested is writable ...
2353 	 */
2354 	f = &adap->tids.ftid_tab[stid];
2355 	ret = writable_filter(f);
2356 	if (ret)
2357 		return ret;
2358 
2359 	/* Clear out any old resources being used by the filter before
2360 	 * we start constructing the new filter.
2361 	 */
2362 	if (f->valid)
2363 		clear_filter(adap, f);
2364 
2365 	/* Clear out filter specifications */
2366 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2367 	f->fs.val.lport = cpu_to_be16(sport);
2368 	f->fs.mask.lport  = ~0;
2369 	val = (u8 *)&sip;
2370 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2371 		for (i = 0; i < 4; i++) {
2372 			f->fs.val.lip[i] = val[i];
2373 			f->fs.mask.lip[i] = ~0;
2374 		}
2375 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2376 			f->fs.val.iport = port;
2377 			f->fs.mask.iport = mask;
2378 		}
2379 	}
2380 
2381 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2382 		f->fs.val.proto = IPPROTO_TCP;
2383 		f->fs.mask.proto = ~0;
2384 	}
2385 
2386 	f->fs.dirsteer = 1;
2387 	f->fs.iq = queue;
2388 	/* Mark filter as locked */
2389 	f->locked = 1;
2390 	f->fs.rpttid = 1;
2391 
2392 	/* Save the actual tid. We need this to get the corresponding
2393 	 * filter entry structure in filter_rpl.
2394 	 */
2395 	f->tid = stid + adap->tids.ftid_base;
2396 	ret = set_filter_wr(adap, stid);
2397 	if (ret) {
2398 		clear_filter(adap, f);
2399 		return ret;
2400 	}
2401 
2402 	return 0;
2403 }
2404 EXPORT_SYMBOL(cxgb4_create_server_filter);
2405 
2406 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2407 		unsigned int queue, bool ipv6)
2408 {
2409 	struct filter_entry *f;
2410 	struct adapter *adap;
2411 
2412 	adap = netdev2adap(dev);
2413 
2414 	/* Adjust stid to correct filter index */
2415 	stid -= adap->tids.sftid_base;
2416 	stid += adap->tids.nftids;
2417 
2418 	f = &adap->tids.ftid_tab[stid];
2419 	/* Unlock the filter */
2420 	f->locked = 0;
2421 
2422 	return delete_filter(adap, stid);
2423 }
2424 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2425 
2426 static void cxgb_get_stats(struct net_device *dev,
2427 			   struct rtnl_link_stats64 *ns)
2428 {
2429 	struct port_stats stats;
2430 	struct port_info *p = netdev_priv(dev);
2431 	struct adapter *adapter = p->adapter;
2432 
2433 	/* Block retrieving statistics during EEH error
2434 	 * recovery. Otherwise, the recovery might fail
2435 	 * and the PCI device will be removed permanently
2436 	 */
2437 	spin_lock(&adapter->stats_lock);
2438 	if (!netif_device_present(dev)) {
2439 		spin_unlock(&adapter->stats_lock);
2440 		return;
2441 	}
2442 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2443 				 &p->stats_base);
2444 	spin_unlock(&adapter->stats_lock);
2445 
2446 	ns->tx_bytes   = stats.tx_octets;
2447 	ns->tx_packets = stats.tx_frames;
2448 	ns->rx_bytes   = stats.rx_octets;
2449 	ns->rx_packets = stats.rx_frames;
2450 	ns->multicast  = stats.rx_mcast_frames;
2451 
2452 	/* detailed rx_errors */
2453 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2454 			       stats.rx_runt;
2455 	ns->rx_over_errors   = 0;
2456 	ns->rx_crc_errors    = stats.rx_fcs_err;
2457 	ns->rx_frame_errors  = stats.rx_symbol_err;
2458 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2459 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2460 			       stats.rx_trunc0 + stats.rx_trunc1 +
2461 			       stats.rx_trunc2 + stats.rx_trunc3;
2462 	ns->rx_missed_errors = 0;
2463 
2464 	/* detailed tx_errors */
2465 	ns->tx_aborted_errors   = 0;
2466 	ns->tx_carrier_errors   = 0;
2467 	ns->tx_fifo_errors      = 0;
2468 	ns->tx_heartbeat_errors = 0;
2469 	ns->tx_window_errors    = 0;
2470 
2471 	ns->tx_errors = stats.tx_error_frames;
2472 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2473 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2474 }
2475 
2476 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2477 {
2478 	unsigned int mbox;
2479 	int ret = 0, prtad, devad;
2480 	struct port_info *pi = netdev_priv(dev);
2481 	struct adapter *adapter = pi->adapter;
2482 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2483 
2484 	switch (cmd) {
2485 	case SIOCGMIIPHY:
2486 		if (pi->mdio_addr < 0)
2487 			return -EOPNOTSUPP;
2488 		data->phy_id = pi->mdio_addr;
2489 		break;
2490 	case SIOCGMIIREG:
2491 	case SIOCSMIIREG:
2492 		if (mdio_phy_id_is_c45(data->phy_id)) {
2493 			prtad = mdio_phy_id_prtad(data->phy_id);
2494 			devad = mdio_phy_id_devad(data->phy_id);
2495 		} else if (data->phy_id < 32) {
2496 			prtad = data->phy_id;
2497 			devad = 0;
2498 			data->reg_num &= 0x1f;
2499 		} else
2500 			return -EINVAL;
2501 
2502 		mbox = pi->adapter->pf;
2503 		if (cmd == SIOCGMIIREG)
2504 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2505 					 data->reg_num, &data->val_out);
2506 		else
2507 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2508 					 data->reg_num, data->val_in);
2509 		break;
2510 	case SIOCGHWTSTAMP:
2511 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2512 				    sizeof(pi->tstamp_config)) ?
2513 			-EFAULT : 0;
2514 	case SIOCSHWTSTAMP:
2515 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2516 				   sizeof(pi->tstamp_config)))
2517 			return -EFAULT;
2518 
2519 		if (!is_t4(adapter->params.chip)) {
2520 			switch (pi->tstamp_config.tx_type) {
2521 			case HWTSTAMP_TX_OFF:
2522 			case HWTSTAMP_TX_ON:
2523 				break;
2524 			default:
2525 				return -ERANGE;
2526 			}
2527 
2528 			switch (pi->tstamp_config.rx_filter) {
2529 			case HWTSTAMP_FILTER_NONE:
2530 				pi->rxtstamp = false;
2531 				break;
2532 			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2533 			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2534 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2535 							 PTP_TS_L4);
2536 				break;
2537 			case HWTSTAMP_FILTER_PTP_V2_EVENT:
2538 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2539 							 PTP_TS_L2_L4);
2540 				break;
2541 			case HWTSTAMP_FILTER_ALL:
2542 			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2543 			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2544 			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2545 			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2546 				pi->rxtstamp = true;
2547 				break;
2548 			default:
2549 				pi->tstamp_config.rx_filter =
2550 					HWTSTAMP_FILTER_NONE;
2551 				return -ERANGE;
2552 			}
2553 
2554 			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2555 			    (pi->tstamp_config.rx_filter ==
2556 				HWTSTAMP_FILTER_NONE)) {
2557 				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2558 					pi->ptp_enable = false;
2559 			}
2560 
2561 			if (pi->tstamp_config.rx_filter !=
2562 				HWTSTAMP_FILTER_NONE) {
2563 				if (cxgb4_ptp_redirect_rx_packet(adapter,
2564 								 pi) >= 0)
2565 					pi->ptp_enable = true;
2566 			}
2567 		} else {
2568 			/* For T4 Adapters */
2569 			switch (pi->tstamp_config.rx_filter) {
2570 			case HWTSTAMP_FILTER_NONE:
2571 			pi->rxtstamp = false;
2572 			break;
2573 			case HWTSTAMP_FILTER_ALL:
2574 			pi->rxtstamp = true;
2575 			break;
2576 			default:
2577 			pi->tstamp_config.rx_filter =
2578 			HWTSTAMP_FILTER_NONE;
2579 			return -ERANGE;
2580 			}
2581 		}
2582 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2583 				    sizeof(pi->tstamp_config)) ?
2584 			-EFAULT : 0;
2585 	default:
2586 		return -EOPNOTSUPP;
2587 	}
2588 	return ret;
2589 }
2590 
2591 static void cxgb_set_rxmode(struct net_device *dev)
2592 {
2593 	/* unfortunately we can't return errors to the stack */
2594 	set_rxmode(dev, -1, false);
2595 }
2596 
2597 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2598 {
2599 	int ret;
2600 	struct port_info *pi = netdev_priv(dev);
2601 
2602 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2603 			    -1, -1, -1, true);
2604 	if (!ret)
2605 		dev->mtu = new_mtu;
2606 	return ret;
2607 }
2608 
2609 #ifdef CONFIG_PCI_IOV
2610 static int cxgb4_mgmt_open(struct net_device *dev)
2611 {
2612 	/* Turn carrier off since we don't have to transmit anything on this
2613 	 * interface.
2614 	 */
2615 	netif_carrier_off(dev);
2616 	return 0;
2617 }
2618 
2619 /* Fill MAC address that will be assigned by the FW */
2620 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2621 {
2622 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2623 	unsigned int i, vf, nvfs;
2624 	u16 a, b;
2625 	int err;
2626 	u8 *na;
2627 
2628 	adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2629 							    PCI_CAP_ID_VPD);
2630 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2631 	if (err)
2632 		return;
2633 
2634 	na = adap->params.vpd.na;
2635 	for (i = 0; i < ETH_ALEN; i++)
2636 		hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2637 			      hex2val(na[2 * i + 1]));
2638 
2639 	a = (hw_addr[0] << 8) | hw_addr[1];
2640 	b = (hw_addr[1] << 8) | hw_addr[2];
2641 	a ^= b;
2642 	a |= 0x0200;    /* locally assigned Ethernet MAC address */
2643 	a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2644 	macaddr[0] = a >> 8;
2645 	macaddr[1] = a & 0xff;
2646 
2647 	for (i = 2; i < 5; i++)
2648 		macaddr[i] = hw_addr[i + 1];
2649 
2650 	for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2651 		vf < nvfs; vf++) {
2652 		macaddr[5] = adap->pf * 16 + vf;
2653 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2654 	}
2655 }
2656 
2657 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2658 {
2659 	struct port_info *pi = netdev_priv(dev);
2660 	struct adapter *adap = pi->adapter;
2661 	int ret;
2662 
2663 	/* verify MAC addr is valid */
2664 	if (!is_valid_ether_addr(mac)) {
2665 		dev_err(pi->adapter->pdev_dev,
2666 			"Invalid Ethernet address %pM for VF %d\n",
2667 			mac, vf);
2668 		return -EINVAL;
2669 	}
2670 
2671 	dev_info(pi->adapter->pdev_dev,
2672 		 "Setting MAC %pM on VF %d\n", mac, vf);
2673 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2674 	if (!ret)
2675 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2676 	return ret;
2677 }
2678 
2679 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2680 				    int vf, struct ifla_vf_info *ivi)
2681 {
2682 	struct port_info *pi = netdev_priv(dev);
2683 	struct adapter *adap = pi->adapter;
2684 
2685 	if (vf >= adap->num_vfs)
2686 		return -EINVAL;
2687 	ivi->vf = vf;
2688 	ivi->max_tx_rate = adap->vfinfo[vf].tx_rate;
2689 	ivi->min_tx_rate = 0;
2690 	ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2691 	return 0;
2692 }
2693 
2694 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2695 				       struct netdev_phys_item_id *ppid)
2696 {
2697 	struct port_info *pi = netdev_priv(dev);
2698 	unsigned int phy_port_id;
2699 
2700 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2701 	ppid->id_len = sizeof(phy_port_id);
2702 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
2703 	return 0;
2704 }
2705 
2706 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2707 				  int min_tx_rate, int max_tx_rate)
2708 {
2709 	struct port_info *pi = netdev_priv(dev);
2710 	struct adapter *adap = pi->adapter;
2711 	unsigned int link_ok, speed, mtu;
2712 	u32 fw_pfvf, fw_class;
2713 	int class_id = vf;
2714 	int ret;
2715 	u16 pktsize;
2716 
2717 	if (vf >= adap->num_vfs)
2718 		return -EINVAL;
2719 
2720 	if (min_tx_rate) {
2721 		dev_err(adap->pdev_dev,
2722 			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2723 			min_tx_rate, vf);
2724 		return -EINVAL;
2725 	}
2726 
2727 	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2728 	if (ret != FW_SUCCESS) {
2729 		dev_err(adap->pdev_dev,
2730 			"Failed to get link information for VF %d\n", vf);
2731 		return -EINVAL;
2732 	}
2733 
2734 	if (!link_ok) {
2735 		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2736 		return -EINVAL;
2737 	}
2738 
2739 	if (max_tx_rate > speed) {
2740 		dev_err(adap->pdev_dev,
2741 			"Max tx rate %d for VF %d can't be > link-speed %u",
2742 			max_tx_rate, vf, speed);
2743 		return -EINVAL;
2744 	}
2745 
2746 	pktsize = mtu;
2747 	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2748 	pktsize = pktsize - sizeof(struct ethhdr) - 4;
2749 	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2750 	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2751 	/* configure Traffic Class for rate-limiting */
2752 	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2753 			      SCHED_CLASS_LEVEL_CL_RL,
2754 			      SCHED_CLASS_MODE_CLASS,
2755 			      SCHED_CLASS_RATEUNIT_BITS,
2756 			      SCHED_CLASS_RATEMODE_ABS,
2757 			      pi->tx_chan, class_id, 0,
2758 			      max_tx_rate * 1000, 0, pktsize);
2759 	if (ret) {
2760 		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2761 			ret);
2762 		return -EINVAL;
2763 	}
2764 	dev_info(adap->pdev_dev,
2765 		 "Class %d with MSS %u configured with rate %u\n",
2766 		 class_id, pktsize, max_tx_rate);
2767 
2768 	/* bind VF to configured Traffic Class */
2769 	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2770 		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2771 	fw_class = class_id;
2772 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2773 			    &fw_class);
2774 	if (ret) {
2775 		dev_err(adap->pdev_dev,
2776 			"Err %d in binding VF %d to Traffic Class %d\n",
2777 			ret, vf, class_id);
2778 		return -EINVAL;
2779 	}
2780 	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2781 		 adap->pf, vf, class_id);
2782 	adap->vfinfo[vf].tx_rate = max_tx_rate;
2783 	return 0;
2784 }
2785 
2786 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
2787 				  u16 vlan, u8 qos, __be16 vlan_proto)
2788 {
2789 	struct port_info *pi = netdev_priv(dev);
2790 	struct adapter *adap = pi->adapter;
2791 	int ret;
2792 
2793 	if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
2794 		return -EINVAL;
2795 
2796 	if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
2797 		return -EPROTONOSUPPORT;
2798 
2799 	ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
2800 	if (!ret) {
2801 		adap->vfinfo[vf].vlan = vlan;
2802 		return 0;
2803 	}
2804 
2805 	dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
2806 		ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
2807 	return ret;
2808 }
2809 #endif /* CONFIG_PCI_IOV */
2810 
2811 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2812 {
2813 	int ret;
2814 	struct sockaddr *addr = p;
2815 	struct port_info *pi = netdev_priv(dev);
2816 
2817 	if (!is_valid_ether_addr(addr->sa_data))
2818 		return -EADDRNOTAVAIL;
2819 
2820 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2821 			    pi->xact_addr_filt, addr->sa_data, true, true);
2822 	if (ret < 0)
2823 		return ret;
2824 
2825 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2826 	pi->xact_addr_filt = ret;
2827 	return 0;
2828 }
2829 
2830 #ifdef CONFIG_NET_POLL_CONTROLLER
2831 static void cxgb_netpoll(struct net_device *dev)
2832 {
2833 	struct port_info *pi = netdev_priv(dev);
2834 	struct adapter *adap = pi->adapter;
2835 
2836 	if (adap->flags & USING_MSIX) {
2837 		int i;
2838 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2839 
2840 		for (i = pi->nqsets; i; i--, rx++)
2841 			t4_sge_intr_msix(0, &rx->rspq);
2842 	} else
2843 		t4_intr_handler(adap)(0, adap);
2844 }
2845 #endif
2846 
2847 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2848 {
2849 	struct port_info *pi = netdev_priv(dev);
2850 	struct adapter *adap = pi->adapter;
2851 	struct sched_class *e;
2852 	struct ch_sched_params p;
2853 	struct ch_sched_queue qe;
2854 	u32 req_rate;
2855 	int err = 0;
2856 
2857 	if (!can_sched(dev))
2858 		return -ENOTSUPP;
2859 
2860 	if (index < 0 || index > pi->nqsets - 1)
2861 		return -EINVAL;
2862 
2863 	if (!(adap->flags & FULL_INIT_DONE)) {
2864 		dev_err(adap->pdev_dev,
2865 			"Failed to rate limit on queue %d. Link Down?\n",
2866 			index);
2867 		return -EINVAL;
2868 	}
2869 
2870 	/* Convert from Mbps to Kbps */
2871 	req_rate = rate << 10;
2872 
2873 	/* Max rate is 10 Gbps */
2874 	if (req_rate >= SCHED_MAX_RATE_KBPS) {
2875 		dev_err(adap->pdev_dev,
2876 			"Invalid rate %u Mbps, Max rate is %u Gbps\n",
2877 			rate, SCHED_MAX_RATE_KBPS);
2878 		return -ERANGE;
2879 	}
2880 
2881 	/* First unbind the queue from any existing class */
2882 	memset(&qe, 0, sizeof(qe));
2883 	qe.queue = index;
2884 	qe.class = SCHED_CLS_NONE;
2885 
2886 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2887 	if (err) {
2888 		dev_err(adap->pdev_dev,
2889 			"Unbinding Queue %d on port %d fail. Err: %d\n",
2890 			index, pi->port_id, err);
2891 		return err;
2892 	}
2893 
2894 	/* Queue already unbound */
2895 	if (!req_rate)
2896 		return 0;
2897 
2898 	/* Fetch any available unused or matching scheduling class */
2899 	memset(&p, 0, sizeof(p));
2900 	p.type = SCHED_CLASS_TYPE_PACKET;
2901 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2902 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2903 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2904 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2905 	p.u.params.channel  = pi->tx_chan;
2906 	p.u.params.class    = SCHED_CLS_NONE;
2907 	p.u.params.minrate  = 0;
2908 	p.u.params.maxrate  = req_rate;
2909 	p.u.params.weight   = 0;
2910 	p.u.params.pktsize  = dev->mtu;
2911 
2912 	e = cxgb4_sched_class_alloc(dev, &p);
2913 	if (!e)
2914 		return -ENOMEM;
2915 
2916 	/* Bind the queue to a scheduling class */
2917 	memset(&qe, 0, sizeof(qe));
2918 	qe.queue = index;
2919 	qe.class = e->idx;
2920 
2921 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2922 	if (err)
2923 		dev_err(adap->pdev_dev,
2924 			"Queue rate limiting failed. Err: %d\n", err);
2925 	return err;
2926 }
2927 
2928 static int cxgb_setup_tc_flower(struct net_device *dev,
2929 				struct tc_cls_flower_offload *cls_flower)
2930 {
2931 	switch (cls_flower->command) {
2932 	case TC_CLSFLOWER_REPLACE:
2933 		return cxgb4_tc_flower_replace(dev, cls_flower);
2934 	case TC_CLSFLOWER_DESTROY:
2935 		return cxgb4_tc_flower_destroy(dev, cls_flower);
2936 	case TC_CLSFLOWER_STATS:
2937 		return cxgb4_tc_flower_stats(dev, cls_flower);
2938 	default:
2939 		return -EOPNOTSUPP;
2940 	}
2941 }
2942 
2943 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
2944 				 struct tc_cls_u32_offload *cls_u32)
2945 {
2946 	switch (cls_u32->command) {
2947 	case TC_CLSU32_NEW_KNODE:
2948 	case TC_CLSU32_REPLACE_KNODE:
2949 		return cxgb4_config_knode(dev, cls_u32);
2950 	case TC_CLSU32_DELETE_KNODE:
2951 		return cxgb4_delete_knode(dev, cls_u32);
2952 	default:
2953 		return -EOPNOTSUPP;
2954 	}
2955 }
2956 
2957 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2958 				  void *cb_priv)
2959 {
2960 	struct net_device *dev = cb_priv;
2961 	struct port_info *pi = netdev2pinfo(dev);
2962 	struct adapter *adap = netdev2adap(dev);
2963 
2964 	if (!(adap->flags & FULL_INIT_DONE)) {
2965 		dev_err(adap->pdev_dev,
2966 			"Failed to setup tc on port %d. Link Down?\n",
2967 			pi->port_id);
2968 		return -EINVAL;
2969 	}
2970 
2971 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
2972 		return -EOPNOTSUPP;
2973 
2974 	switch (type) {
2975 	case TC_SETUP_CLSU32:
2976 		return cxgb_setup_tc_cls_u32(dev, type_data);
2977 	case TC_SETUP_CLSFLOWER:
2978 		return cxgb_setup_tc_flower(dev, type_data);
2979 	default:
2980 		return -EOPNOTSUPP;
2981 	}
2982 }
2983 
2984 static int cxgb_setup_tc_block(struct net_device *dev,
2985 			       struct tc_block_offload *f)
2986 {
2987 	struct port_info *pi = netdev2pinfo(dev);
2988 
2989 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
2990 		return -EOPNOTSUPP;
2991 
2992 	switch (f->command) {
2993 	case TC_BLOCK_BIND:
2994 		return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb,
2995 					     pi, dev);
2996 	case TC_BLOCK_UNBIND:
2997 		tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi);
2998 		return 0;
2999 	default:
3000 		return -EOPNOTSUPP;
3001 	}
3002 }
3003 
3004 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3005 			 void *type_data)
3006 {
3007 	switch (type) {
3008 	case TC_SETUP_BLOCK:
3009 		return cxgb_setup_tc_block(dev, type_data);
3010 	default:
3011 		return -EOPNOTSUPP;
3012 	}
3013 }
3014 
3015 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3016 				struct udp_tunnel_info *ti)
3017 {
3018 	struct port_info *pi = netdev_priv(netdev);
3019 	struct adapter *adapter = pi->adapter;
3020 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3021 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3022 	int ret = 0, i;
3023 
3024 	if (chip_ver < CHELSIO_T6)
3025 		return;
3026 
3027 	switch (ti->type) {
3028 	case UDP_TUNNEL_TYPE_VXLAN:
3029 		if (!adapter->vxlan_port_cnt ||
3030 		    adapter->vxlan_port != ti->port)
3031 			return; /* Invalid VxLAN destination port */
3032 
3033 		adapter->vxlan_port_cnt--;
3034 		if (adapter->vxlan_port_cnt)
3035 			return;
3036 
3037 		adapter->vxlan_port = 0;
3038 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3039 		break;
3040 	case UDP_TUNNEL_TYPE_GENEVE:
3041 		if (!adapter->geneve_port_cnt ||
3042 		    adapter->geneve_port != ti->port)
3043 			return; /* Invalid GENEVE destination port */
3044 
3045 		adapter->geneve_port_cnt--;
3046 		if (adapter->geneve_port_cnt)
3047 			return;
3048 
3049 		adapter->geneve_port = 0;
3050 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3051 	default:
3052 		return;
3053 	}
3054 
3055 	/* Matchall mac entries can be deleted only after all tunnel ports
3056 	 * are brought down or removed.
3057 	 */
3058 	if (!adapter->rawf_cnt)
3059 		return;
3060 	for_each_port(adapter, i) {
3061 		pi = adap2pinfo(adapter, i);
3062 		ret = t4_free_raw_mac_filt(adapter, pi->viid,
3063 					   match_all_mac, match_all_mac,
3064 					   adapter->rawf_start +
3065 					    pi->port_id,
3066 					   1, pi->port_id, true);
3067 		if (ret < 0) {
3068 			netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3069 				    i);
3070 			return;
3071 		}
3072 		atomic_dec(&adapter->mps_encap[adapter->rawf_start +
3073 			   pi->port_id].refcnt);
3074 	}
3075 }
3076 
3077 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3078 				struct udp_tunnel_info *ti)
3079 {
3080 	struct port_info *pi = netdev_priv(netdev);
3081 	struct adapter *adapter = pi->adapter;
3082 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3083 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3084 	int i, ret;
3085 
3086 	if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3087 		return;
3088 
3089 	switch (ti->type) {
3090 	case UDP_TUNNEL_TYPE_VXLAN:
3091 		/* Callback for adding vxlan port can be called with the same
3092 		 * port for both IPv4 and IPv6. We should not disable the
3093 		 * offloading when the same port for both protocols is added
3094 		 * and later one of them is removed.
3095 		 */
3096 		if (adapter->vxlan_port_cnt &&
3097 		    adapter->vxlan_port == ti->port) {
3098 			adapter->vxlan_port_cnt++;
3099 			return;
3100 		}
3101 
3102 		/* We will support only one VxLAN port */
3103 		if (adapter->vxlan_port_cnt) {
3104 			netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3105 				    be16_to_cpu(adapter->vxlan_port),
3106 				    be16_to_cpu(ti->port));
3107 			return;
3108 		}
3109 
3110 		adapter->vxlan_port = ti->port;
3111 		adapter->vxlan_port_cnt = 1;
3112 
3113 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3114 			     VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3115 		break;
3116 	case UDP_TUNNEL_TYPE_GENEVE:
3117 		if (adapter->geneve_port_cnt &&
3118 		    adapter->geneve_port == ti->port) {
3119 			adapter->geneve_port_cnt++;
3120 			return;
3121 		}
3122 
3123 		/* We will support only one GENEVE port */
3124 		if (adapter->geneve_port_cnt) {
3125 			netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3126 				    be16_to_cpu(adapter->geneve_port),
3127 				    be16_to_cpu(ti->port));
3128 			return;
3129 		}
3130 
3131 		adapter->geneve_port = ti->port;
3132 		adapter->geneve_port_cnt = 1;
3133 
3134 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3135 			     GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3136 	default:
3137 		return;
3138 	}
3139 
3140 	/* Create a 'match all' mac filter entry for inner mac,
3141 	 * if raw mac interface is supported. Once the linux kernel provides
3142 	 * driver entry points for adding/deleting the inner mac addresses,
3143 	 * we will remove this 'match all' entry and fallback to adding
3144 	 * exact match filters.
3145 	 */
3146 	for_each_port(adapter, i) {
3147 		pi = adap2pinfo(adapter, i);
3148 
3149 		ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3150 					    match_all_mac,
3151 					    match_all_mac,
3152 					    adapter->rawf_start +
3153 					    pi->port_id,
3154 					    1, pi->port_id, true);
3155 		if (ret < 0) {
3156 			netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3157 				    be16_to_cpu(ti->port));
3158 			cxgb_del_udp_tunnel(netdev, ti);
3159 			return;
3160 		}
3161 		atomic_inc(&adapter->mps_encap[ret].refcnt);
3162 	}
3163 }
3164 
3165 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3166 					     struct net_device *dev,
3167 					     netdev_features_t features)
3168 {
3169 	struct port_info *pi = netdev_priv(dev);
3170 	struct adapter *adapter = pi->adapter;
3171 
3172 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3173 		return features;
3174 
3175 	/* Check if hw supports offload for this packet */
3176 	if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3177 		return features;
3178 
3179 	/* Offload is not supported for this encapsulated packet */
3180 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3181 }
3182 
3183 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3184 					   netdev_features_t features)
3185 {
3186 	/* Disable GRO, if RX_CSUM is disabled */
3187 	if (!(features & NETIF_F_RXCSUM))
3188 		features &= ~NETIF_F_GRO;
3189 
3190 	return features;
3191 }
3192 
3193 static const struct net_device_ops cxgb4_netdev_ops = {
3194 	.ndo_open             = cxgb_open,
3195 	.ndo_stop             = cxgb_close,
3196 	.ndo_start_xmit       = t4_eth_xmit,
3197 	.ndo_select_queue     =	cxgb_select_queue,
3198 	.ndo_get_stats64      = cxgb_get_stats,
3199 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3200 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3201 	.ndo_set_features     = cxgb_set_features,
3202 	.ndo_validate_addr    = eth_validate_addr,
3203 	.ndo_do_ioctl         = cxgb_ioctl,
3204 	.ndo_change_mtu       = cxgb_change_mtu,
3205 #ifdef CONFIG_NET_POLL_CONTROLLER
3206 	.ndo_poll_controller  = cxgb_netpoll,
3207 #endif
3208 #ifdef CONFIG_CHELSIO_T4_FCOE
3209 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3210 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3211 #endif /* CONFIG_CHELSIO_T4_FCOE */
3212 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3213 	.ndo_setup_tc         = cxgb_setup_tc,
3214 	.ndo_udp_tunnel_add   = cxgb_add_udp_tunnel,
3215 	.ndo_udp_tunnel_del   = cxgb_del_udp_tunnel,
3216 	.ndo_features_check   = cxgb_features_check,
3217 	.ndo_fix_features     = cxgb_fix_features,
3218 };
3219 
3220 #ifdef CONFIG_PCI_IOV
3221 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3222 	.ndo_open             = cxgb4_mgmt_open,
3223 	.ndo_set_vf_mac       = cxgb4_mgmt_set_vf_mac,
3224 	.ndo_get_vf_config    = cxgb4_mgmt_get_vf_config,
3225 	.ndo_set_vf_rate      = cxgb4_mgmt_set_vf_rate,
3226 	.ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
3227 	.ndo_set_vf_vlan      = cxgb4_mgmt_set_vf_vlan,
3228 };
3229 #endif
3230 
3231 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3232 				   struct ethtool_drvinfo *info)
3233 {
3234 	struct adapter *adapter = netdev2adap(dev);
3235 
3236 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3237 	strlcpy(info->version, cxgb4_driver_version,
3238 		sizeof(info->version));
3239 	strlcpy(info->bus_info, pci_name(adapter->pdev),
3240 		sizeof(info->bus_info));
3241 }
3242 
3243 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3244 	.get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3245 };
3246 
3247 void t4_fatal_err(struct adapter *adap)
3248 {
3249 	int port;
3250 
3251 	if (pci_channel_offline(adap->pdev))
3252 		return;
3253 
3254 	/* Disable the SGE since ULDs are going to free resources that
3255 	 * could be exposed to the adapter.  RDMA MWs for example...
3256 	 */
3257 	t4_shutdown_adapter(adap);
3258 	for_each_port(adap, port) {
3259 		struct net_device *dev = adap->port[port];
3260 
3261 		/* If we get here in very early initialization the network
3262 		 * devices may not have been set up yet.
3263 		 */
3264 		if (!dev)
3265 			continue;
3266 
3267 		netif_tx_stop_all_queues(dev);
3268 		netif_carrier_off(dev);
3269 	}
3270 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3271 }
3272 
3273 static void setup_memwin(struct adapter *adap)
3274 {
3275 	u32 nic_win_base = t4_get_util_window(adap);
3276 
3277 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3278 }
3279 
3280 static void setup_memwin_rdma(struct adapter *adap)
3281 {
3282 	if (adap->vres.ocq.size) {
3283 		u32 start;
3284 		unsigned int sz_kb;
3285 
3286 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3287 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3288 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3289 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3290 		t4_write_reg(adap,
3291 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3292 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3293 		t4_write_reg(adap,
3294 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3295 			     adap->vres.ocq.start);
3296 		t4_read_reg(adap,
3297 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3298 	}
3299 }
3300 
3301 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3302 {
3303 	u32 v;
3304 	int ret;
3305 
3306 	/* get device capabilities */
3307 	memset(c, 0, sizeof(*c));
3308 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3309 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3310 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3311 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3312 	if (ret < 0)
3313 		return ret;
3314 
3315 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3316 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3317 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3318 	if (ret < 0)
3319 		return ret;
3320 
3321 	ret = t4_config_glbl_rss(adap, adap->pf,
3322 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3323 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3324 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3325 	if (ret < 0)
3326 		return ret;
3327 
3328 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3329 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3330 			  FW_CMD_CAP_PF);
3331 	if (ret < 0)
3332 		return ret;
3333 
3334 	t4_sge_init(adap);
3335 
3336 	/* tweak some settings */
3337 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3338 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3339 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3340 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3341 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3342 
3343 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3344 	adap->params.tp.tx_modq_map = 0xE4;
3345 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3346 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3347 
3348 	/* associate each Tx modulation queue with consecutive Tx channels */
3349 	v = 0x84218421;
3350 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3351 			  &v, 1, TP_TX_SCHED_HDR_A);
3352 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3353 			  &v, 1, TP_TX_SCHED_FIFO_A);
3354 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3355 			  &v, 1, TP_TX_SCHED_PCMD_A);
3356 
3357 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3358 	if (is_offload(adap)) {
3359 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3360 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3361 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3362 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3363 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3364 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3365 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3366 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3367 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3368 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3369 	}
3370 
3371 	/* get basic stuff going */
3372 	return t4_early_init(adap, adap->pf);
3373 }
3374 
3375 /*
3376  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3377  */
3378 #define MAX_ATIDS 8192U
3379 
3380 /*
3381  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3382  *
3383  * If the firmware we're dealing with has Configuration File support, then
3384  * we use that to perform all configuration
3385  */
3386 
3387 /*
3388  * Tweak configuration based on module parameters, etc.  Most of these have
3389  * defaults assigned to them by Firmware Configuration Files (if we're using
3390  * them) but need to be explicitly set if we're using hard-coded
3391  * initialization.  But even in the case of using Firmware Configuration
3392  * Files, we'd like to expose the ability to change these via module
3393  * parameters so these are essentially common tweaks/settings for
3394  * Configuration Files and hard-coded initialization ...
3395  */
3396 static int adap_init0_tweaks(struct adapter *adapter)
3397 {
3398 	/*
3399 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3400 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3401 	 * 64B Cache Line Size ...
3402 	 */
3403 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3404 
3405 	/*
3406 	 * Process module parameters which affect early initialization.
3407 	 */
3408 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3409 		dev_err(&adapter->pdev->dev,
3410 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3411 			rx_dma_offset);
3412 		rx_dma_offset = 2;
3413 	}
3414 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3415 			 PKTSHIFT_V(PKTSHIFT_M),
3416 			 PKTSHIFT_V(rx_dma_offset));
3417 
3418 	/*
3419 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3420 	 * adds the pseudo header itself.
3421 	 */
3422 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3423 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3424 
3425 	return 0;
3426 }
3427 
3428 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3429  * unto themselves and they contain their own firmware to perform their
3430  * tasks ...
3431  */
3432 static int phy_aq1202_version(const u8 *phy_fw_data,
3433 			      size_t phy_fw_size)
3434 {
3435 	int offset;
3436 
3437 	/* At offset 0x8 you're looking for the primary image's
3438 	 * starting offset which is 3 Bytes wide
3439 	 *
3440 	 * At offset 0xa of the primary image, you look for the offset
3441 	 * of the DRAM segment which is 3 Bytes wide.
3442 	 *
3443 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3444 	 * wide
3445 	 */
3446 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
3447 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3448 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
3449 
3450 	offset = le24(phy_fw_data + 0x8) << 12;
3451 	offset = le24(phy_fw_data + offset + 0xa);
3452 	return be16(phy_fw_data + offset + 0x27e);
3453 
3454 	#undef be16
3455 	#undef le16
3456 	#undef le24
3457 }
3458 
3459 static struct info_10gbt_phy_fw {
3460 	unsigned int phy_fw_id;		/* PCI Device ID */
3461 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
3462 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3463 	int phy_flash;			/* Has FLASH for PHY Firmware */
3464 } phy_info_array[] = {
3465 	{
3466 		PHY_AQ1202_DEVICEID,
3467 		PHY_AQ1202_FIRMWARE,
3468 		phy_aq1202_version,
3469 		1,
3470 	},
3471 	{
3472 		PHY_BCM84834_DEVICEID,
3473 		PHY_BCM84834_FIRMWARE,
3474 		NULL,
3475 		0,
3476 	},
3477 	{ 0, NULL, NULL },
3478 };
3479 
3480 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3481 {
3482 	int i;
3483 
3484 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3485 		if (phy_info_array[i].phy_fw_id == devid)
3486 			return &phy_info_array[i];
3487 	}
3488 	return NULL;
3489 }
3490 
3491 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3492  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3493  * we return a negative error number.  If we transfer new firmware we return 1
3494  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3495  */
3496 static int adap_init0_phy(struct adapter *adap)
3497 {
3498 	const struct firmware *phyf;
3499 	int ret;
3500 	struct info_10gbt_phy_fw *phy_info;
3501 
3502 	/* Use the device ID to determine which PHY file to flash.
3503 	 */
3504 	phy_info = find_phy_info(adap->pdev->device);
3505 	if (!phy_info) {
3506 		dev_warn(adap->pdev_dev,
3507 			 "No PHY Firmware file found for this PHY\n");
3508 		return -EOPNOTSUPP;
3509 	}
3510 
3511 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3512 	 * use that. The adapter firmware provides us with a memory buffer
3513 	 * where we can load a PHY firmware file from the host if we want to
3514 	 * override the PHY firmware File in flash.
3515 	 */
3516 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3517 				      adap->pdev_dev);
3518 	if (ret < 0) {
3519 		/* For adapters without FLASH attached to PHY for their
3520 		 * firmware, it's obviously a fatal error if we can't get the
3521 		 * firmware to the adapter.  For adapters with PHY firmware
3522 		 * FLASH storage, it's worth a warning if we can't find the
3523 		 * PHY Firmware but we'll neuter the error ...
3524 		 */
3525 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3526 			"/lib/firmware/%s, error %d\n",
3527 			phy_info->phy_fw_file, -ret);
3528 		if (phy_info->phy_flash) {
3529 			int cur_phy_fw_ver = 0;
3530 
3531 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3532 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3533 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3534 			ret = 0;
3535 		}
3536 
3537 		return ret;
3538 	}
3539 
3540 	/* Load PHY Firmware onto adapter.
3541 	 */
3542 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3543 			     phy_info->phy_fw_version,
3544 			     (u8 *)phyf->data, phyf->size);
3545 	if (ret < 0)
3546 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3547 			-ret);
3548 	else if (ret > 0) {
3549 		int new_phy_fw_ver = 0;
3550 
3551 		if (phy_info->phy_fw_version)
3552 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3553 								  phyf->size);
3554 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3555 			 "Firmware /lib/firmware/%s, version %#x\n",
3556 			 phy_info->phy_fw_file, new_phy_fw_ver);
3557 	}
3558 
3559 	release_firmware(phyf);
3560 
3561 	return ret;
3562 }
3563 
3564 /*
3565  * Attempt to initialize the adapter via a Firmware Configuration File.
3566  */
3567 static int adap_init0_config(struct adapter *adapter, int reset)
3568 {
3569 	struct fw_caps_config_cmd caps_cmd;
3570 	const struct firmware *cf;
3571 	unsigned long mtype = 0, maddr = 0;
3572 	u32 finiver, finicsum, cfcsum;
3573 	int ret;
3574 	int config_issued = 0;
3575 	char *fw_config_file, fw_config_file_path[256];
3576 	char *config_name = NULL;
3577 
3578 	/*
3579 	 * Reset device if necessary.
3580 	 */
3581 	if (reset) {
3582 		ret = t4_fw_reset(adapter, adapter->mbox,
3583 				  PIORSTMODE_F | PIORST_F);
3584 		if (ret < 0)
3585 			goto bye;
3586 	}
3587 
3588 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3589 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3590 	 * to be performed after any global adapter RESET above since some
3591 	 * PHYs only have local RAM copies of the PHY firmware.
3592 	 */
3593 	if (is_10gbt_device(adapter->pdev->device)) {
3594 		ret = adap_init0_phy(adapter);
3595 		if (ret < 0)
3596 			goto bye;
3597 	}
3598 	/*
3599 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3600 	 * then use that.  Otherwise, use the configuration file stored
3601 	 * in the adapter flash ...
3602 	 */
3603 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3604 	case CHELSIO_T4:
3605 		fw_config_file = FW4_CFNAME;
3606 		break;
3607 	case CHELSIO_T5:
3608 		fw_config_file = FW5_CFNAME;
3609 		break;
3610 	case CHELSIO_T6:
3611 		fw_config_file = FW6_CFNAME;
3612 		break;
3613 	default:
3614 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3615 		       adapter->pdev->device);
3616 		ret = -EINVAL;
3617 		goto bye;
3618 	}
3619 
3620 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3621 	if (ret < 0) {
3622 		config_name = "On FLASH";
3623 		mtype = FW_MEMTYPE_CF_FLASH;
3624 		maddr = t4_flash_cfg_addr(adapter);
3625 	} else {
3626 		u32 params[7], val[7];
3627 
3628 		sprintf(fw_config_file_path,
3629 			"/lib/firmware/%s", fw_config_file);
3630 		config_name = fw_config_file_path;
3631 
3632 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3633 			ret = -ENOMEM;
3634 		else {
3635 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3636 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3637 			ret = t4_query_params(adapter, adapter->mbox,
3638 					      adapter->pf, 0, 1, params, val);
3639 			if (ret == 0) {
3640 				/*
3641 				 * For t4_memory_rw() below addresses and
3642 				 * sizes have to be in terms of multiples of 4
3643 				 * bytes.  So, if the Configuration File isn't
3644 				 * a multiple of 4 bytes in length we'll have
3645 				 * to write that out separately since we can't
3646 				 * guarantee that the bytes following the
3647 				 * residual byte in the buffer returned by
3648 				 * request_firmware() are zeroed out ...
3649 				 */
3650 				size_t resid = cf->size & 0x3;
3651 				size_t size = cf->size & ~0x3;
3652 				__be32 *data = (__be32 *)cf->data;
3653 
3654 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3655 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3656 
3657 				spin_lock(&adapter->win0_lock);
3658 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3659 						   size, data, T4_MEMORY_WRITE);
3660 				if (ret == 0 && resid != 0) {
3661 					union {
3662 						__be32 word;
3663 						char buf[4];
3664 					} last;
3665 					int i;
3666 
3667 					last.word = data[size >> 2];
3668 					for (i = resid; i < 4; i++)
3669 						last.buf[i] = 0;
3670 					ret = t4_memory_rw(adapter, 0, mtype,
3671 							   maddr + size,
3672 							   4, &last.word,
3673 							   T4_MEMORY_WRITE);
3674 				}
3675 				spin_unlock(&adapter->win0_lock);
3676 			}
3677 		}
3678 
3679 		release_firmware(cf);
3680 		if (ret)
3681 			goto bye;
3682 	}
3683 
3684 	/*
3685 	 * Issue a Capability Configuration command to the firmware to get it
3686 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3687 	 * because we want the ability to modify various features after we've
3688 	 * processed the configuration file ...
3689 	 */
3690 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3691 	caps_cmd.op_to_write =
3692 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3693 		      FW_CMD_REQUEST_F |
3694 		      FW_CMD_READ_F);
3695 	caps_cmd.cfvalid_to_len16 =
3696 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3697 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3698 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3699 		      FW_LEN16(caps_cmd));
3700 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3701 			 &caps_cmd);
3702 
3703 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3704 	 * Configuration File in FLASH), our last gasp effort is to use the
3705 	 * Firmware Configuration File which is embedded in the firmware.  A
3706 	 * very few early versions of the firmware didn't have one embedded
3707 	 * but we can ignore those.
3708 	 */
3709 	if (ret == -ENOENT) {
3710 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3711 		caps_cmd.op_to_write =
3712 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3713 					FW_CMD_REQUEST_F |
3714 					FW_CMD_READ_F);
3715 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3716 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3717 				sizeof(caps_cmd), &caps_cmd);
3718 		config_name = "Firmware Default";
3719 	}
3720 
3721 	config_issued = 1;
3722 	if (ret < 0)
3723 		goto bye;
3724 
3725 	finiver = ntohl(caps_cmd.finiver);
3726 	finicsum = ntohl(caps_cmd.finicsum);
3727 	cfcsum = ntohl(caps_cmd.cfcsum);
3728 	if (finicsum != cfcsum)
3729 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3730 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3731 			 finicsum, cfcsum);
3732 
3733 	/*
3734 	 * And now tell the firmware to use the configuration we just loaded.
3735 	 */
3736 	caps_cmd.op_to_write =
3737 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3738 		      FW_CMD_REQUEST_F |
3739 		      FW_CMD_WRITE_F);
3740 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3741 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3742 			 NULL);
3743 	if (ret < 0)
3744 		goto bye;
3745 
3746 	/*
3747 	 * Tweak configuration based on system architecture, module
3748 	 * parameters, etc.
3749 	 */
3750 	ret = adap_init0_tweaks(adapter);
3751 	if (ret < 0)
3752 		goto bye;
3753 
3754 	/*
3755 	 * And finally tell the firmware to initialize itself using the
3756 	 * parameters from the Configuration File.
3757 	 */
3758 	ret = t4_fw_initialize(adapter, adapter->mbox);
3759 	if (ret < 0)
3760 		goto bye;
3761 
3762 	/* Emit Firmware Configuration File information and return
3763 	 * successfully.
3764 	 */
3765 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3766 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3767 		 config_name, finiver, cfcsum);
3768 	return 0;
3769 
3770 	/*
3771 	 * Something bad happened.  Return the error ...  (If the "error"
3772 	 * is that there's no Configuration File on the adapter we don't
3773 	 * want to issue a warning since this is fairly common.)
3774 	 */
3775 bye:
3776 	if (config_issued && ret != -ENOENT)
3777 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3778 			 config_name, -ret);
3779 	return ret;
3780 }
3781 
3782 static struct fw_info fw_info_array[] = {
3783 	{
3784 		.chip = CHELSIO_T4,
3785 		.fs_name = FW4_CFNAME,
3786 		.fw_mod_name = FW4_FNAME,
3787 		.fw_hdr = {
3788 			.chip = FW_HDR_CHIP_T4,
3789 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3790 			.intfver_nic = FW_INTFVER(T4, NIC),
3791 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3792 			.intfver_ri = FW_INTFVER(T4, RI),
3793 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3794 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3795 		},
3796 	}, {
3797 		.chip = CHELSIO_T5,
3798 		.fs_name = FW5_CFNAME,
3799 		.fw_mod_name = FW5_FNAME,
3800 		.fw_hdr = {
3801 			.chip = FW_HDR_CHIP_T5,
3802 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3803 			.intfver_nic = FW_INTFVER(T5, NIC),
3804 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3805 			.intfver_ri = FW_INTFVER(T5, RI),
3806 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3807 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3808 		},
3809 	}, {
3810 		.chip = CHELSIO_T6,
3811 		.fs_name = FW6_CFNAME,
3812 		.fw_mod_name = FW6_FNAME,
3813 		.fw_hdr = {
3814 			.chip = FW_HDR_CHIP_T6,
3815 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3816 			.intfver_nic = FW_INTFVER(T6, NIC),
3817 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3818 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3819 			.intfver_ri = FW_INTFVER(T6, RI),
3820 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3821 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3822 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3823 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3824 		},
3825 	}
3826 
3827 };
3828 
3829 static struct fw_info *find_fw_info(int chip)
3830 {
3831 	int i;
3832 
3833 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3834 		if (fw_info_array[i].chip == chip)
3835 			return &fw_info_array[i];
3836 	}
3837 	return NULL;
3838 }
3839 
3840 /*
3841  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3842  */
3843 static int adap_init0(struct adapter *adap)
3844 {
3845 	int ret;
3846 	u32 v, port_vec;
3847 	enum dev_state state;
3848 	u32 params[7], val[7];
3849 	struct fw_caps_config_cmd caps_cmd;
3850 	int reset = 1;
3851 
3852 	/* Grab Firmware Device Log parameters as early as possible so we have
3853 	 * access to it for debugging, etc.
3854 	 */
3855 	ret = t4_init_devlog_params(adap);
3856 	if (ret < 0)
3857 		return ret;
3858 
3859 	/* Contact FW, advertising Master capability */
3860 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3861 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3862 	if (ret < 0) {
3863 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3864 			ret);
3865 		return ret;
3866 	}
3867 	if (ret == adap->mbox)
3868 		adap->flags |= MASTER_PF;
3869 
3870 	/*
3871 	 * If we're the Master PF Driver and the device is uninitialized,
3872 	 * then let's consider upgrading the firmware ...  (We always want
3873 	 * to check the firmware version number in order to A. get it for
3874 	 * later reporting and B. to warn if the currently loaded firmware
3875 	 * is excessively mismatched relative to the driver.)
3876 	 */
3877 
3878 	t4_get_version_info(adap);
3879 	ret = t4_check_fw_version(adap);
3880 	/* If firmware is too old (not supported by driver) force an update. */
3881 	if (ret)
3882 		state = DEV_STATE_UNINIT;
3883 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3884 		struct fw_info *fw_info;
3885 		struct fw_hdr *card_fw;
3886 		const struct firmware *fw;
3887 		const u8 *fw_data = NULL;
3888 		unsigned int fw_size = 0;
3889 
3890 		/* This is the firmware whose headers the driver was compiled
3891 		 * against
3892 		 */
3893 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3894 		if (fw_info == NULL) {
3895 			dev_err(adap->pdev_dev,
3896 				"unable to get firmware info for chip %d.\n",
3897 				CHELSIO_CHIP_VERSION(adap->params.chip));
3898 			return -EINVAL;
3899 		}
3900 
3901 		/* allocate memory to read the header of the firmware on the
3902 		 * card
3903 		 */
3904 		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
3905 
3906 		/* Get FW from from /lib/firmware/ */
3907 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3908 				       adap->pdev_dev);
3909 		if (ret < 0) {
3910 			dev_err(adap->pdev_dev,
3911 				"unable to load firmware image %s, error %d\n",
3912 				fw_info->fw_mod_name, ret);
3913 		} else {
3914 			fw_data = fw->data;
3915 			fw_size = fw->size;
3916 		}
3917 
3918 		/* upgrade FW logic */
3919 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3920 				 state, &reset);
3921 
3922 		/* Cleaning up */
3923 		release_firmware(fw);
3924 		kvfree(card_fw);
3925 
3926 		if (ret < 0)
3927 			goto bye;
3928 	}
3929 
3930 	/*
3931 	 * Grab VPD parameters.  This should be done after we establish a
3932 	 * connection to the firmware since some of the VPD parameters
3933 	 * (notably the Core Clock frequency) are retrieved via requests to
3934 	 * the firmware.  On the other hand, we need these fairly early on
3935 	 * so we do this right after getting ahold of the firmware.
3936 	 */
3937 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3938 	if (ret < 0)
3939 		goto bye;
3940 
3941 	/*
3942 	 * Find out what ports are available to us.  Note that we need to do
3943 	 * this before calling adap_init0_no_config() since it needs nports
3944 	 * and portvec ...
3945 	 */
3946 	v =
3947 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3948 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3949 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3950 	if (ret < 0)
3951 		goto bye;
3952 
3953 	adap->params.nports = hweight32(port_vec);
3954 	adap->params.portvec = port_vec;
3955 
3956 	/* If the firmware is initialized already, emit a simply note to that
3957 	 * effect. Otherwise, it's time to try initializing the adapter.
3958 	 */
3959 	if (state == DEV_STATE_INIT) {
3960 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3961 			 "Adapter already initialized\n",
3962 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3963 	} else {
3964 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3965 			 "Initializing adapter\n");
3966 
3967 		/* Find out whether we're dealing with a version of the
3968 		 * firmware which has configuration file support.
3969 		 */
3970 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3971 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3972 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3973 				      params, val);
3974 
3975 		/* If the firmware doesn't support Configuration Files,
3976 		 * return an error.
3977 		 */
3978 		if (ret < 0) {
3979 			dev_err(adap->pdev_dev, "firmware doesn't support "
3980 				"Firmware Configuration Files\n");
3981 			goto bye;
3982 		}
3983 
3984 		/* The firmware provides us with a memory buffer where we can
3985 		 * load a Configuration File from the host if we want to
3986 		 * override the Configuration File in flash.
3987 		 */
3988 		ret = adap_init0_config(adap, reset);
3989 		if (ret == -ENOENT) {
3990 			dev_err(adap->pdev_dev, "no Configuration File "
3991 				"present on adapter.\n");
3992 			goto bye;
3993 		}
3994 		if (ret < 0) {
3995 			dev_err(adap->pdev_dev, "could not initialize "
3996 				"adapter, error %d\n", -ret);
3997 			goto bye;
3998 		}
3999 	}
4000 
4001 	/* Give the SGE code a chance to pull in anything that it needs ...
4002 	 * Note that this must be called after we retrieve our VPD parameters
4003 	 * in order to know how to convert core ticks to seconds, etc.
4004 	 */
4005 	ret = t4_sge_init(adap);
4006 	if (ret < 0)
4007 		goto bye;
4008 
4009 	if (is_bypass_device(adap->pdev->device))
4010 		adap->params.bypass = 1;
4011 
4012 	/*
4013 	 * Grab some of our basic fundamental operating parameters.
4014 	 */
4015 #define FW_PARAM_DEV(param) \
4016 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4017 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4018 
4019 #define FW_PARAM_PFVF(param) \
4020 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4021 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
4022 	FW_PARAMS_PARAM_Y_V(0) | \
4023 	FW_PARAMS_PARAM_Z_V(0)
4024 
4025 	params[0] = FW_PARAM_PFVF(EQ_START);
4026 	params[1] = FW_PARAM_PFVF(L2T_START);
4027 	params[2] = FW_PARAM_PFVF(L2T_END);
4028 	params[3] = FW_PARAM_PFVF(FILTER_START);
4029 	params[4] = FW_PARAM_PFVF(FILTER_END);
4030 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
4031 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4032 	if (ret < 0)
4033 		goto bye;
4034 	adap->sge.egr_start = val[0];
4035 	adap->l2t_start = val[1];
4036 	adap->l2t_end = val[2];
4037 	adap->tids.ftid_base = val[3];
4038 	adap->tids.nftids = val[4] - val[3] + 1;
4039 	adap->sge.ingr_start = val[5];
4040 
4041 	/* qids (ingress/egress) returned from firmware can be anywhere
4042 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4043 	 * Hence driver needs to allocate memory for this range to
4044 	 * store the queue info. Get the highest IQFLINT/EQ index returned
4045 	 * in FW_EQ_*_CMD.alloc command.
4046 	 */
4047 	params[0] = FW_PARAM_PFVF(EQ_END);
4048 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
4049 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4050 	if (ret < 0)
4051 		goto bye;
4052 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4053 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4054 
4055 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4056 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
4057 	if (!adap->sge.egr_map) {
4058 		ret = -ENOMEM;
4059 		goto bye;
4060 	}
4061 
4062 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4063 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4064 	if (!adap->sge.ingr_map) {
4065 		ret = -ENOMEM;
4066 		goto bye;
4067 	}
4068 
4069 	/* Allocate the memory for the vaious egress queue bitmaps
4070 	 * ie starving_fl, txq_maperr and blocked_fl.
4071 	 */
4072 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4073 					sizeof(long), GFP_KERNEL);
4074 	if (!adap->sge.starving_fl) {
4075 		ret = -ENOMEM;
4076 		goto bye;
4077 	}
4078 
4079 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4080 				       sizeof(long), GFP_KERNEL);
4081 	if (!adap->sge.txq_maperr) {
4082 		ret = -ENOMEM;
4083 		goto bye;
4084 	}
4085 
4086 #ifdef CONFIG_DEBUG_FS
4087 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4088 				       sizeof(long), GFP_KERNEL);
4089 	if (!adap->sge.blocked_fl) {
4090 		ret = -ENOMEM;
4091 		goto bye;
4092 	}
4093 #endif
4094 
4095 	params[0] = FW_PARAM_PFVF(CLIP_START);
4096 	params[1] = FW_PARAM_PFVF(CLIP_END);
4097 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4098 	if (ret < 0)
4099 		goto bye;
4100 	adap->clipt_start = val[0];
4101 	adap->clipt_end = val[1];
4102 
4103 	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
4104 	 * Classes supported by the hardware/firmware so we hard code it here
4105 	 * for now.
4106 	 */
4107 	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4108 
4109 	/* query params related to active filter region */
4110 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4111 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4112 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4113 	/* If Active filter size is set we enable establishing
4114 	 * offload connection through firmware work request
4115 	 */
4116 	if ((val[0] != val[1]) && (ret >= 0)) {
4117 		adap->flags |= FW_OFLD_CONN;
4118 		adap->tids.aftid_base = val[0];
4119 		adap->tids.aftid_end = val[1];
4120 	}
4121 
4122 	/* If we're running on newer firmware, let it know that we're
4123 	 * prepared to deal with encapsulated CPL messages.  Older
4124 	 * firmware won't understand this and we'll just get
4125 	 * unencapsulated messages ...
4126 	 */
4127 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4128 	val[0] = 1;
4129 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4130 
4131 	/*
4132 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4133 	 * capability.  Earlier versions of the firmware didn't have the
4134 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4135 	 * permission to use ULPTX MEMWRITE DSGL.
4136 	 */
4137 	if (is_t4(adap->params.chip)) {
4138 		adap->params.ulptx_memwrite_dsgl = false;
4139 	} else {
4140 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4141 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4142 				      1, params, val);
4143 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4144 	}
4145 
4146 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4147 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4148 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4149 			      1, params, val);
4150 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4151 
4152 	/* See if FW supports FW_FILTER2 work request */
4153 	if (is_t4(adap->params.chip)) {
4154 		adap->params.filter2_wr_support = 0;
4155 	} else {
4156 		params[0] = FW_PARAM_DEV(FILTER2_WR);
4157 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4158 				      1, params, val);
4159 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4160 	}
4161 
4162 	/*
4163 	 * Get device capabilities so we can determine what resources we need
4164 	 * to manage.
4165 	 */
4166 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4167 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4168 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
4169 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4170 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4171 			 &caps_cmd);
4172 	if (ret < 0)
4173 		goto bye;
4174 
4175 	if (caps_cmd.ofldcaps ||
4176 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
4177 		/* query offload-related parameters */
4178 		params[0] = FW_PARAM_DEV(NTID);
4179 		params[1] = FW_PARAM_PFVF(SERVER_START);
4180 		params[2] = FW_PARAM_PFVF(SERVER_END);
4181 		params[3] = FW_PARAM_PFVF(TDDP_START);
4182 		params[4] = FW_PARAM_PFVF(TDDP_END);
4183 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4184 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4185 				      params, val);
4186 		if (ret < 0)
4187 			goto bye;
4188 		adap->tids.ntids = val[0];
4189 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4190 		adap->tids.stid_base = val[1];
4191 		adap->tids.nstids = val[2] - val[1] + 1;
4192 		/*
4193 		 * Setup server filter region. Divide the available filter
4194 		 * region into two parts. Regular filters get 1/3rd and server
4195 		 * filters get 2/3rd part. This is only enabled if workarond
4196 		 * path is enabled.
4197 		 * 1. For regular filters.
4198 		 * 2. Server filter: This are special filters which are used
4199 		 * to redirect SYN packets to offload queue.
4200 		 */
4201 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4202 			adap->tids.sftid_base = adap->tids.ftid_base +
4203 					DIV_ROUND_UP(adap->tids.nftids, 3);
4204 			adap->tids.nsftids = adap->tids.nftids -
4205 					 DIV_ROUND_UP(adap->tids.nftids, 3);
4206 			adap->tids.nftids = adap->tids.sftid_base -
4207 						adap->tids.ftid_base;
4208 		}
4209 		adap->vres.ddp.start = val[3];
4210 		adap->vres.ddp.size = val[4] - val[3] + 1;
4211 		adap->params.ofldq_wr_cred = val[5];
4212 
4213 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4214 			if (init_hash_filter(adap) < 0)
4215 				goto bye;
4216 		} else {
4217 			adap->params.offload = 1;
4218 			adap->num_ofld_uld += 1;
4219 		}
4220 	}
4221 	if (caps_cmd.rdmacaps) {
4222 		params[0] = FW_PARAM_PFVF(STAG_START);
4223 		params[1] = FW_PARAM_PFVF(STAG_END);
4224 		params[2] = FW_PARAM_PFVF(RQ_START);
4225 		params[3] = FW_PARAM_PFVF(RQ_END);
4226 		params[4] = FW_PARAM_PFVF(PBL_START);
4227 		params[5] = FW_PARAM_PFVF(PBL_END);
4228 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4229 				      params, val);
4230 		if (ret < 0)
4231 			goto bye;
4232 		adap->vres.stag.start = val[0];
4233 		adap->vres.stag.size = val[1] - val[0] + 1;
4234 		adap->vres.rq.start = val[2];
4235 		adap->vres.rq.size = val[3] - val[2] + 1;
4236 		adap->vres.pbl.start = val[4];
4237 		adap->vres.pbl.size = val[5] - val[4] + 1;
4238 
4239 		params[0] = FW_PARAM_PFVF(SQRQ_START);
4240 		params[1] = FW_PARAM_PFVF(SQRQ_END);
4241 		params[2] = FW_PARAM_PFVF(CQ_START);
4242 		params[3] = FW_PARAM_PFVF(CQ_END);
4243 		params[4] = FW_PARAM_PFVF(OCQ_START);
4244 		params[5] = FW_PARAM_PFVF(OCQ_END);
4245 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4246 				      val);
4247 		if (ret < 0)
4248 			goto bye;
4249 		adap->vres.qp.start = val[0];
4250 		adap->vres.qp.size = val[1] - val[0] + 1;
4251 		adap->vres.cq.start = val[2];
4252 		adap->vres.cq.size = val[3] - val[2] + 1;
4253 		adap->vres.ocq.start = val[4];
4254 		adap->vres.ocq.size = val[5] - val[4] + 1;
4255 
4256 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4257 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4258 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4259 				      val);
4260 		if (ret < 0) {
4261 			adap->params.max_ordird_qp = 8;
4262 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4263 			ret = 0;
4264 		} else {
4265 			adap->params.max_ordird_qp = val[0];
4266 			adap->params.max_ird_adapter = val[1];
4267 		}
4268 		dev_info(adap->pdev_dev,
4269 			 "max_ordird_qp %d max_ird_adapter %d\n",
4270 			 adap->params.max_ordird_qp,
4271 			 adap->params.max_ird_adapter);
4272 		adap->num_ofld_uld += 2;
4273 	}
4274 	if (caps_cmd.iscsicaps) {
4275 		params[0] = FW_PARAM_PFVF(ISCSI_START);
4276 		params[1] = FW_PARAM_PFVF(ISCSI_END);
4277 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4278 				      params, val);
4279 		if (ret < 0)
4280 			goto bye;
4281 		adap->vres.iscsi.start = val[0];
4282 		adap->vres.iscsi.size = val[1] - val[0] + 1;
4283 		/* LIO target and cxgb4i initiaitor */
4284 		adap->num_ofld_uld += 2;
4285 	}
4286 	if (caps_cmd.cryptocaps) {
4287 		/* Should query params here...TODO */
4288 		params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4289 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4290 				      params, val);
4291 		if (ret < 0) {
4292 			if (ret != -EINVAL)
4293 				goto bye;
4294 		} else {
4295 			adap->vres.ncrypto_fc = val[0];
4296 		}
4297 		adap->params.crypto = ntohs(caps_cmd.cryptocaps);
4298 		adap->num_uld += 1;
4299 	}
4300 #undef FW_PARAM_PFVF
4301 #undef FW_PARAM_DEV
4302 
4303 	/* The MTU/MSS Table is initialized by now, so load their values.  If
4304 	 * we're initializing the adapter, then we'll make any modifications
4305 	 * we want to the MTU/MSS Table and also initialize the congestion
4306 	 * parameters.
4307 	 */
4308 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4309 	if (state != DEV_STATE_INIT) {
4310 		int i;
4311 
4312 		/* The default MTU Table contains values 1492 and 1500.
4313 		 * However, for TCP, it's better to have two values which are
4314 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4315 		 * This allows us to have a TCP Data Payload which is a
4316 		 * multiple of 8 regardless of what combination of TCP Options
4317 		 * are in use (always a multiple of 4 bytes) which is
4318 		 * important for performance reasons.  For instance, if no
4319 		 * options are in use, then we have a 20-byte IP header and a
4320 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4321 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4322 		 * which is not a multiple of 8.  So using an MSS of 1488 in
4323 		 * this case results in a TCP Data Payload of 1448 bytes which
4324 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4325 		 * Stamps have been negotiated, then an MTU of 1500 bytes
4326 		 * results in a TCP Data Payload of 1448 bytes which, as
4327 		 * above, is a multiple of 8 bytes ...
4328 		 */
4329 		for (i = 0; i < NMTUS; i++)
4330 			if (adap->params.mtus[i] == 1492) {
4331 				adap->params.mtus[i] = 1488;
4332 				break;
4333 			}
4334 
4335 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4336 			     adap->params.b_wnd);
4337 	}
4338 	t4_init_sge_params(adap);
4339 	adap->flags |= FW_OK;
4340 	t4_init_tp_params(adap, true);
4341 	return 0;
4342 
4343 	/*
4344 	 * Something bad happened.  If a command timed out or failed with EIO
4345 	 * FW does not operate within its spec or something catastrophic
4346 	 * happened to HW/FW, stop issuing commands.
4347 	 */
4348 bye:
4349 	kfree(adap->sge.egr_map);
4350 	kfree(adap->sge.ingr_map);
4351 	kfree(adap->sge.starving_fl);
4352 	kfree(adap->sge.txq_maperr);
4353 #ifdef CONFIG_DEBUG_FS
4354 	kfree(adap->sge.blocked_fl);
4355 #endif
4356 	if (ret != -ETIMEDOUT && ret != -EIO)
4357 		t4_fw_bye(adap, adap->mbox);
4358 	return ret;
4359 }
4360 
4361 /* EEH callbacks */
4362 
4363 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4364 					 pci_channel_state_t state)
4365 {
4366 	int i;
4367 	struct adapter *adap = pci_get_drvdata(pdev);
4368 
4369 	if (!adap)
4370 		goto out;
4371 
4372 	rtnl_lock();
4373 	adap->flags &= ~FW_OK;
4374 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4375 	spin_lock(&adap->stats_lock);
4376 	for_each_port(adap, i) {
4377 		struct net_device *dev = adap->port[i];
4378 		if (dev) {
4379 			netif_device_detach(dev);
4380 			netif_carrier_off(dev);
4381 		}
4382 	}
4383 	spin_unlock(&adap->stats_lock);
4384 	disable_interrupts(adap);
4385 	if (adap->flags & FULL_INIT_DONE)
4386 		cxgb_down(adap);
4387 	rtnl_unlock();
4388 	if ((adap->flags & DEV_ENABLED)) {
4389 		pci_disable_device(pdev);
4390 		adap->flags &= ~DEV_ENABLED;
4391 	}
4392 out:	return state == pci_channel_io_perm_failure ?
4393 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4394 }
4395 
4396 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4397 {
4398 	int i, ret;
4399 	struct fw_caps_config_cmd c;
4400 	struct adapter *adap = pci_get_drvdata(pdev);
4401 
4402 	if (!adap) {
4403 		pci_restore_state(pdev);
4404 		pci_save_state(pdev);
4405 		return PCI_ERS_RESULT_RECOVERED;
4406 	}
4407 
4408 	if (!(adap->flags & DEV_ENABLED)) {
4409 		if (pci_enable_device(pdev)) {
4410 			dev_err(&pdev->dev, "Cannot reenable PCI "
4411 					    "device after reset\n");
4412 			return PCI_ERS_RESULT_DISCONNECT;
4413 		}
4414 		adap->flags |= DEV_ENABLED;
4415 	}
4416 
4417 	pci_set_master(pdev);
4418 	pci_restore_state(pdev);
4419 	pci_save_state(pdev);
4420 	pci_cleanup_aer_uncorrect_error_status(pdev);
4421 
4422 	if (t4_wait_dev_ready(adap->regs) < 0)
4423 		return PCI_ERS_RESULT_DISCONNECT;
4424 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4425 		return PCI_ERS_RESULT_DISCONNECT;
4426 	adap->flags |= FW_OK;
4427 	if (adap_init1(adap, &c))
4428 		return PCI_ERS_RESULT_DISCONNECT;
4429 
4430 	for_each_port(adap, i) {
4431 		struct port_info *p = adap2pinfo(adap, i);
4432 
4433 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4434 				  NULL, NULL);
4435 		if (ret < 0)
4436 			return PCI_ERS_RESULT_DISCONNECT;
4437 		p->viid = ret;
4438 		p->xact_addr_filt = -1;
4439 	}
4440 
4441 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4442 		     adap->params.b_wnd);
4443 	setup_memwin(adap);
4444 	if (cxgb_up(adap))
4445 		return PCI_ERS_RESULT_DISCONNECT;
4446 	return PCI_ERS_RESULT_RECOVERED;
4447 }
4448 
4449 static void eeh_resume(struct pci_dev *pdev)
4450 {
4451 	int i;
4452 	struct adapter *adap = pci_get_drvdata(pdev);
4453 
4454 	if (!adap)
4455 		return;
4456 
4457 	rtnl_lock();
4458 	for_each_port(adap, i) {
4459 		struct net_device *dev = adap->port[i];
4460 		if (dev) {
4461 			if (netif_running(dev)) {
4462 				link_start(dev);
4463 				cxgb_set_rxmode(dev);
4464 			}
4465 			netif_device_attach(dev);
4466 		}
4467 	}
4468 	rtnl_unlock();
4469 }
4470 
4471 static const struct pci_error_handlers cxgb4_eeh = {
4472 	.error_detected = eeh_err_detected,
4473 	.slot_reset     = eeh_slot_reset,
4474 	.resume         = eeh_resume,
4475 };
4476 
4477 /* Return true if the Link Configuration supports "High Speeds" (those greater
4478  * than 1Gb/s).
4479  */
4480 static inline bool is_x_10g_port(const struct link_config *lc)
4481 {
4482 	unsigned int speeds, high_speeds;
4483 
4484 	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
4485 	high_speeds = speeds &
4486 			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
4487 
4488 	return high_speeds != 0;
4489 }
4490 
4491 /*
4492  * Perform default configuration of DMA queues depending on the number and type
4493  * of ports we found and the number of available CPUs.  Most settings can be
4494  * modified by the admin prior to actual use.
4495  */
4496 static void cfg_queues(struct adapter *adap)
4497 {
4498 	struct sge *s = &adap->sge;
4499 	int i = 0, n10g = 0, qidx = 0;
4500 #ifndef CONFIG_CHELSIO_T4_DCB
4501 	int q10g = 0;
4502 #endif
4503 
4504 	/* Reduce memory usage in kdump environment, disable all offload.
4505 	 */
4506 	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4507 		adap->params.offload = 0;
4508 		adap->params.crypto = 0;
4509 	}
4510 
4511 	n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4512 #ifdef CONFIG_CHELSIO_T4_DCB
4513 	/* For Data Center Bridging support we need to be able to support up
4514 	 * to 8 Traffic Priorities; each of which will be assigned to its
4515 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4516 	 */
4517 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4518 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4519 			MAX_ETH_QSETS, adap->params.nports * 8);
4520 		BUG_ON(1);
4521 	}
4522 
4523 	for_each_port(adap, i) {
4524 		struct port_info *pi = adap2pinfo(adap, i);
4525 
4526 		pi->first_qset = qidx;
4527 		pi->nqsets = is_kdump_kernel() ? 1 : 8;
4528 		qidx += pi->nqsets;
4529 	}
4530 #else /* !CONFIG_CHELSIO_T4_DCB */
4531 	/*
4532 	 * We default to 1 queue per non-10G port and up to # of cores queues
4533 	 * per 10G port.
4534 	 */
4535 	if (n10g)
4536 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4537 	if (q10g > netif_get_num_default_rss_queues())
4538 		q10g = netif_get_num_default_rss_queues();
4539 
4540 	if (is_kdump_kernel())
4541 		q10g = 1;
4542 
4543 	for_each_port(adap, i) {
4544 		struct port_info *pi = adap2pinfo(adap, i);
4545 
4546 		pi->first_qset = qidx;
4547 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4548 		qidx += pi->nqsets;
4549 	}
4550 #endif /* !CONFIG_CHELSIO_T4_DCB */
4551 
4552 	s->ethqsets = qidx;
4553 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4554 
4555 	if (is_uld(adap)) {
4556 		/*
4557 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4558 		 * otherwise we divide all available queues amongst the channels
4559 		 * capped by the number of available cores.
4560 		 */
4561 		if (n10g) {
4562 			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4563 			s->ofldqsets = roundup(i, adap->params.nports);
4564 		} else {
4565 			s->ofldqsets = adap->params.nports;
4566 		}
4567 	}
4568 
4569 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4570 		struct sge_eth_rxq *r = &s->ethrxq[i];
4571 
4572 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4573 		r->fl.size = 72;
4574 	}
4575 
4576 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4577 		s->ethtxq[i].q.size = 1024;
4578 
4579 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4580 		s->ctrlq[i].q.size = 512;
4581 
4582 	if (!is_t4(adap->params.chip))
4583 		s->ptptxq.q.size = 8;
4584 
4585 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4586 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4587 }
4588 
4589 /*
4590  * Reduce the number of Ethernet queues across all ports to at most n.
4591  * n provides at least one queue per port.
4592  */
4593 static void reduce_ethqs(struct adapter *adap, int n)
4594 {
4595 	int i;
4596 	struct port_info *pi;
4597 
4598 	while (n < adap->sge.ethqsets)
4599 		for_each_port(adap, i) {
4600 			pi = adap2pinfo(adap, i);
4601 			if (pi->nqsets > 1) {
4602 				pi->nqsets--;
4603 				adap->sge.ethqsets--;
4604 				if (adap->sge.ethqsets <= n)
4605 					break;
4606 			}
4607 		}
4608 
4609 	n = 0;
4610 	for_each_port(adap, i) {
4611 		pi = adap2pinfo(adap, i);
4612 		pi->first_qset = n;
4613 		n += pi->nqsets;
4614 	}
4615 }
4616 
4617 static int get_msix_info(struct adapter *adap)
4618 {
4619 	struct uld_msix_info *msix_info;
4620 	unsigned int max_ingq = 0;
4621 
4622 	if (is_offload(adap))
4623 		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4624 	if (is_pci_uld(adap))
4625 		max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4626 
4627 	if (!max_ingq)
4628 		goto out;
4629 
4630 	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4631 	if (!msix_info)
4632 		return -ENOMEM;
4633 
4634 	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4635 						 sizeof(long), GFP_KERNEL);
4636 	if (!adap->msix_bmap_ulds.msix_bmap) {
4637 		kfree(msix_info);
4638 		return -ENOMEM;
4639 	}
4640 	spin_lock_init(&adap->msix_bmap_ulds.lock);
4641 	adap->msix_info_ulds = msix_info;
4642 out:
4643 	return 0;
4644 }
4645 
4646 static void free_msix_info(struct adapter *adap)
4647 {
4648 	if (!(adap->num_uld && adap->num_ofld_uld))
4649 		return;
4650 
4651 	kfree(adap->msix_info_ulds);
4652 	kfree(adap->msix_bmap_ulds.msix_bmap);
4653 }
4654 
4655 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4656 #define EXTRA_VECS 2
4657 
4658 static int enable_msix(struct adapter *adap)
4659 {
4660 	int ofld_need = 0, uld_need = 0;
4661 	int i, j, want, need, allocated;
4662 	struct sge *s = &adap->sge;
4663 	unsigned int nchan = adap->params.nports;
4664 	struct msix_entry *entries;
4665 	int max_ingq = MAX_INGQ;
4666 
4667 	if (is_pci_uld(adap))
4668 		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4669 	if (is_offload(adap))
4670 		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4671 	entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4672 			  GFP_KERNEL);
4673 	if (!entries)
4674 		return -ENOMEM;
4675 
4676 	/* map for msix */
4677 	if (get_msix_info(adap)) {
4678 		adap->params.offload = 0;
4679 		adap->params.crypto = 0;
4680 	}
4681 
4682 	for (i = 0; i < max_ingq + 1; ++i)
4683 		entries[i].entry = i;
4684 
4685 	want = s->max_ethqsets + EXTRA_VECS;
4686 	if (is_offload(adap)) {
4687 		want += adap->num_ofld_uld * s->ofldqsets;
4688 		ofld_need = adap->num_ofld_uld * nchan;
4689 	}
4690 	if (is_pci_uld(adap)) {
4691 		want += adap->num_uld * s->ofldqsets;
4692 		uld_need = adap->num_uld * nchan;
4693 	}
4694 #ifdef CONFIG_CHELSIO_T4_DCB
4695 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4696 	 * each port.
4697 	 */
4698 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4699 #else
4700 	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4701 #endif
4702 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4703 	if (allocated < 0) {
4704 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4705 			 " not using MSI-X\n");
4706 		kfree(entries);
4707 		return allocated;
4708 	}
4709 
4710 	/* Distribute available vectors to the various queue groups.
4711 	 * Every group gets its minimum requirement and NIC gets top
4712 	 * priority for leftovers.
4713 	 */
4714 	i = allocated - EXTRA_VECS - ofld_need - uld_need;
4715 	if (i < s->max_ethqsets) {
4716 		s->max_ethqsets = i;
4717 		if (i < s->ethqsets)
4718 			reduce_ethqs(adap, i);
4719 	}
4720 	if (is_uld(adap)) {
4721 		if (allocated < want)
4722 			s->nqs_per_uld = nchan;
4723 		else
4724 			s->nqs_per_uld = s->ofldqsets;
4725 	}
4726 
4727 	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4728 		adap->msix_info[i].vec = entries[i].vector;
4729 	if (is_uld(adap)) {
4730 		for (j = 0 ; i < allocated; ++i, j++) {
4731 			adap->msix_info_ulds[j].vec = entries[i].vector;
4732 			adap->msix_info_ulds[j].idx = i;
4733 		}
4734 		adap->msix_bmap_ulds.mapsize = j;
4735 	}
4736 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4737 		 "nic %d per uld %d\n",
4738 		 allocated, s->max_ethqsets, s->nqs_per_uld);
4739 
4740 	kfree(entries);
4741 	return 0;
4742 }
4743 
4744 #undef EXTRA_VECS
4745 
4746 static int init_rss(struct adapter *adap)
4747 {
4748 	unsigned int i;
4749 	int err;
4750 
4751 	err = t4_init_rss_mode(adap, adap->mbox);
4752 	if (err)
4753 		return err;
4754 
4755 	for_each_port(adap, i) {
4756 		struct port_info *pi = adap2pinfo(adap, i);
4757 
4758 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4759 		if (!pi->rss)
4760 			return -ENOMEM;
4761 	}
4762 	return 0;
4763 }
4764 
4765 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4766 					enum pci_bus_speed *speed,
4767 					enum pcie_link_width *width)
4768 {
4769 	u32 lnkcap1, lnkcap2;
4770 	int err1, err2;
4771 
4772 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4773 
4774 	*speed = PCI_SPEED_UNKNOWN;
4775 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4776 
4777 	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4778 					  &lnkcap1);
4779 	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4780 					  &lnkcap2);
4781 	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4782 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4783 			*speed = PCIE_SPEED_8_0GT;
4784 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4785 			*speed = PCIE_SPEED_5_0GT;
4786 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4787 			*speed = PCIE_SPEED_2_5GT;
4788 	}
4789 	if (!err1) {
4790 		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4791 		if (!lnkcap2) { /* pre-r3.0 */
4792 			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4793 				*speed = PCIE_SPEED_5_0GT;
4794 			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4795 				*speed = PCIE_SPEED_2_5GT;
4796 		}
4797 	}
4798 
4799 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4800 		return err1 ? err1 : err2 ? err2 : -EINVAL;
4801 	return 0;
4802 }
4803 
4804 static void cxgb4_check_pcie_caps(struct adapter *adap)
4805 {
4806 	enum pcie_link_width width, width_cap;
4807 	enum pci_bus_speed speed, speed_cap;
4808 
4809 #define PCIE_SPEED_STR(speed) \
4810 	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4811 	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4812 	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4813 	 "Unknown")
4814 
4815 	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4816 		dev_warn(adap->pdev_dev,
4817 			 "Unable to determine PCIe device BW capabilities\n");
4818 		return;
4819 	}
4820 
4821 	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4822 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4823 		dev_warn(adap->pdev_dev,
4824 			 "Unable to determine PCI Express bandwidth.\n");
4825 		return;
4826 	}
4827 
4828 	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4829 		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4830 	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4831 		 width, width_cap);
4832 	if (speed < speed_cap || width < width_cap)
4833 		dev_info(adap->pdev_dev,
4834 			 "A slot with more lanes and/or higher speed is "
4835 			 "suggested for optimal performance.\n");
4836 }
4837 
4838 /* Dump basic information about the adapter */
4839 static void print_adapter_info(struct adapter *adapter)
4840 {
4841 	/* Hardware/Firmware/etc. Version/Revision IDs */
4842 	t4_dump_version_info(adapter);
4843 
4844 	/* Software/Hardware configuration */
4845 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4846 		 is_offload(adapter) ? "R" : "",
4847 		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4848 		  (adapter->flags & USING_MSI) ? "MSI" : ""),
4849 		 is_offload(adapter) ? "Offload" : "non-Offload");
4850 }
4851 
4852 static void print_port_info(const struct net_device *dev)
4853 {
4854 	char buf[80];
4855 	char *bufp = buf;
4856 	const char *spd = "";
4857 	const struct port_info *pi = netdev_priv(dev);
4858 	const struct adapter *adap = pi->adapter;
4859 
4860 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4861 		spd = " 2.5 GT/s";
4862 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4863 		spd = " 5 GT/s";
4864 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4865 		spd = " 8 GT/s";
4866 
4867 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
4868 		bufp += sprintf(bufp, "100M/");
4869 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
4870 		bufp += sprintf(bufp, "1G/");
4871 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
4872 		bufp += sprintf(bufp, "10G/");
4873 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
4874 		bufp += sprintf(bufp, "25G/");
4875 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
4876 		bufp += sprintf(bufp, "40G/");
4877 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
4878 		bufp += sprintf(bufp, "50G/");
4879 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
4880 		bufp += sprintf(bufp, "100G/");
4881 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
4882 		bufp += sprintf(bufp, "200G/");
4883 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
4884 		bufp += sprintf(bufp, "400G/");
4885 	if (bufp != buf)
4886 		--bufp;
4887 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4888 
4889 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4890 		    dev->name, adap->params.vpd.id, adap->name, buf);
4891 }
4892 
4893 /*
4894  * Free the following resources:
4895  * - memory used for tables
4896  * - MSI/MSI-X
4897  * - net devices
4898  * - resources FW is holding for us
4899  */
4900 static void free_some_resources(struct adapter *adapter)
4901 {
4902 	unsigned int i;
4903 
4904 	kvfree(adapter->smt);
4905 	kvfree(adapter->l2t);
4906 	t4_cleanup_sched(adapter);
4907 	kvfree(adapter->tids.tid_tab);
4908 	cxgb4_cleanup_tc_flower(adapter);
4909 	cxgb4_cleanup_tc_u32(adapter);
4910 	kfree(adapter->sge.egr_map);
4911 	kfree(adapter->sge.ingr_map);
4912 	kfree(adapter->sge.starving_fl);
4913 	kfree(adapter->sge.txq_maperr);
4914 #ifdef CONFIG_DEBUG_FS
4915 	kfree(adapter->sge.blocked_fl);
4916 #endif
4917 	disable_msi(adapter);
4918 
4919 	for_each_port(adapter, i)
4920 		if (adapter->port[i]) {
4921 			struct port_info *pi = adap2pinfo(adapter, i);
4922 
4923 			if (pi->viid != 0)
4924 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
4925 					   0, pi->viid);
4926 			kfree(adap2pinfo(adapter, i)->rss);
4927 			free_netdev(adapter->port[i]);
4928 		}
4929 	if (adapter->flags & FW_OK)
4930 		t4_fw_bye(adapter, adapter->pf);
4931 }
4932 
4933 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4934 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4935 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4936 #define SEGMENT_SIZE 128
4937 
4938 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4939 {
4940 	u16 device_id;
4941 
4942 	/* Retrieve adapter's device ID */
4943 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4944 
4945 	switch (device_id >> 12) {
4946 	case CHELSIO_T4:
4947 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4948 	case CHELSIO_T5:
4949 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4950 	case CHELSIO_T6:
4951 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4952 	default:
4953 		dev_err(&pdev->dev, "Device %d is not supported\n",
4954 			device_id);
4955 	}
4956 	return -EINVAL;
4957 }
4958 
4959 #ifdef CONFIG_PCI_IOV
4960 static void cxgb4_mgmt_setup(struct net_device *dev)
4961 {
4962 	dev->type = ARPHRD_NONE;
4963 	dev->mtu = 0;
4964 	dev->hard_header_len = 0;
4965 	dev->addr_len = 0;
4966 	dev->tx_queue_len = 0;
4967 	dev->flags |= IFF_NOARP;
4968 	dev->priv_flags |= IFF_NO_QUEUE;
4969 
4970 	/* Initialize the device structure. */
4971 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4972 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4973 	dev->needs_free_netdev = true;
4974 }
4975 
4976 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4977 {
4978 	struct adapter *adap = pci_get_drvdata(pdev);
4979 	int err = 0;
4980 	int current_vfs = pci_num_vf(pdev);
4981 	u32 pcie_fw;
4982 
4983 	pcie_fw = readl(adap->regs + PCIE_FW_A);
4984 	/* Check if cxgb4 is the MASTER and fw is initialized */
4985 	if (num_vfs &&
4986 	    (!(pcie_fw & PCIE_FW_INIT_F) ||
4987 	    !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4988 	    PCIE_FW_MASTER_G(pcie_fw) != CXGB4_UNIFIED_PF)) {
4989 		dev_warn(&pdev->dev,
4990 			 "cxgb4 driver needs to be MASTER to support SRIOV\n");
4991 		return -EOPNOTSUPP;
4992 	}
4993 
4994 	/* If any of the VF's is already assigned to Guest OS, then
4995 	 * SRIOV for the same cannot be modified
4996 	 */
4997 	if (current_vfs && pci_vfs_assigned(pdev)) {
4998 		dev_err(&pdev->dev,
4999 			"Cannot modify SR-IOV while VFs are assigned\n");
5000 		return current_vfs;
5001 	}
5002 	/* Note that the upper-level code ensures that we're never called with
5003 	 * a non-zero "num_vfs" when we already have VFs instantiated.  But
5004 	 * it never hurts to code defensively.
5005 	 */
5006 	if (num_vfs != 0 && current_vfs != 0)
5007 		return -EBUSY;
5008 
5009 	/* Nothing to do for no change. */
5010 	if (num_vfs == current_vfs)
5011 		return num_vfs;
5012 
5013 	/* Disable SRIOV when zero is passed. */
5014 	if (!num_vfs) {
5015 		pci_disable_sriov(pdev);
5016 		/* free VF Management Interface */
5017 		unregister_netdev(adap->port[0]);
5018 		free_netdev(adap->port[0]);
5019 		adap->port[0] = NULL;
5020 
5021 		/* free VF resources */
5022 		adap->num_vfs = 0;
5023 		kfree(adap->vfinfo);
5024 		adap->vfinfo = NULL;
5025 		return 0;
5026 	}
5027 
5028 	if (!current_vfs) {
5029 		struct fw_pfvf_cmd port_cmd, port_rpl;
5030 		struct net_device *netdev;
5031 		unsigned int pmask, port;
5032 		struct pci_dev *pbridge;
5033 		struct port_info *pi;
5034 		char name[IFNAMSIZ];
5035 		u32 devcap2;
5036 		u16 flags;
5037 		int pos;
5038 
5039 		/* If we want to instantiate Virtual Functions, then our
5040 		 * parent bridge's PCI-E needs to support Alternative Routing
5041 		 * ID (ARI) because our VFs will show up at function offset 8
5042 		 * and above.
5043 		 */
5044 		pbridge = pdev->bus->self;
5045 		pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP);
5046 		pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags);
5047 		pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2);
5048 
5049 		if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5050 		    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5051 			/* Our parent bridge does not support ARI so issue a
5052 			 * warning and skip instantiating the VFs.  They
5053 			 * won't be reachable.
5054 			 */
5055 			dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5056 				 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5057 				 PCI_FUNC(pbridge->devfn));
5058 			return -ENOTSUPP;
5059 		}
5060 		memset(&port_cmd, 0, sizeof(port_cmd));
5061 		port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5062 						 FW_CMD_REQUEST_F |
5063 						 FW_CMD_READ_F |
5064 						 FW_PFVF_CMD_PFN_V(adap->pf) |
5065 						 FW_PFVF_CMD_VFN_V(0));
5066 		port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
5067 		err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
5068 				 &port_rpl);
5069 		if (err)
5070 			return err;
5071 		pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
5072 		port = ffs(pmask) - 1;
5073 		/* Allocate VF Management Interface. */
5074 		snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
5075 			 adap->pf);
5076 		netdev = alloc_netdev(sizeof(struct port_info),
5077 				      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
5078 		if (!netdev)
5079 			return -ENOMEM;
5080 
5081 		pi = netdev_priv(netdev);
5082 		pi->adapter = adap;
5083 		pi->lport = port;
5084 		pi->tx_chan = port;
5085 		SET_NETDEV_DEV(netdev, &pdev->dev);
5086 
5087 		adap->port[0] = netdev;
5088 		pi->port_id = 0;
5089 
5090 		err = register_netdev(adap->port[0]);
5091 		if (err) {
5092 			pr_info("Unable to register VF mgmt netdev %s\n", name);
5093 			free_netdev(adap->port[0]);
5094 			adap->port[0] = NULL;
5095 			return err;
5096 		}
5097 		/* Allocate and set up VF Information. */
5098 		adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
5099 				       sizeof(struct vf_info), GFP_KERNEL);
5100 		if (!adap->vfinfo) {
5101 			unregister_netdev(adap->port[0]);
5102 			free_netdev(adap->port[0]);
5103 			adap->port[0] = NULL;
5104 			return -ENOMEM;
5105 		}
5106 		cxgb4_mgmt_fill_vf_station_mac_addr(adap);
5107 	}
5108 	/* Instantiate the requested number of VFs. */
5109 	err = pci_enable_sriov(pdev, num_vfs);
5110 	if (err) {
5111 		pr_info("Unable to instantiate %d VFs\n", num_vfs);
5112 		if (!current_vfs) {
5113 			unregister_netdev(adap->port[0]);
5114 			free_netdev(adap->port[0]);
5115 			adap->port[0] = NULL;
5116 			kfree(adap->vfinfo);
5117 			adap->vfinfo = NULL;
5118 		}
5119 		return err;
5120 	}
5121 
5122 	adap->num_vfs = num_vfs;
5123 	return num_vfs;
5124 }
5125 #endif /* CONFIG_PCI_IOV */
5126 
5127 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5128 {
5129 	int func, i, err, s_qpp, qpp, num_seg;
5130 	struct port_info *pi;
5131 	bool highdma = false;
5132 	struct adapter *adapter = NULL;
5133 	struct net_device *netdev;
5134 	void __iomem *regs;
5135 	u32 whoami, pl_rev;
5136 	enum chip_type chip;
5137 	static int adap_idx = 1;
5138 
5139 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5140 
5141 	err = pci_request_regions(pdev, KBUILD_MODNAME);
5142 	if (err) {
5143 		/* Just info, some other driver may have claimed the device. */
5144 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5145 		return err;
5146 	}
5147 
5148 	err = pci_enable_device(pdev);
5149 	if (err) {
5150 		dev_err(&pdev->dev, "cannot enable PCI device\n");
5151 		goto out_release_regions;
5152 	}
5153 
5154 	regs = pci_ioremap_bar(pdev, 0);
5155 	if (!regs) {
5156 		dev_err(&pdev->dev, "cannot map device registers\n");
5157 		err = -ENOMEM;
5158 		goto out_disable_device;
5159 	}
5160 
5161 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5162 	if (!adapter) {
5163 		err = -ENOMEM;
5164 		goto out_unmap_bar0;
5165 	}
5166 
5167 	adapter->regs = regs;
5168 	err = t4_wait_dev_ready(regs);
5169 	if (err < 0)
5170 		goto out_free_adapter;
5171 
5172 	/* We control everything through one PF */
5173 	whoami = readl(regs + PL_WHOAMI_A);
5174 	pl_rev = REV_G(readl(regs + PL_REV_A));
5175 	chip = get_chip_type(pdev, pl_rev);
5176 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
5177 		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5178 
5179 	adapter->pdev = pdev;
5180 	adapter->pdev_dev = &pdev->dev;
5181 	adapter->name = pci_name(pdev);
5182 	adapter->mbox = func;
5183 	adapter->pf = func;
5184 	adapter->msg_enable = DFLT_MSG_ENABLE;
5185 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5186 				    (sizeof(struct mbox_cmd) *
5187 				     T4_OS_LOG_MBOX_CMDS),
5188 				    GFP_KERNEL);
5189 	if (!adapter->mbox_log) {
5190 		err = -ENOMEM;
5191 		goto out_free_adapter;
5192 	}
5193 	spin_lock_init(&adapter->mbox_lock);
5194 	INIT_LIST_HEAD(&adapter->mlist.list);
5195 	pci_set_drvdata(pdev, adapter);
5196 
5197 	if (func != ent->driver_data) {
5198 		pci_disable_device(pdev);
5199 		pci_save_state(pdev);        /* to restore SR-IOV later */
5200 		return 0;
5201 	}
5202 
5203 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5204 		highdma = true;
5205 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5206 		if (err) {
5207 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5208 				"coherent allocations\n");
5209 			goto out_free_adapter;
5210 		}
5211 	} else {
5212 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5213 		if (err) {
5214 			dev_err(&pdev->dev, "no usable DMA configuration\n");
5215 			goto out_free_adapter;
5216 		}
5217 	}
5218 
5219 	pci_enable_pcie_error_reporting(pdev);
5220 	pci_set_master(pdev);
5221 	pci_save_state(pdev);
5222 	adap_idx++;
5223 	adapter->workq = create_singlethread_workqueue("cxgb4");
5224 	if (!adapter->workq) {
5225 		err = -ENOMEM;
5226 		goto out_free_adapter;
5227 	}
5228 
5229 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5230 
5231 	/* PCI device has been enabled */
5232 	adapter->flags |= DEV_ENABLED;
5233 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5234 
5235 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
5236 	 * Ingress Packet Data to Free List Buffers in order to allow for
5237 	 * chipset performance optimizations between the Root Complex and
5238 	 * Memory Controllers.  (Messages to the associated Ingress Queue
5239 	 * notifying new Packet Placement in the Free Lists Buffers will be
5240 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
5241 	 * all preceding PCIe Transaction Layer Packets will be processed
5242 	 * first.)  But some Root Complexes have various issues with Upstream
5243 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
5244 	 * The PCIe devices which under the Root Complexes will be cleared the
5245 	 * Relaxed Ordering bit in the configuration space, So we check our
5246 	 * PCIe configuration space to see if it's flagged with advice against
5247 	 * using Relaxed Ordering.
5248 	 */
5249 	if (!pcie_relaxed_ordering_enabled(pdev))
5250 		adapter->flags |= ROOT_NO_RELAXED_ORDERING;
5251 
5252 	spin_lock_init(&adapter->stats_lock);
5253 	spin_lock_init(&adapter->tid_release_lock);
5254 	spin_lock_init(&adapter->win0_lock);
5255 
5256 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5257 	INIT_WORK(&adapter->db_full_task, process_db_full);
5258 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
5259 
5260 	err = t4_prep_adapter(adapter);
5261 	if (err)
5262 		goto out_free_adapter;
5263 
5264 
5265 	if (!is_t4(adapter->params.chip)) {
5266 		s_qpp = (QUEUESPERPAGEPF0_S +
5267 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5268 			adapter->pf);
5269 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5270 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5271 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
5272 
5273 		/* Each segment size is 128B. Write coalescing is enabled only
5274 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5275 		 * queue is less no of segments that can be accommodated in
5276 		 * a page size.
5277 		 */
5278 		if (qpp > num_seg) {
5279 			dev_err(&pdev->dev,
5280 				"Incorrect number of egress queues per page\n");
5281 			err = -EINVAL;
5282 			goto out_free_adapter;
5283 		}
5284 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5285 		pci_resource_len(pdev, 2));
5286 		if (!adapter->bar2) {
5287 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
5288 			err = -ENOMEM;
5289 			goto out_free_adapter;
5290 		}
5291 	}
5292 
5293 	setup_memwin(adapter);
5294 	err = adap_init0(adapter);
5295 #ifdef CONFIG_DEBUG_FS
5296 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5297 #endif
5298 	setup_memwin_rdma(adapter);
5299 	if (err)
5300 		goto out_unmap_bar;
5301 
5302 	/* configure SGE_STAT_CFG_A to read WC stats */
5303 	if (!is_t4(adapter->params.chip))
5304 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5305 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5306 			      T6_STATMODE_V(0)));
5307 
5308 	for_each_port(adapter, i) {
5309 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
5310 					   MAX_ETH_QSETS);
5311 		if (!netdev) {
5312 			err = -ENOMEM;
5313 			goto out_free_dev;
5314 		}
5315 
5316 		SET_NETDEV_DEV(netdev, &pdev->dev);
5317 
5318 		adapter->port[i] = netdev;
5319 		pi = netdev_priv(netdev);
5320 		pi->adapter = adapter;
5321 		pi->xact_addr_filt = -1;
5322 		pi->port_id = i;
5323 		netdev->irq = pdev->irq;
5324 
5325 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5326 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5327 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
5328 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5329 			NETIF_F_HW_TC;
5330 
5331 		if (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5)
5332 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
5333 
5334 		if (highdma)
5335 			netdev->hw_features |= NETIF_F_HIGHDMA;
5336 		netdev->features |= netdev->hw_features;
5337 		netdev->vlan_features = netdev->features & VLAN_FEAT;
5338 
5339 		netdev->priv_flags |= IFF_UNICAST_FLT;
5340 
5341 		/* MTU range: 81 - 9600 */
5342 		netdev->min_mtu = 81;              /* accommodate SACK */
5343 		netdev->max_mtu = MAX_MTU;
5344 
5345 		netdev->netdev_ops = &cxgb4_netdev_ops;
5346 #ifdef CONFIG_CHELSIO_T4_DCB
5347 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
5348 		cxgb4_dcb_state_init(netdev);
5349 #endif
5350 		cxgb4_set_ethtool_ops(netdev);
5351 	}
5352 
5353 	cxgb4_init_ethtool_dump(adapter);
5354 
5355 	pci_set_drvdata(pdev, adapter);
5356 
5357 	if (adapter->flags & FW_OK) {
5358 		err = t4_port_init(adapter, func, func, 0);
5359 		if (err)
5360 			goto out_free_dev;
5361 	} else if (adapter->params.nports == 1) {
5362 		/* If we don't have a connection to the firmware -- possibly
5363 		 * because of an error -- grab the raw VPD parameters so we
5364 		 * can set the proper MAC Address on the debug network
5365 		 * interface that we've created.
5366 		 */
5367 		u8 hw_addr[ETH_ALEN];
5368 		u8 *na = adapter->params.vpd.na;
5369 
5370 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5371 		if (!err) {
5372 			for (i = 0; i < ETH_ALEN; i++)
5373 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5374 					      hex2val(na[2 * i + 1]));
5375 			t4_set_hw_addr(adapter, 0, hw_addr);
5376 		}
5377 	}
5378 
5379 	/* Configure queues and allocate tables now, they can be needed as
5380 	 * soon as the first register_netdev completes.
5381 	 */
5382 	cfg_queues(adapter);
5383 
5384 	adapter->smt = t4_init_smt();
5385 	if (!adapter->smt) {
5386 		/* We tolerate a lack of SMT, giving up some functionality */
5387 		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
5388 	}
5389 
5390 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5391 	if (!adapter->l2t) {
5392 		/* We tolerate a lack of L2T, giving up some functionality */
5393 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5394 		adapter->params.offload = 0;
5395 	}
5396 
5397 #if IS_ENABLED(CONFIG_IPV6)
5398 	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5399 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5400 		/* CLIP functionality is not present in hardware,
5401 		 * hence disable all offload features
5402 		 */
5403 		dev_warn(&pdev->dev,
5404 			 "CLIP not enabled in hardware, continuing\n");
5405 		adapter->params.offload = 0;
5406 	} else {
5407 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5408 						  adapter->clipt_end);
5409 		if (!adapter->clipt) {
5410 			/* We tolerate a lack of clip_table, giving up
5411 			 * some functionality
5412 			 */
5413 			dev_warn(&pdev->dev,
5414 				 "could not allocate Clip table, continuing\n");
5415 			adapter->params.offload = 0;
5416 		}
5417 	}
5418 #endif
5419 
5420 	for_each_port(adapter, i) {
5421 		pi = adap2pinfo(adapter, i);
5422 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5423 		if (!pi->sched_tbl)
5424 			dev_warn(&pdev->dev,
5425 				 "could not activate scheduling on port %d\n",
5426 				 i);
5427 	}
5428 
5429 	if (tid_init(&adapter->tids) < 0) {
5430 		dev_warn(&pdev->dev, "could not allocate TID table, "
5431 			 "continuing\n");
5432 		adapter->params.offload = 0;
5433 	} else {
5434 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5435 		if (!adapter->tc_u32)
5436 			dev_warn(&pdev->dev,
5437 				 "could not offload tc u32, continuing\n");
5438 
5439 		if (cxgb4_init_tc_flower(adapter))
5440 			dev_warn(&pdev->dev,
5441 				 "could not offload tc flower, continuing\n");
5442 	}
5443 
5444 	if (is_offload(adapter) || is_hashfilter(adapter)) {
5445 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5446 			u32 hash_base, hash_reg;
5447 
5448 			if (chip <= CHELSIO_T5) {
5449 				hash_reg = LE_DB_TID_HASHBASE_A;
5450 				hash_base = t4_read_reg(adapter, hash_reg);
5451 				adapter->tids.hash_base = hash_base / 4;
5452 			} else {
5453 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5454 				hash_base = t4_read_reg(adapter, hash_reg);
5455 				adapter->tids.hash_base = hash_base;
5456 			}
5457 		}
5458 	}
5459 
5460 	/* See what interrupts we'll be using */
5461 	if (msi > 1 && enable_msix(adapter) == 0)
5462 		adapter->flags |= USING_MSIX;
5463 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5464 		adapter->flags |= USING_MSI;
5465 		if (msi > 1)
5466 			free_msix_info(adapter);
5467 	}
5468 
5469 	/* check for PCI Express bandwidth capabiltites */
5470 	cxgb4_check_pcie_caps(adapter);
5471 
5472 	err = init_rss(adapter);
5473 	if (err)
5474 		goto out_free_dev;
5475 
5476 	/*
5477 	 * The card is now ready to go.  If any errors occur during device
5478 	 * registration we do not fail the whole card but rather proceed only
5479 	 * with the ports we manage to register successfully.  However we must
5480 	 * register at least one net device.
5481 	 */
5482 	for_each_port(adapter, i) {
5483 		pi = adap2pinfo(adapter, i);
5484 		adapter->port[i]->dev_port = pi->lport;
5485 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5486 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5487 
5488 		netif_carrier_off(adapter->port[i]);
5489 
5490 		err = register_netdev(adapter->port[i]);
5491 		if (err)
5492 			break;
5493 		adapter->chan_map[pi->tx_chan] = i;
5494 		print_port_info(adapter->port[i]);
5495 	}
5496 	if (i == 0) {
5497 		dev_err(&pdev->dev, "could not register any net devices\n");
5498 		goto out_free_dev;
5499 	}
5500 	if (err) {
5501 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5502 		err = 0;
5503 	}
5504 
5505 	if (cxgb4_debugfs_root) {
5506 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5507 							   cxgb4_debugfs_root);
5508 		setup_debugfs(adapter);
5509 	}
5510 
5511 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5512 	pdev->needs_freset = 1;
5513 
5514 	if (is_uld(adapter)) {
5515 		mutex_lock(&uld_mutex);
5516 		list_add_tail(&adapter->list_node, &adapter_list);
5517 		mutex_unlock(&uld_mutex);
5518 	}
5519 
5520 	if (!is_t4(adapter->params.chip))
5521 		cxgb4_ptp_init(adapter);
5522 
5523 	print_adapter_info(adapter);
5524 	setup_fw_sge_queues(adapter);
5525 	return 0;
5526 
5527  out_free_dev:
5528 	free_some_resources(adapter);
5529 	if (adapter->flags & USING_MSIX)
5530 		free_msix_info(adapter);
5531 	if (adapter->num_uld || adapter->num_ofld_uld)
5532 		t4_uld_mem_free(adapter);
5533  out_unmap_bar:
5534 	if (!is_t4(adapter->params.chip))
5535 		iounmap(adapter->bar2);
5536  out_free_adapter:
5537 	if (adapter->workq)
5538 		destroy_workqueue(adapter->workq);
5539 
5540 	kfree(adapter->mbox_log);
5541 	kfree(adapter);
5542  out_unmap_bar0:
5543 	iounmap(regs);
5544  out_disable_device:
5545 	pci_disable_pcie_error_reporting(pdev);
5546 	pci_disable_device(pdev);
5547  out_release_regions:
5548 	pci_release_regions(pdev);
5549 	return err;
5550 }
5551 
5552 static void remove_one(struct pci_dev *pdev)
5553 {
5554 	struct adapter *adapter = pci_get_drvdata(pdev);
5555 
5556 	if (!adapter) {
5557 		pci_release_regions(pdev);
5558 		return;
5559 	}
5560 
5561 	adapter->flags |= SHUTTING_DOWN;
5562 
5563 	if (adapter->pf == 4) {
5564 		int i;
5565 
5566 		/* Tear down per-adapter Work Queue first since it can contain
5567 		 * references to our adapter data structure.
5568 		 */
5569 		destroy_workqueue(adapter->workq);
5570 
5571 		if (is_uld(adapter)) {
5572 			detach_ulds(adapter);
5573 			t4_uld_clean_up(adapter);
5574 		}
5575 
5576 		disable_interrupts(adapter);
5577 
5578 		for_each_port(adapter, i)
5579 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5580 				unregister_netdev(adapter->port[i]);
5581 
5582 		debugfs_remove_recursive(adapter->debugfs_root);
5583 
5584 		if (!is_t4(adapter->params.chip))
5585 			cxgb4_ptp_stop(adapter);
5586 
5587 		/* If we allocated filters, free up state associated with any
5588 		 * valid filters ...
5589 		 */
5590 		clear_all_filters(adapter);
5591 
5592 		if (adapter->flags & FULL_INIT_DONE)
5593 			cxgb_down(adapter);
5594 
5595 		if (adapter->flags & USING_MSIX)
5596 			free_msix_info(adapter);
5597 		if (adapter->num_uld || adapter->num_ofld_uld)
5598 			t4_uld_mem_free(adapter);
5599 		free_some_resources(adapter);
5600 #if IS_ENABLED(CONFIG_IPV6)
5601 		t4_cleanup_clip_tbl(adapter);
5602 #endif
5603 		if (!is_t4(adapter->params.chip))
5604 			iounmap(adapter->bar2);
5605 	}
5606 #ifdef CONFIG_PCI_IOV
5607 	else {
5608 		cxgb4_iov_configure(adapter->pdev, 0);
5609 	}
5610 #endif
5611 	iounmap(adapter->regs);
5612 	pci_disable_pcie_error_reporting(pdev);
5613 	if ((adapter->flags & DEV_ENABLED)) {
5614 		pci_disable_device(pdev);
5615 		adapter->flags &= ~DEV_ENABLED;
5616 	}
5617 	pci_release_regions(pdev);
5618 	kfree(adapter->mbox_log);
5619 	synchronize_rcu();
5620 	kfree(adapter);
5621 }
5622 
5623 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5624  * delivery.  This is essentially a stripped down version of the PCI remove()
5625  * function where we do the minimal amount of work necessary to shutdown any
5626  * further activity.
5627  */
5628 static void shutdown_one(struct pci_dev *pdev)
5629 {
5630 	struct adapter *adapter = pci_get_drvdata(pdev);
5631 
5632 	/* As with remove_one() above (see extended comment), we only want do
5633 	 * do cleanup on PCI Devices which went all the way through init_one()
5634 	 * ...
5635 	 */
5636 	if (!adapter) {
5637 		pci_release_regions(pdev);
5638 		return;
5639 	}
5640 
5641 	adapter->flags |= SHUTTING_DOWN;
5642 
5643 	if (adapter->pf == 4) {
5644 		int i;
5645 
5646 		for_each_port(adapter, i)
5647 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5648 				cxgb_close(adapter->port[i]);
5649 
5650 		if (is_uld(adapter)) {
5651 			detach_ulds(adapter);
5652 			t4_uld_clean_up(adapter);
5653 		}
5654 
5655 		disable_interrupts(adapter);
5656 		disable_msi(adapter);
5657 
5658 		t4_sge_stop(adapter);
5659 		if (adapter->flags & FW_OK)
5660 			t4_fw_bye(adapter, adapter->mbox);
5661 	}
5662 }
5663 
5664 static struct pci_driver cxgb4_driver = {
5665 	.name     = KBUILD_MODNAME,
5666 	.id_table = cxgb4_pci_tbl,
5667 	.probe    = init_one,
5668 	.remove   = remove_one,
5669 	.shutdown = shutdown_one,
5670 #ifdef CONFIG_PCI_IOV
5671 	.sriov_configure = cxgb4_iov_configure,
5672 #endif
5673 	.err_handler = &cxgb4_eeh,
5674 };
5675 
5676 static int __init cxgb4_init_module(void)
5677 {
5678 	int ret;
5679 
5680 	/* Debugfs support is optional, just warn if this fails */
5681 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5682 	if (!cxgb4_debugfs_root)
5683 		pr_warn("could not create debugfs entry, continuing\n");
5684 
5685 	ret = pci_register_driver(&cxgb4_driver);
5686 	if (ret < 0)
5687 		debugfs_remove(cxgb4_debugfs_root);
5688 
5689 #if IS_ENABLED(CONFIG_IPV6)
5690 	if (!inet6addr_registered) {
5691 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5692 		inet6addr_registered = true;
5693 	}
5694 #endif
5695 
5696 	return ret;
5697 }
5698 
5699 static void __exit cxgb4_cleanup_module(void)
5700 {
5701 #if IS_ENABLED(CONFIG_IPV6)
5702 	if (inet6addr_registered) {
5703 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5704 		inet6addr_registered = false;
5705 	}
5706 #endif
5707 	pci_unregister_driver(&cxgb4_driver);
5708 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5709 }
5710 
5711 module_init(cxgb4_init_module);
5712 module_exit(cxgb4_cleanup_module);
5713