1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <linux/uaccess.h> 66 #include <linux/crash_dump.h> 67 #include <net/udp_tunnel.h> 68 69 #include "cxgb4.h" 70 #include "cxgb4_filter.h" 71 #include "t4_regs.h" 72 #include "t4_values.h" 73 #include "t4_msg.h" 74 #include "t4fw_api.h" 75 #include "t4fw_version.h" 76 #include "cxgb4_dcb.h" 77 #include "srq.h" 78 #include "cxgb4_debugfs.h" 79 #include "clip_tbl.h" 80 #include "l2t.h" 81 #include "smt.h" 82 #include "sched.h" 83 #include "cxgb4_tc_u32.h" 84 #include "cxgb4_tc_flower.h" 85 #include "cxgb4_ptp.h" 86 #include "cxgb4_cudbg.h" 87 88 char cxgb4_driver_name[] = KBUILD_MODNAME; 89 90 #ifdef DRV_VERSION 91 #undef DRV_VERSION 92 #endif 93 #define DRV_VERSION "2.0.0-ko" 94 const char cxgb4_driver_version[] = DRV_VERSION; 95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 96 97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 98 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 99 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 100 101 /* Macros needed to support the PCI Device ID Table ... 102 */ 103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 104 static const struct pci_device_id cxgb4_pci_tbl[] = { 105 #define CXGB4_UNIFIED_PF 0x4 106 107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 108 109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 110 * called for both. 111 */ 112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 113 114 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 115 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 116 117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 118 { 0, } \ 119 } 120 121 #include "t4_pci_id_tbl.h" 122 123 #define FW4_FNAME "cxgb4/t4fw.bin" 124 #define FW5_FNAME "cxgb4/t5fw.bin" 125 #define FW6_FNAME "cxgb4/t6fw.bin" 126 #define FW4_CFNAME "cxgb4/t4-config.txt" 127 #define FW5_CFNAME "cxgb4/t5-config.txt" 128 #define FW6_CFNAME "cxgb4/t6-config.txt" 129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 131 #define PHY_AQ1202_DEVICEID 0x4409 132 #define PHY_BCM84834_DEVICEID 0x4486 133 134 MODULE_DESCRIPTION(DRV_DESC); 135 MODULE_AUTHOR("Chelsio Communications"); 136 MODULE_LICENSE("Dual BSD/GPL"); 137 MODULE_VERSION(DRV_VERSION); 138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 139 MODULE_FIRMWARE(FW4_FNAME); 140 MODULE_FIRMWARE(FW5_FNAME); 141 MODULE_FIRMWARE(FW6_FNAME); 142 143 /* 144 * The driver uses the best interrupt scheme available on a platform in the 145 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 146 * of these schemes the driver may consider as follows: 147 * 148 * msi = 2: choose from among all three options 149 * msi = 1: only consider MSI and INTx interrupts 150 * msi = 0: force INTx interrupts 151 */ 152 static int msi = 2; 153 154 module_param(msi, int, 0644); 155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 156 157 /* 158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 159 * offset by 2 bytes in order to have the IP headers line up on 4-byte 160 * boundaries. This is a requirement for many architectures which will throw 161 * a machine check fault if an attempt is made to access one of the 4-byte IP 162 * header fields on a non-4-byte boundary. And it's a major performance issue 163 * even on some architectures which allow it like some implementations of the 164 * x86 ISA. However, some architectures don't mind this and for some very 165 * edge-case performance sensitive applications (like forwarding large volumes 166 * of small packets), setting this DMA offset to 0 will decrease the number of 167 * PCI-E Bus transfers enough to measurably affect performance. 168 */ 169 static int rx_dma_offset = 2; 170 171 /* TX Queue select used to determine what algorithm to use for selecting TX 172 * queue. Select between the kernel provided function (select_queue=0) or user 173 * cxgb_select_queue function (select_queue=1) 174 * 175 * Default: select_queue=0 176 */ 177 static int select_queue; 178 module_param(select_queue, int, 0644); 179 MODULE_PARM_DESC(select_queue, 180 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 181 182 static struct dentry *cxgb4_debugfs_root; 183 184 LIST_HEAD(adapter_list); 185 DEFINE_MUTEX(uld_mutex); 186 187 static void link_report(struct net_device *dev) 188 { 189 if (!netif_carrier_ok(dev)) 190 netdev_info(dev, "link down\n"); 191 else { 192 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 193 194 const char *s; 195 const struct port_info *p = netdev_priv(dev); 196 197 switch (p->link_cfg.speed) { 198 case 100: 199 s = "100Mbps"; 200 break; 201 case 1000: 202 s = "1Gbps"; 203 break; 204 case 10000: 205 s = "10Gbps"; 206 break; 207 case 25000: 208 s = "25Gbps"; 209 break; 210 case 40000: 211 s = "40Gbps"; 212 break; 213 case 50000: 214 s = "50Gbps"; 215 break; 216 case 100000: 217 s = "100Gbps"; 218 break; 219 default: 220 pr_info("%s: unsupported speed: %d\n", 221 dev->name, p->link_cfg.speed); 222 return; 223 } 224 225 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 226 fc[p->link_cfg.fc]); 227 } 228 } 229 230 #ifdef CONFIG_CHELSIO_T4_DCB 231 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 232 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 233 { 234 struct port_info *pi = netdev_priv(dev); 235 struct adapter *adap = pi->adapter; 236 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 237 int i; 238 239 /* We use a simple mapping of Port TX Queue Index to DCB 240 * Priority when we're enabling DCB. 241 */ 242 for (i = 0; i < pi->nqsets; i++, txq++) { 243 u32 name, value; 244 int err; 245 246 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 247 FW_PARAMS_PARAM_X_V( 248 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 249 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 250 value = enable ? i : 0xffffffff; 251 252 /* Since we can be called while atomic (from "interrupt 253 * level") we need to issue the Set Parameters Commannd 254 * without sleeping (timeout < 0). 255 */ 256 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 257 &name, &value, 258 -FW_CMD_MAX_TIMEOUT); 259 260 if (err) 261 dev_err(adap->pdev_dev, 262 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 263 enable ? "set" : "unset", pi->port_id, i, -err); 264 else 265 txq->dcb_prio = enable ? value : 0; 266 } 267 } 268 269 int cxgb4_dcb_enabled(const struct net_device *dev) 270 { 271 struct port_info *pi = netdev_priv(dev); 272 273 if (!pi->dcb.enabled) 274 return 0; 275 276 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 277 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 278 } 279 #endif /* CONFIG_CHELSIO_T4_DCB */ 280 281 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 282 { 283 struct net_device *dev = adapter->port[port_id]; 284 285 /* Skip changes from disabled ports. */ 286 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 287 if (link_stat) 288 netif_carrier_on(dev); 289 else { 290 #ifdef CONFIG_CHELSIO_T4_DCB 291 if (cxgb4_dcb_enabled(dev)) { 292 cxgb4_dcb_reset(dev); 293 dcb_tx_queue_prio_enable(dev, false); 294 } 295 #endif /* CONFIG_CHELSIO_T4_DCB */ 296 netif_carrier_off(dev); 297 } 298 299 link_report(dev); 300 } 301 } 302 303 void t4_os_portmod_changed(struct adapter *adap, int port_id) 304 { 305 static const char *mod_str[] = { 306 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 307 }; 308 309 struct net_device *dev = adap->port[port_id]; 310 struct port_info *pi = netdev_priv(dev); 311 312 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 313 netdev_info(dev, "port module unplugged\n"); 314 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 315 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 316 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 317 netdev_info(dev, "%s: unsupported port module inserted\n", 318 dev->name); 319 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 320 netdev_info(dev, "%s: unknown port module inserted\n", 321 dev->name); 322 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 323 netdev_info(dev, "%s: transceiver module error\n", dev->name); 324 else 325 netdev_info(dev, "%s: unknown module type %d inserted\n", 326 dev->name, pi->mod_type); 327 328 /* If the interface is running, then we'll need any "sticky" Link 329 * Parameters redone with a new Transceiver Module. 330 */ 331 pi->link_cfg.redo_l1cfg = netif_running(dev); 332 } 333 334 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 335 module_param(dbfifo_int_thresh, int, 0644); 336 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 337 338 /* 339 * usecs to sleep while draining the dbfifo 340 */ 341 static int dbfifo_drain_delay = 1000; 342 module_param(dbfifo_drain_delay, int, 0644); 343 MODULE_PARM_DESC(dbfifo_drain_delay, 344 "usecs to sleep while draining the dbfifo"); 345 346 static inline int cxgb4_set_addr_hash(struct port_info *pi) 347 { 348 struct adapter *adap = pi->adapter; 349 u64 vec = 0; 350 bool ucast = false; 351 struct hash_mac_addr *entry; 352 353 /* Calculate the hash vector for the updated list and program it */ 354 list_for_each_entry(entry, &adap->mac_hlist, list) { 355 ucast |= is_unicast_ether_addr(entry->addr); 356 vec |= (1ULL << hash_mac_addr(entry->addr)); 357 } 358 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 359 vec, false); 360 } 361 362 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 363 { 364 struct port_info *pi = netdev_priv(netdev); 365 struct adapter *adap = pi->adapter; 366 int ret; 367 u64 mhash = 0; 368 u64 uhash = 0; 369 bool free = false; 370 bool ucast = is_unicast_ether_addr(mac_addr); 371 const u8 *maclist[1] = {mac_addr}; 372 struct hash_mac_addr *new_entry; 373 374 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 375 NULL, ucast ? &uhash : &mhash, false); 376 if (ret < 0) 377 goto out; 378 /* if hash != 0, then add the addr to hash addr list 379 * so on the end we will calculate the hash for the 380 * list and program it 381 */ 382 if (uhash || mhash) { 383 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 384 if (!new_entry) 385 return -ENOMEM; 386 ether_addr_copy(new_entry->addr, mac_addr); 387 list_add_tail(&new_entry->list, &adap->mac_hlist); 388 ret = cxgb4_set_addr_hash(pi); 389 } 390 out: 391 return ret < 0 ? ret : 0; 392 } 393 394 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 395 { 396 struct port_info *pi = netdev_priv(netdev); 397 struct adapter *adap = pi->adapter; 398 int ret; 399 const u8 *maclist[1] = {mac_addr}; 400 struct hash_mac_addr *entry, *tmp; 401 402 /* If the MAC address to be removed is in the hash addr 403 * list, delete it from the list and update hash vector 404 */ 405 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 406 if (ether_addr_equal(entry->addr, mac_addr)) { 407 list_del(&entry->list); 408 kfree(entry); 409 return cxgb4_set_addr_hash(pi); 410 } 411 } 412 413 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 414 return ret < 0 ? -EINVAL : 0; 415 } 416 417 /* 418 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 419 * If @mtu is -1 it is left unchanged. 420 */ 421 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 422 { 423 struct port_info *pi = netdev_priv(dev); 424 struct adapter *adapter = pi->adapter; 425 426 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 427 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 428 429 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 430 (dev->flags & IFF_PROMISC) ? 1 : 0, 431 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 432 sleep_ok); 433 } 434 435 /** 436 * link_start - enable a port 437 * @dev: the port to enable 438 * 439 * Performs the MAC and PHY actions needed to enable a port. 440 */ 441 static int link_start(struct net_device *dev) 442 { 443 int ret; 444 struct port_info *pi = netdev_priv(dev); 445 unsigned int mb = pi->adapter->pf; 446 447 /* 448 * We do not set address filters and promiscuity here, the stack does 449 * that step explicitly. 450 */ 451 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 452 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 453 if (ret == 0) { 454 ret = t4_change_mac(pi->adapter, mb, pi->viid, 455 pi->xact_addr_filt, dev->dev_addr, true, 456 &pi->smt_idx); 457 if (ret >= 0) { 458 pi->xact_addr_filt = ret; 459 ret = 0; 460 } 461 } 462 if (ret == 0) 463 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 464 &pi->link_cfg); 465 if (ret == 0) { 466 local_bh_disable(); 467 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 468 true, CXGB4_DCB_ENABLED); 469 local_bh_enable(); 470 } 471 472 return ret; 473 } 474 475 #ifdef CONFIG_CHELSIO_T4_DCB 476 /* Handle a Data Center Bridging update message from the firmware. */ 477 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 478 { 479 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 480 struct net_device *dev = adap->port[adap->chan_map[port]]; 481 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 482 int new_dcb_enabled; 483 484 cxgb4_dcb_handle_fw_update(adap, pcmd); 485 new_dcb_enabled = cxgb4_dcb_enabled(dev); 486 487 /* If the DCB has become enabled or disabled on the port then we're 488 * going to need to set up/tear down DCB Priority parameters for the 489 * TX Queues associated with the port. 490 */ 491 if (new_dcb_enabled != old_dcb_enabled) 492 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 493 } 494 #endif /* CONFIG_CHELSIO_T4_DCB */ 495 496 /* Response queue handler for the FW event queue. 497 */ 498 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 499 const struct pkt_gl *gl) 500 { 501 u8 opcode = ((const struct rss_header *)rsp)->opcode; 502 503 rsp++; /* skip RSS header */ 504 505 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 506 */ 507 if (unlikely(opcode == CPL_FW4_MSG && 508 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 509 rsp++; 510 opcode = ((const struct rss_header *)rsp)->opcode; 511 rsp++; 512 if (opcode != CPL_SGE_EGR_UPDATE) { 513 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 514 , opcode); 515 goto out; 516 } 517 } 518 519 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 520 const struct cpl_sge_egr_update *p = (void *)rsp; 521 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 522 struct sge_txq *txq; 523 524 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 525 txq->restarts++; 526 if (txq->q_type == CXGB4_TXQ_ETH) { 527 struct sge_eth_txq *eq; 528 529 eq = container_of(txq, struct sge_eth_txq, q); 530 netif_tx_wake_queue(eq->txq); 531 } else { 532 struct sge_uld_txq *oq; 533 534 oq = container_of(txq, struct sge_uld_txq, q); 535 tasklet_schedule(&oq->qresume_tsk); 536 } 537 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 538 const struct cpl_fw6_msg *p = (void *)rsp; 539 540 #ifdef CONFIG_CHELSIO_T4_DCB 541 const struct fw_port_cmd *pcmd = (const void *)p->data; 542 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 543 unsigned int action = 544 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 545 546 if (cmd == FW_PORT_CMD && 547 (action == FW_PORT_ACTION_GET_PORT_INFO || 548 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 549 int port = FW_PORT_CMD_PORTID_G( 550 be32_to_cpu(pcmd->op_to_portid)); 551 struct net_device *dev; 552 int dcbxdis, state_input; 553 554 dev = q->adap->port[q->adap->chan_map[port]]; 555 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 556 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) 557 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) 558 & FW_PORT_CMD_DCBXDIS32_F)); 559 state_input = (dcbxdis 560 ? CXGB4_DCB_INPUT_FW_DISABLED 561 : CXGB4_DCB_INPUT_FW_ENABLED); 562 563 cxgb4_dcb_state_fsm(dev, state_input); 564 } 565 566 if (cmd == FW_PORT_CMD && 567 action == FW_PORT_ACTION_L2_DCB_CFG) 568 dcb_rpl(q->adap, pcmd); 569 else 570 #endif 571 if (p->type == 0) 572 t4_handle_fw_rpl(q->adap, p->data); 573 } else if (opcode == CPL_L2T_WRITE_RPL) { 574 const struct cpl_l2t_write_rpl *p = (void *)rsp; 575 576 do_l2t_write_rpl(q->adap, p); 577 } else if (opcode == CPL_SMT_WRITE_RPL) { 578 const struct cpl_smt_write_rpl *p = (void *)rsp; 579 580 do_smt_write_rpl(q->adap, p); 581 } else if (opcode == CPL_SET_TCB_RPL) { 582 const struct cpl_set_tcb_rpl *p = (void *)rsp; 583 584 filter_rpl(q->adap, p); 585 } else if (opcode == CPL_ACT_OPEN_RPL) { 586 const struct cpl_act_open_rpl *p = (void *)rsp; 587 588 hash_filter_rpl(q->adap, p); 589 } else if (opcode == CPL_ABORT_RPL_RSS) { 590 const struct cpl_abort_rpl_rss *p = (void *)rsp; 591 592 hash_del_filter_rpl(q->adap, p); 593 } else if (opcode == CPL_SRQ_TABLE_RPL) { 594 const struct cpl_srq_table_rpl *p = (void *)rsp; 595 596 do_srq_table_rpl(q->adap, p); 597 } else 598 dev_err(q->adap->pdev_dev, 599 "unexpected CPL %#x on FW event queue\n", opcode); 600 out: 601 return 0; 602 } 603 604 static void disable_msi(struct adapter *adapter) 605 { 606 if (adapter->flags & USING_MSIX) { 607 pci_disable_msix(adapter->pdev); 608 adapter->flags &= ~USING_MSIX; 609 } else if (adapter->flags & USING_MSI) { 610 pci_disable_msi(adapter->pdev); 611 adapter->flags &= ~USING_MSI; 612 } 613 } 614 615 /* 616 * Interrupt handler for non-data events used with MSI-X. 617 */ 618 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 619 { 620 struct adapter *adap = cookie; 621 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 622 623 if (v & PFSW_F) { 624 adap->swintr = 1; 625 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 626 } 627 if (adap->flags & MASTER_PF) 628 t4_slow_intr_handler(adap); 629 return IRQ_HANDLED; 630 } 631 632 /* 633 * Name the MSI-X interrupts. 634 */ 635 static void name_msix_vecs(struct adapter *adap) 636 { 637 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 638 639 /* non-data interrupts */ 640 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 641 642 /* FW events */ 643 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 644 adap->port[0]->name); 645 646 /* Ethernet queues */ 647 for_each_port(adap, j) { 648 struct net_device *d = adap->port[j]; 649 const struct port_info *pi = netdev_priv(d); 650 651 for (i = 0; i < pi->nqsets; i++, msi_idx++) 652 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 653 d->name, i); 654 } 655 } 656 657 static int request_msix_queue_irqs(struct adapter *adap) 658 { 659 struct sge *s = &adap->sge; 660 int err, ethqidx; 661 int msi_index = 2; 662 663 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 664 adap->msix_info[1].desc, &s->fw_evtq); 665 if (err) 666 return err; 667 668 for_each_ethrxq(s, ethqidx) { 669 err = request_irq(adap->msix_info[msi_index].vec, 670 t4_sge_intr_msix, 0, 671 adap->msix_info[msi_index].desc, 672 &s->ethrxq[ethqidx].rspq); 673 if (err) 674 goto unwind; 675 msi_index++; 676 } 677 return 0; 678 679 unwind: 680 while (--ethqidx >= 0) 681 free_irq(adap->msix_info[--msi_index].vec, 682 &s->ethrxq[ethqidx].rspq); 683 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 684 return err; 685 } 686 687 static void free_msix_queue_irqs(struct adapter *adap) 688 { 689 int i, msi_index = 2; 690 struct sge *s = &adap->sge; 691 692 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 693 for_each_ethrxq(s, i) 694 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 695 } 696 697 /** 698 * cxgb4_write_rss - write the RSS table for a given port 699 * @pi: the port 700 * @queues: array of queue indices for RSS 701 * 702 * Sets up the portion of the HW RSS table for the port's VI to distribute 703 * packets to the Rx queues in @queues. 704 * Should never be called before setting up sge eth rx queues 705 */ 706 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 707 { 708 u16 *rss; 709 int i, err; 710 struct adapter *adapter = pi->adapter; 711 const struct sge_eth_rxq *rxq; 712 713 rxq = &adapter->sge.ethrxq[pi->first_qset]; 714 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 715 if (!rss) 716 return -ENOMEM; 717 718 /* map the queue indices to queue ids */ 719 for (i = 0; i < pi->rss_size; i++, queues++) 720 rss[i] = rxq[*queues].rspq.abs_id; 721 722 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 723 pi->rss_size, rss, pi->rss_size); 724 /* If Tunnel All Lookup isn't specified in the global RSS 725 * Configuration, then we need to specify a default Ingress 726 * Queue for any ingress packets which aren't hashed. We'll 727 * use our first ingress queue ... 728 */ 729 if (!err) 730 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 731 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 732 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 733 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 734 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 735 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 736 rss[0]); 737 kfree(rss); 738 return err; 739 } 740 741 /** 742 * setup_rss - configure RSS 743 * @adap: the adapter 744 * 745 * Sets up RSS for each port. 746 */ 747 static int setup_rss(struct adapter *adap) 748 { 749 int i, j, err; 750 751 for_each_port(adap, i) { 752 const struct port_info *pi = adap2pinfo(adap, i); 753 754 /* Fill default values with equal distribution */ 755 for (j = 0; j < pi->rss_size; j++) 756 pi->rss[j] = j % pi->nqsets; 757 758 err = cxgb4_write_rss(pi, pi->rss); 759 if (err) 760 return err; 761 } 762 return 0; 763 } 764 765 /* 766 * Return the channel of the ingress queue with the given qid. 767 */ 768 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 769 { 770 qid -= p->ingr_start; 771 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 772 } 773 774 /* 775 * Wait until all NAPI handlers are descheduled. 776 */ 777 static void quiesce_rx(struct adapter *adap) 778 { 779 int i; 780 781 for (i = 0; i < adap->sge.ingr_sz; i++) { 782 struct sge_rspq *q = adap->sge.ingr_map[i]; 783 784 if (q && q->handler) 785 napi_disable(&q->napi); 786 } 787 } 788 789 /* Disable interrupt and napi handler */ 790 static void disable_interrupts(struct adapter *adap) 791 { 792 if (adap->flags & FULL_INIT_DONE) { 793 t4_intr_disable(adap); 794 if (adap->flags & USING_MSIX) { 795 free_msix_queue_irqs(adap); 796 free_irq(adap->msix_info[0].vec, adap); 797 } else { 798 free_irq(adap->pdev->irq, adap); 799 } 800 quiesce_rx(adap); 801 } 802 } 803 804 /* 805 * Enable NAPI scheduling and interrupt generation for all Rx queues. 806 */ 807 static void enable_rx(struct adapter *adap) 808 { 809 int i; 810 811 for (i = 0; i < adap->sge.ingr_sz; i++) { 812 struct sge_rspq *q = adap->sge.ingr_map[i]; 813 814 if (!q) 815 continue; 816 if (q->handler) 817 napi_enable(&q->napi); 818 819 /* 0-increment GTS to start the timer and enable interrupts */ 820 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 821 SEINTARM_V(q->intr_params) | 822 INGRESSQID_V(q->cntxt_id)); 823 } 824 } 825 826 827 static int setup_fw_sge_queues(struct adapter *adap) 828 { 829 struct sge *s = &adap->sge; 830 int err = 0; 831 832 bitmap_zero(s->starving_fl, s->egr_sz); 833 bitmap_zero(s->txq_maperr, s->egr_sz); 834 835 if (adap->flags & USING_MSIX) 836 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 837 else { 838 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 839 NULL, NULL, NULL, -1); 840 if (err) 841 return err; 842 adap->msi_idx = -((int)s->intrq.abs_id + 1); 843 } 844 845 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 846 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 847 return err; 848 } 849 850 /** 851 * setup_sge_queues - configure SGE Tx/Rx/response queues 852 * @adap: the adapter 853 * 854 * Determines how many sets of SGE queues to use and initializes them. 855 * We support multiple queue sets per port if we have MSI-X, otherwise 856 * just one queue set per port. 857 */ 858 static int setup_sge_queues(struct adapter *adap) 859 { 860 int err, i, j; 861 struct sge *s = &adap->sge; 862 struct sge_uld_rxq_info *rxq_info = NULL; 863 unsigned int cmplqid = 0; 864 865 if (is_uld(adap)) 866 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 867 868 for_each_port(adap, i) { 869 struct net_device *dev = adap->port[i]; 870 struct port_info *pi = netdev_priv(dev); 871 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 872 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 873 874 for (j = 0; j < pi->nqsets; j++, q++) { 875 if (adap->msi_idx > 0) 876 adap->msi_idx++; 877 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 878 adap->msi_idx, &q->fl, 879 t4_ethrx_handler, 880 NULL, 881 t4_get_tp_ch_map(adap, 882 pi->tx_chan)); 883 if (err) 884 goto freeout; 885 q->rspq.idx = j; 886 memset(&q->stats, 0, sizeof(q->stats)); 887 } 888 for (j = 0; j < pi->nqsets; j++, t++) { 889 err = t4_sge_alloc_eth_txq(adap, t, dev, 890 netdev_get_tx_queue(dev, j), 891 s->fw_evtq.cntxt_id); 892 if (err) 893 goto freeout; 894 } 895 } 896 897 for_each_port(adap, i) { 898 /* Note that cmplqid below is 0 if we don't 899 * have RDMA queues, and that's the right value. 900 */ 901 if (rxq_info) 902 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 903 904 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 905 s->fw_evtq.cntxt_id, cmplqid); 906 if (err) 907 goto freeout; 908 } 909 910 if (!is_t4(adap->params.chip)) { 911 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 912 netdev_get_tx_queue(adap->port[0], 0) 913 , s->fw_evtq.cntxt_id); 914 if (err) 915 goto freeout; 916 } 917 918 t4_write_reg(adap, is_t4(adap->params.chip) ? 919 MPS_TRC_RSS_CONTROL_A : 920 MPS_T5_TRC_RSS_CONTROL_A, 921 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 922 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 923 return 0; 924 freeout: 925 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 926 t4_free_sge_resources(adap); 927 return err; 928 } 929 930 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 931 struct net_device *sb_dev, 932 select_queue_fallback_t fallback) 933 { 934 int txq; 935 936 #ifdef CONFIG_CHELSIO_T4_DCB 937 /* If a Data Center Bridging has been successfully negotiated on this 938 * link then we'll use the skb's priority to map it to a TX Queue. 939 * The skb's priority is determined via the VLAN Tag Priority Code 940 * Point field. 941 */ 942 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 943 u16 vlan_tci; 944 int err; 945 946 err = vlan_get_tag(skb, &vlan_tci); 947 if (unlikely(err)) { 948 if (net_ratelimit()) 949 netdev_warn(dev, 950 "TX Packet without VLAN Tag on DCB Link\n"); 951 txq = 0; 952 } else { 953 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 954 #ifdef CONFIG_CHELSIO_T4_FCOE 955 if (skb->protocol == htons(ETH_P_FCOE)) 956 txq = skb->priority & 0x7; 957 #endif /* CONFIG_CHELSIO_T4_FCOE */ 958 } 959 return txq; 960 } 961 #endif /* CONFIG_CHELSIO_T4_DCB */ 962 963 if (select_queue) { 964 txq = (skb_rx_queue_recorded(skb) 965 ? skb_get_rx_queue(skb) 966 : smp_processor_id()); 967 968 while (unlikely(txq >= dev->real_num_tx_queues)) 969 txq -= dev->real_num_tx_queues; 970 971 return txq; 972 } 973 974 return fallback(dev, skb, NULL) % dev->real_num_tx_queues; 975 } 976 977 static int closest_timer(const struct sge *s, int time) 978 { 979 int i, delta, match = 0, min_delta = INT_MAX; 980 981 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 982 delta = time - s->timer_val[i]; 983 if (delta < 0) 984 delta = -delta; 985 if (delta < min_delta) { 986 min_delta = delta; 987 match = i; 988 } 989 } 990 return match; 991 } 992 993 static int closest_thres(const struct sge *s, int thres) 994 { 995 int i, delta, match = 0, min_delta = INT_MAX; 996 997 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 998 delta = thres - s->counter_val[i]; 999 if (delta < 0) 1000 delta = -delta; 1001 if (delta < min_delta) { 1002 min_delta = delta; 1003 match = i; 1004 } 1005 } 1006 return match; 1007 } 1008 1009 /** 1010 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1011 * @q: the Rx queue 1012 * @us: the hold-off time in us, or 0 to disable timer 1013 * @cnt: the hold-off packet count, or 0 to disable counter 1014 * 1015 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1016 * one of the two needs to be enabled for the queue to generate interrupts. 1017 */ 1018 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1019 unsigned int us, unsigned int cnt) 1020 { 1021 struct adapter *adap = q->adap; 1022 1023 if ((us | cnt) == 0) 1024 cnt = 1; 1025 1026 if (cnt) { 1027 int err; 1028 u32 v, new_idx; 1029 1030 new_idx = closest_thres(&adap->sge, cnt); 1031 if (q->desc && q->pktcnt_idx != new_idx) { 1032 /* the queue has already been created, update it */ 1033 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1034 FW_PARAMS_PARAM_X_V( 1035 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1036 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1037 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1038 &v, &new_idx); 1039 if (err) 1040 return err; 1041 } 1042 q->pktcnt_idx = new_idx; 1043 } 1044 1045 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1046 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1047 return 0; 1048 } 1049 1050 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1051 { 1052 const struct port_info *pi = netdev_priv(dev); 1053 netdev_features_t changed = dev->features ^ features; 1054 int err; 1055 1056 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1057 return 0; 1058 1059 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1060 -1, -1, -1, 1061 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1062 if (unlikely(err)) 1063 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1064 return err; 1065 } 1066 1067 static int setup_debugfs(struct adapter *adap) 1068 { 1069 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1070 return -1; 1071 1072 #ifdef CONFIG_DEBUG_FS 1073 t4_setup_debugfs(adap); 1074 #endif 1075 return 0; 1076 } 1077 1078 /* 1079 * upper-layer driver support 1080 */ 1081 1082 /* 1083 * Allocate an active-open TID and set it to the supplied value. 1084 */ 1085 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1086 { 1087 int atid = -1; 1088 1089 spin_lock_bh(&t->atid_lock); 1090 if (t->afree) { 1091 union aopen_entry *p = t->afree; 1092 1093 atid = (p - t->atid_tab) + t->atid_base; 1094 t->afree = p->next; 1095 p->data = data; 1096 t->atids_in_use++; 1097 } 1098 spin_unlock_bh(&t->atid_lock); 1099 return atid; 1100 } 1101 EXPORT_SYMBOL(cxgb4_alloc_atid); 1102 1103 /* 1104 * Release an active-open TID. 1105 */ 1106 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1107 { 1108 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1109 1110 spin_lock_bh(&t->atid_lock); 1111 p->next = t->afree; 1112 t->afree = p; 1113 t->atids_in_use--; 1114 spin_unlock_bh(&t->atid_lock); 1115 } 1116 EXPORT_SYMBOL(cxgb4_free_atid); 1117 1118 /* 1119 * Allocate a server TID and set it to the supplied value. 1120 */ 1121 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1122 { 1123 int stid; 1124 1125 spin_lock_bh(&t->stid_lock); 1126 if (family == PF_INET) { 1127 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1128 if (stid < t->nstids) 1129 __set_bit(stid, t->stid_bmap); 1130 else 1131 stid = -1; 1132 } else { 1133 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1134 if (stid < 0) 1135 stid = -1; 1136 } 1137 if (stid >= 0) { 1138 t->stid_tab[stid].data = data; 1139 stid += t->stid_base; 1140 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1141 * This is equivalent to 4 TIDs. With CLIP enabled it 1142 * needs 2 TIDs. 1143 */ 1144 if (family == PF_INET6) { 1145 t->stids_in_use += 2; 1146 t->v6_stids_in_use += 2; 1147 } else { 1148 t->stids_in_use++; 1149 } 1150 } 1151 spin_unlock_bh(&t->stid_lock); 1152 return stid; 1153 } 1154 EXPORT_SYMBOL(cxgb4_alloc_stid); 1155 1156 /* Allocate a server filter TID and set it to the supplied value. 1157 */ 1158 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1159 { 1160 int stid; 1161 1162 spin_lock_bh(&t->stid_lock); 1163 if (family == PF_INET) { 1164 stid = find_next_zero_bit(t->stid_bmap, 1165 t->nstids + t->nsftids, t->nstids); 1166 if (stid < (t->nstids + t->nsftids)) 1167 __set_bit(stid, t->stid_bmap); 1168 else 1169 stid = -1; 1170 } else { 1171 stid = -1; 1172 } 1173 if (stid >= 0) { 1174 t->stid_tab[stid].data = data; 1175 stid -= t->nstids; 1176 stid += t->sftid_base; 1177 t->sftids_in_use++; 1178 } 1179 spin_unlock_bh(&t->stid_lock); 1180 return stid; 1181 } 1182 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1183 1184 /* Release a server TID. 1185 */ 1186 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1187 { 1188 /* Is it a server filter TID? */ 1189 if (t->nsftids && (stid >= t->sftid_base)) { 1190 stid -= t->sftid_base; 1191 stid += t->nstids; 1192 } else { 1193 stid -= t->stid_base; 1194 } 1195 1196 spin_lock_bh(&t->stid_lock); 1197 if (family == PF_INET) 1198 __clear_bit(stid, t->stid_bmap); 1199 else 1200 bitmap_release_region(t->stid_bmap, stid, 1); 1201 t->stid_tab[stid].data = NULL; 1202 if (stid < t->nstids) { 1203 if (family == PF_INET6) { 1204 t->stids_in_use -= 2; 1205 t->v6_stids_in_use -= 2; 1206 } else { 1207 t->stids_in_use--; 1208 } 1209 } else { 1210 t->sftids_in_use--; 1211 } 1212 1213 spin_unlock_bh(&t->stid_lock); 1214 } 1215 EXPORT_SYMBOL(cxgb4_free_stid); 1216 1217 /* 1218 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1219 */ 1220 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1221 unsigned int tid) 1222 { 1223 struct cpl_tid_release *req; 1224 1225 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1226 req = __skb_put(skb, sizeof(*req)); 1227 INIT_TP_WR(req, tid); 1228 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1229 } 1230 1231 /* 1232 * Queue a TID release request and if necessary schedule a work queue to 1233 * process it. 1234 */ 1235 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1236 unsigned int tid) 1237 { 1238 void **p = &t->tid_tab[tid]; 1239 struct adapter *adap = container_of(t, struct adapter, tids); 1240 1241 spin_lock_bh(&adap->tid_release_lock); 1242 *p = adap->tid_release_head; 1243 /* Low 2 bits encode the Tx channel number */ 1244 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1245 if (!adap->tid_release_task_busy) { 1246 adap->tid_release_task_busy = true; 1247 queue_work(adap->workq, &adap->tid_release_task); 1248 } 1249 spin_unlock_bh(&adap->tid_release_lock); 1250 } 1251 1252 /* 1253 * Process the list of pending TID release requests. 1254 */ 1255 static void process_tid_release_list(struct work_struct *work) 1256 { 1257 struct sk_buff *skb; 1258 struct adapter *adap; 1259 1260 adap = container_of(work, struct adapter, tid_release_task); 1261 1262 spin_lock_bh(&adap->tid_release_lock); 1263 while (adap->tid_release_head) { 1264 void **p = adap->tid_release_head; 1265 unsigned int chan = (uintptr_t)p & 3; 1266 p = (void *)p - chan; 1267 1268 adap->tid_release_head = *p; 1269 *p = NULL; 1270 spin_unlock_bh(&adap->tid_release_lock); 1271 1272 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1273 GFP_KERNEL))) 1274 schedule_timeout_uninterruptible(1); 1275 1276 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1277 t4_ofld_send(adap, skb); 1278 spin_lock_bh(&adap->tid_release_lock); 1279 } 1280 adap->tid_release_task_busy = false; 1281 spin_unlock_bh(&adap->tid_release_lock); 1282 } 1283 1284 /* 1285 * Release a TID and inform HW. If we are unable to allocate the release 1286 * message we defer to a work queue. 1287 */ 1288 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1289 unsigned short family) 1290 { 1291 struct sk_buff *skb; 1292 struct adapter *adap = container_of(t, struct adapter, tids); 1293 1294 WARN_ON(tid >= t->ntids); 1295 1296 if (t->tid_tab[tid]) { 1297 t->tid_tab[tid] = NULL; 1298 atomic_dec(&t->conns_in_use); 1299 if (t->hash_base && (tid >= t->hash_base)) { 1300 if (family == AF_INET6) 1301 atomic_sub(2, &t->hash_tids_in_use); 1302 else 1303 atomic_dec(&t->hash_tids_in_use); 1304 } else { 1305 if (family == AF_INET6) 1306 atomic_sub(2, &t->tids_in_use); 1307 else 1308 atomic_dec(&t->tids_in_use); 1309 } 1310 } 1311 1312 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1313 if (likely(skb)) { 1314 mk_tid_release(skb, chan, tid); 1315 t4_ofld_send(adap, skb); 1316 } else 1317 cxgb4_queue_tid_release(t, chan, tid); 1318 } 1319 EXPORT_SYMBOL(cxgb4_remove_tid); 1320 1321 /* 1322 * Allocate and initialize the TID tables. Returns 0 on success. 1323 */ 1324 static int tid_init(struct tid_info *t) 1325 { 1326 struct adapter *adap = container_of(t, struct adapter, tids); 1327 unsigned int max_ftids = t->nftids + t->nsftids; 1328 unsigned int natids = t->natids; 1329 unsigned int stid_bmap_size; 1330 unsigned int ftid_bmap_size; 1331 size_t size; 1332 1333 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1334 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1335 size = t->ntids * sizeof(*t->tid_tab) + 1336 natids * sizeof(*t->atid_tab) + 1337 t->nstids * sizeof(*t->stid_tab) + 1338 t->nsftids * sizeof(*t->stid_tab) + 1339 stid_bmap_size * sizeof(long) + 1340 max_ftids * sizeof(*t->ftid_tab) + 1341 ftid_bmap_size * sizeof(long); 1342 1343 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1344 if (!t->tid_tab) 1345 return -ENOMEM; 1346 1347 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1348 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1349 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1350 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1351 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1352 spin_lock_init(&t->stid_lock); 1353 spin_lock_init(&t->atid_lock); 1354 spin_lock_init(&t->ftid_lock); 1355 1356 t->stids_in_use = 0; 1357 t->v6_stids_in_use = 0; 1358 t->sftids_in_use = 0; 1359 t->afree = NULL; 1360 t->atids_in_use = 0; 1361 atomic_set(&t->tids_in_use, 0); 1362 atomic_set(&t->conns_in_use, 0); 1363 atomic_set(&t->hash_tids_in_use, 0); 1364 1365 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1366 if (natids) { 1367 while (--natids) 1368 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1369 t->afree = t->atid_tab; 1370 } 1371 1372 if (is_offload(adap)) { 1373 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1374 /* Reserve stid 0 for T4/T5 adapters */ 1375 if (!t->stid_base && 1376 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1377 __set_bit(0, t->stid_bmap); 1378 } 1379 1380 bitmap_zero(t->ftid_bmap, t->nftids); 1381 return 0; 1382 } 1383 1384 /** 1385 * cxgb4_create_server - create an IP server 1386 * @dev: the device 1387 * @stid: the server TID 1388 * @sip: local IP address to bind server to 1389 * @sport: the server's TCP port 1390 * @queue: queue to direct messages from this server to 1391 * 1392 * Create an IP server for the given port and address. 1393 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1394 */ 1395 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1396 __be32 sip, __be16 sport, __be16 vlan, 1397 unsigned int queue) 1398 { 1399 unsigned int chan; 1400 struct sk_buff *skb; 1401 struct adapter *adap; 1402 struct cpl_pass_open_req *req; 1403 int ret; 1404 1405 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1406 if (!skb) 1407 return -ENOMEM; 1408 1409 adap = netdev2adap(dev); 1410 req = __skb_put(skb, sizeof(*req)); 1411 INIT_TP_WR(req, 0); 1412 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1413 req->local_port = sport; 1414 req->peer_port = htons(0); 1415 req->local_ip = sip; 1416 req->peer_ip = htonl(0); 1417 chan = rxq_to_chan(&adap->sge, queue); 1418 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1419 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1420 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1421 ret = t4_mgmt_tx(adap, skb); 1422 return net_xmit_eval(ret); 1423 } 1424 EXPORT_SYMBOL(cxgb4_create_server); 1425 1426 /* cxgb4_create_server6 - create an IPv6 server 1427 * @dev: the device 1428 * @stid: the server TID 1429 * @sip: local IPv6 address to bind server to 1430 * @sport: the server's TCP port 1431 * @queue: queue to direct messages from this server to 1432 * 1433 * Create an IPv6 server for the given port and address. 1434 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1435 */ 1436 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1437 const struct in6_addr *sip, __be16 sport, 1438 unsigned int queue) 1439 { 1440 unsigned int chan; 1441 struct sk_buff *skb; 1442 struct adapter *adap; 1443 struct cpl_pass_open_req6 *req; 1444 int ret; 1445 1446 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1447 if (!skb) 1448 return -ENOMEM; 1449 1450 adap = netdev2adap(dev); 1451 req = __skb_put(skb, sizeof(*req)); 1452 INIT_TP_WR(req, 0); 1453 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1454 req->local_port = sport; 1455 req->peer_port = htons(0); 1456 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1457 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1458 req->peer_ip_hi = cpu_to_be64(0); 1459 req->peer_ip_lo = cpu_to_be64(0); 1460 chan = rxq_to_chan(&adap->sge, queue); 1461 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1462 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1463 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1464 ret = t4_mgmt_tx(adap, skb); 1465 return net_xmit_eval(ret); 1466 } 1467 EXPORT_SYMBOL(cxgb4_create_server6); 1468 1469 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1470 unsigned int queue, bool ipv6) 1471 { 1472 struct sk_buff *skb; 1473 struct adapter *adap; 1474 struct cpl_close_listsvr_req *req; 1475 int ret; 1476 1477 adap = netdev2adap(dev); 1478 1479 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1480 if (!skb) 1481 return -ENOMEM; 1482 1483 req = __skb_put(skb, sizeof(*req)); 1484 INIT_TP_WR(req, 0); 1485 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1486 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1487 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1488 ret = t4_mgmt_tx(adap, skb); 1489 return net_xmit_eval(ret); 1490 } 1491 EXPORT_SYMBOL(cxgb4_remove_server); 1492 1493 /** 1494 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1495 * @mtus: the HW MTU table 1496 * @mtu: the target MTU 1497 * @idx: index of selected entry in the MTU table 1498 * 1499 * Returns the index and the value in the HW MTU table that is closest to 1500 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1501 * table, in which case that smallest available value is selected. 1502 */ 1503 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1504 unsigned int *idx) 1505 { 1506 unsigned int i = 0; 1507 1508 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1509 ++i; 1510 if (idx) 1511 *idx = i; 1512 return mtus[i]; 1513 } 1514 EXPORT_SYMBOL(cxgb4_best_mtu); 1515 1516 /** 1517 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1518 * @mtus: the HW MTU table 1519 * @header_size: Header Size 1520 * @data_size_max: maximum Data Segment Size 1521 * @data_size_align: desired Data Segment Size Alignment (2^N) 1522 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1523 * 1524 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1525 * MTU Table based solely on a Maximum MTU parameter, we break that 1526 * parameter up into a Header Size and Maximum Data Segment Size, and 1527 * provide a desired Data Segment Size Alignment. If we find an MTU in 1528 * the Hardware MTU Table which will result in a Data Segment Size with 1529 * the requested alignment _and_ that MTU isn't "too far" from the 1530 * closest MTU, then we'll return that rather than the closest MTU. 1531 */ 1532 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1533 unsigned short header_size, 1534 unsigned short data_size_max, 1535 unsigned short data_size_align, 1536 unsigned int *mtu_idxp) 1537 { 1538 unsigned short max_mtu = header_size + data_size_max; 1539 unsigned short data_size_align_mask = data_size_align - 1; 1540 int mtu_idx, aligned_mtu_idx; 1541 1542 /* Scan the MTU Table till we find an MTU which is larger than our 1543 * Maximum MTU or we reach the end of the table. Along the way, 1544 * record the last MTU found, if any, which will result in a Data 1545 * Segment Length matching the requested alignment. 1546 */ 1547 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1548 unsigned short data_size = mtus[mtu_idx] - header_size; 1549 1550 /* If this MTU minus the Header Size would result in a 1551 * Data Segment Size of the desired alignment, remember it. 1552 */ 1553 if ((data_size & data_size_align_mask) == 0) 1554 aligned_mtu_idx = mtu_idx; 1555 1556 /* If we're not at the end of the Hardware MTU Table and the 1557 * next element is larger than our Maximum MTU, drop out of 1558 * the loop. 1559 */ 1560 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1561 break; 1562 } 1563 1564 /* If we fell out of the loop because we ran to the end of the table, 1565 * then we just have to use the last [largest] entry. 1566 */ 1567 if (mtu_idx == NMTUS) 1568 mtu_idx--; 1569 1570 /* If we found an MTU which resulted in the requested Data Segment 1571 * Length alignment and that's "not far" from the largest MTU which is 1572 * less than or equal to the maximum MTU, then use that. 1573 */ 1574 if (aligned_mtu_idx >= 0 && 1575 mtu_idx - aligned_mtu_idx <= 1) 1576 mtu_idx = aligned_mtu_idx; 1577 1578 /* If the caller has passed in an MTU Index pointer, pass the 1579 * MTU Index back. Return the MTU value. 1580 */ 1581 if (mtu_idxp) 1582 *mtu_idxp = mtu_idx; 1583 return mtus[mtu_idx]; 1584 } 1585 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1586 1587 /** 1588 * cxgb4_port_chan - get the HW channel of a port 1589 * @dev: the net device for the port 1590 * 1591 * Return the HW Tx channel of the given port. 1592 */ 1593 unsigned int cxgb4_port_chan(const struct net_device *dev) 1594 { 1595 return netdev2pinfo(dev)->tx_chan; 1596 } 1597 EXPORT_SYMBOL(cxgb4_port_chan); 1598 1599 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1600 { 1601 struct adapter *adap = netdev2adap(dev); 1602 u32 v1, v2, lp_count, hp_count; 1603 1604 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1605 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1606 if (is_t4(adap->params.chip)) { 1607 lp_count = LP_COUNT_G(v1); 1608 hp_count = HP_COUNT_G(v1); 1609 } else { 1610 lp_count = LP_COUNT_T5_G(v1); 1611 hp_count = HP_COUNT_T5_G(v2); 1612 } 1613 return lpfifo ? lp_count : hp_count; 1614 } 1615 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1616 1617 /** 1618 * cxgb4_port_viid - get the VI id of a port 1619 * @dev: the net device for the port 1620 * 1621 * Return the VI id of the given port. 1622 */ 1623 unsigned int cxgb4_port_viid(const struct net_device *dev) 1624 { 1625 return netdev2pinfo(dev)->viid; 1626 } 1627 EXPORT_SYMBOL(cxgb4_port_viid); 1628 1629 /** 1630 * cxgb4_port_idx - get the index of a port 1631 * @dev: the net device for the port 1632 * 1633 * Return the index of the given port. 1634 */ 1635 unsigned int cxgb4_port_idx(const struct net_device *dev) 1636 { 1637 return netdev2pinfo(dev)->port_id; 1638 } 1639 EXPORT_SYMBOL(cxgb4_port_idx); 1640 1641 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1642 struct tp_tcp_stats *v6) 1643 { 1644 struct adapter *adap = pci_get_drvdata(pdev); 1645 1646 spin_lock(&adap->stats_lock); 1647 t4_tp_get_tcp_stats(adap, v4, v6, false); 1648 spin_unlock(&adap->stats_lock); 1649 } 1650 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1651 1652 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1653 const unsigned int *pgsz_order) 1654 { 1655 struct adapter *adap = netdev2adap(dev); 1656 1657 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1658 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1659 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1660 HPZ3_V(pgsz_order[3])); 1661 } 1662 EXPORT_SYMBOL(cxgb4_iscsi_init); 1663 1664 int cxgb4_flush_eq_cache(struct net_device *dev) 1665 { 1666 struct adapter *adap = netdev2adap(dev); 1667 1668 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 1669 } 1670 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1671 1672 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1673 { 1674 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1675 __be64 indices; 1676 int ret; 1677 1678 spin_lock(&adap->win0_lock); 1679 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1680 sizeof(indices), (__be32 *)&indices, 1681 T4_MEMORY_READ); 1682 spin_unlock(&adap->win0_lock); 1683 if (!ret) { 1684 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1685 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1686 } 1687 return ret; 1688 } 1689 1690 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1691 u16 size) 1692 { 1693 struct adapter *adap = netdev2adap(dev); 1694 u16 hw_pidx, hw_cidx; 1695 int ret; 1696 1697 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1698 if (ret) 1699 goto out; 1700 1701 if (pidx != hw_pidx) { 1702 u16 delta; 1703 u32 val; 1704 1705 if (pidx >= hw_pidx) 1706 delta = pidx - hw_pidx; 1707 else 1708 delta = size - hw_pidx + pidx; 1709 1710 if (is_t4(adap->params.chip)) 1711 val = PIDX_V(delta); 1712 else 1713 val = PIDX_T5_V(delta); 1714 wmb(); 1715 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1716 QID_V(qid) | val); 1717 } 1718 out: 1719 return ret; 1720 } 1721 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1722 1723 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1724 { 1725 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1726 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1727 u32 offset, memtype, memaddr; 1728 struct adapter *adap; 1729 u32 hma_size = 0; 1730 int ret; 1731 1732 adap = netdev2adap(dev); 1733 1734 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1735 1736 /* Figure out where the offset lands in the Memory Type/Address scheme. 1737 * This code assumes that the memory is laid out starting at offset 0 1738 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1739 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1740 * MC0, and some have both MC0 and MC1. 1741 */ 1742 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1743 edc0_size = EDRAM0_SIZE_G(size) << 20; 1744 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1745 edc1_size = EDRAM1_SIZE_G(size) << 20; 1746 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1747 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1748 1749 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 1750 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1751 hma_size = EXT_MEM1_SIZE_G(size) << 20; 1752 } 1753 edc0_end = edc0_size; 1754 edc1_end = edc0_end + edc1_size; 1755 mc0_end = edc1_end + mc0_size; 1756 1757 if (offset < edc0_end) { 1758 memtype = MEM_EDC0; 1759 memaddr = offset; 1760 } else if (offset < edc1_end) { 1761 memtype = MEM_EDC1; 1762 memaddr = offset - edc0_end; 1763 } else { 1764 if (hma_size && (offset < (edc1_end + hma_size))) { 1765 memtype = MEM_HMA; 1766 memaddr = offset - edc1_end; 1767 } else if (offset < mc0_end) { 1768 memtype = MEM_MC0; 1769 memaddr = offset - edc1_end; 1770 } else if (is_t5(adap->params.chip)) { 1771 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1772 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1773 mc1_end = mc0_end + mc1_size; 1774 if (offset < mc1_end) { 1775 memtype = MEM_MC1; 1776 memaddr = offset - mc0_end; 1777 } else { 1778 /* offset beyond the end of any memory */ 1779 goto err; 1780 } 1781 } else { 1782 /* T4/T6 only has a single memory channel */ 1783 goto err; 1784 } 1785 } 1786 1787 spin_lock(&adap->win0_lock); 1788 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1789 spin_unlock(&adap->win0_lock); 1790 return ret; 1791 1792 err: 1793 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1794 stag, offset); 1795 return -EINVAL; 1796 } 1797 EXPORT_SYMBOL(cxgb4_read_tpte); 1798 1799 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1800 { 1801 u32 hi, lo; 1802 struct adapter *adap; 1803 1804 adap = netdev2adap(dev); 1805 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1806 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1807 1808 return ((u64)hi << 32) | (u64)lo; 1809 } 1810 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1811 1812 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1813 unsigned int qid, 1814 enum cxgb4_bar2_qtype qtype, 1815 int user, 1816 u64 *pbar2_qoffset, 1817 unsigned int *pbar2_qid) 1818 { 1819 return t4_bar2_sge_qregs(netdev2adap(dev), 1820 qid, 1821 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1822 ? T4_BAR2_QTYPE_EGRESS 1823 : T4_BAR2_QTYPE_INGRESS), 1824 user, 1825 pbar2_qoffset, 1826 pbar2_qid); 1827 } 1828 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1829 1830 static struct pci_driver cxgb4_driver; 1831 1832 static void check_neigh_update(struct neighbour *neigh) 1833 { 1834 const struct device *parent; 1835 const struct net_device *netdev = neigh->dev; 1836 1837 if (is_vlan_dev(netdev)) 1838 netdev = vlan_dev_real_dev(netdev); 1839 parent = netdev->dev.parent; 1840 if (parent && parent->driver == &cxgb4_driver.driver) 1841 t4_l2t_update(dev_get_drvdata(parent), neigh); 1842 } 1843 1844 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1845 void *data) 1846 { 1847 switch (event) { 1848 case NETEVENT_NEIGH_UPDATE: 1849 check_neigh_update(data); 1850 break; 1851 case NETEVENT_REDIRECT: 1852 default: 1853 break; 1854 } 1855 return 0; 1856 } 1857 1858 static bool netevent_registered; 1859 static struct notifier_block cxgb4_netevent_nb = { 1860 .notifier_call = netevent_cb 1861 }; 1862 1863 static void drain_db_fifo(struct adapter *adap, int usecs) 1864 { 1865 u32 v1, v2, lp_count, hp_count; 1866 1867 do { 1868 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1869 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1870 if (is_t4(adap->params.chip)) { 1871 lp_count = LP_COUNT_G(v1); 1872 hp_count = HP_COUNT_G(v1); 1873 } else { 1874 lp_count = LP_COUNT_T5_G(v1); 1875 hp_count = HP_COUNT_T5_G(v2); 1876 } 1877 1878 if (lp_count == 0 && hp_count == 0) 1879 break; 1880 set_current_state(TASK_UNINTERRUPTIBLE); 1881 schedule_timeout(usecs_to_jiffies(usecs)); 1882 } while (1); 1883 } 1884 1885 static void disable_txq_db(struct sge_txq *q) 1886 { 1887 unsigned long flags; 1888 1889 spin_lock_irqsave(&q->db_lock, flags); 1890 q->db_disabled = 1; 1891 spin_unlock_irqrestore(&q->db_lock, flags); 1892 } 1893 1894 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1895 { 1896 spin_lock_irq(&q->db_lock); 1897 if (q->db_pidx_inc) { 1898 /* Make sure that all writes to the TX descriptors 1899 * are committed before we tell HW about them. 1900 */ 1901 wmb(); 1902 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1903 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1904 q->db_pidx_inc = 0; 1905 } 1906 q->db_disabled = 0; 1907 spin_unlock_irq(&q->db_lock); 1908 } 1909 1910 static void disable_dbs(struct adapter *adap) 1911 { 1912 int i; 1913 1914 for_each_ethrxq(&adap->sge, i) 1915 disable_txq_db(&adap->sge.ethtxq[i].q); 1916 if (is_offload(adap)) { 1917 struct sge_uld_txq_info *txq_info = 1918 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1919 1920 if (txq_info) { 1921 for_each_ofldtxq(&adap->sge, i) { 1922 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1923 1924 disable_txq_db(&txq->q); 1925 } 1926 } 1927 } 1928 for_each_port(adap, i) 1929 disable_txq_db(&adap->sge.ctrlq[i].q); 1930 } 1931 1932 static void enable_dbs(struct adapter *adap) 1933 { 1934 int i; 1935 1936 for_each_ethrxq(&adap->sge, i) 1937 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1938 if (is_offload(adap)) { 1939 struct sge_uld_txq_info *txq_info = 1940 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1941 1942 if (txq_info) { 1943 for_each_ofldtxq(&adap->sge, i) { 1944 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1945 1946 enable_txq_db(adap, &txq->q); 1947 } 1948 } 1949 } 1950 for_each_port(adap, i) 1951 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 1952 } 1953 1954 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 1955 { 1956 enum cxgb4_uld type = CXGB4_ULD_RDMA; 1957 1958 if (adap->uld && adap->uld[type].handle) 1959 adap->uld[type].control(adap->uld[type].handle, cmd); 1960 } 1961 1962 static void process_db_full(struct work_struct *work) 1963 { 1964 struct adapter *adap; 1965 1966 adap = container_of(work, struct adapter, db_full_task); 1967 1968 drain_db_fifo(adap, dbfifo_drain_delay); 1969 enable_dbs(adap); 1970 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 1971 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1972 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1973 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 1974 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 1975 else 1976 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1977 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 1978 } 1979 1980 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 1981 { 1982 u16 hw_pidx, hw_cidx; 1983 int ret; 1984 1985 spin_lock_irq(&q->db_lock); 1986 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 1987 if (ret) 1988 goto out; 1989 if (q->db_pidx != hw_pidx) { 1990 u16 delta; 1991 u32 val; 1992 1993 if (q->db_pidx >= hw_pidx) 1994 delta = q->db_pidx - hw_pidx; 1995 else 1996 delta = q->size - hw_pidx + q->db_pidx; 1997 1998 if (is_t4(adap->params.chip)) 1999 val = PIDX_V(delta); 2000 else 2001 val = PIDX_T5_V(delta); 2002 wmb(); 2003 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2004 QID_V(q->cntxt_id) | val); 2005 } 2006 out: 2007 q->db_disabled = 0; 2008 q->db_pidx_inc = 0; 2009 spin_unlock_irq(&q->db_lock); 2010 if (ret) 2011 CH_WARN(adap, "DB drop recovery failed.\n"); 2012 } 2013 2014 static void recover_all_queues(struct adapter *adap) 2015 { 2016 int i; 2017 2018 for_each_ethrxq(&adap->sge, i) 2019 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2020 if (is_offload(adap)) { 2021 struct sge_uld_txq_info *txq_info = 2022 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2023 if (txq_info) { 2024 for_each_ofldtxq(&adap->sge, i) { 2025 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2026 2027 sync_txq_pidx(adap, &txq->q); 2028 } 2029 } 2030 } 2031 for_each_port(adap, i) 2032 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2033 } 2034 2035 static void process_db_drop(struct work_struct *work) 2036 { 2037 struct adapter *adap; 2038 2039 adap = container_of(work, struct adapter, db_drop_task); 2040 2041 if (is_t4(adap->params.chip)) { 2042 drain_db_fifo(adap, dbfifo_drain_delay); 2043 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2044 drain_db_fifo(adap, dbfifo_drain_delay); 2045 recover_all_queues(adap); 2046 drain_db_fifo(adap, dbfifo_drain_delay); 2047 enable_dbs(adap); 2048 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2049 } else if (is_t5(adap->params.chip)) { 2050 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2051 u16 qid = (dropped_db >> 15) & 0x1ffff; 2052 u16 pidx_inc = dropped_db & 0x1fff; 2053 u64 bar2_qoffset; 2054 unsigned int bar2_qid; 2055 int ret; 2056 2057 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2058 0, &bar2_qoffset, &bar2_qid); 2059 if (ret) 2060 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2061 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2062 else 2063 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2064 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2065 2066 /* Re-enable BAR2 WC */ 2067 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2068 } 2069 2070 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2071 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2072 } 2073 2074 void t4_db_full(struct adapter *adap) 2075 { 2076 if (is_t4(adap->params.chip)) { 2077 disable_dbs(adap); 2078 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2079 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2080 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2081 queue_work(adap->workq, &adap->db_full_task); 2082 } 2083 } 2084 2085 void t4_db_dropped(struct adapter *adap) 2086 { 2087 if (is_t4(adap->params.chip)) { 2088 disable_dbs(adap); 2089 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2090 } 2091 queue_work(adap->workq, &adap->db_drop_task); 2092 } 2093 2094 void t4_register_netevent_notifier(void) 2095 { 2096 if (!netevent_registered) { 2097 register_netevent_notifier(&cxgb4_netevent_nb); 2098 netevent_registered = true; 2099 } 2100 } 2101 2102 static void detach_ulds(struct adapter *adap) 2103 { 2104 unsigned int i; 2105 2106 mutex_lock(&uld_mutex); 2107 list_del(&adap->list_node); 2108 2109 for (i = 0; i < CXGB4_ULD_MAX; i++) 2110 if (adap->uld && adap->uld[i].handle) 2111 adap->uld[i].state_change(adap->uld[i].handle, 2112 CXGB4_STATE_DETACH); 2113 2114 if (netevent_registered && list_empty(&adapter_list)) { 2115 unregister_netevent_notifier(&cxgb4_netevent_nb); 2116 netevent_registered = false; 2117 } 2118 mutex_unlock(&uld_mutex); 2119 } 2120 2121 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2122 { 2123 unsigned int i; 2124 2125 mutex_lock(&uld_mutex); 2126 for (i = 0; i < CXGB4_ULD_MAX; i++) 2127 if (adap->uld && adap->uld[i].handle) 2128 adap->uld[i].state_change(adap->uld[i].handle, 2129 new_state); 2130 mutex_unlock(&uld_mutex); 2131 } 2132 2133 #if IS_ENABLED(CONFIG_IPV6) 2134 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2135 unsigned long event, void *data) 2136 { 2137 struct inet6_ifaddr *ifa = data; 2138 struct net_device *event_dev = ifa->idev->dev; 2139 const struct device *parent = NULL; 2140 #if IS_ENABLED(CONFIG_BONDING) 2141 struct adapter *adap; 2142 #endif 2143 if (is_vlan_dev(event_dev)) 2144 event_dev = vlan_dev_real_dev(event_dev); 2145 #if IS_ENABLED(CONFIG_BONDING) 2146 if (event_dev->flags & IFF_MASTER) { 2147 list_for_each_entry(adap, &adapter_list, list_node) { 2148 switch (event) { 2149 case NETDEV_UP: 2150 cxgb4_clip_get(adap->port[0], 2151 (const u32 *)ifa, 1); 2152 break; 2153 case NETDEV_DOWN: 2154 cxgb4_clip_release(adap->port[0], 2155 (const u32 *)ifa, 1); 2156 break; 2157 default: 2158 break; 2159 } 2160 } 2161 return NOTIFY_OK; 2162 } 2163 #endif 2164 2165 if (event_dev) 2166 parent = event_dev->dev.parent; 2167 2168 if (parent && parent->driver == &cxgb4_driver.driver) { 2169 switch (event) { 2170 case NETDEV_UP: 2171 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2172 break; 2173 case NETDEV_DOWN: 2174 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2175 break; 2176 default: 2177 break; 2178 } 2179 } 2180 return NOTIFY_OK; 2181 } 2182 2183 static bool inet6addr_registered; 2184 static struct notifier_block cxgb4_inet6addr_notifier = { 2185 .notifier_call = cxgb4_inet6addr_handler 2186 }; 2187 2188 static void update_clip(const struct adapter *adap) 2189 { 2190 int i; 2191 struct net_device *dev; 2192 int ret; 2193 2194 rcu_read_lock(); 2195 2196 for (i = 0; i < MAX_NPORTS; i++) { 2197 dev = adap->port[i]; 2198 ret = 0; 2199 2200 if (dev) 2201 ret = cxgb4_update_root_dev_clip(dev); 2202 2203 if (ret < 0) 2204 break; 2205 } 2206 rcu_read_unlock(); 2207 } 2208 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2209 2210 /** 2211 * cxgb_up - enable the adapter 2212 * @adap: adapter being enabled 2213 * 2214 * Called when the first port is enabled, this function performs the 2215 * actions necessary to make an adapter operational, such as completing 2216 * the initialization of HW modules, and enabling interrupts. 2217 * 2218 * Must be called with the rtnl lock held. 2219 */ 2220 static int cxgb_up(struct adapter *adap) 2221 { 2222 int err; 2223 2224 mutex_lock(&uld_mutex); 2225 err = setup_sge_queues(adap); 2226 if (err) 2227 goto rel_lock; 2228 err = setup_rss(adap); 2229 if (err) 2230 goto freeq; 2231 2232 if (adap->flags & USING_MSIX) { 2233 name_msix_vecs(adap); 2234 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2235 adap->msix_info[0].desc, adap); 2236 if (err) 2237 goto irq_err; 2238 err = request_msix_queue_irqs(adap); 2239 if (err) { 2240 free_irq(adap->msix_info[0].vec, adap); 2241 goto irq_err; 2242 } 2243 } else { 2244 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2245 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2246 adap->port[0]->name, adap); 2247 if (err) 2248 goto irq_err; 2249 } 2250 2251 enable_rx(adap); 2252 t4_sge_start(adap); 2253 t4_intr_enable(adap); 2254 adap->flags |= FULL_INIT_DONE; 2255 mutex_unlock(&uld_mutex); 2256 2257 notify_ulds(adap, CXGB4_STATE_UP); 2258 #if IS_ENABLED(CONFIG_IPV6) 2259 update_clip(adap); 2260 #endif 2261 return err; 2262 2263 irq_err: 2264 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2265 freeq: 2266 t4_free_sge_resources(adap); 2267 rel_lock: 2268 mutex_unlock(&uld_mutex); 2269 return err; 2270 } 2271 2272 static void cxgb_down(struct adapter *adapter) 2273 { 2274 cancel_work_sync(&adapter->tid_release_task); 2275 cancel_work_sync(&adapter->db_full_task); 2276 cancel_work_sync(&adapter->db_drop_task); 2277 adapter->tid_release_task_busy = false; 2278 adapter->tid_release_head = NULL; 2279 2280 t4_sge_stop(adapter); 2281 t4_free_sge_resources(adapter); 2282 2283 adapter->flags &= ~FULL_INIT_DONE; 2284 } 2285 2286 /* 2287 * net_device operations 2288 */ 2289 static int cxgb_open(struct net_device *dev) 2290 { 2291 int err; 2292 struct port_info *pi = netdev_priv(dev); 2293 struct adapter *adapter = pi->adapter; 2294 2295 netif_carrier_off(dev); 2296 2297 if (!(adapter->flags & FULL_INIT_DONE)) { 2298 err = cxgb_up(adapter); 2299 if (err < 0) 2300 return err; 2301 } 2302 2303 /* It's possible that the basic port information could have 2304 * changed since we first read it. 2305 */ 2306 err = t4_update_port_info(pi); 2307 if (err < 0) 2308 return err; 2309 2310 err = link_start(dev); 2311 if (!err) 2312 netif_tx_start_all_queues(dev); 2313 return err; 2314 } 2315 2316 static int cxgb_close(struct net_device *dev) 2317 { 2318 struct port_info *pi = netdev_priv(dev); 2319 struct adapter *adapter = pi->adapter; 2320 int ret; 2321 2322 netif_tx_stop_all_queues(dev); 2323 netif_carrier_off(dev); 2324 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2325 false, false, false); 2326 #ifdef CONFIG_CHELSIO_T4_DCB 2327 cxgb4_dcb_reset(dev); 2328 dcb_tx_queue_prio_enable(dev, false); 2329 #endif 2330 return ret; 2331 } 2332 2333 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2334 __be32 sip, __be16 sport, __be16 vlan, 2335 unsigned int queue, unsigned char port, unsigned char mask) 2336 { 2337 int ret; 2338 struct filter_entry *f; 2339 struct adapter *adap; 2340 int i; 2341 u8 *val; 2342 2343 adap = netdev2adap(dev); 2344 2345 /* Adjust stid to correct filter index */ 2346 stid -= adap->tids.sftid_base; 2347 stid += adap->tids.nftids; 2348 2349 /* Check to make sure the filter requested is writable ... 2350 */ 2351 f = &adap->tids.ftid_tab[stid]; 2352 ret = writable_filter(f); 2353 if (ret) 2354 return ret; 2355 2356 /* Clear out any old resources being used by the filter before 2357 * we start constructing the new filter. 2358 */ 2359 if (f->valid) 2360 clear_filter(adap, f); 2361 2362 /* Clear out filter specifications */ 2363 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2364 f->fs.val.lport = cpu_to_be16(sport); 2365 f->fs.mask.lport = ~0; 2366 val = (u8 *)&sip; 2367 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2368 for (i = 0; i < 4; i++) { 2369 f->fs.val.lip[i] = val[i]; 2370 f->fs.mask.lip[i] = ~0; 2371 } 2372 if (adap->params.tp.vlan_pri_map & PORT_F) { 2373 f->fs.val.iport = port; 2374 f->fs.mask.iport = mask; 2375 } 2376 } 2377 2378 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2379 f->fs.val.proto = IPPROTO_TCP; 2380 f->fs.mask.proto = ~0; 2381 } 2382 2383 f->fs.dirsteer = 1; 2384 f->fs.iq = queue; 2385 /* Mark filter as locked */ 2386 f->locked = 1; 2387 f->fs.rpttid = 1; 2388 2389 /* Save the actual tid. We need this to get the corresponding 2390 * filter entry structure in filter_rpl. 2391 */ 2392 f->tid = stid + adap->tids.ftid_base; 2393 ret = set_filter_wr(adap, stid); 2394 if (ret) { 2395 clear_filter(adap, f); 2396 return ret; 2397 } 2398 2399 return 0; 2400 } 2401 EXPORT_SYMBOL(cxgb4_create_server_filter); 2402 2403 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2404 unsigned int queue, bool ipv6) 2405 { 2406 struct filter_entry *f; 2407 struct adapter *adap; 2408 2409 adap = netdev2adap(dev); 2410 2411 /* Adjust stid to correct filter index */ 2412 stid -= adap->tids.sftid_base; 2413 stid += adap->tids.nftids; 2414 2415 f = &adap->tids.ftid_tab[stid]; 2416 /* Unlock the filter */ 2417 f->locked = 0; 2418 2419 return delete_filter(adap, stid); 2420 } 2421 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2422 2423 static void cxgb_get_stats(struct net_device *dev, 2424 struct rtnl_link_stats64 *ns) 2425 { 2426 struct port_stats stats; 2427 struct port_info *p = netdev_priv(dev); 2428 struct adapter *adapter = p->adapter; 2429 2430 /* Block retrieving statistics during EEH error 2431 * recovery. Otherwise, the recovery might fail 2432 * and the PCI device will be removed permanently 2433 */ 2434 spin_lock(&adapter->stats_lock); 2435 if (!netif_device_present(dev)) { 2436 spin_unlock(&adapter->stats_lock); 2437 return; 2438 } 2439 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2440 &p->stats_base); 2441 spin_unlock(&adapter->stats_lock); 2442 2443 ns->tx_bytes = stats.tx_octets; 2444 ns->tx_packets = stats.tx_frames; 2445 ns->rx_bytes = stats.rx_octets; 2446 ns->rx_packets = stats.rx_frames; 2447 ns->multicast = stats.rx_mcast_frames; 2448 2449 /* detailed rx_errors */ 2450 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2451 stats.rx_runt; 2452 ns->rx_over_errors = 0; 2453 ns->rx_crc_errors = stats.rx_fcs_err; 2454 ns->rx_frame_errors = stats.rx_symbol_err; 2455 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2456 stats.rx_ovflow2 + stats.rx_ovflow3 + 2457 stats.rx_trunc0 + stats.rx_trunc1 + 2458 stats.rx_trunc2 + stats.rx_trunc3; 2459 ns->rx_missed_errors = 0; 2460 2461 /* detailed tx_errors */ 2462 ns->tx_aborted_errors = 0; 2463 ns->tx_carrier_errors = 0; 2464 ns->tx_fifo_errors = 0; 2465 ns->tx_heartbeat_errors = 0; 2466 ns->tx_window_errors = 0; 2467 2468 ns->tx_errors = stats.tx_error_frames; 2469 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2470 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2471 } 2472 2473 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2474 { 2475 unsigned int mbox; 2476 int ret = 0, prtad, devad; 2477 struct port_info *pi = netdev_priv(dev); 2478 struct adapter *adapter = pi->adapter; 2479 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2480 2481 switch (cmd) { 2482 case SIOCGMIIPHY: 2483 if (pi->mdio_addr < 0) 2484 return -EOPNOTSUPP; 2485 data->phy_id = pi->mdio_addr; 2486 break; 2487 case SIOCGMIIREG: 2488 case SIOCSMIIREG: 2489 if (mdio_phy_id_is_c45(data->phy_id)) { 2490 prtad = mdio_phy_id_prtad(data->phy_id); 2491 devad = mdio_phy_id_devad(data->phy_id); 2492 } else if (data->phy_id < 32) { 2493 prtad = data->phy_id; 2494 devad = 0; 2495 data->reg_num &= 0x1f; 2496 } else 2497 return -EINVAL; 2498 2499 mbox = pi->adapter->pf; 2500 if (cmd == SIOCGMIIREG) 2501 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2502 data->reg_num, &data->val_out); 2503 else 2504 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2505 data->reg_num, data->val_in); 2506 break; 2507 case SIOCGHWTSTAMP: 2508 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2509 sizeof(pi->tstamp_config)) ? 2510 -EFAULT : 0; 2511 case SIOCSHWTSTAMP: 2512 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2513 sizeof(pi->tstamp_config))) 2514 return -EFAULT; 2515 2516 if (!is_t4(adapter->params.chip)) { 2517 switch (pi->tstamp_config.tx_type) { 2518 case HWTSTAMP_TX_OFF: 2519 case HWTSTAMP_TX_ON: 2520 break; 2521 default: 2522 return -ERANGE; 2523 } 2524 2525 switch (pi->tstamp_config.rx_filter) { 2526 case HWTSTAMP_FILTER_NONE: 2527 pi->rxtstamp = false; 2528 break; 2529 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2530 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2531 cxgb4_ptprx_timestamping(pi, pi->port_id, 2532 PTP_TS_L4); 2533 break; 2534 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2535 cxgb4_ptprx_timestamping(pi, pi->port_id, 2536 PTP_TS_L2_L4); 2537 break; 2538 case HWTSTAMP_FILTER_ALL: 2539 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2540 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2541 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2542 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2543 pi->rxtstamp = true; 2544 break; 2545 default: 2546 pi->tstamp_config.rx_filter = 2547 HWTSTAMP_FILTER_NONE; 2548 return -ERANGE; 2549 } 2550 2551 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2552 (pi->tstamp_config.rx_filter == 2553 HWTSTAMP_FILTER_NONE)) { 2554 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2555 pi->ptp_enable = false; 2556 } 2557 2558 if (pi->tstamp_config.rx_filter != 2559 HWTSTAMP_FILTER_NONE) { 2560 if (cxgb4_ptp_redirect_rx_packet(adapter, 2561 pi) >= 0) 2562 pi->ptp_enable = true; 2563 } 2564 } else { 2565 /* For T4 Adapters */ 2566 switch (pi->tstamp_config.rx_filter) { 2567 case HWTSTAMP_FILTER_NONE: 2568 pi->rxtstamp = false; 2569 break; 2570 case HWTSTAMP_FILTER_ALL: 2571 pi->rxtstamp = true; 2572 break; 2573 default: 2574 pi->tstamp_config.rx_filter = 2575 HWTSTAMP_FILTER_NONE; 2576 return -ERANGE; 2577 } 2578 } 2579 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2580 sizeof(pi->tstamp_config)) ? 2581 -EFAULT : 0; 2582 default: 2583 return -EOPNOTSUPP; 2584 } 2585 return ret; 2586 } 2587 2588 static void cxgb_set_rxmode(struct net_device *dev) 2589 { 2590 /* unfortunately we can't return errors to the stack */ 2591 set_rxmode(dev, -1, false); 2592 } 2593 2594 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2595 { 2596 int ret; 2597 struct port_info *pi = netdev_priv(dev); 2598 2599 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2600 -1, -1, -1, true); 2601 if (!ret) 2602 dev->mtu = new_mtu; 2603 return ret; 2604 } 2605 2606 #ifdef CONFIG_PCI_IOV 2607 static int cxgb4_mgmt_open(struct net_device *dev) 2608 { 2609 /* Turn carrier off since we don't have to transmit anything on this 2610 * interface. 2611 */ 2612 netif_carrier_off(dev); 2613 return 0; 2614 } 2615 2616 /* Fill MAC address that will be assigned by the FW */ 2617 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 2618 { 2619 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2620 unsigned int i, vf, nvfs; 2621 u16 a, b; 2622 int err; 2623 u8 *na; 2624 2625 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, 2626 PCI_CAP_ID_VPD); 2627 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2628 if (err) 2629 return; 2630 2631 na = adap->params.vpd.na; 2632 for (i = 0; i < ETH_ALEN; i++) 2633 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2634 hex2val(na[2 * i + 1])); 2635 2636 a = (hw_addr[0] << 8) | hw_addr[1]; 2637 b = (hw_addr[1] << 8) | hw_addr[2]; 2638 a ^= b; 2639 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2640 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2641 macaddr[0] = a >> 8; 2642 macaddr[1] = a & 0xff; 2643 2644 for (i = 2; i < 5; i++) 2645 macaddr[i] = hw_addr[i + 1]; 2646 2647 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 2648 vf < nvfs; vf++) { 2649 macaddr[5] = adap->pf * nvfs + vf; 2650 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 2651 } 2652 } 2653 2654 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2655 { 2656 struct port_info *pi = netdev_priv(dev); 2657 struct adapter *adap = pi->adapter; 2658 int ret; 2659 2660 /* verify MAC addr is valid */ 2661 if (!is_valid_ether_addr(mac)) { 2662 dev_err(pi->adapter->pdev_dev, 2663 "Invalid Ethernet address %pM for VF %d\n", 2664 mac, vf); 2665 return -EINVAL; 2666 } 2667 2668 dev_info(pi->adapter->pdev_dev, 2669 "Setting MAC %pM on VF %d\n", mac, vf); 2670 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2671 if (!ret) 2672 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2673 return ret; 2674 } 2675 2676 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 2677 int vf, struct ifla_vf_info *ivi) 2678 { 2679 struct port_info *pi = netdev_priv(dev); 2680 struct adapter *adap = pi->adapter; 2681 struct vf_info *vfinfo; 2682 2683 if (vf >= adap->num_vfs) 2684 return -EINVAL; 2685 vfinfo = &adap->vfinfo[vf]; 2686 2687 ivi->vf = vf; 2688 ivi->max_tx_rate = vfinfo->tx_rate; 2689 ivi->min_tx_rate = 0; 2690 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 2691 ivi->vlan = vfinfo->vlan; 2692 return 0; 2693 } 2694 2695 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 2696 struct netdev_phys_item_id *ppid) 2697 { 2698 struct port_info *pi = netdev_priv(dev); 2699 unsigned int phy_port_id; 2700 2701 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2702 ppid->id_len = sizeof(phy_port_id); 2703 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2704 return 0; 2705 } 2706 2707 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 2708 int min_tx_rate, int max_tx_rate) 2709 { 2710 struct port_info *pi = netdev_priv(dev); 2711 struct adapter *adap = pi->adapter; 2712 unsigned int link_ok, speed, mtu; 2713 u32 fw_pfvf, fw_class; 2714 int class_id = vf; 2715 int ret; 2716 u16 pktsize; 2717 2718 if (vf >= adap->num_vfs) 2719 return -EINVAL; 2720 2721 if (min_tx_rate) { 2722 dev_err(adap->pdev_dev, 2723 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2724 min_tx_rate, vf); 2725 return -EINVAL; 2726 } 2727 2728 if (max_tx_rate == 0) { 2729 /* unbind VF to to any Traffic Class */ 2730 fw_pfvf = 2731 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2732 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2733 fw_class = 0xffffffff; 2734 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 2735 &fw_pfvf, &fw_class); 2736 if (ret) { 2737 dev_err(adap->pdev_dev, 2738 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n", 2739 ret, adap->pf, vf); 2740 return -EINVAL; 2741 } 2742 dev_info(adap->pdev_dev, 2743 "PF %d VF %d is unbound from TX Rate Limiting\n", 2744 adap->pf, vf); 2745 adap->vfinfo[vf].tx_rate = 0; 2746 return 0; 2747 } 2748 2749 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 2750 if (ret != FW_SUCCESS) { 2751 dev_err(adap->pdev_dev, 2752 "Failed to get link information for VF %d\n", vf); 2753 return -EINVAL; 2754 } 2755 2756 if (!link_ok) { 2757 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 2758 return -EINVAL; 2759 } 2760 2761 if (max_tx_rate > speed) { 2762 dev_err(adap->pdev_dev, 2763 "Max tx rate %d for VF %d can't be > link-speed %u", 2764 max_tx_rate, vf, speed); 2765 return -EINVAL; 2766 } 2767 2768 pktsize = mtu; 2769 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 2770 pktsize = pktsize - sizeof(struct ethhdr) - 4; 2771 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 2772 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 2773 /* configure Traffic Class for rate-limiting */ 2774 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 2775 SCHED_CLASS_LEVEL_CL_RL, 2776 SCHED_CLASS_MODE_CLASS, 2777 SCHED_CLASS_RATEUNIT_BITS, 2778 SCHED_CLASS_RATEMODE_ABS, 2779 pi->tx_chan, class_id, 0, 2780 max_tx_rate * 1000, 0, pktsize); 2781 if (ret) { 2782 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 2783 ret); 2784 return -EINVAL; 2785 } 2786 dev_info(adap->pdev_dev, 2787 "Class %d with MSS %u configured with rate %u\n", 2788 class_id, pktsize, max_tx_rate); 2789 2790 /* bind VF to configured Traffic Class */ 2791 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2792 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2793 fw_class = class_id; 2794 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 2795 &fw_class); 2796 if (ret) { 2797 dev_err(adap->pdev_dev, 2798 "Err %d in binding PF %d VF %d to Traffic Class %d\n", 2799 ret, adap->pf, vf, class_id); 2800 return -EINVAL; 2801 } 2802 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 2803 adap->pf, vf, class_id); 2804 adap->vfinfo[vf].tx_rate = max_tx_rate; 2805 return 0; 2806 } 2807 2808 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 2809 u16 vlan, u8 qos, __be16 vlan_proto) 2810 { 2811 struct port_info *pi = netdev_priv(dev); 2812 struct adapter *adap = pi->adapter; 2813 int ret; 2814 2815 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 2816 return -EINVAL; 2817 2818 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 2819 return -EPROTONOSUPPORT; 2820 2821 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 2822 if (!ret) { 2823 adap->vfinfo[vf].vlan = vlan; 2824 return 0; 2825 } 2826 2827 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 2828 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 2829 return ret; 2830 } 2831 #endif /* CONFIG_PCI_IOV */ 2832 2833 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2834 { 2835 int ret; 2836 struct sockaddr *addr = p; 2837 struct port_info *pi = netdev_priv(dev); 2838 2839 if (!is_valid_ether_addr(addr->sa_data)) 2840 return -EADDRNOTAVAIL; 2841 2842 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 2843 pi->xact_addr_filt, addr->sa_data, true, 2844 &pi->smt_idx); 2845 if (ret < 0) 2846 return ret; 2847 2848 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2849 pi->xact_addr_filt = ret; 2850 return 0; 2851 } 2852 2853 #ifdef CONFIG_NET_POLL_CONTROLLER 2854 static void cxgb_netpoll(struct net_device *dev) 2855 { 2856 struct port_info *pi = netdev_priv(dev); 2857 struct adapter *adap = pi->adapter; 2858 2859 if (adap->flags & USING_MSIX) { 2860 int i; 2861 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2862 2863 for (i = pi->nqsets; i; i--, rx++) 2864 t4_sge_intr_msix(0, &rx->rspq); 2865 } else 2866 t4_intr_handler(adap)(0, adap); 2867 } 2868 #endif 2869 2870 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2871 { 2872 struct port_info *pi = netdev_priv(dev); 2873 struct adapter *adap = pi->adapter; 2874 struct sched_class *e; 2875 struct ch_sched_params p; 2876 struct ch_sched_queue qe; 2877 u32 req_rate; 2878 int err = 0; 2879 2880 if (!can_sched(dev)) 2881 return -ENOTSUPP; 2882 2883 if (index < 0 || index > pi->nqsets - 1) 2884 return -EINVAL; 2885 2886 if (!(adap->flags & FULL_INIT_DONE)) { 2887 dev_err(adap->pdev_dev, 2888 "Failed to rate limit on queue %d. Link Down?\n", 2889 index); 2890 return -EINVAL; 2891 } 2892 2893 /* Convert from Mbps to Kbps */ 2894 req_rate = rate * 1000; 2895 2896 /* Max rate is 100 Gbps */ 2897 if (req_rate > SCHED_MAX_RATE_KBPS) { 2898 dev_err(adap->pdev_dev, 2899 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 2900 rate, SCHED_MAX_RATE_KBPS / 1000); 2901 return -ERANGE; 2902 } 2903 2904 /* First unbind the queue from any existing class */ 2905 memset(&qe, 0, sizeof(qe)); 2906 qe.queue = index; 2907 qe.class = SCHED_CLS_NONE; 2908 2909 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 2910 if (err) { 2911 dev_err(adap->pdev_dev, 2912 "Unbinding Queue %d on port %d fail. Err: %d\n", 2913 index, pi->port_id, err); 2914 return err; 2915 } 2916 2917 /* Queue already unbound */ 2918 if (!req_rate) 2919 return 0; 2920 2921 /* Fetch any available unused or matching scheduling class */ 2922 memset(&p, 0, sizeof(p)); 2923 p.type = SCHED_CLASS_TYPE_PACKET; 2924 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 2925 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 2926 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 2927 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 2928 p.u.params.channel = pi->tx_chan; 2929 p.u.params.class = SCHED_CLS_NONE; 2930 p.u.params.minrate = 0; 2931 p.u.params.maxrate = req_rate; 2932 p.u.params.weight = 0; 2933 p.u.params.pktsize = dev->mtu; 2934 2935 e = cxgb4_sched_class_alloc(dev, &p); 2936 if (!e) 2937 return -ENOMEM; 2938 2939 /* Bind the queue to a scheduling class */ 2940 memset(&qe, 0, sizeof(qe)); 2941 qe.queue = index; 2942 qe.class = e->idx; 2943 2944 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 2945 if (err) 2946 dev_err(adap->pdev_dev, 2947 "Queue rate limiting failed. Err: %d\n", err); 2948 return err; 2949 } 2950 2951 static int cxgb_setup_tc_flower(struct net_device *dev, 2952 struct tc_cls_flower_offload *cls_flower) 2953 { 2954 switch (cls_flower->command) { 2955 case TC_CLSFLOWER_REPLACE: 2956 return cxgb4_tc_flower_replace(dev, cls_flower); 2957 case TC_CLSFLOWER_DESTROY: 2958 return cxgb4_tc_flower_destroy(dev, cls_flower); 2959 case TC_CLSFLOWER_STATS: 2960 return cxgb4_tc_flower_stats(dev, cls_flower); 2961 default: 2962 return -EOPNOTSUPP; 2963 } 2964 } 2965 2966 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 2967 struct tc_cls_u32_offload *cls_u32) 2968 { 2969 switch (cls_u32->command) { 2970 case TC_CLSU32_NEW_KNODE: 2971 case TC_CLSU32_REPLACE_KNODE: 2972 return cxgb4_config_knode(dev, cls_u32); 2973 case TC_CLSU32_DELETE_KNODE: 2974 return cxgb4_delete_knode(dev, cls_u32); 2975 default: 2976 return -EOPNOTSUPP; 2977 } 2978 } 2979 2980 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 2981 void *cb_priv) 2982 { 2983 struct net_device *dev = cb_priv; 2984 struct port_info *pi = netdev2pinfo(dev); 2985 struct adapter *adap = netdev2adap(dev); 2986 2987 if (!(adap->flags & FULL_INIT_DONE)) { 2988 dev_err(adap->pdev_dev, 2989 "Failed to setup tc on port %d. Link Down?\n", 2990 pi->port_id); 2991 return -EINVAL; 2992 } 2993 2994 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 2995 return -EOPNOTSUPP; 2996 2997 switch (type) { 2998 case TC_SETUP_CLSU32: 2999 return cxgb_setup_tc_cls_u32(dev, type_data); 3000 case TC_SETUP_CLSFLOWER: 3001 return cxgb_setup_tc_flower(dev, type_data); 3002 default: 3003 return -EOPNOTSUPP; 3004 } 3005 } 3006 3007 static int cxgb_setup_tc_block(struct net_device *dev, 3008 struct tc_block_offload *f) 3009 { 3010 struct port_info *pi = netdev2pinfo(dev); 3011 3012 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 3013 return -EOPNOTSUPP; 3014 3015 switch (f->command) { 3016 case TC_BLOCK_BIND: 3017 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb, 3018 pi, dev, f->extack); 3019 case TC_BLOCK_UNBIND: 3020 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi); 3021 return 0; 3022 default: 3023 return -EOPNOTSUPP; 3024 } 3025 } 3026 3027 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3028 void *type_data) 3029 { 3030 switch (type) { 3031 case TC_SETUP_BLOCK: 3032 return cxgb_setup_tc_block(dev, type_data); 3033 default: 3034 return -EOPNOTSUPP; 3035 } 3036 } 3037 3038 static void cxgb_del_udp_tunnel(struct net_device *netdev, 3039 struct udp_tunnel_info *ti) 3040 { 3041 struct port_info *pi = netdev_priv(netdev); 3042 struct adapter *adapter = pi->adapter; 3043 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3044 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3045 int ret = 0, i; 3046 3047 if (chip_ver < CHELSIO_T6) 3048 return; 3049 3050 switch (ti->type) { 3051 case UDP_TUNNEL_TYPE_VXLAN: 3052 if (!adapter->vxlan_port_cnt || 3053 adapter->vxlan_port != ti->port) 3054 return; /* Invalid VxLAN destination port */ 3055 3056 adapter->vxlan_port_cnt--; 3057 if (adapter->vxlan_port_cnt) 3058 return; 3059 3060 adapter->vxlan_port = 0; 3061 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3062 break; 3063 case UDP_TUNNEL_TYPE_GENEVE: 3064 if (!adapter->geneve_port_cnt || 3065 adapter->geneve_port != ti->port) 3066 return; /* Invalid GENEVE destination port */ 3067 3068 adapter->geneve_port_cnt--; 3069 if (adapter->geneve_port_cnt) 3070 return; 3071 3072 adapter->geneve_port = 0; 3073 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3074 break; 3075 default: 3076 return; 3077 } 3078 3079 /* Matchall mac entries can be deleted only after all tunnel ports 3080 * are brought down or removed. 3081 */ 3082 if (!adapter->rawf_cnt) 3083 return; 3084 for_each_port(adapter, i) { 3085 pi = adap2pinfo(adapter, i); 3086 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3087 match_all_mac, match_all_mac, 3088 adapter->rawf_start + 3089 pi->port_id, 3090 1, pi->port_id, false); 3091 if (ret < 0) { 3092 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3093 i); 3094 return; 3095 } 3096 atomic_dec(&adapter->mps_encap[adapter->rawf_start + 3097 pi->port_id].refcnt); 3098 } 3099 } 3100 3101 static void cxgb_add_udp_tunnel(struct net_device *netdev, 3102 struct udp_tunnel_info *ti) 3103 { 3104 struct port_info *pi = netdev_priv(netdev); 3105 struct adapter *adapter = pi->adapter; 3106 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3107 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3108 int i, ret; 3109 3110 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt) 3111 return; 3112 3113 switch (ti->type) { 3114 case UDP_TUNNEL_TYPE_VXLAN: 3115 /* Callback for adding vxlan port can be called with the same 3116 * port for both IPv4 and IPv6. We should not disable the 3117 * offloading when the same port for both protocols is added 3118 * and later one of them is removed. 3119 */ 3120 if (adapter->vxlan_port_cnt && 3121 adapter->vxlan_port == ti->port) { 3122 adapter->vxlan_port_cnt++; 3123 return; 3124 } 3125 3126 /* We will support only one VxLAN port */ 3127 if (adapter->vxlan_port_cnt) { 3128 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3129 be16_to_cpu(adapter->vxlan_port), 3130 be16_to_cpu(ti->port)); 3131 return; 3132 } 3133 3134 adapter->vxlan_port = ti->port; 3135 adapter->vxlan_port_cnt = 1; 3136 3137 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3138 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3139 break; 3140 case UDP_TUNNEL_TYPE_GENEVE: 3141 if (adapter->geneve_port_cnt && 3142 adapter->geneve_port == ti->port) { 3143 adapter->geneve_port_cnt++; 3144 return; 3145 } 3146 3147 /* We will support only one GENEVE port */ 3148 if (adapter->geneve_port_cnt) { 3149 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3150 be16_to_cpu(adapter->geneve_port), 3151 be16_to_cpu(ti->port)); 3152 return; 3153 } 3154 3155 adapter->geneve_port = ti->port; 3156 adapter->geneve_port_cnt = 1; 3157 3158 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3159 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3160 break; 3161 default: 3162 return; 3163 } 3164 3165 /* Create a 'match all' mac filter entry for inner mac, 3166 * if raw mac interface is supported. Once the linux kernel provides 3167 * driver entry points for adding/deleting the inner mac addresses, 3168 * we will remove this 'match all' entry and fallback to adding 3169 * exact match filters. 3170 */ 3171 for_each_port(adapter, i) { 3172 pi = adap2pinfo(adapter, i); 3173 3174 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3175 match_all_mac, 3176 match_all_mac, 3177 adapter->rawf_start + 3178 pi->port_id, 3179 1, pi->port_id, false); 3180 if (ret < 0) { 3181 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3182 be16_to_cpu(ti->port)); 3183 cxgb_del_udp_tunnel(netdev, ti); 3184 return; 3185 } 3186 atomic_inc(&adapter->mps_encap[ret].refcnt); 3187 } 3188 } 3189 3190 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3191 struct net_device *dev, 3192 netdev_features_t features) 3193 { 3194 struct port_info *pi = netdev_priv(dev); 3195 struct adapter *adapter = pi->adapter; 3196 3197 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3198 return features; 3199 3200 /* Check if hw supports offload for this packet */ 3201 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3202 return features; 3203 3204 /* Offload is not supported for this encapsulated packet */ 3205 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3206 } 3207 3208 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3209 netdev_features_t features) 3210 { 3211 /* Disable GRO, if RX_CSUM is disabled */ 3212 if (!(features & NETIF_F_RXCSUM)) 3213 features &= ~NETIF_F_GRO; 3214 3215 return features; 3216 } 3217 3218 static const struct net_device_ops cxgb4_netdev_ops = { 3219 .ndo_open = cxgb_open, 3220 .ndo_stop = cxgb_close, 3221 .ndo_start_xmit = t4_start_xmit, 3222 .ndo_select_queue = cxgb_select_queue, 3223 .ndo_get_stats64 = cxgb_get_stats, 3224 .ndo_set_rx_mode = cxgb_set_rxmode, 3225 .ndo_set_mac_address = cxgb_set_mac_addr, 3226 .ndo_set_features = cxgb_set_features, 3227 .ndo_validate_addr = eth_validate_addr, 3228 .ndo_do_ioctl = cxgb_ioctl, 3229 .ndo_change_mtu = cxgb_change_mtu, 3230 #ifdef CONFIG_NET_POLL_CONTROLLER 3231 .ndo_poll_controller = cxgb_netpoll, 3232 #endif 3233 #ifdef CONFIG_CHELSIO_T4_FCOE 3234 .ndo_fcoe_enable = cxgb_fcoe_enable, 3235 .ndo_fcoe_disable = cxgb_fcoe_disable, 3236 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3237 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3238 .ndo_setup_tc = cxgb_setup_tc, 3239 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel, 3240 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel, 3241 .ndo_features_check = cxgb_features_check, 3242 .ndo_fix_features = cxgb_fix_features, 3243 }; 3244 3245 #ifdef CONFIG_PCI_IOV 3246 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3247 .ndo_open = cxgb4_mgmt_open, 3248 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3249 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3250 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3251 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3252 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3253 }; 3254 #endif 3255 3256 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3257 struct ethtool_drvinfo *info) 3258 { 3259 struct adapter *adapter = netdev2adap(dev); 3260 3261 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3262 strlcpy(info->version, cxgb4_driver_version, 3263 sizeof(info->version)); 3264 strlcpy(info->bus_info, pci_name(adapter->pdev), 3265 sizeof(info->bus_info)); 3266 } 3267 3268 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3269 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3270 }; 3271 3272 static void notify_fatal_err(struct work_struct *work) 3273 { 3274 struct adapter *adap; 3275 3276 adap = container_of(work, struct adapter, fatal_err_notify_task); 3277 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3278 } 3279 3280 void t4_fatal_err(struct adapter *adap) 3281 { 3282 int port; 3283 3284 if (pci_channel_offline(adap->pdev)) 3285 return; 3286 3287 /* Disable the SGE since ULDs are going to free resources that 3288 * could be exposed to the adapter. RDMA MWs for example... 3289 */ 3290 t4_shutdown_adapter(adap); 3291 for_each_port(adap, port) { 3292 struct net_device *dev = adap->port[port]; 3293 3294 /* If we get here in very early initialization the network 3295 * devices may not have been set up yet. 3296 */ 3297 if (!dev) 3298 continue; 3299 3300 netif_tx_stop_all_queues(dev); 3301 netif_carrier_off(dev); 3302 } 3303 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3304 queue_work(adap->workq, &adap->fatal_err_notify_task); 3305 } 3306 3307 static void setup_memwin(struct adapter *adap) 3308 { 3309 u32 nic_win_base = t4_get_util_window(adap); 3310 3311 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3312 } 3313 3314 static void setup_memwin_rdma(struct adapter *adap) 3315 { 3316 if (adap->vres.ocq.size) { 3317 u32 start; 3318 unsigned int sz_kb; 3319 3320 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3321 start &= PCI_BASE_ADDRESS_MEM_MASK; 3322 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3323 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3324 t4_write_reg(adap, 3325 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3326 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3327 t4_write_reg(adap, 3328 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3329 adap->vres.ocq.start); 3330 t4_read_reg(adap, 3331 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3332 } 3333 } 3334 3335 /* HMA Definitions */ 3336 3337 /* The maximum number of address that can be send in a single FW cmd */ 3338 #define HMA_MAX_ADDR_IN_CMD 5 3339 3340 #define HMA_PAGE_SIZE PAGE_SIZE 3341 3342 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3343 3344 #define HMA_PAGE_ORDER \ 3345 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3346 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3347 3348 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3349 * configuration(in units of MB). 3350 */ 3351 #define HMA_MIN_TOTAL_SIZE 1 3352 #define HMA_MAX_TOTAL_SIZE \ 3353 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3354 HMA_MAX_NO_FW_ADDRESS) >> 20) 3355 3356 static void adap_free_hma_mem(struct adapter *adapter) 3357 { 3358 struct scatterlist *iter; 3359 struct page *page; 3360 int i; 3361 3362 if (!adapter->hma.sgt) 3363 return; 3364 3365 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 3366 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 3367 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 3368 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 3369 } 3370 3371 for_each_sg(adapter->hma.sgt->sgl, iter, 3372 adapter->hma.sgt->orig_nents, i) { 3373 page = sg_page(iter); 3374 if (page) 3375 __free_pages(page, HMA_PAGE_ORDER); 3376 } 3377 3378 kfree(adapter->hma.phy_addr); 3379 sg_free_table(adapter->hma.sgt); 3380 kfree(adapter->hma.sgt); 3381 adapter->hma.sgt = NULL; 3382 } 3383 3384 static int adap_config_hma(struct adapter *adapter) 3385 { 3386 struct scatterlist *sgl, *iter; 3387 struct sg_table *sgt; 3388 struct page *newpage; 3389 unsigned int i, j, k; 3390 u32 param, hma_size; 3391 unsigned int ncmds; 3392 size_t page_size; 3393 u32 page_order; 3394 int node, ret; 3395 3396 /* HMA is supported only for T6+ cards. 3397 * Avoid initializing HMA in kdump kernels. 3398 */ 3399 if (is_kdump_kernel() || 3400 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3401 return 0; 3402 3403 /* Get the HMA region size required by fw */ 3404 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3405 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 3406 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3407 1, ¶m, &hma_size); 3408 /* An error means card has its own memory or HMA is not supported by 3409 * the firmware. Return without any errors. 3410 */ 3411 if (ret || !hma_size) 3412 return 0; 3413 3414 if (hma_size < HMA_MIN_TOTAL_SIZE || 3415 hma_size > HMA_MAX_TOTAL_SIZE) { 3416 dev_err(adapter->pdev_dev, 3417 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 3418 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 3419 return -EINVAL; 3420 } 3421 3422 page_size = HMA_PAGE_SIZE; 3423 page_order = HMA_PAGE_ORDER; 3424 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 3425 if (unlikely(!adapter->hma.sgt)) { 3426 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 3427 return -ENOMEM; 3428 } 3429 sgt = adapter->hma.sgt; 3430 /* FW returned value will be in MB's 3431 */ 3432 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 3433 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 3434 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 3435 kfree(adapter->hma.sgt); 3436 adapter->hma.sgt = NULL; 3437 return -ENOMEM; 3438 } 3439 3440 sgl = adapter->hma.sgt->sgl; 3441 node = dev_to_node(adapter->pdev_dev); 3442 for_each_sg(sgl, iter, sgt->orig_nents, i) { 3443 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 3444 __GFP_ZERO, page_order); 3445 if (!newpage) { 3446 dev_err(adapter->pdev_dev, 3447 "Not enough memory for HMA page allocation\n"); 3448 ret = -ENOMEM; 3449 goto free_hma; 3450 } 3451 sg_set_page(iter, newpage, page_size << page_order, 0); 3452 } 3453 3454 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 3455 DMA_BIDIRECTIONAL); 3456 if (!sgt->nents) { 3457 dev_err(adapter->pdev_dev, 3458 "Not enough memory for HMA DMA mapping"); 3459 ret = -ENOMEM; 3460 goto free_hma; 3461 } 3462 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 3463 3464 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 3465 GFP_KERNEL); 3466 if (unlikely(!adapter->hma.phy_addr)) 3467 goto free_hma; 3468 3469 for_each_sg(sgl, iter, sgt->nents, i) { 3470 newpage = sg_page(iter); 3471 adapter->hma.phy_addr[i] = sg_dma_address(iter); 3472 } 3473 3474 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 3475 /* Pass on the addresses to firmware */ 3476 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 3477 struct fw_hma_cmd hma_cmd; 3478 u8 naddr = HMA_MAX_ADDR_IN_CMD; 3479 u8 soc = 0, eoc = 0; 3480 u8 hma_mode = 1; /* Presently we support only Page table mode */ 3481 3482 soc = (i == 0) ? 1 : 0; 3483 eoc = (i == ncmds - 1) ? 1 : 0; 3484 3485 /* For last cmd, set naddr corresponding to remaining 3486 * addresses 3487 */ 3488 if (i == ncmds - 1) { 3489 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 3490 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 3491 } 3492 memset(&hma_cmd, 0, sizeof(hma_cmd)); 3493 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 3494 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3495 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 3496 3497 hma_cmd.mode_to_pcie_params = 3498 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 3499 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 3500 3501 /* HMA cmd size specified in MB's */ 3502 hma_cmd.naddr_size = 3503 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 3504 FW_HMA_CMD_NADDR_V(naddr)); 3505 3506 /* Total Page size specified in units of 4K */ 3507 hma_cmd.addr_size_pkd = 3508 htonl(FW_HMA_CMD_ADDR_SIZE_V 3509 ((page_size << page_order) >> 12)); 3510 3511 /* Fill the 5 addresses */ 3512 for (j = 0; j < naddr; j++) { 3513 hma_cmd.phy_address[j] = 3514 cpu_to_be64(adapter->hma.phy_addr[j + k]); 3515 } 3516 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 3517 sizeof(hma_cmd), &hma_cmd); 3518 if (ret) { 3519 dev_err(adapter->pdev_dev, 3520 "HMA FW command failed with err %d\n", ret); 3521 goto free_hma; 3522 } 3523 } 3524 3525 if (!ret) 3526 dev_info(adapter->pdev_dev, 3527 "Reserved %uMB host memory for HMA\n", hma_size); 3528 return ret; 3529 3530 free_hma: 3531 adap_free_hma_mem(adapter); 3532 return ret; 3533 } 3534 3535 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3536 { 3537 u32 v; 3538 int ret; 3539 3540 /* Now that we've successfully configured and initialized the adapter 3541 * can ask the Firmware what resources it has provisioned for us. 3542 */ 3543 ret = t4_get_pfres(adap); 3544 if (ret) { 3545 dev_err(adap->pdev_dev, 3546 "Unable to retrieve resource provisioning information\n"); 3547 return ret; 3548 } 3549 3550 /* get device capabilities */ 3551 memset(c, 0, sizeof(*c)); 3552 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3553 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3554 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3555 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3556 if (ret < 0) 3557 return ret; 3558 3559 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3560 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3561 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3562 if (ret < 0) 3563 return ret; 3564 3565 ret = t4_config_glbl_rss(adap, adap->pf, 3566 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3567 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3568 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3569 if (ret < 0) 3570 return ret; 3571 3572 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3573 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3574 FW_CMD_CAP_PF); 3575 if (ret < 0) 3576 return ret; 3577 3578 t4_sge_init(adap); 3579 3580 /* tweak some settings */ 3581 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3582 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3583 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3584 v = t4_read_reg(adap, TP_PIO_DATA_A); 3585 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3586 3587 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3588 adap->params.tp.tx_modq_map = 0xE4; 3589 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3590 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3591 3592 /* associate each Tx modulation queue with consecutive Tx channels */ 3593 v = 0x84218421; 3594 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3595 &v, 1, TP_TX_SCHED_HDR_A); 3596 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3597 &v, 1, TP_TX_SCHED_FIFO_A); 3598 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3599 &v, 1, TP_TX_SCHED_PCMD_A); 3600 3601 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3602 if (is_offload(adap)) { 3603 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3604 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3605 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3606 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3607 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3608 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3609 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3610 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3611 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3612 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3613 } 3614 3615 /* get basic stuff going */ 3616 return t4_early_init(adap, adap->pf); 3617 } 3618 3619 /* 3620 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3621 */ 3622 #define MAX_ATIDS 8192U 3623 3624 /* 3625 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3626 * 3627 * If the firmware we're dealing with has Configuration File support, then 3628 * we use that to perform all configuration 3629 */ 3630 3631 /* 3632 * Tweak configuration based on module parameters, etc. Most of these have 3633 * defaults assigned to them by Firmware Configuration Files (if we're using 3634 * them) but need to be explicitly set if we're using hard-coded 3635 * initialization. But even in the case of using Firmware Configuration 3636 * Files, we'd like to expose the ability to change these via module 3637 * parameters so these are essentially common tweaks/settings for 3638 * Configuration Files and hard-coded initialization ... 3639 */ 3640 static int adap_init0_tweaks(struct adapter *adapter) 3641 { 3642 /* 3643 * Fix up various Host-Dependent Parameters like Page Size, Cache 3644 * Line Size, etc. The firmware default is for a 4KB Page Size and 3645 * 64B Cache Line Size ... 3646 */ 3647 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3648 3649 /* 3650 * Process module parameters which affect early initialization. 3651 */ 3652 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3653 dev_err(&adapter->pdev->dev, 3654 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3655 rx_dma_offset); 3656 rx_dma_offset = 2; 3657 } 3658 t4_set_reg_field(adapter, SGE_CONTROL_A, 3659 PKTSHIFT_V(PKTSHIFT_M), 3660 PKTSHIFT_V(rx_dma_offset)); 3661 3662 /* 3663 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3664 * adds the pseudo header itself. 3665 */ 3666 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3667 CSUM_HAS_PSEUDO_HDR_F, 0); 3668 3669 return 0; 3670 } 3671 3672 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3673 * unto themselves and they contain their own firmware to perform their 3674 * tasks ... 3675 */ 3676 static int phy_aq1202_version(const u8 *phy_fw_data, 3677 size_t phy_fw_size) 3678 { 3679 int offset; 3680 3681 /* At offset 0x8 you're looking for the primary image's 3682 * starting offset which is 3 Bytes wide 3683 * 3684 * At offset 0xa of the primary image, you look for the offset 3685 * of the DRAM segment which is 3 Bytes wide. 3686 * 3687 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3688 * wide 3689 */ 3690 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3691 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3692 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3693 3694 offset = le24(phy_fw_data + 0x8) << 12; 3695 offset = le24(phy_fw_data + offset + 0xa); 3696 return be16(phy_fw_data + offset + 0x27e); 3697 3698 #undef be16 3699 #undef le16 3700 #undef le24 3701 } 3702 3703 static struct info_10gbt_phy_fw { 3704 unsigned int phy_fw_id; /* PCI Device ID */ 3705 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3706 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3707 int phy_flash; /* Has FLASH for PHY Firmware */ 3708 } phy_info_array[] = { 3709 { 3710 PHY_AQ1202_DEVICEID, 3711 PHY_AQ1202_FIRMWARE, 3712 phy_aq1202_version, 3713 1, 3714 }, 3715 { 3716 PHY_BCM84834_DEVICEID, 3717 PHY_BCM84834_FIRMWARE, 3718 NULL, 3719 0, 3720 }, 3721 { 0, NULL, NULL }, 3722 }; 3723 3724 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3725 { 3726 int i; 3727 3728 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3729 if (phy_info_array[i].phy_fw_id == devid) 3730 return &phy_info_array[i]; 3731 } 3732 return NULL; 3733 } 3734 3735 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3736 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3737 * we return a negative error number. If we transfer new firmware we return 1 3738 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3739 */ 3740 static int adap_init0_phy(struct adapter *adap) 3741 { 3742 const struct firmware *phyf; 3743 int ret; 3744 struct info_10gbt_phy_fw *phy_info; 3745 3746 /* Use the device ID to determine which PHY file to flash. 3747 */ 3748 phy_info = find_phy_info(adap->pdev->device); 3749 if (!phy_info) { 3750 dev_warn(adap->pdev_dev, 3751 "No PHY Firmware file found for this PHY\n"); 3752 return -EOPNOTSUPP; 3753 } 3754 3755 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3756 * use that. The adapter firmware provides us with a memory buffer 3757 * where we can load a PHY firmware file from the host if we want to 3758 * override the PHY firmware File in flash. 3759 */ 3760 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3761 adap->pdev_dev); 3762 if (ret < 0) { 3763 /* For adapters without FLASH attached to PHY for their 3764 * firmware, it's obviously a fatal error if we can't get the 3765 * firmware to the adapter. For adapters with PHY firmware 3766 * FLASH storage, it's worth a warning if we can't find the 3767 * PHY Firmware but we'll neuter the error ... 3768 */ 3769 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3770 "/lib/firmware/%s, error %d\n", 3771 phy_info->phy_fw_file, -ret); 3772 if (phy_info->phy_flash) { 3773 int cur_phy_fw_ver = 0; 3774 3775 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3776 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3777 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3778 ret = 0; 3779 } 3780 3781 return ret; 3782 } 3783 3784 /* Load PHY Firmware onto adapter. 3785 */ 3786 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3787 phy_info->phy_fw_version, 3788 (u8 *)phyf->data, phyf->size); 3789 if (ret < 0) 3790 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3791 -ret); 3792 else if (ret > 0) { 3793 int new_phy_fw_ver = 0; 3794 3795 if (phy_info->phy_fw_version) 3796 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3797 phyf->size); 3798 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3799 "Firmware /lib/firmware/%s, version %#x\n", 3800 phy_info->phy_fw_file, new_phy_fw_ver); 3801 } 3802 3803 release_firmware(phyf); 3804 3805 return ret; 3806 } 3807 3808 /* 3809 * Attempt to initialize the adapter via a Firmware Configuration File. 3810 */ 3811 static int adap_init0_config(struct adapter *adapter, int reset) 3812 { 3813 struct fw_caps_config_cmd caps_cmd; 3814 const struct firmware *cf; 3815 unsigned long mtype = 0, maddr = 0; 3816 u32 finiver, finicsum, cfcsum; 3817 int ret; 3818 int config_issued = 0; 3819 char *fw_config_file, fw_config_file_path[256]; 3820 char *config_name = NULL; 3821 3822 /* 3823 * Reset device if necessary. 3824 */ 3825 if (reset) { 3826 ret = t4_fw_reset(adapter, adapter->mbox, 3827 PIORSTMODE_F | PIORST_F); 3828 if (ret < 0) 3829 goto bye; 3830 } 3831 3832 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3833 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3834 * to be performed after any global adapter RESET above since some 3835 * PHYs only have local RAM copies of the PHY firmware. 3836 */ 3837 if (is_10gbt_device(adapter->pdev->device)) { 3838 ret = adap_init0_phy(adapter); 3839 if (ret < 0) 3840 goto bye; 3841 } 3842 /* 3843 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3844 * then use that. Otherwise, use the configuration file stored 3845 * in the adapter flash ... 3846 */ 3847 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3848 case CHELSIO_T4: 3849 fw_config_file = FW4_CFNAME; 3850 break; 3851 case CHELSIO_T5: 3852 fw_config_file = FW5_CFNAME; 3853 break; 3854 case CHELSIO_T6: 3855 fw_config_file = FW6_CFNAME; 3856 break; 3857 default: 3858 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3859 adapter->pdev->device); 3860 ret = -EINVAL; 3861 goto bye; 3862 } 3863 3864 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3865 if (ret < 0) { 3866 config_name = "On FLASH"; 3867 mtype = FW_MEMTYPE_CF_FLASH; 3868 maddr = t4_flash_cfg_addr(adapter); 3869 } else { 3870 u32 params[7], val[7]; 3871 3872 sprintf(fw_config_file_path, 3873 "/lib/firmware/%s", fw_config_file); 3874 config_name = fw_config_file_path; 3875 3876 if (cf->size >= FLASH_CFG_MAX_SIZE) 3877 ret = -ENOMEM; 3878 else { 3879 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3880 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3881 ret = t4_query_params(adapter, adapter->mbox, 3882 adapter->pf, 0, 1, params, val); 3883 if (ret == 0) { 3884 /* 3885 * For t4_memory_rw() below addresses and 3886 * sizes have to be in terms of multiples of 4 3887 * bytes. So, if the Configuration File isn't 3888 * a multiple of 4 bytes in length we'll have 3889 * to write that out separately since we can't 3890 * guarantee that the bytes following the 3891 * residual byte in the buffer returned by 3892 * request_firmware() are zeroed out ... 3893 */ 3894 size_t resid = cf->size & 0x3; 3895 size_t size = cf->size & ~0x3; 3896 __be32 *data = (__be32 *)cf->data; 3897 3898 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3899 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3900 3901 spin_lock(&adapter->win0_lock); 3902 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3903 size, data, T4_MEMORY_WRITE); 3904 if (ret == 0 && resid != 0) { 3905 union { 3906 __be32 word; 3907 char buf[4]; 3908 } last; 3909 int i; 3910 3911 last.word = data[size >> 2]; 3912 for (i = resid; i < 4; i++) 3913 last.buf[i] = 0; 3914 ret = t4_memory_rw(adapter, 0, mtype, 3915 maddr + size, 3916 4, &last.word, 3917 T4_MEMORY_WRITE); 3918 } 3919 spin_unlock(&adapter->win0_lock); 3920 } 3921 } 3922 3923 release_firmware(cf); 3924 if (ret) 3925 goto bye; 3926 } 3927 3928 /* 3929 * Issue a Capability Configuration command to the firmware to get it 3930 * to parse the Configuration File. We don't use t4_fw_config_file() 3931 * because we want the ability to modify various features after we've 3932 * processed the configuration file ... 3933 */ 3934 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3935 caps_cmd.op_to_write = 3936 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3937 FW_CMD_REQUEST_F | 3938 FW_CMD_READ_F); 3939 caps_cmd.cfvalid_to_len16 = 3940 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3941 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3942 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3943 FW_LEN16(caps_cmd)); 3944 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3945 &caps_cmd); 3946 3947 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3948 * Configuration File in FLASH), our last gasp effort is to use the 3949 * Firmware Configuration File which is embedded in the firmware. A 3950 * very few early versions of the firmware didn't have one embedded 3951 * but we can ignore those. 3952 */ 3953 if (ret == -ENOENT) { 3954 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3955 caps_cmd.op_to_write = 3956 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3957 FW_CMD_REQUEST_F | 3958 FW_CMD_READ_F); 3959 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3960 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3961 sizeof(caps_cmd), &caps_cmd); 3962 config_name = "Firmware Default"; 3963 } 3964 3965 config_issued = 1; 3966 if (ret < 0) 3967 goto bye; 3968 3969 finiver = ntohl(caps_cmd.finiver); 3970 finicsum = ntohl(caps_cmd.finicsum); 3971 cfcsum = ntohl(caps_cmd.cfcsum); 3972 if (finicsum != cfcsum) 3973 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3974 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3975 finicsum, cfcsum); 3976 3977 /* 3978 * And now tell the firmware to use the configuration we just loaded. 3979 */ 3980 caps_cmd.op_to_write = 3981 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3982 FW_CMD_REQUEST_F | 3983 FW_CMD_WRITE_F); 3984 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3985 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3986 NULL); 3987 if (ret < 0) 3988 goto bye; 3989 3990 /* 3991 * Tweak configuration based on system architecture, module 3992 * parameters, etc. 3993 */ 3994 ret = adap_init0_tweaks(adapter); 3995 if (ret < 0) 3996 goto bye; 3997 3998 /* We will proceed even if HMA init fails. */ 3999 ret = adap_config_hma(adapter); 4000 if (ret) 4001 dev_err(adapter->pdev_dev, 4002 "HMA configuration failed with error %d\n", ret); 4003 4004 /* 4005 * And finally tell the firmware to initialize itself using the 4006 * parameters from the Configuration File. 4007 */ 4008 ret = t4_fw_initialize(adapter, adapter->mbox); 4009 if (ret < 0) 4010 goto bye; 4011 4012 /* Emit Firmware Configuration File information and return 4013 * successfully. 4014 */ 4015 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4016 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4017 config_name, finiver, cfcsum); 4018 return 0; 4019 4020 /* 4021 * Something bad happened. Return the error ... (If the "error" 4022 * is that there's no Configuration File on the adapter we don't 4023 * want to issue a warning since this is fairly common.) 4024 */ 4025 bye: 4026 if (config_issued && ret != -ENOENT) 4027 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4028 config_name, -ret); 4029 return ret; 4030 } 4031 4032 static struct fw_info fw_info_array[] = { 4033 { 4034 .chip = CHELSIO_T4, 4035 .fs_name = FW4_CFNAME, 4036 .fw_mod_name = FW4_FNAME, 4037 .fw_hdr = { 4038 .chip = FW_HDR_CHIP_T4, 4039 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4040 .intfver_nic = FW_INTFVER(T4, NIC), 4041 .intfver_vnic = FW_INTFVER(T4, VNIC), 4042 .intfver_ri = FW_INTFVER(T4, RI), 4043 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4044 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4045 }, 4046 }, { 4047 .chip = CHELSIO_T5, 4048 .fs_name = FW5_CFNAME, 4049 .fw_mod_name = FW5_FNAME, 4050 .fw_hdr = { 4051 .chip = FW_HDR_CHIP_T5, 4052 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4053 .intfver_nic = FW_INTFVER(T5, NIC), 4054 .intfver_vnic = FW_INTFVER(T5, VNIC), 4055 .intfver_ri = FW_INTFVER(T5, RI), 4056 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4057 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4058 }, 4059 }, { 4060 .chip = CHELSIO_T6, 4061 .fs_name = FW6_CFNAME, 4062 .fw_mod_name = FW6_FNAME, 4063 .fw_hdr = { 4064 .chip = FW_HDR_CHIP_T6, 4065 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4066 .intfver_nic = FW_INTFVER(T6, NIC), 4067 .intfver_vnic = FW_INTFVER(T6, VNIC), 4068 .intfver_ofld = FW_INTFVER(T6, OFLD), 4069 .intfver_ri = FW_INTFVER(T6, RI), 4070 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4071 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4072 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4073 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4074 }, 4075 } 4076 4077 }; 4078 4079 static struct fw_info *find_fw_info(int chip) 4080 { 4081 int i; 4082 4083 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4084 if (fw_info_array[i].chip == chip) 4085 return &fw_info_array[i]; 4086 } 4087 return NULL; 4088 } 4089 4090 /* 4091 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4092 */ 4093 static int adap_init0(struct adapter *adap) 4094 { 4095 int ret; 4096 u32 v, port_vec; 4097 enum dev_state state; 4098 u32 params[7], val[7]; 4099 struct fw_caps_config_cmd caps_cmd; 4100 int reset = 1; 4101 4102 /* Grab Firmware Device Log parameters as early as possible so we have 4103 * access to it for debugging, etc. 4104 */ 4105 ret = t4_init_devlog_params(adap); 4106 if (ret < 0) 4107 return ret; 4108 4109 /* Contact FW, advertising Master capability */ 4110 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4111 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4112 if (ret < 0) { 4113 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4114 ret); 4115 return ret; 4116 } 4117 if (ret == adap->mbox) 4118 adap->flags |= MASTER_PF; 4119 4120 /* 4121 * If we're the Master PF Driver and the device is uninitialized, 4122 * then let's consider upgrading the firmware ... (We always want 4123 * to check the firmware version number in order to A. get it for 4124 * later reporting and B. to warn if the currently loaded firmware 4125 * is excessively mismatched relative to the driver.) 4126 */ 4127 4128 t4_get_version_info(adap); 4129 ret = t4_check_fw_version(adap); 4130 /* If firmware is too old (not supported by driver) force an update. */ 4131 if (ret) 4132 state = DEV_STATE_UNINIT; 4133 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 4134 struct fw_info *fw_info; 4135 struct fw_hdr *card_fw; 4136 const struct firmware *fw; 4137 const u8 *fw_data = NULL; 4138 unsigned int fw_size = 0; 4139 4140 /* This is the firmware whose headers the driver was compiled 4141 * against 4142 */ 4143 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4144 if (fw_info == NULL) { 4145 dev_err(adap->pdev_dev, 4146 "unable to get firmware info for chip %d.\n", 4147 CHELSIO_CHIP_VERSION(adap->params.chip)); 4148 return -EINVAL; 4149 } 4150 4151 /* allocate memory to read the header of the firmware on the 4152 * card 4153 */ 4154 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4155 if (!card_fw) { 4156 ret = -ENOMEM; 4157 goto bye; 4158 } 4159 4160 /* Get FW from from /lib/firmware/ */ 4161 ret = request_firmware(&fw, fw_info->fw_mod_name, 4162 adap->pdev_dev); 4163 if (ret < 0) { 4164 dev_err(adap->pdev_dev, 4165 "unable to load firmware image %s, error %d\n", 4166 fw_info->fw_mod_name, ret); 4167 } else { 4168 fw_data = fw->data; 4169 fw_size = fw->size; 4170 } 4171 4172 /* upgrade FW logic */ 4173 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4174 state, &reset); 4175 4176 /* Cleaning up */ 4177 release_firmware(fw); 4178 kvfree(card_fw); 4179 4180 if (ret < 0) 4181 goto bye; 4182 } 4183 4184 /* If the firmware is initialized already, emit a simply note to that 4185 * effect. Otherwise, it's time to try initializing the adapter. 4186 */ 4187 if (state == DEV_STATE_INIT) { 4188 ret = adap_config_hma(adap); 4189 if (ret) 4190 dev_err(adap->pdev_dev, 4191 "HMA configuration failed with error %d\n", 4192 ret); 4193 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4194 "Adapter already initialized\n", 4195 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 4196 } else { 4197 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4198 "Initializing adapter\n"); 4199 4200 /* Find out whether we're dealing with a version of the 4201 * firmware which has configuration file support. 4202 */ 4203 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4204 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4205 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4206 params, val); 4207 4208 /* If the firmware doesn't support Configuration Files, 4209 * return an error. 4210 */ 4211 if (ret < 0) { 4212 dev_err(adap->pdev_dev, "firmware doesn't support " 4213 "Firmware Configuration Files\n"); 4214 goto bye; 4215 } 4216 4217 /* The firmware provides us with a memory buffer where we can 4218 * load a Configuration File from the host if we want to 4219 * override the Configuration File in flash. 4220 */ 4221 ret = adap_init0_config(adap, reset); 4222 if (ret == -ENOENT) { 4223 dev_err(adap->pdev_dev, "no Configuration File " 4224 "present on adapter.\n"); 4225 goto bye; 4226 } 4227 if (ret < 0) { 4228 dev_err(adap->pdev_dev, "could not initialize " 4229 "adapter, error %d\n", -ret); 4230 goto bye; 4231 } 4232 } 4233 4234 /* Now that we've successfully configured and initialized the adapter 4235 * (or found it already initialized), we can ask the Firmware what 4236 * resources it has provisioned for us. 4237 */ 4238 ret = t4_get_pfres(adap); 4239 if (ret) { 4240 dev_err(adap->pdev_dev, 4241 "Unable to retrieve resource provisioning information\n"); 4242 goto bye; 4243 } 4244 4245 /* Grab VPD parameters. This should be done after we establish a 4246 * connection to the firmware since some of the VPD parameters 4247 * (notably the Core Clock frequency) are retrieved via requests to 4248 * the firmware. On the other hand, we need these fairly early on 4249 * so we do this right after getting ahold of the firmware. 4250 * 4251 * We need to do this after initializing the adapter because someone 4252 * could have FLASHed a new VPD which won't be read by the firmware 4253 * until we do the RESET ... 4254 */ 4255 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4256 if (ret < 0) 4257 goto bye; 4258 4259 /* Find out what ports are available to us. Note that we need to do 4260 * this before calling adap_init0_no_config() since it needs nports 4261 * and portvec ... 4262 */ 4263 v = 4264 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4265 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4266 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4267 if (ret < 0) 4268 goto bye; 4269 4270 adap->params.nports = hweight32(port_vec); 4271 adap->params.portvec = port_vec; 4272 4273 /* Give the SGE code a chance to pull in anything that it needs ... 4274 * Note that this must be called after we retrieve our VPD parameters 4275 * in order to know how to convert core ticks to seconds, etc. 4276 */ 4277 ret = t4_sge_init(adap); 4278 if (ret < 0) 4279 goto bye; 4280 4281 if (is_bypass_device(adap->pdev->device)) 4282 adap->params.bypass = 1; 4283 4284 /* 4285 * Grab some of our basic fundamental operating parameters. 4286 */ 4287 #define FW_PARAM_DEV(param) \ 4288 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 4289 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 4290 4291 #define FW_PARAM_PFVF(param) \ 4292 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 4293 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 4294 FW_PARAMS_PARAM_Y_V(0) | \ 4295 FW_PARAMS_PARAM_Z_V(0) 4296 4297 params[0] = FW_PARAM_PFVF(EQ_START); 4298 params[1] = FW_PARAM_PFVF(L2T_START); 4299 params[2] = FW_PARAM_PFVF(L2T_END); 4300 params[3] = FW_PARAM_PFVF(FILTER_START); 4301 params[4] = FW_PARAM_PFVF(FILTER_END); 4302 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4303 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4304 if (ret < 0) 4305 goto bye; 4306 adap->sge.egr_start = val[0]; 4307 adap->l2t_start = val[1]; 4308 adap->l2t_end = val[2]; 4309 adap->tids.ftid_base = val[3]; 4310 adap->tids.nftids = val[4] - val[3] + 1; 4311 adap->sge.ingr_start = val[5]; 4312 4313 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4314 /* Read the raw mps entries. In T6, the last 2 tcam entries 4315 * are reserved for raw mac addresses (rawf = 2, one per port). 4316 */ 4317 params[0] = FW_PARAM_PFVF(RAWF_START); 4318 params[1] = FW_PARAM_PFVF(RAWF_END); 4319 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4320 params, val); 4321 if (ret == 0) { 4322 adap->rawf_start = val[0]; 4323 adap->rawf_cnt = val[1] - val[0] + 1; 4324 } 4325 } 4326 4327 /* qids (ingress/egress) returned from firmware can be anywhere 4328 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 4329 * Hence driver needs to allocate memory for this range to 4330 * store the queue info. Get the highest IQFLINT/EQ index returned 4331 * in FW_EQ_*_CMD.alloc command. 4332 */ 4333 params[0] = FW_PARAM_PFVF(EQ_END); 4334 params[1] = FW_PARAM_PFVF(IQFLINT_END); 4335 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4336 if (ret < 0) 4337 goto bye; 4338 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 4339 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 4340 4341 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 4342 sizeof(*adap->sge.egr_map), GFP_KERNEL); 4343 if (!adap->sge.egr_map) { 4344 ret = -ENOMEM; 4345 goto bye; 4346 } 4347 4348 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 4349 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 4350 if (!adap->sge.ingr_map) { 4351 ret = -ENOMEM; 4352 goto bye; 4353 } 4354 4355 /* Allocate the memory for the vaious egress queue bitmaps 4356 * ie starving_fl, txq_maperr and blocked_fl. 4357 */ 4358 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4359 sizeof(long), GFP_KERNEL); 4360 if (!adap->sge.starving_fl) { 4361 ret = -ENOMEM; 4362 goto bye; 4363 } 4364 4365 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4366 sizeof(long), GFP_KERNEL); 4367 if (!adap->sge.txq_maperr) { 4368 ret = -ENOMEM; 4369 goto bye; 4370 } 4371 4372 #ifdef CONFIG_DEBUG_FS 4373 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4374 sizeof(long), GFP_KERNEL); 4375 if (!adap->sge.blocked_fl) { 4376 ret = -ENOMEM; 4377 goto bye; 4378 } 4379 #endif 4380 4381 params[0] = FW_PARAM_PFVF(CLIP_START); 4382 params[1] = FW_PARAM_PFVF(CLIP_END); 4383 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4384 if (ret < 0) 4385 goto bye; 4386 adap->clipt_start = val[0]; 4387 adap->clipt_end = val[1]; 4388 4389 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 4390 * Classes supported by the hardware/firmware so we hard code it here 4391 * for now. 4392 */ 4393 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 4394 4395 /* query params related to active filter region */ 4396 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 4397 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 4398 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4399 /* If Active filter size is set we enable establishing 4400 * offload connection through firmware work request 4401 */ 4402 if ((val[0] != val[1]) && (ret >= 0)) { 4403 adap->flags |= FW_OFLD_CONN; 4404 adap->tids.aftid_base = val[0]; 4405 adap->tids.aftid_end = val[1]; 4406 } 4407 4408 /* If we're running on newer firmware, let it know that we're 4409 * prepared to deal with encapsulated CPL messages. Older 4410 * firmware won't understand this and we'll just get 4411 * unencapsulated messages ... 4412 */ 4413 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4414 val[0] = 1; 4415 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4416 4417 /* 4418 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 4419 * capability. Earlier versions of the firmware didn't have the 4420 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 4421 * permission to use ULPTX MEMWRITE DSGL. 4422 */ 4423 if (is_t4(adap->params.chip)) { 4424 adap->params.ulptx_memwrite_dsgl = false; 4425 } else { 4426 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4427 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4428 1, params, val); 4429 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4430 } 4431 4432 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 4433 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4434 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4435 1, params, val); 4436 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 4437 4438 /* See if FW supports FW_FILTER2 work request */ 4439 if (is_t4(adap->params.chip)) { 4440 adap->params.filter2_wr_support = 0; 4441 } else { 4442 params[0] = FW_PARAM_DEV(FILTER2_WR); 4443 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4444 1, params, val); 4445 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 4446 } 4447 4448 /* Check if FW supports returning vin and smt index. 4449 * If this is not supported, driver will interpret 4450 * these values from viid. 4451 */ 4452 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 4453 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4454 1, params, val); 4455 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0); 4456 4457 /* 4458 * Get device capabilities so we can determine what resources we need 4459 * to manage. 4460 */ 4461 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4462 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4463 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4464 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4465 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4466 &caps_cmd); 4467 if (ret < 0) 4468 goto bye; 4469 4470 if (caps_cmd.ofldcaps || 4471 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) { 4472 /* query offload-related parameters */ 4473 params[0] = FW_PARAM_DEV(NTID); 4474 params[1] = FW_PARAM_PFVF(SERVER_START); 4475 params[2] = FW_PARAM_PFVF(SERVER_END); 4476 params[3] = FW_PARAM_PFVF(TDDP_START); 4477 params[4] = FW_PARAM_PFVF(TDDP_END); 4478 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4479 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4480 params, val); 4481 if (ret < 0) 4482 goto bye; 4483 adap->tids.ntids = val[0]; 4484 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4485 adap->tids.stid_base = val[1]; 4486 adap->tids.nstids = val[2] - val[1] + 1; 4487 /* 4488 * Setup server filter region. Divide the available filter 4489 * region into two parts. Regular filters get 1/3rd and server 4490 * filters get 2/3rd part. This is only enabled if workarond 4491 * path is enabled. 4492 * 1. For regular filters. 4493 * 2. Server filter: This are special filters which are used 4494 * to redirect SYN packets to offload queue. 4495 */ 4496 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 4497 adap->tids.sftid_base = adap->tids.ftid_base + 4498 DIV_ROUND_UP(adap->tids.nftids, 3); 4499 adap->tids.nsftids = adap->tids.nftids - 4500 DIV_ROUND_UP(adap->tids.nftids, 3); 4501 adap->tids.nftids = adap->tids.sftid_base - 4502 adap->tids.ftid_base; 4503 } 4504 adap->vres.ddp.start = val[3]; 4505 adap->vres.ddp.size = val[4] - val[3] + 1; 4506 adap->params.ofldq_wr_cred = val[5]; 4507 4508 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4509 ret = init_hash_filter(adap); 4510 if (ret < 0) 4511 goto bye; 4512 } else { 4513 adap->params.offload = 1; 4514 adap->num_ofld_uld += 1; 4515 } 4516 } 4517 if (caps_cmd.rdmacaps) { 4518 params[0] = FW_PARAM_PFVF(STAG_START); 4519 params[1] = FW_PARAM_PFVF(STAG_END); 4520 params[2] = FW_PARAM_PFVF(RQ_START); 4521 params[3] = FW_PARAM_PFVF(RQ_END); 4522 params[4] = FW_PARAM_PFVF(PBL_START); 4523 params[5] = FW_PARAM_PFVF(PBL_END); 4524 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4525 params, val); 4526 if (ret < 0) 4527 goto bye; 4528 adap->vres.stag.start = val[0]; 4529 adap->vres.stag.size = val[1] - val[0] + 1; 4530 adap->vres.rq.start = val[2]; 4531 adap->vres.rq.size = val[3] - val[2] + 1; 4532 adap->vres.pbl.start = val[4]; 4533 adap->vres.pbl.size = val[5] - val[4] + 1; 4534 4535 params[0] = FW_PARAM_PFVF(SRQ_START); 4536 params[1] = FW_PARAM_PFVF(SRQ_END); 4537 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4538 params, val); 4539 if (!ret) { 4540 adap->vres.srq.start = val[0]; 4541 adap->vres.srq.size = val[1] - val[0] + 1; 4542 } 4543 if (adap->vres.srq.size) { 4544 adap->srq = t4_init_srq(adap->vres.srq.size); 4545 if (!adap->srq) 4546 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 4547 } 4548 4549 params[0] = FW_PARAM_PFVF(SQRQ_START); 4550 params[1] = FW_PARAM_PFVF(SQRQ_END); 4551 params[2] = FW_PARAM_PFVF(CQ_START); 4552 params[3] = FW_PARAM_PFVF(CQ_END); 4553 params[4] = FW_PARAM_PFVF(OCQ_START); 4554 params[5] = FW_PARAM_PFVF(OCQ_END); 4555 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4556 val); 4557 if (ret < 0) 4558 goto bye; 4559 adap->vres.qp.start = val[0]; 4560 adap->vres.qp.size = val[1] - val[0] + 1; 4561 adap->vres.cq.start = val[2]; 4562 adap->vres.cq.size = val[3] - val[2] + 1; 4563 adap->vres.ocq.start = val[4]; 4564 adap->vres.ocq.size = val[5] - val[4] + 1; 4565 4566 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4567 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4568 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 4569 val); 4570 if (ret < 0) { 4571 adap->params.max_ordird_qp = 8; 4572 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 4573 ret = 0; 4574 } else { 4575 adap->params.max_ordird_qp = val[0]; 4576 adap->params.max_ird_adapter = val[1]; 4577 } 4578 dev_info(adap->pdev_dev, 4579 "max_ordird_qp %d max_ird_adapter %d\n", 4580 adap->params.max_ordird_qp, 4581 adap->params.max_ird_adapter); 4582 4583 /* Enable write_with_immediate if FW supports it */ 4584 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 4585 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4586 val); 4587 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 4588 4589 /* Enable write_cmpl if FW supports it */ 4590 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 4591 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4592 val); 4593 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 4594 adap->num_ofld_uld += 2; 4595 } 4596 if (caps_cmd.iscsicaps) { 4597 params[0] = FW_PARAM_PFVF(ISCSI_START); 4598 params[1] = FW_PARAM_PFVF(ISCSI_END); 4599 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4600 params, val); 4601 if (ret < 0) 4602 goto bye; 4603 adap->vres.iscsi.start = val[0]; 4604 adap->vres.iscsi.size = val[1] - val[0] + 1; 4605 /* LIO target and cxgb4i initiaitor */ 4606 adap->num_ofld_uld += 2; 4607 } 4608 if (caps_cmd.cryptocaps) { 4609 if (ntohs(caps_cmd.cryptocaps) & 4610 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 4611 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 4612 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4613 2, params, val); 4614 if (ret < 0) { 4615 if (ret != -EINVAL) 4616 goto bye; 4617 } else { 4618 adap->vres.ncrypto_fc = val[0]; 4619 } 4620 adap->num_ofld_uld += 1; 4621 } 4622 if (ntohs(caps_cmd.cryptocaps) & 4623 FW_CAPS_CONFIG_TLS_INLINE) { 4624 params[0] = FW_PARAM_PFVF(TLS_START); 4625 params[1] = FW_PARAM_PFVF(TLS_END); 4626 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4627 2, params, val); 4628 if (ret < 0) 4629 goto bye; 4630 adap->vres.key.start = val[0]; 4631 adap->vres.key.size = val[1] - val[0] + 1; 4632 adap->num_uld += 1; 4633 } 4634 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 4635 } 4636 #undef FW_PARAM_PFVF 4637 #undef FW_PARAM_DEV 4638 4639 /* The MTU/MSS Table is initialized by now, so load their values. If 4640 * we're initializing the adapter, then we'll make any modifications 4641 * we want to the MTU/MSS Table and also initialize the congestion 4642 * parameters. 4643 */ 4644 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4645 if (state != DEV_STATE_INIT) { 4646 int i; 4647 4648 /* The default MTU Table contains values 1492 and 1500. 4649 * However, for TCP, it's better to have two values which are 4650 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4651 * This allows us to have a TCP Data Payload which is a 4652 * multiple of 8 regardless of what combination of TCP Options 4653 * are in use (always a multiple of 4 bytes) which is 4654 * important for performance reasons. For instance, if no 4655 * options are in use, then we have a 20-byte IP header and a 4656 * 20-byte TCP header. In this case, a 1500-byte MSS would 4657 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4658 * which is not a multiple of 8. So using an MSS of 1488 in 4659 * this case results in a TCP Data Payload of 1448 bytes which 4660 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4661 * Stamps have been negotiated, then an MTU of 1500 bytes 4662 * results in a TCP Data Payload of 1448 bytes which, as 4663 * above, is a multiple of 8 bytes ... 4664 */ 4665 for (i = 0; i < NMTUS; i++) 4666 if (adap->params.mtus[i] == 1492) { 4667 adap->params.mtus[i] = 1488; 4668 break; 4669 } 4670 4671 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4672 adap->params.b_wnd); 4673 } 4674 t4_init_sge_params(adap); 4675 adap->flags |= FW_OK; 4676 t4_init_tp_params(adap, true); 4677 return 0; 4678 4679 /* 4680 * Something bad happened. If a command timed out or failed with EIO 4681 * FW does not operate within its spec or something catastrophic 4682 * happened to HW/FW, stop issuing commands. 4683 */ 4684 bye: 4685 adap_free_hma_mem(adap); 4686 kfree(adap->sge.egr_map); 4687 kfree(adap->sge.ingr_map); 4688 kfree(adap->sge.starving_fl); 4689 kfree(adap->sge.txq_maperr); 4690 #ifdef CONFIG_DEBUG_FS 4691 kfree(adap->sge.blocked_fl); 4692 #endif 4693 if (ret != -ETIMEDOUT && ret != -EIO) 4694 t4_fw_bye(adap, adap->mbox); 4695 return ret; 4696 } 4697 4698 /* EEH callbacks */ 4699 4700 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4701 pci_channel_state_t state) 4702 { 4703 int i; 4704 struct adapter *adap = pci_get_drvdata(pdev); 4705 4706 if (!adap) 4707 goto out; 4708 4709 rtnl_lock(); 4710 adap->flags &= ~FW_OK; 4711 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4712 spin_lock(&adap->stats_lock); 4713 for_each_port(adap, i) { 4714 struct net_device *dev = adap->port[i]; 4715 if (dev) { 4716 netif_device_detach(dev); 4717 netif_carrier_off(dev); 4718 } 4719 } 4720 spin_unlock(&adap->stats_lock); 4721 disable_interrupts(adap); 4722 if (adap->flags & FULL_INIT_DONE) 4723 cxgb_down(adap); 4724 rtnl_unlock(); 4725 if ((adap->flags & DEV_ENABLED)) { 4726 pci_disable_device(pdev); 4727 adap->flags &= ~DEV_ENABLED; 4728 } 4729 out: return state == pci_channel_io_perm_failure ? 4730 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4731 } 4732 4733 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4734 { 4735 int i, ret; 4736 struct fw_caps_config_cmd c; 4737 struct adapter *adap = pci_get_drvdata(pdev); 4738 4739 if (!adap) { 4740 pci_restore_state(pdev); 4741 pci_save_state(pdev); 4742 return PCI_ERS_RESULT_RECOVERED; 4743 } 4744 4745 if (!(adap->flags & DEV_ENABLED)) { 4746 if (pci_enable_device(pdev)) { 4747 dev_err(&pdev->dev, "Cannot reenable PCI " 4748 "device after reset\n"); 4749 return PCI_ERS_RESULT_DISCONNECT; 4750 } 4751 adap->flags |= DEV_ENABLED; 4752 } 4753 4754 pci_set_master(pdev); 4755 pci_restore_state(pdev); 4756 pci_save_state(pdev); 4757 4758 if (t4_wait_dev_ready(adap->regs) < 0) 4759 return PCI_ERS_RESULT_DISCONNECT; 4760 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4761 return PCI_ERS_RESULT_DISCONNECT; 4762 adap->flags |= FW_OK; 4763 if (adap_init1(adap, &c)) 4764 return PCI_ERS_RESULT_DISCONNECT; 4765 4766 for_each_port(adap, i) { 4767 struct port_info *pi = adap2pinfo(adap, i); 4768 u8 vivld = 0, vin = 0; 4769 4770 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1, 4771 NULL, NULL, &vivld, &vin); 4772 if (ret < 0) 4773 return PCI_ERS_RESULT_DISCONNECT; 4774 pi->viid = ret; 4775 pi->xact_addr_filt = -1; 4776 /* If fw supports returning the VIN as part of FW_VI_CMD, 4777 * save the returned values. 4778 */ 4779 if (adap->params.viid_smt_extn_support) { 4780 pi->vivld = vivld; 4781 pi->vin = vin; 4782 } else { 4783 /* Retrieve the values from VIID */ 4784 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 4785 pi->vin = FW_VIID_VIN_G(pi->viid); 4786 } 4787 } 4788 4789 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4790 adap->params.b_wnd); 4791 setup_memwin(adap); 4792 if (cxgb_up(adap)) 4793 return PCI_ERS_RESULT_DISCONNECT; 4794 return PCI_ERS_RESULT_RECOVERED; 4795 } 4796 4797 static void eeh_resume(struct pci_dev *pdev) 4798 { 4799 int i; 4800 struct adapter *adap = pci_get_drvdata(pdev); 4801 4802 if (!adap) 4803 return; 4804 4805 rtnl_lock(); 4806 for_each_port(adap, i) { 4807 struct net_device *dev = adap->port[i]; 4808 if (dev) { 4809 if (netif_running(dev)) { 4810 link_start(dev); 4811 cxgb_set_rxmode(dev); 4812 } 4813 netif_device_attach(dev); 4814 } 4815 } 4816 rtnl_unlock(); 4817 } 4818 4819 static const struct pci_error_handlers cxgb4_eeh = { 4820 .error_detected = eeh_err_detected, 4821 .slot_reset = eeh_slot_reset, 4822 .resume = eeh_resume, 4823 }; 4824 4825 /* Return true if the Link Configuration supports "High Speeds" (those greater 4826 * than 1Gb/s). 4827 */ 4828 static inline bool is_x_10g_port(const struct link_config *lc) 4829 { 4830 unsigned int speeds, high_speeds; 4831 4832 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 4833 high_speeds = speeds & 4834 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 4835 4836 return high_speeds != 0; 4837 } 4838 4839 /* 4840 * Perform default configuration of DMA queues depending on the number and type 4841 * of ports we found and the number of available CPUs. Most settings can be 4842 * modified by the admin prior to actual use. 4843 */ 4844 static int cfg_queues(struct adapter *adap) 4845 { 4846 struct sge *s = &adap->sge; 4847 int i, n10g = 0, qidx = 0; 4848 int niqflint, neq, avail_eth_qsets; 4849 int max_eth_qsets = 32; 4850 #ifndef CONFIG_CHELSIO_T4_DCB 4851 int q10g = 0; 4852 #endif 4853 4854 /* Reduce memory usage in kdump environment, disable all offload. 4855 */ 4856 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 4857 adap->params.offload = 0; 4858 adap->params.crypto = 0; 4859 } 4860 4861 /* Calculate the number of Ethernet Queue Sets available based on 4862 * resources provisioned for us. We always have an Asynchronous 4863 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 4864 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 4865 * Ingress Queue. Meanwhile, we need two Egress Queues for each 4866 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 4867 * 4868 * Note that we should also take into account all of the various 4869 * Offload Queues. But, in any situation where we're operating in 4870 * a Resource Constrained Provisioning environment, doing any Offload 4871 * at all is problematic ... 4872 */ 4873 niqflint = adap->params.pfres.niqflint - 1; 4874 if (!(adap->flags & USING_MSIX)) 4875 niqflint--; 4876 neq = adap->params.pfres.neq / 2; 4877 avail_eth_qsets = min(niqflint, neq); 4878 4879 if (avail_eth_qsets > max_eth_qsets) 4880 avail_eth_qsets = max_eth_qsets; 4881 4882 if (avail_eth_qsets < adap->params.nports) { 4883 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 4884 avail_eth_qsets, adap->params.nports); 4885 return -ENOMEM; 4886 } 4887 4888 /* Count the number of 10Gb/s or better ports */ 4889 for_each_port(adap, i) 4890 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4891 4892 #ifdef CONFIG_CHELSIO_T4_DCB 4893 /* For Data Center Bridging support we need to be able to support up 4894 * to 8 Traffic Priorities; each of which will be assigned to its 4895 * own TX Queue in order to prevent Head-Of-Line Blocking. 4896 */ 4897 if (adap->params.nports * 8 > avail_eth_qsets) { 4898 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 4899 avail_eth_qsets, adap->params.nports * 8); 4900 return -ENOMEM; 4901 } 4902 4903 for_each_port(adap, i) { 4904 struct port_info *pi = adap2pinfo(adap, i); 4905 4906 pi->first_qset = qidx; 4907 pi->nqsets = is_kdump_kernel() ? 1 : 8; 4908 qidx += pi->nqsets; 4909 } 4910 #else /* !CONFIG_CHELSIO_T4_DCB */ 4911 /* 4912 * We default to 1 queue per non-10G port and up to # of cores queues 4913 * per 10G port. 4914 */ 4915 if (n10g) 4916 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 4917 if (q10g > netif_get_num_default_rss_queues()) 4918 q10g = netif_get_num_default_rss_queues(); 4919 4920 if (is_kdump_kernel()) 4921 q10g = 1; 4922 4923 for_each_port(adap, i) { 4924 struct port_info *pi = adap2pinfo(adap, i); 4925 4926 pi->first_qset = qidx; 4927 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4928 qidx += pi->nqsets; 4929 } 4930 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4931 4932 s->ethqsets = qidx; 4933 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4934 4935 if (is_uld(adap)) { 4936 /* 4937 * For offload we use 1 queue/channel if all ports are up to 1G, 4938 * otherwise we divide all available queues amongst the channels 4939 * capped by the number of available cores. 4940 */ 4941 if (n10g) { 4942 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 4943 s->ofldqsets = roundup(i, adap->params.nports); 4944 } else { 4945 s->ofldqsets = adap->params.nports; 4946 } 4947 } 4948 4949 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4950 struct sge_eth_rxq *r = &s->ethrxq[i]; 4951 4952 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4953 r->fl.size = 72; 4954 } 4955 4956 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4957 s->ethtxq[i].q.size = 1024; 4958 4959 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4960 s->ctrlq[i].q.size = 512; 4961 4962 if (!is_t4(adap->params.chip)) 4963 s->ptptxq.q.size = 8; 4964 4965 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4966 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 4967 4968 return 0; 4969 } 4970 4971 /* 4972 * Reduce the number of Ethernet queues across all ports to at most n. 4973 * n provides at least one queue per port. 4974 */ 4975 static void reduce_ethqs(struct adapter *adap, int n) 4976 { 4977 int i; 4978 struct port_info *pi; 4979 4980 while (n < adap->sge.ethqsets) 4981 for_each_port(adap, i) { 4982 pi = adap2pinfo(adap, i); 4983 if (pi->nqsets > 1) { 4984 pi->nqsets--; 4985 adap->sge.ethqsets--; 4986 if (adap->sge.ethqsets <= n) 4987 break; 4988 } 4989 } 4990 4991 n = 0; 4992 for_each_port(adap, i) { 4993 pi = adap2pinfo(adap, i); 4994 pi->first_qset = n; 4995 n += pi->nqsets; 4996 } 4997 } 4998 4999 static int get_msix_info(struct adapter *adap) 5000 { 5001 struct uld_msix_info *msix_info; 5002 unsigned int max_ingq = 0; 5003 5004 if (is_offload(adap)) 5005 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 5006 if (is_pci_uld(adap)) 5007 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 5008 5009 if (!max_ingq) 5010 goto out; 5011 5012 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 5013 if (!msix_info) 5014 return -ENOMEM; 5015 5016 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 5017 sizeof(long), GFP_KERNEL); 5018 if (!adap->msix_bmap_ulds.msix_bmap) { 5019 kfree(msix_info); 5020 return -ENOMEM; 5021 } 5022 spin_lock_init(&adap->msix_bmap_ulds.lock); 5023 adap->msix_info_ulds = msix_info; 5024 out: 5025 return 0; 5026 } 5027 5028 static void free_msix_info(struct adapter *adap) 5029 { 5030 if (!(adap->num_uld && adap->num_ofld_uld)) 5031 return; 5032 5033 kfree(adap->msix_info_ulds); 5034 kfree(adap->msix_bmap_ulds.msix_bmap); 5035 } 5036 5037 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5038 #define EXTRA_VECS 2 5039 5040 static int enable_msix(struct adapter *adap) 5041 { 5042 int ofld_need = 0, uld_need = 0; 5043 int i, j, want, need, allocated; 5044 struct sge *s = &adap->sge; 5045 unsigned int nchan = adap->params.nports; 5046 struct msix_entry *entries; 5047 int max_ingq = MAX_INGQ; 5048 5049 if (is_pci_uld(adap)) 5050 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 5051 if (is_offload(adap)) 5052 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 5053 entries = kmalloc_array(max_ingq + 1, sizeof(*entries), 5054 GFP_KERNEL); 5055 if (!entries) 5056 return -ENOMEM; 5057 5058 /* map for msix */ 5059 if (get_msix_info(adap)) { 5060 adap->params.offload = 0; 5061 adap->params.crypto = 0; 5062 } 5063 5064 for (i = 0; i < max_ingq + 1; ++i) 5065 entries[i].entry = i; 5066 5067 want = s->max_ethqsets + EXTRA_VECS; 5068 if (is_offload(adap)) { 5069 want += adap->num_ofld_uld * s->ofldqsets; 5070 ofld_need = adap->num_ofld_uld * nchan; 5071 } 5072 if (is_pci_uld(adap)) { 5073 want += adap->num_uld * s->ofldqsets; 5074 uld_need = adap->num_uld * nchan; 5075 } 5076 #ifdef CONFIG_CHELSIO_T4_DCB 5077 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5078 * each port. 5079 */ 5080 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5081 #else 5082 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5083 #endif 5084 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5085 if (allocated < 0) { 5086 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 5087 " not using MSI-X\n"); 5088 kfree(entries); 5089 return allocated; 5090 } 5091 5092 /* Distribute available vectors to the various queue groups. 5093 * Every group gets its minimum requirement and NIC gets top 5094 * priority for leftovers. 5095 */ 5096 i = allocated - EXTRA_VECS - ofld_need - uld_need; 5097 if (i < s->max_ethqsets) { 5098 s->max_ethqsets = i; 5099 if (i < s->ethqsets) 5100 reduce_ethqs(adap, i); 5101 } 5102 if (is_uld(adap)) { 5103 if (allocated < want) 5104 s->nqs_per_uld = nchan; 5105 else 5106 s->nqs_per_uld = s->ofldqsets; 5107 } 5108 5109 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 5110 adap->msix_info[i].vec = entries[i].vector; 5111 if (is_uld(adap)) { 5112 for (j = 0 ; i < allocated; ++i, j++) { 5113 adap->msix_info_ulds[j].vec = entries[i].vector; 5114 adap->msix_info_ulds[j].idx = i; 5115 } 5116 adap->msix_bmap_ulds.mapsize = j; 5117 } 5118 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 5119 "nic %d per uld %d\n", 5120 allocated, s->max_ethqsets, s->nqs_per_uld); 5121 5122 kfree(entries); 5123 return 0; 5124 } 5125 5126 #undef EXTRA_VECS 5127 5128 static int init_rss(struct adapter *adap) 5129 { 5130 unsigned int i; 5131 int err; 5132 5133 err = t4_init_rss_mode(adap, adap->mbox); 5134 if (err) 5135 return err; 5136 5137 for_each_port(adap, i) { 5138 struct port_info *pi = adap2pinfo(adap, i); 5139 5140 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5141 if (!pi->rss) 5142 return -ENOMEM; 5143 } 5144 return 0; 5145 } 5146 5147 /* Dump basic information about the adapter */ 5148 static void print_adapter_info(struct adapter *adapter) 5149 { 5150 /* Hardware/Firmware/etc. Version/Revision IDs */ 5151 t4_dump_version_info(adapter); 5152 5153 /* Software/Hardware configuration */ 5154 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 5155 is_offload(adapter) ? "R" : "", 5156 ((adapter->flags & USING_MSIX) ? "MSI-X" : 5157 (adapter->flags & USING_MSI) ? "MSI" : ""), 5158 is_offload(adapter) ? "Offload" : "non-Offload"); 5159 } 5160 5161 static void print_port_info(const struct net_device *dev) 5162 { 5163 char buf[80]; 5164 char *bufp = buf; 5165 const struct port_info *pi = netdev_priv(dev); 5166 const struct adapter *adap = pi->adapter; 5167 5168 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 5169 bufp += sprintf(bufp, "100M/"); 5170 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 5171 bufp += sprintf(bufp, "1G/"); 5172 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 5173 bufp += sprintf(bufp, "10G/"); 5174 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 5175 bufp += sprintf(bufp, "25G/"); 5176 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 5177 bufp += sprintf(bufp, "40G/"); 5178 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 5179 bufp += sprintf(bufp, "50G/"); 5180 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 5181 bufp += sprintf(bufp, "100G/"); 5182 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 5183 bufp += sprintf(bufp, "200G/"); 5184 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 5185 bufp += sprintf(bufp, "400G/"); 5186 if (bufp != buf) 5187 --bufp; 5188 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 5189 5190 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 5191 dev->name, adap->params.vpd.id, adap->name, buf); 5192 } 5193 5194 /* 5195 * Free the following resources: 5196 * - memory used for tables 5197 * - MSI/MSI-X 5198 * - net devices 5199 * - resources FW is holding for us 5200 */ 5201 static void free_some_resources(struct adapter *adapter) 5202 { 5203 unsigned int i; 5204 5205 kvfree(adapter->mps_encap); 5206 kvfree(adapter->smt); 5207 kvfree(adapter->l2t); 5208 kvfree(adapter->srq); 5209 t4_cleanup_sched(adapter); 5210 kvfree(adapter->tids.tid_tab); 5211 cxgb4_cleanup_tc_flower(adapter); 5212 cxgb4_cleanup_tc_u32(adapter); 5213 kfree(adapter->sge.egr_map); 5214 kfree(adapter->sge.ingr_map); 5215 kfree(adapter->sge.starving_fl); 5216 kfree(adapter->sge.txq_maperr); 5217 #ifdef CONFIG_DEBUG_FS 5218 kfree(adapter->sge.blocked_fl); 5219 #endif 5220 disable_msi(adapter); 5221 5222 for_each_port(adapter, i) 5223 if (adapter->port[i]) { 5224 struct port_info *pi = adap2pinfo(adapter, i); 5225 5226 if (pi->viid != 0) 5227 t4_free_vi(adapter, adapter->mbox, adapter->pf, 5228 0, pi->viid); 5229 kfree(adap2pinfo(adapter, i)->rss); 5230 free_netdev(adapter->port[i]); 5231 } 5232 if (adapter->flags & FW_OK) 5233 t4_fw_bye(adapter, adapter->pf); 5234 } 5235 5236 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 5237 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5238 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5239 #define SEGMENT_SIZE 128 5240 5241 static int t4_get_chip_type(struct adapter *adap, int ver) 5242 { 5243 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 5244 5245 switch (ver) { 5246 case CHELSIO_T4: 5247 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 5248 case CHELSIO_T5: 5249 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 5250 case CHELSIO_T6: 5251 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 5252 default: 5253 break; 5254 } 5255 return -EINVAL; 5256 } 5257 5258 #ifdef CONFIG_PCI_IOV 5259 static void cxgb4_mgmt_setup(struct net_device *dev) 5260 { 5261 dev->type = ARPHRD_NONE; 5262 dev->mtu = 0; 5263 dev->hard_header_len = 0; 5264 dev->addr_len = 0; 5265 dev->tx_queue_len = 0; 5266 dev->flags |= IFF_NOARP; 5267 dev->priv_flags |= IFF_NO_QUEUE; 5268 5269 /* Initialize the device structure. */ 5270 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 5271 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 5272 } 5273 5274 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 5275 { 5276 struct adapter *adap = pci_get_drvdata(pdev); 5277 int err = 0; 5278 int current_vfs = pci_num_vf(pdev); 5279 u32 pcie_fw; 5280 5281 pcie_fw = readl(adap->regs + PCIE_FW_A); 5282 /* Check if fw is initialized */ 5283 if (!(pcie_fw & PCIE_FW_INIT_F)) { 5284 dev_warn(&pdev->dev, "Device not initialized\n"); 5285 return -EOPNOTSUPP; 5286 } 5287 5288 /* If any of the VF's is already assigned to Guest OS, then 5289 * SRIOV for the same cannot be modified 5290 */ 5291 if (current_vfs && pci_vfs_assigned(pdev)) { 5292 dev_err(&pdev->dev, 5293 "Cannot modify SR-IOV while VFs are assigned\n"); 5294 return current_vfs; 5295 } 5296 /* Note that the upper-level code ensures that we're never called with 5297 * a non-zero "num_vfs" when we already have VFs instantiated. But 5298 * it never hurts to code defensively. 5299 */ 5300 if (num_vfs != 0 && current_vfs != 0) 5301 return -EBUSY; 5302 5303 /* Nothing to do for no change. */ 5304 if (num_vfs == current_vfs) 5305 return num_vfs; 5306 5307 /* Disable SRIOV when zero is passed. */ 5308 if (!num_vfs) { 5309 pci_disable_sriov(pdev); 5310 /* free VF Management Interface */ 5311 unregister_netdev(adap->port[0]); 5312 free_netdev(adap->port[0]); 5313 adap->port[0] = NULL; 5314 5315 /* free VF resources */ 5316 adap->num_vfs = 0; 5317 kfree(adap->vfinfo); 5318 adap->vfinfo = NULL; 5319 return 0; 5320 } 5321 5322 if (!current_vfs) { 5323 struct fw_pfvf_cmd port_cmd, port_rpl; 5324 struct net_device *netdev; 5325 unsigned int pmask, port; 5326 struct pci_dev *pbridge; 5327 struct port_info *pi; 5328 char name[IFNAMSIZ]; 5329 u32 devcap2; 5330 u16 flags; 5331 int pos; 5332 5333 /* If we want to instantiate Virtual Functions, then our 5334 * parent bridge's PCI-E needs to support Alternative Routing 5335 * ID (ARI) because our VFs will show up at function offset 8 5336 * and above. 5337 */ 5338 pbridge = pdev->bus->self; 5339 pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP); 5340 pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags); 5341 pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2); 5342 5343 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 5344 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 5345 /* Our parent bridge does not support ARI so issue a 5346 * warning and skip instantiating the VFs. They 5347 * won't be reachable. 5348 */ 5349 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 5350 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 5351 PCI_FUNC(pbridge->devfn)); 5352 return -ENOTSUPP; 5353 } 5354 memset(&port_cmd, 0, sizeof(port_cmd)); 5355 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 5356 FW_CMD_REQUEST_F | 5357 FW_CMD_READ_F | 5358 FW_PFVF_CMD_PFN_V(adap->pf) | 5359 FW_PFVF_CMD_VFN_V(0)); 5360 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 5361 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 5362 &port_rpl); 5363 if (err) 5364 return err; 5365 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 5366 port = ffs(pmask) - 1; 5367 /* Allocate VF Management Interface. */ 5368 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 5369 adap->pf); 5370 netdev = alloc_netdev(sizeof(struct port_info), 5371 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 5372 if (!netdev) 5373 return -ENOMEM; 5374 5375 pi = netdev_priv(netdev); 5376 pi->adapter = adap; 5377 pi->lport = port; 5378 pi->tx_chan = port; 5379 SET_NETDEV_DEV(netdev, &pdev->dev); 5380 5381 adap->port[0] = netdev; 5382 pi->port_id = 0; 5383 5384 err = register_netdev(adap->port[0]); 5385 if (err) { 5386 pr_info("Unable to register VF mgmt netdev %s\n", name); 5387 free_netdev(adap->port[0]); 5388 adap->port[0] = NULL; 5389 return err; 5390 } 5391 /* Allocate and set up VF Information. */ 5392 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 5393 sizeof(struct vf_info), GFP_KERNEL); 5394 if (!adap->vfinfo) { 5395 unregister_netdev(adap->port[0]); 5396 free_netdev(adap->port[0]); 5397 adap->port[0] = NULL; 5398 return -ENOMEM; 5399 } 5400 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 5401 } 5402 /* Instantiate the requested number of VFs. */ 5403 err = pci_enable_sriov(pdev, num_vfs); 5404 if (err) { 5405 pr_info("Unable to instantiate %d VFs\n", num_vfs); 5406 if (!current_vfs) { 5407 unregister_netdev(adap->port[0]); 5408 free_netdev(adap->port[0]); 5409 adap->port[0] = NULL; 5410 kfree(adap->vfinfo); 5411 adap->vfinfo = NULL; 5412 } 5413 return err; 5414 } 5415 5416 adap->num_vfs = num_vfs; 5417 return num_vfs; 5418 } 5419 #endif /* CONFIG_PCI_IOV */ 5420 5421 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 5422 { 5423 struct net_device *netdev; 5424 struct adapter *adapter; 5425 static int adap_idx = 1; 5426 int s_qpp, qpp, num_seg; 5427 struct port_info *pi; 5428 bool highdma = false; 5429 enum chip_type chip; 5430 void __iomem *regs; 5431 int func, chip_ver; 5432 u16 device_id; 5433 int i, err; 5434 u32 whoami; 5435 5436 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 5437 5438 err = pci_request_regions(pdev, KBUILD_MODNAME); 5439 if (err) { 5440 /* Just info, some other driver may have claimed the device. */ 5441 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 5442 return err; 5443 } 5444 5445 err = pci_enable_device(pdev); 5446 if (err) { 5447 dev_err(&pdev->dev, "cannot enable PCI device\n"); 5448 goto out_release_regions; 5449 } 5450 5451 regs = pci_ioremap_bar(pdev, 0); 5452 if (!regs) { 5453 dev_err(&pdev->dev, "cannot map device registers\n"); 5454 err = -ENOMEM; 5455 goto out_disable_device; 5456 } 5457 5458 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5459 if (!adapter) { 5460 err = -ENOMEM; 5461 goto out_unmap_bar0; 5462 } 5463 5464 adapter->regs = regs; 5465 err = t4_wait_dev_ready(regs); 5466 if (err < 0) 5467 goto out_free_adapter; 5468 5469 /* We control everything through one PF */ 5470 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5471 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 5472 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 5473 if (chip < 0) { 5474 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 5475 err = chip; 5476 goto out_free_adapter; 5477 } 5478 chip_ver = CHELSIO_CHIP_VERSION(chip); 5479 func = chip_ver <= CHELSIO_T5 ? 5480 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5481 5482 adapter->pdev = pdev; 5483 adapter->pdev_dev = &pdev->dev; 5484 adapter->name = pci_name(pdev); 5485 adapter->mbox = func; 5486 adapter->pf = func; 5487 adapter->params.chip = chip; 5488 adapter->adap_idx = adap_idx; 5489 adapter->msg_enable = DFLT_MSG_ENABLE; 5490 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5491 (sizeof(struct mbox_cmd) * 5492 T4_OS_LOG_MBOX_CMDS), 5493 GFP_KERNEL); 5494 if (!adapter->mbox_log) { 5495 err = -ENOMEM; 5496 goto out_free_adapter; 5497 } 5498 spin_lock_init(&adapter->mbox_lock); 5499 INIT_LIST_HEAD(&adapter->mlist.list); 5500 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 5501 pci_set_drvdata(pdev, adapter); 5502 5503 if (func != ent->driver_data) { 5504 pci_disable_device(pdev); 5505 pci_save_state(pdev); /* to restore SR-IOV later */ 5506 return 0; 5507 } 5508 5509 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 5510 highdma = true; 5511 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 5512 if (err) { 5513 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 5514 "coherent allocations\n"); 5515 goto out_free_adapter; 5516 } 5517 } else { 5518 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 5519 if (err) { 5520 dev_err(&pdev->dev, "no usable DMA configuration\n"); 5521 goto out_free_adapter; 5522 } 5523 } 5524 5525 pci_enable_pcie_error_reporting(pdev); 5526 pci_set_master(pdev); 5527 pci_save_state(pdev); 5528 adap_idx++; 5529 adapter->workq = create_singlethread_workqueue("cxgb4"); 5530 if (!adapter->workq) { 5531 err = -ENOMEM; 5532 goto out_free_adapter; 5533 } 5534 5535 /* PCI device has been enabled */ 5536 adapter->flags |= DEV_ENABLED; 5537 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 5538 5539 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 5540 * Ingress Packet Data to Free List Buffers in order to allow for 5541 * chipset performance optimizations between the Root Complex and 5542 * Memory Controllers. (Messages to the associated Ingress Queue 5543 * notifying new Packet Placement in the Free Lists Buffers will be 5544 * send without the Relaxed Ordering Attribute thus guaranteeing that 5545 * all preceding PCIe Transaction Layer Packets will be processed 5546 * first.) But some Root Complexes have various issues with Upstream 5547 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 5548 * The PCIe devices which under the Root Complexes will be cleared the 5549 * Relaxed Ordering bit in the configuration space, So we check our 5550 * PCIe configuration space to see if it's flagged with advice against 5551 * using Relaxed Ordering. 5552 */ 5553 if (!pcie_relaxed_ordering_enabled(pdev)) 5554 adapter->flags |= ROOT_NO_RELAXED_ORDERING; 5555 5556 spin_lock_init(&adapter->stats_lock); 5557 spin_lock_init(&adapter->tid_release_lock); 5558 spin_lock_init(&adapter->win0_lock); 5559 5560 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 5561 INIT_WORK(&adapter->db_full_task, process_db_full); 5562 INIT_WORK(&adapter->db_drop_task, process_db_drop); 5563 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 5564 5565 err = t4_prep_adapter(adapter); 5566 if (err) 5567 goto out_free_adapter; 5568 5569 if (is_kdump_kernel()) { 5570 /* Collect hardware state and append to /proc/vmcore */ 5571 err = cxgb4_cudbg_vmcore_add_dump(adapter); 5572 if (err) { 5573 dev_warn(adapter->pdev_dev, 5574 "Fail collecting vmcore device dump, err: %d. Continuing\n", 5575 err); 5576 err = 0; 5577 } 5578 } 5579 5580 if (!is_t4(adapter->params.chip)) { 5581 s_qpp = (QUEUESPERPAGEPF0_S + 5582 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 5583 adapter->pf); 5584 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 5585 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 5586 num_seg = PAGE_SIZE / SEGMENT_SIZE; 5587 5588 /* Each segment size is 128B. Write coalescing is enabled only 5589 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 5590 * queue is less no of segments that can be accommodated in 5591 * a page size. 5592 */ 5593 if (qpp > num_seg) { 5594 dev_err(&pdev->dev, 5595 "Incorrect number of egress queues per page\n"); 5596 err = -EINVAL; 5597 goto out_free_adapter; 5598 } 5599 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 5600 pci_resource_len(pdev, 2)); 5601 if (!adapter->bar2) { 5602 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 5603 err = -ENOMEM; 5604 goto out_free_adapter; 5605 } 5606 } 5607 5608 setup_memwin(adapter); 5609 err = adap_init0(adapter); 5610 #ifdef CONFIG_DEBUG_FS 5611 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 5612 #endif 5613 setup_memwin_rdma(adapter); 5614 if (err) 5615 goto out_unmap_bar; 5616 5617 /* configure SGE_STAT_CFG_A to read WC stats */ 5618 if (!is_t4(adapter->params.chip)) 5619 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 5620 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 5621 T6_STATMODE_V(0))); 5622 5623 /* Initialize hash mac addr list */ 5624 INIT_LIST_HEAD(&adapter->mac_hlist); 5625 5626 for_each_port(adapter, i) { 5627 netdev = alloc_etherdev_mq(sizeof(struct port_info), 5628 MAX_ETH_QSETS); 5629 if (!netdev) { 5630 err = -ENOMEM; 5631 goto out_free_dev; 5632 } 5633 5634 SET_NETDEV_DEV(netdev, &pdev->dev); 5635 5636 adapter->port[i] = netdev; 5637 pi = netdev_priv(netdev); 5638 pi->adapter = adapter; 5639 pi->xact_addr_filt = -1; 5640 pi->port_id = i; 5641 netdev->irq = pdev->irq; 5642 5643 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 5644 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5645 NETIF_F_RXCSUM | NETIF_F_RXHASH | 5646 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 5647 NETIF_F_HW_TC; 5648 5649 if (chip_ver > CHELSIO_T5) { 5650 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 5651 NETIF_F_IPV6_CSUM | 5652 NETIF_F_RXCSUM | 5653 NETIF_F_GSO_UDP_TUNNEL | 5654 NETIF_F_TSO | NETIF_F_TSO6; 5655 5656 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; 5657 } 5658 5659 if (highdma) 5660 netdev->hw_features |= NETIF_F_HIGHDMA; 5661 netdev->features |= netdev->hw_features; 5662 netdev->vlan_features = netdev->features & VLAN_FEAT; 5663 5664 netdev->priv_flags |= IFF_UNICAST_FLT; 5665 5666 /* MTU range: 81 - 9600 */ 5667 netdev->min_mtu = 81; /* accommodate SACK */ 5668 netdev->max_mtu = MAX_MTU; 5669 5670 netdev->netdev_ops = &cxgb4_netdev_ops; 5671 #ifdef CONFIG_CHELSIO_T4_DCB 5672 netdev->dcbnl_ops = &cxgb4_dcb_ops; 5673 cxgb4_dcb_state_init(netdev); 5674 cxgb4_dcb_version_init(netdev); 5675 #endif 5676 cxgb4_set_ethtool_ops(netdev); 5677 } 5678 5679 cxgb4_init_ethtool_dump(adapter); 5680 5681 pci_set_drvdata(pdev, adapter); 5682 5683 if (adapter->flags & FW_OK) { 5684 err = t4_port_init(adapter, func, func, 0); 5685 if (err) 5686 goto out_free_dev; 5687 } else if (adapter->params.nports == 1) { 5688 /* If we don't have a connection to the firmware -- possibly 5689 * because of an error -- grab the raw VPD parameters so we 5690 * can set the proper MAC Address on the debug network 5691 * interface that we've created. 5692 */ 5693 u8 hw_addr[ETH_ALEN]; 5694 u8 *na = adapter->params.vpd.na; 5695 5696 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 5697 if (!err) { 5698 for (i = 0; i < ETH_ALEN; i++) 5699 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 5700 hex2val(na[2 * i + 1])); 5701 t4_set_hw_addr(adapter, 0, hw_addr); 5702 } 5703 } 5704 5705 if (!(adapter->flags & FW_OK)) 5706 goto fw_attach_fail; 5707 5708 /* Configure queues and allocate tables now, they can be needed as 5709 * soon as the first register_netdev completes. 5710 */ 5711 err = cfg_queues(adapter); 5712 if (err) 5713 goto out_free_dev; 5714 5715 adapter->smt = t4_init_smt(); 5716 if (!adapter->smt) { 5717 /* We tolerate a lack of SMT, giving up some functionality */ 5718 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 5719 } 5720 5721 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 5722 if (!adapter->l2t) { 5723 /* We tolerate a lack of L2T, giving up some functionality */ 5724 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 5725 adapter->params.offload = 0; 5726 } 5727 5728 adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size, 5729 sizeof(struct mps_encap_entry), 5730 GFP_KERNEL); 5731 if (!adapter->mps_encap) 5732 dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n"); 5733 5734 #if IS_ENABLED(CONFIG_IPV6) 5735 if (chip_ver <= CHELSIO_T5 && 5736 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 5737 /* CLIP functionality is not present in hardware, 5738 * hence disable all offload features 5739 */ 5740 dev_warn(&pdev->dev, 5741 "CLIP not enabled in hardware, continuing\n"); 5742 adapter->params.offload = 0; 5743 } else { 5744 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 5745 adapter->clipt_end); 5746 if (!adapter->clipt) { 5747 /* We tolerate a lack of clip_table, giving up 5748 * some functionality 5749 */ 5750 dev_warn(&pdev->dev, 5751 "could not allocate Clip table, continuing\n"); 5752 adapter->params.offload = 0; 5753 } 5754 } 5755 #endif 5756 5757 for_each_port(adapter, i) { 5758 pi = adap2pinfo(adapter, i); 5759 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 5760 if (!pi->sched_tbl) 5761 dev_warn(&pdev->dev, 5762 "could not activate scheduling on port %d\n", 5763 i); 5764 } 5765 5766 if (tid_init(&adapter->tids) < 0) { 5767 dev_warn(&pdev->dev, "could not allocate TID table, " 5768 "continuing\n"); 5769 adapter->params.offload = 0; 5770 } else { 5771 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 5772 if (!adapter->tc_u32) 5773 dev_warn(&pdev->dev, 5774 "could not offload tc u32, continuing\n"); 5775 5776 if (cxgb4_init_tc_flower(adapter)) 5777 dev_warn(&pdev->dev, 5778 "could not offload tc flower, continuing\n"); 5779 } 5780 5781 if (is_offload(adapter) || is_hashfilter(adapter)) { 5782 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 5783 u32 hash_base, hash_reg; 5784 5785 if (chip_ver <= CHELSIO_T5) { 5786 hash_reg = LE_DB_TID_HASHBASE_A; 5787 hash_base = t4_read_reg(adapter, hash_reg); 5788 adapter->tids.hash_base = hash_base / 4; 5789 } else { 5790 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 5791 hash_base = t4_read_reg(adapter, hash_reg); 5792 adapter->tids.hash_base = hash_base; 5793 } 5794 } 5795 } 5796 5797 /* See what interrupts we'll be using */ 5798 if (msi > 1 && enable_msix(adapter) == 0) 5799 adapter->flags |= USING_MSIX; 5800 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 5801 adapter->flags |= USING_MSI; 5802 if (msi > 1) 5803 free_msix_info(adapter); 5804 } 5805 5806 /* check for PCI Express bandwidth capabiltites */ 5807 pcie_print_link_status(pdev); 5808 5809 err = init_rss(adapter); 5810 if (err) 5811 goto out_free_dev; 5812 5813 err = setup_fw_sge_queues(adapter); 5814 if (err) { 5815 dev_err(adapter->pdev_dev, 5816 "FW sge queue allocation failed, err %d", err); 5817 goto out_free_dev; 5818 } 5819 5820 fw_attach_fail: 5821 /* 5822 * The card is now ready to go. If any errors occur during device 5823 * registration we do not fail the whole card but rather proceed only 5824 * with the ports we manage to register successfully. However we must 5825 * register at least one net device. 5826 */ 5827 for_each_port(adapter, i) { 5828 pi = adap2pinfo(adapter, i); 5829 adapter->port[i]->dev_port = pi->lport; 5830 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 5831 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 5832 5833 netif_carrier_off(adapter->port[i]); 5834 5835 err = register_netdev(adapter->port[i]); 5836 if (err) 5837 break; 5838 adapter->chan_map[pi->tx_chan] = i; 5839 print_port_info(adapter->port[i]); 5840 } 5841 if (i == 0) { 5842 dev_err(&pdev->dev, "could not register any net devices\n"); 5843 goto out_free_dev; 5844 } 5845 if (err) { 5846 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 5847 err = 0; 5848 } 5849 5850 if (cxgb4_debugfs_root) { 5851 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 5852 cxgb4_debugfs_root); 5853 setup_debugfs(adapter); 5854 } 5855 5856 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 5857 pdev->needs_freset = 1; 5858 5859 if (is_uld(adapter)) { 5860 mutex_lock(&uld_mutex); 5861 list_add_tail(&adapter->list_node, &adapter_list); 5862 mutex_unlock(&uld_mutex); 5863 } 5864 5865 if (!is_t4(adapter->params.chip)) 5866 cxgb4_ptp_init(adapter); 5867 5868 if (IS_REACHABLE(CONFIG_THERMAL) && 5869 !is_t4(adapter->params.chip) && (adapter->flags & FW_OK)) 5870 cxgb4_thermal_init(adapter); 5871 5872 print_adapter_info(adapter); 5873 return 0; 5874 5875 out_free_dev: 5876 t4_free_sge_resources(adapter); 5877 free_some_resources(adapter); 5878 if (adapter->flags & USING_MSIX) 5879 free_msix_info(adapter); 5880 if (adapter->num_uld || adapter->num_ofld_uld) 5881 t4_uld_mem_free(adapter); 5882 out_unmap_bar: 5883 if (!is_t4(adapter->params.chip)) 5884 iounmap(adapter->bar2); 5885 out_free_adapter: 5886 if (adapter->workq) 5887 destroy_workqueue(adapter->workq); 5888 5889 kfree(adapter->mbox_log); 5890 kfree(adapter); 5891 out_unmap_bar0: 5892 iounmap(regs); 5893 out_disable_device: 5894 pci_disable_pcie_error_reporting(pdev); 5895 pci_disable_device(pdev); 5896 out_release_regions: 5897 pci_release_regions(pdev); 5898 return err; 5899 } 5900 5901 static void remove_one(struct pci_dev *pdev) 5902 { 5903 struct adapter *adapter = pci_get_drvdata(pdev); 5904 struct hash_mac_addr *entry, *tmp; 5905 5906 if (!adapter) { 5907 pci_release_regions(pdev); 5908 return; 5909 } 5910 5911 adapter->flags |= SHUTTING_DOWN; 5912 5913 if (adapter->pf == 4) { 5914 int i; 5915 5916 /* Tear down per-adapter Work Queue first since it can contain 5917 * references to our adapter data structure. 5918 */ 5919 destroy_workqueue(adapter->workq); 5920 5921 if (is_uld(adapter)) { 5922 detach_ulds(adapter); 5923 t4_uld_clean_up(adapter); 5924 } 5925 5926 adap_free_hma_mem(adapter); 5927 5928 disable_interrupts(adapter); 5929 5930 for_each_port(adapter, i) 5931 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5932 unregister_netdev(adapter->port[i]); 5933 5934 debugfs_remove_recursive(adapter->debugfs_root); 5935 5936 if (!is_t4(adapter->params.chip)) 5937 cxgb4_ptp_stop(adapter); 5938 if (IS_REACHABLE(CONFIG_THERMAL)) 5939 cxgb4_thermal_remove(adapter); 5940 5941 /* If we allocated filters, free up state associated with any 5942 * valid filters ... 5943 */ 5944 clear_all_filters(adapter); 5945 5946 if (adapter->flags & FULL_INIT_DONE) 5947 cxgb_down(adapter); 5948 5949 if (adapter->flags & USING_MSIX) 5950 free_msix_info(adapter); 5951 if (adapter->num_uld || adapter->num_ofld_uld) 5952 t4_uld_mem_free(adapter); 5953 free_some_resources(adapter); 5954 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 5955 list) { 5956 list_del(&entry->list); 5957 kfree(entry); 5958 } 5959 5960 #if IS_ENABLED(CONFIG_IPV6) 5961 t4_cleanup_clip_tbl(adapter); 5962 #endif 5963 if (!is_t4(adapter->params.chip)) 5964 iounmap(adapter->bar2); 5965 } 5966 #ifdef CONFIG_PCI_IOV 5967 else { 5968 cxgb4_iov_configure(adapter->pdev, 0); 5969 } 5970 #endif 5971 iounmap(adapter->regs); 5972 pci_disable_pcie_error_reporting(pdev); 5973 if ((adapter->flags & DEV_ENABLED)) { 5974 pci_disable_device(pdev); 5975 adapter->flags &= ~DEV_ENABLED; 5976 } 5977 pci_release_regions(pdev); 5978 kfree(adapter->mbox_log); 5979 synchronize_rcu(); 5980 kfree(adapter); 5981 } 5982 5983 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 5984 * delivery. This is essentially a stripped down version of the PCI remove() 5985 * function where we do the minimal amount of work necessary to shutdown any 5986 * further activity. 5987 */ 5988 static void shutdown_one(struct pci_dev *pdev) 5989 { 5990 struct adapter *adapter = pci_get_drvdata(pdev); 5991 5992 /* As with remove_one() above (see extended comment), we only want do 5993 * do cleanup on PCI Devices which went all the way through init_one() 5994 * ... 5995 */ 5996 if (!adapter) { 5997 pci_release_regions(pdev); 5998 return; 5999 } 6000 6001 adapter->flags |= SHUTTING_DOWN; 6002 6003 if (adapter->pf == 4) { 6004 int i; 6005 6006 for_each_port(adapter, i) 6007 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6008 cxgb_close(adapter->port[i]); 6009 6010 if (is_uld(adapter)) { 6011 detach_ulds(adapter); 6012 t4_uld_clean_up(adapter); 6013 } 6014 6015 disable_interrupts(adapter); 6016 disable_msi(adapter); 6017 6018 t4_sge_stop(adapter); 6019 if (adapter->flags & FW_OK) 6020 t4_fw_bye(adapter, adapter->mbox); 6021 } 6022 } 6023 6024 static struct pci_driver cxgb4_driver = { 6025 .name = KBUILD_MODNAME, 6026 .id_table = cxgb4_pci_tbl, 6027 .probe = init_one, 6028 .remove = remove_one, 6029 .shutdown = shutdown_one, 6030 #ifdef CONFIG_PCI_IOV 6031 .sriov_configure = cxgb4_iov_configure, 6032 #endif 6033 .err_handler = &cxgb4_eeh, 6034 }; 6035 6036 static int __init cxgb4_init_module(void) 6037 { 6038 int ret; 6039 6040 /* Debugfs support is optional, just warn if this fails */ 6041 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6042 if (!cxgb4_debugfs_root) 6043 pr_warn("could not create debugfs entry, continuing\n"); 6044 6045 ret = pci_register_driver(&cxgb4_driver); 6046 if (ret < 0) 6047 debugfs_remove(cxgb4_debugfs_root); 6048 6049 #if IS_ENABLED(CONFIG_IPV6) 6050 if (!inet6addr_registered) { 6051 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6052 inet6addr_registered = true; 6053 } 6054 #endif 6055 6056 return ret; 6057 } 6058 6059 static void __exit cxgb4_cleanup_module(void) 6060 { 6061 #if IS_ENABLED(CONFIG_IPV6) 6062 if (inet6addr_registered) { 6063 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6064 inet6addr_registered = false; 6065 } 6066 #endif 6067 pci_unregister_driver(&cxgb4_driver); 6068 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6069 } 6070 6071 module_init(cxgb4_init_module); 6072 module_exit(cxgb4_cleanup_module); 6073