1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <linux/uaccess.h>
66 #include <linux/crash_dump.h>
67 #include <net/udp_tunnel.h>
68 
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "srq.h"
78 #include "cxgb4_debugfs.h"
79 #include "clip_tbl.h"
80 #include "l2t.h"
81 #include "smt.h"
82 #include "sched.h"
83 #include "cxgb4_tc_u32.h"
84 #include "cxgb4_tc_flower.h"
85 #include "cxgb4_ptp.h"
86 #include "cxgb4_cudbg.h"
87 
88 char cxgb4_driver_name[] = KBUILD_MODNAME;
89 
90 #ifdef DRV_VERSION
91 #undef DRV_VERSION
92 #endif
93 #define DRV_VERSION "2.0.0-ko"
94 const char cxgb4_driver_version[] = DRV_VERSION;
95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
96 
97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
98 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
99 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
100 
101 /* Macros needed to support the PCI Device ID Table ...
102  */
103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
104 	static const struct pci_device_id cxgb4_pci_tbl[] = {
105 #define CXGB4_UNIFIED_PF 0x4
106 
107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
108 
109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
110  * called for both.
111  */
112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
113 
114 #define CH_PCI_ID_TABLE_ENTRY(devid) \
115 		{PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
116 
117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
118 		{ 0, } \
119 	}
120 
121 #include "t4_pci_id_tbl.h"
122 
123 #define FW4_FNAME "cxgb4/t4fw.bin"
124 #define FW5_FNAME "cxgb4/t5fw.bin"
125 #define FW6_FNAME "cxgb4/t6fw.bin"
126 #define FW4_CFNAME "cxgb4/t4-config.txt"
127 #define FW5_CFNAME "cxgb4/t5-config.txt"
128 #define FW6_CFNAME "cxgb4/t6-config.txt"
129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
131 #define PHY_AQ1202_DEVICEID 0x4409
132 #define PHY_BCM84834_DEVICEID 0x4486
133 
134 MODULE_DESCRIPTION(DRV_DESC);
135 MODULE_AUTHOR("Chelsio Communications");
136 MODULE_LICENSE("Dual BSD/GPL");
137 MODULE_VERSION(DRV_VERSION);
138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
139 MODULE_FIRMWARE(FW4_FNAME);
140 MODULE_FIRMWARE(FW5_FNAME);
141 MODULE_FIRMWARE(FW6_FNAME);
142 
143 /*
144  * The driver uses the best interrupt scheme available on a platform in the
145  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
146  * of these schemes the driver may consider as follows:
147  *
148  * msi = 2: choose from among all three options
149  * msi = 1: only consider MSI and INTx interrupts
150  * msi = 0: force INTx interrupts
151  */
152 static int msi = 2;
153 
154 module_param(msi, int, 0644);
155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
156 
157 /*
158  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
159  * offset by 2 bytes in order to have the IP headers line up on 4-byte
160  * boundaries.  This is a requirement for many architectures which will throw
161  * a machine check fault if an attempt is made to access one of the 4-byte IP
162  * header fields on a non-4-byte boundary.  And it's a major performance issue
163  * even on some architectures which allow it like some implementations of the
164  * x86 ISA.  However, some architectures don't mind this and for some very
165  * edge-case performance sensitive applications (like forwarding large volumes
166  * of small packets), setting this DMA offset to 0 will decrease the number of
167  * PCI-E Bus transfers enough to measurably affect performance.
168  */
169 static int rx_dma_offset = 2;
170 
171 /* TX Queue select used to determine what algorithm to use for selecting TX
172  * queue. Select between the kernel provided function (select_queue=0) or user
173  * cxgb_select_queue function (select_queue=1)
174  *
175  * Default: select_queue=0
176  */
177 static int select_queue;
178 module_param(select_queue, int, 0644);
179 MODULE_PARM_DESC(select_queue,
180 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
181 
182 static struct dentry *cxgb4_debugfs_root;
183 
184 LIST_HEAD(adapter_list);
185 DEFINE_MUTEX(uld_mutex);
186 
187 static void link_report(struct net_device *dev)
188 {
189 	if (!netif_carrier_ok(dev))
190 		netdev_info(dev, "link down\n");
191 	else {
192 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
193 
194 		const char *s;
195 		const struct port_info *p = netdev_priv(dev);
196 
197 		switch (p->link_cfg.speed) {
198 		case 100:
199 			s = "100Mbps";
200 			break;
201 		case 1000:
202 			s = "1Gbps";
203 			break;
204 		case 10000:
205 			s = "10Gbps";
206 			break;
207 		case 25000:
208 			s = "25Gbps";
209 			break;
210 		case 40000:
211 			s = "40Gbps";
212 			break;
213 		case 50000:
214 			s = "50Gbps";
215 			break;
216 		case 100000:
217 			s = "100Gbps";
218 			break;
219 		default:
220 			pr_info("%s: unsupported speed: %d\n",
221 				dev->name, p->link_cfg.speed);
222 			return;
223 		}
224 
225 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
226 			    fc[p->link_cfg.fc]);
227 	}
228 }
229 
230 #ifdef CONFIG_CHELSIO_T4_DCB
231 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
232 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
233 {
234 	struct port_info *pi = netdev_priv(dev);
235 	struct adapter *adap = pi->adapter;
236 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
237 	int i;
238 
239 	/* We use a simple mapping of Port TX Queue Index to DCB
240 	 * Priority when we're enabling DCB.
241 	 */
242 	for (i = 0; i < pi->nqsets; i++, txq++) {
243 		u32 name, value;
244 		int err;
245 
246 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
247 			FW_PARAMS_PARAM_X_V(
248 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
249 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
250 		value = enable ? i : 0xffffffff;
251 
252 		/* Since we can be called while atomic (from "interrupt
253 		 * level") we need to issue the Set Parameters Commannd
254 		 * without sleeping (timeout < 0).
255 		 */
256 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
257 					    &name, &value,
258 					    -FW_CMD_MAX_TIMEOUT);
259 
260 		if (err)
261 			dev_err(adap->pdev_dev,
262 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
263 				enable ? "set" : "unset", pi->port_id, i, -err);
264 		else
265 			txq->dcb_prio = enable ? value : 0;
266 	}
267 }
268 
269 int cxgb4_dcb_enabled(const struct net_device *dev)
270 {
271 	struct port_info *pi = netdev_priv(dev);
272 
273 	if (!pi->dcb.enabled)
274 		return 0;
275 
276 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
277 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
278 }
279 #endif /* CONFIG_CHELSIO_T4_DCB */
280 
281 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
282 {
283 	struct net_device *dev = adapter->port[port_id];
284 
285 	/* Skip changes from disabled ports. */
286 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
287 		if (link_stat)
288 			netif_carrier_on(dev);
289 		else {
290 #ifdef CONFIG_CHELSIO_T4_DCB
291 			if (cxgb4_dcb_enabled(dev)) {
292 				cxgb4_dcb_reset(dev);
293 				dcb_tx_queue_prio_enable(dev, false);
294 			}
295 #endif /* CONFIG_CHELSIO_T4_DCB */
296 			netif_carrier_off(dev);
297 		}
298 
299 		link_report(dev);
300 	}
301 }
302 
303 void t4_os_portmod_changed(struct adapter *adap, int port_id)
304 {
305 	static const char *mod_str[] = {
306 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
307 	};
308 
309 	struct net_device *dev = adap->port[port_id];
310 	struct port_info *pi = netdev_priv(dev);
311 
312 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
313 		netdev_info(dev, "port module unplugged\n");
314 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
315 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
316 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
317 		netdev_info(dev, "%s: unsupported port module inserted\n",
318 			    dev->name);
319 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
320 		netdev_info(dev, "%s: unknown port module inserted\n",
321 			    dev->name);
322 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
323 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
324 	else
325 		netdev_info(dev, "%s: unknown module type %d inserted\n",
326 			    dev->name, pi->mod_type);
327 
328 	/* If the interface is running, then we'll need any "sticky" Link
329 	 * Parameters redone with a new Transceiver Module.
330 	 */
331 	pi->link_cfg.redo_l1cfg = netif_running(dev);
332 }
333 
334 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
335 module_param(dbfifo_int_thresh, int, 0644);
336 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
337 
338 /*
339  * usecs to sleep while draining the dbfifo
340  */
341 static int dbfifo_drain_delay = 1000;
342 module_param(dbfifo_drain_delay, int, 0644);
343 MODULE_PARM_DESC(dbfifo_drain_delay,
344 		 "usecs to sleep while draining the dbfifo");
345 
346 static inline int cxgb4_set_addr_hash(struct port_info *pi)
347 {
348 	struct adapter *adap = pi->adapter;
349 	u64 vec = 0;
350 	bool ucast = false;
351 	struct hash_mac_addr *entry;
352 
353 	/* Calculate the hash vector for the updated list and program it */
354 	list_for_each_entry(entry, &adap->mac_hlist, list) {
355 		ucast |= is_unicast_ether_addr(entry->addr);
356 		vec |= (1ULL << hash_mac_addr(entry->addr));
357 	}
358 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
359 				vec, false);
360 }
361 
362 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
363 {
364 	struct port_info *pi = netdev_priv(netdev);
365 	struct adapter *adap = pi->adapter;
366 	int ret;
367 	u64 mhash = 0;
368 	u64 uhash = 0;
369 	bool free = false;
370 	bool ucast = is_unicast_ether_addr(mac_addr);
371 	const u8 *maclist[1] = {mac_addr};
372 	struct hash_mac_addr *new_entry;
373 
374 	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
375 				NULL, ucast ? &uhash : &mhash, false);
376 	if (ret < 0)
377 		goto out;
378 	/* if hash != 0, then add the addr to hash addr list
379 	 * so on the end we will calculate the hash for the
380 	 * list and program it
381 	 */
382 	if (uhash || mhash) {
383 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
384 		if (!new_entry)
385 			return -ENOMEM;
386 		ether_addr_copy(new_entry->addr, mac_addr);
387 		list_add_tail(&new_entry->list, &adap->mac_hlist);
388 		ret = cxgb4_set_addr_hash(pi);
389 	}
390 out:
391 	return ret < 0 ? ret : 0;
392 }
393 
394 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
395 {
396 	struct port_info *pi = netdev_priv(netdev);
397 	struct adapter *adap = pi->adapter;
398 	int ret;
399 	const u8 *maclist[1] = {mac_addr};
400 	struct hash_mac_addr *entry, *tmp;
401 
402 	/* If the MAC address to be removed is in the hash addr
403 	 * list, delete it from the list and update hash vector
404 	 */
405 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
406 		if (ether_addr_equal(entry->addr, mac_addr)) {
407 			list_del(&entry->list);
408 			kfree(entry);
409 			return cxgb4_set_addr_hash(pi);
410 		}
411 	}
412 
413 	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
414 	return ret < 0 ? -EINVAL : 0;
415 }
416 
417 /*
418  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
419  * If @mtu is -1 it is left unchanged.
420  */
421 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
422 {
423 	struct port_info *pi = netdev_priv(dev);
424 	struct adapter *adapter = pi->adapter;
425 
426 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
427 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
428 
429 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
430 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
431 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
432 			     sleep_ok);
433 }
434 
435 /**
436  *	link_start - enable a port
437  *	@dev: the port to enable
438  *
439  *	Performs the MAC and PHY actions needed to enable a port.
440  */
441 static int link_start(struct net_device *dev)
442 {
443 	int ret;
444 	struct port_info *pi = netdev_priv(dev);
445 	unsigned int mb = pi->adapter->pf;
446 
447 	/*
448 	 * We do not set address filters and promiscuity here, the stack does
449 	 * that step explicitly.
450 	 */
451 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
452 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
453 	if (ret == 0) {
454 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
455 				    pi->xact_addr_filt, dev->dev_addr, true,
456 				    &pi->smt_idx);
457 		if (ret >= 0) {
458 			pi->xact_addr_filt = ret;
459 			ret = 0;
460 		}
461 	}
462 	if (ret == 0)
463 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
464 				    &pi->link_cfg);
465 	if (ret == 0) {
466 		local_bh_disable();
467 		ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
468 					  true, CXGB4_DCB_ENABLED);
469 		local_bh_enable();
470 	}
471 
472 	return ret;
473 }
474 
475 #ifdef CONFIG_CHELSIO_T4_DCB
476 /* Handle a Data Center Bridging update message from the firmware. */
477 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
478 {
479 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
480 	struct net_device *dev = adap->port[adap->chan_map[port]];
481 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
482 	int new_dcb_enabled;
483 
484 	cxgb4_dcb_handle_fw_update(adap, pcmd);
485 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
486 
487 	/* If the DCB has become enabled or disabled on the port then we're
488 	 * going to need to set up/tear down DCB Priority parameters for the
489 	 * TX Queues associated with the port.
490 	 */
491 	if (new_dcb_enabled != old_dcb_enabled)
492 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
493 }
494 #endif /* CONFIG_CHELSIO_T4_DCB */
495 
496 /* Response queue handler for the FW event queue.
497  */
498 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
499 			  const struct pkt_gl *gl)
500 {
501 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
502 
503 	rsp++;                                          /* skip RSS header */
504 
505 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
506 	 */
507 	if (unlikely(opcode == CPL_FW4_MSG &&
508 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
509 		rsp++;
510 		opcode = ((const struct rss_header *)rsp)->opcode;
511 		rsp++;
512 		if (opcode != CPL_SGE_EGR_UPDATE) {
513 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
514 				, opcode);
515 			goto out;
516 		}
517 	}
518 
519 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
520 		const struct cpl_sge_egr_update *p = (void *)rsp;
521 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
522 		struct sge_txq *txq;
523 
524 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
525 		txq->restarts++;
526 		if (txq->q_type == CXGB4_TXQ_ETH) {
527 			struct sge_eth_txq *eq;
528 
529 			eq = container_of(txq, struct sge_eth_txq, q);
530 			netif_tx_wake_queue(eq->txq);
531 		} else {
532 			struct sge_uld_txq *oq;
533 
534 			oq = container_of(txq, struct sge_uld_txq, q);
535 			tasklet_schedule(&oq->qresume_tsk);
536 		}
537 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
538 		const struct cpl_fw6_msg *p = (void *)rsp;
539 
540 #ifdef CONFIG_CHELSIO_T4_DCB
541 		const struct fw_port_cmd *pcmd = (const void *)p->data;
542 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
543 		unsigned int action =
544 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
545 
546 		if (cmd == FW_PORT_CMD &&
547 		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
548 		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
549 			int port = FW_PORT_CMD_PORTID_G(
550 					be32_to_cpu(pcmd->op_to_portid));
551 			struct net_device *dev;
552 			int dcbxdis, state_input;
553 
554 			dev = q->adap->port[q->adap->chan_map[port]];
555 			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
556 			  ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
557 			  : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
558 			       & FW_PORT_CMD_DCBXDIS32_F));
559 			state_input = (dcbxdis
560 				       ? CXGB4_DCB_INPUT_FW_DISABLED
561 				       : CXGB4_DCB_INPUT_FW_ENABLED);
562 
563 			cxgb4_dcb_state_fsm(dev, state_input);
564 		}
565 
566 		if (cmd == FW_PORT_CMD &&
567 		    action == FW_PORT_ACTION_L2_DCB_CFG)
568 			dcb_rpl(q->adap, pcmd);
569 		else
570 #endif
571 			if (p->type == 0)
572 				t4_handle_fw_rpl(q->adap, p->data);
573 	} else if (opcode == CPL_L2T_WRITE_RPL) {
574 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
575 
576 		do_l2t_write_rpl(q->adap, p);
577 	} else if (opcode == CPL_SMT_WRITE_RPL) {
578 		const struct cpl_smt_write_rpl *p = (void *)rsp;
579 
580 		do_smt_write_rpl(q->adap, p);
581 	} else if (opcode == CPL_SET_TCB_RPL) {
582 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
583 
584 		filter_rpl(q->adap, p);
585 	} else if (opcode == CPL_ACT_OPEN_RPL) {
586 		const struct cpl_act_open_rpl *p = (void *)rsp;
587 
588 		hash_filter_rpl(q->adap, p);
589 	} else if (opcode == CPL_ABORT_RPL_RSS) {
590 		const struct cpl_abort_rpl_rss *p = (void *)rsp;
591 
592 		hash_del_filter_rpl(q->adap, p);
593 	} else if (opcode == CPL_SRQ_TABLE_RPL) {
594 		const struct cpl_srq_table_rpl *p = (void *)rsp;
595 
596 		do_srq_table_rpl(q->adap, p);
597 	} else
598 		dev_err(q->adap->pdev_dev,
599 			"unexpected CPL %#x on FW event queue\n", opcode);
600 out:
601 	return 0;
602 }
603 
604 static void disable_msi(struct adapter *adapter)
605 {
606 	if (adapter->flags & USING_MSIX) {
607 		pci_disable_msix(adapter->pdev);
608 		adapter->flags &= ~USING_MSIX;
609 	} else if (adapter->flags & USING_MSI) {
610 		pci_disable_msi(adapter->pdev);
611 		adapter->flags &= ~USING_MSI;
612 	}
613 }
614 
615 /*
616  * Interrupt handler for non-data events used with MSI-X.
617  */
618 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
619 {
620 	struct adapter *adap = cookie;
621 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
622 
623 	if (v & PFSW_F) {
624 		adap->swintr = 1;
625 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
626 	}
627 	if (adap->flags & MASTER_PF)
628 		t4_slow_intr_handler(adap);
629 	return IRQ_HANDLED;
630 }
631 
632 /*
633  * Name the MSI-X interrupts.
634  */
635 static void name_msix_vecs(struct adapter *adap)
636 {
637 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
638 
639 	/* non-data interrupts */
640 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
641 
642 	/* FW events */
643 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
644 		 adap->port[0]->name);
645 
646 	/* Ethernet queues */
647 	for_each_port(adap, j) {
648 		struct net_device *d = adap->port[j];
649 		const struct port_info *pi = netdev_priv(d);
650 
651 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
652 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
653 				 d->name, i);
654 	}
655 }
656 
657 static int request_msix_queue_irqs(struct adapter *adap)
658 {
659 	struct sge *s = &adap->sge;
660 	int err, ethqidx;
661 	int msi_index = 2;
662 
663 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
664 			  adap->msix_info[1].desc, &s->fw_evtq);
665 	if (err)
666 		return err;
667 
668 	for_each_ethrxq(s, ethqidx) {
669 		err = request_irq(adap->msix_info[msi_index].vec,
670 				  t4_sge_intr_msix, 0,
671 				  adap->msix_info[msi_index].desc,
672 				  &s->ethrxq[ethqidx].rspq);
673 		if (err)
674 			goto unwind;
675 		msi_index++;
676 	}
677 	return 0;
678 
679 unwind:
680 	while (--ethqidx >= 0)
681 		free_irq(adap->msix_info[--msi_index].vec,
682 			 &s->ethrxq[ethqidx].rspq);
683 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
684 	return err;
685 }
686 
687 static void free_msix_queue_irqs(struct adapter *adap)
688 {
689 	int i, msi_index = 2;
690 	struct sge *s = &adap->sge;
691 
692 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
693 	for_each_ethrxq(s, i)
694 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
695 }
696 
697 /**
698  *	cxgb4_write_rss - write the RSS table for a given port
699  *	@pi: the port
700  *	@queues: array of queue indices for RSS
701  *
702  *	Sets up the portion of the HW RSS table for the port's VI to distribute
703  *	packets to the Rx queues in @queues.
704  *	Should never be called before setting up sge eth rx queues
705  */
706 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
707 {
708 	u16 *rss;
709 	int i, err;
710 	struct adapter *adapter = pi->adapter;
711 	const struct sge_eth_rxq *rxq;
712 
713 	rxq = &adapter->sge.ethrxq[pi->first_qset];
714 	rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
715 	if (!rss)
716 		return -ENOMEM;
717 
718 	/* map the queue indices to queue ids */
719 	for (i = 0; i < pi->rss_size; i++, queues++)
720 		rss[i] = rxq[*queues].rspq.abs_id;
721 
722 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
723 				  pi->rss_size, rss, pi->rss_size);
724 	/* If Tunnel All Lookup isn't specified in the global RSS
725 	 * Configuration, then we need to specify a default Ingress
726 	 * Queue for any ingress packets which aren't hashed.  We'll
727 	 * use our first ingress queue ...
728 	 */
729 	if (!err)
730 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
731 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
732 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
733 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
734 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
735 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
736 				       rss[0]);
737 	kfree(rss);
738 	return err;
739 }
740 
741 /**
742  *	setup_rss - configure RSS
743  *	@adap: the adapter
744  *
745  *	Sets up RSS for each port.
746  */
747 static int setup_rss(struct adapter *adap)
748 {
749 	int i, j, err;
750 
751 	for_each_port(adap, i) {
752 		const struct port_info *pi = adap2pinfo(adap, i);
753 
754 		/* Fill default values with equal distribution */
755 		for (j = 0; j < pi->rss_size; j++)
756 			pi->rss[j] = j % pi->nqsets;
757 
758 		err = cxgb4_write_rss(pi, pi->rss);
759 		if (err)
760 			return err;
761 	}
762 	return 0;
763 }
764 
765 /*
766  * Return the channel of the ingress queue with the given qid.
767  */
768 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
769 {
770 	qid -= p->ingr_start;
771 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
772 }
773 
774 /*
775  * Wait until all NAPI handlers are descheduled.
776  */
777 static void quiesce_rx(struct adapter *adap)
778 {
779 	int i;
780 
781 	for (i = 0; i < adap->sge.ingr_sz; i++) {
782 		struct sge_rspq *q = adap->sge.ingr_map[i];
783 
784 		if (q && q->handler)
785 			napi_disable(&q->napi);
786 	}
787 }
788 
789 /* Disable interrupt and napi handler */
790 static void disable_interrupts(struct adapter *adap)
791 {
792 	if (adap->flags & FULL_INIT_DONE) {
793 		t4_intr_disable(adap);
794 		if (adap->flags & USING_MSIX) {
795 			free_msix_queue_irqs(adap);
796 			free_irq(adap->msix_info[0].vec, adap);
797 		} else {
798 			free_irq(adap->pdev->irq, adap);
799 		}
800 		quiesce_rx(adap);
801 	}
802 }
803 
804 /*
805  * Enable NAPI scheduling and interrupt generation for all Rx queues.
806  */
807 static void enable_rx(struct adapter *adap)
808 {
809 	int i;
810 
811 	for (i = 0; i < adap->sge.ingr_sz; i++) {
812 		struct sge_rspq *q = adap->sge.ingr_map[i];
813 
814 		if (!q)
815 			continue;
816 		if (q->handler)
817 			napi_enable(&q->napi);
818 
819 		/* 0-increment GTS to start the timer and enable interrupts */
820 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
821 			     SEINTARM_V(q->intr_params) |
822 			     INGRESSQID_V(q->cntxt_id));
823 	}
824 }
825 
826 
827 static int setup_fw_sge_queues(struct adapter *adap)
828 {
829 	struct sge *s = &adap->sge;
830 	int err = 0;
831 
832 	bitmap_zero(s->starving_fl, s->egr_sz);
833 	bitmap_zero(s->txq_maperr, s->egr_sz);
834 
835 	if (adap->flags & USING_MSIX)
836 		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
837 	else {
838 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
839 				       NULL, NULL, NULL, -1);
840 		if (err)
841 			return err;
842 		adap->msi_idx = -((int)s->intrq.abs_id + 1);
843 	}
844 
845 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
846 			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
847 	return err;
848 }
849 
850 /**
851  *	setup_sge_queues - configure SGE Tx/Rx/response queues
852  *	@adap: the adapter
853  *
854  *	Determines how many sets of SGE queues to use and initializes them.
855  *	We support multiple queue sets per port if we have MSI-X, otherwise
856  *	just one queue set per port.
857  */
858 static int setup_sge_queues(struct adapter *adap)
859 {
860 	int err, i, j;
861 	struct sge *s = &adap->sge;
862 	struct sge_uld_rxq_info *rxq_info = NULL;
863 	unsigned int cmplqid = 0;
864 
865 	if (is_uld(adap))
866 		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
867 
868 	for_each_port(adap, i) {
869 		struct net_device *dev = adap->port[i];
870 		struct port_info *pi = netdev_priv(dev);
871 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
872 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
873 
874 		for (j = 0; j < pi->nqsets; j++, q++) {
875 			if (adap->msi_idx > 0)
876 				adap->msi_idx++;
877 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
878 					       adap->msi_idx, &q->fl,
879 					       t4_ethrx_handler,
880 					       NULL,
881 					       t4_get_tp_ch_map(adap,
882 								pi->tx_chan));
883 			if (err)
884 				goto freeout;
885 			q->rspq.idx = j;
886 			memset(&q->stats, 0, sizeof(q->stats));
887 		}
888 		for (j = 0; j < pi->nqsets; j++, t++) {
889 			err = t4_sge_alloc_eth_txq(adap, t, dev,
890 					netdev_get_tx_queue(dev, j),
891 					s->fw_evtq.cntxt_id);
892 			if (err)
893 				goto freeout;
894 		}
895 	}
896 
897 	for_each_port(adap, i) {
898 		/* Note that cmplqid below is 0 if we don't
899 		 * have RDMA queues, and that's the right value.
900 		 */
901 		if (rxq_info)
902 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
903 
904 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
905 					    s->fw_evtq.cntxt_id, cmplqid);
906 		if (err)
907 			goto freeout;
908 	}
909 
910 	if (!is_t4(adap->params.chip)) {
911 		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
912 					   netdev_get_tx_queue(adap->port[0], 0)
913 					   , s->fw_evtq.cntxt_id);
914 		if (err)
915 			goto freeout;
916 	}
917 
918 	t4_write_reg(adap, is_t4(adap->params.chip) ?
919 				MPS_TRC_RSS_CONTROL_A :
920 				MPS_T5_TRC_RSS_CONTROL_A,
921 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
922 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
923 	return 0;
924 freeout:
925 	dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
926 	t4_free_sge_resources(adap);
927 	return err;
928 }
929 
930 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
931 			     struct net_device *sb_dev,
932 			     select_queue_fallback_t fallback)
933 {
934 	int txq;
935 
936 #ifdef CONFIG_CHELSIO_T4_DCB
937 	/* If a Data Center Bridging has been successfully negotiated on this
938 	 * link then we'll use the skb's priority to map it to a TX Queue.
939 	 * The skb's priority is determined via the VLAN Tag Priority Code
940 	 * Point field.
941 	 */
942 	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
943 		u16 vlan_tci;
944 		int err;
945 
946 		err = vlan_get_tag(skb, &vlan_tci);
947 		if (unlikely(err)) {
948 			if (net_ratelimit())
949 				netdev_warn(dev,
950 					    "TX Packet without VLAN Tag on DCB Link\n");
951 			txq = 0;
952 		} else {
953 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
954 #ifdef CONFIG_CHELSIO_T4_FCOE
955 			if (skb->protocol == htons(ETH_P_FCOE))
956 				txq = skb->priority & 0x7;
957 #endif /* CONFIG_CHELSIO_T4_FCOE */
958 		}
959 		return txq;
960 	}
961 #endif /* CONFIG_CHELSIO_T4_DCB */
962 
963 	if (select_queue) {
964 		txq = (skb_rx_queue_recorded(skb)
965 			? skb_get_rx_queue(skb)
966 			: smp_processor_id());
967 
968 		while (unlikely(txq >= dev->real_num_tx_queues))
969 			txq -= dev->real_num_tx_queues;
970 
971 		return txq;
972 	}
973 
974 	return fallback(dev, skb, NULL) % dev->real_num_tx_queues;
975 }
976 
977 static int closest_timer(const struct sge *s, int time)
978 {
979 	int i, delta, match = 0, min_delta = INT_MAX;
980 
981 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
982 		delta = time - s->timer_val[i];
983 		if (delta < 0)
984 			delta = -delta;
985 		if (delta < min_delta) {
986 			min_delta = delta;
987 			match = i;
988 		}
989 	}
990 	return match;
991 }
992 
993 static int closest_thres(const struct sge *s, int thres)
994 {
995 	int i, delta, match = 0, min_delta = INT_MAX;
996 
997 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
998 		delta = thres - s->counter_val[i];
999 		if (delta < 0)
1000 			delta = -delta;
1001 		if (delta < min_delta) {
1002 			min_delta = delta;
1003 			match = i;
1004 		}
1005 	}
1006 	return match;
1007 }
1008 
1009 /**
1010  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1011  *	@q: the Rx queue
1012  *	@us: the hold-off time in us, or 0 to disable timer
1013  *	@cnt: the hold-off packet count, or 0 to disable counter
1014  *
1015  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1016  *	one of the two needs to be enabled for the queue to generate interrupts.
1017  */
1018 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1019 			       unsigned int us, unsigned int cnt)
1020 {
1021 	struct adapter *adap = q->adap;
1022 
1023 	if ((us | cnt) == 0)
1024 		cnt = 1;
1025 
1026 	if (cnt) {
1027 		int err;
1028 		u32 v, new_idx;
1029 
1030 		new_idx = closest_thres(&adap->sge, cnt);
1031 		if (q->desc && q->pktcnt_idx != new_idx) {
1032 			/* the queue has already been created, update it */
1033 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1034 			    FW_PARAMS_PARAM_X_V(
1035 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1036 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1037 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1038 					    &v, &new_idx);
1039 			if (err)
1040 				return err;
1041 		}
1042 		q->pktcnt_idx = new_idx;
1043 	}
1044 
1045 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1046 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1047 	return 0;
1048 }
1049 
1050 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1051 {
1052 	const struct port_info *pi = netdev_priv(dev);
1053 	netdev_features_t changed = dev->features ^ features;
1054 	int err;
1055 
1056 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1057 		return 0;
1058 
1059 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1060 			    -1, -1, -1,
1061 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1062 	if (unlikely(err))
1063 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1064 	return err;
1065 }
1066 
1067 static int setup_debugfs(struct adapter *adap)
1068 {
1069 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1070 		return -1;
1071 
1072 #ifdef CONFIG_DEBUG_FS
1073 	t4_setup_debugfs(adap);
1074 #endif
1075 	return 0;
1076 }
1077 
1078 /*
1079  * upper-layer driver support
1080  */
1081 
1082 /*
1083  * Allocate an active-open TID and set it to the supplied value.
1084  */
1085 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1086 {
1087 	int atid = -1;
1088 
1089 	spin_lock_bh(&t->atid_lock);
1090 	if (t->afree) {
1091 		union aopen_entry *p = t->afree;
1092 
1093 		atid = (p - t->atid_tab) + t->atid_base;
1094 		t->afree = p->next;
1095 		p->data = data;
1096 		t->atids_in_use++;
1097 	}
1098 	spin_unlock_bh(&t->atid_lock);
1099 	return atid;
1100 }
1101 EXPORT_SYMBOL(cxgb4_alloc_atid);
1102 
1103 /*
1104  * Release an active-open TID.
1105  */
1106 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1107 {
1108 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1109 
1110 	spin_lock_bh(&t->atid_lock);
1111 	p->next = t->afree;
1112 	t->afree = p;
1113 	t->atids_in_use--;
1114 	spin_unlock_bh(&t->atid_lock);
1115 }
1116 EXPORT_SYMBOL(cxgb4_free_atid);
1117 
1118 /*
1119  * Allocate a server TID and set it to the supplied value.
1120  */
1121 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1122 {
1123 	int stid;
1124 
1125 	spin_lock_bh(&t->stid_lock);
1126 	if (family == PF_INET) {
1127 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1128 		if (stid < t->nstids)
1129 			__set_bit(stid, t->stid_bmap);
1130 		else
1131 			stid = -1;
1132 	} else {
1133 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1134 		if (stid < 0)
1135 			stid = -1;
1136 	}
1137 	if (stid >= 0) {
1138 		t->stid_tab[stid].data = data;
1139 		stid += t->stid_base;
1140 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1141 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1142 		 * needs 2 TIDs.
1143 		 */
1144 		if (family == PF_INET6) {
1145 			t->stids_in_use += 2;
1146 			t->v6_stids_in_use += 2;
1147 		} else {
1148 			t->stids_in_use++;
1149 		}
1150 	}
1151 	spin_unlock_bh(&t->stid_lock);
1152 	return stid;
1153 }
1154 EXPORT_SYMBOL(cxgb4_alloc_stid);
1155 
1156 /* Allocate a server filter TID and set it to the supplied value.
1157  */
1158 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1159 {
1160 	int stid;
1161 
1162 	spin_lock_bh(&t->stid_lock);
1163 	if (family == PF_INET) {
1164 		stid = find_next_zero_bit(t->stid_bmap,
1165 				t->nstids + t->nsftids, t->nstids);
1166 		if (stid < (t->nstids + t->nsftids))
1167 			__set_bit(stid, t->stid_bmap);
1168 		else
1169 			stid = -1;
1170 	} else {
1171 		stid = -1;
1172 	}
1173 	if (stid >= 0) {
1174 		t->stid_tab[stid].data = data;
1175 		stid -= t->nstids;
1176 		stid += t->sftid_base;
1177 		t->sftids_in_use++;
1178 	}
1179 	spin_unlock_bh(&t->stid_lock);
1180 	return stid;
1181 }
1182 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1183 
1184 /* Release a server TID.
1185  */
1186 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1187 {
1188 	/* Is it a server filter TID? */
1189 	if (t->nsftids && (stid >= t->sftid_base)) {
1190 		stid -= t->sftid_base;
1191 		stid += t->nstids;
1192 	} else {
1193 		stid -= t->stid_base;
1194 	}
1195 
1196 	spin_lock_bh(&t->stid_lock);
1197 	if (family == PF_INET)
1198 		__clear_bit(stid, t->stid_bmap);
1199 	else
1200 		bitmap_release_region(t->stid_bmap, stid, 1);
1201 	t->stid_tab[stid].data = NULL;
1202 	if (stid < t->nstids) {
1203 		if (family == PF_INET6) {
1204 			t->stids_in_use -= 2;
1205 			t->v6_stids_in_use -= 2;
1206 		} else {
1207 			t->stids_in_use--;
1208 		}
1209 	} else {
1210 		t->sftids_in_use--;
1211 	}
1212 
1213 	spin_unlock_bh(&t->stid_lock);
1214 }
1215 EXPORT_SYMBOL(cxgb4_free_stid);
1216 
1217 /*
1218  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1219  */
1220 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1221 			   unsigned int tid)
1222 {
1223 	struct cpl_tid_release *req;
1224 
1225 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1226 	req = __skb_put(skb, sizeof(*req));
1227 	INIT_TP_WR(req, tid);
1228 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1229 }
1230 
1231 /*
1232  * Queue a TID release request and if necessary schedule a work queue to
1233  * process it.
1234  */
1235 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1236 				    unsigned int tid)
1237 {
1238 	void **p = &t->tid_tab[tid];
1239 	struct adapter *adap = container_of(t, struct adapter, tids);
1240 
1241 	spin_lock_bh(&adap->tid_release_lock);
1242 	*p = adap->tid_release_head;
1243 	/* Low 2 bits encode the Tx channel number */
1244 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1245 	if (!adap->tid_release_task_busy) {
1246 		adap->tid_release_task_busy = true;
1247 		queue_work(adap->workq, &adap->tid_release_task);
1248 	}
1249 	spin_unlock_bh(&adap->tid_release_lock);
1250 }
1251 
1252 /*
1253  * Process the list of pending TID release requests.
1254  */
1255 static void process_tid_release_list(struct work_struct *work)
1256 {
1257 	struct sk_buff *skb;
1258 	struct adapter *adap;
1259 
1260 	adap = container_of(work, struct adapter, tid_release_task);
1261 
1262 	spin_lock_bh(&adap->tid_release_lock);
1263 	while (adap->tid_release_head) {
1264 		void **p = adap->tid_release_head;
1265 		unsigned int chan = (uintptr_t)p & 3;
1266 		p = (void *)p - chan;
1267 
1268 		adap->tid_release_head = *p;
1269 		*p = NULL;
1270 		spin_unlock_bh(&adap->tid_release_lock);
1271 
1272 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1273 					 GFP_KERNEL)))
1274 			schedule_timeout_uninterruptible(1);
1275 
1276 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1277 		t4_ofld_send(adap, skb);
1278 		spin_lock_bh(&adap->tid_release_lock);
1279 	}
1280 	adap->tid_release_task_busy = false;
1281 	spin_unlock_bh(&adap->tid_release_lock);
1282 }
1283 
1284 /*
1285  * Release a TID and inform HW.  If we are unable to allocate the release
1286  * message we defer to a work queue.
1287  */
1288 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1289 		      unsigned short family)
1290 {
1291 	struct sk_buff *skb;
1292 	struct adapter *adap = container_of(t, struct adapter, tids);
1293 
1294 	WARN_ON(tid >= t->ntids);
1295 
1296 	if (t->tid_tab[tid]) {
1297 		t->tid_tab[tid] = NULL;
1298 		atomic_dec(&t->conns_in_use);
1299 		if (t->hash_base && (tid >= t->hash_base)) {
1300 			if (family == AF_INET6)
1301 				atomic_sub(2, &t->hash_tids_in_use);
1302 			else
1303 				atomic_dec(&t->hash_tids_in_use);
1304 		} else {
1305 			if (family == AF_INET6)
1306 				atomic_sub(2, &t->tids_in_use);
1307 			else
1308 				atomic_dec(&t->tids_in_use);
1309 		}
1310 	}
1311 
1312 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1313 	if (likely(skb)) {
1314 		mk_tid_release(skb, chan, tid);
1315 		t4_ofld_send(adap, skb);
1316 	} else
1317 		cxgb4_queue_tid_release(t, chan, tid);
1318 }
1319 EXPORT_SYMBOL(cxgb4_remove_tid);
1320 
1321 /*
1322  * Allocate and initialize the TID tables.  Returns 0 on success.
1323  */
1324 static int tid_init(struct tid_info *t)
1325 {
1326 	struct adapter *adap = container_of(t, struct adapter, tids);
1327 	unsigned int max_ftids = t->nftids + t->nsftids;
1328 	unsigned int natids = t->natids;
1329 	unsigned int stid_bmap_size;
1330 	unsigned int ftid_bmap_size;
1331 	size_t size;
1332 
1333 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1334 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1335 	size = t->ntids * sizeof(*t->tid_tab) +
1336 	       natids * sizeof(*t->atid_tab) +
1337 	       t->nstids * sizeof(*t->stid_tab) +
1338 	       t->nsftids * sizeof(*t->stid_tab) +
1339 	       stid_bmap_size * sizeof(long) +
1340 	       max_ftids * sizeof(*t->ftid_tab) +
1341 	       ftid_bmap_size * sizeof(long);
1342 
1343 	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1344 	if (!t->tid_tab)
1345 		return -ENOMEM;
1346 
1347 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1348 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1349 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1350 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1351 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1352 	spin_lock_init(&t->stid_lock);
1353 	spin_lock_init(&t->atid_lock);
1354 	spin_lock_init(&t->ftid_lock);
1355 
1356 	t->stids_in_use = 0;
1357 	t->v6_stids_in_use = 0;
1358 	t->sftids_in_use = 0;
1359 	t->afree = NULL;
1360 	t->atids_in_use = 0;
1361 	atomic_set(&t->tids_in_use, 0);
1362 	atomic_set(&t->conns_in_use, 0);
1363 	atomic_set(&t->hash_tids_in_use, 0);
1364 
1365 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1366 	if (natids) {
1367 		while (--natids)
1368 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1369 		t->afree = t->atid_tab;
1370 	}
1371 
1372 	if (is_offload(adap)) {
1373 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1374 		/* Reserve stid 0 for T4/T5 adapters */
1375 		if (!t->stid_base &&
1376 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1377 			__set_bit(0, t->stid_bmap);
1378 	}
1379 
1380 	bitmap_zero(t->ftid_bmap, t->nftids);
1381 	return 0;
1382 }
1383 
1384 /**
1385  *	cxgb4_create_server - create an IP server
1386  *	@dev: the device
1387  *	@stid: the server TID
1388  *	@sip: local IP address to bind server to
1389  *	@sport: the server's TCP port
1390  *	@queue: queue to direct messages from this server to
1391  *
1392  *	Create an IP server for the given port and address.
1393  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1394  */
1395 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1396 			__be32 sip, __be16 sport, __be16 vlan,
1397 			unsigned int queue)
1398 {
1399 	unsigned int chan;
1400 	struct sk_buff *skb;
1401 	struct adapter *adap;
1402 	struct cpl_pass_open_req *req;
1403 	int ret;
1404 
1405 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1406 	if (!skb)
1407 		return -ENOMEM;
1408 
1409 	adap = netdev2adap(dev);
1410 	req = __skb_put(skb, sizeof(*req));
1411 	INIT_TP_WR(req, 0);
1412 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1413 	req->local_port = sport;
1414 	req->peer_port = htons(0);
1415 	req->local_ip = sip;
1416 	req->peer_ip = htonl(0);
1417 	chan = rxq_to_chan(&adap->sge, queue);
1418 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1419 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1420 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1421 	ret = t4_mgmt_tx(adap, skb);
1422 	return net_xmit_eval(ret);
1423 }
1424 EXPORT_SYMBOL(cxgb4_create_server);
1425 
1426 /*	cxgb4_create_server6 - create an IPv6 server
1427  *	@dev: the device
1428  *	@stid: the server TID
1429  *	@sip: local IPv6 address to bind server to
1430  *	@sport: the server's TCP port
1431  *	@queue: queue to direct messages from this server to
1432  *
1433  *	Create an IPv6 server for the given port and address.
1434  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1435  */
1436 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1437 			 const struct in6_addr *sip, __be16 sport,
1438 			 unsigned int queue)
1439 {
1440 	unsigned int chan;
1441 	struct sk_buff *skb;
1442 	struct adapter *adap;
1443 	struct cpl_pass_open_req6 *req;
1444 	int ret;
1445 
1446 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1447 	if (!skb)
1448 		return -ENOMEM;
1449 
1450 	adap = netdev2adap(dev);
1451 	req = __skb_put(skb, sizeof(*req));
1452 	INIT_TP_WR(req, 0);
1453 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1454 	req->local_port = sport;
1455 	req->peer_port = htons(0);
1456 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1457 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1458 	req->peer_ip_hi = cpu_to_be64(0);
1459 	req->peer_ip_lo = cpu_to_be64(0);
1460 	chan = rxq_to_chan(&adap->sge, queue);
1461 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1462 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1463 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1464 	ret = t4_mgmt_tx(adap, skb);
1465 	return net_xmit_eval(ret);
1466 }
1467 EXPORT_SYMBOL(cxgb4_create_server6);
1468 
1469 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1470 			unsigned int queue, bool ipv6)
1471 {
1472 	struct sk_buff *skb;
1473 	struct adapter *adap;
1474 	struct cpl_close_listsvr_req *req;
1475 	int ret;
1476 
1477 	adap = netdev2adap(dev);
1478 
1479 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1480 	if (!skb)
1481 		return -ENOMEM;
1482 
1483 	req = __skb_put(skb, sizeof(*req));
1484 	INIT_TP_WR(req, 0);
1485 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1486 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1487 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1488 	ret = t4_mgmt_tx(adap, skb);
1489 	return net_xmit_eval(ret);
1490 }
1491 EXPORT_SYMBOL(cxgb4_remove_server);
1492 
1493 /**
1494  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1495  *	@mtus: the HW MTU table
1496  *	@mtu: the target MTU
1497  *	@idx: index of selected entry in the MTU table
1498  *
1499  *	Returns the index and the value in the HW MTU table that is closest to
1500  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1501  *	table, in which case that smallest available value is selected.
1502  */
1503 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1504 			    unsigned int *idx)
1505 {
1506 	unsigned int i = 0;
1507 
1508 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1509 		++i;
1510 	if (idx)
1511 		*idx = i;
1512 	return mtus[i];
1513 }
1514 EXPORT_SYMBOL(cxgb4_best_mtu);
1515 
1516 /**
1517  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1518  *     @mtus: the HW MTU table
1519  *     @header_size: Header Size
1520  *     @data_size_max: maximum Data Segment Size
1521  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1522  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1523  *
1524  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1525  *     MTU Table based solely on a Maximum MTU parameter, we break that
1526  *     parameter up into a Header Size and Maximum Data Segment Size, and
1527  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1528  *     the Hardware MTU Table which will result in a Data Segment Size with
1529  *     the requested alignment _and_ that MTU isn't "too far" from the
1530  *     closest MTU, then we'll return that rather than the closest MTU.
1531  */
1532 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1533 				    unsigned short header_size,
1534 				    unsigned short data_size_max,
1535 				    unsigned short data_size_align,
1536 				    unsigned int *mtu_idxp)
1537 {
1538 	unsigned short max_mtu = header_size + data_size_max;
1539 	unsigned short data_size_align_mask = data_size_align - 1;
1540 	int mtu_idx, aligned_mtu_idx;
1541 
1542 	/* Scan the MTU Table till we find an MTU which is larger than our
1543 	 * Maximum MTU or we reach the end of the table.  Along the way,
1544 	 * record the last MTU found, if any, which will result in a Data
1545 	 * Segment Length matching the requested alignment.
1546 	 */
1547 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1548 		unsigned short data_size = mtus[mtu_idx] - header_size;
1549 
1550 		/* If this MTU minus the Header Size would result in a
1551 		 * Data Segment Size of the desired alignment, remember it.
1552 		 */
1553 		if ((data_size & data_size_align_mask) == 0)
1554 			aligned_mtu_idx = mtu_idx;
1555 
1556 		/* If we're not at the end of the Hardware MTU Table and the
1557 		 * next element is larger than our Maximum MTU, drop out of
1558 		 * the loop.
1559 		 */
1560 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1561 			break;
1562 	}
1563 
1564 	/* If we fell out of the loop because we ran to the end of the table,
1565 	 * then we just have to use the last [largest] entry.
1566 	 */
1567 	if (mtu_idx == NMTUS)
1568 		mtu_idx--;
1569 
1570 	/* If we found an MTU which resulted in the requested Data Segment
1571 	 * Length alignment and that's "not far" from the largest MTU which is
1572 	 * less than or equal to the maximum MTU, then use that.
1573 	 */
1574 	if (aligned_mtu_idx >= 0 &&
1575 	    mtu_idx - aligned_mtu_idx <= 1)
1576 		mtu_idx = aligned_mtu_idx;
1577 
1578 	/* If the caller has passed in an MTU Index pointer, pass the
1579 	 * MTU Index back.  Return the MTU value.
1580 	 */
1581 	if (mtu_idxp)
1582 		*mtu_idxp = mtu_idx;
1583 	return mtus[mtu_idx];
1584 }
1585 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1586 
1587 /**
1588  *	cxgb4_port_chan - get the HW channel of a port
1589  *	@dev: the net device for the port
1590  *
1591  *	Return the HW Tx channel of the given port.
1592  */
1593 unsigned int cxgb4_port_chan(const struct net_device *dev)
1594 {
1595 	return netdev2pinfo(dev)->tx_chan;
1596 }
1597 EXPORT_SYMBOL(cxgb4_port_chan);
1598 
1599 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1600 {
1601 	struct adapter *adap = netdev2adap(dev);
1602 	u32 v1, v2, lp_count, hp_count;
1603 
1604 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1605 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1606 	if (is_t4(adap->params.chip)) {
1607 		lp_count = LP_COUNT_G(v1);
1608 		hp_count = HP_COUNT_G(v1);
1609 	} else {
1610 		lp_count = LP_COUNT_T5_G(v1);
1611 		hp_count = HP_COUNT_T5_G(v2);
1612 	}
1613 	return lpfifo ? lp_count : hp_count;
1614 }
1615 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1616 
1617 /**
1618  *	cxgb4_port_viid - get the VI id of a port
1619  *	@dev: the net device for the port
1620  *
1621  *	Return the VI id of the given port.
1622  */
1623 unsigned int cxgb4_port_viid(const struct net_device *dev)
1624 {
1625 	return netdev2pinfo(dev)->viid;
1626 }
1627 EXPORT_SYMBOL(cxgb4_port_viid);
1628 
1629 /**
1630  *	cxgb4_port_idx - get the index of a port
1631  *	@dev: the net device for the port
1632  *
1633  *	Return the index of the given port.
1634  */
1635 unsigned int cxgb4_port_idx(const struct net_device *dev)
1636 {
1637 	return netdev2pinfo(dev)->port_id;
1638 }
1639 EXPORT_SYMBOL(cxgb4_port_idx);
1640 
1641 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1642 			 struct tp_tcp_stats *v6)
1643 {
1644 	struct adapter *adap = pci_get_drvdata(pdev);
1645 
1646 	spin_lock(&adap->stats_lock);
1647 	t4_tp_get_tcp_stats(adap, v4, v6, false);
1648 	spin_unlock(&adap->stats_lock);
1649 }
1650 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1651 
1652 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1653 		      const unsigned int *pgsz_order)
1654 {
1655 	struct adapter *adap = netdev2adap(dev);
1656 
1657 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1658 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1659 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1660 		     HPZ3_V(pgsz_order[3]));
1661 }
1662 EXPORT_SYMBOL(cxgb4_iscsi_init);
1663 
1664 int cxgb4_flush_eq_cache(struct net_device *dev)
1665 {
1666 	struct adapter *adap = netdev2adap(dev);
1667 
1668 	return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1669 }
1670 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1671 
1672 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1673 {
1674 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1675 	__be64 indices;
1676 	int ret;
1677 
1678 	spin_lock(&adap->win0_lock);
1679 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1680 			   sizeof(indices), (__be32 *)&indices,
1681 			   T4_MEMORY_READ);
1682 	spin_unlock(&adap->win0_lock);
1683 	if (!ret) {
1684 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1685 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1686 	}
1687 	return ret;
1688 }
1689 
1690 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1691 			u16 size)
1692 {
1693 	struct adapter *adap = netdev2adap(dev);
1694 	u16 hw_pidx, hw_cidx;
1695 	int ret;
1696 
1697 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1698 	if (ret)
1699 		goto out;
1700 
1701 	if (pidx != hw_pidx) {
1702 		u16 delta;
1703 		u32 val;
1704 
1705 		if (pidx >= hw_pidx)
1706 			delta = pidx - hw_pidx;
1707 		else
1708 			delta = size - hw_pidx + pidx;
1709 
1710 		if (is_t4(adap->params.chip))
1711 			val = PIDX_V(delta);
1712 		else
1713 			val = PIDX_T5_V(delta);
1714 		wmb();
1715 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1716 			     QID_V(qid) | val);
1717 	}
1718 out:
1719 	return ret;
1720 }
1721 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1722 
1723 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1724 {
1725 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1726 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1727 	u32 offset, memtype, memaddr;
1728 	struct adapter *adap;
1729 	u32 hma_size = 0;
1730 	int ret;
1731 
1732 	adap = netdev2adap(dev);
1733 
1734 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1735 
1736 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1737 	 * This code assumes that the memory is laid out starting at offset 0
1738 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1739 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1740 	 * MC0, and some have both MC0 and MC1.
1741 	 */
1742 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1743 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1744 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1745 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1746 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1747 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1748 
1749 	if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1750 		size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1751 		hma_size = EXT_MEM1_SIZE_G(size) << 20;
1752 	}
1753 	edc0_end = edc0_size;
1754 	edc1_end = edc0_end + edc1_size;
1755 	mc0_end = edc1_end + mc0_size;
1756 
1757 	if (offset < edc0_end) {
1758 		memtype = MEM_EDC0;
1759 		memaddr = offset;
1760 	} else if (offset < edc1_end) {
1761 		memtype = MEM_EDC1;
1762 		memaddr = offset - edc0_end;
1763 	} else {
1764 		if (hma_size && (offset < (edc1_end + hma_size))) {
1765 			memtype = MEM_HMA;
1766 			memaddr = offset - edc1_end;
1767 		} else if (offset < mc0_end) {
1768 			memtype = MEM_MC0;
1769 			memaddr = offset - edc1_end;
1770 		} else if (is_t5(adap->params.chip)) {
1771 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1772 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1773 			mc1_end = mc0_end + mc1_size;
1774 			if (offset < mc1_end) {
1775 				memtype = MEM_MC1;
1776 				memaddr = offset - mc0_end;
1777 			} else {
1778 				/* offset beyond the end of any memory */
1779 				goto err;
1780 			}
1781 		} else {
1782 			/* T4/T6 only has a single memory channel */
1783 			goto err;
1784 		}
1785 	}
1786 
1787 	spin_lock(&adap->win0_lock);
1788 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1789 	spin_unlock(&adap->win0_lock);
1790 	return ret;
1791 
1792 err:
1793 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1794 		stag, offset);
1795 	return -EINVAL;
1796 }
1797 EXPORT_SYMBOL(cxgb4_read_tpte);
1798 
1799 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1800 {
1801 	u32 hi, lo;
1802 	struct adapter *adap;
1803 
1804 	adap = netdev2adap(dev);
1805 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1806 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1807 
1808 	return ((u64)hi << 32) | (u64)lo;
1809 }
1810 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1811 
1812 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1813 			 unsigned int qid,
1814 			 enum cxgb4_bar2_qtype qtype,
1815 			 int user,
1816 			 u64 *pbar2_qoffset,
1817 			 unsigned int *pbar2_qid)
1818 {
1819 	return t4_bar2_sge_qregs(netdev2adap(dev),
1820 				 qid,
1821 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1822 				  ? T4_BAR2_QTYPE_EGRESS
1823 				  : T4_BAR2_QTYPE_INGRESS),
1824 				 user,
1825 				 pbar2_qoffset,
1826 				 pbar2_qid);
1827 }
1828 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1829 
1830 static struct pci_driver cxgb4_driver;
1831 
1832 static void check_neigh_update(struct neighbour *neigh)
1833 {
1834 	const struct device *parent;
1835 	const struct net_device *netdev = neigh->dev;
1836 
1837 	if (is_vlan_dev(netdev))
1838 		netdev = vlan_dev_real_dev(netdev);
1839 	parent = netdev->dev.parent;
1840 	if (parent && parent->driver == &cxgb4_driver.driver)
1841 		t4_l2t_update(dev_get_drvdata(parent), neigh);
1842 }
1843 
1844 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1845 		       void *data)
1846 {
1847 	switch (event) {
1848 	case NETEVENT_NEIGH_UPDATE:
1849 		check_neigh_update(data);
1850 		break;
1851 	case NETEVENT_REDIRECT:
1852 	default:
1853 		break;
1854 	}
1855 	return 0;
1856 }
1857 
1858 static bool netevent_registered;
1859 static struct notifier_block cxgb4_netevent_nb = {
1860 	.notifier_call = netevent_cb
1861 };
1862 
1863 static void drain_db_fifo(struct adapter *adap, int usecs)
1864 {
1865 	u32 v1, v2, lp_count, hp_count;
1866 
1867 	do {
1868 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1869 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1870 		if (is_t4(adap->params.chip)) {
1871 			lp_count = LP_COUNT_G(v1);
1872 			hp_count = HP_COUNT_G(v1);
1873 		} else {
1874 			lp_count = LP_COUNT_T5_G(v1);
1875 			hp_count = HP_COUNT_T5_G(v2);
1876 		}
1877 
1878 		if (lp_count == 0 && hp_count == 0)
1879 			break;
1880 		set_current_state(TASK_UNINTERRUPTIBLE);
1881 		schedule_timeout(usecs_to_jiffies(usecs));
1882 	} while (1);
1883 }
1884 
1885 static void disable_txq_db(struct sge_txq *q)
1886 {
1887 	unsigned long flags;
1888 
1889 	spin_lock_irqsave(&q->db_lock, flags);
1890 	q->db_disabled = 1;
1891 	spin_unlock_irqrestore(&q->db_lock, flags);
1892 }
1893 
1894 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1895 {
1896 	spin_lock_irq(&q->db_lock);
1897 	if (q->db_pidx_inc) {
1898 		/* Make sure that all writes to the TX descriptors
1899 		 * are committed before we tell HW about them.
1900 		 */
1901 		wmb();
1902 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1903 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1904 		q->db_pidx_inc = 0;
1905 	}
1906 	q->db_disabled = 0;
1907 	spin_unlock_irq(&q->db_lock);
1908 }
1909 
1910 static void disable_dbs(struct adapter *adap)
1911 {
1912 	int i;
1913 
1914 	for_each_ethrxq(&adap->sge, i)
1915 		disable_txq_db(&adap->sge.ethtxq[i].q);
1916 	if (is_offload(adap)) {
1917 		struct sge_uld_txq_info *txq_info =
1918 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1919 
1920 		if (txq_info) {
1921 			for_each_ofldtxq(&adap->sge, i) {
1922 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1923 
1924 				disable_txq_db(&txq->q);
1925 			}
1926 		}
1927 	}
1928 	for_each_port(adap, i)
1929 		disable_txq_db(&adap->sge.ctrlq[i].q);
1930 }
1931 
1932 static void enable_dbs(struct adapter *adap)
1933 {
1934 	int i;
1935 
1936 	for_each_ethrxq(&adap->sge, i)
1937 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1938 	if (is_offload(adap)) {
1939 		struct sge_uld_txq_info *txq_info =
1940 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1941 
1942 		if (txq_info) {
1943 			for_each_ofldtxq(&adap->sge, i) {
1944 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1945 
1946 				enable_txq_db(adap, &txq->q);
1947 			}
1948 		}
1949 	}
1950 	for_each_port(adap, i)
1951 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1952 }
1953 
1954 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1955 {
1956 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
1957 
1958 	if (adap->uld && adap->uld[type].handle)
1959 		adap->uld[type].control(adap->uld[type].handle, cmd);
1960 }
1961 
1962 static void process_db_full(struct work_struct *work)
1963 {
1964 	struct adapter *adap;
1965 
1966 	adap = container_of(work, struct adapter, db_full_task);
1967 
1968 	drain_db_fifo(adap, dbfifo_drain_delay);
1969 	enable_dbs(adap);
1970 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1971 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1972 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1973 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1974 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1975 	else
1976 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1977 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1978 }
1979 
1980 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1981 {
1982 	u16 hw_pidx, hw_cidx;
1983 	int ret;
1984 
1985 	spin_lock_irq(&q->db_lock);
1986 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1987 	if (ret)
1988 		goto out;
1989 	if (q->db_pidx != hw_pidx) {
1990 		u16 delta;
1991 		u32 val;
1992 
1993 		if (q->db_pidx >= hw_pidx)
1994 			delta = q->db_pidx - hw_pidx;
1995 		else
1996 			delta = q->size - hw_pidx + q->db_pidx;
1997 
1998 		if (is_t4(adap->params.chip))
1999 			val = PIDX_V(delta);
2000 		else
2001 			val = PIDX_T5_V(delta);
2002 		wmb();
2003 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2004 			     QID_V(q->cntxt_id) | val);
2005 	}
2006 out:
2007 	q->db_disabled = 0;
2008 	q->db_pidx_inc = 0;
2009 	spin_unlock_irq(&q->db_lock);
2010 	if (ret)
2011 		CH_WARN(adap, "DB drop recovery failed.\n");
2012 }
2013 
2014 static void recover_all_queues(struct adapter *adap)
2015 {
2016 	int i;
2017 
2018 	for_each_ethrxq(&adap->sge, i)
2019 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2020 	if (is_offload(adap)) {
2021 		struct sge_uld_txq_info *txq_info =
2022 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2023 		if (txq_info) {
2024 			for_each_ofldtxq(&adap->sge, i) {
2025 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2026 
2027 				sync_txq_pidx(adap, &txq->q);
2028 			}
2029 		}
2030 	}
2031 	for_each_port(adap, i)
2032 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2033 }
2034 
2035 static void process_db_drop(struct work_struct *work)
2036 {
2037 	struct adapter *adap;
2038 
2039 	adap = container_of(work, struct adapter, db_drop_task);
2040 
2041 	if (is_t4(adap->params.chip)) {
2042 		drain_db_fifo(adap, dbfifo_drain_delay);
2043 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2044 		drain_db_fifo(adap, dbfifo_drain_delay);
2045 		recover_all_queues(adap);
2046 		drain_db_fifo(adap, dbfifo_drain_delay);
2047 		enable_dbs(adap);
2048 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2049 	} else if (is_t5(adap->params.chip)) {
2050 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2051 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2052 		u16 pidx_inc = dropped_db & 0x1fff;
2053 		u64 bar2_qoffset;
2054 		unsigned int bar2_qid;
2055 		int ret;
2056 
2057 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2058 					0, &bar2_qoffset, &bar2_qid);
2059 		if (ret)
2060 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2061 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2062 		else
2063 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2064 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2065 
2066 		/* Re-enable BAR2 WC */
2067 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2068 	}
2069 
2070 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2071 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2072 }
2073 
2074 void t4_db_full(struct adapter *adap)
2075 {
2076 	if (is_t4(adap->params.chip)) {
2077 		disable_dbs(adap);
2078 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2079 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2080 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2081 		queue_work(adap->workq, &adap->db_full_task);
2082 	}
2083 }
2084 
2085 void t4_db_dropped(struct adapter *adap)
2086 {
2087 	if (is_t4(adap->params.chip)) {
2088 		disable_dbs(adap);
2089 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2090 	}
2091 	queue_work(adap->workq, &adap->db_drop_task);
2092 }
2093 
2094 void t4_register_netevent_notifier(void)
2095 {
2096 	if (!netevent_registered) {
2097 		register_netevent_notifier(&cxgb4_netevent_nb);
2098 		netevent_registered = true;
2099 	}
2100 }
2101 
2102 static void detach_ulds(struct adapter *adap)
2103 {
2104 	unsigned int i;
2105 
2106 	mutex_lock(&uld_mutex);
2107 	list_del(&adap->list_node);
2108 
2109 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2110 		if (adap->uld && adap->uld[i].handle)
2111 			adap->uld[i].state_change(adap->uld[i].handle,
2112 					     CXGB4_STATE_DETACH);
2113 
2114 	if (netevent_registered && list_empty(&adapter_list)) {
2115 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2116 		netevent_registered = false;
2117 	}
2118 	mutex_unlock(&uld_mutex);
2119 }
2120 
2121 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2122 {
2123 	unsigned int i;
2124 
2125 	mutex_lock(&uld_mutex);
2126 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2127 		if (adap->uld && adap->uld[i].handle)
2128 			adap->uld[i].state_change(adap->uld[i].handle,
2129 						  new_state);
2130 	mutex_unlock(&uld_mutex);
2131 }
2132 
2133 #if IS_ENABLED(CONFIG_IPV6)
2134 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2135 				   unsigned long event, void *data)
2136 {
2137 	struct inet6_ifaddr *ifa = data;
2138 	struct net_device *event_dev = ifa->idev->dev;
2139 	const struct device *parent = NULL;
2140 #if IS_ENABLED(CONFIG_BONDING)
2141 	struct adapter *adap;
2142 #endif
2143 	if (is_vlan_dev(event_dev))
2144 		event_dev = vlan_dev_real_dev(event_dev);
2145 #if IS_ENABLED(CONFIG_BONDING)
2146 	if (event_dev->flags & IFF_MASTER) {
2147 		list_for_each_entry(adap, &adapter_list, list_node) {
2148 			switch (event) {
2149 			case NETDEV_UP:
2150 				cxgb4_clip_get(adap->port[0],
2151 					       (const u32 *)ifa, 1);
2152 				break;
2153 			case NETDEV_DOWN:
2154 				cxgb4_clip_release(adap->port[0],
2155 						   (const u32 *)ifa, 1);
2156 				break;
2157 			default:
2158 				break;
2159 			}
2160 		}
2161 		return NOTIFY_OK;
2162 	}
2163 #endif
2164 
2165 	if (event_dev)
2166 		parent = event_dev->dev.parent;
2167 
2168 	if (parent && parent->driver == &cxgb4_driver.driver) {
2169 		switch (event) {
2170 		case NETDEV_UP:
2171 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2172 			break;
2173 		case NETDEV_DOWN:
2174 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2175 			break;
2176 		default:
2177 			break;
2178 		}
2179 	}
2180 	return NOTIFY_OK;
2181 }
2182 
2183 static bool inet6addr_registered;
2184 static struct notifier_block cxgb4_inet6addr_notifier = {
2185 	.notifier_call = cxgb4_inet6addr_handler
2186 };
2187 
2188 static void update_clip(const struct adapter *adap)
2189 {
2190 	int i;
2191 	struct net_device *dev;
2192 	int ret;
2193 
2194 	rcu_read_lock();
2195 
2196 	for (i = 0; i < MAX_NPORTS; i++) {
2197 		dev = adap->port[i];
2198 		ret = 0;
2199 
2200 		if (dev)
2201 			ret = cxgb4_update_root_dev_clip(dev);
2202 
2203 		if (ret < 0)
2204 			break;
2205 	}
2206 	rcu_read_unlock();
2207 }
2208 #endif /* IS_ENABLED(CONFIG_IPV6) */
2209 
2210 /**
2211  *	cxgb_up - enable the adapter
2212  *	@adap: adapter being enabled
2213  *
2214  *	Called when the first port is enabled, this function performs the
2215  *	actions necessary to make an adapter operational, such as completing
2216  *	the initialization of HW modules, and enabling interrupts.
2217  *
2218  *	Must be called with the rtnl lock held.
2219  */
2220 static int cxgb_up(struct adapter *adap)
2221 {
2222 	int err;
2223 
2224 	mutex_lock(&uld_mutex);
2225 	err = setup_sge_queues(adap);
2226 	if (err)
2227 		goto rel_lock;
2228 	err = setup_rss(adap);
2229 	if (err)
2230 		goto freeq;
2231 
2232 	if (adap->flags & USING_MSIX) {
2233 		name_msix_vecs(adap);
2234 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2235 				  adap->msix_info[0].desc, adap);
2236 		if (err)
2237 			goto irq_err;
2238 		err = request_msix_queue_irqs(adap);
2239 		if (err) {
2240 			free_irq(adap->msix_info[0].vec, adap);
2241 			goto irq_err;
2242 		}
2243 	} else {
2244 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2245 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2246 				  adap->port[0]->name, adap);
2247 		if (err)
2248 			goto irq_err;
2249 	}
2250 
2251 	enable_rx(adap);
2252 	t4_sge_start(adap);
2253 	t4_intr_enable(adap);
2254 	adap->flags |= FULL_INIT_DONE;
2255 	mutex_unlock(&uld_mutex);
2256 
2257 	notify_ulds(adap, CXGB4_STATE_UP);
2258 #if IS_ENABLED(CONFIG_IPV6)
2259 	update_clip(adap);
2260 #endif
2261 	return err;
2262 
2263  irq_err:
2264 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2265  freeq:
2266 	t4_free_sge_resources(adap);
2267  rel_lock:
2268 	mutex_unlock(&uld_mutex);
2269 	return err;
2270 }
2271 
2272 static void cxgb_down(struct adapter *adapter)
2273 {
2274 	cancel_work_sync(&adapter->tid_release_task);
2275 	cancel_work_sync(&adapter->db_full_task);
2276 	cancel_work_sync(&adapter->db_drop_task);
2277 	adapter->tid_release_task_busy = false;
2278 	adapter->tid_release_head = NULL;
2279 
2280 	t4_sge_stop(adapter);
2281 	t4_free_sge_resources(adapter);
2282 
2283 	adapter->flags &= ~FULL_INIT_DONE;
2284 }
2285 
2286 /*
2287  * net_device operations
2288  */
2289 static int cxgb_open(struct net_device *dev)
2290 {
2291 	int err;
2292 	struct port_info *pi = netdev_priv(dev);
2293 	struct adapter *adapter = pi->adapter;
2294 
2295 	netif_carrier_off(dev);
2296 
2297 	if (!(adapter->flags & FULL_INIT_DONE)) {
2298 		err = cxgb_up(adapter);
2299 		if (err < 0)
2300 			return err;
2301 	}
2302 
2303 	/* It's possible that the basic port information could have
2304 	 * changed since we first read it.
2305 	 */
2306 	err = t4_update_port_info(pi);
2307 	if (err < 0)
2308 		return err;
2309 
2310 	err = link_start(dev);
2311 	if (!err)
2312 		netif_tx_start_all_queues(dev);
2313 	return err;
2314 }
2315 
2316 static int cxgb_close(struct net_device *dev)
2317 {
2318 	struct port_info *pi = netdev_priv(dev);
2319 	struct adapter *adapter = pi->adapter;
2320 	int ret;
2321 
2322 	netif_tx_stop_all_queues(dev);
2323 	netif_carrier_off(dev);
2324 	ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2325 				  false, false, false);
2326 #ifdef CONFIG_CHELSIO_T4_DCB
2327 	cxgb4_dcb_reset(dev);
2328 	dcb_tx_queue_prio_enable(dev, false);
2329 #endif
2330 	return ret;
2331 }
2332 
2333 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2334 		__be32 sip, __be16 sport, __be16 vlan,
2335 		unsigned int queue, unsigned char port, unsigned char mask)
2336 {
2337 	int ret;
2338 	struct filter_entry *f;
2339 	struct adapter *adap;
2340 	int i;
2341 	u8 *val;
2342 
2343 	adap = netdev2adap(dev);
2344 
2345 	/* Adjust stid to correct filter index */
2346 	stid -= adap->tids.sftid_base;
2347 	stid += adap->tids.nftids;
2348 
2349 	/* Check to make sure the filter requested is writable ...
2350 	 */
2351 	f = &adap->tids.ftid_tab[stid];
2352 	ret = writable_filter(f);
2353 	if (ret)
2354 		return ret;
2355 
2356 	/* Clear out any old resources being used by the filter before
2357 	 * we start constructing the new filter.
2358 	 */
2359 	if (f->valid)
2360 		clear_filter(adap, f);
2361 
2362 	/* Clear out filter specifications */
2363 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2364 	f->fs.val.lport = cpu_to_be16(sport);
2365 	f->fs.mask.lport  = ~0;
2366 	val = (u8 *)&sip;
2367 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2368 		for (i = 0; i < 4; i++) {
2369 			f->fs.val.lip[i] = val[i];
2370 			f->fs.mask.lip[i] = ~0;
2371 		}
2372 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2373 			f->fs.val.iport = port;
2374 			f->fs.mask.iport = mask;
2375 		}
2376 	}
2377 
2378 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2379 		f->fs.val.proto = IPPROTO_TCP;
2380 		f->fs.mask.proto = ~0;
2381 	}
2382 
2383 	f->fs.dirsteer = 1;
2384 	f->fs.iq = queue;
2385 	/* Mark filter as locked */
2386 	f->locked = 1;
2387 	f->fs.rpttid = 1;
2388 
2389 	/* Save the actual tid. We need this to get the corresponding
2390 	 * filter entry structure in filter_rpl.
2391 	 */
2392 	f->tid = stid + adap->tids.ftid_base;
2393 	ret = set_filter_wr(adap, stid);
2394 	if (ret) {
2395 		clear_filter(adap, f);
2396 		return ret;
2397 	}
2398 
2399 	return 0;
2400 }
2401 EXPORT_SYMBOL(cxgb4_create_server_filter);
2402 
2403 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2404 		unsigned int queue, bool ipv6)
2405 {
2406 	struct filter_entry *f;
2407 	struct adapter *adap;
2408 
2409 	adap = netdev2adap(dev);
2410 
2411 	/* Adjust stid to correct filter index */
2412 	stid -= adap->tids.sftid_base;
2413 	stid += adap->tids.nftids;
2414 
2415 	f = &adap->tids.ftid_tab[stid];
2416 	/* Unlock the filter */
2417 	f->locked = 0;
2418 
2419 	return delete_filter(adap, stid);
2420 }
2421 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2422 
2423 static void cxgb_get_stats(struct net_device *dev,
2424 			   struct rtnl_link_stats64 *ns)
2425 {
2426 	struct port_stats stats;
2427 	struct port_info *p = netdev_priv(dev);
2428 	struct adapter *adapter = p->adapter;
2429 
2430 	/* Block retrieving statistics during EEH error
2431 	 * recovery. Otherwise, the recovery might fail
2432 	 * and the PCI device will be removed permanently
2433 	 */
2434 	spin_lock(&adapter->stats_lock);
2435 	if (!netif_device_present(dev)) {
2436 		spin_unlock(&adapter->stats_lock);
2437 		return;
2438 	}
2439 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2440 				 &p->stats_base);
2441 	spin_unlock(&adapter->stats_lock);
2442 
2443 	ns->tx_bytes   = stats.tx_octets;
2444 	ns->tx_packets = stats.tx_frames;
2445 	ns->rx_bytes   = stats.rx_octets;
2446 	ns->rx_packets = stats.rx_frames;
2447 	ns->multicast  = stats.rx_mcast_frames;
2448 
2449 	/* detailed rx_errors */
2450 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2451 			       stats.rx_runt;
2452 	ns->rx_over_errors   = 0;
2453 	ns->rx_crc_errors    = stats.rx_fcs_err;
2454 	ns->rx_frame_errors  = stats.rx_symbol_err;
2455 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2456 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2457 			       stats.rx_trunc0 + stats.rx_trunc1 +
2458 			       stats.rx_trunc2 + stats.rx_trunc3;
2459 	ns->rx_missed_errors = 0;
2460 
2461 	/* detailed tx_errors */
2462 	ns->tx_aborted_errors   = 0;
2463 	ns->tx_carrier_errors   = 0;
2464 	ns->tx_fifo_errors      = 0;
2465 	ns->tx_heartbeat_errors = 0;
2466 	ns->tx_window_errors    = 0;
2467 
2468 	ns->tx_errors = stats.tx_error_frames;
2469 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2470 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2471 }
2472 
2473 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2474 {
2475 	unsigned int mbox;
2476 	int ret = 0, prtad, devad;
2477 	struct port_info *pi = netdev_priv(dev);
2478 	struct adapter *adapter = pi->adapter;
2479 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2480 
2481 	switch (cmd) {
2482 	case SIOCGMIIPHY:
2483 		if (pi->mdio_addr < 0)
2484 			return -EOPNOTSUPP;
2485 		data->phy_id = pi->mdio_addr;
2486 		break;
2487 	case SIOCGMIIREG:
2488 	case SIOCSMIIREG:
2489 		if (mdio_phy_id_is_c45(data->phy_id)) {
2490 			prtad = mdio_phy_id_prtad(data->phy_id);
2491 			devad = mdio_phy_id_devad(data->phy_id);
2492 		} else if (data->phy_id < 32) {
2493 			prtad = data->phy_id;
2494 			devad = 0;
2495 			data->reg_num &= 0x1f;
2496 		} else
2497 			return -EINVAL;
2498 
2499 		mbox = pi->adapter->pf;
2500 		if (cmd == SIOCGMIIREG)
2501 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2502 					 data->reg_num, &data->val_out);
2503 		else
2504 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2505 					 data->reg_num, data->val_in);
2506 		break;
2507 	case SIOCGHWTSTAMP:
2508 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2509 				    sizeof(pi->tstamp_config)) ?
2510 			-EFAULT : 0;
2511 	case SIOCSHWTSTAMP:
2512 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2513 				   sizeof(pi->tstamp_config)))
2514 			return -EFAULT;
2515 
2516 		if (!is_t4(adapter->params.chip)) {
2517 			switch (pi->tstamp_config.tx_type) {
2518 			case HWTSTAMP_TX_OFF:
2519 			case HWTSTAMP_TX_ON:
2520 				break;
2521 			default:
2522 				return -ERANGE;
2523 			}
2524 
2525 			switch (pi->tstamp_config.rx_filter) {
2526 			case HWTSTAMP_FILTER_NONE:
2527 				pi->rxtstamp = false;
2528 				break;
2529 			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2530 			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2531 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2532 							 PTP_TS_L4);
2533 				break;
2534 			case HWTSTAMP_FILTER_PTP_V2_EVENT:
2535 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2536 							 PTP_TS_L2_L4);
2537 				break;
2538 			case HWTSTAMP_FILTER_ALL:
2539 			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2540 			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2541 			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2542 			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2543 				pi->rxtstamp = true;
2544 				break;
2545 			default:
2546 				pi->tstamp_config.rx_filter =
2547 					HWTSTAMP_FILTER_NONE;
2548 				return -ERANGE;
2549 			}
2550 
2551 			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2552 			    (pi->tstamp_config.rx_filter ==
2553 				HWTSTAMP_FILTER_NONE)) {
2554 				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2555 					pi->ptp_enable = false;
2556 			}
2557 
2558 			if (pi->tstamp_config.rx_filter !=
2559 				HWTSTAMP_FILTER_NONE) {
2560 				if (cxgb4_ptp_redirect_rx_packet(adapter,
2561 								 pi) >= 0)
2562 					pi->ptp_enable = true;
2563 			}
2564 		} else {
2565 			/* For T4 Adapters */
2566 			switch (pi->tstamp_config.rx_filter) {
2567 			case HWTSTAMP_FILTER_NONE:
2568 			pi->rxtstamp = false;
2569 			break;
2570 			case HWTSTAMP_FILTER_ALL:
2571 			pi->rxtstamp = true;
2572 			break;
2573 			default:
2574 			pi->tstamp_config.rx_filter =
2575 			HWTSTAMP_FILTER_NONE;
2576 			return -ERANGE;
2577 			}
2578 		}
2579 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2580 				    sizeof(pi->tstamp_config)) ?
2581 			-EFAULT : 0;
2582 	default:
2583 		return -EOPNOTSUPP;
2584 	}
2585 	return ret;
2586 }
2587 
2588 static void cxgb_set_rxmode(struct net_device *dev)
2589 {
2590 	/* unfortunately we can't return errors to the stack */
2591 	set_rxmode(dev, -1, false);
2592 }
2593 
2594 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2595 {
2596 	int ret;
2597 	struct port_info *pi = netdev_priv(dev);
2598 
2599 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2600 			    -1, -1, -1, true);
2601 	if (!ret)
2602 		dev->mtu = new_mtu;
2603 	return ret;
2604 }
2605 
2606 #ifdef CONFIG_PCI_IOV
2607 static int cxgb4_mgmt_open(struct net_device *dev)
2608 {
2609 	/* Turn carrier off since we don't have to transmit anything on this
2610 	 * interface.
2611 	 */
2612 	netif_carrier_off(dev);
2613 	return 0;
2614 }
2615 
2616 /* Fill MAC address that will be assigned by the FW */
2617 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2618 {
2619 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2620 	unsigned int i, vf, nvfs;
2621 	u16 a, b;
2622 	int err;
2623 	u8 *na;
2624 
2625 	adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2626 							    PCI_CAP_ID_VPD);
2627 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2628 	if (err)
2629 		return;
2630 
2631 	na = adap->params.vpd.na;
2632 	for (i = 0; i < ETH_ALEN; i++)
2633 		hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2634 			      hex2val(na[2 * i + 1]));
2635 
2636 	a = (hw_addr[0] << 8) | hw_addr[1];
2637 	b = (hw_addr[1] << 8) | hw_addr[2];
2638 	a ^= b;
2639 	a |= 0x0200;    /* locally assigned Ethernet MAC address */
2640 	a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2641 	macaddr[0] = a >> 8;
2642 	macaddr[1] = a & 0xff;
2643 
2644 	for (i = 2; i < 5; i++)
2645 		macaddr[i] = hw_addr[i + 1];
2646 
2647 	for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2648 		vf < nvfs; vf++) {
2649 		macaddr[5] = adap->pf * nvfs + vf;
2650 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2651 	}
2652 }
2653 
2654 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2655 {
2656 	struct port_info *pi = netdev_priv(dev);
2657 	struct adapter *adap = pi->adapter;
2658 	int ret;
2659 
2660 	/* verify MAC addr is valid */
2661 	if (!is_valid_ether_addr(mac)) {
2662 		dev_err(pi->adapter->pdev_dev,
2663 			"Invalid Ethernet address %pM for VF %d\n",
2664 			mac, vf);
2665 		return -EINVAL;
2666 	}
2667 
2668 	dev_info(pi->adapter->pdev_dev,
2669 		 "Setting MAC %pM on VF %d\n", mac, vf);
2670 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2671 	if (!ret)
2672 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2673 	return ret;
2674 }
2675 
2676 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2677 				    int vf, struct ifla_vf_info *ivi)
2678 {
2679 	struct port_info *pi = netdev_priv(dev);
2680 	struct adapter *adap = pi->adapter;
2681 	struct vf_info *vfinfo;
2682 
2683 	if (vf >= adap->num_vfs)
2684 		return -EINVAL;
2685 	vfinfo = &adap->vfinfo[vf];
2686 
2687 	ivi->vf = vf;
2688 	ivi->max_tx_rate = vfinfo->tx_rate;
2689 	ivi->min_tx_rate = 0;
2690 	ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2691 	ivi->vlan = vfinfo->vlan;
2692 	return 0;
2693 }
2694 
2695 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2696 				       struct netdev_phys_item_id *ppid)
2697 {
2698 	struct port_info *pi = netdev_priv(dev);
2699 	unsigned int phy_port_id;
2700 
2701 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2702 	ppid->id_len = sizeof(phy_port_id);
2703 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
2704 	return 0;
2705 }
2706 
2707 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2708 				  int min_tx_rate, int max_tx_rate)
2709 {
2710 	struct port_info *pi = netdev_priv(dev);
2711 	struct adapter *adap = pi->adapter;
2712 	unsigned int link_ok, speed, mtu;
2713 	u32 fw_pfvf, fw_class;
2714 	int class_id = vf;
2715 	int ret;
2716 	u16 pktsize;
2717 
2718 	if (vf >= adap->num_vfs)
2719 		return -EINVAL;
2720 
2721 	if (min_tx_rate) {
2722 		dev_err(adap->pdev_dev,
2723 			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2724 			min_tx_rate, vf);
2725 		return -EINVAL;
2726 	}
2727 
2728 	if (max_tx_rate == 0) {
2729 		/* unbind VF to to any Traffic Class */
2730 		fw_pfvf =
2731 		    (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2732 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2733 		fw_class = 0xffffffff;
2734 		ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
2735 				    &fw_pfvf, &fw_class);
2736 		if (ret) {
2737 			dev_err(adap->pdev_dev,
2738 				"Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
2739 				ret, adap->pf, vf);
2740 			return -EINVAL;
2741 		}
2742 		dev_info(adap->pdev_dev,
2743 			 "PF %d VF %d is unbound from TX Rate Limiting\n",
2744 			 adap->pf, vf);
2745 		adap->vfinfo[vf].tx_rate = 0;
2746 		return 0;
2747 	}
2748 
2749 	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2750 	if (ret != FW_SUCCESS) {
2751 		dev_err(adap->pdev_dev,
2752 			"Failed to get link information for VF %d\n", vf);
2753 		return -EINVAL;
2754 	}
2755 
2756 	if (!link_ok) {
2757 		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2758 		return -EINVAL;
2759 	}
2760 
2761 	if (max_tx_rate > speed) {
2762 		dev_err(adap->pdev_dev,
2763 			"Max tx rate %d for VF %d can't be > link-speed %u",
2764 			max_tx_rate, vf, speed);
2765 		return -EINVAL;
2766 	}
2767 
2768 	pktsize = mtu;
2769 	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2770 	pktsize = pktsize - sizeof(struct ethhdr) - 4;
2771 	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2772 	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2773 	/* configure Traffic Class for rate-limiting */
2774 	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2775 			      SCHED_CLASS_LEVEL_CL_RL,
2776 			      SCHED_CLASS_MODE_CLASS,
2777 			      SCHED_CLASS_RATEUNIT_BITS,
2778 			      SCHED_CLASS_RATEMODE_ABS,
2779 			      pi->tx_chan, class_id, 0,
2780 			      max_tx_rate * 1000, 0, pktsize);
2781 	if (ret) {
2782 		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2783 			ret);
2784 		return -EINVAL;
2785 	}
2786 	dev_info(adap->pdev_dev,
2787 		 "Class %d with MSS %u configured with rate %u\n",
2788 		 class_id, pktsize, max_tx_rate);
2789 
2790 	/* bind VF to configured Traffic Class */
2791 	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2792 		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2793 	fw_class = class_id;
2794 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2795 			    &fw_class);
2796 	if (ret) {
2797 		dev_err(adap->pdev_dev,
2798 			"Err %d in binding PF %d VF %d to Traffic Class %d\n",
2799 			ret, adap->pf, vf, class_id);
2800 		return -EINVAL;
2801 	}
2802 	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2803 		 adap->pf, vf, class_id);
2804 	adap->vfinfo[vf].tx_rate = max_tx_rate;
2805 	return 0;
2806 }
2807 
2808 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
2809 				  u16 vlan, u8 qos, __be16 vlan_proto)
2810 {
2811 	struct port_info *pi = netdev_priv(dev);
2812 	struct adapter *adap = pi->adapter;
2813 	int ret;
2814 
2815 	if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
2816 		return -EINVAL;
2817 
2818 	if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
2819 		return -EPROTONOSUPPORT;
2820 
2821 	ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
2822 	if (!ret) {
2823 		adap->vfinfo[vf].vlan = vlan;
2824 		return 0;
2825 	}
2826 
2827 	dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
2828 		ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
2829 	return ret;
2830 }
2831 #endif /* CONFIG_PCI_IOV */
2832 
2833 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2834 {
2835 	int ret;
2836 	struct sockaddr *addr = p;
2837 	struct port_info *pi = netdev_priv(dev);
2838 
2839 	if (!is_valid_ether_addr(addr->sa_data))
2840 		return -EADDRNOTAVAIL;
2841 
2842 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2843 			    pi->xact_addr_filt, addr->sa_data, true,
2844 			    &pi->smt_idx);
2845 	if (ret < 0)
2846 		return ret;
2847 
2848 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2849 	pi->xact_addr_filt = ret;
2850 	return 0;
2851 }
2852 
2853 #ifdef CONFIG_NET_POLL_CONTROLLER
2854 static void cxgb_netpoll(struct net_device *dev)
2855 {
2856 	struct port_info *pi = netdev_priv(dev);
2857 	struct adapter *adap = pi->adapter;
2858 
2859 	if (adap->flags & USING_MSIX) {
2860 		int i;
2861 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2862 
2863 		for (i = pi->nqsets; i; i--, rx++)
2864 			t4_sge_intr_msix(0, &rx->rspq);
2865 	} else
2866 		t4_intr_handler(adap)(0, adap);
2867 }
2868 #endif
2869 
2870 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2871 {
2872 	struct port_info *pi = netdev_priv(dev);
2873 	struct adapter *adap = pi->adapter;
2874 	struct sched_class *e;
2875 	struct ch_sched_params p;
2876 	struct ch_sched_queue qe;
2877 	u32 req_rate;
2878 	int err = 0;
2879 
2880 	if (!can_sched(dev))
2881 		return -ENOTSUPP;
2882 
2883 	if (index < 0 || index > pi->nqsets - 1)
2884 		return -EINVAL;
2885 
2886 	if (!(adap->flags & FULL_INIT_DONE)) {
2887 		dev_err(adap->pdev_dev,
2888 			"Failed to rate limit on queue %d. Link Down?\n",
2889 			index);
2890 		return -EINVAL;
2891 	}
2892 
2893 	/* Convert from Mbps to Kbps */
2894 	req_rate = rate * 1000;
2895 
2896 	/* Max rate is 100 Gbps */
2897 	if (req_rate > SCHED_MAX_RATE_KBPS) {
2898 		dev_err(adap->pdev_dev,
2899 			"Invalid rate %u Mbps, Max rate is %u Mbps\n",
2900 			rate, SCHED_MAX_RATE_KBPS / 1000);
2901 		return -ERANGE;
2902 	}
2903 
2904 	/* First unbind the queue from any existing class */
2905 	memset(&qe, 0, sizeof(qe));
2906 	qe.queue = index;
2907 	qe.class = SCHED_CLS_NONE;
2908 
2909 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2910 	if (err) {
2911 		dev_err(adap->pdev_dev,
2912 			"Unbinding Queue %d on port %d fail. Err: %d\n",
2913 			index, pi->port_id, err);
2914 		return err;
2915 	}
2916 
2917 	/* Queue already unbound */
2918 	if (!req_rate)
2919 		return 0;
2920 
2921 	/* Fetch any available unused or matching scheduling class */
2922 	memset(&p, 0, sizeof(p));
2923 	p.type = SCHED_CLASS_TYPE_PACKET;
2924 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2925 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2926 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2927 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2928 	p.u.params.channel  = pi->tx_chan;
2929 	p.u.params.class    = SCHED_CLS_NONE;
2930 	p.u.params.minrate  = 0;
2931 	p.u.params.maxrate  = req_rate;
2932 	p.u.params.weight   = 0;
2933 	p.u.params.pktsize  = dev->mtu;
2934 
2935 	e = cxgb4_sched_class_alloc(dev, &p);
2936 	if (!e)
2937 		return -ENOMEM;
2938 
2939 	/* Bind the queue to a scheduling class */
2940 	memset(&qe, 0, sizeof(qe));
2941 	qe.queue = index;
2942 	qe.class = e->idx;
2943 
2944 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2945 	if (err)
2946 		dev_err(adap->pdev_dev,
2947 			"Queue rate limiting failed. Err: %d\n", err);
2948 	return err;
2949 }
2950 
2951 static int cxgb_setup_tc_flower(struct net_device *dev,
2952 				struct tc_cls_flower_offload *cls_flower)
2953 {
2954 	switch (cls_flower->command) {
2955 	case TC_CLSFLOWER_REPLACE:
2956 		return cxgb4_tc_flower_replace(dev, cls_flower);
2957 	case TC_CLSFLOWER_DESTROY:
2958 		return cxgb4_tc_flower_destroy(dev, cls_flower);
2959 	case TC_CLSFLOWER_STATS:
2960 		return cxgb4_tc_flower_stats(dev, cls_flower);
2961 	default:
2962 		return -EOPNOTSUPP;
2963 	}
2964 }
2965 
2966 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
2967 				 struct tc_cls_u32_offload *cls_u32)
2968 {
2969 	switch (cls_u32->command) {
2970 	case TC_CLSU32_NEW_KNODE:
2971 	case TC_CLSU32_REPLACE_KNODE:
2972 		return cxgb4_config_knode(dev, cls_u32);
2973 	case TC_CLSU32_DELETE_KNODE:
2974 		return cxgb4_delete_knode(dev, cls_u32);
2975 	default:
2976 		return -EOPNOTSUPP;
2977 	}
2978 }
2979 
2980 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2981 				  void *cb_priv)
2982 {
2983 	struct net_device *dev = cb_priv;
2984 	struct port_info *pi = netdev2pinfo(dev);
2985 	struct adapter *adap = netdev2adap(dev);
2986 
2987 	if (!(adap->flags & FULL_INIT_DONE)) {
2988 		dev_err(adap->pdev_dev,
2989 			"Failed to setup tc on port %d. Link Down?\n",
2990 			pi->port_id);
2991 		return -EINVAL;
2992 	}
2993 
2994 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
2995 		return -EOPNOTSUPP;
2996 
2997 	switch (type) {
2998 	case TC_SETUP_CLSU32:
2999 		return cxgb_setup_tc_cls_u32(dev, type_data);
3000 	case TC_SETUP_CLSFLOWER:
3001 		return cxgb_setup_tc_flower(dev, type_data);
3002 	default:
3003 		return -EOPNOTSUPP;
3004 	}
3005 }
3006 
3007 static int cxgb_setup_tc_block(struct net_device *dev,
3008 			       struct tc_block_offload *f)
3009 {
3010 	struct port_info *pi = netdev2pinfo(dev);
3011 
3012 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3013 		return -EOPNOTSUPP;
3014 
3015 	switch (f->command) {
3016 	case TC_BLOCK_BIND:
3017 		return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb,
3018 					     pi, dev, f->extack);
3019 	case TC_BLOCK_UNBIND:
3020 		tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi);
3021 		return 0;
3022 	default:
3023 		return -EOPNOTSUPP;
3024 	}
3025 }
3026 
3027 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3028 			 void *type_data)
3029 {
3030 	switch (type) {
3031 	case TC_SETUP_BLOCK:
3032 		return cxgb_setup_tc_block(dev, type_data);
3033 	default:
3034 		return -EOPNOTSUPP;
3035 	}
3036 }
3037 
3038 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3039 				struct udp_tunnel_info *ti)
3040 {
3041 	struct port_info *pi = netdev_priv(netdev);
3042 	struct adapter *adapter = pi->adapter;
3043 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3044 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3045 	int ret = 0, i;
3046 
3047 	if (chip_ver < CHELSIO_T6)
3048 		return;
3049 
3050 	switch (ti->type) {
3051 	case UDP_TUNNEL_TYPE_VXLAN:
3052 		if (!adapter->vxlan_port_cnt ||
3053 		    adapter->vxlan_port != ti->port)
3054 			return; /* Invalid VxLAN destination port */
3055 
3056 		adapter->vxlan_port_cnt--;
3057 		if (adapter->vxlan_port_cnt)
3058 			return;
3059 
3060 		adapter->vxlan_port = 0;
3061 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3062 		break;
3063 	case UDP_TUNNEL_TYPE_GENEVE:
3064 		if (!adapter->geneve_port_cnt ||
3065 		    adapter->geneve_port != ti->port)
3066 			return; /* Invalid GENEVE destination port */
3067 
3068 		adapter->geneve_port_cnt--;
3069 		if (adapter->geneve_port_cnt)
3070 			return;
3071 
3072 		adapter->geneve_port = 0;
3073 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3074 		break;
3075 	default:
3076 		return;
3077 	}
3078 
3079 	/* Matchall mac entries can be deleted only after all tunnel ports
3080 	 * are brought down or removed.
3081 	 */
3082 	if (!adapter->rawf_cnt)
3083 		return;
3084 	for_each_port(adapter, i) {
3085 		pi = adap2pinfo(adapter, i);
3086 		ret = t4_free_raw_mac_filt(adapter, pi->viid,
3087 					   match_all_mac, match_all_mac,
3088 					   adapter->rawf_start +
3089 					    pi->port_id,
3090 					   1, pi->port_id, false);
3091 		if (ret < 0) {
3092 			netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3093 				    i);
3094 			return;
3095 		}
3096 		atomic_dec(&adapter->mps_encap[adapter->rawf_start +
3097 			   pi->port_id].refcnt);
3098 	}
3099 }
3100 
3101 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3102 				struct udp_tunnel_info *ti)
3103 {
3104 	struct port_info *pi = netdev_priv(netdev);
3105 	struct adapter *adapter = pi->adapter;
3106 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3107 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3108 	int i, ret;
3109 
3110 	if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3111 		return;
3112 
3113 	switch (ti->type) {
3114 	case UDP_TUNNEL_TYPE_VXLAN:
3115 		/* Callback for adding vxlan port can be called with the same
3116 		 * port for both IPv4 and IPv6. We should not disable the
3117 		 * offloading when the same port for both protocols is added
3118 		 * and later one of them is removed.
3119 		 */
3120 		if (adapter->vxlan_port_cnt &&
3121 		    adapter->vxlan_port == ti->port) {
3122 			adapter->vxlan_port_cnt++;
3123 			return;
3124 		}
3125 
3126 		/* We will support only one VxLAN port */
3127 		if (adapter->vxlan_port_cnt) {
3128 			netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3129 				    be16_to_cpu(adapter->vxlan_port),
3130 				    be16_to_cpu(ti->port));
3131 			return;
3132 		}
3133 
3134 		adapter->vxlan_port = ti->port;
3135 		adapter->vxlan_port_cnt = 1;
3136 
3137 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3138 			     VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3139 		break;
3140 	case UDP_TUNNEL_TYPE_GENEVE:
3141 		if (adapter->geneve_port_cnt &&
3142 		    adapter->geneve_port == ti->port) {
3143 			adapter->geneve_port_cnt++;
3144 			return;
3145 		}
3146 
3147 		/* We will support only one GENEVE port */
3148 		if (adapter->geneve_port_cnt) {
3149 			netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3150 				    be16_to_cpu(adapter->geneve_port),
3151 				    be16_to_cpu(ti->port));
3152 			return;
3153 		}
3154 
3155 		adapter->geneve_port = ti->port;
3156 		adapter->geneve_port_cnt = 1;
3157 
3158 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3159 			     GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3160 		break;
3161 	default:
3162 		return;
3163 	}
3164 
3165 	/* Create a 'match all' mac filter entry for inner mac,
3166 	 * if raw mac interface is supported. Once the linux kernel provides
3167 	 * driver entry points for adding/deleting the inner mac addresses,
3168 	 * we will remove this 'match all' entry and fallback to adding
3169 	 * exact match filters.
3170 	 */
3171 	for_each_port(adapter, i) {
3172 		pi = adap2pinfo(adapter, i);
3173 
3174 		ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3175 					    match_all_mac,
3176 					    match_all_mac,
3177 					    adapter->rawf_start +
3178 					    pi->port_id,
3179 					    1, pi->port_id, false);
3180 		if (ret < 0) {
3181 			netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3182 				    be16_to_cpu(ti->port));
3183 			cxgb_del_udp_tunnel(netdev, ti);
3184 			return;
3185 		}
3186 		atomic_inc(&adapter->mps_encap[ret].refcnt);
3187 	}
3188 }
3189 
3190 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3191 					     struct net_device *dev,
3192 					     netdev_features_t features)
3193 {
3194 	struct port_info *pi = netdev_priv(dev);
3195 	struct adapter *adapter = pi->adapter;
3196 
3197 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3198 		return features;
3199 
3200 	/* Check if hw supports offload for this packet */
3201 	if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3202 		return features;
3203 
3204 	/* Offload is not supported for this encapsulated packet */
3205 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3206 }
3207 
3208 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3209 					   netdev_features_t features)
3210 {
3211 	/* Disable GRO, if RX_CSUM is disabled */
3212 	if (!(features & NETIF_F_RXCSUM))
3213 		features &= ~NETIF_F_GRO;
3214 
3215 	return features;
3216 }
3217 
3218 static const struct net_device_ops cxgb4_netdev_ops = {
3219 	.ndo_open             = cxgb_open,
3220 	.ndo_stop             = cxgb_close,
3221 	.ndo_start_xmit       = t4_start_xmit,
3222 	.ndo_select_queue     =	cxgb_select_queue,
3223 	.ndo_get_stats64      = cxgb_get_stats,
3224 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3225 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3226 	.ndo_set_features     = cxgb_set_features,
3227 	.ndo_validate_addr    = eth_validate_addr,
3228 	.ndo_do_ioctl         = cxgb_ioctl,
3229 	.ndo_change_mtu       = cxgb_change_mtu,
3230 #ifdef CONFIG_NET_POLL_CONTROLLER
3231 	.ndo_poll_controller  = cxgb_netpoll,
3232 #endif
3233 #ifdef CONFIG_CHELSIO_T4_FCOE
3234 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3235 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3236 #endif /* CONFIG_CHELSIO_T4_FCOE */
3237 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3238 	.ndo_setup_tc         = cxgb_setup_tc,
3239 	.ndo_udp_tunnel_add   = cxgb_add_udp_tunnel,
3240 	.ndo_udp_tunnel_del   = cxgb_del_udp_tunnel,
3241 	.ndo_features_check   = cxgb_features_check,
3242 	.ndo_fix_features     = cxgb_fix_features,
3243 };
3244 
3245 #ifdef CONFIG_PCI_IOV
3246 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3247 	.ndo_open             = cxgb4_mgmt_open,
3248 	.ndo_set_vf_mac       = cxgb4_mgmt_set_vf_mac,
3249 	.ndo_get_vf_config    = cxgb4_mgmt_get_vf_config,
3250 	.ndo_set_vf_rate      = cxgb4_mgmt_set_vf_rate,
3251 	.ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
3252 	.ndo_set_vf_vlan      = cxgb4_mgmt_set_vf_vlan,
3253 };
3254 #endif
3255 
3256 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3257 				   struct ethtool_drvinfo *info)
3258 {
3259 	struct adapter *adapter = netdev2adap(dev);
3260 
3261 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3262 	strlcpy(info->version, cxgb4_driver_version,
3263 		sizeof(info->version));
3264 	strlcpy(info->bus_info, pci_name(adapter->pdev),
3265 		sizeof(info->bus_info));
3266 }
3267 
3268 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3269 	.get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3270 };
3271 
3272 static void notify_fatal_err(struct work_struct *work)
3273 {
3274 	struct adapter *adap;
3275 
3276 	adap = container_of(work, struct adapter, fatal_err_notify_task);
3277 	notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3278 }
3279 
3280 void t4_fatal_err(struct adapter *adap)
3281 {
3282 	int port;
3283 
3284 	if (pci_channel_offline(adap->pdev))
3285 		return;
3286 
3287 	/* Disable the SGE since ULDs are going to free resources that
3288 	 * could be exposed to the adapter.  RDMA MWs for example...
3289 	 */
3290 	t4_shutdown_adapter(adap);
3291 	for_each_port(adap, port) {
3292 		struct net_device *dev = adap->port[port];
3293 
3294 		/* If we get here in very early initialization the network
3295 		 * devices may not have been set up yet.
3296 		 */
3297 		if (!dev)
3298 			continue;
3299 
3300 		netif_tx_stop_all_queues(dev);
3301 		netif_carrier_off(dev);
3302 	}
3303 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3304 	queue_work(adap->workq, &adap->fatal_err_notify_task);
3305 }
3306 
3307 static void setup_memwin(struct adapter *adap)
3308 {
3309 	u32 nic_win_base = t4_get_util_window(adap);
3310 
3311 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3312 }
3313 
3314 static void setup_memwin_rdma(struct adapter *adap)
3315 {
3316 	if (adap->vres.ocq.size) {
3317 		u32 start;
3318 		unsigned int sz_kb;
3319 
3320 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3321 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3322 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3323 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3324 		t4_write_reg(adap,
3325 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3326 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3327 		t4_write_reg(adap,
3328 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3329 			     adap->vres.ocq.start);
3330 		t4_read_reg(adap,
3331 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3332 	}
3333 }
3334 
3335 /* HMA Definitions */
3336 
3337 /* The maximum number of address that can be send in a single FW cmd */
3338 #define HMA_MAX_ADDR_IN_CMD	5
3339 
3340 #define HMA_PAGE_SIZE		PAGE_SIZE
3341 
3342 #define HMA_MAX_NO_FW_ADDRESS	(16 << 10)  /* FW supports 16K addresses */
3343 
3344 #define HMA_PAGE_ORDER					\
3345 	((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?	\
3346 	ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3347 
3348 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3349  * configuration(in units of MB).
3350  */
3351 #define HMA_MIN_TOTAL_SIZE	1
3352 #define HMA_MAX_TOTAL_SIZE				\
3353 	(((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *		\
3354 	  HMA_MAX_NO_FW_ADDRESS) >> 20)
3355 
3356 static void adap_free_hma_mem(struct adapter *adapter)
3357 {
3358 	struct scatterlist *iter;
3359 	struct page *page;
3360 	int i;
3361 
3362 	if (!adapter->hma.sgt)
3363 		return;
3364 
3365 	if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3366 		dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3367 			     adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3368 		adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3369 	}
3370 
3371 	for_each_sg(adapter->hma.sgt->sgl, iter,
3372 		    adapter->hma.sgt->orig_nents, i) {
3373 		page = sg_page(iter);
3374 		if (page)
3375 			__free_pages(page, HMA_PAGE_ORDER);
3376 	}
3377 
3378 	kfree(adapter->hma.phy_addr);
3379 	sg_free_table(adapter->hma.sgt);
3380 	kfree(adapter->hma.sgt);
3381 	adapter->hma.sgt = NULL;
3382 }
3383 
3384 static int adap_config_hma(struct adapter *adapter)
3385 {
3386 	struct scatterlist *sgl, *iter;
3387 	struct sg_table *sgt;
3388 	struct page *newpage;
3389 	unsigned int i, j, k;
3390 	u32 param, hma_size;
3391 	unsigned int ncmds;
3392 	size_t page_size;
3393 	u32 page_order;
3394 	int node, ret;
3395 
3396 	/* HMA is supported only for T6+ cards.
3397 	 * Avoid initializing HMA in kdump kernels.
3398 	 */
3399 	if (is_kdump_kernel() ||
3400 	    CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3401 		return 0;
3402 
3403 	/* Get the HMA region size required by fw */
3404 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3405 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3406 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3407 			      1, &param, &hma_size);
3408 	/* An error means card has its own memory or HMA is not supported by
3409 	 * the firmware. Return without any errors.
3410 	 */
3411 	if (ret || !hma_size)
3412 		return 0;
3413 
3414 	if (hma_size < HMA_MIN_TOTAL_SIZE ||
3415 	    hma_size > HMA_MAX_TOTAL_SIZE) {
3416 		dev_err(adapter->pdev_dev,
3417 			"HMA size %uMB beyond bounds(%u-%lu)MB\n",
3418 			hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3419 		return -EINVAL;
3420 	}
3421 
3422 	page_size = HMA_PAGE_SIZE;
3423 	page_order = HMA_PAGE_ORDER;
3424 	adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3425 	if (unlikely(!adapter->hma.sgt)) {
3426 		dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3427 		return -ENOMEM;
3428 	}
3429 	sgt = adapter->hma.sgt;
3430 	/* FW returned value will be in MB's
3431 	 */
3432 	sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3433 	if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3434 		dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3435 		kfree(adapter->hma.sgt);
3436 		adapter->hma.sgt = NULL;
3437 		return -ENOMEM;
3438 	}
3439 
3440 	sgl = adapter->hma.sgt->sgl;
3441 	node = dev_to_node(adapter->pdev_dev);
3442 	for_each_sg(sgl, iter, sgt->orig_nents, i) {
3443 		newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3444 					   __GFP_ZERO, page_order);
3445 		if (!newpage) {
3446 			dev_err(adapter->pdev_dev,
3447 				"Not enough memory for HMA page allocation\n");
3448 			ret = -ENOMEM;
3449 			goto free_hma;
3450 		}
3451 		sg_set_page(iter, newpage, page_size << page_order, 0);
3452 	}
3453 
3454 	sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3455 				DMA_BIDIRECTIONAL);
3456 	if (!sgt->nents) {
3457 		dev_err(adapter->pdev_dev,
3458 			"Not enough memory for HMA DMA mapping");
3459 		ret = -ENOMEM;
3460 		goto free_hma;
3461 	}
3462 	adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3463 
3464 	adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3465 					GFP_KERNEL);
3466 	if (unlikely(!adapter->hma.phy_addr))
3467 		goto free_hma;
3468 
3469 	for_each_sg(sgl, iter, sgt->nents, i) {
3470 		newpage = sg_page(iter);
3471 		adapter->hma.phy_addr[i] = sg_dma_address(iter);
3472 	}
3473 
3474 	ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3475 	/* Pass on the addresses to firmware */
3476 	for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3477 		struct fw_hma_cmd hma_cmd;
3478 		u8 naddr = HMA_MAX_ADDR_IN_CMD;
3479 		u8 soc = 0, eoc = 0;
3480 		u8 hma_mode = 1; /* Presently we support only Page table mode */
3481 
3482 		soc = (i == 0) ? 1 : 0;
3483 		eoc = (i == ncmds - 1) ? 1 : 0;
3484 
3485 		/* For last cmd, set naddr corresponding to remaining
3486 		 * addresses
3487 		 */
3488 		if (i == ncmds - 1) {
3489 			naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3490 			naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3491 		}
3492 		memset(&hma_cmd, 0, sizeof(hma_cmd));
3493 		hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3494 				       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3495 		hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3496 
3497 		hma_cmd.mode_to_pcie_params =
3498 			htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3499 			      FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3500 
3501 		/* HMA cmd size specified in MB's */
3502 		hma_cmd.naddr_size =
3503 			htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3504 			      FW_HMA_CMD_NADDR_V(naddr));
3505 
3506 		/* Total Page size specified in units of 4K */
3507 		hma_cmd.addr_size_pkd =
3508 			htonl(FW_HMA_CMD_ADDR_SIZE_V
3509 				((page_size << page_order) >> 12));
3510 
3511 		/* Fill the 5 addresses */
3512 		for (j = 0; j < naddr; j++) {
3513 			hma_cmd.phy_address[j] =
3514 				cpu_to_be64(adapter->hma.phy_addr[j + k]);
3515 		}
3516 		ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3517 				 sizeof(hma_cmd), &hma_cmd);
3518 		if (ret) {
3519 			dev_err(adapter->pdev_dev,
3520 				"HMA FW command failed with err %d\n", ret);
3521 			goto free_hma;
3522 		}
3523 	}
3524 
3525 	if (!ret)
3526 		dev_info(adapter->pdev_dev,
3527 			 "Reserved %uMB host memory for HMA\n", hma_size);
3528 	return ret;
3529 
3530 free_hma:
3531 	adap_free_hma_mem(adapter);
3532 	return ret;
3533 }
3534 
3535 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3536 {
3537 	u32 v;
3538 	int ret;
3539 
3540 	/* Now that we've successfully configured and initialized the adapter
3541 	 * can ask the Firmware what resources it has provisioned for us.
3542 	 */
3543 	ret = t4_get_pfres(adap);
3544 	if (ret) {
3545 		dev_err(adap->pdev_dev,
3546 			"Unable to retrieve resource provisioning information\n");
3547 		return ret;
3548 	}
3549 
3550 	/* get device capabilities */
3551 	memset(c, 0, sizeof(*c));
3552 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3553 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3554 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3555 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3556 	if (ret < 0)
3557 		return ret;
3558 
3559 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3560 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3561 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3562 	if (ret < 0)
3563 		return ret;
3564 
3565 	ret = t4_config_glbl_rss(adap, adap->pf,
3566 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3567 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3568 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3569 	if (ret < 0)
3570 		return ret;
3571 
3572 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3573 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3574 			  FW_CMD_CAP_PF);
3575 	if (ret < 0)
3576 		return ret;
3577 
3578 	t4_sge_init(adap);
3579 
3580 	/* tweak some settings */
3581 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3582 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3583 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3584 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3585 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3586 
3587 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3588 	adap->params.tp.tx_modq_map = 0xE4;
3589 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3590 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3591 
3592 	/* associate each Tx modulation queue with consecutive Tx channels */
3593 	v = 0x84218421;
3594 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3595 			  &v, 1, TP_TX_SCHED_HDR_A);
3596 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3597 			  &v, 1, TP_TX_SCHED_FIFO_A);
3598 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3599 			  &v, 1, TP_TX_SCHED_PCMD_A);
3600 
3601 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3602 	if (is_offload(adap)) {
3603 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3604 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3605 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3606 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3607 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3608 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3609 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3610 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3611 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3612 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3613 	}
3614 
3615 	/* get basic stuff going */
3616 	return t4_early_init(adap, adap->pf);
3617 }
3618 
3619 /*
3620  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3621  */
3622 #define MAX_ATIDS 8192U
3623 
3624 /*
3625  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3626  *
3627  * If the firmware we're dealing with has Configuration File support, then
3628  * we use that to perform all configuration
3629  */
3630 
3631 /*
3632  * Tweak configuration based on module parameters, etc.  Most of these have
3633  * defaults assigned to them by Firmware Configuration Files (if we're using
3634  * them) but need to be explicitly set if we're using hard-coded
3635  * initialization.  But even in the case of using Firmware Configuration
3636  * Files, we'd like to expose the ability to change these via module
3637  * parameters so these are essentially common tweaks/settings for
3638  * Configuration Files and hard-coded initialization ...
3639  */
3640 static int adap_init0_tweaks(struct adapter *adapter)
3641 {
3642 	/*
3643 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3644 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3645 	 * 64B Cache Line Size ...
3646 	 */
3647 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3648 
3649 	/*
3650 	 * Process module parameters which affect early initialization.
3651 	 */
3652 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3653 		dev_err(&adapter->pdev->dev,
3654 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3655 			rx_dma_offset);
3656 		rx_dma_offset = 2;
3657 	}
3658 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3659 			 PKTSHIFT_V(PKTSHIFT_M),
3660 			 PKTSHIFT_V(rx_dma_offset));
3661 
3662 	/*
3663 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3664 	 * adds the pseudo header itself.
3665 	 */
3666 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3667 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3668 
3669 	return 0;
3670 }
3671 
3672 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3673  * unto themselves and they contain their own firmware to perform their
3674  * tasks ...
3675  */
3676 static int phy_aq1202_version(const u8 *phy_fw_data,
3677 			      size_t phy_fw_size)
3678 {
3679 	int offset;
3680 
3681 	/* At offset 0x8 you're looking for the primary image's
3682 	 * starting offset which is 3 Bytes wide
3683 	 *
3684 	 * At offset 0xa of the primary image, you look for the offset
3685 	 * of the DRAM segment which is 3 Bytes wide.
3686 	 *
3687 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3688 	 * wide
3689 	 */
3690 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
3691 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3692 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
3693 
3694 	offset = le24(phy_fw_data + 0x8) << 12;
3695 	offset = le24(phy_fw_data + offset + 0xa);
3696 	return be16(phy_fw_data + offset + 0x27e);
3697 
3698 	#undef be16
3699 	#undef le16
3700 	#undef le24
3701 }
3702 
3703 static struct info_10gbt_phy_fw {
3704 	unsigned int phy_fw_id;		/* PCI Device ID */
3705 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
3706 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3707 	int phy_flash;			/* Has FLASH for PHY Firmware */
3708 } phy_info_array[] = {
3709 	{
3710 		PHY_AQ1202_DEVICEID,
3711 		PHY_AQ1202_FIRMWARE,
3712 		phy_aq1202_version,
3713 		1,
3714 	},
3715 	{
3716 		PHY_BCM84834_DEVICEID,
3717 		PHY_BCM84834_FIRMWARE,
3718 		NULL,
3719 		0,
3720 	},
3721 	{ 0, NULL, NULL },
3722 };
3723 
3724 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3725 {
3726 	int i;
3727 
3728 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3729 		if (phy_info_array[i].phy_fw_id == devid)
3730 			return &phy_info_array[i];
3731 	}
3732 	return NULL;
3733 }
3734 
3735 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3736  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3737  * we return a negative error number.  If we transfer new firmware we return 1
3738  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3739  */
3740 static int adap_init0_phy(struct adapter *adap)
3741 {
3742 	const struct firmware *phyf;
3743 	int ret;
3744 	struct info_10gbt_phy_fw *phy_info;
3745 
3746 	/* Use the device ID to determine which PHY file to flash.
3747 	 */
3748 	phy_info = find_phy_info(adap->pdev->device);
3749 	if (!phy_info) {
3750 		dev_warn(adap->pdev_dev,
3751 			 "No PHY Firmware file found for this PHY\n");
3752 		return -EOPNOTSUPP;
3753 	}
3754 
3755 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3756 	 * use that. The adapter firmware provides us with a memory buffer
3757 	 * where we can load a PHY firmware file from the host if we want to
3758 	 * override the PHY firmware File in flash.
3759 	 */
3760 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3761 				      adap->pdev_dev);
3762 	if (ret < 0) {
3763 		/* For adapters without FLASH attached to PHY for their
3764 		 * firmware, it's obviously a fatal error if we can't get the
3765 		 * firmware to the adapter.  For adapters with PHY firmware
3766 		 * FLASH storage, it's worth a warning if we can't find the
3767 		 * PHY Firmware but we'll neuter the error ...
3768 		 */
3769 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3770 			"/lib/firmware/%s, error %d\n",
3771 			phy_info->phy_fw_file, -ret);
3772 		if (phy_info->phy_flash) {
3773 			int cur_phy_fw_ver = 0;
3774 
3775 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3776 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3777 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3778 			ret = 0;
3779 		}
3780 
3781 		return ret;
3782 	}
3783 
3784 	/* Load PHY Firmware onto adapter.
3785 	 */
3786 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3787 			     phy_info->phy_fw_version,
3788 			     (u8 *)phyf->data, phyf->size);
3789 	if (ret < 0)
3790 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3791 			-ret);
3792 	else if (ret > 0) {
3793 		int new_phy_fw_ver = 0;
3794 
3795 		if (phy_info->phy_fw_version)
3796 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3797 								  phyf->size);
3798 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3799 			 "Firmware /lib/firmware/%s, version %#x\n",
3800 			 phy_info->phy_fw_file, new_phy_fw_ver);
3801 	}
3802 
3803 	release_firmware(phyf);
3804 
3805 	return ret;
3806 }
3807 
3808 /*
3809  * Attempt to initialize the adapter via a Firmware Configuration File.
3810  */
3811 static int adap_init0_config(struct adapter *adapter, int reset)
3812 {
3813 	struct fw_caps_config_cmd caps_cmd;
3814 	const struct firmware *cf;
3815 	unsigned long mtype = 0, maddr = 0;
3816 	u32 finiver, finicsum, cfcsum;
3817 	int ret;
3818 	int config_issued = 0;
3819 	char *fw_config_file, fw_config_file_path[256];
3820 	char *config_name = NULL;
3821 
3822 	/*
3823 	 * Reset device if necessary.
3824 	 */
3825 	if (reset) {
3826 		ret = t4_fw_reset(adapter, adapter->mbox,
3827 				  PIORSTMODE_F | PIORST_F);
3828 		if (ret < 0)
3829 			goto bye;
3830 	}
3831 
3832 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3833 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3834 	 * to be performed after any global adapter RESET above since some
3835 	 * PHYs only have local RAM copies of the PHY firmware.
3836 	 */
3837 	if (is_10gbt_device(adapter->pdev->device)) {
3838 		ret = adap_init0_phy(adapter);
3839 		if (ret < 0)
3840 			goto bye;
3841 	}
3842 	/*
3843 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3844 	 * then use that.  Otherwise, use the configuration file stored
3845 	 * in the adapter flash ...
3846 	 */
3847 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3848 	case CHELSIO_T4:
3849 		fw_config_file = FW4_CFNAME;
3850 		break;
3851 	case CHELSIO_T5:
3852 		fw_config_file = FW5_CFNAME;
3853 		break;
3854 	case CHELSIO_T6:
3855 		fw_config_file = FW6_CFNAME;
3856 		break;
3857 	default:
3858 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3859 		       adapter->pdev->device);
3860 		ret = -EINVAL;
3861 		goto bye;
3862 	}
3863 
3864 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3865 	if (ret < 0) {
3866 		config_name = "On FLASH";
3867 		mtype = FW_MEMTYPE_CF_FLASH;
3868 		maddr = t4_flash_cfg_addr(adapter);
3869 	} else {
3870 		u32 params[7], val[7];
3871 
3872 		sprintf(fw_config_file_path,
3873 			"/lib/firmware/%s", fw_config_file);
3874 		config_name = fw_config_file_path;
3875 
3876 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3877 			ret = -ENOMEM;
3878 		else {
3879 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3880 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3881 			ret = t4_query_params(adapter, adapter->mbox,
3882 					      adapter->pf, 0, 1, params, val);
3883 			if (ret == 0) {
3884 				/*
3885 				 * For t4_memory_rw() below addresses and
3886 				 * sizes have to be in terms of multiples of 4
3887 				 * bytes.  So, if the Configuration File isn't
3888 				 * a multiple of 4 bytes in length we'll have
3889 				 * to write that out separately since we can't
3890 				 * guarantee that the bytes following the
3891 				 * residual byte in the buffer returned by
3892 				 * request_firmware() are zeroed out ...
3893 				 */
3894 				size_t resid = cf->size & 0x3;
3895 				size_t size = cf->size & ~0x3;
3896 				__be32 *data = (__be32 *)cf->data;
3897 
3898 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3899 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3900 
3901 				spin_lock(&adapter->win0_lock);
3902 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3903 						   size, data, T4_MEMORY_WRITE);
3904 				if (ret == 0 && resid != 0) {
3905 					union {
3906 						__be32 word;
3907 						char buf[4];
3908 					} last;
3909 					int i;
3910 
3911 					last.word = data[size >> 2];
3912 					for (i = resid; i < 4; i++)
3913 						last.buf[i] = 0;
3914 					ret = t4_memory_rw(adapter, 0, mtype,
3915 							   maddr + size,
3916 							   4, &last.word,
3917 							   T4_MEMORY_WRITE);
3918 				}
3919 				spin_unlock(&adapter->win0_lock);
3920 			}
3921 		}
3922 
3923 		release_firmware(cf);
3924 		if (ret)
3925 			goto bye;
3926 	}
3927 
3928 	/*
3929 	 * Issue a Capability Configuration command to the firmware to get it
3930 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3931 	 * because we want the ability to modify various features after we've
3932 	 * processed the configuration file ...
3933 	 */
3934 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3935 	caps_cmd.op_to_write =
3936 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3937 		      FW_CMD_REQUEST_F |
3938 		      FW_CMD_READ_F);
3939 	caps_cmd.cfvalid_to_len16 =
3940 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3941 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3942 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3943 		      FW_LEN16(caps_cmd));
3944 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3945 			 &caps_cmd);
3946 
3947 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3948 	 * Configuration File in FLASH), our last gasp effort is to use the
3949 	 * Firmware Configuration File which is embedded in the firmware.  A
3950 	 * very few early versions of the firmware didn't have one embedded
3951 	 * but we can ignore those.
3952 	 */
3953 	if (ret == -ENOENT) {
3954 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3955 		caps_cmd.op_to_write =
3956 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3957 					FW_CMD_REQUEST_F |
3958 					FW_CMD_READ_F);
3959 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3960 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3961 				sizeof(caps_cmd), &caps_cmd);
3962 		config_name = "Firmware Default";
3963 	}
3964 
3965 	config_issued = 1;
3966 	if (ret < 0)
3967 		goto bye;
3968 
3969 	finiver = ntohl(caps_cmd.finiver);
3970 	finicsum = ntohl(caps_cmd.finicsum);
3971 	cfcsum = ntohl(caps_cmd.cfcsum);
3972 	if (finicsum != cfcsum)
3973 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3974 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3975 			 finicsum, cfcsum);
3976 
3977 	/*
3978 	 * And now tell the firmware to use the configuration we just loaded.
3979 	 */
3980 	caps_cmd.op_to_write =
3981 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3982 		      FW_CMD_REQUEST_F |
3983 		      FW_CMD_WRITE_F);
3984 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3985 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3986 			 NULL);
3987 	if (ret < 0)
3988 		goto bye;
3989 
3990 	/*
3991 	 * Tweak configuration based on system architecture, module
3992 	 * parameters, etc.
3993 	 */
3994 	ret = adap_init0_tweaks(adapter);
3995 	if (ret < 0)
3996 		goto bye;
3997 
3998 	/* We will proceed even if HMA init fails. */
3999 	ret = adap_config_hma(adapter);
4000 	if (ret)
4001 		dev_err(adapter->pdev_dev,
4002 			"HMA configuration failed with error %d\n", ret);
4003 
4004 	/*
4005 	 * And finally tell the firmware to initialize itself using the
4006 	 * parameters from the Configuration File.
4007 	 */
4008 	ret = t4_fw_initialize(adapter, adapter->mbox);
4009 	if (ret < 0)
4010 		goto bye;
4011 
4012 	/* Emit Firmware Configuration File information and return
4013 	 * successfully.
4014 	 */
4015 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4016 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4017 		 config_name, finiver, cfcsum);
4018 	return 0;
4019 
4020 	/*
4021 	 * Something bad happened.  Return the error ...  (If the "error"
4022 	 * is that there's no Configuration File on the adapter we don't
4023 	 * want to issue a warning since this is fairly common.)
4024 	 */
4025 bye:
4026 	if (config_issued && ret != -ENOENT)
4027 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4028 			 config_name, -ret);
4029 	return ret;
4030 }
4031 
4032 static struct fw_info fw_info_array[] = {
4033 	{
4034 		.chip = CHELSIO_T4,
4035 		.fs_name = FW4_CFNAME,
4036 		.fw_mod_name = FW4_FNAME,
4037 		.fw_hdr = {
4038 			.chip = FW_HDR_CHIP_T4,
4039 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4040 			.intfver_nic = FW_INTFVER(T4, NIC),
4041 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4042 			.intfver_ri = FW_INTFVER(T4, RI),
4043 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4044 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4045 		},
4046 	}, {
4047 		.chip = CHELSIO_T5,
4048 		.fs_name = FW5_CFNAME,
4049 		.fw_mod_name = FW5_FNAME,
4050 		.fw_hdr = {
4051 			.chip = FW_HDR_CHIP_T5,
4052 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4053 			.intfver_nic = FW_INTFVER(T5, NIC),
4054 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4055 			.intfver_ri = FW_INTFVER(T5, RI),
4056 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4057 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4058 		},
4059 	}, {
4060 		.chip = CHELSIO_T6,
4061 		.fs_name = FW6_CFNAME,
4062 		.fw_mod_name = FW6_FNAME,
4063 		.fw_hdr = {
4064 			.chip = FW_HDR_CHIP_T6,
4065 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4066 			.intfver_nic = FW_INTFVER(T6, NIC),
4067 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4068 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4069 			.intfver_ri = FW_INTFVER(T6, RI),
4070 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4071 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4072 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4073 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4074 		},
4075 	}
4076 
4077 };
4078 
4079 static struct fw_info *find_fw_info(int chip)
4080 {
4081 	int i;
4082 
4083 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4084 		if (fw_info_array[i].chip == chip)
4085 			return &fw_info_array[i];
4086 	}
4087 	return NULL;
4088 }
4089 
4090 /*
4091  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4092  */
4093 static int adap_init0(struct adapter *adap)
4094 {
4095 	int ret;
4096 	u32 v, port_vec;
4097 	enum dev_state state;
4098 	u32 params[7], val[7];
4099 	struct fw_caps_config_cmd caps_cmd;
4100 	int reset = 1;
4101 
4102 	/* Grab Firmware Device Log parameters as early as possible so we have
4103 	 * access to it for debugging, etc.
4104 	 */
4105 	ret = t4_init_devlog_params(adap);
4106 	if (ret < 0)
4107 		return ret;
4108 
4109 	/* Contact FW, advertising Master capability */
4110 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4111 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4112 	if (ret < 0) {
4113 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4114 			ret);
4115 		return ret;
4116 	}
4117 	if (ret == adap->mbox)
4118 		adap->flags |= MASTER_PF;
4119 
4120 	/*
4121 	 * If we're the Master PF Driver and the device is uninitialized,
4122 	 * then let's consider upgrading the firmware ...  (We always want
4123 	 * to check the firmware version number in order to A. get it for
4124 	 * later reporting and B. to warn if the currently loaded firmware
4125 	 * is excessively mismatched relative to the driver.)
4126 	 */
4127 
4128 	t4_get_version_info(adap);
4129 	ret = t4_check_fw_version(adap);
4130 	/* If firmware is too old (not supported by driver) force an update. */
4131 	if (ret)
4132 		state = DEV_STATE_UNINIT;
4133 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
4134 		struct fw_info *fw_info;
4135 		struct fw_hdr *card_fw;
4136 		const struct firmware *fw;
4137 		const u8 *fw_data = NULL;
4138 		unsigned int fw_size = 0;
4139 
4140 		/* This is the firmware whose headers the driver was compiled
4141 		 * against
4142 		 */
4143 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4144 		if (fw_info == NULL) {
4145 			dev_err(adap->pdev_dev,
4146 				"unable to get firmware info for chip %d.\n",
4147 				CHELSIO_CHIP_VERSION(adap->params.chip));
4148 			return -EINVAL;
4149 		}
4150 
4151 		/* allocate memory to read the header of the firmware on the
4152 		 * card
4153 		 */
4154 		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4155 		if (!card_fw) {
4156 			ret = -ENOMEM;
4157 			goto bye;
4158 		}
4159 
4160 		/* Get FW from from /lib/firmware/ */
4161 		ret = request_firmware(&fw, fw_info->fw_mod_name,
4162 				       adap->pdev_dev);
4163 		if (ret < 0) {
4164 			dev_err(adap->pdev_dev,
4165 				"unable to load firmware image %s, error %d\n",
4166 				fw_info->fw_mod_name, ret);
4167 		} else {
4168 			fw_data = fw->data;
4169 			fw_size = fw->size;
4170 		}
4171 
4172 		/* upgrade FW logic */
4173 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4174 				 state, &reset);
4175 
4176 		/* Cleaning up */
4177 		release_firmware(fw);
4178 		kvfree(card_fw);
4179 
4180 		if (ret < 0)
4181 			goto bye;
4182 	}
4183 
4184 	/* If the firmware is initialized already, emit a simply note to that
4185 	 * effect. Otherwise, it's time to try initializing the adapter.
4186 	 */
4187 	if (state == DEV_STATE_INIT) {
4188 		ret = adap_config_hma(adap);
4189 		if (ret)
4190 			dev_err(adap->pdev_dev,
4191 				"HMA configuration failed with error %d\n",
4192 				ret);
4193 		dev_info(adap->pdev_dev, "Coming up as %s: "\
4194 			 "Adapter already initialized\n",
4195 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
4196 	} else {
4197 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4198 			 "Initializing adapter\n");
4199 
4200 		/* Find out whether we're dealing with a version of the
4201 		 * firmware which has configuration file support.
4202 		 */
4203 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4204 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4205 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4206 				      params, val);
4207 
4208 		/* If the firmware doesn't support Configuration Files,
4209 		 * return an error.
4210 		 */
4211 		if (ret < 0) {
4212 			dev_err(adap->pdev_dev, "firmware doesn't support "
4213 				"Firmware Configuration Files\n");
4214 			goto bye;
4215 		}
4216 
4217 		/* The firmware provides us with a memory buffer where we can
4218 		 * load a Configuration File from the host if we want to
4219 		 * override the Configuration File in flash.
4220 		 */
4221 		ret = adap_init0_config(adap, reset);
4222 		if (ret == -ENOENT) {
4223 			dev_err(adap->pdev_dev, "no Configuration File "
4224 				"present on adapter.\n");
4225 			goto bye;
4226 		}
4227 		if (ret < 0) {
4228 			dev_err(adap->pdev_dev, "could not initialize "
4229 				"adapter, error %d\n", -ret);
4230 			goto bye;
4231 		}
4232 	}
4233 
4234 	/* Now that we've successfully configured and initialized the adapter
4235 	 * (or found it already initialized), we can ask the Firmware what
4236 	 * resources it has provisioned for us.
4237 	 */
4238 	ret = t4_get_pfres(adap);
4239 	if (ret) {
4240 		dev_err(adap->pdev_dev,
4241 			"Unable to retrieve resource provisioning information\n");
4242 		goto bye;
4243 	}
4244 
4245 	/* Grab VPD parameters.  This should be done after we establish a
4246 	 * connection to the firmware since some of the VPD parameters
4247 	 * (notably the Core Clock frequency) are retrieved via requests to
4248 	 * the firmware.  On the other hand, we need these fairly early on
4249 	 * so we do this right after getting ahold of the firmware.
4250 	 *
4251 	 * We need to do this after initializing the adapter because someone
4252 	 * could have FLASHed a new VPD which won't be read by the firmware
4253 	 * until we do the RESET ...
4254 	 */
4255 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
4256 	if (ret < 0)
4257 		goto bye;
4258 
4259 	/* Find out what ports are available to us.  Note that we need to do
4260 	 * this before calling adap_init0_no_config() since it needs nports
4261 	 * and portvec ...
4262 	 */
4263 	v =
4264 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4265 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4266 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4267 	if (ret < 0)
4268 		goto bye;
4269 
4270 	adap->params.nports = hweight32(port_vec);
4271 	adap->params.portvec = port_vec;
4272 
4273 	/* Give the SGE code a chance to pull in anything that it needs ...
4274 	 * Note that this must be called after we retrieve our VPD parameters
4275 	 * in order to know how to convert core ticks to seconds, etc.
4276 	 */
4277 	ret = t4_sge_init(adap);
4278 	if (ret < 0)
4279 		goto bye;
4280 
4281 	if (is_bypass_device(adap->pdev->device))
4282 		adap->params.bypass = 1;
4283 
4284 	/*
4285 	 * Grab some of our basic fundamental operating parameters.
4286 	 */
4287 #define FW_PARAM_DEV(param) \
4288 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4289 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4290 
4291 #define FW_PARAM_PFVF(param) \
4292 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4293 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
4294 	FW_PARAMS_PARAM_Y_V(0) | \
4295 	FW_PARAMS_PARAM_Z_V(0)
4296 
4297 	params[0] = FW_PARAM_PFVF(EQ_START);
4298 	params[1] = FW_PARAM_PFVF(L2T_START);
4299 	params[2] = FW_PARAM_PFVF(L2T_END);
4300 	params[3] = FW_PARAM_PFVF(FILTER_START);
4301 	params[4] = FW_PARAM_PFVF(FILTER_END);
4302 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
4303 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4304 	if (ret < 0)
4305 		goto bye;
4306 	adap->sge.egr_start = val[0];
4307 	adap->l2t_start = val[1];
4308 	adap->l2t_end = val[2];
4309 	adap->tids.ftid_base = val[3];
4310 	adap->tids.nftids = val[4] - val[3] + 1;
4311 	adap->sge.ingr_start = val[5];
4312 
4313 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4314 		/* Read the raw mps entries. In T6, the last 2 tcam entries
4315 		 * are reserved for raw mac addresses (rawf = 2, one per port).
4316 		 */
4317 		params[0] = FW_PARAM_PFVF(RAWF_START);
4318 		params[1] = FW_PARAM_PFVF(RAWF_END);
4319 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4320 				      params, val);
4321 		if (ret == 0) {
4322 			adap->rawf_start = val[0];
4323 			adap->rawf_cnt = val[1] - val[0] + 1;
4324 		}
4325 	}
4326 
4327 	/* qids (ingress/egress) returned from firmware can be anywhere
4328 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4329 	 * Hence driver needs to allocate memory for this range to
4330 	 * store the queue info. Get the highest IQFLINT/EQ index returned
4331 	 * in FW_EQ_*_CMD.alloc command.
4332 	 */
4333 	params[0] = FW_PARAM_PFVF(EQ_END);
4334 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
4335 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4336 	if (ret < 0)
4337 		goto bye;
4338 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4339 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4340 
4341 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4342 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
4343 	if (!adap->sge.egr_map) {
4344 		ret = -ENOMEM;
4345 		goto bye;
4346 	}
4347 
4348 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4349 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4350 	if (!adap->sge.ingr_map) {
4351 		ret = -ENOMEM;
4352 		goto bye;
4353 	}
4354 
4355 	/* Allocate the memory for the vaious egress queue bitmaps
4356 	 * ie starving_fl, txq_maperr and blocked_fl.
4357 	 */
4358 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4359 					sizeof(long), GFP_KERNEL);
4360 	if (!adap->sge.starving_fl) {
4361 		ret = -ENOMEM;
4362 		goto bye;
4363 	}
4364 
4365 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4366 				       sizeof(long), GFP_KERNEL);
4367 	if (!adap->sge.txq_maperr) {
4368 		ret = -ENOMEM;
4369 		goto bye;
4370 	}
4371 
4372 #ifdef CONFIG_DEBUG_FS
4373 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4374 				       sizeof(long), GFP_KERNEL);
4375 	if (!adap->sge.blocked_fl) {
4376 		ret = -ENOMEM;
4377 		goto bye;
4378 	}
4379 #endif
4380 
4381 	params[0] = FW_PARAM_PFVF(CLIP_START);
4382 	params[1] = FW_PARAM_PFVF(CLIP_END);
4383 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4384 	if (ret < 0)
4385 		goto bye;
4386 	adap->clipt_start = val[0];
4387 	adap->clipt_end = val[1];
4388 
4389 	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
4390 	 * Classes supported by the hardware/firmware so we hard code it here
4391 	 * for now.
4392 	 */
4393 	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4394 
4395 	/* query params related to active filter region */
4396 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4397 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4398 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4399 	/* If Active filter size is set we enable establishing
4400 	 * offload connection through firmware work request
4401 	 */
4402 	if ((val[0] != val[1]) && (ret >= 0)) {
4403 		adap->flags |= FW_OFLD_CONN;
4404 		adap->tids.aftid_base = val[0];
4405 		adap->tids.aftid_end = val[1];
4406 	}
4407 
4408 	/* If we're running on newer firmware, let it know that we're
4409 	 * prepared to deal with encapsulated CPL messages.  Older
4410 	 * firmware won't understand this and we'll just get
4411 	 * unencapsulated messages ...
4412 	 */
4413 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4414 	val[0] = 1;
4415 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4416 
4417 	/*
4418 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4419 	 * capability.  Earlier versions of the firmware didn't have the
4420 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4421 	 * permission to use ULPTX MEMWRITE DSGL.
4422 	 */
4423 	if (is_t4(adap->params.chip)) {
4424 		adap->params.ulptx_memwrite_dsgl = false;
4425 	} else {
4426 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4427 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4428 				      1, params, val);
4429 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4430 	}
4431 
4432 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4433 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4434 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4435 			      1, params, val);
4436 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4437 
4438 	/* See if FW supports FW_FILTER2 work request */
4439 	if (is_t4(adap->params.chip)) {
4440 		adap->params.filter2_wr_support = 0;
4441 	} else {
4442 		params[0] = FW_PARAM_DEV(FILTER2_WR);
4443 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4444 				      1, params, val);
4445 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4446 	}
4447 
4448 	/* Check if FW supports returning vin and smt index.
4449 	 * If this is not supported, driver will interpret
4450 	 * these values from viid.
4451 	 */
4452 	params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
4453 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4454 			      1, params, val);
4455 	adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
4456 
4457 	/*
4458 	 * Get device capabilities so we can determine what resources we need
4459 	 * to manage.
4460 	 */
4461 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4462 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4463 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
4464 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4465 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4466 			 &caps_cmd);
4467 	if (ret < 0)
4468 		goto bye;
4469 
4470 	if (caps_cmd.ofldcaps ||
4471 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
4472 		/* query offload-related parameters */
4473 		params[0] = FW_PARAM_DEV(NTID);
4474 		params[1] = FW_PARAM_PFVF(SERVER_START);
4475 		params[2] = FW_PARAM_PFVF(SERVER_END);
4476 		params[3] = FW_PARAM_PFVF(TDDP_START);
4477 		params[4] = FW_PARAM_PFVF(TDDP_END);
4478 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4479 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4480 				      params, val);
4481 		if (ret < 0)
4482 			goto bye;
4483 		adap->tids.ntids = val[0];
4484 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4485 		adap->tids.stid_base = val[1];
4486 		adap->tids.nstids = val[2] - val[1] + 1;
4487 		/*
4488 		 * Setup server filter region. Divide the available filter
4489 		 * region into two parts. Regular filters get 1/3rd and server
4490 		 * filters get 2/3rd part. This is only enabled if workarond
4491 		 * path is enabled.
4492 		 * 1. For regular filters.
4493 		 * 2. Server filter: This are special filters which are used
4494 		 * to redirect SYN packets to offload queue.
4495 		 */
4496 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4497 			adap->tids.sftid_base = adap->tids.ftid_base +
4498 					DIV_ROUND_UP(adap->tids.nftids, 3);
4499 			adap->tids.nsftids = adap->tids.nftids -
4500 					 DIV_ROUND_UP(adap->tids.nftids, 3);
4501 			adap->tids.nftids = adap->tids.sftid_base -
4502 						adap->tids.ftid_base;
4503 		}
4504 		adap->vres.ddp.start = val[3];
4505 		adap->vres.ddp.size = val[4] - val[3] + 1;
4506 		adap->params.ofldq_wr_cred = val[5];
4507 
4508 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4509 			ret = init_hash_filter(adap);
4510 			if (ret < 0)
4511 				goto bye;
4512 		} else {
4513 			adap->params.offload = 1;
4514 			adap->num_ofld_uld += 1;
4515 		}
4516 	}
4517 	if (caps_cmd.rdmacaps) {
4518 		params[0] = FW_PARAM_PFVF(STAG_START);
4519 		params[1] = FW_PARAM_PFVF(STAG_END);
4520 		params[2] = FW_PARAM_PFVF(RQ_START);
4521 		params[3] = FW_PARAM_PFVF(RQ_END);
4522 		params[4] = FW_PARAM_PFVF(PBL_START);
4523 		params[5] = FW_PARAM_PFVF(PBL_END);
4524 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4525 				      params, val);
4526 		if (ret < 0)
4527 			goto bye;
4528 		adap->vres.stag.start = val[0];
4529 		adap->vres.stag.size = val[1] - val[0] + 1;
4530 		adap->vres.rq.start = val[2];
4531 		adap->vres.rq.size = val[3] - val[2] + 1;
4532 		adap->vres.pbl.start = val[4];
4533 		adap->vres.pbl.size = val[5] - val[4] + 1;
4534 
4535 		params[0] = FW_PARAM_PFVF(SRQ_START);
4536 		params[1] = FW_PARAM_PFVF(SRQ_END);
4537 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4538 				      params, val);
4539 		if (!ret) {
4540 			adap->vres.srq.start = val[0];
4541 			adap->vres.srq.size = val[1] - val[0] + 1;
4542 		}
4543 		if (adap->vres.srq.size) {
4544 			adap->srq = t4_init_srq(adap->vres.srq.size);
4545 			if (!adap->srq)
4546 				dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4547 		}
4548 
4549 		params[0] = FW_PARAM_PFVF(SQRQ_START);
4550 		params[1] = FW_PARAM_PFVF(SQRQ_END);
4551 		params[2] = FW_PARAM_PFVF(CQ_START);
4552 		params[3] = FW_PARAM_PFVF(CQ_END);
4553 		params[4] = FW_PARAM_PFVF(OCQ_START);
4554 		params[5] = FW_PARAM_PFVF(OCQ_END);
4555 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4556 				      val);
4557 		if (ret < 0)
4558 			goto bye;
4559 		adap->vres.qp.start = val[0];
4560 		adap->vres.qp.size = val[1] - val[0] + 1;
4561 		adap->vres.cq.start = val[2];
4562 		adap->vres.cq.size = val[3] - val[2] + 1;
4563 		adap->vres.ocq.start = val[4];
4564 		adap->vres.ocq.size = val[5] - val[4] + 1;
4565 
4566 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4567 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4568 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4569 				      val);
4570 		if (ret < 0) {
4571 			adap->params.max_ordird_qp = 8;
4572 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4573 			ret = 0;
4574 		} else {
4575 			adap->params.max_ordird_qp = val[0];
4576 			adap->params.max_ird_adapter = val[1];
4577 		}
4578 		dev_info(adap->pdev_dev,
4579 			 "max_ordird_qp %d max_ird_adapter %d\n",
4580 			 adap->params.max_ordird_qp,
4581 			 adap->params.max_ird_adapter);
4582 
4583 		/* Enable write_with_immediate if FW supports it */
4584 		params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
4585 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4586 				      val);
4587 		adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
4588 
4589 		/* Enable write_cmpl if FW supports it */
4590 		params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
4591 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4592 				      val);
4593 		adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
4594 		adap->num_ofld_uld += 2;
4595 	}
4596 	if (caps_cmd.iscsicaps) {
4597 		params[0] = FW_PARAM_PFVF(ISCSI_START);
4598 		params[1] = FW_PARAM_PFVF(ISCSI_END);
4599 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4600 				      params, val);
4601 		if (ret < 0)
4602 			goto bye;
4603 		adap->vres.iscsi.start = val[0];
4604 		adap->vres.iscsi.size = val[1] - val[0] + 1;
4605 		/* LIO target and cxgb4i initiaitor */
4606 		adap->num_ofld_uld += 2;
4607 	}
4608 	if (caps_cmd.cryptocaps) {
4609 		if (ntohs(caps_cmd.cryptocaps) &
4610 		    FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
4611 			params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4612 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4613 					      2, params, val);
4614 			if (ret < 0) {
4615 				if (ret != -EINVAL)
4616 					goto bye;
4617 			} else {
4618 				adap->vres.ncrypto_fc = val[0];
4619 			}
4620 			adap->num_ofld_uld += 1;
4621 		}
4622 		if (ntohs(caps_cmd.cryptocaps) &
4623 		    FW_CAPS_CONFIG_TLS_INLINE) {
4624 			params[0] = FW_PARAM_PFVF(TLS_START);
4625 			params[1] = FW_PARAM_PFVF(TLS_END);
4626 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4627 					      2, params, val);
4628 			if (ret < 0)
4629 				goto bye;
4630 			adap->vres.key.start = val[0];
4631 			adap->vres.key.size = val[1] - val[0] + 1;
4632 			adap->num_uld += 1;
4633 		}
4634 		adap->params.crypto = ntohs(caps_cmd.cryptocaps);
4635 	}
4636 #undef FW_PARAM_PFVF
4637 #undef FW_PARAM_DEV
4638 
4639 	/* The MTU/MSS Table is initialized by now, so load their values.  If
4640 	 * we're initializing the adapter, then we'll make any modifications
4641 	 * we want to the MTU/MSS Table and also initialize the congestion
4642 	 * parameters.
4643 	 */
4644 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4645 	if (state != DEV_STATE_INIT) {
4646 		int i;
4647 
4648 		/* The default MTU Table contains values 1492 and 1500.
4649 		 * However, for TCP, it's better to have two values which are
4650 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4651 		 * This allows us to have a TCP Data Payload which is a
4652 		 * multiple of 8 regardless of what combination of TCP Options
4653 		 * are in use (always a multiple of 4 bytes) which is
4654 		 * important for performance reasons.  For instance, if no
4655 		 * options are in use, then we have a 20-byte IP header and a
4656 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4657 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4658 		 * which is not a multiple of 8.  So using an MSS of 1488 in
4659 		 * this case results in a TCP Data Payload of 1448 bytes which
4660 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4661 		 * Stamps have been negotiated, then an MTU of 1500 bytes
4662 		 * results in a TCP Data Payload of 1448 bytes which, as
4663 		 * above, is a multiple of 8 bytes ...
4664 		 */
4665 		for (i = 0; i < NMTUS; i++)
4666 			if (adap->params.mtus[i] == 1492) {
4667 				adap->params.mtus[i] = 1488;
4668 				break;
4669 			}
4670 
4671 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4672 			     adap->params.b_wnd);
4673 	}
4674 	t4_init_sge_params(adap);
4675 	adap->flags |= FW_OK;
4676 	t4_init_tp_params(adap, true);
4677 	return 0;
4678 
4679 	/*
4680 	 * Something bad happened.  If a command timed out or failed with EIO
4681 	 * FW does not operate within its spec or something catastrophic
4682 	 * happened to HW/FW, stop issuing commands.
4683 	 */
4684 bye:
4685 	adap_free_hma_mem(adap);
4686 	kfree(adap->sge.egr_map);
4687 	kfree(adap->sge.ingr_map);
4688 	kfree(adap->sge.starving_fl);
4689 	kfree(adap->sge.txq_maperr);
4690 #ifdef CONFIG_DEBUG_FS
4691 	kfree(adap->sge.blocked_fl);
4692 #endif
4693 	if (ret != -ETIMEDOUT && ret != -EIO)
4694 		t4_fw_bye(adap, adap->mbox);
4695 	return ret;
4696 }
4697 
4698 /* EEH callbacks */
4699 
4700 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4701 					 pci_channel_state_t state)
4702 {
4703 	int i;
4704 	struct adapter *adap = pci_get_drvdata(pdev);
4705 
4706 	if (!adap)
4707 		goto out;
4708 
4709 	rtnl_lock();
4710 	adap->flags &= ~FW_OK;
4711 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4712 	spin_lock(&adap->stats_lock);
4713 	for_each_port(adap, i) {
4714 		struct net_device *dev = adap->port[i];
4715 		if (dev) {
4716 			netif_device_detach(dev);
4717 			netif_carrier_off(dev);
4718 		}
4719 	}
4720 	spin_unlock(&adap->stats_lock);
4721 	disable_interrupts(adap);
4722 	if (adap->flags & FULL_INIT_DONE)
4723 		cxgb_down(adap);
4724 	rtnl_unlock();
4725 	if ((adap->flags & DEV_ENABLED)) {
4726 		pci_disable_device(pdev);
4727 		adap->flags &= ~DEV_ENABLED;
4728 	}
4729 out:	return state == pci_channel_io_perm_failure ?
4730 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4731 }
4732 
4733 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4734 {
4735 	int i, ret;
4736 	struct fw_caps_config_cmd c;
4737 	struct adapter *adap = pci_get_drvdata(pdev);
4738 
4739 	if (!adap) {
4740 		pci_restore_state(pdev);
4741 		pci_save_state(pdev);
4742 		return PCI_ERS_RESULT_RECOVERED;
4743 	}
4744 
4745 	if (!(adap->flags & DEV_ENABLED)) {
4746 		if (pci_enable_device(pdev)) {
4747 			dev_err(&pdev->dev, "Cannot reenable PCI "
4748 					    "device after reset\n");
4749 			return PCI_ERS_RESULT_DISCONNECT;
4750 		}
4751 		adap->flags |= DEV_ENABLED;
4752 	}
4753 
4754 	pci_set_master(pdev);
4755 	pci_restore_state(pdev);
4756 	pci_save_state(pdev);
4757 
4758 	if (t4_wait_dev_ready(adap->regs) < 0)
4759 		return PCI_ERS_RESULT_DISCONNECT;
4760 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4761 		return PCI_ERS_RESULT_DISCONNECT;
4762 	adap->flags |= FW_OK;
4763 	if (adap_init1(adap, &c))
4764 		return PCI_ERS_RESULT_DISCONNECT;
4765 
4766 	for_each_port(adap, i) {
4767 		struct port_info *pi = adap2pinfo(adap, i);
4768 		u8 vivld = 0, vin = 0;
4769 
4770 		ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
4771 				  NULL, NULL, &vivld, &vin);
4772 		if (ret < 0)
4773 			return PCI_ERS_RESULT_DISCONNECT;
4774 		pi->viid = ret;
4775 		pi->xact_addr_filt = -1;
4776 		/* If fw supports returning the VIN as part of FW_VI_CMD,
4777 		 * save the returned values.
4778 		 */
4779 		if (adap->params.viid_smt_extn_support) {
4780 			pi->vivld = vivld;
4781 			pi->vin = vin;
4782 		} else {
4783 			/* Retrieve the values from VIID */
4784 			pi->vivld = FW_VIID_VIVLD_G(pi->viid);
4785 			pi->vin = FW_VIID_VIN_G(pi->viid);
4786 		}
4787 	}
4788 
4789 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4790 		     adap->params.b_wnd);
4791 	setup_memwin(adap);
4792 	if (cxgb_up(adap))
4793 		return PCI_ERS_RESULT_DISCONNECT;
4794 	return PCI_ERS_RESULT_RECOVERED;
4795 }
4796 
4797 static void eeh_resume(struct pci_dev *pdev)
4798 {
4799 	int i;
4800 	struct adapter *adap = pci_get_drvdata(pdev);
4801 
4802 	if (!adap)
4803 		return;
4804 
4805 	rtnl_lock();
4806 	for_each_port(adap, i) {
4807 		struct net_device *dev = adap->port[i];
4808 		if (dev) {
4809 			if (netif_running(dev)) {
4810 				link_start(dev);
4811 				cxgb_set_rxmode(dev);
4812 			}
4813 			netif_device_attach(dev);
4814 		}
4815 	}
4816 	rtnl_unlock();
4817 }
4818 
4819 static const struct pci_error_handlers cxgb4_eeh = {
4820 	.error_detected = eeh_err_detected,
4821 	.slot_reset     = eeh_slot_reset,
4822 	.resume         = eeh_resume,
4823 };
4824 
4825 /* Return true if the Link Configuration supports "High Speeds" (those greater
4826  * than 1Gb/s).
4827  */
4828 static inline bool is_x_10g_port(const struct link_config *lc)
4829 {
4830 	unsigned int speeds, high_speeds;
4831 
4832 	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
4833 	high_speeds = speeds &
4834 			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
4835 
4836 	return high_speeds != 0;
4837 }
4838 
4839 /*
4840  * Perform default configuration of DMA queues depending on the number and type
4841  * of ports we found and the number of available CPUs.  Most settings can be
4842  * modified by the admin prior to actual use.
4843  */
4844 static int cfg_queues(struct adapter *adap)
4845 {
4846 	struct sge *s = &adap->sge;
4847 	int i, n10g = 0, qidx = 0;
4848 	int niqflint, neq, avail_eth_qsets;
4849 	int max_eth_qsets = 32;
4850 #ifndef CONFIG_CHELSIO_T4_DCB
4851 	int q10g = 0;
4852 #endif
4853 
4854 	/* Reduce memory usage in kdump environment, disable all offload.
4855 	 */
4856 	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4857 		adap->params.offload = 0;
4858 		adap->params.crypto = 0;
4859 	}
4860 
4861 	/* Calculate the number of Ethernet Queue Sets available based on
4862 	 * resources provisioned for us.  We always have an Asynchronous
4863 	 * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
4864 	 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
4865 	 * Ingress Queue.  Meanwhile, we need two Egress Queues for each
4866 	 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
4867 	 *
4868 	 * Note that we should also take into account all of the various
4869 	 * Offload Queues.  But, in any situation where we're operating in
4870 	 * a Resource Constrained Provisioning environment, doing any Offload
4871 	 * at all is problematic ...
4872 	 */
4873 	niqflint = adap->params.pfres.niqflint - 1;
4874 	if (!(adap->flags & USING_MSIX))
4875 		niqflint--;
4876 	neq = adap->params.pfres.neq / 2;
4877 	avail_eth_qsets = min(niqflint, neq);
4878 
4879 	if (avail_eth_qsets > max_eth_qsets)
4880 		avail_eth_qsets = max_eth_qsets;
4881 
4882 	if (avail_eth_qsets < adap->params.nports) {
4883 		dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
4884 			avail_eth_qsets, adap->params.nports);
4885 		return -ENOMEM;
4886 	}
4887 
4888 	/* Count the number of 10Gb/s or better ports */
4889 	for_each_port(adap, i)
4890 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4891 
4892 #ifdef CONFIG_CHELSIO_T4_DCB
4893 	/* For Data Center Bridging support we need to be able to support up
4894 	 * to 8 Traffic Priorities; each of which will be assigned to its
4895 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4896 	 */
4897 	if (adap->params.nports * 8 > avail_eth_qsets) {
4898 		dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
4899 			avail_eth_qsets, adap->params.nports * 8);
4900 		return -ENOMEM;
4901 	}
4902 
4903 	for_each_port(adap, i) {
4904 		struct port_info *pi = adap2pinfo(adap, i);
4905 
4906 		pi->first_qset = qidx;
4907 		pi->nqsets = is_kdump_kernel() ? 1 : 8;
4908 		qidx += pi->nqsets;
4909 	}
4910 #else /* !CONFIG_CHELSIO_T4_DCB */
4911 	/*
4912 	 * We default to 1 queue per non-10G port and up to # of cores queues
4913 	 * per 10G port.
4914 	 */
4915 	if (n10g)
4916 		q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
4917 	if (q10g > netif_get_num_default_rss_queues())
4918 		q10g = netif_get_num_default_rss_queues();
4919 
4920 	if (is_kdump_kernel())
4921 		q10g = 1;
4922 
4923 	for_each_port(adap, i) {
4924 		struct port_info *pi = adap2pinfo(adap, i);
4925 
4926 		pi->first_qset = qidx;
4927 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4928 		qidx += pi->nqsets;
4929 	}
4930 #endif /* !CONFIG_CHELSIO_T4_DCB */
4931 
4932 	s->ethqsets = qidx;
4933 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4934 
4935 	if (is_uld(adap)) {
4936 		/*
4937 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4938 		 * otherwise we divide all available queues amongst the channels
4939 		 * capped by the number of available cores.
4940 		 */
4941 		if (n10g) {
4942 			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4943 			s->ofldqsets = roundup(i, adap->params.nports);
4944 		} else {
4945 			s->ofldqsets = adap->params.nports;
4946 		}
4947 	}
4948 
4949 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4950 		struct sge_eth_rxq *r = &s->ethrxq[i];
4951 
4952 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4953 		r->fl.size = 72;
4954 	}
4955 
4956 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4957 		s->ethtxq[i].q.size = 1024;
4958 
4959 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4960 		s->ctrlq[i].q.size = 512;
4961 
4962 	if (!is_t4(adap->params.chip))
4963 		s->ptptxq.q.size = 8;
4964 
4965 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4966 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4967 
4968 	return 0;
4969 }
4970 
4971 /*
4972  * Reduce the number of Ethernet queues across all ports to at most n.
4973  * n provides at least one queue per port.
4974  */
4975 static void reduce_ethqs(struct adapter *adap, int n)
4976 {
4977 	int i;
4978 	struct port_info *pi;
4979 
4980 	while (n < adap->sge.ethqsets)
4981 		for_each_port(adap, i) {
4982 			pi = adap2pinfo(adap, i);
4983 			if (pi->nqsets > 1) {
4984 				pi->nqsets--;
4985 				adap->sge.ethqsets--;
4986 				if (adap->sge.ethqsets <= n)
4987 					break;
4988 			}
4989 		}
4990 
4991 	n = 0;
4992 	for_each_port(adap, i) {
4993 		pi = adap2pinfo(adap, i);
4994 		pi->first_qset = n;
4995 		n += pi->nqsets;
4996 	}
4997 }
4998 
4999 static int get_msix_info(struct adapter *adap)
5000 {
5001 	struct uld_msix_info *msix_info;
5002 	unsigned int max_ingq = 0;
5003 
5004 	if (is_offload(adap))
5005 		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
5006 	if (is_pci_uld(adap))
5007 		max_ingq += MAX_OFLD_QSETS * adap->num_uld;
5008 
5009 	if (!max_ingq)
5010 		goto out;
5011 
5012 	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
5013 	if (!msix_info)
5014 		return -ENOMEM;
5015 
5016 	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
5017 						 sizeof(long), GFP_KERNEL);
5018 	if (!adap->msix_bmap_ulds.msix_bmap) {
5019 		kfree(msix_info);
5020 		return -ENOMEM;
5021 	}
5022 	spin_lock_init(&adap->msix_bmap_ulds.lock);
5023 	adap->msix_info_ulds = msix_info;
5024 out:
5025 	return 0;
5026 }
5027 
5028 static void free_msix_info(struct adapter *adap)
5029 {
5030 	if (!(adap->num_uld && adap->num_ofld_uld))
5031 		return;
5032 
5033 	kfree(adap->msix_info_ulds);
5034 	kfree(adap->msix_bmap_ulds.msix_bmap);
5035 }
5036 
5037 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5038 #define EXTRA_VECS 2
5039 
5040 static int enable_msix(struct adapter *adap)
5041 {
5042 	int ofld_need = 0, uld_need = 0;
5043 	int i, j, want, need, allocated;
5044 	struct sge *s = &adap->sge;
5045 	unsigned int nchan = adap->params.nports;
5046 	struct msix_entry *entries;
5047 	int max_ingq = MAX_INGQ;
5048 
5049 	if (is_pci_uld(adap))
5050 		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
5051 	if (is_offload(adap))
5052 		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
5053 	entries = kmalloc_array(max_ingq + 1, sizeof(*entries),
5054 				GFP_KERNEL);
5055 	if (!entries)
5056 		return -ENOMEM;
5057 
5058 	/* map for msix */
5059 	if (get_msix_info(adap)) {
5060 		adap->params.offload = 0;
5061 		adap->params.crypto = 0;
5062 	}
5063 
5064 	for (i = 0; i < max_ingq + 1; ++i)
5065 		entries[i].entry = i;
5066 
5067 	want = s->max_ethqsets + EXTRA_VECS;
5068 	if (is_offload(adap)) {
5069 		want += adap->num_ofld_uld * s->ofldqsets;
5070 		ofld_need = adap->num_ofld_uld * nchan;
5071 	}
5072 	if (is_pci_uld(adap)) {
5073 		want += adap->num_uld * s->ofldqsets;
5074 		uld_need = adap->num_uld * nchan;
5075 	}
5076 #ifdef CONFIG_CHELSIO_T4_DCB
5077 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5078 	 * each port.
5079 	 */
5080 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5081 #else
5082 	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5083 #endif
5084 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5085 	if (allocated < 0) {
5086 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
5087 			 " not using MSI-X\n");
5088 		kfree(entries);
5089 		return allocated;
5090 	}
5091 
5092 	/* Distribute available vectors to the various queue groups.
5093 	 * Every group gets its minimum requirement and NIC gets top
5094 	 * priority for leftovers.
5095 	 */
5096 	i = allocated - EXTRA_VECS - ofld_need - uld_need;
5097 	if (i < s->max_ethqsets) {
5098 		s->max_ethqsets = i;
5099 		if (i < s->ethqsets)
5100 			reduce_ethqs(adap, i);
5101 	}
5102 	if (is_uld(adap)) {
5103 		if (allocated < want)
5104 			s->nqs_per_uld = nchan;
5105 		else
5106 			s->nqs_per_uld = s->ofldqsets;
5107 	}
5108 
5109 	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
5110 		adap->msix_info[i].vec = entries[i].vector;
5111 	if (is_uld(adap)) {
5112 		for (j = 0 ; i < allocated; ++i, j++) {
5113 			adap->msix_info_ulds[j].vec = entries[i].vector;
5114 			adap->msix_info_ulds[j].idx = i;
5115 		}
5116 		adap->msix_bmap_ulds.mapsize = j;
5117 	}
5118 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
5119 		 "nic %d per uld %d\n",
5120 		 allocated, s->max_ethqsets, s->nqs_per_uld);
5121 
5122 	kfree(entries);
5123 	return 0;
5124 }
5125 
5126 #undef EXTRA_VECS
5127 
5128 static int init_rss(struct adapter *adap)
5129 {
5130 	unsigned int i;
5131 	int err;
5132 
5133 	err = t4_init_rss_mode(adap, adap->mbox);
5134 	if (err)
5135 		return err;
5136 
5137 	for_each_port(adap, i) {
5138 		struct port_info *pi = adap2pinfo(adap, i);
5139 
5140 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5141 		if (!pi->rss)
5142 			return -ENOMEM;
5143 	}
5144 	return 0;
5145 }
5146 
5147 /* Dump basic information about the adapter */
5148 static void print_adapter_info(struct adapter *adapter)
5149 {
5150 	/* Hardware/Firmware/etc. Version/Revision IDs */
5151 	t4_dump_version_info(adapter);
5152 
5153 	/* Software/Hardware configuration */
5154 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5155 		 is_offload(adapter) ? "R" : "",
5156 		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
5157 		  (adapter->flags & USING_MSI) ? "MSI" : ""),
5158 		 is_offload(adapter) ? "Offload" : "non-Offload");
5159 }
5160 
5161 static void print_port_info(const struct net_device *dev)
5162 {
5163 	char buf[80];
5164 	char *bufp = buf;
5165 	const struct port_info *pi = netdev_priv(dev);
5166 	const struct adapter *adap = pi->adapter;
5167 
5168 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5169 		bufp += sprintf(bufp, "100M/");
5170 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5171 		bufp += sprintf(bufp, "1G/");
5172 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5173 		bufp += sprintf(bufp, "10G/");
5174 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5175 		bufp += sprintf(bufp, "25G/");
5176 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5177 		bufp += sprintf(bufp, "40G/");
5178 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5179 		bufp += sprintf(bufp, "50G/");
5180 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5181 		bufp += sprintf(bufp, "100G/");
5182 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5183 		bufp += sprintf(bufp, "200G/");
5184 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5185 		bufp += sprintf(bufp, "400G/");
5186 	if (bufp != buf)
5187 		--bufp;
5188 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5189 
5190 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5191 		    dev->name, adap->params.vpd.id, adap->name, buf);
5192 }
5193 
5194 /*
5195  * Free the following resources:
5196  * - memory used for tables
5197  * - MSI/MSI-X
5198  * - net devices
5199  * - resources FW is holding for us
5200  */
5201 static void free_some_resources(struct adapter *adapter)
5202 {
5203 	unsigned int i;
5204 
5205 	kvfree(adapter->mps_encap);
5206 	kvfree(adapter->smt);
5207 	kvfree(adapter->l2t);
5208 	kvfree(adapter->srq);
5209 	t4_cleanup_sched(adapter);
5210 	kvfree(adapter->tids.tid_tab);
5211 	cxgb4_cleanup_tc_flower(adapter);
5212 	cxgb4_cleanup_tc_u32(adapter);
5213 	kfree(adapter->sge.egr_map);
5214 	kfree(adapter->sge.ingr_map);
5215 	kfree(adapter->sge.starving_fl);
5216 	kfree(adapter->sge.txq_maperr);
5217 #ifdef CONFIG_DEBUG_FS
5218 	kfree(adapter->sge.blocked_fl);
5219 #endif
5220 	disable_msi(adapter);
5221 
5222 	for_each_port(adapter, i)
5223 		if (adapter->port[i]) {
5224 			struct port_info *pi = adap2pinfo(adapter, i);
5225 
5226 			if (pi->viid != 0)
5227 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
5228 					   0, pi->viid);
5229 			kfree(adap2pinfo(adapter, i)->rss);
5230 			free_netdev(adapter->port[i]);
5231 		}
5232 	if (adapter->flags & FW_OK)
5233 		t4_fw_bye(adapter, adapter->pf);
5234 }
5235 
5236 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5237 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5238 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5239 #define SEGMENT_SIZE 128
5240 
5241 static int t4_get_chip_type(struct adapter *adap, int ver)
5242 {
5243 	u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5244 
5245 	switch (ver) {
5246 	case CHELSIO_T4:
5247 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5248 	case CHELSIO_T5:
5249 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5250 	case CHELSIO_T6:
5251 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5252 	default:
5253 		break;
5254 	}
5255 	return -EINVAL;
5256 }
5257 
5258 #ifdef CONFIG_PCI_IOV
5259 static void cxgb4_mgmt_setup(struct net_device *dev)
5260 {
5261 	dev->type = ARPHRD_NONE;
5262 	dev->mtu = 0;
5263 	dev->hard_header_len = 0;
5264 	dev->addr_len = 0;
5265 	dev->tx_queue_len = 0;
5266 	dev->flags |= IFF_NOARP;
5267 	dev->priv_flags |= IFF_NO_QUEUE;
5268 
5269 	/* Initialize the device structure. */
5270 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5271 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5272 }
5273 
5274 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5275 {
5276 	struct adapter *adap = pci_get_drvdata(pdev);
5277 	int err = 0;
5278 	int current_vfs = pci_num_vf(pdev);
5279 	u32 pcie_fw;
5280 
5281 	pcie_fw = readl(adap->regs + PCIE_FW_A);
5282 	/* Check if fw is initialized */
5283 	if (!(pcie_fw & PCIE_FW_INIT_F)) {
5284 		dev_warn(&pdev->dev, "Device not initialized\n");
5285 		return -EOPNOTSUPP;
5286 	}
5287 
5288 	/* If any of the VF's is already assigned to Guest OS, then
5289 	 * SRIOV for the same cannot be modified
5290 	 */
5291 	if (current_vfs && pci_vfs_assigned(pdev)) {
5292 		dev_err(&pdev->dev,
5293 			"Cannot modify SR-IOV while VFs are assigned\n");
5294 		return current_vfs;
5295 	}
5296 	/* Note that the upper-level code ensures that we're never called with
5297 	 * a non-zero "num_vfs" when we already have VFs instantiated.  But
5298 	 * it never hurts to code defensively.
5299 	 */
5300 	if (num_vfs != 0 && current_vfs != 0)
5301 		return -EBUSY;
5302 
5303 	/* Nothing to do for no change. */
5304 	if (num_vfs == current_vfs)
5305 		return num_vfs;
5306 
5307 	/* Disable SRIOV when zero is passed. */
5308 	if (!num_vfs) {
5309 		pci_disable_sriov(pdev);
5310 		/* free VF Management Interface */
5311 		unregister_netdev(adap->port[0]);
5312 		free_netdev(adap->port[0]);
5313 		adap->port[0] = NULL;
5314 
5315 		/* free VF resources */
5316 		adap->num_vfs = 0;
5317 		kfree(adap->vfinfo);
5318 		adap->vfinfo = NULL;
5319 		return 0;
5320 	}
5321 
5322 	if (!current_vfs) {
5323 		struct fw_pfvf_cmd port_cmd, port_rpl;
5324 		struct net_device *netdev;
5325 		unsigned int pmask, port;
5326 		struct pci_dev *pbridge;
5327 		struct port_info *pi;
5328 		char name[IFNAMSIZ];
5329 		u32 devcap2;
5330 		u16 flags;
5331 		int pos;
5332 
5333 		/* If we want to instantiate Virtual Functions, then our
5334 		 * parent bridge's PCI-E needs to support Alternative Routing
5335 		 * ID (ARI) because our VFs will show up at function offset 8
5336 		 * and above.
5337 		 */
5338 		pbridge = pdev->bus->self;
5339 		pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP);
5340 		pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags);
5341 		pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2);
5342 
5343 		if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5344 		    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5345 			/* Our parent bridge does not support ARI so issue a
5346 			 * warning and skip instantiating the VFs.  They
5347 			 * won't be reachable.
5348 			 */
5349 			dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5350 				 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5351 				 PCI_FUNC(pbridge->devfn));
5352 			return -ENOTSUPP;
5353 		}
5354 		memset(&port_cmd, 0, sizeof(port_cmd));
5355 		port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5356 						 FW_CMD_REQUEST_F |
5357 						 FW_CMD_READ_F |
5358 						 FW_PFVF_CMD_PFN_V(adap->pf) |
5359 						 FW_PFVF_CMD_VFN_V(0));
5360 		port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
5361 		err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
5362 				 &port_rpl);
5363 		if (err)
5364 			return err;
5365 		pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
5366 		port = ffs(pmask) - 1;
5367 		/* Allocate VF Management Interface. */
5368 		snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
5369 			 adap->pf);
5370 		netdev = alloc_netdev(sizeof(struct port_info),
5371 				      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
5372 		if (!netdev)
5373 			return -ENOMEM;
5374 
5375 		pi = netdev_priv(netdev);
5376 		pi->adapter = adap;
5377 		pi->lport = port;
5378 		pi->tx_chan = port;
5379 		SET_NETDEV_DEV(netdev, &pdev->dev);
5380 
5381 		adap->port[0] = netdev;
5382 		pi->port_id = 0;
5383 
5384 		err = register_netdev(adap->port[0]);
5385 		if (err) {
5386 			pr_info("Unable to register VF mgmt netdev %s\n", name);
5387 			free_netdev(adap->port[0]);
5388 			adap->port[0] = NULL;
5389 			return err;
5390 		}
5391 		/* Allocate and set up VF Information. */
5392 		adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
5393 				       sizeof(struct vf_info), GFP_KERNEL);
5394 		if (!adap->vfinfo) {
5395 			unregister_netdev(adap->port[0]);
5396 			free_netdev(adap->port[0]);
5397 			adap->port[0] = NULL;
5398 			return -ENOMEM;
5399 		}
5400 		cxgb4_mgmt_fill_vf_station_mac_addr(adap);
5401 	}
5402 	/* Instantiate the requested number of VFs. */
5403 	err = pci_enable_sriov(pdev, num_vfs);
5404 	if (err) {
5405 		pr_info("Unable to instantiate %d VFs\n", num_vfs);
5406 		if (!current_vfs) {
5407 			unregister_netdev(adap->port[0]);
5408 			free_netdev(adap->port[0]);
5409 			adap->port[0] = NULL;
5410 			kfree(adap->vfinfo);
5411 			adap->vfinfo = NULL;
5412 		}
5413 		return err;
5414 	}
5415 
5416 	adap->num_vfs = num_vfs;
5417 	return num_vfs;
5418 }
5419 #endif /* CONFIG_PCI_IOV */
5420 
5421 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5422 {
5423 	struct net_device *netdev;
5424 	struct adapter *adapter;
5425 	static int adap_idx = 1;
5426 	int s_qpp, qpp, num_seg;
5427 	struct port_info *pi;
5428 	bool highdma = false;
5429 	enum chip_type chip;
5430 	void __iomem *regs;
5431 	int func, chip_ver;
5432 	u16 device_id;
5433 	int i, err;
5434 	u32 whoami;
5435 
5436 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5437 
5438 	err = pci_request_regions(pdev, KBUILD_MODNAME);
5439 	if (err) {
5440 		/* Just info, some other driver may have claimed the device. */
5441 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5442 		return err;
5443 	}
5444 
5445 	err = pci_enable_device(pdev);
5446 	if (err) {
5447 		dev_err(&pdev->dev, "cannot enable PCI device\n");
5448 		goto out_release_regions;
5449 	}
5450 
5451 	regs = pci_ioremap_bar(pdev, 0);
5452 	if (!regs) {
5453 		dev_err(&pdev->dev, "cannot map device registers\n");
5454 		err = -ENOMEM;
5455 		goto out_disable_device;
5456 	}
5457 
5458 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5459 	if (!adapter) {
5460 		err = -ENOMEM;
5461 		goto out_unmap_bar0;
5462 	}
5463 
5464 	adapter->regs = regs;
5465 	err = t4_wait_dev_ready(regs);
5466 	if (err < 0)
5467 		goto out_free_adapter;
5468 
5469 	/* We control everything through one PF */
5470 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5471 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
5472 	chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
5473 	if (chip < 0) {
5474 		dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
5475 		err = chip;
5476 		goto out_free_adapter;
5477 	}
5478 	chip_ver = CHELSIO_CHIP_VERSION(chip);
5479 	func = chip_ver <= CHELSIO_T5 ?
5480 	       SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5481 
5482 	adapter->pdev = pdev;
5483 	adapter->pdev_dev = &pdev->dev;
5484 	adapter->name = pci_name(pdev);
5485 	adapter->mbox = func;
5486 	adapter->pf = func;
5487 	adapter->params.chip = chip;
5488 	adapter->adap_idx = adap_idx;
5489 	adapter->msg_enable = DFLT_MSG_ENABLE;
5490 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5491 				    (sizeof(struct mbox_cmd) *
5492 				     T4_OS_LOG_MBOX_CMDS),
5493 				    GFP_KERNEL);
5494 	if (!adapter->mbox_log) {
5495 		err = -ENOMEM;
5496 		goto out_free_adapter;
5497 	}
5498 	spin_lock_init(&adapter->mbox_lock);
5499 	INIT_LIST_HEAD(&adapter->mlist.list);
5500 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5501 	pci_set_drvdata(pdev, adapter);
5502 
5503 	if (func != ent->driver_data) {
5504 		pci_disable_device(pdev);
5505 		pci_save_state(pdev);        /* to restore SR-IOV later */
5506 		return 0;
5507 	}
5508 
5509 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5510 		highdma = true;
5511 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5512 		if (err) {
5513 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5514 				"coherent allocations\n");
5515 			goto out_free_adapter;
5516 		}
5517 	} else {
5518 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5519 		if (err) {
5520 			dev_err(&pdev->dev, "no usable DMA configuration\n");
5521 			goto out_free_adapter;
5522 		}
5523 	}
5524 
5525 	pci_enable_pcie_error_reporting(pdev);
5526 	pci_set_master(pdev);
5527 	pci_save_state(pdev);
5528 	adap_idx++;
5529 	adapter->workq = create_singlethread_workqueue("cxgb4");
5530 	if (!adapter->workq) {
5531 		err = -ENOMEM;
5532 		goto out_free_adapter;
5533 	}
5534 
5535 	/* PCI device has been enabled */
5536 	adapter->flags |= DEV_ENABLED;
5537 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5538 
5539 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
5540 	 * Ingress Packet Data to Free List Buffers in order to allow for
5541 	 * chipset performance optimizations between the Root Complex and
5542 	 * Memory Controllers.  (Messages to the associated Ingress Queue
5543 	 * notifying new Packet Placement in the Free Lists Buffers will be
5544 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
5545 	 * all preceding PCIe Transaction Layer Packets will be processed
5546 	 * first.)  But some Root Complexes have various issues with Upstream
5547 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
5548 	 * The PCIe devices which under the Root Complexes will be cleared the
5549 	 * Relaxed Ordering bit in the configuration space, So we check our
5550 	 * PCIe configuration space to see if it's flagged with advice against
5551 	 * using Relaxed Ordering.
5552 	 */
5553 	if (!pcie_relaxed_ordering_enabled(pdev))
5554 		adapter->flags |= ROOT_NO_RELAXED_ORDERING;
5555 
5556 	spin_lock_init(&adapter->stats_lock);
5557 	spin_lock_init(&adapter->tid_release_lock);
5558 	spin_lock_init(&adapter->win0_lock);
5559 
5560 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5561 	INIT_WORK(&adapter->db_full_task, process_db_full);
5562 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
5563 	INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
5564 
5565 	err = t4_prep_adapter(adapter);
5566 	if (err)
5567 		goto out_free_adapter;
5568 
5569 	if (is_kdump_kernel()) {
5570 		/* Collect hardware state and append to /proc/vmcore */
5571 		err = cxgb4_cudbg_vmcore_add_dump(adapter);
5572 		if (err) {
5573 			dev_warn(adapter->pdev_dev,
5574 				 "Fail collecting vmcore device dump, err: %d. Continuing\n",
5575 				 err);
5576 			err = 0;
5577 		}
5578 	}
5579 
5580 	if (!is_t4(adapter->params.chip)) {
5581 		s_qpp = (QUEUESPERPAGEPF0_S +
5582 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5583 			adapter->pf);
5584 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5585 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5586 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
5587 
5588 		/* Each segment size is 128B. Write coalescing is enabled only
5589 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5590 		 * queue is less no of segments that can be accommodated in
5591 		 * a page size.
5592 		 */
5593 		if (qpp > num_seg) {
5594 			dev_err(&pdev->dev,
5595 				"Incorrect number of egress queues per page\n");
5596 			err = -EINVAL;
5597 			goto out_free_adapter;
5598 		}
5599 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5600 		pci_resource_len(pdev, 2));
5601 		if (!adapter->bar2) {
5602 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
5603 			err = -ENOMEM;
5604 			goto out_free_adapter;
5605 		}
5606 	}
5607 
5608 	setup_memwin(adapter);
5609 	err = adap_init0(adapter);
5610 #ifdef CONFIG_DEBUG_FS
5611 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5612 #endif
5613 	setup_memwin_rdma(adapter);
5614 	if (err)
5615 		goto out_unmap_bar;
5616 
5617 	/* configure SGE_STAT_CFG_A to read WC stats */
5618 	if (!is_t4(adapter->params.chip))
5619 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5620 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5621 			      T6_STATMODE_V(0)));
5622 
5623 	/* Initialize hash mac addr list */
5624 	INIT_LIST_HEAD(&adapter->mac_hlist);
5625 
5626 	for_each_port(adapter, i) {
5627 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
5628 					   MAX_ETH_QSETS);
5629 		if (!netdev) {
5630 			err = -ENOMEM;
5631 			goto out_free_dev;
5632 		}
5633 
5634 		SET_NETDEV_DEV(netdev, &pdev->dev);
5635 
5636 		adapter->port[i] = netdev;
5637 		pi = netdev_priv(netdev);
5638 		pi->adapter = adapter;
5639 		pi->xact_addr_filt = -1;
5640 		pi->port_id = i;
5641 		netdev->irq = pdev->irq;
5642 
5643 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5644 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5645 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
5646 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5647 			NETIF_F_HW_TC;
5648 
5649 		if (chip_ver > CHELSIO_T5) {
5650 			netdev->hw_enc_features |= NETIF_F_IP_CSUM |
5651 						   NETIF_F_IPV6_CSUM |
5652 						   NETIF_F_RXCSUM |
5653 						   NETIF_F_GSO_UDP_TUNNEL |
5654 						   NETIF_F_TSO | NETIF_F_TSO6;
5655 
5656 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
5657 		}
5658 
5659 		if (highdma)
5660 			netdev->hw_features |= NETIF_F_HIGHDMA;
5661 		netdev->features |= netdev->hw_features;
5662 		netdev->vlan_features = netdev->features & VLAN_FEAT;
5663 
5664 		netdev->priv_flags |= IFF_UNICAST_FLT;
5665 
5666 		/* MTU range: 81 - 9600 */
5667 		netdev->min_mtu = 81;              /* accommodate SACK */
5668 		netdev->max_mtu = MAX_MTU;
5669 
5670 		netdev->netdev_ops = &cxgb4_netdev_ops;
5671 #ifdef CONFIG_CHELSIO_T4_DCB
5672 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
5673 		cxgb4_dcb_state_init(netdev);
5674 		cxgb4_dcb_version_init(netdev);
5675 #endif
5676 		cxgb4_set_ethtool_ops(netdev);
5677 	}
5678 
5679 	cxgb4_init_ethtool_dump(adapter);
5680 
5681 	pci_set_drvdata(pdev, adapter);
5682 
5683 	if (adapter->flags & FW_OK) {
5684 		err = t4_port_init(adapter, func, func, 0);
5685 		if (err)
5686 			goto out_free_dev;
5687 	} else if (adapter->params.nports == 1) {
5688 		/* If we don't have a connection to the firmware -- possibly
5689 		 * because of an error -- grab the raw VPD parameters so we
5690 		 * can set the proper MAC Address on the debug network
5691 		 * interface that we've created.
5692 		 */
5693 		u8 hw_addr[ETH_ALEN];
5694 		u8 *na = adapter->params.vpd.na;
5695 
5696 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5697 		if (!err) {
5698 			for (i = 0; i < ETH_ALEN; i++)
5699 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5700 					      hex2val(na[2 * i + 1]));
5701 			t4_set_hw_addr(adapter, 0, hw_addr);
5702 		}
5703 	}
5704 
5705 	if (!(adapter->flags & FW_OK))
5706 		goto fw_attach_fail;
5707 
5708 	/* Configure queues and allocate tables now, they can be needed as
5709 	 * soon as the first register_netdev completes.
5710 	 */
5711 	err = cfg_queues(adapter);
5712 	if (err)
5713 		goto out_free_dev;
5714 
5715 	adapter->smt = t4_init_smt();
5716 	if (!adapter->smt) {
5717 		/* We tolerate a lack of SMT, giving up some functionality */
5718 		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
5719 	}
5720 
5721 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5722 	if (!adapter->l2t) {
5723 		/* We tolerate a lack of L2T, giving up some functionality */
5724 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5725 		adapter->params.offload = 0;
5726 	}
5727 
5728 	adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size,
5729 				      sizeof(struct mps_encap_entry),
5730 				      GFP_KERNEL);
5731 	if (!adapter->mps_encap)
5732 		dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n");
5733 
5734 #if IS_ENABLED(CONFIG_IPV6)
5735 	if (chip_ver <= CHELSIO_T5 &&
5736 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5737 		/* CLIP functionality is not present in hardware,
5738 		 * hence disable all offload features
5739 		 */
5740 		dev_warn(&pdev->dev,
5741 			 "CLIP not enabled in hardware, continuing\n");
5742 		adapter->params.offload = 0;
5743 	} else {
5744 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5745 						  adapter->clipt_end);
5746 		if (!adapter->clipt) {
5747 			/* We tolerate a lack of clip_table, giving up
5748 			 * some functionality
5749 			 */
5750 			dev_warn(&pdev->dev,
5751 				 "could not allocate Clip table, continuing\n");
5752 			adapter->params.offload = 0;
5753 		}
5754 	}
5755 #endif
5756 
5757 	for_each_port(adapter, i) {
5758 		pi = adap2pinfo(adapter, i);
5759 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5760 		if (!pi->sched_tbl)
5761 			dev_warn(&pdev->dev,
5762 				 "could not activate scheduling on port %d\n",
5763 				 i);
5764 	}
5765 
5766 	if (tid_init(&adapter->tids) < 0) {
5767 		dev_warn(&pdev->dev, "could not allocate TID table, "
5768 			 "continuing\n");
5769 		adapter->params.offload = 0;
5770 	} else {
5771 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5772 		if (!adapter->tc_u32)
5773 			dev_warn(&pdev->dev,
5774 				 "could not offload tc u32, continuing\n");
5775 
5776 		if (cxgb4_init_tc_flower(adapter))
5777 			dev_warn(&pdev->dev,
5778 				 "could not offload tc flower, continuing\n");
5779 	}
5780 
5781 	if (is_offload(adapter) || is_hashfilter(adapter)) {
5782 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5783 			u32 hash_base, hash_reg;
5784 
5785 			if (chip_ver <= CHELSIO_T5) {
5786 				hash_reg = LE_DB_TID_HASHBASE_A;
5787 				hash_base = t4_read_reg(adapter, hash_reg);
5788 				adapter->tids.hash_base = hash_base / 4;
5789 			} else {
5790 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5791 				hash_base = t4_read_reg(adapter, hash_reg);
5792 				adapter->tids.hash_base = hash_base;
5793 			}
5794 		}
5795 	}
5796 
5797 	/* See what interrupts we'll be using */
5798 	if (msi > 1 && enable_msix(adapter) == 0)
5799 		adapter->flags |= USING_MSIX;
5800 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5801 		adapter->flags |= USING_MSI;
5802 		if (msi > 1)
5803 			free_msix_info(adapter);
5804 	}
5805 
5806 	/* check for PCI Express bandwidth capabiltites */
5807 	pcie_print_link_status(pdev);
5808 
5809 	err = init_rss(adapter);
5810 	if (err)
5811 		goto out_free_dev;
5812 
5813 	err = setup_fw_sge_queues(adapter);
5814 	if (err) {
5815 		dev_err(adapter->pdev_dev,
5816 			"FW sge queue allocation failed, err %d", err);
5817 		goto out_free_dev;
5818 	}
5819 
5820 fw_attach_fail:
5821 	/*
5822 	 * The card is now ready to go.  If any errors occur during device
5823 	 * registration we do not fail the whole card but rather proceed only
5824 	 * with the ports we manage to register successfully.  However we must
5825 	 * register at least one net device.
5826 	 */
5827 	for_each_port(adapter, i) {
5828 		pi = adap2pinfo(adapter, i);
5829 		adapter->port[i]->dev_port = pi->lport;
5830 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5831 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5832 
5833 		netif_carrier_off(adapter->port[i]);
5834 
5835 		err = register_netdev(adapter->port[i]);
5836 		if (err)
5837 			break;
5838 		adapter->chan_map[pi->tx_chan] = i;
5839 		print_port_info(adapter->port[i]);
5840 	}
5841 	if (i == 0) {
5842 		dev_err(&pdev->dev, "could not register any net devices\n");
5843 		goto out_free_dev;
5844 	}
5845 	if (err) {
5846 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5847 		err = 0;
5848 	}
5849 
5850 	if (cxgb4_debugfs_root) {
5851 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5852 							   cxgb4_debugfs_root);
5853 		setup_debugfs(adapter);
5854 	}
5855 
5856 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5857 	pdev->needs_freset = 1;
5858 
5859 	if (is_uld(adapter)) {
5860 		mutex_lock(&uld_mutex);
5861 		list_add_tail(&adapter->list_node, &adapter_list);
5862 		mutex_unlock(&uld_mutex);
5863 	}
5864 
5865 	if (!is_t4(adapter->params.chip))
5866 		cxgb4_ptp_init(adapter);
5867 
5868 	if (IS_REACHABLE(CONFIG_THERMAL) &&
5869 	    !is_t4(adapter->params.chip) && (adapter->flags & FW_OK))
5870 		cxgb4_thermal_init(adapter);
5871 
5872 	print_adapter_info(adapter);
5873 	return 0;
5874 
5875  out_free_dev:
5876 	t4_free_sge_resources(adapter);
5877 	free_some_resources(adapter);
5878 	if (adapter->flags & USING_MSIX)
5879 		free_msix_info(adapter);
5880 	if (adapter->num_uld || adapter->num_ofld_uld)
5881 		t4_uld_mem_free(adapter);
5882  out_unmap_bar:
5883 	if (!is_t4(adapter->params.chip))
5884 		iounmap(adapter->bar2);
5885  out_free_adapter:
5886 	if (adapter->workq)
5887 		destroy_workqueue(adapter->workq);
5888 
5889 	kfree(adapter->mbox_log);
5890 	kfree(adapter);
5891  out_unmap_bar0:
5892 	iounmap(regs);
5893  out_disable_device:
5894 	pci_disable_pcie_error_reporting(pdev);
5895 	pci_disable_device(pdev);
5896  out_release_regions:
5897 	pci_release_regions(pdev);
5898 	return err;
5899 }
5900 
5901 static void remove_one(struct pci_dev *pdev)
5902 {
5903 	struct adapter *adapter = pci_get_drvdata(pdev);
5904 	struct hash_mac_addr *entry, *tmp;
5905 
5906 	if (!adapter) {
5907 		pci_release_regions(pdev);
5908 		return;
5909 	}
5910 
5911 	adapter->flags |= SHUTTING_DOWN;
5912 
5913 	if (adapter->pf == 4) {
5914 		int i;
5915 
5916 		/* Tear down per-adapter Work Queue first since it can contain
5917 		 * references to our adapter data structure.
5918 		 */
5919 		destroy_workqueue(adapter->workq);
5920 
5921 		if (is_uld(adapter)) {
5922 			detach_ulds(adapter);
5923 			t4_uld_clean_up(adapter);
5924 		}
5925 
5926 		adap_free_hma_mem(adapter);
5927 
5928 		disable_interrupts(adapter);
5929 
5930 		for_each_port(adapter, i)
5931 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5932 				unregister_netdev(adapter->port[i]);
5933 
5934 		debugfs_remove_recursive(adapter->debugfs_root);
5935 
5936 		if (!is_t4(adapter->params.chip))
5937 			cxgb4_ptp_stop(adapter);
5938 		if (IS_REACHABLE(CONFIG_THERMAL))
5939 			cxgb4_thermal_remove(adapter);
5940 
5941 		/* If we allocated filters, free up state associated with any
5942 		 * valid filters ...
5943 		 */
5944 		clear_all_filters(adapter);
5945 
5946 		if (adapter->flags & FULL_INIT_DONE)
5947 			cxgb_down(adapter);
5948 
5949 		if (adapter->flags & USING_MSIX)
5950 			free_msix_info(adapter);
5951 		if (adapter->num_uld || adapter->num_ofld_uld)
5952 			t4_uld_mem_free(adapter);
5953 		free_some_resources(adapter);
5954 		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
5955 					 list) {
5956 			list_del(&entry->list);
5957 			kfree(entry);
5958 		}
5959 
5960 #if IS_ENABLED(CONFIG_IPV6)
5961 		t4_cleanup_clip_tbl(adapter);
5962 #endif
5963 		if (!is_t4(adapter->params.chip))
5964 			iounmap(adapter->bar2);
5965 	}
5966 #ifdef CONFIG_PCI_IOV
5967 	else {
5968 		cxgb4_iov_configure(adapter->pdev, 0);
5969 	}
5970 #endif
5971 	iounmap(adapter->regs);
5972 	pci_disable_pcie_error_reporting(pdev);
5973 	if ((adapter->flags & DEV_ENABLED)) {
5974 		pci_disable_device(pdev);
5975 		adapter->flags &= ~DEV_ENABLED;
5976 	}
5977 	pci_release_regions(pdev);
5978 	kfree(adapter->mbox_log);
5979 	synchronize_rcu();
5980 	kfree(adapter);
5981 }
5982 
5983 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5984  * delivery.  This is essentially a stripped down version of the PCI remove()
5985  * function where we do the minimal amount of work necessary to shutdown any
5986  * further activity.
5987  */
5988 static void shutdown_one(struct pci_dev *pdev)
5989 {
5990 	struct adapter *adapter = pci_get_drvdata(pdev);
5991 
5992 	/* As with remove_one() above (see extended comment), we only want do
5993 	 * do cleanup on PCI Devices which went all the way through init_one()
5994 	 * ...
5995 	 */
5996 	if (!adapter) {
5997 		pci_release_regions(pdev);
5998 		return;
5999 	}
6000 
6001 	adapter->flags |= SHUTTING_DOWN;
6002 
6003 	if (adapter->pf == 4) {
6004 		int i;
6005 
6006 		for_each_port(adapter, i)
6007 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6008 				cxgb_close(adapter->port[i]);
6009 
6010 		if (is_uld(adapter)) {
6011 			detach_ulds(adapter);
6012 			t4_uld_clean_up(adapter);
6013 		}
6014 
6015 		disable_interrupts(adapter);
6016 		disable_msi(adapter);
6017 
6018 		t4_sge_stop(adapter);
6019 		if (adapter->flags & FW_OK)
6020 			t4_fw_bye(adapter, adapter->mbox);
6021 	}
6022 }
6023 
6024 static struct pci_driver cxgb4_driver = {
6025 	.name     = KBUILD_MODNAME,
6026 	.id_table = cxgb4_pci_tbl,
6027 	.probe    = init_one,
6028 	.remove   = remove_one,
6029 	.shutdown = shutdown_one,
6030 #ifdef CONFIG_PCI_IOV
6031 	.sriov_configure = cxgb4_iov_configure,
6032 #endif
6033 	.err_handler = &cxgb4_eeh,
6034 };
6035 
6036 static int __init cxgb4_init_module(void)
6037 {
6038 	int ret;
6039 
6040 	/* Debugfs support is optional, just warn if this fails */
6041 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6042 	if (!cxgb4_debugfs_root)
6043 		pr_warn("could not create debugfs entry, continuing\n");
6044 
6045 	ret = pci_register_driver(&cxgb4_driver);
6046 	if (ret < 0)
6047 		debugfs_remove(cxgb4_debugfs_root);
6048 
6049 #if IS_ENABLED(CONFIG_IPV6)
6050 	if (!inet6addr_registered) {
6051 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6052 		inet6addr_registered = true;
6053 	}
6054 #endif
6055 
6056 	return ret;
6057 }
6058 
6059 static void __exit cxgb4_cleanup_module(void)
6060 {
6061 #if IS_ENABLED(CONFIG_IPV6)
6062 	if (inet6addr_registered) {
6063 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6064 		inet6addr_registered = false;
6065 	}
6066 #endif
6067 	pci_unregister_driver(&cxgb4_driver);
6068 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6069 }
6070 
6071 module_init(cxgb4_init_module);
6072 module_exit(cxgb4_cleanup_module);
6073