1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <linux/uaccess.h> 67 #include <linux/crash_dump.h> 68 69 #include "cxgb4.h" 70 #include "cxgb4_filter.h" 71 #include "t4_regs.h" 72 #include "t4_values.h" 73 #include "t4_msg.h" 74 #include "t4fw_api.h" 75 #include "t4fw_version.h" 76 #include "cxgb4_dcb.h" 77 #include "cxgb4_debugfs.h" 78 #include "clip_tbl.h" 79 #include "l2t.h" 80 #include "sched.h" 81 #include "cxgb4_tc_u32.h" 82 #include "cxgb4_ptp.h" 83 84 char cxgb4_driver_name[] = KBUILD_MODNAME; 85 86 #ifdef DRV_VERSION 87 #undef DRV_VERSION 88 #endif 89 #define DRV_VERSION "2.0.0-ko" 90 const char cxgb4_driver_version[] = DRV_VERSION; 91 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 92 93 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 94 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 95 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 96 97 /* Macros needed to support the PCI Device ID Table ... 98 */ 99 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 100 static const struct pci_device_id cxgb4_pci_tbl[] = { 101 #define CH_PCI_DEVICE_ID_FUNCTION 0x4 102 103 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 104 * called for both. 105 */ 106 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 107 108 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 109 {PCI_VDEVICE(CHELSIO, (devid)), 4} 110 111 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 112 { 0, } \ 113 } 114 115 #include "t4_pci_id_tbl.h" 116 117 #define FW4_FNAME "cxgb4/t4fw.bin" 118 #define FW5_FNAME "cxgb4/t5fw.bin" 119 #define FW6_FNAME "cxgb4/t6fw.bin" 120 #define FW4_CFNAME "cxgb4/t4-config.txt" 121 #define FW5_CFNAME "cxgb4/t5-config.txt" 122 #define FW6_CFNAME "cxgb4/t6-config.txt" 123 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 124 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 125 #define PHY_AQ1202_DEVICEID 0x4409 126 #define PHY_BCM84834_DEVICEID 0x4486 127 128 MODULE_DESCRIPTION(DRV_DESC); 129 MODULE_AUTHOR("Chelsio Communications"); 130 MODULE_LICENSE("Dual BSD/GPL"); 131 MODULE_VERSION(DRV_VERSION); 132 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 133 MODULE_FIRMWARE(FW4_FNAME); 134 MODULE_FIRMWARE(FW5_FNAME); 135 MODULE_FIRMWARE(FW6_FNAME); 136 137 /* 138 * The driver uses the best interrupt scheme available on a platform in the 139 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 140 * of these schemes the driver may consider as follows: 141 * 142 * msi = 2: choose from among all three options 143 * msi = 1: only consider MSI and INTx interrupts 144 * msi = 0: force INTx interrupts 145 */ 146 static int msi = 2; 147 148 module_param(msi, int, 0644); 149 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 150 151 /* 152 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 153 * offset by 2 bytes in order to have the IP headers line up on 4-byte 154 * boundaries. This is a requirement for many architectures which will throw 155 * a machine check fault if an attempt is made to access one of the 4-byte IP 156 * header fields on a non-4-byte boundary. And it's a major performance issue 157 * even on some architectures which allow it like some implementations of the 158 * x86 ISA. However, some architectures don't mind this and for some very 159 * edge-case performance sensitive applications (like forwarding large volumes 160 * of small packets), setting this DMA offset to 0 will decrease the number of 161 * PCI-E Bus transfers enough to measurably affect performance. 162 */ 163 static int rx_dma_offset = 2; 164 165 /* TX Queue select used to determine what algorithm to use for selecting TX 166 * queue. Select between the kernel provided function (select_queue=0) or user 167 * cxgb_select_queue function (select_queue=1) 168 * 169 * Default: select_queue=0 170 */ 171 static int select_queue; 172 module_param(select_queue, int, 0644); 173 MODULE_PARM_DESC(select_queue, 174 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 175 176 static struct dentry *cxgb4_debugfs_root; 177 178 LIST_HEAD(adapter_list); 179 DEFINE_MUTEX(uld_mutex); 180 181 static void link_report(struct net_device *dev) 182 { 183 if (!netif_carrier_ok(dev)) 184 netdev_info(dev, "link down\n"); 185 else { 186 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 187 188 const char *s; 189 const struct port_info *p = netdev_priv(dev); 190 191 switch (p->link_cfg.speed) { 192 case 100: 193 s = "100Mbps"; 194 break; 195 case 1000: 196 s = "1Gbps"; 197 break; 198 case 10000: 199 s = "10Gbps"; 200 break; 201 case 25000: 202 s = "25Gbps"; 203 break; 204 case 40000: 205 s = "40Gbps"; 206 break; 207 case 100000: 208 s = "100Gbps"; 209 break; 210 default: 211 pr_info("%s: unsupported speed: %d\n", 212 dev->name, p->link_cfg.speed); 213 return; 214 } 215 216 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 217 fc[p->link_cfg.fc]); 218 } 219 } 220 221 #ifdef CONFIG_CHELSIO_T4_DCB 222 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 223 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 224 { 225 struct port_info *pi = netdev_priv(dev); 226 struct adapter *adap = pi->adapter; 227 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 228 int i; 229 230 /* We use a simple mapping of Port TX Queue Index to DCB 231 * Priority when we're enabling DCB. 232 */ 233 for (i = 0; i < pi->nqsets; i++, txq++) { 234 u32 name, value; 235 int err; 236 237 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 238 FW_PARAMS_PARAM_X_V( 239 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 240 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 241 value = enable ? i : 0xffffffff; 242 243 /* Since we can be called while atomic (from "interrupt 244 * level") we need to issue the Set Parameters Commannd 245 * without sleeping (timeout < 0). 246 */ 247 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 248 &name, &value, 249 -FW_CMD_MAX_TIMEOUT); 250 251 if (err) 252 dev_err(adap->pdev_dev, 253 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 254 enable ? "set" : "unset", pi->port_id, i, -err); 255 else 256 txq->dcb_prio = value; 257 } 258 } 259 260 static int cxgb4_dcb_enabled(const struct net_device *dev) 261 { 262 struct port_info *pi = netdev_priv(dev); 263 264 if (!pi->dcb.enabled) 265 return 0; 266 267 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 268 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 269 } 270 #endif /* CONFIG_CHELSIO_T4_DCB */ 271 272 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 273 { 274 struct net_device *dev = adapter->port[port_id]; 275 276 /* Skip changes from disabled ports. */ 277 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 278 if (link_stat) 279 netif_carrier_on(dev); 280 else { 281 #ifdef CONFIG_CHELSIO_T4_DCB 282 if (cxgb4_dcb_enabled(dev)) { 283 cxgb4_dcb_state_init(dev); 284 dcb_tx_queue_prio_enable(dev, false); 285 } 286 #endif /* CONFIG_CHELSIO_T4_DCB */ 287 netif_carrier_off(dev); 288 } 289 290 link_report(dev); 291 } 292 } 293 294 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 295 { 296 static const char *mod_str[] = { 297 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 298 }; 299 300 const struct net_device *dev = adap->port[port_id]; 301 const struct port_info *pi = netdev_priv(dev); 302 303 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 304 netdev_info(dev, "port module unplugged\n"); 305 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 306 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 307 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 308 netdev_info(dev, "%s: unsupported port module inserted\n", 309 dev->name); 310 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 311 netdev_info(dev, "%s: unknown port module inserted\n", 312 dev->name); 313 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 314 netdev_info(dev, "%s: transceiver module error\n", dev->name); 315 else 316 netdev_info(dev, "%s: unknown module type %d inserted\n", 317 dev->name, pi->mod_type); 318 } 319 320 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 321 module_param(dbfifo_int_thresh, int, 0644); 322 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 323 324 /* 325 * usecs to sleep while draining the dbfifo 326 */ 327 static int dbfifo_drain_delay = 1000; 328 module_param(dbfifo_drain_delay, int, 0644); 329 MODULE_PARM_DESC(dbfifo_drain_delay, 330 "usecs to sleep while draining the dbfifo"); 331 332 static inline int cxgb4_set_addr_hash(struct port_info *pi) 333 { 334 struct adapter *adap = pi->adapter; 335 u64 vec = 0; 336 bool ucast = false; 337 struct hash_mac_addr *entry; 338 339 /* Calculate the hash vector for the updated list and program it */ 340 list_for_each_entry(entry, &adap->mac_hlist, list) { 341 ucast |= is_unicast_ether_addr(entry->addr); 342 vec |= (1ULL << hash_mac_addr(entry->addr)); 343 } 344 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 345 vec, false); 346 } 347 348 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 349 { 350 struct port_info *pi = netdev_priv(netdev); 351 struct adapter *adap = pi->adapter; 352 int ret; 353 u64 mhash = 0; 354 u64 uhash = 0; 355 bool free = false; 356 bool ucast = is_unicast_ether_addr(mac_addr); 357 const u8 *maclist[1] = {mac_addr}; 358 struct hash_mac_addr *new_entry; 359 360 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 361 NULL, ucast ? &uhash : &mhash, false); 362 if (ret < 0) 363 goto out; 364 /* if hash != 0, then add the addr to hash addr list 365 * so on the end we will calculate the hash for the 366 * list and program it 367 */ 368 if (uhash || mhash) { 369 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 370 if (!new_entry) 371 return -ENOMEM; 372 ether_addr_copy(new_entry->addr, mac_addr); 373 list_add_tail(&new_entry->list, &adap->mac_hlist); 374 ret = cxgb4_set_addr_hash(pi); 375 } 376 out: 377 return ret < 0 ? ret : 0; 378 } 379 380 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 381 { 382 struct port_info *pi = netdev_priv(netdev); 383 struct adapter *adap = pi->adapter; 384 int ret; 385 const u8 *maclist[1] = {mac_addr}; 386 struct hash_mac_addr *entry, *tmp; 387 388 /* If the MAC address to be removed is in the hash addr 389 * list, delete it from the list and update hash vector 390 */ 391 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 392 if (ether_addr_equal(entry->addr, mac_addr)) { 393 list_del(&entry->list); 394 kfree(entry); 395 return cxgb4_set_addr_hash(pi); 396 } 397 } 398 399 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 400 return ret < 0 ? -EINVAL : 0; 401 } 402 403 /* 404 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 405 * If @mtu is -1 it is left unchanged. 406 */ 407 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 408 { 409 struct port_info *pi = netdev_priv(dev); 410 struct adapter *adapter = pi->adapter; 411 412 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 413 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 414 415 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 416 (dev->flags & IFF_PROMISC) ? 1 : 0, 417 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 418 sleep_ok); 419 } 420 421 /** 422 * link_start - enable a port 423 * @dev: the port to enable 424 * 425 * Performs the MAC and PHY actions needed to enable a port. 426 */ 427 static int link_start(struct net_device *dev) 428 { 429 int ret; 430 struct port_info *pi = netdev_priv(dev); 431 unsigned int mb = pi->adapter->pf; 432 433 /* 434 * We do not set address filters and promiscuity here, the stack does 435 * that step explicitly. 436 */ 437 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 438 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 439 if (ret == 0) { 440 ret = t4_change_mac(pi->adapter, mb, pi->viid, 441 pi->xact_addr_filt, dev->dev_addr, true, 442 true); 443 if (ret >= 0) { 444 pi->xact_addr_filt = ret; 445 ret = 0; 446 } 447 } 448 if (ret == 0) 449 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 450 &pi->link_cfg); 451 if (ret == 0) { 452 local_bh_disable(); 453 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true, 454 true, CXGB4_DCB_ENABLED); 455 local_bh_enable(); 456 } 457 458 return ret; 459 } 460 461 #ifdef CONFIG_CHELSIO_T4_DCB 462 /* Handle a Data Center Bridging update message from the firmware. */ 463 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 464 { 465 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 466 struct net_device *dev = adap->port[adap->chan_map[port]]; 467 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 468 int new_dcb_enabled; 469 470 cxgb4_dcb_handle_fw_update(adap, pcmd); 471 new_dcb_enabled = cxgb4_dcb_enabled(dev); 472 473 /* If the DCB has become enabled or disabled on the port then we're 474 * going to need to set up/tear down DCB Priority parameters for the 475 * TX Queues associated with the port. 476 */ 477 if (new_dcb_enabled != old_dcb_enabled) 478 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 479 } 480 #endif /* CONFIG_CHELSIO_T4_DCB */ 481 482 /* Response queue handler for the FW event queue. 483 */ 484 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 485 const struct pkt_gl *gl) 486 { 487 u8 opcode = ((const struct rss_header *)rsp)->opcode; 488 489 rsp++; /* skip RSS header */ 490 491 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 492 */ 493 if (unlikely(opcode == CPL_FW4_MSG && 494 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 495 rsp++; 496 opcode = ((const struct rss_header *)rsp)->opcode; 497 rsp++; 498 if (opcode != CPL_SGE_EGR_UPDATE) { 499 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 500 , opcode); 501 goto out; 502 } 503 } 504 505 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 506 const struct cpl_sge_egr_update *p = (void *)rsp; 507 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 508 struct sge_txq *txq; 509 510 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 511 txq->restarts++; 512 if (txq->q_type == CXGB4_TXQ_ETH) { 513 struct sge_eth_txq *eq; 514 515 eq = container_of(txq, struct sge_eth_txq, q); 516 netif_tx_wake_queue(eq->txq); 517 } else { 518 struct sge_uld_txq *oq; 519 520 oq = container_of(txq, struct sge_uld_txq, q); 521 tasklet_schedule(&oq->qresume_tsk); 522 } 523 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 524 const struct cpl_fw6_msg *p = (void *)rsp; 525 526 #ifdef CONFIG_CHELSIO_T4_DCB 527 const struct fw_port_cmd *pcmd = (const void *)p->data; 528 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 529 unsigned int action = 530 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 531 532 if (cmd == FW_PORT_CMD && 533 action == FW_PORT_ACTION_GET_PORT_INFO) { 534 int port = FW_PORT_CMD_PORTID_G( 535 be32_to_cpu(pcmd->op_to_portid)); 536 struct net_device *dev = 537 q->adap->port[q->adap->chan_map[port]]; 538 int state_input = ((pcmd->u.info.dcbxdis_pkd & 539 FW_PORT_CMD_DCBXDIS_F) 540 ? CXGB4_DCB_INPUT_FW_DISABLED 541 : CXGB4_DCB_INPUT_FW_ENABLED); 542 543 cxgb4_dcb_state_fsm(dev, state_input); 544 } 545 546 if (cmd == FW_PORT_CMD && 547 action == FW_PORT_ACTION_L2_DCB_CFG) 548 dcb_rpl(q->adap, pcmd); 549 else 550 #endif 551 if (p->type == 0) 552 t4_handle_fw_rpl(q->adap, p->data); 553 } else if (opcode == CPL_L2T_WRITE_RPL) { 554 const struct cpl_l2t_write_rpl *p = (void *)rsp; 555 556 do_l2t_write_rpl(q->adap, p); 557 } else if (opcode == CPL_SET_TCB_RPL) { 558 const struct cpl_set_tcb_rpl *p = (void *)rsp; 559 560 filter_rpl(q->adap, p); 561 } else 562 dev_err(q->adap->pdev_dev, 563 "unexpected CPL %#x on FW event queue\n", opcode); 564 out: 565 return 0; 566 } 567 568 static void disable_msi(struct adapter *adapter) 569 { 570 if (adapter->flags & USING_MSIX) { 571 pci_disable_msix(adapter->pdev); 572 adapter->flags &= ~USING_MSIX; 573 } else if (adapter->flags & USING_MSI) { 574 pci_disable_msi(adapter->pdev); 575 adapter->flags &= ~USING_MSI; 576 } 577 } 578 579 /* 580 * Interrupt handler for non-data events used with MSI-X. 581 */ 582 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 583 { 584 struct adapter *adap = cookie; 585 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 586 587 if (v & PFSW_F) { 588 adap->swintr = 1; 589 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 590 } 591 if (adap->flags & MASTER_PF) 592 t4_slow_intr_handler(adap); 593 return IRQ_HANDLED; 594 } 595 596 /* 597 * Name the MSI-X interrupts. 598 */ 599 static void name_msix_vecs(struct adapter *adap) 600 { 601 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 602 603 /* non-data interrupts */ 604 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 605 606 /* FW events */ 607 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 608 adap->port[0]->name); 609 610 /* Ethernet queues */ 611 for_each_port(adap, j) { 612 struct net_device *d = adap->port[j]; 613 const struct port_info *pi = netdev_priv(d); 614 615 for (i = 0; i < pi->nqsets; i++, msi_idx++) 616 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 617 d->name, i); 618 } 619 } 620 621 static int request_msix_queue_irqs(struct adapter *adap) 622 { 623 struct sge *s = &adap->sge; 624 int err, ethqidx; 625 int msi_index = 2; 626 627 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 628 adap->msix_info[1].desc, &s->fw_evtq); 629 if (err) 630 return err; 631 632 for_each_ethrxq(s, ethqidx) { 633 err = request_irq(adap->msix_info[msi_index].vec, 634 t4_sge_intr_msix, 0, 635 adap->msix_info[msi_index].desc, 636 &s->ethrxq[ethqidx].rspq); 637 if (err) 638 goto unwind; 639 msi_index++; 640 } 641 return 0; 642 643 unwind: 644 while (--ethqidx >= 0) 645 free_irq(adap->msix_info[--msi_index].vec, 646 &s->ethrxq[ethqidx].rspq); 647 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 648 return err; 649 } 650 651 static void free_msix_queue_irqs(struct adapter *adap) 652 { 653 int i, msi_index = 2; 654 struct sge *s = &adap->sge; 655 656 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 657 for_each_ethrxq(s, i) 658 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 659 } 660 661 /** 662 * cxgb4_write_rss - write the RSS table for a given port 663 * @pi: the port 664 * @queues: array of queue indices for RSS 665 * 666 * Sets up the portion of the HW RSS table for the port's VI to distribute 667 * packets to the Rx queues in @queues. 668 * Should never be called before setting up sge eth rx queues 669 */ 670 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 671 { 672 u16 *rss; 673 int i, err; 674 struct adapter *adapter = pi->adapter; 675 const struct sge_eth_rxq *rxq; 676 677 rxq = &adapter->sge.ethrxq[pi->first_qset]; 678 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 679 if (!rss) 680 return -ENOMEM; 681 682 /* map the queue indices to queue ids */ 683 for (i = 0; i < pi->rss_size; i++, queues++) 684 rss[i] = rxq[*queues].rspq.abs_id; 685 686 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 687 pi->rss_size, rss, pi->rss_size); 688 /* If Tunnel All Lookup isn't specified in the global RSS 689 * Configuration, then we need to specify a default Ingress 690 * Queue for any ingress packets which aren't hashed. We'll 691 * use our first ingress queue ... 692 */ 693 if (!err) 694 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 695 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 696 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 697 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 698 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 699 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 700 rss[0]); 701 kfree(rss); 702 return err; 703 } 704 705 /** 706 * setup_rss - configure RSS 707 * @adap: the adapter 708 * 709 * Sets up RSS for each port. 710 */ 711 static int setup_rss(struct adapter *adap) 712 { 713 int i, j, err; 714 715 for_each_port(adap, i) { 716 const struct port_info *pi = adap2pinfo(adap, i); 717 718 /* Fill default values with equal distribution */ 719 for (j = 0; j < pi->rss_size; j++) 720 pi->rss[j] = j % pi->nqsets; 721 722 err = cxgb4_write_rss(pi, pi->rss); 723 if (err) 724 return err; 725 } 726 return 0; 727 } 728 729 /* 730 * Return the channel of the ingress queue with the given qid. 731 */ 732 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 733 { 734 qid -= p->ingr_start; 735 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 736 } 737 738 /* 739 * Wait until all NAPI handlers are descheduled. 740 */ 741 static void quiesce_rx(struct adapter *adap) 742 { 743 int i; 744 745 for (i = 0; i < adap->sge.ingr_sz; i++) { 746 struct sge_rspq *q = adap->sge.ingr_map[i]; 747 748 if (q && q->handler) 749 napi_disable(&q->napi); 750 } 751 } 752 753 /* Disable interrupt and napi handler */ 754 static void disable_interrupts(struct adapter *adap) 755 { 756 if (adap->flags & FULL_INIT_DONE) { 757 t4_intr_disable(adap); 758 if (adap->flags & USING_MSIX) { 759 free_msix_queue_irqs(adap); 760 free_irq(adap->msix_info[0].vec, adap); 761 } else { 762 free_irq(adap->pdev->irq, adap); 763 } 764 quiesce_rx(adap); 765 } 766 } 767 768 /* 769 * Enable NAPI scheduling and interrupt generation for all Rx queues. 770 */ 771 static void enable_rx(struct adapter *adap) 772 { 773 int i; 774 775 for (i = 0; i < adap->sge.ingr_sz; i++) { 776 struct sge_rspq *q = adap->sge.ingr_map[i]; 777 778 if (!q) 779 continue; 780 if (q->handler) 781 napi_enable(&q->napi); 782 783 /* 0-increment GTS to start the timer and enable interrupts */ 784 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 785 SEINTARM_V(q->intr_params) | 786 INGRESSQID_V(q->cntxt_id)); 787 } 788 } 789 790 791 static int setup_fw_sge_queues(struct adapter *adap) 792 { 793 struct sge *s = &adap->sge; 794 int err = 0; 795 796 bitmap_zero(s->starving_fl, s->egr_sz); 797 bitmap_zero(s->txq_maperr, s->egr_sz); 798 799 if (adap->flags & USING_MSIX) 800 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 801 else { 802 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 803 NULL, NULL, NULL, -1); 804 if (err) 805 return err; 806 adap->msi_idx = -((int)s->intrq.abs_id + 1); 807 } 808 809 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 810 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 811 if (err) 812 t4_free_sge_resources(adap); 813 return err; 814 } 815 816 /** 817 * setup_sge_queues - configure SGE Tx/Rx/response queues 818 * @adap: the adapter 819 * 820 * Determines how many sets of SGE queues to use and initializes them. 821 * We support multiple queue sets per port if we have MSI-X, otherwise 822 * just one queue set per port. 823 */ 824 static int setup_sge_queues(struct adapter *adap) 825 { 826 int err, i, j; 827 struct sge *s = &adap->sge; 828 struct sge_uld_rxq_info *rxq_info = NULL; 829 unsigned int cmplqid = 0; 830 831 if (is_uld(adap)) 832 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 833 834 for_each_port(adap, i) { 835 struct net_device *dev = adap->port[i]; 836 struct port_info *pi = netdev_priv(dev); 837 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 838 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 839 840 for (j = 0; j < pi->nqsets; j++, q++) { 841 if (adap->msi_idx > 0) 842 adap->msi_idx++; 843 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 844 adap->msi_idx, &q->fl, 845 t4_ethrx_handler, 846 NULL, 847 t4_get_tp_ch_map(adap, 848 pi->tx_chan)); 849 if (err) 850 goto freeout; 851 q->rspq.idx = j; 852 memset(&q->stats, 0, sizeof(q->stats)); 853 } 854 for (j = 0; j < pi->nqsets; j++, t++) { 855 err = t4_sge_alloc_eth_txq(adap, t, dev, 856 netdev_get_tx_queue(dev, j), 857 s->fw_evtq.cntxt_id); 858 if (err) 859 goto freeout; 860 } 861 } 862 863 for_each_port(adap, i) { 864 /* Note that cmplqid below is 0 if we don't 865 * have RDMA queues, and that's the right value. 866 */ 867 if (rxq_info) 868 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 869 870 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 871 s->fw_evtq.cntxt_id, cmplqid); 872 if (err) 873 goto freeout; 874 } 875 876 if (!is_t4(adap->params.chip)) { 877 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 878 netdev_get_tx_queue(adap->port[0], 0) 879 , s->fw_evtq.cntxt_id); 880 if (err) 881 goto freeout; 882 } 883 884 t4_write_reg(adap, is_t4(adap->params.chip) ? 885 MPS_TRC_RSS_CONTROL_A : 886 MPS_T5_TRC_RSS_CONTROL_A, 887 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 888 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 889 return 0; 890 freeout: 891 t4_free_sge_resources(adap); 892 return err; 893 } 894 895 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 896 void *accel_priv, select_queue_fallback_t fallback) 897 { 898 int txq; 899 900 #ifdef CONFIG_CHELSIO_T4_DCB 901 /* If a Data Center Bridging has been successfully negotiated on this 902 * link then we'll use the skb's priority to map it to a TX Queue. 903 * The skb's priority is determined via the VLAN Tag Priority Code 904 * Point field. 905 */ 906 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 907 u16 vlan_tci; 908 int err; 909 910 err = vlan_get_tag(skb, &vlan_tci); 911 if (unlikely(err)) { 912 if (net_ratelimit()) 913 netdev_warn(dev, 914 "TX Packet without VLAN Tag on DCB Link\n"); 915 txq = 0; 916 } else { 917 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 918 #ifdef CONFIG_CHELSIO_T4_FCOE 919 if (skb->protocol == htons(ETH_P_FCOE)) 920 txq = skb->priority & 0x7; 921 #endif /* CONFIG_CHELSIO_T4_FCOE */ 922 } 923 return txq; 924 } 925 #endif /* CONFIG_CHELSIO_T4_DCB */ 926 927 if (select_queue) { 928 txq = (skb_rx_queue_recorded(skb) 929 ? skb_get_rx_queue(skb) 930 : smp_processor_id()); 931 932 while (unlikely(txq >= dev->real_num_tx_queues)) 933 txq -= dev->real_num_tx_queues; 934 935 return txq; 936 } 937 938 return fallback(dev, skb) % dev->real_num_tx_queues; 939 } 940 941 static int closest_timer(const struct sge *s, int time) 942 { 943 int i, delta, match = 0, min_delta = INT_MAX; 944 945 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 946 delta = time - s->timer_val[i]; 947 if (delta < 0) 948 delta = -delta; 949 if (delta < min_delta) { 950 min_delta = delta; 951 match = i; 952 } 953 } 954 return match; 955 } 956 957 static int closest_thres(const struct sge *s, int thres) 958 { 959 int i, delta, match = 0, min_delta = INT_MAX; 960 961 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 962 delta = thres - s->counter_val[i]; 963 if (delta < 0) 964 delta = -delta; 965 if (delta < min_delta) { 966 min_delta = delta; 967 match = i; 968 } 969 } 970 return match; 971 } 972 973 /** 974 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 975 * @q: the Rx queue 976 * @us: the hold-off time in us, or 0 to disable timer 977 * @cnt: the hold-off packet count, or 0 to disable counter 978 * 979 * Sets an Rx queue's interrupt hold-off time and packet count. At least 980 * one of the two needs to be enabled for the queue to generate interrupts. 981 */ 982 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 983 unsigned int us, unsigned int cnt) 984 { 985 struct adapter *adap = q->adap; 986 987 if ((us | cnt) == 0) 988 cnt = 1; 989 990 if (cnt) { 991 int err; 992 u32 v, new_idx; 993 994 new_idx = closest_thres(&adap->sge, cnt); 995 if (q->desc && q->pktcnt_idx != new_idx) { 996 /* the queue has already been created, update it */ 997 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 998 FW_PARAMS_PARAM_X_V( 999 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1000 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1001 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1002 &v, &new_idx); 1003 if (err) 1004 return err; 1005 } 1006 q->pktcnt_idx = new_idx; 1007 } 1008 1009 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1010 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1011 return 0; 1012 } 1013 1014 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1015 { 1016 const struct port_info *pi = netdev_priv(dev); 1017 netdev_features_t changed = dev->features ^ features; 1018 int err; 1019 1020 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1021 return 0; 1022 1023 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1024 -1, -1, -1, 1025 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1026 if (unlikely(err)) 1027 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1028 return err; 1029 } 1030 1031 static int setup_debugfs(struct adapter *adap) 1032 { 1033 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1034 return -1; 1035 1036 #ifdef CONFIG_DEBUG_FS 1037 t4_setup_debugfs(adap); 1038 #endif 1039 return 0; 1040 } 1041 1042 /* 1043 * upper-layer driver support 1044 */ 1045 1046 /* 1047 * Allocate an active-open TID and set it to the supplied value. 1048 */ 1049 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1050 { 1051 int atid = -1; 1052 1053 spin_lock_bh(&t->atid_lock); 1054 if (t->afree) { 1055 union aopen_entry *p = t->afree; 1056 1057 atid = (p - t->atid_tab) + t->atid_base; 1058 t->afree = p->next; 1059 p->data = data; 1060 t->atids_in_use++; 1061 } 1062 spin_unlock_bh(&t->atid_lock); 1063 return atid; 1064 } 1065 EXPORT_SYMBOL(cxgb4_alloc_atid); 1066 1067 /* 1068 * Release an active-open TID. 1069 */ 1070 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1071 { 1072 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1073 1074 spin_lock_bh(&t->atid_lock); 1075 p->next = t->afree; 1076 t->afree = p; 1077 t->atids_in_use--; 1078 spin_unlock_bh(&t->atid_lock); 1079 } 1080 EXPORT_SYMBOL(cxgb4_free_atid); 1081 1082 /* 1083 * Allocate a server TID and set it to the supplied value. 1084 */ 1085 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1086 { 1087 int stid; 1088 1089 spin_lock_bh(&t->stid_lock); 1090 if (family == PF_INET) { 1091 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1092 if (stid < t->nstids) 1093 __set_bit(stid, t->stid_bmap); 1094 else 1095 stid = -1; 1096 } else { 1097 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1098 if (stid < 0) 1099 stid = -1; 1100 } 1101 if (stid >= 0) { 1102 t->stid_tab[stid].data = data; 1103 stid += t->stid_base; 1104 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1105 * This is equivalent to 4 TIDs. With CLIP enabled it 1106 * needs 2 TIDs. 1107 */ 1108 if (family == PF_INET6) { 1109 t->stids_in_use += 2; 1110 t->v6_stids_in_use += 2; 1111 } else { 1112 t->stids_in_use++; 1113 } 1114 } 1115 spin_unlock_bh(&t->stid_lock); 1116 return stid; 1117 } 1118 EXPORT_SYMBOL(cxgb4_alloc_stid); 1119 1120 /* Allocate a server filter TID and set it to the supplied value. 1121 */ 1122 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1123 { 1124 int stid; 1125 1126 spin_lock_bh(&t->stid_lock); 1127 if (family == PF_INET) { 1128 stid = find_next_zero_bit(t->stid_bmap, 1129 t->nstids + t->nsftids, t->nstids); 1130 if (stid < (t->nstids + t->nsftids)) 1131 __set_bit(stid, t->stid_bmap); 1132 else 1133 stid = -1; 1134 } else { 1135 stid = -1; 1136 } 1137 if (stid >= 0) { 1138 t->stid_tab[stid].data = data; 1139 stid -= t->nstids; 1140 stid += t->sftid_base; 1141 t->sftids_in_use++; 1142 } 1143 spin_unlock_bh(&t->stid_lock); 1144 return stid; 1145 } 1146 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1147 1148 /* Release a server TID. 1149 */ 1150 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1151 { 1152 /* Is it a server filter TID? */ 1153 if (t->nsftids && (stid >= t->sftid_base)) { 1154 stid -= t->sftid_base; 1155 stid += t->nstids; 1156 } else { 1157 stid -= t->stid_base; 1158 } 1159 1160 spin_lock_bh(&t->stid_lock); 1161 if (family == PF_INET) 1162 __clear_bit(stid, t->stid_bmap); 1163 else 1164 bitmap_release_region(t->stid_bmap, stid, 1); 1165 t->stid_tab[stid].data = NULL; 1166 if (stid < t->nstids) { 1167 if (family == PF_INET6) { 1168 t->stids_in_use -= 2; 1169 t->v6_stids_in_use -= 2; 1170 } else { 1171 t->stids_in_use--; 1172 } 1173 } else { 1174 t->sftids_in_use--; 1175 } 1176 1177 spin_unlock_bh(&t->stid_lock); 1178 } 1179 EXPORT_SYMBOL(cxgb4_free_stid); 1180 1181 /* 1182 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1183 */ 1184 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1185 unsigned int tid) 1186 { 1187 struct cpl_tid_release *req; 1188 1189 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1190 req = __skb_put(skb, sizeof(*req)); 1191 INIT_TP_WR(req, tid); 1192 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1193 } 1194 1195 /* 1196 * Queue a TID release request and if necessary schedule a work queue to 1197 * process it. 1198 */ 1199 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1200 unsigned int tid) 1201 { 1202 void **p = &t->tid_tab[tid]; 1203 struct adapter *adap = container_of(t, struct adapter, tids); 1204 1205 spin_lock_bh(&adap->tid_release_lock); 1206 *p = adap->tid_release_head; 1207 /* Low 2 bits encode the Tx channel number */ 1208 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1209 if (!adap->tid_release_task_busy) { 1210 adap->tid_release_task_busy = true; 1211 queue_work(adap->workq, &adap->tid_release_task); 1212 } 1213 spin_unlock_bh(&adap->tid_release_lock); 1214 } 1215 1216 /* 1217 * Process the list of pending TID release requests. 1218 */ 1219 static void process_tid_release_list(struct work_struct *work) 1220 { 1221 struct sk_buff *skb; 1222 struct adapter *adap; 1223 1224 adap = container_of(work, struct adapter, tid_release_task); 1225 1226 spin_lock_bh(&adap->tid_release_lock); 1227 while (adap->tid_release_head) { 1228 void **p = adap->tid_release_head; 1229 unsigned int chan = (uintptr_t)p & 3; 1230 p = (void *)p - chan; 1231 1232 adap->tid_release_head = *p; 1233 *p = NULL; 1234 spin_unlock_bh(&adap->tid_release_lock); 1235 1236 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1237 GFP_KERNEL))) 1238 schedule_timeout_uninterruptible(1); 1239 1240 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1241 t4_ofld_send(adap, skb); 1242 spin_lock_bh(&adap->tid_release_lock); 1243 } 1244 adap->tid_release_task_busy = false; 1245 spin_unlock_bh(&adap->tid_release_lock); 1246 } 1247 1248 /* 1249 * Release a TID and inform HW. If we are unable to allocate the release 1250 * message we defer to a work queue. 1251 */ 1252 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1253 unsigned short family) 1254 { 1255 struct sk_buff *skb; 1256 struct adapter *adap = container_of(t, struct adapter, tids); 1257 1258 WARN_ON(tid >= t->ntids); 1259 1260 if (t->tid_tab[tid]) { 1261 t->tid_tab[tid] = NULL; 1262 atomic_dec(&t->conns_in_use); 1263 if (t->hash_base && (tid >= t->hash_base)) { 1264 if (family == AF_INET6) 1265 atomic_sub(2, &t->hash_tids_in_use); 1266 else 1267 atomic_dec(&t->hash_tids_in_use); 1268 } else { 1269 if (family == AF_INET6) 1270 atomic_sub(2, &t->tids_in_use); 1271 else 1272 atomic_dec(&t->tids_in_use); 1273 } 1274 } 1275 1276 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1277 if (likely(skb)) { 1278 mk_tid_release(skb, chan, tid); 1279 t4_ofld_send(adap, skb); 1280 } else 1281 cxgb4_queue_tid_release(t, chan, tid); 1282 } 1283 EXPORT_SYMBOL(cxgb4_remove_tid); 1284 1285 /* 1286 * Allocate and initialize the TID tables. Returns 0 on success. 1287 */ 1288 static int tid_init(struct tid_info *t) 1289 { 1290 struct adapter *adap = container_of(t, struct adapter, tids); 1291 unsigned int max_ftids = t->nftids + t->nsftids; 1292 unsigned int natids = t->natids; 1293 unsigned int stid_bmap_size; 1294 unsigned int ftid_bmap_size; 1295 size_t size; 1296 1297 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1298 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1299 size = t->ntids * sizeof(*t->tid_tab) + 1300 natids * sizeof(*t->atid_tab) + 1301 t->nstids * sizeof(*t->stid_tab) + 1302 t->nsftids * sizeof(*t->stid_tab) + 1303 stid_bmap_size * sizeof(long) + 1304 max_ftids * sizeof(*t->ftid_tab) + 1305 ftid_bmap_size * sizeof(long); 1306 1307 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1308 if (!t->tid_tab) 1309 return -ENOMEM; 1310 1311 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1312 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1313 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1314 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1315 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1316 spin_lock_init(&t->stid_lock); 1317 spin_lock_init(&t->atid_lock); 1318 spin_lock_init(&t->ftid_lock); 1319 1320 t->stids_in_use = 0; 1321 t->v6_stids_in_use = 0; 1322 t->sftids_in_use = 0; 1323 t->afree = NULL; 1324 t->atids_in_use = 0; 1325 atomic_set(&t->tids_in_use, 0); 1326 atomic_set(&t->conns_in_use, 0); 1327 atomic_set(&t->hash_tids_in_use, 0); 1328 1329 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1330 if (natids) { 1331 while (--natids) 1332 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1333 t->afree = t->atid_tab; 1334 } 1335 1336 if (is_offload(adap)) { 1337 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1338 /* Reserve stid 0 for T4/T5 adapters */ 1339 if (!t->stid_base && 1340 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1341 __set_bit(0, t->stid_bmap); 1342 } 1343 1344 bitmap_zero(t->ftid_bmap, t->nftids); 1345 return 0; 1346 } 1347 1348 /** 1349 * cxgb4_create_server - create an IP server 1350 * @dev: the device 1351 * @stid: the server TID 1352 * @sip: local IP address to bind server to 1353 * @sport: the server's TCP port 1354 * @queue: queue to direct messages from this server to 1355 * 1356 * Create an IP server for the given port and address. 1357 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1358 */ 1359 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1360 __be32 sip, __be16 sport, __be16 vlan, 1361 unsigned int queue) 1362 { 1363 unsigned int chan; 1364 struct sk_buff *skb; 1365 struct adapter *adap; 1366 struct cpl_pass_open_req *req; 1367 int ret; 1368 1369 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1370 if (!skb) 1371 return -ENOMEM; 1372 1373 adap = netdev2adap(dev); 1374 req = __skb_put(skb, sizeof(*req)); 1375 INIT_TP_WR(req, 0); 1376 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1377 req->local_port = sport; 1378 req->peer_port = htons(0); 1379 req->local_ip = sip; 1380 req->peer_ip = htonl(0); 1381 chan = rxq_to_chan(&adap->sge, queue); 1382 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1383 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1384 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1385 ret = t4_mgmt_tx(adap, skb); 1386 return net_xmit_eval(ret); 1387 } 1388 EXPORT_SYMBOL(cxgb4_create_server); 1389 1390 /* cxgb4_create_server6 - create an IPv6 server 1391 * @dev: the device 1392 * @stid: the server TID 1393 * @sip: local IPv6 address to bind server to 1394 * @sport: the server's TCP port 1395 * @queue: queue to direct messages from this server to 1396 * 1397 * Create an IPv6 server for the given port and address. 1398 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1399 */ 1400 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1401 const struct in6_addr *sip, __be16 sport, 1402 unsigned int queue) 1403 { 1404 unsigned int chan; 1405 struct sk_buff *skb; 1406 struct adapter *adap; 1407 struct cpl_pass_open_req6 *req; 1408 int ret; 1409 1410 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1411 if (!skb) 1412 return -ENOMEM; 1413 1414 adap = netdev2adap(dev); 1415 req = __skb_put(skb, sizeof(*req)); 1416 INIT_TP_WR(req, 0); 1417 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1418 req->local_port = sport; 1419 req->peer_port = htons(0); 1420 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1421 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1422 req->peer_ip_hi = cpu_to_be64(0); 1423 req->peer_ip_lo = cpu_to_be64(0); 1424 chan = rxq_to_chan(&adap->sge, queue); 1425 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1426 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1427 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1428 ret = t4_mgmt_tx(adap, skb); 1429 return net_xmit_eval(ret); 1430 } 1431 EXPORT_SYMBOL(cxgb4_create_server6); 1432 1433 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1434 unsigned int queue, bool ipv6) 1435 { 1436 struct sk_buff *skb; 1437 struct adapter *adap; 1438 struct cpl_close_listsvr_req *req; 1439 int ret; 1440 1441 adap = netdev2adap(dev); 1442 1443 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1444 if (!skb) 1445 return -ENOMEM; 1446 1447 req = __skb_put(skb, sizeof(*req)); 1448 INIT_TP_WR(req, 0); 1449 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1450 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1451 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1452 ret = t4_mgmt_tx(adap, skb); 1453 return net_xmit_eval(ret); 1454 } 1455 EXPORT_SYMBOL(cxgb4_remove_server); 1456 1457 /** 1458 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1459 * @mtus: the HW MTU table 1460 * @mtu: the target MTU 1461 * @idx: index of selected entry in the MTU table 1462 * 1463 * Returns the index and the value in the HW MTU table that is closest to 1464 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1465 * table, in which case that smallest available value is selected. 1466 */ 1467 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1468 unsigned int *idx) 1469 { 1470 unsigned int i = 0; 1471 1472 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1473 ++i; 1474 if (idx) 1475 *idx = i; 1476 return mtus[i]; 1477 } 1478 EXPORT_SYMBOL(cxgb4_best_mtu); 1479 1480 /** 1481 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1482 * @mtus: the HW MTU table 1483 * @header_size: Header Size 1484 * @data_size_max: maximum Data Segment Size 1485 * @data_size_align: desired Data Segment Size Alignment (2^N) 1486 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1487 * 1488 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1489 * MTU Table based solely on a Maximum MTU parameter, we break that 1490 * parameter up into a Header Size and Maximum Data Segment Size, and 1491 * provide a desired Data Segment Size Alignment. If we find an MTU in 1492 * the Hardware MTU Table which will result in a Data Segment Size with 1493 * the requested alignment _and_ that MTU isn't "too far" from the 1494 * closest MTU, then we'll return that rather than the closest MTU. 1495 */ 1496 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1497 unsigned short header_size, 1498 unsigned short data_size_max, 1499 unsigned short data_size_align, 1500 unsigned int *mtu_idxp) 1501 { 1502 unsigned short max_mtu = header_size + data_size_max; 1503 unsigned short data_size_align_mask = data_size_align - 1; 1504 int mtu_idx, aligned_mtu_idx; 1505 1506 /* Scan the MTU Table till we find an MTU which is larger than our 1507 * Maximum MTU or we reach the end of the table. Along the way, 1508 * record the last MTU found, if any, which will result in a Data 1509 * Segment Length matching the requested alignment. 1510 */ 1511 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1512 unsigned short data_size = mtus[mtu_idx] - header_size; 1513 1514 /* If this MTU minus the Header Size would result in a 1515 * Data Segment Size of the desired alignment, remember it. 1516 */ 1517 if ((data_size & data_size_align_mask) == 0) 1518 aligned_mtu_idx = mtu_idx; 1519 1520 /* If we're not at the end of the Hardware MTU Table and the 1521 * next element is larger than our Maximum MTU, drop out of 1522 * the loop. 1523 */ 1524 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1525 break; 1526 } 1527 1528 /* If we fell out of the loop because we ran to the end of the table, 1529 * then we just have to use the last [largest] entry. 1530 */ 1531 if (mtu_idx == NMTUS) 1532 mtu_idx--; 1533 1534 /* If we found an MTU which resulted in the requested Data Segment 1535 * Length alignment and that's "not far" from the largest MTU which is 1536 * less than or equal to the maximum MTU, then use that. 1537 */ 1538 if (aligned_mtu_idx >= 0 && 1539 mtu_idx - aligned_mtu_idx <= 1) 1540 mtu_idx = aligned_mtu_idx; 1541 1542 /* If the caller has passed in an MTU Index pointer, pass the 1543 * MTU Index back. Return the MTU value. 1544 */ 1545 if (mtu_idxp) 1546 *mtu_idxp = mtu_idx; 1547 return mtus[mtu_idx]; 1548 } 1549 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1550 1551 /** 1552 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1553 * @chip: chip type 1554 * @viid: VI id of the given port 1555 * 1556 * Return the SMT index for this VI. 1557 */ 1558 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1559 { 1560 /* In T4/T5, SMT contains 256 SMAC entries organized in 1561 * 128 rows of 2 entries each. 1562 * In T6, SMT contains 256 SMAC entries in 256 rows. 1563 * TODO: The below code needs to be updated when we add support 1564 * for 256 VFs. 1565 */ 1566 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1567 return ((viid & 0x7f) << 1); 1568 else 1569 return (viid & 0x7f); 1570 } 1571 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1572 1573 /** 1574 * cxgb4_port_chan - get the HW channel of a port 1575 * @dev: the net device for the port 1576 * 1577 * Return the HW Tx channel of the given port. 1578 */ 1579 unsigned int cxgb4_port_chan(const struct net_device *dev) 1580 { 1581 return netdev2pinfo(dev)->tx_chan; 1582 } 1583 EXPORT_SYMBOL(cxgb4_port_chan); 1584 1585 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1586 { 1587 struct adapter *adap = netdev2adap(dev); 1588 u32 v1, v2, lp_count, hp_count; 1589 1590 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1591 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1592 if (is_t4(adap->params.chip)) { 1593 lp_count = LP_COUNT_G(v1); 1594 hp_count = HP_COUNT_G(v1); 1595 } else { 1596 lp_count = LP_COUNT_T5_G(v1); 1597 hp_count = HP_COUNT_T5_G(v2); 1598 } 1599 return lpfifo ? lp_count : hp_count; 1600 } 1601 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1602 1603 /** 1604 * cxgb4_port_viid - get the VI id of a port 1605 * @dev: the net device for the port 1606 * 1607 * Return the VI id of the given port. 1608 */ 1609 unsigned int cxgb4_port_viid(const struct net_device *dev) 1610 { 1611 return netdev2pinfo(dev)->viid; 1612 } 1613 EXPORT_SYMBOL(cxgb4_port_viid); 1614 1615 /** 1616 * cxgb4_port_idx - get the index of a port 1617 * @dev: the net device for the port 1618 * 1619 * Return the index of the given port. 1620 */ 1621 unsigned int cxgb4_port_idx(const struct net_device *dev) 1622 { 1623 return netdev2pinfo(dev)->port_id; 1624 } 1625 EXPORT_SYMBOL(cxgb4_port_idx); 1626 1627 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1628 struct tp_tcp_stats *v6) 1629 { 1630 struct adapter *adap = pci_get_drvdata(pdev); 1631 1632 spin_lock(&adap->stats_lock); 1633 t4_tp_get_tcp_stats(adap, v4, v6); 1634 spin_unlock(&adap->stats_lock); 1635 } 1636 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1637 1638 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1639 const unsigned int *pgsz_order) 1640 { 1641 struct adapter *adap = netdev2adap(dev); 1642 1643 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1644 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1645 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1646 HPZ3_V(pgsz_order[3])); 1647 } 1648 EXPORT_SYMBOL(cxgb4_iscsi_init); 1649 1650 int cxgb4_flush_eq_cache(struct net_device *dev) 1651 { 1652 struct adapter *adap = netdev2adap(dev); 1653 1654 return t4_sge_ctxt_flush(adap, adap->mbox); 1655 } 1656 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1657 1658 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1659 { 1660 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1661 __be64 indices; 1662 int ret; 1663 1664 spin_lock(&adap->win0_lock); 1665 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1666 sizeof(indices), (__be32 *)&indices, 1667 T4_MEMORY_READ); 1668 spin_unlock(&adap->win0_lock); 1669 if (!ret) { 1670 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1671 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1672 } 1673 return ret; 1674 } 1675 1676 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1677 u16 size) 1678 { 1679 struct adapter *adap = netdev2adap(dev); 1680 u16 hw_pidx, hw_cidx; 1681 int ret; 1682 1683 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1684 if (ret) 1685 goto out; 1686 1687 if (pidx != hw_pidx) { 1688 u16 delta; 1689 u32 val; 1690 1691 if (pidx >= hw_pidx) 1692 delta = pidx - hw_pidx; 1693 else 1694 delta = size - hw_pidx + pidx; 1695 1696 if (is_t4(adap->params.chip)) 1697 val = PIDX_V(delta); 1698 else 1699 val = PIDX_T5_V(delta); 1700 wmb(); 1701 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1702 QID_V(qid) | val); 1703 } 1704 out: 1705 return ret; 1706 } 1707 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1708 1709 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1710 { 1711 struct adapter *adap; 1712 u32 offset, memtype, memaddr; 1713 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1714 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1715 int ret; 1716 1717 adap = netdev2adap(dev); 1718 1719 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1720 1721 /* Figure out where the offset lands in the Memory Type/Address scheme. 1722 * This code assumes that the memory is laid out starting at offset 0 1723 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1724 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1725 * MC0, and some have both MC0 and MC1. 1726 */ 1727 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1728 edc0_size = EDRAM0_SIZE_G(size) << 20; 1729 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1730 edc1_size = EDRAM1_SIZE_G(size) << 20; 1731 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1732 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1733 1734 edc0_end = edc0_size; 1735 edc1_end = edc0_end + edc1_size; 1736 mc0_end = edc1_end + mc0_size; 1737 1738 if (offset < edc0_end) { 1739 memtype = MEM_EDC0; 1740 memaddr = offset; 1741 } else if (offset < edc1_end) { 1742 memtype = MEM_EDC1; 1743 memaddr = offset - edc0_end; 1744 } else { 1745 if (offset < mc0_end) { 1746 memtype = MEM_MC0; 1747 memaddr = offset - edc1_end; 1748 } else if (is_t5(adap->params.chip)) { 1749 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1750 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1751 mc1_end = mc0_end + mc1_size; 1752 if (offset < mc1_end) { 1753 memtype = MEM_MC1; 1754 memaddr = offset - mc0_end; 1755 } else { 1756 /* offset beyond the end of any memory */ 1757 goto err; 1758 } 1759 } else { 1760 /* T4/T6 only has a single memory channel */ 1761 goto err; 1762 } 1763 } 1764 1765 spin_lock(&adap->win0_lock); 1766 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1767 spin_unlock(&adap->win0_lock); 1768 return ret; 1769 1770 err: 1771 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1772 stag, offset); 1773 return -EINVAL; 1774 } 1775 EXPORT_SYMBOL(cxgb4_read_tpte); 1776 1777 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1778 { 1779 u32 hi, lo; 1780 struct adapter *adap; 1781 1782 adap = netdev2adap(dev); 1783 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1784 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1785 1786 return ((u64)hi << 32) | (u64)lo; 1787 } 1788 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1789 1790 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1791 unsigned int qid, 1792 enum cxgb4_bar2_qtype qtype, 1793 int user, 1794 u64 *pbar2_qoffset, 1795 unsigned int *pbar2_qid) 1796 { 1797 return t4_bar2_sge_qregs(netdev2adap(dev), 1798 qid, 1799 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1800 ? T4_BAR2_QTYPE_EGRESS 1801 : T4_BAR2_QTYPE_INGRESS), 1802 user, 1803 pbar2_qoffset, 1804 pbar2_qid); 1805 } 1806 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1807 1808 static struct pci_driver cxgb4_driver; 1809 1810 static void check_neigh_update(struct neighbour *neigh) 1811 { 1812 const struct device *parent; 1813 const struct net_device *netdev = neigh->dev; 1814 1815 if (is_vlan_dev(netdev)) 1816 netdev = vlan_dev_real_dev(netdev); 1817 parent = netdev->dev.parent; 1818 if (parent && parent->driver == &cxgb4_driver.driver) 1819 t4_l2t_update(dev_get_drvdata(parent), neigh); 1820 } 1821 1822 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1823 void *data) 1824 { 1825 switch (event) { 1826 case NETEVENT_NEIGH_UPDATE: 1827 check_neigh_update(data); 1828 break; 1829 case NETEVENT_REDIRECT: 1830 default: 1831 break; 1832 } 1833 return 0; 1834 } 1835 1836 static bool netevent_registered; 1837 static struct notifier_block cxgb4_netevent_nb = { 1838 .notifier_call = netevent_cb 1839 }; 1840 1841 static void drain_db_fifo(struct adapter *adap, int usecs) 1842 { 1843 u32 v1, v2, lp_count, hp_count; 1844 1845 do { 1846 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1847 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1848 if (is_t4(adap->params.chip)) { 1849 lp_count = LP_COUNT_G(v1); 1850 hp_count = HP_COUNT_G(v1); 1851 } else { 1852 lp_count = LP_COUNT_T5_G(v1); 1853 hp_count = HP_COUNT_T5_G(v2); 1854 } 1855 1856 if (lp_count == 0 && hp_count == 0) 1857 break; 1858 set_current_state(TASK_UNINTERRUPTIBLE); 1859 schedule_timeout(usecs_to_jiffies(usecs)); 1860 } while (1); 1861 } 1862 1863 static void disable_txq_db(struct sge_txq *q) 1864 { 1865 unsigned long flags; 1866 1867 spin_lock_irqsave(&q->db_lock, flags); 1868 q->db_disabled = 1; 1869 spin_unlock_irqrestore(&q->db_lock, flags); 1870 } 1871 1872 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1873 { 1874 spin_lock_irq(&q->db_lock); 1875 if (q->db_pidx_inc) { 1876 /* Make sure that all writes to the TX descriptors 1877 * are committed before we tell HW about them. 1878 */ 1879 wmb(); 1880 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1881 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1882 q->db_pidx_inc = 0; 1883 } 1884 q->db_disabled = 0; 1885 spin_unlock_irq(&q->db_lock); 1886 } 1887 1888 static void disable_dbs(struct adapter *adap) 1889 { 1890 int i; 1891 1892 for_each_ethrxq(&adap->sge, i) 1893 disable_txq_db(&adap->sge.ethtxq[i].q); 1894 if (is_offload(adap)) { 1895 struct sge_uld_txq_info *txq_info = 1896 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1897 1898 if (txq_info) { 1899 for_each_ofldtxq(&adap->sge, i) { 1900 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1901 1902 disable_txq_db(&txq->q); 1903 } 1904 } 1905 } 1906 for_each_port(adap, i) 1907 disable_txq_db(&adap->sge.ctrlq[i].q); 1908 } 1909 1910 static void enable_dbs(struct adapter *adap) 1911 { 1912 int i; 1913 1914 for_each_ethrxq(&adap->sge, i) 1915 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1916 if (is_offload(adap)) { 1917 struct sge_uld_txq_info *txq_info = 1918 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1919 1920 if (txq_info) { 1921 for_each_ofldtxq(&adap->sge, i) { 1922 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1923 1924 enable_txq_db(adap, &txq->q); 1925 } 1926 } 1927 } 1928 for_each_port(adap, i) 1929 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 1930 } 1931 1932 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 1933 { 1934 enum cxgb4_uld type = CXGB4_ULD_RDMA; 1935 1936 if (adap->uld && adap->uld[type].handle) 1937 adap->uld[type].control(adap->uld[type].handle, cmd); 1938 } 1939 1940 static void process_db_full(struct work_struct *work) 1941 { 1942 struct adapter *adap; 1943 1944 adap = container_of(work, struct adapter, db_full_task); 1945 1946 drain_db_fifo(adap, dbfifo_drain_delay); 1947 enable_dbs(adap); 1948 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 1949 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1950 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1951 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 1952 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 1953 else 1954 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1955 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 1956 } 1957 1958 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 1959 { 1960 u16 hw_pidx, hw_cidx; 1961 int ret; 1962 1963 spin_lock_irq(&q->db_lock); 1964 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 1965 if (ret) 1966 goto out; 1967 if (q->db_pidx != hw_pidx) { 1968 u16 delta; 1969 u32 val; 1970 1971 if (q->db_pidx >= hw_pidx) 1972 delta = q->db_pidx - hw_pidx; 1973 else 1974 delta = q->size - hw_pidx + q->db_pidx; 1975 1976 if (is_t4(adap->params.chip)) 1977 val = PIDX_V(delta); 1978 else 1979 val = PIDX_T5_V(delta); 1980 wmb(); 1981 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1982 QID_V(q->cntxt_id) | val); 1983 } 1984 out: 1985 q->db_disabled = 0; 1986 q->db_pidx_inc = 0; 1987 spin_unlock_irq(&q->db_lock); 1988 if (ret) 1989 CH_WARN(adap, "DB drop recovery failed.\n"); 1990 } 1991 1992 static void recover_all_queues(struct adapter *adap) 1993 { 1994 int i; 1995 1996 for_each_ethrxq(&adap->sge, i) 1997 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 1998 if (is_offload(adap)) { 1999 struct sge_uld_txq_info *txq_info = 2000 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2001 if (txq_info) { 2002 for_each_ofldtxq(&adap->sge, i) { 2003 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2004 2005 sync_txq_pidx(adap, &txq->q); 2006 } 2007 } 2008 } 2009 for_each_port(adap, i) 2010 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2011 } 2012 2013 static void process_db_drop(struct work_struct *work) 2014 { 2015 struct adapter *adap; 2016 2017 adap = container_of(work, struct adapter, db_drop_task); 2018 2019 if (is_t4(adap->params.chip)) { 2020 drain_db_fifo(adap, dbfifo_drain_delay); 2021 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2022 drain_db_fifo(adap, dbfifo_drain_delay); 2023 recover_all_queues(adap); 2024 drain_db_fifo(adap, dbfifo_drain_delay); 2025 enable_dbs(adap); 2026 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2027 } else if (is_t5(adap->params.chip)) { 2028 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2029 u16 qid = (dropped_db >> 15) & 0x1ffff; 2030 u16 pidx_inc = dropped_db & 0x1fff; 2031 u64 bar2_qoffset; 2032 unsigned int bar2_qid; 2033 int ret; 2034 2035 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2036 0, &bar2_qoffset, &bar2_qid); 2037 if (ret) 2038 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2039 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2040 else 2041 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2042 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2043 2044 /* Re-enable BAR2 WC */ 2045 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2046 } 2047 2048 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2049 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2050 } 2051 2052 void t4_db_full(struct adapter *adap) 2053 { 2054 if (is_t4(adap->params.chip)) { 2055 disable_dbs(adap); 2056 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2057 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2058 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2059 queue_work(adap->workq, &adap->db_full_task); 2060 } 2061 } 2062 2063 void t4_db_dropped(struct adapter *adap) 2064 { 2065 if (is_t4(adap->params.chip)) { 2066 disable_dbs(adap); 2067 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2068 } 2069 queue_work(adap->workq, &adap->db_drop_task); 2070 } 2071 2072 void t4_register_netevent_notifier(void) 2073 { 2074 if (!netevent_registered) { 2075 register_netevent_notifier(&cxgb4_netevent_nb); 2076 netevent_registered = true; 2077 } 2078 } 2079 2080 static void detach_ulds(struct adapter *adap) 2081 { 2082 unsigned int i; 2083 2084 mutex_lock(&uld_mutex); 2085 list_del(&adap->list_node); 2086 2087 for (i = 0; i < CXGB4_ULD_MAX; i++) 2088 if (adap->uld && adap->uld[i].handle) 2089 adap->uld[i].state_change(adap->uld[i].handle, 2090 CXGB4_STATE_DETACH); 2091 2092 if (netevent_registered && list_empty(&adapter_list)) { 2093 unregister_netevent_notifier(&cxgb4_netevent_nb); 2094 netevent_registered = false; 2095 } 2096 mutex_unlock(&uld_mutex); 2097 } 2098 2099 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2100 { 2101 unsigned int i; 2102 2103 mutex_lock(&uld_mutex); 2104 for (i = 0; i < CXGB4_ULD_MAX; i++) 2105 if (adap->uld && adap->uld[i].handle) 2106 adap->uld[i].state_change(adap->uld[i].handle, 2107 new_state); 2108 mutex_unlock(&uld_mutex); 2109 } 2110 2111 #if IS_ENABLED(CONFIG_IPV6) 2112 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2113 unsigned long event, void *data) 2114 { 2115 struct inet6_ifaddr *ifa = data; 2116 struct net_device *event_dev = ifa->idev->dev; 2117 const struct device *parent = NULL; 2118 #if IS_ENABLED(CONFIG_BONDING) 2119 struct adapter *adap; 2120 #endif 2121 if (is_vlan_dev(event_dev)) 2122 event_dev = vlan_dev_real_dev(event_dev); 2123 #if IS_ENABLED(CONFIG_BONDING) 2124 if (event_dev->flags & IFF_MASTER) { 2125 list_for_each_entry(adap, &adapter_list, list_node) { 2126 switch (event) { 2127 case NETDEV_UP: 2128 cxgb4_clip_get(adap->port[0], 2129 (const u32 *)ifa, 1); 2130 break; 2131 case NETDEV_DOWN: 2132 cxgb4_clip_release(adap->port[0], 2133 (const u32 *)ifa, 1); 2134 break; 2135 default: 2136 break; 2137 } 2138 } 2139 return NOTIFY_OK; 2140 } 2141 #endif 2142 2143 if (event_dev) 2144 parent = event_dev->dev.parent; 2145 2146 if (parent && parent->driver == &cxgb4_driver.driver) { 2147 switch (event) { 2148 case NETDEV_UP: 2149 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2150 break; 2151 case NETDEV_DOWN: 2152 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2153 break; 2154 default: 2155 break; 2156 } 2157 } 2158 return NOTIFY_OK; 2159 } 2160 2161 static bool inet6addr_registered; 2162 static struct notifier_block cxgb4_inet6addr_notifier = { 2163 .notifier_call = cxgb4_inet6addr_handler 2164 }; 2165 2166 static void update_clip(const struct adapter *adap) 2167 { 2168 int i; 2169 struct net_device *dev; 2170 int ret; 2171 2172 rcu_read_lock(); 2173 2174 for (i = 0; i < MAX_NPORTS; i++) { 2175 dev = adap->port[i]; 2176 ret = 0; 2177 2178 if (dev) 2179 ret = cxgb4_update_root_dev_clip(dev); 2180 2181 if (ret < 0) 2182 break; 2183 } 2184 rcu_read_unlock(); 2185 } 2186 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2187 2188 /** 2189 * cxgb_up - enable the adapter 2190 * @adap: adapter being enabled 2191 * 2192 * Called when the first port is enabled, this function performs the 2193 * actions necessary to make an adapter operational, such as completing 2194 * the initialization of HW modules, and enabling interrupts. 2195 * 2196 * Must be called with the rtnl lock held. 2197 */ 2198 static int cxgb_up(struct adapter *adap) 2199 { 2200 int err; 2201 2202 mutex_lock(&uld_mutex); 2203 err = setup_sge_queues(adap); 2204 if (err) 2205 goto rel_lock; 2206 err = setup_rss(adap); 2207 if (err) 2208 goto freeq; 2209 2210 if (adap->flags & USING_MSIX) { 2211 name_msix_vecs(adap); 2212 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2213 adap->msix_info[0].desc, adap); 2214 if (err) 2215 goto irq_err; 2216 err = request_msix_queue_irqs(adap); 2217 if (err) { 2218 free_irq(adap->msix_info[0].vec, adap); 2219 goto irq_err; 2220 } 2221 } else { 2222 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2223 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2224 adap->port[0]->name, adap); 2225 if (err) 2226 goto irq_err; 2227 } 2228 2229 enable_rx(adap); 2230 t4_sge_start(adap); 2231 t4_intr_enable(adap); 2232 adap->flags |= FULL_INIT_DONE; 2233 mutex_unlock(&uld_mutex); 2234 2235 notify_ulds(adap, CXGB4_STATE_UP); 2236 #if IS_ENABLED(CONFIG_IPV6) 2237 update_clip(adap); 2238 #endif 2239 /* Initialize hash mac addr list*/ 2240 INIT_LIST_HEAD(&adap->mac_hlist); 2241 return err; 2242 2243 irq_err: 2244 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2245 freeq: 2246 t4_free_sge_resources(adap); 2247 rel_lock: 2248 mutex_unlock(&uld_mutex); 2249 return err; 2250 } 2251 2252 static void cxgb_down(struct adapter *adapter) 2253 { 2254 cancel_work_sync(&adapter->tid_release_task); 2255 cancel_work_sync(&adapter->db_full_task); 2256 cancel_work_sync(&adapter->db_drop_task); 2257 adapter->tid_release_task_busy = false; 2258 adapter->tid_release_head = NULL; 2259 2260 t4_sge_stop(adapter); 2261 t4_free_sge_resources(adapter); 2262 adapter->flags &= ~FULL_INIT_DONE; 2263 } 2264 2265 /* 2266 * net_device operations 2267 */ 2268 static int cxgb_open(struct net_device *dev) 2269 { 2270 int err; 2271 struct port_info *pi = netdev_priv(dev); 2272 struct adapter *adapter = pi->adapter; 2273 2274 netif_carrier_off(dev); 2275 2276 if (!(adapter->flags & FULL_INIT_DONE)) { 2277 err = cxgb_up(adapter); 2278 if (err < 0) 2279 return err; 2280 } 2281 2282 /* It's possible that the basic port information could have 2283 * changed since we first read it. 2284 */ 2285 err = t4_update_port_info(pi); 2286 if (err < 0) 2287 return err; 2288 2289 err = link_start(dev); 2290 if (!err) 2291 netif_tx_start_all_queues(dev); 2292 return err; 2293 } 2294 2295 static int cxgb_close(struct net_device *dev) 2296 { 2297 struct port_info *pi = netdev_priv(dev); 2298 struct adapter *adapter = pi->adapter; 2299 2300 netif_tx_stop_all_queues(dev); 2301 netif_carrier_off(dev); 2302 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false); 2303 } 2304 2305 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2306 __be32 sip, __be16 sport, __be16 vlan, 2307 unsigned int queue, unsigned char port, unsigned char mask) 2308 { 2309 int ret; 2310 struct filter_entry *f; 2311 struct adapter *adap; 2312 int i; 2313 u8 *val; 2314 2315 adap = netdev2adap(dev); 2316 2317 /* Adjust stid to correct filter index */ 2318 stid -= adap->tids.sftid_base; 2319 stid += adap->tids.nftids; 2320 2321 /* Check to make sure the filter requested is writable ... 2322 */ 2323 f = &adap->tids.ftid_tab[stid]; 2324 ret = writable_filter(f); 2325 if (ret) 2326 return ret; 2327 2328 /* Clear out any old resources being used by the filter before 2329 * we start constructing the new filter. 2330 */ 2331 if (f->valid) 2332 clear_filter(adap, f); 2333 2334 /* Clear out filter specifications */ 2335 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2336 f->fs.val.lport = cpu_to_be16(sport); 2337 f->fs.mask.lport = ~0; 2338 val = (u8 *)&sip; 2339 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2340 for (i = 0; i < 4; i++) { 2341 f->fs.val.lip[i] = val[i]; 2342 f->fs.mask.lip[i] = ~0; 2343 } 2344 if (adap->params.tp.vlan_pri_map & PORT_F) { 2345 f->fs.val.iport = port; 2346 f->fs.mask.iport = mask; 2347 } 2348 } 2349 2350 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2351 f->fs.val.proto = IPPROTO_TCP; 2352 f->fs.mask.proto = ~0; 2353 } 2354 2355 f->fs.dirsteer = 1; 2356 f->fs.iq = queue; 2357 /* Mark filter as locked */ 2358 f->locked = 1; 2359 f->fs.rpttid = 1; 2360 2361 /* Save the actual tid. We need this to get the corresponding 2362 * filter entry structure in filter_rpl. 2363 */ 2364 f->tid = stid + adap->tids.ftid_base; 2365 ret = set_filter_wr(adap, stid); 2366 if (ret) { 2367 clear_filter(adap, f); 2368 return ret; 2369 } 2370 2371 return 0; 2372 } 2373 EXPORT_SYMBOL(cxgb4_create_server_filter); 2374 2375 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2376 unsigned int queue, bool ipv6) 2377 { 2378 struct filter_entry *f; 2379 struct adapter *adap; 2380 2381 adap = netdev2adap(dev); 2382 2383 /* Adjust stid to correct filter index */ 2384 stid -= adap->tids.sftid_base; 2385 stid += adap->tids.nftids; 2386 2387 f = &adap->tids.ftid_tab[stid]; 2388 /* Unlock the filter */ 2389 f->locked = 0; 2390 2391 return delete_filter(adap, stid); 2392 } 2393 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2394 2395 static void cxgb_get_stats(struct net_device *dev, 2396 struct rtnl_link_stats64 *ns) 2397 { 2398 struct port_stats stats; 2399 struct port_info *p = netdev_priv(dev); 2400 struct adapter *adapter = p->adapter; 2401 2402 /* Block retrieving statistics during EEH error 2403 * recovery. Otherwise, the recovery might fail 2404 * and the PCI device will be removed permanently 2405 */ 2406 spin_lock(&adapter->stats_lock); 2407 if (!netif_device_present(dev)) { 2408 spin_unlock(&adapter->stats_lock); 2409 return; 2410 } 2411 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2412 &p->stats_base); 2413 spin_unlock(&adapter->stats_lock); 2414 2415 ns->tx_bytes = stats.tx_octets; 2416 ns->tx_packets = stats.tx_frames; 2417 ns->rx_bytes = stats.rx_octets; 2418 ns->rx_packets = stats.rx_frames; 2419 ns->multicast = stats.rx_mcast_frames; 2420 2421 /* detailed rx_errors */ 2422 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2423 stats.rx_runt; 2424 ns->rx_over_errors = 0; 2425 ns->rx_crc_errors = stats.rx_fcs_err; 2426 ns->rx_frame_errors = stats.rx_symbol_err; 2427 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2428 stats.rx_ovflow2 + stats.rx_ovflow3 + 2429 stats.rx_trunc0 + stats.rx_trunc1 + 2430 stats.rx_trunc2 + stats.rx_trunc3; 2431 ns->rx_missed_errors = 0; 2432 2433 /* detailed tx_errors */ 2434 ns->tx_aborted_errors = 0; 2435 ns->tx_carrier_errors = 0; 2436 ns->tx_fifo_errors = 0; 2437 ns->tx_heartbeat_errors = 0; 2438 ns->tx_window_errors = 0; 2439 2440 ns->tx_errors = stats.tx_error_frames; 2441 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2442 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2443 } 2444 2445 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2446 { 2447 unsigned int mbox; 2448 int ret = 0, prtad, devad; 2449 struct port_info *pi = netdev_priv(dev); 2450 struct adapter *adapter = pi->adapter; 2451 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2452 2453 switch (cmd) { 2454 case SIOCGMIIPHY: 2455 if (pi->mdio_addr < 0) 2456 return -EOPNOTSUPP; 2457 data->phy_id = pi->mdio_addr; 2458 break; 2459 case SIOCGMIIREG: 2460 case SIOCSMIIREG: 2461 if (mdio_phy_id_is_c45(data->phy_id)) { 2462 prtad = mdio_phy_id_prtad(data->phy_id); 2463 devad = mdio_phy_id_devad(data->phy_id); 2464 } else if (data->phy_id < 32) { 2465 prtad = data->phy_id; 2466 devad = 0; 2467 data->reg_num &= 0x1f; 2468 } else 2469 return -EINVAL; 2470 2471 mbox = pi->adapter->pf; 2472 if (cmd == SIOCGMIIREG) 2473 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2474 data->reg_num, &data->val_out); 2475 else 2476 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2477 data->reg_num, data->val_in); 2478 break; 2479 case SIOCGHWTSTAMP: 2480 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2481 sizeof(pi->tstamp_config)) ? 2482 -EFAULT : 0; 2483 case SIOCSHWTSTAMP: 2484 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2485 sizeof(pi->tstamp_config))) 2486 return -EFAULT; 2487 2488 if (!is_t4(adapter->params.chip)) { 2489 switch (pi->tstamp_config.tx_type) { 2490 case HWTSTAMP_TX_OFF: 2491 case HWTSTAMP_TX_ON: 2492 break; 2493 default: 2494 return -ERANGE; 2495 } 2496 2497 switch (pi->tstamp_config.rx_filter) { 2498 case HWTSTAMP_FILTER_NONE: 2499 pi->rxtstamp = false; 2500 break; 2501 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2502 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2503 cxgb4_ptprx_timestamping(pi, pi->port_id, 2504 PTP_TS_L4); 2505 break; 2506 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2507 cxgb4_ptprx_timestamping(pi, pi->port_id, 2508 PTP_TS_L2_L4); 2509 break; 2510 case HWTSTAMP_FILTER_ALL: 2511 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2512 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2513 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2514 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2515 pi->rxtstamp = true; 2516 break; 2517 default: 2518 pi->tstamp_config.rx_filter = 2519 HWTSTAMP_FILTER_NONE; 2520 return -ERANGE; 2521 } 2522 2523 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2524 (pi->tstamp_config.rx_filter == 2525 HWTSTAMP_FILTER_NONE)) { 2526 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2527 pi->ptp_enable = false; 2528 } 2529 2530 if (pi->tstamp_config.rx_filter != 2531 HWTSTAMP_FILTER_NONE) { 2532 if (cxgb4_ptp_redirect_rx_packet(adapter, 2533 pi) >= 0) 2534 pi->ptp_enable = true; 2535 } 2536 } else { 2537 /* For T4 Adapters */ 2538 switch (pi->tstamp_config.rx_filter) { 2539 case HWTSTAMP_FILTER_NONE: 2540 pi->rxtstamp = false; 2541 break; 2542 case HWTSTAMP_FILTER_ALL: 2543 pi->rxtstamp = true; 2544 break; 2545 default: 2546 pi->tstamp_config.rx_filter = 2547 HWTSTAMP_FILTER_NONE; 2548 return -ERANGE; 2549 } 2550 } 2551 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2552 sizeof(pi->tstamp_config)) ? 2553 -EFAULT : 0; 2554 default: 2555 return -EOPNOTSUPP; 2556 } 2557 return ret; 2558 } 2559 2560 static void cxgb_set_rxmode(struct net_device *dev) 2561 { 2562 /* unfortunately we can't return errors to the stack */ 2563 set_rxmode(dev, -1, false); 2564 } 2565 2566 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2567 { 2568 int ret; 2569 struct port_info *pi = netdev_priv(dev); 2570 2571 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2572 -1, -1, -1, true); 2573 if (!ret) 2574 dev->mtu = new_mtu; 2575 return ret; 2576 } 2577 2578 #ifdef CONFIG_PCI_IOV 2579 static int dummy_open(struct net_device *dev) 2580 { 2581 /* Turn carrier off since we don't have to transmit anything on this 2582 * interface. 2583 */ 2584 netif_carrier_off(dev); 2585 return 0; 2586 } 2587 2588 /* Fill MAC address that will be assigned by the FW */ 2589 static void fill_vf_station_mac_addr(struct adapter *adap) 2590 { 2591 unsigned int i; 2592 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2593 int err; 2594 u8 *na; 2595 u16 a, b; 2596 2597 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2598 if (!err) { 2599 na = adap->params.vpd.na; 2600 for (i = 0; i < ETH_ALEN; i++) 2601 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2602 hex2val(na[2 * i + 1])); 2603 a = (hw_addr[0] << 8) | hw_addr[1]; 2604 b = (hw_addr[1] << 8) | hw_addr[2]; 2605 a ^= b; 2606 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2607 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2608 macaddr[0] = a >> 8; 2609 macaddr[1] = a & 0xff; 2610 2611 for (i = 2; i < 5; i++) 2612 macaddr[i] = hw_addr[i + 1]; 2613 2614 for (i = 0; i < adap->num_vfs; i++) { 2615 macaddr[5] = adap->pf * 16 + i; 2616 ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr); 2617 } 2618 } 2619 } 2620 2621 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2622 { 2623 struct port_info *pi = netdev_priv(dev); 2624 struct adapter *adap = pi->adapter; 2625 int ret; 2626 2627 /* verify MAC addr is valid */ 2628 if (!is_valid_ether_addr(mac)) { 2629 dev_err(pi->adapter->pdev_dev, 2630 "Invalid Ethernet address %pM for VF %d\n", 2631 mac, vf); 2632 return -EINVAL; 2633 } 2634 2635 dev_info(pi->adapter->pdev_dev, 2636 "Setting MAC %pM on VF %d\n", mac, vf); 2637 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2638 if (!ret) 2639 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2640 return ret; 2641 } 2642 2643 static int cxgb_get_vf_config(struct net_device *dev, 2644 int vf, struct ifla_vf_info *ivi) 2645 { 2646 struct port_info *pi = netdev_priv(dev); 2647 struct adapter *adap = pi->adapter; 2648 2649 if (vf >= adap->num_vfs) 2650 return -EINVAL; 2651 ivi->vf = vf; 2652 ivi->max_tx_rate = adap->vfinfo[vf].tx_rate; 2653 ivi->min_tx_rate = 0; 2654 ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr); 2655 return 0; 2656 } 2657 2658 static int cxgb_get_phys_port_id(struct net_device *dev, 2659 struct netdev_phys_item_id *ppid) 2660 { 2661 struct port_info *pi = netdev_priv(dev); 2662 unsigned int phy_port_id; 2663 2664 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2665 ppid->id_len = sizeof(phy_port_id); 2666 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2667 return 0; 2668 } 2669 2670 static int cxgb_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate, 2671 int max_tx_rate) 2672 { 2673 struct port_info *pi = netdev_priv(dev); 2674 struct adapter *adap = pi->adapter; 2675 struct fw_port_cmd port_cmd, port_rpl; 2676 u32 link_status, speed = 0; 2677 u32 fw_pfvf, fw_class; 2678 int class_id = vf; 2679 int link_ok, ret; 2680 u16 pktsize; 2681 2682 if (vf >= adap->num_vfs) 2683 return -EINVAL; 2684 2685 if (min_tx_rate) { 2686 dev_err(adap->pdev_dev, 2687 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2688 min_tx_rate, vf); 2689 return -EINVAL; 2690 } 2691 /* Retrieve link details for VF port */ 2692 memset(&port_cmd, 0, sizeof(port_cmd)); 2693 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 2694 FW_CMD_REQUEST_F | 2695 FW_CMD_READ_F | 2696 FW_PORT_CMD_PORTID_V(pi->port_id)); 2697 port_cmd.action_to_len16 = 2698 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) | 2699 FW_LEN16(port_cmd)); 2700 ret = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 2701 &port_rpl); 2702 if (ret != FW_SUCCESS) { 2703 dev_err(adap->pdev_dev, 2704 "Failed to get link status for VF %d\n", vf); 2705 return -EINVAL; 2706 } 2707 link_status = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype); 2708 link_ok = (link_status & FW_PORT_CMD_LSTATUS_F) != 0; 2709 if (!link_ok) { 2710 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 2711 return -EINVAL; 2712 } 2713 /* Determine link speed */ 2714 if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 2715 speed = 100; 2716 else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 2717 speed = 1000; 2718 else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 2719 speed = 10000; 2720 else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 2721 speed = 25000; 2722 else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 2723 speed = 40000; 2724 else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 2725 speed = 100000; 2726 2727 if (max_tx_rate > speed) { 2728 dev_err(adap->pdev_dev, 2729 "Max tx rate %d for VF %d can't be > link-speed %u", 2730 max_tx_rate, vf, speed); 2731 return -EINVAL; 2732 } 2733 pktsize = be16_to_cpu(port_rpl.u.info.mtu); 2734 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 2735 pktsize = pktsize - sizeof(struct ethhdr) - 4; 2736 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 2737 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 2738 /* configure Traffic Class for rate-limiting */ 2739 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 2740 SCHED_CLASS_LEVEL_CL_RL, 2741 SCHED_CLASS_MODE_CLASS, 2742 SCHED_CLASS_RATEUNIT_BITS, 2743 SCHED_CLASS_RATEMODE_ABS, 2744 pi->port_id, class_id, 0, 2745 max_tx_rate * 1000, 0, pktsize); 2746 if (ret) { 2747 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 2748 ret); 2749 return -EINVAL; 2750 } 2751 dev_info(adap->pdev_dev, 2752 "Class %d with MSS %u configured with rate %u\n", 2753 class_id, pktsize, max_tx_rate); 2754 2755 /* bind VF to configured Traffic Class */ 2756 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2757 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2758 fw_class = class_id; 2759 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 2760 &fw_class); 2761 if (ret) { 2762 dev_err(adap->pdev_dev, 2763 "Err %d in binding VF %d to Traffic Class %d\n", 2764 ret, vf, class_id); 2765 return -EINVAL; 2766 } 2767 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 2768 adap->pf, vf, class_id); 2769 adap->vfinfo[vf].tx_rate = max_tx_rate; 2770 return 0; 2771 } 2772 2773 #endif 2774 2775 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2776 { 2777 int ret; 2778 struct sockaddr *addr = p; 2779 struct port_info *pi = netdev_priv(dev); 2780 2781 if (!is_valid_ether_addr(addr->sa_data)) 2782 return -EADDRNOTAVAIL; 2783 2784 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 2785 pi->xact_addr_filt, addr->sa_data, true, true); 2786 if (ret < 0) 2787 return ret; 2788 2789 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2790 pi->xact_addr_filt = ret; 2791 return 0; 2792 } 2793 2794 #ifdef CONFIG_NET_POLL_CONTROLLER 2795 static void cxgb_netpoll(struct net_device *dev) 2796 { 2797 struct port_info *pi = netdev_priv(dev); 2798 struct adapter *adap = pi->adapter; 2799 2800 if (adap->flags & USING_MSIX) { 2801 int i; 2802 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2803 2804 for (i = pi->nqsets; i; i--, rx++) 2805 t4_sge_intr_msix(0, &rx->rspq); 2806 } else 2807 t4_intr_handler(adap)(0, adap); 2808 } 2809 #endif 2810 2811 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2812 { 2813 struct port_info *pi = netdev_priv(dev); 2814 struct adapter *adap = pi->adapter; 2815 struct sched_class *e; 2816 struct ch_sched_params p; 2817 struct ch_sched_queue qe; 2818 u32 req_rate; 2819 int err = 0; 2820 2821 if (!can_sched(dev)) 2822 return -ENOTSUPP; 2823 2824 if (index < 0 || index > pi->nqsets - 1) 2825 return -EINVAL; 2826 2827 if (!(adap->flags & FULL_INIT_DONE)) { 2828 dev_err(adap->pdev_dev, 2829 "Failed to rate limit on queue %d. Link Down?\n", 2830 index); 2831 return -EINVAL; 2832 } 2833 2834 /* Convert from Mbps to Kbps */ 2835 req_rate = rate << 10; 2836 2837 /* Max rate is 10 Gbps */ 2838 if (req_rate >= SCHED_MAX_RATE_KBPS) { 2839 dev_err(adap->pdev_dev, 2840 "Invalid rate %u Mbps, Max rate is %u Gbps\n", 2841 rate, SCHED_MAX_RATE_KBPS); 2842 return -ERANGE; 2843 } 2844 2845 /* First unbind the queue from any existing class */ 2846 memset(&qe, 0, sizeof(qe)); 2847 qe.queue = index; 2848 qe.class = SCHED_CLS_NONE; 2849 2850 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 2851 if (err) { 2852 dev_err(adap->pdev_dev, 2853 "Unbinding Queue %d on port %d fail. Err: %d\n", 2854 index, pi->port_id, err); 2855 return err; 2856 } 2857 2858 /* Queue already unbound */ 2859 if (!req_rate) 2860 return 0; 2861 2862 /* Fetch any available unused or matching scheduling class */ 2863 memset(&p, 0, sizeof(p)); 2864 p.type = SCHED_CLASS_TYPE_PACKET; 2865 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 2866 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 2867 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 2868 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 2869 p.u.params.channel = pi->tx_chan; 2870 p.u.params.class = SCHED_CLS_NONE; 2871 p.u.params.minrate = 0; 2872 p.u.params.maxrate = req_rate; 2873 p.u.params.weight = 0; 2874 p.u.params.pktsize = dev->mtu; 2875 2876 e = cxgb4_sched_class_alloc(dev, &p); 2877 if (!e) 2878 return -ENOMEM; 2879 2880 /* Bind the queue to a scheduling class */ 2881 memset(&qe, 0, sizeof(qe)); 2882 qe.queue = index; 2883 qe.class = e->idx; 2884 2885 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 2886 if (err) 2887 dev_err(adap->pdev_dev, 2888 "Queue rate limiting failed. Err: %d\n", err); 2889 return err; 2890 } 2891 2892 static int cxgb_setup_tc(struct net_device *dev, u32 handle, u32 chain_index, 2893 __be16 proto, struct tc_to_netdev *tc) 2894 { 2895 struct port_info *pi = netdev2pinfo(dev); 2896 struct adapter *adap = netdev2adap(dev); 2897 2898 if (chain_index) 2899 return -EOPNOTSUPP; 2900 2901 if (!(adap->flags & FULL_INIT_DONE)) { 2902 dev_err(adap->pdev_dev, 2903 "Failed to setup tc on port %d. Link Down?\n", 2904 pi->port_id); 2905 return -EINVAL; 2906 } 2907 2908 if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) && 2909 tc->type == TC_SETUP_CLSU32) { 2910 switch (tc->cls_u32->command) { 2911 case TC_CLSU32_NEW_KNODE: 2912 case TC_CLSU32_REPLACE_KNODE: 2913 return cxgb4_config_knode(dev, proto, tc->cls_u32); 2914 case TC_CLSU32_DELETE_KNODE: 2915 return cxgb4_delete_knode(dev, proto, tc->cls_u32); 2916 default: 2917 return -EOPNOTSUPP; 2918 } 2919 } 2920 2921 return -EOPNOTSUPP; 2922 } 2923 2924 static netdev_features_t cxgb_fix_features(struct net_device *dev, 2925 netdev_features_t features) 2926 { 2927 /* Disable GRO, if RX_CSUM is disabled */ 2928 if (!(features & NETIF_F_RXCSUM)) 2929 features &= ~NETIF_F_GRO; 2930 2931 return features; 2932 } 2933 2934 static const struct net_device_ops cxgb4_netdev_ops = { 2935 .ndo_open = cxgb_open, 2936 .ndo_stop = cxgb_close, 2937 .ndo_start_xmit = t4_eth_xmit, 2938 .ndo_select_queue = cxgb_select_queue, 2939 .ndo_get_stats64 = cxgb_get_stats, 2940 .ndo_set_rx_mode = cxgb_set_rxmode, 2941 .ndo_set_mac_address = cxgb_set_mac_addr, 2942 .ndo_set_features = cxgb_set_features, 2943 .ndo_validate_addr = eth_validate_addr, 2944 .ndo_do_ioctl = cxgb_ioctl, 2945 .ndo_change_mtu = cxgb_change_mtu, 2946 #ifdef CONFIG_NET_POLL_CONTROLLER 2947 .ndo_poll_controller = cxgb_netpoll, 2948 #endif 2949 #ifdef CONFIG_CHELSIO_T4_FCOE 2950 .ndo_fcoe_enable = cxgb_fcoe_enable, 2951 .ndo_fcoe_disable = cxgb_fcoe_disable, 2952 #endif /* CONFIG_CHELSIO_T4_FCOE */ 2953 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 2954 .ndo_setup_tc = cxgb_setup_tc, 2955 .ndo_fix_features = cxgb_fix_features, 2956 }; 2957 2958 #ifdef CONFIG_PCI_IOV 2959 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 2960 .ndo_open = dummy_open, 2961 .ndo_set_vf_mac = cxgb_set_vf_mac, 2962 .ndo_get_vf_config = cxgb_get_vf_config, 2963 .ndo_set_vf_rate = cxgb_set_vf_rate, 2964 .ndo_get_phys_port_id = cxgb_get_phys_port_id, 2965 }; 2966 #endif 2967 2968 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2969 { 2970 struct adapter *adapter = netdev2adap(dev); 2971 2972 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 2973 strlcpy(info->version, cxgb4_driver_version, 2974 sizeof(info->version)); 2975 strlcpy(info->bus_info, pci_name(adapter->pdev), 2976 sizeof(info->bus_info)); 2977 } 2978 2979 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 2980 .get_drvinfo = get_drvinfo, 2981 }; 2982 2983 void t4_fatal_err(struct adapter *adap) 2984 { 2985 int port; 2986 2987 if (pci_channel_offline(adap->pdev)) 2988 return; 2989 2990 /* Disable the SGE since ULDs are going to free resources that 2991 * could be exposed to the adapter. RDMA MWs for example... 2992 */ 2993 t4_shutdown_adapter(adap); 2994 for_each_port(adap, port) { 2995 struct net_device *dev = adap->port[port]; 2996 2997 /* If we get here in very early initialization the network 2998 * devices may not have been set up yet. 2999 */ 3000 if (!dev) 3001 continue; 3002 3003 netif_tx_stop_all_queues(dev); 3004 netif_carrier_off(dev); 3005 } 3006 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3007 } 3008 3009 static void setup_memwin(struct adapter *adap) 3010 { 3011 u32 nic_win_base = t4_get_util_window(adap); 3012 3013 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3014 } 3015 3016 static void setup_memwin_rdma(struct adapter *adap) 3017 { 3018 if (adap->vres.ocq.size) { 3019 u32 start; 3020 unsigned int sz_kb; 3021 3022 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3023 start &= PCI_BASE_ADDRESS_MEM_MASK; 3024 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3025 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3026 t4_write_reg(adap, 3027 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3028 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3029 t4_write_reg(adap, 3030 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3031 adap->vres.ocq.start); 3032 t4_read_reg(adap, 3033 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3034 } 3035 } 3036 3037 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3038 { 3039 u32 v; 3040 int ret; 3041 3042 /* get device capabilities */ 3043 memset(c, 0, sizeof(*c)); 3044 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3045 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3046 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3047 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3048 if (ret < 0) 3049 return ret; 3050 3051 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3052 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3053 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3054 if (ret < 0) 3055 return ret; 3056 3057 ret = t4_config_glbl_rss(adap, adap->pf, 3058 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3059 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3060 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3061 if (ret < 0) 3062 return ret; 3063 3064 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3065 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3066 FW_CMD_CAP_PF); 3067 if (ret < 0) 3068 return ret; 3069 3070 t4_sge_init(adap); 3071 3072 /* tweak some settings */ 3073 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3074 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3075 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3076 v = t4_read_reg(adap, TP_PIO_DATA_A); 3077 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3078 3079 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3080 adap->params.tp.tx_modq_map = 0xE4; 3081 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3082 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3083 3084 /* associate each Tx modulation queue with consecutive Tx channels */ 3085 v = 0x84218421; 3086 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3087 &v, 1, TP_TX_SCHED_HDR_A); 3088 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3089 &v, 1, TP_TX_SCHED_FIFO_A); 3090 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3091 &v, 1, TP_TX_SCHED_PCMD_A); 3092 3093 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3094 if (is_offload(adap)) { 3095 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3096 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3097 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3098 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3099 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3100 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3101 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3102 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3103 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3104 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3105 } 3106 3107 /* get basic stuff going */ 3108 return t4_early_init(adap, adap->pf); 3109 } 3110 3111 /* 3112 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3113 */ 3114 #define MAX_ATIDS 8192U 3115 3116 /* 3117 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3118 * 3119 * If the firmware we're dealing with has Configuration File support, then 3120 * we use that to perform all configuration 3121 */ 3122 3123 /* 3124 * Tweak configuration based on module parameters, etc. Most of these have 3125 * defaults assigned to them by Firmware Configuration Files (if we're using 3126 * them) but need to be explicitly set if we're using hard-coded 3127 * initialization. But even in the case of using Firmware Configuration 3128 * Files, we'd like to expose the ability to change these via module 3129 * parameters so these are essentially common tweaks/settings for 3130 * Configuration Files and hard-coded initialization ... 3131 */ 3132 static int adap_init0_tweaks(struct adapter *adapter) 3133 { 3134 /* 3135 * Fix up various Host-Dependent Parameters like Page Size, Cache 3136 * Line Size, etc. The firmware default is for a 4KB Page Size and 3137 * 64B Cache Line Size ... 3138 */ 3139 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3140 3141 /* 3142 * Process module parameters which affect early initialization. 3143 */ 3144 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3145 dev_err(&adapter->pdev->dev, 3146 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3147 rx_dma_offset); 3148 rx_dma_offset = 2; 3149 } 3150 t4_set_reg_field(adapter, SGE_CONTROL_A, 3151 PKTSHIFT_V(PKTSHIFT_M), 3152 PKTSHIFT_V(rx_dma_offset)); 3153 3154 /* 3155 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3156 * adds the pseudo header itself. 3157 */ 3158 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3159 CSUM_HAS_PSEUDO_HDR_F, 0); 3160 3161 return 0; 3162 } 3163 3164 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3165 * unto themselves and they contain their own firmware to perform their 3166 * tasks ... 3167 */ 3168 static int phy_aq1202_version(const u8 *phy_fw_data, 3169 size_t phy_fw_size) 3170 { 3171 int offset; 3172 3173 /* At offset 0x8 you're looking for the primary image's 3174 * starting offset which is 3 Bytes wide 3175 * 3176 * At offset 0xa of the primary image, you look for the offset 3177 * of the DRAM segment which is 3 Bytes wide. 3178 * 3179 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3180 * wide 3181 */ 3182 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3183 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3184 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3185 3186 offset = le24(phy_fw_data + 0x8) << 12; 3187 offset = le24(phy_fw_data + offset + 0xa); 3188 return be16(phy_fw_data + offset + 0x27e); 3189 3190 #undef be16 3191 #undef le16 3192 #undef le24 3193 } 3194 3195 static struct info_10gbt_phy_fw { 3196 unsigned int phy_fw_id; /* PCI Device ID */ 3197 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3198 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3199 int phy_flash; /* Has FLASH for PHY Firmware */ 3200 } phy_info_array[] = { 3201 { 3202 PHY_AQ1202_DEVICEID, 3203 PHY_AQ1202_FIRMWARE, 3204 phy_aq1202_version, 3205 1, 3206 }, 3207 { 3208 PHY_BCM84834_DEVICEID, 3209 PHY_BCM84834_FIRMWARE, 3210 NULL, 3211 0, 3212 }, 3213 { 0, NULL, NULL }, 3214 }; 3215 3216 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3217 { 3218 int i; 3219 3220 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3221 if (phy_info_array[i].phy_fw_id == devid) 3222 return &phy_info_array[i]; 3223 } 3224 return NULL; 3225 } 3226 3227 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3228 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3229 * we return a negative error number. If we transfer new firmware we return 1 3230 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3231 */ 3232 static int adap_init0_phy(struct adapter *adap) 3233 { 3234 const struct firmware *phyf; 3235 int ret; 3236 struct info_10gbt_phy_fw *phy_info; 3237 3238 /* Use the device ID to determine which PHY file to flash. 3239 */ 3240 phy_info = find_phy_info(adap->pdev->device); 3241 if (!phy_info) { 3242 dev_warn(adap->pdev_dev, 3243 "No PHY Firmware file found for this PHY\n"); 3244 return -EOPNOTSUPP; 3245 } 3246 3247 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3248 * use that. The adapter firmware provides us with a memory buffer 3249 * where we can load a PHY firmware file from the host if we want to 3250 * override the PHY firmware File in flash. 3251 */ 3252 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3253 adap->pdev_dev); 3254 if (ret < 0) { 3255 /* For adapters without FLASH attached to PHY for their 3256 * firmware, it's obviously a fatal error if we can't get the 3257 * firmware to the adapter. For adapters with PHY firmware 3258 * FLASH storage, it's worth a warning if we can't find the 3259 * PHY Firmware but we'll neuter the error ... 3260 */ 3261 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3262 "/lib/firmware/%s, error %d\n", 3263 phy_info->phy_fw_file, -ret); 3264 if (phy_info->phy_flash) { 3265 int cur_phy_fw_ver = 0; 3266 3267 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3268 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3269 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3270 ret = 0; 3271 } 3272 3273 return ret; 3274 } 3275 3276 /* Load PHY Firmware onto adapter. 3277 */ 3278 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3279 phy_info->phy_fw_version, 3280 (u8 *)phyf->data, phyf->size); 3281 if (ret < 0) 3282 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3283 -ret); 3284 else if (ret > 0) { 3285 int new_phy_fw_ver = 0; 3286 3287 if (phy_info->phy_fw_version) 3288 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3289 phyf->size); 3290 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3291 "Firmware /lib/firmware/%s, version %#x\n", 3292 phy_info->phy_fw_file, new_phy_fw_ver); 3293 } 3294 3295 release_firmware(phyf); 3296 3297 return ret; 3298 } 3299 3300 /* 3301 * Attempt to initialize the adapter via a Firmware Configuration File. 3302 */ 3303 static int adap_init0_config(struct adapter *adapter, int reset) 3304 { 3305 struct fw_caps_config_cmd caps_cmd; 3306 const struct firmware *cf; 3307 unsigned long mtype = 0, maddr = 0; 3308 u32 finiver, finicsum, cfcsum; 3309 int ret; 3310 int config_issued = 0; 3311 char *fw_config_file, fw_config_file_path[256]; 3312 char *config_name = NULL; 3313 3314 /* 3315 * Reset device if necessary. 3316 */ 3317 if (reset) { 3318 ret = t4_fw_reset(adapter, adapter->mbox, 3319 PIORSTMODE_F | PIORST_F); 3320 if (ret < 0) 3321 goto bye; 3322 } 3323 3324 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3325 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3326 * to be performed after any global adapter RESET above since some 3327 * PHYs only have local RAM copies of the PHY firmware. 3328 */ 3329 if (is_10gbt_device(adapter->pdev->device)) { 3330 ret = adap_init0_phy(adapter); 3331 if (ret < 0) 3332 goto bye; 3333 } 3334 /* 3335 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3336 * then use that. Otherwise, use the configuration file stored 3337 * in the adapter flash ... 3338 */ 3339 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3340 case CHELSIO_T4: 3341 fw_config_file = FW4_CFNAME; 3342 break; 3343 case CHELSIO_T5: 3344 fw_config_file = FW5_CFNAME; 3345 break; 3346 case CHELSIO_T6: 3347 fw_config_file = FW6_CFNAME; 3348 break; 3349 default: 3350 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3351 adapter->pdev->device); 3352 ret = -EINVAL; 3353 goto bye; 3354 } 3355 3356 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3357 if (ret < 0) { 3358 config_name = "On FLASH"; 3359 mtype = FW_MEMTYPE_CF_FLASH; 3360 maddr = t4_flash_cfg_addr(adapter); 3361 } else { 3362 u32 params[7], val[7]; 3363 3364 sprintf(fw_config_file_path, 3365 "/lib/firmware/%s", fw_config_file); 3366 config_name = fw_config_file_path; 3367 3368 if (cf->size >= FLASH_CFG_MAX_SIZE) 3369 ret = -ENOMEM; 3370 else { 3371 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3372 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3373 ret = t4_query_params(adapter, adapter->mbox, 3374 adapter->pf, 0, 1, params, val); 3375 if (ret == 0) { 3376 /* 3377 * For t4_memory_rw() below addresses and 3378 * sizes have to be in terms of multiples of 4 3379 * bytes. So, if the Configuration File isn't 3380 * a multiple of 4 bytes in length we'll have 3381 * to write that out separately since we can't 3382 * guarantee that the bytes following the 3383 * residual byte in the buffer returned by 3384 * request_firmware() are zeroed out ... 3385 */ 3386 size_t resid = cf->size & 0x3; 3387 size_t size = cf->size & ~0x3; 3388 __be32 *data = (__be32 *)cf->data; 3389 3390 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3391 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3392 3393 spin_lock(&adapter->win0_lock); 3394 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3395 size, data, T4_MEMORY_WRITE); 3396 if (ret == 0 && resid != 0) { 3397 union { 3398 __be32 word; 3399 char buf[4]; 3400 } last; 3401 int i; 3402 3403 last.word = data[size >> 2]; 3404 for (i = resid; i < 4; i++) 3405 last.buf[i] = 0; 3406 ret = t4_memory_rw(adapter, 0, mtype, 3407 maddr + size, 3408 4, &last.word, 3409 T4_MEMORY_WRITE); 3410 } 3411 spin_unlock(&adapter->win0_lock); 3412 } 3413 } 3414 3415 release_firmware(cf); 3416 if (ret) 3417 goto bye; 3418 } 3419 3420 /* 3421 * Issue a Capability Configuration command to the firmware to get it 3422 * to parse the Configuration File. We don't use t4_fw_config_file() 3423 * because we want the ability to modify various features after we've 3424 * processed the configuration file ... 3425 */ 3426 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3427 caps_cmd.op_to_write = 3428 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3429 FW_CMD_REQUEST_F | 3430 FW_CMD_READ_F); 3431 caps_cmd.cfvalid_to_len16 = 3432 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3433 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3434 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3435 FW_LEN16(caps_cmd)); 3436 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3437 &caps_cmd); 3438 3439 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3440 * Configuration File in FLASH), our last gasp effort is to use the 3441 * Firmware Configuration File which is embedded in the firmware. A 3442 * very few early versions of the firmware didn't have one embedded 3443 * but we can ignore those. 3444 */ 3445 if (ret == -ENOENT) { 3446 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3447 caps_cmd.op_to_write = 3448 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3449 FW_CMD_REQUEST_F | 3450 FW_CMD_READ_F); 3451 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3452 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3453 sizeof(caps_cmd), &caps_cmd); 3454 config_name = "Firmware Default"; 3455 } 3456 3457 config_issued = 1; 3458 if (ret < 0) 3459 goto bye; 3460 3461 finiver = ntohl(caps_cmd.finiver); 3462 finicsum = ntohl(caps_cmd.finicsum); 3463 cfcsum = ntohl(caps_cmd.cfcsum); 3464 if (finicsum != cfcsum) 3465 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3466 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3467 finicsum, cfcsum); 3468 3469 /* 3470 * And now tell the firmware to use the configuration we just loaded. 3471 */ 3472 caps_cmd.op_to_write = 3473 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3474 FW_CMD_REQUEST_F | 3475 FW_CMD_WRITE_F); 3476 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3477 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3478 NULL); 3479 if (ret < 0) 3480 goto bye; 3481 3482 /* 3483 * Tweak configuration based on system architecture, module 3484 * parameters, etc. 3485 */ 3486 ret = adap_init0_tweaks(adapter); 3487 if (ret < 0) 3488 goto bye; 3489 3490 /* 3491 * And finally tell the firmware to initialize itself using the 3492 * parameters from the Configuration File. 3493 */ 3494 ret = t4_fw_initialize(adapter, adapter->mbox); 3495 if (ret < 0) 3496 goto bye; 3497 3498 /* Emit Firmware Configuration File information and return 3499 * successfully. 3500 */ 3501 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 3502 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 3503 config_name, finiver, cfcsum); 3504 return 0; 3505 3506 /* 3507 * Something bad happened. Return the error ... (If the "error" 3508 * is that there's no Configuration File on the adapter we don't 3509 * want to issue a warning since this is fairly common.) 3510 */ 3511 bye: 3512 if (config_issued && ret != -ENOENT) 3513 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 3514 config_name, -ret); 3515 return ret; 3516 } 3517 3518 static struct fw_info fw_info_array[] = { 3519 { 3520 .chip = CHELSIO_T4, 3521 .fs_name = FW4_CFNAME, 3522 .fw_mod_name = FW4_FNAME, 3523 .fw_hdr = { 3524 .chip = FW_HDR_CHIP_T4, 3525 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 3526 .intfver_nic = FW_INTFVER(T4, NIC), 3527 .intfver_vnic = FW_INTFVER(T4, VNIC), 3528 .intfver_ri = FW_INTFVER(T4, RI), 3529 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3530 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3531 }, 3532 }, { 3533 .chip = CHELSIO_T5, 3534 .fs_name = FW5_CFNAME, 3535 .fw_mod_name = FW5_FNAME, 3536 .fw_hdr = { 3537 .chip = FW_HDR_CHIP_T5, 3538 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 3539 .intfver_nic = FW_INTFVER(T5, NIC), 3540 .intfver_vnic = FW_INTFVER(T5, VNIC), 3541 .intfver_ri = FW_INTFVER(T5, RI), 3542 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3543 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3544 }, 3545 }, { 3546 .chip = CHELSIO_T6, 3547 .fs_name = FW6_CFNAME, 3548 .fw_mod_name = FW6_FNAME, 3549 .fw_hdr = { 3550 .chip = FW_HDR_CHIP_T6, 3551 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 3552 .intfver_nic = FW_INTFVER(T6, NIC), 3553 .intfver_vnic = FW_INTFVER(T6, VNIC), 3554 .intfver_ofld = FW_INTFVER(T6, OFLD), 3555 .intfver_ri = FW_INTFVER(T6, RI), 3556 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 3557 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 3558 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 3559 .intfver_fcoe = FW_INTFVER(T6, FCOE), 3560 }, 3561 } 3562 3563 }; 3564 3565 static struct fw_info *find_fw_info(int chip) 3566 { 3567 int i; 3568 3569 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 3570 if (fw_info_array[i].chip == chip) 3571 return &fw_info_array[i]; 3572 } 3573 return NULL; 3574 } 3575 3576 /* 3577 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3578 */ 3579 static int adap_init0(struct adapter *adap) 3580 { 3581 int ret; 3582 u32 v, port_vec; 3583 enum dev_state state; 3584 u32 params[7], val[7]; 3585 struct fw_caps_config_cmd caps_cmd; 3586 int reset = 1; 3587 3588 /* Grab Firmware Device Log parameters as early as possible so we have 3589 * access to it for debugging, etc. 3590 */ 3591 ret = t4_init_devlog_params(adap); 3592 if (ret < 0) 3593 return ret; 3594 3595 /* Contact FW, advertising Master capability */ 3596 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 3597 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 3598 if (ret < 0) { 3599 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 3600 ret); 3601 return ret; 3602 } 3603 if (ret == adap->mbox) 3604 adap->flags |= MASTER_PF; 3605 3606 /* 3607 * If we're the Master PF Driver and the device is uninitialized, 3608 * then let's consider upgrading the firmware ... (We always want 3609 * to check the firmware version number in order to A. get it for 3610 * later reporting and B. to warn if the currently loaded firmware 3611 * is excessively mismatched relative to the driver.) 3612 */ 3613 t4_get_fw_version(adap, &adap->params.fw_vers); 3614 t4_get_bs_version(adap, &adap->params.bs_vers); 3615 t4_get_tp_version(adap, &adap->params.tp_vers); 3616 t4_get_exprom_version(adap, &adap->params.er_vers); 3617 3618 ret = t4_check_fw_version(adap); 3619 /* If firmware is too old (not supported by driver) force an update. */ 3620 if (ret) 3621 state = DEV_STATE_UNINIT; 3622 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 3623 struct fw_info *fw_info; 3624 struct fw_hdr *card_fw; 3625 const struct firmware *fw; 3626 const u8 *fw_data = NULL; 3627 unsigned int fw_size = 0; 3628 3629 /* This is the firmware whose headers the driver was compiled 3630 * against 3631 */ 3632 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 3633 if (fw_info == NULL) { 3634 dev_err(adap->pdev_dev, 3635 "unable to get firmware info for chip %d.\n", 3636 CHELSIO_CHIP_VERSION(adap->params.chip)); 3637 return -EINVAL; 3638 } 3639 3640 /* allocate memory to read the header of the firmware on the 3641 * card 3642 */ 3643 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 3644 3645 /* Get FW from from /lib/firmware/ */ 3646 ret = request_firmware(&fw, fw_info->fw_mod_name, 3647 adap->pdev_dev); 3648 if (ret < 0) { 3649 dev_err(adap->pdev_dev, 3650 "unable to load firmware image %s, error %d\n", 3651 fw_info->fw_mod_name, ret); 3652 } else { 3653 fw_data = fw->data; 3654 fw_size = fw->size; 3655 } 3656 3657 /* upgrade FW logic */ 3658 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 3659 state, &reset); 3660 3661 /* Cleaning up */ 3662 release_firmware(fw); 3663 kvfree(card_fw); 3664 3665 if (ret < 0) 3666 goto bye; 3667 } 3668 3669 /* 3670 * Grab VPD parameters. This should be done after we establish a 3671 * connection to the firmware since some of the VPD parameters 3672 * (notably the Core Clock frequency) are retrieved via requests to 3673 * the firmware. On the other hand, we need these fairly early on 3674 * so we do this right after getting ahold of the firmware. 3675 */ 3676 ret = t4_get_vpd_params(adap, &adap->params.vpd); 3677 if (ret < 0) 3678 goto bye; 3679 3680 /* 3681 * Find out what ports are available to us. Note that we need to do 3682 * this before calling adap_init0_no_config() since it needs nports 3683 * and portvec ... 3684 */ 3685 v = 3686 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3687 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 3688 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 3689 if (ret < 0) 3690 goto bye; 3691 3692 adap->params.nports = hweight32(port_vec); 3693 adap->params.portvec = port_vec; 3694 3695 /* If the firmware is initialized already, emit a simply note to that 3696 * effect. Otherwise, it's time to try initializing the adapter. 3697 */ 3698 if (state == DEV_STATE_INIT) { 3699 dev_info(adap->pdev_dev, "Coming up as %s: "\ 3700 "Adapter already initialized\n", 3701 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 3702 } else { 3703 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 3704 "Initializing adapter\n"); 3705 3706 /* Find out whether we're dealing with a version of the 3707 * firmware which has configuration file support. 3708 */ 3709 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3710 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3711 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3712 params, val); 3713 3714 /* If the firmware doesn't support Configuration Files, 3715 * return an error. 3716 */ 3717 if (ret < 0) { 3718 dev_err(adap->pdev_dev, "firmware doesn't support " 3719 "Firmware Configuration Files\n"); 3720 goto bye; 3721 } 3722 3723 /* The firmware provides us with a memory buffer where we can 3724 * load a Configuration File from the host if we want to 3725 * override the Configuration File in flash. 3726 */ 3727 ret = adap_init0_config(adap, reset); 3728 if (ret == -ENOENT) { 3729 dev_err(adap->pdev_dev, "no Configuration File " 3730 "present on adapter.\n"); 3731 goto bye; 3732 } 3733 if (ret < 0) { 3734 dev_err(adap->pdev_dev, "could not initialize " 3735 "adapter, error %d\n", -ret); 3736 goto bye; 3737 } 3738 } 3739 3740 /* Give the SGE code a chance to pull in anything that it needs ... 3741 * Note that this must be called after we retrieve our VPD parameters 3742 * in order to know how to convert core ticks to seconds, etc. 3743 */ 3744 ret = t4_sge_init(adap); 3745 if (ret < 0) 3746 goto bye; 3747 3748 if (is_bypass_device(adap->pdev->device)) 3749 adap->params.bypass = 1; 3750 3751 /* 3752 * Grab some of our basic fundamental operating parameters. 3753 */ 3754 #define FW_PARAM_DEV(param) \ 3755 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 3756 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 3757 3758 #define FW_PARAM_PFVF(param) \ 3759 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 3760 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 3761 FW_PARAMS_PARAM_Y_V(0) | \ 3762 FW_PARAMS_PARAM_Z_V(0) 3763 3764 params[0] = FW_PARAM_PFVF(EQ_START); 3765 params[1] = FW_PARAM_PFVF(L2T_START); 3766 params[2] = FW_PARAM_PFVF(L2T_END); 3767 params[3] = FW_PARAM_PFVF(FILTER_START); 3768 params[4] = FW_PARAM_PFVF(FILTER_END); 3769 params[5] = FW_PARAM_PFVF(IQFLINT_START); 3770 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 3771 if (ret < 0) 3772 goto bye; 3773 adap->sge.egr_start = val[0]; 3774 adap->l2t_start = val[1]; 3775 adap->l2t_end = val[2]; 3776 adap->tids.ftid_base = val[3]; 3777 adap->tids.nftids = val[4] - val[3] + 1; 3778 adap->sge.ingr_start = val[5]; 3779 3780 /* qids (ingress/egress) returned from firmware can be anywhere 3781 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 3782 * Hence driver needs to allocate memory for this range to 3783 * store the queue info. Get the highest IQFLINT/EQ index returned 3784 * in FW_EQ_*_CMD.alloc command. 3785 */ 3786 params[0] = FW_PARAM_PFVF(EQ_END); 3787 params[1] = FW_PARAM_PFVF(IQFLINT_END); 3788 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3789 if (ret < 0) 3790 goto bye; 3791 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 3792 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 3793 3794 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 3795 sizeof(*adap->sge.egr_map), GFP_KERNEL); 3796 if (!adap->sge.egr_map) { 3797 ret = -ENOMEM; 3798 goto bye; 3799 } 3800 3801 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 3802 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 3803 if (!adap->sge.ingr_map) { 3804 ret = -ENOMEM; 3805 goto bye; 3806 } 3807 3808 /* Allocate the memory for the vaious egress queue bitmaps 3809 * ie starving_fl, txq_maperr and blocked_fl. 3810 */ 3811 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3812 sizeof(long), GFP_KERNEL); 3813 if (!adap->sge.starving_fl) { 3814 ret = -ENOMEM; 3815 goto bye; 3816 } 3817 3818 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3819 sizeof(long), GFP_KERNEL); 3820 if (!adap->sge.txq_maperr) { 3821 ret = -ENOMEM; 3822 goto bye; 3823 } 3824 3825 #ifdef CONFIG_DEBUG_FS 3826 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3827 sizeof(long), GFP_KERNEL); 3828 if (!adap->sge.blocked_fl) { 3829 ret = -ENOMEM; 3830 goto bye; 3831 } 3832 #endif 3833 3834 params[0] = FW_PARAM_PFVF(CLIP_START); 3835 params[1] = FW_PARAM_PFVF(CLIP_END); 3836 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3837 if (ret < 0) 3838 goto bye; 3839 adap->clipt_start = val[0]; 3840 adap->clipt_end = val[1]; 3841 3842 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 3843 * Classes supported by the hardware/firmware so we hard code it here 3844 * for now. 3845 */ 3846 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 3847 3848 /* query params related to active filter region */ 3849 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 3850 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 3851 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3852 /* If Active filter size is set we enable establishing 3853 * offload connection through firmware work request 3854 */ 3855 if ((val[0] != val[1]) && (ret >= 0)) { 3856 adap->flags |= FW_OFLD_CONN; 3857 adap->tids.aftid_base = val[0]; 3858 adap->tids.aftid_end = val[1]; 3859 } 3860 3861 /* If we're running on newer firmware, let it know that we're 3862 * prepared to deal with encapsulated CPL messages. Older 3863 * firmware won't understand this and we'll just get 3864 * unencapsulated messages ... 3865 */ 3866 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 3867 val[0] = 1; 3868 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 3869 3870 /* 3871 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 3872 * capability. Earlier versions of the firmware didn't have the 3873 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 3874 * permission to use ULPTX MEMWRITE DSGL. 3875 */ 3876 if (is_t4(adap->params.chip)) { 3877 adap->params.ulptx_memwrite_dsgl = false; 3878 } else { 3879 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 3880 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3881 1, params, val); 3882 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 3883 } 3884 3885 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 3886 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 3887 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3888 1, params, val); 3889 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 3890 3891 /* 3892 * Get device capabilities so we can determine what resources we need 3893 * to manage. 3894 */ 3895 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3896 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3897 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3898 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3899 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 3900 &caps_cmd); 3901 if (ret < 0) 3902 goto bye; 3903 3904 if (caps_cmd.ofldcaps) { 3905 /* query offload-related parameters */ 3906 params[0] = FW_PARAM_DEV(NTID); 3907 params[1] = FW_PARAM_PFVF(SERVER_START); 3908 params[2] = FW_PARAM_PFVF(SERVER_END); 3909 params[3] = FW_PARAM_PFVF(TDDP_START); 3910 params[4] = FW_PARAM_PFVF(TDDP_END); 3911 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3912 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3913 params, val); 3914 if (ret < 0) 3915 goto bye; 3916 adap->tids.ntids = val[0]; 3917 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 3918 adap->tids.stid_base = val[1]; 3919 adap->tids.nstids = val[2] - val[1] + 1; 3920 /* 3921 * Setup server filter region. Divide the available filter 3922 * region into two parts. Regular filters get 1/3rd and server 3923 * filters get 2/3rd part. This is only enabled if workarond 3924 * path is enabled. 3925 * 1. For regular filters. 3926 * 2. Server filter: This are special filters which are used 3927 * to redirect SYN packets to offload queue. 3928 */ 3929 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 3930 adap->tids.sftid_base = adap->tids.ftid_base + 3931 DIV_ROUND_UP(adap->tids.nftids, 3); 3932 adap->tids.nsftids = adap->tids.nftids - 3933 DIV_ROUND_UP(adap->tids.nftids, 3); 3934 adap->tids.nftids = adap->tids.sftid_base - 3935 adap->tids.ftid_base; 3936 } 3937 adap->vres.ddp.start = val[3]; 3938 adap->vres.ddp.size = val[4] - val[3] + 1; 3939 adap->params.ofldq_wr_cred = val[5]; 3940 3941 adap->params.offload = 1; 3942 adap->num_ofld_uld += 1; 3943 } 3944 if (caps_cmd.rdmacaps) { 3945 params[0] = FW_PARAM_PFVF(STAG_START); 3946 params[1] = FW_PARAM_PFVF(STAG_END); 3947 params[2] = FW_PARAM_PFVF(RQ_START); 3948 params[3] = FW_PARAM_PFVF(RQ_END); 3949 params[4] = FW_PARAM_PFVF(PBL_START); 3950 params[5] = FW_PARAM_PFVF(PBL_END); 3951 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3952 params, val); 3953 if (ret < 0) 3954 goto bye; 3955 adap->vres.stag.start = val[0]; 3956 adap->vres.stag.size = val[1] - val[0] + 1; 3957 adap->vres.rq.start = val[2]; 3958 adap->vres.rq.size = val[3] - val[2] + 1; 3959 adap->vres.pbl.start = val[4]; 3960 adap->vres.pbl.size = val[5] - val[4] + 1; 3961 3962 params[0] = FW_PARAM_PFVF(SQRQ_START); 3963 params[1] = FW_PARAM_PFVF(SQRQ_END); 3964 params[2] = FW_PARAM_PFVF(CQ_START); 3965 params[3] = FW_PARAM_PFVF(CQ_END); 3966 params[4] = FW_PARAM_PFVF(OCQ_START); 3967 params[5] = FW_PARAM_PFVF(OCQ_END); 3968 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 3969 val); 3970 if (ret < 0) 3971 goto bye; 3972 adap->vres.qp.start = val[0]; 3973 adap->vres.qp.size = val[1] - val[0] + 1; 3974 adap->vres.cq.start = val[2]; 3975 adap->vres.cq.size = val[3] - val[2] + 1; 3976 adap->vres.ocq.start = val[4]; 3977 adap->vres.ocq.size = val[5] - val[4] + 1; 3978 3979 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 3980 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 3981 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 3982 val); 3983 if (ret < 0) { 3984 adap->params.max_ordird_qp = 8; 3985 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 3986 ret = 0; 3987 } else { 3988 adap->params.max_ordird_qp = val[0]; 3989 adap->params.max_ird_adapter = val[1]; 3990 } 3991 dev_info(adap->pdev_dev, 3992 "max_ordird_qp %d max_ird_adapter %d\n", 3993 adap->params.max_ordird_qp, 3994 adap->params.max_ird_adapter); 3995 adap->num_ofld_uld += 2; 3996 } 3997 if (caps_cmd.iscsicaps) { 3998 params[0] = FW_PARAM_PFVF(ISCSI_START); 3999 params[1] = FW_PARAM_PFVF(ISCSI_END); 4000 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4001 params, val); 4002 if (ret < 0) 4003 goto bye; 4004 adap->vres.iscsi.start = val[0]; 4005 adap->vres.iscsi.size = val[1] - val[0] + 1; 4006 /* LIO target and cxgb4i initiaitor */ 4007 adap->num_ofld_uld += 2; 4008 } 4009 if (caps_cmd.cryptocaps) { 4010 /* Should query params here...TODO */ 4011 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 4012 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4013 params, val); 4014 if (ret < 0) { 4015 if (ret != -EINVAL) 4016 goto bye; 4017 } else { 4018 adap->vres.ncrypto_fc = val[0]; 4019 } 4020 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE; 4021 adap->num_uld += 1; 4022 } 4023 #undef FW_PARAM_PFVF 4024 #undef FW_PARAM_DEV 4025 4026 /* The MTU/MSS Table is initialized by now, so load their values. If 4027 * we're initializing the adapter, then we'll make any modifications 4028 * we want to the MTU/MSS Table and also initialize the congestion 4029 * parameters. 4030 */ 4031 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4032 if (state != DEV_STATE_INIT) { 4033 int i; 4034 4035 /* The default MTU Table contains values 1492 and 1500. 4036 * However, for TCP, it's better to have two values which are 4037 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4038 * This allows us to have a TCP Data Payload which is a 4039 * multiple of 8 regardless of what combination of TCP Options 4040 * are in use (always a multiple of 4 bytes) which is 4041 * important for performance reasons. For instance, if no 4042 * options are in use, then we have a 20-byte IP header and a 4043 * 20-byte TCP header. In this case, a 1500-byte MSS would 4044 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4045 * which is not a multiple of 8. So using an MSS of 1488 in 4046 * this case results in a TCP Data Payload of 1448 bytes which 4047 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4048 * Stamps have been negotiated, then an MTU of 1500 bytes 4049 * results in a TCP Data Payload of 1448 bytes which, as 4050 * above, is a multiple of 8 bytes ... 4051 */ 4052 for (i = 0; i < NMTUS; i++) 4053 if (adap->params.mtus[i] == 1492) { 4054 adap->params.mtus[i] = 1488; 4055 break; 4056 } 4057 4058 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4059 adap->params.b_wnd); 4060 } 4061 t4_init_sge_params(adap); 4062 adap->flags |= FW_OK; 4063 t4_init_tp_params(adap); 4064 return 0; 4065 4066 /* 4067 * Something bad happened. If a command timed out or failed with EIO 4068 * FW does not operate within its spec or something catastrophic 4069 * happened to HW/FW, stop issuing commands. 4070 */ 4071 bye: 4072 kfree(adap->sge.egr_map); 4073 kfree(adap->sge.ingr_map); 4074 kfree(adap->sge.starving_fl); 4075 kfree(adap->sge.txq_maperr); 4076 #ifdef CONFIG_DEBUG_FS 4077 kfree(adap->sge.blocked_fl); 4078 #endif 4079 if (ret != -ETIMEDOUT && ret != -EIO) 4080 t4_fw_bye(adap, adap->mbox); 4081 return ret; 4082 } 4083 4084 /* EEH callbacks */ 4085 4086 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4087 pci_channel_state_t state) 4088 { 4089 int i; 4090 struct adapter *adap = pci_get_drvdata(pdev); 4091 4092 if (!adap) 4093 goto out; 4094 4095 rtnl_lock(); 4096 adap->flags &= ~FW_OK; 4097 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4098 spin_lock(&adap->stats_lock); 4099 for_each_port(adap, i) { 4100 struct net_device *dev = adap->port[i]; 4101 if (dev) { 4102 netif_device_detach(dev); 4103 netif_carrier_off(dev); 4104 } 4105 } 4106 spin_unlock(&adap->stats_lock); 4107 disable_interrupts(adap); 4108 if (adap->flags & FULL_INIT_DONE) 4109 cxgb_down(adap); 4110 rtnl_unlock(); 4111 if ((adap->flags & DEV_ENABLED)) { 4112 pci_disable_device(pdev); 4113 adap->flags &= ~DEV_ENABLED; 4114 } 4115 out: return state == pci_channel_io_perm_failure ? 4116 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4117 } 4118 4119 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4120 { 4121 int i, ret; 4122 struct fw_caps_config_cmd c; 4123 struct adapter *adap = pci_get_drvdata(pdev); 4124 4125 if (!adap) { 4126 pci_restore_state(pdev); 4127 pci_save_state(pdev); 4128 return PCI_ERS_RESULT_RECOVERED; 4129 } 4130 4131 if (!(adap->flags & DEV_ENABLED)) { 4132 if (pci_enable_device(pdev)) { 4133 dev_err(&pdev->dev, "Cannot reenable PCI " 4134 "device after reset\n"); 4135 return PCI_ERS_RESULT_DISCONNECT; 4136 } 4137 adap->flags |= DEV_ENABLED; 4138 } 4139 4140 pci_set_master(pdev); 4141 pci_restore_state(pdev); 4142 pci_save_state(pdev); 4143 pci_cleanup_aer_uncorrect_error_status(pdev); 4144 4145 if (t4_wait_dev_ready(adap->regs) < 0) 4146 return PCI_ERS_RESULT_DISCONNECT; 4147 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4148 return PCI_ERS_RESULT_DISCONNECT; 4149 adap->flags |= FW_OK; 4150 if (adap_init1(adap, &c)) 4151 return PCI_ERS_RESULT_DISCONNECT; 4152 4153 for_each_port(adap, i) { 4154 struct port_info *p = adap2pinfo(adap, i); 4155 4156 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 4157 NULL, NULL); 4158 if (ret < 0) 4159 return PCI_ERS_RESULT_DISCONNECT; 4160 p->viid = ret; 4161 p->xact_addr_filt = -1; 4162 } 4163 4164 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4165 adap->params.b_wnd); 4166 setup_memwin(adap); 4167 if (cxgb_up(adap)) 4168 return PCI_ERS_RESULT_DISCONNECT; 4169 return PCI_ERS_RESULT_RECOVERED; 4170 } 4171 4172 static void eeh_resume(struct pci_dev *pdev) 4173 { 4174 int i; 4175 struct adapter *adap = pci_get_drvdata(pdev); 4176 4177 if (!adap) 4178 return; 4179 4180 rtnl_lock(); 4181 for_each_port(adap, i) { 4182 struct net_device *dev = adap->port[i]; 4183 if (dev) { 4184 if (netif_running(dev)) { 4185 link_start(dev); 4186 cxgb_set_rxmode(dev); 4187 } 4188 netif_device_attach(dev); 4189 } 4190 } 4191 rtnl_unlock(); 4192 } 4193 4194 static const struct pci_error_handlers cxgb4_eeh = { 4195 .error_detected = eeh_err_detected, 4196 .slot_reset = eeh_slot_reset, 4197 .resume = eeh_resume, 4198 }; 4199 4200 /* Return true if the Link Configuration supports "High Speeds" (those greater 4201 * than 1Gb/s). 4202 */ 4203 static inline bool is_x_10g_port(const struct link_config *lc) 4204 { 4205 unsigned int speeds, high_speeds; 4206 4207 speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported)); 4208 high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G); 4209 4210 return high_speeds != 0; 4211 } 4212 4213 /* 4214 * Perform default configuration of DMA queues depending on the number and type 4215 * of ports we found and the number of available CPUs. Most settings can be 4216 * modified by the admin prior to actual use. 4217 */ 4218 static void cfg_queues(struct adapter *adap) 4219 { 4220 struct sge *s = &adap->sge; 4221 int i = 0, n10g = 0, qidx = 0; 4222 #ifndef CONFIG_CHELSIO_T4_DCB 4223 int q10g = 0; 4224 #endif 4225 4226 /* Reduce memory usage in kdump environment, disable all offload. 4227 */ 4228 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 4229 adap->params.offload = 0; 4230 adap->params.crypto = 0; 4231 } 4232 4233 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4234 #ifdef CONFIG_CHELSIO_T4_DCB 4235 /* For Data Center Bridging support we need to be able to support up 4236 * to 8 Traffic Priorities; each of which will be assigned to its 4237 * own TX Queue in order to prevent Head-Of-Line Blocking. 4238 */ 4239 if (adap->params.nports * 8 > MAX_ETH_QSETS) { 4240 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n", 4241 MAX_ETH_QSETS, adap->params.nports * 8); 4242 BUG_ON(1); 4243 } 4244 4245 for_each_port(adap, i) { 4246 struct port_info *pi = adap2pinfo(adap, i); 4247 4248 pi->first_qset = qidx; 4249 pi->nqsets = is_kdump_kernel() ? 1 : 8; 4250 qidx += pi->nqsets; 4251 } 4252 #else /* !CONFIG_CHELSIO_T4_DCB */ 4253 /* 4254 * We default to 1 queue per non-10G port and up to # of cores queues 4255 * per 10G port. 4256 */ 4257 if (n10g) 4258 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 4259 if (q10g > netif_get_num_default_rss_queues()) 4260 q10g = netif_get_num_default_rss_queues(); 4261 4262 if (is_kdump_kernel()) 4263 q10g = 1; 4264 4265 for_each_port(adap, i) { 4266 struct port_info *pi = adap2pinfo(adap, i); 4267 4268 pi->first_qset = qidx; 4269 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4270 qidx += pi->nqsets; 4271 } 4272 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4273 4274 s->ethqsets = qidx; 4275 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4276 4277 if (is_uld(adap)) { 4278 /* 4279 * For offload we use 1 queue/channel if all ports are up to 1G, 4280 * otherwise we divide all available queues amongst the channels 4281 * capped by the number of available cores. 4282 */ 4283 if (n10g) { 4284 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 4285 s->ofldqsets = roundup(i, adap->params.nports); 4286 } else { 4287 s->ofldqsets = adap->params.nports; 4288 } 4289 } 4290 4291 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4292 struct sge_eth_rxq *r = &s->ethrxq[i]; 4293 4294 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4295 r->fl.size = 72; 4296 } 4297 4298 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4299 s->ethtxq[i].q.size = 1024; 4300 4301 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4302 s->ctrlq[i].q.size = 512; 4303 4304 if (!is_t4(adap->params.chip)) 4305 s->ptptxq.q.size = 8; 4306 4307 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4308 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 4309 } 4310 4311 /* 4312 * Reduce the number of Ethernet queues across all ports to at most n. 4313 * n provides at least one queue per port. 4314 */ 4315 static void reduce_ethqs(struct adapter *adap, int n) 4316 { 4317 int i; 4318 struct port_info *pi; 4319 4320 while (n < adap->sge.ethqsets) 4321 for_each_port(adap, i) { 4322 pi = adap2pinfo(adap, i); 4323 if (pi->nqsets > 1) { 4324 pi->nqsets--; 4325 adap->sge.ethqsets--; 4326 if (adap->sge.ethqsets <= n) 4327 break; 4328 } 4329 } 4330 4331 n = 0; 4332 for_each_port(adap, i) { 4333 pi = adap2pinfo(adap, i); 4334 pi->first_qset = n; 4335 n += pi->nqsets; 4336 } 4337 } 4338 4339 static int get_msix_info(struct adapter *adap) 4340 { 4341 struct uld_msix_info *msix_info; 4342 unsigned int max_ingq = 0; 4343 4344 if (is_offload(adap)) 4345 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 4346 if (is_pci_uld(adap)) 4347 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 4348 4349 if (!max_ingq) 4350 goto out; 4351 4352 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 4353 if (!msix_info) 4354 return -ENOMEM; 4355 4356 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 4357 sizeof(long), GFP_KERNEL); 4358 if (!adap->msix_bmap_ulds.msix_bmap) { 4359 kfree(msix_info); 4360 return -ENOMEM; 4361 } 4362 spin_lock_init(&adap->msix_bmap_ulds.lock); 4363 adap->msix_info_ulds = msix_info; 4364 out: 4365 return 0; 4366 } 4367 4368 static void free_msix_info(struct adapter *adap) 4369 { 4370 if (!(adap->num_uld && adap->num_ofld_uld)) 4371 return; 4372 4373 kfree(adap->msix_info_ulds); 4374 kfree(adap->msix_bmap_ulds.msix_bmap); 4375 } 4376 4377 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 4378 #define EXTRA_VECS 2 4379 4380 static int enable_msix(struct adapter *adap) 4381 { 4382 int ofld_need = 0, uld_need = 0; 4383 int i, j, want, need, allocated; 4384 struct sge *s = &adap->sge; 4385 unsigned int nchan = adap->params.nports; 4386 struct msix_entry *entries; 4387 int max_ingq = MAX_INGQ; 4388 4389 if (is_pci_uld(adap)) 4390 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 4391 if (is_offload(adap)) 4392 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 4393 entries = kmalloc(sizeof(*entries) * (max_ingq + 1), 4394 GFP_KERNEL); 4395 if (!entries) 4396 return -ENOMEM; 4397 4398 /* map for msix */ 4399 if (get_msix_info(adap)) { 4400 adap->params.offload = 0; 4401 adap->params.crypto = 0; 4402 } 4403 4404 for (i = 0; i < max_ingq + 1; ++i) 4405 entries[i].entry = i; 4406 4407 want = s->max_ethqsets + EXTRA_VECS; 4408 if (is_offload(adap)) { 4409 want += adap->num_ofld_uld * s->ofldqsets; 4410 ofld_need = adap->num_ofld_uld * nchan; 4411 } 4412 if (is_pci_uld(adap)) { 4413 want += adap->num_uld * s->ofldqsets; 4414 uld_need = adap->num_uld * nchan; 4415 } 4416 #ifdef CONFIG_CHELSIO_T4_DCB 4417 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 4418 * each port. 4419 */ 4420 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4421 #else 4422 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4423 #endif 4424 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 4425 if (allocated < 0) { 4426 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 4427 " not using MSI-X\n"); 4428 kfree(entries); 4429 return allocated; 4430 } 4431 4432 /* Distribute available vectors to the various queue groups. 4433 * Every group gets its minimum requirement and NIC gets top 4434 * priority for leftovers. 4435 */ 4436 i = allocated - EXTRA_VECS - ofld_need - uld_need; 4437 if (i < s->max_ethqsets) { 4438 s->max_ethqsets = i; 4439 if (i < s->ethqsets) 4440 reduce_ethqs(adap, i); 4441 } 4442 if (is_uld(adap)) { 4443 if (allocated < want) 4444 s->nqs_per_uld = nchan; 4445 else 4446 s->nqs_per_uld = s->ofldqsets; 4447 } 4448 4449 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 4450 adap->msix_info[i].vec = entries[i].vector; 4451 if (is_uld(adap)) { 4452 for (j = 0 ; i < allocated; ++i, j++) { 4453 adap->msix_info_ulds[j].vec = entries[i].vector; 4454 adap->msix_info_ulds[j].idx = i; 4455 } 4456 adap->msix_bmap_ulds.mapsize = j; 4457 } 4458 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 4459 "nic %d per uld %d\n", 4460 allocated, s->max_ethqsets, s->nqs_per_uld); 4461 4462 kfree(entries); 4463 return 0; 4464 } 4465 4466 #undef EXTRA_VECS 4467 4468 static int init_rss(struct adapter *adap) 4469 { 4470 unsigned int i; 4471 int err; 4472 4473 err = t4_init_rss_mode(adap, adap->mbox); 4474 if (err) 4475 return err; 4476 4477 for_each_port(adap, i) { 4478 struct port_info *pi = adap2pinfo(adap, i); 4479 4480 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 4481 if (!pi->rss) 4482 return -ENOMEM; 4483 } 4484 return 0; 4485 } 4486 4487 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap, 4488 enum pci_bus_speed *speed, 4489 enum pcie_link_width *width) 4490 { 4491 u32 lnkcap1, lnkcap2; 4492 int err1, err2; 4493 4494 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */ 4495 4496 *speed = PCI_SPEED_UNKNOWN; 4497 *width = PCIE_LNK_WIDTH_UNKNOWN; 4498 4499 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP, 4500 &lnkcap1); 4501 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2, 4502 &lnkcap2); 4503 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */ 4504 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 4505 *speed = PCIE_SPEED_8_0GT; 4506 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 4507 *speed = PCIE_SPEED_5_0GT; 4508 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 4509 *speed = PCIE_SPEED_2_5GT; 4510 } 4511 if (!err1) { 4512 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT; 4513 if (!lnkcap2) { /* pre-r3.0 */ 4514 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB) 4515 *speed = PCIE_SPEED_5_0GT; 4516 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB) 4517 *speed = PCIE_SPEED_2_5GT; 4518 } 4519 } 4520 4521 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 4522 return err1 ? err1 : err2 ? err2 : -EINVAL; 4523 return 0; 4524 } 4525 4526 static void cxgb4_check_pcie_caps(struct adapter *adap) 4527 { 4528 enum pcie_link_width width, width_cap; 4529 enum pci_bus_speed speed, speed_cap; 4530 4531 #define PCIE_SPEED_STR(speed) \ 4532 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \ 4533 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \ 4534 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \ 4535 "Unknown") 4536 4537 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) { 4538 dev_warn(adap->pdev_dev, 4539 "Unable to determine PCIe device BW capabilities\n"); 4540 return; 4541 } 4542 4543 if (pcie_get_minimum_link(adap->pdev, &speed, &width) || 4544 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) { 4545 dev_warn(adap->pdev_dev, 4546 "Unable to determine PCI Express bandwidth.\n"); 4547 return; 4548 } 4549 4550 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n", 4551 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap)); 4552 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n", 4553 width, width_cap); 4554 if (speed < speed_cap || width < width_cap) 4555 dev_info(adap->pdev_dev, 4556 "A slot with more lanes and/or higher speed is " 4557 "suggested for optimal performance.\n"); 4558 } 4559 4560 /* Dump basic information about the adapter */ 4561 static void print_adapter_info(struct adapter *adapter) 4562 { 4563 /* Device information */ 4564 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 4565 adapter->params.vpd.id, 4566 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 4567 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 4568 adapter->params.vpd.sn, adapter->params.vpd.pn); 4569 4570 /* Firmware Version */ 4571 if (!adapter->params.fw_vers) 4572 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 4573 else 4574 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 4575 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 4576 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 4577 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 4578 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 4579 4580 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 4581 * Firmware, so dev_info() is more appropriate here.) 4582 */ 4583 if (!adapter->params.bs_vers) 4584 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 4585 else 4586 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 4587 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 4588 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 4589 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 4590 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 4591 4592 /* TP Microcode Version */ 4593 if (!adapter->params.tp_vers) 4594 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 4595 else 4596 dev_info(adapter->pdev_dev, 4597 "TP Microcode version: %u.%u.%u.%u\n", 4598 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 4599 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 4600 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 4601 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 4602 4603 /* Expansion ROM version */ 4604 if (!adapter->params.er_vers) 4605 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 4606 else 4607 dev_info(adapter->pdev_dev, 4608 "Expansion ROM version: %u.%u.%u.%u\n", 4609 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 4610 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 4611 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 4612 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 4613 4614 /* Software/Hardware configuration */ 4615 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 4616 is_offload(adapter) ? "R" : "", 4617 ((adapter->flags & USING_MSIX) ? "MSI-X" : 4618 (adapter->flags & USING_MSI) ? "MSI" : ""), 4619 is_offload(adapter) ? "Offload" : "non-Offload"); 4620 } 4621 4622 static void print_port_info(const struct net_device *dev) 4623 { 4624 char buf[80]; 4625 char *bufp = buf; 4626 const char *spd = ""; 4627 const struct port_info *pi = netdev_priv(dev); 4628 const struct adapter *adap = pi->adapter; 4629 4630 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 4631 spd = " 2.5 GT/s"; 4632 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 4633 spd = " 5 GT/s"; 4634 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 4635 spd = " 8 GT/s"; 4636 4637 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 4638 bufp += sprintf(bufp, "100M/"); 4639 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 4640 bufp += sprintf(bufp, "1G/"); 4641 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 4642 bufp += sprintf(bufp, "10G/"); 4643 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G) 4644 bufp += sprintf(bufp, "25G/"); 4645 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G) 4646 bufp += sprintf(bufp, "40G/"); 4647 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G) 4648 bufp += sprintf(bufp, "100G/"); 4649 if (bufp != buf) 4650 --bufp; 4651 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 4652 4653 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 4654 dev->name, adap->params.vpd.id, adap->name, buf); 4655 } 4656 4657 /* 4658 * Free the following resources: 4659 * - memory used for tables 4660 * - MSI/MSI-X 4661 * - net devices 4662 * - resources FW is holding for us 4663 */ 4664 static void free_some_resources(struct adapter *adapter) 4665 { 4666 unsigned int i; 4667 4668 kvfree(adapter->l2t); 4669 t4_cleanup_sched(adapter); 4670 kvfree(adapter->tids.tid_tab); 4671 cxgb4_cleanup_tc_u32(adapter); 4672 kfree(adapter->sge.egr_map); 4673 kfree(adapter->sge.ingr_map); 4674 kfree(adapter->sge.starving_fl); 4675 kfree(adapter->sge.txq_maperr); 4676 #ifdef CONFIG_DEBUG_FS 4677 kfree(adapter->sge.blocked_fl); 4678 #endif 4679 disable_msi(adapter); 4680 4681 for_each_port(adapter, i) 4682 if (adapter->port[i]) { 4683 struct port_info *pi = adap2pinfo(adapter, i); 4684 4685 if (pi->viid != 0) 4686 t4_free_vi(adapter, adapter->mbox, adapter->pf, 4687 0, pi->viid); 4688 kfree(adap2pinfo(adapter, i)->rss); 4689 free_netdev(adapter->port[i]); 4690 } 4691 if (adapter->flags & FW_OK) 4692 t4_fw_bye(adapter, adapter->pf); 4693 } 4694 4695 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 4696 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 4697 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 4698 #define SEGMENT_SIZE 128 4699 4700 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev) 4701 { 4702 u16 device_id; 4703 4704 /* Retrieve adapter's device ID */ 4705 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 4706 4707 switch (device_id >> 12) { 4708 case CHELSIO_T4: 4709 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 4710 case CHELSIO_T5: 4711 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 4712 case CHELSIO_T6: 4713 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 4714 default: 4715 dev_err(&pdev->dev, "Device %d is not supported\n", 4716 device_id); 4717 } 4718 return -EINVAL; 4719 } 4720 4721 #ifdef CONFIG_PCI_IOV 4722 static void dummy_setup(struct net_device *dev) 4723 { 4724 dev->type = ARPHRD_NONE; 4725 dev->mtu = 0; 4726 dev->hard_header_len = 0; 4727 dev->addr_len = 0; 4728 dev->tx_queue_len = 0; 4729 dev->flags |= IFF_NOARP; 4730 dev->priv_flags |= IFF_NO_QUEUE; 4731 4732 /* Initialize the device structure. */ 4733 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 4734 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 4735 dev->needs_free_netdev = true; 4736 } 4737 4738 static int config_mgmt_dev(struct pci_dev *pdev) 4739 { 4740 struct adapter *adap = pci_get_drvdata(pdev); 4741 struct net_device *netdev; 4742 struct port_info *pi; 4743 char name[IFNAMSIZ]; 4744 int err; 4745 4746 snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf); 4747 netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN, 4748 dummy_setup); 4749 if (!netdev) 4750 return -ENOMEM; 4751 4752 pi = netdev_priv(netdev); 4753 pi->adapter = adap; 4754 pi->port_id = adap->pf % adap->params.nports; 4755 SET_NETDEV_DEV(netdev, &pdev->dev); 4756 4757 adap->port[0] = netdev; 4758 4759 err = register_netdev(adap->port[0]); 4760 if (err) { 4761 pr_info("Unable to register VF mgmt netdev %s\n", name); 4762 free_netdev(adap->port[0]); 4763 adap->port[0] = NULL; 4764 return err; 4765 } 4766 return 0; 4767 } 4768 4769 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 4770 { 4771 struct adapter *adap = pci_get_drvdata(pdev); 4772 int err = 0; 4773 int current_vfs = pci_num_vf(pdev); 4774 u32 pcie_fw; 4775 4776 pcie_fw = readl(adap->regs + PCIE_FW_A); 4777 /* Check if cxgb4 is the MASTER and fw is initialized */ 4778 if (!(pcie_fw & PCIE_FW_INIT_F) || 4779 !(pcie_fw & PCIE_FW_MASTER_VLD_F) || 4780 PCIE_FW_MASTER_G(pcie_fw) != 4) { 4781 dev_warn(&pdev->dev, 4782 "cxgb4 driver needs to be MASTER to support SRIOV\n"); 4783 return -EOPNOTSUPP; 4784 } 4785 4786 /* If any of the VF's is already assigned to Guest OS, then 4787 * SRIOV for the same cannot be modified 4788 */ 4789 if (current_vfs && pci_vfs_assigned(pdev)) { 4790 dev_err(&pdev->dev, 4791 "Cannot modify SR-IOV while VFs are assigned\n"); 4792 num_vfs = current_vfs; 4793 return num_vfs; 4794 } 4795 4796 /* Disable SRIOV when zero is passed. 4797 * One needs to disable SRIOV before modifying it, else 4798 * stack throws the below warning: 4799 * " 'n' VFs already enabled. Disable before enabling 'm' VFs." 4800 */ 4801 if (!num_vfs) { 4802 pci_disable_sriov(pdev); 4803 if (adap->port[0]) { 4804 unregister_netdev(adap->port[0]); 4805 adap->port[0] = NULL; 4806 } 4807 /* free VF resources */ 4808 kfree(adap->vfinfo); 4809 adap->vfinfo = NULL; 4810 adap->num_vfs = 0; 4811 return num_vfs; 4812 } 4813 4814 if (num_vfs != current_vfs) { 4815 err = pci_enable_sriov(pdev, num_vfs); 4816 if (err) 4817 return err; 4818 4819 adap->num_vfs = num_vfs; 4820 err = config_mgmt_dev(pdev); 4821 if (err) 4822 return err; 4823 } 4824 4825 adap->vfinfo = kcalloc(adap->num_vfs, 4826 sizeof(struct vf_info), GFP_KERNEL); 4827 if (adap->vfinfo) 4828 fill_vf_station_mac_addr(adap); 4829 return num_vfs; 4830 } 4831 #endif 4832 4833 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4834 { 4835 int func, i, err, s_qpp, qpp, num_seg; 4836 struct port_info *pi; 4837 bool highdma = false; 4838 struct adapter *adapter = NULL; 4839 struct net_device *netdev; 4840 void __iomem *regs; 4841 u32 whoami, pl_rev; 4842 enum chip_type chip; 4843 static int adap_idx = 1; 4844 #ifdef CONFIG_PCI_IOV 4845 u32 v, port_vec; 4846 #endif 4847 4848 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 4849 4850 err = pci_request_regions(pdev, KBUILD_MODNAME); 4851 if (err) { 4852 /* Just info, some other driver may have claimed the device. */ 4853 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 4854 return err; 4855 } 4856 4857 err = pci_enable_device(pdev); 4858 if (err) { 4859 dev_err(&pdev->dev, "cannot enable PCI device\n"); 4860 goto out_release_regions; 4861 } 4862 4863 regs = pci_ioremap_bar(pdev, 0); 4864 if (!regs) { 4865 dev_err(&pdev->dev, "cannot map device registers\n"); 4866 err = -ENOMEM; 4867 goto out_disable_device; 4868 } 4869 4870 err = t4_wait_dev_ready(regs); 4871 if (err < 0) 4872 goto out_unmap_bar0; 4873 4874 /* We control everything through one PF */ 4875 whoami = readl(regs + PL_WHOAMI_A); 4876 pl_rev = REV_G(readl(regs + PL_REV_A)); 4877 chip = get_chip_type(pdev, pl_rev); 4878 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ? 4879 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4880 if (func != ent->driver_data) { 4881 #ifndef CONFIG_PCI_IOV 4882 iounmap(regs); 4883 #endif 4884 pci_disable_device(pdev); 4885 pci_save_state(pdev); /* to restore SR-IOV later */ 4886 goto sriov; 4887 } 4888 4889 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4890 highdma = true; 4891 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4892 if (err) { 4893 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 4894 "coherent allocations\n"); 4895 goto out_unmap_bar0; 4896 } 4897 } else { 4898 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4899 if (err) { 4900 dev_err(&pdev->dev, "no usable DMA configuration\n"); 4901 goto out_unmap_bar0; 4902 } 4903 } 4904 4905 pci_enable_pcie_error_reporting(pdev); 4906 pci_set_master(pdev); 4907 pci_save_state(pdev); 4908 4909 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4910 if (!adapter) { 4911 err = -ENOMEM; 4912 goto out_unmap_bar0; 4913 } 4914 adap_idx++; 4915 4916 adapter->workq = create_singlethread_workqueue("cxgb4"); 4917 if (!adapter->workq) { 4918 err = -ENOMEM; 4919 goto out_free_adapter; 4920 } 4921 4922 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 4923 (sizeof(struct mbox_cmd) * 4924 T4_OS_LOG_MBOX_CMDS), 4925 GFP_KERNEL); 4926 if (!adapter->mbox_log) { 4927 err = -ENOMEM; 4928 goto out_free_adapter; 4929 } 4930 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 4931 4932 /* PCI device has been enabled */ 4933 adapter->flags |= DEV_ENABLED; 4934 4935 adapter->regs = regs; 4936 adapter->pdev = pdev; 4937 adapter->pdev_dev = &pdev->dev; 4938 adapter->name = pci_name(pdev); 4939 adapter->mbox = func; 4940 adapter->pf = func; 4941 adapter->msg_enable = DFLT_MSG_ENABLE; 4942 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 4943 4944 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 4945 * Ingress Packet Data to Free List Buffers in order to allow for 4946 * chipset performance optimizations between the Root Complex and 4947 * Memory Controllers. (Messages to the associated Ingress Queue 4948 * notifying new Packet Placement in the Free Lists Buffers will be 4949 * send without the Relaxed Ordering Attribute thus guaranteeing that 4950 * all preceding PCIe Transaction Layer Packets will be processed 4951 * first.) But some Root Complexes have various issues with Upstream 4952 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 4953 * The PCIe devices which under the Root Complexes will be cleared the 4954 * Relaxed Ordering bit in the configuration space, So we check our 4955 * PCIe configuration space to see if it's flagged with advice against 4956 * using Relaxed Ordering. 4957 */ 4958 if (!pcie_relaxed_ordering_enabled(pdev)) 4959 adapter->flags |= ROOT_NO_RELAXED_ORDERING; 4960 4961 spin_lock_init(&adapter->stats_lock); 4962 spin_lock_init(&adapter->tid_release_lock); 4963 spin_lock_init(&adapter->win0_lock); 4964 spin_lock_init(&adapter->mbox_lock); 4965 4966 INIT_LIST_HEAD(&adapter->mlist.list); 4967 4968 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 4969 INIT_WORK(&adapter->db_full_task, process_db_full); 4970 INIT_WORK(&adapter->db_drop_task, process_db_drop); 4971 4972 err = t4_prep_adapter(adapter); 4973 if (err) 4974 goto out_free_adapter; 4975 4976 4977 if (!is_t4(adapter->params.chip)) { 4978 s_qpp = (QUEUESPERPAGEPF0_S + 4979 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 4980 adapter->pf); 4981 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 4982 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 4983 num_seg = PAGE_SIZE / SEGMENT_SIZE; 4984 4985 /* Each segment size is 128B. Write coalescing is enabled only 4986 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 4987 * queue is less no of segments that can be accommodated in 4988 * a page size. 4989 */ 4990 if (qpp > num_seg) { 4991 dev_err(&pdev->dev, 4992 "Incorrect number of egress queues per page\n"); 4993 err = -EINVAL; 4994 goto out_free_adapter; 4995 } 4996 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 4997 pci_resource_len(pdev, 2)); 4998 if (!adapter->bar2) { 4999 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 5000 err = -ENOMEM; 5001 goto out_free_adapter; 5002 } 5003 } 5004 5005 setup_memwin(adapter); 5006 err = adap_init0(adapter); 5007 #ifdef CONFIG_DEBUG_FS 5008 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 5009 #endif 5010 setup_memwin_rdma(adapter); 5011 if (err) 5012 goto out_unmap_bar; 5013 5014 /* configure SGE_STAT_CFG_A to read WC stats */ 5015 if (!is_t4(adapter->params.chip)) 5016 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 5017 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 5018 T6_STATMODE_V(0))); 5019 5020 for_each_port(adapter, i) { 5021 netdev = alloc_etherdev_mq(sizeof(struct port_info), 5022 MAX_ETH_QSETS); 5023 if (!netdev) { 5024 err = -ENOMEM; 5025 goto out_free_dev; 5026 } 5027 5028 SET_NETDEV_DEV(netdev, &pdev->dev); 5029 5030 adapter->port[i] = netdev; 5031 pi = netdev_priv(netdev); 5032 pi->adapter = adapter; 5033 pi->xact_addr_filt = -1; 5034 pi->port_id = i; 5035 netdev->irq = pdev->irq; 5036 5037 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 5038 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5039 NETIF_F_RXCSUM | NETIF_F_RXHASH | 5040 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 5041 NETIF_F_HW_TC; 5042 if (highdma) 5043 netdev->hw_features |= NETIF_F_HIGHDMA; 5044 netdev->features |= netdev->hw_features; 5045 netdev->vlan_features = netdev->features & VLAN_FEAT; 5046 5047 netdev->priv_flags |= IFF_UNICAST_FLT; 5048 5049 /* MTU range: 81 - 9600 */ 5050 netdev->min_mtu = 81; 5051 netdev->max_mtu = MAX_MTU; 5052 5053 netdev->netdev_ops = &cxgb4_netdev_ops; 5054 #ifdef CONFIG_CHELSIO_T4_DCB 5055 netdev->dcbnl_ops = &cxgb4_dcb_ops; 5056 cxgb4_dcb_state_init(netdev); 5057 #endif 5058 cxgb4_set_ethtool_ops(netdev); 5059 } 5060 5061 pci_set_drvdata(pdev, adapter); 5062 5063 if (adapter->flags & FW_OK) { 5064 err = t4_port_init(adapter, func, func, 0); 5065 if (err) 5066 goto out_free_dev; 5067 } else if (adapter->params.nports == 1) { 5068 /* If we don't have a connection to the firmware -- possibly 5069 * because of an error -- grab the raw VPD parameters so we 5070 * can set the proper MAC Address on the debug network 5071 * interface that we've created. 5072 */ 5073 u8 hw_addr[ETH_ALEN]; 5074 u8 *na = adapter->params.vpd.na; 5075 5076 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 5077 if (!err) { 5078 for (i = 0; i < ETH_ALEN; i++) 5079 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 5080 hex2val(na[2 * i + 1])); 5081 t4_set_hw_addr(adapter, 0, hw_addr); 5082 } 5083 } 5084 5085 /* Configure queues and allocate tables now, they can be needed as 5086 * soon as the first register_netdev completes. 5087 */ 5088 cfg_queues(adapter); 5089 5090 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 5091 if (!adapter->l2t) { 5092 /* We tolerate a lack of L2T, giving up some functionality */ 5093 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 5094 adapter->params.offload = 0; 5095 } 5096 5097 #if IS_ENABLED(CONFIG_IPV6) 5098 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) && 5099 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 5100 /* CLIP functionality is not present in hardware, 5101 * hence disable all offload features 5102 */ 5103 dev_warn(&pdev->dev, 5104 "CLIP not enabled in hardware, continuing\n"); 5105 adapter->params.offload = 0; 5106 } else { 5107 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 5108 adapter->clipt_end); 5109 if (!adapter->clipt) { 5110 /* We tolerate a lack of clip_table, giving up 5111 * some functionality 5112 */ 5113 dev_warn(&pdev->dev, 5114 "could not allocate Clip table, continuing\n"); 5115 adapter->params.offload = 0; 5116 } 5117 } 5118 #endif 5119 5120 for_each_port(adapter, i) { 5121 pi = adap2pinfo(adapter, i); 5122 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 5123 if (!pi->sched_tbl) 5124 dev_warn(&pdev->dev, 5125 "could not activate scheduling on port %d\n", 5126 i); 5127 } 5128 5129 if (tid_init(&adapter->tids) < 0) { 5130 dev_warn(&pdev->dev, "could not allocate TID table, " 5131 "continuing\n"); 5132 adapter->params.offload = 0; 5133 } else { 5134 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 5135 if (!adapter->tc_u32) 5136 dev_warn(&pdev->dev, 5137 "could not offload tc u32, continuing\n"); 5138 } 5139 5140 if (is_offload(adapter)) { 5141 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 5142 u32 hash_base, hash_reg; 5143 5144 if (chip <= CHELSIO_T5) { 5145 hash_reg = LE_DB_TID_HASHBASE_A; 5146 hash_base = t4_read_reg(adapter, hash_reg); 5147 adapter->tids.hash_base = hash_base / 4; 5148 } else { 5149 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 5150 hash_base = t4_read_reg(adapter, hash_reg); 5151 adapter->tids.hash_base = hash_base; 5152 } 5153 } 5154 } 5155 5156 /* See what interrupts we'll be using */ 5157 if (msi > 1 && enable_msix(adapter) == 0) 5158 adapter->flags |= USING_MSIX; 5159 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 5160 adapter->flags |= USING_MSI; 5161 if (msi > 1) 5162 free_msix_info(adapter); 5163 } 5164 5165 /* check for PCI Express bandwidth capabiltites */ 5166 cxgb4_check_pcie_caps(adapter); 5167 5168 err = init_rss(adapter); 5169 if (err) 5170 goto out_free_dev; 5171 5172 /* 5173 * The card is now ready to go. If any errors occur during device 5174 * registration we do not fail the whole card but rather proceed only 5175 * with the ports we manage to register successfully. However we must 5176 * register at least one net device. 5177 */ 5178 for_each_port(adapter, i) { 5179 pi = adap2pinfo(adapter, i); 5180 adapter->port[i]->dev_port = pi->lport; 5181 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 5182 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 5183 5184 netif_carrier_off(adapter->port[i]); 5185 5186 err = register_netdev(adapter->port[i]); 5187 if (err) 5188 break; 5189 adapter->chan_map[pi->tx_chan] = i; 5190 print_port_info(adapter->port[i]); 5191 } 5192 if (i == 0) { 5193 dev_err(&pdev->dev, "could not register any net devices\n"); 5194 goto out_free_dev; 5195 } 5196 if (err) { 5197 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 5198 err = 0; 5199 } 5200 5201 if (cxgb4_debugfs_root) { 5202 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 5203 cxgb4_debugfs_root); 5204 setup_debugfs(adapter); 5205 } 5206 5207 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 5208 pdev->needs_freset = 1; 5209 5210 if (is_uld(adapter)) { 5211 mutex_lock(&uld_mutex); 5212 list_add_tail(&adapter->list_node, &adapter_list); 5213 mutex_unlock(&uld_mutex); 5214 } 5215 5216 if (!is_t4(adapter->params.chip)) 5217 cxgb4_ptp_init(adapter); 5218 5219 print_adapter_info(adapter); 5220 setup_fw_sge_queues(adapter); 5221 return 0; 5222 5223 sriov: 5224 #ifdef CONFIG_PCI_IOV 5225 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5226 if (!adapter) { 5227 err = -ENOMEM; 5228 goto free_pci_region; 5229 } 5230 5231 adapter->pdev = pdev; 5232 adapter->pdev_dev = &pdev->dev; 5233 adapter->name = pci_name(pdev); 5234 adapter->mbox = func; 5235 adapter->pf = func; 5236 adapter->regs = regs; 5237 adapter->adap_idx = adap_idx; 5238 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5239 (sizeof(struct mbox_cmd) * 5240 T4_OS_LOG_MBOX_CMDS), 5241 GFP_KERNEL); 5242 if (!adapter->mbox_log) { 5243 err = -ENOMEM; 5244 goto free_adapter; 5245 } 5246 spin_lock_init(&adapter->mbox_lock); 5247 INIT_LIST_HEAD(&adapter->mlist.list); 5248 5249 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 5250 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 5251 err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1, 5252 &v, &port_vec); 5253 if (err < 0) { 5254 dev_err(adapter->pdev_dev, "Could not fetch port params\n"); 5255 goto free_mbox_log; 5256 } 5257 5258 adapter->params.nports = hweight32(port_vec); 5259 pci_set_drvdata(pdev, adapter); 5260 return 0; 5261 5262 free_mbox_log: 5263 kfree(adapter->mbox_log); 5264 free_adapter: 5265 kfree(adapter); 5266 free_pci_region: 5267 iounmap(regs); 5268 pci_disable_sriov(pdev); 5269 pci_release_regions(pdev); 5270 return err; 5271 #else 5272 return 0; 5273 #endif 5274 5275 out_free_dev: 5276 free_some_resources(adapter); 5277 if (adapter->flags & USING_MSIX) 5278 free_msix_info(adapter); 5279 if (adapter->num_uld || adapter->num_ofld_uld) 5280 t4_uld_mem_free(adapter); 5281 out_unmap_bar: 5282 if (!is_t4(adapter->params.chip)) 5283 iounmap(adapter->bar2); 5284 out_free_adapter: 5285 if (adapter->workq) 5286 destroy_workqueue(adapter->workq); 5287 5288 kfree(adapter->mbox_log); 5289 kfree(adapter); 5290 out_unmap_bar0: 5291 iounmap(regs); 5292 out_disable_device: 5293 pci_disable_pcie_error_reporting(pdev); 5294 pci_disable_device(pdev); 5295 out_release_regions: 5296 pci_release_regions(pdev); 5297 return err; 5298 } 5299 5300 static void remove_one(struct pci_dev *pdev) 5301 { 5302 struct adapter *adapter = pci_get_drvdata(pdev); 5303 5304 if (!adapter) { 5305 pci_release_regions(pdev); 5306 return; 5307 } 5308 5309 if (adapter->pf == 4) { 5310 int i; 5311 5312 /* Tear down per-adapter Work Queue first since it can contain 5313 * references to our adapter data structure. 5314 */ 5315 destroy_workqueue(adapter->workq); 5316 5317 if (is_uld(adapter)) { 5318 detach_ulds(adapter); 5319 t4_uld_clean_up(adapter); 5320 } 5321 5322 disable_interrupts(adapter); 5323 5324 for_each_port(adapter, i) 5325 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5326 unregister_netdev(adapter->port[i]); 5327 5328 debugfs_remove_recursive(adapter->debugfs_root); 5329 5330 if (!is_t4(adapter->params.chip)) 5331 cxgb4_ptp_stop(adapter); 5332 5333 /* If we allocated filters, free up state associated with any 5334 * valid filters ... 5335 */ 5336 clear_all_filters(adapter); 5337 5338 if (adapter->flags & FULL_INIT_DONE) 5339 cxgb_down(adapter); 5340 5341 if (adapter->flags & USING_MSIX) 5342 free_msix_info(adapter); 5343 if (adapter->num_uld || adapter->num_ofld_uld) 5344 t4_uld_mem_free(adapter); 5345 free_some_resources(adapter); 5346 #if IS_ENABLED(CONFIG_IPV6) 5347 t4_cleanup_clip_tbl(adapter); 5348 #endif 5349 iounmap(adapter->regs); 5350 if (!is_t4(adapter->params.chip)) 5351 iounmap(adapter->bar2); 5352 pci_disable_pcie_error_reporting(pdev); 5353 if ((adapter->flags & DEV_ENABLED)) { 5354 pci_disable_device(pdev); 5355 adapter->flags &= ~DEV_ENABLED; 5356 } 5357 pci_release_regions(pdev); 5358 kfree(adapter->mbox_log); 5359 synchronize_rcu(); 5360 kfree(adapter); 5361 } 5362 #ifdef CONFIG_PCI_IOV 5363 else { 5364 if (adapter->port[0]) 5365 unregister_netdev(adapter->port[0]); 5366 iounmap(adapter->regs); 5367 kfree(adapter->vfinfo); 5368 kfree(adapter->mbox_log); 5369 kfree(adapter); 5370 pci_disable_sriov(pdev); 5371 pci_release_regions(pdev); 5372 } 5373 #endif 5374 } 5375 5376 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 5377 * delivery. This is essentially a stripped down version of the PCI remove() 5378 * function where we do the minimal amount of work necessary to shutdown any 5379 * further activity. 5380 */ 5381 static void shutdown_one(struct pci_dev *pdev) 5382 { 5383 struct adapter *adapter = pci_get_drvdata(pdev); 5384 5385 /* As with remove_one() above (see extended comment), we only want do 5386 * do cleanup on PCI Devices which went all the way through init_one() 5387 * ... 5388 */ 5389 if (!adapter) { 5390 pci_release_regions(pdev); 5391 return; 5392 } 5393 5394 if (adapter->pf == 4) { 5395 int i; 5396 5397 for_each_port(adapter, i) 5398 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5399 cxgb_close(adapter->port[i]); 5400 5401 if (is_uld(adapter)) { 5402 detach_ulds(adapter); 5403 t4_uld_clean_up(adapter); 5404 } 5405 5406 disable_interrupts(adapter); 5407 disable_msi(adapter); 5408 5409 t4_sge_stop(adapter); 5410 if (adapter->flags & FW_OK) 5411 t4_fw_bye(adapter, adapter->mbox); 5412 } 5413 #ifdef CONFIG_PCI_IOV 5414 else { 5415 if (adapter->port[0]) 5416 unregister_netdev(adapter->port[0]); 5417 iounmap(adapter->regs); 5418 kfree(adapter->vfinfo); 5419 kfree(adapter->mbox_log); 5420 kfree(adapter); 5421 pci_disable_sriov(pdev); 5422 pci_release_regions(pdev); 5423 } 5424 #endif 5425 } 5426 5427 static struct pci_driver cxgb4_driver = { 5428 .name = KBUILD_MODNAME, 5429 .id_table = cxgb4_pci_tbl, 5430 .probe = init_one, 5431 .remove = remove_one, 5432 .shutdown = shutdown_one, 5433 #ifdef CONFIG_PCI_IOV 5434 .sriov_configure = cxgb4_iov_configure, 5435 #endif 5436 .err_handler = &cxgb4_eeh, 5437 }; 5438 5439 static int __init cxgb4_init_module(void) 5440 { 5441 int ret; 5442 5443 /* Debugfs support is optional, just warn if this fails */ 5444 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 5445 if (!cxgb4_debugfs_root) 5446 pr_warn("could not create debugfs entry, continuing\n"); 5447 5448 ret = pci_register_driver(&cxgb4_driver); 5449 if (ret < 0) 5450 debugfs_remove(cxgb4_debugfs_root); 5451 5452 #if IS_ENABLED(CONFIG_IPV6) 5453 if (!inet6addr_registered) { 5454 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5455 inet6addr_registered = true; 5456 } 5457 #endif 5458 5459 return ret; 5460 } 5461 5462 static void __exit cxgb4_cleanup_module(void) 5463 { 5464 #if IS_ENABLED(CONFIG_IPV6) 5465 if (inet6addr_registered) { 5466 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5467 inet6addr_registered = false; 5468 } 5469 #endif 5470 pci_unregister_driver(&cxgb4_driver); 5471 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 5472 } 5473 5474 module_init(cxgb4_init_module); 5475 module_exit(cxgb4_cleanup_module); 5476