1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <asm/uaccess.h> 67 #include <linux/crash_dump.h> 68 69 #include "cxgb4.h" 70 #include "cxgb4_filter.h" 71 #include "t4_regs.h" 72 #include "t4_values.h" 73 #include "t4_msg.h" 74 #include "t4fw_api.h" 75 #include "t4fw_version.h" 76 #include "cxgb4_dcb.h" 77 #include "cxgb4_debugfs.h" 78 #include "clip_tbl.h" 79 #include "l2t.h" 80 #include "sched.h" 81 #include "cxgb4_tc_u32.h" 82 83 char cxgb4_driver_name[] = KBUILD_MODNAME; 84 85 #ifdef DRV_VERSION 86 #undef DRV_VERSION 87 #endif 88 #define DRV_VERSION "2.0.0-ko" 89 const char cxgb4_driver_version[] = DRV_VERSION; 90 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 91 92 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 93 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 94 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 95 96 /* Macros needed to support the PCI Device ID Table ... 97 */ 98 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 99 static const struct pci_device_id cxgb4_pci_tbl[] = { 100 #define CH_PCI_DEVICE_ID_FUNCTION 0x4 101 102 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 103 * called for both. 104 */ 105 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 106 107 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 108 {PCI_VDEVICE(CHELSIO, (devid)), 4} 109 110 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 111 { 0, } \ 112 } 113 114 #include "t4_pci_id_tbl.h" 115 116 #define FW4_FNAME "cxgb4/t4fw.bin" 117 #define FW5_FNAME "cxgb4/t5fw.bin" 118 #define FW6_FNAME "cxgb4/t6fw.bin" 119 #define FW4_CFNAME "cxgb4/t4-config.txt" 120 #define FW5_CFNAME "cxgb4/t5-config.txt" 121 #define FW6_CFNAME "cxgb4/t6-config.txt" 122 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 123 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 124 #define PHY_AQ1202_DEVICEID 0x4409 125 #define PHY_BCM84834_DEVICEID 0x4486 126 127 MODULE_DESCRIPTION(DRV_DESC); 128 MODULE_AUTHOR("Chelsio Communications"); 129 MODULE_LICENSE("Dual BSD/GPL"); 130 MODULE_VERSION(DRV_VERSION); 131 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 132 MODULE_FIRMWARE(FW4_FNAME); 133 MODULE_FIRMWARE(FW5_FNAME); 134 MODULE_FIRMWARE(FW6_FNAME); 135 136 /* 137 * Normally we're willing to become the firmware's Master PF but will be happy 138 * if another PF has already become the Master and initialized the adapter. 139 * Setting "force_init" will cause this driver to forcibly establish itself as 140 * the Master PF and initialize the adapter. 141 */ 142 static uint force_init; 143 144 module_param(force_init, uint, 0644); 145 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter," 146 "deprecated parameter"); 147 148 static int dflt_msg_enable = DFLT_MSG_ENABLE; 149 150 module_param(dflt_msg_enable, int, 0644); 151 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap, " 152 "deprecated parameter"); 153 154 /* 155 * The driver uses the best interrupt scheme available on a platform in the 156 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 157 * of these schemes the driver may consider as follows: 158 * 159 * msi = 2: choose from among all three options 160 * msi = 1: only consider MSI and INTx interrupts 161 * msi = 0: force INTx interrupts 162 */ 163 static int msi = 2; 164 165 module_param(msi, int, 0644); 166 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 167 168 /* 169 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 170 * offset by 2 bytes in order to have the IP headers line up on 4-byte 171 * boundaries. This is a requirement for many architectures which will throw 172 * a machine check fault if an attempt is made to access one of the 4-byte IP 173 * header fields on a non-4-byte boundary. And it's a major performance issue 174 * even on some architectures which allow it like some implementations of the 175 * x86 ISA. However, some architectures don't mind this and for some very 176 * edge-case performance sensitive applications (like forwarding large volumes 177 * of small packets), setting this DMA offset to 0 will decrease the number of 178 * PCI-E Bus transfers enough to measurably affect performance. 179 */ 180 static int rx_dma_offset = 2; 181 182 #ifdef CONFIG_PCI_IOV 183 /* Configure the number of PCI-E Virtual Function which are to be instantiated 184 * on SR-IOV Capable Physical Functions. 185 */ 186 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV]; 187 188 module_param_array(num_vf, uint, NULL, 0644); 189 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3, deprecated parameter - please use the pci sysfs interface."); 190 #endif 191 192 /* TX Queue select used to determine what algorithm to use for selecting TX 193 * queue. Select between the kernel provided function (select_queue=0) or user 194 * cxgb_select_queue function (select_queue=1) 195 * 196 * Default: select_queue=0 197 */ 198 static int select_queue; 199 module_param(select_queue, int, 0644); 200 MODULE_PARM_DESC(select_queue, 201 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 202 203 static struct dentry *cxgb4_debugfs_root; 204 205 LIST_HEAD(adapter_list); 206 DEFINE_MUTEX(uld_mutex); 207 208 static void link_report(struct net_device *dev) 209 { 210 if (!netif_carrier_ok(dev)) 211 netdev_info(dev, "link down\n"); 212 else { 213 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 214 215 const char *s; 216 const struct port_info *p = netdev_priv(dev); 217 218 switch (p->link_cfg.speed) { 219 case 10000: 220 s = "10Gbps"; 221 break; 222 case 1000: 223 s = "1000Mbps"; 224 break; 225 case 100: 226 s = "100Mbps"; 227 break; 228 case 40000: 229 s = "40Gbps"; 230 break; 231 default: 232 pr_info("%s: unsupported speed: %d\n", 233 dev->name, p->link_cfg.speed); 234 return; 235 } 236 237 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 238 fc[p->link_cfg.fc]); 239 } 240 } 241 242 #ifdef CONFIG_CHELSIO_T4_DCB 243 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 244 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 245 { 246 struct port_info *pi = netdev_priv(dev); 247 struct adapter *adap = pi->adapter; 248 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 249 int i; 250 251 /* We use a simple mapping of Port TX Queue Index to DCB 252 * Priority when we're enabling DCB. 253 */ 254 for (i = 0; i < pi->nqsets; i++, txq++) { 255 u32 name, value; 256 int err; 257 258 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 259 FW_PARAMS_PARAM_X_V( 260 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 261 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 262 value = enable ? i : 0xffffffff; 263 264 /* Since we can be called while atomic (from "interrupt 265 * level") we need to issue the Set Parameters Commannd 266 * without sleeping (timeout < 0). 267 */ 268 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 269 &name, &value, 270 -FW_CMD_MAX_TIMEOUT); 271 272 if (err) 273 dev_err(adap->pdev_dev, 274 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 275 enable ? "set" : "unset", pi->port_id, i, -err); 276 else 277 txq->dcb_prio = value; 278 } 279 } 280 281 static int cxgb4_dcb_enabled(const struct net_device *dev) 282 { 283 struct port_info *pi = netdev_priv(dev); 284 285 if (!pi->dcb.enabled) 286 return 0; 287 288 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 289 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 290 } 291 #endif /* CONFIG_CHELSIO_T4_DCB */ 292 293 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 294 { 295 struct net_device *dev = adapter->port[port_id]; 296 297 /* Skip changes from disabled ports. */ 298 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 299 if (link_stat) 300 netif_carrier_on(dev); 301 else { 302 #ifdef CONFIG_CHELSIO_T4_DCB 303 if (cxgb4_dcb_enabled(dev)) { 304 cxgb4_dcb_state_init(dev); 305 dcb_tx_queue_prio_enable(dev, false); 306 } 307 #endif /* CONFIG_CHELSIO_T4_DCB */ 308 netif_carrier_off(dev); 309 } 310 311 link_report(dev); 312 } 313 } 314 315 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 316 { 317 static const char *mod_str[] = { 318 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 319 }; 320 321 const struct net_device *dev = adap->port[port_id]; 322 const struct port_info *pi = netdev_priv(dev); 323 324 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 325 netdev_info(dev, "port module unplugged\n"); 326 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 327 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 328 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 329 netdev_info(dev, "%s: unsupported port module inserted\n", 330 dev->name); 331 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 332 netdev_info(dev, "%s: unknown port module inserted\n", 333 dev->name); 334 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 335 netdev_info(dev, "%s: transceiver module error\n", dev->name); 336 else 337 netdev_info(dev, "%s: unknown module type %d inserted\n", 338 dev->name, pi->mod_type); 339 } 340 341 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 342 module_param(dbfifo_int_thresh, int, 0644); 343 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 344 345 /* 346 * usecs to sleep while draining the dbfifo 347 */ 348 static int dbfifo_drain_delay = 1000; 349 module_param(dbfifo_drain_delay, int, 0644); 350 MODULE_PARM_DESC(dbfifo_drain_delay, 351 "usecs to sleep while draining the dbfifo"); 352 353 static inline int cxgb4_set_addr_hash(struct port_info *pi) 354 { 355 struct adapter *adap = pi->adapter; 356 u64 vec = 0; 357 bool ucast = false; 358 struct hash_mac_addr *entry; 359 360 /* Calculate the hash vector for the updated list and program it */ 361 list_for_each_entry(entry, &adap->mac_hlist, list) { 362 ucast |= is_unicast_ether_addr(entry->addr); 363 vec |= (1ULL << hash_mac_addr(entry->addr)); 364 } 365 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 366 vec, false); 367 } 368 369 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 370 { 371 struct port_info *pi = netdev_priv(netdev); 372 struct adapter *adap = pi->adapter; 373 int ret; 374 u64 mhash = 0; 375 u64 uhash = 0; 376 bool free = false; 377 bool ucast = is_unicast_ether_addr(mac_addr); 378 const u8 *maclist[1] = {mac_addr}; 379 struct hash_mac_addr *new_entry; 380 381 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 382 NULL, ucast ? &uhash : &mhash, false); 383 if (ret < 0) 384 goto out; 385 /* if hash != 0, then add the addr to hash addr list 386 * so on the end we will calculate the hash for the 387 * list and program it 388 */ 389 if (uhash || mhash) { 390 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 391 if (!new_entry) 392 return -ENOMEM; 393 ether_addr_copy(new_entry->addr, mac_addr); 394 list_add_tail(&new_entry->list, &adap->mac_hlist); 395 ret = cxgb4_set_addr_hash(pi); 396 } 397 out: 398 return ret < 0 ? ret : 0; 399 } 400 401 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 402 { 403 struct port_info *pi = netdev_priv(netdev); 404 struct adapter *adap = pi->adapter; 405 int ret; 406 const u8 *maclist[1] = {mac_addr}; 407 struct hash_mac_addr *entry, *tmp; 408 409 /* If the MAC address to be removed is in the hash addr 410 * list, delete it from the list and update hash vector 411 */ 412 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 413 if (ether_addr_equal(entry->addr, mac_addr)) { 414 list_del(&entry->list); 415 kfree(entry); 416 return cxgb4_set_addr_hash(pi); 417 } 418 } 419 420 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 421 return ret < 0 ? -EINVAL : 0; 422 } 423 424 /* 425 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 426 * If @mtu is -1 it is left unchanged. 427 */ 428 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 429 { 430 struct port_info *pi = netdev_priv(dev); 431 struct adapter *adapter = pi->adapter; 432 433 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 434 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 435 436 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 437 (dev->flags & IFF_PROMISC) ? 1 : 0, 438 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 439 sleep_ok); 440 } 441 442 /** 443 * link_start - enable a port 444 * @dev: the port to enable 445 * 446 * Performs the MAC and PHY actions needed to enable a port. 447 */ 448 static int link_start(struct net_device *dev) 449 { 450 int ret; 451 struct port_info *pi = netdev_priv(dev); 452 unsigned int mb = pi->adapter->pf; 453 454 /* 455 * We do not set address filters and promiscuity here, the stack does 456 * that step explicitly. 457 */ 458 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 459 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 460 if (ret == 0) { 461 ret = t4_change_mac(pi->adapter, mb, pi->viid, 462 pi->xact_addr_filt, dev->dev_addr, true, 463 true); 464 if (ret >= 0) { 465 pi->xact_addr_filt = ret; 466 ret = 0; 467 } 468 } 469 if (ret == 0) 470 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 471 &pi->link_cfg); 472 if (ret == 0) { 473 local_bh_disable(); 474 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true, 475 true, CXGB4_DCB_ENABLED); 476 local_bh_enable(); 477 } 478 479 return ret; 480 } 481 482 #ifdef CONFIG_CHELSIO_T4_DCB 483 /* Handle a Data Center Bridging update message from the firmware. */ 484 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 485 { 486 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 487 struct net_device *dev = adap->port[adap->chan_map[port]]; 488 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 489 int new_dcb_enabled; 490 491 cxgb4_dcb_handle_fw_update(adap, pcmd); 492 new_dcb_enabled = cxgb4_dcb_enabled(dev); 493 494 /* If the DCB has become enabled or disabled on the port then we're 495 * going to need to set up/tear down DCB Priority parameters for the 496 * TX Queues associated with the port. 497 */ 498 if (new_dcb_enabled != old_dcb_enabled) 499 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 500 } 501 #endif /* CONFIG_CHELSIO_T4_DCB */ 502 503 /* Response queue handler for the FW event queue. 504 */ 505 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 506 const struct pkt_gl *gl) 507 { 508 u8 opcode = ((const struct rss_header *)rsp)->opcode; 509 510 rsp++; /* skip RSS header */ 511 512 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 513 */ 514 if (unlikely(opcode == CPL_FW4_MSG && 515 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 516 rsp++; 517 opcode = ((const struct rss_header *)rsp)->opcode; 518 rsp++; 519 if (opcode != CPL_SGE_EGR_UPDATE) { 520 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 521 , opcode); 522 goto out; 523 } 524 } 525 526 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 527 const struct cpl_sge_egr_update *p = (void *)rsp; 528 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 529 struct sge_txq *txq; 530 531 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 532 txq->restarts++; 533 if (txq->q_type == CXGB4_TXQ_ETH) { 534 struct sge_eth_txq *eq; 535 536 eq = container_of(txq, struct sge_eth_txq, q); 537 netif_tx_wake_queue(eq->txq); 538 } else { 539 struct sge_uld_txq *oq; 540 541 oq = container_of(txq, struct sge_uld_txq, q); 542 tasklet_schedule(&oq->qresume_tsk); 543 } 544 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 545 const struct cpl_fw6_msg *p = (void *)rsp; 546 547 #ifdef CONFIG_CHELSIO_T4_DCB 548 const struct fw_port_cmd *pcmd = (const void *)p->data; 549 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 550 unsigned int action = 551 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 552 553 if (cmd == FW_PORT_CMD && 554 action == FW_PORT_ACTION_GET_PORT_INFO) { 555 int port = FW_PORT_CMD_PORTID_G( 556 be32_to_cpu(pcmd->op_to_portid)); 557 struct net_device *dev = 558 q->adap->port[q->adap->chan_map[port]]; 559 int state_input = ((pcmd->u.info.dcbxdis_pkd & 560 FW_PORT_CMD_DCBXDIS_F) 561 ? CXGB4_DCB_INPUT_FW_DISABLED 562 : CXGB4_DCB_INPUT_FW_ENABLED); 563 564 cxgb4_dcb_state_fsm(dev, state_input); 565 } 566 567 if (cmd == FW_PORT_CMD && 568 action == FW_PORT_ACTION_L2_DCB_CFG) 569 dcb_rpl(q->adap, pcmd); 570 else 571 #endif 572 if (p->type == 0) 573 t4_handle_fw_rpl(q->adap, p->data); 574 } else if (opcode == CPL_L2T_WRITE_RPL) { 575 const struct cpl_l2t_write_rpl *p = (void *)rsp; 576 577 do_l2t_write_rpl(q->adap, p); 578 } else if (opcode == CPL_SET_TCB_RPL) { 579 const struct cpl_set_tcb_rpl *p = (void *)rsp; 580 581 filter_rpl(q->adap, p); 582 } else 583 dev_err(q->adap->pdev_dev, 584 "unexpected CPL %#x on FW event queue\n", opcode); 585 out: 586 return 0; 587 } 588 589 static void disable_msi(struct adapter *adapter) 590 { 591 if (adapter->flags & USING_MSIX) { 592 pci_disable_msix(adapter->pdev); 593 adapter->flags &= ~USING_MSIX; 594 } else if (adapter->flags & USING_MSI) { 595 pci_disable_msi(adapter->pdev); 596 adapter->flags &= ~USING_MSI; 597 } 598 } 599 600 /* 601 * Interrupt handler for non-data events used with MSI-X. 602 */ 603 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 604 { 605 struct adapter *adap = cookie; 606 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 607 608 if (v & PFSW_F) { 609 adap->swintr = 1; 610 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 611 } 612 if (adap->flags & MASTER_PF) 613 t4_slow_intr_handler(adap); 614 return IRQ_HANDLED; 615 } 616 617 /* 618 * Name the MSI-X interrupts. 619 */ 620 static void name_msix_vecs(struct adapter *adap) 621 { 622 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 623 624 /* non-data interrupts */ 625 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 626 627 /* FW events */ 628 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 629 adap->port[0]->name); 630 631 /* Ethernet queues */ 632 for_each_port(adap, j) { 633 struct net_device *d = adap->port[j]; 634 const struct port_info *pi = netdev_priv(d); 635 636 for (i = 0; i < pi->nqsets; i++, msi_idx++) 637 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 638 d->name, i); 639 } 640 } 641 642 static int request_msix_queue_irqs(struct adapter *adap) 643 { 644 struct sge *s = &adap->sge; 645 int err, ethqidx; 646 int msi_index = 2; 647 648 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 649 adap->msix_info[1].desc, &s->fw_evtq); 650 if (err) 651 return err; 652 653 for_each_ethrxq(s, ethqidx) { 654 err = request_irq(adap->msix_info[msi_index].vec, 655 t4_sge_intr_msix, 0, 656 adap->msix_info[msi_index].desc, 657 &s->ethrxq[ethqidx].rspq); 658 if (err) 659 goto unwind; 660 msi_index++; 661 } 662 return 0; 663 664 unwind: 665 while (--ethqidx >= 0) 666 free_irq(adap->msix_info[--msi_index].vec, 667 &s->ethrxq[ethqidx].rspq); 668 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 669 return err; 670 } 671 672 static void free_msix_queue_irqs(struct adapter *adap) 673 { 674 int i, msi_index = 2; 675 struct sge *s = &adap->sge; 676 677 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 678 for_each_ethrxq(s, i) 679 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 680 } 681 682 /** 683 * cxgb4_write_rss - write the RSS table for a given port 684 * @pi: the port 685 * @queues: array of queue indices for RSS 686 * 687 * Sets up the portion of the HW RSS table for the port's VI to distribute 688 * packets to the Rx queues in @queues. 689 * Should never be called before setting up sge eth rx queues 690 */ 691 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 692 { 693 u16 *rss; 694 int i, err; 695 struct adapter *adapter = pi->adapter; 696 const struct sge_eth_rxq *rxq; 697 698 rxq = &adapter->sge.ethrxq[pi->first_qset]; 699 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 700 if (!rss) 701 return -ENOMEM; 702 703 /* map the queue indices to queue ids */ 704 for (i = 0; i < pi->rss_size; i++, queues++) 705 rss[i] = rxq[*queues].rspq.abs_id; 706 707 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 708 pi->rss_size, rss, pi->rss_size); 709 /* If Tunnel All Lookup isn't specified in the global RSS 710 * Configuration, then we need to specify a default Ingress 711 * Queue for any ingress packets which aren't hashed. We'll 712 * use our first ingress queue ... 713 */ 714 if (!err) 715 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 716 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 717 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 718 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 719 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 720 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 721 rss[0]); 722 kfree(rss); 723 return err; 724 } 725 726 /** 727 * setup_rss - configure RSS 728 * @adap: the adapter 729 * 730 * Sets up RSS for each port. 731 */ 732 static int setup_rss(struct adapter *adap) 733 { 734 int i, j, err; 735 736 for_each_port(adap, i) { 737 const struct port_info *pi = adap2pinfo(adap, i); 738 739 /* Fill default values with equal distribution */ 740 for (j = 0; j < pi->rss_size; j++) 741 pi->rss[j] = j % pi->nqsets; 742 743 err = cxgb4_write_rss(pi, pi->rss); 744 if (err) 745 return err; 746 } 747 return 0; 748 } 749 750 /* 751 * Return the channel of the ingress queue with the given qid. 752 */ 753 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 754 { 755 qid -= p->ingr_start; 756 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 757 } 758 759 /* 760 * Wait until all NAPI handlers are descheduled. 761 */ 762 static void quiesce_rx(struct adapter *adap) 763 { 764 int i; 765 766 for (i = 0; i < adap->sge.ingr_sz; i++) { 767 struct sge_rspq *q = adap->sge.ingr_map[i]; 768 769 if (q && q->handler) { 770 napi_disable(&q->napi); 771 local_bh_disable(); 772 while (!cxgb_poll_lock_napi(q)) 773 mdelay(1); 774 local_bh_enable(); 775 } 776 777 } 778 } 779 780 /* Disable interrupt and napi handler */ 781 static void disable_interrupts(struct adapter *adap) 782 { 783 if (adap->flags & FULL_INIT_DONE) { 784 t4_intr_disable(adap); 785 if (adap->flags & USING_MSIX) { 786 free_msix_queue_irqs(adap); 787 free_irq(adap->msix_info[0].vec, adap); 788 } else { 789 free_irq(adap->pdev->irq, adap); 790 } 791 quiesce_rx(adap); 792 } 793 } 794 795 /* 796 * Enable NAPI scheduling and interrupt generation for all Rx queues. 797 */ 798 static void enable_rx(struct adapter *adap) 799 { 800 int i; 801 802 for (i = 0; i < adap->sge.ingr_sz; i++) { 803 struct sge_rspq *q = adap->sge.ingr_map[i]; 804 805 if (!q) 806 continue; 807 if (q->handler) { 808 cxgb_busy_poll_init_lock(q); 809 napi_enable(&q->napi); 810 } 811 /* 0-increment GTS to start the timer and enable interrupts */ 812 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 813 SEINTARM_V(q->intr_params) | 814 INGRESSQID_V(q->cntxt_id)); 815 } 816 } 817 818 819 static int setup_fw_sge_queues(struct adapter *adap) 820 { 821 struct sge *s = &adap->sge; 822 int err = 0; 823 824 bitmap_zero(s->starving_fl, s->egr_sz); 825 bitmap_zero(s->txq_maperr, s->egr_sz); 826 827 if (adap->flags & USING_MSIX) 828 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 829 else { 830 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 831 NULL, NULL, NULL, -1); 832 if (err) 833 return err; 834 adap->msi_idx = -((int)s->intrq.abs_id + 1); 835 } 836 837 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 838 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 839 if (err) 840 t4_free_sge_resources(adap); 841 return err; 842 } 843 844 /** 845 * setup_sge_queues - configure SGE Tx/Rx/response queues 846 * @adap: the adapter 847 * 848 * Determines how many sets of SGE queues to use and initializes them. 849 * We support multiple queue sets per port if we have MSI-X, otherwise 850 * just one queue set per port. 851 */ 852 static int setup_sge_queues(struct adapter *adap) 853 { 854 int err, i, j; 855 struct sge *s = &adap->sge; 856 struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 857 unsigned int cmplqid = 0; 858 859 for_each_port(adap, i) { 860 struct net_device *dev = adap->port[i]; 861 struct port_info *pi = netdev_priv(dev); 862 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 863 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 864 865 for (j = 0; j < pi->nqsets; j++, q++) { 866 if (adap->msi_idx > 0) 867 adap->msi_idx++; 868 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 869 adap->msi_idx, &q->fl, 870 t4_ethrx_handler, 871 NULL, 872 t4_get_mps_bg_map(adap, 873 pi->tx_chan)); 874 if (err) 875 goto freeout; 876 q->rspq.idx = j; 877 memset(&q->stats, 0, sizeof(q->stats)); 878 } 879 for (j = 0; j < pi->nqsets; j++, t++) { 880 err = t4_sge_alloc_eth_txq(adap, t, dev, 881 netdev_get_tx_queue(dev, j), 882 s->fw_evtq.cntxt_id); 883 if (err) 884 goto freeout; 885 } 886 } 887 888 for_each_port(adap, i) { 889 /* Note that cmplqid below is 0 if we don't 890 * have RDMA queues, and that's the right value. 891 */ 892 if (rxq_info) 893 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 894 895 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 896 s->fw_evtq.cntxt_id, cmplqid); 897 if (err) 898 goto freeout; 899 } 900 901 t4_write_reg(adap, is_t4(adap->params.chip) ? 902 MPS_TRC_RSS_CONTROL_A : 903 MPS_T5_TRC_RSS_CONTROL_A, 904 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 905 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 906 return 0; 907 freeout: 908 t4_free_sge_resources(adap); 909 return err; 910 } 911 912 /* 913 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 914 * The allocated memory is cleared. 915 */ 916 void *t4_alloc_mem(size_t size) 917 { 918 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 919 920 if (!p) 921 p = vzalloc(size); 922 return p; 923 } 924 925 /* 926 * Free memory allocated through alloc_mem(). 927 */ 928 void t4_free_mem(void *addr) 929 { 930 kvfree(addr); 931 } 932 933 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 934 void *accel_priv, select_queue_fallback_t fallback) 935 { 936 int txq; 937 938 #ifdef CONFIG_CHELSIO_T4_DCB 939 /* If a Data Center Bridging has been successfully negotiated on this 940 * link then we'll use the skb's priority to map it to a TX Queue. 941 * The skb's priority is determined via the VLAN Tag Priority Code 942 * Point field. 943 */ 944 if (cxgb4_dcb_enabled(dev)) { 945 u16 vlan_tci; 946 int err; 947 948 err = vlan_get_tag(skb, &vlan_tci); 949 if (unlikely(err)) { 950 if (net_ratelimit()) 951 netdev_warn(dev, 952 "TX Packet without VLAN Tag on DCB Link\n"); 953 txq = 0; 954 } else { 955 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 956 #ifdef CONFIG_CHELSIO_T4_FCOE 957 if (skb->protocol == htons(ETH_P_FCOE)) 958 txq = skb->priority & 0x7; 959 #endif /* CONFIG_CHELSIO_T4_FCOE */ 960 } 961 return txq; 962 } 963 #endif /* CONFIG_CHELSIO_T4_DCB */ 964 965 if (select_queue) { 966 txq = (skb_rx_queue_recorded(skb) 967 ? skb_get_rx_queue(skb) 968 : smp_processor_id()); 969 970 while (unlikely(txq >= dev->real_num_tx_queues)) 971 txq -= dev->real_num_tx_queues; 972 973 return txq; 974 } 975 976 return fallback(dev, skb) % dev->real_num_tx_queues; 977 } 978 979 static int closest_timer(const struct sge *s, int time) 980 { 981 int i, delta, match = 0, min_delta = INT_MAX; 982 983 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 984 delta = time - s->timer_val[i]; 985 if (delta < 0) 986 delta = -delta; 987 if (delta < min_delta) { 988 min_delta = delta; 989 match = i; 990 } 991 } 992 return match; 993 } 994 995 static int closest_thres(const struct sge *s, int thres) 996 { 997 int i, delta, match = 0, min_delta = INT_MAX; 998 999 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1000 delta = thres - s->counter_val[i]; 1001 if (delta < 0) 1002 delta = -delta; 1003 if (delta < min_delta) { 1004 min_delta = delta; 1005 match = i; 1006 } 1007 } 1008 return match; 1009 } 1010 1011 /** 1012 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1013 * @q: the Rx queue 1014 * @us: the hold-off time in us, or 0 to disable timer 1015 * @cnt: the hold-off packet count, or 0 to disable counter 1016 * 1017 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1018 * one of the two needs to be enabled for the queue to generate interrupts. 1019 */ 1020 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1021 unsigned int us, unsigned int cnt) 1022 { 1023 struct adapter *adap = q->adap; 1024 1025 if ((us | cnt) == 0) 1026 cnt = 1; 1027 1028 if (cnt) { 1029 int err; 1030 u32 v, new_idx; 1031 1032 new_idx = closest_thres(&adap->sge, cnt); 1033 if (q->desc && q->pktcnt_idx != new_idx) { 1034 /* the queue has already been created, update it */ 1035 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1036 FW_PARAMS_PARAM_X_V( 1037 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1038 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1039 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1040 &v, &new_idx); 1041 if (err) 1042 return err; 1043 } 1044 q->pktcnt_idx = new_idx; 1045 } 1046 1047 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1048 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1049 return 0; 1050 } 1051 1052 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1053 { 1054 const struct port_info *pi = netdev_priv(dev); 1055 netdev_features_t changed = dev->features ^ features; 1056 int err; 1057 1058 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1059 return 0; 1060 1061 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1062 -1, -1, -1, 1063 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1064 if (unlikely(err)) 1065 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1066 return err; 1067 } 1068 1069 static int setup_debugfs(struct adapter *adap) 1070 { 1071 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1072 return -1; 1073 1074 #ifdef CONFIG_DEBUG_FS 1075 t4_setup_debugfs(adap); 1076 #endif 1077 return 0; 1078 } 1079 1080 /* 1081 * upper-layer driver support 1082 */ 1083 1084 /* 1085 * Allocate an active-open TID and set it to the supplied value. 1086 */ 1087 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1088 { 1089 int atid = -1; 1090 1091 spin_lock_bh(&t->atid_lock); 1092 if (t->afree) { 1093 union aopen_entry *p = t->afree; 1094 1095 atid = (p - t->atid_tab) + t->atid_base; 1096 t->afree = p->next; 1097 p->data = data; 1098 t->atids_in_use++; 1099 } 1100 spin_unlock_bh(&t->atid_lock); 1101 return atid; 1102 } 1103 EXPORT_SYMBOL(cxgb4_alloc_atid); 1104 1105 /* 1106 * Release an active-open TID. 1107 */ 1108 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1109 { 1110 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1111 1112 spin_lock_bh(&t->atid_lock); 1113 p->next = t->afree; 1114 t->afree = p; 1115 t->atids_in_use--; 1116 spin_unlock_bh(&t->atid_lock); 1117 } 1118 EXPORT_SYMBOL(cxgb4_free_atid); 1119 1120 /* 1121 * Allocate a server TID and set it to the supplied value. 1122 */ 1123 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1124 { 1125 int stid; 1126 1127 spin_lock_bh(&t->stid_lock); 1128 if (family == PF_INET) { 1129 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1130 if (stid < t->nstids) 1131 __set_bit(stid, t->stid_bmap); 1132 else 1133 stid = -1; 1134 } else { 1135 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1136 if (stid < 0) 1137 stid = -1; 1138 } 1139 if (stid >= 0) { 1140 t->stid_tab[stid].data = data; 1141 stid += t->stid_base; 1142 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1143 * This is equivalent to 4 TIDs. With CLIP enabled it 1144 * needs 2 TIDs. 1145 */ 1146 if (family == PF_INET) 1147 t->stids_in_use++; 1148 else 1149 t->stids_in_use += 2; 1150 } 1151 spin_unlock_bh(&t->stid_lock); 1152 return stid; 1153 } 1154 EXPORT_SYMBOL(cxgb4_alloc_stid); 1155 1156 /* Allocate a server filter TID and set it to the supplied value. 1157 */ 1158 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1159 { 1160 int stid; 1161 1162 spin_lock_bh(&t->stid_lock); 1163 if (family == PF_INET) { 1164 stid = find_next_zero_bit(t->stid_bmap, 1165 t->nstids + t->nsftids, t->nstids); 1166 if (stid < (t->nstids + t->nsftids)) 1167 __set_bit(stid, t->stid_bmap); 1168 else 1169 stid = -1; 1170 } else { 1171 stid = -1; 1172 } 1173 if (stid >= 0) { 1174 t->stid_tab[stid].data = data; 1175 stid -= t->nstids; 1176 stid += t->sftid_base; 1177 t->sftids_in_use++; 1178 } 1179 spin_unlock_bh(&t->stid_lock); 1180 return stid; 1181 } 1182 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1183 1184 /* Release a server TID. 1185 */ 1186 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1187 { 1188 /* Is it a server filter TID? */ 1189 if (t->nsftids && (stid >= t->sftid_base)) { 1190 stid -= t->sftid_base; 1191 stid += t->nstids; 1192 } else { 1193 stid -= t->stid_base; 1194 } 1195 1196 spin_lock_bh(&t->stid_lock); 1197 if (family == PF_INET) 1198 __clear_bit(stid, t->stid_bmap); 1199 else 1200 bitmap_release_region(t->stid_bmap, stid, 1); 1201 t->stid_tab[stid].data = NULL; 1202 if (stid < t->nstids) { 1203 if (family == PF_INET) 1204 t->stids_in_use--; 1205 else 1206 t->stids_in_use -= 2; 1207 } else { 1208 t->sftids_in_use--; 1209 } 1210 spin_unlock_bh(&t->stid_lock); 1211 } 1212 EXPORT_SYMBOL(cxgb4_free_stid); 1213 1214 /* 1215 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1216 */ 1217 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1218 unsigned int tid) 1219 { 1220 struct cpl_tid_release *req; 1221 1222 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1223 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 1224 INIT_TP_WR(req, tid); 1225 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1226 } 1227 1228 /* 1229 * Queue a TID release request and if necessary schedule a work queue to 1230 * process it. 1231 */ 1232 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1233 unsigned int tid) 1234 { 1235 void **p = &t->tid_tab[tid]; 1236 struct adapter *adap = container_of(t, struct adapter, tids); 1237 1238 spin_lock_bh(&adap->tid_release_lock); 1239 *p = adap->tid_release_head; 1240 /* Low 2 bits encode the Tx channel number */ 1241 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1242 if (!adap->tid_release_task_busy) { 1243 adap->tid_release_task_busy = true; 1244 queue_work(adap->workq, &adap->tid_release_task); 1245 } 1246 spin_unlock_bh(&adap->tid_release_lock); 1247 } 1248 1249 /* 1250 * Process the list of pending TID release requests. 1251 */ 1252 static void process_tid_release_list(struct work_struct *work) 1253 { 1254 struct sk_buff *skb; 1255 struct adapter *adap; 1256 1257 adap = container_of(work, struct adapter, tid_release_task); 1258 1259 spin_lock_bh(&adap->tid_release_lock); 1260 while (adap->tid_release_head) { 1261 void **p = adap->tid_release_head; 1262 unsigned int chan = (uintptr_t)p & 3; 1263 p = (void *)p - chan; 1264 1265 adap->tid_release_head = *p; 1266 *p = NULL; 1267 spin_unlock_bh(&adap->tid_release_lock); 1268 1269 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1270 GFP_KERNEL))) 1271 schedule_timeout_uninterruptible(1); 1272 1273 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1274 t4_ofld_send(adap, skb); 1275 spin_lock_bh(&adap->tid_release_lock); 1276 } 1277 adap->tid_release_task_busy = false; 1278 spin_unlock_bh(&adap->tid_release_lock); 1279 } 1280 1281 /* 1282 * Release a TID and inform HW. If we are unable to allocate the release 1283 * message we defer to a work queue. 1284 */ 1285 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) 1286 { 1287 struct sk_buff *skb; 1288 struct adapter *adap = container_of(t, struct adapter, tids); 1289 1290 WARN_ON(tid >= t->ntids); 1291 1292 if (t->tid_tab[tid]) { 1293 t->tid_tab[tid] = NULL; 1294 if (t->hash_base && (tid >= t->hash_base)) 1295 atomic_dec(&t->hash_tids_in_use); 1296 else 1297 atomic_dec(&t->tids_in_use); 1298 } 1299 1300 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1301 if (likely(skb)) { 1302 mk_tid_release(skb, chan, tid); 1303 t4_ofld_send(adap, skb); 1304 } else 1305 cxgb4_queue_tid_release(t, chan, tid); 1306 } 1307 EXPORT_SYMBOL(cxgb4_remove_tid); 1308 1309 /* 1310 * Allocate and initialize the TID tables. Returns 0 on success. 1311 */ 1312 static int tid_init(struct tid_info *t) 1313 { 1314 struct adapter *adap = container_of(t, struct adapter, tids); 1315 unsigned int max_ftids = t->nftids + t->nsftids; 1316 unsigned int natids = t->natids; 1317 unsigned int stid_bmap_size; 1318 unsigned int ftid_bmap_size; 1319 size_t size; 1320 1321 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1322 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1323 size = t->ntids * sizeof(*t->tid_tab) + 1324 natids * sizeof(*t->atid_tab) + 1325 t->nstids * sizeof(*t->stid_tab) + 1326 t->nsftids * sizeof(*t->stid_tab) + 1327 stid_bmap_size * sizeof(long) + 1328 max_ftids * sizeof(*t->ftid_tab) + 1329 ftid_bmap_size * sizeof(long); 1330 1331 t->tid_tab = t4_alloc_mem(size); 1332 if (!t->tid_tab) 1333 return -ENOMEM; 1334 1335 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1336 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1337 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1338 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1339 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1340 spin_lock_init(&t->stid_lock); 1341 spin_lock_init(&t->atid_lock); 1342 spin_lock_init(&t->ftid_lock); 1343 1344 t->stids_in_use = 0; 1345 t->sftids_in_use = 0; 1346 t->afree = NULL; 1347 t->atids_in_use = 0; 1348 atomic_set(&t->tids_in_use, 0); 1349 atomic_set(&t->hash_tids_in_use, 0); 1350 1351 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1352 if (natids) { 1353 while (--natids) 1354 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1355 t->afree = t->atid_tab; 1356 } 1357 1358 if (is_offload(adap)) { 1359 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1360 /* Reserve stid 0 for T4/T5 adapters */ 1361 if (!t->stid_base && 1362 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1363 __set_bit(0, t->stid_bmap); 1364 } 1365 1366 bitmap_zero(t->ftid_bmap, t->nftids); 1367 return 0; 1368 } 1369 1370 /** 1371 * cxgb4_create_server - create an IP server 1372 * @dev: the device 1373 * @stid: the server TID 1374 * @sip: local IP address to bind server to 1375 * @sport: the server's TCP port 1376 * @queue: queue to direct messages from this server to 1377 * 1378 * Create an IP server for the given port and address. 1379 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1380 */ 1381 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1382 __be32 sip, __be16 sport, __be16 vlan, 1383 unsigned int queue) 1384 { 1385 unsigned int chan; 1386 struct sk_buff *skb; 1387 struct adapter *adap; 1388 struct cpl_pass_open_req *req; 1389 int ret; 1390 1391 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1392 if (!skb) 1393 return -ENOMEM; 1394 1395 adap = netdev2adap(dev); 1396 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); 1397 INIT_TP_WR(req, 0); 1398 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1399 req->local_port = sport; 1400 req->peer_port = htons(0); 1401 req->local_ip = sip; 1402 req->peer_ip = htonl(0); 1403 chan = rxq_to_chan(&adap->sge, queue); 1404 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1405 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1406 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1407 ret = t4_mgmt_tx(adap, skb); 1408 return net_xmit_eval(ret); 1409 } 1410 EXPORT_SYMBOL(cxgb4_create_server); 1411 1412 /* cxgb4_create_server6 - create an IPv6 server 1413 * @dev: the device 1414 * @stid: the server TID 1415 * @sip: local IPv6 address to bind server to 1416 * @sport: the server's TCP port 1417 * @queue: queue to direct messages from this server to 1418 * 1419 * Create an IPv6 server for the given port and address. 1420 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1421 */ 1422 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1423 const struct in6_addr *sip, __be16 sport, 1424 unsigned int queue) 1425 { 1426 unsigned int chan; 1427 struct sk_buff *skb; 1428 struct adapter *adap; 1429 struct cpl_pass_open_req6 *req; 1430 int ret; 1431 1432 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1433 if (!skb) 1434 return -ENOMEM; 1435 1436 adap = netdev2adap(dev); 1437 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req)); 1438 INIT_TP_WR(req, 0); 1439 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1440 req->local_port = sport; 1441 req->peer_port = htons(0); 1442 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1443 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1444 req->peer_ip_hi = cpu_to_be64(0); 1445 req->peer_ip_lo = cpu_to_be64(0); 1446 chan = rxq_to_chan(&adap->sge, queue); 1447 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1448 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1449 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1450 ret = t4_mgmt_tx(adap, skb); 1451 return net_xmit_eval(ret); 1452 } 1453 EXPORT_SYMBOL(cxgb4_create_server6); 1454 1455 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1456 unsigned int queue, bool ipv6) 1457 { 1458 struct sk_buff *skb; 1459 struct adapter *adap; 1460 struct cpl_close_listsvr_req *req; 1461 int ret; 1462 1463 adap = netdev2adap(dev); 1464 1465 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1466 if (!skb) 1467 return -ENOMEM; 1468 1469 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req)); 1470 INIT_TP_WR(req, 0); 1471 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1472 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1473 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1474 ret = t4_mgmt_tx(adap, skb); 1475 return net_xmit_eval(ret); 1476 } 1477 EXPORT_SYMBOL(cxgb4_remove_server); 1478 1479 /** 1480 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1481 * @mtus: the HW MTU table 1482 * @mtu: the target MTU 1483 * @idx: index of selected entry in the MTU table 1484 * 1485 * Returns the index and the value in the HW MTU table that is closest to 1486 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1487 * table, in which case that smallest available value is selected. 1488 */ 1489 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1490 unsigned int *idx) 1491 { 1492 unsigned int i = 0; 1493 1494 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1495 ++i; 1496 if (idx) 1497 *idx = i; 1498 return mtus[i]; 1499 } 1500 EXPORT_SYMBOL(cxgb4_best_mtu); 1501 1502 /** 1503 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1504 * @mtus: the HW MTU table 1505 * @header_size: Header Size 1506 * @data_size_max: maximum Data Segment Size 1507 * @data_size_align: desired Data Segment Size Alignment (2^N) 1508 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1509 * 1510 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1511 * MTU Table based solely on a Maximum MTU parameter, we break that 1512 * parameter up into a Header Size and Maximum Data Segment Size, and 1513 * provide a desired Data Segment Size Alignment. If we find an MTU in 1514 * the Hardware MTU Table which will result in a Data Segment Size with 1515 * the requested alignment _and_ that MTU isn't "too far" from the 1516 * closest MTU, then we'll return that rather than the closest MTU. 1517 */ 1518 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1519 unsigned short header_size, 1520 unsigned short data_size_max, 1521 unsigned short data_size_align, 1522 unsigned int *mtu_idxp) 1523 { 1524 unsigned short max_mtu = header_size + data_size_max; 1525 unsigned short data_size_align_mask = data_size_align - 1; 1526 int mtu_idx, aligned_mtu_idx; 1527 1528 /* Scan the MTU Table till we find an MTU which is larger than our 1529 * Maximum MTU or we reach the end of the table. Along the way, 1530 * record the last MTU found, if any, which will result in a Data 1531 * Segment Length matching the requested alignment. 1532 */ 1533 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1534 unsigned short data_size = mtus[mtu_idx] - header_size; 1535 1536 /* If this MTU minus the Header Size would result in a 1537 * Data Segment Size of the desired alignment, remember it. 1538 */ 1539 if ((data_size & data_size_align_mask) == 0) 1540 aligned_mtu_idx = mtu_idx; 1541 1542 /* If we're not at the end of the Hardware MTU Table and the 1543 * next element is larger than our Maximum MTU, drop out of 1544 * the loop. 1545 */ 1546 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1547 break; 1548 } 1549 1550 /* If we fell out of the loop because we ran to the end of the table, 1551 * then we just have to use the last [largest] entry. 1552 */ 1553 if (mtu_idx == NMTUS) 1554 mtu_idx--; 1555 1556 /* If we found an MTU which resulted in the requested Data Segment 1557 * Length alignment and that's "not far" from the largest MTU which is 1558 * less than or equal to the maximum MTU, then use that. 1559 */ 1560 if (aligned_mtu_idx >= 0 && 1561 mtu_idx - aligned_mtu_idx <= 1) 1562 mtu_idx = aligned_mtu_idx; 1563 1564 /* If the caller has passed in an MTU Index pointer, pass the 1565 * MTU Index back. Return the MTU value. 1566 */ 1567 if (mtu_idxp) 1568 *mtu_idxp = mtu_idx; 1569 return mtus[mtu_idx]; 1570 } 1571 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1572 1573 /** 1574 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1575 * @chip: chip type 1576 * @viid: VI id of the given port 1577 * 1578 * Return the SMT index for this VI. 1579 */ 1580 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1581 { 1582 /* In T4/T5, SMT contains 256 SMAC entries organized in 1583 * 128 rows of 2 entries each. 1584 * In T6, SMT contains 256 SMAC entries in 256 rows. 1585 * TODO: The below code needs to be updated when we add support 1586 * for 256 VFs. 1587 */ 1588 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1589 return ((viid & 0x7f) << 1); 1590 else 1591 return (viid & 0x7f); 1592 } 1593 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1594 1595 /** 1596 * cxgb4_port_chan - get the HW channel of a port 1597 * @dev: the net device for the port 1598 * 1599 * Return the HW Tx channel of the given port. 1600 */ 1601 unsigned int cxgb4_port_chan(const struct net_device *dev) 1602 { 1603 return netdev2pinfo(dev)->tx_chan; 1604 } 1605 EXPORT_SYMBOL(cxgb4_port_chan); 1606 1607 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1608 { 1609 struct adapter *adap = netdev2adap(dev); 1610 u32 v1, v2, lp_count, hp_count; 1611 1612 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1613 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1614 if (is_t4(adap->params.chip)) { 1615 lp_count = LP_COUNT_G(v1); 1616 hp_count = HP_COUNT_G(v1); 1617 } else { 1618 lp_count = LP_COUNT_T5_G(v1); 1619 hp_count = HP_COUNT_T5_G(v2); 1620 } 1621 return lpfifo ? lp_count : hp_count; 1622 } 1623 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1624 1625 /** 1626 * cxgb4_port_viid - get the VI id of a port 1627 * @dev: the net device for the port 1628 * 1629 * Return the VI id of the given port. 1630 */ 1631 unsigned int cxgb4_port_viid(const struct net_device *dev) 1632 { 1633 return netdev2pinfo(dev)->viid; 1634 } 1635 EXPORT_SYMBOL(cxgb4_port_viid); 1636 1637 /** 1638 * cxgb4_port_idx - get the index of a port 1639 * @dev: the net device for the port 1640 * 1641 * Return the index of the given port. 1642 */ 1643 unsigned int cxgb4_port_idx(const struct net_device *dev) 1644 { 1645 return netdev2pinfo(dev)->port_id; 1646 } 1647 EXPORT_SYMBOL(cxgb4_port_idx); 1648 1649 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1650 struct tp_tcp_stats *v6) 1651 { 1652 struct adapter *adap = pci_get_drvdata(pdev); 1653 1654 spin_lock(&adap->stats_lock); 1655 t4_tp_get_tcp_stats(adap, v4, v6); 1656 spin_unlock(&adap->stats_lock); 1657 } 1658 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1659 1660 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1661 const unsigned int *pgsz_order) 1662 { 1663 struct adapter *adap = netdev2adap(dev); 1664 1665 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1666 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1667 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1668 HPZ3_V(pgsz_order[3])); 1669 } 1670 EXPORT_SYMBOL(cxgb4_iscsi_init); 1671 1672 int cxgb4_flush_eq_cache(struct net_device *dev) 1673 { 1674 struct adapter *adap = netdev2adap(dev); 1675 1676 return t4_sge_ctxt_flush(adap, adap->mbox); 1677 } 1678 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1679 1680 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1681 { 1682 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1683 __be64 indices; 1684 int ret; 1685 1686 spin_lock(&adap->win0_lock); 1687 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1688 sizeof(indices), (__be32 *)&indices, 1689 T4_MEMORY_READ); 1690 spin_unlock(&adap->win0_lock); 1691 if (!ret) { 1692 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1693 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1694 } 1695 return ret; 1696 } 1697 1698 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1699 u16 size) 1700 { 1701 struct adapter *adap = netdev2adap(dev); 1702 u16 hw_pidx, hw_cidx; 1703 int ret; 1704 1705 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1706 if (ret) 1707 goto out; 1708 1709 if (pidx != hw_pidx) { 1710 u16 delta; 1711 u32 val; 1712 1713 if (pidx >= hw_pidx) 1714 delta = pidx - hw_pidx; 1715 else 1716 delta = size - hw_pidx + pidx; 1717 1718 if (is_t4(adap->params.chip)) 1719 val = PIDX_V(delta); 1720 else 1721 val = PIDX_T5_V(delta); 1722 wmb(); 1723 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1724 QID_V(qid) | val); 1725 } 1726 out: 1727 return ret; 1728 } 1729 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1730 1731 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1732 { 1733 struct adapter *adap; 1734 u32 offset, memtype, memaddr; 1735 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1736 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1737 int ret; 1738 1739 adap = netdev2adap(dev); 1740 1741 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1742 1743 /* Figure out where the offset lands in the Memory Type/Address scheme. 1744 * This code assumes that the memory is laid out starting at offset 0 1745 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1746 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1747 * MC0, and some have both MC0 and MC1. 1748 */ 1749 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1750 edc0_size = EDRAM0_SIZE_G(size) << 20; 1751 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1752 edc1_size = EDRAM1_SIZE_G(size) << 20; 1753 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1754 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1755 1756 edc0_end = edc0_size; 1757 edc1_end = edc0_end + edc1_size; 1758 mc0_end = edc1_end + mc0_size; 1759 1760 if (offset < edc0_end) { 1761 memtype = MEM_EDC0; 1762 memaddr = offset; 1763 } else if (offset < edc1_end) { 1764 memtype = MEM_EDC1; 1765 memaddr = offset - edc0_end; 1766 } else { 1767 if (offset < mc0_end) { 1768 memtype = MEM_MC0; 1769 memaddr = offset - edc1_end; 1770 } else if (is_t5(adap->params.chip)) { 1771 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1772 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1773 mc1_end = mc0_end + mc1_size; 1774 if (offset < mc1_end) { 1775 memtype = MEM_MC1; 1776 memaddr = offset - mc0_end; 1777 } else { 1778 /* offset beyond the end of any memory */ 1779 goto err; 1780 } 1781 } else { 1782 /* T4/T6 only has a single memory channel */ 1783 goto err; 1784 } 1785 } 1786 1787 spin_lock(&adap->win0_lock); 1788 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1789 spin_unlock(&adap->win0_lock); 1790 return ret; 1791 1792 err: 1793 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1794 stag, offset); 1795 return -EINVAL; 1796 } 1797 EXPORT_SYMBOL(cxgb4_read_tpte); 1798 1799 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1800 { 1801 u32 hi, lo; 1802 struct adapter *adap; 1803 1804 adap = netdev2adap(dev); 1805 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1806 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1807 1808 return ((u64)hi << 32) | (u64)lo; 1809 } 1810 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1811 1812 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1813 unsigned int qid, 1814 enum cxgb4_bar2_qtype qtype, 1815 int user, 1816 u64 *pbar2_qoffset, 1817 unsigned int *pbar2_qid) 1818 { 1819 return t4_bar2_sge_qregs(netdev2adap(dev), 1820 qid, 1821 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1822 ? T4_BAR2_QTYPE_EGRESS 1823 : T4_BAR2_QTYPE_INGRESS), 1824 user, 1825 pbar2_qoffset, 1826 pbar2_qid); 1827 } 1828 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1829 1830 static struct pci_driver cxgb4_driver; 1831 1832 static void check_neigh_update(struct neighbour *neigh) 1833 { 1834 const struct device *parent; 1835 const struct net_device *netdev = neigh->dev; 1836 1837 if (netdev->priv_flags & IFF_802_1Q_VLAN) 1838 netdev = vlan_dev_real_dev(netdev); 1839 parent = netdev->dev.parent; 1840 if (parent && parent->driver == &cxgb4_driver.driver) 1841 t4_l2t_update(dev_get_drvdata(parent), neigh); 1842 } 1843 1844 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1845 void *data) 1846 { 1847 switch (event) { 1848 case NETEVENT_NEIGH_UPDATE: 1849 check_neigh_update(data); 1850 break; 1851 case NETEVENT_REDIRECT: 1852 default: 1853 break; 1854 } 1855 return 0; 1856 } 1857 1858 static bool netevent_registered; 1859 static struct notifier_block cxgb4_netevent_nb = { 1860 .notifier_call = netevent_cb 1861 }; 1862 1863 static void drain_db_fifo(struct adapter *adap, int usecs) 1864 { 1865 u32 v1, v2, lp_count, hp_count; 1866 1867 do { 1868 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1869 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1870 if (is_t4(adap->params.chip)) { 1871 lp_count = LP_COUNT_G(v1); 1872 hp_count = HP_COUNT_G(v1); 1873 } else { 1874 lp_count = LP_COUNT_T5_G(v1); 1875 hp_count = HP_COUNT_T5_G(v2); 1876 } 1877 1878 if (lp_count == 0 && hp_count == 0) 1879 break; 1880 set_current_state(TASK_UNINTERRUPTIBLE); 1881 schedule_timeout(usecs_to_jiffies(usecs)); 1882 } while (1); 1883 } 1884 1885 static void disable_txq_db(struct sge_txq *q) 1886 { 1887 unsigned long flags; 1888 1889 spin_lock_irqsave(&q->db_lock, flags); 1890 q->db_disabled = 1; 1891 spin_unlock_irqrestore(&q->db_lock, flags); 1892 } 1893 1894 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1895 { 1896 spin_lock_irq(&q->db_lock); 1897 if (q->db_pidx_inc) { 1898 /* Make sure that all writes to the TX descriptors 1899 * are committed before we tell HW about them. 1900 */ 1901 wmb(); 1902 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1903 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1904 q->db_pidx_inc = 0; 1905 } 1906 q->db_disabled = 0; 1907 spin_unlock_irq(&q->db_lock); 1908 } 1909 1910 static void disable_dbs(struct adapter *adap) 1911 { 1912 int i; 1913 1914 for_each_ethrxq(&adap->sge, i) 1915 disable_txq_db(&adap->sge.ethtxq[i].q); 1916 if (is_offload(adap)) { 1917 struct sge_uld_txq_info *txq_info = 1918 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1919 1920 if (txq_info) { 1921 for_each_ofldtxq(&adap->sge, i) { 1922 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1923 1924 disable_txq_db(&txq->q); 1925 } 1926 } 1927 } 1928 for_each_port(adap, i) 1929 disable_txq_db(&adap->sge.ctrlq[i].q); 1930 } 1931 1932 static void enable_dbs(struct adapter *adap) 1933 { 1934 int i; 1935 1936 for_each_ethrxq(&adap->sge, i) 1937 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1938 if (is_offload(adap)) { 1939 struct sge_uld_txq_info *txq_info = 1940 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1941 1942 if (txq_info) { 1943 for_each_ofldtxq(&adap->sge, i) { 1944 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1945 1946 enable_txq_db(adap, &txq->q); 1947 } 1948 } 1949 } 1950 for_each_port(adap, i) 1951 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 1952 } 1953 1954 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 1955 { 1956 enum cxgb4_uld type = CXGB4_ULD_RDMA; 1957 1958 if (adap->uld && adap->uld[type].handle) 1959 adap->uld[type].control(adap->uld[type].handle, cmd); 1960 } 1961 1962 static void process_db_full(struct work_struct *work) 1963 { 1964 struct adapter *adap; 1965 1966 adap = container_of(work, struct adapter, db_full_task); 1967 1968 drain_db_fifo(adap, dbfifo_drain_delay); 1969 enable_dbs(adap); 1970 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 1971 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1972 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1973 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 1974 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 1975 else 1976 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1977 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 1978 } 1979 1980 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 1981 { 1982 u16 hw_pidx, hw_cidx; 1983 int ret; 1984 1985 spin_lock_irq(&q->db_lock); 1986 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 1987 if (ret) 1988 goto out; 1989 if (q->db_pidx != hw_pidx) { 1990 u16 delta; 1991 u32 val; 1992 1993 if (q->db_pidx >= hw_pidx) 1994 delta = q->db_pidx - hw_pidx; 1995 else 1996 delta = q->size - hw_pidx + q->db_pidx; 1997 1998 if (is_t4(adap->params.chip)) 1999 val = PIDX_V(delta); 2000 else 2001 val = PIDX_T5_V(delta); 2002 wmb(); 2003 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2004 QID_V(q->cntxt_id) | val); 2005 } 2006 out: 2007 q->db_disabled = 0; 2008 q->db_pidx_inc = 0; 2009 spin_unlock_irq(&q->db_lock); 2010 if (ret) 2011 CH_WARN(adap, "DB drop recovery failed.\n"); 2012 } 2013 2014 static void recover_all_queues(struct adapter *adap) 2015 { 2016 int i; 2017 2018 for_each_ethrxq(&adap->sge, i) 2019 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2020 if (is_offload(adap)) { 2021 struct sge_uld_txq_info *txq_info = 2022 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2023 if (txq_info) { 2024 for_each_ofldtxq(&adap->sge, i) { 2025 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2026 2027 sync_txq_pidx(adap, &txq->q); 2028 } 2029 } 2030 } 2031 for_each_port(adap, i) 2032 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2033 } 2034 2035 static void process_db_drop(struct work_struct *work) 2036 { 2037 struct adapter *adap; 2038 2039 adap = container_of(work, struct adapter, db_drop_task); 2040 2041 if (is_t4(adap->params.chip)) { 2042 drain_db_fifo(adap, dbfifo_drain_delay); 2043 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2044 drain_db_fifo(adap, dbfifo_drain_delay); 2045 recover_all_queues(adap); 2046 drain_db_fifo(adap, dbfifo_drain_delay); 2047 enable_dbs(adap); 2048 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2049 } else if (is_t5(adap->params.chip)) { 2050 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2051 u16 qid = (dropped_db >> 15) & 0x1ffff; 2052 u16 pidx_inc = dropped_db & 0x1fff; 2053 u64 bar2_qoffset; 2054 unsigned int bar2_qid; 2055 int ret; 2056 2057 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2058 0, &bar2_qoffset, &bar2_qid); 2059 if (ret) 2060 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2061 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2062 else 2063 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2064 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2065 2066 /* Re-enable BAR2 WC */ 2067 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2068 } 2069 2070 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2071 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2072 } 2073 2074 void t4_db_full(struct adapter *adap) 2075 { 2076 if (is_t4(adap->params.chip)) { 2077 disable_dbs(adap); 2078 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2079 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2080 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2081 queue_work(adap->workq, &adap->db_full_task); 2082 } 2083 } 2084 2085 void t4_db_dropped(struct adapter *adap) 2086 { 2087 if (is_t4(adap->params.chip)) { 2088 disable_dbs(adap); 2089 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2090 } 2091 queue_work(adap->workq, &adap->db_drop_task); 2092 } 2093 2094 void t4_register_netevent_notifier(void) 2095 { 2096 if (!netevent_registered) { 2097 register_netevent_notifier(&cxgb4_netevent_nb); 2098 netevent_registered = true; 2099 } 2100 } 2101 2102 static void detach_ulds(struct adapter *adap) 2103 { 2104 unsigned int i; 2105 2106 mutex_lock(&uld_mutex); 2107 list_del(&adap->list_node); 2108 for (i = 0; i < CXGB4_ULD_MAX; i++) 2109 if (adap->uld && adap->uld[i].handle) { 2110 adap->uld[i].state_change(adap->uld[i].handle, 2111 CXGB4_STATE_DETACH); 2112 adap->uld[i].handle = NULL; 2113 } 2114 if (netevent_registered && list_empty(&adapter_list)) { 2115 unregister_netevent_notifier(&cxgb4_netevent_nb); 2116 netevent_registered = false; 2117 } 2118 mutex_unlock(&uld_mutex); 2119 } 2120 2121 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2122 { 2123 unsigned int i; 2124 2125 mutex_lock(&uld_mutex); 2126 for (i = 0; i < CXGB4_ULD_MAX; i++) 2127 if (adap->uld && adap->uld[i].handle) 2128 adap->uld[i].state_change(adap->uld[i].handle, 2129 new_state); 2130 mutex_unlock(&uld_mutex); 2131 } 2132 2133 #if IS_ENABLED(CONFIG_IPV6) 2134 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2135 unsigned long event, void *data) 2136 { 2137 struct inet6_ifaddr *ifa = data; 2138 struct net_device *event_dev = ifa->idev->dev; 2139 const struct device *parent = NULL; 2140 #if IS_ENABLED(CONFIG_BONDING) 2141 struct adapter *adap; 2142 #endif 2143 if (event_dev->priv_flags & IFF_802_1Q_VLAN) 2144 event_dev = vlan_dev_real_dev(event_dev); 2145 #if IS_ENABLED(CONFIG_BONDING) 2146 if (event_dev->flags & IFF_MASTER) { 2147 list_for_each_entry(adap, &adapter_list, list_node) { 2148 switch (event) { 2149 case NETDEV_UP: 2150 cxgb4_clip_get(adap->port[0], 2151 (const u32 *)ifa, 1); 2152 break; 2153 case NETDEV_DOWN: 2154 cxgb4_clip_release(adap->port[0], 2155 (const u32 *)ifa, 1); 2156 break; 2157 default: 2158 break; 2159 } 2160 } 2161 return NOTIFY_OK; 2162 } 2163 #endif 2164 2165 if (event_dev) 2166 parent = event_dev->dev.parent; 2167 2168 if (parent && parent->driver == &cxgb4_driver.driver) { 2169 switch (event) { 2170 case NETDEV_UP: 2171 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2172 break; 2173 case NETDEV_DOWN: 2174 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2175 break; 2176 default: 2177 break; 2178 } 2179 } 2180 return NOTIFY_OK; 2181 } 2182 2183 static bool inet6addr_registered; 2184 static struct notifier_block cxgb4_inet6addr_notifier = { 2185 .notifier_call = cxgb4_inet6addr_handler 2186 }; 2187 2188 static void update_clip(const struct adapter *adap) 2189 { 2190 int i; 2191 struct net_device *dev; 2192 int ret; 2193 2194 rcu_read_lock(); 2195 2196 for (i = 0; i < MAX_NPORTS; i++) { 2197 dev = adap->port[i]; 2198 ret = 0; 2199 2200 if (dev) 2201 ret = cxgb4_update_root_dev_clip(dev); 2202 2203 if (ret < 0) 2204 break; 2205 } 2206 rcu_read_unlock(); 2207 } 2208 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2209 2210 /** 2211 * cxgb_up - enable the adapter 2212 * @adap: adapter being enabled 2213 * 2214 * Called when the first port is enabled, this function performs the 2215 * actions necessary to make an adapter operational, such as completing 2216 * the initialization of HW modules, and enabling interrupts. 2217 * 2218 * Must be called with the rtnl lock held. 2219 */ 2220 static int cxgb_up(struct adapter *adap) 2221 { 2222 int err; 2223 2224 err = setup_sge_queues(adap); 2225 if (err) 2226 goto out; 2227 err = setup_rss(adap); 2228 if (err) 2229 goto freeq; 2230 2231 if (adap->flags & USING_MSIX) { 2232 name_msix_vecs(adap); 2233 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2234 adap->msix_info[0].desc, adap); 2235 if (err) 2236 goto irq_err; 2237 err = request_msix_queue_irqs(adap); 2238 if (err) { 2239 free_irq(adap->msix_info[0].vec, adap); 2240 goto irq_err; 2241 } 2242 } else { 2243 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2244 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2245 adap->port[0]->name, adap); 2246 if (err) 2247 goto irq_err; 2248 } 2249 enable_rx(adap); 2250 t4_sge_start(adap); 2251 t4_intr_enable(adap); 2252 adap->flags |= FULL_INIT_DONE; 2253 notify_ulds(adap, CXGB4_STATE_UP); 2254 #if IS_ENABLED(CONFIG_IPV6) 2255 update_clip(adap); 2256 #endif 2257 /* Initialize hash mac addr list*/ 2258 INIT_LIST_HEAD(&adap->mac_hlist); 2259 out: 2260 return err; 2261 irq_err: 2262 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2263 freeq: 2264 t4_free_sge_resources(adap); 2265 goto out; 2266 } 2267 2268 static void cxgb_down(struct adapter *adapter) 2269 { 2270 cancel_work_sync(&adapter->tid_release_task); 2271 cancel_work_sync(&adapter->db_full_task); 2272 cancel_work_sync(&adapter->db_drop_task); 2273 adapter->tid_release_task_busy = false; 2274 adapter->tid_release_head = NULL; 2275 2276 t4_sge_stop(adapter); 2277 t4_free_sge_resources(adapter); 2278 adapter->flags &= ~FULL_INIT_DONE; 2279 } 2280 2281 /* 2282 * net_device operations 2283 */ 2284 static int cxgb_open(struct net_device *dev) 2285 { 2286 int err; 2287 struct port_info *pi = netdev_priv(dev); 2288 struct adapter *adapter = pi->adapter; 2289 2290 netif_carrier_off(dev); 2291 2292 if (!(adapter->flags & FULL_INIT_DONE)) { 2293 err = cxgb_up(adapter); 2294 if (err < 0) 2295 return err; 2296 } 2297 2298 err = link_start(dev); 2299 if (!err) 2300 netif_tx_start_all_queues(dev); 2301 return err; 2302 } 2303 2304 static int cxgb_close(struct net_device *dev) 2305 { 2306 struct port_info *pi = netdev_priv(dev); 2307 struct adapter *adapter = pi->adapter; 2308 2309 netif_tx_stop_all_queues(dev); 2310 netif_carrier_off(dev); 2311 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false); 2312 } 2313 2314 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2315 __be32 sip, __be16 sport, __be16 vlan, 2316 unsigned int queue, unsigned char port, unsigned char mask) 2317 { 2318 int ret; 2319 struct filter_entry *f; 2320 struct adapter *adap; 2321 int i; 2322 u8 *val; 2323 2324 adap = netdev2adap(dev); 2325 2326 /* Adjust stid to correct filter index */ 2327 stid -= adap->tids.sftid_base; 2328 stid += adap->tids.nftids; 2329 2330 /* Check to make sure the filter requested is writable ... 2331 */ 2332 f = &adap->tids.ftid_tab[stid]; 2333 ret = writable_filter(f); 2334 if (ret) 2335 return ret; 2336 2337 /* Clear out any old resources being used by the filter before 2338 * we start constructing the new filter. 2339 */ 2340 if (f->valid) 2341 clear_filter(adap, f); 2342 2343 /* Clear out filter specifications */ 2344 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2345 f->fs.val.lport = cpu_to_be16(sport); 2346 f->fs.mask.lport = ~0; 2347 val = (u8 *)&sip; 2348 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2349 for (i = 0; i < 4; i++) { 2350 f->fs.val.lip[i] = val[i]; 2351 f->fs.mask.lip[i] = ~0; 2352 } 2353 if (adap->params.tp.vlan_pri_map & PORT_F) { 2354 f->fs.val.iport = port; 2355 f->fs.mask.iport = mask; 2356 } 2357 } 2358 2359 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2360 f->fs.val.proto = IPPROTO_TCP; 2361 f->fs.mask.proto = ~0; 2362 } 2363 2364 f->fs.dirsteer = 1; 2365 f->fs.iq = queue; 2366 /* Mark filter as locked */ 2367 f->locked = 1; 2368 f->fs.rpttid = 1; 2369 2370 ret = set_filter_wr(adap, stid); 2371 if (ret) { 2372 clear_filter(adap, f); 2373 return ret; 2374 } 2375 2376 return 0; 2377 } 2378 EXPORT_SYMBOL(cxgb4_create_server_filter); 2379 2380 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2381 unsigned int queue, bool ipv6) 2382 { 2383 struct filter_entry *f; 2384 struct adapter *adap; 2385 2386 adap = netdev2adap(dev); 2387 2388 /* Adjust stid to correct filter index */ 2389 stid -= adap->tids.sftid_base; 2390 stid += adap->tids.nftids; 2391 2392 f = &adap->tids.ftid_tab[stid]; 2393 /* Unlock the filter */ 2394 f->locked = 0; 2395 2396 return delete_filter(adap, stid); 2397 } 2398 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2399 2400 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev, 2401 struct rtnl_link_stats64 *ns) 2402 { 2403 struct port_stats stats; 2404 struct port_info *p = netdev_priv(dev); 2405 struct adapter *adapter = p->adapter; 2406 2407 /* Block retrieving statistics during EEH error 2408 * recovery. Otherwise, the recovery might fail 2409 * and the PCI device will be removed permanently 2410 */ 2411 spin_lock(&adapter->stats_lock); 2412 if (!netif_device_present(dev)) { 2413 spin_unlock(&adapter->stats_lock); 2414 return ns; 2415 } 2416 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2417 &p->stats_base); 2418 spin_unlock(&adapter->stats_lock); 2419 2420 ns->tx_bytes = stats.tx_octets; 2421 ns->tx_packets = stats.tx_frames; 2422 ns->rx_bytes = stats.rx_octets; 2423 ns->rx_packets = stats.rx_frames; 2424 ns->multicast = stats.rx_mcast_frames; 2425 2426 /* detailed rx_errors */ 2427 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2428 stats.rx_runt; 2429 ns->rx_over_errors = 0; 2430 ns->rx_crc_errors = stats.rx_fcs_err; 2431 ns->rx_frame_errors = stats.rx_symbol_err; 2432 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 + 2433 stats.rx_ovflow2 + stats.rx_ovflow3 + 2434 stats.rx_trunc0 + stats.rx_trunc1 + 2435 stats.rx_trunc2 + stats.rx_trunc3; 2436 ns->rx_missed_errors = 0; 2437 2438 /* detailed tx_errors */ 2439 ns->tx_aborted_errors = 0; 2440 ns->tx_carrier_errors = 0; 2441 ns->tx_fifo_errors = 0; 2442 ns->tx_heartbeat_errors = 0; 2443 ns->tx_window_errors = 0; 2444 2445 ns->tx_errors = stats.tx_error_frames; 2446 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2447 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2448 return ns; 2449 } 2450 2451 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2452 { 2453 unsigned int mbox; 2454 int ret = 0, prtad, devad; 2455 struct port_info *pi = netdev_priv(dev); 2456 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2457 2458 switch (cmd) { 2459 case SIOCGMIIPHY: 2460 if (pi->mdio_addr < 0) 2461 return -EOPNOTSUPP; 2462 data->phy_id = pi->mdio_addr; 2463 break; 2464 case SIOCGMIIREG: 2465 case SIOCSMIIREG: 2466 if (mdio_phy_id_is_c45(data->phy_id)) { 2467 prtad = mdio_phy_id_prtad(data->phy_id); 2468 devad = mdio_phy_id_devad(data->phy_id); 2469 } else if (data->phy_id < 32) { 2470 prtad = data->phy_id; 2471 devad = 0; 2472 data->reg_num &= 0x1f; 2473 } else 2474 return -EINVAL; 2475 2476 mbox = pi->adapter->pf; 2477 if (cmd == SIOCGMIIREG) 2478 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2479 data->reg_num, &data->val_out); 2480 else 2481 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2482 data->reg_num, data->val_in); 2483 break; 2484 case SIOCGHWTSTAMP: 2485 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2486 sizeof(pi->tstamp_config)) ? 2487 -EFAULT : 0; 2488 case SIOCSHWTSTAMP: 2489 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2490 sizeof(pi->tstamp_config))) 2491 return -EFAULT; 2492 2493 switch (pi->tstamp_config.rx_filter) { 2494 case HWTSTAMP_FILTER_NONE: 2495 pi->rxtstamp = false; 2496 break; 2497 case HWTSTAMP_FILTER_ALL: 2498 pi->rxtstamp = true; 2499 break; 2500 default: 2501 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 2502 return -ERANGE; 2503 } 2504 2505 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2506 sizeof(pi->tstamp_config)) ? 2507 -EFAULT : 0; 2508 default: 2509 return -EOPNOTSUPP; 2510 } 2511 return ret; 2512 } 2513 2514 static void cxgb_set_rxmode(struct net_device *dev) 2515 { 2516 /* unfortunately we can't return errors to the stack */ 2517 set_rxmode(dev, -1, false); 2518 } 2519 2520 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2521 { 2522 int ret; 2523 struct port_info *pi = netdev_priv(dev); 2524 2525 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2526 -1, -1, -1, true); 2527 if (!ret) 2528 dev->mtu = new_mtu; 2529 return ret; 2530 } 2531 2532 #ifdef CONFIG_PCI_IOV 2533 static int dummy_open(struct net_device *dev) 2534 { 2535 /* Turn carrier off since we don't have to transmit anything on this 2536 * interface. 2537 */ 2538 netif_carrier_off(dev); 2539 return 0; 2540 } 2541 2542 /* Fill MAC address that will be assigned by the FW */ 2543 static void fill_vf_station_mac_addr(struct adapter *adap) 2544 { 2545 unsigned int i; 2546 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2547 int err; 2548 u8 *na; 2549 u16 a, b; 2550 2551 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2552 if (!err) { 2553 na = adap->params.vpd.na; 2554 for (i = 0; i < ETH_ALEN; i++) 2555 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2556 hex2val(na[2 * i + 1])); 2557 a = (hw_addr[0] << 8) | hw_addr[1]; 2558 b = (hw_addr[1] << 8) | hw_addr[2]; 2559 a ^= b; 2560 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2561 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2562 macaddr[0] = a >> 8; 2563 macaddr[1] = a & 0xff; 2564 2565 for (i = 2; i < 5; i++) 2566 macaddr[i] = hw_addr[i + 1]; 2567 2568 for (i = 0; i < adap->num_vfs; i++) { 2569 macaddr[5] = adap->pf * 16 + i; 2570 ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr); 2571 } 2572 } 2573 } 2574 2575 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2576 { 2577 struct port_info *pi = netdev_priv(dev); 2578 struct adapter *adap = pi->adapter; 2579 int ret; 2580 2581 /* verify MAC addr is valid */ 2582 if (!is_valid_ether_addr(mac)) { 2583 dev_err(pi->adapter->pdev_dev, 2584 "Invalid Ethernet address %pM for VF %d\n", 2585 mac, vf); 2586 return -EINVAL; 2587 } 2588 2589 dev_info(pi->adapter->pdev_dev, 2590 "Setting MAC %pM on VF %d\n", mac, vf); 2591 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2592 if (!ret) 2593 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2594 return ret; 2595 } 2596 2597 static int cxgb_get_vf_config(struct net_device *dev, 2598 int vf, struct ifla_vf_info *ivi) 2599 { 2600 struct port_info *pi = netdev_priv(dev); 2601 struct adapter *adap = pi->adapter; 2602 2603 if (vf >= adap->num_vfs) 2604 return -EINVAL; 2605 ivi->vf = vf; 2606 ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr); 2607 return 0; 2608 } 2609 #endif 2610 2611 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2612 { 2613 int ret; 2614 struct sockaddr *addr = p; 2615 struct port_info *pi = netdev_priv(dev); 2616 2617 if (!is_valid_ether_addr(addr->sa_data)) 2618 return -EADDRNOTAVAIL; 2619 2620 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 2621 pi->xact_addr_filt, addr->sa_data, true, true); 2622 if (ret < 0) 2623 return ret; 2624 2625 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2626 pi->xact_addr_filt = ret; 2627 return 0; 2628 } 2629 2630 #ifdef CONFIG_NET_POLL_CONTROLLER 2631 static void cxgb_netpoll(struct net_device *dev) 2632 { 2633 struct port_info *pi = netdev_priv(dev); 2634 struct adapter *adap = pi->adapter; 2635 2636 if (adap->flags & USING_MSIX) { 2637 int i; 2638 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2639 2640 for (i = pi->nqsets; i; i--, rx++) 2641 t4_sge_intr_msix(0, &rx->rspq); 2642 } else 2643 t4_intr_handler(adap)(0, adap); 2644 } 2645 #endif 2646 2647 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2648 { 2649 struct port_info *pi = netdev_priv(dev); 2650 struct adapter *adap = pi->adapter; 2651 struct sched_class *e; 2652 struct ch_sched_params p; 2653 struct ch_sched_queue qe; 2654 u32 req_rate; 2655 int err = 0; 2656 2657 if (!can_sched(dev)) 2658 return -ENOTSUPP; 2659 2660 if (index < 0 || index > pi->nqsets - 1) 2661 return -EINVAL; 2662 2663 if (!(adap->flags & FULL_INIT_DONE)) { 2664 dev_err(adap->pdev_dev, 2665 "Failed to rate limit on queue %d. Link Down?\n", 2666 index); 2667 return -EINVAL; 2668 } 2669 2670 /* Convert from Mbps to Kbps */ 2671 req_rate = rate << 10; 2672 2673 /* Max rate is 10 Gbps */ 2674 if (req_rate >= SCHED_MAX_RATE_KBPS) { 2675 dev_err(adap->pdev_dev, 2676 "Invalid rate %u Mbps, Max rate is %u Gbps\n", 2677 rate, SCHED_MAX_RATE_KBPS); 2678 return -ERANGE; 2679 } 2680 2681 /* First unbind the queue from any existing class */ 2682 memset(&qe, 0, sizeof(qe)); 2683 qe.queue = index; 2684 qe.class = SCHED_CLS_NONE; 2685 2686 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 2687 if (err) { 2688 dev_err(adap->pdev_dev, 2689 "Unbinding Queue %d on port %d fail. Err: %d\n", 2690 index, pi->port_id, err); 2691 return err; 2692 } 2693 2694 /* Queue already unbound */ 2695 if (!req_rate) 2696 return 0; 2697 2698 /* Fetch any available unused or matching scheduling class */ 2699 memset(&p, 0, sizeof(p)); 2700 p.type = SCHED_CLASS_TYPE_PACKET; 2701 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 2702 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 2703 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 2704 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 2705 p.u.params.channel = pi->tx_chan; 2706 p.u.params.class = SCHED_CLS_NONE; 2707 p.u.params.minrate = 0; 2708 p.u.params.maxrate = req_rate; 2709 p.u.params.weight = 0; 2710 p.u.params.pktsize = dev->mtu; 2711 2712 e = cxgb4_sched_class_alloc(dev, &p); 2713 if (!e) 2714 return -ENOMEM; 2715 2716 /* Bind the queue to a scheduling class */ 2717 memset(&qe, 0, sizeof(qe)); 2718 qe.queue = index; 2719 qe.class = e->idx; 2720 2721 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 2722 if (err) 2723 dev_err(adap->pdev_dev, 2724 "Queue rate limiting failed. Err: %d\n", err); 2725 return err; 2726 } 2727 2728 static int cxgb_setup_tc(struct net_device *dev, u32 handle, __be16 proto, 2729 struct tc_to_netdev *tc) 2730 { 2731 struct port_info *pi = netdev2pinfo(dev); 2732 struct adapter *adap = netdev2adap(dev); 2733 2734 if (!(adap->flags & FULL_INIT_DONE)) { 2735 dev_err(adap->pdev_dev, 2736 "Failed to setup tc on port %d. Link Down?\n", 2737 pi->port_id); 2738 return -EINVAL; 2739 } 2740 2741 if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) && 2742 tc->type == TC_SETUP_CLSU32) { 2743 switch (tc->cls_u32->command) { 2744 case TC_CLSU32_NEW_KNODE: 2745 case TC_CLSU32_REPLACE_KNODE: 2746 return cxgb4_config_knode(dev, proto, tc->cls_u32); 2747 case TC_CLSU32_DELETE_KNODE: 2748 return cxgb4_delete_knode(dev, proto, tc->cls_u32); 2749 default: 2750 return -EOPNOTSUPP; 2751 } 2752 } 2753 2754 return -EOPNOTSUPP; 2755 } 2756 2757 static const struct net_device_ops cxgb4_netdev_ops = { 2758 .ndo_open = cxgb_open, 2759 .ndo_stop = cxgb_close, 2760 .ndo_start_xmit = t4_eth_xmit, 2761 .ndo_select_queue = cxgb_select_queue, 2762 .ndo_get_stats64 = cxgb_get_stats, 2763 .ndo_set_rx_mode = cxgb_set_rxmode, 2764 .ndo_set_mac_address = cxgb_set_mac_addr, 2765 .ndo_set_features = cxgb_set_features, 2766 .ndo_validate_addr = eth_validate_addr, 2767 .ndo_do_ioctl = cxgb_ioctl, 2768 .ndo_change_mtu = cxgb_change_mtu, 2769 #ifdef CONFIG_NET_POLL_CONTROLLER 2770 .ndo_poll_controller = cxgb_netpoll, 2771 #endif 2772 #ifdef CONFIG_CHELSIO_T4_FCOE 2773 .ndo_fcoe_enable = cxgb_fcoe_enable, 2774 .ndo_fcoe_disable = cxgb_fcoe_disable, 2775 #endif /* CONFIG_CHELSIO_T4_FCOE */ 2776 #ifdef CONFIG_NET_RX_BUSY_POLL 2777 .ndo_busy_poll = cxgb_busy_poll, 2778 #endif 2779 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 2780 .ndo_setup_tc = cxgb_setup_tc, 2781 }; 2782 2783 #ifdef CONFIG_PCI_IOV 2784 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 2785 .ndo_open = dummy_open, 2786 .ndo_set_vf_mac = cxgb_set_vf_mac, 2787 .ndo_get_vf_config = cxgb_get_vf_config, 2788 }; 2789 #endif 2790 2791 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2792 { 2793 struct adapter *adapter = netdev2adap(dev); 2794 2795 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 2796 strlcpy(info->version, cxgb4_driver_version, 2797 sizeof(info->version)); 2798 strlcpy(info->bus_info, pci_name(adapter->pdev), 2799 sizeof(info->bus_info)); 2800 } 2801 2802 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 2803 .get_drvinfo = get_drvinfo, 2804 }; 2805 2806 void t4_fatal_err(struct adapter *adap) 2807 { 2808 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0); 2809 t4_intr_disable(adap); 2810 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 2811 } 2812 2813 static void setup_memwin(struct adapter *adap) 2814 { 2815 u32 nic_win_base = t4_get_util_window(adap); 2816 2817 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 2818 } 2819 2820 static void setup_memwin_rdma(struct adapter *adap) 2821 { 2822 if (adap->vres.ocq.size) { 2823 u32 start; 2824 unsigned int sz_kb; 2825 2826 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 2827 start &= PCI_BASE_ADDRESS_MEM_MASK; 2828 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 2829 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 2830 t4_write_reg(adap, 2831 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 2832 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 2833 t4_write_reg(adap, 2834 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 2835 adap->vres.ocq.start); 2836 t4_read_reg(adap, 2837 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 2838 } 2839 } 2840 2841 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 2842 { 2843 u32 v; 2844 int ret; 2845 2846 /* get device capabilities */ 2847 memset(c, 0, sizeof(*c)); 2848 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 2849 FW_CMD_REQUEST_F | FW_CMD_READ_F); 2850 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 2851 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 2852 if (ret < 0) 2853 return ret; 2854 2855 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 2856 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 2857 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 2858 if (ret < 0) 2859 return ret; 2860 2861 ret = t4_config_glbl_rss(adap, adap->pf, 2862 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 2863 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 2864 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 2865 if (ret < 0) 2866 return ret; 2867 2868 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 2869 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 2870 FW_CMD_CAP_PF); 2871 if (ret < 0) 2872 return ret; 2873 2874 t4_sge_init(adap); 2875 2876 /* tweak some settings */ 2877 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 2878 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 2879 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 2880 v = t4_read_reg(adap, TP_PIO_DATA_A); 2881 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 2882 2883 /* first 4 Tx modulation queues point to consecutive Tx channels */ 2884 adap->params.tp.tx_modq_map = 0xE4; 2885 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 2886 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 2887 2888 /* associate each Tx modulation queue with consecutive Tx channels */ 2889 v = 0x84218421; 2890 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 2891 &v, 1, TP_TX_SCHED_HDR_A); 2892 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 2893 &v, 1, TP_TX_SCHED_FIFO_A); 2894 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 2895 &v, 1, TP_TX_SCHED_PCMD_A); 2896 2897 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 2898 if (is_offload(adap)) { 2899 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 2900 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2901 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2902 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2903 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 2904 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 2905 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2906 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2907 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2908 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 2909 } 2910 2911 /* get basic stuff going */ 2912 return t4_early_init(adap, adap->pf); 2913 } 2914 2915 /* 2916 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 2917 */ 2918 #define MAX_ATIDS 8192U 2919 2920 /* 2921 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 2922 * 2923 * If the firmware we're dealing with has Configuration File support, then 2924 * we use that to perform all configuration 2925 */ 2926 2927 /* 2928 * Tweak configuration based on module parameters, etc. Most of these have 2929 * defaults assigned to them by Firmware Configuration Files (if we're using 2930 * them) but need to be explicitly set if we're using hard-coded 2931 * initialization. But even in the case of using Firmware Configuration 2932 * Files, we'd like to expose the ability to change these via module 2933 * parameters so these are essentially common tweaks/settings for 2934 * Configuration Files and hard-coded initialization ... 2935 */ 2936 static int adap_init0_tweaks(struct adapter *adapter) 2937 { 2938 /* 2939 * Fix up various Host-Dependent Parameters like Page Size, Cache 2940 * Line Size, etc. The firmware default is for a 4KB Page Size and 2941 * 64B Cache Line Size ... 2942 */ 2943 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 2944 2945 /* 2946 * Process module parameters which affect early initialization. 2947 */ 2948 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 2949 dev_err(&adapter->pdev->dev, 2950 "Ignoring illegal rx_dma_offset=%d, using 2\n", 2951 rx_dma_offset); 2952 rx_dma_offset = 2; 2953 } 2954 t4_set_reg_field(adapter, SGE_CONTROL_A, 2955 PKTSHIFT_V(PKTSHIFT_M), 2956 PKTSHIFT_V(rx_dma_offset)); 2957 2958 /* 2959 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 2960 * adds the pseudo header itself. 2961 */ 2962 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 2963 CSUM_HAS_PSEUDO_HDR_F, 0); 2964 2965 return 0; 2966 } 2967 2968 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 2969 * unto themselves and they contain their own firmware to perform their 2970 * tasks ... 2971 */ 2972 static int phy_aq1202_version(const u8 *phy_fw_data, 2973 size_t phy_fw_size) 2974 { 2975 int offset; 2976 2977 /* At offset 0x8 you're looking for the primary image's 2978 * starting offset which is 3 Bytes wide 2979 * 2980 * At offset 0xa of the primary image, you look for the offset 2981 * of the DRAM segment which is 3 Bytes wide. 2982 * 2983 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 2984 * wide 2985 */ 2986 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 2987 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 2988 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 2989 2990 offset = le24(phy_fw_data + 0x8) << 12; 2991 offset = le24(phy_fw_data + offset + 0xa); 2992 return be16(phy_fw_data + offset + 0x27e); 2993 2994 #undef be16 2995 #undef le16 2996 #undef le24 2997 } 2998 2999 static struct info_10gbt_phy_fw { 3000 unsigned int phy_fw_id; /* PCI Device ID */ 3001 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3002 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3003 int phy_flash; /* Has FLASH for PHY Firmware */ 3004 } phy_info_array[] = { 3005 { 3006 PHY_AQ1202_DEVICEID, 3007 PHY_AQ1202_FIRMWARE, 3008 phy_aq1202_version, 3009 1, 3010 }, 3011 { 3012 PHY_BCM84834_DEVICEID, 3013 PHY_BCM84834_FIRMWARE, 3014 NULL, 3015 0, 3016 }, 3017 { 0, NULL, NULL }, 3018 }; 3019 3020 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3021 { 3022 int i; 3023 3024 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3025 if (phy_info_array[i].phy_fw_id == devid) 3026 return &phy_info_array[i]; 3027 } 3028 return NULL; 3029 } 3030 3031 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3032 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3033 * we return a negative error number. If we transfer new firmware we return 1 3034 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3035 */ 3036 static int adap_init0_phy(struct adapter *adap) 3037 { 3038 const struct firmware *phyf; 3039 int ret; 3040 struct info_10gbt_phy_fw *phy_info; 3041 3042 /* Use the device ID to determine which PHY file to flash. 3043 */ 3044 phy_info = find_phy_info(adap->pdev->device); 3045 if (!phy_info) { 3046 dev_warn(adap->pdev_dev, 3047 "No PHY Firmware file found for this PHY\n"); 3048 return -EOPNOTSUPP; 3049 } 3050 3051 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3052 * use that. The adapter firmware provides us with a memory buffer 3053 * where we can load a PHY firmware file from the host if we want to 3054 * override the PHY firmware File in flash. 3055 */ 3056 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3057 adap->pdev_dev); 3058 if (ret < 0) { 3059 /* For adapters without FLASH attached to PHY for their 3060 * firmware, it's obviously a fatal error if we can't get the 3061 * firmware to the adapter. For adapters with PHY firmware 3062 * FLASH storage, it's worth a warning if we can't find the 3063 * PHY Firmware but we'll neuter the error ... 3064 */ 3065 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3066 "/lib/firmware/%s, error %d\n", 3067 phy_info->phy_fw_file, -ret); 3068 if (phy_info->phy_flash) { 3069 int cur_phy_fw_ver = 0; 3070 3071 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3072 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3073 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3074 ret = 0; 3075 } 3076 3077 return ret; 3078 } 3079 3080 /* Load PHY Firmware onto adapter. 3081 */ 3082 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3083 phy_info->phy_fw_version, 3084 (u8 *)phyf->data, phyf->size); 3085 if (ret < 0) 3086 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3087 -ret); 3088 else if (ret > 0) { 3089 int new_phy_fw_ver = 0; 3090 3091 if (phy_info->phy_fw_version) 3092 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3093 phyf->size); 3094 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3095 "Firmware /lib/firmware/%s, version %#x\n", 3096 phy_info->phy_fw_file, new_phy_fw_ver); 3097 } 3098 3099 release_firmware(phyf); 3100 3101 return ret; 3102 } 3103 3104 /* 3105 * Attempt to initialize the adapter via a Firmware Configuration File. 3106 */ 3107 static int adap_init0_config(struct adapter *adapter, int reset) 3108 { 3109 struct fw_caps_config_cmd caps_cmd; 3110 const struct firmware *cf; 3111 unsigned long mtype = 0, maddr = 0; 3112 u32 finiver, finicsum, cfcsum; 3113 int ret; 3114 int config_issued = 0; 3115 char *fw_config_file, fw_config_file_path[256]; 3116 char *config_name = NULL; 3117 3118 /* 3119 * Reset device if necessary. 3120 */ 3121 if (reset) { 3122 ret = t4_fw_reset(adapter, adapter->mbox, 3123 PIORSTMODE_F | PIORST_F); 3124 if (ret < 0) 3125 goto bye; 3126 } 3127 3128 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3129 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3130 * to be performed after any global adapter RESET above since some 3131 * PHYs only have local RAM copies of the PHY firmware. 3132 */ 3133 if (is_10gbt_device(adapter->pdev->device)) { 3134 ret = adap_init0_phy(adapter); 3135 if (ret < 0) 3136 goto bye; 3137 } 3138 /* 3139 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3140 * then use that. Otherwise, use the configuration file stored 3141 * in the adapter flash ... 3142 */ 3143 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3144 case CHELSIO_T4: 3145 fw_config_file = FW4_CFNAME; 3146 break; 3147 case CHELSIO_T5: 3148 fw_config_file = FW5_CFNAME; 3149 break; 3150 case CHELSIO_T6: 3151 fw_config_file = FW6_CFNAME; 3152 break; 3153 default: 3154 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3155 adapter->pdev->device); 3156 ret = -EINVAL; 3157 goto bye; 3158 } 3159 3160 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3161 if (ret < 0) { 3162 config_name = "On FLASH"; 3163 mtype = FW_MEMTYPE_CF_FLASH; 3164 maddr = t4_flash_cfg_addr(adapter); 3165 } else { 3166 u32 params[7], val[7]; 3167 3168 sprintf(fw_config_file_path, 3169 "/lib/firmware/%s", fw_config_file); 3170 config_name = fw_config_file_path; 3171 3172 if (cf->size >= FLASH_CFG_MAX_SIZE) 3173 ret = -ENOMEM; 3174 else { 3175 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3176 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3177 ret = t4_query_params(adapter, adapter->mbox, 3178 adapter->pf, 0, 1, params, val); 3179 if (ret == 0) { 3180 /* 3181 * For t4_memory_rw() below addresses and 3182 * sizes have to be in terms of multiples of 4 3183 * bytes. So, if the Configuration File isn't 3184 * a multiple of 4 bytes in length we'll have 3185 * to write that out separately since we can't 3186 * guarantee that the bytes following the 3187 * residual byte in the buffer returned by 3188 * request_firmware() are zeroed out ... 3189 */ 3190 size_t resid = cf->size & 0x3; 3191 size_t size = cf->size & ~0x3; 3192 __be32 *data = (__be32 *)cf->data; 3193 3194 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3195 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3196 3197 spin_lock(&adapter->win0_lock); 3198 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3199 size, data, T4_MEMORY_WRITE); 3200 if (ret == 0 && resid != 0) { 3201 union { 3202 __be32 word; 3203 char buf[4]; 3204 } last; 3205 int i; 3206 3207 last.word = data[size >> 2]; 3208 for (i = resid; i < 4; i++) 3209 last.buf[i] = 0; 3210 ret = t4_memory_rw(adapter, 0, mtype, 3211 maddr + size, 3212 4, &last.word, 3213 T4_MEMORY_WRITE); 3214 } 3215 spin_unlock(&adapter->win0_lock); 3216 } 3217 } 3218 3219 release_firmware(cf); 3220 if (ret) 3221 goto bye; 3222 } 3223 3224 /* 3225 * Issue a Capability Configuration command to the firmware to get it 3226 * to parse the Configuration File. We don't use t4_fw_config_file() 3227 * because we want the ability to modify various features after we've 3228 * processed the configuration file ... 3229 */ 3230 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3231 caps_cmd.op_to_write = 3232 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3233 FW_CMD_REQUEST_F | 3234 FW_CMD_READ_F); 3235 caps_cmd.cfvalid_to_len16 = 3236 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3237 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3238 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3239 FW_LEN16(caps_cmd)); 3240 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3241 &caps_cmd); 3242 3243 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3244 * Configuration File in FLASH), our last gasp effort is to use the 3245 * Firmware Configuration File which is embedded in the firmware. A 3246 * very few early versions of the firmware didn't have one embedded 3247 * but we can ignore those. 3248 */ 3249 if (ret == -ENOENT) { 3250 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3251 caps_cmd.op_to_write = 3252 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3253 FW_CMD_REQUEST_F | 3254 FW_CMD_READ_F); 3255 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3256 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3257 sizeof(caps_cmd), &caps_cmd); 3258 config_name = "Firmware Default"; 3259 } 3260 3261 config_issued = 1; 3262 if (ret < 0) 3263 goto bye; 3264 3265 finiver = ntohl(caps_cmd.finiver); 3266 finicsum = ntohl(caps_cmd.finicsum); 3267 cfcsum = ntohl(caps_cmd.cfcsum); 3268 if (finicsum != cfcsum) 3269 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3270 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3271 finicsum, cfcsum); 3272 3273 /* 3274 * And now tell the firmware to use the configuration we just loaded. 3275 */ 3276 caps_cmd.op_to_write = 3277 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3278 FW_CMD_REQUEST_F | 3279 FW_CMD_WRITE_F); 3280 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3281 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3282 NULL); 3283 if (ret < 0) 3284 goto bye; 3285 3286 /* 3287 * Tweak configuration based on system architecture, module 3288 * parameters, etc. 3289 */ 3290 ret = adap_init0_tweaks(adapter); 3291 if (ret < 0) 3292 goto bye; 3293 3294 /* 3295 * And finally tell the firmware to initialize itself using the 3296 * parameters from the Configuration File. 3297 */ 3298 ret = t4_fw_initialize(adapter, adapter->mbox); 3299 if (ret < 0) 3300 goto bye; 3301 3302 /* Emit Firmware Configuration File information and return 3303 * successfully. 3304 */ 3305 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 3306 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 3307 config_name, finiver, cfcsum); 3308 return 0; 3309 3310 /* 3311 * Something bad happened. Return the error ... (If the "error" 3312 * is that there's no Configuration File on the adapter we don't 3313 * want to issue a warning since this is fairly common.) 3314 */ 3315 bye: 3316 if (config_issued && ret != -ENOENT) 3317 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 3318 config_name, -ret); 3319 return ret; 3320 } 3321 3322 static struct fw_info fw_info_array[] = { 3323 { 3324 .chip = CHELSIO_T4, 3325 .fs_name = FW4_CFNAME, 3326 .fw_mod_name = FW4_FNAME, 3327 .fw_hdr = { 3328 .chip = FW_HDR_CHIP_T4, 3329 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 3330 .intfver_nic = FW_INTFVER(T4, NIC), 3331 .intfver_vnic = FW_INTFVER(T4, VNIC), 3332 .intfver_ri = FW_INTFVER(T4, RI), 3333 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3334 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3335 }, 3336 }, { 3337 .chip = CHELSIO_T5, 3338 .fs_name = FW5_CFNAME, 3339 .fw_mod_name = FW5_FNAME, 3340 .fw_hdr = { 3341 .chip = FW_HDR_CHIP_T5, 3342 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 3343 .intfver_nic = FW_INTFVER(T5, NIC), 3344 .intfver_vnic = FW_INTFVER(T5, VNIC), 3345 .intfver_ri = FW_INTFVER(T5, RI), 3346 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3347 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3348 }, 3349 }, { 3350 .chip = CHELSIO_T6, 3351 .fs_name = FW6_CFNAME, 3352 .fw_mod_name = FW6_FNAME, 3353 .fw_hdr = { 3354 .chip = FW_HDR_CHIP_T6, 3355 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 3356 .intfver_nic = FW_INTFVER(T6, NIC), 3357 .intfver_vnic = FW_INTFVER(T6, VNIC), 3358 .intfver_ofld = FW_INTFVER(T6, OFLD), 3359 .intfver_ri = FW_INTFVER(T6, RI), 3360 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 3361 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 3362 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 3363 .intfver_fcoe = FW_INTFVER(T6, FCOE), 3364 }, 3365 } 3366 3367 }; 3368 3369 static struct fw_info *find_fw_info(int chip) 3370 { 3371 int i; 3372 3373 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 3374 if (fw_info_array[i].chip == chip) 3375 return &fw_info_array[i]; 3376 } 3377 return NULL; 3378 } 3379 3380 /* 3381 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3382 */ 3383 static int adap_init0(struct adapter *adap) 3384 { 3385 int ret; 3386 u32 v, port_vec; 3387 enum dev_state state; 3388 u32 params[7], val[7]; 3389 struct fw_caps_config_cmd caps_cmd; 3390 int reset = 1; 3391 3392 /* Grab Firmware Device Log parameters as early as possible so we have 3393 * access to it for debugging, etc. 3394 */ 3395 ret = t4_init_devlog_params(adap); 3396 if (ret < 0) 3397 return ret; 3398 3399 /* Contact FW, advertising Master capability */ 3400 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 3401 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 3402 if (ret < 0) { 3403 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 3404 ret); 3405 return ret; 3406 } 3407 if (ret == adap->mbox) 3408 adap->flags |= MASTER_PF; 3409 3410 /* 3411 * If we're the Master PF Driver and the device is uninitialized, 3412 * then let's consider upgrading the firmware ... (We always want 3413 * to check the firmware version number in order to A. get it for 3414 * later reporting and B. to warn if the currently loaded firmware 3415 * is excessively mismatched relative to the driver.) 3416 */ 3417 t4_get_fw_version(adap, &adap->params.fw_vers); 3418 t4_get_bs_version(adap, &adap->params.bs_vers); 3419 t4_get_tp_version(adap, &adap->params.tp_vers); 3420 t4_get_exprom_version(adap, &adap->params.er_vers); 3421 3422 ret = t4_check_fw_version(adap); 3423 /* If firmware is too old (not supported by driver) force an update. */ 3424 if (ret) 3425 state = DEV_STATE_UNINIT; 3426 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 3427 struct fw_info *fw_info; 3428 struct fw_hdr *card_fw; 3429 const struct firmware *fw; 3430 const u8 *fw_data = NULL; 3431 unsigned int fw_size = 0; 3432 3433 /* This is the firmware whose headers the driver was compiled 3434 * against 3435 */ 3436 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 3437 if (fw_info == NULL) { 3438 dev_err(adap->pdev_dev, 3439 "unable to get firmware info for chip %d.\n", 3440 CHELSIO_CHIP_VERSION(adap->params.chip)); 3441 return -EINVAL; 3442 } 3443 3444 /* allocate memory to read the header of the firmware on the 3445 * card 3446 */ 3447 card_fw = t4_alloc_mem(sizeof(*card_fw)); 3448 3449 /* Get FW from from /lib/firmware/ */ 3450 ret = request_firmware(&fw, fw_info->fw_mod_name, 3451 adap->pdev_dev); 3452 if (ret < 0) { 3453 dev_err(adap->pdev_dev, 3454 "unable to load firmware image %s, error %d\n", 3455 fw_info->fw_mod_name, ret); 3456 } else { 3457 fw_data = fw->data; 3458 fw_size = fw->size; 3459 } 3460 3461 /* upgrade FW logic */ 3462 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 3463 state, &reset); 3464 3465 /* Cleaning up */ 3466 release_firmware(fw); 3467 t4_free_mem(card_fw); 3468 3469 if (ret < 0) 3470 goto bye; 3471 } 3472 3473 /* 3474 * Grab VPD parameters. This should be done after we establish a 3475 * connection to the firmware since some of the VPD parameters 3476 * (notably the Core Clock frequency) are retrieved via requests to 3477 * the firmware. On the other hand, we need these fairly early on 3478 * so we do this right after getting ahold of the firmware. 3479 */ 3480 ret = t4_get_vpd_params(adap, &adap->params.vpd); 3481 if (ret < 0) 3482 goto bye; 3483 3484 /* 3485 * Find out what ports are available to us. Note that we need to do 3486 * this before calling adap_init0_no_config() since it needs nports 3487 * and portvec ... 3488 */ 3489 v = 3490 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3491 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 3492 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 3493 if (ret < 0) 3494 goto bye; 3495 3496 adap->params.nports = hweight32(port_vec); 3497 adap->params.portvec = port_vec; 3498 3499 /* If the firmware is initialized already, emit a simply note to that 3500 * effect. Otherwise, it's time to try initializing the adapter. 3501 */ 3502 if (state == DEV_STATE_INIT) { 3503 dev_info(adap->pdev_dev, "Coming up as %s: "\ 3504 "Adapter already initialized\n", 3505 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 3506 } else { 3507 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 3508 "Initializing adapter\n"); 3509 3510 /* Find out whether we're dealing with a version of the 3511 * firmware which has configuration file support. 3512 */ 3513 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3514 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3515 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3516 params, val); 3517 3518 /* If the firmware doesn't support Configuration Files, 3519 * return an error. 3520 */ 3521 if (ret < 0) { 3522 dev_err(adap->pdev_dev, "firmware doesn't support " 3523 "Firmware Configuration Files\n"); 3524 goto bye; 3525 } 3526 3527 /* The firmware provides us with a memory buffer where we can 3528 * load a Configuration File from the host if we want to 3529 * override the Configuration File in flash. 3530 */ 3531 ret = adap_init0_config(adap, reset); 3532 if (ret == -ENOENT) { 3533 dev_err(adap->pdev_dev, "no Configuration File " 3534 "present on adapter.\n"); 3535 goto bye; 3536 } 3537 if (ret < 0) { 3538 dev_err(adap->pdev_dev, "could not initialize " 3539 "adapter, error %d\n", -ret); 3540 goto bye; 3541 } 3542 } 3543 3544 /* Give the SGE code a chance to pull in anything that it needs ... 3545 * Note that this must be called after we retrieve our VPD parameters 3546 * in order to know how to convert core ticks to seconds, etc. 3547 */ 3548 ret = t4_sge_init(adap); 3549 if (ret < 0) 3550 goto bye; 3551 3552 if (is_bypass_device(adap->pdev->device)) 3553 adap->params.bypass = 1; 3554 3555 /* 3556 * Grab some of our basic fundamental operating parameters. 3557 */ 3558 #define FW_PARAM_DEV(param) \ 3559 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 3560 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 3561 3562 #define FW_PARAM_PFVF(param) \ 3563 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 3564 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 3565 FW_PARAMS_PARAM_Y_V(0) | \ 3566 FW_PARAMS_PARAM_Z_V(0) 3567 3568 params[0] = FW_PARAM_PFVF(EQ_START); 3569 params[1] = FW_PARAM_PFVF(L2T_START); 3570 params[2] = FW_PARAM_PFVF(L2T_END); 3571 params[3] = FW_PARAM_PFVF(FILTER_START); 3572 params[4] = FW_PARAM_PFVF(FILTER_END); 3573 params[5] = FW_PARAM_PFVF(IQFLINT_START); 3574 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 3575 if (ret < 0) 3576 goto bye; 3577 adap->sge.egr_start = val[0]; 3578 adap->l2t_start = val[1]; 3579 adap->l2t_end = val[2]; 3580 adap->tids.ftid_base = val[3]; 3581 adap->tids.nftids = val[4] - val[3] + 1; 3582 adap->sge.ingr_start = val[5]; 3583 3584 /* qids (ingress/egress) returned from firmware can be anywhere 3585 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 3586 * Hence driver needs to allocate memory for this range to 3587 * store the queue info. Get the highest IQFLINT/EQ index returned 3588 * in FW_EQ_*_CMD.alloc command. 3589 */ 3590 params[0] = FW_PARAM_PFVF(EQ_END); 3591 params[1] = FW_PARAM_PFVF(IQFLINT_END); 3592 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3593 if (ret < 0) 3594 goto bye; 3595 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 3596 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 3597 3598 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 3599 sizeof(*adap->sge.egr_map), GFP_KERNEL); 3600 if (!adap->sge.egr_map) { 3601 ret = -ENOMEM; 3602 goto bye; 3603 } 3604 3605 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 3606 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 3607 if (!adap->sge.ingr_map) { 3608 ret = -ENOMEM; 3609 goto bye; 3610 } 3611 3612 /* Allocate the memory for the vaious egress queue bitmaps 3613 * ie starving_fl, txq_maperr and blocked_fl. 3614 */ 3615 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3616 sizeof(long), GFP_KERNEL); 3617 if (!adap->sge.starving_fl) { 3618 ret = -ENOMEM; 3619 goto bye; 3620 } 3621 3622 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3623 sizeof(long), GFP_KERNEL); 3624 if (!adap->sge.txq_maperr) { 3625 ret = -ENOMEM; 3626 goto bye; 3627 } 3628 3629 #ifdef CONFIG_DEBUG_FS 3630 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3631 sizeof(long), GFP_KERNEL); 3632 if (!adap->sge.blocked_fl) { 3633 ret = -ENOMEM; 3634 goto bye; 3635 } 3636 #endif 3637 3638 params[0] = FW_PARAM_PFVF(CLIP_START); 3639 params[1] = FW_PARAM_PFVF(CLIP_END); 3640 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3641 if (ret < 0) 3642 goto bye; 3643 adap->clipt_start = val[0]; 3644 adap->clipt_end = val[1]; 3645 3646 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 3647 * Classes supported by the hardware/firmware so we hard code it here 3648 * for now. 3649 */ 3650 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 3651 3652 /* query params related to active filter region */ 3653 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 3654 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 3655 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3656 /* If Active filter size is set we enable establishing 3657 * offload connection through firmware work request 3658 */ 3659 if ((val[0] != val[1]) && (ret >= 0)) { 3660 adap->flags |= FW_OFLD_CONN; 3661 adap->tids.aftid_base = val[0]; 3662 adap->tids.aftid_end = val[1]; 3663 } 3664 3665 /* If we're running on newer firmware, let it know that we're 3666 * prepared to deal with encapsulated CPL messages. Older 3667 * firmware won't understand this and we'll just get 3668 * unencapsulated messages ... 3669 */ 3670 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 3671 val[0] = 1; 3672 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 3673 3674 /* 3675 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 3676 * capability. Earlier versions of the firmware didn't have the 3677 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 3678 * permission to use ULPTX MEMWRITE DSGL. 3679 */ 3680 if (is_t4(adap->params.chip)) { 3681 adap->params.ulptx_memwrite_dsgl = false; 3682 } else { 3683 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 3684 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3685 1, params, val); 3686 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 3687 } 3688 3689 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 3690 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 3691 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3692 1, params, val); 3693 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 3694 3695 /* 3696 * Get device capabilities so we can determine what resources we need 3697 * to manage. 3698 */ 3699 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3700 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3701 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3702 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3703 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 3704 &caps_cmd); 3705 if (ret < 0) 3706 goto bye; 3707 3708 if (caps_cmd.ofldcaps) { 3709 /* query offload-related parameters */ 3710 params[0] = FW_PARAM_DEV(NTID); 3711 params[1] = FW_PARAM_PFVF(SERVER_START); 3712 params[2] = FW_PARAM_PFVF(SERVER_END); 3713 params[3] = FW_PARAM_PFVF(TDDP_START); 3714 params[4] = FW_PARAM_PFVF(TDDP_END); 3715 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3716 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3717 params, val); 3718 if (ret < 0) 3719 goto bye; 3720 adap->tids.ntids = val[0]; 3721 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 3722 adap->tids.stid_base = val[1]; 3723 adap->tids.nstids = val[2] - val[1] + 1; 3724 /* 3725 * Setup server filter region. Divide the available filter 3726 * region into two parts. Regular filters get 1/3rd and server 3727 * filters get 2/3rd part. This is only enabled if workarond 3728 * path is enabled. 3729 * 1. For regular filters. 3730 * 2. Server filter: This are special filters which are used 3731 * to redirect SYN packets to offload queue. 3732 */ 3733 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 3734 adap->tids.sftid_base = adap->tids.ftid_base + 3735 DIV_ROUND_UP(adap->tids.nftids, 3); 3736 adap->tids.nsftids = adap->tids.nftids - 3737 DIV_ROUND_UP(adap->tids.nftids, 3); 3738 adap->tids.nftids = adap->tids.sftid_base - 3739 adap->tids.ftid_base; 3740 } 3741 adap->vres.ddp.start = val[3]; 3742 adap->vres.ddp.size = val[4] - val[3] + 1; 3743 adap->params.ofldq_wr_cred = val[5]; 3744 3745 adap->params.offload = 1; 3746 adap->num_ofld_uld += 1; 3747 } 3748 if (caps_cmd.rdmacaps) { 3749 params[0] = FW_PARAM_PFVF(STAG_START); 3750 params[1] = FW_PARAM_PFVF(STAG_END); 3751 params[2] = FW_PARAM_PFVF(RQ_START); 3752 params[3] = FW_PARAM_PFVF(RQ_END); 3753 params[4] = FW_PARAM_PFVF(PBL_START); 3754 params[5] = FW_PARAM_PFVF(PBL_END); 3755 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3756 params, val); 3757 if (ret < 0) 3758 goto bye; 3759 adap->vres.stag.start = val[0]; 3760 adap->vres.stag.size = val[1] - val[0] + 1; 3761 adap->vres.rq.start = val[2]; 3762 adap->vres.rq.size = val[3] - val[2] + 1; 3763 adap->vres.pbl.start = val[4]; 3764 adap->vres.pbl.size = val[5] - val[4] + 1; 3765 3766 params[0] = FW_PARAM_PFVF(SQRQ_START); 3767 params[1] = FW_PARAM_PFVF(SQRQ_END); 3768 params[2] = FW_PARAM_PFVF(CQ_START); 3769 params[3] = FW_PARAM_PFVF(CQ_END); 3770 params[4] = FW_PARAM_PFVF(OCQ_START); 3771 params[5] = FW_PARAM_PFVF(OCQ_END); 3772 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 3773 val); 3774 if (ret < 0) 3775 goto bye; 3776 adap->vres.qp.start = val[0]; 3777 adap->vres.qp.size = val[1] - val[0] + 1; 3778 adap->vres.cq.start = val[2]; 3779 adap->vres.cq.size = val[3] - val[2] + 1; 3780 adap->vres.ocq.start = val[4]; 3781 adap->vres.ocq.size = val[5] - val[4] + 1; 3782 3783 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 3784 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 3785 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 3786 val); 3787 if (ret < 0) { 3788 adap->params.max_ordird_qp = 8; 3789 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 3790 ret = 0; 3791 } else { 3792 adap->params.max_ordird_qp = val[0]; 3793 adap->params.max_ird_adapter = val[1]; 3794 } 3795 dev_info(adap->pdev_dev, 3796 "max_ordird_qp %d max_ird_adapter %d\n", 3797 adap->params.max_ordird_qp, 3798 adap->params.max_ird_adapter); 3799 adap->num_ofld_uld += 2; 3800 } 3801 if (caps_cmd.iscsicaps) { 3802 params[0] = FW_PARAM_PFVF(ISCSI_START); 3803 params[1] = FW_PARAM_PFVF(ISCSI_END); 3804 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 3805 params, val); 3806 if (ret < 0) 3807 goto bye; 3808 adap->vres.iscsi.start = val[0]; 3809 adap->vres.iscsi.size = val[1] - val[0] + 1; 3810 /* LIO target and cxgb4i initiaitor */ 3811 adap->num_ofld_uld += 2; 3812 } 3813 if (caps_cmd.cryptocaps) { 3814 /* Should query params here...TODO */ 3815 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE; 3816 adap->num_uld += 1; 3817 } 3818 #undef FW_PARAM_PFVF 3819 #undef FW_PARAM_DEV 3820 3821 /* The MTU/MSS Table is initialized by now, so load their values. If 3822 * we're initializing the adapter, then we'll make any modifications 3823 * we want to the MTU/MSS Table and also initialize the congestion 3824 * parameters. 3825 */ 3826 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 3827 if (state != DEV_STATE_INIT) { 3828 int i; 3829 3830 /* The default MTU Table contains values 1492 and 1500. 3831 * However, for TCP, it's better to have two values which are 3832 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 3833 * This allows us to have a TCP Data Payload which is a 3834 * multiple of 8 regardless of what combination of TCP Options 3835 * are in use (always a multiple of 4 bytes) which is 3836 * important for performance reasons. For instance, if no 3837 * options are in use, then we have a 20-byte IP header and a 3838 * 20-byte TCP header. In this case, a 1500-byte MSS would 3839 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 3840 * which is not a multiple of 8. So using an MSS of 1488 in 3841 * this case results in a TCP Data Payload of 1448 bytes which 3842 * is a multiple of 8. On the other hand, if 12-byte TCP Time 3843 * Stamps have been negotiated, then an MTU of 1500 bytes 3844 * results in a TCP Data Payload of 1448 bytes which, as 3845 * above, is a multiple of 8 bytes ... 3846 */ 3847 for (i = 0; i < NMTUS; i++) 3848 if (adap->params.mtus[i] == 1492) { 3849 adap->params.mtus[i] = 1488; 3850 break; 3851 } 3852 3853 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 3854 adap->params.b_wnd); 3855 } 3856 t4_init_sge_params(adap); 3857 adap->flags |= FW_OK; 3858 t4_init_tp_params(adap); 3859 return 0; 3860 3861 /* 3862 * Something bad happened. If a command timed out or failed with EIO 3863 * FW does not operate within its spec or something catastrophic 3864 * happened to HW/FW, stop issuing commands. 3865 */ 3866 bye: 3867 kfree(adap->sge.egr_map); 3868 kfree(adap->sge.ingr_map); 3869 kfree(adap->sge.starving_fl); 3870 kfree(adap->sge.txq_maperr); 3871 #ifdef CONFIG_DEBUG_FS 3872 kfree(adap->sge.blocked_fl); 3873 #endif 3874 if (ret != -ETIMEDOUT && ret != -EIO) 3875 t4_fw_bye(adap, adap->mbox); 3876 return ret; 3877 } 3878 3879 /* EEH callbacks */ 3880 3881 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 3882 pci_channel_state_t state) 3883 { 3884 int i; 3885 struct adapter *adap = pci_get_drvdata(pdev); 3886 3887 if (!adap) 3888 goto out; 3889 3890 rtnl_lock(); 3891 adap->flags &= ~FW_OK; 3892 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 3893 spin_lock(&adap->stats_lock); 3894 for_each_port(adap, i) { 3895 struct net_device *dev = adap->port[i]; 3896 3897 netif_device_detach(dev); 3898 netif_carrier_off(dev); 3899 } 3900 spin_unlock(&adap->stats_lock); 3901 disable_interrupts(adap); 3902 if (adap->flags & FULL_INIT_DONE) 3903 cxgb_down(adap); 3904 rtnl_unlock(); 3905 if ((adap->flags & DEV_ENABLED)) { 3906 pci_disable_device(pdev); 3907 adap->flags &= ~DEV_ENABLED; 3908 } 3909 out: return state == pci_channel_io_perm_failure ? 3910 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 3911 } 3912 3913 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 3914 { 3915 int i, ret; 3916 struct fw_caps_config_cmd c; 3917 struct adapter *adap = pci_get_drvdata(pdev); 3918 3919 if (!adap) { 3920 pci_restore_state(pdev); 3921 pci_save_state(pdev); 3922 return PCI_ERS_RESULT_RECOVERED; 3923 } 3924 3925 if (!(adap->flags & DEV_ENABLED)) { 3926 if (pci_enable_device(pdev)) { 3927 dev_err(&pdev->dev, "Cannot reenable PCI " 3928 "device after reset\n"); 3929 return PCI_ERS_RESULT_DISCONNECT; 3930 } 3931 adap->flags |= DEV_ENABLED; 3932 } 3933 3934 pci_set_master(pdev); 3935 pci_restore_state(pdev); 3936 pci_save_state(pdev); 3937 pci_cleanup_aer_uncorrect_error_status(pdev); 3938 3939 if (t4_wait_dev_ready(adap->regs) < 0) 3940 return PCI_ERS_RESULT_DISCONNECT; 3941 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 3942 return PCI_ERS_RESULT_DISCONNECT; 3943 adap->flags |= FW_OK; 3944 if (adap_init1(adap, &c)) 3945 return PCI_ERS_RESULT_DISCONNECT; 3946 3947 for_each_port(adap, i) { 3948 struct port_info *p = adap2pinfo(adap, i); 3949 3950 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 3951 NULL, NULL); 3952 if (ret < 0) 3953 return PCI_ERS_RESULT_DISCONNECT; 3954 p->viid = ret; 3955 p->xact_addr_filt = -1; 3956 } 3957 3958 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 3959 adap->params.b_wnd); 3960 setup_memwin(adap); 3961 if (cxgb_up(adap)) 3962 return PCI_ERS_RESULT_DISCONNECT; 3963 return PCI_ERS_RESULT_RECOVERED; 3964 } 3965 3966 static void eeh_resume(struct pci_dev *pdev) 3967 { 3968 int i; 3969 struct adapter *adap = pci_get_drvdata(pdev); 3970 3971 if (!adap) 3972 return; 3973 3974 rtnl_lock(); 3975 for_each_port(adap, i) { 3976 struct net_device *dev = adap->port[i]; 3977 3978 if (netif_running(dev)) { 3979 link_start(dev); 3980 cxgb_set_rxmode(dev); 3981 } 3982 netif_device_attach(dev); 3983 } 3984 rtnl_unlock(); 3985 } 3986 3987 static const struct pci_error_handlers cxgb4_eeh = { 3988 .error_detected = eeh_err_detected, 3989 .slot_reset = eeh_slot_reset, 3990 .resume = eeh_resume, 3991 }; 3992 3993 /* Return true if the Link Configuration supports "High Speeds" (those greater 3994 * than 1Gb/s). 3995 */ 3996 static inline bool is_x_10g_port(const struct link_config *lc) 3997 { 3998 unsigned int speeds, high_speeds; 3999 4000 speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported)); 4001 high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G); 4002 4003 return high_speeds != 0; 4004 } 4005 4006 /* 4007 * Perform default configuration of DMA queues depending on the number and type 4008 * of ports we found and the number of available CPUs. Most settings can be 4009 * modified by the admin prior to actual use. 4010 */ 4011 static void cfg_queues(struct adapter *adap) 4012 { 4013 struct sge *s = &adap->sge; 4014 int i = 0, n10g = 0, qidx = 0; 4015 #ifndef CONFIG_CHELSIO_T4_DCB 4016 int q10g = 0; 4017 #endif 4018 4019 /* Reduce memory usage in kdump environment, disable all offload. 4020 */ 4021 if (is_kdump_kernel()) { 4022 adap->params.offload = 0; 4023 adap->params.crypto = 0; 4024 } else if (is_uld(adap) && t4_uld_mem_alloc(adap)) { 4025 adap->params.offload = 0; 4026 adap->params.crypto = 0; 4027 } 4028 4029 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4030 #ifdef CONFIG_CHELSIO_T4_DCB 4031 /* For Data Center Bridging support we need to be able to support up 4032 * to 8 Traffic Priorities; each of which will be assigned to its 4033 * own TX Queue in order to prevent Head-Of-Line Blocking. 4034 */ 4035 if (adap->params.nports * 8 > MAX_ETH_QSETS) { 4036 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n", 4037 MAX_ETH_QSETS, adap->params.nports * 8); 4038 BUG_ON(1); 4039 } 4040 4041 for_each_port(adap, i) { 4042 struct port_info *pi = adap2pinfo(adap, i); 4043 4044 pi->first_qset = qidx; 4045 pi->nqsets = 8; 4046 qidx += pi->nqsets; 4047 } 4048 #else /* !CONFIG_CHELSIO_T4_DCB */ 4049 /* 4050 * We default to 1 queue per non-10G port and up to # of cores queues 4051 * per 10G port. 4052 */ 4053 if (n10g) 4054 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 4055 if (q10g > netif_get_num_default_rss_queues()) 4056 q10g = netif_get_num_default_rss_queues(); 4057 4058 for_each_port(adap, i) { 4059 struct port_info *pi = adap2pinfo(adap, i); 4060 4061 pi->first_qset = qidx; 4062 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4063 qidx += pi->nqsets; 4064 } 4065 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4066 4067 s->ethqsets = qidx; 4068 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4069 4070 if (is_uld(adap)) { 4071 /* 4072 * For offload we use 1 queue/channel if all ports are up to 1G, 4073 * otherwise we divide all available queues amongst the channels 4074 * capped by the number of available cores. 4075 */ 4076 if (n10g) { 4077 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 4078 s->ofldqsets = roundup(i, adap->params.nports); 4079 } else { 4080 s->ofldqsets = adap->params.nports; 4081 } 4082 } 4083 4084 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4085 struct sge_eth_rxq *r = &s->ethrxq[i]; 4086 4087 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4088 r->fl.size = 72; 4089 } 4090 4091 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4092 s->ethtxq[i].q.size = 1024; 4093 4094 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4095 s->ctrlq[i].q.size = 512; 4096 4097 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4098 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 4099 } 4100 4101 /* 4102 * Reduce the number of Ethernet queues across all ports to at most n. 4103 * n provides at least one queue per port. 4104 */ 4105 static void reduce_ethqs(struct adapter *adap, int n) 4106 { 4107 int i; 4108 struct port_info *pi; 4109 4110 while (n < adap->sge.ethqsets) 4111 for_each_port(adap, i) { 4112 pi = adap2pinfo(adap, i); 4113 if (pi->nqsets > 1) { 4114 pi->nqsets--; 4115 adap->sge.ethqsets--; 4116 if (adap->sge.ethqsets <= n) 4117 break; 4118 } 4119 } 4120 4121 n = 0; 4122 for_each_port(adap, i) { 4123 pi = adap2pinfo(adap, i); 4124 pi->first_qset = n; 4125 n += pi->nqsets; 4126 } 4127 } 4128 4129 static int get_msix_info(struct adapter *adap) 4130 { 4131 struct uld_msix_info *msix_info; 4132 unsigned int max_ingq = 0; 4133 4134 if (is_offload(adap)) 4135 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 4136 if (is_pci_uld(adap)) 4137 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 4138 4139 if (!max_ingq) 4140 goto out; 4141 4142 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 4143 if (!msix_info) 4144 return -ENOMEM; 4145 4146 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 4147 sizeof(long), GFP_KERNEL); 4148 if (!adap->msix_bmap_ulds.msix_bmap) { 4149 kfree(msix_info); 4150 return -ENOMEM; 4151 } 4152 spin_lock_init(&adap->msix_bmap_ulds.lock); 4153 adap->msix_info_ulds = msix_info; 4154 out: 4155 return 0; 4156 } 4157 4158 static void free_msix_info(struct adapter *adap) 4159 { 4160 if (!(adap->num_uld && adap->num_ofld_uld)) 4161 return; 4162 4163 kfree(adap->msix_info_ulds); 4164 kfree(adap->msix_bmap_ulds.msix_bmap); 4165 } 4166 4167 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 4168 #define EXTRA_VECS 2 4169 4170 static int enable_msix(struct adapter *adap) 4171 { 4172 int ofld_need = 0, uld_need = 0; 4173 int i, j, want, need, allocated; 4174 struct sge *s = &adap->sge; 4175 unsigned int nchan = adap->params.nports; 4176 struct msix_entry *entries; 4177 int max_ingq = MAX_INGQ; 4178 4179 if (is_pci_uld(adap)) 4180 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 4181 if (is_offload(adap)) 4182 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 4183 entries = kmalloc(sizeof(*entries) * (max_ingq + 1), 4184 GFP_KERNEL); 4185 if (!entries) 4186 return -ENOMEM; 4187 4188 /* map for msix */ 4189 if (get_msix_info(adap)) { 4190 adap->params.offload = 0; 4191 adap->params.crypto = 0; 4192 } 4193 4194 for (i = 0; i < max_ingq + 1; ++i) 4195 entries[i].entry = i; 4196 4197 want = s->max_ethqsets + EXTRA_VECS; 4198 if (is_offload(adap)) { 4199 want += adap->num_ofld_uld * s->ofldqsets; 4200 ofld_need = adap->num_ofld_uld * nchan; 4201 } 4202 if (is_pci_uld(adap)) { 4203 want += adap->num_uld * s->ofldqsets; 4204 uld_need = adap->num_uld * nchan; 4205 } 4206 #ifdef CONFIG_CHELSIO_T4_DCB 4207 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 4208 * each port. 4209 */ 4210 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4211 #else 4212 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4213 #endif 4214 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 4215 if (allocated < 0) { 4216 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 4217 " not using MSI-X\n"); 4218 kfree(entries); 4219 return allocated; 4220 } 4221 4222 /* Distribute available vectors to the various queue groups. 4223 * Every group gets its minimum requirement and NIC gets top 4224 * priority for leftovers. 4225 */ 4226 i = allocated - EXTRA_VECS - ofld_need - uld_need; 4227 if (i < s->max_ethqsets) { 4228 s->max_ethqsets = i; 4229 if (i < s->ethqsets) 4230 reduce_ethqs(adap, i); 4231 } 4232 if (is_uld(adap)) { 4233 if (allocated < want) 4234 s->nqs_per_uld = nchan; 4235 else 4236 s->nqs_per_uld = s->ofldqsets; 4237 } 4238 4239 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 4240 adap->msix_info[i].vec = entries[i].vector; 4241 if (is_uld(adap)) { 4242 for (j = 0 ; i < allocated; ++i, j++) { 4243 adap->msix_info_ulds[j].vec = entries[i].vector; 4244 adap->msix_info_ulds[j].idx = i; 4245 } 4246 adap->msix_bmap_ulds.mapsize = j; 4247 } 4248 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 4249 "nic %d per uld %d\n", 4250 allocated, s->max_ethqsets, s->nqs_per_uld); 4251 4252 kfree(entries); 4253 return 0; 4254 } 4255 4256 #undef EXTRA_VECS 4257 4258 static int init_rss(struct adapter *adap) 4259 { 4260 unsigned int i; 4261 int err; 4262 4263 err = t4_init_rss_mode(adap, adap->mbox); 4264 if (err) 4265 return err; 4266 4267 for_each_port(adap, i) { 4268 struct port_info *pi = adap2pinfo(adap, i); 4269 4270 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 4271 if (!pi->rss) 4272 return -ENOMEM; 4273 } 4274 return 0; 4275 } 4276 4277 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap, 4278 enum pci_bus_speed *speed, 4279 enum pcie_link_width *width) 4280 { 4281 u32 lnkcap1, lnkcap2; 4282 int err1, err2; 4283 4284 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */ 4285 4286 *speed = PCI_SPEED_UNKNOWN; 4287 *width = PCIE_LNK_WIDTH_UNKNOWN; 4288 4289 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP, 4290 &lnkcap1); 4291 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2, 4292 &lnkcap2); 4293 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */ 4294 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 4295 *speed = PCIE_SPEED_8_0GT; 4296 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 4297 *speed = PCIE_SPEED_5_0GT; 4298 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 4299 *speed = PCIE_SPEED_2_5GT; 4300 } 4301 if (!err1) { 4302 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT; 4303 if (!lnkcap2) { /* pre-r3.0 */ 4304 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB) 4305 *speed = PCIE_SPEED_5_0GT; 4306 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB) 4307 *speed = PCIE_SPEED_2_5GT; 4308 } 4309 } 4310 4311 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 4312 return err1 ? err1 : err2 ? err2 : -EINVAL; 4313 return 0; 4314 } 4315 4316 static void cxgb4_check_pcie_caps(struct adapter *adap) 4317 { 4318 enum pcie_link_width width, width_cap; 4319 enum pci_bus_speed speed, speed_cap; 4320 4321 #define PCIE_SPEED_STR(speed) \ 4322 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \ 4323 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \ 4324 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \ 4325 "Unknown") 4326 4327 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) { 4328 dev_warn(adap->pdev_dev, 4329 "Unable to determine PCIe device BW capabilities\n"); 4330 return; 4331 } 4332 4333 if (pcie_get_minimum_link(adap->pdev, &speed, &width) || 4334 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) { 4335 dev_warn(adap->pdev_dev, 4336 "Unable to determine PCI Express bandwidth.\n"); 4337 return; 4338 } 4339 4340 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n", 4341 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap)); 4342 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n", 4343 width, width_cap); 4344 if (speed < speed_cap || width < width_cap) 4345 dev_info(adap->pdev_dev, 4346 "A slot with more lanes and/or higher speed is " 4347 "suggested for optimal performance.\n"); 4348 } 4349 4350 /* Dump basic information about the adapter */ 4351 static void print_adapter_info(struct adapter *adapter) 4352 { 4353 /* Device information */ 4354 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 4355 adapter->params.vpd.id, 4356 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 4357 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 4358 adapter->params.vpd.sn, adapter->params.vpd.pn); 4359 4360 /* Firmware Version */ 4361 if (!adapter->params.fw_vers) 4362 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 4363 else 4364 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 4365 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 4366 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 4367 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 4368 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 4369 4370 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 4371 * Firmware, so dev_info() is more appropriate here.) 4372 */ 4373 if (!adapter->params.bs_vers) 4374 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 4375 else 4376 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 4377 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 4378 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 4379 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 4380 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 4381 4382 /* TP Microcode Version */ 4383 if (!adapter->params.tp_vers) 4384 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 4385 else 4386 dev_info(adapter->pdev_dev, 4387 "TP Microcode version: %u.%u.%u.%u\n", 4388 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 4389 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 4390 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 4391 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 4392 4393 /* Expansion ROM version */ 4394 if (!adapter->params.er_vers) 4395 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 4396 else 4397 dev_info(adapter->pdev_dev, 4398 "Expansion ROM version: %u.%u.%u.%u\n", 4399 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 4400 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 4401 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 4402 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 4403 4404 /* Software/Hardware configuration */ 4405 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 4406 is_offload(adapter) ? "R" : "", 4407 ((adapter->flags & USING_MSIX) ? "MSI-X" : 4408 (adapter->flags & USING_MSI) ? "MSI" : ""), 4409 is_offload(adapter) ? "Offload" : "non-Offload"); 4410 } 4411 4412 static void print_port_info(const struct net_device *dev) 4413 { 4414 char buf[80]; 4415 char *bufp = buf; 4416 const char *spd = ""; 4417 const struct port_info *pi = netdev_priv(dev); 4418 const struct adapter *adap = pi->adapter; 4419 4420 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 4421 spd = " 2.5 GT/s"; 4422 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 4423 spd = " 5 GT/s"; 4424 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 4425 spd = " 8 GT/s"; 4426 4427 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 4428 bufp += sprintf(bufp, "100/"); 4429 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 4430 bufp += sprintf(bufp, "1000/"); 4431 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 4432 bufp += sprintf(bufp, "10G/"); 4433 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G) 4434 bufp += sprintf(bufp, "25G/"); 4435 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G) 4436 bufp += sprintf(bufp, "40G/"); 4437 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G) 4438 bufp += sprintf(bufp, "100G/"); 4439 if (bufp != buf) 4440 --bufp; 4441 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 4442 4443 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 4444 dev->name, adap->params.vpd.id, adap->name, buf); 4445 } 4446 4447 static void enable_pcie_relaxed_ordering(struct pci_dev *dev) 4448 { 4449 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 4450 } 4451 4452 /* 4453 * Free the following resources: 4454 * - memory used for tables 4455 * - MSI/MSI-X 4456 * - net devices 4457 * - resources FW is holding for us 4458 */ 4459 static void free_some_resources(struct adapter *adapter) 4460 { 4461 unsigned int i; 4462 4463 t4_free_mem(adapter->l2t); 4464 t4_cleanup_sched(adapter); 4465 t4_free_mem(adapter->tids.tid_tab); 4466 cxgb4_cleanup_tc_u32(adapter); 4467 kfree(adapter->sge.egr_map); 4468 kfree(adapter->sge.ingr_map); 4469 kfree(adapter->sge.starving_fl); 4470 kfree(adapter->sge.txq_maperr); 4471 #ifdef CONFIG_DEBUG_FS 4472 kfree(adapter->sge.blocked_fl); 4473 #endif 4474 disable_msi(adapter); 4475 4476 for_each_port(adapter, i) 4477 if (adapter->port[i]) { 4478 struct port_info *pi = adap2pinfo(adapter, i); 4479 4480 if (pi->viid != 0) 4481 t4_free_vi(adapter, adapter->mbox, adapter->pf, 4482 0, pi->viid); 4483 kfree(adap2pinfo(adapter, i)->rss); 4484 free_netdev(adapter->port[i]); 4485 } 4486 if (adapter->flags & FW_OK) 4487 t4_fw_bye(adapter, adapter->pf); 4488 } 4489 4490 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 4491 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 4492 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 4493 #define SEGMENT_SIZE 128 4494 4495 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev) 4496 { 4497 u16 device_id; 4498 4499 /* Retrieve adapter's device ID */ 4500 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 4501 4502 switch (device_id >> 12) { 4503 case CHELSIO_T4: 4504 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 4505 case CHELSIO_T5: 4506 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 4507 case CHELSIO_T6: 4508 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 4509 default: 4510 dev_err(&pdev->dev, "Device %d is not supported\n", 4511 device_id); 4512 } 4513 return -EINVAL; 4514 } 4515 4516 #ifdef CONFIG_PCI_IOV 4517 static void dummy_setup(struct net_device *dev) 4518 { 4519 dev->type = ARPHRD_NONE; 4520 dev->mtu = 0; 4521 dev->hard_header_len = 0; 4522 dev->addr_len = 0; 4523 dev->tx_queue_len = 0; 4524 dev->flags |= IFF_NOARP; 4525 dev->priv_flags |= IFF_NO_QUEUE; 4526 4527 /* Initialize the device structure. */ 4528 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 4529 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 4530 dev->destructor = free_netdev; 4531 } 4532 4533 static int config_mgmt_dev(struct pci_dev *pdev) 4534 { 4535 struct adapter *adap = pci_get_drvdata(pdev); 4536 struct net_device *netdev; 4537 struct port_info *pi; 4538 char name[IFNAMSIZ]; 4539 int err; 4540 4541 snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf); 4542 netdev = alloc_netdev(0, name, NET_NAME_UNKNOWN, dummy_setup); 4543 if (!netdev) 4544 return -ENOMEM; 4545 4546 pi = netdev_priv(netdev); 4547 pi->adapter = adap; 4548 SET_NETDEV_DEV(netdev, &pdev->dev); 4549 4550 adap->port[0] = netdev; 4551 4552 err = register_netdev(adap->port[0]); 4553 if (err) { 4554 pr_info("Unable to register VF mgmt netdev %s\n", name); 4555 free_netdev(adap->port[0]); 4556 adap->port[0] = NULL; 4557 return err; 4558 } 4559 return 0; 4560 } 4561 4562 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 4563 { 4564 struct adapter *adap = pci_get_drvdata(pdev); 4565 int err = 0; 4566 int current_vfs = pci_num_vf(pdev); 4567 u32 pcie_fw; 4568 4569 pcie_fw = readl(adap->regs + PCIE_FW_A); 4570 /* Check if cxgb4 is the MASTER and fw is initialized */ 4571 if (!(pcie_fw & PCIE_FW_INIT_F) || 4572 !(pcie_fw & PCIE_FW_MASTER_VLD_F) || 4573 PCIE_FW_MASTER_G(pcie_fw) != 4) { 4574 dev_warn(&pdev->dev, 4575 "cxgb4 driver needs to be MASTER to support SRIOV\n"); 4576 return -EOPNOTSUPP; 4577 } 4578 4579 /* If any of the VF's is already assigned to Guest OS, then 4580 * SRIOV for the same cannot be modified 4581 */ 4582 if (current_vfs && pci_vfs_assigned(pdev)) { 4583 dev_err(&pdev->dev, 4584 "Cannot modify SR-IOV while VFs are assigned\n"); 4585 num_vfs = current_vfs; 4586 return num_vfs; 4587 } 4588 4589 /* Disable SRIOV when zero is passed. 4590 * One needs to disable SRIOV before modifying it, else 4591 * stack throws the below warning: 4592 * " 'n' VFs already enabled. Disable before enabling 'm' VFs." 4593 */ 4594 if (!num_vfs) { 4595 pci_disable_sriov(pdev); 4596 if (adap->port[0]) { 4597 unregister_netdev(adap->port[0]); 4598 adap->port[0] = NULL; 4599 } 4600 /* free VF resources */ 4601 kfree(adap->vfinfo); 4602 adap->vfinfo = NULL; 4603 adap->num_vfs = 0; 4604 return num_vfs; 4605 } 4606 4607 if (num_vfs != current_vfs) { 4608 err = pci_enable_sriov(pdev, num_vfs); 4609 if (err) 4610 return err; 4611 4612 adap->num_vfs = num_vfs; 4613 err = config_mgmt_dev(pdev); 4614 if (err) 4615 return err; 4616 } 4617 4618 adap->vfinfo = kcalloc(adap->num_vfs, 4619 sizeof(struct vf_info), GFP_KERNEL); 4620 if (adap->vfinfo) 4621 fill_vf_station_mac_addr(adap); 4622 return num_vfs; 4623 } 4624 #endif 4625 4626 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4627 { 4628 int func, i, err, s_qpp, qpp, num_seg; 4629 struct port_info *pi; 4630 bool highdma = false; 4631 struct adapter *adapter = NULL; 4632 struct net_device *netdev; 4633 void __iomem *regs; 4634 u32 whoami, pl_rev; 4635 enum chip_type chip; 4636 static int adap_idx = 1; 4637 4638 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 4639 4640 err = pci_request_regions(pdev, KBUILD_MODNAME); 4641 if (err) { 4642 /* Just info, some other driver may have claimed the device. */ 4643 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 4644 return err; 4645 } 4646 4647 err = pci_enable_device(pdev); 4648 if (err) { 4649 dev_err(&pdev->dev, "cannot enable PCI device\n"); 4650 goto out_release_regions; 4651 } 4652 4653 regs = pci_ioremap_bar(pdev, 0); 4654 if (!regs) { 4655 dev_err(&pdev->dev, "cannot map device registers\n"); 4656 err = -ENOMEM; 4657 goto out_disable_device; 4658 } 4659 4660 err = t4_wait_dev_ready(regs); 4661 if (err < 0) 4662 goto out_unmap_bar0; 4663 4664 /* We control everything through one PF */ 4665 whoami = readl(regs + PL_WHOAMI_A); 4666 pl_rev = REV_G(readl(regs + PL_REV_A)); 4667 chip = get_chip_type(pdev, pl_rev); 4668 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ? 4669 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4670 if (func != ent->driver_data) { 4671 #ifndef CONFIG_PCI_IOV 4672 iounmap(regs); 4673 #endif 4674 pci_disable_device(pdev); 4675 pci_save_state(pdev); /* to restore SR-IOV later */ 4676 goto sriov; 4677 } 4678 4679 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4680 highdma = true; 4681 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4682 if (err) { 4683 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 4684 "coherent allocations\n"); 4685 goto out_unmap_bar0; 4686 } 4687 } else { 4688 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4689 if (err) { 4690 dev_err(&pdev->dev, "no usable DMA configuration\n"); 4691 goto out_unmap_bar0; 4692 } 4693 } 4694 4695 pci_enable_pcie_error_reporting(pdev); 4696 enable_pcie_relaxed_ordering(pdev); 4697 pci_set_master(pdev); 4698 pci_save_state(pdev); 4699 4700 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4701 if (!adapter) { 4702 err = -ENOMEM; 4703 goto out_unmap_bar0; 4704 } 4705 adap_idx++; 4706 4707 adapter->workq = create_singlethread_workqueue("cxgb4"); 4708 if (!adapter->workq) { 4709 err = -ENOMEM; 4710 goto out_free_adapter; 4711 } 4712 4713 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 4714 (sizeof(struct mbox_cmd) * 4715 T4_OS_LOG_MBOX_CMDS), 4716 GFP_KERNEL); 4717 if (!adapter->mbox_log) { 4718 err = -ENOMEM; 4719 goto out_free_adapter; 4720 } 4721 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 4722 4723 /* PCI device has been enabled */ 4724 adapter->flags |= DEV_ENABLED; 4725 4726 adapter->regs = regs; 4727 adapter->pdev = pdev; 4728 adapter->pdev_dev = &pdev->dev; 4729 adapter->name = pci_name(pdev); 4730 adapter->mbox = func; 4731 adapter->pf = func; 4732 adapter->msg_enable = dflt_msg_enable; 4733 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 4734 4735 spin_lock_init(&adapter->stats_lock); 4736 spin_lock_init(&adapter->tid_release_lock); 4737 spin_lock_init(&adapter->win0_lock); 4738 4739 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 4740 INIT_WORK(&adapter->db_full_task, process_db_full); 4741 INIT_WORK(&adapter->db_drop_task, process_db_drop); 4742 4743 err = t4_prep_adapter(adapter); 4744 if (err) 4745 goto out_free_adapter; 4746 4747 4748 if (!is_t4(adapter->params.chip)) { 4749 s_qpp = (QUEUESPERPAGEPF0_S + 4750 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 4751 adapter->pf); 4752 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 4753 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 4754 num_seg = PAGE_SIZE / SEGMENT_SIZE; 4755 4756 /* Each segment size is 128B. Write coalescing is enabled only 4757 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 4758 * queue is less no of segments that can be accommodated in 4759 * a page size. 4760 */ 4761 if (qpp > num_seg) { 4762 dev_err(&pdev->dev, 4763 "Incorrect number of egress queues per page\n"); 4764 err = -EINVAL; 4765 goto out_free_adapter; 4766 } 4767 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 4768 pci_resource_len(pdev, 2)); 4769 if (!adapter->bar2) { 4770 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 4771 err = -ENOMEM; 4772 goto out_free_adapter; 4773 } 4774 } 4775 4776 setup_memwin(adapter); 4777 err = adap_init0(adapter); 4778 #ifdef CONFIG_DEBUG_FS 4779 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 4780 #endif 4781 setup_memwin_rdma(adapter); 4782 if (err) 4783 goto out_unmap_bar; 4784 4785 /* configure SGE_STAT_CFG_A to read WC stats */ 4786 if (!is_t4(adapter->params.chip)) 4787 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 4788 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 4789 T6_STATMODE_V(0))); 4790 4791 for_each_port(adapter, i) { 4792 netdev = alloc_etherdev_mq(sizeof(struct port_info), 4793 MAX_ETH_QSETS); 4794 if (!netdev) { 4795 err = -ENOMEM; 4796 goto out_free_dev; 4797 } 4798 4799 SET_NETDEV_DEV(netdev, &pdev->dev); 4800 4801 adapter->port[i] = netdev; 4802 pi = netdev_priv(netdev); 4803 pi->adapter = adapter; 4804 pi->xact_addr_filt = -1; 4805 pi->port_id = i; 4806 netdev->irq = pdev->irq; 4807 4808 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 4809 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4810 NETIF_F_RXCSUM | NETIF_F_RXHASH | 4811 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 4812 NETIF_F_HW_TC; 4813 if (highdma) 4814 netdev->hw_features |= NETIF_F_HIGHDMA; 4815 netdev->features |= netdev->hw_features; 4816 netdev->vlan_features = netdev->features & VLAN_FEAT; 4817 4818 netdev->priv_flags |= IFF_UNICAST_FLT; 4819 4820 /* MTU range: 81 - 9600 */ 4821 netdev->min_mtu = 81; 4822 netdev->max_mtu = MAX_MTU; 4823 4824 netdev->netdev_ops = &cxgb4_netdev_ops; 4825 #ifdef CONFIG_CHELSIO_T4_DCB 4826 netdev->dcbnl_ops = &cxgb4_dcb_ops; 4827 cxgb4_dcb_state_init(netdev); 4828 #endif 4829 cxgb4_set_ethtool_ops(netdev); 4830 } 4831 4832 pci_set_drvdata(pdev, adapter); 4833 4834 if (adapter->flags & FW_OK) { 4835 err = t4_port_init(adapter, func, func, 0); 4836 if (err) 4837 goto out_free_dev; 4838 } else if (adapter->params.nports == 1) { 4839 /* If we don't have a connection to the firmware -- possibly 4840 * because of an error -- grab the raw VPD parameters so we 4841 * can set the proper MAC Address on the debug network 4842 * interface that we've created. 4843 */ 4844 u8 hw_addr[ETH_ALEN]; 4845 u8 *na = adapter->params.vpd.na; 4846 4847 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 4848 if (!err) { 4849 for (i = 0; i < ETH_ALEN; i++) 4850 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 4851 hex2val(na[2 * i + 1])); 4852 t4_set_hw_addr(adapter, 0, hw_addr); 4853 } 4854 } 4855 4856 /* Configure queues and allocate tables now, they can be needed as 4857 * soon as the first register_netdev completes. 4858 */ 4859 cfg_queues(adapter); 4860 4861 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 4862 if (!adapter->l2t) { 4863 /* We tolerate a lack of L2T, giving up some functionality */ 4864 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 4865 adapter->params.offload = 0; 4866 } 4867 4868 #if IS_ENABLED(CONFIG_IPV6) 4869 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) && 4870 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 4871 /* CLIP functionality is not present in hardware, 4872 * hence disable all offload features 4873 */ 4874 dev_warn(&pdev->dev, 4875 "CLIP not enabled in hardware, continuing\n"); 4876 adapter->params.offload = 0; 4877 } else { 4878 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 4879 adapter->clipt_end); 4880 if (!adapter->clipt) { 4881 /* We tolerate a lack of clip_table, giving up 4882 * some functionality 4883 */ 4884 dev_warn(&pdev->dev, 4885 "could not allocate Clip table, continuing\n"); 4886 adapter->params.offload = 0; 4887 } 4888 } 4889 #endif 4890 4891 for_each_port(adapter, i) { 4892 pi = adap2pinfo(adapter, i); 4893 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 4894 if (!pi->sched_tbl) 4895 dev_warn(&pdev->dev, 4896 "could not activate scheduling on port %d\n", 4897 i); 4898 } 4899 4900 if (tid_init(&adapter->tids) < 0) { 4901 dev_warn(&pdev->dev, "could not allocate TID table, " 4902 "continuing\n"); 4903 adapter->params.offload = 0; 4904 } else { 4905 adapter->tc_u32 = cxgb4_init_tc_u32(adapter, 4906 CXGB4_MAX_LINK_HANDLE); 4907 if (!adapter->tc_u32) 4908 dev_warn(&pdev->dev, 4909 "could not offload tc u32, continuing\n"); 4910 } 4911 4912 if (is_offload(adapter)) { 4913 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 4914 u32 hash_base, hash_reg; 4915 4916 if (chip <= CHELSIO_T5) { 4917 hash_reg = LE_DB_TID_HASHBASE_A; 4918 hash_base = t4_read_reg(adapter, hash_reg); 4919 adapter->tids.hash_base = hash_base / 4; 4920 } else { 4921 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 4922 hash_base = t4_read_reg(adapter, hash_reg); 4923 adapter->tids.hash_base = hash_base; 4924 } 4925 } 4926 } 4927 4928 /* See what interrupts we'll be using */ 4929 if (msi > 1 && enable_msix(adapter) == 0) 4930 adapter->flags |= USING_MSIX; 4931 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 4932 adapter->flags |= USING_MSI; 4933 if (msi > 1) 4934 free_msix_info(adapter); 4935 } 4936 4937 /* check for PCI Express bandwidth capabiltites */ 4938 cxgb4_check_pcie_caps(adapter); 4939 4940 err = init_rss(adapter); 4941 if (err) 4942 goto out_free_dev; 4943 4944 /* 4945 * The card is now ready to go. If any errors occur during device 4946 * registration we do not fail the whole card but rather proceed only 4947 * with the ports we manage to register successfully. However we must 4948 * register at least one net device. 4949 */ 4950 for_each_port(adapter, i) { 4951 pi = adap2pinfo(adapter, i); 4952 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 4953 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 4954 4955 err = register_netdev(adapter->port[i]); 4956 if (err) 4957 break; 4958 adapter->chan_map[pi->tx_chan] = i; 4959 print_port_info(adapter->port[i]); 4960 } 4961 if (i == 0) { 4962 dev_err(&pdev->dev, "could not register any net devices\n"); 4963 goto out_free_dev; 4964 } 4965 if (err) { 4966 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 4967 err = 0; 4968 } 4969 4970 if (cxgb4_debugfs_root) { 4971 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 4972 cxgb4_debugfs_root); 4973 setup_debugfs(adapter); 4974 } 4975 4976 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 4977 pdev->needs_freset = 1; 4978 4979 if (is_uld(adapter)) { 4980 mutex_lock(&uld_mutex); 4981 list_add_tail(&adapter->list_node, &adapter_list); 4982 mutex_unlock(&uld_mutex); 4983 } 4984 4985 print_adapter_info(adapter); 4986 setup_fw_sge_queues(adapter); 4987 return 0; 4988 4989 sriov: 4990 #ifdef CONFIG_PCI_IOV 4991 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) { 4992 dev_warn(&pdev->dev, 4993 "Enabling SR-IOV VFs using the num_vf module " 4994 "parameter is deprecated - please use the pci sysfs " 4995 "interface instead.\n"); 4996 if (pci_enable_sriov(pdev, num_vf[func]) == 0) 4997 dev_info(&pdev->dev, 4998 "instantiated %u virtual functions\n", 4999 num_vf[func]); 5000 } 5001 5002 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5003 if (!adapter) { 5004 err = -ENOMEM; 5005 goto free_pci_region; 5006 } 5007 5008 adapter->pdev = pdev; 5009 adapter->pdev_dev = &pdev->dev; 5010 adapter->name = pci_name(pdev); 5011 adapter->mbox = func; 5012 adapter->pf = func; 5013 adapter->regs = regs; 5014 adapter->adap_idx = adap_idx; 5015 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5016 (sizeof(struct mbox_cmd) * 5017 T4_OS_LOG_MBOX_CMDS), 5018 GFP_KERNEL); 5019 if (!adapter->mbox_log) { 5020 err = -ENOMEM; 5021 goto free_adapter; 5022 } 5023 pci_set_drvdata(pdev, adapter); 5024 return 0; 5025 5026 free_adapter: 5027 kfree(adapter); 5028 free_pci_region: 5029 iounmap(regs); 5030 pci_disable_sriov(pdev); 5031 pci_release_regions(pdev); 5032 return err; 5033 #else 5034 return 0; 5035 #endif 5036 5037 out_free_dev: 5038 free_some_resources(adapter); 5039 if (adapter->flags & USING_MSIX) 5040 free_msix_info(adapter); 5041 if (adapter->num_uld || adapter->num_ofld_uld) 5042 t4_uld_mem_free(adapter); 5043 out_unmap_bar: 5044 if (!is_t4(adapter->params.chip)) 5045 iounmap(adapter->bar2); 5046 out_free_adapter: 5047 if (adapter->workq) 5048 destroy_workqueue(adapter->workq); 5049 5050 kfree(adapter->mbox_log); 5051 kfree(adapter); 5052 out_unmap_bar0: 5053 iounmap(regs); 5054 out_disable_device: 5055 pci_disable_pcie_error_reporting(pdev); 5056 pci_disable_device(pdev); 5057 out_release_regions: 5058 pci_release_regions(pdev); 5059 return err; 5060 } 5061 5062 static void remove_one(struct pci_dev *pdev) 5063 { 5064 struct adapter *adapter = pci_get_drvdata(pdev); 5065 5066 if (!adapter) { 5067 pci_release_regions(pdev); 5068 return; 5069 } 5070 5071 if (adapter->pf == 4) { 5072 int i; 5073 5074 /* Tear down per-adapter Work Queue first since it can contain 5075 * references to our adapter data structure. 5076 */ 5077 destroy_workqueue(adapter->workq); 5078 5079 if (is_uld(adapter)) 5080 detach_ulds(adapter); 5081 5082 disable_interrupts(adapter); 5083 5084 for_each_port(adapter, i) 5085 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5086 unregister_netdev(adapter->port[i]); 5087 5088 debugfs_remove_recursive(adapter->debugfs_root); 5089 5090 /* If we allocated filters, free up state associated with any 5091 * valid filters ... 5092 */ 5093 clear_all_filters(adapter); 5094 5095 if (adapter->flags & FULL_INIT_DONE) 5096 cxgb_down(adapter); 5097 5098 if (adapter->flags & USING_MSIX) 5099 free_msix_info(adapter); 5100 if (adapter->num_uld || adapter->num_ofld_uld) 5101 t4_uld_mem_free(adapter); 5102 free_some_resources(adapter); 5103 #if IS_ENABLED(CONFIG_IPV6) 5104 t4_cleanup_clip_tbl(adapter); 5105 #endif 5106 iounmap(adapter->regs); 5107 if (!is_t4(adapter->params.chip)) 5108 iounmap(adapter->bar2); 5109 pci_disable_pcie_error_reporting(pdev); 5110 if ((adapter->flags & DEV_ENABLED)) { 5111 pci_disable_device(pdev); 5112 adapter->flags &= ~DEV_ENABLED; 5113 } 5114 pci_release_regions(pdev); 5115 kfree(adapter->mbox_log); 5116 synchronize_rcu(); 5117 kfree(adapter); 5118 } 5119 #ifdef CONFIG_PCI_IOV 5120 else { 5121 if (adapter->port[0]) 5122 unregister_netdev(adapter->port[0]); 5123 iounmap(adapter->regs); 5124 kfree(adapter->vfinfo); 5125 kfree(adapter); 5126 pci_disable_sriov(pdev); 5127 pci_release_regions(pdev); 5128 } 5129 #endif 5130 } 5131 5132 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 5133 * delivery. This is essentially a stripped down version of the PCI remove() 5134 * function where we do the minimal amount of work necessary to shutdown any 5135 * further activity. 5136 */ 5137 static void shutdown_one(struct pci_dev *pdev) 5138 { 5139 struct adapter *adapter = pci_get_drvdata(pdev); 5140 5141 /* As with remove_one() above (see extended comment), we only want do 5142 * do cleanup on PCI Devices which went all the way through init_one() 5143 * ... 5144 */ 5145 if (!adapter) { 5146 pci_release_regions(pdev); 5147 return; 5148 } 5149 5150 if (adapter->pf == 4) { 5151 int i; 5152 5153 for_each_port(adapter, i) 5154 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5155 cxgb_close(adapter->port[i]); 5156 5157 t4_uld_clean_up(adapter); 5158 disable_interrupts(adapter); 5159 disable_msi(adapter); 5160 5161 t4_sge_stop(adapter); 5162 if (adapter->flags & FW_OK) 5163 t4_fw_bye(adapter, adapter->mbox); 5164 } 5165 #ifdef CONFIG_PCI_IOV 5166 else { 5167 if (adapter->port[0]) 5168 unregister_netdev(adapter->port[0]); 5169 iounmap(adapter->regs); 5170 kfree(adapter->vfinfo); 5171 kfree(adapter); 5172 pci_disable_sriov(pdev); 5173 pci_release_regions(pdev); 5174 } 5175 #endif 5176 } 5177 5178 static struct pci_driver cxgb4_driver = { 5179 .name = KBUILD_MODNAME, 5180 .id_table = cxgb4_pci_tbl, 5181 .probe = init_one, 5182 .remove = remove_one, 5183 .shutdown = shutdown_one, 5184 #ifdef CONFIG_PCI_IOV 5185 .sriov_configure = cxgb4_iov_configure, 5186 #endif 5187 .err_handler = &cxgb4_eeh, 5188 }; 5189 5190 static int __init cxgb4_init_module(void) 5191 { 5192 int ret; 5193 5194 /* Debugfs support is optional, just warn if this fails */ 5195 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 5196 if (!cxgb4_debugfs_root) 5197 pr_warn("could not create debugfs entry, continuing\n"); 5198 5199 ret = pci_register_driver(&cxgb4_driver); 5200 if (ret < 0) 5201 debugfs_remove(cxgb4_debugfs_root); 5202 5203 #if IS_ENABLED(CONFIG_IPV6) 5204 if (!inet6addr_registered) { 5205 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5206 inet6addr_registered = true; 5207 } 5208 #endif 5209 5210 return ret; 5211 } 5212 5213 static void __exit cxgb4_cleanup_module(void) 5214 { 5215 #if IS_ENABLED(CONFIG_IPV6) 5216 if (inet6addr_registered) { 5217 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5218 inet6addr_registered = false; 5219 } 5220 #endif 5221 pci_unregister_driver(&cxgb4_driver); 5222 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 5223 } 5224 5225 module_init(cxgb4_init_module); 5226 module_exit(cxgb4_cleanup_module); 5227