xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <linux/uaccess.h>
66 #include <linux/crash_dump.h>
67 #include <net/udp_tunnel.h>
68 #include <net/xfrm.h>
69 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
70 #include <net/tls.h>
71 #endif
72 
73 #include "cxgb4.h"
74 #include "cxgb4_filter.h"
75 #include "t4_regs.h"
76 #include "t4_values.h"
77 #include "t4_msg.h"
78 #include "t4fw_api.h"
79 #include "t4fw_version.h"
80 #include "cxgb4_dcb.h"
81 #include "srq.h"
82 #include "cxgb4_debugfs.h"
83 #include "clip_tbl.h"
84 #include "l2t.h"
85 #include "smt.h"
86 #include "sched.h"
87 #include "cxgb4_tc_u32.h"
88 #include "cxgb4_tc_flower.h"
89 #include "cxgb4_tc_mqprio.h"
90 #include "cxgb4_tc_matchall.h"
91 #include "cxgb4_ptp.h"
92 #include "cxgb4_cudbg.h"
93 
94 char cxgb4_driver_name[] = KBUILD_MODNAME;
95 
96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
97 
98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
99 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
100 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
101 
102 /* Macros needed to support the PCI Device ID Table ...
103  */
104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
105 	static const struct pci_device_id cxgb4_pci_tbl[] = {
106 #define CXGB4_UNIFIED_PF 0x4
107 
108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
109 
110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
111  * called for both.
112  */
113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
114 
115 #define CH_PCI_ID_TABLE_ENTRY(devid) \
116 		{PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
117 
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
119 		{ 0, } \
120 	}
121 
122 #include "t4_pci_id_tbl.h"
123 
124 #define FW4_FNAME "cxgb4/t4fw.bin"
125 #define FW5_FNAME "cxgb4/t5fw.bin"
126 #define FW6_FNAME "cxgb4/t6fw.bin"
127 #define FW4_CFNAME "cxgb4/t4-config.txt"
128 #define FW5_CFNAME "cxgb4/t5-config.txt"
129 #define FW6_CFNAME "cxgb4/t6-config.txt"
130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
132 #define PHY_AQ1202_DEVICEID 0x4409
133 #define PHY_BCM84834_DEVICEID 0x4486
134 
135 MODULE_DESCRIPTION(DRV_DESC);
136 MODULE_AUTHOR("Chelsio Communications");
137 MODULE_LICENSE("Dual BSD/GPL");
138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
139 MODULE_FIRMWARE(FW4_FNAME);
140 MODULE_FIRMWARE(FW5_FNAME);
141 MODULE_FIRMWARE(FW6_FNAME);
142 
143 /*
144  * The driver uses the best interrupt scheme available on a platform in the
145  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
146  * of these schemes the driver may consider as follows:
147  *
148  * msi = 2: choose from among all three options
149  * msi = 1: only consider MSI and INTx interrupts
150  * msi = 0: force INTx interrupts
151  */
152 static int msi = 2;
153 
154 module_param(msi, int, 0644);
155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
156 
157 /*
158  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
159  * offset by 2 bytes in order to have the IP headers line up on 4-byte
160  * boundaries.  This is a requirement for many architectures which will throw
161  * a machine check fault if an attempt is made to access one of the 4-byte IP
162  * header fields on a non-4-byte boundary.  And it's a major performance issue
163  * even on some architectures which allow it like some implementations of the
164  * x86 ISA.  However, some architectures don't mind this and for some very
165  * edge-case performance sensitive applications (like forwarding large volumes
166  * of small packets), setting this DMA offset to 0 will decrease the number of
167  * PCI-E Bus transfers enough to measurably affect performance.
168  */
169 static int rx_dma_offset = 2;
170 
171 /* TX Queue select used to determine what algorithm to use for selecting TX
172  * queue. Select between the kernel provided function (select_queue=0) or user
173  * cxgb_select_queue function (select_queue=1)
174  *
175  * Default: select_queue=0
176  */
177 static int select_queue;
178 module_param(select_queue, int, 0644);
179 MODULE_PARM_DESC(select_queue,
180 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
181 
182 static struct dentry *cxgb4_debugfs_root;
183 
184 LIST_HEAD(adapter_list);
185 DEFINE_MUTEX(uld_mutex);
186 LIST_HEAD(uld_list);
187 
188 static int cfg_queues(struct adapter *adap);
189 
190 static void link_report(struct net_device *dev)
191 {
192 	if (!netif_carrier_ok(dev))
193 		netdev_info(dev, "link down\n");
194 	else {
195 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
196 
197 		const char *s;
198 		const struct port_info *p = netdev_priv(dev);
199 
200 		switch (p->link_cfg.speed) {
201 		case 100:
202 			s = "100Mbps";
203 			break;
204 		case 1000:
205 			s = "1Gbps";
206 			break;
207 		case 10000:
208 			s = "10Gbps";
209 			break;
210 		case 25000:
211 			s = "25Gbps";
212 			break;
213 		case 40000:
214 			s = "40Gbps";
215 			break;
216 		case 50000:
217 			s = "50Gbps";
218 			break;
219 		case 100000:
220 			s = "100Gbps";
221 			break;
222 		default:
223 			pr_info("%s: unsupported speed: %d\n",
224 				dev->name, p->link_cfg.speed);
225 			return;
226 		}
227 
228 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
229 			    fc[p->link_cfg.fc]);
230 	}
231 }
232 
233 #ifdef CONFIG_CHELSIO_T4_DCB
234 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
235 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
236 {
237 	struct port_info *pi = netdev_priv(dev);
238 	struct adapter *adap = pi->adapter;
239 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
240 	int i;
241 
242 	/* We use a simple mapping of Port TX Queue Index to DCB
243 	 * Priority when we're enabling DCB.
244 	 */
245 	for (i = 0; i < pi->nqsets; i++, txq++) {
246 		u32 name, value;
247 		int err;
248 
249 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
250 			FW_PARAMS_PARAM_X_V(
251 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
252 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
253 		value = enable ? i : 0xffffffff;
254 
255 		/* Since we can be called while atomic (from "interrupt
256 		 * level") we need to issue the Set Parameters Commannd
257 		 * without sleeping (timeout < 0).
258 		 */
259 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
260 					    &name, &value,
261 					    -FW_CMD_MAX_TIMEOUT);
262 
263 		if (err)
264 			dev_err(adap->pdev_dev,
265 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
266 				enable ? "set" : "unset", pi->port_id, i, -err);
267 		else
268 			txq->dcb_prio = enable ? value : 0;
269 	}
270 }
271 
272 int cxgb4_dcb_enabled(const struct net_device *dev)
273 {
274 	struct port_info *pi = netdev_priv(dev);
275 
276 	if (!pi->dcb.enabled)
277 		return 0;
278 
279 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
280 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
281 }
282 #endif /* CONFIG_CHELSIO_T4_DCB */
283 
284 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
285 {
286 	struct net_device *dev = adapter->port[port_id];
287 
288 	/* Skip changes from disabled ports. */
289 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
290 		if (link_stat)
291 			netif_carrier_on(dev);
292 		else {
293 #ifdef CONFIG_CHELSIO_T4_DCB
294 			if (cxgb4_dcb_enabled(dev)) {
295 				cxgb4_dcb_reset(dev);
296 				dcb_tx_queue_prio_enable(dev, false);
297 			}
298 #endif /* CONFIG_CHELSIO_T4_DCB */
299 			netif_carrier_off(dev);
300 		}
301 
302 		link_report(dev);
303 	}
304 }
305 
306 void t4_os_portmod_changed(struct adapter *adap, int port_id)
307 {
308 	static const char *mod_str[] = {
309 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
310 	};
311 
312 	struct net_device *dev = adap->port[port_id];
313 	struct port_info *pi = netdev_priv(dev);
314 
315 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
316 		netdev_info(dev, "port module unplugged\n");
317 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
318 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
319 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
320 		netdev_info(dev, "%s: unsupported port module inserted\n",
321 			    dev->name);
322 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
323 		netdev_info(dev, "%s: unknown port module inserted\n",
324 			    dev->name);
325 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
326 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
327 	else
328 		netdev_info(dev, "%s: unknown module type %d inserted\n",
329 			    dev->name, pi->mod_type);
330 
331 	/* If the interface is running, then we'll need any "sticky" Link
332 	 * Parameters redone with a new Transceiver Module.
333 	 */
334 	pi->link_cfg.redo_l1cfg = netif_running(dev);
335 }
336 
337 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
338 module_param(dbfifo_int_thresh, int, 0644);
339 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
340 
341 /*
342  * usecs to sleep while draining the dbfifo
343  */
344 static int dbfifo_drain_delay = 1000;
345 module_param(dbfifo_drain_delay, int, 0644);
346 MODULE_PARM_DESC(dbfifo_drain_delay,
347 		 "usecs to sleep while draining the dbfifo");
348 
349 static inline int cxgb4_set_addr_hash(struct port_info *pi)
350 {
351 	struct adapter *adap = pi->adapter;
352 	u64 vec = 0;
353 	bool ucast = false;
354 	struct hash_mac_addr *entry;
355 
356 	/* Calculate the hash vector for the updated list and program it */
357 	list_for_each_entry(entry, &adap->mac_hlist, list) {
358 		ucast |= is_unicast_ether_addr(entry->addr);
359 		vec |= (1ULL << hash_mac_addr(entry->addr));
360 	}
361 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
362 				vec, false);
363 }
364 
365 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
366 {
367 	struct port_info *pi = netdev_priv(netdev);
368 	struct adapter *adap = pi->adapter;
369 	int ret;
370 	u64 mhash = 0;
371 	u64 uhash = 0;
372 	/* idx stores the index of allocated filters,
373 	 * its size should be modified based on the number of
374 	 * MAC addresses that we allocate filters for
375 	 */
376 
377 	u16 idx[1] = {};
378 	bool free = false;
379 	bool ucast = is_unicast_ether_addr(mac_addr);
380 	const u8 *maclist[1] = {mac_addr};
381 	struct hash_mac_addr *new_entry;
382 
383 	ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
384 				   idx, ucast ? &uhash : &mhash, false);
385 	if (ret < 0)
386 		goto out;
387 	/* if hash != 0, then add the addr to hash addr list
388 	 * so on the end we will calculate the hash for the
389 	 * list and program it
390 	 */
391 	if (uhash || mhash) {
392 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
393 		if (!new_entry)
394 			return -ENOMEM;
395 		ether_addr_copy(new_entry->addr, mac_addr);
396 		list_add_tail(&new_entry->list, &adap->mac_hlist);
397 		ret = cxgb4_set_addr_hash(pi);
398 	}
399 out:
400 	return ret < 0 ? ret : 0;
401 }
402 
403 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
404 {
405 	struct port_info *pi = netdev_priv(netdev);
406 	struct adapter *adap = pi->adapter;
407 	int ret;
408 	const u8 *maclist[1] = {mac_addr};
409 	struct hash_mac_addr *entry, *tmp;
410 
411 	/* If the MAC address to be removed is in the hash addr
412 	 * list, delete it from the list and update hash vector
413 	 */
414 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
415 		if (ether_addr_equal(entry->addr, mac_addr)) {
416 			list_del(&entry->list);
417 			kfree(entry);
418 			return cxgb4_set_addr_hash(pi);
419 		}
420 	}
421 
422 	ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
423 	return ret < 0 ? -EINVAL : 0;
424 }
425 
426 /*
427  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
428  * If @mtu is -1 it is left unchanged.
429  */
430 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
431 {
432 	struct port_info *pi = netdev_priv(dev);
433 	struct adapter *adapter = pi->adapter;
434 
435 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
436 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
437 
438 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, pi->viid_mirror,
439 			     mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
440 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
441 			     sleep_ok);
442 }
443 
444 /**
445  *	cxgb4_change_mac - Update match filter for a MAC address.
446  *	@pi: the port_info
447  *	@viid: the VI id
448  *	@tcam_idx: TCAM index of existing filter for old value of MAC address,
449  *		   or -1
450  *	@addr: the new MAC address value
451  *	@persist: whether a new MAC allocation should be persistent
452  *	@smt_idx: the destination to store the new SMT index.
453  *
454  *	Modifies an MPS filter and sets it to the new MAC address if
455  *	@tcam_idx >= 0, or adds the MAC address to a new filter if
456  *	@tcam_idx < 0. In the latter case the address is added persistently
457  *	if @persist is %true.
458  *	Addresses are programmed to hash region, if tcam runs out of entries.
459  *
460  */
461 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
462 		     int *tcam_idx, const u8 *addr, bool persist,
463 		     u8 *smt_idx)
464 {
465 	struct adapter *adapter = pi->adapter;
466 	struct hash_mac_addr *entry, *new_entry;
467 	int ret;
468 
469 	ret = t4_change_mac(adapter, adapter->mbox, viid,
470 			    *tcam_idx, addr, persist, smt_idx);
471 	/* We ran out of TCAM entries. try programming hash region. */
472 	if (ret == -ENOMEM) {
473 		/* If the MAC address to be updated is in the hash addr
474 		 * list, update it from the list
475 		 */
476 		list_for_each_entry(entry, &adapter->mac_hlist, list) {
477 			if (entry->iface_mac) {
478 				ether_addr_copy(entry->addr, addr);
479 				goto set_hash;
480 			}
481 		}
482 		new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
483 		if (!new_entry)
484 			return -ENOMEM;
485 		ether_addr_copy(new_entry->addr, addr);
486 		new_entry->iface_mac = true;
487 		list_add_tail(&new_entry->list, &adapter->mac_hlist);
488 set_hash:
489 		ret = cxgb4_set_addr_hash(pi);
490 	} else if (ret >= 0) {
491 		*tcam_idx = ret;
492 		ret = 0;
493 	}
494 
495 	return ret;
496 }
497 
498 /*
499  *	link_start - enable a port
500  *	@dev: the port to enable
501  *
502  *	Performs the MAC and PHY actions needed to enable a port.
503  */
504 static int link_start(struct net_device *dev)
505 {
506 	struct port_info *pi = netdev_priv(dev);
507 	unsigned int mb = pi->adapter->mbox;
508 	int ret;
509 
510 	/*
511 	 * We do not set address filters and promiscuity here, the stack does
512 	 * that step explicitly.
513 	 */
514 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, pi->viid_mirror,
515 			    dev->mtu, -1, -1, -1,
516 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
517 	if (ret == 0)
518 		ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
519 					    dev->dev_addr, true, &pi->smt_idx);
520 	if (ret == 0)
521 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
522 				    &pi->link_cfg);
523 	if (ret == 0) {
524 		local_bh_disable();
525 		ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
526 					  true, CXGB4_DCB_ENABLED);
527 		local_bh_enable();
528 	}
529 
530 	return ret;
531 }
532 
533 #ifdef CONFIG_CHELSIO_T4_DCB
534 /* Handle a Data Center Bridging update message from the firmware. */
535 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
536 {
537 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
538 	struct net_device *dev = adap->port[adap->chan_map[port]];
539 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
540 	int new_dcb_enabled;
541 
542 	cxgb4_dcb_handle_fw_update(adap, pcmd);
543 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
544 
545 	/* If the DCB has become enabled or disabled on the port then we're
546 	 * going to need to set up/tear down DCB Priority parameters for the
547 	 * TX Queues associated with the port.
548 	 */
549 	if (new_dcb_enabled != old_dcb_enabled)
550 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
551 }
552 #endif /* CONFIG_CHELSIO_T4_DCB */
553 
554 /* Response queue handler for the FW event queue.
555  */
556 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
557 			  const struct pkt_gl *gl)
558 {
559 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
560 
561 	rsp++;                                          /* skip RSS header */
562 
563 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
564 	 */
565 	if (unlikely(opcode == CPL_FW4_MSG &&
566 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
567 		rsp++;
568 		opcode = ((const struct rss_header *)rsp)->opcode;
569 		rsp++;
570 		if (opcode != CPL_SGE_EGR_UPDATE) {
571 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
572 				, opcode);
573 			goto out;
574 		}
575 	}
576 
577 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
578 		const struct cpl_sge_egr_update *p = (void *)rsp;
579 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
580 		struct sge_txq *txq;
581 
582 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
583 		txq->restarts++;
584 		if (txq->q_type == CXGB4_TXQ_ETH) {
585 			struct sge_eth_txq *eq;
586 
587 			eq = container_of(txq, struct sge_eth_txq, q);
588 			t4_sge_eth_txq_egress_update(q->adap, eq, -1);
589 		} else {
590 			struct sge_uld_txq *oq;
591 
592 			oq = container_of(txq, struct sge_uld_txq, q);
593 			tasklet_schedule(&oq->qresume_tsk);
594 		}
595 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
596 		const struct cpl_fw6_msg *p = (void *)rsp;
597 
598 #ifdef CONFIG_CHELSIO_T4_DCB
599 		const struct fw_port_cmd *pcmd = (const void *)p->data;
600 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
601 		unsigned int action =
602 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
603 
604 		if (cmd == FW_PORT_CMD &&
605 		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
606 		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
607 			int port = FW_PORT_CMD_PORTID_G(
608 					be32_to_cpu(pcmd->op_to_portid));
609 			struct net_device *dev;
610 			int dcbxdis, state_input;
611 
612 			dev = q->adap->port[q->adap->chan_map[port]];
613 			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
614 			  ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
615 			  : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
616 			       & FW_PORT_CMD_DCBXDIS32_F));
617 			state_input = (dcbxdis
618 				       ? CXGB4_DCB_INPUT_FW_DISABLED
619 				       : CXGB4_DCB_INPUT_FW_ENABLED);
620 
621 			cxgb4_dcb_state_fsm(dev, state_input);
622 		}
623 
624 		if (cmd == FW_PORT_CMD &&
625 		    action == FW_PORT_ACTION_L2_DCB_CFG)
626 			dcb_rpl(q->adap, pcmd);
627 		else
628 #endif
629 			if (p->type == 0)
630 				t4_handle_fw_rpl(q->adap, p->data);
631 	} else if (opcode == CPL_L2T_WRITE_RPL) {
632 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
633 
634 		do_l2t_write_rpl(q->adap, p);
635 	} else if (opcode == CPL_SMT_WRITE_RPL) {
636 		const struct cpl_smt_write_rpl *p = (void *)rsp;
637 
638 		do_smt_write_rpl(q->adap, p);
639 	} else if (opcode == CPL_SET_TCB_RPL) {
640 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
641 
642 		filter_rpl(q->adap, p);
643 	} else if (opcode == CPL_ACT_OPEN_RPL) {
644 		const struct cpl_act_open_rpl *p = (void *)rsp;
645 
646 		hash_filter_rpl(q->adap, p);
647 	} else if (opcode == CPL_ABORT_RPL_RSS) {
648 		const struct cpl_abort_rpl_rss *p = (void *)rsp;
649 
650 		hash_del_filter_rpl(q->adap, p);
651 	} else if (opcode == CPL_SRQ_TABLE_RPL) {
652 		const struct cpl_srq_table_rpl *p = (void *)rsp;
653 
654 		do_srq_table_rpl(q->adap, p);
655 	} else
656 		dev_err(q->adap->pdev_dev,
657 			"unexpected CPL %#x on FW event queue\n", opcode);
658 out:
659 	return 0;
660 }
661 
662 static void disable_msi(struct adapter *adapter)
663 {
664 	if (adapter->flags & CXGB4_USING_MSIX) {
665 		pci_disable_msix(adapter->pdev);
666 		adapter->flags &= ~CXGB4_USING_MSIX;
667 	} else if (adapter->flags & CXGB4_USING_MSI) {
668 		pci_disable_msi(adapter->pdev);
669 		adapter->flags &= ~CXGB4_USING_MSI;
670 	}
671 }
672 
673 /*
674  * Interrupt handler for non-data events used with MSI-X.
675  */
676 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
677 {
678 	struct adapter *adap = cookie;
679 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
680 
681 	if (v & PFSW_F) {
682 		adap->swintr = 1;
683 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
684 	}
685 	if (adap->flags & CXGB4_MASTER_PF)
686 		t4_slow_intr_handler(adap);
687 	return IRQ_HANDLED;
688 }
689 
690 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
691 		       cpumask_var_t *aff_mask, int idx)
692 {
693 	int rv;
694 
695 	if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
696 		dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
697 		return -ENOMEM;
698 	}
699 
700 	cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
701 			*aff_mask);
702 
703 	rv = irq_set_affinity_hint(vec, *aff_mask);
704 	if (rv)
705 		dev_warn(adap->pdev_dev,
706 			 "irq_set_affinity_hint %u failed %d\n",
707 			 vec, rv);
708 
709 	return 0;
710 }
711 
712 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
713 {
714 	irq_set_affinity_hint(vec, NULL);
715 	free_cpumask_var(aff_mask);
716 }
717 
718 static int request_msix_queue_irqs(struct adapter *adap)
719 {
720 	struct sge *s = &adap->sge;
721 	struct msix_info *minfo;
722 	int err, ethqidx;
723 
724 	if (s->fwevtq_msix_idx < 0)
725 		return -ENOMEM;
726 
727 	err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
728 			  t4_sge_intr_msix, 0,
729 			  adap->msix_info[s->fwevtq_msix_idx].desc,
730 			  &s->fw_evtq);
731 	if (err)
732 		return err;
733 
734 	for_each_ethrxq(s, ethqidx) {
735 		minfo = s->ethrxq[ethqidx].msix;
736 		err = request_irq(minfo->vec,
737 				  t4_sge_intr_msix, 0,
738 				  minfo->desc,
739 				  &s->ethrxq[ethqidx].rspq);
740 		if (err)
741 			goto unwind;
742 
743 		cxgb4_set_msix_aff(adap, minfo->vec,
744 				   &minfo->aff_mask, ethqidx);
745 	}
746 	return 0;
747 
748 unwind:
749 	while (--ethqidx >= 0) {
750 		minfo = s->ethrxq[ethqidx].msix;
751 		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
752 		free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
753 	}
754 	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
755 	return err;
756 }
757 
758 static void free_msix_queue_irqs(struct adapter *adap)
759 {
760 	struct sge *s = &adap->sge;
761 	struct msix_info *minfo;
762 	int i;
763 
764 	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
765 	for_each_ethrxq(s, i) {
766 		minfo = s->ethrxq[i].msix;
767 		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
768 		free_irq(minfo->vec, &s->ethrxq[i].rspq);
769 	}
770 }
771 
772 static int setup_ppod_edram(struct adapter *adap)
773 {
774 	unsigned int param, val;
775 	int ret;
776 
777 	/* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
778 	 * if firmware supports ppod edram feature or not. If firmware
779 	 * returns 1, then driver can enable this feature by sending
780 	 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
781 	 * enable ppod edram feature.
782 	 */
783 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
784 		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
785 
786 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
787 	if (ret < 0) {
788 		dev_warn(adap->pdev_dev,
789 			 "querying PPOD_EDRAM support failed: %d\n",
790 			 ret);
791 		return -1;
792 	}
793 
794 	if (val != 1)
795 		return -1;
796 
797 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
798 	if (ret < 0) {
799 		dev_err(adap->pdev_dev,
800 			"setting PPOD_EDRAM failed: %d\n", ret);
801 		return -1;
802 	}
803 	return 0;
804 }
805 
806 static void adap_config_hpfilter(struct adapter *adapter)
807 {
808 	u32 param, val = 0;
809 	int ret;
810 
811 	/* Enable HP filter region. Older fw will fail this request and
812 	 * it is fine.
813 	 */
814 	param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
815 	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
816 			    1, &param, &val);
817 
818 	/* An error means FW doesn't know about HP filter support,
819 	 * it's not a problem, don't return an error.
820 	 */
821 	if (ret < 0)
822 		dev_err(adapter->pdev_dev,
823 			"HP filter region isn't supported by FW\n");
824 }
825 
826 static int cxgb4_config_rss(const struct port_info *pi, u16 *rss,
827 			    u16 rss_size, u16 viid)
828 {
829 	struct adapter *adap = pi->adapter;
830 	int ret;
831 
832 	ret = t4_config_rss_range(adap, adap->mbox, viid, 0, rss_size, rss,
833 				  rss_size);
834 	if (ret)
835 		return ret;
836 
837 	/* If Tunnel All Lookup isn't specified in the global RSS
838 	 * Configuration, then we need to specify a default Ingress
839 	 * Queue for any ingress packets which aren't hashed.  We'll
840 	 * use our first ingress queue ...
841 	 */
842 	return t4_config_vi_rss(adap, adap->mbox, viid,
843 				FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
844 				FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
845 				FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
846 				FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
847 				FW_RSS_VI_CONFIG_CMD_UDPEN_F,
848 				rss[0]);
849 }
850 
851 /**
852  *	cxgb4_write_rss - write the RSS table for a given port
853  *	@pi: the port
854  *	@queues: array of queue indices for RSS
855  *
856  *	Sets up the portion of the HW RSS table for the port's VI to distribute
857  *	packets to the Rx queues in @queues.
858  *	Should never be called before setting up sge eth rx queues
859  */
860 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
861 {
862 	struct adapter *adapter = pi->adapter;
863 	const struct sge_eth_rxq *rxq;
864 	int i, err;
865 	u16 *rss;
866 
867 	rxq = &adapter->sge.ethrxq[pi->first_qset];
868 	rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
869 	if (!rss)
870 		return -ENOMEM;
871 
872 	/* map the queue indices to queue ids */
873 	for (i = 0; i < pi->rss_size; i++, queues++)
874 		rss[i] = rxq[*queues].rspq.abs_id;
875 
876 	err = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid);
877 	kfree(rss);
878 	return err;
879 }
880 
881 /**
882  *	setup_rss - configure RSS
883  *	@adap: the adapter
884  *
885  *	Sets up RSS for each port.
886  */
887 static int setup_rss(struct adapter *adap)
888 {
889 	int i, j, err;
890 
891 	for_each_port(adap, i) {
892 		const struct port_info *pi = adap2pinfo(adap, i);
893 
894 		/* Fill default values with equal distribution */
895 		for (j = 0; j < pi->rss_size; j++)
896 			pi->rss[j] = j % pi->nqsets;
897 
898 		err = cxgb4_write_rss(pi, pi->rss);
899 		if (err)
900 			return err;
901 	}
902 	return 0;
903 }
904 
905 /*
906  * Return the channel of the ingress queue with the given qid.
907  */
908 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
909 {
910 	qid -= p->ingr_start;
911 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
912 }
913 
914 void cxgb4_quiesce_rx(struct sge_rspq *q)
915 {
916 	if (q->handler)
917 		napi_disable(&q->napi);
918 }
919 
920 /*
921  * Wait until all NAPI handlers are descheduled.
922  */
923 static void quiesce_rx(struct adapter *adap)
924 {
925 	int i;
926 
927 	for (i = 0; i < adap->sge.ingr_sz; i++) {
928 		struct sge_rspq *q = adap->sge.ingr_map[i];
929 
930 		if (!q)
931 			continue;
932 
933 		cxgb4_quiesce_rx(q);
934 	}
935 }
936 
937 /* Disable interrupt and napi handler */
938 static void disable_interrupts(struct adapter *adap)
939 {
940 	struct sge *s = &adap->sge;
941 
942 	if (adap->flags & CXGB4_FULL_INIT_DONE) {
943 		t4_intr_disable(adap);
944 		if (adap->flags & CXGB4_USING_MSIX) {
945 			free_msix_queue_irqs(adap);
946 			free_irq(adap->msix_info[s->nd_msix_idx].vec,
947 				 adap);
948 		} else {
949 			free_irq(adap->pdev->irq, adap);
950 		}
951 		quiesce_rx(adap);
952 	}
953 }
954 
955 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
956 {
957 	if (q->handler)
958 		napi_enable(&q->napi);
959 
960 	/* 0-increment GTS to start the timer and enable interrupts */
961 	t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
962 		     SEINTARM_V(q->intr_params) |
963 		     INGRESSQID_V(q->cntxt_id));
964 }
965 
966 /*
967  * Enable NAPI scheduling and interrupt generation for all Rx queues.
968  */
969 static void enable_rx(struct adapter *adap)
970 {
971 	int i;
972 
973 	for (i = 0; i < adap->sge.ingr_sz; i++) {
974 		struct sge_rspq *q = adap->sge.ingr_map[i];
975 
976 		if (!q)
977 			continue;
978 
979 		cxgb4_enable_rx(adap, q);
980 	}
981 }
982 
983 static int setup_non_data_intr(struct adapter *adap)
984 {
985 	int msix;
986 
987 	adap->sge.nd_msix_idx = -1;
988 	if (!(adap->flags & CXGB4_USING_MSIX))
989 		return 0;
990 
991 	/* Request MSI-X vector for non-data interrupt */
992 	msix = cxgb4_get_msix_idx_from_bmap(adap);
993 	if (msix < 0)
994 		return -ENOMEM;
995 
996 	snprintf(adap->msix_info[msix].desc,
997 		 sizeof(adap->msix_info[msix].desc),
998 		 "%s", adap->port[0]->name);
999 
1000 	adap->sge.nd_msix_idx = msix;
1001 	return 0;
1002 }
1003 
1004 static int setup_fw_sge_queues(struct adapter *adap)
1005 {
1006 	struct sge *s = &adap->sge;
1007 	int msix, err = 0;
1008 
1009 	bitmap_zero(s->starving_fl, s->egr_sz);
1010 	bitmap_zero(s->txq_maperr, s->egr_sz);
1011 
1012 	if (adap->flags & CXGB4_USING_MSIX) {
1013 		s->fwevtq_msix_idx = -1;
1014 		msix = cxgb4_get_msix_idx_from_bmap(adap);
1015 		if (msix < 0)
1016 			return -ENOMEM;
1017 
1018 		snprintf(adap->msix_info[msix].desc,
1019 			 sizeof(adap->msix_info[msix].desc),
1020 			 "%s-FWeventq", adap->port[0]->name);
1021 	} else {
1022 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1023 				       NULL, NULL, NULL, -1);
1024 		if (err)
1025 			return err;
1026 		msix = -((int)s->intrq.abs_id + 1);
1027 	}
1028 
1029 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1030 			       msix, NULL, fwevtq_handler, NULL, -1);
1031 	if (err && msix >= 0)
1032 		cxgb4_free_msix_idx_in_bmap(adap, msix);
1033 
1034 	s->fwevtq_msix_idx = msix;
1035 	return err;
1036 }
1037 
1038 /**
1039  *	setup_sge_queues - configure SGE Tx/Rx/response queues
1040  *	@adap: the adapter
1041  *
1042  *	Determines how many sets of SGE queues to use and initializes them.
1043  *	We support multiple queue sets per port if we have MSI-X, otherwise
1044  *	just one queue set per port.
1045  */
1046 static int setup_sge_queues(struct adapter *adap)
1047 {
1048 	struct sge_uld_rxq_info *rxq_info = NULL;
1049 	struct sge *s = &adap->sge;
1050 	unsigned int cmplqid = 0;
1051 	int err, i, j, msix = 0;
1052 
1053 	if (is_uld(adap))
1054 		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1055 
1056 	if (!(adap->flags & CXGB4_USING_MSIX))
1057 		msix = -((int)s->intrq.abs_id + 1);
1058 
1059 	for_each_port(adap, i) {
1060 		struct net_device *dev = adap->port[i];
1061 		struct port_info *pi = netdev_priv(dev);
1062 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1063 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1064 
1065 		for (j = 0; j < pi->nqsets; j++, q++) {
1066 			if (msix >= 0) {
1067 				msix = cxgb4_get_msix_idx_from_bmap(adap);
1068 				if (msix < 0) {
1069 					err = msix;
1070 					goto freeout;
1071 				}
1072 
1073 				snprintf(adap->msix_info[msix].desc,
1074 					 sizeof(adap->msix_info[msix].desc),
1075 					 "%s-Rx%d", dev->name, j);
1076 				q->msix = &adap->msix_info[msix];
1077 			}
1078 
1079 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1080 					       msix, &q->fl,
1081 					       t4_ethrx_handler,
1082 					       NULL,
1083 					       t4_get_tp_ch_map(adap,
1084 								pi->tx_chan));
1085 			if (err)
1086 				goto freeout;
1087 			q->rspq.idx = j;
1088 			memset(&q->stats, 0, sizeof(q->stats));
1089 		}
1090 
1091 		q = &s->ethrxq[pi->first_qset];
1092 		for (j = 0; j < pi->nqsets; j++, t++, q++) {
1093 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1094 					netdev_get_tx_queue(dev, j),
1095 					q->rspq.cntxt_id,
1096 					!!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1097 			if (err)
1098 				goto freeout;
1099 		}
1100 	}
1101 
1102 	for_each_port(adap, i) {
1103 		/* Note that cmplqid below is 0 if we don't
1104 		 * have RDMA queues, and that's the right value.
1105 		 */
1106 		if (rxq_info)
1107 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
1108 
1109 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1110 					    s->fw_evtq.cntxt_id, cmplqid);
1111 		if (err)
1112 			goto freeout;
1113 	}
1114 
1115 	if (!is_t4(adap->params.chip)) {
1116 		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1117 					   netdev_get_tx_queue(adap->port[0], 0)
1118 					   , s->fw_evtq.cntxt_id, false);
1119 		if (err)
1120 			goto freeout;
1121 	}
1122 
1123 	t4_write_reg(adap, is_t4(adap->params.chip) ?
1124 				MPS_TRC_RSS_CONTROL_A :
1125 				MPS_T5_TRC_RSS_CONTROL_A,
1126 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1127 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1128 	return 0;
1129 freeout:
1130 	dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1131 	t4_free_sge_resources(adap);
1132 	return err;
1133 }
1134 
1135 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1136 			     struct net_device *sb_dev)
1137 {
1138 	int txq;
1139 
1140 #ifdef CONFIG_CHELSIO_T4_DCB
1141 	/* If a Data Center Bridging has been successfully negotiated on this
1142 	 * link then we'll use the skb's priority to map it to a TX Queue.
1143 	 * The skb's priority is determined via the VLAN Tag Priority Code
1144 	 * Point field.
1145 	 */
1146 	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1147 		u16 vlan_tci;
1148 		int err;
1149 
1150 		err = vlan_get_tag(skb, &vlan_tci);
1151 		if (unlikely(err)) {
1152 			if (net_ratelimit())
1153 				netdev_warn(dev,
1154 					    "TX Packet without VLAN Tag on DCB Link\n");
1155 			txq = 0;
1156 		} else {
1157 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1158 #ifdef CONFIG_CHELSIO_T4_FCOE
1159 			if (skb->protocol == htons(ETH_P_FCOE))
1160 				txq = skb->priority & 0x7;
1161 #endif /* CONFIG_CHELSIO_T4_FCOE */
1162 		}
1163 		return txq;
1164 	}
1165 #endif /* CONFIG_CHELSIO_T4_DCB */
1166 
1167 	if (dev->num_tc) {
1168 		struct port_info *pi = netdev2pinfo(dev);
1169 		u8 ver, proto;
1170 
1171 		ver = ip_hdr(skb)->version;
1172 		proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1173 				     ip_hdr(skb)->protocol;
1174 
1175 		/* Send unsupported traffic pattern to normal NIC queues. */
1176 		txq = netdev_pick_tx(dev, skb, sb_dev);
1177 		if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1178 		    skb->encapsulation ||
1179 		    cxgb4_is_ktls_skb(skb) ||
1180 		    (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1181 			txq = txq % pi->nqsets;
1182 
1183 		return txq;
1184 	}
1185 
1186 	if (select_queue) {
1187 		txq = (skb_rx_queue_recorded(skb)
1188 			? skb_get_rx_queue(skb)
1189 			: smp_processor_id());
1190 
1191 		while (unlikely(txq >= dev->real_num_tx_queues))
1192 			txq -= dev->real_num_tx_queues;
1193 
1194 		return txq;
1195 	}
1196 
1197 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1198 }
1199 
1200 static int closest_timer(const struct sge *s, int time)
1201 {
1202 	int i, delta, match = 0, min_delta = INT_MAX;
1203 
1204 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1205 		delta = time - s->timer_val[i];
1206 		if (delta < 0)
1207 			delta = -delta;
1208 		if (delta < min_delta) {
1209 			min_delta = delta;
1210 			match = i;
1211 		}
1212 	}
1213 	return match;
1214 }
1215 
1216 static int closest_thres(const struct sge *s, int thres)
1217 {
1218 	int i, delta, match = 0, min_delta = INT_MAX;
1219 
1220 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1221 		delta = thres - s->counter_val[i];
1222 		if (delta < 0)
1223 			delta = -delta;
1224 		if (delta < min_delta) {
1225 			min_delta = delta;
1226 			match = i;
1227 		}
1228 	}
1229 	return match;
1230 }
1231 
1232 /**
1233  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1234  *	@q: the Rx queue
1235  *	@us: the hold-off time in us, or 0 to disable timer
1236  *	@cnt: the hold-off packet count, or 0 to disable counter
1237  *
1238  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1239  *	one of the two needs to be enabled for the queue to generate interrupts.
1240  */
1241 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1242 			       unsigned int us, unsigned int cnt)
1243 {
1244 	struct adapter *adap = q->adap;
1245 
1246 	if ((us | cnt) == 0)
1247 		cnt = 1;
1248 
1249 	if (cnt) {
1250 		int err;
1251 		u32 v, new_idx;
1252 
1253 		new_idx = closest_thres(&adap->sge, cnt);
1254 		if (q->desc && q->pktcnt_idx != new_idx) {
1255 			/* the queue has already been created, update it */
1256 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1257 			    FW_PARAMS_PARAM_X_V(
1258 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1259 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1260 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1261 					    &v, &new_idx);
1262 			if (err)
1263 				return err;
1264 		}
1265 		q->pktcnt_idx = new_idx;
1266 	}
1267 
1268 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1269 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1270 	return 0;
1271 }
1272 
1273 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1274 {
1275 	netdev_features_t changed = dev->features ^ features;
1276 	const struct port_info *pi = netdev_priv(dev);
1277 	int err;
1278 
1279 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1280 		return 0;
1281 
1282 	err = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
1283 			    pi->viid_mirror, -1, -1, -1, -1,
1284 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1285 	if (unlikely(err))
1286 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1287 	return err;
1288 }
1289 
1290 static int setup_debugfs(struct adapter *adap)
1291 {
1292 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1293 		return -1;
1294 
1295 #ifdef CONFIG_DEBUG_FS
1296 	t4_setup_debugfs(adap);
1297 #endif
1298 	return 0;
1299 }
1300 
1301 static void cxgb4_port_mirror_free_rxq(struct adapter *adap,
1302 				       struct sge_eth_rxq *mirror_rxq)
1303 {
1304 	if ((adap->flags & CXGB4_FULL_INIT_DONE) &&
1305 	    !(adap->flags & CXGB4_SHUTTING_DOWN))
1306 		cxgb4_quiesce_rx(&mirror_rxq->rspq);
1307 
1308 	if (adap->flags & CXGB4_USING_MSIX) {
1309 		cxgb4_clear_msix_aff(mirror_rxq->msix->vec,
1310 				     mirror_rxq->msix->aff_mask);
1311 		free_irq(mirror_rxq->msix->vec, &mirror_rxq->rspq);
1312 		cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1313 	}
1314 
1315 	free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1316 }
1317 
1318 static int cxgb4_port_mirror_alloc_queues(struct net_device *dev)
1319 {
1320 	struct port_info *pi = netdev2pinfo(dev);
1321 	struct adapter *adap = netdev2adap(dev);
1322 	struct sge_eth_rxq *mirror_rxq;
1323 	struct sge *s = &adap->sge;
1324 	int ret = 0, msix = 0;
1325 	u16 i, rxqid;
1326 	u16 *rss;
1327 
1328 	if (!pi->vi_mirror_count)
1329 		return 0;
1330 
1331 	if (s->mirror_rxq[pi->port_id])
1332 		return 0;
1333 
1334 	mirror_rxq = kcalloc(pi->nmirrorqsets, sizeof(*mirror_rxq), GFP_KERNEL);
1335 	if (!mirror_rxq)
1336 		return -ENOMEM;
1337 
1338 	s->mirror_rxq[pi->port_id] = mirror_rxq;
1339 
1340 	if (!(adap->flags & CXGB4_USING_MSIX))
1341 		msix = -((int)adap->sge.intrq.abs_id + 1);
1342 
1343 	for (i = 0, rxqid = 0; i < pi->nmirrorqsets; i++, rxqid++) {
1344 		mirror_rxq = &s->mirror_rxq[pi->port_id][i];
1345 
1346 		/* Allocate Mirror Rxqs */
1347 		if (msix >= 0) {
1348 			msix = cxgb4_get_msix_idx_from_bmap(adap);
1349 			if (msix < 0) {
1350 				ret = msix;
1351 				goto out_free_queues;
1352 			}
1353 
1354 			mirror_rxq->msix = &adap->msix_info[msix];
1355 			snprintf(mirror_rxq->msix->desc,
1356 				 sizeof(mirror_rxq->msix->desc),
1357 				 "%s-mirrorrxq%d", dev->name, i);
1358 		}
1359 
1360 		init_rspq(adap, &mirror_rxq->rspq,
1361 			  CXGB4_MIRROR_RXQ_DEFAULT_INTR_USEC,
1362 			  CXGB4_MIRROR_RXQ_DEFAULT_PKT_CNT,
1363 			  CXGB4_MIRROR_RXQ_DEFAULT_DESC_NUM,
1364 			  CXGB4_MIRROR_RXQ_DEFAULT_DESC_SIZE);
1365 
1366 		mirror_rxq->fl.size = CXGB4_MIRROR_FLQ_DEFAULT_DESC_NUM;
1367 
1368 		ret = t4_sge_alloc_rxq(adap, &mirror_rxq->rspq, false,
1369 				       dev, msix, &mirror_rxq->fl,
1370 				       t4_ethrx_handler, NULL, 0);
1371 		if (ret)
1372 			goto out_free_msix_idx;
1373 
1374 		/* Setup MSI-X vectors for Mirror Rxqs */
1375 		if (adap->flags & CXGB4_USING_MSIX) {
1376 			ret = request_irq(mirror_rxq->msix->vec,
1377 					  t4_sge_intr_msix, 0,
1378 					  mirror_rxq->msix->desc,
1379 					  &mirror_rxq->rspq);
1380 			if (ret)
1381 				goto out_free_rxq;
1382 
1383 			cxgb4_set_msix_aff(adap, mirror_rxq->msix->vec,
1384 					   &mirror_rxq->msix->aff_mask, i);
1385 		}
1386 
1387 		/* Start NAPI for Mirror Rxqs */
1388 		cxgb4_enable_rx(adap, &mirror_rxq->rspq);
1389 	}
1390 
1391 	/* Setup RSS for Mirror Rxqs */
1392 	rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
1393 	if (!rss) {
1394 		ret = -ENOMEM;
1395 		goto out_free_queues;
1396 	}
1397 
1398 	mirror_rxq = &s->mirror_rxq[pi->port_id][0];
1399 	for (i = 0; i < pi->rss_size; i++)
1400 		rss[i] = mirror_rxq[i % pi->nmirrorqsets].rspq.abs_id;
1401 
1402 	ret = cxgb4_config_rss(pi, rss, pi->rss_size, pi->viid_mirror);
1403 	kfree(rss);
1404 	if (ret)
1405 		goto out_free_queues;
1406 
1407 	return 0;
1408 
1409 out_free_rxq:
1410 	free_rspq_fl(adap, &mirror_rxq->rspq, &mirror_rxq->fl);
1411 
1412 out_free_msix_idx:
1413 	cxgb4_free_msix_idx_in_bmap(adap, mirror_rxq->msix->idx);
1414 
1415 out_free_queues:
1416 	while (rxqid-- > 0)
1417 		cxgb4_port_mirror_free_rxq(adap,
1418 					   &s->mirror_rxq[pi->port_id][rxqid]);
1419 
1420 	kfree(s->mirror_rxq[pi->port_id]);
1421 	s->mirror_rxq[pi->port_id] = NULL;
1422 	return ret;
1423 }
1424 
1425 static void cxgb4_port_mirror_free_queues(struct net_device *dev)
1426 {
1427 	struct port_info *pi = netdev2pinfo(dev);
1428 	struct adapter *adap = netdev2adap(dev);
1429 	struct sge *s = &adap->sge;
1430 	u16 i;
1431 
1432 	if (!pi->vi_mirror_count)
1433 		return;
1434 
1435 	if (!s->mirror_rxq[pi->port_id])
1436 		return;
1437 
1438 	for (i = 0; i < pi->nmirrorqsets; i++)
1439 		cxgb4_port_mirror_free_rxq(adap,
1440 					   &s->mirror_rxq[pi->port_id][i]);
1441 
1442 	kfree(s->mirror_rxq[pi->port_id]);
1443 	s->mirror_rxq[pi->port_id] = NULL;
1444 }
1445 
1446 static int cxgb4_port_mirror_start(struct net_device *dev)
1447 {
1448 	struct port_info *pi = netdev2pinfo(dev);
1449 	struct adapter *adap = netdev2adap(dev);
1450 	int ret, idx = -1;
1451 
1452 	if (!pi->vi_mirror_count)
1453 		return 0;
1454 
1455 	/* Mirror VIs can be created dynamically after stack had
1456 	 * already setup Rx modes like MTU, promisc, allmulti, etc.
1457 	 * on main VI. So, parse what the stack had setup on the
1458 	 * main VI and update the same on the mirror VI.
1459 	 */
1460 	ret = t4_set_rxmode(adap, adap->mbox, pi->viid, pi->viid_mirror,
1461 			    dev->mtu, (dev->flags & IFF_PROMISC) ? 1 : 0,
1462 			    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1,
1463 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
1464 	if (ret) {
1465 		dev_err(adap->pdev_dev,
1466 			"Failed start up Rx mode for Mirror VI 0x%x, ret: %d\n",
1467 			pi->viid_mirror, ret);
1468 		return ret;
1469 	}
1470 
1471 	/* Enable replication bit for the device's MAC address
1472 	 * in MPS TCAM, so that the packets for the main VI are
1473 	 * replicated to mirror VI.
1474 	 */
1475 	ret = cxgb4_update_mac_filt(pi, pi->viid_mirror, &idx,
1476 				    dev->dev_addr, true, NULL);
1477 	if (ret) {
1478 		dev_err(adap->pdev_dev,
1479 			"Failed updating MAC filter for Mirror VI 0x%x, ret: %d\n",
1480 			pi->viid_mirror, ret);
1481 		return ret;
1482 	}
1483 
1484 	/* Enabling a Virtual Interface can result in an interrupt
1485 	 * during the processing of the VI Enable command and, in some
1486 	 * paths, result in an attempt to issue another command in the
1487 	 * interrupt context. Thus, we disable interrupts during the
1488 	 * course of the VI Enable command ...
1489 	 */
1490 	local_bh_disable();
1491 	ret = t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, true, true,
1492 				  false);
1493 	local_bh_enable();
1494 	if (ret)
1495 		dev_err(adap->pdev_dev,
1496 			"Failed starting Mirror VI 0x%x, ret: %d\n",
1497 			pi->viid_mirror, ret);
1498 
1499 	return ret;
1500 }
1501 
1502 static void cxgb4_port_mirror_stop(struct net_device *dev)
1503 {
1504 	struct port_info *pi = netdev2pinfo(dev);
1505 	struct adapter *adap = netdev2adap(dev);
1506 
1507 	if (!pi->vi_mirror_count)
1508 		return;
1509 
1510 	t4_enable_vi_params(adap, adap->mbox, pi->viid_mirror, false, false,
1511 			    false);
1512 }
1513 
1514 int cxgb4_port_mirror_alloc(struct net_device *dev)
1515 {
1516 	struct port_info *pi = netdev2pinfo(dev);
1517 	struct adapter *adap = netdev2adap(dev);
1518 	int ret = 0;
1519 
1520 	if (!pi->nmirrorqsets)
1521 		return -EOPNOTSUPP;
1522 
1523 	mutex_lock(&pi->vi_mirror_mutex);
1524 	if (pi->viid_mirror) {
1525 		pi->vi_mirror_count++;
1526 		goto out_unlock;
1527 	}
1528 
1529 	ret = t4_init_port_mirror(pi, adap->mbox, pi->port_id, adap->pf, 0,
1530 				  &pi->viid_mirror);
1531 	if (ret)
1532 		goto out_unlock;
1533 
1534 	pi->vi_mirror_count = 1;
1535 
1536 	if (adap->flags & CXGB4_FULL_INIT_DONE) {
1537 		ret = cxgb4_port_mirror_alloc_queues(dev);
1538 		if (ret)
1539 			goto out_free_vi;
1540 
1541 		ret = cxgb4_port_mirror_start(dev);
1542 		if (ret)
1543 			goto out_free_queues;
1544 	}
1545 
1546 	mutex_unlock(&pi->vi_mirror_mutex);
1547 	return 0;
1548 
1549 out_free_queues:
1550 	cxgb4_port_mirror_free_queues(dev);
1551 
1552 out_free_vi:
1553 	pi->vi_mirror_count = 0;
1554 	t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1555 	pi->viid_mirror = 0;
1556 
1557 out_unlock:
1558 	mutex_unlock(&pi->vi_mirror_mutex);
1559 	return ret;
1560 }
1561 
1562 void cxgb4_port_mirror_free(struct net_device *dev)
1563 {
1564 	struct port_info *pi = netdev2pinfo(dev);
1565 	struct adapter *adap = netdev2adap(dev);
1566 
1567 	mutex_lock(&pi->vi_mirror_mutex);
1568 	if (!pi->viid_mirror)
1569 		goto out_unlock;
1570 
1571 	if (pi->vi_mirror_count > 1) {
1572 		pi->vi_mirror_count--;
1573 		goto out_unlock;
1574 	}
1575 
1576 	cxgb4_port_mirror_stop(dev);
1577 	cxgb4_port_mirror_free_queues(dev);
1578 
1579 	pi->vi_mirror_count = 0;
1580 	t4_free_vi(adap, adap->mbox, adap->pf, 0, pi->viid_mirror);
1581 	pi->viid_mirror = 0;
1582 
1583 out_unlock:
1584 	mutex_unlock(&pi->vi_mirror_mutex);
1585 }
1586 
1587 /*
1588  * upper-layer driver support
1589  */
1590 
1591 /*
1592  * Allocate an active-open TID and set it to the supplied value.
1593  */
1594 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1595 {
1596 	int atid = -1;
1597 
1598 	spin_lock_bh(&t->atid_lock);
1599 	if (t->afree) {
1600 		union aopen_entry *p = t->afree;
1601 
1602 		atid = (p - t->atid_tab) + t->atid_base;
1603 		t->afree = p->next;
1604 		p->data = data;
1605 		t->atids_in_use++;
1606 	}
1607 	spin_unlock_bh(&t->atid_lock);
1608 	return atid;
1609 }
1610 EXPORT_SYMBOL(cxgb4_alloc_atid);
1611 
1612 /*
1613  * Release an active-open TID.
1614  */
1615 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1616 {
1617 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1618 
1619 	spin_lock_bh(&t->atid_lock);
1620 	p->next = t->afree;
1621 	t->afree = p;
1622 	t->atids_in_use--;
1623 	spin_unlock_bh(&t->atid_lock);
1624 }
1625 EXPORT_SYMBOL(cxgb4_free_atid);
1626 
1627 /*
1628  * Allocate a server TID and set it to the supplied value.
1629  */
1630 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1631 {
1632 	int stid;
1633 
1634 	spin_lock_bh(&t->stid_lock);
1635 	if (family == PF_INET) {
1636 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1637 		if (stid < t->nstids)
1638 			__set_bit(stid, t->stid_bmap);
1639 		else
1640 			stid = -1;
1641 	} else {
1642 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1643 		if (stid < 0)
1644 			stid = -1;
1645 	}
1646 	if (stid >= 0) {
1647 		t->stid_tab[stid].data = data;
1648 		stid += t->stid_base;
1649 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1650 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1651 		 * needs 2 TIDs.
1652 		 */
1653 		if (family == PF_INET6) {
1654 			t->stids_in_use += 2;
1655 			t->v6_stids_in_use += 2;
1656 		} else {
1657 			t->stids_in_use++;
1658 		}
1659 	}
1660 	spin_unlock_bh(&t->stid_lock);
1661 	return stid;
1662 }
1663 EXPORT_SYMBOL(cxgb4_alloc_stid);
1664 
1665 /* Allocate a server filter TID and set it to the supplied value.
1666  */
1667 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1668 {
1669 	int stid;
1670 
1671 	spin_lock_bh(&t->stid_lock);
1672 	if (family == PF_INET) {
1673 		stid = find_next_zero_bit(t->stid_bmap,
1674 				t->nstids + t->nsftids, t->nstids);
1675 		if (stid < (t->nstids + t->nsftids))
1676 			__set_bit(stid, t->stid_bmap);
1677 		else
1678 			stid = -1;
1679 	} else {
1680 		stid = -1;
1681 	}
1682 	if (stid >= 0) {
1683 		t->stid_tab[stid].data = data;
1684 		stid -= t->nstids;
1685 		stid += t->sftid_base;
1686 		t->sftids_in_use++;
1687 	}
1688 	spin_unlock_bh(&t->stid_lock);
1689 	return stid;
1690 }
1691 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1692 
1693 /* Release a server TID.
1694  */
1695 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1696 {
1697 	/* Is it a server filter TID? */
1698 	if (t->nsftids && (stid >= t->sftid_base)) {
1699 		stid -= t->sftid_base;
1700 		stid += t->nstids;
1701 	} else {
1702 		stid -= t->stid_base;
1703 	}
1704 
1705 	spin_lock_bh(&t->stid_lock);
1706 	if (family == PF_INET)
1707 		__clear_bit(stid, t->stid_bmap);
1708 	else
1709 		bitmap_release_region(t->stid_bmap, stid, 1);
1710 	t->stid_tab[stid].data = NULL;
1711 	if (stid < t->nstids) {
1712 		if (family == PF_INET6) {
1713 			t->stids_in_use -= 2;
1714 			t->v6_stids_in_use -= 2;
1715 		} else {
1716 			t->stids_in_use--;
1717 		}
1718 	} else {
1719 		t->sftids_in_use--;
1720 	}
1721 
1722 	spin_unlock_bh(&t->stid_lock);
1723 }
1724 EXPORT_SYMBOL(cxgb4_free_stid);
1725 
1726 /*
1727  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1728  */
1729 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1730 			   unsigned int tid)
1731 {
1732 	struct cpl_tid_release *req;
1733 
1734 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1735 	req = __skb_put(skb, sizeof(*req));
1736 	INIT_TP_WR(req, tid);
1737 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1738 }
1739 
1740 /*
1741  * Queue a TID release request and if necessary schedule a work queue to
1742  * process it.
1743  */
1744 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1745 				    unsigned int tid)
1746 {
1747 	struct adapter *adap = container_of(t, struct adapter, tids);
1748 	void **p = &t->tid_tab[tid - t->tid_base];
1749 
1750 	spin_lock_bh(&adap->tid_release_lock);
1751 	*p = adap->tid_release_head;
1752 	/* Low 2 bits encode the Tx channel number */
1753 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1754 	if (!adap->tid_release_task_busy) {
1755 		adap->tid_release_task_busy = true;
1756 		queue_work(adap->workq, &adap->tid_release_task);
1757 	}
1758 	spin_unlock_bh(&adap->tid_release_lock);
1759 }
1760 
1761 /*
1762  * Process the list of pending TID release requests.
1763  */
1764 static void process_tid_release_list(struct work_struct *work)
1765 {
1766 	struct sk_buff *skb;
1767 	struct adapter *adap;
1768 
1769 	adap = container_of(work, struct adapter, tid_release_task);
1770 
1771 	spin_lock_bh(&adap->tid_release_lock);
1772 	while (adap->tid_release_head) {
1773 		void **p = adap->tid_release_head;
1774 		unsigned int chan = (uintptr_t)p & 3;
1775 		p = (void *)p - chan;
1776 
1777 		adap->tid_release_head = *p;
1778 		*p = NULL;
1779 		spin_unlock_bh(&adap->tid_release_lock);
1780 
1781 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1782 					 GFP_KERNEL)))
1783 			schedule_timeout_uninterruptible(1);
1784 
1785 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1786 		t4_ofld_send(adap, skb);
1787 		spin_lock_bh(&adap->tid_release_lock);
1788 	}
1789 	adap->tid_release_task_busy = false;
1790 	spin_unlock_bh(&adap->tid_release_lock);
1791 }
1792 
1793 /*
1794  * Release a TID and inform HW.  If we are unable to allocate the release
1795  * message we defer to a work queue.
1796  */
1797 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1798 		      unsigned short family)
1799 {
1800 	struct adapter *adap = container_of(t, struct adapter, tids);
1801 	struct sk_buff *skb;
1802 
1803 	WARN_ON(tid_out_of_range(&adap->tids, tid));
1804 
1805 	if (t->tid_tab[tid - adap->tids.tid_base]) {
1806 		t->tid_tab[tid - adap->tids.tid_base] = NULL;
1807 		atomic_dec(&t->conns_in_use);
1808 		if (t->hash_base && (tid >= t->hash_base)) {
1809 			if (family == AF_INET6)
1810 				atomic_sub(2, &t->hash_tids_in_use);
1811 			else
1812 				atomic_dec(&t->hash_tids_in_use);
1813 		} else {
1814 			if (family == AF_INET6)
1815 				atomic_sub(2, &t->tids_in_use);
1816 			else
1817 				atomic_dec(&t->tids_in_use);
1818 		}
1819 	}
1820 
1821 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1822 	if (likely(skb)) {
1823 		mk_tid_release(skb, chan, tid);
1824 		t4_ofld_send(adap, skb);
1825 	} else
1826 		cxgb4_queue_tid_release(t, chan, tid);
1827 }
1828 EXPORT_SYMBOL(cxgb4_remove_tid);
1829 
1830 /*
1831  * Allocate and initialize the TID tables.  Returns 0 on success.
1832  */
1833 static int tid_init(struct tid_info *t)
1834 {
1835 	struct adapter *adap = container_of(t, struct adapter, tids);
1836 	unsigned int max_ftids = t->nftids + t->nsftids;
1837 	unsigned int natids = t->natids;
1838 	unsigned int hpftid_bmap_size;
1839 	unsigned int eotid_bmap_size;
1840 	unsigned int stid_bmap_size;
1841 	unsigned int ftid_bmap_size;
1842 	size_t size;
1843 
1844 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1845 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1846 	hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1847 	eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1848 	size = t->ntids * sizeof(*t->tid_tab) +
1849 	       natids * sizeof(*t->atid_tab) +
1850 	       t->nstids * sizeof(*t->stid_tab) +
1851 	       t->nsftids * sizeof(*t->stid_tab) +
1852 	       stid_bmap_size * sizeof(long) +
1853 	       t->nhpftids * sizeof(*t->hpftid_tab) +
1854 	       hpftid_bmap_size * sizeof(long) +
1855 	       max_ftids * sizeof(*t->ftid_tab) +
1856 	       ftid_bmap_size * sizeof(long) +
1857 	       t->neotids * sizeof(*t->eotid_tab) +
1858 	       eotid_bmap_size * sizeof(long);
1859 
1860 	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1861 	if (!t->tid_tab)
1862 		return -ENOMEM;
1863 
1864 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1865 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1866 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1867 	t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1868 	t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1869 	t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1870 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1871 	t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1872 	t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1873 	spin_lock_init(&t->stid_lock);
1874 	spin_lock_init(&t->atid_lock);
1875 	spin_lock_init(&t->ftid_lock);
1876 
1877 	t->stids_in_use = 0;
1878 	t->v6_stids_in_use = 0;
1879 	t->sftids_in_use = 0;
1880 	t->afree = NULL;
1881 	t->atids_in_use = 0;
1882 	atomic_set(&t->tids_in_use, 0);
1883 	atomic_set(&t->conns_in_use, 0);
1884 	atomic_set(&t->hash_tids_in_use, 0);
1885 	atomic_set(&t->eotids_in_use, 0);
1886 
1887 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1888 	if (natids) {
1889 		while (--natids)
1890 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1891 		t->afree = t->atid_tab;
1892 	}
1893 
1894 	if (is_offload(adap)) {
1895 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1896 		/* Reserve stid 0 for T4/T5 adapters */
1897 		if (!t->stid_base &&
1898 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1899 			__set_bit(0, t->stid_bmap);
1900 
1901 		if (t->neotids)
1902 			bitmap_zero(t->eotid_bmap, t->neotids);
1903 	}
1904 
1905 	if (t->nhpftids)
1906 		bitmap_zero(t->hpftid_bmap, t->nhpftids);
1907 	bitmap_zero(t->ftid_bmap, t->nftids);
1908 	return 0;
1909 }
1910 
1911 /**
1912  *	cxgb4_create_server - create an IP server
1913  *	@dev: the device
1914  *	@stid: the server TID
1915  *	@sip: local IP address to bind server to
1916  *	@sport: the server's TCP port
1917  *	@vlan: the VLAN header information
1918  *	@queue: queue to direct messages from this server to
1919  *
1920  *	Create an IP server for the given port and address.
1921  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1922  */
1923 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1924 			__be32 sip, __be16 sport, __be16 vlan,
1925 			unsigned int queue)
1926 {
1927 	unsigned int chan;
1928 	struct sk_buff *skb;
1929 	struct adapter *adap;
1930 	struct cpl_pass_open_req *req;
1931 	int ret;
1932 
1933 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1934 	if (!skb)
1935 		return -ENOMEM;
1936 
1937 	adap = netdev2adap(dev);
1938 	req = __skb_put(skb, sizeof(*req));
1939 	INIT_TP_WR(req, 0);
1940 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1941 	req->local_port = sport;
1942 	req->peer_port = htons(0);
1943 	req->local_ip = sip;
1944 	req->peer_ip = htonl(0);
1945 	chan = rxq_to_chan(&adap->sge, queue);
1946 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1947 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1948 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1949 	ret = t4_mgmt_tx(adap, skb);
1950 	return net_xmit_eval(ret);
1951 }
1952 EXPORT_SYMBOL(cxgb4_create_server);
1953 
1954 /*	cxgb4_create_server6 - create an IPv6 server
1955  *	@dev: the device
1956  *	@stid: the server TID
1957  *	@sip: local IPv6 address to bind server to
1958  *	@sport: the server's TCP port
1959  *	@queue: queue to direct messages from this server to
1960  *
1961  *	Create an IPv6 server for the given port and address.
1962  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1963  */
1964 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1965 			 const struct in6_addr *sip, __be16 sport,
1966 			 unsigned int queue)
1967 {
1968 	unsigned int chan;
1969 	struct sk_buff *skb;
1970 	struct adapter *adap;
1971 	struct cpl_pass_open_req6 *req;
1972 	int ret;
1973 
1974 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1975 	if (!skb)
1976 		return -ENOMEM;
1977 
1978 	adap = netdev2adap(dev);
1979 	req = __skb_put(skb, sizeof(*req));
1980 	INIT_TP_WR(req, 0);
1981 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1982 	req->local_port = sport;
1983 	req->peer_port = htons(0);
1984 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1985 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1986 	req->peer_ip_hi = cpu_to_be64(0);
1987 	req->peer_ip_lo = cpu_to_be64(0);
1988 	chan = rxq_to_chan(&adap->sge, queue);
1989 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1990 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1991 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1992 	ret = t4_mgmt_tx(adap, skb);
1993 	return net_xmit_eval(ret);
1994 }
1995 EXPORT_SYMBOL(cxgb4_create_server6);
1996 
1997 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1998 			unsigned int queue, bool ipv6)
1999 {
2000 	struct sk_buff *skb;
2001 	struct adapter *adap;
2002 	struct cpl_close_listsvr_req *req;
2003 	int ret;
2004 
2005 	adap = netdev2adap(dev);
2006 
2007 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2008 	if (!skb)
2009 		return -ENOMEM;
2010 
2011 	req = __skb_put(skb, sizeof(*req));
2012 	INIT_TP_WR(req, 0);
2013 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
2014 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
2015 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
2016 	ret = t4_mgmt_tx(adap, skb);
2017 	return net_xmit_eval(ret);
2018 }
2019 EXPORT_SYMBOL(cxgb4_remove_server);
2020 
2021 /**
2022  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2023  *	@mtus: the HW MTU table
2024  *	@mtu: the target MTU
2025  *	@idx: index of selected entry in the MTU table
2026  *
2027  *	Returns the index and the value in the HW MTU table that is closest to
2028  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
2029  *	table, in which case that smallest available value is selected.
2030  */
2031 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2032 			    unsigned int *idx)
2033 {
2034 	unsigned int i = 0;
2035 
2036 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2037 		++i;
2038 	if (idx)
2039 		*idx = i;
2040 	return mtus[i];
2041 }
2042 EXPORT_SYMBOL(cxgb4_best_mtu);
2043 
2044 /**
2045  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
2046  *     @mtus: the HW MTU table
2047  *     @header_size: Header Size
2048  *     @data_size_max: maximum Data Segment Size
2049  *     @data_size_align: desired Data Segment Size Alignment (2^N)
2050  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
2051  *
2052  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
2053  *     MTU Table based solely on a Maximum MTU parameter, we break that
2054  *     parameter up into a Header Size and Maximum Data Segment Size, and
2055  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
2056  *     the Hardware MTU Table which will result in a Data Segment Size with
2057  *     the requested alignment _and_ that MTU isn't "too far" from the
2058  *     closest MTU, then we'll return that rather than the closest MTU.
2059  */
2060 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
2061 				    unsigned short header_size,
2062 				    unsigned short data_size_max,
2063 				    unsigned short data_size_align,
2064 				    unsigned int *mtu_idxp)
2065 {
2066 	unsigned short max_mtu = header_size + data_size_max;
2067 	unsigned short data_size_align_mask = data_size_align - 1;
2068 	int mtu_idx, aligned_mtu_idx;
2069 
2070 	/* Scan the MTU Table till we find an MTU which is larger than our
2071 	 * Maximum MTU or we reach the end of the table.  Along the way,
2072 	 * record the last MTU found, if any, which will result in a Data
2073 	 * Segment Length matching the requested alignment.
2074 	 */
2075 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
2076 		unsigned short data_size = mtus[mtu_idx] - header_size;
2077 
2078 		/* If this MTU minus the Header Size would result in a
2079 		 * Data Segment Size of the desired alignment, remember it.
2080 		 */
2081 		if ((data_size & data_size_align_mask) == 0)
2082 			aligned_mtu_idx = mtu_idx;
2083 
2084 		/* If we're not at the end of the Hardware MTU Table and the
2085 		 * next element is larger than our Maximum MTU, drop out of
2086 		 * the loop.
2087 		 */
2088 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
2089 			break;
2090 	}
2091 
2092 	/* If we fell out of the loop because we ran to the end of the table,
2093 	 * then we just have to use the last [largest] entry.
2094 	 */
2095 	if (mtu_idx == NMTUS)
2096 		mtu_idx--;
2097 
2098 	/* If we found an MTU which resulted in the requested Data Segment
2099 	 * Length alignment and that's "not far" from the largest MTU which is
2100 	 * less than or equal to the maximum MTU, then use that.
2101 	 */
2102 	if (aligned_mtu_idx >= 0 &&
2103 	    mtu_idx - aligned_mtu_idx <= 1)
2104 		mtu_idx = aligned_mtu_idx;
2105 
2106 	/* If the caller has passed in an MTU Index pointer, pass the
2107 	 * MTU Index back.  Return the MTU value.
2108 	 */
2109 	if (mtu_idxp)
2110 		*mtu_idxp = mtu_idx;
2111 	return mtus[mtu_idx];
2112 }
2113 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
2114 
2115 /**
2116  *	cxgb4_port_chan - get the HW channel of a port
2117  *	@dev: the net device for the port
2118  *
2119  *	Return the HW Tx channel of the given port.
2120  */
2121 unsigned int cxgb4_port_chan(const struct net_device *dev)
2122 {
2123 	return netdev2pinfo(dev)->tx_chan;
2124 }
2125 EXPORT_SYMBOL(cxgb4_port_chan);
2126 
2127 /**
2128  *      cxgb4_port_e2cchan - get the HW c-channel of a port
2129  *      @dev: the net device for the port
2130  *
2131  *      Return the HW RX c-channel of the given port.
2132  */
2133 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
2134 {
2135 	return netdev2pinfo(dev)->rx_cchan;
2136 }
2137 EXPORT_SYMBOL(cxgb4_port_e2cchan);
2138 
2139 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2140 {
2141 	struct adapter *adap = netdev2adap(dev);
2142 	u32 v1, v2, lp_count, hp_count;
2143 
2144 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2145 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2146 	if (is_t4(adap->params.chip)) {
2147 		lp_count = LP_COUNT_G(v1);
2148 		hp_count = HP_COUNT_G(v1);
2149 	} else {
2150 		lp_count = LP_COUNT_T5_G(v1);
2151 		hp_count = HP_COUNT_T5_G(v2);
2152 	}
2153 	return lpfifo ? lp_count : hp_count;
2154 }
2155 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2156 
2157 /**
2158  *	cxgb4_port_viid - get the VI id of a port
2159  *	@dev: the net device for the port
2160  *
2161  *	Return the VI id of the given port.
2162  */
2163 unsigned int cxgb4_port_viid(const struct net_device *dev)
2164 {
2165 	return netdev2pinfo(dev)->viid;
2166 }
2167 EXPORT_SYMBOL(cxgb4_port_viid);
2168 
2169 /**
2170  *	cxgb4_port_idx - get the index of a port
2171  *	@dev: the net device for the port
2172  *
2173  *	Return the index of the given port.
2174  */
2175 unsigned int cxgb4_port_idx(const struct net_device *dev)
2176 {
2177 	return netdev2pinfo(dev)->port_id;
2178 }
2179 EXPORT_SYMBOL(cxgb4_port_idx);
2180 
2181 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2182 			 struct tp_tcp_stats *v6)
2183 {
2184 	struct adapter *adap = pci_get_drvdata(pdev);
2185 
2186 	spin_lock(&adap->stats_lock);
2187 	t4_tp_get_tcp_stats(adap, v4, v6, false);
2188 	spin_unlock(&adap->stats_lock);
2189 }
2190 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2191 
2192 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2193 		      const unsigned int *pgsz_order)
2194 {
2195 	struct adapter *adap = netdev2adap(dev);
2196 
2197 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2198 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2199 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2200 		     HPZ3_V(pgsz_order[3]));
2201 }
2202 EXPORT_SYMBOL(cxgb4_iscsi_init);
2203 
2204 int cxgb4_flush_eq_cache(struct net_device *dev)
2205 {
2206 	struct adapter *adap = netdev2adap(dev);
2207 
2208 	return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
2209 }
2210 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2211 
2212 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2213 {
2214 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2215 	__be64 indices;
2216 	int ret;
2217 
2218 	spin_lock(&adap->win0_lock);
2219 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2220 			   sizeof(indices), (__be32 *)&indices,
2221 			   T4_MEMORY_READ);
2222 	spin_unlock(&adap->win0_lock);
2223 	if (!ret) {
2224 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2225 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2226 	}
2227 	return ret;
2228 }
2229 
2230 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2231 			u16 size)
2232 {
2233 	struct adapter *adap = netdev2adap(dev);
2234 	u16 hw_pidx, hw_cidx;
2235 	int ret;
2236 
2237 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2238 	if (ret)
2239 		goto out;
2240 
2241 	if (pidx != hw_pidx) {
2242 		u16 delta;
2243 		u32 val;
2244 
2245 		if (pidx >= hw_pidx)
2246 			delta = pidx - hw_pidx;
2247 		else
2248 			delta = size - hw_pidx + pidx;
2249 
2250 		if (is_t4(adap->params.chip))
2251 			val = PIDX_V(delta);
2252 		else
2253 			val = PIDX_T5_V(delta);
2254 		wmb();
2255 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2256 			     QID_V(qid) | val);
2257 	}
2258 out:
2259 	return ret;
2260 }
2261 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2262 
2263 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2264 {
2265 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2266 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
2267 	u32 offset, memtype, memaddr;
2268 	struct adapter *adap;
2269 	u32 hma_size = 0;
2270 	int ret;
2271 
2272 	adap = netdev2adap(dev);
2273 
2274 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2275 
2276 	/* Figure out where the offset lands in the Memory Type/Address scheme.
2277 	 * This code assumes that the memory is laid out starting at offset 0
2278 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2279 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2280 	 * MC0, and some have both MC0 and MC1.
2281 	 */
2282 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2283 	edc0_size = EDRAM0_SIZE_G(size) << 20;
2284 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2285 	edc1_size = EDRAM1_SIZE_G(size) << 20;
2286 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2287 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2288 
2289 	if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
2290 		size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2291 		hma_size = EXT_MEM1_SIZE_G(size) << 20;
2292 	}
2293 	edc0_end = edc0_size;
2294 	edc1_end = edc0_end + edc1_size;
2295 	mc0_end = edc1_end + mc0_size;
2296 
2297 	if (offset < edc0_end) {
2298 		memtype = MEM_EDC0;
2299 		memaddr = offset;
2300 	} else if (offset < edc1_end) {
2301 		memtype = MEM_EDC1;
2302 		memaddr = offset - edc0_end;
2303 	} else {
2304 		if (hma_size && (offset < (edc1_end + hma_size))) {
2305 			memtype = MEM_HMA;
2306 			memaddr = offset - edc1_end;
2307 		} else if (offset < mc0_end) {
2308 			memtype = MEM_MC0;
2309 			memaddr = offset - edc1_end;
2310 		} else if (is_t5(adap->params.chip)) {
2311 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2312 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2313 			mc1_end = mc0_end + mc1_size;
2314 			if (offset < mc1_end) {
2315 				memtype = MEM_MC1;
2316 				memaddr = offset - mc0_end;
2317 			} else {
2318 				/* offset beyond the end of any memory */
2319 				goto err;
2320 			}
2321 		} else {
2322 			/* T4/T6 only has a single memory channel */
2323 			goto err;
2324 		}
2325 	}
2326 
2327 	spin_lock(&adap->win0_lock);
2328 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2329 	spin_unlock(&adap->win0_lock);
2330 	return ret;
2331 
2332 err:
2333 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2334 		stag, offset);
2335 	return -EINVAL;
2336 }
2337 EXPORT_SYMBOL(cxgb4_read_tpte);
2338 
2339 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2340 {
2341 	u32 hi, lo;
2342 	struct adapter *adap;
2343 
2344 	adap = netdev2adap(dev);
2345 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2346 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2347 
2348 	return ((u64)hi << 32) | (u64)lo;
2349 }
2350 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2351 
2352 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2353 			 unsigned int qid,
2354 			 enum cxgb4_bar2_qtype qtype,
2355 			 int user,
2356 			 u64 *pbar2_qoffset,
2357 			 unsigned int *pbar2_qid)
2358 {
2359 	return t4_bar2_sge_qregs(netdev2adap(dev),
2360 				 qid,
2361 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2362 				  ? T4_BAR2_QTYPE_EGRESS
2363 				  : T4_BAR2_QTYPE_INGRESS),
2364 				 user,
2365 				 pbar2_qoffset,
2366 				 pbar2_qid);
2367 }
2368 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2369 
2370 static struct pci_driver cxgb4_driver;
2371 
2372 static void check_neigh_update(struct neighbour *neigh)
2373 {
2374 	const struct device *parent;
2375 	const struct net_device *netdev = neigh->dev;
2376 
2377 	if (is_vlan_dev(netdev))
2378 		netdev = vlan_dev_real_dev(netdev);
2379 	parent = netdev->dev.parent;
2380 	if (parent && parent->driver == &cxgb4_driver.driver)
2381 		t4_l2t_update(dev_get_drvdata(parent), neigh);
2382 }
2383 
2384 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2385 		       void *data)
2386 {
2387 	switch (event) {
2388 	case NETEVENT_NEIGH_UPDATE:
2389 		check_neigh_update(data);
2390 		break;
2391 	case NETEVENT_REDIRECT:
2392 	default:
2393 		break;
2394 	}
2395 	return 0;
2396 }
2397 
2398 static bool netevent_registered;
2399 static struct notifier_block cxgb4_netevent_nb = {
2400 	.notifier_call = netevent_cb
2401 };
2402 
2403 static void drain_db_fifo(struct adapter *adap, int usecs)
2404 {
2405 	u32 v1, v2, lp_count, hp_count;
2406 
2407 	do {
2408 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2409 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2410 		if (is_t4(adap->params.chip)) {
2411 			lp_count = LP_COUNT_G(v1);
2412 			hp_count = HP_COUNT_G(v1);
2413 		} else {
2414 			lp_count = LP_COUNT_T5_G(v1);
2415 			hp_count = HP_COUNT_T5_G(v2);
2416 		}
2417 
2418 		if (lp_count == 0 && hp_count == 0)
2419 			break;
2420 		set_current_state(TASK_UNINTERRUPTIBLE);
2421 		schedule_timeout(usecs_to_jiffies(usecs));
2422 	} while (1);
2423 }
2424 
2425 static void disable_txq_db(struct sge_txq *q)
2426 {
2427 	unsigned long flags;
2428 
2429 	spin_lock_irqsave(&q->db_lock, flags);
2430 	q->db_disabled = 1;
2431 	spin_unlock_irqrestore(&q->db_lock, flags);
2432 }
2433 
2434 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2435 {
2436 	spin_lock_irq(&q->db_lock);
2437 	if (q->db_pidx_inc) {
2438 		/* Make sure that all writes to the TX descriptors
2439 		 * are committed before we tell HW about them.
2440 		 */
2441 		wmb();
2442 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2443 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2444 		q->db_pidx_inc = 0;
2445 	}
2446 	q->db_disabled = 0;
2447 	spin_unlock_irq(&q->db_lock);
2448 }
2449 
2450 static void disable_dbs(struct adapter *adap)
2451 {
2452 	int i;
2453 
2454 	for_each_ethrxq(&adap->sge, i)
2455 		disable_txq_db(&adap->sge.ethtxq[i].q);
2456 	if (is_offload(adap)) {
2457 		struct sge_uld_txq_info *txq_info =
2458 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2459 
2460 		if (txq_info) {
2461 			for_each_ofldtxq(&adap->sge, i) {
2462 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2463 
2464 				disable_txq_db(&txq->q);
2465 			}
2466 		}
2467 	}
2468 	for_each_port(adap, i)
2469 		disable_txq_db(&adap->sge.ctrlq[i].q);
2470 }
2471 
2472 static void enable_dbs(struct adapter *adap)
2473 {
2474 	int i;
2475 
2476 	for_each_ethrxq(&adap->sge, i)
2477 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2478 	if (is_offload(adap)) {
2479 		struct sge_uld_txq_info *txq_info =
2480 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2481 
2482 		if (txq_info) {
2483 			for_each_ofldtxq(&adap->sge, i) {
2484 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2485 
2486 				enable_txq_db(adap, &txq->q);
2487 			}
2488 		}
2489 	}
2490 	for_each_port(adap, i)
2491 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2492 }
2493 
2494 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2495 {
2496 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
2497 
2498 	if (adap->uld && adap->uld[type].handle)
2499 		adap->uld[type].control(adap->uld[type].handle, cmd);
2500 }
2501 
2502 static void process_db_full(struct work_struct *work)
2503 {
2504 	struct adapter *adap;
2505 
2506 	adap = container_of(work, struct adapter, db_full_task);
2507 
2508 	drain_db_fifo(adap, dbfifo_drain_delay);
2509 	enable_dbs(adap);
2510 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2511 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2512 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2513 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2514 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2515 	else
2516 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2517 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2518 }
2519 
2520 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2521 {
2522 	u16 hw_pidx, hw_cidx;
2523 	int ret;
2524 
2525 	spin_lock_irq(&q->db_lock);
2526 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2527 	if (ret)
2528 		goto out;
2529 	if (q->db_pidx != hw_pidx) {
2530 		u16 delta;
2531 		u32 val;
2532 
2533 		if (q->db_pidx >= hw_pidx)
2534 			delta = q->db_pidx - hw_pidx;
2535 		else
2536 			delta = q->size - hw_pidx + q->db_pidx;
2537 
2538 		if (is_t4(adap->params.chip))
2539 			val = PIDX_V(delta);
2540 		else
2541 			val = PIDX_T5_V(delta);
2542 		wmb();
2543 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2544 			     QID_V(q->cntxt_id) | val);
2545 	}
2546 out:
2547 	q->db_disabled = 0;
2548 	q->db_pidx_inc = 0;
2549 	spin_unlock_irq(&q->db_lock);
2550 	if (ret)
2551 		CH_WARN(adap, "DB drop recovery failed.\n");
2552 }
2553 
2554 static void recover_all_queues(struct adapter *adap)
2555 {
2556 	int i;
2557 
2558 	for_each_ethrxq(&adap->sge, i)
2559 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2560 	if (is_offload(adap)) {
2561 		struct sge_uld_txq_info *txq_info =
2562 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2563 		if (txq_info) {
2564 			for_each_ofldtxq(&adap->sge, i) {
2565 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2566 
2567 				sync_txq_pidx(adap, &txq->q);
2568 			}
2569 		}
2570 	}
2571 	for_each_port(adap, i)
2572 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2573 }
2574 
2575 static void process_db_drop(struct work_struct *work)
2576 {
2577 	struct adapter *adap;
2578 
2579 	adap = container_of(work, struct adapter, db_drop_task);
2580 
2581 	if (is_t4(adap->params.chip)) {
2582 		drain_db_fifo(adap, dbfifo_drain_delay);
2583 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2584 		drain_db_fifo(adap, dbfifo_drain_delay);
2585 		recover_all_queues(adap);
2586 		drain_db_fifo(adap, dbfifo_drain_delay);
2587 		enable_dbs(adap);
2588 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2589 	} else if (is_t5(adap->params.chip)) {
2590 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2591 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2592 		u16 pidx_inc = dropped_db & 0x1fff;
2593 		u64 bar2_qoffset;
2594 		unsigned int bar2_qid;
2595 		int ret;
2596 
2597 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2598 					0, &bar2_qoffset, &bar2_qid);
2599 		if (ret)
2600 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2601 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2602 		else
2603 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2604 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2605 
2606 		/* Re-enable BAR2 WC */
2607 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2608 	}
2609 
2610 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2611 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2612 }
2613 
2614 void t4_db_full(struct adapter *adap)
2615 {
2616 	if (is_t4(adap->params.chip)) {
2617 		disable_dbs(adap);
2618 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2619 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2620 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2621 		queue_work(adap->workq, &adap->db_full_task);
2622 	}
2623 }
2624 
2625 void t4_db_dropped(struct adapter *adap)
2626 {
2627 	if (is_t4(adap->params.chip)) {
2628 		disable_dbs(adap);
2629 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2630 	}
2631 	queue_work(adap->workq, &adap->db_drop_task);
2632 }
2633 
2634 void t4_register_netevent_notifier(void)
2635 {
2636 	if (!netevent_registered) {
2637 		register_netevent_notifier(&cxgb4_netevent_nb);
2638 		netevent_registered = true;
2639 	}
2640 }
2641 
2642 static void detach_ulds(struct adapter *adap)
2643 {
2644 	unsigned int i;
2645 
2646 	mutex_lock(&uld_mutex);
2647 	list_del(&adap->list_node);
2648 
2649 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2650 		if (adap->uld && adap->uld[i].handle)
2651 			adap->uld[i].state_change(adap->uld[i].handle,
2652 					     CXGB4_STATE_DETACH);
2653 
2654 	if (netevent_registered && list_empty(&adapter_list)) {
2655 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2656 		netevent_registered = false;
2657 	}
2658 	mutex_unlock(&uld_mutex);
2659 }
2660 
2661 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2662 {
2663 	unsigned int i;
2664 
2665 	mutex_lock(&uld_mutex);
2666 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2667 		if (adap->uld && adap->uld[i].handle)
2668 			adap->uld[i].state_change(adap->uld[i].handle,
2669 						  new_state);
2670 	mutex_unlock(&uld_mutex);
2671 }
2672 
2673 #if IS_ENABLED(CONFIG_IPV6)
2674 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2675 				   unsigned long event, void *data)
2676 {
2677 	struct inet6_ifaddr *ifa = data;
2678 	struct net_device *event_dev = ifa->idev->dev;
2679 	const struct device *parent = NULL;
2680 #if IS_ENABLED(CONFIG_BONDING)
2681 	struct adapter *adap;
2682 #endif
2683 	if (is_vlan_dev(event_dev))
2684 		event_dev = vlan_dev_real_dev(event_dev);
2685 #if IS_ENABLED(CONFIG_BONDING)
2686 	if (event_dev->flags & IFF_MASTER) {
2687 		list_for_each_entry(adap, &adapter_list, list_node) {
2688 			switch (event) {
2689 			case NETDEV_UP:
2690 				cxgb4_clip_get(adap->port[0],
2691 					       (const u32 *)ifa, 1);
2692 				break;
2693 			case NETDEV_DOWN:
2694 				cxgb4_clip_release(adap->port[0],
2695 						   (const u32 *)ifa, 1);
2696 				break;
2697 			default:
2698 				break;
2699 			}
2700 		}
2701 		return NOTIFY_OK;
2702 	}
2703 #endif
2704 
2705 	if (event_dev)
2706 		parent = event_dev->dev.parent;
2707 
2708 	if (parent && parent->driver == &cxgb4_driver.driver) {
2709 		switch (event) {
2710 		case NETDEV_UP:
2711 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2712 			break;
2713 		case NETDEV_DOWN:
2714 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2715 			break;
2716 		default:
2717 			break;
2718 		}
2719 	}
2720 	return NOTIFY_OK;
2721 }
2722 
2723 static bool inet6addr_registered;
2724 static struct notifier_block cxgb4_inet6addr_notifier = {
2725 	.notifier_call = cxgb4_inet6addr_handler
2726 };
2727 
2728 static void update_clip(const struct adapter *adap)
2729 {
2730 	int i;
2731 	struct net_device *dev;
2732 	int ret;
2733 
2734 	rcu_read_lock();
2735 
2736 	for (i = 0; i < MAX_NPORTS; i++) {
2737 		dev = adap->port[i];
2738 		ret = 0;
2739 
2740 		if (dev)
2741 			ret = cxgb4_update_root_dev_clip(dev);
2742 
2743 		if (ret < 0)
2744 			break;
2745 	}
2746 	rcu_read_unlock();
2747 }
2748 #endif /* IS_ENABLED(CONFIG_IPV6) */
2749 
2750 /**
2751  *	cxgb_up - enable the adapter
2752  *	@adap: adapter being enabled
2753  *
2754  *	Called when the first port is enabled, this function performs the
2755  *	actions necessary to make an adapter operational, such as completing
2756  *	the initialization of HW modules, and enabling interrupts.
2757  *
2758  *	Must be called with the rtnl lock held.
2759  */
2760 static int cxgb_up(struct adapter *adap)
2761 {
2762 	struct sge *s = &adap->sge;
2763 	int err;
2764 
2765 	mutex_lock(&uld_mutex);
2766 	err = setup_sge_queues(adap);
2767 	if (err)
2768 		goto rel_lock;
2769 	err = setup_rss(adap);
2770 	if (err)
2771 		goto freeq;
2772 
2773 	if (adap->flags & CXGB4_USING_MSIX) {
2774 		if (s->nd_msix_idx < 0) {
2775 			err = -ENOMEM;
2776 			goto irq_err;
2777 		}
2778 
2779 		err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2780 				  t4_nondata_intr, 0,
2781 				  adap->msix_info[s->nd_msix_idx].desc, adap);
2782 		if (err)
2783 			goto irq_err;
2784 
2785 		err = request_msix_queue_irqs(adap);
2786 		if (err)
2787 			goto irq_err_free_nd_msix;
2788 	} else {
2789 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2790 				  (adap->flags & CXGB4_USING_MSI) ? 0
2791 								  : IRQF_SHARED,
2792 				  adap->port[0]->name, adap);
2793 		if (err)
2794 			goto irq_err;
2795 	}
2796 
2797 	enable_rx(adap);
2798 	t4_sge_start(adap);
2799 	t4_intr_enable(adap);
2800 	adap->flags |= CXGB4_FULL_INIT_DONE;
2801 	mutex_unlock(&uld_mutex);
2802 
2803 	notify_ulds(adap, CXGB4_STATE_UP);
2804 #if IS_ENABLED(CONFIG_IPV6)
2805 	update_clip(adap);
2806 #endif
2807 	return err;
2808 
2809 irq_err_free_nd_msix:
2810 	free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2811 irq_err:
2812 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2813 freeq:
2814 	t4_free_sge_resources(adap);
2815 rel_lock:
2816 	mutex_unlock(&uld_mutex);
2817 	return err;
2818 }
2819 
2820 static void cxgb_down(struct adapter *adapter)
2821 {
2822 	cancel_work_sync(&adapter->tid_release_task);
2823 	cancel_work_sync(&adapter->db_full_task);
2824 	cancel_work_sync(&adapter->db_drop_task);
2825 	adapter->tid_release_task_busy = false;
2826 	adapter->tid_release_head = NULL;
2827 
2828 	t4_sge_stop(adapter);
2829 	t4_free_sge_resources(adapter);
2830 
2831 	adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2832 }
2833 
2834 /*
2835  * net_device operations
2836  */
2837 static int cxgb_open(struct net_device *dev)
2838 {
2839 	struct port_info *pi = netdev_priv(dev);
2840 	struct adapter *adapter = pi->adapter;
2841 	int err;
2842 
2843 	netif_carrier_off(dev);
2844 
2845 	if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2846 		err = cxgb_up(adapter);
2847 		if (err < 0)
2848 			return err;
2849 	}
2850 
2851 	/* It's possible that the basic port information could have
2852 	 * changed since we first read it.
2853 	 */
2854 	err = t4_update_port_info(pi);
2855 	if (err < 0)
2856 		return err;
2857 
2858 	err = link_start(dev);
2859 	if (err)
2860 		return err;
2861 
2862 	if (pi->nmirrorqsets) {
2863 		mutex_lock(&pi->vi_mirror_mutex);
2864 		err = cxgb4_port_mirror_alloc_queues(dev);
2865 		if (err)
2866 			goto out_unlock;
2867 
2868 		err = cxgb4_port_mirror_start(dev);
2869 		if (err)
2870 			goto out_free_queues;
2871 		mutex_unlock(&pi->vi_mirror_mutex);
2872 	}
2873 
2874 	netif_tx_start_all_queues(dev);
2875 	return 0;
2876 
2877 out_free_queues:
2878 	cxgb4_port_mirror_free_queues(dev);
2879 
2880 out_unlock:
2881 	mutex_unlock(&pi->vi_mirror_mutex);
2882 	return err;
2883 }
2884 
2885 static int cxgb_close(struct net_device *dev)
2886 {
2887 	struct port_info *pi = netdev_priv(dev);
2888 	struct adapter *adapter = pi->adapter;
2889 	int ret;
2890 
2891 	netif_tx_stop_all_queues(dev);
2892 	netif_carrier_off(dev);
2893 	ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2894 				  false, false, false);
2895 #ifdef CONFIG_CHELSIO_T4_DCB
2896 	cxgb4_dcb_reset(dev);
2897 	dcb_tx_queue_prio_enable(dev, false);
2898 #endif
2899 	if (ret)
2900 		return ret;
2901 
2902 	if (pi->nmirrorqsets) {
2903 		mutex_lock(&pi->vi_mirror_mutex);
2904 		cxgb4_port_mirror_stop(dev);
2905 		cxgb4_port_mirror_free_queues(dev);
2906 		mutex_unlock(&pi->vi_mirror_mutex);
2907 	}
2908 
2909 	return 0;
2910 }
2911 
2912 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2913 		__be32 sip, __be16 sport, __be16 vlan,
2914 		unsigned int queue, unsigned char port, unsigned char mask)
2915 {
2916 	int ret;
2917 	struct filter_entry *f;
2918 	struct adapter *adap;
2919 	int i;
2920 	u8 *val;
2921 
2922 	adap = netdev2adap(dev);
2923 
2924 	/* Adjust stid to correct filter index */
2925 	stid -= adap->tids.sftid_base;
2926 	stid += adap->tids.nftids;
2927 
2928 	/* Check to make sure the filter requested is writable ...
2929 	 */
2930 	f = &adap->tids.ftid_tab[stid];
2931 	ret = writable_filter(f);
2932 	if (ret)
2933 		return ret;
2934 
2935 	/* Clear out any old resources being used by the filter before
2936 	 * we start constructing the new filter.
2937 	 */
2938 	if (f->valid)
2939 		clear_filter(adap, f);
2940 
2941 	/* Clear out filter specifications */
2942 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2943 	f->fs.val.lport = be16_to_cpu(sport);
2944 	f->fs.mask.lport  = ~0;
2945 	val = (u8 *)&sip;
2946 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2947 		for (i = 0; i < 4; i++) {
2948 			f->fs.val.lip[i] = val[i];
2949 			f->fs.mask.lip[i] = ~0;
2950 		}
2951 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2952 			f->fs.val.iport = port;
2953 			f->fs.mask.iport = mask;
2954 		}
2955 	}
2956 
2957 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2958 		f->fs.val.proto = IPPROTO_TCP;
2959 		f->fs.mask.proto = ~0;
2960 	}
2961 
2962 	f->fs.dirsteer = 1;
2963 	f->fs.iq = queue;
2964 	/* Mark filter as locked */
2965 	f->locked = 1;
2966 	f->fs.rpttid = 1;
2967 
2968 	/* Save the actual tid. We need this to get the corresponding
2969 	 * filter entry structure in filter_rpl.
2970 	 */
2971 	f->tid = stid + adap->tids.ftid_base;
2972 	ret = set_filter_wr(adap, stid);
2973 	if (ret) {
2974 		clear_filter(adap, f);
2975 		return ret;
2976 	}
2977 
2978 	return 0;
2979 }
2980 EXPORT_SYMBOL(cxgb4_create_server_filter);
2981 
2982 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2983 		unsigned int queue, bool ipv6)
2984 {
2985 	struct filter_entry *f;
2986 	struct adapter *adap;
2987 
2988 	adap = netdev2adap(dev);
2989 
2990 	/* Adjust stid to correct filter index */
2991 	stid -= adap->tids.sftid_base;
2992 	stid += adap->tids.nftids;
2993 
2994 	f = &adap->tids.ftid_tab[stid];
2995 	/* Unlock the filter */
2996 	f->locked = 0;
2997 
2998 	return delete_filter(adap, stid);
2999 }
3000 EXPORT_SYMBOL(cxgb4_remove_server_filter);
3001 
3002 static void cxgb_get_stats(struct net_device *dev,
3003 			   struct rtnl_link_stats64 *ns)
3004 {
3005 	struct port_stats stats;
3006 	struct port_info *p = netdev_priv(dev);
3007 	struct adapter *adapter = p->adapter;
3008 
3009 	/* Block retrieving statistics during EEH error
3010 	 * recovery. Otherwise, the recovery might fail
3011 	 * and the PCI device will be removed permanently
3012 	 */
3013 	spin_lock(&adapter->stats_lock);
3014 	if (!netif_device_present(dev)) {
3015 		spin_unlock(&adapter->stats_lock);
3016 		return;
3017 	}
3018 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
3019 				 &p->stats_base);
3020 	spin_unlock(&adapter->stats_lock);
3021 
3022 	ns->tx_bytes   = stats.tx_octets;
3023 	ns->tx_packets = stats.tx_frames;
3024 	ns->rx_bytes   = stats.rx_octets;
3025 	ns->rx_packets = stats.rx_frames;
3026 	ns->multicast  = stats.rx_mcast_frames;
3027 
3028 	/* detailed rx_errors */
3029 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
3030 			       stats.rx_runt;
3031 	ns->rx_over_errors   = 0;
3032 	ns->rx_crc_errors    = stats.rx_fcs_err;
3033 	ns->rx_frame_errors  = stats.rx_symbol_err;
3034 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
3035 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
3036 			       stats.rx_trunc0 + stats.rx_trunc1 +
3037 			       stats.rx_trunc2 + stats.rx_trunc3;
3038 	ns->rx_missed_errors = 0;
3039 
3040 	/* detailed tx_errors */
3041 	ns->tx_aborted_errors   = 0;
3042 	ns->tx_carrier_errors   = 0;
3043 	ns->tx_fifo_errors      = 0;
3044 	ns->tx_heartbeat_errors = 0;
3045 	ns->tx_window_errors    = 0;
3046 
3047 	ns->tx_errors = stats.tx_error_frames;
3048 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
3049 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
3050 }
3051 
3052 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3053 {
3054 	unsigned int mbox;
3055 	int ret = 0, prtad, devad;
3056 	struct port_info *pi = netdev_priv(dev);
3057 	struct adapter *adapter = pi->adapter;
3058 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3059 
3060 	switch (cmd) {
3061 	case SIOCGMIIPHY:
3062 		if (pi->mdio_addr < 0)
3063 			return -EOPNOTSUPP;
3064 		data->phy_id = pi->mdio_addr;
3065 		break;
3066 	case SIOCGMIIREG:
3067 	case SIOCSMIIREG:
3068 		if (mdio_phy_id_is_c45(data->phy_id)) {
3069 			prtad = mdio_phy_id_prtad(data->phy_id);
3070 			devad = mdio_phy_id_devad(data->phy_id);
3071 		} else if (data->phy_id < 32) {
3072 			prtad = data->phy_id;
3073 			devad = 0;
3074 			data->reg_num &= 0x1f;
3075 		} else
3076 			return -EINVAL;
3077 
3078 		mbox = pi->adapter->pf;
3079 		if (cmd == SIOCGMIIREG)
3080 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3081 					 data->reg_num, &data->val_out);
3082 		else
3083 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3084 					 data->reg_num, data->val_in);
3085 		break;
3086 	case SIOCGHWTSTAMP:
3087 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3088 				    sizeof(pi->tstamp_config)) ?
3089 			-EFAULT : 0;
3090 	case SIOCSHWTSTAMP:
3091 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3092 				   sizeof(pi->tstamp_config)))
3093 			return -EFAULT;
3094 
3095 		if (!is_t4(adapter->params.chip)) {
3096 			switch (pi->tstamp_config.tx_type) {
3097 			case HWTSTAMP_TX_OFF:
3098 			case HWTSTAMP_TX_ON:
3099 				break;
3100 			default:
3101 				return -ERANGE;
3102 			}
3103 
3104 			switch (pi->tstamp_config.rx_filter) {
3105 			case HWTSTAMP_FILTER_NONE:
3106 				pi->rxtstamp = false;
3107 				break;
3108 			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3109 			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3110 				cxgb4_ptprx_timestamping(pi, pi->port_id,
3111 							 PTP_TS_L4);
3112 				break;
3113 			case HWTSTAMP_FILTER_PTP_V2_EVENT:
3114 				cxgb4_ptprx_timestamping(pi, pi->port_id,
3115 							 PTP_TS_L2_L4);
3116 				break;
3117 			case HWTSTAMP_FILTER_ALL:
3118 			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3119 			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3120 			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3121 			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3122 				pi->rxtstamp = true;
3123 				break;
3124 			default:
3125 				pi->tstamp_config.rx_filter =
3126 					HWTSTAMP_FILTER_NONE;
3127 				return -ERANGE;
3128 			}
3129 
3130 			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
3131 			    (pi->tstamp_config.rx_filter ==
3132 				HWTSTAMP_FILTER_NONE)) {
3133 				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
3134 					pi->ptp_enable = false;
3135 			}
3136 
3137 			if (pi->tstamp_config.rx_filter !=
3138 				HWTSTAMP_FILTER_NONE) {
3139 				if (cxgb4_ptp_redirect_rx_packet(adapter,
3140 								 pi) >= 0)
3141 					pi->ptp_enable = true;
3142 			}
3143 		} else {
3144 			/* For T4 Adapters */
3145 			switch (pi->tstamp_config.rx_filter) {
3146 			case HWTSTAMP_FILTER_NONE:
3147 			pi->rxtstamp = false;
3148 			break;
3149 			case HWTSTAMP_FILTER_ALL:
3150 			pi->rxtstamp = true;
3151 			break;
3152 			default:
3153 			pi->tstamp_config.rx_filter =
3154 			HWTSTAMP_FILTER_NONE;
3155 			return -ERANGE;
3156 			}
3157 		}
3158 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3159 				    sizeof(pi->tstamp_config)) ?
3160 			-EFAULT : 0;
3161 	default:
3162 		return -EOPNOTSUPP;
3163 	}
3164 	return ret;
3165 }
3166 
3167 static void cxgb_set_rxmode(struct net_device *dev)
3168 {
3169 	/* unfortunately we can't return errors to the stack */
3170 	set_rxmode(dev, -1, false);
3171 }
3172 
3173 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3174 {
3175 	struct port_info *pi = netdev_priv(dev);
3176 	int ret;
3177 
3178 	ret = t4_set_rxmode(pi->adapter, pi->adapter->mbox, pi->viid,
3179 			    pi->viid_mirror, new_mtu, -1, -1, -1, -1, true);
3180 	if (!ret)
3181 		dev->mtu = new_mtu;
3182 	return ret;
3183 }
3184 
3185 #ifdef CONFIG_PCI_IOV
3186 static int cxgb4_mgmt_open(struct net_device *dev)
3187 {
3188 	/* Turn carrier off since we don't have to transmit anything on this
3189 	 * interface.
3190 	 */
3191 	netif_carrier_off(dev);
3192 	return 0;
3193 }
3194 
3195 /* Fill MAC address that will be assigned by the FW */
3196 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
3197 {
3198 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
3199 	unsigned int i, vf, nvfs;
3200 	u16 a, b;
3201 	int err;
3202 	u8 *na;
3203 
3204 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
3205 	if (err)
3206 		return;
3207 
3208 	na = adap->params.vpd.na;
3209 	for (i = 0; i < ETH_ALEN; i++)
3210 		hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
3211 			      hex2val(na[2 * i + 1]));
3212 
3213 	a = (hw_addr[0] << 8) | hw_addr[1];
3214 	b = (hw_addr[1] << 8) | hw_addr[2];
3215 	a ^= b;
3216 	a |= 0x0200;    /* locally assigned Ethernet MAC address */
3217 	a &= ~0x0100;   /* not a multicast Ethernet MAC address */
3218 	macaddr[0] = a >> 8;
3219 	macaddr[1] = a & 0xff;
3220 
3221 	for (i = 2; i < 5; i++)
3222 		macaddr[i] = hw_addr[i + 1];
3223 
3224 	for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
3225 		vf < nvfs; vf++) {
3226 		macaddr[5] = adap->pf * nvfs + vf;
3227 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
3228 	}
3229 }
3230 
3231 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
3232 {
3233 	struct port_info *pi = netdev_priv(dev);
3234 	struct adapter *adap = pi->adapter;
3235 	int ret;
3236 
3237 	/* verify MAC addr is valid */
3238 	if (!is_valid_ether_addr(mac)) {
3239 		dev_err(pi->adapter->pdev_dev,
3240 			"Invalid Ethernet address %pM for VF %d\n",
3241 			mac, vf);
3242 		return -EINVAL;
3243 	}
3244 
3245 	dev_info(pi->adapter->pdev_dev,
3246 		 "Setting MAC %pM on VF %d\n", mac, vf);
3247 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
3248 	if (!ret)
3249 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
3250 	return ret;
3251 }
3252 
3253 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
3254 				    int vf, struct ifla_vf_info *ivi)
3255 {
3256 	struct port_info *pi = netdev_priv(dev);
3257 	struct adapter *adap = pi->adapter;
3258 	struct vf_info *vfinfo;
3259 
3260 	if (vf >= adap->num_vfs)
3261 		return -EINVAL;
3262 	vfinfo = &adap->vfinfo[vf];
3263 
3264 	ivi->vf = vf;
3265 	ivi->max_tx_rate = vfinfo->tx_rate;
3266 	ivi->min_tx_rate = 0;
3267 	ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
3268 	ivi->vlan = vfinfo->vlan;
3269 	ivi->linkstate = vfinfo->link_state;
3270 	return 0;
3271 }
3272 
3273 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
3274 				       struct netdev_phys_item_id *ppid)
3275 {
3276 	struct port_info *pi = netdev_priv(dev);
3277 	unsigned int phy_port_id;
3278 
3279 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
3280 	ppid->id_len = sizeof(phy_port_id);
3281 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
3282 	return 0;
3283 }
3284 
3285 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
3286 				  int min_tx_rate, int max_tx_rate)
3287 {
3288 	struct port_info *pi = netdev_priv(dev);
3289 	struct adapter *adap = pi->adapter;
3290 	unsigned int link_ok, speed, mtu;
3291 	u32 fw_pfvf, fw_class;
3292 	int class_id = vf;
3293 	int ret;
3294 	u16 pktsize;
3295 
3296 	if (vf >= adap->num_vfs)
3297 		return -EINVAL;
3298 
3299 	if (min_tx_rate) {
3300 		dev_err(adap->pdev_dev,
3301 			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
3302 			min_tx_rate, vf);
3303 		return -EINVAL;
3304 	}
3305 
3306 	if (max_tx_rate == 0) {
3307 		/* unbind VF to to any Traffic Class */
3308 		fw_pfvf =
3309 		    (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3310 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3311 		fw_class = 0xffffffff;
3312 		ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3313 				    &fw_pfvf, &fw_class);
3314 		if (ret) {
3315 			dev_err(adap->pdev_dev,
3316 				"Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
3317 				ret, adap->pf, vf);
3318 			return -EINVAL;
3319 		}
3320 		dev_info(adap->pdev_dev,
3321 			 "PF %d VF %d is unbound from TX Rate Limiting\n",
3322 			 adap->pf, vf);
3323 		adap->vfinfo[vf].tx_rate = 0;
3324 		return 0;
3325 	}
3326 
3327 	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
3328 	if (ret != FW_SUCCESS) {
3329 		dev_err(adap->pdev_dev,
3330 			"Failed to get link information for VF %d\n", vf);
3331 		return -EINVAL;
3332 	}
3333 
3334 	if (!link_ok) {
3335 		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3336 		return -EINVAL;
3337 	}
3338 
3339 	if (max_tx_rate > speed) {
3340 		dev_err(adap->pdev_dev,
3341 			"Max tx rate %d for VF %d can't be > link-speed %u",
3342 			max_tx_rate, vf, speed);
3343 		return -EINVAL;
3344 	}
3345 
3346 	pktsize = mtu;
3347 	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3348 	pktsize = pktsize - sizeof(struct ethhdr) - 4;
3349 	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3350 	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3351 	/* configure Traffic Class for rate-limiting */
3352 	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3353 			      SCHED_CLASS_LEVEL_CL_RL,
3354 			      SCHED_CLASS_MODE_CLASS,
3355 			      SCHED_CLASS_RATEUNIT_BITS,
3356 			      SCHED_CLASS_RATEMODE_ABS,
3357 			      pi->tx_chan, class_id, 0,
3358 			      max_tx_rate * 1000, 0, pktsize, 0);
3359 	if (ret) {
3360 		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3361 			ret);
3362 		return -EINVAL;
3363 	}
3364 	dev_info(adap->pdev_dev,
3365 		 "Class %d with MSS %u configured with rate %u\n",
3366 		 class_id, pktsize, max_tx_rate);
3367 
3368 	/* bind VF to configured Traffic Class */
3369 	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3370 		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3371 	fw_class = class_id;
3372 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3373 			    &fw_class);
3374 	if (ret) {
3375 		dev_err(adap->pdev_dev,
3376 			"Err %d in binding PF %d VF %d to Traffic Class %d\n",
3377 			ret, adap->pf, vf, class_id);
3378 		return -EINVAL;
3379 	}
3380 	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3381 		 adap->pf, vf, class_id);
3382 	adap->vfinfo[vf].tx_rate = max_tx_rate;
3383 	return 0;
3384 }
3385 
3386 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3387 				  u16 vlan, u8 qos, __be16 vlan_proto)
3388 {
3389 	struct port_info *pi = netdev_priv(dev);
3390 	struct adapter *adap = pi->adapter;
3391 	int ret;
3392 
3393 	if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3394 		return -EINVAL;
3395 
3396 	if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3397 		return -EPROTONOSUPPORT;
3398 
3399 	ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3400 	if (!ret) {
3401 		adap->vfinfo[vf].vlan = vlan;
3402 		return 0;
3403 	}
3404 
3405 	dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3406 		ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3407 	return ret;
3408 }
3409 
3410 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3411 					int link)
3412 {
3413 	struct port_info *pi = netdev_priv(dev);
3414 	struct adapter *adap = pi->adapter;
3415 	u32 param, val;
3416 	int ret = 0;
3417 
3418 	if (vf >= adap->num_vfs)
3419 		return -EINVAL;
3420 
3421 	switch (link) {
3422 	case IFLA_VF_LINK_STATE_AUTO:
3423 		val = FW_VF_LINK_STATE_AUTO;
3424 		break;
3425 
3426 	case IFLA_VF_LINK_STATE_ENABLE:
3427 		val = FW_VF_LINK_STATE_ENABLE;
3428 		break;
3429 
3430 	case IFLA_VF_LINK_STATE_DISABLE:
3431 		val = FW_VF_LINK_STATE_DISABLE;
3432 		break;
3433 
3434 	default:
3435 		return -EINVAL;
3436 	}
3437 
3438 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3439 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3440 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3441 			    &param, &val);
3442 	if (ret) {
3443 		dev_err(adap->pdev_dev,
3444 			"Error %d in setting PF %d VF %d link state\n",
3445 			ret, adap->pf, vf);
3446 		return -EINVAL;
3447 	}
3448 
3449 	adap->vfinfo[vf].link_state = link;
3450 	return ret;
3451 }
3452 #endif /* CONFIG_PCI_IOV */
3453 
3454 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3455 {
3456 	int ret;
3457 	struct sockaddr *addr = p;
3458 	struct port_info *pi = netdev_priv(dev);
3459 
3460 	if (!is_valid_ether_addr(addr->sa_data))
3461 		return -EADDRNOTAVAIL;
3462 
3463 	ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3464 				    addr->sa_data, true, &pi->smt_idx);
3465 	if (ret < 0)
3466 		return ret;
3467 
3468 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3469 	return 0;
3470 }
3471 
3472 #ifdef CONFIG_NET_POLL_CONTROLLER
3473 static void cxgb_netpoll(struct net_device *dev)
3474 {
3475 	struct port_info *pi = netdev_priv(dev);
3476 	struct adapter *adap = pi->adapter;
3477 
3478 	if (adap->flags & CXGB4_USING_MSIX) {
3479 		int i;
3480 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3481 
3482 		for (i = pi->nqsets; i; i--, rx++)
3483 			t4_sge_intr_msix(0, &rx->rspq);
3484 	} else
3485 		t4_intr_handler(adap)(0, adap);
3486 }
3487 #endif
3488 
3489 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3490 {
3491 	struct port_info *pi = netdev_priv(dev);
3492 	struct adapter *adap = pi->adapter;
3493 	struct ch_sched_queue qe = { 0 };
3494 	struct ch_sched_params p = { 0 };
3495 	struct sched_class *e;
3496 	u32 req_rate;
3497 	int err = 0;
3498 
3499 	if (!can_sched(dev))
3500 		return -ENOTSUPP;
3501 
3502 	if (index < 0 || index > pi->nqsets - 1)
3503 		return -EINVAL;
3504 
3505 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3506 		dev_err(adap->pdev_dev,
3507 			"Failed to rate limit on queue %d. Link Down?\n",
3508 			index);
3509 		return -EINVAL;
3510 	}
3511 
3512 	qe.queue = index;
3513 	e = cxgb4_sched_queue_lookup(dev, &qe);
3514 	if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3515 		dev_err(adap->pdev_dev,
3516 			"Queue %u already bound to class %u of type: %u\n",
3517 			index, e->idx, e->info.u.params.level);
3518 		return -EBUSY;
3519 	}
3520 
3521 	/* Convert from Mbps to Kbps */
3522 	req_rate = rate * 1000;
3523 
3524 	/* Max rate is 100 Gbps */
3525 	if (req_rate > SCHED_MAX_RATE_KBPS) {
3526 		dev_err(adap->pdev_dev,
3527 			"Invalid rate %u Mbps, Max rate is %u Mbps\n",
3528 			rate, SCHED_MAX_RATE_KBPS / 1000);
3529 		return -ERANGE;
3530 	}
3531 
3532 	/* First unbind the queue from any existing class */
3533 	memset(&qe, 0, sizeof(qe));
3534 	qe.queue = index;
3535 	qe.class = SCHED_CLS_NONE;
3536 
3537 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3538 	if (err) {
3539 		dev_err(adap->pdev_dev,
3540 			"Unbinding Queue %d on port %d fail. Err: %d\n",
3541 			index, pi->port_id, err);
3542 		return err;
3543 	}
3544 
3545 	/* Queue already unbound */
3546 	if (!req_rate)
3547 		return 0;
3548 
3549 	/* Fetch any available unused or matching scheduling class */
3550 	p.type = SCHED_CLASS_TYPE_PACKET;
3551 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3552 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3553 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3554 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3555 	p.u.params.channel  = pi->tx_chan;
3556 	p.u.params.class    = SCHED_CLS_NONE;
3557 	p.u.params.minrate  = 0;
3558 	p.u.params.maxrate  = req_rate;
3559 	p.u.params.weight   = 0;
3560 	p.u.params.pktsize  = dev->mtu;
3561 
3562 	e = cxgb4_sched_class_alloc(dev, &p);
3563 	if (!e)
3564 		return -ENOMEM;
3565 
3566 	/* Bind the queue to a scheduling class */
3567 	memset(&qe, 0, sizeof(qe));
3568 	qe.queue = index;
3569 	qe.class = e->idx;
3570 
3571 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3572 	if (err)
3573 		dev_err(adap->pdev_dev,
3574 			"Queue rate limiting failed. Err: %d\n", err);
3575 	return err;
3576 }
3577 
3578 static int cxgb_setup_tc_flower(struct net_device *dev,
3579 				struct flow_cls_offload *cls_flower)
3580 {
3581 	switch (cls_flower->command) {
3582 	case FLOW_CLS_REPLACE:
3583 		return cxgb4_tc_flower_replace(dev, cls_flower);
3584 	case FLOW_CLS_DESTROY:
3585 		return cxgb4_tc_flower_destroy(dev, cls_flower);
3586 	case FLOW_CLS_STATS:
3587 		return cxgb4_tc_flower_stats(dev, cls_flower);
3588 	default:
3589 		return -EOPNOTSUPP;
3590 	}
3591 }
3592 
3593 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3594 				 struct tc_cls_u32_offload *cls_u32)
3595 {
3596 	switch (cls_u32->command) {
3597 	case TC_CLSU32_NEW_KNODE:
3598 	case TC_CLSU32_REPLACE_KNODE:
3599 		return cxgb4_config_knode(dev, cls_u32);
3600 	case TC_CLSU32_DELETE_KNODE:
3601 		return cxgb4_delete_knode(dev, cls_u32);
3602 	default:
3603 		return -EOPNOTSUPP;
3604 	}
3605 }
3606 
3607 static int cxgb_setup_tc_matchall(struct net_device *dev,
3608 				  struct tc_cls_matchall_offload *cls_matchall,
3609 				  bool ingress)
3610 {
3611 	struct adapter *adap = netdev2adap(dev);
3612 
3613 	if (!adap->tc_matchall)
3614 		return -ENOMEM;
3615 
3616 	switch (cls_matchall->command) {
3617 	case TC_CLSMATCHALL_REPLACE:
3618 		return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3619 	case TC_CLSMATCHALL_DESTROY:
3620 		return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3621 	case TC_CLSMATCHALL_STATS:
3622 		if (ingress)
3623 			return cxgb4_tc_matchall_stats(dev, cls_matchall);
3624 		break;
3625 	default:
3626 		break;
3627 	}
3628 
3629 	return -EOPNOTSUPP;
3630 }
3631 
3632 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3633 					  void *type_data, void *cb_priv)
3634 {
3635 	struct net_device *dev = cb_priv;
3636 	struct port_info *pi = netdev2pinfo(dev);
3637 	struct adapter *adap = netdev2adap(dev);
3638 
3639 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3640 		dev_err(adap->pdev_dev,
3641 			"Failed to setup tc on port %d. Link Down?\n",
3642 			pi->port_id);
3643 		return -EINVAL;
3644 	}
3645 
3646 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3647 		return -EOPNOTSUPP;
3648 
3649 	switch (type) {
3650 	case TC_SETUP_CLSU32:
3651 		return cxgb_setup_tc_cls_u32(dev, type_data);
3652 	case TC_SETUP_CLSFLOWER:
3653 		return cxgb_setup_tc_flower(dev, type_data);
3654 	case TC_SETUP_CLSMATCHALL:
3655 		return cxgb_setup_tc_matchall(dev, type_data, true);
3656 	default:
3657 		return -EOPNOTSUPP;
3658 	}
3659 }
3660 
3661 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3662 					 void *type_data, void *cb_priv)
3663 {
3664 	struct net_device *dev = cb_priv;
3665 	struct port_info *pi = netdev2pinfo(dev);
3666 	struct adapter *adap = netdev2adap(dev);
3667 
3668 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3669 		dev_err(adap->pdev_dev,
3670 			"Failed to setup tc on port %d. Link Down?\n",
3671 			pi->port_id);
3672 		return -EINVAL;
3673 	}
3674 
3675 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3676 		return -EOPNOTSUPP;
3677 
3678 	switch (type) {
3679 	case TC_SETUP_CLSMATCHALL:
3680 		return cxgb_setup_tc_matchall(dev, type_data, false);
3681 	default:
3682 		break;
3683 	}
3684 
3685 	return -EOPNOTSUPP;
3686 }
3687 
3688 static int cxgb_setup_tc_mqprio(struct net_device *dev,
3689 				struct tc_mqprio_qopt_offload *mqprio)
3690 {
3691 	struct adapter *adap = netdev2adap(dev);
3692 
3693 	if (!is_ethofld(adap) || !adap->tc_mqprio)
3694 		return -ENOMEM;
3695 
3696 	return cxgb4_setup_tc_mqprio(dev, mqprio);
3697 }
3698 
3699 static LIST_HEAD(cxgb_block_cb_list);
3700 
3701 static int cxgb_setup_tc_block(struct net_device *dev,
3702 			       struct flow_block_offload *f)
3703 {
3704 	struct port_info *pi = netdev_priv(dev);
3705 	flow_setup_cb_t *cb;
3706 	bool ingress_only;
3707 
3708 	pi->tc_block_shared = f->block_shared;
3709 	if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3710 		cb = cxgb_setup_tc_block_egress_cb;
3711 		ingress_only = false;
3712 	} else {
3713 		cb = cxgb_setup_tc_block_ingress_cb;
3714 		ingress_only = true;
3715 	}
3716 
3717 	return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3718 					  cb, pi, dev, ingress_only);
3719 }
3720 
3721 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3722 			 void *type_data)
3723 {
3724 	switch (type) {
3725 	case TC_SETUP_QDISC_MQPRIO:
3726 		return cxgb_setup_tc_mqprio(dev, type_data);
3727 	case TC_SETUP_BLOCK:
3728 		return cxgb_setup_tc_block(dev, type_data);
3729 	default:
3730 		return -EOPNOTSUPP;
3731 	}
3732 }
3733 
3734 static int cxgb_udp_tunnel_unset_port(struct net_device *netdev,
3735 				      unsigned int table, unsigned int entry,
3736 				      struct udp_tunnel_info *ti)
3737 {
3738 	struct port_info *pi = netdev_priv(netdev);
3739 	struct adapter *adapter = pi->adapter;
3740 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3741 	int ret = 0, i;
3742 
3743 	switch (ti->type) {
3744 	case UDP_TUNNEL_TYPE_VXLAN:
3745 		adapter->vxlan_port = 0;
3746 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3747 		break;
3748 	case UDP_TUNNEL_TYPE_GENEVE:
3749 		adapter->geneve_port = 0;
3750 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3751 		break;
3752 	default:
3753 		return -EINVAL;
3754 	}
3755 
3756 	/* Matchall mac entries can be deleted only after all tunnel ports
3757 	 * are brought down or removed.
3758 	 */
3759 	if (!adapter->rawf_cnt)
3760 		return 0;
3761 	for_each_port(adapter, i) {
3762 		pi = adap2pinfo(adapter, i);
3763 		ret = t4_free_raw_mac_filt(adapter, pi->viid,
3764 					   match_all_mac, match_all_mac,
3765 					   adapter->rawf_start + pi->port_id,
3766 					   1, pi->port_id, false);
3767 		if (ret < 0) {
3768 			netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3769 				    i);
3770 			return ret;
3771 		}
3772 	}
3773 
3774 	return 0;
3775 }
3776 
3777 static int cxgb_udp_tunnel_set_port(struct net_device *netdev,
3778 				    unsigned int table, unsigned int entry,
3779 				    struct udp_tunnel_info *ti)
3780 {
3781 	struct port_info *pi = netdev_priv(netdev);
3782 	struct adapter *adapter = pi->adapter;
3783 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3784 	int i, ret;
3785 
3786 	switch (ti->type) {
3787 	case UDP_TUNNEL_TYPE_VXLAN:
3788 		adapter->vxlan_port = ti->port;
3789 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3790 			     VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3791 		break;
3792 	case UDP_TUNNEL_TYPE_GENEVE:
3793 		adapter->geneve_port = ti->port;
3794 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3795 			     GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3796 		break;
3797 	default:
3798 		return -EINVAL;
3799 	}
3800 
3801 	/* Create a 'match all' mac filter entry for inner mac,
3802 	 * if raw mac interface is supported. Once the linux kernel provides
3803 	 * driver entry points for adding/deleting the inner mac addresses,
3804 	 * we will remove this 'match all' entry and fallback to adding
3805 	 * exact match filters.
3806 	 */
3807 	for_each_port(adapter, i) {
3808 		pi = adap2pinfo(adapter, i);
3809 
3810 		ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3811 					    match_all_mac,
3812 					    match_all_mac,
3813 					    adapter->rawf_start + pi->port_id,
3814 					    1, pi->port_id, false);
3815 		if (ret < 0) {
3816 			netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3817 				    be16_to_cpu(ti->port));
3818 			return ret;
3819 		}
3820 	}
3821 
3822 	return 0;
3823 }
3824 
3825 static const struct udp_tunnel_nic_info cxgb_udp_tunnels = {
3826 	.set_port	= cxgb_udp_tunnel_set_port,
3827 	.unset_port	= cxgb_udp_tunnel_unset_port,
3828 	.tables		= {
3829 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
3830 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
3831 	},
3832 };
3833 
3834 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3835 					     struct net_device *dev,
3836 					     netdev_features_t features)
3837 {
3838 	struct port_info *pi = netdev_priv(dev);
3839 	struct adapter *adapter = pi->adapter;
3840 
3841 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3842 		return features;
3843 
3844 	/* Check if hw supports offload for this packet */
3845 	if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3846 		return features;
3847 
3848 	/* Offload is not supported for this encapsulated packet */
3849 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3850 }
3851 
3852 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3853 					   netdev_features_t features)
3854 {
3855 	/* Disable GRO, if RX_CSUM is disabled */
3856 	if (!(features & NETIF_F_RXCSUM))
3857 		features &= ~NETIF_F_GRO;
3858 
3859 	return features;
3860 }
3861 
3862 static const struct net_device_ops cxgb4_netdev_ops = {
3863 	.ndo_open             = cxgb_open,
3864 	.ndo_stop             = cxgb_close,
3865 	.ndo_start_xmit       = t4_start_xmit,
3866 	.ndo_select_queue     =	cxgb_select_queue,
3867 	.ndo_get_stats64      = cxgb_get_stats,
3868 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3869 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3870 	.ndo_set_features     = cxgb_set_features,
3871 	.ndo_validate_addr    = eth_validate_addr,
3872 	.ndo_do_ioctl         = cxgb_ioctl,
3873 	.ndo_change_mtu       = cxgb_change_mtu,
3874 #ifdef CONFIG_NET_POLL_CONTROLLER
3875 	.ndo_poll_controller  = cxgb_netpoll,
3876 #endif
3877 #ifdef CONFIG_CHELSIO_T4_FCOE
3878 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3879 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3880 #endif /* CONFIG_CHELSIO_T4_FCOE */
3881 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3882 	.ndo_setup_tc         = cxgb_setup_tc,
3883 	.ndo_features_check   = cxgb_features_check,
3884 	.ndo_fix_features     = cxgb_fix_features,
3885 };
3886 
3887 #ifdef CONFIG_PCI_IOV
3888 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3889 	.ndo_open               = cxgb4_mgmt_open,
3890 	.ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3891 	.ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3892 	.ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3893 	.ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3894 	.ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3895 	.ndo_set_vf_link_state	= cxgb4_mgmt_set_vf_link_state,
3896 };
3897 #endif
3898 
3899 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3900 				   struct ethtool_drvinfo *info)
3901 {
3902 	struct adapter *adapter = netdev2adap(dev);
3903 
3904 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3905 	strlcpy(info->bus_info, pci_name(adapter->pdev),
3906 		sizeof(info->bus_info));
3907 }
3908 
3909 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3910 	.get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3911 };
3912 
3913 static void notify_fatal_err(struct work_struct *work)
3914 {
3915 	struct adapter *adap;
3916 
3917 	adap = container_of(work, struct adapter, fatal_err_notify_task);
3918 	notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3919 }
3920 
3921 void t4_fatal_err(struct adapter *adap)
3922 {
3923 	int port;
3924 
3925 	if (pci_channel_offline(adap->pdev))
3926 		return;
3927 
3928 	/* Disable the SGE since ULDs are going to free resources that
3929 	 * could be exposed to the adapter.  RDMA MWs for example...
3930 	 */
3931 	t4_shutdown_adapter(adap);
3932 	for_each_port(adap, port) {
3933 		struct net_device *dev = adap->port[port];
3934 
3935 		/* If we get here in very early initialization the network
3936 		 * devices may not have been set up yet.
3937 		 */
3938 		if (!dev)
3939 			continue;
3940 
3941 		netif_tx_stop_all_queues(dev);
3942 		netif_carrier_off(dev);
3943 	}
3944 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3945 	queue_work(adap->workq, &adap->fatal_err_notify_task);
3946 }
3947 
3948 static void setup_memwin(struct adapter *adap)
3949 {
3950 	u32 nic_win_base = t4_get_util_window(adap);
3951 
3952 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3953 }
3954 
3955 static void setup_memwin_rdma(struct adapter *adap)
3956 {
3957 	if (adap->vres.ocq.size) {
3958 		u32 start;
3959 		unsigned int sz_kb;
3960 
3961 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3962 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3963 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3964 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3965 		t4_write_reg(adap,
3966 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3967 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3968 		t4_write_reg(adap,
3969 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3970 			     adap->vres.ocq.start);
3971 		t4_read_reg(adap,
3972 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3973 	}
3974 }
3975 
3976 /* HMA Definitions */
3977 
3978 /* The maximum number of address that can be send in a single FW cmd */
3979 #define HMA_MAX_ADDR_IN_CMD	5
3980 
3981 #define HMA_PAGE_SIZE		PAGE_SIZE
3982 
3983 #define HMA_MAX_NO_FW_ADDRESS	(16 << 10)  /* FW supports 16K addresses */
3984 
3985 #define HMA_PAGE_ORDER					\
3986 	((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?	\
3987 	ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3988 
3989 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3990  * configuration(in units of MB).
3991  */
3992 #define HMA_MIN_TOTAL_SIZE	1
3993 #define HMA_MAX_TOTAL_SIZE				\
3994 	(((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *		\
3995 	  HMA_MAX_NO_FW_ADDRESS) >> 20)
3996 
3997 static void adap_free_hma_mem(struct adapter *adapter)
3998 {
3999 	struct scatterlist *iter;
4000 	struct page *page;
4001 	int i;
4002 
4003 	if (!adapter->hma.sgt)
4004 		return;
4005 
4006 	if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
4007 		dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
4008 			     adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
4009 		adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
4010 	}
4011 
4012 	for_each_sg(adapter->hma.sgt->sgl, iter,
4013 		    adapter->hma.sgt->orig_nents, i) {
4014 		page = sg_page(iter);
4015 		if (page)
4016 			__free_pages(page, HMA_PAGE_ORDER);
4017 	}
4018 
4019 	kfree(adapter->hma.phy_addr);
4020 	sg_free_table(adapter->hma.sgt);
4021 	kfree(adapter->hma.sgt);
4022 	adapter->hma.sgt = NULL;
4023 }
4024 
4025 static int adap_config_hma(struct adapter *adapter)
4026 {
4027 	struct scatterlist *sgl, *iter;
4028 	struct sg_table *sgt;
4029 	struct page *newpage;
4030 	unsigned int i, j, k;
4031 	u32 param, hma_size;
4032 	unsigned int ncmds;
4033 	size_t page_size;
4034 	u32 page_order;
4035 	int node, ret;
4036 
4037 	/* HMA is supported only for T6+ cards.
4038 	 * Avoid initializing HMA in kdump kernels.
4039 	 */
4040 	if (is_kdump_kernel() ||
4041 	    CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
4042 		return 0;
4043 
4044 	/* Get the HMA region size required by fw */
4045 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4046 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
4047 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
4048 			      1, &param, &hma_size);
4049 	/* An error means card has its own memory or HMA is not supported by
4050 	 * the firmware. Return without any errors.
4051 	 */
4052 	if (ret || !hma_size)
4053 		return 0;
4054 
4055 	if (hma_size < HMA_MIN_TOTAL_SIZE ||
4056 	    hma_size > HMA_MAX_TOTAL_SIZE) {
4057 		dev_err(adapter->pdev_dev,
4058 			"HMA size %uMB beyond bounds(%u-%lu)MB\n",
4059 			hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
4060 		return -EINVAL;
4061 	}
4062 
4063 	page_size = HMA_PAGE_SIZE;
4064 	page_order = HMA_PAGE_ORDER;
4065 	adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
4066 	if (unlikely(!adapter->hma.sgt)) {
4067 		dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
4068 		return -ENOMEM;
4069 	}
4070 	sgt = adapter->hma.sgt;
4071 	/* FW returned value will be in MB's
4072 	 */
4073 	sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
4074 	if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
4075 		dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
4076 		kfree(adapter->hma.sgt);
4077 		adapter->hma.sgt = NULL;
4078 		return -ENOMEM;
4079 	}
4080 
4081 	sgl = adapter->hma.sgt->sgl;
4082 	node = dev_to_node(adapter->pdev_dev);
4083 	for_each_sg(sgl, iter, sgt->orig_nents, i) {
4084 		newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
4085 					   __GFP_ZERO, page_order);
4086 		if (!newpage) {
4087 			dev_err(adapter->pdev_dev,
4088 				"Not enough memory for HMA page allocation\n");
4089 			ret = -ENOMEM;
4090 			goto free_hma;
4091 		}
4092 		sg_set_page(iter, newpage, page_size << page_order, 0);
4093 	}
4094 
4095 	sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
4096 				DMA_BIDIRECTIONAL);
4097 	if (!sgt->nents) {
4098 		dev_err(adapter->pdev_dev,
4099 			"Not enough memory for HMA DMA mapping");
4100 		ret = -ENOMEM;
4101 		goto free_hma;
4102 	}
4103 	adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
4104 
4105 	adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
4106 					GFP_KERNEL);
4107 	if (unlikely(!adapter->hma.phy_addr))
4108 		goto free_hma;
4109 
4110 	for_each_sg(sgl, iter, sgt->nents, i) {
4111 		newpage = sg_page(iter);
4112 		adapter->hma.phy_addr[i] = sg_dma_address(iter);
4113 	}
4114 
4115 	ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
4116 	/* Pass on the addresses to firmware */
4117 	for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
4118 		struct fw_hma_cmd hma_cmd;
4119 		u8 naddr = HMA_MAX_ADDR_IN_CMD;
4120 		u8 soc = 0, eoc = 0;
4121 		u8 hma_mode = 1; /* Presently we support only Page table mode */
4122 
4123 		soc = (i == 0) ? 1 : 0;
4124 		eoc = (i == ncmds - 1) ? 1 : 0;
4125 
4126 		/* For last cmd, set naddr corresponding to remaining
4127 		 * addresses
4128 		 */
4129 		if (i == ncmds - 1) {
4130 			naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
4131 			naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
4132 		}
4133 		memset(&hma_cmd, 0, sizeof(hma_cmd));
4134 		hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
4135 				       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4136 		hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
4137 
4138 		hma_cmd.mode_to_pcie_params =
4139 			htonl(FW_HMA_CMD_MODE_V(hma_mode) |
4140 			      FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
4141 
4142 		/* HMA cmd size specified in MB's */
4143 		hma_cmd.naddr_size =
4144 			htonl(FW_HMA_CMD_SIZE_V(hma_size) |
4145 			      FW_HMA_CMD_NADDR_V(naddr));
4146 
4147 		/* Total Page size specified in units of 4K */
4148 		hma_cmd.addr_size_pkd =
4149 			htonl(FW_HMA_CMD_ADDR_SIZE_V
4150 				((page_size << page_order) >> 12));
4151 
4152 		/* Fill the 5 addresses */
4153 		for (j = 0; j < naddr; j++) {
4154 			hma_cmd.phy_address[j] =
4155 				cpu_to_be64(adapter->hma.phy_addr[j + k]);
4156 		}
4157 		ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
4158 				 sizeof(hma_cmd), &hma_cmd);
4159 		if (ret) {
4160 			dev_err(adapter->pdev_dev,
4161 				"HMA FW command failed with err %d\n", ret);
4162 			goto free_hma;
4163 		}
4164 	}
4165 
4166 	if (!ret)
4167 		dev_info(adapter->pdev_dev,
4168 			 "Reserved %uMB host memory for HMA\n", hma_size);
4169 	return ret;
4170 
4171 free_hma:
4172 	adap_free_hma_mem(adapter);
4173 	return ret;
4174 }
4175 
4176 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4177 {
4178 	u32 v;
4179 	int ret;
4180 
4181 	/* Now that we've successfully configured and initialized the adapter
4182 	 * can ask the Firmware what resources it has provisioned for us.
4183 	 */
4184 	ret = t4_get_pfres(adap);
4185 	if (ret) {
4186 		dev_err(adap->pdev_dev,
4187 			"Unable to retrieve resource provisioning information\n");
4188 		return ret;
4189 	}
4190 
4191 	/* get device capabilities */
4192 	memset(c, 0, sizeof(*c));
4193 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4194 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
4195 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4196 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
4197 	if (ret < 0)
4198 		return ret;
4199 
4200 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4201 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4202 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
4203 	if (ret < 0)
4204 		return ret;
4205 
4206 	ret = t4_config_glbl_rss(adap, adap->pf,
4207 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4208 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
4209 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
4210 	if (ret < 0)
4211 		return ret;
4212 
4213 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
4214 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
4215 			  FW_CMD_CAP_PF);
4216 	if (ret < 0)
4217 		return ret;
4218 
4219 	t4_sge_init(adap);
4220 
4221 	/* tweak some settings */
4222 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
4223 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
4224 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
4225 	v = t4_read_reg(adap, TP_PIO_DATA_A);
4226 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
4227 
4228 	/* first 4 Tx modulation queues point to consecutive Tx channels */
4229 	adap->params.tp.tx_modq_map = 0xE4;
4230 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
4231 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
4232 
4233 	/* associate each Tx modulation queue with consecutive Tx channels */
4234 	v = 0x84218421;
4235 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4236 			  &v, 1, TP_TX_SCHED_HDR_A);
4237 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4238 			  &v, 1, TP_TX_SCHED_FIFO_A);
4239 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4240 			  &v, 1, TP_TX_SCHED_PCMD_A);
4241 
4242 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4243 	if (is_offload(adap)) {
4244 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
4245 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4246 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4247 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4248 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4249 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
4250 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4251 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4252 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4253 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4254 	}
4255 
4256 	/* get basic stuff going */
4257 	return t4_early_init(adap, adap->pf);
4258 }
4259 
4260 /*
4261  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
4262  */
4263 #define MAX_ATIDS 8192U
4264 
4265 /*
4266  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4267  *
4268  * If the firmware we're dealing with has Configuration File support, then
4269  * we use that to perform all configuration
4270  */
4271 
4272 /*
4273  * Tweak configuration based on module parameters, etc.  Most of these have
4274  * defaults assigned to them by Firmware Configuration Files (if we're using
4275  * them) but need to be explicitly set if we're using hard-coded
4276  * initialization.  But even in the case of using Firmware Configuration
4277  * Files, we'd like to expose the ability to change these via module
4278  * parameters so these are essentially common tweaks/settings for
4279  * Configuration Files and hard-coded initialization ...
4280  */
4281 static int adap_init0_tweaks(struct adapter *adapter)
4282 {
4283 	/*
4284 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
4285 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
4286 	 * 64B Cache Line Size ...
4287 	 */
4288 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4289 
4290 	/*
4291 	 * Process module parameters which affect early initialization.
4292 	 */
4293 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4294 		dev_err(&adapter->pdev->dev,
4295 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
4296 			rx_dma_offset);
4297 		rx_dma_offset = 2;
4298 	}
4299 	t4_set_reg_field(adapter, SGE_CONTROL_A,
4300 			 PKTSHIFT_V(PKTSHIFT_M),
4301 			 PKTSHIFT_V(rx_dma_offset));
4302 
4303 	/*
4304 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4305 	 * adds the pseudo header itself.
4306 	 */
4307 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4308 			       CSUM_HAS_PSEUDO_HDR_F, 0);
4309 
4310 	return 0;
4311 }
4312 
4313 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4314  * unto themselves and they contain their own firmware to perform their
4315  * tasks ...
4316  */
4317 static int phy_aq1202_version(const u8 *phy_fw_data,
4318 			      size_t phy_fw_size)
4319 {
4320 	int offset;
4321 
4322 	/* At offset 0x8 you're looking for the primary image's
4323 	 * starting offset which is 3 Bytes wide
4324 	 *
4325 	 * At offset 0xa of the primary image, you look for the offset
4326 	 * of the DRAM segment which is 3 Bytes wide.
4327 	 *
4328 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4329 	 * wide
4330 	 */
4331 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
4332 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4333 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
4334 
4335 	offset = le24(phy_fw_data + 0x8) << 12;
4336 	offset = le24(phy_fw_data + offset + 0xa);
4337 	return be16(phy_fw_data + offset + 0x27e);
4338 
4339 	#undef be16
4340 	#undef le16
4341 	#undef le24
4342 }
4343 
4344 static struct info_10gbt_phy_fw {
4345 	unsigned int phy_fw_id;		/* PCI Device ID */
4346 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
4347 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4348 	int phy_flash;			/* Has FLASH for PHY Firmware */
4349 } phy_info_array[] = {
4350 	{
4351 		PHY_AQ1202_DEVICEID,
4352 		PHY_AQ1202_FIRMWARE,
4353 		phy_aq1202_version,
4354 		1,
4355 	},
4356 	{
4357 		PHY_BCM84834_DEVICEID,
4358 		PHY_BCM84834_FIRMWARE,
4359 		NULL,
4360 		0,
4361 	},
4362 	{ 0, NULL, NULL },
4363 };
4364 
4365 static struct info_10gbt_phy_fw *find_phy_info(int devid)
4366 {
4367 	int i;
4368 
4369 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4370 		if (phy_info_array[i].phy_fw_id == devid)
4371 			return &phy_info_array[i];
4372 	}
4373 	return NULL;
4374 }
4375 
4376 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
4377  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
4378  * we return a negative error number.  If we transfer new firmware we return 1
4379  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
4380  */
4381 static int adap_init0_phy(struct adapter *adap)
4382 {
4383 	const struct firmware *phyf;
4384 	int ret;
4385 	struct info_10gbt_phy_fw *phy_info;
4386 
4387 	/* Use the device ID to determine which PHY file to flash.
4388 	 */
4389 	phy_info = find_phy_info(adap->pdev->device);
4390 	if (!phy_info) {
4391 		dev_warn(adap->pdev_dev,
4392 			 "No PHY Firmware file found for this PHY\n");
4393 		return -EOPNOTSUPP;
4394 	}
4395 
4396 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4397 	 * use that. The adapter firmware provides us with a memory buffer
4398 	 * where we can load a PHY firmware file from the host if we want to
4399 	 * override the PHY firmware File in flash.
4400 	 */
4401 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4402 				      adap->pdev_dev);
4403 	if (ret < 0) {
4404 		/* For adapters without FLASH attached to PHY for their
4405 		 * firmware, it's obviously a fatal error if we can't get the
4406 		 * firmware to the adapter.  For adapters with PHY firmware
4407 		 * FLASH storage, it's worth a warning if we can't find the
4408 		 * PHY Firmware but we'll neuter the error ...
4409 		 */
4410 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4411 			"/lib/firmware/%s, error %d\n",
4412 			phy_info->phy_fw_file, -ret);
4413 		if (phy_info->phy_flash) {
4414 			int cur_phy_fw_ver = 0;
4415 
4416 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4417 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4418 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
4419 			ret = 0;
4420 		}
4421 
4422 		return ret;
4423 	}
4424 
4425 	/* Load PHY Firmware onto adapter.
4426 	 */
4427 	spin_lock_bh(&adap->win0_lock);
4428 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, phy_info->phy_fw_version,
4429 			     (u8 *)phyf->data, phyf->size);
4430 	spin_unlock_bh(&adap->win0_lock);
4431 	if (ret < 0)
4432 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4433 			-ret);
4434 	else if (ret > 0) {
4435 		int new_phy_fw_ver = 0;
4436 
4437 		if (phy_info->phy_fw_version)
4438 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4439 								  phyf->size);
4440 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
4441 			 "Firmware /lib/firmware/%s, version %#x\n",
4442 			 phy_info->phy_fw_file, new_phy_fw_ver);
4443 	}
4444 
4445 	release_firmware(phyf);
4446 
4447 	return ret;
4448 }
4449 
4450 /*
4451  * Attempt to initialize the adapter via a Firmware Configuration File.
4452  */
4453 static int adap_init0_config(struct adapter *adapter, int reset)
4454 {
4455 	char *fw_config_file, fw_config_file_path[256];
4456 	u32 finiver, finicsum, cfcsum, param, val;
4457 	struct fw_caps_config_cmd caps_cmd;
4458 	unsigned long mtype = 0, maddr = 0;
4459 	const struct firmware *cf;
4460 	char *config_name = NULL;
4461 	int config_issued = 0;
4462 	int ret;
4463 
4464 	/*
4465 	 * Reset device if necessary.
4466 	 */
4467 	if (reset) {
4468 		ret = t4_fw_reset(adapter, adapter->mbox,
4469 				  PIORSTMODE_F | PIORST_F);
4470 		if (ret < 0)
4471 			goto bye;
4472 	}
4473 
4474 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
4475 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
4476 	 * to be performed after any global adapter RESET above since some
4477 	 * PHYs only have local RAM copies of the PHY firmware.
4478 	 */
4479 	if (is_10gbt_device(adapter->pdev->device)) {
4480 		ret = adap_init0_phy(adapter);
4481 		if (ret < 0)
4482 			goto bye;
4483 	}
4484 	/*
4485 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4486 	 * then use that.  Otherwise, use the configuration file stored
4487 	 * in the adapter flash ...
4488 	 */
4489 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4490 	case CHELSIO_T4:
4491 		fw_config_file = FW4_CFNAME;
4492 		break;
4493 	case CHELSIO_T5:
4494 		fw_config_file = FW5_CFNAME;
4495 		break;
4496 	case CHELSIO_T6:
4497 		fw_config_file = FW6_CFNAME;
4498 		break;
4499 	default:
4500 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4501 		       adapter->pdev->device);
4502 		ret = -EINVAL;
4503 		goto bye;
4504 	}
4505 
4506 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4507 	if (ret < 0) {
4508 		config_name = "On FLASH";
4509 		mtype = FW_MEMTYPE_CF_FLASH;
4510 		maddr = t4_flash_cfg_addr(adapter);
4511 	} else {
4512 		u32 params[7], val[7];
4513 
4514 		sprintf(fw_config_file_path,
4515 			"/lib/firmware/%s", fw_config_file);
4516 		config_name = fw_config_file_path;
4517 
4518 		if (cf->size >= FLASH_CFG_MAX_SIZE)
4519 			ret = -ENOMEM;
4520 		else {
4521 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4522 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4523 			ret = t4_query_params(adapter, adapter->mbox,
4524 					      adapter->pf, 0, 1, params, val);
4525 			if (ret == 0) {
4526 				/*
4527 				 * For t4_memory_rw() below addresses and
4528 				 * sizes have to be in terms of multiples of 4
4529 				 * bytes.  So, if the Configuration File isn't
4530 				 * a multiple of 4 bytes in length we'll have
4531 				 * to write that out separately since we can't
4532 				 * guarantee that the bytes following the
4533 				 * residual byte in the buffer returned by
4534 				 * request_firmware() are zeroed out ...
4535 				 */
4536 				size_t resid = cf->size & 0x3;
4537 				size_t size = cf->size & ~0x3;
4538 				__be32 *data = (__be32 *)cf->data;
4539 
4540 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4541 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4542 
4543 				spin_lock(&adapter->win0_lock);
4544 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
4545 						   size, data, T4_MEMORY_WRITE);
4546 				if (ret == 0 && resid != 0) {
4547 					union {
4548 						__be32 word;
4549 						char buf[4];
4550 					} last;
4551 					int i;
4552 
4553 					last.word = data[size >> 2];
4554 					for (i = resid; i < 4; i++)
4555 						last.buf[i] = 0;
4556 					ret = t4_memory_rw(adapter, 0, mtype,
4557 							   maddr + size,
4558 							   4, &last.word,
4559 							   T4_MEMORY_WRITE);
4560 				}
4561 				spin_unlock(&adapter->win0_lock);
4562 			}
4563 		}
4564 
4565 		release_firmware(cf);
4566 		if (ret)
4567 			goto bye;
4568 	}
4569 
4570 	val = 0;
4571 
4572 	/* Ofld + Hash filter is supported. Older fw will fail this request and
4573 	 * it is fine.
4574 	 */
4575 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4576 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4577 	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4578 			    1, &param, &val);
4579 
4580 	/* FW doesn't know about Hash filter + ofld support,
4581 	 * it's not a problem, don't return an error.
4582 	 */
4583 	if (ret < 0) {
4584 		dev_warn(adapter->pdev_dev,
4585 			 "Hash filter with ofld is not supported by FW\n");
4586 	}
4587 
4588 	/*
4589 	 * Issue a Capability Configuration command to the firmware to get it
4590 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
4591 	 * because we want the ability to modify various features after we've
4592 	 * processed the configuration file ...
4593 	 */
4594 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4595 	caps_cmd.op_to_write =
4596 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4597 		      FW_CMD_REQUEST_F |
4598 		      FW_CMD_READ_F);
4599 	caps_cmd.cfvalid_to_len16 =
4600 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4601 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4602 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4603 		      FW_LEN16(caps_cmd));
4604 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4605 			 &caps_cmd);
4606 
4607 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4608 	 * Configuration File in FLASH), our last gasp effort is to use the
4609 	 * Firmware Configuration File which is embedded in the firmware.  A
4610 	 * very few early versions of the firmware didn't have one embedded
4611 	 * but we can ignore those.
4612 	 */
4613 	if (ret == -ENOENT) {
4614 		memset(&caps_cmd, 0, sizeof(caps_cmd));
4615 		caps_cmd.op_to_write =
4616 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4617 					FW_CMD_REQUEST_F |
4618 					FW_CMD_READ_F);
4619 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4620 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4621 				sizeof(caps_cmd), &caps_cmd);
4622 		config_name = "Firmware Default";
4623 	}
4624 
4625 	config_issued = 1;
4626 	if (ret < 0)
4627 		goto bye;
4628 
4629 	finiver = ntohl(caps_cmd.finiver);
4630 	finicsum = ntohl(caps_cmd.finicsum);
4631 	cfcsum = ntohl(caps_cmd.cfcsum);
4632 	if (finicsum != cfcsum)
4633 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4634 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4635 			 finicsum, cfcsum);
4636 
4637 	/*
4638 	 * And now tell the firmware to use the configuration we just loaded.
4639 	 */
4640 	caps_cmd.op_to_write =
4641 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4642 		      FW_CMD_REQUEST_F |
4643 		      FW_CMD_WRITE_F);
4644 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4645 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4646 			 NULL);
4647 	if (ret < 0)
4648 		goto bye;
4649 
4650 	/*
4651 	 * Tweak configuration based on system architecture, module
4652 	 * parameters, etc.
4653 	 */
4654 	ret = adap_init0_tweaks(adapter);
4655 	if (ret < 0)
4656 		goto bye;
4657 
4658 	/* We will proceed even if HMA init fails. */
4659 	ret = adap_config_hma(adapter);
4660 	if (ret)
4661 		dev_err(adapter->pdev_dev,
4662 			"HMA configuration failed with error %d\n", ret);
4663 
4664 	if (is_t6(adapter->params.chip)) {
4665 		adap_config_hpfilter(adapter);
4666 		ret = setup_ppod_edram(adapter);
4667 		if (!ret)
4668 			dev_info(adapter->pdev_dev, "Successfully enabled "
4669 				 "ppod edram feature\n");
4670 	}
4671 
4672 	/*
4673 	 * And finally tell the firmware to initialize itself using the
4674 	 * parameters from the Configuration File.
4675 	 */
4676 	ret = t4_fw_initialize(adapter, adapter->mbox);
4677 	if (ret < 0)
4678 		goto bye;
4679 
4680 	/* Emit Firmware Configuration File information and return
4681 	 * successfully.
4682 	 */
4683 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4684 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4685 		 config_name, finiver, cfcsum);
4686 	return 0;
4687 
4688 	/*
4689 	 * Something bad happened.  Return the error ...  (If the "error"
4690 	 * is that there's no Configuration File on the adapter we don't
4691 	 * want to issue a warning since this is fairly common.)
4692 	 */
4693 bye:
4694 	if (config_issued && ret != -ENOENT)
4695 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4696 			 config_name, -ret);
4697 	return ret;
4698 }
4699 
4700 static struct fw_info fw_info_array[] = {
4701 	{
4702 		.chip = CHELSIO_T4,
4703 		.fs_name = FW4_CFNAME,
4704 		.fw_mod_name = FW4_FNAME,
4705 		.fw_hdr = {
4706 			.chip = FW_HDR_CHIP_T4,
4707 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4708 			.intfver_nic = FW_INTFVER(T4, NIC),
4709 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4710 			.intfver_ri = FW_INTFVER(T4, RI),
4711 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4712 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4713 		},
4714 	}, {
4715 		.chip = CHELSIO_T5,
4716 		.fs_name = FW5_CFNAME,
4717 		.fw_mod_name = FW5_FNAME,
4718 		.fw_hdr = {
4719 			.chip = FW_HDR_CHIP_T5,
4720 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4721 			.intfver_nic = FW_INTFVER(T5, NIC),
4722 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4723 			.intfver_ri = FW_INTFVER(T5, RI),
4724 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4725 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4726 		},
4727 	}, {
4728 		.chip = CHELSIO_T6,
4729 		.fs_name = FW6_CFNAME,
4730 		.fw_mod_name = FW6_FNAME,
4731 		.fw_hdr = {
4732 			.chip = FW_HDR_CHIP_T6,
4733 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4734 			.intfver_nic = FW_INTFVER(T6, NIC),
4735 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4736 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4737 			.intfver_ri = FW_INTFVER(T6, RI),
4738 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4739 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4740 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4741 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4742 		},
4743 	}
4744 
4745 };
4746 
4747 static struct fw_info *find_fw_info(int chip)
4748 {
4749 	int i;
4750 
4751 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4752 		if (fw_info_array[i].chip == chip)
4753 			return &fw_info_array[i];
4754 	}
4755 	return NULL;
4756 }
4757 
4758 /*
4759  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4760  */
4761 static int adap_init0(struct adapter *adap, int vpd_skip)
4762 {
4763 	struct fw_caps_config_cmd caps_cmd;
4764 	u32 params[7], val[7];
4765 	enum dev_state state;
4766 	u32 v, port_vec;
4767 	int reset = 1;
4768 	int ret;
4769 
4770 	/* Grab Firmware Device Log parameters as early as possible so we have
4771 	 * access to it for debugging, etc.
4772 	 */
4773 	ret = t4_init_devlog_params(adap);
4774 	if (ret < 0)
4775 		return ret;
4776 
4777 	/* Contact FW, advertising Master capability */
4778 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4779 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4780 	if (ret < 0) {
4781 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4782 			ret);
4783 		return ret;
4784 	}
4785 	if (ret == adap->mbox)
4786 		adap->flags |= CXGB4_MASTER_PF;
4787 
4788 	/*
4789 	 * If we're the Master PF Driver and the device is uninitialized,
4790 	 * then let's consider upgrading the firmware ...  (We always want
4791 	 * to check the firmware version number in order to A. get it for
4792 	 * later reporting and B. to warn if the currently loaded firmware
4793 	 * is excessively mismatched relative to the driver.)
4794 	 */
4795 
4796 	t4_get_version_info(adap);
4797 	ret = t4_check_fw_version(adap);
4798 	/* If firmware is too old (not supported by driver) force an update. */
4799 	if (ret)
4800 		state = DEV_STATE_UNINIT;
4801 	if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4802 		struct fw_info *fw_info;
4803 		struct fw_hdr *card_fw;
4804 		const struct firmware *fw;
4805 		const u8 *fw_data = NULL;
4806 		unsigned int fw_size = 0;
4807 
4808 		/* This is the firmware whose headers the driver was compiled
4809 		 * against
4810 		 */
4811 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4812 		if (fw_info == NULL) {
4813 			dev_err(adap->pdev_dev,
4814 				"unable to get firmware info for chip %d.\n",
4815 				CHELSIO_CHIP_VERSION(adap->params.chip));
4816 			return -EINVAL;
4817 		}
4818 
4819 		/* allocate memory to read the header of the firmware on the
4820 		 * card
4821 		 */
4822 		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4823 		if (!card_fw) {
4824 			ret = -ENOMEM;
4825 			goto bye;
4826 		}
4827 
4828 		/* Get FW from from /lib/firmware/ */
4829 		ret = request_firmware(&fw, fw_info->fw_mod_name,
4830 				       adap->pdev_dev);
4831 		if (ret < 0) {
4832 			dev_err(adap->pdev_dev,
4833 				"unable to load firmware image %s, error %d\n",
4834 				fw_info->fw_mod_name, ret);
4835 		} else {
4836 			fw_data = fw->data;
4837 			fw_size = fw->size;
4838 		}
4839 
4840 		/* upgrade FW logic */
4841 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4842 				 state, &reset);
4843 
4844 		/* Cleaning up */
4845 		release_firmware(fw);
4846 		kvfree(card_fw);
4847 
4848 		if (ret < 0)
4849 			goto bye;
4850 	}
4851 
4852 	/* If the firmware is initialized already, emit a simply note to that
4853 	 * effect. Otherwise, it's time to try initializing the adapter.
4854 	 */
4855 	if (state == DEV_STATE_INIT) {
4856 		ret = adap_config_hma(adap);
4857 		if (ret)
4858 			dev_err(adap->pdev_dev,
4859 				"HMA configuration failed with error %d\n",
4860 				ret);
4861 		dev_info(adap->pdev_dev, "Coming up as %s: "\
4862 			 "Adapter already initialized\n",
4863 			 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4864 	} else {
4865 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4866 			 "Initializing adapter\n");
4867 
4868 		/* Find out whether we're dealing with a version of the
4869 		 * firmware which has configuration file support.
4870 		 */
4871 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4872 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4873 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4874 				      params, val);
4875 
4876 		/* If the firmware doesn't support Configuration Files,
4877 		 * return an error.
4878 		 */
4879 		if (ret < 0) {
4880 			dev_err(adap->pdev_dev, "firmware doesn't support "
4881 				"Firmware Configuration Files\n");
4882 			goto bye;
4883 		}
4884 
4885 		/* The firmware provides us with a memory buffer where we can
4886 		 * load a Configuration File from the host if we want to
4887 		 * override the Configuration File in flash.
4888 		 */
4889 		ret = adap_init0_config(adap, reset);
4890 		if (ret == -ENOENT) {
4891 			dev_err(adap->pdev_dev, "no Configuration File "
4892 				"present on adapter.\n");
4893 			goto bye;
4894 		}
4895 		if (ret < 0) {
4896 			dev_err(adap->pdev_dev, "could not initialize "
4897 				"adapter, error %d\n", -ret);
4898 			goto bye;
4899 		}
4900 	}
4901 
4902 	/* Now that we've successfully configured and initialized the adapter
4903 	 * (or found it already initialized), we can ask the Firmware what
4904 	 * resources it has provisioned for us.
4905 	 */
4906 	ret = t4_get_pfres(adap);
4907 	if (ret) {
4908 		dev_err(adap->pdev_dev,
4909 			"Unable to retrieve resource provisioning information\n");
4910 		goto bye;
4911 	}
4912 
4913 	/* Grab VPD parameters.  This should be done after we establish a
4914 	 * connection to the firmware since some of the VPD parameters
4915 	 * (notably the Core Clock frequency) are retrieved via requests to
4916 	 * the firmware.  On the other hand, we need these fairly early on
4917 	 * so we do this right after getting ahold of the firmware.
4918 	 *
4919 	 * We need to do this after initializing the adapter because someone
4920 	 * could have FLASHed a new VPD which won't be read by the firmware
4921 	 * until we do the RESET ...
4922 	 */
4923 	if (!vpd_skip) {
4924 		ret = t4_get_vpd_params(adap, &adap->params.vpd);
4925 		if (ret < 0)
4926 			goto bye;
4927 	}
4928 
4929 	/* Find out what ports are available to us.  Note that we need to do
4930 	 * this before calling adap_init0_no_config() since it needs nports
4931 	 * and portvec ...
4932 	 */
4933 	v =
4934 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4935 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4936 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4937 	if (ret < 0)
4938 		goto bye;
4939 
4940 	adap->params.nports = hweight32(port_vec);
4941 	adap->params.portvec = port_vec;
4942 
4943 	/* Give the SGE code a chance to pull in anything that it needs ...
4944 	 * Note that this must be called after we retrieve our VPD parameters
4945 	 * in order to know how to convert core ticks to seconds, etc.
4946 	 */
4947 	ret = t4_sge_init(adap);
4948 	if (ret < 0)
4949 		goto bye;
4950 
4951 	/* Grab the SGE Doorbell Queue Timer values.  If successful, that
4952 	 * indicates that the Firmware and Hardware support this.
4953 	 */
4954 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4955 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4956 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4957 			      1, params, val);
4958 
4959 	if (!ret) {
4960 		adap->sge.dbqtimer_tick = val[0];
4961 		ret = t4_read_sge_dbqtimers(adap,
4962 					    ARRAY_SIZE(adap->sge.dbqtimer_val),
4963 					    adap->sge.dbqtimer_val);
4964 	}
4965 
4966 	if (!ret)
4967 		adap->flags |= CXGB4_SGE_DBQ_TIMER;
4968 
4969 	if (is_bypass_device(adap->pdev->device))
4970 		adap->params.bypass = 1;
4971 
4972 	/*
4973 	 * Grab some of our basic fundamental operating parameters.
4974 	 */
4975 	params[0] = FW_PARAM_PFVF(EQ_START);
4976 	params[1] = FW_PARAM_PFVF(L2T_START);
4977 	params[2] = FW_PARAM_PFVF(L2T_END);
4978 	params[3] = FW_PARAM_PFVF(FILTER_START);
4979 	params[4] = FW_PARAM_PFVF(FILTER_END);
4980 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
4981 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4982 	if (ret < 0)
4983 		goto bye;
4984 	adap->sge.egr_start = val[0];
4985 	adap->l2t_start = val[1];
4986 	adap->l2t_end = val[2];
4987 	adap->tids.ftid_base = val[3];
4988 	adap->tids.nftids = val[4] - val[3] + 1;
4989 	adap->sge.ingr_start = val[5];
4990 
4991 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4992 		params[0] = FW_PARAM_PFVF(HPFILTER_START);
4993 		params[1] = FW_PARAM_PFVF(HPFILTER_END);
4994 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4995 				      params, val);
4996 		if (ret < 0)
4997 			goto bye;
4998 
4999 		adap->tids.hpftid_base = val[0];
5000 		adap->tids.nhpftids = val[1] - val[0] + 1;
5001 
5002 		/* Read the raw mps entries. In T6, the last 2 tcam entries
5003 		 * are reserved for raw mac addresses (rawf = 2, one per port).
5004 		 */
5005 		params[0] = FW_PARAM_PFVF(RAWF_START);
5006 		params[1] = FW_PARAM_PFVF(RAWF_END);
5007 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5008 				      params, val);
5009 		if (ret == 0) {
5010 			adap->rawf_start = val[0];
5011 			adap->rawf_cnt = val[1] - val[0] + 1;
5012 		}
5013 
5014 		adap->tids.tid_base =
5015 			t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
5016 	}
5017 
5018 	/* qids (ingress/egress) returned from firmware can be anywhere
5019 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
5020 	 * Hence driver needs to allocate memory for this range to
5021 	 * store the queue info. Get the highest IQFLINT/EQ index returned
5022 	 * in FW_EQ_*_CMD.alloc command.
5023 	 */
5024 	params[0] = FW_PARAM_PFVF(EQ_END);
5025 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
5026 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5027 	if (ret < 0)
5028 		goto bye;
5029 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
5030 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
5031 
5032 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
5033 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
5034 	if (!adap->sge.egr_map) {
5035 		ret = -ENOMEM;
5036 		goto bye;
5037 	}
5038 
5039 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
5040 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
5041 	if (!adap->sge.ingr_map) {
5042 		ret = -ENOMEM;
5043 		goto bye;
5044 	}
5045 
5046 	/* Allocate the memory for the vaious egress queue bitmaps
5047 	 * ie starving_fl, txq_maperr and blocked_fl.
5048 	 */
5049 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5050 					sizeof(long), GFP_KERNEL);
5051 	if (!adap->sge.starving_fl) {
5052 		ret = -ENOMEM;
5053 		goto bye;
5054 	}
5055 
5056 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5057 				       sizeof(long), GFP_KERNEL);
5058 	if (!adap->sge.txq_maperr) {
5059 		ret = -ENOMEM;
5060 		goto bye;
5061 	}
5062 
5063 #ifdef CONFIG_DEBUG_FS
5064 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
5065 				       sizeof(long), GFP_KERNEL);
5066 	if (!adap->sge.blocked_fl) {
5067 		ret = -ENOMEM;
5068 		goto bye;
5069 	}
5070 #endif
5071 
5072 	params[0] = FW_PARAM_PFVF(CLIP_START);
5073 	params[1] = FW_PARAM_PFVF(CLIP_END);
5074 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5075 	if (ret < 0)
5076 		goto bye;
5077 	adap->clipt_start = val[0];
5078 	adap->clipt_end = val[1];
5079 
5080 	/* Get the supported number of traffic classes */
5081 	params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5082 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5083 	if (ret < 0) {
5084 		/* We couldn't retrieve the number of Traffic Classes
5085 		 * supported by the hardware/firmware. So we hard
5086 		 * code it here.
5087 		 */
5088 		adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
5089 	} else {
5090 		adap->params.nsched_cls = val[0];
5091 	}
5092 
5093 	/* query params related to active filter region */
5094 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5095 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5096 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
5097 	/* If Active filter size is set we enable establishing
5098 	 * offload connection through firmware work request
5099 	 */
5100 	if ((val[0] != val[1]) && (ret >= 0)) {
5101 		adap->flags |= CXGB4_FW_OFLD_CONN;
5102 		adap->tids.aftid_base = val[0];
5103 		adap->tids.aftid_end = val[1];
5104 	}
5105 
5106 	/* If we're running on newer firmware, let it know that we're
5107 	 * prepared to deal with encapsulated CPL messages.  Older
5108 	 * firmware won't understand this and we'll just get
5109 	 * unencapsulated messages ...
5110 	 */
5111 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5112 	val[0] = 1;
5113 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
5114 
5115 	/*
5116 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5117 	 * capability.  Earlier versions of the firmware didn't have the
5118 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5119 	 * permission to use ULPTX MEMWRITE DSGL.
5120 	 */
5121 	if (is_t4(adap->params.chip)) {
5122 		adap->params.ulptx_memwrite_dsgl = false;
5123 	} else {
5124 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5125 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5126 				      1, params, val);
5127 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5128 	}
5129 
5130 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
5131 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5132 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5133 			      1, params, val);
5134 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
5135 
5136 	/* See if FW supports FW_FILTER2 work request */
5137 	if (is_t4(adap->params.chip)) {
5138 		adap->params.filter2_wr_support = false;
5139 	} else {
5140 		params[0] = FW_PARAM_DEV(FILTER2_WR);
5141 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5142 				      1, params, val);
5143 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
5144 	}
5145 
5146 	/* Check if FW supports returning vin and smt index.
5147 	 * If this is not supported, driver will interpret
5148 	 * these values from viid.
5149 	 */
5150 	params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5151 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5152 			      1, params, val);
5153 	adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
5154 
5155 	/*
5156 	 * Get device capabilities so we can determine what resources we need
5157 	 * to manage.
5158 	 */
5159 	memset(&caps_cmd, 0, sizeof(caps_cmd));
5160 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
5161 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
5162 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5163 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5164 			 &caps_cmd);
5165 	if (ret < 0)
5166 		goto bye;
5167 
5168 	/* hash filter has some mandatory register settings to be tested and for
5169 	 * that it needs to test whether offload is enabled or not, hence
5170 	 * checking and setting it here.
5171 	 */
5172 	if (caps_cmd.ofldcaps)
5173 		adap->params.offload = 1;
5174 
5175 	if (caps_cmd.ofldcaps ||
5176 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
5177 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
5178 		/* query offload-related parameters */
5179 		params[0] = FW_PARAM_DEV(NTID);
5180 		params[1] = FW_PARAM_PFVF(SERVER_START);
5181 		params[2] = FW_PARAM_PFVF(SERVER_END);
5182 		params[3] = FW_PARAM_PFVF(TDDP_START);
5183 		params[4] = FW_PARAM_PFVF(TDDP_END);
5184 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5185 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5186 				      params, val);
5187 		if (ret < 0)
5188 			goto bye;
5189 		adap->tids.ntids = val[0];
5190 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5191 		adap->tids.stid_base = val[1];
5192 		adap->tids.nstids = val[2] - val[1] + 1;
5193 		/*
5194 		 * Setup server filter region. Divide the available filter
5195 		 * region into two parts. Regular filters get 1/3rd and server
5196 		 * filters get 2/3rd part. This is only enabled if workarond
5197 		 * path is enabled.
5198 		 * 1. For regular filters.
5199 		 * 2. Server filter: This are special filters which are used
5200 		 * to redirect SYN packets to offload queue.
5201 		 */
5202 		if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
5203 			adap->tids.sftid_base = adap->tids.ftid_base +
5204 					DIV_ROUND_UP(adap->tids.nftids, 3);
5205 			adap->tids.nsftids = adap->tids.nftids -
5206 					 DIV_ROUND_UP(adap->tids.nftids, 3);
5207 			adap->tids.nftids = adap->tids.sftid_base -
5208 						adap->tids.ftid_base;
5209 		}
5210 		adap->vres.ddp.start = val[3];
5211 		adap->vres.ddp.size = val[4] - val[3] + 1;
5212 		adap->params.ofldq_wr_cred = val[5];
5213 
5214 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5215 			init_hash_filter(adap);
5216 		} else {
5217 			adap->num_ofld_uld += 1;
5218 		}
5219 
5220 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
5221 			params[0] = FW_PARAM_PFVF(ETHOFLD_START);
5222 			params[1] = FW_PARAM_PFVF(ETHOFLD_END);
5223 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5224 					      params, val);
5225 			if (!ret) {
5226 				adap->tids.eotid_base = val[0];
5227 				adap->tids.neotids = min_t(u32, MAX_ATIDS,
5228 							   val[1] - val[0] + 1);
5229 				adap->params.ethofld = 1;
5230 			}
5231 		}
5232 	}
5233 	if (caps_cmd.rdmacaps) {
5234 		params[0] = FW_PARAM_PFVF(STAG_START);
5235 		params[1] = FW_PARAM_PFVF(STAG_END);
5236 		params[2] = FW_PARAM_PFVF(RQ_START);
5237 		params[3] = FW_PARAM_PFVF(RQ_END);
5238 		params[4] = FW_PARAM_PFVF(PBL_START);
5239 		params[5] = FW_PARAM_PFVF(PBL_END);
5240 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
5241 				      params, val);
5242 		if (ret < 0)
5243 			goto bye;
5244 		adap->vres.stag.start = val[0];
5245 		adap->vres.stag.size = val[1] - val[0] + 1;
5246 		adap->vres.rq.start = val[2];
5247 		adap->vres.rq.size = val[3] - val[2] + 1;
5248 		adap->vres.pbl.start = val[4];
5249 		adap->vres.pbl.size = val[5] - val[4] + 1;
5250 
5251 		params[0] = FW_PARAM_PFVF(SRQ_START);
5252 		params[1] = FW_PARAM_PFVF(SRQ_END);
5253 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5254 				      params, val);
5255 		if (!ret) {
5256 			adap->vres.srq.start = val[0];
5257 			adap->vres.srq.size = val[1] - val[0] + 1;
5258 		}
5259 		if (adap->vres.srq.size) {
5260 			adap->srq = t4_init_srq(adap->vres.srq.size);
5261 			if (!adap->srq)
5262 				dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
5263 		}
5264 
5265 		params[0] = FW_PARAM_PFVF(SQRQ_START);
5266 		params[1] = FW_PARAM_PFVF(SQRQ_END);
5267 		params[2] = FW_PARAM_PFVF(CQ_START);
5268 		params[3] = FW_PARAM_PFVF(CQ_END);
5269 		params[4] = FW_PARAM_PFVF(OCQ_START);
5270 		params[5] = FW_PARAM_PFVF(OCQ_END);
5271 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
5272 				      val);
5273 		if (ret < 0)
5274 			goto bye;
5275 		adap->vres.qp.start = val[0];
5276 		adap->vres.qp.size = val[1] - val[0] + 1;
5277 		adap->vres.cq.start = val[2];
5278 		adap->vres.cq.size = val[3] - val[2] + 1;
5279 		adap->vres.ocq.start = val[4];
5280 		adap->vres.ocq.size = val[5] - val[4] + 1;
5281 
5282 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5283 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5284 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5285 				      val);
5286 		if (ret < 0) {
5287 			adap->params.max_ordird_qp = 8;
5288 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5289 			ret = 0;
5290 		} else {
5291 			adap->params.max_ordird_qp = val[0];
5292 			adap->params.max_ird_adapter = val[1];
5293 		}
5294 		dev_info(adap->pdev_dev,
5295 			 "max_ordird_qp %d max_ird_adapter %d\n",
5296 			 adap->params.max_ordird_qp,
5297 			 adap->params.max_ird_adapter);
5298 
5299 		/* Enable write_with_immediate if FW supports it */
5300 		params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5301 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5302 				      val);
5303 		adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5304 
5305 		/* Enable write_cmpl if FW supports it */
5306 		params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5307 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5308 				      val);
5309 		adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5310 		adap->num_ofld_uld += 2;
5311 	}
5312 	if (caps_cmd.iscsicaps) {
5313 		params[0] = FW_PARAM_PFVF(ISCSI_START);
5314 		params[1] = FW_PARAM_PFVF(ISCSI_END);
5315 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5316 				      params, val);
5317 		if (ret < 0)
5318 			goto bye;
5319 		adap->vres.iscsi.start = val[0];
5320 		adap->vres.iscsi.size = val[1] - val[0] + 1;
5321 		if (is_t6(adap->params.chip)) {
5322 			params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5323 			params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5324 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5325 					      params, val);
5326 			if (!ret) {
5327 				adap->vres.ppod_edram.start = val[0];
5328 				adap->vres.ppod_edram.size =
5329 					val[1] - val[0] + 1;
5330 
5331 				dev_info(adap->pdev_dev,
5332 					 "ppod edram start 0x%x end 0x%x size 0x%x\n",
5333 					 val[0], val[1],
5334 					 adap->vres.ppod_edram.size);
5335 			}
5336 		}
5337 		/* LIO target and cxgb4i initiaitor */
5338 		adap->num_ofld_uld += 2;
5339 	}
5340 	if (caps_cmd.cryptocaps) {
5341 		if (ntohs(caps_cmd.cryptocaps) &
5342 		    FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5343 			params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5344 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5345 					      2, params, val);
5346 			if (ret < 0) {
5347 				if (ret != -EINVAL)
5348 					goto bye;
5349 			} else {
5350 				adap->vres.ncrypto_fc = val[0];
5351 			}
5352 			adap->num_ofld_uld += 1;
5353 		}
5354 		if (ntohs(caps_cmd.cryptocaps) &
5355 		    FW_CAPS_CONFIG_TLS_INLINE) {
5356 			params[0] = FW_PARAM_PFVF(TLS_START);
5357 			params[1] = FW_PARAM_PFVF(TLS_END);
5358 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5359 					      2, params, val);
5360 			if (ret < 0)
5361 				goto bye;
5362 			adap->vres.key.start = val[0];
5363 			adap->vres.key.size = val[1] - val[0] + 1;
5364 			adap->num_uld += 1;
5365 		}
5366 		adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5367 	}
5368 
5369 	/* The MTU/MSS Table is initialized by now, so load their values.  If
5370 	 * we're initializing the adapter, then we'll make any modifications
5371 	 * we want to the MTU/MSS Table and also initialize the congestion
5372 	 * parameters.
5373 	 */
5374 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5375 	if (state != DEV_STATE_INIT) {
5376 		int i;
5377 
5378 		/* The default MTU Table contains values 1492 and 1500.
5379 		 * However, for TCP, it's better to have two values which are
5380 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5381 		 * This allows us to have a TCP Data Payload which is a
5382 		 * multiple of 8 regardless of what combination of TCP Options
5383 		 * are in use (always a multiple of 4 bytes) which is
5384 		 * important for performance reasons.  For instance, if no
5385 		 * options are in use, then we have a 20-byte IP header and a
5386 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
5387 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5388 		 * which is not a multiple of 8.  So using an MSS of 1488 in
5389 		 * this case results in a TCP Data Payload of 1448 bytes which
5390 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5391 		 * Stamps have been negotiated, then an MTU of 1500 bytes
5392 		 * results in a TCP Data Payload of 1448 bytes which, as
5393 		 * above, is a multiple of 8 bytes ...
5394 		 */
5395 		for (i = 0; i < NMTUS; i++)
5396 			if (adap->params.mtus[i] == 1492) {
5397 				adap->params.mtus[i] = 1488;
5398 				break;
5399 			}
5400 
5401 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5402 			     adap->params.b_wnd);
5403 	}
5404 	t4_init_sge_params(adap);
5405 	adap->flags |= CXGB4_FW_OK;
5406 	t4_init_tp_params(adap, true);
5407 	return 0;
5408 
5409 	/*
5410 	 * Something bad happened.  If a command timed out or failed with EIO
5411 	 * FW does not operate within its spec or something catastrophic
5412 	 * happened to HW/FW, stop issuing commands.
5413 	 */
5414 bye:
5415 	adap_free_hma_mem(adap);
5416 	kfree(adap->sge.egr_map);
5417 	kfree(adap->sge.ingr_map);
5418 	kfree(adap->sge.starving_fl);
5419 	kfree(adap->sge.txq_maperr);
5420 #ifdef CONFIG_DEBUG_FS
5421 	kfree(adap->sge.blocked_fl);
5422 #endif
5423 	if (ret != -ETIMEDOUT && ret != -EIO)
5424 		t4_fw_bye(adap, adap->mbox);
5425 	return ret;
5426 }
5427 
5428 /* EEH callbacks */
5429 
5430 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5431 					 pci_channel_state_t state)
5432 {
5433 	int i;
5434 	struct adapter *adap = pci_get_drvdata(pdev);
5435 
5436 	if (!adap)
5437 		goto out;
5438 
5439 	rtnl_lock();
5440 	adap->flags &= ~CXGB4_FW_OK;
5441 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5442 	spin_lock(&adap->stats_lock);
5443 	for_each_port(adap, i) {
5444 		struct net_device *dev = adap->port[i];
5445 		if (dev) {
5446 			netif_device_detach(dev);
5447 			netif_carrier_off(dev);
5448 		}
5449 	}
5450 	spin_unlock(&adap->stats_lock);
5451 	disable_interrupts(adap);
5452 	if (adap->flags & CXGB4_FULL_INIT_DONE)
5453 		cxgb_down(adap);
5454 	rtnl_unlock();
5455 	if ((adap->flags & CXGB4_DEV_ENABLED)) {
5456 		pci_disable_device(pdev);
5457 		adap->flags &= ~CXGB4_DEV_ENABLED;
5458 	}
5459 out:	return state == pci_channel_io_perm_failure ?
5460 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5461 }
5462 
5463 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5464 {
5465 	int i, ret;
5466 	struct fw_caps_config_cmd c;
5467 	struct adapter *adap = pci_get_drvdata(pdev);
5468 
5469 	if (!adap) {
5470 		pci_restore_state(pdev);
5471 		pci_save_state(pdev);
5472 		return PCI_ERS_RESULT_RECOVERED;
5473 	}
5474 
5475 	if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5476 		if (pci_enable_device(pdev)) {
5477 			dev_err(&pdev->dev, "Cannot reenable PCI "
5478 					    "device after reset\n");
5479 			return PCI_ERS_RESULT_DISCONNECT;
5480 		}
5481 		adap->flags |= CXGB4_DEV_ENABLED;
5482 	}
5483 
5484 	pci_set_master(pdev);
5485 	pci_restore_state(pdev);
5486 	pci_save_state(pdev);
5487 
5488 	if (t4_wait_dev_ready(adap->regs) < 0)
5489 		return PCI_ERS_RESULT_DISCONNECT;
5490 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5491 		return PCI_ERS_RESULT_DISCONNECT;
5492 	adap->flags |= CXGB4_FW_OK;
5493 	if (adap_init1(adap, &c))
5494 		return PCI_ERS_RESULT_DISCONNECT;
5495 
5496 	for_each_port(adap, i) {
5497 		struct port_info *pi = adap2pinfo(adap, i);
5498 		u8 vivld = 0, vin = 0;
5499 
5500 		ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5501 				  NULL, NULL, &vivld, &vin);
5502 		if (ret < 0)
5503 			return PCI_ERS_RESULT_DISCONNECT;
5504 		pi->viid = ret;
5505 		pi->xact_addr_filt = -1;
5506 		/* If fw supports returning the VIN as part of FW_VI_CMD,
5507 		 * save the returned values.
5508 		 */
5509 		if (adap->params.viid_smt_extn_support) {
5510 			pi->vivld = vivld;
5511 			pi->vin = vin;
5512 		} else {
5513 			/* Retrieve the values from VIID */
5514 			pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5515 			pi->vin = FW_VIID_VIN_G(pi->viid);
5516 		}
5517 	}
5518 
5519 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5520 		     adap->params.b_wnd);
5521 	setup_memwin(adap);
5522 	if (cxgb_up(adap))
5523 		return PCI_ERS_RESULT_DISCONNECT;
5524 	return PCI_ERS_RESULT_RECOVERED;
5525 }
5526 
5527 static void eeh_resume(struct pci_dev *pdev)
5528 {
5529 	int i;
5530 	struct adapter *adap = pci_get_drvdata(pdev);
5531 
5532 	if (!adap)
5533 		return;
5534 
5535 	rtnl_lock();
5536 	for_each_port(adap, i) {
5537 		struct net_device *dev = adap->port[i];
5538 		if (dev) {
5539 			if (netif_running(dev)) {
5540 				link_start(dev);
5541 				cxgb_set_rxmode(dev);
5542 			}
5543 			netif_device_attach(dev);
5544 		}
5545 	}
5546 	rtnl_unlock();
5547 }
5548 
5549 static void eeh_reset_prepare(struct pci_dev *pdev)
5550 {
5551 	struct adapter *adapter = pci_get_drvdata(pdev);
5552 	int i;
5553 
5554 	if (adapter->pf != 4)
5555 		return;
5556 
5557 	adapter->flags &= ~CXGB4_FW_OK;
5558 
5559 	notify_ulds(adapter, CXGB4_STATE_DOWN);
5560 
5561 	for_each_port(adapter, i)
5562 		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5563 			cxgb_close(adapter->port[i]);
5564 
5565 	disable_interrupts(adapter);
5566 	cxgb4_free_mps_ref_entries(adapter);
5567 
5568 	adap_free_hma_mem(adapter);
5569 
5570 	if (adapter->flags & CXGB4_FULL_INIT_DONE)
5571 		cxgb_down(adapter);
5572 }
5573 
5574 static void eeh_reset_done(struct pci_dev *pdev)
5575 {
5576 	struct adapter *adapter = pci_get_drvdata(pdev);
5577 	int err, i;
5578 
5579 	if (adapter->pf != 4)
5580 		return;
5581 
5582 	err = t4_wait_dev_ready(adapter->regs);
5583 	if (err < 0) {
5584 		dev_err(adapter->pdev_dev,
5585 			"Device not ready, err %d", err);
5586 		return;
5587 	}
5588 
5589 	setup_memwin(adapter);
5590 
5591 	err = adap_init0(adapter, 1);
5592 	if (err) {
5593 		dev_err(adapter->pdev_dev,
5594 			"Adapter init failed, err %d", err);
5595 		return;
5596 	}
5597 
5598 	setup_memwin_rdma(adapter);
5599 
5600 	if (adapter->flags & CXGB4_FW_OK) {
5601 		err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5602 		if (err) {
5603 			dev_err(adapter->pdev_dev,
5604 				"Port init failed, err %d", err);
5605 			return;
5606 		}
5607 	}
5608 
5609 	err = cfg_queues(adapter);
5610 	if (err) {
5611 		dev_err(adapter->pdev_dev,
5612 			"Config queues failed, err %d", err);
5613 		return;
5614 	}
5615 
5616 	cxgb4_init_mps_ref_entries(adapter);
5617 
5618 	err = setup_fw_sge_queues(adapter);
5619 	if (err) {
5620 		dev_err(adapter->pdev_dev,
5621 			"FW sge queue allocation failed, err %d", err);
5622 		return;
5623 	}
5624 
5625 	for_each_port(adapter, i)
5626 		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5627 			cxgb_open(adapter->port[i]);
5628 }
5629 
5630 static const struct pci_error_handlers cxgb4_eeh = {
5631 	.error_detected = eeh_err_detected,
5632 	.slot_reset     = eeh_slot_reset,
5633 	.resume         = eeh_resume,
5634 	.reset_prepare  = eeh_reset_prepare,
5635 	.reset_done     = eeh_reset_done,
5636 };
5637 
5638 /* Return true if the Link Configuration supports "High Speeds" (those greater
5639  * than 1Gb/s).
5640  */
5641 static inline bool is_x_10g_port(const struct link_config *lc)
5642 {
5643 	unsigned int speeds, high_speeds;
5644 
5645 	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5646 	high_speeds = speeds &
5647 			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5648 
5649 	return high_speeds != 0;
5650 }
5651 
5652 /* Perform default configuration of DMA queues depending on the number and type
5653  * of ports we found and the number of available CPUs.  Most settings can be
5654  * modified by the admin prior to actual use.
5655  */
5656 static int cfg_queues(struct adapter *adap)
5657 {
5658 	u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5659 	u32 ncpus = num_online_cpus();
5660 	u32 niqflint, neq, num_ulds;
5661 	struct sge *s = &adap->sge;
5662 	u32 i, n10g = 0, qidx = 0;
5663 	u32 q10g = 0, q1g;
5664 
5665 	/* Reduce memory usage in kdump environment, disable all offload. */
5666 	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5667 		adap->params.offload = 0;
5668 		adap->params.crypto = 0;
5669 		adap->params.ethofld = 0;
5670 	}
5671 
5672 	/* Calculate the number of Ethernet Queue Sets available based on
5673 	 * resources provisioned for us.  We always have an Asynchronous
5674 	 * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
5675 	 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5676 	 * Ingress Queue.  Meanwhile, we need two Egress Queues for each
5677 	 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5678 	 *
5679 	 * Note that we should also take into account all of the various
5680 	 * Offload Queues.  But, in any situation where we're operating in
5681 	 * a Resource Constrained Provisioning environment, doing any Offload
5682 	 * at all is problematic ...
5683 	 */
5684 	niqflint = adap->params.pfres.niqflint - 1;
5685 	if (!(adap->flags & CXGB4_USING_MSIX))
5686 		niqflint--;
5687 	neq = adap->params.pfres.neq / 2;
5688 	avail_qsets = min(niqflint, neq);
5689 
5690 	if (avail_qsets < adap->params.nports) {
5691 		dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5692 			avail_qsets, adap->params.nports);
5693 		return -ENOMEM;
5694 	}
5695 
5696 	/* Count the number of 10Gb/s or better ports */
5697 	for_each_port(adap, i)
5698 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5699 
5700 	avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5701 
5702 	/* We default to 1 queue per non-10G port and up to # of cores queues
5703 	 * per 10G port.
5704 	 */
5705 	if (n10g)
5706 		q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5707 
5708 #ifdef CONFIG_CHELSIO_T4_DCB
5709 	/* For Data Center Bridging support we need to be able to support up
5710 	 * to 8 Traffic Priorities; each of which will be assigned to its
5711 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
5712 	 */
5713 	q1g = 8;
5714 	if (adap->params.nports * 8 > avail_eth_qsets) {
5715 		dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5716 			avail_eth_qsets, adap->params.nports * 8);
5717 		return -ENOMEM;
5718 	}
5719 
5720 	if (adap->params.nports * ncpus < avail_eth_qsets)
5721 		q10g = max(8U, ncpus);
5722 	else
5723 		q10g = max(8U, q10g);
5724 
5725 	while ((q10g * n10g) >
5726 	       (avail_eth_qsets - (adap->params.nports - n10g) * q1g))
5727 		q10g--;
5728 
5729 #else /* !CONFIG_CHELSIO_T4_DCB */
5730 	q1g = 1;
5731 	q10g = min(q10g, ncpus);
5732 #endif /* !CONFIG_CHELSIO_T4_DCB */
5733 	if (is_kdump_kernel()) {
5734 		q10g = 1;
5735 		q1g = 1;
5736 	}
5737 
5738 	for_each_port(adap, i) {
5739 		struct port_info *pi = adap2pinfo(adap, i);
5740 
5741 		pi->first_qset = qidx;
5742 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g;
5743 		qidx += pi->nqsets;
5744 	}
5745 
5746 	s->ethqsets = qidx;
5747 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5748 	avail_qsets -= qidx;
5749 
5750 	if (is_uld(adap)) {
5751 		/* For offload we use 1 queue/channel if all ports are up to 1G,
5752 		 * otherwise we divide all available queues amongst the channels
5753 		 * capped by the number of available cores.
5754 		 */
5755 		num_ulds = adap->num_uld + adap->num_ofld_uld;
5756 		i = min_t(u32, MAX_OFLD_QSETS, ncpus);
5757 		avail_uld_qsets = roundup(i, adap->params.nports);
5758 		if (avail_qsets < num_ulds * adap->params.nports) {
5759 			adap->params.offload = 0;
5760 			adap->params.crypto = 0;
5761 			s->ofldqsets = 0;
5762 		} else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5763 			s->ofldqsets = adap->params.nports;
5764 		} else {
5765 			s->ofldqsets = avail_uld_qsets;
5766 		}
5767 
5768 		avail_qsets -= num_ulds * s->ofldqsets;
5769 	}
5770 
5771 	/* ETHOFLD Queues used for QoS offload should follow same
5772 	 * allocation scheme as normal Ethernet Queues.
5773 	 */
5774 	if (is_ethofld(adap)) {
5775 		if (avail_qsets < s->max_ethqsets) {
5776 			adap->params.ethofld = 0;
5777 			s->eoqsets = 0;
5778 		} else {
5779 			s->eoqsets = s->max_ethqsets;
5780 		}
5781 		avail_qsets -= s->eoqsets;
5782 	}
5783 
5784 	/* Mirror queues must follow same scheme as normal Ethernet
5785 	 * Queues, when there are enough queues available. Otherwise,
5786 	 * allocate at least 1 queue per port. If even 1 queue is not
5787 	 * available, then disable mirror queues support.
5788 	 */
5789 	if (avail_qsets >= s->max_ethqsets)
5790 		s->mirrorqsets = s->max_ethqsets;
5791 	else if (avail_qsets >= adap->params.nports)
5792 		s->mirrorqsets = adap->params.nports;
5793 	else
5794 		s->mirrorqsets = 0;
5795 	avail_qsets -= s->mirrorqsets;
5796 
5797 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5798 		struct sge_eth_rxq *r = &s->ethrxq[i];
5799 
5800 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5801 		r->fl.size = 72;
5802 	}
5803 
5804 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5805 		s->ethtxq[i].q.size = 1024;
5806 
5807 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5808 		s->ctrlq[i].q.size = 512;
5809 
5810 	if (!is_t4(adap->params.chip))
5811 		s->ptptxq.q.size = 8;
5812 
5813 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5814 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5815 
5816 	return 0;
5817 }
5818 
5819 /*
5820  * Reduce the number of Ethernet queues across all ports to at most n.
5821  * n provides at least one queue per port.
5822  */
5823 static void reduce_ethqs(struct adapter *adap, int n)
5824 {
5825 	int i;
5826 	struct port_info *pi;
5827 
5828 	while (n < adap->sge.ethqsets)
5829 		for_each_port(adap, i) {
5830 			pi = adap2pinfo(adap, i);
5831 			if (pi->nqsets > 1) {
5832 				pi->nqsets--;
5833 				adap->sge.ethqsets--;
5834 				if (adap->sge.ethqsets <= n)
5835 					break;
5836 			}
5837 		}
5838 
5839 	n = 0;
5840 	for_each_port(adap, i) {
5841 		pi = adap2pinfo(adap, i);
5842 		pi->first_qset = n;
5843 		n += pi->nqsets;
5844 	}
5845 }
5846 
5847 static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5848 {
5849 	struct msix_info *msix_info;
5850 
5851 	msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5852 	if (!msix_info)
5853 		return -ENOMEM;
5854 
5855 	adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec),
5856 					    sizeof(long), GFP_KERNEL);
5857 	if (!adap->msix_bmap.msix_bmap) {
5858 		kfree(msix_info);
5859 		return -ENOMEM;
5860 	}
5861 
5862 	spin_lock_init(&adap->msix_bmap.lock);
5863 	adap->msix_bmap.mapsize = num_vec;
5864 
5865 	adap->msix_info = msix_info;
5866 	return 0;
5867 }
5868 
5869 static void free_msix_info(struct adapter *adap)
5870 {
5871 	kfree(adap->msix_bmap.msix_bmap);
5872 	kfree(adap->msix_info);
5873 }
5874 
5875 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5876 {
5877 	struct msix_bmap *bmap = &adap->msix_bmap;
5878 	unsigned int msix_idx;
5879 	unsigned long flags;
5880 
5881 	spin_lock_irqsave(&bmap->lock, flags);
5882 	msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5883 	if (msix_idx < bmap->mapsize) {
5884 		__set_bit(msix_idx, bmap->msix_bmap);
5885 	} else {
5886 		spin_unlock_irqrestore(&bmap->lock, flags);
5887 		return -ENOSPC;
5888 	}
5889 
5890 	spin_unlock_irqrestore(&bmap->lock, flags);
5891 	return msix_idx;
5892 }
5893 
5894 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5895 				 unsigned int msix_idx)
5896 {
5897 	struct msix_bmap *bmap = &adap->msix_bmap;
5898 	unsigned long flags;
5899 
5900 	spin_lock_irqsave(&bmap->lock, flags);
5901 	__clear_bit(msix_idx, bmap->msix_bmap);
5902 	spin_unlock_irqrestore(&bmap->lock, flags);
5903 }
5904 
5905 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5906 #define EXTRA_VECS 2
5907 
5908 static int enable_msix(struct adapter *adap)
5909 {
5910 	u32 eth_need, uld_need = 0, ethofld_need = 0, mirror_need = 0;
5911 	u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0, mirrorqsets = 0;
5912 	u8 num_uld = 0, nchan = adap->params.nports;
5913 	u32 i, want, need, num_vec;
5914 	struct sge *s = &adap->sge;
5915 	struct msix_entry *entries;
5916 	struct port_info *pi;
5917 	int allocated, ret;
5918 
5919 	want = s->max_ethqsets;
5920 #ifdef CONFIG_CHELSIO_T4_DCB
5921 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5922 	 * each port.
5923 	 */
5924 	need = 8 * nchan;
5925 #else
5926 	need = nchan;
5927 #endif
5928 	eth_need = need;
5929 	if (is_uld(adap)) {
5930 		num_uld = adap->num_ofld_uld + adap->num_uld;
5931 		want += num_uld * s->ofldqsets;
5932 		uld_need = num_uld * nchan;
5933 		need += uld_need;
5934 	}
5935 
5936 	if (is_ethofld(adap)) {
5937 		want += s->eoqsets;
5938 		ethofld_need = eth_need;
5939 		need += ethofld_need;
5940 	}
5941 
5942 	if (s->mirrorqsets) {
5943 		want += s->mirrorqsets;
5944 		mirror_need = nchan;
5945 		need += mirror_need;
5946 	}
5947 
5948 	want += EXTRA_VECS;
5949 	need += EXTRA_VECS;
5950 
5951 	entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5952 	if (!entries)
5953 		return -ENOMEM;
5954 
5955 	for (i = 0; i < want; i++)
5956 		entries[i].entry = i;
5957 
5958 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5959 	if (allocated < 0) {
5960 		/* Disable offload and attempt to get vectors for NIC
5961 		 * only mode.
5962 		 */
5963 		want = s->max_ethqsets + EXTRA_VECS;
5964 		need = eth_need + EXTRA_VECS;
5965 		allocated = pci_enable_msix_range(adap->pdev, entries,
5966 						  need, want);
5967 		if (allocated < 0) {
5968 			dev_info(adap->pdev_dev,
5969 				 "Disabling MSI-X due to insufficient MSI-X vectors\n");
5970 			ret = allocated;
5971 			goto out_free;
5972 		}
5973 
5974 		dev_info(adap->pdev_dev,
5975 			 "Disabling offload due to insufficient MSI-X vectors\n");
5976 		adap->params.offload = 0;
5977 		adap->params.crypto = 0;
5978 		adap->params.ethofld = 0;
5979 		s->ofldqsets = 0;
5980 		s->eoqsets = 0;
5981 		s->mirrorqsets = 0;
5982 		uld_need = 0;
5983 		ethofld_need = 0;
5984 		mirror_need = 0;
5985 	}
5986 
5987 	num_vec = allocated;
5988 	if (num_vec < want) {
5989 		/* Distribute available vectors to the various queue groups.
5990 		 * Every group gets its minimum requirement and NIC gets top
5991 		 * priority for leftovers.
5992 		 */
5993 		ethqsets = eth_need;
5994 		if (is_uld(adap))
5995 			ofldqsets = nchan;
5996 		if (is_ethofld(adap))
5997 			eoqsets = ethofld_need;
5998 		if (s->mirrorqsets)
5999 			mirrorqsets = mirror_need;
6000 
6001 		num_vec -= need;
6002 		while (num_vec) {
6003 			if (num_vec < eth_need + ethofld_need ||
6004 			    ethqsets > s->max_ethqsets)
6005 				break;
6006 
6007 			for_each_port(adap, i) {
6008 				pi = adap2pinfo(adap, i);
6009 				if (pi->nqsets < 2)
6010 					continue;
6011 
6012 				ethqsets++;
6013 				num_vec--;
6014 				if (ethofld_need) {
6015 					eoqsets++;
6016 					num_vec--;
6017 				}
6018 			}
6019 		}
6020 
6021 		if (is_uld(adap)) {
6022 			while (num_vec) {
6023 				if (num_vec < uld_need ||
6024 				    ofldqsets > s->ofldqsets)
6025 					break;
6026 
6027 				ofldqsets++;
6028 				num_vec -= uld_need;
6029 			}
6030 		}
6031 
6032 		if (s->mirrorqsets) {
6033 			while (num_vec) {
6034 				if (num_vec < mirror_need ||
6035 				    mirrorqsets > s->mirrorqsets)
6036 					break;
6037 
6038 				mirrorqsets++;
6039 				num_vec -= mirror_need;
6040 			}
6041 		}
6042 	} else {
6043 		ethqsets = s->max_ethqsets;
6044 		if (is_uld(adap))
6045 			ofldqsets = s->ofldqsets;
6046 		if (is_ethofld(adap))
6047 			eoqsets = s->eoqsets;
6048 		if (s->mirrorqsets)
6049 			mirrorqsets = s->mirrorqsets;
6050 	}
6051 
6052 	if (ethqsets < s->max_ethqsets) {
6053 		s->max_ethqsets = ethqsets;
6054 		reduce_ethqs(adap, ethqsets);
6055 	}
6056 
6057 	if (is_uld(adap)) {
6058 		s->ofldqsets = ofldqsets;
6059 		s->nqs_per_uld = s->ofldqsets;
6060 	}
6061 
6062 	if (is_ethofld(adap))
6063 		s->eoqsets = eoqsets;
6064 
6065 	if (s->mirrorqsets) {
6066 		s->mirrorqsets = mirrorqsets;
6067 		for_each_port(adap, i) {
6068 			pi = adap2pinfo(adap, i);
6069 			pi->nmirrorqsets = s->mirrorqsets / nchan;
6070 			mutex_init(&pi->vi_mirror_mutex);
6071 		}
6072 	}
6073 
6074 	/* map for msix */
6075 	ret = alloc_msix_info(adap, allocated);
6076 	if (ret)
6077 		goto out_disable_msix;
6078 
6079 	for (i = 0; i < allocated; i++) {
6080 		adap->msix_info[i].vec = entries[i].vector;
6081 		adap->msix_info[i].idx = i;
6082 	}
6083 
6084 	dev_info(adap->pdev_dev,
6085 		 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d mirrorqsets %d\n",
6086 		 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld,
6087 		 s->mirrorqsets);
6088 
6089 	kfree(entries);
6090 	return 0;
6091 
6092 out_disable_msix:
6093 	pci_disable_msix(adap->pdev);
6094 
6095 out_free:
6096 	kfree(entries);
6097 	return ret;
6098 }
6099 
6100 #undef EXTRA_VECS
6101 
6102 static int init_rss(struct adapter *adap)
6103 {
6104 	unsigned int i;
6105 	int err;
6106 
6107 	err = t4_init_rss_mode(adap, adap->mbox);
6108 	if (err)
6109 		return err;
6110 
6111 	for_each_port(adap, i) {
6112 		struct port_info *pi = adap2pinfo(adap, i);
6113 
6114 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6115 		if (!pi->rss)
6116 			return -ENOMEM;
6117 	}
6118 	return 0;
6119 }
6120 
6121 /* Dump basic information about the adapter */
6122 static void print_adapter_info(struct adapter *adapter)
6123 {
6124 	/* Hardware/Firmware/etc. Version/Revision IDs */
6125 	t4_dump_version_info(adapter);
6126 
6127 	/* Software/Hardware configuration */
6128 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
6129 		 is_offload(adapter) ? "R" : "",
6130 		 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
6131 		  (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
6132 		 is_offload(adapter) ? "Offload" : "non-Offload");
6133 }
6134 
6135 static void print_port_info(const struct net_device *dev)
6136 {
6137 	char buf[80];
6138 	char *bufp = buf;
6139 	const struct port_info *pi = netdev_priv(dev);
6140 	const struct adapter *adap = pi->adapter;
6141 
6142 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
6143 		bufp += sprintf(bufp, "100M/");
6144 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
6145 		bufp += sprintf(bufp, "1G/");
6146 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
6147 		bufp += sprintf(bufp, "10G/");
6148 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
6149 		bufp += sprintf(bufp, "25G/");
6150 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
6151 		bufp += sprintf(bufp, "40G/");
6152 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
6153 		bufp += sprintf(bufp, "50G/");
6154 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
6155 		bufp += sprintf(bufp, "100G/");
6156 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
6157 		bufp += sprintf(bufp, "200G/");
6158 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
6159 		bufp += sprintf(bufp, "400G/");
6160 	if (bufp != buf)
6161 		--bufp;
6162 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6163 
6164 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
6165 		    dev->name, adap->params.vpd.id, adap->name, buf);
6166 }
6167 
6168 /*
6169  * Free the following resources:
6170  * - memory used for tables
6171  * - MSI/MSI-X
6172  * - net devices
6173  * - resources FW is holding for us
6174  */
6175 static void free_some_resources(struct adapter *adapter)
6176 {
6177 	unsigned int i;
6178 
6179 	kvfree(adapter->smt);
6180 	kvfree(adapter->l2t);
6181 	kvfree(adapter->srq);
6182 	t4_cleanup_sched(adapter);
6183 	kvfree(adapter->tids.tid_tab);
6184 	cxgb4_cleanup_tc_matchall(adapter);
6185 	cxgb4_cleanup_tc_mqprio(adapter);
6186 	cxgb4_cleanup_tc_flower(adapter);
6187 	cxgb4_cleanup_tc_u32(adapter);
6188 	cxgb4_cleanup_ethtool_filters(adapter);
6189 	kfree(adapter->sge.egr_map);
6190 	kfree(adapter->sge.ingr_map);
6191 	kfree(adapter->sge.starving_fl);
6192 	kfree(adapter->sge.txq_maperr);
6193 #ifdef CONFIG_DEBUG_FS
6194 	kfree(adapter->sge.blocked_fl);
6195 #endif
6196 	disable_msi(adapter);
6197 
6198 	for_each_port(adapter, i)
6199 		if (adapter->port[i]) {
6200 			struct port_info *pi = adap2pinfo(adapter, i);
6201 
6202 			if (pi->viid != 0)
6203 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
6204 					   0, pi->viid);
6205 			kfree(adap2pinfo(adapter, i)->rss);
6206 			free_netdev(adapter->port[i]);
6207 		}
6208 	if (adapter->flags & CXGB4_FW_OK)
6209 		t4_fw_bye(adapter, adapter->pf);
6210 }
6211 
6212 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
6213 		   NETIF_F_GSO_UDP_L4)
6214 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6215 		   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6216 #define SEGMENT_SIZE 128
6217 
6218 static int t4_get_chip_type(struct adapter *adap, int ver)
6219 {
6220 	u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
6221 
6222 	switch (ver) {
6223 	case CHELSIO_T4:
6224 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
6225 	case CHELSIO_T5:
6226 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
6227 	case CHELSIO_T6:
6228 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
6229 	default:
6230 		break;
6231 	}
6232 	return -EINVAL;
6233 }
6234 
6235 #ifdef CONFIG_PCI_IOV
6236 static void cxgb4_mgmt_setup(struct net_device *dev)
6237 {
6238 	dev->type = ARPHRD_NONE;
6239 	dev->mtu = 0;
6240 	dev->hard_header_len = 0;
6241 	dev->addr_len = 0;
6242 	dev->tx_queue_len = 0;
6243 	dev->flags |= IFF_NOARP;
6244 	dev->priv_flags |= IFF_NO_QUEUE;
6245 
6246 	/* Initialize the device structure. */
6247 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
6248 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
6249 }
6250 
6251 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
6252 {
6253 	struct adapter *adap = pci_get_drvdata(pdev);
6254 	int err = 0;
6255 	int current_vfs = pci_num_vf(pdev);
6256 	u32 pcie_fw;
6257 
6258 	pcie_fw = readl(adap->regs + PCIE_FW_A);
6259 	/* Check if fw is initialized */
6260 	if (!(pcie_fw & PCIE_FW_INIT_F)) {
6261 		dev_warn(&pdev->dev, "Device not initialized\n");
6262 		return -EOPNOTSUPP;
6263 	}
6264 
6265 	/* If any of the VF's is already assigned to Guest OS, then
6266 	 * SRIOV for the same cannot be modified
6267 	 */
6268 	if (current_vfs && pci_vfs_assigned(pdev)) {
6269 		dev_err(&pdev->dev,
6270 			"Cannot modify SR-IOV while VFs are assigned\n");
6271 		return current_vfs;
6272 	}
6273 	/* Note that the upper-level code ensures that we're never called with
6274 	 * a non-zero "num_vfs" when we already have VFs instantiated.  But
6275 	 * it never hurts to code defensively.
6276 	 */
6277 	if (num_vfs != 0 && current_vfs != 0)
6278 		return -EBUSY;
6279 
6280 	/* Nothing to do for no change. */
6281 	if (num_vfs == current_vfs)
6282 		return num_vfs;
6283 
6284 	/* Disable SRIOV when zero is passed. */
6285 	if (!num_vfs) {
6286 		pci_disable_sriov(pdev);
6287 		/* free VF Management Interface */
6288 		unregister_netdev(adap->port[0]);
6289 		free_netdev(adap->port[0]);
6290 		adap->port[0] = NULL;
6291 
6292 		/* free VF resources */
6293 		adap->num_vfs = 0;
6294 		kfree(adap->vfinfo);
6295 		adap->vfinfo = NULL;
6296 		return 0;
6297 	}
6298 
6299 	if (!current_vfs) {
6300 		struct fw_pfvf_cmd port_cmd, port_rpl;
6301 		struct net_device *netdev;
6302 		unsigned int pmask, port;
6303 		struct pci_dev *pbridge;
6304 		struct port_info *pi;
6305 		char name[IFNAMSIZ];
6306 		u32 devcap2;
6307 		u16 flags;
6308 
6309 		/* If we want to instantiate Virtual Functions, then our
6310 		 * parent bridge's PCI-E needs to support Alternative Routing
6311 		 * ID (ARI) because our VFs will show up at function offset 8
6312 		 * and above.
6313 		 */
6314 		pbridge = pdev->bus->self;
6315 		pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
6316 		pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
6317 
6318 		if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
6319 		    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
6320 			/* Our parent bridge does not support ARI so issue a
6321 			 * warning and skip instantiating the VFs.  They
6322 			 * won't be reachable.
6323 			 */
6324 			dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
6325 				 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
6326 				 PCI_FUNC(pbridge->devfn));
6327 			return -ENOTSUPP;
6328 		}
6329 		memset(&port_cmd, 0, sizeof(port_cmd));
6330 		port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
6331 						 FW_CMD_REQUEST_F |
6332 						 FW_CMD_READ_F |
6333 						 FW_PFVF_CMD_PFN_V(adap->pf) |
6334 						 FW_PFVF_CMD_VFN_V(0));
6335 		port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6336 		err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6337 				 &port_rpl);
6338 		if (err)
6339 			return err;
6340 		pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6341 		port = ffs(pmask) - 1;
6342 		/* Allocate VF Management Interface. */
6343 		snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6344 			 adap->pf);
6345 		netdev = alloc_netdev(sizeof(struct port_info),
6346 				      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6347 		if (!netdev)
6348 			return -ENOMEM;
6349 
6350 		pi = netdev_priv(netdev);
6351 		pi->adapter = adap;
6352 		pi->lport = port;
6353 		pi->tx_chan = port;
6354 		SET_NETDEV_DEV(netdev, &pdev->dev);
6355 
6356 		adap->port[0] = netdev;
6357 		pi->port_id = 0;
6358 
6359 		err = register_netdev(adap->port[0]);
6360 		if (err) {
6361 			pr_info("Unable to register VF mgmt netdev %s\n", name);
6362 			free_netdev(adap->port[0]);
6363 			adap->port[0] = NULL;
6364 			return err;
6365 		}
6366 		/* Allocate and set up VF Information. */
6367 		adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6368 				       sizeof(struct vf_info), GFP_KERNEL);
6369 		if (!adap->vfinfo) {
6370 			unregister_netdev(adap->port[0]);
6371 			free_netdev(adap->port[0]);
6372 			adap->port[0] = NULL;
6373 			return -ENOMEM;
6374 		}
6375 		cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6376 	}
6377 	/* Instantiate the requested number of VFs. */
6378 	err = pci_enable_sriov(pdev, num_vfs);
6379 	if (err) {
6380 		pr_info("Unable to instantiate %d VFs\n", num_vfs);
6381 		if (!current_vfs) {
6382 			unregister_netdev(adap->port[0]);
6383 			free_netdev(adap->port[0]);
6384 			adap->port[0] = NULL;
6385 			kfree(adap->vfinfo);
6386 			adap->vfinfo = NULL;
6387 		}
6388 		return err;
6389 	}
6390 
6391 	adap->num_vfs = num_vfs;
6392 	return num_vfs;
6393 }
6394 #endif /* CONFIG_PCI_IOV */
6395 
6396 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) || IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6397 
6398 static int chcr_offload_state(struct adapter *adap,
6399 			      enum cxgb4_netdev_tls_ops op_val)
6400 {
6401 	switch (op_val) {
6402 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6403 	case CXGB4_TLSDEV_OPS:
6404 		if (!adap->uld[CXGB4_ULD_KTLS].handle) {
6405 			dev_dbg(adap->pdev_dev, "ch_ktls driver is not loaded\n");
6406 			return -EOPNOTSUPP;
6407 		}
6408 		if (!adap->uld[CXGB4_ULD_KTLS].tlsdev_ops) {
6409 			dev_dbg(adap->pdev_dev,
6410 				"ch_ktls driver has no registered tlsdev_ops\n");
6411 			return -EOPNOTSUPP;
6412 		}
6413 		break;
6414 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6415 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6416 	case CXGB4_XFRMDEV_OPS:
6417 		if (!adap->uld[CXGB4_ULD_IPSEC].handle) {
6418 			dev_dbg(adap->pdev_dev, "chipsec driver is not loaded\n");
6419 			return -EOPNOTSUPP;
6420 		}
6421 		if (!adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops) {
6422 			dev_dbg(adap->pdev_dev,
6423 				"chipsec driver has no registered xfrmdev_ops\n");
6424 			return -EOPNOTSUPP;
6425 		}
6426 		break;
6427 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6428 	default:
6429 		dev_dbg(adap->pdev_dev,
6430 			"driver has no support for offload %d\n", op_val);
6431 		return -EOPNOTSUPP;
6432 	}
6433 
6434 	return 0;
6435 }
6436 
6437 #endif /* CONFIG_CHELSIO_TLS_DEVICE || CONFIG_CHELSIO_IPSEC_INLINE */
6438 
6439 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6440 
6441 static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk,
6442 			      enum tls_offload_ctx_dir direction,
6443 			      struct tls_crypto_info *crypto_info,
6444 			      u32 tcp_sn)
6445 {
6446 	struct adapter *adap = netdev2adap(netdev);
6447 	int ret;
6448 
6449 	mutex_lock(&uld_mutex);
6450 	ret = chcr_offload_state(adap, CXGB4_TLSDEV_OPS);
6451 	if (ret)
6452 		goto out_unlock;
6453 
6454 	ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE);
6455 	if (ret)
6456 		goto out_unlock;
6457 
6458 	ret = adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_add(netdev, sk,
6459 								direction,
6460 								crypto_info,
6461 								tcp_sn);
6462 	/* if there is a failure, clear the refcount */
6463 	if (ret)
6464 		cxgb4_set_ktls_feature(adap,
6465 				       FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6466 out_unlock:
6467 	mutex_unlock(&uld_mutex);
6468 	return ret;
6469 }
6470 
6471 static void cxgb4_ktls_dev_del(struct net_device *netdev,
6472 			       struct tls_context *tls_ctx,
6473 			       enum tls_offload_ctx_dir direction)
6474 {
6475 	struct adapter *adap = netdev2adap(netdev);
6476 
6477 	mutex_lock(&uld_mutex);
6478 	if (chcr_offload_state(adap, CXGB4_TLSDEV_OPS))
6479 		goto out_unlock;
6480 
6481 	adap->uld[CXGB4_ULD_KTLS].tlsdev_ops->tls_dev_del(netdev, tls_ctx,
6482 							  direction);
6483 
6484 out_unlock:
6485 	cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE);
6486 	mutex_unlock(&uld_mutex);
6487 }
6488 
6489 static const struct tlsdev_ops cxgb4_ktls_ops = {
6490 	.tls_dev_add = cxgb4_ktls_dev_add,
6491 	.tls_dev_del = cxgb4_ktls_dev_del,
6492 };
6493 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6494 
6495 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6496 
6497 static int cxgb4_xfrm_add_state(struct xfrm_state *x)
6498 {
6499 	struct adapter *adap = netdev2adap(x->xso.dev);
6500 	int ret;
6501 
6502 	if (!mutex_trylock(&uld_mutex)) {
6503 		dev_dbg(adap->pdev_dev,
6504 			"crypto uld critical resource is under use\n");
6505 		return -EBUSY;
6506 	}
6507 	ret = chcr_offload_state(adap, CXGB4_XFRMDEV_OPS);
6508 	if (ret)
6509 		goto out_unlock;
6510 
6511 	ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_add(x);
6512 
6513 out_unlock:
6514 	mutex_unlock(&uld_mutex);
6515 
6516 	return ret;
6517 }
6518 
6519 static void cxgb4_xfrm_del_state(struct xfrm_state *x)
6520 {
6521 	struct adapter *adap = netdev2adap(x->xso.dev);
6522 
6523 	if (!mutex_trylock(&uld_mutex)) {
6524 		dev_dbg(adap->pdev_dev,
6525 			"crypto uld critical resource is under use\n");
6526 		return;
6527 	}
6528 	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6529 		goto out_unlock;
6530 
6531 	adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_delete(x);
6532 
6533 out_unlock:
6534 	mutex_unlock(&uld_mutex);
6535 }
6536 
6537 static void cxgb4_xfrm_free_state(struct xfrm_state *x)
6538 {
6539 	struct adapter *adap = netdev2adap(x->xso.dev);
6540 
6541 	if (!mutex_trylock(&uld_mutex)) {
6542 		dev_dbg(adap->pdev_dev,
6543 			"crypto uld critical resource is under use\n");
6544 		return;
6545 	}
6546 	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6547 		goto out_unlock;
6548 
6549 	adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_free(x);
6550 
6551 out_unlock:
6552 	mutex_unlock(&uld_mutex);
6553 }
6554 
6555 static bool cxgb4_ipsec_offload_ok(struct sk_buff *skb, struct xfrm_state *x)
6556 {
6557 	struct adapter *adap = netdev2adap(x->xso.dev);
6558 	bool ret = false;
6559 
6560 	if (!mutex_trylock(&uld_mutex)) {
6561 		dev_dbg(adap->pdev_dev,
6562 			"crypto uld critical resource is under use\n");
6563 		return ret;
6564 	}
6565 	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6566 		goto out_unlock;
6567 
6568 	ret = adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_offload_ok(skb, x);
6569 
6570 out_unlock:
6571 	mutex_unlock(&uld_mutex);
6572 	return ret;
6573 }
6574 
6575 static void cxgb4_advance_esn_state(struct xfrm_state *x)
6576 {
6577 	struct adapter *adap = netdev2adap(x->xso.dev);
6578 
6579 	if (!mutex_trylock(&uld_mutex)) {
6580 		dev_dbg(adap->pdev_dev,
6581 			"crypto uld critical resource is under use\n");
6582 		return;
6583 	}
6584 	if (chcr_offload_state(adap, CXGB4_XFRMDEV_OPS))
6585 		goto out_unlock;
6586 
6587 	adap->uld[CXGB4_ULD_IPSEC].xfrmdev_ops->xdo_dev_state_advance_esn(x);
6588 
6589 out_unlock:
6590 	mutex_unlock(&uld_mutex);
6591 }
6592 
6593 static const struct xfrmdev_ops cxgb4_xfrmdev_ops = {
6594 	.xdo_dev_state_add      = cxgb4_xfrm_add_state,
6595 	.xdo_dev_state_delete   = cxgb4_xfrm_del_state,
6596 	.xdo_dev_state_free     = cxgb4_xfrm_free_state,
6597 	.xdo_dev_offload_ok     = cxgb4_ipsec_offload_ok,
6598 	.xdo_dev_state_advance_esn = cxgb4_advance_esn_state,
6599 };
6600 
6601 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6602 
6603 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6604 {
6605 	struct net_device *netdev;
6606 	struct adapter *adapter;
6607 	static int adap_idx = 1;
6608 	int s_qpp, qpp, num_seg;
6609 	struct port_info *pi;
6610 	bool highdma = false;
6611 	enum chip_type chip;
6612 	void __iomem *regs;
6613 	int func, chip_ver;
6614 	u16 device_id;
6615 	int i, err;
6616 	u32 whoami;
6617 
6618 	err = pci_request_regions(pdev, KBUILD_MODNAME);
6619 	if (err) {
6620 		/* Just info, some other driver may have claimed the device. */
6621 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6622 		return err;
6623 	}
6624 
6625 	err = pci_enable_device(pdev);
6626 	if (err) {
6627 		dev_err(&pdev->dev, "cannot enable PCI device\n");
6628 		goto out_release_regions;
6629 	}
6630 
6631 	regs = pci_ioremap_bar(pdev, 0);
6632 	if (!regs) {
6633 		dev_err(&pdev->dev, "cannot map device registers\n");
6634 		err = -ENOMEM;
6635 		goto out_disable_device;
6636 	}
6637 
6638 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6639 	if (!adapter) {
6640 		err = -ENOMEM;
6641 		goto out_unmap_bar0;
6642 	}
6643 
6644 	adapter->regs = regs;
6645 	err = t4_wait_dev_ready(regs);
6646 	if (err < 0)
6647 		goto out_free_adapter;
6648 
6649 	/* We control everything through one PF */
6650 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6651 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6652 	chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6653 	if ((int)chip < 0) {
6654 		dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6655 		err = chip;
6656 		goto out_free_adapter;
6657 	}
6658 	chip_ver = CHELSIO_CHIP_VERSION(chip);
6659 	func = chip_ver <= CHELSIO_T5 ?
6660 	       SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6661 
6662 	adapter->pdev = pdev;
6663 	adapter->pdev_dev = &pdev->dev;
6664 	adapter->name = pci_name(pdev);
6665 	adapter->mbox = func;
6666 	adapter->pf = func;
6667 	adapter->params.chip = chip;
6668 	adapter->adap_idx = adap_idx;
6669 	adapter->msg_enable = DFLT_MSG_ENABLE;
6670 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6671 				    (sizeof(struct mbox_cmd) *
6672 				     T4_OS_LOG_MBOX_CMDS),
6673 				    GFP_KERNEL);
6674 	if (!adapter->mbox_log) {
6675 		err = -ENOMEM;
6676 		goto out_free_adapter;
6677 	}
6678 	spin_lock_init(&adapter->mbox_lock);
6679 	INIT_LIST_HEAD(&adapter->mlist.list);
6680 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6681 	pci_set_drvdata(pdev, adapter);
6682 
6683 	if (func != ent->driver_data) {
6684 		pci_disable_device(pdev);
6685 		pci_save_state(pdev);        /* to restore SR-IOV later */
6686 		return 0;
6687 	}
6688 
6689 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6690 		highdma = true;
6691 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6692 		if (err) {
6693 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6694 				"coherent allocations\n");
6695 			goto out_free_adapter;
6696 		}
6697 	} else {
6698 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6699 		if (err) {
6700 			dev_err(&pdev->dev, "no usable DMA configuration\n");
6701 			goto out_free_adapter;
6702 		}
6703 	}
6704 
6705 	pci_enable_pcie_error_reporting(pdev);
6706 	pci_set_master(pdev);
6707 	pci_save_state(pdev);
6708 	adap_idx++;
6709 	adapter->workq = create_singlethread_workqueue("cxgb4");
6710 	if (!adapter->workq) {
6711 		err = -ENOMEM;
6712 		goto out_free_adapter;
6713 	}
6714 
6715 	/* PCI device has been enabled */
6716 	adapter->flags |= CXGB4_DEV_ENABLED;
6717 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6718 
6719 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6720 	 * Ingress Packet Data to Free List Buffers in order to allow for
6721 	 * chipset performance optimizations between the Root Complex and
6722 	 * Memory Controllers.  (Messages to the associated Ingress Queue
6723 	 * notifying new Packet Placement in the Free Lists Buffers will be
6724 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
6725 	 * all preceding PCIe Transaction Layer Packets will be processed
6726 	 * first.)  But some Root Complexes have various issues with Upstream
6727 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6728 	 * The PCIe devices which under the Root Complexes will be cleared the
6729 	 * Relaxed Ordering bit in the configuration space, So we check our
6730 	 * PCIe configuration space to see if it's flagged with advice against
6731 	 * using Relaxed Ordering.
6732 	 */
6733 	if (!pcie_relaxed_ordering_enabled(pdev))
6734 		adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6735 
6736 	spin_lock_init(&adapter->stats_lock);
6737 	spin_lock_init(&adapter->tid_release_lock);
6738 	spin_lock_init(&adapter->win0_lock);
6739 
6740 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6741 	INIT_WORK(&adapter->db_full_task, process_db_full);
6742 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
6743 	INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6744 
6745 	err = t4_prep_adapter(adapter);
6746 	if (err)
6747 		goto out_free_adapter;
6748 
6749 	if (is_kdump_kernel()) {
6750 		/* Collect hardware state and append to /proc/vmcore */
6751 		err = cxgb4_cudbg_vmcore_add_dump(adapter);
6752 		if (err) {
6753 			dev_warn(adapter->pdev_dev,
6754 				 "Fail collecting vmcore device dump, err: %d. Continuing\n",
6755 				 err);
6756 			err = 0;
6757 		}
6758 	}
6759 
6760 	if (!is_t4(adapter->params.chip)) {
6761 		s_qpp = (QUEUESPERPAGEPF0_S +
6762 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6763 			adapter->pf);
6764 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6765 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6766 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
6767 
6768 		/* Each segment size is 128B. Write coalescing is enabled only
6769 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6770 		 * queue is less no of segments that can be accommodated in
6771 		 * a page size.
6772 		 */
6773 		if (qpp > num_seg) {
6774 			dev_err(&pdev->dev,
6775 				"Incorrect number of egress queues per page\n");
6776 			err = -EINVAL;
6777 			goto out_free_adapter;
6778 		}
6779 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6780 		pci_resource_len(pdev, 2));
6781 		if (!adapter->bar2) {
6782 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
6783 			err = -ENOMEM;
6784 			goto out_free_adapter;
6785 		}
6786 	}
6787 
6788 	setup_memwin(adapter);
6789 	err = adap_init0(adapter, 0);
6790 #ifdef CONFIG_DEBUG_FS
6791 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
6792 #endif
6793 	setup_memwin_rdma(adapter);
6794 	if (err)
6795 		goto out_unmap_bar;
6796 
6797 	/* configure SGE_STAT_CFG_A to read WC stats */
6798 	if (!is_t4(adapter->params.chip))
6799 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6800 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6801 			      T6_STATMODE_V(0)));
6802 
6803 	/* Initialize hash mac addr list */
6804 	INIT_LIST_HEAD(&adapter->mac_hlist);
6805 
6806 	for_each_port(adapter, i) {
6807 		/* For supporting MQPRIO Offload, need some extra
6808 		 * queues for each ETHOFLD TIDs. Keep it equal to
6809 		 * MAX_ATIDs for now. Once we connect to firmware
6810 		 * later and query the EOTID params, we'll come to
6811 		 * know the actual # of EOTIDs supported.
6812 		 */
6813 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
6814 					   MAX_ETH_QSETS + MAX_ATIDS);
6815 		if (!netdev) {
6816 			err = -ENOMEM;
6817 			goto out_free_dev;
6818 		}
6819 
6820 		SET_NETDEV_DEV(netdev, &pdev->dev);
6821 
6822 		adapter->port[i] = netdev;
6823 		pi = netdev_priv(netdev);
6824 		pi->adapter = adapter;
6825 		pi->xact_addr_filt = -1;
6826 		pi->port_id = i;
6827 		netdev->irq = pdev->irq;
6828 
6829 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6830 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6831 			NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6832 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6833 			NETIF_F_HW_TC | NETIF_F_NTUPLE;
6834 
6835 		if (chip_ver > CHELSIO_T5) {
6836 			netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6837 						   NETIF_F_IPV6_CSUM |
6838 						   NETIF_F_RXCSUM |
6839 						   NETIF_F_GSO_UDP_TUNNEL |
6840 						   NETIF_F_GSO_UDP_TUNNEL_CSUM |
6841 						   NETIF_F_TSO | NETIF_F_TSO6;
6842 
6843 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6844 					       NETIF_F_GSO_UDP_TUNNEL_CSUM |
6845 					       NETIF_F_HW_TLS_RECORD;
6846 
6847 			if (adapter->rawf_cnt)
6848 				netdev->udp_tunnel_nic_info = &cxgb_udp_tunnels;
6849 		}
6850 
6851 		if (highdma)
6852 			netdev->hw_features |= NETIF_F_HIGHDMA;
6853 		netdev->features |= netdev->hw_features;
6854 		netdev->vlan_features = netdev->features & VLAN_FEAT;
6855 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
6856 		if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) {
6857 			netdev->hw_features |= NETIF_F_HW_TLS_TX;
6858 			netdev->tlsdev_ops = &cxgb4_ktls_ops;
6859 			/* initialize the refcount */
6860 			refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0);
6861 		}
6862 #endif /* CONFIG_CHELSIO_TLS_DEVICE */
6863 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
6864 		if (pi->adapter->params.crypto & FW_CAPS_CONFIG_IPSEC_INLINE) {
6865 			netdev->hw_enc_features |= NETIF_F_HW_ESP;
6866 			netdev->features |= NETIF_F_HW_ESP;
6867 			netdev->xfrmdev_ops = &cxgb4_xfrmdev_ops;
6868 		}
6869 #endif /* CONFIG_CHELSIO_IPSEC_INLINE */
6870 
6871 		netdev->priv_flags |= IFF_UNICAST_FLT;
6872 
6873 		/* MTU range: 81 - 9600 */
6874 		netdev->min_mtu = 81;              /* accommodate SACK */
6875 		netdev->max_mtu = MAX_MTU;
6876 
6877 		netdev->netdev_ops = &cxgb4_netdev_ops;
6878 #ifdef CONFIG_CHELSIO_T4_DCB
6879 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
6880 		cxgb4_dcb_state_init(netdev);
6881 		cxgb4_dcb_version_init(netdev);
6882 #endif
6883 		cxgb4_set_ethtool_ops(netdev);
6884 	}
6885 
6886 	cxgb4_init_ethtool_dump(adapter);
6887 
6888 	pci_set_drvdata(pdev, adapter);
6889 
6890 	if (adapter->flags & CXGB4_FW_OK) {
6891 		err = t4_port_init(adapter, func, func, 0);
6892 		if (err)
6893 			goto out_free_dev;
6894 	} else if (adapter->params.nports == 1) {
6895 		/* If we don't have a connection to the firmware -- possibly
6896 		 * because of an error -- grab the raw VPD parameters so we
6897 		 * can set the proper MAC Address on the debug network
6898 		 * interface that we've created.
6899 		 */
6900 		u8 hw_addr[ETH_ALEN];
6901 		u8 *na = adapter->params.vpd.na;
6902 
6903 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6904 		if (!err) {
6905 			for (i = 0; i < ETH_ALEN; i++)
6906 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6907 					      hex2val(na[2 * i + 1]));
6908 			t4_set_hw_addr(adapter, 0, hw_addr);
6909 		}
6910 	}
6911 
6912 	if (!(adapter->flags & CXGB4_FW_OK))
6913 		goto fw_attach_fail;
6914 
6915 	/* Configure queues and allocate tables now, they can be needed as
6916 	 * soon as the first register_netdev completes.
6917 	 */
6918 	err = cfg_queues(adapter);
6919 	if (err)
6920 		goto out_free_dev;
6921 
6922 	adapter->smt = t4_init_smt();
6923 	if (!adapter->smt) {
6924 		/* We tolerate a lack of SMT, giving up some functionality */
6925 		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6926 	}
6927 
6928 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6929 	if (!adapter->l2t) {
6930 		/* We tolerate a lack of L2T, giving up some functionality */
6931 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6932 		adapter->params.offload = 0;
6933 	}
6934 
6935 #if IS_ENABLED(CONFIG_IPV6)
6936 	if (chip_ver <= CHELSIO_T5 &&
6937 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6938 		/* CLIP functionality is not present in hardware,
6939 		 * hence disable all offload features
6940 		 */
6941 		dev_warn(&pdev->dev,
6942 			 "CLIP not enabled in hardware, continuing\n");
6943 		adapter->params.offload = 0;
6944 	} else {
6945 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6946 						  adapter->clipt_end);
6947 		if (!adapter->clipt) {
6948 			/* We tolerate a lack of clip_table, giving up
6949 			 * some functionality
6950 			 */
6951 			dev_warn(&pdev->dev,
6952 				 "could not allocate Clip table, continuing\n");
6953 			adapter->params.offload = 0;
6954 		}
6955 	}
6956 #endif
6957 
6958 	for_each_port(adapter, i) {
6959 		pi = adap2pinfo(adapter, i);
6960 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6961 		if (!pi->sched_tbl)
6962 			dev_warn(&pdev->dev,
6963 				 "could not activate scheduling on port %d\n",
6964 				 i);
6965 	}
6966 
6967 	if (is_offload(adapter) || is_hashfilter(adapter)) {
6968 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6969 			u32 v;
6970 
6971 			v = t4_read_reg(adapter, LE_DB_HASH_CONFIG_A);
6972 			if (chip_ver <= CHELSIO_T5) {
6973 				adapter->tids.nhash = 1 << HASHTIDSIZE_G(v);
6974 				v = t4_read_reg(adapter, LE_DB_TID_HASHBASE_A);
6975 				adapter->tids.hash_base = v / 4;
6976 			} else {
6977 				adapter->tids.nhash = HASHTBLSIZE_G(v) << 3;
6978 				v = t4_read_reg(adapter,
6979 						T6_LE_DB_HASH_TID_BASE_A);
6980 				adapter->tids.hash_base = v;
6981 			}
6982 		}
6983 	}
6984 
6985 	if (tid_init(&adapter->tids) < 0) {
6986 		dev_warn(&pdev->dev, "could not allocate TID table, "
6987 			 "continuing\n");
6988 		adapter->params.offload = 0;
6989 	} else {
6990 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6991 		if (!adapter->tc_u32)
6992 			dev_warn(&pdev->dev,
6993 				 "could not offload tc u32, continuing\n");
6994 
6995 		if (cxgb4_init_tc_flower(adapter))
6996 			dev_warn(&pdev->dev,
6997 				 "could not offload tc flower, continuing\n");
6998 
6999 		if (cxgb4_init_tc_mqprio(adapter))
7000 			dev_warn(&pdev->dev,
7001 				 "could not offload tc mqprio, continuing\n");
7002 
7003 		if (cxgb4_init_tc_matchall(adapter))
7004 			dev_warn(&pdev->dev,
7005 				 "could not offload tc matchall, continuing\n");
7006 		if (cxgb4_init_ethtool_filters(adapter))
7007 			dev_warn(&pdev->dev,
7008 				 "could not initialize ethtool filters, continuing\n");
7009 	}
7010 
7011 	/* See what interrupts we'll be using */
7012 	if (msi > 1 && enable_msix(adapter) == 0)
7013 		adapter->flags |= CXGB4_USING_MSIX;
7014 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
7015 		adapter->flags |= CXGB4_USING_MSI;
7016 		if (msi > 1)
7017 			free_msix_info(adapter);
7018 	}
7019 
7020 	/* check for PCI Express bandwidth capabiltites */
7021 	pcie_print_link_status(pdev);
7022 
7023 	cxgb4_init_mps_ref_entries(adapter);
7024 
7025 	err = init_rss(adapter);
7026 	if (err)
7027 		goto out_free_dev;
7028 
7029 	err = setup_non_data_intr(adapter);
7030 	if (err) {
7031 		dev_err(adapter->pdev_dev,
7032 			"Non Data interrupt allocation failed, err: %d\n", err);
7033 		goto out_free_dev;
7034 	}
7035 
7036 	err = setup_fw_sge_queues(adapter);
7037 	if (err) {
7038 		dev_err(adapter->pdev_dev,
7039 			"FW sge queue allocation failed, err %d", err);
7040 		goto out_free_dev;
7041 	}
7042 
7043 fw_attach_fail:
7044 	/*
7045 	 * The card is now ready to go.  If any errors occur during device
7046 	 * registration we do not fail the whole card but rather proceed only
7047 	 * with the ports we manage to register successfully.  However we must
7048 	 * register at least one net device.
7049 	 */
7050 	for_each_port(adapter, i) {
7051 		pi = adap2pinfo(adapter, i);
7052 		adapter->port[i]->dev_port = pi->lport;
7053 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
7054 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
7055 
7056 		netif_carrier_off(adapter->port[i]);
7057 
7058 		err = register_netdev(adapter->port[i]);
7059 		if (err)
7060 			break;
7061 		adapter->chan_map[pi->tx_chan] = i;
7062 		print_port_info(adapter->port[i]);
7063 	}
7064 	if (i == 0) {
7065 		dev_err(&pdev->dev, "could not register any net devices\n");
7066 		goto out_free_dev;
7067 	}
7068 	if (err) {
7069 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
7070 		err = 0;
7071 	}
7072 
7073 	if (cxgb4_debugfs_root) {
7074 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
7075 							   cxgb4_debugfs_root);
7076 		setup_debugfs(adapter);
7077 	}
7078 
7079 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
7080 	pdev->needs_freset = 1;
7081 
7082 	if (is_uld(adapter))
7083 		cxgb4_uld_enable(adapter);
7084 
7085 	if (!is_t4(adapter->params.chip))
7086 		cxgb4_ptp_init(adapter);
7087 
7088 	if (IS_REACHABLE(CONFIG_THERMAL) &&
7089 	    !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
7090 		cxgb4_thermal_init(adapter);
7091 
7092 	print_adapter_info(adapter);
7093 	return 0;
7094 
7095  out_free_dev:
7096 	t4_free_sge_resources(adapter);
7097 	free_some_resources(adapter);
7098 	if (adapter->flags & CXGB4_USING_MSIX)
7099 		free_msix_info(adapter);
7100 	if (adapter->num_uld || adapter->num_ofld_uld)
7101 		t4_uld_mem_free(adapter);
7102  out_unmap_bar:
7103 	if (!is_t4(adapter->params.chip))
7104 		iounmap(adapter->bar2);
7105  out_free_adapter:
7106 	if (adapter->workq)
7107 		destroy_workqueue(adapter->workq);
7108 
7109 	kfree(adapter->mbox_log);
7110 	kfree(adapter);
7111  out_unmap_bar0:
7112 	iounmap(regs);
7113  out_disable_device:
7114 	pci_disable_pcie_error_reporting(pdev);
7115 	pci_disable_device(pdev);
7116  out_release_regions:
7117 	pci_release_regions(pdev);
7118 	return err;
7119 }
7120 
7121 static void remove_one(struct pci_dev *pdev)
7122 {
7123 	struct adapter *adapter = pci_get_drvdata(pdev);
7124 	struct hash_mac_addr *entry, *tmp;
7125 
7126 	if (!adapter) {
7127 		pci_release_regions(pdev);
7128 		return;
7129 	}
7130 
7131 	/* If we allocated filters, free up state associated with any
7132 	 * valid filters ...
7133 	 */
7134 	clear_all_filters(adapter);
7135 
7136 	adapter->flags |= CXGB4_SHUTTING_DOWN;
7137 
7138 	if (adapter->pf == 4) {
7139 		int i;
7140 
7141 		/* Tear down per-adapter Work Queue first since it can contain
7142 		 * references to our adapter data structure.
7143 		 */
7144 		destroy_workqueue(adapter->workq);
7145 
7146 		if (is_uld(adapter)) {
7147 			detach_ulds(adapter);
7148 			t4_uld_clean_up(adapter);
7149 		}
7150 
7151 		adap_free_hma_mem(adapter);
7152 
7153 		disable_interrupts(adapter);
7154 
7155 		cxgb4_free_mps_ref_entries(adapter);
7156 
7157 		for_each_port(adapter, i)
7158 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7159 				unregister_netdev(adapter->port[i]);
7160 
7161 		debugfs_remove_recursive(adapter->debugfs_root);
7162 
7163 		if (!is_t4(adapter->params.chip))
7164 			cxgb4_ptp_stop(adapter);
7165 		if (IS_REACHABLE(CONFIG_THERMAL))
7166 			cxgb4_thermal_remove(adapter);
7167 
7168 		if (adapter->flags & CXGB4_FULL_INIT_DONE)
7169 			cxgb_down(adapter);
7170 
7171 		if (adapter->flags & CXGB4_USING_MSIX)
7172 			free_msix_info(adapter);
7173 		if (adapter->num_uld || adapter->num_ofld_uld)
7174 			t4_uld_mem_free(adapter);
7175 		free_some_resources(adapter);
7176 		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
7177 					 list) {
7178 			list_del(&entry->list);
7179 			kfree(entry);
7180 		}
7181 
7182 #if IS_ENABLED(CONFIG_IPV6)
7183 		t4_cleanup_clip_tbl(adapter);
7184 #endif
7185 		if (!is_t4(adapter->params.chip))
7186 			iounmap(adapter->bar2);
7187 	}
7188 #ifdef CONFIG_PCI_IOV
7189 	else {
7190 		cxgb4_iov_configure(adapter->pdev, 0);
7191 	}
7192 #endif
7193 	iounmap(adapter->regs);
7194 	pci_disable_pcie_error_reporting(pdev);
7195 	if ((adapter->flags & CXGB4_DEV_ENABLED)) {
7196 		pci_disable_device(pdev);
7197 		adapter->flags &= ~CXGB4_DEV_ENABLED;
7198 	}
7199 	pci_release_regions(pdev);
7200 	kfree(adapter->mbox_log);
7201 	synchronize_rcu();
7202 	kfree(adapter);
7203 }
7204 
7205 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
7206  * delivery.  This is essentially a stripped down version of the PCI remove()
7207  * function where we do the minimal amount of work necessary to shutdown any
7208  * further activity.
7209  */
7210 static void shutdown_one(struct pci_dev *pdev)
7211 {
7212 	struct adapter *adapter = pci_get_drvdata(pdev);
7213 
7214 	/* As with remove_one() above (see extended comment), we only want do
7215 	 * do cleanup on PCI Devices which went all the way through init_one()
7216 	 * ...
7217 	 */
7218 	if (!adapter) {
7219 		pci_release_regions(pdev);
7220 		return;
7221 	}
7222 
7223 	adapter->flags |= CXGB4_SHUTTING_DOWN;
7224 
7225 	if (adapter->pf == 4) {
7226 		int i;
7227 
7228 		for_each_port(adapter, i)
7229 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
7230 				cxgb_close(adapter->port[i]);
7231 
7232 		rtnl_lock();
7233 		cxgb4_mqprio_stop_offload(adapter);
7234 		rtnl_unlock();
7235 
7236 		if (is_uld(adapter)) {
7237 			detach_ulds(adapter);
7238 			t4_uld_clean_up(adapter);
7239 		}
7240 
7241 		disable_interrupts(adapter);
7242 		disable_msi(adapter);
7243 
7244 		t4_sge_stop(adapter);
7245 		if (adapter->flags & CXGB4_FW_OK)
7246 			t4_fw_bye(adapter, adapter->mbox);
7247 	}
7248 }
7249 
7250 static struct pci_driver cxgb4_driver = {
7251 	.name     = KBUILD_MODNAME,
7252 	.id_table = cxgb4_pci_tbl,
7253 	.probe    = init_one,
7254 	.remove   = remove_one,
7255 	.shutdown = shutdown_one,
7256 #ifdef CONFIG_PCI_IOV
7257 	.sriov_configure = cxgb4_iov_configure,
7258 #endif
7259 	.err_handler = &cxgb4_eeh,
7260 };
7261 
7262 static int __init cxgb4_init_module(void)
7263 {
7264 	int ret;
7265 
7266 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
7267 
7268 	ret = pci_register_driver(&cxgb4_driver);
7269 	if (ret < 0)
7270 		goto err_pci;
7271 
7272 #if IS_ENABLED(CONFIG_IPV6)
7273 	if (!inet6addr_registered) {
7274 		ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7275 		if (ret)
7276 			pci_unregister_driver(&cxgb4_driver);
7277 		else
7278 			inet6addr_registered = true;
7279 	}
7280 #endif
7281 
7282 	if (ret == 0)
7283 		return ret;
7284 
7285 err_pci:
7286 	debugfs_remove(cxgb4_debugfs_root);
7287 
7288 	return ret;
7289 }
7290 
7291 static void __exit cxgb4_cleanup_module(void)
7292 {
7293 #if IS_ENABLED(CONFIG_IPV6)
7294 	if (inet6addr_registered) {
7295 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
7296 		inet6addr_registered = false;
7297 	}
7298 #endif
7299 	pci_unregister_driver(&cxgb4_driver);
7300 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
7301 }
7302 
7303 module_init(cxgb4_init_module);
7304 module_exit(cxgb4_cleanup_module);
7305