1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67 #include <linux/crash_dump.h>
68 
69 #include "cxgb4.h"
70 #include "t4_regs.h"
71 #include "t4_values.h"
72 #include "t4_msg.h"
73 #include "t4fw_api.h"
74 #include "t4fw_version.h"
75 #include "cxgb4_dcb.h"
76 #include "cxgb4_debugfs.h"
77 #include "clip_tbl.h"
78 #include "l2t.h"
79 
80 char cxgb4_driver_name[] = KBUILD_MODNAME;
81 
82 #ifdef DRV_VERSION
83 #undef DRV_VERSION
84 #endif
85 #define DRV_VERSION "2.0.0-ko"
86 const char cxgb4_driver_version[] = DRV_VERSION;
87 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
88 
89 /* Host shadow copy of ingress filter entry.  This is in host native format
90  * and doesn't match the ordering or bit order, etc. of the hardware of the
91  * firmware command.  The use of bit-field structure elements is purely to
92  * remind ourselves of the field size limitations and save memory in the case
93  * where the filter table is large.
94  */
95 struct filter_entry {
96 	/* Administrative fields for filter.
97 	 */
98 	u32 valid:1;            /* filter allocated and valid */
99 	u32 locked:1;           /* filter is administratively locked */
100 
101 	u32 pending:1;          /* filter action is pending firmware reply */
102 	u32 smtidx:8;           /* Source MAC Table index for smac */
103 	struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
104 
105 	/* The filter itself.  Most of this is a straight copy of information
106 	 * provided by the extended ioctl().  Some fields are translated to
107 	 * internal forms -- for instance the Ingress Queue ID passed in from
108 	 * the ioctl() is translated into the Absolute Ingress Queue ID.
109 	 */
110 	struct ch_filter_specification fs;
111 };
112 
113 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
114 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
115 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
116 
117 /* Macros needed to support the PCI Device ID Table ...
118  */
119 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
120 	static const struct pci_device_id cxgb4_pci_tbl[] = {
121 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
122 
123 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
124  * called for both.
125  */
126 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
127 
128 #define CH_PCI_ID_TABLE_ENTRY(devid) \
129 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
130 
131 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
132 		{ 0, } \
133 	}
134 
135 #include "t4_pci_id_tbl.h"
136 
137 #define FW4_FNAME "cxgb4/t4fw.bin"
138 #define FW5_FNAME "cxgb4/t5fw.bin"
139 #define FW6_FNAME "cxgb4/t6fw.bin"
140 #define FW4_CFNAME "cxgb4/t4-config.txt"
141 #define FW5_CFNAME "cxgb4/t5-config.txt"
142 #define FW6_CFNAME "cxgb4/t6-config.txt"
143 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
144 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
145 #define PHY_AQ1202_DEVICEID 0x4409
146 #define PHY_BCM84834_DEVICEID 0x4486
147 
148 MODULE_DESCRIPTION(DRV_DESC);
149 MODULE_AUTHOR("Chelsio Communications");
150 MODULE_LICENSE("Dual BSD/GPL");
151 MODULE_VERSION(DRV_VERSION);
152 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
153 MODULE_FIRMWARE(FW4_FNAME);
154 MODULE_FIRMWARE(FW5_FNAME);
155 MODULE_FIRMWARE(FW6_FNAME);
156 
157 /*
158  * Normally we're willing to become the firmware's Master PF but will be happy
159  * if another PF has already become the Master and initialized the adapter.
160  * Setting "force_init" will cause this driver to forcibly establish itself as
161  * the Master PF and initialize the adapter.
162  */
163 static uint force_init;
164 
165 module_param(force_init, uint, 0644);
166 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
167 		 "deprecated parameter");
168 
169 static int dflt_msg_enable = DFLT_MSG_ENABLE;
170 
171 module_param(dflt_msg_enable, int, 0644);
172 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap, "
173 		 "deprecated parameter");
174 
175 /*
176  * The driver uses the best interrupt scheme available on a platform in the
177  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
178  * of these schemes the driver may consider as follows:
179  *
180  * msi = 2: choose from among all three options
181  * msi = 1: only consider MSI and INTx interrupts
182  * msi = 0: force INTx interrupts
183  */
184 static int msi = 2;
185 
186 module_param(msi, int, 0644);
187 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
188 
189 /*
190  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
191  * offset by 2 bytes in order to have the IP headers line up on 4-byte
192  * boundaries.  This is a requirement for many architectures which will throw
193  * a machine check fault if an attempt is made to access one of the 4-byte IP
194  * header fields on a non-4-byte boundary.  And it's a major performance issue
195  * even on some architectures which allow it like some implementations of the
196  * x86 ISA.  However, some architectures don't mind this and for some very
197  * edge-case performance sensitive applications (like forwarding large volumes
198  * of small packets), setting this DMA offset to 0 will decrease the number of
199  * PCI-E Bus transfers enough to measurably affect performance.
200  */
201 static int rx_dma_offset = 2;
202 
203 #ifdef CONFIG_PCI_IOV
204 /* Configure the number of PCI-E Virtual Function which are to be instantiated
205  * on SR-IOV Capable Physical Functions.
206  */
207 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
208 
209 module_param_array(num_vf, uint, NULL, 0644);
210 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3, deprecated parameter - please use the pci sysfs interface.");
211 #endif
212 
213 /* TX Queue select used to determine what algorithm to use for selecting TX
214  * queue. Select between the kernel provided function (select_queue=0) or user
215  * cxgb_select_queue function (select_queue=1)
216  *
217  * Default: select_queue=0
218  */
219 static int select_queue;
220 module_param(select_queue, int, 0644);
221 MODULE_PARM_DESC(select_queue,
222 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
223 
224 static struct dentry *cxgb4_debugfs_root;
225 
226 static LIST_HEAD(adapter_list);
227 static DEFINE_MUTEX(uld_mutex);
228 /* Adapter list to be accessed from atomic context */
229 static LIST_HEAD(adap_rcu_list);
230 static DEFINE_SPINLOCK(adap_rcu_lock);
231 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
232 static const char *const uld_str[] = { "RDMA", "iSCSI", "iSCSIT" };
233 
234 static void link_report(struct net_device *dev)
235 {
236 	if (!netif_carrier_ok(dev))
237 		netdev_info(dev, "link down\n");
238 	else {
239 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
240 
241 		const char *s;
242 		const struct port_info *p = netdev_priv(dev);
243 
244 		switch (p->link_cfg.speed) {
245 		case 10000:
246 			s = "10Gbps";
247 			break;
248 		case 1000:
249 			s = "1000Mbps";
250 			break;
251 		case 100:
252 			s = "100Mbps";
253 			break;
254 		case 40000:
255 			s = "40Gbps";
256 			break;
257 		default:
258 			pr_info("%s: unsupported speed: %d\n",
259 				dev->name, p->link_cfg.speed);
260 			return;
261 		}
262 
263 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
264 			    fc[p->link_cfg.fc]);
265 	}
266 }
267 
268 #ifdef CONFIG_CHELSIO_T4_DCB
269 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
270 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
271 {
272 	struct port_info *pi = netdev_priv(dev);
273 	struct adapter *adap = pi->adapter;
274 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
275 	int i;
276 
277 	/* We use a simple mapping of Port TX Queue Index to DCB
278 	 * Priority when we're enabling DCB.
279 	 */
280 	for (i = 0; i < pi->nqsets; i++, txq++) {
281 		u32 name, value;
282 		int err;
283 
284 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
285 			FW_PARAMS_PARAM_X_V(
286 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
287 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
288 		value = enable ? i : 0xffffffff;
289 
290 		/* Since we can be called while atomic (from "interrupt
291 		 * level") we need to issue the Set Parameters Commannd
292 		 * without sleeping (timeout < 0).
293 		 */
294 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
295 					    &name, &value,
296 					    -FW_CMD_MAX_TIMEOUT);
297 
298 		if (err)
299 			dev_err(adap->pdev_dev,
300 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
301 				enable ? "set" : "unset", pi->port_id, i, -err);
302 		else
303 			txq->dcb_prio = value;
304 	}
305 }
306 #endif /* CONFIG_CHELSIO_T4_DCB */
307 
308 int cxgb4_dcb_enabled(const struct net_device *dev)
309 {
310 #ifdef CONFIG_CHELSIO_T4_DCB
311 	struct port_info *pi = netdev_priv(dev);
312 
313 	if (!pi->dcb.enabled)
314 		return 0;
315 
316 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
317 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
318 #else
319 	return 0;
320 #endif
321 }
322 EXPORT_SYMBOL(cxgb4_dcb_enabled);
323 
324 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
325 {
326 	struct net_device *dev = adapter->port[port_id];
327 
328 	/* Skip changes from disabled ports. */
329 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
330 		if (link_stat)
331 			netif_carrier_on(dev);
332 		else {
333 #ifdef CONFIG_CHELSIO_T4_DCB
334 			if (cxgb4_dcb_enabled(dev)) {
335 				cxgb4_dcb_state_init(dev);
336 				dcb_tx_queue_prio_enable(dev, false);
337 			}
338 #endif /* CONFIG_CHELSIO_T4_DCB */
339 			netif_carrier_off(dev);
340 		}
341 
342 		link_report(dev);
343 	}
344 }
345 
346 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
347 {
348 	static const char *mod_str[] = {
349 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
350 	};
351 
352 	const struct net_device *dev = adap->port[port_id];
353 	const struct port_info *pi = netdev_priv(dev);
354 
355 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
356 		netdev_info(dev, "port module unplugged\n");
357 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
358 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
359 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
360 		netdev_info(dev, "%s: unsupported port module inserted\n",
361 			    dev->name);
362 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
363 		netdev_info(dev, "%s: unknown port module inserted\n",
364 			    dev->name);
365 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
366 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
367 	else
368 		netdev_info(dev, "%s: unknown module type %d inserted\n",
369 			    dev->name, pi->mod_type);
370 }
371 
372 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
373 module_param(dbfifo_int_thresh, int, 0644);
374 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
375 
376 /*
377  * usecs to sleep while draining the dbfifo
378  */
379 static int dbfifo_drain_delay = 1000;
380 module_param(dbfifo_drain_delay, int, 0644);
381 MODULE_PARM_DESC(dbfifo_drain_delay,
382 		 "usecs to sleep while draining the dbfifo");
383 
384 static inline int cxgb4_set_addr_hash(struct port_info *pi)
385 {
386 	struct adapter *adap = pi->adapter;
387 	u64 vec = 0;
388 	bool ucast = false;
389 	struct hash_mac_addr *entry;
390 
391 	/* Calculate the hash vector for the updated list and program it */
392 	list_for_each_entry(entry, &adap->mac_hlist, list) {
393 		ucast |= is_unicast_ether_addr(entry->addr);
394 		vec |= (1ULL << hash_mac_addr(entry->addr));
395 	}
396 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
397 				vec, false);
398 }
399 
400 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
401 {
402 	struct port_info *pi = netdev_priv(netdev);
403 	struct adapter *adap = pi->adapter;
404 	int ret;
405 	u64 mhash = 0;
406 	u64 uhash = 0;
407 	bool free = false;
408 	bool ucast = is_unicast_ether_addr(mac_addr);
409 	const u8 *maclist[1] = {mac_addr};
410 	struct hash_mac_addr *new_entry;
411 
412 	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
413 				NULL, ucast ? &uhash : &mhash, false);
414 	if (ret < 0)
415 		goto out;
416 	/* if hash != 0, then add the addr to hash addr list
417 	 * so on the end we will calculate the hash for the
418 	 * list and program it
419 	 */
420 	if (uhash || mhash) {
421 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
422 		if (!new_entry)
423 			return -ENOMEM;
424 		ether_addr_copy(new_entry->addr, mac_addr);
425 		list_add_tail(&new_entry->list, &adap->mac_hlist);
426 		ret = cxgb4_set_addr_hash(pi);
427 	}
428 out:
429 	return ret < 0 ? ret : 0;
430 }
431 
432 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
433 {
434 	struct port_info *pi = netdev_priv(netdev);
435 	struct adapter *adap = pi->adapter;
436 	int ret;
437 	const u8 *maclist[1] = {mac_addr};
438 	struct hash_mac_addr *entry, *tmp;
439 
440 	/* If the MAC address to be removed is in the hash addr
441 	 * list, delete it from the list and update hash vector
442 	 */
443 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
444 		if (ether_addr_equal(entry->addr, mac_addr)) {
445 			list_del(&entry->list);
446 			kfree(entry);
447 			return cxgb4_set_addr_hash(pi);
448 		}
449 	}
450 
451 	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
452 	return ret < 0 ? -EINVAL : 0;
453 }
454 
455 /*
456  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
457  * If @mtu is -1 it is left unchanged.
458  */
459 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
460 {
461 	struct port_info *pi = netdev_priv(dev);
462 	struct adapter *adapter = pi->adapter;
463 
464 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
465 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
466 
467 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
468 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
469 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
470 			     sleep_ok);
471 }
472 
473 /**
474  *	link_start - enable a port
475  *	@dev: the port to enable
476  *
477  *	Performs the MAC and PHY actions needed to enable a port.
478  */
479 static int link_start(struct net_device *dev)
480 {
481 	int ret;
482 	struct port_info *pi = netdev_priv(dev);
483 	unsigned int mb = pi->adapter->pf;
484 
485 	/*
486 	 * We do not set address filters and promiscuity here, the stack does
487 	 * that step explicitly.
488 	 */
489 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
490 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
491 	if (ret == 0) {
492 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
493 				    pi->xact_addr_filt, dev->dev_addr, true,
494 				    true);
495 		if (ret >= 0) {
496 			pi->xact_addr_filt = ret;
497 			ret = 0;
498 		}
499 	}
500 	if (ret == 0)
501 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
502 				    &pi->link_cfg);
503 	if (ret == 0) {
504 		local_bh_disable();
505 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
506 					  true, CXGB4_DCB_ENABLED);
507 		local_bh_enable();
508 	}
509 
510 	return ret;
511 }
512 
513 #ifdef CONFIG_CHELSIO_T4_DCB
514 /* Handle a Data Center Bridging update message from the firmware. */
515 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
516 {
517 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
518 	struct net_device *dev = adap->port[adap->chan_map[port]];
519 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
520 	int new_dcb_enabled;
521 
522 	cxgb4_dcb_handle_fw_update(adap, pcmd);
523 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
524 
525 	/* If the DCB has become enabled or disabled on the port then we're
526 	 * going to need to set up/tear down DCB Priority parameters for the
527 	 * TX Queues associated with the port.
528 	 */
529 	if (new_dcb_enabled != old_dcb_enabled)
530 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
531 }
532 #endif /* CONFIG_CHELSIO_T4_DCB */
533 
534 /* Clear a filter and release any of its resources that we own.  This also
535  * clears the filter's "pending" status.
536  */
537 static void clear_filter(struct adapter *adap, struct filter_entry *f)
538 {
539 	/* If the new or old filter have loopback rewriteing rules then we'll
540 	 * need to free any existing Layer Two Table (L2T) entries of the old
541 	 * filter rule.  The firmware will handle freeing up any Source MAC
542 	 * Table (SMT) entries used for rewriting Source MAC Addresses in
543 	 * loopback rules.
544 	 */
545 	if (f->l2t)
546 		cxgb4_l2t_release(f->l2t);
547 
548 	/* The zeroing of the filter rule below clears the filter valid,
549 	 * pending, locked flags, l2t pointer, etc. so it's all we need for
550 	 * this operation.
551 	 */
552 	memset(f, 0, sizeof(*f));
553 }
554 
555 /* Handle a filter write/deletion reply.
556  */
557 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
558 {
559 	unsigned int idx = GET_TID(rpl);
560 	unsigned int nidx = idx - adap->tids.ftid_base;
561 	unsigned int ret;
562 	struct filter_entry *f;
563 
564 	if (idx >= adap->tids.ftid_base && nidx <
565 	   (adap->tids.nftids + adap->tids.nsftids)) {
566 		idx = nidx;
567 		ret = TCB_COOKIE_G(rpl->cookie);
568 		f = &adap->tids.ftid_tab[idx];
569 
570 		if (ret == FW_FILTER_WR_FLT_DELETED) {
571 			/* Clear the filter when we get confirmation from the
572 			 * hardware that the filter has been deleted.
573 			 */
574 			clear_filter(adap, f);
575 		} else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
576 			dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
577 				idx);
578 			clear_filter(adap, f);
579 		} else if (ret == FW_FILTER_WR_FLT_ADDED) {
580 			f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
581 			f->pending = 0;  /* asynchronous setup completed */
582 			f->valid = 1;
583 		} else {
584 			/* Something went wrong.  Issue a warning about the
585 			 * problem and clear everything out.
586 			 */
587 			dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
588 				idx, ret);
589 			clear_filter(adap, f);
590 		}
591 	}
592 }
593 
594 /* Response queue handler for the FW event queue.
595  */
596 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
597 			  const struct pkt_gl *gl)
598 {
599 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
600 
601 	rsp++;                                          /* skip RSS header */
602 
603 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
604 	 */
605 	if (unlikely(opcode == CPL_FW4_MSG &&
606 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
607 		rsp++;
608 		opcode = ((const struct rss_header *)rsp)->opcode;
609 		rsp++;
610 		if (opcode != CPL_SGE_EGR_UPDATE) {
611 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
612 				, opcode);
613 			goto out;
614 		}
615 	}
616 
617 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
618 		const struct cpl_sge_egr_update *p = (void *)rsp;
619 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
620 		struct sge_txq *txq;
621 
622 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
623 		txq->restarts++;
624 		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
625 			struct sge_eth_txq *eq;
626 
627 			eq = container_of(txq, struct sge_eth_txq, q);
628 			netif_tx_wake_queue(eq->txq);
629 		} else {
630 			struct sge_ofld_txq *oq;
631 
632 			oq = container_of(txq, struct sge_ofld_txq, q);
633 			tasklet_schedule(&oq->qresume_tsk);
634 		}
635 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
636 		const struct cpl_fw6_msg *p = (void *)rsp;
637 
638 #ifdef CONFIG_CHELSIO_T4_DCB
639 		const struct fw_port_cmd *pcmd = (const void *)p->data;
640 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
641 		unsigned int action =
642 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
643 
644 		if (cmd == FW_PORT_CMD &&
645 		    action == FW_PORT_ACTION_GET_PORT_INFO) {
646 			int port = FW_PORT_CMD_PORTID_G(
647 					be32_to_cpu(pcmd->op_to_portid));
648 			struct net_device *dev =
649 				q->adap->port[q->adap->chan_map[port]];
650 			int state_input = ((pcmd->u.info.dcbxdis_pkd &
651 					    FW_PORT_CMD_DCBXDIS_F)
652 					   ? CXGB4_DCB_INPUT_FW_DISABLED
653 					   : CXGB4_DCB_INPUT_FW_ENABLED);
654 
655 			cxgb4_dcb_state_fsm(dev, state_input);
656 		}
657 
658 		if (cmd == FW_PORT_CMD &&
659 		    action == FW_PORT_ACTION_L2_DCB_CFG)
660 			dcb_rpl(q->adap, pcmd);
661 		else
662 #endif
663 			if (p->type == 0)
664 				t4_handle_fw_rpl(q->adap, p->data);
665 	} else if (opcode == CPL_L2T_WRITE_RPL) {
666 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
667 
668 		do_l2t_write_rpl(q->adap, p);
669 	} else if (opcode == CPL_SET_TCB_RPL) {
670 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
671 
672 		filter_rpl(q->adap, p);
673 	} else
674 		dev_err(q->adap->pdev_dev,
675 			"unexpected CPL %#x on FW event queue\n", opcode);
676 out:
677 	return 0;
678 }
679 
680 /* Flush the aggregated lro sessions */
681 static void uldrx_flush_handler(struct sge_rspq *q)
682 {
683 	if (ulds[q->uld].lro_flush)
684 		ulds[q->uld].lro_flush(&q->lro_mgr);
685 }
686 
687 /**
688  *	uldrx_handler - response queue handler for ULD queues
689  *	@q: the response queue that received the packet
690  *	@rsp: the response queue descriptor holding the offload message
691  *	@gl: the gather list of packet fragments
692  *
693  *	Deliver an ingress offload packet to a ULD.  All processing is done by
694  *	the ULD, we just maintain statistics.
695  */
696 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
697 			 const struct pkt_gl *gl)
698 {
699 	struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
700 	int ret;
701 
702 	/* FW can send CPLs encapsulated in a CPL_FW4_MSG.
703 	 */
704 	if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
705 	    ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
706 		rsp += 2;
707 
708 	if (q->flush_handler)
709 		ret = ulds[q->uld].lro_rx_handler(q->adap->uld_handle[q->uld],
710 						  rsp, gl, &q->lro_mgr,
711 						  &q->napi);
712 	else
713 		ret = ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld],
714 					      rsp, gl);
715 
716 	if (ret) {
717 		rxq->stats.nomem++;
718 		return -1;
719 	}
720 
721 	if (gl == NULL)
722 		rxq->stats.imm++;
723 	else if (gl == CXGB4_MSG_AN)
724 		rxq->stats.an++;
725 	else
726 		rxq->stats.pkts++;
727 	return 0;
728 }
729 
730 static void disable_msi(struct adapter *adapter)
731 {
732 	if (adapter->flags & USING_MSIX) {
733 		pci_disable_msix(adapter->pdev);
734 		adapter->flags &= ~USING_MSIX;
735 	} else if (adapter->flags & USING_MSI) {
736 		pci_disable_msi(adapter->pdev);
737 		adapter->flags &= ~USING_MSI;
738 	}
739 }
740 
741 /*
742  * Interrupt handler for non-data events used with MSI-X.
743  */
744 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
745 {
746 	struct adapter *adap = cookie;
747 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
748 
749 	if (v & PFSW_F) {
750 		adap->swintr = 1;
751 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
752 	}
753 	if (adap->flags & MASTER_PF)
754 		t4_slow_intr_handler(adap);
755 	return IRQ_HANDLED;
756 }
757 
758 /*
759  * Name the MSI-X interrupts.
760  */
761 static void name_msix_vecs(struct adapter *adap)
762 {
763 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
764 
765 	/* non-data interrupts */
766 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
767 
768 	/* FW events */
769 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
770 		 adap->port[0]->name);
771 
772 	/* Ethernet queues */
773 	for_each_port(adap, j) {
774 		struct net_device *d = adap->port[j];
775 		const struct port_info *pi = netdev_priv(d);
776 
777 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
778 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
779 				 d->name, i);
780 	}
781 
782 	/* offload queues */
783 	for_each_iscsirxq(&adap->sge, i)
784 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d",
785 			 adap->port[0]->name, i);
786 
787 	for_each_iscsitrxq(&adap->sge, i)
788 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iSCSIT%d",
789 			 adap->port[0]->name, i);
790 
791 	for_each_rdmarxq(&adap->sge, i)
792 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
793 			 adap->port[0]->name, i);
794 
795 	for_each_rdmaciq(&adap->sge, i)
796 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
797 			 adap->port[0]->name, i);
798 }
799 
800 static int request_msix_queue_irqs(struct adapter *adap)
801 {
802 	struct sge *s = &adap->sge;
803 	int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
804 	int iscsitqidx = 0;
805 	int msi_index = 2;
806 
807 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
808 			  adap->msix_info[1].desc, &s->fw_evtq);
809 	if (err)
810 		return err;
811 
812 	for_each_ethrxq(s, ethqidx) {
813 		err = request_irq(adap->msix_info[msi_index].vec,
814 				  t4_sge_intr_msix, 0,
815 				  adap->msix_info[msi_index].desc,
816 				  &s->ethrxq[ethqidx].rspq);
817 		if (err)
818 			goto unwind;
819 		msi_index++;
820 	}
821 	for_each_iscsirxq(s, iscsiqidx) {
822 		err = request_irq(adap->msix_info[msi_index].vec,
823 				  t4_sge_intr_msix, 0,
824 				  adap->msix_info[msi_index].desc,
825 				  &s->iscsirxq[iscsiqidx].rspq);
826 		if (err)
827 			goto unwind;
828 		msi_index++;
829 	}
830 	for_each_iscsitrxq(s, iscsitqidx) {
831 		err = request_irq(adap->msix_info[msi_index].vec,
832 				  t4_sge_intr_msix, 0,
833 				  adap->msix_info[msi_index].desc,
834 				  &s->iscsitrxq[iscsitqidx].rspq);
835 		if (err)
836 			goto unwind;
837 		msi_index++;
838 	}
839 	for_each_rdmarxq(s, rdmaqidx) {
840 		err = request_irq(adap->msix_info[msi_index].vec,
841 				  t4_sge_intr_msix, 0,
842 				  adap->msix_info[msi_index].desc,
843 				  &s->rdmarxq[rdmaqidx].rspq);
844 		if (err)
845 			goto unwind;
846 		msi_index++;
847 	}
848 	for_each_rdmaciq(s, rdmaciqqidx) {
849 		err = request_irq(adap->msix_info[msi_index].vec,
850 				  t4_sge_intr_msix, 0,
851 				  adap->msix_info[msi_index].desc,
852 				  &s->rdmaciq[rdmaciqqidx].rspq);
853 		if (err)
854 			goto unwind;
855 		msi_index++;
856 	}
857 	return 0;
858 
859 unwind:
860 	while (--rdmaciqqidx >= 0)
861 		free_irq(adap->msix_info[--msi_index].vec,
862 			 &s->rdmaciq[rdmaciqqidx].rspq);
863 	while (--rdmaqidx >= 0)
864 		free_irq(adap->msix_info[--msi_index].vec,
865 			 &s->rdmarxq[rdmaqidx].rspq);
866 	while (--iscsitqidx >= 0)
867 		free_irq(adap->msix_info[--msi_index].vec,
868 			 &s->iscsitrxq[iscsitqidx].rspq);
869 	while (--iscsiqidx >= 0)
870 		free_irq(adap->msix_info[--msi_index].vec,
871 			 &s->iscsirxq[iscsiqidx].rspq);
872 	while (--ethqidx >= 0)
873 		free_irq(adap->msix_info[--msi_index].vec,
874 			 &s->ethrxq[ethqidx].rspq);
875 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
876 	return err;
877 }
878 
879 static void free_msix_queue_irqs(struct adapter *adap)
880 {
881 	int i, msi_index = 2;
882 	struct sge *s = &adap->sge;
883 
884 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
885 	for_each_ethrxq(s, i)
886 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
887 	for_each_iscsirxq(s, i)
888 		free_irq(adap->msix_info[msi_index++].vec,
889 			 &s->iscsirxq[i].rspq);
890 	for_each_iscsitrxq(s, i)
891 		free_irq(adap->msix_info[msi_index++].vec,
892 			 &s->iscsitrxq[i].rspq);
893 	for_each_rdmarxq(s, i)
894 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
895 	for_each_rdmaciq(s, i)
896 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
897 }
898 
899 /**
900  *	cxgb4_write_rss - write the RSS table for a given port
901  *	@pi: the port
902  *	@queues: array of queue indices for RSS
903  *
904  *	Sets up the portion of the HW RSS table for the port's VI to distribute
905  *	packets to the Rx queues in @queues.
906  *	Should never be called before setting up sge eth rx queues
907  */
908 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
909 {
910 	u16 *rss;
911 	int i, err;
912 	struct adapter *adapter = pi->adapter;
913 	const struct sge_eth_rxq *rxq;
914 
915 	rxq = &adapter->sge.ethrxq[pi->first_qset];
916 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
917 	if (!rss)
918 		return -ENOMEM;
919 
920 	/* map the queue indices to queue ids */
921 	for (i = 0; i < pi->rss_size; i++, queues++)
922 		rss[i] = rxq[*queues].rspq.abs_id;
923 
924 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
925 				  pi->rss_size, rss, pi->rss_size);
926 	/* If Tunnel All Lookup isn't specified in the global RSS
927 	 * Configuration, then we need to specify a default Ingress
928 	 * Queue for any ingress packets which aren't hashed.  We'll
929 	 * use our first ingress queue ...
930 	 */
931 	if (!err)
932 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
933 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
934 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
935 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
936 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
937 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
938 				       rss[0]);
939 	kfree(rss);
940 	return err;
941 }
942 
943 /**
944  *	setup_rss - configure RSS
945  *	@adap: the adapter
946  *
947  *	Sets up RSS for each port.
948  */
949 static int setup_rss(struct adapter *adap)
950 {
951 	int i, j, err;
952 
953 	for_each_port(adap, i) {
954 		const struct port_info *pi = adap2pinfo(adap, i);
955 
956 		/* Fill default values with equal distribution */
957 		for (j = 0; j < pi->rss_size; j++)
958 			pi->rss[j] = j % pi->nqsets;
959 
960 		err = cxgb4_write_rss(pi, pi->rss);
961 		if (err)
962 			return err;
963 	}
964 	return 0;
965 }
966 
967 /*
968  * Return the channel of the ingress queue with the given qid.
969  */
970 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
971 {
972 	qid -= p->ingr_start;
973 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
974 }
975 
976 /*
977  * Wait until all NAPI handlers are descheduled.
978  */
979 static void quiesce_rx(struct adapter *adap)
980 {
981 	int i;
982 
983 	for (i = 0; i < adap->sge.ingr_sz; i++) {
984 		struct sge_rspq *q = adap->sge.ingr_map[i];
985 
986 		if (q && q->handler) {
987 			napi_disable(&q->napi);
988 			local_bh_disable();
989 			while (!cxgb_poll_lock_napi(q))
990 				mdelay(1);
991 			local_bh_enable();
992 		}
993 
994 	}
995 }
996 
997 /* Disable interrupt and napi handler */
998 static void disable_interrupts(struct adapter *adap)
999 {
1000 	if (adap->flags & FULL_INIT_DONE) {
1001 		t4_intr_disable(adap);
1002 		if (adap->flags & USING_MSIX) {
1003 			free_msix_queue_irqs(adap);
1004 			free_irq(adap->msix_info[0].vec, adap);
1005 		} else {
1006 			free_irq(adap->pdev->irq, adap);
1007 		}
1008 		quiesce_rx(adap);
1009 	}
1010 }
1011 
1012 /*
1013  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1014  */
1015 static void enable_rx(struct adapter *adap)
1016 {
1017 	int i;
1018 
1019 	for (i = 0; i < adap->sge.ingr_sz; i++) {
1020 		struct sge_rspq *q = adap->sge.ingr_map[i];
1021 
1022 		if (!q)
1023 			continue;
1024 		if (q->handler) {
1025 			cxgb_busy_poll_init_lock(q);
1026 			napi_enable(&q->napi);
1027 		}
1028 		/* 0-increment GTS to start the timer and enable interrupts */
1029 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
1030 			     SEINTARM_V(q->intr_params) |
1031 			     INGRESSQID_V(q->cntxt_id));
1032 	}
1033 }
1034 
1035 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
1036 			   unsigned int nq, unsigned int per_chan, int msi_idx,
1037 			   u16 *ids, bool lro)
1038 {
1039 	int i, err;
1040 
1041 	for (i = 0; i < nq; i++, q++) {
1042 		if (msi_idx > 0)
1043 			msi_idx++;
1044 		err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1045 				       adap->port[i / per_chan],
1046 				       msi_idx, q->fl.size ? &q->fl : NULL,
1047 				       uldrx_handler,
1048 				       lro ? uldrx_flush_handler : NULL,
1049 				       0);
1050 		if (err)
1051 			return err;
1052 		memset(&q->stats, 0, sizeof(q->stats));
1053 		if (ids)
1054 			ids[i] = q->rspq.abs_id;
1055 	}
1056 	return 0;
1057 }
1058 
1059 /**
1060  *	setup_sge_queues - configure SGE Tx/Rx/response queues
1061  *	@adap: the adapter
1062  *
1063  *	Determines how many sets of SGE queues to use and initializes them.
1064  *	We support multiple queue sets per port if we have MSI-X, otherwise
1065  *	just one queue set per port.
1066  */
1067 static int setup_sge_queues(struct adapter *adap)
1068 {
1069 	int err, msi_idx, i, j;
1070 	struct sge *s = &adap->sge;
1071 
1072 	bitmap_zero(s->starving_fl, s->egr_sz);
1073 	bitmap_zero(s->txq_maperr, s->egr_sz);
1074 
1075 	if (adap->flags & USING_MSIX)
1076 		msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1077 	else {
1078 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1079 				       NULL, NULL, NULL, -1);
1080 		if (err)
1081 			return err;
1082 		msi_idx = -((int)s->intrq.abs_id + 1);
1083 	}
1084 
1085 	/* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1086 	 * don't forget to update the following which need to be
1087 	 * synchronized to and changes here.
1088 	 *
1089 	 * 1. The calculations of MAX_INGQ in cxgb4.h.
1090 	 *
1091 	 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1092 	 *    to accommodate any new/deleted Ingress Queues
1093 	 *    which need MSI-X Vectors.
1094 	 *
1095 	 * 3. Update sge_qinfo_show() to include information on the
1096 	 *    new/deleted queues.
1097 	 */
1098 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1099 			       msi_idx, NULL, fwevtq_handler, NULL, -1);
1100 	if (err) {
1101 freeout:	t4_free_sge_resources(adap);
1102 		return err;
1103 	}
1104 
1105 	for_each_port(adap, i) {
1106 		struct net_device *dev = adap->port[i];
1107 		struct port_info *pi = netdev_priv(dev);
1108 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1109 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1110 
1111 		for (j = 0; j < pi->nqsets; j++, q++) {
1112 			if (msi_idx > 0)
1113 				msi_idx++;
1114 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1115 					       msi_idx, &q->fl,
1116 					       t4_ethrx_handler,
1117 					       NULL,
1118 					       t4_get_mps_bg_map(adap,
1119 								 pi->tx_chan));
1120 			if (err)
1121 				goto freeout;
1122 			q->rspq.idx = j;
1123 			memset(&q->stats, 0, sizeof(q->stats));
1124 		}
1125 		for (j = 0; j < pi->nqsets; j++, t++) {
1126 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1127 					netdev_get_tx_queue(dev, j),
1128 					s->fw_evtq.cntxt_id);
1129 			if (err)
1130 				goto freeout;
1131 		}
1132 	}
1133 
1134 	j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */
1135 	for_each_iscsirxq(s, i) {
1136 		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1137 					    adap->port[i / j],
1138 					    s->fw_evtq.cntxt_id);
1139 		if (err)
1140 			goto freeout;
1141 	}
1142 
1143 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids, lro) do { \
1144 	err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids, lro); \
1145 	if (err) \
1146 		goto freeout; \
1147 	if (msi_idx > 0) \
1148 		msi_idx += nq; \
1149 } while (0)
1150 
1151 	ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq, false);
1152 	ALLOC_OFLD_RXQS(s->iscsitrxq, s->niscsitq, j, s->iscsit_rxq, true);
1153 	ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq, false);
1154 	j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1155 	ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq, false);
1156 
1157 #undef ALLOC_OFLD_RXQS
1158 
1159 	for_each_port(adap, i) {
1160 		/*
1161 		 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1162 		 * have RDMA queues, and that's the right value.
1163 		 */
1164 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1165 					    s->fw_evtq.cntxt_id,
1166 					    s->rdmarxq[i].rspq.cntxt_id);
1167 		if (err)
1168 			goto freeout;
1169 	}
1170 
1171 	t4_write_reg(adap, is_t4(adap->params.chip) ?
1172 				MPS_TRC_RSS_CONTROL_A :
1173 				MPS_T5_TRC_RSS_CONTROL_A,
1174 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1175 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1176 	return 0;
1177 }
1178 
1179 /*
1180  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1181  * The allocated memory is cleared.
1182  */
1183 void *t4_alloc_mem(size_t size)
1184 {
1185 	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1186 
1187 	if (!p)
1188 		p = vzalloc(size);
1189 	return p;
1190 }
1191 
1192 /*
1193  * Free memory allocated through alloc_mem().
1194  */
1195 void t4_free_mem(void *addr)
1196 {
1197 	kvfree(addr);
1198 }
1199 
1200 /* Send a Work Request to write the filter at a specified index.  We construct
1201  * a Firmware Filter Work Request to have the work done and put the indicated
1202  * filter into "pending" mode which will prevent any further actions against
1203  * it till we get a reply from the firmware on the completion status of the
1204  * request.
1205  */
1206 static int set_filter_wr(struct adapter *adapter, int fidx)
1207 {
1208 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1209 	struct sk_buff *skb;
1210 	struct fw_filter_wr *fwr;
1211 	unsigned int ftid;
1212 
1213 	skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1214 	if (!skb)
1215 		return -ENOMEM;
1216 
1217 	/* If the new filter requires loopback Destination MAC and/or VLAN
1218 	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1219 	 * the filter.
1220 	 */
1221 	if (f->fs.newdmac || f->fs.newvlan) {
1222 		/* allocate L2T entry for new filter */
1223 		f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1224 						f->fs.eport, f->fs.dmac);
1225 		if (f->l2t == NULL) {
1226 			kfree_skb(skb);
1227 			return -ENOMEM;
1228 		}
1229 	}
1230 
1231 	ftid = adapter->tids.ftid_base + fidx;
1232 
1233 	fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1234 	memset(fwr, 0, sizeof(*fwr));
1235 
1236 	/* It would be nice to put most of the following in t4_hw.c but most
1237 	 * of the work is translating the cxgbtool ch_filter_specification
1238 	 * into the Work Request and the definition of that structure is
1239 	 * currently in cxgbtool.h which isn't appropriate to pull into the
1240 	 * common code.  We may eventually try to come up with a more neutral
1241 	 * filter specification structure but for now it's easiest to simply
1242 	 * put this fairly direct code in line ...
1243 	 */
1244 	fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1245 	fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1246 	fwr->tid_to_iq =
1247 		htonl(FW_FILTER_WR_TID_V(ftid) |
1248 		      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1249 		      FW_FILTER_WR_NOREPLY_V(0) |
1250 		      FW_FILTER_WR_IQ_V(f->fs.iq));
1251 	fwr->del_filter_to_l2tix =
1252 		htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1253 		      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1254 		      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1255 		      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1256 		      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1257 		      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1258 		      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1259 		      FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1260 		      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1261 					     f->fs.newvlan == VLAN_REWRITE) |
1262 		      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1263 					    f->fs.newvlan == VLAN_REWRITE) |
1264 		      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1265 		      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1266 		      FW_FILTER_WR_PRIO_V(f->fs.prio) |
1267 		      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1268 	fwr->ethtype = htons(f->fs.val.ethtype);
1269 	fwr->ethtypem = htons(f->fs.mask.ethtype);
1270 	fwr->frag_to_ovlan_vldm =
1271 		(FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1272 		 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1273 		 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1274 		 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1275 		 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1276 		 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1277 	fwr->smac_sel = 0;
1278 	fwr->rx_chan_rx_rpl_iq =
1279 		htons(FW_FILTER_WR_RX_CHAN_V(0) |
1280 		      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1281 	fwr->maci_to_matchtypem =
1282 		htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1283 		      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1284 		      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1285 		      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1286 		      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1287 		      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1288 		      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1289 		      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1290 	fwr->ptcl = f->fs.val.proto;
1291 	fwr->ptclm = f->fs.mask.proto;
1292 	fwr->ttyp = f->fs.val.tos;
1293 	fwr->ttypm = f->fs.mask.tos;
1294 	fwr->ivlan = htons(f->fs.val.ivlan);
1295 	fwr->ivlanm = htons(f->fs.mask.ivlan);
1296 	fwr->ovlan = htons(f->fs.val.ovlan);
1297 	fwr->ovlanm = htons(f->fs.mask.ovlan);
1298 	memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1299 	memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1300 	memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1301 	memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1302 	fwr->lp = htons(f->fs.val.lport);
1303 	fwr->lpm = htons(f->fs.mask.lport);
1304 	fwr->fp = htons(f->fs.val.fport);
1305 	fwr->fpm = htons(f->fs.mask.fport);
1306 	if (f->fs.newsmac)
1307 		memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1308 
1309 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1310 	 * When we get the Work Request Reply we'll clear the pending status.
1311 	 */
1312 	f->pending = 1;
1313 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1314 	t4_ofld_send(adapter, skb);
1315 	return 0;
1316 }
1317 
1318 /* Delete the filter at a specified index.
1319  */
1320 static int del_filter_wr(struct adapter *adapter, int fidx)
1321 {
1322 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1323 	struct sk_buff *skb;
1324 	struct fw_filter_wr *fwr;
1325 	unsigned int len, ftid;
1326 
1327 	len = sizeof(*fwr);
1328 	ftid = adapter->tids.ftid_base + fidx;
1329 
1330 	skb = alloc_skb(len, GFP_KERNEL);
1331 	if (!skb)
1332 		return -ENOMEM;
1333 
1334 	fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1335 	t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1336 
1337 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1338 	 * When we get the Work Request Reply we'll clear the pending status.
1339 	 */
1340 	f->pending = 1;
1341 	t4_mgmt_tx(adapter, skb);
1342 	return 0;
1343 }
1344 
1345 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1346 			     void *accel_priv, select_queue_fallback_t fallback)
1347 {
1348 	int txq;
1349 
1350 #ifdef CONFIG_CHELSIO_T4_DCB
1351 	/* If a Data Center Bridging has been successfully negotiated on this
1352 	 * link then we'll use the skb's priority to map it to a TX Queue.
1353 	 * The skb's priority is determined via the VLAN Tag Priority Code
1354 	 * Point field.
1355 	 */
1356 	if (cxgb4_dcb_enabled(dev)) {
1357 		u16 vlan_tci;
1358 		int err;
1359 
1360 		err = vlan_get_tag(skb, &vlan_tci);
1361 		if (unlikely(err)) {
1362 			if (net_ratelimit())
1363 				netdev_warn(dev,
1364 					    "TX Packet without VLAN Tag on DCB Link\n");
1365 			txq = 0;
1366 		} else {
1367 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1368 #ifdef CONFIG_CHELSIO_T4_FCOE
1369 			if (skb->protocol == htons(ETH_P_FCOE))
1370 				txq = skb->priority & 0x7;
1371 #endif /* CONFIG_CHELSIO_T4_FCOE */
1372 		}
1373 		return txq;
1374 	}
1375 #endif /* CONFIG_CHELSIO_T4_DCB */
1376 
1377 	if (select_queue) {
1378 		txq = (skb_rx_queue_recorded(skb)
1379 			? skb_get_rx_queue(skb)
1380 			: smp_processor_id());
1381 
1382 		while (unlikely(txq >= dev->real_num_tx_queues))
1383 			txq -= dev->real_num_tx_queues;
1384 
1385 		return txq;
1386 	}
1387 
1388 	return fallback(dev, skb) % dev->real_num_tx_queues;
1389 }
1390 
1391 static int closest_timer(const struct sge *s, int time)
1392 {
1393 	int i, delta, match = 0, min_delta = INT_MAX;
1394 
1395 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1396 		delta = time - s->timer_val[i];
1397 		if (delta < 0)
1398 			delta = -delta;
1399 		if (delta < min_delta) {
1400 			min_delta = delta;
1401 			match = i;
1402 		}
1403 	}
1404 	return match;
1405 }
1406 
1407 static int closest_thres(const struct sge *s, int thres)
1408 {
1409 	int i, delta, match = 0, min_delta = INT_MAX;
1410 
1411 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1412 		delta = thres - s->counter_val[i];
1413 		if (delta < 0)
1414 			delta = -delta;
1415 		if (delta < min_delta) {
1416 			min_delta = delta;
1417 			match = i;
1418 		}
1419 	}
1420 	return match;
1421 }
1422 
1423 /**
1424  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1425  *	@q: the Rx queue
1426  *	@us: the hold-off time in us, or 0 to disable timer
1427  *	@cnt: the hold-off packet count, or 0 to disable counter
1428  *
1429  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1430  *	one of the two needs to be enabled for the queue to generate interrupts.
1431  */
1432 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1433 			       unsigned int us, unsigned int cnt)
1434 {
1435 	struct adapter *adap = q->adap;
1436 
1437 	if ((us | cnt) == 0)
1438 		cnt = 1;
1439 
1440 	if (cnt) {
1441 		int err;
1442 		u32 v, new_idx;
1443 
1444 		new_idx = closest_thres(&adap->sge, cnt);
1445 		if (q->desc && q->pktcnt_idx != new_idx) {
1446 			/* the queue has already been created, update it */
1447 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1448 			    FW_PARAMS_PARAM_X_V(
1449 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1450 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1451 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1452 					    &v, &new_idx);
1453 			if (err)
1454 				return err;
1455 		}
1456 		q->pktcnt_idx = new_idx;
1457 	}
1458 
1459 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1460 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1461 	return 0;
1462 }
1463 
1464 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1465 {
1466 	const struct port_info *pi = netdev_priv(dev);
1467 	netdev_features_t changed = dev->features ^ features;
1468 	int err;
1469 
1470 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1471 		return 0;
1472 
1473 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1474 			    -1, -1, -1,
1475 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1476 	if (unlikely(err))
1477 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1478 	return err;
1479 }
1480 
1481 static int setup_debugfs(struct adapter *adap)
1482 {
1483 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1484 		return -1;
1485 
1486 #ifdef CONFIG_DEBUG_FS
1487 	t4_setup_debugfs(adap);
1488 #endif
1489 	return 0;
1490 }
1491 
1492 /*
1493  * upper-layer driver support
1494  */
1495 
1496 /*
1497  * Allocate an active-open TID and set it to the supplied value.
1498  */
1499 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1500 {
1501 	int atid = -1;
1502 
1503 	spin_lock_bh(&t->atid_lock);
1504 	if (t->afree) {
1505 		union aopen_entry *p = t->afree;
1506 
1507 		atid = (p - t->atid_tab) + t->atid_base;
1508 		t->afree = p->next;
1509 		p->data = data;
1510 		t->atids_in_use++;
1511 	}
1512 	spin_unlock_bh(&t->atid_lock);
1513 	return atid;
1514 }
1515 EXPORT_SYMBOL(cxgb4_alloc_atid);
1516 
1517 /*
1518  * Release an active-open TID.
1519  */
1520 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1521 {
1522 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1523 
1524 	spin_lock_bh(&t->atid_lock);
1525 	p->next = t->afree;
1526 	t->afree = p;
1527 	t->atids_in_use--;
1528 	spin_unlock_bh(&t->atid_lock);
1529 }
1530 EXPORT_SYMBOL(cxgb4_free_atid);
1531 
1532 /*
1533  * Allocate a server TID and set it to the supplied value.
1534  */
1535 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1536 {
1537 	int stid;
1538 
1539 	spin_lock_bh(&t->stid_lock);
1540 	if (family == PF_INET) {
1541 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1542 		if (stid < t->nstids)
1543 			__set_bit(stid, t->stid_bmap);
1544 		else
1545 			stid = -1;
1546 	} else {
1547 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1548 		if (stid < 0)
1549 			stid = -1;
1550 	}
1551 	if (stid >= 0) {
1552 		t->stid_tab[stid].data = data;
1553 		stid += t->stid_base;
1554 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1555 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1556 		 * needs 2 TIDs.
1557 		 */
1558 		if (family == PF_INET)
1559 			t->stids_in_use++;
1560 		else
1561 			t->stids_in_use += 2;
1562 	}
1563 	spin_unlock_bh(&t->stid_lock);
1564 	return stid;
1565 }
1566 EXPORT_SYMBOL(cxgb4_alloc_stid);
1567 
1568 /* Allocate a server filter TID and set it to the supplied value.
1569  */
1570 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1571 {
1572 	int stid;
1573 
1574 	spin_lock_bh(&t->stid_lock);
1575 	if (family == PF_INET) {
1576 		stid = find_next_zero_bit(t->stid_bmap,
1577 				t->nstids + t->nsftids, t->nstids);
1578 		if (stid < (t->nstids + t->nsftids))
1579 			__set_bit(stid, t->stid_bmap);
1580 		else
1581 			stid = -1;
1582 	} else {
1583 		stid = -1;
1584 	}
1585 	if (stid >= 0) {
1586 		t->stid_tab[stid].data = data;
1587 		stid -= t->nstids;
1588 		stid += t->sftid_base;
1589 		t->sftids_in_use++;
1590 	}
1591 	spin_unlock_bh(&t->stid_lock);
1592 	return stid;
1593 }
1594 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1595 
1596 /* Release a server TID.
1597  */
1598 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1599 {
1600 	/* Is it a server filter TID? */
1601 	if (t->nsftids && (stid >= t->sftid_base)) {
1602 		stid -= t->sftid_base;
1603 		stid += t->nstids;
1604 	} else {
1605 		stid -= t->stid_base;
1606 	}
1607 
1608 	spin_lock_bh(&t->stid_lock);
1609 	if (family == PF_INET)
1610 		__clear_bit(stid, t->stid_bmap);
1611 	else
1612 		bitmap_release_region(t->stid_bmap, stid, 1);
1613 	t->stid_tab[stid].data = NULL;
1614 	if (stid < t->nstids) {
1615 		if (family == PF_INET)
1616 			t->stids_in_use--;
1617 		else
1618 			t->stids_in_use -= 2;
1619 	} else {
1620 		t->sftids_in_use--;
1621 	}
1622 	spin_unlock_bh(&t->stid_lock);
1623 }
1624 EXPORT_SYMBOL(cxgb4_free_stid);
1625 
1626 /*
1627  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1628  */
1629 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1630 			   unsigned int tid)
1631 {
1632 	struct cpl_tid_release *req;
1633 
1634 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1635 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1636 	INIT_TP_WR(req, tid);
1637 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1638 }
1639 
1640 /*
1641  * Queue a TID release request and if necessary schedule a work queue to
1642  * process it.
1643  */
1644 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1645 				    unsigned int tid)
1646 {
1647 	void **p = &t->tid_tab[tid];
1648 	struct adapter *adap = container_of(t, struct adapter, tids);
1649 
1650 	spin_lock_bh(&adap->tid_release_lock);
1651 	*p = adap->tid_release_head;
1652 	/* Low 2 bits encode the Tx channel number */
1653 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1654 	if (!adap->tid_release_task_busy) {
1655 		adap->tid_release_task_busy = true;
1656 		queue_work(adap->workq, &adap->tid_release_task);
1657 	}
1658 	spin_unlock_bh(&adap->tid_release_lock);
1659 }
1660 
1661 /*
1662  * Process the list of pending TID release requests.
1663  */
1664 static void process_tid_release_list(struct work_struct *work)
1665 {
1666 	struct sk_buff *skb;
1667 	struct adapter *adap;
1668 
1669 	adap = container_of(work, struct adapter, tid_release_task);
1670 
1671 	spin_lock_bh(&adap->tid_release_lock);
1672 	while (adap->tid_release_head) {
1673 		void **p = adap->tid_release_head;
1674 		unsigned int chan = (uintptr_t)p & 3;
1675 		p = (void *)p - chan;
1676 
1677 		adap->tid_release_head = *p;
1678 		*p = NULL;
1679 		spin_unlock_bh(&adap->tid_release_lock);
1680 
1681 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1682 					 GFP_KERNEL)))
1683 			schedule_timeout_uninterruptible(1);
1684 
1685 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1686 		t4_ofld_send(adap, skb);
1687 		spin_lock_bh(&adap->tid_release_lock);
1688 	}
1689 	adap->tid_release_task_busy = false;
1690 	spin_unlock_bh(&adap->tid_release_lock);
1691 }
1692 
1693 /*
1694  * Release a TID and inform HW.  If we are unable to allocate the release
1695  * message we defer to a work queue.
1696  */
1697 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1698 {
1699 	struct sk_buff *skb;
1700 	struct adapter *adap = container_of(t, struct adapter, tids);
1701 
1702 	WARN_ON(tid >= t->ntids);
1703 
1704 	if (t->tid_tab[tid]) {
1705 		t->tid_tab[tid] = NULL;
1706 		if (t->hash_base && (tid >= t->hash_base))
1707 			atomic_dec(&t->hash_tids_in_use);
1708 		else
1709 			atomic_dec(&t->tids_in_use);
1710 	}
1711 
1712 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1713 	if (likely(skb)) {
1714 		mk_tid_release(skb, chan, tid);
1715 		t4_ofld_send(adap, skb);
1716 	} else
1717 		cxgb4_queue_tid_release(t, chan, tid);
1718 }
1719 EXPORT_SYMBOL(cxgb4_remove_tid);
1720 
1721 /*
1722  * Allocate and initialize the TID tables.  Returns 0 on success.
1723  */
1724 static int tid_init(struct tid_info *t)
1725 {
1726 	size_t size;
1727 	unsigned int stid_bmap_size;
1728 	unsigned int natids = t->natids;
1729 	struct adapter *adap = container_of(t, struct adapter, tids);
1730 
1731 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1732 	size = t->ntids * sizeof(*t->tid_tab) +
1733 	       natids * sizeof(*t->atid_tab) +
1734 	       t->nstids * sizeof(*t->stid_tab) +
1735 	       t->nsftids * sizeof(*t->stid_tab) +
1736 	       stid_bmap_size * sizeof(long) +
1737 	       t->nftids * sizeof(*t->ftid_tab) +
1738 	       t->nsftids * sizeof(*t->ftid_tab);
1739 
1740 	t->tid_tab = t4_alloc_mem(size);
1741 	if (!t->tid_tab)
1742 		return -ENOMEM;
1743 
1744 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1745 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1746 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1747 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1748 	spin_lock_init(&t->stid_lock);
1749 	spin_lock_init(&t->atid_lock);
1750 
1751 	t->stids_in_use = 0;
1752 	t->sftids_in_use = 0;
1753 	t->afree = NULL;
1754 	t->atids_in_use = 0;
1755 	atomic_set(&t->tids_in_use, 0);
1756 	atomic_set(&t->hash_tids_in_use, 0);
1757 
1758 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1759 	if (natids) {
1760 		while (--natids)
1761 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1762 		t->afree = t->atid_tab;
1763 	}
1764 	bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1765 	/* Reserve stid 0 for T4/T5 adapters */
1766 	if (!t->stid_base &&
1767 	    (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1768 		__set_bit(0, t->stid_bmap);
1769 
1770 	return 0;
1771 }
1772 
1773 /**
1774  *	cxgb4_create_server - create an IP server
1775  *	@dev: the device
1776  *	@stid: the server TID
1777  *	@sip: local IP address to bind server to
1778  *	@sport: the server's TCP port
1779  *	@queue: queue to direct messages from this server to
1780  *
1781  *	Create an IP server for the given port and address.
1782  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1783  */
1784 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1785 			__be32 sip, __be16 sport, __be16 vlan,
1786 			unsigned int queue)
1787 {
1788 	unsigned int chan;
1789 	struct sk_buff *skb;
1790 	struct adapter *adap;
1791 	struct cpl_pass_open_req *req;
1792 	int ret;
1793 
1794 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1795 	if (!skb)
1796 		return -ENOMEM;
1797 
1798 	adap = netdev2adap(dev);
1799 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1800 	INIT_TP_WR(req, 0);
1801 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1802 	req->local_port = sport;
1803 	req->peer_port = htons(0);
1804 	req->local_ip = sip;
1805 	req->peer_ip = htonl(0);
1806 	chan = rxq_to_chan(&adap->sge, queue);
1807 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1808 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1809 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1810 	ret = t4_mgmt_tx(adap, skb);
1811 	return net_xmit_eval(ret);
1812 }
1813 EXPORT_SYMBOL(cxgb4_create_server);
1814 
1815 /*	cxgb4_create_server6 - create an IPv6 server
1816  *	@dev: the device
1817  *	@stid: the server TID
1818  *	@sip: local IPv6 address to bind server to
1819  *	@sport: the server's TCP port
1820  *	@queue: queue to direct messages from this server to
1821  *
1822  *	Create an IPv6 server for the given port and address.
1823  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1824  */
1825 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1826 			 const struct in6_addr *sip, __be16 sport,
1827 			 unsigned int queue)
1828 {
1829 	unsigned int chan;
1830 	struct sk_buff *skb;
1831 	struct adapter *adap;
1832 	struct cpl_pass_open_req6 *req;
1833 	int ret;
1834 
1835 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1836 	if (!skb)
1837 		return -ENOMEM;
1838 
1839 	adap = netdev2adap(dev);
1840 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1841 	INIT_TP_WR(req, 0);
1842 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1843 	req->local_port = sport;
1844 	req->peer_port = htons(0);
1845 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1846 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1847 	req->peer_ip_hi = cpu_to_be64(0);
1848 	req->peer_ip_lo = cpu_to_be64(0);
1849 	chan = rxq_to_chan(&adap->sge, queue);
1850 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1851 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1852 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1853 	ret = t4_mgmt_tx(adap, skb);
1854 	return net_xmit_eval(ret);
1855 }
1856 EXPORT_SYMBOL(cxgb4_create_server6);
1857 
1858 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1859 			unsigned int queue, bool ipv6)
1860 {
1861 	struct sk_buff *skb;
1862 	struct adapter *adap;
1863 	struct cpl_close_listsvr_req *req;
1864 	int ret;
1865 
1866 	adap = netdev2adap(dev);
1867 
1868 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1869 	if (!skb)
1870 		return -ENOMEM;
1871 
1872 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1873 	INIT_TP_WR(req, 0);
1874 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1875 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1876 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1877 	ret = t4_mgmt_tx(adap, skb);
1878 	return net_xmit_eval(ret);
1879 }
1880 EXPORT_SYMBOL(cxgb4_remove_server);
1881 
1882 /**
1883  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1884  *	@mtus: the HW MTU table
1885  *	@mtu: the target MTU
1886  *	@idx: index of selected entry in the MTU table
1887  *
1888  *	Returns the index and the value in the HW MTU table that is closest to
1889  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1890  *	table, in which case that smallest available value is selected.
1891  */
1892 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1893 			    unsigned int *idx)
1894 {
1895 	unsigned int i = 0;
1896 
1897 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1898 		++i;
1899 	if (idx)
1900 		*idx = i;
1901 	return mtus[i];
1902 }
1903 EXPORT_SYMBOL(cxgb4_best_mtu);
1904 
1905 /**
1906  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1907  *     @mtus: the HW MTU table
1908  *     @header_size: Header Size
1909  *     @data_size_max: maximum Data Segment Size
1910  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1911  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1912  *
1913  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1914  *     MTU Table based solely on a Maximum MTU parameter, we break that
1915  *     parameter up into a Header Size and Maximum Data Segment Size, and
1916  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1917  *     the Hardware MTU Table which will result in a Data Segment Size with
1918  *     the requested alignment _and_ that MTU isn't "too far" from the
1919  *     closest MTU, then we'll return that rather than the closest MTU.
1920  */
1921 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1922 				    unsigned short header_size,
1923 				    unsigned short data_size_max,
1924 				    unsigned short data_size_align,
1925 				    unsigned int *mtu_idxp)
1926 {
1927 	unsigned short max_mtu = header_size + data_size_max;
1928 	unsigned short data_size_align_mask = data_size_align - 1;
1929 	int mtu_idx, aligned_mtu_idx;
1930 
1931 	/* Scan the MTU Table till we find an MTU which is larger than our
1932 	 * Maximum MTU or we reach the end of the table.  Along the way,
1933 	 * record the last MTU found, if any, which will result in a Data
1934 	 * Segment Length matching the requested alignment.
1935 	 */
1936 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1937 		unsigned short data_size = mtus[mtu_idx] - header_size;
1938 
1939 		/* If this MTU minus the Header Size would result in a
1940 		 * Data Segment Size of the desired alignment, remember it.
1941 		 */
1942 		if ((data_size & data_size_align_mask) == 0)
1943 			aligned_mtu_idx = mtu_idx;
1944 
1945 		/* If we're not at the end of the Hardware MTU Table and the
1946 		 * next element is larger than our Maximum MTU, drop out of
1947 		 * the loop.
1948 		 */
1949 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1950 			break;
1951 	}
1952 
1953 	/* If we fell out of the loop because we ran to the end of the table,
1954 	 * then we just have to use the last [largest] entry.
1955 	 */
1956 	if (mtu_idx == NMTUS)
1957 		mtu_idx--;
1958 
1959 	/* If we found an MTU which resulted in the requested Data Segment
1960 	 * Length alignment and that's "not far" from the largest MTU which is
1961 	 * less than or equal to the maximum MTU, then use that.
1962 	 */
1963 	if (aligned_mtu_idx >= 0 &&
1964 	    mtu_idx - aligned_mtu_idx <= 1)
1965 		mtu_idx = aligned_mtu_idx;
1966 
1967 	/* If the caller has passed in an MTU Index pointer, pass the
1968 	 * MTU Index back.  Return the MTU value.
1969 	 */
1970 	if (mtu_idxp)
1971 		*mtu_idxp = mtu_idx;
1972 	return mtus[mtu_idx];
1973 }
1974 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1975 
1976 /**
1977  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1978  *	@chip: chip type
1979  *	@viid: VI id of the given port
1980  *
1981  *	Return the SMT index for this VI.
1982  */
1983 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1984 {
1985 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1986 	 * 128 rows of 2 entries each.
1987 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1988 	 * TODO: The below code needs to be updated when we add support
1989 	 * for 256 VFs.
1990 	 */
1991 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1992 		return ((viid & 0x7f) << 1);
1993 	else
1994 		return (viid & 0x7f);
1995 }
1996 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1997 
1998 /**
1999  *	cxgb4_port_chan - get the HW channel of a port
2000  *	@dev: the net device for the port
2001  *
2002  *	Return the HW Tx channel of the given port.
2003  */
2004 unsigned int cxgb4_port_chan(const struct net_device *dev)
2005 {
2006 	return netdev2pinfo(dev)->tx_chan;
2007 }
2008 EXPORT_SYMBOL(cxgb4_port_chan);
2009 
2010 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2011 {
2012 	struct adapter *adap = netdev2adap(dev);
2013 	u32 v1, v2, lp_count, hp_count;
2014 
2015 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2016 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2017 	if (is_t4(adap->params.chip)) {
2018 		lp_count = LP_COUNT_G(v1);
2019 		hp_count = HP_COUNT_G(v1);
2020 	} else {
2021 		lp_count = LP_COUNT_T5_G(v1);
2022 		hp_count = HP_COUNT_T5_G(v2);
2023 	}
2024 	return lpfifo ? lp_count : hp_count;
2025 }
2026 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2027 
2028 /**
2029  *	cxgb4_port_viid - get the VI id of a port
2030  *	@dev: the net device for the port
2031  *
2032  *	Return the VI id of the given port.
2033  */
2034 unsigned int cxgb4_port_viid(const struct net_device *dev)
2035 {
2036 	return netdev2pinfo(dev)->viid;
2037 }
2038 EXPORT_SYMBOL(cxgb4_port_viid);
2039 
2040 /**
2041  *	cxgb4_port_idx - get the index of a port
2042  *	@dev: the net device for the port
2043  *
2044  *	Return the index of the given port.
2045  */
2046 unsigned int cxgb4_port_idx(const struct net_device *dev)
2047 {
2048 	return netdev2pinfo(dev)->port_id;
2049 }
2050 EXPORT_SYMBOL(cxgb4_port_idx);
2051 
2052 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2053 			 struct tp_tcp_stats *v6)
2054 {
2055 	struct adapter *adap = pci_get_drvdata(pdev);
2056 
2057 	spin_lock(&adap->stats_lock);
2058 	t4_tp_get_tcp_stats(adap, v4, v6);
2059 	spin_unlock(&adap->stats_lock);
2060 }
2061 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2062 
2063 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2064 		      const unsigned int *pgsz_order)
2065 {
2066 	struct adapter *adap = netdev2adap(dev);
2067 
2068 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2069 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2070 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2071 		     HPZ3_V(pgsz_order[3]));
2072 }
2073 EXPORT_SYMBOL(cxgb4_iscsi_init);
2074 
2075 int cxgb4_flush_eq_cache(struct net_device *dev)
2076 {
2077 	struct adapter *adap = netdev2adap(dev);
2078 
2079 	return t4_sge_ctxt_flush(adap, adap->mbox);
2080 }
2081 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2082 
2083 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2084 {
2085 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2086 	__be64 indices;
2087 	int ret;
2088 
2089 	spin_lock(&adap->win0_lock);
2090 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2091 			   sizeof(indices), (__be32 *)&indices,
2092 			   T4_MEMORY_READ);
2093 	spin_unlock(&adap->win0_lock);
2094 	if (!ret) {
2095 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2096 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2097 	}
2098 	return ret;
2099 }
2100 
2101 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2102 			u16 size)
2103 {
2104 	struct adapter *adap = netdev2adap(dev);
2105 	u16 hw_pidx, hw_cidx;
2106 	int ret;
2107 
2108 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2109 	if (ret)
2110 		goto out;
2111 
2112 	if (pidx != hw_pidx) {
2113 		u16 delta;
2114 		u32 val;
2115 
2116 		if (pidx >= hw_pidx)
2117 			delta = pidx - hw_pidx;
2118 		else
2119 			delta = size - hw_pidx + pidx;
2120 
2121 		if (is_t4(adap->params.chip))
2122 			val = PIDX_V(delta);
2123 		else
2124 			val = PIDX_T5_V(delta);
2125 		wmb();
2126 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2127 			     QID_V(qid) | val);
2128 	}
2129 out:
2130 	return ret;
2131 }
2132 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2133 
2134 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2135 {
2136 	struct adapter *adap;
2137 	u32 offset, memtype, memaddr;
2138 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2139 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
2140 	int ret;
2141 
2142 	adap = netdev2adap(dev);
2143 
2144 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2145 
2146 	/* Figure out where the offset lands in the Memory Type/Address scheme.
2147 	 * This code assumes that the memory is laid out starting at offset 0
2148 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2149 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2150 	 * MC0, and some have both MC0 and MC1.
2151 	 */
2152 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2153 	edc0_size = EDRAM0_SIZE_G(size) << 20;
2154 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2155 	edc1_size = EDRAM1_SIZE_G(size) << 20;
2156 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2157 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2158 
2159 	edc0_end = edc0_size;
2160 	edc1_end = edc0_end + edc1_size;
2161 	mc0_end = edc1_end + mc0_size;
2162 
2163 	if (offset < edc0_end) {
2164 		memtype = MEM_EDC0;
2165 		memaddr = offset;
2166 	} else if (offset < edc1_end) {
2167 		memtype = MEM_EDC1;
2168 		memaddr = offset - edc0_end;
2169 	} else {
2170 		if (offset < mc0_end) {
2171 			memtype = MEM_MC0;
2172 			memaddr = offset - edc1_end;
2173 		} else if (is_t5(adap->params.chip)) {
2174 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2175 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2176 			mc1_end = mc0_end + mc1_size;
2177 			if (offset < mc1_end) {
2178 				memtype = MEM_MC1;
2179 				memaddr = offset - mc0_end;
2180 			} else {
2181 				/* offset beyond the end of any memory */
2182 				goto err;
2183 			}
2184 		} else {
2185 			/* T4/T6 only has a single memory channel */
2186 			goto err;
2187 		}
2188 	}
2189 
2190 	spin_lock(&adap->win0_lock);
2191 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2192 	spin_unlock(&adap->win0_lock);
2193 	return ret;
2194 
2195 err:
2196 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2197 		stag, offset);
2198 	return -EINVAL;
2199 }
2200 EXPORT_SYMBOL(cxgb4_read_tpte);
2201 
2202 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2203 {
2204 	u32 hi, lo;
2205 	struct adapter *adap;
2206 
2207 	adap = netdev2adap(dev);
2208 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2209 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2210 
2211 	return ((u64)hi << 32) | (u64)lo;
2212 }
2213 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2214 
2215 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2216 			 unsigned int qid,
2217 			 enum cxgb4_bar2_qtype qtype,
2218 			 int user,
2219 			 u64 *pbar2_qoffset,
2220 			 unsigned int *pbar2_qid)
2221 {
2222 	return t4_bar2_sge_qregs(netdev2adap(dev),
2223 				 qid,
2224 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2225 				  ? T4_BAR2_QTYPE_EGRESS
2226 				  : T4_BAR2_QTYPE_INGRESS),
2227 				 user,
2228 				 pbar2_qoffset,
2229 				 pbar2_qid);
2230 }
2231 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2232 
2233 static struct pci_driver cxgb4_driver;
2234 
2235 static void check_neigh_update(struct neighbour *neigh)
2236 {
2237 	const struct device *parent;
2238 	const struct net_device *netdev = neigh->dev;
2239 
2240 	if (netdev->priv_flags & IFF_802_1Q_VLAN)
2241 		netdev = vlan_dev_real_dev(netdev);
2242 	parent = netdev->dev.parent;
2243 	if (parent && parent->driver == &cxgb4_driver.driver)
2244 		t4_l2t_update(dev_get_drvdata(parent), neigh);
2245 }
2246 
2247 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2248 		       void *data)
2249 {
2250 	switch (event) {
2251 	case NETEVENT_NEIGH_UPDATE:
2252 		check_neigh_update(data);
2253 		break;
2254 	case NETEVENT_REDIRECT:
2255 	default:
2256 		break;
2257 	}
2258 	return 0;
2259 }
2260 
2261 static bool netevent_registered;
2262 static struct notifier_block cxgb4_netevent_nb = {
2263 	.notifier_call = netevent_cb
2264 };
2265 
2266 static void drain_db_fifo(struct adapter *adap, int usecs)
2267 {
2268 	u32 v1, v2, lp_count, hp_count;
2269 
2270 	do {
2271 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2272 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2273 		if (is_t4(adap->params.chip)) {
2274 			lp_count = LP_COUNT_G(v1);
2275 			hp_count = HP_COUNT_G(v1);
2276 		} else {
2277 			lp_count = LP_COUNT_T5_G(v1);
2278 			hp_count = HP_COUNT_T5_G(v2);
2279 		}
2280 
2281 		if (lp_count == 0 && hp_count == 0)
2282 			break;
2283 		set_current_state(TASK_UNINTERRUPTIBLE);
2284 		schedule_timeout(usecs_to_jiffies(usecs));
2285 	} while (1);
2286 }
2287 
2288 static void disable_txq_db(struct sge_txq *q)
2289 {
2290 	unsigned long flags;
2291 
2292 	spin_lock_irqsave(&q->db_lock, flags);
2293 	q->db_disabled = 1;
2294 	spin_unlock_irqrestore(&q->db_lock, flags);
2295 }
2296 
2297 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2298 {
2299 	spin_lock_irq(&q->db_lock);
2300 	if (q->db_pidx_inc) {
2301 		/* Make sure that all writes to the TX descriptors
2302 		 * are committed before we tell HW about them.
2303 		 */
2304 		wmb();
2305 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2306 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2307 		q->db_pidx_inc = 0;
2308 	}
2309 	q->db_disabled = 0;
2310 	spin_unlock_irq(&q->db_lock);
2311 }
2312 
2313 static void disable_dbs(struct adapter *adap)
2314 {
2315 	int i;
2316 
2317 	for_each_ethrxq(&adap->sge, i)
2318 		disable_txq_db(&adap->sge.ethtxq[i].q);
2319 	for_each_iscsirxq(&adap->sge, i)
2320 		disable_txq_db(&adap->sge.ofldtxq[i].q);
2321 	for_each_port(adap, i)
2322 		disable_txq_db(&adap->sge.ctrlq[i].q);
2323 }
2324 
2325 static void enable_dbs(struct adapter *adap)
2326 {
2327 	int i;
2328 
2329 	for_each_ethrxq(&adap->sge, i)
2330 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2331 	for_each_iscsirxq(&adap->sge, i)
2332 		enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2333 	for_each_port(adap, i)
2334 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2335 }
2336 
2337 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2338 {
2339 	if (adap->uld_handle[CXGB4_ULD_RDMA])
2340 		ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2341 				cmd);
2342 }
2343 
2344 static void process_db_full(struct work_struct *work)
2345 {
2346 	struct adapter *adap;
2347 
2348 	adap = container_of(work, struct adapter, db_full_task);
2349 
2350 	drain_db_fifo(adap, dbfifo_drain_delay);
2351 	enable_dbs(adap);
2352 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2353 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2354 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2355 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2356 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2357 	else
2358 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2359 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2360 }
2361 
2362 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2363 {
2364 	u16 hw_pidx, hw_cidx;
2365 	int ret;
2366 
2367 	spin_lock_irq(&q->db_lock);
2368 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2369 	if (ret)
2370 		goto out;
2371 	if (q->db_pidx != hw_pidx) {
2372 		u16 delta;
2373 		u32 val;
2374 
2375 		if (q->db_pidx >= hw_pidx)
2376 			delta = q->db_pidx - hw_pidx;
2377 		else
2378 			delta = q->size - hw_pidx + q->db_pidx;
2379 
2380 		if (is_t4(adap->params.chip))
2381 			val = PIDX_V(delta);
2382 		else
2383 			val = PIDX_T5_V(delta);
2384 		wmb();
2385 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2386 			     QID_V(q->cntxt_id) | val);
2387 	}
2388 out:
2389 	q->db_disabled = 0;
2390 	q->db_pidx_inc = 0;
2391 	spin_unlock_irq(&q->db_lock);
2392 	if (ret)
2393 		CH_WARN(adap, "DB drop recovery failed.\n");
2394 }
2395 static void recover_all_queues(struct adapter *adap)
2396 {
2397 	int i;
2398 
2399 	for_each_ethrxq(&adap->sge, i)
2400 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2401 	for_each_iscsirxq(&adap->sge, i)
2402 		sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2403 	for_each_port(adap, i)
2404 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2405 }
2406 
2407 static void process_db_drop(struct work_struct *work)
2408 {
2409 	struct adapter *adap;
2410 
2411 	adap = container_of(work, struct adapter, db_drop_task);
2412 
2413 	if (is_t4(adap->params.chip)) {
2414 		drain_db_fifo(adap, dbfifo_drain_delay);
2415 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2416 		drain_db_fifo(adap, dbfifo_drain_delay);
2417 		recover_all_queues(adap);
2418 		drain_db_fifo(adap, dbfifo_drain_delay);
2419 		enable_dbs(adap);
2420 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2421 	} else if (is_t5(adap->params.chip)) {
2422 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2423 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2424 		u16 pidx_inc = dropped_db & 0x1fff;
2425 		u64 bar2_qoffset;
2426 		unsigned int bar2_qid;
2427 		int ret;
2428 
2429 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2430 					0, &bar2_qoffset, &bar2_qid);
2431 		if (ret)
2432 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2433 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2434 		else
2435 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2436 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2437 
2438 		/* Re-enable BAR2 WC */
2439 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2440 	}
2441 
2442 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2443 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2444 }
2445 
2446 void t4_db_full(struct adapter *adap)
2447 {
2448 	if (is_t4(adap->params.chip)) {
2449 		disable_dbs(adap);
2450 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2451 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2452 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2453 		queue_work(adap->workq, &adap->db_full_task);
2454 	}
2455 }
2456 
2457 void t4_db_dropped(struct adapter *adap)
2458 {
2459 	if (is_t4(adap->params.chip)) {
2460 		disable_dbs(adap);
2461 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2462 	}
2463 	queue_work(adap->workq, &adap->db_drop_task);
2464 }
2465 
2466 static void uld_attach(struct adapter *adap, unsigned int uld)
2467 {
2468 	void *handle;
2469 	struct cxgb4_lld_info lli;
2470 	unsigned short i;
2471 
2472 	lli.pdev = adap->pdev;
2473 	lli.pf = adap->pf;
2474 	lli.l2t = adap->l2t;
2475 	lli.tids = &adap->tids;
2476 	lli.ports = adap->port;
2477 	lli.vr = &adap->vres;
2478 	lli.mtus = adap->params.mtus;
2479 	if (uld == CXGB4_ULD_RDMA) {
2480 		lli.rxq_ids = adap->sge.rdma_rxq;
2481 		lli.ciq_ids = adap->sge.rdma_ciq;
2482 		lli.nrxq = adap->sge.rdmaqs;
2483 		lli.nciq = adap->sge.rdmaciqs;
2484 	} else if (uld == CXGB4_ULD_ISCSI) {
2485 		lli.rxq_ids = adap->sge.iscsi_rxq;
2486 		lli.nrxq = adap->sge.iscsiqsets;
2487 	} else if (uld == CXGB4_ULD_ISCSIT) {
2488 		lli.rxq_ids = adap->sge.iscsit_rxq;
2489 		lli.nrxq = adap->sge.niscsitq;
2490 	}
2491 	lli.ntxq = adap->sge.iscsiqsets;
2492 	lli.nchan = adap->params.nports;
2493 	lli.nports = adap->params.nports;
2494 	lli.wr_cred = adap->params.ofldq_wr_cred;
2495 	lli.adapter_type = adap->params.chip;
2496 	lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2497 	lli.iscsi_tagmask = t4_read_reg(adap, ULP_RX_ISCSI_TAGMASK_A);
2498 	lli.iscsi_pgsz_order = t4_read_reg(adap, ULP_RX_ISCSI_PSZ_A);
2499 	lli.iscsi_llimit = t4_read_reg(adap, ULP_RX_ISCSI_LLIMIT_A);
2500 	lli.iscsi_ppm = &adap->iscsi_ppm;
2501 	lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2502 	lli.udb_density = 1 << adap->params.sge.eq_qpp;
2503 	lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2504 	lli.filt_mode = adap->params.tp.vlan_pri_map;
2505 	/* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2506 	for (i = 0; i < NCHAN; i++)
2507 		lli.tx_modq[i] = i;
2508 	lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2509 	lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2510 	lli.fw_vers = adap->params.fw_vers;
2511 	lli.dbfifo_int_thresh = dbfifo_int_thresh;
2512 	lli.sge_ingpadboundary = adap->sge.fl_align;
2513 	lli.sge_egrstatuspagesize = adap->sge.stat_len;
2514 	lli.sge_pktshift = adap->sge.pktshift;
2515 	lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2516 	lli.max_ordird_qp = adap->params.max_ordird_qp;
2517 	lli.max_ird_adapter = adap->params.max_ird_adapter;
2518 	lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2519 	lli.nodeid = dev_to_node(adap->pdev_dev);
2520 
2521 	handle = ulds[uld].add(&lli);
2522 	if (IS_ERR(handle)) {
2523 		dev_warn(adap->pdev_dev,
2524 			 "could not attach to the %s driver, error %ld\n",
2525 			 uld_str[uld], PTR_ERR(handle));
2526 		return;
2527 	}
2528 
2529 	adap->uld_handle[uld] = handle;
2530 
2531 	if (!netevent_registered) {
2532 		register_netevent_notifier(&cxgb4_netevent_nb);
2533 		netevent_registered = true;
2534 	}
2535 
2536 	if (adap->flags & FULL_INIT_DONE)
2537 		ulds[uld].state_change(handle, CXGB4_STATE_UP);
2538 }
2539 
2540 static void attach_ulds(struct adapter *adap)
2541 {
2542 	unsigned int i;
2543 
2544 	spin_lock(&adap_rcu_lock);
2545 	list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2546 	spin_unlock(&adap_rcu_lock);
2547 
2548 	mutex_lock(&uld_mutex);
2549 	list_add_tail(&adap->list_node, &adapter_list);
2550 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2551 		if (ulds[i].add)
2552 			uld_attach(adap, i);
2553 	mutex_unlock(&uld_mutex);
2554 }
2555 
2556 static void detach_ulds(struct adapter *adap)
2557 {
2558 	unsigned int i;
2559 
2560 	mutex_lock(&uld_mutex);
2561 	list_del(&adap->list_node);
2562 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2563 		if (adap->uld_handle[i]) {
2564 			ulds[i].state_change(adap->uld_handle[i],
2565 					     CXGB4_STATE_DETACH);
2566 			adap->uld_handle[i] = NULL;
2567 		}
2568 	if (netevent_registered && list_empty(&adapter_list)) {
2569 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2570 		netevent_registered = false;
2571 	}
2572 	mutex_unlock(&uld_mutex);
2573 
2574 	spin_lock(&adap_rcu_lock);
2575 	list_del_rcu(&adap->rcu_node);
2576 	spin_unlock(&adap_rcu_lock);
2577 }
2578 
2579 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2580 {
2581 	unsigned int i;
2582 
2583 	mutex_lock(&uld_mutex);
2584 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2585 		if (adap->uld_handle[i])
2586 			ulds[i].state_change(adap->uld_handle[i], new_state);
2587 	mutex_unlock(&uld_mutex);
2588 }
2589 
2590 /**
2591  *	cxgb4_register_uld - register an upper-layer driver
2592  *	@type: the ULD type
2593  *	@p: the ULD methods
2594  *
2595  *	Registers an upper-layer driver with this driver and notifies the ULD
2596  *	about any presently available devices that support its type.  Returns
2597  *	%-EBUSY if a ULD of the same type is already registered.
2598  */
2599 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2600 {
2601 	int ret = 0;
2602 	struct adapter *adap;
2603 
2604 	if (type >= CXGB4_ULD_MAX)
2605 		return -EINVAL;
2606 	mutex_lock(&uld_mutex);
2607 	if (ulds[type].add) {
2608 		ret = -EBUSY;
2609 		goto out;
2610 	}
2611 	ulds[type] = *p;
2612 	list_for_each_entry(adap, &adapter_list, list_node)
2613 		uld_attach(adap, type);
2614 out:	mutex_unlock(&uld_mutex);
2615 	return ret;
2616 }
2617 EXPORT_SYMBOL(cxgb4_register_uld);
2618 
2619 /**
2620  *	cxgb4_unregister_uld - unregister an upper-layer driver
2621  *	@type: the ULD type
2622  *
2623  *	Unregisters an existing upper-layer driver.
2624  */
2625 int cxgb4_unregister_uld(enum cxgb4_uld type)
2626 {
2627 	struct adapter *adap;
2628 
2629 	if (type >= CXGB4_ULD_MAX)
2630 		return -EINVAL;
2631 	mutex_lock(&uld_mutex);
2632 	list_for_each_entry(adap, &adapter_list, list_node)
2633 		adap->uld_handle[type] = NULL;
2634 	ulds[type].add = NULL;
2635 	mutex_unlock(&uld_mutex);
2636 	return 0;
2637 }
2638 EXPORT_SYMBOL(cxgb4_unregister_uld);
2639 
2640 #if IS_ENABLED(CONFIG_IPV6)
2641 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2642 				   unsigned long event, void *data)
2643 {
2644 	struct inet6_ifaddr *ifa = data;
2645 	struct net_device *event_dev = ifa->idev->dev;
2646 	const struct device *parent = NULL;
2647 #if IS_ENABLED(CONFIG_BONDING)
2648 	struct adapter *adap;
2649 #endif
2650 	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2651 		event_dev = vlan_dev_real_dev(event_dev);
2652 #if IS_ENABLED(CONFIG_BONDING)
2653 	if (event_dev->flags & IFF_MASTER) {
2654 		list_for_each_entry(adap, &adapter_list, list_node) {
2655 			switch (event) {
2656 			case NETDEV_UP:
2657 				cxgb4_clip_get(adap->port[0],
2658 					       (const u32 *)ifa, 1);
2659 				break;
2660 			case NETDEV_DOWN:
2661 				cxgb4_clip_release(adap->port[0],
2662 						   (const u32 *)ifa, 1);
2663 				break;
2664 			default:
2665 				break;
2666 			}
2667 		}
2668 		return NOTIFY_OK;
2669 	}
2670 #endif
2671 
2672 	if (event_dev)
2673 		parent = event_dev->dev.parent;
2674 
2675 	if (parent && parent->driver == &cxgb4_driver.driver) {
2676 		switch (event) {
2677 		case NETDEV_UP:
2678 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2679 			break;
2680 		case NETDEV_DOWN:
2681 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2682 			break;
2683 		default:
2684 			break;
2685 		}
2686 	}
2687 	return NOTIFY_OK;
2688 }
2689 
2690 static bool inet6addr_registered;
2691 static struct notifier_block cxgb4_inet6addr_notifier = {
2692 	.notifier_call = cxgb4_inet6addr_handler
2693 };
2694 
2695 static void update_clip(const struct adapter *adap)
2696 {
2697 	int i;
2698 	struct net_device *dev;
2699 	int ret;
2700 
2701 	rcu_read_lock();
2702 
2703 	for (i = 0; i < MAX_NPORTS; i++) {
2704 		dev = adap->port[i];
2705 		ret = 0;
2706 
2707 		if (dev)
2708 			ret = cxgb4_update_root_dev_clip(dev);
2709 
2710 		if (ret < 0)
2711 			break;
2712 	}
2713 	rcu_read_unlock();
2714 }
2715 #endif /* IS_ENABLED(CONFIG_IPV6) */
2716 
2717 /**
2718  *	cxgb_up - enable the adapter
2719  *	@adap: adapter being enabled
2720  *
2721  *	Called when the first port is enabled, this function performs the
2722  *	actions necessary to make an adapter operational, such as completing
2723  *	the initialization of HW modules, and enabling interrupts.
2724  *
2725  *	Must be called with the rtnl lock held.
2726  */
2727 static int cxgb_up(struct adapter *adap)
2728 {
2729 	int err;
2730 
2731 	err = setup_sge_queues(adap);
2732 	if (err)
2733 		goto out;
2734 	err = setup_rss(adap);
2735 	if (err)
2736 		goto freeq;
2737 
2738 	if (adap->flags & USING_MSIX) {
2739 		name_msix_vecs(adap);
2740 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2741 				  adap->msix_info[0].desc, adap);
2742 		if (err)
2743 			goto irq_err;
2744 
2745 		err = request_msix_queue_irqs(adap);
2746 		if (err) {
2747 			free_irq(adap->msix_info[0].vec, adap);
2748 			goto irq_err;
2749 		}
2750 	} else {
2751 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2752 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2753 				  adap->port[0]->name, adap);
2754 		if (err)
2755 			goto irq_err;
2756 	}
2757 	enable_rx(adap);
2758 	t4_sge_start(adap);
2759 	t4_intr_enable(adap);
2760 	adap->flags |= FULL_INIT_DONE;
2761 	notify_ulds(adap, CXGB4_STATE_UP);
2762 #if IS_ENABLED(CONFIG_IPV6)
2763 	update_clip(adap);
2764 #endif
2765 	/* Initialize hash mac addr list*/
2766 	INIT_LIST_HEAD(&adap->mac_hlist);
2767  out:
2768 	return err;
2769  irq_err:
2770 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2771  freeq:
2772 	t4_free_sge_resources(adap);
2773 	goto out;
2774 }
2775 
2776 static void cxgb_down(struct adapter *adapter)
2777 {
2778 	cancel_work_sync(&adapter->tid_release_task);
2779 	cancel_work_sync(&adapter->db_full_task);
2780 	cancel_work_sync(&adapter->db_drop_task);
2781 	adapter->tid_release_task_busy = false;
2782 	adapter->tid_release_head = NULL;
2783 
2784 	t4_sge_stop(adapter);
2785 	t4_free_sge_resources(adapter);
2786 	adapter->flags &= ~FULL_INIT_DONE;
2787 }
2788 
2789 /*
2790  * net_device operations
2791  */
2792 static int cxgb_open(struct net_device *dev)
2793 {
2794 	int err;
2795 	struct port_info *pi = netdev_priv(dev);
2796 	struct adapter *adapter = pi->adapter;
2797 
2798 	netif_carrier_off(dev);
2799 
2800 	if (!(adapter->flags & FULL_INIT_DONE)) {
2801 		err = cxgb_up(adapter);
2802 		if (err < 0)
2803 			return err;
2804 	}
2805 
2806 	err = link_start(dev);
2807 	if (!err)
2808 		netif_tx_start_all_queues(dev);
2809 	return err;
2810 }
2811 
2812 static int cxgb_close(struct net_device *dev)
2813 {
2814 	struct port_info *pi = netdev_priv(dev);
2815 	struct adapter *adapter = pi->adapter;
2816 
2817 	netif_tx_stop_all_queues(dev);
2818 	netif_carrier_off(dev);
2819 	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2820 }
2821 
2822 /* Return an error number if the indicated filter isn't writable ...
2823  */
2824 static int writable_filter(struct filter_entry *f)
2825 {
2826 	if (f->locked)
2827 		return -EPERM;
2828 	if (f->pending)
2829 		return -EBUSY;
2830 
2831 	return 0;
2832 }
2833 
2834 /* Delete the filter at the specified index (if valid).  The checks for all
2835  * the common problems with doing this like the filter being locked, currently
2836  * pending in another operation, etc.
2837  */
2838 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2839 {
2840 	struct filter_entry *f;
2841 	int ret;
2842 
2843 	if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2844 		return -EINVAL;
2845 
2846 	f = &adapter->tids.ftid_tab[fidx];
2847 	ret = writable_filter(f);
2848 	if (ret)
2849 		return ret;
2850 	if (f->valid)
2851 		return del_filter_wr(adapter, fidx);
2852 
2853 	return 0;
2854 }
2855 
2856 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2857 		__be32 sip, __be16 sport, __be16 vlan,
2858 		unsigned int queue, unsigned char port, unsigned char mask)
2859 {
2860 	int ret;
2861 	struct filter_entry *f;
2862 	struct adapter *adap;
2863 	int i;
2864 	u8 *val;
2865 
2866 	adap = netdev2adap(dev);
2867 
2868 	/* Adjust stid to correct filter index */
2869 	stid -= adap->tids.sftid_base;
2870 	stid += adap->tids.nftids;
2871 
2872 	/* Check to make sure the filter requested is writable ...
2873 	 */
2874 	f = &adap->tids.ftid_tab[stid];
2875 	ret = writable_filter(f);
2876 	if (ret)
2877 		return ret;
2878 
2879 	/* Clear out any old resources being used by the filter before
2880 	 * we start constructing the new filter.
2881 	 */
2882 	if (f->valid)
2883 		clear_filter(adap, f);
2884 
2885 	/* Clear out filter specifications */
2886 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2887 	f->fs.val.lport = cpu_to_be16(sport);
2888 	f->fs.mask.lport  = ~0;
2889 	val = (u8 *)&sip;
2890 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2891 		for (i = 0; i < 4; i++) {
2892 			f->fs.val.lip[i] = val[i];
2893 			f->fs.mask.lip[i] = ~0;
2894 		}
2895 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2896 			f->fs.val.iport = port;
2897 			f->fs.mask.iport = mask;
2898 		}
2899 	}
2900 
2901 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2902 		f->fs.val.proto = IPPROTO_TCP;
2903 		f->fs.mask.proto = ~0;
2904 	}
2905 
2906 	f->fs.dirsteer = 1;
2907 	f->fs.iq = queue;
2908 	/* Mark filter as locked */
2909 	f->locked = 1;
2910 	f->fs.rpttid = 1;
2911 
2912 	ret = set_filter_wr(adap, stid);
2913 	if (ret) {
2914 		clear_filter(adap, f);
2915 		return ret;
2916 	}
2917 
2918 	return 0;
2919 }
2920 EXPORT_SYMBOL(cxgb4_create_server_filter);
2921 
2922 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2923 		unsigned int queue, bool ipv6)
2924 {
2925 	int ret;
2926 	struct filter_entry *f;
2927 	struct adapter *adap;
2928 
2929 	adap = netdev2adap(dev);
2930 
2931 	/* Adjust stid to correct filter index */
2932 	stid -= adap->tids.sftid_base;
2933 	stid += adap->tids.nftids;
2934 
2935 	f = &adap->tids.ftid_tab[stid];
2936 	/* Unlock the filter */
2937 	f->locked = 0;
2938 
2939 	ret = delete_filter(adap, stid);
2940 	if (ret)
2941 		return ret;
2942 
2943 	return 0;
2944 }
2945 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2946 
2947 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2948 						struct rtnl_link_stats64 *ns)
2949 {
2950 	struct port_stats stats;
2951 	struct port_info *p = netdev_priv(dev);
2952 	struct adapter *adapter = p->adapter;
2953 
2954 	/* Block retrieving statistics during EEH error
2955 	 * recovery. Otherwise, the recovery might fail
2956 	 * and the PCI device will be removed permanently
2957 	 */
2958 	spin_lock(&adapter->stats_lock);
2959 	if (!netif_device_present(dev)) {
2960 		spin_unlock(&adapter->stats_lock);
2961 		return ns;
2962 	}
2963 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2964 				 &p->stats_base);
2965 	spin_unlock(&adapter->stats_lock);
2966 
2967 	ns->tx_bytes   = stats.tx_octets;
2968 	ns->tx_packets = stats.tx_frames;
2969 	ns->rx_bytes   = stats.rx_octets;
2970 	ns->rx_packets = stats.rx_frames;
2971 	ns->multicast  = stats.rx_mcast_frames;
2972 
2973 	/* detailed rx_errors */
2974 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2975 			       stats.rx_runt;
2976 	ns->rx_over_errors   = 0;
2977 	ns->rx_crc_errors    = stats.rx_fcs_err;
2978 	ns->rx_frame_errors  = stats.rx_symbol_err;
2979 	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2980 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2981 			       stats.rx_trunc0 + stats.rx_trunc1 +
2982 			       stats.rx_trunc2 + stats.rx_trunc3;
2983 	ns->rx_missed_errors = 0;
2984 
2985 	/* detailed tx_errors */
2986 	ns->tx_aborted_errors   = 0;
2987 	ns->tx_carrier_errors   = 0;
2988 	ns->tx_fifo_errors      = 0;
2989 	ns->tx_heartbeat_errors = 0;
2990 	ns->tx_window_errors    = 0;
2991 
2992 	ns->tx_errors = stats.tx_error_frames;
2993 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2994 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2995 	return ns;
2996 }
2997 
2998 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2999 {
3000 	unsigned int mbox;
3001 	int ret = 0, prtad, devad;
3002 	struct port_info *pi = netdev_priv(dev);
3003 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3004 
3005 	switch (cmd) {
3006 	case SIOCGMIIPHY:
3007 		if (pi->mdio_addr < 0)
3008 			return -EOPNOTSUPP;
3009 		data->phy_id = pi->mdio_addr;
3010 		break;
3011 	case SIOCGMIIREG:
3012 	case SIOCSMIIREG:
3013 		if (mdio_phy_id_is_c45(data->phy_id)) {
3014 			prtad = mdio_phy_id_prtad(data->phy_id);
3015 			devad = mdio_phy_id_devad(data->phy_id);
3016 		} else if (data->phy_id < 32) {
3017 			prtad = data->phy_id;
3018 			devad = 0;
3019 			data->reg_num &= 0x1f;
3020 		} else
3021 			return -EINVAL;
3022 
3023 		mbox = pi->adapter->pf;
3024 		if (cmd == SIOCGMIIREG)
3025 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3026 					 data->reg_num, &data->val_out);
3027 		else
3028 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3029 					 data->reg_num, data->val_in);
3030 		break;
3031 	case SIOCGHWTSTAMP:
3032 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3033 				    sizeof(pi->tstamp_config)) ?
3034 			-EFAULT : 0;
3035 	case SIOCSHWTSTAMP:
3036 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3037 				   sizeof(pi->tstamp_config)))
3038 			return -EFAULT;
3039 
3040 		switch (pi->tstamp_config.rx_filter) {
3041 		case HWTSTAMP_FILTER_NONE:
3042 			pi->rxtstamp = false;
3043 			break;
3044 		case HWTSTAMP_FILTER_ALL:
3045 			pi->rxtstamp = true;
3046 			break;
3047 		default:
3048 			pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
3049 			return -ERANGE;
3050 		}
3051 
3052 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3053 				    sizeof(pi->tstamp_config)) ?
3054 			-EFAULT : 0;
3055 	default:
3056 		return -EOPNOTSUPP;
3057 	}
3058 	return ret;
3059 }
3060 
3061 static void cxgb_set_rxmode(struct net_device *dev)
3062 {
3063 	/* unfortunately we can't return errors to the stack */
3064 	set_rxmode(dev, -1, false);
3065 }
3066 
3067 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3068 {
3069 	int ret;
3070 	struct port_info *pi = netdev_priv(dev);
3071 
3072 	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
3073 		return -EINVAL;
3074 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
3075 			    -1, -1, -1, true);
3076 	if (!ret)
3077 		dev->mtu = new_mtu;
3078 	return ret;
3079 }
3080 
3081 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3082 {
3083 	int ret;
3084 	struct sockaddr *addr = p;
3085 	struct port_info *pi = netdev_priv(dev);
3086 
3087 	if (!is_valid_ether_addr(addr->sa_data))
3088 		return -EADDRNOTAVAIL;
3089 
3090 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3091 			    pi->xact_addr_filt, addr->sa_data, true, true);
3092 	if (ret < 0)
3093 		return ret;
3094 
3095 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3096 	pi->xact_addr_filt = ret;
3097 	return 0;
3098 }
3099 
3100 #ifdef CONFIG_NET_POLL_CONTROLLER
3101 static void cxgb_netpoll(struct net_device *dev)
3102 {
3103 	struct port_info *pi = netdev_priv(dev);
3104 	struct adapter *adap = pi->adapter;
3105 
3106 	if (adap->flags & USING_MSIX) {
3107 		int i;
3108 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3109 
3110 		for (i = pi->nqsets; i; i--, rx++)
3111 			t4_sge_intr_msix(0, &rx->rspq);
3112 	} else
3113 		t4_intr_handler(adap)(0, adap);
3114 }
3115 #endif
3116 
3117 static const struct net_device_ops cxgb4_netdev_ops = {
3118 	.ndo_open             = cxgb_open,
3119 	.ndo_stop             = cxgb_close,
3120 	.ndo_start_xmit       = t4_eth_xmit,
3121 	.ndo_select_queue     =	cxgb_select_queue,
3122 	.ndo_get_stats64      = cxgb_get_stats,
3123 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3124 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3125 	.ndo_set_features     = cxgb_set_features,
3126 	.ndo_validate_addr    = eth_validate_addr,
3127 	.ndo_do_ioctl         = cxgb_ioctl,
3128 	.ndo_change_mtu       = cxgb_change_mtu,
3129 #ifdef CONFIG_NET_POLL_CONTROLLER
3130 	.ndo_poll_controller  = cxgb_netpoll,
3131 #endif
3132 #ifdef CONFIG_CHELSIO_T4_FCOE
3133 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3134 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3135 #endif /* CONFIG_CHELSIO_T4_FCOE */
3136 #ifdef CONFIG_NET_RX_BUSY_POLL
3137 	.ndo_busy_poll        = cxgb_busy_poll,
3138 #endif
3139 
3140 };
3141 
3142 void t4_fatal_err(struct adapter *adap)
3143 {
3144 	t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3145 	t4_intr_disable(adap);
3146 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3147 }
3148 
3149 static void setup_memwin(struct adapter *adap)
3150 {
3151 	u32 nic_win_base = t4_get_util_window(adap);
3152 
3153 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3154 }
3155 
3156 static void setup_memwin_rdma(struct adapter *adap)
3157 {
3158 	if (adap->vres.ocq.size) {
3159 		u32 start;
3160 		unsigned int sz_kb;
3161 
3162 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3163 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3164 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3165 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3166 		t4_write_reg(adap,
3167 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3168 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3169 		t4_write_reg(adap,
3170 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3171 			     adap->vres.ocq.start);
3172 		t4_read_reg(adap,
3173 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3174 	}
3175 }
3176 
3177 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3178 {
3179 	u32 v;
3180 	int ret;
3181 
3182 	/* get device capabilities */
3183 	memset(c, 0, sizeof(*c));
3184 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3185 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3186 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3187 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3188 	if (ret < 0)
3189 		return ret;
3190 
3191 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3192 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3193 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3194 	if (ret < 0)
3195 		return ret;
3196 
3197 	ret = t4_config_glbl_rss(adap, adap->pf,
3198 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3199 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3200 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3201 	if (ret < 0)
3202 		return ret;
3203 
3204 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3205 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3206 			  FW_CMD_CAP_PF);
3207 	if (ret < 0)
3208 		return ret;
3209 
3210 	t4_sge_init(adap);
3211 
3212 	/* tweak some settings */
3213 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3214 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3215 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3216 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3217 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3218 
3219 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3220 	adap->params.tp.tx_modq_map = 0xE4;
3221 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3222 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3223 
3224 	/* associate each Tx modulation queue with consecutive Tx channels */
3225 	v = 0x84218421;
3226 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3227 			  &v, 1, TP_TX_SCHED_HDR_A);
3228 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3229 			  &v, 1, TP_TX_SCHED_FIFO_A);
3230 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3231 			  &v, 1, TP_TX_SCHED_PCMD_A);
3232 
3233 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3234 	if (is_offload(adap)) {
3235 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3236 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3237 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3238 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3239 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3240 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3241 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3242 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3243 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3244 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3245 	}
3246 
3247 	/* get basic stuff going */
3248 	return t4_early_init(adap, adap->pf);
3249 }
3250 
3251 /*
3252  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3253  */
3254 #define MAX_ATIDS 8192U
3255 
3256 /*
3257  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3258  *
3259  * If the firmware we're dealing with has Configuration File support, then
3260  * we use that to perform all configuration
3261  */
3262 
3263 /*
3264  * Tweak configuration based on module parameters, etc.  Most of these have
3265  * defaults assigned to them by Firmware Configuration Files (if we're using
3266  * them) but need to be explicitly set if we're using hard-coded
3267  * initialization.  But even in the case of using Firmware Configuration
3268  * Files, we'd like to expose the ability to change these via module
3269  * parameters so these are essentially common tweaks/settings for
3270  * Configuration Files and hard-coded initialization ...
3271  */
3272 static int adap_init0_tweaks(struct adapter *adapter)
3273 {
3274 	/*
3275 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3276 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3277 	 * 64B Cache Line Size ...
3278 	 */
3279 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3280 
3281 	/*
3282 	 * Process module parameters which affect early initialization.
3283 	 */
3284 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3285 		dev_err(&adapter->pdev->dev,
3286 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3287 			rx_dma_offset);
3288 		rx_dma_offset = 2;
3289 	}
3290 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3291 			 PKTSHIFT_V(PKTSHIFT_M),
3292 			 PKTSHIFT_V(rx_dma_offset));
3293 
3294 	/*
3295 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3296 	 * adds the pseudo header itself.
3297 	 */
3298 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3299 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3300 
3301 	return 0;
3302 }
3303 
3304 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3305  * unto themselves and they contain their own firmware to perform their
3306  * tasks ...
3307  */
3308 static int phy_aq1202_version(const u8 *phy_fw_data,
3309 			      size_t phy_fw_size)
3310 {
3311 	int offset;
3312 
3313 	/* At offset 0x8 you're looking for the primary image's
3314 	 * starting offset which is 3 Bytes wide
3315 	 *
3316 	 * At offset 0xa of the primary image, you look for the offset
3317 	 * of the DRAM segment which is 3 Bytes wide.
3318 	 *
3319 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3320 	 * wide
3321 	 */
3322 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
3323 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3324 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
3325 
3326 	offset = le24(phy_fw_data + 0x8) << 12;
3327 	offset = le24(phy_fw_data + offset + 0xa);
3328 	return be16(phy_fw_data + offset + 0x27e);
3329 
3330 	#undef be16
3331 	#undef le16
3332 	#undef le24
3333 }
3334 
3335 static struct info_10gbt_phy_fw {
3336 	unsigned int phy_fw_id;		/* PCI Device ID */
3337 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
3338 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3339 	int phy_flash;			/* Has FLASH for PHY Firmware */
3340 } phy_info_array[] = {
3341 	{
3342 		PHY_AQ1202_DEVICEID,
3343 		PHY_AQ1202_FIRMWARE,
3344 		phy_aq1202_version,
3345 		1,
3346 	},
3347 	{
3348 		PHY_BCM84834_DEVICEID,
3349 		PHY_BCM84834_FIRMWARE,
3350 		NULL,
3351 		0,
3352 	},
3353 	{ 0, NULL, NULL },
3354 };
3355 
3356 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3357 {
3358 	int i;
3359 
3360 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3361 		if (phy_info_array[i].phy_fw_id == devid)
3362 			return &phy_info_array[i];
3363 	}
3364 	return NULL;
3365 }
3366 
3367 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3368  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3369  * we return a negative error number.  If we transfer new firmware we return 1
3370  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3371  */
3372 static int adap_init0_phy(struct adapter *adap)
3373 {
3374 	const struct firmware *phyf;
3375 	int ret;
3376 	struct info_10gbt_phy_fw *phy_info;
3377 
3378 	/* Use the device ID to determine which PHY file to flash.
3379 	 */
3380 	phy_info = find_phy_info(adap->pdev->device);
3381 	if (!phy_info) {
3382 		dev_warn(adap->pdev_dev,
3383 			 "No PHY Firmware file found for this PHY\n");
3384 		return -EOPNOTSUPP;
3385 	}
3386 
3387 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3388 	 * use that. The adapter firmware provides us with a memory buffer
3389 	 * where we can load a PHY firmware file from the host if we want to
3390 	 * override the PHY firmware File in flash.
3391 	 */
3392 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3393 				      adap->pdev_dev);
3394 	if (ret < 0) {
3395 		/* For adapters without FLASH attached to PHY for their
3396 		 * firmware, it's obviously a fatal error if we can't get the
3397 		 * firmware to the adapter.  For adapters with PHY firmware
3398 		 * FLASH storage, it's worth a warning if we can't find the
3399 		 * PHY Firmware but we'll neuter the error ...
3400 		 */
3401 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3402 			"/lib/firmware/%s, error %d\n",
3403 			phy_info->phy_fw_file, -ret);
3404 		if (phy_info->phy_flash) {
3405 			int cur_phy_fw_ver = 0;
3406 
3407 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3408 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3409 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3410 			ret = 0;
3411 		}
3412 
3413 		return ret;
3414 	}
3415 
3416 	/* Load PHY Firmware onto adapter.
3417 	 */
3418 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3419 			     phy_info->phy_fw_version,
3420 			     (u8 *)phyf->data, phyf->size);
3421 	if (ret < 0)
3422 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3423 			-ret);
3424 	else if (ret > 0) {
3425 		int new_phy_fw_ver = 0;
3426 
3427 		if (phy_info->phy_fw_version)
3428 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3429 								  phyf->size);
3430 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3431 			 "Firmware /lib/firmware/%s, version %#x\n",
3432 			 phy_info->phy_fw_file, new_phy_fw_ver);
3433 	}
3434 
3435 	release_firmware(phyf);
3436 
3437 	return ret;
3438 }
3439 
3440 /*
3441  * Attempt to initialize the adapter via a Firmware Configuration File.
3442  */
3443 static int adap_init0_config(struct adapter *adapter, int reset)
3444 {
3445 	struct fw_caps_config_cmd caps_cmd;
3446 	const struct firmware *cf;
3447 	unsigned long mtype = 0, maddr = 0;
3448 	u32 finiver, finicsum, cfcsum;
3449 	int ret;
3450 	int config_issued = 0;
3451 	char *fw_config_file, fw_config_file_path[256];
3452 	char *config_name = NULL;
3453 
3454 	/*
3455 	 * Reset device if necessary.
3456 	 */
3457 	if (reset) {
3458 		ret = t4_fw_reset(adapter, adapter->mbox,
3459 				  PIORSTMODE_F | PIORST_F);
3460 		if (ret < 0)
3461 			goto bye;
3462 	}
3463 
3464 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3465 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3466 	 * to be performed after any global adapter RESET above since some
3467 	 * PHYs only have local RAM copies of the PHY firmware.
3468 	 */
3469 	if (is_10gbt_device(adapter->pdev->device)) {
3470 		ret = adap_init0_phy(adapter);
3471 		if (ret < 0)
3472 			goto bye;
3473 	}
3474 	/*
3475 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3476 	 * then use that.  Otherwise, use the configuration file stored
3477 	 * in the adapter flash ...
3478 	 */
3479 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3480 	case CHELSIO_T4:
3481 		fw_config_file = FW4_CFNAME;
3482 		break;
3483 	case CHELSIO_T5:
3484 		fw_config_file = FW5_CFNAME;
3485 		break;
3486 	case CHELSIO_T6:
3487 		fw_config_file = FW6_CFNAME;
3488 		break;
3489 	default:
3490 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3491 		       adapter->pdev->device);
3492 		ret = -EINVAL;
3493 		goto bye;
3494 	}
3495 
3496 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3497 	if (ret < 0) {
3498 		config_name = "On FLASH";
3499 		mtype = FW_MEMTYPE_CF_FLASH;
3500 		maddr = t4_flash_cfg_addr(adapter);
3501 	} else {
3502 		u32 params[7], val[7];
3503 
3504 		sprintf(fw_config_file_path,
3505 			"/lib/firmware/%s", fw_config_file);
3506 		config_name = fw_config_file_path;
3507 
3508 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3509 			ret = -ENOMEM;
3510 		else {
3511 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3512 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3513 			ret = t4_query_params(adapter, adapter->mbox,
3514 					      adapter->pf, 0, 1, params, val);
3515 			if (ret == 0) {
3516 				/*
3517 				 * For t4_memory_rw() below addresses and
3518 				 * sizes have to be in terms of multiples of 4
3519 				 * bytes.  So, if the Configuration File isn't
3520 				 * a multiple of 4 bytes in length we'll have
3521 				 * to write that out separately since we can't
3522 				 * guarantee that the bytes following the
3523 				 * residual byte in the buffer returned by
3524 				 * request_firmware() are zeroed out ...
3525 				 */
3526 				size_t resid = cf->size & 0x3;
3527 				size_t size = cf->size & ~0x3;
3528 				__be32 *data = (__be32 *)cf->data;
3529 
3530 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3531 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3532 
3533 				spin_lock(&adapter->win0_lock);
3534 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3535 						   size, data, T4_MEMORY_WRITE);
3536 				if (ret == 0 && resid != 0) {
3537 					union {
3538 						__be32 word;
3539 						char buf[4];
3540 					} last;
3541 					int i;
3542 
3543 					last.word = data[size >> 2];
3544 					for (i = resid; i < 4; i++)
3545 						last.buf[i] = 0;
3546 					ret = t4_memory_rw(adapter, 0, mtype,
3547 							   maddr + size,
3548 							   4, &last.word,
3549 							   T4_MEMORY_WRITE);
3550 				}
3551 				spin_unlock(&adapter->win0_lock);
3552 			}
3553 		}
3554 
3555 		release_firmware(cf);
3556 		if (ret)
3557 			goto bye;
3558 	}
3559 
3560 	/*
3561 	 * Issue a Capability Configuration command to the firmware to get it
3562 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3563 	 * because we want the ability to modify various features after we've
3564 	 * processed the configuration file ...
3565 	 */
3566 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3567 	caps_cmd.op_to_write =
3568 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3569 		      FW_CMD_REQUEST_F |
3570 		      FW_CMD_READ_F);
3571 	caps_cmd.cfvalid_to_len16 =
3572 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3573 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3574 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3575 		      FW_LEN16(caps_cmd));
3576 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3577 			 &caps_cmd);
3578 
3579 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3580 	 * Configuration File in FLASH), our last gasp effort is to use the
3581 	 * Firmware Configuration File which is embedded in the firmware.  A
3582 	 * very few early versions of the firmware didn't have one embedded
3583 	 * but we can ignore those.
3584 	 */
3585 	if (ret == -ENOENT) {
3586 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3587 		caps_cmd.op_to_write =
3588 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3589 					FW_CMD_REQUEST_F |
3590 					FW_CMD_READ_F);
3591 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3592 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3593 				sizeof(caps_cmd), &caps_cmd);
3594 		config_name = "Firmware Default";
3595 	}
3596 
3597 	config_issued = 1;
3598 	if (ret < 0)
3599 		goto bye;
3600 
3601 	finiver = ntohl(caps_cmd.finiver);
3602 	finicsum = ntohl(caps_cmd.finicsum);
3603 	cfcsum = ntohl(caps_cmd.cfcsum);
3604 	if (finicsum != cfcsum)
3605 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3606 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3607 			 finicsum, cfcsum);
3608 
3609 	/*
3610 	 * And now tell the firmware to use the configuration we just loaded.
3611 	 */
3612 	caps_cmd.op_to_write =
3613 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3614 		      FW_CMD_REQUEST_F |
3615 		      FW_CMD_WRITE_F);
3616 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3617 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3618 			 NULL);
3619 	if (ret < 0)
3620 		goto bye;
3621 
3622 	/*
3623 	 * Tweak configuration based on system architecture, module
3624 	 * parameters, etc.
3625 	 */
3626 	ret = adap_init0_tweaks(adapter);
3627 	if (ret < 0)
3628 		goto bye;
3629 
3630 	/*
3631 	 * And finally tell the firmware to initialize itself using the
3632 	 * parameters from the Configuration File.
3633 	 */
3634 	ret = t4_fw_initialize(adapter, adapter->mbox);
3635 	if (ret < 0)
3636 		goto bye;
3637 
3638 	/* Emit Firmware Configuration File information and return
3639 	 * successfully.
3640 	 */
3641 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3642 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3643 		 config_name, finiver, cfcsum);
3644 	return 0;
3645 
3646 	/*
3647 	 * Something bad happened.  Return the error ...  (If the "error"
3648 	 * is that there's no Configuration File on the adapter we don't
3649 	 * want to issue a warning since this is fairly common.)
3650 	 */
3651 bye:
3652 	if (config_issued && ret != -ENOENT)
3653 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3654 			 config_name, -ret);
3655 	return ret;
3656 }
3657 
3658 static struct fw_info fw_info_array[] = {
3659 	{
3660 		.chip = CHELSIO_T4,
3661 		.fs_name = FW4_CFNAME,
3662 		.fw_mod_name = FW4_FNAME,
3663 		.fw_hdr = {
3664 			.chip = FW_HDR_CHIP_T4,
3665 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3666 			.intfver_nic = FW_INTFVER(T4, NIC),
3667 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3668 			.intfver_ri = FW_INTFVER(T4, RI),
3669 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3670 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3671 		},
3672 	}, {
3673 		.chip = CHELSIO_T5,
3674 		.fs_name = FW5_CFNAME,
3675 		.fw_mod_name = FW5_FNAME,
3676 		.fw_hdr = {
3677 			.chip = FW_HDR_CHIP_T5,
3678 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3679 			.intfver_nic = FW_INTFVER(T5, NIC),
3680 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3681 			.intfver_ri = FW_INTFVER(T5, RI),
3682 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3683 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3684 		},
3685 	}, {
3686 		.chip = CHELSIO_T6,
3687 		.fs_name = FW6_CFNAME,
3688 		.fw_mod_name = FW6_FNAME,
3689 		.fw_hdr = {
3690 			.chip = FW_HDR_CHIP_T6,
3691 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3692 			.intfver_nic = FW_INTFVER(T6, NIC),
3693 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3694 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3695 			.intfver_ri = FW_INTFVER(T6, RI),
3696 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3697 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3698 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3699 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3700 		},
3701 	}
3702 
3703 };
3704 
3705 static struct fw_info *find_fw_info(int chip)
3706 {
3707 	int i;
3708 
3709 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3710 		if (fw_info_array[i].chip == chip)
3711 			return &fw_info_array[i];
3712 	}
3713 	return NULL;
3714 }
3715 
3716 /*
3717  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3718  */
3719 static int adap_init0(struct adapter *adap)
3720 {
3721 	int ret;
3722 	u32 v, port_vec;
3723 	enum dev_state state;
3724 	u32 params[7], val[7];
3725 	struct fw_caps_config_cmd caps_cmd;
3726 	int reset = 1;
3727 
3728 	/* Grab Firmware Device Log parameters as early as possible so we have
3729 	 * access to it for debugging, etc.
3730 	 */
3731 	ret = t4_init_devlog_params(adap);
3732 	if (ret < 0)
3733 		return ret;
3734 
3735 	/* Contact FW, advertising Master capability */
3736 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3737 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3738 	if (ret < 0) {
3739 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3740 			ret);
3741 		return ret;
3742 	}
3743 	if (ret == adap->mbox)
3744 		adap->flags |= MASTER_PF;
3745 
3746 	/*
3747 	 * If we're the Master PF Driver and the device is uninitialized,
3748 	 * then let's consider upgrading the firmware ...  (We always want
3749 	 * to check the firmware version number in order to A. get it for
3750 	 * later reporting and B. to warn if the currently loaded firmware
3751 	 * is excessively mismatched relative to the driver.)
3752 	 */
3753 	t4_get_fw_version(adap, &adap->params.fw_vers);
3754 	t4_get_bs_version(adap, &adap->params.bs_vers);
3755 	t4_get_tp_version(adap, &adap->params.tp_vers);
3756 	t4_get_exprom_version(adap, &adap->params.er_vers);
3757 
3758 	ret = t4_check_fw_version(adap);
3759 	/* If firmware is too old (not supported by driver) force an update. */
3760 	if (ret)
3761 		state = DEV_STATE_UNINIT;
3762 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3763 		struct fw_info *fw_info;
3764 		struct fw_hdr *card_fw;
3765 		const struct firmware *fw;
3766 		const u8 *fw_data = NULL;
3767 		unsigned int fw_size = 0;
3768 
3769 		/* This is the firmware whose headers the driver was compiled
3770 		 * against
3771 		 */
3772 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3773 		if (fw_info == NULL) {
3774 			dev_err(adap->pdev_dev,
3775 				"unable to get firmware info for chip %d.\n",
3776 				CHELSIO_CHIP_VERSION(adap->params.chip));
3777 			return -EINVAL;
3778 		}
3779 
3780 		/* allocate memory to read the header of the firmware on the
3781 		 * card
3782 		 */
3783 		card_fw = t4_alloc_mem(sizeof(*card_fw));
3784 
3785 		/* Get FW from from /lib/firmware/ */
3786 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3787 				       adap->pdev_dev);
3788 		if (ret < 0) {
3789 			dev_err(adap->pdev_dev,
3790 				"unable to load firmware image %s, error %d\n",
3791 				fw_info->fw_mod_name, ret);
3792 		} else {
3793 			fw_data = fw->data;
3794 			fw_size = fw->size;
3795 		}
3796 
3797 		/* upgrade FW logic */
3798 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3799 				 state, &reset);
3800 
3801 		/* Cleaning up */
3802 		release_firmware(fw);
3803 		t4_free_mem(card_fw);
3804 
3805 		if (ret < 0)
3806 			goto bye;
3807 	}
3808 
3809 	/*
3810 	 * Grab VPD parameters.  This should be done after we establish a
3811 	 * connection to the firmware since some of the VPD parameters
3812 	 * (notably the Core Clock frequency) are retrieved via requests to
3813 	 * the firmware.  On the other hand, we need these fairly early on
3814 	 * so we do this right after getting ahold of the firmware.
3815 	 */
3816 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3817 	if (ret < 0)
3818 		goto bye;
3819 
3820 	/*
3821 	 * Find out what ports are available to us.  Note that we need to do
3822 	 * this before calling adap_init0_no_config() since it needs nports
3823 	 * and portvec ...
3824 	 */
3825 	v =
3826 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3827 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3828 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3829 	if (ret < 0)
3830 		goto bye;
3831 
3832 	adap->params.nports = hweight32(port_vec);
3833 	adap->params.portvec = port_vec;
3834 
3835 	/* If the firmware is initialized already, emit a simply note to that
3836 	 * effect. Otherwise, it's time to try initializing the adapter.
3837 	 */
3838 	if (state == DEV_STATE_INIT) {
3839 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3840 			 "Adapter already initialized\n",
3841 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3842 	} else {
3843 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3844 			 "Initializing adapter\n");
3845 
3846 		/* Find out whether we're dealing with a version of the
3847 		 * firmware which has configuration file support.
3848 		 */
3849 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3850 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3851 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3852 				      params, val);
3853 
3854 		/* If the firmware doesn't support Configuration Files,
3855 		 * return an error.
3856 		 */
3857 		if (ret < 0) {
3858 			dev_err(adap->pdev_dev, "firmware doesn't support "
3859 				"Firmware Configuration Files\n");
3860 			goto bye;
3861 		}
3862 
3863 		/* The firmware provides us with a memory buffer where we can
3864 		 * load a Configuration File from the host if we want to
3865 		 * override the Configuration File in flash.
3866 		 */
3867 		ret = adap_init0_config(adap, reset);
3868 		if (ret == -ENOENT) {
3869 			dev_err(adap->pdev_dev, "no Configuration File "
3870 				"present on adapter.\n");
3871 			goto bye;
3872 		}
3873 		if (ret < 0) {
3874 			dev_err(adap->pdev_dev, "could not initialize "
3875 				"adapter, error %d\n", -ret);
3876 			goto bye;
3877 		}
3878 	}
3879 
3880 	/* Give the SGE code a chance to pull in anything that it needs ...
3881 	 * Note that this must be called after we retrieve our VPD parameters
3882 	 * in order to know how to convert core ticks to seconds, etc.
3883 	 */
3884 	ret = t4_sge_init(adap);
3885 	if (ret < 0)
3886 		goto bye;
3887 
3888 	if (is_bypass_device(adap->pdev->device))
3889 		adap->params.bypass = 1;
3890 
3891 	/*
3892 	 * Grab some of our basic fundamental operating parameters.
3893 	 */
3894 #define FW_PARAM_DEV(param) \
3895 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3896 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3897 
3898 #define FW_PARAM_PFVF(param) \
3899 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3900 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3901 	FW_PARAMS_PARAM_Y_V(0) | \
3902 	FW_PARAMS_PARAM_Z_V(0)
3903 
3904 	params[0] = FW_PARAM_PFVF(EQ_START);
3905 	params[1] = FW_PARAM_PFVF(L2T_START);
3906 	params[2] = FW_PARAM_PFVF(L2T_END);
3907 	params[3] = FW_PARAM_PFVF(FILTER_START);
3908 	params[4] = FW_PARAM_PFVF(FILTER_END);
3909 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3910 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3911 	if (ret < 0)
3912 		goto bye;
3913 	adap->sge.egr_start = val[0];
3914 	adap->l2t_start = val[1];
3915 	adap->l2t_end = val[2];
3916 	adap->tids.ftid_base = val[3];
3917 	adap->tids.nftids = val[4] - val[3] + 1;
3918 	adap->sge.ingr_start = val[5];
3919 
3920 	/* qids (ingress/egress) returned from firmware can be anywhere
3921 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3922 	 * Hence driver needs to allocate memory for this range to
3923 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3924 	 * in FW_EQ_*_CMD.alloc command.
3925 	 */
3926 	params[0] = FW_PARAM_PFVF(EQ_END);
3927 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3928 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3929 	if (ret < 0)
3930 		goto bye;
3931 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3932 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3933 
3934 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3935 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3936 	if (!adap->sge.egr_map) {
3937 		ret = -ENOMEM;
3938 		goto bye;
3939 	}
3940 
3941 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3942 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3943 	if (!adap->sge.ingr_map) {
3944 		ret = -ENOMEM;
3945 		goto bye;
3946 	}
3947 
3948 	/* Allocate the memory for the vaious egress queue bitmaps
3949 	 * ie starving_fl, txq_maperr and blocked_fl.
3950 	 */
3951 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3952 					sizeof(long), GFP_KERNEL);
3953 	if (!adap->sge.starving_fl) {
3954 		ret = -ENOMEM;
3955 		goto bye;
3956 	}
3957 
3958 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3959 				       sizeof(long), GFP_KERNEL);
3960 	if (!adap->sge.txq_maperr) {
3961 		ret = -ENOMEM;
3962 		goto bye;
3963 	}
3964 
3965 #ifdef CONFIG_DEBUG_FS
3966 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3967 				       sizeof(long), GFP_KERNEL);
3968 	if (!adap->sge.blocked_fl) {
3969 		ret = -ENOMEM;
3970 		goto bye;
3971 	}
3972 #endif
3973 
3974 	params[0] = FW_PARAM_PFVF(CLIP_START);
3975 	params[1] = FW_PARAM_PFVF(CLIP_END);
3976 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3977 	if (ret < 0)
3978 		goto bye;
3979 	adap->clipt_start = val[0];
3980 	adap->clipt_end = val[1];
3981 
3982 	/* query params related to active filter region */
3983 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3984 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3985 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3986 	/* If Active filter size is set we enable establishing
3987 	 * offload connection through firmware work request
3988 	 */
3989 	if ((val[0] != val[1]) && (ret >= 0)) {
3990 		adap->flags |= FW_OFLD_CONN;
3991 		adap->tids.aftid_base = val[0];
3992 		adap->tids.aftid_end = val[1];
3993 	}
3994 
3995 	/* If we're running on newer firmware, let it know that we're
3996 	 * prepared to deal with encapsulated CPL messages.  Older
3997 	 * firmware won't understand this and we'll just get
3998 	 * unencapsulated messages ...
3999 	 */
4000 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4001 	val[0] = 1;
4002 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4003 
4004 	/*
4005 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4006 	 * capability.  Earlier versions of the firmware didn't have the
4007 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4008 	 * permission to use ULPTX MEMWRITE DSGL.
4009 	 */
4010 	if (is_t4(adap->params.chip)) {
4011 		adap->params.ulptx_memwrite_dsgl = false;
4012 	} else {
4013 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4014 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4015 				      1, params, val);
4016 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4017 	}
4018 
4019 	/*
4020 	 * Get device capabilities so we can determine what resources we need
4021 	 * to manage.
4022 	 */
4023 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4024 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4025 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
4026 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4027 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4028 			 &caps_cmd);
4029 	if (ret < 0)
4030 		goto bye;
4031 
4032 	if (caps_cmd.ofldcaps) {
4033 		/* query offload-related parameters */
4034 		params[0] = FW_PARAM_DEV(NTID);
4035 		params[1] = FW_PARAM_PFVF(SERVER_START);
4036 		params[2] = FW_PARAM_PFVF(SERVER_END);
4037 		params[3] = FW_PARAM_PFVF(TDDP_START);
4038 		params[4] = FW_PARAM_PFVF(TDDP_END);
4039 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4040 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4041 				      params, val);
4042 		if (ret < 0)
4043 			goto bye;
4044 		adap->tids.ntids = val[0];
4045 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4046 		adap->tids.stid_base = val[1];
4047 		adap->tids.nstids = val[2] - val[1] + 1;
4048 		/*
4049 		 * Setup server filter region. Divide the available filter
4050 		 * region into two parts. Regular filters get 1/3rd and server
4051 		 * filters get 2/3rd part. This is only enabled if workarond
4052 		 * path is enabled.
4053 		 * 1. For regular filters.
4054 		 * 2. Server filter: This are special filters which are used
4055 		 * to redirect SYN packets to offload queue.
4056 		 */
4057 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4058 			adap->tids.sftid_base = adap->tids.ftid_base +
4059 					DIV_ROUND_UP(adap->tids.nftids, 3);
4060 			adap->tids.nsftids = adap->tids.nftids -
4061 					 DIV_ROUND_UP(adap->tids.nftids, 3);
4062 			adap->tids.nftids = adap->tids.sftid_base -
4063 						adap->tids.ftid_base;
4064 		}
4065 		adap->vres.ddp.start = val[3];
4066 		adap->vres.ddp.size = val[4] - val[3] + 1;
4067 		adap->params.ofldq_wr_cred = val[5];
4068 
4069 		adap->params.offload = 1;
4070 	}
4071 	if (caps_cmd.rdmacaps) {
4072 		params[0] = FW_PARAM_PFVF(STAG_START);
4073 		params[1] = FW_PARAM_PFVF(STAG_END);
4074 		params[2] = FW_PARAM_PFVF(RQ_START);
4075 		params[3] = FW_PARAM_PFVF(RQ_END);
4076 		params[4] = FW_PARAM_PFVF(PBL_START);
4077 		params[5] = FW_PARAM_PFVF(PBL_END);
4078 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4079 				      params, val);
4080 		if (ret < 0)
4081 			goto bye;
4082 		adap->vres.stag.start = val[0];
4083 		adap->vres.stag.size = val[1] - val[0] + 1;
4084 		adap->vres.rq.start = val[2];
4085 		adap->vres.rq.size = val[3] - val[2] + 1;
4086 		adap->vres.pbl.start = val[4];
4087 		adap->vres.pbl.size = val[5] - val[4] + 1;
4088 
4089 		params[0] = FW_PARAM_PFVF(SQRQ_START);
4090 		params[1] = FW_PARAM_PFVF(SQRQ_END);
4091 		params[2] = FW_PARAM_PFVF(CQ_START);
4092 		params[3] = FW_PARAM_PFVF(CQ_END);
4093 		params[4] = FW_PARAM_PFVF(OCQ_START);
4094 		params[5] = FW_PARAM_PFVF(OCQ_END);
4095 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4096 				      val);
4097 		if (ret < 0)
4098 			goto bye;
4099 		adap->vres.qp.start = val[0];
4100 		adap->vres.qp.size = val[1] - val[0] + 1;
4101 		adap->vres.cq.start = val[2];
4102 		adap->vres.cq.size = val[3] - val[2] + 1;
4103 		adap->vres.ocq.start = val[4];
4104 		adap->vres.ocq.size = val[5] - val[4] + 1;
4105 
4106 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4107 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4108 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4109 				      val);
4110 		if (ret < 0) {
4111 			adap->params.max_ordird_qp = 8;
4112 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4113 			ret = 0;
4114 		} else {
4115 			adap->params.max_ordird_qp = val[0];
4116 			adap->params.max_ird_adapter = val[1];
4117 		}
4118 		dev_info(adap->pdev_dev,
4119 			 "max_ordird_qp %d max_ird_adapter %d\n",
4120 			 adap->params.max_ordird_qp,
4121 			 adap->params.max_ird_adapter);
4122 	}
4123 	if (caps_cmd.iscsicaps) {
4124 		params[0] = FW_PARAM_PFVF(ISCSI_START);
4125 		params[1] = FW_PARAM_PFVF(ISCSI_END);
4126 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4127 				      params, val);
4128 		if (ret < 0)
4129 			goto bye;
4130 		adap->vres.iscsi.start = val[0];
4131 		adap->vres.iscsi.size = val[1] - val[0] + 1;
4132 	}
4133 #undef FW_PARAM_PFVF
4134 #undef FW_PARAM_DEV
4135 
4136 	/* The MTU/MSS Table is initialized by now, so load their values.  If
4137 	 * we're initializing the adapter, then we'll make any modifications
4138 	 * we want to the MTU/MSS Table and also initialize the congestion
4139 	 * parameters.
4140 	 */
4141 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4142 	if (state != DEV_STATE_INIT) {
4143 		int i;
4144 
4145 		/* The default MTU Table contains values 1492 and 1500.
4146 		 * However, for TCP, it's better to have two values which are
4147 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4148 		 * This allows us to have a TCP Data Payload which is a
4149 		 * multiple of 8 regardless of what combination of TCP Options
4150 		 * are in use (always a multiple of 4 bytes) which is
4151 		 * important for performance reasons.  For instance, if no
4152 		 * options are in use, then we have a 20-byte IP header and a
4153 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4154 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4155 		 * which is not a multiple of 8.  So using an MSS of 1488 in
4156 		 * this case results in a TCP Data Payload of 1448 bytes which
4157 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4158 		 * Stamps have been negotiated, then an MTU of 1500 bytes
4159 		 * results in a TCP Data Payload of 1448 bytes which, as
4160 		 * above, is a multiple of 8 bytes ...
4161 		 */
4162 		for (i = 0; i < NMTUS; i++)
4163 			if (adap->params.mtus[i] == 1492) {
4164 				adap->params.mtus[i] = 1488;
4165 				break;
4166 			}
4167 
4168 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4169 			     adap->params.b_wnd);
4170 	}
4171 	t4_init_sge_params(adap);
4172 	adap->flags |= FW_OK;
4173 	t4_init_tp_params(adap);
4174 	return 0;
4175 
4176 	/*
4177 	 * Something bad happened.  If a command timed out or failed with EIO
4178 	 * FW does not operate within its spec or something catastrophic
4179 	 * happened to HW/FW, stop issuing commands.
4180 	 */
4181 bye:
4182 	kfree(adap->sge.egr_map);
4183 	kfree(adap->sge.ingr_map);
4184 	kfree(adap->sge.starving_fl);
4185 	kfree(adap->sge.txq_maperr);
4186 #ifdef CONFIG_DEBUG_FS
4187 	kfree(adap->sge.blocked_fl);
4188 #endif
4189 	if (ret != -ETIMEDOUT && ret != -EIO)
4190 		t4_fw_bye(adap, adap->mbox);
4191 	return ret;
4192 }
4193 
4194 /* EEH callbacks */
4195 
4196 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4197 					 pci_channel_state_t state)
4198 {
4199 	int i;
4200 	struct adapter *adap = pci_get_drvdata(pdev);
4201 
4202 	if (!adap)
4203 		goto out;
4204 
4205 	rtnl_lock();
4206 	adap->flags &= ~FW_OK;
4207 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4208 	spin_lock(&adap->stats_lock);
4209 	for_each_port(adap, i) {
4210 		struct net_device *dev = adap->port[i];
4211 
4212 		netif_device_detach(dev);
4213 		netif_carrier_off(dev);
4214 	}
4215 	spin_unlock(&adap->stats_lock);
4216 	disable_interrupts(adap);
4217 	if (adap->flags & FULL_INIT_DONE)
4218 		cxgb_down(adap);
4219 	rtnl_unlock();
4220 	if ((adap->flags & DEV_ENABLED)) {
4221 		pci_disable_device(pdev);
4222 		adap->flags &= ~DEV_ENABLED;
4223 	}
4224 out:	return state == pci_channel_io_perm_failure ?
4225 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4226 }
4227 
4228 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4229 {
4230 	int i, ret;
4231 	struct fw_caps_config_cmd c;
4232 	struct adapter *adap = pci_get_drvdata(pdev);
4233 
4234 	if (!adap) {
4235 		pci_restore_state(pdev);
4236 		pci_save_state(pdev);
4237 		return PCI_ERS_RESULT_RECOVERED;
4238 	}
4239 
4240 	if (!(adap->flags & DEV_ENABLED)) {
4241 		if (pci_enable_device(pdev)) {
4242 			dev_err(&pdev->dev, "Cannot reenable PCI "
4243 					    "device after reset\n");
4244 			return PCI_ERS_RESULT_DISCONNECT;
4245 		}
4246 		adap->flags |= DEV_ENABLED;
4247 	}
4248 
4249 	pci_set_master(pdev);
4250 	pci_restore_state(pdev);
4251 	pci_save_state(pdev);
4252 	pci_cleanup_aer_uncorrect_error_status(pdev);
4253 
4254 	if (t4_wait_dev_ready(adap->regs) < 0)
4255 		return PCI_ERS_RESULT_DISCONNECT;
4256 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4257 		return PCI_ERS_RESULT_DISCONNECT;
4258 	adap->flags |= FW_OK;
4259 	if (adap_init1(adap, &c))
4260 		return PCI_ERS_RESULT_DISCONNECT;
4261 
4262 	for_each_port(adap, i) {
4263 		struct port_info *p = adap2pinfo(adap, i);
4264 
4265 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4266 				  NULL, NULL);
4267 		if (ret < 0)
4268 			return PCI_ERS_RESULT_DISCONNECT;
4269 		p->viid = ret;
4270 		p->xact_addr_filt = -1;
4271 	}
4272 
4273 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4274 		     adap->params.b_wnd);
4275 	setup_memwin(adap);
4276 	if (cxgb_up(adap))
4277 		return PCI_ERS_RESULT_DISCONNECT;
4278 	return PCI_ERS_RESULT_RECOVERED;
4279 }
4280 
4281 static void eeh_resume(struct pci_dev *pdev)
4282 {
4283 	int i;
4284 	struct adapter *adap = pci_get_drvdata(pdev);
4285 
4286 	if (!adap)
4287 		return;
4288 
4289 	rtnl_lock();
4290 	for_each_port(adap, i) {
4291 		struct net_device *dev = adap->port[i];
4292 
4293 		if (netif_running(dev)) {
4294 			link_start(dev);
4295 			cxgb_set_rxmode(dev);
4296 		}
4297 		netif_device_attach(dev);
4298 	}
4299 	rtnl_unlock();
4300 }
4301 
4302 static const struct pci_error_handlers cxgb4_eeh = {
4303 	.error_detected = eeh_err_detected,
4304 	.slot_reset     = eeh_slot_reset,
4305 	.resume         = eeh_resume,
4306 };
4307 
4308 static inline bool is_x_10g_port(const struct link_config *lc)
4309 {
4310 	return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4311 	       (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4312 }
4313 
4314 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4315 			     unsigned int us, unsigned int cnt,
4316 			     unsigned int size, unsigned int iqe_size)
4317 {
4318 	q->adap = adap;
4319 	cxgb4_set_rspq_intr_params(q, us, cnt);
4320 	q->iqe_len = iqe_size;
4321 	q->size = size;
4322 }
4323 
4324 /*
4325  * Perform default configuration of DMA queues depending on the number and type
4326  * of ports we found and the number of available CPUs.  Most settings can be
4327  * modified by the admin prior to actual use.
4328  */
4329 static void cfg_queues(struct adapter *adap)
4330 {
4331 	struct sge *s = &adap->sge;
4332 	int i, n10g = 0, qidx = 0;
4333 #ifndef CONFIG_CHELSIO_T4_DCB
4334 	int q10g = 0;
4335 #endif
4336 	int ciq_size;
4337 
4338 	/* Reduce memory usage in kdump environment, disable all offload.
4339 	 */
4340 	if (is_kdump_kernel())
4341 		adap->params.offload = 0;
4342 
4343 	for_each_port(adap, i)
4344 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4345 #ifdef CONFIG_CHELSIO_T4_DCB
4346 	/* For Data Center Bridging support we need to be able to support up
4347 	 * to 8 Traffic Priorities; each of which will be assigned to its
4348 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4349 	 */
4350 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4351 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4352 			MAX_ETH_QSETS, adap->params.nports * 8);
4353 		BUG_ON(1);
4354 	}
4355 
4356 	for_each_port(adap, i) {
4357 		struct port_info *pi = adap2pinfo(adap, i);
4358 
4359 		pi->first_qset = qidx;
4360 		pi->nqsets = 8;
4361 		qidx += pi->nqsets;
4362 	}
4363 #else /* !CONFIG_CHELSIO_T4_DCB */
4364 	/*
4365 	 * We default to 1 queue per non-10G port and up to # of cores queues
4366 	 * per 10G port.
4367 	 */
4368 	if (n10g)
4369 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4370 	if (q10g > netif_get_num_default_rss_queues())
4371 		q10g = netif_get_num_default_rss_queues();
4372 
4373 	for_each_port(adap, i) {
4374 		struct port_info *pi = adap2pinfo(adap, i);
4375 
4376 		pi->first_qset = qidx;
4377 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4378 		qidx += pi->nqsets;
4379 	}
4380 #endif /* !CONFIG_CHELSIO_T4_DCB */
4381 
4382 	s->ethqsets = qidx;
4383 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4384 
4385 	if (is_offload(adap)) {
4386 		/*
4387 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4388 		 * otherwise we divide all available queues amongst the channels
4389 		 * capped by the number of available cores.
4390 		 */
4391 		if (n10g) {
4392 			i = min_t(int, ARRAY_SIZE(s->iscsirxq),
4393 				  num_online_cpus());
4394 			s->iscsiqsets = roundup(i, adap->params.nports);
4395 		} else
4396 			s->iscsiqsets = adap->params.nports;
4397 		/* For RDMA one Rx queue per channel suffices */
4398 		s->rdmaqs = adap->params.nports;
4399 		/* Try and allow at least 1 CIQ per cpu rounding down
4400 		 * to the number of ports, with a minimum of 1 per port.
4401 		 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4402 		 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4403 		 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4404 		 */
4405 		s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4406 		s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4407 				adap->params.nports;
4408 		s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4409 
4410 		if (!is_t4(adap->params.chip))
4411 			s->niscsitq = s->iscsiqsets;
4412 	}
4413 
4414 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4415 		struct sge_eth_rxq *r = &s->ethrxq[i];
4416 
4417 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4418 		r->fl.size = 72;
4419 	}
4420 
4421 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4422 		s->ethtxq[i].q.size = 1024;
4423 
4424 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4425 		s->ctrlq[i].q.size = 512;
4426 
4427 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4428 		s->ofldtxq[i].q.size = 1024;
4429 
4430 	for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) {
4431 		struct sge_ofld_rxq *r = &s->iscsirxq[i];
4432 
4433 		init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4434 		r->rspq.uld = CXGB4_ULD_ISCSI;
4435 		r->fl.size = 72;
4436 	}
4437 
4438 	if (!is_t4(adap->params.chip)) {
4439 		for (i = 0; i < ARRAY_SIZE(s->iscsitrxq); i++) {
4440 			struct sge_ofld_rxq *r = &s->iscsitrxq[i];
4441 
4442 			init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4443 			r->rspq.uld = CXGB4_ULD_ISCSIT;
4444 			r->fl.size = 72;
4445 		}
4446 	}
4447 
4448 	for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4449 		struct sge_ofld_rxq *r = &s->rdmarxq[i];
4450 
4451 		init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4452 		r->rspq.uld = CXGB4_ULD_RDMA;
4453 		r->fl.size = 72;
4454 	}
4455 
4456 	ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4457 	if (ciq_size > SGE_MAX_IQ_SIZE) {
4458 		CH_WARN(adap, "CIQ size too small for available IQs\n");
4459 		ciq_size = SGE_MAX_IQ_SIZE;
4460 	}
4461 
4462 	for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4463 		struct sge_ofld_rxq *r = &s->rdmaciq[i];
4464 
4465 		init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4466 		r->rspq.uld = CXGB4_ULD_RDMA;
4467 	}
4468 
4469 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4470 	init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4471 }
4472 
4473 /*
4474  * Reduce the number of Ethernet queues across all ports to at most n.
4475  * n provides at least one queue per port.
4476  */
4477 static void reduce_ethqs(struct adapter *adap, int n)
4478 {
4479 	int i;
4480 	struct port_info *pi;
4481 
4482 	while (n < adap->sge.ethqsets)
4483 		for_each_port(adap, i) {
4484 			pi = adap2pinfo(adap, i);
4485 			if (pi->nqsets > 1) {
4486 				pi->nqsets--;
4487 				adap->sge.ethqsets--;
4488 				if (adap->sge.ethqsets <= n)
4489 					break;
4490 			}
4491 		}
4492 
4493 	n = 0;
4494 	for_each_port(adap, i) {
4495 		pi = adap2pinfo(adap, i);
4496 		pi->first_qset = n;
4497 		n += pi->nqsets;
4498 	}
4499 }
4500 
4501 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4502 #define EXTRA_VECS 2
4503 
4504 static int enable_msix(struct adapter *adap)
4505 {
4506 	int ofld_need = 0;
4507 	int i, want, need, allocated;
4508 	struct sge *s = &adap->sge;
4509 	unsigned int nchan = adap->params.nports;
4510 	struct msix_entry *entries;
4511 
4512 	entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4513 			  GFP_KERNEL);
4514 	if (!entries)
4515 		return -ENOMEM;
4516 
4517 	for (i = 0; i < MAX_INGQ + 1; ++i)
4518 		entries[i].entry = i;
4519 
4520 	want = s->max_ethqsets + EXTRA_VECS;
4521 	if (is_offload(adap)) {
4522 		want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets	+
4523 			s->niscsitq;
4524 		/* need nchan for each possible ULD */
4525 		if (is_t4(adap->params.chip))
4526 			ofld_need = 3 * nchan;
4527 		else
4528 			ofld_need = 4 * nchan;
4529 	}
4530 #ifdef CONFIG_CHELSIO_T4_DCB
4531 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4532 	 * each port.
4533 	 */
4534 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4535 #else
4536 	need = adap->params.nports + EXTRA_VECS + ofld_need;
4537 #endif
4538 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4539 	if (allocated < 0) {
4540 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4541 			 " not using MSI-X\n");
4542 		kfree(entries);
4543 		return allocated;
4544 	}
4545 
4546 	/* Distribute available vectors to the various queue groups.
4547 	 * Every group gets its minimum requirement and NIC gets top
4548 	 * priority for leftovers.
4549 	 */
4550 	i = allocated - EXTRA_VECS - ofld_need;
4551 	if (i < s->max_ethqsets) {
4552 		s->max_ethqsets = i;
4553 		if (i < s->ethqsets)
4554 			reduce_ethqs(adap, i);
4555 	}
4556 	if (is_offload(adap)) {
4557 		if (allocated < want) {
4558 			s->rdmaqs = nchan;
4559 			s->rdmaciqs = nchan;
4560 
4561 			if (!is_t4(adap->params.chip))
4562 				s->niscsitq = nchan;
4563 		}
4564 
4565 		/* leftovers go to OFLD */
4566 		i = allocated - EXTRA_VECS - s->max_ethqsets -
4567 		    s->rdmaqs - s->rdmaciqs - s->niscsitq;
4568 		s->iscsiqsets = (i / nchan) * nchan;  /* round down */
4569 
4570 	}
4571 	for (i = 0; i < allocated; ++i)
4572 		adap->msix_info[i].vec = entries[i].vector;
4573 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4574 		 "nic %d iscsi %d rdma cpl %d rdma ciq %d\n",
4575 		 allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs,
4576 		 s->rdmaciqs);
4577 
4578 	kfree(entries);
4579 	return 0;
4580 }
4581 
4582 #undef EXTRA_VECS
4583 
4584 static int init_rss(struct adapter *adap)
4585 {
4586 	unsigned int i;
4587 	int err;
4588 
4589 	err = t4_init_rss_mode(adap, adap->mbox);
4590 	if (err)
4591 		return err;
4592 
4593 	for_each_port(adap, i) {
4594 		struct port_info *pi = adap2pinfo(adap, i);
4595 
4596 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4597 		if (!pi->rss)
4598 			return -ENOMEM;
4599 	}
4600 	return 0;
4601 }
4602 
4603 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4604 					enum pci_bus_speed *speed,
4605 					enum pcie_link_width *width)
4606 {
4607 	u32 lnkcap1, lnkcap2;
4608 	int err1, err2;
4609 
4610 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4611 
4612 	*speed = PCI_SPEED_UNKNOWN;
4613 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4614 
4615 	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4616 					  &lnkcap1);
4617 	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4618 					  &lnkcap2);
4619 	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4620 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4621 			*speed = PCIE_SPEED_8_0GT;
4622 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4623 			*speed = PCIE_SPEED_5_0GT;
4624 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4625 			*speed = PCIE_SPEED_2_5GT;
4626 	}
4627 	if (!err1) {
4628 		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4629 		if (!lnkcap2) { /* pre-r3.0 */
4630 			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4631 				*speed = PCIE_SPEED_5_0GT;
4632 			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4633 				*speed = PCIE_SPEED_2_5GT;
4634 		}
4635 	}
4636 
4637 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4638 		return err1 ? err1 : err2 ? err2 : -EINVAL;
4639 	return 0;
4640 }
4641 
4642 static void cxgb4_check_pcie_caps(struct adapter *adap)
4643 {
4644 	enum pcie_link_width width, width_cap;
4645 	enum pci_bus_speed speed, speed_cap;
4646 
4647 #define PCIE_SPEED_STR(speed) \
4648 	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4649 	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4650 	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4651 	 "Unknown")
4652 
4653 	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4654 		dev_warn(adap->pdev_dev,
4655 			 "Unable to determine PCIe device BW capabilities\n");
4656 		return;
4657 	}
4658 
4659 	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4660 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4661 		dev_warn(adap->pdev_dev,
4662 			 "Unable to determine PCI Express bandwidth.\n");
4663 		return;
4664 	}
4665 
4666 	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4667 		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4668 	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4669 		 width, width_cap);
4670 	if (speed < speed_cap || width < width_cap)
4671 		dev_info(adap->pdev_dev,
4672 			 "A slot with more lanes and/or higher speed is "
4673 			 "suggested for optimal performance.\n");
4674 }
4675 
4676 /* Dump basic information about the adapter */
4677 static void print_adapter_info(struct adapter *adapter)
4678 {
4679 	/* Device information */
4680 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4681 		 adapter->params.vpd.id,
4682 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4683 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4684 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
4685 
4686 	/* Firmware Version */
4687 	if (!adapter->params.fw_vers)
4688 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4689 	else
4690 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4691 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4692 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4693 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4694 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4695 
4696 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4697 	 * Firmware, so dev_info() is more appropriate here.)
4698 	 */
4699 	if (!adapter->params.bs_vers)
4700 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4701 	else
4702 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4703 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4704 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4705 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4706 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4707 
4708 	/* TP Microcode Version */
4709 	if (!adapter->params.tp_vers)
4710 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4711 	else
4712 		dev_info(adapter->pdev_dev,
4713 			 "TP Microcode version: %u.%u.%u.%u\n",
4714 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4715 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4716 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4717 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4718 
4719 	/* Expansion ROM version */
4720 	if (!adapter->params.er_vers)
4721 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4722 	else
4723 		dev_info(adapter->pdev_dev,
4724 			 "Expansion ROM version: %u.%u.%u.%u\n",
4725 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4726 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4727 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4728 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4729 
4730 	/* Software/Hardware configuration */
4731 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4732 		 is_offload(adapter) ? "R" : "",
4733 		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4734 		  (adapter->flags & USING_MSI) ? "MSI" : ""),
4735 		 is_offload(adapter) ? "Offload" : "non-Offload");
4736 }
4737 
4738 static void print_port_info(const struct net_device *dev)
4739 {
4740 	char buf[80];
4741 	char *bufp = buf;
4742 	const char *spd = "";
4743 	const struct port_info *pi = netdev_priv(dev);
4744 	const struct adapter *adap = pi->adapter;
4745 
4746 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4747 		spd = " 2.5 GT/s";
4748 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4749 		spd = " 5 GT/s";
4750 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4751 		spd = " 8 GT/s";
4752 
4753 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4754 		bufp += sprintf(bufp, "100/");
4755 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4756 		bufp += sprintf(bufp, "1000/");
4757 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4758 		bufp += sprintf(bufp, "10G/");
4759 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4760 		bufp += sprintf(bufp, "40G/");
4761 	if (bufp != buf)
4762 		--bufp;
4763 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4764 
4765 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4766 		    dev->name, adap->params.vpd.id, adap->name, buf);
4767 }
4768 
4769 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4770 {
4771 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4772 }
4773 
4774 /*
4775  * Free the following resources:
4776  * - memory used for tables
4777  * - MSI/MSI-X
4778  * - net devices
4779  * - resources FW is holding for us
4780  */
4781 static void free_some_resources(struct adapter *adapter)
4782 {
4783 	unsigned int i;
4784 
4785 	t4_free_mem(adapter->l2t);
4786 	t4_free_mem(adapter->tids.tid_tab);
4787 	kfree(adapter->sge.egr_map);
4788 	kfree(adapter->sge.ingr_map);
4789 	kfree(adapter->sge.starving_fl);
4790 	kfree(adapter->sge.txq_maperr);
4791 #ifdef CONFIG_DEBUG_FS
4792 	kfree(adapter->sge.blocked_fl);
4793 #endif
4794 	disable_msi(adapter);
4795 
4796 	for_each_port(adapter, i)
4797 		if (adapter->port[i]) {
4798 			struct port_info *pi = adap2pinfo(adapter, i);
4799 
4800 			if (pi->viid != 0)
4801 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
4802 					   0, pi->viid);
4803 			kfree(adap2pinfo(adapter, i)->rss);
4804 			free_netdev(adapter->port[i]);
4805 		}
4806 	if (adapter->flags & FW_OK)
4807 		t4_fw_bye(adapter, adapter->pf);
4808 }
4809 
4810 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4811 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4812 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4813 #define SEGMENT_SIZE 128
4814 
4815 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4816 {
4817 	u16 device_id;
4818 
4819 	/* Retrieve adapter's device ID */
4820 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4821 
4822 	switch (device_id >> 12) {
4823 	case CHELSIO_T4:
4824 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4825 	case CHELSIO_T5:
4826 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4827 	case CHELSIO_T6:
4828 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4829 	default:
4830 		dev_err(&pdev->dev, "Device %d is not supported\n",
4831 			device_id);
4832 	}
4833 	return -EINVAL;
4834 }
4835 
4836 #ifdef CONFIG_PCI_IOV
4837 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4838 {
4839 	int err = 0;
4840 	int current_vfs = pci_num_vf(pdev);
4841 	u32 pcie_fw;
4842 	void __iomem *regs;
4843 
4844 	regs = pci_ioremap_bar(pdev, 0);
4845 	if (!regs) {
4846 		dev_err(&pdev->dev, "cannot map device registers\n");
4847 		return -ENOMEM;
4848 	}
4849 
4850 	pcie_fw = readl(regs + PCIE_FW_A);
4851 	iounmap(regs);
4852 	/* Check if cxgb4 is the MASTER and fw is initialized */
4853 	if (!(pcie_fw & PCIE_FW_INIT_F) ||
4854 	    !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4855 	    PCIE_FW_MASTER_G(pcie_fw) != 4) {
4856 		dev_warn(&pdev->dev,
4857 			 "cxgb4 driver needs to be MASTER to support SRIOV\n");
4858 		return -EOPNOTSUPP;
4859 	}
4860 
4861 	/* If any of the VF's is already assigned to Guest OS, then
4862 	 * SRIOV for the same cannot be modified
4863 	 */
4864 	if (current_vfs && pci_vfs_assigned(pdev)) {
4865 		dev_err(&pdev->dev,
4866 			"Cannot modify SR-IOV while VFs are assigned\n");
4867 		num_vfs = current_vfs;
4868 		return num_vfs;
4869 	}
4870 
4871 	/* Disable SRIOV when zero is passed.
4872 	 * One needs to disable SRIOV before modifying it, else
4873 	 * stack throws the below warning:
4874 	 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4875 	 */
4876 	if (!num_vfs) {
4877 		pci_disable_sriov(pdev);
4878 		return num_vfs;
4879 	}
4880 
4881 	if (num_vfs != current_vfs) {
4882 		err = pci_enable_sriov(pdev, num_vfs);
4883 		if (err)
4884 			return err;
4885 	}
4886 	return num_vfs;
4887 }
4888 #endif
4889 
4890 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4891 {
4892 	int func, i, err, s_qpp, qpp, num_seg;
4893 	struct port_info *pi;
4894 	bool highdma = false;
4895 	struct adapter *adapter = NULL;
4896 	void __iomem *regs;
4897 	u32 whoami, pl_rev;
4898 	enum chip_type chip;
4899 
4900 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4901 
4902 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4903 	if (err) {
4904 		/* Just info, some other driver may have claimed the device. */
4905 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4906 		return err;
4907 	}
4908 
4909 	err = pci_enable_device(pdev);
4910 	if (err) {
4911 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4912 		goto out_release_regions;
4913 	}
4914 
4915 	regs = pci_ioremap_bar(pdev, 0);
4916 	if (!regs) {
4917 		dev_err(&pdev->dev, "cannot map device registers\n");
4918 		err = -ENOMEM;
4919 		goto out_disable_device;
4920 	}
4921 
4922 	err = t4_wait_dev_ready(regs);
4923 	if (err < 0)
4924 		goto out_unmap_bar0;
4925 
4926 	/* We control everything through one PF */
4927 	whoami = readl(regs + PL_WHOAMI_A);
4928 	pl_rev = REV_G(readl(regs + PL_REV_A));
4929 	chip = get_chip_type(pdev, pl_rev);
4930 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4931 		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4932 	if (func != ent->driver_data) {
4933 		iounmap(regs);
4934 		pci_disable_device(pdev);
4935 		pci_save_state(pdev);        /* to restore SR-IOV later */
4936 		goto sriov;
4937 	}
4938 
4939 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4940 		highdma = true;
4941 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4942 		if (err) {
4943 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4944 				"coherent allocations\n");
4945 			goto out_unmap_bar0;
4946 		}
4947 	} else {
4948 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4949 		if (err) {
4950 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4951 			goto out_unmap_bar0;
4952 		}
4953 	}
4954 
4955 	pci_enable_pcie_error_reporting(pdev);
4956 	enable_pcie_relaxed_ordering(pdev);
4957 	pci_set_master(pdev);
4958 	pci_save_state(pdev);
4959 
4960 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4961 	if (!adapter) {
4962 		err = -ENOMEM;
4963 		goto out_unmap_bar0;
4964 	}
4965 
4966 	adapter->workq = create_singlethread_workqueue("cxgb4");
4967 	if (!adapter->workq) {
4968 		err = -ENOMEM;
4969 		goto out_free_adapter;
4970 	}
4971 
4972 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4973 				    (sizeof(struct mbox_cmd) *
4974 				     T4_OS_LOG_MBOX_CMDS),
4975 				    GFP_KERNEL);
4976 	if (!adapter->mbox_log) {
4977 		err = -ENOMEM;
4978 		goto out_free_adapter;
4979 	}
4980 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4981 
4982 	/* PCI device has been enabled */
4983 	adapter->flags |= DEV_ENABLED;
4984 
4985 	adapter->regs = regs;
4986 	adapter->pdev = pdev;
4987 	adapter->pdev_dev = &pdev->dev;
4988 	adapter->name = pci_name(pdev);
4989 	adapter->mbox = func;
4990 	adapter->pf = func;
4991 	adapter->msg_enable = dflt_msg_enable;
4992 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4993 
4994 	spin_lock_init(&adapter->stats_lock);
4995 	spin_lock_init(&adapter->tid_release_lock);
4996 	spin_lock_init(&adapter->win0_lock);
4997 
4998 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4999 	INIT_WORK(&adapter->db_full_task, process_db_full);
5000 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
5001 
5002 	err = t4_prep_adapter(adapter);
5003 	if (err)
5004 		goto out_free_adapter;
5005 
5006 
5007 	if (!is_t4(adapter->params.chip)) {
5008 		s_qpp = (QUEUESPERPAGEPF0_S +
5009 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5010 			adapter->pf);
5011 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5012 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5013 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
5014 
5015 		/* Each segment size is 128B. Write coalescing is enabled only
5016 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5017 		 * queue is less no of segments that can be accommodated in
5018 		 * a page size.
5019 		 */
5020 		if (qpp > num_seg) {
5021 			dev_err(&pdev->dev,
5022 				"Incorrect number of egress queues per page\n");
5023 			err = -EINVAL;
5024 			goto out_free_adapter;
5025 		}
5026 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5027 		pci_resource_len(pdev, 2));
5028 		if (!adapter->bar2) {
5029 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
5030 			err = -ENOMEM;
5031 			goto out_free_adapter;
5032 		}
5033 	}
5034 
5035 	setup_memwin(adapter);
5036 	err = adap_init0(adapter);
5037 #ifdef CONFIG_DEBUG_FS
5038 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5039 #endif
5040 	setup_memwin_rdma(adapter);
5041 	if (err)
5042 		goto out_unmap_bar;
5043 
5044 	/* configure SGE_STAT_CFG_A to read WC stats */
5045 	if (!is_t4(adapter->params.chip))
5046 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5047 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5048 			      T6_STATMODE_V(0)));
5049 
5050 	for_each_port(adapter, i) {
5051 		struct net_device *netdev;
5052 
5053 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
5054 					   MAX_ETH_QSETS);
5055 		if (!netdev) {
5056 			err = -ENOMEM;
5057 			goto out_free_dev;
5058 		}
5059 
5060 		SET_NETDEV_DEV(netdev, &pdev->dev);
5061 
5062 		adapter->port[i] = netdev;
5063 		pi = netdev_priv(netdev);
5064 		pi->adapter = adapter;
5065 		pi->xact_addr_filt = -1;
5066 		pi->port_id = i;
5067 		netdev->irq = pdev->irq;
5068 
5069 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5070 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5071 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
5072 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
5073 		if (highdma)
5074 			netdev->hw_features |= NETIF_F_HIGHDMA;
5075 		netdev->features |= netdev->hw_features;
5076 		netdev->vlan_features = netdev->features & VLAN_FEAT;
5077 
5078 		netdev->priv_flags |= IFF_UNICAST_FLT;
5079 
5080 		netdev->netdev_ops = &cxgb4_netdev_ops;
5081 #ifdef CONFIG_CHELSIO_T4_DCB
5082 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
5083 		cxgb4_dcb_state_init(netdev);
5084 #endif
5085 		cxgb4_set_ethtool_ops(netdev);
5086 	}
5087 
5088 	pci_set_drvdata(pdev, adapter);
5089 
5090 	if (adapter->flags & FW_OK) {
5091 		err = t4_port_init(adapter, func, func, 0);
5092 		if (err)
5093 			goto out_free_dev;
5094 	} else if (adapter->params.nports == 1) {
5095 		/* If we don't have a connection to the firmware -- possibly
5096 		 * because of an error -- grab the raw VPD parameters so we
5097 		 * can set the proper MAC Address on the debug network
5098 		 * interface that we've created.
5099 		 */
5100 		u8 hw_addr[ETH_ALEN];
5101 		u8 *na = adapter->params.vpd.na;
5102 
5103 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5104 		if (!err) {
5105 			for (i = 0; i < ETH_ALEN; i++)
5106 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5107 					      hex2val(na[2 * i + 1]));
5108 			t4_set_hw_addr(adapter, 0, hw_addr);
5109 		}
5110 	}
5111 
5112 	/* Configure queues and allocate tables now, they can be needed as
5113 	 * soon as the first register_netdev completes.
5114 	 */
5115 	cfg_queues(adapter);
5116 
5117 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5118 	if (!adapter->l2t) {
5119 		/* We tolerate a lack of L2T, giving up some functionality */
5120 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5121 		adapter->params.offload = 0;
5122 	}
5123 
5124 #if IS_ENABLED(CONFIG_IPV6)
5125 	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5126 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5127 		/* CLIP functionality is not present in hardware,
5128 		 * hence disable all offload features
5129 		 */
5130 		dev_warn(&pdev->dev,
5131 			 "CLIP not enabled in hardware, continuing\n");
5132 		adapter->params.offload = 0;
5133 	} else {
5134 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5135 						  adapter->clipt_end);
5136 		if (!adapter->clipt) {
5137 			/* We tolerate a lack of clip_table, giving up
5138 			 * some functionality
5139 			 */
5140 			dev_warn(&pdev->dev,
5141 				 "could not allocate Clip table, continuing\n");
5142 			adapter->params.offload = 0;
5143 		}
5144 	}
5145 #endif
5146 	if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
5147 		dev_warn(&pdev->dev, "could not allocate TID table, "
5148 			 "continuing\n");
5149 		adapter->params.offload = 0;
5150 	}
5151 
5152 	if (is_offload(adapter)) {
5153 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5154 			u32 hash_base, hash_reg;
5155 
5156 			if (chip <= CHELSIO_T5) {
5157 				hash_reg = LE_DB_TID_HASHBASE_A;
5158 				hash_base = t4_read_reg(adapter, hash_reg);
5159 				adapter->tids.hash_base = hash_base / 4;
5160 			} else {
5161 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5162 				hash_base = t4_read_reg(adapter, hash_reg);
5163 				adapter->tids.hash_base = hash_base;
5164 			}
5165 		}
5166 	}
5167 
5168 	/* See what interrupts we'll be using */
5169 	if (msi > 1 && enable_msix(adapter) == 0)
5170 		adapter->flags |= USING_MSIX;
5171 	else if (msi > 0 && pci_enable_msi(pdev) == 0)
5172 		adapter->flags |= USING_MSI;
5173 
5174 	/* check for PCI Express bandwidth capabiltites */
5175 	cxgb4_check_pcie_caps(adapter);
5176 
5177 	err = init_rss(adapter);
5178 	if (err)
5179 		goto out_free_dev;
5180 
5181 	/*
5182 	 * The card is now ready to go.  If any errors occur during device
5183 	 * registration we do not fail the whole card but rather proceed only
5184 	 * with the ports we manage to register successfully.  However we must
5185 	 * register at least one net device.
5186 	 */
5187 	for_each_port(adapter, i) {
5188 		pi = adap2pinfo(adapter, i);
5189 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5190 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5191 
5192 		err = register_netdev(adapter->port[i]);
5193 		if (err)
5194 			break;
5195 		adapter->chan_map[pi->tx_chan] = i;
5196 		print_port_info(adapter->port[i]);
5197 	}
5198 	if (i == 0) {
5199 		dev_err(&pdev->dev, "could not register any net devices\n");
5200 		goto out_free_dev;
5201 	}
5202 	if (err) {
5203 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5204 		err = 0;
5205 	}
5206 
5207 	if (cxgb4_debugfs_root) {
5208 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5209 							   cxgb4_debugfs_root);
5210 		setup_debugfs(adapter);
5211 	}
5212 
5213 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5214 	pdev->needs_freset = 1;
5215 
5216 	if (is_offload(adapter))
5217 		attach_ulds(adapter);
5218 
5219 	print_adapter_info(adapter);
5220 
5221 sriov:
5222 #ifdef CONFIG_PCI_IOV
5223 	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) {
5224 		dev_warn(&pdev->dev,
5225 			 "Enabling SR-IOV VFs using the num_vf module "
5226 			 "parameter is deprecated - please use the pci sysfs "
5227 			 "interface instead.\n");
5228 		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5229 			dev_info(&pdev->dev,
5230 				 "instantiated %u virtual functions\n",
5231 				 num_vf[func]);
5232 	}
5233 #endif
5234 	return 0;
5235 
5236  out_free_dev:
5237 	free_some_resources(adapter);
5238  out_unmap_bar:
5239 	if (!is_t4(adapter->params.chip))
5240 		iounmap(adapter->bar2);
5241  out_free_adapter:
5242 	if (adapter->workq)
5243 		destroy_workqueue(adapter->workq);
5244 
5245 	kfree(adapter->mbox_log);
5246 	kfree(adapter);
5247  out_unmap_bar0:
5248 	iounmap(regs);
5249  out_disable_device:
5250 	pci_disable_pcie_error_reporting(pdev);
5251 	pci_disable_device(pdev);
5252  out_release_regions:
5253 	pci_release_regions(pdev);
5254 	return err;
5255 }
5256 
5257 static void remove_one(struct pci_dev *pdev)
5258 {
5259 	struct adapter *adapter = pci_get_drvdata(pdev);
5260 
5261 #ifdef CONFIG_PCI_IOV
5262 	pci_disable_sriov(pdev);
5263 
5264 #endif
5265 
5266 	if (adapter) {
5267 		int i;
5268 
5269 		/* Tear down per-adapter Work Queue first since it can contain
5270 		 * references to our adapter data structure.
5271 		 */
5272 		destroy_workqueue(adapter->workq);
5273 
5274 		if (is_offload(adapter))
5275 			detach_ulds(adapter);
5276 
5277 		disable_interrupts(adapter);
5278 
5279 		for_each_port(adapter, i)
5280 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5281 				unregister_netdev(adapter->port[i]);
5282 
5283 		debugfs_remove_recursive(adapter->debugfs_root);
5284 
5285 		/* If we allocated filters, free up state associated with any
5286 		 * valid filters ...
5287 		 */
5288 		if (adapter->tids.ftid_tab) {
5289 			struct filter_entry *f = &adapter->tids.ftid_tab[0];
5290 			for (i = 0; i < (adapter->tids.nftids +
5291 					adapter->tids.nsftids); i++, f++)
5292 				if (f->valid)
5293 					clear_filter(adapter, f);
5294 		}
5295 
5296 		if (adapter->flags & FULL_INIT_DONE)
5297 			cxgb_down(adapter);
5298 
5299 		free_some_resources(adapter);
5300 #if IS_ENABLED(CONFIG_IPV6)
5301 		t4_cleanup_clip_tbl(adapter);
5302 #endif
5303 		iounmap(adapter->regs);
5304 		if (!is_t4(adapter->params.chip))
5305 			iounmap(adapter->bar2);
5306 		pci_disable_pcie_error_reporting(pdev);
5307 		if ((adapter->flags & DEV_ENABLED)) {
5308 			pci_disable_device(pdev);
5309 			adapter->flags &= ~DEV_ENABLED;
5310 		}
5311 		pci_release_regions(pdev);
5312 		kfree(adapter->mbox_log);
5313 		synchronize_rcu();
5314 		kfree(adapter);
5315 	} else
5316 		pci_release_regions(pdev);
5317 }
5318 
5319 static struct pci_driver cxgb4_driver = {
5320 	.name     = KBUILD_MODNAME,
5321 	.id_table = cxgb4_pci_tbl,
5322 	.probe    = init_one,
5323 	.remove   = remove_one,
5324 	.shutdown = remove_one,
5325 #ifdef CONFIG_PCI_IOV
5326 	.sriov_configure = cxgb4_iov_configure,
5327 #endif
5328 	.err_handler = &cxgb4_eeh,
5329 };
5330 
5331 static int __init cxgb4_init_module(void)
5332 {
5333 	int ret;
5334 
5335 	/* Debugfs support is optional, just warn if this fails */
5336 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5337 	if (!cxgb4_debugfs_root)
5338 		pr_warn("could not create debugfs entry, continuing\n");
5339 
5340 	ret = pci_register_driver(&cxgb4_driver);
5341 	if (ret < 0)
5342 		debugfs_remove(cxgb4_debugfs_root);
5343 
5344 #if IS_ENABLED(CONFIG_IPV6)
5345 	if (!inet6addr_registered) {
5346 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5347 		inet6addr_registered = true;
5348 	}
5349 #endif
5350 
5351 	return ret;
5352 }
5353 
5354 static void __exit cxgb4_cleanup_module(void)
5355 {
5356 #if IS_ENABLED(CONFIG_IPV6)
5357 	if (inet6addr_registered) {
5358 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5359 		inet6addr_registered = false;
5360 	}
5361 #endif
5362 	pci_unregister_driver(&cxgb4_driver);
5363 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5364 }
5365 
5366 module_init(cxgb4_init_module);
5367 module_exit(cxgb4_cleanup_module);
5368