1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <asm/uaccess.h> 67 #include <linux/crash_dump.h> 68 69 #include "cxgb4.h" 70 #include "t4_regs.h" 71 #include "t4_values.h" 72 #include "t4_msg.h" 73 #include "t4fw_api.h" 74 #include "t4fw_version.h" 75 #include "cxgb4_dcb.h" 76 #include "cxgb4_debugfs.h" 77 #include "clip_tbl.h" 78 #include "l2t.h" 79 80 char cxgb4_driver_name[] = KBUILD_MODNAME; 81 82 #ifdef DRV_VERSION 83 #undef DRV_VERSION 84 #endif 85 #define DRV_VERSION "2.0.0-ko" 86 const char cxgb4_driver_version[] = DRV_VERSION; 87 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 88 89 /* Host shadow copy of ingress filter entry. This is in host native format 90 * and doesn't match the ordering or bit order, etc. of the hardware of the 91 * firmware command. The use of bit-field structure elements is purely to 92 * remind ourselves of the field size limitations and save memory in the case 93 * where the filter table is large. 94 */ 95 struct filter_entry { 96 /* Administrative fields for filter. 97 */ 98 u32 valid:1; /* filter allocated and valid */ 99 u32 locked:1; /* filter is administratively locked */ 100 101 u32 pending:1; /* filter action is pending firmware reply */ 102 u32 smtidx:8; /* Source MAC Table index for smac */ 103 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ 104 105 /* The filter itself. Most of this is a straight copy of information 106 * provided by the extended ioctl(). Some fields are translated to 107 * internal forms -- for instance the Ingress Queue ID passed in from 108 * the ioctl() is translated into the Absolute Ingress Queue ID. 109 */ 110 struct ch_filter_specification fs; 111 }; 112 113 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 114 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 115 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 116 117 /* Macros needed to support the PCI Device ID Table ... 118 */ 119 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 120 static const struct pci_device_id cxgb4_pci_tbl[] = { 121 #define CH_PCI_DEVICE_ID_FUNCTION 0x4 122 123 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 124 * called for both. 125 */ 126 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 127 128 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 129 {PCI_VDEVICE(CHELSIO, (devid)), 4} 130 131 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 132 { 0, } \ 133 } 134 135 #include "t4_pci_id_tbl.h" 136 137 #define FW4_FNAME "cxgb4/t4fw.bin" 138 #define FW5_FNAME "cxgb4/t5fw.bin" 139 #define FW6_FNAME "cxgb4/t6fw.bin" 140 #define FW4_CFNAME "cxgb4/t4-config.txt" 141 #define FW5_CFNAME "cxgb4/t5-config.txt" 142 #define FW6_CFNAME "cxgb4/t6-config.txt" 143 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 144 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 145 #define PHY_AQ1202_DEVICEID 0x4409 146 #define PHY_BCM84834_DEVICEID 0x4486 147 148 MODULE_DESCRIPTION(DRV_DESC); 149 MODULE_AUTHOR("Chelsio Communications"); 150 MODULE_LICENSE("Dual BSD/GPL"); 151 MODULE_VERSION(DRV_VERSION); 152 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 153 MODULE_FIRMWARE(FW4_FNAME); 154 MODULE_FIRMWARE(FW5_FNAME); 155 MODULE_FIRMWARE(FW6_FNAME); 156 157 /* 158 * Normally we're willing to become the firmware's Master PF but will be happy 159 * if another PF has already become the Master and initialized the adapter. 160 * Setting "force_init" will cause this driver to forcibly establish itself as 161 * the Master PF and initialize the adapter. 162 */ 163 static uint force_init; 164 165 module_param(force_init, uint, 0644); 166 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter," 167 "deprecated parameter"); 168 169 static int dflt_msg_enable = DFLT_MSG_ENABLE; 170 171 module_param(dflt_msg_enable, int, 0644); 172 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap, " 173 "deprecated parameter"); 174 175 /* 176 * The driver uses the best interrupt scheme available on a platform in the 177 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 178 * of these schemes the driver may consider as follows: 179 * 180 * msi = 2: choose from among all three options 181 * msi = 1: only consider MSI and INTx interrupts 182 * msi = 0: force INTx interrupts 183 */ 184 static int msi = 2; 185 186 module_param(msi, int, 0644); 187 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 188 189 /* 190 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 191 * offset by 2 bytes in order to have the IP headers line up on 4-byte 192 * boundaries. This is a requirement for many architectures which will throw 193 * a machine check fault if an attempt is made to access one of the 4-byte IP 194 * header fields on a non-4-byte boundary. And it's a major performance issue 195 * even on some architectures which allow it like some implementations of the 196 * x86 ISA. However, some architectures don't mind this and for some very 197 * edge-case performance sensitive applications (like forwarding large volumes 198 * of small packets), setting this DMA offset to 0 will decrease the number of 199 * PCI-E Bus transfers enough to measurably affect performance. 200 */ 201 static int rx_dma_offset = 2; 202 203 #ifdef CONFIG_PCI_IOV 204 /* Configure the number of PCI-E Virtual Function which are to be instantiated 205 * on SR-IOV Capable Physical Functions. 206 */ 207 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV]; 208 209 module_param_array(num_vf, uint, NULL, 0644); 210 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3, deprecated parameter - please use the pci sysfs interface."); 211 #endif 212 213 /* TX Queue select used to determine what algorithm to use for selecting TX 214 * queue. Select between the kernel provided function (select_queue=0) or user 215 * cxgb_select_queue function (select_queue=1) 216 * 217 * Default: select_queue=0 218 */ 219 static int select_queue; 220 module_param(select_queue, int, 0644); 221 MODULE_PARM_DESC(select_queue, 222 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 223 224 static struct dentry *cxgb4_debugfs_root; 225 226 static LIST_HEAD(adapter_list); 227 static DEFINE_MUTEX(uld_mutex); 228 /* Adapter list to be accessed from atomic context */ 229 static LIST_HEAD(adap_rcu_list); 230 static DEFINE_SPINLOCK(adap_rcu_lock); 231 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX]; 232 static const char *const uld_str[] = { "RDMA", "iSCSI", "iSCSIT" }; 233 234 static void link_report(struct net_device *dev) 235 { 236 if (!netif_carrier_ok(dev)) 237 netdev_info(dev, "link down\n"); 238 else { 239 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 240 241 const char *s; 242 const struct port_info *p = netdev_priv(dev); 243 244 switch (p->link_cfg.speed) { 245 case 10000: 246 s = "10Gbps"; 247 break; 248 case 1000: 249 s = "1000Mbps"; 250 break; 251 case 100: 252 s = "100Mbps"; 253 break; 254 case 40000: 255 s = "40Gbps"; 256 break; 257 default: 258 pr_info("%s: unsupported speed: %d\n", 259 dev->name, p->link_cfg.speed); 260 return; 261 } 262 263 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 264 fc[p->link_cfg.fc]); 265 } 266 } 267 268 #ifdef CONFIG_CHELSIO_T4_DCB 269 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 270 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 271 { 272 struct port_info *pi = netdev_priv(dev); 273 struct adapter *adap = pi->adapter; 274 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 275 int i; 276 277 /* We use a simple mapping of Port TX Queue Index to DCB 278 * Priority when we're enabling DCB. 279 */ 280 for (i = 0; i < pi->nqsets; i++, txq++) { 281 u32 name, value; 282 int err; 283 284 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 285 FW_PARAMS_PARAM_X_V( 286 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 287 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 288 value = enable ? i : 0xffffffff; 289 290 /* Since we can be called while atomic (from "interrupt 291 * level") we need to issue the Set Parameters Commannd 292 * without sleeping (timeout < 0). 293 */ 294 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 295 &name, &value, 296 -FW_CMD_MAX_TIMEOUT); 297 298 if (err) 299 dev_err(adap->pdev_dev, 300 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 301 enable ? "set" : "unset", pi->port_id, i, -err); 302 else 303 txq->dcb_prio = value; 304 } 305 } 306 #endif /* CONFIG_CHELSIO_T4_DCB */ 307 308 int cxgb4_dcb_enabled(const struct net_device *dev) 309 { 310 #ifdef CONFIG_CHELSIO_T4_DCB 311 struct port_info *pi = netdev_priv(dev); 312 313 if (!pi->dcb.enabled) 314 return 0; 315 316 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 317 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 318 #else 319 return 0; 320 #endif 321 } 322 EXPORT_SYMBOL(cxgb4_dcb_enabled); 323 324 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 325 { 326 struct net_device *dev = adapter->port[port_id]; 327 328 /* Skip changes from disabled ports. */ 329 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 330 if (link_stat) 331 netif_carrier_on(dev); 332 else { 333 #ifdef CONFIG_CHELSIO_T4_DCB 334 if (cxgb4_dcb_enabled(dev)) { 335 cxgb4_dcb_state_init(dev); 336 dcb_tx_queue_prio_enable(dev, false); 337 } 338 #endif /* CONFIG_CHELSIO_T4_DCB */ 339 netif_carrier_off(dev); 340 } 341 342 link_report(dev); 343 } 344 } 345 346 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 347 { 348 static const char *mod_str[] = { 349 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 350 }; 351 352 const struct net_device *dev = adap->port[port_id]; 353 const struct port_info *pi = netdev_priv(dev); 354 355 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 356 netdev_info(dev, "port module unplugged\n"); 357 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 358 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 359 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 360 netdev_info(dev, "%s: unsupported port module inserted\n", 361 dev->name); 362 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 363 netdev_info(dev, "%s: unknown port module inserted\n", 364 dev->name); 365 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 366 netdev_info(dev, "%s: transceiver module error\n", dev->name); 367 else 368 netdev_info(dev, "%s: unknown module type %d inserted\n", 369 dev->name, pi->mod_type); 370 } 371 372 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 373 module_param(dbfifo_int_thresh, int, 0644); 374 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 375 376 /* 377 * usecs to sleep while draining the dbfifo 378 */ 379 static int dbfifo_drain_delay = 1000; 380 module_param(dbfifo_drain_delay, int, 0644); 381 MODULE_PARM_DESC(dbfifo_drain_delay, 382 "usecs to sleep while draining the dbfifo"); 383 384 static inline int cxgb4_set_addr_hash(struct port_info *pi) 385 { 386 struct adapter *adap = pi->adapter; 387 u64 vec = 0; 388 bool ucast = false; 389 struct hash_mac_addr *entry; 390 391 /* Calculate the hash vector for the updated list and program it */ 392 list_for_each_entry(entry, &adap->mac_hlist, list) { 393 ucast |= is_unicast_ether_addr(entry->addr); 394 vec |= (1ULL << hash_mac_addr(entry->addr)); 395 } 396 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 397 vec, false); 398 } 399 400 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 401 { 402 struct port_info *pi = netdev_priv(netdev); 403 struct adapter *adap = pi->adapter; 404 int ret; 405 u64 mhash = 0; 406 u64 uhash = 0; 407 bool free = false; 408 bool ucast = is_unicast_ether_addr(mac_addr); 409 const u8 *maclist[1] = {mac_addr}; 410 struct hash_mac_addr *new_entry; 411 412 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 413 NULL, ucast ? &uhash : &mhash, false); 414 if (ret < 0) 415 goto out; 416 /* if hash != 0, then add the addr to hash addr list 417 * so on the end we will calculate the hash for the 418 * list and program it 419 */ 420 if (uhash || mhash) { 421 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 422 if (!new_entry) 423 return -ENOMEM; 424 ether_addr_copy(new_entry->addr, mac_addr); 425 list_add_tail(&new_entry->list, &adap->mac_hlist); 426 ret = cxgb4_set_addr_hash(pi); 427 } 428 out: 429 return ret < 0 ? ret : 0; 430 } 431 432 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 433 { 434 struct port_info *pi = netdev_priv(netdev); 435 struct adapter *adap = pi->adapter; 436 int ret; 437 const u8 *maclist[1] = {mac_addr}; 438 struct hash_mac_addr *entry, *tmp; 439 440 /* If the MAC address to be removed is in the hash addr 441 * list, delete it from the list and update hash vector 442 */ 443 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 444 if (ether_addr_equal(entry->addr, mac_addr)) { 445 list_del(&entry->list); 446 kfree(entry); 447 return cxgb4_set_addr_hash(pi); 448 } 449 } 450 451 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 452 return ret < 0 ? -EINVAL : 0; 453 } 454 455 /* 456 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 457 * If @mtu is -1 it is left unchanged. 458 */ 459 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 460 { 461 struct port_info *pi = netdev_priv(dev); 462 struct adapter *adapter = pi->adapter; 463 464 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 465 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 466 467 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 468 (dev->flags & IFF_PROMISC) ? 1 : 0, 469 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 470 sleep_ok); 471 } 472 473 /** 474 * link_start - enable a port 475 * @dev: the port to enable 476 * 477 * Performs the MAC and PHY actions needed to enable a port. 478 */ 479 static int link_start(struct net_device *dev) 480 { 481 int ret; 482 struct port_info *pi = netdev_priv(dev); 483 unsigned int mb = pi->adapter->pf; 484 485 /* 486 * We do not set address filters and promiscuity here, the stack does 487 * that step explicitly. 488 */ 489 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 490 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 491 if (ret == 0) { 492 ret = t4_change_mac(pi->adapter, mb, pi->viid, 493 pi->xact_addr_filt, dev->dev_addr, true, 494 true); 495 if (ret >= 0) { 496 pi->xact_addr_filt = ret; 497 ret = 0; 498 } 499 } 500 if (ret == 0) 501 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 502 &pi->link_cfg); 503 if (ret == 0) { 504 local_bh_disable(); 505 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true, 506 true, CXGB4_DCB_ENABLED); 507 local_bh_enable(); 508 } 509 510 return ret; 511 } 512 513 #ifdef CONFIG_CHELSIO_T4_DCB 514 /* Handle a Data Center Bridging update message from the firmware. */ 515 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 516 { 517 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 518 struct net_device *dev = adap->port[adap->chan_map[port]]; 519 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 520 int new_dcb_enabled; 521 522 cxgb4_dcb_handle_fw_update(adap, pcmd); 523 new_dcb_enabled = cxgb4_dcb_enabled(dev); 524 525 /* If the DCB has become enabled or disabled on the port then we're 526 * going to need to set up/tear down DCB Priority parameters for the 527 * TX Queues associated with the port. 528 */ 529 if (new_dcb_enabled != old_dcb_enabled) 530 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 531 } 532 #endif /* CONFIG_CHELSIO_T4_DCB */ 533 534 /* Clear a filter and release any of its resources that we own. This also 535 * clears the filter's "pending" status. 536 */ 537 static void clear_filter(struct adapter *adap, struct filter_entry *f) 538 { 539 /* If the new or old filter have loopback rewriteing rules then we'll 540 * need to free any existing Layer Two Table (L2T) entries of the old 541 * filter rule. The firmware will handle freeing up any Source MAC 542 * Table (SMT) entries used for rewriting Source MAC Addresses in 543 * loopback rules. 544 */ 545 if (f->l2t) 546 cxgb4_l2t_release(f->l2t); 547 548 /* The zeroing of the filter rule below clears the filter valid, 549 * pending, locked flags, l2t pointer, etc. so it's all we need for 550 * this operation. 551 */ 552 memset(f, 0, sizeof(*f)); 553 } 554 555 /* Handle a filter write/deletion reply. 556 */ 557 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl) 558 { 559 unsigned int idx = GET_TID(rpl); 560 unsigned int nidx = idx - adap->tids.ftid_base; 561 unsigned int ret; 562 struct filter_entry *f; 563 564 if (idx >= adap->tids.ftid_base && nidx < 565 (adap->tids.nftids + adap->tids.nsftids)) { 566 idx = nidx; 567 ret = TCB_COOKIE_G(rpl->cookie); 568 f = &adap->tids.ftid_tab[idx]; 569 570 if (ret == FW_FILTER_WR_FLT_DELETED) { 571 /* Clear the filter when we get confirmation from the 572 * hardware that the filter has been deleted. 573 */ 574 clear_filter(adap, f); 575 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) { 576 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n", 577 idx); 578 clear_filter(adap, f); 579 } else if (ret == FW_FILTER_WR_FLT_ADDED) { 580 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff; 581 f->pending = 0; /* asynchronous setup completed */ 582 f->valid = 1; 583 } else { 584 /* Something went wrong. Issue a warning about the 585 * problem and clear everything out. 586 */ 587 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n", 588 idx, ret); 589 clear_filter(adap, f); 590 } 591 } 592 } 593 594 /* Response queue handler for the FW event queue. 595 */ 596 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 597 const struct pkt_gl *gl) 598 { 599 u8 opcode = ((const struct rss_header *)rsp)->opcode; 600 601 rsp++; /* skip RSS header */ 602 603 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 604 */ 605 if (unlikely(opcode == CPL_FW4_MSG && 606 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 607 rsp++; 608 opcode = ((const struct rss_header *)rsp)->opcode; 609 rsp++; 610 if (opcode != CPL_SGE_EGR_UPDATE) { 611 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 612 , opcode); 613 goto out; 614 } 615 } 616 617 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 618 const struct cpl_sge_egr_update *p = (void *)rsp; 619 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 620 struct sge_txq *txq; 621 622 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 623 txq->restarts++; 624 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) { 625 struct sge_eth_txq *eq; 626 627 eq = container_of(txq, struct sge_eth_txq, q); 628 netif_tx_wake_queue(eq->txq); 629 } else { 630 struct sge_ofld_txq *oq; 631 632 oq = container_of(txq, struct sge_ofld_txq, q); 633 tasklet_schedule(&oq->qresume_tsk); 634 } 635 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 636 const struct cpl_fw6_msg *p = (void *)rsp; 637 638 #ifdef CONFIG_CHELSIO_T4_DCB 639 const struct fw_port_cmd *pcmd = (const void *)p->data; 640 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 641 unsigned int action = 642 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 643 644 if (cmd == FW_PORT_CMD && 645 action == FW_PORT_ACTION_GET_PORT_INFO) { 646 int port = FW_PORT_CMD_PORTID_G( 647 be32_to_cpu(pcmd->op_to_portid)); 648 struct net_device *dev = 649 q->adap->port[q->adap->chan_map[port]]; 650 int state_input = ((pcmd->u.info.dcbxdis_pkd & 651 FW_PORT_CMD_DCBXDIS_F) 652 ? CXGB4_DCB_INPUT_FW_DISABLED 653 : CXGB4_DCB_INPUT_FW_ENABLED); 654 655 cxgb4_dcb_state_fsm(dev, state_input); 656 } 657 658 if (cmd == FW_PORT_CMD && 659 action == FW_PORT_ACTION_L2_DCB_CFG) 660 dcb_rpl(q->adap, pcmd); 661 else 662 #endif 663 if (p->type == 0) 664 t4_handle_fw_rpl(q->adap, p->data); 665 } else if (opcode == CPL_L2T_WRITE_RPL) { 666 const struct cpl_l2t_write_rpl *p = (void *)rsp; 667 668 do_l2t_write_rpl(q->adap, p); 669 } else if (opcode == CPL_SET_TCB_RPL) { 670 const struct cpl_set_tcb_rpl *p = (void *)rsp; 671 672 filter_rpl(q->adap, p); 673 } else 674 dev_err(q->adap->pdev_dev, 675 "unexpected CPL %#x on FW event queue\n", opcode); 676 out: 677 return 0; 678 } 679 680 /* Flush the aggregated lro sessions */ 681 static void uldrx_flush_handler(struct sge_rspq *q) 682 { 683 if (ulds[q->uld].lro_flush) 684 ulds[q->uld].lro_flush(&q->lro_mgr); 685 } 686 687 /** 688 * uldrx_handler - response queue handler for ULD queues 689 * @q: the response queue that received the packet 690 * @rsp: the response queue descriptor holding the offload message 691 * @gl: the gather list of packet fragments 692 * 693 * Deliver an ingress offload packet to a ULD. All processing is done by 694 * the ULD, we just maintain statistics. 695 */ 696 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp, 697 const struct pkt_gl *gl) 698 { 699 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq); 700 int ret; 701 702 /* FW can send CPLs encapsulated in a CPL_FW4_MSG. 703 */ 704 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG && 705 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL) 706 rsp += 2; 707 708 if (q->flush_handler) 709 ret = ulds[q->uld].lro_rx_handler(q->adap->uld_handle[q->uld], 710 rsp, gl, &q->lro_mgr, 711 &q->napi); 712 else 713 ret = ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], 714 rsp, gl); 715 716 if (ret) { 717 rxq->stats.nomem++; 718 return -1; 719 } 720 721 if (gl == NULL) 722 rxq->stats.imm++; 723 else if (gl == CXGB4_MSG_AN) 724 rxq->stats.an++; 725 else 726 rxq->stats.pkts++; 727 return 0; 728 } 729 730 static void disable_msi(struct adapter *adapter) 731 { 732 if (adapter->flags & USING_MSIX) { 733 pci_disable_msix(adapter->pdev); 734 adapter->flags &= ~USING_MSIX; 735 } else if (adapter->flags & USING_MSI) { 736 pci_disable_msi(adapter->pdev); 737 adapter->flags &= ~USING_MSI; 738 } 739 } 740 741 /* 742 * Interrupt handler for non-data events used with MSI-X. 743 */ 744 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 745 { 746 struct adapter *adap = cookie; 747 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 748 749 if (v & PFSW_F) { 750 adap->swintr = 1; 751 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 752 } 753 if (adap->flags & MASTER_PF) 754 t4_slow_intr_handler(adap); 755 return IRQ_HANDLED; 756 } 757 758 /* 759 * Name the MSI-X interrupts. 760 */ 761 static void name_msix_vecs(struct adapter *adap) 762 { 763 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 764 765 /* non-data interrupts */ 766 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 767 768 /* FW events */ 769 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 770 adap->port[0]->name); 771 772 /* Ethernet queues */ 773 for_each_port(adap, j) { 774 struct net_device *d = adap->port[j]; 775 const struct port_info *pi = netdev_priv(d); 776 777 for (i = 0; i < pi->nqsets; i++, msi_idx++) 778 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 779 d->name, i); 780 } 781 782 /* offload queues */ 783 for_each_iscsirxq(&adap->sge, i) 784 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d", 785 adap->port[0]->name, i); 786 787 for_each_iscsitrxq(&adap->sge, i) 788 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iSCSIT%d", 789 adap->port[0]->name, i); 790 791 for_each_rdmarxq(&adap->sge, i) 792 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d", 793 adap->port[0]->name, i); 794 795 for_each_rdmaciq(&adap->sge, i) 796 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d", 797 adap->port[0]->name, i); 798 } 799 800 static int request_msix_queue_irqs(struct adapter *adap) 801 { 802 struct sge *s = &adap->sge; 803 int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0; 804 int iscsitqidx = 0; 805 int msi_index = 2; 806 807 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 808 adap->msix_info[1].desc, &s->fw_evtq); 809 if (err) 810 return err; 811 812 for_each_ethrxq(s, ethqidx) { 813 err = request_irq(adap->msix_info[msi_index].vec, 814 t4_sge_intr_msix, 0, 815 adap->msix_info[msi_index].desc, 816 &s->ethrxq[ethqidx].rspq); 817 if (err) 818 goto unwind; 819 msi_index++; 820 } 821 for_each_iscsirxq(s, iscsiqidx) { 822 err = request_irq(adap->msix_info[msi_index].vec, 823 t4_sge_intr_msix, 0, 824 adap->msix_info[msi_index].desc, 825 &s->iscsirxq[iscsiqidx].rspq); 826 if (err) 827 goto unwind; 828 msi_index++; 829 } 830 for_each_iscsitrxq(s, iscsitqidx) { 831 err = request_irq(adap->msix_info[msi_index].vec, 832 t4_sge_intr_msix, 0, 833 adap->msix_info[msi_index].desc, 834 &s->iscsitrxq[iscsitqidx].rspq); 835 if (err) 836 goto unwind; 837 msi_index++; 838 } 839 for_each_rdmarxq(s, rdmaqidx) { 840 err = request_irq(adap->msix_info[msi_index].vec, 841 t4_sge_intr_msix, 0, 842 adap->msix_info[msi_index].desc, 843 &s->rdmarxq[rdmaqidx].rspq); 844 if (err) 845 goto unwind; 846 msi_index++; 847 } 848 for_each_rdmaciq(s, rdmaciqqidx) { 849 err = request_irq(adap->msix_info[msi_index].vec, 850 t4_sge_intr_msix, 0, 851 adap->msix_info[msi_index].desc, 852 &s->rdmaciq[rdmaciqqidx].rspq); 853 if (err) 854 goto unwind; 855 msi_index++; 856 } 857 return 0; 858 859 unwind: 860 while (--rdmaciqqidx >= 0) 861 free_irq(adap->msix_info[--msi_index].vec, 862 &s->rdmaciq[rdmaciqqidx].rspq); 863 while (--rdmaqidx >= 0) 864 free_irq(adap->msix_info[--msi_index].vec, 865 &s->rdmarxq[rdmaqidx].rspq); 866 while (--iscsitqidx >= 0) 867 free_irq(adap->msix_info[--msi_index].vec, 868 &s->iscsitrxq[iscsitqidx].rspq); 869 while (--iscsiqidx >= 0) 870 free_irq(adap->msix_info[--msi_index].vec, 871 &s->iscsirxq[iscsiqidx].rspq); 872 while (--ethqidx >= 0) 873 free_irq(adap->msix_info[--msi_index].vec, 874 &s->ethrxq[ethqidx].rspq); 875 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 876 return err; 877 } 878 879 static void free_msix_queue_irqs(struct adapter *adap) 880 { 881 int i, msi_index = 2; 882 struct sge *s = &adap->sge; 883 884 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 885 for_each_ethrxq(s, i) 886 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 887 for_each_iscsirxq(s, i) 888 free_irq(adap->msix_info[msi_index++].vec, 889 &s->iscsirxq[i].rspq); 890 for_each_iscsitrxq(s, i) 891 free_irq(adap->msix_info[msi_index++].vec, 892 &s->iscsitrxq[i].rspq); 893 for_each_rdmarxq(s, i) 894 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq); 895 for_each_rdmaciq(s, i) 896 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq); 897 } 898 899 /** 900 * cxgb4_write_rss - write the RSS table for a given port 901 * @pi: the port 902 * @queues: array of queue indices for RSS 903 * 904 * Sets up the portion of the HW RSS table for the port's VI to distribute 905 * packets to the Rx queues in @queues. 906 * Should never be called before setting up sge eth rx queues 907 */ 908 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 909 { 910 u16 *rss; 911 int i, err; 912 struct adapter *adapter = pi->adapter; 913 const struct sge_eth_rxq *rxq; 914 915 rxq = &adapter->sge.ethrxq[pi->first_qset]; 916 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 917 if (!rss) 918 return -ENOMEM; 919 920 /* map the queue indices to queue ids */ 921 for (i = 0; i < pi->rss_size; i++, queues++) 922 rss[i] = rxq[*queues].rspq.abs_id; 923 924 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 925 pi->rss_size, rss, pi->rss_size); 926 /* If Tunnel All Lookup isn't specified in the global RSS 927 * Configuration, then we need to specify a default Ingress 928 * Queue for any ingress packets which aren't hashed. We'll 929 * use our first ingress queue ... 930 */ 931 if (!err) 932 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 933 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 934 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 935 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 936 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 937 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 938 rss[0]); 939 kfree(rss); 940 return err; 941 } 942 943 /** 944 * setup_rss - configure RSS 945 * @adap: the adapter 946 * 947 * Sets up RSS for each port. 948 */ 949 static int setup_rss(struct adapter *adap) 950 { 951 int i, j, err; 952 953 for_each_port(adap, i) { 954 const struct port_info *pi = adap2pinfo(adap, i); 955 956 /* Fill default values with equal distribution */ 957 for (j = 0; j < pi->rss_size; j++) 958 pi->rss[j] = j % pi->nqsets; 959 960 err = cxgb4_write_rss(pi, pi->rss); 961 if (err) 962 return err; 963 } 964 return 0; 965 } 966 967 /* 968 * Return the channel of the ingress queue with the given qid. 969 */ 970 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 971 { 972 qid -= p->ingr_start; 973 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 974 } 975 976 /* 977 * Wait until all NAPI handlers are descheduled. 978 */ 979 static void quiesce_rx(struct adapter *adap) 980 { 981 int i; 982 983 for (i = 0; i < adap->sge.ingr_sz; i++) { 984 struct sge_rspq *q = adap->sge.ingr_map[i]; 985 986 if (q && q->handler) { 987 napi_disable(&q->napi); 988 local_bh_disable(); 989 while (!cxgb_poll_lock_napi(q)) 990 mdelay(1); 991 local_bh_enable(); 992 } 993 994 } 995 } 996 997 /* Disable interrupt and napi handler */ 998 static void disable_interrupts(struct adapter *adap) 999 { 1000 if (adap->flags & FULL_INIT_DONE) { 1001 t4_intr_disable(adap); 1002 if (adap->flags & USING_MSIX) { 1003 free_msix_queue_irqs(adap); 1004 free_irq(adap->msix_info[0].vec, adap); 1005 } else { 1006 free_irq(adap->pdev->irq, adap); 1007 } 1008 quiesce_rx(adap); 1009 } 1010 } 1011 1012 /* 1013 * Enable NAPI scheduling and interrupt generation for all Rx queues. 1014 */ 1015 static void enable_rx(struct adapter *adap) 1016 { 1017 int i; 1018 1019 for (i = 0; i < adap->sge.ingr_sz; i++) { 1020 struct sge_rspq *q = adap->sge.ingr_map[i]; 1021 1022 if (!q) 1023 continue; 1024 if (q->handler) { 1025 cxgb_busy_poll_init_lock(q); 1026 napi_enable(&q->napi); 1027 } 1028 /* 0-increment GTS to start the timer and enable interrupts */ 1029 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 1030 SEINTARM_V(q->intr_params) | 1031 INGRESSQID_V(q->cntxt_id)); 1032 } 1033 } 1034 1035 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q, 1036 unsigned int nq, unsigned int per_chan, int msi_idx, 1037 u16 *ids, bool lro) 1038 { 1039 int i, err; 1040 1041 for (i = 0; i < nq; i++, q++) { 1042 if (msi_idx > 0) 1043 msi_idx++; 1044 err = t4_sge_alloc_rxq(adap, &q->rspq, false, 1045 adap->port[i / per_chan], 1046 msi_idx, q->fl.size ? &q->fl : NULL, 1047 uldrx_handler, 1048 lro ? uldrx_flush_handler : NULL, 1049 0); 1050 if (err) 1051 return err; 1052 memset(&q->stats, 0, sizeof(q->stats)); 1053 if (ids) 1054 ids[i] = q->rspq.abs_id; 1055 } 1056 return 0; 1057 } 1058 1059 /** 1060 * setup_sge_queues - configure SGE Tx/Rx/response queues 1061 * @adap: the adapter 1062 * 1063 * Determines how many sets of SGE queues to use and initializes them. 1064 * We support multiple queue sets per port if we have MSI-X, otherwise 1065 * just one queue set per port. 1066 */ 1067 static int setup_sge_queues(struct adapter *adap) 1068 { 1069 int err, msi_idx, i, j; 1070 struct sge *s = &adap->sge; 1071 1072 bitmap_zero(s->starving_fl, s->egr_sz); 1073 bitmap_zero(s->txq_maperr, s->egr_sz); 1074 1075 if (adap->flags & USING_MSIX) 1076 msi_idx = 1; /* vector 0 is for non-queue interrupts */ 1077 else { 1078 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 1079 NULL, NULL, NULL, -1); 1080 if (err) 1081 return err; 1082 msi_idx = -((int)s->intrq.abs_id + 1); 1083 } 1084 1085 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here, 1086 * don't forget to update the following which need to be 1087 * synchronized to and changes here. 1088 * 1089 * 1. The calculations of MAX_INGQ in cxgb4.h. 1090 * 1091 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs 1092 * to accommodate any new/deleted Ingress Queues 1093 * which need MSI-X Vectors. 1094 * 1095 * 3. Update sge_qinfo_show() to include information on the 1096 * new/deleted queues. 1097 */ 1098 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 1099 msi_idx, NULL, fwevtq_handler, NULL, -1); 1100 if (err) { 1101 freeout: t4_free_sge_resources(adap); 1102 return err; 1103 } 1104 1105 for_each_port(adap, i) { 1106 struct net_device *dev = adap->port[i]; 1107 struct port_info *pi = netdev_priv(dev); 1108 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1109 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1110 1111 for (j = 0; j < pi->nqsets; j++, q++) { 1112 if (msi_idx > 0) 1113 msi_idx++; 1114 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1115 msi_idx, &q->fl, 1116 t4_ethrx_handler, 1117 NULL, 1118 t4_get_mps_bg_map(adap, 1119 pi->tx_chan)); 1120 if (err) 1121 goto freeout; 1122 q->rspq.idx = j; 1123 memset(&q->stats, 0, sizeof(q->stats)); 1124 } 1125 for (j = 0; j < pi->nqsets; j++, t++) { 1126 err = t4_sge_alloc_eth_txq(adap, t, dev, 1127 netdev_get_tx_queue(dev, j), 1128 s->fw_evtq.cntxt_id); 1129 if (err) 1130 goto freeout; 1131 } 1132 } 1133 1134 j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */ 1135 for_each_iscsirxq(s, i) { 1136 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], 1137 adap->port[i / j], 1138 s->fw_evtq.cntxt_id); 1139 if (err) 1140 goto freeout; 1141 } 1142 1143 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids, lro) do { \ 1144 err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids, lro); \ 1145 if (err) \ 1146 goto freeout; \ 1147 if (msi_idx > 0) \ 1148 msi_idx += nq; \ 1149 } while (0) 1150 1151 ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq, false); 1152 ALLOC_OFLD_RXQS(s->iscsitrxq, s->niscsitq, j, s->iscsit_rxq, true); 1153 ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq, false); 1154 j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */ 1155 ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq, false); 1156 1157 #undef ALLOC_OFLD_RXQS 1158 1159 for_each_port(adap, i) { 1160 /* 1161 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't 1162 * have RDMA queues, and that's the right value. 1163 */ 1164 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1165 s->fw_evtq.cntxt_id, 1166 s->rdmarxq[i].rspq.cntxt_id); 1167 if (err) 1168 goto freeout; 1169 } 1170 1171 t4_write_reg(adap, is_t4(adap->params.chip) ? 1172 MPS_TRC_RSS_CONTROL_A : 1173 MPS_T5_TRC_RSS_CONTROL_A, 1174 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 1175 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 1176 return 0; 1177 } 1178 1179 /* 1180 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 1181 * The allocated memory is cleared. 1182 */ 1183 void *t4_alloc_mem(size_t size) 1184 { 1185 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1186 1187 if (!p) 1188 p = vzalloc(size); 1189 return p; 1190 } 1191 1192 /* 1193 * Free memory allocated through alloc_mem(). 1194 */ 1195 void t4_free_mem(void *addr) 1196 { 1197 kvfree(addr); 1198 } 1199 1200 /* Send a Work Request to write the filter at a specified index. We construct 1201 * a Firmware Filter Work Request to have the work done and put the indicated 1202 * filter into "pending" mode which will prevent any further actions against 1203 * it till we get a reply from the firmware on the completion status of the 1204 * request. 1205 */ 1206 static int set_filter_wr(struct adapter *adapter, int fidx) 1207 { 1208 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1209 struct sk_buff *skb; 1210 struct fw_filter_wr *fwr; 1211 unsigned int ftid; 1212 1213 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL); 1214 if (!skb) 1215 return -ENOMEM; 1216 1217 /* If the new filter requires loopback Destination MAC and/or VLAN 1218 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for 1219 * the filter. 1220 */ 1221 if (f->fs.newdmac || f->fs.newvlan) { 1222 /* allocate L2T entry for new filter */ 1223 f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan, 1224 f->fs.eport, f->fs.dmac); 1225 if (f->l2t == NULL) { 1226 kfree_skb(skb); 1227 return -ENOMEM; 1228 } 1229 } 1230 1231 ftid = adapter->tids.ftid_base + fidx; 1232 1233 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr)); 1234 memset(fwr, 0, sizeof(*fwr)); 1235 1236 /* It would be nice to put most of the following in t4_hw.c but most 1237 * of the work is translating the cxgbtool ch_filter_specification 1238 * into the Work Request and the definition of that structure is 1239 * currently in cxgbtool.h which isn't appropriate to pull into the 1240 * common code. We may eventually try to come up with a more neutral 1241 * filter specification structure but for now it's easiest to simply 1242 * put this fairly direct code in line ... 1243 */ 1244 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR)); 1245 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16)); 1246 fwr->tid_to_iq = 1247 htonl(FW_FILTER_WR_TID_V(ftid) | 1248 FW_FILTER_WR_RQTYPE_V(f->fs.type) | 1249 FW_FILTER_WR_NOREPLY_V(0) | 1250 FW_FILTER_WR_IQ_V(f->fs.iq)); 1251 fwr->del_filter_to_l2tix = 1252 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) | 1253 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) | 1254 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) | 1255 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) | 1256 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) | 1257 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) | 1258 FW_FILTER_WR_DMAC_V(f->fs.newdmac) | 1259 FW_FILTER_WR_SMAC_V(f->fs.newsmac) | 1260 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT || 1261 f->fs.newvlan == VLAN_REWRITE) | 1262 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE || 1263 f->fs.newvlan == VLAN_REWRITE) | 1264 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) | 1265 FW_FILTER_WR_TXCHAN_V(f->fs.eport) | 1266 FW_FILTER_WR_PRIO_V(f->fs.prio) | 1267 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0)); 1268 fwr->ethtype = htons(f->fs.val.ethtype); 1269 fwr->ethtypem = htons(f->fs.mask.ethtype); 1270 fwr->frag_to_ovlan_vldm = 1271 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) | 1272 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) | 1273 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) | 1274 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) | 1275 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) | 1276 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld)); 1277 fwr->smac_sel = 0; 1278 fwr->rx_chan_rx_rpl_iq = 1279 htons(FW_FILTER_WR_RX_CHAN_V(0) | 1280 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id)); 1281 fwr->maci_to_matchtypem = 1282 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) | 1283 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) | 1284 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) | 1285 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) | 1286 FW_FILTER_WR_PORT_V(f->fs.val.iport) | 1287 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) | 1288 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) | 1289 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype)); 1290 fwr->ptcl = f->fs.val.proto; 1291 fwr->ptclm = f->fs.mask.proto; 1292 fwr->ttyp = f->fs.val.tos; 1293 fwr->ttypm = f->fs.mask.tos; 1294 fwr->ivlan = htons(f->fs.val.ivlan); 1295 fwr->ivlanm = htons(f->fs.mask.ivlan); 1296 fwr->ovlan = htons(f->fs.val.ovlan); 1297 fwr->ovlanm = htons(f->fs.mask.ovlan); 1298 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip)); 1299 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm)); 1300 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip)); 1301 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm)); 1302 fwr->lp = htons(f->fs.val.lport); 1303 fwr->lpm = htons(f->fs.mask.lport); 1304 fwr->fp = htons(f->fs.val.fport); 1305 fwr->fpm = htons(f->fs.mask.fport); 1306 if (f->fs.newsmac) 1307 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma)); 1308 1309 /* Mark the filter as "pending" and ship off the Filter Work Request. 1310 * When we get the Work Request Reply we'll clear the pending status. 1311 */ 1312 f->pending = 1; 1313 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3); 1314 t4_ofld_send(adapter, skb); 1315 return 0; 1316 } 1317 1318 /* Delete the filter at a specified index. 1319 */ 1320 static int del_filter_wr(struct adapter *adapter, int fidx) 1321 { 1322 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1323 struct sk_buff *skb; 1324 struct fw_filter_wr *fwr; 1325 unsigned int len, ftid; 1326 1327 len = sizeof(*fwr); 1328 ftid = adapter->tids.ftid_base + fidx; 1329 1330 skb = alloc_skb(len, GFP_KERNEL); 1331 if (!skb) 1332 return -ENOMEM; 1333 1334 fwr = (struct fw_filter_wr *)__skb_put(skb, len); 1335 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id); 1336 1337 /* Mark the filter as "pending" and ship off the Filter Work Request. 1338 * When we get the Work Request Reply we'll clear the pending status. 1339 */ 1340 f->pending = 1; 1341 t4_mgmt_tx(adapter, skb); 1342 return 0; 1343 } 1344 1345 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 1346 void *accel_priv, select_queue_fallback_t fallback) 1347 { 1348 int txq; 1349 1350 #ifdef CONFIG_CHELSIO_T4_DCB 1351 /* If a Data Center Bridging has been successfully negotiated on this 1352 * link then we'll use the skb's priority to map it to a TX Queue. 1353 * The skb's priority is determined via the VLAN Tag Priority Code 1354 * Point field. 1355 */ 1356 if (cxgb4_dcb_enabled(dev)) { 1357 u16 vlan_tci; 1358 int err; 1359 1360 err = vlan_get_tag(skb, &vlan_tci); 1361 if (unlikely(err)) { 1362 if (net_ratelimit()) 1363 netdev_warn(dev, 1364 "TX Packet without VLAN Tag on DCB Link\n"); 1365 txq = 0; 1366 } else { 1367 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1368 #ifdef CONFIG_CHELSIO_T4_FCOE 1369 if (skb->protocol == htons(ETH_P_FCOE)) 1370 txq = skb->priority & 0x7; 1371 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1372 } 1373 return txq; 1374 } 1375 #endif /* CONFIG_CHELSIO_T4_DCB */ 1376 1377 if (select_queue) { 1378 txq = (skb_rx_queue_recorded(skb) 1379 ? skb_get_rx_queue(skb) 1380 : smp_processor_id()); 1381 1382 while (unlikely(txq >= dev->real_num_tx_queues)) 1383 txq -= dev->real_num_tx_queues; 1384 1385 return txq; 1386 } 1387 1388 return fallback(dev, skb) % dev->real_num_tx_queues; 1389 } 1390 1391 static int closest_timer(const struct sge *s, int time) 1392 { 1393 int i, delta, match = 0, min_delta = INT_MAX; 1394 1395 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1396 delta = time - s->timer_val[i]; 1397 if (delta < 0) 1398 delta = -delta; 1399 if (delta < min_delta) { 1400 min_delta = delta; 1401 match = i; 1402 } 1403 } 1404 return match; 1405 } 1406 1407 static int closest_thres(const struct sge *s, int thres) 1408 { 1409 int i, delta, match = 0, min_delta = INT_MAX; 1410 1411 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1412 delta = thres - s->counter_val[i]; 1413 if (delta < 0) 1414 delta = -delta; 1415 if (delta < min_delta) { 1416 min_delta = delta; 1417 match = i; 1418 } 1419 } 1420 return match; 1421 } 1422 1423 /** 1424 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1425 * @q: the Rx queue 1426 * @us: the hold-off time in us, or 0 to disable timer 1427 * @cnt: the hold-off packet count, or 0 to disable counter 1428 * 1429 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1430 * one of the two needs to be enabled for the queue to generate interrupts. 1431 */ 1432 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1433 unsigned int us, unsigned int cnt) 1434 { 1435 struct adapter *adap = q->adap; 1436 1437 if ((us | cnt) == 0) 1438 cnt = 1; 1439 1440 if (cnt) { 1441 int err; 1442 u32 v, new_idx; 1443 1444 new_idx = closest_thres(&adap->sge, cnt); 1445 if (q->desc && q->pktcnt_idx != new_idx) { 1446 /* the queue has already been created, update it */ 1447 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1448 FW_PARAMS_PARAM_X_V( 1449 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1450 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1451 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1452 &v, &new_idx); 1453 if (err) 1454 return err; 1455 } 1456 q->pktcnt_idx = new_idx; 1457 } 1458 1459 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1460 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1461 return 0; 1462 } 1463 1464 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1465 { 1466 const struct port_info *pi = netdev_priv(dev); 1467 netdev_features_t changed = dev->features ^ features; 1468 int err; 1469 1470 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1471 return 0; 1472 1473 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1474 -1, -1, -1, 1475 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1476 if (unlikely(err)) 1477 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1478 return err; 1479 } 1480 1481 static int setup_debugfs(struct adapter *adap) 1482 { 1483 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1484 return -1; 1485 1486 #ifdef CONFIG_DEBUG_FS 1487 t4_setup_debugfs(adap); 1488 #endif 1489 return 0; 1490 } 1491 1492 /* 1493 * upper-layer driver support 1494 */ 1495 1496 /* 1497 * Allocate an active-open TID and set it to the supplied value. 1498 */ 1499 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1500 { 1501 int atid = -1; 1502 1503 spin_lock_bh(&t->atid_lock); 1504 if (t->afree) { 1505 union aopen_entry *p = t->afree; 1506 1507 atid = (p - t->atid_tab) + t->atid_base; 1508 t->afree = p->next; 1509 p->data = data; 1510 t->atids_in_use++; 1511 } 1512 spin_unlock_bh(&t->atid_lock); 1513 return atid; 1514 } 1515 EXPORT_SYMBOL(cxgb4_alloc_atid); 1516 1517 /* 1518 * Release an active-open TID. 1519 */ 1520 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1521 { 1522 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1523 1524 spin_lock_bh(&t->atid_lock); 1525 p->next = t->afree; 1526 t->afree = p; 1527 t->atids_in_use--; 1528 spin_unlock_bh(&t->atid_lock); 1529 } 1530 EXPORT_SYMBOL(cxgb4_free_atid); 1531 1532 /* 1533 * Allocate a server TID and set it to the supplied value. 1534 */ 1535 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1536 { 1537 int stid; 1538 1539 spin_lock_bh(&t->stid_lock); 1540 if (family == PF_INET) { 1541 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1542 if (stid < t->nstids) 1543 __set_bit(stid, t->stid_bmap); 1544 else 1545 stid = -1; 1546 } else { 1547 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1548 if (stid < 0) 1549 stid = -1; 1550 } 1551 if (stid >= 0) { 1552 t->stid_tab[stid].data = data; 1553 stid += t->stid_base; 1554 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1555 * This is equivalent to 4 TIDs. With CLIP enabled it 1556 * needs 2 TIDs. 1557 */ 1558 if (family == PF_INET) 1559 t->stids_in_use++; 1560 else 1561 t->stids_in_use += 2; 1562 } 1563 spin_unlock_bh(&t->stid_lock); 1564 return stid; 1565 } 1566 EXPORT_SYMBOL(cxgb4_alloc_stid); 1567 1568 /* Allocate a server filter TID and set it to the supplied value. 1569 */ 1570 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1571 { 1572 int stid; 1573 1574 spin_lock_bh(&t->stid_lock); 1575 if (family == PF_INET) { 1576 stid = find_next_zero_bit(t->stid_bmap, 1577 t->nstids + t->nsftids, t->nstids); 1578 if (stid < (t->nstids + t->nsftids)) 1579 __set_bit(stid, t->stid_bmap); 1580 else 1581 stid = -1; 1582 } else { 1583 stid = -1; 1584 } 1585 if (stid >= 0) { 1586 t->stid_tab[stid].data = data; 1587 stid -= t->nstids; 1588 stid += t->sftid_base; 1589 t->sftids_in_use++; 1590 } 1591 spin_unlock_bh(&t->stid_lock); 1592 return stid; 1593 } 1594 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1595 1596 /* Release a server TID. 1597 */ 1598 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1599 { 1600 /* Is it a server filter TID? */ 1601 if (t->nsftids && (stid >= t->sftid_base)) { 1602 stid -= t->sftid_base; 1603 stid += t->nstids; 1604 } else { 1605 stid -= t->stid_base; 1606 } 1607 1608 spin_lock_bh(&t->stid_lock); 1609 if (family == PF_INET) 1610 __clear_bit(stid, t->stid_bmap); 1611 else 1612 bitmap_release_region(t->stid_bmap, stid, 1); 1613 t->stid_tab[stid].data = NULL; 1614 if (stid < t->nstids) { 1615 if (family == PF_INET) 1616 t->stids_in_use--; 1617 else 1618 t->stids_in_use -= 2; 1619 } else { 1620 t->sftids_in_use--; 1621 } 1622 spin_unlock_bh(&t->stid_lock); 1623 } 1624 EXPORT_SYMBOL(cxgb4_free_stid); 1625 1626 /* 1627 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1628 */ 1629 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1630 unsigned int tid) 1631 { 1632 struct cpl_tid_release *req; 1633 1634 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1635 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 1636 INIT_TP_WR(req, tid); 1637 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1638 } 1639 1640 /* 1641 * Queue a TID release request and if necessary schedule a work queue to 1642 * process it. 1643 */ 1644 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1645 unsigned int tid) 1646 { 1647 void **p = &t->tid_tab[tid]; 1648 struct adapter *adap = container_of(t, struct adapter, tids); 1649 1650 spin_lock_bh(&adap->tid_release_lock); 1651 *p = adap->tid_release_head; 1652 /* Low 2 bits encode the Tx channel number */ 1653 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1654 if (!adap->tid_release_task_busy) { 1655 adap->tid_release_task_busy = true; 1656 queue_work(adap->workq, &adap->tid_release_task); 1657 } 1658 spin_unlock_bh(&adap->tid_release_lock); 1659 } 1660 1661 /* 1662 * Process the list of pending TID release requests. 1663 */ 1664 static void process_tid_release_list(struct work_struct *work) 1665 { 1666 struct sk_buff *skb; 1667 struct adapter *adap; 1668 1669 adap = container_of(work, struct adapter, tid_release_task); 1670 1671 spin_lock_bh(&adap->tid_release_lock); 1672 while (adap->tid_release_head) { 1673 void **p = adap->tid_release_head; 1674 unsigned int chan = (uintptr_t)p & 3; 1675 p = (void *)p - chan; 1676 1677 adap->tid_release_head = *p; 1678 *p = NULL; 1679 spin_unlock_bh(&adap->tid_release_lock); 1680 1681 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1682 GFP_KERNEL))) 1683 schedule_timeout_uninterruptible(1); 1684 1685 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1686 t4_ofld_send(adap, skb); 1687 spin_lock_bh(&adap->tid_release_lock); 1688 } 1689 adap->tid_release_task_busy = false; 1690 spin_unlock_bh(&adap->tid_release_lock); 1691 } 1692 1693 /* 1694 * Release a TID and inform HW. If we are unable to allocate the release 1695 * message we defer to a work queue. 1696 */ 1697 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) 1698 { 1699 struct sk_buff *skb; 1700 struct adapter *adap = container_of(t, struct adapter, tids); 1701 1702 WARN_ON(tid >= t->ntids); 1703 1704 if (t->tid_tab[tid]) { 1705 t->tid_tab[tid] = NULL; 1706 if (t->hash_base && (tid >= t->hash_base)) 1707 atomic_dec(&t->hash_tids_in_use); 1708 else 1709 atomic_dec(&t->tids_in_use); 1710 } 1711 1712 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1713 if (likely(skb)) { 1714 mk_tid_release(skb, chan, tid); 1715 t4_ofld_send(adap, skb); 1716 } else 1717 cxgb4_queue_tid_release(t, chan, tid); 1718 } 1719 EXPORT_SYMBOL(cxgb4_remove_tid); 1720 1721 /* 1722 * Allocate and initialize the TID tables. Returns 0 on success. 1723 */ 1724 static int tid_init(struct tid_info *t) 1725 { 1726 size_t size; 1727 unsigned int stid_bmap_size; 1728 unsigned int natids = t->natids; 1729 struct adapter *adap = container_of(t, struct adapter, tids); 1730 1731 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1732 size = t->ntids * sizeof(*t->tid_tab) + 1733 natids * sizeof(*t->atid_tab) + 1734 t->nstids * sizeof(*t->stid_tab) + 1735 t->nsftids * sizeof(*t->stid_tab) + 1736 stid_bmap_size * sizeof(long) + 1737 t->nftids * sizeof(*t->ftid_tab) + 1738 t->nsftids * sizeof(*t->ftid_tab); 1739 1740 t->tid_tab = t4_alloc_mem(size); 1741 if (!t->tid_tab) 1742 return -ENOMEM; 1743 1744 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1745 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1746 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1747 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1748 spin_lock_init(&t->stid_lock); 1749 spin_lock_init(&t->atid_lock); 1750 1751 t->stids_in_use = 0; 1752 t->sftids_in_use = 0; 1753 t->afree = NULL; 1754 t->atids_in_use = 0; 1755 atomic_set(&t->tids_in_use, 0); 1756 atomic_set(&t->hash_tids_in_use, 0); 1757 1758 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1759 if (natids) { 1760 while (--natids) 1761 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1762 t->afree = t->atid_tab; 1763 } 1764 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1765 /* Reserve stid 0 for T4/T5 adapters */ 1766 if (!t->stid_base && 1767 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)) 1768 __set_bit(0, t->stid_bmap); 1769 1770 return 0; 1771 } 1772 1773 /** 1774 * cxgb4_create_server - create an IP server 1775 * @dev: the device 1776 * @stid: the server TID 1777 * @sip: local IP address to bind server to 1778 * @sport: the server's TCP port 1779 * @queue: queue to direct messages from this server to 1780 * 1781 * Create an IP server for the given port and address. 1782 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1783 */ 1784 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1785 __be32 sip, __be16 sport, __be16 vlan, 1786 unsigned int queue) 1787 { 1788 unsigned int chan; 1789 struct sk_buff *skb; 1790 struct adapter *adap; 1791 struct cpl_pass_open_req *req; 1792 int ret; 1793 1794 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1795 if (!skb) 1796 return -ENOMEM; 1797 1798 adap = netdev2adap(dev); 1799 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); 1800 INIT_TP_WR(req, 0); 1801 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1802 req->local_port = sport; 1803 req->peer_port = htons(0); 1804 req->local_ip = sip; 1805 req->peer_ip = htonl(0); 1806 chan = rxq_to_chan(&adap->sge, queue); 1807 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1808 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1809 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1810 ret = t4_mgmt_tx(adap, skb); 1811 return net_xmit_eval(ret); 1812 } 1813 EXPORT_SYMBOL(cxgb4_create_server); 1814 1815 /* cxgb4_create_server6 - create an IPv6 server 1816 * @dev: the device 1817 * @stid: the server TID 1818 * @sip: local IPv6 address to bind server to 1819 * @sport: the server's TCP port 1820 * @queue: queue to direct messages from this server to 1821 * 1822 * Create an IPv6 server for the given port and address. 1823 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1824 */ 1825 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1826 const struct in6_addr *sip, __be16 sport, 1827 unsigned int queue) 1828 { 1829 unsigned int chan; 1830 struct sk_buff *skb; 1831 struct adapter *adap; 1832 struct cpl_pass_open_req6 *req; 1833 int ret; 1834 1835 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1836 if (!skb) 1837 return -ENOMEM; 1838 1839 adap = netdev2adap(dev); 1840 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req)); 1841 INIT_TP_WR(req, 0); 1842 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1843 req->local_port = sport; 1844 req->peer_port = htons(0); 1845 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1846 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1847 req->peer_ip_hi = cpu_to_be64(0); 1848 req->peer_ip_lo = cpu_to_be64(0); 1849 chan = rxq_to_chan(&adap->sge, queue); 1850 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1851 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1852 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1853 ret = t4_mgmt_tx(adap, skb); 1854 return net_xmit_eval(ret); 1855 } 1856 EXPORT_SYMBOL(cxgb4_create_server6); 1857 1858 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1859 unsigned int queue, bool ipv6) 1860 { 1861 struct sk_buff *skb; 1862 struct adapter *adap; 1863 struct cpl_close_listsvr_req *req; 1864 int ret; 1865 1866 adap = netdev2adap(dev); 1867 1868 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1869 if (!skb) 1870 return -ENOMEM; 1871 1872 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req)); 1873 INIT_TP_WR(req, 0); 1874 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1875 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1876 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1877 ret = t4_mgmt_tx(adap, skb); 1878 return net_xmit_eval(ret); 1879 } 1880 EXPORT_SYMBOL(cxgb4_remove_server); 1881 1882 /** 1883 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1884 * @mtus: the HW MTU table 1885 * @mtu: the target MTU 1886 * @idx: index of selected entry in the MTU table 1887 * 1888 * Returns the index and the value in the HW MTU table that is closest to 1889 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1890 * table, in which case that smallest available value is selected. 1891 */ 1892 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1893 unsigned int *idx) 1894 { 1895 unsigned int i = 0; 1896 1897 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1898 ++i; 1899 if (idx) 1900 *idx = i; 1901 return mtus[i]; 1902 } 1903 EXPORT_SYMBOL(cxgb4_best_mtu); 1904 1905 /** 1906 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1907 * @mtus: the HW MTU table 1908 * @header_size: Header Size 1909 * @data_size_max: maximum Data Segment Size 1910 * @data_size_align: desired Data Segment Size Alignment (2^N) 1911 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1912 * 1913 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1914 * MTU Table based solely on a Maximum MTU parameter, we break that 1915 * parameter up into a Header Size and Maximum Data Segment Size, and 1916 * provide a desired Data Segment Size Alignment. If we find an MTU in 1917 * the Hardware MTU Table which will result in a Data Segment Size with 1918 * the requested alignment _and_ that MTU isn't "too far" from the 1919 * closest MTU, then we'll return that rather than the closest MTU. 1920 */ 1921 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1922 unsigned short header_size, 1923 unsigned short data_size_max, 1924 unsigned short data_size_align, 1925 unsigned int *mtu_idxp) 1926 { 1927 unsigned short max_mtu = header_size + data_size_max; 1928 unsigned short data_size_align_mask = data_size_align - 1; 1929 int mtu_idx, aligned_mtu_idx; 1930 1931 /* Scan the MTU Table till we find an MTU which is larger than our 1932 * Maximum MTU or we reach the end of the table. Along the way, 1933 * record the last MTU found, if any, which will result in a Data 1934 * Segment Length matching the requested alignment. 1935 */ 1936 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1937 unsigned short data_size = mtus[mtu_idx] - header_size; 1938 1939 /* If this MTU minus the Header Size would result in a 1940 * Data Segment Size of the desired alignment, remember it. 1941 */ 1942 if ((data_size & data_size_align_mask) == 0) 1943 aligned_mtu_idx = mtu_idx; 1944 1945 /* If we're not at the end of the Hardware MTU Table and the 1946 * next element is larger than our Maximum MTU, drop out of 1947 * the loop. 1948 */ 1949 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1950 break; 1951 } 1952 1953 /* If we fell out of the loop because we ran to the end of the table, 1954 * then we just have to use the last [largest] entry. 1955 */ 1956 if (mtu_idx == NMTUS) 1957 mtu_idx--; 1958 1959 /* If we found an MTU which resulted in the requested Data Segment 1960 * Length alignment and that's "not far" from the largest MTU which is 1961 * less than or equal to the maximum MTU, then use that. 1962 */ 1963 if (aligned_mtu_idx >= 0 && 1964 mtu_idx - aligned_mtu_idx <= 1) 1965 mtu_idx = aligned_mtu_idx; 1966 1967 /* If the caller has passed in an MTU Index pointer, pass the 1968 * MTU Index back. Return the MTU value. 1969 */ 1970 if (mtu_idxp) 1971 *mtu_idxp = mtu_idx; 1972 return mtus[mtu_idx]; 1973 } 1974 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1975 1976 /** 1977 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1978 * @chip: chip type 1979 * @viid: VI id of the given port 1980 * 1981 * Return the SMT index for this VI. 1982 */ 1983 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1984 { 1985 /* In T4/T5, SMT contains 256 SMAC entries organized in 1986 * 128 rows of 2 entries each. 1987 * In T6, SMT contains 256 SMAC entries in 256 rows. 1988 * TODO: The below code needs to be updated when we add support 1989 * for 256 VFs. 1990 */ 1991 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1992 return ((viid & 0x7f) << 1); 1993 else 1994 return (viid & 0x7f); 1995 } 1996 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1997 1998 /** 1999 * cxgb4_port_chan - get the HW channel of a port 2000 * @dev: the net device for the port 2001 * 2002 * Return the HW Tx channel of the given port. 2003 */ 2004 unsigned int cxgb4_port_chan(const struct net_device *dev) 2005 { 2006 return netdev2pinfo(dev)->tx_chan; 2007 } 2008 EXPORT_SYMBOL(cxgb4_port_chan); 2009 2010 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 2011 { 2012 struct adapter *adap = netdev2adap(dev); 2013 u32 v1, v2, lp_count, hp_count; 2014 2015 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2016 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2017 if (is_t4(adap->params.chip)) { 2018 lp_count = LP_COUNT_G(v1); 2019 hp_count = HP_COUNT_G(v1); 2020 } else { 2021 lp_count = LP_COUNT_T5_G(v1); 2022 hp_count = HP_COUNT_T5_G(v2); 2023 } 2024 return lpfifo ? lp_count : hp_count; 2025 } 2026 EXPORT_SYMBOL(cxgb4_dbfifo_count); 2027 2028 /** 2029 * cxgb4_port_viid - get the VI id of a port 2030 * @dev: the net device for the port 2031 * 2032 * Return the VI id of the given port. 2033 */ 2034 unsigned int cxgb4_port_viid(const struct net_device *dev) 2035 { 2036 return netdev2pinfo(dev)->viid; 2037 } 2038 EXPORT_SYMBOL(cxgb4_port_viid); 2039 2040 /** 2041 * cxgb4_port_idx - get the index of a port 2042 * @dev: the net device for the port 2043 * 2044 * Return the index of the given port. 2045 */ 2046 unsigned int cxgb4_port_idx(const struct net_device *dev) 2047 { 2048 return netdev2pinfo(dev)->port_id; 2049 } 2050 EXPORT_SYMBOL(cxgb4_port_idx); 2051 2052 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 2053 struct tp_tcp_stats *v6) 2054 { 2055 struct adapter *adap = pci_get_drvdata(pdev); 2056 2057 spin_lock(&adap->stats_lock); 2058 t4_tp_get_tcp_stats(adap, v4, v6); 2059 spin_unlock(&adap->stats_lock); 2060 } 2061 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 2062 2063 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 2064 const unsigned int *pgsz_order) 2065 { 2066 struct adapter *adap = netdev2adap(dev); 2067 2068 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 2069 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 2070 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 2071 HPZ3_V(pgsz_order[3])); 2072 } 2073 EXPORT_SYMBOL(cxgb4_iscsi_init); 2074 2075 int cxgb4_flush_eq_cache(struct net_device *dev) 2076 { 2077 struct adapter *adap = netdev2adap(dev); 2078 2079 return t4_sge_ctxt_flush(adap, adap->mbox); 2080 } 2081 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 2082 2083 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 2084 { 2085 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 2086 __be64 indices; 2087 int ret; 2088 2089 spin_lock(&adap->win0_lock); 2090 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 2091 sizeof(indices), (__be32 *)&indices, 2092 T4_MEMORY_READ); 2093 spin_unlock(&adap->win0_lock); 2094 if (!ret) { 2095 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 2096 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 2097 } 2098 return ret; 2099 } 2100 2101 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 2102 u16 size) 2103 { 2104 struct adapter *adap = netdev2adap(dev); 2105 u16 hw_pidx, hw_cidx; 2106 int ret; 2107 2108 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 2109 if (ret) 2110 goto out; 2111 2112 if (pidx != hw_pidx) { 2113 u16 delta; 2114 u32 val; 2115 2116 if (pidx >= hw_pidx) 2117 delta = pidx - hw_pidx; 2118 else 2119 delta = size - hw_pidx + pidx; 2120 2121 if (is_t4(adap->params.chip)) 2122 val = PIDX_V(delta); 2123 else 2124 val = PIDX_T5_V(delta); 2125 wmb(); 2126 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2127 QID_V(qid) | val); 2128 } 2129 out: 2130 return ret; 2131 } 2132 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 2133 2134 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 2135 { 2136 struct adapter *adap; 2137 u32 offset, memtype, memaddr; 2138 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 2139 u32 edc0_end, edc1_end, mc0_end, mc1_end; 2140 int ret; 2141 2142 adap = netdev2adap(dev); 2143 2144 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 2145 2146 /* Figure out where the offset lands in the Memory Type/Address scheme. 2147 * This code assumes that the memory is laid out starting at offset 0 2148 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 2149 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 2150 * MC0, and some have both MC0 and MC1. 2151 */ 2152 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 2153 edc0_size = EDRAM0_SIZE_G(size) << 20; 2154 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 2155 edc1_size = EDRAM1_SIZE_G(size) << 20; 2156 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 2157 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 2158 2159 edc0_end = edc0_size; 2160 edc1_end = edc0_end + edc1_size; 2161 mc0_end = edc1_end + mc0_size; 2162 2163 if (offset < edc0_end) { 2164 memtype = MEM_EDC0; 2165 memaddr = offset; 2166 } else if (offset < edc1_end) { 2167 memtype = MEM_EDC1; 2168 memaddr = offset - edc0_end; 2169 } else { 2170 if (offset < mc0_end) { 2171 memtype = MEM_MC0; 2172 memaddr = offset - edc1_end; 2173 } else if (is_t5(adap->params.chip)) { 2174 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2175 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 2176 mc1_end = mc0_end + mc1_size; 2177 if (offset < mc1_end) { 2178 memtype = MEM_MC1; 2179 memaddr = offset - mc0_end; 2180 } else { 2181 /* offset beyond the end of any memory */ 2182 goto err; 2183 } 2184 } else { 2185 /* T4/T6 only has a single memory channel */ 2186 goto err; 2187 } 2188 } 2189 2190 spin_lock(&adap->win0_lock); 2191 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 2192 spin_unlock(&adap->win0_lock); 2193 return ret; 2194 2195 err: 2196 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 2197 stag, offset); 2198 return -EINVAL; 2199 } 2200 EXPORT_SYMBOL(cxgb4_read_tpte); 2201 2202 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 2203 { 2204 u32 hi, lo; 2205 struct adapter *adap; 2206 2207 adap = netdev2adap(dev); 2208 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 2209 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 2210 2211 return ((u64)hi << 32) | (u64)lo; 2212 } 2213 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 2214 2215 int cxgb4_bar2_sge_qregs(struct net_device *dev, 2216 unsigned int qid, 2217 enum cxgb4_bar2_qtype qtype, 2218 int user, 2219 u64 *pbar2_qoffset, 2220 unsigned int *pbar2_qid) 2221 { 2222 return t4_bar2_sge_qregs(netdev2adap(dev), 2223 qid, 2224 (qtype == CXGB4_BAR2_QTYPE_EGRESS 2225 ? T4_BAR2_QTYPE_EGRESS 2226 : T4_BAR2_QTYPE_INGRESS), 2227 user, 2228 pbar2_qoffset, 2229 pbar2_qid); 2230 } 2231 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 2232 2233 static struct pci_driver cxgb4_driver; 2234 2235 static void check_neigh_update(struct neighbour *neigh) 2236 { 2237 const struct device *parent; 2238 const struct net_device *netdev = neigh->dev; 2239 2240 if (netdev->priv_flags & IFF_802_1Q_VLAN) 2241 netdev = vlan_dev_real_dev(netdev); 2242 parent = netdev->dev.parent; 2243 if (parent && parent->driver == &cxgb4_driver.driver) 2244 t4_l2t_update(dev_get_drvdata(parent), neigh); 2245 } 2246 2247 static int netevent_cb(struct notifier_block *nb, unsigned long event, 2248 void *data) 2249 { 2250 switch (event) { 2251 case NETEVENT_NEIGH_UPDATE: 2252 check_neigh_update(data); 2253 break; 2254 case NETEVENT_REDIRECT: 2255 default: 2256 break; 2257 } 2258 return 0; 2259 } 2260 2261 static bool netevent_registered; 2262 static struct notifier_block cxgb4_netevent_nb = { 2263 .notifier_call = netevent_cb 2264 }; 2265 2266 static void drain_db_fifo(struct adapter *adap, int usecs) 2267 { 2268 u32 v1, v2, lp_count, hp_count; 2269 2270 do { 2271 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2272 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2273 if (is_t4(adap->params.chip)) { 2274 lp_count = LP_COUNT_G(v1); 2275 hp_count = HP_COUNT_G(v1); 2276 } else { 2277 lp_count = LP_COUNT_T5_G(v1); 2278 hp_count = HP_COUNT_T5_G(v2); 2279 } 2280 2281 if (lp_count == 0 && hp_count == 0) 2282 break; 2283 set_current_state(TASK_UNINTERRUPTIBLE); 2284 schedule_timeout(usecs_to_jiffies(usecs)); 2285 } while (1); 2286 } 2287 2288 static void disable_txq_db(struct sge_txq *q) 2289 { 2290 unsigned long flags; 2291 2292 spin_lock_irqsave(&q->db_lock, flags); 2293 q->db_disabled = 1; 2294 spin_unlock_irqrestore(&q->db_lock, flags); 2295 } 2296 2297 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 2298 { 2299 spin_lock_irq(&q->db_lock); 2300 if (q->db_pidx_inc) { 2301 /* Make sure that all writes to the TX descriptors 2302 * are committed before we tell HW about them. 2303 */ 2304 wmb(); 2305 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2306 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 2307 q->db_pidx_inc = 0; 2308 } 2309 q->db_disabled = 0; 2310 spin_unlock_irq(&q->db_lock); 2311 } 2312 2313 static void disable_dbs(struct adapter *adap) 2314 { 2315 int i; 2316 2317 for_each_ethrxq(&adap->sge, i) 2318 disable_txq_db(&adap->sge.ethtxq[i].q); 2319 for_each_iscsirxq(&adap->sge, i) 2320 disable_txq_db(&adap->sge.ofldtxq[i].q); 2321 for_each_port(adap, i) 2322 disable_txq_db(&adap->sge.ctrlq[i].q); 2323 } 2324 2325 static void enable_dbs(struct adapter *adap) 2326 { 2327 int i; 2328 2329 for_each_ethrxq(&adap->sge, i) 2330 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 2331 for_each_iscsirxq(&adap->sge, i) 2332 enable_txq_db(adap, &adap->sge.ofldtxq[i].q); 2333 for_each_port(adap, i) 2334 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2335 } 2336 2337 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2338 { 2339 if (adap->uld_handle[CXGB4_ULD_RDMA]) 2340 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA], 2341 cmd); 2342 } 2343 2344 static void process_db_full(struct work_struct *work) 2345 { 2346 struct adapter *adap; 2347 2348 adap = container_of(work, struct adapter, db_full_task); 2349 2350 drain_db_fifo(adap, dbfifo_drain_delay); 2351 enable_dbs(adap); 2352 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2353 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2354 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2355 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2356 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2357 else 2358 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2359 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2360 } 2361 2362 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2363 { 2364 u16 hw_pidx, hw_cidx; 2365 int ret; 2366 2367 spin_lock_irq(&q->db_lock); 2368 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2369 if (ret) 2370 goto out; 2371 if (q->db_pidx != hw_pidx) { 2372 u16 delta; 2373 u32 val; 2374 2375 if (q->db_pidx >= hw_pidx) 2376 delta = q->db_pidx - hw_pidx; 2377 else 2378 delta = q->size - hw_pidx + q->db_pidx; 2379 2380 if (is_t4(adap->params.chip)) 2381 val = PIDX_V(delta); 2382 else 2383 val = PIDX_T5_V(delta); 2384 wmb(); 2385 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2386 QID_V(q->cntxt_id) | val); 2387 } 2388 out: 2389 q->db_disabled = 0; 2390 q->db_pidx_inc = 0; 2391 spin_unlock_irq(&q->db_lock); 2392 if (ret) 2393 CH_WARN(adap, "DB drop recovery failed.\n"); 2394 } 2395 static void recover_all_queues(struct adapter *adap) 2396 { 2397 int i; 2398 2399 for_each_ethrxq(&adap->sge, i) 2400 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2401 for_each_iscsirxq(&adap->sge, i) 2402 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q); 2403 for_each_port(adap, i) 2404 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2405 } 2406 2407 static void process_db_drop(struct work_struct *work) 2408 { 2409 struct adapter *adap; 2410 2411 adap = container_of(work, struct adapter, db_drop_task); 2412 2413 if (is_t4(adap->params.chip)) { 2414 drain_db_fifo(adap, dbfifo_drain_delay); 2415 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2416 drain_db_fifo(adap, dbfifo_drain_delay); 2417 recover_all_queues(adap); 2418 drain_db_fifo(adap, dbfifo_drain_delay); 2419 enable_dbs(adap); 2420 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2421 } else if (is_t5(adap->params.chip)) { 2422 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2423 u16 qid = (dropped_db >> 15) & 0x1ffff; 2424 u16 pidx_inc = dropped_db & 0x1fff; 2425 u64 bar2_qoffset; 2426 unsigned int bar2_qid; 2427 int ret; 2428 2429 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2430 0, &bar2_qoffset, &bar2_qid); 2431 if (ret) 2432 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2433 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2434 else 2435 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2436 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2437 2438 /* Re-enable BAR2 WC */ 2439 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2440 } 2441 2442 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2443 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2444 } 2445 2446 void t4_db_full(struct adapter *adap) 2447 { 2448 if (is_t4(adap->params.chip)) { 2449 disable_dbs(adap); 2450 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2451 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2452 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2453 queue_work(adap->workq, &adap->db_full_task); 2454 } 2455 } 2456 2457 void t4_db_dropped(struct adapter *adap) 2458 { 2459 if (is_t4(adap->params.chip)) { 2460 disable_dbs(adap); 2461 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2462 } 2463 queue_work(adap->workq, &adap->db_drop_task); 2464 } 2465 2466 static void uld_attach(struct adapter *adap, unsigned int uld) 2467 { 2468 void *handle; 2469 struct cxgb4_lld_info lli; 2470 unsigned short i; 2471 2472 lli.pdev = adap->pdev; 2473 lli.pf = adap->pf; 2474 lli.l2t = adap->l2t; 2475 lli.tids = &adap->tids; 2476 lli.ports = adap->port; 2477 lli.vr = &adap->vres; 2478 lli.mtus = adap->params.mtus; 2479 if (uld == CXGB4_ULD_RDMA) { 2480 lli.rxq_ids = adap->sge.rdma_rxq; 2481 lli.ciq_ids = adap->sge.rdma_ciq; 2482 lli.nrxq = adap->sge.rdmaqs; 2483 lli.nciq = adap->sge.rdmaciqs; 2484 } else if (uld == CXGB4_ULD_ISCSI) { 2485 lli.rxq_ids = adap->sge.iscsi_rxq; 2486 lli.nrxq = adap->sge.iscsiqsets; 2487 } else if (uld == CXGB4_ULD_ISCSIT) { 2488 lli.rxq_ids = adap->sge.iscsit_rxq; 2489 lli.nrxq = adap->sge.niscsitq; 2490 } 2491 lli.ntxq = adap->sge.iscsiqsets; 2492 lli.nchan = adap->params.nports; 2493 lli.nports = adap->params.nports; 2494 lli.wr_cred = adap->params.ofldq_wr_cred; 2495 lli.adapter_type = adap->params.chip; 2496 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A)); 2497 lli.iscsi_tagmask = t4_read_reg(adap, ULP_RX_ISCSI_TAGMASK_A); 2498 lli.iscsi_pgsz_order = t4_read_reg(adap, ULP_RX_ISCSI_PSZ_A); 2499 lli.iscsi_llimit = t4_read_reg(adap, ULP_RX_ISCSI_LLIMIT_A); 2500 lli.iscsi_ppm = &adap->iscsi_ppm; 2501 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk; 2502 lli.udb_density = 1 << adap->params.sge.eq_qpp; 2503 lli.ucq_density = 1 << adap->params.sge.iq_qpp; 2504 lli.filt_mode = adap->params.tp.vlan_pri_map; 2505 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */ 2506 for (i = 0; i < NCHAN; i++) 2507 lli.tx_modq[i] = i; 2508 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A); 2509 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A); 2510 lli.fw_vers = adap->params.fw_vers; 2511 lli.dbfifo_int_thresh = dbfifo_int_thresh; 2512 lli.sge_ingpadboundary = adap->sge.fl_align; 2513 lli.sge_egrstatuspagesize = adap->sge.stat_len; 2514 lli.sge_pktshift = adap->sge.pktshift; 2515 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN; 2516 lli.max_ordird_qp = adap->params.max_ordird_qp; 2517 lli.max_ird_adapter = adap->params.max_ird_adapter; 2518 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl; 2519 lli.nodeid = dev_to_node(adap->pdev_dev); 2520 2521 handle = ulds[uld].add(&lli); 2522 if (IS_ERR(handle)) { 2523 dev_warn(adap->pdev_dev, 2524 "could not attach to the %s driver, error %ld\n", 2525 uld_str[uld], PTR_ERR(handle)); 2526 return; 2527 } 2528 2529 adap->uld_handle[uld] = handle; 2530 2531 if (!netevent_registered) { 2532 register_netevent_notifier(&cxgb4_netevent_nb); 2533 netevent_registered = true; 2534 } 2535 2536 if (adap->flags & FULL_INIT_DONE) 2537 ulds[uld].state_change(handle, CXGB4_STATE_UP); 2538 } 2539 2540 static void attach_ulds(struct adapter *adap) 2541 { 2542 unsigned int i; 2543 2544 spin_lock(&adap_rcu_lock); 2545 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list); 2546 spin_unlock(&adap_rcu_lock); 2547 2548 mutex_lock(&uld_mutex); 2549 list_add_tail(&adap->list_node, &adapter_list); 2550 for (i = 0; i < CXGB4_ULD_MAX; i++) 2551 if (ulds[i].add) 2552 uld_attach(adap, i); 2553 mutex_unlock(&uld_mutex); 2554 } 2555 2556 static void detach_ulds(struct adapter *adap) 2557 { 2558 unsigned int i; 2559 2560 mutex_lock(&uld_mutex); 2561 list_del(&adap->list_node); 2562 for (i = 0; i < CXGB4_ULD_MAX; i++) 2563 if (adap->uld_handle[i]) { 2564 ulds[i].state_change(adap->uld_handle[i], 2565 CXGB4_STATE_DETACH); 2566 adap->uld_handle[i] = NULL; 2567 } 2568 if (netevent_registered && list_empty(&adapter_list)) { 2569 unregister_netevent_notifier(&cxgb4_netevent_nb); 2570 netevent_registered = false; 2571 } 2572 mutex_unlock(&uld_mutex); 2573 2574 spin_lock(&adap_rcu_lock); 2575 list_del_rcu(&adap->rcu_node); 2576 spin_unlock(&adap_rcu_lock); 2577 } 2578 2579 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2580 { 2581 unsigned int i; 2582 2583 mutex_lock(&uld_mutex); 2584 for (i = 0; i < CXGB4_ULD_MAX; i++) 2585 if (adap->uld_handle[i]) 2586 ulds[i].state_change(adap->uld_handle[i], new_state); 2587 mutex_unlock(&uld_mutex); 2588 } 2589 2590 /** 2591 * cxgb4_register_uld - register an upper-layer driver 2592 * @type: the ULD type 2593 * @p: the ULD methods 2594 * 2595 * Registers an upper-layer driver with this driver and notifies the ULD 2596 * about any presently available devices that support its type. Returns 2597 * %-EBUSY if a ULD of the same type is already registered. 2598 */ 2599 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p) 2600 { 2601 int ret = 0; 2602 struct adapter *adap; 2603 2604 if (type >= CXGB4_ULD_MAX) 2605 return -EINVAL; 2606 mutex_lock(&uld_mutex); 2607 if (ulds[type].add) { 2608 ret = -EBUSY; 2609 goto out; 2610 } 2611 ulds[type] = *p; 2612 list_for_each_entry(adap, &adapter_list, list_node) 2613 uld_attach(adap, type); 2614 out: mutex_unlock(&uld_mutex); 2615 return ret; 2616 } 2617 EXPORT_SYMBOL(cxgb4_register_uld); 2618 2619 /** 2620 * cxgb4_unregister_uld - unregister an upper-layer driver 2621 * @type: the ULD type 2622 * 2623 * Unregisters an existing upper-layer driver. 2624 */ 2625 int cxgb4_unregister_uld(enum cxgb4_uld type) 2626 { 2627 struct adapter *adap; 2628 2629 if (type >= CXGB4_ULD_MAX) 2630 return -EINVAL; 2631 mutex_lock(&uld_mutex); 2632 list_for_each_entry(adap, &adapter_list, list_node) 2633 adap->uld_handle[type] = NULL; 2634 ulds[type].add = NULL; 2635 mutex_unlock(&uld_mutex); 2636 return 0; 2637 } 2638 EXPORT_SYMBOL(cxgb4_unregister_uld); 2639 2640 #if IS_ENABLED(CONFIG_IPV6) 2641 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2642 unsigned long event, void *data) 2643 { 2644 struct inet6_ifaddr *ifa = data; 2645 struct net_device *event_dev = ifa->idev->dev; 2646 const struct device *parent = NULL; 2647 #if IS_ENABLED(CONFIG_BONDING) 2648 struct adapter *adap; 2649 #endif 2650 if (event_dev->priv_flags & IFF_802_1Q_VLAN) 2651 event_dev = vlan_dev_real_dev(event_dev); 2652 #if IS_ENABLED(CONFIG_BONDING) 2653 if (event_dev->flags & IFF_MASTER) { 2654 list_for_each_entry(adap, &adapter_list, list_node) { 2655 switch (event) { 2656 case NETDEV_UP: 2657 cxgb4_clip_get(adap->port[0], 2658 (const u32 *)ifa, 1); 2659 break; 2660 case NETDEV_DOWN: 2661 cxgb4_clip_release(adap->port[0], 2662 (const u32 *)ifa, 1); 2663 break; 2664 default: 2665 break; 2666 } 2667 } 2668 return NOTIFY_OK; 2669 } 2670 #endif 2671 2672 if (event_dev) 2673 parent = event_dev->dev.parent; 2674 2675 if (parent && parent->driver == &cxgb4_driver.driver) { 2676 switch (event) { 2677 case NETDEV_UP: 2678 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2679 break; 2680 case NETDEV_DOWN: 2681 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2682 break; 2683 default: 2684 break; 2685 } 2686 } 2687 return NOTIFY_OK; 2688 } 2689 2690 static bool inet6addr_registered; 2691 static struct notifier_block cxgb4_inet6addr_notifier = { 2692 .notifier_call = cxgb4_inet6addr_handler 2693 }; 2694 2695 static void update_clip(const struct adapter *adap) 2696 { 2697 int i; 2698 struct net_device *dev; 2699 int ret; 2700 2701 rcu_read_lock(); 2702 2703 for (i = 0; i < MAX_NPORTS; i++) { 2704 dev = adap->port[i]; 2705 ret = 0; 2706 2707 if (dev) 2708 ret = cxgb4_update_root_dev_clip(dev); 2709 2710 if (ret < 0) 2711 break; 2712 } 2713 rcu_read_unlock(); 2714 } 2715 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2716 2717 /** 2718 * cxgb_up - enable the adapter 2719 * @adap: adapter being enabled 2720 * 2721 * Called when the first port is enabled, this function performs the 2722 * actions necessary to make an adapter operational, such as completing 2723 * the initialization of HW modules, and enabling interrupts. 2724 * 2725 * Must be called with the rtnl lock held. 2726 */ 2727 static int cxgb_up(struct adapter *adap) 2728 { 2729 int err; 2730 2731 err = setup_sge_queues(adap); 2732 if (err) 2733 goto out; 2734 err = setup_rss(adap); 2735 if (err) 2736 goto freeq; 2737 2738 if (adap->flags & USING_MSIX) { 2739 name_msix_vecs(adap); 2740 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2741 adap->msix_info[0].desc, adap); 2742 if (err) 2743 goto irq_err; 2744 2745 err = request_msix_queue_irqs(adap); 2746 if (err) { 2747 free_irq(adap->msix_info[0].vec, adap); 2748 goto irq_err; 2749 } 2750 } else { 2751 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2752 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2753 adap->port[0]->name, adap); 2754 if (err) 2755 goto irq_err; 2756 } 2757 enable_rx(adap); 2758 t4_sge_start(adap); 2759 t4_intr_enable(adap); 2760 adap->flags |= FULL_INIT_DONE; 2761 notify_ulds(adap, CXGB4_STATE_UP); 2762 #if IS_ENABLED(CONFIG_IPV6) 2763 update_clip(adap); 2764 #endif 2765 /* Initialize hash mac addr list*/ 2766 INIT_LIST_HEAD(&adap->mac_hlist); 2767 out: 2768 return err; 2769 irq_err: 2770 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2771 freeq: 2772 t4_free_sge_resources(adap); 2773 goto out; 2774 } 2775 2776 static void cxgb_down(struct adapter *adapter) 2777 { 2778 cancel_work_sync(&adapter->tid_release_task); 2779 cancel_work_sync(&adapter->db_full_task); 2780 cancel_work_sync(&adapter->db_drop_task); 2781 adapter->tid_release_task_busy = false; 2782 adapter->tid_release_head = NULL; 2783 2784 t4_sge_stop(adapter); 2785 t4_free_sge_resources(adapter); 2786 adapter->flags &= ~FULL_INIT_DONE; 2787 } 2788 2789 /* 2790 * net_device operations 2791 */ 2792 static int cxgb_open(struct net_device *dev) 2793 { 2794 int err; 2795 struct port_info *pi = netdev_priv(dev); 2796 struct adapter *adapter = pi->adapter; 2797 2798 netif_carrier_off(dev); 2799 2800 if (!(adapter->flags & FULL_INIT_DONE)) { 2801 err = cxgb_up(adapter); 2802 if (err < 0) 2803 return err; 2804 } 2805 2806 err = link_start(dev); 2807 if (!err) 2808 netif_tx_start_all_queues(dev); 2809 return err; 2810 } 2811 2812 static int cxgb_close(struct net_device *dev) 2813 { 2814 struct port_info *pi = netdev_priv(dev); 2815 struct adapter *adapter = pi->adapter; 2816 2817 netif_tx_stop_all_queues(dev); 2818 netif_carrier_off(dev); 2819 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false); 2820 } 2821 2822 /* Return an error number if the indicated filter isn't writable ... 2823 */ 2824 static int writable_filter(struct filter_entry *f) 2825 { 2826 if (f->locked) 2827 return -EPERM; 2828 if (f->pending) 2829 return -EBUSY; 2830 2831 return 0; 2832 } 2833 2834 /* Delete the filter at the specified index (if valid). The checks for all 2835 * the common problems with doing this like the filter being locked, currently 2836 * pending in another operation, etc. 2837 */ 2838 static int delete_filter(struct adapter *adapter, unsigned int fidx) 2839 { 2840 struct filter_entry *f; 2841 int ret; 2842 2843 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids) 2844 return -EINVAL; 2845 2846 f = &adapter->tids.ftid_tab[fidx]; 2847 ret = writable_filter(f); 2848 if (ret) 2849 return ret; 2850 if (f->valid) 2851 return del_filter_wr(adapter, fidx); 2852 2853 return 0; 2854 } 2855 2856 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2857 __be32 sip, __be16 sport, __be16 vlan, 2858 unsigned int queue, unsigned char port, unsigned char mask) 2859 { 2860 int ret; 2861 struct filter_entry *f; 2862 struct adapter *adap; 2863 int i; 2864 u8 *val; 2865 2866 adap = netdev2adap(dev); 2867 2868 /* Adjust stid to correct filter index */ 2869 stid -= adap->tids.sftid_base; 2870 stid += adap->tids.nftids; 2871 2872 /* Check to make sure the filter requested is writable ... 2873 */ 2874 f = &adap->tids.ftid_tab[stid]; 2875 ret = writable_filter(f); 2876 if (ret) 2877 return ret; 2878 2879 /* Clear out any old resources being used by the filter before 2880 * we start constructing the new filter. 2881 */ 2882 if (f->valid) 2883 clear_filter(adap, f); 2884 2885 /* Clear out filter specifications */ 2886 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2887 f->fs.val.lport = cpu_to_be16(sport); 2888 f->fs.mask.lport = ~0; 2889 val = (u8 *)&sip; 2890 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2891 for (i = 0; i < 4; i++) { 2892 f->fs.val.lip[i] = val[i]; 2893 f->fs.mask.lip[i] = ~0; 2894 } 2895 if (adap->params.tp.vlan_pri_map & PORT_F) { 2896 f->fs.val.iport = port; 2897 f->fs.mask.iport = mask; 2898 } 2899 } 2900 2901 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2902 f->fs.val.proto = IPPROTO_TCP; 2903 f->fs.mask.proto = ~0; 2904 } 2905 2906 f->fs.dirsteer = 1; 2907 f->fs.iq = queue; 2908 /* Mark filter as locked */ 2909 f->locked = 1; 2910 f->fs.rpttid = 1; 2911 2912 ret = set_filter_wr(adap, stid); 2913 if (ret) { 2914 clear_filter(adap, f); 2915 return ret; 2916 } 2917 2918 return 0; 2919 } 2920 EXPORT_SYMBOL(cxgb4_create_server_filter); 2921 2922 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2923 unsigned int queue, bool ipv6) 2924 { 2925 int ret; 2926 struct filter_entry *f; 2927 struct adapter *adap; 2928 2929 adap = netdev2adap(dev); 2930 2931 /* Adjust stid to correct filter index */ 2932 stid -= adap->tids.sftid_base; 2933 stid += adap->tids.nftids; 2934 2935 f = &adap->tids.ftid_tab[stid]; 2936 /* Unlock the filter */ 2937 f->locked = 0; 2938 2939 ret = delete_filter(adap, stid); 2940 if (ret) 2941 return ret; 2942 2943 return 0; 2944 } 2945 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2946 2947 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev, 2948 struct rtnl_link_stats64 *ns) 2949 { 2950 struct port_stats stats; 2951 struct port_info *p = netdev_priv(dev); 2952 struct adapter *adapter = p->adapter; 2953 2954 /* Block retrieving statistics during EEH error 2955 * recovery. Otherwise, the recovery might fail 2956 * and the PCI device will be removed permanently 2957 */ 2958 spin_lock(&adapter->stats_lock); 2959 if (!netif_device_present(dev)) { 2960 spin_unlock(&adapter->stats_lock); 2961 return ns; 2962 } 2963 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2964 &p->stats_base); 2965 spin_unlock(&adapter->stats_lock); 2966 2967 ns->tx_bytes = stats.tx_octets; 2968 ns->tx_packets = stats.tx_frames; 2969 ns->rx_bytes = stats.rx_octets; 2970 ns->rx_packets = stats.rx_frames; 2971 ns->multicast = stats.rx_mcast_frames; 2972 2973 /* detailed rx_errors */ 2974 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2975 stats.rx_runt; 2976 ns->rx_over_errors = 0; 2977 ns->rx_crc_errors = stats.rx_fcs_err; 2978 ns->rx_frame_errors = stats.rx_symbol_err; 2979 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 + 2980 stats.rx_ovflow2 + stats.rx_ovflow3 + 2981 stats.rx_trunc0 + stats.rx_trunc1 + 2982 stats.rx_trunc2 + stats.rx_trunc3; 2983 ns->rx_missed_errors = 0; 2984 2985 /* detailed tx_errors */ 2986 ns->tx_aborted_errors = 0; 2987 ns->tx_carrier_errors = 0; 2988 ns->tx_fifo_errors = 0; 2989 ns->tx_heartbeat_errors = 0; 2990 ns->tx_window_errors = 0; 2991 2992 ns->tx_errors = stats.tx_error_frames; 2993 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2994 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2995 return ns; 2996 } 2997 2998 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2999 { 3000 unsigned int mbox; 3001 int ret = 0, prtad, devad; 3002 struct port_info *pi = netdev_priv(dev); 3003 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 3004 3005 switch (cmd) { 3006 case SIOCGMIIPHY: 3007 if (pi->mdio_addr < 0) 3008 return -EOPNOTSUPP; 3009 data->phy_id = pi->mdio_addr; 3010 break; 3011 case SIOCGMIIREG: 3012 case SIOCSMIIREG: 3013 if (mdio_phy_id_is_c45(data->phy_id)) { 3014 prtad = mdio_phy_id_prtad(data->phy_id); 3015 devad = mdio_phy_id_devad(data->phy_id); 3016 } else if (data->phy_id < 32) { 3017 prtad = data->phy_id; 3018 devad = 0; 3019 data->reg_num &= 0x1f; 3020 } else 3021 return -EINVAL; 3022 3023 mbox = pi->adapter->pf; 3024 if (cmd == SIOCGMIIREG) 3025 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 3026 data->reg_num, &data->val_out); 3027 else 3028 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 3029 data->reg_num, data->val_in); 3030 break; 3031 case SIOCGHWTSTAMP: 3032 return copy_to_user(req->ifr_data, &pi->tstamp_config, 3033 sizeof(pi->tstamp_config)) ? 3034 -EFAULT : 0; 3035 case SIOCSHWTSTAMP: 3036 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 3037 sizeof(pi->tstamp_config))) 3038 return -EFAULT; 3039 3040 switch (pi->tstamp_config.rx_filter) { 3041 case HWTSTAMP_FILTER_NONE: 3042 pi->rxtstamp = false; 3043 break; 3044 case HWTSTAMP_FILTER_ALL: 3045 pi->rxtstamp = true; 3046 break; 3047 default: 3048 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 3049 return -ERANGE; 3050 } 3051 3052 return copy_to_user(req->ifr_data, &pi->tstamp_config, 3053 sizeof(pi->tstamp_config)) ? 3054 -EFAULT : 0; 3055 default: 3056 return -EOPNOTSUPP; 3057 } 3058 return ret; 3059 } 3060 3061 static void cxgb_set_rxmode(struct net_device *dev) 3062 { 3063 /* unfortunately we can't return errors to the stack */ 3064 set_rxmode(dev, -1, false); 3065 } 3066 3067 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 3068 { 3069 int ret; 3070 struct port_info *pi = netdev_priv(dev); 3071 3072 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */ 3073 return -EINVAL; 3074 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 3075 -1, -1, -1, true); 3076 if (!ret) 3077 dev->mtu = new_mtu; 3078 return ret; 3079 } 3080 3081 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 3082 { 3083 int ret; 3084 struct sockaddr *addr = p; 3085 struct port_info *pi = netdev_priv(dev); 3086 3087 if (!is_valid_ether_addr(addr->sa_data)) 3088 return -EADDRNOTAVAIL; 3089 3090 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 3091 pi->xact_addr_filt, addr->sa_data, true, true); 3092 if (ret < 0) 3093 return ret; 3094 3095 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 3096 pi->xact_addr_filt = ret; 3097 return 0; 3098 } 3099 3100 #ifdef CONFIG_NET_POLL_CONTROLLER 3101 static void cxgb_netpoll(struct net_device *dev) 3102 { 3103 struct port_info *pi = netdev_priv(dev); 3104 struct adapter *adap = pi->adapter; 3105 3106 if (adap->flags & USING_MSIX) { 3107 int i; 3108 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 3109 3110 for (i = pi->nqsets; i; i--, rx++) 3111 t4_sge_intr_msix(0, &rx->rspq); 3112 } else 3113 t4_intr_handler(adap)(0, adap); 3114 } 3115 #endif 3116 3117 static const struct net_device_ops cxgb4_netdev_ops = { 3118 .ndo_open = cxgb_open, 3119 .ndo_stop = cxgb_close, 3120 .ndo_start_xmit = t4_eth_xmit, 3121 .ndo_select_queue = cxgb_select_queue, 3122 .ndo_get_stats64 = cxgb_get_stats, 3123 .ndo_set_rx_mode = cxgb_set_rxmode, 3124 .ndo_set_mac_address = cxgb_set_mac_addr, 3125 .ndo_set_features = cxgb_set_features, 3126 .ndo_validate_addr = eth_validate_addr, 3127 .ndo_do_ioctl = cxgb_ioctl, 3128 .ndo_change_mtu = cxgb_change_mtu, 3129 #ifdef CONFIG_NET_POLL_CONTROLLER 3130 .ndo_poll_controller = cxgb_netpoll, 3131 #endif 3132 #ifdef CONFIG_CHELSIO_T4_FCOE 3133 .ndo_fcoe_enable = cxgb_fcoe_enable, 3134 .ndo_fcoe_disable = cxgb_fcoe_disable, 3135 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3136 #ifdef CONFIG_NET_RX_BUSY_POLL 3137 .ndo_busy_poll = cxgb_busy_poll, 3138 #endif 3139 3140 }; 3141 3142 void t4_fatal_err(struct adapter *adap) 3143 { 3144 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0); 3145 t4_intr_disable(adap); 3146 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3147 } 3148 3149 static void setup_memwin(struct adapter *adap) 3150 { 3151 u32 nic_win_base = t4_get_util_window(adap); 3152 3153 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3154 } 3155 3156 static void setup_memwin_rdma(struct adapter *adap) 3157 { 3158 if (adap->vres.ocq.size) { 3159 u32 start; 3160 unsigned int sz_kb; 3161 3162 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3163 start &= PCI_BASE_ADDRESS_MEM_MASK; 3164 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3165 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3166 t4_write_reg(adap, 3167 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3168 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3169 t4_write_reg(adap, 3170 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3171 adap->vres.ocq.start); 3172 t4_read_reg(adap, 3173 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3174 } 3175 } 3176 3177 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3178 { 3179 u32 v; 3180 int ret; 3181 3182 /* get device capabilities */ 3183 memset(c, 0, sizeof(*c)); 3184 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3185 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3186 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3187 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3188 if (ret < 0) 3189 return ret; 3190 3191 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3192 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3193 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3194 if (ret < 0) 3195 return ret; 3196 3197 ret = t4_config_glbl_rss(adap, adap->pf, 3198 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3199 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3200 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3201 if (ret < 0) 3202 return ret; 3203 3204 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3205 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3206 FW_CMD_CAP_PF); 3207 if (ret < 0) 3208 return ret; 3209 3210 t4_sge_init(adap); 3211 3212 /* tweak some settings */ 3213 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3214 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3215 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3216 v = t4_read_reg(adap, TP_PIO_DATA_A); 3217 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3218 3219 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3220 adap->params.tp.tx_modq_map = 0xE4; 3221 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3222 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3223 3224 /* associate each Tx modulation queue with consecutive Tx channels */ 3225 v = 0x84218421; 3226 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3227 &v, 1, TP_TX_SCHED_HDR_A); 3228 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3229 &v, 1, TP_TX_SCHED_FIFO_A); 3230 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3231 &v, 1, TP_TX_SCHED_PCMD_A); 3232 3233 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3234 if (is_offload(adap)) { 3235 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3236 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3237 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3238 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3239 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3240 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3241 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3242 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3243 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3244 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3245 } 3246 3247 /* get basic stuff going */ 3248 return t4_early_init(adap, adap->pf); 3249 } 3250 3251 /* 3252 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3253 */ 3254 #define MAX_ATIDS 8192U 3255 3256 /* 3257 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3258 * 3259 * If the firmware we're dealing with has Configuration File support, then 3260 * we use that to perform all configuration 3261 */ 3262 3263 /* 3264 * Tweak configuration based on module parameters, etc. Most of these have 3265 * defaults assigned to them by Firmware Configuration Files (if we're using 3266 * them) but need to be explicitly set if we're using hard-coded 3267 * initialization. But even in the case of using Firmware Configuration 3268 * Files, we'd like to expose the ability to change these via module 3269 * parameters so these are essentially common tweaks/settings for 3270 * Configuration Files and hard-coded initialization ... 3271 */ 3272 static int adap_init0_tweaks(struct adapter *adapter) 3273 { 3274 /* 3275 * Fix up various Host-Dependent Parameters like Page Size, Cache 3276 * Line Size, etc. The firmware default is for a 4KB Page Size and 3277 * 64B Cache Line Size ... 3278 */ 3279 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3280 3281 /* 3282 * Process module parameters which affect early initialization. 3283 */ 3284 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3285 dev_err(&adapter->pdev->dev, 3286 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3287 rx_dma_offset); 3288 rx_dma_offset = 2; 3289 } 3290 t4_set_reg_field(adapter, SGE_CONTROL_A, 3291 PKTSHIFT_V(PKTSHIFT_M), 3292 PKTSHIFT_V(rx_dma_offset)); 3293 3294 /* 3295 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3296 * adds the pseudo header itself. 3297 */ 3298 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3299 CSUM_HAS_PSEUDO_HDR_F, 0); 3300 3301 return 0; 3302 } 3303 3304 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3305 * unto themselves and they contain their own firmware to perform their 3306 * tasks ... 3307 */ 3308 static int phy_aq1202_version(const u8 *phy_fw_data, 3309 size_t phy_fw_size) 3310 { 3311 int offset; 3312 3313 /* At offset 0x8 you're looking for the primary image's 3314 * starting offset which is 3 Bytes wide 3315 * 3316 * At offset 0xa of the primary image, you look for the offset 3317 * of the DRAM segment which is 3 Bytes wide. 3318 * 3319 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3320 * wide 3321 */ 3322 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3323 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3324 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3325 3326 offset = le24(phy_fw_data + 0x8) << 12; 3327 offset = le24(phy_fw_data + offset + 0xa); 3328 return be16(phy_fw_data + offset + 0x27e); 3329 3330 #undef be16 3331 #undef le16 3332 #undef le24 3333 } 3334 3335 static struct info_10gbt_phy_fw { 3336 unsigned int phy_fw_id; /* PCI Device ID */ 3337 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3338 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3339 int phy_flash; /* Has FLASH for PHY Firmware */ 3340 } phy_info_array[] = { 3341 { 3342 PHY_AQ1202_DEVICEID, 3343 PHY_AQ1202_FIRMWARE, 3344 phy_aq1202_version, 3345 1, 3346 }, 3347 { 3348 PHY_BCM84834_DEVICEID, 3349 PHY_BCM84834_FIRMWARE, 3350 NULL, 3351 0, 3352 }, 3353 { 0, NULL, NULL }, 3354 }; 3355 3356 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3357 { 3358 int i; 3359 3360 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3361 if (phy_info_array[i].phy_fw_id == devid) 3362 return &phy_info_array[i]; 3363 } 3364 return NULL; 3365 } 3366 3367 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3368 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3369 * we return a negative error number. If we transfer new firmware we return 1 3370 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3371 */ 3372 static int adap_init0_phy(struct adapter *adap) 3373 { 3374 const struct firmware *phyf; 3375 int ret; 3376 struct info_10gbt_phy_fw *phy_info; 3377 3378 /* Use the device ID to determine which PHY file to flash. 3379 */ 3380 phy_info = find_phy_info(adap->pdev->device); 3381 if (!phy_info) { 3382 dev_warn(adap->pdev_dev, 3383 "No PHY Firmware file found for this PHY\n"); 3384 return -EOPNOTSUPP; 3385 } 3386 3387 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3388 * use that. The adapter firmware provides us with a memory buffer 3389 * where we can load a PHY firmware file from the host if we want to 3390 * override the PHY firmware File in flash. 3391 */ 3392 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3393 adap->pdev_dev); 3394 if (ret < 0) { 3395 /* For adapters without FLASH attached to PHY for their 3396 * firmware, it's obviously a fatal error if we can't get the 3397 * firmware to the adapter. For adapters with PHY firmware 3398 * FLASH storage, it's worth a warning if we can't find the 3399 * PHY Firmware but we'll neuter the error ... 3400 */ 3401 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3402 "/lib/firmware/%s, error %d\n", 3403 phy_info->phy_fw_file, -ret); 3404 if (phy_info->phy_flash) { 3405 int cur_phy_fw_ver = 0; 3406 3407 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3408 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3409 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3410 ret = 0; 3411 } 3412 3413 return ret; 3414 } 3415 3416 /* Load PHY Firmware onto adapter. 3417 */ 3418 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3419 phy_info->phy_fw_version, 3420 (u8 *)phyf->data, phyf->size); 3421 if (ret < 0) 3422 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3423 -ret); 3424 else if (ret > 0) { 3425 int new_phy_fw_ver = 0; 3426 3427 if (phy_info->phy_fw_version) 3428 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3429 phyf->size); 3430 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3431 "Firmware /lib/firmware/%s, version %#x\n", 3432 phy_info->phy_fw_file, new_phy_fw_ver); 3433 } 3434 3435 release_firmware(phyf); 3436 3437 return ret; 3438 } 3439 3440 /* 3441 * Attempt to initialize the adapter via a Firmware Configuration File. 3442 */ 3443 static int adap_init0_config(struct adapter *adapter, int reset) 3444 { 3445 struct fw_caps_config_cmd caps_cmd; 3446 const struct firmware *cf; 3447 unsigned long mtype = 0, maddr = 0; 3448 u32 finiver, finicsum, cfcsum; 3449 int ret; 3450 int config_issued = 0; 3451 char *fw_config_file, fw_config_file_path[256]; 3452 char *config_name = NULL; 3453 3454 /* 3455 * Reset device if necessary. 3456 */ 3457 if (reset) { 3458 ret = t4_fw_reset(adapter, adapter->mbox, 3459 PIORSTMODE_F | PIORST_F); 3460 if (ret < 0) 3461 goto bye; 3462 } 3463 3464 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3465 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3466 * to be performed after any global adapter RESET above since some 3467 * PHYs only have local RAM copies of the PHY firmware. 3468 */ 3469 if (is_10gbt_device(adapter->pdev->device)) { 3470 ret = adap_init0_phy(adapter); 3471 if (ret < 0) 3472 goto bye; 3473 } 3474 /* 3475 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3476 * then use that. Otherwise, use the configuration file stored 3477 * in the adapter flash ... 3478 */ 3479 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3480 case CHELSIO_T4: 3481 fw_config_file = FW4_CFNAME; 3482 break; 3483 case CHELSIO_T5: 3484 fw_config_file = FW5_CFNAME; 3485 break; 3486 case CHELSIO_T6: 3487 fw_config_file = FW6_CFNAME; 3488 break; 3489 default: 3490 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3491 adapter->pdev->device); 3492 ret = -EINVAL; 3493 goto bye; 3494 } 3495 3496 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3497 if (ret < 0) { 3498 config_name = "On FLASH"; 3499 mtype = FW_MEMTYPE_CF_FLASH; 3500 maddr = t4_flash_cfg_addr(adapter); 3501 } else { 3502 u32 params[7], val[7]; 3503 3504 sprintf(fw_config_file_path, 3505 "/lib/firmware/%s", fw_config_file); 3506 config_name = fw_config_file_path; 3507 3508 if (cf->size >= FLASH_CFG_MAX_SIZE) 3509 ret = -ENOMEM; 3510 else { 3511 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3512 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3513 ret = t4_query_params(adapter, adapter->mbox, 3514 adapter->pf, 0, 1, params, val); 3515 if (ret == 0) { 3516 /* 3517 * For t4_memory_rw() below addresses and 3518 * sizes have to be in terms of multiples of 4 3519 * bytes. So, if the Configuration File isn't 3520 * a multiple of 4 bytes in length we'll have 3521 * to write that out separately since we can't 3522 * guarantee that the bytes following the 3523 * residual byte in the buffer returned by 3524 * request_firmware() are zeroed out ... 3525 */ 3526 size_t resid = cf->size & 0x3; 3527 size_t size = cf->size & ~0x3; 3528 __be32 *data = (__be32 *)cf->data; 3529 3530 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3531 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3532 3533 spin_lock(&adapter->win0_lock); 3534 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3535 size, data, T4_MEMORY_WRITE); 3536 if (ret == 0 && resid != 0) { 3537 union { 3538 __be32 word; 3539 char buf[4]; 3540 } last; 3541 int i; 3542 3543 last.word = data[size >> 2]; 3544 for (i = resid; i < 4; i++) 3545 last.buf[i] = 0; 3546 ret = t4_memory_rw(adapter, 0, mtype, 3547 maddr + size, 3548 4, &last.word, 3549 T4_MEMORY_WRITE); 3550 } 3551 spin_unlock(&adapter->win0_lock); 3552 } 3553 } 3554 3555 release_firmware(cf); 3556 if (ret) 3557 goto bye; 3558 } 3559 3560 /* 3561 * Issue a Capability Configuration command to the firmware to get it 3562 * to parse the Configuration File. We don't use t4_fw_config_file() 3563 * because we want the ability to modify various features after we've 3564 * processed the configuration file ... 3565 */ 3566 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3567 caps_cmd.op_to_write = 3568 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3569 FW_CMD_REQUEST_F | 3570 FW_CMD_READ_F); 3571 caps_cmd.cfvalid_to_len16 = 3572 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3573 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3574 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3575 FW_LEN16(caps_cmd)); 3576 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3577 &caps_cmd); 3578 3579 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3580 * Configuration File in FLASH), our last gasp effort is to use the 3581 * Firmware Configuration File which is embedded in the firmware. A 3582 * very few early versions of the firmware didn't have one embedded 3583 * but we can ignore those. 3584 */ 3585 if (ret == -ENOENT) { 3586 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3587 caps_cmd.op_to_write = 3588 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3589 FW_CMD_REQUEST_F | 3590 FW_CMD_READ_F); 3591 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3592 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3593 sizeof(caps_cmd), &caps_cmd); 3594 config_name = "Firmware Default"; 3595 } 3596 3597 config_issued = 1; 3598 if (ret < 0) 3599 goto bye; 3600 3601 finiver = ntohl(caps_cmd.finiver); 3602 finicsum = ntohl(caps_cmd.finicsum); 3603 cfcsum = ntohl(caps_cmd.cfcsum); 3604 if (finicsum != cfcsum) 3605 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3606 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3607 finicsum, cfcsum); 3608 3609 /* 3610 * And now tell the firmware to use the configuration we just loaded. 3611 */ 3612 caps_cmd.op_to_write = 3613 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3614 FW_CMD_REQUEST_F | 3615 FW_CMD_WRITE_F); 3616 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3617 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3618 NULL); 3619 if (ret < 0) 3620 goto bye; 3621 3622 /* 3623 * Tweak configuration based on system architecture, module 3624 * parameters, etc. 3625 */ 3626 ret = adap_init0_tweaks(adapter); 3627 if (ret < 0) 3628 goto bye; 3629 3630 /* 3631 * And finally tell the firmware to initialize itself using the 3632 * parameters from the Configuration File. 3633 */ 3634 ret = t4_fw_initialize(adapter, adapter->mbox); 3635 if (ret < 0) 3636 goto bye; 3637 3638 /* Emit Firmware Configuration File information and return 3639 * successfully. 3640 */ 3641 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 3642 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 3643 config_name, finiver, cfcsum); 3644 return 0; 3645 3646 /* 3647 * Something bad happened. Return the error ... (If the "error" 3648 * is that there's no Configuration File on the adapter we don't 3649 * want to issue a warning since this is fairly common.) 3650 */ 3651 bye: 3652 if (config_issued && ret != -ENOENT) 3653 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 3654 config_name, -ret); 3655 return ret; 3656 } 3657 3658 static struct fw_info fw_info_array[] = { 3659 { 3660 .chip = CHELSIO_T4, 3661 .fs_name = FW4_CFNAME, 3662 .fw_mod_name = FW4_FNAME, 3663 .fw_hdr = { 3664 .chip = FW_HDR_CHIP_T4, 3665 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 3666 .intfver_nic = FW_INTFVER(T4, NIC), 3667 .intfver_vnic = FW_INTFVER(T4, VNIC), 3668 .intfver_ri = FW_INTFVER(T4, RI), 3669 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3670 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3671 }, 3672 }, { 3673 .chip = CHELSIO_T5, 3674 .fs_name = FW5_CFNAME, 3675 .fw_mod_name = FW5_FNAME, 3676 .fw_hdr = { 3677 .chip = FW_HDR_CHIP_T5, 3678 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 3679 .intfver_nic = FW_INTFVER(T5, NIC), 3680 .intfver_vnic = FW_INTFVER(T5, VNIC), 3681 .intfver_ri = FW_INTFVER(T5, RI), 3682 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3683 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3684 }, 3685 }, { 3686 .chip = CHELSIO_T6, 3687 .fs_name = FW6_CFNAME, 3688 .fw_mod_name = FW6_FNAME, 3689 .fw_hdr = { 3690 .chip = FW_HDR_CHIP_T6, 3691 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 3692 .intfver_nic = FW_INTFVER(T6, NIC), 3693 .intfver_vnic = FW_INTFVER(T6, VNIC), 3694 .intfver_ofld = FW_INTFVER(T6, OFLD), 3695 .intfver_ri = FW_INTFVER(T6, RI), 3696 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 3697 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 3698 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 3699 .intfver_fcoe = FW_INTFVER(T6, FCOE), 3700 }, 3701 } 3702 3703 }; 3704 3705 static struct fw_info *find_fw_info(int chip) 3706 { 3707 int i; 3708 3709 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 3710 if (fw_info_array[i].chip == chip) 3711 return &fw_info_array[i]; 3712 } 3713 return NULL; 3714 } 3715 3716 /* 3717 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3718 */ 3719 static int adap_init0(struct adapter *adap) 3720 { 3721 int ret; 3722 u32 v, port_vec; 3723 enum dev_state state; 3724 u32 params[7], val[7]; 3725 struct fw_caps_config_cmd caps_cmd; 3726 int reset = 1; 3727 3728 /* Grab Firmware Device Log parameters as early as possible so we have 3729 * access to it for debugging, etc. 3730 */ 3731 ret = t4_init_devlog_params(adap); 3732 if (ret < 0) 3733 return ret; 3734 3735 /* Contact FW, advertising Master capability */ 3736 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 3737 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 3738 if (ret < 0) { 3739 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 3740 ret); 3741 return ret; 3742 } 3743 if (ret == adap->mbox) 3744 adap->flags |= MASTER_PF; 3745 3746 /* 3747 * If we're the Master PF Driver and the device is uninitialized, 3748 * then let's consider upgrading the firmware ... (We always want 3749 * to check the firmware version number in order to A. get it for 3750 * later reporting and B. to warn if the currently loaded firmware 3751 * is excessively mismatched relative to the driver.) 3752 */ 3753 t4_get_fw_version(adap, &adap->params.fw_vers); 3754 t4_get_bs_version(adap, &adap->params.bs_vers); 3755 t4_get_tp_version(adap, &adap->params.tp_vers); 3756 t4_get_exprom_version(adap, &adap->params.er_vers); 3757 3758 ret = t4_check_fw_version(adap); 3759 /* If firmware is too old (not supported by driver) force an update. */ 3760 if (ret) 3761 state = DEV_STATE_UNINIT; 3762 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 3763 struct fw_info *fw_info; 3764 struct fw_hdr *card_fw; 3765 const struct firmware *fw; 3766 const u8 *fw_data = NULL; 3767 unsigned int fw_size = 0; 3768 3769 /* This is the firmware whose headers the driver was compiled 3770 * against 3771 */ 3772 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 3773 if (fw_info == NULL) { 3774 dev_err(adap->pdev_dev, 3775 "unable to get firmware info for chip %d.\n", 3776 CHELSIO_CHIP_VERSION(adap->params.chip)); 3777 return -EINVAL; 3778 } 3779 3780 /* allocate memory to read the header of the firmware on the 3781 * card 3782 */ 3783 card_fw = t4_alloc_mem(sizeof(*card_fw)); 3784 3785 /* Get FW from from /lib/firmware/ */ 3786 ret = request_firmware(&fw, fw_info->fw_mod_name, 3787 adap->pdev_dev); 3788 if (ret < 0) { 3789 dev_err(adap->pdev_dev, 3790 "unable to load firmware image %s, error %d\n", 3791 fw_info->fw_mod_name, ret); 3792 } else { 3793 fw_data = fw->data; 3794 fw_size = fw->size; 3795 } 3796 3797 /* upgrade FW logic */ 3798 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 3799 state, &reset); 3800 3801 /* Cleaning up */ 3802 release_firmware(fw); 3803 t4_free_mem(card_fw); 3804 3805 if (ret < 0) 3806 goto bye; 3807 } 3808 3809 /* 3810 * Grab VPD parameters. This should be done after we establish a 3811 * connection to the firmware since some of the VPD parameters 3812 * (notably the Core Clock frequency) are retrieved via requests to 3813 * the firmware. On the other hand, we need these fairly early on 3814 * so we do this right after getting ahold of the firmware. 3815 */ 3816 ret = t4_get_vpd_params(adap, &adap->params.vpd); 3817 if (ret < 0) 3818 goto bye; 3819 3820 /* 3821 * Find out what ports are available to us. Note that we need to do 3822 * this before calling adap_init0_no_config() since it needs nports 3823 * and portvec ... 3824 */ 3825 v = 3826 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3827 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 3828 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 3829 if (ret < 0) 3830 goto bye; 3831 3832 adap->params.nports = hweight32(port_vec); 3833 adap->params.portvec = port_vec; 3834 3835 /* If the firmware is initialized already, emit a simply note to that 3836 * effect. Otherwise, it's time to try initializing the adapter. 3837 */ 3838 if (state == DEV_STATE_INIT) { 3839 dev_info(adap->pdev_dev, "Coming up as %s: "\ 3840 "Adapter already initialized\n", 3841 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 3842 } else { 3843 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 3844 "Initializing adapter\n"); 3845 3846 /* Find out whether we're dealing with a version of the 3847 * firmware which has configuration file support. 3848 */ 3849 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3850 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3851 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3852 params, val); 3853 3854 /* If the firmware doesn't support Configuration Files, 3855 * return an error. 3856 */ 3857 if (ret < 0) { 3858 dev_err(adap->pdev_dev, "firmware doesn't support " 3859 "Firmware Configuration Files\n"); 3860 goto bye; 3861 } 3862 3863 /* The firmware provides us with a memory buffer where we can 3864 * load a Configuration File from the host if we want to 3865 * override the Configuration File in flash. 3866 */ 3867 ret = adap_init0_config(adap, reset); 3868 if (ret == -ENOENT) { 3869 dev_err(adap->pdev_dev, "no Configuration File " 3870 "present on adapter.\n"); 3871 goto bye; 3872 } 3873 if (ret < 0) { 3874 dev_err(adap->pdev_dev, "could not initialize " 3875 "adapter, error %d\n", -ret); 3876 goto bye; 3877 } 3878 } 3879 3880 /* Give the SGE code a chance to pull in anything that it needs ... 3881 * Note that this must be called after we retrieve our VPD parameters 3882 * in order to know how to convert core ticks to seconds, etc. 3883 */ 3884 ret = t4_sge_init(adap); 3885 if (ret < 0) 3886 goto bye; 3887 3888 if (is_bypass_device(adap->pdev->device)) 3889 adap->params.bypass = 1; 3890 3891 /* 3892 * Grab some of our basic fundamental operating parameters. 3893 */ 3894 #define FW_PARAM_DEV(param) \ 3895 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 3896 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 3897 3898 #define FW_PARAM_PFVF(param) \ 3899 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 3900 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 3901 FW_PARAMS_PARAM_Y_V(0) | \ 3902 FW_PARAMS_PARAM_Z_V(0) 3903 3904 params[0] = FW_PARAM_PFVF(EQ_START); 3905 params[1] = FW_PARAM_PFVF(L2T_START); 3906 params[2] = FW_PARAM_PFVF(L2T_END); 3907 params[3] = FW_PARAM_PFVF(FILTER_START); 3908 params[4] = FW_PARAM_PFVF(FILTER_END); 3909 params[5] = FW_PARAM_PFVF(IQFLINT_START); 3910 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 3911 if (ret < 0) 3912 goto bye; 3913 adap->sge.egr_start = val[0]; 3914 adap->l2t_start = val[1]; 3915 adap->l2t_end = val[2]; 3916 adap->tids.ftid_base = val[3]; 3917 adap->tids.nftids = val[4] - val[3] + 1; 3918 adap->sge.ingr_start = val[5]; 3919 3920 /* qids (ingress/egress) returned from firmware can be anywhere 3921 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 3922 * Hence driver needs to allocate memory for this range to 3923 * store the queue info. Get the highest IQFLINT/EQ index returned 3924 * in FW_EQ_*_CMD.alloc command. 3925 */ 3926 params[0] = FW_PARAM_PFVF(EQ_END); 3927 params[1] = FW_PARAM_PFVF(IQFLINT_END); 3928 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3929 if (ret < 0) 3930 goto bye; 3931 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 3932 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 3933 3934 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 3935 sizeof(*adap->sge.egr_map), GFP_KERNEL); 3936 if (!adap->sge.egr_map) { 3937 ret = -ENOMEM; 3938 goto bye; 3939 } 3940 3941 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 3942 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 3943 if (!adap->sge.ingr_map) { 3944 ret = -ENOMEM; 3945 goto bye; 3946 } 3947 3948 /* Allocate the memory for the vaious egress queue bitmaps 3949 * ie starving_fl, txq_maperr and blocked_fl. 3950 */ 3951 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3952 sizeof(long), GFP_KERNEL); 3953 if (!adap->sge.starving_fl) { 3954 ret = -ENOMEM; 3955 goto bye; 3956 } 3957 3958 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3959 sizeof(long), GFP_KERNEL); 3960 if (!adap->sge.txq_maperr) { 3961 ret = -ENOMEM; 3962 goto bye; 3963 } 3964 3965 #ifdef CONFIG_DEBUG_FS 3966 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3967 sizeof(long), GFP_KERNEL); 3968 if (!adap->sge.blocked_fl) { 3969 ret = -ENOMEM; 3970 goto bye; 3971 } 3972 #endif 3973 3974 params[0] = FW_PARAM_PFVF(CLIP_START); 3975 params[1] = FW_PARAM_PFVF(CLIP_END); 3976 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3977 if (ret < 0) 3978 goto bye; 3979 adap->clipt_start = val[0]; 3980 adap->clipt_end = val[1]; 3981 3982 /* query params related to active filter region */ 3983 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 3984 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 3985 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3986 /* If Active filter size is set we enable establishing 3987 * offload connection through firmware work request 3988 */ 3989 if ((val[0] != val[1]) && (ret >= 0)) { 3990 adap->flags |= FW_OFLD_CONN; 3991 adap->tids.aftid_base = val[0]; 3992 adap->tids.aftid_end = val[1]; 3993 } 3994 3995 /* If we're running on newer firmware, let it know that we're 3996 * prepared to deal with encapsulated CPL messages. Older 3997 * firmware won't understand this and we'll just get 3998 * unencapsulated messages ... 3999 */ 4000 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4001 val[0] = 1; 4002 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4003 4004 /* 4005 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 4006 * capability. Earlier versions of the firmware didn't have the 4007 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 4008 * permission to use ULPTX MEMWRITE DSGL. 4009 */ 4010 if (is_t4(adap->params.chip)) { 4011 adap->params.ulptx_memwrite_dsgl = false; 4012 } else { 4013 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4014 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4015 1, params, val); 4016 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4017 } 4018 4019 /* 4020 * Get device capabilities so we can determine what resources we need 4021 * to manage. 4022 */ 4023 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4024 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4025 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4026 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4027 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4028 &caps_cmd); 4029 if (ret < 0) 4030 goto bye; 4031 4032 if (caps_cmd.ofldcaps) { 4033 /* query offload-related parameters */ 4034 params[0] = FW_PARAM_DEV(NTID); 4035 params[1] = FW_PARAM_PFVF(SERVER_START); 4036 params[2] = FW_PARAM_PFVF(SERVER_END); 4037 params[3] = FW_PARAM_PFVF(TDDP_START); 4038 params[4] = FW_PARAM_PFVF(TDDP_END); 4039 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4040 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4041 params, val); 4042 if (ret < 0) 4043 goto bye; 4044 adap->tids.ntids = val[0]; 4045 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4046 adap->tids.stid_base = val[1]; 4047 adap->tids.nstids = val[2] - val[1] + 1; 4048 /* 4049 * Setup server filter region. Divide the available filter 4050 * region into two parts. Regular filters get 1/3rd and server 4051 * filters get 2/3rd part. This is only enabled if workarond 4052 * path is enabled. 4053 * 1. For regular filters. 4054 * 2. Server filter: This are special filters which are used 4055 * to redirect SYN packets to offload queue. 4056 */ 4057 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 4058 adap->tids.sftid_base = adap->tids.ftid_base + 4059 DIV_ROUND_UP(adap->tids.nftids, 3); 4060 adap->tids.nsftids = adap->tids.nftids - 4061 DIV_ROUND_UP(adap->tids.nftids, 3); 4062 adap->tids.nftids = adap->tids.sftid_base - 4063 adap->tids.ftid_base; 4064 } 4065 adap->vres.ddp.start = val[3]; 4066 adap->vres.ddp.size = val[4] - val[3] + 1; 4067 adap->params.ofldq_wr_cred = val[5]; 4068 4069 adap->params.offload = 1; 4070 } 4071 if (caps_cmd.rdmacaps) { 4072 params[0] = FW_PARAM_PFVF(STAG_START); 4073 params[1] = FW_PARAM_PFVF(STAG_END); 4074 params[2] = FW_PARAM_PFVF(RQ_START); 4075 params[3] = FW_PARAM_PFVF(RQ_END); 4076 params[4] = FW_PARAM_PFVF(PBL_START); 4077 params[5] = FW_PARAM_PFVF(PBL_END); 4078 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4079 params, val); 4080 if (ret < 0) 4081 goto bye; 4082 adap->vres.stag.start = val[0]; 4083 adap->vres.stag.size = val[1] - val[0] + 1; 4084 adap->vres.rq.start = val[2]; 4085 adap->vres.rq.size = val[3] - val[2] + 1; 4086 adap->vres.pbl.start = val[4]; 4087 adap->vres.pbl.size = val[5] - val[4] + 1; 4088 4089 params[0] = FW_PARAM_PFVF(SQRQ_START); 4090 params[1] = FW_PARAM_PFVF(SQRQ_END); 4091 params[2] = FW_PARAM_PFVF(CQ_START); 4092 params[3] = FW_PARAM_PFVF(CQ_END); 4093 params[4] = FW_PARAM_PFVF(OCQ_START); 4094 params[5] = FW_PARAM_PFVF(OCQ_END); 4095 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4096 val); 4097 if (ret < 0) 4098 goto bye; 4099 adap->vres.qp.start = val[0]; 4100 adap->vres.qp.size = val[1] - val[0] + 1; 4101 adap->vres.cq.start = val[2]; 4102 adap->vres.cq.size = val[3] - val[2] + 1; 4103 adap->vres.ocq.start = val[4]; 4104 adap->vres.ocq.size = val[5] - val[4] + 1; 4105 4106 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4107 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4108 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 4109 val); 4110 if (ret < 0) { 4111 adap->params.max_ordird_qp = 8; 4112 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 4113 ret = 0; 4114 } else { 4115 adap->params.max_ordird_qp = val[0]; 4116 adap->params.max_ird_adapter = val[1]; 4117 } 4118 dev_info(adap->pdev_dev, 4119 "max_ordird_qp %d max_ird_adapter %d\n", 4120 adap->params.max_ordird_qp, 4121 adap->params.max_ird_adapter); 4122 } 4123 if (caps_cmd.iscsicaps) { 4124 params[0] = FW_PARAM_PFVF(ISCSI_START); 4125 params[1] = FW_PARAM_PFVF(ISCSI_END); 4126 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4127 params, val); 4128 if (ret < 0) 4129 goto bye; 4130 adap->vres.iscsi.start = val[0]; 4131 adap->vres.iscsi.size = val[1] - val[0] + 1; 4132 } 4133 #undef FW_PARAM_PFVF 4134 #undef FW_PARAM_DEV 4135 4136 /* The MTU/MSS Table is initialized by now, so load their values. If 4137 * we're initializing the adapter, then we'll make any modifications 4138 * we want to the MTU/MSS Table and also initialize the congestion 4139 * parameters. 4140 */ 4141 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4142 if (state != DEV_STATE_INIT) { 4143 int i; 4144 4145 /* The default MTU Table contains values 1492 and 1500. 4146 * However, for TCP, it's better to have two values which are 4147 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4148 * This allows us to have a TCP Data Payload which is a 4149 * multiple of 8 regardless of what combination of TCP Options 4150 * are in use (always a multiple of 4 bytes) which is 4151 * important for performance reasons. For instance, if no 4152 * options are in use, then we have a 20-byte IP header and a 4153 * 20-byte TCP header. In this case, a 1500-byte MSS would 4154 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4155 * which is not a multiple of 8. So using an MSS of 1488 in 4156 * this case results in a TCP Data Payload of 1448 bytes which 4157 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4158 * Stamps have been negotiated, then an MTU of 1500 bytes 4159 * results in a TCP Data Payload of 1448 bytes which, as 4160 * above, is a multiple of 8 bytes ... 4161 */ 4162 for (i = 0; i < NMTUS; i++) 4163 if (adap->params.mtus[i] == 1492) { 4164 adap->params.mtus[i] = 1488; 4165 break; 4166 } 4167 4168 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4169 adap->params.b_wnd); 4170 } 4171 t4_init_sge_params(adap); 4172 adap->flags |= FW_OK; 4173 t4_init_tp_params(adap); 4174 return 0; 4175 4176 /* 4177 * Something bad happened. If a command timed out or failed with EIO 4178 * FW does not operate within its spec or something catastrophic 4179 * happened to HW/FW, stop issuing commands. 4180 */ 4181 bye: 4182 kfree(adap->sge.egr_map); 4183 kfree(adap->sge.ingr_map); 4184 kfree(adap->sge.starving_fl); 4185 kfree(adap->sge.txq_maperr); 4186 #ifdef CONFIG_DEBUG_FS 4187 kfree(adap->sge.blocked_fl); 4188 #endif 4189 if (ret != -ETIMEDOUT && ret != -EIO) 4190 t4_fw_bye(adap, adap->mbox); 4191 return ret; 4192 } 4193 4194 /* EEH callbacks */ 4195 4196 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4197 pci_channel_state_t state) 4198 { 4199 int i; 4200 struct adapter *adap = pci_get_drvdata(pdev); 4201 4202 if (!adap) 4203 goto out; 4204 4205 rtnl_lock(); 4206 adap->flags &= ~FW_OK; 4207 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4208 spin_lock(&adap->stats_lock); 4209 for_each_port(adap, i) { 4210 struct net_device *dev = adap->port[i]; 4211 4212 netif_device_detach(dev); 4213 netif_carrier_off(dev); 4214 } 4215 spin_unlock(&adap->stats_lock); 4216 disable_interrupts(adap); 4217 if (adap->flags & FULL_INIT_DONE) 4218 cxgb_down(adap); 4219 rtnl_unlock(); 4220 if ((adap->flags & DEV_ENABLED)) { 4221 pci_disable_device(pdev); 4222 adap->flags &= ~DEV_ENABLED; 4223 } 4224 out: return state == pci_channel_io_perm_failure ? 4225 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4226 } 4227 4228 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4229 { 4230 int i, ret; 4231 struct fw_caps_config_cmd c; 4232 struct adapter *adap = pci_get_drvdata(pdev); 4233 4234 if (!adap) { 4235 pci_restore_state(pdev); 4236 pci_save_state(pdev); 4237 return PCI_ERS_RESULT_RECOVERED; 4238 } 4239 4240 if (!(adap->flags & DEV_ENABLED)) { 4241 if (pci_enable_device(pdev)) { 4242 dev_err(&pdev->dev, "Cannot reenable PCI " 4243 "device after reset\n"); 4244 return PCI_ERS_RESULT_DISCONNECT; 4245 } 4246 adap->flags |= DEV_ENABLED; 4247 } 4248 4249 pci_set_master(pdev); 4250 pci_restore_state(pdev); 4251 pci_save_state(pdev); 4252 pci_cleanup_aer_uncorrect_error_status(pdev); 4253 4254 if (t4_wait_dev_ready(adap->regs) < 0) 4255 return PCI_ERS_RESULT_DISCONNECT; 4256 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4257 return PCI_ERS_RESULT_DISCONNECT; 4258 adap->flags |= FW_OK; 4259 if (adap_init1(adap, &c)) 4260 return PCI_ERS_RESULT_DISCONNECT; 4261 4262 for_each_port(adap, i) { 4263 struct port_info *p = adap2pinfo(adap, i); 4264 4265 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 4266 NULL, NULL); 4267 if (ret < 0) 4268 return PCI_ERS_RESULT_DISCONNECT; 4269 p->viid = ret; 4270 p->xact_addr_filt = -1; 4271 } 4272 4273 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4274 adap->params.b_wnd); 4275 setup_memwin(adap); 4276 if (cxgb_up(adap)) 4277 return PCI_ERS_RESULT_DISCONNECT; 4278 return PCI_ERS_RESULT_RECOVERED; 4279 } 4280 4281 static void eeh_resume(struct pci_dev *pdev) 4282 { 4283 int i; 4284 struct adapter *adap = pci_get_drvdata(pdev); 4285 4286 if (!adap) 4287 return; 4288 4289 rtnl_lock(); 4290 for_each_port(adap, i) { 4291 struct net_device *dev = adap->port[i]; 4292 4293 if (netif_running(dev)) { 4294 link_start(dev); 4295 cxgb_set_rxmode(dev); 4296 } 4297 netif_device_attach(dev); 4298 } 4299 rtnl_unlock(); 4300 } 4301 4302 static const struct pci_error_handlers cxgb4_eeh = { 4303 .error_detected = eeh_err_detected, 4304 .slot_reset = eeh_slot_reset, 4305 .resume = eeh_resume, 4306 }; 4307 4308 static inline bool is_x_10g_port(const struct link_config *lc) 4309 { 4310 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 || 4311 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0; 4312 } 4313 4314 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q, 4315 unsigned int us, unsigned int cnt, 4316 unsigned int size, unsigned int iqe_size) 4317 { 4318 q->adap = adap; 4319 cxgb4_set_rspq_intr_params(q, us, cnt); 4320 q->iqe_len = iqe_size; 4321 q->size = size; 4322 } 4323 4324 /* 4325 * Perform default configuration of DMA queues depending on the number and type 4326 * of ports we found and the number of available CPUs. Most settings can be 4327 * modified by the admin prior to actual use. 4328 */ 4329 static void cfg_queues(struct adapter *adap) 4330 { 4331 struct sge *s = &adap->sge; 4332 int i, n10g = 0, qidx = 0; 4333 #ifndef CONFIG_CHELSIO_T4_DCB 4334 int q10g = 0; 4335 #endif 4336 int ciq_size; 4337 4338 /* Reduce memory usage in kdump environment, disable all offload. 4339 */ 4340 if (is_kdump_kernel()) 4341 adap->params.offload = 0; 4342 4343 for_each_port(adap, i) 4344 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4345 #ifdef CONFIG_CHELSIO_T4_DCB 4346 /* For Data Center Bridging support we need to be able to support up 4347 * to 8 Traffic Priorities; each of which will be assigned to its 4348 * own TX Queue in order to prevent Head-Of-Line Blocking. 4349 */ 4350 if (adap->params.nports * 8 > MAX_ETH_QSETS) { 4351 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n", 4352 MAX_ETH_QSETS, adap->params.nports * 8); 4353 BUG_ON(1); 4354 } 4355 4356 for_each_port(adap, i) { 4357 struct port_info *pi = adap2pinfo(adap, i); 4358 4359 pi->first_qset = qidx; 4360 pi->nqsets = 8; 4361 qidx += pi->nqsets; 4362 } 4363 #else /* !CONFIG_CHELSIO_T4_DCB */ 4364 /* 4365 * We default to 1 queue per non-10G port and up to # of cores queues 4366 * per 10G port. 4367 */ 4368 if (n10g) 4369 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 4370 if (q10g > netif_get_num_default_rss_queues()) 4371 q10g = netif_get_num_default_rss_queues(); 4372 4373 for_each_port(adap, i) { 4374 struct port_info *pi = adap2pinfo(adap, i); 4375 4376 pi->first_qset = qidx; 4377 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4378 qidx += pi->nqsets; 4379 } 4380 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4381 4382 s->ethqsets = qidx; 4383 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4384 4385 if (is_offload(adap)) { 4386 /* 4387 * For offload we use 1 queue/channel if all ports are up to 1G, 4388 * otherwise we divide all available queues amongst the channels 4389 * capped by the number of available cores. 4390 */ 4391 if (n10g) { 4392 i = min_t(int, ARRAY_SIZE(s->iscsirxq), 4393 num_online_cpus()); 4394 s->iscsiqsets = roundup(i, adap->params.nports); 4395 } else 4396 s->iscsiqsets = adap->params.nports; 4397 /* For RDMA one Rx queue per channel suffices */ 4398 s->rdmaqs = adap->params.nports; 4399 /* Try and allow at least 1 CIQ per cpu rounding down 4400 * to the number of ports, with a minimum of 1 per port. 4401 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port. 4402 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port. 4403 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port. 4404 */ 4405 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus()); 4406 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) * 4407 adap->params.nports; 4408 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports); 4409 4410 if (!is_t4(adap->params.chip)) 4411 s->niscsitq = s->iscsiqsets; 4412 } 4413 4414 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4415 struct sge_eth_rxq *r = &s->ethrxq[i]; 4416 4417 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4418 r->fl.size = 72; 4419 } 4420 4421 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4422 s->ethtxq[i].q.size = 1024; 4423 4424 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4425 s->ctrlq[i].q.size = 512; 4426 4427 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) 4428 s->ofldtxq[i].q.size = 1024; 4429 4430 for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) { 4431 struct sge_ofld_rxq *r = &s->iscsirxq[i]; 4432 4433 init_rspq(adap, &r->rspq, 5, 1, 1024, 64); 4434 r->rspq.uld = CXGB4_ULD_ISCSI; 4435 r->fl.size = 72; 4436 } 4437 4438 if (!is_t4(adap->params.chip)) { 4439 for (i = 0; i < ARRAY_SIZE(s->iscsitrxq); i++) { 4440 struct sge_ofld_rxq *r = &s->iscsitrxq[i]; 4441 4442 init_rspq(adap, &r->rspq, 5, 1, 1024, 64); 4443 r->rspq.uld = CXGB4_ULD_ISCSIT; 4444 r->fl.size = 72; 4445 } 4446 } 4447 4448 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) { 4449 struct sge_ofld_rxq *r = &s->rdmarxq[i]; 4450 4451 init_rspq(adap, &r->rspq, 5, 1, 511, 64); 4452 r->rspq.uld = CXGB4_ULD_RDMA; 4453 r->fl.size = 72; 4454 } 4455 4456 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids; 4457 if (ciq_size > SGE_MAX_IQ_SIZE) { 4458 CH_WARN(adap, "CIQ size too small for available IQs\n"); 4459 ciq_size = SGE_MAX_IQ_SIZE; 4460 } 4461 4462 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) { 4463 struct sge_ofld_rxq *r = &s->rdmaciq[i]; 4464 4465 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64); 4466 r->rspq.uld = CXGB4_ULD_RDMA; 4467 } 4468 4469 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4470 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64); 4471 } 4472 4473 /* 4474 * Reduce the number of Ethernet queues across all ports to at most n. 4475 * n provides at least one queue per port. 4476 */ 4477 static void reduce_ethqs(struct adapter *adap, int n) 4478 { 4479 int i; 4480 struct port_info *pi; 4481 4482 while (n < adap->sge.ethqsets) 4483 for_each_port(adap, i) { 4484 pi = adap2pinfo(adap, i); 4485 if (pi->nqsets > 1) { 4486 pi->nqsets--; 4487 adap->sge.ethqsets--; 4488 if (adap->sge.ethqsets <= n) 4489 break; 4490 } 4491 } 4492 4493 n = 0; 4494 for_each_port(adap, i) { 4495 pi = adap2pinfo(adap, i); 4496 pi->first_qset = n; 4497 n += pi->nqsets; 4498 } 4499 } 4500 4501 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 4502 #define EXTRA_VECS 2 4503 4504 static int enable_msix(struct adapter *adap) 4505 { 4506 int ofld_need = 0; 4507 int i, want, need, allocated; 4508 struct sge *s = &adap->sge; 4509 unsigned int nchan = adap->params.nports; 4510 struct msix_entry *entries; 4511 4512 entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1), 4513 GFP_KERNEL); 4514 if (!entries) 4515 return -ENOMEM; 4516 4517 for (i = 0; i < MAX_INGQ + 1; ++i) 4518 entries[i].entry = i; 4519 4520 want = s->max_ethqsets + EXTRA_VECS; 4521 if (is_offload(adap)) { 4522 want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets + 4523 s->niscsitq; 4524 /* need nchan for each possible ULD */ 4525 if (is_t4(adap->params.chip)) 4526 ofld_need = 3 * nchan; 4527 else 4528 ofld_need = 4 * nchan; 4529 } 4530 #ifdef CONFIG_CHELSIO_T4_DCB 4531 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 4532 * each port. 4533 */ 4534 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need; 4535 #else 4536 need = adap->params.nports + EXTRA_VECS + ofld_need; 4537 #endif 4538 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 4539 if (allocated < 0) { 4540 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 4541 " not using MSI-X\n"); 4542 kfree(entries); 4543 return allocated; 4544 } 4545 4546 /* Distribute available vectors to the various queue groups. 4547 * Every group gets its minimum requirement and NIC gets top 4548 * priority for leftovers. 4549 */ 4550 i = allocated - EXTRA_VECS - ofld_need; 4551 if (i < s->max_ethqsets) { 4552 s->max_ethqsets = i; 4553 if (i < s->ethqsets) 4554 reduce_ethqs(adap, i); 4555 } 4556 if (is_offload(adap)) { 4557 if (allocated < want) { 4558 s->rdmaqs = nchan; 4559 s->rdmaciqs = nchan; 4560 4561 if (!is_t4(adap->params.chip)) 4562 s->niscsitq = nchan; 4563 } 4564 4565 /* leftovers go to OFLD */ 4566 i = allocated - EXTRA_VECS - s->max_ethqsets - 4567 s->rdmaqs - s->rdmaciqs - s->niscsitq; 4568 s->iscsiqsets = (i / nchan) * nchan; /* round down */ 4569 4570 } 4571 for (i = 0; i < allocated; ++i) 4572 adap->msix_info[i].vec = entries[i].vector; 4573 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 4574 "nic %d iscsi %d rdma cpl %d rdma ciq %d\n", 4575 allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs, 4576 s->rdmaciqs); 4577 4578 kfree(entries); 4579 return 0; 4580 } 4581 4582 #undef EXTRA_VECS 4583 4584 static int init_rss(struct adapter *adap) 4585 { 4586 unsigned int i; 4587 int err; 4588 4589 err = t4_init_rss_mode(adap, adap->mbox); 4590 if (err) 4591 return err; 4592 4593 for_each_port(adap, i) { 4594 struct port_info *pi = adap2pinfo(adap, i); 4595 4596 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 4597 if (!pi->rss) 4598 return -ENOMEM; 4599 } 4600 return 0; 4601 } 4602 4603 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap, 4604 enum pci_bus_speed *speed, 4605 enum pcie_link_width *width) 4606 { 4607 u32 lnkcap1, lnkcap2; 4608 int err1, err2; 4609 4610 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */ 4611 4612 *speed = PCI_SPEED_UNKNOWN; 4613 *width = PCIE_LNK_WIDTH_UNKNOWN; 4614 4615 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP, 4616 &lnkcap1); 4617 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2, 4618 &lnkcap2); 4619 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */ 4620 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 4621 *speed = PCIE_SPEED_8_0GT; 4622 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 4623 *speed = PCIE_SPEED_5_0GT; 4624 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 4625 *speed = PCIE_SPEED_2_5GT; 4626 } 4627 if (!err1) { 4628 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT; 4629 if (!lnkcap2) { /* pre-r3.0 */ 4630 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB) 4631 *speed = PCIE_SPEED_5_0GT; 4632 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB) 4633 *speed = PCIE_SPEED_2_5GT; 4634 } 4635 } 4636 4637 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 4638 return err1 ? err1 : err2 ? err2 : -EINVAL; 4639 return 0; 4640 } 4641 4642 static void cxgb4_check_pcie_caps(struct adapter *adap) 4643 { 4644 enum pcie_link_width width, width_cap; 4645 enum pci_bus_speed speed, speed_cap; 4646 4647 #define PCIE_SPEED_STR(speed) \ 4648 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \ 4649 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \ 4650 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \ 4651 "Unknown") 4652 4653 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) { 4654 dev_warn(adap->pdev_dev, 4655 "Unable to determine PCIe device BW capabilities\n"); 4656 return; 4657 } 4658 4659 if (pcie_get_minimum_link(adap->pdev, &speed, &width) || 4660 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) { 4661 dev_warn(adap->pdev_dev, 4662 "Unable to determine PCI Express bandwidth.\n"); 4663 return; 4664 } 4665 4666 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n", 4667 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap)); 4668 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n", 4669 width, width_cap); 4670 if (speed < speed_cap || width < width_cap) 4671 dev_info(adap->pdev_dev, 4672 "A slot with more lanes and/or higher speed is " 4673 "suggested for optimal performance.\n"); 4674 } 4675 4676 /* Dump basic information about the adapter */ 4677 static void print_adapter_info(struct adapter *adapter) 4678 { 4679 /* Device information */ 4680 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 4681 adapter->params.vpd.id, 4682 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 4683 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 4684 adapter->params.vpd.sn, adapter->params.vpd.pn); 4685 4686 /* Firmware Version */ 4687 if (!adapter->params.fw_vers) 4688 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 4689 else 4690 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 4691 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 4692 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 4693 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 4694 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 4695 4696 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 4697 * Firmware, so dev_info() is more appropriate here.) 4698 */ 4699 if (!adapter->params.bs_vers) 4700 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 4701 else 4702 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 4703 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 4704 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 4705 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 4706 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 4707 4708 /* TP Microcode Version */ 4709 if (!adapter->params.tp_vers) 4710 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 4711 else 4712 dev_info(adapter->pdev_dev, 4713 "TP Microcode version: %u.%u.%u.%u\n", 4714 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 4715 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 4716 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 4717 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 4718 4719 /* Expansion ROM version */ 4720 if (!adapter->params.er_vers) 4721 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 4722 else 4723 dev_info(adapter->pdev_dev, 4724 "Expansion ROM version: %u.%u.%u.%u\n", 4725 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 4726 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 4727 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 4728 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 4729 4730 /* Software/Hardware configuration */ 4731 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 4732 is_offload(adapter) ? "R" : "", 4733 ((adapter->flags & USING_MSIX) ? "MSI-X" : 4734 (adapter->flags & USING_MSI) ? "MSI" : ""), 4735 is_offload(adapter) ? "Offload" : "non-Offload"); 4736 } 4737 4738 static void print_port_info(const struct net_device *dev) 4739 { 4740 char buf[80]; 4741 char *bufp = buf; 4742 const char *spd = ""; 4743 const struct port_info *pi = netdev_priv(dev); 4744 const struct adapter *adap = pi->adapter; 4745 4746 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 4747 spd = " 2.5 GT/s"; 4748 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 4749 spd = " 5 GT/s"; 4750 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 4751 spd = " 8 GT/s"; 4752 4753 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 4754 bufp += sprintf(bufp, "100/"); 4755 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 4756 bufp += sprintf(bufp, "1000/"); 4757 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 4758 bufp += sprintf(bufp, "10G/"); 4759 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G) 4760 bufp += sprintf(bufp, "40G/"); 4761 if (bufp != buf) 4762 --bufp; 4763 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 4764 4765 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 4766 dev->name, adap->params.vpd.id, adap->name, buf); 4767 } 4768 4769 static void enable_pcie_relaxed_ordering(struct pci_dev *dev) 4770 { 4771 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 4772 } 4773 4774 /* 4775 * Free the following resources: 4776 * - memory used for tables 4777 * - MSI/MSI-X 4778 * - net devices 4779 * - resources FW is holding for us 4780 */ 4781 static void free_some_resources(struct adapter *adapter) 4782 { 4783 unsigned int i; 4784 4785 t4_free_mem(adapter->l2t); 4786 t4_free_mem(adapter->tids.tid_tab); 4787 kfree(adapter->sge.egr_map); 4788 kfree(adapter->sge.ingr_map); 4789 kfree(adapter->sge.starving_fl); 4790 kfree(adapter->sge.txq_maperr); 4791 #ifdef CONFIG_DEBUG_FS 4792 kfree(adapter->sge.blocked_fl); 4793 #endif 4794 disable_msi(adapter); 4795 4796 for_each_port(adapter, i) 4797 if (adapter->port[i]) { 4798 struct port_info *pi = adap2pinfo(adapter, i); 4799 4800 if (pi->viid != 0) 4801 t4_free_vi(adapter, adapter->mbox, adapter->pf, 4802 0, pi->viid); 4803 kfree(adap2pinfo(adapter, i)->rss); 4804 free_netdev(adapter->port[i]); 4805 } 4806 if (adapter->flags & FW_OK) 4807 t4_fw_bye(adapter, adapter->pf); 4808 } 4809 4810 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 4811 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 4812 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 4813 #define SEGMENT_SIZE 128 4814 4815 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev) 4816 { 4817 u16 device_id; 4818 4819 /* Retrieve adapter's device ID */ 4820 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 4821 4822 switch (device_id >> 12) { 4823 case CHELSIO_T4: 4824 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 4825 case CHELSIO_T5: 4826 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 4827 case CHELSIO_T6: 4828 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 4829 default: 4830 dev_err(&pdev->dev, "Device %d is not supported\n", 4831 device_id); 4832 } 4833 return -EINVAL; 4834 } 4835 4836 #ifdef CONFIG_PCI_IOV 4837 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 4838 { 4839 int err = 0; 4840 int current_vfs = pci_num_vf(pdev); 4841 u32 pcie_fw; 4842 void __iomem *regs; 4843 4844 regs = pci_ioremap_bar(pdev, 0); 4845 if (!regs) { 4846 dev_err(&pdev->dev, "cannot map device registers\n"); 4847 return -ENOMEM; 4848 } 4849 4850 pcie_fw = readl(regs + PCIE_FW_A); 4851 iounmap(regs); 4852 /* Check if cxgb4 is the MASTER and fw is initialized */ 4853 if (!(pcie_fw & PCIE_FW_INIT_F) || 4854 !(pcie_fw & PCIE_FW_MASTER_VLD_F) || 4855 PCIE_FW_MASTER_G(pcie_fw) != 4) { 4856 dev_warn(&pdev->dev, 4857 "cxgb4 driver needs to be MASTER to support SRIOV\n"); 4858 return -EOPNOTSUPP; 4859 } 4860 4861 /* If any of the VF's is already assigned to Guest OS, then 4862 * SRIOV for the same cannot be modified 4863 */ 4864 if (current_vfs && pci_vfs_assigned(pdev)) { 4865 dev_err(&pdev->dev, 4866 "Cannot modify SR-IOV while VFs are assigned\n"); 4867 num_vfs = current_vfs; 4868 return num_vfs; 4869 } 4870 4871 /* Disable SRIOV when zero is passed. 4872 * One needs to disable SRIOV before modifying it, else 4873 * stack throws the below warning: 4874 * " 'n' VFs already enabled. Disable before enabling 'm' VFs." 4875 */ 4876 if (!num_vfs) { 4877 pci_disable_sriov(pdev); 4878 return num_vfs; 4879 } 4880 4881 if (num_vfs != current_vfs) { 4882 err = pci_enable_sriov(pdev, num_vfs); 4883 if (err) 4884 return err; 4885 } 4886 return num_vfs; 4887 } 4888 #endif 4889 4890 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4891 { 4892 int func, i, err, s_qpp, qpp, num_seg; 4893 struct port_info *pi; 4894 bool highdma = false; 4895 struct adapter *adapter = NULL; 4896 void __iomem *regs; 4897 u32 whoami, pl_rev; 4898 enum chip_type chip; 4899 4900 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 4901 4902 err = pci_request_regions(pdev, KBUILD_MODNAME); 4903 if (err) { 4904 /* Just info, some other driver may have claimed the device. */ 4905 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 4906 return err; 4907 } 4908 4909 err = pci_enable_device(pdev); 4910 if (err) { 4911 dev_err(&pdev->dev, "cannot enable PCI device\n"); 4912 goto out_release_regions; 4913 } 4914 4915 regs = pci_ioremap_bar(pdev, 0); 4916 if (!regs) { 4917 dev_err(&pdev->dev, "cannot map device registers\n"); 4918 err = -ENOMEM; 4919 goto out_disable_device; 4920 } 4921 4922 err = t4_wait_dev_ready(regs); 4923 if (err < 0) 4924 goto out_unmap_bar0; 4925 4926 /* We control everything through one PF */ 4927 whoami = readl(regs + PL_WHOAMI_A); 4928 pl_rev = REV_G(readl(regs + PL_REV_A)); 4929 chip = get_chip_type(pdev, pl_rev); 4930 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ? 4931 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4932 if (func != ent->driver_data) { 4933 iounmap(regs); 4934 pci_disable_device(pdev); 4935 pci_save_state(pdev); /* to restore SR-IOV later */ 4936 goto sriov; 4937 } 4938 4939 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4940 highdma = true; 4941 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4942 if (err) { 4943 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 4944 "coherent allocations\n"); 4945 goto out_unmap_bar0; 4946 } 4947 } else { 4948 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4949 if (err) { 4950 dev_err(&pdev->dev, "no usable DMA configuration\n"); 4951 goto out_unmap_bar0; 4952 } 4953 } 4954 4955 pci_enable_pcie_error_reporting(pdev); 4956 enable_pcie_relaxed_ordering(pdev); 4957 pci_set_master(pdev); 4958 pci_save_state(pdev); 4959 4960 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4961 if (!adapter) { 4962 err = -ENOMEM; 4963 goto out_unmap_bar0; 4964 } 4965 4966 adapter->workq = create_singlethread_workqueue("cxgb4"); 4967 if (!adapter->workq) { 4968 err = -ENOMEM; 4969 goto out_free_adapter; 4970 } 4971 4972 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 4973 (sizeof(struct mbox_cmd) * 4974 T4_OS_LOG_MBOX_CMDS), 4975 GFP_KERNEL); 4976 if (!adapter->mbox_log) { 4977 err = -ENOMEM; 4978 goto out_free_adapter; 4979 } 4980 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 4981 4982 /* PCI device has been enabled */ 4983 adapter->flags |= DEV_ENABLED; 4984 4985 adapter->regs = regs; 4986 adapter->pdev = pdev; 4987 adapter->pdev_dev = &pdev->dev; 4988 adapter->name = pci_name(pdev); 4989 adapter->mbox = func; 4990 adapter->pf = func; 4991 adapter->msg_enable = dflt_msg_enable; 4992 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 4993 4994 spin_lock_init(&adapter->stats_lock); 4995 spin_lock_init(&adapter->tid_release_lock); 4996 spin_lock_init(&adapter->win0_lock); 4997 4998 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 4999 INIT_WORK(&adapter->db_full_task, process_db_full); 5000 INIT_WORK(&adapter->db_drop_task, process_db_drop); 5001 5002 err = t4_prep_adapter(adapter); 5003 if (err) 5004 goto out_free_adapter; 5005 5006 5007 if (!is_t4(adapter->params.chip)) { 5008 s_qpp = (QUEUESPERPAGEPF0_S + 5009 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 5010 adapter->pf); 5011 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 5012 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 5013 num_seg = PAGE_SIZE / SEGMENT_SIZE; 5014 5015 /* Each segment size is 128B. Write coalescing is enabled only 5016 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 5017 * queue is less no of segments that can be accommodated in 5018 * a page size. 5019 */ 5020 if (qpp > num_seg) { 5021 dev_err(&pdev->dev, 5022 "Incorrect number of egress queues per page\n"); 5023 err = -EINVAL; 5024 goto out_free_adapter; 5025 } 5026 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 5027 pci_resource_len(pdev, 2)); 5028 if (!adapter->bar2) { 5029 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 5030 err = -ENOMEM; 5031 goto out_free_adapter; 5032 } 5033 } 5034 5035 setup_memwin(adapter); 5036 err = adap_init0(adapter); 5037 #ifdef CONFIG_DEBUG_FS 5038 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 5039 #endif 5040 setup_memwin_rdma(adapter); 5041 if (err) 5042 goto out_unmap_bar; 5043 5044 /* configure SGE_STAT_CFG_A to read WC stats */ 5045 if (!is_t4(adapter->params.chip)) 5046 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 5047 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 5048 T6_STATMODE_V(0))); 5049 5050 for_each_port(adapter, i) { 5051 struct net_device *netdev; 5052 5053 netdev = alloc_etherdev_mq(sizeof(struct port_info), 5054 MAX_ETH_QSETS); 5055 if (!netdev) { 5056 err = -ENOMEM; 5057 goto out_free_dev; 5058 } 5059 5060 SET_NETDEV_DEV(netdev, &pdev->dev); 5061 5062 adapter->port[i] = netdev; 5063 pi = netdev_priv(netdev); 5064 pi->adapter = adapter; 5065 pi->xact_addr_filt = -1; 5066 pi->port_id = i; 5067 netdev->irq = pdev->irq; 5068 5069 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 5070 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5071 NETIF_F_RXCSUM | NETIF_F_RXHASH | 5072 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 5073 if (highdma) 5074 netdev->hw_features |= NETIF_F_HIGHDMA; 5075 netdev->features |= netdev->hw_features; 5076 netdev->vlan_features = netdev->features & VLAN_FEAT; 5077 5078 netdev->priv_flags |= IFF_UNICAST_FLT; 5079 5080 netdev->netdev_ops = &cxgb4_netdev_ops; 5081 #ifdef CONFIG_CHELSIO_T4_DCB 5082 netdev->dcbnl_ops = &cxgb4_dcb_ops; 5083 cxgb4_dcb_state_init(netdev); 5084 #endif 5085 cxgb4_set_ethtool_ops(netdev); 5086 } 5087 5088 pci_set_drvdata(pdev, adapter); 5089 5090 if (adapter->flags & FW_OK) { 5091 err = t4_port_init(adapter, func, func, 0); 5092 if (err) 5093 goto out_free_dev; 5094 } else if (adapter->params.nports == 1) { 5095 /* If we don't have a connection to the firmware -- possibly 5096 * because of an error -- grab the raw VPD parameters so we 5097 * can set the proper MAC Address on the debug network 5098 * interface that we've created. 5099 */ 5100 u8 hw_addr[ETH_ALEN]; 5101 u8 *na = adapter->params.vpd.na; 5102 5103 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 5104 if (!err) { 5105 for (i = 0; i < ETH_ALEN; i++) 5106 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 5107 hex2val(na[2 * i + 1])); 5108 t4_set_hw_addr(adapter, 0, hw_addr); 5109 } 5110 } 5111 5112 /* Configure queues and allocate tables now, they can be needed as 5113 * soon as the first register_netdev completes. 5114 */ 5115 cfg_queues(adapter); 5116 5117 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 5118 if (!adapter->l2t) { 5119 /* We tolerate a lack of L2T, giving up some functionality */ 5120 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 5121 adapter->params.offload = 0; 5122 } 5123 5124 #if IS_ENABLED(CONFIG_IPV6) 5125 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) && 5126 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 5127 /* CLIP functionality is not present in hardware, 5128 * hence disable all offload features 5129 */ 5130 dev_warn(&pdev->dev, 5131 "CLIP not enabled in hardware, continuing\n"); 5132 adapter->params.offload = 0; 5133 } else { 5134 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 5135 adapter->clipt_end); 5136 if (!adapter->clipt) { 5137 /* We tolerate a lack of clip_table, giving up 5138 * some functionality 5139 */ 5140 dev_warn(&pdev->dev, 5141 "could not allocate Clip table, continuing\n"); 5142 adapter->params.offload = 0; 5143 } 5144 } 5145 #endif 5146 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) { 5147 dev_warn(&pdev->dev, "could not allocate TID table, " 5148 "continuing\n"); 5149 adapter->params.offload = 0; 5150 } 5151 5152 if (is_offload(adapter)) { 5153 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 5154 u32 hash_base, hash_reg; 5155 5156 if (chip <= CHELSIO_T5) { 5157 hash_reg = LE_DB_TID_HASHBASE_A; 5158 hash_base = t4_read_reg(adapter, hash_reg); 5159 adapter->tids.hash_base = hash_base / 4; 5160 } else { 5161 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 5162 hash_base = t4_read_reg(adapter, hash_reg); 5163 adapter->tids.hash_base = hash_base; 5164 } 5165 } 5166 } 5167 5168 /* See what interrupts we'll be using */ 5169 if (msi > 1 && enable_msix(adapter) == 0) 5170 adapter->flags |= USING_MSIX; 5171 else if (msi > 0 && pci_enable_msi(pdev) == 0) 5172 adapter->flags |= USING_MSI; 5173 5174 /* check for PCI Express bandwidth capabiltites */ 5175 cxgb4_check_pcie_caps(adapter); 5176 5177 err = init_rss(adapter); 5178 if (err) 5179 goto out_free_dev; 5180 5181 /* 5182 * The card is now ready to go. If any errors occur during device 5183 * registration we do not fail the whole card but rather proceed only 5184 * with the ports we manage to register successfully. However we must 5185 * register at least one net device. 5186 */ 5187 for_each_port(adapter, i) { 5188 pi = adap2pinfo(adapter, i); 5189 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 5190 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 5191 5192 err = register_netdev(adapter->port[i]); 5193 if (err) 5194 break; 5195 adapter->chan_map[pi->tx_chan] = i; 5196 print_port_info(adapter->port[i]); 5197 } 5198 if (i == 0) { 5199 dev_err(&pdev->dev, "could not register any net devices\n"); 5200 goto out_free_dev; 5201 } 5202 if (err) { 5203 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 5204 err = 0; 5205 } 5206 5207 if (cxgb4_debugfs_root) { 5208 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 5209 cxgb4_debugfs_root); 5210 setup_debugfs(adapter); 5211 } 5212 5213 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 5214 pdev->needs_freset = 1; 5215 5216 if (is_offload(adapter)) 5217 attach_ulds(adapter); 5218 5219 print_adapter_info(adapter); 5220 5221 sriov: 5222 #ifdef CONFIG_PCI_IOV 5223 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) { 5224 dev_warn(&pdev->dev, 5225 "Enabling SR-IOV VFs using the num_vf module " 5226 "parameter is deprecated - please use the pci sysfs " 5227 "interface instead.\n"); 5228 if (pci_enable_sriov(pdev, num_vf[func]) == 0) 5229 dev_info(&pdev->dev, 5230 "instantiated %u virtual functions\n", 5231 num_vf[func]); 5232 } 5233 #endif 5234 return 0; 5235 5236 out_free_dev: 5237 free_some_resources(adapter); 5238 out_unmap_bar: 5239 if (!is_t4(adapter->params.chip)) 5240 iounmap(adapter->bar2); 5241 out_free_adapter: 5242 if (adapter->workq) 5243 destroy_workqueue(adapter->workq); 5244 5245 kfree(adapter->mbox_log); 5246 kfree(adapter); 5247 out_unmap_bar0: 5248 iounmap(regs); 5249 out_disable_device: 5250 pci_disable_pcie_error_reporting(pdev); 5251 pci_disable_device(pdev); 5252 out_release_regions: 5253 pci_release_regions(pdev); 5254 return err; 5255 } 5256 5257 static void remove_one(struct pci_dev *pdev) 5258 { 5259 struct adapter *adapter = pci_get_drvdata(pdev); 5260 5261 #ifdef CONFIG_PCI_IOV 5262 pci_disable_sriov(pdev); 5263 5264 #endif 5265 5266 if (adapter) { 5267 int i; 5268 5269 /* Tear down per-adapter Work Queue first since it can contain 5270 * references to our adapter data structure. 5271 */ 5272 destroy_workqueue(adapter->workq); 5273 5274 if (is_offload(adapter)) 5275 detach_ulds(adapter); 5276 5277 disable_interrupts(adapter); 5278 5279 for_each_port(adapter, i) 5280 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5281 unregister_netdev(adapter->port[i]); 5282 5283 debugfs_remove_recursive(adapter->debugfs_root); 5284 5285 /* If we allocated filters, free up state associated with any 5286 * valid filters ... 5287 */ 5288 if (adapter->tids.ftid_tab) { 5289 struct filter_entry *f = &adapter->tids.ftid_tab[0]; 5290 for (i = 0; i < (adapter->tids.nftids + 5291 adapter->tids.nsftids); i++, f++) 5292 if (f->valid) 5293 clear_filter(adapter, f); 5294 } 5295 5296 if (adapter->flags & FULL_INIT_DONE) 5297 cxgb_down(adapter); 5298 5299 free_some_resources(adapter); 5300 #if IS_ENABLED(CONFIG_IPV6) 5301 t4_cleanup_clip_tbl(adapter); 5302 #endif 5303 iounmap(adapter->regs); 5304 if (!is_t4(adapter->params.chip)) 5305 iounmap(adapter->bar2); 5306 pci_disable_pcie_error_reporting(pdev); 5307 if ((adapter->flags & DEV_ENABLED)) { 5308 pci_disable_device(pdev); 5309 adapter->flags &= ~DEV_ENABLED; 5310 } 5311 pci_release_regions(pdev); 5312 kfree(adapter->mbox_log); 5313 synchronize_rcu(); 5314 kfree(adapter); 5315 } else 5316 pci_release_regions(pdev); 5317 } 5318 5319 static struct pci_driver cxgb4_driver = { 5320 .name = KBUILD_MODNAME, 5321 .id_table = cxgb4_pci_tbl, 5322 .probe = init_one, 5323 .remove = remove_one, 5324 .shutdown = remove_one, 5325 #ifdef CONFIG_PCI_IOV 5326 .sriov_configure = cxgb4_iov_configure, 5327 #endif 5328 .err_handler = &cxgb4_eeh, 5329 }; 5330 5331 static int __init cxgb4_init_module(void) 5332 { 5333 int ret; 5334 5335 /* Debugfs support is optional, just warn if this fails */ 5336 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 5337 if (!cxgb4_debugfs_root) 5338 pr_warn("could not create debugfs entry, continuing\n"); 5339 5340 ret = pci_register_driver(&cxgb4_driver); 5341 if (ret < 0) 5342 debugfs_remove(cxgb4_debugfs_root); 5343 5344 #if IS_ENABLED(CONFIG_IPV6) 5345 if (!inet6addr_registered) { 5346 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5347 inet6addr_registered = true; 5348 } 5349 #endif 5350 5351 return ret; 5352 } 5353 5354 static void __exit cxgb4_cleanup_module(void) 5355 { 5356 #if IS_ENABLED(CONFIG_IPV6) 5357 if (inet6addr_registered) { 5358 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5359 inet6addr_registered = false; 5360 } 5361 #endif 5362 pci_unregister_driver(&cxgb4_driver); 5363 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 5364 } 5365 5366 module_init(cxgb4_init_module); 5367 module_exit(cxgb4_cleanup_module); 5368