1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <linux/uaccess.h> 66 #include <linux/crash_dump.h> 67 #include <net/udp_tunnel.h> 68 69 #include "cxgb4.h" 70 #include "cxgb4_filter.h" 71 #include "t4_regs.h" 72 #include "t4_values.h" 73 #include "t4_msg.h" 74 #include "t4fw_api.h" 75 #include "t4fw_version.h" 76 #include "cxgb4_dcb.h" 77 #include "srq.h" 78 #include "cxgb4_debugfs.h" 79 #include "clip_tbl.h" 80 #include "l2t.h" 81 #include "smt.h" 82 #include "sched.h" 83 #include "cxgb4_tc_u32.h" 84 #include "cxgb4_tc_flower.h" 85 #include "cxgb4_ptp.h" 86 #include "cxgb4_cudbg.h" 87 88 char cxgb4_driver_name[] = KBUILD_MODNAME; 89 90 #ifdef DRV_VERSION 91 #undef DRV_VERSION 92 #endif 93 #define DRV_VERSION "2.0.0-ko" 94 const char cxgb4_driver_version[] = DRV_VERSION; 95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 96 97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 98 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 99 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 100 101 /* Macros needed to support the PCI Device ID Table ... 102 */ 103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 104 static const struct pci_device_id cxgb4_pci_tbl[] = { 105 #define CXGB4_UNIFIED_PF 0x4 106 107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 108 109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 110 * called for both. 111 */ 112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 113 114 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 115 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 116 117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 118 { 0, } \ 119 } 120 121 #include "t4_pci_id_tbl.h" 122 123 #define FW4_FNAME "cxgb4/t4fw.bin" 124 #define FW5_FNAME "cxgb4/t5fw.bin" 125 #define FW6_FNAME "cxgb4/t6fw.bin" 126 #define FW4_CFNAME "cxgb4/t4-config.txt" 127 #define FW5_CFNAME "cxgb4/t5-config.txt" 128 #define FW6_CFNAME "cxgb4/t6-config.txt" 129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 131 #define PHY_AQ1202_DEVICEID 0x4409 132 #define PHY_BCM84834_DEVICEID 0x4486 133 134 MODULE_DESCRIPTION(DRV_DESC); 135 MODULE_AUTHOR("Chelsio Communications"); 136 MODULE_LICENSE("Dual BSD/GPL"); 137 MODULE_VERSION(DRV_VERSION); 138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 139 MODULE_FIRMWARE(FW4_FNAME); 140 MODULE_FIRMWARE(FW5_FNAME); 141 MODULE_FIRMWARE(FW6_FNAME); 142 143 /* 144 * The driver uses the best interrupt scheme available on a platform in the 145 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 146 * of these schemes the driver may consider as follows: 147 * 148 * msi = 2: choose from among all three options 149 * msi = 1: only consider MSI and INTx interrupts 150 * msi = 0: force INTx interrupts 151 */ 152 static int msi = 2; 153 154 module_param(msi, int, 0644); 155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 156 157 /* 158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 159 * offset by 2 bytes in order to have the IP headers line up on 4-byte 160 * boundaries. This is a requirement for many architectures which will throw 161 * a machine check fault if an attempt is made to access one of the 4-byte IP 162 * header fields on a non-4-byte boundary. And it's a major performance issue 163 * even on some architectures which allow it like some implementations of the 164 * x86 ISA. However, some architectures don't mind this and for some very 165 * edge-case performance sensitive applications (like forwarding large volumes 166 * of small packets), setting this DMA offset to 0 will decrease the number of 167 * PCI-E Bus transfers enough to measurably affect performance. 168 */ 169 static int rx_dma_offset = 2; 170 171 /* TX Queue select used to determine what algorithm to use for selecting TX 172 * queue. Select between the kernel provided function (select_queue=0) or user 173 * cxgb_select_queue function (select_queue=1) 174 * 175 * Default: select_queue=0 176 */ 177 static int select_queue; 178 module_param(select_queue, int, 0644); 179 MODULE_PARM_DESC(select_queue, 180 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 181 182 static struct dentry *cxgb4_debugfs_root; 183 184 LIST_HEAD(adapter_list); 185 DEFINE_MUTEX(uld_mutex); 186 187 static void link_report(struct net_device *dev) 188 { 189 if (!netif_carrier_ok(dev)) 190 netdev_info(dev, "link down\n"); 191 else { 192 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 193 194 const char *s; 195 const struct port_info *p = netdev_priv(dev); 196 197 switch (p->link_cfg.speed) { 198 case 100: 199 s = "100Mbps"; 200 break; 201 case 1000: 202 s = "1Gbps"; 203 break; 204 case 10000: 205 s = "10Gbps"; 206 break; 207 case 25000: 208 s = "25Gbps"; 209 break; 210 case 40000: 211 s = "40Gbps"; 212 break; 213 case 50000: 214 s = "50Gbps"; 215 break; 216 case 100000: 217 s = "100Gbps"; 218 break; 219 default: 220 pr_info("%s: unsupported speed: %d\n", 221 dev->name, p->link_cfg.speed); 222 return; 223 } 224 225 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 226 fc[p->link_cfg.fc]); 227 } 228 } 229 230 #ifdef CONFIG_CHELSIO_T4_DCB 231 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 232 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 233 { 234 struct port_info *pi = netdev_priv(dev); 235 struct adapter *adap = pi->adapter; 236 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 237 int i; 238 239 /* We use a simple mapping of Port TX Queue Index to DCB 240 * Priority when we're enabling DCB. 241 */ 242 for (i = 0; i < pi->nqsets; i++, txq++) { 243 u32 name, value; 244 int err; 245 246 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 247 FW_PARAMS_PARAM_X_V( 248 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 249 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 250 value = enable ? i : 0xffffffff; 251 252 /* Since we can be called while atomic (from "interrupt 253 * level") we need to issue the Set Parameters Commannd 254 * without sleeping (timeout < 0). 255 */ 256 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 257 &name, &value, 258 -FW_CMD_MAX_TIMEOUT); 259 260 if (err) 261 dev_err(adap->pdev_dev, 262 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 263 enable ? "set" : "unset", pi->port_id, i, -err); 264 else 265 txq->dcb_prio = enable ? value : 0; 266 } 267 } 268 269 int cxgb4_dcb_enabled(const struct net_device *dev) 270 { 271 struct port_info *pi = netdev_priv(dev); 272 273 if (!pi->dcb.enabled) 274 return 0; 275 276 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 277 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 278 } 279 #endif /* CONFIG_CHELSIO_T4_DCB */ 280 281 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 282 { 283 struct net_device *dev = adapter->port[port_id]; 284 285 /* Skip changes from disabled ports. */ 286 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 287 if (link_stat) 288 netif_carrier_on(dev); 289 else { 290 #ifdef CONFIG_CHELSIO_T4_DCB 291 if (cxgb4_dcb_enabled(dev)) { 292 cxgb4_dcb_reset(dev); 293 dcb_tx_queue_prio_enable(dev, false); 294 } 295 #endif /* CONFIG_CHELSIO_T4_DCB */ 296 netif_carrier_off(dev); 297 } 298 299 link_report(dev); 300 } 301 } 302 303 void t4_os_portmod_changed(struct adapter *adap, int port_id) 304 { 305 static const char *mod_str[] = { 306 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 307 }; 308 309 struct net_device *dev = adap->port[port_id]; 310 struct port_info *pi = netdev_priv(dev); 311 312 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 313 netdev_info(dev, "port module unplugged\n"); 314 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 315 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 316 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 317 netdev_info(dev, "%s: unsupported port module inserted\n", 318 dev->name); 319 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 320 netdev_info(dev, "%s: unknown port module inserted\n", 321 dev->name); 322 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 323 netdev_info(dev, "%s: transceiver module error\n", dev->name); 324 else 325 netdev_info(dev, "%s: unknown module type %d inserted\n", 326 dev->name, pi->mod_type); 327 328 /* If the interface is running, then we'll need any "sticky" Link 329 * Parameters redone with a new Transceiver Module. 330 */ 331 pi->link_cfg.redo_l1cfg = netif_running(dev); 332 } 333 334 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 335 module_param(dbfifo_int_thresh, int, 0644); 336 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 337 338 /* 339 * usecs to sleep while draining the dbfifo 340 */ 341 static int dbfifo_drain_delay = 1000; 342 module_param(dbfifo_drain_delay, int, 0644); 343 MODULE_PARM_DESC(dbfifo_drain_delay, 344 "usecs to sleep while draining the dbfifo"); 345 346 static inline int cxgb4_set_addr_hash(struct port_info *pi) 347 { 348 struct adapter *adap = pi->adapter; 349 u64 vec = 0; 350 bool ucast = false; 351 struct hash_mac_addr *entry; 352 353 /* Calculate the hash vector for the updated list and program it */ 354 list_for_each_entry(entry, &adap->mac_hlist, list) { 355 ucast |= is_unicast_ether_addr(entry->addr); 356 vec |= (1ULL << hash_mac_addr(entry->addr)); 357 } 358 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 359 vec, false); 360 } 361 362 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 363 { 364 struct port_info *pi = netdev_priv(netdev); 365 struct adapter *adap = pi->adapter; 366 int ret; 367 u64 mhash = 0; 368 u64 uhash = 0; 369 /* idx stores the index of allocated filters, 370 * its size should be modified based on the number of 371 * MAC addresses that we allocate filters for 372 */ 373 374 u16 idx[1] = {}; 375 bool free = false; 376 bool ucast = is_unicast_ether_addr(mac_addr); 377 const u8 *maclist[1] = {mac_addr}; 378 struct hash_mac_addr *new_entry; 379 380 ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist, 381 idx, ucast ? &uhash : &mhash, false); 382 if (ret < 0) 383 goto out; 384 /* if hash != 0, then add the addr to hash addr list 385 * so on the end we will calculate the hash for the 386 * list and program it 387 */ 388 if (uhash || mhash) { 389 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 390 if (!new_entry) 391 return -ENOMEM; 392 ether_addr_copy(new_entry->addr, mac_addr); 393 list_add_tail(&new_entry->list, &adap->mac_hlist); 394 ret = cxgb4_set_addr_hash(pi); 395 } 396 out: 397 return ret < 0 ? ret : 0; 398 } 399 400 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 401 { 402 struct port_info *pi = netdev_priv(netdev); 403 struct adapter *adap = pi->adapter; 404 int ret; 405 const u8 *maclist[1] = {mac_addr}; 406 struct hash_mac_addr *entry, *tmp; 407 408 /* If the MAC address to be removed is in the hash addr 409 * list, delete it from the list and update hash vector 410 */ 411 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 412 if (ether_addr_equal(entry->addr, mac_addr)) { 413 list_del(&entry->list); 414 kfree(entry); 415 return cxgb4_set_addr_hash(pi); 416 } 417 } 418 419 ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false); 420 return ret < 0 ? -EINVAL : 0; 421 } 422 423 /* 424 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 425 * If @mtu is -1 it is left unchanged. 426 */ 427 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 428 { 429 struct port_info *pi = netdev_priv(dev); 430 struct adapter *adapter = pi->adapter; 431 432 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 433 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 434 435 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 436 (dev->flags & IFF_PROMISC) ? 1 : 0, 437 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 438 sleep_ok); 439 } 440 441 /** 442 * cxgb4_change_mac - Update match filter for a MAC address. 443 * @pi: the port_info 444 * @viid: the VI id 445 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 446 * or -1 447 * @addr: the new MAC address value 448 * @persist: whether a new MAC allocation should be persistent 449 * @add_smt: if true also add the address to the HW SMT 450 * 451 * Modifies an MPS filter and sets it to the new MAC address if 452 * @tcam_idx >= 0, or adds the MAC address to a new filter if 453 * @tcam_idx < 0. In the latter case the address is added persistently 454 * if @persist is %true. 455 * Addresses are programmed to hash region, if tcam runs out of entries. 456 * 457 */ 458 int cxgb4_change_mac(struct port_info *pi, unsigned int viid, 459 int *tcam_idx, const u8 *addr, bool persist, 460 u8 *smt_idx) 461 { 462 struct adapter *adapter = pi->adapter; 463 struct hash_mac_addr *entry, *new_entry; 464 int ret; 465 466 ret = t4_change_mac(adapter, adapter->mbox, viid, 467 *tcam_idx, addr, persist, smt_idx); 468 /* We ran out of TCAM entries. try programming hash region. */ 469 if (ret == -ENOMEM) { 470 /* If the MAC address to be updated is in the hash addr 471 * list, update it from the list 472 */ 473 list_for_each_entry(entry, &adapter->mac_hlist, list) { 474 if (entry->iface_mac) { 475 ether_addr_copy(entry->addr, addr); 476 goto set_hash; 477 } 478 } 479 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 480 if (!new_entry) 481 return -ENOMEM; 482 ether_addr_copy(new_entry->addr, addr); 483 new_entry->iface_mac = true; 484 list_add_tail(&new_entry->list, &adapter->mac_hlist); 485 set_hash: 486 ret = cxgb4_set_addr_hash(pi); 487 } else if (ret >= 0) { 488 *tcam_idx = ret; 489 ret = 0; 490 } 491 492 return ret; 493 } 494 495 /* 496 * link_start - enable a port 497 * @dev: the port to enable 498 * 499 * Performs the MAC and PHY actions needed to enable a port. 500 */ 501 static int link_start(struct net_device *dev) 502 { 503 int ret; 504 struct port_info *pi = netdev_priv(dev); 505 unsigned int mb = pi->adapter->pf; 506 507 /* 508 * We do not set address filters and promiscuity here, the stack does 509 * that step explicitly. 510 */ 511 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 512 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 513 if (ret == 0) 514 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 515 dev->dev_addr, true, &pi->smt_idx); 516 if (ret == 0) 517 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 518 &pi->link_cfg); 519 if (ret == 0) { 520 local_bh_disable(); 521 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 522 true, CXGB4_DCB_ENABLED); 523 local_bh_enable(); 524 } 525 526 return ret; 527 } 528 529 #ifdef CONFIG_CHELSIO_T4_DCB 530 /* Handle a Data Center Bridging update message from the firmware. */ 531 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 532 { 533 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 534 struct net_device *dev = adap->port[adap->chan_map[port]]; 535 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 536 int new_dcb_enabled; 537 538 cxgb4_dcb_handle_fw_update(adap, pcmd); 539 new_dcb_enabled = cxgb4_dcb_enabled(dev); 540 541 /* If the DCB has become enabled or disabled on the port then we're 542 * going to need to set up/tear down DCB Priority parameters for the 543 * TX Queues associated with the port. 544 */ 545 if (new_dcb_enabled != old_dcb_enabled) 546 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 547 } 548 #endif /* CONFIG_CHELSIO_T4_DCB */ 549 550 /* Response queue handler for the FW event queue. 551 */ 552 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 553 const struct pkt_gl *gl) 554 { 555 u8 opcode = ((const struct rss_header *)rsp)->opcode; 556 557 rsp++; /* skip RSS header */ 558 559 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 560 */ 561 if (unlikely(opcode == CPL_FW4_MSG && 562 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 563 rsp++; 564 opcode = ((const struct rss_header *)rsp)->opcode; 565 rsp++; 566 if (opcode != CPL_SGE_EGR_UPDATE) { 567 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 568 , opcode); 569 goto out; 570 } 571 } 572 573 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 574 const struct cpl_sge_egr_update *p = (void *)rsp; 575 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 576 struct sge_txq *txq; 577 578 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 579 txq->restarts++; 580 if (txq->q_type == CXGB4_TXQ_ETH) { 581 struct sge_eth_txq *eq; 582 583 eq = container_of(txq, struct sge_eth_txq, q); 584 t4_sge_eth_txq_egress_update(q->adap, eq, -1); 585 } else { 586 struct sge_uld_txq *oq; 587 588 oq = container_of(txq, struct sge_uld_txq, q); 589 tasklet_schedule(&oq->qresume_tsk); 590 } 591 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 592 const struct cpl_fw6_msg *p = (void *)rsp; 593 594 #ifdef CONFIG_CHELSIO_T4_DCB 595 const struct fw_port_cmd *pcmd = (const void *)p->data; 596 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 597 unsigned int action = 598 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 599 600 if (cmd == FW_PORT_CMD && 601 (action == FW_PORT_ACTION_GET_PORT_INFO || 602 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 603 int port = FW_PORT_CMD_PORTID_G( 604 be32_to_cpu(pcmd->op_to_portid)); 605 struct net_device *dev; 606 int dcbxdis, state_input; 607 608 dev = q->adap->port[q->adap->chan_map[port]]; 609 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 610 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) 611 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) 612 & FW_PORT_CMD_DCBXDIS32_F)); 613 state_input = (dcbxdis 614 ? CXGB4_DCB_INPUT_FW_DISABLED 615 : CXGB4_DCB_INPUT_FW_ENABLED); 616 617 cxgb4_dcb_state_fsm(dev, state_input); 618 } 619 620 if (cmd == FW_PORT_CMD && 621 action == FW_PORT_ACTION_L2_DCB_CFG) 622 dcb_rpl(q->adap, pcmd); 623 else 624 #endif 625 if (p->type == 0) 626 t4_handle_fw_rpl(q->adap, p->data); 627 } else if (opcode == CPL_L2T_WRITE_RPL) { 628 const struct cpl_l2t_write_rpl *p = (void *)rsp; 629 630 do_l2t_write_rpl(q->adap, p); 631 } else if (opcode == CPL_SMT_WRITE_RPL) { 632 const struct cpl_smt_write_rpl *p = (void *)rsp; 633 634 do_smt_write_rpl(q->adap, p); 635 } else if (opcode == CPL_SET_TCB_RPL) { 636 const struct cpl_set_tcb_rpl *p = (void *)rsp; 637 638 filter_rpl(q->adap, p); 639 } else if (opcode == CPL_ACT_OPEN_RPL) { 640 const struct cpl_act_open_rpl *p = (void *)rsp; 641 642 hash_filter_rpl(q->adap, p); 643 } else if (opcode == CPL_ABORT_RPL_RSS) { 644 const struct cpl_abort_rpl_rss *p = (void *)rsp; 645 646 hash_del_filter_rpl(q->adap, p); 647 } else if (opcode == CPL_SRQ_TABLE_RPL) { 648 const struct cpl_srq_table_rpl *p = (void *)rsp; 649 650 do_srq_table_rpl(q->adap, p); 651 } else 652 dev_err(q->adap->pdev_dev, 653 "unexpected CPL %#x on FW event queue\n", opcode); 654 out: 655 return 0; 656 } 657 658 static void disable_msi(struct adapter *adapter) 659 { 660 if (adapter->flags & CXGB4_USING_MSIX) { 661 pci_disable_msix(adapter->pdev); 662 adapter->flags &= ~CXGB4_USING_MSIX; 663 } else if (adapter->flags & CXGB4_USING_MSI) { 664 pci_disable_msi(adapter->pdev); 665 adapter->flags &= ~CXGB4_USING_MSI; 666 } 667 } 668 669 /* 670 * Interrupt handler for non-data events used with MSI-X. 671 */ 672 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 673 { 674 struct adapter *adap = cookie; 675 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 676 677 if (v & PFSW_F) { 678 adap->swintr = 1; 679 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 680 } 681 if (adap->flags & CXGB4_MASTER_PF) 682 t4_slow_intr_handler(adap); 683 return IRQ_HANDLED; 684 } 685 686 /* 687 * Name the MSI-X interrupts. 688 */ 689 static void name_msix_vecs(struct adapter *adap) 690 { 691 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 692 693 /* non-data interrupts */ 694 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 695 696 /* FW events */ 697 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 698 adap->port[0]->name); 699 700 /* Ethernet queues */ 701 for_each_port(adap, j) { 702 struct net_device *d = adap->port[j]; 703 const struct port_info *pi = netdev_priv(d); 704 705 for (i = 0; i < pi->nqsets; i++, msi_idx++) 706 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 707 d->name, i); 708 } 709 } 710 711 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec, 712 cpumask_var_t *aff_mask, int idx) 713 { 714 int rv; 715 716 if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) { 717 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n"); 718 return -ENOMEM; 719 } 720 721 cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)), 722 *aff_mask); 723 724 rv = irq_set_affinity_hint(vec, *aff_mask); 725 if (rv) 726 dev_warn(adap->pdev_dev, 727 "irq_set_affinity_hint %u failed %d\n", 728 vec, rv); 729 730 return 0; 731 } 732 733 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask) 734 { 735 irq_set_affinity_hint(vec, NULL); 736 free_cpumask_var(aff_mask); 737 } 738 739 static int request_msix_queue_irqs(struct adapter *adap) 740 { 741 struct sge *s = &adap->sge; 742 struct msix_info *minfo; 743 int err, ethqidx; 744 int msi_index = 2; 745 746 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 747 adap->msix_info[1].desc, &s->fw_evtq); 748 if (err) 749 return err; 750 751 for_each_ethrxq(s, ethqidx) { 752 minfo = &adap->msix_info[msi_index]; 753 err = request_irq(minfo->vec, 754 t4_sge_intr_msix, 0, 755 minfo->desc, 756 &s->ethrxq[ethqidx].rspq); 757 if (err) 758 goto unwind; 759 760 cxgb4_set_msix_aff(adap, minfo->vec, 761 &minfo->aff_mask, ethqidx); 762 msi_index++; 763 } 764 return 0; 765 766 unwind: 767 while (--ethqidx >= 0) { 768 msi_index--; 769 minfo = &adap->msix_info[msi_index]; 770 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 771 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq); 772 } 773 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 774 return err; 775 } 776 777 static void free_msix_queue_irqs(struct adapter *adap) 778 { 779 struct sge *s = &adap->sge; 780 struct msix_info *minfo; 781 int i, msi_index = 2; 782 783 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 784 for_each_ethrxq(s, i) { 785 minfo = &adap->msix_info[msi_index++]; 786 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 787 free_irq(minfo->vec, &s->ethrxq[i].rspq); 788 } 789 } 790 791 static int setup_ppod_edram(struct adapter *adap) 792 { 793 unsigned int param, val; 794 int ret; 795 796 /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check 797 * if firmware supports ppod edram feature or not. If firmware 798 * returns 1, then driver can enable this feature by sending 799 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to 800 * enable ppod edram feature. 801 */ 802 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 803 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM)); 804 805 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 806 if (ret < 0) { 807 dev_warn(adap->pdev_dev, 808 "querying PPOD_EDRAM support failed: %d\n", 809 ret); 810 return -1; 811 } 812 813 if (val != 1) 814 return -1; 815 816 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 817 if (ret < 0) { 818 dev_err(adap->pdev_dev, 819 "setting PPOD_EDRAM failed: %d\n", ret); 820 return -1; 821 } 822 return 0; 823 } 824 825 /** 826 * cxgb4_write_rss - write the RSS table for a given port 827 * @pi: the port 828 * @queues: array of queue indices for RSS 829 * 830 * Sets up the portion of the HW RSS table for the port's VI to distribute 831 * packets to the Rx queues in @queues. 832 * Should never be called before setting up sge eth rx queues 833 */ 834 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 835 { 836 u16 *rss; 837 int i, err; 838 struct adapter *adapter = pi->adapter; 839 const struct sge_eth_rxq *rxq; 840 841 rxq = &adapter->sge.ethrxq[pi->first_qset]; 842 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 843 if (!rss) 844 return -ENOMEM; 845 846 /* map the queue indices to queue ids */ 847 for (i = 0; i < pi->rss_size; i++, queues++) 848 rss[i] = rxq[*queues].rspq.abs_id; 849 850 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 851 pi->rss_size, rss, pi->rss_size); 852 /* If Tunnel All Lookup isn't specified in the global RSS 853 * Configuration, then we need to specify a default Ingress 854 * Queue for any ingress packets which aren't hashed. We'll 855 * use our first ingress queue ... 856 */ 857 if (!err) 858 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 859 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 860 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 861 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 862 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 863 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 864 rss[0]); 865 kfree(rss); 866 return err; 867 } 868 869 /** 870 * setup_rss - configure RSS 871 * @adap: the adapter 872 * 873 * Sets up RSS for each port. 874 */ 875 static int setup_rss(struct adapter *adap) 876 { 877 int i, j, err; 878 879 for_each_port(adap, i) { 880 const struct port_info *pi = adap2pinfo(adap, i); 881 882 /* Fill default values with equal distribution */ 883 for (j = 0; j < pi->rss_size; j++) 884 pi->rss[j] = j % pi->nqsets; 885 886 err = cxgb4_write_rss(pi, pi->rss); 887 if (err) 888 return err; 889 } 890 return 0; 891 } 892 893 /* 894 * Return the channel of the ingress queue with the given qid. 895 */ 896 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 897 { 898 qid -= p->ingr_start; 899 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 900 } 901 902 /* 903 * Wait until all NAPI handlers are descheduled. 904 */ 905 static void quiesce_rx(struct adapter *adap) 906 { 907 int i; 908 909 for (i = 0; i < adap->sge.ingr_sz; i++) { 910 struct sge_rspq *q = adap->sge.ingr_map[i]; 911 912 if (q && q->handler) 913 napi_disable(&q->napi); 914 } 915 } 916 917 /* Disable interrupt and napi handler */ 918 static void disable_interrupts(struct adapter *adap) 919 { 920 if (adap->flags & CXGB4_FULL_INIT_DONE) { 921 t4_intr_disable(adap); 922 if (adap->flags & CXGB4_USING_MSIX) { 923 free_msix_queue_irqs(adap); 924 free_irq(adap->msix_info[0].vec, adap); 925 } else { 926 free_irq(adap->pdev->irq, adap); 927 } 928 quiesce_rx(adap); 929 } 930 } 931 932 /* 933 * Enable NAPI scheduling and interrupt generation for all Rx queues. 934 */ 935 static void enable_rx(struct adapter *adap) 936 { 937 int i; 938 939 for (i = 0; i < adap->sge.ingr_sz; i++) { 940 struct sge_rspq *q = adap->sge.ingr_map[i]; 941 942 if (!q) 943 continue; 944 if (q->handler) 945 napi_enable(&q->napi); 946 947 /* 0-increment GTS to start the timer and enable interrupts */ 948 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 949 SEINTARM_V(q->intr_params) | 950 INGRESSQID_V(q->cntxt_id)); 951 } 952 } 953 954 955 static int setup_fw_sge_queues(struct adapter *adap) 956 { 957 struct sge *s = &adap->sge; 958 int err = 0; 959 960 bitmap_zero(s->starving_fl, s->egr_sz); 961 bitmap_zero(s->txq_maperr, s->egr_sz); 962 963 if (adap->flags & CXGB4_USING_MSIX) 964 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 965 else { 966 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 967 NULL, NULL, NULL, -1); 968 if (err) 969 return err; 970 adap->msi_idx = -((int)s->intrq.abs_id + 1); 971 } 972 973 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 974 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 975 return err; 976 } 977 978 /** 979 * setup_sge_queues - configure SGE Tx/Rx/response queues 980 * @adap: the adapter 981 * 982 * Determines how many sets of SGE queues to use and initializes them. 983 * We support multiple queue sets per port if we have MSI-X, otherwise 984 * just one queue set per port. 985 */ 986 static int setup_sge_queues(struct adapter *adap) 987 { 988 int err, i, j; 989 struct sge *s = &adap->sge; 990 struct sge_uld_rxq_info *rxq_info = NULL; 991 unsigned int cmplqid = 0; 992 993 if (is_uld(adap)) 994 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 995 996 for_each_port(adap, i) { 997 struct net_device *dev = adap->port[i]; 998 struct port_info *pi = netdev_priv(dev); 999 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1000 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1001 1002 for (j = 0; j < pi->nqsets; j++, q++) { 1003 if (adap->msi_idx > 0) 1004 adap->msi_idx++; 1005 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1006 adap->msi_idx, &q->fl, 1007 t4_ethrx_handler, 1008 NULL, 1009 t4_get_tp_ch_map(adap, 1010 pi->tx_chan)); 1011 if (err) 1012 goto freeout; 1013 q->rspq.idx = j; 1014 memset(&q->stats, 0, sizeof(q->stats)); 1015 } 1016 1017 q = &s->ethrxq[pi->first_qset]; 1018 for (j = 0; j < pi->nqsets; j++, t++, q++) { 1019 err = t4_sge_alloc_eth_txq(adap, t, dev, 1020 netdev_get_tx_queue(dev, j), 1021 q->rspq.cntxt_id, 1022 !!(adap->flags & CXGB4_SGE_DBQ_TIMER)); 1023 if (err) 1024 goto freeout; 1025 } 1026 } 1027 1028 for_each_port(adap, i) { 1029 /* Note that cmplqid below is 0 if we don't 1030 * have RDMA queues, and that's the right value. 1031 */ 1032 if (rxq_info) 1033 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 1034 1035 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1036 s->fw_evtq.cntxt_id, cmplqid); 1037 if (err) 1038 goto freeout; 1039 } 1040 1041 if (!is_t4(adap->params.chip)) { 1042 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 1043 netdev_get_tx_queue(adap->port[0], 0) 1044 , s->fw_evtq.cntxt_id, false); 1045 if (err) 1046 goto freeout; 1047 } 1048 1049 t4_write_reg(adap, is_t4(adap->params.chip) ? 1050 MPS_TRC_RSS_CONTROL_A : 1051 MPS_T5_TRC_RSS_CONTROL_A, 1052 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 1053 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 1054 return 0; 1055 freeout: 1056 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 1057 t4_free_sge_resources(adap); 1058 return err; 1059 } 1060 1061 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 1062 struct net_device *sb_dev) 1063 { 1064 int txq; 1065 1066 #ifdef CONFIG_CHELSIO_T4_DCB 1067 /* If a Data Center Bridging has been successfully negotiated on this 1068 * link then we'll use the skb's priority to map it to a TX Queue. 1069 * The skb's priority is determined via the VLAN Tag Priority Code 1070 * Point field. 1071 */ 1072 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 1073 u16 vlan_tci; 1074 int err; 1075 1076 err = vlan_get_tag(skb, &vlan_tci); 1077 if (unlikely(err)) { 1078 if (net_ratelimit()) 1079 netdev_warn(dev, 1080 "TX Packet without VLAN Tag on DCB Link\n"); 1081 txq = 0; 1082 } else { 1083 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1084 #ifdef CONFIG_CHELSIO_T4_FCOE 1085 if (skb->protocol == htons(ETH_P_FCOE)) 1086 txq = skb->priority & 0x7; 1087 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1088 } 1089 return txq; 1090 } 1091 #endif /* CONFIG_CHELSIO_T4_DCB */ 1092 1093 if (select_queue) { 1094 txq = (skb_rx_queue_recorded(skb) 1095 ? skb_get_rx_queue(skb) 1096 : smp_processor_id()); 1097 1098 while (unlikely(txq >= dev->real_num_tx_queues)) 1099 txq -= dev->real_num_tx_queues; 1100 1101 return txq; 1102 } 1103 1104 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 1105 } 1106 1107 static int closest_timer(const struct sge *s, int time) 1108 { 1109 int i, delta, match = 0, min_delta = INT_MAX; 1110 1111 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1112 delta = time - s->timer_val[i]; 1113 if (delta < 0) 1114 delta = -delta; 1115 if (delta < min_delta) { 1116 min_delta = delta; 1117 match = i; 1118 } 1119 } 1120 return match; 1121 } 1122 1123 static int closest_thres(const struct sge *s, int thres) 1124 { 1125 int i, delta, match = 0, min_delta = INT_MAX; 1126 1127 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1128 delta = thres - s->counter_val[i]; 1129 if (delta < 0) 1130 delta = -delta; 1131 if (delta < min_delta) { 1132 min_delta = delta; 1133 match = i; 1134 } 1135 } 1136 return match; 1137 } 1138 1139 /** 1140 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1141 * @q: the Rx queue 1142 * @us: the hold-off time in us, or 0 to disable timer 1143 * @cnt: the hold-off packet count, or 0 to disable counter 1144 * 1145 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1146 * one of the two needs to be enabled for the queue to generate interrupts. 1147 */ 1148 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1149 unsigned int us, unsigned int cnt) 1150 { 1151 struct adapter *adap = q->adap; 1152 1153 if ((us | cnt) == 0) 1154 cnt = 1; 1155 1156 if (cnt) { 1157 int err; 1158 u32 v, new_idx; 1159 1160 new_idx = closest_thres(&adap->sge, cnt); 1161 if (q->desc && q->pktcnt_idx != new_idx) { 1162 /* the queue has already been created, update it */ 1163 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1164 FW_PARAMS_PARAM_X_V( 1165 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1166 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1167 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1168 &v, &new_idx); 1169 if (err) 1170 return err; 1171 } 1172 q->pktcnt_idx = new_idx; 1173 } 1174 1175 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1176 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1177 return 0; 1178 } 1179 1180 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1181 { 1182 const struct port_info *pi = netdev_priv(dev); 1183 netdev_features_t changed = dev->features ^ features; 1184 int err; 1185 1186 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1187 return 0; 1188 1189 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1190 -1, -1, -1, 1191 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1192 if (unlikely(err)) 1193 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1194 return err; 1195 } 1196 1197 static int setup_debugfs(struct adapter *adap) 1198 { 1199 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1200 return -1; 1201 1202 #ifdef CONFIG_DEBUG_FS 1203 t4_setup_debugfs(adap); 1204 #endif 1205 return 0; 1206 } 1207 1208 /* 1209 * upper-layer driver support 1210 */ 1211 1212 /* 1213 * Allocate an active-open TID and set it to the supplied value. 1214 */ 1215 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1216 { 1217 int atid = -1; 1218 1219 spin_lock_bh(&t->atid_lock); 1220 if (t->afree) { 1221 union aopen_entry *p = t->afree; 1222 1223 atid = (p - t->atid_tab) + t->atid_base; 1224 t->afree = p->next; 1225 p->data = data; 1226 t->atids_in_use++; 1227 } 1228 spin_unlock_bh(&t->atid_lock); 1229 return atid; 1230 } 1231 EXPORT_SYMBOL(cxgb4_alloc_atid); 1232 1233 /* 1234 * Release an active-open TID. 1235 */ 1236 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1237 { 1238 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1239 1240 spin_lock_bh(&t->atid_lock); 1241 p->next = t->afree; 1242 t->afree = p; 1243 t->atids_in_use--; 1244 spin_unlock_bh(&t->atid_lock); 1245 } 1246 EXPORT_SYMBOL(cxgb4_free_atid); 1247 1248 /* 1249 * Allocate a server TID and set it to the supplied value. 1250 */ 1251 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1252 { 1253 int stid; 1254 1255 spin_lock_bh(&t->stid_lock); 1256 if (family == PF_INET) { 1257 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1258 if (stid < t->nstids) 1259 __set_bit(stid, t->stid_bmap); 1260 else 1261 stid = -1; 1262 } else { 1263 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1264 if (stid < 0) 1265 stid = -1; 1266 } 1267 if (stid >= 0) { 1268 t->stid_tab[stid].data = data; 1269 stid += t->stid_base; 1270 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1271 * This is equivalent to 4 TIDs. With CLIP enabled it 1272 * needs 2 TIDs. 1273 */ 1274 if (family == PF_INET6) { 1275 t->stids_in_use += 2; 1276 t->v6_stids_in_use += 2; 1277 } else { 1278 t->stids_in_use++; 1279 } 1280 } 1281 spin_unlock_bh(&t->stid_lock); 1282 return stid; 1283 } 1284 EXPORT_SYMBOL(cxgb4_alloc_stid); 1285 1286 /* Allocate a server filter TID and set it to the supplied value. 1287 */ 1288 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1289 { 1290 int stid; 1291 1292 spin_lock_bh(&t->stid_lock); 1293 if (family == PF_INET) { 1294 stid = find_next_zero_bit(t->stid_bmap, 1295 t->nstids + t->nsftids, t->nstids); 1296 if (stid < (t->nstids + t->nsftids)) 1297 __set_bit(stid, t->stid_bmap); 1298 else 1299 stid = -1; 1300 } else { 1301 stid = -1; 1302 } 1303 if (stid >= 0) { 1304 t->stid_tab[stid].data = data; 1305 stid -= t->nstids; 1306 stid += t->sftid_base; 1307 t->sftids_in_use++; 1308 } 1309 spin_unlock_bh(&t->stid_lock); 1310 return stid; 1311 } 1312 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1313 1314 /* Release a server TID. 1315 */ 1316 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1317 { 1318 /* Is it a server filter TID? */ 1319 if (t->nsftids && (stid >= t->sftid_base)) { 1320 stid -= t->sftid_base; 1321 stid += t->nstids; 1322 } else { 1323 stid -= t->stid_base; 1324 } 1325 1326 spin_lock_bh(&t->stid_lock); 1327 if (family == PF_INET) 1328 __clear_bit(stid, t->stid_bmap); 1329 else 1330 bitmap_release_region(t->stid_bmap, stid, 1); 1331 t->stid_tab[stid].data = NULL; 1332 if (stid < t->nstids) { 1333 if (family == PF_INET6) { 1334 t->stids_in_use -= 2; 1335 t->v6_stids_in_use -= 2; 1336 } else { 1337 t->stids_in_use--; 1338 } 1339 } else { 1340 t->sftids_in_use--; 1341 } 1342 1343 spin_unlock_bh(&t->stid_lock); 1344 } 1345 EXPORT_SYMBOL(cxgb4_free_stid); 1346 1347 /* 1348 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1349 */ 1350 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1351 unsigned int tid) 1352 { 1353 struct cpl_tid_release *req; 1354 1355 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1356 req = __skb_put(skb, sizeof(*req)); 1357 INIT_TP_WR(req, tid); 1358 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1359 } 1360 1361 /* 1362 * Queue a TID release request and if necessary schedule a work queue to 1363 * process it. 1364 */ 1365 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1366 unsigned int tid) 1367 { 1368 void **p = &t->tid_tab[tid]; 1369 struct adapter *adap = container_of(t, struct adapter, tids); 1370 1371 spin_lock_bh(&adap->tid_release_lock); 1372 *p = adap->tid_release_head; 1373 /* Low 2 bits encode the Tx channel number */ 1374 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1375 if (!adap->tid_release_task_busy) { 1376 adap->tid_release_task_busy = true; 1377 queue_work(adap->workq, &adap->tid_release_task); 1378 } 1379 spin_unlock_bh(&adap->tid_release_lock); 1380 } 1381 1382 /* 1383 * Process the list of pending TID release requests. 1384 */ 1385 static void process_tid_release_list(struct work_struct *work) 1386 { 1387 struct sk_buff *skb; 1388 struct adapter *adap; 1389 1390 adap = container_of(work, struct adapter, tid_release_task); 1391 1392 spin_lock_bh(&adap->tid_release_lock); 1393 while (adap->tid_release_head) { 1394 void **p = adap->tid_release_head; 1395 unsigned int chan = (uintptr_t)p & 3; 1396 p = (void *)p - chan; 1397 1398 adap->tid_release_head = *p; 1399 *p = NULL; 1400 spin_unlock_bh(&adap->tid_release_lock); 1401 1402 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1403 GFP_KERNEL))) 1404 schedule_timeout_uninterruptible(1); 1405 1406 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1407 t4_ofld_send(adap, skb); 1408 spin_lock_bh(&adap->tid_release_lock); 1409 } 1410 adap->tid_release_task_busy = false; 1411 spin_unlock_bh(&adap->tid_release_lock); 1412 } 1413 1414 /* 1415 * Release a TID and inform HW. If we are unable to allocate the release 1416 * message we defer to a work queue. 1417 */ 1418 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1419 unsigned short family) 1420 { 1421 struct sk_buff *skb; 1422 struct adapter *adap = container_of(t, struct adapter, tids); 1423 1424 WARN_ON(tid >= t->ntids); 1425 1426 if (t->tid_tab[tid]) { 1427 t->tid_tab[tid] = NULL; 1428 atomic_dec(&t->conns_in_use); 1429 if (t->hash_base && (tid >= t->hash_base)) { 1430 if (family == AF_INET6) 1431 atomic_sub(2, &t->hash_tids_in_use); 1432 else 1433 atomic_dec(&t->hash_tids_in_use); 1434 } else { 1435 if (family == AF_INET6) 1436 atomic_sub(2, &t->tids_in_use); 1437 else 1438 atomic_dec(&t->tids_in_use); 1439 } 1440 } 1441 1442 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1443 if (likely(skb)) { 1444 mk_tid_release(skb, chan, tid); 1445 t4_ofld_send(adap, skb); 1446 } else 1447 cxgb4_queue_tid_release(t, chan, tid); 1448 } 1449 EXPORT_SYMBOL(cxgb4_remove_tid); 1450 1451 /* 1452 * Allocate and initialize the TID tables. Returns 0 on success. 1453 */ 1454 static int tid_init(struct tid_info *t) 1455 { 1456 struct adapter *adap = container_of(t, struct adapter, tids); 1457 unsigned int max_ftids = t->nftids + t->nsftids; 1458 unsigned int natids = t->natids; 1459 unsigned int stid_bmap_size; 1460 unsigned int ftid_bmap_size; 1461 size_t size; 1462 1463 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1464 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1465 size = t->ntids * sizeof(*t->tid_tab) + 1466 natids * sizeof(*t->atid_tab) + 1467 t->nstids * sizeof(*t->stid_tab) + 1468 t->nsftids * sizeof(*t->stid_tab) + 1469 stid_bmap_size * sizeof(long) + 1470 max_ftids * sizeof(*t->ftid_tab) + 1471 ftid_bmap_size * sizeof(long); 1472 1473 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1474 if (!t->tid_tab) 1475 return -ENOMEM; 1476 1477 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1478 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1479 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1480 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1481 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1482 spin_lock_init(&t->stid_lock); 1483 spin_lock_init(&t->atid_lock); 1484 spin_lock_init(&t->ftid_lock); 1485 1486 t->stids_in_use = 0; 1487 t->v6_stids_in_use = 0; 1488 t->sftids_in_use = 0; 1489 t->afree = NULL; 1490 t->atids_in_use = 0; 1491 atomic_set(&t->tids_in_use, 0); 1492 atomic_set(&t->conns_in_use, 0); 1493 atomic_set(&t->hash_tids_in_use, 0); 1494 1495 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1496 if (natids) { 1497 while (--natids) 1498 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1499 t->afree = t->atid_tab; 1500 } 1501 1502 if (is_offload(adap)) { 1503 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1504 /* Reserve stid 0 for T4/T5 adapters */ 1505 if (!t->stid_base && 1506 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1507 __set_bit(0, t->stid_bmap); 1508 } 1509 1510 bitmap_zero(t->ftid_bmap, t->nftids); 1511 return 0; 1512 } 1513 1514 /** 1515 * cxgb4_create_server - create an IP server 1516 * @dev: the device 1517 * @stid: the server TID 1518 * @sip: local IP address to bind server to 1519 * @sport: the server's TCP port 1520 * @queue: queue to direct messages from this server to 1521 * 1522 * Create an IP server for the given port and address. 1523 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1524 */ 1525 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1526 __be32 sip, __be16 sport, __be16 vlan, 1527 unsigned int queue) 1528 { 1529 unsigned int chan; 1530 struct sk_buff *skb; 1531 struct adapter *adap; 1532 struct cpl_pass_open_req *req; 1533 int ret; 1534 1535 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1536 if (!skb) 1537 return -ENOMEM; 1538 1539 adap = netdev2adap(dev); 1540 req = __skb_put(skb, sizeof(*req)); 1541 INIT_TP_WR(req, 0); 1542 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1543 req->local_port = sport; 1544 req->peer_port = htons(0); 1545 req->local_ip = sip; 1546 req->peer_ip = htonl(0); 1547 chan = rxq_to_chan(&adap->sge, queue); 1548 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1549 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1550 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1551 ret = t4_mgmt_tx(adap, skb); 1552 return net_xmit_eval(ret); 1553 } 1554 EXPORT_SYMBOL(cxgb4_create_server); 1555 1556 /* cxgb4_create_server6 - create an IPv6 server 1557 * @dev: the device 1558 * @stid: the server TID 1559 * @sip: local IPv6 address to bind server to 1560 * @sport: the server's TCP port 1561 * @queue: queue to direct messages from this server to 1562 * 1563 * Create an IPv6 server for the given port and address. 1564 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1565 */ 1566 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1567 const struct in6_addr *sip, __be16 sport, 1568 unsigned int queue) 1569 { 1570 unsigned int chan; 1571 struct sk_buff *skb; 1572 struct adapter *adap; 1573 struct cpl_pass_open_req6 *req; 1574 int ret; 1575 1576 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1577 if (!skb) 1578 return -ENOMEM; 1579 1580 adap = netdev2adap(dev); 1581 req = __skb_put(skb, sizeof(*req)); 1582 INIT_TP_WR(req, 0); 1583 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1584 req->local_port = sport; 1585 req->peer_port = htons(0); 1586 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1587 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1588 req->peer_ip_hi = cpu_to_be64(0); 1589 req->peer_ip_lo = cpu_to_be64(0); 1590 chan = rxq_to_chan(&adap->sge, queue); 1591 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1592 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1593 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1594 ret = t4_mgmt_tx(adap, skb); 1595 return net_xmit_eval(ret); 1596 } 1597 EXPORT_SYMBOL(cxgb4_create_server6); 1598 1599 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1600 unsigned int queue, bool ipv6) 1601 { 1602 struct sk_buff *skb; 1603 struct adapter *adap; 1604 struct cpl_close_listsvr_req *req; 1605 int ret; 1606 1607 adap = netdev2adap(dev); 1608 1609 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1610 if (!skb) 1611 return -ENOMEM; 1612 1613 req = __skb_put(skb, sizeof(*req)); 1614 INIT_TP_WR(req, 0); 1615 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1616 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1617 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1618 ret = t4_mgmt_tx(adap, skb); 1619 return net_xmit_eval(ret); 1620 } 1621 EXPORT_SYMBOL(cxgb4_remove_server); 1622 1623 /** 1624 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1625 * @mtus: the HW MTU table 1626 * @mtu: the target MTU 1627 * @idx: index of selected entry in the MTU table 1628 * 1629 * Returns the index and the value in the HW MTU table that is closest to 1630 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1631 * table, in which case that smallest available value is selected. 1632 */ 1633 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1634 unsigned int *idx) 1635 { 1636 unsigned int i = 0; 1637 1638 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1639 ++i; 1640 if (idx) 1641 *idx = i; 1642 return mtus[i]; 1643 } 1644 EXPORT_SYMBOL(cxgb4_best_mtu); 1645 1646 /** 1647 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1648 * @mtus: the HW MTU table 1649 * @header_size: Header Size 1650 * @data_size_max: maximum Data Segment Size 1651 * @data_size_align: desired Data Segment Size Alignment (2^N) 1652 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1653 * 1654 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1655 * MTU Table based solely on a Maximum MTU parameter, we break that 1656 * parameter up into a Header Size and Maximum Data Segment Size, and 1657 * provide a desired Data Segment Size Alignment. If we find an MTU in 1658 * the Hardware MTU Table which will result in a Data Segment Size with 1659 * the requested alignment _and_ that MTU isn't "too far" from the 1660 * closest MTU, then we'll return that rather than the closest MTU. 1661 */ 1662 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1663 unsigned short header_size, 1664 unsigned short data_size_max, 1665 unsigned short data_size_align, 1666 unsigned int *mtu_idxp) 1667 { 1668 unsigned short max_mtu = header_size + data_size_max; 1669 unsigned short data_size_align_mask = data_size_align - 1; 1670 int mtu_idx, aligned_mtu_idx; 1671 1672 /* Scan the MTU Table till we find an MTU which is larger than our 1673 * Maximum MTU or we reach the end of the table. Along the way, 1674 * record the last MTU found, if any, which will result in a Data 1675 * Segment Length matching the requested alignment. 1676 */ 1677 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1678 unsigned short data_size = mtus[mtu_idx] - header_size; 1679 1680 /* If this MTU minus the Header Size would result in a 1681 * Data Segment Size of the desired alignment, remember it. 1682 */ 1683 if ((data_size & data_size_align_mask) == 0) 1684 aligned_mtu_idx = mtu_idx; 1685 1686 /* If we're not at the end of the Hardware MTU Table and the 1687 * next element is larger than our Maximum MTU, drop out of 1688 * the loop. 1689 */ 1690 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1691 break; 1692 } 1693 1694 /* If we fell out of the loop because we ran to the end of the table, 1695 * then we just have to use the last [largest] entry. 1696 */ 1697 if (mtu_idx == NMTUS) 1698 mtu_idx--; 1699 1700 /* If we found an MTU which resulted in the requested Data Segment 1701 * Length alignment and that's "not far" from the largest MTU which is 1702 * less than or equal to the maximum MTU, then use that. 1703 */ 1704 if (aligned_mtu_idx >= 0 && 1705 mtu_idx - aligned_mtu_idx <= 1) 1706 mtu_idx = aligned_mtu_idx; 1707 1708 /* If the caller has passed in an MTU Index pointer, pass the 1709 * MTU Index back. Return the MTU value. 1710 */ 1711 if (mtu_idxp) 1712 *mtu_idxp = mtu_idx; 1713 return mtus[mtu_idx]; 1714 } 1715 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1716 1717 /** 1718 * cxgb4_port_chan - get the HW channel of a port 1719 * @dev: the net device for the port 1720 * 1721 * Return the HW Tx channel of the given port. 1722 */ 1723 unsigned int cxgb4_port_chan(const struct net_device *dev) 1724 { 1725 return netdev2pinfo(dev)->tx_chan; 1726 } 1727 EXPORT_SYMBOL(cxgb4_port_chan); 1728 1729 /** 1730 * cxgb4_port_e2cchan - get the HW c-channel of a port 1731 * @dev: the net device for the port 1732 * 1733 * Return the HW RX c-channel of the given port. 1734 */ 1735 unsigned int cxgb4_port_e2cchan(const struct net_device *dev) 1736 { 1737 return netdev2pinfo(dev)->rx_cchan; 1738 } 1739 EXPORT_SYMBOL(cxgb4_port_e2cchan); 1740 1741 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1742 { 1743 struct adapter *adap = netdev2adap(dev); 1744 u32 v1, v2, lp_count, hp_count; 1745 1746 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1747 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1748 if (is_t4(adap->params.chip)) { 1749 lp_count = LP_COUNT_G(v1); 1750 hp_count = HP_COUNT_G(v1); 1751 } else { 1752 lp_count = LP_COUNT_T5_G(v1); 1753 hp_count = HP_COUNT_T5_G(v2); 1754 } 1755 return lpfifo ? lp_count : hp_count; 1756 } 1757 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1758 1759 /** 1760 * cxgb4_port_viid - get the VI id of a port 1761 * @dev: the net device for the port 1762 * 1763 * Return the VI id of the given port. 1764 */ 1765 unsigned int cxgb4_port_viid(const struct net_device *dev) 1766 { 1767 return netdev2pinfo(dev)->viid; 1768 } 1769 EXPORT_SYMBOL(cxgb4_port_viid); 1770 1771 /** 1772 * cxgb4_port_idx - get the index of a port 1773 * @dev: the net device for the port 1774 * 1775 * Return the index of the given port. 1776 */ 1777 unsigned int cxgb4_port_idx(const struct net_device *dev) 1778 { 1779 return netdev2pinfo(dev)->port_id; 1780 } 1781 EXPORT_SYMBOL(cxgb4_port_idx); 1782 1783 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1784 struct tp_tcp_stats *v6) 1785 { 1786 struct adapter *adap = pci_get_drvdata(pdev); 1787 1788 spin_lock(&adap->stats_lock); 1789 t4_tp_get_tcp_stats(adap, v4, v6, false); 1790 spin_unlock(&adap->stats_lock); 1791 } 1792 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1793 1794 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1795 const unsigned int *pgsz_order) 1796 { 1797 struct adapter *adap = netdev2adap(dev); 1798 1799 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1800 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1801 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1802 HPZ3_V(pgsz_order[3])); 1803 } 1804 EXPORT_SYMBOL(cxgb4_iscsi_init); 1805 1806 int cxgb4_flush_eq_cache(struct net_device *dev) 1807 { 1808 struct adapter *adap = netdev2adap(dev); 1809 1810 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 1811 } 1812 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1813 1814 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1815 { 1816 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1817 __be64 indices; 1818 int ret; 1819 1820 spin_lock(&adap->win0_lock); 1821 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1822 sizeof(indices), (__be32 *)&indices, 1823 T4_MEMORY_READ); 1824 spin_unlock(&adap->win0_lock); 1825 if (!ret) { 1826 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1827 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1828 } 1829 return ret; 1830 } 1831 1832 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1833 u16 size) 1834 { 1835 struct adapter *adap = netdev2adap(dev); 1836 u16 hw_pidx, hw_cidx; 1837 int ret; 1838 1839 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1840 if (ret) 1841 goto out; 1842 1843 if (pidx != hw_pidx) { 1844 u16 delta; 1845 u32 val; 1846 1847 if (pidx >= hw_pidx) 1848 delta = pidx - hw_pidx; 1849 else 1850 delta = size - hw_pidx + pidx; 1851 1852 if (is_t4(adap->params.chip)) 1853 val = PIDX_V(delta); 1854 else 1855 val = PIDX_T5_V(delta); 1856 wmb(); 1857 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1858 QID_V(qid) | val); 1859 } 1860 out: 1861 return ret; 1862 } 1863 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1864 1865 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1866 { 1867 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1868 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1869 u32 offset, memtype, memaddr; 1870 struct adapter *adap; 1871 u32 hma_size = 0; 1872 int ret; 1873 1874 adap = netdev2adap(dev); 1875 1876 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1877 1878 /* Figure out where the offset lands in the Memory Type/Address scheme. 1879 * This code assumes that the memory is laid out starting at offset 0 1880 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1881 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1882 * MC0, and some have both MC0 and MC1. 1883 */ 1884 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1885 edc0_size = EDRAM0_SIZE_G(size) << 20; 1886 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1887 edc1_size = EDRAM1_SIZE_G(size) << 20; 1888 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1889 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1890 1891 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 1892 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1893 hma_size = EXT_MEM1_SIZE_G(size) << 20; 1894 } 1895 edc0_end = edc0_size; 1896 edc1_end = edc0_end + edc1_size; 1897 mc0_end = edc1_end + mc0_size; 1898 1899 if (offset < edc0_end) { 1900 memtype = MEM_EDC0; 1901 memaddr = offset; 1902 } else if (offset < edc1_end) { 1903 memtype = MEM_EDC1; 1904 memaddr = offset - edc0_end; 1905 } else { 1906 if (hma_size && (offset < (edc1_end + hma_size))) { 1907 memtype = MEM_HMA; 1908 memaddr = offset - edc1_end; 1909 } else if (offset < mc0_end) { 1910 memtype = MEM_MC0; 1911 memaddr = offset - edc1_end; 1912 } else if (is_t5(adap->params.chip)) { 1913 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1914 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1915 mc1_end = mc0_end + mc1_size; 1916 if (offset < mc1_end) { 1917 memtype = MEM_MC1; 1918 memaddr = offset - mc0_end; 1919 } else { 1920 /* offset beyond the end of any memory */ 1921 goto err; 1922 } 1923 } else { 1924 /* T4/T6 only has a single memory channel */ 1925 goto err; 1926 } 1927 } 1928 1929 spin_lock(&adap->win0_lock); 1930 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1931 spin_unlock(&adap->win0_lock); 1932 return ret; 1933 1934 err: 1935 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1936 stag, offset); 1937 return -EINVAL; 1938 } 1939 EXPORT_SYMBOL(cxgb4_read_tpte); 1940 1941 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1942 { 1943 u32 hi, lo; 1944 struct adapter *adap; 1945 1946 adap = netdev2adap(dev); 1947 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1948 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1949 1950 return ((u64)hi << 32) | (u64)lo; 1951 } 1952 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1953 1954 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1955 unsigned int qid, 1956 enum cxgb4_bar2_qtype qtype, 1957 int user, 1958 u64 *pbar2_qoffset, 1959 unsigned int *pbar2_qid) 1960 { 1961 return t4_bar2_sge_qregs(netdev2adap(dev), 1962 qid, 1963 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1964 ? T4_BAR2_QTYPE_EGRESS 1965 : T4_BAR2_QTYPE_INGRESS), 1966 user, 1967 pbar2_qoffset, 1968 pbar2_qid); 1969 } 1970 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1971 1972 static struct pci_driver cxgb4_driver; 1973 1974 static void check_neigh_update(struct neighbour *neigh) 1975 { 1976 const struct device *parent; 1977 const struct net_device *netdev = neigh->dev; 1978 1979 if (is_vlan_dev(netdev)) 1980 netdev = vlan_dev_real_dev(netdev); 1981 parent = netdev->dev.parent; 1982 if (parent && parent->driver == &cxgb4_driver.driver) 1983 t4_l2t_update(dev_get_drvdata(parent), neigh); 1984 } 1985 1986 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1987 void *data) 1988 { 1989 switch (event) { 1990 case NETEVENT_NEIGH_UPDATE: 1991 check_neigh_update(data); 1992 break; 1993 case NETEVENT_REDIRECT: 1994 default: 1995 break; 1996 } 1997 return 0; 1998 } 1999 2000 static bool netevent_registered; 2001 static struct notifier_block cxgb4_netevent_nb = { 2002 .notifier_call = netevent_cb 2003 }; 2004 2005 static void drain_db_fifo(struct adapter *adap, int usecs) 2006 { 2007 u32 v1, v2, lp_count, hp_count; 2008 2009 do { 2010 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2011 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2012 if (is_t4(adap->params.chip)) { 2013 lp_count = LP_COUNT_G(v1); 2014 hp_count = HP_COUNT_G(v1); 2015 } else { 2016 lp_count = LP_COUNT_T5_G(v1); 2017 hp_count = HP_COUNT_T5_G(v2); 2018 } 2019 2020 if (lp_count == 0 && hp_count == 0) 2021 break; 2022 set_current_state(TASK_UNINTERRUPTIBLE); 2023 schedule_timeout(usecs_to_jiffies(usecs)); 2024 } while (1); 2025 } 2026 2027 static void disable_txq_db(struct sge_txq *q) 2028 { 2029 unsigned long flags; 2030 2031 spin_lock_irqsave(&q->db_lock, flags); 2032 q->db_disabled = 1; 2033 spin_unlock_irqrestore(&q->db_lock, flags); 2034 } 2035 2036 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 2037 { 2038 spin_lock_irq(&q->db_lock); 2039 if (q->db_pidx_inc) { 2040 /* Make sure that all writes to the TX descriptors 2041 * are committed before we tell HW about them. 2042 */ 2043 wmb(); 2044 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2045 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 2046 q->db_pidx_inc = 0; 2047 } 2048 q->db_disabled = 0; 2049 spin_unlock_irq(&q->db_lock); 2050 } 2051 2052 static void disable_dbs(struct adapter *adap) 2053 { 2054 int i; 2055 2056 for_each_ethrxq(&adap->sge, i) 2057 disable_txq_db(&adap->sge.ethtxq[i].q); 2058 if (is_offload(adap)) { 2059 struct sge_uld_txq_info *txq_info = 2060 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2061 2062 if (txq_info) { 2063 for_each_ofldtxq(&adap->sge, i) { 2064 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2065 2066 disable_txq_db(&txq->q); 2067 } 2068 } 2069 } 2070 for_each_port(adap, i) 2071 disable_txq_db(&adap->sge.ctrlq[i].q); 2072 } 2073 2074 static void enable_dbs(struct adapter *adap) 2075 { 2076 int i; 2077 2078 for_each_ethrxq(&adap->sge, i) 2079 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 2080 if (is_offload(adap)) { 2081 struct sge_uld_txq_info *txq_info = 2082 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2083 2084 if (txq_info) { 2085 for_each_ofldtxq(&adap->sge, i) { 2086 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2087 2088 enable_txq_db(adap, &txq->q); 2089 } 2090 } 2091 } 2092 for_each_port(adap, i) 2093 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2094 } 2095 2096 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2097 { 2098 enum cxgb4_uld type = CXGB4_ULD_RDMA; 2099 2100 if (adap->uld && adap->uld[type].handle) 2101 adap->uld[type].control(adap->uld[type].handle, cmd); 2102 } 2103 2104 static void process_db_full(struct work_struct *work) 2105 { 2106 struct adapter *adap; 2107 2108 adap = container_of(work, struct adapter, db_full_task); 2109 2110 drain_db_fifo(adap, dbfifo_drain_delay); 2111 enable_dbs(adap); 2112 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2113 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2114 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2115 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2116 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2117 else 2118 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2119 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2120 } 2121 2122 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2123 { 2124 u16 hw_pidx, hw_cidx; 2125 int ret; 2126 2127 spin_lock_irq(&q->db_lock); 2128 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2129 if (ret) 2130 goto out; 2131 if (q->db_pidx != hw_pidx) { 2132 u16 delta; 2133 u32 val; 2134 2135 if (q->db_pidx >= hw_pidx) 2136 delta = q->db_pidx - hw_pidx; 2137 else 2138 delta = q->size - hw_pidx + q->db_pidx; 2139 2140 if (is_t4(adap->params.chip)) 2141 val = PIDX_V(delta); 2142 else 2143 val = PIDX_T5_V(delta); 2144 wmb(); 2145 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2146 QID_V(q->cntxt_id) | val); 2147 } 2148 out: 2149 q->db_disabled = 0; 2150 q->db_pidx_inc = 0; 2151 spin_unlock_irq(&q->db_lock); 2152 if (ret) 2153 CH_WARN(adap, "DB drop recovery failed.\n"); 2154 } 2155 2156 static void recover_all_queues(struct adapter *adap) 2157 { 2158 int i; 2159 2160 for_each_ethrxq(&adap->sge, i) 2161 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2162 if (is_offload(adap)) { 2163 struct sge_uld_txq_info *txq_info = 2164 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2165 if (txq_info) { 2166 for_each_ofldtxq(&adap->sge, i) { 2167 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2168 2169 sync_txq_pidx(adap, &txq->q); 2170 } 2171 } 2172 } 2173 for_each_port(adap, i) 2174 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2175 } 2176 2177 static void process_db_drop(struct work_struct *work) 2178 { 2179 struct adapter *adap; 2180 2181 adap = container_of(work, struct adapter, db_drop_task); 2182 2183 if (is_t4(adap->params.chip)) { 2184 drain_db_fifo(adap, dbfifo_drain_delay); 2185 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2186 drain_db_fifo(adap, dbfifo_drain_delay); 2187 recover_all_queues(adap); 2188 drain_db_fifo(adap, dbfifo_drain_delay); 2189 enable_dbs(adap); 2190 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2191 } else if (is_t5(adap->params.chip)) { 2192 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2193 u16 qid = (dropped_db >> 15) & 0x1ffff; 2194 u16 pidx_inc = dropped_db & 0x1fff; 2195 u64 bar2_qoffset; 2196 unsigned int bar2_qid; 2197 int ret; 2198 2199 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2200 0, &bar2_qoffset, &bar2_qid); 2201 if (ret) 2202 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2203 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2204 else 2205 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2206 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2207 2208 /* Re-enable BAR2 WC */ 2209 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2210 } 2211 2212 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2213 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2214 } 2215 2216 void t4_db_full(struct adapter *adap) 2217 { 2218 if (is_t4(adap->params.chip)) { 2219 disable_dbs(adap); 2220 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2221 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2222 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2223 queue_work(adap->workq, &adap->db_full_task); 2224 } 2225 } 2226 2227 void t4_db_dropped(struct adapter *adap) 2228 { 2229 if (is_t4(adap->params.chip)) { 2230 disable_dbs(adap); 2231 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2232 } 2233 queue_work(adap->workq, &adap->db_drop_task); 2234 } 2235 2236 void t4_register_netevent_notifier(void) 2237 { 2238 if (!netevent_registered) { 2239 register_netevent_notifier(&cxgb4_netevent_nb); 2240 netevent_registered = true; 2241 } 2242 } 2243 2244 static void detach_ulds(struct adapter *adap) 2245 { 2246 unsigned int i; 2247 2248 mutex_lock(&uld_mutex); 2249 list_del(&adap->list_node); 2250 2251 for (i = 0; i < CXGB4_ULD_MAX; i++) 2252 if (adap->uld && adap->uld[i].handle) 2253 adap->uld[i].state_change(adap->uld[i].handle, 2254 CXGB4_STATE_DETACH); 2255 2256 if (netevent_registered && list_empty(&adapter_list)) { 2257 unregister_netevent_notifier(&cxgb4_netevent_nb); 2258 netevent_registered = false; 2259 } 2260 mutex_unlock(&uld_mutex); 2261 } 2262 2263 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2264 { 2265 unsigned int i; 2266 2267 mutex_lock(&uld_mutex); 2268 for (i = 0; i < CXGB4_ULD_MAX; i++) 2269 if (adap->uld && adap->uld[i].handle) 2270 adap->uld[i].state_change(adap->uld[i].handle, 2271 new_state); 2272 mutex_unlock(&uld_mutex); 2273 } 2274 2275 #if IS_ENABLED(CONFIG_IPV6) 2276 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2277 unsigned long event, void *data) 2278 { 2279 struct inet6_ifaddr *ifa = data; 2280 struct net_device *event_dev = ifa->idev->dev; 2281 const struct device *parent = NULL; 2282 #if IS_ENABLED(CONFIG_BONDING) 2283 struct adapter *adap; 2284 #endif 2285 if (is_vlan_dev(event_dev)) 2286 event_dev = vlan_dev_real_dev(event_dev); 2287 #if IS_ENABLED(CONFIG_BONDING) 2288 if (event_dev->flags & IFF_MASTER) { 2289 list_for_each_entry(adap, &adapter_list, list_node) { 2290 switch (event) { 2291 case NETDEV_UP: 2292 cxgb4_clip_get(adap->port[0], 2293 (const u32 *)ifa, 1); 2294 break; 2295 case NETDEV_DOWN: 2296 cxgb4_clip_release(adap->port[0], 2297 (const u32 *)ifa, 1); 2298 break; 2299 default: 2300 break; 2301 } 2302 } 2303 return NOTIFY_OK; 2304 } 2305 #endif 2306 2307 if (event_dev) 2308 parent = event_dev->dev.parent; 2309 2310 if (parent && parent->driver == &cxgb4_driver.driver) { 2311 switch (event) { 2312 case NETDEV_UP: 2313 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2314 break; 2315 case NETDEV_DOWN: 2316 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2317 break; 2318 default: 2319 break; 2320 } 2321 } 2322 return NOTIFY_OK; 2323 } 2324 2325 static bool inet6addr_registered; 2326 static struct notifier_block cxgb4_inet6addr_notifier = { 2327 .notifier_call = cxgb4_inet6addr_handler 2328 }; 2329 2330 static void update_clip(const struct adapter *adap) 2331 { 2332 int i; 2333 struct net_device *dev; 2334 int ret; 2335 2336 rcu_read_lock(); 2337 2338 for (i = 0; i < MAX_NPORTS; i++) { 2339 dev = adap->port[i]; 2340 ret = 0; 2341 2342 if (dev) 2343 ret = cxgb4_update_root_dev_clip(dev); 2344 2345 if (ret < 0) 2346 break; 2347 } 2348 rcu_read_unlock(); 2349 } 2350 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2351 2352 /** 2353 * cxgb_up - enable the adapter 2354 * @adap: adapter being enabled 2355 * 2356 * Called when the first port is enabled, this function performs the 2357 * actions necessary to make an adapter operational, such as completing 2358 * the initialization of HW modules, and enabling interrupts. 2359 * 2360 * Must be called with the rtnl lock held. 2361 */ 2362 static int cxgb_up(struct adapter *adap) 2363 { 2364 int err; 2365 2366 mutex_lock(&uld_mutex); 2367 err = setup_sge_queues(adap); 2368 if (err) 2369 goto rel_lock; 2370 err = setup_rss(adap); 2371 if (err) 2372 goto freeq; 2373 2374 if (adap->flags & CXGB4_USING_MSIX) { 2375 name_msix_vecs(adap); 2376 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2377 adap->msix_info[0].desc, adap); 2378 if (err) 2379 goto irq_err; 2380 err = request_msix_queue_irqs(adap); 2381 if (err) { 2382 free_irq(adap->msix_info[0].vec, adap); 2383 goto irq_err; 2384 } 2385 } else { 2386 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2387 (adap->flags & CXGB4_USING_MSI) ? 0 2388 : IRQF_SHARED, 2389 adap->port[0]->name, adap); 2390 if (err) 2391 goto irq_err; 2392 } 2393 2394 enable_rx(adap); 2395 t4_sge_start(adap); 2396 t4_intr_enable(adap); 2397 adap->flags |= CXGB4_FULL_INIT_DONE; 2398 mutex_unlock(&uld_mutex); 2399 2400 notify_ulds(adap, CXGB4_STATE_UP); 2401 #if IS_ENABLED(CONFIG_IPV6) 2402 update_clip(adap); 2403 #endif 2404 return err; 2405 2406 irq_err: 2407 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2408 freeq: 2409 t4_free_sge_resources(adap); 2410 rel_lock: 2411 mutex_unlock(&uld_mutex); 2412 return err; 2413 } 2414 2415 static void cxgb_down(struct adapter *adapter) 2416 { 2417 cancel_work_sync(&adapter->tid_release_task); 2418 cancel_work_sync(&adapter->db_full_task); 2419 cancel_work_sync(&adapter->db_drop_task); 2420 adapter->tid_release_task_busy = false; 2421 adapter->tid_release_head = NULL; 2422 2423 t4_sge_stop(adapter); 2424 t4_free_sge_resources(adapter); 2425 2426 adapter->flags &= ~CXGB4_FULL_INIT_DONE; 2427 } 2428 2429 /* 2430 * net_device operations 2431 */ 2432 static int cxgb_open(struct net_device *dev) 2433 { 2434 int err; 2435 struct port_info *pi = netdev_priv(dev); 2436 struct adapter *adapter = pi->adapter; 2437 2438 netif_carrier_off(dev); 2439 2440 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) { 2441 err = cxgb_up(adapter); 2442 if (err < 0) 2443 return err; 2444 } 2445 2446 /* It's possible that the basic port information could have 2447 * changed since we first read it. 2448 */ 2449 err = t4_update_port_info(pi); 2450 if (err < 0) 2451 return err; 2452 2453 err = link_start(dev); 2454 if (!err) 2455 netif_tx_start_all_queues(dev); 2456 return err; 2457 } 2458 2459 static int cxgb_close(struct net_device *dev) 2460 { 2461 struct port_info *pi = netdev_priv(dev); 2462 struct adapter *adapter = pi->adapter; 2463 int ret; 2464 2465 netif_tx_stop_all_queues(dev); 2466 netif_carrier_off(dev); 2467 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2468 false, false, false); 2469 #ifdef CONFIG_CHELSIO_T4_DCB 2470 cxgb4_dcb_reset(dev); 2471 dcb_tx_queue_prio_enable(dev, false); 2472 #endif 2473 return ret; 2474 } 2475 2476 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2477 __be32 sip, __be16 sport, __be16 vlan, 2478 unsigned int queue, unsigned char port, unsigned char mask) 2479 { 2480 int ret; 2481 struct filter_entry *f; 2482 struct adapter *adap; 2483 int i; 2484 u8 *val; 2485 2486 adap = netdev2adap(dev); 2487 2488 /* Adjust stid to correct filter index */ 2489 stid -= adap->tids.sftid_base; 2490 stid += adap->tids.nftids; 2491 2492 /* Check to make sure the filter requested is writable ... 2493 */ 2494 f = &adap->tids.ftid_tab[stid]; 2495 ret = writable_filter(f); 2496 if (ret) 2497 return ret; 2498 2499 /* Clear out any old resources being used by the filter before 2500 * we start constructing the new filter. 2501 */ 2502 if (f->valid) 2503 clear_filter(adap, f); 2504 2505 /* Clear out filter specifications */ 2506 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2507 f->fs.val.lport = cpu_to_be16(sport); 2508 f->fs.mask.lport = ~0; 2509 val = (u8 *)&sip; 2510 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2511 for (i = 0; i < 4; i++) { 2512 f->fs.val.lip[i] = val[i]; 2513 f->fs.mask.lip[i] = ~0; 2514 } 2515 if (adap->params.tp.vlan_pri_map & PORT_F) { 2516 f->fs.val.iport = port; 2517 f->fs.mask.iport = mask; 2518 } 2519 } 2520 2521 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2522 f->fs.val.proto = IPPROTO_TCP; 2523 f->fs.mask.proto = ~0; 2524 } 2525 2526 f->fs.dirsteer = 1; 2527 f->fs.iq = queue; 2528 /* Mark filter as locked */ 2529 f->locked = 1; 2530 f->fs.rpttid = 1; 2531 2532 /* Save the actual tid. We need this to get the corresponding 2533 * filter entry structure in filter_rpl. 2534 */ 2535 f->tid = stid + adap->tids.ftid_base; 2536 ret = set_filter_wr(adap, stid); 2537 if (ret) { 2538 clear_filter(adap, f); 2539 return ret; 2540 } 2541 2542 return 0; 2543 } 2544 EXPORT_SYMBOL(cxgb4_create_server_filter); 2545 2546 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2547 unsigned int queue, bool ipv6) 2548 { 2549 struct filter_entry *f; 2550 struct adapter *adap; 2551 2552 adap = netdev2adap(dev); 2553 2554 /* Adjust stid to correct filter index */ 2555 stid -= adap->tids.sftid_base; 2556 stid += adap->tids.nftids; 2557 2558 f = &adap->tids.ftid_tab[stid]; 2559 /* Unlock the filter */ 2560 f->locked = 0; 2561 2562 return delete_filter(adap, stid); 2563 } 2564 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2565 2566 static void cxgb_get_stats(struct net_device *dev, 2567 struct rtnl_link_stats64 *ns) 2568 { 2569 struct port_stats stats; 2570 struct port_info *p = netdev_priv(dev); 2571 struct adapter *adapter = p->adapter; 2572 2573 /* Block retrieving statistics during EEH error 2574 * recovery. Otherwise, the recovery might fail 2575 * and the PCI device will be removed permanently 2576 */ 2577 spin_lock(&adapter->stats_lock); 2578 if (!netif_device_present(dev)) { 2579 spin_unlock(&adapter->stats_lock); 2580 return; 2581 } 2582 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2583 &p->stats_base); 2584 spin_unlock(&adapter->stats_lock); 2585 2586 ns->tx_bytes = stats.tx_octets; 2587 ns->tx_packets = stats.tx_frames; 2588 ns->rx_bytes = stats.rx_octets; 2589 ns->rx_packets = stats.rx_frames; 2590 ns->multicast = stats.rx_mcast_frames; 2591 2592 /* detailed rx_errors */ 2593 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2594 stats.rx_runt; 2595 ns->rx_over_errors = 0; 2596 ns->rx_crc_errors = stats.rx_fcs_err; 2597 ns->rx_frame_errors = stats.rx_symbol_err; 2598 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2599 stats.rx_ovflow2 + stats.rx_ovflow3 + 2600 stats.rx_trunc0 + stats.rx_trunc1 + 2601 stats.rx_trunc2 + stats.rx_trunc3; 2602 ns->rx_missed_errors = 0; 2603 2604 /* detailed tx_errors */ 2605 ns->tx_aborted_errors = 0; 2606 ns->tx_carrier_errors = 0; 2607 ns->tx_fifo_errors = 0; 2608 ns->tx_heartbeat_errors = 0; 2609 ns->tx_window_errors = 0; 2610 2611 ns->tx_errors = stats.tx_error_frames; 2612 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2613 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2614 } 2615 2616 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2617 { 2618 unsigned int mbox; 2619 int ret = 0, prtad, devad; 2620 struct port_info *pi = netdev_priv(dev); 2621 struct adapter *adapter = pi->adapter; 2622 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2623 2624 switch (cmd) { 2625 case SIOCGMIIPHY: 2626 if (pi->mdio_addr < 0) 2627 return -EOPNOTSUPP; 2628 data->phy_id = pi->mdio_addr; 2629 break; 2630 case SIOCGMIIREG: 2631 case SIOCSMIIREG: 2632 if (mdio_phy_id_is_c45(data->phy_id)) { 2633 prtad = mdio_phy_id_prtad(data->phy_id); 2634 devad = mdio_phy_id_devad(data->phy_id); 2635 } else if (data->phy_id < 32) { 2636 prtad = data->phy_id; 2637 devad = 0; 2638 data->reg_num &= 0x1f; 2639 } else 2640 return -EINVAL; 2641 2642 mbox = pi->adapter->pf; 2643 if (cmd == SIOCGMIIREG) 2644 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2645 data->reg_num, &data->val_out); 2646 else 2647 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2648 data->reg_num, data->val_in); 2649 break; 2650 case SIOCGHWTSTAMP: 2651 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2652 sizeof(pi->tstamp_config)) ? 2653 -EFAULT : 0; 2654 case SIOCSHWTSTAMP: 2655 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2656 sizeof(pi->tstamp_config))) 2657 return -EFAULT; 2658 2659 if (!is_t4(adapter->params.chip)) { 2660 switch (pi->tstamp_config.tx_type) { 2661 case HWTSTAMP_TX_OFF: 2662 case HWTSTAMP_TX_ON: 2663 break; 2664 default: 2665 return -ERANGE; 2666 } 2667 2668 switch (pi->tstamp_config.rx_filter) { 2669 case HWTSTAMP_FILTER_NONE: 2670 pi->rxtstamp = false; 2671 break; 2672 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2673 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2674 cxgb4_ptprx_timestamping(pi, pi->port_id, 2675 PTP_TS_L4); 2676 break; 2677 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2678 cxgb4_ptprx_timestamping(pi, pi->port_id, 2679 PTP_TS_L2_L4); 2680 break; 2681 case HWTSTAMP_FILTER_ALL: 2682 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2683 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2684 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2685 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2686 pi->rxtstamp = true; 2687 break; 2688 default: 2689 pi->tstamp_config.rx_filter = 2690 HWTSTAMP_FILTER_NONE; 2691 return -ERANGE; 2692 } 2693 2694 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2695 (pi->tstamp_config.rx_filter == 2696 HWTSTAMP_FILTER_NONE)) { 2697 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2698 pi->ptp_enable = false; 2699 } 2700 2701 if (pi->tstamp_config.rx_filter != 2702 HWTSTAMP_FILTER_NONE) { 2703 if (cxgb4_ptp_redirect_rx_packet(adapter, 2704 pi) >= 0) 2705 pi->ptp_enable = true; 2706 } 2707 } else { 2708 /* For T4 Adapters */ 2709 switch (pi->tstamp_config.rx_filter) { 2710 case HWTSTAMP_FILTER_NONE: 2711 pi->rxtstamp = false; 2712 break; 2713 case HWTSTAMP_FILTER_ALL: 2714 pi->rxtstamp = true; 2715 break; 2716 default: 2717 pi->tstamp_config.rx_filter = 2718 HWTSTAMP_FILTER_NONE; 2719 return -ERANGE; 2720 } 2721 } 2722 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2723 sizeof(pi->tstamp_config)) ? 2724 -EFAULT : 0; 2725 default: 2726 return -EOPNOTSUPP; 2727 } 2728 return ret; 2729 } 2730 2731 static void cxgb_set_rxmode(struct net_device *dev) 2732 { 2733 /* unfortunately we can't return errors to the stack */ 2734 set_rxmode(dev, -1, false); 2735 } 2736 2737 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2738 { 2739 int ret; 2740 struct port_info *pi = netdev_priv(dev); 2741 2742 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2743 -1, -1, -1, true); 2744 if (!ret) 2745 dev->mtu = new_mtu; 2746 return ret; 2747 } 2748 2749 #ifdef CONFIG_PCI_IOV 2750 static int cxgb4_mgmt_open(struct net_device *dev) 2751 { 2752 /* Turn carrier off since we don't have to transmit anything on this 2753 * interface. 2754 */ 2755 netif_carrier_off(dev); 2756 return 0; 2757 } 2758 2759 /* Fill MAC address that will be assigned by the FW */ 2760 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 2761 { 2762 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2763 unsigned int i, vf, nvfs; 2764 u16 a, b; 2765 int err; 2766 u8 *na; 2767 2768 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, 2769 PCI_CAP_ID_VPD); 2770 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2771 if (err) 2772 return; 2773 2774 na = adap->params.vpd.na; 2775 for (i = 0; i < ETH_ALEN; i++) 2776 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2777 hex2val(na[2 * i + 1])); 2778 2779 a = (hw_addr[0] << 8) | hw_addr[1]; 2780 b = (hw_addr[1] << 8) | hw_addr[2]; 2781 a ^= b; 2782 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2783 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2784 macaddr[0] = a >> 8; 2785 macaddr[1] = a & 0xff; 2786 2787 for (i = 2; i < 5; i++) 2788 macaddr[i] = hw_addr[i + 1]; 2789 2790 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 2791 vf < nvfs; vf++) { 2792 macaddr[5] = adap->pf * nvfs + vf; 2793 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 2794 } 2795 } 2796 2797 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2798 { 2799 struct port_info *pi = netdev_priv(dev); 2800 struct adapter *adap = pi->adapter; 2801 int ret; 2802 2803 /* verify MAC addr is valid */ 2804 if (!is_valid_ether_addr(mac)) { 2805 dev_err(pi->adapter->pdev_dev, 2806 "Invalid Ethernet address %pM for VF %d\n", 2807 mac, vf); 2808 return -EINVAL; 2809 } 2810 2811 dev_info(pi->adapter->pdev_dev, 2812 "Setting MAC %pM on VF %d\n", mac, vf); 2813 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2814 if (!ret) 2815 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2816 return ret; 2817 } 2818 2819 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 2820 int vf, struct ifla_vf_info *ivi) 2821 { 2822 struct port_info *pi = netdev_priv(dev); 2823 struct adapter *adap = pi->adapter; 2824 struct vf_info *vfinfo; 2825 2826 if (vf >= adap->num_vfs) 2827 return -EINVAL; 2828 vfinfo = &adap->vfinfo[vf]; 2829 2830 ivi->vf = vf; 2831 ivi->max_tx_rate = vfinfo->tx_rate; 2832 ivi->min_tx_rate = 0; 2833 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 2834 ivi->vlan = vfinfo->vlan; 2835 ivi->linkstate = vfinfo->link_state; 2836 return 0; 2837 } 2838 2839 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 2840 struct netdev_phys_item_id *ppid) 2841 { 2842 struct port_info *pi = netdev_priv(dev); 2843 unsigned int phy_port_id; 2844 2845 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2846 ppid->id_len = sizeof(phy_port_id); 2847 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2848 return 0; 2849 } 2850 2851 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 2852 int min_tx_rate, int max_tx_rate) 2853 { 2854 struct port_info *pi = netdev_priv(dev); 2855 struct adapter *adap = pi->adapter; 2856 unsigned int link_ok, speed, mtu; 2857 u32 fw_pfvf, fw_class; 2858 int class_id = vf; 2859 int ret; 2860 u16 pktsize; 2861 2862 if (vf >= adap->num_vfs) 2863 return -EINVAL; 2864 2865 if (min_tx_rate) { 2866 dev_err(adap->pdev_dev, 2867 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2868 min_tx_rate, vf); 2869 return -EINVAL; 2870 } 2871 2872 if (max_tx_rate == 0) { 2873 /* unbind VF to to any Traffic Class */ 2874 fw_pfvf = 2875 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2876 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2877 fw_class = 0xffffffff; 2878 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 2879 &fw_pfvf, &fw_class); 2880 if (ret) { 2881 dev_err(adap->pdev_dev, 2882 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n", 2883 ret, adap->pf, vf); 2884 return -EINVAL; 2885 } 2886 dev_info(adap->pdev_dev, 2887 "PF %d VF %d is unbound from TX Rate Limiting\n", 2888 adap->pf, vf); 2889 adap->vfinfo[vf].tx_rate = 0; 2890 return 0; 2891 } 2892 2893 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 2894 if (ret != FW_SUCCESS) { 2895 dev_err(adap->pdev_dev, 2896 "Failed to get link information for VF %d\n", vf); 2897 return -EINVAL; 2898 } 2899 2900 if (!link_ok) { 2901 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 2902 return -EINVAL; 2903 } 2904 2905 if (max_tx_rate > speed) { 2906 dev_err(adap->pdev_dev, 2907 "Max tx rate %d for VF %d can't be > link-speed %u", 2908 max_tx_rate, vf, speed); 2909 return -EINVAL; 2910 } 2911 2912 pktsize = mtu; 2913 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 2914 pktsize = pktsize - sizeof(struct ethhdr) - 4; 2915 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 2916 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 2917 /* configure Traffic Class for rate-limiting */ 2918 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 2919 SCHED_CLASS_LEVEL_CL_RL, 2920 SCHED_CLASS_MODE_CLASS, 2921 SCHED_CLASS_RATEUNIT_BITS, 2922 SCHED_CLASS_RATEMODE_ABS, 2923 pi->tx_chan, class_id, 0, 2924 max_tx_rate * 1000, 0, pktsize); 2925 if (ret) { 2926 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 2927 ret); 2928 return -EINVAL; 2929 } 2930 dev_info(adap->pdev_dev, 2931 "Class %d with MSS %u configured with rate %u\n", 2932 class_id, pktsize, max_tx_rate); 2933 2934 /* bind VF to configured Traffic Class */ 2935 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2936 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2937 fw_class = class_id; 2938 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 2939 &fw_class); 2940 if (ret) { 2941 dev_err(adap->pdev_dev, 2942 "Err %d in binding PF %d VF %d to Traffic Class %d\n", 2943 ret, adap->pf, vf, class_id); 2944 return -EINVAL; 2945 } 2946 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 2947 adap->pf, vf, class_id); 2948 adap->vfinfo[vf].tx_rate = max_tx_rate; 2949 return 0; 2950 } 2951 2952 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 2953 u16 vlan, u8 qos, __be16 vlan_proto) 2954 { 2955 struct port_info *pi = netdev_priv(dev); 2956 struct adapter *adap = pi->adapter; 2957 int ret; 2958 2959 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 2960 return -EINVAL; 2961 2962 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 2963 return -EPROTONOSUPPORT; 2964 2965 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 2966 if (!ret) { 2967 adap->vfinfo[vf].vlan = vlan; 2968 return 0; 2969 } 2970 2971 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 2972 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 2973 return ret; 2974 } 2975 2976 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf, 2977 int link) 2978 { 2979 struct port_info *pi = netdev_priv(dev); 2980 struct adapter *adap = pi->adapter; 2981 u32 param, val; 2982 int ret = 0; 2983 2984 if (vf >= adap->num_vfs) 2985 return -EINVAL; 2986 2987 switch (link) { 2988 case IFLA_VF_LINK_STATE_AUTO: 2989 val = FW_VF_LINK_STATE_AUTO; 2990 break; 2991 2992 case IFLA_VF_LINK_STATE_ENABLE: 2993 val = FW_VF_LINK_STATE_ENABLE; 2994 break; 2995 2996 case IFLA_VF_LINK_STATE_DISABLE: 2997 val = FW_VF_LINK_STATE_DISABLE; 2998 break; 2999 3000 default: 3001 return -EINVAL; 3002 } 3003 3004 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3005 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE)); 3006 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 3007 ¶m, &val); 3008 if (ret) { 3009 dev_err(adap->pdev_dev, 3010 "Error %d in setting PF %d VF %d link state\n", 3011 ret, adap->pf, vf); 3012 return -EINVAL; 3013 } 3014 3015 adap->vfinfo[vf].link_state = link; 3016 return ret; 3017 } 3018 #endif /* CONFIG_PCI_IOV */ 3019 3020 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 3021 { 3022 int ret; 3023 struct sockaddr *addr = p; 3024 struct port_info *pi = netdev_priv(dev); 3025 3026 if (!is_valid_ether_addr(addr->sa_data)) 3027 return -EADDRNOTAVAIL; 3028 3029 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 3030 addr->sa_data, true, &pi->smt_idx); 3031 if (ret < 0) 3032 return ret; 3033 3034 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 3035 pi->xact_addr_filt = ret; 3036 return 0; 3037 } 3038 3039 #ifdef CONFIG_NET_POLL_CONTROLLER 3040 static void cxgb_netpoll(struct net_device *dev) 3041 { 3042 struct port_info *pi = netdev_priv(dev); 3043 struct adapter *adap = pi->adapter; 3044 3045 if (adap->flags & CXGB4_USING_MSIX) { 3046 int i; 3047 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 3048 3049 for (i = pi->nqsets; i; i--, rx++) 3050 t4_sge_intr_msix(0, &rx->rspq); 3051 } else 3052 t4_intr_handler(adap)(0, adap); 3053 } 3054 #endif 3055 3056 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 3057 { 3058 struct port_info *pi = netdev_priv(dev); 3059 struct adapter *adap = pi->adapter; 3060 struct sched_class *e; 3061 struct ch_sched_params p; 3062 struct ch_sched_queue qe; 3063 u32 req_rate; 3064 int err = 0; 3065 3066 if (!can_sched(dev)) 3067 return -ENOTSUPP; 3068 3069 if (index < 0 || index > pi->nqsets - 1) 3070 return -EINVAL; 3071 3072 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3073 dev_err(adap->pdev_dev, 3074 "Failed to rate limit on queue %d. Link Down?\n", 3075 index); 3076 return -EINVAL; 3077 } 3078 3079 /* Convert from Mbps to Kbps */ 3080 req_rate = rate * 1000; 3081 3082 /* Max rate is 100 Gbps */ 3083 if (req_rate > SCHED_MAX_RATE_KBPS) { 3084 dev_err(adap->pdev_dev, 3085 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 3086 rate, SCHED_MAX_RATE_KBPS / 1000); 3087 return -ERANGE; 3088 } 3089 3090 /* First unbind the queue from any existing class */ 3091 memset(&qe, 0, sizeof(qe)); 3092 qe.queue = index; 3093 qe.class = SCHED_CLS_NONE; 3094 3095 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 3096 if (err) { 3097 dev_err(adap->pdev_dev, 3098 "Unbinding Queue %d on port %d fail. Err: %d\n", 3099 index, pi->port_id, err); 3100 return err; 3101 } 3102 3103 /* Queue already unbound */ 3104 if (!req_rate) 3105 return 0; 3106 3107 /* Fetch any available unused or matching scheduling class */ 3108 memset(&p, 0, sizeof(p)); 3109 p.type = SCHED_CLASS_TYPE_PACKET; 3110 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 3111 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 3112 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 3113 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 3114 p.u.params.channel = pi->tx_chan; 3115 p.u.params.class = SCHED_CLS_NONE; 3116 p.u.params.minrate = 0; 3117 p.u.params.maxrate = req_rate; 3118 p.u.params.weight = 0; 3119 p.u.params.pktsize = dev->mtu; 3120 3121 e = cxgb4_sched_class_alloc(dev, &p); 3122 if (!e) 3123 return -ENOMEM; 3124 3125 /* Bind the queue to a scheduling class */ 3126 memset(&qe, 0, sizeof(qe)); 3127 qe.queue = index; 3128 qe.class = e->idx; 3129 3130 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 3131 if (err) 3132 dev_err(adap->pdev_dev, 3133 "Queue rate limiting failed. Err: %d\n", err); 3134 return err; 3135 } 3136 3137 static int cxgb_setup_tc_flower(struct net_device *dev, 3138 struct flow_cls_offload *cls_flower) 3139 { 3140 switch (cls_flower->command) { 3141 case FLOW_CLS_REPLACE: 3142 return cxgb4_tc_flower_replace(dev, cls_flower); 3143 case FLOW_CLS_DESTROY: 3144 return cxgb4_tc_flower_destroy(dev, cls_flower); 3145 case FLOW_CLS_STATS: 3146 return cxgb4_tc_flower_stats(dev, cls_flower); 3147 default: 3148 return -EOPNOTSUPP; 3149 } 3150 } 3151 3152 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 3153 struct tc_cls_u32_offload *cls_u32) 3154 { 3155 switch (cls_u32->command) { 3156 case TC_CLSU32_NEW_KNODE: 3157 case TC_CLSU32_REPLACE_KNODE: 3158 return cxgb4_config_knode(dev, cls_u32); 3159 case TC_CLSU32_DELETE_KNODE: 3160 return cxgb4_delete_knode(dev, cls_u32); 3161 default: 3162 return -EOPNOTSUPP; 3163 } 3164 } 3165 3166 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3167 void *cb_priv) 3168 { 3169 struct net_device *dev = cb_priv; 3170 struct port_info *pi = netdev2pinfo(dev); 3171 struct adapter *adap = netdev2adap(dev); 3172 3173 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3174 dev_err(adap->pdev_dev, 3175 "Failed to setup tc on port %d. Link Down?\n", 3176 pi->port_id); 3177 return -EINVAL; 3178 } 3179 3180 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3181 return -EOPNOTSUPP; 3182 3183 switch (type) { 3184 case TC_SETUP_CLSU32: 3185 return cxgb_setup_tc_cls_u32(dev, type_data); 3186 case TC_SETUP_CLSFLOWER: 3187 return cxgb_setup_tc_flower(dev, type_data); 3188 default: 3189 return -EOPNOTSUPP; 3190 } 3191 } 3192 3193 static LIST_HEAD(cxgb_block_cb_list); 3194 3195 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3196 void *type_data) 3197 { 3198 struct port_info *pi = netdev2pinfo(dev); 3199 3200 switch (type) { 3201 case TC_SETUP_BLOCK: 3202 return flow_block_cb_setup_simple(type_data, 3203 &cxgb_block_cb_list, 3204 cxgb_setup_tc_block_cb, 3205 pi, dev, true); 3206 default: 3207 return -EOPNOTSUPP; 3208 } 3209 } 3210 3211 static void cxgb_del_udp_tunnel(struct net_device *netdev, 3212 struct udp_tunnel_info *ti) 3213 { 3214 struct port_info *pi = netdev_priv(netdev); 3215 struct adapter *adapter = pi->adapter; 3216 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3217 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3218 int ret = 0, i; 3219 3220 if (chip_ver < CHELSIO_T6) 3221 return; 3222 3223 switch (ti->type) { 3224 case UDP_TUNNEL_TYPE_VXLAN: 3225 if (!adapter->vxlan_port_cnt || 3226 adapter->vxlan_port != ti->port) 3227 return; /* Invalid VxLAN destination port */ 3228 3229 adapter->vxlan_port_cnt--; 3230 if (adapter->vxlan_port_cnt) 3231 return; 3232 3233 adapter->vxlan_port = 0; 3234 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3235 break; 3236 case UDP_TUNNEL_TYPE_GENEVE: 3237 if (!adapter->geneve_port_cnt || 3238 adapter->geneve_port != ti->port) 3239 return; /* Invalid GENEVE destination port */ 3240 3241 adapter->geneve_port_cnt--; 3242 if (adapter->geneve_port_cnt) 3243 return; 3244 3245 adapter->geneve_port = 0; 3246 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3247 break; 3248 default: 3249 return; 3250 } 3251 3252 /* Matchall mac entries can be deleted only after all tunnel ports 3253 * are brought down or removed. 3254 */ 3255 if (!adapter->rawf_cnt) 3256 return; 3257 for_each_port(adapter, i) { 3258 pi = adap2pinfo(adapter, i); 3259 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3260 match_all_mac, match_all_mac, 3261 adapter->rawf_start + 3262 pi->port_id, 3263 1, pi->port_id, false); 3264 if (ret < 0) { 3265 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3266 i); 3267 return; 3268 } 3269 } 3270 } 3271 3272 static void cxgb_add_udp_tunnel(struct net_device *netdev, 3273 struct udp_tunnel_info *ti) 3274 { 3275 struct port_info *pi = netdev_priv(netdev); 3276 struct adapter *adapter = pi->adapter; 3277 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3278 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3279 int i, ret; 3280 3281 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt) 3282 return; 3283 3284 switch (ti->type) { 3285 case UDP_TUNNEL_TYPE_VXLAN: 3286 /* Callback for adding vxlan port can be called with the same 3287 * port for both IPv4 and IPv6. We should not disable the 3288 * offloading when the same port for both protocols is added 3289 * and later one of them is removed. 3290 */ 3291 if (adapter->vxlan_port_cnt && 3292 adapter->vxlan_port == ti->port) { 3293 adapter->vxlan_port_cnt++; 3294 return; 3295 } 3296 3297 /* We will support only one VxLAN port */ 3298 if (adapter->vxlan_port_cnt) { 3299 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3300 be16_to_cpu(adapter->vxlan_port), 3301 be16_to_cpu(ti->port)); 3302 return; 3303 } 3304 3305 adapter->vxlan_port = ti->port; 3306 adapter->vxlan_port_cnt = 1; 3307 3308 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3309 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3310 break; 3311 case UDP_TUNNEL_TYPE_GENEVE: 3312 if (adapter->geneve_port_cnt && 3313 adapter->geneve_port == ti->port) { 3314 adapter->geneve_port_cnt++; 3315 return; 3316 } 3317 3318 /* We will support only one GENEVE port */ 3319 if (adapter->geneve_port_cnt) { 3320 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3321 be16_to_cpu(adapter->geneve_port), 3322 be16_to_cpu(ti->port)); 3323 return; 3324 } 3325 3326 adapter->geneve_port = ti->port; 3327 adapter->geneve_port_cnt = 1; 3328 3329 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3330 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3331 break; 3332 default: 3333 return; 3334 } 3335 3336 /* Create a 'match all' mac filter entry for inner mac, 3337 * if raw mac interface is supported. Once the linux kernel provides 3338 * driver entry points for adding/deleting the inner mac addresses, 3339 * we will remove this 'match all' entry and fallback to adding 3340 * exact match filters. 3341 */ 3342 for_each_port(adapter, i) { 3343 pi = adap2pinfo(adapter, i); 3344 3345 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3346 match_all_mac, 3347 match_all_mac, 3348 adapter->rawf_start + 3349 pi->port_id, 3350 1, pi->port_id, false); 3351 if (ret < 0) { 3352 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3353 be16_to_cpu(ti->port)); 3354 cxgb_del_udp_tunnel(netdev, ti); 3355 return; 3356 } 3357 } 3358 } 3359 3360 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3361 struct net_device *dev, 3362 netdev_features_t features) 3363 { 3364 struct port_info *pi = netdev_priv(dev); 3365 struct adapter *adapter = pi->adapter; 3366 3367 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3368 return features; 3369 3370 /* Check if hw supports offload for this packet */ 3371 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3372 return features; 3373 3374 /* Offload is not supported for this encapsulated packet */ 3375 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3376 } 3377 3378 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3379 netdev_features_t features) 3380 { 3381 /* Disable GRO, if RX_CSUM is disabled */ 3382 if (!(features & NETIF_F_RXCSUM)) 3383 features &= ~NETIF_F_GRO; 3384 3385 return features; 3386 } 3387 3388 static const struct net_device_ops cxgb4_netdev_ops = { 3389 .ndo_open = cxgb_open, 3390 .ndo_stop = cxgb_close, 3391 .ndo_start_xmit = t4_start_xmit, 3392 .ndo_select_queue = cxgb_select_queue, 3393 .ndo_get_stats64 = cxgb_get_stats, 3394 .ndo_set_rx_mode = cxgb_set_rxmode, 3395 .ndo_set_mac_address = cxgb_set_mac_addr, 3396 .ndo_set_features = cxgb_set_features, 3397 .ndo_validate_addr = eth_validate_addr, 3398 .ndo_do_ioctl = cxgb_ioctl, 3399 .ndo_change_mtu = cxgb_change_mtu, 3400 #ifdef CONFIG_NET_POLL_CONTROLLER 3401 .ndo_poll_controller = cxgb_netpoll, 3402 #endif 3403 #ifdef CONFIG_CHELSIO_T4_FCOE 3404 .ndo_fcoe_enable = cxgb_fcoe_enable, 3405 .ndo_fcoe_disable = cxgb_fcoe_disable, 3406 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3407 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3408 .ndo_setup_tc = cxgb_setup_tc, 3409 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel, 3410 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel, 3411 .ndo_features_check = cxgb_features_check, 3412 .ndo_fix_features = cxgb_fix_features, 3413 }; 3414 3415 #ifdef CONFIG_PCI_IOV 3416 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3417 .ndo_open = cxgb4_mgmt_open, 3418 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3419 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3420 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3421 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3422 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3423 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state, 3424 }; 3425 #endif 3426 3427 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3428 struct ethtool_drvinfo *info) 3429 { 3430 struct adapter *adapter = netdev2adap(dev); 3431 3432 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3433 strlcpy(info->version, cxgb4_driver_version, 3434 sizeof(info->version)); 3435 strlcpy(info->bus_info, pci_name(adapter->pdev), 3436 sizeof(info->bus_info)); 3437 } 3438 3439 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3440 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3441 }; 3442 3443 static void notify_fatal_err(struct work_struct *work) 3444 { 3445 struct adapter *adap; 3446 3447 adap = container_of(work, struct adapter, fatal_err_notify_task); 3448 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3449 } 3450 3451 void t4_fatal_err(struct adapter *adap) 3452 { 3453 int port; 3454 3455 if (pci_channel_offline(adap->pdev)) 3456 return; 3457 3458 /* Disable the SGE since ULDs are going to free resources that 3459 * could be exposed to the adapter. RDMA MWs for example... 3460 */ 3461 t4_shutdown_adapter(adap); 3462 for_each_port(adap, port) { 3463 struct net_device *dev = adap->port[port]; 3464 3465 /* If we get here in very early initialization the network 3466 * devices may not have been set up yet. 3467 */ 3468 if (!dev) 3469 continue; 3470 3471 netif_tx_stop_all_queues(dev); 3472 netif_carrier_off(dev); 3473 } 3474 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3475 queue_work(adap->workq, &adap->fatal_err_notify_task); 3476 } 3477 3478 static void setup_memwin(struct adapter *adap) 3479 { 3480 u32 nic_win_base = t4_get_util_window(adap); 3481 3482 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3483 } 3484 3485 static void setup_memwin_rdma(struct adapter *adap) 3486 { 3487 if (adap->vres.ocq.size) { 3488 u32 start; 3489 unsigned int sz_kb; 3490 3491 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3492 start &= PCI_BASE_ADDRESS_MEM_MASK; 3493 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3494 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3495 t4_write_reg(adap, 3496 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3497 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3498 t4_write_reg(adap, 3499 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3500 adap->vres.ocq.start); 3501 t4_read_reg(adap, 3502 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3503 } 3504 } 3505 3506 /* HMA Definitions */ 3507 3508 /* The maximum number of address that can be send in a single FW cmd */ 3509 #define HMA_MAX_ADDR_IN_CMD 5 3510 3511 #define HMA_PAGE_SIZE PAGE_SIZE 3512 3513 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3514 3515 #define HMA_PAGE_ORDER \ 3516 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3517 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3518 3519 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3520 * configuration(in units of MB). 3521 */ 3522 #define HMA_MIN_TOTAL_SIZE 1 3523 #define HMA_MAX_TOTAL_SIZE \ 3524 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3525 HMA_MAX_NO_FW_ADDRESS) >> 20) 3526 3527 static void adap_free_hma_mem(struct adapter *adapter) 3528 { 3529 struct scatterlist *iter; 3530 struct page *page; 3531 int i; 3532 3533 if (!adapter->hma.sgt) 3534 return; 3535 3536 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 3537 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 3538 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 3539 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 3540 } 3541 3542 for_each_sg(adapter->hma.sgt->sgl, iter, 3543 adapter->hma.sgt->orig_nents, i) { 3544 page = sg_page(iter); 3545 if (page) 3546 __free_pages(page, HMA_PAGE_ORDER); 3547 } 3548 3549 kfree(adapter->hma.phy_addr); 3550 sg_free_table(adapter->hma.sgt); 3551 kfree(adapter->hma.sgt); 3552 adapter->hma.sgt = NULL; 3553 } 3554 3555 static int adap_config_hma(struct adapter *adapter) 3556 { 3557 struct scatterlist *sgl, *iter; 3558 struct sg_table *sgt; 3559 struct page *newpage; 3560 unsigned int i, j, k; 3561 u32 param, hma_size; 3562 unsigned int ncmds; 3563 size_t page_size; 3564 u32 page_order; 3565 int node, ret; 3566 3567 /* HMA is supported only for T6+ cards. 3568 * Avoid initializing HMA in kdump kernels. 3569 */ 3570 if (is_kdump_kernel() || 3571 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3572 return 0; 3573 3574 /* Get the HMA region size required by fw */ 3575 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3576 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 3577 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3578 1, ¶m, &hma_size); 3579 /* An error means card has its own memory or HMA is not supported by 3580 * the firmware. Return without any errors. 3581 */ 3582 if (ret || !hma_size) 3583 return 0; 3584 3585 if (hma_size < HMA_MIN_TOTAL_SIZE || 3586 hma_size > HMA_MAX_TOTAL_SIZE) { 3587 dev_err(adapter->pdev_dev, 3588 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 3589 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 3590 return -EINVAL; 3591 } 3592 3593 page_size = HMA_PAGE_SIZE; 3594 page_order = HMA_PAGE_ORDER; 3595 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 3596 if (unlikely(!adapter->hma.sgt)) { 3597 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 3598 return -ENOMEM; 3599 } 3600 sgt = adapter->hma.sgt; 3601 /* FW returned value will be in MB's 3602 */ 3603 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 3604 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 3605 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 3606 kfree(adapter->hma.sgt); 3607 adapter->hma.sgt = NULL; 3608 return -ENOMEM; 3609 } 3610 3611 sgl = adapter->hma.sgt->sgl; 3612 node = dev_to_node(adapter->pdev_dev); 3613 for_each_sg(sgl, iter, sgt->orig_nents, i) { 3614 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 3615 __GFP_ZERO, page_order); 3616 if (!newpage) { 3617 dev_err(adapter->pdev_dev, 3618 "Not enough memory for HMA page allocation\n"); 3619 ret = -ENOMEM; 3620 goto free_hma; 3621 } 3622 sg_set_page(iter, newpage, page_size << page_order, 0); 3623 } 3624 3625 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 3626 DMA_BIDIRECTIONAL); 3627 if (!sgt->nents) { 3628 dev_err(adapter->pdev_dev, 3629 "Not enough memory for HMA DMA mapping"); 3630 ret = -ENOMEM; 3631 goto free_hma; 3632 } 3633 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 3634 3635 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 3636 GFP_KERNEL); 3637 if (unlikely(!adapter->hma.phy_addr)) 3638 goto free_hma; 3639 3640 for_each_sg(sgl, iter, sgt->nents, i) { 3641 newpage = sg_page(iter); 3642 adapter->hma.phy_addr[i] = sg_dma_address(iter); 3643 } 3644 3645 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 3646 /* Pass on the addresses to firmware */ 3647 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 3648 struct fw_hma_cmd hma_cmd; 3649 u8 naddr = HMA_MAX_ADDR_IN_CMD; 3650 u8 soc = 0, eoc = 0; 3651 u8 hma_mode = 1; /* Presently we support only Page table mode */ 3652 3653 soc = (i == 0) ? 1 : 0; 3654 eoc = (i == ncmds - 1) ? 1 : 0; 3655 3656 /* For last cmd, set naddr corresponding to remaining 3657 * addresses 3658 */ 3659 if (i == ncmds - 1) { 3660 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 3661 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 3662 } 3663 memset(&hma_cmd, 0, sizeof(hma_cmd)); 3664 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 3665 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3666 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 3667 3668 hma_cmd.mode_to_pcie_params = 3669 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 3670 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 3671 3672 /* HMA cmd size specified in MB's */ 3673 hma_cmd.naddr_size = 3674 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 3675 FW_HMA_CMD_NADDR_V(naddr)); 3676 3677 /* Total Page size specified in units of 4K */ 3678 hma_cmd.addr_size_pkd = 3679 htonl(FW_HMA_CMD_ADDR_SIZE_V 3680 ((page_size << page_order) >> 12)); 3681 3682 /* Fill the 5 addresses */ 3683 for (j = 0; j < naddr; j++) { 3684 hma_cmd.phy_address[j] = 3685 cpu_to_be64(adapter->hma.phy_addr[j + k]); 3686 } 3687 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 3688 sizeof(hma_cmd), &hma_cmd); 3689 if (ret) { 3690 dev_err(adapter->pdev_dev, 3691 "HMA FW command failed with err %d\n", ret); 3692 goto free_hma; 3693 } 3694 } 3695 3696 if (!ret) 3697 dev_info(adapter->pdev_dev, 3698 "Reserved %uMB host memory for HMA\n", hma_size); 3699 return ret; 3700 3701 free_hma: 3702 adap_free_hma_mem(adapter); 3703 return ret; 3704 } 3705 3706 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3707 { 3708 u32 v; 3709 int ret; 3710 3711 /* Now that we've successfully configured and initialized the adapter 3712 * can ask the Firmware what resources it has provisioned for us. 3713 */ 3714 ret = t4_get_pfres(adap); 3715 if (ret) { 3716 dev_err(adap->pdev_dev, 3717 "Unable to retrieve resource provisioning information\n"); 3718 return ret; 3719 } 3720 3721 /* get device capabilities */ 3722 memset(c, 0, sizeof(*c)); 3723 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3724 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3725 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3726 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3727 if (ret < 0) 3728 return ret; 3729 3730 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3731 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3732 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3733 if (ret < 0) 3734 return ret; 3735 3736 ret = t4_config_glbl_rss(adap, adap->pf, 3737 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3738 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3739 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3740 if (ret < 0) 3741 return ret; 3742 3743 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3744 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3745 FW_CMD_CAP_PF); 3746 if (ret < 0) 3747 return ret; 3748 3749 t4_sge_init(adap); 3750 3751 /* tweak some settings */ 3752 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3753 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3754 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3755 v = t4_read_reg(adap, TP_PIO_DATA_A); 3756 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3757 3758 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3759 adap->params.tp.tx_modq_map = 0xE4; 3760 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3761 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3762 3763 /* associate each Tx modulation queue with consecutive Tx channels */ 3764 v = 0x84218421; 3765 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3766 &v, 1, TP_TX_SCHED_HDR_A); 3767 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3768 &v, 1, TP_TX_SCHED_FIFO_A); 3769 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3770 &v, 1, TP_TX_SCHED_PCMD_A); 3771 3772 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3773 if (is_offload(adap)) { 3774 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3775 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3776 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3777 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3778 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3779 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3780 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3781 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3782 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3783 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3784 } 3785 3786 /* get basic stuff going */ 3787 return t4_early_init(adap, adap->pf); 3788 } 3789 3790 /* 3791 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3792 */ 3793 #define MAX_ATIDS 8192U 3794 3795 /* 3796 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3797 * 3798 * If the firmware we're dealing with has Configuration File support, then 3799 * we use that to perform all configuration 3800 */ 3801 3802 /* 3803 * Tweak configuration based on module parameters, etc. Most of these have 3804 * defaults assigned to them by Firmware Configuration Files (if we're using 3805 * them) but need to be explicitly set if we're using hard-coded 3806 * initialization. But even in the case of using Firmware Configuration 3807 * Files, we'd like to expose the ability to change these via module 3808 * parameters so these are essentially common tweaks/settings for 3809 * Configuration Files and hard-coded initialization ... 3810 */ 3811 static int adap_init0_tweaks(struct adapter *adapter) 3812 { 3813 /* 3814 * Fix up various Host-Dependent Parameters like Page Size, Cache 3815 * Line Size, etc. The firmware default is for a 4KB Page Size and 3816 * 64B Cache Line Size ... 3817 */ 3818 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3819 3820 /* 3821 * Process module parameters which affect early initialization. 3822 */ 3823 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3824 dev_err(&adapter->pdev->dev, 3825 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3826 rx_dma_offset); 3827 rx_dma_offset = 2; 3828 } 3829 t4_set_reg_field(adapter, SGE_CONTROL_A, 3830 PKTSHIFT_V(PKTSHIFT_M), 3831 PKTSHIFT_V(rx_dma_offset)); 3832 3833 /* 3834 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3835 * adds the pseudo header itself. 3836 */ 3837 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3838 CSUM_HAS_PSEUDO_HDR_F, 0); 3839 3840 return 0; 3841 } 3842 3843 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3844 * unto themselves and they contain their own firmware to perform their 3845 * tasks ... 3846 */ 3847 static int phy_aq1202_version(const u8 *phy_fw_data, 3848 size_t phy_fw_size) 3849 { 3850 int offset; 3851 3852 /* At offset 0x8 you're looking for the primary image's 3853 * starting offset which is 3 Bytes wide 3854 * 3855 * At offset 0xa of the primary image, you look for the offset 3856 * of the DRAM segment which is 3 Bytes wide. 3857 * 3858 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3859 * wide 3860 */ 3861 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3862 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3863 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3864 3865 offset = le24(phy_fw_data + 0x8) << 12; 3866 offset = le24(phy_fw_data + offset + 0xa); 3867 return be16(phy_fw_data + offset + 0x27e); 3868 3869 #undef be16 3870 #undef le16 3871 #undef le24 3872 } 3873 3874 static struct info_10gbt_phy_fw { 3875 unsigned int phy_fw_id; /* PCI Device ID */ 3876 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3877 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3878 int phy_flash; /* Has FLASH for PHY Firmware */ 3879 } phy_info_array[] = { 3880 { 3881 PHY_AQ1202_DEVICEID, 3882 PHY_AQ1202_FIRMWARE, 3883 phy_aq1202_version, 3884 1, 3885 }, 3886 { 3887 PHY_BCM84834_DEVICEID, 3888 PHY_BCM84834_FIRMWARE, 3889 NULL, 3890 0, 3891 }, 3892 { 0, NULL, NULL }, 3893 }; 3894 3895 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3896 { 3897 int i; 3898 3899 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3900 if (phy_info_array[i].phy_fw_id == devid) 3901 return &phy_info_array[i]; 3902 } 3903 return NULL; 3904 } 3905 3906 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3907 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3908 * we return a negative error number. If we transfer new firmware we return 1 3909 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3910 */ 3911 static int adap_init0_phy(struct adapter *adap) 3912 { 3913 const struct firmware *phyf; 3914 int ret; 3915 struct info_10gbt_phy_fw *phy_info; 3916 3917 /* Use the device ID to determine which PHY file to flash. 3918 */ 3919 phy_info = find_phy_info(adap->pdev->device); 3920 if (!phy_info) { 3921 dev_warn(adap->pdev_dev, 3922 "No PHY Firmware file found for this PHY\n"); 3923 return -EOPNOTSUPP; 3924 } 3925 3926 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3927 * use that. The adapter firmware provides us with a memory buffer 3928 * where we can load a PHY firmware file from the host if we want to 3929 * override the PHY firmware File in flash. 3930 */ 3931 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3932 adap->pdev_dev); 3933 if (ret < 0) { 3934 /* For adapters without FLASH attached to PHY for their 3935 * firmware, it's obviously a fatal error if we can't get the 3936 * firmware to the adapter. For adapters with PHY firmware 3937 * FLASH storage, it's worth a warning if we can't find the 3938 * PHY Firmware but we'll neuter the error ... 3939 */ 3940 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3941 "/lib/firmware/%s, error %d\n", 3942 phy_info->phy_fw_file, -ret); 3943 if (phy_info->phy_flash) { 3944 int cur_phy_fw_ver = 0; 3945 3946 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3947 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3948 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3949 ret = 0; 3950 } 3951 3952 return ret; 3953 } 3954 3955 /* Load PHY Firmware onto adapter. 3956 */ 3957 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3958 phy_info->phy_fw_version, 3959 (u8 *)phyf->data, phyf->size); 3960 if (ret < 0) 3961 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3962 -ret); 3963 else if (ret > 0) { 3964 int new_phy_fw_ver = 0; 3965 3966 if (phy_info->phy_fw_version) 3967 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3968 phyf->size); 3969 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3970 "Firmware /lib/firmware/%s, version %#x\n", 3971 phy_info->phy_fw_file, new_phy_fw_ver); 3972 } 3973 3974 release_firmware(phyf); 3975 3976 return ret; 3977 } 3978 3979 /* 3980 * Attempt to initialize the adapter via a Firmware Configuration File. 3981 */ 3982 static int adap_init0_config(struct adapter *adapter, int reset) 3983 { 3984 char *fw_config_file, fw_config_file_path[256]; 3985 u32 finiver, finicsum, cfcsum, param, val; 3986 struct fw_caps_config_cmd caps_cmd; 3987 unsigned long mtype = 0, maddr = 0; 3988 const struct firmware *cf; 3989 char *config_name = NULL; 3990 int config_issued = 0; 3991 int ret; 3992 3993 /* 3994 * Reset device if necessary. 3995 */ 3996 if (reset) { 3997 ret = t4_fw_reset(adapter, adapter->mbox, 3998 PIORSTMODE_F | PIORST_F); 3999 if (ret < 0) 4000 goto bye; 4001 } 4002 4003 /* If this is a 10Gb/s-BT adapter make sure the chip-external 4004 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 4005 * to be performed after any global adapter RESET above since some 4006 * PHYs only have local RAM copies of the PHY firmware. 4007 */ 4008 if (is_10gbt_device(adapter->pdev->device)) { 4009 ret = adap_init0_phy(adapter); 4010 if (ret < 0) 4011 goto bye; 4012 } 4013 /* 4014 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 4015 * then use that. Otherwise, use the configuration file stored 4016 * in the adapter flash ... 4017 */ 4018 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 4019 case CHELSIO_T4: 4020 fw_config_file = FW4_CFNAME; 4021 break; 4022 case CHELSIO_T5: 4023 fw_config_file = FW5_CFNAME; 4024 break; 4025 case CHELSIO_T6: 4026 fw_config_file = FW6_CFNAME; 4027 break; 4028 default: 4029 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 4030 adapter->pdev->device); 4031 ret = -EINVAL; 4032 goto bye; 4033 } 4034 4035 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 4036 if (ret < 0) { 4037 config_name = "On FLASH"; 4038 mtype = FW_MEMTYPE_CF_FLASH; 4039 maddr = t4_flash_cfg_addr(adapter); 4040 } else { 4041 u32 params[7], val[7]; 4042 4043 sprintf(fw_config_file_path, 4044 "/lib/firmware/%s", fw_config_file); 4045 config_name = fw_config_file_path; 4046 4047 if (cf->size >= FLASH_CFG_MAX_SIZE) 4048 ret = -ENOMEM; 4049 else { 4050 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4051 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4052 ret = t4_query_params(adapter, adapter->mbox, 4053 adapter->pf, 0, 1, params, val); 4054 if (ret == 0) { 4055 /* 4056 * For t4_memory_rw() below addresses and 4057 * sizes have to be in terms of multiples of 4 4058 * bytes. So, if the Configuration File isn't 4059 * a multiple of 4 bytes in length we'll have 4060 * to write that out separately since we can't 4061 * guarantee that the bytes following the 4062 * residual byte in the buffer returned by 4063 * request_firmware() are zeroed out ... 4064 */ 4065 size_t resid = cf->size & 0x3; 4066 size_t size = cf->size & ~0x3; 4067 __be32 *data = (__be32 *)cf->data; 4068 4069 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 4070 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 4071 4072 spin_lock(&adapter->win0_lock); 4073 ret = t4_memory_rw(adapter, 0, mtype, maddr, 4074 size, data, T4_MEMORY_WRITE); 4075 if (ret == 0 && resid != 0) { 4076 union { 4077 __be32 word; 4078 char buf[4]; 4079 } last; 4080 int i; 4081 4082 last.word = data[size >> 2]; 4083 for (i = resid; i < 4; i++) 4084 last.buf[i] = 0; 4085 ret = t4_memory_rw(adapter, 0, mtype, 4086 maddr + size, 4087 4, &last.word, 4088 T4_MEMORY_WRITE); 4089 } 4090 spin_unlock(&adapter->win0_lock); 4091 } 4092 } 4093 4094 release_firmware(cf); 4095 if (ret) 4096 goto bye; 4097 } 4098 4099 val = 0; 4100 4101 /* Ofld + Hash filter is supported. Older fw will fail this request and 4102 * it is fine. 4103 */ 4104 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4105 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD)); 4106 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 4107 1, ¶m, &val); 4108 4109 /* FW doesn't know about Hash filter + ofld support, 4110 * it's not a problem, don't return an error. 4111 */ 4112 if (ret < 0) { 4113 dev_warn(adapter->pdev_dev, 4114 "Hash filter with ofld is not supported by FW\n"); 4115 } 4116 4117 /* 4118 * Issue a Capability Configuration command to the firmware to get it 4119 * to parse the Configuration File. We don't use t4_fw_config_file() 4120 * because we want the ability to modify various features after we've 4121 * processed the configuration file ... 4122 */ 4123 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4124 caps_cmd.op_to_write = 4125 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4126 FW_CMD_REQUEST_F | 4127 FW_CMD_READ_F); 4128 caps_cmd.cfvalid_to_len16 = 4129 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 4130 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 4131 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 4132 FW_LEN16(caps_cmd)); 4133 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4134 &caps_cmd); 4135 4136 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 4137 * Configuration File in FLASH), our last gasp effort is to use the 4138 * Firmware Configuration File which is embedded in the firmware. A 4139 * very few early versions of the firmware didn't have one embedded 4140 * but we can ignore those. 4141 */ 4142 if (ret == -ENOENT) { 4143 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4144 caps_cmd.op_to_write = 4145 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4146 FW_CMD_REQUEST_F | 4147 FW_CMD_READ_F); 4148 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4149 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 4150 sizeof(caps_cmd), &caps_cmd); 4151 config_name = "Firmware Default"; 4152 } 4153 4154 config_issued = 1; 4155 if (ret < 0) 4156 goto bye; 4157 4158 finiver = ntohl(caps_cmd.finiver); 4159 finicsum = ntohl(caps_cmd.finicsum); 4160 cfcsum = ntohl(caps_cmd.cfcsum); 4161 if (finicsum != cfcsum) 4162 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 4163 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 4164 finicsum, cfcsum); 4165 4166 /* 4167 * And now tell the firmware to use the configuration we just loaded. 4168 */ 4169 caps_cmd.op_to_write = 4170 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4171 FW_CMD_REQUEST_F | 4172 FW_CMD_WRITE_F); 4173 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4174 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4175 NULL); 4176 if (ret < 0) 4177 goto bye; 4178 4179 /* 4180 * Tweak configuration based on system architecture, module 4181 * parameters, etc. 4182 */ 4183 ret = adap_init0_tweaks(adapter); 4184 if (ret < 0) 4185 goto bye; 4186 4187 /* We will proceed even if HMA init fails. */ 4188 ret = adap_config_hma(adapter); 4189 if (ret) 4190 dev_err(adapter->pdev_dev, 4191 "HMA configuration failed with error %d\n", ret); 4192 4193 if (is_t6(adapter->params.chip)) { 4194 ret = setup_ppod_edram(adapter); 4195 if (!ret) 4196 dev_info(adapter->pdev_dev, "Successfully enabled " 4197 "ppod edram feature\n"); 4198 } 4199 4200 /* 4201 * And finally tell the firmware to initialize itself using the 4202 * parameters from the Configuration File. 4203 */ 4204 ret = t4_fw_initialize(adapter, adapter->mbox); 4205 if (ret < 0) 4206 goto bye; 4207 4208 /* Emit Firmware Configuration File information and return 4209 * successfully. 4210 */ 4211 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4212 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4213 config_name, finiver, cfcsum); 4214 return 0; 4215 4216 /* 4217 * Something bad happened. Return the error ... (If the "error" 4218 * is that there's no Configuration File on the adapter we don't 4219 * want to issue a warning since this is fairly common.) 4220 */ 4221 bye: 4222 if (config_issued && ret != -ENOENT) 4223 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4224 config_name, -ret); 4225 return ret; 4226 } 4227 4228 static struct fw_info fw_info_array[] = { 4229 { 4230 .chip = CHELSIO_T4, 4231 .fs_name = FW4_CFNAME, 4232 .fw_mod_name = FW4_FNAME, 4233 .fw_hdr = { 4234 .chip = FW_HDR_CHIP_T4, 4235 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4236 .intfver_nic = FW_INTFVER(T4, NIC), 4237 .intfver_vnic = FW_INTFVER(T4, VNIC), 4238 .intfver_ri = FW_INTFVER(T4, RI), 4239 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4240 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4241 }, 4242 }, { 4243 .chip = CHELSIO_T5, 4244 .fs_name = FW5_CFNAME, 4245 .fw_mod_name = FW5_FNAME, 4246 .fw_hdr = { 4247 .chip = FW_HDR_CHIP_T5, 4248 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4249 .intfver_nic = FW_INTFVER(T5, NIC), 4250 .intfver_vnic = FW_INTFVER(T5, VNIC), 4251 .intfver_ri = FW_INTFVER(T5, RI), 4252 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4253 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4254 }, 4255 }, { 4256 .chip = CHELSIO_T6, 4257 .fs_name = FW6_CFNAME, 4258 .fw_mod_name = FW6_FNAME, 4259 .fw_hdr = { 4260 .chip = FW_HDR_CHIP_T6, 4261 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4262 .intfver_nic = FW_INTFVER(T6, NIC), 4263 .intfver_vnic = FW_INTFVER(T6, VNIC), 4264 .intfver_ofld = FW_INTFVER(T6, OFLD), 4265 .intfver_ri = FW_INTFVER(T6, RI), 4266 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4267 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4268 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4269 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4270 }, 4271 } 4272 4273 }; 4274 4275 static struct fw_info *find_fw_info(int chip) 4276 { 4277 int i; 4278 4279 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4280 if (fw_info_array[i].chip == chip) 4281 return &fw_info_array[i]; 4282 } 4283 return NULL; 4284 } 4285 4286 /* 4287 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4288 */ 4289 static int adap_init0(struct adapter *adap) 4290 { 4291 int ret; 4292 u32 v, port_vec; 4293 enum dev_state state; 4294 u32 params[7], val[7]; 4295 struct fw_caps_config_cmd caps_cmd; 4296 int reset = 1; 4297 4298 /* Grab Firmware Device Log parameters as early as possible so we have 4299 * access to it for debugging, etc. 4300 */ 4301 ret = t4_init_devlog_params(adap); 4302 if (ret < 0) 4303 return ret; 4304 4305 /* Contact FW, advertising Master capability */ 4306 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4307 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4308 if (ret < 0) { 4309 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4310 ret); 4311 return ret; 4312 } 4313 if (ret == adap->mbox) 4314 adap->flags |= CXGB4_MASTER_PF; 4315 4316 /* 4317 * If we're the Master PF Driver and the device is uninitialized, 4318 * then let's consider upgrading the firmware ... (We always want 4319 * to check the firmware version number in order to A. get it for 4320 * later reporting and B. to warn if the currently loaded firmware 4321 * is excessively mismatched relative to the driver.) 4322 */ 4323 4324 t4_get_version_info(adap); 4325 ret = t4_check_fw_version(adap); 4326 /* If firmware is too old (not supported by driver) force an update. */ 4327 if (ret) 4328 state = DEV_STATE_UNINIT; 4329 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) { 4330 struct fw_info *fw_info; 4331 struct fw_hdr *card_fw; 4332 const struct firmware *fw; 4333 const u8 *fw_data = NULL; 4334 unsigned int fw_size = 0; 4335 4336 /* This is the firmware whose headers the driver was compiled 4337 * against 4338 */ 4339 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4340 if (fw_info == NULL) { 4341 dev_err(adap->pdev_dev, 4342 "unable to get firmware info for chip %d.\n", 4343 CHELSIO_CHIP_VERSION(adap->params.chip)); 4344 return -EINVAL; 4345 } 4346 4347 /* allocate memory to read the header of the firmware on the 4348 * card 4349 */ 4350 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4351 if (!card_fw) { 4352 ret = -ENOMEM; 4353 goto bye; 4354 } 4355 4356 /* Get FW from from /lib/firmware/ */ 4357 ret = request_firmware(&fw, fw_info->fw_mod_name, 4358 adap->pdev_dev); 4359 if (ret < 0) { 4360 dev_err(adap->pdev_dev, 4361 "unable to load firmware image %s, error %d\n", 4362 fw_info->fw_mod_name, ret); 4363 } else { 4364 fw_data = fw->data; 4365 fw_size = fw->size; 4366 } 4367 4368 /* upgrade FW logic */ 4369 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4370 state, &reset); 4371 4372 /* Cleaning up */ 4373 release_firmware(fw); 4374 kvfree(card_fw); 4375 4376 if (ret < 0) 4377 goto bye; 4378 } 4379 4380 /* If the firmware is initialized already, emit a simply note to that 4381 * effect. Otherwise, it's time to try initializing the adapter. 4382 */ 4383 if (state == DEV_STATE_INIT) { 4384 ret = adap_config_hma(adap); 4385 if (ret) 4386 dev_err(adap->pdev_dev, 4387 "HMA configuration failed with error %d\n", 4388 ret); 4389 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4390 "Adapter already initialized\n", 4391 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE"); 4392 } else { 4393 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4394 "Initializing adapter\n"); 4395 4396 /* Find out whether we're dealing with a version of the 4397 * firmware which has configuration file support. 4398 */ 4399 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4400 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4401 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4402 params, val); 4403 4404 /* If the firmware doesn't support Configuration Files, 4405 * return an error. 4406 */ 4407 if (ret < 0) { 4408 dev_err(adap->pdev_dev, "firmware doesn't support " 4409 "Firmware Configuration Files\n"); 4410 goto bye; 4411 } 4412 4413 /* The firmware provides us with a memory buffer where we can 4414 * load a Configuration File from the host if we want to 4415 * override the Configuration File in flash. 4416 */ 4417 ret = adap_init0_config(adap, reset); 4418 if (ret == -ENOENT) { 4419 dev_err(adap->pdev_dev, "no Configuration File " 4420 "present on adapter.\n"); 4421 goto bye; 4422 } 4423 if (ret < 0) { 4424 dev_err(adap->pdev_dev, "could not initialize " 4425 "adapter, error %d\n", -ret); 4426 goto bye; 4427 } 4428 } 4429 4430 /* Now that we've successfully configured and initialized the adapter 4431 * (or found it already initialized), we can ask the Firmware what 4432 * resources it has provisioned for us. 4433 */ 4434 ret = t4_get_pfres(adap); 4435 if (ret) { 4436 dev_err(adap->pdev_dev, 4437 "Unable to retrieve resource provisioning information\n"); 4438 goto bye; 4439 } 4440 4441 /* Grab VPD parameters. This should be done after we establish a 4442 * connection to the firmware since some of the VPD parameters 4443 * (notably the Core Clock frequency) are retrieved via requests to 4444 * the firmware. On the other hand, we need these fairly early on 4445 * so we do this right after getting ahold of the firmware. 4446 * 4447 * We need to do this after initializing the adapter because someone 4448 * could have FLASHed a new VPD which won't be read by the firmware 4449 * until we do the RESET ... 4450 */ 4451 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4452 if (ret < 0) 4453 goto bye; 4454 4455 /* Find out what ports are available to us. Note that we need to do 4456 * this before calling adap_init0_no_config() since it needs nports 4457 * and portvec ... 4458 */ 4459 v = 4460 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4461 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4462 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4463 if (ret < 0) 4464 goto bye; 4465 4466 adap->params.nports = hweight32(port_vec); 4467 adap->params.portvec = port_vec; 4468 4469 /* Give the SGE code a chance to pull in anything that it needs ... 4470 * Note that this must be called after we retrieve our VPD parameters 4471 * in order to know how to convert core ticks to seconds, etc. 4472 */ 4473 ret = t4_sge_init(adap); 4474 if (ret < 0) 4475 goto bye; 4476 4477 /* Grab the SGE Doorbell Queue Timer values. If successful, that 4478 * indicates that the Firmware and Hardware support this. 4479 */ 4480 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4481 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK)); 4482 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4483 1, params, val); 4484 4485 if (!ret) { 4486 adap->sge.dbqtimer_tick = val[0]; 4487 ret = t4_read_sge_dbqtimers(adap, 4488 ARRAY_SIZE(adap->sge.dbqtimer_val), 4489 adap->sge.dbqtimer_val); 4490 } 4491 4492 if (!ret) 4493 adap->flags |= CXGB4_SGE_DBQ_TIMER; 4494 4495 if (is_bypass_device(adap->pdev->device)) 4496 adap->params.bypass = 1; 4497 4498 /* 4499 * Grab some of our basic fundamental operating parameters. 4500 */ 4501 #define FW_PARAM_DEV(param) \ 4502 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 4503 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 4504 4505 #define FW_PARAM_PFVF(param) \ 4506 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 4507 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 4508 FW_PARAMS_PARAM_Y_V(0) | \ 4509 FW_PARAMS_PARAM_Z_V(0) 4510 4511 params[0] = FW_PARAM_PFVF(EQ_START); 4512 params[1] = FW_PARAM_PFVF(L2T_START); 4513 params[2] = FW_PARAM_PFVF(L2T_END); 4514 params[3] = FW_PARAM_PFVF(FILTER_START); 4515 params[4] = FW_PARAM_PFVF(FILTER_END); 4516 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4517 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4518 if (ret < 0) 4519 goto bye; 4520 adap->sge.egr_start = val[0]; 4521 adap->l2t_start = val[1]; 4522 adap->l2t_end = val[2]; 4523 adap->tids.ftid_base = val[3]; 4524 adap->tids.nftids = val[4] - val[3] + 1; 4525 adap->sge.ingr_start = val[5]; 4526 4527 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4528 /* Read the raw mps entries. In T6, the last 2 tcam entries 4529 * are reserved for raw mac addresses (rawf = 2, one per port). 4530 */ 4531 params[0] = FW_PARAM_PFVF(RAWF_START); 4532 params[1] = FW_PARAM_PFVF(RAWF_END); 4533 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4534 params, val); 4535 if (ret == 0) { 4536 adap->rawf_start = val[0]; 4537 adap->rawf_cnt = val[1] - val[0] + 1; 4538 } 4539 } 4540 4541 /* qids (ingress/egress) returned from firmware can be anywhere 4542 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 4543 * Hence driver needs to allocate memory for this range to 4544 * store the queue info. Get the highest IQFLINT/EQ index returned 4545 * in FW_EQ_*_CMD.alloc command. 4546 */ 4547 params[0] = FW_PARAM_PFVF(EQ_END); 4548 params[1] = FW_PARAM_PFVF(IQFLINT_END); 4549 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4550 if (ret < 0) 4551 goto bye; 4552 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 4553 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 4554 4555 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 4556 sizeof(*adap->sge.egr_map), GFP_KERNEL); 4557 if (!adap->sge.egr_map) { 4558 ret = -ENOMEM; 4559 goto bye; 4560 } 4561 4562 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 4563 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 4564 if (!adap->sge.ingr_map) { 4565 ret = -ENOMEM; 4566 goto bye; 4567 } 4568 4569 /* Allocate the memory for the vaious egress queue bitmaps 4570 * ie starving_fl, txq_maperr and blocked_fl. 4571 */ 4572 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4573 sizeof(long), GFP_KERNEL); 4574 if (!adap->sge.starving_fl) { 4575 ret = -ENOMEM; 4576 goto bye; 4577 } 4578 4579 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4580 sizeof(long), GFP_KERNEL); 4581 if (!adap->sge.txq_maperr) { 4582 ret = -ENOMEM; 4583 goto bye; 4584 } 4585 4586 #ifdef CONFIG_DEBUG_FS 4587 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4588 sizeof(long), GFP_KERNEL); 4589 if (!adap->sge.blocked_fl) { 4590 ret = -ENOMEM; 4591 goto bye; 4592 } 4593 #endif 4594 4595 params[0] = FW_PARAM_PFVF(CLIP_START); 4596 params[1] = FW_PARAM_PFVF(CLIP_END); 4597 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4598 if (ret < 0) 4599 goto bye; 4600 adap->clipt_start = val[0]; 4601 adap->clipt_end = val[1]; 4602 4603 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 4604 * Classes supported by the hardware/firmware so we hard code it here 4605 * for now. 4606 */ 4607 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 4608 4609 /* query params related to active filter region */ 4610 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 4611 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 4612 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4613 /* If Active filter size is set we enable establishing 4614 * offload connection through firmware work request 4615 */ 4616 if ((val[0] != val[1]) && (ret >= 0)) { 4617 adap->flags |= CXGB4_FW_OFLD_CONN; 4618 adap->tids.aftid_base = val[0]; 4619 adap->tids.aftid_end = val[1]; 4620 } 4621 4622 /* If we're running on newer firmware, let it know that we're 4623 * prepared to deal with encapsulated CPL messages. Older 4624 * firmware won't understand this and we'll just get 4625 * unencapsulated messages ... 4626 */ 4627 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4628 val[0] = 1; 4629 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4630 4631 /* 4632 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 4633 * capability. Earlier versions of the firmware didn't have the 4634 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 4635 * permission to use ULPTX MEMWRITE DSGL. 4636 */ 4637 if (is_t4(adap->params.chip)) { 4638 adap->params.ulptx_memwrite_dsgl = false; 4639 } else { 4640 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4641 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4642 1, params, val); 4643 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4644 } 4645 4646 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 4647 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4648 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4649 1, params, val); 4650 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 4651 4652 /* See if FW supports FW_FILTER2 work request */ 4653 if (is_t4(adap->params.chip)) { 4654 adap->params.filter2_wr_support = 0; 4655 } else { 4656 params[0] = FW_PARAM_DEV(FILTER2_WR); 4657 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4658 1, params, val); 4659 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 4660 } 4661 4662 /* Check if FW supports returning vin and smt index. 4663 * If this is not supported, driver will interpret 4664 * these values from viid. 4665 */ 4666 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 4667 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4668 1, params, val); 4669 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0); 4670 4671 /* 4672 * Get device capabilities so we can determine what resources we need 4673 * to manage. 4674 */ 4675 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4676 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4677 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4678 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4679 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4680 &caps_cmd); 4681 if (ret < 0) 4682 goto bye; 4683 4684 /* hash filter has some mandatory register settings to be tested and for 4685 * that it needs to test whether offload is enabled or not, hence 4686 * checking and setting it here. 4687 */ 4688 if (caps_cmd.ofldcaps) 4689 adap->params.offload = 1; 4690 4691 if (caps_cmd.ofldcaps || 4692 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) { 4693 /* query offload-related parameters */ 4694 params[0] = FW_PARAM_DEV(NTID); 4695 params[1] = FW_PARAM_PFVF(SERVER_START); 4696 params[2] = FW_PARAM_PFVF(SERVER_END); 4697 params[3] = FW_PARAM_PFVF(TDDP_START); 4698 params[4] = FW_PARAM_PFVF(TDDP_END); 4699 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4700 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4701 params, val); 4702 if (ret < 0) 4703 goto bye; 4704 adap->tids.ntids = val[0]; 4705 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4706 adap->tids.stid_base = val[1]; 4707 adap->tids.nstids = val[2] - val[1] + 1; 4708 /* 4709 * Setup server filter region. Divide the available filter 4710 * region into two parts. Regular filters get 1/3rd and server 4711 * filters get 2/3rd part. This is only enabled if workarond 4712 * path is enabled. 4713 * 1. For regular filters. 4714 * 2. Server filter: This are special filters which are used 4715 * to redirect SYN packets to offload queue. 4716 */ 4717 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) { 4718 adap->tids.sftid_base = adap->tids.ftid_base + 4719 DIV_ROUND_UP(adap->tids.nftids, 3); 4720 adap->tids.nsftids = adap->tids.nftids - 4721 DIV_ROUND_UP(adap->tids.nftids, 3); 4722 adap->tids.nftids = adap->tids.sftid_base - 4723 adap->tids.ftid_base; 4724 } 4725 adap->vres.ddp.start = val[3]; 4726 adap->vres.ddp.size = val[4] - val[3] + 1; 4727 adap->params.ofldq_wr_cred = val[5]; 4728 4729 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4730 init_hash_filter(adap); 4731 } else { 4732 adap->num_ofld_uld += 1; 4733 } 4734 } 4735 if (caps_cmd.rdmacaps) { 4736 params[0] = FW_PARAM_PFVF(STAG_START); 4737 params[1] = FW_PARAM_PFVF(STAG_END); 4738 params[2] = FW_PARAM_PFVF(RQ_START); 4739 params[3] = FW_PARAM_PFVF(RQ_END); 4740 params[4] = FW_PARAM_PFVF(PBL_START); 4741 params[5] = FW_PARAM_PFVF(PBL_END); 4742 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4743 params, val); 4744 if (ret < 0) 4745 goto bye; 4746 adap->vres.stag.start = val[0]; 4747 adap->vres.stag.size = val[1] - val[0] + 1; 4748 adap->vres.rq.start = val[2]; 4749 adap->vres.rq.size = val[3] - val[2] + 1; 4750 adap->vres.pbl.start = val[4]; 4751 adap->vres.pbl.size = val[5] - val[4] + 1; 4752 4753 params[0] = FW_PARAM_PFVF(SRQ_START); 4754 params[1] = FW_PARAM_PFVF(SRQ_END); 4755 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4756 params, val); 4757 if (!ret) { 4758 adap->vres.srq.start = val[0]; 4759 adap->vres.srq.size = val[1] - val[0] + 1; 4760 } 4761 if (adap->vres.srq.size) { 4762 adap->srq = t4_init_srq(adap->vres.srq.size); 4763 if (!adap->srq) 4764 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 4765 } 4766 4767 params[0] = FW_PARAM_PFVF(SQRQ_START); 4768 params[1] = FW_PARAM_PFVF(SQRQ_END); 4769 params[2] = FW_PARAM_PFVF(CQ_START); 4770 params[3] = FW_PARAM_PFVF(CQ_END); 4771 params[4] = FW_PARAM_PFVF(OCQ_START); 4772 params[5] = FW_PARAM_PFVF(OCQ_END); 4773 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4774 val); 4775 if (ret < 0) 4776 goto bye; 4777 adap->vres.qp.start = val[0]; 4778 adap->vres.qp.size = val[1] - val[0] + 1; 4779 adap->vres.cq.start = val[2]; 4780 adap->vres.cq.size = val[3] - val[2] + 1; 4781 adap->vres.ocq.start = val[4]; 4782 adap->vres.ocq.size = val[5] - val[4] + 1; 4783 4784 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4785 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4786 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 4787 val); 4788 if (ret < 0) { 4789 adap->params.max_ordird_qp = 8; 4790 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 4791 ret = 0; 4792 } else { 4793 adap->params.max_ordird_qp = val[0]; 4794 adap->params.max_ird_adapter = val[1]; 4795 } 4796 dev_info(adap->pdev_dev, 4797 "max_ordird_qp %d max_ird_adapter %d\n", 4798 adap->params.max_ordird_qp, 4799 adap->params.max_ird_adapter); 4800 4801 /* Enable write_with_immediate if FW supports it */ 4802 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 4803 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4804 val); 4805 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 4806 4807 /* Enable write_cmpl if FW supports it */ 4808 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 4809 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4810 val); 4811 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 4812 adap->num_ofld_uld += 2; 4813 } 4814 if (caps_cmd.iscsicaps) { 4815 params[0] = FW_PARAM_PFVF(ISCSI_START); 4816 params[1] = FW_PARAM_PFVF(ISCSI_END); 4817 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4818 params, val); 4819 if (ret < 0) 4820 goto bye; 4821 adap->vres.iscsi.start = val[0]; 4822 adap->vres.iscsi.size = val[1] - val[0] + 1; 4823 if (is_t6(adap->params.chip)) { 4824 params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START); 4825 params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END); 4826 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4827 params, val); 4828 if (!ret) { 4829 adap->vres.ppod_edram.start = val[0]; 4830 adap->vres.ppod_edram.size = 4831 val[1] - val[0] + 1; 4832 4833 dev_info(adap->pdev_dev, 4834 "ppod edram start 0x%x end 0x%x size 0x%x\n", 4835 val[0], val[1], 4836 adap->vres.ppod_edram.size); 4837 } 4838 } 4839 /* LIO target and cxgb4i initiaitor */ 4840 adap->num_ofld_uld += 2; 4841 } 4842 if (caps_cmd.cryptocaps) { 4843 if (ntohs(caps_cmd.cryptocaps) & 4844 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 4845 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 4846 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4847 2, params, val); 4848 if (ret < 0) { 4849 if (ret != -EINVAL) 4850 goto bye; 4851 } else { 4852 adap->vres.ncrypto_fc = val[0]; 4853 } 4854 adap->num_ofld_uld += 1; 4855 } 4856 if (ntohs(caps_cmd.cryptocaps) & 4857 FW_CAPS_CONFIG_TLS_INLINE) { 4858 params[0] = FW_PARAM_PFVF(TLS_START); 4859 params[1] = FW_PARAM_PFVF(TLS_END); 4860 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4861 2, params, val); 4862 if (ret < 0) 4863 goto bye; 4864 adap->vres.key.start = val[0]; 4865 adap->vres.key.size = val[1] - val[0] + 1; 4866 adap->num_uld += 1; 4867 } 4868 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 4869 } 4870 #undef FW_PARAM_PFVF 4871 #undef FW_PARAM_DEV 4872 4873 /* The MTU/MSS Table is initialized by now, so load their values. If 4874 * we're initializing the adapter, then we'll make any modifications 4875 * we want to the MTU/MSS Table and also initialize the congestion 4876 * parameters. 4877 */ 4878 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4879 if (state != DEV_STATE_INIT) { 4880 int i; 4881 4882 /* The default MTU Table contains values 1492 and 1500. 4883 * However, for TCP, it's better to have two values which are 4884 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4885 * This allows us to have a TCP Data Payload which is a 4886 * multiple of 8 regardless of what combination of TCP Options 4887 * are in use (always a multiple of 4 bytes) which is 4888 * important for performance reasons. For instance, if no 4889 * options are in use, then we have a 20-byte IP header and a 4890 * 20-byte TCP header. In this case, a 1500-byte MSS would 4891 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4892 * which is not a multiple of 8. So using an MSS of 1488 in 4893 * this case results in a TCP Data Payload of 1448 bytes which 4894 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4895 * Stamps have been negotiated, then an MTU of 1500 bytes 4896 * results in a TCP Data Payload of 1448 bytes which, as 4897 * above, is a multiple of 8 bytes ... 4898 */ 4899 for (i = 0; i < NMTUS; i++) 4900 if (adap->params.mtus[i] == 1492) { 4901 adap->params.mtus[i] = 1488; 4902 break; 4903 } 4904 4905 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4906 adap->params.b_wnd); 4907 } 4908 t4_init_sge_params(adap); 4909 adap->flags |= CXGB4_FW_OK; 4910 t4_init_tp_params(adap, true); 4911 return 0; 4912 4913 /* 4914 * Something bad happened. If a command timed out or failed with EIO 4915 * FW does not operate within its spec or something catastrophic 4916 * happened to HW/FW, stop issuing commands. 4917 */ 4918 bye: 4919 adap_free_hma_mem(adap); 4920 kfree(adap->sge.egr_map); 4921 kfree(adap->sge.ingr_map); 4922 kfree(adap->sge.starving_fl); 4923 kfree(adap->sge.txq_maperr); 4924 #ifdef CONFIG_DEBUG_FS 4925 kfree(adap->sge.blocked_fl); 4926 #endif 4927 if (ret != -ETIMEDOUT && ret != -EIO) 4928 t4_fw_bye(adap, adap->mbox); 4929 return ret; 4930 } 4931 4932 /* EEH callbacks */ 4933 4934 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4935 pci_channel_state_t state) 4936 { 4937 int i; 4938 struct adapter *adap = pci_get_drvdata(pdev); 4939 4940 if (!adap) 4941 goto out; 4942 4943 rtnl_lock(); 4944 adap->flags &= ~CXGB4_FW_OK; 4945 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4946 spin_lock(&adap->stats_lock); 4947 for_each_port(adap, i) { 4948 struct net_device *dev = adap->port[i]; 4949 if (dev) { 4950 netif_device_detach(dev); 4951 netif_carrier_off(dev); 4952 } 4953 } 4954 spin_unlock(&adap->stats_lock); 4955 disable_interrupts(adap); 4956 if (adap->flags & CXGB4_FULL_INIT_DONE) 4957 cxgb_down(adap); 4958 rtnl_unlock(); 4959 if ((adap->flags & CXGB4_DEV_ENABLED)) { 4960 pci_disable_device(pdev); 4961 adap->flags &= ~CXGB4_DEV_ENABLED; 4962 } 4963 out: return state == pci_channel_io_perm_failure ? 4964 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4965 } 4966 4967 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4968 { 4969 int i, ret; 4970 struct fw_caps_config_cmd c; 4971 struct adapter *adap = pci_get_drvdata(pdev); 4972 4973 if (!adap) { 4974 pci_restore_state(pdev); 4975 pci_save_state(pdev); 4976 return PCI_ERS_RESULT_RECOVERED; 4977 } 4978 4979 if (!(adap->flags & CXGB4_DEV_ENABLED)) { 4980 if (pci_enable_device(pdev)) { 4981 dev_err(&pdev->dev, "Cannot reenable PCI " 4982 "device after reset\n"); 4983 return PCI_ERS_RESULT_DISCONNECT; 4984 } 4985 adap->flags |= CXGB4_DEV_ENABLED; 4986 } 4987 4988 pci_set_master(pdev); 4989 pci_restore_state(pdev); 4990 pci_save_state(pdev); 4991 4992 if (t4_wait_dev_ready(adap->regs) < 0) 4993 return PCI_ERS_RESULT_DISCONNECT; 4994 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4995 return PCI_ERS_RESULT_DISCONNECT; 4996 adap->flags |= CXGB4_FW_OK; 4997 if (adap_init1(adap, &c)) 4998 return PCI_ERS_RESULT_DISCONNECT; 4999 5000 for_each_port(adap, i) { 5001 struct port_info *pi = adap2pinfo(adap, i); 5002 u8 vivld = 0, vin = 0; 5003 5004 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1, 5005 NULL, NULL, &vivld, &vin); 5006 if (ret < 0) 5007 return PCI_ERS_RESULT_DISCONNECT; 5008 pi->viid = ret; 5009 pi->xact_addr_filt = -1; 5010 /* If fw supports returning the VIN as part of FW_VI_CMD, 5011 * save the returned values. 5012 */ 5013 if (adap->params.viid_smt_extn_support) { 5014 pi->vivld = vivld; 5015 pi->vin = vin; 5016 } else { 5017 /* Retrieve the values from VIID */ 5018 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 5019 pi->vin = FW_VIID_VIN_G(pi->viid); 5020 } 5021 } 5022 5023 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5024 adap->params.b_wnd); 5025 setup_memwin(adap); 5026 if (cxgb_up(adap)) 5027 return PCI_ERS_RESULT_DISCONNECT; 5028 return PCI_ERS_RESULT_RECOVERED; 5029 } 5030 5031 static void eeh_resume(struct pci_dev *pdev) 5032 { 5033 int i; 5034 struct adapter *adap = pci_get_drvdata(pdev); 5035 5036 if (!adap) 5037 return; 5038 5039 rtnl_lock(); 5040 for_each_port(adap, i) { 5041 struct net_device *dev = adap->port[i]; 5042 if (dev) { 5043 if (netif_running(dev)) { 5044 link_start(dev); 5045 cxgb_set_rxmode(dev); 5046 } 5047 netif_device_attach(dev); 5048 } 5049 } 5050 rtnl_unlock(); 5051 } 5052 5053 static const struct pci_error_handlers cxgb4_eeh = { 5054 .error_detected = eeh_err_detected, 5055 .slot_reset = eeh_slot_reset, 5056 .resume = eeh_resume, 5057 }; 5058 5059 /* Return true if the Link Configuration supports "High Speeds" (those greater 5060 * than 1Gb/s). 5061 */ 5062 static inline bool is_x_10g_port(const struct link_config *lc) 5063 { 5064 unsigned int speeds, high_speeds; 5065 5066 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 5067 high_speeds = speeds & 5068 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 5069 5070 return high_speeds != 0; 5071 } 5072 5073 /* 5074 * Perform default configuration of DMA queues depending on the number and type 5075 * of ports we found and the number of available CPUs. Most settings can be 5076 * modified by the admin prior to actual use. 5077 */ 5078 static int cfg_queues(struct adapter *adap) 5079 { 5080 struct sge *s = &adap->sge; 5081 int i, n10g = 0, qidx = 0; 5082 int niqflint, neq, avail_eth_qsets; 5083 int max_eth_qsets = 32; 5084 #ifndef CONFIG_CHELSIO_T4_DCB 5085 int q10g = 0; 5086 #endif 5087 5088 /* Reduce memory usage in kdump environment, disable all offload. 5089 */ 5090 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 5091 adap->params.offload = 0; 5092 adap->params.crypto = 0; 5093 } 5094 5095 /* Calculate the number of Ethernet Queue Sets available based on 5096 * resources provisioned for us. We always have an Asynchronous 5097 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 5098 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 5099 * Ingress Queue. Meanwhile, we need two Egress Queues for each 5100 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 5101 * 5102 * Note that we should also take into account all of the various 5103 * Offload Queues. But, in any situation where we're operating in 5104 * a Resource Constrained Provisioning environment, doing any Offload 5105 * at all is problematic ... 5106 */ 5107 niqflint = adap->params.pfres.niqflint - 1; 5108 if (!(adap->flags & CXGB4_USING_MSIX)) 5109 niqflint--; 5110 neq = adap->params.pfres.neq / 2; 5111 avail_eth_qsets = min(niqflint, neq); 5112 5113 if (avail_eth_qsets > max_eth_qsets) 5114 avail_eth_qsets = max_eth_qsets; 5115 5116 if (avail_eth_qsets < adap->params.nports) { 5117 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 5118 avail_eth_qsets, adap->params.nports); 5119 return -ENOMEM; 5120 } 5121 5122 /* Count the number of 10Gb/s or better ports */ 5123 for_each_port(adap, i) 5124 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 5125 5126 #ifdef CONFIG_CHELSIO_T4_DCB 5127 /* For Data Center Bridging support we need to be able to support up 5128 * to 8 Traffic Priorities; each of which will be assigned to its 5129 * own TX Queue in order to prevent Head-Of-Line Blocking. 5130 */ 5131 if (adap->params.nports * 8 > avail_eth_qsets) { 5132 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 5133 avail_eth_qsets, adap->params.nports * 8); 5134 return -ENOMEM; 5135 } 5136 5137 for_each_port(adap, i) { 5138 struct port_info *pi = adap2pinfo(adap, i); 5139 5140 pi->first_qset = qidx; 5141 pi->nqsets = is_kdump_kernel() ? 1 : 8; 5142 qidx += pi->nqsets; 5143 } 5144 #else /* !CONFIG_CHELSIO_T4_DCB */ 5145 /* 5146 * We default to 1 queue per non-10G port and up to # of cores queues 5147 * per 10G port. 5148 */ 5149 if (n10g) 5150 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 5151 if (q10g > netif_get_num_default_rss_queues()) 5152 q10g = netif_get_num_default_rss_queues(); 5153 5154 if (is_kdump_kernel()) 5155 q10g = 1; 5156 5157 for_each_port(adap, i) { 5158 struct port_info *pi = adap2pinfo(adap, i); 5159 5160 pi->first_qset = qidx; 5161 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 5162 qidx += pi->nqsets; 5163 } 5164 #endif /* !CONFIG_CHELSIO_T4_DCB */ 5165 5166 s->ethqsets = qidx; 5167 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 5168 5169 if (is_uld(adap)) { 5170 /* 5171 * For offload we use 1 queue/channel if all ports are up to 1G, 5172 * otherwise we divide all available queues amongst the channels 5173 * capped by the number of available cores. 5174 */ 5175 if (n10g) { 5176 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 5177 s->ofldqsets = roundup(i, adap->params.nports); 5178 } else { 5179 s->ofldqsets = adap->params.nports; 5180 } 5181 } 5182 5183 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 5184 struct sge_eth_rxq *r = &s->ethrxq[i]; 5185 5186 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 5187 r->fl.size = 72; 5188 } 5189 5190 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 5191 s->ethtxq[i].q.size = 1024; 5192 5193 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 5194 s->ctrlq[i].q.size = 512; 5195 5196 if (!is_t4(adap->params.chip)) 5197 s->ptptxq.q.size = 8; 5198 5199 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 5200 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 5201 5202 return 0; 5203 } 5204 5205 /* 5206 * Reduce the number of Ethernet queues across all ports to at most n. 5207 * n provides at least one queue per port. 5208 */ 5209 static void reduce_ethqs(struct adapter *adap, int n) 5210 { 5211 int i; 5212 struct port_info *pi; 5213 5214 while (n < adap->sge.ethqsets) 5215 for_each_port(adap, i) { 5216 pi = adap2pinfo(adap, i); 5217 if (pi->nqsets > 1) { 5218 pi->nqsets--; 5219 adap->sge.ethqsets--; 5220 if (adap->sge.ethqsets <= n) 5221 break; 5222 } 5223 } 5224 5225 n = 0; 5226 for_each_port(adap, i) { 5227 pi = adap2pinfo(adap, i); 5228 pi->first_qset = n; 5229 n += pi->nqsets; 5230 } 5231 } 5232 5233 static int get_msix_info(struct adapter *adap) 5234 { 5235 struct uld_msix_info *msix_info; 5236 unsigned int max_ingq = 0; 5237 5238 if (is_offload(adap)) 5239 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 5240 if (is_pci_uld(adap)) 5241 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 5242 5243 if (!max_ingq) 5244 goto out; 5245 5246 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 5247 if (!msix_info) 5248 return -ENOMEM; 5249 5250 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 5251 sizeof(long), GFP_KERNEL); 5252 if (!adap->msix_bmap_ulds.msix_bmap) { 5253 kfree(msix_info); 5254 return -ENOMEM; 5255 } 5256 spin_lock_init(&adap->msix_bmap_ulds.lock); 5257 adap->msix_info_ulds = msix_info; 5258 out: 5259 return 0; 5260 } 5261 5262 static void free_msix_info(struct adapter *adap) 5263 { 5264 if (!(adap->num_uld && adap->num_ofld_uld)) 5265 return; 5266 5267 kfree(adap->msix_info_ulds); 5268 kfree(adap->msix_bmap_ulds.msix_bmap); 5269 } 5270 5271 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5272 #define EXTRA_VECS 2 5273 5274 static int enable_msix(struct adapter *adap) 5275 { 5276 int ofld_need = 0, uld_need = 0; 5277 int i, j, want, need, allocated; 5278 struct sge *s = &adap->sge; 5279 unsigned int nchan = adap->params.nports; 5280 struct msix_entry *entries; 5281 int max_ingq = MAX_INGQ; 5282 5283 if (is_pci_uld(adap)) 5284 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 5285 if (is_offload(adap)) 5286 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 5287 entries = kmalloc_array(max_ingq + 1, sizeof(*entries), 5288 GFP_KERNEL); 5289 if (!entries) 5290 return -ENOMEM; 5291 5292 /* map for msix */ 5293 if (get_msix_info(adap)) { 5294 adap->params.offload = 0; 5295 adap->params.crypto = 0; 5296 } 5297 5298 for (i = 0; i < max_ingq + 1; ++i) 5299 entries[i].entry = i; 5300 5301 want = s->max_ethqsets + EXTRA_VECS; 5302 if (is_offload(adap)) { 5303 want += adap->num_ofld_uld * s->ofldqsets; 5304 ofld_need = adap->num_ofld_uld * nchan; 5305 } 5306 if (is_pci_uld(adap)) { 5307 want += adap->num_uld * s->ofldqsets; 5308 uld_need = adap->num_uld * nchan; 5309 } 5310 #ifdef CONFIG_CHELSIO_T4_DCB 5311 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5312 * each port. 5313 */ 5314 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5315 #else 5316 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5317 #endif 5318 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5319 if (allocated < 0) { 5320 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 5321 " not using MSI-X\n"); 5322 kfree(entries); 5323 return allocated; 5324 } 5325 5326 /* Distribute available vectors to the various queue groups. 5327 * Every group gets its minimum requirement and NIC gets top 5328 * priority for leftovers. 5329 */ 5330 i = allocated - EXTRA_VECS - ofld_need - uld_need; 5331 if (i < s->max_ethqsets) { 5332 s->max_ethqsets = i; 5333 if (i < s->ethqsets) 5334 reduce_ethqs(adap, i); 5335 } 5336 if (is_uld(adap)) { 5337 if (allocated < want) 5338 s->nqs_per_uld = nchan; 5339 else 5340 s->nqs_per_uld = s->ofldqsets; 5341 } 5342 5343 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 5344 adap->msix_info[i].vec = entries[i].vector; 5345 if (is_uld(adap)) { 5346 for (j = 0 ; i < allocated; ++i, j++) { 5347 adap->msix_info_ulds[j].vec = entries[i].vector; 5348 adap->msix_info_ulds[j].idx = i; 5349 } 5350 adap->msix_bmap_ulds.mapsize = j; 5351 } 5352 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 5353 "nic %d per uld %d\n", 5354 allocated, s->max_ethqsets, s->nqs_per_uld); 5355 5356 kfree(entries); 5357 return 0; 5358 } 5359 5360 #undef EXTRA_VECS 5361 5362 static int init_rss(struct adapter *adap) 5363 { 5364 unsigned int i; 5365 int err; 5366 5367 err = t4_init_rss_mode(adap, adap->mbox); 5368 if (err) 5369 return err; 5370 5371 for_each_port(adap, i) { 5372 struct port_info *pi = adap2pinfo(adap, i); 5373 5374 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5375 if (!pi->rss) 5376 return -ENOMEM; 5377 } 5378 return 0; 5379 } 5380 5381 /* Dump basic information about the adapter */ 5382 static void print_adapter_info(struct adapter *adapter) 5383 { 5384 /* Hardware/Firmware/etc. Version/Revision IDs */ 5385 t4_dump_version_info(adapter); 5386 5387 /* Software/Hardware configuration */ 5388 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 5389 is_offload(adapter) ? "R" : "", 5390 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" : 5391 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""), 5392 is_offload(adapter) ? "Offload" : "non-Offload"); 5393 } 5394 5395 static void print_port_info(const struct net_device *dev) 5396 { 5397 char buf[80]; 5398 char *bufp = buf; 5399 const struct port_info *pi = netdev_priv(dev); 5400 const struct adapter *adap = pi->adapter; 5401 5402 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 5403 bufp += sprintf(bufp, "100M/"); 5404 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 5405 bufp += sprintf(bufp, "1G/"); 5406 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 5407 bufp += sprintf(bufp, "10G/"); 5408 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 5409 bufp += sprintf(bufp, "25G/"); 5410 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 5411 bufp += sprintf(bufp, "40G/"); 5412 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 5413 bufp += sprintf(bufp, "50G/"); 5414 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 5415 bufp += sprintf(bufp, "100G/"); 5416 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 5417 bufp += sprintf(bufp, "200G/"); 5418 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 5419 bufp += sprintf(bufp, "400G/"); 5420 if (bufp != buf) 5421 --bufp; 5422 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 5423 5424 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 5425 dev->name, adap->params.vpd.id, adap->name, buf); 5426 } 5427 5428 /* 5429 * Free the following resources: 5430 * - memory used for tables 5431 * - MSI/MSI-X 5432 * - net devices 5433 * - resources FW is holding for us 5434 */ 5435 static void free_some_resources(struct adapter *adapter) 5436 { 5437 unsigned int i; 5438 5439 kvfree(adapter->smt); 5440 kvfree(adapter->l2t); 5441 kvfree(adapter->srq); 5442 t4_cleanup_sched(adapter); 5443 kvfree(adapter->tids.tid_tab); 5444 cxgb4_cleanup_tc_flower(adapter); 5445 cxgb4_cleanup_tc_u32(adapter); 5446 kfree(adapter->sge.egr_map); 5447 kfree(adapter->sge.ingr_map); 5448 kfree(adapter->sge.starving_fl); 5449 kfree(adapter->sge.txq_maperr); 5450 #ifdef CONFIG_DEBUG_FS 5451 kfree(adapter->sge.blocked_fl); 5452 #endif 5453 disable_msi(adapter); 5454 5455 for_each_port(adapter, i) 5456 if (adapter->port[i]) { 5457 struct port_info *pi = adap2pinfo(adapter, i); 5458 5459 if (pi->viid != 0) 5460 t4_free_vi(adapter, adapter->mbox, adapter->pf, 5461 0, pi->viid); 5462 kfree(adap2pinfo(adapter, i)->rss); 5463 free_netdev(adapter->port[i]); 5464 } 5465 if (adapter->flags & CXGB4_FW_OK) 5466 t4_fw_bye(adapter, adapter->pf); 5467 } 5468 5469 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 5470 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5471 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5472 #define SEGMENT_SIZE 128 5473 5474 static int t4_get_chip_type(struct adapter *adap, int ver) 5475 { 5476 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 5477 5478 switch (ver) { 5479 case CHELSIO_T4: 5480 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 5481 case CHELSIO_T5: 5482 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 5483 case CHELSIO_T6: 5484 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 5485 default: 5486 break; 5487 } 5488 return -EINVAL; 5489 } 5490 5491 #ifdef CONFIG_PCI_IOV 5492 static void cxgb4_mgmt_setup(struct net_device *dev) 5493 { 5494 dev->type = ARPHRD_NONE; 5495 dev->mtu = 0; 5496 dev->hard_header_len = 0; 5497 dev->addr_len = 0; 5498 dev->tx_queue_len = 0; 5499 dev->flags |= IFF_NOARP; 5500 dev->priv_flags |= IFF_NO_QUEUE; 5501 5502 /* Initialize the device structure. */ 5503 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 5504 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 5505 } 5506 5507 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 5508 { 5509 struct adapter *adap = pci_get_drvdata(pdev); 5510 int err = 0; 5511 int current_vfs = pci_num_vf(pdev); 5512 u32 pcie_fw; 5513 5514 pcie_fw = readl(adap->regs + PCIE_FW_A); 5515 /* Check if fw is initialized */ 5516 if (!(pcie_fw & PCIE_FW_INIT_F)) { 5517 dev_warn(&pdev->dev, "Device not initialized\n"); 5518 return -EOPNOTSUPP; 5519 } 5520 5521 /* If any of the VF's is already assigned to Guest OS, then 5522 * SRIOV for the same cannot be modified 5523 */ 5524 if (current_vfs && pci_vfs_assigned(pdev)) { 5525 dev_err(&pdev->dev, 5526 "Cannot modify SR-IOV while VFs are assigned\n"); 5527 return current_vfs; 5528 } 5529 /* Note that the upper-level code ensures that we're never called with 5530 * a non-zero "num_vfs" when we already have VFs instantiated. But 5531 * it never hurts to code defensively. 5532 */ 5533 if (num_vfs != 0 && current_vfs != 0) 5534 return -EBUSY; 5535 5536 /* Nothing to do for no change. */ 5537 if (num_vfs == current_vfs) 5538 return num_vfs; 5539 5540 /* Disable SRIOV when zero is passed. */ 5541 if (!num_vfs) { 5542 pci_disable_sriov(pdev); 5543 /* free VF Management Interface */ 5544 unregister_netdev(adap->port[0]); 5545 free_netdev(adap->port[0]); 5546 adap->port[0] = NULL; 5547 5548 /* free VF resources */ 5549 adap->num_vfs = 0; 5550 kfree(adap->vfinfo); 5551 adap->vfinfo = NULL; 5552 return 0; 5553 } 5554 5555 if (!current_vfs) { 5556 struct fw_pfvf_cmd port_cmd, port_rpl; 5557 struct net_device *netdev; 5558 unsigned int pmask, port; 5559 struct pci_dev *pbridge; 5560 struct port_info *pi; 5561 char name[IFNAMSIZ]; 5562 u32 devcap2; 5563 u16 flags; 5564 5565 /* If we want to instantiate Virtual Functions, then our 5566 * parent bridge's PCI-E needs to support Alternative Routing 5567 * ID (ARI) because our VFs will show up at function offset 8 5568 * and above. 5569 */ 5570 pbridge = pdev->bus->self; 5571 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags); 5572 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2); 5573 5574 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 5575 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 5576 /* Our parent bridge does not support ARI so issue a 5577 * warning and skip instantiating the VFs. They 5578 * won't be reachable. 5579 */ 5580 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 5581 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 5582 PCI_FUNC(pbridge->devfn)); 5583 return -ENOTSUPP; 5584 } 5585 memset(&port_cmd, 0, sizeof(port_cmd)); 5586 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 5587 FW_CMD_REQUEST_F | 5588 FW_CMD_READ_F | 5589 FW_PFVF_CMD_PFN_V(adap->pf) | 5590 FW_PFVF_CMD_VFN_V(0)); 5591 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 5592 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 5593 &port_rpl); 5594 if (err) 5595 return err; 5596 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 5597 port = ffs(pmask) - 1; 5598 /* Allocate VF Management Interface. */ 5599 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 5600 adap->pf); 5601 netdev = alloc_netdev(sizeof(struct port_info), 5602 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 5603 if (!netdev) 5604 return -ENOMEM; 5605 5606 pi = netdev_priv(netdev); 5607 pi->adapter = adap; 5608 pi->lport = port; 5609 pi->tx_chan = port; 5610 SET_NETDEV_DEV(netdev, &pdev->dev); 5611 5612 adap->port[0] = netdev; 5613 pi->port_id = 0; 5614 5615 err = register_netdev(adap->port[0]); 5616 if (err) { 5617 pr_info("Unable to register VF mgmt netdev %s\n", name); 5618 free_netdev(adap->port[0]); 5619 adap->port[0] = NULL; 5620 return err; 5621 } 5622 /* Allocate and set up VF Information. */ 5623 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 5624 sizeof(struct vf_info), GFP_KERNEL); 5625 if (!adap->vfinfo) { 5626 unregister_netdev(adap->port[0]); 5627 free_netdev(adap->port[0]); 5628 adap->port[0] = NULL; 5629 return -ENOMEM; 5630 } 5631 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 5632 } 5633 /* Instantiate the requested number of VFs. */ 5634 err = pci_enable_sriov(pdev, num_vfs); 5635 if (err) { 5636 pr_info("Unable to instantiate %d VFs\n", num_vfs); 5637 if (!current_vfs) { 5638 unregister_netdev(adap->port[0]); 5639 free_netdev(adap->port[0]); 5640 adap->port[0] = NULL; 5641 kfree(adap->vfinfo); 5642 adap->vfinfo = NULL; 5643 } 5644 return err; 5645 } 5646 5647 adap->num_vfs = num_vfs; 5648 return num_vfs; 5649 } 5650 #endif /* CONFIG_PCI_IOV */ 5651 5652 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 5653 { 5654 struct net_device *netdev; 5655 struct adapter *adapter; 5656 static int adap_idx = 1; 5657 int s_qpp, qpp, num_seg; 5658 struct port_info *pi; 5659 bool highdma = false; 5660 enum chip_type chip; 5661 void __iomem *regs; 5662 int func, chip_ver; 5663 u16 device_id; 5664 int i, err; 5665 u32 whoami; 5666 5667 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 5668 5669 err = pci_request_regions(pdev, KBUILD_MODNAME); 5670 if (err) { 5671 /* Just info, some other driver may have claimed the device. */ 5672 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 5673 return err; 5674 } 5675 5676 err = pci_enable_device(pdev); 5677 if (err) { 5678 dev_err(&pdev->dev, "cannot enable PCI device\n"); 5679 goto out_release_regions; 5680 } 5681 5682 regs = pci_ioremap_bar(pdev, 0); 5683 if (!regs) { 5684 dev_err(&pdev->dev, "cannot map device registers\n"); 5685 err = -ENOMEM; 5686 goto out_disable_device; 5687 } 5688 5689 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5690 if (!adapter) { 5691 err = -ENOMEM; 5692 goto out_unmap_bar0; 5693 } 5694 5695 adapter->regs = regs; 5696 err = t4_wait_dev_ready(regs); 5697 if (err < 0) 5698 goto out_free_adapter; 5699 5700 /* We control everything through one PF */ 5701 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5702 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 5703 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 5704 if ((int)chip < 0) { 5705 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 5706 err = chip; 5707 goto out_free_adapter; 5708 } 5709 chip_ver = CHELSIO_CHIP_VERSION(chip); 5710 func = chip_ver <= CHELSIO_T5 ? 5711 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5712 5713 adapter->pdev = pdev; 5714 adapter->pdev_dev = &pdev->dev; 5715 adapter->name = pci_name(pdev); 5716 adapter->mbox = func; 5717 adapter->pf = func; 5718 adapter->params.chip = chip; 5719 adapter->adap_idx = adap_idx; 5720 adapter->msg_enable = DFLT_MSG_ENABLE; 5721 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5722 (sizeof(struct mbox_cmd) * 5723 T4_OS_LOG_MBOX_CMDS), 5724 GFP_KERNEL); 5725 if (!adapter->mbox_log) { 5726 err = -ENOMEM; 5727 goto out_free_adapter; 5728 } 5729 spin_lock_init(&adapter->mbox_lock); 5730 INIT_LIST_HEAD(&adapter->mlist.list); 5731 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 5732 pci_set_drvdata(pdev, adapter); 5733 5734 if (func != ent->driver_data) { 5735 pci_disable_device(pdev); 5736 pci_save_state(pdev); /* to restore SR-IOV later */ 5737 return 0; 5738 } 5739 5740 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 5741 highdma = true; 5742 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 5743 if (err) { 5744 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 5745 "coherent allocations\n"); 5746 goto out_free_adapter; 5747 } 5748 } else { 5749 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 5750 if (err) { 5751 dev_err(&pdev->dev, "no usable DMA configuration\n"); 5752 goto out_free_adapter; 5753 } 5754 } 5755 5756 pci_enable_pcie_error_reporting(pdev); 5757 pci_set_master(pdev); 5758 pci_save_state(pdev); 5759 adap_idx++; 5760 adapter->workq = create_singlethread_workqueue("cxgb4"); 5761 if (!adapter->workq) { 5762 err = -ENOMEM; 5763 goto out_free_adapter; 5764 } 5765 5766 /* PCI device has been enabled */ 5767 adapter->flags |= CXGB4_DEV_ENABLED; 5768 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 5769 5770 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 5771 * Ingress Packet Data to Free List Buffers in order to allow for 5772 * chipset performance optimizations between the Root Complex and 5773 * Memory Controllers. (Messages to the associated Ingress Queue 5774 * notifying new Packet Placement in the Free Lists Buffers will be 5775 * send without the Relaxed Ordering Attribute thus guaranteeing that 5776 * all preceding PCIe Transaction Layer Packets will be processed 5777 * first.) But some Root Complexes have various issues with Upstream 5778 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 5779 * The PCIe devices which under the Root Complexes will be cleared the 5780 * Relaxed Ordering bit in the configuration space, So we check our 5781 * PCIe configuration space to see if it's flagged with advice against 5782 * using Relaxed Ordering. 5783 */ 5784 if (!pcie_relaxed_ordering_enabled(pdev)) 5785 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING; 5786 5787 spin_lock_init(&adapter->stats_lock); 5788 spin_lock_init(&adapter->tid_release_lock); 5789 spin_lock_init(&adapter->win0_lock); 5790 5791 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 5792 INIT_WORK(&adapter->db_full_task, process_db_full); 5793 INIT_WORK(&adapter->db_drop_task, process_db_drop); 5794 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 5795 5796 err = t4_prep_adapter(adapter); 5797 if (err) 5798 goto out_free_adapter; 5799 5800 if (is_kdump_kernel()) { 5801 /* Collect hardware state and append to /proc/vmcore */ 5802 err = cxgb4_cudbg_vmcore_add_dump(adapter); 5803 if (err) { 5804 dev_warn(adapter->pdev_dev, 5805 "Fail collecting vmcore device dump, err: %d. Continuing\n", 5806 err); 5807 err = 0; 5808 } 5809 } 5810 5811 if (!is_t4(adapter->params.chip)) { 5812 s_qpp = (QUEUESPERPAGEPF0_S + 5813 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 5814 adapter->pf); 5815 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 5816 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 5817 num_seg = PAGE_SIZE / SEGMENT_SIZE; 5818 5819 /* Each segment size is 128B. Write coalescing is enabled only 5820 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 5821 * queue is less no of segments that can be accommodated in 5822 * a page size. 5823 */ 5824 if (qpp > num_seg) { 5825 dev_err(&pdev->dev, 5826 "Incorrect number of egress queues per page\n"); 5827 err = -EINVAL; 5828 goto out_free_adapter; 5829 } 5830 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 5831 pci_resource_len(pdev, 2)); 5832 if (!adapter->bar2) { 5833 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 5834 err = -ENOMEM; 5835 goto out_free_adapter; 5836 } 5837 } 5838 5839 setup_memwin(adapter); 5840 err = adap_init0(adapter); 5841 #ifdef CONFIG_DEBUG_FS 5842 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 5843 #endif 5844 setup_memwin_rdma(adapter); 5845 if (err) 5846 goto out_unmap_bar; 5847 5848 /* configure SGE_STAT_CFG_A to read WC stats */ 5849 if (!is_t4(adapter->params.chip)) 5850 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 5851 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 5852 T6_STATMODE_V(0))); 5853 5854 /* Initialize hash mac addr list */ 5855 INIT_LIST_HEAD(&adapter->mac_hlist); 5856 5857 for_each_port(adapter, i) { 5858 netdev = alloc_etherdev_mq(sizeof(struct port_info), 5859 MAX_ETH_QSETS); 5860 if (!netdev) { 5861 err = -ENOMEM; 5862 goto out_free_dev; 5863 } 5864 5865 SET_NETDEV_DEV(netdev, &pdev->dev); 5866 5867 adapter->port[i] = netdev; 5868 pi = netdev_priv(netdev); 5869 pi->adapter = adapter; 5870 pi->xact_addr_filt = -1; 5871 pi->port_id = i; 5872 netdev->irq = pdev->irq; 5873 5874 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 5875 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5876 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO | 5877 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 5878 NETIF_F_HW_TC; 5879 5880 if (chip_ver > CHELSIO_T5) { 5881 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 5882 NETIF_F_IPV6_CSUM | 5883 NETIF_F_RXCSUM | 5884 NETIF_F_GSO_UDP_TUNNEL | 5885 NETIF_F_GSO_UDP_TUNNEL_CSUM | 5886 NETIF_F_TSO | NETIF_F_TSO6; 5887 5888 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 5889 NETIF_F_GSO_UDP_TUNNEL_CSUM | 5890 NETIF_F_HW_TLS_RECORD; 5891 } 5892 5893 if (highdma) 5894 netdev->hw_features |= NETIF_F_HIGHDMA; 5895 netdev->features |= netdev->hw_features; 5896 netdev->vlan_features = netdev->features & VLAN_FEAT; 5897 5898 netdev->priv_flags |= IFF_UNICAST_FLT; 5899 5900 /* MTU range: 81 - 9600 */ 5901 netdev->min_mtu = 81; /* accommodate SACK */ 5902 netdev->max_mtu = MAX_MTU; 5903 5904 netdev->netdev_ops = &cxgb4_netdev_ops; 5905 #ifdef CONFIG_CHELSIO_T4_DCB 5906 netdev->dcbnl_ops = &cxgb4_dcb_ops; 5907 cxgb4_dcb_state_init(netdev); 5908 cxgb4_dcb_version_init(netdev); 5909 #endif 5910 cxgb4_set_ethtool_ops(netdev); 5911 } 5912 5913 cxgb4_init_ethtool_dump(adapter); 5914 5915 pci_set_drvdata(pdev, adapter); 5916 5917 if (adapter->flags & CXGB4_FW_OK) { 5918 err = t4_port_init(adapter, func, func, 0); 5919 if (err) 5920 goto out_free_dev; 5921 } else if (adapter->params.nports == 1) { 5922 /* If we don't have a connection to the firmware -- possibly 5923 * because of an error -- grab the raw VPD parameters so we 5924 * can set the proper MAC Address on the debug network 5925 * interface that we've created. 5926 */ 5927 u8 hw_addr[ETH_ALEN]; 5928 u8 *na = adapter->params.vpd.na; 5929 5930 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 5931 if (!err) { 5932 for (i = 0; i < ETH_ALEN; i++) 5933 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 5934 hex2val(na[2 * i + 1])); 5935 t4_set_hw_addr(adapter, 0, hw_addr); 5936 } 5937 } 5938 5939 if (!(adapter->flags & CXGB4_FW_OK)) 5940 goto fw_attach_fail; 5941 5942 /* Configure queues and allocate tables now, they can be needed as 5943 * soon as the first register_netdev completes. 5944 */ 5945 err = cfg_queues(adapter); 5946 if (err) 5947 goto out_free_dev; 5948 5949 adapter->smt = t4_init_smt(); 5950 if (!adapter->smt) { 5951 /* We tolerate a lack of SMT, giving up some functionality */ 5952 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 5953 } 5954 5955 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 5956 if (!adapter->l2t) { 5957 /* We tolerate a lack of L2T, giving up some functionality */ 5958 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 5959 adapter->params.offload = 0; 5960 } 5961 5962 #if IS_ENABLED(CONFIG_IPV6) 5963 if (chip_ver <= CHELSIO_T5 && 5964 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 5965 /* CLIP functionality is not present in hardware, 5966 * hence disable all offload features 5967 */ 5968 dev_warn(&pdev->dev, 5969 "CLIP not enabled in hardware, continuing\n"); 5970 adapter->params.offload = 0; 5971 } else { 5972 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 5973 adapter->clipt_end); 5974 if (!adapter->clipt) { 5975 /* We tolerate a lack of clip_table, giving up 5976 * some functionality 5977 */ 5978 dev_warn(&pdev->dev, 5979 "could not allocate Clip table, continuing\n"); 5980 adapter->params.offload = 0; 5981 } 5982 } 5983 #endif 5984 5985 for_each_port(adapter, i) { 5986 pi = adap2pinfo(adapter, i); 5987 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 5988 if (!pi->sched_tbl) 5989 dev_warn(&pdev->dev, 5990 "could not activate scheduling on port %d\n", 5991 i); 5992 } 5993 5994 if (tid_init(&adapter->tids) < 0) { 5995 dev_warn(&pdev->dev, "could not allocate TID table, " 5996 "continuing\n"); 5997 adapter->params.offload = 0; 5998 } else { 5999 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 6000 if (!adapter->tc_u32) 6001 dev_warn(&pdev->dev, 6002 "could not offload tc u32, continuing\n"); 6003 6004 if (cxgb4_init_tc_flower(adapter)) 6005 dev_warn(&pdev->dev, 6006 "could not offload tc flower, continuing\n"); 6007 } 6008 6009 if (is_offload(adapter) || is_hashfilter(adapter)) { 6010 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 6011 u32 hash_base, hash_reg; 6012 6013 if (chip_ver <= CHELSIO_T5) { 6014 hash_reg = LE_DB_TID_HASHBASE_A; 6015 hash_base = t4_read_reg(adapter, hash_reg); 6016 adapter->tids.hash_base = hash_base / 4; 6017 } else { 6018 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 6019 hash_base = t4_read_reg(adapter, hash_reg); 6020 adapter->tids.hash_base = hash_base; 6021 } 6022 } 6023 } 6024 6025 /* See what interrupts we'll be using */ 6026 if (msi > 1 && enable_msix(adapter) == 0) 6027 adapter->flags |= CXGB4_USING_MSIX; 6028 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 6029 adapter->flags |= CXGB4_USING_MSI; 6030 if (msi > 1) 6031 free_msix_info(adapter); 6032 } 6033 6034 /* check for PCI Express bandwidth capabiltites */ 6035 pcie_print_link_status(pdev); 6036 6037 cxgb4_init_mps_ref_entries(adapter); 6038 6039 err = init_rss(adapter); 6040 if (err) 6041 goto out_free_dev; 6042 6043 err = setup_fw_sge_queues(adapter); 6044 if (err) { 6045 dev_err(adapter->pdev_dev, 6046 "FW sge queue allocation failed, err %d", err); 6047 goto out_free_dev; 6048 } 6049 6050 fw_attach_fail: 6051 /* 6052 * The card is now ready to go. If any errors occur during device 6053 * registration we do not fail the whole card but rather proceed only 6054 * with the ports we manage to register successfully. However we must 6055 * register at least one net device. 6056 */ 6057 for_each_port(adapter, i) { 6058 pi = adap2pinfo(adapter, i); 6059 adapter->port[i]->dev_port = pi->lport; 6060 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 6061 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 6062 6063 netif_carrier_off(adapter->port[i]); 6064 6065 err = register_netdev(adapter->port[i]); 6066 if (err) 6067 break; 6068 adapter->chan_map[pi->tx_chan] = i; 6069 print_port_info(adapter->port[i]); 6070 } 6071 if (i == 0) { 6072 dev_err(&pdev->dev, "could not register any net devices\n"); 6073 goto out_free_dev; 6074 } 6075 if (err) { 6076 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 6077 err = 0; 6078 } 6079 6080 if (cxgb4_debugfs_root) { 6081 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 6082 cxgb4_debugfs_root); 6083 setup_debugfs(adapter); 6084 } 6085 6086 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 6087 pdev->needs_freset = 1; 6088 6089 if (is_uld(adapter)) { 6090 mutex_lock(&uld_mutex); 6091 list_add_tail(&adapter->list_node, &adapter_list); 6092 mutex_unlock(&uld_mutex); 6093 } 6094 6095 if (!is_t4(adapter->params.chip)) 6096 cxgb4_ptp_init(adapter); 6097 6098 if (IS_REACHABLE(CONFIG_THERMAL) && 6099 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK)) 6100 cxgb4_thermal_init(adapter); 6101 6102 print_adapter_info(adapter); 6103 return 0; 6104 6105 out_free_dev: 6106 t4_free_sge_resources(adapter); 6107 free_some_resources(adapter); 6108 if (adapter->flags & CXGB4_USING_MSIX) 6109 free_msix_info(adapter); 6110 if (adapter->num_uld || adapter->num_ofld_uld) 6111 t4_uld_mem_free(adapter); 6112 out_unmap_bar: 6113 if (!is_t4(adapter->params.chip)) 6114 iounmap(adapter->bar2); 6115 out_free_adapter: 6116 if (adapter->workq) 6117 destroy_workqueue(adapter->workq); 6118 6119 kfree(adapter->mbox_log); 6120 kfree(adapter); 6121 out_unmap_bar0: 6122 iounmap(regs); 6123 out_disable_device: 6124 pci_disable_pcie_error_reporting(pdev); 6125 pci_disable_device(pdev); 6126 out_release_regions: 6127 pci_release_regions(pdev); 6128 return err; 6129 } 6130 6131 static void remove_one(struct pci_dev *pdev) 6132 { 6133 struct adapter *adapter = pci_get_drvdata(pdev); 6134 struct hash_mac_addr *entry, *tmp; 6135 6136 if (!adapter) { 6137 pci_release_regions(pdev); 6138 return; 6139 } 6140 6141 /* If we allocated filters, free up state associated with any 6142 * valid filters ... 6143 */ 6144 clear_all_filters(adapter); 6145 6146 adapter->flags |= CXGB4_SHUTTING_DOWN; 6147 6148 if (adapter->pf == 4) { 6149 int i; 6150 6151 /* Tear down per-adapter Work Queue first since it can contain 6152 * references to our adapter data structure. 6153 */ 6154 destroy_workqueue(adapter->workq); 6155 6156 if (is_uld(adapter)) { 6157 detach_ulds(adapter); 6158 t4_uld_clean_up(adapter); 6159 } 6160 6161 adap_free_hma_mem(adapter); 6162 6163 disable_interrupts(adapter); 6164 6165 cxgb4_free_mps_ref_entries(adapter); 6166 6167 for_each_port(adapter, i) 6168 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6169 unregister_netdev(adapter->port[i]); 6170 6171 debugfs_remove_recursive(adapter->debugfs_root); 6172 6173 if (!is_t4(adapter->params.chip)) 6174 cxgb4_ptp_stop(adapter); 6175 if (IS_REACHABLE(CONFIG_THERMAL)) 6176 cxgb4_thermal_remove(adapter); 6177 6178 if (adapter->flags & CXGB4_FULL_INIT_DONE) 6179 cxgb_down(adapter); 6180 6181 if (adapter->flags & CXGB4_USING_MSIX) 6182 free_msix_info(adapter); 6183 if (adapter->num_uld || adapter->num_ofld_uld) 6184 t4_uld_mem_free(adapter); 6185 free_some_resources(adapter); 6186 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 6187 list) { 6188 list_del(&entry->list); 6189 kfree(entry); 6190 } 6191 6192 #if IS_ENABLED(CONFIG_IPV6) 6193 t4_cleanup_clip_tbl(adapter); 6194 #endif 6195 if (!is_t4(adapter->params.chip)) 6196 iounmap(adapter->bar2); 6197 } 6198 #ifdef CONFIG_PCI_IOV 6199 else { 6200 cxgb4_iov_configure(adapter->pdev, 0); 6201 } 6202 #endif 6203 iounmap(adapter->regs); 6204 pci_disable_pcie_error_reporting(pdev); 6205 if ((adapter->flags & CXGB4_DEV_ENABLED)) { 6206 pci_disable_device(pdev); 6207 adapter->flags &= ~CXGB4_DEV_ENABLED; 6208 } 6209 pci_release_regions(pdev); 6210 kfree(adapter->mbox_log); 6211 synchronize_rcu(); 6212 kfree(adapter); 6213 } 6214 6215 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 6216 * delivery. This is essentially a stripped down version of the PCI remove() 6217 * function where we do the minimal amount of work necessary to shutdown any 6218 * further activity. 6219 */ 6220 static void shutdown_one(struct pci_dev *pdev) 6221 { 6222 struct adapter *adapter = pci_get_drvdata(pdev); 6223 6224 /* As with remove_one() above (see extended comment), we only want do 6225 * do cleanup on PCI Devices which went all the way through init_one() 6226 * ... 6227 */ 6228 if (!adapter) { 6229 pci_release_regions(pdev); 6230 return; 6231 } 6232 6233 adapter->flags |= CXGB4_SHUTTING_DOWN; 6234 6235 if (adapter->pf == 4) { 6236 int i; 6237 6238 for_each_port(adapter, i) 6239 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6240 cxgb_close(adapter->port[i]); 6241 6242 if (is_uld(adapter)) { 6243 detach_ulds(adapter); 6244 t4_uld_clean_up(adapter); 6245 } 6246 6247 disable_interrupts(adapter); 6248 disable_msi(adapter); 6249 6250 t4_sge_stop(adapter); 6251 if (adapter->flags & CXGB4_FW_OK) 6252 t4_fw_bye(adapter, adapter->mbox); 6253 } 6254 } 6255 6256 static struct pci_driver cxgb4_driver = { 6257 .name = KBUILD_MODNAME, 6258 .id_table = cxgb4_pci_tbl, 6259 .probe = init_one, 6260 .remove = remove_one, 6261 .shutdown = shutdown_one, 6262 #ifdef CONFIG_PCI_IOV 6263 .sriov_configure = cxgb4_iov_configure, 6264 #endif 6265 .err_handler = &cxgb4_eeh, 6266 }; 6267 6268 static int __init cxgb4_init_module(void) 6269 { 6270 int ret; 6271 6272 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6273 6274 ret = pci_register_driver(&cxgb4_driver); 6275 if (ret < 0) 6276 goto err_pci; 6277 6278 #if IS_ENABLED(CONFIG_IPV6) 6279 if (!inet6addr_registered) { 6280 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6281 if (ret) 6282 pci_unregister_driver(&cxgb4_driver); 6283 else 6284 inet6addr_registered = true; 6285 } 6286 #endif 6287 6288 if (ret == 0) 6289 return ret; 6290 6291 err_pci: 6292 debugfs_remove(cxgb4_debugfs_root); 6293 6294 return ret; 6295 } 6296 6297 static void __exit cxgb4_cleanup_module(void) 6298 { 6299 #if IS_ENABLED(CONFIG_IPV6) 6300 if (inet6addr_registered) { 6301 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6302 inet6addr_registered = false; 6303 } 6304 #endif 6305 pci_unregister_driver(&cxgb4_driver); 6306 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6307 } 6308 6309 module_init(cxgb4_init_module); 6310 module_exit(cxgb4_cleanup_module); 6311