1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68 
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "cxgb4_debugfs.h"
78 #include "clip_tbl.h"
79 #include "l2t.h"
80 #include "sched.h"
81 #include "cxgb4_tc_u32.h"
82 #include "cxgb4_ptp.h"
83 
84 char cxgb4_driver_name[] = KBUILD_MODNAME;
85 
86 #ifdef DRV_VERSION
87 #undef DRV_VERSION
88 #endif
89 #define DRV_VERSION "2.0.0-ko"
90 const char cxgb4_driver_version[] = DRV_VERSION;
91 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
92 
93 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
94 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
95 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
96 
97 /* Macros needed to support the PCI Device ID Table ...
98  */
99 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
100 	static const struct pci_device_id cxgb4_pci_tbl[] = {
101 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
102 
103 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
104  * called for both.
105  */
106 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
107 
108 #define CH_PCI_ID_TABLE_ENTRY(devid) \
109 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
110 
111 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
112 		{ 0, } \
113 	}
114 
115 #include "t4_pci_id_tbl.h"
116 
117 #define FW4_FNAME "cxgb4/t4fw.bin"
118 #define FW5_FNAME "cxgb4/t5fw.bin"
119 #define FW6_FNAME "cxgb4/t6fw.bin"
120 #define FW4_CFNAME "cxgb4/t4-config.txt"
121 #define FW5_CFNAME "cxgb4/t5-config.txt"
122 #define FW6_CFNAME "cxgb4/t6-config.txt"
123 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
124 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
125 #define PHY_AQ1202_DEVICEID 0x4409
126 #define PHY_BCM84834_DEVICEID 0x4486
127 
128 MODULE_DESCRIPTION(DRV_DESC);
129 MODULE_AUTHOR("Chelsio Communications");
130 MODULE_LICENSE("Dual BSD/GPL");
131 MODULE_VERSION(DRV_VERSION);
132 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
133 MODULE_FIRMWARE(FW4_FNAME);
134 MODULE_FIRMWARE(FW5_FNAME);
135 MODULE_FIRMWARE(FW6_FNAME);
136 
137 /*
138  * The driver uses the best interrupt scheme available on a platform in the
139  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
140  * of these schemes the driver may consider as follows:
141  *
142  * msi = 2: choose from among all three options
143  * msi = 1: only consider MSI and INTx interrupts
144  * msi = 0: force INTx interrupts
145  */
146 static int msi = 2;
147 
148 module_param(msi, int, 0644);
149 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
150 
151 /*
152  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
153  * offset by 2 bytes in order to have the IP headers line up on 4-byte
154  * boundaries.  This is a requirement for many architectures which will throw
155  * a machine check fault if an attempt is made to access one of the 4-byte IP
156  * header fields on a non-4-byte boundary.  And it's a major performance issue
157  * even on some architectures which allow it like some implementations of the
158  * x86 ISA.  However, some architectures don't mind this and for some very
159  * edge-case performance sensitive applications (like forwarding large volumes
160  * of small packets), setting this DMA offset to 0 will decrease the number of
161  * PCI-E Bus transfers enough to measurably affect performance.
162  */
163 static int rx_dma_offset = 2;
164 
165 /* TX Queue select used to determine what algorithm to use for selecting TX
166  * queue. Select between the kernel provided function (select_queue=0) or user
167  * cxgb_select_queue function (select_queue=1)
168  *
169  * Default: select_queue=0
170  */
171 static int select_queue;
172 module_param(select_queue, int, 0644);
173 MODULE_PARM_DESC(select_queue,
174 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
175 
176 static struct dentry *cxgb4_debugfs_root;
177 
178 LIST_HEAD(adapter_list);
179 DEFINE_MUTEX(uld_mutex);
180 
181 static void link_report(struct net_device *dev)
182 {
183 	if (!netif_carrier_ok(dev))
184 		netdev_info(dev, "link down\n");
185 	else {
186 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
187 
188 		const char *s;
189 		const struct port_info *p = netdev_priv(dev);
190 
191 		switch (p->link_cfg.speed) {
192 		case 100:
193 			s = "100Mbps";
194 			break;
195 		case 1000:
196 			s = "1Gbps";
197 			break;
198 		case 10000:
199 			s = "10Gbps";
200 			break;
201 		case 25000:
202 			s = "25Gbps";
203 			break;
204 		case 40000:
205 			s = "40Gbps";
206 			break;
207 		case 100000:
208 			s = "100Gbps";
209 			break;
210 		default:
211 			pr_info("%s: unsupported speed: %d\n",
212 				dev->name, p->link_cfg.speed);
213 			return;
214 		}
215 
216 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
217 			    fc[p->link_cfg.fc]);
218 	}
219 }
220 
221 #ifdef CONFIG_CHELSIO_T4_DCB
222 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
223 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
224 {
225 	struct port_info *pi = netdev_priv(dev);
226 	struct adapter *adap = pi->adapter;
227 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
228 	int i;
229 
230 	/* We use a simple mapping of Port TX Queue Index to DCB
231 	 * Priority when we're enabling DCB.
232 	 */
233 	for (i = 0; i < pi->nqsets; i++, txq++) {
234 		u32 name, value;
235 		int err;
236 
237 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
238 			FW_PARAMS_PARAM_X_V(
239 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
240 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
241 		value = enable ? i : 0xffffffff;
242 
243 		/* Since we can be called while atomic (from "interrupt
244 		 * level") we need to issue the Set Parameters Commannd
245 		 * without sleeping (timeout < 0).
246 		 */
247 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
248 					    &name, &value,
249 					    -FW_CMD_MAX_TIMEOUT);
250 
251 		if (err)
252 			dev_err(adap->pdev_dev,
253 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
254 				enable ? "set" : "unset", pi->port_id, i, -err);
255 		else
256 			txq->dcb_prio = value;
257 	}
258 }
259 
260 static int cxgb4_dcb_enabled(const struct net_device *dev)
261 {
262 	struct port_info *pi = netdev_priv(dev);
263 
264 	if (!pi->dcb.enabled)
265 		return 0;
266 
267 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
268 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
269 }
270 #endif /* CONFIG_CHELSIO_T4_DCB */
271 
272 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
273 {
274 	struct net_device *dev = adapter->port[port_id];
275 
276 	/* Skip changes from disabled ports. */
277 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
278 		if (link_stat)
279 			netif_carrier_on(dev);
280 		else {
281 #ifdef CONFIG_CHELSIO_T4_DCB
282 			if (cxgb4_dcb_enabled(dev)) {
283 				cxgb4_dcb_state_init(dev);
284 				dcb_tx_queue_prio_enable(dev, false);
285 			}
286 #endif /* CONFIG_CHELSIO_T4_DCB */
287 			netif_carrier_off(dev);
288 		}
289 
290 		link_report(dev);
291 	}
292 }
293 
294 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
295 {
296 	static const char *mod_str[] = {
297 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
298 	};
299 
300 	const struct net_device *dev = adap->port[port_id];
301 	const struct port_info *pi = netdev_priv(dev);
302 
303 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
304 		netdev_info(dev, "port module unplugged\n");
305 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
306 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
307 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
308 		netdev_info(dev, "%s: unsupported port module inserted\n",
309 			    dev->name);
310 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
311 		netdev_info(dev, "%s: unknown port module inserted\n",
312 			    dev->name);
313 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
314 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
315 	else
316 		netdev_info(dev, "%s: unknown module type %d inserted\n",
317 			    dev->name, pi->mod_type);
318 }
319 
320 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
321 module_param(dbfifo_int_thresh, int, 0644);
322 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
323 
324 /*
325  * usecs to sleep while draining the dbfifo
326  */
327 static int dbfifo_drain_delay = 1000;
328 module_param(dbfifo_drain_delay, int, 0644);
329 MODULE_PARM_DESC(dbfifo_drain_delay,
330 		 "usecs to sleep while draining the dbfifo");
331 
332 static inline int cxgb4_set_addr_hash(struct port_info *pi)
333 {
334 	struct adapter *adap = pi->adapter;
335 	u64 vec = 0;
336 	bool ucast = false;
337 	struct hash_mac_addr *entry;
338 
339 	/* Calculate the hash vector for the updated list and program it */
340 	list_for_each_entry(entry, &adap->mac_hlist, list) {
341 		ucast |= is_unicast_ether_addr(entry->addr);
342 		vec |= (1ULL << hash_mac_addr(entry->addr));
343 	}
344 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
345 				vec, false);
346 }
347 
348 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
349 {
350 	struct port_info *pi = netdev_priv(netdev);
351 	struct adapter *adap = pi->adapter;
352 	int ret;
353 	u64 mhash = 0;
354 	u64 uhash = 0;
355 	bool free = false;
356 	bool ucast = is_unicast_ether_addr(mac_addr);
357 	const u8 *maclist[1] = {mac_addr};
358 	struct hash_mac_addr *new_entry;
359 
360 	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
361 				NULL, ucast ? &uhash : &mhash, false);
362 	if (ret < 0)
363 		goto out;
364 	/* if hash != 0, then add the addr to hash addr list
365 	 * so on the end we will calculate the hash for the
366 	 * list and program it
367 	 */
368 	if (uhash || mhash) {
369 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
370 		if (!new_entry)
371 			return -ENOMEM;
372 		ether_addr_copy(new_entry->addr, mac_addr);
373 		list_add_tail(&new_entry->list, &adap->mac_hlist);
374 		ret = cxgb4_set_addr_hash(pi);
375 	}
376 out:
377 	return ret < 0 ? ret : 0;
378 }
379 
380 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
381 {
382 	struct port_info *pi = netdev_priv(netdev);
383 	struct adapter *adap = pi->adapter;
384 	int ret;
385 	const u8 *maclist[1] = {mac_addr};
386 	struct hash_mac_addr *entry, *tmp;
387 
388 	/* If the MAC address to be removed is in the hash addr
389 	 * list, delete it from the list and update hash vector
390 	 */
391 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
392 		if (ether_addr_equal(entry->addr, mac_addr)) {
393 			list_del(&entry->list);
394 			kfree(entry);
395 			return cxgb4_set_addr_hash(pi);
396 		}
397 	}
398 
399 	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
400 	return ret < 0 ? -EINVAL : 0;
401 }
402 
403 /*
404  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
405  * If @mtu is -1 it is left unchanged.
406  */
407 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
408 {
409 	struct port_info *pi = netdev_priv(dev);
410 	struct adapter *adapter = pi->adapter;
411 
412 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
413 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
414 
415 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
416 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
417 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
418 			     sleep_ok);
419 }
420 
421 /**
422  *	link_start - enable a port
423  *	@dev: the port to enable
424  *
425  *	Performs the MAC and PHY actions needed to enable a port.
426  */
427 static int link_start(struct net_device *dev)
428 {
429 	int ret;
430 	struct port_info *pi = netdev_priv(dev);
431 	unsigned int mb = pi->adapter->pf;
432 
433 	/*
434 	 * We do not set address filters and promiscuity here, the stack does
435 	 * that step explicitly.
436 	 */
437 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
438 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
439 	if (ret == 0) {
440 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
441 				    pi->xact_addr_filt, dev->dev_addr, true,
442 				    true);
443 		if (ret >= 0) {
444 			pi->xact_addr_filt = ret;
445 			ret = 0;
446 		}
447 	}
448 	if (ret == 0)
449 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
450 				    &pi->link_cfg);
451 	if (ret == 0) {
452 		local_bh_disable();
453 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
454 					  true, CXGB4_DCB_ENABLED);
455 		local_bh_enable();
456 	}
457 
458 	return ret;
459 }
460 
461 #ifdef CONFIG_CHELSIO_T4_DCB
462 /* Handle a Data Center Bridging update message from the firmware. */
463 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
464 {
465 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
466 	struct net_device *dev = adap->port[adap->chan_map[port]];
467 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
468 	int new_dcb_enabled;
469 
470 	cxgb4_dcb_handle_fw_update(adap, pcmd);
471 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
472 
473 	/* If the DCB has become enabled or disabled on the port then we're
474 	 * going to need to set up/tear down DCB Priority parameters for the
475 	 * TX Queues associated with the port.
476 	 */
477 	if (new_dcb_enabled != old_dcb_enabled)
478 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
479 }
480 #endif /* CONFIG_CHELSIO_T4_DCB */
481 
482 /* Response queue handler for the FW event queue.
483  */
484 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
485 			  const struct pkt_gl *gl)
486 {
487 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
488 
489 	rsp++;                                          /* skip RSS header */
490 
491 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
492 	 */
493 	if (unlikely(opcode == CPL_FW4_MSG &&
494 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
495 		rsp++;
496 		opcode = ((const struct rss_header *)rsp)->opcode;
497 		rsp++;
498 		if (opcode != CPL_SGE_EGR_UPDATE) {
499 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
500 				, opcode);
501 			goto out;
502 		}
503 	}
504 
505 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
506 		const struct cpl_sge_egr_update *p = (void *)rsp;
507 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
508 		struct sge_txq *txq;
509 
510 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
511 		txq->restarts++;
512 		if (txq->q_type == CXGB4_TXQ_ETH) {
513 			struct sge_eth_txq *eq;
514 
515 			eq = container_of(txq, struct sge_eth_txq, q);
516 			netif_tx_wake_queue(eq->txq);
517 		} else {
518 			struct sge_uld_txq *oq;
519 
520 			oq = container_of(txq, struct sge_uld_txq, q);
521 			tasklet_schedule(&oq->qresume_tsk);
522 		}
523 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
524 		const struct cpl_fw6_msg *p = (void *)rsp;
525 
526 #ifdef CONFIG_CHELSIO_T4_DCB
527 		const struct fw_port_cmd *pcmd = (const void *)p->data;
528 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
529 		unsigned int action =
530 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
531 
532 		if (cmd == FW_PORT_CMD &&
533 		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
534 		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
535 			int port = FW_PORT_CMD_PORTID_G(
536 					be32_to_cpu(pcmd->op_to_portid));
537 			struct net_device *dev;
538 			int dcbxdis, state_input;
539 
540 			dev = q->adap->port[q->adap->chan_map[port]];
541 			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
542 				   ? !!(pcmd->u.info.dcbxdis_pkd &
543 					FW_PORT_CMD_DCBXDIS_F)
544 				   : !!(pcmd->u.info32.lstatus32_to_cbllen32 &
545 					FW_PORT_CMD_DCBXDIS32_F));
546 			state_input = (dcbxdis
547 				       ? CXGB4_DCB_INPUT_FW_DISABLED
548 				       : CXGB4_DCB_INPUT_FW_ENABLED);
549 
550 			cxgb4_dcb_state_fsm(dev, state_input);
551 		}
552 
553 		if (cmd == FW_PORT_CMD &&
554 		    action == FW_PORT_ACTION_L2_DCB_CFG)
555 			dcb_rpl(q->adap, pcmd);
556 		else
557 #endif
558 			if (p->type == 0)
559 				t4_handle_fw_rpl(q->adap, p->data);
560 	} else if (opcode == CPL_L2T_WRITE_RPL) {
561 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
562 
563 		do_l2t_write_rpl(q->adap, p);
564 	} else if (opcode == CPL_SET_TCB_RPL) {
565 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
566 
567 		filter_rpl(q->adap, p);
568 	} else
569 		dev_err(q->adap->pdev_dev,
570 			"unexpected CPL %#x on FW event queue\n", opcode);
571 out:
572 	return 0;
573 }
574 
575 static void disable_msi(struct adapter *adapter)
576 {
577 	if (adapter->flags & USING_MSIX) {
578 		pci_disable_msix(adapter->pdev);
579 		adapter->flags &= ~USING_MSIX;
580 	} else if (adapter->flags & USING_MSI) {
581 		pci_disable_msi(adapter->pdev);
582 		adapter->flags &= ~USING_MSI;
583 	}
584 }
585 
586 /*
587  * Interrupt handler for non-data events used with MSI-X.
588  */
589 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
590 {
591 	struct adapter *adap = cookie;
592 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
593 
594 	if (v & PFSW_F) {
595 		adap->swintr = 1;
596 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
597 	}
598 	if (adap->flags & MASTER_PF)
599 		t4_slow_intr_handler(adap);
600 	return IRQ_HANDLED;
601 }
602 
603 /*
604  * Name the MSI-X interrupts.
605  */
606 static void name_msix_vecs(struct adapter *adap)
607 {
608 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
609 
610 	/* non-data interrupts */
611 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
612 
613 	/* FW events */
614 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
615 		 adap->port[0]->name);
616 
617 	/* Ethernet queues */
618 	for_each_port(adap, j) {
619 		struct net_device *d = adap->port[j];
620 		const struct port_info *pi = netdev_priv(d);
621 
622 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
623 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
624 				 d->name, i);
625 	}
626 }
627 
628 static int request_msix_queue_irqs(struct adapter *adap)
629 {
630 	struct sge *s = &adap->sge;
631 	int err, ethqidx;
632 	int msi_index = 2;
633 
634 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
635 			  adap->msix_info[1].desc, &s->fw_evtq);
636 	if (err)
637 		return err;
638 
639 	for_each_ethrxq(s, ethqidx) {
640 		err = request_irq(adap->msix_info[msi_index].vec,
641 				  t4_sge_intr_msix, 0,
642 				  adap->msix_info[msi_index].desc,
643 				  &s->ethrxq[ethqidx].rspq);
644 		if (err)
645 			goto unwind;
646 		msi_index++;
647 	}
648 	return 0;
649 
650 unwind:
651 	while (--ethqidx >= 0)
652 		free_irq(adap->msix_info[--msi_index].vec,
653 			 &s->ethrxq[ethqidx].rspq);
654 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
655 	return err;
656 }
657 
658 static void free_msix_queue_irqs(struct adapter *adap)
659 {
660 	int i, msi_index = 2;
661 	struct sge *s = &adap->sge;
662 
663 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
664 	for_each_ethrxq(s, i)
665 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
666 }
667 
668 /**
669  *	cxgb4_write_rss - write the RSS table for a given port
670  *	@pi: the port
671  *	@queues: array of queue indices for RSS
672  *
673  *	Sets up the portion of the HW RSS table for the port's VI to distribute
674  *	packets to the Rx queues in @queues.
675  *	Should never be called before setting up sge eth rx queues
676  */
677 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
678 {
679 	u16 *rss;
680 	int i, err;
681 	struct adapter *adapter = pi->adapter;
682 	const struct sge_eth_rxq *rxq;
683 
684 	rxq = &adapter->sge.ethrxq[pi->first_qset];
685 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
686 	if (!rss)
687 		return -ENOMEM;
688 
689 	/* map the queue indices to queue ids */
690 	for (i = 0; i < pi->rss_size; i++, queues++)
691 		rss[i] = rxq[*queues].rspq.abs_id;
692 
693 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
694 				  pi->rss_size, rss, pi->rss_size);
695 	/* If Tunnel All Lookup isn't specified in the global RSS
696 	 * Configuration, then we need to specify a default Ingress
697 	 * Queue for any ingress packets which aren't hashed.  We'll
698 	 * use our first ingress queue ...
699 	 */
700 	if (!err)
701 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
702 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
703 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
704 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
705 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
706 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
707 				       rss[0]);
708 	kfree(rss);
709 	return err;
710 }
711 
712 /**
713  *	setup_rss - configure RSS
714  *	@adap: the adapter
715  *
716  *	Sets up RSS for each port.
717  */
718 static int setup_rss(struct adapter *adap)
719 {
720 	int i, j, err;
721 
722 	for_each_port(adap, i) {
723 		const struct port_info *pi = adap2pinfo(adap, i);
724 
725 		/* Fill default values with equal distribution */
726 		for (j = 0; j < pi->rss_size; j++)
727 			pi->rss[j] = j % pi->nqsets;
728 
729 		err = cxgb4_write_rss(pi, pi->rss);
730 		if (err)
731 			return err;
732 	}
733 	return 0;
734 }
735 
736 /*
737  * Return the channel of the ingress queue with the given qid.
738  */
739 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
740 {
741 	qid -= p->ingr_start;
742 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
743 }
744 
745 /*
746  * Wait until all NAPI handlers are descheduled.
747  */
748 static void quiesce_rx(struct adapter *adap)
749 {
750 	int i;
751 
752 	for (i = 0; i < adap->sge.ingr_sz; i++) {
753 		struct sge_rspq *q = adap->sge.ingr_map[i];
754 
755 		if (q && q->handler)
756 			napi_disable(&q->napi);
757 	}
758 }
759 
760 /* Disable interrupt and napi handler */
761 static void disable_interrupts(struct adapter *adap)
762 {
763 	if (adap->flags & FULL_INIT_DONE) {
764 		t4_intr_disable(adap);
765 		if (adap->flags & USING_MSIX) {
766 			free_msix_queue_irqs(adap);
767 			free_irq(adap->msix_info[0].vec, adap);
768 		} else {
769 			free_irq(adap->pdev->irq, adap);
770 		}
771 		quiesce_rx(adap);
772 	}
773 }
774 
775 /*
776  * Enable NAPI scheduling and interrupt generation for all Rx queues.
777  */
778 static void enable_rx(struct adapter *adap)
779 {
780 	int i;
781 
782 	for (i = 0; i < adap->sge.ingr_sz; i++) {
783 		struct sge_rspq *q = adap->sge.ingr_map[i];
784 
785 		if (!q)
786 			continue;
787 		if (q->handler)
788 			napi_enable(&q->napi);
789 
790 		/* 0-increment GTS to start the timer and enable interrupts */
791 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
792 			     SEINTARM_V(q->intr_params) |
793 			     INGRESSQID_V(q->cntxt_id));
794 	}
795 }
796 
797 
798 static int setup_fw_sge_queues(struct adapter *adap)
799 {
800 	struct sge *s = &adap->sge;
801 	int err = 0;
802 
803 	bitmap_zero(s->starving_fl, s->egr_sz);
804 	bitmap_zero(s->txq_maperr, s->egr_sz);
805 
806 	if (adap->flags & USING_MSIX)
807 		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
808 	else {
809 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
810 				       NULL, NULL, NULL, -1);
811 		if (err)
812 			return err;
813 		adap->msi_idx = -((int)s->intrq.abs_id + 1);
814 	}
815 
816 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
817 			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
818 	if (err)
819 		t4_free_sge_resources(adap);
820 	return err;
821 }
822 
823 /**
824  *	setup_sge_queues - configure SGE Tx/Rx/response queues
825  *	@adap: the adapter
826  *
827  *	Determines how many sets of SGE queues to use and initializes them.
828  *	We support multiple queue sets per port if we have MSI-X, otherwise
829  *	just one queue set per port.
830  */
831 static int setup_sge_queues(struct adapter *adap)
832 {
833 	int err, i, j;
834 	struct sge *s = &adap->sge;
835 	struct sge_uld_rxq_info *rxq_info = NULL;
836 	unsigned int cmplqid = 0;
837 
838 	if (is_uld(adap))
839 		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
840 
841 	for_each_port(adap, i) {
842 		struct net_device *dev = adap->port[i];
843 		struct port_info *pi = netdev_priv(dev);
844 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
845 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
846 
847 		for (j = 0; j < pi->nqsets; j++, q++) {
848 			if (adap->msi_idx > 0)
849 				adap->msi_idx++;
850 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
851 					       adap->msi_idx, &q->fl,
852 					       t4_ethrx_handler,
853 					       NULL,
854 					       t4_get_tp_ch_map(adap,
855 								pi->tx_chan));
856 			if (err)
857 				goto freeout;
858 			q->rspq.idx = j;
859 			memset(&q->stats, 0, sizeof(q->stats));
860 		}
861 		for (j = 0; j < pi->nqsets; j++, t++) {
862 			err = t4_sge_alloc_eth_txq(adap, t, dev,
863 					netdev_get_tx_queue(dev, j),
864 					s->fw_evtq.cntxt_id);
865 			if (err)
866 				goto freeout;
867 		}
868 	}
869 
870 	for_each_port(adap, i) {
871 		/* Note that cmplqid below is 0 if we don't
872 		 * have RDMA queues, and that's the right value.
873 		 */
874 		if (rxq_info)
875 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
876 
877 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
878 					    s->fw_evtq.cntxt_id, cmplqid);
879 		if (err)
880 			goto freeout;
881 	}
882 
883 	if (!is_t4(adap->params.chip)) {
884 		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
885 					   netdev_get_tx_queue(adap->port[0], 0)
886 					   , s->fw_evtq.cntxt_id);
887 		if (err)
888 			goto freeout;
889 	}
890 
891 	t4_write_reg(adap, is_t4(adap->params.chip) ?
892 				MPS_TRC_RSS_CONTROL_A :
893 				MPS_T5_TRC_RSS_CONTROL_A,
894 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
895 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
896 	return 0;
897 freeout:
898 	t4_free_sge_resources(adap);
899 	return err;
900 }
901 
902 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
903 			     void *accel_priv, select_queue_fallback_t fallback)
904 {
905 	int txq;
906 
907 #ifdef CONFIG_CHELSIO_T4_DCB
908 	/* If a Data Center Bridging has been successfully negotiated on this
909 	 * link then we'll use the skb's priority to map it to a TX Queue.
910 	 * The skb's priority is determined via the VLAN Tag Priority Code
911 	 * Point field.
912 	 */
913 	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
914 		u16 vlan_tci;
915 		int err;
916 
917 		err = vlan_get_tag(skb, &vlan_tci);
918 		if (unlikely(err)) {
919 			if (net_ratelimit())
920 				netdev_warn(dev,
921 					    "TX Packet without VLAN Tag on DCB Link\n");
922 			txq = 0;
923 		} else {
924 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
925 #ifdef CONFIG_CHELSIO_T4_FCOE
926 			if (skb->protocol == htons(ETH_P_FCOE))
927 				txq = skb->priority & 0x7;
928 #endif /* CONFIG_CHELSIO_T4_FCOE */
929 		}
930 		return txq;
931 	}
932 #endif /* CONFIG_CHELSIO_T4_DCB */
933 
934 	if (select_queue) {
935 		txq = (skb_rx_queue_recorded(skb)
936 			? skb_get_rx_queue(skb)
937 			: smp_processor_id());
938 
939 		while (unlikely(txq >= dev->real_num_tx_queues))
940 			txq -= dev->real_num_tx_queues;
941 
942 		return txq;
943 	}
944 
945 	return fallback(dev, skb) % dev->real_num_tx_queues;
946 }
947 
948 static int closest_timer(const struct sge *s, int time)
949 {
950 	int i, delta, match = 0, min_delta = INT_MAX;
951 
952 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
953 		delta = time - s->timer_val[i];
954 		if (delta < 0)
955 			delta = -delta;
956 		if (delta < min_delta) {
957 			min_delta = delta;
958 			match = i;
959 		}
960 	}
961 	return match;
962 }
963 
964 static int closest_thres(const struct sge *s, int thres)
965 {
966 	int i, delta, match = 0, min_delta = INT_MAX;
967 
968 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
969 		delta = thres - s->counter_val[i];
970 		if (delta < 0)
971 			delta = -delta;
972 		if (delta < min_delta) {
973 			min_delta = delta;
974 			match = i;
975 		}
976 	}
977 	return match;
978 }
979 
980 /**
981  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
982  *	@q: the Rx queue
983  *	@us: the hold-off time in us, or 0 to disable timer
984  *	@cnt: the hold-off packet count, or 0 to disable counter
985  *
986  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
987  *	one of the two needs to be enabled for the queue to generate interrupts.
988  */
989 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
990 			       unsigned int us, unsigned int cnt)
991 {
992 	struct adapter *adap = q->adap;
993 
994 	if ((us | cnt) == 0)
995 		cnt = 1;
996 
997 	if (cnt) {
998 		int err;
999 		u32 v, new_idx;
1000 
1001 		new_idx = closest_thres(&adap->sge, cnt);
1002 		if (q->desc && q->pktcnt_idx != new_idx) {
1003 			/* the queue has already been created, update it */
1004 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1005 			    FW_PARAMS_PARAM_X_V(
1006 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1007 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1008 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1009 					    &v, &new_idx);
1010 			if (err)
1011 				return err;
1012 		}
1013 		q->pktcnt_idx = new_idx;
1014 	}
1015 
1016 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1017 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1018 	return 0;
1019 }
1020 
1021 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1022 {
1023 	const struct port_info *pi = netdev_priv(dev);
1024 	netdev_features_t changed = dev->features ^ features;
1025 	int err;
1026 
1027 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1028 		return 0;
1029 
1030 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1031 			    -1, -1, -1,
1032 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1033 	if (unlikely(err))
1034 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1035 	return err;
1036 }
1037 
1038 static int setup_debugfs(struct adapter *adap)
1039 {
1040 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1041 		return -1;
1042 
1043 #ifdef CONFIG_DEBUG_FS
1044 	t4_setup_debugfs(adap);
1045 #endif
1046 	return 0;
1047 }
1048 
1049 /*
1050  * upper-layer driver support
1051  */
1052 
1053 /*
1054  * Allocate an active-open TID and set it to the supplied value.
1055  */
1056 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1057 {
1058 	int atid = -1;
1059 
1060 	spin_lock_bh(&t->atid_lock);
1061 	if (t->afree) {
1062 		union aopen_entry *p = t->afree;
1063 
1064 		atid = (p - t->atid_tab) + t->atid_base;
1065 		t->afree = p->next;
1066 		p->data = data;
1067 		t->atids_in_use++;
1068 	}
1069 	spin_unlock_bh(&t->atid_lock);
1070 	return atid;
1071 }
1072 EXPORT_SYMBOL(cxgb4_alloc_atid);
1073 
1074 /*
1075  * Release an active-open TID.
1076  */
1077 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1078 {
1079 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1080 
1081 	spin_lock_bh(&t->atid_lock);
1082 	p->next = t->afree;
1083 	t->afree = p;
1084 	t->atids_in_use--;
1085 	spin_unlock_bh(&t->atid_lock);
1086 }
1087 EXPORT_SYMBOL(cxgb4_free_atid);
1088 
1089 /*
1090  * Allocate a server TID and set it to the supplied value.
1091  */
1092 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1093 {
1094 	int stid;
1095 
1096 	spin_lock_bh(&t->stid_lock);
1097 	if (family == PF_INET) {
1098 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1099 		if (stid < t->nstids)
1100 			__set_bit(stid, t->stid_bmap);
1101 		else
1102 			stid = -1;
1103 	} else {
1104 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1105 		if (stid < 0)
1106 			stid = -1;
1107 	}
1108 	if (stid >= 0) {
1109 		t->stid_tab[stid].data = data;
1110 		stid += t->stid_base;
1111 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1112 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1113 		 * needs 2 TIDs.
1114 		 */
1115 		if (family == PF_INET6) {
1116 			t->stids_in_use += 2;
1117 			t->v6_stids_in_use += 2;
1118 		} else {
1119 			t->stids_in_use++;
1120 		}
1121 	}
1122 	spin_unlock_bh(&t->stid_lock);
1123 	return stid;
1124 }
1125 EXPORT_SYMBOL(cxgb4_alloc_stid);
1126 
1127 /* Allocate a server filter TID and set it to the supplied value.
1128  */
1129 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1130 {
1131 	int stid;
1132 
1133 	spin_lock_bh(&t->stid_lock);
1134 	if (family == PF_INET) {
1135 		stid = find_next_zero_bit(t->stid_bmap,
1136 				t->nstids + t->nsftids, t->nstids);
1137 		if (stid < (t->nstids + t->nsftids))
1138 			__set_bit(stid, t->stid_bmap);
1139 		else
1140 			stid = -1;
1141 	} else {
1142 		stid = -1;
1143 	}
1144 	if (stid >= 0) {
1145 		t->stid_tab[stid].data = data;
1146 		stid -= t->nstids;
1147 		stid += t->sftid_base;
1148 		t->sftids_in_use++;
1149 	}
1150 	spin_unlock_bh(&t->stid_lock);
1151 	return stid;
1152 }
1153 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1154 
1155 /* Release a server TID.
1156  */
1157 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1158 {
1159 	/* Is it a server filter TID? */
1160 	if (t->nsftids && (stid >= t->sftid_base)) {
1161 		stid -= t->sftid_base;
1162 		stid += t->nstids;
1163 	} else {
1164 		stid -= t->stid_base;
1165 	}
1166 
1167 	spin_lock_bh(&t->stid_lock);
1168 	if (family == PF_INET)
1169 		__clear_bit(stid, t->stid_bmap);
1170 	else
1171 		bitmap_release_region(t->stid_bmap, stid, 1);
1172 	t->stid_tab[stid].data = NULL;
1173 	if (stid < t->nstids) {
1174 		if (family == PF_INET6) {
1175 			t->stids_in_use -= 2;
1176 			t->v6_stids_in_use -= 2;
1177 		} else {
1178 			t->stids_in_use--;
1179 		}
1180 	} else {
1181 		t->sftids_in_use--;
1182 	}
1183 
1184 	spin_unlock_bh(&t->stid_lock);
1185 }
1186 EXPORT_SYMBOL(cxgb4_free_stid);
1187 
1188 /*
1189  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1190  */
1191 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1192 			   unsigned int tid)
1193 {
1194 	struct cpl_tid_release *req;
1195 
1196 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1197 	req = __skb_put(skb, sizeof(*req));
1198 	INIT_TP_WR(req, tid);
1199 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1200 }
1201 
1202 /*
1203  * Queue a TID release request and if necessary schedule a work queue to
1204  * process it.
1205  */
1206 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1207 				    unsigned int tid)
1208 {
1209 	void **p = &t->tid_tab[tid];
1210 	struct adapter *adap = container_of(t, struct adapter, tids);
1211 
1212 	spin_lock_bh(&adap->tid_release_lock);
1213 	*p = adap->tid_release_head;
1214 	/* Low 2 bits encode the Tx channel number */
1215 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1216 	if (!adap->tid_release_task_busy) {
1217 		adap->tid_release_task_busy = true;
1218 		queue_work(adap->workq, &adap->tid_release_task);
1219 	}
1220 	spin_unlock_bh(&adap->tid_release_lock);
1221 }
1222 
1223 /*
1224  * Process the list of pending TID release requests.
1225  */
1226 static void process_tid_release_list(struct work_struct *work)
1227 {
1228 	struct sk_buff *skb;
1229 	struct adapter *adap;
1230 
1231 	adap = container_of(work, struct adapter, tid_release_task);
1232 
1233 	spin_lock_bh(&adap->tid_release_lock);
1234 	while (adap->tid_release_head) {
1235 		void **p = adap->tid_release_head;
1236 		unsigned int chan = (uintptr_t)p & 3;
1237 		p = (void *)p - chan;
1238 
1239 		adap->tid_release_head = *p;
1240 		*p = NULL;
1241 		spin_unlock_bh(&adap->tid_release_lock);
1242 
1243 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1244 					 GFP_KERNEL)))
1245 			schedule_timeout_uninterruptible(1);
1246 
1247 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1248 		t4_ofld_send(adap, skb);
1249 		spin_lock_bh(&adap->tid_release_lock);
1250 	}
1251 	adap->tid_release_task_busy = false;
1252 	spin_unlock_bh(&adap->tid_release_lock);
1253 }
1254 
1255 /*
1256  * Release a TID and inform HW.  If we are unable to allocate the release
1257  * message we defer to a work queue.
1258  */
1259 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1260 		      unsigned short family)
1261 {
1262 	struct sk_buff *skb;
1263 	struct adapter *adap = container_of(t, struct adapter, tids);
1264 
1265 	WARN_ON(tid >= t->ntids);
1266 
1267 	if (t->tid_tab[tid]) {
1268 		t->tid_tab[tid] = NULL;
1269 		atomic_dec(&t->conns_in_use);
1270 		if (t->hash_base && (tid >= t->hash_base)) {
1271 			if (family == AF_INET6)
1272 				atomic_sub(2, &t->hash_tids_in_use);
1273 			else
1274 				atomic_dec(&t->hash_tids_in_use);
1275 		} else {
1276 			if (family == AF_INET6)
1277 				atomic_sub(2, &t->tids_in_use);
1278 			else
1279 				atomic_dec(&t->tids_in_use);
1280 		}
1281 	}
1282 
1283 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1284 	if (likely(skb)) {
1285 		mk_tid_release(skb, chan, tid);
1286 		t4_ofld_send(adap, skb);
1287 	} else
1288 		cxgb4_queue_tid_release(t, chan, tid);
1289 }
1290 EXPORT_SYMBOL(cxgb4_remove_tid);
1291 
1292 /*
1293  * Allocate and initialize the TID tables.  Returns 0 on success.
1294  */
1295 static int tid_init(struct tid_info *t)
1296 {
1297 	struct adapter *adap = container_of(t, struct adapter, tids);
1298 	unsigned int max_ftids = t->nftids + t->nsftids;
1299 	unsigned int natids = t->natids;
1300 	unsigned int stid_bmap_size;
1301 	unsigned int ftid_bmap_size;
1302 	size_t size;
1303 
1304 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1305 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1306 	size = t->ntids * sizeof(*t->tid_tab) +
1307 	       natids * sizeof(*t->atid_tab) +
1308 	       t->nstids * sizeof(*t->stid_tab) +
1309 	       t->nsftids * sizeof(*t->stid_tab) +
1310 	       stid_bmap_size * sizeof(long) +
1311 	       max_ftids * sizeof(*t->ftid_tab) +
1312 	       ftid_bmap_size * sizeof(long);
1313 
1314 	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1315 	if (!t->tid_tab)
1316 		return -ENOMEM;
1317 
1318 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1319 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1320 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1321 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1322 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1323 	spin_lock_init(&t->stid_lock);
1324 	spin_lock_init(&t->atid_lock);
1325 	spin_lock_init(&t->ftid_lock);
1326 
1327 	t->stids_in_use = 0;
1328 	t->v6_stids_in_use = 0;
1329 	t->sftids_in_use = 0;
1330 	t->afree = NULL;
1331 	t->atids_in_use = 0;
1332 	atomic_set(&t->tids_in_use, 0);
1333 	atomic_set(&t->conns_in_use, 0);
1334 	atomic_set(&t->hash_tids_in_use, 0);
1335 
1336 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1337 	if (natids) {
1338 		while (--natids)
1339 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1340 		t->afree = t->atid_tab;
1341 	}
1342 
1343 	if (is_offload(adap)) {
1344 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1345 		/* Reserve stid 0 for T4/T5 adapters */
1346 		if (!t->stid_base &&
1347 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1348 			__set_bit(0, t->stid_bmap);
1349 	}
1350 
1351 	bitmap_zero(t->ftid_bmap, t->nftids);
1352 	return 0;
1353 }
1354 
1355 /**
1356  *	cxgb4_create_server - create an IP server
1357  *	@dev: the device
1358  *	@stid: the server TID
1359  *	@sip: local IP address to bind server to
1360  *	@sport: the server's TCP port
1361  *	@queue: queue to direct messages from this server to
1362  *
1363  *	Create an IP server for the given port and address.
1364  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1365  */
1366 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1367 			__be32 sip, __be16 sport, __be16 vlan,
1368 			unsigned int queue)
1369 {
1370 	unsigned int chan;
1371 	struct sk_buff *skb;
1372 	struct adapter *adap;
1373 	struct cpl_pass_open_req *req;
1374 	int ret;
1375 
1376 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1377 	if (!skb)
1378 		return -ENOMEM;
1379 
1380 	adap = netdev2adap(dev);
1381 	req = __skb_put(skb, sizeof(*req));
1382 	INIT_TP_WR(req, 0);
1383 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1384 	req->local_port = sport;
1385 	req->peer_port = htons(0);
1386 	req->local_ip = sip;
1387 	req->peer_ip = htonl(0);
1388 	chan = rxq_to_chan(&adap->sge, queue);
1389 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1390 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1391 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1392 	ret = t4_mgmt_tx(adap, skb);
1393 	return net_xmit_eval(ret);
1394 }
1395 EXPORT_SYMBOL(cxgb4_create_server);
1396 
1397 /*	cxgb4_create_server6 - create an IPv6 server
1398  *	@dev: the device
1399  *	@stid: the server TID
1400  *	@sip: local IPv6 address to bind server to
1401  *	@sport: the server's TCP port
1402  *	@queue: queue to direct messages from this server to
1403  *
1404  *	Create an IPv6 server for the given port and address.
1405  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1406  */
1407 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1408 			 const struct in6_addr *sip, __be16 sport,
1409 			 unsigned int queue)
1410 {
1411 	unsigned int chan;
1412 	struct sk_buff *skb;
1413 	struct adapter *adap;
1414 	struct cpl_pass_open_req6 *req;
1415 	int ret;
1416 
1417 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1418 	if (!skb)
1419 		return -ENOMEM;
1420 
1421 	adap = netdev2adap(dev);
1422 	req = __skb_put(skb, sizeof(*req));
1423 	INIT_TP_WR(req, 0);
1424 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1425 	req->local_port = sport;
1426 	req->peer_port = htons(0);
1427 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1428 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1429 	req->peer_ip_hi = cpu_to_be64(0);
1430 	req->peer_ip_lo = cpu_to_be64(0);
1431 	chan = rxq_to_chan(&adap->sge, queue);
1432 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1433 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1434 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1435 	ret = t4_mgmt_tx(adap, skb);
1436 	return net_xmit_eval(ret);
1437 }
1438 EXPORT_SYMBOL(cxgb4_create_server6);
1439 
1440 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1441 			unsigned int queue, bool ipv6)
1442 {
1443 	struct sk_buff *skb;
1444 	struct adapter *adap;
1445 	struct cpl_close_listsvr_req *req;
1446 	int ret;
1447 
1448 	adap = netdev2adap(dev);
1449 
1450 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1451 	if (!skb)
1452 		return -ENOMEM;
1453 
1454 	req = __skb_put(skb, sizeof(*req));
1455 	INIT_TP_WR(req, 0);
1456 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1457 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1458 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1459 	ret = t4_mgmt_tx(adap, skb);
1460 	return net_xmit_eval(ret);
1461 }
1462 EXPORT_SYMBOL(cxgb4_remove_server);
1463 
1464 /**
1465  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1466  *	@mtus: the HW MTU table
1467  *	@mtu: the target MTU
1468  *	@idx: index of selected entry in the MTU table
1469  *
1470  *	Returns the index and the value in the HW MTU table that is closest to
1471  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1472  *	table, in which case that smallest available value is selected.
1473  */
1474 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1475 			    unsigned int *idx)
1476 {
1477 	unsigned int i = 0;
1478 
1479 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1480 		++i;
1481 	if (idx)
1482 		*idx = i;
1483 	return mtus[i];
1484 }
1485 EXPORT_SYMBOL(cxgb4_best_mtu);
1486 
1487 /**
1488  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1489  *     @mtus: the HW MTU table
1490  *     @header_size: Header Size
1491  *     @data_size_max: maximum Data Segment Size
1492  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1493  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1494  *
1495  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1496  *     MTU Table based solely on a Maximum MTU parameter, we break that
1497  *     parameter up into a Header Size and Maximum Data Segment Size, and
1498  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1499  *     the Hardware MTU Table which will result in a Data Segment Size with
1500  *     the requested alignment _and_ that MTU isn't "too far" from the
1501  *     closest MTU, then we'll return that rather than the closest MTU.
1502  */
1503 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1504 				    unsigned short header_size,
1505 				    unsigned short data_size_max,
1506 				    unsigned short data_size_align,
1507 				    unsigned int *mtu_idxp)
1508 {
1509 	unsigned short max_mtu = header_size + data_size_max;
1510 	unsigned short data_size_align_mask = data_size_align - 1;
1511 	int mtu_idx, aligned_mtu_idx;
1512 
1513 	/* Scan the MTU Table till we find an MTU which is larger than our
1514 	 * Maximum MTU or we reach the end of the table.  Along the way,
1515 	 * record the last MTU found, if any, which will result in a Data
1516 	 * Segment Length matching the requested alignment.
1517 	 */
1518 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1519 		unsigned short data_size = mtus[mtu_idx] - header_size;
1520 
1521 		/* If this MTU minus the Header Size would result in a
1522 		 * Data Segment Size of the desired alignment, remember it.
1523 		 */
1524 		if ((data_size & data_size_align_mask) == 0)
1525 			aligned_mtu_idx = mtu_idx;
1526 
1527 		/* If we're not at the end of the Hardware MTU Table and the
1528 		 * next element is larger than our Maximum MTU, drop out of
1529 		 * the loop.
1530 		 */
1531 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1532 			break;
1533 	}
1534 
1535 	/* If we fell out of the loop because we ran to the end of the table,
1536 	 * then we just have to use the last [largest] entry.
1537 	 */
1538 	if (mtu_idx == NMTUS)
1539 		mtu_idx--;
1540 
1541 	/* If we found an MTU which resulted in the requested Data Segment
1542 	 * Length alignment and that's "not far" from the largest MTU which is
1543 	 * less than or equal to the maximum MTU, then use that.
1544 	 */
1545 	if (aligned_mtu_idx >= 0 &&
1546 	    mtu_idx - aligned_mtu_idx <= 1)
1547 		mtu_idx = aligned_mtu_idx;
1548 
1549 	/* If the caller has passed in an MTU Index pointer, pass the
1550 	 * MTU Index back.  Return the MTU value.
1551 	 */
1552 	if (mtu_idxp)
1553 		*mtu_idxp = mtu_idx;
1554 	return mtus[mtu_idx];
1555 }
1556 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1557 
1558 /**
1559  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1560  *	@chip: chip type
1561  *	@viid: VI id of the given port
1562  *
1563  *	Return the SMT index for this VI.
1564  */
1565 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1566 {
1567 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1568 	 * 128 rows of 2 entries each.
1569 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1570 	 * TODO: The below code needs to be updated when we add support
1571 	 * for 256 VFs.
1572 	 */
1573 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1574 		return ((viid & 0x7f) << 1);
1575 	else
1576 		return (viid & 0x7f);
1577 }
1578 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1579 
1580 /**
1581  *	cxgb4_port_chan - get the HW channel of a port
1582  *	@dev: the net device for the port
1583  *
1584  *	Return the HW Tx channel of the given port.
1585  */
1586 unsigned int cxgb4_port_chan(const struct net_device *dev)
1587 {
1588 	return netdev2pinfo(dev)->tx_chan;
1589 }
1590 EXPORT_SYMBOL(cxgb4_port_chan);
1591 
1592 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1593 {
1594 	struct adapter *adap = netdev2adap(dev);
1595 	u32 v1, v2, lp_count, hp_count;
1596 
1597 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1598 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1599 	if (is_t4(adap->params.chip)) {
1600 		lp_count = LP_COUNT_G(v1);
1601 		hp_count = HP_COUNT_G(v1);
1602 	} else {
1603 		lp_count = LP_COUNT_T5_G(v1);
1604 		hp_count = HP_COUNT_T5_G(v2);
1605 	}
1606 	return lpfifo ? lp_count : hp_count;
1607 }
1608 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1609 
1610 /**
1611  *	cxgb4_port_viid - get the VI id of a port
1612  *	@dev: the net device for the port
1613  *
1614  *	Return the VI id of the given port.
1615  */
1616 unsigned int cxgb4_port_viid(const struct net_device *dev)
1617 {
1618 	return netdev2pinfo(dev)->viid;
1619 }
1620 EXPORT_SYMBOL(cxgb4_port_viid);
1621 
1622 /**
1623  *	cxgb4_port_idx - get the index of a port
1624  *	@dev: the net device for the port
1625  *
1626  *	Return the index of the given port.
1627  */
1628 unsigned int cxgb4_port_idx(const struct net_device *dev)
1629 {
1630 	return netdev2pinfo(dev)->port_id;
1631 }
1632 EXPORT_SYMBOL(cxgb4_port_idx);
1633 
1634 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1635 			 struct tp_tcp_stats *v6)
1636 {
1637 	struct adapter *adap = pci_get_drvdata(pdev);
1638 
1639 	spin_lock(&adap->stats_lock);
1640 	t4_tp_get_tcp_stats(adap, v4, v6);
1641 	spin_unlock(&adap->stats_lock);
1642 }
1643 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1644 
1645 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1646 		      const unsigned int *pgsz_order)
1647 {
1648 	struct adapter *adap = netdev2adap(dev);
1649 
1650 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1651 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1652 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1653 		     HPZ3_V(pgsz_order[3]));
1654 }
1655 EXPORT_SYMBOL(cxgb4_iscsi_init);
1656 
1657 int cxgb4_flush_eq_cache(struct net_device *dev)
1658 {
1659 	struct adapter *adap = netdev2adap(dev);
1660 
1661 	return t4_sge_ctxt_flush(adap, adap->mbox);
1662 }
1663 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1664 
1665 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1666 {
1667 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1668 	__be64 indices;
1669 	int ret;
1670 
1671 	spin_lock(&adap->win0_lock);
1672 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1673 			   sizeof(indices), (__be32 *)&indices,
1674 			   T4_MEMORY_READ);
1675 	spin_unlock(&adap->win0_lock);
1676 	if (!ret) {
1677 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1678 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1679 	}
1680 	return ret;
1681 }
1682 
1683 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1684 			u16 size)
1685 {
1686 	struct adapter *adap = netdev2adap(dev);
1687 	u16 hw_pidx, hw_cidx;
1688 	int ret;
1689 
1690 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1691 	if (ret)
1692 		goto out;
1693 
1694 	if (pidx != hw_pidx) {
1695 		u16 delta;
1696 		u32 val;
1697 
1698 		if (pidx >= hw_pidx)
1699 			delta = pidx - hw_pidx;
1700 		else
1701 			delta = size - hw_pidx + pidx;
1702 
1703 		if (is_t4(adap->params.chip))
1704 			val = PIDX_V(delta);
1705 		else
1706 			val = PIDX_T5_V(delta);
1707 		wmb();
1708 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1709 			     QID_V(qid) | val);
1710 	}
1711 out:
1712 	return ret;
1713 }
1714 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1715 
1716 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1717 {
1718 	struct adapter *adap;
1719 	u32 offset, memtype, memaddr;
1720 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1721 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1722 	int ret;
1723 
1724 	adap = netdev2adap(dev);
1725 
1726 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1727 
1728 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1729 	 * This code assumes that the memory is laid out starting at offset 0
1730 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1731 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1732 	 * MC0, and some have both MC0 and MC1.
1733 	 */
1734 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1735 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1736 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1737 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1738 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1739 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1740 
1741 	edc0_end = edc0_size;
1742 	edc1_end = edc0_end + edc1_size;
1743 	mc0_end = edc1_end + mc0_size;
1744 
1745 	if (offset < edc0_end) {
1746 		memtype = MEM_EDC0;
1747 		memaddr = offset;
1748 	} else if (offset < edc1_end) {
1749 		memtype = MEM_EDC1;
1750 		memaddr = offset - edc0_end;
1751 	} else {
1752 		if (offset < mc0_end) {
1753 			memtype = MEM_MC0;
1754 			memaddr = offset - edc1_end;
1755 		} else if (is_t5(adap->params.chip)) {
1756 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1757 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1758 			mc1_end = mc0_end + mc1_size;
1759 			if (offset < mc1_end) {
1760 				memtype = MEM_MC1;
1761 				memaddr = offset - mc0_end;
1762 			} else {
1763 				/* offset beyond the end of any memory */
1764 				goto err;
1765 			}
1766 		} else {
1767 			/* T4/T6 only has a single memory channel */
1768 			goto err;
1769 		}
1770 	}
1771 
1772 	spin_lock(&adap->win0_lock);
1773 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1774 	spin_unlock(&adap->win0_lock);
1775 	return ret;
1776 
1777 err:
1778 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1779 		stag, offset);
1780 	return -EINVAL;
1781 }
1782 EXPORT_SYMBOL(cxgb4_read_tpte);
1783 
1784 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1785 {
1786 	u32 hi, lo;
1787 	struct adapter *adap;
1788 
1789 	adap = netdev2adap(dev);
1790 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1791 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1792 
1793 	return ((u64)hi << 32) | (u64)lo;
1794 }
1795 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1796 
1797 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1798 			 unsigned int qid,
1799 			 enum cxgb4_bar2_qtype qtype,
1800 			 int user,
1801 			 u64 *pbar2_qoffset,
1802 			 unsigned int *pbar2_qid)
1803 {
1804 	return t4_bar2_sge_qregs(netdev2adap(dev),
1805 				 qid,
1806 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1807 				  ? T4_BAR2_QTYPE_EGRESS
1808 				  : T4_BAR2_QTYPE_INGRESS),
1809 				 user,
1810 				 pbar2_qoffset,
1811 				 pbar2_qid);
1812 }
1813 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1814 
1815 static struct pci_driver cxgb4_driver;
1816 
1817 static void check_neigh_update(struct neighbour *neigh)
1818 {
1819 	const struct device *parent;
1820 	const struct net_device *netdev = neigh->dev;
1821 
1822 	if (is_vlan_dev(netdev))
1823 		netdev = vlan_dev_real_dev(netdev);
1824 	parent = netdev->dev.parent;
1825 	if (parent && parent->driver == &cxgb4_driver.driver)
1826 		t4_l2t_update(dev_get_drvdata(parent), neigh);
1827 }
1828 
1829 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1830 		       void *data)
1831 {
1832 	switch (event) {
1833 	case NETEVENT_NEIGH_UPDATE:
1834 		check_neigh_update(data);
1835 		break;
1836 	case NETEVENT_REDIRECT:
1837 	default:
1838 		break;
1839 	}
1840 	return 0;
1841 }
1842 
1843 static bool netevent_registered;
1844 static struct notifier_block cxgb4_netevent_nb = {
1845 	.notifier_call = netevent_cb
1846 };
1847 
1848 static void drain_db_fifo(struct adapter *adap, int usecs)
1849 {
1850 	u32 v1, v2, lp_count, hp_count;
1851 
1852 	do {
1853 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1854 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1855 		if (is_t4(adap->params.chip)) {
1856 			lp_count = LP_COUNT_G(v1);
1857 			hp_count = HP_COUNT_G(v1);
1858 		} else {
1859 			lp_count = LP_COUNT_T5_G(v1);
1860 			hp_count = HP_COUNT_T5_G(v2);
1861 		}
1862 
1863 		if (lp_count == 0 && hp_count == 0)
1864 			break;
1865 		set_current_state(TASK_UNINTERRUPTIBLE);
1866 		schedule_timeout(usecs_to_jiffies(usecs));
1867 	} while (1);
1868 }
1869 
1870 static void disable_txq_db(struct sge_txq *q)
1871 {
1872 	unsigned long flags;
1873 
1874 	spin_lock_irqsave(&q->db_lock, flags);
1875 	q->db_disabled = 1;
1876 	spin_unlock_irqrestore(&q->db_lock, flags);
1877 }
1878 
1879 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1880 {
1881 	spin_lock_irq(&q->db_lock);
1882 	if (q->db_pidx_inc) {
1883 		/* Make sure that all writes to the TX descriptors
1884 		 * are committed before we tell HW about them.
1885 		 */
1886 		wmb();
1887 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1888 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1889 		q->db_pidx_inc = 0;
1890 	}
1891 	q->db_disabled = 0;
1892 	spin_unlock_irq(&q->db_lock);
1893 }
1894 
1895 static void disable_dbs(struct adapter *adap)
1896 {
1897 	int i;
1898 
1899 	for_each_ethrxq(&adap->sge, i)
1900 		disable_txq_db(&adap->sge.ethtxq[i].q);
1901 	if (is_offload(adap)) {
1902 		struct sge_uld_txq_info *txq_info =
1903 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1904 
1905 		if (txq_info) {
1906 			for_each_ofldtxq(&adap->sge, i) {
1907 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1908 
1909 				disable_txq_db(&txq->q);
1910 			}
1911 		}
1912 	}
1913 	for_each_port(adap, i)
1914 		disable_txq_db(&adap->sge.ctrlq[i].q);
1915 }
1916 
1917 static void enable_dbs(struct adapter *adap)
1918 {
1919 	int i;
1920 
1921 	for_each_ethrxq(&adap->sge, i)
1922 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1923 	if (is_offload(adap)) {
1924 		struct sge_uld_txq_info *txq_info =
1925 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1926 
1927 		if (txq_info) {
1928 			for_each_ofldtxq(&adap->sge, i) {
1929 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1930 
1931 				enable_txq_db(adap, &txq->q);
1932 			}
1933 		}
1934 	}
1935 	for_each_port(adap, i)
1936 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1937 }
1938 
1939 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1940 {
1941 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
1942 
1943 	if (adap->uld && adap->uld[type].handle)
1944 		adap->uld[type].control(adap->uld[type].handle, cmd);
1945 }
1946 
1947 static void process_db_full(struct work_struct *work)
1948 {
1949 	struct adapter *adap;
1950 
1951 	adap = container_of(work, struct adapter, db_full_task);
1952 
1953 	drain_db_fifo(adap, dbfifo_drain_delay);
1954 	enable_dbs(adap);
1955 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1956 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1957 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1958 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1959 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1960 	else
1961 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1962 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1963 }
1964 
1965 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1966 {
1967 	u16 hw_pidx, hw_cidx;
1968 	int ret;
1969 
1970 	spin_lock_irq(&q->db_lock);
1971 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1972 	if (ret)
1973 		goto out;
1974 	if (q->db_pidx != hw_pidx) {
1975 		u16 delta;
1976 		u32 val;
1977 
1978 		if (q->db_pidx >= hw_pidx)
1979 			delta = q->db_pidx - hw_pidx;
1980 		else
1981 			delta = q->size - hw_pidx + q->db_pidx;
1982 
1983 		if (is_t4(adap->params.chip))
1984 			val = PIDX_V(delta);
1985 		else
1986 			val = PIDX_T5_V(delta);
1987 		wmb();
1988 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1989 			     QID_V(q->cntxt_id) | val);
1990 	}
1991 out:
1992 	q->db_disabled = 0;
1993 	q->db_pidx_inc = 0;
1994 	spin_unlock_irq(&q->db_lock);
1995 	if (ret)
1996 		CH_WARN(adap, "DB drop recovery failed.\n");
1997 }
1998 
1999 static void recover_all_queues(struct adapter *adap)
2000 {
2001 	int i;
2002 
2003 	for_each_ethrxq(&adap->sge, i)
2004 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2005 	if (is_offload(adap)) {
2006 		struct sge_uld_txq_info *txq_info =
2007 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2008 		if (txq_info) {
2009 			for_each_ofldtxq(&adap->sge, i) {
2010 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2011 
2012 				sync_txq_pidx(adap, &txq->q);
2013 			}
2014 		}
2015 	}
2016 	for_each_port(adap, i)
2017 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2018 }
2019 
2020 static void process_db_drop(struct work_struct *work)
2021 {
2022 	struct adapter *adap;
2023 
2024 	adap = container_of(work, struct adapter, db_drop_task);
2025 
2026 	if (is_t4(adap->params.chip)) {
2027 		drain_db_fifo(adap, dbfifo_drain_delay);
2028 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2029 		drain_db_fifo(adap, dbfifo_drain_delay);
2030 		recover_all_queues(adap);
2031 		drain_db_fifo(adap, dbfifo_drain_delay);
2032 		enable_dbs(adap);
2033 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2034 	} else if (is_t5(adap->params.chip)) {
2035 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2036 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2037 		u16 pidx_inc = dropped_db & 0x1fff;
2038 		u64 bar2_qoffset;
2039 		unsigned int bar2_qid;
2040 		int ret;
2041 
2042 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2043 					0, &bar2_qoffset, &bar2_qid);
2044 		if (ret)
2045 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2046 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2047 		else
2048 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2049 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2050 
2051 		/* Re-enable BAR2 WC */
2052 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2053 	}
2054 
2055 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2056 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2057 }
2058 
2059 void t4_db_full(struct adapter *adap)
2060 {
2061 	if (is_t4(adap->params.chip)) {
2062 		disable_dbs(adap);
2063 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2064 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2065 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2066 		queue_work(adap->workq, &adap->db_full_task);
2067 	}
2068 }
2069 
2070 void t4_db_dropped(struct adapter *adap)
2071 {
2072 	if (is_t4(adap->params.chip)) {
2073 		disable_dbs(adap);
2074 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2075 	}
2076 	queue_work(adap->workq, &adap->db_drop_task);
2077 }
2078 
2079 void t4_register_netevent_notifier(void)
2080 {
2081 	if (!netevent_registered) {
2082 		register_netevent_notifier(&cxgb4_netevent_nb);
2083 		netevent_registered = true;
2084 	}
2085 }
2086 
2087 static void detach_ulds(struct adapter *adap)
2088 {
2089 	unsigned int i;
2090 
2091 	mutex_lock(&uld_mutex);
2092 	list_del(&adap->list_node);
2093 
2094 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2095 		if (adap->uld && adap->uld[i].handle)
2096 			adap->uld[i].state_change(adap->uld[i].handle,
2097 					     CXGB4_STATE_DETACH);
2098 
2099 	if (netevent_registered && list_empty(&adapter_list)) {
2100 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2101 		netevent_registered = false;
2102 	}
2103 	mutex_unlock(&uld_mutex);
2104 }
2105 
2106 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2107 {
2108 	unsigned int i;
2109 
2110 	mutex_lock(&uld_mutex);
2111 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2112 		if (adap->uld && adap->uld[i].handle)
2113 			adap->uld[i].state_change(adap->uld[i].handle,
2114 						  new_state);
2115 	mutex_unlock(&uld_mutex);
2116 }
2117 
2118 #if IS_ENABLED(CONFIG_IPV6)
2119 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2120 				   unsigned long event, void *data)
2121 {
2122 	struct inet6_ifaddr *ifa = data;
2123 	struct net_device *event_dev = ifa->idev->dev;
2124 	const struct device *parent = NULL;
2125 #if IS_ENABLED(CONFIG_BONDING)
2126 	struct adapter *adap;
2127 #endif
2128 	if (is_vlan_dev(event_dev))
2129 		event_dev = vlan_dev_real_dev(event_dev);
2130 #if IS_ENABLED(CONFIG_BONDING)
2131 	if (event_dev->flags & IFF_MASTER) {
2132 		list_for_each_entry(adap, &adapter_list, list_node) {
2133 			switch (event) {
2134 			case NETDEV_UP:
2135 				cxgb4_clip_get(adap->port[0],
2136 					       (const u32 *)ifa, 1);
2137 				break;
2138 			case NETDEV_DOWN:
2139 				cxgb4_clip_release(adap->port[0],
2140 						   (const u32 *)ifa, 1);
2141 				break;
2142 			default:
2143 				break;
2144 			}
2145 		}
2146 		return NOTIFY_OK;
2147 	}
2148 #endif
2149 
2150 	if (event_dev)
2151 		parent = event_dev->dev.parent;
2152 
2153 	if (parent && parent->driver == &cxgb4_driver.driver) {
2154 		switch (event) {
2155 		case NETDEV_UP:
2156 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2157 			break;
2158 		case NETDEV_DOWN:
2159 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2160 			break;
2161 		default:
2162 			break;
2163 		}
2164 	}
2165 	return NOTIFY_OK;
2166 }
2167 
2168 static bool inet6addr_registered;
2169 static struct notifier_block cxgb4_inet6addr_notifier = {
2170 	.notifier_call = cxgb4_inet6addr_handler
2171 };
2172 
2173 static void update_clip(const struct adapter *adap)
2174 {
2175 	int i;
2176 	struct net_device *dev;
2177 	int ret;
2178 
2179 	rcu_read_lock();
2180 
2181 	for (i = 0; i < MAX_NPORTS; i++) {
2182 		dev = adap->port[i];
2183 		ret = 0;
2184 
2185 		if (dev)
2186 			ret = cxgb4_update_root_dev_clip(dev);
2187 
2188 		if (ret < 0)
2189 			break;
2190 	}
2191 	rcu_read_unlock();
2192 }
2193 #endif /* IS_ENABLED(CONFIG_IPV6) */
2194 
2195 /**
2196  *	cxgb_up - enable the adapter
2197  *	@adap: adapter being enabled
2198  *
2199  *	Called when the first port is enabled, this function performs the
2200  *	actions necessary to make an adapter operational, such as completing
2201  *	the initialization of HW modules, and enabling interrupts.
2202  *
2203  *	Must be called with the rtnl lock held.
2204  */
2205 static int cxgb_up(struct adapter *adap)
2206 {
2207 	int err;
2208 
2209 	mutex_lock(&uld_mutex);
2210 	err = setup_sge_queues(adap);
2211 	if (err)
2212 		goto rel_lock;
2213 	err = setup_rss(adap);
2214 	if (err)
2215 		goto freeq;
2216 
2217 	if (adap->flags & USING_MSIX) {
2218 		name_msix_vecs(adap);
2219 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2220 				  adap->msix_info[0].desc, adap);
2221 		if (err)
2222 			goto irq_err;
2223 		err = request_msix_queue_irqs(adap);
2224 		if (err) {
2225 			free_irq(adap->msix_info[0].vec, adap);
2226 			goto irq_err;
2227 		}
2228 	} else {
2229 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2230 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2231 				  adap->port[0]->name, adap);
2232 		if (err)
2233 			goto irq_err;
2234 	}
2235 
2236 	enable_rx(adap);
2237 	t4_sge_start(adap);
2238 	t4_intr_enable(adap);
2239 	adap->flags |= FULL_INIT_DONE;
2240 	mutex_unlock(&uld_mutex);
2241 
2242 	notify_ulds(adap, CXGB4_STATE_UP);
2243 #if IS_ENABLED(CONFIG_IPV6)
2244 	update_clip(adap);
2245 #endif
2246 	/* Initialize hash mac addr list*/
2247 	INIT_LIST_HEAD(&adap->mac_hlist);
2248 	return err;
2249 
2250  irq_err:
2251 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2252  freeq:
2253 	t4_free_sge_resources(adap);
2254  rel_lock:
2255 	mutex_unlock(&uld_mutex);
2256 	return err;
2257 }
2258 
2259 static void cxgb_down(struct adapter *adapter)
2260 {
2261 	cancel_work_sync(&adapter->tid_release_task);
2262 	cancel_work_sync(&adapter->db_full_task);
2263 	cancel_work_sync(&adapter->db_drop_task);
2264 	adapter->tid_release_task_busy = false;
2265 	adapter->tid_release_head = NULL;
2266 
2267 	t4_sge_stop(adapter);
2268 	t4_free_sge_resources(adapter);
2269 	adapter->flags &= ~FULL_INIT_DONE;
2270 }
2271 
2272 /*
2273  * net_device operations
2274  */
2275 static int cxgb_open(struct net_device *dev)
2276 {
2277 	int err;
2278 	struct port_info *pi = netdev_priv(dev);
2279 	struct adapter *adapter = pi->adapter;
2280 
2281 	netif_carrier_off(dev);
2282 
2283 	if (!(adapter->flags & FULL_INIT_DONE)) {
2284 		err = cxgb_up(adapter);
2285 		if (err < 0)
2286 			return err;
2287 	}
2288 
2289 	/* It's possible that the basic port information could have
2290 	 * changed since we first read it.
2291 	 */
2292 	err = t4_update_port_info(pi);
2293 	if (err < 0)
2294 		return err;
2295 
2296 	err = link_start(dev);
2297 	if (!err)
2298 		netif_tx_start_all_queues(dev);
2299 	return err;
2300 }
2301 
2302 static int cxgb_close(struct net_device *dev)
2303 {
2304 	struct port_info *pi = netdev_priv(dev);
2305 	struct adapter *adapter = pi->adapter;
2306 
2307 	netif_tx_stop_all_queues(dev);
2308 	netif_carrier_off(dev);
2309 	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2310 }
2311 
2312 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2313 		__be32 sip, __be16 sport, __be16 vlan,
2314 		unsigned int queue, unsigned char port, unsigned char mask)
2315 {
2316 	int ret;
2317 	struct filter_entry *f;
2318 	struct adapter *adap;
2319 	int i;
2320 	u8 *val;
2321 
2322 	adap = netdev2adap(dev);
2323 
2324 	/* Adjust stid to correct filter index */
2325 	stid -= adap->tids.sftid_base;
2326 	stid += adap->tids.nftids;
2327 
2328 	/* Check to make sure the filter requested is writable ...
2329 	 */
2330 	f = &adap->tids.ftid_tab[stid];
2331 	ret = writable_filter(f);
2332 	if (ret)
2333 		return ret;
2334 
2335 	/* Clear out any old resources being used by the filter before
2336 	 * we start constructing the new filter.
2337 	 */
2338 	if (f->valid)
2339 		clear_filter(adap, f);
2340 
2341 	/* Clear out filter specifications */
2342 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2343 	f->fs.val.lport = cpu_to_be16(sport);
2344 	f->fs.mask.lport  = ~0;
2345 	val = (u8 *)&sip;
2346 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2347 		for (i = 0; i < 4; i++) {
2348 			f->fs.val.lip[i] = val[i];
2349 			f->fs.mask.lip[i] = ~0;
2350 		}
2351 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2352 			f->fs.val.iport = port;
2353 			f->fs.mask.iport = mask;
2354 		}
2355 	}
2356 
2357 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2358 		f->fs.val.proto = IPPROTO_TCP;
2359 		f->fs.mask.proto = ~0;
2360 	}
2361 
2362 	f->fs.dirsteer = 1;
2363 	f->fs.iq = queue;
2364 	/* Mark filter as locked */
2365 	f->locked = 1;
2366 	f->fs.rpttid = 1;
2367 
2368 	/* Save the actual tid. We need this to get the corresponding
2369 	 * filter entry structure in filter_rpl.
2370 	 */
2371 	f->tid = stid + adap->tids.ftid_base;
2372 	ret = set_filter_wr(adap, stid);
2373 	if (ret) {
2374 		clear_filter(adap, f);
2375 		return ret;
2376 	}
2377 
2378 	return 0;
2379 }
2380 EXPORT_SYMBOL(cxgb4_create_server_filter);
2381 
2382 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2383 		unsigned int queue, bool ipv6)
2384 {
2385 	struct filter_entry *f;
2386 	struct adapter *adap;
2387 
2388 	adap = netdev2adap(dev);
2389 
2390 	/* Adjust stid to correct filter index */
2391 	stid -= adap->tids.sftid_base;
2392 	stid += adap->tids.nftids;
2393 
2394 	f = &adap->tids.ftid_tab[stid];
2395 	/* Unlock the filter */
2396 	f->locked = 0;
2397 
2398 	return delete_filter(adap, stid);
2399 }
2400 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2401 
2402 static void cxgb_get_stats(struct net_device *dev,
2403 			   struct rtnl_link_stats64 *ns)
2404 {
2405 	struct port_stats stats;
2406 	struct port_info *p = netdev_priv(dev);
2407 	struct adapter *adapter = p->adapter;
2408 
2409 	/* Block retrieving statistics during EEH error
2410 	 * recovery. Otherwise, the recovery might fail
2411 	 * and the PCI device will be removed permanently
2412 	 */
2413 	spin_lock(&adapter->stats_lock);
2414 	if (!netif_device_present(dev)) {
2415 		spin_unlock(&adapter->stats_lock);
2416 		return;
2417 	}
2418 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2419 				 &p->stats_base);
2420 	spin_unlock(&adapter->stats_lock);
2421 
2422 	ns->tx_bytes   = stats.tx_octets;
2423 	ns->tx_packets = stats.tx_frames;
2424 	ns->rx_bytes   = stats.rx_octets;
2425 	ns->rx_packets = stats.rx_frames;
2426 	ns->multicast  = stats.rx_mcast_frames;
2427 
2428 	/* detailed rx_errors */
2429 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2430 			       stats.rx_runt;
2431 	ns->rx_over_errors   = 0;
2432 	ns->rx_crc_errors    = stats.rx_fcs_err;
2433 	ns->rx_frame_errors  = stats.rx_symbol_err;
2434 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2435 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2436 			       stats.rx_trunc0 + stats.rx_trunc1 +
2437 			       stats.rx_trunc2 + stats.rx_trunc3;
2438 	ns->rx_missed_errors = 0;
2439 
2440 	/* detailed tx_errors */
2441 	ns->tx_aborted_errors   = 0;
2442 	ns->tx_carrier_errors   = 0;
2443 	ns->tx_fifo_errors      = 0;
2444 	ns->tx_heartbeat_errors = 0;
2445 	ns->tx_window_errors    = 0;
2446 
2447 	ns->tx_errors = stats.tx_error_frames;
2448 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2449 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2450 }
2451 
2452 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2453 {
2454 	unsigned int mbox;
2455 	int ret = 0, prtad, devad;
2456 	struct port_info *pi = netdev_priv(dev);
2457 	struct adapter *adapter = pi->adapter;
2458 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2459 
2460 	switch (cmd) {
2461 	case SIOCGMIIPHY:
2462 		if (pi->mdio_addr < 0)
2463 			return -EOPNOTSUPP;
2464 		data->phy_id = pi->mdio_addr;
2465 		break;
2466 	case SIOCGMIIREG:
2467 	case SIOCSMIIREG:
2468 		if (mdio_phy_id_is_c45(data->phy_id)) {
2469 			prtad = mdio_phy_id_prtad(data->phy_id);
2470 			devad = mdio_phy_id_devad(data->phy_id);
2471 		} else if (data->phy_id < 32) {
2472 			prtad = data->phy_id;
2473 			devad = 0;
2474 			data->reg_num &= 0x1f;
2475 		} else
2476 			return -EINVAL;
2477 
2478 		mbox = pi->adapter->pf;
2479 		if (cmd == SIOCGMIIREG)
2480 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2481 					 data->reg_num, &data->val_out);
2482 		else
2483 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2484 					 data->reg_num, data->val_in);
2485 		break;
2486 	case SIOCGHWTSTAMP:
2487 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2488 				    sizeof(pi->tstamp_config)) ?
2489 			-EFAULT : 0;
2490 	case SIOCSHWTSTAMP:
2491 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2492 				   sizeof(pi->tstamp_config)))
2493 			return -EFAULT;
2494 
2495 		if (!is_t4(adapter->params.chip)) {
2496 			switch (pi->tstamp_config.tx_type) {
2497 			case HWTSTAMP_TX_OFF:
2498 			case HWTSTAMP_TX_ON:
2499 				break;
2500 			default:
2501 				return -ERANGE;
2502 			}
2503 
2504 			switch (pi->tstamp_config.rx_filter) {
2505 			case HWTSTAMP_FILTER_NONE:
2506 				pi->rxtstamp = false;
2507 				break;
2508 			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2509 			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2510 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2511 							 PTP_TS_L4);
2512 				break;
2513 			case HWTSTAMP_FILTER_PTP_V2_EVENT:
2514 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2515 							 PTP_TS_L2_L4);
2516 				break;
2517 			case HWTSTAMP_FILTER_ALL:
2518 			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2519 			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2520 			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2521 			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2522 				pi->rxtstamp = true;
2523 				break;
2524 			default:
2525 				pi->tstamp_config.rx_filter =
2526 					HWTSTAMP_FILTER_NONE;
2527 				return -ERANGE;
2528 			}
2529 
2530 			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2531 			    (pi->tstamp_config.rx_filter ==
2532 				HWTSTAMP_FILTER_NONE)) {
2533 				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2534 					pi->ptp_enable = false;
2535 			}
2536 
2537 			if (pi->tstamp_config.rx_filter !=
2538 				HWTSTAMP_FILTER_NONE) {
2539 				if (cxgb4_ptp_redirect_rx_packet(adapter,
2540 								 pi) >= 0)
2541 					pi->ptp_enable = true;
2542 			}
2543 		} else {
2544 			/* For T4 Adapters */
2545 			switch (pi->tstamp_config.rx_filter) {
2546 			case HWTSTAMP_FILTER_NONE:
2547 			pi->rxtstamp = false;
2548 			break;
2549 			case HWTSTAMP_FILTER_ALL:
2550 			pi->rxtstamp = true;
2551 			break;
2552 			default:
2553 			pi->tstamp_config.rx_filter =
2554 			HWTSTAMP_FILTER_NONE;
2555 			return -ERANGE;
2556 			}
2557 		}
2558 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2559 				    sizeof(pi->tstamp_config)) ?
2560 			-EFAULT : 0;
2561 	default:
2562 		return -EOPNOTSUPP;
2563 	}
2564 	return ret;
2565 }
2566 
2567 static void cxgb_set_rxmode(struct net_device *dev)
2568 {
2569 	/* unfortunately we can't return errors to the stack */
2570 	set_rxmode(dev, -1, false);
2571 }
2572 
2573 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2574 {
2575 	int ret;
2576 	struct port_info *pi = netdev_priv(dev);
2577 
2578 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2579 			    -1, -1, -1, true);
2580 	if (!ret)
2581 		dev->mtu = new_mtu;
2582 	return ret;
2583 }
2584 
2585 #ifdef CONFIG_PCI_IOV
2586 static int dummy_open(struct net_device *dev)
2587 {
2588 	/* Turn carrier off since we don't have to transmit anything on this
2589 	 * interface.
2590 	 */
2591 	netif_carrier_off(dev);
2592 	return 0;
2593 }
2594 
2595 /* Fill MAC address that will be assigned by the FW */
2596 static void fill_vf_station_mac_addr(struct adapter *adap)
2597 {
2598 	unsigned int i;
2599 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2600 	int err;
2601 	u8 *na;
2602 	u16 a, b;
2603 
2604 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2605 	if (!err) {
2606 		na = adap->params.vpd.na;
2607 		for (i = 0; i < ETH_ALEN; i++)
2608 			hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2609 				      hex2val(na[2 * i + 1]));
2610 		a = (hw_addr[0] << 8) | hw_addr[1];
2611 		b = (hw_addr[1] << 8) | hw_addr[2];
2612 		a ^= b;
2613 		a |= 0x0200;    /* locally assigned Ethernet MAC address */
2614 		a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2615 		macaddr[0] = a >> 8;
2616 		macaddr[1] = a & 0xff;
2617 
2618 		for (i = 2; i < 5; i++)
2619 			macaddr[i] = hw_addr[i + 1];
2620 
2621 		for (i = 0; i < adap->num_vfs; i++) {
2622 			macaddr[5] = adap->pf * 16 + i;
2623 			ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2624 		}
2625 	}
2626 }
2627 
2628 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2629 {
2630 	struct port_info *pi = netdev_priv(dev);
2631 	struct adapter *adap = pi->adapter;
2632 	int ret;
2633 
2634 	/* verify MAC addr is valid */
2635 	if (!is_valid_ether_addr(mac)) {
2636 		dev_err(pi->adapter->pdev_dev,
2637 			"Invalid Ethernet address %pM for VF %d\n",
2638 			mac, vf);
2639 		return -EINVAL;
2640 	}
2641 
2642 	dev_info(pi->adapter->pdev_dev,
2643 		 "Setting MAC %pM on VF %d\n", mac, vf);
2644 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2645 	if (!ret)
2646 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2647 	return ret;
2648 }
2649 
2650 static int cxgb_get_vf_config(struct net_device *dev,
2651 			      int vf, struct ifla_vf_info *ivi)
2652 {
2653 	struct port_info *pi = netdev_priv(dev);
2654 	struct adapter *adap = pi->adapter;
2655 
2656 	if (vf >= adap->num_vfs)
2657 		return -EINVAL;
2658 	ivi->vf = vf;
2659 	ivi->max_tx_rate = adap->vfinfo[vf].tx_rate;
2660 	ivi->min_tx_rate = 0;
2661 	ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2662 	return 0;
2663 }
2664 
2665 static int cxgb_get_phys_port_id(struct net_device *dev,
2666 				 struct netdev_phys_item_id *ppid)
2667 {
2668 	struct port_info *pi = netdev_priv(dev);
2669 	unsigned int phy_port_id;
2670 
2671 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2672 	ppid->id_len = sizeof(phy_port_id);
2673 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
2674 	return 0;
2675 }
2676 
2677 static int cxgb_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate,
2678 			    int max_tx_rate)
2679 {
2680 	struct port_info *pi = netdev_priv(dev);
2681 	struct adapter *adap = pi->adapter;
2682 	unsigned int link_ok, speed, mtu;
2683 	u32 fw_pfvf, fw_class;
2684 	int class_id = vf;
2685 	int ret;
2686 	u16 pktsize;
2687 
2688 	if (vf >= adap->num_vfs)
2689 		return -EINVAL;
2690 
2691 	if (min_tx_rate) {
2692 		dev_err(adap->pdev_dev,
2693 			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2694 			min_tx_rate, vf);
2695 		return -EINVAL;
2696 	}
2697 
2698 	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2699 	if (ret != FW_SUCCESS) {
2700 		dev_err(adap->pdev_dev,
2701 			"Failed to get link information for VF %d\n", vf);
2702 		return -EINVAL;
2703 	}
2704 
2705 	if (!link_ok) {
2706 		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2707 		return -EINVAL;
2708 	}
2709 
2710 	if (max_tx_rate > speed) {
2711 		dev_err(adap->pdev_dev,
2712 			"Max tx rate %d for VF %d can't be > link-speed %u",
2713 			max_tx_rate, vf, speed);
2714 		return -EINVAL;
2715 	}
2716 
2717 	pktsize = mtu;
2718 	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2719 	pktsize = pktsize - sizeof(struct ethhdr) - 4;
2720 	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2721 	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2722 	/* configure Traffic Class for rate-limiting */
2723 	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2724 			      SCHED_CLASS_LEVEL_CL_RL,
2725 			      SCHED_CLASS_MODE_CLASS,
2726 			      SCHED_CLASS_RATEUNIT_BITS,
2727 			      SCHED_CLASS_RATEMODE_ABS,
2728 			      pi->tx_chan, class_id, 0,
2729 			      max_tx_rate * 1000, 0, pktsize);
2730 	if (ret) {
2731 		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2732 			ret);
2733 		return -EINVAL;
2734 	}
2735 	dev_info(adap->pdev_dev,
2736 		 "Class %d with MSS %u configured with rate %u\n",
2737 		 class_id, pktsize, max_tx_rate);
2738 
2739 	/* bind VF to configured Traffic Class */
2740 	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2741 		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2742 	fw_class = class_id;
2743 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2744 			    &fw_class);
2745 	if (ret) {
2746 		dev_err(adap->pdev_dev,
2747 			"Err %d in binding VF %d to Traffic Class %d\n",
2748 			ret, vf, class_id);
2749 		return -EINVAL;
2750 	}
2751 	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2752 		 adap->pf, vf, class_id);
2753 	adap->vfinfo[vf].tx_rate = max_tx_rate;
2754 	return 0;
2755 }
2756 
2757 #endif
2758 
2759 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2760 {
2761 	int ret;
2762 	struct sockaddr *addr = p;
2763 	struct port_info *pi = netdev_priv(dev);
2764 
2765 	if (!is_valid_ether_addr(addr->sa_data))
2766 		return -EADDRNOTAVAIL;
2767 
2768 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2769 			    pi->xact_addr_filt, addr->sa_data, true, true);
2770 	if (ret < 0)
2771 		return ret;
2772 
2773 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2774 	pi->xact_addr_filt = ret;
2775 	return 0;
2776 }
2777 
2778 #ifdef CONFIG_NET_POLL_CONTROLLER
2779 static void cxgb_netpoll(struct net_device *dev)
2780 {
2781 	struct port_info *pi = netdev_priv(dev);
2782 	struct adapter *adap = pi->adapter;
2783 
2784 	if (adap->flags & USING_MSIX) {
2785 		int i;
2786 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2787 
2788 		for (i = pi->nqsets; i; i--, rx++)
2789 			t4_sge_intr_msix(0, &rx->rspq);
2790 	} else
2791 		t4_intr_handler(adap)(0, adap);
2792 }
2793 #endif
2794 
2795 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2796 {
2797 	struct port_info *pi = netdev_priv(dev);
2798 	struct adapter *adap = pi->adapter;
2799 	struct sched_class *e;
2800 	struct ch_sched_params p;
2801 	struct ch_sched_queue qe;
2802 	u32 req_rate;
2803 	int err = 0;
2804 
2805 	if (!can_sched(dev))
2806 		return -ENOTSUPP;
2807 
2808 	if (index < 0 || index > pi->nqsets - 1)
2809 		return -EINVAL;
2810 
2811 	if (!(adap->flags & FULL_INIT_DONE)) {
2812 		dev_err(adap->pdev_dev,
2813 			"Failed to rate limit on queue %d. Link Down?\n",
2814 			index);
2815 		return -EINVAL;
2816 	}
2817 
2818 	/* Convert from Mbps to Kbps */
2819 	req_rate = rate << 10;
2820 
2821 	/* Max rate is 10 Gbps */
2822 	if (req_rate >= SCHED_MAX_RATE_KBPS) {
2823 		dev_err(adap->pdev_dev,
2824 			"Invalid rate %u Mbps, Max rate is %u Gbps\n",
2825 			rate, SCHED_MAX_RATE_KBPS);
2826 		return -ERANGE;
2827 	}
2828 
2829 	/* First unbind the queue from any existing class */
2830 	memset(&qe, 0, sizeof(qe));
2831 	qe.queue = index;
2832 	qe.class = SCHED_CLS_NONE;
2833 
2834 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2835 	if (err) {
2836 		dev_err(adap->pdev_dev,
2837 			"Unbinding Queue %d on port %d fail. Err: %d\n",
2838 			index, pi->port_id, err);
2839 		return err;
2840 	}
2841 
2842 	/* Queue already unbound */
2843 	if (!req_rate)
2844 		return 0;
2845 
2846 	/* Fetch any available unused or matching scheduling class */
2847 	memset(&p, 0, sizeof(p));
2848 	p.type = SCHED_CLASS_TYPE_PACKET;
2849 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2850 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2851 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2852 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2853 	p.u.params.channel  = pi->tx_chan;
2854 	p.u.params.class    = SCHED_CLS_NONE;
2855 	p.u.params.minrate  = 0;
2856 	p.u.params.maxrate  = req_rate;
2857 	p.u.params.weight   = 0;
2858 	p.u.params.pktsize  = dev->mtu;
2859 
2860 	e = cxgb4_sched_class_alloc(dev, &p);
2861 	if (!e)
2862 		return -ENOMEM;
2863 
2864 	/* Bind the queue to a scheduling class */
2865 	memset(&qe, 0, sizeof(qe));
2866 	qe.queue = index;
2867 	qe.class = e->idx;
2868 
2869 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2870 	if (err)
2871 		dev_err(adap->pdev_dev,
2872 			"Queue rate limiting failed. Err: %d\n", err);
2873 	return err;
2874 }
2875 
2876 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
2877 				 struct tc_cls_u32_offload *cls_u32)
2878 {
2879 	if (!is_classid_clsact_ingress(cls_u32->common.classid) ||
2880 	    cls_u32->common.chain_index)
2881 		return -EOPNOTSUPP;
2882 
2883 	switch (cls_u32->command) {
2884 	case TC_CLSU32_NEW_KNODE:
2885 	case TC_CLSU32_REPLACE_KNODE:
2886 		return cxgb4_config_knode(dev, cls_u32);
2887 	case TC_CLSU32_DELETE_KNODE:
2888 		return cxgb4_delete_knode(dev, cls_u32);
2889 	default:
2890 		return -EOPNOTSUPP;
2891 	}
2892 }
2893 
2894 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2895 			 void *type_data)
2896 {
2897 	struct port_info *pi = netdev2pinfo(dev);
2898 	struct adapter *adap = netdev2adap(dev);
2899 
2900 	if (!(adap->flags & FULL_INIT_DONE)) {
2901 		dev_err(adap->pdev_dev,
2902 			"Failed to setup tc on port %d. Link Down?\n",
2903 			pi->port_id);
2904 		return -EINVAL;
2905 	}
2906 
2907 	switch (type) {
2908 	case TC_SETUP_CLSU32:
2909 		return cxgb_setup_tc_cls_u32(dev, type_data);
2910 	default:
2911 		return -EOPNOTSUPP;
2912 	}
2913 }
2914 
2915 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2916 					   netdev_features_t features)
2917 {
2918 	/* Disable GRO, if RX_CSUM is disabled */
2919 	if (!(features & NETIF_F_RXCSUM))
2920 		features &= ~NETIF_F_GRO;
2921 
2922 	return features;
2923 }
2924 
2925 static const struct net_device_ops cxgb4_netdev_ops = {
2926 	.ndo_open             = cxgb_open,
2927 	.ndo_stop             = cxgb_close,
2928 	.ndo_start_xmit       = t4_eth_xmit,
2929 	.ndo_select_queue     =	cxgb_select_queue,
2930 	.ndo_get_stats64      = cxgb_get_stats,
2931 	.ndo_set_rx_mode      = cxgb_set_rxmode,
2932 	.ndo_set_mac_address  = cxgb_set_mac_addr,
2933 	.ndo_set_features     = cxgb_set_features,
2934 	.ndo_validate_addr    = eth_validate_addr,
2935 	.ndo_do_ioctl         = cxgb_ioctl,
2936 	.ndo_change_mtu       = cxgb_change_mtu,
2937 #ifdef CONFIG_NET_POLL_CONTROLLER
2938 	.ndo_poll_controller  = cxgb_netpoll,
2939 #endif
2940 #ifdef CONFIG_CHELSIO_T4_FCOE
2941 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
2942 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
2943 #endif /* CONFIG_CHELSIO_T4_FCOE */
2944 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
2945 	.ndo_setup_tc         = cxgb_setup_tc,
2946 	.ndo_fix_features     = cxgb_fix_features,
2947 };
2948 
2949 #ifdef CONFIG_PCI_IOV
2950 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
2951 	.ndo_open             = dummy_open,
2952 	.ndo_set_vf_mac       = cxgb_set_vf_mac,
2953 	.ndo_get_vf_config    = cxgb_get_vf_config,
2954 	.ndo_set_vf_rate      = cxgb_set_vf_rate,
2955 	.ndo_get_phys_port_id = cxgb_get_phys_port_id,
2956 };
2957 #endif
2958 
2959 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2960 {
2961 	struct adapter *adapter = netdev2adap(dev);
2962 
2963 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
2964 	strlcpy(info->version, cxgb4_driver_version,
2965 		sizeof(info->version));
2966 	strlcpy(info->bus_info, pci_name(adapter->pdev),
2967 		sizeof(info->bus_info));
2968 }
2969 
2970 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
2971 	.get_drvinfo       = get_drvinfo,
2972 };
2973 
2974 void t4_fatal_err(struct adapter *adap)
2975 {
2976 	int port;
2977 
2978 	if (pci_channel_offline(adap->pdev))
2979 		return;
2980 
2981 	/* Disable the SGE since ULDs are going to free resources that
2982 	 * could be exposed to the adapter.  RDMA MWs for example...
2983 	 */
2984 	t4_shutdown_adapter(adap);
2985 	for_each_port(adap, port) {
2986 		struct net_device *dev = adap->port[port];
2987 
2988 		/* If we get here in very early initialization the network
2989 		 * devices may not have been set up yet.
2990 		 */
2991 		if (!dev)
2992 			continue;
2993 
2994 		netif_tx_stop_all_queues(dev);
2995 		netif_carrier_off(dev);
2996 	}
2997 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2998 }
2999 
3000 static void setup_memwin(struct adapter *adap)
3001 {
3002 	u32 nic_win_base = t4_get_util_window(adap);
3003 
3004 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3005 }
3006 
3007 static void setup_memwin_rdma(struct adapter *adap)
3008 {
3009 	if (adap->vres.ocq.size) {
3010 		u32 start;
3011 		unsigned int sz_kb;
3012 
3013 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3014 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3015 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3016 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3017 		t4_write_reg(adap,
3018 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3019 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3020 		t4_write_reg(adap,
3021 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3022 			     adap->vres.ocq.start);
3023 		t4_read_reg(adap,
3024 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3025 	}
3026 }
3027 
3028 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3029 {
3030 	u32 v;
3031 	int ret;
3032 
3033 	/* get device capabilities */
3034 	memset(c, 0, sizeof(*c));
3035 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3036 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3037 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3038 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3039 	if (ret < 0)
3040 		return ret;
3041 
3042 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3043 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3044 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3045 	if (ret < 0)
3046 		return ret;
3047 
3048 	ret = t4_config_glbl_rss(adap, adap->pf,
3049 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3050 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3051 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3052 	if (ret < 0)
3053 		return ret;
3054 
3055 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3056 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3057 			  FW_CMD_CAP_PF);
3058 	if (ret < 0)
3059 		return ret;
3060 
3061 	t4_sge_init(adap);
3062 
3063 	/* tweak some settings */
3064 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3065 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3066 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3067 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3068 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3069 
3070 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3071 	adap->params.tp.tx_modq_map = 0xE4;
3072 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3073 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3074 
3075 	/* associate each Tx modulation queue with consecutive Tx channels */
3076 	v = 0x84218421;
3077 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3078 			  &v, 1, TP_TX_SCHED_HDR_A);
3079 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3080 			  &v, 1, TP_TX_SCHED_FIFO_A);
3081 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3082 			  &v, 1, TP_TX_SCHED_PCMD_A);
3083 
3084 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3085 	if (is_offload(adap)) {
3086 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3087 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3088 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3089 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3090 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3091 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3092 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3093 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3094 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3095 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3096 	}
3097 
3098 	/* get basic stuff going */
3099 	return t4_early_init(adap, adap->pf);
3100 }
3101 
3102 /*
3103  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3104  */
3105 #define MAX_ATIDS 8192U
3106 
3107 /*
3108  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3109  *
3110  * If the firmware we're dealing with has Configuration File support, then
3111  * we use that to perform all configuration
3112  */
3113 
3114 /*
3115  * Tweak configuration based on module parameters, etc.  Most of these have
3116  * defaults assigned to them by Firmware Configuration Files (if we're using
3117  * them) but need to be explicitly set if we're using hard-coded
3118  * initialization.  But even in the case of using Firmware Configuration
3119  * Files, we'd like to expose the ability to change these via module
3120  * parameters so these are essentially common tweaks/settings for
3121  * Configuration Files and hard-coded initialization ...
3122  */
3123 static int adap_init0_tweaks(struct adapter *adapter)
3124 {
3125 	/*
3126 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3127 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3128 	 * 64B Cache Line Size ...
3129 	 */
3130 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3131 
3132 	/*
3133 	 * Process module parameters which affect early initialization.
3134 	 */
3135 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3136 		dev_err(&adapter->pdev->dev,
3137 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3138 			rx_dma_offset);
3139 		rx_dma_offset = 2;
3140 	}
3141 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3142 			 PKTSHIFT_V(PKTSHIFT_M),
3143 			 PKTSHIFT_V(rx_dma_offset));
3144 
3145 	/*
3146 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3147 	 * adds the pseudo header itself.
3148 	 */
3149 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3150 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3151 
3152 	return 0;
3153 }
3154 
3155 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3156  * unto themselves and they contain their own firmware to perform their
3157  * tasks ...
3158  */
3159 static int phy_aq1202_version(const u8 *phy_fw_data,
3160 			      size_t phy_fw_size)
3161 {
3162 	int offset;
3163 
3164 	/* At offset 0x8 you're looking for the primary image's
3165 	 * starting offset which is 3 Bytes wide
3166 	 *
3167 	 * At offset 0xa of the primary image, you look for the offset
3168 	 * of the DRAM segment which is 3 Bytes wide.
3169 	 *
3170 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3171 	 * wide
3172 	 */
3173 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
3174 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3175 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
3176 
3177 	offset = le24(phy_fw_data + 0x8) << 12;
3178 	offset = le24(phy_fw_data + offset + 0xa);
3179 	return be16(phy_fw_data + offset + 0x27e);
3180 
3181 	#undef be16
3182 	#undef le16
3183 	#undef le24
3184 }
3185 
3186 static struct info_10gbt_phy_fw {
3187 	unsigned int phy_fw_id;		/* PCI Device ID */
3188 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
3189 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3190 	int phy_flash;			/* Has FLASH for PHY Firmware */
3191 } phy_info_array[] = {
3192 	{
3193 		PHY_AQ1202_DEVICEID,
3194 		PHY_AQ1202_FIRMWARE,
3195 		phy_aq1202_version,
3196 		1,
3197 	},
3198 	{
3199 		PHY_BCM84834_DEVICEID,
3200 		PHY_BCM84834_FIRMWARE,
3201 		NULL,
3202 		0,
3203 	},
3204 	{ 0, NULL, NULL },
3205 };
3206 
3207 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3208 {
3209 	int i;
3210 
3211 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3212 		if (phy_info_array[i].phy_fw_id == devid)
3213 			return &phy_info_array[i];
3214 	}
3215 	return NULL;
3216 }
3217 
3218 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3219  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3220  * we return a negative error number.  If we transfer new firmware we return 1
3221  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3222  */
3223 static int adap_init0_phy(struct adapter *adap)
3224 {
3225 	const struct firmware *phyf;
3226 	int ret;
3227 	struct info_10gbt_phy_fw *phy_info;
3228 
3229 	/* Use the device ID to determine which PHY file to flash.
3230 	 */
3231 	phy_info = find_phy_info(adap->pdev->device);
3232 	if (!phy_info) {
3233 		dev_warn(adap->pdev_dev,
3234 			 "No PHY Firmware file found for this PHY\n");
3235 		return -EOPNOTSUPP;
3236 	}
3237 
3238 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3239 	 * use that. The adapter firmware provides us with a memory buffer
3240 	 * where we can load a PHY firmware file from the host if we want to
3241 	 * override the PHY firmware File in flash.
3242 	 */
3243 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3244 				      adap->pdev_dev);
3245 	if (ret < 0) {
3246 		/* For adapters without FLASH attached to PHY for their
3247 		 * firmware, it's obviously a fatal error if we can't get the
3248 		 * firmware to the adapter.  For adapters with PHY firmware
3249 		 * FLASH storage, it's worth a warning if we can't find the
3250 		 * PHY Firmware but we'll neuter the error ...
3251 		 */
3252 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3253 			"/lib/firmware/%s, error %d\n",
3254 			phy_info->phy_fw_file, -ret);
3255 		if (phy_info->phy_flash) {
3256 			int cur_phy_fw_ver = 0;
3257 
3258 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3259 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3260 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3261 			ret = 0;
3262 		}
3263 
3264 		return ret;
3265 	}
3266 
3267 	/* Load PHY Firmware onto adapter.
3268 	 */
3269 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3270 			     phy_info->phy_fw_version,
3271 			     (u8 *)phyf->data, phyf->size);
3272 	if (ret < 0)
3273 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3274 			-ret);
3275 	else if (ret > 0) {
3276 		int new_phy_fw_ver = 0;
3277 
3278 		if (phy_info->phy_fw_version)
3279 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3280 								  phyf->size);
3281 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3282 			 "Firmware /lib/firmware/%s, version %#x\n",
3283 			 phy_info->phy_fw_file, new_phy_fw_ver);
3284 	}
3285 
3286 	release_firmware(phyf);
3287 
3288 	return ret;
3289 }
3290 
3291 /*
3292  * Attempt to initialize the adapter via a Firmware Configuration File.
3293  */
3294 static int adap_init0_config(struct adapter *adapter, int reset)
3295 {
3296 	struct fw_caps_config_cmd caps_cmd;
3297 	const struct firmware *cf;
3298 	unsigned long mtype = 0, maddr = 0;
3299 	u32 finiver, finicsum, cfcsum;
3300 	int ret;
3301 	int config_issued = 0;
3302 	char *fw_config_file, fw_config_file_path[256];
3303 	char *config_name = NULL;
3304 
3305 	/*
3306 	 * Reset device if necessary.
3307 	 */
3308 	if (reset) {
3309 		ret = t4_fw_reset(adapter, adapter->mbox,
3310 				  PIORSTMODE_F | PIORST_F);
3311 		if (ret < 0)
3312 			goto bye;
3313 	}
3314 
3315 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3316 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3317 	 * to be performed after any global adapter RESET above since some
3318 	 * PHYs only have local RAM copies of the PHY firmware.
3319 	 */
3320 	if (is_10gbt_device(adapter->pdev->device)) {
3321 		ret = adap_init0_phy(adapter);
3322 		if (ret < 0)
3323 			goto bye;
3324 	}
3325 	/*
3326 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3327 	 * then use that.  Otherwise, use the configuration file stored
3328 	 * in the adapter flash ...
3329 	 */
3330 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3331 	case CHELSIO_T4:
3332 		fw_config_file = FW4_CFNAME;
3333 		break;
3334 	case CHELSIO_T5:
3335 		fw_config_file = FW5_CFNAME;
3336 		break;
3337 	case CHELSIO_T6:
3338 		fw_config_file = FW6_CFNAME;
3339 		break;
3340 	default:
3341 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3342 		       adapter->pdev->device);
3343 		ret = -EINVAL;
3344 		goto bye;
3345 	}
3346 
3347 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3348 	if (ret < 0) {
3349 		config_name = "On FLASH";
3350 		mtype = FW_MEMTYPE_CF_FLASH;
3351 		maddr = t4_flash_cfg_addr(adapter);
3352 	} else {
3353 		u32 params[7], val[7];
3354 
3355 		sprintf(fw_config_file_path,
3356 			"/lib/firmware/%s", fw_config_file);
3357 		config_name = fw_config_file_path;
3358 
3359 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3360 			ret = -ENOMEM;
3361 		else {
3362 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3363 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3364 			ret = t4_query_params(adapter, adapter->mbox,
3365 					      adapter->pf, 0, 1, params, val);
3366 			if (ret == 0) {
3367 				/*
3368 				 * For t4_memory_rw() below addresses and
3369 				 * sizes have to be in terms of multiples of 4
3370 				 * bytes.  So, if the Configuration File isn't
3371 				 * a multiple of 4 bytes in length we'll have
3372 				 * to write that out separately since we can't
3373 				 * guarantee that the bytes following the
3374 				 * residual byte in the buffer returned by
3375 				 * request_firmware() are zeroed out ...
3376 				 */
3377 				size_t resid = cf->size & 0x3;
3378 				size_t size = cf->size & ~0x3;
3379 				__be32 *data = (__be32 *)cf->data;
3380 
3381 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3382 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3383 
3384 				spin_lock(&adapter->win0_lock);
3385 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3386 						   size, data, T4_MEMORY_WRITE);
3387 				if (ret == 0 && resid != 0) {
3388 					union {
3389 						__be32 word;
3390 						char buf[4];
3391 					} last;
3392 					int i;
3393 
3394 					last.word = data[size >> 2];
3395 					for (i = resid; i < 4; i++)
3396 						last.buf[i] = 0;
3397 					ret = t4_memory_rw(adapter, 0, mtype,
3398 							   maddr + size,
3399 							   4, &last.word,
3400 							   T4_MEMORY_WRITE);
3401 				}
3402 				spin_unlock(&adapter->win0_lock);
3403 			}
3404 		}
3405 
3406 		release_firmware(cf);
3407 		if (ret)
3408 			goto bye;
3409 	}
3410 
3411 	/*
3412 	 * Issue a Capability Configuration command to the firmware to get it
3413 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3414 	 * because we want the ability to modify various features after we've
3415 	 * processed the configuration file ...
3416 	 */
3417 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3418 	caps_cmd.op_to_write =
3419 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3420 		      FW_CMD_REQUEST_F |
3421 		      FW_CMD_READ_F);
3422 	caps_cmd.cfvalid_to_len16 =
3423 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3424 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3425 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3426 		      FW_LEN16(caps_cmd));
3427 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3428 			 &caps_cmd);
3429 
3430 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3431 	 * Configuration File in FLASH), our last gasp effort is to use the
3432 	 * Firmware Configuration File which is embedded in the firmware.  A
3433 	 * very few early versions of the firmware didn't have one embedded
3434 	 * but we can ignore those.
3435 	 */
3436 	if (ret == -ENOENT) {
3437 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3438 		caps_cmd.op_to_write =
3439 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3440 					FW_CMD_REQUEST_F |
3441 					FW_CMD_READ_F);
3442 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3443 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3444 				sizeof(caps_cmd), &caps_cmd);
3445 		config_name = "Firmware Default";
3446 	}
3447 
3448 	config_issued = 1;
3449 	if (ret < 0)
3450 		goto bye;
3451 
3452 	finiver = ntohl(caps_cmd.finiver);
3453 	finicsum = ntohl(caps_cmd.finicsum);
3454 	cfcsum = ntohl(caps_cmd.cfcsum);
3455 	if (finicsum != cfcsum)
3456 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3457 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3458 			 finicsum, cfcsum);
3459 
3460 	/*
3461 	 * And now tell the firmware to use the configuration we just loaded.
3462 	 */
3463 	caps_cmd.op_to_write =
3464 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3465 		      FW_CMD_REQUEST_F |
3466 		      FW_CMD_WRITE_F);
3467 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3468 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3469 			 NULL);
3470 	if (ret < 0)
3471 		goto bye;
3472 
3473 	/*
3474 	 * Tweak configuration based on system architecture, module
3475 	 * parameters, etc.
3476 	 */
3477 	ret = adap_init0_tweaks(adapter);
3478 	if (ret < 0)
3479 		goto bye;
3480 
3481 	/*
3482 	 * And finally tell the firmware to initialize itself using the
3483 	 * parameters from the Configuration File.
3484 	 */
3485 	ret = t4_fw_initialize(adapter, adapter->mbox);
3486 	if (ret < 0)
3487 		goto bye;
3488 
3489 	/* Emit Firmware Configuration File information and return
3490 	 * successfully.
3491 	 */
3492 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3493 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3494 		 config_name, finiver, cfcsum);
3495 	return 0;
3496 
3497 	/*
3498 	 * Something bad happened.  Return the error ...  (If the "error"
3499 	 * is that there's no Configuration File on the adapter we don't
3500 	 * want to issue a warning since this is fairly common.)
3501 	 */
3502 bye:
3503 	if (config_issued && ret != -ENOENT)
3504 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3505 			 config_name, -ret);
3506 	return ret;
3507 }
3508 
3509 static struct fw_info fw_info_array[] = {
3510 	{
3511 		.chip = CHELSIO_T4,
3512 		.fs_name = FW4_CFNAME,
3513 		.fw_mod_name = FW4_FNAME,
3514 		.fw_hdr = {
3515 			.chip = FW_HDR_CHIP_T4,
3516 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3517 			.intfver_nic = FW_INTFVER(T4, NIC),
3518 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3519 			.intfver_ri = FW_INTFVER(T4, RI),
3520 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3521 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3522 		},
3523 	}, {
3524 		.chip = CHELSIO_T5,
3525 		.fs_name = FW5_CFNAME,
3526 		.fw_mod_name = FW5_FNAME,
3527 		.fw_hdr = {
3528 			.chip = FW_HDR_CHIP_T5,
3529 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3530 			.intfver_nic = FW_INTFVER(T5, NIC),
3531 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3532 			.intfver_ri = FW_INTFVER(T5, RI),
3533 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3534 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3535 		},
3536 	}, {
3537 		.chip = CHELSIO_T6,
3538 		.fs_name = FW6_CFNAME,
3539 		.fw_mod_name = FW6_FNAME,
3540 		.fw_hdr = {
3541 			.chip = FW_HDR_CHIP_T6,
3542 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3543 			.intfver_nic = FW_INTFVER(T6, NIC),
3544 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3545 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3546 			.intfver_ri = FW_INTFVER(T6, RI),
3547 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3548 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3549 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3550 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3551 		},
3552 	}
3553 
3554 };
3555 
3556 static struct fw_info *find_fw_info(int chip)
3557 {
3558 	int i;
3559 
3560 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3561 		if (fw_info_array[i].chip == chip)
3562 			return &fw_info_array[i];
3563 	}
3564 	return NULL;
3565 }
3566 
3567 /*
3568  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3569  */
3570 static int adap_init0(struct adapter *adap)
3571 {
3572 	int ret;
3573 	u32 v, port_vec;
3574 	enum dev_state state;
3575 	u32 params[7], val[7];
3576 	struct fw_caps_config_cmd caps_cmd;
3577 	int reset = 1;
3578 
3579 	/* Grab Firmware Device Log parameters as early as possible so we have
3580 	 * access to it for debugging, etc.
3581 	 */
3582 	ret = t4_init_devlog_params(adap);
3583 	if (ret < 0)
3584 		return ret;
3585 
3586 	/* Contact FW, advertising Master capability */
3587 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3588 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3589 	if (ret < 0) {
3590 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3591 			ret);
3592 		return ret;
3593 	}
3594 	if (ret == adap->mbox)
3595 		adap->flags |= MASTER_PF;
3596 
3597 	/*
3598 	 * If we're the Master PF Driver and the device is uninitialized,
3599 	 * then let's consider upgrading the firmware ...  (We always want
3600 	 * to check the firmware version number in order to A. get it for
3601 	 * later reporting and B. to warn if the currently loaded firmware
3602 	 * is excessively mismatched relative to the driver.)
3603 	 */
3604 
3605 	t4_get_version_info(adap);
3606 	ret = t4_check_fw_version(adap);
3607 	/* If firmware is too old (not supported by driver) force an update. */
3608 	if (ret)
3609 		state = DEV_STATE_UNINIT;
3610 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3611 		struct fw_info *fw_info;
3612 		struct fw_hdr *card_fw;
3613 		const struct firmware *fw;
3614 		const u8 *fw_data = NULL;
3615 		unsigned int fw_size = 0;
3616 
3617 		/* This is the firmware whose headers the driver was compiled
3618 		 * against
3619 		 */
3620 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3621 		if (fw_info == NULL) {
3622 			dev_err(adap->pdev_dev,
3623 				"unable to get firmware info for chip %d.\n",
3624 				CHELSIO_CHIP_VERSION(adap->params.chip));
3625 			return -EINVAL;
3626 		}
3627 
3628 		/* allocate memory to read the header of the firmware on the
3629 		 * card
3630 		 */
3631 		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
3632 
3633 		/* Get FW from from /lib/firmware/ */
3634 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3635 				       adap->pdev_dev);
3636 		if (ret < 0) {
3637 			dev_err(adap->pdev_dev,
3638 				"unable to load firmware image %s, error %d\n",
3639 				fw_info->fw_mod_name, ret);
3640 		} else {
3641 			fw_data = fw->data;
3642 			fw_size = fw->size;
3643 		}
3644 
3645 		/* upgrade FW logic */
3646 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3647 				 state, &reset);
3648 
3649 		/* Cleaning up */
3650 		release_firmware(fw);
3651 		kvfree(card_fw);
3652 
3653 		if (ret < 0)
3654 			goto bye;
3655 	}
3656 
3657 	/*
3658 	 * Grab VPD parameters.  This should be done after we establish a
3659 	 * connection to the firmware since some of the VPD parameters
3660 	 * (notably the Core Clock frequency) are retrieved via requests to
3661 	 * the firmware.  On the other hand, we need these fairly early on
3662 	 * so we do this right after getting ahold of the firmware.
3663 	 */
3664 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3665 	if (ret < 0)
3666 		goto bye;
3667 
3668 	/*
3669 	 * Find out what ports are available to us.  Note that we need to do
3670 	 * this before calling adap_init0_no_config() since it needs nports
3671 	 * and portvec ...
3672 	 */
3673 	v =
3674 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3675 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3676 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3677 	if (ret < 0)
3678 		goto bye;
3679 
3680 	adap->params.nports = hweight32(port_vec);
3681 	adap->params.portvec = port_vec;
3682 
3683 	/* If the firmware is initialized already, emit a simply note to that
3684 	 * effect. Otherwise, it's time to try initializing the adapter.
3685 	 */
3686 	if (state == DEV_STATE_INIT) {
3687 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3688 			 "Adapter already initialized\n",
3689 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3690 	} else {
3691 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3692 			 "Initializing adapter\n");
3693 
3694 		/* Find out whether we're dealing with a version of the
3695 		 * firmware which has configuration file support.
3696 		 */
3697 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3698 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3699 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3700 				      params, val);
3701 
3702 		/* If the firmware doesn't support Configuration Files,
3703 		 * return an error.
3704 		 */
3705 		if (ret < 0) {
3706 			dev_err(adap->pdev_dev, "firmware doesn't support "
3707 				"Firmware Configuration Files\n");
3708 			goto bye;
3709 		}
3710 
3711 		/* The firmware provides us with a memory buffer where we can
3712 		 * load a Configuration File from the host if we want to
3713 		 * override the Configuration File in flash.
3714 		 */
3715 		ret = adap_init0_config(adap, reset);
3716 		if (ret == -ENOENT) {
3717 			dev_err(adap->pdev_dev, "no Configuration File "
3718 				"present on adapter.\n");
3719 			goto bye;
3720 		}
3721 		if (ret < 0) {
3722 			dev_err(adap->pdev_dev, "could not initialize "
3723 				"adapter, error %d\n", -ret);
3724 			goto bye;
3725 		}
3726 	}
3727 
3728 	/* Give the SGE code a chance to pull in anything that it needs ...
3729 	 * Note that this must be called after we retrieve our VPD parameters
3730 	 * in order to know how to convert core ticks to seconds, etc.
3731 	 */
3732 	ret = t4_sge_init(adap);
3733 	if (ret < 0)
3734 		goto bye;
3735 
3736 	if (is_bypass_device(adap->pdev->device))
3737 		adap->params.bypass = 1;
3738 
3739 	/*
3740 	 * Grab some of our basic fundamental operating parameters.
3741 	 */
3742 #define FW_PARAM_DEV(param) \
3743 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3744 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3745 
3746 #define FW_PARAM_PFVF(param) \
3747 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3748 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3749 	FW_PARAMS_PARAM_Y_V(0) | \
3750 	FW_PARAMS_PARAM_Z_V(0)
3751 
3752 	params[0] = FW_PARAM_PFVF(EQ_START);
3753 	params[1] = FW_PARAM_PFVF(L2T_START);
3754 	params[2] = FW_PARAM_PFVF(L2T_END);
3755 	params[3] = FW_PARAM_PFVF(FILTER_START);
3756 	params[4] = FW_PARAM_PFVF(FILTER_END);
3757 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3758 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3759 	if (ret < 0)
3760 		goto bye;
3761 	adap->sge.egr_start = val[0];
3762 	adap->l2t_start = val[1];
3763 	adap->l2t_end = val[2];
3764 	adap->tids.ftid_base = val[3];
3765 	adap->tids.nftids = val[4] - val[3] + 1;
3766 	adap->sge.ingr_start = val[5];
3767 
3768 	/* qids (ingress/egress) returned from firmware can be anywhere
3769 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3770 	 * Hence driver needs to allocate memory for this range to
3771 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3772 	 * in FW_EQ_*_CMD.alloc command.
3773 	 */
3774 	params[0] = FW_PARAM_PFVF(EQ_END);
3775 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3776 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3777 	if (ret < 0)
3778 		goto bye;
3779 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3780 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3781 
3782 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3783 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3784 	if (!adap->sge.egr_map) {
3785 		ret = -ENOMEM;
3786 		goto bye;
3787 	}
3788 
3789 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3790 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3791 	if (!adap->sge.ingr_map) {
3792 		ret = -ENOMEM;
3793 		goto bye;
3794 	}
3795 
3796 	/* Allocate the memory for the vaious egress queue bitmaps
3797 	 * ie starving_fl, txq_maperr and blocked_fl.
3798 	 */
3799 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3800 					sizeof(long), GFP_KERNEL);
3801 	if (!adap->sge.starving_fl) {
3802 		ret = -ENOMEM;
3803 		goto bye;
3804 	}
3805 
3806 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3807 				       sizeof(long), GFP_KERNEL);
3808 	if (!adap->sge.txq_maperr) {
3809 		ret = -ENOMEM;
3810 		goto bye;
3811 	}
3812 
3813 #ifdef CONFIG_DEBUG_FS
3814 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3815 				       sizeof(long), GFP_KERNEL);
3816 	if (!adap->sge.blocked_fl) {
3817 		ret = -ENOMEM;
3818 		goto bye;
3819 	}
3820 #endif
3821 
3822 	params[0] = FW_PARAM_PFVF(CLIP_START);
3823 	params[1] = FW_PARAM_PFVF(CLIP_END);
3824 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3825 	if (ret < 0)
3826 		goto bye;
3827 	adap->clipt_start = val[0];
3828 	adap->clipt_end = val[1];
3829 
3830 	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
3831 	 * Classes supported by the hardware/firmware so we hard code it here
3832 	 * for now.
3833 	 */
3834 	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3835 
3836 	/* query params related to active filter region */
3837 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3838 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3839 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3840 	/* If Active filter size is set we enable establishing
3841 	 * offload connection through firmware work request
3842 	 */
3843 	if ((val[0] != val[1]) && (ret >= 0)) {
3844 		adap->flags |= FW_OFLD_CONN;
3845 		adap->tids.aftid_base = val[0];
3846 		adap->tids.aftid_end = val[1];
3847 	}
3848 
3849 	/* If we're running on newer firmware, let it know that we're
3850 	 * prepared to deal with encapsulated CPL messages.  Older
3851 	 * firmware won't understand this and we'll just get
3852 	 * unencapsulated messages ...
3853 	 */
3854 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3855 	val[0] = 1;
3856 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3857 
3858 	/*
3859 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3860 	 * capability.  Earlier versions of the firmware didn't have the
3861 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3862 	 * permission to use ULPTX MEMWRITE DSGL.
3863 	 */
3864 	if (is_t4(adap->params.chip)) {
3865 		adap->params.ulptx_memwrite_dsgl = false;
3866 	} else {
3867 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3868 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3869 				      1, params, val);
3870 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3871 	}
3872 
3873 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
3874 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
3875 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3876 			      1, params, val);
3877 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
3878 
3879 	/*
3880 	 * Get device capabilities so we can determine what resources we need
3881 	 * to manage.
3882 	 */
3883 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3884 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3885 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3886 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3887 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3888 			 &caps_cmd);
3889 	if (ret < 0)
3890 		goto bye;
3891 
3892 	if (caps_cmd.ofldcaps) {
3893 		/* query offload-related parameters */
3894 		params[0] = FW_PARAM_DEV(NTID);
3895 		params[1] = FW_PARAM_PFVF(SERVER_START);
3896 		params[2] = FW_PARAM_PFVF(SERVER_END);
3897 		params[3] = FW_PARAM_PFVF(TDDP_START);
3898 		params[4] = FW_PARAM_PFVF(TDDP_END);
3899 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3900 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3901 				      params, val);
3902 		if (ret < 0)
3903 			goto bye;
3904 		adap->tids.ntids = val[0];
3905 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3906 		adap->tids.stid_base = val[1];
3907 		adap->tids.nstids = val[2] - val[1] + 1;
3908 		/*
3909 		 * Setup server filter region. Divide the available filter
3910 		 * region into two parts. Regular filters get 1/3rd and server
3911 		 * filters get 2/3rd part. This is only enabled if workarond
3912 		 * path is enabled.
3913 		 * 1. For regular filters.
3914 		 * 2. Server filter: This are special filters which are used
3915 		 * to redirect SYN packets to offload queue.
3916 		 */
3917 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3918 			adap->tids.sftid_base = adap->tids.ftid_base +
3919 					DIV_ROUND_UP(adap->tids.nftids, 3);
3920 			adap->tids.nsftids = adap->tids.nftids -
3921 					 DIV_ROUND_UP(adap->tids.nftids, 3);
3922 			adap->tids.nftids = adap->tids.sftid_base -
3923 						adap->tids.ftid_base;
3924 		}
3925 		adap->vres.ddp.start = val[3];
3926 		adap->vres.ddp.size = val[4] - val[3] + 1;
3927 		adap->params.ofldq_wr_cred = val[5];
3928 
3929 		adap->params.offload = 1;
3930 		adap->num_ofld_uld += 1;
3931 	}
3932 	if (caps_cmd.rdmacaps) {
3933 		params[0] = FW_PARAM_PFVF(STAG_START);
3934 		params[1] = FW_PARAM_PFVF(STAG_END);
3935 		params[2] = FW_PARAM_PFVF(RQ_START);
3936 		params[3] = FW_PARAM_PFVF(RQ_END);
3937 		params[4] = FW_PARAM_PFVF(PBL_START);
3938 		params[5] = FW_PARAM_PFVF(PBL_END);
3939 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3940 				      params, val);
3941 		if (ret < 0)
3942 			goto bye;
3943 		adap->vres.stag.start = val[0];
3944 		adap->vres.stag.size = val[1] - val[0] + 1;
3945 		adap->vres.rq.start = val[2];
3946 		adap->vres.rq.size = val[3] - val[2] + 1;
3947 		adap->vres.pbl.start = val[4];
3948 		adap->vres.pbl.size = val[5] - val[4] + 1;
3949 
3950 		params[0] = FW_PARAM_PFVF(SQRQ_START);
3951 		params[1] = FW_PARAM_PFVF(SQRQ_END);
3952 		params[2] = FW_PARAM_PFVF(CQ_START);
3953 		params[3] = FW_PARAM_PFVF(CQ_END);
3954 		params[4] = FW_PARAM_PFVF(OCQ_START);
3955 		params[5] = FW_PARAM_PFVF(OCQ_END);
3956 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3957 				      val);
3958 		if (ret < 0)
3959 			goto bye;
3960 		adap->vres.qp.start = val[0];
3961 		adap->vres.qp.size = val[1] - val[0] + 1;
3962 		adap->vres.cq.start = val[2];
3963 		adap->vres.cq.size = val[3] - val[2] + 1;
3964 		adap->vres.ocq.start = val[4];
3965 		adap->vres.ocq.size = val[5] - val[4] + 1;
3966 
3967 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3968 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3969 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3970 				      val);
3971 		if (ret < 0) {
3972 			adap->params.max_ordird_qp = 8;
3973 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3974 			ret = 0;
3975 		} else {
3976 			adap->params.max_ordird_qp = val[0];
3977 			adap->params.max_ird_adapter = val[1];
3978 		}
3979 		dev_info(adap->pdev_dev,
3980 			 "max_ordird_qp %d max_ird_adapter %d\n",
3981 			 adap->params.max_ordird_qp,
3982 			 adap->params.max_ird_adapter);
3983 		adap->num_ofld_uld += 2;
3984 	}
3985 	if (caps_cmd.iscsicaps) {
3986 		params[0] = FW_PARAM_PFVF(ISCSI_START);
3987 		params[1] = FW_PARAM_PFVF(ISCSI_END);
3988 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3989 				      params, val);
3990 		if (ret < 0)
3991 			goto bye;
3992 		adap->vres.iscsi.start = val[0];
3993 		adap->vres.iscsi.size = val[1] - val[0] + 1;
3994 		/* LIO target and cxgb4i initiaitor */
3995 		adap->num_ofld_uld += 2;
3996 	}
3997 	if (caps_cmd.cryptocaps) {
3998 		/* Should query params here...TODO */
3999 		params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4000 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4001 				      params, val);
4002 		if (ret < 0) {
4003 			if (ret != -EINVAL)
4004 				goto bye;
4005 		} else {
4006 			adap->vres.ncrypto_fc = val[0];
4007 		}
4008 		adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
4009 		adap->num_uld += 1;
4010 	}
4011 #undef FW_PARAM_PFVF
4012 #undef FW_PARAM_DEV
4013 
4014 	/* The MTU/MSS Table is initialized by now, so load their values.  If
4015 	 * we're initializing the adapter, then we'll make any modifications
4016 	 * we want to the MTU/MSS Table and also initialize the congestion
4017 	 * parameters.
4018 	 */
4019 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4020 	if (state != DEV_STATE_INIT) {
4021 		int i;
4022 
4023 		/* The default MTU Table contains values 1492 and 1500.
4024 		 * However, for TCP, it's better to have two values which are
4025 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4026 		 * This allows us to have a TCP Data Payload which is a
4027 		 * multiple of 8 regardless of what combination of TCP Options
4028 		 * are in use (always a multiple of 4 bytes) which is
4029 		 * important for performance reasons.  For instance, if no
4030 		 * options are in use, then we have a 20-byte IP header and a
4031 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4032 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4033 		 * which is not a multiple of 8.  So using an MSS of 1488 in
4034 		 * this case results in a TCP Data Payload of 1448 bytes which
4035 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4036 		 * Stamps have been negotiated, then an MTU of 1500 bytes
4037 		 * results in a TCP Data Payload of 1448 bytes which, as
4038 		 * above, is a multiple of 8 bytes ...
4039 		 */
4040 		for (i = 0; i < NMTUS; i++)
4041 			if (adap->params.mtus[i] == 1492) {
4042 				adap->params.mtus[i] = 1488;
4043 				break;
4044 			}
4045 
4046 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4047 			     adap->params.b_wnd);
4048 	}
4049 	t4_init_sge_params(adap);
4050 	adap->flags |= FW_OK;
4051 	t4_init_tp_params(adap);
4052 	return 0;
4053 
4054 	/*
4055 	 * Something bad happened.  If a command timed out or failed with EIO
4056 	 * FW does not operate within its spec or something catastrophic
4057 	 * happened to HW/FW, stop issuing commands.
4058 	 */
4059 bye:
4060 	kfree(adap->sge.egr_map);
4061 	kfree(adap->sge.ingr_map);
4062 	kfree(adap->sge.starving_fl);
4063 	kfree(adap->sge.txq_maperr);
4064 #ifdef CONFIG_DEBUG_FS
4065 	kfree(adap->sge.blocked_fl);
4066 #endif
4067 	if (ret != -ETIMEDOUT && ret != -EIO)
4068 		t4_fw_bye(adap, adap->mbox);
4069 	return ret;
4070 }
4071 
4072 /* EEH callbacks */
4073 
4074 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4075 					 pci_channel_state_t state)
4076 {
4077 	int i;
4078 	struct adapter *adap = pci_get_drvdata(pdev);
4079 
4080 	if (!adap)
4081 		goto out;
4082 
4083 	rtnl_lock();
4084 	adap->flags &= ~FW_OK;
4085 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4086 	spin_lock(&adap->stats_lock);
4087 	for_each_port(adap, i) {
4088 		struct net_device *dev = adap->port[i];
4089 		if (dev) {
4090 			netif_device_detach(dev);
4091 			netif_carrier_off(dev);
4092 		}
4093 	}
4094 	spin_unlock(&adap->stats_lock);
4095 	disable_interrupts(adap);
4096 	if (adap->flags & FULL_INIT_DONE)
4097 		cxgb_down(adap);
4098 	rtnl_unlock();
4099 	if ((adap->flags & DEV_ENABLED)) {
4100 		pci_disable_device(pdev);
4101 		adap->flags &= ~DEV_ENABLED;
4102 	}
4103 out:	return state == pci_channel_io_perm_failure ?
4104 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4105 }
4106 
4107 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4108 {
4109 	int i, ret;
4110 	struct fw_caps_config_cmd c;
4111 	struct adapter *adap = pci_get_drvdata(pdev);
4112 
4113 	if (!adap) {
4114 		pci_restore_state(pdev);
4115 		pci_save_state(pdev);
4116 		return PCI_ERS_RESULT_RECOVERED;
4117 	}
4118 
4119 	if (!(adap->flags & DEV_ENABLED)) {
4120 		if (pci_enable_device(pdev)) {
4121 			dev_err(&pdev->dev, "Cannot reenable PCI "
4122 					    "device after reset\n");
4123 			return PCI_ERS_RESULT_DISCONNECT;
4124 		}
4125 		adap->flags |= DEV_ENABLED;
4126 	}
4127 
4128 	pci_set_master(pdev);
4129 	pci_restore_state(pdev);
4130 	pci_save_state(pdev);
4131 	pci_cleanup_aer_uncorrect_error_status(pdev);
4132 
4133 	if (t4_wait_dev_ready(adap->regs) < 0)
4134 		return PCI_ERS_RESULT_DISCONNECT;
4135 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4136 		return PCI_ERS_RESULT_DISCONNECT;
4137 	adap->flags |= FW_OK;
4138 	if (adap_init1(adap, &c))
4139 		return PCI_ERS_RESULT_DISCONNECT;
4140 
4141 	for_each_port(adap, i) {
4142 		struct port_info *p = adap2pinfo(adap, i);
4143 
4144 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4145 				  NULL, NULL);
4146 		if (ret < 0)
4147 			return PCI_ERS_RESULT_DISCONNECT;
4148 		p->viid = ret;
4149 		p->xact_addr_filt = -1;
4150 	}
4151 
4152 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4153 		     adap->params.b_wnd);
4154 	setup_memwin(adap);
4155 	if (cxgb_up(adap))
4156 		return PCI_ERS_RESULT_DISCONNECT;
4157 	return PCI_ERS_RESULT_RECOVERED;
4158 }
4159 
4160 static void eeh_resume(struct pci_dev *pdev)
4161 {
4162 	int i;
4163 	struct adapter *adap = pci_get_drvdata(pdev);
4164 
4165 	if (!adap)
4166 		return;
4167 
4168 	rtnl_lock();
4169 	for_each_port(adap, i) {
4170 		struct net_device *dev = adap->port[i];
4171 		if (dev) {
4172 			if (netif_running(dev)) {
4173 				link_start(dev);
4174 				cxgb_set_rxmode(dev);
4175 			}
4176 			netif_device_attach(dev);
4177 		}
4178 	}
4179 	rtnl_unlock();
4180 }
4181 
4182 static const struct pci_error_handlers cxgb4_eeh = {
4183 	.error_detected = eeh_err_detected,
4184 	.slot_reset     = eeh_slot_reset,
4185 	.resume         = eeh_resume,
4186 };
4187 
4188 /* Return true if the Link Configuration supports "High Speeds" (those greater
4189  * than 1Gb/s).
4190  */
4191 static inline bool is_x_10g_port(const struct link_config *lc)
4192 {
4193 	unsigned int speeds, high_speeds;
4194 
4195 	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
4196 	high_speeds = speeds &
4197 			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
4198 
4199 	return high_speeds != 0;
4200 }
4201 
4202 /*
4203  * Perform default configuration of DMA queues depending on the number and type
4204  * of ports we found and the number of available CPUs.  Most settings can be
4205  * modified by the admin prior to actual use.
4206  */
4207 static void cfg_queues(struct adapter *adap)
4208 {
4209 	struct sge *s = &adap->sge;
4210 	int i = 0, n10g = 0, qidx = 0;
4211 #ifndef CONFIG_CHELSIO_T4_DCB
4212 	int q10g = 0;
4213 #endif
4214 
4215 	/* Reduce memory usage in kdump environment, disable all offload.
4216 	 */
4217 	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4218 		adap->params.offload = 0;
4219 		adap->params.crypto = 0;
4220 	}
4221 
4222 	n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4223 #ifdef CONFIG_CHELSIO_T4_DCB
4224 	/* For Data Center Bridging support we need to be able to support up
4225 	 * to 8 Traffic Priorities; each of which will be assigned to its
4226 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4227 	 */
4228 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4229 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4230 			MAX_ETH_QSETS, adap->params.nports * 8);
4231 		BUG_ON(1);
4232 	}
4233 
4234 	for_each_port(adap, i) {
4235 		struct port_info *pi = adap2pinfo(adap, i);
4236 
4237 		pi->first_qset = qidx;
4238 		pi->nqsets = is_kdump_kernel() ? 1 : 8;
4239 		qidx += pi->nqsets;
4240 	}
4241 #else /* !CONFIG_CHELSIO_T4_DCB */
4242 	/*
4243 	 * We default to 1 queue per non-10G port and up to # of cores queues
4244 	 * per 10G port.
4245 	 */
4246 	if (n10g)
4247 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4248 	if (q10g > netif_get_num_default_rss_queues())
4249 		q10g = netif_get_num_default_rss_queues();
4250 
4251 	if (is_kdump_kernel())
4252 		q10g = 1;
4253 
4254 	for_each_port(adap, i) {
4255 		struct port_info *pi = adap2pinfo(adap, i);
4256 
4257 		pi->first_qset = qidx;
4258 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4259 		qidx += pi->nqsets;
4260 	}
4261 #endif /* !CONFIG_CHELSIO_T4_DCB */
4262 
4263 	s->ethqsets = qidx;
4264 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4265 
4266 	if (is_uld(adap)) {
4267 		/*
4268 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4269 		 * otherwise we divide all available queues amongst the channels
4270 		 * capped by the number of available cores.
4271 		 */
4272 		if (n10g) {
4273 			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4274 			s->ofldqsets = roundup(i, adap->params.nports);
4275 		} else {
4276 			s->ofldqsets = adap->params.nports;
4277 		}
4278 	}
4279 
4280 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4281 		struct sge_eth_rxq *r = &s->ethrxq[i];
4282 
4283 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4284 		r->fl.size = 72;
4285 	}
4286 
4287 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4288 		s->ethtxq[i].q.size = 1024;
4289 
4290 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4291 		s->ctrlq[i].q.size = 512;
4292 
4293 	if (!is_t4(adap->params.chip))
4294 		s->ptptxq.q.size = 8;
4295 
4296 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4297 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4298 }
4299 
4300 /*
4301  * Reduce the number of Ethernet queues across all ports to at most n.
4302  * n provides at least one queue per port.
4303  */
4304 static void reduce_ethqs(struct adapter *adap, int n)
4305 {
4306 	int i;
4307 	struct port_info *pi;
4308 
4309 	while (n < adap->sge.ethqsets)
4310 		for_each_port(adap, i) {
4311 			pi = adap2pinfo(adap, i);
4312 			if (pi->nqsets > 1) {
4313 				pi->nqsets--;
4314 				adap->sge.ethqsets--;
4315 				if (adap->sge.ethqsets <= n)
4316 					break;
4317 			}
4318 		}
4319 
4320 	n = 0;
4321 	for_each_port(adap, i) {
4322 		pi = adap2pinfo(adap, i);
4323 		pi->first_qset = n;
4324 		n += pi->nqsets;
4325 	}
4326 }
4327 
4328 static int get_msix_info(struct adapter *adap)
4329 {
4330 	struct uld_msix_info *msix_info;
4331 	unsigned int max_ingq = 0;
4332 
4333 	if (is_offload(adap))
4334 		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4335 	if (is_pci_uld(adap))
4336 		max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4337 
4338 	if (!max_ingq)
4339 		goto out;
4340 
4341 	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4342 	if (!msix_info)
4343 		return -ENOMEM;
4344 
4345 	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4346 						 sizeof(long), GFP_KERNEL);
4347 	if (!adap->msix_bmap_ulds.msix_bmap) {
4348 		kfree(msix_info);
4349 		return -ENOMEM;
4350 	}
4351 	spin_lock_init(&adap->msix_bmap_ulds.lock);
4352 	adap->msix_info_ulds = msix_info;
4353 out:
4354 	return 0;
4355 }
4356 
4357 static void free_msix_info(struct adapter *adap)
4358 {
4359 	if (!(adap->num_uld && adap->num_ofld_uld))
4360 		return;
4361 
4362 	kfree(adap->msix_info_ulds);
4363 	kfree(adap->msix_bmap_ulds.msix_bmap);
4364 }
4365 
4366 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4367 #define EXTRA_VECS 2
4368 
4369 static int enable_msix(struct adapter *adap)
4370 {
4371 	int ofld_need = 0, uld_need = 0;
4372 	int i, j, want, need, allocated;
4373 	struct sge *s = &adap->sge;
4374 	unsigned int nchan = adap->params.nports;
4375 	struct msix_entry *entries;
4376 	int max_ingq = MAX_INGQ;
4377 
4378 	if (is_pci_uld(adap))
4379 		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4380 	if (is_offload(adap))
4381 		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4382 	entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4383 			  GFP_KERNEL);
4384 	if (!entries)
4385 		return -ENOMEM;
4386 
4387 	/* map for msix */
4388 	if (get_msix_info(adap)) {
4389 		adap->params.offload = 0;
4390 		adap->params.crypto = 0;
4391 	}
4392 
4393 	for (i = 0; i < max_ingq + 1; ++i)
4394 		entries[i].entry = i;
4395 
4396 	want = s->max_ethqsets + EXTRA_VECS;
4397 	if (is_offload(adap)) {
4398 		want += adap->num_ofld_uld * s->ofldqsets;
4399 		ofld_need = adap->num_ofld_uld * nchan;
4400 	}
4401 	if (is_pci_uld(adap)) {
4402 		want += adap->num_uld * s->ofldqsets;
4403 		uld_need = adap->num_uld * nchan;
4404 	}
4405 #ifdef CONFIG_CHELSIO_T4_DCB
4406 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4407 	 * each port.
4408 	 */
4409 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4410 #else
4411 	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4412 #endif
4413 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4414 	if (allocated < 0) {
4415 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4416 			 " not using MSI-X\n");
4417 		kfree(entries);
4418 		return allocated;
4419 	}
4420 
4421 	/* Distribute available vectors to the various queue groups.
4422 	 * Every group gets its minimum requirement and NIC gets top
4423 	 * priority for leftovers.
4424 	 */
4425 	i = allocated - EXTRA_VECS - ofld_need - uld_need;
4426 	if (i < s->max_ethqsets) {
4427 		s->max_ethqsets = i;
4428 		if (i < s->ethqsets)
4429 			reduce_ethqs(adap, i);
4430 	}
4431 	if (is_uld(adap)) {
4432 		if (allocated < want)
4433 			s->nqs_per_uld = nchan;
4434 		else
4435 			s->nqs_per_uld = s->ofldqsets;
4436 	}
4437 
4438 	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4439 		adap->msix_info[i].vec = entries[i].vector;
4440 	if (is_uld(adap)) {
4441 		for (j = 0 ; i < allocated; ++i, j++) {
4442 			adap->msix_info_ulds[j].vec = entries[i].vector;
4443 			adap->msix_info_ulds[j].idx = i;
4444 		}
4445 		adap->msix_bmap_ulds.mapsize = j;
4446 	}
4447 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4448 		 "nic %d per uld %d\n",
4449 		 allocated, s->max_ethqsets, s->nqs_per_uld);
4450 
4451 	kfree(entries);
4452 	return 0;
4453 }
4454 
4455 #undef EXTRA_VECS
4456 
4457 static int init_rss(struct adapter *adap)
4458 {
4459 	unsigned int i;
4460 	int err;
4461 
4462 	err = t4_init_rss_mode(adap, adap->mbox);
4463 	if (err)
4464 		return err;
4465 
4466 	for_each_port(adap, i) {
4467 		struct port_info *pi = adap2pinfo(adap, i);
4468 
4469 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4470 		if (!pi->rss)
4471 			return -ENOMEM;
4472 	}
4473 	return 0;
4474 }
4475 
4476 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4477 					enum pci_bus_speed *speed,
4478 					enum pcie_link_width *width)
4479 {
4480 	u32 lnkcap1, lnkcap2;
4481 	int err1, err2;
4482 
4483 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4484 
4485 	*speed = PCI_SPEED_UNKNOWN;
4486 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4487 
4488 	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4489 					  &lnkcap1);
4490 	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4491 					  &lnkcap2);
4492 	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4493 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4494 			*speed = PCIE_SPEED_8_0GT;
4495 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4496 			*speed = PCIE_SPEED_5_0GT;
4497 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4498 			*speed = PCIE_SPEED_2_5GT;
4499 	}
4500 	if (!err1) {
4501 		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4502 		if (!lnkcap2) { /* pre-r3.0 */
4503 			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4504 				*speed = PCIE_SPEED_5_0GT;
4505 			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4506 				*speed = PCIE_SPEED_2_5GT;
4507 		}
4508 	}
4509 
4510 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4511 		return err1 ? err1 : err2 ? err2 : -EINVAL;
4512 	return 0;
4513 }
4514 
4515 static void cxgb4_check_pcie_caps(struct adapter *adap)
4516 {
4517 	enum pcie_link_width width, width_cap;
4518 	enum pci_bus_speed speed, speed_cap;
4519 
4520 #define PCIE_SPEED_STR(speed) \
4521 	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4522 	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4523 	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4524 	 "Unknown")
4525 
4526 	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4527 		dev_warn(adap->pdev_dev,
4528 			 "Unable to determine PCIe device BW capabilities\n");
4529 		return;
4530 	}
4531 
4532 	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4533 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4534 		dev_warn(adap->pdev_dev,
4535 			 "Unable to determine PCI Express bandwidth.\n");
4536 		return;
4537 	}
4538 
4539 	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4540 		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4541 	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4542 		 width, width_cap);
4543 	if (speed < speed_cap || width < width_cap)
4544 		dev_info(adap->pdev_dev,
4545 			 "A slot with more lanes and/or higher speed is "
4546 			 "suggested for optimal performance.\n");
4547 }
4548 
4549 /* Dump basic information about the adapter */
4550 static void print_adapter_info(struct adapter *adapter)
4551 {
4552 	/* Hardware/Firmware/etc. Version/Revision IDs */
4553 	t4_dump_version_info(adapter);
4554 
4555 	/* Software/Hardware configuration */
4556 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4557 		 is_offload(adapter) ? "R" : "",
4558 		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4559 		  (adapter->flags & USING_MSI) ? "MSI" : ""),
4560 		 is_offload(adapter) ? "Offload" : "non-Offload");
4561 }
4562 
4563 static void print_port_info(const struct net_device *dev)
4564 {
4565 	char buf[80];
4566 	char *bufp = buf;
4567 	const char *spd = "";
4568 	const struct port_info *pi = netdev_priv(dev);
4569 	const struct adapter *adap = pi->adapter;
4570 
4571 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4572 		spd = " 2.5 GT/s";
4573 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4574 		spd = " 5 GT/s";
4575 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4576 		spd = " 8 GT/s";
4577 
4578 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
4579 		bufp += sprintf(bufp, "100M/");
4580 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
4581 		bufp += sprintf(bufp, "1G/");
4582 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
4583 		bufp += sprintf(bufp, "10G/");
4584 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
4585 		bufp += sprintf(bufp, "25G/");
4586 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
4587 		bufp += sprintf(bufp, "40G/");
4588 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
4589 		bufp += sprintf(bufp, "50G/");
4590 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
4591 		bufp += sprintf(bufp, "100G/");
4592 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
4593 		bufp += sprintf(bufp, "200G/");
4594 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
4595 		bufp += sprintf(bufp, "400G/");
4596 	if (bufp != buf)
4597 		--bufp;
4598 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4599 
4600 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4601 		    dev->name, adap->params.vpd.id, adap->name, buf);
4602 }
4603 
4604 /*
4605  * Free the following resources:
4606  * - memory used for tables
4607  * - MSI/MSI-X
4608  * - net devices
4609  * - resources FW is holding for us
4610  */
4611 static void free_some_resources(struct adapter *adapter)
4612 {
4613 	unsigned int i;
4614 
4615 	kvfree(adapter->l2t);
4616 	t4_cleanup_sched(adapter);
4617 	kvfree(adapter->tids.tid_tab);
4618 	cxgb4_cleanup_tc_u32(adapter);
4619 	kfree(adapter->sge.egr_map);
4620 	kfree(adapter->sge.ingr_map);
4621 	kfree(adapter->sge.starving_fl);
4622 	kfree(adapter->sge.txq_maperr);
4623 #ifdef CONFIG_DEBUG_FS
4624 	kfree(adapter->sge.blocked_fl);
4625 #endif
4626 	disable_msi(adapter);
4627 
4628 	for_each_port(adapter, i)
4629 		if (adapter->port[i]) {
4630 			struct port_info *pi = adap2pinfo(adapter, i);
4631 
4632 			if (pi->viid != 0)
4633 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
4634 					   0, pi->viid);
4635 			kfree(adap2pinfo(adapter, i)->rss);
4636 			free_netdev(adapter->port[i]);
4637 		}
4638 	if (adapter->flags & FW_OK)
4639 		t4_fw_bye(adapter, adapter->pf);
4640 }
4641 
4642 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4643 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4644 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4645 #define SEGMENT_SIZE 128
4646 
4647 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4648 {
4649 	u16 device_id;
4650 
4651 	/* Retrieve adapter's device ID */
4652 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4653 
4654 	switch (device_id >> 12) {
4655 	case CHELSIO_T4:
4656 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4657 	case CHELSIO_T5:
4658 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4659 	case CHELSIO_T6:
4660 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4661 	default:
4662 		dev_err(&pdev->dev, "Device %d is not supported\n",
4663 			device_id);
4664 	}
4665 	return -EINVAL;
4666 }
4667 
4668 #ifdef CONFIG_PCI_IOV
4669 static void dummy_setup(struct net_device *dev)
4670 {
4671 	dev->type = ARPHRD_NONE;
4672 	dev->mtu = 0;
4673 	dev->hard_header_len = 0;
4674 	dev->addr_len = 0;
4675 	dev->tx_queue_len = 0;
4676 	dev->flags |= IFF_NOARP;
4677 	dev->priv_flags |= IFF_NO_QUEUE;
4678 
4679 	/* Initialize the device structure. */
4680 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4681 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4682 	dev->needs_free_netdev = true;
4683 }
4684 
4685 static int config_mgmt_dev(struct pci_dev *pdev)
4686 {
4687 	struct adapter *adap = pci_get_drvdata(pdev);
4688 	struct net_device *netdev;
4689 	struct port_info *pi;
4690 	char name[IFNAMSIZ];
4691 	int err;
4692 
4693 	snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4694 	netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN,
4695 			      dummy_setup);
4696 	if (!netdev)
4697 		return -ENOMEM;
4698 
4699 	pi = netdev_priv(netdev);
4700 	pi->adapter = adap;
4701 	pi->tx_chan = adap->pf % adap->params.nports;
4702 	SET_NETDEV_DEV(netdev, &pdev->dev);
4703 
4704 	adap->port[0] = netdev;
4705 	pi->port_id = 0;
4706 
4707 	err = register_netdev(adap->port[0]);
4708 	if (err) {
4709 		pr_info("Unable to register VF mgmt netdev %s\n", name);
4710 		free_netdev(adap->port[0]);
4711 		adap->port[0] = NULL;
4712 		return err;
4713 	}
4714 	return 0;
4715 }
4716 
4717 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4718 {
4719 	struct adapter *adap = pci_get_drvdata(pdev);
4720 	int err = 0;
4721 	int current_vfs = pci_num_vf(pdev);
4722 	u32 pcie_fw;
4723 
4724 	pcie_fw = readl(adap->regs + PCIE_FW_A);
4725 	/* Check if cxgb4 is the MASTER and fw is initialized */
4726 	if (!(pcie_fw & PCIE_FW_INIT_F) ||
4727 	    !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4728 	    PCIE_FW_MASTER_G(pcie_fw) != 4) {
4729 		dev_warn(&pdev->dev,
4730 			 "cxgb4 driver needs to be MASTER to support SRIOV\n");
4731 		return -EOPNOTSUPP;
4732 	}
4733 
4734 	/* If any of the VF's is already assigned to Guest OS, then
4735 	 * SRIOV for the same cannot be modified
4736 	 */
4737 	if (current_vfs && pci_vfs_assigned(pdev)) {
4738 		dev_err(&pdev->dev,
4739 			"Cannot modify SR-IOV while VFs are assigned\n");
4740 		num_vfs = current_vfs;
4741 		return num_vfs;
4742 	}
4743 
4744 	/* Disable SRIOV when zero is passed.
4745 	 * One needs to disable SRIOV before modifying it, else
4746 	 * stack throws the below warning:
4747 	 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4748 	 */
4749 	if (!num_vfs) {
4750 		pci_disable_sriov(pdev);
4751 		if (adap->port[0]) {
4752 			unregister_netdev(adap->port[0]);
4753 			adap->port[0] = NULL;
4754 		}
4755 		/* free VF resources */
4756 		kfree(adap->vfinfo);
4757 		adap->vfinfo = NULL;
4758 		adap->num_vfs = 0;
4759 		return num_vfs;
4760 	}
4761 
4762 	if (num_vfs != current_vfs) {
4763 		err = pci_enable_sriov(pdev, num_vfs);
4764 		if (err)
4765 			return err;
4766 
4767 		adap->num_vfs = num_vfs;
4768 		err = config_mgmt_dev(pdev);
4769 		if (err)
4770 			return err;
4771 	}
4772 
4773 	adap->vfinfo = kcalloc(adap->num_vfs,
4774 			       sizeof(struct vf_info), GFP_KERNEL);
4775 	if (adap->vfinfo)
4776 		fill_vf_station_mac_addr(adap);
4777 	return num_vfs;
4778 }
4779 #endif
4780 
4781 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4782 {
4783 	int func, i, err, s_qpp, qpp, num_seg;
4784 	struct port_info *pi;
4785 	bool highdma = false;
4786 	struct adapter *adapter = NULL;
4787 	struct net_device *netdev;
4788 	void __iomem *regs;
4789 	u32 whoami, pl_rev;
4790 	enum chip_type chip;
4791 	static int adap_idx = 1;
4792 #ifdef CONFIG_PCI_IOV
4793 	u32 v, port_vec;
4794 #endif
4795 
4796 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4797 
4798 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4799 	if (err) {
4800 		/* Just info, some other driver may have claimed the device. */
4801 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4802 		return err;
4803 	}
4804 
4805 	err = pci_enable_device(pdev);
4806 	if (err) {
4807 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4808 		goto out_release_regions;
4809 	}
4810 
4811 	regs = pci_ioremap_bar(pdev, 0);
4812 	if (!regs) {
4813 		dev_err(&pdev->dev, "cannot map device registers\n");
4814 		err = -ENOMEM;
4815 		goto out_disable_device;
4816 	}
4817 
4818 	err = t4_wait_dev_ready(regs);
4819 	if (err < 0)
4820 		goto out_unmap_bar0;
4821 
4822 	/* We control everything through one PF */
4823 	whoami = readl(regs + PL_WHOAMI_A);
4824 	pl_rev = REV_G(readl(regs + PL_REV_A));
4825 	chip = get_chip_type(pdev, pl_rev);
4826 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4827 		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4828 	if (func != ent->driver_data) {
4829 #ifndef CONFIG_PCI_IOV
4830 		iounmap(regs);
4831 #endif
4832 		pci_disable_device(pdev);
4833 		pci_save_state(pdev);        /* to restore SR-IOV later */
4834 		goto sriov;
4835 	}
4836 
4837 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4838 		highdma = true;
4839 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4840 		if (err) {
4841 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4842 				"coherent allocations\n");
4843 			goto out_unmap_bar0;
4844 		}
4845 	} else {
4846 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4847 		if (err) {
4848 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4849 			goto out_unmap_bar0;
4850 		}
4851 	}
4852 
4853 	pci_enable_pcie_error_reporting(pdev);
4854 	pci_set_master(pdev);
4855 	pci_save_state(pdev);
4856 
4857 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4858 	if (!adapter) {
4859 		err = -ENOMEM;
4860 		goto out_unmap_bar0;
4861 	}
4862 	adap_idx++;
4863 
4864 	adapter->workq = create_singlethread_workqueue("cxgb4");
4865 	if (!adapter->workq) {
4866 		err = -ENOMEM;
4867 		goto out_free_adapter;
4868 	}
4869 
4870 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4871 				    (sizeof(struct mbox_cmd) *
4872 				     T4_OS_LOG_MBOX_CMDS),
4873 				    GFP_KERNEL);
4874 	if (!adapter->mbox_log) {
4875 		err = -ENOMEM;
4876 		goto out_free_adapter;
4877 	}
4878 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4879 
4880 	/* PCI device has been enabled */
4881 	adapter->flags |= DEV_ENABLED;
4882 
4883 	adapter->regs = regs;
4884 	adapter->pdev = pdev;
4885 	adapter->pdev_dev = &pdev->dev;
4886 	adapter->name = pci_name(pdev);
4887 	adapter->mbox = func;
4888 	adapter->pf = func;
4889 	adapter->msg_enable = DFLT_MSG_ENABLE;
4890 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4891 
4892 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
4893 	 * Ingress Packet Data to Free List Buffers in order to allow for
4894 	 * chipset performance optimizations between the Root Complex and
4895 	 * Memory Controllers.  (Messages to the associated Ingress Queue
4896 	 * notifying new Packet Placement in the Free Lists Buffers will be
4897 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
4898 	 * all preceding PCIe Transaction Layer Packets will be processed
4899 	 * first.)  But some Root Complexes have various issues with Upstream
4900 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
4901 	 * The PCIe devices which under the Root Complexes will be cleared the
4902 	 * Relaxed Ordering bit in the configuration space, So we check our
4903 	 * PCIe configuration space to see if it's flagged with advice against
4904 	 * using Relaxed Ordering.
4905 	 */
4906 	if (!pcie_relaxed_ordering_enabled(pdev))
4907 		adapter->flags |= ROOT_NO_RELAXED_ORDERING;
4908 
4909 	spin_lock_init(&adapter->stats_lock);
4910 	spin_lock_init(&adapter->tid_release_lock);
4911 	spin_lock_init(&adapter->win0_lock);
4912 	spin_lock_init(&adapter->mbox_lock);
4913 
4914 	INIT_LIST_HEAD(&adapter->mlist.list);
4915 
4916 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4917 	INIT_WORK(&adapter->db_full_task, process_db_full);
4918 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4919 
4920 	err = t4_prep_adapter(adapter);
4921 	if (err)
4922 		goto out_free_adapter;
4923 
4924 
4925 	if (!is_t4(adapter->params.chip)) {
4926 		s_qpp = (QUEUESPERPAGEPF0_S +
4927 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4928 			adapter->pf);
4929 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4930 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4931 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
4932 
4933 		/* Each segment size is 128B. Write coalescing is enabled only
4934 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4935 		 * queue is less no of segments that can be accommodated in
4936 		 * a page size.
4937 		 */
4938 		if (qpp > num_seg) {
4939 			dev_err(&pdev->dev,
4940 				"Incorrect number of egress queues per page\n");
4941 			err = -EINVAL;
4942 			goto out_free_adapter;
4943 		}
4944 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4945 		pci_resource_len(pdev, 2));
4946 		if (!adapter->bar2) {
4947 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
4948 			err = -ENOMEM;
4949 			goto out_free_adapter;
4950 		}
4951 	}
4952 
4953 	setup_memwin(adapter);
4954 	err = adap_init0(adapter);
4955 #ifdef CONFIG_DEBUG_FS
4956 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4957 #endif
4958 	setup_memwin_rdma(adapter);
4959 	if (err)
4960 		goto out_unmap_bar;
4961 
4962 	/* configure SGE_STAT_CFG_A to read WC stats */
4963 	if (!is_t4(adapter->params.chip))
4964 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4965 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4966 			      T6_STATMODE_V(0)));
4967 
4968 	for_each_port(adapter, i) {
4969 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
4970 					   MAX_ETH_QSETS);
4971 		if (!netdev) {
4972 			err = -ENOMEM;
4973 			goto out_free_dev;
4974 		}
4975 
4976 		SET_NETDEV_DEV(netdev, &pdev->dev);
4977 
4978 		adapter->port[i] = netdev;
4979 		pi = netdev_priv(netdev);
4980 		pi->adapter = adapter;
4981 		pi->xact_addr_filt = -1;
4982 		pi->port_id = i;
4983 		netdev->irq = pdev->irq;
4984 
4985 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4986 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4987 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4988 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
4989 			NETIF_F_HW_TC;
4990 		if (highdma)
4991 			netdev->hw_features |= NETIF_F_HIGHDMA;
4992 		netdev->features |= netdev->hw_features;
4993 		netdev->vlan_features = netdev->features & VLAN_FEAT;
4994 
4995 		netdev->priv_flags |= IFF_UNICAST_FLT;
4996 
4997 		/* MTU range: 81 - 9600 */
4998 		netdev->min_mtu = 81;
4999 		netdev->max_mtu = MAX_MTU;
5000 
5001 		netdev->netdev_ops = &cxgb4_netdev_ops;
5002 #ifdef CONFIG_CHELSIO_T4_DCB
5003 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
5004 		cxgb4_dcb_state_init(netdev);
5005 #endif
5006 		cxgb4_set_ethtool_ops(netdev);
5007 	}
5008 
5009 	pci_set_drvdata(pdev, adapter);
5010 
5011 	if (adapter->flags & FW_OK) {
5012 		err = t4_port_init(adapter, func, func, 0);
5013 		if (err)
5014 			goto out_free_dev;
5015 	} else if (adapter->params.nports == 1) {
5016 		/* If we don't have a connection to the firmware -- possibly
5017 		 * because of an error -- grab the raw VPD parameters so we
5018 		 * can set the proper MAC Address on the debug network
5019 		 * interface that we've created.
5020 		 */
5021 		u8 hw_addr[ETH_ALEN];
5022 		u8 *na = adapter->params.vpd.na;
5023 
5024 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5025 		if (!err) {
5026 			for (i = 0; i < ETH_ALEN; i++)
5027 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5028 					      hex2val(na[2 * i + 1]));
5029 			t4_set_hw_addr(adapter, 0, hw_addr);
5030 		}
5031 	}
5032 
5033 	/* Configure queues and allocate tables now, they can be needed as
5034 	 * soon as the first register_netdev completes.
5035 	 */
5036 	cfg_queues(adapter);
5037 
5038 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5039 	if (!adapter->l2t) {
5040 		/* We tolerate a lack of L2T, giving up some functionality */
5041 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5042 		adapter->params.offload = 0;
5043 	}
5044 
5045 #if IS_ENABLED(CONFIG_IPV6)
5046 	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5047 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5048 		/* CLIP functionality is not present in hardware,
5049 		 * hence disable all offload features
5050 		 */
5051 		dev_warn(&pdev->dev,
5052 			 "CLIP not enabled in hardware, continuing\n");
5053 		adapter->params.offload = 0;
5054 	} else {
5055 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5056 						  adapter->clipt_end);
5057 		if (!adapter->clipt) {
5058 			/* We tolerate a lack of clip_table, giving up
5059 			 * some functionality
5060 			 */
5061 			dev_warn(&pdev->dev,
5062 				 "could not allocate Clip table, continuing\n");
5063 			adapter->params.offload = 0;
5064 		}
5065 	}
5066 #endif
5067 
5068 	for_each_port(adapter, i) {
5069 		pi = adap2pinfo(adapter, i);
5070 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5071 		if (!pi->sched_tbl)
5072 			dev_warn(&pdev->dev,
5073 				 "could not activate scheduling on port %d\n",
5074 				 i);
5075 	}
5076 
5077 	if (tid_init(&adapter->tids) < 0) {
5078 		dev_warn(&pdev->dev, "could not allocate TID table, "
5079 			 "continuing\n");
5080 		adapter->params.offload = 0;
5081 	} else {
5082 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5083 		if (!adapter->tc_u32)
5084 			dev_warn(&pdev->dev,
5085 				 "could not offload tc u32, continuing\n");
5086 	}
5087 
5088 	if (is_offload(adapter)) {
5089 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5090 			u32 hash_base, hash_reg;
5091 
5092 			if (chip <= CHELSIO_T5) {
5093 				hash_reg = LE_DB_TID_HASHBASE_A;
5094 				hash_base = t4_read_reg(adapter, hash_reg);
5095 				adapter->tids.hash_base = hash_base / 4;
5096 			} else {
5097 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5098 				hash_base = t4_read_reg(adapter, hash_reg);
5099 				adapter->tids.hash_base = hash_base;
5100 			}
5101 		}
5102 	}
5103 
5104 	/* See what interrupts we'll be using */
5105 	if (msi > 1 && enable_msix(adapter) == 0)
5106 		adapter->flags |= USING_MSIX;
5107 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5108 		adapter->flags |= USING_MSI;
5109 		if (msi > 1)
5110 			free_msix_info(adapter);
5111 	}
5112 
5113 	/* check for PCI Express bandwidth capabiltites */
5114 	cxgb4_check_pcie_caps(adapter);
5115 
5116 	err = init_rss(adapter);
5117 	if (err)
5118 		goto out_free_dev;
5119 
5120 	/*
5121 	 * The card is now ready to go.  If any errors occur during device
5122 	 * registration we do not fail the whole card but rather proceed only
5123 	 * with the ports we manage to register successfully.  However we must
5124 	 * register at least one net device.
5125 	 */
5126 	for_each_port(adapter, i) {
5127 		pi = adap2pinfo(adapter, i);
5128 		adapter->port[i]->dev_port = pi->lport;
5129 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5130 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5131 
5132 		netif_carrier_off(adapter->port[i]);
5133 
5134 		err = register_netdev(adapter->port[i]);
5135 		if (err)
5136 			break;
5137 		adapter->chan_map[pi->tx_chan] = i;
5138 		print_port_info(adapter->port[i]);
5139 	}
5140 	if (i == 0) {
5141 		dev_err(&pdev->dev, "could not register any net devices\n");
5142 		goto out_free_dev;
5143 	}
5144 	if (err) {
5145 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5146 		err = 0;
5147 	}
5148 
5149 	if (cxgb4_debugfs_root) {
5150 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5151 							   cxgb4_debugfs_root);
5152 		setup_debugfs(adapter);
5153 	}
5154 
5155 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5156 	pdev->needs_freset = 1;
5157 
5158 	if (is_uld(adapter)) {
5159 		mutex_lock(&uld_mutex);
5160 		list_add_tail(&adapter->list_node, &adapter_list);
5161 		mutex_unlock(&uld_mutex);
5162 	}
5163 
5164 	if (!is_t4(adapter->params.chip))
5165 		cxgb4_ptp_init(adapter);
5166 
5167 	print_adapter_info(adapter);
5168 	setup_fw_sge_queues(adapter);
5169 	return 0;
5170 
5171 sriov:
5172 #ifdef CONFIG_PCI_IOV
5173 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5174 	if (!adapter) {
5175 		err = -ENOMEM;
5176 		goto free_pci_region;
5177 	}
5178 
5179 	adapter->pdev = pdev;
5180 	adapter->pdev_dev = &pdev->dev;
5181 	adapter->name = pci_name(pdev);
5182 	adapter->mbox = func;
5183 	adapter->pf = func;
5184 	adapter->regs = regs;
5185 	adapter->adap_idx = adap_idx;
5186 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5187 				    (sizeof(struct mbox_cmd) *
5188 				     T4_OS_LOG_MBOX_CMDS),
5189 				    GFP_KERNEL);
5190 	if (!adapter->mbox_log) {
5191 		err = -ENOMEM;
5192 		goto free_adapter;
5193 	}
5194 	spin_lock_init(&adapter->mbox_lock);
5195 	INIT_LIST_HEAD(&adapter->mlist.list);
5196 
5197 	v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5198 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
5199 	err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1,
5200 			      &v, &port_vec);
5201 	if (err < 0) {
5202 		dev_err(adapter->pdev_dev, "Could not fetch port params\n");
5203 		goto free_mbox_log;
5204 	}
5205 
5206 	adapter->params.nports = hweight32(port_vec);
5207 	pci_set_drvdata(pdev, adapter);
5208 	return 0;
5209 
5210 free_mbox_log:
5211 	kfree(adapter->mbox_log);
5212  free_adapter:
5213 	kfree(adapter);
5214  free_pci_region:
5215 	iounmap(regs);
5216 	pci_disable_sriov(pdev);
5217 	pci_release_regions(pdev);
5218 	return err;
5219 #else
5220 	return 0;
5221 #endif
5222 
5223  out_free_dev:
5224 	free_some_resources(adapter);
5225 	if (adapter->flags & USING_MSIX)
5226 		free_msix_info(adapter);
5227 	if (adapter->num_uld || adapter->num_ofld_uld)
5228 		t4_uld_mem_free(adapter);
5229  out_unmap_bar:
5230 	if (!is_t4(adapter->params.chip))
5231 		iounmap(adapter->bar2);
5232  out_free_adapter:
5233 	if (adapter->workq)
5234 		destroy_workqueue(adapter->workq);
5235 
5236 	kfree(adapter->mbox_log);
5237 	kfree(adapter);
5238  out_unmap_bar0:
5239 	iounmap(regs);
5240  out_disable_device:
5241 	pci_disable_pcie_error_reporting(pdev);
5242 	pci_disable_device(pdev);
5243  out_release_regions:
5244 	pci_release_regions(pdev);
5245 	return err;
5246 }
5247 
5248 static void remove_one(struct pci_dev *pdev)
5249 {
5250 	struct adapter *adapter = pci_get_drvdata(pdev);
5251 
5252 	if (!adapter) {
5253 		pci_release_regions(pdev);
5254 		return;
5255 	}
5256 
5257 	if (adapter->pf == 4) {
5258 		int i;
5259 
5260 		/* Tear down per-adapter Work Queue first since it can contain
5261 		 * references to our adapter data structure.
5262 		 */
5263 		destroy_workqueue(adapter->workq);
5264 
5265 		if (is_uld(adapter)) {
5266 			detach_ulds(adapter);
5267 			t4_uld_clean_up(adapter);
5268 		}
5269 
5270 		disable_interrupts(adapter);
5271 
5272 		for_each_port(adapter, i)
5273 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5274 				unregister_netdev(adapter->port[i]);
5275 
5276 		debugfs_remove_recursive(adapter->debugfs_root);
5277 
5278 		if (!is_t4(adapter->params.chip))
5279 			cxgb4_ptp_stop(adapter);
5280 
5281 		/* If we allocated filters, free up state associated with any
5282 		 * valid filters ...
5283 		 */
5284 		clear_all_filters(adapter);
5285 
5286 		if (adapter->flags & FULL_INIT_DONE)
5287 			cxgb_down(adapter);
5288 
5289 		if (adapter->flags & USING_MSIX)
5290 			free_msix_info(adapter);
5291 		if (adapter->num_uld || adapter->num_ofld_uld)
5292 			t4_uld_mem_free(adapter);
5293 		free_some_resources(adapter);
5294 #if IS_ENABLED(CONFIG_IPV6)
5295 		t4_cleanup_clip_tbl(adapter);
5296 #endif
5297 		iounmap(adapter->regs);
5298 		if (!is_t4(adapter->params.chip))
5299 			iounmap(adapter->bar2);
5300 		pci_disable_pcie_error_reporting(pdev);
5301 		if ((adapter->flags & DEV_ENABLED)) {
5302 			pci_disable_device(pdev);
5303 			adapter->flags &= ~DEV_ENABLED;
5304 		}
5305 		pci_release_regions(pdev);
5306 		kfree(adapter->mbox_log);
5307 		synchronize_rcu();
5308 		kfree(adapter);
5309 	}
5310 #ifdef CONFIG_PCI_IOV
5311 	else {
5312 		if (adapter->port[0])
5313 			unregister_netdev(adapter->port[0]);
5314 		iounmap(adapter->regs);
5315 		kfree(adapter->vfinfo);
5316 		kfree(adapter->mbox_log);
5317 		kfree(adapter);
5318 		pci_disable_sriov(pdev);
5319 		pci_release_regions(pdev);
5320 	}
5321 #endif
5322 }
5323 
5324 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5325  * delivery.  This is essentially a stripped down version of the PCI remove()
5326  * function where we do the minimal amount of work necessary to shutdown any
5327  * further activity.
5328  */
5329 static void shutdown_one(struct pci_dev *pdev)
5330 {
5331 	struct adapter *adapter = pci_get_drvdata(pdev);
5332 
5333 	/* As with remove_one() above (see extended comment), we only want do
5334 	 * do cleanup on PCI Devices which went all the way through init_one()
5335 	 * ...
5336 	 */
5337 	if (!adapter) {
5338 		pci_release_regions(pdev);
5339 		return;
5340 	}
5341 
5342 	if (adapter->pf == 4) {
5343 		int i;
5344 
5345 		for_each_port(adapter, i)
5346 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5347 				cxgb_close(adapter->port[i]);
5348 
5349 		if (is_uld(adapter)) {
5350 			detach_ulds(adapter);
5351 			t4_uld_clean_up(adapter);
5352 		}
5353 
5354 		disable_interrupts(adapter);
5355 		disable_msi(adapter);
5356 
5357 		t4_sge_stop(adapter);
5358 		if (adapter->flags & FW_OK)
5359 			t4_fw_bye(adapter, adapter->mbox);
5360 	}
5361 #ifdef CONFIG_PCI_IOV
5362 	else {
5363 		if (adapter->port[0])
5364 			unregister_netdev(adapter->port[0]);
5365 		iounmap(adapter->regs);
5366 		kfree(adapter->vfinfo);
5367 		kfree(adapter->mbox_log);
5368 		kfree(adapter);
5369 		pci_disable_sriov(pdev);
5370 		pci_release_regions(pdev);
5371 	}
5372 #endif
5373 }
5374 
5375 static struct pci_driver cxgb4_driver = {
5376 	.name     = KBUILD_MODNAME,
5377 	.id_table = cxgb4_pci_tbl,
5378 	.probe    = init_one,
5379 	.remove   = remove_one,
5380 	.shutdown = shutdown_one,
5381 #ifdef CONFIG_PCI_IOV
5382 	.sriov_configure = cxgb4_iov_configure,
5383 #endif
5384 	.err_handler = &cxgb4_eeh,
5385 };
5386 
5387 static int __init cxgb4_init_module(void)
5388 {
5389 	int ret;
5390 
5391 	/* Debugfs support is optional, just warn if this fails */
5392 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5393 	if (!cxgb4_debugfs_root)
5394 		pr_warn("could not create debugfs entry, continuing\n");
5395 
5396 	ret = pci_register_driver(&cxgb4_driver);
5397 	if (ret < 0)
5398 		debugfs_remove(cxgb4_debugfs_root);
5399 
5400 #if IS_ENABLED(CONFIG_IPV6)
5401 	if (!inet6addr_registered) {
5402 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5403 		inet6addr_registered = true;
5404 	}
5405 #endif
5406 
5407 	return ret;
5408 }
5409 
5410 static void __exit cxgb4_cleanup_module(void)
5411 {
5412 #if IS_ENABLED(CONFIG_IPV6)
5413 	if (inet6addr_registered) {
5414 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5415 		inet6addr_registered = false;
5416 	}
5417 #endif
5418 	pci_unregister_driver(&cxgb4_driver);
5419 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5420 }
5421 
5422 module_init(cxgb4_init_module);
5423 module_exit(cxgb4_cleanup_module);
5424