1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68 
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "cxgb4_debugfs.h"
78 #include "clip_tbl.h"
79 #include "l2t.h"
80 #include "sched.h"
81 #include "cxgb4_tc_u32.h"
82 #include "cxgb4_ptp.h"
83 
84 char cxgb4_driver_name[] = KBUILD_MODNAME;
85 
86 #ifdef DRV_VERSION
87 #undef DRV_VERSION
88 #endif
89 #define DRV_VERSION "2.0.0-ko"
90 const char cxgb4_driver_version[] = DRV_VERSION;
91 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
92 
93 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
94 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
95 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
96 
97 /* Macros needed to support the PCI Device ID Table ...
98  */
99 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
100 	static const struct pci_device_id cxgb4_pci_tbl[] = {
101 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
102 
103 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
104  * called for both.
105  */
106 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
107 
108 #define CH_PCI_ID_TABLE_ENTRY(devid) \
109 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
110 
111 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
112 		{ 0, } \
113 	}
114 
115 #include "t4_pci_id_tbl.h"
116 
117 #define FW4_FNAME "cxgb4/t4fw.bin"
118 #define FW5_FNAME "cxgb4/t5fw.bin"
119 #define FW6_FNAME "cxgb4/t6fw.bin"
120 #define FW4_CFNAME "cxgb4/t4-config.txt"
121 #define FW5_CFNAME "cxgb4/t5-config.txt"
122 #define FW6_CFNAME "cxgb4/t6-config.txt"
123 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
124 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
125 #define PHY_AQ1202_DEVICEID 0x4409
126 #define PHY_BCM84834_DEVICEID 0x4486
127 
128 MODULE_DESCRIPTION(DRV_DESC);
129 MODULE_AUTHOR("Chelsio Communications");
130 MODULE_LICENSE("Dual BSD/GPL");
131 MODULE_VERSION(DRV_VERSION);
132 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
133 MODULE_FIRMWARE(FW4_FNAME);
134 MODULE_FIRMWARE(FW5_FNAME);
135 MODULE_FIRMWARE(FW6_FNAME);
136 
137 /*
138  * The driver uses the best interrupt scheme available on a platform in the
139  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
140  * of these schemes the driver may consider as follows:
141  *
142  * msi = 2: choose from among all three options
143  * msi = 1: only consider MSI and INTx interrupts
144  * msi = 0: force INTx interrupts
145  */
146 static int msi = 2;
147 
148 module_param(msi, int, 0644);
149 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
150 
151 /*
152  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
153  * offset by 2 bytes in order to have the IP headers line up on 4-byte
154  * boundaries.  This is a requirement for many architectures which will throw
155  * a machine check fault if an attempt is made to access one of the 4-byte IP
156  * header fields on a non-4-byte boundary.  And it's a major performance issue
157  * even on some architectures which allow it like some implementations of the
158  * x86 ISA.  However, some architectures don't mind this and for some very
159  * edge-case performance sensitive applications (like forwarding large volumes
160  * of small packets), setting this DMA offset to 0 will decrease the number of
161  * PCI-E Bus transfers enough to measurably affect performance.
162  */
163 static int rx_dma_offset = 2;
164 
165 /* TX Queue select used to determine what algorithm to use for selecting TX
166  * queue. Select between the kernel provided function (select_queue=0) or user
167  * cxgb_select_queue function (select_queue=1)
168  *
169  * Default: select_queue=0
170  */
171 static int select_queue;
172 module_param(select_queue, int, 0644);
173 MODULE_PARM_DESC(select_queue,
174 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
175 
176 static struct dentry *cxgb4_debugfs_root;
177 
178 LIST_HEAD(adapter_list);
179 DEFINE_MUTEX(uld_mutex);
180 
181 static void link_report(struct net_device *dev)
182 {
183 	if (!netif_carrier_ok(dev))
184 		netdev_info(dev, "link down\n");
185 	else {
186 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
187 
188 		const char *s;
189 		const struct port_info *p = netdev_priv(dev);
190 
191 		switch (p->link_cfg.speed) {
192 		case 100:
193 			s = "100Mbps";
194 			break;
195 		case 1000:
196 			s = "1Gbps";
197 			break;
198 		case 10000:
199 			s = "10Gbps";
200 			break;
201 		case 25000:
202 			s = "25Gbps";
203 			break;
204 		case 40000:
205 			s = "40Gbps";
206 			break;
207 		case 100000:
208 			s = "100Gbps";
209 			break;
210 		default:
211 			pr_info("%s: unsupported speed: %d\n",
212 				dev->name, p->link_cfg.speed);
213 			return;
214 		}
215 
216 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
217 			    fc[p->link_cfg.fc]);
218 	}
219 }
220 
221 #ifdef CONFIG_CHELSIO_T4_DCB
222 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
223 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
224 {
225 	struct port_info *pi = netdev_priv(dev);
226 	struct adapter *adap = pi->adapter;
227 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
228 	int i;
229 
230 	/* We use a simple mapping of Port TX Queue Index to DCB
231 	 * Priority when we're enabling DCB.
232 	 */
233 	for (i = 0; i < pi->nqsets; i++, txq++) {
234 		u32 name, value;
235 		int err;
236 
237 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
238 			FW_PARAMS_PARAM_X_V(
239 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
240 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
241 		value = enable ? i : 0xffffffff;
242 
243 		/* Since we can be called while atomic (from "interrupt
244 		 * level") we need to issue the Set Parameters Commannd
245 		 * without sleeping (timeout < 0).
246 		 */
247 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
248 					    &name, &value,
249 					    -FW_CMD_MAX_TIMEOUT);
250 
251 		if (err)
252 			dev_err(adap->pdev_dev,
253 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
254 				enable ? "set" : "unset", pi->port_id, i, -err);
255 		else
256 			txq->dcb_prio = value;
257 	}
258 }
259 
260 static int cxgb4_dcb_enabled(const struct net_device *dev)
261 {
262 	struct port_info *pi = netdev_priv(dev);
263 
264 	if (!pi->dcb.enabled)
265 		return 0;
266 
267 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
268 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
269 }
270 #endif /* CONFIG_CHELSIO_T4_DCB */
271 
272 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
273 {
274 	struct net_device *dev = adapter->port[port_id];
275 
276 	/* Skip changes from disabled ports. */
277 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
278 		if (link_stat)
279 			netif_carrier_on(dev);
280 		else {
281 #ifdef CONFIG_CHELSIO_T4_DCB
282 			if (cxgb4_dcb_enabled(dev)) {
283 				cxgb4_dcb_state_init(dev);
284 				dcb_tx_queue_prio_enable(dev, false);
285 			}
286 #endif /* CONFIG_CHELSIO_T4_DCB */
287 			netif_carrier_off(dev);
288 		}
289 
290 		link_report(dev);
291 	}
292 }
293 
294 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
295 {
296 	static const char *mod_str[] = {
297 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
298 	};
299 
300 	const struct net_device *dev = adap->port[port_id];
301 	const struct port_info *pi = netdev_priv(dev);
302 
303 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
304 		netdev_info(dev, "port module unplugged\n");
305 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
306 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
307 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
308 		netdev_info(dev, "%s: unsupported port module inserted\n",
309 			    dev->name);
310 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
311 		netdev_info(dev, "%s: unknown port module inserted\n",
312 			    dev->name);
313 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
314 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
315 	else
316 		netdev_info(dev, "%s: unknown module type %d inserted\n",
317 			    dev->name, pi->mod_type);
318 }
319 
320 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
321 module_param(dbfifo_int_thresh, int, 0644);
322 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
323 
324 /*
325  * usecs to sleep while draining the dbfifo
326  */
327 static int dbfifo_drain_delay = 1000;
328 module_param(dbfifo_drain_delay, int, 0644);
329 MODULE_PARM_DESC(dbfifo_drain_delay,
330 		 "usecs to sleep while draining the dbfifo");
331 
332 static inline int cxgb4_set_addr_hash(struct port_info *pi)
333 {
334 	struct adapter *adap = pi->adapter;
335 	u64 vec = 0;
336 	bool ucast = false;
337 	struct hash_mac_addr *entry;
338 
339 	/* Calculate the hash vector for the updated list and program it */
340 	list_for_each_entry(entry, &adap->mac_hlist, list) {
341 		ucast |= is_unicast_ether_addr(entry->addr);
342 		vec |= (1ULL << hash_mac_addr(entry->addr));
343 	}
344 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
345 				vec, false);
346 }
347 
348 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
349 {
350 	struct port_info *pi = netdev_priv(netdev);
351 	struct adapter *adap = pi->adapter;
352 	int ret;
353 	u64 mhash = 0;
354 	u64 uhash = 0;
355 	bool free = false;
356 	bool ucast = is_unicast_ether_addr(mac_addr);
357 	const u8 *maclist[1] = {mac_addr};
358 	struct hash_mac_addr *new_entry;
359 
360 	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
361 				NULL, ucast ? &uhash : &mhash, false);
362 	if (ret < 0)
363 		goto out;
364 	/* if hash != 0, then add the addr to hash addr list
365 	 * so on the end we will calculate the hash for the
366 	 * list and program it
367 	 */
368 	if (uhash || mhash) {
369 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
370 		if (!new_entry)
371 			return -ENOMEM;
372 		ether_addr_copy(new_entry->addr, mac_addr);
373 		list_add_tail(&new_entry->list, &adap->mac_hlist);
374 		ret = cxgb4_set_addr_hash(pi);
375 	}
376 out:
377 	return ret < 0 ? ret : 0;
378 }
379 
380 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
381 {
382 	struct port_info *pi = netdev_priv(netdev);
383 	struct adapter *adap = pi->adapter;
384 	int ret;
385 	const u8 *maclist[1] = {mac_addr};
386 	struct hash_mac_addr *entry, *tmp;
387 
388 	/* If the MAC address to be removed is in the hash addr
389 	 * list, delete it from the list and update hash vector
390 	 */
391 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
392 		if (ether_addr_equal(entry->addr, mac_addr)) {
393 			list_del(&entry->list);
394 			kfree(entry);
395 			return cxgb4_set_addr_hash(pi);
396 		}
397 	}
398 
399 	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
400 	return ret < 0 ? -EINVAL : 0;
401 }
402 
403 /*
404  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
405  * If @mtu is -1 it is left unchanged.
406  */
407 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
408 {
409 	struct port_info *pi = netdev_priv(dev);
410 	struct adapter *adapter = pi->adapter;
411 
412 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
413 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
414 
415 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
416 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
417 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
418 			     sleep_ok);
419 }
420 
421 /**
422  *	link_start - enable a port
423  *	@dev: the port to enable
424  *
425  *	Performs the MAC and PHY actions needed to enable a port.
426  */
427 static int link_start(struct net_device *dev)
428 {
429 	int ret;
430 	struct port_info *pi = netdev_priv(dev);
431 	unsigned int mb = pi->adapter->pf;
432 
433 	/*
434 	 * We do not set address filters and promiscuity here, the stack does
435 	 * that step explicitly.
436 	 */
437 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
438 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
439 	if (ret == 0) {
440 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
441 				    pi->xact_addr_filt, dev->dev_addr, true,
442 				    true);
443 		if (ret >= 0) {
444 			pi->xact_addr_filt = ret;
445 			ret = 0;
446 		}
447 	}
448 	if (ret == 0)
449 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
450 				    &pi->link_cfg);
451 	if (ret == 0) {
452 		local_bh_disable();
453 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
454 					  true, CXGB4_DCB_ENABLED);
455 		local_bh_enable();
456 	}
457 
458 	return ret;
459 }
460 
461 #ifdef CONFIG_CHELSIO_T4_DCB
462 /* Handle a Data Center Bridging update message from the firmware. */
463 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
464 {
465 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
466 	struct net_device *dev = adap->port[adap->chan_map[port]];
467 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
468 	int new_dcb_enabled;
469 
470 	cxgb4_dcb_handle_fw_update(adap, pcmd);
471 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
472 
473 	/* If the DCB has become enabled or disabled on the port then we're
474 	 * going to need to set up/tear down DCB Priority parameters for the
475 	 * TX Queues associated with the port.
476 	 */
477 	if (new_dcb_enabled != old_dcb_enabled)
478 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
479 }
480 #endif /* CONFIG_CHELSIO_T4_DCB */
481 
482 /* Response queue handler for the FW event queue.
483  */
484 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
485 			  const struct pkt_gl *gl)
486 {
487 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
488 
489 	rsp++;                                          /* skip RSS header */
490 
491 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
492 	 */
493 	if (unlikely(opcode == CPL_FW4_MSG &&
494 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
495 		rsp++;
496 		opcode = ((const struct rss_header *)rsp)->opcode;
497 		rsp++;
498 		if (opcode != CPL_SGE_EGR_UPDATE) {
499 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
500 				, opcode);
501 			goto out;
502 		}
503 	}
504 
505 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
506 		const struct cpl_sge_egr_update *p = (void *)rsp;
507 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
508 		struct sge_txq *txq;
509 
510 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
511 		txq->restarts++;
512 		if (txq->q_type == CXGB4_TXQ_ETH) {
513 			struct sge_eth_txq *eq;
514 
515 			eq = container_of(txq, struct sge_eth_txq, q);
516 			netif_tx_wake_queue(eq->txq);
517 		} else {
518 			struct sge_uld_txq *oq;
519 
520 			oq = container_of(txq, struct sge_uld_txq, q);
521 			tasklet_schedule(&oq->qresume_tsk);
522 		}
523 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
524 		const struct cpl_fw6_msg *p = (void *)rsp;
525 
526 #ifdef CONFIG_CHELSIO_T4_DCB
527 		const struct fw_port_cmd *pcmd = (const void *)p->data;
528 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
529 		unsigned int action =
530 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
531 
532 		if (cmd == FW_PORT_CMD &&
533 		    action == FW_PORT_ACTION_GET_PORT_INFO) {
534 			int port = FW_PORT_CMD_PORTID_G(
535 					be32_to_cpu(pcmd->op_to_portid));
536 			struct net_device *dev =
537 				q->adap->port[q->adap->chan_map[port]];
538 			int state_input = ((pcmd->u.info.dcbxdis_pkd &
539 					    FW_PORT_CMD_DCBXDIS_F)
540 					   ? CXGB4_DCB_INPUT_FW_DISABLED
541 					   : CXGB4_DCB_INPUT_FW_ENABLED);
542 
543 			cxgb4_dcb_state_fsm(dev, state_input);
544 		}
545 
546 		if (cmd == FW_PORT_CMD &&
547 		    action == FW_PORT_ACTION_L2_DCB_CFG)
548 			dcb_rpl(q->adap, pcmd);
549 		else
550 #endif
551 			if (p->type == 0)
552 				t4_handle_fw_rpl(q->adap, p->data);
553 	} else if (opcode == CPL_L2T_WRITE_RPL) {
554 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
555 
556 		do_l2t_write_rpl(q->adap, p);
557 	} else if (opcode == CPL_SET_TCB_RPL) {
558 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
559 
560 		filter_rpl(q->adap, p);
561 	} else
562 		dev_err(q->adap->pdev_dev,
563 			"unexpected CPL %#x on FW event queue\n", opcode);
564 out:
565 	return 0;
566 }
567 
568 static void disable_msi(struct adapter *adapter)
569 {
570 	if (adapter->flags & USING_MSIX) {
571 		pci_disable_msix(adapter->pdev);
572 		adapter->flags &= ~USING_MSIX;
573 	} else if (adapter->flags & USING_MSI) {
574 		pci_disable_msi(adapter->pdev);
575 		adapter->flags &= ~USING_MSI;
576 	}
577 }
578 
579 /*
580  * Interrupt handler for non-data events used with MSI-X.
581  */
582 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
583 {
584 	struct adapter *adap = cookie;
585 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
586 
587 	if (v & PFSW_F) {
588 		adap->swintr = 1;
589 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
590 	}
591 	if (adap->flags & MASTER_PF)
592 		t4_slow_intr_handler(adap);
593 	return IRQ_HANDLED;
594 }
595 
596 /*
597  * Name the MSI-X interrupts.
598  */
599 static void name_msix_vecs(struct adapter *adap)
600 {
601 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
602 
603 	/* non-data interrupts */
604 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
605 
606 	/* FW events */
607 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
608 		 adap->port[0]->name);
609 
610 	/* Ethernet queues */
611 	for_each_port(adap, j) {
612 		struct net_device *d = adap->port[j];
613 		const struct port_info *pi = netdev_priv(d);
614 
615 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
616 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
617 				 d->name, i);
618 	}
619 }
620 
621 static int request_msix_queue_irqs(struct adapter *adap)
622 {
623 	struct sge *s = &adap->sge;
624 	int err, ethqidx;
625 	int msi_index = 2;
626 
627 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
628 			  adap->msix_info[1].desc, &s->fw_evtq);
629 	if (err)
630 		return err;
631 
632 	for_each_ethrxq(s, ethqidx) {
633 		err = request_irq(adap->msix_info[msi_index].vec,
634 				  t4_sge_intr_msix, 0,
635 				  adap->msix_info[msi_index].desc,
636 				  &s->ethrxq[ethqidx].rspq);
637 		if (err)
638 			goto unwind;
639 		msi_index++;
640 	}
641 	return 0;
642 
643 unwind:
644 	while (--ethqidx >= 0)
645 		free_irq(adap->msix_info[--msi_index].vec,
646 			 &s->ethrxq[ethqidx].rspq);
647 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
648 	return err;
649 }
650 
651 static void free_msix_queue_irqs(struct adapter *adap)
652 {
653 	int i, msi_index = 2;
654 	struct sge *s = &adap->sge;
655 
656 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
657 	for_each_ethrxq(s, i)
658 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
659 }
660 
661 /**
662  *	cxgb4_write_rss - write the RSS table for a given port
663  *	@pi: the port
664  *	@queues: array of queue indices for RSS
665  *
666  *	Sets up the portion of the HW RSS table for the port's VI to distribute
667  *	packets to the Rx queues in @queues.
668  *	Should never be called before setting up sge eth rx queues
669  */
670 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
671 {
672 	u16 *rss;
673 	int i, err;
674 	struct adapter *adapter = pi->adapter;
675 	const struct sge_eth_rxq *rxq;
676 
677 	rxq = &adapter->sge.ethrxq[pi->first_qset];
678 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
679 	if (!rss)
680 		return -ENOMEM;
681 
682 	/* map the queue indices to queue ids */
683 	for (i = 0; i < pi->rss_size; i++, queues++)
684 		rss[i] = rxq[*queues].rspq.abs_id;
685 
686 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
687 				  pi->rss_size, rss, pi->rss_size);
688 	/* If Tunnel All Lookup isn't specified in the global RSS
689 	 * Configuration, then we need to specify a default Ingress
690 	 * Queue for any ingress packets which aren't hashed.  We'll
691 	 * use our first ingress queue ...
692 	 */
693 	if (!err)
694 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
695 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
696 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
697 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
698 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
699 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
700 				       rss[0]);
701 	kfree(rss);
702 	return err;
703 }
704 
705 /**
706  *	setup_rss - configure RSS
707  *	@adap: the adapter
708  *
709  *	Sets up RSS for each port.
710  */
711 static int setup_rss(struct adapter *adap)
712 {
713 	int i, j, err;
714 
715 	for_each_port(adap, i) {
716 		const struct port_info *pi = adap2pinfo(adap, i);
717 
718 		/* Fill default values with equal distribution */
719 		for (j = 0; j < pi->rss_size; j++)
720 			pi->rss[j] = j % pi->nqsets;
721 
722 		err = cxgb4_write_rss(pi, pi->rss);
723 		if (err)
724 			return err;
725 	}
726 	return 0;
727 }
728 
729 /*
730  * Return the channel of the ingress queue with the given qid.
731  */
732 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
733 {
734 	qid -= p->ingr_start;
735 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
736 }
737 
738 /*
739  * Wait until all NAPI handlers are descheduled.
740  */
741 static void quiesce_rx(struct adapter *adap)
742 {
743 	int i;
744 
745 	for (i = 0; i < adap->sge.ingr_sz; i++) {
746 		struct sge_rspq *q = adap->sge.ingr_map[i];
747 
748 		if (q && q->handler)
749 			napi_disable(&q->napi);
750 	}
751 }
752 
753 /* Disable interrupt and napi handler */
754 static void disable_interrupts(struct adapter *adap)
755 {
756 	if (adap->flags & FULL_INIT_DONE) {
757 		t4_intr_disable(adap);
758 		if (adap->flags & USING_MSIX) {
759 			free_msix_queue_irqs(adap);
760 			free_irq(adap->msix_info[0].vec, adap);
761 		} else {
762 			free_irq(adap->pdev->irq, adap);
763 		}
764 		quiesce_rx(adap);
765 	}
766 }
767 
768 /*
769  * Enable NAPI scheduling and interrupt generation for all Rx queues.
770  */
771 static void enable_rx(struct adapter *adap)
772 {
773 	int i;
774 
775 	for (i = 0; i < adap->sge.ingr_sz; i++) {
776 		struct sge_rspq *q = adap->sge.ingr_map[i];
777 
778 		if (!q)
779 			continue;
780 		if (q->handler)
781 			napi_enable(&q->napi);
782 
783 		/* 0-increment GTS to start the timer and enable interrupts */
784 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
785 			     SEINTARM_V(q->intr_params) |
786 			     INGRESSQID_V(q->cntxt_id));
787 	}
788 }
789 
790 
791 static int setup_fw_sge_queues(struct adapter *adap)
792 {
793 	struct sge *s = &adap->sge;
794 	int err = 0;
795 
796 	bitmap_zero(s->starving_fl, s->egr_sz);
797 	bitmap_zero(s->txq_maperr, s->egr_sz);
798 
799 	if (adap->flags & USING_MSIX)
800 		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
801 	else {
802 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
803 				       NULL, NULL, NULL, -1);
804 		if (err)
805 			return err;
806 		adap->msi_idx = -((int)s->intrq.abs_id + 1);
807 	}
808 
809 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
810 			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
811 	if (err)
812 		t4_free_sge_resources(adap);
813 	return err;
814 }
815 
816 /**
817  *	setup_sge_queues - configure SGE Tx/Rx/response queues
818  *	@adap: the adapter
819  *
820  *	Determines how many sets of SGE queues to use and initializes them.
821  *	We support multiple queue sets per port if we have MSI-X, otherwise
822  *	just one queue set per port.
823  */
824 static int setup_sge_queues(struct adapter *adap)
825 {
826 	int err, i, j;
827 	struct sge *s = &adap->sge;
828 	struct sge_uld_rxq_info *rxq_info = NULL;
829 	unsigned int cmplqid = 0;
830 
831 	if (is_uld(adap))
832 		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
833 
834 	for_each_port(adap, i) {
835 		struct net_device *dev = adap->port[i];
836 		struct port_info *pi = netdev_priv(dev);
837 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
838 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
839 
840 		for (j = 0; j < pi->nqsets; j++, q++) {
841 			if (adap->msi_idx > 0)
842 				adap->msi_idx++;
843 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
844 					       adap->msi_idx, &q->fl,
845 					       t4_ethrx_handler,
846 					       NULL,
847 					       t4_get_tp_ch_map(adap,
848 								pi->tx_chan));
849 			if (err)
850 				goto freeout;
851 			q->rspq.idx = j;
852 			memset(&q->stats, 0, sizeof(q->stats));
853 		}
854 		for (j = 0; j < pi->nqsets; j++, t++) {
855 			err = t4_sge_alloc_eth_txq(adap, t, dev,
856 					netdev_get_tx_queue(dev, j),
857 					s->fw_evtq.cntxt_id);
858 			if (err)
859 				goto freeout;
860 		}
861 	}
862 
863 	for_each_port(adap, i) {
864 		/* Note that cmplqid below is 0 if we don't
865 		 * have RDMA queues, and that's the right value.
866 		 */
867 		if (rxq_info)
868 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
869 
870 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
871 					    s->fw_evtq.cntxt_id, cmplqid);
872 		if (err)
873 			goto freeout;
874 	}
875 
876 	if (!is_t4(adap->params.chip)) {
877 		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
878 					   netdev_get_tx_queue(adap->port[0], 0)
879 					   , s->fw_evtq.cntxt_id);
880 		if (err)
881 			goto freeout;
882 	}
883 
884 	t4_write_reg(adap, is_t4(adap->params.chip) ?
885 				MPS_TRC_RSS_CONTROL_A :
886 				MPS_T5_TRC_RSS_CONTROL_A,
887 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
888 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
889 	return 0;
890 freeout:
891 	t4_free_sge_resources(adap);
892 	return err;
893 }
894 
895 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
896 			     void *accel_priv, select_queue_fallback_t fallback)
897 {
898 	int txq;
899 
900 #ifdef CONFIG_CHELSIO_T4_DCB
901 	/* If a Data Center Bridging has been successfully negotiated on this
902 	 * link then we'll use the skb's priority to map it to a TX Queue.
903 	 * The skb's priority is determined via the VLAN Tag Priority Code
904 	 * Point field.
905 	 */
906 	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
907 		u16 vlan_tci;
908 		int err;
909 
910 		err = vlan_get_tag(skb, &vlan_tci);
911 		if (unlikely(err)) {
912 			if (net_ratelimit())
913 				netdev_warn(dev,
914 					    "TX Packet without VLAN Tag on DCB Link\n");
915 			txq = 0;
916 		} else {
917 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
918 #ifdef CONFIG_CHELSIO_T4_FCOE
919 			if (skb->protocol == htons(ETH_P_FCOE))
920 				txq = skb->priority & 0x7;
921 #endif /* CONFIG_CHELSIO_T4_FCOE */
922 		}
923 		return txq;
924 	}
925 #endif /* CONFIG_CHELSIO_T4_DCB */
926 
927 	if (select_queue) {
928 		txq = (skb_rx_queue_recorded(skb)
929 			? skb_get_rx_queue(skb)
930 			: smp_processor_id());
931 
932 		while (unlikely(txq >= dev->real_num_tx_queues))
933 			txq -= dev->real_num_tx_queues;
934 
935 		return txq;
936 	}
937 
938 	return fallback(dev, skb) % dev->real_num_tx_queues;
939 }
940 
941 static int closest_timer(const struct sge *s, int time)
942 {
943 	int i, delta, match = 0, min_delta = INT_MAX;
944 
945 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
946 		delta = time - s->timer_val[i];
947 		if (delta < 0)
948 			delta = -delta;
949 		if (delta < min_delta) {
950 			min_delta = delta;
951 			match = i;
952 		}
953 	}
954 	return match;
955 }
956 
957 static int closest_thres(const struct sge *s, int thres)
958 {
959 	int i, delta, match = 0, min_delta = INT_MAX;
960 
961 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
962 		delta = thres - s->counter_val[i];
963 		if (delta < 0)
964 			delta = -delta;
965 		if (delta < min_delta) {
966 			min_delta = delta;
967 			match = i;
968 		}
969 	}
970 	return match;
971 }
972 
973 /**
974  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
975  *	@q: the Rx queue
976  *	@us: the hold-off time in us, or 0 to disable timer
977  *	@cnt: the hold-off packet count, or 0 to disable counter
978  *
979  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
980  *	one of the two needs to be enabled for the queue to generate interrupts.
981  */
982 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
983 			       unsigned int us, unsigned int cnt)
984 {
985 	struct adapter *adap = q->adap;
986 
987 	if ((us | cnt) == 0)
988 		cnt = 1;
989 
990 	if (cnt) {
991 		int err;
992 		u32 v, new_idx;
993 
994 		new_idx = closest_thres(&adap->sge, cnt);
995 		if (q->desc && q->pktcnt_idx != new_idx) {
996 			/* the queue has already been created, update it */
997 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
998 			    FW_PARAMS_PARAM_X_V(
999 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1000 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1001 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1002 					    &v, &new_idx);
1003 			if (err)
1004 				return err;
1005 		}
1006 		q->pktcnt_idx = new_idx;
1007 	}
1008 
1009 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1010 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1011 	return 0;
1012 }
1013 
1014 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1015 {
1016 	const struct port_info *pi = netdev_priv(dev);
1017 	netdev_features_t changed = dev->features ^ features;
1018 	int err;
1019 
1020 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1021 		return 0;
1022 
1023 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1024 			    -1, -1, -1,
1025 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1026 	if (unlikely(err))
1027 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1028 	return err;
1029 }
1030 
1031 static int setup_debugfs(struct adapter *adap)
1032 {
1033 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1034 		return -1;
1035 
1036 #ifdef CONFIG_DEBUG_FS
1037 	t4_setup_debugfs(adap);
1038 #endif
1039 	return 0;
1040 }
1041 
1042 /*
1043  * upper-layer driver support
1044  */
1045 
1046 /*
1047  * Allocate an active-open TID and set it to the supplied value.
1048  */
1049 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1050 {
1051 	int atid = -1;
1052 
1053 	spin_lock_bh(&t->atid_lock);
1054 	if (t->afree) {
1055 		union aopen_entry *p = t->afree;
1056 
1057 		atid = (p - t->atid_tab) + t->atid_base;
1058 		t->afree = p->next;
1059 		p->data = data;
1060 		t->atids_in_use++;
1061 	}
1062 	spin_unlock_bh(&t->atid_lock);
1063 	return atid;
1064 }
1065 EXPORT_SYMBOL(cxgb4_alloc_atid);
1066 
1067 /*
1068  * Release an active-open TID.
1069  */
1070 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1071 {
1072 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1073 
1074 	spin_lock_bh(&t->atid_lock);
1075 	p->next = t->afree;
1076 	t->afree = p;
1077 	t->atids_in_use--;
1078 	spin_unlock_bh(&t->atid_lock);
1079 }
1080 EXPORT_SYMBOL(cxgb4_free_atid);
1081 
1082 /*
1083  * Allocate a server TID and set it to the supplied value.
1084  */
1085 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1086 {
1087 	int stid;
1088 
1089 	spin_lock_bh(&t->stid_lock);
1090 	if (family == PF_INET) {
1091 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1092 		if (stid < t->nstids)
1093 			__set_bit(stid, t->stid_bmap);
1094 		else
1095 			stid = -1;
1096 	} else {
1097 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1098 		if (stid < 0)
1099 			stid = -1;
1100 	}
1101 	if (stid >= 0) {
1102 		t->stid_tab[stid].data = data;
1103 		stid += t->stid_base;
1104 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1105 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1106 		 * needs 2 TIDs.
1107 		 */
1108 		if (family == PF_INET6) {
1109 			t->stids_in_use += 2;
1110 			t->v6_stids_in_use += 2;
1111 		} else {
1112 			t->stids_in_use++;
1113 		}
1114 	}
1115 	spin_unlock_bh(&t->stid_lock);
1116 	return stid;
1117 }
1118 EXPORT_SYMBOL(cxgb4_alloc_stid);
1119 
1120 /* Allocate a server filter TID and set it to the supplied value.
1121  */
1122 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1123 {
1124 	int stid;
1125 
1126 	spin_lock_bh(&t->stid_lock);
1127 	if (family == PF_INET) {
1128 		stid = find_next_zero_bit(t->stid_bmap,
1129 				t->nstids + t->nsftids, t->nstids);
1130 		if (stid < (t->nstids + t->nsftids))
1131 			__set_bit(stid, t->stid_bmap);
1132 		else
1133 			stid = -1;
1134 	} else {
1135 		stid = -1;
1136 	}
1137 	if (stid >= 0) {
1138 		t->stid_tab[stid].data = data;
1139 		stid -= t->nstids;
1140 		stid += t->sftid_base;
1141 		t->sftids_in_use++;
1142 	}
1143 	spin_unlock_bh(&t->stid_lock);
1144 	return stid;
1145 }
1146 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1147 
1148 /* Release a server TID.
1149  */
1150 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1151 {
1152 	/* Is it a server filter TID? */
1153 	if (t->nsftids && (stid >= t->sftid_base)) {
1154 		stid -= t->sftid_base;
1155 		stid += t->nstids;
1156 	} else {
1157 		stid -= t->stid_base;
1158 	}
1159 
1160 	spin_lock_bh(&t->stid_lock);
1161 	if (family == PF_INET)
1162 		__clear_bit(stid, t->stid_bmap);
1163 	else
1164 		bitmap_release_region(t->stid_bmap, stid, 1);
1165 	t->stid_tab[stid].data = NULL;
1166 	if (stid < t->nstids) {
1167 		if (family == PF_INET6) {
1168 			t->stids_in_use -= 2;
1169 			t->v6_stids_in_use -= 2;
1170 		} else {
1171 			t->stids_in_use--;
1172 		}
1173 	} else {
1174 		t->sftids_in_use--;
1175 	}
1176 
1177 	spin_unlock_bh(&t->stid_lock);
1178 }
1179 EXPORT_SYMBOL(cxgb4_free_stid);
1180 
1181 /*
1182  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1183  */
1184 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1185 			   unsigned int tid)
1186 {
1187 	struct cpl_tid_release *req;
1188 
1189 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1190 	req = __skb_put(skb, sizeof(*req));
1191 	INIT_TP_WR(req, tid);
1192 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1193 }
1194 
1195 /*
1196  * Queue a TID release request and if necessary schedule a work queue to
1197  * process it.
1198  */
1199 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1200 				    unsigned int tid)
1201 {
1202 	void **p = &t->tid_tab[tid];
1203 	struct adapter *adap = container_of(t, struct adapter, tids);
1204 
1205 	spin_lock_bh(&adap->tid_release_lock);
1206 	*p = adap->tid_release_head;
1207 	/* Low 2 bits encode the Tx channel number */
1208 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1209 	if (!adap->tid_release_task_busy) {
1210 		adap->tid_release_task_busy = true;
1211 		queue_work(adap->workq, &adap->tid_release_task);
1212 	}
1213 	spin_unlock_bh(&adap->tid_release_lock);
1214 }
1215 
1216 /*
1217  * Process the list of pending TID release requests.
1218  */
1219 static void process_tid_release_list(struct work_struct *work)
1220 {
1221 	struct sk_buff *skb;
1222 	struct adapter *adap;
1223 
1224 	adap = container_of(work, struct adapter, tid_release_task);
1225 
1226 	spin_lock_bh(&adap->tid_release_lock);
1227 	while (adap->tid_release_head) {
1228 		void **p = adap->tid_release_head;
1229 		unsigned int chan = (uintptr_t)p & 3;
1230 		p = (void *)p - chan;
1231 
1232 		adap->tid_release_head = *p;
1233 		*p = NULL;
1234 		spin_unlock_bh(&adap->tid_release_lock);
1235 
1236 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1237 					 GFP_KERNEL)))
1238 			schedule_timeout_uninterruptible(1);
1239 
1240 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1241 		t4_ofld_send(adap, skb);
1242 		spin_lock_bh(&adap->tid_release_lock);
1243 	}
1244 	adap->tid_release_task_busy = false;
1245 	spin_unlock_bh(&adap->tid_release_lock);
1246 }
1247 
1248 /*
1249  * Release a TID and inform HW.  If we are unable to allocate the release
1250  * message we defer to a work queue.
1251  */
1252 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1253 		      unsigned short family)
1254 {
1255 	struct sk_buff *skb;
1256 	struct adapter *adap = container_of(t, struct adapter, tids);
1257 
1258 	WARN_ON(tid >= t->ntids);
1259 
1260 	if (t->tid_tab[tid]) {
1261 		t->tid_tab[tid] = NULL;
1262 		atomic_dec(&t->conns_in_use);
1263 		if (t->hash_base && (tid >= t->hash_base)) {
1264 			if (family == AF_INET6)
1265 				atomic_sub(2, &t->hash_tids_in_use);
1266 			else
1267 				atomic_dec(&t->hash_tids_in_use);
1268 		} else {
1269 			if (family == AF_INET6)
1270 				atomic_sub(2, &t->tids_in_use);
1271 			else
1272 				atomic_dec(&t->tids_in_use);
1273 		}
1274 	}
1275 
1276 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1277 	if (likely(skb)) {
1278 		mk_tid_release(skb, chan, tid);
1279 		t4_ofld_send(adap, skb);
1280 	} else
1281 		cxgb4_queue_tid_release(t, chan, tid);
1282 }
1283 EXPORT_SYMBOL(cxgb4_remove_tid);
1284 
1285 /*
1286  * Allocate and initialize the TID tables.  Returns 0 on success.
1287  */
1288 static int tid_init(struct tid_info *t)
1289 {
1290 	struct adapter *adap = container_of(t, struct adapter, tids);
1291 	unsigned int max_ftids = t->nftids + t->nsftids;
1292 	unsigned int natids = t->natids;
1293 	unsigned int stid_bmap_size;
1294 	unsigned int ftid_bmap_size;
1295 	size_t size;
1296 
1297 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1298 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1299 	size = t->ntids * sizeof(*t->tid_tab) +
1300 	       natids * sizeof(*t->atid_tab) +
1301 	       t->nstids * sizeof(*t->stid_tab) +
1302 	       t->nsftids * sizeof(*t->stid_tab) +
1303 	       stid_bmap_size * sizeof(long) +
1304 	       max_ftids * sizeof(*t->ftid_tab) +
1305 	       ftid_bmap_size * sizeof(long);
1306 
1307 	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1308 	if (!t->tid_tab)
1309 		return -ENOMEM;
1310 
1311 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1312 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1313 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1314 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1315 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1316 	spin_lock_init(&t->stid_lock);
1317 	spin_lock_init(&t->atid_lock);
1318 	spin_lock_init(&t->ftid_lock);
1319 
1320 	t->stids_in_use = 0;
1321 	t->v6_stids_in_use = 0;
1322 	t->sftids_in_use = 0;
1323 	t->afree = NULL;
1324 	t->atids_in_use = 0;
1325 	atomic_set(&t->tids_in_use, 0);
1326 	atomic_set(&t->conns_in_use, 0);
1327 	atomic_set(&t->hash_tids_in_use, 0);
1328 
1329 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1330 	if (natids) {
1331 		while (--natids)
1332 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1333 		t->afree = t->atid_tab;
1334 	}
1335 
1336 	if (is_offload(adap)) {
1337 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1338 		/* Reserve stid 0 for T4/T5 adapters */
1339 		if (!t->stid_base &&
1340 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1341 			__set_bit(0, t->stid_bmap);
1342 	}
1343 
1344 	bitmap_zero(t->ftid_bmap, t->nftids);
1345 	return 0;
1346 }
1347 
1348 /**
1349  *	cxgb4_create_server - create an IP server
1350  *	@dev: the device
1351  *	@stid: the server TID
1352  *	@sip: local IP address to bind server to
1353  *	@sport: the server's TCP port
1354  *	@queue: queue to direct messages from this server to
1355  *
1356  *	Create an IP server for the given port and address.
1357  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1358  */
1359 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1360 			__be32 sip, __be16 sport, __be16 vlan,
1361 			unsigned int queue)
1362 {
1363 	unsigned int chan;
1364 	struct sk_buff *skb;
1365 	struct adapter *adap;
1366 	struct cpl_pass_open_req *req;
1367 	int ret;
1368 
1369 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1370 	if (!skb)
1371 		return -ENOMEM;
1372 
1373 	adap = netdev2adap(dev);
1374 	req = __skb_put(skb, sizeof(*req));
1375 	INIT_TP_WR(req, 0);
1376 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1377 	req->local_port = sport;
1378 	req->peer_port = htons(0);
1379 	req->local_ip = sip;
1380 	req->peer_ip = htonl(0);
1381 	chan = rxq_to_chan(&adap->sge, queue);
1382 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1383 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1384 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1385 	ret = t4_mgmt_tx(adap, skb);
1386 	return net_xmit_eval(ret);
1387 }
1388 EXPORT_SYMBOL(cxgb4_create_server);
1389 
1390 /*	cxgb4_create_server6 - create an IPv6 server
1391  *	@dev: the device
1392  *	@stid: the server TID
1393  *	@sip: local IPv6 address to bind server to
1394  *	@sport: the server's TCP port
1395  *	@queue: queue to direct messages from this server to
1396  *
1397  *	Create an IPv6 server for the given port and address.
1398  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1399  */
1400 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1401 			 const struct in6_addr *sip, __be16 sport,
1402 			 unsigned int queue)
1403 {
1404 	unsigned int chan;
1405 	struct sk_buff *skb;
1406 	struct adapter *adap;
1407 	struct cpl_pass_open_req6 *req;
1408 	int ret;
1409 
1410 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1411 	if (!skb)
1412 		return -ENOMEM;
1413 
1414 	adap = netdev2adap(dev);
1415 	req = __skb_put(skb, sizeof(*req));
1416 	INIT_TP_WR(req, 0);
1417 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1418 	req->local_port = sport;
1419 	req->peer_port = htons(0);
1420 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1421 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1422 	req->peer_ip_hi = cpu_to_be64(0);
1423 	req->peer_ip_lo = cpu_to_be64(0);
1424 	chan = rxq_to_chan(&adap->sge, queue);
1425 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1426 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1427 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1428 	ret = t4_mgmt_tx(adap, skb);
1429 	return net_xmit_eval(ret);
1430 }
1431 EXPORT_SYMBOL(cxgb4_create_server6);
1432 
1433 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1434 			unsigned int queue, bool ipv6)
1435 {
1436 	struct sk_buff *skb;
1437 	struct adapter *adap;
1438 	struct cpl_close_listsvr_req *req;
1439 	int ret;
1440 
1441 	adap = netdev2adap(dev);
1442 
1443 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1444 	if (!skb)
1445 		return -ENOMEM;
1446 
1447 	req = __skb_put(skb, sizeof(*req));
1448 	INIT_TP_WR(req, 0);
1449 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1450 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1451 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1452 	ret = t4_mgmt_tx(adap, skb);
1453 	return net_xmit_eval(ret);
1454 }
1455 EXPORT_SYMBOL(cxgb4_remove_server);
1456 
1457 /**
1458  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1459  *	@mtus: the HW MTU table
1460  *	@mtu: the target MTU
1461  *	@idx: index of selected entry in the MTU table
1462  *
1463  *	Returns the index and the value in the HW MTU table that is closest to
1464  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1465  *	table, in which case that smallest available value is selected.
1466  */
1467 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1468 			    unsigned int *idx)
1469 {
1470 	unsigned int i = 0;
1471 
1472 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1473 		++i;
1474 	if (idx)
1475 		*idx = i;
1476 	return mtus[i];
1477 }
1478 EXPORT_SYMBOL(cxgb4_best_mtu);
1479 
1480 /**
1481  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1482  *     @mtus: the HW MTU table
1483  *     @header_size: Header Size
1484  *     @data_size_max: maximum Data Segment Size
1485  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1486  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1487  *
1488  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1489  *     MTU Table based solely on a Maximum MTU parameter, we break that
1490  *     parameter up into a Header Size and Maximum Data Segment Size, and
1491  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1492  *     the Hardware MTU Table which will result in a Data Segment Size with
1493  *     the requested alignment _and_ that MTU isn't "too far" from the
1494  *     closest MTU, then we'll return that rather than the closest MTU.
1495  */
1496 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1497 				    unsigned short header_size,
1498 				    unsigned short data_size_max,
1499 				    unsigned short data_size_align,
1500 				    unsigned int *mtu_idxp)
1501 {
1502 	unsigned short max_mtu = header_size + data_size_max;
1503 	unsigned short data_size_align_mask = data_size_align - 1;
1504 	int mtu_idx, aligned_mtu_idx;
1505 
1506 	/* Scan the MTU Table till we find an MTU which is larger than our
1507 	 * Maximum MTU or we reach the end of the table.  Along the way,
1508 	 * record the last MTU found, if any, which will result in a Data
1509 	 * Segment Length matching the requested alignment.
1510 	 */
1511 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1512 		unsigned short data_size = mtus[mtu_idx] - header_size;
1513 
1514 		/* If this MTU minus the Header Size would result in a
1515 		 * Data Segment Size of the desired alignment, remember it.
1516 		 */
1517 		if ((data_size & data_size_align_mask) == 0)
1518 			aligned_mtu_idx = mtu_idx;
1519 
1520 		/* If we're not at the end of the Hardware MTU Table and the
1521 		 * next element is larger than our Maximum MTU, drop out of
1522 		 * the loop.
1523 		 */
1524 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1525 			break;
1526 	}
1527 
1528 	/* If we fell out of the loop because we ran to the end of the table,
1529 	 * then we just have to use the last [largest] entry.
1530 	 */
1531 	if (mtu_idx == NMTUS)
1532 		mtu_idx--;
1533 
1534 	/* If we found an MTU which resulted in the requested Data Segment
1535 	 * Length alignment and that's "not far" from the largest MTU which is
1536 	 * less than or equal to the maximum MTU, then use that.
1537 	 */
1538 	if (aligned_mtu_idx >= 0 &&
1539 	    mtu_idx - aligned_mtu_idx <= 1)
1540 		mtu_idx = aligned_mtu_idx;
1541 
1542 	/* If the caller has passed in an MTU Index pointer, pass the
1543 	 * MTU Index back.  Return the MTU value.
1544 	 */
1545 	if (mtu_idxp)
1546 		*mtu_idxp = mtu_idx;
1547 	return mtus[mtu_idx];
1548 }
1549 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1550 
1551 /**
1552  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1553  *	@chip: chip type
1554  *	@viid: VI id of the given port
1555  *
1556  *	Return the SMT index for this VI.
1557  */
1558 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1559 {
1560 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1561 	 * 128 rows of 2 entries each.
1562 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1563 	 * TODO: The below code needs to be updated when we add support
1564 	 * for 256 VFs.
1565 	 */
1566 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1567 		return ((viid & 0x7f) << 1);
1568 	else
1569 		return (viid & 0x7f);
1570 }
1571 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1572 
1573 /**
1574  *	cxgb4_port_chan - get the HW channel of a port
1575  *	@dev: the net device for the port
1576  *
1577  *	Return the HW Tx channel of the given port.
1578  */
1579 unsigned int cxgb4_port_chan(const struct net_device *dev)
1580 {
1581 	return netdev2pinfo(dev)->tx_chan;
1582 }
1583 EXPORT_SYMBOL(cxgb4_port_chan);
1584 
1585 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1586 {
1587 	struct adapter *adap = netdev2adap(dev);
1588 	u32 v1, v2, lp_count, hp_count;
1589 
1590 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1591 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1592 	if (is_t4(adap->params.chip)) {
1593 		lp_count = LP_COUNT_G(v1);
1594 		hp_count = HP_COUNT_G(v1);
1595 	} else {
1596 		lp_count = LP_COUNT_T5_G(v1);
1597 		hp_count = HP_COUNT_T5_G(v2);
1598 	}
1599 	return lpfifo ? lp_count : hp_count;
1600 }
1601 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1602 
1603 /**
1604  *	cxgb4_port_viid - get the VI id of a port
1605  *	@dev: the net device for the port
1606  *
1607  *	Return the VI id of the given port.
1608  */
1609 unsigned int cxgb4_port_viid(const struct net_device *dev)
1610 {
1611 	return netdev2pinfo(dev)->viid;
1612 }
1613 EXPORT_SYMBOL(cxgb4_port_viid);
1614 
1615 /**
1616  *	cxgb4_port_idx - get the index of a port
1617  *	@dev: the net device for the port
1618  *
1619  *	Return the index of the given port.
1620  */
1621 unsigned int cxgb4_port_idx(const struct net_device *dev)
1622 {
1623 	return netdev2pinfo(dev)->port_id;
1624 }
1625 EXPORT_SYMBOL(cxgb4_port_idx);
1626 
1627 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1628 			 struct tp_tcp_stats *v6)
1629 {
1630 	struct adapter *adap = pci_get_drvdata(pdev);
1631 
1632 	spin_lock(&adap->stats_lock);
1633 	t4_tp_get_tcp_stats(adap, v4, v6);
1634 	spin_unlock(&adap->stats_lock);
1635 }
1636 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1637 
1638 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1639 		      const unsigned int *pgsz_order)
1640 {
1641 	struct adapter *adap = netdev2adap(dev);
1642 
1643 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1644 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1645 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1646 		     HPZ3_V(pgsz_order[3]));
1647 }
1648 EXPORT_SYMBOL(cxgb4_iscsi_init);
1649 
1650 int cxgb4_flush_eq_cache(struct net_device *dev)
1651 {
1652 	struct adapter *adap = netdev2adap(dev);
1653 
1654 	return t4_sge_ctxt_flush(adap, adap->mbox);
1655 }
1656 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1657 
1658 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1659 {
1660 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1661 	__be64 indices;
1662 	int ret;
1663 
1664 	spin_lock(&adap->win0_lock);
1665 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1666 			   sizeof(indices), (__be32 *)&indices,
1667 			   T4_MEMORY_READ);
1668 	spin_unlock(&adap->win0_lock);
1669 	if (!ret) {
1670 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1671 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1672 	}
1673 	return ret;
1674 }
1675 
1676 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1677 			u16 size)
1678 {
1679 	struct adapter *adap = netdev2adap(dev);
1680 	u16 hw_pidx, hw_cidx;
1681 	int ret;
1682 
1683 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1684 	if (ret)
1685 		goto out;
1686 
1687 	if (pidx != hw_pidx) {
1688 		u16 delta;
1689 		u32 val;
1690 
1691 		if (pidx >= hw_pidx)
1692 			delta = pidx - hw_pidx;
1693 		else
1694 			delta = size - hw_pidx + pidx;
1695 
1696 		if (is_t4(adap->params.chip))
1697 			val = PIDX_V(delta);
1698 		else
1699 			val = PIDX_T5_V(delta);
1700 		wmb();
1701 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1702 			     QID_V(qid) | val);
1703 	}
1704 out:
1705 	return ret;
1706 }
1707 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1708 
1709 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1710 {
1711 	struct adapter *adap;
1712 	u32 offset, memtype, memaddr;
1713 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1714 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1715 	int ret;
1716 
1717 	adap = netdev2adap(dev);
1718 
1719 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1720 
1721 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1722 	 * This code assumes that the memory is laid out starting at offset 0
1723 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1724 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1725 	 * MC0, and some have both MC0 and MC1.
1726 	 */
1727 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1728 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1729 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1730 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1731 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1732 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1733 
1734 	edc0_end = edc0_size;
1735 	edc1_end = edc0_end + edc1_size;
1736 	mc0_end = edc1_end + mc0_size;
1737 
1738 	if (offset < edc0_end) {
1739 		memtype = MEM_EDC0;
1740 		memaddr = offset;
1741 	} else if (offset < edc1_end) {
1742 		memtype = MEM_EDC1;
1743 		memaddr = offset - edc0_end;
1744 	} else {
1745 		if (offset < mc0_end) {
1746 			memtype = MEM_MC0;
1747 			memaddr = offset - edc1_end;
1748 		} else if (is_t5(adap->params.chip)) {
1749 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1750 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1751 			mc1_end = mc0_end + mc1_size;
1752 			if (offset < mc1_end) {
1753 				memtype = MEM_MC1;
1754 				memaddr = offset - mc0_end;
1755 			} else {
1756 				/* offset beyond the end of any memory */
1757 				goto err;
1758 			}
1759 		} else {
1760 			/* T4/T6 only has a single memory channel */
1761 			goto err;
1762 		}
1763 	}
1764 
1765 	spin_lock(&adap->win0_lock);
1766 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1767 	spin_unlock(&adap->win0_lock);
1768 	return ret;
1769 
1770 err:
1771 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1772 		stag, offset);
1773 	return -EINVAL;
1774 }
1775 EXPORT_SYMBOL(cxgb4_read_tpte);
1776 
1777 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1778 {
1779 	u32 hi, lo;
1780 	struct adapter *adap;
1781 
1782 	adap = netdev2adap(dev);
1783 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1784 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1785 
1786 	return ((u64)hi << 32) | (u64)lo;
1787 }
1788 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1789 
1790 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1791 			 unsigned int qid,
1792 			 enum cxgb4_bar2_qtype qtype,
1793 			 int user,
1794 			 u64 *pbar2_qoffset,
1795 			 unsigned int *pbar2_qid)
1796 {
1797 	return t4_bar2_sge_qregs(netdev2adap(dev),
1798 				 qid,
1799 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1800 				  ? T4_BAR2_QTYPE_EGRESS
1801 				  : T4_BAR2_QTYPE_INGRESS),
1802 				 user,
1803 				 pbar2_qoffset,
1804 				 pbar2_qid);
1805 }
1806 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1807 
1808 static struct pci_driver cxgb4_driver;
1809 
1810 static void check_neigh_update(struct neighbour *neigh)
1811 {
1812 	const struct device *parent;
1813 	const struct net_device *netdev = neigh->dev;
1814 
1815 	if (is_vlan_dev(netdev))
1816 		netdev = vlan_dev_real_dev(netdev);
1817 	parent = netdev->dev.parent;
1818 	if (parent && parent->driver == &cxgb4_driver.driver)
1819 		t4_l2t_update(dev_get_drvdata(parent), neigh);
1820 }
1821 
1822 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1823 		       void *data)
1824 {
1825 	switch (event) {
1826 	case NETEVENT_NEIGH_UPDATE:
1827 		check_neigh_update(data);
1828 		break;
1829 	case NETEVENT_REDIRECT:
1830 	default:
1831 		break;
1832 	}
1833 	return 0;
1834 }
1835 
1836 static bool netevent_registered;
1837 static struct notifier_block cxgb4_netevent_nb = {
1838 	.notifier_call = netevent_cb
1839 };
1840 
1841 static void drain_db_fifo(struct adapter *adap, int usecs)
1842 {
1843 	u32 v1, v2, lp_count, hp_count;
1844 
1845 	do {
1846 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1847 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1848 		if (is_t4(adap->params.chip)) {
1849 			lp_count = LP_COUNT_G(v1);
1850 			hp_count = HP_COUNT_G(v1);
1851 		} else {
1852 			lp_count = LP_COUNT_T5_G(v1);
1853 			hp_count = HP_COUNT_T5_G(v2);
1854 		}
1855 
1856 		if (lp_count == 0 && hp_count == 0)
1857 			break;
1858 		set_current_state(TASK_UNINTERRUPTIBLE);
1859 		schedule_timeout(usecs_to_jiffies(usecs));
1860 	} while (1);
1861 }
1862 
1863 static void disable_txq_db(struct sge_txq *q)
1864 {
1865 	unsigned long flags;
1866 
1867 	spin_lock_irqsave(&q->db_lock, flags);
1868 	q->db_disabled = 1;
1869 	spin_unlock_irqrestore(&q->db_lock, flags);
1870 }
1871 
1872 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1873 {
1874 	spin_lock_irq(&q->db_lock);
1875 	if (q->db_pidx_inc) {
1876 		/* Make sure that all writes to the TX descriptors
1877 		 * are committed before we tell HW about them.
1878 		 */
1879 		wmb();
1880 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1881 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1882 		q->db_pidx_inc = 0;
1883 	}
1884 	q->db_disabled = 0;
1885 	spin_unlock_irq(&q->db_lock);
1886 }
1887 
1888 static void disable_dbs(struct adapter *adap)
1889 {
1890 	int i;
1891 
1892 	for_each_ethrxq(&adap->sge, i)
1893 		disable_txq_db(&adap->sge.ethtxq[i].q);
1894 	if (is_offload(adap)) {
1895 		struct sge_uld_txq_info *txq_info =
1896 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1897 
1898 		if (txq_info) {
1899 			for_each_ofldtxq(&adap->sge, i) {
1900 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1901 
1902 				disable_txq_db(&txq->q);
1903 			}
1904 		}
1905 	}
1906 	for_each_port(adap, i)
1907 		disable_txq_db(&adap->sge.ctrlq[i].q);
1908 }
1909 
1910 static void enable_dbs(struct adapter *adap)
1911 {
1912 	int i;
1913 
1914 	for_each_ethrxq(&adap->sge, i)
1915 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1916 	if (is_offload(adap)) {
1917 		struct sge_uld_txq_info *txq_info =
1918 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1919 
1920 		if (txq_info) {
1921 			for_each_ofldtxq(&adap->sge, i) {
1922 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1923 
1924 				enable_txq_db(adap, &txq->q);
1925 			}
1926 		}
1927 	}
1928 	for_each_port(adap, i)
1929 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1930 }
1931 
1932 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1933 {
1934 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
1935 
1936 	if (adap->uld && adap->uld[type].handle)
1937 		adap->uld[type].control(adap->uld[type].handle, cmd);
1938 }
1939 
1940 static void process_db_full(struct work_struct *work)
1941 {
1942 	struct adapter *adap;
1943 
1944 	adap = container_of(work, struct adapter, db_full_task);
1945 
1946 	drain_db_fifo(adap, dbfifo_drain_delay);
1947 	enable_dbs(adap);
1948 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1949 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1950 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1951 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1952 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1953 	else
1954 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1955 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1956 }
1957 
1958 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1959 {
1960 	u16 hw_pidx, hw_cidx;
1961 	int ret;
1962 
1963 	spin_lock_irq(&q->db_lock);
1964 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1965 	if (ret)
1966 		goto out;
1967 	if (q->db_pidx != hw_pidx) {
1968 		u16 delta;
1969 		u32 val;
1970 
1971 		if (q->db_pidx >= hw_pidx)
1972 			delta = q->db_pidx - hw_pidx;
1973 		else
1974 			delta = q->size - hw_pidx + q->db_pidx;
1975 
1976 		if (is_t4(adap->params.chip))
1977 			val = PIDX_V(delta);
1978 		else
1979 			val = PIDX_T5_V(delta);
1980 		wmb();
1981 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1982 			     QID_V(q->cntxt_id) | val);
1983 	}
1984 out:
1985 	q->db_disabled = 0;
1986 	q->db_pidx_inc = 0;
1987 	spin_unlock_irq(&q->db_lock);
1988 	if (ret)
1989 		CH_WARN(adap, "DB drop recovery failed.\n");
1990 }
1991 
1992 static void recover_all_queues(struct adapter *adap)
1993 {
1994 	int i;
1995 
1996 	for_each_ethrxq(&adap->sge, i)
1997 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
1998 	if (is_offload(adap)) {
1999 		struct sge_uld_txq_info *txq_info =
2000 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2001 		if (txq_info) {
2002 			for_each_ofldtxq(&adap->sge, i) {
2003 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2004 
2005 				sync_txq_pidx(adap, &txq->q);
2006 			}
2007 		}
2008 	}
2009 	for_each_port(adap, i)
2010 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2011 }
2012 
2013 static void process_db_drop(struct work_struct *work)
2014 {
2015 	struct adapter *adap;
2016 
2017 	adap = container_of(work, struct adapter, db_drop_task);
2018 
2019 	if (is_t4(adap->params.chip)) {
2020 		drain_db_fifo(adap, dbfifo_drain_delay);
2021 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2022 		drain_db_fifo(adap, dbfifo_drain_delay);
2023 		recover_all_queues(adap);
2024 		drain_db_fifo(adap, dbfifo_drain_delay);
2025 		enable_dbs(adap);
2026 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2027 	} else if (is_t5(adap->params.chip)) {
2028 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2029 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2030 		u16 pidx_inc = dropped_db & 0x1fff;
2031 		u64 bar2_qoffset;
2032 		unsigned int bar2_qid;
2033 		int ret;
2034 
2035 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2036 					0, &bar2_qoffset, &bar2_qid);
2037 		if (ret)
2038 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2039 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2040 		else
2041 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2042 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2043 
2044 		/* Re-enable BAR2 WC */
2045 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2046 	}
2047 
2048 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2049 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2050 }
2051 
2052 void t4_db_full(struct adapter *adap)
2053 {
2054 	if (is_t4(adap->params.chip)) {
2055 		disable_dbs(adap);
2056 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2057 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2058 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2059 		queue_work(adap->workq, &adap->db_full_task);
2060 	}
2061 }
2062 
2063 void t4_db_dropped(struct adapter *adap)
2064 {
2065 	if (is_t4(adap->params.chip)) {
2066 		disable_dbs(adap);
2067 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2068 	}
2069 	queue_work(adap->workq, &adap->db_drop_task);
2070 }
2071 
2072 void t4_register_netevent_notifier(void)
2073 {
2074 	if (!netevent_registered) {
2075 		register_netevent_notifier(&cxgb4_netevent_nb);
2076 		netevent_registered = true;
2077 	}
2078 }
2079 
2080 static void detach_ulds(struct adapter *adap)
2081 {
2082 	unsigned int i;
2083 
2084 	mutex_lock(&uld_mutex);
2085 	list_del(&adap->list_node);
2086 
2087 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2088 		if (adap->uld && adap->uld[i].handle)
2089 			adap->uld[i].state_change(adap->uld[i].handle,
2090 					     CXGB4_STATE_DETACH);
2091 
2092 	if (netevent_registered && list_empty(&adapter_list)) {
2093 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2094 		netevent_registered = false;
2095 	}
2096 	mutex_unlock(&uld_mutex);
2097 }
2098 
2099 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2100 {
2101 	unsigned int i;
2102 
2103 	mutex_lock(&uld_mutex);
2104 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2105 		if (adap->uld && adap->uld[i].handle)
2106 			adap->uld[i].state_change(adap->uld[i].handle,
2107 						  new_state);
2108 	mutex_unlock(&uld_mutex);
2109 }
2110 
2111 #if IS_ENABLED(CONFIG_IPV6)
2112 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2113 				   unsigned long event, void *data)
2114 {
2115 	struct inet6_ifaddr *ifa = data;
2116 	struct net_device *event_dev = ifa->idev->dev;
2117 	const struct device *parent = NULL;
2118 #if IS_ENABLED(CONFIG_BONDING)
2119 	struct adapter *adap;
2120 #endif
2121 	if (is_vlan_dev(event_dev))
2122 		event_dev = vlan_dev_real_dev(event_dev);
2123 #if IS_ENABLED(CONFIG_BONDING)
2124 	if (event_dev->flags & IFF_MASTER) {
2125 		list_for_each_entry(adap, &adapter_list, list_node) {
2126 			switch (event) {
2127 			case NETDEV_UP:
2128 				cxgb4_clip_get(adap->port[0],
2129 					       (const u32 *)ifa, 1);
2130 				break;
2131 			case NETDEV_DOWN:
2132 				cxgb4_clip_release(adap->port[0],
2133 						   (const u32 *)ifa, 1);
2134 				break;
2135 			default:
2136 				break;
2137 			}
2138 		}
2139 		return NOTIFY_OK;
2140 	}
2141 #endif
2142 
2143 	if (event_dev)
2144 		parent = event_dev->dev.parent;
2145 
2146 	if (parent && parent->driver == &cxgb4_driver.driver) {
2147 		switch (event) {
2148 		case NETDEV_UP:
2149 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2150 			break;
2151 		case NETDEV_DOWN:
2152 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2153 			break;
2154 		default:
2155 			break;
2156 		}
2157 	}
2158 	return NOTIFY_OK;
2159 }
2160 
2161 static bool inet6addr_registered;
2162 static struct notifier_block cxgb4_inet6addr_notifier = {
2163 	.notifier_call = cxgb4_inet6addr_handler
2164 };
2165 
2166 static void update_clip(const struct adapter *adap)
2167 {
2168 	int i;
2169 	struct net_device *dev;
2170 	int ret;
2171 
2172 	rcu_read_lock();
2173 
2174 	for (i = 0; i < MAX_NPORTS; i++) {
2175 		dev = adap->port[i];
2176 		ret = 0;
2177 
2178 		if (dev)
2179 			ret = cxgb4_update_root_dev_clip(dev);
2180 
2181 		if (ret < 0)
2182 			break;
2183 	}
2184 	rcu_read_unlock();
2185 }
2186 #endif /* IS_ENABLED(CONFIG_IPV6) */
2187 
2188 /**
2189  *	cxgb_up - enable the adapter
2190  *	@adap: adapter being enabled
2191  *
2192  *	Called when the first port is enabled, this function performs the
2193  *	actions necessary to make an adapter operational, such as completing
2194  *	the initialization of HW modules, and enabling interrupts.
2195  *
2196  *	Must be called with the rtnl lock held.
2197  */
2198 static int cxgb_up(struct adapter *adap)
2199 {
2200 	int err;
2201 
2202 	mutex_lock(&uld_mutex);
2203 	err = setup_sge_queues(adap);
2204 	if (err)
2205 		goto rel_lock;
2206 	err = setup_rss(adap);
2207 	if (err)
2208 		goto freeq;
2209 
2210 	if (adap->flags & USING_MSIX) {
2211 		name_msix_vecs(adap);
2212 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2213 				  adap->msix_info[0].desc, adap);
2214 		if (err)
2215 			goto irq_err;
2216 		err = request_msix_queue_irqs(adap);
2217 		if (err) {
2218 			free_irq(adap->msix_info[0].vec, adap);
2219 			goto irq_err;
2220 		}
2221 	} else {
2222 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2223 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2224 				  adap->port[0]->name, adap);
2225 		if (err)
2226 			goto irq_err;
2227 	}
2228 
2229 	enable_rx(adap);
2230 	t4_sge_start(adap);
2231 	t4_intr_enable(adap);
2232 	adap->flags |= FULL_INIT_DONE;
2233 	mutex_unlock(&uld_mutex);
2234 
2235 	notify_ulds(adap, CXGB4_STATE_UP);
2236 #if IS_ENABLED(CONFIG_IPV6)
2237 	update_clip(adap);
2238 #endif
2239 	/* Initialize hash mac addr list*/
2240 	INIT_LIST_HEAD(&adap->mac_hlist);
2241 	return err;
2242 
2243  irq_err:
2244 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2245  freeq:
2246 	t4_free_sge_resources(adap);
2247  rel_lock:
2248 	mutex_unlock(&uld_mutex);
2249 	return err;
2250 }
2251 
2252 static void cxgb_down(struct adapter *adapter)
2253 {
2254 	cancel_work_sync(&adapter->tid_release_task);
2255 	cancel_work_sync(&adapter->db_full_task);
2256 	cancel_work_sync(&adapter->db_drop_task);
2257 	adapter->tid_release_task_busy = false;
2258 	adapter->tid_release_head = NULL;
2259 
2260 	t4_sge_stop(adapter);
2261 	t4_free_sge_resources(adapter);
2262 	adapter->flags &= ~FULL_INIT_DONE;
2263 }
2264 
2265 /*
2266  * net_device operations
2267  */
2268 static int cxgb_open(struct net_device *dev)
2269 {
2270 	int err;
2271 	struct port_info *pi = netdev_priv(dev);
2272 	struct adapter *adapter = pi->adapter;
2273 
2274 	netif_carrier_off(dev);
2275 
2276 	if (!(adapter->flags & FULL_INIT_DONE)) {
2277 		err = cxgb_up(adapter);
2278 		if (err < 0)
2279 			return err;
2280 	}
2281 
2282 	/* It's possible that the basic port information could have
2283 	 * changed since we first read it.
2284 	 */
2285 	err = t4_update_port_info(pi);
2286 	if (err < 0)
2287 		return err;
2288 
2289 	err = link_start(dev);
2290 	if (!err)
2291 		netif_tx_start_all_queues(dev);
2292 	return err;
2293 }
2294 
2295 static int cxgb_close(struct net_device *dev)
2296 {
2297 	struct port_info *pi = netdev_priv(dev);
2298 	struct adapter *adapter = pi->adapter;
2299 
2300 	netif_tx_stop_all_queues(dev);
2301 	netif_carrier_off(dev);
2302 	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2303 }
2304 
2305 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2306 		__be32 sip, __be16 sport, __be16 vlan,
2307 		unsigned int queue, unsigned char port, unsigned char mask)
2308 {
2309 	int ret;
2310 	struct filter_entry *f;
2311 	struct adapter *adap;
2312 	int i;
2313 	u8 *val;
2314 
2315 	adap = netdev2adap(dev);
2316 
2317 	/* Adjust stid to correct filter index */
2318 	stid -= adap->tids.sftid_base;
2319 	stid += adap->tids.nftids;
2320 
2321 	/* Check to make sure the filter requested is writable ...
2322 	 */
2323 	f = &adap->tids.ftid_tab[stid];
2324 	ret = writable_filter(f);
2325 	if (ret)
2326 		return ret;
2327 
2328 	/* Clear out any old resources being used by the filter before
2329 	 * we start constructing the new filter.
2330 	 */
2331 	if (f->valid)
2332 		clear_filter(adap, f);
2333 
2334 	/* Clear out filter specifications */
2335 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2336 	f->fs.val.lport = cpu_to_be16(sport);
2337 	f->fs.mask.lport  = ~0;
2338 	val = (u8 *)&sip;
2339 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2340 		for (i = 0; i < 4; i++) {
2341 			f->fs.val.lip[i] = val[i];
2342 			f->fs.mask.lip[i] = ~0;
2343 		}
2344 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2345 			f->fs.val.iport = port;
2346 			f->fs.mask.iport = mask;
2347 		}
2348 	}
2349 
2350 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2351 		f->fs.val.proto = IPPROTO_TCP;
2352 		f->fs.mask.proto = ~0;
2353 	}
2354 
2355 	f->fs.dirsteer = 1;
2356 	f->fs.iq = queue;
2357 	/* Mark filter as locked */
2358 	f->locked = 1;
2359 	f->fs.rpttid = 1;
2360 
2361 	/* Save the actual tid. We need this to get the corresponding
2362 	 * filter entry structure in filter_rpl.
2363 	 */
2364 	f->tid = stid + adap->tids.ftid_base;
2365 	ret = set_filter_wr(adap, stid);
2366 	if (ret) {
2367 		clear_filter(adap, f);
2368 		return ret;
2369 	}
2370 
2371 	return 0;
2372 }
2373 EXPORT_SYMBOL(cxgb4_create_server_filter);
2374 
2375 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2376 		unsigned int queue, bool ipv6)
2377 {
2378 	struct filter_entry *f;
2379 	struct adapter *adap;
2380 
2381 	adap = netdev2adap(dev);
2382 
2383 	/* Adjust stid to correct filter index */
2384 	stid -= adap->tids.sftid_base;
2385 	stid += adap->tids.nftids;
2386 
2387 	f = &adap->tids.ftid_tab[stid];
2388 	/* Unlock the filter */
2389 	f->locked = 0;
2390 
2391 	return delete_filter(adap, stid);
2392 }
2393 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2394 
2395 static void cxgb_get_stats(struct net_device *dev,
2396 			   struct rtnl_link_stats64 *ns)
2397 {
2398 	struct port_stats stats;
2399 	struct port_info *p = netdev_priv(dev);
2400 	struct adapter *adapter = p->adapter;
2401 
2402 	/* Block retrieving statistics during EEH error
2403 	 * recovery. Otherwise, the recovery might fail
2404 	 * and the PCI device will be removed permanently
2405 	 */
2406 	spin_lock(&adapter->stats_lock);
2407 	if (!netif_device_present(dev)) {
2408 		spin_unlock(&adapter->stats_lock);
2409 		return;
2410 	}
2411 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2412 				 &p->stats_base);
2413 	spin_unlock(&adapter->stats_lock);
2414 
2415 	ns->tx_bytes   = stats.tx_octets;
2416 	ns->tx_packets = stats.tx_frames;
2417 	ns->rx_bytes   = stats.rx_octets;
2418 	ns->rx_packets = stats.rx_frames;
2419 	ns->multicast  = stats.rx_mcast_frames;
2420 
2421 	/* detailed rx_errors */
2422 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2423 			       stats.rx_runt;
2424 	ns->rx_over_errors   = 0;
2425 	ns->rx_crc_errors    = stats.rx_fcs_err;
2426 	ns->rx_frame_errors  = stats.rx_symbol_err;
2427 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2428 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2429 			       stats.rx_trunc0 + stats.rx_trunc1 +
2430 			       stats.rx_trunc2 + stats.rx_trunc3;
2431 	ns->rx_missed_errors = 0;
2432 
2433 	/* detailed tx_errors */
2434 	ns->tx_aborted_errors   = 0;
2435 	ns->tx_carrier_errors   = 0;
2436 	ns->tx_fifo_errors      = 0;
2437 	ns->tx_heartbeat_errors = 0;
2438 	ns->tx_window_errors    = 0;
2439 
2440 	ns->tx_errors = stats.tx_error_frames;
2441 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2442 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2443 }
2444 
2445 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2446 {
2447 	unsigned int mbox;
2448 	int ret = 0, prtad, devad;
2449 	struct port_info *pi = netdev_priv(dev);
2450 	struct adapter *adapter = pi->adapter;
2451 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2452 
2453 	switch (cmd) {
2454 	case SIOCGMIIPHY:
2455 		if (pi->mdio_addr < 0)
2456 			return -EOPNOTSUPP;
2457 		data->phy_id = pi->mdio_addr;
2458 		break;
2459 	case SIOCGMIIREG:
2460 	case SIOCSMIIREG:
2461 		if (mdio_phy_id_is_c45(data->phy_id)) {
2462 			prtad = mdio_phy_id_prtad(data->phy_id);
2463 			devad = mdio_phy_id_devad(data->phy_id);
2464 		} else if (data->phy_id < 32) {
2465 			prtad = data->phy_id;
2466 			devad = 0;
2467 			data->reg_num &= 0x1f;
2468 		} else
2469 			return -EINVAL;
2470 
2471 		mbox = pi->adapter->pf;
2472 		if (cmd == SIOCGMIIREG)
2473 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2474 					 data->reg_num, &data->val_out);
2475 		else
2476 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2477 					 data->reg_num, data->val_in);
2478 		break;
2479 	case SIOCGHWTSTAMP:
2480 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2481 				    sizeof(pi->tstamp_config)) ?
2482 			-EFAULT : 0;
2483 	case SIOCSHWTSTAMP:
2484 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2485 				   sizeof(pi->tstamp_config)))
2486 			return -EFAULT;
2487 
2488 		if (!is_t4(adapter->params.chip)) {
2489 			switch (pi->tstamp_config.tx_type) {
2490 			case HWTSTAMP_TX_OFF:
2491 			case HWTSTAMP_TX_ON:
2492 				break;
2493 			default:
2494 				return -ERANGE;
2495 			}
2496 
2497 			switch (pi->tstamp_config.rx_filter) {
2498 			case HWTSTAMP_FILTER_NONE:
2499 				pi->rxtstamp = false;
2500 				break;
2501 			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2502 			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2503 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2504 							 PTP_TS_L4);
2505 				break;
2506 			case HWTSTAMP_FILTER_PTP_V2_EVENT:
2507 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2508 							 PTP_TS_L2_L4);
2509 				break;
2510 			case HWTSTAMP_FILTER_ALL:
2511 			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2512 			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2513 			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2514 			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2515 				pi->rxtstamp = true;
2516 				break;
2517 			default:
2518 				pi->tstamp_config.rx_filter =
2519 					HWTSTAMP_FILTER_NONE;
2520 				return -ERANGE;
2521 			}
2522 
2523 			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2524 			    (pi->tstamp_config.rx_filter ==
2525 				HWTSTAMP_FILTER_NONE)) {
2526 				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2527 					pi->ptp_enable = false;
2528 			}
2529 
2530 			if (pi->tstamp_config.rx_filter !=
2531 				HWTSTAMP_FILTER_NONE) {
2532 				if (cxgb4_ptp_redirect_rx_packet(adapter,
2533 								 pi) >= 0)
2534 					pi->ptp_enable = true;
2535 			}
2536 		} else {
2537 			/* For T4 Adapters */
2538 			switch (pi->tstamp_config.rx_filter) {
2539 			case HWTSTAMP_FILTER_NONE:
2540 			pi->rxtstamp = false;
2541 			break;
2542 			case HWTSTAMP_FILTER_ALL:
2543 			pi->rxtstamp = true;
2544 			break;
2545 			default:
2546 			pi->tstamp_config.rx_filter =
2547 			HWTSTAMP_FILTER_NONE;
2548 			return -ERANGE;
2549 			}
2550 		}
2551 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2552 				    sizeof(pi->tstamp_config)) ?
2553 			-EFAULT : 0;
2554 	default:
2555 		return -EOPNOTSUPP;
2556 	}
2557 	return ret;
2558 }
2559 
2560 static void cxgb_set_rxmode(struct net_device *dev)
2561 {
2562 	/* unfortunately we can't return errors to the stack */
2563 	set_rxmode(dev, -1, false);
2564 }
2565 
2566 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2567 {
2568 	int ret;
2569 	struct port_info *pi = netdev_priv(dev);
2570 
2571 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2572 			    -1, -1, -1, true);
2573 	if (!ret)
2574 		dev->mtu = new_mtu;
2575 	return ret;
2576 }
2577 
2578 #ifdef CONFIG_PCI_IOV
2579 static int dummy_open(struct net_device *dev)
2580 {
2581 	/* Turn carrier off since we don't have to transmit anything on this
2582 	 * interface.
2583 	 */
2584 	netif_carrier_off(dev);
2585 	return 0;
2586 }
2587 
2588 /* Fill MAC address that will be assigned by the FW */
2589 static void fill_vf_station_mac_addr(struct adapter *adap)
2590 {
2591 	unsigned int i;
2592 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2593 	int err;
2594 	u8 *na;
2595 	u16 a, b;
2596 
2597 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2598 	if (!err) {
2599 		na = adap->params.vpd.na;
2600 		for (i = 0; i < ETH_ALEN; i++)
2601 			hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2602 				      hex2val(na[2 * i + 1]));
2603 		a = (hw_addr[0] << 8) | hw_addr[1];
2604 		b = (hw_addr[1] << 8) | hw_addr[2];
2605 		a ^= b;
2606 		a |= 0x0200;    /* locally assigned Ethernet MAC address */
2607 		a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2608 		macaddr[0] = a >> 8;
2609 		macaddr[1] = a & 0xff;
2610 
2611 		for (i = 2; i < 5; i++)
2612 			macaddr[i] = hw_addr[i + 1];
2613 
2614 		for (i = 0; i < adap->num_vfs; i++) {
2615 			macaddr[5] = adap->pf * 16 + i;
2616 			ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2617 		}
2618 	}
2619 }
2620 
2621 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2622 {
2623 	struct port_info *pi = netdev_priv(dev);
2624 	struct adapter *adap = pi->adapter;
2625 	int ret;
2626 
2627 	/* verify MAC addr is valid */
2628 	if (!is_valid_ether_addr(mac)) {
2629 		dev_err(pi->adapter->pdev_dev,
2630 			"Invalid Ethernet address %pM for VF %d\n",
2631 			mac, vf);
2632 		return -EINVAL;
2633 	}
2634 
2635 	dev_info(pi->adapter->pdev_dev,
2636 		 "Setting MAC %pM on VF %d\n", mac, vf);
2637 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2638 	if (!ret)
2639 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2640 	return ret;
2641 }
2642 
2643 static int cxgb_get_vf_config(struct net_device *dev,
2644 			      int vf, struct ifla_vf_info *ivi)
2645 {
2646 	struct port_info *pi = netdev_priv(dev);
2647 	struct adapter *adap = pi->adapter;
2648 
2649 	if (vf >= adap->num_vfs)
2650 		return -EINVAL;
2651 	ivi->vf = vf;
2652 	ivi->max_tx_rate = adap->vfinfo[vf].tx_rate;
2653 	ivi->min_tx_rate = 0;
2654 	ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2655 	return 0;
2656 }
2657 
2658 static int cxgb_get_phys_port_id(struct net_device *dev,
2659 				 struct netdev_phys_item_id *ppid)
2660 {
2661 	struct port_info *pi = netdev_priv(dev);
2662 	unsigned int phy_port_id;
2663 
2664 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2665 	ppid->id_len = sizeof(phy_port_id);
2666 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
2667 	return 0;
2668 }
2669 
2670 static int cxgb_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate,
2671 			    int max_tx_rate)
2672 {
2673 	struct port_info *pi = netdev_priv(dev);
2674 	struct adapter *adap = pi->adapter;
2675 	struct fw_port_cmd port_cmd, port_rpl;
2676 	u32 link_status, speed = 0;
2677 	u32 fw_pfvf, fw_class;
2678 	int class_id = vf;
2679 	int link_ok, ret;
2680 	u16 pktsize;
2681 
2682 	if (vf >= adap->num_vfs)
2683 		return -EINVAL;
2684 
2685 	if (min_tx_rate) {
2686 		dev_err(adap->pdev_dev,
2687 			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2688 			min_tx_rate, vf);
2689 		return -EINVAL;
2690 	}
2691 	/* Retrieve link details for VF port */
2692 	memset(&port_cmd, 0, sizeof(port_cmd));
2693 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2694 					    FW_CMD_REQUEST_F |
2695 					    FW_CMD_READ_F |
2696 					    FW_PORT_CMD_PORTID_V(pi->port_id));
2697 	port_cmd.action_to_len16 =
2698 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
2699 			    FW_LEN16(port_cmd));
2700 	ret = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
2701 			 &port_rpl);
2702 	if (ret != FW_SUCCESS) {
2703 		dev_err(adap->pdev_dev,
2704 			"Failed to get link status for VF %d\n", vf);
2705 		return -EINVAL;
2706 	}
2707 	link_status = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
2708 	link_ok = (link_status & FW_PORT_CMD_LSTATUS_F) != 0;
2709 	if (!link_ok) {
2710 		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2711 		return -EINVAL;
2712 	}
2713 	/* Determine link speed */
2714 	if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
2715 		speed = 100;
2716 	else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
2717 		speed = 1000;
2718 	else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
2719 		speed = 10000;
2720 	else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
2721 		speed = 25000;
2722 	else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
2723 		speed = 40000;
2724 	else if (link_status & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
2725 		speed = 100000;
2726 
2727 	if (max_tx_rate > speed) {
2728 		dev_err(adap->pdev_dev,
2729 			"Max tx rate %d for VF %d can't be > link-speed %u",
2730 			max_tx_rate, vf, speed);
2731 		return -EINVAL;
2732 	}
2733 	pktsize = be16_to_cpu(port_rpl.u.info.mtu);
2734 	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2735 	pktsize = pktsize - sizeof(struct ethhdr) - 4;
2736 	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2737 	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2738 	/* configure Traffic Class for rate-limiting */
2739 	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2740 			      SCHED_CLASS_LEVEL_CL_RL,
2741 			      SCHED_CLASS_MODE_CLASS,
2742 			      SCHED_CLASS_RATEUNIT_BITS,
2743 			      SCHED_CLASS_RATEMODE_ABS,
2744 			      pi->port_id, class_id, 0,
2745 			      max_tx_rate * 1000, 0, pktsize);
2746 	if (ret) {
2747 		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2748 			ret);
2749 		return -EINVAL;
2750 	}
2751 	dev_info(adap->pdev_dev,
2752 		 "Class %d with MSS %u configured with rate %u\n",
2753 		 class_id, pktsize, max_tx_rate);
2754 
2755 	/* bind VF to configured Traffic Class */
2756 	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2757 		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2758 	fw_class = class_id;
2759 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2760 			    &fw_class);
2761 	if (ret) {
2762 		dev_err(adap->pdev_dev,
2763 			"Err %d in binding VF %d to Traffic Class %d\n",
2764 			ret, vf, class_id);
2765 		return -EINVAL;
2766 	}
2767 	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2768 		 adap->pf, vf, class_id);
2769 	adap->vfinfo[vf].tx_rate = max_tx_rate;
2770 	return 0;
2771 }
2772 
2773 #endif
2774 
2775 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2776 {
2777 	int ret;
2778 	struct sockaddr *addr = p;
2779 	struct port_info *pi = netdev_priv(dev);
2780 
2781 	if (!is_valid_ether_addr(addr->sa_data))
2782 		return -EADDRNOTAVAIL;
2783 
2784 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2785 			    pi->xact_addr_filt, addr->sa_data, true, true);
2786 	if (ret < 0)
2787 		return ret;
2788 
2789 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2790 	pi->xact_addr_filt = ret;
2791 	return 0;
2792 }
2793 
2794 #ifdef CONFIG_NET_POLL_CONTROLLER
2795 static void cxgb_netpoll(struct net_device *dev)
2796 {
2797 	struct port_info *pi = netdev_priv(dev);
2798 	struct adapter *adap = pi->adapter;
2799 
2800 	if (adap->flags & USING_MSIX) {
2801 		int i;
2802 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2803 
2804 		for (i = pi->nqsets; i; i--, rx++)
2805 			t4_sge_intr_msix(0, &rx->rspq);
2806 	} else
2807 		t4_intr_handler(adap)(0, adap);
2808 }
2809 #endif
2810 
2811 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2812 {
2813 	struct port_info *pi = netdev_priv(dev);
2814 	struct adapter *adap = pi->adapter;
2815 	struct sched_class *e;
2816 	struct ch_sched_params p;
2817 	struct ch_sched_queue qe;
2818 	u32 req_rate;
2819 	int err = 0;
2820 
2821 	if (!can_sched(dev))
2822 		return -ENOTSUPP;
2823 
2824 	if (index < 0 || index > pi->nqsets - 1)
2825 		return -EINVAL;
2826 
2827 	if (!(adap->flags & FULL_INIT_DONE)) {
2828 		dev_err(adap->pdev_dev,
2829 			"Failed to rate limit on queue %d. Link Down?\n",
2830 			index);
2831 		return -EINVAL;
2832 	}
2833 
2834 	/* Convert from Mbps to Kbps */
2835 	req_rate = rate << 10;
2836 
2837 	/* Max rate is 10 Gbps */
2838 	if (req_rate >= SCHED_MAX_RATE_KBPS) {
2839 		dev_err(adap->pdev_dev,
2840 			"Invalid rate %u Mbps, Max rate is %u Gbps\n",
2841 			rate, SCHED_MAX_RATE_KBPS);
2842 		return -ERANGE;
2843 	}
2844 
2845 	/* First unbind the queue from any existing class */
2846 	memset(&qe, 0, sizeof(qe));
2847 	qe.queue = index;
2848 	qe.class = SCHED_CLS_NONE;
2849 
2850 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2851 	if (err) {
2852 		dev_err(adap->pdev_dev,
2853 			"Unbinding Queue %d on port %d fail. Err: %d\n",
2854 			index, pi->port_id, err);
2855 		return err;
2856 	}
2857 
2858 	/* Queue already unbound */
2859 	if (!req_rate)
2860 		return 0;
2861 
2862 	/* Fetch any available unused or matching scheduling class */
2863 	memset(&p, 0, sizeof(p));
2864 	p.type = SCHED_CLASS_TYPE_PACKET;
2865 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2866 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2867 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2868 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2869 	p.u.params.channel  = pi->tx_chan;
2870 	p.u.params.class    = SCHED_CLS_NONE;
2871 	p.u.params.minrate  = 0;
2872 	p.u.params.maxrate  = req_rate;
2873 	p.u.params.weight   = 0;
2874 	p.u.params.pktsize  = dev->mtu;
2875 
2876 	e = cxgb4_sched_class_alloc(dev, &p);
2877 	if (!e)
2878 		return -ENOMEM;
2879 
2880 	/* Bind the queue to a scheduling class */
2881 	memset(&qe, 0, sizeof(qe));
2882 	qe.queue = index;
2883 	qe.class = e->idx;
2884 
2885 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2886 	if (err)
2887 		dev_err(adap->pdev_dev,
2888 			"Queue rate limiting failed. Err: %d\n", err);
2889 	return err;
2890 }
2891 
2892 static int cxgb_setup_tc(struct net_device *dev, u32 handle, u32 chain_index,
2893 			 __be16 proto, struct tc_to_netdev *tc)
2894 {
2895 	struct port_info *pi = netdev2pinfo(dev);
2896 	struct adapter *adap = netdev2adap(dev);
2897 
2898 	if (chain_index)
2899 		return -EOPNOTSUPP;
2900 
2901 	if (!(adap->flags & FULL_INIT_DONE)) {
2902 		dev_err(adap->pdev_dev,
2903 			"Failed to setup tc on port %d. Link Down?\n",
2904 			pi->port_id);
2905 		return -EINVAL;
2906 	}
2907 
2908 	if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) &&
2909 	    tc->type == TC_SETUP_CLSU32) {
2910 		switch (tc->cls_u32->command) {
2911 		case TC_CLSU32_NEW_KNODE:
2912 		case TC_CLSU32_REPLACE_KNODE:
2913 			return cxgb4_config_knode(dev, proto, tc->cls_u32);
2914 		case TC_CLSU32_DELETE_KNODE:
2915 			return cxgb4_delete_knode(dev, proto, tc->cls_u32);
2916 		default:
2917 			return -EOPNOTSUPP;
2918 		}
2919 	}
2920 
2921 	return -EOPNOTSUPP;
2922 }
2923 
2924 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2925 					   netdev_features_t features)
2926 {
2927 	/* Disable GRO, if RX_CSUM is disabled */
2928 	if (!(features & NETIF_F_RXCSUM))
2929 		features &= ~NETIF_F_GRO;
2930 
2931 	return features;
2932 }
2933 
2934 static const struct net_device_ops cxgb4_netdev_ops = {
2935 	.ndo_open             = cxgb_open,
2936 	.ndo_stop             = cxgb_close,
2937 	.ndo_start_xmit       = t4_eth_xmit,
2938 	.ndo_select_queue     =	cxgb_select_queue,
2939 	.ndo_get_stats64      = cxgb_get_stats,
2940 	.ndo_set_rx_mode      = cxgb_set_rxmode,
2941 	.ndo_set_mac_address  = cxgb_set_mac_addr,
2942 	.ndo_set_features     = cxgb_set_features,
2943 	.ndo_validate_addr    = eth_validate_addr,
2944 	.ndo_do_ioctl         = cxgb_ioctl,
2945 	.ndo_change_mtu       = cxgb_change_mtu,
2946 #ifdef CONFIG_NET_POLL_CONTROLLER
2947 	.ndo_poll_controller  = cxgb_netpoll,
2948 #endif
2949 #ifdef CONFIG_CHELSIO_T4_FCOE
2950 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
2951 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
2952 #endif /* CONFIG_CHELSIO_T4_FCOE */
2953 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
2954 	.ndo_setup_tc         = cxgb_setup_tc,
2955 	.ndo_fix_features     = cxgb_fix_features,
2956 };
2957 
2958 #ifdef CONFIG_PCI_IOV
2959 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
2960 	.ndo_open             = dummy_open,
2961 	.ndo_set_vf_mac       = cxgb_set_vf_mac,
2962 	.ndo_get_vf_config    = cxgb_get_vf_config,
2963 	.ndo_set_vf_rate      = cxgb_set_vf_rate,
2964 	.ndo_get_phys_port_id = cxgb_get_phys_port_id,
2965 };
2966 #endif
2967 
2968 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2969 {
2970 	struct adapter *adapter = netdev2adap(dev);
2971 
2972 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
2973 	strlcpy(info->version, cxgb4_driver_version,
2974 		sizeof(info->version));
2975 	strlcpy(info->bus_info, pci_name(adapter->pdev),
2976 		sizeof(info->bus_info));
2977 }
2978 
2979 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
2980 	.get_drvinfo       = get_drvinfo,
2981 };
2982 
2983 void t4_fatal_err(struct adapter *adap)
2984 {
2985 	int port;
2986 
2987 	if (pci_channel_offline(adap->pdev))
2988 		return;
2989 
2990 	/* Disable the SGE since ULDs are going to free resources that
2991 	 * could be exposed to the adapter.  RDMA MWs for example...
2992 	 */
2993 	t4_shutdown_adapter(adap);
2994 	for_each_port(adap, port) {
2995 		struct net_device *dev = adap->port[port];
2996 
2997 		/* If we get here in very early initialization the network
2998 		 * devices may not have been set up yet.
2999 		 */
3000 		if (!dev)
3001 			continue;
3002 
3003 		netif_tx_stop_all_queues(dev);
3004 		netif_carrier_off(dev);
3005 	}
3006 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3007 }
3008 
3009 static void setup_memwin(struct adapter *adap)
3010 {
3011 	u32 nic_win_base = t4_get_util_window(adap);
3012 
3013 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3014 }
3015 
3016 static void setup_memwin_rdma(struct adapter *adap)
3017 {
3018 	if (adap->vres.ocq.size) {
3019 		u32 start;
3020 		unsigned int sz_kb;
3021 
3022 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3023 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3024 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3025 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3026 		t4_write_reg(adap,
3027 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3028 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3029 		t4_write_reg(adap,
3030 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3031 			     adap->vres.ocq.start);
3032 		t4_read_reg(adap,
3033 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3034 	}
3035 }
3036 
3037 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3038 {
3039 	u32 v;
3040 	int ret;
3041 
3042 	/* get device capabilities */
3043 	memset(c, 0, sizeof(*c));
3044 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3045 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3046 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3047 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3048 	if (ret < 0)
3049 		return ret;
3050 
3051 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3052 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3053 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3054 	if (ret < 0)
3055 		return ret;
3056 
3057 	ret = t4_config_glbl_rss(adap, adap->pf,
3058 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3059 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3060 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3061 	if (ret < 0)
3062 		return ret;
3063 
3064 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3065 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3066 			  FW_CMD_CAP_PF);
3067 	if (ret < 0)
3068 		return ret;
3069 
3070 	t4_sge_init(adap);
3071 
3072 	/* tweak some settings */
3073 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3074 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3075 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3076 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3077 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3078 
3079 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3080 	adap->params.tp.tx_modq_map = 0xE4;
3081 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3082 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3083 
3084 	/* associate each Tx modulation queue with consecutive Tx channels */
3085 	v = 0x84218421;
3086 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3087 			  &v, 1, TP_TX_SCHED_HDR_A);
3088 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3089 			  &v, 1, TP_TX_SCHED_FIFO_A);
3090 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3091 			  &v, 1, TP_TX_SCHED_PCMD_A);
3092 
3093 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3094 	if (is_offload(adap)) {
3095 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3096 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3097 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3098 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3099 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3100 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3101 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3102 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3103 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3104 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3105 	}
3106 
3107 	/* get basic stuff going */
3108 	return t4_early_init(adap, adap->pf);
3109 }
3110 
3111 /*
3112  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3113  */
3114 #define MAX_ATIDS 8192U
3115 
3116 /*
3117  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3118  *
3119  * If the firmware we're dealing with has Configuration File support, then
3120  * we use that to perform all configuration
3121  */
3122 
3123 /*
3124  * Tweak configuration based on module parameters, etc.  Most of these have
3125  * defaults assigned to them by Firmware Configuration Files (if we're using
3126  * them) but need to be explicitly set if we're using hard-coded
3127  * initialization.  But even in the case of using Firmware Configuration
3128  * Files, we'd like to expose the ability to change these via module
3129  * parameters so these are essentially common tweaks/settings for
3130  * Configuration Files and hard-coded initialization ...
3131  */
3132 static int adap_init0_tweaks(struct adapter *adapter)
3133 {
3134 	/*
3135 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3136 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3137 	 * 64B Cache Line Size ...
3138 	 */
3139 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3140 
3141 	/*
3142 	 * Process module parameters which affect early initialization.
3143 	 */
3144 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3145 		dev_err(&adapter->pdev->dev,
3146 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3147 			rx_dma_offset);
3148 		rx_dma_offset = 2;
3149 	}
3150 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3151 			 PKTSHIFT_V(PKTSHIFT_M),
3152 			 PKTSHIFT_V(rx_dma_offset));
3153 
3154 	/*
3155 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3156 	 * adds the pseudo header itself.
3157 	 */
3158 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3159 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3160 
3161 	return 0;
3162 }
3163 
3164 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3165  * unto themselves and they contain their own firmware to perform their
3166  * tasks ...
3167  */
3168 static int phy_aq1202_version(const u8 *phy_fw_data,
3169 			      size_t phy_fw_size)
3170 {
3171 	int offset;
3172 
3173 	/* At offset 0x8 you're looking for the primary image's
3174 	 * starting offset which is 3 Bytes wide
3175 	 *
3176 	 * At offset 0xa of the primary image, you look for the offset
3177 	 * of the DRAM segment which is 3 Bytes wide.
3178 	 *
3179 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3180 	 * wide
3181 	 */
3182 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
3183 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3184 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
3185 
3186 	offset = le24(phy_fw_data + 0x8) << 12;
3187 	offset = le24(phy_fw_data + offset + 0xa);
3188 	return be16(phy_fw_data + offset + 0x27e);
3189 
3190 	#undef be16
3191 	#undef le16
3192 	#undef le24
3193 }
3194 
3195 static struct info_10gbt_phy_fw {
3196 	unsigned int phy_fw_id;		/* PCI Device ID */
3197 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
3198 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3199 	int phy_flash;			/* Has FLASH for PHY Firmware */
3200 } phy_info_array[] = {
3201 	{
3202 		PHY_AQ1202_DEVICEID,
3203 		PHY_AQ1202_FIRMWARE,
3204 		phy_aq1202_version,
3205 		1,
3206 	},
3207 	{
3208 		PHY_BCM84834_DEVICEID,
3209 		PHY_BCM84834_FIRMWARE,
3210 		NULL,
3211 		0,
3212 	},
3213 	{ 0, NULL, NULL },
3214 };
3215 
3216 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3217 {
3218 	int i;
3219 
3220 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3221 		if (phy_info_array[i].phy_fw_id == devid)
3222 			return &phy_info_array[i];
3223 	}
3224 	return NULL;
3225 }
3226 
3227 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3228  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3229  * we return a negative error number.  If we transfer new firmware we return 1
3230  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3231  */
3232 static int adap_init0_phy(struct adapter *adap)
3233 {
3234 	const struct firmware *phyf;
3235 	int ret;
3236 	struct info_10gbt_phy_fw *phy_info;
3237 
3238 	/* Use the device ID to determine which PHY file to flash.
3239 	 */
3240 	phy_info = find_phy_info(adap->pdev->device);
3241 	if (!phy_info) {
3242 		dev_warn(adap->pdev_dev,
3243 			 "No PHY Firmware file found for this PHY\n");
3244 		return -EOPNOTSUPP;
3245 	}
3246 
3247 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3248 	 * use that. The adapter firmware provides us with a memory buffer
3249 	 * where we can load a PHY firmware file from the host if we want to
3250 	 * override the PHY firmware File in flash.
3251 	 */
3252 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3253 				      adap->pdev_dev);
3254 	if (ret < 0) {
3255 		/* For adapters without FLASH attached to PHY for their
3256 		 * firmware, it's obviously a fatal error if we can't get the
3257 		 * firmware to the adapter.  For adapters with PHY firmware
3258 		 * FLASH storage, it's worth a warning if we can't find the
3259 		 * PHY Firmware but we'll neuter the error ...
3260 		 */
3261 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3262 			"/lib/firmware/%s, error %d\n",
3263 			phy_info->phy_fw_file, -ret);
3264 		if (phy_info->phy_flash) {
3265 			int cur_phy_fw_ver = 0;
3266 
3267 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3268 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3269 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3270 			ret = 0;
3271 		}
3272 
3273 		return ret;
3274 	}
3275 
3276 	/* Load PHY Firmware onto adapter.
3277 	 */
3278 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3279 			     phy_info->phy_fw_version,
3280 			     (u8 *)phyf->data, phyf->size);
3281 	if (ret < 0)
3282 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3283 			-ret);
3284 	else if (ret > 0) {
3285 		int new_phy_fw_ver = 0;
3286 
3287 		if (phy_info->phy_fw_version)
3288 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3289 								  phyf->size);
3290 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3291 			 "Firmware /lib/firmware/%s, version %#x\n",
3292 			 phy_info->phy_fw_file, new_phy_fw_ver);
3293 	}
3294 
3295 	release_firmware(phyf);
3296 
3297 	return ret;
3298 }
3299 
3300 /*
3301  * Attempt to initialize the adapter via a Firmware Configuration File.
3302  */
3303 static int adap_init0_config(struct adapter *adapter, int reset)
3304 {
3305 	struct fw_caps_config_cmd caps_cmd;
3306 	const struct firmware *cf;
3307 	unsigned long mtype = 0, maddr = 0;
3308 	u32 finiver, finicsum, cfcsum;
3309 	int ret;
3310 	int config_issued = 0;
3311 	char *fw_config_file, fw_config_file_path[256];
3312 	char *config_name = NULL;
3313 
3314 	/*
3315 	 * Reset device if necessary.
3316 	 */
3317 	if (reset) {
3318 		ret = t4_fw_reset(adapter, adapter->mbox,
3319 				  PIORSTMODE_F | PIORST_F);
3320 		if (ret < 0)
3321 			goto bye;
3322 	}
3323 
3324 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3325 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3326 	 * to be performed after any global adapter RESET above since some
3327 	 * PHYs only have local RAM copies of the PHY firmware.
3328 	 */
3329 	if (is_10gbt_device(adapter->pdev->device)) {
3330 		ret = adap_init0_phy(adapter);
3331 		if (ret < 0)
3332 			goto bye;
3333 	}
3334 	/*
3335 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3336 	 * then use that.  Otherwise, use the configuration file stored
3337 	 * in the adapter flash ...
3338 	 */
3339 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3340 	case CHELSIO_T4:
3341 		fw_config_file = FW4_CFNAME;
3342 		break;
3343 	case CHELSIO_T5:
3344 		fw_config_file = FW5_CFNAME;
3345 		break;
3346 	case CHELSIO_T6:
3347 		fw_config_file = FW6_CFNAME;
3348 		break;
3349 	default:
3350 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3351 		       adapter->pdev->device);
3352 		ret = -EINVAL;
3353 		goto bye;
3354 	}
3355 
3356 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3357 	if (ret < 0) {
3358 		config_name = "On FLASH";
3359 		mtype = FW_MEMTYPE_CF_FLASH;
3360 		maddr = t4_flash_cfg_addr(adapter);
3361 	} else {
3362 		u32 params[7], val[7];
3363 
3364 		sprintf(fw_config_file_path,
3365 			"/lib/firmware/%s", fw_config_file);
3366 		config_name = fw_config_file_path;
3367 
3368 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3369 			ret = -ENOMEM;
3370 		else {
3371 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3372 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3373 			ret = t4_query_params(adapter, adapter->mbox,
3374 					      adapter->pf, 0, 1, params, val);
3375 			if (ret == 0) {
3376 				/*
3377 				 * For t4_memory_rw() below addresses and
3378 				 * sizes have to be in terms of multiples of 4
3379 				 * bytes.  So, if the Configuration File isn't
3380 				 * a multiple of 4 bytes in length we'll have
3381 				 * to write that out separately since we can't
3382 				 * guarantee that the bytes following the
3383 				 * residual byte in the buffer returned by
3384 				 * request_firmware() are zeroed out ...
3385 				 */
3386 				size_t resid = cf->size & 0x3;
3387 				size_t size = cf->size & ~0x3;
3388 				__be32 *data = (__be32 *)cf->data;
3389 
3390 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3391 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3392 
3393 				spin_lock(&adapter->win0_lock);
3394 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3395 						   size, data, T4_MEMORY_WRITE);
3396 				if (ret == 0 && resid != 0) {
3397 					union {
3398 						__be32 word;
3399 						char buf[4];
3400 					} last;
3401 					int i;
3402 
3403 					last.word = data[size >> 2];
3404 					for (i = resid; i < 4; i++)
3405 						last.buf[i] = 0;
3406 					ret = t4_memory_rw(adapter, 0, mtype,
3407 							   maddr + size,
3408 							   4, &last.word,
3409 							   T4_MEMORY_WRITE);
3410 				}
3411 				spin_unlock(&adapter->win0_lock);
3412 			}
3413 		}
3414 
3415 		release_firmware(cf);
3416 		if (ret)
3417 			goto bye;
3418 	}
3419 
3420 	/*
3421 	 * Issue a Capability Configuration command to the firmware to get it
3422 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3423 	 * because we want the ability to modify various features after we've
3424 	 * processed the configuration file ...
3425 	 */
3426 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3427 	caps_cmd.op_to_write =
3428 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3429 		      FW_CMD_REQUEST_F |
3430 		      FW_CMD_READ_F);
3431 	caps_cmd.cfvalid_to_len16 =
3432 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3433 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3434 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3435 		      FW_LEN16(caps_cmd));
3436 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3437 			 &caps_cmd);
3438 
3439 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3440 	 * Configuration File in FLASH), our last gasp effort is to use the
3441 	 * Firmware Configuration File which is embedded in the firmware.  A
3442 	 * very few early versions of the firmware didn't have one embedded
3443 	 * but we can ignore those.
3444 	 */
3445 	if (ret == -ENOENT) {
3446 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3447 		caps_cmd.op_to_write =
3448 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3449 					FW_CMD_REQUEST_F |
3450 					FW_CMD_READ_F);
3451 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3452 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3453 				sizeof(caps_cmd), &caps_cmd);
3454 		config_name = "Firmware Default";
3455 	}
3456 
3457 	config_issued = 1;
3458 	if (ret < 0)
3459 		goto bye;
3460 
3461 	finiver = ntohl(caps_cmd.finiver);
3462 	finicsum = ntohl(caps_cmd.finicsum);
3463 	cfcsum = ntohl(caps_cmd.cfcsum);
3464 	if (finicsum != cfcsum)
3465 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3466 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3467 			 finicsum, cfcsum);
3468 
3469 	/*
3470 	 * And now tell the firmware to use the configuration we just loaded.
3471 	 */
3472 	caps_cmd.op_to_write =
3473 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3474 		      FW_CMD_REQUEST_F |
3475 		      FW_CMD_WRITE_F);
3476 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3477 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3478 			 NULL);
3479 	if (ret < 0)
3480 		goto bye;
3481 
3482 	/*
3483 	 * Tweak configuration based on system architecture, module
3484 	 * parameters, etc.
3485 	 */
3486 	ret = adap_init0_tweaks(adapter);
3487 	if (ret < 0)
3488 		goto bye;
3489 
3490 	/*
3491 	 * And finally tell the firmware to initialize itself using the
3492 	 * parameters from the Configuration File.
3493 	 */
3494 	ret = t4_fw_initialize(adapter, adapter->mbox);
3495 	if (ret < 0)
3496 		goto bye;
3497 
3498 	/* Emit Firmware Configuration File information and return
3499 	 * successfully.
3500 	 */
3501 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3502 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3503 		 config_name, finiver, cfcsum);
3504 	return 0;
3505 
3506 	/*
3507 	 * Something bad happened.  Return the error ...  (If the "error"
3508 	 * is that there's no Configuration File on the adapter we don't
3509 	 * want to issue a warning since this is fairly common.)
3510 	 */
3511 bye:
3512 	if (config_issued && ret != -ENOENT)
3513 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3514 			 config_name, -ret);
3515 	return ret;
3516 }
3517 
3518 static struct fw_info fw_info_array[] = {
3519 	{
3520 		.chip = CHELSIO_T4,
3521 		.fs_name = FW4_CFNAME,
3522 		.fw_mod_name = FW4_FNAME,
3523 		.fw_hdr = {
3524 			.chip = FW_HDR_CHIP_T4,
3525 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3526 			.intfver_nic = FW_INTFVER(T4, NIC),
3527 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3528 			.intfver_ri = FW_INTFVER(T4, RI),
3529 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3530 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3531 		},
3532 	}, {
3533 		.chip = CHELSIO_T5,
3534 		.fs_name = FW5_CFNAME,
3535 		.fw_mod_name = FW5_FNAME,
3536 		.fw_hdr = {
3537 			.chip = FW_HDR_CHIP_T5,
3538 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3539 			.intfver_nic = FW_INTFVER(T5, NIC),
3540 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3541 			.intfver_ri = FW_INTFVER(T5, RI),
3542 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3543 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3544 		},
3545 	}, {
3546 		.chip = CHELSIO_T6,
3547 		.fs_name = FW6_CFNAME,
3548 		.fw_mod_name = FW6_FNAME,
3549 		.fw_hdr = {
3550 			.chip = FW_HDR_CHIP_T6,
3551 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3552 			.intfver_nic = FW_INTFVER(T6, NIC),
3553 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3554 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3555 			.intfver_ri = FW_INTFVER(T6, RI),
3556 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3557 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3558 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3559 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3560 		},
3561 	}
3562 
3563 };
3564 
3565 static struct fw_info *find_fw_info(int chip)
3566 {
3567 	int i;
3568 
3569 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3570 		if (fw_info_array[i].chip == chip)
3571 			return &fw_info_array[i];
3572 	}
3573 	return NULL;
3574 }
3575 
3576 /*
3577  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3578  */
3579 static int adap_init0(struct adapter *adap)
3580 {
3581 	int ret;
3582 	u32 v, port_vec;
3583 	enum dev_state state;
3584 	u32 params[7], val[7];
3585 	struct fw_caps_config_cmd caps_cmd;
3586 	int reset = 1;
3587 
3588 	/* Grab Firmware Device Log parameters as early as possible so we have
3589 	 * access to it for debugging, etc.
3590 	 */
3591 	ret = t4_init_devlog_params(adap);
3592 	if (ret < 0)
3593 		return ret;
3594 
3595 	/* Contact FW, advertising Master capability */
3596 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3597 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3598 	if (ret < 0) {
3599 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3600 			ret);
3601 		return ret;
3602 	}
3603 	if (ret == adap->mbox)
3604 		adap->flags |= MASTER_PF;
3605 
3606 	/*
3607 	 * If we're the Master PF Driver and the device is uninitialized,
3608 	 * then let's consider upgrading the firmware ...  (We always want
3609 	 * to check the firmware version number in order to A. get it for
3610 	 * later reporting and B. to warn if the currently loaded firmware
3611 	 * is excessively mismatched relative to the driver.)
3612 	 */
3613 	t4_get_fw_version(adap, &adap->params.fw_vers);
3614 	t4_get_bs_version(adap, &adap->params.bs_vers);
3615 	t4_get_tp_version(adap, &adap->params.tp_vers);
3616 	t4_get_exprom_version(adap, &adap->params.er_vers);
3617 
3618 	ret = t4_check_fw_version(adap);
3619 	/* If firmware is too old (not supported by driver) force an update. */
3620 	if (ret)
3621 		state = DEV_STATE_UNINIT;
3622 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3623 		struct fw_info *fw_info;
3624 		struct fw_hdr *card_fw;
3625 		const struct firmware *fw;
3626 		const u8 *fw_data = NULL;
3627 		unsigned int fw_size = 0;
3628 
3629 		/* This is the firmware whose headers the driver was compiled
3630 		 * against
3631 		 */
3632 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3633 		if (fw_info == NULL) {
3634 			dev_err(adap->pdev_dev,
3635 				"unable to get firmware info for chip %d.\n",
3636 				CHELSIO_CHIP_VERSION(adap->params.chip));
3637 			return -EINVAL;
3638 		}
3639 
3640 		/* allocate memory to read the header of the firmware on the
3641 		 * card
3642 		 */
3643 		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
3644 
3645 		/* Get FW from from /lib/firmware/ */
3646 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3647 				       adap->pdev_dev);
3648 		if (ret < 0) {
3649 			dev_err(adap->pdev_dev,
3650 				"unable to load firmware image %s, error %d\n",
3651 				fw_info->fw_mod_name, ret);
3652 		} else {
3653 			fw_data = fw->data;
3654 			fw_size = fw->size;
3655 		}
3656 
3657 		/* upgrade FW logic */
3658 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3659 				 state, &reset);
3660 
3661 		/* Cleaning up */
3662 		release_firmware(fw);
3663 		kvfree(card_fw);
3664 
3665 		if (ret < 0)
3666 			goto bye;
3667 	}
3668 
3669 	/*
3670 	 * Grab VPD parameters.  This should be done after we establish a
3671 	 * connection to the firmware since some of the VPD parameters
3672 	 * (notably the Core Clock frequency) are retrieved via requests to
3673 	 * the firmware.  On the other hand, we need these fairly early on
3674 	 * so we do this right after getting ahold of the firmware.
3675 	 */
3676 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3677 	if (ret < 0)
3678 		goto bye;
3679 
3680 	/*
3681 	 * Find out what ports are available to us.  Note that we need to do
3682 	 * this before calling adap_init0_no_config() since it needs nports
3683 	 * and portvec ...
3684 	 */
3685 	v =
3686 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3687 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3688 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3689 	if (ret < 0)
3690 		goto bye;
3691 
3692 	adap->params.nports = hweight32(port_vec);
3693 	adap->params.portvec = port_vec;
3694 
3695 	/* If the firmware is initialized already, emit a simply note to that
3696 	 * effect. Otherwise, it's time to try initializing the adapter.
3697 	 */
3698 	if (state == DEV_STATE_INIT) {
3699 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3700 			 "Adapter already initialized\n",
3701 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3702 	} else {
3703 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3704 			 "Initializing adapter\n");
3705 
3706 		/* Find out whether we're dealing with a version of the
3707 		 * firmware which has configuration file support.
3708 		 */
3709 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3710 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3711 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3712 				      params, val);
3713 
3714 		/* If the firmware doesn't support Configuration Files,
3715 		 * return an error.
3716 		 */
3717 		if (ret < 0) {
3718 			dev_err(adap->pdev_dev, "firmware doesn't support "
3719 				"Firmware Configuration Files\n");
3720 			goto bye;
3721 		}
3722 
3723 		/* The firmware provides us with a memory buffer where we can
3724 		 * load a Configuration File from the host if we want to
3725 		 * override the Configuration File in flash.
3726 		 */
3727 		ret = adap_init0_config(adap, reset);
3728 		if (ret == -ENOENT) {
3729 			dev_err(adap->pdev_dev, "no Configuration File "
3730 				"present on adapter.\n");
3731 			goto bye;
3732 		}
3733 		if (ret < 0) {
3734 			dev_err(adap->pdev_dev, "could not initialize "
3735 				"adapter, error %d\n", -ret);
3736 			goto bye;
3737 		}
3738 	}
3739 
3740 	/* Give the SGE code a chance to pull in anything that it needs ...
3741 	 * Note that this must be called after we retrieve our VPD parameters
3742 	 * in order to know how to convert core ticks to seconds, etc.
3743 	 */
3744 	ret = t4_sge_init(adap);
3745 	if (ret < 0)
3746 		goto bye;
3747 
3748 	if (is_bypass_device(adap->pdev->device))
3749 		adap->params.bypass = 1;
3750 
3751 	/*
3752 	 * Grab some of our basic fundamental operating parameters.
3753 	 */
3754 #define FW_PARAM_DEV(param) \
3755 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3756 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3757 
3758 #define FW_PARAM_PFVF(param) \
3759 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3760 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3761 	FW_PARAMS_PARAM_Y_V(0) | \
3762 	FW_PARAMS_PARAM_Z_V(0)
3763 
3764 	params[0] = FW_PARAM_PFVF(EQ_START);
3765 	params[1] = FW_PARAM_PFVF(L2T_START);
3766 	params[2] = FW_PARAM_PFVF(L2T_END);
3767 	params[3] = FW_PARAM_PFVF(FILTER_START);
3768 	params[4] = FW_PARAM_PFVF(FILTER_END);
3769 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3770 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3771 	if (ret < 0)
3772 		goto bye;
3773 	adap->sge.egr_start = val[0];
3774 	adap->l2t_start = val[1];
3775 	adap->l2t_end = val[2];
3776 	adap->tids.ftid_base = val[3];
3777 	adap->tids.nftids = val[4] - val[3] + 1;
3778 	adap->sge.ingr_start = val[5];
3779 
3780 	/* qids (ingress/egress) returned from firmware can be anywhere
3781 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3782 	 * Hence driver needs to allocate memory for this range to
3783 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3784 	 * in FW_EQ_*_CMD.alloc command.
3785 	 */
3786 	params[0] = FW_PARAM_PFVF(EQ_END);
3787 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3788 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3789 	if (ret < 0)
3790 		goto bye;
3791 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3792 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3793 
3794 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3795 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3796 	if (!adap->sge.egr_map) {
3797 		ret = -ENOMEM;
3798 		goto bye;
3799 	}
3800 
3801 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3802 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3803 	if (!adap->sge.ingr_map) {
3804 		ret = -ENOMEM;
3805 		goto bye;
3806 	}
3807 
3808 	/* Allocate the memory for the vaious egress queue bitmaps
3809 	 * ie starving_fl, txq_maperr and blocked_fl.
3810 	 */
3811 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3812 					sizeof(long), GFP_KERNEL);
3813 	if (!adap->sge.starving_fl) {
3814 		ret = -ENOMEM;
3815 		goto bye;
3816 	}
3817 
3818 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3819 				       sizeof(long), GFP_KERNEL);
3820 	if (!adap->sge.txq_maperr) {
3821 		ret = -ENOMEM;
3822 		goto bye;
3823 	}
3824 
3825 #ifdef CONFIG_DEBUG_FS
3826 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3827 				       sizeof(long), GFP_KERNEL);
3828 	if (!adap->sge.blocked_fl) {
3829 		ret = -ENOMEM;
3830 		goto bye;
3831 	}
3832 #endif
3833 
3834 	params[0] = FW_PARAM_PFVF(CLIP_START);
3835 	params[1] = FW_PARAM_PFVF(CLIP_END);
3836 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3837 	if (ret < 0)
3838 		goto bye;
3839 	adap->clipt_start = val[0];
3840 	adap->clipt_end = val[1];
3841 
3842 	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
3843 	 * Classes supported by the hardware/firmware so we hard code it here
3844 	 * for now.
3845 	 */
3846 	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3847 
3848 	/* query params related to active filter region */
3849 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3850 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3851 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3852 	/* If Active filter size is set we enable establishing
3853 	 * offload connection through firmware work request
3854 	 */
3855 	if ((val[0] != val[1]) && (ret >= 0)) {
3856 		adap->flags |= FW_OFLD_CONN;
3857 		adap->tids.aftid_base = val[0];
3858 		adap->tids.aftid_end = val[1];
3859 	}
3860 
3861 	/* If we're running on newer firmware, let it know that we're
3862 	 * prepared to deal with encapsulated CPL messages.  Older
3863 	 * firmware won't understand this and we'll just get
3864 	 * unencapsulated messages ...
3865 	 */
3866 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3867 	val[0] = 1;
3868 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3869 
3870 	/*
3871 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3872 	 * capability.  Earlier versions of the firmware didn't have the
3873 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3874 	 * permission to use ULPTX MEMWRITE DSGL.
3875 	 */
3876 	if (is_t4(adap->params.chip)) {
3877 		adap->params.ulptx_memwrite_dsgl = false;
3878 	} else {
3879 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3880 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3881 				      1, params, val);
3882 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3883 	}
3884 
3885 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
3886 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
3887 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3888 			      1, params, val);
3889 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
3890 
3891 	/*
3892 	 * Get device capabilities so we can determine what resources we need
3893 	 * to manage.
3894 	 */
3895 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3896 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3897 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3898 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3899 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3900 			 &caps_cmd);
3901 	if (ret < 0)
3902 		goto bye;
3903 
3904 	if (caps_cmd.ofldcaps) {
3905 		/* query offload-related parameters */
3906 		params[0] = FW_PARAM_DEV(NTID);
3907 		params[1] = FW_PARAM_PFVF(SERVER_START);
3908 		params[2] = FW_PARAM_PFVF(SERVER_END);
3909 		params[3] = FW_PARAM_PFVF(TDDP_START);
3910 		params[4] = FW_PARAM_PFVF(TDDP_END);
3911 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3912 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3913 				      params, val);
3914 		if (ret < 0)
3915 			goto bye;
3916 		adap->tids.ntids = val[0];
3917 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3918 		adap->tids.stid_base = val[1];
3919 		adap->tids.nstids = val[2] - val[1] + 1;
3920 		/*
3921 		 * Setup server filter region. Divide the available filter
3922 		 * region into two parts. Regular filters get 1/3rd and server
3923 		 * filters get 2/3rd part. This is only enabled if workarond
3924 		 * path is enabled.
3925 		 * 1. For regular filters.
3926 		 * 2. Server filter: This are special filters which are used
3927 		 * to redirect SYN packets to offload queue.
3928 		 */
3929 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3930 			adap->tids.sftid_base = adap->tids.ftid_base +
3931 					DIV_ROUND_UP(adap->tids.nftids, 3);
3932 			adap->tids.nsftids = adap->tids.nftids -
3933 					 DIV_ROUND_UP(adap->tids.nftids, 3);
3934 			adap->tids.nftids = adap->tids.sftid_base -
3935 						adap->tids.ftid_base;
3936 		}
3937 		adap->vres.ddp.start = val[3];
3938 		adap->vres.ddp.size = val[4] - val[3] + 1;
3939 		adap->params.ofldq_wr_cred = val[5];
3940 
3941 		adap->params.offload = 1;
3942 		adap->num_ofld_uld += 1;
3943 	}
3944 	if (caps_cmd.rdmacaps) {
3945 		params[0] = FW_PARAM_PFVF(STAG_START);
3946 		params[1] = FW_PARAM_PFVF(STAG_END);
3947 		params[2] = FW_PARAM_PFVF(RQ_START);
3948 		params[3] = FW_PARAM_PFVF(RQ_END);
3949 		params[4] = FW_PARAM_PFVF(PBL_START);
3950 		params[5] = FW_PARAM_PFVF(PBL_END);
3951 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3952 				      params, val);
3953 		if (ret < 0)
3954 			goto bye;
3955 		adap->vres.stag.start = val[0];
3956 		adap->vres.stag.size = val[1] - val[0] + 1;
3957 		adap->vres.rq.start = val[2];
3958 		adap->vres.rq.size = val[3] - val[2] + 1;
3959 		adap->vres.pbl.start = val[4];
3960 		adap->vres.pbl.size = val[5] - val[4] + 1;
3961 
3962 		params[0] = FW_PARAM_PFVF(SQRQ_START);
3963 		params[1] = FW_PARAM_PFVF(SQRQ_END);
3964 		params[2] = FW_PARAM_PFVF(CQ_START);
3965 		params[3] = FW_PARAM_PFVF(CQ_END);
3966 		params[4] = FW_PARAM_PFVF(OCQ_START);
3967 		params[5] = FW_PARAM_PFVF(OCQ_END);
3968 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3969 				      val);
3970 		if (ret < 0)
3971 			goto bye;
3972 		adap->vres.qp.start = val[0];
3973 		adap->vres.qp.size = val[1] - val[0] + 1;
3974 		adap->vres.cq.start = val[2];
3975 		adap->vres.cq.size = val[3] - val[2] + 1;
3976 		adap->vres.ocq.start = val[4];
3977 		adap->vres.ocq.size = val[5] - val[4] + 1;
3978 
3979 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3980 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3981 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3982 				      val);
3983 		if (ret < 0) {
3984 			adap->params.max_ordird_qp = 8;
3985 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3986 			ret = 0;
3987 		} else {
3988 			adap->params.max_ordird_qp = val[0];
3989 			adap->params.max_ird_adapter = val[1];
3990 		}
3991 		dev_info(adap->pdev_dev,
3992 			 "max_ordird_qp %d max_ird_adapter %d\n",
3993 			 adap->params.max_ordird_qp,
3994 			 adap->params.max_ird_adapter);
3995 		adap->num_ofld_uld += 2;
3996 	}
3997 	if (caps_cmd.iscsicaps) {
3998 		params[0] = FW_PARAM_PFVF(ISCSI_START);
3999 		params[1] = FW_PARAM_PFVF(ISCSI_END);
4000 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4001 				      params, val);
4002 		if (ret < 0)
4003 			goto bye;
4004 		adap->vres.iscsi.start = val[0];
4005 		adap->vres.iscsi.size = val[1] - val[0] + 1;
4006 		/* LIO target and cxgb4i initiaitor */
4007 		adap->num_ofld_uld += 2;
4008 	}
4009 	if (caps_cmd.cryptocaps) {
4010 		/* Should query params here...TODO */
4011 		params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4012 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4013 				      params, val);
4014 		if (ret < 0) {
4015 			if (ret != -EINVAL)
4016 				goto bye;
4017 		} else {
4018 			adap->vres.ncrypto_fc = val[0];
4019 		}
4020 		adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
4021 		adap->num_uld += 1;
4022 	}
4023 #undef FW_PARAM_PFVF
4024 #undef FW_PARAM_DEV
4025 
4026 	/* The MTU/MSS Table is initialized by now, so load their values.  If
4027 	 * we're initializing the adapter, then we'll make any modifications
4028 	 * we want to the MTU/MSS Table and also initialize the congestion
4029 	 * parameters.
4030 	 */
4031 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4032 	if (state != DEV_STATE_INIT) {
4033 		int i;
4034 
4035 		/* The default MTU Table contains values 1492 and 1500.
4036 		 * However, for TCP, it's better to have two values which are
4037 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4038 		 * This allows us to have a TCP Data Payload which is a
4039 		 * multiple of 8 regardless of what combination of TCP Options
4040 		 * are in use (always a multiple of 4 bytes) which is
4041 		 * important for performance reasons.  For instance, if no
4042 		 * options are in use, then we have a 20-byte IP header and a
4043 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4044 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4045 		 * which is not a multiple of 8.  So using an MSS of 1488 in
4046 		 * this case results in a TCP Data Payload of 1448 bytes which
4047 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4048 		 * Stamps have been negotiated, then an MTU of 1500 bytes
4049 		 * results in a TCP Data Payload of 1448 bytes which, as
4050 		 * above, is a multiple of 8 bytes ...
4051 		 */
4052 		for (i = 0; i < NMTUS; i++)
4053 			if (adap->params.mtus[i] == 1492) {
4054 				adap->params.mtus[i] = 1488;
4055 				break;
4056 			}
4057 
4058 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4059 			     adap->params.b_wnd);
4060 	}
4061 	t4_init_sge_params(adap);
4062 	adap->flags |= FW_OK;
4063 	t4_init_tp_params(adap);
4064 	return 0;
4065 
4066 	/*
4067 	 * Something bad happened.  If a command timed out or failed with EIO
4068 	 * FW does not operate within its spec or something catastrophic
4069 	 * happened to HW/FW, stop issuing commands.
4070 	 */
4071 bye:
4072 	kfree(adap->sge.egr_map);
4073 	kfree(adap->sge.ingr_map);
4074 	kfree(adap->sge.starving_fl);
4075 	kfree(adap->sge.txq_maperr);
4076 #ifdef CONFIG_DEBUG_FS
4077 	kfree(adap->sge.blocked_fl);
4078 #endif
4079 	if (ret != -ETIMEDOUT && ret != -EIO)
4080 		t4_fw_bye(adap, adap->mbox);
4081 	return ret;
4082 }
4083 
4084 /* EEH callbacks */
4085 
4086 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4087 					 pci_channel_state_t state)
4088 {
4089 	int i;
4090 	struct adapter *adap = pci_get_drvdata(pdev);
4091 
4092 	if (!adap)
4093 		goto out;
4094 
4095 	rtnl_lock();
4096 	adap->flags &= ~FW_OK;
4097 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4098 	spin_lock(&adap->stats_lock);
4099 	for_each_port(adap, i) {
4100 		struct net_device *dev = adap->port[i];
4101 		if (dev) {
4102 			netif_device_detach(dev);
4103 			netif_carrier_off(dev);
4104 		}
4105 	}
4106 	spin_unlock(&adap->stats_lock);
4107 	disable_interrupts(adap);
4108 	if (adap->flags & FULL_INIT_DONE)
4109 		cxgb_down(adap);
4110 	rtnl_unlock();
4111 	if ((adap->flags & DEV_ENABLED)) {
4112 		pci_disable_device(pdev);
4113 		adap->flags &= ~DEV_ENABLED;
4114 	}
4115 out:	return state == pci_channel_io_perm_failure ?
4116 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4117 }
4118 
4119 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4120 {
4121 	int i, ret;
4122 	struct fw_caps_config_cmd c;
4123 	struct adapter *adap = pci_get_drvdata(pdev);
4124 
4125 	if (!adap) {
4126 		pci_restore_state(pdev);
4127 		pci_save_state(pdev);
4128 		return PCI_ERS_RESULT_RECOVERED;
4129 	}
4130 
4131 	if (!(adap->flags & DEV_ENABLED)) {
4132 		if (pci_enable_device(pdev)) {
4133 			dev_err(&pdev->dev, "Cannot reenable PCI "
4134 					    "device after reset\n");
4135 			return PCI_ERS_RESULT_DISCONNECT;
4136 		}
4137 		adap->flags |= DEV_ENABLED;
4138 	}
4139 
4140 	pci_set_master(pdev);
4141 	pci_restore_state(pdev);
4142 	pci_save_state(pdev);
4143 	pci_cleanup_aer_uncorrect_error_status(pdev);
4144 
4145 	if (t4_wait_dev_ready(adap->regs) < 0)
4146 		return PCI_ERS_RESULT_DISCONNECT;
4147 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4148 		return PCI_ERS_RESULT_DISCONNECT;
4149 	adap->flags |= FW_OK;
4150 	if (adap_init1(adap, &c))
4151 		return PCI_ERS_RESULT_DISCONNECT;
4152 
4153 	for_each_port(adap, i) {
4154 		struct port_info *p = adap2pinfo(adap, i);
4155 
4156 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4157 				  NULL, NULL);
4158 		if (ret < 0)
4159 			return PCI_ERS_RESULT_DISCONNECT;
4160 		p->viid = ret;
4161 		p->xact_addr_filt = -1;
4162 	}
4163 
4164 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4165 		     adap->params.b_wnd);
4166 	setup_memwin(adap);
4167 	if (cxgb_up(adap))
4168 		return PCI_ERS_RESULT_DISCONNECT;
4169 	return PCI_ERS_RESULT_RECOVERED;
4170 }
4171 
4172 static void eeh_resume(struct pci_dev *pdev)
4173 {
4174 	int i;
4175 	struct adapter *adap = pci_get_drvdata(pdev);
4176 
4177 	if (!adap)
4178 		return;
4179 
4180 	rtnl_lock();
4181 	for_each_port(adap, i) {
4182 		struct net_device *dev = adap->port[i];
4183 		if (dev) {
4184 			if (netif_running(dev)) {
4185 				link_start(dev);
4186 				cxgb_set_rxmode(dev);
4187 			}
4188 			netif_device_attach(dev);
4189 		}
4190 	}
4191 	rtnl_unlock();
4192 }
4193 
4194 static const struct pci_error_handlers cxgb4_eeh = {
4195 	.error_detected = eeh_err_detected,
4196 	.slot_reset     = eeh_slot_reset,
4197 	.resume         = eeh_resume,
4198 };
4199 
4200 /* Return true if the Link Configuration supports "High Speeds" (those greater
4201  * than 1Gb/s).
4202  */
4203 static inline bool is_x_10g_port(const struct link_config *lc)
4204 {
4205 	unsigned int speeds, high_speeds;
4206 
4207 	speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
4208 	high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);
4209 
4210 	return high_speeds != 0;
4211 }
4212 
4213 /*
4214  * Perform default configuration of DMA queues depending on the number and type
4215  * of ports we found and the number of available CPUs.  Most settings can be
4216  * modified by the admin prior to actual use.
4217  */
4218 static void cfg_queues(struct adapter *adap)
4219 {
4220 	struct sge *s = &adap->sge;
4221 	int i = 0, n10g = 0, qidx = 0;
4222 #ifndef CONFIG_CHELSIO_T4_DCB
4223 	int q10g = 0;
4224 #endif
4225 
4226 	/* Reduce memory usage in kdump environment, disable all offload.
4227 	 */
4228 	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4229 		adap->params.offload = 0;
4230 		adap->params.crypto = 0;
4231 	}
4232 
4233 	n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4234 #ifdef CONFIG_CHELSIO_T4_DCB
4235 	/* For Data Center Bridging support we need to be able to support up
4236 	 * to 8 Traffic Priorities; each of which will be assigned to its
4237 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4238 	 */
4239 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4240 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4241 			MAX_ETH_QSETS, adap->params.nports * 8);
4242 		BUG_ON(1);
4243 	}
4244 
4245 	for_each_port(adap, i) {
4246 		struct port_info *pi = adap2pinfo(adap, i);
4247 
4248 		pi->first_qset = qidx;
4249 		pi->nqsets = is_kdump_kernel() ? 1 : 8;
4250 		qidx += pi->nqsets;
4251 	}
4252 #else /* !CONFIG_CHELSIO_T4_DCB */
4253 	/*
4254 	 * We default to 1 queue per non-10G port and up to # of cores queues
4255 	 * per 10G port.
4256 	 */
4257 	if (n10g)
4258 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4259 	if (q10g > netif_get_num_default_rss_queues())
4260 		q10g = netif_get_num_default_rss_queues();
4261 
4262 	if (is_kdump_kernel())
4263 		q10g = 1;
4264 
4265 	for_each_port(adap, i) {
4266 		struct port_info *pi = adap2pinfo(adap, i);
4267 
4268 		pi->first_qset = qidx;
4269 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4270 		qidx += pi->nqsets;
4271 	}
4272 #endif /* !CONFIG_CHELSIO_T4_DCB */
4273 
4274 	s->ethqsets = qidx;
4275 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4276 
4277 	if (is_uld(adap)) {
4278 		/*
4279 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4280 		 * otherwise we divide all available queues amongst the channels
4281 		 * capped by the number of available cores.
4282 		 */
4283 		if (n10g) {
4284 			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4285 			s->ofldqsets = roundup(i, adap->params.nports);
4286 		} else {
4287 			s->ofldqsets = adap->params.nports;
4288 		}
4289 	}
4290 
4291 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4292 		struct sge_eth_rxq *r = &s->ethrxq[i];
4293 
4294 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4295 		r->fl.size = 72;
4296 	}
4297 
4298 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4299 		s->ethtxq[i].q.size = 1024;
4300 
4301 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4302 		s->ctrlq[i].q.size = 512;
4303 
4304 	if (!is_t4(adap->params.chip))
4305 		s->ptptxq.q.size = 8;
4306 
4307 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4308 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4309 }
4310 
4311 /*
4312  * Reduce the number of Ethernet queues across all ports to at most n.
4313  * n provides at least one queue per port.
4314  */
4315 static void reduce_ethqs(struct adapter *adap, int n)
4316 {
4317 	int i;
4318 	struct port_info *pi;
4319 
4320 	while (n < adap->sge.ethqsets)
4321 		for_each_port(adap, i) {
4322 			pi = adap2pinfo(adap, i);
4323 			if (pi->nqsets > 1) {
4324 				pi->nqsets--;
4325 				adap->sge.ethqsets--;
4326 				if (adap->sge.ethqsets <= n)
4327 					break;
4328 			}
4329 		}
4330 
4331 	n = 0;
4332 	for_each_port(adap, i) {
4333 		pi = adap2pinfo(adap, i);
4334 		pi->first_qset = n;
4335 		n += pi->nqsets;
4336 	}
4337 }
4338 
4339 static int get_msix_info(struct adapter *adap)
4340 {
4341 	struct uld_msix_info *msix_info;
4342 	unsigned int max_ingq = 0;
4343 
4344 	if (is_offload(adap))
4345 		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4346 	if (is_pci_uld(adap))
4347 		max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4348 
4349 	if (!max_ingq)
4350 		goto out;
4351 
4352 	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4353 	if (!msix_info)
4354 		return -ENOMEM;
4355 
4356 	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4357 						 sizeof(long), GFP_KERNEL);
4358 	if (!adap->msix_bmap_ulds.msix_bmap) {
4359 		kfree(msix_info);
4360 		return -ENOMEM;
4361 	}
4362 	spin_lock_init(&adap->msix_bmap_ulds.lock);
4363 	adap->msix_info_ulds = msix_info;
4364 out:
4365 	return 0;
4366 }
4367 
4368 static void free_msix_info(struct adapter *adap)
4369 {
4370 	if (!(adap->num_uld && adap->num_ofld_uld))
4371 		return;
4372 
4373 	kfree(adap->msix_info_ulds);
4374 	kfree(adap->msix_bmap_ulds.msix_bmap);
4375 }
4376 
4377 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4378 #define EXTRA_VECS 2
4379 
4380 static int enable_msix(struct adapter *adap)
4381 {
4382 	int ofld_need = 0, uld_need = 0;
4383 	int i, j, want, need, allocated;
4384 	struct sge *s = &adap->sge;
4385 	unsigned int nchan = adap->params.nports;
4386 	struct msix_entry *entries;
4387 	int max_ingq = MAX_INGQ;
4388 
4389 	if (is_pci_uld(adap))
4390 		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4391 	if (is_offload(adap))
4392 		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4393 	entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4394 			  GFP_KERNEL);
4395 	if (!entries)
4396 		return -ENOMEM;
4397 
4398 	/* map for msix */
4399 	if (get_msix_info(adap)) {
4400 		adap->params.offload = 0;
4401 		adap->params.crypto = 0;
4402 	}
4403 
4404 	for (i = 0; i < max_ingq + 1; ++i)
4405 		entries[i].entry = i;
4406 
4407 	want = s->max_ethqsets + EXTRA_VECS;
4408 	if (is_offload(adap)) {
4409 		want += adap->num_ofld_uld * s->ofldqsets;
4410 		ofld_need = adap->num_ofld_uld * nchan;
4411 	}
4412 	if (is_pci_uld(adap)) {
4413 		want += adap->num_uld * s->ofldqsets;
4414 		uld_need = adap->num_uld * nchan;
4415 	}
4416 #ifdef CONFIG_CHELSIO_T4_DCB
4417 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4418 	 * each port.
4419 	 */
4420 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4421 #else
4422 	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4423 #endif
4424 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4425 	if (allocated < 0) {
4426 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4427 			 " not using MSI-X\n");
4428 		kfree(entries);
4429 		return allocated;
4430 	}
4431 
4432 	/* Distribute available vectors to the various queue groups.
4433 	 * Every group gets its minimum requirement and NIC gets top
4434 	 * priority for leftovers.
4435 	 */
4436 	i = allocated - EXTRA_VECS - ofld_need - uld_need;
4437 	if (i < s->max_ethqsets) {
4438 		s->max_ethqsets = i;
4439 		if (i < s->ethqsets)
4440 			reduce_ethqs(adap, i);
4441 	}
4442 	if (is_uld(adap)) {
4443 		if (allocated < want)
4444 			s->nqs_per_uld = nchan;
4445 		else
4446 			s->nqs_per_uld = s->ofldqsets;
4447 	}
4448 
4449 	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4450 		adap->msix_info[i].vec = entries[i].vector;
4451 	if (is_uld(adap)) {
4452 		for (j = 0 ; i < allocated; ++i, j++) {
4453 			adap->msix_info_ulds[j].vec = entries[i].vector;
4454 			adap->msix_info_ulds[j].idx = i;
4455 		}
4456 		adap->msix_bmap_ulds.mapsize = j;
4457 	}
4458 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4459 		 "nic %d per uld %d\n",
4460 		 allocated, s->max_ethqsets, s->nqs_per_uld);
4461 
4462 	kfree(entries);
4463 	return 0;
4464 }
4465 
4466 #undef EXTRA_VECS
4467 
4468 static int init_rss(struct adapter *adap)
4469 {
4470 	unsigned int i;
4471 	int err;
4472 
4473 	err = t4_init_rss_mode(adap, adap->mbox);
4474 	if (err)
4475 		return err;
4476 
4477 	for_each_port(adap, i) {
4478 		struct port_info *pi = adap2pinfo(adap, i);
4479 
4480 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4481 		if (!pi->rss)
4482 			return -ENOMEM;
4483 	}
4484 	return 0;
4485 }
4486 
4487 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4488 					enum pci_bus_speed *speed,
4489 					enum pcie_link_width *width)
4490 {
4491 	u32 lnkcap1, lnkcap2;
4492 	int err1, err2;
4493 
4494 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4495 
4496 	*speed = PCI_SPEED_UNKNOWN;
4497 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4498 
4499 	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4500 					  &lnkcap1);
4501 	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4502 					  &lnkcap2);
4503 	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4504 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4505 			*speed = PCIE_SPEED_8_0GT;
4506 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4507 			*speed = PCIE_SPEED_5_0GT;
4508 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4509 			*speed = PCIE_SPEED_2_5GT;
4510 	}
4511 	if (!err1) {
4512 		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4513 		if (!lnkcap2) { /* pre-r3.0 */
4514 			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4515 				*speed = PCIE_SPEED_5_0GT;
4516 			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4517 				*speed = PCIE_SPEED_2_5GT;
4518 		}
4519 	}
4520 
4521 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4522 		return err1 ? err1 : err2 ? err2 : -EINVAL;
4523 	return 0;
4524 }
4525 
4526 static void cxgb4_check_pcie_caps(struct adapter *adap)
4527 {
4528 	enum pcie_link_width width, width_cap;
4529 	enum pci_bus_speed speed, speed_cap;
4530 
4531 #define PCIE_SPEED_STR(speed) \
4532 	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4533 	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4534 	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4535 	 "Unknown")
4536 
4537 	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4538 		dev_warn(adap->pdev_dev,
4539 			 "Unable to determine PCIe device BW capabilities\n");
4540 		return;
4541 	}
4542 
4543 	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4544 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4545 		dev_warn(adap->pdev_dev,
4546 			 "Unable to determine PCI Express bandwidth.\n");
4547 		return;
4548 	}
4549 
4550 	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4551 		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4552 	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4553 		 width, width_cap);
4554 	if (speed < speed_cap || width < width_cap)
4555 		dev_info(adap->pdev_dev,
4556 			 "A slot with more lanes and/or higher speed is "
4557 			 "suggested for optimal performance.\n");
4558 }
4559 
4560 /* Dump basic information about the adapter */
4561 static void print_adapter_info(struct adapter *adapter)
4562 {
4563 	/* Device information */
4564 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4565 		 adapter->params.vpd.id,
4566 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4567 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4568 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
4569 
4570 	/* Firmware Version */
4571 	if (!adapter->params.fw_vers)
4572 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4573 	else
4574 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4575 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4576 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4577 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4578 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4579 
4580 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4581 	 * Firmware, so dev_info() is more appropriate here.)
4582 	 */
4583 	if (!adapter->params.bs_vers)
4584 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4585 	else
4586 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4587 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4588 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4589 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4590 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4591 
4592 	/* TP Microcode Version */
4593 	if (!adapter->params.tp_vers)
4594 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4595 	else
4596 		dev_info(adapter->pdev_dev,
4597 			 "TP Microcode version: %u.%u.%u.%u\n",
4598 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4599 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4600 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4601 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4602 
4603 	/* Expansion ROM version */
4604 	if (!adapter->params.er_vers)
4605 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4606 	else
4607 		dev_info(adapter->pdev_dev,
4608 			 "Expansion ROM version: %u.%u.%u.%u\n",
4609 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4610 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4611 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4612 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4613 
4614 	/* Software/Hardware configuration */
4615 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4616 		 is_offload(adapter) ? "R" : "",
4617 		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4618 		  (adapter->flags & USING_MSI) ? "MSI" : ""),
4619 		 is_offload(adapter) ? "Offload" : "non-Offload");
4620 }
4621 
4622 static void print_port_info(const struct net_device *dev)
4623 {
4624 	char buf[80];
4625 	char *bufp = buf;
4626 	const char *spd = "";
4627 	const struct port_info *pi = netdev_priv(dev);
4628 	const struct adapter *adap = pi->adapter;
4629 
4630 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4631 		spd = " 2.5 GT/s";
4632 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4633 		spd = " 5 GT/s";
4634 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4635 		spd = " 8 GT/s";
4636 
4637 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4638 		bufp += sprintf(bufp, "100M/");
4639 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4640 		bufp += sprintf(bufp, "1G/");
4641 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4642 		bufp += sprintf(bufp, "10G/");
4643 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
4644 		bufp += sprintf(bufp, "25G/");
4645 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4646 		bufp += sprintf(bufp, "40G/");
4647 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
4648 		bufp += sprintf(bufp, "100G/");
4649 	if (bufp != buf)
4650 		--bufp;
4651 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4652 
4653 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4654 		    dev->name, adap->params.vpd.id, adap->name, buf);
4655 }
4656 
4657 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4658 {
4659 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4660 }
4661 
4662 /*
4663  * Free the following resources:
4664  * - memory used for tables
4665  * - MSI/MSI-X
4666  * - net devices
4667  * - resources FW is holding for us
4668  */
4669 static void free_some_resources(struct adapter *adapter)
4670 {
4671 	unsigned int i;
4672 
4673 	kvfree(adapter->l2t);
4674 	t4_cleanup_sched(adapter);
4675 	kvfree(adapter->tids.tid_tab);
4676 	cxgb4_cleanup_tc_u32(adapter);
4677 	kfree(adapter->sge.egr_map);
4678 	kfree(adapter->sge.ingr_map);
4679 	kfree(adapter->sge.starving_fl);
4680 	kfree(adapter->sge.txq_maperr);
4681 #ifdef CONFIG_DEBUG_FS
4682 	kfree(adapter->sge.blocked_fl);
4683 #endif
4684 	disable_msi(adapter);
4685 
4686 	for_each_port(adapter, i)
4687 		if (adapter->port[i]) {
4688 			struct port_info *pi = adap2pinfo(adapter, i);
4689 
4690 			if (pi->viid != 0)
4691 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
4692 					   0, pi->viid);
4693 			kfree(adap2pinfo(adapter, i)->rss);
4694 			free_netdev(adapter->port[i]);
4695 		}
4696 	if (adapter->flags & FW_OK)
4697 		t4_fw_bye(adapter, adapter->pf);
4698 }
4699 
4700 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4701 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4702 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4703 #define SEGMENT_SIZE 128
4704 
4705 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4706 {
4707 	u16 device_id;
4708 
4709 	/* Retrieve adapter's device ID */
4710 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4711 
4712 	switch (device_id >> 12) {
4713 	case CHELSIO_T4:
4714 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4715 	case CHELSIO_T5:
4716 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4717 	case CHELSIO_T6:
4718 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4719 	default:
4720 		dev_err(&pdev->dev, "Device %d is not supported\n",
4721 			device_id);
4722 	}
4723 	return -EINVAL;
4724 }
4725 
4726 #ifdef CONFIG_PCI_IOV
4727 static void dummy_setup(struct net_device *dev)
4728 {
4729 	dev->type = ARPHRD_NONE;
4730 	dev->mtu = 0;
4731 	dev->hard_header_len = 0;
4732 	dev->addr_len = 0;
4733 	dev->tx_queue_len = 0;
4734 	dev->flags |= IFF_NOARP;
4735 	dev->priv_flags |= IFF_NO_QUEUE;
4736 
4737 	/* Initialize the device structure. */
4738 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4739 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4740 	dev->needs_free_netdev = true;
4741 }
4742 
4743 static int config_mgmt_dev(struct pci_dev *pdev)
4744 {
4745 	struct adapter *adap = pci_get_drvdata(pdev);
4746 	struct net_device *netdev;
4747 	struct port_info *pi;
4748 	char name[IFNAMSIZ];
4749 	int err;
4750 
4751 	snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4752 	netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN,
4753 			      dummy_setup);
4754 	if (!netdev)
4755 		return -ENOMEM;
4756 
4757 	pi = netdev_priv(netdev);
4758 	pi->adapter = adap;
4759 	pi->port_id = adap->pf % adap->params.nports;
4760 	SET_NETDEV_DEV(netdev, &pdev->dev);
4761 
4762 	adap->port[0] = netdev;
4763 
4764 	err = register_netdev(adap->port[0]);
4765 	if (err) {
4766 		pr_info("Unable to register VF mgmt netdev %s\n", name);
4767 		free_netdev(adap->port[0]);
4768 		adap->port[0] = NULL;
4769 		return err;
4770 	}
4771 	return 0;
4772 }
4773 
4774 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4775 {
4776 	struct adapter *adap = pci_get_drvdata(pdev);
4777 	int err = 0;
4778 	int current_vfs = pci_num_vf(pdev);
4779 	u32 pcie_fw;
4780 
4781 	pcie_fw = readl(adap->regs + PCIE_FW_A);
4782 	/* Check if cxgb4 is the MASTER and fw is initialized */
4783 	if (!(pcie_fw & PCIE_FW_INIT_F) ||
4784 	    !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4785 	    PCIE_FW_MASTER_G(pcie_fw) != 4) {
4786 		dev_warn(&pdev->dev,
4787 			 "cxgb4 driver needs to be MASTER to support SRIOV\n");
4788 		return -EOPNOTSUPP;
4789 	}
4790 
4791 	/* If any of the VF's is already assigned to Guest OS, then
4792 	 * SRIOV for the same cannot be modified
4793 	 */
4794 	if (current_vfs && pci_vfs_assigned(pdev)) {
4795 		dev_err(&pdev->dev,
4796 			"Cannot modify SR-IOV while VFs are assigned\n");
4797 		num_vfs = current_vfs;
4798 		return num_vfs;
4799 	}
4800 
4801 	/* Disable SRIOV when zero is passed.
4802 	 * One needs to disable SRIOV before modifying it, else
4803 	 * stack throws the below warning:
4804 	 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4805 	 */
4806 	if (!num_vfs) {
4807 		pci_disable_sriov(pdev);
4808 		if (adap->port[0]) {
4809 			unregister_netdev(adap->port[0]);
4810 			adap->port[0] = NULL;
4811 		}
4812 		/* free VF resources */
4813 		kfree(adap->vfinfo);
4814 		adap->vfinfo = NULL;
4815 		adap->num_vfs = 0;
4816 		return num_vfs;
4817 	}
4818 
4819 	if (num_vfs != current_vfs) {
4820 		err = pci_enable_sriov(pdev, num_vfs);
4821 		if (err)
4822 			return err;
4823 
4824 		adap->num_vfs = num_vfs;
4825 		err = config_mgmt_dev(pdev);
4826 		if (err)
4827 			return err;
4828 	}
4829 
4830 	adap->vfinfo = kcalloc(adap->num_vfs,
4831 			       sizeof(struct vf_info), GFP_KERNEL);
4832 	if (adap->vfinfo)
4833 		fill_vf_station_mac_addr(adap);
4834 	return num_vfs;
4835 }
4836 #endif
4837 
4838 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4839 {
4840 	int func, i, err, s_qpp, qpp, num_seg;
4841 	struct port_info *pi;
4842 	bool highdma = false;
4843 	struct adapter *adapter = NULL;
4844 	struct net_device *netdev;
4845 	void __iomem *regs;
4846 	u32 whoami, pl_rev;
4847 	enum chip_type chip;
4848 	static int adap_idx = 1;
4849 #ifdef CONFIG_PCI_IOV
4850 	u32 v, port_vec;
4851 #endif
4852 
4853 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4854 
4855 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4856 	if (err) {
4857 		/* Just info, some other driver may have claimed the device. */
4858 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4859 		return err;
4860 	}
4861 
4862 	err = pci_enable_device(pdev);
4863 	if (err) {
4864 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4865 		goto out_release_regions;
4866 	}
4867 
4868 	regs = pci_ioremap_bar(pdev, 0);
4869 	if (!regs) {
4870 		dev_err(&pdev->dev, "cannot map device registers\n");
4871 		err = -ENOMEM;
4872 		goto out_disable_device;
4873 	}
4874 
4875 	err = t4_wait_dev_ready(regs);
4876 	if (err < 0)
4877 		goto out_unmap_bar0;
4878 
4879 	/* We control everything through one PF */
4880 	whoami = readl(regs + PL_WHOAMI_A);
4881 	pl_rev = REV_G(readl(regs + PL_REV_A));
4882 	chip = get_chip_type(pdev, pl_rev);
4883 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4884 		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4885 	if (func != ent->driver_data) {
4886 #ifndef CONFIG_PCI_IOV
4887 		iounmap(regs);
4888 #endif
4889 		pci_disable_device(pdev);
4890 		pci_save_state(pdev);        /* to restore SR-IOV later */
4891 		goto sriov;
4892 	}
4893 
4894 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4895 		highdma = true;
4896 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4897 		if (err) {
4898 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4899 				"coherent allocations\n");
4900 			goto out_unmap_bar0;
4901 		}
4902 	} else {
4903 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4904 		if (err) {
4905 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4906 			goto out_unmap_bar0;
4907 		}
4908 	}
4909 
4910 	pci_enable_pcie_error_reporting(pdev);
4911 	enable_pcie_relaxed_ordering(pdev);
4912 	pci_set_master(pdev);
4913 	pci_save_state(pdev);
4914 
4915 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4916 	if (!adapter) {
4917 		err = -ENOMEM;
4918 		goto out_unmap_bar0;
4919 	}
4920 	adap_idx++;
4921 
4922 	adapter->workq = create_singlethread_workqueue("cxgb4");
4923 	if (!adapter->workq) {
4924 		err = -ENOMEM;
4925 		goto out_free_adapter;
4926 	}
4927 
4928 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4929 				    (sizeof(struct mbox_cmd) *
4930 				     T4_OS_LOG_MBOX_CMDS),
4931 				    GFP_KERNEL);
4932 	if (!adapter->mbox_log) {
4933 		err = -ENOMEM;
4934 		goto out_free_adapter;
4935 	}
4936 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4937 
4938 	/* PCI device has been enabled */
4939 	adapter->flags |= DEV_ENABLED;
4940 
4941 	adapter->regs = regs;
4942 	adapter->pdev = pdev;
4943 	adapter->pdev_dev = &pdev->dev;
4944 	adapter->name = pci_name(pdev);
4945 	adapter->mbox = func;
4946 	adapter->pf = func;
4947 	adapter->msg_enable = DFLT_MSG_ENABLE;
4948 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4949 
4950 	spin_lock_init(&adapter->stats_lock);
4951 	spin_lock_init(&adapter->tid_release_lock);
4952 	spin_lock_init(&adapter->win0_lock);
4953 	spin_lock_init(&adapter->mbox_lock);
4954 
4955 	INIT_LIST_HEAD(&adapter->mlist.list);
4956 
4957 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4958 	INIT_WORK(&adapter->db_full_task, process_db_full);
4959 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4960 
4961 	err = t4_prep_adapter(adapter);
4962 	if (err)
4963 		goto out_free_adapter;
4964 
4965 
4966 	if (!is_t4(adapter->params.chip)) {
4967 		s_qpp = (QUEUESPERPAGEPF0_S +
4968 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4969 			adapter->pf);
4970 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4971 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4972 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
4973 
4974 		/* Each segment size is 128B. Write coalescing is enabled only
4975 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4976 		 * queue is less no of segments that can be accommodated in
4977 		 * a page size.
4978 		 */
4979 		if (qpp > num_seg) {
4980 			dev_err(&pdev->dev,
4981 				"Incorrect number of egress queues per page\n");
4982 			err = -EINVAL;
4983 			goto out_free_adapter;
4984 		}
4985 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4986 		pci_resource_len(pdev, 2));
4987 		if (!adapter->bar2) {
4988 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
4989 			err = -ENOMEM;
4990 			goto out_free_adapter;
4991 		}
4992 	}
4993 
4994 	setup_memwin(adapter);
4995 	err = adap_init0(adapter);
4996 #ifdef CONFIG_DEBUG_FS
4997 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4998 #endif
4999 	setup_memwin_rdma(adapter);
5000 	if (err)
5001 		goto out_unmap_bar;
5002 
5003 	/* configure SGE_STAT_CFG_A to read WC stats */
5004 	if (!is_t4(adapter->params.chip))
5005 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5006 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5007 			      T6_STATMODE_V(0)));
5008 
5009 	for_each_port(adapter, i) {
5010 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
5011 					   MAX_ETH_QSETS);
5012 		if (!netdev) {
5013 			err = -ENOMEM;
5014 			goto out_free_dev;
5015 		}
5016 
5017 		SET_NETDEV_DEV(netdev, &pdev->dev);
5018 
5019 		adapter->port[i] = netdev;
5020 		pi = netdev_priv(netdev);
5021 		pi->adapter = adapter;
5022 		pi->xact_addr_filt = -1;
5023 		pi->port_id = i;
5024 		netdev->irq = pdev->irq;
5025 
5026 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5027 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5028 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
5029 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5030 			NETIF_F_HW_TC;
5031 		if (highdma)
5032 			netdev->hw_features |= NETIF_F_HIGHDMA;
5033 		netdev->features |= netdev->hw_features;
5034 		netdev->vlan_features = netdev->features & VLAN_FEAT;
5035 
5036 		netdev->priv_flags |= IFF_UNICAST_FLT;
5037 
5038 		/* MTU range: 81 - 9600 */
5039 		netdev->min_mtu = 81;
5040 		netdev->max_mtu = MAX_MTU;
5041 
5042 		netdev->netdev_ops = &cxgb4_netdev_ops;
5043 #ifdef CONFIG_CHELSIO_T4_DCB
5044 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
5045 		cxgb4_dcb_state_init(netdev);
5046 #endif
5047 		cxgb4_set_ethtool_ops(netdev);
5048 	}
5049 
5050 	pci_set_drvdata(pdev, adapter);
5051 
5052 	if (adapter->flags & FW_OK) {
5053 		err = t4_port_init(adapter, func, func, 0);
5054 		if (err)
5055 			goto out_free_dev;
5056 	} else if (adapter->params.nports == 1) {
5057 		/* If we don't have a connection to the firmware -- possibly
5058 		 * because of an error -- grab the raw VPD parameters so we
5059 		 * can set the proper MAC Address on the debug network
5060 		 * interface that we've created.
5061 		 */
5062 		u8 hw_addr[ETH_ALEN];
5063 		u8 *na = adapter->params.vpd.na;
5064 
5065 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5066 		if (!err) {
5067 			for (i = 0; i < ETH_ALEN; i++)
5068 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5069 					      hex2val(na[2 * i + 1]));
5070 			t4_set_hw_addr(adapter, 0, hw_addr);
5071 		}
5072 	}
5073 
5074 	/* Configure queues and allocate tables now, they can be needed as
5075 	 * soon as the first register_netdev completes.
5076 	 */
5077 	cfg_queues(adapter);
5078 
5079 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5080 	if (!adapter->l2t) {
5081 		/* We tolerate a lack of L2T, giving up some functionality */
5082 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5083 		adapter->params.offload = 0;
5084 	}
5085 
5086 #if IS_ENABLED(CONFIG_IPV6)
5087 	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5088 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5089 		/* CLIP functionality is not present in hardware,
5090 		 * hence disable all offload features
5091 		 */
5092 		dev_warn(&pdev->dev,
5093 			 "CLIP not enabled in hardware, continuing\n");
5094 		adapter->params.offload = 0;
5095 	} else {
5096 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5097 						  adapter->clipt_end);
5098 		if (!adapter->clipt) {
5099 			/* We tolerate a lack of clip_table, giving up
5100 			 * some functionality
5101 			 */
5102 			dev_warn(&pdev->dev,
5103 				 "could not allocate Clip table, continuing\n");
5104 			adapter->params.offload = 0;
5105 		}
5106 	}
5107 #endif
5108 
5109 	for_each_port(adapter, i) {
5110 		pi = adap2pinfo(adapter, i);
5111 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5112 		if (!pi->sched_tbl)
5113 			dev_warn(&pdev->dev,
5114 				 "could not activate scheduling on port %d\n",
5115 				 i);
5116 	}
5117 
5118 	if (tid_init(&adapter->tids) < 0) {
5119 		dev_warn(&pdev->dev, "could not allocate TID table, "
5120 			 "continuing\n");
5121 		adapter->params.offload = 0;
5122 	} else {
5123 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5124 		if (!adapter->tc_u32)
5125 			dev_warn(&pdev->dev,
5126 				 "could not offload tc u32, continuing\n");
5127 	}
5128 
5129 	if (is_offload(adapter)) {
5130 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5131 			u32 hash_base, hash_reg;
5132 
5133 			if (chip <= CHELSIO_T5) {
5134 				hash_reg = LE_DB_TID_HASHBASE_A;
5135 				hash_base = t4_read_reg(adapter, hash_reg);
5136 				adapter->tids.hash_base = hash_base / 4;
5137 			} else {
5138 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5139 				hash_base = t4_read_reg(adapter, hash_reg);
5140 				adapter->tids.hash_base = hash_base;
5141 			}
5142 		}
5143 	}
5144 
5145 	/* See what interrupts we'll be using */
5146 	if (msi > 1 && enable_msix(adapter) == 0)
5147 		adapter->flags |= USING_MSIX;
5148 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5149 		adapter->flags |= USING_MSI;
5150 		if (msi > 1)
5151 			free_msix_info(adapter);
5152 	}
5153 
5154 	/* check for PCI Express bandwidth capabiltites */
5155 	cxgb4_check_pcie_caps(adapter);
5156 
5157 	err = init_rss(adapter);
5158 	if (err)
5159 		goto out_free_dev;
5160 
5161 	/*
5162 	 * The card is now ready to go.  If any errors occur during device
5163 	 * registration we do not fail the whole card but rather proceed only
5164 	 * with the ports we manage to register successfully.  However we must
5165 	 * register at least one net device.
5166 	 */
5167 	for_each_port(adapter, i) {
5168 		pi = adap2pinfo(adapter, i);
5169 		adapter->port[i]->dev_port = pi->lport;
5170 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5171 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5172 
5173 		netif_carrier_off(adapter->port[i]);
5174 
5175 		err = register_netdev(adapter->port[i]);
5176 		if (err)
5177 			break;
5178 		adapter->chan_map[pi->tx_chan] = i;
5179 		print_port_info(adapter->port[i]);
5180 	}
5181 	if (i == 0) {
5182 		dev_err(&pdev->dev, "could not register any net devices\n");
5183 		goto out_free_dev;
5184 	}
5185 	if (err) {
5186 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5187 		err = 0;
5188 	}
5189 
5190 	if (cxgb4_debugfs_root) {
5191 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5192 							   cxgb4_debugfs_root);
5193 		setup_debugfs(adapter);
5194 	}
5195 
5196 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5197 	pdev->needs_freset = 1;
5198 
5199 	if (is_uld(adapter)) {
5200 		mutex_lock(&uld_mutex);
5201 		list_add_tail(&adapter->list_node, &adapter_list);
5202 		mutex_unlock(&uld_mutex);
5203 	}
5204 
5205 	if (!is_t4(adapter->params.chip))
5206 		cxgb4_ptp_init(adapter);
5207 
5208 	print_adapter_info(adapter);
5209 	setup_fw_sge_queues(adapter);
5210 	return 0;
5211 
5212 sriov:
5213 #ifdef CONFIG_PCI_IOV
5214 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5215 	if (!adapter) {
5216 		err = -ENOMEM;
5217 		goto free_pci_region;
5218 	}
5219 
5220 	adapter->pdev = pdev;
5221 	adapter->pdev_dev = &pdev->dev;
5222 	adapter->name = pci_name(pdev);
5223 	adapter->mbox = func;
5224 	adapter->pf = func;
5225 	adapter->regs = regs;
5226 	adapter->adap_idx = adap_idx;
5227 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5228 				    (sizeof(struct mbox_cmd) *
5229 				     T4_OS_LOG_MBOX_CMDS),
5230 				    GFP_KERNEL);
5231 	if (!adapter->mbox_log) {
5232 		err = -ENOMEM;
5233 		goto free_adapter;
5234 	}
5235 	spin_lock_init(&adapter->mbox_lock);
5236 	INIT_LIST_HEAD(&adapter->mlist.list);
5237 
5238 	v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5239 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
5240 	err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1,
5241 			      &v, &port_vec);
5242 	if (err < 0) {
5243 		dev_err(adapter->pdev_dev, "Could not fetch port params\n");
5244 		goto free_mbox_log;
5245 	}
5246 
5247 	adapter->params.nports = hweight32(port_vec);
5248 	pci_set_drvdata(pdev, adapter);
5249 	return 0;
5250 
5251 free_mbox_log:
5252 	kfree(adapter->mbox_log);
5253  free_adapter:
5254 	kfree(adapter);
5255  free_pci_region:
5256 	iounmap(regs);
5257 	pci_disable_sriov(pdev);
5258 	pci_release_regions(pdev);
5259 	return err;
5260 #else
5261 	return 0;
5262 #endif
5263 
5264  out_free_dev:
5265 	free_some_resources(adapter);
5266 	if (adapter->flags & USING_MSIX)
5267 		free_msix_info(adapter);
5268 	if (adapter->num_uld || adapter->num_ofld_uld)
5269 		t4_uld_mem_free(adapter);
5270  out_unmap_bar:
5271 	if (!is_t4(adapter->params.chip))
5272 		iounmap(adapter->bar2);
5273  out_free_adapter:
5274 	if (adapter->workq)
5275 		destroy_workqueue(adapter->workq);
5276 
5277 	kfree(adapter->mbox_log);
5278 	kfree(adapter);
5279  out_unmap_bar0:
5280 	iounmap(regs);
5281  out_disable_device:
5282 	pci_disable_pcie_error_reporting(pdev);
5283 	pci_disable_device(pdev);
5284  out_release_regions:
5285 	pci_release_regions(pdev);
5286 	return err;
5287 }
5288 
5289 static void remove_one(struct pci_dev *pdev)
5290 {
5291 	struct adapter *adapter = pci_get_drvdata(pdev);
5292 
5293 	if (!adapter) {
5294 		pci_release_regions(pdev);
5295 		return;
5296 	}
5297 
5298 	if (adapter->pf == 4) {
5299 		int i;
5300 
5301 		/* Tear down per-adapter Work Queue first since it can contain
5302 		 * references to our adapter data structure.
5303 		 */
5304 		destroy_workqueue(adapter->workq);
5305 
5306 		if (is_uld(adapter)) {
5307 			detach_ulds(adapter);
5308 			t4_uld_clean_up(adapter);
5309 		}
5310 
5311 		disable_interrupts(adapter);
5312 
5313 		for_each_port(adapter, i)
5314 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5315 				unregister_netdev(adapter->port[i]);
5316 
5317 		debugfs_remove_recursive(adapter->debugfs_root);
5318 
5319 		if (!is_t4(adapter->params.chip))
5320 			cxgb4_ptp_stop(adapter);
5321 
5322 		/* If we allocated filters, free up state associated with any
5323 		 * valid filters ...
5324 		 */
5325 		clear_all_filters(adapter);
5326 
5327 		if (adapter->flags & FULL_INIT_DONE)
5328 			cxgb_down(adapter);
5329 
5330 		if (adapter->flags & USING_MSIX)
5331 			free_msix_info(adapter);
5332 		if (adapter->num_uld || adapter->num_ofld_uld)
5333 			t4_uld_mem_free(adapter);
5334 		free_some_resources(adapter);
5335 #if IS_ENABLED(CONFIG_IPV6)
5336 		t4_cleanup_clip_tbl(adapter);
5337 #endif
5338 		iounmap(adapter->regs);
5339 		if (!is_t4(adapter->params.chip))
5340 			iounmap(adapter->bar2);
5341 		pci_disable_pcie_error_reporting(pdev);
5342 		if ((adapter->flags & DEV_ENABLED)) {
5343 			pci_disable_device(pdev);
5344 			adapter->flags &= ~DEV_ENABLED;
5345 		}
5346 		pci_release_regions(pdev);
5347 		kfree(adapter->mbox_log);
5348 		synchronize_rcu();
5349 		kfree(adapter);
5350 	}
5351 #ifdef CONFIG_PCI_IOV
5352 	else {
5353 		if (adapter->port[0])
5354 			unregister_netdev(adapter->port[0]);
5355 		iounmap(adapter->regs);
5356 		kfree(adapter->vfinfo);
5357 		kfree(adapter->mbox_log);
5358 		kfree(adapter);
5359 		pci_disable_sriov(pdev);
5360 		pci_release_regions(pdev);
5361 	}
5362 #endif
5363 }
5364 
5365 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5366  * delivery.  This is essentially a stripped down version of the PCI remove()
5367  * function where we do the minimal amount of work necessary to shutdown any
5368  * further activity.
5369  */
5370 static void shutdown_one(struct pci_dev *pdev)
5371 {
5372 	struct adapter *adapter = pci_get_drvdata(pdev);
5373 
5374 	/* As with remove_one() above (see extended comment), we only want do
5375 	 * do cleanup on PCI Devices which went all the way through init_one()
5376 	 * ...
5377 	 */
5378 	if (!adapter) {
5379 		pci_release_regions(pdev);
5380 		return;
5381 	}
5382 
5383 	if (adapter->pf == 4) {
5384 		int i;
5385 
5386 		for_each_port(adapter, i)
5387 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5388 				cxgb_close(adapter->port[i]);
5389 
5390 		if (is_uld(adapter)) {
5391 			detach_ulds(adapter);
5392 			t4_uld_clean_up(adapter);
5393 		}
5394 
5395 		disable_interrupts(adapter);
5396 		disable_msi(adapter);
5397 
5398 		t4_sge_stop(adapter);
5399 		if (adapter->flags & FW_OK)
5400 			t4_fw_bye(adapter, adapter->mbox);
5401 	}
5402 #ifdef CONFIG_PCI_IOV
5403 	else {
5404 		if (adapter->port[0])
5405 			unregister_netdev(adapter->port[0]);
5406 		iounmap(adapter->regs);
5407 		kfree(adapter->vfinfo);
5408 		kfree(adapter->mbox_log);
5409 		kfree(adapter);
5410 		pci_disable_sriov(pdev);
5411 		pci_release_regions(pdev);
5412 	}
5413 #endif
5414 }
5415 
5416 static struct pci_driver cxgb4_driver = {
5417 	.name     = KBUILD_MODNAME,
5418 	.id_table = cxgb4_pci_tbl,
5419 	.probe    = init_one,
5420 	.remove   = remove_one,
5421 	.shutdown = shutdown_one,
5422 #ifdef CONFIG_PCI_IOV
5423 	.sriov_configure = cxgb4_iov_configure,
5424 #endif
5425 	.err_handler = &cxgb4_eeh,
5426 };
5427 
5428 static int __init cxgb4_init_module(void)
5429 {
5430 	int ret;
5431 
5432 	/* Debugfs support is optional, just warn if this fails */
5433 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5434 	if (!cxgb4_debugfs_root)
5435 		pr_warn("could not create debugfs entry, continuing\n");
5436 
5437 	ret = pci_register_driver(&cxgb4_driver);
5438 	if (ret < 0)
5439 		debugfs_remove(cxgb4_debugfs_root);
5440 
5441 #if IS_ENABLED(CONFIG_IPV6)
5442 	if (!inet6addr_registered) {
5443 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5444 		inet6addr_registered = true;
5445 	}
5446 #endif
5447 
5448 	return ret;
5449 }
5450 
5451 static void __exit cxgb4_cleanup_module(void)
5452 {
5453 #if IS_ENABLED(CONFIG_IPV6)
5454 	if (inet6addr_registered) {
5455 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5456 		inet6addr_registered = false;
5457 	}
5458 #endif
5459 	pci_unregister_driver(&cxgb4_driver);
5460 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5461 }
5462 
5463 module_init(cxgb4_init_module);
5464 module_exit(cxgb4_cleanup_module);
5465