1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <linux/uaccess.h> 67 #include <linux/crash_dump.h> 68 #include <net/udp_tunnel.h> 69 70 #include "cxgb4.h" 71 #include "cxgb4_filter.h" 72 #include "t4_regs.h" 73 #include "t4_values.h" 74 #include "t4_msg.h" 75 #include "t4fw_api.h" 76 #include "t4fw_version.h" 77 #include "cxgb4_dcb.h" 78 #include "srq.h" 79 #include "cxgb4_debugfs.h" 80 #include "clip_tbl.h" 81 #include "l2t.h" 82 #include "smt.h" 83 #include "sched.h" 84 #include "cxgb4_tc_u32.h" 85 #include "cxgb4_tc_flower.h" 86 #include "cxgb4_ptp.h" 87 #include "cxgb4_cudbg.h" 88 89 char cxgb4_driver_name[] = KBUILD_MODNAME; 90 91 #ifdef DRV_VERSION 92 #undef DRV_VERSION 93 #endif 94 #define DRV_VERSION "2.0.0-ko" 95 const char cxgb4_driver_version[] = DRV_VERSION; 96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 97 98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 99 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 100 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 101 102 /* Macros needed to support the PCI Device ID Table ... 103 */ 104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 105 static const struct pci_device_id cxgb4_pci_tbl[] = { 106 #define CXGB4_UNIFIED_PF 0x4 107 108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 109 110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 111 * called for both. 112 */ 113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 114 115 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 116 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 117 118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 119 { 0, } \ 120 } 121 122 #include "t4_pci_id_tbl.h" 123 124 #define FW4_FNAME "cxgb4/t4fw.bin" 125 #define FW5_FNAME "cxgb4/t5fw.bin" 126 #define FW6_FNAME "cxgb4/t6fw.bin" 127 #define FW4_CFNAME "cxgb4/t4-config.txt" 128 #define FW5_CFNAME "cxgb4/t5-config.txt" 129 #define FW6_CFNAME "cxgb4/t6-config.txt" 130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 132 #define PHY_AQ1202_DEVICEID 0x4409 133 #define PHY_BCM84834_DEVICEID 0x4486 134 135 MODULE_DESCRIPTION(DRV_DESC); 136 MODULE_AUTHOR("Chelsio Communications"); 137 MODULE_LICENSE("Dual BSD/GPL"); 138 MODULE_VERSION(DRV_VERSION); 139 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 140 MODULE_FIRMWARE(FW4_FNAME); 141 MODULE_FIRMWARE(FW5_FNAME); 142 MODULE_FIRMWARE(FW6_FNAME); 143 144 /* 145 * The driver uses the best interrupt scheme available on a platform in the 146 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 147 * of these schemes the driver may consider as follows: 148 * 149 * msi = 2: choose from among all three options 150 * msi = 1: only consider MSI and INTx interrupts 151 * msi = 0: force INTx interrupts 152 */ 153 static int msi = 2; 154 155 module_param(msi, int, 0644); 156 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 157 158 /* 159 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 160 * offset by 2 bytes in order to have the IP headers line up on 4-byte 161 * boundaries. This is a requirement for many architectures which will throw 162 * a machine check fault if an attempt is made to access one of the 4-byte IP 163 * header fields on a non-4-byte boundary. And it's a major performance issue 164 * even on some architectures which allow it like some implementations of the 165 * x86 ISA. However, some architectures don't mind this and for some very 166 * edge-case performance sensitive applications (like forwarding large volumes 167 * of small packets), setting this DMA offset to 0 will decrease the number of 168 * PCI-E Bus transfers enough to measurably affect performance. 169 */ 170 static int rx_dma_offset = 2; 171 172 /* TX Queue select used to determine what algorithm to use for selecting TX 173 * queue. Select between the kernel provided function (select_queue=0) or user 174 * cxgb_select_queue function (select_queue=1) 175 * 176 * Default: select_queue=0 177 */ 178 static int select_queue; 179 module_param(select_queue, int, 0644); 180 MODULE_PARM_DESC(select_queue, 181 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 182 183 static struct dentry *cxgb4_debugfs_root; 184 185 LIST_HEAD(adapter_list); 186 DEFINE_MUTEX(uld_mutex); 187 188 static void link_report(struct net_device *dev) 189 { 190 if (!netif_carrier_ok(dev)) 191 netdev_info(dev, "link down\n"); 192 else { 193 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 194 195 const char *s; 196 const struct port_info *p = netdev_priv(dev); 197 198 switch (p->link_cfg.speed) { 199 case 100: 200 s = "100Mbps"; 201 break; 202 case 1000: 203 s = "1Gbps"; 204 break; 205 case 10000: 206 s = "10Gbps"; 207 break; 208 case 25000: 209 s = "25Gbps"; 210 break; 211 case 40000: 212 s = "40Gbps"; 213 break; 214 case 50000: 215 s = "50Gbps"; 216 break; 217 case 100000: 218 s = "100Gbps"; 219 break; 220 default: 221 pr_info("%s: unsupported speed: %d\n", 222 dev->name, p->link_cfg.speed); 223 return; 224 } 225 226 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 227 fc[p->link_cfg.fc]); 228 } 229 } 230 231 #ifdef CONFIG_CHELSIO_T4_DCB 232 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 233 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 234 { 235 struct port_info *pi = netdev_priv(dev); 236 struct adapter *adap = pi->adapter; 237 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 238 int i; 239 240 /* We use a simple mapping of Port TX Queue Index to DCB 241 * Priority when we're enabling DCB. 242 */ 243 for (i = 0; i < pi->nqsets; i++, txq++) { 244 u32 name, value; 245 int err; 246 247 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 248 FW_PARAMS_PARAM_X_V( 249 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 250 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 251 value = enable ? i : 0xffffffff; 252 253 /* Since we can be called while atomic (from "interrupt 254 * level") we need to issue the Set Parameters Commannd 255 * without sleeping (timeout < 0). 256 */ 257 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 258 &name, &value, 259 -FW_CMD_MAX_TIMEOUT); 260 261 if (err) 262 dev_err(adap->pdev_dev, 263 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 264 enable ? "set" : "unset", pi->port_id, i, -err); 265 else 266 txq->dcb_prio = enable ? value : 0; 267 } 268 } 269 270 static int cxgb4_dcb_enabled(const struct net_device *dev) 271 { 272 struct port_info *pi = netdev_priv(dev); 273 274 if (!pi->dcb.enabled) 275 return 0; 276 277 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 278 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 279 } 280 #endif /* CONFIG_CHELSIO_T4_DCB */ 281 282 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 283 { 284 struct net_device *dev = adapter->port[port_id]; 285 286 /* Skip changes from disabled ports. */ 287 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 288 if (link_stat) 289 netif_carrier_on(dev); 290 else { 291 #ifdef CONFIG_CHELSIO_T4_DCB 292 if (cxgb4_dcb_enabled(dev)) { 293 cxgb4_dcb_reset(dev); 294 dcb_tx_queue_prio_enable(dev, false); 295 } 296 #endif /* CONFIG_CHELSIO_T4_DCB */ 297 netif_carrier_off(dev); 298 } 299 300 link_report(dev); 301 } 302 } 303 304 void t4_os_portmod_changed(struct adapter *adap, int port_id) 305 { 306 static const char *mod_str[] = { 307 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 308 }; 309 310 struct net_device *dev = adap->port[port_id]; 311 struct port_info *pi = netdev_priv(dev); 312 313 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 314 netdev_info(dev, "port module unplugged\n"); 315 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 316 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 317 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 318 netdev_info(dev, "%s: unsupported port module inserted\n", 319 dev->name); 320 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 321 netdev_info(dev, "%s: unknown port module inserted\n", 322 dev->name); 323 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 324 netdev_info(dev, "%s: transceiver module error\n", dev->name); 325 else 326 netdev_info(dev, "%s: unknown module type %d inserted\n", 327 dev->name, pi->mod_type); 328 329 /* If the interface is running, then we'll need any "sticky" Link 330 * Parameters redone with a new Transceiver Module. 331 */ 332 pi->link_cfg.redo_l1cfg = netif_running(dev); 333 } 334 335 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 336 module_param(dbfifo_int_thresh, int, 0644); 337 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 338 339 /* 340 * usecs to sleep while draining the dbfifo 341 */ 342 static int dbfifo_drain_delay = 1000; 343 module_param(dbfifo_drain_delay, int, 0644); 344 MODULE_PARM_DESC(dbfifo_drain_delay, 345 "usecs to sleep while draining the dbfifo"); 346 347 static inline int cxgb4_set_addr_hash(struct port_info *pi) 348 { 349 struct adapter *adap = pi->adapter; 350 u64 vec = 0; 351 bool ucast = false; 352 struct hash_mac_addr *entry; 353 354 /* Calculate the hash vector for the updated list and program it */ 355 list_for_each_entry(entry, &adap->mac_hlist, list) { 356 ucast |= is_unicast_ether_addr(entry->addr); 357 vec |= (1ULL << hash_mac_addr(entry->addr)); 358 } 359 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 360 vec, false); 361 } 362 363 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 364 { 365 struct port_info *pi = netdev_priv(netdev); 366 struct adapter *adap = pi->adapter; 367 int ret; 368 u64 mhash = 0; 369 u64 uhash = 0; 370 bool free = false; 371 bool ucast = is_unicast_ether_addr(mac_addr); 372 const u8 *maclist[1] = {mac_addr}; 373 struct hash_mac_addr *new_entry; 374 375 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 376 NULL, ucast ? &uhash : &mhash, false); 377 if (ret < 0) 378 goto out; 379 /* if hash != 0, then add the addr to hash addr list 380 * so on the end we will calculate the hash for the 381 * list and program it 382 */ 383 if (uhash || mhash) { 384 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 385 if (!new_entry) 386 return -ENOMEM; 387 ether_addr_copy(new_entry->addr, mac_addr); 388 list_add_tail(&new_entry->list, &adap->mac_hlist); 389 ret = cxgb4_set_addr_hash(pi); 390 } 391 out: 392 return ret < 0 ? ret : 0; 393 } 394 395 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 396 { 397 struct port_info *pi = netdev_priv(netdev); 398 struct adapter *adap = pi->adapter; 399 int ret; 400 const u8 *maclist[1] = {mac_addr}; 401 struct hash_mac_addr *entry, *tmp; 402 403 /* If the MAC address to be removed is in the hash addr 404 * list, delete it from the list and update hash vector 405 */ 406 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 407 if (ether_addr_equal(entry->addr, mac_addr)) { 408 list_del(&entry->list); 409 kfree(entry); 410 return cxgb4_set_addr_hash(pi); 411 } 412 } 413 414 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 415 return ret < 0 ? -EINVAL : 0; 416 } 417 418 /* 419 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 420 * If @mtu is -1 it is left unchanged. 421 */ 422 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 423 { 424 struct port_info *pi = netdev_priv(dev); 425 struct adapter *adapter = pi->adapter; 426 427 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 428 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 429 430 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 431 (dev->flags & IFF_PROMISC) ? 1 : 0, 432 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 433 sleep_ok); 434 } 435 436 /** 437 * link_start - enable a port 438 * @dev: the port to enable 439 * 440 * Performs the MAC and PHY actions needed to enable a port. 441 */ 442 static int link_start(struct net_device *dev) 443 { 444 int ret; 445 struct port_info *pi = netdev_priv(dev); 446 unsigned int mb = pi->adapter->pf; 447 448 /* 449 * We do not set address filters and promiscuity here, the stack does 450 * that step explicitly. 451 */ 452 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 453 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 454 if (ret == 0) { 455 ret = t4_change_mac(pi->adapter, mb, pi->viid, 456 pi->xact_addr_filt, dev->dev_addr, true, 457 true); 458 if (ret >= 0) { 459 pi->xact_addr_filt = ret; 460 ret = 0; 461 } 462 } 463 if (ret == 0) 464 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 465 &pi->link_cfg); 466 if (ret == 0) { 467 local_bh_disable(); 468 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 469 true, CXGB4_DCB_ENABLED); 470 local_bh_enable(); 471 } 472 473 return ret; 474 } 475 476 #ifdef CONFIG_CHELSIO_T4_DCB 477 /* Handle a Data Center Bridging update message from the firmware. */ 478 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 479 { 480 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 481 struct net_device *dev = adap->port[adap->chan_map[port]]; 482 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 483 int new_dcb_enabled; 484 485 cxgb4_dcb_handle_fw_update(adap, pcmd); 486 new_dcb_enabled = cxgb4_dcb_enabled(dev); 487 488 /* If the DCB has become enabled or disabled on the port then we're 489 * going to need to set up/tear down DCB Priority parameters for the 490 * TX Queues associated with the port. 491 */ 492 if (new_dcb_enabled != old_dcb_enabled) 493 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 494 } 495 #endif /* CONFIG_CHELSIO_T4_DCB */ 496 497 /* Response queue handler for the FW event queue. 498 */ 499 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 500 const struct pkt_gl *gl) 501 { 502 u8 opcode = ((const struct rss_header *)rsp)->opcode; 503 504 rsp++; /* skip RSS header */ 505 506 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 507 */ 508 if (unlikely(opcode == CPL_FW4_MSG && 509 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 510 rsp++; 511 opcode = ((const struct rss_header *)rsp)->opcode; 512 rsp++; 513 if (opcode != CPL_SGE_EGR_UPDATE) { 514 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 515 , opcode); 516 goto out; 517 } 518 } 519 520 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 521 const struct cpl_sge_egr_update *p = (void *)rsp; 522 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 523 struct sge_txq *txq; 524 525 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 526 txq->restarts++; 527 if (txq->q_type == CXGB4_TXQ_ETH) { 528 struct sge_eth_txq *eq; 529 530 eq = container_of(txq, struct sge_eth_txq, q); 531 netif_tx_wake_queue(eq->txq); 532 } else { 533 struct sge_uld_txq *oq; 534 535 oq = container_of(txq, struct sge_uld_txq, q); 536 tasklet_schedule(&oq->qresume_tsk); 537 } 538 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 539 const struct cpl_fw6_msg *p = (void *)rsp; 540 541 #ifdef CONFIG_CHELSIO_T4_DCB 542 const struct fw_port_cmd *pcmd = (const void *)p->data; 543 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 544 unsigned int action = 545 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 546 547 if (cmd == FW_PORT_CMD && 548 (action == FW_PORT_ACTION_GET_PORT_INFO || 549 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 550 int port = FW_PORT_CMD_PORTID_G( 551 be32_to_cpu(pcmd->op_to_portid)); 552 struct net_device *dev; 553 int dcbxdis, state_input; 554 555 dev = q->adap->port[q->adap->chan_map[port]]; 556 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 557 ? !!(pcmd->u.info.dcbxdis_pkd & 558 FW_PORT_CMD_DCBXDIS_F) 559 : !!(pcmd->u.info32.lstatus32_to_cbllen32 & 560 FW_PORT_CMD_DCBXDIS32_F)); 561 state_input = (dcbxdis 562 ? CXGB4_DCB_INPUT_FW_DISABLED 563 : CXGB4_DCB_INPUT_FW_ENABLED); 564 565 cxgb4_dcb_state_fsm(dev, state_input); 566 } 567 568 if (cmd == FW_PORT_CMD && 569 action == FW_PORT_ACTION_L2_DCB_CFG) 570 dcb_rpl(q->adap, pcmd); 571 else 572 #endif 573 if (p->type == 0) 574 t4_handle_fw_rpl(q->adap, p->data); 575 } else if (opcode == CPL_L2T_WRITE_RPL) { 576 const struct cpl_l2t_write_rpl *p = (void *)rsp; 577 578 do_l2t_write_rpl(q->adap, p); 579 } else if (opcode == CPL_SMT_WRITE_RPL) { 580 const struct cpl_smt_write_rpl *p = (void *)rsp; 581 582 do_smt_write_rpl(q->adap, p); 583 } else if (opcode == CPL_SET_TCB_RPL) { 584 const struct cpl_set_tcb_rpl *p = (void *)rsp; 585 586 filter_rpl(q->adap, p); 587 } else if (opcode == CPL_ACT_OPEN_RPL) { 588 const struct cpl_act_open_rpl *p = (void *)rsp; 589 590 hash_filter_rpl(q->adap, p); 591 } else if (opcode == CPL_ABORT_RPL_RSS) { 592 const struct cpl_abort_rpl_rss *p = (void *)rsp; 593 594 hash_del_filter_rpl(q->adap, p); 595 } else if (opcode == CPL_SRQ_TABLE_RPL) { 596 const struct cpl_srq_table_rpl *p = (void *)rsp; 597 598 do_srq_table_rpl(q->adap, p); 599 } else 600 dev_err(q->adap->pdev_dev, 601 "unexpected CPL %#x on FW event queue\n", opcode); 602 out: 603 return 0; 604 } 605 606 static void disable_msi(struct adapter *adapter) 607 { 608 if (adapter->flags & USING_MSIX) { 609 pci_disable_msix(adapter->pdev); 610 adapter->flags &= ~USING_MSIX; 611 } else if (adapter->flags & USING_MSI) { 612 pci_disable_msi(adapter->pdev); 613 adapter->flags &= ~USING_MSI; 614 } 615 } 616 617 /* 618 * Interrupt handler for non-data events used with MSI-X. 619 */ 620 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 621 { 622 struct adapter *adap = cookie; 623 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 624 625 if (v & PFSW_F) { 626 adap->swintr = 1; 627 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 628 } 629 if (adap->flags & MASTER_PF) 630 t4_slow_intr_handler(adap); 631 return IRQ_HANDLED; 632 } 633 634 /* 635 * Name the MSI-X interrupts. 636 */ 637 static void name_msix_vecs(struct adapter *adap) 638 { 639 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 640 641 /* non-data interrupts */ 642 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 643 644 /* FW events */ 645 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 646 adap->port[0]->name); 647 648 /* Ethernet queues */ 649 for_each_port(adap, j) { 650 struct net_device *d = adap->port[j]; 651 const struct port_info *pi = netdev_priv(d); 652 653 for (i = 0; i < pi->nqsets; i++, msi_idx++) 654 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 655 d->name, i); 656 } 657 } 658 659 static int request_msix_queue_irqs(struct adapter *adap) 660 { 661 struct sge *s = &adap->sge; 662 int err, ethqidx; 663 int msi_index = 2; 664 665 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 666 adap->msix_info[1].desc, &s->fw_evtq); 667 if (err) 668 return err; 669 670 for_each_ethrxq(s, ethqidx) { 671 err = request_irq(adap->msix_info[msi_index].vec, 672 t4_sge_intr_msix, 0, 673 adap->msix_info[msi_index].desc, 674 &s->ethrxq[ethqidx].rspq); 675 if (err) 676 goto unwind; 677 msi_index++; 678 } 679 return 0; 680 681 unwind: 682 while (--ethqidx >= 0) 683 free_irq(adap->msix_info[--msi_index].vec, 684 &s->ethrxq[ethqidx].rspq); 685 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 686 return err; 687 } 688 689 static void free_msix_queue_irqs(struct adapter *adap) 690 { 691 int i, msi_index = 2; 692 struct sge *s = &adap->sge; 693 694 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 695 for_each_ethrxq(s, i) 696 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 697 } 698 699 /** 700 * cxgb4_write_rss - write the RSS table for a given port 701 * @pi: the port 702 * @queues: array of queue indices for RSS 703 * 704 * Sets up the portion of the HW RSS table for the port's VI to distribute 705 * packets to the Rx queues in @queues. 706 * Should never be called before setting up sge eth rx queues 707 */ 708 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 709 { 710 u16 *rss; 711 int i, err; 712 struct adapter *adapter = pi->adapter; 713 const struct sge_eth_rxq *rxq; 714 715 rxq = &adapter->sge.ethrxq[pi->first_qset]; 716 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 717 if (!rss) 718 return -ENOMEM; 719 720 /* map the queue indices to queue ids */ 721 for (i = 0; i < pi->rss_size; i++, queues++) 722 rss[i] = rxq[*queues].rspq.abs_id; 723 724 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 725 pi->rss_size, rss, pi->rss_size); 726 /* If Tunnel All Lookup isn't specified in the global RSS 727 * Configuration, then we need to specify a default Ingress 728 * Queue for any ingress packets which aren't hashed. We'll 729 * use our first ingress queue ... 730 */ 731 if (!err) 732 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 733 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 734 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 735 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 736 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 737 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 738 rss[0]); 739 kfree(rss); 740 return err; 741 } 742 743 /** 744 * setup_rss - configure RSS 745 * @adap: the adapter 746 * 747 * Sets up RSS for each port. 748 */ 749 static int setup_rss(struct adapter *adap) 750 { 751 int i, j, err; 752 753 for_each_port(adap, i) { 754 const struct port_info *pi = adap2pinfo(adap, i); 755 756 /* Fill default values with equal distribution */ 757 for (j = 0; j < pi->rss_size; j++) 758 pi->rss[j] = j % pi->nqsets; 759 760 err = cxgb4_write_rss(pi, pi->rss); 761 if (err) 762 return err; 763 } 764 return 0; 765 } 766 767 /* 768 * Return the channel of the ingress queue with the given qid. 769 */ 770 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 771 { 772 qid -= p->ingr_start; 773 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 774 } 775 776 /* 777 * Wait until all NAPI handlers are descheduled. 778 */ 779 static void quiesce_rx(struct adapter *adap) 780 { 781 int i; 782 783 for (i = 0; i < adap->sge.ingr_sz; i++) { 784 struct sge_rspq *q = adap->sge.ingr_map[i]; 785 786 if (q && q->handler) 787 napi_disable(&q->napi); 788 } 789 } 790 791 /* Disable interrupt and napi handler */ 792 static void disable_interrupts(struct adapter *adap) 793 { 794 if (adap->flags & FULL_INIT_DONE) { 795 t4_intr_disable(adap); 796 if (adap->flags & USING_MSIX) { 797 free_msix_queue_irqs(adap); 798 free_irq(adap->msix_info[0].vec, adap); 799 } else { 800 free_irq(adap->pdev->irq, adap); 801 } 802 quiesce_rx(adap); 803 } 804 } 805 806 /* 807 * Enable NAPI scheduling and interrupt generation for all Rx queues. 808 */ 809 static void enable_rx(struct adapter *adap) 810 { 811 int i; 812 813 for (i = 0; i < adap->sge.ingr_sz; i++) { 814 struct sge_rspq *q = adap->sge.ingr_map[i]; 815 816 if (!q) 817 continue; 818 if (q->handler) 819 napi_enable(&q->napi); 820 821 /* 0-increment GTS to start the timer and enable interrupts */ 822 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 823 SEINTARM_V(q->intr_params) | 824 INGRESSQID_V(q->cntxt_id)); 825 } 826 } 827 828 829 static int setup_fw_sge_queues(struct adapter *adap) 830 { 831 struct sge *s = &adap->sge; 832 int err = 0; 833 834 bitmap_zero(s->starving_fl, s->egr_sz); 835 bitmap_zero(s->txq_maperr, s->egr_sz); 836 837 if (adap->flags & USING_MSIX) 838 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 839 else { 840 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 841 NULL, NULL, NULL, -1); 842 if (err) 843 return err; 844 adap->msi_idx = -((int)s->intrq.abs_id + 1); 845 } 846 847 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 848 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 849 return err; 850 } 851 852 /** 853 * setup_sge_queues - configure SGE Tx/Rx/response queues 854 * @adap: the adapter 855 * 856 * Determines how many sets of SGE queues to use and initializes them. 857 * We support multiple queue sets per port if we have MSI-X, otherwise 858 * just one queue set per port. 859 */ 860 static int setup_sge_queues(struct adapter *adap) 861 { 862 int err, i, j; 863 struct sge *s = &adap->sge; 864 struct sge_uld_rxq_info *rxq_info = NULL; 865 unsigned int cmplqid = 0; 866 867 if (is_uld(adap)) 868 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 869 870 for_each_port(adap, i) { 871 struct net_device *dev = adap->port[i]; 872 struct port_info *pi = netdev_priv(dev); 873 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 874 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 875 876 for (j = 0; j < pi->nqsets; j++, q++) { 877 if (adap->msi_idx > 0) 878 adap->msi_idx++; 879 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 880 adap->msi_idx, &q->fl, 881 t4_ethrx_handler, 882 NULL, 883 t4_get_tp_ch_map(adap, 884 pi->tx_chan)); 885 if (err) 886 goto freeout; 887 q->rspq.idx = j; 888 memset(&q->stats, 0, sizeof(q->stats)); 889 } 890 for (j = 0; j < pi->nqsets; j++, t++) { 891 err = t4_sge_alloc_eth_txq(adap, t, dev, 892 netdev_get_tx_queue(dev, j), 893 s->fw_evtq.cntxt_id); 894 if (err) 895 goto freeout; 896 } 897 } 898 899 for_each_port(adap, i) { 900 /* Note that cmplqid below is 0 if we don't 901 * have RDMA queues, and that's the right value. 902 */ 903 if (rxq_info) 904 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 905 906 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 907 s->fw_evtq.cntxt_id, cmplqid); 908 if (err) 909 goto freeout; 910 } 911 912 if (!is_t4(adap->params.chip)) { 913 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 914 netdev_get_tx_queue(adap->port[0], 0) 915 , s->fw_evtq.cntxt_id); 916 if (err) 917 goto freeout; 918 } 919 920 t4_write_reg(adap, is_t4(adap->params.chip) ? 921 MPS_TRC_RSS_CONTROL_A : 922 MPS_T5_TRC_RSS_CONTROL_A, 923 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 924 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 925 return 0; 926 freeout: 927 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 928 t4_free_sge_resources(adap); 929 return err; 930 } 931 932 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 933 struct net_device *sb_dev, 934 select_queue_fallback_t fallback) 935 { 936 int txq; 937 938 #ifdef CONFIG_CHELSIO_T4_DCB 939 /* If a Data Center Bridging has been successfully negotiated on this 940 * link then we'll use the skb's priority to map it to a TX Queue. 941 * The skb's priority is determined via the VLAN Tag Priority Code 942 * Point field. 943 */ 944 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 945 u16 vlan_tci; 946 int err; 947 948 err = vlan_get_tag(skb, &vlan_tci); 949 if (unlikely(err)) { 950 if (net_ratelimit()) 951 netdev_warn(dev, 952 "TX Packet without VLAN Tag on DCB Link\n"); 953 txq = 0; 954 } else { 955 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 956 #ifdef CONFIG_CHELSIO_T4_FCOE 957 if (skb->protocol == htons(ETH_P_FCOE)) 958 txq = skb->priority & 0x7; 959 #endif /* CONFIG_CHELSIO_T4_FCOE */ 960 } 961 return txq; 962 } 963 #endif /* CONFIG_CHELSIO_T4_DCB */ 964 965 if (select_queue) { 966 txq = (skb_rx_queue_recorded(skb) 967 ? skb_get_rx_queue(skb) 968 : smp_processor_id()); 969 970 while (unlikely(txq >= dev->real_num_tx_queues)) 971 txq -= dev->real_num_tx_queues; 972 973 return txq; 974 } 975 976 return fallback(dev, skb, NULL) % dev->real_num_tx_queues; 977 } 978 979 static int closest_timer(const struct sge *s, int time) 980 { 981 int i, delta, match = 0, min_delta = INT_MAX; 982 983 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 984 delta = time - s->timer_val[i]; 985 if (delta < 0) 986 delta = -delta; 987 if (delta < min_delta) { 988 min_delta = delta; 989 match = i; 990 } 991 } 992 return match; 993 } 994 995 static int closest_thres(const struct sge *s, int thres) 996 { 997 int i, delta, match = 0, min_delta = INT_MAX; 998 999 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1000 delta = thres - s->counter_val[i]; 1001 if (delta < 0) 1002 delta = -delta; 1003 if (delta < min_delta) { 1004 min_delta = delta; 1005 match = i; 1006 } 1007 } 1008 return match; 1009 } 1010 1011 /** 1012 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1013 * @q: the Rx queue 1014 * @us: the hold-off time in us, or 0 to disable timer 1015 * @cnt: the hold-off packet count, or 0 to disable counter 1016 * 1017 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1018 * one of the two needs to be enabled for the queue to generate interrupts. 1019 */ 1020 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1021 unsigned int us, unsigned int cnt) 1022 { 1023 struct adapter *adap = q->adap; 1024 1025 if ((us | cnt) == 0) 1026 cnt = 1; 1027 1028 if (cnt) { 1029 int err; 1030 u32 v, new_idx; 1031 1032 new_idx = closest_thres(&adap->sge, cnt); 1033 if (q->desc && q->pktcnt_idx != new_idx) { 1034 /* the queue has already been created, update it */ 1035 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1036 FW_PARAMS_PARAM_X_V( 1037 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1038 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1039 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1040 &v, &new_idx); 1041 if (err) 1042 return err; 1043 } 1044 q->pktcnt_idx = new_idx; 1045 } 1046 1047 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1048 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1049 return 0; 1050 } 1051 1052 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1053 { 1054 const struct port_info *pi = netdev_priv(dev); 1055 netdev_features_t changed = dev->features ^ features; 1056 int err; 1057 1058 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1059 return 0; 1060 1061 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1062 -1, -1, -1, 1063 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1064 if (unlikely(err)) 1065 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1066 return err; 1067 } 1068 1069 static int setup_debugfs(struct adapter *adap) 1070 { 1071 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1072 return -1; 1073 1074 #ifdef CONFIG_DEBUG_FS 1075 t4_setup_debugfs(adap); 1076 #endif 1077 return 0; 1078 } 1079 1080 /* 1081 * upper-layer driver support 1082 */ 1083 1084 /* 1085 * Allocate an active-open TID and set it to the supplied value. 1086 */ 1087 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1088 { 1089 int atid = -1; 1090 1091 spin_lock_bh(&t->atid_lock); 1092 if (t->afree) { 1093 union aopen_entry *p = t->afree; 1094 1095 atid = (p - t->atid_tab) + t->atid_base; 1096 t->afree = p->next; 1097 p->data = data; 1098 t->atids_in_use++; 1099 } 1100 spin_unlock_bh(&t->atid_lock); 1101 return atid; 1102 } 1103 EXPORT_SYMBOL(cxgb4_alloc_atid); 1104 1105 /* 1106 * Release an active-open TID. 1107 */ 1108 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1109 { 1110 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1111 1112 spin_lock_bh(&t->atid_lock); 1113 p->next = t->afree; 1114 t->afree = p; 1115 t->atids_in_use--; 1116 spin_unlock_bh(&t->atid_lock); 1117 } 1118 EXPORT_SYMBOL(cxgb4_free_atid); 1119 1120 /* 1121 * Allocate a server TID and set it to the supplied value. 1122 */ 1123 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1124 { 1125 int stid; 1126 1127 spin_lock_bh(&t->stid_lock); 1128 if (family == PF_INET) { 1129 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1130 if (stid < t->nstids) 1131 __set_bit(stid, t->stid_bmap); 1132 else 1133 stid = -1; 1134 } else { 1135 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1136 if (stid < 0) 1137 stid = -1; 1138 } 1139 if (stid >= 0) { 1140 t->stid_tab[stid].data = data; 1141 stid += t->stid_base; 1142 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1143 * This is equivalent to 4 TIDs. With CLIP enabled it 1144 * needs 2 TIDs. 1145 */ 1146 if (family == PF_INET6) { 1147 t->stids_in_use += 2; 1148 t->v6_stids_in_use += 2; 1149 } else { 1150 t->stids_in_use++; 1151 } 1152 } 1153 spin_unlock_bh(&t->stid_lock); 1154 return stid; 1155 } 1156 EXPORT_SYMBOL(cxgb4_alloc_stid); 1157 1158 /* Allocate a server filter TID and set it to the supplied value. 1159 */ 1160 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1161 { 1162 int stid; 1163 1164 spin_lock_bh(&t->stid_lock); 1165 if (family == PF_INET) { 1166 stid = find_next_zero_bit(t->stid_bmap, 1167 t->nstids + t->nsftids, t->nstids); 1168 if (stid < (t->nstids + t->nsftids)) 1169 __set_bit(stid, t->stid_bmap); 1170 else 1171 stid = -1; 1172 } else { 1173 stid = -1; 1174 } 1175 if (stid >= 0) { 1176 t->stid_tab[stid].data = data; 1177 stid -= t->nstids; 1178 stid += t->sftid_base; 1179 t->sftids_in_use++; 1180 } 1181 spin_unlock_bh(&t->stid_lock); 1182 return stid; 1183 } 1184 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1185 1186 /* Release a server TID. 1187 */ 1188 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1189 { 1190 /* Is it a server filter TID? */ 1191 if (t->nsftids && (stid >= t->sftid_base)) { 1192 stid -= t->sftid_base; 1193 stid += t->nstids; 1194 } else { 1195 stid -= t->stid_base; 1196 } 1197 1198 spin_lock_bh(&t->stid_lock); 1199 if (family == PF_INET) 1200 __clear_bit(stid, t->stid_bmap); 1201 else 1202 bitmap_release_region(t->stid_bmap, stid, 1); 1203 t->stid_tab[stid].data = NULL; 1204 if (stid < t->nstids) { 1205 if (family == PF_INET6) { 1206 t->stids_in_use -= 2; 1207 t->v6_stids_in_use -= 2; 1208 } else { 1209 t->stids_in_use--; 1210 } 1211 } else { 1212 t->sftids_in_use--; 1213 } 1214 1215 spin_unlock_bh(&t->stid_lock); 1216 } 1217 EXPORT_SYMBOL(cxgb4_free_stid); 1218 1219 /* 1220 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1221 */ 1222 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1223 unsigned int tid) 1224 { 1225 struct cpl_tid_release *req; 1226 1227 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1228 req = __skb_put(skb, sizeof(*req)); 1229 INIT_TP_WR(req, tid); 1230 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1231 } 1232 1233 /* 1234 * Queue a TID release request and if necessary schedule a work queue to 1235 * process it. 1236 */ 1237 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1238 unsigned int tid) 1239 { 1240 void **p = &t->tid_tab[tid]; 1241 struct adapter *adap = container_of(t, struct adapter, tids); 1242 1243 spin_lock_bh(&adap->tid_release_lock); 1244 *p = adap->tid_release_head; 1245 /* Low 2 bits encode the Tx channel number */ 1246 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1247 if (!adap->tid_release_task_busy) { 1248 adap->tid_release_task_busy = true; 1249 queue_work(adap->workq, &adap->tid_release_task); 1250 } 1251 spin_unlock_bh(&adap->tid_release_lock); 1252 } 1253 1254 /* 1255 * Process the list of pending TID release requests. 1256 */ 1257 static void process_tid_release_list(struct work_struct *work) 1258 { 1259 struct sk_buff *skb; 1260 struct adapter *adap; 1261 1262 adap = container_of(work, struct adapter, tid_release_task); 1263 1264 spin_lock_bh(&adap->tid_release_lock); 1265 while (adap->tid_release_head) { 1266 void **p = adap->tid_release_head; 1267 unsigned int chan = (uintptr_t)p & 3; 1268 p = (void *)p - chan; 1269 1270 adap->tid_release_head = *p; 1271 *p = NULL; 1272 spin_unlock_bh(&adap->tid_release_lock); 1273 1274 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1275 GFP_KERNEL))) 1276 schedule_timeout_uninterruptible(1); 1277 1278 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1279 t4_ofld_send(adap, skb); 1280 spin_lock_bh(&adap->tid_release_lock); 1281 } 1282 adap->tid_release_task_busy = false; 1283 spin_unlock_bh(&adap->tid_release_lock); 1284 } 1285 1286 /* 1287 * Release a TID and inform HW. If we are unable to allocate the release 1288 * message we defer to a work queue. 1289 */ 1290 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1291 unsigned short family) 1292 { 1293 struct sk_buff *skb; 1294 struct adapter *adap = container_of(t, struct adapter, tids); 1295 1296 WARN_ON(tid >= t->ntids); 1297 1298 if (t->tid_tab[tid]) { 1299 t->tid_tab[tid] = NULL; 1300 atomic_dec(&t->conns_in_use); 1301 if (t->hash_base && (tid >= t->hash_base)) { 1302 if (family == AF_INET6) 1303 atomic_sub(2, &t->hash_tids_in_use); 1304 else 1305 atomic_dec(&t->hash_tids_in_use); 1306 } else { 1307 if (family == AF_INET6) 1308 atomic_sub(2, &t->tids_in_use); 1309 else 1310 atomic_dec(&t->tids_in_use); 1311 } 1312 } 1313 1314 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1315 if (likely(skb)) { 1316 mk_tid_release(skb, chan, tid); 1317 t4_ofld_send(adap, skb); 1318 } else 1319 cxgb4_queue_tid_release(t, chan, tid); 1320 } 1321 EXPORT_SYMBOL(cxgb4_remove_tid); 1322 1323 /* 1324 * Allocate and initialize the TID tables. Returns 0 on success. 1325 */ 1326 static int tid_init(struct tid_info *t) 1327 { 1328 struct adapter *adap = container_of(t, struct adapter, tids); 1329 unsigned int max_ftids = t->nftids + t->nsftids; 1330 unsigned int natids = t->natids; 1331 unsigned int stid_bmap_size; 1332 unsigned int ftid_bmap_size; 1333 size_t size; 1334 1335 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1336 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1337 size = t->ntids * sizeof(*t->tid_tab) + 1338 natids * sizeof(*t->atid_tab) + 1339 t->nstids * sizeof(*t->stid_tab) + 1340 t->nsftids * sizeof(*t->stid_tab) + 1341 stid_bmap_size * sizeof(long) + 1342 max_ftids * sizeof(*t->ftid_tab) + 1343 ftid_bmap_size * sizeof(long); 1344 1345 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1346 if (!t->tid_tab) 1347 return -ENOMEM; 1348 1349 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1350 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1351 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1352 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1353 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1354 spin_lock_init(&t->stid_lock); 1355 spin_lock_init(&t->atid_lock); 1356 spin_lock_init(&t->ftid_lock); 1357 1358 t->stids_in_use = 0; 1359 t->v6_stids_in_use = 0; 1360 t->sftids_in_use = 0; 1361 t->afree = NULL; 1362 t->atids_in_use = 0; 1363 atomic_set(&t->tids_in_use, 0); 1364 atomic_set(&t->conns_in_use, 0); 1365 atomic_set(&t->hash_tids_in_use, 0); 1366 1367 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1368 if (natids) { 1369 while (--natids) 1370 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1371 t->afree = t->atid_tab; 1372 } 1373 1374 if (is_offload(adap)) { 1375 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1376 /* Reserve stid 0 for T4/T5 adapters */ 1377 if (!t->stid_base && 1378 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1379 __set_bit(0, t->stid_bmap); 1380 } 1381 1382 bitmap_zero(t->ftid_bmap, t->nftids); 1383 return 0; 1384 } 1385 1386 /** 1387 * cxgb4_create_server - create an IP server 1388 * @dev: the device 1389 * @stid: the server TID 1390 * @sip: local IP address to bind server to 1391 * @sport: the server's TCP port 1392 * @queue: queue to direct messages from this server to 1393 * 1394 * Create an IP server for the given port and address. 1395 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1396 */ 1397 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1398 __be32 sip, __be16 sport, __be16 vlan, 1399 unsigned int queue) 1400 { 1401 unsigned int chan; 1402 struct sk_buff *skb; 1403 struct adapter *adap; 1404 struct cpl_pass_open_req *req; 1405 int ret; 1406 1407 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1408 if (!skb) 1409 return -ENOMEM; 1410 1411 adap = netdev2adap(dev); 1412 req = __skb_put(skb, sizeof(*req)); 1413 INIT_TP_WR(req, 0); 1414 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1415 req->local_port = sport; 1416 req->peer_port = htons(0); 1417 req->local_ip = sip; 1418 req->peer_ip = htonl(0); 1419 chan = rxq_to_chan(&adap->sge, queue); 1420 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1421 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1422 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1423 ret = t4_mgmt_tx(adap, skb); 1424 return net_xmit_eval(ret); 1425 } 1426 EXPORT_SYMBOL(cxgb4_create_server); 1427 1428 /* cxgb4_create_server6 - create an IPv6 server 1429 * @dev: the device 1430 * @stid: the server TID 1431 * @sip: local IPv6 address to bind server to 1432 * @sport: the server's TCP port 1433 * @queue: queue to direct messages from this server to 1434 * 1435 * Create an IPv6 server for the given port and address. 1436 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1437 */ 1438 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1439 const struct in6_addr *sip, __be16 sport, 1440 unsigned int queue) 1441 { 1442 unsigned int chan; 1443 struct sk_buff *skb; 1444 struct adapter *adap; 1445 struct cpl_pass_open_req6 *req; 1446 int ret; 1447 1448 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1449 if (!skb) 1450 return -ENOMEM; 1451 1452 adap = netdev2adap(dev); 1453 req = __skb_put(skb, sizeof(*req)); 1454 INIT_TP_WR(req, 0); 1455 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1456 req->local_port = sport; 1457 req->peer_port = htons(0); 1458 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1459 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1460 req->peer_ip_hi = cpu_to_be64(0); 1461 req->peer_ip_lo = cpu_to_be64(0); 1462 chan = rxq_to_chan(&adap->sge, queue); 1463 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1464 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1465 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1466 ret = t4_mgmt_tx(adap, skb); 1467 return net_xmit_eval(ret); 1468 } 1469 EXPORT_SYMBOL(cxgb4_create_server6); 1470 1471 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1472 unsigned int queue, bool ipv6) 1473 { 1474 struct sk_buff *skb; 1475 struct adapter *adap; 1476 struct cpl_close_listsvr_req *req; 1477 int ret; 1478 1479 adap = netdev2adap(dev); 1480 1481 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1482 if (!skb) 1483 return -ENOMEM; 1484 1485 req = __skb_put(skb, sizeof(*req)); 1486 INIT_TP_WR(req, 0); 1487 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1488 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1489 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1490 ret = t4_mgmt_tx(adap, skb); 1491 return net_xmit_eval(ret); 1492 } 1493 EXPORT_SYMBOL(cxgb4_remove_server); 1494 1495 /** 1496 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1497 * @mtus: the HW MTU table 1498 * @mtu: the target MTU 1499 * @idx: index of selected entry in the MTU table 1500 * 1501 * Returns the index and the value in the HW MTU table that is closest to 1502 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1503 * table, in which case that smallest available value is selected. 1504 */ 1505 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1506 unsigned int *idx) 1507 { 1508 unsigned int i = 0; 1509 1510 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1511 ++i; 1512 if (idx) 1513 *idx = i; 1514 return mtus[i]; 1515 } 1516 EXPORT_SYMBOL(cxgb4_best_mtu); 1517 1518 /** 1519 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1520 * @mtus: the HW MTU table 1521 * @header_size: Header Size 1522 * @data_size_max: maximum Data Segment Size 1523 * @data_size_align: desired Data Segment Size Alignment (2^N) 1524 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1525 * 1526 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1527 * MTU Table based solely on a Maximum MTU parameter, we break that 1528 * parameter up into a Header Size and Maximum Data Segment Size, and 1529 * provide a desired Data Segment Size Alignment. If we find an MTU in 1530 * the Hardware MTU Table which will result in a Data Segment Size with 1531 * the requested alignment _and_ that MTU isn't "too far" from the 1532 * closest MTU, then we'll return that rather than the closest MTU. 1533 */ 1534 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1535 unsigned short header_size, 1536 unsigned short data_size_max, 1537 unsigned short data_size_align, 1538 unsigned int *mtu_idxp) 1539 { 1540 unsigned short max_mtu = header_size + data_size_max; 1541 unsigned short data_size_align_mask = data_size_align - 1; 1542 int mtu_idx, aligned_mtu_idx; 1543 1544 /* Scan the MTU Table till we find an MTU which is larger than our 1545 * Maximum MTU or we reach the end of the table. Along the way, 1546 * record the last MTU found, if any, which will result in a Data 1547 * Segment Length matching the requested alignment. 1548 */ 1549 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1550 unsigned short data_size = mtus[mtu_idx] - header_size; 1551 1552 /* If this MTU minus the Header Size would result in a 1553 * Data Segment Size of the desired alignment, remember it. 1554 */ 1555 if ((data_size & data_size_align_mask) == 0) 1556 aligned_mtu_idx = mtu_idx; 1557 1558 /* If we're not at the end of the Hardware MTU Table and the 1559 * next element is larger than our Maximum MTU, drop out of 1560 * the loop. 1561 */ 1562 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1563 break; 1564 } 1565 1566 /* If we fell out of the loop because we ran to the end of the table, 1567 * then we just have to use the last [largest] entry. 1568 */ 1569 if (mtu_idx == NMTUS) 1570 mtu_idx--; 1571 1572 /* If we found an MTU which resulted in the requested Data Segment 1573 * Length alignment and that's "not far" from the largest MTU which is 1574 * less than or equal to the maximum MTU, then use that. 1575 */ 1576 if (aligned_mtu_idx >= 0 && 1577 mtu_idx - aligned_mtu_idx <= 1) 1578 mtu_idx = aligned_mtu_idx; 1579 1580 /* If the caller has passed in an MTU Index pointer, pass the 1581 * MTU Index back. Return the MTU value. 1582 */ 1583 if (mtu_idxp) 1584 *mtu_idxp = mtu_idx; 1585 return mtus[mtu_idx]; 1586 } 1587 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1588 1589 /** 1590 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1591 * @chip: chip type 1592 * @viid: VI id of the given port 1593 * 1594 * Return the SMT index for this VI. 1595 */ 1596 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1597 { 1598 /* In T4/T5, SMT contains 256 SMAC entries organized in 1599 * 128 rows of 2 entries each. 1600 * In T6, SMT contains 256 SMAC entries in 256 rows. 1601 * TODO: The below code needs to be updated when we add support 1602 * for 256 VFs. 1603 */ 1604 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1605 return ((viid & 0x7f) << 1); 1606 else 1607 return (viid & 0x7f); 1608 } 1609 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1610 1611 /** 1612 * cxgb4_port_chan - get the HW channel of a port 1613 * @dev: the net device for the port 1614 * 1615 * Return the HW Tx channel of the given port. 1616 */ 1617 unsigned int cxgb4_port_chan(const struct net_device *dev) 1618 { 1619 return netdev2pinfo(dev)->tx_chan; 1620 } 1621 EXPORT_SYMBOL(cxgb4_port_chan); 1622 1623 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1624 { 1625 struct adapter *adap = netdev2adap(dev); 1626 u32 v1, v2, lp_count, hp_count; 1627 1628 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1629 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1630 if (is_t4(adap->params.chip)) { 1631 lp_count = LP_COUNT_G(v1); 1632 hp_count = HP_COUNT_G(v1); 1633 } else { 1634 lp_count = LP_COUNT_T5_G(v1); 1635 hp_count = HP_COUNT_T5_G(v2); 1636 } 1637 return lpfifo ? lp_count : hp_count; 1638 } 1639 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1640 1641 /** 1642 * cxgb4_port_viid - get the VI id of a port 1643 * @dev: the net device for the port 1644 * 1645 * Return the VI id of the given port. 1646 */ 1647 unsigned int cxgb4_port_viid(const struct net_device *dev) 1648 { 1649 return netdev2pinfo(dev)->viid; 1650 } 1651 EXPORT_SYMBOL(cxgb4_port_viid); 1652 1653 /** 1654 * cxgb4_port_idx - get the index of a port 1655 * @dev: the net device for the port 1656 * 1657 * Return the index of the given port. 1658 */ 1659 unsigned int cxgb4_port_idx(const struct net_device *dev) 1660 { 1661 return netdev2pinfo(dev)->port_id; 1662 } 1663 EXPORT_SYMBOL(cxgb4_port_idx); 1664 1665 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1666 struct tp_tcp_stats *v6) 1667 { 1668 struct adapter *adap = pci_get_drvdata(pdev); 1669 1670 spin_lock(&adap->stats_lock); 1671 t4_tp_get_tcp_stats(adap, v4, v6, false); 1672 spin_unlock(&adap->stats_lock); 1673 } 1674 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1675 1676 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1677 const unsigned int *pgsz_order) 1678 { 1679 struct adapter *adap = netdev2adap(dev); 1680 1681 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1682 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1683 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1684 HPZ3_V(pgsz_order[3])); 1685 } 1686 EXPORT_SYMBOL(cxgb4_iscsi_init); 1687 1688 int cxgb4_flush_eq_cache(struct net_device *dev) 1689 { 1690 struct adapter *adap = netdev2adap(dev); 1691 1692 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 1693 } 1694 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1695 1696 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1697 { 1698 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1699 __be64 indices; 1700 int ret; 1701 1702 spin_lock(&adap->win0_lock); 1703 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1704 sizeof(indices), (__be32 *)&indices, 1705 T4_MEMORY_READ); 1706 spin_unlock(&adap->win0_lock); 1707 if (!ret) { 1708 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1709 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1710 } 1711 return ret; 1712 } 1713 1714 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1715 u16 size) 1716 { 1717 struct adapter *adap = netdev2adap(dev); 1718 u16 hw_pidx, hw_cidx; 1719 int ret; 1720 1721 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1722 if (ret) 1723 goto out; 1724 1725 if (pidx != hw_pidx) { 1726 u16 delta; 1727 u32 val; 1728 1729 if (pidx >= hw_pidx) 1730 delta = pidx - hw_pidx; 1731 else 1732 delta = size - hw_pidx + pidx; 1733 1734 if (is_t4(adap->params.chip)) 1735 val = PIDX_V(delta); 1736 else 1737 val = PIDX_T5_V(delta); 1738 wmb(); 1739 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1740 QID_V(qid) | val); 1741 } 1742 out: 1743 return ret; 1744 } 1745 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1746 1747 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1748 { 1749 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1750 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1751 u32 offset, memtype, memaddr; 1752 struct adapter *adap; 1753 u32 hma_size = 0; 1754 int ret; 1755 1756 adap = netdev2adap(dev); 1757 1758 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1759 1760 /* Figure out where the offset lands in the Memory Type/Address scheme. 1761 * This code assumes that the memory is laid out starting at offset 0 1762 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1763 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1764 * MC0, and some have both MC0 and MC1. 1765 */ 1766 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1767 edc0_size = EDRAM0_SIZE_G(size) << 20; 1768 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1769 edc1_size = EDRAM1_SIZE_G(size) << 20; 1770 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1771 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1772 1773 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 1774 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1775 hma_size = EXT_MEM1_SIZE_G(size) << 20; 1776 } 1777 edc0_end = edc0_size; 1778 edc1_end = edc0_end + edc1_size; 1779 mc0_end = edc1_end + mc0_size; 1780 1781 if (offset < edc0_end) { 1782 memtype = MEM_EDC0; 1783 memaddr = offset; 1784 } else if (offset < edc1_end) { 1785 memtype = MEM_EDC1; 1786 memaddr = offset - edc0_end; 1787 } else { 1788 if (hma_size && (offset < (edc1_end + hma_size))) { 1789 memtype = MEM_HMA; 1790 memaddr = offset - edc1_end; 1791 } else if (offset < mc0_end) { 1792 memtype = MEM_MC0; 1793 memaddr = offset - edc1_end; 1794 } else if (is_t5(adap->params.chip)) { 1795 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1796 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1797 mc1_end = mc0_end + mc1_size; 1798 if (offset < mc1_end) { 1799 memtype = MEM_MC1; 1800 memaddr = offset - mc0_end; 1801 } else { 1802 /* offset beyond the end of any memory */ 1803 goto err; 1804 } 1805 } else { 1806 /* T4/T6 only has a single memory channel */ 1807 goto err; 1808 } 1809 } 1810 1811 spin_lock(&adap->win0_lock); 1812 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1813 spin_unlock(&adap->win0_lock); 1814 return ret; 1815 1816 err: 1817 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1818 stag, offset); 1819 return -EINVAL; 1820 } 1821 EXPORT_SYMBOL(cxgb4_read_tpte); 1822 1823 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1824 { 1825 u32 hi, lo; 1826 struct adapter *adap; 1827 1828 adap = netdev2adap(dev); 1829 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1830 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1831 1832 return ((u64)hi << 32) | (u64)lo; 1833 } 1834 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1835 1836 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1837 unsigned int qid, 1838 enum cxgb4_bar2_qtype qtype, 1839 int user, 1840 u64 *pbar2_qoffset, 1841 unsigned int *pbar2_qid) 1842 { 1843 return t4_bar2_sge_qregs(netdev2adap(dev), 1844 qid, 1845 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1846 ? T4_BAR2_QTYPE_EGRESS 1847 : T4_BAR2_QTYPE_INGRESS), 1848 user, 1849 pbar2_qoffset, 1850 pbar2_qid); 1851 } 1852 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1853 1854 static struct pci_driver cxgb4_driver; 1855 1856 static void check_neigh_update(struct neighbour *neigh) 1857 { 1858 const struct device *parent; 1859 const struct net_device *netdev = neigh->dev; 1860 1861 if (is_vlan_dev(netdev)) 1862 netdev = vlan_dev_real_dev(netdev); 1863 parent = netdev->dev.parent; 1864 if (parent && parent->driver == &cxgb4_driver.driver) 1865 t4_l2t_update(dev_get_drvdata(parent), neigh); 1866 } 1867 1868 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1869 void *data) 1870 { 1871 switch (event) { 1872 case NETEVENT_NEIGH_UPDATE: 1873 check_neigh_update(data); 1874 break; 1875 case NETEVENT_REDIRECT: 1876 default: 1877 break; 1878 } 1879 return 0; 1880 } 1881 1882 static bool netevent_registered; 1883 static struct notifier_block cxgb4_netevent_nb = { 1884 .notifier_call = netevent_cb 1885 }; 1886 1887 static void drain_db_fifo(struct adapter *adap, int usecs) 1888 { 1889 u32 v1, v2, lp_count, hp_count; 1890 1891 do { 1892 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1893 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1894 if (is_t4(adap->params.chip)) { 1895 lp_count = LP_COUNT_G(v1); 1896 hp_count = HP_COUNT_G(v1); 1897 } else { 1898 lp_count = LP_COUNT_T5_G(v1); 1899 hp_count = HP_COUNT_T5_G(v2); 1900 } 1901 1902 if (lp_count == 0 && hp_count == 0) 1903 break; 1904 set_current_state(TASK_UNINTERRUPTIBLE); 1905 schedule_timeout(usecs_to_jiffies(usecs)); 1906 } while (1); 1907 } 1908 1909 static void disable_txq_db(struct sge_txq *q) 1910 { 1911 unsigned long flags; 1912 1913 spin_lock_irqsave(&q->db_lock, flags); 1914 q->db_disabled = 1; 1915 spin_unlock_irqrestore(&q->db_lock, flags); 1916 } 1917 1918 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1919 { 1920 spin_lock_irq(&q->db_lock); 1921 if (q->db_pidx_inc) { 1922 /* Make sure that all writes to the TX descriptors 1923 * are committed before we tell HW about them. 1924 */ 1925 wmb(); 1926 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1927 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1928 q->db_pidx_inc = 0; 1929 } 1930 q->db_disabled = 0; 1931 spin_unlock_irq(&q->db_lock); 1932 } 1933 1934 static void disable_dbs(struct adapter *adap) 1935 { 1936 int i; 1937 1938 for_each_ethrxq(&adap->sge, i) 1939 disable_txq_db(&adap->sge.ethtxq[i].q); 1940 if (is_offload(adap)) { 1941 struct sge_uld_txq_info *txq_info = 1942 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1943 1944 if (txq_info) { 1945 for_each_ofldtxq(&adap->sge, i) { 1946 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1947 1948 disable_txq_db(&txq->q); 1949 } 1950 } 1951 } 1952 for_each_port(adap, i) 1953 disable_txq_db(&adap->sge.ctrlq[i].q); 1954 } 1955 1956 static void enable_dbs(struct adapter *adap) 1957 { 1958 int i; 1959 1960 for_each_ethrxq(&adap->sge, i) 1961 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1962 if (is_offload(adap)) { 1963 struct sge_uld_txq_info *txq_info = 1964 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1965 1966 if (txq_info) { 1967 for_each_ofldtxq(&adap->sge, i) { 1968 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1969 1970 enable_txq_db(adap, &txq->q); 1971 } 1972 } 1973 } 1974 for_each_port(adap, i) 1975 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 1976 } 1977 1978 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 1979 { 1980 enum cxgb4_uld type = CXGB4_ULD_RDMA; 1981 1982 if (adap->uld && adap->uld[type].handle) 1983 adap->uld[type].control(adap->uld[type].handle, cmd); 1984 } 1985 1986 static void process_db_full(struct work_struct *work) 1987 { 1988 struct adapter *adap; 1989 1990 adap = container_of(work, struct adapter, db_full_task); 1991 1992 drain_db_fifo(adap, dbfifo_drain_delay); 1993 enable_dbs(adap); 1994 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 1995 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1996 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1997 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 1998 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 1999 else 2000 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2001 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2002 } 2003 2004 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2005 { 2006 u16 hw_pidx, hw_cidx; 2007 int ret; 2008 2009 spin_lock_irq(&q->db_lock); 2010 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2011 if (ret) 2012 goto out; 2013 if (q->db_pidx != hw_pidx) { 2014 u16 delta; 2015 u32 val; 2016 2017 if (q->db_pidx >= hw_pidx) 2018 delta = q->db_pidx - hw_pidx; 2019 else 2020 delta = q->size - hw_pidx + q->db_pidx; 2021 2022 if (is_t4(adap->params.chip)) 2023 val = PIDX_V(delta); 2024 else 2025 val = PIDX_T5_V(delta); 2026 wmb(); 2027 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2028 QID_V(q->cntxt_id) | val); 2029 } 2030 out: 2031 q->db_disabled = 0; 2032 q->db_pidx_inc = 0; 2033 spin_unlock_irq(&q->db_lock); 2034 if (ret) 2035 CH_WARN(adap, "DB drop recovery failed.\n"); 2036 } 2037 2038 static void recover_all_queues(struct adapter *adap) 2039 { 2040 int i; 2041 2042 for_each_ethrxq(&adap->sge, i) 2043 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2044 if (is_offload(adap)) { 2045 struct sge_uld_txq_info *txq_info = 2046 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2047 if (txq_info) { 2048 for_each_ofldtxq(&adap->sge, i) { 2049 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2050 2051 sync_txq_pidx(adap, &txq->q); 2052 } 2053 } 2054 } 2055 for_each_port(adap, i) 2056 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2057 } 2058 2059 static void process_db_drop(struct work_struct *work) 2060 { 2061 struct adapter *adap; 2062 2063 adap = container_of(work, struct adapter, db_drop_task); 2064 2065 if (is_t4(adap->params.chip)) { 2066 drain_db_fifo(adap, dbfifo_drain_delay); 2067 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2068 drain_db_fifo(adap, dbfifo_drain_delay); 2069 recover_all_queues(adap); 2070 drain_db_fifo(adap, dbfifo_drain_delay); 2071 enable_dbs(adap); 2072 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2073 } else if (is_t5(adap->params.chip)) { 2074 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2075 u16 qid = (dropped_db >> 15) & 0x1ffff; 2076 u16 pidx_inc = dropped_db & 0x1fff; 2077 u64 bar2_qoffset; 2078 unsigned int bar2_qid; 2079 int ret; 2080 2081 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2082 0, &bar2_qoffset, &bar2_qid); 2083 if (ret) 2084 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2085 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2086 else 2087 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2088 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2089 2090 /* Re-enable BAR2 WC */ 2091 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2092 } 2093 2094 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2095 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2096 } 2097 2098 void t4_db_full(struct adapter *adap) 2099 { 2100 if (is_t4(adap->params.chip)) { 2101 disable_dbs(adap); 2102 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2103 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2104 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2105 queue_work(adap->workq, &adap->db_full_task); 2106 } 2107 } 2108 2109 void t4_db_dropped(struct adapter *adap) 2110 { 2111 if (is_t4(adap->params.chip)) { 2112 disable_dbs(adap); 2113 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2114 } 2115 queue_work(adap->workq, &adap->db_drop_task); 2116 } 2117 2118 void t4_register_netevent_notifier(void) 2119 { 2120 if (!netevent_registered) { 2121 register_netevent_notifier(&cxgb4_netevent_nb); 2122 netevent_registered = true; 2123 } 2124 } 2125 2126 static void detach_ulds(struct adapter *adap) 2127 { 2128 unsigned int i; 2129 2130 mutex_lock(&uld_mutex); 2131 list_del(&adap->list_node); 2132 2133 for (i = 0; i < CXGB4_ULD_MAX; i++) 2134 if (adap->uld && adap->uld[i].handle) 2135 adap->uld[i].state_change(adap->uld[i].handle, 2136 CXGB4_STATE_DETACH); 2137 2138 if (netevent_registered && list_empty(&adapter_list)) { 2139 unregister_netevent_notifier(&cxgb4_netevent_nb); 2140 netevent_registered = false; 2141 } 2142 mutex_unlock(&uld_mutex); 2143 } 2144 2145 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2146 { 2147 unsigned int i; 2148 2149 mutex_lock(&uld_mutex); 2150 for (i = 0; i < CXGB4_ULD_MAX; i++) 2151 if (adap->uld && adap->uld[i].handle) 2152 adap->uld[i].state_change(adap->uld[i].handle, 2153 new_state); 2154 mutex_unlock(&uld_mutex); 2155 } 2156 2157 #if IS_ENABLED(CONFIG_IPV6) 2158 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2159 unsigned long event, void *data) 2160 { 2161 struct inet6_ifaddr *ifa = data; 2162 struct net_device *event_dev = ifa->idev->dev; 2163 const struct device *parent = NULL; 2164 #if IS_ENABLED(CONFIG_BONDING) 2165 struct adapter *adap; 2166 #endif 2167 if (is_vlan_dev(event_dev)) 2168 event_dev = vlan_dev_real_dev(event_dev); 2169 #if IS_ENABLED(CONFIG_BONDING) 2170 if (event_dev->flags & IFF_MASTER) { 2171 list_for_each_entry(adap, &adapter_list, list_node) { 2172 switch (event) { 2173 case NETDEV_UP: 2174 cxgb4_clip_get(adap->port[0], 2175 (const u32 *)ifa, 1); 2176 break; 2177 case NETDEV_DOWN: 2178 cxgb4_clip_release(adap->port[0], 2179 (const u32 *)ifa, 1); 2180 break; 2181 default: 2182 break; 2183 } 2184 } 2185 return NOTIFY_OK; 2186 } 2187 #endif 2188 2189 if (event_dev) 2190 parent = event_dev->dev.parent; 2191 2192 if (parent && parent->driver == &cxgb4_driver.driver) { 2193 switch (event) { 2194 case NETDEV_UP: 2195 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2196 break; 2197 case NETDEV_DOWN: 2198 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2199 break; 2200 default: 2201 break; 2202 } 2203 } 2204 return NOTIFY_OK; 2205 } 2206 2207 static bool inet6addr_registered; 2208 static struct notifier_block cxgb4_inet6addr_notifier = { 2209 .notifier_call = cxgb4_inet6addr_handler 2210 }; 2211 2212 static void update_clip(const struct adapter *adap) 2213 { 2214 int i; 2215 struct net_device *dev; 2216 int ret; 2217 2218 rcu_read_lock(); 2219 2220 for (i = 0; i < MAX_NPORTS; i++) { 2221 dev = adap->port[i]; 2222 ret = 0; 2223 2224 if (dev) 2225 ret = cxgb4_update_root_dev_clip(dev); 2226 2227 if (ret < 0) 2228 break; 2229 } 2230 rcu_read_unlock(); 2231 } 2232 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2233 2234 /** 2235 * cxgb_up - enable the adapter 2236 * @adap: adapter being enabled 2237 * 2238 * Called when the first port is enabled, this function performs the 2239 * actions necessary to make an adapter operational, such as completing 2240 * the initialization of HW modules, and enabling interrupts. 2241 * 2242 * Must be called with the rtnl lock held. 2243 */ 2244 static int cxgb_up(struct adapter *adap) 2245 { 2246 int err; 2247 2248 mutex_lock(&uld_mutex); 2249 err = setup_sge_queues(adap); 2250 if (err) 2251 goto rel_lock; 2252 err = setup_rss(adap); 2253 if (err) 2254 goto freeq; 2255 2256 if (adap->flags & USING_MSIX) { 2257 name_msix_vecs(adap); 2258 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2259 adap->msix_info[0].desc, adap); 2260 if (err) 2261 goto irq_err; 2262 err = request_msix_queue_irqs(adap); 2263 if (err) { 2264 free_irq(adap->msix_info[0].vec, adap); 2265 goto irq_err; 2266 } 2267 } else { 2268 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2269 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2270 adap->port[0]->name, adap); 2271 if (err) 2272 goto irq_err; 2273 } 2274 2275 enable_rx(adap); 2276 t4_sge_start(adap); 2277 t4_intr_enable(adap); 2278 adap->flags |= FULL_INIT_DONE; 2279 mutex_unlock(&uld_mutex); 2280 2281 notify_ulds(adap, CXGB4_STATE_UP); 2282 #if IS_ENABLED(CONFIG_IPV6) 2283 update_clip(adap); 2284 #endif 2285 /* Initialize hash mac addr list*/ 2286 INIT_LIST_HEAD(&adap->mac_hlist); 2287 return err; 2288 2289 irq_err: 2290 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2291 freeq: 2292 t4_free_sge_resources(adap); 2293 rel_lock: 2294 mutex_unlock(&uld_mutex); 2295 return err; 2296 } 2297 2298 static void cxgb_down(struct adapter *adapter) 2299 { 2300 cancel_work_sync(&adapter->tid_release_task); 2301 cancel_work_sync(&adapter->db_full_task); 2302 cancel_work_sync(&adapter->db_drop_task); 2303 adapter->tid_release_task_busy = false; 2304 adapter->tid_release_head = NULL; 2305 2306 t4_sge_stop(adapter); 2307 t4_free_sge_resources(adapter); 2308 adapter->flags &= ~FULL_INIT_DONE; 2309 } 2310 2311 /* 2312 * net_device operations 2313 */ 2314 static int cxgb_open(struct net_device *dev) 2315 { 2316 int err; 2317 struct port_info *pi = netdev_priv(dev); 2318 struct adapter *adapter = pi->adapter; 2319 2320 netif_carrier_off(dev); 2321 2322 if (!(adapter->flags & FULL_INIT_DONE)) { 2323 err = cxgb_up(adapter); 2324 if (err < 0) 2325 return err; 2326 } 2327 2328 /* It's possible that the basic port information could have 2329 * changed since we first read it. 2330 */ 2331 err = t4_update_port_info(pi); 2332 if (err < 0) 2333 return err; 2334 2335 err = link_start(dev); 2336 if (!err) 2337 netif_tx_start_all_queues(dev); 2338 return err; 2339 } 2340 2341 static int cxgb_close(struct net_device *dev) 2342 { 2343 struct port_info *pi = netdev_priv(dev); 2344 struct adapter *adapter = pi->adapter; 2345 int ret; 2346 2347 netif_tx_stop_all_queues(dev); 2348 netif_carrier_off(dev); 2349 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2350 false, false, false); 2351 #ifdef CONFIG_CHELSIO_T4_DCB 2352 cxgb4_dcb_reset(dev); 2353 dcb_tx_queue_prio_enable(dev, false); 2354 #endif 2355 return ret; 2356 } 2357 2358 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2359 __be32 sip, __be16 sport, __be16 vlan, 2360 unsigned int queue, unsigned char port, unsigned char mask) 2361 { 2362 int ret; 2363 struct filter_entry *f; 2364 struct adapter *adap; 2365 int i; 2366 u8 *val; 2367 2368 adap = netdev2adap(dev); 2369 2370 /* Adjust stid to correct filter index */ 2371 stid -= adap->tids.sftid_base; 2372 stid += adap->tids.nftids; 2373 2374 /* Check to make sure the filter requested is writable ... 2375 */ 2376 f = &adap->tids.ftid_tab[stid]; 2377 ret = writable_filter(f); 2378 if (ret) 2379 return ret; 2380 2381 /* Clear out any old resources being used by the filter before 2382 * we start constructing the new filter. 2383 */ 2384 if (f->valid) 2385 clear_filter(adap, f); 2386 2387 /* Clear out filter specifications */ 2388 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2389 f->fs.val.lport = cpu_to_be16(sport); 2390 f->fs.mask.lport = ~0; 2391 val = (u8 *)&sip; 2392 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2393 for (i = 0; i < 4; i++) { 2394 f->fs.val.lip[i] = val[i]; 2395 f->fs.mask.lip[i] = ~0; 2396 } 2397 if (adap->params.tp.vlan_pri_map & PORT_F) { 2398 f->fs.val.iport = port; 2399 f->fs.mask.iport = mask; 2400 } 2401 } 2402 2403 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2404 f->fs.val.proto = IPPROTO_TCP; 2405 f->fs.mask.proto = ~0; 2406 } 2407 2408 f->fs.dirsteer = 1; 2409 f->fs.iq = queue; 2410 /* Mark filter as locked */ 2411 f->locked = 1; 2412 f->fs.rpttid = 1; 2413 2414 /* Save the actual tid. We need this to get the corresponding 2415 * filter entry structure in filter_rpl. 2416 */ 2417 f->tid = stid + adap->tids.ftid_base; 2418 ret = set_filter_wr(adap, stid); 2419 if (ret) { 2420 clear_filter(adap, f); 2421 return ret; 2422 } 2423 2424 return 0; 2425 } 2426 EXPORT_SYMBOL(cxgb4_create_server_filter); 2427 2428 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2429 unsigned int queue, bool ipv6) 2430 { 2431 struct filter_entry *f; 2432 struct adapter *adap; 2433 2434 adap = netdev2adap(dev); 2435 2436 /* Adjust stid to correct filter index */ 2437 stid -= adap->tids.sftid_base; 2438 stid += adap->tids.nftids; 2439 2440 f = &adap->tids.ftid_tab[stid]; 2441 /* Unlock the filter */ 2442 f->locked = 0; 2443 2444 return delete_filter(adap, stid); 2445 } 2446 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2447 2448 static void cxgb_get_stats(struct net_device *dev, 2449 struct rtnl_link_stats64 *ns) 2450 { 2451 struct port_stats stats; 2452 struct port_info *p = netdev_priv(dev); 2453 struct adapter *adapter = p->adapter; 2454 2455 /* Block retrieving statistics during EEH error 2456 * recovery. Otherwise, the recovery might fail 2457 * and the PCI device will be removed permanently 2458 */ 2459 spin_lock(&adapter->stats_lock); 2460 if (!netif_device_present(dev)) { 2461 spin_unlock(&adapter->stats_lock); 2462 return; 2463 } 2464 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2465 &p->stats_base); 2466 spin_unlock(&adapter->stats_lock); 2467 2468 ns->tx_bytes = stats.tx_octets; 2469 ns->tx_packets = stats.tx_frames; 2470 ns->rx_bytes = stats.rx_octets; 2471 ns->rx_packets = stats.rx_frames; 2472 ns->multicast = stats.rx_mcast_frames; 2473 2474 /* detailed rx_errors */ 2475 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2476 stats.rx_runt; 2477 ns->rx_over_errors = 0; 2478 ns->rx_crc_errors = stats.rx_fcs_err; 2479 ns->rx_frame_errors = stats.rx_symbol_err; 2480 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2481 stats.rx_ovflow2 + stats.rx_ovflow3 + 2482 stats.rx_trunc0 + stats.rx_trunc1 + 2483 stats.rx_trunc2 + stats.rx_trunc3; 2484 ns->rx_missed_errors = 0; 2485 2486 /* detailed tx_errors */ 2487 ns->tx_aborted_errors = 0; 2488 ns->tx_carrier_errors = 0; 2489 ns->tx_fifo_errors = 0; 2490 ns->tx_heartbeat_errors = 0; 2491 ns->tx_window_errors = 0; 2492 2493 ns->tx_errors = stats.tx_error_frames; 2494 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2495 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2496 } 2497 2498 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2499 { 2500 unsigned int mbox; 2501 int ret = 0, prtad, devad; 2502 struct port_info *pi = netdev_priv(dev); 2503 struct adapter *adapter = pi->adapter; 2504 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2505 2506 switch (cmd) { 2507 case SIOCGMIIPHY: 2508 if (pi->mdio_addr < 0) 2509 return -EOPNOTSUPP; 2510 data->phy_id = pi->mdio_addr; 2511 break; 2512 case SIOCGMIIREG: 2513 case SIOCSMIIREG: 2514 if (mdio_phy_id_is_c45(data->phy_id)) { 2515 prtad = mdio_phy_id_prtad(data->phy_id); 2516 devad = mdio_phy_id_devad(data->phy_id); 2517 } else if (data->phy_id < 32) { 2518 prtad = data->phy_id; 2519 devad = 0; 2520 data->reg_num &= 0x1f; 2521 } else 2522 return -EINVAL; 2523 2524 mbox = pi->adapter->pf; 2525 if (cmd == SIOCGMIIREG) 2526 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2527 data->reg_num, &data->val_out); 2528 else 2529 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2530 data->reg_num, data->val_in); 2531 break; 2532 case SIOCGHWTSTAMP: 2533 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2534 sizeof(pi->tstamp_config)) ? 2535 -EFAULT : 0; 2536 case SIOCSHWTSTAMP: 2537 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2538 sizeof(pi->tstamp_config))) 2539 return -EFAULT; 2540 2541 if (!is_t4(adapter->params.chip)) { 2542 switch (pi->tstamp_config.tx_type) { 2543 case HWTSTAMP_TX_OFF: 2544 case HWTSTAMP_TX_ON: 2545 break; 2546 default: 2547 return -ERANGE; 2548 } 2549 2550 switch (pi->tstamp_config.rx_filter) { 2551 case HWTSTAMP_FILTER_NONE: 2552 pi->rxtstamp = false; 2553 break; 2554 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2555 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2556 cxgb4_ptprx_timestamping(pi, pi->port_id, 2557 PTP_TS_L4); 2558 break; 2559 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2560 cxgb4_ptprx_timestamping(pi, pi->port_id, 2561 PTP_TS_L2_L4); 2562 break; 2563 case HWTSTAMP_FILTER_ALL: 2564 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2565 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2566 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2567 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2568 pi->rxtstamp = true; 2569 break; 2570 default: 2571 pi->tstamp_config.rx_filter = 2572 HWTSTAMP_FILTER_NONE; 2573 return -ERANGE; 2574 } 2575 2576 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2577 (pi->tstamp_config.rx_filter == 2578 HWTSTAMP_FILTER_NONE)) { 2579 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2580 pi->ptp_enable = false; 2581 } 2582 2583 if (pi->tstamp_config.rx_filter != 2584 HWTSTAMP_FILTER_NONE) { 2585 if (cxgb4_ptp_redirect_rx_packet(adapter, 2586 pi) >= 0) 2587 pi->ptp_enable = true; 2588 } 2589 } else { 2590 /* For T4 Adapters */ 2591 switch (pi->tstamp_config.rx_filter) { 2592 case HWTSTAMP_FILTER_NONE: 2593 pi->rxtstamp = false; 2594 break; 2595 case HWTSTAMP_FILTER_ALL: 2596 pi->rxtstamp = true; 2597 break; 2598 default: 2599 pi->tstamp_config.rx_filter = 2600 HWTSTAMP_FILTER_NONE; 2601 return -ERANGE; 2602 } 2603 } 2604 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2605 sizeof(pi->tstamp_config)) ? 2606 -EFAULT : 0; 2607 default: 2608 return -EOPNOTSUPP; 2609 } 2610 return ret; 2611 } 2612 2613 static void cxgb_set_rxmode(struct net_device *dev) 2614 { 2615 /* unfortunately we can't return errors to the stack */ 2616 set_rxmode(dev, -1, false); 2617 } 2618 2619 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2620 { 2621 int ret; 2622 struct port_info *pi = netdev_priv(dev); 2623 2624 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2625 -1, -1, -1, true); 2626 if (!ret) 2627 dev->mtu = new_mtu; 2628 return ret; 2629 } 2630 2631 #ifdef CONFIG_PCI_IOV 2632 static int cxgb4_mgmt_open(struct net_device *dev) 2633 { 2634 /* Turn carrier off since we don't have to transmit anything on this 2635 * interface. 2636 */ 2637 netif_carrier_off(dev); 2638 return 0; 2639 } 2640 2641 /* Fill MAC address that will be assigned by the FW */ 2642 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 2643 { 2644 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2645 unsigned int i, vf, nvfs; 2646 u16 a, b; 2647 int err; 2648 u8 *na; 2649 2650 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, 2651 PCI_CAP_ID_VPD); 2652 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2653 if (err) 2654 return; 2655 2656 na = adap->params.vpd.na; 2657 for (i = 0; i < ETH_ALEN; i++) 2658 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2659 hex2val(na[2 * i + 1])); 2660 2661 a = (hw_addr[0] << 8) | hw_addr[1]; 2662 b = (hw_addr[1] << 8) | hw_addr[2]; 2663 a ^= b; 2664 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2665 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2666 macaddr[0] = a >> 8; 2667 macaddr[1] = a & 0xff; 2668 2669 for (i = 2; i < 5; i++) 2670 macaddr[i] = hw_addr[i + 1]; 2671 2672 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 2673 vf < nvfs; vf++) { 2674 macaddr[5] = adap->pf * 16 + vf; 2675 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 2676 } 2677 } 2678 2679 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2680 { 2681 struct port_info *pi = netdev_priv(dev); 2682 struct adapter *adap = pi->adapter; 2683 int ret; 2684 2685 /* verify MAC addr is valid */ 2686 if (!is_valid_ether_addr(mac)) { 2687 dev_err(pi->adapter->pdev_dev, 2688 "Invalid Ethernet address %pM for VF %d\n", 2689 mac, vf); 2690 return -EINVAL; 2691 } 2692 2693 dev_info(pi->adapter->pdev_dev, 2694 "Setting MAC %pM on VF %d\n", mac, vf); 2695 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2696 if (!ret) 2697 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2698 return ret; 2699 } 2700 2701 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 2702 int vf, struct ifla_vf_info *ivi) 2703 { 2704 struct port_info *pi = netdev_priv(dev); 2705 struct adapter *adap = pi->adapter; 2706 struct vf_info *vfinfo; 2707 2708 if (vf >= adap->num_vfs) 2709 return -EINVAL; 2710 vfinfo = &adap->vfinfo[vf]; 2711 2712 ivi->vf = vf; 2713 ivi->max_tx_rate = vfinfo->tx_rate; 2714 ivi->min_tx_rate = 0; 2715 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 2716 ivi->vlan = vfinfo->vlan; 2717 return 0; 2718 } 2719 2720 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 2721 struct netdev_phys_item_id *ppid) 2722 { 2723 struct port_info *pi = netdev_priv(dev); 2724 unsigned int phy_port_id; 2725 2726 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2727 ppid->id_len = sizeof(phy_port_id); 2728 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2729 return 0; 2730 } 2731 2732 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 2733 int min_tx_rate, int max_tx_rate) 2734 { 2735 struct port_info *pi = netdev_priv(dev); 2736 struct adapter *adap = pi->adapter; 2737 unsigned int link_ok, speed, mtu; 2738 u32 fw_pfvf, fw_class; 2739 int class_id = vf; 2740 int ret; 2741 u16 pktsize; 2742 2743 if (vf >= adap->num_vfs) 2744 return -EINVAL; 2745 2746 if (min_tx_rate) { 2747 dev_err(adap->pdev_dev, 2748 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2749 min_tx_rate, vf); 2750 return -EINVAL; 2751 } 2752 2753 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 2754 if (ret != FW_SUCCESS) { 2755 dev_err(adap->pdev_dev, 2756 "Failed to get link information for VF %d\n", vf); 2757 return -EINVAL; 2758 } 2759 2760 if (!link_ok) { 2761 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 2762 return -EINVAL; 2763 } 2764 2765 if (max_tx_rate > speed) { 2766 dev_err(adap->pdev_dev, 2767 "Max tx rate %d for VF %d can't be > link-speed %u", 2768 max_tx_rate, vf, speed); 2769 return -EINVAL; 2770 } 2771 2772 pktsize = mtu; 2773 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 2774 pktsize = pktsize - sizeof(struct ethhdr) - 4; 2775 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 2776 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 2777 /* configure Traffic Class for rate-limiting */ 2778 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 2779 SCHED_CLASS_LEVEL_CL_RL, 2780 SCHED_CLASS_MODE_CLASS, 2781 SCHED_CLASS_RATEUNIT_BITS, 2782 SCHED_CLASS_RATEMODE_ABS, 2783 pi->tx_chan, class_id, 0, 2784 max_tx_rate * 1000, 0, pktsize); 2785 if (ret) { 2786 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 2787 ret); 2788 return -EINVAL; 2789 } 2790 dev_info(adap->pdev_dev, 2791 "Class %d with MSS %u configured with rate %u\n", 2792 class_id, pktsize, max_tx_rate); 2793 2794 /* bind VF to configured Traffic Class */ 2795 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2796 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2797 fw_class = class_id; 2798 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 2799 &fw_class); 2800 if (ret) { 2801 dev_err(adap->pdev_dev, 2802 "Err %d in binding VF %d to Traffic Class %d\n", 2803 ret, vf, class_id); 2804 return -EINVAL; 2805 } 2806 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 2807 adap->pf, vf, class_id); 2808 adap->vfinfo[vf].tx_rate = max_tx_rate; 2809 return 0; 2810 } 2811 2812 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 2813 u16 vlan, u8 qos, __be16 vlan_proto) 2814 { 2815 struct port_info *pi = netdev_priv(dev); 2816 struct adapter *adap = pi->adapter; 2817 int ret; 2818 2819 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 2820 return -EINVAL; 2821 2822 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 2823 return -EPROTONOSUPPORT; 2824 2825 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 2826 if (!ret) { 2827 adap->vfinfo[vf].vlan = vlan; 2828 return 0; 2829 } 2830 2831 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 2832 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 2833 return ret; 2834 } 2835 #endif /* CONFIG_PCI_IOV */ 2836 2837 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2838 { 2839 int ret; 2840 struct sockaddr *addr = p; 2841 struct port_info *pi = netdev_priv(dev); 2842 2843 if (!is_valid_ether_addr(addr->sa_data)) 2844 return -EADDRNOTAVAIL; 2845 2846 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 2847 pi->xact_addr_filt, addr->sa_data, true, true); 2848 if (ret < 0) 2849 return ret; 2850 2851 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2852 pi->xact_addr_filt = ret; 2853 return 0; 2854 } 2855 2856 #ifdef CONFIG_NET_POLL_CONTROLLER 2857 static void cxgb_netpoll(struct net_device *dev) 2858 { 2859 struct port_info *pi = netdev_priv(dev); 2860 struct adapter *adap = pi->adapter; 2861 2862 if (adap->flags & USING_MSIX) { 2863 int i; 2864 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2865 2866 for (i = pi->nqsets; i; i--, rx++) 2867 t4_sge_intr_msix(0, &rx->rspq); 2868 } else 2869 t4_intr_handler(adap)(0, adap); 2870 } 2871 #endif 2872 2873 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2874 { 2875 struct port_info *pi = netdev_priv(dev); 2876 struct adapter *adap = pi->adapter; 2877 struct sched_class *e; 2878 struct ch_sched_params p; 2879 struct ch_sched_queue qe; 2880 u32 req_rate; 2881 int err = 0; 2882 2883 if (!can_sched(dev)) 2884 return -ENOTSUPP; 2885 2886 if (index < 0 || index > pi->nqsets - 1) 2887 return -EINVAL; 2888 2889 if (!(adap->flags & FULL_INIT_DONE)) { 2890 dev_err(adap->pdev_dev, 2891 "Failed to rate limit on queue %d. Link Down?\n", 2892 index); 2893 return -EINVAL; 2894 } 2895 2896 /* Convert from Mbps to Kbps */ 2897 req_rate = rate * 1000; 2898 2899 /* Max rate is 100 Gbps */ 2900 if (req_rate > SCHED_MAX_RATE_KBPS) { 2901 dev_err(adap->pdev_dev, 2902 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 2903 rate, SCHED_MAX_RATE_KBPS / 1000); 2904 return -ERANGE; 2905 } 2906 2907 /* First unbind the queue from any existing class */ 2908 memset(&qe, 0, sizeof(qe)); 2909 qe.queue = index; 2910 qe.class = SCHED_CLS_NONE; 2911 2912 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 2913 if (err) { 2914 dev_err(adap->pdev_dev, 2915 "Unbinding Queue %d on port %d fail. Err: %d\n", 2916 index, pi->port_id, err); 2917 return err; 2918 } 2919 2920 /* Queue already unbound */ 2921 if (!req_rate) 2922 return 0; 2923 2924 /* Fetch any available unused or matching scheduling class */ 2925 memset(&p, 0, sizeof(p)); 2926 p.type = SCHED_CLASS_TYPE_PACKET; 2927 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 2928 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 2929 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 2930 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 2931 p.u.params.channel = pi->tx_chan; 2932 p.u.params.class = SCHED_CLS_NONE; 2933 p.u.params.minrate = 0; 2934 p.u.params.maxrate = req_rate; 2935 p.u.params.weight = 0; 2936 p.u.params.pktsize = dev->mtu; 2937 2938 e = cxgb4_sched_class_alloc(dev, &p); 2939 if (!e) 2940 return -ENOMEM; 2941 2942 /* Bind the queue to a scheduling class */ 2943 memset(&qe, 0, sizeof(qe)); 2944 qe.queue = index; 2945 qe.class = e->idx; 2946 2947 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 2948 if (err) 2949 dev_err(adap->pdev_dev, 2950 "Queue rate limiting failed. Err: %d\n", err); 2951 return err; 2952 } 2953 2954 static int cxgb_setup_tc_flower(struct net_device *dev, 2955 struct tc_cls_flower_offload *cls_flower) 2956 { 2957 switch (cls_flower->command) { 2958 case TC_CLSFLOWER_REPLACE: 2959 return cxgb4_tc_flower_replace(dev, cls_flower); 2960 case TC_CLSFLOWER_DESTROY: 2961 return cxgb4_tc_flower_destroy(dev, cls_flower); 2962 case TC_CLSFLOWER_STATS: 2963 return cxgb4_tc_flower_stats(dev, cls_flower); 2964 default: 2965 return -EOPNOTSUPP; 2966 } 2967 } 2968 2969 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 2970 struct tc_cls_u32_offload *cls_u32) 2971 { 2972 switch (cls_u32->command) { 2973 case TC_CLSU32_NEW_KNODE: 2974 case TC_CLSU32_REPLACE_KNODE: 2975 return cxgb4_config_knode(dev, cls_u32); 2976 case TC_CLSU32_DELETE_KNODE: 2977 return cxgb4_delete_knode(dev, cls_u32); 2978 default: 2979 return -EOPNOTSUPP; 2980 } 2981 } 2982 2983 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 2984 void *cb_priv) 2985 { 2986 struct net_device *dev = cb_priv; 2987 struct port_info *pi = netdev2pinfo(dev); 2988 struct adapter *adap = netdev2adap(dev); 2989 2990 if (!(adap->flags & FULL_INIT_DONE)) { 2991 dev_err(adap->pdev_dev, 2992 "Failed to setup tc on port %d. Link Down?\n", 2993 pi->port_id); 2994 return -EINVAL; 2995 } 2996 2997 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 2998 return -EOPNOTSUPP; 2999 3000 switch (type) { 3001 case TC_SETUP_CLSU32: 3002 return cxgb_setup_tc_cls_u32(dev, type_data); 3003 case TC_SETUP_CLSFLOWER: 3004 return cxgb_setup_tc_flower(dev, type_data); 3005 default: 3006 return -EOPNOTSUPP; 3007 } 3008 } 3009 3010 static int cxgb_setup_tc_block(struct net_device *dev, 3011 struct tc_block_offload *f) 3012 { 3013 struct port_info *pi = netdev2pinfo(dev); 3014 3015 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 3016 return -EOPNOTSUPP; 3017 3018 switch (f->command) { 3019 case TC_BLOCK_BIND: 3020 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb, 3021 pi, dev, f->extack); 3022 case TC_BLOCK_UNBIND: 3023 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi); 3024 return 0; 3025 default: 3026 return -EOPNOTSUPP; 3027 } 3028 } 3029 3030 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3031 void *type_data) 3032 { 3033 switch (type) { 3034 case TC_SETUP_BLOCK: 3035 return cxgb_setup_tc_block(dev, type_data); 3036 default: 3037 return -EOPNOTSUPP; 3038 } 3039 } 3040 3041 static void cxgb_del_udp_tunnel(struct net_device *netdev, 3042 struct udp_tunnel_info *ti) 3043 { 3044 struct port_info *pi = netdev_priv(netdev); 3045 struct adapter *adapter = pi->adapter; 3046 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3047 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3048 int ret = 0, i; 3049 3050 if (chip_ver < CHELSIO_T6) 3051 return; 3052 3053 switch (ti->type) { 3054 case UDP_TUNNEL_TYPE_VXLAN: 3055 if (!adapter->vxlan_port_cnt || 3056 adapter->vxlan_port != ti->port) 3057 return; /* Invalid VxLAN destination port */ 3058 3059 adapter->vxlan_port_cnt--; 3060 if (adapter->vxlan_port_cnt) 3061 return; 3062 3063 adapter->vxlan_port = 0; 3064 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3065 break; 3066 case UDP_TUNNEL_TYPE_GENEVE: 3067 if (!adapter->geneve_port_cnt || 3068 adapter->geneve_port != ti->port) 3069 return; /* Invalid GENEVE destination port */ 3070 3071 adapter->geneve_port_cnt--; 3072 if (adapter->geneve_port_cnt) 3073 return; 3074 3075 adapter->geneve_port = 0; 3076 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3077 default: 3078 return; 3079 } 3080 3081 /* Matchall mac entries can be deleted only after all tunnel ports 3082 * are brought down or removed. 3083 */ 3084 if (!adapter->rawf_cnt) 3085 return; 3086 for_each_port(adapter, i) { 3087 pi = adap2pinfo(adapter, i); 3088 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3089 match_all_mac, match_all_mac, 3090 adapter->rawf_start + 3091 pi->port_id, 3092 1, pi->port_id, false); 3093 if (ret < 0) { 3094 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3095 i); 3096 return; 3097 } 3098 atomic_dec(&adapter->mps_encap[adapter->rawf_start + 3099 pi->port_id].refcnt); 3100 } 3101 } 3102 3103 static void cxgb_add_udp_tunnel(struct net_device *netdev, 3104 struct udp_tunnel_info *ti) 3105 { 3106 struct port_info *pi = netdev_priv(netdev); 3107 struct adapter *adapter = pi->adapter; 3108 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3109 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3110 int i, ret; 3111 3112 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt) 3113 return; 3114 3115 switch (ti->type) { 3116 case UDP_TUNNEL_TYPE_VXLAN: 3117 /* Callback for adding vxlan port can be called with the same 3118 * port for both IPv4 and IPv6. We should not disable the 3119 * offloading when the same port for both protocols is added 3120 * and later one of them is removed. 3121 */ 3122 if (adapter->vxlan_port_cnt && 3123 adapter->vxlan_port == ti->port) { 3124 adapter->vxlan_port_cnt++; 3125 return; 3126 } 3127 3128 /* We will support only one VxLAN port */ 3129 if (adapter->vxlan_port_cnt) { 3130 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3131 be16_to_cpu(adapter->vxlan_port), 3132 be16_to_cpu(ti->port)); 3133 return; 3134 } 3135 3136 adapter->vxlan_port = ti->port; 3137 adapter->vxlan_port_cnt = 1; 3138 3139 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3140 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3141 break; 3142 case UDP_TUNNEL_TYPE_GENEVE: 3143 if (adapter->geneve_port_cnt && 3144 adapter->geneve_port == ti->port) { 3145 adapter->geneve_port_cnt++; 3146 return; 3147 } 3148 3149 /* We will support only one GENEVE port */ 3150 if (adapter->geneve_port_cnt) { 3151 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3152 be16_to_cpu(adapter->geneve_port), 3153 be16_to_cpu(ti->port)); 3154 return; 3155 } 3156 3157 adapter->geneve_port = ti->port; 3158 adapter->geneve_port_cnt = 1; 3159 3160 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3161 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3162 default: 3163 return; 3164 } 3165 3166 /* Create a 'match all' mac filter entry for inner mac, 3167 * if raw mac interface is supported. Once the linux kernel provides 3168 * driver entry points for adding/deleting the inner mac addresses, 3169 * we will remove this 'match all' entry and fallback to adding 3170 * exact match filters. 3171 */ 3172 for_each_port(adapter, i) { 3173 pi = adap2pinfo(adapter, i); 3174 3175 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3176 match_all_mac, 3177 match_all_mac, 3178 adapter->rawf_start + 3179 pi->port_id, 3180 1, pi->port_id, false); 3181 if (ret < 0) { 3182 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3183 be16_to_cpu(ti->port)); 3184 cxgb_del_udp_tunnel(netdev, ti); 3185 return; 3186 } 3187 atomic_inc(&adapter->mps_encap[ret].refcnt); 3188 } 3189 } 3190 3191 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3192 struct net_device *dev, 3193 netdev_features_t features) 3194 { 3195 struct port_info *pi = netdev_priv(dev); 3196 struct adapter *adapter = pi->adapter; 3197 3198 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3199 return features; 3200 3201 /* Check if hw supports offload for this packet */ 3202 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3203 return features; 3204 3205 /* Offload is not supported for this encapsulated packet */ 3206 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3207 } 3208 3209 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3210 netdev_features_t features) 3211 { 3212 /* Disable GRO, if RX_CSUM is disabled */ 3213 if (!(features & NETIF_F_RXCSUM)) 3214 features &= ~NETIF_F_GRO; 3215 3216 return features; 3217 } 3218 3219 static const struct net_device_ops cxgb4_netdev_ops = { 3220 .ndo_open = cxgb_open, 3221 .ndo_stop = cxgb_close, 3222 .ndo_start_xmit = t4_start_xmit, 3223 .ndo_select_queue = cxgb_select_queue, 3224 .ndo_get_stats64 = cxgb_get_stats, 3225 .ndo_set_rx_mode = cxgb_set_rxmode, 3226 .ndo_set_mac_address = cxgb_set_mac_addr, 3227 .ndo_set_features = cxgb_set_features, 3228 .ndo_validate_addr = eth_validate_addr, 3229 .ndo_do_ioctl = cxgb_ioctl, 3230 .ndo_change_mtu = cxgb_change_mtu, 3231 #ifdef CONFIG_NET_POLL_CONTROLLER 3232 .ndo_poll_controller = cxgb_netpoll, 3233 #endif 3234 #ifdef CONFIG_CHELSIO_T4_FCOE 3235 .ndo_fcoe_enable = cxgb_fcoe_enable, 3236 .ndo_fcoe_disable = cxgb_fcoe_disable, 3237 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3238 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3239 .ndo_setup_tc = cxgb_setup_tc, 3240 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel, 3241 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel, 3242 .ndo_features_check = cxgb_features_check, 3243 .ndo_fix_features = cxgb_fix_features, 3244 }; 3245 3246 #ifdef CONFIG_PCI_IOV 3247 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3248 .ndo_open = cxgb4_mgmt_open, 3249 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3250 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3251 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3252 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3253 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3254 }; 3255 #endif 3256 3257 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3258 struct ethtool_drvinfo *info) 3259 { 3260 struct adapter *adapter = netdev2adap(dev); 3261 3262 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3263 strlcpy(info->version, cxgb4_driver_version, 3264 sizeof(info->version)); 3265 strlcpy(info->bus_info, pci_name(adapter->pdev), 3266 sizeof(info->bus_info)); 3267 } 3268 3269 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3270 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3271 }; 3272 3273 static void notify_fatal_err(struct work_struct *work) 3274 { 3275 struct adapter *adap; 3276 3277 adap = container_of(work, struct adapter, fatal_err_notify_task); 3278 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3279 } 3280 3281 void t4_fatal_err(struct adapter *adap) 3282 { 3283 int port; 3284 3285 if (pci_channel_offline(adap->pdev)) 3286 return; 3287 3288 /* Disable the SGE since ULDs are going to free resources that 3289 * could be exposed to the adapter. RDMA MWs for example... 3290 */ 3291 t4_shutdown_adapter(adap); 3292 for_each_port(adap, port) { 3293 struct net_device *dev = adap->port[port]; 3294 3295 /* If we get here in very early initialization the network 3296 * devices may not have been set up yet. 3297 */ 3298 if (!dev) 3299 continue; 3300 3301 netif_tx_stop_all_queues(dev); 3302 netif_carrier_off(dev); 3303 } 3304 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3305 queue_work(adap->workq, &adap->fatal_err_notify_task); 3306 } 3307 3308 static void setup_memwin(struct adapter *adap) 3309 { 3310 u32 nic_win_base = t4_get_util_window(adap); 3311 3312 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3313 } 3314 3315 static void setup_memwin_rdma(struct adapter *adap) 3316 { 3317 if (adap->vres.ocq.size) { 3318 u32 start; 3319 unsigned int sz_kb; 3320 3321 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3322 start &= PCI_BASE_ADDRESS_MEM_MASK; 3323 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3324 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3325 t4_write_reg(adap, 3326 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3327 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3328 t4_write_reg(adap, 3329 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3330 adap->vres.ocq.start); 3331 t4_read_reg(adap, 3332 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3333 } 3334 } 3335 3336 /* HMA Definitions */ 3337 3338 /* The maximum number of address that can be send in a single FW cmd */ 3339 #define HMA_MAX_ADDR_IN_CMD 5 3340 3341 #define HMA_PAGE_SIZE PAGE_SIZE 3342 3343 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3344 3345 #define HMA_PAGE_ORDER \ 3346 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3347 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3348 3349 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3350 * configuration(in units of MB). 3351 */ 3352 #define HMA_MIN_TOTAL_SIZE 1 3353 #define HMA_MAX_TOTAL_SIZE \ 3354 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3355 HMA_MAX_NO_FW_ADDRESS) >> 20) 3356 3357 static void adap_free_hma_mem(struct adapter *adapter) 3358 { 3359 struct scatterlist *iter; 3360 struct page *page; 3361 int i; 3362 3363 if (!adapter->hma.sgt) 3364 return; 3365 3366 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 3367 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 3368 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 3369 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 3370 } 3371 3372 for_each_sg(adapter->hma.sgt->sgl, iter, 3373 adapter->hma.sgt->orig_nents, i) { 3374 page = sg_page(iter); 3375 if (page) 3376 __free_pages(page, HMA_PAGE_ORDER); 3377 } 3378 3379 kfree(adapter->hma.phy_addr); 3380 sg_free_table(adapter->hma.sgt); 3381 kfree(adapter->hma.sgt); 3382 adapter->hma.sgt = NULL; 3383 } 3384 3385 static int adap_config_hma(struct adapter *adapter) 3386 { 3387 struct scatterlist *sgl, *iter; 3388 struct sg_table *sgt; 3389 struct page *newpage; 3390 unsigned int i, j, k; 3391 u32 param, hma_size; 3392 unsigned int ncmds; 3393 size_t page_size; 3394 u32 page_order; 3395 int node, ret; 3396 3397 /* HMA is supported only for T6+ cards. 3398 * Avoid initializing HMA in kdump kernels. 3399 */ 3400 if (is_kdump_kernel() || 3401 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3402 return 0; 3403 3404 /* Get the HMA region size required by fw */ 3405 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3406 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 3407 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3408 1, ¶m, &hma_size); 3409 /* An error means card has its own memory or HMA is not supported by 3410 * the firmware. Return without any errors. 3411 */ 3412 if (ret || !hma_size) 3413 return 0; 3414 3415 if (hma_size < HMA_MIN_TOTAL_SIZE || 3416 hma_size > HMA_MAX_TOTAL_SIZE) { 3417 dev_err(adapter->pdev_dev, 3418 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 3419 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 3420 return -EINVAL; 3421 } 3422 3423 page_size = HMA_PAGE_SIZE; 3424 page_order = HMA_PAGE_ORDER; 3425 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 3426 if (unlikely(!adapter->hma.sgt)) { 3427 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 3428 return -ENOMEM; 3429 } 3430 sgt = adapter->hma.sgt; 3431 /* FW returned value will be in MB's 3432 */ 3433 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 3434 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 3435 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 3436 kfree(adapter->hma.sgt); 3437 adapter->hma.sgt = NULL; 3438 return -ENOMEM; 3439 } 3440 3441 sgl = adapter->hma.sgt->sgl; 3442 node = dev_to_node(adapter->pdev_dev); 3443 for_each_sg(sgl, iter, sgt->orig_nents, i) { 3444 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 3445 __GFP_ZERO, page_order); 3446 if (!newpage) { 3447 dev_err(adapter->pdev_dev, 3448 "Not enough memory for HMA page allocation\n"); 3449 ret = -ENOMEM; 3450 goto free_hma; 3451 } 3452 sg_set_page(iter, newpage, page_size << page_order, 0); 3453 } 3454 3455 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 3456 DMA_BIDIRECTIONAL); 3457 if (!sgt->nents) { 3458 dev_err(adapter->pdev_dev, 3459 "Not enough memory for HMA DMA mapping"); 3460 ret = -ENOMEM; 3461 goto free_hma; 3462 } 3463 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 3464 3465 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 3466 GFP_KERNEL); 3467 if (unlikely(!adapter->hma.phy_addr)) 3468 goto free_hma; 3469 3470 for_each_sg(sgl, iter, sgt->nents, i) { 3471 newpage = sg_page(iter); 3472 adapter->hma.phy_addr[i] = sg_dma_address(iter); 3473 } 3474 3475 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 3476 /* Pass on the addresses to firmware */ 3477 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 3478 struct fw_hma_cmd hma_cmd; 3479 u8 naddr = HMA_MAX_ADDR_IN_CMD; 3480 u8 soc = 0, eoc = 0; 3481 u8 hma_mode = 1; /* Presently we support only Page table mode */ 3482 3483 soc = (i == 0) ? 1 : 0; 3484 eoc = (i == ncmds - 1) ? 1 : 0; 3485 3486 /* For last cmd, set naddr corresponding to remaining 3487 * addresses 3488 */ 3489 if (i == ncmds - 1) { 3490 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 3491 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 3492 } 3493 memset(&hma_cmd, 0, sizeof(hma_cmd)); 3494 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 3495 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3496 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 3497 3498 hma_cmd.mode_to_pcie_params = 3499 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 3500 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 3501 3502 /* HMA cmd size specified in MB's */ 3503 hma_cmd.naddr_size = 3504 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 3505 FW_HMA_CMD_NADDR_V(naddr)); 3506 3507 /* Total Page size specified in units of 4K */ 3508 hma_cmd.addr_size_pkd = 3509 htonl(FW_HMA_CMD_ADDR_SIZE_V 3510 ((page_size << page_order) >> 12)); 3511 3512 /* Fill the 5 addresses */ 3513 for (j = 0; j < naddr; j++) { 3514 hma_cmd.phy_address[j] = 3515 cpu_to_be64(adapter->hma.phy_addr[j + k]); 3516 } 3517 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 3518 sizeof(hma_cmd), &hma_cmd); 3519 if (ret) { 3520 dev_err(adapter->pdev_dev, 3521 "HMA FW command failed with err %d\n", ret); 3522 goto free_hma; 3523 } 3524 } 3525 3526 if (!ret) 3527 dev_info(adapter->pdev_dev, 3528 "Reserved %uMB host memory for HMA\n", hma_size); 3529 return ret; 3530 3531 free_hma: 3532 adap_free_hma_mem(adapter); 3533 return ret; 3534 } 3535 3536 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3537 { 3538 u32 v; 3539 int ret; 3540 3541 /* Now that we've successfully configured and initialized the adapter 3542 * can ask the Firmware what resources it has provisioned for us. 3543 */ 3544 ret = t4_get_pfres(adap); 3545 if (ret) { 3546 dev_err(adap->pdev_dev, 3547 "Unable to retrieve resource provisioning information\n"); 3548 return ret; 3549 } 3550 3551 /* get device capabilities */ 3552 memset(c, 0, sizeof(*c)); 3553 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3554 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3555 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3556 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3557 if (ret < 0) 3558 return ret; 3559 3560 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3561 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3562 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3563 if (ret < 0) 3564 return ret; 3565 3566 ret = t4_config_glbl_rss(adap, adap->pf, 3567 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3568 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3569 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3570 if (ret < 0) 3571 return ret; 3572 3573 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3574 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3575 FW_CMD_CAP_PF); 3576 if (ret < 0) 3577 return ret; 3578 3579 t4_sge_init(adap); 3580 3581 /* tweak some settings */ 3582 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3583 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3584 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3585 v = t4_read_reg(adap, TP_PIO_DATA_A); 3586 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3587 3588 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3589 adap->params.tp.tx_modq_map = 0xE4; 3590 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3591 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3592 3593 /* associate each Tx modulation queue with consecutive Tx channels */ 3594 v = 0x84218421; 3595 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3596 &v, 1, TP_TX_SCHED_HDR_A); 3597 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3598 &v, 1, TP_TX_SCHED_FIFO_A); 3599 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3600 &v, 1, TP_TX_SCHED_PCMD_A); 3601 3602 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3603 if (is_offload(adap)) { 3604 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3605 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3606 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3607 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3608 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3609 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3610 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3611 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3612 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3613 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3614 } 3615 3616 /* get basic stuff going */ 3617 return t4_early_init(adap, adap->pf); 3618 } 3619 3620 /* 3621 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3622 */ 3623 #define MAX_ATIDS 8192U 3624 3625 /* 3626 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3627 * 3628 * If the firmware we're dealing with has Configuration File support, then 3629 * we use that to perform all configuration 3630 */ 3631 3632 /* 3633 * Tweak configuration based on module parameters, etc. Most of these have 3634 * defaults assigned to them by Firmware Configuration Files (if we're using 3635 * them) but need to be explicitly set if we're using hard-coded 3636 * initialization. But even in the case of using Firmware Configuration 3637 * Files, we'd like to expose the ability to change these via module 3638 * parameters so these are essentially common tweaks/settings for 3639 * Configuration Files and hard-coded initialization ... 3640 */ 3641 static int adap_init0_tweaks(struct adapter *adapter) 3642 { 3643 /* 3644 * Fix up various Host-Dependent Parameters like Page Size, Cache 3645 * Line Size, etc. The firmware default is for a 4KB Page Size and 3646 * 64B Cache Line Size ... 3647 */ 3648 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3649 3650 /* 3651 * Process module parameters which affect early initialization. 3652 */ 3653 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3654 dev_err(&adapter->pdev->dev, 3655 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3656 rx_dma_offset); 3657 rx_dma_offset = 2; 3658 } 3659 t4_set_reg_field(adapter, SGE_CONTROL_A, 3660 PKTSHIFT_V(PKTSHIFT_M), 3661 PKTSHIFT_V(rx_dma_offset)); 3662 3663 /* 3664 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3665 * adds the pseudo header itself. 3666 */ 3667 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3668 CSUM_HAS_PSEUDO_HDR_F, 0); 3669 3670 return 0; 3671 } 3672 3673 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3674 * unto themselves and they contain their own firmware to perform their 3675 * tasks ... 3676 */ 3677 static int phy_aq1202_version(const u8 *phy_fw_data, 3678 size_t phy_fw_size) 3679 { 3680 int offset; 3681 3682 /* At offset 0x8 you're looking for the primary image's 3683 * starting offset which is 3 Bytes wide 3684 * 3685 * At offset 0xa of the primary image, you look for the offset 3686 * of the DRAM segment which is 3 Bytes wide. 3687 * 3688 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3689 * wide 3690 */ 3691 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3692 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3693 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3694 3695 offset = le24(phy_fw_data + 0x8) << 12; 3696 offset = le24(phy_fw_data + offset + 0xa); 3697 return be16(phy_fw_data + offset + 0x27e); 3698 3699 #undef be16 3700 #undef le16 3701 #undef le24 3702 } 3703 3704 static struct info_10gbt_phy_fw { 3705 unsigned int phy_fw_id; /* PCI Device ID */ 3706 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3707 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3708 int phy_flash; /* Has FLASH for PHY Firmware */ 3709 } phy_info_array[] = { 3710 { 3711 PHY_AQ1202_DEVICEID, 3712 PHY_AQ1202_FIRMWARE, 3713 phy_aq1202_version, 3714 1, 3715 }, 3716 { 3717 PHY_BCM84834_DEVICEID, 3718 PHY_BCM84834_FIRMWARE, 3719 NULL, 3720 0, 3721 }, 3722 { 0, NULL, NULL }, 3723 }; 3724 3725 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3726 { 3727 int i; 3728 3729 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3730 if (phy_info_array[i].phy_fw_id == devid) 3731 return &phy_info_array[i]; 3732 } 3733 return NULL; 3734 } 3735 3736 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3737 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3738 * we return a negative error number. If we transfer new firmware we return 1 3739 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3740 */ 3741 static int adap_init0_phy(struct adapter *adap) 3742 { 3743 const struct firmware *phyf; 3744 int ret; 3745 struct info_10gbt_phy_fw *phy_info; 3746 3747 /* Use the device ID to determine which PHY file to flash. 3748 */ 3749 phy_info = find_phy_info(adap->pdev->device); 3750 if (!phy_info) { 3751 dev_warn(adap->pdev_dev, 3752 "No PHY Firmware file found for this PHY\n"); 3753 return -EOPNOTSUPP; 3754 } 3755 3756 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3757 * use that. The adapter firmware provides us with a memory buffer 3758 * where we can load a PHY firmware file from the host if we want to 3759 * override the PHY firmware File in flash. 3760 */ 3761 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3762 adap->pdev_dev); 3763 if (ret < 0) { 3764 /* For adapters without FLASH attached to PHY for their 3765 * firmware, it's obviously a fatal error if we can't get the 3766 * firmware to the adapter. For adapters with PHY firmware 3767 * FLASH storage, it's worth a warning if we can't find the 3768 * PHY Firmware but we'll neuter the error ... 3769 */ 3770 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3771 "/lib/firmware/%s, error %d\n", 3772 phy_info->phy_fw_file, -ret); 3773 if (phy_info->phy_flash) { 3774 int cur_phy_fw_ver = 0; 3775 3776 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3777 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3778 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3779 ret = 0; 3780 } 3781 3782 return ret; 3783 } 3784 3785 /* Load PHY Firmware onto adapter. 3786 */ 3787 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3788 phy_info->phy_fw_version, 3789 (u8 *)phyf->data, phyf->size); 3790 if (ret < 0) 3791 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3792 -ret); 3793 else if (ret > 0) { 3794 int new_phy_fw_ver = 0; 3795 3796 if (phy_info->phy_fw_version) 3797 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3798 phyf->size); 3799 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3800 "Firmware /lib/firmware/%s, version %#x\n", 3801 phy_info->phy_fw_file, new_phy_fw_ver); 3802 } 3803 3804 release_firmware(phyf); 3805 3806 return ret; 3807 } 3808 3809 /* 3810 * Attempt to initialize the adapter via a Firmware Configuration File. 3811 */ 3812 static int adap_init0_config(struct adapter *adapter, int reset) 3813 { 3814 struct fw_caps_config_cmd caps_cmd; 3815 const struct firmware *cf; 3816 unsigned long mtype = 0, maddr = 0; 3817 u32 finiver, finicsum, cfcsum; 3818 int ret; 3819 int config_issued = 0; 3820 char *fw_config_file, fw_config_file_path[256]; 3821 char *config_name = NULL; 3822 3823 /* 3824 * Reset device if necessary. 3825 */ 3826 if (reset) { 3827 ret = t4_fw_reset(adapter, adapter->mbox, 3828 PIORSTMODE_F | PIORST_F); 3829 if (ret < 0) 3830 goto bye; 3831 } 3832 3833 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3834 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3835 * to be performed after any global adapter RESET above since some 3836 * PHYs only have local RAM copies of the PHY firmware. 3837 */ 3838 if (is_10gbt_device(adapter->pdev->device)) { 3839 ret = adap_init0_phy(adapter); 3840 if (ret < 0) 3841 goto bye; 3842 } 3843 /* 3844 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3845 * then use that. Otherwise, use the configuration file stored 3846 * in the adapter flash ... 3847 */ 3848 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3849 case CHELSIO_T4: 3850 fw_config_file = FW4_CFNAME; 3851 break; 3852 case CHELSIO_T5: 3853 fw_config_file = FW5_CFNAME; 3854 break; 3855 case CHELSIO_T6: 3856 fw_config_file = FW6_CFNAME; 3857 break; 3858 default: 3859 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3860 adapter->pdev->device); 3861 ret = -EINVAL; 3862 goto bye; 3863 } 3864 3865 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3866 if (ret < 0) { 3867 config_name = "On FLASH"; 3868 mtype = FW_MEMTYPE_CF_FLASH; 3869 maddr = t4_flash_cfg_addr(adapter); 3870 } else { 3871 u32 params[7], val[7]; 3872 3873 sprintf(fw_config_file_path, 3874 "/lib/firmware/%s", fw_config_file); 3875 config_name = fw_config_file_path; 3876 3877 if (cf->size >= FLASH_CFG_MAX_SIZE) 3878 ret = -ENOMEM; 3879 else { 3880 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3881 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3882 ret = t4_query_params(adapter, adapter->mbox, 3883 adapter->pf, 0, 1, params, val); 3884 if (ret == 0) { 3885 /* 3886 * For t4_memory_rw() below addresses and 3887 * sizes have to be in terms of multiples of 4 3888 * bytes. So, if the Configuration File isn't 3889 * a multiple of 4 bytes in length we'll have 3890 * to write that out separately since we can't 3891 * guarantee that the bytes following the 3892 * residual byte in the buffer returned by 3893 * request_firmware() are zeroed out ... 3894 */ 3895 size_t resid = cf->size & 0x3; 3896 size_t size = cf->size & ~0x3; 3897 __be32 *data = (__be32 *)cf->data; 3898 3899 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3900 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3901 3902 spin_lock(&adapter->win0_lock); 3903 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3904 size, data, T4_MEMORY_WRITE); 3905 if (ret == 0 && resid != 0) { 3906 union { 3907 __be32 word; 3908 char buf[4]; 3909 } last; 3910 int i; 3911 3912 last.word = data[size >> 2]; 3913 for (i = resid; i < 4; i++) 3914 last.buf[i] = 0; 3915 ret = t4_memory_rw(adapter, 0, mtype, 3916 maddr + size, 3917 4, &last.word, 3918 T4_MEMORY_WRITE); 3919 } 3920 spin_unlock(&adapter->win0_lock); 3921 } 3922 } 3923 3924 release_firmware(cf); 3925 if (ret) 3926 goto bye; 3927 } 3928 3929 /* 3930 * Issue a Capability Configuration command to the firmware to get it 3931 * to parse the Configuration File. We don't use t4_fw_config_file() 3932 * because we want the ability to modify various features after we've 3933 * processed the configuration file ... 3934 */ 3935 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3936 caps_cmd.op_to_write = 3937 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3938 FW_CMD_REQUEST_F | 3939 FW_CMD_READ_F); 3940 caps_cmd.cfvalid_to_len16 = 3941 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3942 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3943 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3944 FW_LEN16(caps_cmd)); 3945 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3946 &caps_cmd); 3947 3948 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3949 * Configuration File in FLASH), our last gasp effort is to use the 3950 * Firmware Configuration File which is embedded in the firmware. A 3951 * very few early versions of the firmware didn't have one embedded 3952 * but we can ignore those. 3953 */ 3954 if (ret == -ENOENT) { 3955 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3956 caps_cmd.op_to_write = 3957 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3958 FW_CMD_REQUEST_F | 3959 FW_CMD_READ_F); 3960 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3961 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3962 sizeof(caps_cmd), &caps_cmd); 3963 config_name = "Firmware Default"; 3964 } 3965 3966 config_issued = 1; 3967 if (ret < 0) 3968 goto bye; 3969 3970 finiver = ntohl(caps_cmd.finiver); 3971 finicsum = ntohl(caps_cmd.finicsum); 3972 cfcsum = ntohl(caps_cmd.cfcsum); 3973 if (finicsum != cfcsum) 3974 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3975 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3976 finicsum, cfcsum); 3977 3978 /* 3979 * And now tell the firmware to use the configuration we just loaded. 3980 */ 3981 caps_cmd.op_to_write = 3982 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3983 FW_CMD_REQUEST_F | 3984 FW_CMD_WRITE_F); 3985 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3986 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3987 NULL); 3988 if (ret < 0) 3989 goto bye; 3990 3991 /* 3992 * Tweak configuration based on system architecture, module 3993 * parameters, etc. 3994 */ 3995 ret = adap_init0_tweaks(adapter); 3996 if (ret < 0) 3997 goto bye; 3998 3999 /* We will proceed even if HMA init fails. */ 4000 ret = adap_config_hma(adapter); 4001 if (ret) 4002 dev_err(adapter->pdev_dev, 4003 "HMA configuration failed with error %d\n", ret); 4004 4005 /* 4006 * And finally tell the firmware to initialize itself using the 4007 * parameters from the Configuration File. 4008 */ 4009 ret = t4_fw_initialize(adapter, adapter->mbox); 4010 if (ret < 0) 4011 goto bye; 4012 4013 /* Emit Firmware Configuration File information and return 4014 * successfully. 4015 */ 4016 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4017 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4018 config_name, finiver, cfcsum); 4019 return 0; 4020 4021 /* 4022 * Something bad happened. Return the error ... (If the "error" 4023 * is that there's no Configuration File on the adapter we don't 4024 * want to issue a warning since this is fairly common.) 4025 */ 4026 bye: 4027 if (config_issued && ret != -ENOENT) 4028 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4029 config_name, -ret); 4030 return ret; 4031 } 4032 4033 static struct fw_info fw_info_array[] = { 4034 { 4035 .chip = CHELSIO_T4, 4036 .fs_name = FW4_CFNAME, 4037 .fw_mod_name = FW4_FNAME, 4038 .fw_hdr = { 4039 .chip = FW_HDR_CHIP_T4, 4040 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4041 .intfver_nic = FW_INTFVER(T4, NIC), 4042 .intfver_vnic = FW_INTFVER(T4, VNIC), 4043 .intfver_ri = FW_INTFVER(T4, RI), 4044 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4045 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4046 }, 4047 }, { 4048 .chip = CHELSIO_T5, 4049 .fs_name = FW5_CFNAME, 4050 .fw_mod_name = FW5_FNAME, 4051 .fw_hdr = { 4052 .chip = FW_HDR_CHIP_T5, 4053 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4054 .intfver_nic = FW_INTFVER(T5, NIC), 4055 .intfver_vnic = FW_INTFVER(T5, VNIC), 4056 .intfver_ri = FW_INTFVER(T5, RI), 4057 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4058 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4059 }, 4060 }, { 4061 .chip = CHELSIO_T6, 4062 .fs_name = FW6_CFNAME, 4063 .fw_mod_name = FW6_FNAME, 4064 .fw_hdr = { 4065 .chip = FW_HDR_CHIP_T6, 4066 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4067 .intfver_nic = FW_INTFVER(T6, NIC), 4068 .intfver_vnic = FW_INTFVER(T6, VNIC), 4069 .intfver_ofld = FW_INTFVER(T6, OFLD), 4070 .intfver_ri = FW_INTFVER(T6, RI), 4071 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4072 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4073 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4074 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4075 }, 4076 } 4077 4078 }; 4079 4080 static struct fw_info *find_fw_info(int chip) 4081 { 4082 int i; 4083 4084 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4085 if (fw_info_array[i].chip == chip) 4086 return &fw_info_array[i]; 4087 } 4088 return NULL; 4089 } 4090 4091 /* 4092 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4093 */ 4094 static int adap_init0(struct adapter *adap) 4095 { 4096 int ret; 4097 u32 v, port_vec; 4098 enum dev_state state; 4099 u32 params[7], val[7]; 4100 struct fw_caps_config_cmd caps_cmd; 4101 int reset = 1; 4102 4103 /* Grab Firmware Device Log parameters as early as possible so we have 4104 * access to it for debugging, etc. 4105 */ 4106 ret = t4_init_devlog_params(adap); 4107 if (ret < 0) 4108 return ret; 4109 4110 /* Contact FW, advertising Master capability */ 4111 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4112 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4113 if (ret < 0) { 4114 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4115 ret); 4116 return ret; 4117 } 4118 if (ret == adap->mbox) 4119 adap->flags |= MASTER_PF; 4120 4121 /* 4122 * If we're the Master PF Driver and the device is uninitialized, 4123 * then let's consider upgrading the firmware ... (We always want 4124 * to check the firmware version number in order to A. get it for 4125 * later reporting and B. to warn if the currently loaded firmware 4126 * is excessively mismatched relative to the driver.) 4127 */ 4128 4129 t4_get_version_info(adap); 4130 ret = t4_check_fw_version(adap); 4131 /* If firmware is too old (not supported by driver) force an update. */ 4132 if (ret) 4133 state = DEV_STATE_UNINIT; 4134 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 4135 struct fw_info *fw_info; 4136 struct fw_hdr *card_fw; 4137 const struct firmware *fw; 4138 const u8 *fw_data = NULL; 4139 unsigned int fw_size = 0; 4140 4141 /* This is the firmware whose headers the driver was compiled 4142 * against 4143 */ 4144 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4145 if (fw_info == NULL) { 4146 dev_err(adap->pdev_dev, 4147 "unable to get firmware info for chip %d.\n", 4148 CHELSIO_CHIP_VERSION(adap->params.chip)); 4149 return -EINVAL; 4150 } 4151 4152 /* allocate memory to read the header of the firmware on the 4153 * card 4154 */ 4155 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4156 if (!card_fw) { 4157 ret = -ENOMEM; 4158 goto bye; 4159 } 4160 4161 /* Get FW from from /lib/firmware/ */ 4162 ret = request_firmware(&fw, fw_info->fw_mod_name, 4163 adap->pdev_dev); 4164 if (ret < 0) { 4165 dev_err(adap->pdev_dev, 4166 "unable to load firmware image %s, error %d\n", 4167 fw_info->fw_mod_name, ret); 4168 } else { 4169 fw_data = fw->data; 4170 fw_size = fw->size; 4171 } 4172 4173 /* upgrade FW logic */ 4174 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4175 state, &reset); 4176 4177 /* Cleaning up */ 4178 release_firmware(fw); 4179 kvfree(card_fw); 4180 4181 if (ret < 0) 4182 goto bye; 4183 } 4184 4185 /* If the firmware is initialized already, emit a simply note to that 4186 * effect. Otherwise, it's time to try initializing the adapter. 4187 */ 4188 if (state == DEV_STATE_INIT) { 4189 ret = adap_config_hma(adap); 4190 if (ret) 4191 dev_err(adap->pdev_dev, 4192 "HMA configuration failed with error %d\n", 4193 ret); 4194 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4195 "Adapter already initialized\n", 4196 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 4197 } else { 4198 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4199 "Initializing adapter\n"); 4200 4201 /* Find out whether we're dealing with a version of the 4202 * firmware which has configuration file support. 4203 */ 4204 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4205 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4206 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4207 params, val); 4208 4209 /* If the firmware doesn't support Configuration Files, 4210 * return an error. 4211 */ 4212 if (ret < 0) { 4213 dev_err(adap->pdev_dev, "firmware doesn't support " 4214 "Firmware Configuration Files\n"); 4215 goto bye; 4216 } 4217 4218 /* The firmware provides us with a memory buffer where we can 4219 * load a Configuration File from the host if we want to 4220 * override the Configuration File in flash. 4221 */ 4222 ret = adap_init0_config(adap, reset); 4223 if (ret == -ENOENT) { 4224 dev_err(adap->pdev_dev, "no Configuration File " 4225 "present on adapter.\n"); 4226 goto bye; 4227 } 4228 if (ret < 0) { 4229 dev_err(adap->pdev_dev, "could not initialize " 4230 "adapter, error %d\n", -ret); 4231 goto bye; 4232 } 4233 } 4234 4235 /* Now that we've successfully configured and initialized the adapter 4236 * (or found it already initialized), we can ask the Firmware what 4237 * resources it has provisioned for us. 4238 */ 4239 ret = t4_get_pfres(adap); 4240 if (ret) { 4241 dev_err(adap->pdev_dev, 4242 "Unable to retrieve resource provisioning information\n"); 4243 goto bye; 4244 } 4245 4246 /* Grab VPD parameters. This should be done after we establish a 4247 * connection to the firmware since some of the VPD parameters 4248 * (notably the Core Clock frequency) are retrieved via requests to 4249 * the firmware. On the other hand, we need these fairly early on 4250 * so we do this right after getting ahold of the firmware. 4251 * 4252 * We need to do this after initializing the adapter because someone 4253 * could have FLASHed a new VPD which won't be read by the firmware 4254 * until we do the RESET ... 4255 */ 4256 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4257 if (ret < 0) 4258 goto bye; 4259 4260 /* Find out what ports are available to us. Note that we need to do 4261 * this before calling adap_init0_no_config() since it needs nports 4262 * and portvec ... 4263 */ 4264 v = 4265 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4266 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4267 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4268 if (ret < 0) 4269 goto bye; 4270 4271 adap->params.nports = hweight32(port_vec); 4272 adap->params.portvec = port_vec; 4273 4274 /* Give the SGE code a chance to pull in anything that it needs ... 4275 * Note that this must be called after we retrieve our VPD parameters 4276 * in order to know how to convert core ticks to seconds, etc. 4277 */ 4278 ret = t4_sge_init(adap); 4279 if (ret < 0) 4280 goto bye; 4281 4282 if (is_bypass_device(adap->pdev->device)) 4283 adap->params.bypass = 1; 4284 4285 /* 4286 * Grab some of our basic fundamental operating parameters. 4287 */ 4288 #define FW_PARAM_DEV(param) \ 4289 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 4290 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 4291 4292 #define FW_PARAM_PFVF(param) \ 4293 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 4294 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 4295 FW_PARAMS_PARAM_Y_V(0) | \ 4296 FW_PARAMS_PARAM_Z_V(0) 4297 4298 params[0] = FW_PARAM_PFVF(EQ_START); 4299 params[1] = FW_PARAM_PFVF(L2T_START); 4300 params[2] = FW_PARAM_PFVF(L2T_END); 4301 params[3] = FW_PARAM_PFVF(FILTER_START); 4302 params[4] = FW_PARAM_PFVF(FILTER_END); 4303 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4304 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4305 if (ret < 0) 4306 goto bye; 4307 adap->sge.egr_start = val[0]; 4308 adap->l2t_start = val[1]; 4309 adap->l2t_end = val[2]; 4310 adap->tids.ftid_base = val[3]; 4311 adap->tids.nftids = val[4] - val[3] + 1; 4312 adap->sge.ingr_start = val[5]; 4313 4314 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4315 /* Read the raw mps entries. In T6, the last 2 tcam entries 4316 * are reserved for raw mac addresses (rawf = 2, one per port). 4317 */ 4318 params[0] = FW_PARAM_PFVF(RAWF_START); 4319 params[1] = FW_PARAM_PFVF(RAWF_END); 4320 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4321 params, val); 4322 if (ret == 0) { 4323 adap->rawf_start = val[0]; 4324 adap->rawf_cnt = val[1] - val[0] + 1; 4325 } 4326 } 4327 4328 /* qids (ingress/egress) returned from firmware can be anywhere 4329 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 4330 * Hence driver needs to allocate memory for this range to 4331 * store the queue info. Get the highest IQFLINT/EQ index returned 4332 * in FW_EQ_*_CMD.alloc command. 4333 */ 4334 params[0] = FW_PARAM_PFVF(EQ_END); 4335 params[1] = FW_PARAM_PFVF(IQFLINT_END); 4336 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4337 if (ret < 0) 4338 goto bye; 4339 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 4340 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 4341 4342 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 4343 sizeof(*adap->sge.egr_map), GFP_KERNEL); 4344 if (!adap->sge.egr_map) { 4345 ret = -ENOMEM; 4346 goto bye; 4347 } 4348 4349 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 4350 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 4351 if (!adap->sge.ingr_map) { 4352 ret = -ENOMEM; 4353 goto bye; 4354 } 4355 4356 /* Allocate the memory for the vaious egress queue bitmaps 4357 * ie starving_fl, txq_maperr and blocked_fl. 4358 */ 4359 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4360 sizeof(long), GFP_KERNEL); 4361 if (!adap->sge.starving_fl) { 4362 ret = -ENOMEM; 4363 goto bye; 4364 } 4365 4366 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4367 sizeof(long), GFP_KERNEL); 4368 if (!adap->sge.txq_maperr) { 4369 ret = -ENOMEM; 4370 goto bye; 4371 } 4372 4373 #ifdef CONFIG_DEBUG_FS 4374 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4375 sizeof(long), GFP_KERNEL); 4376 if (!adap->sge.blocked_fl) { 4377 ret = -ENOMEM; 4378 goto bye; 4379 } 4380 #endif 4381 4382 params[0] = FW_PARAM_PFVF(CLIP_START); 4383 params[1] = FW_PARAM_PFVF(CLIP_END); 4384 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4385 if (ret < 0) 4386 goto bye; 4387 adap->clipt_start = val[0]; 4388 adap->clipt_end = val[1]; 4389 4390 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 4391 * Classes supported by the hardware/firmware so we hard code it here 4392 * for now. 4393 */ 4394 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 4395 4396 /* query params related to active filter region */ 4397 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 4398 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 4399 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4400 /* If Active filter size is set we enable establishing 4401 * offload connection through firmware work request 4402 */ 4403 if ((val[0] != val[1]) && (ret >= 0)) { 4404 adap->flags |= FW_OFLD_CONN; 4405 adap->tids.aftid_base = val[0]; 4406 adap->tids.aftid_end = val[1]; 4407 } 4408 4409 /* If we're running on newer firmware, let it know that we're 4410 * prepared to deal with encapsulated CPL messages. Older 4411 * firmware won't understand this and we'll just get 4412 * unencapsulated messages ... 4413 */ 4414 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4415 val[0] = 1; 4416 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4417 4418 /* 4419 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 4420 * capability. Earlier versions of the firmware didn't have the 4421 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 4422 * permission to use ULPTX MEMWRITE DSGL. 4423 */ 4424 if (is_t4(adap->params.chip)) { 4425 adap->params.ulptx_memwrite_dsgl = false; 4426 } else { 4427 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4428 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4429 1, params, val); 4430 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4431 } 4432 4433 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 4434 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4435 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4436 1, params, val); 4437 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 4438 4439 /* See if FW supports FW_FILTER2 work request */ 4440 if (is_t4(adap->params.chip)) { 4441 adap->params.filter2_wr_support = 0; 4442 } else { 4443 params[0] = FW_PARAM_DEV(FILTER2_WR); 4444 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4445 1, params, val); 4446 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 4447 } 4448 4449 /* 4450 * Get device capabilities so we can determine what resources we need 4451 * to manage. 4452 */ 4453 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4454 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4455 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4456 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4457 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4458 &caps_cmd); 4459 if (ret < 0) 4460 goto bye; 4461 4462 if (caps_cmd.ofldcaps || 4463 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) { 4464 /* query offload-related parameters */ 4465 params[0] = FW_PARAM_DEV(NTID); 4466 params[1] = FW_PARAM_PFVF(SERVER_START); 4467 params[2] = FW_PARAM_PFVF(SERVER_END); 4468 params[3] = FW_PARAM_PFVF(TDDP_START); 4469 params[4] = FW_PARAM_PFVF(TDDP_END); 4470 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4471 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4472 params, val); 4473 if (ret < 0) 4474 goto bye; 4475 adap->tids.ntids = val[0]; 4476 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4477 adap->tids.stid_base = val[1]; 4478 adap->tids.nstids = val[2] - val[1] + 1; 4479 /* 4480 * Setup server filter region. Divide the available filter 4481 * region into two parts. Regular filters get 1/3rd and server 4482 * filters get 2/3rd part. This is only enabled if workarond 4483 * path is enabled. 4484 * 1. For regular filters. 4485 * 2. Server filter: This are special filters which are used 4486 * to redirect SYN packets to offload queue. 4487 */ 4488 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 4489 adap->tids.sftid_base = adap->tids.ftid_base + 4490 DIV_ROUND_UP(adap->tids.nftids, 3); 4491 adap->tids.nsftids = adap->tids.nftids - 4492 DIV_ROUND_UP(adap->tids.nftids, 3); 4493 adap->tids.nftids = adap->tids.sftid_base - 4494 adap->tids.ftid_base; 4495 } 4496 adap->vres.ddp.start = val[3]; 4497 adap->vres.ddp.size = val[4] - val[3] + 1; 4498 adap->params.ofldq_wr_cred = val[5]; 4499 4500 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4501 ret = init_hash_filter(adap); 4502 if (ret < 0) 4503 goto bye; 4504 } else { 4505 adap->params.offload = 1; 4506 adap->num_ofld_uld += 1; 4507 } 4508 } 4509 if (caps_cmd.rdmacaps) { 4510 params[0] = FW_PARAM_PFVF(STAG_START); 4511 params[1] = FW_PARAM_PFVF(STAG_END); 4512 params[2] = FW_PARAM_PFVF(RQ_START); 4513 params[3] = FW_PARAM_PFVF(RQ_END); 4514 params[4] = FW_PARAM_PFVF(PBL_START); 4515 params[5] = FW_PARAM_PFVF(PBL_END); 4516 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4517 params, val); 4518 if (ret < 0) 4519 goto bye; 4520 adap->vres.stag.start = val[0]; 4521 adap->vres.stag.size = val[1] - val[0] + 1; 4522 adap->vres.rq.start = val[2]; 4523 adap->vres.rq.size = val[3] - val[2] + 1; 4524 adap->vres.pbl.start = val[4]; 4525 adap->vres.pbl.size = val[5] - val[4] + 1; 4526 4527 params[0] = FW_PARAM_PFVF(SRQ_START); 4528 params[1] = FW_PARAM_PFVF(SRQ_END); 4529 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4530 params, val); 4531 if (!ret) { 4532 adap->vres.srq.start = val[0]; 4533 adap->vres.srq.size = val[1] - val[0] + 1; 4534 } 4535 if (adap->vres.srq.size) { 4536 adap->srq = t4_init_srq(adap->vres.srq.size); 4537 if (!adap->srq) 4538 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 4539 } 4540 4541 params[0] = FW_PARAM_PFVF(SQRQ_START); 4542 params[1] = FW_PARAM_PFVF(SQRQ_END); 4543 params[2] = FW_PARAM_PFVF(CQ_START); 4544 params[3] = FW_PARAM_PFVF(CQ_END); 4545 params[4] = FW_PARAM_PFVF(OCQ_START); 4546 params[5] = FW_PARAM_PFVF(OCQ_END); 4547 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4548 val); 4549 if (ret < 0) 4550 goto bye; 4551 adap->vres.qp.start = val[0]; 4552 adap->vres.qp.size = val[1] - val[0] + 1; 4553 adap->vres.cq.start = val[2]; 4554 adap->vres.cq.size = val[3] - val[2] + 1; 4555 adap->vres.ocq.start = val[4]; 4556 adap->vres.ocq.size = val[5] - val[4] + 1; 4557 4558 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4559 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4560 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 4561 val); 4562 if (ret < 0) { 4563 adap->params.max_ordird_qp = 8; 4564 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 4565 ret = 0; 4566 } else { 4567 adap->params.max_ordird_qp = val[0]; 4568 adap->params.max_ird_adapter = val[1]; 4569 } 4570 dev_info(adap->pdev_dev, 4571 "max_ordird_qp %d max_ird_adapter %d\n", 4572 adap->params.max_ordird_qp, 4573 adap->params.max_ird_adapter); 4574 4575 /* Enable write_with_immediate if FW supports it */ 4576 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 4577 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4578 val); 4579 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 4580 4581 /* Enable write_cmpl if FW supports it */ 4582 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 4583 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4584 val); 4585 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 4586 adap->num_ofld_uld += 2; 4587 } 4588 if (caps_cmd.iscsicaps) { 4589 params[0] = FW_PARAM_PFVF(ISCSI_START); 4590 params[1] = FW_PARAM_PFVF(ISCSI_END); 4591 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4592 params, val); 4593 if (ret < 0) 4594 goto bye; 4595 adap->vres.iscsi.start = val[0]; 4596 adap->vres.iscsi.size = val[1] - val[0] + 1; 4597 /* LIO target and cxgb4i initiaitor */ 4598 adap->num_ofld_uld += 2; 4599 } 4600 if (caps_cmd.cryptocaps) { 4601 if (ntohs(caps_cmd.cryptocaps) & 4602 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 4603 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 4604 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4605 2, params, val); 4606 if (ret < 0) { 4607 if (ret != -EINVAL) 4608 goto bye; 4609 } else { 4610 adap->vres.ncrypto_fc = val[0]; 4611 } 4612 adap->num_ofld_uld += 1; 4613 } 4614 if (ntohs(caps_cmd.cryptocaps) & 4615 FW_CAPS_CONFIG_TLS_INLINE) { 4616 params[0] = FW_PARAM_PFVF(TLS_START); 4617 params[1] = FW_PARAM_PFVF(TLS_END); 4618 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4619 2, params, val); 4620 if (ret < 0) 4621 goto bye; 4622 adap->vres.key.start = val[0]; 4623 adap->vres.key.size = val[1] - val[0] + 1; 4624 adap->num_uld += 1; 4625 } 4626 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 4627 } 4628 #undef FW_PARAM_PFVF 4629 #undef FW_PARAM_DEV 4630 4631 /* The MTU/MSS Table is initialized by now, so load their values. If 4632 * we're initializing the adapter, then we'll make any modifications 4633 * we want to the MTU/MSS Table and also initialize the congestion 4634 * parameters. 4635 */ 4636 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4637 if (state != DEV_STATE_INIT) { 4638 int i; 4639 4640 /* The default MTU Table contains values 1492 and 1500. 4641 * However, for TCP, it's better to have two values which are 4642 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4643 * This allows us to have a TCP Data Payload which is a 4644 * multiple of 8 regardless of what combination of TCP Options 4645 * are in use (always a multiple of 4 bytes) which is 4646 * important for performance reasons. For instance, if no 4647 * options are in use, then we have a 20-byte IP header and a 4648 * 20-byte TCP header. In this case, a 1500-byte MSS would 4649 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4650 * which is not a multiple of 8. So using an MSS of 1488 in 4651 * this case results in a TCP Data Payload of 1448 bytes which 4652 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4653 * Stamps have been negotiated, then an MTU of 1500 bytes 4654 * results in a TCP Data Payload of 1448 bytes which, as 4655 * above, is a multiple of 8 bytes ... 4656 */ 4657 for (i = 0; i < NMTUS; i++) 4658 if (adap->params.mtus[i] == 1492) { 4659 adap->params.mtus[i] = 1488; 4660 break; 4661 } 4662 4663 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4664 adap->params.b_wnd); 4665 } 4666 t4_init_sge_params(adap); 4667 adap->flags |= FW_OK; 4668 t4_init_tp_params(adap, true); 4669 return 0; 4670 4671 /* 4672 * Something bad happened. If a command timed out or failed with EIO 4673 * FW does not operate within its spec or something catastrophic 4674 * happened to HW/FW, stop issuing commands. 4675 */ 4676 bye: 4677 adap_free_hma_mem(adap); 4678 kfree(adap->sge.egr_map); 4679 kfree(adap->sge.ingr_map); 4680 kfree(adap->sge.starving_fl); 4681 kfree(adap->sge.txq_maperr); 4682 #ifdef CONFIG_DEBUG_FS 4683 kfree(adap->sge.blocked_fl); 4684 #endif 4685 if (ret != -ETIMEDOUT && ret != -EIO) 4686 t4_fw_bye(adap, adap->mbox); 4687 return ret; 4688 } 4689 4690 /* EEH callbacks */ 4691 4692 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4693 pci_channel_state_t state) 4694 { 4695 int i; 4696 struct adapter *adap = pci_get_drvdata(pdev); 4697 4698 if (!adap) 4699 goto out; 4700 4701 rtnl_lock(); 4702 adap->flags &= ~FW_OK; 4703 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4704 spin_lock(&adap->stats_lock); 4705 for_each_port(adap, i) { 4706 struct net_device *dev = adap->port[i]; 4707 if (dev) { 4708 netif_device_detach(dev); 4709 netif_carrier_off(dev); 4710 } 4711 } 4712 spin_unlock(&adap->stats_lock); 4713 disable_interrupts(adap); 4714 if (adap->flags & FULL_INIT_DONE) 4715 cxgb_down(adap); 4716 rtnl_unlock(); 4717 if ((adap->flags & DEV_ENABLED)) { 4718 pci_disable_device(pdev); 4719 adap->flags &= ~DEV_ENABLED; 4720 } 4721 out: return state == pci_channel_io_perm_failure ? 4722 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4723 } 4724 4725 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4726 { 4727 int i, ret; 4728 struct fw_caps_config_cmd c; 4729 struct adapter *adap = pci_get_drvdata(pdev); 4730 4731 if (!adap) { 4732 pci_restore_state(pdev); 4733 pci_save_state(pdev); 4734 return PCI_ERS_RESULT_RECOVERED; 4735 } 4736 4737 if (!(adap->flags & DEV_ENABLED)) { 4738 if (pci_enable_device(pdev)) { 4739 dev_err(&pdev->dev, "Cannot reenable PCI " 4740 "device after reset\n"); 4741 return PCI_ERS_RESULT_DISCONNECT; 4742 } 4743 adap->flags |= DEV_ENABLED; 4744 } 4745 4746 pci_set_master(pdev); 4747 pci_restore_state(pdev); 4748 pci_save_state(pdev); 4749 pci_cleanup_aer_uncorrect_error_status(pdev); 4750 4751 if (t4_wait_dev_ready(adap->regs) < 0) 4752 return PCI_ERS_RESULT_DISCONNECT; 4753 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4754 return PCI_ERS_RESULT_DISCONNECT; 4755 adap->flags |= FW_OK; 4756 if (adap_init1(adap, &c)) 4757 return PCI_ERS_RESULT_DISCONNECT; 4758 4759 for_each_port(adap, i) { 4760 struct port_info *p = adap2pinfo(adap, i); 4761 4762 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 4763 NULL, NULL); 4764 if (ret < 0) 4765 return PCI_ERS_RESULT_DISCONNECT; 4766 p->viid = ret; 4767 p->xact_addr_filt = -1; 4768 } 4769 4770 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4771 adap->params.b_wnd); 4772 setup_memwin(adap); 4773 if (cxgb_up(adap)) 4774 return PCI_ERS_RESULT_DISCONNECT; 4775 return PCI_ERS_RESULT_RECOVERED; 4776 } 4777 4778 static void eeh_resume(struct pci_dev *pdev) 4779 { 4780 int i; 4781 struct adapter *adap = pci_get_drvdata(pdev); 4782 4783 if (!adap) 4784 return; 4785 4786 rtnl_lock(); 4787 for_each_port(adap, i) { 4788 struct net_device *dev = adap->port[i]; 4789 if (dev) { 4790 if (netif_running(dev)) { 4791 link_start(dev); 4792 cxgb_set_rxmode(dev); 4793 } 4794 netif_device_attach(dev); 4795 } 4796 } 4797 rtnl_unlock(); 4798 } 4799 4800 static const struct pci_error_handlers cxgb4_eeh = { 4801 .error_detected = eeh_err_detected, 4802 .slot_reset = eeh_slot_reset, 4803 .resume = eeh_resume, 4804 }; 4805 4806 /* Return true if the Link Configuration supports "High Speeds" (those greater 4807 * than 1Gb/s). 4808 */ 4809 static inline bool is_x_10g_port(const struct link_config *lc) 4810 { 4811 unsigned int speeds, high_speeds; 4812 4813 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 4814 high_speeds = speeds & 4815 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 4816 4817 return high_speeds != 0; 4818 } 4819 4820 /* 4821 * Perform default configuration of DMA queues depending on the number and type 4822 * of ports we found and the number of available CPUs. Most settings can be 4823 * modified by the admin prior to actual use. 4824 */ 4825 static int cfg_queues(struct adapter *adap) 4826 { 4827 struct sge *s = &adap->sge; 4828 int i, n10g = 0, qidx = 0; 4829 int niqflint, neq, avail_eth_qsets; 4830 int max_eth_qsets = 32; 4831 #ifndef CONFIG_CHELSIO_T4_DCB 4832 int q10g = 0; 4833 #endif 4834 4835 /* Reduce memory usage in kdump environment, disable all offload. 4836 */ 4837 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 4838 adap->params.offload = 0; 4839 adap->params.crypto = 0; 4840 } 4841 4842 /* Calculate the number of Ethernet Queue Sets available based on 4843 * resources provisioned for us. We always have an Asynchronous 4844 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 4845 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 4846 * Ingress Queue. Meanwhile, we need two Egress Queues for each 4847 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 4848 * 4849 * Note that we should also take into account all of the various 4850 * Offload Queues. But, in any situation where we're operating in 4851 * a Resource Constrained Provisioning environment, doing any Offload 4852 * at all is problematic ... 4853 */ 4854 niqflint = adap->params.pfres.niqflint - 1; 4855 if (!(adap->flags & USING_MSIX)) 4856 niqflint--; 4857 neq = adap->params.pfres.neq / 2; 4858 avail_eth_qsets = min(niqflint, neq); 4859 4860 if (avail_eth_qsets > max_eth_qsets) 4861 avail_eth_qsets = max_eth_qsets; 4862 4863 if (avail_eth_qsets < adap->params.nports) { 4864 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 4865 avail_eth_qsets, adap->params.nports); 4866 return -ENOMEM; 4867 } 4868 4869 /* Count the number of 10Gb/s or better ports */ 4870 for_each_port(adap, i) 4871 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4872 4873 #ifdef CONFIG_CHELSIO_T4_DCB 4874 /* For Data Center Bridging support we need to be able to support up 4875 * to 8 Traffic Priorities; each of which will be assigned to its 4876 * own TX Queue in order to prevent Head-Of-Line Blocking. 4877 */ 4878 if (adap->params.nports * 8 > avail_eth_qsets) { 4879 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 4880 avail_eth_qsets, adap->params.nports * 8); 4881 return -ENOMEM; 4882 } 4883 4884 for_each_port(adap, i) { 4885 struct port_info *pi = adap2pinfo(adap, i); 4886 4887 pi->first_qset = qidx; 4888 pi->nqsets = is_kdump_kernel() ? 1 : 8; 4889 qidx += pi->nqsets; 4890 } 4891 #else /* !CONFIG_CHELSIO_T4_DCB */ 4892 /* 4893 * We default to 1 queue per non-10G port and up to # of cores queues 4894 * per 10G port. 4895 */ 4896 if (n10g) 4897 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 4898 if (q10g > netif_get_num_default_rss_queues()) 4899 q10g = netif_get_num_default_rss_queues(); 4900 4901 if (is_kdump_kernel()) 4902 q10g = 1; 4903 4904 for_each_port(adap, i) { 4905 struct port_info *pi = adap2pinfo(adap, i); 4906 4907 pi->first_qset = qidx; 4908 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4909 qidx += pi->nqsets; 4910 } 4911 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4912 4913 s->ethqsets = qidx; 4914 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4915 4916 if (is_uld(adap)) { 4917 /* 4918 * For offload we use 1 queue/channel if all ports are up to 1G, 4919 * otherwise we divide all available queues amongst the channels 4920 * capped by the number of available cores. 4921 */ 4922 if (n10g) { 4923 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 4924 s->ofldqsets = roundup(i, adap->params.nports); 4925 } else { 4926 s->ofldqsets = adap->params.nports; 4927 } 4928 } 4929 4930 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4931 struct sge_eth_rxq *r = &s->ethrxq[i]; 4932 4933 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4934 r->fl.size = 72; 4935 } 4936 4937 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4938 s->ethtxq[i].q.size = 1024; 4939 4940 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4941 s->ctrlq[i].q.size = 512; 4942 4943 if (!is_t4(adap->params.chip)) 4944 s->ptptxq.q.size = 8; 4945 4946 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4947 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 4948 4949 return 0; 4950 } 4951 4952 /* 4953 * Reduce the number of Ethernet queues across all ports to at most n. 4954 * n provides at least one queue per port. 4955 */ 4956 static void reduce_ethqs(struct adapter *adap, int n) 4957 { 4958 int i; 4959 struct port_info *pi; 4960 4961 while (n < adap->sge.ethqsets) 4962 for_each_port(adap, i) { 4963 pi = adap2pinfo(adap, i); 4964 if (pi->nqsets > 1) { 4965 pi->nqsets--; 4966 adap->sge.ethqsets--; 4967 if (adap->sge.ethqsets <= n) 4968 break; 4969 } 4970 } 4971 4972 n = 0; 4973 for_each_port(adap, i) { 4974 pi = adap2pinfo(adap, i); 4975 pi->first_qset = n; 4976 n += pi->nqsets; 4977 } 4978 } 4979 4980 static int get_msix_info(struct adapter *adap) 4981 { 4982 struct uld_msix_info *msix_info; 4983 unsigned int max_ingq = 0; 4984 4985 if (is_offload(adap)) 4986 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 4987 if (is_pci_uld(adap)) 4988 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 4989 4990 if (!max_ingq) 4991 goto out; 4992 4993 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 4994 if (!msix_info) 4995 return -ENOMEM; 4996 4997 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 4998 sizeof(long), GFP_KERNEL); 4999 if (!adap->msix_bmap_ulds.msix_bmap) { 5000 kfree(msix_info); 5001 return -ENOMEM; 5002 } 5003 spin_lock_init(&adap->msix_bmap_ulds.lock); 5004 adap->msix_info_ulds = msix_info; 5005 out: 5006 return 0; 5007 } 5008 5009 static void free_msix_info(struct adapter *adap) 5010 { 5011 if (!(adap->num_uld && adap->num_ofld_uld)) 5012 return; 5013 5014 kfree(adap->msix_info_ulds); 5015 kfree(adap->msix_bmap_ulds.msix_bmap); 5016 } 5017 5018 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5019 #define EXTRA_VECS 2 5020 5021 static int enable_msix(struct adapter *adap) 5022 { 5023 int ofld_need = 0, uld_need = 0; 5024 int i, j, want, need, allocated; 5025 struct sge *s = &adap->sge; 5026 unsigned int nchan = adap->params.nports; 5027 struct msix_entry *entries; 5028 int max_ingq = MAX_INGQ; 5029 5030 if (is_pci_uld(adap)) 5031 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 5032 if (is_offload(adap)) 5033 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 5034 entries = kmalloc_array(max_ingq + 1, sizeof(*entries), 5035 GFP_KERNEL); 5036 if (!entries) 5037 return -ENOMEM; 5038 5039 /* map for msix */ 5040 if (get_msix_info(adap)) { 5041 adap->params.offload = 0; 5042 adap->params.crypto = 0; 5043 } 5044 5045 for (i = 0; i < max_ingq + 1; ++i) 5046 entries[i].entry = i; 5047 5048 want = s->max_ethqsets + EXTRA_VECS; 5049 if (is_offload(adap)) { 5050 want += adap->num_ofld_uld * s->ofldqsets; 5051 ofld_need = adap->num_ofld_uld * nchan; 5052 } 5053 if (is_pci_uld(adap)) { 5054 want += adap->num_uld * s->ofldqsets; 5055 uld_need = adap->num_uld * nchan; 5056 } 5057 #ifdef CONFIG_CHELSIO_T4_DCB 5058 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5059 * each port. 5060 */ 5061 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5062 #else 5063 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5064 #endif 5065 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5066 if (allocated < 0) { 5067 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 5068 " not using MSI-X\n"); 5069 kfree(entries); 5070 return allocated; 5071 } 5072 5073 /* Distribute available vectors to the various queue groups. 5074 * Every group gets its minimum requirement and NIC gets top 5075 * priority for leftovers. 5076 */ 5077 i = allocated - EXTRA_VECS - ofld_need - uld_need; 5078 if (i < s->max_ethqsets) { 5079 s->max_ethqsets = i; 5080 if (i < s->ethqsets) 5081 reduce_ethqs(adap, i); 5082 } 5083 if (is_uld(adap)) { 5084 if (allocated < want) 5085 s->nqs_per_uld = nchan; 5086 else 5087 s->nqs_per_uld = s->ofldqsets; 5088 } 5089 5090 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 5091 adap->msix_info[i].vec = entries[i].vector; 5092 if (is_uld(adap)) { 5093 for (j = 0 ; i < allocated; ++i, j++) { 5094 adap->msix_info_ulds[j].vec = entries[i].vector; 5095 adap->msix_info_ulds[j].idx = i; 5096 } 5097 adap->msix_bmap_ulds.mapsize = j; 5098 } 5099 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 5100 "nic %d per uld %d\n", 5101 allocated, s->max_ethqsets, s->nqs_per_uld); 5102 5103 kfree(entries); 5104 return 0; 5105 } 5106 5107 #undef EXTRA_VECS 5108 5109 static int init_rss(struct adapter *adap) 5110 { 5111 unsigned int i; 5112 int err; 5113 5114 err = t4_init_rss_mode(adap, adap->mbox); 5115 if (err) 5116 return err; 5117 5118 for_each_port(adap, i) { 5119 struct port_info *pi = adap2pinfo(adap, i); 5120 5121 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5122 if (!pi->rss) 5123 return -ENOMEM; 5124 } 5125 return 0; 5126 } 5127 5128 /* Dump basic information about the adapter */ 5129 static void print_adapter_info(struct adapter *adapter) 5130 { 5131 /* Hardware/Firmware/etc. Version/Revision IDs */ 5132 t4_dump_version_info(adapter); 5133 5134 /* Software/Hardware configuration */ 5135 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 5136 is_offload(adapter) ? "R" : "", 5137 ((adapter->flags & USING_MSIX) ? "MSI-X" : 5138 (adapter->flags & USING_MSI) ? "MSI" : ""), 5139 is_offload(adapter) ? "Offload" : "non-Offload"); 5140 } 5141 5142 static void print_port_info(const struct net_device *dev) 5143 { 5144 char buf[80]; 5145 char *bufp = buf; 5146 const char *spd = ""; 5147 const struct port_info *pi = netdev_priv(dev); 5148 const struct adapter *adap = pi->adapter; 5149 5150 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 5151 spd = " 2.5 GT/s"; 5152 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 5153 spd = " 5 GT/s"; 5154 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 5155 spd = " 8 GT/s"; 5156 5157 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 5158 bufp += sprintf(bufp, "100M/"); 5159 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 5160 bufp += sprintf(bufp, "1G/"); 5161 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 5162 bufp += sprintf(bufp, "10G/"); 5163 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 5164 bufp += sprintf(bufp, "25G/"); 5165 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 5166 bufp += sprintf(bufp, "40G/"); 5167 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 5168 bufp += sprintf(bufp, "50G/"); 5169 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 5170 bufp += sprintf(bufp, "100G/"); 5171 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 5172 bufp += sprintf(bufp, "200G/"); 5173 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 5174 bufp += sprintf(bufp, "400G/"); 5175 if (bufp != buf) 5176 --bufp; 5177 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 5178 5179 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 5180 dev->name, adap->params.vpd.id, adap->name, buf); 5181 } 5182 5183 /* 5184 * Free the following resources: 5185 * - memory used for tables 5186 * - MSI/MSI-X 5187 * - net devices 5188 * - resources FW is holding for us 5189 */ 5190 static void free_some_resources(struct adapter *adapter) 5191 { 5192 unsigned int i; 5193 5194 kvfree(adapter->mps_encap); 5195 kvfree(adapter->smt); 5196 kvfree(adapter->l2t); 5197 kvfree(adapter->srq); 5198 t4_cleanup_sched(adapter); 5199 kvfree(adapter->tids.tid_tab); 5200 cxgb4_cleanup_tc_flower(adapter); 5201 cxgb4_cleanup_tc_u32(adapter); 5202 kfree(adapter->sge.egr_map); 5203 kfree(adapter->sge.ingr_map); 5204 kfree(adapter->sge.starving_fl); 5205 kfree(adapter->sge.txq_maperr); 5206 #ifdef CONFIG_DEBUG_FS 5207 kfree(adapter->sge.blocked_fl); 5208 #endif 5209 disable_msi(adapter); 5210 5211 for_each_port(adapter, i) 5212 if (adapter->port[i]) { 5213 struct port_info *pi = adap2pinfo(adapter, i); 5214 5215 if (pi->viid != 0) 5216 t4_free_vi(adapter, adapter->mbox, adapter->pf, 5217 0, pi->viid); 5218 kfree(adap2pinfo(adapter, i)->rss); 5219 free_netdev(adapter->port[i]); 5220 } 5221 if (adapter->flags & FW_OK) 5222 t4_fw_bye(adapter, adapter->pf); 5223 } 5224 5225 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 5226 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5227 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5228 #define SEGMENT_SIZE 128 5229 5230 static int t4_get_chip_type(struct adapter *adap, int ver) 5231 { 5232 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 5233 5234 switch (ver) { 5235 case CHELSIO_T4: 5236 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 5237 case CHELSIO_T5: 5238 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 5239 case CHELSIO_T6: 5240 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 5241 default: 5242 break; 5243 } 5244 return -EINVAL; 5245 } 5246 5247 #ifdef CONFIG_PCI_IOV 5248 static void cxgb4_mgmt_setup(struct net_device *dev) 5249 { 5250 dev->type = ARPHRD_NONE; 5251 dev->mtu = 0; 5252 dev->hard_header_len = 0; 5253 dev->addr_len = 0; 5254 dev->tx_queue_len = 0; 5255 dev->flags |= IFF_NOARP; 5256 dev->priv_flags |= IFF_NO_QUEUE; 5257 5258 /* Initialize the device structure. */ 5259 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 5260 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 5261 } 5262 5263 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 5264 { 5265 struct adapter *adap = pci_get_drvdata(pdev); 5266 int err = 0; 5267 int current_vfs = pci_num_vf(pdev); 5268 u32 pcie_fw; 5269 5270 pcie_fw = readl(adap->regs + PCIE_FW_A); 5271 /* Check if fw is initialized */ 5272 if (!(pcie_fw & PCIE_FW_INIT_F)) { 5273 dev_warn(&pdev->dev, "Device not initialized\n"); 5274 return -EOPNOTSUPP; 5275 } 5276 5277 /* If any of the VF's is already assigned to Guest OS, then 5278 * SRIOV for the same cannot be modified 5279 */ 5280 if (current_vfs && pci_vfs_assigned(pdev)) { 5281 dev_err(&pdev->dev, 5282 "Cannot modify SR-IOV while VFs are assigned\n"); 5283 return current_vfs; 5284 } 5285 /* Note that the upper-level code ensures that we're never called with 5286 * a non-zero "num_vfs" when we already have VFs instantiated. But 5287 * it never hurts to code defensively. 5288 */ 5289 if (num_vfs != 0 && current_vfs != 0) 5290 return -EBUSY; 5291 5292 /* Nothing to do for no change. */ 5293 if (num_vfs == current_vfs) 5294 return num_vfs; 5295 5296 /* Disable SRIOV when zero is passed. */ 5297 if (!num_vfs) { 5298 pci_disable_sriov(pdev); 5299 /* free VF Management Interface */ 5300 unregister_netdev(adap->port[0]); 5301 free_netdev(adap->port[0]); 5302 adap->port[0] = NULL; 5303 5304 /* free VF resources */ 5305 adap->num_vfs = 0; 5306 kfree(adap->vfinfo); 5307 adap->vfinfo = NULL; 5308 return 0; 5309 } 5310 5311 if (!current_vfs) { 5312 struct fw_pfvf_cmd port_cmd, port_rpl; 5313 struct net_device *netdev; 5314 unsigned int pmask, port; 5315 struct pci_dev *pbridge; 5316 struct port_info *pi; 5317 char name[IFNAMSIZ]; 5318 u32 devcap2; 5319 u16 flags; 5320 int pos; 5321 5322 /* If we want to instantiate Virtual Functions, then our 5323 * parent bridge's PCI-E needs to support Alternative Routing 5324 * ID (ARI) because our VFs will show up at function offset 8 5325 * and above. 5326 */ 5327 pbridge = pdev->bus->self; 5328 pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP); 5329 pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags); 5330 pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2); 5331 5332 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 5333 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 5334 /* Our parent bridge does not support ARI so issue a 5335 * warning and skip instantiating the VFs. They 5336 * won't be reachable. 5337 */ 5338 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 5339 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 5340 PCI_FUNC(pbridge->devfn)); 5341 return -ENOTSUPP; 5342 } 5343 memset(&port_cmd, 0, sizeof(port_cmd)); 5344 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 5345 FW_CMD_REQUEST_F | 5346 FW_CMD_READ_F | 5347 FW_PFVF_CMD_PFN_V(adap->pf) | 5348 FW_PFVF_CMD_VFN_V(0)); 5349 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 5350 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 5351 &port_rpl); 5352 if (err) 5353 return err; 5354 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 5355 port = ffs(pmask) - 1; 5356 /* Allocate VF Management Interface. */ 5357 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 5358 adap->pf); 5359 netdev = alloc_netdev(sizeof(struct port_info), 5360 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 5361 if (!netdev) 5362 return -ENOMEM; 5363 5364 pi = netdev_priv(netdev); 5365 pi->adapter = adap; 5366 pi->lport = port; 5367 pi->tx_chan = port; 5368 SET_NETDEV_DEV(netdev, &pdev->dev); 5369 5370 adap->port[0] = netdev; 5371 pi->port_id = 0; 5372 5373 err = register_netdev(adap->port[0]); 5374 if (err) { 5375 pr_info("Unable to register VF mgmt netdev %s\n", name); 5376 free_netdev(adap->port[0]); 5377 adap->port[0] = NULL; 5378 return err; 5379 } 5380 /* Allocate and set up VF Information. */ 5381 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 5382 sizeof(struct vf_info), GFP_KERNEL); 5383 if (!adap->vfinfo) { 5384 unregister_netdev(adap->port[0]); 5385 free_netdev(adap->port[0]); 5386 adap->port[0] = NULL; 5387 return -ENOMEM; 5388 } 5389 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 5390 } 5391 /* Instantiate the requested number of VFs. */ 5392 err = pci_enable_sriov(pdev, num_vfs); 5393 if (err) { 5394 pr_info("Unable to instantiate %d VFs\n", num_vfs); 5395 if (!current_vfs) { 5396 unregister_netdev(adap->port[0]); 5397 free_netdev(adap->port[0]); 5398 adap->port[0] = NULL; 5399 kfree(adap->vfinfo); 5400 adap->vfinfo = NULL; 5401 } 5402 return err; 5403 } 5404 5405 adap->num_vfs = num_vfs; 5406 return num_vfs; 5407 } 5408 #endif /* CONFIG_PCI_IOV */ 5409 5410 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 5411 { 5412 struct net_device *netdev; 5413 struct adapter *adapter; 5414 static int adap_idx = 1; 5415 int s_qpp, qpp, num_seg; 5416 struct port_info *pi; 5417 bool highdma = false; 5418 enum chip_type chip; 5419 void __iomem *regs; 5420 int func, chip_ver; 5421 u16 device_id; 5422 int i, err; 5423 u32 whoami; 5424 5425 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 5426 5427 err = pci_request_regions(pdev, KBUILD_MODNAME); 5428 if (err) { 5429 /* Just info, some other driver may have claimed the device. */ 5430 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 5431 return err; 5432 } 5433 5434 err = pci_enable_device(pdev); 5435 if (err) { 5436 dev_err(&pdev->dev, "cannot enable PCI device\n"); 5437 goto out_release_regions; 5438 } 5439 5440 regs = pci_ioremap_bar(pdev, 0); 5441 if (!regs) { 5442 dev_err(&pdev->dev, "cannot map device registers\n"); 5443 err = -ENOMEM; 5444 goto out_disable_device; 5445 } 5446 5447 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5448 if (!adapter) { 5449 err = -ENOMEM; 5450 goto out_unmap_bar0; 5451 } 5452 5453 adapter->regs = regs; 5454 err = t4_wait_dev_ready(regs); 5455 if (err < 0) 5456 goto out_free_adapter; 5457 5458 /* We control everything through one PF */ 5459 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5460 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 5461 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 5462 if (chip < 0) { 5463 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 5464 err = chip; 5465 goto out_free_adapter; 5466 } 5467 chip_ver = CHELSIO_CHIP_VERSION(chip); 5468 func = chip_ver <= CHELSIO_T5 ? 5469 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5470 5471 adapter->pdev = pdev; 5472 adapter->pdev_dev = &pdev->dev; 5473 adapter->name = pci_name(pdev); 5474 adapter->mbox = func; 5475 adapter->pf = func; 5476 adapter->params.chip = chip; 5477 adapter->adap_idx = adap_idx; 5478 adapter->msg_enable = DFLT_MSG_ENABLE; 5479 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5480 (sizeof(struct mbox_cmd) * 5481 T4_OS_LOG_MBOX_CMDS), 5482 GFP_KERNEL); 5483 if (!adapter->mbox_log) { 5484 err = -ENOMEM; 5485 goto out_free_adapter; 5486 } 5487 spin_lock_init(&adapter->mbox_lock); 5488 INIT_LIST_HEAD(&adapter->mlist.list); 5489 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 5490 pci_set_drvdata(pdev, adapter); 5491 5492 if (func != ent->driver_data) { 5493 pci_disable_device(pdev); 5494 pci_save_state(pdev); /* to restore SR-IOV later */ 5495 return 0; 5496 } 5497 5498 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 5499 highdma = true; 5500 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 5501 if (err) { 5502 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 5503 "coherent allocations\n"); 5504 goto out_free_adapter; 5505 } 5506 } else { 5507 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 5508 if (err) { 5509 dev_err(&pdev->dev, "no usable DMA configuration\n"); 5510 goto out_free_adapter; 5511 } 5512 } 5513 5514 pci_enable_pcie_error_reporting(pdev); 5515 pci_set_master(pdev); 5516 pci_save_state(pdev); 5517 adap_idx++; 5518 adapter->workq = create_singlethread_workqueue("cxgb4"); 5519 if (!adapter->workq) { 5520 err = -ENOMEM; 5521 goto out_free_adapter; 5522 } 5523 5524 /* PCI device has been enabled */ 5525 adapter->flags |= DEV_ENABLED; 5526 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 5527 5528 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 5529 * Ingress Packet Data to Free List Buffers in order to allow for 5530 * chipset performance optimizations between the Root Complex and 5531 * Memory Controllers. (Messages to the associated Ingress Queue 5532 * notifying new Packet Placement in the Free Lists Buffers will be 5533 * send without the Relaxed Ordering Attribute thus guaranteeing that 5534 * all preceding PCIe Transaction Layer Packets will be processed 5535 * first.) But some Root Complexes have various issues with Upstream 5536 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 5537 * The PCIe devices which under the Root Complexes will be cleared the 5538 * Relaxed Ordering bit in the configuration space, So we check our 5539 * PCIe configuration space to see if it's flagged with advice against 5540 * using Relaxed Ordering. 5541 */ 5542 if (!pcie_relaxed_ordering_enabled(pdev)) 5543 adapter->flags |= ROOT_NO_RELAXED_ORDERING; 5544 5545 spin_lock_init(&adapter->stats_lock); 5546 spin_lock_init(&adapter->tid_release_lock); 5547 spin_lock_init(&adapter->win0_lock); 5548 5549 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 5550 INIT_WORK(&adapter->db_full_task, process_db_full); 5551 INIT_WORK(&adapter->db_drop_task, process_db_drop); 5552 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 5553 5554 err = t4_prep_adapter(adapter); 5555 if (err) 5556 goto out_free_adapter; 5557 5558 if (is_kdump_kernel()) { 5559 /* Collect hardware state and append to /proc/vmcore */ 5560 err = cxgb4_cudbg_vmcore_add_dump(adapter); 5561 if (err) { 5562 dev_warn(adapter->pdev_dev, 5563 "Fail collecting vmcore device dump, err: %d. Continuing\n", 5564 err); 5565 err = 0; 5566 } 5567 } 5568 5569 if (!is_t4(adapter->params.chip)) { 5570 s_qpp = (QUEUESPERPAGEPF0_S + 5571 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 5572 adapter->pf); 5573 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 5574 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 5575 num_seg = PAGE_SIZE / SEGMENT_SIZE; 5576 5577 /* Each segment size is 128B. Write coalescing is enabled only 5578 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 5579 * queue is less no of segments that can be accommodated in 5580 * a page size. 5581 */ 5582 if (qpp > num_seg) { 5583 dev_err(&pdev->dev, 5584 "Incorrect number of egress queues per page\n"); 5585 err = -EINVAL; 5586 goto out_free_adapter; 5587 } 5588 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 5589 pci_resource_len(pdev, 2)); 5590 if (!adapter->bar2) { 5591 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 5592 err = -ENOMEM; 5593 goto out_free_adapter; 5594 } 5595 } 5596 5597 setup_memwin(adapter); 5598 err = adap_init0(adapter); 5599 #ifdef CONFIG_DEBUG_FS 5600 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 5601 #endif 5602 setup_memwin_rdma(adapter); 5603 if (err) 5604 goto out_unmap_bar; 5605 5606 /* configure SGE_STAT_CFG_A to read WC stats */ 5607 if (!is_t4(adapter->params.chip)) 5608 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 5609 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 5610 T6_STATMODE_V(0))); 5611 5612 for_each_port(adapter, i) { 5613 netdev = alloc_etherdev_mq(sizeof(struct port_info), 5614 MAX_ETH_QSETS); 5615 if (!netdev) { 5616 err = -ENOMEM; 5617 goto out_free_dev; 5618 } 5619 5620 SET_NETDEV_DEV(netdev, &pdev->dev); 5621 5622 adapter->port[i] = netdev; 5623 pi = netdev_priv(netdev); 5624 pi->adapter = adapter; 5625 pi->xact_addr_filt = -1; 5626 pi->port_id = i; 5627 netdev->irq = pdev->irq; 5628 5629 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 5630 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5631 NETIF_F_RXCSUM | NETIF_F_RXHASH | 5632 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 5633 NETIF_F_HW_TC; 5634 5635 if (chip_ver > CHELSIO_T5) { 5636 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 5637 NETIF_F_IPV6_CSUM | 5638 NETIF_F_RXCSUM | 5639 NETIF_F_GSO_UDP_TUNNEL | 5640 NETIF_F_TSO | NETIF_F_TSO6; 5641 5642 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; 5643 } 5644 5645 if (highdma) 5646 netdev->hw_features |= NETIF_F_HIGHDMA; 5647 netdev->features |= netdev->hw_features; 5648 netdev->vlan_features = netdev->features & VLAN_FEAT; 5649 5650 netdev->priv_flags |= IFF_UNICAST_FLT; 5651 5652 /* MTU range: 81 - 9600 */ 5653 netdev->min_mtu = 81; /* accommodate SACK */ 5654 netdev->max_mtu = MAX_MTU; 5655 5656 netdev->netdev_ops = &cxgb4_netdev_ops; 5657 #ifdef CONFIG_CHELSIO_T4_DCB 5658 netdev->dcbnl_ops = &cxgb4_dcb_ops; 5659 cxgb4_dcb_state_init(netdev); 5660 #endif 5661 cxgb4_set_ethtool_ops(netdev); 5662 } 5663 5664 cxgb4_init_ethtool_dump(adapter); 5665 5666 pci_set_drvdata(pdev, adapter); 5667 5668 if (adapter->flags & FW_OK) { 5669 err = t4_port_init(adapter, func, func, 0); 5670 if (err) 5671 goto out_free_dev; 5672 } else if (adapter->params.nports == 1) { 5673 /* If we don't have a connection to the firmware -- possibly 5674 * because of an error -- grab the raw VPD parameters so we 5675 * can set the proper MAC Address on the debug network 5676 * interface that we've created. 5677 */ 5678 u8 hw_addr[ETH_ALEN]; 5679 u8 *na = adapter->params.vpd.na; 5680 5681 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 5682 if (!err) { 5683 for (i = 0; i < ETH_ALEN; i++) 5684 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 5685 hex2val(na[2 * i + 1])); 5686 t4_set_hw_addr(adapter, 0, hw_addr); 5687 } 5688 } 5689 5690 if (!(adapter->flags & FW_OK)) 5691 goto fw_attach_fail; 5692 5693 /* Configure queues and allocate tables now, they can be needed as 5694 * soon as the first register_netdev completes. 5695 */ 5696 err = cfg_queues(adapter); 5697 if (err) 5698 goto out_free_dev; 5699 5700 adapter->smt = t4_init_smt(); 5701 if (!adapter->smt) { 5702 /* We tolerate a lack of SMT, giving up some functionality */ 5703 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 5704 } 5705 5706 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 5707 if (!adapter->l2t) { 5708 /* We tolerate a lack of L2T, giving up some functionality */ 5709 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 5710 adapter->params.offload = 0; 5711 } 5712 5713 adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size, 5714 sizeof(struct mps_encap_entry), 5715 GFP_KERNEL); 5716 if (!adapter->mps_encap) 5717 dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n"); 5718 5719 #if IS_ENABLED(CONFIG_IPV6) 5720 if (chip_ver <= CHELSIO_T5 && 5721 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 5722 /* CLIP functionality is not present in hardware, 5723 * hence disable all offload features 5724 */ 5725 dev_warn(&pdev->dev, 5726 "CLIP not enabled in hardware, continuing\n"); 5727 adapter->params.offload = 0; 5728 } else { 5729 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 5730 adapter->clipt_end); 5731 if (!adapter->clipt) { 5732 /* We tolerate a lack of clip_table, giving up 5733 * some functionality 5734 */ 5735 dev_warn(&pdev->dev, 5736 "could not allocate Clip table, continuing\n"); 5737 adapter->params.offload = 0; 5738 } 5739 } 5740 #endif 5741 5742 for_each_port(adapter, i) { 5743 pi = adap2pinfo(adapter, i); 5744 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 5745 if (!pi->sched_tbl) 5746 dev_warn(&pdev->dev, 5747 "could not activate scheduling on port %d\n", 5748 i); 5749 } 5750 5751 if (tid_init(&adapter->tids) < 0) { 5752 dev_warn(&pdev->dev, "could not allocate TID table, " 5753 "continuing\n"); 5754 adapter->params.offload = 0; 5755 } else { 5756 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 5757 if (!adapter->tc_u32) 5758 dev_warn(&pdev->dev, 5759 "could not offload tc u32, continuing\n"); 5760 5761 if (cxgb4_init_tc_flower(adapter)) 5762 dev_warn(&pdev->dev, 5763 "could not offload tc flower, continuing\n"); 5764 } 5765 5766 if (is_offload(adapter) || is_hashfilter(adapter)) { 5767 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 5768 u32 hash_base, hash_reg; 5769 5770 if (chip_ver <= CHELSIO_T5) { 5771 hash_reg = LE_DB_TID_HASHBASE_A; 5772 hash_base = t4_read_reg(adapter, hash_reg); 5773 adapter->tids.hash_base = hash_base / 4; 5774 } else { 5775 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 5776 hash_base = t4_read_reg(adapter, hash_reg); 5777 adapter->tids.hash_base = hash_base; 5778 } 5779 } 5780 } 5781 5782 /* See what interrupts we'll be using */ 5783 if (msi > 1 && enable_msix(adapter) == 0) 5784 adapter->flags |= USING_MSIX; 5785 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 5786 adapter->flags |= USING_MSI; 5787 if (msi > 1) 5788 free_msix_info(adapter); 5789 } 5790 5791 /* check for PCI Express bandwidth capabiltites */ 5792 pcie_print_link_status(pdev); 5793 5794 err = init_rss(adapter); 5795 if (err) 5796 goto out_free_dev; 5797 5798 err = setup_fw_sge_queues(adapter); 5799 if (err) { 5800 dev_err(adapter->pdev_dev, 5801 "FW sge queue allocation failed, err %d", err); 5802 goto out_free_dev; 5803 } 5804 5805 fw_attach_fail: 5806 /* 5807 * The card is now ready to go. If any errors occur during device 5808 * registration we do not fail the whole card but rather proceed only 5809 * with the ports we manage to register successfully. However we must 5810 * register at least one net device. 5811 */ 5812 for_each_port(adapter, i) { 5813 pi = adap2pinfo(adapter, i); 5814 adapter->port[i]->dev_port = pi->lport; 5815 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 5816 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 5817 5818 netif_carrier_off(adapter->port[i]); 5819 5820 err = register_netdev(adapter->port[i]); 5821 if (err) 5822 break; 5823 adapter->chan_map[pi->tx_chan] = i; 5824 print_port_info(adapter->port[i]); 5825 } 5826 if (i == 0) { 5827 dev_err(&pdev->dev, "could not register any net devices\n"); 5828 goto out_free_dev; 5829 } 5830 if (err) { 5831 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 5832 err = 0; 5833 } 5834 5835 if (cxgb4_debugfs_root) { 5836 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 5837 cxgb4_debugfs_root); 5838 setup_debugfs(adapter); 5839 } 5840 5841 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 5842 pdev->needs_freset = 1; 5843 5844 if (is_uld(adapter)) { 5845 mutex_lock(&uld_mutex); 5846 list_add_tail(&adapter->list_node, &adapter_list); 5847 mutex_unlock(&uld_mutex); 5848 } 5849 5850 if (!is_t4(adapter->params.chip)) 5851 cxgb4_ptp_init(adapter); 5852 5853 print_adapter_info(adapter); 5854 return 0; 5855 5856 out_free_dev: 5857 t4_free_sge_resources(adapter); 5858 free_some_resources(adapter); 5859 if (adapter->flags & USING_MSIX) 5860 free_msix_info(adapter); 5861 if (adapter->num_uld || adapter->num_ofld_uld) 5862 t4_uld_mem_free(adapter); 5863 out_unmap_bar: 5864 if (!is_t4(adapter->params.chip)) 5865 iounmap(adapter->bar2); 5866 out_free_adapter: 5867 if (adapter->workq) 5868 destroy_workqueue(adapter->workq); 5869 5870 kfree(adapter->mbox_log); 5871 kfree(adapter); 5872 out_unmap_bar0: 5873 iounmap(regs); 5874 out_disable_device: 5875 pci_disable_pcie_error_reporting(pdev); 5876 pci_disable_device(pdev); 5877 out_release_regions: 5878 pci_release_regions(pdev); 5879 return err; 5880 } 5881 5882 static void remove_one(struct pci_dev *pdev) 5883 { 5884 struct adapter *adapter = pci_get_drvdata(pdev); 5885 5886 if (!adapter) { 5887 pci_release_regions(pdev); 5888 return; 5889 } 5890 5891 adapter->flags |= SHUTTING_DOWN; 5892 5893 if (adapter->pf == 4) { 5894 int i; 5895 5896 /* Tear down per-adapter Work Queue first since it can contain 5897 * references to our adapter data structure. 5898 */ 5899 destroy_workqueue(adapter->workq); 5900 5901 if (is_uld(adapter)) { 5902 detach_ulds(adapter); 5903 t4_uld_clean_up(adapter); 5904 } 5905 5906 adap_free_hma_mem(adapter); 5907 5908 disable_interrupts(adapter); 5909 5910 for_each_port(adapter, i) 5911 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5912 unregister_netdev(adapter->port[i]); 5913 5914 debugfs_remove_recursive(adapter->debugfs_root); 5915 5916 if (!is_t4(adapter->params.chip)) 5917 cxgb4_ptp_stop(adapter); 5918 5919 /* If we allocated filters, free up state associated with any 5920 * valid filters ... 5921 */ 5922 clear_all_filters(adapter); 5923 5924 if (adapter->flags & FULL_INIT_DONE) 5925 cxgb_down(adapter); 5926 5927 if (adapter->flags & USING_MSIX) 5928 free_msix_info(adapter); 5929 if (adapter->num_uld || adapter->num_ofld_uld) 5930 t4_uld_mem_free(adapter); 5931 free_some_resources(adapter); 5932 #if IS_ENABLED(CONFIG_IPV6) 5933 t4_cleanup_clip_tbl(adapter); 5934 #endif 5935 if (!is_t4(adapter->params.chip)) 5936 iounmap(adapter->bar2); 5937 } 5938 #ifdef CONFIG_PCI_IOV 5939 else { 5940 cxgb4_iov_configure(adapter->pdev, 0); 5941 } 5942 #endif 5943 iounmap(adapter->regs); 5944 pci_disable_pcie_error_reporting(pdev); 5945 if ((adapter->flags & DEV_ENABLED)) { 5946 pci_disable_device(pdev); 5947 adapter->flags &= ~DEV_ENABLED; 5948 } 5949 pci_release_regions(pdev); 5950 kfree(adapter->mbox_log); 5951 synchronize_rcu(); 5952 kfree(adapter); 5953 } 5954 5955 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 5956 * delivery. This is essentially a stripped down version of the PCI remove() 5957 * function where we do the minimal amount of work necessary to shutdown any 5958 * further activity. 5959 */ 5960 static void shutdown_one(struct pci_dev *pdev) 5961 { 5962 struct adapter *adapter = pci_get_drvdata(pdev); 5963 5964 /* As with remove_one() above (see extended comment), we only want do 5965 * do cleanup on PCI Devices which went all the way through init_one() 5966 * ... 5967 */ 5968 if (!adapter) { 5969 pci_release_regions(pdev); 5970 return; 5971 } 5972 5973 adapter->flags |= SHUTTING_DOWN; 5974 5975 if (adapter->pf == 4) { 5976 int i; 5977 5978 for_each_port(adapter, i) 5979 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5980 cxgb_close(adapter->port[i]); 5981 5982 if (is_uld(adapter)) { 5983 detach_ulds(adapter); 5984 t4_uld_clean_up(adapter); 5985 } 5986 5987 disable_interrupts(adapter); 5988 disable_msi(adapter); 5989 5990 t4_sge_stop(adapter); 5991 if (adapter->flags & FW_OK) 5992 t4_fw_bye(adapter, adapter->mbox); 5993 } 5994 } 5995 5996 static struct pci_driver cxgb4_driver = { 5997 .name = KBUILD_MODNAME, 5998 .id_table = cxgb4_pci_tbl, 5999 .probe = init_one, 6000 .remove = remove_one, 6001 .shutdown = shutdown_one, 6002 #ifdef CONFIG_PCI_IOV 6003 .sriov_configure = cxgb4_iov_configure, 6004 #endif 6005 .err_handler = &cxgb4_eeh, 6006 }; 6007 6008 static int __init cxgb4_init_module(void) 6009 { 6010 int ret; 6011 6012 /* Debugfs support is optional, just warn if this fails */ 6013 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6014 if (!cxgb4_debugfs_root) 6015 pr_warn("could not create debugfs entry, continuing\n"); 6016 6017 ret = pci_register_driver(&cxgb4_driver); 6018 if (ret < 0) 6019 debugfs_remove(cxgb4_debugfs_root); 6020 6021 #if IS_ENABLED(CONFIG_IPV6) 6022 if (!inet6addr_registered) { 6023 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6024 inet6addr_registered = true; 6025 } 6026 #endif 6027 6028 return ret; 6029 } 6030 6031 static void __exit cxgb4_cleanup_module(void) 6032 { 6033 #if IS_ENABLED(CONFIG_IPV6) 6034 if (inet6addr_registered) { 6035 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6036 inet6addr_registered = false; 6037 } 6038 #endif 6039 pci_unregister_driver(&cxgb4_driver); 6040 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6041 } 6042 6043 module_init(cxgb4_init_module); 6044 module_exit(cxgb4_cleanup_module); 6045