1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <asm/uaccess.h> 67 68 #include "cxgb4.h" 69 #include "t4_regs.h" 70 #include "t4_values.h" 71 #include "t4_msg.h" 72 #include "t4fw_api.h" 73 #include "t4fw_version.h" 74 #include "cxgb4_dcb.h" 75 #include "cxgb4_debugfs.h" 76 #include "clip_tbl.h" 77 #include "l2t.h" 78 79 char cxgb4_driver_name[] = KBUILD_MODNAME; 80 81 #ifdef DRV_VERSION 82 #undef DRV_VERSION 83 #endif 84 #define DRV_VERSION "2.0.0-ko" 85 const char cxgb4_driver_version[] = DRV_VERSION; 86 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 87 88 /* Host shadow copy of ingress filter entry. This is in host native format 89 * and doesn't match the ordering or bit order, etc. of the hardware of the 90 * firmware command. The use of bit-field structure elements is purely to 91 * remind ourselves of the field size limitations and save memory in the case 92 * where the filter table is large. 93 */ 94 struct filter_entry { 95 /* Administrative fields for filter. 96 */ 97 u32 valid:1; /* filter allocated and valid */ 98 u32 locked:1; /* filter is administratively locked */ 99 100 u32 pending:1; /* filter action is pending firmware reply */ 101 u32 smtidx:8; /* Source MAC Table index for smac */ 102 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ 103 104 /* The filter itself. Most of this is a straight copy of information 105 * provided by the extended ioctl(). Some fields are translated to 106 * internal forms -- for instance the Ingress Queue ID passed in from 107 * the ioctl() is translated into the Absolute Ingress Queue ID. 108 */ 109 struct ch_filter_specification fs; 110 }; 111 112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 113 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 114 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 115 116 /* Macros needed to support the PCI Device ID Table ... 117 */ 118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 119 static const struct pci_device_id cxgb4_pci_tbl[] = { 120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4 121 122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 123 * called for both. 124 */ 125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 126 127 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 128 {PCI_VDEVICE(CHELSIO, (devid)), 4} 129 130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 131 { 0, } \ 132 } 133 134 #include "t4_pci_id_tbl.h" 135 136 #define FW4_FNAME "cxgb4/t4fw.bin" 137 #define FW5_FNAME "cxgb4/t5fw.bin" 138 #define FW6_FNAME "cxgb4/t6fw.bin" 139 #define FW4_CFNAME "cxgb4/t4-config.txt" 140 #define FW5_CFNAME "cxgb4/t5-config.txt" 141 #define FW6_CFNAME "cxgb4/t6-config.txt" 142 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 143 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 144 #define PHY_AQ1202_DEVICEID 0x4409 145 #define PHY_BCM84834_DEVICEID 0x4486 146 147 MODULE_DESCRIPTION(DRV_DESC); 148 MODULE_AUTHOR("Chelsio Communications"); 149 MODULE_LICENSE("Dual BSD/GPL"); 150 MODULE_VERSION(DRV_VERSION); 151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 152 MODULE_FIRMWARE(FW4_FNAME); 153 MODULE_FIRMWARE(FW5_FNAME); 154 MODULE_FIRMWARE(FW6_FNAME); 155 156 /* 157 * Normally we're willing to become the firmware's Master PF but will be happy 158 * if another PF has already become the Master and initialized the adapter. 159 * Setting "force_init" will cause this driver to forcibly establish itself as 160 * the Master PF and initialize the adapter. 161 */ 162 static uint force_init; 163 164 module_param(force_init, uint, 0644); 165 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter"); 166 167 /* 168 * Normally if the firmware we connect to has Configuration File support, we 169 * use that and only fall back to the old Driver-based initialization if the 170 * Configuration File fails for some reason. If force_old_init is set, then 171 * we'll always use the old Driver-based initialization sequence. 172 */ 173 static uint force_old_init; 174 175 module_param(force_old_init, uint, 0644); 176 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated" 177 " parameter"); 178 179 static int dflt_msg_enable = DFLT_MSG_ENABLE; 180 181 module_param(dflt_msg_enable, int, 0644); 182 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap"); 183 184 /* 185 * The driver uses the best interrupt scheme available on a platform in the 186 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 187 * of these schemes the driver may consider as follows: 188 * 189 * msi = 2: choose from among all three options 190 * msi = 1: only consider MSI and INTx interrupts 191 * msi = 0: force INTx interrupts 192 */ 193 static int msi = 2; 194 195 module_param(msi, int, 0644); 196 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 197 198 /* 199 * Queue interrupt hold-off timer values. Queues default to the first of these 200 * upon creation. 201 */ 202 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 }; 203 204 module_param_array(intr_holdoff, uint, NULL, 0644); 205 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers " 206 "0..4 in microseconds, deprecated parameter"); 207 208 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 }; 209 210 module_param_array(intr_cnt, uint, NULL, 0644); 211 MODULE_PARM_DESC(intr_cnt, 212 "thresholds 1..3 for queue interrupt packet counters, " 213 "deprecated parameter"); 214 215 /* 216 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 217 * offset by 2 bytes in order to have the IP headers line up on 4-byte 218 * boundaries. This is a requirement for many architectures which will throw 219 * a machine check fault if an attempt is made to access one of the 4-byte IP 220 * header fields on a non-4-byte boundary. And it's a major performance issue 221 * even on some architectures which allow it like some implementations of the 222 * x86 ISA. However, some architectures don't mind this and for some very 223 * edge-case performance sensitive applications (like forwarding large volumes 224 * of small packets), setting this DMA offset to 0 will decrease the number of 225 * PCI-E Bus transfers enough to measurably affect performance. 226 */ 227 static int rx_dma_offset = 2; 228 229 static bool vf_acls; 230 231 #ifdef CONFIG_PCI_IOV 232 module_param(vf_acls, bool, 0644); 233 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, " 234 "deprecated parameter"); 235 236 /* Configure the number of PCI-E Virtual Function which are to be instantiated 237 * on SR-IOV Capable Physical Functions. 238 */ 239 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV]; 240 241 module_param_array(num_vf, uint, NULL, 0644); 242 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3"); 243 #endif 244 245 /* TX Queue select used to determine what algorithm to use for selecting TX 246 * queue. Select between the kernel provided function (select_queue=0) or user 247 * cxgb_select_queue function (select_queue=1) 248 * 249 * Default: select_queue=0 250 */ 251 static int select_queue; 252 module_param(select_queue, int, 0644); 253 MODULE_PARM_DESC(select_queue, 254 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 255 256 static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC; 257 258 module_param(tp_vlan_pri_map, uint, 0644); 259 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, " 260 "deprecated parameter"); 261 262 static struct dentry *cxgb4_debugfs_root; 263 264 static LIST_HEAD(adapter_list); 265 static DEFINE_MUTEX(uld_mutex); 266 /* Adapter list to be accessed from atomic context */ 267 static LIST_HEAD(adap_rcu_list); 268 static DEFINE_SPINLOCK(adap_rcu_lock); 269 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX]; 270 static const char *uld_str[] = { "RDMA", "iSCSI" }; 271 272 static void link_report(struct net_device *dev) 273 { 274 if (!netif_carrier_ok(dev)) 275 netdev_info(dev, "link down\n"); 276 else { 277 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 278 279 const char *s; 280 const struct port_info *p = netdev_priv(dev); 281 282 switch (p->link_cfg.speed) { 283 case 10000: 284 s = "10Gbps"; 285 break; 286 case 1000: 287 s = "1000Mbps"; 288 break; 289 case 100: 290 s = "100Mbps"; 291 break; 292 case 40000: 293 s = "40Gbps"; 294 break; 295 default: 296 pr_info("%s: unsupported speed: %d\n", 297 dev->name, p->link_cfg.speed); 298 return; 299 } 300 301 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 302 fc[p->link_cfg.fc]); 303 } 304 } 305 306 #ifdef CONFIG_CHELSIO_T4_DCB 307 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 308 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 309 { 310 struct port_info *pi = netdev_priv(dev); 311 struct adapter *adap = pi->adapter; 312 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 313 int i; 314 315 /* We use a simple mapping of Port TX Queue Index to DCB 316 * Priority when we're enabling DCB. 317 */ 318 for (i = 0; i < pi->nqsets; i++, txq++) { 319 u32 name, value; 320 int err; 321 322 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 323 FW_PARAMS_PARAM_X_V( 324 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 325 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 326 value = enable ? i : 0xffffffff; 327 328 /* Since we can be called while atomic (from "interrupt 329 * level") we need to issue the Set Parameters Commannd 330 * without sleeping (timeout < 0). 331 */ 332 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 333 &name, &value, 334 -FW_CMD_MAX_TIMEOUT); 335 336 if (err) 337 dev_err(adap->pdev_dev, 338 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 339 enable ? "set" : "unset", pi->port_id, i, -err); 340 else 341 txq->dcb_prio = value; 342 } 343 } 344 #endif /* CONFIG_CHELSIO_T4_DCB */ 345 346 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 347 { 348 struct net_device *dev = adapter->port[port_id]; 349 350 /* Skip changes from disabled ports. */ 351 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 352 if (link_stat) 353 netif_carrier_on(dev); 354 else { 355 #ifdef CONFIG_CHELSIO_T4_DCB 356 cxgb4_dcb_state_init(dev); 357 dcb_tx_queue_prio_enable(dev, false); 358 #endif /* CONFIG_CHELSIO_T4_DCB */ 359 netif_carrier_off(dev); 360 } 361 362 link_report(dev); 363 } 364 } 365 366 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 367 { 368 static const char *mod_str[] = { 369 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 370 }; 371 372 const struct net_device *dev = adap->port[port_id]; 373 const struct port_info *pi = netdev_priv(dev); 374 375 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 376 netdev_info(dev, "port module unplugged\n"); 377 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 378 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 379 } 380 381 /* 382 * Configure the exact and hash address filters to handle a port's multicast 383 * and secondary unicast MAC addresses. 384 */ 385 static int set_addr_filters(const struct net_device *dev, bool sleep) 386 { 387 u64 mhash = 0; 388 u64 uhash = 0; 389 bool free = true; 390 u16 filt_idx[7]; 391 const u8 *addr[7]; 392 int ret, naddr = 0; 393 const struct netdev_hw_addr *ha; 394 int uc_cnt = netdev_uc_count(dev); 395 int mc_cnt = netdev_mc_count(dev); 396 const struct port_info *pi = netdev_priv(dev); 397 unsigned int mb = pi->adapter->pf; 398 399 /* first do the secondary unicast addresses */ 400 netdev_for_each_uc_addr(ha, dev) { 401 addr[naddr++] = ha->addr; 402 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 403 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 404 naddr, addr, filt_idx, &uhash, sleep); 405 if (ret < 0) 406 return ret; 407 408 free = false; 409 naddr = 0; 410 } 411 } 412 413 /* next set up the multicast addresses */ 414 netdev_for_each_mc_addr(ha, dev) { 415 addr[naddr++] = ha->addr; 416 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 417 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 418 naddr, addr, filt_idx, &mhash, sleep); 419 if (ret < 0) 420 return ret; 421 422 free = false; 423 naddr = 0; 424 } 425 } 426 427 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0, 428 uhash | mhash, sleep); 429 } 430 431 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 432 module_param(dbfifo_int_thresh, int, 0644); 433 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 434 435 /* 436 * usecs to sleep while draining the dbfifo 437 */ 438 static int dbfifo_drain_delay = 1000; 439 module_param(dbfifo_drain_delay, int, 0644); 440 MODULE_PARM_DESC(dbfifo_drain_delay, 441 "usecs to sleep while draining the dbfifo"); 442 443 /* 444 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 445 * If @mtu is -1 it is left unchanged. 446 */ 447 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 448 { 449 int ret; 450 struct port_info *pi = netdev_priv(dev); 451 452 ret = set_addr_filters(dev, sleep_ok); 453 if (ret == 0) 454 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu, 455 (dev->flags & IFF_PROMISC) ? 1 : 0, 456 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 457 sleep_ok); 458 return ret; 459 } 460 461 /** 462 * link_start - enable a port 463 * @dev: the port to enable 464 * 465 * Performs the MAC and PHY actions needed to enable a port. 466 */ 467 static int link_start(struct net_device *dev) 468 { 469 int ret; 470 struct port_info *pi = netdev_priv(dev); 471 unsigned int mb = pi->adapter->pf; 472 473 /* 474 * We do not set address filters and promiscuity here, the stack does 475 * that step explicitly. 476 */ 477 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 478 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 479 if (ret == 0) { 480 ret = t4_change_mac(pi->adapter, mb, pi->viid, 481 pi->xact_addr_filt, dev->dev_addr, true, 482 true); 483 if (ret >= 0) { 484 pi->xact_addr_filt = ret; 485 ret = 0; 486 } 487 } 488 if (ret == 0) 489 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 490 &pi->link_cfg); 491 if (ret == 0) { 492 local_bh_disable(); 493 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true, 494 true, CXGB4_DCB_ENABLED); 495 local_bh_enable(); 496 } 497 498 return ret; 499 } 500 501 int cxgb4_dcb_enabled(const struct net_device *dev) 502 { 503 #ifdef CONFIG_CHELSIO_T4_DCB 504 struct port_info *pi = netdev_priv(dev); 505 506 if (!pi->dcb.enabled) 507 return 0; 508 509 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 510 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 511 #else 512 return 0; 513 #endif 514 } 515 EXPORT_SYMBOL(cxgb4_dcb_enabled); 516 517 #ifdef CONFIG_CHELSIO_T4_DCB 518 /* Handle a Data Center Bridging update message from the firmware. */ 519 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 520 { 521 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 522 struct net_device *dev = adap->port[port]; 523 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 524 int new_dcb_enabled; 525 526 cxgb4_dcb_handle_fw_update(adap, pcmd); 527 new_dcb_enabled = cxgb4_dcb_enabled(dev); 528 529 /* If the DCB has become enabled or disabled on the port then we're 530 * going to need to set up/tear down DCB Priority parameters for the 531 * TX Queues associated with the port. 532 */ 533 if (new_dcb_enabled != old_dcb_enabled) 534 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 535 } 536 #endif /* CONFIG_CHELSIO_T4_DCB */ 537 538 /* Clear a filter and release any of its resources that we own. This also 539 * clears the filter's "pending" status. 540 */ 541 static void clear_filter(struct adapter *adap, struct filter_entry *f) 542 { 543 /* If the new or old filter have loopback rewriteing rules then we'll 544 * need to free any existing Layer Two Table (L2T) entries of the old 545 * filter rule. The firmware will handle freeing up any Source MAC 546 * Table (SMT) entries used for rewriting Source MAC Addresses in 547 * loopback rules. 548 */ 549 if (f->l2t) 550 cxgb4_l2t_release(f->l2t); 551 552 /* The zeroing of the filter rule below clears the filter valid, 553 * pending, locked flags, l2t pointer, etc. so it's all we need for 554 * this operation. 555 */ 556 memset(f, 0, sizeof(*f)); 557 } 558 559 /* Handle a filter write/deletion reply. 560 */ 561 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl) 562 { 563 unsigned int idx = GET_TID(rpl); 564 unsigned int nidx = idx - adap->tids.ftid_base; 565 unsigned int ret; 566 struct filter_entry *f; 567 568 if (idx >= adap->tids.ftid_base && nidx < 569 (adap->tids.nftids + adap->tids.nsftids)) { 570 idx = nidx; 571 ret = TCB_COOKIE_G(rpl->cookie); 572 f = &adap->tids.ftid_tab[idx]; 573 574 if (ret == FW_FILTER_WR_FLT_DELETED) { 575 /* Clear the filter when we get confirmation from the 576 * hardware that the filter has been deleted. 577 */ 578 clear_filter(adap, f); 579 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) { 580 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n", 581 idx); 582 clear_filter(adap, f); 583 } else if (ret == FW_FILTER_WR_FLT_ADDED) { 584 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff; 585 f->pending = 0; /* asynchronous setup completed */ 586 f->valid = 1; 587 } else { 588 /* Something went wrong. Issue a warning about the 589 * problem and clear everything out. 590 */ 591 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n", 592 idx, ret); 593 clear_filter(adap, f); 594 } 595 } 596 } 597 598 /* Response queue handler for the FW event queue. 599 */ 600 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 601 const struct pkt_gl *gl) 602 { 603 u8 opcode = ((const struct rss_header *)rsp)->opcode; 604 605 rsp++; /* skip RSS header */ 606 607 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 608 */ 609 if (unlikely(opcode == CPL_FW4_MSG && 610 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 611 rsp++; 612 opcode = ((const struct rss_header *)rsp)->opcode; 613 rsp++; 614 if (opcode != CPL_SGE_EGR_UPDATE) { 615 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 616 , opcode); 617 goto out; 618 } 619 } 620 621 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 622 const struct cpl_sge_egr_update *p = (void *)rsp; 623 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 624 struct sge_txq *txq; 625 626 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 627 txq->restarts++; 628 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) { 629 struct sge_eth_txq *eq; 630 631 eq = container_of(txq, struct sge_eth_txq, q); 632 netif_tx_wake_queue(eq->txq); 633 } else { 634 struct sge_ofld_txq *oq; 635 636 oq = container_of(txq, struct sge_ofld_txq, q); 637 tasklet_schedule(&oq->qresume_tsk); 638 } 639 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 640 const struct cpl_fw6_msg *p = (void *)rsp; 641 642 #ifdef CONFIG_CHELSIO_T4_DCB 643 const struct fw_port_cmd *pcmd = (const void *)p->data; 644 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 645 unsigned int action = 646 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 647 648 if (cmd == FW_PORT_CMD && 649 action == FW_PORT_ACTION_GET_PORT_INFO) { 650 int port = FW_PORT_CMD_PORTID_G( 651 be32_to_cpu(pcmd->op_to_portid)); 652 struct net_device *dev = q->adap->port[port]; 653 int state_input = ((pcmd->u.info.dcbxdis_pkd & 654 FW_PORT_CMD_DCBXDIS_F) 655 ? CXGB4_DCB_INPUT_FW_DISABLED 656 : CXGB4_DCB_INPUT_FW_ENABLED); 657 658 cxgb4_dcb_state_fsm(dev, state_input); 659 } 660 661 if (cmd == FW_PORT_CMD && 662 action == FW_PORT_ACTION_L2_DCB_CFG) 663 dcb_rpl(q->adap, pcmd); 664 else 665 #endif 666 if (p->type == 0) 667 t4_handle_fw_rpl(q->adap, p->data); 668 } else if (opcode == CPL_L2T_WRITE_RPL) { 669 const struct cpl_l2t_write_rpl *p = (void *)rsp; 670 671 do_l2t_write_rpl(q->adap, p); 672 } else if (opcode == CPL_SET_TCB_RPL) { 673 const struct cpl_set_tcb_rpl *p = (void *)rsp; 674 675 filter_rpl(q->adap, p); 676 } else 677 dev_err(q->adap->pdev_dev, 678 "unexpected CPL %#x on FW event queue\n", opcode); 679 out: 680 return 0; 681 } 682 683 /** 684 * uldrx_handler - response queue handler for ULD queues 685 * @q: the response queue that received the packet 686 * @rsp: the response queue descriptor holding the offload message 687 * @gl: the gather list of packet fragments 688 * 689 * Deliver an ingress offload packet to a ULD. All processing is done by 690 * the ULD, we just maintain statistics. 691 */ 692 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp, 693 const struct pkt_gl *gl) 694 { 695 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq); 696 697 /* FW can send CPLs encapsulated in a CPL_FW4_MSG. 698 */ 699 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG && 700 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL) 701 rsp += 2; 702 703 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) { 704 rxq->stats.nomem++; 705 return -1; 706 } 707 if (gl == NULL) 708 rxq->stats.imm++; 709 else if (gl == CXGB4_MSG_AN) 710 rxq->stats.an++; 711 else 712 rxq->stats.pkts++; 713 return 0; 714 } 715 716 static void disable_msi(struct adapter *adapter) 717 { 718 if (adapter->flags & USING_MSIX) { 719 pci_disable_msix(adapter->pdev); 720 adapter->flags &= ~USING_MSIX; 721 } else if (adapter->flags & USING_MSI) { 722 pci_disable_msi(adapter->pdev); 723 adapter->flags &= ~USING_MSI; 724 } 725 } 726 727 /* 728 * Interrupt handler for non-data events used with MSI-X. 729 */ 730 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 731 { 732 struct adapter *adap = cookie; 733 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 734 735 if (v & PFSW_F) { 736 adap->swintr = 1; 737 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 738 } 739 if (adap->flags & MASTER_PF) 740 t4_slow_intr_handler(adap); 741 return IRQ_HANDLED; 742 } 743 744 /* 745 * Name the MSI-X interrupts. 746 */ 747 static void name_msix_vecs(struct adapter *adap) 748 { 749 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 750 751 /* non-data interrupts */ 752 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 753 754 /* FW events */ 755 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 756 adap->port[0]->name); 757 758 /* Ethernet queues */ 759 for_each_port(adap, j) { 760 struct net_device *d = adap->port[j]; 761 const struct port_info *pi = netdev_priv(d); 762 763 for (i = 0; i < pi->nqsets; i++, msi_idx++) 764 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 765 d->name, i); 766 } 767 768 /* offload queues */ 769 for_each_ofldrxq(&adap->sge, i) 770 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d", 771 adap->port[0]->name, i); 772 773 for_each_rdmarxq(&adap->sge, i) 774 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d", 775 adap->port[0]->name, i); 776 777 for_each_rdmaciq(&adap->sge, i) 778 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d", 779 adap->port[0]->name, i); 780 } 781 782 static int request_msix_queue_irqs(struct adapter *adap) 783 { 784 struct sge *s = &adap->sge; 785 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0; 786 int msi_index = 2; 787 788 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 789 adap->msix_info[1].desc, &s->fw_evtq); 790 if (err) 791 return err; 792 793 for_each_ethrxq(s, ethqidx) { 794 err = request_irq(adap->msix_info[msi_index].vec, 795 t4_sge_intr_msix, 0, 796 adap->msix_info[msi_index].desc, 797 &s->ethrxq[ethqidx].rspq); 798 if (err) 799 goto unwind; 800 msi_index++; 801 } 802 for_each_ofldrxq(s, ofldqidx) { 803 err = request_irq(adap->msix_info[msi_index].vec, 804 t4_sge_intr_msix, 0, 805 adap->msix_info[msi_index].desc, 806 &s->ofldrxq[ofldqidx].rspq); 807 if (err) 808 goto unwind; 809 msi_index++; 810 } 811 for_each_rdmarxq(s, rdmaqidx) { 812 err = request_irq(adap->msix_info[msi_index].vec, 813 t4_sge_intr_msix, 0, 814 adap->msix_info[msi_index].desc, 815 &s->rdmarxq[rdmaqidx].rspq); 816 if (err) 817 goto unwind; 818 msi_index++; 819 } 820 for_each_rdmaciq(s, rdmaciqqidx) { 821 err = request_irq(adap->msix_info[msi_index].vec, 822 t4_sge_intr_msix, 0, 823 adap->msix_info[msi_index].desc, 824 &s->rdmaciq[rdmaciqqidx].rspq); 825 if (err) 826 goto unwind; 827 msi_index++; 828 } 829 return 0; 830 831 unwind: 832 while (--rdmaciqqidx >= 0) 833 free_irq(adap->msix_info[--msi_index].vec, 834 &s->rdmaciq[rdmaciqqidx].rspq); 835 while (--rdmaqidx >= 0) 836 free_irq(adap->msix_info[--msi_index].vec, 837 &s->rdmarxq[rdmaqidx].rspq); 838 while (--ofldqidx >= 0) 839 free_irq(adap->msix_info[--msi_index].vec, 840 &s->ofldrxq[ofldqidx].rspq); 841 while (--ethqidx >= 0) 842 free_irq(adap->msix_info[--msi_index].vec, 843 &s->ethrxq[ethqidx].rspq); 844 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 845 return err; 846 } 847 848 static void free_msix_queue_irqs(struct adapter *adap) 849 { 850 int i, msi_index = 2; 851 struct sge *s = &adap->sge; 852 853 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 854 for_each_ethrxq(s, i) 855 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 856 for_each_ofldrxq(s, i) 857 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq); 858 for_each_rdmarxq(s, i) 859 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq); 860 for_each_rdmaciq(s, i) 861 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq); 862 } 863 864 /** 865 * cxgb4_write_rss - write the RSS table for a given port 866 * @pi: the port 867 * @queues: array of queue indices for RSS 868 * 869 * Sets up the portion of the HW RSS table for the port's VI to distribute 870 * packets to the Rx queues in @queues. 871 * Should never be called before setting up sge eth rx queues 872 */ 873 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 874 { 875 u16 *rss; 876 int i, err; 877 struct adapter *adapter = pi->adapter; 878 const struct sge_eth_rxq *rxq; 879 880 rxq = &adapter->sge.ethrxq[pi->first_qset]; 881 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 882 if (!rss) 883 return -ENOMEM; 884 885 /* map the queue indices to queue ids */ 886 for (i = 0; i < pi->rss_size; i++, queues++) 887 rss[i] = rxq[*queues].rspq.abs_id; 888 889 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 890 pi->rss_size, rss, pi->rss_size); 891 /* If Tunnel All Lookup isn't specified in the global RSS 892 * Configuration, then we need to specify a default Ingress 893 * Queue for any ingress packets which aren't hashed. We'll 894 * use our first ingress queue ... 895 */ 896 if (!err) 897 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 898 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 899 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 900 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 901 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 902 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 903 rss[0]); 904 kfree(rss); 905 return err; 906 } 907 908 /** 909 * setup_rss - configure RSS 910 * @adap: the adapter 911 * 912 * Sets up RSS for each port. 913 */ 914 static int setup_rss(struct adapter *adap) 915 { 916 int i, j, err; 917 918 for_each_port(adap, i) { 919 const struct port_info *pi = adap2pinfo(adap, i); 920 921 /* Fill default values with equal distribution */ 922 for (j = 0; j < pi->rss_size; j++) 923 pi->rss[j] = j % pi->nqsets; 924 925 err = cxgb4_write_rss(pi, pi->rss); 926 if (err) 927 return err; 928 } 929 return 0; 930 } 931 932 /* 933 * Return the channel of the ingress queue with the given qid. 934 */ 935 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 936 { 937 qid -= p->ingr_start; 938 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 939 } 940 941 /* 942 * Wait until all NAPI handlers are descheduled. 943 */ 944 static void quiesce_rx(struct adapter *adap) 945 { 946 int i; 947 948 for (i = 0; i < adap->sge.ingr_sz; i++) { 949 struct sge_rspq *q = adap->sge.ingr_map[i]; 950 951 if (q && q->handler) { 952 napi_disable(&q->napi); 953 local_bh_disable(); 954 while (!cxgb_poll_lock_napi(q)) 955 mdelay(1); 956 local_bh_enable(); 957 } 958 959 } 960 } 961 962 /* Disable interrupt and napi handler */ 963 static void disable_interrupts(struct adapter *adap) 964 { 965 if (adap->flags & FULL_INIT_DONE) { 966 t4_intr_disable(adap); 967 if (adap->flags & USING_MSIX) { 968 free_msix_queue_irqs(adap); 969 free_irq(adap->msix_info[0].vec, adap); 970 } else { 971 free_irq(adap->pdev->irq, adap); 972 } 973 quiesce_rx(adap); 974 } 975 } 976 977 /* 978 * Enable NAPI scheduling and interrupt generation for all Rx queues. 979 */ 980 static void enable_rx(struct adapter *adap) 981 { 982 int i; 983 984 for (i = 0; i < adap->sge.ingr_sz; i++) { 985 struct sge_rspq *q = adap->sge.ingr_map[i]; 986 987 if (!q) 988 continue; 989 if (q->handler) { 990 cxgb_busy_poll_init_lock(q); 991 napi_enable(&q->napi); 992 } 993 /* 0-increment GTS to start the timer and enable interrupts */ 994 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 995 SEINTARM_V(q->intr_params) | 996 INGRESSQID_V(q->cntxt_id)); 997 } 998 } 999 1000 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q, 1001 unsigned int nq, unsigned int per_chan, int msi_idx, 1002 u16 *ids) 1003 { 1004 int i, err; 1005 1006 for (i = 0; i < nq; i++, q++) { 1007 if (msi_idx > 0) 1008 msi_idx++; 1009 err = t4_sge_alloc_rxq(adap, &q->rspq, false, 1010 adap->port[i / per_chan], 1011 msi_idx, q->fl.size ? &q->fl : NULL, 1012 uldrx_handler, 0); 1013 if (err) 1014 return err; 1015 memset(&q->stats, 0, sizeof(q->stats)); 1016 if (ids) 1017 ids[i] = q->rspq.abs_id; 1018 } 1019 return 0; 1020 } 1021 1022 /** 1023 * setup_sge_queues - configure SGE Tx/Rx/response queues 1024 * @adap: the adapter 1025 * 1026 * Determines how many sets of SGE queues to use and initializes them. 1027 * We support multiple queue sets per port if we have MSI-X, otherwise 1028 * just one queue set per port. 1029 */ 1030 static int setup_sge_queues(struct adapter *adap) 1031 { 1032 int err, msi_idx, i, j; 1033 struct sge *s = &adap->sge; 1034 1035 bitmap_zero(s->starving_fl, s->egr_sz); 1036 bitmap_zero(s->txq_maperr, s->egr_sz); 1037 1038 if (adap->flags & USING_MSIX) 1039 msi_idx = 1; /* vector 0 is for non-queue interrupts */ 1040 else { 1041 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 1042 NULL, NULL, -1); 1043 if (err) 1044 return err; 1045 msi_idx = -((int)s->intrq.abs_id + 1); 1046 } 1047 1048 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here, 1049 * don't forget to update the following which need to be 1050 * synchronized to and changes here. 1051 * 1052 * 1. The calculations of MAX_INGQ in cxgb4.h. 1053 * 1054 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs 1055 * to accommodate any new/deleted Ingress Queues 1056 * which need MSI-X Vectors. 1057 * 1058 * 3. Update sge_qinfo_show() to include information on the 1059 * new/deleted queues. 1060 */ 1061 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 1062 msi_idx, NULL, fwevtq_handler, -1); 1063 if (err) { 1064 freeout: t4_free_sge_resources(adap); 1065 return err; 1066 } 1067 1068 for_each_port(adap, i) { 1069 struct net_device *dev = adap->port[i]; 1070 struct port_info *pi = netdev_priv(dev); 1071 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1072 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1073 1074 for (j = 0; j < pi->nqsets; j++, q++) { 1075 if (msi_idx > 0) 1076 msi_idx++; 1077 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1078 msi_idx, &q->fl, 1079 t4_ethrx_handler, 1080 t4_get_mps_bg_map(adap, 1081 pi->tx_chan)); 1082 if (err) 1083 goto freeout; 1084 q->rspq.idx = j; 1085 memset(&q->stats, 0, sizeof(q->stats)); 1086 } 1087 for (j = 0; j < pi->nqsets; j++, t++) { 1088 err = t4_sge_alloc_eth_txq(adap, t, dev, 1089 netdev_get_tx_queue(dev, j), 1090 s->fw_evtq.cntxt_id); 1091 if (err) 1092 goto freeout; 1093 } 1094 } 1095 1096 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */ 1097 for_each_ofldrxq(s, i) { 1098 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], 1099 adap->port[i / j], 1100 s->fw_evtq.cntxt_id); 1101 if (err) 1102 goto freeout; 1103 } 1104 1105 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \ 1106 err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \ 1107 if (err) \ 1108 goto freeout; \ 1109 if (msi_idx > 0) \ 1110 msi_idx += nq; \ 1111 } while (0) 1112 1113 ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq); 1114 ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq); 1115 j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */ 1116 ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq); 1117 1118 #undef ALLOC_OFLD_RXQS 1119 1120 for_each_port(adap, i) { 1121 /* 1122 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't 1123 * have RDMA queues, and that's the right value. 1124 */ 1125 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1126 s->fw_evtq.cntxt_id, 1127 s->rdmarxq[i].rspq.cntxt_id); 1128 if (err) 1129 goto freeout; 1130 } 1131 1132 t4_write_reg(adap, is_t4(adap->params.chip) ? 1133 MPS_TRC_RSS_CONTROL_A : 1134 MPS_T5_TRC_RSS_CONTROL_A, 1135 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 1136 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 1137 return 0; 1138 } 1139 1140 /* 1141 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 1142 * The allocated memory is cleared. 1143 */ 1144 void *t4_alloc_mem(size_t size) 1145 { 1146 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1147 1148 if (!p) 1149 p = vzalloc(size); 1150 return p; 1151 } 1152 1153 /* 1154 * Free memory allocated through alloc_mem(). 1155 */ 1156 void t4_free_mem(void *addr) 1157 { 1158 kvfree(addr); 1159 } 1160 1161 /* Send a Work Request to write the filter at a specified index. We construct 1162 * a Firmware Filter Work Request to have the work done and put the indicated 1163 * filter into "pending" mode which will prevent any further actions against 1164 * it till we get a reply from the firmware on the completion status of the 1165 * request. 1166 */ 1167 static int set_filter_wr(struct adapter *adapter, int fidx) 1168 { 1169 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1170 struct sk_buff *skb; 1171 struct fw_filter_wr *fwr; 1172 unsigned int ftid; 1173 1174 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL); 1175 if (!skb) 1176 return -ENOMEM; 1177 1178 /* If the new filter requires loopback Destination MAC and/or VLAN 1179 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for 1180 * the filter. 1181 */ 1182 if (f->fs.newdmac || f->fs.newvlan) { 1183 /* allocate L2T entry for new filter */ 1184 f->l2t = t4_l2t_alloc_switching(adapter->l2t); 1185 if (f->l2t == NULL) { 1186 kfree_skb(skb); 1187 return -EAGAIN; 1188 } 1189 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan, 1190 f->fs.eport, f->fs.dmac)) { 1191 cxgb4_l2t_release(f->l2t); 1192 f->l2t = NULL; 1193 kfree_skb(skb); 1194 return -ENOMEM; 1195 } 1196 } 1197 1198 ftid = adapter->tids.ftid_base + fidx; 1199 1200 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr)); 1201 memset(fwr, 0, sizeof(*fwr)); 1202 1203 /* It would be nice to put most of the following in t4_hw.c but most 1204 * of the work is translating the cxgbtool ch_filter_specification 1205 * into the Work Request and the definition of that structure is 1206 * currently in cxgbtool.h which isn't appropriate to pull into the 1207 * common code. We may eventually try to come up with a more neutral 1208 * filter specification structure but for now it's easiest to simply 1209 * put this fairly direct code in line ... 1210 */ 1211 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR)); 1212 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16)); 1213 fwr->tid_to_iq = 1214 htonl(FW_FILTER_WR_TID_V(ftid) | 1215 FW_FILTER_WR_RQTYPE_V(f->fs.type) | 1216 FW_FILTER_WR_NOREPLY_V(0) | 1217 FW_FILTER_WR_IQ_V(f->fs.iq)); 1218 fwr->del_filter_to_l2tix = 1219 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) | 1220 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) | 1221 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) | 1222 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) | 1223 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) | 1224 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) | 1225 FW_FILTER_WR_DMAC_V(f->fs.newdmac) | 1226 FW_FILTER_WR_SMAC_V(f->fs.newsmac) | 1227 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT || 1228 f->fs.newvlan == VLAN_REWRITE) | 1229 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE || 1230 f->fs.newvlan == VLAN_REWRITE) | 1231 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) | 1232 FW_FILTER_WR_TXCHAN_V(f->fs.eport) | 1233 FW_FILTER_WR_PRIO_V(f->fs.prio) | 1234 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0)); 1235 fwr->ethtype = htons(f->fs.val.ethtype); 1236 fwr->ethtypem = htons(f->fs.mask.ethtype); 1237 fwr->frag_to_ovlan_vldm = 1238 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) | 1239 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) | 1240 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) | 1241 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) | 1242 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) | 1243 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld)); 1244 fwr->smac_sel = 0; 1245 fwr->rx_chan_rx_rpl_iq = 1246 htons(FW_FILTER_WR_RX_CHAN_V(0) | 1247 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id)); 1248 fwr->maci_to_matchtypem = 1249 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) | 1250 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) | 1251 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) | 1252 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) | 1253 FW_FILTER_WR_PORT_V(f->fs.val.iport) | 1254 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) | 1255 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) | 1256 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype)); 1257 fwr->ptcl = f->fs.val.proto; 1258 fwr->ptclm = f->fs.mask.proto; 1259 fwr->ttyp = f->fs.val.tos; 1260 fwr->ttypm = f->fs.mask.tos; 1261 fwr->ivlan = htons(f->fs.val.ivlan); 1262 fwr->ivlanm = htons(f->fs.mask.ivlan); 1263 fwr->ovlan = htons(f->fs.val.ovlan); 1264 fwr->ovlanm = htons(f->fs.mask.ovlan); 1265 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip)); 1266 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm)); 1267 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip)); 1268 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm)); 1269 fwr->lp = htons(f->fs.val.lport); 1270 fwr->lpm = htons(f->fs.mask.lport); 1271 fwr->fp = htons(f->fs.val.fport); 1272 fwr->fpm = htons(f->fs.mask.fport); 1273 if (f->fs.newsmac) 1274 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma)); 1275 1276 /* Mark the filter as "pending" and ship off the Filter Work Request. 1277 * When we get the Work Request Reply we'll clear the pending status. 1278 */ 1279 f->pending = 1; 1280 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3); 1281 t4_ofld_send(adapter, skb); 1282 return 0; 1283 } 1284 1285 /* Delete the filter at a specified index. 1286 */ 1287 static int del_filter_wr(struct adapter *adapter, int fidx) 1288 { 1289 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1290 struct sk_buff *skb; 1291 struct fw_filter_wr *fwr; 1292 unsigned int len, ftid; 1293 1294 len = sizeof(*fwr); 1295 ftid = adapter->tids.ftid_base + fidx; 1296 1297 skb = alloc_skb(len, GFP_KERNEL); 1298 if (!skb) 1299 return -ENOMEM; 1300 1301 fwr = (struct fw_filter_wr *)__skb_put(skb, len); 1302 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id); 1303 1304 /* Mark the filter as "pending" and ship off the Filter Work Request. 1305 * When we get the Work Request Reply we'll clear the pending status. 1306 */ 1307 f->pending = 1; 1308 t4_mgmt_tx(adapter, skb); 1309 return 0; 1310 } 1311 1312 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 1313 void *accel_priv, select_queue_fallback_t fallback) 1314 { 1315 int txq; 1316 1317 #ifdef CONFIG_CHELSIO_T4_DCB 1318 /* If a Data Center Bridging has been successfully negotiated on this 1319 * link then we'll use the skb's priority to map it to a TX Queue. 1320 * The skb's priority is determined via the VLAN Tag Priority Code 1321 * Point field. 1322 */ 1323 if (cxgb4_dcb_enabled(dev)) { 1324 u16 vlan_tci; 1325 int err; 1326 1327 err = vlan_get_tag(skb, &vlan_tci); 1328 if (unlikely(err)) { 1329 if (net_ratelimit()) 1330 netdev_warn(dev, 1331 "TX Packet without VLAN Tag on DCB Link\n"); 1332 txq = 0; 1333 } else { 1334 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1335 #ifdef CONFIG_CHELSIO_T4_FCOE 1336 if (skb->protocol == htons(ETH_P_FCOE)) 1337 txq = skb->priority & 0x7; 1338 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1339 } 1340 return txq; 1341 } 1342 #endif /* CONFIG_CHELSIO_T4_DCB */ 1343 1344 if (select_queue) { 1345 txq = (skb_rx_queue_recorded(skb) 1346 ? skb_get_rx_queue(skb) 1347 : smp_processor_id()); 1348 1349 while (unlikely(txq >= dev->real_num_tx_queues)) 1350 txq -= dev->real_num_tx_queues; 1351 1352 return txq; 1353 } 1354 1355 return fallback(dev, skb) % dev->real_num_tx_queues; 1356 } 1357 1358 static int closest_timer(const struct sge *s, int time) 1359 { 1360 int i, delta, match = 0, min_delta = INT_MAX; 1361 1362 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1363 delta = time - s->timer_val[i]; 1364 if (delta < 0) 1365 delta = -delta; 1366 if (delta < min_delta) { 1367 min_delta = delta; 1368 match = i; 1369 } 1370 } 1371 return match; 1372 } 1373 1374 static int closest_thres(const struct sge *s, int thres) 1375 { 1376 int i, delta, match = 0, min_delta = INT_MAX; 1377 1378 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1379 delta = thres - s->counter_val[i]; 1380 if (delta < 0) 1381 delta = -delta; 1382 if (delta < min_delta) { 1383 min_delta = delta; 1384 match = i; 1385 } 1386 } 1387 return match; 1388 } 1389 1390 /** 1391 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1392 * @q: the Rx queue 1393 * @us: the hold-off time in us, or 0 to disable timer 1394 * @cnt: the hold-off packet count, or 0 to disable counter 1395 * 1396 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1397 * one of the two needs to be enabled for the queue to generate interrupts. 1398 */ 1399 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1400 unsigned int us, unsigned int cnt) 1401 { 1402 struct adapter *adap = q->adap; 1403 1404 if ((us | cnt) == 0) 1405 cnt = 1; 1406 1407 if (cnt) { 1408 int err; 1409 u32 v, new_idx; 1410 1411 new_idx = closest_thres(&adap->sge, cnt); 1412 if (q->desc && q->pktcnt_idx != new_idx) { 1413 /* the queue has already been created, update it */ 1414 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1415 FW_PARAMS_PARAM_X_V( 1416 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1417 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1418 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1419 &v, &new_idx); 1420 if (err) 1421 return err; 1422 } 1423 q->pktcnt_idx = new_idx; 1424 } 1425 1426 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1427 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1428 return 0; 1429 } 1430 1431 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1432 { 1433 const struct port_info *pi = netdev_priv(dev); 1434 netdev_features_t changed = dev->features ^ features; 1435 int err; 1436 1437 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1438 return 0; 1439 1440 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1441 -1, -1, -1, 1442 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1443 if (unlikely(err)) 1444 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1445 return err; 1446 } 1447 1448 static int setup_debugfs(struct adapter *adap) 1449 { 1450 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1451 return -1; 1452 1453 #ifdef CONFIG_DEBUG_FS 1454 t4_setup_debugfs(adap); 1455 #endif 1456 return 0; 1457 } 1458 1459 /* 1460 * upper-layer driver support 1461 */ 1462 1463 /* 1464 * Allocate an active-open TID and set it to the supplied value. 1465 */ 1466 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1467 { 1468 int atid = -1; 1469 1470 spin_lock_bh(&t->atid_lock); 1471 if (t->afree) { 1472 union aopen_entry *p = t->afree; 1473 1474 atid = (p - t->atid_tab) + t->atid_base; 1475 t->afree = p->next; 1476 p->data = data; 1477 t->atids_in_use++; 1478 } 1479 spin_unlock_bh(&t->atid_lock); 1480 return atid; 1481 } 1482 EXPORT_SYMBOL(cxgb4_alloc_atid); 1483 1484 /* 1485 * Release an active-open TID. 1486 */ 1487 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1488 { 1489 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1490 1491 spin_lock_bh(&t->atid_lock); 1492 p->next = t->afree; 1493 t->afree = p; 1494 t->atids_in_use--; 1495 spin_unlock_bh(&t->atid_lock); 1496 } 1497 EXPORT_SYMBOL(cxgb4_free_atid); 1498 1499 /* 1500 * Allocate a server TID and set it to the supplied value. 1501 */ 1502 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1503 { 1504 int stid; 1505 1506 spin_lock_bh(&t->stid_lock); 1507 if (family == PF_INET) { 1508 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1509 if (stid < t->nstids) 1510 __set_bit(stid, t->stid_bmap); 1511 else 1512 stid = -1; 1513 } else { 1514 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2); 1515 if (stid < 0) 1516 stid = -1; 1517 } 1518 if (stid >= 0) { 1519 t->stid_tab[stid].data = data; 1520 stid += t->stid_base; 1521 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1522 * This is equivalent to 4 TIDs. With CLIP enabled it 1523 * needs 2 TIDs. 1524 */ 1525 if (family == PF_INET) 1526 t->stids_in_use++; 1527 else 1528 t->stids_in_use += 4; 1529 } 1530 spin_unlock_bh(&t->stid_lock); 1531 return stid; 1532 } 1533 EXPORT_SYMBOL(cxgb4_alloc_stid); 1534 1535 /* Allocate a server filter TID and set it to the supplied value. 1536 */ 1537 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1538 { 1539 int stid; 1540 1541 spin_lock_bh(&t->stid_lock); 1542 if (family == PF_INET) { 1543 stid = find_next_zero_bit(t->stid_bmap, 1544 t->nstids + t->nsftids, t->nstids); 1545 if (stid < (t->nstids + t->nsftids)) 1546 __set_bit(stid, t->stid_bmap); 1547 else 1548 stid = -1; 1549 } else { 1550 stid = -1; 1551 } 1552 if (stid >= 0) { 1553 t->stid_tab[stid].data = data; 1554 stid -= t->nstids; 1555 stid += t->sftid_base; 1556 t->sftids_in_use++; 1557 } 1558 spin_unlock_bh(&t->stid_lock); 1559 return stid; 1560 } 1561 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1562 1563 /* Release a server TID. 1564 */ 1565 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1566 { 1567 /* Is it a server filter TID? */ 1568 if (t->nsftids && (stid >= t->sftid_base)) { 1569 stid -= t->sftid_base; 1570 stid += t->nstids; 1571 } else { 1572 stid -= t->stid_base; 1573 } 1574 1575 spin_lock_bh(&t->stid_lock); 1576 if (family == PF_INET) 1577 __clear_bit(stid, t->stid_bmap); 1578 else 1579 bitmap_release_region(t->stid_bmap, stid, 2); 1580 t->stid_tab[stid].data = NULL; 1581 if (stid < t->nstids) { 1582 if (family == PF_INET) 1583 t->stids_in_use--; 1584 else 1585 t->stids_in_use -= 4; 1586 } else { 1587 t->sftids_in_use--; 1588 } 1589 spin_unlock_bh(&t->stid_lock); 1590 } 1591 EXPORT_SYMBOL(cxgb4_free_stid); 1592 1593 /* 1594 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1595 */ 1596 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1597 unsigned int tid) 1598 { 1599 struct cpl_tid_release *req; 1600 1601 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1602 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 1603 INIT_TP_WR(req, tid); 1604 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1605 } 1606 1607 /* 1608 * Queue a TID release request and if necessary schedule a work queue to 1609 * process it. 1610 */ 1611 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1612 unsigned int tid) 1613 { 1614 void **p = &t->tid_tab[tid]; 1615 struct adapter *adap = container_of(t, struct adapter, tids); 1616 1617 spin_lock_bh(&adap->tid_release_lock); 1618 *p = adap->tid_release_head; 1619 /* Low 2 bits encode the Tx channel number */ 1620 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1621 if (!adap->tid_release_task_busy) { 1622 adap->tid_release_task_busy = true; 1623 queue_work(adap->workq, &adap->tid_release_task); 1624 } 1625 spin_unlock_bh(&adap->tid_release_lock); 1626 } 1627 1628 /* 1629 * Process the list of pending TID release requests. 1630 */ 1631 static void process_tid_release_list(struct work_struct *work) 1632 { 1633 struct sk_buff *skb; 1634 struct adapter *adap; 1635 1636 adap = container_of(work, struct adapter, tid_release_task); 1637 1638 spin_lock_bh(&adap->tid_release_lock); 1639 while (adap->tid_release_head) { 1640 void **p = adap->tid_release_head; 1641 unsigned int chan = (uintptr_t)p & 3; 1642 p = (void *)p - chan; 1643 1644 adap->tid_release_head = *p; 1645 *p = NULL; 1646 spin_unlock_bh(&adap->tid_release_lock); 1647 1648 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1649 GFP_KERNEL))) 1650 schedule_timeout_uninterruptible(1); 1651 1652 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1653 t4_ofld_send(adap, skb); 1654 spin_lock_bh(&adap->tid_release_lock); 1655 } 1656 adap->tid_release_task_busy = false; 1657 spin_unlock_bh(&adap->tid_release_lock); 1658 } 1659 1660 /* 1661 * Release a TID and inform HW. If we are unable to allocate the release 1662 * message we defer to a work queue. 1663 */ 1664 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) 1665 { 1666 struct sk_buff *skb; 1667 struct adapter *adap = container_of(t, struct adapter, tids); 1668 1669 WARN_ON(tid >= t->ntids); 1670 1671 if (t->tid_tab[tid]) { 1672 t->tid_tab[tid] = NULL; 1673 if (t->hash_base && (tid >= t->hash_base)) 1674 atomic_dec(&t->hash_tids_in_use); 1675 else 1676 atomic_dec(&t->tids_in_use); 1677 } 1678 1679 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1680 if (likely(skb)) { 1681 mk_tid_release(skb, chan, tid); 1682 t4_ofld_send(adap, skb); 1683 } else 1684 cxgb4_queue_tid_release(t, chan, tid); 1685 } 1686 EXPORT_SYMBOL(cxgb4_remove_tid); 1687 1688 /* 1689 * Allocate and initialize the TID tables. Returns 0 on success. 1690 */ 1691 static int tid_init(struct tid_info *t) 1692 { 1693 size_t size; 1694 unsigned int stid_bmap_size; 1695 unsigned int natids = t->natids; 1696 struct adapter *adap = container_of(t, struct adapter, tids); 1697 1698 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1699 size = t->ntids * sizeof(*t->tid_tab) + 1700 natids * sizeof(*t->atid_tab) + 1701 t->nstids * sizeof(*t->stid_tab) + 1702 t->nsftids * sizeof(*t->stid_tab) + 1703 stid_bmap_size * sizeof(long) + 1704 t->nftids * sizeof(*t->ftid_tab) + 1705 t->nsftids * sizeof(*t->ftid_tab); 1706 1707 t->tid_tab = t4_alloc_mem(size); 1708 if (!t->tid_tab) 1709 return -ENOMEM; 1710 1711 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1712 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1713 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1714 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1715 spin_lock_init(&t->stid_lock); 1716 spin_lock_init(&t->atid_lock); 1717 1718 t->stids_in_use = 0; 1719 t->sftids_in_use = 0; 1720 t->afree = NULL; 1721 t->atids_in_use = 0; 1722 atomic_set(&t->tids_in_use, 0); 1723 atomic_set(&t->hash_tids_in_use, 0); 1724 1725 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1726 if (natids) { 1727 while (--natids) 1728 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1729 t->afree = t->atid_tab; 1730 } 1731 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1732 /* Reserve stid 0 for T4/T5 adapters */ 1733 if (!t->stid_base && 1734 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)) 1735 __set_bit(0, t->stid_bmap); 1736 1737 return 0; 1738 } 1739 1740 /** 1741 * cxgb4_create_server - create an IP server 1742 * @dev: the device 1743 * @stid: the server TID 1744 * @sip: local IP address to bind server to 1745 * @sport: the server's TCP port 1746 * @queue: queue to direct messages from this server to 1747 * 1748 * Create an IP server for the given port and address. 1749 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1750 */ 1751 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1752 __be32 sip, __be16 sport, __be16 vlan, 1753 unsigned int queue) 1754 { 1755 unsigned int chan; 1756 struct sk_buff *skb; 1757 struct adapter *adap; 1758 struct cpl_pass_open_req *req; 1759 int ret; 1760 1761 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1762 if (!skb) 1763 return -ENOMEM; 1764 1765 adap = netdev2adap(dev); 1766 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); 1767 INIT_TP_WR(req, 0); 1768 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1769 req->local_port = sport; 1770 req->peer_port = htons(0); 1771 req->local_ip = sip; 1772 req->peer_ip = htonl(0); 1773 chan = rxq_to_chan(&adap->sge, queue); 1774 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1775 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1776 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1777 ret = t4_mgmt_tx(adap, skb); 1778 return net_xmit_eval(ret); 1779 } 1780 EXPORT_SYMBOL(cxgb4_create_server); 1781 1782 /* cxgb4_create_server6 - create an IPv6 server 1783 * @dev: the device 1784 * @stid: the server TID 1785 * @sip: local IPv6 address to bind server to 1786 * @sport: the server's TCP port 1787 * @queue: queue to direct messages from this server to 1788 * 1789 * Create an IPv6 server for the given port and address. 1790 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1791 */ 1792 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1793 const struct in6_addr *sip, __be16 sport, 1794 unsigned int queue) 1795 { 1796 unsigned int chan; 1797 struct sk_buff *skb; 1798 struct adapter *adap; 1799 struct cpl_pass_open_req6 *req; 1800 int ret; 1801 1802 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1803 if (!skb) 1804 return -ENOMEM; 1805 1806 adap = netdev2adap(dev); 1807 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req)); 1808 INIT_TP_WR(req, 0); 1809 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1810 req->local_port = sport; 1811 req->peer_port = htons(0); 1812 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1813 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1814 req->peer_ip_hi = cpu_to_be64(0); 1815 req->peer_ip_lo = cpu_to_be64(0); 1816 chan = rxq_to_chan(&adap->sge, queue); 1817 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1818 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1819 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1820 ret = t4_mgmt_tx(adap, skb); 1821 return net_xmit_eval(ret); 1822 } 1823 EXPORT_SYMBOL(cxgb4_create_server6); 1824 1825 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1826 unsigned int queue, bool ipv6) 1827 { 1828 struct sk_buff *skb; 1829 struct adapter *adap; 1830 struct cpl_close_listsvr_req *req; 1831 int ret; 1832 1833 adap = netdev2adap(dev); 1834 1835 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1836 if (!skb) 1837 return -ENOMEM; 1838 1839 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req)); 1840 INIT_TP_WR(req, 0); 1841 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1842 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1843 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1844 ret = t4_mgmt_tx(adap, skb); 1845 return net_xmit_eval(ret); 1846 } 1847 EXPORT_SYMBOL(cxgb4_remove_server); 1848 1849 /** 1850 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1851 * @mtus: the HW MTU table 1852 * @mtu: the target MTU 1853 * @idx: index of selected entry in the MTU table 1854 * 1855 * Returns the index and the value in the HW MTU table that is closest to 1856 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1857 * table, in which case that smallest available value is selected. 1858 */ 1859 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1860 unsigned int *idx) 1861 { 1862 unsigned int i = 0; 1863 1864 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1865 ++i; 1866 if (idx) 1867 *idx = i; 1868 return mtus[i]; 1869 } 1870 EXPORT_SYMBOL(cxgb4_best_mtu); 1871 1872 /** 1873 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1874 * @mtus: the HW MTU table 1875 * @header_size: Header Size 1876 * @data_size_max: maximum Data Segment Size 1877 * @data_size_align: desired Data Segment Size Alignment (2^N) 1878 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1879 * 1880 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1881 * MTU Table based solely on a Maximum MTU parameter, we break that 1882 * parameter up into a Header Size and Maximum Data Segment Size, and 1883 * provide a desired Data Segment Size Alignment. If we find an MTU in 1884 * the Hardware MTU Table which will result in a Data Segment Size with 1885 * the requested alignment _and_ that MTU isn't "too far" from the 1886 * closest MTU, then we'll return that rather than the closest MTU. 1887 */ 1888 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1889 unsigned short header_size, 1890 unsigned short data_size_max, 1891 unsigned short data_size_align, 1892 unsigned int *mtu_idxp) 1893 { 1894 unsigned short max_mtu = header_size + data_size_max; 1895 unsigned short data_size_align_mask = data_size_align - 1; 1896 int mtu_idx, aligned_mtu_idx; 1897 1898 /* Scan the MTU Table till we find an MTU which is larger than our 1899 * Maximum MTU or we reach the end of the table. Along the way, 1900 * record the last MTU found, if any, which will result in a Data 1901 * Segment Length matching the requested alignment. 1902 */ 1903 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1904 unsigned short data_size = mtus[mtu_idx] - header_size; 1905 1906 /* If this MTU minus the Header Size would result in a 1907 * Data Segment Size of the desired alignment, remember it. 1908 */ 1909 if ((data_size & data_size_align_mask) == 0) 1910 aligned_mtu_idx = mtu_idx; 1911 1912 /* If we're not at the end of the Hardware MTU Table and the 1913 * next element is larger than our Maximum MTU, drop out of 1914 * the loop. 1915 */ 1916 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1917 break; 1918 } 1919 1920 /* If we fell out of the loop because we ran to the end of the table, 1921 * then we just have to use the last [largest] entry. 1922 */ 1923 if (mtu_idx == NMTUS) 1924 mtu_idx--; 1925 1926 /* If we found an MTU which resulted in the requested Data Segment 1927 * Length alignment and that's "not far" from the largest MTU which is 1928 * less than or equal to the maximum MTU, then use that. 1929 */ 1930 if (aligned_mtu_idx >= 0 && 1931 mtu_idx - aligned_mtu_idx <= 1) 1932 mtu_idx = aligned_mtu_idx; 1933 1934 /* If the caller has passed in an MTU Index pointer, pass the 1935 * MTU Index back. Return the MTU value. 1936 */ 1937 if (mtu_idxp) 1938 *mtu_idxp = mtu_idx; 1939 return mtus[mtu_idx]; 1940 } 1941 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1942 1943 /** 1944 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1945 * @chip: chip type 1946 * @viid: VI id of the given port 1947 * 1948 * Return the SMT index for this VI. 1949 */ 1950 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1951 { 1952 /* In T4/T5, SMT contains 256 SMAC entries organized in 1953 * 128 rows of 2 entries each. 1954 * In T6, SMT contains 256 SMAC entries in 256 rows. 1955 * TODO: The below code needs to be updated when we add support 1956 * for 256 VFs. 1957 */ 1958 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1959 return ((viid & 0x7f) << 1); 1960 else 1961 return (viid & 0x7f); 1962 } 1963 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1964 1965 /** 1966 * cxgb4_port_chan - get the HW channel of a port 1967 * @dev: the net device for the port 1968 * 1969 * Return the HW Tx channel of the given port. 1970 */ 1971 unsigned int cxgb4_port_chan(const struct net_device *dev) 1972 { 1973 return netdev2pinfo(dev)->tx_chan; 1974 } 1975 EXPORT_SYMBOL(cxgb4_port_chan); 1976 1977 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1978 { 1979 struct adapter *adap = netdev2adap(dev); 1980 u32 v1, v2, lp_count, hp_count; 1981 1982 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1983 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1984 if (is_t4(adap->params.chip)) { 1985 lp_count = LP_COUNT_G(v1); 1986 hp_count = HP_COUNT_G(v1); 1987 } else { 1988 lp_count = LP_COUNT_T5_G(v1); 1989 hp_count = HP_COUNT_T5_G(v2); 1990 } 1991 return lpfifo ? lp_count : hp_count; 1992 } 1993 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1994 1995 /** 1996 * cxgb4_port_viid - get the VI id of a port 1997 * @dev: the net device for the port 1998 * 1999 * Return the VI id of the given port. 2000 */ 2001 unsigned int cxgb4_port_viid(const struct net_device *dev) 2002 { 2003 return netdev2pinfo(dev)->viid; 2004 } 2005 EXPORT_SYMBOL(cxgb4_port_viid); 2006 2007 /** 2008 * cxgb4_port_idx - get the index of a port 2009 * @dev: the net device for the port 2010 * 2011 * Return the index of the given port. 2012 */ 2013 unsigned int cxgb4_port_idx(const struct net_device *dev) 2014 { 2015 return netdev2pinfo(dev)->port_id; 2016 } 2017 EXPORT_SYMBOL(cxgb4_port_idx); 2018 2019 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 2020 struct tp_tcp_stats *v6) 2021 { 2022 struct adapter *adap = pci_get_drvdata(pdev); 2023 2024 spin_lock(&adap->stats_lock); 2025 t4_tp_get_tcp_stats(adap, v4, v6); 2026 spin_unlock(&adap->stats_lock); 2027 } 2028 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 2029 2030 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 2031 const unsigned int *pgsz_order) 2032 { 2033 struct adapter *adap = netdev2adap(dev); 2034 2035 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 2036 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 2037 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 2038 HPZ3_V(pgsz_order[3])); 2039 } 2040 EXPORT_SYMBOL(cxgb4_iscsi_init); 2041 2042 int cxgb4_flush_eq_cache(struct net_device *dev) 2043 { 2044 struct adapter *adap = netdev2adap(dev); 2045 2046 return t4_sge_ctxt_flush(adap, adap->mbox); 2047 } 2048 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 2049 2050 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 2051 { 2052 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 2053 __be64 indices; 2054 int ret; 2055 2056 spin_lock(&adap->win0_lock); 2057 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 2058 sizeof(indices), (__be32 *)&indices, 2059 T4_MEMORY_READ); 2060 spin_unlock(&adap->win0_lock); 2061 if (!ret) { 2062 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 2063 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 2064 } 2065 return ret; 2066 } 2067 2068 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 2069 u16 size) 2070 { 2071 struct adapter *adap = netdev2adap(dev); 2072 u16 hw_pidx, hw_cidx; 2073 int ret; 2074 2075 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 2076 if (ret) 2077 goto out; 2078 2079 if (pidx != hw_pidx) { 2080 u16 delta; 2081 u32 val; 2082 2083 if (pidx >= hw_pidx) 2084 delta = pidx - hw_pidx; 2085 else 2086 delta = size - hw_pidx + pidx; 2087 2088 if (is_t4(adap->params.chip)) 2089 val = PIDX_V(delta); 2090 else 2091 val = PIDX_T5_V(delta); 2092 wmb(); 2093 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2094 QID_V(qid) | val); 2095 } 2096 out: 2097 return ret; 2098 } 2099 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 2100 2101 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 2102 { 2103 struct adapter *adap; 2104 u32 offset, memtype, memaddr; 2105 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 2106 u32 edc0_end, edc1_end, mc0_end, mc1_end; 2107 int ret; 2108 2109 adap = netdev2adap(dev); 2110 2111 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 2112 2113 /* Figure out where the offset lands in the Memory Type/Address scheme. 2114 * This code assumes that the memory is laid out starting at offset 0 2115 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 2116 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 2117 * MC0, and some have both MC0 and MC1. 2118 */ 2119 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 2120 edc0_size = EDRAM0_SIZE_G(size) << 20; 2121 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 2122 edc1_size = EDRAM1_SIZE_G(size) << 20; 2123 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 2124 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 2125 2126 edc0_end = edc0_size; 2127 edc1_end = edc0_end + edc1_size; 2128 mc0_end = edc1_end + mc0_size; 2129 2130 if (offset < edc0_end) { 2131 memtype = MEM_EDC0; 2132 memaddr = offset; 2133 } else if (offset < edc1_end) { 2134 memtype = MEM_EDC1; 2135 memaddr = offset - edc0_end; 2136 } else { 2137 if (offset < mc0_end) { 2138 memtype = MEM_MC0; 2139 memaddr = offset - edc1_end; 2140 } else if (is_t5(adap->params.chip)) { 2141 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2142 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 2143 mc1_end = mc0_end + mc1_size; 2144 if (offset < mc1_end) { 2145 memtype = MEM_MC1; 2146 memaddr = offset - mc0_end; 2147 } else { 2148 /* offset beyond the end of any memory */ 2149 goto err; 2150 } 2151 } else { 2152 /* T4/T6 only has a single memory channel */ 2153 goto err; 2154 } 2155 } 2156 2157 spin_lock(&adap->win0_lock); 2158 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 2159 spin_unlock(&adap->win0_lock); 2160 return ret; 2161 2162 err: 2163 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 2164 stag, offset); 2165 return -EINVAL; 2166 } 2167 EXPORT_SYMBOL(cxgb4_read_tpte); 2168 2169 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 2170 { 2171 u32 hi, lo; 2172 struct adapter *adap; 2173 2174 adap = netdev2adap(dev); 2175 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 2176 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 2177 2178 return ((u64)hi << 32) | (u64)lo; 2179 } 2180 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 2181 2182 int cxgb4_bar2_sge_qregs(struct net_device *dev, 2183 unsigned int qid, 2184 enum cxgb4_bar2_qtype qtype, 2185 int user, 2186 u64 *pbar2_qoffset, 2187 unsigned int *pbar2_qid) 2188 { 2189 return t4_bar2_sge_qregs(netdev2adap(dev), 2190 qid, 2191 (qtype == CXGB4_BAR2_QTYPE_EGRESS 2192 ? T4_BAR2_QTYPE_EGRESS 2193 : T4_BAR2_QTYPE_INGRESS), 2194 user, 2195 pbar2_qoffset, 2196 pbar2_qid); 2197 } 2198 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 2199 2200 static struct pci_driver cxgb4_driver; 2201 2202 static void check_neigh_update(struct neighbour *neigh) 2203 { 2204 const struct device *parent; 2205 const struct net_device *netdev = neigh->dev; 2206 2207 if (netdev->priv_flags & IFF_802_1Q_VLAN) 2208 netdev = vlan_dev_real_dev(netdev); 2209 parent = netdev->dev.parent; 2210 if (parent && parent->driver == &cxgb4_driver.driver) 2211 t4_l2t_update(dev_get_drvdata(parent), neigh); 2212 } 2213 2214 static int netevent_cb(struct notifier_block *nb, unsigned long event, 2215 void *data) 2216 { 2217 switch (event) { 2218 case NETEVENT_NEIGH_UPDATE: 2219 check_neigh_update(data); 2220 break; 2221 case NETEVENT_REDIRECT: 2222 default: 2223 break; 2224 } 2225 return 0; 2226 } 2227 2228 static bool netevent_registered; 2229 static struct notifier_block cxgb4_netevent_nb = { 2230 .notifier_call = netevent_cb 2231 }; 2232 2233 static void drain_db_fifo(struct adapter *adap, int usecs) 2234 { 2235 u32 v1, v2, lp_count, hp_count; 2236 2237 do { 2238 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2239 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2240 if (is_t4(adap->params.chip)) { 2241 lp_count = LP_COUNT_G(v1); 2242 hp_count = HP_COUNT_G(v1); 2243 } else { 2244 lp_count = LP_COUNT_T5_G(v1); 2245 hp_count = HP_COUNT_T5_G(v2); 2246 } 2247 2248 if (lp_count == 0 && hp_count == 0) 2249 break; 2250 set_current_state(TASK_UNINTERRUPTIBLE); 2251 schedule_timeout(usecs_to_jiffies(usecs)); 2252 } while (1); 2253 } 2254 2255 static void disable_txq_db(struct sge_txq *q) 2256 { 2257 unsigned long flags; 2258 2259 spin_lock_irqsave(&q->db_lock, flags); 2260 q->db_disabled = 1; 2261 spin_unlock_irqrestore(&q->db_lock, flags); 2262 } 2263 2264 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 2265 { 2266 spin_lock_irq(&q->db_lock); 2267 if (q->db_pidx_inc) { 2268 /* Make sure that all writes to the TX descriptors 2269 * are committed before we tell HW about them. 2270 */ 2271 wmb(); 2272 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2273 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 2274 q->db_pidx_inc = 0; 2275 } 2276 q->db_disabled = 0; 2277 spin_unlock_irq(&q->db_lock); 2278 } 2279 2280 static void disable_dbs(struct adapter *adap) 2281 { 2282 int i; 2283 2284 for_each_ethrxq(&adap->sge, i) 2285 disable_txq_db(&adap->sge.ethtxq[i].q); 2286 for_each_ofldrxq(&adap->sge, i) 2287 disable_txq_db(&adap->sge.ofldtxq[i].q); 2288 for_each_port(adap, i) 2289 disable_txq_db(&adap->sge.ctrlq[i].q); 2290 } 2291 2292 static void enable_dbs(struct adapter *adap) 2293 { 2294 int i; 2295 2296 for_each_ethrxq(&adap->sge, i) 2297 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 2298 for_each_ofldrxq(&adap->sge, i) 2299 enable_txq_db(adap, &adap->sge.ofldtxq[i].q); 2300 for_each_port(adap, i) 2301 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2302 } 2303 2304 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2305 { 2306 if (adap->uld_handle[CXGB4_ULD_RDMA]) 2307 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA], 2308 cmd); 2309 } 2310 2311 static void process_db_full(struct work_struct *work) 2312 { 2313 struct adapter *adap; 2314 2315 adap = container_of(work, struct adapter, db_full_task); 2316 2317 drain_db_fifo(adap, dbfifo_drain_delay); 2318 enable_dbs(adap); 2319 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2320 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2321 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2322 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2323 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2324 else 2325 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2326 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2327 } 2328 2329 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2330 { 2331 u16 hw_pidx, hw_cidx; 2332 int ret; 2333 2334 spin_lock_irq(&q->db_lock); 2335 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2336 if (ret) 2337 goto out; 2338 if (q->db_pidx != hw_pidx) { 2339 u16 delta; 2340 u32 val; 2341 2342 if (q->db_pidx >= hw_pidx) 2343 delta = q->db_pidx - hw_pidx; 2344 else 2345 delta = q->size - hw_pidx + q->db_pidx; 2346 2347 if (is_t4(adap->params.chip)) 2348 val = PIDX_V(delta); 2349 else 2350 val = PIDX_T5_V(delta); 2351 wmb(); 2352 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2353 QID_V(q->cntxt_id) | val); 2354 } 2355 out: 2356 q->db_disabled = 0; 2357 q->db_pidx_inc = 0; 2358 spin_unlock_irq(&q->db_lock); 2359 if (ret) 2360 CH_WARN(adap, "DB drop recovery failed.\n"); 2361 } 2362 static void recover_all_queues(struct adapter *adap) 2363 { 2364 int i; 2365 2366 for_each_ethrxq(&adap->sge, i) 2367 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2368 for_each_ofldrxq(&adap->sge, i) 2369 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q); 2370 for_each_port(adap, i) 2371 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2372 } 2373 2374 static void process_db_drop(struct work_struct *work) 2375 { 2376 struct adapter *adap; 2377 2378 adap = container_of(work, struct adapter, db_drop_task); 2379 2380 if (is_t4(adap->params.chip)) { 2381 drain_db_fifo(adap, dbfifo_drain_delay); 2382 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2383 drain_db_fifo(adap, dbfifo_drain_delay); 2384 recover_all_queues(adap); 2385 drain_db_fifo(adap, dbfifo_drain_delay); 2386 enable_dbs(adap); 2387 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2388 } else if (is_t5(adap->params.chip)) { 2389 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2390 u16 qid = (dropped_db >> 15) & 0x1ffff; 2391 u16 pidx_inc = dropped_db & 0x1fff; 2392 u64 bar2_qoffset; 2393 unsigned int bar2_qid; 2394 int ret; 2395 2396 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2397 0, &bar2_qoffset, &bar2_qid); 2398 if (ret) 2399 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2400 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2401 else 2402 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2403 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2404 2405 /* Re-enable BAR2 WC */ 2406 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2407 } 2408 2409 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2410 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2411 } 2412 2413 void t4_db_full(struct adapter *adap) 2414 { 2415 if (is_t4(adap->params.chip)) { 2416 disable_dbs(adap); 2417 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2418 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2419 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2420 queue_work(adap->workq, &adap->db_full_task); 2421 } 2422 } 2423 2424 void t4_db_dropped(struct adapter *adap) 2425 { 2426 if (is_t4(adap->params.chip)) { 2427 disable_dbs(adap); 2428 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2429 } 2430 queue_work(adap->workq, &adap->db_drop_task); 2431 } 2432 2433 static void uld_attach(struct adapter *adap, unsigned int uld) 2434 { 2435 void *handle; 2436 struct cxgb4_lld_info lli; 2437 unsigned short i; 2438 2439 lli.pdev = adap->pdev; 2440 lli.pf = adap->pf; 2441 lli.l2t = adap->l2t; 2442 lli.tids = &adap->tids; 2443 lli.ports = adap->port; 2444 lli.vr = &adap->vres; 2445 lli.mtus = adap->params.mtus; 2446 if (uld == CXGB4_ULD_RDMA) { 2447 lli.rxq_ids = adap->sge.rdma_rxq; 2448 lli.ciq_ids = adap->sge.rdma_ciq; 2449 lli.nrxq = adap->sge.rdmaqs; 2450 lli.nciq = adap->sge.rdmaciqs; 2451 } else if (uld == CXGB4_ULD_ISCSI) { 2452 lli.rxq_ids = adap->sge.ofld_rxq; 2453 lli.nrxq = adap->sge.ofldqsets; 2454 } 2455 lli.ntxq = adap->sge.ofldqsets; 2456 lli.nchan = adap->params.nports; 2457 lli.nports = adap->params.nports; 2458 lli.wr_cred = adap->params.ofldq_wr_cred; 2459 lli.adapter_type = adap->params.chip; 2460 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A)); 2461 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk; 2462 lli.udb_density = 1 << adap->params.sge.eq_qpp; 2463 lli.ucq_density = 1 << adap->params.sge.iq_qpp; 2464 lli.filt_mode = adap->params.tp.vlan_pri_map; 2465 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */ 2466 for (i = 0; i < NCHAN; i++) 2467 lli.tx_modq[i] = i; 2468 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A); 2469 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A); 2470 lli.fw_vers = adap->params.fw_vers; 2471 lli.dbfifo_int_thresh = dbfifo_int_thresh; 2472 lli.sge_ingpadboundary = adap->sge.fl_align; 2473 lli.sge_egrstatuspagesize = adap->sge.stat_len; 2474 lli.sge_pktshift = adap->sge.pktshift; 2475 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN; 2476 lli.max_ordird_qp = adap->params.max_ordird_qp; 2477 lli.max_ird_adapter = adap->params.max_ird_adapter; 2478 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl; 2479 lli.nodeid = dev_to_node(adap->pdev_dev); 2480 2481 handle = ulds[uld].add(&lli); 2482 if (IS_ERR(handle)) { 2483 dev_warn(adap->pdev_dev, 2484 "could not attach to the %s driver, error %ld\n", 2485 uld_str[uld], PTR_ERR(handle)); 2486 return; 2487 } 2488 2489 adap->uld_handle[uld] = handle; 2490 2491 if (!netevent_registered) { 2492 register_netevent_notifier(&cxgb4_netevent_nb); 2493 netevent_registered = true; 2494 } 2495 2496 if (adap->flags & FULL_INIT_DONE) 2497 ulds[uld].state_change(handle, CXGB4_STATE_UP); 2498 } 2499 2500 static void attach_ulds(struct adapter *adap) 2501 { 2502 unsigned int i; 2503 2504 spin_lock(&adap_rcu_lock); 2505 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list); 2506 spin_unlock(&adap_rcu_lock); 2507 2508 mutex_lock(&uld_mutex); 2509 list_add_tail(&adap->list_node, &adapter_list); 2510 for (i = 0; i < CXGB4_ULD_MAX; i++) 2511 if (ulds[i].add) 2512 uld_attach(adap, i); 2513 mutex_unlock(&uld_mutex); 2514 } 2515 2516 static void detach_ulds(struct adapter *adap) 2517 { 2518 unsigned int i; 2519 2520 mutex_lock(&uld_mutex); 2521 list_del(&adap->list_node); 2522 for (i = 0; i < CXGB4_ULD_MAX; i++) 2523 if (adap->uld_handle[i]) { 2524 ulds[i].state_change(adap->uld_handle[i], 2525 CXGB4_STATE_DETACH); 2526 adap->uld_handle[i] = NULL; 2527 } 2528 if (netevent_registered && list_empty(&adapter_list)) { 2529 unregister_netevent_notifier(&cxgb4_netevent_nb); 2530 netevent_registered = false; 2531 } 2532 mutex_unlock(&uld_mutex); 2533 2534 spin_lock(&adap_rcu_lock); 2535 list_del_rcu(&adap->rcu_node); 2536 spin_unlock(&adap_rcu_lock); 2537 } 2538 2539 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2540 { 2541 unsigned int i; 2542 2543 mutex_lock(&uld_mutex); 2544 for (i = 0; i < CXGB4_ULD_MAX; i++) 2545 if (adap->uld_handle[i]) 2546 ulds[i].state_change(adap->uld_handle[i], new_state); 2547 mutex_unlock(&uld_mutex); 2548 } 2549 2550 /** 2551 * cxgb4_register_uld - register an upper-layer driver 2552 * @type: the ULD type 2553 * @p: the ULD methods 2554 * 2555 * Registers an upper-layer driver with this driver and notifies the ULD 2556 * about any presently available devices that support its type. Returns 2557 * %-EBUSY if a ULD of the same type is already registered. 2558 */ 2559 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p) 2560 { 2561 int ret = 0; 2562 struct adapter *adap; 2563 2564 if (type >= CXGB4_ULD_MAX) 2565 return -EINVAL; 2566 mutex_lock(&uld_mutex); 2567 if (ulds[type].add) { 2568 ret = -EBUSY; 2569 goto out; 2570 } 2571 ulds[type] = *p; 2572 list_for_each_entry(adap, &adapter_list, list_node) 2573 uld_attach(adap, type); 2574 out: mutex_unlock(&uld_mutex); 2575 return ret; 2576 } 2577 EXPORT_SYMBOL(cxgb4_register_uld); 2578 2579 /** 2580 * cxgb4_unregister_uld - unregister an upper-layer driver 2581 * @type: the ULD type 2582 * 2583 * Unregisters an existing upper-layer driver. 2584 */ 2585 int cxgb4_unregister_uld(enum cxgb4_uld type) 2586 { 2587 struct adapter *adap; 2588 2589 if (type >= CXGB4_ULD_MAX) 2590 return -EINVAL; 2591 mutex_lock(&uld_mutex); 2592 list_for_each_entry(adap, &adapter_list, list_node) 2593 adap->uld_handle[type] = NULL; 2594 ulds[type].add = NULL; 2595 mutex_unlock(&uld_mutex); 2596 return 0; 2597 } 2598 EXPORT_SYMBOL(cxgb4_unregister_uld); 2599 2600 #if IS_ENABLED(CONFIG_IPV6) 2601 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2602 unsigned long event, void *data) 2603 { 2604 struct inet6_ifaddr *ifa = data; 2605 struct net_device *event_dev = ifa->idev->dev; 2606 const struct device *parent = NULL; 2607 #if IS_ENABLED(CONFIG_BONDING) 2608 struct adapter *adap; 2609 #endif 2610 if (event_dev->priv_flags & IFF_802_1Q_VLAN) 2611 event_dev = vlan_dev_real_dev(event_dev); 2612 #if IS_ENABLED(CONFIG_BONDING) 2613 if (event_dev->flags & IFF_MASTER) { 2614 list_for_each_entry(adap, &adapter_list, list_node) { 2615 switch (event) { 2616 case NETDEV_UP: 2617 cxgb4_clip_get(adap->port[0], 2618 (const u32 *)ifa, 1); 2619 break; 2620 case NETDEV_DOWN: 2621 cxgb4_clip_release(adap->port[0], 2622 (const u32 *)ifa, 1); 2623 break; 2624 default: 2625 break; 2626 } 2627 } 2628 return NOTIFY_OK; 2629 } 2630 #endif 2631 2632 if (event_dev) 2633 parent = event_dev->dev.parent; 2634 2635 if (parent && parent->driver == &cxgb4_driver.driver) { 2636 switch (event) { 2637 case NETDEV_UP: 2638 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2639 break; 2640 case NETDEV_DOWN: 2641 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2642 break; 2643 default: 2644 break; 2645 } 2646 } 2647 return NOTIFY_OK; 2648 } 2649 2650 static bool inet6addr_registered; 2651 static struct notifier_block cxgb4_inet6addr_notifier = { 2652 .notifier_call = cxgb4_inet6addr_handler 2653 }; 2654 2655 static void update_clip(const struct adapter *adap) 2656 { 2657 int i; 2658 struct net_device *dev; 2659 int ret; 2660 2661 rcu_read_lock(); 2662 2663 for (i = 0; i < MAX_NPORTS; i++) { 2664 dev = adap->port[i]; 2665 ret = 0; 2666 2667 if (dev) 2668 ret = cxgb4_update_root_dev_clip(dev); 2669 2670 if (ret < 0) 2671 break; 2672 } 2673 rcu_read_unlock(); 2674 } 2675 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2676 2677 /** 2678 * cxgb_up - enable the adapter 2679 * @adap: adapter being enabled 2680 * 2681 * Called when the first port is enabled, this function performs the 2682 * actions necessary to make an adapter operational, such as completing 2683 * the initialization of HW modules, and enabling interrupts. 2684 * 2685 * Must be called with the rtnl lock held. 2686 */ 2687 static int cxgb_up(struct adapter *adap) 2688 { 2689 int err; 2690 2691 err = setup_sge_queues(adap); 2692 if (err) 2693 goto out; 2694 err = setup_rss(adap); 2695 if (err) 2696 goto freeq; 2697 2698 if (adap->flags & USING_MSIX) { 2699 name_msix_vecs(adap); 2700 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2701 adap->msix_info[0].desc, adap); 2702 if (err) 2703 goto irq_err; 2704 2705 err = request_msix_queue_irqs(adap); 2706 if (err) { 2707 free_irq(adap->msix_info[0].vec, adap); 2708 goto irq_err; 2709 } 2710 } else { 2711 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2712 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2713 adap->port[0]->name, adap); 2714 if (err) 2715 goto irq_err; 2716 } 2717 enable_rx(adap); 2718 t4_sge_start(adap); 2719 t4_intr_enable(adap); 2720 adap->flags |= FULL_INIT_DONE; 2721 notify_ulds(adap, CXGB4_STATE_UP); 2722 #if IS_ENABLED(CONFIG_IPV6) 2723 update_clip(adap); 2724 #endif 2725 out: 2726 return err; 2727 irq_err: 2728 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2729 freeq: 2730 t4_free_sge_resources(adap); 2731 goto out; 2732 } 2733 2734 static void cxgb_down(struct adapter *adapter) 2735 { 2736 cancel_work_sync(&adapter->tid_release_task); 2737 cancel_work_sync(&adapter->db_full_task); 2738 cancel_work_sync(&adapter->db_drop_task); 2739 adapter->tid_release_task_busy = false; 2740 adapter->tid_release_head = NULL; 2741 2742 t4_sge_stop(adapter); 2743 t4_free_sge_resources(adapter); 2744 adapter->flags &= ~FULL_INIT_DONE; 2745 } 2746 2747 /* 2748 * net_device operations 2749 */ 2750 static int cxgb_open(struct net_device *dev) 2751 { 2752 int err; 2753 struct port_info *pi = netdev_priv(dev); 2754 struct adapter *adapter = pi->adapter; 2755 2756 netif_carrier_off(dev); 2757 2758 if (!(adapter->flags & FULL_INIT_DONE)) { 2759 err = cxgb_up(adapter); 2760 if (err < 0) 2761 return err; 2762 } 2763 2764 err = link_start(dev); 2765 if (!err) 2766 netif_tx_start_all_queues(dev); 2767 return err; 2768 } 2769 2770 static int cxgb_close(struct net_device *dev) 2771 { 2772 struct port_info *pi = netdev_priv(dev); 2773 struct adapter *adapter = pi->adapter; 2774 2775 netif_tx_stop_all_queues(dev); 2776 netif_carrier_off(dev); 2777 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false); 2778 } 2779 2780 /* Return an error number if the indicated filter isn't writable ... 2781 */ 2782 static int writable_filter(struct filter_entry *f) 2783 { 2784 if (f->locked) 2785 return -EPERM; 2786 if (f->pending) 2787 return -EBUSY; 2788 2789 return 0; 2790 } 2791 2792 /* Delete the filter at the specified index (if valid). The checks for all 2793 * the common problems with doing this like the filter being locked, currently 2794 * pending in another operation, etc. 2795 */ 2796 static int delete_filter(struct adapter *adapter, unsigned int fidx) 2797 { 2798 struct filter_entry *f; 2799 int ret; 2800 2801 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids) 2802 return -EINVAL; 2803 2804 f = &adapter->tids.ftid_tab[fidx]; 2805 ret = writable_filter(f); 2806 if (ret) 2807 return ret; 2808 if (f->valid) 2809 return del_filter_wr(adapter, fidx); 2810 2811 return 0; 2812 } 2813 2814 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2815 __be32 sip, __be16 sport, __be16 vlan, 2816 unsigned int queue, unsigned char port, unsigned char mask) 2817 { 2818 int ret; 2819 struct filter_entry *f; 2820 struct adapter *adap; 2821 int i; 2822 u8 *val; 2823 2824 adap = netdev2adap(dev); 2825 2826 /* Adjust stid to correct filter index */ 2827 stid -= adap->tids.sftid_base; 2828 stid += adap->tids.nftids; 2829 2830 /* Check to make sure the filter requested is writable ... 2831 */ 2832 f = &adap->tids.ftid_tab[stid]; 2833 ret = writable_filter(f); 2834 if (ret) 2835 return ret; 2836 2837 /* Clear out any old resources being used by the filter before 2838 * we start constructing the new filter. 2839 */ 2840 if (f->valid) 2841 clear_filter(adap, f); 2842 2843 /* Clear out filter specifications */ 2844 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2845 f->fs.val.lport = cpu_to_be16(sport); 2846 f->fs.mask.lport = ~0; 2847 val = (u8 *)&sip; 2848 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2849 for (i = 0; i < 4; i++) { 2850 f->fs.val.lip[i] = val[i]; 2851 f->fs.mask.lip[i] = ~0; 2852 } 2853 if (adap->params.tp.vlan_pri_map & PORT_F) { 2854 f->fs.val.iport = port; 2855 f->fs.mask.iport = mask; 2856 } 2857 } 2858 2859 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2860 f->fs.val.proto = IPPROTO_TCP; 2861 f->fs.mask.proto = ~0; 2862 } 2863 2864 f->fs.dirsteer = 1; 2865 f->fs.iq = queue; 2866 /* Mark filter as locked */ 2867 f->locked = 1; 2868 f->fs.rpttid = 1; 2869 2870 ret = set_filter_wr(adap, stid); 2871 if (ret) { 2872 clear_filter(adap, f); 2873 return ret; 2874 } 2875 2876 return 0; 2877 } 2878 EXPORT_SYMBOL(cxgb4_create_server_filter); 2879 2880 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2881 unsigned int queue, bool ipv6) 2882 { 2883 int ret; 2884 struct filter_entry *f; 2885 struct adapter *adap; 2886 2887 adap = netdev2adap(dev); 2888 2889 /* Adjust stid to correct filter index */ 2890 stid -= adap->tids.sftid_base; 2891 stid += adap->tids.nftids; 2892 2893 f = &adap->tids.ftid_tab[stid]; 2894 /* Unlock the filter */ 2895 f->locked = 0; 2896 2897 ret = delete_filter(adap, stid); 2898 if (ret) 2899 return ret; 2900 2901 return 0; 2902 } 2903 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2904 2905 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev, 2906 struct rtnl_link_stats64 *ns) 2907 { 2908 struct port_stats stats; 2909 struct port_info *p = netdev_priv(dev); 2910 struct adapter *adapter = p->adapter; 2911 2912 /* Block retrieving statistics during EEH error 2913 * recovery. Otherwise, the recovery might fail 2914 * and the PCI device will be removed permanently 2915 */ 2916 spin_lock(&adapter->stats_lock); 2917 if (!netif_device_present(dev)) { 2918 spin_unlock(&adapter->stats_lock); 2919 return ns; 2920 } 2921 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2922 &p->stats_base); 2923 spin_unlock(&adapter->stats_lock); 2924 2925 ns->tx_bytes = stats.tx_octets; 2926 ns->tx_packets = stats.tx_frames; 2927 ns->rx_bytes = stats.rx_octets; 2928 ns->rx_packets = stats.rx_frames; 2929 ns->multicast = stats.rx_mcast_frames; 2930 2931 /* detailed rx_errors */ 2932 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2933 stats.rx_runt; 2934 ns->rx_over_errors = 0; 2935 ns->rx_crc_errors = stats.rx_fcs_err; 2936 ns->rx_frame_errors = stats.rx_symbol_err; 2937 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 + 2938 stats.rx_ovflow2 + stats.rx_ovflow3 + 2939 stats.rx_trunc0 + stats.rx_trunc1 + 2940 stats.rx_trunc2 + stats.rx_trunc3; 2941 ns->rx_missed_errors = 0; 2942 2943 /* detailed tx_errors */ 2944 ns->tx_aborted_errors = 0; 2945 ns->tx_carrier_errors = 0; 2946 ns->tx_fifo_errors = 0; 2947 ns->tx_heartbeat_errors = 0; 2948 ns->tx_window_errors = 0; 2949 2950 ns->tx_errors = stats.tx_error_frames; 2951 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2952 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2953 return ns; 2954 } 2955 2956 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2957 { 2958 unsigned int mbox; 2959 int ret = 0, prtad, devad; 2960 struct port_info *pi = netdev_priv(dev); 2961 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2962 2963 switch (cmd) { 2964 case SIOCGMIIPHY: 2965 if (pi->mdio_addr < 0) 2966 return -EOPNOTSUPP; 2967 data->phy_id = pi->mdio_addr; 2968 break; 2969 case SIOCGMIIREG: 2970 case SIOCSMIIREG: 2971 if (mdio_phy_id_is_c45(data->phy_id)) { 2972 prtad = mdio_phy_id_prtad(data->phy_id); 2973 devad = mdio_phy_id_devad(data->phy_id); 2974 } else if (data->phy_id < 32) { 2975 prtad = data->phy_id; 2976 devad = 0; 2977 data->reg_num &= 0x1f; 2978 } else 2979 return -EINVAL; 2980 2981 mbox = pi->adapter->pf; 2982 if (cmd == SIOCGMIIREG) 2983 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2984 data->reg_num, &data->val_out); 2985 else 2986 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2987 data->reg_num, data->val_in); 2988 break; 2989 case SIOCGHWTSTAMP: 2990 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2991 sizeof(pi->tstamp_config)) ? 2992 -EFAULT : 0; 2993 case SIOCSHWTSTAMP: 2994 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2995 sizeof(pi->tstamp_config))) 2996 return -EFAULT; 2997 2998 switch (pi->tstamp_config.rx_filter) { 2999 case HWTSTAMP_FILTER_NONE: 3000 pi->rxtstamp = false; 3001 break; 3002 case HWTSTAMP_FILTER_ALL: 3003 pi->rxtstamp = true; 3004 break; 3005 default: 3006 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 3007 return -ERANGE; 3008 } 3009 3010 return copy_to_user(req->ifr_data, &pi->tstamp_config, 3011 sizeof(pi->tstamp_config)) ? 3012 -EFAULT : 0; 3013 default: 3014 return -EOPNOTSUPP; 3015 } 3016 return ret; 3017 } 3018 3019 static void cxgb_set_rxmode(struct net_device *dev) 3020 { 3021 /* unfortunately we can't return errors to the stack */ 3022 set_rxmode(dev, -1, false); 3023 } 3024 3025 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 3026 { 3027 int ret; 3028 struct port_info *pi = netdev_priv(dev); 3029 3030 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */ 3031 return -EINVAL; 3032 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 3033 -1, -1, -1, true); 3034 if (!ret) 3035 dev->mtu = new_mtu; 3036 return ret; 3037 } 3038 3039 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 3040 { 3041 int ret; 3042 struct sockaddr *addr = p; 3043 struct port_info *pi = netdev_priv(dev); 3044 3045 if (!is_valid_ether_addr(addr->sa_data)) 3046 return -EADDRNOTAVAIL; 3047 3048 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 3049 pi->xact_addr_filt, addr->sa_data, true, true); 3050 if (ret < 0) 3051 return ret; 3052 3053 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 3054 pi->xact_addr_filt = ret; 3055 return 0; 3056 } 3057 3058 #ifdef CONFIG_NET_POLL_CONTROLLER 3059 static void cxgb_netpoll(struct net_device *dev) 3060 { 3061 struct port_info *pi = netdev_priv(dev); 3062 struct adapter *adap = pi->adapter; 3063 3064 if (adap->flags & USING_MSIX) { 3065 int i; 3066 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 3067 3068 for (i = pi->nqsets; i; i--, rx++) 3069 t4_sge_intr_msix(0, &rx->rspq); 3070 } else 3071 t4_intr_handler(adap)(0, adap); 3072 } 3073 #endif 3074 3075 static const struct net_device_ops cxgb4_netdev_ops = { 3076 .ndo_open = cxgb_open, 3077 .ndo_stop = cxgb_close, 3078 .ndo_start_xmit = t4_eth_xmit, 3079 .ndo_select_queue = cxgb_select_queue, 3080 .ndo_get_stats64 = cxgb_get_stats, 3081 .ndo_set_rx_mode = cxgb_set_rxmode, 3082 .ndo_set_mac_address = cxgb_set_mac_addr, 3083 .ndo_set_features = cxgb_set_features, 3084 .ndo_validate_addr = eth_validate_addr, 3085 .ndo_do_ioctl = cxgb_ioctl, 3086 .ndo_change_mtu = cxgb_change_mtu, 3087 #ifdef CONFIG_NET_POLL_CONTROLLER 3088 .ndo_poll_controller = cxgb_netpoll, 3089 #endif 3090 #ifdef CONFIG_CHELSIO_T4_FCOE 3091 .ndo_fcoe_enable = cxgb_fcoe_enable, 3092 .ndo_fcoe_disable = cxgb_fcoe_disable, 3093 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3094 #ifdef CONFIG_NET_RX_BUSY_POLL 3095 .ndo_busy_poll = cxgb_busy_poll, 3096 #endif 3097 3098 }; 3099 3100 void t4_fatal_err(struct adapter *adap) 3101 { 3102 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0); 3103 t4_intr_disable(adap); 3104 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3105 } 3106 3107 static void setup_memwin(struct adapter *adap) 3108 { 3109 u32 nic_win_base = t4_get_util_window(adap); 3110 3111 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3112 } 3113 3114 static void setup_memwin_rdma(struct adapter *adap) 3115 { 3116 if (adap->vres.ocq.size) { 3117 u32 start; 3118 unsigned int sz_kb; 3119 3120 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3121 start &= PCI_BASE_ADDRESS_MEM_MASK; 3122 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3123 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3124 t4_write_reg(adap, 3125 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3126 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3127 t4_write_reg(adap, 3128 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3129 adap->vres.ocq.start); 3130 t4_read_reg(adap, 3131 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3132 } 3133 } 3134 3135 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3136 { 3137 u32 v; 3138 int ret; 3139 3140 /* get device capabilities */ 3141 memset(c, 0, sizeof(*c)); 3142 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3143 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3144 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3145 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3146 if (ret < 0) 3147 return ret; 3148 3149 /* select capabilities we'll be using */ 3150 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) { 3151 if (!vf_acls) 3152 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM); 3153 else 3154 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM); 3155 } else if (vf_acls) { 3156 dev_err(adap->pdev_dev, "virtualization ACLs not supported"); 3157 return ret; 3158 } 3159 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3160 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3161 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3162 if (ret < 0) 3163 return ret; 3164 3165 ret = t4_config_glbl_rss(adap, adap->pf, 3166 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3167 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3168 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3169 if (ret < 0) 3170 return ret; 3171 3172 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3173 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3174 FW_CMD_CAP_PF); 3175 if (ret < 0) 3176 return ret; 3177 3178 t4_sge_init(adap); 3179 3180 /* tweak some settings */ 3181 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3182 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3183 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3184 v = t4_read_reg(adap, TP_PIO_DATA_A); 3185 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3186 3187 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3188 adap->params.tp.tx_modq_map = 0xE4; 3189 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3190 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3191 3192 /* associate each Tx modulation queue with consecutive Tx channels */ 3193 v = 0x84218421; 3194 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3195 &v, 1, TP_TX_SCHED_HDR_A); 3196 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3197 &v, 1, TP_TX_SCHED_FIFO_A); 3198 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3199 &v, 1, TP_TX_SCHED_PCMD_A); 3200 3201 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3202 if (is_offload(adap)) { 3203 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3204 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3205 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3206 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3207 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3208 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3209 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3210 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3211 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3212 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3213 } 3214 3215 /* get basic stuff going */ 3216 return t4_early_init(adap, adap->pf); 3217 } 3218 3219 /* 3220 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3221 */ 3222 #define MAX_ATIDS 8192U 3223 3224 /* 3225 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3226 * 3227 * If the firmware we're dealing with has Configuration File support, then 3228 * we use that to perform all configuration 3229 */ 3230 3231 /* 3232 * Tweak configuration based on module parameters, etc. Most of these have 3233 * defaults assigned to them by Firmware Configuration Files (if we're using 3234 * them) but need to be explicitly set if we're using hard-coded 3235 * initialization. But even in the case of using Firmware Configuration 3236 * Files, we'd like to expose the ability to change these via module 3237 * parameters so these are essentially common tweaks/settings for 3238 * Configuration Files and hard-coded initialization ... 3239 */ 3240 static int adap_init0_tweaks(struct adapter *adapter) 3241 { 3242 /* 3243 * Fix up various Host-Dependent Parameters like Page Size, Cache 3244 * Line Size, etc. The firmware default is for a 4KB Page Size and 3245 * 64B Cache Line Size ... 3246 */ 3247 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3248 3249 /* 3250 * Process module parameters which affect early initialization. 3251 */ 3252 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3253 dev_err(&adapter->pdev->dev, 3254 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3255 rx_dma_offset); 3256 rx_dma_offset = 2; 3257 } 3258 t4_set_reg_field(adapter, SGE_CONTROL_A, 3259 PKTSHIFT_V(PKTSHIFT_M), 3260 PKTSHIFT_V(rx_dma_offset)); 3261 3262 /* 3263 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3264 * adds the pseudo header itself. 3265 */ 3266 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3267 CSUM_HAS_PSEUDO_HDR_F, 0); 3268 3269 return 0; 3270 } 3271 3272 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3273 * unto themselves and they contain their own firmware to perform their 3274 * tasks ... 3275 */ 3276 static int phy_aq1202_version(const u8 *phy_fw_data, 3277 size_t phy_fw_size) 3278 { 3279 int offset; 3280 3281 /* At offset 0x8 you're looking for the primary image's 3282 * starting offset which is 3 Bytes wide 3283 * 3284 * At offset 0xa of the primary image, you look for the offset 3285 * of the DRAM segment which is 3 Bytes wide. 3286 * 3287 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3288 * wide 3289 */ 3290 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3291 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3292 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3293 3294 offset = le24(phy_fw_data + 0x8) << 12; 3295 offset = le24(phy_fw_data + offset + 0xa); 3296 return be16(phy_fw_data + offset + 0x27e); 3297 3298 #undef be16 3299 #undef le16 3300 #undef le24 3301 } 3302 3303 static struct info_10gbt_phy_fw { 3304 unsigned int phy_fw_id; /* PCI Device ID */ 3305 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3306 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3307 int phy_flash; /* Has FLASH for PHY Firmware */ 3308 } phy_info_array[] = { 3309 { 3310 PHY_AQ1202_DEVICEID, 3311 PHY_AQ1202_FIRMWARE, 3312 phy_aq1202_version, 3313 1, 3314 }, 3315 { 3316 PHY_BCM84834_DEVICEID, 3317 PHY_BCM84834_FIRMWARE, 3318 NULL, 3319 0, 3320 }, 3321 { 0, NULL, NULL }, 3322 }; 3323 3324 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3325 { 3326 int i; 3327 3328 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3329 if (phy_info_array[i].phy_fw_id == devid) 3330 return &phy_info_array[i]; 3331 } 3332 return NULL; 3333 } 3334 3335 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3336 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3337 * we return a negative error number. If we transfer new firmware we return 1 3338 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3339 */ 3340 static int adap_init0_phy(struct adapter *adap) 3341 { 3342 const struct firmware *phyf; 3343 int ret; 3344 struct info_10gbt_phy_fw *phy_info; 3345 3346 /* Use the device ID to determine which PHY file to flash. 3347 */ 3348 phy_info = find_phy_info(adap->pdev->device); 3349 if (!phy_info) { 3350 dev_warn(adap->pdev_dev, 3351 "No PHY Firmware file found for this PHY\n"); 3352 return -EOPNOTSUPP; 3353 } 3354 3355 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3356 * use that. The adapter firmware provides us with a memory buffer 3357 * where we can load a PHY firmware file from the host if we want to 3358 * override the PHY firmware File in flash. 3359 */ 3360 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3361 adap->pdev_dev); 3362 if (ret < 0) { 3363 /* For adapters without FLASH attached to PHY for their 3364 * firmware, it's obviously a fatal error if we can't get the 3365 * firmware to the adapter. For adapters with PHY firmware 3366 * FLASH storage, it's worth a warning if we can't find the 3367 * PHY Firmware but we'll neuter the error ... 3368 */ 3369 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3370 "/lib/firmware/%s, error %d\n", 3371 phy_info->phy_fw_file, -ret); 3372 if (phy_info->phy_flash) { 3373 int cur_phy_fw_ver = 0; 3374 3375 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3376 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3377 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3378 ret = 0; 3379 } 3380 3381 return ret; 3382 } 3383 3384 /* Load PHY Firmware onto adapter. 3385 */ 3386 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3387 phy_info->phy_fw_version, 3388 (u8 *)phyf->data, phyf->size); 3389 if (ret < 0) 3390 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3391 -ret); 3392 else if (ret > 0) { 3393 int new_phy_fw_ver = 0; 3394 3395 if (phy_info->phy_fw_version) 3396 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3397 phyf->size); 3398 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3399 "Firmware /lib/firmware/%s, version %#x\n", 3400 phy_info->phy_fw_file, new_phy_fw_ver); 3401 } 3402 3403 release_firmware(phyf); 3404 3405 return ret; 3406 } 3407 3408 /* 3409 * Attempt to initialize the adapter via a Firmware Configuration File. 3410 */ 3411 static int adap_init0_config(struct adapter *adapter, int reset) 3412 { 3413 struct fw_caps_config_cmd caps_cmd; 3414 const struct firmware *cf; 3415 unsigned long mtype = 0, maddr = 0; 3416 u32 finiver, finicsum, cfcsum; 3417 int ret; 3418 int config_issued = 0; 3419 char *fw_config_file, fw_config_file_path[256]; 3420 char *config_name = NULL; 3421 3422 /* 3423 * Reset device if necessary. 3424 */ 3425 if (reset) { 3426 ret = t4_fw_reset(adapter, adapter->mbox, 3427 PIORSTMODE_F | PIORST_F); 3428 if (ret < 0) 3429 goto bye; 3430 } 3431 3432 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3433 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3434 * to be performed after any global adapter RESET above since some 3435 * PHYs only have local RAM copies of the PHY firmware. 3436 */ 3437 if (is_10gbt_device(adapter->pdev->device)) { 3438 ret = adap_init0_phy(adapter); 3439 if (ret < 0) 3440 goto bye; 3441 } 3442 /* 3443 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3444 * then use that. Otherwise, use the configuration file stored 3445 * in the adapter flash ... 3446 */ 3447 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3448 case CHELSIO_T4: 3449 fw_config_file = FW4_CFNAME; 3450 break; 3451 case CHELSIO_T5: 3452 fw_config_file = FW5_CFNAME; 3453 break; 3454 case CHELSIO_T6: 3455 fw_config_file = FW6_CFNAME; 3456 break; 3457 default: 3458 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3459 adapter->pdev->device); 3460 ret = -EINVAL; 3461 goto bye; 3462 } 3463 3464 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3465 if (ret < 0) { 3466 config_name = "On FLASH"; 3467 mtype = FW_MEMTYPE_CF_FLASH; 3468 maddr = t4_flash_cfg_addr(adapter); 3469 } else { 3470 u32 params[7], val[7]; 3471 3472 sprintf(fw_config_file_path, 3473 "/lib/firmware/%s", fw_config_file); 3474 config_name = fw_config_file_path; 3475 3476 if (cf->size >= FLASH_CFG_MAX_SIZE) 3477 ret = -ENOMEM; 3478 else { 3479 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3480 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3481 ret = t4_query_params(adapter, adapter->mbox, 3482 adapter->pf, 0, 1, params, val); 3483 if (ret == 0) { 3484 /* 3485 * For t4_memory_rw() below addresses and 3486 * sizes have to be in terms of multiples of 4 3487 * bytes. So, if the Configuration File isn't 3488 * a multiple of 4 bytes in length we'll have 3489 * to write that out separately since we can't 3490 * guarantee that the bytes following the 3491 * residual byte in the buffer returned by 3492 * request_firmware() are zeroed out ... 3493 */ 3494 size_t resid = cf->size & 0x3; 3495 size_t size = cf->size & ~0x3; 3496 __be32 *data = (__be32 *)cf->data; 3497 3498 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3499 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3500 3501 spin_lock(&adapter->win0_lock); 3502 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3503 size, data, T4_MEMORY_WRITE); 3504 if (ret == 0 && resid != 0) { 3505 union { 3506 __be32 word; 3507 char buf[4]; 3508 } last; 3509 int i; 3510 3511 last.word = data[size >> 2]; 3512 for (i = resid; i < 4; i++) 3513 last.buf[i] = 0; 3514 ret = t4_memory_rw(adapter, 0, mtype, 3515 maddr + size, 3516 4, &last.word, 3517 T4_MEMORY_WRITE); 3518 } 3519 spin_unlock(&adapter->win0_lock); 3520 } 3521 } 3522 3523 release_firmware(cf); 3524 if (ret) 3525 goto bye; 3526 } 3527 3528 /* 3529 * Issue a Capability Configuration command to the firmware to get it 3530 * to parse the Configuration File. We don't use t4_fw_config_file() 3531 * because we want the ability to modify various features after we've 3532 * processed the configuration file ... 3533 */ 3534 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3535 caps_cmd.op_to_write = 3536 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3537 FW_CMD_REQUEST_F | 3538 FW_CMD_READ_F); 3539 caps_cmd.cfvalid_to_len16 = 3540 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3541 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3542 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3543 FW_LEN16(caps_cmd)); 3544 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3545 &caps_cmd); 3546 3547 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3548 * Configuration File in FLASH), our last gasp effort is to use the 3549 * Firmware Configuration File which is embedded in the firmware. A 3550 * very few early versions of the firmware didn't have one embedded 3551 * but we can ignore those. 3552 */ 3553 if (ret == -ENOENT) { 3554 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3555 caps_cmd.op_to_write = 3556 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3557 FW_CMD_REQUEST_F | 3558 FW_CMD_READ_F); 3559 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3560 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3561 sizeof(caps_cmd), &caps_cmd); 3562 config_name = "Firmware Default"; 3563 } 3564 3565 config_issued = 1; 3566 if (ret < 0) 3567 goto bye; 3568 3569 finiver = ntohl(caps_cmd.finiver); 3570 finicsum = ntohl(caps_cmd.finicsum); 3571 cfcsum = ntohl(caps_cmd.cfcsum); 3572 if (finicsum != cfcsum) 3573 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3574 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3575 finicsum, cfcsum); 3576 3577 /* 3578 * And now tell the firmware to use the configuration we just loaded. 3579 */ 3580 caps_cmd.op_to_write = 3581 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3582 FW_CMD_REQUEST_F | 3583 FW_CMD_WRITE_F); 3584 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3585 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3586 NULL); 3587 if (ret < 0) 3588 goto bye; 3589 3590 /* 3591 * Tweak configuration based on system architecture, module 3592 * parameters, etc. 3593 */ 3594 ret = adap_init0_tweaks(adapter); 3595 if (ret < 0) 3596 goto bye; 3597 3598 /* 3599 * And finally tell the firmware to initialize itself using the 3600 * parameters from the Configuration File. 3601 */ 3602 ret = t4_fw_initialize(adapter, adapter->mbox); 3603 if (ret < 0) 3604 goto bye; 3605 3606 /* Emit Firmware Configuration File information and return 3607 * successfully. 3608 */ 3609 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 3610 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 3611 config_name, finiver, cfcsum); 3612 return 0; 3613 3614 /* 3615 * Something bad happened. Return the error ... (If the "error" 3616 * is that there's no Configuration File on the adapter we don't 3617 * want to issue a warning since this is fairly common.) 3618 */ 3619 bye: 3620 if (config_issued && ret != -ENOENT) 3621 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 3622 config_name, -ret); 3623 return ret; 3624 } 3625 3626 static struct fw_info fw_info_array[] = { 3627 { 3628 .chip = CHELSIO_T4, 3629 .fs_name = FW4_CFNAME, 3630 .fw_mod_name = FW4_FNAME, 3631 .fw_hdr = { 3632 .chip = FW_HDR_CHIP_T4, 3633 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 3634 .intfver_nic = FW_INTFVER(T4, NIC), 3635 .intfver_vnic = FW_INTFVER(T4, VNIC), 3636 .intfver_ri = FW_INTFVER(T4, RI), 3637 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3638 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3639 }, 3640 }, { 3641 .chip = CHELSIO_T5, 3642 .fs_name = FW5_CFNAME, 3643 .fw_mod_name = FW5_FNAME, 3644 .fw_hdr = { 3645 .chip = FW_HDR_CHIP_T5, 3646 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 3647 .intfver_nic = FW_INTFVER(T5, NIC), 3648 .intfver_vnic = FW_INTFVER(T5, VNIC), 3649 .intfver_ri = FW_INTFVER(T5, RI), 3650 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3651 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3652 }, 3653 }, { 3654 .chip = CHELSIO_T6, 3655 .fs_name = FW6_CFNAME, 3656 .fw_mod_name = FW6_FNAME, 3657 .fw_hdr = { 3658 .chip = FW_HDR_CHIP_T6, 3659 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 3660 .intfver_nic = FW_INTFVER(T6, NIC), 3661 .intfver_vnic = FW_INTFVER(T6, VNIC), 3662 .intfver_ofld = FW_INTFVER(T6, OFLD), 3663 .intfver_ri = FW_INTFVER(T6, RI), 3664 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 3665 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 3666 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 3667 .intfver_fcoe = FW_INTFVER(T6, FCOE), 3668 }, 3669 } 3670 3671 }; 3672 3673 static struct fw_info *find_fw_info(int chip) 3674 { 3675 int i; 3676 3677 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 3678 if (fw_info_array[i].chip == chip) 3679 return &fw_info_array[i]; 3680 } 3681 return NULL; 3682 } 3683 3684 /* 3685 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3686 */ 3687 static int adap_init0(struct adapter *adap) 3688 { 3689 int ret; 3690 u32 v, port_vec; 3691 enum dev_state state; 3692 u32 params[7], val[7]; 3693 struct fw_caps_config_cmd caps_cmd; 3694 int reset = 1; 3695 3696 /* Grab Firmware Device Log parameters as early as possible so we have 3697 * access to it for debugging, etc. 3698 */ 3699 ret = t4_init_devlog_params(adap); 3700 if (ret < 0) 3701 return ret; 3702 3703 /* Contact FW, advertising Master capability */ 3704 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state); 3705 if (ret < 0) { 3706 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 3707 ret); 3708 return ret; 3709 } 3710 if (ret == adap->mbox) 3711 adap->flags |= MASTER_PF; 3712 3713 /* 3714 * If we're the Master PF Driver and the device is uninitialized, 3715 * then let's consider upgrading the firmware ... (We always want 3716 * to check the firmware version number in order to A. get it for 3717 * later reporting and B. to warn if the currently loaded firmware 3718 * is excessively mismatched relative to the driver.) 3719 */ 3720 t4_get_fw_version(adap, &adap->params.fw_vers); 3721 t4_get_tp_version(adap, &adap->params.tp_vers); 3722 ret = t4_check_fw_version(adap); 3723 /* If firmware is too old (not supported by driver) force an update. */ 3724 if (ret) 3725 state = DEV_STATE_UNINIT; 3726 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 3727 struct fw_info *fw_info; 3728 struct fw_hdr *card_fw; 3729 const struct firmware *fw; 3730 const u8 *fw_data = NULL; 3731 unsigned int fw_size = 0; 3732 3733 /* This is the firmware whose headers the driver was compiled 3734 * against 3735 */ 3736 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 3737 if (fw_info == NULL) { 3738 dev_err(adap->pdev_dev, 3739 "unable to get firmware info for chip %d.\n", 3740 CHELSIO_CHIP_VERSION(adap->params.chip)); 3741 return -EINVAL; 3742 } 3743 3744 /* allocate memory to read the header of the firmware on the 3745 * card 3746 */ 3747 card_fw = t4_alloc_mem(sizeof(*card_fw)); 3748 3749 /* Get FW from from /lib/firmware/ */ 3750 ret = request_firmware(&fw, fw_info->fw_mod_name, 3751 adap->pdev_dev); 3752 if (ret < 0) { 3753 dev_err(adap->pdev_dev, 3754 "unable to load firmware image %s, error %d\n", 3755 fw_info->fw_mod_name, ret); 3756 } else { 3757 fw_data = fw->data; 3758 fw_size = fw->size; 3759 } 3760 3761 /* upgrade FW logic */ 3762 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 3763 state, &reset); 3764 3765 /* Cleaning up */ 3766 release_firmware(fw); 3767 t4_free_mem(card_fw); 3768 3769 if (ret < 0) 3770 goto bye; 3771 } 3772 3773 /* 3774 * Grab VPD parameters. This should be done after we establish a 3775 * connection to the firmware since some of the VPD parameters 3776 * (notably the Core Clock frequency) are retrieved via requests to 3777 * the firmware. On the other hand, we need these fairly early on 3778 * so we do this right after getting ahold of the firmware. 3779 */ 3780 ret = t4_get_vpd_params(adap, &adap->params.vpd); 3781 if (ret < 0) 3782 goto bye; 3783 3784 /* 3785 * Find out what ports are available to us. Note that we need to do 3786 * this before calling adap_init0_no_config() since it needs nports 3787 * and portvec ... 3788 */ 3789 v = 3790 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3791 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 3792 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 3793 if (ret < 0) 3794 goto bye; 3795 3796 adap->params.nports = hweight32(port_vec); 3797 adap->params.portvec = port_vec; 3798 3799 /* If the firmware is initialized already, emit a simply note to that 3800 * effect. Otherwise, it's time to try initializing the adapter. 3801 */ 3802 if (state == DEV_STATE_INIT) { 3803 dev_info(adap->pdev_dev, "Coming up as %s: "\ 3804 "Adapter already initialized\n", 3805 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 3806 } else { 3807 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 3808 "Initializing adapter\n"); 3809 3810 /* Find out whether we're dealing with a version of the 3811 * firmware which has configuration file support. 3812 */ 3813 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3814 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3815 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3816 params, val); 3817 3818 /* If the firmware doesn't support Configuration Files, 3819 * return an error. 3820 */ 3821 if (ret < 0) { 3822 dev_err(adap->pdev_dev, "firmware doesn't support " 3823 "Firmware Configuration Files\n"); 3824 goto bye; 3825 } 3826 3827 /* The firmware provides us with a memory buffer where we can 3828 * load a Configuration File from the host if we want to 3829 * override the Configuration File in flash. 3830 */ 3831 ret = adap_init0_config(adap, reset); 3832 if (ret == -ENOENT) { 3833 dev_err(adap->pdev_dev, "no Configuration File " 3834 "present on adapter.\n"); 3835 goto bye; 3836 } 3837 if (ret < 0) { 3838 dev_err(adap->pdev_dev, "could not initialize " 3839 "adapter, error %d\n", -ret); 3840 goto bye; 3841 } 3842 } 3843 3844 /* Give the SGE code a chance to pull in anything that it needs ... 3845 * Note that this must be called after we retrieve our VPD parameters 3846 * in order to know how to convert core ticks to seconds, etc. 3847 */ 3848 ret = t4_sge_init(adap); 3849 if (ret < 0) 3850 goto bye; 3851 3852 if (is_bypass_device(adap->pdev->device)) 3853 adap->params.bypass = 1; 3854 3855 /* 3856 * Grab some of our basic fundamental operating parameters. 3857 */ 3858 #define FW_PARAM_DEV(param) \ 3859 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 3860 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 3861 3862 #define FW_PARAM_PFVF(param) \ 3863 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 3864 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 3865 FW_PARAMS_PARAM_Y_V(0) | \ 3866 FW_PARAMS_PARAM_Z_V(0) 3867 3868 params[0] = FW_PARAM_PFVF(EQ_START); 3869 params[1] = FW_PARAM_PFVF(L2T_START); 3870 params[2] = FW_PARAM_PFVF(L2T_END); 3871 params[3] = FW_PARAM_PFVF(FILTER_START); 3872 params[4] = FW_PARAM_PFVF(FILTER_END); 3873 params[5] = FW_PARAM_PFVF(IQFLINT_START); 3874 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 3875 if (ret < 0) 3876 goto bye; 3877 adap->sge.egr_start = val[0]; 3878 adap->l2t_start = val[1]; 3879 adap->l2t_end = val[2]; 3880 adap->tids.ftid_base = val[3]; 3881 adap->tids.nftids = val[4] - val[3] + 1; 3882 adap->sge.ingr_start = val[5]; 3883 3884 /* qids (ingress/egress) returned from firmware can be anywhere 3885 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 3886 * Hence driver needs to allocate memory for this range to 3887 * store the queue info. Get the highest IQFLINT/EQ index returned 3888 * in FW_EQ_*_CMD.alloc command. 3889 */ 3890 params[0] = FW_PARAM_PFVF(EQ_END); 3891 params[1] = FW_PARAM_PFVF(IQFLINT_END); 3892 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3893 if (ret < 0) 3894 goto bye; 3895 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 3896 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 3897 3898 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 3899 sizeof(*adap->sge.egr_map), GFP_KERNEL); 3900 if (!adap->sge.egr_map) { 3901 ret = -ENOMEM; 3902 goto bye; 3903 } 3904 3905 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 3906 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 3907 if (!adap->sge.ingr_map) { 3908 ret = -ENOMEM; 3909 goto bye; 3910 } 3911 3912 /* Allocate the memory for the vaious egress queue bitmaps 3913 * ie starving_fl, txq_maperr and blocked_fl. 3914 */ 3915 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3916 sizeof(long), GFP_KERNEL); 3917 if (!adap->sge.starving_fl) { 3918 ret = -ENOMEM; 3919 goto bye; 3920 } 3921 3922 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3923 sizeof(long), GFP_KERNEL); 3924 if (!adap->sge.txq_maperr) { 3925 ret = -ENOMEM; 3926 goto bye; 3927 } 3928 3929 #ifdef CONFIG_DEBUG_FS 3930 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3931 sizeof(long), GFP_KERNEL); 3932 if (!adap->sge.blocked_fl) { 3933 ret = -ENOMEM; 3934 goto bye; 3935 } 3936 #endif 3937 3938 params[0] = FW_PARAM_PFVF(CLIP_START); 3939 params[1] = FW_PARAM_PFVF(CLIP_END); 3940 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3941 if (ret < 0) 3942 goto bye; 3943 adap->clipt_start = val[0]; 3944 adap->clipt_end = val[1]; 3945 3946 /* query params related to active filter region */ 3947 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 3948 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 3949 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3950 /* If Active filter size is set we enable establishing 3951 * offload connection through firmware work request 3952 */ 3953 if ((val[0] != val[1]) && (ret >= 0)) { 3954 adap->flags |= FW_OFLD_CONN; 3955 adap->tids.aftid_base = val[0]; 3956 adap->tids.aftid_end = val[1]; 3957 } 3958 3959 /* If we're running on newer firmware, let it know that we're 3960 * prepared to deal with encapsulated CPL messages. Older 3961 * firmware won't understand this and we'll just get 3962 * unencapsulated messages ... 3963 */ 3964 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 3965 val[0] = 1; 3966 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 3967 3968 /* 3969 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 3970 * capability. Earlier versions of the firmware didn't have the 3971 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 3972 * permission to use ULPTX MEMWRITE DSGL. 3973 */ 3974 if (is_t4(adap->params.chip)) { 3975 adap->params.ulptx_memwrite_dsgl = false; 3976 } else { 3977 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 3978 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3979 1, params, val); 3980 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 3981 } 3982 3983 /* 3984 * Get device capabilities so we can determine what resources we need 3985 * to manage. 3986 */ 3987 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3988 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3989 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3990 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3991 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 3992 &caps_cmd); 3993 if (ret < 0) 3994 goto bye; 3995 3996 if (caps_cmd.ofldcaps) { 3997 /* query offload-related parameters */ 3998 params[0] = FW_PARAM_DEV(NTID); 3999 params[1] = FW_PARAM_PFVF(SERVER_START); 4000 params[2] = FW_PARAM_PFVF(SERVER_END); 4001 params[3] = FW_PARAM_PFVF(TDDP_START); 4002 params[4] = FW_PARAM_PFVF(TDDP_END); 4003 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4004 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4005 params, val); 4006 if (ret < 0) 4007 goto bye; 4008 adap->tids.ntids = val[0]; 4009 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4010 adap->tids.stid_base = val[1]; 4011 adap->tids.nstids = val[2] - val[1] + 1; 4012 /* 4013 * Setup server filter region. Divide the available filter 4014 * region into two parts. Regular filters get 1/3rd and server 4015 * filters get 2/3rd part. This is only enabled if workarond 4016 * path is enabled. 4017 * 1. For regular filters. 4018 * 2. Server filter: This are special filters which are used 4019 * to redirect SYN packets to offload queue. 4020 */ 4021 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 4022 adap->tids.sftid_base = adap->tids.ftid_base + 4023 DIV_ROUND_UP(adap->tids.nftids, 3); 4024 adap->tids.nsftids = adap->tids.nftids - 4025 DIV_ROUND_UP(adap->tids.nftids, 3); 4026 adap->tids.nftids = adap->tids.sftid_base - 4027 adap->tids.ftid_base; 4028 } 4029 adap->vres.ddp.start = val[3]; 4030 adap->vres.ddp.size = val[4] - val[3] + 1; 4031 adap->params.ofldq_wr_cred = val[5]; 4032 4033 adap->params.offload = 1; 4034 } 4035 if (caps_cmd.rdmacaps) { 4036 params[0] = FW_PARAM_PFVF(STAG_START); 4037 params[1] = FW_PARAM_PFVF(STAG_END); 4038 params[2] = FW_PARAM_PFVF(RQ_START); 4039 params[3] = FW_PARAM_PFVF(RQ_END); 4040 params[4] = FW_PARAM_PFVF(PBL_START); 4041 params[5] = FW_PARAM_PFVF(PBL_END); 4042 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4043 params, val); 4044 if (ret < 0) 4045 goto bye; 4046 adap->vres.stag.start = val[0]; 4047 adap->vres.stag.size = val[1] - val[0] + 1; 4048 adap->vres.rq.start = val[2]; 4049 adap->vres.rq.size = val[3] - val[2] + 1; 4050 adap->vres.pbl.start = val[4]; 4051 adap->vres.pbl.size = val[5] - val[4] + 1; 4052 4053 params[0] = FW_PARAM_PFVF(SQRQ_START); 4054 params[1] = FW_PARAM_PFVF(SQRQ_END); 4055 params[2] = FW_PARAM_PFVF(CQ_START); 4056 params[3] = FW_PARAM_PFVF(CQ_END); 4057 params[4] = FW_PARAM_PFVF(OCQ_START); 4058 params[5] = FW_PARAM_PFVF(OCQ_END); 4059 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4060 val); 4061 if (ret < 0) 4062 goto bye; 4063 adap->vres.qp.start = val[0]; 4064 adap->vres.qp.size = val[1] - val[0] + 1; 4065 adap->vres.cq.start = val[2]; 4066 adap->vres.cq.size = val[3] - val[2] + 1; 4067 adap->vres.ocq.start = val[4]; 4068 adap->vres.ocq.size = val[5] - val[4] + 1; 4069 4070 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4071 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4072 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 4073 val); 4074 if (ret < 0) { 4075 adap->params.max_ordird_qp = 8; 4076 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 4077 ret = 0; 4078 } else { 4079 adap->params.max_ordird_qp = val[0]; 4080 adap->params.max_ird_adapter = val[1]; 4081 } 4082 dev_info(adap->pdev_dev, 4083 "max_ordird_qp %d max_ird_adapter %d\n", 4084 adap->params.max_ordird_qp, 4085 adap->params.max_ird_adapter); 4086 } 4087 if (caps_cmd.iscsicaps) { 4088 params[0] = FW_PARAM_PFVF(ISCSI_START); 4089 params[1] = FW_PARAM_PFVF(ISCSI_END); 4090 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4091 params, val); 4092 if (ret < 0) 4093 goto bye; 4094 adap->vres.iscsi.start = val[0]; 4095 adap->vres.iscsi.size = val[1] - val[0] + 1; 4096 } 4097 #undef FW_PARAM_PFVF 4098 #undef FW_PARAM_DEV 4099 4100 /* The MTU/MSS Table is initialized by now, so load their values. If 4101 * we're initializing the adapter, then we'll make any modifications 4102 * we want to the MTU/MSS Table and also initialize the congestion 4103 * parameters. 4104 */ 4105 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4106 if (state != DEV_STATE_INIT) { 4107 int i; 4108 4109 /* The default MTU Table contains values 1492 and 1500. 4110 * However, for TCP, it's better to have two values which are 4111 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4112 * This allows us to have a TCP Data Payload which is a 4113 * multiple of 8 regardless of what combination of TCP Options 4114 * are in use (always a multiple of 4 bytes) which is 4115 * important for performance reasons. For instance, if no 4116 * options are in use, then we have a 20-byte IP header and a 4117 * 20-byte TCP header. In this case, a 1500-byte MSS would 4118 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4119 * which is not a multiple of 8. So using an MSS of 1488 in 4120 * this case results in a TCP Data Payload of 1448 bytes which 4121 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4122 * Stamps have been negotiated, then an MTU of 1500 bytes 4123 * results in a TCP Data Payload of 1448 bytes which, as 4124 * above, is a multiple of 8 bytes ... 4125 */ 4126 for (i = 0; i < NMTUS; i++) 4127 if (adap->params.mtus[i] == 1492) { 4128 adap->params.mtus[i] = 1488; 4129 break; 4130 } 4131 4132 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4133 adap->params.b_wnd); 4134 } 4135 t4_init_sge_params(adap); 4136 adap->flags |= FW_OK; 4137 t4_init_tp_params(adap); 4138 return 0; 4139 4140 /* 4141 * Something bad happened. If a command timed out or failed with EIO 4142 * FW does not operate within its spec or something catastrophic 4143 * happened to HW/FW, stop issuing commands. 4144 */ 4145 bye: 4146 kfree(adap->sge.egr_map); 4147 kfree(adap->sge.ingr_map); 4148 kfree(adap->sge.starving_fl); 4149 kfree(adap->sge.txq_maperr); 4150 #ifdef CONFIG_DEBUG_FS 4151 kfree(adap->sge.blocked_fl); 4152 #endif 4153 if (ret != -ETIMEDOUT && ret != -EIO) 4154 t4_fw_bye(adap, adap->mbox); 4155 return ret; 4156 } 4157 4158 /* EEH callbacks */ 4159 4160 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4161 pci_channel_state_t state) 4162 { 4163 int i; 4164 struct adapter *adap = pci_get_drvdata(pdev); 4165 4166 if (!adap) 4167 goto out; 4168 4169 rtnl_lock(); 4170 adap->flags &= ~FW_OK; 4171 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4172 spin_lock(&adap->stats_lock); 4173 for_each_port(adap, i) { 4174 struct net_device *dev = adap->port[i]; 4175 4176 netif_device_detach(dev); 4177 netif_carrier_off(dev); 4178 } 4179 spin_unlock(&adap->stats_lock); 4180 disable_interrupts(adap); 4181 if (adap->flags & FULL_INIT_DONE) 4182 cxgb_down(adap); 4183 rtnl_unlock(); 4184 if ((adap->flags & DEV_ENABLED)) { 4185 pci_disable_device(pdev); 4186 adap->flags &= ~DEV_ENABLED; 4187 } 4188 out: return state == pci_channel_io_perm_failure ? 4189 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4190 } 4191 4192 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4193 { 4194 int i, ret; 4195 struct fw_caps_config_cmd c; 4196 struct adapter *adap = pci_get_drvdata(pdev); 4197 4198 if (!adap) { 4199 pci_restore_state(pdev); 4200 pci_save_state(pdev); 4201 return PCI_ERS_RESULT_RECOVERED; 4202 } 4203 4204 if (!(adap->flags & DEV_ENABLED)) { 4205 if (pci_enable_device(pdev)) { 4206 dev_err(&pdev->dev, "Cannot reenable PCI " 4207 "device after reset\n"); 4208 return PCI_ERS_RESULT_DISCONNECT; 4209 } 4210 adap->flags |= DEV_ENABLED; 4211 } 4212 4213 pci_set_master(pdev); 4214 pci_restore_state(pdev); 4215 pci_save_state(pdev); 4216 pci_cleanup_aer_uncorrect_error_status(pdev); 4217 4218 if (t4_wait_dev_ready(adap->regs) < 0) 4219 return PCI_ERS_RESULT_DISCONNECT; 4220 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4221 return PCI_ERS_RESULT_DISCONNECT; 4222 adap->flags |= FW_OK; 4223 if (adap_init1(adap, &c)) 4224 return PCI_ERS_RESULT_DISCONNECT; 4225 4226 for_each_port(adap, i) { 4227 struct port_info *p = adap2pinfo(adap, i); 4228 4229 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 4230 NULL, NULL); 4231 if (ret < 0) 4232 return PCI_ERS_RESULT_DISCONNECT; 4233 p->viid = ret; 4234 p->xact_addr_filt = -1; 4235 } 4236 4237 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4238 adap->params.b_wnd); 4239 setup_memwin(adap); 4240 if (cxgb_up(adap)) 4241 return PCI_ERS_RESULT_DISCONNECT; 4242 return PCI_ERS_RESULT_RECOVERED; 4243 } 4244 4245 static void eeh_resume(struct pci_dev *pdev) 4246 { 4247 int i; 4248 struct adapter *adap = pci_get_drvdata(pdev); 4249 4250 if (!adap) 4251 return; 4252 4253 rtnl_lock(); 4254 for_each_port(adap, i) { 4255 struct net_device *dev = adap->port[i]; 4256 4257 if (netif_running(dev)) { 4258 link_start(dev); 4259 cxgb_set_rxmode(dev); 4260 } 4261 netif_device_attach(dev); 4262 } 4263 rtnl_unlock(); 4264 } 4265 4266 static const struct pci_error_handlers cxgb4_eeh = { 4267 .error_detected = eeh_err_detected, 4268 .slot_reset = eeh_slot_reset, 4269 .resume = eeh_resume, 4270 }; 4271 4272 static inline bool is_x_10g_port(const struct link_config *lc) 4273 { 4274 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 || 4275 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0; 4276 } 4277 4278 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q, 4279 unsigned int us, unsigned int cnt, 4280 unsigned int size, unsigned int iqe_size) 4281 { 4282 q->adap = adap; 4283 cxgb4_set_rspq_intr_params(q, us, cnt); 4284 q->iqe_len = iqe_size; 4285 q->size = size; 4286 } 4287 4288 /* 4289 * Perform default configuration of DMA queues depending on the number and type 4290 * of ports we found and the number of available CPUs. Most settings can be 4291 * modified by the admin prior to actual use. 4292 */ 4293 static void cfg_queues(struct adapter *adap) 4294 { 4295 struct sge *s = &adap->sge; 4296 int i, n10g = 0, qidx = 0; 4297 #ifndef CONFIG_CHELSIO_T4_DCB 4298 int q10g = 0; 4299 #endif 4300 int ciq_size; 4301 4302 for_each_port(adap, i) 4303 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4304 #ifdef CONFIG_CHELSIO_T4_DCB 4305 /* For Data Center Bridging support we need to be able to support up 4306 * to 8 Traffic Priorities; each of which will be assigned to its 4307 * own TX Queue in order to prevent Head-Of-Line Blocking. 4308 */ 4309 if (adap->params.nports * 8 > MAX_ETH_QSETS) { 4310 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n", 4311 MAX_ETH_QSETS, adap->params.nports * 8); 4312 BUG_ON(1); 4313 } 4314 4315 for_each_port(adap, i) { 4316 struct port_info *pi = adap2pinfo(adap, i); 4317 4318 pi->first_qset = qidx; 4319 pi->nqsets = 8; 4320 qidx += pi->nqsets; 4321 } 4322 #else /* !CONFIG_CHELSIO_T4_DCB */ 4323 /* 4324 * We default to 1 queue per non-10G port and up to # of cores queues 4325 * per 10G port. 4326 */ 4327 if (n10g) 4328 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 4329 if (q10g > netif_get_num_default_rss_queues()) 4330 q10g = netif_get_num_default_rss_queues(); 4331 4332 for_each_port(adap, i) { 4333 struct port_info *pi = adap2pinfo(adap, i); 4334 4335 pi->first_qset = qidx; 4336 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4337 qidx += pi->nqsets; 4338 } 4339 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4340 4341 s->ethqsets = qidx; 4342 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4343 4344 if (is_offload(adap)) { 4345 /* 4346 * For offload we use 1 queue/channel if all ports are up to 1G, 4347 * otherwise we divide all available queues amongst the channels 4348 * capped by the number of available cores. 4349 */ 4350 if (n10g) { 4351 i = min_t(int, ARRAY_SIZE(s->ofldrxq), 4352 num_online_cpus()); 4353 s->ofldqsets = roundup(i, adap->params.nports); 4354 } else 4355 s->ofldqsets = adap->params.nports; 4356 /* For RDMA one Rx queue per channel suffices */ 4357 s->rdmaqs = adap->params.nports; 4358 /* Try and allow at least 1 CIQ per cpu rounding down 4359 * to the number of ports, with a minimum of 1 per port. 4360 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port. 4361 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port. 4362 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port. 4363 */ 4364 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus()); 4365 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) * 4366 adap->params.nports; 4367 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports); 4368 } 4369 4370 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4371 struct sge_eth_rxq *r = &s->ethrxq[i]; 4372 4373 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4374 r->fl.size = 72; 4375 } 4376 4377 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4378 s->ethtxq[i].q.size = 1024; 4379 4380 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4381 s->ctrlq[i].q.size = 512; 4382 4383 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) 4384 s->ofldtxq[i].q.size = 1024; 4385 4386 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) { 4387 struct sge_ofld_rxq *r = &s->ofldrxq[i]; 4388 4389 init_rspq(adap, &r->rspq, 5, 1, 1024, 64); 4390 r->rspq.uld = CXGB4_ULD_ISCSI; 4391 r->fl.size = 72; 4392 } 4393 4394 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) { 4395 struct sge_ofld_rxq *r = &s->rdmarxq[i]; 4396 4397 init_rspq(adap, &r->rspq, 5, 1, 511, 64); 4398 r->rspq.uld = CXGB4_ULD_RDMA; 4399 r->fl.size = 72; 4400 } 4401 4402 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids; 4403 if (ciq_size > SGE_MAX_IQ_SIZE) { 4404 CH_WARN(adap, "CIQ size too small for available IQs\n"); 4405 ciq_size = SGE_MAX_IQ_SIZE; 4406 } 4407 4408 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) { 4409 struct sge_ofld_rxq *r = &s->rdmaciq[i]; 4410 4411 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64); 4412 r->rspq.uld = CXGB4_ULD_RDMA; 4413 } 4414 4415 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4416 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64); 4417 } 4418 4419 /* 4420 * Reduce the number of Ethernet queues across all ports to at most n. 4421 * n provides at least one queue per port. 4422 */ 4423 static void reduce_ethqs(struct adapter *adap, int n) 4424 { 4425 int i; 4426 struct port_info *pi; 4427 4428 while (n < adap->sge.ethqsets) 4429 for_each_port(adap, i) { 4430 pi = adap2pinfo(adap, i); 4431 if (pi->nqsets > 1) { 4432 pi->nqsets--; 4433 adap->sge.ethqsets--; 4434 if (adap->sge.ethqsets <= n) 4435 break; 4436 } 4437 } 4438 4439 n = 0; 4440 for_each_port(adap, i) { 4441 pi = adap2pinfo(adap, i); 4442 pi->first_qset = n; 4443 n += pi->nqsets; 4444 } 4445 } 4446 4447 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 4448 #define EXTRA_VECS 2 4449 4450 static int enable_msix(struct adapter *adap) 4451 { 4452 int ofld_need = 0; 4453 int i, want, need, allocated; 4454 struct sge *s = &adap->sge; 4455 unsigned int nchan = adap->params.nports; 4456 struct msix_entry *entries; 4457 4458 entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1), 4459 GFP_KERNEL); 4460 if (!entries) 4461 return -ENOMEM; 4462 4463 for (i = 0; i < MAX_INGQ + 1; ++i) 4464 entries[i].entry = i; 4465 4466 want = s->max_ethqsets + EXTRA_VECS; 4467 if (is_offload(adap)) { 4468 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets; 4469 /* need nchan for each possible ULD */ 4470 ofld_need = 3 * nchan; 4471 } 4472 #ifdef CONFIG_CHELSIO_T4_DCB 4473 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 4474 * each port. 4475 */ 4476 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need; 4477 #else 4478 need = adap->params.nports + EXTRA_VECS + ofld_need; 4479 #endif 4480 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 4481 if (allocated < 0) { 4482 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 4483 " not using MSI-X\n"); 4484 kfree(entries); 4485 return allocated; 4486 } 4487 4488 /* Distribute available vectors to the various queue groups. 4489 * Every group gets its minimum requirement and NIC gets top 4490 * priority for leftovers. 4491 */ 4492 i = allocated - EXTRA_VECS - ofld_need; 4493 if (i < s->max_ethqsets) { 4494 s->max_ethqsets = i; 4495 if (i < s->ethqsets) 4496 reduce_ethqs(adap, i); 4497 } 4498 if (is_offload(adap)) { 4499 if (allocated < want) { 4500 s->rdmaqs = nchan; 4501 s->rdmaciqs = nchan; 4502 } 4503 4504 /* leftovers go to OFLD */ 4505 i = allocated - EXTRA_VECS - s->max_ethqsets - 4506 s->rdmaqs - s->rdmaciqs; 4507 s->ofldqsets = (i / nchan) * nchan; /* round down */ 4508 } 4509 for (i = 0; i < allocated; ++i) 4510 adap->msix_info[i].vec = entries[i].vector; 4511 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 4512 "nic %d iscsi %d rdma cpl %d rdma ciq %d\n", 4513 allocated, s->max_ethqsets, s->ofldqsets, s->rdmaqs, 4514 s->rdmaciqs); 4515 4516 kfree(entries); 4517 return 0; 4518 } 4519 4520 #undef EXTRA_VECS 4521 4522 static int init_rss(struct adapter *adap) 4523 { 4524 unsigned int i; 4525 int err; 4526 4527 err = t4_init_rss_mode(adap, adap->mbox); 4528 if (err) 4529 return err; 4530 4531 for_each_port(adap, i) { 4532 struct port_info *pi = adap2pinfo(adap, i); 4533 4534 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 4535 if (!pi->rss) 4536 return -ENOMEM; 4537 } 4538 return 0; 4539 } 4540 4541 static void print_port_info(const struct net_device *dev) 4542 { 4543 char buf[80]; 4544 char *bufp = buf; 4545 const char *spd = ""; 4546 const struct port_info *pi = netdev_priv(dev); 4547 const struct adapter *adap = pi->adapter; 4548 4549 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 4550 spd = " 2.5 GT/s"; 4551 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 4552 spd = " 5 GT/s"; 4553 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 4554 spd = " 8 GT/s"; 4555 4556 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 4557 bufp += sprintf(bufp, "100/"); 4558 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 4559 bufp += sprintf(bufp, "1000/"); 4560 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 4561 bufp += sprintf(bufp, "10G/"); 4562 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G) 4563 bufp += sprintf(bufp, "40G/"); 4564 if (bufp != buf) 4565 --bufp; 4566 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 4567 4568 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n", 4569 adap->params.vpd.id, 4570 CHELSIO_CHIP_RELEASE(adap->params.chip), buf, 4571 is_offload(adap) ? "R" : "", adap->params.pci.width, spd, 4572 (adap->flags & USING_MSIX) ? " MSI-X" : 4573 (adap->flags & USING_MSI) ? " MSI" : ""); 4574 netdev_info(dev, "S/N: %s, P/N: %s\n", 4575 adap->params.vpd.sn, adap->params.vpd.pn); 4576 } 4577 4578 static void enable_pcie_relaxed_ordering(struct pci_dev *dev) 4579 { 4580 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 4581 } 4582 4583 /* 4584 * Free the following resources: 4585 * - memory used for tables 4586 * - MSI/MSI-X 4587 * - net devices 4588 * - resources FW is holding for us 4589 */ 4590 static void free_some_resources(struct adapter *adapter) 4591 { 4592 unsigned int i; 4593 4594 t4_free_mem(adapter->l2t); 4595 t4_free_mem(adapter->tids.tid_tab); 4596 kfree(adapter->sge.egr_map); 4597 kfree(adapter->sge.ingr_map); 4598 kfree(adapter->sge.starving_fl); 4599 kfree(adapter->sge.txq_maperr); 4600 #ifdef CONFIG_DEBUG_FS 4601 kfree(adapter->sge.blocked_fl); 4602 #endif 4603 disable_msi(adapter); 4604 4605 for_each_port(adapter, i) 4606 if (adapter->port[i]) { 4607 struct port_info *pi = adap2pinfo(adapter, i); 4608 4609 if (pi->viid != 0) 4610 t4_free_vi(adapter, adapter->mbox, adapter->pf, 4611 0, pi->viid); 4612 kfree(adap2pinfo(adapter, i)->rss); 4613 free_netdev(adapter->port[i]); 4614 } 4615 if (adapter->flags & FW_OK) 4616 t4_fw_bye(adapter, adapter->pf); 4617 } 4618 4619 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 4620 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 4621 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 4622 #define SEGMENT_SIZE 128 4623 4624 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev) 4625 { 4626 u16 device_id; 4627 4628 /* Retrieve adapter's device ID */ 4629 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 4630 4631 switch (device_id >> 12) { 4632 case CHELSIO_T4: 4633 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 4634 case CHELSIO_T5: 4635 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 4636 case CHELSIO_T6: 4637 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 4638 default: 4639 dev_err(&pdev->dev, "Device %d is not supported\n", 4640 device_id); 4641 } 4642 return -EINVAL; 4643 } 4644 4645 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4646 { 4647 int func, i, err, s_qpp, qpp, num_seg; 4648 struct port_info *pi; 4649 bool highdma = false; 4650 struct adapter *adapter = NULL; 4651 void __iomem *regs; 4652 u32 whoami, pl_rev; 4653 enum chip_type chip; 4654 4655 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 4656 4657 err = pci_request_regions(pdev, KBUILD_MODNAME); 4658 if (err) { 4659 /* Just info, some other driver may have claimed the device. */ 4660 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 4661 return err; 4662 } 4663 4664 err = pci_enable_device(pdev); 4665 if (err) { 4666 dev_err(&pdev->dev, "cannot enable PCI device\n"); 4667 goto out_release_regions; 4668 } 4669 4670 regs = pci_ioremap_bar(pdev, 0); 4671 if (!regs) { 4672 dev_err(&pdev->dev, "cannot map device registers\n"); 4673 err = -ENOMEM; 4674 goto out_disable_device; 4675 } 4676 4677 err = t4_wait_dev_ready(regs); 4678 if (err < 0) 4679 goto out_unmap_bar0; 4680 4681 /* We control everything through one PF */ 4682 whoami = readl(regs + PL_WHOAMI_A); 4683 pl_rev = REV_G(readl(regs + PL_REV_A)); 4684 chip = get_chip_type(pdev, pl_rev); 4685 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ? 4686 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4687 if (func != ent->driver_data) { 4688 iounmap(regs); 4689 pci_disable_device(pdev); 4690 pci_save_state(pdev); /* to restore SR-IOV later */ 4691 goto sriov; 4692 } 4693 4694 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4695 highdma = true; 4696 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4697 if (err) { 4698 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 4699 "coherent allocations\n"); 4700 goto out_unmap_bar0; 4701 } 4702 } else { 4703 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4704 if (err) { 4705 dev_err(&pdev->dev, "no usable DMA configuration\n"); 4706 goto out_unmap_bar0; 4707 } 4708 } 4709 4710 pci_enable_pcie_error_reporting(pdev); 4711 enable_pcie_relaxed_ordering(pdev); 4712 pci_set_master(pdev); 4713 pci_save_state(pdev); 4714 4715 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4716 if (!adapter) { 4717 err = -ENOMEM; 4718 goto out_unmap_bar0; 4719 } 4720 4721 adapter->workq = create_singlethread_workqueue("cxgb4"); 4722 if (!adapter->workq) { 4723 err = -ENOMEM; 4724 goto out_free_adapter; 4725 } 4726 4727 /* PCI device has been enabled */ 4728 adapter->flags |= DEV_ENABLED; 4729 4730 adapter->regs = regs; 4731 adapter->pdev = pdev; 4732 adapter->pdev_dev = &pdev->dev; 4733 adapter->mbox = func; 4734 adapter->pf = func; 4735 adapter->msg_enable = dflt_msg_enable; 4736 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 4737 4738 spin_lock_init(&adapter->stats_lock); 4739 spin_lock_init(&adapter->tid_release_lock); 4740 spin_lock_init(&adapter->win0_lock); 4741 4742 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 4743 INIT_WORK(&adapter->db_full_task, process_db_full); 4744 INIT_WORK(&adapter->db_drop_task, process_db_drop); 4745 4746 err = t4_prep_adapter(adapter); 4747 if (err) 4748 goto out_free_adapter; 4749 4750 4751 if (!is_t4(adapter->params.chip)) { 4752 s_qpp = (QUEUESPERPAGEPF0_S + 4753 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 4754 adapter->pf); 4755 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 4756 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 4757 num_seg = PAGE_SIZE / SEGMENT_SIZE; 4758 4759 /* Each segment size is 128B. Write coalescing is enabled only 4760 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 4761 * queue is less no of segments that can be accommodated in 4762 * a page size. 4763 */ 4764 if (qpp > num_seg) { 4765 dev_err(&pdev->dev, 4766 "Incorrect number of egress queues per page\n"); 4767 err = -EINVAL; 4768 goto out_free_adapter; 4769 } 4770 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 4771 pci_resource_len(pdev, 2)); 4772 if (!adapter->bar2) { 4773 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 4774 err = -ENOMEM; 4775 goto out_free_adapter; 4776 } 4777 } 4778 4779 setup_memwin(adapter); 4780 err = adap_init0(adapter); 4781 #ifdef CONFIG_DEBUG_FS 4782 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 4783 #endif 4784 setup_memwin_rdma(adapter); 4785 if (err) 4786 goto out_unmap_bar; 4787 4788 /* configure SGE_STAT_CFG_A to read WC stats */ 4789 if (!is_t4(adapter->params.chip)) 4790 t4_write_reg(adapter, SGE_STAT_CFG_A, 4791 STATSOURCE_T5_V(7) | STATMODE_V(0)); 4792 4793 for_each_port(adapter, i) { 4794 struct net_device *netdev; 4795 4796 netdev = alloc_etherdev_mq(sizeof(struct port_info), 4797 MAX_ETH_QSETS); 4798 if (!netdev) { 4799 err = -ENOMEM; 4800 goto out_free_dev; 4801 } 4802 4803 SET_NETDEV_DEV(netdev, &pdev->dev); 4804 4805 adapter->port[i] = netdev; 4806 pi = netdev_priv(netdev); 4807 pi->adapter = adapter; 4808 pi->xact_addr_filt = -1; 4809 pi->port_id = i; 4810 netdev->irq = pdev->irq; 4811 4812 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 4813 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4814 NETIF_F_RXCSUM | NETIF_F_RXHASH | 4815 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 4816 if (highdma) 4817 netdev->hw_features |= NETIF_F_HIGHDMA; 4818 netdev->features |= netdev->hw_features; 4819 netdev->vlan_features = netdev->features & VLAN_FEAT; 4820 4821 netdev->priv_flags |= IFF_UNICAST_FLT; 4822 4823 netdev->netdev_ops = &cxgb4_netdev_ops; 4824 #ifdef CONFIG_CHELSIO_T4_DCB 4825 netdev->dcbnl_ops = &cxgb4_dcb_ops; 4826 cxgb4_dcb_state_init(netdev); 4827 #endif 4828 cxgb4_set_ethtool_ops(netdev); 4829 } 4830 4831 pci_set_drvdata(pdev, adapter); 4832 4833 if (adapter->flags & FW_OK) { 4834 err = t4_port_init(adapter, func, func, 0); 4835 if (err) 4836 goto out_free_dev; 4837 } else if (adapter->params.nports == 1) { 4838 /* If we don't have a connection to the firmware -- possibly 4839 * because of an error -- grab the raw VPD parameters so we 4840 * can set the proper MAC Address on the debug network 4841 * interface that we've created. 4842 */ 4843 u8 hw_addr[ETH_ALEN]; 4844 u8 *na = adapter->params.vpd.na; 4845 4846 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 4847 if (!err) { 4848 for (i = 0; i < ETH_ALEN; i++) 4849 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 4850 hex2val(na[2 * i + 1])); 4851 t4_set_hw_addr(adapter, 0, hw_addr); 4852 } 4853 } 4854 4855 /* Configure queues and allocate tables now, they can be needed as 4856 * soon as the first register_netdev completes. 4857 */ 4858 cfg_queues(adapter); 4859 4860 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 4861 if (!adapter->l2t) { 4862 /* We tolerate a lack of L2T, giving up some functionality */ 4863 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 4864 adapter->params.offload = 0; 4865 } 4866 4867 #if IS_ENABLED(CONFIG_IPV6) 4868 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 4869 adapter->clipt_end); 4870 if (!adapter->clipt) { 4871 /* We tolerate a lack of clip_table, giving up 4872 * some functionality 4873 */ 4874 dev_warn(&pdev->dev, 4875 "could not allocate Clip table, continuing\n"); 4876 adapter->params.offload = 0; 4877 } 4878 #endif 4879 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) { 4880 dev_warn(&pdev->dev, "could not allocate TID table, " 4881 "continuing\n"); 4882 adapter->params.offload = 0; 4883 } 4884 4885 if (is_offload(adapter)) { 4886 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 4887 u32 hash_base, hash_reg; 4888 4889 if (chip <= CHELSIO_T5) { 4890 hash_reg = LE_DB_TID_HASHBASE_A; 4891 hash_base = t4_read_reg(adapter, hash_reg); 4892 adapter->tids.hash_base = hash_base / 4; 4893 } else { 4894 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 4895 hash_base = t4_read_reg(adapter, hash_reg); 4896 adapter->tids.hash_base = hash_base; 4897 } 4898 } 4899 } 4900 4901 /* See what interrupts we'll be using */ 4902 if (msi > 1 && enable_msix(adapter) == 0) 4903 adapter->flags |= USING_MSIX; 4904 else if (msi > 0 && pci_enable_msi(pdev) == 0) 4905 adapter->flags |= USING_MSI; 4906 4907 err = init_rss(adapter); 4908 if (err) 4909 goto out_free_dev; 4910 4911 /* 4912 * The card is now ready to go. If any errors occur during device 4913 * registration we do not fail the whole card but rather proceed only 4914 * with the ports we manage to register successfully. However we must 4915 * register at least one net device. 4916 */ 4917 for_each_port(adapter, i) { 4918 pi = adap2pinfo(adapter, i); 4919 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 4920 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 4921 4922 err = register_netdev(adapter->port[i]); 4923 if (err) 4924 break; 4925 adapter->chan_map[pi->tx_chan] = i; 4926 print_port_info(adapter->port[i]); 4927 } 4928 if (i == 0) { 4929 dev_err(&pdev->dev, "could not register any net devices\n"); 4930 goto out_free_dev; 4931 } 4932 if (err) { 4933 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 4934 err = 0; 4935 } 4936 4937 if (cxgb4_debugfs_root) { 4938 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 4939 cxgb4_debugfs_root); 4940 setup_debugfs(adapter); 4941 } 4942 4943 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 4944 pdev->needs_freset = 1; 4945 4946 if (is_offload(adapter)) 4947 attach_ulds(adapter); 4948 4949 sriov: 4950 #ifdef CONFIG_PCI_IOV 4951 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) 4952 if (pci_enable_sriov(pdev, num_vf[func]) == 0) 4953 dev_info(&pdev->dev, 4954 "instantiated %u virtual functions\n", 4955 num_vf[func]); 4956 #endif 4957 return 0; 4958 4959 out_free_dev: 4960 free_some_resources(adapter); 4961 out_unmap_bar: 4962 if (!is_t4(adapter->params.chip)) 4963 iounmap(adapter->bar2); 4964 out_free_adapter: 4965 if (adapter->workq) 4966 destroy_workqueue(adapter->workq); 4967 4968 kfree(adapter); 4969 out_unmap_bar0: 4970 iounmap(regs); 4971 out_disable_device: 4972 pci_disable_pcie_error_reporting(pdev); 4973 pci_disable_device(pdev); 4974 out_release_regions: 4975 pci_release_regions(pdev); 4976 return err; 4977 } 4978 4979 static void remove_one(struct pci_dev *pdev) 4980 { 4981 struct adapter *adapter = pci_get_drvdata(pdev); 4982 4983 #ifdef CONFIG_PCI_IOV 4984 pci_disable_sriov(pdev); 4985 4986 #endif 4987 4988 if (adapter) { 4989 int i; 4990 4991 /* Tear down per-adapter Work Queue first since it can contain 4992 * references to our adapter data structure. 4993 */ 4994 destroy_workqueue(adapter->workq); 4995 4996 if (is_offload(adapter)) 4997 detach_ulds(adapter); 4998 4999 disable_interrupts(adapter); 5000 5001 for_each_port(adapter, i) 5002 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5003 unregister_netdev(adapter->port[i]); 5004 5005 debugfs_remove_recursive(adapter->debugfs_root); 5006 5007 /* If we allocated filters, free up state associated with any 5008 * valid filters ... 5009 */ 5010 if (adapter->tids.ftid_tab) { 5011 struct filter_entry *f = &adapter->tids.ftid_tab[0]; 5012 for (i = 0; i < (adapter->tids.nftids + 5013 adapter->tids.nsftids); i++, f++) 5014 if (f->valid) 5015 clear_filter(adapter, f); 5016 } 5017 5018 if (adapter->flags & FULL_INIT_DONE) 5019 cxgb_down(adapter); 5020 5021 free_some_resources(adapter); 5022 #if IS_ENABLED(CONFIG_IPV6) 5023 t4_cleanup_clip_tbl(adapter); 5024 #endif 5025 iounmap(adapter->regs); 5026 if (!is_t4(adapter->params.chip)) 5027 iounmap(adapter->bar2); 5028 pci_disable_pcie_error_reporting(pdev); 5029 if ((adapter->flags & DEV_ENABLED)) { 5030 pci_disable_device(pdev); 5031 adapter->flags &= ~DEV_ENABLED; 5032 } 5033 pci_release_regions(pdev); 5034 synchronize_rcu(); 5035 kfree(adapter); 5036 } else 5037 pci_release_regions(pdev); 5038 } 5039 5040 static struct pci_driver cxgb4_driver = { 5041 .name = KBUILD_MODNAME, 5042 .id_table = cxgb4_pci_tbl, 5043 .probe = init_one, 5044 .remove = remove_one, 5045 .shutdown = remove_one, 5046 .err_handler = &cxgb4_eeh, 5047 }; 5048 5049 static int __init cxgb4_init_module(void) 5050 { 5051 int ret; 5052 5053 /* Debugfs support is optional, just warn if this fails */ 5054 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 5055 if (!cxgb4_debugfs_root) 5056 pr_warn("could not create debugfs entry, continuing\n"); 5057 5058 ret = pci_register_driver(&cxgb4_driver); 5059 if (ret < 0) 5060 debugfs_remove(cxgb4_debugfs_root); 5061 5062 #if IS_ENABLED(CONFIG_IPV6) 5063 if (!inet6addr_registered) { 5064 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5065 inet6addr_registered = true; 5066 } 5067 #endif 5068 5069 return ret; 5070 } 5071 5072 static void __exit cxgb4_cleanup_module(void) 5073 { 5074 #if IS_ENABLED(CONFIG_IPV6) 5075 if (inet6addr_registered) { 5076 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5077 inet6addr_registered = false; 5078 } 5079 #endif 5080 pci_unregister_driver(&cxgb4_driver); 5081 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 5082 } 5083 5084 module_init(cxgb4_init_module); 5085 module_exit(cxgb4_cleanup_module); 5086