1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67 
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78 
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80 
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
87 
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95 	/* Administrative fields for filter.
96 	 */
97 	u32 valid:1;            /* filter allocated and valid */
98 	u32 locked:1;           /* filter is administratively locked */
99 
100 	u32 pending:1;          /* filter action is pending firmware reply */
101 	u32 smtidx:8;           /* Source MAC Table index for smac */
102 	struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103 
104 	/* The filter itself.  Most of this is a straight copy of information
105 	 * provided by the extended ioctl().  Some fields are translated to
106 	 * internal forms -- for instance the Ingress Queue ID passed in from
107 	 * the ioctl() is translated into the Absolute Ingress Queue ID.
108 	 */
109 	struct ch_filter_specification fs;
110 };
111 
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115 
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119 	static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121 
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126 
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
129 
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131 		{ 0, } \
132 	}
133 
134 #include "t4_pci_id_tbl.h"
135 
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW6_FNAME "cxgb4/t6fw.bin"
139 #define FW4_CFNAME "cxgb4/t4-config.txt"
140 #define FW5_CFNAME "cxgb4/t5-config.txt"
141 #define FW6_CFNAME "cxgb4/t6-config.txt"
142 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144 #define PHY_AQ1202_DEVICEID 0x4409
145 #define PHY_BCM84834_DEVICEID 0x4486
146 
147 MODULE_DESCRIPTION(DRV_DESC);
148 MODULE_AUTHOR("Chelsio Communications");
149 MODULE_LICENSE("Dual BSD/GPL");
150 MODULE_VERSION(DRV_VERSION);
151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
152 MODULE_FIRMWARE(FW4_FNAME);
153 MODULE_FIRMWARE(FW5_FNAME);
154 MODULE_FIRMWARE(FW6_FNAME);
155 
156 /*
157  * Normally we're willing to become the firmware's Master PF but will be happy
158  * if another PF has already become the Master and initialized the adapter.
159  * Setting "force_init" will cause this driver to forcibly establish itself as
160  * the Master PF and initialize the adapter.
161  */
162 static uint force_init;
163 
164 module_param(force_init, uint, 0644);
165 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
166 
167 /*
168  * Normally if the firmware we connect to has Configuration File support, we
169  * use that and only fall back to the old Driver-based initialization if the
170  * Configuration File fails for some reason.  If force_old_init is set, then
171  * we'll always use the old Driver-based initialization sequence.
172  */
173 static uint force_old_init;
174 
175 module_param(force_old_init, uint, 0644);
176 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
177 		 " parameter");
178 
179 static int dflt_msg_enable = DFLT_MSG_ENABLE;
180 
181 module_param(dflt_msg_enable, int, 0644);
182 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
183 
184 /*
185  * The driver uses the best interrupt scheme available on a platform in the
186  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
187  * of these schemes the driver may consider as follows:
188  *
189  * msi = 2: choose from among all three options
190  * msi = 1: only consider MSI and INTx interrupts
191  * msi = 0: force INTx interrupts
192  */
193 static int msi = 2;
194 
195 module_param(msi, int, 0644);
196 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
197 
198 /*
199  * Queue interrupt hold-off timer values.  Queues default to the first of these
200  * upon creation.
201  */
202 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
203 
204 module_param_array(intr_holdoff, uint, NULL, 0644);
205 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
206 		 "0..4 in microseconds, deprecated parameter");
207 
208 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
209 
210 module_param_array(intr_cnt, uint, NULL, 0644);
211 MODULE_PARM_DESC(intr_cnt,
212 		 "thresholds 1..3 for queue interrupt packet counters, "
213 		 "deprecated parameter");
214 
215 /*
216  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
217  * offset by 2 bytes in order to have the IP headers line up on 4-byte
218  * boundaries.  This is a requirement for many architectures which will throw
219  * a machine check fault if an attempt is made to access one of the 4-byte IP
220  * header fields on a non-4-byte boundary.  And it's a major performance issue
221  * even on some architectures which allow it like some implementations of the
222  * x86 ISA.  However, some architectures don't mind this and for some very
223  * edge-case performance sensitive applications (like forwarding large volumes
224  * of small packets), setting this DMA offset to 0 will decrease the number of
225  * PCI-E Bus transfers enough to measurably affect performance.
226  */
227 static int rx_dma_offset = 2;
228 
229 static bool vf_acls;
230 
231 #ifdef CONFIG_PCI_IOV
232 module_param(vf_acls, bool, 0644);
233 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
234 		 "deprecated parameter");
235 
236 /* Configure the number of PCI-E Virtual Function which are to be instantiated
237  * on SR-IOV Capable Physical Functions.
238  */
239 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
240 
241 module_param_array(num_vf, uint, NULL, 0644);
242 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
243 #endif
244 
245 /* TX Queue select used to determine what algorithm to use for selecting TX
246  * queue. Select between the kernel provided function (select_queue=0) or user
247  * cxgb_select_queue function (select_queue=1)
248  *
249  * Default: select_queue=0
250  */
251 static int select_queue;
252 module_param(select_queue, int, 0644);
253 MODULE_PARM_DESC(select_queue,
254 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
255 
256 static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
257 
258 module_param(tp_vlan_pri_map, uint, 0644);
259 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
260 		 "deprecated parameter");
261 
262 static struct dentry *cxgb4_debugfs_root;
263 
264 static LIST_HEAD(adapter_list);
265 static DEFINE_MUTEX(uld_mutex);
266 /* Adapter list to be accessed from atomic context */
267 static LIST_HEAD(adap_rcu_list);
268 static DEFINE_SPINLOCK(adap_rcu_lock);
269 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
270 static const char *uld_str[] = { "RDMA", "iSCSI" };
271 
272 static void link_report(struct net_device *dev)
273 {
274 	if (!netif_carrier_ok(dev))
275 		netdev_info(dev, "link down\n");
276 	else {
277 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
278 
279 		const char *s;
280 		const struct port_info *p = netdev_priv(dev);
281 
282 		switch (p->link_cfg.speed) {
283 		case 10000:
284 			s = "10Gbps";
285 			break;
286 		case 1000:
287 			s = "1000Mbps";
288 			break;
289 		case 100:
290 			s = "100Mbps";
291 			break;
292 		case 40000:
293 			s = "40Gbps";
294 			break;
295 		default:
296 			pr_info("%s: unsupported speed: %d\n",
297 				dev->name, p->link_cfg.speed);
298 			return;
299 		}
300 
301 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
302 			    fc[p->link_cfg.fc]);
303 	}
304 }
305 
306 #ifdef CONFIG_CHELSIO_T4_DCB
307 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
308 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
309 {
310 	struct port_info *pi = netdev_priv(dev);
311 	struct adapter *adap = pi->adapter;
312 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
313 	int i;
314 
315 	/* We use a simple mapping of Port TX Queue Index to DCB
316 	 * Priority when we're enabling DCB.
317 	 */
318 	for (i = 0; i < pi->nqsets; i++, txq++) {
319 		u32 name, value;
320 		int err;
321 
322 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
323 			FW_PARAMS_PARAM_X_V(
324 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
325 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
326 		value = enable ? i : 0xffffffff;
327 
328 		/* Since we can be called while atomic (from "interrupt
329 		 * level") we need to issue the Set Parameters Commannd
330 		 * without sleeping (timeout < 0).
331 		 */
332 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
333 					    &name, &value,
334 					    -FW_CMD_MAX_TIMEOUT);
335 
336 		if (err)
337 			dev_err(adap->pdev_dev,
338 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
339 				enable ? "set" : "unset", pi->port_id, i, -err);
340 		else
341 			txq->dcb_prio = value;
342 	}
343 }
344 #endif /* CONFIG_CHELSIO_T4_DCB */
345 
346 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
347 {
348 	struct net_device *dev = adapter->port[port_id];
349 
350 	/* Skip changes from disabled ports. */
351 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
352 		if (link_stat)
353 			netif_carrier_on(dev);
354 		else {
355 #ifdef CONFIG_CHELSIO_T4_DCB
356 			cxgb4_dcb_state_init(dev);
357 			dcb_tx_queue_prio_enable(dev, false);
358 #endif /* CONFIG_CHELSIO_T4_DCB */
359 			netif_carrier_off(dev);
360 		}
361 
362 		link_report(dev);
363 	}
364 }
365 
366 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
367 {
368 	static const char *mod_str[] = {
369 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
370 	};
371 
372 	const struct net_device *dev = adap->port[port_id];
373 	const struct port_info *pi = netdev_priv(dev);
374 
375 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
376 		netdev_info(dev, "port module unplugged\n");
377 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
378 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
379 }
380 
381 /*
382  * Configure the exact and hash address filters to handle a port's multicast
383  * and secondary unicast MAC addresses.
384  */
385 static int set_addr_filters(const struct net_device *dev, bool sleep)
386 {
387 	u64 mhash = 0;
388 	u64 uhash = 0;
389 	bool free = true;
390 	u16 filt_idx[7];
391 	const u8 *addr[7];
392 	int ret, naddr = 0;
393 	const struct netdev_hw_addr *ha;
394 	int uc_cnt = netdev_uc_count(dev);
395 	int mc_cnt = netdev_mc_count(dev);
396 	const struct port_info *pi = netdev_priv(dev);
397 	unsigned int mb = pi->adapter->pf;
398 
399 	/* first do the secondary unicast addresses */
400 	netdev_for_each_uc_addr(ha, dev) {
401 		addr[naddr++] = ha->addr;
402 		if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
403 			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
404 					naddr, addr, filt_idx, &uhash, sleep);
405 			if (ret < 0)
406 				return ret;
407 
408 			free = false;
409 			naddr = 0;
410 		}
411 	}
412 
413 	/* next set up the multicast addresses */
414 	netdev_for_each_mc_addr(ha, dev) {
415 		addr[naddr++] = ha->addr;
416 		if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
417 			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
418 					naddr, addr, filt_idx, &mhash, sleep);
419 			if (ret < 0)
420 				return ret;
421 
422 			free = false;
423 			naddr = 0;
424 		}
425 	}
426 
427 	return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
428 				uhash | mhash, sleep);
429 }
430 
431 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
432 module_param(dbfifo_int_thresh, int, 0644);
433 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
434 
435 /*
436  * usecs to sleep while draining the dbfifo
437  */
438 static int dbfifo_drain_delay = 1000;
439 module_param(dbfifo_drain_delay, int, 0644);
440 MODULE_PARM_DESC(dbfifo_drain_delay,
441 		 "usecs to sleep while draining the dbfifo");
442 
443 /*
444  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
445  * If @mtu is -1 it is left unchanged.
446  */
447 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
448 {
449 	int ret;
450 	struct port_info *pi = netdev_priv(dev);
451 
452 	ret = set_addr_filters(dev, sleep_ok);
453 	if (ret == 0)
454 		ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu,
455 				    (dev->flags & IFF_PROMISC) ? 1 : 0,
456 				    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
457 				    sleep_ok);
458 	return ret;
459 }
460 
461 /**
462  *	link_start - enable a port
463  *	@dev: the port to enable
464  *
465  *	Performs the MAC and PHY actions needed to enable a port.
466  */
467 static int link_start(struct net_device *dev)
468 {
469 	int ret;
470 	struct port_info *pi = netdev_priv(dev);
471 	unsigned int mb = pi->adapter->pf;
472 
473 	/*
474 	 * We do not set address filters and promiscuity here, the stack does
475 	 * that step explicitly.
476 	 */
477 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
478 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
479 	if (ret == 0) {
480 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
481 				    pi->xact_addr_filt, dev->dev_addr, true,
482 				    true);
483 		if (ret >= 0) {
484 			pi->xact_addr_filt = ret;
485 			ret = 0;
486 		}
487 	}
488 	if (ret == 0)
489 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
490 				    &pi->link_cfg);
491 	if (ret == 0) {
492 		local_bh_disable();
493 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
494 					  true, CXGB4_DCB_ENABLED);
495 		local_bh_enable();
496 	}
497 
498 	return ret;
499 }
500 
501 int cxgb4_dcb_enabled(const struct net_device *dev)
502 {
503 #ifdef CONFIG_CHELSIO_T4_DCB
504 	struct port_info *pi = netdev_priv(dev);
505 
506 	if (!pi->dcb.enabled)
507 		return 0;
508 
509 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
510 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
511 #else
512 	return 0;
513 #endif
514 }
515 EXPORT_SYMBOL(cxgb4_dcb_enabled);
516 
517 #ifdef CONFIG_CHELSIO_T4_DCB
518 /* Handle a Data Center Bridging update message from the firmware. */
519 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
520 {
521 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
522 	struct net_device *dev = adap->port[port];
523 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
524 	int new_dcb_enabled;
525 
526 	cxgb4_dcb_handle_fw_update(adap, pcmd);
527 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
528 
529 	/* If the DCB has become enabled or disabled on the port then we're
530 	 * going to need to set up/tear down DCB Priority parameters for the
531 	 * TX Queues associated with the port.
532 	 */
533 	if (new_dcb_enabled != old_dcb_enabled)
534 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
535 }
536 #endif /* CONFIG_CHELSIO_T4_DCB */
537 
538 /* Clear a filter and release any of its resources that we own.  This also
539  * clears the filter's "pending" status.
540  */
541 static void clear_filter(struct adapter *adap, struct filter_entry *f)
542 {
543 	/* If the new or old filter have loopback rewriteing rules then we'll
544 	 * need to free any existing Layer Two Table (L2T) entries of the old
545 	 * filter rule.  The firmware will handle freeing up any Source MAC
546 	 * Table (SMT) entries used for rewriting Source MAC Addresses in
547 	 * loopback rules.
548 	 */
549 	if (f->l2t)
550 		cxgb4_l2t_release(f->l2t);
551 
552 	/* The zeroing of the filter rule below clears the filter valid,
553 	 * pending, locked flags, l2t pointer, etc. so it's all we need for
554 	 * this operation.
555 	 */
556 	memset(f, 0, sizeof(*f));
557 }
558 
559 /* Handle a filter write/deletion reply.
560  */
561 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
562 {
563 	unsigned int idx = GET_TID(rpl);
564 	unsigned int nidx = idx - adap->tids.ftid_base;
565 	unsigned int ret;
566 	struct filter_entry *f;
567 
568 	if (idx >= adap->tids.ftid_base && nidx <
569 	   (adap->tids.nftids + adap->tids.nsftids)) {
570 		idx = nidx;
571 		ret = TCB_COOKIE_G(rpl->cookie);
572 		f = &adap->tids.ftid_tab[idx];
573 
574 		if (ret == FW_FILTER_WR_FLT_DELETED) {
575 			/* Clear the filter when we get confirmation from the
576 			 * hardware that the filter has been deleted.
577 			 */
578 			clear_filter(adap, f);
579 		} else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
580 			dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
581 				idx);
582 			clear_filter(adap, f);
583 		} else if (ret == FW_FILTER_WR_FLT_ADDED) {
584 			f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
585 			f->pending = 0;  /* asynchronous setup completed */
586 			f->valid = 1;
587 		} else {
588 			/* Something went wrong.  Issue a warning about the
589 			 * problem and clear everything out.
590 			 */
591 			dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
592 				idx, ret);
593 			clear_filter(adap, f);
594 		}
595 	}
596 }
597 
598 /* Response queue handler for the FW event queue.
599  */
600 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
601 			  const struct pkt_gl *gl)
602 {
603 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
604 
605 	rsp++;                                          /* skip RSS header */
606 
607 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
608 	 */
609 	if (unlikely(opcode == CPL_FW4_MSG &&
610 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
611 		rsp++;
612 		opcode = ((const struct rss_header *)rsp)->opcode;
613 		rsp++;
614 		if (opcode != CPL_SGE_EGR_UPDATE) {
615 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
616 				, opcode);
617 			goto out;
618 		}
619 	}
620 
621 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
622 		const struct cpl_sge_egr_update *p = (void *)rsp;
623 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
624 		struct sge_txq *txq;
625 
626 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
627 		txq->restarts++;
628 		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
629 			struct sge_eth_txq *eq;
630 
631 			eq = container_of(txq, struct sge_eth_txq, q);
632 			netif_tx_wake_queue(eq->txq);
633 		} else {
634 			struct sge_ofld_txq *oq;
635 
636 			oq = container_of(txq, struct sge_ofld_txq, q);
637 			tasklet_schedule(&oq->qresume_tsk);
638 		}
639 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
640 		const struct cpl_fw6_msg *p = (void *)rsp;
641 
642 #ifdef CONFIG_CHELSIO_T4_DCB
643 		const struct fw_port_cmd *pcmd = (const void *)p->data;
644 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
645 		unsigned int action =
646 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
647 
648 		if (cmd == FW_PORT_CMD &&
649 		    action == FW_PORT_ACTION_GET_PORT_INFO) {
650 			int port = FW_PORT_CMD_PORTID_G(
651 					be32_to_cpu(pcmd->op_to_portid));
652 			struct net_device *dev = q->adap->port[port];
653 			int state_input = ((pcmd->u.info.dcbxdis_pkd &
654 					    FW_PORT_CMD_DCBXDIS_F)
655 					   ? CXGB4_DCB_INPUT_FW_DISABLED
656 					   : CXGB4_DCB_INPUT_FW_ENABLED);
657 
658 			cxgb4_dcb_state_fsm(dev, state_input);
659 		}
660 
661 		if (cmd == FW_PORT_CMD &&
662 		    action == FW_PORT_ACTION_L2_DCB_CFG)
663 			dcb_rpl(q->adap, pcmd);
664 		else
665 #endif
666 			if (p->type == 0)
667 				t4_handle_fw_rpl(q->adap, p->data);
668 	} else if (opcode == CPL_L2T_WRITE_RPL) {
669 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
670 
671 		do_l2t_write_rpl(q->adap, p);
672 	} else if (opcode == CPL_SET_TCB_RPL) {
673 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
674 
675 		filter_rpl(q->adap, p);
676 	} else
677 		dev_err(q->adap->pdev_dev,
678 			"unexpected CPL %#x on FW event queue\n", opcode);
679 out:
680 	return 0;
681 }
682 
683 /**
684  *	uldrx_handler - response queue handler for ULD queues
685  *	@q: the response queue that received the packet
686  *	@rsp: the response queue descriptor holding the offload message
687  *	@gl: the gather list of packet fragments
688  *
689  *	Deliver an ingress offload packet to a ULD.  All processing is done by
690  *	the ULD, we just maintain statistics.
691  */
692 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
693 			 const struct pkt_gl *gl)
694 {
695 	struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
696 
697 	/* FW can send CPLs encapsulated in a CPL_FW4_MSG.
698 	 */
699 	if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
700 	    ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
701 		rsp += 2;
702 
703 	if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
704 		rxq->stats.nomem++;
705 		return -1;
706 	}
707 	if (gl == NULL)
708 		rxq->stats.imm++;
709 	else if (gl == CXGB4_MSG_AN)
710 		rxq->stats.an++;
711 	else
712 		rxq->stats.pkts++;
713 	return 0;
714 }
715 
716 static void disable_msi(struct adapter *adapter)
717 {
718 	if (adapter->flags & USING_MSIX) {
719 		pci_disable_msix(adapter->pdev);
720 		adapter->flags &= ~USING_MSIX;
721 	} else if (adapter->flags & USING_MSI) {
722 		pci_disable_msi(adapter->pdev);
723 		adapter->flags &= ~USING_MSI;
724 	}
725 }
726 
727 /*
728  * Interrupt handler for non-data events used with MSI-X.
729  */
730 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
731 {
732 	struct adapter *adap = cookie;
733 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
734 
735 	if (v & PFSW_F) {
736 		adap->swintr = 1;
737 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
738 	}
739 	if (adap->flags & MASTER_PF)
740 		t4_slow_intr_handler(adap);
741 	return IRQ_HANDLED;
742 }
743 
744 /*
745  * Name the MSI-X interrupts.
746  */
747 static void name_msix_vecs(struct adapter *adap)
748 {
749 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
750 
751 	/* non-data interrupts */
752 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
753 
754 	/* FW events */
755 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
756 		 adap->port[0]->name);
757 
758 	/* Ethernet queues */
759 	for_each_port(adap, j) {
760 		struct net_device *d = adap->port[j];
761 		const struct port_info *pi = netdev_priv(d);
762 
763 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
764 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
765 				 d->name, i);
766 	}
767 
768 	/* offload queues */
769 	for_each_ofldrxq(&adap->sge, i)
770 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
771 			 adap->port[0]->name, i);
772 
773 	for_each_rdmarxq(&adap->sge, i)
774 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
775 			 adap->port[0]->name, i);
776 
777 	for_each_rdmaciq(&adap->sge, i)
778 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
779 			 adap->port[0]->name, i);
780 }
781 
782 static int request_msix_queue_irqs(struct adapter *adap)
783 {
784 	struct sge *s = &adap->sge;
785 	int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
786 	int msi_index = 2;
787 
788 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
789 			  adap->msix_info[1].desc, &s->fw_evtq);
790 	if (err)
791 		return err;
792 
793 	for_each_ethrxq(s, ethqidx) {
794 		err = request_irq(adap->msix_info[msi_index].vec,
795 				  t4_sge_intr_msix, 0,
796 				  adap->msix_info[msi_index].desc,
797 				  &s->ethrxq[ethqidx].rspq);
798 		if (err)
799 			goto unwind;
800 		msi_index++;
801 	}
802 	for_each_ofldrxq(s, ofldqidx) {
803 		err = request_irq(adap->msix_info[msi_index].vec,
804 				  t4_sge_intr_msix, 0,
805 				  adap->msix_info[msi_index].desc,
806 				  &s->ofldrxq[ofldqidx].rspq);
807 		if (err)
808 			goto unwind;
809 		msi_index++;
810 	}
811 	for_each_rdmarxq(s, rdmaqidx) {
812 		err = request_irq(adap->msix_info[msi_index].vec,
813 				  t4_sge_intr_msix, 0,
814 				  adap->msix_info[msi_index].desc,
815 				  &s->rdmarxq[rdmaqidx].rspq);
816 		if (err)
817 			goto unwind;
818 		msi_index++;
819 	}
820 	for_each_rdmaciq(s, rdmaciqqidx) {
821 		err = request_irq(adap->msix_info[msi_index].vec,
822 				  t4_sge_intr_msix, 0,
823 				  adap->msix_info[msi_index].desc,
824 				  &s->rdmaciq[rdmaciqqidx].rspq);
825 		if (err)
826 			goto unwind;
827 		msi_index++;
828 	}
829 	return 0;
830 
831 unwind:
832 	while (--rdmaciqqidx >= 0)
833 		free_irq(adap->msix_info[--msi_index].vec,
834 			 &s->rdmaciq[rdmaciqqidx].rspq);
835 	while (--rdmaqidx >= 0)
836 		free_irq(adap->msix_info[--msi_index].vec,
837 			 &s->rdmarxq[rdmaqidx].rspq);
838 	while (--ofldqidx >= 0)
839 		free_irq(adap->msix_info[--msi_index].vec,
840 			 &s->ofldrxq[ofldqidx].rspq);
841 	while (--ethqidx >= 0)
842 		free_irq(adap->msix_info[--msi_index].vec,
843 			 &s->ethrxq[ethqidx].rspq);
844 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
845 	return err;
846 }
847 
848 static void free_msix_queue_irqs(struct adapter *adap)
849 {
850 	int i, msi_index = 2;
851 	struct sge *s = &adap->sge;
852 
853 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
854 	for_each_ethrxq(s, i)
855 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
856 	for_each_ofldrxq(s, i)
857 		free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
858 	for_each_rdmarxq(s, i)
859 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
860 	for_each_rdmaciq(s, i)
861 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
862 }
863 
864 /**
865  *	cxgb4_write_rss - write the RSS table for a given port
866  *	@pi: the port
867  *	@queues: array of queue indices for RSS
868  *
869  *	Sets up the portion of the HW RSS table for the port's VI to distribute
870  *	packets to the Rx queues in @queues.
871  *	Should never be called before setting up sge eth rx queues
872  */
873 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
874 {
875 	u16 *rss;
876 	int i, err;
877 	struct adapter *adapter = pi->adapter;
878 	const struct sge_eth_rxq *rxq;
879 
880 	rxq = &adapter->sge.ethrxq[pi->first_qset];
881 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
882 	if (!rss)
883 		return -ENOMEM;
884 
885 	/* map the queue indices to queue ids */
886 	for (i = 0; i < pi->rss_size; i++, queues++)
887 		rss[i] = rxq[*queues].rspq.abs_id;
888 
889 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
890 				  pi->rss_size, rss, pi->rss_size);
891 	/* If Tunnel All Lookup isn't specified in the global RSS
892 	 * Configuration, then we need to specify a default Ingress
893 	 * Queue for any ingress packets which aren't hashed.  We'll
894 	 * use our first ingress queue ...
895 	 */
896 	if (!err)
897 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
898 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
899 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
900 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
901 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
902 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
903 				       rss[0]);
904 	kfree(rss);
905 	return err;
906 }
907 
908 /**
909  *	setup_rss - configure RSS
910  *	@adap: the adapter
911  *
912  *	Sets up RSS for each port.
913  */
914 static int setup_rss(struct adapter *adap)
915 {
916 	int i, j, err;
917 
918 	for_each_port(adap, i) {
919 		const struct port_info *pi = adap2pinfo(adap, i);
920 
921 		/* Fill default values with equal distribution */
922 		for (j = 0; j < pi->rss_size; j++)
923 			pi->rss[j] = j % pi->nqsets;
924 
925 		err = cxgb4_write_rss(pi, pi->rss);
926 		if (err)
927 			return err;
928 	}
929 	return 0;
930 }
931 
932 /*
933  * Return the channel of the ingress queue with the given qid.
934  */
935 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
936 {
937 	qid -= p->ingr_start;
938 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
939 }
940 
941 /*
942  * Wait until all NAPI handlers are descheduled.
943  */
944 static void quiesce_rx(struct adapter *adap)
945 {
946 	int i;
947 
948 	for (i = 0; i < adap->sge.ingr_sz; i++) {
949 		struct sge_rspq *q = adap->sge.ingr_map[i];
950 
951 		if (q && q->handler) {
952 			napi_disable(&q->napi);
953 			local_bh_disable();
954 			while (!cxgb_poll_lock_napi(q))
955 				mdelay(1);
956 			local_bh_enable();
957 		}
958 
959 	}
960 }
961 
962 /* Disable interrupt and napi handler */
963 static void disable_interrupts(struct adapter *adap)
964 {
965 	if (adap->flags & FULL_INIT_DONE) {
966 		t4_intr_disable(adap);
967 		if (adap->flags & USING_MSIX) {
968 			free_msix_queue_irqs(adap);
969 			free_irq(adap->msix_info[0].vec, adap);
970 		} else {
971 			free_irq(adap->pdev->irq, adap);
972 		}
973 		quiesce_rx(adap);
974 	}
975 }
976 
977 /*
978  * Enable NAPI scheduling and interrupt generation for all Rx queues.
979  */
980 static void enable_rx(struct adapter *adap)
981 {
982 	int i;
983 
984 	for (i = 0; i < adap->sge.ingr_sz; i++) {
985 		struct sge_rspq *q = adap->sge.ingr_map[i];
986 
987 		if (!q)
988 			continue;
989 		if (q->handler) {
990 			cxgb_busy_poll_init_lock(q);
991 			napi_enable(&q->napi);
992 		}
993 		/* 0-increment GTS to start the timer and enable interrupts */
994 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
995 			     SEINTARM_V(q->intr_params) |
996 			     INGRESSQID_V(q->cntxt_id));
997 	}
998 }
999 
1000 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
1001 			   unsigned int nq, unsigned int per_chan, int msi_idx,
1002 			   u16 *ids)
1003 {
1004 	int i, err;
1005 
1006 	for (i = 0; i < nq; i++, q++) {
1007 		if (msi_idx > 0)
1008 			msi_idx++;
1009 		err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1010 				       adap->port[i / per_chan],
1011 				       msi_idx, q->fl.size ? &q->fl : NULL,
1012 				       uldrx_handler, 0);
1013 		if (err)
1014 			return err;
1015 		memset(&q->stats, 0, sizeof(q->stats));
1016 		if (ids)
1017 			ids[i] = q->rspq.abs_id;
1018 	}
1019 	return 0;
1020 }
1021 
1022 /**
1023  *	setup_sge_queues - configure SGE Tx/Rx/response queues
1024  *	@adap: the adapter
1025  *
1026  *	Determines how many sets of SGE queues to use and initializes them.
1027  *	We support multiple queue sets per port if we have MSI-X, otherwise
1028  *	just one queue set per port.
1029  */
1030 static int setup_sge_queues(struct adapter *adap)
1031 {
1032 	int err, msi_idx, i, j;
1033 	struct sge *s = &adap->sge;
1034 
1035 	bitmap_zero(s->starving_fl, s->egr_sz);
1036 	bitmap_zero(s->txq_maperr, s->egr_sz);
1037 
1038 	if (adap->flags & USING_MSIX)
1039 		msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1040 	else {
1041 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1042 				       NULL, NULL, -1);
1043 		if (err)
1044 			return err;
1045 		msi_idx = -((int)s->intrq.abs_id + 1);
1046 	}
1047 
1048 	/* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1049 	 * don't forget to update the following which need to be
1050 	 * synchronized to and changes here.
1051 	 *
1052 	 * 1. The calculations of MAX_INGQ in cxgb4.h.
1053 	 *
1054 	 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1055 	 *    to accommodate any new/deleted Ingress Queues
1056 	 *    which need MSI-X Vectors.
1057 	 *
1058 	 * 3. Update sge_qinfo_show() to include information on the
1059 	 *    new/deleted queues.
1060 	 */
1061 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1062 			       msi_idx, NULL, fwevtq_handler, -1);
1063 	if (err) {
1064 freeout:	t4_free_sge_resources(adap);
1065 		return err;
1066 	}
1067 
1068 	for_each_port(adap, i) {
1069 		struct net_device *dev = adap->port[i];
1070 		struct port_info *pi = netdev_priv(dev);
1071 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1072 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1073 
1074 		for (j = 0; j < pi->nqsets; j++, q++) {
1075 			if (msi_idx > 0)
1076 				msi_idx++;
1077 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1078 					       msi_idx, &q->fl,
1079 					       t4_ethrx_handler,
1080 					       t4_get_mps_bg_map(adap,
1081 								 pi->tx_chan));
1082 			if (err)
1083 				goto freeout;
1084 			q->rspq.idx = j;
1085 			memset(&q->stats, 0, sizeof(q->stats));
1086 		}
1087 		for (j = 0; j < pi->nqsets; j++, t++) {
1088 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1089 					netdev_get_tx_queue(dev, j),
1090 					s->fw_evtq.cntxt_id);
1091 			if (err)
1092 				goto freeout;
1093 		}
1094 	}
1095 
1096 	j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1097 	for_each_ofldrxq(s, i) {
1098 		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1099 					    adap->port[i / j],
1100 					    s->fw_evtq.cntxt_id);
1101 		if (err)
1102 			goto freeout;
1103 	}
1104 
1105 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1106 	err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1107 	if (err) \
1108 		goto freeout; \
1109 	if (msi_idx > 0) \
1110 		msi_idx += nq; \
1111 } while (0)
1112 
1113 	ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1114 	ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1115 	j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1116 	ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1117 
1118 #undef ALLOC_OFLD_RXQS
1119 
1120 	for_each_port(adap, i) {
1121 		/*
1122 		 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1123 		 * have RDMA queues, and that's the right value.
1124 		 */
1125 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1126 					    s->fw_evtq.cntxt_id,
1127 					    s->rdmarxq[i].rspq.cntxt_id);
1128 		if (err)
1129 			goto freeout;
1130 	}
1131 
1132 	t4_write_reg(adap, is_t4(adap->params.chip) ?
1133 				MPS_TRC_RSS_CONTROL_A :
1134 				MPS_T5_TRC_RSS_CONTROL_A,
1135 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1136 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1137 	return 0;
1138 }
1139 
1140 /*
1141  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1142  * The allocated memory is cleared.
1143  */
1144 void *t4_alloc_mem(size_t size)
1145 {
1146 	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1147 
1148 	if (!p)
1149 		p = vzalloc(size);
1150 	return p;
1151 }
1152 
1153 /*
1154  * Free memory allocated through alloc_mem().
1155  */
1156 void t4_free_mem(void *addr)
1157 {
1158 	kvfree(addr);
1159 }
1160 
1161 /* Send a Work Request to write the filter at a specified index.  We construct
1162  * a Firmware Filter Work Request to have the work done and put the indicated
1163  * filter into "pending" mode which will prevent any further actions against
1164  * it till we get a reply from the firmware on the completion status of the
1165  * request.
1166  */
1167 static int set_filter_wr(struct adapter *adapter, int fidx)
1168 {
1169 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1170 	struct sk_buff *skb;
1171 	struct fw_filter_wr *fwr;
1172 	unsigned int ftid;
1173 
1174 	skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1175 	if (!skb)
1176 		return -ENOMEM;
1177 
1178 	/* If the new filter requires loopback Destination MAC and/or VLAN
1179 	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1180 	 * the filter.
1181 	 */
1182 	if (f->fs.newdmac || f->fs.newvlan) {
1183 		/* allocate L2T entry for new filter */
1184 		f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1185 		if (f->l2t == NULL) {
1186 			kfree_skb(skb);
1187 			return -EAGAIN;
1188 		}
1189 		if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1190 					f->fs.eport, f->fs.dmac)) {
1191 			cxgb4_l2t_release(f->l2t);
1192 			f->l2t = NULL;
1193 			kfree_skb(skb);
1194 			return -ENOMEM;
1195 		}
1196 	}
1197 
1198 	ftid = adapter->tids.ftid_base + fidx;
1199 
1200 	fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1201 	memset(fwr, 0, sizeof(*fwr));
1202 
1203 	/* It would be nice to put most of the following in t4_hw.c but most
1204 	 * of the work is translating the cxgbtool ch_filter_specification
1205 	 * into the Work Request and the definition of that structure is
1206 	 * currently in cxgbtool.h which isn't appropriate to pull into the
1207 	 * common code.  We may eventually try to come up with a more neutral
1208 	 * filter specification structure but for now it's easiest to simply
1209 	 * put this fairly direct code in line ...
1210 	 */
1211 	fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1212 	fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1213 	fwr->tid_to_iq =
1214 		htonl(FW_FILTER_WR_TID_V(ftid) |
1215 		      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1216 		      FW_FILTER_WR_NOREPLY_V(0) |
1217 		      FW_FILTER_WR_IQ_V(f->fs.iq));
1218 	fwr->del_filter_to_l2tix =
1219 		htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1220 		      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1221 		      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1222 		      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1223 		      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1224 		      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1225 		      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1226 		      FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1227 		      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1228 					     f->fs.newvlan == VLAN_REWRITE) |
1229 		      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1230 					    f->fs.newvlan == VLAN_REWRITE) |
1231 		      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1232 		      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1233 		      FW_FILTER_WR_PRIO_V(f->fs.prio) |
1234 		      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1235 	fwr->ethtype = htons(f->fs.val.ethtype);
1236 	fwr->ethtypem = htons(f->fs.mask.ethtype);
1237 	fwr->frag_to_ovlan_vldm =
1238 		(FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1239 		 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1240 		 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1241 		 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1242 		 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1243 		 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1244 	fwr->smac_sel = 0;
1245 	fwr->rx_chan_rx_rpl_iq =
1246 		htons(FW_FILTER_WR_RX_CHAN_V(0) |
1247 		      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1248 	fwr->maci_to_matchtypem =
1249 		htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1250 		      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1251 		      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1252 		      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1253 		      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1254 		      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1255 		      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1256 		      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1257 	fwr->ptcl = f->fs.val.proto;
1258 	fwr->ptclm = f->fs.mask.proto;
1259 	fwr->ttyp = f->fs.val.tos;
1260 	fwr->ttypm = f->fs.mask.tos;
1261 	fwr->ivlan = htons(f->fs.val.ivlan);
1262 	fwr->ivlanm = htons(f->fs.mask.ivlan);
1263 	fwr->ovlan = htons(f->fs.val.ovlan);
1264 	fwr->ovlanm = htons(f->fs.mask.ovlan);
1265 	memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1266 	memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1267 	memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1268 	memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1269 	fwr->lp = htons(f->fs.val.lport);
1270 	fwr->lpm = htons(f->fs.mask.lport);
1271 	fwr->fp = htons(f->fs.val.fport);
1272 	fwr->fpm = htons(f->fs.mask.fport);
1273 	if (f->fs.newsmac)
1274 		memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1275 
1276 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1277 	 * When we get the Work Request Reply we'll clear the pending status.
1278 	 */
1279 	f->pending = 1;
1280 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1281 	t4_ofld_send(adapter, skb);
1282 	return 0;
1283 }
1284 
1285 /* Delete the filter at a specified index.
1286  */
1287 static int del_filter_wr(struct adapter *adapter, int fidx)
1288 {
1289 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1290 	struct sk_buff *skb;
1291 	struct fw_filter_wr *fwr;
1292 	unsigned int len, ftid;
1293 
1294 	len = sizeof(*fwr);
1295 	ftid = adapter->tids.ftid_base + fidx;
1296 
1297 	skb = alloc_skb(len, GFP_KERNEL);
1298 	if (!skb)
1299 		return -ENOMEM;
1300 
1301 	fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1302 	t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1303 
1304 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1305 	 * When we get the Work Request Reply we'll clear the pending status.
1306 	 */
1307 	f->pending = 1;
1308 	t4_mgmt_tx(adapter, skb);
1309 	return 0;
1310 }
1311 
1312 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1313 			     void *accel_priv, select_queue_fallback_t fallback)
1314 {
1315 	int txq;
1316 
1317 #ifdef CONFIG_CHELSIO_T4_DCB
1318 	/* If a Data Center Bridging has been successfully negotiated on this
1319 	 * link then we'll use the skb's priority to map it to a TX Queue.
1320 	 * The skb's priority is determined via the VLAN Tag Priority Code
1321 	 * Point field.
1322 	 */
1323 	if (cxgb4_dcb_enabled(dev)) {
1324 		u16 vlan_tci;
1325 		int err;
1326 
1327 		err = vlan_get_tag(skb, &vlan_tci);
1328 		if (unlikely(err)) {
1329 			if (net_ratelimit())
1330 				netdev_warn(dev,
1331 					    "TX Packet without VLAN Tag on DCB Link\n");
1332 			txq = 0;
1333 		} else {
1334 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1335 #ifdef CONFIG_CHELSIO_T4_FCOE
1336 			if (skb->protocol == htons(ETH_P_FCOE))
1337 				txq = skb->priority & 0x7;
1338 #endif /* CONFIG_CHELSIO_T4_FCOE */
1339 		}
1340 		return txq;
1341 	}
1342 #endif /* CONFIG_CHELSIO_T4_DCB */
1343 
1344 	if (select_queue) {
1345 		txq = (skb_rx_queue_recorded(skb)
1346 			? skb_get_rx_queue(skb)
1347 			: smp_processor_id());
1348 
1349 		while (unlikely(txq >= dev->real_num_tx_queues))
1350 			txq -= dev->real_num_tx_queues;
1351 
1352 		return txq;
1353 	}
1354 
1355 	return fallback(dev, skb) % dev->real_num_tx_queues;
1356 }
1357 
1358 static int closest_timer(const struct sge *s, int time)
1359 {
1360 	int i, delta, match = 0, min_delta = INT_MAX;
1361 
1362 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1363 		delta = time - s->timer_val[i];
1364 		if (delta < 0)
1365 			delta = -delta;
1366 		if (delta < min_delta) {
1367 			min_delta = delta;
1368 			match = i;
1369 		}
1370 	}
1371 	return match;
1372 }
1373 
1374 static int closest_thres(const struct sge *s, int thres)
1375 {
1376 	int i, delta, match = 0, min_delta = INT_MAX;
1377 
1378 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1379 		delta = thres - s->counter_val[i];
1380 		if (delta < 0)
1381 			delta = -delta;
1382 		if (delta < min_delta) {
1383 			min_delta = delta;
1384 			match = i;
1385 		}
1386 	}
1387 	return match;
1388 }
1389 
1390 /**
1391  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1392  *	@q: the Rx queue
1393  *	@us: the hold-off time in us, or 0 to disable timer
1394  *	@cnt: the hold-off packet count, or 0 to disable counter
1395  *
1396  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1397  *	one of the two needs to be enabled for the queue to generate interrupts.
1398  */
1399 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1400 			       unsigned int us, unsigned int cnt)
1401 {
1402 	struct adapter *adap = q->adap;
1403 
1404 	if ((us | cnt) == 0)
1405 		cnt = 1;
1406 
1407 	if (cnt) {
1408 		int err;
1409 		u32 v, new_idx;
1410 
1411 		new_idx = closest_thres(&adap->sge, cnt);
1412 		if (q->desc && q->pktcnt_idx != new_idx) {
1413 			/* the queue has already been created, update it */
1414 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1415 			    FW_PARAMS_PARAM_X_V(
1416 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1417 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1418 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1419 					    &v, &new_idx);
1420 			if (err)
1421 				return err;
1422 		}
1423 		q->pktcnt_idx = new_idx;
1424 	}
1425 
1426 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1427 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1428 	return 0;
1429 }
1430 
1431 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1432 {
1433 	const struct port_info *pi = netdev_priv(dev);
1434 	netdev_features_t changed = dev->features ^ features;
1435 	int err;
1436 
1437 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1438 		return 0;
1439 
1440 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1441 			    -1, -1, -1,
1442 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1443 	if (unlikely(err))
1444 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1445 	return err;
1446 }
1447 
1448 static int setup_debugfs(struct adapter *adap)
1449 {
1450 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1451 		return -1;
1452 
1453 #ifdef CONFIG_DEBUG_FS
1454 	t4_setup_debugfs(adap);
1455 #endif
1456 	return 0;
1457 }
1458 
1459 /*
1460  * upper-layer driver support
1461  */
1462 
1463 /*
1464  * Allocate an active-open TID and set it to the supplied value.
1465  */
1466 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1467 {
1468 	int atid = -1;
1469 
1470 	spin_lock_bh(&t->atid_lock);
1471 	if (t->afree) {
1472 		union aopen_entry *p = t->afree;
1473 
1474 		atid = (p - t->atid_tab) + t->atid_base;
1475 		t->afree = p->next;
1476 		p->data = data;
1477 		t->atids_in_use++;
1478 	}
1479 	spin_unlock_bh(&t->atid_lock);
1480 	return atid;
1481 }
1482 EXPORT_SYMBOL(cxgb4_alloc_atid);
1483 
1484 /*
1485  * Release an active-open TID.
1486  */
1487 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1488 {
1489 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1490 
1491 	spin_lock_bh(&t->atid_lock);
1492 	p->next = t->afree;
1493 	t->afree = p;
1494 	t->atids_in_use--;
1495 	spin_unlock_bh(&t->atid_lock);
1496 }
1497 EXPORT_SYMBOL(cxgb4_free_atid);
1498 
1499 /*
1500  * Allocate a server TID and set it to the supplied value.
1501  */
1502 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1503 {
1504 	int stid;
1505 
1506 	spin_lock_bh(&t->stid_lock);
1507 	if (family == PF_INET) {
1508 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1509 		if (stid < t->nstids)
1510 			__set_bit(stid, t->stid_bmap);
1511 		else
1512 			stid = -1;
1513 	} else {
1514 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1515 		if (stid < 0)
1516 			stid = -1;
1517 	}
1518 	if (stid >= 0) {
1519 		t->stid_tab[stid].data = data;
1520 		stid += t->stid_base;
1521 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1522 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1523 		 * needs 2 TIDs.
1524 		 */
1525 		if (family == PF_INET)
1526 			t->stids_in_use++;
1527 		else
1528 			t->stids_in_use += 4;
1529 	}
1530 	spin_unlock_bh(&t->stid_lock);
1531 	return stid;
1532 }
1533 EXPORT_SYMBOL(cxgb4_alloc_stid);
1534 
1535 /* Allocate a server filter TID and set it to the supplied value.
1536  */
1537 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1538 {
1539 	int stid;
1540 
1541 	spin_lock_bh(&t->stid_lock);
1542 	if (family == PF_INET) {
1543 		stid = find_next_zero_bit(t->stid_bmap,
1544 				t->nstids + t->nsftids, t->nstids);
1545 		if (stid < (t->nstids + t->nsftids))
1546 			__set_bit(stid, t->stid_bmap);
1547 		else
1548 			stid = -1;
1549 	} else {
1550 		stid = -1;
1551 	}
1552 	if (stid >= 0) {
1553 		t->stid_tab[stid].data = data;
1554 		stid -= t->nstids;
1555 		stid += t->sftid_base;
1556 		t->sftids_in_use++;
1557 	}
1558 	spin_unlock_bh(&t->stid_lock);
1559 	return stid;
1560 }
1561 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1562 
1563 /* Release a server TID.
1564  */
1565 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1566 {
1567 	/* Is it a server filter TID? */
1568 	if (t->nsftids && (stid >= t->sftid_base)) {
1569 		stid -= t->sftid_base;
1570 		stid += t->nstids;
1571 	} else {
1572 		stid -= t->stid_base;
1573 	}
1574 
1575 	spin_lock_bh(&t->stid_lock);
1576 	if (family == PF_INET)
1577 		__clear_bit(stid, t->stid_bmap);
1578 	else
1579 		bitmap_release_region(t->stid_bmap, stid, 2);
1580 	t->stid_tab[stid].data = NULL;
1581 	if (stid < t->nstids) {
1582 		if (family == PF_INET)
1583 			t->stids_in_use--;
1584 		else
1585 			t->stids_in_use -= 4;
1586 	} else {
1587 		t->sftids_in_use--;
1588 	}
1589 	spin_unlock_bh(&t->stid_lock);
1590 }
1591 EXPORT_SYMBOL(cxgb4_free_stid);
1592 
1593 /*
1594  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1595  */
1596 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1597 			   unsigned int tid)
1598 {
1599 	struct cpl_tid_release *req;
1600 
1601 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1602 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1603 	INIT_TP_WR(req, tid);
1604 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1605 }
1606 
1607 /*
1608  * Queue a TID release request and if necessary schedule a work queue to
1609  * process it.
1610  */
1611 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1612 				    unsigned int tid)
1613 {
1614 	void **p = &t->tid_tab[tid];
1615 	struct adapter *adap = container_of(t, struct adapter, tids);
1616 
1617 	spin_lock_bh(&adap->tid_release_lock);
1618 	*p = adap->tid_release_head;
1619 	/* Low 2 bits encode the Tx channel number */
1620 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1621 	if (!adap->tid_release_task_busy) {
1622 		adap->tid_release_task_busy = true;
1623 		queue_work(adap->workq, &adap->tid_release_task);
1624 	}
1625 	spin_unlock_bh(&adap->tid_release_lock);
1626 }
1627 
1628 /*
1629  * Process the list of pending TID release requests.
1630  */
1631 static void process_tid_release_list(struct work_struct *work)
1632 {
1633 	struct sk_buff *skb;
1634 	struct adapter *adap;
1635 
1636 	adap = container_of(work, struct adapter, tid_release_task);
1637 
1638 	spin_lock_bh(&adap->tid_release_lock);
1639 	while (adap->tid_release_head) {
1640 		void **p = adap->tid_release_head;
1641 		unsigned int chan = (uintptr_t)p & 3;
1642 		p = (void *)p - chan;
1643 
1644 		adap->tid_release_head = *p;
1645 		*p = NULL;
1646 		spin_unlock_bh(&adap->tid_release_lock);
1647 
1648 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1649 					 GFP_KERNEL)))
1650 			schedule_timeout_uninterruptible(1);
1651 
1652 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1653 		t4_ofld_send(adap, skb);
1654 		spin_lock_bh(&adap->tid_release_lock);
1655 	}
1656 	adap->tid_release_task_busy = false;
1657 	spin_unlock_bh(&adap->tid_release_lock);
1658 }
1659 
1660 /*
1661  * Release a TID and inform HW.  If we are unable to allocate the release
1662  * message we defer to a work queue.
1663  */
1664 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1665 {
1666 	struct sk_buff *skb;
1667 	struct adapter *adap = container_of(t, struct adapter, tids);
1668 
1669 	WARN_ON(tid >= t->ntids);
1670 
1671 	if (t->tid_tab[tid]) {
1672 		t->tid_tab[tid] = NULL;
1673 		if (t->hash_base && (tid >= t->hash_base))
1674 			atomic_dec(&t->hash_tids_in_use);
1675 		else
1676 			atomic_dec(&t->tids_in_use);
1677 	}
1678 
1679 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1680 	if (likely(skb)) {
1681 		mk_tid_release(skb, chan, tid);
1682 		t4_ofld_send(adap, skb);
1683 	} else
1684 		cxgb4_queue_tid_release(t, chan, tid);
1685 }
1686 EXPORT_SYMBOL(cxgb4_remove_tid);
1687 
1688 /*
1689  * Allocate and initialize the TID tables.  Returns 0 on success.
1690  */
1691 static int tid_init(struct tid_info *t)
1692 {
1693 	size_t size;
1694 	unsigned int stid_bmap_size;
1695 	unsigned int natids = t->natids;
1696 	struct adapter *adap = container_of(t, struct adapter, tids);
1697 
1698 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1699 	size = t->ntids * sizeof(*t->tid_tab) +
1700 	       natids * sizeof(*t->atid_tab) +
1701 	       t->nstids * sizeof(*t->stid_tab) +
1702 	       t->nsftids * sizeof(*t->stid_tab) +
1703 	       stid_bmap_size * sizeof(long) +
1704 	       t->nftids * sizeof(*t->ftid_tab) +
1705 	       t->nsftids * sizeof(*t->ftid_tab);
1706 
1707 	t->tid_tab = t4_alloc_mem(size);
1708 	if (!t->tid_tab)
1709 		return -ENOMEM;
1710 
1711 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1712 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1713 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1714 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1715 	spin_lock_init(&t->stid_lock);
1716 	spin_lock_init(&t->atid_lock);
1717 
1718 	t->stids_in_use = 0;
1719 	t->sftids_in_use = 0;
1720 	t->afree = NULL;
1721 	t->atids_in_use = 0;
1722 	atomic_set(&t->tids_in_use, 0);
1723 	atomic_set(&t->hash_tids_in_use, 0);
1724 
1725 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1726 	if (natids) {
1727 		while (--natids)
1728 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1729 		t->afree = t->atid_tab;
1730 	}
1731 	bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1732 	/* Reserve stid 0 for T4/T5 adapters */
1733 	if (!t->stid_base &&
1734 	    (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1735 		__set_bit(0, t->stid_bmap);
1736 
1737 	return 0;
1738 }
1739 
1740 /**
1741  *	cxgb4_create_server - create an IP server
1742  *	@dev: the device
1743  *	@stid: the server TID
1744  *	@sip: local IP address to bind server to
1745  *	@sport: the server's TCP port
1746  *	@queue: queue to direct messages from this server to
1747  *
1748  *	Create an IP server for the given port and address.
1749  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1750  */
1751 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1752 			__be32 sip, __be16 sport, __be16 vlan,
1753 			unsigned int queue)
1754 {
1755 	unsigned int chan;
1756 	struct sk_buff *skb;
1757 	struct adapter *adap;
1758 	struct cpl_pass_open_req *req;
1759 	int ret;
1760 
1761 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1762 	if (!skb)
1763 		return -ENOMEM;
1764 
1765 	adap = netdev2adap(dev);
1766 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1767 	INIT_TP_WR(req, 0);
1768 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1769 	req->local_port = sport;
1770 	req->peer_port = htons(0);
1771 	req->local_ip = sip;
1772 	req->peer_ip = htonl(0);
1773 	chan = rxq_to_chan(&adap->sge, queue);
1774 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1775 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1776 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1777 	ret = t4_mgmt_tx(adap, skb);
1778 	return net_xmit_eval(ret);
1779 }
1780 EXPORT_SYMBOL(cxgb4_create_server);
1781 
1782 /*	cxgb4_create_server6 - create an IPv6 server
1783  *	@dev: the device
1784  *	@stid: the server TID
1785  *	@sip: local IPv6 address to bind server to
1786  *	@sport: the server's TCP port
1787  *	@queue: queue to direct messages from this server to
1788  *
1789  *	Create an IPv6 server for the given port and address.
1790  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1791  */
1792 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1793 			 const struct in6_addr *sip, __be16 sport,
1794 			 unsigned int queue)
1795 {
1796 	unsigned int chan;
1797 	struct sk_buff *skb;
1798 	struct adapter *adap;
1799 	struct cpl_pass_open_req6 *req;
1800 	int ret;
1801 
1802 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1803 	if (!skb)
1804 		return -ENOMEM;
1805 
1806 	adap = netdev2adap(dev);
1807 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1808 	INIT_TP_WR(req, 0);
1809 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1810 	req->local_port = sport;
1811 	req->peer_port = htons(0);
1812 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1813 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1814 	req->peer_ip_hi = cpu_to_be64(0);
1815 	req->peer_ip_lo = cpu_to_be64(0);
1816 	chan = rxq_to_chan(&adap->sge, queue);
1817 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1818 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1819 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1820 	ret = t4_mgmt_tx(adap, skb);
1821 	return net_xmit_eval(ret);
1822 }
1823 EXPORT_SYMBOL(cxgb4_create_server6);
1824 
1825 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1826 			unsigned int queue, bool ipv6)
1827 {
1828 	struct sk_buff *skb;
1829 	struct adapter *adap;
1830 	struct cpl_close_listsvr_req *req;
1831 	int ret;
1832 
1833 	adap = netdev2adap(dev);
1834 
1835 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1836 	if (!skb)
1837 		return -ENOMEM;
1838 
1839 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1840 	INIT_TP_WR(req, 0);
1841 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1842 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1843 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1844 	ret = t4_mgmt_tx(adap, skb);
1845 	return net_xmit_eval(ret);
1846 }
1847 EXPORT_SYMBOL(cxgb4_remove_server);
1848 
1849 /**
1850  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1851  *	@mtus: the HW MTU table
1852  *	@mtu: the target MTU
1853  *	@idx: index of selected entry in the MTU table
1854  *
1855  *	Returns the index and the value in the HW MTU table that is closest to
1856  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1857  *	table, in which case that smallest available value is selected.
1858  */
1859 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1860 			    unsigned int *idx)
1861 {
1862 	unsigned int i = 0;
1863 
1864 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1865 		++i;
1866 	if (idx)
1867 		*idx = i;
1868 	return mtus[i];
1869 }
1870 EXPORT_SYMBOL(cxgb4_best_mtu);
1871 
1872 /**
1873  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1874  *     @mtus: the HW MTU table
1875  *     @header_size: Header Size
1876  *     @data_size_max: maximum Data Segment Size
1877  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1878  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1879  *
1880  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1881  *     MTU Table based solely on a Maximum MTU parameter, we break that
1882  *     parameter up into a Header Size and Maximum Data Segment Size, and
1883  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1884  *     the Hardware MTU Table which will result in a Data Segment Size with
1885  *     the requested alignment _and_ that MTU isn't "too far" from the
1886  *     closest MTU, then we'll return that rather than the closest MTU.
1887  */
1888 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1889 				    unsigned short header_size,
1890 				    unsigned short data_size_max,
1891 				    unsigned short data_size_align,
1892 				    unsigned int *mtu_idxp)
1893 {
1894 	unsigned short max_mtu = header_size + data_size_max;
1895 	unsigned short data_size_align_mask = data_size_align - 1;
1896 	int mtu_idx, aligned_mtu_idx;
1897 
1898 	/* Scan the MTU Table till we find an MTU which is larger than our
1899 	 * Maximum MTU or we reach the end of the table.  Along the way,
1900 	 * record the last MTU found, if any, which will result in a Data
1901 	 * Segment Length matching the requested alignment.
1902 	 */
1903 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1904 		unsigned short data_size = mtus[mtu_idx] - header_size;
1905 
1906 		/* If this MTU minus the Header Size would result in a
1907 		 * Data Segment Size of the desired alignment, remember it.
1908 		 */
1909 		if ((data_size & data_size_align_mask) == 0)
1910 			aligned_mtu_idx = mtu_idx;
1911 
1912 		/* If we're not at the end of the Hardware MTU Table and the
1913 		 * next element is larger than our Maximum MTU, drop out of
1914 		 * the loop.
1915 		 */
1916 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1917 			break;
1918 	}
1919 
1920 	/* If we fell out of the loop because we ran to the end of the table,
1921 	 * then we just have to use the last [largest] entry.
1922 	 */
1923 	if (mtu_idx == NMTUS)
1924 		mtu_idx--;
1925 
1926 	/* If we found an MTU which resulted in the requested Data Segment
1927 	 * Length alignment and that's "not far" from the largest MTU which is
1928 	 * less than or equal to the maximum MTU, then use that.
1929 	 */
1930 	if (aligned_mtu_idx >= 0 &&
1931 	    mtu_idx - aligned_mtu_idx <= 1)
1932 		mtu_idx = aligned_mtu_idx;
1933 
1934 	/* If the caller has passed in an MTU Index pointer, pass the
1935 	 * MTU Index back.  Return the MTU value.
1936 	 */
1937 	if (mtu_idxp)
1938 		*mtu_idxp = mtu_idx;
1939 	return mtus[mtu_idx];
1940 }
1941 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1942 
1943 /**
1944  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1945  *	@chip: chip type
1946  *	@viid: VI id of the given port
1947  *
1948  *	Return the SMT index for this VI.
1949  */
1950 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1951 {
1952 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1953 	 * 128 rows of 2 entries each.
1954 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1955 	 * TODO: The below code needs to be updated when we add support
1956 	 * for 256 VFs.
1957 	 */
1958 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1959 		return ((viid & 0x7f) << 1);
1960 	else
1961 		return (viid & 0x7f);
1962 }
1963 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1964 
1965 /**
1966  *	cxgb4_port_chan - get the HW channel of a port
1967  *	@dev: the net device for the port
1968  *
1969  *	Return the HW Tx channel of the given port.
1970  */
1971 unsigned int cxgb4_port_chan(const struct net_device *dev)
1972 {
1973 	return netdev2pinfo(dev)->tx_chan;
1974 }
1975 EXPORT_SYMBOL(cxgb4_port_chan);
1976 
1977 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1978 {
1979 	struct adapter *adap = netdev2adap(dev);
1980 	u32 v1, v2, lp_count, hp_count;
1981 
1982 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1983 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1984 	if (is_t4(adap->params.chip)) {
1985 		lp_count = LP_COUNT_G(v1);
1986 		hp_count = HP_COUNT_G(v1);
1987 	} else {
1988 		lp_count = LP_COUNT_T5_G(v1);
1989 		hp_count = HP_COUNT_T5_G(v2);
1990 	}
1991 	return lpfifo ? lp_count : hp_count;
1992 }
1993 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1994 
1995 /**
1996  *	cxgb4_port_viid - get the VI id of a port
1997  *	@dev: the net device for the port
1998  *
1999  *	Return the VI id of the given port.
2000  */
2001 unsigned int cxgb4_port_viid(const struct net_device *dev)
2002 {
2003 	return netdev2pinfo(dev)->viid;
2004 }
2005 EXPORT_SYMBOL(cxgb4_port_viid);
2006 
2007 /**
2008  *	cxgb4_port_idx - get the index of a port
2009  *	@dev: the net device for the port
2010  *
2011  *	Return the index of the given port.
2012  */
2013 unsigned int cxgb4_port_idx(const struct net_device *dev)
2014 {
2015 	return netdev2pinfo(dev)->port_id;
2016 }
2017 EXPORT_SYMBOL(cxgb4_port_idx);
2018 
2019 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2020 			 struct tp_tcp_stats *v6)
2021 {
2022 	struct adapter *adap = pci_get_drvdata(pdev);
2023 
2024 	spin_lock(&adap->stats_lock);
2025 	t4_tp_get_tcp_stats(adap, v4, v6);
2026 	spin_unlock(&adap->stats_lock);
2027 }
2028 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2029 
2030 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2031 		      const unsigned int *pgsz_order)
2032 {
2033 	struct adapter *adap = netdev2adap(dev);
2034 
2035 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2036 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2037 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2038 		     HPZ3_V(pgsz_order[3]));
2039 }
2040 EXPORT_SYMBOL(cxgb4_iscsi_init);
2041 
2042 int cxgb4_flush_eq_cache(struct net_device *dev)
2043 {
2044 	struct adapter *adap = netdev2adap(dev);
2045 
2046 	return t4_sge_ctxt_flush(adap, adap->mbox);
2047 }
2048 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2049 
2050 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2051 {
2052 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2053 	__be64 indices;
2054 	int ret;
2055 
2056 	spin_lock(&adap->win0_lock);
2057 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2058 			   sizeof(indices), (__be32 *)&indices,
2059 			   T4_MEMORY_READ);
2060 	spin_unlock(&adap->win0_lock);
2061 	if (!ret) {
2062 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2063 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2064 	}
2065 	return ret;
2066 }
2067 
2068 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2069 			u16 size)
2070 {
2071 	struct adapter *adap = netdev2adap(dev);
2072 	u16 hw_pidx, hw_cidx;
2073 	int ret;
2074 
2075 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2076 	if (ret)
2077 		goto out;
2078 
2079 	if (pidx != hw_pidx) {
2080 		u16 delta;
2081 		u32 val;
2082 
2083 		if (pidx >= hw_pidx)
2084 			delta = pidx - hw_pidx;
2085 		else
2086 			delta = size - hw_pidx + pidx;
2087 
2088 		if (is_t4(adap->params.chip))
2089 			val = PIDX_V(delta);
2090 		else
2091 			val = PIDX_T5_V(delta);
2092 		wmb();
2093 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2094 			     QID_V(qid) | val);
2095 	}
2096 out:
2097 	return ret;
2098 }
2099 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2100 
2101 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2102 {
2103 	struct adapter *adap;
2104 	u32 offset, memtype, memaddr;
2105 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2106 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
2107 	int ret;
2108 
2109 	adap = netdev2adap(dev);
2110 
2111 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2112 
2113 	/* Figure out where the offset lands in the Memory Type/Address scheme.
2114 	 * This code assumes that the memory is laid out starting at offset 0
2115 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2116 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2117 	 * MC0, and some have both MC0 and MC1.
2118 	 */
2119 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2120 	edc0_size = EDRAM0_SIZE_G(size) << 20;
2121 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2122 	edc1_size = EDRAM1_SIZE_G(size) << 20;
2123 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2124 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2125 
2126 	edc0_end = edc0_size;
2127 	edc1_end = edc0_end + edc1_size;
2128 	mc0_end = edc1_end + mc0_size;
2129 
2130 	if (offset < edc0_end) {
2131 		memtype = MEM_EDC0;
2132 		memaddr = offset;
2133 	} else if (offset < edc1_end) {
2134 		memtype = MEM_EDC1;
2135 		memaddr = offset - edc0_end;
2136 	} else {
2137 		if (offset < mc0_end) {
2138 			memtype = MEM_MC0;
2139 			memaddr = offset - edc1_end;
2140 		} else if (is_t5(adap->params.chip)) {
2141 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2142 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2143 			mc1_end = mc0_end + mc1_size;
2144 			if (offset < mc1_end) {
2145 				memtype = MEM_MC1;
2146 				memaddr = offset - mc0_end;
2147 			} else {
2148 				/* offset beyond the end of any memory */
2149 				goto err;
2150 			}
2151 		} else {
2152 			/* T4/T6 only has a single memory channel */
2153 			goto err;
2154 		}
2155 	}
2156 
2157 	spin_lock(&adap->win0_lock);
2158 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2159 	spin_unlock(&adap->win0_lock);
2160 	return ret;
2161 
2162 err:
2163 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2164 		stag, offset);
2165 	return -EINVAL;
2166 }
2167 EXPORT_SYMBOL(cxgb4_read_tpte);
2168 
2169 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2170 {
2171 	u32 hi, lo;
2172 	struct adapter *adap;
2173 
2174 	adap = netdev2adap(dev);
2175 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2176 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2177 
2178 	return ((u64)hi << 32) | (u64)lo;
2179 }
2180 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2181 
2182 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2183 			 unsigned int qid,
2184 			 enum cxgb4_bar2_qtype qtype,
2185 			 int user,
2186 			 u64 *pbar2_qoffset,
2187 			 unsigned int *pbar2_qid)
2188 {
2189 	return t4_bar2_sge_qregs(netdev2adap(dev),
2190 				 qid,
2191 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2192 				  ? T4_BAR2_QTYPE_EGRESS
2193 				  : T4_BAR2_QTYPE_INGRESS),
2194 				 user,
2195 				 pbar2_qoffset,
2196 				 pbar2_qid);
2197 }
2198 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2199 
2200 static struct pci_driver cxgb4_driver;
2201 
2202 static void check_neigh_update(struct neighbour *neigh)
2203 {
2204 	const struct device *parent;
2205 	const struct net_device *netdev = neigh->dev;
2206 
2207 	if (netdev->priv_flags & IFF_802_1Q_VLAN)
2208 		netdev = vlan_dev_real_dev(netdev);
2209 	parent = netdev->dev.parent;
2210 	if (parent && parent->driver == &cxgb4_driver.driver)
2211 		t4_l2t_update(dev_get_drvdata(parent), neigh);
2212 }
2213 
2214 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2215 		       void *data)
2216 {
2217 	switch (event) {
2218 	case NETEVENT_NEIGH_UPDATE:
2219 		check_neigh_update(data);
2220 		break;
2221 	case NETEVENT_REDIRECT:
2222 	default:
2223 		break;
2224 	}
2225 	return 0;
2226 }
2227 
2228 static bool netevent_registered;
2229 static struct notifier_block cxgb4_netevent_nb = {
2230 	.notifier_call = netevent_cb
2231 };
2232 
2233 static void drain_db_fifo(struct adapter *adap, int usecs)
2234 {
2235 	u32 v1, v2, lp_count, hp_count;
2236 
2237 	do {
2238 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2239 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2240 		if (is_t4(adap->params.chip)) {
2241 			lp_count = LP_COUNT_G(v1);
2242 			hp_count = HP_COUNT_G(v1);
2243 		} else {
2244 			lp_count = LP_COUNT_T5_G(v1);
2245 			hp_count = HP_COUNT_T5_G(v2);
2246 		}
2247 
2248 		if (lp_count == 0 && hp_count == 0)
2249 			break;
2250 		set_current_state(TASK_UNINTERRUPTIBLE);
2251 		schedule_timeout(usecs_to_jiffies(usecs));
2252 	} while (1);
2253 }
2254 
2255 static void disable_txq_db(struct sge_txq *q)
2256 {
2257 	unsigned long flags;
2258 
2259 	spin_lock_irqsave(&q->db_lock, flags);
2260 	q->db_disabled = 1;
2261 	spin_unlock_irqrestore(&q->db_lock, flags);
2262 }
2263 
2264 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2265 {
2266 	spin_lock_irq(&q->db_lock);
2267 	if (q->db_pidx_inc) {
2268 		/* Make sure that all writes to the TX descriptors
2269 		 * are committed before we tell HW about them.
2270 		 */
2271 		wmb();
2272 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2273 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2274 		q->db_pidx_inc = 0;
2275 	}
2276 	q->db_disabled = 0;
2277 	spin_unlock_irq(&q->db_lock);
2278 }
2279 
2280 static void disable_dbs(struct adapter *adap)
2281 {
2282 	int i;
2283 
2284 	for_each_ethrxq(&adap->sge, i)
2285 		disable_txq_db(&adap->sge.ethtxq[i].q);
2286 	for_each_ofldrxq(&adap->sge, i)
2287 		disable_txq_db(&adap->sge.ofldtxq[i].q);
2288 	for_each_port(adap, i)
2289 		disable_txq_db(&adap->sge.ctrlq[i].q);
2290 }
2291 
2292 static void enable_dbs(struct adapter *adap)
2293 {
2294 	int i;
2295 
2296 	for_each_ethrxq(&adap->sge, i)
2297 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2298 	for_each_ofldrxq(&adap->sge, i)
2299 		enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2300 	for_each_port(adap, i)
2301 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2302 }
2303 
2304 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2305 {
2306 	if (adap->uld_handle[CXGB4_ULD_RDMA])
2307 		ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2308 				cmd);
2309 }
2310 
2311 static void process_db_full(struct work_struct *work)
2312 {
2313 	struct adapter *adap;
2314 
2315 	adap = container_of(work, struct adapter, db_full_task);
2316 
2317 	drain_db_fifo(adap, dbfifo_drain_delay);
2318 	enable_dbs(adap);
2319 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2320 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2321 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2322 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2323 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2324 	else
2325 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2326 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2327 }
2328 
2329 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2330 {
2331 	u16 hw_pidx, hw_cidx;
2332 	int ret;
2333 
2334 	spin_lock_irq(&q->db_lock);
2335 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2336 	if (ret)
2337 		goto out;
2338 	if (q->db_pidx != hw_pidx) {
2339 		u16 delta;
2340 		u32 val;
2341 
2342 		if (q->db_pidx >= hw_pidx)
2343 			delta = q->db_pidx - hw_pidx;
2344 		else
2345 			delta = q->size - hw_pidx + q->db_pidx;
2346 
2347 		if (is_t4(adap->params.chip))
2348 			val = PIDX_V(delta);
2349 		else
2350 			val = PIDX_T5_V(delta);
2351 		wmb();
2352 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2353 			     QID_V(q->cntxt_id) | val);
2354 	}
2355 out:
2356 	q->db_disabled = 0;
2357 	q->db_pidx_inc = 0;
2358 	spin_unlock_irq(&q->db_lock);
2359 	if (ret)
2360 		CH_WARN(adap, "DB drop recovery failed.\n");
2361 }
2362 static void recover_all_queues(struct adapter *adap)
2363 {
2364 	int i;
2365 
2366 	for_each_ethrxq(&adap->sge, i)
2367 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2368 	for_each_ofldrxq(&adap->sge, i)
2369 		sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2370 	for_each_port(adap, i)
2371 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2372 }
2373 
2374 static void process_db_drop(struct work_struct *work)
2375 {
2376 	struct adapter *adap;
2377 
2378 	adap = container_of(work, struct adapter, db_drop_task);
2379 
2380 	if (is_t4(adap->params.chip)) {
2381 		drain_db_fifo(adap, dbfifo_drain_delay);
2382 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2383 		drain_db_fifo(adap, dbfifo_drain_delay);
2384 		recover_all_queues(adap);
2385 		drain_db_fifo(adap, dbfifo_drain_delay);
2386 		enable_dbs(adap);
2387 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2388 	} else if (is_t5(adap->params.chip)) {
2389 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2390 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2391 		u16 pidx_inc = dropped_db & 0x1fff;
2392 		u64 bar2_qoffset;
2393 		unsigned int bar2_qid;
2394 		int ret;
2395 
2396 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2397 					0, &bar2_qoffset, &bar2_qid);
2398 		if (ret)
2399 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2400 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2401 		else
2402 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2403 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2404 
2405 		/* Re-enable BAR2 WC */
2406 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2407 	}
2408 
2409 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2410 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2411 }
2412 
2413 void t4_db_full(struct adapter *adap)
2414 {
2415 	if (is_t4(adap->params.chip)) {
2416 		disable_dbs(adap);
2417 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2418 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2419 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2420 		queue_work(adap->workq, &adap->db_full_task);
2421 	}
2422 }
2423 
2424 void t4_db_dropped(struct adapter *adap)
2425 {
2426 	if (is_t4(adap->params.chip)) {
2427 		disable_dbs(adap);
2428 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2429 	}
2430 	queue_work(adap->workq, &adap->db_drop_task);
2431 }
2432 
2433 static void uld_attach(struct adapter *adap, unsigned int uld)
2434 {
2435 	void *handle;
2436 	struct cxgb4_lld_info lli;
2437 	unsigned short i;
2438 
2439 	lli.pdev = adap->pdev;
2440 	lli.pf = adap->pf;
2441 	lli.l2t = adap->l2t;
2442 	lli.tids = &adap->tids;
2443 	lli.ports = adap->port;
2444 	lli.vr = &adap->vres;
2445 	lli.mtus = adap->params.mtus;
2446 	if (uld == CXGB4_ULD_RDMA) {
2447 		lli.rxq_ids = adap->sge.rdma_rxq;
2448 		lli.ciq_ids = adap->sge.rdma_ciq;
2449 		lli.nrxq = adap->sge.rdmaqs;
2450 		lli.nciq = adap->sge.rdmaciqs;
2451 	} else if (uld == CXGB4_ULD_ISCSI) {
2452 		lli.rxq_ids = adap->sge.ofld_rxq;
2453 		lli.nrxq = adap->sge.ofldqsets;
2454 	}
2455 	lli.ntxq = adap->sge.ofldqsets;
2456 	lli.nchan = adap->params.nports;
2457 	lli.nports = adap->params.nports;
2458 	lli.wr_cred = adap->params.ofldq_wr_cred;
2459 	lli.adapter_type = adap->params.chip;
2460 	lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2461 	lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2462 	lli.udb_density = 1 << adap->params.sge.eq_qpp;
2463 	lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2464 	lli.filt_mode = adap->params.tp.vlan_pri_map;
2465 	/* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2466 	for (i = 0; i < NCHAN; i++)
2467 		lli.tx_modq[i] = i;
2468 	lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2469 	lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2470 	lli.fw_vers = adap->params.fw_vers;
2471 	lli.dbfifo_int_thresh = dbfifo_int_thresh;
2472 	lli.sge_ingpadboundary = adap->sge.fl_align;
2473 	lli.sge_egrstatuspagesize = adap->sge.stat_len;
2474 	lli.sge_pktshift = adap->sge.pktshift;
2475 	lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2476 	lli.max_ordird_qp = adap->params.max_ordird_qp;
2477 	lli.max_ird_adapter = adap->params.max_ird_adapter;
2478 	lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2479 	lli.nodeid = dev_to_node(adap->pdev_dev);
2480 
2481 	handle = ulds[uld].add(&lli);
2482 	if (IS_ERR(handle)) {
2483 		dev_warn(adap->pdev_dev,
2484 			 "could not attach to the %s driver, error %ld\n",
2485 			 uld_str[uld], PTR_ERR(handle));
2486 		return;
2487 	}
2488 
2489 	adap->uld_handle[uld] = handle;
2490 
2491 	if (!netevent_registered) {
2492 		register_netevent_notifier(&cxgb4_netevent_nb);
2493 		netevent_registered = true;
2494 	}
2495 
2496 	if (adap->flags & FULL_INIT_DONE)
2497 		ulds[uld].state_change(handle, CXGB4_STATE_UP);
2498 }
2499 
2500 static void attach_ulds(struct adapter *adap)
2501 {
2502 	unsigned int i;
2503 
2504 	spin_lock(&adap_rcu_lock);
2505 	list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2506 	spin_unlock(&adap_rcu_lock);
2507 
2508 	mutex_lock(&uld_mutex);
2509 	list_add_tail(&adap->list_node, &adapter_list);
2510 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2511 		if (ulds[i].add)
2512 			uld_attach(adap, i);
2513 	mutex_unlock(&uld_mutex);
2514 }
2515 
2516 static void detach_ulds(struct adapter *adap)
2517 {
2518 	unsigned int i;
2519 
2520 	mutex_lock(&uld_mutex);
2521 	list_del(&adap->list_node);
2522 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2523 		if (adap->uld_handle[i]) {
2524 			ulds[i].state_change(adap->uld_handle[i],
2525 					     CXGB4_STATE_DETACH);
2526 			adap->uld_handle[i] = NULL;
2527 		}
2528 	if (netevent_registered && list_empty(&adapter_list)) {
2529 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2530 		netevent_registered = false;
2531 	}
2532 	mutex_unlock(&uld_mutex);
2533 
2534 	spin_lock(&adap_rcu_lock);
2535 	list_del_rcu(&adap->rcu_node);
2536 	spin_unlock(&adap_rcu_lock);
2537 }
2538 
2539 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2540 {
2541 	unsigned int i;
2542 
2543 	mutex_lock(&uld_mutex);
2544 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2545 		if (adap->uld_handle[i])
2546 			ulds[i].state_change(adap->uld_handle[i], new_state);
2547 	mutex_unlock(&uld_mutex);
2548 }
2549 
2550 /**
2551  *	cxgb4_register_uld - register an upper-layer driver
2552  *	@type: the ULD type
2553  *	@p: the ULD methods
2554  *
2555  *	Registers an upper-layer driver with this driver and notifies the ULD
2556  *	about any presently available devices that support its type.  Returns
2557  *	%-EBUSY if a ULD of the same type is already registered.
2558  */
2559 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2560 {
2561 	int ret = 0;
2562 	struct adapter *adap;
2563 
2564 	if (type >= CXGB4_ULD_MAX)
2565 		return -EINVAL;
2566 	mutex_lock(&uld_mutex);
2567 	if (ulds[type].add) {
2568 		ret = -EBUSY;
2569 		goto out;
2570 	}
2571 	ulds[type] = *p;
2572 	list_for_each_entry(adap, &adapter_list, list_node)
2573 		uld_attach(adap, type);
2574 out:	mutex_unlock(&uld_mutex);
2575 	return ret;
2576 }
2577 EXPORT_SYMBOL(cxgb4_register_uld);
2578 
2579 /**
2580  *	cxgb4_unregister_uld - unregister an upper-layer driver
2581  *	@type: the ULD type
2582  *
2583  *	Unregisters an existing upper-layer driver.
2584  */
2585 int cxgb4_unregister_uld(enum cxgb4_uld type)
2586 {
2587 	struct adapter *adap;
2588 
2589 	if (type >= CXGB4_ULD_MAX)
2590 		return -EINVAL;
2591 	mutex_lock(&uld_mutex);
2592 	list_for_each_entry(adap, &adapter_list, list_node)
2593 		adap->uld_handle[type] = NULL;
2594 	ulds[type].add = NULL;
2595 	mutex_unlock(&uld_mutex);
2596 	return 0;
2597 }
2598 EXPORT_SYMBOL(cxgb4_unregister_uld);
2599 
2600 #if IS_ENABLED(CONFIG_IPV6)
2601 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2602 				   unsigned long event, void *data)
2603 {
2604 	struct inet6_ifaddr *ifa = data;
2605 	struct net_device *event_dev = ifa->idev->dev;
2606 	const struct device *parent = NULL;
2607 #if IS_ENABLED(CONFIG_BONDING)
2608 	struct adapter *adap;
2609 #endif
2610 	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2611 		event_dev = vlan_dev_real_dev(event_dev);
2612 #if IS_ENABLED(CONFIG_BONDING)
2613 	if (event_dev->flags & IFF_MASTER) {
2614 		list_for_each_entry(adap, &adapter_list, list_node) {
2615 			switch (event) {
2616 			case NETDEV_UP:
2617 				cxgb4_clip_get(adap->port[0],
2618 					       (const u32 *)ifa, 1);
2619 				break;
2620 			case NETDEV_DOWN:
2621 				cxgb4_clip_release(adap->port[0],
2622 						   (const u32 *)ifa, 1);
2623 				break;
2624 			default:
2625 				break;
2626 			}
2627 		}
2628 		return NOTIFY_OK;
2629 	}
2630 #endif
2631 
2632 	if (event_dev)
2633 		parent = event_dev->dev.parent;
2634 
2635 	if (parent && parent->driver == &cxgb4_driver.driver) {
2636 		switch (event) {
2637 		case NETDEV_UP:
2638 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2639 			break;
2640 		case NETDEV_DOWN:
2641 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2642 			break;
2643 		default:
2644 			break;
2645 		}
2646 	}
2647 	return NOTIFY_OK;
2648 }
2649 
2650 static bool inet6addr_registered;
2651 static struct notifier_block cxgb4_inet6addr_notifier = {
2652 	.notifier_call = cxgb4_inet6addr_handler
2653 };
2654 
2655 static void update_clip(const struct adapter *adap)
2656 {
2657 	int i;
2658 	struct net_device *dev;
2659 	int ret;
2660 
2661 	rcu_read_lock();
2662 
2663 	for (i = 0; i < MAX_NPORTS; i++) {
2664 		dev = adap->port[i];
2665 		ret = 0;
2666 
2667 		if (dev)
2668 			ret = cxgb4_update_root_dev_clip(dev);
2669 
2670 		if (ret < 0)
2671 			break;
2672 	}
2673 	rcu_read_unlock();
2674 }
2675 #endif /* IS_ENABLED(CONFIG_IPV6) */
2676 
2677 /**
2678  *	cxgb_up - enable the adapter
2679  *	@adap: adapter being enabled
2680  *
2681  *	Called when the first port is enabled, this function performs the
2682  *	actions necessary to make an adapter operational, such as completing
2683  *	the initialization of HW modules, and enabling interrupts.
2684  *
2685  *	Must be called with the rtnl lock held.
2686  */
2687 static int cxgb_up(struct adapter *adap)
2688 {
2689 	int err;
2690 
2691 	err = setup_sge_queues(adap);
2692 	if (err)
2693 		goto out;
2694 	err = setup_rss(adap);
2695 	if (err)
2696 		goto freeq;
2697 
2698 	if (adap->flags & USING_MSIX) {
2699 		name_msix_vecs(adap);
2700 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2701 				  adap->msix_info[0].desc, adap);
2702 		if (err)
2703 			goto irq_err;
2704 
2705 		err = request_msix_queue_irqs(adap);
2706 		if (err) {
2707 			free_irq(adap->msix_info[0].vec, adap);
2708 			goto irq_err;
2709 		}
2710 	} else {
2711 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2712 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2713 				  adap->port[0]->name, adap);
2714 		if (err)
2715 			goto irq_err;
2716 	}
2717 	enable_rx(adap);
2718 	t4_sge_start(adap);
2719 	t4_intr_enable(adap);
2720 	adap->flags |= FULL_INIT_DONE;
2721 	notify_ulds(adap, CXGB4_STATE_UP);
2722 #if IS_ENABLED(CONFIG_IPV6)
2723 	update_clip(adap);
2724 #endif
2725  out:
2726 	return err;
2727  irq_err:
2728 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2729  freeq:
2730 	t4_free_sge_resources(adap);
2731 	goto out;
2732 }
2733 
2734 static void cxgb_down(struct adapter *adapter)
2735 {
2736 	cancel_work_sync(&adapter->tid_release_task);
2737 	cancel_work_sync(&adapter->db_full_task);
2738 	cancel_work_sync(&adapter->db_drop_task);
2739 	adapter->tid_release_task_busy = false;
2740 	adapter->tid_release_head = NULL;
2741 
2742 	t4_sge_stop(adapter);
2743 	t4_free_sge_resources(adapter);
2744 	adapter->flags &= ~FULL_INIT_DONE;
2745 }
2746 
2747 /*
2748  * net_device operations
2749  */
2750 static int cxgb_open(struct net_device *dev)
2751 {
2752 	int err;
2753 	struct port_info *pi = netdev_priv(dev);
2754 	struct adapter *adapter = pi->adapter;
2755 
2756 	netif_carrier_off(dev);
2757 
2758 	if (!(adapter->flags & FULL_INIT_DONE)) {
2759 		err = cxgb_up(adapter);
2760 		if (err < 0)
2761 			return err;
2762 	}
2763 
2764 	err = link_start(dev);
2765 	if (!err)
2766 		netif_tx_start_all_queues(dev);
2767 	return err;
2768 }
2769 
2770 static int cxgb_close(struct net_device *dev)
2771 {
2772 	struct port_info *pi = netdev_priv(dev);
2773 	struct adapter *adapter = pi->adapter;
2774 
2775 	netif_tx_stop_all_queues(dev);
2776 	netif_carrier_off(dev);
2777 	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2778 }
2779 
2780 /* Return an error number if the indicated filter isn't writable ...
2781  */
2782 static int writable_filter(struct filter_entry *f)
2783 {
2784 	if (f->locked)
2785 		return -EPERM;
2786 	if (f->pending)
2787 		return -EBUSY;
2788 
2789 	return 0;
2790 }
2791 
2792 /* Delete the filter at the specified index (if valid).  The checks for all
2793  * the common problems with doing this like the filter being locked, currently
2794  * pending in another operation, etc.
2795  */
2796 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2797 {
2798 	struct filter_entry *f;
2799 	int ret;
2800 
2801 	if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2802 		return -EINVAL;
2803 
2804 	f = &adapter->tids.ftid_tab[fidx];
2805 	ret = writable_filter(f);
2806 	if (ret)
2807 		return ret;
2808 	if (f->valid)
2809 		return del_filter_wr(adapter, fidx);
2810 
2811 	return 0;
2812 }
2813 
2814 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2815 		__be32 sip, __be16 sport, __be16 vlan,
2816 		unsigned int queue, unsigned char port, unsigned char mask)
2817 {
2818 	int ret;
2819 	struct filter_entry *f;
2820 	struct adapter *adap;
2821 	int i;
2822 	u8 *val;
2823 
2824 	adap = netdev2adap(dev);
2825 
2826 	/* Adjust stid to correct filter index */
2827 	stid -= adap->tids.sftid_base;
2828 	stid += adap->tids.nftids;
2829 
2830 	/* Check to make sure the filter requested is writable ...
2831 	 */
2832 	f = &adap->tids.ftid_tab[stid];
2833 	ret = writable_filter(f);
2834 	if (ret)
2835 		return ret;
2836 
2837 	/* Clear out any old resources being used by the filter before
2838 	 * we start constructing the new filter.
2839 	 */
2840 	if (f->valid)
2841 		clear_filter(adap, f);
2842 
2843 	/* Clear out filter specifications */
2844 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2845 	f->fs.val.lport = cpu_to_be16(sport);
2846 	f->fs.mask.lport  = ~0;
2847 	val = (u8 *)&sip;
2848 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2849 		for (i = 0; i < 4; i++) {
2850 			f->fs.val.lip[i] = val[i];
2851 			f->fs.mask.lip[i] = ~0;
2852 		}
2853 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2854 			f->fs.val.iport = port;
2855 			f->fs.mask.iport = mask;
2856 		}
2857 	}
2858 
2859 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2860 		f->fs.val.proto = IPPROTO_TCP;
2861 		f->fs.mask.proto = ~0;
2862 	}
2863 
2864 	f->fs.dirsteer = 1;
2865 	f->fs.iq = queue;
2866 	/* Mark filter as locked */
2867 	f->locked = 1;
2868 	f->fs.rpttid = 1;
2869 
2870 	ret = set_filter_wr(adap, stid);
2871 	if (ret) {
2872 		clear_filter(adap, f);
2873 		return ret;
2874 	}
2875 
2876 	return 0;
2877 }
2878 EXPORT_SYMBOL(cxgb4_create_server_filter);
2879 
2880 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2881 		unsigned int queue, bool ipv6)
2882 {
2883 	int ret;
2884 	struct filter_entry *f;
2885 	struct adapter *adap;
2886 
2887 	adap = netdev2adap(dev);
2888 
2889 	/* Adjust stid to correct filter index */
2890 	stid -= adap->tids.sftid_base;
2891 	stid += adap->tids.nftids;
2892 
2893 	f = &adap->tids.ftid_tab[stid];
2894 	/* Unlock the filter */
2895 	f->locked = 0;
2896 
2897 	ret = delete_filter(adap, stid);
2898 	if (ret)
2899 		return ret;
2900 
2901 	return 0;
2902 }
2903 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2904 
2905 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2906 						struct rtnl_link_stats64 *ns)
2907 {
2908 	struct port_stats stats;
2909 	struct port_info *p = netdev_priv(dev);
2910 	struct adapter *adapter = p->adapter;
2911 
2912 	/* Block retrieving statistics during EEH error
2913 	 * recovery. Otherwise, the recovery might fail
2914 	 * and the PCI device will be removed permanently
2915 	 */
2916 	spin_lock(&adapter->stats_lock);
2917 	if (!netif_device_present(dev)) {
2918 		spin_unlock(&adapter->stats_lock);
2919 		return ns;
2920 	}
2921 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2922 				 &p->stats_base);
2923 	spin_unlock(&adapter->stats_lock);
2924 
2925 	ns->tx_bytes   = stats.tx_octets;
2926 	ns->tx_packets = stats.tx_frames;
2927 	ns->rx_bytes   = stats.rx_octets;
2928 	ns->rx_packets = stats.rx_frames;
2929 	ns->multicast  = stats.rx_mcast_frames;
2930 
2931 	/* detailed rx_errors */
2932 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2933 			       stats.rx_runt;
2934 	ns->rx_over_errors   = 0;
2935 	ns->rx_crc_errors    = stats.rx_fcs_err;
2936 	ns->rx_frame_errors  = stats.rx_symbol_err;
2937 	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2938 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2939 			       stats.rx_trunc0 + stats.rx_trunc1 +
2940 			       stats.rx_trunc2 + stats.rx_trunc3;
2941 	ns->rx_missed_errors = 0;
2942 
2943 	/* detailed tx_errors */
2944 	ns->tx_aborted_errors   = 0;
2945 	ns->tx_carrier_errors   = 0;
2946 	ns->tx_fifo_errors      = 0;
2947 	ns->tx_heartbeat_errors = 0;
2948 	ns->tx_window_errors    = 0;
2949 
2950 	ns->tx_errors = stats.tx_error_frames;
2951 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2952 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2953 	return ns;
2954 }
2955 
2956 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2957 {
2958 	unsigned int mbox;
2959 	int ret = 0, prtad, devad;
2960 	struct port_info *pi = netdev_priv(dev);
2961 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2962 
2963 	switch (cmd) {
2964 	case SIOCGMIIPHY:
2965 		if (pi->mdio_addr < 0)
2966 			return -EOPNOTSUPP;
2967 		data->phy_id = pi->mdio_addr;
2968 		break;
2969 	case SIOCGMIIREG:
2970 	case SIOCSMIIREG:
2971 		if (mdio_phy_id_is_c45(data->phy_id)) {
2972 			prtad = mdio_phy_id_prtad(data->phy_id);
2973 			devad = mdio_phy_id_devad(data->phy_id);
2974 		} else if (data->phy_id < 32) {
2975 			prtad = data->phy_id;
2976 			devad = 0;
2977 			data->reg_num &= 0x1f;
2978 		} else
2979 			return -EINVAL;
2980 
2981 		mbox = pi->adapter->pf;
2982 		if (cmd == SIOCGMIIREG)
2983 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2984 					 data->reg_num, &data->val_out);
2985 		else
2986 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2987 					 data->reg_num, data->val_in);
2988 		break;
2989 	case SIOCGHWTSTAMP:
2990 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2991 				    sizeof(pi->tstamp_config)) ?
2992 			-EFAULT : 0;
2993 	case SIOCSHWTSTAMP:
2994 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2995 				   sizeof(pi->tstamp_config)))
2996 			return -EFAULT;
2997 
2998 		switch (pi->tstamp_config.rx_filter) {
2999 		case HWTSTAMP_FILTER_NONE:
3000 			pi->rxtstamp = false;
3001 			break;
3002 		case HWTSTAMP_FILTER_ALL:
3003 			pi->rxtstamp = true;
3004 			break;
3005 		default:
3006 			pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
3007 			return -ERANGE;
3008 		}
3009 
3010 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3011 				    sizeof(pi->tstamp_config)) ?
3012 			-EFAULT : 0;
3013 	default:
3014 		return -EOPNOTSUPP;
3015 	}
3016 	return ret;
3017 }
3018 
3019 static void cxgb_set_rxmode(struct net_device *dev)
3020 {
3021 	/* unfortunately we can't return errors to the stack */
3022 	set_rxmode(dev, -1, false);
3023 }
3024 
3025 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3026 {
3027 	int ret;
3028 	struct port_info *pi = netdev_priv(dev);
3029 
3030 	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
3031 		return -EINVAL;
3032 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
3033 			    -1, -1, -1, true);
3034 	if (!ret)
3035 		dev->mtu = new_mtu;
3036 	return ret;
3037 }
3038 
3039 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3040 {
3041 	int ret;
3042 	struct sockaddr *addr = p;
3043 	struct port_info *pi = netdev_priv(dev);
3044 
3045 	if (!is_valid_ether_addr(addr->sa_data))
3046 		return -EADDRNOTAVAIL;
3047 
3048 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3049 			    pi->xact_addr_filt, addr->sa_data, true, true);
3050 	if (ret < 0)
3051 		return ret;
3052 
3053 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3054 	pi->xact_addr_filt = ret;
3055 	return 0;
3056 }
3057 
3058 #ifdef CONFIG_NET_POLL_CONTROLLER
3059 static void cxgb_netpoll(struct net_device *dev)
3060 {
3061 	struct port_info *pi = netdev_priv(dev);
3062 	struct adapter *adap = pi->adapter;
3063 
3064 	if (adap->flags & USING_MSIX) {
3065 		int i;
3066 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3067 
3068 		for (i = pi->nqsets; i; i--, rx++)
3069 			t4_sge_intr_msix(0, &rx->rspq);
3070 	} else
3071 		t4_intr_handler(adap)(0, adap);
3072 }
3073 #endif
3074 
3075 static const struct net_device_ops cxgb4_netdev_ops = {
3076 	.ndo_open             = cxgb_open,
3077 	.ndo_stop             = cxgb_close,
3078 	.ndo_start_xmit       = t4_eth_xmit,
3079 	.ndo_select_queue     =	cxgb_select_queue,
3080 	.ndo_get_stats64      = cxgb_get_stats,
3081 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3082 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3083 	.ndo_set_features     = cxgb_set_features,
3084 	.ndo_validate_addr    = eth_validate_addr,
3085 	.ndo_do_ioctl         = cxgb_ioctl,
3086 	.ndo_change_mtu       = cxgb_change_mtu,
3087 #ifdef CONFIG_NET_POLL_CONTROLLER
3088 	.ndo_poll_controller  = cxgb_netpoll,
3089 #endif
3090 #ifdef CONFIG_CHELSIO_T4_FCOE
3091 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3092 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3093 #endif /* CONFIG_CHELSIO_T4_FCOE */
3094 #ifdef CONFIG_NET_RX_BUSY_POLL
3095 	.ndo_busy_poll        = cxgb_busy_poll,
3096 #endif
3097 
3098 };
3099 
3100 void t4_fatal_err(struct adapter *adap)
3101 {
3102 	t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3103 	t4_intr_disable(adap);
3104 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3105 }
3106 
3107 static void setup_memwin(struct adapter *adap)
3108 {
3109 	u32 nic_win_base = t4_get_util_window(adap);
3110 
3111 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3112 }
3113 
3114 static void setup_memwin_rdma(struct adapter *adap)
3115 {
3116 	if (adap->vres.ocq.size) {
3117 		u32 start;
3118 		unsigned int sz_kb;
3119 
3120 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3121 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3122 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3123 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3124 		t4_write_reg(adap,
3125 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3126 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3127 		t4_write_reg(adap,
3128 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3129 			     adap->vres.ocq.start);
3130 		t4_read_reg(adap,
3131 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3132 	}
3133 }
3134 
3135 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3136 {
3137 	u32 v;
3138 	int ret;
3139 
3140 	/* get device capabilities */
3141 	memset(c, 0, sizeof(*c));
3142 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3143 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3144 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3145 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3146 	if (ret < 0)
3147 		return ret;
3148 
3149 	/* select capabilities we'll be using */
3150 	if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3151 		if (!vf_acls)
3152 			c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3153 		else
3154 			c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3155 	} else if (vf_acls) {
3156 		dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3157 		return ret;
3158 	}
3159 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3160 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3161 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3162 	if (ret < 0)
3163 		return ret;
3164 
3165 	ret = t4_config_glbl_rss(adap, adap->pf,
3166 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3167 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3168 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3169 	if (ret < 0)
3170 		return ret;
3171 
3172 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3173 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3174 			  FW_CMD_CAP_PF);
3175 	if (ret < 0)
3176 		return ret;
3177 
3178 	t4_sge_init(adap);
3179 
3180 	/* tweak some settings */
3181 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3182 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3183 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3184 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3185 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3186 
3187 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3188 	adap->params.tp.tx_modq_map = 0xE4;
3189 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3190 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3191 
3192 	/* associate each Tx modulation queue with consecutive Tx channels */
3193 	v = 0x84218421;
3194 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3195 			  &v, 1, TP_TX_SCHED_HDR_A);
3196 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3197 			  &v, 1, TP_TX_SCHED_FIFO_A);
3198 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3199 			  &v, 1, TP_TX_SCHED_PCMD_A);
3200 
3201 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3202 	if (is_offload(adap)) {
3203 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3204 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3205 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3206 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3207 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3208 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3209 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3210 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3211 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3212 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3213 	}
3214 
3215 	/* get basic stuff going */
3216 	return t4_early_init(adap, adap->pf);
3217 }
3218 
3219 /*
3220  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3221  */
3222 #define MAX_ATIDS 8192U
3223 
3224 /*
3225  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3226  *
3227  * If the firmware we're dealing with has Configuration File support, then
3228  * we use that to perform all configuration
3229  */
3230 
3231 /*
3232  * Tweak configuration based on module parameters, etc.  Most of these have
3233  * defaults assigned to them by Firmware Configuration Files (if we're using
3234  * them) but need to be explicitly set if we're using hard-coded
3235  * initialization.  But even in the case of using Firmware Configuration
3236  * Files, we'd like to expose the ability to change these via module
3237  * parameters so these are essentially common tweaks/settings for
3238  * Configuration Files and hard-coded initialization ...
3239  */
3240 static int adap_init0_tweaks(struct adapter *adapter)
3241 {
3242 	/*
3243 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3244 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3245 	 * 64B Cache Line Size ...
3246 	 */
3247 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3248 
3249 	/*
3250 	 * Process module parameters which affect early initialization.
3251 	 */
3252 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3253 		dev_err(&adapter->pdev->dev,
3254 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3255 			rx_dma_offset);
3256 		rx_dma_offset = 2;
3257 	}
3258 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3259 			 PKTSHIFT_V(PKTSHIFT_M),
3260 			 PKTSHIFT_V(rx_dma_offset));
3261 
3262 	/*
3263 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3264 	 * adds the pseudo header itself.
3265 	 */
3266 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3267 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3268 
3269 	return 0;
3270 }
3271 
3272 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3273  * unto themselves and they contain their own firmware to perform their
3274  * tasks ...
3275  */
3276 static int phy_aq1202_version(const u8 *phy_fw_data,
3277 			      size_t phy_fw_size)
3278 {
3279 	int offset;
3280 
3281 	/* At offset 0x8 you're looking for the primary image's
3282 	 * starting offset which is 3 Bytes wide
3283 	 *
3284 	 * At offset 0xa of the primary image, you look for the offset
3285 	 * of the DRAM segment which is 3 Bytes wide.
3286 	 *
3287 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3288 	 * wide
3289 	 */
3290 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
3291 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3292 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
3293 
3294 	offset = le24(phy_fw_data + 0x8) << 12;
3295 	offset = le24(phy_fw_data + offset + 0xa);
3296 	return be16(phy_fw_data + offset + 0x27e);
3297 
3298 	#undef be16
3299 	#undef le16
3300 	#undef le24
3301 }
3302 
3303 static struct info_10gbt_phy_fw {
3304 	unsigned int phy_fw_id;		/* PCI Device ID */
3305 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
3306 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3307 	int phy_flash;			/* Has FLASH for PHY Firmware */
3308 } phy_info_array[] = {
3309 	{
3310 		PHY_AQ1202_DEVICEID,
3311 		PHY_AQ1202_FIRMWARE,
3312 		phy_aq1202_version,
3313 		1,
3314 	},
3315 	{
3316 		PHY_BCM84834_DEVICEID,
3317 		PHY_BCM84834_FIRMWARE,
3318 		NULL,
3319 		0,
3320 	},
3321 	{ 0, NULL, NULL },
3322 };
3323 
3324 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3325 {
3326 	int i;
3327 
3328 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3329 		if (phy_info_array[i].phy_fw_id == devid)
3330 			return &phy_info_array[i];
3331 	}
3332 	return NULL;
3333 }
3334 
3335 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3336  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3337  * we return a negative error number.  If we transfer new firmware we return 1
3338  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3339  */
3340 static int adap_init0_phy(struct adapter *adap)
3341 {
3342 	const struct firmware *phyf;
3343 	int ret;
3344 	struct info_10gbt_phy_fw *phy_info;
3345 
3346 	/* Use the device ID to determine which PHY file to flash.
3347 	 */
3348 	phy_info = find_phy_info(adap->pdev->device);
3349 	if (!phy_info) {
3350 		dev_warn(adap->pdev_dev,
3351 			 "No PHY Firmware file found for this PHY\n");
3352 		return -EOPNOTSUPP;
3353 	}
3354 
3355 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3356 	 * use that. The adapter firmware provides us with a memory buffer
3357 	 * where we can load a PHY firmware file from the host if we want to
3358 	 * override the PHY firmware File in flash.
3359 	 */
3360 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3361 				      adap->pdev_dev);
3362 	if (ret < 0) {
3363 		/* For adapters without FLASH attached to PHY for their
3364 		 * firmware, it's obviously a fatal error if we can't get the
3365 		 * firmware to the adapter.  For adapters with PHY firmware
3366 		 * FLASH storage, it's worth a warning if we can't find the
3367 		 * PHY Firmware but we'll neuter the error ...
3368 		 */
3369 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3370 			"/lib/firmware/%s, error %d\n",
3371 			phy_info->phy_fw_file, -ret);
3372 		if (phy_info->phy_flash) {
3373 			int cur_phy_fw_ver = 0;
3374 
3375 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3376 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3377 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3378 			ret = 0;
3379 		}
3380 
3381 		return ret;
3382 	}
3383 
3384 	/* Load PHY Firmware onto adapter.
3385 	 */
3386 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3387 			     phy_info->phy_fw_version,
3388 			     (u8 *)phyf->data, phyf->size);
3389 	if (ret < 0)
3390 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3391 			-ret);
3392 	else if (ret > 0) {
3393 		int new_phy_fw_ver = 0;
3394 
3395 		if (phy_info->phy_fw_version)
3396 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3397 								  phyf->size);
3398 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3399 			 "Firmware /lib/firmware/%s, version %#x\n",
3400 			 phy_info->phy_fw_file, new_phy_fw_ver);
3401 	}
3402 
3403 	release_firmware(phyf);
3404 
3405 	return ret;
3406 }
3407 
3408 /*
3409  * Attempt to initialize the adapter via a Firmware Configuration File.
3410  */
3411 static int adap_init0_config(struct adapter *adapter, int reset)
3412 {
3413 	struct fw_caps_config_cmd caps_cmd;
3414 	const struct firmware *cf;
3415 	unsigned long mtype = 0, maddr = 0;
3416 	u32 finiver, finicsum, cfcsum;
3417 	int ret;
3418 	int config_issued = 0;
3419 	char *fw_config_file, fw_config_file_path[256];
3420 	char *config_name = NULL;
3421 
3422 	/*
3423 	 * Reset device if necessary.
3424 	 */
3425 	if (reset) {
3426 		ret = t4_fw_reset(adapter, adapter->mbox,
3427 				  PIORSTMODE_F | PIORST_F);
3428 		if (ret < 0)
3429 			goto bye;
3430 	}
3431 
3432 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3433 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3434 	 * to be performed after any global adapter RESET above since some
3435 	 * PHYs only have local RAM copies of the PHY firmware.
3436 	 */
3437 	if (is_10gbt_device(adapter->pdev->device)) {
3438 		ret = adap_init0_phy(adapter);
3439 		if (ret < 0)
3440 			goto bye;
3441 	}
3442 	/*
3443 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3444 	 * then use that.  Otherwise, use the configuration file stored
3445 	 * in the adapter flash ...
3446 	 */
3447 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3448 	case CHELSIO_T4:
3449 		fw_config_file = FW4_CFNAME;
3450 		break;
3451 	case CHELSIO_T5:
3452 		fw_config_file = FW5_CFNAME;
3453 		break;
3454 	case CHELSIO_T6:
3455 		fw_config_file = FW6_CFNAME;
3456 		break;
3457 	default:
3458 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3459 		       adapter->pdev->device);
3460 		ret = -EINVAL;
3461 		goto bye;
3462 	}
3463 
3464 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3465 	if (ret < 0) {
3466 		config_name = "On FLASH";
3467 		mtype = FW_MEMTYPE_CF_FLASH;
3468 		maddr = t4_flash_cfg_addr(adapter);
3469 	} else {
3470 		u32 params[7], val[7];
3471 
3472 		sprintf(fw_config_file_path,
3473 			"/lib/firmware/%s", fw_config_file);
3474 		config_name = fw_config_file_path;
3475 
3476 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3477 			ret = -ENOMEM;
3478 		else {
3479 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3480 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3481 			ret = t4_query_params(adapter, adapter->mbox,
3482 					      adapter->pf, 0, 1, params, val);
3483 			if (ret == 0) {
3484 				/*
3485 				 * For t4_memory_rw() below addresses and
3486 				 * sizes have to be in terms of multiples of 4
3487 				 * bytes.  So, if the Configuration File isn't
3488 				 * a multiple of 4 bytes in length we'll have
3489 				 * to write that out separately since we can't
3490 				 * guarantee that the bytes following the
3491 				 * residual byte in the buffer returned by
3492 				 * request_firmware() are zeroed out ...
3493 				 */
3494 				size_t resid = cf->size & 0x3;
3495 				size_t size = cf->size & ~0x3;
3496 				__be32 *data = (__be32 *)cf->data;
3497 
3498 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3499 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3500 
3501 				spin_lock(&adapter->win0_lock);
3502 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3503 						   size, data, T4_MEMORY_WRITE);
3504 				if (ret == 0 && resid != 0) {
3505 					union {
3506 						__be32 word;
3507 						char buf[4];
3508 					} last;
3509 					int i;
3510 
3511 					last.word = data[size >> 2];
3512 					for (i = resid; i < 4; i++)
3513 						last.buf[i] = 0;
3514 					ret = t4_memory_rw(adapter, 0, mtype,
3515 							   maddr + size,
3516 							   4, &last.word,
3517 							   T4_MEMORY_WRITE);
3518 				}
3519 				spin_unlock(&adapter->win0_lock);
3520 			}
3521 		}
3522 
3523 		release_firmware(cf);
3524 		if (ret)
3525 			goto bye;
3526 	}
3527 
3528 	/*
3529 	 * Issue a Capability Configuration command to the firmware to get it
3530 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3531 	 * because we want the ability to modify various features after we've
3532 	 * processed the configuration file ...
3533 	 */
3534 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3535 	caps_cmd.op_to_write =
3536 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3537 		      FW_CMD_REQUEST_F |
3538 		      FW_CMD_READ_F);
3539 	caps_cmd.cfvalid_to_len16 =
3540 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3541 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3542 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3543 		      FW_LEN16(caps_cmd));
3544 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3545 			 &caps_cmd);
3546 
3547 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3548 	 * Configuration File in FLASH), our last gasp effort is to use the
3549 	 * Firmware Configuration File which is embedded in the firmware.  A
3550 	 * very few early versions of the firmware didn't have one embedded
3551 	 * but we can ignore those.
3552 	 */
3553 	if (ret == -ENOENT) {
3554 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3555 		caps_cmd.op_to_write =
3556 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3557 					FW_CMD_REQUEST_F |
3558 					FW_CMD_READ_F);
3559 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3560 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3561 				sizeof(caps_cmd), &caps_cmd);
3562 		config_name = "Firmware Default";
3563 	}
3564 
3565 	config_issued = 1;
3566 	if (ret < 0)
3567 		goto bye;
3568 
3569 	finiver = ntohl(caps_cmd.finiver);
3570 	finicsum = ntohl(caps_cmd.finicsum);
3571 	cfcsum = ntohl(caps_cmd.cfcsum);
3572 	if (finicsum != cfcsum)
3573 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3574 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3575 			 finicsum, cfcsum);
3576 
3577 	/*
3578 	 * And now tell the firmware to use the configuration we just loaded.
3579 	 */
3580 	caps_cmd.op_to_write =
3581 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3582 		      FW_CMD_REQUEST_F |
3583 		      FW_CMD_WRITE_F);
3584 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3585 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3586 			 NULL);
3587 	if (ret < 0)
3588 		goto bye;
3589 
3590 	/*
3591 	 * Tweak configuration based on system architecture, module
3592 	 * parameters, etc.
3593 	 */
3594 	ret = adap_init0_tweaks(adapter);
3595 	if (ret < 0)
3596 		goto bye;
3597 
3598 	/*
3599 	 * And finally tell the firmware to initialize itself using the
3600 	 * parameters from the Configuration File.
3601 	 */
3602 	ret = t4_fw_initialize(adapter, adapter->mbox);
3603 	if (ret < 0)
3604 		goto bye;
3605 
3606 	/* Emit Firmware Configuration File information and return
3607 	 * successfully.
3608 	 */
3609 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3610 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3611 		 config_name, finiver, cfcsum);
3612 	return 0;
3613 
3614 	/*
3615 	 * Something bad happened.  Return the error ...  (If the "error"
3616 	 * is that there's no Configuration File on the adapter we don't
3617 	 * want to issue a warning since this is fairly common.)
3618 	 */
3619 bye:
3620 	if (config_issued && ret != -ENOENT)
3621 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3622 			 config_name, -ret);
3623 	return ret;
3624 }
3625 
3626 static struct fw_info fw_info_array[] = {
3627 	{
3628 		.chip = CHELSIO_T4,
3629 		.fs_name = FW4_CFNAME,
3630 		.fw_mod_name = FW4_FNAME,
3631 		.fw_hdr = {
3632 			.chip = FW_HDR_CHIP_T4,
3633 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3634 			.intfver_nic = FW_INTFVER(T4, NIC),
3635 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3636 			.intfver_ri = FW_INTFVER(T4, RI),
3637 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3638 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3639 		},
3640 	}, {
3641 		.chip = CHELSIO_T5,
3642 		.fs_name = FW5_CFNAME,
3643 		.fw_mod_name = FW5_FNAME,
3644 		.fw_hdr = {
3645 			.chip = FW_HDR_CHIP_T5,
3646 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3647 			.intfver_nic = FW_INTFVER(T5, NIC),
3648 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3649 			.intfver_ri = FW_INTFVER(T5, RI),
3650 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3651 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3652 		},
3653 	}, {
3654 		.chip = CHELSIO_T6,
3655 		.fs_name = FW6_CFNAME,
3656 		.fw_mod_name = FW6_FNAME,
3657 		.fw_hdr = {
3658 			.chip = FW_HDR_CHIP_T6,
3659 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3660 			.intfver_nic = FW_INTFVER(T6, NIC),
3661 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3662 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3663 			.intfver_ri = FW_INTFVER(T6, RI),
3664 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3665 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3666 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3667 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3668 		},
3669 	}
3670 
3671 };
3672 
3673 static struct fw_info *find_fw_info(int chip)
3674 {
3675 	int i;
3676 
3677 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3678 		if (fw_info_array[i].chip == chip)
3679 			return &fw_info_array[i];
3680 	}
3681 	return NULL;
3682 }
3683 
3684 /*
3685  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3686  */
3687 static int adap_init0(struct adapter *adap)
3688 {
3689 	int ret;
3690 	u32 v, port_vec;
3691 	enum dev_state state;
3692 	u32 params[7], val[7];
3693 	struct fw_caps_config_cmd caps_cmd;
3694 	int reset = 1;
3695 
3696 	/* Grab Firmware Device Log parameters as early as possible so we have
3697 	 * access to it for debugging, etc.
3698 	 */
3699 	ret = t4_init_devlog_params(adap);
3700 	if (ret < 0)
3701 		return ret;
3702 
3703 	/* Contact FW, advertising Master capability */
3704 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3705 	if (ret < 0) {
3706 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3707 			ret);
3708 		return ret;
3709 	}
3710 	if (ret == adap->mbox)
3711 		adap->flags |= MASTER_PF;
3712 
3713 	/*
3714 	 * If we're the Master PF Driver and the device is uninitialized,
3715 	 * then let's consider upgrading the firmware ...  (We always want
3716 	 * to check the firmware version number in order to A. get it for
3717 	 * later reporting and B. to warn if the currently loaded firmware
3718 	 * is excessively mismatched relative to the driver.)
3719 	 */
3720 	t4_get_fw_version(adap, &adap->params.fw_vers);
3721 	t4_get_tp_version(adap, &adap->params.tp_vers);
3722 	ret = t4_check_fw_version(adap);
3723 	/* If firmware is too old (not supported by driver) force an update. */
3724 	if (ret)
3725 		state = DEV_STATE_UNINIT;
3726 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3727 		struct fw_info *fw_info;
3728 		struct fw_hdr *card_fw;
3729 		const struct firmware *fw;
3730 		const u8 *fw_data = NULL;
3731 		unsigned int fw_size = 0;
3732 
3733 		/* This is the firmware whose headers the driver was compiled
3734 		 * against
3735 		 */
3736 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3737 		if (fw_info == NULL) {
3738 			dev_err(adap->pdev_dev,
3739 				"unable to get firmware info for chip %d.\n",
3740 				CHELSIO_CHIP_VERSION(adap->params.chip));
3741 			return -EINVAL;
3742 		}
3743 
3744 		/* allocate memory to read the header of the firmware on the
3745 		 * card
3746 		 */
3747 		card_fw = t4_alloc_mem(sizeof(*card_fw));
3748 
3749 		/* Get FW from from /lib/firmware/ */
3750 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3751 				       adap->pdev_dev);
3752 		if (ret < 0) {
3753 			dev_err(adap->pdev_dev,
3754 				"unable to load firmware image %s, error %d\n",
3755 				fw_info->fw_mod_name, ret);
3756 		} else {
3757 			fw_data = fw->data;
3758 			fw_size = fw->size;
3759 		}
3760 
3761 		/* upgrade FW logic */
3762 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3763 				 state, &reset);
3764 
3765 		/* Cleaning up */
3766 		release_firmware(fw);
3767 		t4_free_mem(card_fw);
3768 
3769 		if (ret < 0)
3770 			goto bye;
3771 	}
3772 
3773 	/*
3774 	 * Grab VPD parameters.  This should be done after we establish a
3775 	 * connection to the firmware since some of the VPD parameters
3776 	 * (notably the Core Clock frequency) are retrieved via requests to
3777 	 * the firmware.  On the other hand, we need these fairly early on
3778 	 * so we do this right after getting ahold of the firmware.
3779 	 */
3780 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3781 	if (ret < 0)
3782 		goto bye;
3783 
3784 	/*
3785 	 * Find out what ports are available to us.  Note that we need to do
3786 	 * this before calling adap_init0_no_config() since it needs nports
3787 	 * and portvec ...
3788 	 */
3789 	v =
3790 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3791 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3792 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3793 	if (ret < 0)
3794 		goto bye;
3795 
3796 	adap->params.nports = hweight32(port_vec);
3797 	adap->params.portvec = port_vec;
3798 
3799 	/* If the firmware is initialized already, emit a simply note to that
3800 	 * effect. Otherwise, it's time to try initializing the adapter.
3801 	 */
3802 	if (state == DEV_STATE_INIT) {
3803 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3804 			 "Adapter already initialized\n",
3805 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3806 	} else {
3807 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3808 			 "Initializing adapter\n");
3809 
3810 		/* Find out whether we're dealing with a version of the
3811 		 * firmware which has configuration file support.
3812 		 */
3813 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3814 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3815 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3816 				      params, val);
3817 
3818 		/* If the firmware doesn't support Configuration Files,
3819 		 * return an error.
3820 		 */
3821 		if (ret < 0) {
3822 			dev_err(adap->pdev_dev, "firmware doesn't support "
3823 				"Firmware Configuration Files\n");
3824 			goto bye;
3825 		}
3826 
3827 		/* The firmware provides us with a memory buffer where we can
3828 		 * load a Configuration File from the host if we want to
3829 		 * override the Configuration File in flash.
3830 		 */
3831 		ret = adap_init0_config(adap, reset);
3832 		if (ret == -ENOENT) {
3833 			dev_err(adap->pdev_dev, "no Configuration File "
3834 				"present on adapter.\n");
3835 			goto bye;
3836 		}
3837 		if (ret < 0) {
3838 			dev_err(adap->pdev_dev, "could not initialize "
3839 				"adapter, error %d\n", -ret);
3840 			goto bye;
3841 		}
3842 	}
3843 
3844 	/* Give the SGE code a chance to pull in anything that it needs ...
3845 	 * Note that this must be called after we retrieve our VPD parameters
3846 	 * in order to know how to convert core ticks to seconds, etc.
3847 	 */
3848 	ret = t4_sge_init(adap);
3849 	if (ret < 0)
3850 		goto bye;
3851 
3852 	if (is_bypass_device(adap->pdev->device))
3853 		adap->params.bypass = 1;
3854 
3855 	/*
3856 	 * Grab some of our basic fundamental operating parameters.
3857 	 */
3858 #define FW_PARAM_DEV(param) \
3859 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3860 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3861 
3862 #define FW_PARAM_PFVF(param) \
3863 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3864 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3865 	FW_PARAMS_PARAM_Y_V(0) | \
3866 	FW_PARAMS_PARAM_Z_V(0)
3867 
3868 	params[0] = FW_PARAM_PFVF(EQ_START);
3869 	params[1] = FW_PARAM_PFVF(L2T_START);
3870 	params[2] = FW_PARAM_PFVF(L2T_END);
3871 	params[3] = FW_PARAM_PFVF(FILTER_START);
3872 	params[4] = FW_PARAM_PFVF(FILTER_END);
3873 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3874 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3875 	if (ret < 0)
3876 		goto bye;
3877 	adap->sge.egr_start = val[0];
3878 	adap->l2t_start = val[1];
3879 	adap->l2t_end = val[2];
3880 	adap->tids.ftid_base = val[3];
3881 	adap->tids.nftids = val[4] - val[3] + 1;
3882 	adap->sge.ingr_start = val[5];
3883 
3884 	/* qids (ingress/egress) returned from firmware can be anywhere
3885 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3886 	 * Hence driver needs to allocate memory for this range to
3887 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3888 	 * in FW_EQ_*_CMD.alloc command.
3889 	 */
3890 	params[0] = FW_PARAM_PFVF(EQ_END);
3891 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3892 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3893 	if (ret < 0)
3894 		goto bye;
3895 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3896 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3897 
3898 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3899 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3900 	if (!adap->sge.egr_map) {
3901 		ret = -ENOMEM;
3902 		goto bye;
3903 	}
3904 
3905 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3906 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3907 	if (!adap->sge.ingr_map) {
3908 		ret = -ENOMEM;
3909 		goto bye;
3910 	}
3911 
3912 	/* Allocate the memory for the vaious egress queue bitmaps
3913 	 * ie starving_fl, txq_maperr and blocked_fl.
3914 	 */
3915 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3916 					sizeof(long), GFP_KERNEL);
3917 	if (!adap->sge.starving_fl) {
3918 		ret = -ENOMEM;
3919 		goto bye;
3920 	}
3921 
3922 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3923 				       sizeof(long), GFP_KERNEL);
3924 	if (!adap->sge.txq_maperr) {
3925 		ret = -ENOMEM;
3926 		goto bye;
3927 	}
3928 
3929 #ifdef CONFIG_DEBUG_FS
3930 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3931 				       sizeof(long), GFP_KERNEL);
3932 	if (!adap->sge.blocked_fl) {
3933 		ret = -ENOMEM;
3934 		goto bye;
3935 	}
3936 #endif
3937 
3938 	params[0] = FW_PARAM_PFVF(CLIP_START);
3939 	params[1] = FW_PARAM_PFVF(CLIP_END);
3940 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3941 	if (ret < 0)
3942 		goto bye;
3943 	adap->clipt_start = val[0];
3944 	adap->clipt_end = val[1];
3945 
3946 	/* query params related to active filter region */
3947 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3948 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3949 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3950 	/* If Active filter size is set we enable establishing
3951 	 * offload connection through firmware work request
3952 	 */
3953 	if ((val[0] != val[1]) && (ret >= 0)) {
3954 		adap->flags |= FW_OFLD_CONN;
3955 		adap->tids.aftid_base = val[0];
3956 		adap->tids.aftid_end = val[1];
3957 	}
3958 
3959 	/* If we're running on newer firmware, let it know that we're
3960 	 * prepared to deal with encapsulated CPL messages.  Older
3961 	 * firmware won't understand this and we'll just get
3962 	 * unencapsulated messages ...
3963 	 */
3964 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3965 	val[0] = 1;
3966 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3967 
3968 	/*
3969 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3970 	 * capability.  Earlier versions of the firmware didn't have the
3971 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3972 	 * permission to use ULPTX MEMWRITE DSGL.
3973 	 */
3974 	if (is_t4(adap->params.chip)) {
3975 		adap->params.ulptx_memwrite_dsgl = false;
3976 	} else {
3977 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3978 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3979 				      1, params, val);
3980 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3981 	}
3982 
3983 	/*
3984 	 * Get device capabilities so we can determine what resources we need
3985 	 * to manage.
3986 	 */
3987 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3988 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3989 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3990 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3991 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3992 			 &caps_cmd);
3993 	if (ret < 0)
3994 		goto bye;
3995 
3996 	if (caps_cmd.ofldcaps) {
3997 		/* query offload-related parameters */
3998 		params[0] = FW_PARAM_DEV(NTID);
3999 		params[1] = FW_PARAM_PFVF(SERVER_START);
4000 		params[2] = FW_PARAM_PFVF(SERVER_END);
4001 		params[3] = FW_PARAM_PFVF(TDDP_START);
4002 		params[4] = FW_PARAM_PFVF(TDDP_END);
4003 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4004 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4005 				      params, val);
4006 		if (ret < 0)
4007 			goto bye;
4008 		adap->tids.ntids = val[0];
4009 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4010 		adap->tids.stid_base = val[1];
4011 		adap->tids.nstids = val[2] - val[1] + 1;
4012 		/*
4013 		 * Setup server filter region. Divide the available filter
4014 		 * region into two parts. Regular filters get 1/3rd and server
4015 		 * filters get 2/3rd part. This is only enabled if workarond
4016 		 * path is enabled.
4017 		 * 1. For regular filters.
4018 		 * 2. Server filter: This are special filters which are used
4019 		 * to redirect SYN packets to offload queue.
4020 		 */
4021 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4022 			adap->tids.sftid_base = adap->tids.ftid_base +
4023 					DIV_ROUND_UP(adap->tids.nftids, 3);
4024 			adap->tids.nsftids = adap->tids.nftids -
4025 					 DIV_ROUND_UP(adap->tids.nftids, 3);
4026 			adap->tids.nftids = adap->tids.sftid_base -
4027 						adap->tids.ftid_base;
4028 		}
4029 		adap->vres.ddp.start = val[3];
4030 		adap->vres.ddp.size = val[4] - val[3] + 1;
4031 		adap->params.ofldq_wr_cred = val[5];
4032 
4033 		adap->params.offload = 1;
4034 	}
4035 	if (caps_cmd.rdmacaps) {
4036 		params[0] = FW_PARAM_PFVF(STAG_START);
4037 		params[1] = FW_PARAM_PFVF(STAG_END);
4038 		params[2] = FW_PARAM_PFVF(RQ_START);
4039 		params[3] = FW_PARAM_PFVF(RQ_END);
4040 		params[4] = FW_PARAM_PFVF(PBL_START);
4041 		params[5] = FW_PARAM_PFVF(PBL_END);
4042 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4043 				      params, val);
4044 		if (ret < 0)
4045 			goto bye;
4046 		adap->vres.stag.start = val[0];
4047 		adap->vres.stag.size = val[1] - val[0] + 1;
4048 		adap->vres.rq.start = val[2];
4049 		adap->vres.rq.size = val[3] - val[2] + 1;
4050 		adap->vres.pbl.start = val[4];
4051 		adap->vres.pbl.size = val[5] - val[4] + 1;
4052 
4053 		params[0] = FW_PARAM_PFVF(SQRQ_START);
4054 		params[1] = FW_PARAM_PFVF(SQRQ_END);
4055 		params[2] = FW_PARAM_PFVF(CQ_START);
4056 		params[3] = FW_PARAM_PFVF(CQ_END);
4057 		params[4] = FW_PARAM_PFVF(OCQ_START);
4058 		params[5] = FW_PARAM_PFVF(OCQ_END);
4059 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4060 				      val);
4061 		if (ret < 0)
4062 			goto bye;
4063 		adap->vres.qp.start = val[0];
4064 		adap->vres.qp.size = val[1] - val[0] + 1;
4065 		adap->vres.cq.start = val[2];
4066 		adap->vres.cq.size = val[3] - val[2] + 1;
4067 		adap->vres.ocq.start = val[4];
4068 		adap->vres.ocq.size = val[5] - val[4] + 1;
4069 
4070 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4071 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4072 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4073 				      val);
4074 		if (ret < 0) {
4075 			adap->params.max_ordird_qp = 8;
4076 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4077 			ret = 0;
4078 		} else {
4079 			adap->params.max_ordird_qp = val[0];
4080 			adap->params.max_ird_adapter = val[1];
4081 		}
4082 		dev_info(adap->pdev_dev,
4083 			 "max_ordird_qp %d max_ird_adapter %d\n",
4084 			 adap->params.max_ordird_qp,
4085 			 adap->params.max_ird_adapter);
4086 	}
4087 	if (caps_cmd.iscsicaps) {
4088 		params[0] = FW_PARAM_PFVF(ISCSI_START);
4089 		params[1] = FW_PARAM_PFVF(ISCSI_END);
4090 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4091 				      params, val);
4092 		if (ret < 0)
4093 			goto bye;
4094 		adap->vres.iscsi.start = val[0];
4095 		adap->vres.iscsi.size = val[1] - val[0] + 1;
4096 	}
4097 #undef FW_PARAM_PFVF
4098 #undef FW_PARAM_DEV
4099 
4100 	/* The MTU/MSS Table is initialized by now, so load their values.  If
4101 	 * we're initializing the adapter, then we'll make any modifications
4102 	 * we want to the MTU/MSS Table and also initialize the congestion
4103 	 * parameters.
4104 	 */
4105 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4106 	if (state != DEV_STATE_INIT) {
4107 		int i;
4108 
4109 		/* The default MTU Table contains values 1492 and 1500.
4110 		 * However, for TCP, it's better to have two values which are
4111 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4112 		 * This allows us to have a TCP Data Payload which is a
4113 		 * multiple of 8 regardless of what combination of TCP Options
4114 		 * are in use (always a multiple of 4 bytes) which is
4115 		 * important for performance reasons.  For instance, if no
4116 		 * options are in use, then we have a 20-byte IP header and a
4117 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4118 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4119 		 * which is not a multiple of 8.  So using an MSS of 1488 in
4120 		 * this case results in a TCP Data Payload of 1448 bytes which
4121 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4122 		 * Stamps have been negotiated, then an MTU of 1500 bytes
4123 		 * results in a TCP Data Payload of 1448 bytes which, as
4124 		 * above, is a multiple of 8 bytes ...
4125 		 */
4126 		for (i = 0; i < NMTUS; i++)
4127 			if (adap->params.mtus[i] == 1492) {
4128 				adap->params.mtus[i] = 1488;
4129 				break;
4130 			}
4131 
4132 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4133 			     adap->params.b_wnd);
4134 	}
4135 	t4_init_sge_params(adap);
4136 	adap->flags |= FW_OK;
4137 	t4_init_tp_params(adap);
4138 	return 0;
4139 
4140 	/*
4141 	 * Something bad happened.  If a command timed out or failed with EIO
4142 	 * FW does not operate within its spec or something catastrophic
4143 	 * happened to HW/FW, stop issuing commands.
4144 	 */
4145 bye:
4146 	kfree(adap->sge.egr_map);
4147 	kfree(adap->sge.ingr_map);
4148 	kfree(adap->sge.starving_fl);
4149 	kfree(adap->sge.txq_maperr);
4150 #ifdef CONFIG_DEBUG_FS
4151 	kfree(adap->sge.blocked_fl);
4152 #endif
4153 	if (ret != -ETIMEDOUT && ret != -EIO)
4154 		t4_fw_bye(adap, adap->mbox);
4155 	return ret;
4156 }
4157 
4158 /* EEH callbacks */
4159 
4160 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4161 					 pci_channel_state_t state)
4162 {
4163 	int i;
4164 	struct adapter *adap = pci_get_drvdata(pdev);
4165 
4166 	if (!adap)
4167 		goto out;
4168 
4169 	rtnl_lock();
4170 	adap->flags &= ~FW_OK;
4171 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4172 	spin_lock(&adap->stats_lock);
4173 	for_each_port(adap, i) {
4174 		struct net_device *dev = adap->port[i];
4175 
4176 		netif_device_detach(dev);
4177 		netif_carrier_off(dev);
4178 	}
4179 	spin_unlock(&adap->stats_lock);
4180 	disable_interrupts(adap);
4181 	if (adap->flags & FULL_INIT_DONE)
4182 		cxgb_down(adap);
4183 	rtnl_unlock();
4184 	if ((adap->flags & DEV_ENABLED)) {
4185 		pci_disable_device(pdev);
4186 		adap->flags &= ~DEV_ENABLED;
4187 	}
4188 out:	return state == pci_channel_io_perm_failure ?
4189 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4190 }
4191 
4192 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4193 {
4194 	int i, ret;
4195 	struct fw_caps_config_cmd c;
4196 	struct adapter *adap = pci_get_drvdata(pdev);
4197 
4198 	if (!adap) {
4199 		pci_restore_state(pdev);
4200 		pci_save_state(pdev);
4201 		return PCI_ERS_RESULT_RECOVERED;
4202 	}
4203 
4204 	if (!(adap->flags & DEV_ENABLED)) {
4205 		if (pci_enable_device(pdev)) {
4206 			dev_err(&pdev->dev, "Cannot reenable PCI "
4207 					    "device after reset\n");
4208 			return PCI_ERS_RESULT_DISCONNECT;
4209 		}
4210 		adap->flags |= DEV_ENABLED;
4211 	}
4212 
4213 	pci_set_master(pdev);
4214 	pci_restore_state(pdev);
4215 	pci_save_state(pdev);
4216 	pci_cleanup_aer_uncorrect_error_status(pdev);
4217 
4218 	if (t4_wait_dev_ready(adap->regs) < 0)
4219 		return PCI_ERS_RESULT_DISCONNECT;
4220 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4221 		return PCI_ERS_RESULT_DISCONNECT;
4222 	adap->flags |= FW_OK;
4223 	if (adap_init1(adap, &c))
4224 		return PCI_ERS_RESULT_DISCONNECT;
4225 
4226 	for_each_port(adap, i) {
4227 		struct port_info *p = adap2pinfo(adap, i);
4228 
4229 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4230 				  NULL, NULL);
4231 		if (ret < 0)
4232 			return PCI_ERS_RESULT_DISCONNECT;
4233 		p->viid = ret;
4234 		p->xact_addr_filt = -1;
4235 	}
4236 
4237 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4238 		     adap->params.b_wnd);
4239 	setup_memwin(adap);
4240 	if (cxgb_up(adap))
4241 		return PCI_ERS_RESULT_DISCONNECT;
4242 	return PCI_ERS_RESULT_RECOVERED;
4243 }
4244 
4245 static void eeh_resume(struct pci_dev *pdev)
4246 {
4247 	int i;
4248 	struct adapter *adap = pci_get_drvdata(pdev);
4249 
4250 	if (!adap)
4251 		return;
4252 
4253 	rtnl_lock();
4254 	for_each_port(adap, i) {
4255 		struct net_device *dev = adap->port[i];
4256 
4257 		if (netif_running(dev)) {
4258 			link_start(dev);
4259 			cxgb_set_rxmode(dev);
4260 		}
4261 		netif_device_attach(dev);
4262 	}
4263 	rtnl_unlock();
4264 }
4265 
4266 static const struct pci_error_handlers cxgb4_eeh = {
4267 	.error_detected = eeh_err_detected,
4268 	.slot_reset     = eeh_slot_reset,
4269 	.resume         = eeh_resume,
4270 };
4271 
4272 static inline bool is_x_10g_port(const struct link_config *lc)
4273 {
4274 	return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4275 	       (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4276 }
4277 
4278 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4279 			     unsigned int us, unsigned int cnt,
4280 			     unsigned int size, unsigned int iqe_size)
4281 {
4282 	q->adap = adap;
4283 	cxgb4_set_rspq_intr_params(q, us, cnt);
4284 	q->iqe_len = iqe_size;
4285 	q->size = size;
4286 }
4287 
4288 /*
4289  * Perform default configuration of DMA queues depending on the number and type
4290  * of ports we found and the number of available CPUs.  Most settings can be
4291  * modified by the admin prior to actual use.
4292  */
4293 static void cfg_queues(struct adapter *adap)
4294 {
4295 	struct sge *s = &adap->sge;
4296 	int i, n10g = 0, qidx = 0;
4297 #ifndef CONFIG_CHELSIO_T4_DCB
4298 	int q10g = 0;
4299 #endif
4300 	int ciq_size;
4301 
4302 	for_each_port(adap, i)
4303 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4304 #ifdef CONFIG_CHELSIO_T4_DCB
4305 	/* For Data Center Bridging support we need to be able to support up
4306 	 * to 8 Traffic Priorities; each of which will be assigned to its
4307 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4308 	 */
4309 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4310 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4311 			MAX_ETH_QSETS, adap->params.nports * 8);
4312 		BUG_ON(1);
4313 	}
4314 
4315 	for_each_port(adap, i) {
4316 		struct port_info *pi = adap2pinfo(adap, i);
4317 
4318 		pi->first_qset = qidx;
4319 		pi->nqsets = 8;
4320 		qidx += pi->nqsets;
4321 	}
4322 #else /* !CONFIG_CHELSIO_T4_DCB */
4323 	/*
4324 	 * We default to 1 queue per non-10G port and up to # of cores queues
4325 	 * per 10G port.
4326 	 */
4327 	if (n10g)
4328 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4329 	if (q10g > netif_get_num_default_rss_queues())
4330 		q10g = netif_get_num_default_rss_queues();
4331 
4332 	for_each_port(adap, i) {
4333 		struct port_info *pi = adap2pinfo(adap, i);
4334 
4335 		pi->first_qset = qidx;
4336 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4337 		qidx += pi->nqsets;
4338 	}
4339 #endif /* !CONFIG_CHELSIO_T4_DCB */
4340 
4341 	s->ethqsets = qidx;
4342 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4343 
4344 	if (is_offload(adap)) {
4345 		/*
4346 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4347 		 * otherwise we divide all available queues amongst the channels
4348 		 * capped by the number of available cores.
4349 		 */
4350 		if (n10g) {
4351 			i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4352 				  num_online_cpus());
4353 			s->ofldqsets = roundup(i, adap->params.nports);
4354 		} else
4355 			s->ofldqsets = adap->params.nports;
4356 		/* For RDMA one Rx queue per channel suffices */
4357 		s->rdmaqs = adap->params.nports;
4358 		/* Try and allow at least 1 CIQ per cpu rounding down
4359 		 * to the number of ports, with a minimum of 1 per port.
4360 		 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4361 		 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4362 		 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4363 		 */
4364 		s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4365 		s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4366 				adap->params.nports;
4367 		s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4368 	}
4369 
4370 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4371 		struct sge_eth_rxq *r = &s->ethrxq[i];
4372 
4373 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4374 		r->fl.size = 72;
4375 	}
4376 
4377 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4378 		s->ethtxq[i].q.size = 1024;
4379 
4380 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4381 		s->ctrlq[i].q.size = 512;
4382 
4383 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4384 		s->ofldtxq[i].q.size = 1024;
4385 
4386 	for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4387 		struct sge_ofld_rxq *r = &s->ofldrxq[i];
4388 
4389 		init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4390 		r->rspq.uld = CXGB4_ULD_ISCSI;
4391 		r->fl.size = 72;
4392 	}
4393 
4394 	for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4395 		struct sge_ofld_rxq *r = &s->rdmarxq[i];
4396 
4397 		init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4398 		r->rspq.uld = CXGB4_ULD_RDMA;
4399 		r->fl.size = 72;
4400 	}
4401 
4402 	ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4403 	if (ciq_size > SGE_MAX_IQ_SIZE) {
4404 		CH_WARN(adap, "CIQ size too small for available IQs\n");
4405 		ciq_size = SGE_MAX_IQ_SIZE;
4406 	}
4407 
4408 	for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4409 		struct sge_ofld_rxq *r = &s->rdmaciq[i];
4410 
4411 		init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4412 		r->rspq.uld = CXGB4_ULD_RDMA;
4413 	}
4414 
4415 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4416 	init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4417 }
4418 
4419 /*
4420  * Reduce the number of Ethernet queues across all ports to at most n.
4421  * n provides at least one queue per port.
4422  */
4423 static void reduce_ethqs(struct adapter *adap, int n)
4424 {
4425 	int i;
4426 	struct port_info *pi;
4427 
4428 	while (n < adap->sge.ethqsets)
4429 		for_each_port(adap, i) {
4430 			pi = adap2pinfo(adap, i);
4431 			if (pi->nqsets > 1) {
4432 				pi->nqsets--;
4433 				adap->sge.ethqsets--;
4434 				if (adap->sge.ethqsets <= n)
4435 					break;
4436 			}
4437 		}
4438 
4439 	n = 0;
4440 	for_each_port(adap, i) {
4441 		pi = adap2pinfo(adap, i);
4442 		pi->first_qset = n;
4443 		n += pi->nqsets;
4444 	}
4445 }
4446 
4447 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4448 #define EXTRA_VECS 2
4449 
4450 static int enable_msix(struct adapter *adap)
4451 {
4452 	int ofld_need = 0;
4453 	int i, want, need, allocated;
4454 	struct sge *s = &adap->sge;
4455 	unsigned int nchan = adap->params.nports;
4456 	struct msix_entry *entries;
4457 
4458 	entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4459 			  GFP_KERNEL);
4460 	if (!entries)
4461 		return -ENOMEM;
4462 
4463 	for (i = 0; i < MAX_INGQ + 1; ++i)
4464 		entries[i].entry = i;
4465 
4466 	want = s->max_ethqsets + EXTRA_VECS;
4467 	if (is_offload(adap)) {
4468 		want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4469 		/* need nchan for each possible ULD */
4470 		ofld_need = 3 * nchan;
4471 	}
4472 #ifdef CONFIG_CHELSIO_T4_DCB
4473 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4474 	 * each port.
4475 	 */
4476 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4477 #else
4478 	need = adap->params.nports + EXTRA_VECS + ofld_need;
4479 #endif
4480 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4481 	if (allocated < 0) {
4482 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4483 			 " not using MSI-X\n");
4484 		kfree(entries);
4485 		return allocated;
4486 	}
4487 
4488 	/* Distribute available vectors to the various queue groups.
4489 	 * Every group gets its minimum requirement and NIC gets top
4490 	 * priority for leftovers.
4491 	 */
4492 	i = allocated - EXTRA_VECS - ofld_need;
4493 	if (i < s->max_ethqsets) {
4494 		s->max_ethqsets = i;
4495 		if (i < s->ethqsets)
4496 			reduce_ethqs(adap, i);
4497 	}
4498 	if (is_offload(adap)) {
4499 		if (allocated < want) {
4500 			s->rdmaqs = nchan;
4501 			s->rdmaciqs = nchan;
4502 		}
4503 
4504 		/* leftovers go to OFLD */
4505 		i = allocated - EXTRA_VECS - s->max_ethqsets -
4506 		    s->rdmaqs - s->rdmaciqs;
4507 		s->ofldqsets = (i / nchan) * nchan;  /* round down */
4508 	}
4509 	for (i = 0; i < allocated; ++i)
4510 		adap->msix_info[i].vec = entries[i].vector;
4511 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4512 		 "nic %d iscsi %d rdma cpl %d rdma ciq %d\n",
4513 		 allocated, s->max_ethqsets, s->ofldqsets, s->rdmaqs,
4514 		 s->rdmaciqs);
4515 
4516 	kfree(entries);
4517 	return 0;
4518 }
4519 
4520 #undef EXTRA_VECS
4521 
4522 static int init_rss(struct adapter *adap)
4523 {
4524 	unsigned int i;
4525 	int err;
4526 
4527 	err = t4_init_rss_mode(adap, adap->mbox);
4528 	if (err)
4529 		return err;
4530 
4531 	for_each_port(adap, i) {
4532 		struct port_info *pi = adap2pinfo(adap, i);
4533 
4534 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4535 		if (!pi->rss)
4536 			return -ENOMEM;
4537 	}
4538 	return 0;
4539 }
4540 
4541 static void print_port_info(const struct net_device *dev)
4542 {
4543 	char buf[80];
4544 	char *bufp = buf;
4545 	const char *spd = "";
4546 	const struct port_info *pi = netdev_priv(dev);
4547 	const struct adapter *adap = pi->adapter;
4548 
4549 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4550 		spd = " 2.5 GT/s";
4551 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4552 		spd = " 5 GT/s";
4553 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4554 		spd = " 8 GT/s";
4555 
4556 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4557 		bufp += sprintf(bufp, "100/");
4558 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4559 		bufp += sprintf(bufp, "1000/");
4560 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4561 		bufp += sprintf(bufp, "10G/");
4562 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4563 		bufp += sprintf(bufp, "40G/");
4564 	if (bufp != buf)
4565 		--bufp;
4566 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4567 
4568 	netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
4569 		    adap->params.vpd.id,
4570 		    CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4571 		    is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4572 		    (adap->flags & USING_MSIX) ? " MSI-X" :
4573 		    (adap->flags & USING_MSI) ? " MSI" : "");
4574 	netdev_info(dev, "S/N: %s, P/N: %s\n",
4575 		    adap->params.vpd.sn, adap->params.vpd.pn);
4576 }
4577 
4578 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4579 {
4580 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4581 }
4582 
4583 /*
4584  * Free the following resources:
4585  * - memory used for tables
4586  * - MSI/MSI-X
4587  * - net devices
4588  * - resources FW is holding for us
4589  */
4590 static void free_some_resources(struct adapter *adapter)
4591 {
4592 	unsigned int i;
4593 
4594 	t4_free_mem(adapter->l2t);
4595 	t4_free_mem(adapter->tids.tid_tab);
4596 	kfree(adapter->sge.egr_map);
4597 	kfree(adapter->sge.ingr_map);
4598 	kfree(adapter->sge.starving_fl);
4599 	kfree(adapter->sge.txq_maperr);
4600 #ifdef CONFIG_DEBUG_FS
4601 	kfree(adapter->sge.blocked_fl);
4602 #endif
4603 	disable_msi(adapter);
4604 
4605 	for_each_port(adapter, i)
4606 		if (adapter->port[i]) {
4607 			struct port_info *pi = adap2pinfo(adapter, i);
4608 
4609 			if (pi->viid != 0)
4610 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
4611 					   0, pi->viid);
4612 			kfree(adap2pinfo(adapter, i)->rss);
4613 			free_netdev(adapter->port[i]);
4614 		}
4615 	if (adapter->flags & FW_OK)
4616 		t4_fw_bye(adapter, adapter->pf);
4617 }
4618 
4619 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4620 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4621 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4622 #define SEGMENT_SIZE 128
4623 
4624 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4625 {
4626 	u16 device_id;
4627 
4628 	/* Retrieve adapter's device ID */
4629 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4630 
4631 	switch (device_id >> 12) {
4632 	case CHELSIO_T4:
4633 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4634 	case CHELSIO_T5:
4635 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4636 	case CHELSIO_T6:
4637 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4638 	default:
4639 		dev_err(&pdev->dev, "Device %d is not supported\n",
4640 			device_id);
4641 	}
4642 	return -EINVAL;
4643 }
4644 
4645 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4646 {
4647 	int func, i, err, s_qpp, qpp, num_seg;
4648 	struct port_info *pi;
4649 	bool highdma = false;
4650 	struct adapter *adapter = NULL;
4651 	void __iomem *regs;
4652 	u32 whoami, pl_rev;
4653 	enum chip_type chip;
4654 
4655 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4656 
4657 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4658 	if (err) {
4659 		/* Just info, some other driver may have claimed the device. */
4660 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4661 		return err;
4662 	}
4663 
4664 	err = pci_enable_device(pdev);
4665 	if (err) {
4666 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4667 		goto out_release_regions;
4668 	}
4669 
4670 	regs = pci_ioremap_bar(pdev, 0);
4671 	if (!regs) {
4672 		dev_err(&pdev->dev, "cannot map device registers\n");
4673 		err = -ENOMEM;
4674 		goto out_disable_device;
4675 	}
4676 
4677 	err = t4_wait_dev_ready(regs);
4678 	if (err < 0)
4679 		goto out_unmap_bar0;
4680 
4681 	/* We control everything through one PF */
4682 	whoami = readl(regs + PL_WHOAMI_A);
4683 	pl_rev = REV_G(readl(regs + PL_REV_A));
4684 	chip = get_chip_type(pdev, pl_rev);
4685 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4686 		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4687 	if (func != ent->driver_data) {
4688 		iounmap(regs);
4689 		pci_disable_device(pdev);
4690 		pci_save_state(pdev);        /* to restore SR-IOV later */
4691 		goto sriov;
4692 	}
4693 
4694 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4695 		highdma = true;
4696 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4697 		if (err) {
4698 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4699 				"coherent allocations\n");
4700 			goto out_unmap_bar0;
4701 		}
4702 	} else {
4703 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4704 		if (err) {
4705 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4706 			goto out_unmap_bar0;
4707 		}
4708 	}
4709 
4710 	pci_enable_pcie_error_reporting(pdev);
4711 	enable_pcie_relaxed_ordering(pdev);
4712 	pci_set_master(pdev);
4713 	pci_save_state(pdev);
4714 
4715 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4716 	if (!adapter) {
4717 		err = -ENOMEM;
4718 		goto out_unmap_bar0;
4719 	}
4720 
4721 	adapter->workq = create_singlethread_workqueue("cxgb4");
4722 	if (!adapter->workq) {
4723 		err = -ENOMEM;
4724 		goto out_free_adapter;
4725 	}
4726 
4727 	/* PCI device has been enabled */
4728 	adapter->flags |= DEV_ENABLED;
4729 
4730 	adapter->regs = regs;
4731 	adapter->pdev = pdev;
4732 	adapter->pdev_dev = &pdev->dev;
4733 	adapter->mbox = func;
4734 	adapter->pf = func;
4735 	adapter->msg_enable = dflt_msg_enable;
4736 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4737 
4738 	spin_lock_init(&adapter->stats_lock);
4739 	spin_lock_init(&adapter->tid_release_lock);
4740 	spin_lock_init(&adapter->win0_lock);
4741 
4742 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4743 	INIT_WORK(&adapter->db_full_task, process_db_full);
4744 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4745 
4746 	err = t4_prep_adapter(adapter);
4747 	if (err)
4748 		goto out_free_adapter;
4749 
4750 
4751 	if (!is_t4(adapter->params.chip)) {
4752 		s_qpp = (QUEUESPERPAGEPF0_S +
4753 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4754 			adapter->pf);
4755 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4756 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4757 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
4758 
4759 		/* Each segment size is 128B. Write coalescing is enabled only
4760 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4761 		 * queue is less no of segments that can be accommodated in
4762 		 * a page size.
4763 		 */
4764 		if (qpp > num_seg) {
4765 			dev_err(&pdev->dev,
4766 				"Incorrect number of egress queues per page\n");
4767 			err = -EINVAL;
4768 			goto out_free_adapter;
4769 		}
4770 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4771 		pci_resource_len(pdev, 2));
4772 		if (!adapter->bar2) {
4773 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
4774 			err = -ENOMEM;
4775 			goto out_free_adapter;
4776 		}
4777 	}
4778 
4779 	setup_memwin(adapter);
4780 	err = adap_init0(adapter);
4781 #ifdef CONFIG_DEBUG_FS
4782 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4783 #endif
4784 	setup_memwin_rdma(adapter);
4785 	if (err)
4786 		goto out_unmap_bar;
4787 
4788 	/* configure SGE_STAT_CFG_A to read WC stats */
4789 	if (!is_t4(adapter->params.chip))
4790 		t4_write_reg(adapter, SGE_STAT_CFG_A,
4791 			     STATSOURCE_T5_V(7) | STATMODE_V(0));
4792 
4793 	for_each_port(adapter, i) {
4794 		struct net_device *netdev;
4795 
4796 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
4797 					   MAX_ETH_QSETS);
4798 		if (!netdev) {
4799 			err = -ENOMEM;
4800 			goto out_free_dev;
4801 		}
4802 
4803 		SET_NETDEV_DEV(netdev, &pdev->dev);
4804 
4805 		adapter->port[i] = netdev;
4806 		pi = netdev_priv(netdev);
4807 		pi->adapter = adapter;
4808 		pi->xact_addr_filt = -1;
4809 		pi->port_id = i;
4810 		netdev->irq = pdev->irq;
4811 
4812 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4813 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4814 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4815 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4816 		if (highdma)
4817 			netdev->hw_features |= NETIF_F_HIGHDMA;
4818 		netdev->features |= netdev->hw_features;
4819 		netdev->vlan_features = netdev->features & VLAN_FEAT;
4820 
4821 		netdev->priv_flags |= IFF_UNICAST_FLT;
4822 
4823 		netdev->netdev_ops = &cxgb4_netdev_ops;
4824 #ifdef CONFIG_CHELSIO_T4_DCB
4825 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
4826 		cxgb4_dcb_state_init(netdev);
4827 #endif
4828 		cxgb4_set_ethtool_ops(netdev);
4829 	}
4830 
4831 	pci_set_drvdata(pdev, adapter);
4832 
4833 	if (adapter->flags & FW_OK) {
4834 		err = t4_port_init(adapter, func, func, 0);
4835 		if (err)
4836 			goto out_free_dev;
4837 	} else if (adapter->params.nports == 1) {
4838 		/* If we don't have a connection to the firmware -- possibly
4839 		 * because of an error -- grab the raw VPD parameters so we
4840 		 * can set the proper MAC Address on the debug network
4841 		 * interface that we've created.
4842 		 */
4843 		u8 hw_addr[ETH_ALEN];
4844 		u8 *na = adapter->params.vpd.na;
4845 
4846 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4847 		if (!err) {
4848 			for (i = 0; i < ETH_ALEN; i++)
4849 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4850 					      hex2val(na[2 * i + 1]));
4851 			t4_set_hw_addr(adapter, 0, hw_addr);
4852 		}
4853 	}
4854 
4855 	/* Configure queues and allocate tables now, they can be needed as
4856 	 * soon as the first register_netdev completes.
4857 	 */
4858 	cfg_queues(adapter);
4859 
4860 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4861 	if (!adapter->l2t) {
4862 		/* We tolerate a lack of L2T, giving up some functionality */
4863 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4864 		adapter->params.offload = 0;
4865 	}
4866 
4867 #if IS_ENABLED(CONFIG_IPV6)
4868 	adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4869 					  adapter->clipt_end);
4870 	if (!adapter->clipt) {
4871 		/* We tolerate a lack of clip_table, giving up
4872 		 * some functionality
4873 		 */
4874 		dev_warn(&pdev->dev,
4875 			 "could not allocate Clip table, continuing\n");
4876 		adapter->params.offload = 0;
4877 	}
4878 #endif
4879 	if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4880 		dev_warn(&pdev->dev, "could not allocate TID table, "
4881 			 "continuing\n");
4882 		adapter->params.offload = 0;
4883 	}
4884 
4885 	if (is_offload(adapter)) {
4886 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4887 			u32 hash_base, hash_reg;
4888 
4889 			if (chip <= CHELSIO_T5) {
4890 				hash_reg = LE_DB_TID_HASHBASE_A;
4891 				hash_base = t4_read_reg(adapter, hash_reg);
4892 				adapter->tids.hash_base = hash_base / 4;
4893 			} else {
4894 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4895 				hash_base = t4_read_reg(adapter, hash_reg);
4896 				adapter->tids.hash_base = hash_base;
4897 			}
4898 		}
4899 	}
4900 
4901 	/* See what interrupts we'll be using */
4902 	if (msi > 1 && enable_msix(adapter) == 0)
4903 		adapter->flags |= USING_MSIX;
4904 	else if (msi > 0 && pci_enable_msi(pdev) == 0)
4905 		adapter->flags |= USING_MSI;
4906 
4907 	err = init_rss(adapter);
4908 	if (err)
4909 		goto out_free_dev;
4910 
4911 	/*
4912 	 * The card is now ready to go.  If any errors occur during device
4913 	 * registration we do not fail the whole card but rather proceed only
4914 	 * with the ports we manage to register successfully.  However we must
4915 	 * register at least one net device.
4916 	 */
4917 	for_each_port(adapter, i) {
4918 		pi = adap2pinfo(adapter, i);
4919 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4920 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4921 
4922 		err = register_netdev(adapter->port[i]);
4923 		if (err)
4924 			break;
4925 		adapter->chan_map[pi->tx_chan] = i;
4926 		print_port_info(adapter->port[i]);
4927 	}
4928 	if (i == 0) {
4929 		dev_err(&pdev->dev, "could not register any net devices\n");
4930 		goto out_free_dev;
4931 	}
4932 	if (err) {
4933 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4934 		err = 0;
4935 	}
4936 
4937 	if (cxgb4_debugfs_root) {
4938 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4939 							   cxgb4_debugfs_root);
4940 		setup_debugfs(adapter);
4941 	}
4942 
4943 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4944 	pdev->needs_freset = 1;
4945 
4946 	if (is_offload(adapter))
4947 		attach_ulds(adapter);
4948 
4949 sriov:
4950 #ifdef CONFIG_PCI_IOV
4951 	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4952 		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4953 			dev_info(&pdev->dev,
4954 				 "instantiated %u virtual functions\n",
4955 				 num_vf[func]);
4956 #endif
4957 	return 0;
4958 
4959  out_free_dev:
4960 	free_some_resources(adapter);
4961  out_unmap_bar:
4962 	if (!is_t4(adapter->params.chip))
4963 		iounmap(adapter->bar2);
4964  out_free_adapter:
4965 	if (adapter->workq)
4966 		destroy_workqueue(adapter->workq);
4967 
4968 	kfree(adapter);
4969  out_unmap_bar0:
4970 	iounmap(regs);
4971  out_disable_device:
4972 	pci_disable_pcie_error_reporting(pdev);
4973 	pci_disable_device(pdev);
4974  out_release_regions:
4975 	pci_release_regions(pdev);
4976 	return err;
4977 }
4978 
4979 static void remove_one(struct pci_dev *pdev)
4980 {
4981 	struct adapter *adapter = pci_get_drvdata(pdev);
4982 
4983 #ifdef CONFIG_PCI_IOV
4984 	pci_disable_sriov(pdev);
4985 
4986 #endif
4987 
4988 	if (adapter) {
4989 		int i;
4990 
4991 		/* Tear down per-adapter Work Queue first since it can contain
4992 		 * references to our adapter data structure.
4993 		 */
4994 		destroy_workqueue(adapter->workq);
4995 
4996 		if (is_offload(adapter))
4997 			detach_ulds(adapter);
4998 
4999 		disable_interrupts(adapter);
5000 
5001 		for_each_port(adapter, i)
5002 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5003 				unregister_netdev(adapter->port[i]);
5004 
5005 		debugfs_remove_recursive(adapter->debugfs_root);
5006 
5007 		/* If we allocated filters, free up state associated with any
5008 		 * valid filters ...
5009 		 */
5010 		if (adapter->tids.ftid_tab) {
5011 			struct filter_entry *f = &adapter->tids.ftid_tab[0];
5012 			for (i = 0; i < (adapter->tids.nftids +
5013 					adapter->tids.nsftids); i++, f++)
5014 				if (f->valid)
5015 					clear_filter(adapter, f);
5016 		}
5017 
5018 		if (adapter->flags & FULL_INIT_DONE)
5019 			cxgb_down(adapter);
5020 
5021 		free_some_resources(adapter);
5022 #if IS_ENABLED(CONFIG_IPV6)
5023 		t4_cleanup_clip_tbl(adapter);
5024 #endif
5025 		iounmap(adapter->regs);
5026 		if (!is_t4(adapter->params.chip))
5027 			iounmap(adapter->bar2);
5028 		pci_disable_pcie_error_reporting(pdev);
5029 		if ((adapter->flags & DEV_ENABLED)) {
5030 			pci_disable_device(pdev);
5031 			adapter->flags &= ~DEV_ENABLED;
5032 		}
5033 		pci_release_regions(pdev);
5034 		synchronize_rcu();
5035 		kfree(adapter);
5036 	} else
5037 		pci_release_regions(pdev);
5038 }
5039 
5040 static struct pci_driver cxgb4_driver = {
5041 	.name     = KBUILD_MODNAME,
5042 	.id_table = cxgb4_pci_tbl,
5043 	.probe    = init_one,
5044 	.remove   = remove_one,
5045 	.shutdown = remove_one,
5046 	.err_handler = &cxgb4_eeh,
5047 };
5048 
5049 static int __init cxgb4_init_module(void)
5050 {
5051 	int ret;
5052 
5053 	/* Debugfs support is optional, just warn if this fails */
5054 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5055 	if (!cxgb4_debugfs_root)
5056 		pr_warn("could not create debugfs entry, continuing\n");
5057 
5058 	ret = pci_register_driver(&cxgb4_driver);
5059 	if (ret < 0)
5060 		debugfs_remove(cxgb4_debugfs_root);
5061 
5062 #if IS_ENABLED(CONFIG_IPV6)
5063 	if (!inet6addr_registered) {
5064 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5065 		inet6addr_registered = true;
5066 	}
5067 #endif
5068 
5069 	return ret;
5070 }
5071 
5072 static void __exit cxgb4_cleanup_module(void)
5073 {
5074 #if IS_ENABLED(CONFIG_IPV6)
5075 	if (inet6addr_registered) {
5076 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5077 		inet6addr_registered = false;
5078 	}
5079 #endif
5080 	pci_unregister_driver(&cxgb4_driver);
5081 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5082 }
5083 
5084 module_init(cxgb4_init_module);
5085 module_exit(cxgb4_cleanup_module);
5086