1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <asm/uaccess.h> 64 65 #include "cxgb4.h" 66 #include "t4_regs.h" 67 #include "t4_msg.h" 68 #include "t4fw_api.h" 69 #include "l2t.h" 70 71 #define DRV_VERSION "1.3.0-ko" 72 #define DRV_DESC "Chelsio T4 Network Driver" 73 74 /* 75 * Max interrupt hold-off timer value in us. Queues fall back to this value 76 * under extreme memory pressure so it's largish to give the system time to 77 * recover. 78 */ 79 #define MAX_SGE_TIMERVAL 200U 80 81 enum { 82 /* 83 * Physical Function provisioning constants. 84 */ 85 PFRES_NVI = 4, /* # of Virtual Interfaces */ 86 PFRES_NETHCTRL = 128, /* # of EQs used for ETH or CTRL Qs */ 87 PFRES_NIQFLINT = 128, /* # of ingress Qs/w Free List(s)/intr 88 */ 89 PFRES_NEQ = 256, /* # of egress queues */ 90 PFRES_NIQ = 0, /* # of ingress queues */ 91 PFRES_TC = 0, /* PCI-E traffic class */ 92 PFRES_NEXACTF = 128, /* # of exact MPS filters */ 93 94 PFRES_R_CAPS = FW_CMD_CAP_PF, 95 PFRES_WX_CAPS = FW_CMD_CAP_PF, 96 97 #ifdef CONFIG_PCI_IOV 98 /* 99 * Virtual Function provisioning constants. We need two extra Ingress 100 * Queues with Interrupt capability to serve as the VF's Firmware 101 * Event Queue and Forwarded Interrupt Queue (when using MSI mode) -- 102 * neither will have Free Lists associated with them). For each 103 * Ethernet/Control Egress Queue and for each Free List, we need an 104 * Egress Context. 105 */ 106 VFRES_NPORTS = 1, /* # of "ports" per VF */ 107 VFRES_NQSETS = 2, /* # of "Queue Sets" per VF */ 108 109 VFRES_NVI = VFRES_NPORTS, /* # of Virtual Interfaces */ 110 VFRES_NETHCTRL = VFRES_NQSETS, /* # of EQs used for ETH or CTRL Qs */ 111 VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */ 112 VFRES_NEQ = VFRES_NQSETS*2, /* # of egress queues */ 113 VFRES_NIQ = 0, /* # of non-fl/int ingress queues */ 114 VFRES_TC = 0, /* PCI-E traffic class */ 115 VFRES_NEXACTF = 16, /* # of exact MPS filters */ 116 117 VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT, 118 VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF, 119 #endif 120 }; 121 122 /* 123 * Provide a Port Access Rights Mask for the specified PF/VF. This is very 124 * static and likely not to be useful in the long run. We really need to 125 * implement some form of persistent configuration which the firmware 126 * controls. 127 */ 128 static unsigned int pfvfres_pmask(struct adapter *adapter, 129 unsigned int pf, unsigned int vf) 130 { 131 unsigned int portn, portvec; 132 133 /* 134 * Give PF's access to all of the ports. 135 */ 136 if (vf == 0) 137 return FW_PFVF_CMD_PMASK_MASK; 138 139 /* 140 * For VFs, we'll assign them access to the ports based purely on the 141 * PF. We assign active ports in order, wrapping around if there are 142 * fewer active ports than PFs: e.g. active port[pf % nports]. 143 * Unfortunately the adapter's port_info structs haven't been 144 * initialized yet so we have to compute this. 145 */ 146 if (adapter->params.nports == 0) 147 return 0; 148 149 portn = pf % adapter->params.nports; 150 portvec = adapter->params.portvec; 151 for (;;) { 152 /* 153 * Isolate the lowest set bit in the port vector. If we're at 154 * the port number that we want, return that as the pmask. 155 * otherwise mask that bit out of the port vector and 156 * decrement our port number ... 157 */ 158 unsigned int pmask = portvec ^ (portvec & (portvec-1)); 159 if (portn == 0) 160 return pmask; 161 portn--; 162 portvec &= ~pmask; 163 } 164 /*NOTREACHED*/ 165 } 166 167 enum { 168 MAX_TXQ_ENTRIES = 16384, 169 MAX_CTRL_TXQ_ENTRIES = 1024, 170 MAX_RSPQ_ENTRIES = 16384, 171 MAX_RX_BUFFERS = 16384, 172 MIN_TXQ_ENTRIES = 32, 173 MIN_CTRL_TXQ_ENTRIES = 32, 174 MIN_RSPQ_ENTRIES = 128, 175 MIN_FL_ENTRIES = 16 176 }; 177 178 /* Host shadow copy of ingress filter entry. This is in host native format 179 * and doesn't match the ordering or bit order, etc. of the hardware of the 180 * firmware command. The use of bit-field structure elements is purely to 181 * remind ourselves of the field size limitations and save memory in the case 182 * where the filter table is large. 183 */ 184 struct filter_entry { 185 /* Administrative fields for filter. 186 */ 187 u32 valid:1; /* filter allocated and valid */ 188 u32 locked:1; /* filter is administratively locked */ 189 190 u32 pending:1; /* filter action is pending firmware reply */ 191 u32 smtidx:8; /* Source MAC Table index for smac */ 192 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ 193 194 /* The filter itself. Most of this is a straight copy of information 195 * provided by the extended ioctl(). Some fields are translated to 196 * internal forms -- for instance the Ingress Queue ID passed in from 197 * the ioctl() is translated into the Absolute Ingress Queue ID. 198 */ 199 struct ch_filter_specification fs; 200 }; 201 202 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 203 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 204 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 205 206 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) } 207 208 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = { 209 CH_DEVICE(0xa000, 0), /* PE10K */ 210 CH_DEVICE(0x4001, -1), 211 CH_DEVICE(0x4002, -1), 212 CH_DEVICE(0x4003, -1), 213 CH_DEVICE(0x4004, -1), 214 CH_DEVICE(0x4005, -1), 215 CH_DEVICE(0x4006, -1), 216 CH_DEVICE(0x4007, -1), 217 CH_DEVICE(0x4008, -1), 218 CH_DEVICE(0x4009, -1), 219 CH_DEVICE(0x400a, -1), 220 CH_DEVICE(0x4401, 4), 221 CH_DEVICE(0x4402, 4), 222 CH_DEVICE(0x4403, 4), 223 CH_DEVICE(0x4404, 4), 224 CH_DEVICE(0x4405, 4), 225 CH_DEVICE(0x4406, 4), 226 CH_DEVICE(0x4407, 4), 227 CH_DEVICE(0x4408, 4), 228 CH_DEVICE(0x4409, 4), 229 CH_DEVICE(0x440a, 4), 230 CH_DEVICE(0x440d, 4), 231 CH_DEVICE(0x440e, 4), 232 { 0, } 233 }; 234 235 #define FW_FNAME "cxgb4/t4fw.bin" 236 #define FW_CFNAME "cxgb4/t4-config.txt" 237 238 MODULE_DESCRIPTION(DRV_DESC); 239 MODULE_AUTHOR("Chelsio Communications"); 240 MODULE_LICENSE("Dual BSD/GPL"); 241 MODULE_VERSION(DRV_VERSION); 242 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 243 MODULE_FIRMWARE(FW_FNAME); 244 245 /* 246 * Normally we're willing to become the firmware's Master PF but will be happy 247 * if another PF has already become the Master and initialized the adapter. 248 * Setting "force_init" will cause this driver to forcibly establish itself as 249 * the Master PF and initialize the adapter. 250 */ 251 static uint force_init; 252 253 module_param(force_init, uint, 0644); 254 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter"); 255 256 /* 257 * Normally if the firmware we connect to has Configuration File support, we 258 * use that and only fall back to the old Driver-based initialization if the 259 * Configuration File fails for some reason. If force_old_init is set, then 260 * we'll always use the old Driver-based initialization sequence. 261 */ 262 static uint force_old_init; 263 264 module_param(force_old_init, uint, 0644); 265 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence"); 266 267 static int dflt_msg_enable = DFLT_MSG_ENABLE; 268 269 module_param(dflt_msg_enable, int, 0644); 270 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap"); 271 272 /* 273 * The driver uses the best interrupt scheme available on a platform in the 274 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 275 * of these schemes the driver may consider as follows: 276 * 277 * msi = 2: choose from among all three options 278 * msi = 1: only consider MSI and INTx interrupts 279 * msi = 0: force INTx interrupts 280 */ 281 static int msi = 2; 282 283 module_param(msi, int, 0644); 284 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 285 286 /* 287 * Queue interrupt hold-off timer values. Queues default to the first of these 288 * upon creation. 289 */ 290 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 }; 291 292 module_param_array(intr_holdoff, uint, NULL, 0644); 293 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers " 294 "0..4 in microseconds"); 295 296 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 }; 297 298 module_param_array(intr_cnt, uint, NULL, 0644); 299 MODULE_PARM_DESC(intr_cnt, 300 "thresholds 1..3 for queue interrupt packet counters"); 301 302 /* 303 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 304 * offset by 2 bytes in order to have the IP headers line up on 4-byte 305 * boundaries. This is a requirement for many architectures which will throw 306 * a machine check fault if an attempt is made to access one of the 4-byte IP 307 * header fields on a non-4-byte boundary. And it's a major performance issue 308 * even on some architectures which allow it like some implementations of the 309 * x86 ISA. However, some architectures don't mind this and for some very 310 * edge-case performance sensitive applications (like forwarding large volumes 311 * of small packets), setting this DMA offset to 0 will decrease the number of 312 * PCI-E Bus transfers enough to measurably affect performance. 313 */ 314 static int rx_dma_offset = 2; 315 316 static bool vf_acls; 317 318 #ifdef CONFIG_PCI_IOV 319 module_param(vf_acls, bool, 0644); 320 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement"); 321 322 static unsigned int num_vf[4]; 323 324 module_param_array(num_vf, uint, NULL, 0644); 325 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3"); 326 #endif 327 328 /* 329 * The filter TCAM has a fixed portion and a variable portion. The fixed 330 * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP 331 * ports. The variable portion is 36 bits which can include things like Exact 332 * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits), 333 * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would 334 * far exceed the 36-bit budget for this "compressed" header portion of the 335 * filter. Thus, we have a scarce resource which must be carefully managed. 336 * 337 * By default we set this up to mostly match the set of filter matching 338 * capabilities of T3 but with accommodations for some of T4's more 339 * interesting features: 340 * 341 * { IP Fragment (1), MPS Match Type (3), IP Protocol (8), 342 * [Inner] VLAN (17), Port (3), FCoE (1) } 343 */ 344 enum { 345 TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC, 346 TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT, 347 TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT, 348 }; 349 350 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT; 351 352 module_param(tp_vlan_pri_map, uint, 0644); 353 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration"); 354 355 static struct dentry *cxgb4_debugfs_root; 356 357 static LIST_HEAD(adapter_list); 358 static DEFINE_MUTEX(uld_mutex); 359 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX]; 360 static const char *uld_str[] = { "RDMA", "iSCSI" }; 361 362 static void link_report(struct net_device *dev) 363 { 364 if (!netif_carrier_ok(dev)) 365 netdev_info(dev, "link down\n"); 366 else { 367 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 368 369 const char *s = "10Mbps"; 370 const struct port_info *p = netdev_priv(dev); 371 372 switch (p->link_cfg.speed) { 373 case SPEED_10000: 374 s = "10Gbps"; 375 break; 376 case SPEED_1000: 377 s = "1000Mbps"; 378 break; 379 case SPEED_100: 380 s = "100Mbps"; 381 break; 382 } 383 384 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 385 fc[p->link_cfg.fc]); 386 } 387 } 388 389 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 390 { 391 struct net_device *dev = adapter->port[port_id]; 392 393 /* Skip changes from disabled ports. */ 394 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 395 if (link_stat) 396 netif_carrier_on(dev); 397 else 398 netif_carrier_off(dev); 399 400 link_report(dev); 401 } 402 } 403 404 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 405 { 406 static const char *mod_str[] = { 407 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 408 }; 409 410 const struct net_device *dev = adap->port[port_id]; 411 const struct port_info *pi = netdev_priv(dev); 412 413 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 414 netdev_info(dev, "port module unplugged\n"); 415 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 416 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 417 } 418 419 /* 420 * Configure the exact and hash address filters to handle a port's multicast 421 * and secondary unicast MAC addresses. 422 */ 423 static int set_addr_filters(const struct net_device *dev, bool sleep) 424 { 425 u64 mhash = 0; 426 u64 uhash = 0; 427 bool free = true; 428 u16 filt_idx[7]; 429 const u8 *addr[7]; 430 int ret, naddr = 0; 431 const struct netdev_hw_addr *ha; 432 int uc_cnt = netdev_uc_count(dev); 433 int mc_cnt = netdev_mc_count(dev); 434 const struct port_info *pi = netdev_priv(dev); 435 unsigned int mb = pi->adapter->fn; 436 437 /* first do the secondary unicast addresses */ 438 netdev_for_each_uc_addr(ha, dev) { 439 addr[naddr++] = ha->addr; 440 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 441 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 442 naddr, addr, filt_idx, &uhash, sleep); 443 if (ret < 0) 444 return ret; 445 446 free = false; 447 naddr = 0; 448 } 449 } 450 451 /* next set up the multicast addresses */ 452 netdev_for_each_mc_addr(ha, dev) { 453 addr[naddr++] = ha->addr; 454 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 455 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 456 naddr, addr, filt_idx, &mhash, sleep); 457 if (ret < 0) 458 return ret; 459 460 free = false; 461 naddr = 0; 462 } 463 } 464 465 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0, 466 uhash | mhash, sleep); 467 } 468 469 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 470 module_param(dbfifo_int_thresh, int, 0644); 471 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 472 473 /* 474 * usecs to sleep while draining the dbfifo 475 */ 476 static int dbfifo_drain_delay = 1000; 477 module_param(dbfifo_drain_delay, int, 0644); 478 MODULE_PARM_DESC(dbfifo_drain_delay, 479 "usecs to sleep while draining the dbfifo"); 480 481 /* 482 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 483 * If @mtu is -1 it is left unchanged. 484 */ 485 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 486 { 487 int ret; 488 struct port_info *pi = netdev_priv(dev); 489 490 ret = set_addr_filters(dev, sleep_ok); 491 if (ret == 0) 492 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu, 493 (dev->flags & IFF_PROMISC) ? 1 : 0, 494 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 495 sleep_ok); 496 return ret; 497 } 498 499 static struct workqueue_struct *workq; 500 501 /** 502 * link_start - enable a port 503 * @dev: the port to enable 504 * 505 * Performs the MAC and PHY actions needed to enable a port. 506 */ 507 static int link_start(struct net_device *dev) 508 { 509 int ret; 510 struct port_info *pi = netdev_priv(dev); 511 unsigned int mb = pi->adapter->fn; 512 513 /* 514 * We do not set address filters and promiscuity here, the stack does 515 * that step explicitly. 516 */ 517 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 518 !!(dev->features & NETIF_F_HW_VLAN_RX), true); 519 if (ret == 0) { 520 ret = t4_change_mac(pi->adapter, mb, pi->viid, 521 pi->xact_addr_filt, dev->dev_addr, true, 522 true); 523 if (ret >= 0) { 524 pi->xact_addr_filt = ret; 525 ret = 0; 526 } 527 } 528 if (ret == 0) 529 ret = t4_link_start(pi->adapter, mb, pi->tx_chan, 530 &pi->link_cfg); 531 if (ret == 0) 532 ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true); 533 return ret; 534 } 535 536 /* Clear a filter and release any of its resources that we own. This also 537 * clears the filter's "pending" status. 538 */ 539 static void clear_filter(struct adapter *adap, struct filter_entry *f) 540 { 541 /* If the new or old filter have loopback rewriteing rules then we'll 542 * need to free any existing Layer Two Table (L2T) entries of the old 543 * filter rule. The firmware will handle freeing up any Source MAC 544 * Table (SMT) entries used for rewriting Source MAC Addresses in 545 * loopback rules. 546 */ 547 if (f->l2t) 548 cxgb4_l2t_release(f->l2t); 549 550 /* The zeroing of the filter rule below clears the filter valid, 551 * pending, locked flags, l2t pointer, etc. so it's all we need for 552 * this operation. 553 */ 554 memset(f, 0, sizeof(*f)); 555 } 556 557 /* Handle a filter write/deletion reply. 558 */ 559 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl) 560 { 561 unsigned int idx = GET_TID(rpl); 562 unsigned int nidx = idx - adap->tids.ftid_base; 563 unsigned int ret; 564 struct filter_entry *f; 565 566 if (idx >= adap->tids.ftid_base && nidx < 567 (adap->tids.nftids + adap->tids.nsftids)) { 568 idx = nidx; 569 ret = GET_TCB_COOKIE(rpl->cookie); 570 f = &adap->tids.ftid_tab[idx]; 571 572 if (ret == FW_FILTER_WR_FLT_DELETED) { 573 /* Clear the filter when we get confirmation from the 574 * hardware that the filter has been deleted. 575 */ 576 clear_filter(adap, f); 577 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) { 578 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n", 579 idx); 580 clear_filter(adap, f); 581 } else if (ret == FW_FILTER_WR_FLT_ADDED) { 582 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff; 583 f->pending = 0; /* asynchronous setup completed */ 584 f->valid = 1; 585 } else { 586 /* Something went wrong. Issue a warning about the 587 * problem and clear everything out. 588 */ 589 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n", 590 idx, ret); 591 clear_filter(adap, f); 592 } 593 } 594 } 595 596 /* Response queue handler for the FW event queue. 597 */ 598 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 599 const struct pkt_gl *gl) 600 { 601 u8 opcode = ((const struct rss_header *)rsp)->opcode; 602 603 rsp++; /* skip RSS header */ 604 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 605 const struct cpl_sge_egr_update *p = (void *)rsp; 606 unsigned int qid = EGR_QID(ntohl(p->opcode_qid)); 607 struct sge_txq *txq; 608 609 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 610 txq->restarts++; 611 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) { 612 struct sge_eth_txq *eq; 613 614 eq = container_of(txq, struct sge_eth_txq, q); 615 netif_tx_wake_queue(eq->txq); 616 } else { 617 struct sge_ofld_txq *oq; 618 619 oq = container_of(txq, struct sge_ofld_txq, q); 620 tasklet_schedule(&oq->qresume_tsk); 621 } 622 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 623 const struct cpl_fw6_msg *p = (void *)rsp; 624 625 if (p->type == 0) 626 t4_handle_fw_rpl(q->adap, p->data); 627 } else if (opcode == CPL_L2T_WRITE_RPL) { 628 const struct cpl_l2t_write_rpl *p = (void *)rsp; 629 630 do_l2t_write_rpl(q->adap, p); 631 } else if (opcode == CPL_SET_TCB_RPL) { 632 const struct cpl_set_tcb_rpl *p = (void *)rsp; 633 634 filter_rpl(q->adap, p); 635 } else 636 dev_err(q->adap->pdev_dev, 637 "unexpected CPL %#x on FW event queue\n", opcode); 638 return 0; 639 } 640 641 /** 642 * uldrx_handler - response queue handler for ULD queues 643 * @q: the response queue that received the packet 644 * @rsp: the response queue descriptor holding the offload message 645 * @gl: the gather list of packet fragments 646 * 647 * Deliver an ingress offload packet to a ULD. All processing is done by 648 * the ULD, we just maintain statistics. 649 */ 650 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp, 651 const struct pkt_gl *gl) 652 { 653 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq); 654 655 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) { 656 rxq->stats.nomem++; 657 return -1; 658 } 659 if (gl == NULL) 660 rxq->stats.imm++; 661 else if (gl == CXGB4_MSG_AN) 662 rxq->stats.an++; 663 else 664 rxq->stats.pkts++; 665 return 0; 666 } 667 668 static void disable_msi(struct adapter *adapter) 669 { 670 if (adapter->flags & USING_MSIX) { 671 pci_disable_msix(adapter->pdev); 672 adapter->flags &= ~USING_MSIX; 673 } else if (adapter->flags & USING_MSI) { 674 pci_disable_msi(adapter->pdev); 675 adapter->flags &= ~USING_MSI; 676 } 677 } 678 679 /* 680 * Interrupt handler for non-data events used with MSI-X. 681 */ 682 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 683 { 684 struct adapter *adap = cookie; 685 686 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE)); 687 if (v & PFSW) { 688 adap->swintr = 1; 689 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v); 690 } 691 t4_slow_intr_handler(adap); 692 return IRQ_HANDLED; 693 } 694 695 /* 696 * Name the MSI-X interrupts. 697 */ 698 static void name_msix_vecs(struct adapter *adap) 699 { 700 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 701 702 /* non-data interrupts */ 703 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 704 705 /* FW events */ 706 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 707 adap->port[0]->name); 708 709 /* Ethernet queues */ 710 for_each_port(adap, j) { 711 struct net_device *d = adap->port[j]; 712 const struct port_info *pi = netdev_priv(d); 713 714 for (i = 0; i < pi->nqsets; i++, msi_idx++) 715 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 716 d->name, i); 717 } 718 719 /* offload queues */ 720 for_each_ofldrxq(&adap->sge, i) 721 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d", 722 adap->port[0]->name, i); 723 724 for_each_rdmarxq(&adap->sge, i) 725 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d", 726 adap->port[0]->name, i); 727 } 728 729 static int request_msix_queue_irqs(struct adapter *adap) 730 { 731 struct sge *s = &adap->sge; 732 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi_index = 2; 733 734 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 735 adap->msix_info[1].desc, &s->fw_evtq); 736 if (err) 737 return err; 738 739 for_each_ethrxq(s, ethqidx) { 740 err = request_irq(adap->msix_info[msi_index].vec, 741 t4_sge_intr_msix, 0, 742 adap->msix_info[msi_index].desc, 743 &s->ethrxq[ethqidx].rspq); 744 if (err) 745 goto unwind; 746 msi_index++; 747 } 748 for_each_ofldrxq(s, ofldqidx) { 749 err = request_irq(adap->msix_info[msi_index].vec, 750 t4_sge_intr_msix, 0, 751 adap->msix_info[msi_index].desc, 752 &s->ofldrxq[ofldqidx].rspq); 753 if (err) 754 goto unwind; 755 msi_index++; 756 } 757 for_each_rdmarxq(s, rdmaqidx) { 758 err = request_irq(adap->msix_info[msi_index].vec, 759 t4_sge_intr_msix, 0, 760 adap->msix_info[msi_index].desc, 761 &s->rdmarxq[rdmaqidx].rspq); 762 if (err) 763 goto unwind; 764 msi_index++; 765 } 766 return 0; 767 768 unwind: 769 while (--rdmaqidx >= 0) 770 free_irq(adap->msix_info[--msi_index].vec, 771 &s->rdmarxq[rdmaqidx].rspq); 772 while (--ofldqidx >= 0) 773 free_irq(adap->msix_info[--msi_index].vec, 774 &s->ofldrxq[ofldqidx].rspq); 775 while (--ethqidx >= 0) 776 free_irq(adap->msix_info[--msi_index].vec, 777 &s->ethrxq[ethqidx].rspq); 778 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 779 return err; 780 } 781 782 static void free_msix_queue_irqs(struct adapter *adap) 783 { 784 int i, msi_index = 2; 785 struct sge *s = &adap->sge; 786 787 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 788 for_each_ethrxq(s, i) 789 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 790 for_each_ofldrxq(s, i) 791 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq); 792 for_each_rdmarxq(s, i) 793 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq); 794 } 795 796 /** 797 * write_rss - write the RSS table for a given port 798 * @pi: the port 799 * @queues: array of queue indices for RSS 800 * 801 * Sets up the portion of the HW RSS table for the port's VI to distribute 802 * packets to the Rx queues in @queues. 803 */ 804 static int write_rss(const struct port_info *pi, const u16 *queues) 805 { 806 u16 *rss; 807 int i, err; 808 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset]; 809 810 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 811 if (!rss) 812 return -ENOMEM; 813 814 /* map the queue indices to queue ids */ 815 for (i = 0; i < pi->rss_size; i++, queues++) 816 rss[i] = q[*queues].rspq.abs_id; 817 818 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0, 819 pi->rss_size, rss, pi->rss_size); 820 kfree(rss); 821 return err; 822 } 823 824 /** 825 * setup_rss - configure RSS 826 * @adap: the adapter 827 * 828 * Sets up RSS for each port. 829 */ 830 static int setup_rss(struct adapter *adap) 831 { 832 int i, err; 833 834 for_each_port(adap, i) { 835 const struct port_info *pi = adap2pinfo(adap, i); 836 837 err = write_rss(pi, pi->rss); 838 if (err) 839 return err; 840 } 841 return 0; 842 } 843 844 /* 845 * Return the channel of the ingress queue with the given qid. 846 */ 847 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 848 { 849 qid -= p->ingr_start; 850 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 851 } 852 853 /* 854 * Wait until all NAPI handlers are descheduled. 855 */ 856 static void quiesce_rx(struct adapter *adap) 857 { 858 int i; 859 860 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) { 861 struct sge_rspq *q = adap->sge.ingr_map[i]; 862 863 if (q && q->handler) 864 napi_disable(&q->napi); 865 } 866 } 867 868 /* 869 * Enable NAPI scheduling and interrupt generation for all Rx queues. 870 */ 871 static void enable_rx(struct adapter *adap) 872 { 873 int i; 874 875 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) { 876 struct sge_rspq *q = adap->sge.ingr_map[i]; 877 878 if (!q) 879 continue; 880 if (q->handler) 881 napi_enable(&q->napi); 882 /* 0-increment GTS to start the timer and enable interrupts */ 883 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), 884 SEINTARM(q->intr_params) | 885 INGRESSQID(q->cntxt_id)); 886 } 887 } 888 889 /** 890 * setup_sge_queues - configure SGE Tx/Rx/response queues 891 * @adap: the adapter 892 * 893 * Determines how many sets of SGE queues to use and initializes them. 894 * We support multiple queue sets per port if we have MSI-X, otherwise 895 * just one queue set per port. 896 */ 897 static int setup_sge_queues(struct adapter *adap) 898 { 899 int err, msi_idx, i, j; 900 struct sge *s = &adap->sge; 901 902 bitmap_zero(s->starving_fl, MAX_EGRQ); 903 bitmap_zero(s->txq_maperr, MAX_EGRQ); 904 905 if (adap->flags & USING_MSIX) 906 msi_idx = 1; /* vector 0 is for non-queue interrupts */ 907 else { 908 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 909 NULL, NULL); 910 if (err) 911 return err; 912 msi_idx = -((int)s->intrq.abs_id + 1); 913 } 914 915 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 916 msi_idx, NULL, fwevtq_handler); 917 if (err) { 918 freeout: t4_free_sge_resources(adap); 919 return err; 920 } 921 922 for_each_port(adap, i) { 923 struct net_device *dev = adap->port[i]; 924 struct port_info *pi = netdev_priv(dev); 925 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 926 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 927 928 for (j = 0; j < pi->nqsets; j++, q++) { 929 if (msi_idx > 0) 930 msi_idx++; 931 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 932 msi_idx, &q->fl, 933 t4_ethrx_handler); 934 if (err) 935 goto freeout; 936 q->rspq.idx = j; 937 memset(&q->stats, 0, sizeof(q->stats)); 938 } 939 for (j = 0; j < pi->nqsets; j++, t++) { 940 err = t4_sge_alloc_eth_txq(adap, t, dev, 941 netdev_get_tx_queue(dev, j), 942 s->fw_evtq.cntxt_id); 943 if (err) 944 goto freeout; 945 } 946 } 947 948 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */ 949 for_each_ofldrxq(s, i) { 950 struct sge_ofld_rxq *q = &s->ofldrxq[i]; 951 struct net_device *dev = adap->port[i / j]; 952 953 if (msi_idx > 0) 954 msi_idx++; 955 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx, 956 &q->fl, uldrx_handler); 957 if (err) 958 goto freeout; 959 memset(&q->stats, 0, sizeof(q->stats)); 960 s->ofld_rxq[i] = q->rspq.abs_id; 961 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev, 962 s->fw_evtq.cntxt_id); 963 if (err) 964 goto freeout; 965 } 966 967 for_each_rdmarxq(s, i) { 968 struct sge_ofld_rxq *q = &s->rdmarxq[i]; 969 970 if (msi_idx > 0) 971 msi_idx++; 972 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i], 973 msi_idx, &q->fl, uldrx_handler); 974 if (err) 975 goto freeout; 976 memset(&q->stats, 0, sizeof(q->stats)); 977 s->rdma_rxq[i] = q->rspq.abs_id; 978 } 979 980 for_each_port(adap, i) { 981 /* 982 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't 983 * have RDMA queues, and that's the right value. 984 */ 985 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 986 s->fw_evtq.cntxt_id, 987 s->rdmarxq[i].rspq.cntxt_id); 988 if (err) 989 goto freeout; 990 } 991 992 t4_write_reg(adap, MPS_TRC_RSS_CONTROL, 993 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) | 994 QUEUENUMBER(s->ethrxq[0].rspq.abs_id)); 995 return 0; 996 } 997 998 /* 999 * Returns 0 if new FW was successfully loaded, a positive errno if a load was 1000 * started but failed, and a negative errno if flash load couldn't start. 1001 */ 1002 static int upgrade_fw(struct adapter *adap) 1003 { 1004 int ret; 1005 u32 vers; 1006 const struct fw_hdr *hdr; 1007 const struct firmware *fw; 1008 struct device *dev = adap->pdev_dev; 1009 1010 ret = request_firmware(&fw, FW_FNAME, dev); 1011 if (ret < 0) { 1012 dev_err(dev, "unable to load firmware image " FW_FNAME 1013 ", error %d\n", ret); 1014 return ret; 1015 } 1016 1017 hdr = (const struct fw_hdr *)fw->data; 1018 vers = ntohl(hdr->fw_ver); 1019 if (FW_HDR_FW_VER_MAJOR_GET(vers) != FW_VERSION_MAJOR) { 1020 ret = -EINVAL; /* wrong major version, won't do */ 1021 goto out; 1022 } 1023 1024 /* 1025 * If the flash FW is unusable or we found something newer, load it. 1026 */ 1027 if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != FW_VERSION_MAJOR || 1028 vers > adap->params.fw_vers) { 1029 dev_info(dev, "upgrading firmware ...\n"); 1030 ret = t4_fw_upgrade(adap, adap->mbox, fw->data, fw->size, 1031 /*force=*/false); 1032 if (!ret) 1033 dev_info(dev, "firmware successfully upgraded to " 1034 FW_FNAME " (%d.%d.%d.%d)\n", 1035 FW_HDR_FW_VER_MAJOR_GET(vers), 1036 FW_HDR_FW_VER_MINOR_GET(vers), 1037 FW_HDR_FW_VER_MICRO_GET(vers), 1038 FW_HDR_FW_VER_BUILD_GET(vers)); 1039 else 1040 dev_err(dev, "firmware upgrade failed! err=%d\n", -ret); 1041 } else { 1042 /* 1043 * Tell our caller that we didn't upgrade the firmware. 1044 */ 1045 ret = -EINVAL; 1046 } 1047 1048 out: release_firmware(fw); 1049 return ret; 1050 } 1051 1052 /* 1053 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 1054 * The allocated memory is cleared. 1055 */ 1056 void *t4_alloc_mem(size_t size) 1057 { 1058 void *p = kzalloc(size, GFP_KERNEL); 1059 1060 if (!p) 1061 p = vzalloc(size); 1062 return p; 1063 } 1064 1065 /* 1066 * Free memory allocated through alloc_mem(). 1067 */ 1068 static void t4_free_mem(void *addr) 1069 { 1070 if (is_vmalloc_addr(addr)) 1071 vfree(addr); 1072 else 1073 kfree(addr); 1074 } 1075 1076 /* Send a Work Request to write the filter at a specified index. We construct 1077 * a Firmware Filter Work Request to have the work done and put the indicated 1078 * filter into "pending" mode which will prevent any further actions against 1079 * it till we get a reply from the firmware on the completion status of the 1080 * request. 1081 */ 1082 static int set_filter_wr(struct adapter *adapter, int fidx) 1083 { 1084 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1085 struct sk_buff *skb; 1086 struct fw_filter_wr *fwr; 1087 unsigned int ftid; 1088 1089 /* If the new filter requires loopback Destination MAC and/or VLAN 1090 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for 1091 * the filter. 1092 */ 1093 if (f->fs.newdmac || f->fs.newvlan) { 1094 /* allocate L2T entry for new filter */ 1095 f->l2t = t4_l2t_alloc_switching(adapter->l2t); 1096 if (f->l2t == NULL) 1097 return -EAGAIN; 1098 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan, 1099 f->fs.eport, f->fs.dmac)) { 1100 cxgb4_l2t_release(f->l2t); 1101 f->l2t = NULL; 1102 return -ENOMEM; 1103 } 1104 } 1105 1106 ftid = adapter->tids.ftid_base + fidx; 1107 1108 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL); 1109 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr)); 1110 memset(fwr, 0, sizeof(*fwr)); 1111 1112 /* It would be nice to put most of the following in t4_hw.c but most 1113 * of the work is translating the cxgbtool ch_filter_specification 1114 * into the Work Request and the definition of that structure is 1115 * currently in cxgbtool.h which isn't appropriate to pull into the 1116 * common code. We may eventually try to come up with a more neutral 1117 * filter specification structure but for now it's easiest to simply 1118 * put this fairly direct code in line ... 1119 */ 1120 fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR)); 1121 fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16)); 1122 fwr->tid_to_iq = 1123 htonl(V_FW_FILTER_WR_TID(ftid) | 1124 V_FW_FILTER_WR_RQTYPE(f->fs.type) | 1125 V_FW_FILTER_WR_NOREPLY(0) | 1126 V_FW_FILTER_WR_IQ(f->fs.iq)); 1127 fwr->del_filter_to_l2tix = 1128 htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) | 1129 V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) | 1130 V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) | 1131 V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) | 1132 V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) | 1133 V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) | 1134 V_FW_FILTER_WR_DMAC(f->fs.newdmac) | 1135 V_FW_FILTER_WR_SMAC(f->fs.newsmac) | 1136 V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT || 1137 f->fs.newvlan == VLAN_REWRITE) | 1138 V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE || 1139 f->fs.newvlan == VLAN_REWRITE) | 1140 V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) | 1141 V_FW_FILTER_WR_TXCHAN(f->fs.eport) | 1142 V_FW_FILTER_WR_PRIO(f->fs.prio) | 1143 V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0)); 1144 fwr->ethtype = htons(f->fs.val.ethtype); 1145 fwr->ethtypem = htons(f->fs.mask.ethtype); 1146 fwr->frag_to_ovlan_vldm = 1147 (V_FW_FILTER_WR_FRAG(f->fs.val.frag) | 1148 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) | 1149 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) | 1150 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) | 1151 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) | 1152 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld)); 1153 fwr->smac_sel = 0; 1154 fwr->rx_chan_rx_rpl_iq = 1155 htons(V_FW_FILTER_WR_RX_CHAN(0) | 1156 V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id)); 1157 fwr->maci_to_matchtypem = 1158 htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) | 1159 V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) | 1160 V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) | 1161 V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) | 1162 V_FW_FILTER_WR_PORT(f->fs.val.iport) | 1163 V_FW_FILTER_WR_PORTM(f->fs.mask.iport) | 1164 V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) | 1165 V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype)); 1166 fwr->ptcl = f->fs.val.proto; 1167 fwr->ptclm = f->fs.mask.proto; 1168 fwr->ttyp = f->fs.val.tos; 1169 fwr->ttypm = f->fs.mask.tos; 1170 fwr->ivlan = htons(f->fs.val.ivlan); 1171 fwr->ivlanm = htons(f->fs.mask.ivlan); 1172 fwr->ovlan = htons(f->fs.val.ovlan); 1173 fwr->ovlanm = htons(f->fs.mask.ovlan); 1174 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip)); 1175 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm)); 1176 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip)); 1177 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm)); 1178 fwr->lp = htons(f->fs.val.lport); 1179 fwr->lpm = htons(f->fs.mask.lport); 1180 fwr->fp = htons(f->fs.val.fport); 1181 fwr->fpm = htons(f->fs.mask.fport); 1182 if (f->fs.newsmac) 1183 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma)); 1184 1185 /* Mark the filter as "pending" and ship off the Filter Work Request. 1186 * When we get the Work Request Reply we'll clear the pending status. 1187 */ 1188 f->pending = 1; 1189 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3); 1190 t4_ofld_send(adapter, skb); 1191 return 0; 1192 } 1193 1194 /* Delete the filter at a specified index. 1195 */ 1196 static int del_filter_wr(struct adapter *adapter, int fidx) 1197 { 1198 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1199 struct sk_buff *skb; 1200 struct fw_filter_wr *fwr; 1201 unsigned int len, ftid; 1202 1203 len = sizeof(*fwr); 1204 ftid = adapter->tids.ftid_base + fidx; 1205 1206 skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL); 1207 fwr = (struct fw_filter_wr *)__skb_put(skb, len); 1208 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id); 1209 1210 /* Mark the filter as "pending" and ship off the Filter Work Request. 1211 * When we get the Work Request Reply we'll clear the pending status. 1212 */ 1213 f->pending = 1; 1214 t4_mgmt_tx(adapter, skb); 1215 return 0; 1216 } 1217 1218 static inline int is_offload(const struct adapter *adap) 1219 { 1220 return adap->params.offload; 1221 } 1222 1223 /* 1224 * Implementation of ethtool operations. 1225 */ 1226 1227 static u32 get_msglevel(struct net_device *dev) 1228 { 1229 return netdev2adap(dev)->msg_enable; 1230 } 1231 1232 static void set_msglevel(struct net_device *dev, u32 val) 1233 { 1234 netdev2adap(dev)->msg_enable = val; 1235 } 1236 1237 static char stats_strings[][ETH_GSTRING_LEN] = { 1238 "TxOctetsOK ", 1239 "TxFramesOK ", 1240 "TxBroadcastFrames ", 1241 "TxMulticastFrames ", 1242 "TxUnicastFrames ", 1243 "TxErrorFrames ", 1244 1245 "TxFrames64 ", 1246 "TxFrames65To127 ", 1247 "TxFrames128To255 ", 1248 "TxFrames256To511 ", 1249 "TxFrames512To1023 ", 1250 "TxFrames1024To1518 ", 1251 "TxFrames1519ToMax ", 1252 1253 "TxFramesDropped ", 1254 "TxPauseFrames ", 1255 "TxPPP0Frames ", 1256 "TxPPP1Frames ", 1257 "TxPPP2Frames ", 1258 "TxPPP3Frames ", 1259 "TxPPP4Frames ", 1260 "TxPPP5Frames ", 1261 "TxPPP6Frames ", 1262 "TxPPP7Frames ", 1263 1264 "RxOctetsOK ", 1265 "RxFramesOK ", 1266 "RxBroadcastFrames ", 1267 "RxMulticastFrames ", 1268 "RxUnicastFrames ", 1269 1270 "RxFramesTooLong ", 1271 "RxJabberErrors ", 1272 "RxFCSErrors ", 1273 "RxLengthErrors ", 1274 "RxSymbolErrors ", 1275 "RxRuntFrames ", 1276 1277 "RxFrames64 ", 1278 "RxFrames65To127 ", 1279 "RxFrames128To255 ", 1280 "RxFrames256To511 ", 1281 "RxFrames512To1023 ", 1282 "RxFrames1024To1518 ", 1283 "RxFrames1519ToMax ", 1284 1285 "RxPauseFrames ", 1286 "RxPPP0Frames ", 1287 "RxPPP1Frames ", 1288 "RxPPP2Frames ", 1289 "RxPPP3Frames ", 1290 "RxPPP4Frames ", 1291 "RxPPP5Frames ", 1292 "RxPPP6Frames ", 1293 "RxPPP7Frames ", 1294 1295 "RxBG0FramesDropped ", 1296 "RxBG1FramesDropped ", 1297 "RxBG2FramesDropped ", 1298 "RxBG3FramesDropped ", 1299 "RxBG0FramesTrunc ", 1300 "RxBG1FramesTrunc ", 1301 "RxBG2FramesTrunc ", 1302 "RxBG3FramesTrunc ", 1303 1304 "TSO ", 1305 "TxCsumOffload ", 1306 "RxCsumGood ", 1307 "VLANextractions ", 1308 "VLANinsertions ", 1309 "GROpackets ", 1310 "GROmerged ", 1311 }; 1312 1313 static int get_sset_count(struct net_device *dev, int sset) 1314 { 1315 switch (sset) { 1316 case ETH_SS_STATS: 1317 return ARRAY_SIZE(stats_strings); 1318 default: 1319 return -EOPNOTSUPP; 1320 } 1321 } 1322 1323 #define T4_REGMAP_SIZE (160 * 1024) 1324 1325 static int get_regs_len(struct net_device *dev) 1326 { 1327 return T4_REGMAP_SIZE; 1328 } 1329 1330 static int get_eeprom_len(struct net_device *dev) 1331 { 1332 return EEPROMSIZE; 1333 } 1334 1335 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1336 { 1337 struct adapter *adapter = netdev2adap(dev); 1338 1339 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 1340 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1341 strlcpy(info->bus_info, pci_name(adapter->pdev), 1342 sizeof(info->bus_info)); 1343 1344 if (adapter->params.fw_vers) 1345 snprintf(info->fw_version, sizeof(info->fw_version), 1346 "%u.%u.%u.%u, TP %u.%u.%u.%u", 1347 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers), 1348 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers), 1349 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers), 1350 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers), 1351 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers), 1352 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers), 1353 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers), 1354 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers)); 1355 } 1356 1357 static void get_strings(struct net_device *dev, u32 stringset, u8 *data) 1358 { 1359 if (stringset == ETH_SS_STATS) 1360 memcpy(data, stats_strings, sizeof(stats_strings)); 1361 } 1362 1363 /* 1364 * port stats maintained per queue of the port. They should be in the same 1365 * order as in stats_strings above. 1366 */ 1367 struct queue_port_stats { 1368 u64 tso; 1369 u64 tx_csum; 1370 u64 rx_csum; 1371 u64 vlan_ex; 1372 u64 vlan_ins; 1373 u64 gro_pkts; 1374 u64 gro_merged; 1375 }; 1376 1377 static void collect_sge_port_stats(const struct adapter *adap, 1378 const struct port_info *p, struct queue_port_stats *s) 1379 { 1380 int i; 1381 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset]; 1382 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset]; 1383 1384 memset(s, 0, sizeof(*s)); 1385 for (i = 0; i < p->nqsets; i++, rx++, tx++) { 1386 s->tso += tx->tso; 1387 s->tx_csum += tx->tx_cso; 1388 s->rx_csum += rx->stats.rx_cso; 1389 s->vlan_ex += rx->stats.vlan_ex; 1390 s->vlan_ins += tx->vlan_ins; 1391 s->gro_pkts += rx->stats.lro_pkts; 1392 s->gro_merged += rx->stats.lro_merged; 1393 } 1394 } 1395 1396 static void get_stats(struct net_device *dev, struct ethtool_stats *stats, 1397 u64 *data) 1398 { 1399 struct port_info *pi = netdev_priv(dev); 1400 struct adapter *adapter = pi->adapter; 1401 1402 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data); 1403 1404 data += sizeof(struct port_stats) / sizeof(u64); 1405 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data); 1406 } 1407 1408 /* 1409 * Return a version number to identify the type of adapter. The scheme is: 1410 * - bits 0..9: chip version 1411 * - bits 10..15: chip revision 1412 * - bits 16..23: register dump version 1413 */ 1414 static inline unsigned int mk_adap_vers(const struct adapter *ap) 1415 { 1416 return 4 | (ap->params.rev << 10) | (1 << 16); 1417 } 1418 1419 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start, 1420 unsigned int end) 1421 { 1422 u32 *p = buf + start; 1423 1424 for ( ; start <= end; start += sizeof(u32)) 1425 *p++ = t4_read_reg(ap, start); 1426 } 1427 1428 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, 1429 void *buf) 1430 { 1431 static const unsigned int reg_ranges[] = { 1432 0x1008, 0x1108, 1433 0x1180, 0x11b4, 1434 0x11fc, 0x123c, 1435 0x1300, 0x173c, 1436 0x1800, 0x18fc, 1437 0x3000, 0x30d8, 1438 0x30e0, 0x5924, 1439 0x5960, 0x59d4, 1440 0x5a00, 0x5af8, 1441 0x6000, 0x6098, 1442 0x6100, 0x6150, 1443 0x6200, 0x6208, 1444 0x6240, 0x6248, 1445 0x6280, 0x6338, 1446 0x6370, 0x638c, 1447 0x6400, 0x643c, 1448 0x6500, 0x6524, 1449 0x6a00, 0x6a38, 1450 0x6a60, 0x6a78, 1451 0x6b00, 0x6b84, 1452 0x6bf0, 0x6c84, 1453 0x6cf0, 0x6d84, 1454 0x6df0, 0x6e84, 1455 0x6ef0, 0x6f84, 1456 0x6ff0, 0x7084, 1457 0x70f0, 0x7184, 1458 0x71f0, 0x7284, 1459 0x72f0, 0x7384, 1460 0x73f0, 0x7450, 1461 0x7500, 0x7530, 1462 0x7600, 0x761c, 1463 0x7680, 0x76cc, 1464 0x7700, 0x7798, 1465 0x77c0, 0x77fc, 1466 0x7900, 0x79fc, 1467 0x7b00, 0x7c38, 1468 0x7d00, 0x7efc, 1469 0x8dc0, 0x8e1c, 1470 0x8e30, 0x8e78, 1471 0x8ea0, 0x8f6c, 1472 0x8fc0, 0x9074, 1473 0x90fc, 0x90fc, 1474 0x9400, 0x9458, 1475 0x9600, 0x96bc, 1476 0x9800, 0x9808, 1477 0x9820, 0x983c, 1478 0x9850, 0x9864, 1479 0x9c00, 0x9c6c, 1480 0x9c80, 0x9cec, 1481 0x9d00, 0x9d6c, 1482 0x9d80, 0x9dec, 1483 0x9e00, 0x9e6c, 1484 0x9e80, 0x9eec, 1485 0x9f00, 0x9f6c, 1486 0x9f80, 0x9fec, 1487 0xd004, 0xd03c, 1488 0xdfc0, 0xdfe0, 1489 0xe000, 0xea7c, 1490 0xf000, 0x11190, 1491 0x19040, 0x1906c, 1492 0x19078, 0x19080, 1493 0x1908c, 0x19124, 1494 0x19150, 0x191b0, 1495 0x191d0, 0x191e8, 1496 0x19238, 0x1924c, 1497 0x193f8, 0x19474, 1498 0x19490, 0x194f8, 1499 0x19800, 0x19f30, 1500 0x1a000, 0x1a06c, 1501 0x1a0b0, 0x1a120, 1502 0x1a128, 0x1a138, 1503 0x1a190, 0x1a1c4, 1504 0x1a1fc, 0x1a1fc, 1505 0x1e040, 0x1e04c, 1506 0x1e284, 0x1e28c, 1507 0x1e2c0, 0x1e2c0, 1508 0x1e2e0, 0x1e2e0, 1509 0x1e300, 0x1e384, 1510 0x1e3c0, 0x1e3c8, 1511 0x1e440, 0x1e44c, 1512 0x1e684, 0x1e68c, 1513 0x1e6c0, 0x1e6c0, 1514 0x1e6e0, 0x1e6e0, 1515 0x1e700, 0x1e784, 1516 0x1e7c0, 0x1e7c8, 1517 0x1e840, 0x1e84c, 1518 0x1ea84, 0x1ea8c, 1519 0x1eac0, 0x1eac0, 1520 0x1eae0, 0x1eae0, 1521 0x1eb00, 0x1eb84, 1522 0x1ebc0, 0x1ebc8, 1523 0x1ec40, 0x1ec4c, 1524 0x1ee84, 0x1ee8c, 1525 0x1eec0, 0x1eec0, 1526 0x1eee0, 0x1eee0, 1527 0x1ef00, 0x1ef84, 1528 0x1efc0, 0x1efc8, 1529 0x1f040, 0x1f04c, 1530 0x1f284, 0x1f28c, 1531 0x1f2c0, 0x1f2c0, 1532 0x1f2e0, 0x1f2e0, 1533 0x1f300, 0x1f384, 1534 0x1f3c0, 0x1f3c8, 1535 0x1f440, 0x1f44c, 1536 0x1f684, 0x1f68c, 1537 0x1f6c0, 0x1f6c0, 1538 0x1f6e0, 0x1f6e0, 1539 0x1f700, 0x1f784, 1540 0x1f7c0, 0x1f7c8, 1541 0x1f840, 0x1f84c, 1542 0x1fa84, 0x1fa8c, 1543 0x1fac0, 0x1fac0, 1544 0x1fae0, 0x1fae0, 1545 0x1fb00, 0x1fb84, 1546 0x1fbc0, 0x1fbc8, 1547 0x1fc40, 0x1fc4c, 1548 0x1fe84, 0x1fe8c, 1549 0x1fec0, 0x1fec0, 1550 0x1fee0, 0x1fee0, 1551 0x1ff00, 0x1ff84, 1552 0x1ffc0, 0x1ffc8, 1553 0x20000, 0x2002c, 1554 0x20100, 0x2013c, 1555 0x20190, 0x201c8, 1556 0x20200, 0x20318, 1557 0x20400, 0x20528, 1558 0x20540, 0x20614, 1559 0x21000, 0x21040, 1560 0x2104c, 0x21060, 1561 0x210c0, 0x210ec, 1562 0x21200, 0x21268, 1563 0x21270, 0x21284, 1564 0x212fc, 0x21388, 1565 0x21400, 0x21404, 1566 0x21500, 0x21518, 1567 0x2152c, 0x2153c, 1568 0x21550, 0x21554, 1569 0x21600, 0x21600, 1570 0x21608, 0x21628, 1571 0x21630, 0x2163c, 1572 0x21700, 0x2171c, 1573 0x21780, 0x2178c, 1574 0x21800, 0x21c38, 1575 0x21c80, 0x21d7c, 1576 0x21e00, 0x21e04, 1577 0x22000, 0x2202c, 1578 0x22100, 0x2213c, 1579 0x22190, 0x221c8, 1580 0x22200, 0x22318, 1581 0x22400, 0x22528, 1582 0x22540, 0x22614, 1583 0x23000, 0x23040, 1584 0x2304c, 0x23060, 1585 0x230c0, 0x230ec, 1586 0x23200, 0x23268, 1587 0x23270, 0x23284, 1588 0x232fc, 0x23388, 1589 0x23400, 0x23404, 1590 0x23500, 0x23518, 1591 0x2352c, 0x2353c, 1592 0x23550, 0x23554, 1593 0x23600, 0x23600, 1594 0x23608, 0x23628, 1595 0x23630, 0x2363c, 1596 0x23700, 0x2371c, 1597 0x23780, 0x2378c, 1598 0x23800, 0x23c38, 1599 0x23c80, 0x23d7c, 1600 0x23e00, 0x23e04, 1601 0x24000, 0x2402c, 1602 0x24100, 0x2413c, 1603 0x24190, 0x241c8, 1604 0x24200, 0x24318, 1605 0x24400, 0x24528, 1606 0x24540, 0x24614, 1607 0x25000, 0x25040, 1608 0x2504c, 0x25060, 1609 0x250c0, 0x250ec, 1610 0x25200, 0x25268, 1611 0x25270, 0x25284, 1612 0x252fc, 0x25388, 1613 0x25400, 0x25404, 1614 0x25500, 0x25518, 1615 0x2552c, 0x2553c, 1616 0x25550, 0x25554, 1617 0x25600, 0x25600, 1618 0x25608, 0x25628, 1619 0x25630, 0x2563c, 1620 0x25700, 0x2571c, 1621 0x25780, 0x2578c, 1622 0x25800, 0x25c38, 1623 0x25c80, 0x25d7c, 1624 0x25e00, 0x25e04, 1625 0x26000, 0x2602c, 1626 0x26100, 0x2613c, 1627 0x26190, 0x261c8, 1628 0x26200, 0x26318, 1629 0x26400, 0x26528, 1630 0x26540, 0x26614, 1631 0x27000, 0x27040, 1632 0x2704c, 0x27060, 1633 0x270c0, 0x270ec, 1634 0x27200, 0x27268, 1635 0x27270, 0x27284, 1636 0x272fc, 0x27388, 1637 0x27400, 0x27404, 1638 0x27500, 0x27518, 1639 0x2752c, 0x2753c, 1640 0x27550, 0x27554, 1641 0x27600, 0x27600, 1642 0x27608, 0x27628, 1643 0x27630, 0x2763c, 1644 0x27700, 0x2771c, 1645 0x27780, 0x2778c, 1646 0x27800, 0x27c38, 1647 0x27c80, 0x27d7c, 1648 0x27e00, 0x27e04 1649 }; 1650 1651 int i; 1652 struct adapter *ap = netdev2adap(dev); 1653 1654 regs->version = mk_adap_vers(ap); 1655 1656 memset(buf, 0, T4_REGMAP_SIZE); 1657 for (i = 0; i < ARRAY_SIZE(reg_ranges); i += 2) 1658 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]); 1659 } 1660 1661 static int restart_autoneg(struct net_device *dev) 1662 { 1663 struct port_info *p = netdev_priv(dev); 1664 1665 if (!netif_running(dev)) 1666 return -EAGAIN; 1667 if (p->link_cfg.autoneg != AUTONEG_ENABLE) 1668 return -EINVAL; 1669 t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan); 1670 return 0; 1671 } 1672 1673 static int identify_port(struct net_device *dev, 1674 enum ethtool_phys_id_state state) 1675 { 1676 unsigned int val; 1677 struct adapter *adap = netdev2adap(dev); 1678 1679 if (state == ETHTOOL_ID_ACTIVE) 1680 val = 0xffff; 1681 else if (state == ETHTOOL_ID_INACTIVE) 1682 val = 0; 1683 else 1684 return -EINVAL; 1685 1686 return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val); 1687 } 1688 1689 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps) 1690 { 1691 unsigned int v = 0; 1692 1693 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI || 1694 type == FW_PORT_TYPE_BT_XAUI) { 1695 v |= SUPPORTED_TP; 1696 if (caps & FW_PORT_CAP_SPEED_100M) 1697 v |= SUPPORTED_100baseT_Full; 1698 if (caps & FW_PORT_CAP_SPEED_1G) 1699 v |= SUPPORTED_1000baseT_Full; 1700 if (caps & FW_PORT_CAP_SPEED_10G) 1701 v |= SUPPORTED_10000baseT_Full; 1702 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) { 1703 v |= SUPPORTED_Backplane; 1704 if (caps & FW_PORT_CAP_SPEED_1G) 1705 v |= SUPPORTED_1000baseKX_Full; 1706 if (caps & FW_PORT_CAP_SPEED_10G) 1707 v |= SUPPORTED_10000baseKX4_Full; 1708 } else if (type == FW_PORT_TYPE_KR) 1709 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full; 1710 else if (type == FW_PORT_TYPE_BP_AP) 1711 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC | 1712 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full; 1713 else if (type == FW_PORT_TYPE_BP4_AP) 1714 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC | 1715 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full | 1716 SUPPORTED_10000baseKX4_Full; 1717 else if (type == FW_PORT_TYPE_FIBER_XFI || 1718 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP) 1719 v |= SUPPORTED_FIBRE; 1720 1721 if (caps & FW_PORT_CAP_ANEG) 1722 v |= SUPPORTED_Autoneg; 1723 return v; 1724 } 1725 1726 static unsigned int to_fw_linkcaps(unsigned int caps) 1727 { 1728 unsigned int v = 0; 1729 1730 if (caps & ADVERTISED_100baseT_Full) 1731 v |= FW_PORT_CAP_SPEED_100M; 1732 if (caps & ADVERTISED_1000baseT_Full) 1733 v |= FW_PORT_CAP_SPEED_1G; 1734 if (caps & ADVERTISED_10000baseT_Full) 1735 v |= FW_PORT_CAP_SPEED_10G; 1736 return v; 1737 } 1738 1739 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1740 { 1741 const struct port_info *p = netdev_priv(dev); 1742 1743 if (p->port_type == FW_PORT_TYPE_BT_SGMII || 1744 p->port_type == FW_PORT_TYPE_BT_XFI || 1745 p->port_type == FW_PORT_TYPE_BT_XAUI) 1746 cmd->port = PORT_TP; 1747 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI || 1748 p->port_type == FW_PORT_TYPE_FIBER_XAUI) 1749 cmd->port = PORT_FIBRE; 1750 else if (p->port_type == FW_PORT_TYPE_SFP) { 1751 if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE || 1752 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE) 1753 cmd->port = PORT_DA; 1754 else 1755 cmd->port = PORT_FIBRE; 1756 } else 1757 cmd->port = PORT_OTHER; 1758 1759 if (p->mdio_addr >= 0) { 1760 cmd->phy_address = p->mdio_addr; 1761 cmd->transceiver = XCVR_EXTERNAL; 1762 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ? 1763 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45; 1764 } else { 1765 cmd->phy_address = 0; /* not really, but no better option */ 1766 cmd->transceiver = XCVR_INTERNAL; 1767 cmd->mdio_support = 0; 1768 } 1769 1770 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported); 1771 cmd->advertising = from_fw_linkcaps(p->port_type, 1772 p->link_cfg.advertising); 1773 ethtool_cmd_speed_set(cmd, 1774 netif_carrier_ok(dev) ? p->link_cfg.speed : 0); 1775 cmd->duplex = DUPLEX_FULL; 1776 cmd->autoneg = p->link_cfg.autoneg; 1777 cmd->maxtxpkt = 0; 1778 cmd->maxrxpkt = 0; 1779 return 0; 1780 } 1781 1782 static unsigned int speed_to_caps(int speed) 1783 { 1784 if (speed == SPEED_100) 1785 return FW_PORT_CAP_SPEED_100M; 1786 if (speed == SPEED_1000) 1787 return FW_PORT_CAP_SPEED_1G; 1788 if (speed == SPEED_10000) 1789 return FW_PORT_CAP_SPEED_10G; 1790 return 0; 1791 } 1792 1793 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1794 { 1795 unsigned int cap; 1796 struct port_info *p = netdev_priv(dev); 1797 struct link_config *lc = &p->link_cfg; 1798 u32 speed = ethtool_cmd_speed(cmd); 1799 1800 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */ 1801 return -EINVAL; 1802 1803 if (!(lc->supported & FW_PORT_CAP_ANEG)) { 1804 /* 1805 * PHY offers a single speed. See if that's what's 1806 * being requested. 1807 */ 1808 if (cmd->autoneg == AUTONEG_DISABLE && 1809 (lc->supported & speed_to_caps(speed))) 1810 return 0; 1811 return -EINVAL; 1812 } 1813 1814 if (cmd->autoneg == AUTONEG_DISABLE) { 1815 cap = speed_to_caps(speed); 1816 1817 if (!(lc->supported & cap) || (speed == SPEED_1000) || 1818 (speed == SPEED_10000)) 1819 return -EINVAL; 1820 lc->requested_speed = cap; 1821 lc->advertising = 0; 1822 } else { 1823 cap = to_fw_linkcaps(cmd->advertising); 1824 if (!(lc->supported & cap)) 1825 return -EINVAL; 1826 lc->requested_speed = 0; 1827 lc->advertising = cap | FW_PORT_CAP_ANEG; 1828 } 1829 lc->autoneg = cmd->autoneg; 1830 1831 if (netif_running(dev)) 1832 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan, 1833 lc); 1834 return 0; 1835 } 1836 1837 static void get_pauseparam(struct net_device *dev, 1838 struct ethtool_pauseparam *epause) 1839 { 1840 struct port_info *p = netdev_priv(dev); 1841 1842 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0; 1843 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0; 1844 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0; 1845 } 1846 1847 static int set_pauseparam(struct net_device *dev, 1848 struct ethtool_pauseparam *epause) 1849 { 1850 struct port_info *p = netdev_priv(dev); 1851 struct link_config *lc = &p->link_cfg; 1852 1853 if (epause->autoneg == AUTONEG_DISABLE) 1854 lc->requested_fc = 0; 1855 else if (lc->supported & FW_PORT_CAP_ANEG) 1856 lc->requested_fc = PAUSE_AUTONEG; 1857 else 1858 return -EINVAL; 1859 1860 if (epause->rx_pause) 1861 lc->requested_fc |= PAUSE_RX; 1862 if (epause->tx_pause) 1863 lc->requested_fc |= PAUSE_TX; 1864 if (netif_running(dev)) 1865 return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan, 1866 lc); 1867 return 0; 1868 } 1869 1870 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 1871 { 1872 const struct port_info *pi = netdev_priv(dev); 1873 const struct sge *s = &pi->adapter->sge; 1874 1875 e->rx_max_pending = MAX_RX_BUFFERS; 1876 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES; 1877 e->rx_jumbo_max_pending = 0; 1878 e->tx_max_pending = MAX_TXQ_ENTRIES; 1879 1880 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8; 1881 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size; 1882 e->rx_jumbo_pending = 0; 1883 e->tx_pending = s->ethtxq[pi->first_qset].q.size; 1884 } 1885 1886 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 1887 { 1888 int i; 1889 const struct port_info *pi = netdev_priv(dev); 1890 struct adapter *adapter = pi->adapter; 1891 struct sge *s = &adapter->sge; 1892 1893 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending || 1894 e->tx_pending > MAX_TXQ_ENTRIES || 1895 e->rx_mini_pending > MAX_RSPQ_ENTRIES || 1896 e->rx_mini_pending < MIN_RSPQ_ENTRIES || 1897 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES) 1898 return -EINVAL; 1899 1900 if (adapter->flags & FULL_INIT_DONE) 1901 return -EBUSY; 1902 1903 for (i = 0; i < pi->nqsets; ++i) { 1904 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending; 1905 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8; 1906 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending; 1907 } 1908 return 0; 1909 } 1910 1911 static int closest_timer(const struct sge *s, int time) 1912 { 1913 int i, delta, match = 0, min_delta = INT_MAX; 1914 1915 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1916 delta = time - s->timer_val[i]; 1917 if (delta < 0) 1918 delta = -delta; 1919 if (delta < min_delta) { 1920 min_delta = delta; 1921 match = i; 1922 } 1923 } 1924 return match; 1925 } 1926 1927 static int closest_thres(const struct sge *s, int thres) 1928 { 1929 int i, delta, match = 0, min_delta = INT_MAX; 1930 1931 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1932 delta = thres - s->counter_val[i]; 1933 if (delta < 0) 1934 delta = -delta; 1935 if (delta < min_delta) { 1936 min_delta = delta; 1937 match = i; 1938 } 1939 } 1940 return match; 1941 } 1942 1943 /* 1944 * Return a queue's interrupt hold-off time in us. 0 means no timer. 1945 */ 1946 static unsigned int qtimer_val(const struct adapter *adap, 1947 const struct sge_rspq *q) 1948 { 1949 unsigned int idx = q->intr_params >> 1; 1950 1951 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0; 1952 } 1953 1954 /** 1955 * set_rxq_intr_params - set a queue's interrupt holdoff parameters 1956 * @adap: the adapter 1957 * @q: the Rx queue 1958 * @us: the hold-off time in us, or 0 to disable timer 1959 * @cnt: the hold-off packet count, or 0 to disable counter 1960 * 1961 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1962 * one of the two needs to be enabled for the queue to generate interrupts. 1963 */ 1964 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q, 1965 unsigned int us, unsigned int cnt) 1966 { 1967 if ((us | cnt) == 0) 1968 cnt = 1; 1969 1970 if (cnt) { 1971 int err; 1972 u32 v, new_idx; 1973 1974 new_idx = closest_thres(&adap->sge, cnt); 1975 if (q->desc && q->pktcnt_idx != new_idx) { 1976 /* the queue has already been created, update it */ 1977 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | 1978 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1979 FW_PARAMS_PARAM_YZ(q->cntxt_id); 1980 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v, 1981 &new_idx); 1982 if (err) 1983 return err; 1984 } 1985 q->pktcnt_idx = new_idx; 1986 } 1987 1988 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1989 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0); 1990 return 0; 1991 } 1992 1993 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 1994 { 1995 const struct port_info *pi = netdev_priv(dev); 1996 struct adapter *adap = pi->adapter; 1997 struct sge_rspq *q; 1998 int i; 1999 int r = 0; 2000 2001 for (i = pi->first_qset; i < pi->first_qset + pi->nqsets; i++) { 2002 q = &adap->sge.ethrxq[i].rspq; 2003 r = set_rxq_intr_params(adap, q, c->rx_coalesce_usecs, 2004 c->rx_max_coalesced_frames); 2005 if (r) { 2006 dev_err(&dev->dev, "failed to set coalesce %d\n", r); 2007 break; 2008 } 2009 } 2010 return r; 2011 } 2012 2013 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 2014 { 2015 const struct port_info *pi = netdev_priv(dev); 2016 const struct adapter *adap = pi->adapter; 2017 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq; 2018 2019 c->rx_coalesce_usecs = qtimer_val(adap, rq); 2020 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ? 2021 adap->sge.counter_val[rq->pktcnt_idx] : 0; 2022 return 0; 2023 } 2024 2025 /** 2026 * eeprom_ptov - translate a physical EEPROM address to virtual 2027 * @phys_addr: the physical EEPROM address 2028 * @fn: the PCI function number 2029 * @sz: size of function-specific area 2030 * 2031 * Translate a physical EEPROM address to virtual. The first 1K is 2032 * accessed through virtual addresses starting at 31K, the rest is 2033 * accessed through virtual addresses starting at 0. 2034 * 2035 * The mapping is as follows: 2036 * [0..1K) -> [31K..32K) 2037 * [1K..1K+A) -> [31K-A..31K) 2038 * [1K+A..ES) -> [0..ES-A-1K) 2039 * 2040 * where A = @fn * @sz, and ES = EEPROM size. 2041 */ 2042 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2043 { 2044 fn *= sz; 2045 if (phys_addr < 1024) 2046 return phys_addr + (31 << 10); 2047 if (phys_addr < 1024 + fn) 2048 return 31744 - fn + phys_addr - 1024; 2049 if (phys_addr < EEPROMSIZE) 2050 return phys_addr - 1024 - fn; 2051 return -EINVAL; 2052 } 2053 2054 /* 2055 * The next two routines implement eeprom read/write from physical addresses. 2056 */ 2057 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v) 2058 { 2059 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE); 2060 2061 if (vaddr >= 0) 2062 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v); 2063 return vaddr < 0 ? vaddr : 0; 2064 } 2065 2066 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v) 2067 { 2068 int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE); 2069 2070 if (vaddr >= 0) 2071 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v); 2072 return vaddr < 0 ? vaddr : 0; 2073 } 2074 2075 #define EEPROM_MAGIC 0x38E2F10C 2076 2077 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e, 2078 u8 *data) 2079 { 2080 int i, err = 0; 2081 struct adapter *adapter = netdev2adap(dev); 2082 2083 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL); 2084 if (!buf) 2085 return -ENOMEM; 2086 2087 e->magic = EEPROM_MAGIC; 2088 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4) 2089 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]); 2090 2091 if (!err) 2092 memcpy(data, buf + e->offset, e->len); 2093 kfree(buf); 2094 return err; 2095 } 2096 2097 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 2098 u8 *data) 2099 { 2100 u8 *buf; 2101 int err = 0; 2102 u32 aligned_offset, aligned_len, *p; 2103 struct adapter *adapter = netdev2adap(dev); 2104 2105 if (eeprom->magic != EEPROM_MAGIC) 2106 return -EINVAL; 2107 2108 aligned_offset = eeprom->offset & ~3; 2109 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3; 2110 2111 if (adapter->fn > 0) { 2112 u32 start = 1024 + adapter->fn * EEPROMPFSIZE; 2113 2114 if (aligned_offset < start || 2115 aligned_offset + aligned_len > start + EEPROMPFSIZE) 2116 return -EPERM; 2117 } 2118 2119 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) { 2120 /* 2121 * RMW possibly needed for first or last words. 2122 */ 2123 buf = kmalloc(aligned_len, GFP_KERNEL); 2124 if (!buf) 2125 return -ENOMEM; 2126 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf); 2127 if (!err && aligned_len > 4) 2128 err = eeprom_rd_phys(adapter, 2129 aligned_offset + aligned_len - 4, 2130 (u32 *)&buf[aligned_len - 4]); 2131 if (err) 2132 goto out; 2133 memcpy(buf + (eeprom->offset & 3), data, eeprom->len); 2134 } else 2135 buf = data; 2136 2137 err = t4_seeprom_wp(adapter, false); 2138 if (err) 2139 goto out; 2140 2141 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) { 2142 err = eeprom_wr_phys(adapter, aligned_offset, *p); 2143 aligned_offset += 4; 2144 } 2145 2146 if (!err) 2147 err = t4_seeprom_wp(adapter, true); 2148 out: 2149 if (buf != data) 2150 kfree(buf); 2151 return err; 2152 } 2153 2154 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef) 2155 { 2156 int ret; 2157 const struct firmware *fw; 2158 struct adapter *adap = netdev2adap(netdev); 2159 2160 ef->data[sizeof(ef->data) - 1] = '\0'; 2161 ret = request_firmware(&fw, ef->data, adap->pdev_dev); 2162 if (ret < 0) 2163 return ret; 2164 2165 ret = t4_load_fw(adap, fw->data, fw->size); 2166 release_firmware(fw); 2167 if (!ret) 2168 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data); 2169 return ret; 2170 } 2171 2172 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC) 2173 #define BCAST_CRC 0xa0ccc1a6 2174 2175 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2176 { 2177 wol->supported = WAKE_BCAST | WAKE_MAGIC; 2178 wol->wolopts = netdev2adap(dev)->wol; 2179 memset(&wol->sopass, 0, sizeof(wol->sopass)); 2180 } 2181 2182 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2183 { 2184 int err = 0; 2185 struct port_info *pi = netdev_priv(dev); 2186 2187 if (wol->wolopts & ~WOL_SUPPORTED) 2188 return -EINVAL; 2189 t4_wol_magic_enable(pi->adapter, pi->tx_chan, 2190 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL); 2191 if (wol->wolopts & WAKE_BCAST) { 2192 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL, 2193 ~0ULL, 0, false); 2194 if (!err) 2195 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1, 2196 ~6ULL, ~0ULL, BCAST_CRC, true); 2197 } else 2198 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false); 2199 return err; 2200 } 2201 2202 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 2203 { 2204 const struct port_info *pi = netdev_priv(dev); 2205 netdev_features_t changed = dev->features ^ features; 2206 int err; 2207 2208 if (!(changed & NETIF_F_HW_VLAN_RX)) 2209 return 0; 2210 2211 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1, 2212 -1, -1, -1, 2213 !!(features & NETIF_F_HW_VLAN_RX), true); 2214 if (unlikely(err)) 2215 dev->features = features ^ NETIF_F_HW_VLAN_RX; 2216 return err; 2217 } 2218 2219 static u32 get_rss_table_size(struct net_device *dev) 2220 { 2221 const struct port_info *pi = netdev_priv(dev); 2222 2223 return pi->rss_size; 2224 } 2225 2226 static int get_rss_table(struct net_device *dev, u32 *p) 2227 { 2228 const struct port_info *pi = netdev_priv(dev); 2229 unsigned int n = pi->rss_size; 2230 2231 while (n--) 2232 p[n] = pi->rss[n]; 2233 return 0; 2234 } 2235 2236 static int set_rss_table(struct net_device *dev, const u32 *p) 2237 { 2238 unsigned int i; 2239 struct port_info *pi = netdev_priv(dev); 2240 2241 for (i = 0; i < pi->rss_size; i++) 2242 pi->rss[i] = p[i]; 2243 if (pi->adapter->flags & FULL_INIT_DONE) 2244 return write_rss(pi, pi->rss); 2245 return 0; 2246 } 2247 2248 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 2249 u32 *rules) 2250 { 2251 const struct port_info *pi = netdev_priv(dev); 2252 2253 switch (info->cmd) { 2254 case ETHTOOL_GRXFH: { 2255 unsigned int v = pi->rss_mode; 2256 2257 info->data = 0; 2258 switch (info->flow_type) { 2259 case TCP_V4_FLOW: 2260 if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 2261 info->data = RXH_IP_SRC | RXH_IP_DST | 2262 RXH_L4_B_0_1 | RXH_L4_B_2_3; 2263 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 2264 info->data = RXH_IP_SRC | RXH_IP_DST; 2265 break; 2266 case UDP_V4_FLOW: 2267 if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) && 2268 (v & FW_RSS_VI_CONFIG_CMD_UDPEN)) 2269 info->data = RXH_IP_SRC | RXH_IP_DST | 2270 RXH_L4_B_0_1 | RXH_L4_B_2_3; 2271 else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 2272 info->data = RXH_IP_SRC | RXH_IP_DST; 2273 break; 2274 case SCTP_V4_FLOW: 2275 case AH_ESP_V4_FLOW: 2276 case IPV4_FLOW: 2277 if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 2278 info->data = RXH_IP_SRC | RXH_IP_DST; 2279 break; 2280 case TCP_V6_FLOW: 2281 if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 2282 info->data = RXH_IP_SRC | RXH_IP_DST | 2283 RXH_L4_B_0_1 | RXH_L4_B_2_3; 2284 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 2285 info->data = RXH_IP_SRC | RXH_IP_DST; 2286 break; 2287 case UDP_V6_FLOW: 2288 if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) && 2289 (v & FW_RSS_VI_CONFIG_CMD_UDPEN)) 2290 info->data = RXH_IP_SRC | RXH_IP_DST | 2291 RXH_L4_B_0_1 | RXH_L4_B_2_3; 2292 else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 2293 info->data = RXH_IP_SRC | RXH_IP_DST; 2294 break; 2295 case SCTP_V6_FLOW: 2296 case AH_ESP_V6_FLOW: 2297 case IPV6_FLOW: 2298 if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 2299 info->data = RXH_IP_SRC | RXH_IP_DST; 2300 break; 2301 } 2302 return 0; 2303 } 2304 case ETHTOOL_GRXRINGS: 2305 info->data = pi->nqsets; 2306 return 0; 2307 } 2308 return -EOPNOTSUPP; 2309 } 2310 2311 static const struct ethtool_ops cxgb_ethtool_ops = { 2312 .get_settings = get_settings, 2313 .set_settings = set_settings, 2314 .get_drvinfo = get_drvinfo, 2315 .get_msglevel = get_msglevel, 2316 .set_msglevel = set_msglevel, 2317 .get_ringparam = get_sge_param, 2318 .set_ringparam = set_sge_param, 2319 .get_coalesce = get_coalesce, 2320 .set_coalesce = set_coalesce, 2321 .get_eeprom_len = get_eeprom_len, 2322 .get_eeprom = get_eeprom, 2323 .set_eeprom = set_eeprom, 2324 .get_pauseparam = get_pauseparam, 2325 .set_pauseparam = set_pauseparam, 2326 .get_link = ethtool_op_get_link, 2327 .get_strings = get_strings, 2328 .set_phys_id = identify_port, 2329 .nway_reset = restart_autoneg, 2330 .get_sset_count = get_sset_count, 2331 .get_ethtool_stats = get_stats, 2332 .get_regs_len = get_regs_len, 2333 .get_regs = get_regs, 2334 .get_wol = get_wol, 2335 .set_wol = set_wol, 2336 .get_rxnfc = get_rxnfc, 2337 .get_rxfh_indir_size = get_rss_table_size, 2338 .get_rxfh_indir = get_rss_table, 2339 .set_rxfh_indir = set_rss_table, 2340 .flash_device = set_flash, 2341 }; 2342 2343 /* 2344 * debugfs support 2345 */ 2346 static ssize_t mem_read(struct file *file, char __user *buf, size_t count, 2347 loff_t *ppos) 2348 { 2349 loff_t pos = *ppos; 2350 loff_t avail = file_inode(file)->i_size; 2351 unsigned int mem = (uintptr_t)file->private_data & 3; 2352 struct adapter *adap = file->private_data - mem; 2353 2354 if (pos < 0) 2355 return -EINVAL; 2356 if (pos >= avail) 2357 return 0; 2358 if (count > avail - pos) 2359 count = avail - pos; 2360 2361 while (count) { 2362 size_t len; 2363 int ret, ofst; 2364 __be32 data[16]; 2365 2366 if (mem == MEM_MC) 2367 ret = t4_mc_read(adap, pos, data, NULL); 2368 else 2369 ret = t4_edc_read(adap, mem, pos, data, NULL); 2370 if (ret) 2371 return ret; 2372 2373 ofst = pos % sizeof(data); 2374 len = min(count, sizeof(data) - ofst); 2375 if (copy_to_user(buf, (u8 *)data + ofst, len)) 2376 return -EFAULT; 2377 2378 buf += len; 2379 pos += len; 2380 count -= len; 2381 } 2382 count = pos - *ppos; 2383 *ppos = pos; 2384 return count; 2385 } 2386 2387 static const struct file_operations mem_debugfs_fops = { 2388 .owner = THIS_MODULE, 2389 .open = simple_open, 2390 .read = mem_read, 2391 .llseek = default_llseek, 2392 }; 2393 2394 static void add_debugfs_mem(struct adapter *adap, const char *name, 2395 unsigned int idx, unsigned int size_mb) 2396 { 2397 struct dentry *de; 2398 2399 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root, 2400 (void *)adap + idx, &mem_debugfs_fops); 2401 if (de && de->d_inode) 2402 de->d_inode->i_size = size_mb << 20; 2403 } 2404 2405 static int setup_debugfs(struct adapter *adap) 2406 { 2407 int i; 2408 2409 if (IS_ERR_OR_NULL(adap->debugfs_root)) 2410 return -1; 2411 2412 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE); 2413 if (i & EDRAM0_ENABLE) 2414 add_debugfs_mem(adap, "edc0", MEM_EDC0, 5); 2415 if (i & EDRAM1_ENABLE) 2416 add_debugfs_mem(adap, "edc1", MEM_EDC1, 5); 2417 if (i & EXT_MEM_ENABLE) 2418 add_debugfs_mem(adap, "mc", MEM_MC, 2419 EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR))); 2420 if (adap->l2t) 2421 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap, 2422 &t4_l2t_fops); 2423 return 0; 2424 } 2425 2426 /* 2427 * upper-layer driver support 2428 */ 2429 2430 /* 2431 * Allocate an active-open TID and set it to the supplied value. 2432 */ 2433 int cxgb4_alloc_atid(struct tid_info *t, void *data) 2434 { 2435 int atid = -1; 2436 2437 spin_lock_bh(&t->atid_lock); 2438 if (t->afree) { 2439 union aopen_entry *p = t->afree; 2440 2441 atid = (p - t->atid_tab) + t->atid_base; 2442 t->afree = p->next; 2443 p->data = data; 2444 t->atids_in_use++; 2445 } 2446 spin_unlock_bh(&t->atid_lock); 2447 return atid; 2448 } 2449 EXPORT_SYMBOL(cxgb4_alloc_atid); 2450 2451 /* 2452 * Release an active-open TID. 2453 */ 2454 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 2455 { 2456 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 2457 2458 spin_lock_bh(&t->atid_lock); 2459 p->next = t->afree; 2460 t->afree = p; 2461 t->atids_in_use--; 2462 spin_unlock_bh(&t->atid_lock); 2463 } 2464 EXPORT_SYMBOL(cxgb4_free_atid); 2465 2466 /* 2467 * Allocate a server TID and set it to the supplied value. 2468 */ 2469 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 2470 { 2471 int stid; 2472 2473 spin_lock_bh(&t->stid_lock); 2474 if (family == PF_INET) { 2475 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 2476 if (stid < t->nstids) 2477 __set_bit(stid, t->stid_bmap); 2478 else 2479 stid = -1; 2480 } else { 2481 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2); 2482 if (stid < 0) 2483 stid = -1; 2484 } 2485 if (stid >= 0) { 2486 t->stid_tab[stid].data = data; 2487 stid += t->stid_base; 2488 t->stids_in_use++; 2489 } 2490 spin_unlock_bh(&t->stid_lock); 2491 return stid; 2492 } 2493 EXPORT_SYMBOL(cxgb4_alloc_stid); 2494 2495 /* Allocate a server filter TID and set it to the supplied value. 2496 */ 2497 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 2498 { 2499 int stid; 2500 2501 spin_lock_bh(&t->stid_lock); 2502 if (family == PF_INET) { 2503 stid = find_next_zero_bit(t->stid_bmap, 2504 t->nstids + t->nsftids, t->nstids); 2505 if (stid < (t->nstids + t->nsftids)) 2506 __set_bit(stid, t->stid_bmap); 2507 else 2508 stid = -1; 2509 } else { 2510 stid = -1; 2511 } 2512 if (stid >= 0) { 2513 t->stid_tab[stid].data = data; 2514 stid += t->stid_base; 2515 t->stids_in_use++; 2516 } 2517 spin_unlock_bh(&t->stid_lock); 2518 return stid; 2519 } 2520 EXPORT_SYMBOL(cxgb4_alloc_sftid); 2521 2522 /* Release a server TID. 2523 */ 2524 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 2525 { 2526 stid -= t->stid_base; 2527 spin_lock_bh(&t->stid_lock); 2528 if (family == PF_INET) 2529 __clear_bit(stid, t->stid_bmap); 2530 else 2531 bitmap_release_region(t->stid_bmap, stid, 2); 2532 t->stid_tab[stid].data = NULL; 2533 t->stids_in_use--; 2534 spin_unlock_bh(&t->stid_lock); 2535 } 2536 EXPORT_SYMBOL(cxgb4_free_stid); 2537 2538 /* 2539 * Populate a TID_RELEASE WR. Caller must properly size the skb. 2540 */ 2541 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 2542 unsigned int tid) 2543 { 2544 struct cpl_tid_release *req; 2545 2546 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 2547 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 2548 INIT_TP_WR(req, tid); 2549 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 2550 } 2551 2552 /* 2553 * Queue a TID release request and if necessary schedule a work queue to 2554 * process it. 2555 */ 2556 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 2557 unsigned int tid) 2558 { 2559 void **p = &t->tid_tab[tid]; 2560 struct adapter *adap = container_of(t, struct adapter, tids); 2561 2562 spin_lock_bh(&adap->tid_release_lock); 2563 *p = adap->tid_release_head; 2564 /* Low 2 bits encode the Tx channel number */ 2565 adap->tid_release_head = (void **)((uintptr_t)p | chan); 2566 if (!adap->tid_release_task_busy) { 2567 adap->tid_release_task_busy = true; 2568 queue_work(workq, &adap->tid_release_task); 2569 } 2570 spin_unlock_bh(&adap->tid_release_lock); 2571 } 2572 2573 /* 2574 * Process the list of pending TID release requests. 2575 */ 2576 static void process_tid_release_list(struct work_struct *work) 2577 { 2578 struct sk_buff *skb; 2579 struct adapter *adap; 2580 2581 adap = container_of(work, struct adapter, tid_release_task); 2582 2583 spin_lock_bh(&adap->tid_release_lock); 2584 while (adap->tid_release_head) { 2585 void **p = adap->tid_release_head; 2586 unsigned int chan = (uintptr_t)p & 3; 2587 p = (void *)p - chan; 2588 2589 adap->tid_release_head = *p; 2590 *p = NULL; 2591 spin_unlock_bh(&adap->tid_release_lock); 2592 2593 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 2594 GFP_KERNEL))) 2595 schedule_timeout_uninterruptible(1); 2596 2597 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 2598 t4_ofld_send(adap, skb); 2599 spin_lock_bh(&adap->tid_release_lock); 2600 } 2601 adap->tid_release_task_busy = false; 2602 spin_unlock_bh(&adap->tid_release_lock); 2603 } 2604 2605 /* 2606 * Release a TID and inform HW. If we are unable to allocate the release 2607 * message we defer to a work queue. 2608 */ 2609 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) 2610 { 2611 void *old; 2612 struct sk_buff *skb; 2613 struct adapter *adap = container_of(t, struct adapter, tids); 2614 2615 old = t->tid_tab[tid]; 2616 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 2617 if (likely(skb)) { 2618 t->tid_tab[tid] = NULL; 2619 mk_tid_release(skb, chan, tid); 2620 t4_ofld_send(adap, skb); 2621 } else 2622 cxgb4_queue_tid_release(t, chan, tid); 2623 if (old) 2624 atomic_dec(&t->tids_in_use); 2625 } 2626 EXPORT_SYMBOL(cxgb4_remove_tid); 2627 2628 /* 2629 * Allocate and initialize the TID tables. Returns 0 on success. 2630 */ 2631 static int tid_init(struct tid_info *t) 2632 { 2633 size_t size; 2634 unsigned int stid_bmap_size; 2635 unsigned int natids = t->natids; 2636 2637 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 2638 size = t->ntids * sizeof(*t->tid_tab) + 2639 natids * sizeof(*t->atid_tab) + 2640 t->nstids * sizeof(*t->stid_tab) + 2641 t->nsftids * sizeof(*t->stid_tab) + 2642 stid_bmap_size * sizeof(long) + 2643 t->nftids * sizeof(*t->ftid_tab) + 2644 t->nsftids * sizeof(*t->ftid_tab); 2645 2646 t->tid_tab = t4_alloc_mem(size); 2647 if (!t->tid_tab) 2648 return -ENOMEM; 2649 2650 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 2651 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 2652 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 2653 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 2654 spin_lock_init(&t->stid_lock); 2655 spin_lock_init(&t->atid_lock); 2656 2657 t->stids_in_use = 0; 2658 t->afree = NULL; 2659 t->atids_in_use = 0; 2660 atomic_set(&t->tids_in_use, 0); 2661 2662 /* Setup the free list for atid_tab and clear the stid bitmap. */ 2663 if (natids) { 2664 while (--natids) 2665 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 2666 t->afree = t->atid_tab; 2667 } 2668 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 2669 return 0; 2670 } 2671 2672 /** 2673 * cxgb4_create_server - create an IP server 2674 * @dev: the device 2675 * @stid: the server TID 2676 * @sip: local IP address to bind server to 2677 * @sport: the server's TCP port 2678 * @queue: queue to direct messages from this server to 2679 * 2680 * Create an IP server for the given port and address. 2681 * Returns <0 on error and one of the %NET_XMIT_* values on success. 2682 */ 2683 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 2684 __be32 sip, __be16 sport, __be16 vlan, 2685 unsigned int queue) 2686 { 2687 unsigned int chan; 2688 struct sk_buff *skb; 2689 struct adapter *adap; 2690 struct cpl_pass_open_req *req; 2691 2692 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 2693 if (!skb) 2694 return -ENOMEM; 2695 2696 adap = netdev2adap(dev); 2697 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); 2698 INIT_TP_WR(req, 0); 2699 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 2700 req->local_port = sport; 2701 req->peer_port = htons(0); 2702 req->local_ip = sip; 2703 req->peer_ip = htonl(0); 2704 chan = rxq_to_chan(&adap->sge, queue); 2705 req->opt0 = cpu_to_be64(TX_CHAN(chan)); 2706 req->opt1 = cpu_to_be64(CONN_POLICY_ASK | 2707 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue)); 2708 return t4_mgmt_tx(adap, skb); 2709 } 2710 EXPORT_SYMBOL(cxgb4_create_server); 2711 2712 /** 2713 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 2714 * @mtus: the HW MTU table 2715 * @mtu: the target MTU 2716 * @idx: index of selected entry in the MTU table 2717 * 2718 * Returns the index and the value in the HW MTU table that is closest to 2719 * but does not exceed @mtu, unless @mtu is smaller than any value in the 2720 * table, in which case that smallest available value is selected. 2721 */ 2722 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 2723 unsigned int *idx) 2724 { 2725 unsigned int i = 0; 2726 2727 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 2728 ++i; 2729 if (idx) 2730 *idx = i; 2731 return mtus[i]; 2732 } 2733 EXPORT_SYMBOL(cxgb4_best_mtu); 2734 2735 /** 2736 * cxgb4_port_chan - get the HW channel of a port 2737 * @dev: the net device for the port 2738 * 2739 * Return the HW Tx channel of the given port. 2740 */ 2741 unsigned int cxgb4_port_chan(const struct net_device *dev) 2742 { 2743 return netdev2pinfo(dev)->tx_chan; 2744 } 2745 EXPORT_SYMBOL(cxgb4_port_chan); 2746 2747 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 2748 { 2749 struct adapter *adap = netdev2adap(dev); 2750 u32 v; 2751 2752 v = t4_read_reg(adap, A_SGE_DBFIFO_STATUS); 2753 return lpfifo ? G_LP_COUNT(v) : G_HP_COUNT(v); 2754 } 2755 EXPORT_SYMBOL(cxgb4_dbfifo_count); 2756 2757 /** 2758 * cxgb4_port_viid - get the VI id of a port 2759 * @dev: the net device for the port 2760 * 2761 * Return the VI id of the given port. 2762 */ 2763 unsigned int cxgb4_port_viid(const struct net_device *dev) 2764 { 2765 return netdev2pinfo(dev)->viid; 2766 } 2767 EXPORT_SYMBOL(cxgb4_port_viid); 2768 2769 /** 2770 * cxgb4_port_idx - get the index of a port 2771 * @dev: the net device for the port 2772 * 2773 * Return the index of the given port. 2774 */ 2775 unsigned int cxgb4_port_idx(const struct net_device *dev) 2776 { 2777 return netdev2pinfo(dev)->port_id; 2778 } 2779 EXPORT_SYMBOL(cxgb4_port_idx); 2780 2781 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 2782 struct tp_tcp_stats *v6) 2783 { 2784 struct adapter *adap = pci_get_drvdata(pdev); 2785 2786 spin_lock(&adap->stats_lock); 2787 t4_tp_get_tcp_stats(adap, v4, v6); 2788 spin_unlock(&adap->stats_lock); 2789 } 2790 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 2791 2792 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 2793 const unsigned int *pgsz_order) 2794 { 2795 struct adapter *adap = netdev2adap(dev); 2796 2797 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask); 2798 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) | 2799 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) | 2800 HPZ3(pgsz_order[3])); 2801 } 2802 EXPORT_SYMBOL(cxgb4_iscsi_init); 2803 2804 int cxgb4_flush_eq_cache(struct net_device *dev) 2805 { 2806 struct adapter *adap = netdev2adap(dev); 2807 int ret; 2808 2809 ret = t4_fwaddrspace_write(adap, adap->mbox, 2810 0xe1000000 + A_SGE_CTXT_CMD, 0x20000000); 2811 return ret; 2812 } 2813 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 2814 2815 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 2816 { 2817 u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8; 2818 __be64 indices; 2819 int ret; 2820 2821 ret = t4_mem_win_read_len(adap, addr, (__be32 *)&indices, 8); 2822 if (!ret) { 2823 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 2824 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 2825 } 2826 return ret; 2827 } 2828 2829 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 2830 u16 size) 2831 { 2832 struct adapter *adap = netdev2adap(dev); 2833 u16 hw_pidx, hw_cidx; 2834 int ret; 2835 2836 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 2837 if (ret) 2838 goto out; 2839 2840 if (pidx != hw_pidx) { 2841 u16 delta; 2842 2843 if (pidx >= hw_pidx) 2844 delta = pidx - hw_pidx; 2845 else 2846 delta = size - hw_pidx + pidx; 2847 wmb(); 2848 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), 2849 QID(qid) | PIDX(delta)); 2850 } 2851 out: 2852 return ret; 2853 } 2854 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 2855 2856 static struct pci_driver cxgb4_driver; 2857 2858 static void check_neigh_update(struct neighbour *neigh) 2859 { 2860 const struct device *parent; 2861 const struct net_device *netdev = neigh->dev; 2862 2863 if (netdev->priv_flags & IFF_802_1Q_VLAN) 2864 netdev = vlan_dev_real_dev(netdev); 2865 parent = netdev->dev.parent; 2866 if (parent && parent->driver == &cxgb4_driver.driver) 2867 t4_l2t_update(dev_get_drvdata(parent), neigh); 2868 } 2869 2870 static int netevent_cb(struct notifier_block *nb, unsigned long event, 2871 void *data) 2872 { 2873 switch (event) { 2874 case NETEVENT_NEIGH_UPDATE: 2875 check_neigh_update(data); 2876 break; 2877 case NETEVENT_REDIRECT: 2878 default: 2879 break; 2880 } 2881 return 0; 2882 } 2883 2884 static bool netevent_registered; 2885 static struct notifier_block cxgb4_netevent_nb = { 2886 .notifier_call = netevent_cb 2887 }; 2888 2889 static void drain_db_fifo(struct adapter *adap, int usecs) 2890 { 2891 u32 v; 2892 2893 do { 2894 set_current_state(TASK_UNINTERRUPTIBLE); 2895 schedule_timeout(usecs_to_jiffies(usecs)); 2896 v = t4_read_reg(adap, A_SGE_DBFIFO_STATUS); 2897 if (G_LP_COUNT(v) == 0 && G_HP_COUNT(v) == 0) 2898 break; 2899 } while (1); 2900 } 2901 2902 static void disable_txq_db(struct sge_txq *q) 2903 { 2904 spin_lock_irq(&q->db_lock); 2905 q->db_disabled = 1; 2906 spin_unlock_irq(&q->db_lock); 2907 } 2908 2909 static void enable_txq_db(struct sge_txq *q) 2910 { 2911 spin_lock_irq(&q->db_lock); 2912 q->db_disabled = 0; 2913 spin_unlock_irq(&q->db_lock); 2914 } 2915 2916 static void disable_dbs(struct adapter *adap) 2917 { 2918 int i; 2919 2920 for_each_ethrxq(&adap->sge, i) 2921 disable_txq_db(&adap->sge.ethtxq[i].q); 2922 for_each_ofldrxq(&adap->sge, i) 2923 disable_txq_db(&adap->sge.ofldtxq[i].q); 2924 for_each_port(adap, i) 2925 disable_txq_db(&adap->sge.ctrlq[i].q); 2926 } 2927 2928 static void enable_dbs(struct adapter *adap) 2929 { 2930 int i; 2931 2932 for_each_ethrxq(&adap->sge, i) 2933 enable_txq_db(&adap->sge.ethtxq[i].q); 2934 for_each_ofldrxq(&adap->sge, i) 2935 enable_txq_db(&adap->sge.ofldtxq[i].q); 2936 for_each_port(adap, i) 2937 enable_txq_db(&adap->sge.ctrlq[i].q); 2938 } 2939 2940 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2941 { 2942 u16 hw_pidx, hw_cidx; 2943 int ret; 2944 2945 spin_lock_bh(&q->db_lock); 2946 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2947 if (ret) 2948 goto out; 2949 if (q->db_pidx != hw_pidx) { 2950 u16 delta; 2951 2952 if (q->db_pidx >= hw_pidx) 2953 delta = q->db_pidx - hw_pidx; 2954 else 2955 delta = q->size - hw_pidx + q->db_pidx; 2956 wmb(); 2957 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), 2958 QID(q->cntxt_id) | PIDX(delta)); 2959 } 2960 out: 2961 q->db_disabled = 0; 2962 spin_unlock_bh(&q->db_lock); 2963 if (ret) 2964 CH_WARN(adap, "DB drop recovery failed.\n"); 2965 } 2966 static void recover_all_queues(struct adapter *adap) 2967 { 2968 int i; 2969 2970 for_each_ethrxq(&adap->sge, i) 2971 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2972 for_each_ofldrxq(&adap->sge, i) 2973 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q); 2974 for_each_port(adap, i) 2975 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2976 } 2977 2978 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2979 { 2980 mutex_lock(&uld_mutex); 2981 if (adap->uld_handle[CXGB4_ULD_RDMA]) 2982 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA], 2983 cmd); 2984 mutex_unlock(&uld_mutex); 2985 } 2986 2987 static void process_db_full(struct work_struct *work) 2988 { 2989 struct adapter *adap; 2990 2991 adap = container_of(work, struct adapter, db_full_task); 2992 2993 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2994 drain_db_fifo(adap, dbfifo_drain_delay); 2995 t4_set_reg_field(adap, SGE_INT_ENABLE3, 2996 DBFIFO_HP_INT | DBFIFO_LP_INT, 2997 DBFIFO_HP_INT | DBFIFO_LP_INT); 2998 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2999 } 3000 3001 static void process_db_drop(struct work_struct *work) 3002 { 3003 struct adapter *adap; 3004 3005 adap = container_of(work, struct adapter, db_drop_task); 3006 3007 t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0); 3008 disable_dbs(adap); 3009 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 3010 drain_db_fifo(adap, 1); 3011 recover_all_queues(adap); 3012 enable_dbs(adap); 3013 } 3014 3015 void t4_db_full(struct adapter *adap) 3016 { 3017 t4_set_reg_field(adap, SGE_INT_ENABLE3, 3018 DBFIFO_HP_INT | DBFIFO_LP_INT, 0); 3019 queue_work(workq, &adap->db_full_task); 3020 } 3021 3022 void t4_db_dropped(struct adapter *adap) 3023 { 3024 queue_work(workq, &adap->db_drop_task); 3025 } 3026 3027 static void uld_attach(struct adapter *adap, unsigned int uld) 3028 { 3029 void *handle; 3030 struct cxgb4_lld_info lli; 3031 unsigned short i; 3032 3033 lli.pdev = adap->pdev; 3034 lli.l2t = adap->l2t; 3035 lli.tids = &adap->tids; 3036 lli.ports = adap->port; 3037 lli.vr = &adap->vres; 3038 lli.mtus = adap->params.mtus; 3039 if (uld == CXGB4_ULD_RDMA) { 3040 lli.rxq_ids = adap->sge.rdma_rxq; 3041 lli.nrxq = adap->sge.rdmaqs; 3042 } else if (uld == CXGB4_ULD_ISCSI) { 3043 lli.rxq_ids = adap->sge.ofld_rxq; 3044 lli.nrxq = adap->sge.ofldqsets; 3045 } 3046 lli.ntxq = adap->sge.ofldqsets; 3047 lli.nchan = adap->params.nports; 3048 lli.nports = adap->params.nports; 3049 lli.wr_cred = adap->params.ofldq_wr_cred; 3050 lli.adapter_type = adap->params.rev; 3051 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2)); 3052 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET( 3053 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >> 3054 (adap->fn * 4)); 3055 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET( 3056 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >> 3057 (adap->fn * 4)); 3058 lli.filt_mode = adap->filter_mode; 3059 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */ 3060 for (i = 0; i < NCHAN; i++) 3061 lli.tx_modq[i] = i; 3062 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS); 3063 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL); 3064 lli.fw_vers = adap->params.fw_vers; 3065 lli.dbfifo_int_thresh = dbfifo_int_thresh; 3066 lli.sge_pktshift = adap->sge.pktshift; 3067 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN; 3068 3069 handle = ulds[uld].add(&lli); 3070 if (IS_ERR(handle)) { 3071 dev_warn(adap->pdev_dev, 3072 "could not attach to the %s driver, error %ld\n", 3073 uld_str[uld], PTR_ERR(handle)); 3074 return; 3075 } 3076 3077 adap->uld_handle[uld] = handle; 3078 3079 if (!netevent_registered) { 3080 register_netevent_notifier(&cxgb4_netevent_nb); 3081 netevent_registered = true; 3082 } 3083 3084 if (adap->flags & FULL_INIT_DONE) 3085 ulds[uld].state_change(handle, CXGB4_STATE_UP); 3086 } 3087 3088 static void attach_ulds(struct adapter *adap) 3089 { 3090 unsigned int i; 3091 3092 mutex_lock(&uld_mutex); 3093 list_add_tail(&adap->list_node, &adapter_list); 3094 for (i = 0; i < CXGB4_ULD_MAX; i++) 3095 if (ulds[i].add) 3096 uld_attach(adap, i); 3097 mutex_unlock(&uld_mutex); 3098 } 3099 3100 static void detach_ulds(struct adapter *adap) 3101 { 3102 unsigned int i; 3103 3104 mutex_lock(&uld_mutex); 3105 list_del(&adap->list_node); 3106 for (i = 0; i < CXGB4_ULD_MAX; i++) 3107 if (adap->uld_handle[i]) { 3108 ulds[i].state_change(adap->uld_handle[i], 3109 CXGB4_STATE_DETACH); 3110 adap->uld_handle[i] = NULL; 3111 } 3112 if (netevent_registered && list_empty(&adapter_list)) { 3113 unregister_netevent_notifier(&cxgb4_netevent_nb); 3114 netevent_registered = false; 3115 } 3116 mutex_unlock(&uld_mutex); 3117 } 3118 3119 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 3120 { 3121 unsigned int i; 3122 3123 mutex_lock(&uld_mutex); 3124 for (i = 0; i < CXGB4_ULD_MAX; i++) 3125 if (adap->uld_handle[i]) 3126 ulds[i].state_change(adap->uld_handle[i], new_state); 3127 mutex_unlock(&uld_mutex); 3128 } 3129 3130 /** 3131 * cxgb4_register_uld - register an upper-layer driver 3132 * @type: the ULD type 3133 * @p: the ULD methods 3134 * 3135 * Registers an upper-layer driver with this driver and notifies the ULD 3136 * about any presently available devices that support its type. Returns 3137 * %-EBUSY if a ULD of the same type is already registered. 3138 */ 3139 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p) 3140 { 3141 int ret = 0; 3142 struct adapter *adap; 3143 3144 if (type >= CXGB4_ULD_MAX) 3145 return -EINVAL; 3146 mutex_lock(&uld_mutex); 3147 if (ulds[type].add) { 3148 ret = -EBUSY; 3149 goto out; 3150 } 3151 ulds[type] = *p; 3152 list_for_each_entry(adap, &adapter_list, list_node) 3153 uld_attach(adap, type); 3154 out: mutex_unlock(&uld_mutex); 3155 return ret; 3156 } 3157 EXPORT_SYMBOL(cxgb4_register_uld); 3158 3159 /** 3160 * cxgb4_unregister_uld - unregister an upper-layer driver 3161 * @type: the ULD type 3162 * 3163 * Unregisters an existing upper-layer driver. 3164 */ 3165 int cxgb4_unregister_uld(enum cxgb4_uld type) 3166 { 3167 struct adapter *adap; 3168 3169 if (type >= CXGB4_ULD_MAX) 3170 return -EINVAL; 3171 mutex_lock(&uld_mutex); 3172 list_for_each_entry(adap, &adapter_list, list_node) 3173 adap->uld_handle[type] = NULL; 3174 ulds[type].add = NULL; 3175 mutex_unlock(&uld_mutex); 3176 return 0; 3177 } 3178 EXPORT_SYMBOL(cxgb4_unregister_uld); 3179 3180 /** 3181 * cxgb_up - enable the adapter 3182 * @adap: adapter being enabled 3183 * 3184 * Called when the first port is enabled, this function performs the 3185 * actions necessary to make an adapter operational, such as completing 3186 * the initialization of HW modules, and enabling interrupts. 3187 * 3188 * Must be called with the rtnl lock held. 3189 */ 3190 static int cxgb_up(struct adapter *adap) 3191 { 3192 int err; 3193 3194 err = setup_sge_queues(adap); 3195 if (err) 3196 goto out; 3197 err = setup_rss(adap); 3198 if (err) 3199 goto freeq; 3200 3201 if (adap->flags & USING_MSIX) { 3202 name_msix_vecs(adap); 3203 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 3204 adap->msix_info[0].desc, adap); 3205 if (err) 3206 goto irq_err; 3207 3208 err = request_msix_queue_irqs(adap); 3209 if (err) { 3210 free_irq(adap->msix_info[0].vec, adap); 3211 goto irq_err; 3212 } 3213 } else { 3214 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 3215 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 3216 adap->port[0]->name, adap); 3217 if (err) 3218 goto irq_err; 3219 } 3220 enable_rx(adap); 3221 t4_sge_start(adap); 3222 t4_intr_enable(adap); 3223 adap->flags |= FULL_INIT_DONE; 3224 notify_ulds(adap, CXGB4_STATE_UP); 3225 out: 3226 return err; 3227 irq_err: 3228 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 3229 freeq: 3230 t4_free_sge_resources(adap); 3231 goto out; 3232 } 3233 3234 static void cxgb_down(struct adapter *adapter) 3235 { 3236 t4_intr_disable(adapter); 3237 cancel_work_sync(&adapter->tid_release_task); 3238 cancel_work_sync(&adapter->db_full_task); 3239 cancel_work_sync(&adapter->db_drop_task); 3240 adapter->tid_release_task_busy = false; 3241 adapter->tid_release_head = NULL; 3242 3243 if (adapter->flags & USING_MSIX) { 3244 free_msix_queue_irqs(adapter); 3245 free_irq(adapter->msix_info[0].vec, adapter); 3246 } else 3247 free_irq(adapter->pdev->irq, adapter); 3248 quiesce_rx(adapter); 3249 t4_sge_stop(adapter); 3250 t4_free_sge_resources(adapter); 3251 adapter->flags &= ~FULL_INIT_DONE; 3252 } 3253 3254 /* 3255 * net_device operations 3256 */ 3257 static int cxgb_open(struct net_device *dev) 3258 { 3259 int err; 3260 struct port_info *pi = netdev_priv(dev); 3261 struct adapter *adapter = pi->adapter; 3262 3263 netif_carrier_off(dev); 3264 3265 if (!(adapter->flags & FULL_INIT_DONE)) { 3266 err = cxgb_up(adapter); 3267 if (err < 0) 3268 return err; 3269 } 3270 3271 err = link_start(dev); 3272 if (!err) 3273 netif_tx_start_all_queues(dev); 3274 return err; 3275 } 3276 3277 static int cxgb_close(struct net_device *dev) 3278 { 3279 struct port_info *pi = netdev_priv(dev); 3280 struct adapter *adapter = pi->adapter; 3281 3282 netif_tx_stop_all_queues(dev); 3283 netif_carrier_off(dev); 3284 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false); 3285 } 3286 3287 /* Return an error number if the indicated filter isn't writable ... 3288 */ 3289 static int writable_filter(struct filter_entry *f) 3290 { 3291 if (f->locked) 3292 return -EPERM; 3293 if (f->pending) 3294 return -EBUSY; 3295 3296 return 0; 3297 } 3298 3299 /* Delete the filter at the specified index (if valid). The checks for all 3300 * the common problems with doing this like the filter being locked, currently 3301 * pending in another operation, etc. 3302 */ 3303 static int delete_filter(struct adapter *adapter, unsigned int fidx) 3304 { 3305 struct filter_entry *f; 3306 int ret; 3307 3308 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids) 3309 return -EINVAL; 3310 3311 f = &adapter->tids.ftid_tab[fidx]; 3312 ret = writable_filter(f); 3313 if (ret) 3314 return ret; 3315 if (f->valid) 3316 return del_filter_wr(adapter, fidx); 3317 3318 return 0; 3319 } 3320 3321 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 3322 __be32 sip, __be16 sport, __be16 vlan, 3323 unsigned int queue, unsigned char port, unsigned char mask) 3324 { 3325 int ret; 3326 struct filter_entry *f; 3327 struct adapter *adap; 3328 int i; 3329 u8 *val; 3330 3331 adap = netdev2adap(dev); 3332 3333 /* Adjust stid to correct filter index */ 3334 stid -= adap->tids.nstids; 3335 stid += adap->tids.nftids; 3336 3337 /* Check to make sure the filter requested is writable ... 3338 */ 3339 f = &adap->tids.ftid_tab[stid]; 3340 ret = writable_filter(f); 3341 if (ret) 3342 return ret; 3343 3344 /* Clear out any old resources being used by the filter before 3345 * we start constructing the new filter. 3346 */ 3347 if (f->valid) 3348 clear_filter(adap, f); 3349 3350 /* Clear out filter specifications */ 3351 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 3352 f->fs.val.lport = cpu_to_be16(sport); 3353 f->fs.mask.lport = ~0; 3354 val = (u8 *)&sip; 3355 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 3356 for (i = 0; i < 4; i++) { 3357 f->fs.val.lip[i] = val[i]; 3358 f->fs.mask.lip[i] = ~0; 3359 } 3360 if (adap->filter_mode & F_PORT) { 3361 f->fs.val.iport = port; 3362 f->fs.mask.iport = mask; 3363 } 3364 } 3365 3366 f->fs.dirsteer = 1; 3367 f->fs.iq = queue; 3368 /* Mark filter as locked */ 3369 f->locked = 1; 3370 f->fs.rpttid = 1; 3371 3372 ret = set_filter_wr(adap, stid); 3373 if (ret) { 3374 clear_filter(adap, f); 3375 return ret; 3376 } 3377 3378 return 0; 3379 } 3380 EXPORT_SYMBOL(cxgb4_create_server_filter); 3381 3382 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 3383 unsigned int queue, bool ipv6) 3384 { 3385 int ret; 3386 struct filter_entry *f; 3387 struct adapter *adap; 3388 3389 adap = netdev2adap(dev); 3390 3391 /* Adjust stid to correct filter index */ 3392 stid -= adap->tids.nstids; 3393 stid += adap->tids.nftids; 3394 3395 f = &adap->tids.ftid_tab[stid]; 3396 /* Unlock the filter */ 3397 f->locked = 0; 3398 3399 ret = delete_filter(adap, stid); 3400 if (ret) 3401 return ret; 3402 3403 return 0; 3404 } 3405 EXPORT_SYMBOL(cxgb4_remove_server_filter); 3406 3407 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev, 3408 struct rtnl_link_stats64 *ns) 3409 { 3410 struct port_stats stats; 3411 struct port_info *p = netdev_priv(dev); 3412 struct adapter *adapter = p->adapter; 3413 3414 spin_lock(&adapter->stats_lock); 3415 t4_get_port_stats(adapter, p->tx_chan, &stats); 3416 spin_unlock(&adapter->stats_lock); 3417 3418 ns->tx_bytes = stats.tx_octets; 3419 ns->tx_packets = stats.tx_frames; 3420 ns->rx_bytes = stats.rx_octets; 3421 ns->rx_packets = stats.rx_frames; 3422 ns->multicast = stats.rx_mcast_frames; 3423 3424 /* detailed rx_errors */ 3425 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 3426 stats.rx_runt; 3427 ns->rx_over_errors = 0; 3428 ns->rx_crc_errors = stats.rx_fcs_err; 3429 ns->rx_frame_errors = stats.rx_symbol_err; 3430 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 + 3431 stats.rx_ovflow2 + stats.rx_ovflow3 + 3432 stats.rx_trunc0 + stats.rx_trunc1 + 3433 stats.rx_trunc2 + stats.rx_trunc3; 3434 ns->rx_missed_errors = 0; 3435 3436 /* detailed tx_errors */ 3437 ns->tx_aborted_errors = 0; 3438 ns->tx_carrier_errors = 0; 3439 ns->tx_fifo_errors = 0; 3440 ns->tx_heartbeat_errors = 0; 3441 ns->tx_window_errors = 0; 3442 3443 ns->tx_errors = stats.tx_error_frames; 3444 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 3445 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 3446 return ns; 3447 } 3448 3449 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 3450 { 3451 unsigned int mbox; 3452 int ret = 0, prtad, devad; 3453 struct port_info *pi = netdev_priv(dev); 3454 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 3455 3456 switch (cmd) { 3457 case SIOCGMIIPHY: 3458 if (pi->mdio_addr < 0) 3459 return -EOPNOTSUPP; 3460 data->phy_id = pi->mdio_addr; 3461 break; 3462 case SIOCGMIIREG: 3463 case SIOCSMIIREG: 3464 if (mdio_phy_id_is_c45(data->phy_id)) { 3465 prtad = mdio_phy_id_prtad(data->phy_id); 3466 devad = mdio_phy_id_devad(data->phy_id); 3467 } else if (data->phy_id < 32) { 3468 prtad = data->phy_id; 3469 devad = 0; 3470 data->reg_num &= 0x1f; 3471 } else 3472 return -EINVAL; 3473 3474 mbox = pi->adapter->fn; 3475 if (cmd == SIOCGMIIREG) 3476 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 3477 data->reg_num, &data->val_out); 3478 else 3479 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 3480 data->reg_num, data->val_in); 3481 break; 3482 default: 3483 return -EOPNOTSUPP; 3484 } 3485 return ret; 3486 } 3487 3488 static void cxgb_set_rxmode(struct net_device *dev) 3489 { 3490 /* unfortunately we can't return errors to the stack */ 3491 set_rxmode(dev, -1, false); 3492 } 3493 3494 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 3495 { 3496 int ret; 3497 struct port_info *pi = netdev_priv(dev); 3498 3499 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */ 3500 return -EINVAL; 3501 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1, 3502 -1, -1, -1, true); 3503 if (!ret) 3504 dev->mtu = new_mtu; 3505 return ret; 3506 } 3507 3508 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 3509 { 3510 int ret; 3511 struct sockaddr *addr = p; 3512 struct port_info *pi = netdev_priv(dev); 3513 3514 if (!is_valid_ether_addr(addr->sa_data)) 3515 return -EADDRNOTAVAIL; 3516 3517 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid, 3518 pi->xact_addr_filt, addr->sa_data, true, true); 3519 if (ret < 0) 3520 return ret; 3521 3522 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 3523 pi->xact_addr_filt = ret; 3524 return 0; 3525 } 3526 3527 #ifdef CONFIG_NET_POLL_CONTROLLER 3528 static void cxgb_netpoll(struct net_device *dev) 3529 { 3530 struct port_info *pi = netdev_priv(dev); 3531 struct adapter *adap = pi->adapter; 3532 3533 if (adap->flags & USING_MSIX) { 3534 int i; 3535 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 3536 3537 for (i = pi->nqsets; i; i--, rx++) 3538 t4_sge_intr_msix(0, &rx->rspq); 3539 } else 3540 t4_intr_handler(adap)(0, adap); 3541 } 3542 #endif 3543 3544 static const struct net_device_ops cxgb4_netdev_ops = { 3545 .ndo_open = cxgb_open, 3546 .ndo_stop = cxgb_close, 3547 .ndo_start_xmit = t4_eth_xmit, 3548 .ndo_get_stats64 = cxgb_get_stats, 3549 .ndo_set_rx_mode = cxgb_set_rxmode, 3550 .ndo_set_mac_address = cxgb_set_mac_addr, 3551 .ndo_set_features = cxgb_set_features, 3552 .ndo_validate_addr = eth_validate_addr, 3553 .ndo_do_ioctl = cxgb_ioctl, 3554 .ndo_change_mtu = cxgb_change_mtu, 3555 #ifdef CONFIG_NET_POLL_CONTROLLER 3556 .ndo_poll_controller = cxgb_netpoll, 3557 #endif 3558 }; 3559 3560 void t4_fatal_err(struct adapter *adap) 3561 { 3562 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0); 3563 t4_intr_disable(adap); 3564 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3565 } 3566 3567 static void setup_memwin(struct adapter *adap) 3568 { 3569 u32 bar0; 3570 3571 bar0 = pci_resource_start(adap->pdev, 0); /* truncation intentional */ 3572 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0), 3573 (bar0 + MEMWIN0_BASE) | BIR(0) | 3574 WINDOW(ilog2(MEMWIN0_APERTURE) - 10)); 3575 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1), 3576 (bar0 + MEMWIN1_BASE) | BIR(0) | 3577 WINDOW(ilog2(MEMWIN1_APERTURE) - 10)); 3578 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2), 3579 (bar0 + MEMWIN2_BASE) | BIR(0) | 3580 WINDOW(ilog2(MEMWIN2_APERTURE) - 10)); 3581 } 3582 3583 static void setup_memwin_rdma(struct adapter *adap) 3584 { 3585 if (adap->vres.ocq.size) { 3586 unsigned int start, sz_kb; 3587 3588 start = pci_resource_start(adap->pdev, 2) + 3589 OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3590 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3591 t4_write_reg(adap, 3592 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3), 3593 start | BIR(1) | WINDOW(ilog2(sz_kb))); 3594 t4_write_reg(adap, 3595 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3), 3596 adap->vres.ocq.start); 3597 t4_read_reg(adap, 3598 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3)); 3599 } 3600 } 3601 3602 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3603 { 3604 u32 v; 3605 int ret; 3606 3607 /* get device capabilities */ 3608 memset(c, 0, sizeof(*c)); 3609 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3610 FW_CMD_REQUEST | FW_CMD_READ); 3611 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3612 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c); 3613 if (ret < 0) 3614 return ret; 3615 3616 /* select capabilities we'll be using */ 3617 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) { 3618 if (!vf_acls) 3619 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM); 3620 else 3621 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM); 3622 } else if (vf_acls) { 3623 dev_err(adap->pdev_dev, "virtualization ACLs not supported"); 3624 return ret; 3625 } 3626 c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3627 FW_CMD_REQUEST | FW_CMD_WRITE); 3628 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL); 3629 if (ret < 0) 3630 return ret; 3631 3632 ret = t4_config_glbl_rss(adap, adap->fn, 3633 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3634 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN | 3635 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP); 3636 if (ret < 0) 3637 return ret; 3638 3639 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ, 3640 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF); 3641 if (ret < 0) 3642 return ret; 3643 3644 t4_sge_init(adap); 3645 3646 /* tweak some settings */ 3647 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849); 3648 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12)); 3649 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG); 3650 v = t4_read_reg(adap, TP_PIO_DATA); 3651 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR); 3652 3653 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3654 adap->params.tp.tx_modq_map = 0xE4; 3655 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP, 3656 V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map)); 3657 3658 /* associate each Tx modulation queue with consecutive Tx channels */ 3659 v = 0x84218421; 3660 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA, 3661 &v, 1, A_TP_TX_SCHED_HDR); 3662 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA, 3663 &v, 1, A_TP_TX_SCHED_FIFO); 3664 t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA, 3665 &v, 1, A_TP_TX_SCHED_PCMD); 3666 3667 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3668 if (is_offload(adap)) { 3669 t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 3670 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3671 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3672 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3673 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3674 t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT, 3675 V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3676 V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3677 V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3678 V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3679 } 3680 3681 /* get basic stuff going */ 3682 return t4_early_init(adap, adap->fn); 3683 } 3684 3685 /* 3686 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3687 */ 3688 #define MAX_ATIDS 8192U 3689 3690 /* 3691 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3692 * 3693 * If the firmware we're dealing with has Configuration File support, then 3694 * we use that to perform all configuration 3695 */ 3696 3697 /* 3698 * Tweak configuration based on module parameters, etc. Most of these have 3699 * defaults assigned to them by Firmware Configuration Files (if we're using 3700 * them) but need to be explicitly set if we're using hard-coded 3701 * initialization. But even in the case of using Firmware Configuration 3702 * Files, we'd like to expose the ability to change these via module 3703 * parameters so these are essentially common tweaks/settings for 3704 * Configuration Files and hard-coded initialization ... 3705 */ 3706 static int adap_init0_tweaks(struct adapter *adapter) 3707 { 3708 /* 3709 * Fix up various Host-Dependent Parameters like Page Size, Cache 3710 * Line Size, etc. The firmware default is for a 4KB Page Size and 3711 * 64B Cache Line Size ... 3712 */ 3713 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3714 3715 /* 3716 * Process module parameters which affect early initialization. 3717 */ 3718 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3719 dev_err(&adapter->pdev->dev, 3720 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3721 rx_dma_offset); 3722 rx_dma_offset = 2; 3723 } 3724 t4_set_reg_field(adapter, SGE_CONTROL, 3725 PKTSHIFT_MASK, 3726 PKTSHIFT(rx_dma_offset)); 3727 3728 /* 3729 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3730 * adds the pseudo header itself. 3731 */ 3732 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG, 3733 CSUM_HAS_PSEUDO_HDR, 0); 3734 3735 return 0; 3736 } 3737 3738 /* 3739 * Attempt to initialize the adapter via a Firmware Configuration File. 3740 */ 3741 static int adap_init0_config(struct adapter *adapter, int reset) 3742 { 3743 struct fw_caps_config_cmd caps_cmd; 3744 const struct firmware *cf; 3745 unsigned long mtype = 0, maddr = 0; 3746 u32 finiver, finicsum, cfcsum; 3747 int ret, using_flash; 3748 3749 /* 3750 * Reset device if necessary. 3751 */ 3752 if (reset) { 3753 ret = t4_fw_reset(adapter, adapter->mbox, 3754 PIORSTMODE | PIORST); 3755 if (ret < 0) 3756 goto bye; 3757 } 3758 3759 /* 3760 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3761 * then use that. Otherwise, use the configuration file stored 3762 * in the adapter flash ... 3763 */ 3764 ret = request_firmware(&cf, FW_CFNAME, adapter->pdev_dev); 3765 if (ret < 0) { 3766 using_flash = 1; 3767 mtype = FW_MEMTYPE_CF_FLASH; 3768 maddr = t4_flash_cfg_addr(adapter); 3769 } else { 3770 u32 params[7], val[7]; 3771 3772 using_flash = 0; 3773 if (cf->size >= FLASH_CFG_MAX_SIZE) 3774 ret = -ENOMEM; 3775 else { 3776 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3777 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF)); 3778 ret = t4_query_params(adapter, adapter->mbox, 3779 adapter->fn, 0, 1, params, val); 3780 if (ret == 0) { 3781 /* 3782 * For t4_memory_write() below addresses and 3783 * sizes have to be in terms of multiples of 4 3784 * bytes. So, if the Configuration File isn't 3785 * a multiple of 4 bytes in length we'll have 3786 * to write that out separately since we can't 3787 * guarantee that the bytes following the 3788 * residual byte in the buffer returned by 3789 * request_firmware() are zeroed out ... 3790 */ 3791 size_t resid = cf->size & 0x3; 3792 size_t size = cf->size & ~0x3; 3793 __be32 *data = (__be32 *)cf->data; 3794 3795 mtype = FW_PARAMS_PARAM_Y_GET(val[0]); 3796 maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16; 3797 3798 ret = t4_memory_write(adapter, mtype, maddr, 3799 size, data); 3800 if (ret == 0 && resid != 0) { 3801 union { 3802 __be32 word; 3803 char buf[4]; 3804 } last; 3805 int i; 3806 3807 last.word = data[size >> 2]; 3808 for (i = resid; i < 4; i++) 3809 last.buf[i] = 0; 3810 ret = t4_memory_write(adapter, mtype, 3811 maddr + size, 3812 4, &last.word); 3813 } 3814 } 3815 } 3816 3817 release_firmware(cf); 3818 if (ret) 3819 goto bye; 3820 } 3821 3822 /* 3823 * Issue a Capability Configuration command to the firmware to get it 3824 * to parse the Configuration File. We don't use t4_fw_config_file() 3825 * because we want the ability to modify various features after we've 3826 * processed the configuration file ... 3827 */ 3828 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3829 caps_cmd.op_to_write = 3830 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3831 FW_CMD_REQUEST | 3832 FW_CMD_READ); 3833 caps_cmd.cfvalid_to_len16 = 3834 htonl(FW_CAPS_CONFIG_CMD_CFVALID | 3835 FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 3836 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) | 3837 FW_LEN16(caps_cmd)); 3838 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3839 &caps_cmd); 3840 if (ret < 0) 3841 goto bye; 3842 3843 finiver = ntohl(caps_cmd.finiver); 3844 finicsum = ntohl(caps_cmd.finicsum); 3845 cfcsum = ntohl(caps_cmd.cfcsum); 3846 if (finicsum != cfcsum) 3847 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3848 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3849 finicsum, cfcsum); 3850 3851 /* 3852 * And now tell the firmware to use the configuration we just loaded. 3853 */ 3854 caps_cmd.op_to_write = 3855 htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3856 FW_CMD_REQUEST | 3857 FW_CMD_WRITE); 3858 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3859 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3860 NULL); 3861 if (ret < 0) 3862 goto bye; 3863 3864 /* 3865 * Tweak configuration based on system architecture, module 3866 * parameters, etc. 3867 */ 3868 ret = adap_init0_tweaks(adapter); 3869 if (ret < 0) 3870 goto bye; 3871 3872 /* 3873 * And finally tell the firmware to initialize itself using the 3874 * parameters from the Configuration File. 3875 */ 3876 ret = t4_fw_initialize(adapter, adapter->mbox); 3877 if (ret < 0) 3878 goto bye; 3879 3880 /* 3881 * Return successfully and note that we're operating with parameters 3882 * not supplied by the driver, rather than from hard-wired 3883 * initialization constants burried in the driver. 3884 */ 3885 adapter->flags |= USING_SOFT_PARAMS; 3886 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 3887 "Configuration File %s, version %#x, computed checksum %#x\n", 3888 (using_flash 3889 ? "in device FLASH" 3890 : "/lib/firmware/" FW_CFNAME), 3891 finiver, cfcsum); 3892 return 0; 3893 3894 /* 3895 * Something bad happened. Return the error ... (If the "error" 3896 * is that there's no Configuration File on the adapter we don't 3897 * want to issue a warning since this is fairly common.) 3898 */ 3899 bye: 3900 if (ret != -ENOENT) 3901 dev_warn(adapter->pdev_dev, "Configuration file error %d\n", 3902 -ret); 3903 return ret; 3904 } 3905 3906 /* 3907 * Attempt to initialize the adapter via hard-coded, driver supplied 3908 * parameters ... 3909 */ 3910 static int adap_init0_no_config(struct adapter *adapter, int reset) 3911 { 3912 struct sge *s = &adapter->sge; 3913 struct fw_caps_config_cmd caps_cmd; 3914 u32 v; 3915 int i, ret; 3916 3917 /* 3918 * Reset device if necessary 3919 */ 3920 if (reset) { 3921 ret = t4_fw_reset(adapter, adapter->mbox, 3922 PIORSTMODE | PIORST); 3923 if (ret < 0) 3924 goto bye; 3925 } 3926 3927 /* 3928 * Get device capabilities and select which we'll be using. 3929 */ 3930 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3931 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3932 FW_CMD_REQUEST | FW_CMD_READ); 3933 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3934 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3935 &caps_cmd); 3936 if (ret < 0) 3937 goto bye; 3938 3939 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) { 3940 if (!vf_acls) 3941 caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM); 3942 else 3943 caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM); 3944 } else if (vf_acls) { 3945 dev_err(adapter->pdev_dev, "virtualization ACLs not supported"); 3946 goto bye; 3947 } 3948 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 3949 FW_CMD_REQUEST | FW_CMD_WRITE); 3950 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3951 NULL); 3952 if (ret < 0) 3953 goto bye; 3954 3955 /* 3956 * Tweak configuration based on system architecture, module 3957 * parameters, etc. 3958 */ 3959 ret = adap_init0_tweaks(adapter); 3960 if (ret < 0) 3961 goto bye; 3962 3963 /* 3964 * Select RSS Global Mode we want to use. We use "Basic Virtual" 3965 * mode which maps each Virtual Interface to its own section of 3966 * the RSS Table and we turn on all map and hash enables ... 3967 */ 3968 adapter->flags |= RSS_TNLALLLOOKUP; 3969 ret = t4_config_glbl_rss(adapter, adapter->mbox, 3970 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3971 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN | 3972 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ | 3973 ((adapter->flags & RSS_TNLALLLOOKUP) ? 3974 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0)); 3975 if (ret < 0) 3976 goto bye; 3977 3978 /* 3979 * Set up our own fundamental resource provisioning ... 3980 */ 3981 ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0, 3982 PFRES_NEQ, PFRES_NETHCTRL, 3983 PFRES_NIQFLINT, PFRES_NIQ, 3984 PFRES_TC, PFRES_NVI, 3985 FW_PFVF_CMD_CMASK_MASK, 3986 pfvfres_pmask(adapter, adapter->fn, 0), 3987 PFRES_NEXACTF, 3988 PFRES_R_CAPS, PFRES_WX_CAPS); 3989 if (ret < 0) 3990 goto bye; 3991 3992 /* 3993 * Perform low level SGE initialization. We need to do this before we 3994 * send the firmware the INITIALIZE command because that will cause 3995 * any other PF Drivers which are waiting for the Master 3996 * Initialization to proceed forward. 3997 */ 3998 for (i = 0; i < SGE_NTIMERS - 1; i++) 3999 s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL); 4000 s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL; 4001 s->counter_val[0] = 1; 4002 for (i = 1; i < SGE_NCOUNTERS; i++) 4003 s->counter_val[i] = min(intr_cnt[i - 1], 4004 THRESHOLD_0_GET(THRESHOLD_0_MASK)); 4005 t4_sge_init(adapter); 4006 4007 #ifdef CONFIG_PCI_IOV 4008 /* 4009 * Provision resource limits for Virtual Functions. We currently 4010 * grant them all the same static resource limits except for the Port 4011 * Access Rights Mask which we're assigning based on the PF. All of 4012 * the static provisioning stuff for both the PF and VF really needs 4013 * to be managed in a persistent manner for each device which the 4014 * firmware controls. 4015 */ 4016 { 4017 int pf, vf; 4018 4019 for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) { 4020 if (num_vf[pf] <= 0) 4021 continue; 4022 4023 /* VF numbering starts at 1! */ 4024 for (vf = 1; vf <= num_vf[pf]; vf++) { 4025 ret = t4_cfg_pfvf(adapter, adapter->mbox, 4026 pf, vf, 4027 VFRES_NEQ, VFRES_NETHCTRL, 4028 VFRES_NIQFLINT, VFRES_NIQ, 4029 VFRES_TC, VFRES_NVI, 4030 FW_PFVF_CMD_CMASK_MASK, 4031 pfvfres_pmask( 4032 adapter, pf, vf), 4033 VFRES_NEXACTF, 4034 VFRES_R_CAPS, VFRES_WX_CAPS); 4035 if (ret < 0) 4036 dev_warn(adapter->pdev_dev, 4037 "failed to "\ 4038 "provision pf/vf=%d/%d; " 4039 "err=%d\n", pf, vf, ret); 4040 } 4041 } 4042 } 4043 #endif 4044 4045 /* 4046 * Set up the default filter mode. Later we'll want to implement this 4047 * via a firmware command, etc. ... This needs to be done before the 4048 * firmare initialization command ... If the selected set of fields 4049 * isn't equal to the default value, we'll need to make sure that the 4050 * field selections will fit in the 36-bit budget. 4051 */ 4052 if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) { 4053 int j, bits = 0; 4054 4055 for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++) 4056 switch (tp_vlan_pri_map & (1 << j)) { 4057 case 0: 4058 /* compressed filter field not enabled */ 4059 break; 4060 case FCOE_MASK: 4061 bits += 1; 4062 break; 4063 case PORT_MASK: 4064 bits += 3; 4065 break; 4066 case VNIC_ID_MASK: 4067 bits += 17; 4068 break; 4069 case VLAN_MASK: 4070 bits += 17; 4071 break; 4072 case TOS_MASK: 4073 bits += 8; 4074 break; 4075 case PROTOCOL_MASK: 4076 bits += 8; 4077 break; 4078 case ETHERTYPE_MASK: 4079 bits += 16; 4080 break; 4081 case MACMATCH_MASK: 4082 bits += 9; 4083 break; 4084 case MPSHITTYPE_MASK: 4085 bits += 3; 4086 break; 4087 case FRAGMENTATION_MASK: 4088 bits += 1; 4089 break; 4090 } 4091 4092 if (bits > 36) { 4093 dev_err(adapter->pdev_dev, 4094 "tp_vlan_pri_map=%#x needs %d bits > 36;"\ 4095 " using %#x\n", tp_vlan_pri_map, bits, 4096 TP_VLAN_PRI_MAP_DEFAULT); 4097 tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT; 4098 } 4099 } 4100 v = tp_vlan_pri_map; 4101 t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA, 4102 &v, 1, TP_VLAN_PRI_MAP); 4103 4104 /* 4105 * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order 4106 * to support any of the compressed filter fields above. Newer 4107 * versions of the firmware do this automatically but it doesn't hurt 4108 * to set it here. Meanwhile, we do _not_ need to set Lookup Every 4109 * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets 4110 * since the firmware automatically turns this on and off when we have 4111 * a non-zero number of filters active (since it does have a 4112 * performance impact). 4113 */ 4114 if (tp_vlan_pri_map) 4115 t4_set_reg_field(adapter, TP_GLOBAL_CONFIG, 4116 FIVETUPLELOOKUP_MASK, 4117 FIVETUPLELOOKUP_MASK); 4118 4119 /* 4120 * Tweak some settings. 4121 */ 4122 t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) | 4123 RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) | 4124 PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) | 4125 KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9)); 4126 4127 /* 4128 * Get basic stuff going by issuing the Firmware Initialize command. 4129 * Note that this _must_ be after all PFVF commands ... 4130 */ 4131 ret = t4_fw_initialize(adapter, adapter->mbox); 4132 if (ret < 0) 4133 goto bye; 4134 4135 /* 4136 * Return successfully! 4137 */ 4138 dev_info(adapter->pdev_dev, "Successfully configured using built-in "\ 4139 "driver parameters\n"); 4140 return 0; 4141 4142 /* 4143 * Something bad happened. Return the error ... 4144 */ 4145 bye: 4146 return ret; 4147 } 4148 4149 /* 4150 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4151 */ 4152 static int adap_init0(struct adapter *adap) 4153 { 4154 int ret; 4155 u32 v, port_vec; 4156 enum dev_state state; 4157 u32 params[7], val[7]; 4158 struct fw_caps_config_cmd caps_cmd; 4159 int reset = 1, j; 4160 4161 /* 4162 * Contact FW, advertising Master capability (and potentially forcing 4163 * ourselves as the Master PF if our module parameter force_init is 4164 * set). 4165 */ 4166 ret = t4_fw_hello(adap, adap->mbox, adap->fn, 4167 force_init ? MASTER_MUST : MASTER_MAY, 4168 &state); 4169 if (ret < 0) { 4170 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4171 ret); 4172 return ret; 4173 } 4174 if (ret == adap->mbox) 4175 adap->flags |= MASTER_PF; 4176 if (force_init && state == DEV_STATE_INIT) 4177 state = DEV_STATE_UNINIT; 4178 4179 /* 4180 * If we're the Master PF Driver and the device is uninitialized, 4181 * then let's consider upgrading the firmware ... (We always want 4182 * to check the firmware version number in order to A. get it for 4183 * later reporting and B. to warn if the currently loaded firmware 4184 * is excessively mismatched relative to the driver.) 4185 */ 4186 ret = t4_check_fw_version(adap); 4187 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 4188 if (ret == -EINVAL || ret > 0) { 4189 if (upgrade_fw(adap) >= 0) { 4190 /* 4191 * Note that the chip was reset as part of the 4192 * firmware upgrade so we don't reset it again 4193 * below and grab the new firmware version. 4194 */ 4195 reset = 0; 4196 ret = t4_check_fw_version(adap); 4197 } 4198 } 4199 if (ret < 0) 4200 return ret; 4201 } 4202 4203 /* 4204 * Grab VPD parameters. This should be done after we establish a 4205 * connection to the firmware since some of the VPD parameters 4206 * (notably the Core Clock frequency) are retrieved via requests to 4207 * the firmware. On the other hand, we need these fairly early on 4208 * so we do this right after getting ahold of the firmware. 4209 */ 4210 ret = get_vpd_params(adap, &adap->params.vpd); 4211 if (ret < 0) 4212 goto bye; 4213 4214 /* 4215 * Find out what ports are available to us. Note that we need to do 4216 * this before calling adap_init0_no_config() since it needs nports 4217 * and portvec ... 4218 */ 4219 v = 4220 FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 4221 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC); 4222 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec); 4223 if (ret < 0) 4224 goto bye; 4225 4226 adap->params.nports = hweight32(port_vec); 4227 adap->params.portvec = port_vec; 4228 4229 /* 4230 * If the firmware is initialized already (and we're not forcing a 4231 * master initialization), note that we're living with existing 4232 * adapter parameters. Otherwise, it's time to try initializing the 4233 * adapter ... 4234 */ 4235 if (state == DEV_STATE_INIT) { 4236 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4237 "Adapter already initialized\n", 4238 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 4239 adap->flags |= USING_SOFT_PARAMS; 4240 } else { 4241 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4242 "Initializing adapter\n"); 4243 4244 /* 4245 * If the firmware doesn't support Configuration 4246 * Files warn user and exit, 4247 */ 4248 if (ret < 0) 4249 dev_warn(adap->pdev_dev, "Firmware doesn't support " 4250 "configuration file.\n"); 4251 if (force_old_init) 4252 ret = adap_init0_no_config(adap, reset); 4253 else { 4254 /* 4255 * Find out whether we're dealing with a version of 4256 * the firmware which has configuration file support. 4257 */ 4258 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 4259 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF)); 4260 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, 4261 params, val); 4262 4263 /* 4264 * If the firmware doesn't support Configuration 4265 * Files, use the old Driver-based, hard-wired 4266 * initialization. Otherwise, try using the 4267 * Configuration File support and fall back to the 4268 * Driver-based initialization if there's no 4269 * Configuration File found. 4270 */ 4271 if (ret < 0) 4272 ret = adap_init0_no_config(adap, reset); 4273 else { 4274 /* 4275 * The firmware provides us with a memory 4276 * buffer where we can load a Configuration 4277 * File from the host if we want to override 4278 * the Configuration File in flash. 4279 */ 4280 4281 ret = adap_init0_config(adap, reset); 4282 if (ret == -ENOENT) { 4283 dev_info(adap->pdev_dev, 4284 "No Configuration File present " 4285 "on adapter. Using hard-wired " 4286 "configuration parameters.\n"); 4287 ret = adap_init0_no_config(adap, reset); 4288 } 4289 } 4290 } 4291 if (ret < 0) { 4292 dev_err(adap->pdev_dev, 4293 "could not initialize adapter, error %d\n", 4294 -ret); 4295 goto bye; 4296 } 4297 } 4298 4299 /* 4300 * If we're living with non-hard-coded parameters (either from a 4301 * Firmware Configuration File or values programmed by a different PF 4302 * Driver), give the SGE code a chance to pull in anything that it 4303 * needs ... Note that this must be called after we retrieve our VPD 4304 * parameters in order to know how to convert core ticks to seconds. 4305 */ 4306 if (adap->flags & USING_SOFT_PARAMS) { 4307 ret = t4_sge_init(adap); 4308 if (ret < 0) 4309 goto bye; 4310 } 4311 4312 if (is_bypass_device(adap->pdev->device)) 4313 adap->params.bypass = 1; 4314 4315 /* 4316 * Grab some of our basic fundamental operating parameters. 4317 */ 4318 #define FW_PARAM_DEV(param) \ 4319 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4320 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4321 4322 #define FW_PARAM_PFVF(param) \ 4323 FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4324 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)| \ 4325 FW_PARAMS_PARAM_Y(0) | \ 4326 FW_PARAMS_PARAM_Z(0) 4327 4328 params[0] = FW_PARAM_PFVF(EQ_START); 4329 params[1] = FW_PARAM_PFVF(L2T_START); 4330 params[2] = FW_PARAM_PFVF(L2T_END); 4331 params[3] = FW_PARAM_PFVF(FILTER_START); 4332 params[4] = FW_PARAM_PFVF(FILTER_END); 4333 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4334 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val); 4335 if (ret < 0) 4336 goto bye; 4337 adap->sge.egr_start = val[0]; 4338 adap->l2t_start = val[1]; 4339 adap->l2t_end = val[2]; 4340 adap->tids.ftid_base = val[3]; 4341 adap->tids.nftids = val[4] - val[3] + 1; 4342 adap->sge.ingr_start = val[5]; 4343 4344 /* query params related to active filter region */ 4345 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 4346 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 4347 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val); 4348 /* If Active filter size is set we enable establishing 4349 * offload connection through firmware work request 4350 */ 4351 if ((val[0] != val[1]) && (ret >= 0)) { 4352 adap->flags |= FW_OFLD_CONN; 4353 adap->tids.aftid_base = val[0]; 4354 adap->tids.aftid_end = val[1]; 4355 } 4356 4357 /* 4358 * Get device capabilities so we can determine what resources we need 4359 * to manage. 4360 */ 4361 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4362 caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4363 FW_CMD_REQUEST | FW_CMD_READ); 4364 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4365 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4366 &caps_cmd); 4367 if (ret < 0) 4368 goto bye; 4369 4370 if (caps_cmd.ofldcaps) { 4371 /* query offload-related parameters */ 4372 params[0] = FW_PARAM_DEV(NTID); 4373 params[1] = FW_PARAM_PFVF(SERVER_START); 4374 params[2] = FW_PARAM_PFVF(SERVER_END); 4375 params[3] = FW_PARAM_PFVF(TDDP_START); 4376 params[4] = FW_PARAM_PFVF(TDDP_END); 4377 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4378 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, 4379 params, val); 4380 if (ret < 0) 4381 goto bye; 4382 adap->tids.ntids = val[0]; 4383 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4384 adap->tids.stid_base = val[1]; 4385 adap->tids.nstids = val[2] - val[1] + 1; 4386 /* 4387 * Setup server filter region. Divide the availble filter 4388 * region into two parts. Regular filters get 1/3rd and server 4389 * filters get 2/3rd part. This is only enabled if workarond 4390 * path is enabled. 4391 * 1. For regular filters. 4392 * 2. Server filter: This are special filters which are used 4393 * to redirect SYN packets to offload queue. 4394 */ 4395 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 4396 adap->tids.sftid_base = adap->tids.ftid_base + 4397 DIV_ROUND_UP(adap->tids.nftids, 3); 4398 adap->tids.nsftids = adap->tids.nftids - 4399 DIV_ROUND_UP(adap->tids.nftids, 3); 4400 adap->tids.nftids = adap->tids.sftid_base - 4401 adap->tids.ftid_base; 4402 } 4403 adap->vres.ddp.start = val[3]; 4404 adap->vres.ddp.size = val[4] - val[3] + 1; 4405 adap->params.ofldq_wr_cred = val[5]; 4406 4407 adap->params.offload = 1; 4408 } 4409 if (caps_cmd.rdmacaps) { 4410 params[0] = FW_PARAM_PFVF(STAG_START); 4411 params[1] = FW_PARAM_PFVF(STAG_END); 4412 params[2] = FW_PARAM_PFVF(RQ_START); 4413 params[3] = FW_PARAM_PFVF(RQ_END); 4414 params[4] = FW_PARAM_PFVF(PBL_START); 4415 params[5] = FW_PARAM_PFVF(PBL_END); 4416 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, 4417 params, val); 4418 if (ret < 0) 4419 goto bye; 4420 adap->vres.stag.start = val[0]; 4421 adap->vres.stag.size = val[1] - val[0] + 1; 4422 adap->vres.rq.start = val[2]; 4423 adap->vres.rq.size = val[3] - val[2] + 1; 4424 adap->vres.pbl.start = val[4]; 4425 adap->vres.pbl.size = val[5] - val[4] + 1; 4426 4427 params[0] = FW_PARAM_PFVF(SQRQ_START); 4428 params[1] = FW_PARAM_PFVF(SQRQ_END); 4429 params[2] = FW_PARAM_PFVF(CQ_START); 4430 params[3] = FW_PARAM_PFVF(CQ_END); 4431 params[4] = FW_PARAM_PFVF(OCQ_START); 4432 params[5] = FW_PARAM_PFVF(OCQ_END); 4433 ret = t4_query_params(adap, 0, 0, 0, 6, params, val); 4434 if (ret < 0) 4435 goto bye; 4436 adap->vres.qp.start = val[0]; 4437 adap->vres.qp.size = val[1] - val[0] + 1; 4438 adap->vres.cq.start = val[2]; 4439 adap->vres.cq.size = val[3] - val[2] + 1; 4440 adap->vres.ocq.start = val[4]; 4441 adap->vres.ocq.size = val[5] - val[4] + 1; 4442 } 4443 if (caps_cmd.iscsicaps) { 4444 params[0] = FW_PARAM_PFVF(ISCSI_START); 4445 params[1] = FW_PARAM_PFVF(ISCSI_END); 4446 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, 4447 params, val); 4448 if (ret < 0) 4449 goto bye; 4450 adap->vres.iscsi.start = val[0]; 4451 adap->vres.iscsi.size = val[1] - val[0] + 1; 4452 } 4453 #undef FW_PARAM_PFVF 4454 #undef FW_PARAM_DEV 4455 4456 /* 4457 * These are finalized by FW initialization, load their values now. 4458 */ 4459 v = t4_read_reg(adap, TP_TIMER_RESOLUTION); 4460 adap->params.tp.tre = TIMERRESOLUTION_GET(v); 4461 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_GET(v); 4462 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4463 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4464 adap->params.b_wnd); 4465 4466 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 4467 for (j = 0; j < NCHAN; j++) 4468 adap->params.tp.tx_modq[j] = j; 4469 4470 t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA, 4471 &adap->filter_mode, 1, 4472 TP_VLAN_PRI_MAP); 4473 4474 adap->flags |= FW_OK; 4475 return 0; 4476 4477 /* 4478 * Something bad happened. If a command timed out or failed with EIO 4479 * FW does not operate within its spec or something catastrophic 4480 * happened to HW/FW, stop issuing commands. 4481 */ 4482 bye: 4483 if (ret != -ETIMEDOUT && ret != -EIO) 4484 t4_fw_bye(adap, adap->mbox); 4485 return ret; 4486 } 4487 4488 /* EEH callbacks */ 4489 4490 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4491 pci_channel_state_t state) 4492 { 4493 int i; 4494 struct adapter *adap = pci_get_drvdata(pdev); 4495 4496 if (!adap) 4497 goto out; 4498 4499 rtnl_lock(); 4500 adap->flags &= ~FW_OK; 4501 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4502 for_each_port(adap, i) { 4503 struct net_device *dev = adap->port[i]; 4504 4505 netif_device_detach(dev); 4506 netif_carrier_off(dev); 4507 } 4508 if (adap->flags & FULL_INIT_DONE) 4509 cxgb_down(adap); 4510 rtnl_unlock(); 4511 pci_disable_device(pdev); 4512 out: return state == pci_channel_io_perm_failure ? 4513 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4514 } 4515 4516 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4517 { 4518 int i, ret; 4519 struct fw_caps_config_cmd c; 4520 struct adapter *adap = pci_get_drvdata(pdev); 4521 4522 if (!adap) { 4523 pci_restore_state(pdev); 4524 pci_save_state(pdev); 4525 return PCI_ERS_RESULT_RECOVERED; 4526 } 4527 4528 if (pci_enable_device(pdev)) { 4529 dev_err(&pdev->dev, "cannot reenable PCI device after reset\n"); 4530 return PCI_ERS_RESULT_DISCONNECT; 4531 } 4532 4533 pci_set_master(pdev); 4534 pci_restore_state(pdev); 4535 pci_save_state(pdev); 4536 pci_cleanup_aer_uncorrect_error_status(pdev); 4537 4538 if (t4_wait_dev_ready(adap) < 0) 4539 return PCI_ERS_RESULT_DISCONNECT; 4540 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL)) 4541 return PCI_ERS_RESULT_DISCONNECT; 4542 adap->flags |= FW_OK; 4543 if (adap_init1(adap, &c)) 4544 return PCI_ERS_RESULT_DISCONNECT; 4545 4546 for_each_port(adap, i) { 4547 struct port_info *p = adap2pinfo(adap, i); 4548 4549 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1, 4550 NULL, NULL); 4551 if (ret < 0) 4552 return PCI_ERS_RESULT_DISCONNECT; 4553 p->viid = ret; 4554 p->xact_addr_filt = -1; 4555 } 4556 4557 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4558 adap->params.b_wnd); 4559 setup_memwin(adap); 4560 if (cxgb_up(adap)) 4561 return PCI_ERS_RESULT_DISCONNECT; 4562 return PCI_ERS_RESULT_RECOVERED; 4563 } 4564 4565 static void eeh_resume(struct pci_dev *pdev) 4566 { 4567 int i; 4568 struct adapter *adap = pci_get_drvdata(pdev); 4569 4570 if (!adap) 4571 return; 4572 4573 rtnl_lock(); 4574 for_each_port(adap, i) { 4575 struct net_device *dev = adap->port[i]; 4576 4577 if (netif_running(dev)) { 4578 link_start(dev); 4579 cxgb_set_rxmode(dev); 4580 } 4581 netif_device_attach(dev); 4582 } 4583 rtnl_unlock(); 4584 } 4585 4586 static const struct pci_error_handlers cxgb4_eeh = { 4587 .error_detected = eeh_err_detected, 4588 .slot_reset = eeh_slot_reset, 4589 .resume = eeh_resume, 4590 }; 4591 4592 static inline bool is_10g_port(const struct link_config *lc) 4593 { 4594 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0; 4595 } 4596 4597 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx, 4598 unsigned int size, unsigned int iqe_size) 4599 { 4600 q->intr_params = QINTR_TIMER_IDX(timer_idx) | 4601 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0); 4602 q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0; 4603 q->iqe_len = iqe_size; 4604 q->size = size; 4605 } 4606 4607 /* 4608 * Perform default configuration of DMA queues depending on the number and type 4609 * of ports we found and the number of available CPUs. Most settings can be 4610 * modified by the admin prior to actual use. 4611 */ 4612 static void cfg_queues(struct adapter *adap) 4613 { 4614 struct sge *s = &adap->sge; 4615 int i, q10g = 0, n10g = 0, qidx = 0; 4616 4617 for_each_port(adap, i) 4618 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg); 4619 4620 /* 4621 * We default to 1 queue per non-10G port and up to # of cores queues 4622 * per 10G port. 4623 */ 4624 if (n10g) 4625 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 4626 if (q10g > netif_get_num_default_rss_queues()) 4627 q10g = netif_get_num_default_rss_queues(); 4628 4629 for_each_port(adap, i) { 4630 struct port_info *pi = adap2pinfo(adap, i); 4631 4632 pi->first_qset = qidx; 4633 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1; 4634 qidx += pi->nqsets; 4635 } 4636 4637 s->ethqsets = qidx; 4638 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4639 4640 if (is_offload(adap)) { 4641 /* 4642 * For offload we use 1 queue/channel if all ports are up to 1G, 4643 * otherwise we divide all available queues amongst the channels 4644 * capped by the number of available cores. 4645 */ 4646 if (n10g) { 4647 i = min_t(int, ARRAY_SIZE(s->ofldrxq), 4648 num_online_cpus()); 4649 s->ofldqsets = roundup(i, adap->params.nports); 4650 } else 4651 s->ofldqsets = adap->params.nports; 4652 /* For RDMA one Rx queue per channel suffices */ 4653 s->rdmaqs = adap->params.nports; 4654 } 4655 4656 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4657 struct sge_eth_rxq *r = &s->ethrxq[i]; 4658 4659 init_rspq(&r->rspq, 0, 0, 1024, 64); 4660 r->fl.size = 72; 4661 } 4662 4663 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4664 s->ethtxq[i].q.size = 1024; 4665 4666 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4667 s->ctrlq[i].q.size = 512; 4668 4669 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) 4670 s->ofldtxq[i].q.size = 1024; 4671 4672 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) { 4673 struct sge_ofld_rxq *r = &s->ofldrxq[i]; 4674 4675 init_rspq(&r->rspq, 0, 0, 1024, 64); 4676 r->rspq.uld = CXGB4_ULD_ISCSI; 4677 r->fl.size = 72; 4678 } 4679 4680 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) { 4681 struct sge_ofld_rxq *r = &s->rdmarxq[i]; 4682 4683 init_rspq(&r->rspq, 0, 0, 511, 64); 4684 r->rspq.uld = CXGB4_ULD_RDMA; 4685 r->fl.size = 72; 4686 } 4687 4688 init_rspq(&s->fw_evtq, 6, 0, 512, 64); 4689 init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64); 4690 } 4691 4692 /* 4693 * Reduce the number of Ethernet queues across all ports to at most n. 4694 * n provides at least one queue per port. 4695 */ 4696 static void reduce_ethqs(struct adapter *adap, int n) 4697 { 4698 int i; 4699 struct port_info *pi; 4700 4701 while (n < adap->sge.ethqsets) 4702 for_each_port(adap, i) { 4703 pi = adap2pinfo(adap, i); 4704 if (pi->nqsets > 1) { 4705 pi->nqsets--; 4706 adap->sge.ethqsets--; 4707 if (adap->sge.ethqsets <= n) 4708 break; 4709 } 4710 } 4711 4712 n = 0; 4713 for_each_port(adap, i) { 4714 pi = adap2pinfo(adap, i); 4715 pi->first_qset = n; 4716 n += pi->nqsets; 4717 } 4718 } 4719 4720 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 4721 #define EXTRA_VECS 2 4722 4723 static int enable_msix(struct adapter *adap) 4724 { 4725 int ofld_need = 0; 4726 int i, err, want, need; 4727 struct sge *s = &adap->sge; 4728 unsigned int nchan = adap->params.nports; 4729 struct msix_entry entries[MAX_INGQ + 1]; 4730 4731 for (i = 0; i < ARRAY_SIZE(entries); ++i) 4732 entries[i].entry = i; 4733 4734 want = s->max_ethqsets + EXTRA_VECS; 4735 if (is_offload(adap)) { 4736 want += s->rdmaqs + s->ofldqsets; 4737 /* need nchan for each possible ULD */ 4738 ofld_need = 2 * nchan; 4739 } 4740 need = adap->params.nports + EXTRA_VECS + ofld_need; 4741 4742 while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need) 4743 want = err; 4744 4745 if (!err) { 4746 /* 4747 * Distribute available vectors to the various queue groups. 4748 * Every group gets its minimum requirement and NIC gets top 4749 * priority for leftovers. 4750 */ 4751 i = want - EXTRA_VECS - ofld_need; 4752 if (i < s->max_ethqsets) { 4753 s->max_ethqsets = i; 4754 if (i < s->ethqsets) 4755 reduce_ethqs(adap, i); 4756 } 4757 if (is_offload(adap)) { 4758 i = want - EXTRA_VECS - s->max_ethqsets; 4759 i -= ofld_need - nchan; 4760 s->ofldqsets = (i / nchan) * nchan; /* round down */ 4761 } 4762 for (i = 0; i < want; ++i) 4763 adap->msix_info[i].vec = entries[i].vector; 4764 } else if (err > 0) 4765 dev_info(adap->pdev_dev, 4766 "only %d MSI-X vectors left, not using MSI-X\n", err); 4767 return err; 4768 } 4769 4770 #undef EXTRA_VECS 4771 4772 static int init_rss(struct adapter *adap) 4773 { 4774 unsigned int i, j; 4775 4776 for_each_port(adap, i) { 4777 struct port_info *pi = adap2pinfo(adap, i); 4778 4779 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 4780 if (!pi->rss) 4781 return -ENOMEM; 4782 for (j = 0; j < pi->rss_size; j++) 4783 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets); 4784 } 4785 return 0; 4786 } 4787 4788 static void print_port_info(const struct net_device *dev) 4789 { 4790 static const char *base[] = { 4791 "R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4", 4792 "KX", "KR", "R SFP+", "KR/KX", "KR/KX/KX4" 4793 }; 4794 4795 char buf[80]; 4796 char *bufp = buf; 4797 const char *spd = ""; 4798 const struct port_info *pi = netdev_priv(dev); 4799 const struct adapter *adap = pi->adapter; 4800 4801 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 4802 spd = " 2.5 GT/s"; 4803 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 4804 spd = " 5 GT/s"; 4805 4806 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 4807 bufp += sprintf(bufp, "100/"); 4808 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 4809 bufp += sprintf(bufp, "1000/"); 4810 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 4811 bufp += sprintf(bufp, "10G/"); 4812 if (bufp != buf) 4813 --bufp; 4814 sprintf(bufp, "BASE-%s", base[pi->port_type]); 4815 4816 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n", 4817 adap->params.vpd.id, adap->params.rev, buf, 4818 is_offload(adap) ? "R" : "", adap->params.pci.width, spd, 4819 (adap->flags & USING_MSIX) ? " MSI-X" : 4820 (adap->flags & USING_MSI) ? " MSI" : ""); 4821 netdev_info(dev, "S/N: %s, E/C: %s\n", 4822 adap->params.vpd.sn, adap->params.vpd.ec); 4823 } 4824 4825 static void enable_pcie_relaxed_ordering(struct pci_dev *dev) 4826 { 4827 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 4828 } 4829 4830 /* 4831 * Free the following resources: 4832 * - memory used for tables 4833 * - MSI/MSI-X 4834 * - net devices 4835 * - resources FW is holding for us 4836 */ 4837 static void free_some_resources(struct adapter *adapter) 4838 { 4839 unsigned int i; 4840 4841 t4_free_mem(adapter->l2t); 4842 t4_free_mem(adapter->tids.tid_tab); 4843 disable_msi(adapter); 4844 4845 for_each_port(adapter, i) 4846 if (adapter->port[i]) { 4847 kfree(adap2pinfo(adapter, i)->rss); 4848 free_netdev(adapter->port[i]); 4849 } 4850 if (adapter->flags & FW_OK) 4851 t4_fw_bye(adapter, adapter->fn); 4852 } 4853 4854 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 4855 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 4856 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 4857 4858 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4859 { 4860 int func, i, err; 4861 struct port_info *pi; 4862 bool highdma = false; 4863 struct adapter *adapter = NULL; 4864 4865 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 4866 4867 err = pci_request_regions(pdev, KBUILD_MODNAME); 4868 if (err) { 4869 /* Just info, some other driver may have claimed the device. */ 4870 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 4871 return err; 4872 } 4873 4874 /* We control everything through one PF */ 4875 func = PCI_FUNC(pdev->devfn); 4876 if (func != ent->driver_data) { 4877 pci_save_state(pdev); /* to restore SR-IOV later */ 4878 goto sriov; 4879 } 4880 4881 err = pci_enable_device(pdev); 4882 if (err) { 4883 dev_err(&pdev->dev, "cannot enable PCI device\n"); 4884 goto out_release_regions; 4885 } 4886 4887 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4888 highdma = true; 4889 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4890 if (err) { 4891 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 4892 "coherent allocations\n"); 4893 goto out_disable_device; 4894 } 4895 } else { 4896 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4897 if (err) { 4898 dev_err(&pdev->dev, "no usable DMA configuration\n"); 4899 goto out_disable_device; 4900 } 4901 } 4902 4903 pci_enable_pcie_error_reporting(pdev); 4904 enable_pcie_relaxed_ordering(pdev); 4905 pci_set_master(pdev); 4906 pci_save_state(pdev); 4907 4908 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4909 if (!adapter) { 4910 err = -ENOMEM; 4911 goto out_disable_device; 4912 } 4913 4914 adapter->regs = pci_ioremap_bar(pdev, 0); 4915 if (!adapter->regs) { 4916 dev_err(&pdev->dev, "cannot map device registers\n"); 4917 err = -ENOMEM; 4918 goto out_free_adapter; 4919 } 4920 4921 adapter->pdev = pdev; 4922 adapter->pdev_dev = &pdev->dev; 4923 adapter->mbox = func; 4924 adapter->fn = func; 4925 adapter->msg_enable = dflt_msg_enable; 4926 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 4927 4928 spin_lock_init(&adapter->stats_lock); 4929 spin_lock_init(&adapter->tid_release_lock); 4930 4931 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 4932 INIT_WORK(&adapter->db_full_task, process_db_full); 4933 INIT_WORK(&adapter->db_drop_task, process_db_drop); 4934 4935 err = t4_prep_adapter(adapter); 4936 if (err) 4937 goto out_unmap_bar; 4938 setup_memwin(adapter); 4939 err = adap_init0(adapter); 4940 setup_memwin_rdma(adapter); 4941 if (err) 4942 goto out_unmap_bar; 4943 4944 for_each_port(adapter, i) { 4945 struct net_device *netdev; 4946 4947 netdev = alloc_etherdev_mq(sizeof(struct port_info), 4948 MAX_ETH_QSETS); 4949 if (!netdev) { 4950 err = -ENOMEM; 4951 goto out_free_dev; 4952 } 4953 4954 SET_NETDEV_DEV(netdev, &pdev->dev); 4955 4956 adapter->port[i] = netdev; 4957 pi = netdev_priv(netdev); 4958 pi->adapter = adapter; 4959 pi->xact_addr_filt = -1; 4960 pi->port_id = i; 4961 netdev->irq = pdev->irq; 4962 4963 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 4964 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4965 NETIF_F_RXCSUM | NETIF_F_RXHASH | 4966 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; 4967 if (highdma) 4968 netdev->hw_features |= NETIF_F_HIGHDMA; 4969 netdev->features |= netdev->hw_features; 4970 netdev->vlan_features = netdev->features & VLAN_FEAT; 4971 4972 netdev->priv_flags |= IFF_UNICAST_FLT; 4973 4974 netdev->netdev_ops = &cxgb4_netdev_ops; 4975 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops); 4976 } 4977 4978 pci_set_drvdata(pdev, adapter); 4979 4980 if (adapter->flags & FW_OK) { 4981 err = t4_port_init(adapter, func, func, 0); 4982 if (err) 4983 goto out_free_dev; 4984 } 4985 4986 /* 4987 * Configure queues and allocate tables now, they can be needed as 4988 * soon as the first register_netdev completes. 4989 */ 4990 cfg_queues(adapter); 4991 4992 adapter->l2t = t4_init_l2t(); 4993 if (!adapter->l2t) { 4994 /* We tolerate a lack of L2T, giving up some functionality */ 4995 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 4996 adapter->params.offload = 0; 4997 } 4998 4999 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) { 5000 dev_warn(&pdev->dev, "could not allocate TID table, " 5001 "continuing\n"); 5002 adapter->params.offload = 0; 5003 } 5004 5005 /* See what interrupts we'll be using */ 5006 if (msi > 1 && enable_msix(adapter) == 0) 5007 adapter->flags |= USING_MSIX; 5008 else if (msi > 0 && pci_enable_msi(pdev) == 0) 5009 adapter->flags |= USING_MSI; 5010 5011 err = init_rss(adapter); 5012 if (err) 5013 goto out_free_dev; 5014 5015 /* 5016 * The card is now ready to go. If any errors occur during device 5017 * registration we do not fail the whole card but rather proceed only 5018 * with the ports we manage to register successfully. However we must 5019 * register at least one net device. 5020 */ 5021 for_each_port(adapter, i) { 5022 pi = adap2pinfo(adapter, i); 5023 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 5024 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 5025 5026 err = register_netdev(adapter->port[i]); 5027 if (err) 5028 break; 5029 adapter->chan_map[pi->tx_chan] = i; 5030 print_port_info(adapter->port[i]); 5031 } 5032 if (i == 0) { 5033 dev_err(&pdev->dev, "could not register any net devices\n"); 5034 goto out_free_dev; 5035 } 5036 if (err) { 5037 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 5038 err = 0; 5039 } 5040 5041 if (cxgb4_debugfs_root) { 5042 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 5043 cxgb4_debugfs_root); 5044 setup_debugfs(adapter); 5045 } 5046 5047 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 5048 pdev->needs_freset = 1; 5049 5050 if (is_offload(adapter)) 5051 attach_ulds(adapter); 5052 5053 sriov: 5054 #ifdef CONFIG_PCI_IOV 5055 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) 5056 if (pci_enable_sriov(pdev, num_vf[func]) == 0) 5057 dev_info(&pdev->dev, 5058 "instantiated %u virtual functions\n", 5059 num_vf[func]); 5060 #endif 5061 return 0; 5062 5063 out_free_dev: 5064 free_some_resources(adapter); 5065 out_unmap_bar: 5066 iounmap(adapter->regs); 5067 out_free_adapter: 5068 kfree(adapter); 5069 out_disable_device: 5070 pci_disable_pcie_error_reporting(pdev); 5071 pci_disable_device(pdev); 5072 out_release_regions: 5073 pci_release_regions(pdev); 5074 pci_set_drvdata(pdev, NULL); 5075 return err; 5076 } 5077 5078 static void remove_one(struct pci_dev *pdev) 5079 { 5080 struct adapter *adapter = pci_get_drvdata(pdev); 5081 5082 #ifdef CONFIG_PCI_IOV 5083 pci_disable_sriov(pdev); 5084 5085 #endif 5086 5087 if (adapter) { 5088 int i; 5089 5090 if (is_offload(adapter)) 5091 detach_ulds(adapter); 5092 5093 for_each_port(adapter, i) 5094 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5095 unregister_netdev(adapter->port[i]); 5096 5097 if (adapter->debugfs_root) 5098 debugfs_remove_recursive(adapter->debugfs_root); 5099 5100 /* If we allocated filters, free up state associated with any 5101 * valid filters ... 5102 */ 5103 if (adapter->tids.ftid_tab) { 5104 struct filter_entry *f = &adapter->tids.ftid_tab[0]; 5105 for (i = 0; i < (adapter->tids.nftids + 5106 adapter->tids.nsftids); i++, f++) 5107 if (f->valid) 5108 clear_filter(adapter, f); 5109 } 5110 5111 if (adapter->flags & FULL_INIT_DONE) 5112 cxgb_down(adapter); 5113 5114 free_some_resources(adapter); 5115 iounmap(adapter->regs); 5116 kfree(adapter); 5117 pci_disable_pcie_error_reporting(pdev); 5118 pci_disable_device(pdev); 5119 pci_release_regions(pdev); 5120 pci_set_drvdata(pdev, NULL); 5121 } else 5122 pci_release_regions(pdev); 5123 } 5124 5125 static struct pci_driver cxgb4_driver = { 5126 .name = KBUILD_MODNAME, 5127 .id_table = cxgb4_pci_tbl, 5128 .probe = init_one, 5129 .remove = remove_one, 5130 .err_handler = &cxgb4_eeh, 5131 }; 5132 5133 static int __init cxgb4_init_module(void) 5134 { 5135 int ret; 5136 5137 workq = create_singlethread_workqueue("cxgb4"); 5138 if (!workq) 5139 return -ENOMEM; 5140 5141 /* Debugfs support is optional, just warn if this fails */ 5142 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 5143 if (!cxgb4_debugfs_root) 5144 pr_warn("could not create debugfs entry, continuing\n"); 5145 5146 ret = pci_register_driver(&cxgb4_driver); 5147 if (ret < 0) 5148 debugfs_remove(cxgb4_debugfs_root); 5149 return ret; 5150 } 5151 5152 static void __exit cxgb4_cleanup_module(void) 5153 { 5154 pci_unregister_driver(&cxgb4_driver); 5155 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 5156 flush_workqueue(workq); 5157 destroy_workqueue(workq); 5158 } 5159 5160 module_init(cxgb4_init_module); 5161 module_exit(cxgb4_cleanup_module); 5162