1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68 
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "cxgb4_debugfs.h"
78 #include "clip_tbl.h"
79 #include "l2t.h"
80 #include "sched.h"
81 #include "cxgb4_tc_u32.h"
82 
83 char cxgb4_driver_name[] = KBUILD_MODNAME;
84 
85 #ifdef DRV_VERSION
86 #undef DRV_VERSION
87 #endif
88 #define DRV_VERSION "2.0.0-ko"
89 const char cxgb4_driver_version[] = DRV_VERSION;
90 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
91 
92 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
93 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
94 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
95 
96 /* Macros needed to support the PCI Device ID Table ...
97  */
98 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
99 	static const struct pci_device_id cxgb4_pci_tbl[] = {
100 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
101 
102 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
103  * called for both.
104  */
105 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
106 
107 #define CH_PCI_ID_TABLE_ENTRY(devid) \
108 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
109 
110 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
111 		{ 0, } \
112 	}
113 
114 #include "t4_pci_id_tbl.h"
115 
116 #define FW4_FNAME "cxgb4/t4fw.bin"
117 #define FW5_FNAME "cxgb4/t5fw.bin"
118 #define FW6_FNAME "cxgb4/t6fw.bin"
119 #define FW4_CFNAME "cxgb4/t4-config.txt"
120 #define FW5_CFNAME "cxgb4/t5-config.txt"
121 #define FW6_CFNAME "cxgb4/t6-config.txt"
122 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
123 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
124 #define PHY_AQ1202_DEVICEID 0x4409
125 #define PHY_BCM84834_DEVICEID 0x4486
126 
127 MODULE_DESCRIPTION(DRV_DESC);
128 MODULE_AUTHOR("Chelsio Communications");
129 MODULE_LICENSE("Dual BSD/GPL");
130 MODULE_VERSION(DRV_VERSION);
131 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
132 MODULE_FIRMWARE(FW4_FNAME);
133 MODULE_FIRMWARE(FW5_FNAME);
134 MODULE_FIRMWARE(FW6_FNAME);
135 
136 /*
137  * The driver uses the best interrupt scheme available on a platform in the
138  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
139  * of these schemes the driver may consider as follows:
140  *
141  * msi = 2: choose from among all three options
142  * msi = 1: only consider MSI and INTx interrupts
143  * msi = 0: force INTx interrupts
144  */
145 static int msi = 2;
146 
147 module_param(msi, int, 0644);
148 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
149 
150 /*
151  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
152  * offset by 2 bytes in order to have the IP headers line up on 4-byte
153  * boundaries.  This is a requirement for many architectures which will throw
154  * a machine check fault if an attempt is made to access one of the 4-byte IP
155  * header fields on a non-4-byte boundary.  And it's a major performance issue
156  * even on some architectures which allow it like some implementations of the
157  * x86 ISA.  However, some architectures don't mind this and for some very
158  * edge-case performance sensitive applications (like forwarding large volumes
159  * of small packets), setting this DMA offset to 0 will decrease the number of
160  * PCI-E Bus transfers enough to measurably affect performance.
161  */
162 static int rx_dma_offset = 2;
163 
164 /* TX Queue select used to determine what algorithm to use for selecting TX
165  * queue. Select between the kernel provided function (select_queue=0) or user
166  * cxgb_select_queue function (select_queue=1)
167  *
168  * Default: select_queue=0
169  */
170 static int select_queue;
171 module_param(select_queue, int, 0644);
172 MODULE_PARM_DESC(select_queue,
173 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
174 
175 static struct dentry *cxgb4_debugfs_root;
176 
177 LIST_HEAD(adapter_list);
178 DEFINE_MUTEX(uld_mutex);
179 
180 static void link_report(struct net_device *dev)
181 {
182 	if (!netif_carrier_ok(dev))
183 		netdev_info(dev, "link down\n");
184 	else {
185 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
186 
187 		const char *s;
188 		const struct port_info *p = netdev_priv(dev);
189 
190 		switch (p->link_cfg.speed) {
191 		case 10000:
192 			s = "10Gbps";
193 			break;
194 		case 1000:
195 			s = "1000Mbps";
196 			break;
197 		case 100:
198 			s = "100Mbps";
199 			break;
200 		case 40000:
201 			s = "40Gbps";
202 			break;
203 		default:
204 			pr_info("%s: unsupported speed: %d\n",
205 				dev->name, p->link_cfg.speed);
206 			return;
207 		}
208 
209 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
210 			    fc[p->link_cfg.fc]);
211 	}
212 }
213 
214 #ifdef CONFIG_CHELSIO_T4_DCB
215 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
216 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
217 {
218 	struct port_info *pi = netdev_priv(dev);
219 	struct adapter *adap = pi->adapter;
220 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
221 	int i;
222 
223 	/* We use a simple mapping of Port TX Queue Index to DCB
224 	 * Priority when we're enabling DCB.
225 	 */
226 	for (i = 0; i < pi->nqsets; i++, txq++) {
227 		u32 name, value;
228 		int err;
229 
230 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
231 			FW_PARAMS_PARAM_X_V(
232 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
233 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
234 		value = enable ? i : 0xffffffff;
235 
236 		/* Since we can be called while atomic (from "interrupt
237 		 * level") we need to issue the Set Parameters Commannd
238 		 * without sleeping (timeout < 0).
239 		 */
240 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
241 					    &name, &value,
242 					    -FW_CMD_MAX_TIMEOUT);
243 
244 		if (err)
245 			dev_err(adap->pdev_dev,
246 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
247 				enable ? "set" : "unset", pi->port_id, i, -err);
248 		else
249 			txq->dcb_prio = value;
250 	}
251 }
252 
253 static int cxgb4_dcb_enabled(const struct net_device *dev)
254 {
255 	struct port_info *pi = netdev_priv(dev);
256 
257 	if (!pi->dcb.enabled)
258 		return 0;
259 
260 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
261 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
262 }
263 #endif /* CONFIG_CHELSIO_T4_DCB */
264 
265 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
266 {
267 	struct net_device *dev = adapter->port[port_id];
268 
269 	/* Skip changes from disabled ports. */
270 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
271 		if (link_stat)
272 			netif_carrier_on(dev);
273 		else {
274 #ifdef CONFIG_CHELSIO_T4_DCB
275 			if (cxgb4_dcb_enabled(dev)) {
276 				cxgb4_dcb_state_init(dev);
277 				dcb_tx_queue_prio_enable(dev, false);
278 			}
279 #endif /* CONFIG_CHELSIO_T4_DCB */
280 			netif_carrier_off(dev);
281 		}
282 
283 		link_report(dev);
284 	}
285 }
286 
287 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
288 {
289 	static const char *mod_str[] = {
290 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
291 	};
292 
293 	const struct net_device *dev = adap->port[port_id];
294 	const struct port_info *pi = netdev_priv(dev);
295 
296 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
297 		netdev_info(dev, "port module unplugged\n");
298 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
299 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
300 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
301 		netdev_info(dev, "%s: unsupported port module inserted\n",
302 			    dev->name);
303 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
304 		netdev_info(dev, "%s: unknown port module inserted\n",
305 			    dev->name);
306 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
307 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
308 	else
309 		netdev_info(dev, "%s: unknown module type %d inserted\n",
310 			    dev->name, pi->mod_type);
311 }
312 
313 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
314 module_param(dbfifo_int_thresh, int, 0644);
315 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
316 
317 /*
318  * usecs to sleep while draining the dbfifo
319  */
320 static int dbfifo_drain_delay = 1000;
321 module_param(dbfifo_drain_delay, int, 0644);
322 MODULE_PARM_DESC(dbfifo_drain_delay,
323 		 "usecs to sleep while draining the dbfifo");
324 
325 static inline int cxgb4_set_addr_hash(struct port_info *pi)
326 {
327 	struct adapter *adap = pi->adapter;
328 	u64 vec = 0;
329 	bool ucast = false;
330 	struct hash_mac_addr *entry;
331 
332 	/* Calculate the hash vector for the updated list and program it */
333 	list_for_each_entry(entry, &adap->mac_hlist, list) {
334 		ucast |= is_unicast_ether_addr(entry->addr);
335 		vec |= (1ULL << hash_mac_addr(entry->addr));
336 	}
337 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
338 				vec, false);
339 }
340 
341 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
342 {
343 	struct port_info *pi = netdev_priv(netdev);
344 	struct adapter *adap = pi->adapter;
345 	int ret;
346 	u64 mhash = 0;
347 	u64 uhash = 0;
348 	bool free = false;
349 	bool ucast = is_unicast_ether_addr(mac_addr);
350 	const u8 *maclist[1] = {mac_addr};
351 	struct hash_mac_addr *new_entry;
352 
353 	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
354 				NULL, ucast ? &uhash : &mhash, false);
355 	if (ret < 0)
356 		goto out;
357 	/* if hash != 0, then add the addr to hash addr list
358 	 * so on the end we will calculate the hash for the
359 	 * list and program it
360 	 */
361 	if (uhash || mhash) {
362 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
363 		if (!new_entry)
364 			return -ENOMEM;
365 		ether_addr_copy(new_entry->addr, mac_addr);
366 		list_add_tail(&new_entry->list, &adap->mac_hlist);
367 		ret = cxgb4_set_addr_hash(pi);
368 	}
369 out:
370 	return ret < 0 ? ret : 0;
371 }
372 
373 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
374 {
375 	struct port_info *pi = netdev_priv(netdev);
376 	struct adapter *adap = pi->adapter;
377 	int ret;
378 	const u8 *maclist[1] = {mac_addr};
379 	struct hash_mac_addr *entry, *tmp;
380 
381 	/* If the MAC address to be removed is in the hash addr
382 	 * list, delete it from the list and update hash vector
383 	 */
384 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
385 		if (ether_addr_equal(entry->addr, mac_addr)) {
386 			list_del(&entry->list);
387 			kfree(entry);
388 			return cxgb4_set_addr_hash(pi);
389 		}
390 	}
391 
392 	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
393 	return ret < 0 ? -EINVAL : 0;
394 }
395 
396 /*
397  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
398  * If @mtu is -1 it is left unchanged.
399  */
400 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
401 {
402 	struct port_info *pi = netdev_priv(dev);
403 	struct adapter *adapter = pi->adapter;
404 
405 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
406 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
407 
408 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
409 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
410 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
411 			     sleep_ok);
412 }
413 
414 /**
415  *	link_start - enable a port
416  *	@dev: the port to enable
417  *
418  *	Performs the MAC and PHY actions needed to enable a port.
419  */
420 static int link_start(struct net_device *dev)
421 {
422 	int ret;
423 	struct port_info *pi = netdev_priv(dev);
424 	unsigned int mb = pi->adapter->pf;
425 
426 	/*
427 	 * We do not set address filters and promiscuity here, the stack does
428 	 * that step explicitly.
429 	 */
430 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
431 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
432 	if (ret == 0) {
433 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
434 				    pi->xact_addr_filt, dev->dev_addr, true,
435 				    true);
436 		if (ret >= 0) {
437 			pi->xact_addr_filt = ret;
438 			ret = 0;
439 		}
440 	}
441 	if (ret == 0)
442 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
443 				    &pi->link_cfg);
444 	if (ret == 0) {
445 		local_bh_disable();
446 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
447 					  true, CXGB4_DCB_ENABLED);
448 		local_bh_enable();
449 	}
450 
451 	return ret;
452 }
453 
454 #ifdef CONFIG_CHELSIO_T4_DCB
455 /* Handle a Data Center Bridging update message from the firmware. */
456 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
457 {
458 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
459 	struct net_device *dev = adap->port[adap->chan_map[port]];
460 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
461 	int new_dcb_enabled;
462 
463 	cxgb4_dcb_handle_fw_update(adap, pcmd);
464 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
465 
466 	/* If the DCB has become enabled or disabled on the port then we're
467 	 * going to need to set up/tear down DCB Priority parameters for the
468 	 * TX Queues associated with the port.
469 	 */
470 	if (new_dcb_enabled != old_dcb_enabled)
471 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
472 }
473 #endif /* CONFIG_CHELSIO_T4_DCB */
474 
475 /* Response queue handler for the FW event queue.
476  */
477 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
478 			  const struct pkt_gl *gl)
479 {
480 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
481 
482 	rsp++;                                          /* skip RSS header */
483 
484 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
485 	 */
486 	if (unlikely(opcode == CPL_FW4_MSG &&
487 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
488 		rsp++;
489 		opcode = ((const struct rss_header *)rsp)->opcode;
490 		rsp++;
491 		if (opcode != CPL_SGE_EGR_UPDATE) {
492 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
493 				, opcode);
494 			goto out;
495 		}
496 	}
497 
498 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
499 		const struct cpl_sge_egr_update *p = (void *)rsp;
500 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
501 		struct sge_txq *txq;
502 
503 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
504 		txq->restarts++;
505 		if (txq->q_type == CXGB4_TXQ_ETH) {
506 			struct sge_eth_txq *eq;
507 
508 			eq = container_of(txq, struct sge_eth_txq, q);
509 			netif_tx_wake_queue(eq->txq);
510 		} else {
511 			struct sge_uld_txq *oq;
512 
513 			oq = container_of(txq, struct sge_uld_txq, q);
514 			tasklet_schedule(&oq->qresume_tsk);
515 		}
516 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
517 		const struct cpl_fw6_msg *p = (void *)rsp;
518 
519 #ifdef CONFIG_CHELSIO_T4_DCB
520 		const struct fw_port_cmd *pcmd = (const void *)p->data;
521 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
522 		unsigned int action =
523 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
524 
525 		if (cmd == FW_PORT_CMD &&
526 		    action == FW_PORT_ACTION_GET_PORT_INFO) {
527 			int port = FW_PORT_CMD_PORTID_G(
528 					be32_to_cpu(pcmd->op_to_portid));
529 			struct net_device *dev =
530 				q->adap->port[q->adap->chan_map[port]];
531 			int state_input = ((pcmd->u.info.dcbxdis_pkd &
532 					    FW_PORT_CMD_DCBXDIS_F)
533 					   ? CXGB4_DCB_INPUT_FW_DISABLED
534 					   : CXGB4_DCB_INPUT_FW_ENABLED);
535 
536 			cxgb4_dcb_state_fsm(dev, state_input);
537 		}
538 
539 		if (cmd == FW_PORT_CMD &&
540 		    action == FW_PORT_ACTION_L2_DCB_CFG)
541 			dcb_rpl(q->adap, pcmd);
542 		else
543 #endif
544 			if (p->type == 0)
545 				t4_handle_fw_rpl(q->adap, p->data);
546 	} else if (opcode == CPL_L2T_WRITE_RPL) {
547 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
548 
549 		do_l2t_write_rpl(q->adap, p);
550 	} else if (opcode == CPL_SET_TCB_RPL) {
551 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
552 
553 		filter_rpl(q->adap, p);
554 	} else
555 		dev_err(q->adap->pdev_dev,
556 			"unexpected CPL %#x on FW event queue\n", opcode);
557 out:
558 	return 0;
559 }
560 
561 static void disable_msi(struct adapter *adapter)
562 {
563 	if (adapter->flags & USING_MSIX) {
564 		pci_disable_msix(adapter->pdev);
565 		adapter->flags &= ~USING_MSIX;
566 	} else if (adapter->flags & USING_MSI) {
567 		pci_disable_msi(adapter->pdev);
568 		adapter->flags &= ~USING_MSI;
569 	}
570 }
571 
572 /*
573  * Interrupt handler for non-data events used with MSI-X.
574  */
575 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
576 {
577 	struct adapter *adap = cookie;
578 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
579 
580 	if (v & PFSW_F) {
581 		adap->swintr = 1;
582 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
583 	}
584 	if (adap->flags & MASTER_PF)
585 		t4_slow_intr_handler(adap);
586 	return IRQ_HANDLED;
587 }
588 
589 /*
590  * Name the MSI-X interrupts.
591  */
592 static void name_msix_vecs(struct adapter *adap)
593 {
594 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
595 
596 	/* non-data interrupts */
597 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
598 
599 	/* FW events */
600 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
601 		 adap->port[0]->name);
602 
603 	/* Ethernet queues */
604 	for_each_port(adap, j) {
605 		struct net_device *d = adap->port[j];
606 		const struct port_info *pi = netdev_priv(d);
607 
608 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
609 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
610 				 d->name, i);
611 	}
612 }
613 
614 static int request_msix_queue_irqs(struct adapter *adap)
615 {
616 	struct sge *s = &adap->sge;
617 	int err, ethqidx;
618 	int msi_index = 2;
619 
620 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
621 			  adap->msix_info[1].desc, &s->fw_evtq);
622 	if (err)
623 		return err;
624 
625 	for_each_ethrxq(s, ethqidx) {
626 		err = request_irq(adap->msix_info[msi_index].vec,
627 				  t4_sge_intr_msix, 0,
628 				  adap->msix_info[msi_index].desc,
629 				  &s->ethrxq[ethqidx].rspq);
630 		if (err)
631 			goto unwind;
632 		msi_index++;
633 	}
634 	return 0;
635 
636 unwind:
637 	while (--ethqidx >= 0)
638 		free_irq(adap->msix_info[--msi_index].vec,
639 			 &s->ethrxq[ethqidx].rspq);
640 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
641 	return err;
642 }
643 
644 static void free_msix_queue_irqs(struct adapter *adap)
645 {
646 	int i, msi_index = 2;
647 	struct sge *s = &adap->sge;
648 
649 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
650 	for_each_ethrxq(s, i)
651 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
652 }
653 
654 /**
655  *	cxgb4_write_rss - write the RSS table for a given port
656  *	@pi: the port
657  *	@queues: array of queue indices for RSS
658  *
659  *	Sets up the portion of the HW RSS table for the port's VI to distribute
660  *	packets to the Rx queues in @queues.
661  *	Should never be called before setting up sge eth rx queues
662  */
663 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
664 {
665 	u16 *rss;
666 	int i, err;
667 	struct adapter *adapter = pi->adapter;
668 	const struct sge_eth_rxq *rxq;
669 
670 	rxq = &adapter->sge.ethrxq[pi->first_qset];
671 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
672 	if (!rss)
673 		return -ENOMEM;
674 
675 	/* map the queue indices to queue ids */
676 	for (i = 0; i < pi->rss_size; i++, queues++)
677 		rss[i] = rxq[*queues].rspq.abs_id;
678 
679 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
680 				  pi->rss_size, rss, pi->rss_size);
681 	/* If Tunnel All Lookup isn't specified in the global RSS
682 	 * Configuration, then we need to specify a default Ingress
683 	 * Queue for any ingress packets which aren't hashed.  We'll
684 	 * use our first ingress queue ...
685 	 */
686 	if (!err)
687 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
688 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
689 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
690 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
691 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
692 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
693 				       rss[0]);
694 	kfree(rss);
695 	return err;
696 }
697 
698 /**
699  *	setup_rss - configure RSS
700  *	@adap: the adapter
701  *
702  *	Sets up RSS for each port.
703  */
704 static int setup_rss(struct adapter *adap)
705 {
706 	int i, j, err;
707 
708 	for_each_port(adap, i) {
709 		const struct port_info *pi = adap2pinfo(adap, i);
710 
711 		/* Fill default values with equal distribution */
712 		for (j = 0; j < pi->rss_size; j++)
713 			pi->rss[j] = j % pi->nqsets;
714 
715 		err = cxgb4_write_rss(pi, pi->rss);
716 		if (err)
717 			return err;
718 	}
719 	return 0;
720 }
721 
722 /*
723  * Return the channel of the ingress queue with the given qid.
724  */
725 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
726 {
727 	qid -= p->ingr_start;
728 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
729 }
730 
731 /*
732  * Wait until all NAPI handlers are descheduled.
733  */
734 static void quiesce_rx(struct adapter *adap)
735 {
736 	int i;
737 
738 	for (i = 0; i < adap->sge.ingr_sz; i++) {
739 		struct sge_rspq *q = adap->sge.ingr_map[i];
740 
741 		if (q && q->handler) {
742 			napi_disable(&q->napi);
743 			local_bh_disable();
744 			while (!cxgb_poll_lock_napi(q))
745 				mdelay(1);
746 			local_bh_enable();
747 		}
748 
749 	}
750 }
751 
752 /* Disable interrupt and napi handler */
753 static void disable_interrupts(struct adapter *adap)
754 {
755 	if (adap->flags & FULL_INIT_DONE) {
756 		t4_intr_disable(adap);
757 		if (adap->flags & USING_MSIX) {
758 			free_msix_queue_irqs(adap);
759 			free_irq(adap->msix_info[0].vec, adap);
760 		} else {
761 			free_irq(adap->pdev->irq, adap);
762 		}
763 		quiesce_rx(adap);
764 	}
765 }
766 
767 /*
768  * Enable NAPI scheduling and interrupt generation for all Rx queues.
769  */
770 static void enable_rx(struct adapter *adap)
771 {
772 	int i;
773 
774 	for (i = 0; i < adap->sge.ingr_sz; i++) {
775 		struct sge_rspq *q = adap->sge.ingr_map[i];
776 
777 		if (!q)
778 			continue;
779 		if (q->handler) {
780 			cxgb_busy_poll_init_lock(q);
781 			napi_enable(&q->napi);
782 		}
783 		/* 0-increment GTS to start the timer and enable interrupts */
784 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
785 			     SEINTARM_V(q->intr_params) |
786 			     INGRESSQID_V(q->cntxt_id));
787 	}
788 }
789 
790 
791 static int setup_fw_sge_queues(struct adapter *adap)
792 {
793 	struct sge *s = &adap->sge;
794 	int err = 0;
795 
796 	bitmap_zero(s->starving_fl, s->egr_sz);
797 	bitmap_zero(s->txq_maperr, s->egr_sz);
798 
799 	if (adap->flags & USING_MSIX)
800 		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
801 	else {
802 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
803 				       NULL, NULL, NULL, -1);
804 		if (err)
805 			return err;
806 		adap->msi_idx = -((int)s->intrq.abs_id + 1);
807 	}
808 
809 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
810 			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
811 	if (err)
812 		t4_free_sge_resources(adap);
813 	return err;
814 }
815 
816 /**
817  *	setup_sge_queues - configure SGE Tx/Rx/response queues
818  *	@adap: the adapter
819  *
820  *	Determines how many sets of SGE queues to use and initializes them.
821  *	We support multiple queue sets per port if we have MSI-X, otherwise
822  *	just one queue set per port.
823  */
824 static int setup_sge_queues(struct adapter *adap)
825 {
826 	int err, i, j;
827 	struct sge *s = &adap->sge;
828 	struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
829 	unsigned int cmplqid = 0;
830 
831 	for_each_port(adap, i) {
832 		struct net_device *dev = adap->port[i];
833 		struct port_info *pi = netdev_priv(dev);
834 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
835 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
836 
837 		for (j = 0; j < pi->nqsets; j++, q++) {
838 			if (adap->msi_idx > 0)
839 				adap->msi_idx++;
840 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
841 					       adap->msi_idx, &q->fl,
842 					       t4_ethrx_handler,
843 					       NULL,
844 					       t4_get_mps_bg_map(adap,
845 								 pi->tx_chan));
846 			if (err)
847 				goto freeout;
848 			q->rspq.idx = j;
849 			memset(&q->stats, 0, sizeof(q->stats));
850 		}
851 		for (j = 0; j < pi->nqsets; j++, t++) {
852 			err = t4_sge_alloc_eth_txq(adap, t, dev,
853 					netdev_get_tx_queue(dev, j),
854 					s->fw_evtq.cntxt_id);
855 			if (err)
856 				goto freeout;
857 		}
858 	}
859 
860 	for_each_port(adap, i) {
861 		/* Note that cmplqid below is 0 if we don't
862 		 * have RDMA queues, and that's the right value.
863 		 */
864 		if (rxq_info)
865 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
866 
867 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
868 					    s->fw_evtq.cntxt_id, cmplqid);
869 		if (err)
870 			goto freeout;
871 	}
872 
873 	t4_write_reg(adap, is_t4(adap->params.chip) ?
874 				MPS_TRC_RSS_CONTROL_A :
875 				MPS_T5_TRC_RSS_CONTROL_A,
876 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
877 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
878 	return 0;
879 freeout:
880 	t4_free_sge_resources(adap);
881 	return err;
882 }
883 
884 /*
885  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
886  * The allocated memory is cleared.
887  */
888 void *t4_alloc_mem(size_t size)
889 {
890 	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
891 
892 	if (!p)
893 		p = vzalloc(size);
894 	return p;
895 }
896 
897 /*
898  * Free memory allocated through alloc_mem().
899  */
900 void t4_free_mem(void *addr)
901 {
902 	kvfree(addr);
903 }
904 
905 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
906 			     void *accel_priv, select_queue_fallback_t fallback)
907 {
908 	int txq;
909 
910 #ifdef CONFIG_CHELSIO_T4_DCB
911 	/* If a Data Center Bridging has been successfully negotiated on this
912 	 * link then we'll use the skb's priority to map it to a TX Queue.
913 	 * The skb's priority is determined via the VLAN Tag Priority Code
914 	 * Point field.
915 	 */
916 	if (cxgb4_dcb_enabled(dev)) {
917 		u16 vlan_tci;
918 		int err;
919 
920 		err = vlan_get_tag(skb, &vlan_tci);
921 		if (unlikely(err)) {
922 			if (net_ratelimit())
923 				netdev_warn(dev,
924 					    "TX Packet without VLAN Tag on DCB Link\n");
925 			txq = 0;
926 		} else {
927 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
928 #ifdef CONFIG_CHELSIO_T4_FCOE
929 			if (skb->protocol == htons(ETH_P_FCOE))
930 				txq = skb->priority & 0x7;
931 #endif /* CONFIG_CHELSIO_T4_FCOE */
932 		}
933 		return txq;
934 	}
935 #endif /* CONFIG_CHELSIO_T4_DCB */
936 
937 	if (select_queue) {
938 		txq = (skb_rx_queue_recorded(skb)
939 			? skb_get_rx_queue(skb)
940 			: smp_processor_id());
941 
942 		while (unlikely(txq >= dev->real_num_tx_queues))
943 			txq -= dev->real_num_tx_queues;
944 
945 		return txq;
946 	}
947 
948 	return fallback(dev, skb) % dev->real_num_tx_queues;
949 }
950 
951 static int closest_timer(const struct sge *s, int time)
952 {
953 	int i, delta, match = 0, min_delta = INT_MAX;
954 
955 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
956 		delta = time - s->timer_val[i];
957 		if (delta < 0)
958 			delta = -delta;
959 		if (delta < min_delta) {
960 			min_delta = delta;
961 			match = i;
962 		}
963 	}
964 	return match;
965 }
966 
967 static int closest_thres(const struct sge *s, int thres)
968 {
969 	int i, delta, match = 0, min_delta = INT_MAX;
970 
971 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
972 		delta = thres - s->counter_val[i];
973 		if (delta < 0)
974 			delta = -delta;
975 		if (delta < min_delta) {
976 			min_delta = delta;
977 			match = i;
978 		}
979 	}
980 	return match;
981 }
982 
983 /**
984  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
985  *	@q: the Rx queue
986  *	@us: the hold-off time in us, or 0 to disable timer
987  *	@cnt: the hold-off packet count, or 0 to disable counter
988  *
989  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
990  *	one of the two needs to be enabled for the queue to generate interrupts.
991  */
992 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
993 			       unsigned int us, unsigned int cnt)
994 {
995 	struct adapter *adap = q->adap;
996 
997 	if ((us | cnt) == 0)
998 		cnt = 1;
999 
1000 	if (cnt) {
1001 		int err;
1002 		u32 v, new_idx;
1003 
1004 		new_idx = closest_thres(&adap->sge, cnt);
1005 		if (q->desc && q->pktcnt_idx != new_idx) {
1006 			/* the queue has already been created, update it */
1007 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1008 			    FW_PARAMS_PARAM_X_V(
1009 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1010 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1011 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1012 					    &v, &new_idx);
1013 			if (err)
1014 				return err;
1015 		}
1016 		q->pktcnt_idx = new_idx;
1017 	}
1018 
1019 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1020 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1021 	return 0;
1022 }
1023 
1024 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1025 {
1026 	const struct port_info *pi = netdev_priv(dev);
1027 	netdev_features_t changed = dev->features ^ features;
1028 	int err;
1029 
1030 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1031 		return 0;
1032 
1033 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1034 			    -1, -1, -1,
1035 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1036 	if (unlikely(err))
1037 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1038 	return err;
1039 }
1040 
1041 static int setup_debugfs(struct adapter *adap)
1042 {
1043 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1044 		return -1;
1045 
1046 #ifdef CONFIG_DEBUG_FS
1047 	t4_setup_debugfs(adap);
1048 #endif
1049 	return 0;
1050 }
1051 
1052 /*
1053  * upper-layer driver support
1054  */
1055 
1056 /*
1057  * Allocate an active-open TID and set it to the supplied value.
1058  */
1059 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1060 {
1061 	int atid = -1;
1062 
1063 	spin_lock_bh(&t->atid_lock);
1064 	if (t->afree) {
1065 		union aopen_entry *p = t->afree;
1066 
1067 		atid = (p - t->atid_tab) + t->atid_base;
1068 		t->afree = p->next;
1069 		p->data = data;
1070 		t->atids_in_use++;
1071 	}
1072 	spin_unlock_bh(&t->atid_lock);
1073 	return atid;
1074 }
1075 EXPORT_SYMBOL(cxgb4_alloc_atid);
1076 
1077 /*
1078  * Release an active-open TID.
1079  */
1080 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1081 {
1082 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1083 
1084 	spin_lock_bh(&t->atid_lock);
1085 	p->next = t->afree;
1086 	t->afree = p;
1087 	t->atids_in_use--;
1088 	spin_unlock_bh(&t->atid_lock);
1089 }
1090 EXPORT_SYMBOL(cxgb4_free_atid);
1091 
1092 /*
1093  * Allocate a server TID and set it to the supplied value.
1094  */
1095 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1096 {
1097 	int stid;
1098 
1099 	spin_lock_bh(&t->stid_lock);
1100 	if (family == PF_INET) {
1101 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1102 		if (stid < t->nstids)
1103 			__set_bit(stid, t->stid_bmap);
1104 		else
1105 			stid = -1;
1106 	} else {
1107 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1108 		if (stid < 0)
1109 			stid = -1;
1110 	}
1111 	if (stid >= 0) {
1112 		t->stid_tab[stid].data = data;
1113 		stid += t->stid_base;
1114 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1115 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1116 		 * needs 2 TIDs.
1117 		 */
1118 		if (family == PF_INET)
1119 			t->stids_in_use++;
1120 		else
1121 			t->stids_in_use += 2;
1122 	}
1123 	spin_unlock_bh(&t->stid_lock);
1124 	return stid;
1125 }
1126 EXPORT_SYMBOL(cxgb4_alloc_stid);
1127 
1128 /* Allocate a server filter TID and set it to the supplied value.
1129  */
1130 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1131 {
1132 	int stid;
1133 
1134 	spin_lock_bh(&t->stid_lock);
1135 	if (family == PF_INET) {
1136 		stid = find_next_zero_bit(t->stid_bmap,
1137 				t->nstids + t->nsftids, t->nstids);
1138 		if (stid < (t->nstids + t->nsftids))
1139 			__set_bit(stid, t->stid_bmap);
1140 		else
1141 			stid = -1;
1142 	} else {
1143 		stid = -1;
1144 	}
1145 	if (stid >= 0) {
1146 		t->stid_tab[stid].data = data;
1147 		stid -= t->nstids;
1148 		stid += t->sftid_base;
1149 		t->sftids_in_use++;
1150 	}
1151 	spin_unlock_bh(&t->stid_lock);
1152 	return stid;
1153 }
1154 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1155 
1156 /* Release a server TID.
1157  */
1158 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1159 {
1160 	/* Is it a server filter TID? */
1161 	if (t->nsftids && (stid >= t->sftid_base)) {
1162 		stid -= t->sftid_base;
1163 		stid += t->nstids;
1164 	} else {
1165 		stid -= t->stid_base;
1166 	}
1167 
1168 	spin_lock_bh(&t->stid_lock);
1169 	if (family == PF_INET)
1170 		__clear_bit(stid, t->stid_bmap);
1171 	else
1172 		bitmap_release_region(t->stid_bmap, stid, 1);
1173 	t->stid_tab[stid].data = NULL;
1174 	if (stid < t->nstids) {
1175 		if (family == PF_INET)
1176 			t->stids_in_use--;
1177 		else
1178 			t->stids_in_use -= 2;
1179 	} else {
1180 		t->sftids_in_use--;
1181 	}
1182 	spin_unlock_bh(&t->stid_lock);
1183 }
1184 EXPORT_SYMBOL(cxgb4_free_stid);
1185 
1186 /*
1187  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1188  */
1189 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1190 			   unsigned int tid)
1191 {
1192 	struct cpl_tid_release *req;
1193 
1194 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1195 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1196 	INIT_TP_WR(req, tid);
1197 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1198 }
1199 
1200 /*
1201  * Queue a TID release request and if necessary schedule a work queue to
1202  * process it.
1203  */
1204 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1205 				    unsigned int tid)
1206 {
1207 	void **p = &t->tid_tab[tid];
1208 	struct adapter *adap = container_of(t, struct adapter, tids);
1209 
1210 	spin_lock_bh(&adap->tid_release_lock);
1211 	*p = adap->tid_release_head;
1212 	/* Low 2 bits encode the Tx channel number */
1213 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1214 	if (!adap->tid_release_task_busy) {
1215 		adap->tid_release_task_busy = true;
1216 		queue_work(adap->workq, &adap->tid_release_task);
1217 	}
1218 	spin_unlock_bh(&adap->tid_release_lock);
1219 }
1220 
1221 /*
1222  * Process the list of pending TID release requests.
1223  */
1224 static void process_tid_release_list(struct work_struct *work)
1225 {
1226 	struct sk_buff *skb;
1227 	struct adapter *adap;
1228 
1229 	adap = container_of(work, struct adapter, tid_release_task);
1230 
1231 	spin_lock_bh(&adap->tid_release_lock);
1232 	while (adap->tid_release_head) {
1233 		void **p = adap->tid_release_head;
1234 		unsigned int chan = (uintptr_t)p & 3;
1235 		p = (void *)p - chan;
1236 
1237 		adap->tid_release_head = *p;
1238 		*p = NULL;
1239 		spin_unlock_bh(&adap->tid_release_lock);
1240 
1241 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1242 					 GFP_KERNEL)))
1243 			schedule_timeout_uninterruptible(1);
1244 
1245 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1246 		t4_ofld_send(adap, skb);
1247 		spin_lock_bh(&adap->tid_release_lock);
1248 	}
1249 	adap->tid_release_task_busy = false;
1250 	spin_unlock_bh(&adap->tid_release_lock);
1251 }
1252 
1253 /*
1254  * Release a TID and inform HW.  If we are unable to allocate the release
1255  * message we defer to a work queue.
1256  */
1257 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1258 {
1259 	struct sk_buff *skb;
1260 	struct adapter *adap = container_of(t, struct adapter, tids);
1261 
1262 	WARN_ON(tid >= t->ntids);
1263 
1264 	if (t->tid_tab[tid]) {
1265 		t->tid_tab[tid] = NULL;
1266 		if (t->hash_base && (tid >= t->hash_base))
1267 			atomic_dec(&t->hash_tids_in_use);
1268 		else
1269 			atomic_dec(&t->tids_in_use);
1270 	}
1271 
1272 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1273 	if (likely(skb)) {
1274 		mk_tid_release(skb, chan, tid);
1275 		t4_ofld_send(adap, skb);
1276 	} else
1277 		cxgb4_queue_tid_release(t, chan, tid);
1278 }
1279 EXPORT_SYMBOL(cxgb4_remove_tid);
1280 
1281 /*
1282  * Allocate and initialize the TID tables.  Returns 0 on success.
1283  */
1284 static int tid_init(struct tid_info *t)
1285 {
1286 	struct adapter *adap = container_of(t, struct adapter, tids);
1287 	unsigned int max_ftids = t->nftids + t->nsftids;
1288 	unsigned int natids = t->natids;
1289 	unsigned int stid_bmap_size;
1290 	unsigned int ftid_bmap_size;
1291 	size_t size;
1292 
1293 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1294 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1295 	size = t->ntids * sizeof(*t->tid_tab) +
1296 	       natids * sizeof(*t->atid_tab) +
1297 	       t->nstids * sizeof(*t->stid_tab) +
1298 	       t->nsftids * sizeof(*t->stid_tab) +
1299 	       stid_bmap_size * sizeof(long) +
1300 	       max_ftids * sizeof(*t->ftid_tab) +
1301 	       ftid_bmap_size * sizeof(long);
1302 
1303 	t->tid_tab = t4_alloc_mem(size);
1304 	if (!t->tid_tab)
1305 		return -ENOMEM;
1306 
1307 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1308 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1309 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1310 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1311 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1312 	spin_lock_init(&t->stid_lock);
1313 	spin_lock_init(&t->atid_lock);
1314 	spin_lock_init(&t->ftid_lock);
1315 
1316 	t->stids_in_use = 0;
1317 	t->sftids_in_use = 0;
1318 	t->afree = NULL;
1319 	t->atids_in_use = 0;
1320 	atomic_set(&t->tids_in_use, 0);
1321 	atomic_set(&t->hash_tids_in_use, 0);
1322 
1323 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1324 	if (natids) {
1325 		while (--natids)
1326 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1327 		t->afree = t->atid_tab;
1328 	}
1329 
1330 	if (is_offload(adap)) {
1331 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1332 		/* Reserve stid 0 for T4/T5 adapters */
1333 		if (!t->stid_base &&
1334 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1335 			__set_bit(0, t->stid_bmap);
1336 	}
1337 
1338 	bitmap_zero(t->ftid_bmap, t->nftids);
1339 	return 0;
1340 }
1341 
1342 /**
1343  *	cxgb4_create_server - create an IP server
1344  *	@dev: the device
1345  *	@stid: the server TID
1346  *	@sip: local IP address to bind server to
1347  *	@sport: the server's TCP port
1348  *	@queue: queue to direct messages from this server to
1349  *
1350  *	Create an IP server for the given port and address.
1351  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1352  */
1353 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1354 			__be32 sip, __be16 sport, __be16 vlan,
1355 			unsigned int queue)
1356 {
1357 	unsigned int chan;
1358 	struct sk_buff *skb;
1359 	struct adapter *adap;
1360 	struct cpl_pass_open_req *req;
1361 	int ret;
1362 
1363 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1364 	if (!skb)
1365 		return -ENOMEM;
1366 
1367 	adap = netdev2adap(dev);
1368 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1369 	INIT_TP_WR(req, 0);
1370 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1371 	req->local_port = sport;
1372 	req->peer_port = htons(0);
1373 	req->local_ip = sip;
1374 	req->peer_ip = htonl(0);
1375 	chan = rxq_to_chan(&adap->sge, queue);
1376 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1377 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1378 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1379 	ret = t4_mgmt_tx(adap, skb);
1380 	return net_xmit_eval(ret);
1381 }
1382 EXPORT_SYMBOL(cxgb4_create_server);
1383 
1384 /*	cxgb4_create_server6 - create an IPv6 server
1385  *	@dev: the device
1386  *	@stid: the server TID
1387  *	@sip: local IPv6 address to bind server to
1388  *	@sport: the server's TCP port
1389  *	@queue: queue to direct messages from this server to
1390  *
1391  *	Create an IPv6 server for the given port and address.
1392  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1393  */
1394 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1395 			 const struct in6_addr *sip, __be16 sport,
1396 			 unsigned int queue)
1397 {
1398 	unsigned int chan;
1399 	struct sk_buff *skb;
1400 	struct adapter *adap;
1401 	struct cpl_pass_open_req6 *req;
1402 	int ret;
1403 
1404 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1405 	if (!skb)
1406 		return -ENOMEM;
1407 
1408 	adap = netdev2adap(dev);
1409 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1410 	INIT_TP_WR(req, 0);
1411 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1412 	req->local_port = sport;
1413 	req->peer_port = htons(0);
1414 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1415 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1416 	req->peer_ip_hi = cpu_to_be64(0);
1417 	req->peer_ip_lo = cpu_to_be64(0);
1418 	chan = rxq_to_chan(&adap->sge, queue);
1419 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1420 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1421 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1422 	ret = t4_mgmt_tx(adap, skb);
1423 	return net_xmit_eval(ret);
1424 }
1425 EXPORT_SYMBOL(cxgb4_create_server6);
1426 
1427 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1428 			unsigned int queue, bool ipv6)
1429 {
1430 	struct sk_buff *skb;
1431 	struct adapter *adap;
1432 	struct cpl_close_listsvr_req *req;
1433 	int ret;
1434 
1435 	adap = netdev2adap(dev);
1436 
1437 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1438 	if (!skb)
1439 		return -ENOMEM;
1440 
1441 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1442 	INIT_TP_WR(req, 0);
1443 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1444 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1445 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1446 	ret = t4_mgmt_tx(adap, skb);
1447 	return net_xmit_eval(ret);
1448 }
1449 EXPORT_SYMBOL(cxgb4_remove_server);
1450 
1451 /**
1452  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1453  *	@mtus: the HW MTU table
1454  *	@mtu: the target MTU
1455  *	@idx: index of selected entry in the MTU table
1456  *
1457  *	Returns the index and the value in the HW MTU table that is closest to
1458  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1459  *	table, in which case that smallest available value is selected.
1460  */
1461 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1462 			    unsigned int *idx)
1463 {
1464 	unsigned int i = 0;
1465 
1466 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1467 		++i;
1468 	if (idx)
1469 		*idx = i;
1470 	return mtus[i];
1471 }
1472 EXPORT_SYMBOL(cxgb4_best_mtu);
1473 
1474 /**
1475  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1476  *     @mtus: the HW MTU table
1477  *     @header_size: Header Size
1478  *     @data_size_max: maximum Data Segment Size
1479  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1480  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1481  *
1482  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1483  *     MTU Table based solely on a Maximum MTU parameter, we break that
1484  *     parameter up into a Header Size and Maximum Data Segment Size, and
1485  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1486  *     the Hardware MTU Table which will result in a Data Segment Size with
1487  *     the requested alignment _and_ that MTU isn't "too far" from the
1488  *     closest MTU, then we'll return that rather than the closest MTU.
1489  */
1490 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1491 				    unsigned short header_size,
1492 				    unsigned short data_size_max,
1493 				    unsigned short data_size_align,
1494 				    unsigned int *mtu_idxp)
1495 {
1496 	unsigned short max_mtu = header_size + data_size_max;
1497 	unsigned short data_size_align_mask = data_size_align - 1;
1498 	int mtu_idx, aligned_mtu_idx;
1499 
1500 	/* Scan the MTU Table till we find an MTU which is larger than our
1501 	 * Maximum MTU or we reach the end of the table.  Along the way,
1502 	 * record the last MTU found, if any, which will result in a Data
1503 	 * Segment Length matching the requested alignment.
1504 	 */
1505 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1506 		unsigned short data_size = mtus[mtu_idx] - header_size;
1507 
1508 		/* If this MTU minus the Header Size would result in a
1509 		 * Data Segment Size of the desired alignment, remember it.
1510 		 */
1511 		if ((data_size & data_size_align_mask) == 0)
1512 			aligned_mtu_idx = mtu_idx;
1513 
1514 		/* If we're not at the end of the Hardware MTU Table and the
1515 		 * next element is larger than our Maximum MTU, drop out of
1516 		 * the loop.
1517 		 */
1518 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1519 			break;
1520 	}
1521 
1522 	/* If we fell out of the loop because we ran to the end of the table,
1523 	 * then we just have to use the last [largest] entry.
1524 	 */
1525 	if (mtu_idx == NMTUS)
1526 		mtu_idx--;
1527 
1528 	/* If we found an MTU which resulted in the requested Data Segment
1529 	 * Length alignment and that's "not far" from the largest MTU which is
1530 	 * less than or equal to the maximum MTU, then use that.
1531 	 */
1532 	if (aligned_mtu_idx >= 0 &&
1533 	    mtu_idx - aligned_mtu_idx <= 1)
1534 		mtu_idx = aligned_mtu_idx;
1535 
1536 	/* If the caller has passed in an MTU Index pointer, pass the
1537 	 * MTU Index back.  Return the MTU value.
1538 	 */
1539 	if (mtu_idxp)
1540 		*mtu_idxp = mtu_idx;
1541 	return mtus[mtu_idx];
1542 }
1543 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1544 
1545 /**
1546  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1547  *	@chip: chip type
1548  *	@viid: VI id of the given port
1549  *
1550  *	Return the SMT index for this VI.
1551  */
1552 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1553 {
1554 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1555 	 * 128 rows of 2 entries each.
1556 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1557 	 * TODO: The below code needs to be updated when we add support
1558 	 * for 256 VFs.
1559 	 */
1560 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1561 		return ((viid & 0x7f) << 1);
1562 	else
1563 		return (viid & 0x7f);
1564 }
1565 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1566 
1567 /**
1568  *	cxgb4_port_chan - get the HW channel of a port
1569  *	@dev: the net device for the port
1570  *
1571  *	Return the HW Tx channel of the given port.
1572  */
1573 unsigned int cxgb4_port_chan(const struct net_device *dev)
1574 {
1575 	return netdev2pinfo(dev)->tx_chan;
1576 }
1577 EXPORT_SYMBOL(cxgb4_port_chan);
1578 
1579 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1580 {
1581 	struct adapter *adap = netdev2adap(dev);
1582 	u32 v1, v2, lp_count, hp_count;
1583 
1584 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1585 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1586 	if (is_t4(adap->params.chip)) {
1587 		lp_count = LP_COUNT_G(v1);
1588 		hp_count = HP_COUNT_G(v1);
1589 	} else {
1590 		lp_count = LP_COUNT_T5_G(v1);
1591 		hp_count = HP_COUNT_T5_G(v2);
1592 	}
1593 	return lpfifo ? lp_count : hp_count;
1594 }
1595 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1596 
1597 /**
1598  *	cxgb4_port_viid - get the VI id of a port
1599  *	@dev: the net device for the port
1600  *
1601  *	Return the VI id of the given port.
1602  */
1603 unsigned int cxgb4_port_viid(const struct net_device *dev)
1604 {
1605 	return netdev2pinfo(dev)->viid;
1606 }
1607 EXPORT_SYMBOL(cxgb4_port_viid);
1608 
1609 /**
1610  *	cxgb4_port_idx - get the index of a port
1611  *	@dev: the net device for the port
1612  *
1613  *	Return the index of the given port.
1614  */
1615 unsigned int cxgb4_port_idx(const struct net_device *dev)
1616 {
1617 	return netdev2pinfo(dev)->port_id;
1618 }
1619 EXPORT_SYMBOL(cxgb4_port_idx);
1620 
1621 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1622 			 struct tp_tcp_stats *v6)
1623 {
1624 	struct adapter *adap = pci_get_drvdata(pdev);
1625 
1626 	spin_lock(&adap->stats_lock);
1627 	t4_tp_get_tcp_stats(adap, v4, v6);
1628 	spin_unlock(&adap->stats_lock);
1629 }
1630 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1631 
1632 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1633 		      const unsigned int *pgsz_order)
1634 {
1635 	struct adapter *adap = netdev2adap(dev);
1636 
1637 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1638 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1639 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1640 		     HPZ3_V(pgsz_order[3]));
1641 }
1642 EXPORT_SYMBOL(cxgb4_iscsi_init);
1643 
1644 int cxgb4_flush_eq_cache(struct net_device *dev)
1645 {
1646 	struct adapter *adap = netdev2adap(dev);
1647 
1648 	return t4_sge_ctxt_flush(adap, adap->mbox);
1649 }
1650 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1651 
1652 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1653 {
1654 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1655 	__be64 indices;
1656 	int ret;
1657 
1658 	spin_lock(&adap->win0_lock);
1659 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1660 			   sizeof(indices), (__be32 *)&indices,
1661 			   T4_MEMORY_READ);
1662 	spin_unlock(&adap->win0_lock);
1663 	if (!ret) {
1664 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1665 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1666 	}
1667 	return ret;
1668 }
1669 
1670 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1671 			u16 size)
1672 {
1673 	struct adapter *adap = netdev2adap(dev);
1674 	u16 hw_pidx, hw_cidx;
1675 	int ret;
1676 
1677 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1678 	if (ret)
1679 		goto out;
1680 
1681 	if (pidx != hw_pidx) {
1682 		u16 delta;
1683 		u32 val;
1684 
1685 		if (pidx >= hw_pidx)
1686 			delta = pidx - hw_pidx;
1687 		else
1688 			delta = size - hw_pidx + pidx;
1689 
1690 		if (is_t4(adap->params.chip))
1691 			val = PIDX_V(delta);
1692 		else
1693 			val = PIDX_T5_V(delta);
1694 		wmb();
1695 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1696 			     QID_V(qid) | val);
1697 	}
1698 out:
1699 	return ret;
1700 }
1701 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1702 
1703 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1704 {
1705 	struct adapter *adap;
1706 	u32 offset, memtype, memaddr;
1707 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1708 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1709 	int ret;
1710 
1711 	adap = netdev2adap(dev);
1712 
1713 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1714 
1715 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1716 	 * This code assumes that the memory is laid out starting at offset 0
1717 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1718 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1719 	 * MC0, and some have both MC0 and MC1.
1720 	 */
1721 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1722 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1723 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1724 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1725 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1726 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1727 
1728 	edc0_end = edc0_size;
1729 	edc1_end = edc0_end + edc1_size;
1730 	mc0_end = edc1_end + mc0_size;
1731 
1732 	if (offset < edc0_end) {
1733 		memtype = MEM_EDC0;
1734 		memaddr = offset;
1735 	} else if (offset < edc1_end) {
1736 		memtype = MEM_EDC1;
1737 		memaddr = offset - edc0_end;
1738 	} else {
1739 		if (offset < mc0_end) {
1740 			memtype = MEM_MC0;
1741 			memaddr = offset - edc1_end;
1742 		} else if (is_t5(adap->params.chip)) {
1743 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1744 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1745 			mc1_end = mc0_end + mc1_size;
1746 			if (offset < mc1_end) {
1747 				memtype = MEM_MC1;
1748 				memaddr = offset - mc0_end;
1749 			} else {
1750 				/* offset beyond the end of any memory */
1751 				goto err;
1752 			}
1753 		} else {
1754 			/* T4/T6 only has a single memory channel */
1755 			goto err;
1756 		}
1757 	}
1758 
1759 	spin_lock(&adap->win0_lock);
1760 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1761 	spin_unlock(&adap->win0_lock);
1762 	return ret;
1763 
1764 err:
1765 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1766 		stag, offset);
1767 	return -EINVAL;
1768 }
1769 EXPORT_SYMBOL(cxgb4_read_tpte);
1770 
1771 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1772 {
1773 	u32 hi, lo;
1774 	struct adapter *adap;
1775 
1776 	adap = netdev2adap(dev);
1777 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1778 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1779 
1780 	return ((u64)hi << 32) | (u64)lo;
1781 }
1782 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1783 
1784 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1785 			 unsigned int qid,
1786 			 enum cxgb4_bar2_qtype qtype,
1787 			 int user,
1788 			 u64 *pbar2_qoffset,
1789 			 unsigned int *pbar2_qid)
1790 {
1791 	return t4_bar2_sge_qregs(netdev2adap(dev),
1792 				 qid,
1793 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1794 				  ? T4_BAR2_QTYPE_EGRESS
1795 				  : T4_BAR2_QTYPE_INGRESS),
1796 				 user,
1797 				 pbar2_qoffset,
1798 				 pbar2_qid);
1799 }
1800 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1801 
1802 static struct pci_driver cxgb4_driver;
1803 
1804 static void check_neigh_update(struct neighbour *neigh)
1805 {
1806 	const struct device *parent;
1807 	const struct net_device *netdev = neigh->dev;
1808 
1809 	if (netdev->priv_flags & IFF_802_1Q_VLAN)
1810 		netdev = vlan_dev_real_dev(netdev);
1811 	parent = netdev->dev.parent;
1812 	if (parent && parent->driver == &cxgb4_driver.driver)
1813 		t4_l2t_update(dev_get_drvdata(parent), neigh);
1814 }
1815 
1816 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1817 		       void *data)
1818 {
1819 	switch (event) {
1820 	case NETEVENT_NEIGH_UPDATE:
1821 		check_neigh_update(data);
1822 		break;
1823 	case NETEVENT_REDIRECT:
1824 	default:
1825 		break;
1826 	}
1827 	return 0;
1828 }
1829 
1830 static bool netevent_registered;
1831 static struct notifier_block cxgb4_netevent_nb = {
1832 	.notifier_call = netevent_cb
1833 };
1834 
1835 static void drain_db_fifo(struct adapter *adap, int usecs)
1836 {
1837 	u32 v1, v2, lp_count, hp_count;
1838 
1839 	do {
1840 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1841 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1842 		if (is_t4(adap->params.chip)) {
1843 			lp_count = LP_COUNT_G(v1);
1844 			hp_count = HP_COUNT_G(v1);
1845 		} else {
1846 			lp_count = LP_COUNT_T5_G(v1);
1847 			hp_count = HP_COUNT_T5_G(v2);
1848 		}
1849 
1850 		if (lp_count == 0 && hp_count == 0)
1851 			break;
1852 		set_current_state(TASK_UNINTERRUPTIBLE);
1853 		schedule_timeout(usecs_to_jiffies(usecs));
1854 	} while (1);
1855 }
1856 
1857 static void disable_txq_db(struct sge_txq *q)
1858 {
1859 	unsigned long flags;
1860 
1861 	spin_lock_irqsave(&q->db_lock, flags);
1862 	q->db_disabled = 1;
1863 	spin_unlock_irqrestore(&q->db_lock, flags);
1864 }
1865 
1866 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1867 {
1868 	spin_lock_irq(&q->db_lock);
1869 	if (q->db_pidx_inc) {
1870 		/* Make sure that all writes to the TX descriptors
1871 		 * are committed before we tell HW about them.
1872 		 */
1873 		wmb();
1874 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1875 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1876 		q->db_pidx_inc = 0;
1877 	}
1878 	q->db_disabled = 0;
1879 	spin_unlock_irq(&q->db_lock);
1880 }
1881 
1882 static void disable_dbs(struct adapter *adap)
1883 {
1884 	int i;
1885 
1886 	for_each_ethrxq(&adap->sge, i)
1887 		disable_txq_db(&adap->sge.ethtxq[i].q);
1888 	if (is_offload(adap)) {
1889 		struct sge_uld_txq_info *txq_info =
1890 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1891 
1892 		if (txq_info) {
1893 			for_each_ofldtxq(&adap->sge, i) {
1894 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1895 
1896 				disable_txq_db(&txq->q);
1897 			}
1898 		}
1899 	}
1900 	for_each_port(adap, i)
1901 		disable_txq_db(&adap->sge.ctrlq[i].q);
1902 }
1903 
1904 static void enable_dbs(struct adapter *adap)
1905 {
1906 	int i;
1907 
1908 	for_each_ethrxq(&adap->sge, i)
1909 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1910 	if (is_offload(adap)) {
1911 		struct sge_uld_txq_info *txq_info =
1912 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1913 
1914 		if (txq_info) {
1915 			for_each_ofldtxq(&adap->sge, i) {
1916 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1917 
1918 				enable_txq_db(adap, &txq->q);
1919 			}
1920 		}
1921 	}
1922 	for_each_port(adap, i)
1923 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1924 }
1925 
1926 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1927 {
1928 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
1929 
1930 	if (adap->uld && adap->uld[type].handle)
1931 		adap->uld[type].control(adap->uld[type].handle, cmd);
1932 }
1933 
1934 static void process_db_full(struct work_struct *work)
1935 {
1936 	struct adapter *adap;
1937 
1938 	adap = container_of(work, struct adapter, db_full_task);
1939 
1940 	drain_db_fifo(adap, dbfifo_drain_delay);
1941 	enable_dbs(adap);
1942 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1943 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1944 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1945 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1946 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1947 	else
1948 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1949 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1950 }
1951 
1952 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1953 {
1954 	u16 hw_pidx, hw_cidx;
1955 	int ret;
1956 
1957 	spin_lock_irq(&q->db_lock);
1958 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1959 	if (ret)
1960 		goto out;
1961 	if (q->db_pidx != hw_pidx) {
1962 		u16 delta;
1963 		u32 val;
1964 
1965 		if (q->db_pidx >= hw_pidx)
1966 			delta = q->db_pidx - hw_pidx;
1967 		else
1968 			delta = q->size - hw_pidx + q->db_pidx;
1969 
1970 		if (is_t4(adap->params.chip))
1971 			val = PIDX_V(delta);
1972 		else
1973 			val = PIDX_T5_V(delta);
1974 		wmb();
1975 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1976 			     QID_V(q->cntxt_id) | val);
1977 	}
1978 out:
1979 	q->db_disabled = 0;
1980 	q->db_pidx_inc = 0;
1981 	spin_unlock_irq(&q->db_lock);
1982 	if (ret)
1983 		CH_WARN(adap, "DB drop recovery failed.\n");
1984 }
1985 
1986 static void recover_all_queues(struct adapter *adap)
1987 {
1988 	int i;
1989 
1990 	for_each_ethrxq(&adap->sge, i)
1991 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
1992 	if (is_offload(adap)) {
1993 		struct sge_uld_txq_info *txq_info =
1994 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1995 		if (txq_info) {
1996 			for_each_ofldtxq(&adap->sge, i) {
1997 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1998 
1999 				sync_txq_pidx(adap, &txq->q);
2000 			}
2001 		}
2002 	}
2003 	for_each_port(adap, i)
2004 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2005 }
2006 
2007 static void process_db_drop(struct work_struct *work)
2008 {
2009 	struct adapter *adap;
2010 
2011 	adap = container_of(work, struct adapter, db_drop_task);
2012 
2013 	if (is_t4(adap->params.chip)) {
2014 		drain_db_fifo(adap, dbfifo_drain_delay);
2015 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2016 		drain_db_fifo(adap, dbfifo_drain_delay);
2017 		recover_all_queues(adap);
2018 		drain_db_fifo(adap, dbfifo_drain_delay);
2019 		enable_dbs(adap);
2020 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2021 	} else if (is_t5(adap->params.chip)) {
2022 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2023 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2024 		u16 pidx_inc = dropped_db & 0x1fff;
2025 		u64 bar2_qoffset;
2026 		unsigned int bar2_qid;
2027 		int ret;
2028 
2029 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2030 					0, &bar2_qoffset, &bar2_qid);
2031 		if (ret)
2032 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2033 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2034 		else
2035 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2036 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2037 
2038 		/* Re-enable BAR2 WC */
2039 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2040 	}
2041 
2042 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2043 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2044 }
2045 
2046 void t4_db_full(struct adapter *adap)
2047 {
2048 	if (is_t4(adap->params.chip)) {
2049 		disable_dbs(adap);
2050 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2051 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2052 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2053 		queue_work(adap->workq, &adap->db_full_task);
2054 	}
2055 }
2056 
2057 void t4_db_dropped(struct adapter *adap)
2058 {
2059 	if (is_t4(adap->params.chip)) {
2060 		disable_dbs(adap);
2061 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2062 	}
2063 	queue_work(adap->workq, &adap->db_drop_task);
2064 }
2065 
2066 void t4_register_netevent_notifier(void)
2067 {
2068 	if (!netevent_registered) {
2069 		register_netevent_notifier(&cxgb4_netevent_nb);
2070 		netevent_registered = true;
2071 	}
2072 }
2073 
2074 static void detach_ulds(struct adapter *adap)
2075 {
2076 	unsigned int i;
2077 
2078 	mutex_lock(&uld_mutex);
2079 	list_del(&adap->list_node);
2080 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2081 		if (adap->uld && adap->uld[i].handle) {
2082 			adap->uld[i].state_change(adap->uld[i].handle,
2083 					     CXGB4_STATE_DETACH);
2084 			adap->uld[i].handle = NULL;
2085 		}
2086 	if (netevent_registered && list_empty(&adapter_list)) {
2087 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2088 		netevent_registered = false;
2089 	}
2090 	mutex_unlock(&uld_mutex);
2091 }
2092 
2093 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2094 {
2095 	unsigned int i;
2096 
2097 	mutex_lock(&uld_mutex);
2098 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2099 		if (adap->uld && adap->uld[i].handle)
2100 			adap->uld[i].state_change(adap->uld[i].handle,
2101 						  new_state);
2102 	mutex_unlock(&uld_mutex);
2103 }
2104 
2105 #if IS_ENABLED(CONFIG_IPV6)
2106 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2107 				   unsigned long event, void *data)
2108 {
2109 	struct inet6_ifaddr *ifa = data;
2110 	struct net_device *event_dev = ifa->idev->dev;
2111 	const struct device *parent = NULL;
2112 #if IS_ENABLED(CONFIG_BONDING)
2113 	struct adapter *adap;
2114 #endif
2115 	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2116 		event_dev = vlan_dev_real_dev(event_dev);
2117 #if IS_ENABLED(CONFIG_BONDING)
2118 	if (event_dev->flags & IFF_MASTER) {
2119 		list_for_each_entry(adap, &adapter_list, list_node) {
2120 			switch (event) {
2121 			case NETDEV_UP:
2122 				cxgb4_clip_get(adap->port[0],
2123 					       (const u32 *)ifa, 1);
2124 				break;
2125 			case NETDEV_DOWN:
2126 				cxgb4_clip_release(adap->port[0],
2127 						   (const u32 *)ifa, 1);
2128 				break;
2129 			default:
2130 				break;
2131 			}
2132 		}
2133 		return NOTIFY_OK;
2134 	}
2135 #endif
2136 
2137 	if (event_dev)
2138 		parent = event_dev->dev.parent;
2139 
2140 	if (parent && parent->driver == &cxgb4_driver.driver) {
2141 		switch (event) {
2142 		case NETDEV_UP:
2143 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2144 			break;
2145 		case NETDEV_DOWN:
2146 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2147 			break;
2148 		default:
2149 			break;
2150 		}
2151 	}
2152 	return NOTIFY_OK;
2153 }
2154 
2155 static bool inet6addr_registered;
2156 static struct notifier_block cxgb4_inet6addr_notifier = {
2157 	.notifier_call = cxgb4_inet6addr_handler
2158 };
2159 
2160 static void update_clip(const struct adapter *adap)
2161 {
2162 	int i;
2163 	struct net_device *dev;
2164 	int ret;
2165 
2166 	rcu_read_lock();
2167 
2168 	for (i = 0; i < MAX_NPORTS; i++) {
2169 		dev = adap->port[i];
2170 		ret = 0;
2171 
2172 		if (dev)
2173 			ret = cxgb4_update_root_dev_clip(dev);
2174 
2175 		if (ret < 0)
2176 			break;
2177 	}
2178 	rcu_read_unlock();
2179 }
2180 #endif /* IS_ENABLED(CONFIG_IPV6) */
2181 
2182 /**
2183  *	cxgb_up - enable the adapter
2184  *	@adap: adapter being enabled
2185  *
2186  *	Called when the first port is enabled, this function performs the
2187  *	actions necessary to make an adapter operational, such as completing
2188  *	the initialization of HW modules, and enabling interrupts.
2189  *
2190  *	Must be called with the rtnl lock held.
2191  */
2192 static int cxgb_up(struct adapter *adap)
2193 {
2194 	int err;
2195 
2196 	err = setup_sge_queues(adap);
2197 	if (err)
2198 		goto out;
2199 	err = setup_rss(adap);
2200 	if (err)
2201 		goto freeq;
2202 
2203 	if (adap->flags & USING_MSIX) {
2204 		name_msix_vecs(adap);
2205 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2206 				  adap->msix_info[0].desc, adap);
2207 		if (err)
2208 			goto irq_err;
2209 		err = request_msix_queue_irqs(adap);
2210 		if (err) {
2211 			free_irq(adap->msix_info[0].vec, adap);
2212 			goto irq_err;
2213 		}
2214 	} else {
2215 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2216 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2217 				  adap->port[0]->name, adap);
2218 		if (err)
2219 			goto irq_err;
2220 	}
2221 	enable_rx(adap);
2222 	t4_sge_start(adap);
2223 	t4_intr_enable(adap);
2224 	adap->flags |= FULL_INIT_DONE;
2225 	notify_ulds(adap, CXGB4_STATE_UP);
2226 #if IS_ENABLED(CONFIG_IPV6)
2227 	update_clip(adap);
2228 #endif
2229 	/* Initialize hash mac addr list*/
2230 	INIT_LIST_HEAD(&adap->mac_hlist);
2231  out:
2232 	return err;
2233  irq_err:
2234 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2235  freeq:
2236 	t4_free_sge_resources(adap);
2237 	goto out;
2238 }
2239 
2240 static void cxgb_down(struct adapter *adapter)
2241 {
2242 	cancel_work_sync(&adapter->tid_release_task);
2243 	cancel_work_sync(&adapter->db_full_task);
2244 	cancel_work_sync(&adapter->db_drop_task);
2245 	adapter->tid_release_task_busy = false;
2246 	adapter->tid_release_head = NULL;
2247 
2248 	t4_sge_stop(adapter);
2249 	t4_free_sge_resources(adapter);
2250 	adapter->flags &= ~FULL_INIT_DONE;
2251 }
2252 
2253 /*
2254  * net_device operations
2255  */
2256 static int cxgb_open(struct net_device *dev)
2257 {
2258 	int err;
2259 	struct port_info *pi = netdev_priv(dev);
2260 	struct adapter *adapter = pi->adapter;
2261 
2262 	netif_carrier_off(dev);
2263 
2264 	if (!(adapter->flags & FULL_INIT_DONE)) {
2265 		err = cxgb_up(adapter);
2266 		if (err < 0)
2267 			return err;
2268 	}
2269 
2270 	err = link_start(dev);
2271 	if (!err)
2272 		netif_tx_start_all_queues(dev);
2273 	return err;
2274 }
2275 
2276 static int cxgb_close(struct net_device *dev)
2277 {
2278 	struct port_info *pi = netdev_priv(dev);
2279 	struct adapter *adapter = pi->adapter;
2280 
2281 	netif_tx_stop_all_queues(dev);
2282 	netif_carrier_off(dev);
2283 	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2284 }
2285 
2286 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2287 		__be32 sip, __be16 sport, __be16 vlan,
2288 		unsigned int queue, unsigned char port, unsigned char mask)
2289 {
2290 	int ret;
2291 	struct filter_entry *f;
2292 	struct adapter *adap;
2293 	int i;
2294 	u8 *val;
2295 
2296 	adap = netdev2adap(dev);
2297 
2298 	/* Adjust stid to correct filter index */
2299 	stid -= adap->tids.sftid_base;
2300 	stid += adap->tids.nftids;
2301 
2302 	/* Check to make sure the filter requested is writable ...
2303 	 */
2304 	f = &adap->tids.ftid_tab[stid];
2305 	ret = writable_filter(f);
2306 	if (ret)
2307 		return ret;
2308 
2309 	/* Clear out any old resources being used by the filter before
2310 	 * we start constructing the new filter.
2311 	 */
2312 	if (f->valid)
2313 		clear_filter(adap, f);
2314 
2315 	/* Clear out filter specifications */
2316 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2317 	f->fs.val.lport = cpu_to_be16(sport);
2318 	f->fs.mask.lport  = ~0;
2319 	val = (u8 *)&sip;
2320 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2321 		for (i = 0; i < 4; i++) {
2322 			f->fs.val.lip[i] = val[i];
2323 			f->fs.mask.lip[i] = ~0;
2324 		}
2325 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2326 			f->fs.val.iport = port;
2327 			f->fs.mask.iport = mask;
2328 		}
2329 	}
2330 
2331 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2332 		f->fs.val.proto = IPPROTO_TCP;
2333 		f->fs.mask.proto = ~0;
2334 	}
2335 
2336 	f->fs.dirsteer = 1;
2337 	f->fs.iq = queue;
2338 	/* Mark filter as locked */
2339 	f->locked = 1;
2340 	f->fs.rpttid = 1;
2341 
2342 	ret = set_filter_wr(adap, stid);
2343 	if (ret) {
2344 		clear_filter(adap, f);
2345 		return ret;
2346 	}
2347 
2348 	return 0;
2349 }
2350 EXPORT_SYMBOL(cxgb4_create_server_filter);
2351 
2352 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2353 		unsigned int queue, bool ipv6)
2354 {
2355 	struct filter_entry *f;
2356 	struct adapter *adap;
2357 
2358 	adap = netdev2adap(dev);
2359 
2360 	/* Adjust stid to correct filter index */
2361 	stid -= adap->tids.sftid_base;
2362 	stid += adap->tids.nftids;
2363 
2364 	f = &adap->tids.ftid_tab[stid];
2365 	/* Unlock the filter */
2366 	f->locked = 0;
2367 
2368 	return delete_filter(adap, stid);
2369 }
2370 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2371 
2372 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2373 						struct rtnl_link_stats64 *ns)
2374 {
2375 	struct port_stats stats;
2376 	struct port_info *p = netdev_priv(dev);
2377 	struct adapter *adapter = p->adapter;
2378 
2379 	/* Block retrieving statistics during EEH error
2380 	 * recovery. Otherwise, the recovery might fail
2381 	 * and the PCI device will be removed permanently
2382 	 */
2383 	spin_lock(&adapter->stats_lock);
2384 	if (!netif_device_present(dev)) {
2385 		spin_unlock(&adapter->stats_lock);
2386 		return ns;
2387 	}
2388 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2389 				 &p->stats_base);
2390 	spin_unlock(&adapter->stats_lock);
2391 
2392 	ns->tx_bytes   = stats.tx_octets;
2393 	ns->tx_packets = stats.tx_frames;
2394 	ns->rx_bytes   = stats.rx_octets;
2395 	ns->rx_packets = stats.rx_frames;
2396 	ns->multicast  = stats.rx_mcast_frames;
2397 
2398 	/* detailed rx_errors */
2399 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2400 			       stats.rx_runt;
2401 	ns->rx_over_errors   = 0;
2402 	ns->rx_crc_errors    = stats.rx_fcs_err;
2403 	ns->rx_frame_errors  = stats.rx_symbol_err;
2404 	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2405 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2406 			       stats.rx_trunc0 + stats.rx_trunc1 +
2407 			       stats.rx_trunc2 + stats.rx_trunc3;
2408 	ns->rx_missed_errors = 0;
2409 
2410 	/* detailed tx_errors */
2411 	ns->tx_aborted_errors   = 0;
2412 	ns->tx_carrier_errors   = 0;
2413 	ns->tx_fifo_errors      = 0;
2414 	ns->tx_heartbeat_errors = 0;
2415 	ns->tx_window_errors    = 0;
2416 
2417 	ns->tx_errors = stats.tx_error_frames;
2418 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2419 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2420 	return ns;
2421 }
2422 
2423 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2424 {
2425 	unsigned int mbox;
2426 	int ret = 0, prtad, devad;
2427 	struct port_info *pi = netdev_priv(dev);
2428 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2429 
2430 	switch (cmd) {
2431 	case SIOCGMIIPHY:
2432 		if (pi->mdio_addr < 0)
2433 			return -EOPNOTSUPP;
2434 		data->phy_id = pi->mdio_addr;
2435 		break;
2436 	case SIOCGMIIREG:
2437 	case SIOCSMIIREG:
2438 		if (mdio_phy_id_is_c45(data->phy_id)) {
2439 			prtad = mdio_phy_id_prtad(data->phy_id);
2440 			devad = mdio_phy_id_devad(data->phy_id);
2441 		} else if (data->phy_id < 32) {
2442 			prtad = data->phy_id;
2443 			devad = 0;
2444 			data->reg_num &= 0x1f;
2445 		} else
2446 			return -EINVAL;
2447 
2448 		mbox = pi->adapter->pf;
2449 		if (cmd == SIOCGMIIREG)
2450 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2451 					 data->reg_num, &data->val_out);
2452 		else
2453 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2454 					 data->reg_num, data->val_in);
2455 		break;
2456 	case SIOCGHWTSTAMP:
2457 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2458 				    sizeof(pi->tstamp_config)) ?
2459 			-EFAULT : 0;
2460 	case SIOCSHWTSTAMP:
2461 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2462 				   sizeof(pi->tstamp_config)))
2463 			return -EFAULT;
2464 
2465 		switch (pi->tstamp_config.rx_filter) {
2466 		case HWTSTAMP_FILTER_NONE:
2467 			pi->rxtstamp = false;
2468 			break;
2469 		case HWTSTAMP_FILTER_ALL:
2470 			pi->rxtstamp = true;
2471 			break;
2472 		default:
2473 			pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2474 			return -ERANGE;
2475 		}
2476 
2477 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2478 				    sizeof(pi->tstamp_config)) ?
2479 			-EFAULT : 0;
2480 	default:
2481 		return -EOPNOTSUPP;
2482 	}
2483 	return ret;
2484 }
2485 
2486 static void cxgb_set_rxmode(struct net_device *dev)
2487 {
2488 	/* unfortunately we can't return errors to the stack */
2489 	set_rxmode(dev, -1, false);
2490 }
2491 
2492 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2493 {
2494 	int ret;
2495 	struct port_info *pi = netdev_priv(dev);
2496 
2497 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2498 			    -1, -1, -1, true);
2499 	if (!ret)
2500 		dev->mtu = new_mtu;
2501 	return ret;
2502 }
2503 
2504 #ifdef CONFIG_PCI_IOV
2505 static int dummy_open(struct net_device *dev)
2506 {
2507 	/* Turn carrier off since we don't have to transmit anything on this
2508 	 * interface.
2509 	 */
2510 	netif_carrier_off(dev);
2511 	return 0;
2512 }
2513 
2514 /* Fill MAC address that will be assigned by the FW */
2515 static void fill_vf_station_mac_addr(struct adapter *adap)
2516 {
2517 	unsigned int i;
2518 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2519 	int err;
2520 	u8 *na;
2521 	u16 a, b;
2522 
2523 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2524 	if (!err) {
2525 		na = adap->params.vpd.na;
2526 		for (i = 0; i < ETH_ALEN; i++)
2527 			hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2528 				      hex2val(na[2 * i + 1]));
2529 		a = (hw_addr[0] << 8) | hw_addr[1];
2530 		b = (hw_addr[1] << 8) | hw_addr[2];
2531 		a ^= b;
2532 		a |= 0x0200;    /* locally assigned Ethernet MAC address */
2533 		a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2534 		macaddr[0] = a >> 8;
2535 		macaddr[1] = a & 0xff;
2536 
2537 		for (i = 2; i < 5; i++)
2538 			macaddr[i] = hw_addr[i + 1];
2539 
2540 		for (i = 0; i < adap->num_vfs; i++) {
2541 			macaddr[5] = adap->pf * 16 + i;
2542 			ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2543 		}
2544 	}
2545 }
2546 
2547 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2548 {
2549 	struct port_info *pi = netdev_priv(dev);
2550 	struct adapter *adap = pi->adapter;
2551 	int ret;
2552 
2553 	/* verify MAC addr is valid */
2554 	if (!is_valid_ether_addr(mac)) {
2555 		dev_err(pi->adapter->pdev_dev,
2556 			"Invalid Ethernet address %pM for VF %d\n",
2557 			mac, vf);
2558 		return -EINVAL;
2559 	}
2560 
2561 	dev_info(pi->adapter->pdev_dev,
2562 		 "Setting MAC %pM on VF %d\n", mac, vf);
2563 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2564 	if (!ret)
2565 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2566 	return ret;
2567 }
2568 
2569 static int cxgb_get_vf_config(struct net_device *dev,
2570 			      int vf, struct ifla_vf_info *ivi)
2571 {
2572 	struct port_info *pi = netdev_priv(dev);
2573 	struct adapter *adap = pi->adapter;
2574 
2575 	if (vf >= adap->num_vfs)
2576 		return -EINVAL;
2577 	ivi->vf = vf;
2578 	ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2579 	return 0;
2580 }
2581 #endif
2582 
2583 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2584 {
2585 	int ret;
2586 	struct sockaddr *addr = p;
2587 	struct port_info *pi = netdev_priv(dev);
2588 
2589 	if (!is_valid_ether_addr(addr->sa_data))
2590 		return -EADDRNOTAVAIL;
2591 
2592 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2593 			    pi->xact_addr_filt, addr->sa_data, true, true);
2594 	if (ret < 0)
2595 		return ret;
2596 
2597 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2598 	pi->xact_addr_filt = ret;
2599 	return 0;
2600 }
2601 
2602 #ifdef CONFIG_NET_POLL_CONTROLLER
2603 static void cxgb_netpoll(struct net_device *dev)
2604 {
2605 	struct port_info *pi = netdev_priv(dev);
2606 	struct adapter *adap = pi->adapter;
2607 
2608 	if (adap->flags & USING_MSIX) {
2609 		int i;
2610 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2611 
2612 		for (i = pi->nqsets; i; i--, rx++)
2613 			t4_sge_intr_msix(0, &rx->rspq);
2614 	} else
2615 		t4_intr_handler(adap)(0, adap);
2616 }
2617 #endif
2618 
2619 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2620 {
2621 	struct port_info *pi = netdev_priv(dev);
2622 	struct adapter *adap = pi->adapter;
2623 	struct sched_class *e;
2624 	struct ch_sched_params p;
2625 	struct ch_sched_queue qe;
2626 	u32 req_rate;
2627 	int err = 0;
2628 
2629 	if (!can_sched(dev))
2630 		return -ENOTSUPP;
2631 
2632 	if (index < 0 || index > pi->nqsets - 1)
2633 		return -EINVAL;
2634 
2635 	if (!(adap->flags & FULL_INIT_DONE)) {
2636 		dev_err(adap->pdev_dev,
2637 			"Failed to rate limit on queue %d. Link Down?\n",
2638 			index);
2639 		return -EINVAL;
2640 	}
2641 
2642 	/* Convert from Mbps to Kbps */
2643 	req_rate = rate << 10;
2644 
2645 	/* Max rate is 10 Gbps */
2646 	if (req_rate >= SCHED_MAX_RATE_KBPS) {
2647 		dev_err(adap->pdev_dev,
2648 			"Invalid rate %u Mbps, Max rate is %u Gbps\n",
2649 			rate, SCHED_MAX_RATE_KBPS);
2650 		return -ERANGE;
2651 	}
2652 
2653 	/* First unbind the queue from any existing class */
2654 	memset(&qe, 0, sizeof(qe));
2655 	qe.queue = index;
2656 	qe.class = SCHED_CLS_NONE;
2657 
2658 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2659 	if (err) {
2660 		dev_err(adap->pdev_dev,
2661 			"Unbinding Queue %d on port %d fail. Err: %d\n",
2662 			index, pi->port_id, err);
2663 		return err;
2664 	}
2665 
2666 	/* Queue already unbound */
2667 	if (!req_rate)
2668 		return 0;
2669 
2670 	/* Fetch any available unused or matching scheduling class */
2671 	memset(&p, 0, sizeof(p));
2672 	p.type = SCHED_CLASS_TYPE_PACKET;
2673 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2674 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2675 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2676 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2677 	p.u.params.channel  = pi->tx_chan;
2678 	p.u.params.class    = SCHED_CLS_NONE;
2679 	p.u.params.minrate  = 0;
2680 	p.u.params.maxrate  = req_rate;
2681 	p.u.params.weight   = 0;
2682 	p.u.params.pktsize  = dev->mtu;
2683 
2684 	e = cxgb4_sched_class_alloc(dev, &p);
2685 	if (!e)
2686 		return -ENOMEM;
2687 
2688 	/* Bind the queue to a scheduling class */
2689 	memset(&qe, 0, sizeof(qe));
2690 	qe.queue = index;
2691 	qe.class = e->idx;
2692 
2693 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2694 	if (err)
2695 		dev_err(adap->pdev_dev,
2696 			"Queue rate limiting failed. Err: %d\n", err);
2697 	return err;
2698 }
2699 
2700 static int cxgb_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
2701 			 struct tc_to_netdev *tc)
2702 {
2703 	struct port_info *pi = netdev2pinfo(dev);
2704 	struct adapter *adap = netdev2adap(dev);
2705 
2706 	if (!(adap->flags & FULL_INIT_DONE)) {
2707 		dev_err(adap->pdev_dev,
2708 			"Failed to setup tc on port %d. Link Down?\n",
2709 			pi->port_id);
2710 		return -EINVAL;
2711 	}
2712 
2713 	if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) &&
2714 	    tc->type == TC_SETUP_CLSU32) {
2715 		switch (tc->cls_u32->command) {
2716 		case TC_CLSU32_NEW_KNODE:
2717 		case TC_CLSU32_REPLACE_KNODE:
2718 			return cxgb4_config_knode(dev, proto, tc->cls_u32);
2719 		case TC_CLSU32_DELETE_KNODE:
2720 			return cxgb4_delete_knode(dev, proto, tc->cls_u32);
2721 		default:
2722 			return -EOPNOTSUPP;
2723 		}
2724 	}
2725 
2726 	return -EOPNOTSUPP;
2727 }
2728 
2729 static const struct net_device_ops cxgb4_netdev_ops = {
2730 	.ndo_open             = cxgb_open,
2731 	.ndo_stop             = cxgb_close,
2732 	.ndo_start_xmit       = t4_eth_xmit,
2733 	.ndo_select_queue     =	cxgb_select_queue,
2734 	.ndo_get_stats64      = cxgb_get_stats,
2735 	.ndo_set_rx_mode      = cxgb_set_rxmode,
2736 	.ndo_set_mac_address  = cxgb_set_mac_addr,
2737 	.ndo_set_features     = cxgb_set_features,
2738 	.ndo_validate_addr    = eth_validate_addr,
2739 	.ndo_do_ioctl         = cxgb_ioctl,
2740 	.ndo_change_mtu       = cxgb_change_mtu,
2741 #ifdef CONFIG_NET_POLL_CONTROLLER
2742 	.ndo_poll_controller  = cxgb_netpoll,
2743 #endif
2744 #ifdef CONFIG_CHELSIO_T4_FCOE
2745 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
2746 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
2747 #endif /* CONFIG_CHELSIO_T4_FCOE */
2748 #ifdef CONFIG_NET_RX_BUSY_POLL
2749 	.ndo_busy_poll        = cxgb_busy_poll,
2750 #endif
2751 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
2752 	.ndo_setup_tc         = cxgb_setup_tc,
2753 };
2754 
2755 #ifdef CONFIG_PCI_IOV
2756 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
2757 	.ndo_open             = dummy_open,
2758 	.ndo_set_vf_mac       = cxgb_set_vf_mac,
2759 	.ndo_get_vf_config    = cxgb_get_vf_config,
2760 };
2761 #endif
2762 
2763 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2764 {
2765 	struct adapter *adapter = netdev2adap(dev);
2766 
2767 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
2768 	strlcpy(info->version, cxgb4_driver_version,
2769 		sizeof(info->version));
2770 	strlcpy(info->bus_info, pci_name(adapter->pdev),
2771 		sizeof(info->bus_info));
2772 }
2773 
2774 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
2775 	.get_drvinfo       = get_drvinfo,
2776 };
2777 
2778 void t4_fatal_err(struct adapter *adap)
2779 {
2780 	t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2781 	t4_intr_disable(adap);
2782 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2783 }
2784 
2785 static void setup_memwin(struct adapter *adap)
2786 {
2787 	u32 nic_win_base = t4_get_util_window(adap);
2788 
2789 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
2790 }
2791 
2792 static void setup_memwin_rdma(struct adapter *adap)
2793 {
2794 	if (adap->vres.ocq.size) {
2795 		u32 start;
2796 		unsigned int sz_kb;
2797 
2798 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
2799 		start &= PCI_BASE_ADDRESS_MEM_MASK;
2800 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2801 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
2802 		t4_write_reg(adap,
2803 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
2804 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
2805 		t4_write_reg(adap,
2806 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
2807 			     adap->vres.ocq.start);
2808 		t4_read_reg(adap,
2809 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
2810 	}
2811 }
2812 
2813 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
2814 {
2815 	u32 v;
2816 	int ret;
2817 
2818 	/* get device capabilities */
2819 	memset(c, 0, sizeof(*c));
2820 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2821 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
2822 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
2823 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
2824 	if (ret < 0)
2825 		return ret;
2826 
2827 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2828 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
2829 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
2830 	if (ret < 0)
2831 		return ret;
2832 
2833 	ret = t4_config_glbl_rss(adap, adap->pf,
2834 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2835 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
2836 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
2837 	if (ret < 0)
2838 		return ret;
2839 
2840 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
2841 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
2842 			  FW_CMD_CAP_PF);
2843 	if (ret < 0)
2844 		return ret;
2845 
2846 	t4_sge_init(adap);
2847 
2848 	/* tweak some settings */
2849 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
2850 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
2851 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
2852 	v = t4_read_reg(adap, TP_PIO_DATA_A);
2853 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
2854 
2855 	/* first 4 Tx modulation queues point to consecutive Tx channels */
2856 	adap->params.tp.tx_modq_map = 0xE4;
2857 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
2858 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
2859 
2860 	/* associate each Tx modulation queue with consecutive Tx channels */
2861 	v = 0x84218421;
2862 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2863 			  &v, 1, TP_TX_SCHED_HDR_A);
2864 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2865 			  &v, 1, TP_TX_SCHED_FIFO_A);
2866 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2867 			  &v, 1, TP_TX_SCHED_PCMD_A);
2868 
2869 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
2870 	if (is_offload(adap)) {
2871 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
2872 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2873 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2874 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2875 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2876 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
2877 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2878 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2879 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2880 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2881 	}
2882 
2883 	/* get basic stuff going */
2884 	return t4_early_init(adap, adap->pf);
2885 }
2886 
2887 /*
2888  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
2889  */
2890 #define MAX_ATIDS 8192U
2891 
2892 /*
2893  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2894  *
2895  * If the firmware we're dealing with has Configuration File support, then
2896  * we use that to perform all configuration
2897  */
2898 
2899 /*
2900  * Tweak configuration based on module parameters, etc.  Most of these have
2901  * defaults assigned to them by Firmware Configuration Files (if we're using
2902  * them) but need to be explicitly set if we're using hard-coded
2903  * initialization.  But even in the case of using Firmware Configuration
2904  * Files, we'd like to expose the ability to change these via module
2905  * parameters so these are essentially common tweaks/settings for
2906  * Configuration Files and hard-coded initialization ...
2907  */
2908 static int adap_init0_tweaks(struct adapter *adapter)
2909 {
2910 	/*
2911 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
2912 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
2913 	 * 64B Cache Line Size ...
2914 	 */
2915 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
2916 
2917 	/*
2918 	 * Process module parameters which affect early initialization.
2919 	 */
2920 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
2921 		dev_err(&adapter->pdev->dev,
2922 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
2923 			rx_dma_offset);
2924 		rx_dma_offset = 2;
2925 	}
2926 	t4_set_reg_field(adapter, SGE_CONTROL_A,
2927 			 PKTSHIFT_V(PKTSHIFT_M),
2928 			 PKTSHIFT_V(rx_dma_offset));
2929 
2930 	/*
2931 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
2932 	 * adds the pseudo header itself.
2933 	 */
2934 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
2935 			       CSUM_HAS_PSEUDO_HDR_F, 0);
2936 
2937 	return 0;
2938 }
2939 
2940 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
2941  * unto themselves and they contain their own firmware to perform their
2942  * tasks ...
2943  */
2944 static int phy_aq1202_version(const u8 *phy_fw_data,
2945 			      size_t phy_fw_size)
2946 {
2947 	int offset;
2948 
2949 	/* At offset 0x8 you're looking for the primary image's
2950 	 * starting offset which is 3 Bytes wide
2951 	 *
2952 	 * At offset 0xa of the primary image, you look for the offset
2953 	 * of the DRAM segment which is 3 Bytes wide.
2954 	 *
2955 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
2956 	 * wide
2957 	 */
2958 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
2959 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
2960 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
2961 
2962 	offset = le24(phy_fw_data + 0x8) << 12;
2963 	offset = le24(phy_fw_data + offset + 0xa);
2964 	return be16(phy_fw_data + offset + 0x27e);
2965 
2966 	#undef be16
2967 	#undef le16
2968 	#undef le24
2969 }
2970 
2971 static struct info_10gbt_phy_fw {
2972 	unsigned int phy_fw_id;		/* PCI Device ID */
2973 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
2974 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
2975 	int phy_flash;			/* Has FLASH for PHY Firmware */
2976 } phy_info_array[] = {
2977 	{
2978 		PHY_AQ1202_DEVICEID,
2979 		PHY_AQ1202_FIRMWARE,
2980 		phy_aq1202_version,
2981 		1,
2982 	},
2983 	{
2984 		PHY_BCM84834_DEVICEID,
2985 		PHY_BCM84834_FIRMWARE,
2986 		NULL,
2987 		0,
2988 	},
2989 	{ 0, NULL, NULL },
2990 };
2991 
2992 static struct info_10gbt_phy_fw *find_phy_info(int devid)
2993 {
2994 	int i;
2995 
2996 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
2997 		if (phy_info_array[i].phy_fw_id == devid)
2998 			return &phy_info_array[i];
2999 	}
3000 	return NULL;
3001 }
3002 
3003 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3004  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3005  * we return a negative error number.  If we transfer new firmware we return 1
3006  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3007  */
3008 static int adap_init0_phy(struct adapter *adap)
3009 {
3010 	const struct firmware *phyf;
3011 	int ret;
3012 	struct info_10gbt_phy_fw *phy_info;
3013 
3014 	/* Use the device ID to determine which PHY file to flash.
3015 	 */
3016 	phy_info = find_phy_info(adap->pdev->device);
3017 	if (!phy_info) {
3018 		dev_warn(adap->pdev_dev,
3019 			 "No PHY Firmware file found for this PHY\n");
3020 		return -EOPNOTSUPP;
3021 	}
3022 
3023 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3024 	 * use that. The adapter firmware provides us with a memory buffer
3025 	 * where we can load a PHY firmware file from the host if we want to
3026 	 * override the PHY firmware File in flash.
3027 	 */
3028 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3029 				      adap->pdev_dev);
3030 	if (ret < 0) {
3031 		/* For adapters without FLASH attached to PHY for their
3032 		 * firmware, it's obviously a fatal error if we can't get the
3033 		 * firmware to the adapter.  For adapters with PHY firmware
3034 		 * FLASH storage, it's worth a warning if we can't find the
3035 		 * PHY Firmware but we'll neuter the error ...
3036 		 */
3037 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3038 			"/lib/firmware/%s, error %d\n",
3039 			phy_info->phy_fw_file, -ret);
3040 		if (phy_info->phy_flash) {
3041 			int cur_phy_fw_ver = 0;
3042 
3043 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3044 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3045 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3046 			ret = 0;
3047 		}
3048 
3049 		return ret;
3050 	}
3051 
3052 	/* Load PHY Firmware onto adapter.
3053 	 */
3054 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3055 			     phy_info->phy_fw_version,
3056 			     (u8 *)phyf->data, phyf->size);
3057 	if (ret < 0)
3058 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3059 			-ret);
3060 	else if (ret > 0) {
3061 		int new_phy_fw_ver = 0;
3062 
3063 		if (phy_info->phy_fw_version)
3064 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3065 								  phyf->size);
3066 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3067 			 "Firmware /lib/firmware/%s, version %#x\n",
3068 			 phy_info->phy_fw_file, new_phy_fw_ver);
3069 	}
3070 
3071 	release_firmware(phyf);
3072 
3073 	return ret;
3074 }
3075 
3076 /*
3077  * Attempt to initialize the adapter via a Firmware Configuration File.
3078  */
3079 static int adap_init0_config(struct adapter *adapter, int reset)
3080 {
3081 	struct fw_caps_config_cmd caps_cmd;
3082 	const struct firmware *cf;
3083 	unsigned long mtype = 0, maddr = 0;
3084 	u32 finiver, finicsum, cfcsum;
3085 	int ret;
3086 	int config_issued = 0;
3087 	char *fw_config_file, fw_config_file_path[256];
3088 	char *config_name = NULL;
3089 
3090 	/*
3091 	 * Reset device if necessary.
3092 	 */
3093 	if (reset) {
3094 		ret = t4_fw_reset(adapter, adapter->mbox,
3095 				  PIORSTMODE_F | PIORST_F);
3096 		if (ret < 0)
3097 			goto bye;
3098 	}
3099 
3100 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3101 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3102 	 * to be performed after any global adapter RESET above since some
3103 	 * PHYs only have local RAM copies of the PHY firmware.
3104 	 */
3105 	if (is_10gbt_device(adapter->pdev->device)) {
3106 		ret = adap_init0_phy(adapter);
3107 		if (ret < 0)
3108 			goto bye;
3109 	}
3110 	/*
3111 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3112 	 * then use that.  Otherwise, use the configuration file stored
3113 	 * in the adapter flash ...
3114 	 */
3115 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3116 	case CHELSIO_T4:
3117 		fw_config_file = FW4_CFNAME;
3118 		break;
3119 	case CHELSIO_T5:
3120 		fw_config_file = FW5_CFNAME;
3121 		break;
3122 	case CHELSIO_T6:
3123 		fw_config_file = FW6_CFNAME;
3124 		break;
3125 	default:
3126 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3127 		       adapter->pdev->device);
3128 		ret = -EINVAL;
3129 		goto bye;
3130 	}
3131 
3132 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3133 	if (ret < 0) {
3134 		config_name = "On FLASH";
3135 		mtype = FW_MEMTYPE_CF_FLASH;
3136 		maddr = t4_flash_cfg_addr(adapter);
3137 	} else {
3138 		u32 params[7], val[7];
3139 
3140 		sprintf(fw_config_file_path,
3141 			"/lib/firmware/%s", fw_config_file);
3142 		config_name = fw_config_file_path;
3143 
3144 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3145 			ret = -ENOMEM;
3146 		else {
3147 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3148 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3149 			ret = t4_query_params(adapter, adapter->mbox,
3150 					      adapter->pf, 0, 1, params, val);
3151 			if (ret == 0) {
3152 				/*
3153 				 * For t4_memory_rw() below addresses and
3154 				 * sizes have to be in terms of multiples of 4
3155 				 * bytes.  So, if the Configuration File isn't
3156 				 * a multiple of 4 bytes in length we'll have
3157 				 * to write that out separately since we can't
3158 				 * guarantee that the bytes following the
3159 				 * residual byte in the buffer returned by
3160 				 * request_firmware() are zeroed out ...
3161 				 */
3162 				size_t resid = cf->size & 0x3;
3163 				size_t size = cf->size & ~0x3;
3164 				__be32 *data = (__be32 *)cf->data;
3165 
3166 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3167 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3168 
3169 				spin_lock(&adapter->win0_lock);
3170 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3171 						   size, data, T4_MEMORY_WRITE);
3172 				if (ret == 0 && resid != 0) {
3173 					union {
3174 						__be32 word;
3175 						char buf[4];
3176 					} last;
3177 					int i;
3178 
3179 					last.word = data[size >> 2];
3180 					for (i = resid; i < 4; i++)
3181 						last.buf[i] = 0;
3182 					ret = t4_memory_rw(adapter, 0, mtype,
3183 							   maddr + size,
3184 							   4, &last.word,
3185 							   T4_MEMORY_WRITE);
3186 				}
3187 				spin_unlock(&adapter->win0_lock);
3188 			}
3189 		}
3190 
3191 		release_firmware(cf);
3192 		if (ret)
3193 			goto bye;
3194 	}
3195 
3196 	/*
3197 	 * Issue a Capability Configuration command to the firmware to get it
3198 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3199 	 * because we want the ability to modify various features after we've
3200 	 * processed the configuration file ...
3201 	 */
3202 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3203 	caps_cmd.op_to_write =
3204 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3205 		      FW_CMD_REQUEST_F |
3206 		      FW_CMD_READ_F);
3207 	caps_cmd.cfvalid_to_len16 =
3208 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3209 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3210 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3211 		      FW_LEN16(caps_cmd));
3212 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3213 			 &caps_cmd);
3214 
3215 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3216 	 * Configuration File in FLASH), our last gasp effort is to use the
3217 	 * Firmware Configuration File which is embedded in the firmware.  A
3218 	 * very few early versions of the firmware didn't have one embedded
3219 	 * but we can ignore those.
3220 	 */
3221 	if (ret == -ENOENT) {
3222 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3223 		caps_cmd.op_to_write =
3224 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3225 					FW_CMD_REQUEST_F |
3226 					FW_CMD_READ_F);
3227 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3228 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3229 				sizeof(caps_cmd), &caps_cmd);
3230 		config_name = "Firmware Default";
3231 	}
3232 
3233 	config_issued = 1;
3234 	if (ret < 0)
3235 		goto bye;
3236 
3237 	finiver = ntohl(caps_cmd.finiver);
3238 	finicsum = ntohl(caps_cmd.finicsum);
3239 	cfcsum = ntohl(caps_cmd.cfcsum);
3240 	if (finicsum != cfcsum)
3241 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3242 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3243 			 finicsum, cfcsum);
3244 
3245 	/*
3246 	 * And now tell the firmware to use the configuration we just loaded.
3247 	 */
3248 	caps_cmd.op_to_write =
3249 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3250 		      FW_CMD_REQUEST_F |
3251 		      FW_CMD_WRITE_F);
3252 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3253 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3254 			 NULL);
3255 	if (ret < 0)
3256 		goto bye;
3257 
3258 	/*
3259 	 * Tweak configuration based on system architecture, module
3260 	 * parameters, etc.
3261 	 */
3262 	ret = adap_init0_tweaks(adapter);
3263 	if (ret < 0)
3264 		goto bye;
3265 
3266 	/*
3267 	 * And finally tell the firmware to initialize itself using the
3268 	 * parameters from the Configuration File.
3269 	 */
3270 	ret = t4_fw_initialize(adapter, adapter->mbox);
3271 	if (ret < 0)
3272 		goto bye;
3273 
3274 	/* Emit Firmware Configuration File information and return
3275 	 * successfully.
3276 	 */
3277 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3278 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3279 		 config_name, finiver, cfcsum);
3280 	return 0;
3281 
3282 	/*
3283 	 * Something bad happened.  Return the error ...  (If the "error"
3284 	 * is that there's no Configuration File on the adapter we don't
3285 	 * want to issue a warning since this is fairly common.)
3286 	 */
3287 bye:
3288 	if (config_issued && ret != -ENOENT)
3289 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3290 			 config_name, -ret);
3291 	return ret;
3292 }
3293 
3294 static struct fw_info fw_info_array[] = {
3295 	{
3296 		.chip = CHELSIO_T4,
3297 		.fs_name = FW4_CFNAME,
3298 		.fw_mod_name = FW4_FNAME,
3299 		.fw_hdr = {
3300 			.chip = FW_HDR_CHIP_T4,
3301 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3302 			.intfver_nic = FW_INTFVER(T4, NIC),
3303 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3304 			.intfver_ri = FW_INTFVER(T4, RI),
3305 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3306 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3307 		},
3308 	}, {
3309 		.chip = CHELSIO_T5,
3310 		.fs_name = FW5_CFNAME,
3311 		.fw_mod_name = FW5_FNAME,
3312 		.fw_hdr = {
3313 			.chip = FW_HDR_CHIP_T5,
3314 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3315 			.intfver_nic = FW_INTFVER(T5, NIC),
3316 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3317 			.intfver_ri = FW_INTFVER(T5, RI),
3318 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3319 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3320 		},
3321 	}, {
3322 		.chip = CHELSIO_T6,
3323 		.fs_name = FW6_CFNAME,
3324 		.fw_mod_name = FW6_FNAME,
3325 		.fw_hdr = {
3326 			.chip = FW_HDR_CHIP_T6,
3327 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3328 			.intfver_nic = FW_INTFVER(T6, NIC),
3329 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3330 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3331 			.intfver_ri = FW_INTFVER(T6, RI),
3332 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3333 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3334 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3335 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3336 		},
3337 	}
3338 
3339 };
3340 
3341 static struct fw_info *find_fw_info(int chip)
3342 {
3343 	int i;
3344 
3345 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3346 		if (fw_info_array[i].chip == chip)
3347 			return &fw_info_array[i];
3348 	}
3349 	return NULL;
3350 }
3351 
3352 /*
3353  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3354  */
3355 static int adap_init0(struct adapter *adap)
3356 {
3357 	int ret;
3358 	u32 v, port_vec;
3359 	enum dev_state state;
3360 	u32 params[7], val[7];
3361 	struct fw_caps_config_cmd caps_cmd;
3362 	int reset = 1;
3363 
3364 	/* Grab Firmware Device Log parameters as early as possible so we have
3365 	 * access to it for debugging, etc.
3366 	 */
3367 	ret = t4_init_devlog_params(adap);
3368 	if (ret < 0)
3369 		return ret;
3370 
3371 	/* Contact FW, advertising Master capability */
3372 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3373 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3374 	if (ret < 0) {
3375 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3376 			ret);
3377 		return ret;
3378 	}
3379 	if (ret == adap->mbox)
3380 		adap->flags |= MASTER_PF;
3381 
3382 	/*
3383 	 * If we're the Master PF Driver and the device is uninitialized,
3384 	 * then let's consider upgrading the firmware ...  (We always want
3385 	 * to check the firmware version number in order to A. get it for
3386 	 * later reporting and B. to warn if the currently loaded firmware
3387 	 * is excessively mismatched relative to the driver.)
3388 	 */
3389 	t4_get_fw_version(adap, &adap->params.fw_vers);
3390 	t4_get_bs_version(adap, &adap->params.bs_vers);
3391 	t4_get_tp_version(adap, &adap->params.tp_vers);
3392 	t4_get_exprom_version(adap, &adap->params.er_vers);
3393 
3394 	ret = t4_check_fw_version(adap);
3395 	/* If firmware is too old (not supported by driver) force an update. */
3396 	if (ret)
3397 		state = DEV_STATE_UNINIT;
3398 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3399 		struct fw_info *fw_info;
3400 		struct fw_hdr *card_fw;
3401 		const struct firmware *fw;
3402 		const u8 *fw_data = NULL;
3403 		unsigned int fw_size = 0;
3404 
3405 		/* This is the firmware whose headers the driver was compiled
3406 		 * against
3407 		 */
3408 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3409 		if (fw_info == NULL) {
3410 			dev_err(adap->pdev_dev,
3411 				"unable to get firmware info for chip %d.\n",
3412 				CHELSIO_CHIP_VERSION(adap->params.chip));
3413 			return -EINVAL;
3414 		}
3415 
3416 		/* allocate memory to read the header of the firmware on the
3417 		 * card
3418 		 */
3419 		card_fw = t4_alloc_mem(sizeof(*card_fw));
3420 
3421 		/* Get FW from from /lib/firmware/ */
3422 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3423 				       adap->pdev_dev);
3424 		if (ret < 0) {
3425 			dev_err(adap->pdev_dev,
3426 				"unable to load firmware image %s, error %d\n",
3427 				fw_info->fw_mod_name, ret);
3428 		} else {
3429 			fw_data = fw->data;
3430 			fw_size = fw->size;
3431 		}
3432 
3433 		/* upgrade FW logic */
3434 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3435 				 state, &reset);
3436 
3437 		/* Cleaning up */
3438 		release_firmware(fw);
3439 		t4_free_mem(card_fw);
3440 
3441 		if (ret < 0)
3442 			goto bye;
3443 	}
3444 
3445 	/*
3446 	 * Grab VPD parameters.  This should be done after we establish a
3447 	 * connection to the firmware since some of the VPD parameters
3448 	 * (notably the Core Clock frequency) are retrieved via requests to
3449 	 * the firmware.  On the other hand, we need these fairly early on
3450 	 * so we do this right after getting ahold of the firmware.
3451 	 */
3452 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3453 	if (ret < 0)
3454 		goto bye;
3455 
3456 	/*
3457 	 * Find out what ports are available to us.  Note that we need to do
3458 	 * this before calling adap_init0_no_config() since it needs nports
3459 	 * and portvec ...
3460 	 */
3461 	v =
3462 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3463 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3464 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3465 	if (ret < 0)
3466 		goto bye;
3467 
3468 	adap->params.nports = hweight32(port_vec);
3469 	adap->params.portvec = port_vec;
3470 
3471 	/* If the firmware is initialized already, emit a simply note to that
3472 	 * effect. Otherwise, it's time to try initializing the adapter.
3473 	 */
3474 	if (state == DEV_STATE_INIT) {
3475 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3476 			 "Adapter already initialized\n",
3477 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3478 	} else {
3479 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3480 			 "Initializing adapter\n");
3481 
3482 		/* Find out whether we're dealing with a version of the
3483 		 * firmware which has configuration file support.
3484 		 */
3485 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3486 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3487 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3488 				      params, val);
3489 
3490 		/* If the firmware doesn't support Configuration Files,
3491 		 * return an error.
3492 		 */
3493 		if (ret < 0) {
3494 			dev_err(adap->pdev_dev, "firmware doesn't support "
3495 				"Firmware Configuration Files\n");
3496 			goto bye;
3497 		}
3498 
3499 		/* The firmware provides us with a memory buffer where we can
3500 		 * load a Configuration File from the host if we want to
3501 		 * override the Configuration File in flash.
3502 		 */
3503 		ret = adap_init0_config(adap, reset);
3504 		if (ret == -ENOENT) {
3505 			dev_err(adap->pdev_dev, "no Configuration File "
3506 				"present on adapter.\n");
3507 			goto bye;
3508 		}
3509 		if (ret < 0) {
3510 			dev_err(adap->pdev_dev, "could not initialize "
3511 				"adapter, error %d\n", -ret);
3512 			goto bye;
3513 		}
3514 	}
3515 
3516 	/* Give the SGE code a chance to pull in anything that it needs ...
3517 	 * Note that this must be called after we retrieve our VPD parameters
3518 	 * in order to know how to convert core ticks to seconds, etc.
3519 	 */
3520 	ret = t4_sge_init(adap);
3521 	if (ret < 0)
3522 		goto bye;
3523 
3524 	if (is_bypass_device(adap->pdev->device))
3525 		adap->params.bypass = 1;
3526 
3527 	/*
3528 	 * Grab some of our basic fundamental operating parameters.
3529 	 */
3530 #define FW_PARAM_DEV(param) \
3531 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3532 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3533 
3534 #define FW_PARAM_PFVF(param) \
3535 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3536 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3537 	FW_PARAMS_PARAM_Y_V(0) | \
3538 	FW_PARAMS_PARAM_Z_V(0)
3539 
3540 	params[0] = FW_PARAM_PFVF(EQ_START);
3541 	params[1] = FW_PARAM_PFVF(L2T_START);
3542 	params[2] = FW_PARAM_PFVF(L2T_END);
3543 	params[3] = FW_PARAM_PFVF(FILTER_START);
3544 	params[4] = FW_PARAM_PFVF(FILTER_END);
3545 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3546 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3547 	if (ret < 0)
3548 		goto bye;
3549 	adap->sge.egr_start = val[0];
3550 	adap->l2t_start = val[1];
3551 	adap->l2t_end = val[2];
3552 	adap->tids.ftid_base = val[3];
3553 	adap->tids.nftids = val[4] - val[3] + 1;
3554 	adap->sge.ingr_start = val[5];
3555 
3556 	/* qids (ingress/egress) returned from firmware can be anywhere
3557 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3558 	 * Hence driver needs to allocate memory for this range to
3559 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3560 	 * in FW_EQ_*_CMD.alloc command.
3561 	 */
3562 	params[0] = FW_PARAM_PFVF(EQ_END);
3563 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3564 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3565 	if (ret < 0)
3566 		goto bye;
3567 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3568 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3569 
3570 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3571 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3572 	if (!adap->sge.egr_map) {
3573 		ret = -ENOMEM;
3574 		goto bye;
3575 	}
3576 
3577 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3578 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3579 	if (!adap->sge.ingr_map) {
3580 		ret = -ENOMEM;
3581 		goto bye;
3582 	}
3583 
3584 	/* Allocate the memory for the vaious egress queue bitmaps
3585 	 * ie starving_fl, txq_maperr and blocked_fl.
3586 	 */
3587 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3588 					sizeof(long), GFP_KERNEL);
3589 	if (!adap->sge.starving_fl) {
3590 		ret = -ENOMEM;
3591 		goto bye;
3592 	}
3593 
3594 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3595 				       sizeof(long), GFP_KERNEL);
3596 	if (!adap->sge.txq_maperr) {
3597 		ret = -ENOMEM;
3598 		goto bye;
3599 	}
3600 
3601 #ifdef CONFIG_DEBUG_FS
3602 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3603 				       sizeof(long), GFP_KERNEL);
3604 	if (!adap->sge.blocked_fl) {
3605 		ret = -ENOMEM;
3606 		goto bye;
3607 	}
3608 #endif
3609 
3610 	params[0] = FW_PARAM_PFVF(CLIP_START);
3611 	params[1] = FW_PARAM_PFVF(CLIP_END);
3612 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3613 	if (ret < 0)
3614 		goto bye;
3615 	adap->clipt_start = val[0];
3616 	adap->clipt_end = val[1];
3617 
3618 	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
3619 	 * Classes supported by the hardware/firmware so we hard code it here
3620 	 * for now.
3621 	 */
3622 	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3623 
3624 	/* query params related to active filter region */
3625 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3626 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3627 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3628 	/* If Active filter size is set we enable establishing
3629 	 * offload connection through firmware work request
3630 	 */
3631 	if ((val[0] != val[1]) && (ret >= 0)) {
3632 		adap->flags |= FW_OFLD_CONN;
3633 		adap->tids.aftid_base = val[0];
3634 		adap->tids.aftid_end = val[1];
3635 	}
3636 
3637 	/* If we're running on newer firmware, let it know that we're
3638 	 * prepared to deal with encapsulated CPL messages.  Older
3639 	 * firmware won't understand this and we'll just get
3640 	 * unencapsulated messages ...
3641 	 */
3642 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3643 	val[0] = 1;
3644 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3645 
3646 	/*
3647 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3648 	 * capability.  Earlier versions of the firmware didn't have the
3649 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3650 	 * permission to use ULPTX MEMWRITE DSGL.
3651 	 */
3652 	if (is_t4(adap->params.chip)) {
3653 		adap->params.ulptx_memwrite_dsgl = false;
3654 	} else {
3655 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3656 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3657 				      1, params, val);
3658 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3659 	}
3660 
3661 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
3662 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
3663 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3664 			      1, params, val);
3665 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
3666 
3667 	/*
3668 	 * Get device capabilities so we can determine what resources we need
3669 	 * to manage.
3670 	 */
3671 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3672 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3673 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3674 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3675 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3676 			 &caps_cmd);
3677 	if (ret < 0)
3678 		goto bye;
3679 
3680 	if (caps_cmd.ofldcaps) {
3681 		/* query offload-related parameters */
3682 		params[0] = FW_PARAM_DEV(NTID);
3683 		params[1] = FW_PARAM_PFVF(SERVER_START);
3684 		params[2] = FW_PARAM_PFVF(SERVER_END);
3685 		params[3] = FW_PARAM_PFVF(TDDP_START);
3686 		params[4] = FW_PARAM_PFVF(TDDP_END);
3687 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3688 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3689 				      params, val);
3690 		if (ret < 0)
3691 			goto bye;
3692 		adap->tids.ntids = val[0];
3693 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3694 		adap->tids.stid_base = val[1];
3695 		adap->tids.nstids = val[2] - val[1] + 1;
3696 		/*
3697 		 * Setup server filter region. Divide the available filter
3698 		 * region into two parts. Regular filters get 1/3rd and server
3699 		 * filters get 2/3rd part. This is only enabled if workarond
3700 		 * path is enabled.
3701 		 * 1. For regular filters.
3702 		 * 2. Server filter: This are special filters which are used
3703 		 * to redirect SYN packets to offload queue.
3704 		 */
3705 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3706 			adap->tids.sftid_base = adap->tids.ftid_base +
3707 					DIV_ROUND_UP(adap->tids.nftids, 3);
3708 			adap->tids.nsftids = adap->tids.nftids -
3709 					 DIV_ROUND_UP(adap->tids.nftids, 3);
3710 			adap->tids.nftids = adap->tids.sftid_base -
3711 						adap->tids.ftid_base;
3712 		}
3713 		adap->vres.ddp.start = val[3];
3714 		adap->vres.ddp.size = val[4] - val[3] + 1;
3715 		adap->params.ofldq_wr_cred = val[5];
3716 
3717 		adap->params.offload = 1;
3718 		adap->num_ofld_uld += 1;
3719 	}
3720 	if (caps_cmd.rdmacaps) {
3721 		params[0] = FW_PARAM_PFVF(STAG_START);
3722 		params[1] = FW_PARAM_PFVF(STAG_END);
3723 		params[2] = FW_PARAM_PFVF(RQ_START);
3724 		params[3] = FW_PARAM_PFVF(RQ_END);
3725 		params[4] = FW_PARAM_PFVF(PBL_START);
3726 		params[5] = FW_PARAM_PFVF(PBL_END);
3727 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3728 				      params, val);
3729 		if (ret < 0)
3730 			goto bye;
3731 		adap->vres.stag.start = val[0];
3732 		adap->vres.stag.size = val[1] - val[0] + 1;
3733 		adap->vres.rq.start = val[2];
3734 		adap->vres.rq.size = val[3] - val[2] + 1;
3735 		adap->vres.pbl.start = val[4];
3736 		adap->vres.pbl.size = val[5] - val[4] + 1;
3737 
3738 		params[0] = FW_PARAM_PFVF(SQRQ_START);
3739 		params[1] = FW_PARAM_PFVF(SQRQ_END);
3740 		params[2] = FW_PARAM_PFVF(CQ_START);
3741 		params[3] = FW_PARAM_PFVF(CQ_END);
3742 		params[4] = FW_PARAM_PFVF(OCQ_START);
3743 		params[5] = FW_PARAM_PFVF(OCQ_END);
3744 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3745 				      val);
3746 		if (ret < 0)
3747 			goto bye;
3748 		adap->vres.qp.start = val[0];
3749 		adap->vres.qp.size = val[1] - val[0] + 1;
3750 		adap->vres.cq.start = val[2];
3751 		adap->vres.cq.size = val[3] - val[2] + 1;
3752 		adap->vres.ocq.start = val[4];
3753 		adap->vres.ocq.size = val[5] - val[4] + 1;
3754 
3755 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3756 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3757 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3758 				      val);
3759 		if (ret < 0) {
3760 			adap->params.max_ordird_qp = 8;
3761 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3762 			ret = 0;
3763 		} else {
3764 			adap->params.max_ordird_qp = val[0];
3765 			adap->params.max_ird_adapter = val[1];
3766 		}
3767 		dev_info(adap->pdev_dev,
3768 			 "max_ordird_qp %d max_ird_adapter %d\n",
3769 			 adap->params.max_ordird_qp,
3770 			 adap->params.max_ird_adapter);
3771 		adap->num_ofld_uld += 2;
3772 	}
3773 	if (caps_cmd.iscsicaps) {
3774 		params[0] = FW_PARAM_PFVF(ISCSI_START);
3775 		params[1] = FW_PARAM_PFVF(ISCSI_END);
3776 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3777 				      params, val);
3778 		if (ret < 0)
3779 			goto bye;
3780 		adap->vres.iscsi.start = val[0];
3781 		adap->vres.iscsi.size = val[1] - val[0] + 1;
3782 		/* LIO target and cxgb4i initiaitor */
3783 		adap->num_ofld_uld += 2;
3784 	}
3785 	if (caps_cmd.cryptocaps) {
3786 		/* Should query params here...TODO */
3787 		adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
3788 		adap->num_uld += 1;
3789 	}
3790 #undef FW_PARAM_PFVF
3791 #undef FW_PARAM_DEV
3792 
3793 	/* The MTU/MSS Table is initialized by now, so load their values.  If
3794 	 * we're initializing the adapter, then we'll make any modifications
3795 	 * we want to the MTU/MSS Table and also initialize the congestion
3796 	 * parameters.
3797 	 */
3798 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3799 	if (state != DEV_STATE_INIT) {
3800 		int i;
3801 
3802 		/* The default MTU Table contains values 1492 and 1500.
3803 		 * However, for TCP, it's better to have two values which are
3804 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3805 		 * This allows us to have a TCP Data Payload which is a
3806 		 * multiple of 8 regardless of what combination of TCP Options
3807 		 * are in use (always a multiple of 4 bytes) which is
3808 		 * important for performance reasons.  For instance, if no
3809 		 * options are in use, then we have a 20-byte IP header and a
3810 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
3811 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3812 		 * which is not a multiple of 8.  So using an MSS of 1488 in
3813 		 * this case results in a TCP Data Payload of 1448 bytes which
3814 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
3815 		 * Stamps have been negotiated, then an MTU of 1500 bytes
3816 		 * results in a TCP Data Payload of 1448 bytes which, as
3817 		 * above, is a multiple of 8 bytes ...
3818 		 */
3819 		for (i = 0; i < NMTUS; i++)
3820 			if (adap->params.mtus[i] == 1492) {
3821 				adap->params.mtus[i] = 1488;
3822 				break;
3823 			}
3824 
3825 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3826 			     adap->params.b_wnd);
3827 	}
3828 	t4_init_sge_params(adap);
3829 	adap->flags |= FW_OK;
3830 	t4_init_tp_params(adap);
3831 	return 0;
3832 
3833 	/*
3834 	 * Something bad happened.  If a command timed out or failed with EIO
3835 	 * FW does not operate within its spec or something catastrophic
3836 	 * happened to HW/FW, stop issuing commands.
3837 	 */
3838 bye:
3839 	kfree(adap->sge.egr_map);
3840 	kfree(adap->sge.ingr_map);
3841 	kfree(adap->sge.starving_fl);
3842 	kfree(adap->sge.txq_maperr);
3843 #ifdef CONFIG_DEBUG_FS
3844 	kfree(adap->sge.blocked_fl);
3845 #endif
3846 	if (ret != -ETIMEDOUT && ret != -EIO)
3847 		t4_fw_bye(adap, adap->mbox);
3848 	return ret;
3849 }
3850 
3851 /* EEH callbacks */
3852 
3853 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3854 					 pci_channel_state_t state)
3855 {
3856 	int i;
3857 	struct adapter *adap = pci_get_drvdata(pdev);
3858 
3859 	if (!adap)
3860 		goto out;
3861 
3862 	rtnl_lock();
3863 	adap->flags &= ~FW_OK;
3864 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3865 	spin_lock(&adap->stats_lock);
3866 	for_each_port(adap, i) {
3867 		struct net_device *dev = adap->port[i];
3868 
3869 		netif_device_detach(dev);
3870 		netif_carrier_off(dev);
3871 	}
3872 	spin_unlock(&adap->stats_lock);
3873 	disable_interrupts(adap);
3874 	if (adap->flags & FULL_INIT_DONE)
3875 		cxgb_down(adap);
3876 	rtnl_unlock();
3877 	if ((adap->flags & DEV_ENABLED)) {
3878 		pci_disable_device(pdev);
3879 		adap->flags &= ~DEV_ENABLED;
3880 	}
3881 out:	return state == pci_channel_io_perm_failure ?
3882 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3883 }
3884 
3885 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3886 {
3887 	int i, ret;
3888 	struct fw_caps_config_cmd c;
3889 	struct adapter *adap = pci_get_drvdata(pdev);
3890 
3891 	if (!adap) {
3892 		pci_restore_state(pdev);
3893 		pci_save_state(pdev);
3894 		return PCI_ERS_RESULT_RECOVERED;
3895 	}
3896 
3897 	if (!(adap->flags & DEV_ENABLED)) {
3898 		if (pci_enable_device(pdev)) {
3899 			dev_err(&pdev->dev, "Cannot reenable PCI "
3900 					    "device after reset\n");
3901 			return PCI_ERS_RESULT_DISCONNECT;
3902 		}
3903 		adap->flags |= DEV_ENABLED;
3904 	}
3905 
3906 	pci_set_master(pdev);
3907 	pci_restore_state(pdev);
3908 	pci_save_state(pdev);
3909 	pci_cleanup_aer_uncorrect_error_status(pdev);
3910 
3911 	if (t4_wait_dev_ready(adap->regs) < 0)
3912 		return PCI_ERS_RESULT_DISCONNECT;
3913 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
3914 		return PCI_ERS_RESULT_DISCONNECT;
3915 	adap->flags |= FW_OK;
3916 	if (adap_init1(adap, &c))
3917 		return PCI_ERS_RESULT_DISCONNECT;
3918 
3919 	for_each_port(adap, i) {
3920 		struct port_info *p = adap2pinfo(adap, i);
3921 
3922 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
3923 				  NULL, NULL);
3924 		if (ret < 0)
3925 			return PCI_ERS_RESULT_DISCONNECT;
3926 		p->viid = ret;
3927 		p->xact_addr_filt = -1;
3928 	}
3929 
3930 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3931 		     adap->params.b_wnd);
3932 	setup_memwin(adap);
3933 	if (cxgb_up(adap))
3934 		return PCI_ERS_RESULT_DISCONNECT;
3935 	return PCI_ERS_RESULT_RECOVERED;
3936 }
3937 
3938 static void eeh_resume(struct pci_dev *pdev)
3939 {
3940 	int i;
3941 	struct adapter *adap = pci_get_drvdata(pdev);
3942 
3943 	if (!adap)
3944 		return;
3945 
3946 	rtnl_lock();
3947 	for_each_port(adap, i) {
3948 		struct net_device *dev = adap->port[i];
3949 
3950 		if (netif_running(dev)) {
3951 			link_start(dev);
3952 			cxgb_set_rxmode(dev);
3953 		}
3954 		netif_device_attach(dev);
3955 	}
3956 	rtnl_unlock();
3957 }
3958 
3959 static const struct pci_error_handlers cxgb4_eeh = {
3960 	.error_detected = eeh_err_detected,
3961 	.slot_reset     = eeh_slot_reset,
3962 	.resume         = eeh_resume,
3963 };
3964 
3965 /* Return true if the Link Configuration supports "High Speeds" (those greater
3966  * than 1Gb/s).
3967  */
3968 static inline bool is_x_10g_port(const struct link_config *lc)
3969 {
3970 	unsigned int speeds, high_speeds;
3971 
3972 	speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
3973 	high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);
3974 
3975 	return high_speeds != 0;
3976 }
3977 
3978 /*
3979  * Perform default configuration of DMA queues depending on the number and type
3980  * of ports we found and the number of available CPUs.  Most settings can be
3981  * modified by the admin prior to actual use.
3982  */
3983 static void cfg_queues(struct adapter *adap)
3984 {
3985 	struct sge *s = &adap->sge;
3986 	int i = 0, n10g = 0, qidx = 0;
3987 #ifndef CONFIG_CHELSIO_T4_DCB
3988 	int q10g = 0;
3989 #endif
3990 
3991 	/* Reduce memory usage in kdump environment, disable all offload.
3992 	 */
3993 	if (is_kdump_kernel()) {
3994 		adap->params.offload = 0;
3995 		adap->params.crypto = 0;
3996 	} else if (is_uld(adap) && t4_uld_mem_alloc(adap)) {
3997 		adap->params.offload = 0;
3998 		adap->params.crypto = 0;
3999 	}
4000 
4001 	n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4002 #ifdef CONFIG_CHELSIO_T4_DCB
4003 	/* For Data Center Bridging support we need to be able to support up
4004 	 * to 8 Traffic Priorities; each of which will be assigned to its
4005 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4006 	 */
4007 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4008 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4009 			MAX_ETH_QSETS, adap->params.nports * 8);
4010 		BUG_ON(1);
4011 	}
4012 
4013 	for_each_port(adap, i) {
4014 		struct port_info *pi = adap2pinfo(adap, i);
4015 
4016 		pi->first_qset = qidx;
4017 		pi->nqsets = 8;
4018 		qidx += pi->nqsets;
4019 	}
4020 #else /* !CONFIG_CHELSIO_T4_DCB */
4021 	/*
4022 	 * We default to 1 queue per non-10G port and up to # of cores queues
4023 	 * per 10G port.
4024 	 */
4025 	if (n10g)
4026 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4027 	if (q10g > netif_get_num_default_rss_queues())
4028 		q10g = netif_get_num_default_rss_queues();
4029 
4030 	for_each_port(adap, i) {
4031 		struct port_info *pi = adap2pinfo(adap, i);
4032 
4033 		pi->first_qset = qidx;
4034 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4035 		qidx += pi->nqsets;
4036 	}
4037 #endif /* !CONFIG_CHELSIO_T4_DCB */
4038 
4039 	s->ethqsets = qidx;
4040 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4041 
4042 	if (is_uld(adap)) {
4043 		/*
4044 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4045 		 * otherwise we divide all available queues amongst the channels
4046 		 * capped by the number of available cores.
4047 		 */
4048 		if (n10g) {
4049 			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4050 			s->ofldqsets = roundup(i, adap->params.nports);
4051 		} else {
4052 			s->ofldqsets = adap->params.nports;
4053 		}
4054 	}
4055 
4056 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4057 		struct sge_eth_rxq *r = &s->ethrxq[i];
4058 
4059 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4060 		r->fl.size = 72;
4061 	}
4062 
4063 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4064 		s->ethtxq[i].q.size = 1024;
4065 
4066 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4067 		s->ctrlq[i].q.size = 512;
4068 
4069 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4070 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4071 }
4072 
4073 /*
4074  * Reduce the number of Ethernet queues across all ports to at most n.
4075  * n provides at least one queue per port.
4076  */
4077 static void reduce_ethqs(struct adapter *adap, int n)
4078 {
4079 	int i;
4080 	struct port_info *pi;
4081 
4082 	while (n < adap->sge.ethqsets)
4083 		for_each_port(adap, i) {
4084 			pi = adap2pinfo(adap, i);
4085 			if (pi->nqsets > 1) {
4086 				pi->nqsets--;
4087 				adap->sge.ethqsets--;
4088 				if (adap->sge.ethqsets <= n)
4089 					break;
4090 			}
4091 		}
4092 
4093 	n = 0;
4094 	for_each_port(adap, i) {
4095 		pi = adap2pinfo(adap, i);
4096 		pi->first_qset = n;
4097 		n += pi->nqsets;
4098 	}
4099 }
4100 
4101 static int get_msix_info(struct adapter *adap)
4102 {
4103 	struct uld_msix_info *msix_info;
4104 	unsigned int max_ingq = 0;
4105 
4106 	if (is_offload(adap))
4107 		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4108 	if (is_pci_uld(adap))
4109 		max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4110 
4111 	if (!max_ingq)
4112 		goto out;
4113 
4114 	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4115 	if (!msix_info)
4116 		return -ENOMEM;
4117 
4118 	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4119 						 sizeof(long), GFP_KERNEL);
4120 	if (!adap->msix_bmap_ulds.msix_bmap) {
4121 		kfree(msix_info);
4122 		return -ENOMEM;
4123 	}
4124 	spin_lock_init(&adap->msix_bmap_ulds.lock);
4125 	adap->msix_info_ulds = msix_info;
4126 out:
4127 	return 0;
4128 }
4129 
4130 static void free_msix_info(struct adapter *adap)
4131 {
4132 	if (!(adap->num_uld && adap->num_ofld_uld))
4133 		return;
4134 
4135 	kfree(adap->msix_info_ulds);
4136 	kfree(adap->msix_bmap_ulds.msix_bmap);
4137 }
4138 
4139 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4140 #define EXTRA_VECS 2
4141 
4142 static int enable_msix(struct adapter *adap)
4143 {
4144 	int ofld_need = 0, uld_need = 0;
4145 	int i, j, want, need, allocated;
4146 	struct sge *s = &adap->sge;
4147 	unsigned int nchan = adap->params.nports;
4148 	struct msix_entry *entries;
4149 	int max_ingq = MAX_INGQ;
4150 
4151 	if (is_pci_uld(adap))
4152 		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4153 	if (is_offload(adap))
4154 		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4155 	entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4156 			  GFP_KERNEL);
4157 	if (!entries)
4158 		return -ENOMEM;
4159 
4160 	/* map for msix */
4161 	if (get_msix_info(adap)) {
4162 		adap->params.offload = 0;
4163 		adap->params.crypto = 0;
4164 	}
4165 
4166 	for (i = 0; i < max_ingq + 1; ++i)
4167 		entries[i].entry = i;
4168 
4169 	want = s->max_ethqsets + EXTRA_VECS;
4170 	if (is_offload(adap)) {
4171 		want += adap->num_ofld_uld * s->ofldqsets;
4172 		ofld_need = adap->num_ofld_uld * nchan;
4173 	}
4174 	if (is_pci_uld(adap)) {
4175 		want += adap->num_uld * s->ofldqsets;
4176 		uld_need = adap->num_uld * nchan;
4177 	}
4178 #ifdef CONFIG_CHELSIO_T4_DCB
4179 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4180 	 * each port.
4181 	 */
4182 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4183 #else
4184 	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4185 #endif
4186 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4187 	if (allocated < 0) {
4188 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4189 			 " not using MSI-X\n");
4190 		kfree(entries);
4191 		return allocated;
4192 	}
4193 
4194 	/* Distribute available vectors to the various queue groups.
4195 	 * Every group gets its minimum requirement and NIC gets top
4196 	 * priority for leftovers.
4197 	 */
4198 	i = allocated - EXTRA_VECS - ofld_need - uld_need;
4199 	if (i < s->max_ethqsets) {
4200 		s->max_ethqsets = i;
4201 		if (i < s->ethqsets)
4202 			reduce_ethqs(adap, i);
4203 	}
4204 	if (is_uld(adap)) {
4205 		if (allocated < want)
4206 			s->nqs_per_uld = nchan;
4207 		else
4208 			s->nqs_per_uld = s->ofldqsets;
4209 	}
4210 
4211 	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4212 		adap->msix_info[i].vec = entries[i].vector;
4213 	if (is_uld(adap)) {
4214 		for (j = 0 ; i < allocated; ++i, j++) {
4215 			adap->msix_info_ulds[j].vec = entries[i].vector;
4216 			adap->msix_info_ulds[j].idx = i;
4217 		}
4218 		adap->msix_bmap_ulds.mapsize = j;
4219 	}
4220 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4221 		 "nic %d per uld %d\n",
4222 		 allocated, s->max_ethqsets, s->nqs_per_uld);
4223 
4224 	kfree(entries);
4225 	return 0;
4226 }
4227 
4228 #undef EXTRA_VECS
4229 
4230 static int init_rss(struct adapter *adap)
4231 {
4232 	unsigned int i;
4233 	int err;
4234 
4235 	err = t4_init_rss_mode(adap, adap->mbox);
4236 	if (err)
4237 		return err;
4238 
4239 	for_each_port(adap, i) {
4240 		struct port_info *pi = adap2pinfo(adap, i);
4241 
4242 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4243 		if (!pi->rss)
4244 			return -ENOMEM;
4245 	}
4246 	return 0;
4247 }
4248 
4249 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4250 					enum pci_bus_speed *speed,
4251 					enum pcie_link_width *width)
4252 {
4253 	u32 lnkcap1, lnkcap2;
4254 	int err1, err2;
4255 
4256 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4257 
4258 	*speed = PCI_SPEED_UNKNOWN;
4259 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4260 
4261 	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4262 					  &lnkcap1);
4263 	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4264 					  &lnkcap2);
4265 	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4266 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4267 			*speed = PCIE_SPEED_8_0GT;
4268 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4269 			*speed = PCIE_SPEED_5_0GT;
4270 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4271 			*speed = PCIE_SPEED_2_5GT;
4272 	}
4273 	if (!err1) {
4274 		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4275 		if (!lnkcap2) { /* pre-r3.0 */
4276 			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4277 				*speed = PCIE_SPEED_5_0GT;
4278 			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4279 				*speed = PCIE_SPEED_2_5GT;
4280 		}
4281 	}
4282 
4283 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4284 		return err1 ? err1 : err2 ? err2 : -EINVAL;
4285 	return 0;
4286 }
4287 
4288 static void cxgb4_check_pcie_caps(struct adapter *adap)
4289 {
4290 	enum pcie_link_width width, width_cap;
4291 	enum pci_bus_speed speed, speed_cap;
4292 
4293 #define PCIE_SPEED_STR(speed) \
4294 	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4295 	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4296 	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4297 	 "Unknown")
4298 
4299 	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4300 		dev_warn(adap->pdev_dev,
4301 			 "Unable to determine PCIe device BW capabilities\n");
4302 		return;
4303 	}
4304 
4305 	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4306 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4307 		dev_warn(adap->pdev_dev,
4308 			 "Unable to determine PCI Express bandwidth.\n");
4309 		return;
4310 	}
4311 
4312 	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4313 		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4314 	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4315 		 width, width_cap);
4316 	if (speed < speed_cap || width < width_cap)
4317 		dev_info(adap->pdev_dev,
4318 			 "A slot with more lanes and/or higher speed is "
4319 			 "suggested for optimal performance.\n");
4320 }
4321 
4322 /* Dump basic information about the adapter */
4323 static void print_adapter_info(struct adapter *adapter)
4324 {
4325 	/* Device information */
4326 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4327 		 adapter->params.vpd.id,
4328 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4329 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4330 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
4331 
4332 	/* Firmware Version */
4333 	if (!adapter->params.fw_vers)
4334 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4335 	else
4336 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4337 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4338 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4339 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4340 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4341 
4342 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4343 	 * Firmware, so dev_info() is more appropriate here.)
4344 	 */
4345 	if (!adapter->params.bs_vers)
4346 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4347 	else
4348 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4349 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4350 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4351 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4352 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4353 
4354 	/* TP Microcode Version */
4355 	if (!adapter->params.tp_vers)
4356 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4357 	else
4358 		dev_info(adapter->pdev_dev,
4359 			 "TP Microcode version: %u.%u.%u.%u\n",
4360 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4361 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4362 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4363 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4364 
4365 	/* Expansion ROM version */
4366 	if (!adapter->params.er_vers)
4367 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4368 	else
4369 		dev_info(adapter->pdev_dev,
4370 			 "Expansion ROM version: %u.%u.%u.%u\n",
4371 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4372 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4373 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4374 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4375 
4376 	/* Software/Hardware configuration */
4377 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4378 		 is_offload(adapter) ? "R" : "",
4379 		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4380 		  (adapter->flags & USING_MSI) ? "MSI" : ""),
4381 		 is_offload(adapter) ? "Offload" : "non-Offload");
4382 }
4383 
4384 static void print_port_info(const struct net_device *dev)
4385 {
4386 	char buf[80];
4387 	char *bufp = buf;
4388 	const char *spd = "";
4389 	const struct port_info *pi = netdev_priv(dev);
4390 	const struct adapter *adap = pi->adapter;
4391 
4392 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4393 		spd = " 2.5 GT/s";
4394 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4395 		spd = " 5 GT/s";
4396 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4397 		spd = " 8 GT/s";
4398 
4399 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4400 		bufp += sprintf(bufp, "100/");
4401 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4402 		bufp += sprintf(bufp, "1000/");
4403 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4404 		bufp += sprintf(bufp, "10G/");
4405 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
4406 		bufp += sprintf(bufp, "25G/");
4407 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4408 		bufp += sprintf(bufp, "40G/");
4409 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
4410 		bufp += sprintf(bufp, "100G/");
4411 	if (bufp != buf)
4412 		--bufp;
4413 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4414 
4415 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4416 		    dev->name, adap->params.vpd.id, adap->name, buf);
4417 }
4418 
4419 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4420 {
4421 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4422 }
4423 
4424 /*
4425  * Free the following resources:
4426  * - memory used for tables
4427  * - MSI/MSI-X
4428  * - net devices
4429  * - resources FW is holding for us
4430  */
4431 static void free_some_resources(struct adapter *adapter)
4432 {
4433 	unsigned int i;
4434 
4435 	t4_free_mem(adapter->l2t);
4436 	t4_cleanup_sched(adapter);
4437 	t4_free_mem(adapter->tids.tid_tab);
4438 	cxgb4_cleanup_tc_u32(adapter);
4439 	kfree(adapter->sge.egr_map);
4440 	kfree(adapter->sge.ingr_map);
4441 	kfree(adapter->sge.starving_fl);
4442 	kfree(adapter->sge.txq_maperr);
4443 #ifdef CONFIG_DEBUG_FS
4444 	kfree(adapter->sge.blocked_fl);
4445 #endif
4446 	disable_msi(adapter);
4447 
4448 	for_each_port(adapter, i)
4449 		if (adapter->port[i]) {
4450 			struct port_info *pi = adap2pinfo(adapter, i);
4451 
4452 			if (pi->viid != 0)
4453 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
4454 					   0, pi->viid);
4455 			kfree(adap2pinfo(adapter, i)->rss);
4456 			free_netdev(adapter->port[i]);
4457 		}
4458 	if (adapter->flags & FW_OK)
4459 		t4_fw_bye(adapter, adapter->pf);
4460 }
4461 
4462 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4463 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4464 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4465 #define SEGMENT_SIZE 128
4466 
4467 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4468 {
4469 	u16 device_id;
4470 
4471 	/* Retrieve adapter's device ID */
4472 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4473 
4474 	switch (device_id >> 12) {
4475 	case CHELSIO_T4:
4476 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4477 	case CHELSIO_T5:
4478 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4479 	case CHELSIO_T6:
4480 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4481 	default:
4482 		dev_err(&pdev->dev, "Device %d is not supported\n",
4483 			device_id);
4484 	}
4485 	return -EINVAL;
4486 }
4487 
4488 #ifdef CONFIG_PCI_IOV
4489 static void dummy_setup(struct net_device *dev)
4490 {
4491 	dev->type = ARPHRD_NONE;
4492 	dev->mtu = 0;
4493 	dev->hard_header_len = 0;
4494 	dev->addr_len = 0;
4495 	dev->tx_queue_len = 0;
4496 	dev->flags |= IFF_NOARP;
4497 	dev->priv_flags |= IFF_NO_QUEUE;
4498 
4499 	/* Initialize the device structure. */
4500 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4501 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4502 	dev->destructor = free_netdev;
4503 }
4504 
4505 static int config_mgmt_dev(struct pci_dev *pdev)
4506 {
4507 	struct adapter *adap = pci_get_drvdata(pdev);
4508 	struct net_device *netdev;
4509 	struct port_info *pi;
4510 	char name[IFNAMSIZ];
4511 	int err;
4512 
4513 	snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4514 	netdev = alloc_netdev(0, name, NET_NAME_UNKNOWN, dummy_setup);
4515 	if (!netdev)
4516 		return -ENOMEM;
4517 
4518 	pi = netdev_priv(netdev);
4519 	pi->adapter = adap;
4520 	SET_NETDEV_DEV(netdev, &pdev->dev);
4521 
4522 	adap->port[0] = netdev;
4523 
4524 	err = register_netdev(adap->port[0]);
4525 	if (err) {
4526 		pr_info("Unable to register VF mgmt netdev %s\n", name);
4527 		free_netdev(adap->port[0]);
4528 		adap->port[0] = NULL;
4529 		return err;
4530 	}
4531 	return 0;
4532 }
4533 
4534 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4535 {
4536 	struct adapter *adap = pci_get_drvdata(pdev);
4537 	int err = 0;
4538 	int current_vfs = pci_num_vf(pdev);
4539 	u32 pcie_fw;
4540 
4541 	pcie_fw = readl(adap->regs + PCIE_FW_A);
4542 	/* Check if cxgb4 is the MASTER and fw is initialized */
4543 	if (!(pcie_fw & PCIE_FW_INIT_F) ||
4544 	    !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4545 	    PCIE_FW_MASTER_G(pcie_fw) != 4) {
4546 		dev_warn(&pdev->dev,
4547 			 "cxgb4 driver needs to be MASTER to support SRIOV\n");
4548 		return -EOPNOTSUPP;
4549 	}
4550 
4551 	/* If any of the VF's is already assigned to Guest OS, then
4552 	 * SRIOV for the same cannot be modified
4553 	 */
4554 	if (current_vfs && pci_vfs_assigned(pdev)) {
4555 		dev_err(&pdev->dev,
4556 			"Cannot modify SR-IOV while VFs are assigned\n");
4557 		num_vfs = current_vfs;
4558 		return num_vfs;
4559 	}
4560 
4561 	/* Disable SRIOV when zero is passed.
4562 	 * One needs to disable SRIOV before modifying it, else
4563 	 * stack throws the below warning:
4564 	 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4565 	 */
4566 	if (!num_vfs) {
4567 		pci_disable_sriov(pdev);
4568 		if (adap->port[0]) {
4569 			unregister_netdev(adap->port[0]);
4570 			adap->port[0] = NULL;
4571 		}
4572 		/* free VF resources */
4573 		kfree(adap->vfinfo);
4574 		adap->vfinfo = NULL;
4575 		adap->num_vfs = 0;
4576 		return num_vfs;
4577 	}
4578 
4579 	if (num_vfs != current_vfs) {
4580 		err = pci_enable_sriov(pdev, num_vfs);
4581 		if (err)
4582 			return err;
4583 
4584 		adap->num_vfs = num_vfs;
4585 		err = config_mgmt_dev(pdev);
4586 		if (err)
4587 			return err;
4588 	}
4589 
4590 	adap->vfinfo = kcalloc(adap->num_vfs,
4591 			       sizeof(struct vf_info), GFP_KERNEL);
4592 	if (adap->vfinfo)
4593 		fill_vf_station_mac_addr(adap);
4594 	return num_vfs;
4595 }
4596 #endif
4597 
4598 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4599 {
4600 	int func, i, err, s_qpp, qpp, num_seg;
4601 	struct port_info *pi;
4602 	bool highdma = false;
4603 	struct adapter *adapter = NULL;
4604 	struct net_device *netdev;
4605 	void __iomem *regs;
4606 	u32 whoami, pl_rev;
4607 	enum chip_type chip;
4608 	static int adap_idx = 1;
4609 
4610 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4611 
4612 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4613 	if (err) {
4614 		/* Just info, some other driver may have claimed the device. */
4615 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4616 		return err;
4617 	}
4618 
4619 	err = pci_enable_device(pdev);
4620 	if (err) {
4621 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4622 		goto out_release_regions;
4623 	}
4624 
4625 	regs = pci_ioremap_bar(pdev, 0);
4626 	if (!regs) {
4627 		dev_err(&pdev->dev, "cannot map device registers\n");
4628 		err = -ENOMEM;
4629 		goto out_disable_device;
4630 	}
4631 
4632 	err = t4_wait_dev_ready(regs);
4633 	if (err < 0)
4634 		goto out_unmap_bar0;
4635 
4636 	/* We control everything through one PF */
4637 	whoami = readl(regs + PL_WHOAMI_A);
4638 	pl_rev = REV_G(readl(regs + PL_REV_A));
4639 	chip = get_chip_type(pdev, pl_rev);
4640 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4641 		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4642 	if (func != ent->driver_data) {
4643 #ifndef CONFIG_PCI_IOV
4644 		iounmap(regs);
4645 #endif
4646 		pci_disable_device(pdev);
4647 		pci_save_state(pdev);        /* to restore SR-IOV later */
4648 		goto sriov;
4649 	}
4650 
4651 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4652 		highdma = true;
4653 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4654 		if (err) {
4655 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4656 				"coherent allocations\n");
4657 			goto out_unmap_bar0;
4658 		}
4659 	} else {
4660 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4661 		if (err) {
4662 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4663 			goto out_unmap_bar0;
4664 		}
4665 	}
4666 
4667 	pci_enable_pcie_error_reporting(pdev);
4668 	enable_pcie_relaxed_ordering(pdev);
4669 	pci_set_master(pdev);
4670 	pci_save_state(pdev);
4671 
4672 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4673 	if (!adapter) {
4674 		err = -ENOMEM;
4675 		goto out_unmap_bar0;
4676 	}
4677 	adap_idx++;
4678 
4679 	adapter->workq = create_singlethread_workqueue("cxgb4");
4680 	if (!adapter->workq) {
4681 		err = -ENOMEM;
4682 		goto out_free_adapter;
4683 	}
4684 
4685 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4686 				    (sizeof(struct mbox_cmd) *
4687 				     T4_OS_LOG_MBOX_CMDS),
4688 				    GFP_KERNEL);
4689 	if (!adapter->mbox_log) {
4690 		err = -ENOMEM;
4691 		goto out_free_adapter;
4692 	}
4693 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4694 
4695 	/* PCI device has been enabled */
4696 	adapter->flags |= DEV_ENABLED;
4697 
4698 	adapter->regs = regs;
4699 	adapter->pdev = pdev;
4700 	adapter->pdev_dev = &pdev->dev;
4701 	adapter->name = pci_name(pdev);
4702 	adapter->mbox = func;
4703 	adapter->pf = func;
4704 	adapter->msg_enable = DFLT_MSG_ENABLE;
4705 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4706 
4707 	spin_lock_init(&adapter->stats_lock);
4708 	spin_lock_init(&adapter->tid_release_lock);
4709 	spin_lock_init(&adapter->win0_lock);
4710 
4711 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4712 	INIT_WORK(&adapter->db_full_task, process_db_full);
4713 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4714 
4715 	err = t4_prep_adapter(adapter);
4716 	if (err)
4717 		goto out_free_adapter;
4718 
4719 
4720 	if (!is_t4(adapter->params.chip)) {
4721 		s_qpp = (QUEUESPERPAGEPF0_S +
4722 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4723 			adapter->pf);
4724 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4725 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4726 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
4727 
4728 		/* Each segment size is 128B. Write coalescing is enabled only
4729 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4730 		 * queue is less no of segments that can be accommodated in
4731 		 * a page size.
4732 		 */
4733 		if (qpp > num_seg) {
4734 			dev_err(&pdev->dev,
4735 				"Incorrect number of egress queues per page\n");
4736 			err = -EINVAL;
4737 			goto out_free_adapter;
4738 		}
4739 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4740 		pci_resource_len(pdev, 2));
4741 		if (!adapter->bar2) {
4742 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
4743 			err = -ENOMEM;
4744 			goto out_free_adapter;
4745 		}
4746 	}
4747 
4748 	setup_memwin(adapter);
4749 	err = adap_init0(adapter);
4750 #ifdef CONFIG_DEBUG_FS
4751 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4752 #endif
4753 	setup_memwin_rdma(adapter);
4754 	if (err)
4755 		goto out_unmap_bar;
4756 
4757 	/* configure SGE_STAT_CFG_A to read WC stats */
4758 	if (!is_t4(adapter->params.chip))
4759 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4760 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4761 			      T6_STATMODE_V(0)));
4762 
4763 	for_each_port(adapter, i) {
4764 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
4765 					   MAX_ETH_QSETS);
4766 		if (!netdev) {
4767 			err = -ENOMEM;
4768 			goto out_free_dev;
4769 		}
4770 
4771 		SET_NETDEV_DEV(netdev, &pdev->dev);
4772 
4773 		adapter->port[i] = netdev;
4774 		pi = netdev_priv(netdev);
4775 		pi->adapter = adapter;
4776 		pi->xact_addr_filt = -1;
4777 		pi->port_id = i;
4778 		netdev->irq = pdev->irq;
4779 
4780 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4781 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4782 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4783 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
4784 			NETIF_F_HW_TC;
4785 		if (highdma)
4786 			netdev->hw_features |= NETIF_F_HIGHDMA;
4787 		netdev->features |= netdev->hw_features;
4788 		netdev->vlan_features = netdev->features & VLAN_FEAT;
4789 
4790 		netdev->priv_flags |= IFF_UNICAST_FLT;
4791 
4792 		/* MTU range: 81 - 9600 */
4793 		netdev->min_mtu = 81;
4794 		netdev->max_mtu = MAX_MTU;
4795 
4796 		netdev->netdev_ops = &cxgb4_netdev_ops;
4797 #ifdef CONFIG_CHELSIO_T4_DCB
4798 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
4799 		cxgb4_dcb_state_init(netdev);
4800 #endif
4801 		cxgb4_set_ethtool_ops(netdev);
4802 	}
4803 
4804 	pci_set_drvdata(pdev, adapter);
4805 
4806 	if (adapter->flags & FW_OK) {
4807 		err = t4_port_init(adapter, func, func, 0);
4808 		if (err)
4809 			goto out_free_dev;
4810 	} else if (adapter->params.nports == 1) {
4811 		/* If we don't have a connection to the firmware -- possibly
4812 		 * because of an error -- grab the raw VPD parameters so we
4813 		 * can set the proper MAC Address on the debug network
4814 		 * interface that we've created.
4815 		 */
4816 		u8 hw_addr[ETH_ALEN];
4817 		u8 *na = adapter->params.vpd.na;
4818 
4819 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4820 		if (!err) {
4821 			for (i = 0; i < ETH_ALEN; i++)
4822 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4823 					      hex2val(na[2 * i + 1]));
4824 			t4_set_hw_addr(adapter, 0, hw_addr);
4825 		}
4826 	}
4827 
4828 	/* Configure queues and allocate tables now, they can be needed as
4829 	 * soon as the first register_netdev completes.
4830 	 */
4831 	cfg_queues(adapter);
4832 
4833 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4834 	if (!adapter->l2t) {
4835 		/* We tolerate a lack of L2T, giving up some functionality */
4836 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4837 		adapter->params.offload = 0;
4838 	}
4839 
4840 #if IS_ENABLED(CONFIG_IPV6)
4841 	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4842 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4843 		/* CLIP functionality is not present in hardware,
4844 		 * hence disable all offload features
4845 		 */
4846 		dev_warn(&pdev->dev,
4847 			 "CLIP not enabled in hardware, continuing\n");
4848 		adapter->params.offload = 0;
4849 	} else {
4850 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4851 						  adapter->clipt_end);
4852 		if (!adapter->clipt) {
4853 			/* We tolerate a lack of clip_table, giving up
4854 			 * some functionality
4855 			 */
4856 			dev_warn(&pdev->dev,
4857 				 "could not allocate Clip table, continuing\n");
4858 			adapter->params.offload = 0;
4859 		}
4860 	}
4861 #endif
4862 
4863 	for_each_port(adapter, i) {
4864 		pi = adap2pinfo(adapter, i);
4865 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
4866 		if (!pi->sched_tbl)
4867 			dev_warn(&pdev->dev,
4868 				 "could not activate scheduling on port %d\n",
4869 				 i);
4870 	}
4871 
4872 	if (tid_init(&adapter->tids) < 0) {
4873 		dev_warn(&pdev->dev, "could not allocate TID table, "
4874 			 "continuing\n");
4875 		adapter->params.offload = 0;
4876 	} else {
4877 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter,
4878 						    CXGB4_MAX_LINK_HANDLE);
4879 		if (!adapter->tc_u32)
4880 			dev_warn(&pdev->dev,
4881 				 "could not offload tc u32, continuing\n");
4882 	}
4883 
4884 	if (is_offload(adapter)) {
4885 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4886 			u32 hash_base, hash_reg;
4887 
4888 			if (chip <= CHELSIO_T5) {
4889 				hash_reg = LE_DB_TID_HASHBASE_A;
4890 				hash_base = t4_read_reg(adapter, hash_reg);
4891 				adapter->tids.hash_base = hash_base / 4;
4892 			} else {
4893 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4894 				hash_base = t4_read_reg(adapter, hash_reg);
4895 				adapter->tids.hash_base = hash_base;
4896 			}
4897 		}
4898 	}
4899 
4900 	/* See what interrupts we'll be using */
4901 	if (msi > 1 && enable_msix(adapter) == 0)
4902 		adapter->flags |= USING_MSIX;
4903 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
4904 		adapter->flags |= USING_MSI;
4905 		if (msi > 1)
4906 			free_msix_info(adapter);
4907 	}
4908 
4909 	/* check for PCI Express bandwidth capabiltites */
4910 	cxgb4_check_pcie_caps(adapter);
4911 
4912 	err = init_rss(adapter);
4913 	if (err)
4914 		goto out_free_dev;
4915 
4916 	/*
4917 	 * The card is now ready to go.  If any errors occur during device
4918 	 * registration we do not fail the whole card but rather proceed only
4919 	 * with the ports we manage to register successfully.  However we must
4920 	 * register at least one net device.
4921 	 */
4922 	for_each_port(adapter, i) {
4923 		pi = adap2pinfo(adapter, i);
4924 		adapter->port[i]->dev_port = pi->lport;
4925 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4926 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4927 
4928 		err = register_netdev(adapter->port[i]);
4929 		if (err)
4930 			break;
4931 		adapter->chan_map[pi->tx_chan] = i;
4932 		print_port_info(adapter->port[i]);
4933 	}
4934 	if (i == 0) {
4935 		dev_err(&pdev->dev, "could not register any net devices\n");
4936 		goto out_free_dev;
4937 	}
4938 	if (err) {
4939 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4940 		err = 0;
4941 	}
4942 
4943 	if (cxgb4_debugfs_root) {
4944 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4945 							   cxgb4_debugfs_root);
4946 		setup_debugfs(adapter);
4947 	}
4948 
4949 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4950 	pdev->needs_freset = 1;
4951 
4952 	if (is_uld(adapter)) {
4953 		mutex_lock(&uld_mutex);
4954 		list_add_tail(&adapter->list_node, &adapter_list);
4955 		mutex_unlock(&uld_mutex);
4956 	}
4957 
4958 	print_adapter_info(adapter);
4959 	setup_fw_sge_queues(adapter);
4960 	return 0;
4961 
4962 sriov:
4963 #ifdef CONFIG_PCI_IOV
4964 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4965 	if (!adapter) {
4966 		err = -ENOMEM;
4967 		goto free_pci_region;
4968 	}
4969 
4970 	adapter->pdev = pdev;
4971 	adapter->pdev_dev = &pdev->dev;
4972 	adapter->name = pci_name(pdev);
4973 	adapter->mbox = func;
4974 	adapter->pf = func;
4975 	adapter->regs = regs;
4976 	adapter->adap_idx = adap_idx;
4977 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4978 				    (sizeof(struct mbox_cmd) *
4979 				     T4_OS_LOG_MBOX_CMDS),
4980 				    GFP_KERNEL);
4981 	if (!adapter->mbox_log) {
4982 		err = -ENOMEM;
4983 		goto free_adapter;
4984 	}
4985 	pci_set_drvdata(pdev, adapter);
4986 	return 0;
4987 
4988  free_adapter:
4989 	kfree(adapter);
4990  free_pci_region:
4991 	iounmap(regs);
4992 	pci_disable_sriov(pdev);
4993 	pci_release_regions(pdev);
4994 	return err;
4995 #else
4996 	return 0;
4997 #endif
4998 
4999  out_free_dev:
5000 	free_some_resources(adapter);
5001 	if (adapter->flags & USING_MSIX)
5002 		free_msix_info(adapter);
5003 	if (adapter->num_uld || adapter->num_ofld_uld)
5004 		t4_uld_mem_free(adapter);
5005  out_unmap_bar:
5006 	if (!is_t4(adapter->params.chip))
5007 		iounmap(adapter->bar2);
5008  out_free_adapter:
5009 	if (adapter->workq)
5010 		destroy_workqueue(adapter->workq);
5011 
5012 	kfree(adapter->mbox_log);
5013 	kfree(adapter);
5014  out_unmap_bar0:
5015 	iounmap(regs);
5016  out_disable_device:
5017 	pci_disable_pcie_error_reporting(pdev);
5018 	pci_disable_device(pdev);
5019  out_release_regions:
5020 	pci_release_regions(pdev);
5021 	return err;
5022 }
5023 
5024 static void remove_one(struct pci_dev *pdev)
5025 {
5026 	struct adapter *adapter = pci_get_drvdata(pdev);
5027 
5028 	if (!adapter) {
5029 		pci_release_regions(pdev);
5030 		return;
5031 	}
5032 
5033 	if (adapter->pf == 4) {
5034 		int i;
5035 
5036 		/* Tear down per-adapter Work Queue first since it can contain
5037 		 * references to our adapter data structure.
5038 		 */
5039 		destroy_workqueue(adapter->workq);
5040 
5041 		if (is_uld(adapter))
5042 			detach_ulds(adapter);
5043 
5044 		disable_interrupts(adapter);
5045 
5046 		for_each_port(adapter, i)
5047 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5048 				unregister_netdev(adapter->port[i]);
5049 
5050 		debugfs_remove_recursive(adapter->debugfs_root);
5051 
5052 		/* If we allocated filters, free up state associated with any
5053 		 * valid filters ...
5054 		 */
5055 		clear_all_filters(adapter);
5056 
5057 		if (adapter->flags & FULL_INIT_DONE)
5058 			cxgb_down(adapter);
5059 
5060 		if (adapter->flags & USING_MSIX)
5061 			free_msix_info(adapter);
5062 		if (adapter->num_uld || adapter->num_ofld_uld)
5063 			t4_uld_mem_free(adapter);
5064 		free_some_resources(adapter);
5065 #if IS_ENABLED(CONFIG_IPV6)
5066 		t4_cleanup_clip_tbl(adapter);
5067 #endif
5068 		iounmap(adapter->regs);
5069 		if (!is_t4(adapter->params.chip))
5070 			iounmap(adapter->bar2);
5071 		pci_disable_pcie_error_reporting(pdev);
5072 		if ((adapter->flags & DEV_ENABLED)) {
5073 			pci_disable_device(pdev);
5074 			adapter->flags &= ~DEV_ENABLED;
5075 		}
5076 		pci_release_regions(pdev);
5077 		kfree(adapter->mbox_log);
5078 		synchronize_rcu();
5079 		kfree(adapter);
5080 	}
5081 #ifdef CONFIG_PCI_IOV
5082 	else {
5083 		if (adapter->port[0])
5084 			unregister_netdev(adapter->port[0]);
5085 		iounmap(adapter->regs);
5086 		kfree(adapter->vfinfo);
5087 		kfree(adapter);
5088 		pci_disable_sriov(pdev);
5089 		pci_release_regions(pdev);
5090 	}
5091 #endif
5092 }
5093 
5094 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5095  * delivery.  This is essentially a stripped down version of the PCI remove()
5096  * function where we do the minimal amount of work necessary to shutdown any
5097  * further activity.
5098  */
5099 static void shutdown_one(struct pci_dev *pdev)
5100 {
5101 	struct adapter *adapter = pci_get_drvdata(pdev);
5102 
5103 	/* As with remove_one() above (see extended comment), we only want do
5104 	 * do cleanup on PCI Devices which went all the way through init_one()
5105 	 * ...
5106 	 */
5107 	if (!adapter) {
5108 		pci_release_regions(pdev);
5109 		return;
5110 	}
5111 
5112 	if (adapter->pf == 4) {
5113 		int i;
5114 
5115 		for_each_port(adapter, i)
5116 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5117 				cxgb_close(adapter->port[i]);
5118 
5119 		t4_uld_clean_up(adapter);
5120 		disable_interrupts(adapter);
5121 		disable_msi(adapter);
5122 
5123 		t4_sge_stop(adapter);
5124 		if (adapter->flags & FW_OK)
5125 			t4_fw_bye(adapter, adapter->mbox);
5126 	}
5127 #ifdef CONFIG_PCI_IOV
5128 	else {
5129 		if (adapter->port[0])
5130 			unregister_netdev(adapter->port[0]);
5131 		iounmap(adapter->regs);
5132 		kfree(adapter->vfinfo);
5133 		kfree(adapter);
5134 		pci_disable_sriov(pdev);
5135 		pci_release_regions(pdev);
5136 	}
5137 #endif
5138 }
5139 
5140 static struct pci_driver cxgb4_driver = {
5141 	.name     = KBUILD_MODNAME,
5142 	.id_table = cxgb4_pci_tbl,
5143 	.probe    = init_one,
5144 	.remove   = remove_one,
5145 	.shutdown = shutdown_one,
5146 #ifdef CONFIG_PCI_IOV
5147 	.sriov_configure = cxgb4_iov_configure,
5148 #endif
5149 	.err_handler = &cxgb4_eeh,
5150 };
5151 
5152 static int __init cxgb4_init_module(void)
5153 {
5154 	int ret;
5155 
5156 	/* Debugfs support is optional, just warn if this fails */
5157 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5158 	if (!cxgb4_debugfs_root)
5159 		pr_warn("could not create debugfs entry, continuing\n");
5160 
5161 	ret = pci_register_driver(&cxgb4_driver);
5162 	if (ret < 0)
5163 		debugfs_remove(cxgb4_debugfs_root);
5164 
5165 #if IS_ENABLED(CONFIG_IPV6)
5166 	if (!inet6addr_registered) {
5167 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5168 		inet6addr_registered = true;
5169 	}
5170 #endif
5171 
5172 	return ret;
5173 }
5174 
5175 static void __exit cxgb4_cleanup_module(void)
5176 {
5177 #if IS_ENABLED(CONFIG_IPV6)
5178 	if (inet6addr_registered) {
5179 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5180 		inet6addr_registered = false;
5181 	}
5182 #endif
5183 	pci_unregister_driver(&cxgb4_driver);
5184 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5185 }
5186 
5187 module_init(cxgb4_init_module);
5188 module_exit(cxgb4_cleanup_module);
5189