1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <linux/uaccess.h> 67 #include <linux/crash_dump.h> 68 69 #include "cxgb4.h" 70 #include "cxgb4_filter.h" 71 #include "t4_regs.h" 72 #include "t4_values.h" 73 #include "t4_msg.h" 74 #include "t4fw_api.h" 75 #include "t4fw_version.h" 76 #include "cxgb4_dcb.h" 77 #include "cxgb4_debugfs.h" 78 #include "clip_tbl.h" 79 #include "l2t.h" 80 #include "sched.h" 81 #include "cxgb4_tc_u32.h" 82 83 char cxgb4_driver_name[] = KBUILD_MODNAME; 84 85 #ifdef DRV_VERSION 86 #undef DRV_VERSION 87 #endif 88 #define DRV_VERSION "2.0.0-ko" 89 const char cxgb4_driver_version[] = DRV_VERSION; 90 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 91 92 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 93 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 94 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 95 96 /* Macros needed to support the PCI Device ID Table ... 97 */ 98 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 99 static const struct pci_device_id cxgb4_pci_tbl[] = { 100 #define CH_PCI_DEVICE_ID_FUNCTION 0x4 101 102 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 103 * called for both. 104 */ 105 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 106 107 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 108 {PCI_VDEVICE(CHELSIO, (devid)), 4} 109 110 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 111 { 0, } \ 112 } 113 114 #include "t4_pci_id_tbl.h" 115 116 #define FW4_FNAME "cxgb4/t4fw.bin" 117 #define FW5_FNAME "cxgb4/t5fw.bin" 118 #define FW6_FNAME "cxgb4/t6fw.bin" 119 #define FW4_CFNAME "cxgb4/t4-config.txt" 120 #define FW5_CFNAME "cxgb4/t5-config.txt" 121 #define FW6_CFNAME "cxgb4/t6-config.txt" 122 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 123 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 124 #define PHY_AQ1202_DEVICEID 0x4409 125 #define PHY_BCM84834_DEVICEID 0x4486 126 127 MODULE_DESCRIPTION(DRV_DESC); 128 MODULE_AUTHOR("Chelsio Communications"); 129 MODULE_LICENSE("Dual BSD/GPL"); 130 MODULE_VERSION(DRV_VERSION); 131 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 132 MODULE_FIRMWARE(FW4_FNAME); 133 MODULE_FIRMWARE(FW5_FNAME); 134 MODULE_FIRMWARE(FW6_FNAME); 135 136 /* 137 * The driver uses the best interrupt scheme available on a platform in the 138 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 139 * of these schemes the driver may consider as follows: 140 * 141 * msi = 2: choose from among all three options 142 * msi = 1: only consider MSI and INTx interrupts 143 * msi = 0: force INTx interrupts 144 */ 145 static int msi = 2; 146 147 module_param(msi, int, 0644); 148 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 149 150 /* 151 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 152 * offset by 2 bytes in order to have the IP headers line up on 4-byte 153 * boundaries. This is a requirement for many architectures which will throw 154 * a machine check fault if an attempt is made to access one of the 4-byte IP 155 * header fields on a non-4-byte boundary. And it's a major performance issue 156 * even on some architectures which allow it like some implementations of the 157 * x86 ISA. However, some architectures don't mind this and for some very 158 * edge-case performance sensitive applications (like forwarding large volumes 159 * of small packets), setting this DMA offset to 0 will decrease the number of 160 * PCI-E Bus transfers enough to measurably affect performance. 161 */ 162 static int rx_dma_offset = 2; 163 164 /* TX Queue select used to determine what algorithm to use for selecting TX 165 * queue. Select between the kernel provided function (select_queue=0) or user 166 * cxgb_select_queue function (select_queue=1) 167 * 168 * Default: select_queue=0 169 */ 170 static int select_queue; 171 module_param(select_queue, int, 0644); 172 MODULE_PARM_DESC(select_queue, 173 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 174 175 static struct dentry *cxgb4_debugfs_root; 176 177 LIST_HEAD(adapter_list); 178 DEFINE_MUTEX(uld_mutex); 179 180 static void link_report(struct net_device *dev) 181 { 182 if (!netif_carrier_ok(dev)) 183 netdev_info(dev, "link down\n"); 184 else { 185 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 186 187 const char *s; 188 const struct port_info *p = netdev_priv(dev); 189 190 switch (p->link_cfg.speed) { 191 case 10000: 192 s = "10Gbps"; 193 break; 194 case 1000: 195 s = "1000Mbps"; 196 break; 197 case 100: 198 s = "100Mbps"; 199 break; 200 case 40000: 201 s = "40Gbps"; 202 break; 203 default: 204 pr_info("%s: unsupported speed: %d\n", 205 dev->name, p->link_cfg.speed); 206 return; 207 } 208 209 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 210 fc[p->link_cfg.fc]); 211 } 212 } 213 214 #ifdef CONFIG_CHELSIO_T4_DCB 215 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 216 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 217 { 218 struct port_info *pi = netdev_priv(dev); 219 struct adapter *adap = pi->adapter; 220 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 221 int i; 222 223 /* We use a simple mapping of Port TX Queue Index to DCB 224 * Priority when we're enabling DCB. 225 */ 226 for (i = 0; i < pi->nqsets; i++, txq++) { 227 u32 name, value; 228 int err; 229 230 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 231 FW_PARAMS_PARAM_X_V( 232 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 233 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 234 value = enable ? i : 0xffffffff; 235 236 /* Since we can be called while atomic (from "interrupt 237 * level") we need to issue the Set Parameters Commannd 238 * without sleeping (timeout < 0). 239 */ 240 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 241 &name, &value, 242 -FW_CMD_MAX_TIMEOUT); 243 244 if (err) 245 dev_err(adap->pdev_dev, 246 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 247 enable ? "set" : "unset", pi->port_id, i, -err); 248 else 249 txq->dcb_prio = value; 250 } 251 } 252 253 static int cxgb4_dcb_enabled(const struct net_device *dev) 254 { 255 struct port_info *pi = netdev_priv(dev); 256 257 if (!pi->dcb.enabled) 258 return 0; 259 260 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 261 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 262 } 263 #endif /* CONFIG_CHELSIO_T4_DCB */ 264 265 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 266 { 267 struct net_device *dev = adapter->port[port_id]; 268 269 /* Skip changes from disabled ports. */ 270 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 271 if (link_stat) 272 netif_carrier_on(dev); 273 else { 274 #ifdef CONFIG_CHELSIO_T4_DCB 275 if (cxgb4_dcb_enabled(dev)) { 276 cxgb4_dcb_state_init(dev); 277 dcb_tx_queue_prio_enable(dev, false); 278 } 279 #endif /* CONFIG_CHELSIO_T4_DCB */ 280 netif_carrier_off(dev); 281 } 282 283 link_report(dev); 284 } 285 } 286 287 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 288 { 289 static const char *mod_str[] = { 290 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 291 }; 292 293 const struct net_device *dev = adap->port[port_id]; 294 const struct port_info *pi = netdev_priv(dev); 295 296 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 297 netdev_info(dev, "port module unplugged\n"); 298 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 299 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 300 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 301 netdev_info(dev, "%s: unsupported port module inserted\n", 302 dev->name); 303 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 304 netdev_info(dev, "%s: unknown port module inserted\n", 305 dev->name); 306 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 307 netdev_info(dev, "%s: transceiver module error\n", dev->name); 308 else 309 netdev_info(dev, "%s: unknown module type %d inserted\n", 310 dev->name, pi->mod_type); 311 } 312 313 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 314 module_param(dbfifo_int_thresh, int, 0644); 315 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 316 317 /* 318 * usecs to sleep while draining the dbfifo 319 */ 320 static int dbfifo_drain_delay = 1000; 321 module_param(dbfifo_drain_delay, int, 0644); 322 MODULE_PARM_DESC(dbfifo_drain_delay, 323 "usecs to sleep while draining the dbfifo"); 324 325 static inline int cxgb4_set_addr_hash(struct port_info *pi) 326 { 327 struct adapter *adap = pi->adapter; 328 u64 vec = 0; 329 bool ucast = false; 330 struct hash_mac_addr *entry; 331 332 /* Calculate the hash vector for the updated list and program it */ 333 list_for_each_entry(entry, &adap->mac_hlist, list) { 334 ucast |= is_unicast_ether_addr(entry->addr); 335 vec |= (1ULL << hash_mac_addr(entry->addr)); 336 } 337 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 338 vec, false); 339 } 340 341 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 342 { 343 struct port_info *pi = netdev_priv(netdev); 344 struct adapter *adap = pi->adapter; 345 int ret; 346 u64 mhash = 0; 347 u64 uhash = 0; 348 bool free = false; 349 bool ucast = is_unicast_ether_addr(mac_addr); 350 const u8 *maclist[1] = {mac_addr}; 351 struct hash_mac_addr *new_entry; 352 353 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 354 NULL, ucast ? &uhash : &mhash, false); 355 if (ret < 0) 356 goto out; 357 /* if hash != 0, then add the addr to hash addr list 358 * so on the end we will calculate the hash for the 359 * list and program it 360 */ 361 if (uhash || mhash) { 362 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 363 if (!new_entry) 364 return -ENOMEM; 365 ether_addr_copy(new_entry->addr, mac_addr); 366 list_add_tail(&new_entry->list, &adap->mac_hlist); 367 ret = cxgb4_set_addr_hash(pi); 368 } 369 out: 370 return ret < 0 ? ret : 0; 371 } 372 373 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 374 { 375 struct port_info *pi = netdev_priv(netdev); 376 struct adapter *adap = pi->adapter; 377 int ret; 378 const u8 *maclist[1] = {mac_addr}; 379 struct hash_mac_addr *entry, *tmp; 380 381 /* If the MAC address to be removed is in the hash addr 382 * list, delete it from the list and update hash vector 383 */ 384 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 385 if (ether_addr_equal(entry->addr, mac_addr)) { 386 list_del(&entry->list); 387 kfree(entry); 388 return cxgb4_set_addr_hash(pi); 389 } 390 } 391 392 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 393 return ret < 0 ? -EINVAL : 0; 394 } 395 396 /* 397 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 398 * If @mtu is -1 it is left unchanged. 399 */ 400 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 401 { 402 struct port_info *pi = netdev_priv(dev); 403 struct adapter *adapter = pi->adapter; 404 405 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 406 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 407 408 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 409 (dev->flags & IFF_PROMISC) ? 1 : 0, 410 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 411 sleep_ok); 412 } 413 414 /** 415 * link_start - enable a port 416 * @dev: the port to enable 417 * 418 * Performs the MAC and PHY actions needed to enable a port. 419 */ 420 static int link_start(struct net_device *dev) 421 { 422 int ret; 423 struct port_info *pi = netdev_priv(dev); 424 unsigned int mb = pi->adapter->pf; 425 426 /* 427 * We do not set address filters and promiscuity here, the stack does 428 * that step explicitly. 429 */ 430 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 431 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 432 if (ret == 0) { 433 ret = t4_change_mac(pi->adapter, mb, pi->viid, 434 pi->xact_addr_filt, dev->dev_addr, true, 435 true); 436 if (ret >= 0) { 437 pi->xact_addr_filt = ret; 438 ret = 0; 439 } 440 } 441 if (ret == 0) 442 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 443 &pi->link_cfg); 444 if (ret == 0) { 445 local_bh_disable(); 446 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true, 447 true, CXGB4_DCB_ENABLED); 448 local_bh_enable(); 449 } 450 451 return ret; 452 } 453 454 #ifdef CONFIG_CHELSIO_T4_DCB 455 /* Handle a Data Center Bridging update message from the firmware. */ 456 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 457 { 458 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 459 struct net_device *dev = adap->port[adap->chan_map[port]]; 460 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 461 int new_dcb_enabled; 462 463 cxgb4_dcb_handle_fw_update(adap, pcmd); 464 new_dcb_enabled = cxgb4_dcb_enabled(dev); 465 466 /* If the DCB has become enabled or disabled on the port then we're 467 * going to need to set up/tear down DCB Priority parameters for the 468 * TX Queues associated with the port. 469 */ 470 if (new_dcb_enabled != old_dcb_enabled) 471 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 472 } 473 #endif /* CONFIG_CHELSIO_T4_DCB */ 474 475 /* Response queue handler for the FW event queue. 476 */ 477 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 478 const struct pkt_gl *gl) 479 { 480 u8 opcode = ((const struct rss_header *)rsp)->opcode; 481 482 rsp++; /* skip RSS header */ 483 484 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 485 */ 486 if (unlikely(opcode == CPL_FW4_MSG && 487 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 488 rsp++; 489 opcode = ((const struct rss_header *)rsp)->opcode; 490 rsp++; 491 if (opcode != CPL_SGE_EGR_UPDATE) { 492 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 493 , opcode); 494 goto out; 495 } 496 } 497 498 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 499 const struct cpl_sge_egr_update *p = (void *)rsp; 500 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 501 struct sge_txq *txq; 502 503 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 504 txq->restarts++; 505 if (txq->q_type == CXGB4_TXQ_ETH) { 506 struct sge_eth_txq *eq; 507 508 eq = container_of(txq, struct sge_eth_txq, q); 509 netif_tx_wake_queue(eq->txq); 510 } else { 511 struct sge_uld_txq *oq; 512 513 oq = container_of(txq, struct sge_uld_txq, q); 514 tasklet_schedule(&oq->qresume_tsk); 515 } 516 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 517 const struct cpl_fw6_msg *p = (void *)rsp; 518 519 #ifdef CONFIG_CHELSIO_T4_DCB 520 const struct fw_port_cmd *pcmd = (const void *)p->data; 521 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 522 unsigned int action = 523 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 524 525 if (cmd == FW_PORT_CMD && 526 action == FW_PORT_ACTION_GET_PORT_INFO) { 527 int port = FW_PORT_CMD_PORTID_G( 528 be32_to_cpu(pcmd->op_to_portid)); 529 struct net_device *dev = 530 q->adap->port[q->adap->chan_map[port]]; 531 int state_input = ((pcmd->u.info.dcbxdis_pkd & 532 FW_PORT_CMD_DCBXDIS_F) 533 ? CXGB4_DCB_INPUT_FW_DISABLED 534 : CXGB4_DCB_INPUT_FW_ENABLED); 535 536 cxgb4_dcb_state_fsm(dev, state_input); 537 } 538 539 if (cmd == FW_PORT_CMD && 540 action == FW_PORT_ACTION_L2_DCB_CFG) 541 dcb_rpl(q->adap, pcmd); 542 else 543 #endif 544 if (p->type == 0) 545 t4_handle_fw_rpl(q->adap, p->data); 546 } else if (opcode == CPL_L2T_WRITE_RPL) { 547 const struct cpl_l2t_write_rpl *p = (void *)rsp; 548 549 do_l2t_write_rpl(q->adap, p); 550 } else if (opcode == CPL_SET_TCB_RPL) { 551 const struct cpl_set_tcb_rpl *p = (void *)rsp; 552 553 filter_rpl(q->adap, p); 554 } else 555 dev_err(q->adap->pdev_dev, 556 "unexpected CPL %#x on FW event queue\n", opcode); 557 out: 558 return 0; 559 } 560 561 static void disable_msi(struct adapter *adapter) 562 { 563 if (adapter->flags & USING_MSIX) { 564 pci_disable_msix(adapter->pdev); 565 adapter->flags &= ~USING_MSIX; 566 } else if (adapter->flags & USING_MSI) { 567 pci_disable_msi(adapter->pdev); 568 adapter->flags &= ~USING_MSI; 569 } 570 } 571 572 /* 573 * Interrupt handler for non-data events used with MSI-X. 574 */ 575 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 576 { 577 struct adapter *adap = cookie; 578 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 579 580 if (v & PFSW_F) { 581 adap->swintr = 1; 582 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 583 } 584 if (adap->flags & MASTER_PF) 585 t4_slow_intr_handler(adap); 586 return IRQ_HANDLED; 587 } 588 589 /* 590 * Name the MSI-X interrupts. 591 */ 592 static void name_msix_vecs(struct adapter *adap) 593 { 594 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 595 596 /* non-data interrupts */ 597 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 598 599 /* FW events */ 600 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 601 adap->port[0]->name); 602 603 /* Ethernet queues */ 604 for_each_port(adap, j) { 605 struct net_device *d = adap->port[j]; 606 const struct port_info *pi = netdev_priv(d); 607 608 for (i = 0; i < pi->nqsets; i++, msi_idx++) 609 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 610 d->name, i); 611 } 612 } 613 614 static int request_msix_queue_irqs(struct adapter *adap) 615 { 616 struct sge *s = &adap->sge; 617 int err, ethqidx; 618 int msi_index = 2; 619 620 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 621 adap->msix_info[1].desc, &s->fw_evtq); 622 if (err) 623 return err; 624 625 for_each_ethrxq(s, ethqidx) { 626 err = request_irq(adap->msix_info[msi_index].vec, 627 t4_sge_intr_msix, 0, 628 adap->msix_info[msi_index].desc, 629 &s->ethrxq[ethqidx].rspq); 630 if (err) 631 goto unwind; 632 msi_index++; 633 } 634 return 0; 635 636 unwind: 637 while (--ethqidx >= 0) 638 free_irq(adap->msix_info[--msi_index].vec, 639 &s->ethrxq[ethqidx].rspq); 640 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 641 return err; 642 } 643 644 static void free_msix_queue_irqs(struct adapter *adap) 645 { 646 int i, msi_index = 2; 647 struct sge *s = &adap->sge; 648 649 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 650 for_each_ethrxq(s, i) 651 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 652 } 653 654 /** 655 * cxgb4_write_rss - write the RSS table for a given port 656 * @pi: the port 657 * @queues: array of queue indices for RSS 658 * 659 * Sets up the portion of the HW RSS table for the port's VI to distribute 660 * packets to the Rx queues in @queues. 661 * Should never be called before setting up sge eth rx queues 662 */ 663 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 664 { 665 u16 *rss; 666 int i, err; 667 struct adapter *adapter = pi->adapter; 668 const struct sge_eth_rxq *rxq; 669 670 rxq = &adapter->sge.ethrxq[pi->first_qset]; 671 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 672 if (!rss) 673 return -ENOMEM; 674 675 /* map the queue indices to queue ids */ 676 for (i = 0; i < pi->rss_size; i++, queues++) 677 rss[i] = rxq[*queues].rspq.abs_id; 678 679 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 680 pi->rss_size, rss, pi->rss_size); 681 /* If Tunnel All Lookup isn't specified in the global RSS 682 * Configuration, then we need to specify a default Ingress 683 * Queue for any ingress packets which aren't hashed. We'll 684 * use our first ingress queue ... 685 */ 686 if (!err) 687 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 688 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 689 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 690 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 691 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 692 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 693 rss[0]); 694 kfree(rss); 695 return err; 696 } 697 698 /** 699 * setup_rss - configure RSS 700 * @adap: the adapter 701 * 702 * Sets up RSS for each port. 703 */ 704 static int setup_rss(struct adapter *adap) 705 { 706 int i, j, err; 707 708 for_each_port(adap, i) { 709 const struct port_info *pi = adap2pinfo(adap, i); 710 711 /* Fill default values with equal distribution */ 712 for (j = 0; j < pi->rss_size; j++) 713 pi->rss[j] = j % pi->nqsets; 714 715 err = cxgb4_write_rss(pi, pi->rss); 716 if (err) 717 return err; 718 } 719 return 0; 720 } 721 722 /* 723 * Return the channel of the ingress queue with the given qid. 724 */ 725 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 726 { 727 qid -= p->ingr_start; 728 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 729 } 730 731 /* 732 * Wait until all NAPI handlers are descheduled. 733 */ 734 static void quiesce_rx(struct adapter *adap) 735 { 736 int i; 737 738 for (i = 0; i < adap->sge.ingr_sz; i++) { 739 struct sge_rspq *q = adap->sge.ingr_map[i]; 740 741 if (q && q->handler) { 742 napi_disable(&q->napi); 743 local_bh_disable(); 744 while (!cxgb_poll_lock_napi(q)) 745 mdelay(1); 746 local_bh_enable(); 747 } 748 749 } 750 } 751 752 /* Disable interrupt and napi handler */ 753 static void disable_interrupts(struct adapter *adap) 754 { 755 if (adap->flags & FULL_INIT_DONE) { 756 t4_intr_disable(adap); 757 if (adap->flags & USING_MSIX) { 758 free_msix_queue_irqs(adap); 759 free_irq(adap->msix_info[0].vec, adap); 760 } else { 761 free_irq(adap->pdev->irq, adap); 762 } 763 quiesce_rx(adap); 764 } 765 } 766 767 /* 768 * Enable NAPI scheduling and interrupt generation for all Rx queues. 769 */ 770 static void enable_rx(struct adapter *adap) 771 { 772 int i; 773 774 for (i = 0; i < adap->sge.ingr_sz; i++) { 775 struct sge_rspq *q = adap->sge.ingr_map[i]; 776 777 if (!q) 778 continue; 779 if (q->handler) { 780 cxgb_busy_poll_init_lock(q); 781 napi_enable(&q->napi); 782 } 783 /* 0-increment GTS to start the timer and enable interrupts */ 784 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 785 SEINTARM_V(q->intr_params) | 786 INGRESSQID_V(q->cntxt_id)); 787 } 788 } 789 790 791 static int setup_fw_sge_queues(struct adapter *adap) 792 { 793 struct sge *s = &adap->sge; 794 int err = 0; 795 796 bitmap_zero(s->starving_fl, s->egr_sz); 797 bitmap_zero(s->txq_maperr, s->egr_sz); 798 799 if (adap->flags & USING_MSIX) 800 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 801 else { 802 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 803 NULL, NULL, NULL, -1); 804 if (err) 805 return err; 806 adap->msi_idx = -((int)s->intrq.abs_id + 1); 807 } 808 809 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 810 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 811 if (err) 812 t4_free_sge_resources(adap); 813 return err; 814 } 815 816 /** 817 * setup_sge_queues - configure SGE Tx/Rx/response queues 818 * @adap: the adapter 819 * 820 * Determines how many sets of SGE queues to use and initializes them. 821 * We support multiple queue sets per port if we have MSI-X, otherwise 822 * just one queue set per port. 823 */ 824 static int setup_sge_queues(struct adapter *adap) 825 { 826 int err, i, j; 827 struct sge *s = &adap->sge; 828 struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 829 unsigned int cmplqid = 0; 830 831 for_each_port(adap, i) { 832 struct net_device *dev = adap->port[i]; 833 struct port_info *pi = netdev_priv(dev); 834 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 835 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 836 837 for (j = 0; j < pi->nqsets; j++, q++) { 838 if (adap->msi_idx > 0) 839 adap->msi_idx++; 840 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 841 adap->msi_idx, &q->fl, 842 t4_ethrx_handler, 843 NULL, 844 t4_get_mps_bg_map(adap, 845 pi->tx_chan)); 846 if (err) 847 goto freeout; 848 q->rspq.idx = j; 849 memset(&q->stats, 0, sizeof(q->stats)); 850 } 851 for (j = 0; j < pi->nqsets; j++, t++) { 852 err = t4_sge_alloc_eth_txq(adap, t, dev, 853 netdev_get_tx_queue(dev, j), 854 s->fw_evtq.cntxt_id); 855 if (err) 856 goto freeout; 857 } 858 } 859 860 for_each_port(adap, i) { 861 /* Note that cmplqid below is 0 if we don't 862 * have RDMA queues, and that's the right value. 863 */ 864 if (rxq_info) 865 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 866 867 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 868 s->fw_evtq.cntxt_id, cmplqid); 869 if (err) 870 goto freeout; 871 } 872 873 t4_write_reg(adap, is_t4(adap->params.chip) ? 874 MPS_TRC_RSS_CONTROL_A : 875 MPS_T5_TRC_RSS_CONTROL_A, 876 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 877 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 878 return 0; 879 freeout: 880 t4_free_sge_resources(adap); 881 return err; 882 } 883 884 /* 885 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 886 * The allocated memory is cleared. 887 */ 888 void *t4_alloc_mem(size_t size) 889 { 890 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 891 892 if (!p) 893 p = vzalloc(size); 894 return p; 895 } 896 897 /* 898 * Free memory allocated through alloc_mem(). 899 */ 900 void t4_free_mem(void *addr) 901 { 902 kvfree(addr); 903 } 904 905 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 906 void *accel_priv, select_queue_fallback_t fallback) 907 { 908 int txq; 909 910 #ifdef CONFIG_CHELSIO_T4_DCB 911 /* If a Data Center Bridging has been successfully negotiated on this 912 * link then we'll use the skb's priority to map it to a TX Queue. 913 * The skb's priority is determined via the VLAN Tag Priority Code 914 * Point field. 915 */ 916 if (cxgb4_dcb_enabled(dev)) { 917 u16 vlan_tci; 918 int err; 919 920 err = vlan_get_tag(skb, &vlan_tci); 921 if (unlikely(err)) { 922 if (net_ratelimit()) 923 netdev_warn(dev, 924 "TX Packet without VLAN Tag on DCB Link\n"); 925 txq = 0; 926 } else { 927 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 928 #ifdef CONFIG_CHELSIO_T4_FCOE 929 if (skb->protocol == htons(ETH_P_FCOE)) 930 txq = skb->priority & 0x7; 931 #endif /* CONFIG_CHELSIO_T4_FCOE */ 932 } 933 return txq; 934 } 935 #endif /* CONFIG_CHELSIO_T4_DCB */ 936 937 if (select_queue) { 938 txq = (skb_rx_queue_recorded(skb) 939 ? skb_get_rx_queue(skb) 940 : smp_processor_id()); 941 942 while (unlikely(txq >= dev->real_num_tx_queues)) 943 txq -= dev->real_num_tx_queues; 944 945 return txq; 946 } 947 948 return fallback(dev, skb) % dev->real_num_tx_queues; 949 } 950 951 static int closest_timer(const struct sge *s, int time) 952 { 953 int i, delta, match = 0, min_delta = INT_MAX; 954 955 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 956 delta = time - s->timer_val[i]; 957 if (delta < 0) 958 delta = -delta; 959 if (delta < min_delta) { 960 min_delta = delta; 961 match = i; 962 } 963 } 964 return match; 965 } 966 967 static int closest_thres(const struct sge *s, int thres) 968 { 969 int i, delta, match = 0, min_delta = INT_MAX; 970 971 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 972 delta = thres - s->counter_val[i]; 973 if (delta < 0) 974 delta = -delta; 975 if (delta < min_delta) { 976 min_delta = delta; 977 match = i; 978 } 979 } 980 return match; 981 } 982 983 /** 984 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 985 * @q: the Rx queue 986 * @us: the hold-off time in us, or 0 to disable timer 987 * @cnt: the hold-off packet count, or 0 to disable counter 988 * 989 * Sets an Rx queue's interrupt hold-off time and packet count. At least 990 * one of the two needs to be enabled for the queue to generate interrupts. 991 */ 992 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 993 unsigned int us, unsigned int cnt) 994 { 995 struct adapter *adap = q->adap; 996 997 if ((us | cnt) == 0) 998 cnt = 1; 999 1000 if (cnt) { 1001 int err; 1002 u32 v, new_idx; 1003 1004 new_idx = closest_thres(&adap->sge, cnt); 1005 if (q->desc && q->pktcnt_idx != new_idx) { 1006 /* the queue has already been created, update it */ 1007 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1008 FW_PARAMS_PARAM_X_V( 1009 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1010 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1011 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1012 &v, &new_idx); 1013 if (err) 1014 return err; 1015 } 1016 q->pktcnt_idx = new_idx; 1017 } 1018 1019 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1020 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1021 return 0; 1022 } 1023 1024 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1025 { 1026 const struct port_info *pi = netdev_priv(dev); 1027 netdev_features_t changed = dev->features ^ features; 1028 int err; 1029 1030 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1031 return 0; 1032 1033 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1034 -1, -1, -1, 1035 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1036 if (unlikely(err)) 1037 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1038 return err; 1039 } 1040 1041 static int setup_debugfs(struct adapter *adap) 1042 { 1043 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1044 return -1; 1045 1046 #ifdef CONFIG_DEBUG_FS 1047 t4_setup_debugfs(adap); 1048 #endif 1049 return 0; 1050 } 1051 1052 /* 1053 * upper-layer driver support 1054 */ 1055 1056 /* 1057 * Allocate an active-open TID and set it to the supplied value. 1058 */ 1059 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1060 { 1061 int atid = -1; 1062 1063 spin_lock_bh(&t->atid_lock); 1064 if (t->afree) { 1065 union aopen_entry *p = t->afree; 1066 1067 atid = (p - t->atid_tab) + t->atid_base; 1068 t->afree = p->next; 1069 p->data = data; 1070 t->atids_in_use++; 1071 } 1072 spin_unlock_bh(&t->atid_lock); 1073 return atid; 1074 } 1075 EXPORT_SYMBOL(cxgb4_alloc_atid); 1076 1077 /* 1078 * Release an active-open TID. 1079 */ 1080 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1081 { 1082 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1083 1084 spin_lock_bh(&t->atid_lock); 1085 p->next = t->afree; 1086 t->afree = p; 1087 t->atids_in_use--; 1088 spin_unlock_bh(&t->atid_lock); 1089 } 1090 EXPORT_SYMBOL(cxgb4_free_atid); 1091 1092 /* 1093 * Allocate a server TID and set it to the supplied value. 1094 */ 1095 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1096 { 1097 int stid; 1098 1099 spin_lock_bh(&t->stid_lock); 1100 if (family == PF_INET) { 1101 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1102 if (stid < t->nstids) 1103 __set_bit(stid, t->stid_bmap); 1104 else 1105 stid = -1; 1106 } else { 1107 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1108 if (stid < 0) 1109 stid = -1; 1110 } 1111 if (stid >= 0) { 1112 t->stid_tab[stid].data = data; 1113 stid += t->stid_base; 1114 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1115 * This is equivalent to 4 TIDs. With CLIP enabled it 1116 * needs 2 TIDs. 1117 */ 1118 if (family == PF_INET) 1119 t->stids_in_use++; 1120 else 1121 t->stids_in_use += 2; 1122 } 1123 spin_unlock_bh(&t->stid_lock); 1124 return stid; 1125 } 1126 EXPORT_SYMBOL(cxgb4_alloc_stid); 1127 1128 /* Allocate a server filter TID and set it to the supplied value. 1129 */ 1130 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1131 { 1132 int stid; 1133 1134 spin_lock_bh(&t->stid_lock); 1135 if (family == PF_INET) { 1136 stid = find_next_zero_bit(t->stid_bmap, 1137 t->nstids + t->nsftids, t->nstids); 1138 if (stid < (t->nstids + t->nsftids)) 1139 __set_bit(stid, t->stid_bmap); 1140 else 1141 stid = -1; 1142 } else { 1143 stid = -1; 1144 } 1145 if (stid >= 0) { 1146 t->stid_tab[stid].data = data; 1147 stid -= t->nstids; 1148 stid += t->sftid_base; 1149 t->sftids_in_use++; 1150 } 1151 spin_unlock_bh(&t->stid_lock); 1152 return stid; 1153 } 1154 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1155 1156 /* Release a server TID. 1157 */ 1158 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1159 { 1160 /* Is it a server filter TID? */ 1161 if (t->nsftids && (stid >= t->sftid_base)) { 1162 stid -= t->sftid_base; 1163 stid += t->nstids; 1164 } else { 1165 stid -= t->stid_base; 1166 } 1167 1168 spin_lock_bh(&t->stid_lock); 1169 if (family == PF_INET) 1170 __clear_bit(stid, t->stid_bmap); 1171 else 1172 bitmap_release_region(t->stid_bmap, stid, 1); 1173 t->stid_tab[stid].data = NULL; 1174 if (stid < t->nstids) { 1175 if (family == PF_INET) 1176 t->stids_in_use--; 1177 else 1178 t->stids_in_use -= 2; 1179 } else { 1180 t->sftids_in_use--; 1181 } 1182 spin_unlock_bh(&t->stid_lock); 1183 } 1184 EXPORT_SYMBOL(cxgb4_free_stid); 1185 1186 /* 1187 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1188 */ 1189 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1190 unsigned int tid) 1191 { 1192 struct cpl_tid_release *req; 1193 1194 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1195 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 1196 INIT_TP_WR(req, tid); 1197 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1198 } 1199 1200 /* 1201 * Queue a TID release request and if necessary schedule a work queue to 1202 * process it. 1203 */ 1204 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1205 unsigned int tid) 1206 { 1207 void **p = &t->tid_tab[tid]; 1208 struct adapter *adap = container_of(t, struct adapter, tids); 1209 1210 spin_lock_bh(&adap->tid_release_lock); 1211 *p = adap->tid_release_head; 1212 /* Low 2 bits encode the Tx channel number */ 1213 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1214 if (!adap->tid_release_task_busy) { 1215 adap->tid_release_task_busy = true; 1216 queue_work(adap->workq, &adap->tid_release_task); 1217 } 1218 spin_unlock_bh(&adap->tid_release_lock); 1219 } 1220 1221 /* 1222 * Process the list of pending TID release requests. 1223 */ 1224 static void process_tid_release_list(struct work_struct *work) 1225 { 1226 struct sk_buff *skb; 1227 struct adapter *adap; 1228 1229 adap = container_of(work, struct adapter, tid_release_task); 1230 1231 spin_lock_bh(&adap->tid_release_lock); 1232 while (adap->tid_release_head) { 1233 void **p = adap->tid_release_head; 1234 unsigned int chan = (uintptr_t)p & 3; 1235 p = (void *)p - chan; 1236 1237 adap->tid_release_head = *p; 1238 *p = NULL; 1239 spin_unlock_bh(&adap->tid_release_lock); 1240 1241 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1242 GFP_KERNEL))) 1243 schedule_timeout_uninterruptible(1); 1244 1245 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1246 t4_ofld_send(adap, skb); 1247 spin_lock_bh(&adap->tid_release_lock); 1248 } 1249 adap->tid_release_task_busy = false; 1250 spin_unlock_bh(&adap->tid_release_lock); 1251 } 1252 1253 /* 1254 * Release a TID and inform HW. If we are unable to allocate the release 1255 * message we defer to a work queue. 1256 */ 1257 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) 1258 { 1259 struct sk_buff *skb; 1260 struct adapter *adap = container_of(t, struct adapter, tids); 1261 1262 WARN_ON(tid >= t->ntids); 1263 1264 if (t->tid_tab[tid]) { 1265 t->tid_tab[tid] = NULL; 1266 if (t->hash_base && (tid >= t->hash_base)) 1267 atomic_dec(&t->hash_tids_in_use); 1268 else 1269 atomic_dec(&t->tids_in_use); 1270 } 1271 1272 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1273 if (likely(skb)) { 1274 mk_tid_release(skb, chan, tid); 1275 t4_ofld_send(adap, skb); 1276 } else 1277 cxgb4_queue_tid_release(t, chan, tid); 1278 } 1279 EXPORT_SYMBOL(cxgb4_remove_tid); 1280 1281 /* 1282 * Allocate and initialize the TID tables. Returns 0 on success. 1283 */ 1284 static int tid_init(struct tid_info *t) 1285 { 1286 struct adapter *adap = container_of(t, struct adapter, tids); 1287 unsigned int max_ftids = t->nftids + t->nsftids; 1288 unsigned int natids = t->natids; 1289 unsigned int stid_bmap_size; 1290 unsigned int ftid_bmap_size; 1291 size_t size; 1292 1293 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1294 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1295 size = t->ntids * sizeof(*t->tid_tab) + 1296 natids * sizeof(*t->atid_tab) + 1297 t->nstids * sizeof(*t->stid_tab) + 1298 t->nsftids * sizeof(*t->stid_tab) + 1299 stid_bmap_size * sizeof(long) + 1300 max_ftids * sizeof(*t->ftid_tab) + 1301 ftid_bmap_size * sizeof(long); 1302 1303 t->tid_tab = t4_alloc_mem(size); 1304 if (!t->tid_tab) 1305 return -ENOMEM; 1306 1307 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1308 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1309 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1310 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1311 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1312 spin_lock_init(&t->stid_lock); 1313 spin_lock_init(&t->atid_lock); 1314 spin_lock_init(&t->ftid_lock); 1315 1316 t->stids_in_use = 0; 1317 t->sftids_in_use = 0; 1318 t->afree = NULL; 1319 t->atids_in_use = 0; 1320 atomic_set(&t->tids_in_use, 0); 1321 atomic_set(&t->hash_tids_in_use, 0); 1322 1323 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1324 if (natids) { 1325 while (--natids) 1326 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1327 t->afree = t->atid_tab; 1328 } 1329 1330 if (is_offload(adap)) { 1331 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1332 /* Reserve stid 0 for T4/T5 adapters */ 1333 if (!t->stid_base && 1334 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1335 __set_bit(0, t->stid_bmap); 1336 } 1337 1338 bitmap_zero(t->ftid_bmap, t->nftids); 1339 return 0; 1340 } 1341 1342 /** 1343 * cxgb4_create_server - create an IP server 1344 * @dev: the device 1345 * @stid: the server TID 1346 * @sip: local IP address to bind server to 1347 * @sport: the server's TCP port 1348 * @queue: queue to direct messages from this server to 1349 * 1350 * Create an IP server for the given port and address. 1351 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1352 */ 1353 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1354 __be32 sip, __be16 sport, __be16 vlan, 1355 unsigned int queue) 1356 { 1357 unsigned int chan; 1358 struct sk_buff *skb; 1359 struct adapter *adap; 1360 struct cpl_pass_open_req *req; 1361 int ret; 1362 1363 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1364 if (!skb) 1365 return -ENOMEM; 1366 1367 adap = netdev2adap(dev); 1368 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); 1369 INIT_TP_WR(req, 0); 1370 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1371 req->local_port = sport; 1372 req->peer_port = htons(0); 1373 req->local_ip = sip; 1374 req->peer_ip = htonl(0); 1375 chan = rxq_to_chan(&adap->sge, queue); 1376 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1377 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1378 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1379 ret = t4_mgmt_tx(adap, skb); 1380 return net_xmit_eval(ret); 1381 } 1382 EXPORT_SYMBOL(cxgb4_create_server); 1383 1384 /* cxgb4_create_server6 - create an IPv6 server 1385 * @dev: the device 1386 * @stid: the server TID 1387 * @sip: local IPv6 address to bind server to 1388 * @sport: the server's TCP port 1389 * @queue: queue to direct messages from this server to 1390 * 1391 * Create an IPv6 server for the given port and address. 1392 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1393 */ 1394 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1395 const struct in6_addr *sip, __be16 sport, 1396 unsigned int queue) 1397 { 1398 unsigned int chan; 1399 struct sk_buff *skb; 1400 struct adapter *adap; 1401 struct cpl_pass_open_req6 *req; 1402 int ret; 1403 1404 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1405 if (!skb) 1406 return -ENOMEM; 1407 1408 adap = netdev2adap(dev); 1409 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req)); 1410 INIT_TP_WR(req, 0); 1411 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1412 req->local_port = sport; 1413 req->peer_port = htons(0); 1414 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1415 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1416 req->peer_ip_hi = cpu_to_be64(0); 1417 req->peer_ip_lo = cpu_to_be64(0); 1418 chan = rxq_to_chan(&adap->sge, queue); 1419 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1420 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1421 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1422 ret = t4_mgmt_tx(adap, skb); 1423 return net_xmit_eval(ret); 1424 } 1425 EXPORT_SYMBOL(cxgb4_create_server6); 1426 1427 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1428 unsigned int queue, bool ipv6) 1429 { 1430 struct sk_buff *skb; 1431 struct adapter *adap; 1432 struct cpl_close_listsvr_req *req; 1433 int ret; 1434 1435 adap = netdev2adap(dev); 1436 1437 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1438 if (!skb) 1439 return -ENOMEM; 1440 1441 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req)); 1442 INIT_TP_WR(req, 0); 1443 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1444 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1445 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1446 ret = t4_mgmt_tx(adap, skb); 1447 return net_xmit_eval(ret); 1448 } 1449 EXPORT_SYMBOL(cxgb4_remove_server); 1450 1451 /** 1452 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1453 * @mtus: the HW MTU table 1454 * @mtu: the target MTU 1455 * @idx: index of selected entry in the MTU table 1456 * 1457 * Returns the index and the value in the HW MTU table that is closest to 1458 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1459 * table, in which case that smallest available value is selected. 1460 */ 1461 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1462 unsigned int *idx) 1463 { 1464 unsigned int i = 0; 1465 1466 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1467 ++i; 1468 if (idx) 1469 *idx = i; 1470 return mtus[i]; 1471 } 1472 EXPORT_SYMBOL(cxgb4_best_mtu); 1473 1474 /** 1475 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1476 * @mtus: the HW MTU table 1477 * @header_size: Header Size 1478 * @data_size_max: maximum Data Segment Size 1479 * @data_size_align: desired Data Segment Size Alignment (2^N) 1480 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1481 * 1482 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1483 * MTU Table based solely on a Maximum MTU parameter, we break that 1484 * parameter up into a Header Size and Maximum Data Segment Size, and 1485 * provide a desired Data Segment Size Alignment. If we find an MTU in 1486 * the Hardware MTU Table which will result in a Data Segment Size with 1487 * the requested alignment _and_ that MTU isn't "too far" from the 1488 * closest MTU, then we'll return that rather than the closest MTU. 1489 */ 1490 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1491 unsigned short header_size, 1492 unsigned short data_size_max, 1493 unsigned short data_size_align, 1494 unsigned int *mtu_idxp) 1495 { 1496 unsigned short max_mtu = header_size + data_size_max; 1497 unsigned short data_size_align_mask = data_size_align - 1; 1498 int mtu_idx, aligned_mtu_idx; 1499 1500 /* Scan the MTU Table till we find an MTU which is larger than our 1501 * Maximum MTU or we reach the end of the table. Along the way, 1502 * record the last MTU found, if any, which will result in a Data 1503 * Segment Length matching the requested alignment. 1504 */ 1505 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1506 unsigned short data_size = mtus[mtu_idx] - header_size; 1507 1508 /* If this MTU minus the Header Size would result in a 1509 * Data Segment Size of the desired alignment, remember it. 1510 */ 1511 if ((data_size & data_size_align_mask) == 0) 1512 aligned_mtu_idx = mtu_idx; 1513 1514 /* If we're not at the end of the Hardware MTU Table and the 1515 * next element is larger than our Maximum MTU, drop out of 1516 * the loop. 1517 */ 1518 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1519 break; 1520 } 1521 1522 /* If we fell out of the loop because we ran to the end of the table, 1523 * then we just have to use the last [largest] entry. 1524 */ 1525 if (mtu_idx == NMTUS) 1526 mtu_idx--; 1527 1528 /* If we found an MTU which resulted in the requested Data Segment 1529 * Length alignment and that's "not far" from the largest MTU which is 1530 * less than or equal to the maximum MTU, then use that. 1531 */ 1532 if (aligned_mtu_idx >= 0 && 1533 mtu_idx - aligned_mtu_idx <= 1) 1534 mtu_idx = aligned_mtu_idx; 1535 1536 /* If the caller has passed in an MTU Index pointer, pass the 1537 * MTU Index back. Return the MTU value. 1538 */ 1539 if (mtu_idxp) 1540 *mtu_idxp = mtu_idx; 1541 return mtus[mtu_idx]; 1542 } 1543 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1544 1545 /** 1546 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1547 * @chip: chip type 1548 * @viid: VI id of the given port 1549 * 1550 * Return the SMT index for this VI. 1551 */ 1552 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1553 { 1554 /* In T4/T5, SMT contains 256 SMAC entries organized in 1555 * 128 rows of 2 entries each. 1556 * In T6, SMT contains 256 SMAC entries in 256 rows. 1557 * TODO: The below code needs to be updated when we add support 1558 * for 256 VFs. 1559 */ 1560 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1561 return ((viid & 0x7f) << 1); 1562 else 1563 return (viid & 0x7f); 1564 } 1565 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1566 1567 /** 1568 * cxgb4_port_chan - get the HW channel of a port 1569 * @dev: the net device for the port 1570 * 1571 * Return the HW Tx channel of the given port. 1572 */ 1573 unsigned int cxgb4_port_chan(const struct net_device *dev) 1574 { 1575 return netdev2pinfo(dev)->tx_chan; 1576 } 1577 EXPORT_SYMBOL(cxgb4_port_chan); 1578 1579 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1580 { 1581 struct adapter *adap = netdev2adap(dev); 1582 u32 v1, v2, lp_count, hp_count; 1583 1584 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1585 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1586 if (is_t4(adap->params.chip)) { 1587 lp_count = LP_COUNT_G(v1); 1588 hp_count = HP_COUNT_G(v1); 1589 } else { 1590 lp_count = LP_COUNT_T5_G(v1); 1591 hp_count = HP_COUNT_T5_G(v2); 1592 } 1593 return lpfifo ? lp_count : hp_count; 1594 } 1595 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1596 1597 /** 1598 * cxgb4_port_viid - get the VI id of a port 1599 * @dev: the net device for the port 1600 * 1601 * Return the VI id of the given port. 1602 */ 1603 unsigned int cxgb4_port_viid(const struct net_device *dev) 1604 { 1605 return netdev2pinfo(dev)->viid; 1606 } 1607 EXPORT_SYMBOL(cxgb4_port_viid); 1608 1609 /** 1610 * cxgb4_port_idx - get the index of a port 1611 * @dev: the net device for the port 1612 * 1613 * Return the index of the given port. 1614 */ 1615 unsigned int cxgb4_port_idx(const struct net_device *dev) 1616 { 1617 return netdev2pinfo(dev)->port_id; 1618 } 1619 EXPORT_SYMBOL(cxgb4_port_idx); 1620 1621 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1622 struct tp_tcp_stats *v6) 1623 { 1624 struct adapter *adap = pci_get_drvdata(pdev); 1625 1626 spin_lock(&adap->stats_lock); 1627 t4_tp_get_tcp_stats(adap, v4, v6); 1628 spin_unlock(&adap->stats_lock); 1629 } 1630 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1631 1632 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1633 const unsigned int *pgsz_order) 1634 { 1635 struct adapter *adap = netdev2adap(dev); 1636 1637 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1638 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1639 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1640 HPZ3_V(pgsz_order[3])); 1641 } 1642 EXPORT_SYMBOL(cxgb4_iscsi_init); 1643 1644 int cxgb4_flush_eq_cache(struct net_device *dev) 1645 { 1646 struct adapter *adap = netdev2adap(dev); 1647 1648 return t4_sge_ctxt_flush(adap, adap->mbox); 1649 } 1650 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1651 1652 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1653 { 1654 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1655 __be64 indices; 1656 int ret; 1657 1658 spin_lock(&adap->win0_lock); 1659 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1660 sizeof(indices), (__be32 *)&indices, 1661 T4_MEMORY_READ); 1662 spin_unlock(&adap->win0_lock); 1663 if (!ret) { 1664 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1665 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1666 } 1667 return ret; 1668 } 1669 1670 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1671 u16 size) 1672 { 1673 struct adapter *adap = netdev2adap(dev); 1674 u16 hw_pidx, hw_cidx; 1675 int ret; 1676 1677 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1678 if (ret) 1679 goto out; 1680 1681 if (pidx != hw_pidx) { 1682 u16 delta; 1683 u32 val; 1684 1685 if (pidx >= hw_pidx) 1686 delta = pidx - hw_pidx; 1687 else 1688 delta = size - hw_pidx + pidx; 1689 1690 if (is_t4(adap->params.chip)) 1691 val = PIDX_V(delta); 1692 else 1693 val = PIDX_T5_V(delta); 1694 wmb(); 1695 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1696 QID_V(qid) | val); 1697 } 1698 out: 1699 return ret; 1700 } 1701 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1702 1703 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1704 { 1705 struct adapter *adap; 1706 u32 offset, memtype, memaddr; 1707 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1708 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1709 int ret; 1710 1711 adap = netdev2adap(dev); 1712 1713 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1714 1715 /* Figure out where the offset lands in the Memory Type/Address scheme. 1716 * This code assumes that the memory is laid out starting at offset 0 1717 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1718 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1719 * MC0, and some have both MC0 and MC1. 1720 */ 1721 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1722 edc0_size = EDRAM0_SIZE_G(size) << 20; 1723 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1724 edc1_size = EDRAM1_SIZE_G(size) << 20; 1725 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1726 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1727 1728 edc0_end = edc0_size; 1729 edc1_end = edc0_end + edc1_size; 1730 mc0_end = edc1_end + mc0_size; 1731 1732 if (offset < edc0_end) { 1733 memtype = MEM_EDC0; 1734 memaddr = offset; 1735 } else if (offset < edc1_end) { 1736 memtype = MEM_EDC1; 1737 memaddr = offset - edc0_end; 1738 } else { 1739 if (offset < mc0_end) { 1740 memtype = MEM_MC0; 1741 memaddr = offset - edc1_end; 1742 } else if (is_t5(adap->params.chip)) { 1743 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1744 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1745 mc1_end = mc0_end + mc1_size; 1746 if (offset < mc1_end) { 1747 memtype = MEM_MC1; 1748 memaddr = offset - mc0_end; 1749 } else { 1750 /* offset beyond the end of any memory */ 1751 goto err; 1752 } 1753 } else { 1754 /* T4/T6 only has a single memory channel */ 1755 goto err; 1756 } 1757 } 1758 1759 spin_lock(&adap->win0_lock); 1760 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1761 spin_unlock(&adap->win0_lock); 1762 return ret; 1763 1764 err: 1765 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1766 stag, offset); 1767 return -EINVAL; 1768 } 1769 EXPORT_SYMBOL(cxgb4_read_tpte); 1770 1771 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1772 { 1773 u32 hi, lo; 1774 struct adapter *adap; 1775 1776 adap = netdev2adap(dev); 1777 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1778 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1779 1780 return ((u64)hi << 32) | (u64)lo; 1781 } 1782 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1783 1784 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1785 unsigned int qid, 1786 enum cxgb4_bar2_qtype qtype, 1787 int user, 1788 u64 *pbar2_qoffset, 1789 unsigned int *pbar2_qid) 1790 { 1791 return t4_bar2_sge_qregs(netdev2adap(dev), 1792 qid, 1793 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1794 ? T4_BAR2_QTYPE_EGRESS 1795 : T4_BAR2_QTYPE_INGRESS), 1796 user, 1797 pbar2_qoffset, 1798 pbar2_qid); 1799 } 1800 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1801 1802 static struct pci_driver cxgb4_driver; 1803 1804 static void check_neigh_update(struct neighbour *neigh) 1805 { 1806 const struct device *parent; 1807 const struct net_device *netdev = neigh->dev; 1808 1809 if (netdev->priv_flags & IFF_802_1Q_VLAN) 1810 netdev = vlan_dev_real_dev(netdev); 1811 parent = netdev->dev.parent; 1812 if (parent && parent->driver == &cxgb4_driver.driver) 1813 t4_l2t_update(dev_get_drvdata(parent), neigh); 1814 } 1815 1816 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1817 void *data) 1818 { 1819 switch (event) { 1820 case NETEVENT_NEIGH_UPDATE: 1821 check_neigh_update(data); 1822 break; 1823 case NETEVENT_REDIRECT: 1824 default: 1825 break; 1826 } 1827 return 0; 1828 } 1829 1830 static bool netevent_registered; 1831 static struct notifier_block cxgb4_netevent_nb = { 1832 .notifier_call = netevent_cb 1833 }; 1834 1835 static void drain_db_fifo(struct adapter *adap, int usecs) 1836 { 1837 u32 v1, v2, lp_count, hp_count; 1838 1839 do { 1840 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1841 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1842 if (is_t4(adap->params.chip)) { 1843 lp_count = LP_COUNT_G(v1); 1844 hp_count = HP_COUNT_G(v1); 1845 } else { 1846 lp_count = LP_COUNT_T5_G(v1); 1847 hp_count = HP_COUNT_T5_G(v2); 1848 } 1849 1850 if (lp_count == 0 && hp_count == 0) 1851 break; 1852 set_current_state(TASK_UNINTERRUPTIBLE); 1853 schedule_timeout(usecs_to_jiffies(usecs)); 1854 } while (1); 1855 } 1856 1857 static void disable_txq_db(struct sge_txq *q) 1858 { 1859 unsigned long flags; 1860 1861 spin_lock_irqsave(&q->db_lock, flags); 1862 q->db_disabled = 1; 1863 spin_unlock_irqrestore(&q->db_lock, flags); 1864 } 1865 1866 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1867 { 1868 spin_lock_irq(&q->db_lock); 1869 if (q->db_pidx_inc) { 1870 /* Make sure that all writes to the TX descriptors 1871 * are committed before we tell HW about them. 1872 */ 1873 wmb(); 1874 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1875 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1876 q->db_pidx_inc = 0; 1877 } 1878 q->db_disabled = 0; 1879 spin_unlock_irq(&q->db_lock); 1880 } 1881 1882 static void disable_dbs(struct adapter *adap) 1883 { 1884 int i; 1885 1886 for_each_ethrxq(&adap->sge, i) 1887 disable_txq_db(&adap->sge.ethtxq[i].q); 1888 if (is_offload(adap)) { 1889 struct sge_uld_txq_info *txq_info = 1890 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1891 1892 if (txq_info) { 1893 for_each_ofldtxq(&adap->sge, i) { 1894 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1895 1896 disable_txq_db(&txq->q); 1897 } 1898 } 1899 } 1900 for_each_port(adap, i) 1901 disable_txq_db(&adap->sge.ctrlq[i].q); 1902 } 1903 1904 static void enable_dbs(struct adapter *adap) 1905 { 1906 int i; 1907 1908 for_each_ethrxq(&adap->sge, i) 1909 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1910 if (is_offload(adap)) { 1911 struct sge_uld_txq_info *txq_info = 1912 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1913 1914 if (txq_info) { 1915 for_each_ofldtxq(&adap->sge, i) { 1916 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1917 1918 enable_txq_db(adap, &txq->q); 1919 } 1920 } 1921 } 1922 for_each_port(adap, i) 1923 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 1924 } 1925 1926 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 1927 { 1928 enum cxgb4_uld type = CXGB4_ULD_RDMA; 1929 1930 if (adap->uld && adap->uld[type].handle) 1931 adap->uld[type].control(adap->uld[type].handle, cmd); 1932 } 1933 1934 static void process_db_full(struct work_struct *work) 1935 { 1936 struct adapter *adap; 1937 1938 adap = container_of(work, struct adapter, db_full_task); 1939 1940 drain_db_fifo(adap, dbfifo_drain_delay); 1941 enable_dbs(adap); 1942 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 1943 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1944 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1945 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 1946 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 1947 else 1948 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1949 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 1950 } 1951 1952 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 1953 { 1954 u16 hw_pidx, hw_cidx; 1955 int ret; 1956 1957 spin_lock_irq(&q->db_lock); 1958 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 1959 if (ret) 1960 goto out; 1961 if (q->db_pidx != hw_pidx) { 1962 u16 delta; 1963 u32 val; 1964 1965 if (q->db_pidx >= hw_pidx) 1966 delta = q->db_pidx - hw_pidx; 1967 else 1968 delta = q->size - hw_pidx + q->db_pidx; 1969 1970 if (is_t4(adap->params.chip)) 1971 val = PIDX_V(delta); 1972 else 1973 val = PIDX_T5_V(delta); 1974 wmb(); 1975 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1976 QID_V(q->cntxt_id) | val); 1977 } 1978 out: 1979 q->db_disabled = 0; 1980 q->db_pidx_inc = 0; 1981 spin_unlock_irq(&q->db_lock); 1982 if (ret) 1983 CH_WARN(adap, "DB drop recovery failed.\n"); 1984 } 1985 1986 static void recover_all_queues(struct adapter *adap) 1987 { 1988 int i; 1989 1990 for_each_ethrxq(&adap->sge, i) 1991 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 1992 if (is_offload(adap)) { 1993 struct sge_uld_txq_info *txq_info = 1994 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1995 if (txq_info) { 1996 for_each_ofldtxq(&adap->sge, i) { 1997 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1998 1999 sync_txq_pidx(adap, &txq->q); 2000 } 2001 } 2002 } 2003 for_each_port(adap, i) 2004 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2005 } 2006 2007 static void process_db_drop(struct work_struct *work) 2008 { 2009 struct adapter *adap; 2010 2011 adap = container_of(work, struct adapter, db_drop_task); 2012 2013 if (is_t4(adap->params.chip)) { 2014 drain_db_fifo(adap, dbfifo_drain_delay); 2015 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2016 drain_db_fifo(adap, dbfifo_drain_delay); 2017 recover_all_queues(adap); 2018 drain_db_fifo(adap, dbfifo_drain_delay); 2019 enable_dbs(adap); 2020 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2021 } else if (is_t5(adap->params.chip)) { 2022 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2023 u16 qid = (dropped_db >> 15) & 0x1ffff; 2024 u16 pidx_inc = dropped_db & 0x1fff; 2025 u64 bar2_qoffset; 2026 unsigned int bar2_qid; 2027 int ret; 2028 2029 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2030 0, &bar2_qoffset, &bar2_qid); 2031 if (ret) 2032 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2033 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2034 else 2035 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2036 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2037 2038 /* Re-enable BAR2 WC */ 2039 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2040 } 2041 2042 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2043 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2044 } 2045 2046 void t4_db_full(struct adapter *adap) 2047 { 2048 if (is_t4(adap->params.chip)) { 2049 disable_dbs(adap); 2050 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2051 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2052 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2053 queue_work(adap->workq, &adap->db_full_task); 2054 } 2055 } 2056 2057 void t4_db_dropped(struct adapter *adap) 2058 { 2059 if (is_t4(adap->params.chip)) { 2060 disable_dbs(adap); 2061 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2062 } 2063 queue_work(adap->workq, &adap->db_drop_task); 2064 } 2065 2066 void t4_register_netevent_notifier(void) 2067 { 2068 if (!netevent_registered) { 2069 register_netevent_notifier(&cxgb4_netevent_nb); 2070 netevent_registered = true; 2071 } 2072 } 2073 2074 static void detach_ulds(struct adapter *adap) 2075 { 2076 unsigned int i; 2077 2078 mutex_lock(&uld_mutex); 2079 list_del(&adap->list_node); 2080 for (i = 0; i < CXGB4_ULD_MAX; i++) 2081 if (adap->uld && adap->uld[i].handle) { 2082 adap->uld[i].state_change(adap->uld[i].handle, 2083 CXGB4_STATE_DETACH); 2084 adap->uld[i].handle = NULL; 2085 } 2086 if (netevent_registered && list_empty(&adapter_list)) { 2087 unregister_netevent_notifier(&cxgb4_netevent_nb); 2088 netevent_registered = false; 2089 } 2090 mutex_unlock(&uld_mutex); 2091 } 2092 2093 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2094 { 2095 unsigned int i; 2096 2097 mutex_lock(&uld_mutex); 2098 for (i = 0; i < CXGB4_ULD_MAX; i++) 2099 if (adap->uld && adap->uld[i].handle) 2100 adap->uld[i].state_change(adap->uld[i].handle, 2101 new_state); 2102 mutex_unlock(&uld_mutex); 2103 } 2104 2105 #if IS_ENABLED(CONFIG_IPV6) 2106 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2107 unsigned long event, void *data) 2108 { 2109 struct inet6_ifaddr *ifa = data; 2110 struct net_device *event_dev = ifa->idev->dev; 2111 const struct device *parent = NULL; 2112 #if IS_ENABLED(CONFIG_BONDING) 2113 struct adapter *adap; 2114 #endif 2115 if (event_dev->priv_flags & IFF_802_1Q_VLAN) 2116 event_dev = vlan_dev_real_dev(event_dev); 2117 #if IS_ENABLED(CONFIG_BONDING) 2118 if (event_dev->flags & IFF_MASTER) { 2119 list_for_each_entry(adap, &adapter_list, list_node) { 2120 switch (event) { 2121 case NETDEV_UP: 2122 cxgb4_clip_get(adap->port[0], 2123 (const u32 *)ifa, 1); 2124 break; 2125 case NETDEV_DOWN: 2126 cxgb4_clip_release(adap->port[0], 2127 (const u32 *)ifa, 1); 2128 break; 2129 default: 2130 break; 2131 } 2132 } 2133 return NOTIFY_OK; 2134 } 2135 #endif 2136 2137 if (event_dev) 2138 parent = event_dev->dev.parent; 2139 2140 if (parent && parent->driver == &cxgb4_driver.driver) { 2141 switch (event) { 2142 case NETDEV_UP: 2143 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2144 break; 2145 case NETDEV_DOWN: 2146 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2147 break; 2148 default: 2149 break; 2150 } 2151 } 2152 return NOTIFY_OK; 2153 } 2154 2155 static bool inet6addr_registered; 2156 static struct notifier_block cxgb4_inet6addr_notifier = { 2157 .notifier_call = cxgb4_inet6addr_handler 2158 }; 2159 2160 static void update_clip(const struct adapter *adap) 2161 { 2162 int i; 2163 struct net_device *dev; 2164 int ret; 2165 2166 rcu_read_lock(); 2167 2168 for (i = 0; i < MAX_NPORTS; i++) { 2169 dev = adap->port[i]; 2170 ret = 0; 2171 2172 if (dev) 2173 ret = cxgb4_update_root_dev_clip(dev); 2174 2175 if (ret < 0) 2176 break; 2177 } 2178 rcu_read_unlock(); 2179 } 2180 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2181 2182 /** 2183 * cxgb_up - enable the adapter 2184 * @adap: adapter being enabled 2185 * 2186 * Called when the first port is enabled, this function performs the 2187 * actions necessary to make an adapter operational, such as completing 2188 * the initialization of HW modules, and enabling interrupts. 2189 * 2190 * Must be called with the rtnl lock held. 2191 */ 2192 static int cxgb_up(struct adapter *adap) 2193 { 2194 int err; 2195 2196 err = setup_sge_queues(adap); 2197 if (err) 2198 goto out; 2199 err = setup_rss(adap); 2200 if (err) 2201 goto freeq; 2202 2203 if (adap->flags & USING_MSIX) { 2204 name_msix_vecs(adap); 2205 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2206 adap->msix_info[0].desc, adap); 2207 if (err) 2208 goto irq_err; 2209 err = request_msix_queue_irqs(adap); 2210 if (err) { 2211 free_irq(adap->msix_info[0].vec, adap); 2212 goto irq_err; 2213 } 2214 } else { 2215 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2216 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2217 adap->port[0]->name, adap); 2218 if (err) 2219 goto irq_err; 2220 } 2221 enable_rx(adap); 2222 t4_sge_start(adap); 2223 t4_intr_enable(adap); 2224 adap->flags |= FULL_INIT_DONE; 2225 notify_ulds(adap, CXGB4_STATE_UP); 2226 #if IS_ENABLED(CONFIG_IPV6) 2227 update_clip(adap); 2228 #endif 2229 /* Initialize hash mac addr list*/ 2230 INIT_LIST_HEAD(&adap->mac_hlist); 2231 out: 2232 return err; 2233 irq_err: 2234 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2235 freeq: 2236 t4_free_sge_resources(adap); 2237 goto out; 2238 } 2239 2240 static void cxgb_down(struct adapter *adapter) 2241 { 2242 cancel_work_sync(&adapter->tid_release_task); 2243 cancel_work_sync(&adapter->db_full_task); 2244 cancel_work_sync(&adapter->db_drop_task); 2245 adapter->tid_release_task_busy = false; 2246 adapter->tid_release_head = NULL; 2247 2248 t4_sge_stop(adapter); 2249 t4_free_sge_resources(adapter); 2250 adapter->flags &= ~FULL_INIT_DONE; 2251 } 2252 2253 /* 2254 * net_device operations 2255 */ 2256 static int cxgb_open(struct net_device *dev) 2257 { 2258 int err; 2259 struct port_info *pi = netdev_priv(dev); 2260 struct adapter *adapter = pi->adapter; 2261 2262 netif_carrier_off(dev); 2263 2264 if (!(adapter->flags & FULL_INIT_DONE)) { 2265 err = cxgb_up(adapter); 2266 if (err < 0) 2267 return err; 2268 } 2269 2270 err = link_start(dev); 2271 if (!err) 2272 netif_tx_start_all_queues(dev); 2273 return err; 2274 } 2275 2276 static int cxgb_close(struct net_device *dev) 2277 { 2278 struct port_info *pi = netdev_priv(dev); 2279 struct adapter *adapter = pi->adapter; 2280 2281 netif_tx_stop_all_queues(dev); 2282 netif_carrier_off(dev); 2283 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false); 2284 } 2285 2286 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2287 __be32 sip, __be16 sport, __be16 vlan, 2288 unsigned int queue, unsigned char port, unsigned char mask) 2289 { 2290 int ret; 2291 struct filter_entry *f; 2292 struct adapter *adap; 2293 int i; 2294 u8 *val; 2295 2296 adap = netdev2adap(dev); 2297 2298 /* Adjust stid to correct filter index */ 2299 stid -= adap->tids.sftid_base; 2300 stid += adap->tids.nftids; 2301 2302 /* Check to make sure the filter requested is writable ... 2303 */ 2304 f = &adap->tids.ftid_tab[stid]; 2305 ret = writable_filter(f); 2306 if (ret) 2307 return ret; 2308 2309 /* Clear out any old resources being used by the filter before 2310 * we start constructing the new filter. 2311 */ 2312 if (f->valid) 2313 clear_filter(adap, f); 2314 2315 /* Clear out filter specifications */ 2316 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2317 f->fs.val.lport = cpu_to_be16(sport); 2318 f->fs.mask.lport = ~0; 2319 val = (u8 *)&sip; 2320 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2321 for (i = 0; i < 4; i++) { 2322 f->fs.val.lip[i] = val[i]; 2323 f->fs.mask.lip[i] = ~0; 2324 } 2325 if (adap->params.tp.vlan_pri_map & PORT_F) { 2326 f->fs.val.iport = port; 2327 f->fs.mask.iport = mask; 2328 } 2329 } 2330 2331 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2332 f->fs.val.proto = IPPROTO_TCP; 2333 f->fs.mask.proto = ~0; 2334 } 2335 2336 f->fs.dirsteer = 1; 2337 f->fs.iq = queue; 2338 /* Mark filter as locked */ 2339 f->locked = 1; 2340 f->fs.rpttid = 1; 2341 2342 ret = set_filter_wr(adap, stid); 2343 if (ret) { 2344 clear_filter(adap, f); 2345 return ret; 2346 } 2347 2348 return 0; 2349 } 2350 EXPORT_SYMBOL(cxgb4_create_server_filter); 2351 2352 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2353 unsigned int queue, bool ipv6) 2354 { 2355 struct filter_entry *f; 2356 struct adapter *adap; 2357 2358 adap = netdev2adap(dev); 2359 2360 /* Adjust stid to correct filter index */ 2361 stid -= adap->tids.sftid_base; 2362 stid += adap->tids.nftids; 2363 2364 f = &adap->tids.ftid_tab[stid]; 2365 /* Unlock the filter */ 2366 f->locked = 0; 2367 2368 return delete_filter(adap, stid); 2369 } 2370 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2371 2372 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev, 2373 struct rtnl_link_stats64 *ns) 2374 { 2375 struct port_stats stats; 2376 struct port_info *p = netdev_priv(dev); 2377 struct adapter *adapter = p->adapter; 2378 2379 /* Block retrieving statistics during EEH error 2380 * recovery. Otherwise, the recovery might fail 2381 * and the PCI device will be removed permanently 2382 */ 2383 spin_lock(&adapter->stats_lock); 2384 if (!netif_device_present(dev)) { 2385 spin_unlock(&adapter->stats_lock); 2386 return ns; 2387 } 2388 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2389 &p->stats_base); 2390 spin_unlock(&adapter->stats_lock); 2391 2392 ns->tx_bytes = stats.tx_octets; 2393 ns->tx_packets = stats.tx_frames; 2394 ns->rx_bytes = stats.rx_octets; 2395 ns->rx_packets = stats.rx_frames; 2396 ns->multicast = stats.rx_mcast_frames; 2397 2398 /* detailed rx_errors */ 2399 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2400 stats.rx_runt; 2401 ns->rx_over_errors = 0; 2402 ns->rx_crc_errors = stats.rx_fcs_err; 2403 ns->rx_frame_errors = stats.rx_symbol_err; 2404 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 + 2405 stats.rx_ovflow2 + stats.rx_ovflow3 + 2406 stats.rx_trunc0 + stats.rx_trunc1 + 2407 stats.rx_trunc2 + stats.rx_trunc3; 2408 ns->rx_missed_errors = 0; 2409 2410 /* detailed tx_errors */ 2411 ns->tx_aborted_errors = 0; 2412 ns->tx_carrier_errors = 0; 2413 ns->tx_fifo_errors = 0; 2414 ns->tx_heartbeat_errors = 0; 2415 ns->tx_window_errors = 0; 2416 2417 ns->tx_errors = stats.tx_error_frames; 2418 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2419 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2420 return ns; 2421 } 2422 2423 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2424 { 2425 unsigned int mbox; 2426 int ret = 0, prtad, devad; 2427 struct port_info *pi = netdev_priv(dev); 2428 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2429 2430 switch (cmd) { 2431 case SIOCGMIIPHY: 2432 if (pi->mdio_addr < 0) 2433 return -EOPNOTSUPP; 2434 data->phy_id = pi->mdio_addr; 2435 break; 2436 case SIOCGMIIREG: 2437 case SIOCSMIIREG: 2438 if (mdio_phy_id_is_c45(data->phy_id)) { 2439 prtad = mdio_phy_id_prtad(data->phy_id); 2440 devad = mdio_phy_id_devad(data->phy_id); 2441 } else if (data->phy_id < 32) { 2442 prtad = data->phy_id; 2443 devad = 0; 2444 data->reg_num &= 0x1f; 2445 } else 2446 return -EINVAL; 2447 2448 mbox = pi->adapter->pf; 2449 if (cmd == SIOCGMIIREG) 2450 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2451 data->reg_num, &data->val_out); 2452 else 2453 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2454 data->reg_num, data->val_in); 2455 break; 2456 case SIOCGHWTSTAMP: 2457 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2458 sizeof(pi->tstamp_config)) ? 2459 -EFAULT : 0; 2460 case SIOCSHWTSTAMP: 2461 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2462 sizeof(pi->tstamp_config))) 2463 return -EFAULT; 2464 2465 switch (pi->tstamp_config.rx_filter) { 2466 case HWTSTAMP_FILTER_NONE: 2467 pi->rxtstamp = false; 2468 break; 2469 case HWTSTAMP_FILTER_ALL: 2470 pi->rxtstamp = true; 2471 break; 2472 default: 2473 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 2474 return -ERANGE; 2475 } 2476 2477 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2478 sizeof(pi->tstamp_config)) ? 2479 -EFAULT : 0; 2480 default: 2481 return -EOPNOTSUPP; 2482 } 2483 return ret; 2484 } 2485 2486 static void cxgb_set_rxmode(struct net_device *dev) 2487 { 2488 /* unfortunately we can't return errors to the stack */ 2489 set_rxmode(dev, -1, false); 2490 } 2491 2492 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2493 { 2494 int ret; 2495 struct port_info *pi = netdev_priv(dev); 2496 2497 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2498 -1, -1, -1, true); 2499 if (!ret) 2500 dev->mtu = new_mtu; 2501 return ret; 2502 } 2503 2504 #ifdef CONFIG_PCI_IOV 2505 static int dummy_open(struct net_device *dev) 2506 { 2507 /* Turn carrier off since we don't have to transmit anything on this 2508 * interface. 2509 */ 2510 netif_carrier_off(dev); 2511 return 0; 2512 } 2513 2514 /* Fill MAC address that will be assigned by the FW */ 2515 static void fill_vf_station_mac_addr(struct adapter *adap) 2516 { 2517 unsigned int i; 2518 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2519 int err; 2520 u8 *na; 2521 u16 a, b; 2522 2523 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2524 if (!err) { 2525 na = adap->params.vpd.na; 2526 for (i = 0; i < ETH_ALEN; i++) 2527 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2528 hex2val(na[2 * i + 1])); 2529 a = (hw_addr[0] << 8) | hw_addr[1]; 2530 b = (hw_addr[1] << 8) | hw_addr[2]; 2531 a ^= b; 2532 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2533 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2534 macaddr[0] = a >> 8; 2535 macaddr[1] = a & 0xff; 2536 2537 for (i = 2; i < 5; i++) 2538 macaddr[i] = hw_addr[i + 1]; 2539 2540 for (i = 0; i < adap->num_vfs; i++) { 2541 macaddr[5] = adap->pf * 16 + i; 2542 ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr); 2543 } 2544 } 2545 } 2546 2547 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2548 { 2549 struct port_info *pi = netdev_priv(dev); 2550 struct adapter *adap = pi->adapter; 2551 int ret; 2552 2553 /* verify MAC addr is valid */ 2554 if (!is_valid_ether_addr(mac)) { 2555 dev_err(pi->adapter->pdev_dev, 2556 "Invalid Ethernet address %pM for VF %d\n", 2557 mac, vf); 2558 return -EINVAL; 2559 } 2560 2561 dev_info(pi->adapter->pdev_dev, 2562 "Setting MAC %pM on VF %d\n", mac, vf); 2563 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2564 if (!ret) 2565 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2566 return ret; 2567 } 2568 2569 static int cxgb_get_vf_config(struct net_device *dev, 2570 int vf, struct ifla_vf_info *ivi) 2571 { 2572 struct port_info *pi = netdev_priv(dev); 2573 struct adapter *adap = pi->adapter; 2574 2575 if (vf >= adap->num_vfs) 2576 return -EINVAL; 2577 ivi->vf = vf; 2578 ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr); 2579 return 0; 2580 } 2581 #endif 2582 2583 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2584 { 2585 int ret; 2586 struct sockaddr *addr = p; 2587 struct port_info *pi = netdev_priv(dev); 2588 2589 if (!is_valid_ether_addr(addr->sa_data)) 2590 return -EADDRNOTAVAIL; 2591 2592 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 2593 pi->xact_addr_filt, addr->sa_data, true, true); 2594 if (ret < 0) 2595 return ret; 2596 2597 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2598 pi->xact_addr_filt = ret; 2599 return 0; 2600 } 2601 2602 #ifdef CONFIG_NET_POLL_CONTROLLER 2603 static void cxgb_netpoll(struct net_device *dev) 2604 { 2605 struct port_info *pi = netdev_priv(dev); 2606 struct adapter *adap = pi->adapter; 2607 2608 if (adap->flags & USING_MSIX) { 2609 int i; 2610 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2611 2612 for (i = pi->nqsets; i; i--, rx++) 2613 t4_sge_intr_msix(0, &rx->rspq); 2614 } else 2615 t4_intr_handler(adap)(0, adap); 2616 } 2617 #endif 2618 2619 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2620 { 2621 struct port_info *pi = netdev_priv(dev); 2622 struct adapter *adap = pi->adapter; 2623 struct sched_class *e; 2624 struct ch_sched_params p; 2625 struct ch_sched_queue qe; 2626 u32 req_rate; 2627 int err = 0; 2628 2629 if (!can_sched(dev)) 2630 return -ENOTSUPP; 2631 2632 if (index < 0 || index > pi->nqsets - 1) 2633 return -EINVAL; 2634 2635 if (!(adap->flags & FULL_INIT_DONE)) { 2636 dev_err(adap->pdev_dev, 2637 "Failed to rate limit on queue %d. Link Down?\n", 2638 index); 2639 return -EINVAL; 2640 } 2641 2642 /* Convert from Mbps to Kbps */ 2643 req_rate = rate << 10; 2644 2645 /* Max rate is 10 Gbps */ 2646 if (req_rate >= SCHED_MAX_RATE_KBPS) { 2647 dev_err(adap->pdev_dev, 2648 "Invalid rate %u Mbps, Max rate is %u Gbps\n", 2649 rate, SCHED_MAX_RATE_KBPS); 2650 return -ERANGE; 2651 } 2652 2653 /* First unbind the queue from any existing class */ 2654 memset(&qe, 0, sizeof(qe)); 2655 qe.queue = index; 2656 qe.class = SCHED_CLS_NONE; 2657 2658 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 2659 if (err) { 2660 dev_err(adap->pdev_dev, 2661 "Unbinding Queue %d on port %d fail. Err: %d\n", 2662 index, pi->port_id, err); 2663 return err; 2664 } 2665 2666 /* Queue already unbound */ 2667 if (!req_rate) 2668 return 0; 2669 2670 /* Fetch any available unused or matching scheduling class */ 2671 memset(&p, 0, sizeof(p)); 2672 p.type = SCHED_CLASS_TYPE_PACKET; 2673 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 2674 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 2675 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 2676 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 2677 p.u.params.channel = pi->tx_chan; 2678 p.u.params.class = SCHED_CLS_NONE; 2679 p.u.params.minrate = 0; 2680 p.u.params.maxrate = req_rate; 2681 p.u.params.weight = 0; 2682 p.u.params.pktsize = dev->mtu; 2683 2684 e = cxgb4_sched_class_alloc(dev, &p); 2685 if (!e) 2686 return -ENOMEM; 2687 2688 /* Bind the queue to a scheduling class */ 2689 memset(&qe, 0, sizeof(qe)); 2690 qe.queue = index; 2691 qe.class = e->idx; 2692 2693 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 2694 if (err) 2695 dev_err(adap->pdev_dev, 2696 "Queue rate limiting failed. Err: %d\n", err); 2697 return err; 2698 } 2699 2700 static int cxgb_setup_tc(struct net_device *dev, u32 handle, __be16 proto, 2701 struct tc_to_netdev *tc) 2702 { 2703 struct port_info *pi = netdev2pinfo(dev); 2704 struct adapter *adap = netdev2adap(dev); 2705 2706 if (!(adap->flags & FULL_INIT_DONE)) { 2707 dev_err(adap->pdev_dev, 2708 "Failed to setup tc on port %d. Link Down?\n", 2709 pi->port_id); 2710 return -EINVAL; 2711 } 2712 2713 if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) && 2714 tc->type == TC_SETUP_CLSU32) { 2715 switch (tc->cls_u32->command) { 2716 case TC_CLSU32_NEW_KNODE: 2717 case TC_CLSU32_REPLACE_KNODE: 2718 return cxgb4_config_knode(dev, proto, tc->cls_u32); 2719 case TC_CLSU32_DELETE_KNODE: 2720 return cxgb4_delete_knode(dev, proto, tc->cls_u32); 2721 default: 2722 return -EOPNOTSUPP; 2723 } 2724 } 2725 2726 return -EOPNOTSUPP; 2727 } 2728 2729 static const struct net_device_ops cxgb4_netdev_ops = { 2730 .ndo_open = cxgb_open, 2731 .ndo_stop = cxgb_close, 2732 .ndo_start_xmit = t4_eth_xmit, 2733 .ndo_select_queue = cxgb_select_queue, 2734 .ndo_get_stats64 = cxgb_get_stats, 2735 .ndo_set_rx_mode = cxgb_set_rxmode, 2736 .ndo_set_mac_address = cxgb_set_mac_addr, 2737 .ndo_set_features = cxgb_set_features, 2738 .ndo_validate_addr = eth_validate_addr, 2739 .ndo_do_ioctl = cxgb_ioctl, 2740 .ndo_change_mtu = cxgb_change_mtu, 2741 #ifdef CONFIG_NET_POLL_CONTROLLER 2742 .ndo_poll_controller = cxgb_netpoll, 2743 #endif 2744 #ifdef CONFIG_CHELSIO_T4_FCOE 2745 .ndo_fcoe_enable = cxgb_fcoe_enable, 2746 .ndo_fcoe_disable = cxgb_fcoe_disable, 2747 #endif /* CONFIG_CHELSIO_T4_FCOE */ 2748 #ifdef CONFIG_NET_RX_BUSY_POLL 2749 .ndo_busy_poll = cxgb_busy_poll, 2750 #endif 2751 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 2752 .ndo_setup_tc = cxgb_setup_tc, 2753 }; 2754 2755 #ifdef CONFIG_PCI_IOV 2756 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 2757 .ndo_open = dummy_open, 2758 .ndo_set_vf_mac = cxgb_set_vf_mac, 2759 .ndo_get_vf_config = cxgb_get_vf_config, 2760 }; 2761 #endif 2762 2763 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2764 { 2765 struct adapter *adapter = netdev2adap(dev); 2766 2767 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 2768 strlcpy(info->version, cxgb4_driver_version, 2769 sizeof(info->version)); 2770 strlcpy(info->bus_info, pci_name(adapter->pdev), 2771 sizeof(info->bus_info)); 2772 } 2773 2774 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 2775 .get_drvinfo = get_drvinfo, 2776 }; 2777 2778 void t4_fatal_err(struct adapter *adap) 2779 { 2780 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0); 2781 t4_intr_disable(adap); 2782 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 2783 } 2784 2785 static void setup_memwin(struct adapter *adap) 2786 { 2787 u32 nic_win_base = t4_get_util_window(adap); 2788 2789 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 2790 } 2791 2792 static void setup_memwin_rdma(struct adapter *adap) 2793 { 2794 if (adap->vres.ocq.size) { 2795 u32 start; 2796 unsigned int sz_kb; 2797 2798 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 2799 start &= PCI_BASE_ADDRESS_MEM_MASK; 2800 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 2801 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 2802 t4_write_reg(adap, 2803 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 2804 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 2805 t4_write_reg(adap, 2806 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 2807 adap->vres.ocq.start); 2808 t4_read_reg(adap, 2809 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 2810 } 2811 } 2812 2813 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 2814 { 2815 u32 v; 2816 int ret; 2817 2818 /* get device capabilities */ 2819 memset(c, 0, sizeof(*c)); 2820 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 2821 FW_CMD_REQUEST_F | FW_CMD_READ_F); 2822 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 2823 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 2824 if (ret < 0) 2825 return ret; 2826 2827 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 2828 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 2829 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 2830 if (ret < 0) 2831 return ret; 2832 2833 ret = t4_config_glbl_rss(adap, adap->pf, 2834 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 2835 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 2836 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 2837 if (ret < 0) 2838 return ret; 2839 2840 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 2841 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 2842 FW_CMD_CAP_PF); 2843 if (ret < 0) 2844 return ret; 2845 2846 t4_sge_init(adap); 2847 2848 /* tweak some settings */ 2849 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 2850 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 2851 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 2852 v = t4_read_reg(adap, TP_PIO_DATA_A); 2853 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 2854 2855 /* first 4 Tx modulation queues point to consecutive Tx channels */ 2856 adap->params.tp.tx_modq_map = 0xE4; 2857 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 2858 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 2859 2860 /* associate each Tx modulation queue with consecutive Tx channels */ 2861 v = 0x84218421; 2862 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 2863 &v, 1, TP_TX_SCHED_HDR_A); 2864 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 2865 &v, 1, TP_TX_SCHED_FIFO_A); 2866 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 2867 &v, 1, TP_TX_SCHED_PCMD_A); 2868 2869 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 2870 if (is_offload(adap)) { 2871 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 2872 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2873 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2874 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2875 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 2876 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 2877 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2878 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2879 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2880 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 2881 } 2882 2883 /* get basic stuff going */ 2884 return t4_early_init(adap, adap->pf); 2885 } 2886 2887 /* 2888 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 2889 */ 2890 #define MAX_ATIDS 8192U 2891 2892 /* 2893 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 2894 * 2895 * If the firmware we're dealing with has Configuration File support, then 2896 * we use that to perform all configuration 2897 */ 2898 2899 /* 2900 * Tweak configuration based on module parameters, etc. Most of these have 2901 * defaults assigned to them by Firmware Configuration Files (if we're using 2902 * them) but need to be explicitly set if we're using hard-coded 2903 * initialization. But even in the case of using Firmware Configuration 2904 * Files, we'd like to expose the ability to change these via module 2905 * parameters so these are essentially common tweaks/settings for 2906 * Configuration Files and hard-coded initialization ... 2907 */ 2908 static int adap_init0_tweaks(struct adapter *adapter) 2909 { 2910 /* 2911 * Fix up various Host-Dependent Parameters like Page Size, Cache 2912 * Line Size, etc. The firmware default is for a 4KB Page Size and 2913 * 64B Cache Line Size ... 2914 */ 2915 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 2916 2917 /* 2918 * Process module parameters which affect early initialization. 2919 */ 2920 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 2921 dev_err(&adapter->pdev->dev, 2922 "Ignoring illegal rx_dma_offset=%d, using 2\n", 2923 rx_dma_offset); 2924 rx_dma_offset = 2; 2925 } 2926 t4_set_reg_field(adapter, SGE_CONTROL_A, 2927 PKTSHIFT_V(PKTSHIFT_M), 2928 PKTSHIFT_V(rx_dma_offset)); 2929 2930 /* 2931 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 2932 * adds the pseudo header itself. 2933 */ 2934 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 2935 CSUM_HAS_PSEUDO_HDR_F, 0); 2936 2937 return 0; 2938 } 2939 2940 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 2941 * unto themselves and they contain their own firmware to perform their 2942 * tasks ... 2943 */ 2944 static int phy_aq1202_version(const u8 *phy_fw_data, 2945 size_t phy_fw_size) 2946 { 2947 int offset; 2948 2949 /* At offset 0x8 you're looking for the primary image's 2950 * starting offset which is 3 Bytes wide 2951 * 2952 * At offset 0xa of the primary image, you look for the offset 2953 * of the DRAM segment which is 3 Bytes wide. 2954 * 2955 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 2956 * wide 2957 */ 2958 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 2959 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 2960 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 2961 2962 offset = le24(phy_fw_data + 0x8) << 12; 2963 offset = le24(phy_fw_data + offset + 0xa); 2964 return be16(phy_fw_data + offset + 0x27e); 2965 2966 #undef be16 2967 #undef le16 2968 #undef le24 2969 } 2970 2971 static struct info_10gbt_phy_fw { 2972 unsigned int phy_fw_id; /* PCI Device ID */ 2973 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 2974 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 2975 int phy_flash; /* Has FLASH for PHY Firmware */ 2976 } phy_info_array[] = { 2977 { 2978 PHY_AQ1202_DEVICEID, 2979 PHY_AQ1202_FIRMWARE, 2980 phy_aq1202_version, 2981 1, 2982 }, 2983 { 2984 PHY_BCM84834_DEVICEID, 2985 PHY_BCM84834_FIRMWARE, 2986 NULL, 2987 0, 2988 }, 2989 { 0, NULL, NULL }, 2990 }; 2991 2992 static struct info_10gbt_phy_fw *find_phy_info(int devid) 2993 { 2994 int i; 2995 2996 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 2997 if (phy_info_array[i].phy_fw_id == devid) 2998 return &phy_info_array[i]; 2999 } 3000 return NULL; 3001 } 3002 3003 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3004 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3005 * we return a negative error number. If we transfer new firmware we return 1 3006 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3007 */ 3008 static int adap_init0_phy(struct adapter *adap) 3009 { 3010 const struct firmware *phyf; 3011 int ret; 3012 struct info_10gbt_phy_fw *phy_info; 3013 3014 /* Use the device ID to determine which PHY file to flash. 3015 */ 3016 phy_info = find_phy_info(adap->pdev->device); 3017 if (!phy_info) { 3018 dev_warn(adap->pdev_dev, 3019 "No PHY Firmware file found for this PHY\n"); 3020 return -EOPNOTSUPP; 3021 } 3022 3023 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3024 * use that. The adapter firmware provides us with a memory buffer 3025 * where we can load a PHY firmware file from the host if we want to 3026 * override the PHY firmware File in flash. 3027 */ 3028 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3029 adap->pdev_dev); 3030 if (ret < 0) { 3031 /* For adapters without FLASH attached to PHY for their 3032 * firmware, it's obviously a fatal error if we can't get the 3033 * firmware to the adapter. For adapters with PHY firmware 3034 * FLASH storage, it's worth a warning if we can't find the 3035 * PHY Firmware but we'll neuter the error ... 3036 */ 3037 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3038 "/lib/firmware/%s, error %d\n", 3039 phy_info->phy_fw_file, -ret); 3040 if (phy_info->phy_flash) { 3041 int cur_phy_fw_ver = 0; 3042 3043 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3044 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3045 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3046 ret = 0; 3047 } 3048 3049 return ret; 3050 } 3051 3052 /* Load PHY Firmware onto adapter. 3053 */ 3054 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3055 phy_info->phy_fw_version, 3056 (u8 *)phyf->data, phyf->size); 3057 if (ret < 0) 3058 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3059 -ret); 3060 else if (ret > 0) { 3061 int new_phy_fw_ver = 0; 3062 3063 if (phy_info->phy_fw_version) 3064 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3065 phyf->size); 3066 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3067 "Firmware /lib/firmware/%s, version %#x\n", 3068 phy_info->phy_fw_file, new_phy_fw_ver); 3069 } 3070 3071 release_firmware(phyf); 3072 3073 return ret; 3074 } 3075 3076 /* 3077 * Attempt to initialize the adapter via a Firmware Configuration File. 3078 */ 3079 static int adap_init0_config(struct adapter *adapter, int reset) 3080 { 3081 struct fw_caps_config_cmd caps_cmd; 3082 const struct firmware *cf; 3083 unsigned long mtype = 0, maddr = 0; 3084 u32 finiver, finicsum, cfcsum; 3085 int ret; 3086 int config_issued = 0; 3087 char *fw_config_file, fw_config_file_path[256]; 3088 char *config_name = NULL; 3089 3090 /* 3091 * Reset device if necessary. 3092 */ 3093 if (reset) { 3094 ret = t4_fw_reset(adapter, adapter->mbox, 3095 PIORSTMODE_F | PIORST_F); 3096 if (ret < 0) 3097 goto bye; 3098 } 3099 3100 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3101 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3102 * to be performed after any global adapter RESET above since some 3103 * PHYs only have local RAM copies of the PHY firmware. 3104 */ 3105 if (is_10gbt_device(adapter->pdev->device)) { 3106 ret = adap_init0_phy(adapter); 3107 if (ret < 0) 3108 goto bye; 3109 } 3110 /* 3111 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3112 * then use that. Otherwise, use the configuration file stored 3113 * in the adapter flash ... 3114 */ 3115 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3116 case CHELSIO_T4: 3117 fw_config_file = FW4_CFNAME; 3118 break; 3119 case CHELSIO_T5: 3120 fw_config_file = FW5_CFNAME; 3121 break; 3122 case CHELSIO_T6: 3123 fw_config_file = FW6_CFNAME; 3124 break; 3125 default: 3126 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3127 adapter->pdev->device); 3128 ret = -EINVAL; 3129 goto bye; 3130 } 3131 3132 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3133 if (ret < 0) { 3134 config_name = "On FLASH"; 3135 mtype = FW_MEMTYPE_CF_FLASH; 3136 maddr = t4_flash_cfg_addr(adapter); 3137 } else { 3138 u32 params[7], val[7]; 3139 3140 sprintf(fw_config_file_path, 3141 "/lib/firmware/%s", fw_config_file); 3142 config_name = fw_config_file_path; 3143 3144 if (cf->size >= FLASH_CFG_MAX_SIZE) 3145 ret = -ENOMEM; 3146 else { 3147 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3148 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3149 ret = t4_query_params(adapter, adapter->mbox, 3150 adapter->pf, 0, 1, params, val); 3151 if (ret == 0) { 3152 /* 3153 * For t4_memory_rw() below addresses and 3154 * sizes have to be in terms of multiples of 4 3155 * bytes. So, if the Configuration File isn't 3156 * a multiple of 4 bytes in length we'll have 3157 * to write that out separately since we can't 3158 * guarantee that the bytes following the 3159 * residual byte in the buffer returned by 3160 * request_firmware() are zeroed out ... 3161 */ 3162 size_t resid = cf->size & 0x3; 3163 size_t size = cf->size & ~0x3; 3164 __be32 *data = (__be32 *)cf->data; 3165 3166 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3167 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3168 3169 spin_lock(&adapter->win0_lock); 3170 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3171 size, data, T4_MEMORY_WRITE); 3172 if (ret == 0 && resid != 0) { 3173 union { 3174 __be32 word; 3175 char buf[4]; 3176 } last; 3177 int i; 3178 3179 last.word = data[size >> 2]; 3180 for (i = resid; i < 4; i++) 3181 last.buf[i] = 0; 3182 ret = t4_memory_rw(adapter, 0, mtype, 3183 maddr + size, 3184 4, &last.word, 3185 T4_MEMORY_WRITE); 3186 } 3187 spin_unlock(&adapter->win0_lock); 3188 } 3189 } 3190 3191 release_firmware(cf); 3192 if (ret) 3193 goto bye; 3194 } 3195 3196 /* 3197 * Issue a Capability Configuration command to the firmware to get it 3198 * to parse the Configuration File. We don't use t4_fw_config_file() 3199 * because we want the ability to modify various features after we've 3200 * processed the configuration file ... 3201 */ 3202 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3203 caps_cmd.op_to_write = 3204 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3205 FW_CMD_REQUEST_F | 3206 FW_CMD_READ_F); 3207 caps_cmd.cfvalid_to_len16 = 3208 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3209 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3210 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3211 FW_LEN16(caps_cmd)); 3212 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3213 &caps_cmd); 3214 3215 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3216 * Configuration File in FLASH), our last gasp effort is to use the 3217 * Firmware Configuration File which is embedded in the firmware. A 3218 * very few early versions of the firmware didn't have one embedded 3219 * but we can ignore those. 3220 */ 3221 if (ret == -ENOENT) { 3222 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3223 caps_cmd.op_to_write = 3224 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3225 FW_CMD_REQUEST_F | 3226 FW_CMD_READ_F); 3227 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3228 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3229 sizeof(caps_cmd), &caps_cmd); 3230 config_name = "Firmware Default"; 3231 } 3232 3233 config_issued = 1; 3234 if (ret < 0) 3235 goto bye; 3236 3237 finiver = ntohl(caps_cmd.finiver); 3238 finicsum = ntohl(caps_cmd.finicsum); 3239 cfcsum = ntohl(caps_cmd.cfcsum); 3240 if (finicsum != cfcsum) 3241 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3242 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3243 finicsum, cfcsum); 3244 3245 /* 3246 * And now tell the firmware to use the configuration we just loaded. 3247 */ 3248 caps_cmd.op_to_write = 3249 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3250 FW_CMD_REQUEST_F | 3251 FW_CMD_WRITE_F); 3252 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3253 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3254 NULL); 3255 if (ret < 0) 3256 goto bye; 3257 3258 /* 3259 * Tweak configuration based on system architecture, module 3260 * parameters, etc. 3261 */ 3262 ret = adap_init0_tweaks(adapter); 3263 if (ret < 0) 3264 goto bye; 3265 3266 /* 3267 * And finally tell the firmware to initialize itself using the 3268 * parameters from the Configuration File. 3269 */ 3270 ret = t4_fw_initialize(adapter, adapter->mbox); 3271 if (ret < 0) 3272 goto bye; 3273 3274 /* Emit Firmware Configuration File information and return 3275 * successfully. 3276 */ 3277 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 3278 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 3279 config_name, finiver, cfcsum); 3280 return 0; 3281 3282 /* 3283 * Something bad happened. Return the error ... (If the "error" 3284 * is that there's no Configuration File on the adapter we don't 3285 * want to issue a warning since this is fairly common.) 3286 */ 3287 bye: 3288 if (config_issued && ret != -ENOENT) 3289 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 3290 config_name, -ret); 3291 return ret; 3292 } 3293 3294 static struct fw_info fw_info_array[] = { 3295 { 3296 .chip = CHELSIO_T4, 3297 .fs_name = FW4_CFNAME, 3298 .fw_mod_name = FW4_FNAME, 3299 .fw_hdr = { 3300 .chip = FW_HDR_CHIP_T4, 3301 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 3302 .intfver_nic = FW_INTFVER(T4, NIC), 3303 .intfver_vnic = FW_INTFVER(T4, VNIC), 3304 .intfver_ri = FW_INTFVER(T4, RI), 3305 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3306 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3307 }, 3308 }, { 3309 .chip = CHELSIO_T5, 3310 .fs_name = FW5_CFNAME, 3311 .fw_mod_name = FW5_FNAME, 3312 .fw_hdr = { 3313 .chip = FW_HDR_CHIP_T5, 3314 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 3315 .intfver_nic = FW_INTFVER(T5, NIC), 3316 .intfver_vnic = FW_INTFVER(T5, VNIC), 3317 .intfver_ri = FW_INTFVER(T5, RI), 3318 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3319 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3320 }, 3321 }, { 3322 .chip = CHELSIO_T6, 3323 .fs_name = FW6_CFNAME, 3324 .fw_mod_name = FW6_FNAME, 3325 .fw_hdr = { 3326 .chip = FW_HDR_CHIP_T6, 3327 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 3328 .intfver_nic = FW_INTFVER(T6, NIC), 3329 .intfver_vnic = FW_INTFVER(T6, VNIC), 3330 .intfver_ofld = FW_INTFVER(T6, OFLD), 3331 .intfver_ri = FW_INTFVER(T6, RI), 3332 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 3333 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 3334 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 3335 .intfver_fcoe = FW_INTFVER(T6, FCOE), 3336 }, 3337 } 3338 3339 }; 3340 3341 static struct fw_info *find_fw_info(int chip) 3342 { 3343 int i; 3344 3345 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 3346 if (fw_info_array[i].chip == chip) 3347 return &fw_info_array[i]; 3348 } 3349 return NULL; 3350 } 3351 3352 /* 3353 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3354 */ 3355 static int adap_init0(struct adapter *adap) 3356 { 3357 int ret; 3358 u32 v, port_vec; 3359 enum dev_state state; 3360 u32 params[7], val[7]; 3361 struct fw_caps_config_cmd caps_cmd; 3362 int reset = 1; 3363 3364 /* Grab Firmware Device Log parameters as early as possible so we have 3365 * access to it for debugging, etc. 3366 */ 3367 ret = t4_init_devlog_params(adap); 3368 if (ret < 0) 3369 return ret; 3370 3371 /* Contact FW, advertising Master capability */ 3372 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 3373 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 3374 if (ret < 0) { 3375 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 3376 ret); 3377 return ret; 3378 } 3379 if (ret == adap->mbox) 3380 adap->flags |= MASTER_PF; 3381 3382 /* 3383 * If we're the Master PF Driver and the device is uninitialized, 3384 * then let's consider upgrading the firmware ... (We always want 3385 * to check the firmware version number in order to A. get it for 3386 * later reporting and B. to warn if the currently loaded firmware 3387 * is excessively mismatched relative to the driver.) 3388 */ 3389 t4_get_fw_version(adap, &adap->params.fw_vers); 3390 t4_get_bs_version(adap, &adap->params.bs_vers); 3391 t4_get_tp_version(adap, &adap->params.tp_vers); 3392 t4_get_exprom_version(adap, &adap->params.er_vers); 3393 3394 ret = t4_check_fw_version(adap); 3395 /* If firmware is too old (not supported by driver) force an update. */ 3396 if (ret) 3397 state = DEV_STATE_UNINIT; 3398 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 3399 struct fw_info *fw_info; 3400 struct fw_hdr *card_fw; 3401 const struct firmware *fw; 3402 const u8 *fw_data = NULL; 3403 unsigned int fw_size = 0; 3404 3405 /* This is the firmware whose headers the driver was compiled 3406 * against 3407 */ 3408 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 3409 if (fw_info == NULL) { 3410 dev_err(adap->pdev_dev, 3411 "unable to get firmware info for chip %d.\n", 3412 CHELSIO_CHIP_VERSION(adap->params.chip)); 3413 return -EINVAL; 3414 } 3415 3416 /* allocate memory to read the header of the firmware on the 3417 * card 3418 */ 3419 card_fw = t4_alloc_mem(sizeof(*card_fw)); 3420 3421 /* Get FW from from /lib/firmware/ */ 3422 ret = request_firmware(&fw, fw_info->fw_mod_name, 3423 adap->pdev_dev); 3424 if (ret < 0) { 3425 dev_err(adap->pdev_dev, 3426 "unable to load firmware image %s, error %d\n", 3427 fw_info->fw_mod_name, ret); 3428 } else { 3429 fw_data = fw->data; 3430 fw_size = fw->size; 3431 } 3432 3433 /* upgrade FW logic */ 3434 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 3435 state, &reset); 3436 3437 /* Cleaning up */ 3438 release_firmware(fw); 3439 t4_free_mem(card_fw); 3440 3441 if (ret < 0) 3442 goto bye; 3443 } 3444 3445 /* 3446 * Grab VPD parameters. This should be done after we establish a 3447 * connection to the firmware since some of the VPD parameters 3448 * (notably the Core Clock frequency) are retrieved via requests to 3449 * the firmware. On the other hand, we need these fairly early on 3450 * so we do this right after getting ahold of the firmware. 3451 */ 3452 ret = t4_get_vpd_params(adap, &adap->params.vpd); 3453 if (ret < 0) 3454 goto bye; 3455 3456 /* 3457 * Find out what ports are available to us. Note that we need to do 3458 * this before calling adap_init0_no_config() since it needs nports 3459 * and portvec ... 3460 */ 3461 v = 3462 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3463 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 3464 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 3465 if (ret < 0) 3466 goto bye; 3467 3468 adap->params.nports = hweight32(port_vec); 3469 adap->params.portvec = port_vec; 3470 3471 /* If the firmware is initialized already, emit a simply note to that 3472 * effect. Otherwise, it's time to try initializing the adapter. 3473 */ 3474 if (state == DEV_STATE_INIT) { 3475 dev_info(adap->pdev_dev, "Coming up as %s: "\ 3476 "Adapter already initialized\n", 3477 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 3478 } else { 3479 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 3480 "Initializing adapter\n"); 3481 3482 /* Find out whether we're dealing with a version of the 3483 * firmware which has configuration file support. 3484 */ 3485 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3486 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3487 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3488 params, val); 3489 3490 /* If the firmware doesn't support Configuration Files, 3491 * return an error. 3492 */ 3493 if (ret < 0) { 3494 dev_err(adap->pdev_dev, "firmware doesn't support " 3495 "Firmware Configuration Files\n"); 3496 goto bye; 3497 } 3498 3499 /* The firmware provides us with a memory buffer where we can 3500 * load a Configuration File from the host if we want to 3501 * override the Configuration File in flash. 3502 */ 3503 ret = adap_init0_config(adap, reset); 3504 if (ret == -ENOENT) { 3505 dev_err(adap->pdev_dev, "no Configuration File " 3506 "present on adapter.\n"); 3507 goto bye; 3508 } 3509 if (ret < 0) { 3510 dev_err(adap->pdev_dev, "could not initialize " 3511 "adapter, error %d\n", -ret); 3512 goto bye; 3513 } 3514 } 3515 3516 /* Give the SGE code a chance to pull in anything that it needs ... 3517 * Note that this must be called after we retrieve our VPD parameters 3518 * in order to know how to convert core ticks to seconds, etc. 3519 */ 3520 ret = t4_sge_init(adap); 3521 if (ret < 0) 3522 goto bye; 3523 3524 if (is_bypass_device(adap->pdev->device)) 3525 adap->params.bypass = 1; 3526 3527 /* 3528 * Grab some of our basic fundamental operating parameters. 3529 */ 3530 #define FW_PARAM_DEV(param) \ 3531 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 3532 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 3533 3534 #define FW_PARAM_PFVF(param) \ 3535 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 3536 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 3537 FW_PARAMS_PARAM_Y_V(0) | \ 3538 FW_PARAMS_PARAM_Z_V(0) 3539 3540 params[0] = FW_PARAM_PFVF(EQ_START); 3541 params[1] = FW_PARAM_PFVF(L2T_START); 3542 params[2] = FW_PARAM_PFVF(L2T_END); 3543 params[3] = FW_PARAM_PFVF(FILTER_START); 3544 params[4] = FW_PARAM_PFVF(FILTER_END); 3545 params[5] = FW_PARAM_PFVF(IQFLINT_START); 3546 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 3547 if (ret < 0) 3548 goto bye; 3549 adap->sge.egr_start = val[0]; 3550 adap->l2t_start = val[1]; 3551 adap->l2t_end = val[2]; 3552 adap->tids.ftid_base = val[3]; 3553 adap->tids.nftids = val[4] - val[3] + 1; 3554 adap->sge.ingr_start = val[5]; 3555 3556 /* qids (ingress/egress) returned from firmware can be anywhere 3557 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 3558 * Hence driver needs to allocate memory for this range to 3559 * store the queue info. Get the highest IQFLINT/EQ index returned 3560 * in FW_EQ_*_CMD.alloc command. 3561 */ 3562 params[0] = FW_PARAM_PFVF(EQ_END); 3563 params[1] = FW_PARAM_PFVF(IQFLINT_END); 3564 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3565 if (ret < 0) 3566 goto bye; 3567 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 3568 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 3569 3570 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 3571 sizeof(*adap->sge.egr_map), GFP_KERNEL); 3572 if (!adap->sge.egr_map) { 3573 ret = -ENOMEM; 3574 goto bye; 3575 } 3576 3577 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 3578 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 3579 if (!adap->sge.ingr_map) { 3580 ret = -ENOMEM; 3581 goto bye; 3582 } 3583 3584 /* Allocate the memory for the vaious egress queue bitmaps 3585 * ie starving_fl, txq_maperr and blocked_fl. 3586 */ 3587 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3588 sizeof(long), GFP_KERNEL); 3589 if (!adap->sge.starving_fl) { 3590 ret = -ENOMEM; 3591 goto bye; 3592 } 3593 3594 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3595 sizeof(long), GFP_KERNEL); 3596 if (!adap->sge.txq_maperr) { 3597 ret = -ENOMEM; 3598 goto bye; 3599 } 3600 3601 #ifdef CONFIG_DEBUG_FS 3602 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3603 sizeof(long), GFP_KERNEL); 3604 if (!adap->sge.blocked_fl) { 3605 ret = -ENOMEM; 3606 goto bye; 3607 } 3608 #endif 3609 3610 params[0] = FW_PARAM_PFVF(CLIP_START); 3611 params[1] = FW_PARAM_PFVF(CLIP_END); 3612 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3613 if (ret < 0) 3614 goto bye; 3615 adap->clipt_start = val[0]; 3616 adap->clipt_end = val[1]; 3617 3618 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 3619 * Classes supported by the hardware/firmware so we hard code it here 3620 * for now. 3621 */ 3622 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 3623 3624 /* query params related to active filter region */ 3625 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 3626 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 3627 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3628 /* If Active filter size is set we enable establishing 3629 * offload connection through firmware work request 3630 */ 3631 if ((val[0] != val[1]) && (ret >= 0)) { 3632 adap->flags |= FW_OFLD_CONN; 3633 adap->tids.aftid_base = val[0]; 3634 adap->tids.aftid_end = val[1]; 3635 } 3636 3637 /* If we're running on newer firmware, let it know that we're 3638 * prepared to deal with encapsulated CPL messages. Older 3639 * firmware won't understand this and we'll just get 3640 * unencapsulated messages ... 3641 */ 3642 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 3643 val[0] = 1; 3644 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 3645 3646 /* 3647 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 3648 * capability. Earlier versions of the firmware didn't have the 3649 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 3650 * permission to use ULPTX MEMWRITE DSGL. 3651 */ 3652 if (is_t4(adap->params.chip)) { 3653 adap->params.ulptx_memwrite_dsgl = false; 3654 } else { 3655 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 3656 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3657 1, params, val); 3658 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 3659 } 3660 3661 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 3662 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 3663 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3664 1, params, val); 3665 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 3666 3667 /* 3668 * Get device capabilities so we can determine what resources we need 3669 * to manage. 3670 */ 3671 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3672 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3673 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3674 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3675 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 3676 &caps_cmd); 3677 if (ret < 0) 3678 goto bye; 3679 3680 if (caps_cmd.ofldcaps) { 3681 /* query offload-related parameters */ 3682 params[0] = FW_PARAM_DEV(NTID); 3683 params[1] = FW_PARAM_PFVF(SERVER_START); 3684 params[2] = FW_PARAM_PFVF(SERVER_END); 3685 params[3] = FW_PARAM_PFVF(TDDP_START); 3686 params[4] = FW_PARAM_PFVF(TDDP_END); 3687 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3688 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3689 params, val); 3690 if (ret < 0) 3691 goto bye; 3692 adap->tids.ntids = val[0]; 3693 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 3694 adap->tids.stid_base = val[1]; 3695 adap->tids.nstids = val[2] - val[1] + 1; 3696 /* 3697 * Setup server filter region. Divide the available filter 3698 * region into two parts. Regular filters get 1/3rd and server 3699 * filters get 2/3rd part. This is only enabled if workarond 3700 * path is enabled. 3701 * 1. For regular filters. 3702 * 2. Server filter: This are special filters which are used 3703 * to redirect SYN packets to offload queue. 3704 */ 3705 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 3706 adap->tids.sftid_base = adap->tids.ftid_base + 3707 DIV_ROUND_UP(adap->tids.nftids, 3); 3708 adap->tids.nsftids = adap->tids.nftids - 3709 DIV_ROUND_UP(adap->tids.nftids, 3); 3710 adap->tids.nftids = adap->tids.sftid_base - 3711 adap->tids.ftid_base; 3712 } 3713 adap->vres.ddp.start = val[3]; 3714 adap->vres.ddp.size = val[4] - val[3] + 1; 3715 adap->params.ofldq_wr_cred = val[5]; 3716 3717 adap->params.offload = 1; 3718 adap->num_ofld_uld += 1; 3719 } 3720 if (caps_cmd.rdmacaps) { 3721 params[0] = FW_PARAM_PFVF(STAG_START); 3722 params[1] = FW_PARAM_PFVF(STAG_END); 3723 params[2] = FW_PARAM_PFVF(RQ_START); 3724 params[3] = FW_PARAM_PFVF(RQ_END); 3725 params[4] = FW_PARAM_PFVF(PBL_START); 3726 params[5] = FW_PARAM_PFVF(PBL_END); 3727 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3728 params, val); 3729 if (ret < 0) 3730 goto bye; 3731 adap->vres.stag.start = val[0]; 3732 adap->vres.stag.size = val[1] - val[0] + 1; 3733 adap->vres.rq.start = val[2]; 3734 adap->vres.rq.size = val[3] - val[2] + 1; 3735 adap->vres.pbl.start = val[4]; 3736 adap->vres.pbl.size = val[5] - val[4] + 1; 3737 3738 params[0] = FW_PARAM_PFVF(SQRQ_START); 3739 params[1] = FW_PARAM_PFVF(SQRQ_END); 3740 params[2] = FW_PARAM_PFVF(CQ_START); 3741 params[3] = FW_PARAM_PFVF(CQ_END); 3742 params[4] = FW_PARAM_PFVF(OCQ_START); 3743 params[5] = FW_PARAM_PFVF(OCQ_END); 3744 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 3745 val); 3746 if (ret < 0) 3747 goto bye; 3748 adap->vres.qp.start = val[0]; 3749 adap->vres.qp.size = val[1] - val[0] + 1; 3750 adap->vres.cq.start = val[2]; 3751 adap->vres.cq.size = val[3] - val[2] + 1; 3752 adap->vres.ocq.start = val[4]; 3753 adap->vres.ocq.size = val[5] - val[4] + 1; 3754 3755 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 3756 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 3757 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 3758 val); 3759 if (ret < 0) { 3760 adap->params.max_ordird_qp = 8; 3761 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 3762 ret = 0; 3763 } else { 3764 adap->params.max_ordird_qp = val[0]; 3765 adap->params.max_ird_adapter = val[1]; 3766 } 3767 dev_info(adap->pdev_dev, 3768 "max_ordird_qp %d max_ird_adapter %d\n", 3769 adap->params.max_ordird_qp, 3770 adap->params.max_ird_adapter); 3771 adap->num_ofld_uld += 2; 3772 } 3773 if (caps_cmd.iscsicaps) { 3774 params[0] = FW_PARAM_PFVF(ISCSI_START); 3775 params[1] = FW_PARAM_PFVF(ISCSI_END); 3776 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 3777 params, val); 3778 if (ret < 0) 3779 goto bye; 3780 adap->vres.iscsi.start = val[0]; 3781 adap->vres.iscsi.size = val[1] - val[0] + 1; 3782 /* LIO target and cxgb4i initiaitor */ 3783 adap->num_ofld_uld += 2; 3784 } 3785 if (caps_cmd.cryptocaps) { 3786 /* Should query params here...TODO */ 3787 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE; 3788 adap->num_uld += 1; 3789 } 3790 #undef FW_PARAM_PFVF 3791 #undef FW_PARAM_DEV 3792 3793 /* The MTU/MSS Table is initialized by now, so load their values. If 3794 * we're initializing the adapter, then we'll make any modifications 3795 * we want to the MTU/MSS Table and also initialize the congestion 3796 * parameters. 3797 */ 3798 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 3799 if (state != DEV_STATE_INIT) { 3800 int i; 3801 3802 /* The default MTU Table contains values 1492 and 1500. 3803 * However, for TCP, it's better to have two values which are 3804 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 3805 * This allows us to have a TCP Data Payload which is a 3806 * multiple of 8 regardless of what combination of TCP Options 3807 * are in use (always a multiple of 4 bytes) which is 3808 * important for performance reasons. For instance, if no 3809 * options are in use, then we have a 20-byte IP header and a 3810 * 20-byte TCP header. In this case, a 1500-byte MSS would 3811 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 3812 * which is not a multiple of 8. So using an MSS of 1488 in 3813 * this case results in a TCP Data Payload of 1448 bytes which 3814 * is a multiple of 8. On the other hand, if 12-byte TCP Time 3815 * Stamps have been negotiated, then an MTU of 1500 bytes 3816 * results in a TCP Data Payload of 1448 bytes which, as 3817 * above, is a multiple of 8 bytes ... 3818 */ 3819 for (i = 0; i < NMTUS; i++) 3820 if (adap->params.mtus[i] == 1492) { 3821 adap->params.mtus[i] = 1488; 3822 break; 3823 } 3824 3825 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 3826 adap->params.b_wnd); 3827 } 3828 t4_init_sge_params(adap); 3829 adap->flags |= FW_OK; 3830 t4_init_tp_params(adap); 3831 return 0; 3832 3833 /* 3834 * Something bad happened. If a command timed out or failed with EIO 3835 * FW does not operate within its spec or something catastrophic 3836 * happened to HW/FW, stop issuing commands. 3837 */ 3838 bye: 3839 kfree(adap->sge.egr_map); 3840 kfree(adap->sge.ingr_map); 3841 kfree(adap->sge.starving_fl); 3842 kfree(adap->sge.txq_maperr); 3843 #ifdef CONFIG_DEBUG_FS 3844 kfree(adap->sge.blocked_fl); 3845 #endif 3846 if (ret != -ETIMEDOUT && ret != -EIO) 3847 t4_fw_bye(adap, adap->mbox); 3848 return ret; 3849 } 3850 3851 /* EEH callbacks */ 3852 3853 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 3854 pci_channel_state_t state) 3855 { 3856 int i; 3857 struct adapter *adap = pci_get_drvdata(pdev); 3858 3859 if (!adap) 3860 goto out; 3861 3862 rtnl_lock(); 3863 adap->flags &= ~FW_OK; 3864 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 3865 spin_lock(&adap->stats_lock); 3866 for_each_port(adap, i) { 3867 struct net_device *dev = adap->port[i]; 3868 3869 netif_device_detach(dev); 3870 netif_carrier_off(dev); 3871 } 3872 spin_unlock(&adap->stats_lock); 3873 disable_interrupts(adap); 3874 if (adap->flags & FULL_INIT_DONE) 3875 cxgb_down(adap); 3876 rtnl_unlock(); 3877 if ((adap->flags & DEV_ENABLED)) { 3878 pci_disable_device(pdev); 3879 adap->flags &= ~DEV_ENABLED; 3880 } 3881 out: return state == pci_channel_io_perm_failure ? 3882 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 3883 } 3884 3885 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 3886 { 3887 int i, ret; 3888 struct fw_caps_config_cmd c; 3889 struct adapter *adap = pci_get_drvdata(pdev); 3890 3891 if (!adap) { 3892 pci_restore_state(pdev); 3893 pci_save_state(pdev); 3894 return PCI_ERS_RESULT_RECOVERED; 3895 } 3896 3897 if (!(adap->flags & DEV_ENABLED)) { 3898 if (pci_enable_device(pdev)) { 3899 dev_err(&pdev->dev, "Cannot reenable PCI " 3900 "device after reset\n"); 3901 return PCI_ERS_RESULT_DISCONNECT; 3902 } 3903 adap->flags |= DEV_ENABLED; 3904 } 3905 3906 pci_set_master(pdev); 3907 pci_restore_state(pdev); 3908 pci_save_state(pdev); 3909 pci_cleanup_aer_uncorrect_error_status(pdev); 3910 3911 if (t4_wait_dev_ready(adap->regs) < 0) 3912 return PCI_ERS_RESULT_DISCONNECT; 3913 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 3914 return PCI_ERS_RESULT_DISCONNECT; 3915 adap->flags |= FW_OK; 3916 if (adap_init1(adap, &c)) 3917 return PCI_ERS_RESULT_DISCONNECT; 3918 3919 for_each_port(adap, i) { 3920 struct port_info *p = adap2pinfo(adap, i); 3921 3922 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 3923 NULL, NULL); 3924 if (ret < 0) 3925 return PCI_ERS_RESULT_DISCONNECT; 3926 p->viid = ret; 3927 p->xact_addr_filt = -1; 3928 } 3929 3930 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 3931 adap->params.b_wnd); 3932 setup_memwin(adap); 3933 if (cxgb_up(adap)) 3934 return PCI_ERS_RESULT_DISCONNECT; 3935 return PCI_ERS_RESULT_RECOVERED; 3936 } 3937 3938 static void eeh_resume(struct pci_dev *pdev) 3939 { 3940 int i; 3941 struct adapter *adap = pci_get_drvdata(pdev); 3942 3943 if (!adap) 3944 return; 3945 3946 rtnl_lock(); 3947 for_each_port(adap, i) { 3948 struct net_device *dev = adap->port[i]; 3949 3950 if (netif_running(dev)) { 3951 link_start(dev); 3952 cxgb_set_rxmode(dev); 3953 } 3954 netif_device_attach(dev); 3955 } 3956 rtnl_unlock(); 3957 } 3958 3959 static const struct pci_error_handlers cxgb4_eeh = { 3960 .error_detected = eeh_err_detected, 3961 .slot_reset = eeh_slot_reset, 3962 .resume = eeh_resume, 3963 }; 3964 3965 /* Return true if the Link Configuration supports "High Speeds" (those greater 3966 * than 1Gb/s). 3967 */ 3968 static inline bool is_x_10g_port(const struct link_config *lc) 3969 { 3970 unsigned int speeds, high_speeds; 3971 3972 speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported)); 3973 high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G); 3974 3975 return high_speeds != 0; 3976 } 3977 3978 /* 3979 * Perform default configuration of DMA queues depending on the number and type 3980 * of ports we found and the number of available CPUs. Most settings can be 3981 * modified by the admin prior to actual use. 3982 */ 3983 static void cfg_queues(struct adapter *adap) 3984 { 3985 struct sge *s = &adap->sge; 3986 int i = 0, n10g = 0, qidx = 0; 3987 #ifndef CONFIG_CHELSIO_T4_DCB 3988 int q10g = 0; 3989 #endif 3990 3991 /* Reduce memory usage in kdump environment, disable all offload. 3992 */ 3993 if (is_kdump_kernel()) { 3994 adap->params.offload = 0; 3995 adap->params.crypto = 0; 3996 } else if (is_uld(adap) && t4_uld_mem_alloc(adap)) { 3997 adap->params.offload = 0; 3998 adap->params.crypto = 0; 3999 } 4000 4001 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4002 #ifdef CONFIG_CHELSIO_T4_DCB 4003 /* For Data Center Bridging support we need to be able to support up 4004 * to 8 Traffic Priorities; each of which will be assigned to its 4005 * own TX Queue in order to prevent Head-Of-Line Blocking. 4006 */ 4007 if (adap->params.nports * 8 > MAX_ETH_QSETS) { 4008 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n", 4009 MAX_ETH_QSETS, adap->params.nports * 8); 4010 BUG_ON(1); 4011 } 4012 4013 for_each_port(adap, i) { 4014 struct port_info *pi = adap2pinfo(adap, i); 4015 4016 pi->first_qset = qidx; 4017 pi->nqsets = 8; 4018 qidx += pi->nqsets; 4019 } 4020 #else /* !CONFIG_CHELSIO_T4_DCB */ 4021 /* 4022 * We default to 1 queue per non-10G port and up to # of cores queues 4023 * per 10G port. 4024 */ 4025 if (n10g) 4026 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 4027 if (q10g > netif_get_num_default_rss_queues()) 4028 q10g = netif_get_num_default_rss_queues(); 4029 4030 for_each_port(adap, i) { 4031 struct port_info *pi = adap2pinfo(adap, i); 4032 4033 pi->first_qset = qidx; 4034 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4035 qidx += pi->nqsets; 4036 } 4037 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4038 4039 s->ethqsets = qidx; 4040 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4041 4042 if (is_uld(adap)) { 4043 /* 4044 * For offload we use 1 queue/channel if all ports are up to 1G, 4045 * otherwise we divide all available queues amongst the channels 4046 * capped by the number of available cores. 4047 */ 4048 if (n10g) { 4049 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 4050 s->ofldqsets = roundup(i, adap->params.nports); 4051 } else { 4052 s->ofldqsets = adap->params.nports; 4053 } 4054 } 4055 4056 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4057 struct sge_eth_rxq *r = &s->ethrxq[i]; 4058 4059 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4060 r->fl.size = 72; 4061 } 4062 4063 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4064 s->ethtxq[i].q.size = 1024; 4065 4066 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4067 s->ctrlq[i].q.size = 512; 4068 4069 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4070 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 4071 } 4072 4073 /* 4074 * Reduce the number of Ethernet queues across all ports to at most n. 4075 * n provides at least one queue per port. 4076 */ 4077 static void reduce_ethqs(struct adapter *adap, int n) 4078 { 4079 int i; 4080 struct port_info *pi; 4081 4082 while (n < adap->sge.ethqsets) 4083 for_each_port(adap, i) { 4084 pi = adap2pinfo(adap, i); 4085 if (pi->nqsets > 1) { 4086 pi->nqsets--; 4087 adap->sge.ethqsets--; 4088 if (adap->sge.ethqsets <= n) 4089 break; 4090 } 4091 } 4092 4093 n = 0; 4094 for_each_port(adap, i) { 4095 pi = adap2pinfo(adap, i); 4096 pi->first_qset = n; 4097 n += pi->nqsets; 4098 } 4099 } 4100 4101 static int get_msix_info(struct adapter *adap) 4102 { 4103 struct uld_msix_info *msix_info; 4104 unsigned int max_ingq = 0; 4105 4106 if (is_offload(adap)) 4107 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 4108 if (is_pci_uld(adap)) 4109 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 4110 4111 if (!max_ingq) 4112 goto out; 4113 4114 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 4115 if (!msix_info) 4116 return -ENOMEM; 4117 4118 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 4119 sizeof(long), GFP_KERNEL); 4120 if (!adap->msix_bmap_ulds.msix_bmap) { 4121 kfree(msix_info); 4122 return -ENOMEM; 4123 } 4124 spin_lock_init(&adap->msix_bmap_ulds.lock); 4125 adap->msix_info_ulds = msix_info; 4126 out: 4127 return 0; 4128 } 4129 4130 static void free_msix_info(struct adapter *adap) 4131 { 4132 if (!(adap->num_uld && adap->num_ofld_uld)) 4133 return; 4134 4135 kfree(adap->msix_info_ulds); 4136 kfree(adap->msix_bmap_ulds.msix_bmap); 4137 } 4138 4139 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 4140 #define EXTRA_VECS 2 4141 4142 static int enable_msix(struct adapter *adap) 4143 { 4144 int ofld_need = 0, uld_need = 0; 4145 int i, j, want, need, allocated; 4146 struct sge *s = &adap->sge; 4147 unsigned int nchan = adap->params.nports; 4148 struct msix_entry *entries; 4149 int max_ingq = MAX_INGQ; 4150 4151 if (is_pci_uld(adap)) 4152 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 4153 if (is_offload(adap)) 4154 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 4155 entries = kmalloc(sizeof(*entries) * (max_ingq + 1), 4156 GFP_KERNEL); 4157 if (!entries) 4158 return -ENOMEM; 4159 4160 /* map for msix */ 4161 if (get_msix_info(adap)) { 4162 adap->params.offload = 0; 4163 adap->params.crypto = 0; 4164 } 4165 4166 for (i = 0; i < max_ingq + 1; ++i) 4167 entries[i].entry = i; 4168 4169 want = s->max_ethqsets + EXTRA_VECS; 4170 if (is_offload(adap)) { 4171 want += adap->num_ofld_uld * s->ofldqsets; 4172 ofld_need = adap->num_ofld_uld * nchan; 4173 } 4174 if (is_pci_uld(adap)) { 4175 want += adap->num_uld * s->ofldqsets; 4176 uld_need = adap->num_uld * nchan; 4177 } 4178 #ifdef CONFIG_CHELSIO_T4_DCB 4179 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 4180 * each port. 4181 */ 4182 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4183 #else 4184 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4185 #endif 4186 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 4187 if (allocated < 0) { 4188 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 4189 " not using MSI-X\n"); 4190 kfree(entries); 4191 return allocated; 4192 } 4193 4194 /* Distribute available vectors to the various queue groups. 4195 * Every group gets its minimum requirement and NIC gets top 4196 * priority for leftovers. 4197 */ 4198 i = allocated - EXTRA_VECS - ofld_need - uld_need; 4199 if (i < s->max_ethqsets) { 4200 s->max_ethqsets = i; 4201 if (i < s->ethqsets) 4202 reduce_ethqs(adap, i); 4203 } 4204 if (is_uld(adap)) { 4205 if (allocated < want) 4206 s->nqs_per_uld = nchan; 4207 else 4208 s->nqs_per_uld = s->ofldqsets; 4209 } 4210 4211 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 4212 adap->msix_info[i].vec = entries[i].vector; 4213 if (is_uld(adap)) { 4214 for (j = 0 ; i < allocated; ++i, j++) { 4215 adap->msix_info_ulds[j].vec = entries[i].vector; 4216 adap->msix_info_ulds[j].idx = i; 4217 } 4218 adap->msix_bmap_ulds.mapsize = j; 4219 } 4220 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 4221 "nic %d per uld %d\n", 4222 allocated, s->max_ethqsets, s->nqs_per_uld); 4223 4224 kfree(entries); 4225 return 0; 4226 } 4227 4228 #undef EXTRA_VECS 4229 4230 static int init_rss(struct adapter *adap) 4231 { 4232 unsigned int i; 4233 int err; 4234 4235 err = t4_init_rss_mode(adap, adap->mbox); 4236 if (err) 4237 return err; 4238 4239 for_each_port(adap, i) { 4240 struct port_info *pi = adap2pinfo(adap, i); 4241 4242 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 4243 if (!pi->rss) 4244 return -ENOMEM; 4245 } 4246 return 0; 4247 } 4248 4249 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap, 4250 enum pci_bus_speed *speed, 4251 enum pcie_link_width *width) 4252 { 4253 u32 lnkcap1, lnkcap2; 4254 int err1, err2; 4255 4256 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */ 4257 4258 *speed = PCI_SPEED_UNKNOWN; 4259 *width = PCIE_LNK_WIDTH_UNKNOWN; 4260 4261 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP, 4262 &lnkcap1); 4263 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2, 4264 &lnkcap2); 4265 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */ 4266 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 4267 *speed = PCIE_SPEED_8_0GT; 4268 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 4269 *speed = PCIE_SPEED_5_0GT; 4270 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 4271 *speed = PCIE_SPEED_2_5GT; 4272 } 4273 if (!err1) { 4274 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT; 4275 if (!lnkcap2) { /* pre-r3.0 */ 4276 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB) 4277 *speed = PCIE_SPEED_5_0GT; 4278 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB) 4279 *speed = PCIE_SPEED_2_5GT; 4280 } 4281 } 4282 4283 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 4284 return err1 ? err1 : err2 ? err2 : -EINVAL; 4285 return 0; 4286 } 4287 4288 static void cxgb4_check_pcie_caps(struct adapter *adap) 4289 { 4290 enum pcie_link_width width, width_cap; 4291 enum pci_bus_speed speed, speed_cap; 4292 4293 #define PCIE_SPEED_STR(speed) \ 4294 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \ 4295 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \ 4296 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \ 4297 "Unknown") 4298 4299 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) { 4300 dev_warn(adap->pdev_dev, 4301 "Unable to determine PCIe device BW capabilities\n"); 4302 return; 4303 } 4304 4305 if (pcie_get_minimum_link(adap->pdev, &speed, &width) || 4306 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) { 4307 dev_warn(adap->pdev_dev, 4308 "Unable to determine PCI Express bandwidth.\n"); 4309 return; 4310 } 4311 4312 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n", 4313 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap)); 4314 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n", 4315 width, width_cap); 4316 if (speed < speed_cap || width < width_cap) 4317 dev_info(adap->pdev_dev, 4318 "A slot with more lanes and/or higher speed is " 4319 "suggested for optimal performance.\n"); 4320 } 4321 4322 /* Dump basic information about the adapter */ 4323 static void print_adapter_info(struct adapter *adapter) 4324 { 4325 /* Device information */ 4326 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 4327 adapter->params.vpd.id, 4328 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 4329 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 4330 adapter->params.vpd.sn, adapter->params.vpd.pn); 4331 4332 /* Firmware Version */ 4333 if (!adapter->params.fw_vers) 4334 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 4335 else 4336 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 4337 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 4338 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 4339 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 4340 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 4341 4342 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 4343 * Firmware, so dev_info() is more appropriate here.) 4344 */ 4345 if (!adapter->params.bs_vers) 4346 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 4347 else 4348 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 4349 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 4350 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 4351 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 4352 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 4353 4354 /* TP Microcode Version */ 4355 if (!adapter->params.tp_vers) 4356 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 4357 else 4358 dev_info(adapter->pdev_dev, 4359 "TP Microcode version: %u.%u.%u.%u\n", 4360 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 4361 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 4362 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 4363 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 4364 4365 /* Expansion ROM version */ 4366 if (!adapter->params.er_vers) 4367 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 4368 else 4369 dev_info(adapter->pdev_dev, 4370 "Expansion ROM version: %u.%u.%u.%u\n", 4371 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 4372 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 4373 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 4374 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 4375 4376 /* Software/Hardware configuration */ 4377 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 4378 is_offload(adapter) ? "R" : "", 4379 ((adapter->flags & USING_MSIX) ? "MSI-X" : 4380 (adapter->flags & USING_MSI) ? "MSI" : ""), 4381 is_offload(adapter) ? "Offload" : "non-Offload"); 4382 } 4383 4384 static void print_port_info(const struct net_device *dev) 4385 { 4386 char buf[80]; 4387 char *bufp = buf; 4388 const char *spd = ""; 4389 const struct port_info *pi = netdev_priv(dev); 4390 const struct adapter *adap = pi->adapter; 4391 4392 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 4393 spd = " 2.5 GT/s"; 4394 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 4395 spd = " 5 GT/s"; 4396 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 4397 spd = " 8 GT/s"; 4398 4399 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 4400 bufp += sprintf(bufp, "100/"); 4401 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 4402 bufp += sprintf(bufp, "1000/"); 4403 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 4404 bufp += sprintf(bufp, "10G/"); 4405 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G) 4406 bufp += sprintf(bufp, "25G/"); 4407 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G) 4408 bufp += sprintf(bufp, "40G/"); 4409 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G) 4410 bufp += sprintf(bufp, "100G/"); 4411 if (bufp != buf) 4412 --bufp; 4413 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 4414 4415 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 4416 dev->name, adap->params.vpd.id, adap->name, buf); 4417 } 4418 4419 static void enable_pcie_relaxed_ordering(struct pci_dev *dev) 4420 { 4421 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 4422 } 4423 4424 /* 4425 * Free the following resources: 4426 * - memory used for tables 4427 * - MSI/MSI-X 4428 * - net devices 4429 * - resources FW is holding for us 4430 */ 4431 static void free_some_resources(struct adapter *adapter) 4432 { 4433 unsigned int i; 4434 4435 t4_free_mem(adapter->l2t); 4436 t4_cleanup_sched(adapter); 4437 t4_free_mem(adapter->tids.tid_tab); 4438 cxgb4_cleanup_tc_u32(adapter); 4439 kfree(adapter->sge.egr_map); 4440 kfree(adapter->sge.ingr_map); 4441 kfree(adapter->sge.starving_fl); 4442 kfree(adapter->sge.txq_maperr); 4443 #ifdef CONFIG_DEBUG_FS 4444 kfree(adapter->sge.blocked_fl); 4445 #endif 4446 disable_msi(adapter); 4447 4448 for_each_port(adapter, i) 4449 if (adapter->port[i]) { 4450 struct port_info *pi = adap2pinfo(adapter, i); 4451 4452 if (pi->viid != 0) 4453 t4_free_vi(adapter, adapter->mbox, adapter->pf, 4454 0, pi->viid); 4455 kfree(adap2pinfo(adapter, i)->rss); 4456 free_netdev(adapter->port[i]); 4457 } 4458 if (adapter->flags & FW_OK) 4459 t4_fw_bye(adapter, adapter->pf); 4460 } 4461 4462 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 4463 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 4464 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 4465 #define SEGMENT_SIZE 128 4466 4467 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev) 4468 { 4469 u16 device_id; 4470 4471 /* Retrieve adapter's device ID */ 4472 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 4473 4474 switch (device_id >> 12) { 4475 case CHELSIO_T4: 4476 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 4477 case CHELSIO_T5: 4478 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 4479 case CHELSIO_T6: 4480 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 4481 default: 4482 dev_err(&pdev->dev, "Device %d is not supported\n", 4483 device_id); 4484 } 4485 return -EINVAL; 4486 } 4487 4488 #ifdef CONFIG_PCI_IOV 4489 static void dummy_setup(struct net_device *dev) 4490 { 4491 dev->type = ARPHRD_NONE; 4492 dev->mtu = 0; 4493 dev->hard_header_len = 0; 4494 dev->addr_len = 0; 4495 dev->tx_queue_len = 0; 4496 dev->flags |= IFF_NOARP; 4497 dev->priv_flags |= IFF_NO_QUEUE; 4498 4499 /* Initialize the device structure. */ 4500 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 4501 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 4502 dev->destructor = free_netdev; 4503 } 4504 4505 static int config_mgmt_dev(struct pci_dev *pdev) 4506 { 4507 struct adapter *adap = pci_get_drvdata(pdev); 4508 struct net_device *netdev; 4509 struct port_info *pi; 4510 char name[IFNAMSIZ]; 4511 int err; 4512 4513 snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf); 4514 netdev = alloc_netdev(0, name, NET_NAME_UNKNOWN, dummy_setup); 4515 if (!netdev) 4516 return -ENOMEM; 4517 4518 pi = netdev_priv(netdev); 4519 pi->adapter = adap; 4520 SET_NETDEV_DEV(netdev, &pdev->dev); 4521 4522 adap->port[0] = netdev; 4523 4524 err = register_netdev(adap->port[0]); 4525 if (err) { 4526 pr_info("Unable to register VF mgmt netdev %s\n", name); 4527 free_netdev(adap->port[0]); 4528 adap->port[0] = NULL; 4529 return err; 4530 } 4531 return 0; 4532 } 4533 4534 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 4535 { 4536 struct adapter *adap = pci_get_drvdata(pdev); 4537 int err = 0; 4538 int current_vfs = pci_num_vf(pdev); 4539 u32 pcie_fw; 4540 4541 pcie_fw = readl(adap->regs + PCIE_FW_A); 4542 /* Check if cxgb4 is the MASTER and fw is initialized */ 4543 if (!(pcie_fw & PCIE_FW_INIT_F) || 4544 !(pcie_fw & PCIE_FW_MASTER_VLD_F) || 4545 PCIE_FW_MASTER_G(pcie_fw) != 4) { 4546 dev_warn(&pdev->dev, 4547 "cxgb4 driver needs to be MASTER to support SRIOV\n"); 4548 return -EOPNOTSUPP; 4549 } 4550 4551 /* If any of the VF's is already assigned to Guest OS, then 4552 * SRIOV for the same cannot be modified 4553 */ 4554 if (current_vfs && pci_vfs_assigned(pdev)) { 4555 dev_err(&pdev->dev, 4556 "Cannot modify SR-IOV while VFs are assigned\n"); 4557 num_vfs = current_vfs; 4558 return num_vfs; 4559 } 4560 4561 /* Disable SRIOV when zero is passed. 4562 * One needs to disable SRIOV before modifying it, else 4563 * stack throws the below warning: 4564 * " 'n' VFs already enabled. Disable before enabling 'm' VFs." 4565 */ 4566 if (!num_vfs) { 4567 pci_disable_sriov(pdev); 4568 if (adap->port[0]) { 4569 unregister_netdev(adap->port[0]); 4570 adap->port[0] = NULL; 4571 } 4572 /* free VF resources */ 4573 kfree(adap->vfinfo); 4574 adap->vfinfo = NULL; 4575 adap->num_vfs = 0; 4576 return num_vfs; 4577 } 4578 4579 if (num_vfs != current_vfs) { 4580 err = pci_enable_sriov(pdev, num_vfs); 4581 if (err) 4582 return err; 4583 4584 adap->num_vfs = num_vfs; 4585 err = config_mgmt_dev(pdev); 4586 if (err) 4587 return err; 4588 } 4589 4590 adap->vfinfo = kcalloc(adap->num_vfs, 4591 sizeof(struct vf_info), GFP_KERNEL); 4592 if (adap->vfinfo) 4593 fill_vf_station_mac_addr(adap); 4594 return num_vfs; 4595 } 4596 #endif 4597 4598 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4599 { 4600 int func, i, err, s_qpp, qpp, num_seg; 4601 struct port_info *pi; 4602 bool highdma = false; 4603 struct adapter *adapter = NULL; 4604 struct net_device *netdev; 4605 void __iomem *regs; 4606 u32 whoami, pl_rev; 4607 enum chip_type chip; 4608 static int adap_idx = 1; 4609 4610 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 4611 4612 err = pci_request_regions(pdev, KBUILD_MODNAME); 4613 if (err) { 4614 /* Just info, some other driver may have claimed the device. */ 4615 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 4616 return err; 4617 } 4618 4619 err = pci_enable_device(pdev); 4620 if (err) { 4621 dev_err(&pdev->dev, "cannot enable PCI device\n"); 4622 goto out_release_regions; 4623 } 4624 4625 regs = pci_ioremap_bar(pdev, 0); 4626 if (!regs) { 4627 dev_err(&pdev->dev, "cannot map device registers\n"); 4628 err = -ENOMEM; 4629 goto out_disable_device; 4630 } 4631 4632 err = t4_wait_dev_ready(regs); 4633 if (err < 0) 4634 goto out_unmap_bar0; 4635 4636 /* We control everything through one PF */ 4637 whoami = readl(regs + PL_WHOAMI_A); 4638 pl_rev = REV_G(readl(regs + PL_REV_A)); 4639 chip = get_chip_type(pdev, pl_rev); 4640 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ? 4641 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4642 if (func != ent->driver_data) { 4643 #ifndef CONFIG_PCI_IOV 4644 iounmap(regs); 4645 #endif 4646 pci_disable_device(pdev); 4647 pci_save_state(pdev); /* to restore SR-IOV later */ 4648 goto sriov; 4649 } 4650 4651 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4652 highdma = true; 4653 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4654 if (err) { 4655 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 4656 "coherent allocations\n"); 4657 goto out_unmap_bar0; 4658 } 4659 } else { 4660 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4661 if (err) { 4662 dev_err(&pdev->dev, "no usable DMA configuration\n"); 4663 goto out_unmap_bar0; 4664 } 4665 } 4666 4667 pci_enable_pcie_error_reporting(pdev); 4668 enable_pcie_relaxed_ordering(pdev); 4669 pci_set_master(pdev); 4670 pci_save_state(pdev); 4671 4672 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4673 if (!adapter) { 4674 err = -ENOMEM; 4675 goto out_unmap_bar0; 4676 } 4677 adap_idx++; 4678 4679 adapter->workq = create_singlethread_workqueue("cxgb4"); 4680 if (!adapter->workq) { 4681 err = -ENOMEM; 4682 goto out_free_adapter; 4683 } 4684 4685 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 4686 (sizeof(struct mbox_cmd) * 4687 T4_OS_LOG_MBOX_CMDS), 4688 GFP_KERNEL); 4689 if (!adapter->mbox_log) { 4690 err = -ENOMEM; 4691 goto out_free_adapter; 4692 } 4693 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 4694 4695 /* PCI device has been enabled */ 4696 adapter->flags |= DEV_ENABLED; 4697 4698 adapter->regs = regs; 4699 adapter->pdev = pdev; 4700 adapter->pdev_dev = &pdev->dev; 4701 adapter->name = pci_name(pdev); 4702 adapter->mbox = func; 4703 adapter->pf = func; 4704 adapter->msg_enable = DFLT_MSG_ENABLE; 4705 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 4706 4707 spin_lock_init(&adapter->stats_lock); 4708 spin_lock_init(&adapter->tid_release_lock); 4709 spin_lock_init(&adapter->win0_lock); 4710 4711 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 4712 INIT_WORK(&adapter->db_full_task, process_db_full); 4713 INIT_WORK(&adapter->db_drop_task, process_db_drop); 4714 4715 err = t4_prep_adapter(adapter); 4716 if (err) 4717 goto out_free_adapter; 4718 4719 4720 if (!is_t4(adapter->params.chip)) { 4721 s_qpp = (QUEUESPERPAGEPF0_S + 4722 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 4723 adapter->pf); 4724 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 4725 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 4726 num_seg = PAGE_SIZE / SEGMENT_SIZE; 4727 4728 /* Each segment size is 128B. Write coalescing is enabled only 4729 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 4730 * queue is less no of segments that can be accommodated in 4731 * a page size. 4732 */ 4733 if (qpp > num_seg) { 4734 dev_err(&pdev->dev, 4735 "Incorrect number of egress queues per page\n"); 4736 err = -EINVAL; 4737 goto out_free_adapter; 4738 } 4739 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 4740 pci_resource_len(pdev, 2)); 4741 if (!adapter->bar2) { 4742 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 4743 err = -ENOMEM; 4744 goto out_free_adapter; 4745 } 4746 } 4747 4748 setup_memwin(adapter); 4749 err = adap_init0(adapter); 4750 #ifdef CONFIG_DEBUG_FS 4751 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 4752 #endif 4753 setup_memwin_rdma(adapter); 4754 if (err) 4755 goto out_unmap_bar; 4756 4757 /* configure SGE_STAT_CFG_A to read WC stats */ 4758 if (!is_t4(adapter->params.chip)) 4759 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 4760 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 4761 T6_STATMODE_V(0))); 4762 4763 for_each_port(adapter, i) { 4764 netdev = alloc_etherdev_mq(sizeof(struct port_info), 4765 MAX_ETH_QSETS); 4766 if (!netdev) { 4767 err = -ENOMEM; 4768 goto out_free_dev; 4769 } 4770 4771 SET_NETDEV_DEV(netdev, &pdev->dev); 4772 4773 adapter->port[i] = netdev; 4774 pi = netdev_priv(netdev); 4775 pi->adapter = adapter; 4776 pi->xact_addr_filt = -1; 4777 pi->port_id = i; 4778 netdev->irq = pdev->irq; 4779 4780 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 4781 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4782 NETIF_F_RXCSUM | NETIF_F_RXHASH | 4783 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 4784 NETIF_F_HW_TC; 4785 if (highdma) 4786 netdev->hw_features |= NETIF_F_HIGHDMA; 4787 netdev->features |= netdev->hw_features; 4788 netdev->vlan_features = netdev->features & VLAN_FEAT; 4789 4790 netdev->priv_flags |= IFF_UNICAST_FLT; 4791 4792 /* MTU range: 81 - 9600 */ 4793 netdev->min_mtu = 81; 4794 netdev->max_mtu = MAX_MTU; 4795 4796 netdev->netdev_ops = &cxgb4_netdev_ops; 4797 #ifdef CONFIG_CHELSIO_T4_DCB 4798 netdev->dcbnl_ops = &cxgb4_dcb_ops; 4799 cxgb4_dcb_state_init(netdev); 4800 #endif 4801 cxgb4_set_ethtool_ops(netdev); 4802 } 4803 4804 pci_set_drvdata(pdev, adapter); 4805 4806 if (adapter->flags & FW_OK) { 4807 err = t4_port_init(adapter, func, func, 0); 4808 if (err) 4809 goto out_free_dev; 4810 } else if (adapter->params.nports == 1) { 4811 /* If we don't have a connection to the firmware -- possibly 4812 * because of an error -- grab the raw VPD parameters so we 4813 * can set the proper MAC Address on the debug network 4814 * interface that we've created. 4815 */ 4816 u8 hw_addr[ETH_ALEN]; 4817 u8 *na = adapter->params.vpd.na; 4818 4819 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 4820 if (!err) { 4821 for (i = 0; i < ETH_ALEN; i++) 4822 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 4823 hex2val(na[2 * i + 1])); 4824 t4_set_hw_addr(adapter, 0, hw_addr); 4825 } 4826 } 4827 4828 /* Configure queues and allocate tables now, they can be needed as 4829 * soon as the first register_netdev completes. 4830 */ 4831 cfg_queues(adapter); 4832 4833 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 4834 if (!adapter->l2t) { 4835 /* We tolerate a lack of L2T, giving up some functionality */ 4836 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 4837 adapter->params.offload = 0; 4838 } 4839 4840 #if IS_ENABLED(CONFIG_IPV6) 4841 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) && 4842 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 4843 /* CLIP functionality is not present in hardware, 4844 * hence disable all offload features 4845 */ 4846 dev_warn(&pdev->dev, 4847 "CLIP not enabled in hardware, continuing\n"); 4848 adapter->params.offload = 0; 4849 } else { 4850 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 4851 adapter->clipt_end); 4852 if (!adapter->clipt) { 4853 /* We tolerate a lack of clip_table, giving up 4854 * some functionality 4855 */ 4856 dev_warn(&pdev->dev, 4857 "could not allocate Clip table, continuing\n"); 4858 adapter->params.offload = 0; 4859 } 4860 } 4861 #endif 4862 4863 for_each_port(adapter, i) { 4864 pi = adap2pinfo(adapter, i); 4865 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 4866 if (!pi->sched_tbl) 4867 dev_warn(&pdev->dev, 4868 "could not activate scheduling on port %d\n", 4869 i); 4870 } 4871 4872 if (tid_init(&adapter->tids) < 0) { 4873 dev_warn(&pdev->dev, "could not allocate TID table, " 4874 "continuing\n"); 4875 adapter->params.offload = 0; 4876 } else { 4877 adapter->tc_u32 = cxgb4_init_tc_u32(adapter, 4878 CXGB4_MAX_LINK_HANDLE); 4879 if (!adapter->tc_u32) 4880 dev_warn(&pdev->dev, 4881 "could not offload tc u32, continuing\n"); 4882 } 4883 4884 if (is_offload(adapter)) { 4885 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 4886 u32 hash_base, hash_reg; 4887 4888 if (chip <= CHELSIO_T5) { 4889 hash_reg = LE_DB_TID_HASHBASE_A; 4890 hash_base = t4_read_reg(adapter, hash_reg); 4891 adapter->tids.hash_base = hash_base / 4; 4892 } else { 4893 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 4894 hash_base = t4_read_reg(adapter, hash_reg); 4895 adapter->tids.hash_base = hash_base; 4896 } 4897 } 4898 } 4899 4900 /* See what interrupts we'll be using */ 4901 if (msi > 1 && enable_msix(adapter) == 0) 4902 adapter->flags |= USING_MSIX; 4903 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 4904 adapter->flags |= USING_MSI; 4905 if (msi > 1) 4906 free_msix_info(adapter); 4907 } 4908 4909 /* check for PCI Express bandwidth capabiltites */ 4910 cxgb4_check_pcie_caps(adapter); 4911 4912 err = init_rss(adapter); 4913 if (err) 4914 goto out_free_dev; 4915 4916 /* 4917 * The card is now ready to go. If any errors occur during device 4918 * registration we do not fail the whole card but rather proceed only 4919 * with the ports we manage to register successfully. However we must 4920 * register at least one net device. 4921 */ 4922 for_each_port(adapter, i) { 4923 pi = adap2pinfo(adapter, i); 4924 adapter->port[i]->dev_port = pi->lport; 4925 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 4926 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 4927 4928 err = register_netdev(adapter->port[i]); 4929 if (err) 4930 break; 4931 adapter->chan_map[pi->tx_chan] = i; 4932 print_port_info(adapter->port[i]); 4933 } 4934 if (i == 0) { 4935 dev_err(&pdev->dev, "could not register any net devices\n"); 4936 goto out_free_dev; 4937 } 4938 if (err) { 4939 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 4940 err = 0; 4941 } 4942 4943 if (cxgb4_debugfs_root) { 4944 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 4945 cxgb4_debugfs_root); 4946 setup_debugfs(adapter); 4947 } 4948 4949 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 4950 pdev->needs_freset = 1; 4951 4952 if (is_uld(adapter)) { 4953 mutex_lock(&uld_mutex); 4954 list_add_tail(&adapter->list_node, &adapter_list); 4955 mutex_unlock(&uld_mutex); 4956 } 4957 4958 print_adapter_info(adapter); 4959 setup_fw_sge_queues(adapter); 4960 return 0; 4961 4962 sriov: 4963 #ifdef CONFIG_PCI_IOV 4964 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4965 if (!adapter) { 4966 err = -ENOMEM; 4967 goto free_pci_region; 4968 } 4969 4970 adapter->pdev = pdev; 4971 adapter->pdev_dev = &pdev->dev; 4972 adapter->name = pci_name(pdev); 4973 adapter->mbox = func; 4974 adapter->pf = func; 4975 adapter->regs = regs; 4976 adapter->adap_idx = adap_idx; 4977 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 4978 (sizeof(struct mbox_cmd) * 4979 T4_OS_LOG_MBOX_CMDS), 4980 GFP_KERNEL); 4981 if (!adapter->mbox_log) { 4982 err = -ENOMEM; 4983 goto free_adapter; 4984 } 4985 pci_set_drvdata(pdev, adapter); 4986 return 0; 4987 4988 free_adapter: 4989 kfree(adapter); 4990 free_pci_region: 4991 iounmap(regs); 4992 pci_disable_sriov(pdev); 4993 pci_release_regions(pdev); 4994 return err; 4995 #else 4996 return 0; 4997 #endif 4998 4999 out_free_dev: 5000 free_some_resources(adapter); 5001 if (adapter->flags & USING_MSIX) 5002 free_msix_info(adapter); 5003 if (adapter->num_uld || adapter->num_ofld_uld) 5004 t4_uld_mem_free(adapter); 5005 out_unmap_bar: 5006 if (!is_t4(adapter->params.chip)) 5007 iounmap(adapter->bar2); 5008 out_free_adapter: 5009 if (adapter->workq) 5010 destroy_workqueue(adapter->workq); 5011 5012 kfree(adapter->mbox_log); 5013 kfree(adapter); 5014 out_unmap_bar0: 5015 iounmap(regs); 5016 out_disable_device: 5017 pci_disable_pcie_error_reporting(pdev); 5018 pci_disable_device(pdev); 5019 out_release_regions: 5020 pci_release_regions(pdev); 5021 return err; 5022 } 5023 5024 static void remove_one(struct pci_dev *pdev) 5025 { 5026 struct adapter *adapter = pci_get_drvdata(pdev); 5027 5028 if (!adapter) { 5029 pci_release_regions(pdev); 5030 return; 5031 } 5032 5033 if (adapter->pf == 4) { 5034 int i; 5035 5036 /* Tear down per-adapter Work Queue first since it can contain 5037 * references to our adapter data structure. 5038 */ 5039 destroy_workqueue(adapter->workq); 5040 5041 if (is_uld(adapter)) 5042 detach_ulds(adapter); 5043 5044 disable_interrupts(adapter); 5045 5046 for_each_port(adapter, i) 5047 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5048 unregister_netdev(adapter->port[i]); 5049 5050 debugfs_remove_recursive(adapter->debugfs_root); 5051 5052 /* If we allocated filters, free up state associated with any 5053 * valid filters ... 5054 */ 5055 clear_all_filters(adapter); 5056 5057 if (adapter->flags & FULL_INIT_DONE) 5058 cxgb_down(adapter); 5059 5060 if (adapter->flags & USING_MSIX) 5061 free_msix_info(adapter); 5062 if (adapter->num_uld || adapter->num_ofld_uld) 5063 t4_uld_mem_free(adapter); 5064 free_some_resources(adapter); 5065 #if IS_ENABLED(CONFIG_IPV6) 5066 t4_cleanup_clip_tbl(adapter); 5067 #endif 5068 iounmap(adapter->regs); 5069 if (!is_t4(adapter->params.chip)) 5070 iounmap(adapter->bar2); 5071 pci_disable_pcie_error_reporting(pdev); 5072 if ((adapter->flags & DEV_ENABLED)) { 5073 pci_disable_device(pdev); 5074 adapter->flags &= ~DEV_ENABLED; 5075 } 5076 pci_release_regions(pdev); 5077 kfree(adapter->mbox_log); 5078 synchronize_rcu(); 5079 kfree(adapter); 5080 } 5081 #ifdef CONFIG_PCI_IOV 5082 else { 5083 if (adapter->port[0]) 5084 unregister_netdev(adapter->port[0]); 5085 iounmap(adapter->regs); 5086 kfree(adapter->vfinfo); 5087 kfree(adapter); 5088 pci_disable_sriov(pdev); 5089 pci_release_regions(pdev); 5090 } 5091 #endif 5092 } 5093 5094 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 5095 * delivery. This is essentially a stripped down version of the PCI remove() 5096 * function where we do the minimal amount of work necessary to shutdown any 5097 * further activity. 5098 */ 5099 static void shutdown_one(struct pci_dev *pdev) 5100 { 5101 struct adapter *adapter = pci_get_drvdata(pdev); 5102 5103 /* As with remove_one() above (see extended comment), we only want do 5104 * do cleanup on PCI Devices which went all the way through init_one() 5105 * ... 5106 */ 5107 if (!adapter) { 5108 pci_release_regions(pdev); 5109 return; 5110 } 5111 5112 if (adapter->pf == 4) { 5113 int i; 5114 5115 for_each_port(adapter, i) 5116 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5117 cxgb_close(adapter->port[i]); 5118 5119 t4_uld_clean_up(adapter); 5120 disable_interrupts(adapter); 5121 disable_msi(adapter); 5122 5123 t4_sge_stop(adapter); 5124 if (adapter->flags & FW_OK) 5125 t4_fw_bye(adapter, adapter->mbox); 5126 } 5127 #ifdef CONFIG_PCI_IOV 5128 else { 5129 if (adapter->port[0]) 5130 unregister_netdev(adapter->port[0]); 5131 iounmap(adapter->regs); 5132 kfree(adapter->vfinfo); 5133 kfree(adapter); 5134 pci_disable_sriov(pdev); 5135 pci_release_regions(pdev); 5136 } 5137 #endif 5138 } 5139 5140 static struct pci_driver cxgb4_driver = { 5141 .name = KBUILD_MODNAME, 5142 .id_table = cxgb4_pci_tbl, 5143 .probe = init_one, 5144 .remove = remove_one, 5145 .shutdown = shutdown_one, 5146 #ifdef CONFIG_PCI_IOV 5147 .sriov_configure = cxgb4_iov_configure, 5148 #endif 5149 .err_handler = &cxgb4_eeh, 5150 }; 5151 5152 static int __init cxgb4_init_module(void) 5153 { 5154 int ret; 5155 5156 /* Debugfs support is optional, just warn if this fails */ 5157 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 5158 if (!cxgb4_debugfs_root) 5159 pr_warn("could not create debugfs entry, continuing\n"); 5160 5161 ret = pci_register_driver(&cxgb4_driver); 5162 if (ret < 0) 5163 debugfs_remove(cxgb4_debugfs_root); 5164 5165 #if IS_ENABLED(CONFIG_IPV6) 5166 if (!inet6addr_registered) { 5167 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5168 inet6addr_registered = true; 5169 } 5170 #endif 5171 5172 return ret; 5173 } 5174 5175 static void __exit cxgb4_cleanup_module(void) 5176 { 5177 #if IS_ENABLED(CONFIG_IPV6) 5178 if (inet6addr_registered) { 5179 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5180 inet6addr_registered = false; 5181 } 5182 #endif 5183 pci_unregister_driver(&cxgb4_driver); 5184 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 5185 } 5186 5187 module_init(cxgb4_init_module); 5188 module_exit(cxgb4_cleanup_module); 5189