1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <linux/uaccess.h>
66 #include <linux/crash_dump.h>
67 #include <net/udp_tunnel.h>
68 #include <net/xfrm.h>
69 
70 #include "cxgb4.h"
71 #include "cxgb4_filter.h"
72 #include "t4_regs.h"
73 #include "t4_values.h"
74 #include "t4_msg.h"
75 #include "t4fw_api.h"
76 #include "t4fw_version.h"
77 #include "cxgb4_dcb.h"
78 #include "srq.h"
79 #include "cxgb4_debugfs.h"
80 #include "clip_tbl.h"
81 #include "l2t.h"
82 #include "smt.h"
83 #include "sched.h"
84 #include "cxgb4_tc_u32.h"
85 #include "cxgb4_tc_flower.h"
86 #include "cxgb4_tc_mqprio.h"
87 #include "cxgb4_tc_matchall.h"
88 #include "cxgb4_ptp.h"
89 #include "cxgb4_cudbg.h"
90 
91 char cxgb4_driver_name[] = KBUILD_MODNAME;
92 
93 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
94 
95 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
96 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
97 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
98 
99 /* Macros needed to support the PCI Device ID Table ...
100  */
101 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
102 	static const struct pci_device_id cxgb4_pci_tbl[] = {
103 #define CXGB4_UNIFIED_PF 0x4
104 
105 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
106 
107 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
108  * called for both.
109  */
110 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
111 
112 #define CH_PCI_ID_TABLE_ENTRY(devid) \
113 		{PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
114 
115 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
116 		{ 0, } \
117 	}
118 
119 #include "t4_pci_id_tbl.h"
120 
121 #define FW4_FNAME "cxgb4/t4fw.bin"
122 #define FW5_FNAME "cxgb4/t5fw.bin"
123 #define FW6_FNAME "cxgb4/t6fw.bin"
124 #define FW4_CFNAME "cxgb4/t4-config.txt"
125 #define FW5_CFNAME "cxgb4/t5-config.txt"
126 #define FW6_CFNAME "cxgb4/t6-config.txt"
127 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
128 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
129 #define PHY_AQ1202_DEVICEID 0x4409
130 #define PHY_BCM84834_DEVICEID 0x4486
131 
132 MODULE_DESCRIPTION(DRV_DESC);
133 MODULE_AUTHOR("Chelsio Communications");
134 MODULE_LICENSE("Dual BSD/GPL");
135 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
136 MODULE_FIRMWARE(FW4_FNAME);
137 MODULE_FIRMWARE(FW5_FNAME);
138 MODULE_FIRMWARE(FW6_FNAME);
139 
140 /*
141  * The driver uses the best interrupt scheme available on a platform in the
142  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
143  * of these schemes the driver may consider as follows:
144  *
145  * msi = 2: choose from among all three options
146  * msi = 1: only consider MSI and INTx interrupts
147  * msi = 0: force INTx interrupts
148  */
149 static int msi = 2;
150 
151 module_param(msi, int, 0644);
152 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
153 
154 /*
155  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
156  * offset by 2 bytes in order to have the IP headers line up on 4-byte
157  * boundaries.  This is a requirement for many architectures which will throw
158  * a machine check fault if an attempt is made to access one of the 4-byte IP
159  * header fields on a non-4-byte boundary.  And it's a major performance issue
160  * even on some architectures which allow it like some implementations of the
161  * x86 ISA.  However, some architectures don't mind this and for some very
162  * edge-case performance sensitive applications (like forwarding large volumes
163  * of small packets), setting this DMA offset to 0 will decrease the number of
164  * PCI-E Bus transfers enough to measurably affect performance.
165  */
166 static int rx_dma_offset = 2;
167 
168 /* TX Queue select used to determine what algorithm to use for selecting TX
169  * queue. Select between the kernel provided function (select_queue=0) or user
170  * cxgb_select_queue function (select_queue=1)
171  *
172  * Default: select_queue=0
173  */
174 static int select_queue;
175 module_param(select_queue, int, 0644);
176 MODULE_PARM_DESC(select_queue,
177 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
178 
179 static struct dentry *cxgb4_debugfs_root;
180 
181 LIST_HEAD(adapter_list);
182 DEFINE_MUTEX(uld_mutex);
183 
184 static int cfg_queues(struct adapter *adap);
185 
186 static void link_report(struct net_device *dev)
187 {
188 	if (!netif_carrier_ok(dev))
189 		netdev_info(dev, "link down\n");
190 	else {
191 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
192 
193 		const char *s;
194 		const struct port_info *p = netdev_priv(dev);
195 
196 		switch (p->link_cfg.speed) {
197 		case 100:
198 			s = "100Mbps";
199 			break;
200 		case 1000:
201 			s = "1Gbps";
202 			break;
203 		case 10000:
204 			s = "10Gbps";
205 			break;
206 		case 25000:
207 			s = "25Gbps";
208 			break;
209 		case 40000:
210 			s = "40Gbps";
211 			break;
212 		case 50000:
213 			s = "50Gbps";
214 			break;
215 		case 100000:
216 			s = "100Gbps";
217 			break;
218 		default:
219 			pr_info("%s: unsupported speed: %d\n",
220 				dev->name, p->link_cfg.speed);
221 			return;
222 		}
223 
224 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
225 			    fc[p->link_cfg.fc]);
226 	}
227 }
228 
229 #ifdef CONFIG_CHELSIO_T4_DCB
230 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
231 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
232 {
233 	struct port_info *pi = netdev_priv(dev);
234 	struct adapter *adap = pi->adapter;
235 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
236 	int i;
237 
238 	/* We use a simple mapping of Port TX Queue Index to DCB
239 	 * Priority when we're enabling DCB.
240 	 */
241 	for (i = 0; i < pi->nqsets; i++, txq++) {
242 		u32 name, value;
243 		int err;
244 
245 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
246 			FW_PARAMS_PARAM_X_V(
247 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
248 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
249 		value = enable ? i : 0xffffffff;
250 
251 		/* Since we can be called while atomic (from "interrupt
252 		 * level") we need to issue the Set Parameters Commannd
253 		 * without sleeping (timeout < 0).
254 		 */
255 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
256 					    &name, &value,
257 					    -FW_CMD_MAX_TIMEOUT);
258 
259 		if (err)
260 			dev_err(adap->pdev_dev,
261 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
262 				enable ? "set" : "unset", pi->port_id, i, -err);
263 		else
264 			txq->dcb_prio = enable ? value : 0;
265 	}
266 }
267 
268 int cxgb4_dcb_enabled(const struct net_device *dev)
269 {
270 	struct port_info *pi = netdev_priv(dev);
271 
272 	if (!pi->dcb.enabled)
273 		return 0;
274 
275 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
276 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
277 }
278 #endif /* CONFIG_CHELSIO_T4_DCB */
279 
280 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
281 {
282 	struct net_device *dev = adapter->port[port_id];
283 
284 	/* Skip changes from disabled ports. */
285 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
286 		if (link_stat)
287 			netif_carrier_on(dev);
288 		else {
289 #ifdef CONFIG_CHELSIO_T4_DCB
290 			if (cxgb4_dcb_enabled(dev)) {
291 				cxgb4_dcb_reset(dev);
292 				dcb_tx_queue_prio_enable(dev, false);
293 			}
294 #endif /* CONFIG_CHELSIO_T4_DCB */
295 			netif_carrier_off(dev);
296 		}
297 
298 		link_report(dev);
299 	}
300 }
301 
302 void t4_os_portmod_changed(struct adapter *adap, int port_id)
303 {
304 	static const char *mod_str[] = {
305 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
306 	};
307 
308 	struct net_device *dev = adap->port[port_id];
309 	struct port_info *pi = netdev_priv(dev);
310 
311 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
312 		netdev_info(dev, "port module unplugged\n");
313 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
314 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
315 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
316 		netdev_info(dev, "%s: unsupported port module inserted\n",
317 			    dev->name);
318 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
319 		netdev_info(dev, "%s: unknown port module inserted\n",
320 			    dev->name);
321 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
322 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
323 	else
324 		netdev_info(dev, "%s: unknown module type %d inserted\n",
325 			    dev->name, pi->mod_type);
326 
327 	/* If the interface is running, then we'll need any "sticky" Link
328 	 * Parameters redone with a new Transceiver Module.
329 	 */
330 	pi->link_cfg.redo_l1cfg = netif_running(dev);
331 }
332 
333 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
334 module_param(dbfifo_int_thresh, int, 0644);
335 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
336 
337 /*
338  * usecs to sleep while draining the dbfifo
339  */
340 static int dbfifo_drain_delay = 1000;
341 module_param(dbfifo_drain_delay, int, 0644);
342 MODULE_PARM_DESC(dbfifo_drain_delay,
343 		 "usecs to sleep while draining the dbfifo");
344 
345 static inline int cxgb4_set_addr_hash(struct port_info *pi)
346 {
347 	struct adapter *adap = pi->adapter;
348 	u64 vec = 0;
349 	bool ucast = false;
350 	struct hash_mac_addr *entry;
351 
352 	/* Calculate the hash vector for the updated list and program it */
353 	list_for_each_entry(entry, &adap->mac_hlist, list) {
354 		ucast |= is_unicast_ether_addr(entry->addr);
355 		vec |= (1ULL << hash_mac_addr(entry->addr));
356 	}
357 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
358 				vec, false);
359 }
360 
361 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
362 {
363 	struct port_info *pi = netdev_priv(netdev);
364 	struct adapter *adap = pi->adapter;
365 	int ret;
366 	u64 mhash = 0;
367 	u64 uhash = 0;
368 	/* idx stores the index of allocated filters,
369 	 * its size should be modified based on the number of
370 	 * MAC addresses that we allocate filters for
371 	 */
372 
373 	u16 idx[1] = {};
374 	bool free = false;
375 	bool ucast = is_unicast_ether_addr(mac_addr);
376 	const u8 *maclist[1] = {mac_addr};
377 	struct hash_mac_addr *new_entry;
378 
379 	ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
380 				   idx, ucast ? &uhash : &mhash, false);
381 	if (ret < 0)
382 		goto out;
383 	/* if hash != 0, then add the addr to hash addr list
384 	 * so on the end we will calculate the hash for the
385 	 * list and program it
386 	 */
387 	if (uhash || mhash) {
388 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
389 		if (!new_entry)
390 			return -ENOMEM;
391 		ether_addr_copy(new_entry->addr, mac_addr);
392 		list_add_tail(&new_entry->list, &adap->mac_hlist);
393 		ret = cxgb4_set_addr_hash(pi);
394 	}
395 out:
396 	return ret < 0 ? ret : 0;
397 }
398 
399 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
400 {
401 	struct port_info *pi = netdev_priv(netdev);
402 	struct adapter *adap = pi->adapter;
403 	int ret;
404 	const u8 *maclist[1] = {mac_addr};
405 	struct hash_mac_addr *entry, *tmp;
406 
407 	/* If the MAC address to be removed is in the hash addr
408 	 * list, delete it from the list and update hash vector
409 	 */
410 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
411 		if (ether_addr_equal(entry->addr, mac_addr)) {
412 			list_del(&entry->list);
413 			kfree(entry);
414 			return cxgb4_set_addr_hash(pi);
415 		}
416 	}
417 
418 	ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
419 	return ret < 0 ? -EINVAL : 0;
420 }
421 
422 /*
423  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
424  * If @mtu is -1 it is left unchanged.
425  */
426 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
427 {
428 	struct port_info *pi = netdev_priv(dev);
429 	struct adapter *adapter = pi->adapter;
430 
431 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
432 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
433 
434 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
435 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
436 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
437 			     sleep_ok);
438 }
439 
440 /**
441  *	cxgb4_change_mac - Update match filter for a MAC address.
442  *	@pi: the port_info
443  *	@viid: the VI id
444  *	@tcam_idx: TCAM index of existing filter for old value of MAC address,
445  *		   or -1
446  *	@addr: the new MAC address value
447  *	@persist: whether a new MAC allocation should be persistent
448  *	@add_smt: if true also add the address to the HW SMT
449  *
450  *	Modifies an MPS filter and sets it to the new MAC address if
451  *	@tcam_idx >= 0, or adds the MAC address to a new filter if
452  *	@tcam_idx < 0. In the latter case the address is added persistently
453  *	if @persist is %true.
454  *	Addresses are programmed to hash region, if tcam runs out of entries.
455  *
456  */
457 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
458 		     int *tcam_idx, const u8 *addr, bool persist,
459 		     u8 *smt_idx)
460 {
461 	struct adapter *adapter = pi->adapter;
462 	struct hash_mac_addr *entry, *new_entry;
463 	int ret;
464 
465 	ret = t4_change_mac(adapter, adapter->mbox, viid,
466 			    *tcam_idx, addr, persist, smt_idx);
467 	/* We ran out of TCAM entries. try programming hash region. */
468 	if (ret == -ENOMEM) {
469 		/* If the MAC address to be updated is in the hash addr
470 		 * list, update it from the list
471 		 */
472 		list_for_each_entry(entry, &adapter->mac_hlist, list) {
473 			if (entry->iface_mac) {
474 				ether_addr_copy(entry->addr, addr);
475 				goto set_hash;
476 			}
477 		}
478 		new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
479 		if (!new_entry)
480 			return -ENOMEM;
481 		ether_addr_copy(new_entry->addr, addr);
482 		new_entry->iface_mac = true;
483 		list_add_tail(&new_entry->list, &adapter->mac_hlist);
484 set_hash:
485 		ret = cxgb4_set_addr_hash(pi);
486 	} else if (ret >= 0) {
487 		*tcam_idx = ret;
488 		ret = 0;
489 	}
490 
491 	return ret;
492 }
493 
494 /*
495  *	link_start - enable a port
496  *	@dev: the port to enable
497  *
498  *	Performs the MAC and PHY actions needed to enable a port.
499  */
500 static int link_start(struct net_device *dev)
501 {
502 	int ret;
503 	struct port_info *pi = netdev_priv(dev);
504 	unsigned int mb = pi->adapter->pf;
505 
506 	/*
507 	 * We do not set address filters and promiscuity here, the stack does
508 	 * that step explicitly.
509 	 */
510 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
511 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
512 	if (ret == 0)
513 		ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
514 					    dev->dev_addr, true, &pi->smt_idx);
515 	if (ret == 0)
516 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
517 				    &pi->link_cfg);
518 	if (ret == 0) {
519 		local_bh_disable();
520 		ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
521 					  true, CXGB4_DCB_ENABLED);
522 		local_bh_enable();
523 	}
524 
525 	return ret;
526 }
527 
528 #ifdef CONFIG_CHELSIO_T4_DCB
529 /* Handle a Data Center Bridging update message from the firmware. */
530 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
531 {
532 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
533 	struct net_device *dev = adap->port[adap->chan_map[port]];
534 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
535 	int new_dcb_enabled;
536 
537 	cxgb4_dcb_handle_fw_update(adap, pcmd);
538 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
539 
540 	/* If the DCB has become enabled or disabled on the port then we're
541 	 * going to need to set up/tear down DCB Priority parameters for the
542 	 * TX Queues associated with the port.
543 	 */
544 	if (new_dcb_enabled != old_dcb_enabled)
545 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
546 }
547 #endif /* CONFIG_CHELSIO_T4_DCB */
548 
549 /* Response queue handler for the FW event queue.
550  */
551 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
552 			  const struct pkt_gl *gl)
553 {
554 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
555 
556 	rsp++;                                          /* skip RSS header */
557 
558 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
559 	 */
560 	if (unlikely(opcode == CPL_FW4_MSG &&
561 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
562 		rsp++;
563 		opcode = ((const struct rss_header *)rsp)->opcode;
564 		rsp++;
565 		if (opcode != CPL_SGE_EGR_UPDATE) {
566 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
567 				, opcode);
568 			goto out;
569 		}
570 	}
571 
572 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
573 		const struct cpl_sge_egr_update *p = (void *)rsp;
574 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
575 		struct sge_txq *txq;
576 
577 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
578 		txq->restarts++;
579 		if (txq->q_type == CXGB4_TXQ_ETH) {
580 			struct sge_eth_txq *eq;
581 
582 			eq = container_of(txq, struct sge_eth_txq, q);
583 			t4_sge_eth_txq_egress_update(q->adap, eq, -1);
584 		} else {
585 			struct sge_uld_txq *oq;
586 
587 			oq = container_of(txq, struct sge_uld_txq, q);
588 			tasklet_schedule(&oq->qresume_tsk);
589 		}
590 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
591 		const struct cpl_fw6_msg *p = (void *)rsp;
592 
593 #ifdef CONFIG_CHELSIO_T4_DCB
594 		const struct fw_port_cmd *pcmd = (const void *)p->data;
595 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
596 		unsigned int action =
597 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
598 
599 		if (cmd == FW_PORT_CMD &&
600 		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
601 		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
602 			int port = FW_PORT_CMD_PORTID_G(
603 					be32_to_cpu(pcmd->op_to_portid));
604 			struct net_device *dev;
605 			int dcbxdis, state_input;
606 
607 			dev = q->adap->port[q->adap->chan_map[port]];
608 			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
609 			  ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
610 			  : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
611 			       & FW_PORT_CMD_DCBXDIS32_F));
612 			state_input = (dcbxdis
613 				       ? CXGB4_DCB_INPUT_FW_DISABLED
614 				       : CXGB4_DCB_INPUT_FW_ENABLED);
615 
616 			cxgb4_dcb_state_fsm(dev, state_input);
617 		}
618 
619 		if (cmd == FW_PORT_CMD &&
620 		    action == FW_PORT_ACTION_L2_DCB_CFG)
621 			dcb_rpl(q->adap, pcmd);
622 		else
623 #endif
624 			if (p->type == 0)
625 				t4_handle_fw_rpl(q->adap, p->data);
626 	} else if (opcode == CPL_L2T_WRITE_RPL) {
627 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
628 
629 		do_l2t_write_rpl(q->adap, p);
630 	} else if (opcode == CPL_SMT_WRITE_RPL) {
631 		const struct cpl_smt_write_rpl *p = (void *)rsp;
632 
633 		do_smt_write_rpl(q->adap, p);
634 	} else if (opcode == CPL_SET_TCB_RPL) {
635 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
636 
637 		filter_rpl(q->adap, p);
638 	} else if (opcode == CPL_ACT_OPEN_RPL) {
639 		const struct cpl_act_open_rpl *p = (void *)rsp;
640 
641 		hash_filter_rpl(q->adap, p);
642 	} else if (opcode == CPL_ABORT_RPL_RSS) {
643 		const struct cpl_abort_rpl_rss *p = (void *)rsp;
644 
645 		hash_del_filter_rpl(q->adap, p);
646 	} else if (opcode == CPL_SRQ_TABLE_RPL) {
647 		const struct cpl_srq_table_rpl *p = (void *)rsp;
648 
649 		do_srq_table_rpl(q->adap, p);
650 	} else
651 		dev_err(q->adap->pdev_dev,
652 			"unexpected CPL %#x on FW event queue\n", opcode);
653 out:
654 	return 0;
655 }
656 
657 static void disable_msi(struct adapter *adapter)
658 {
659 	if (adapter->flags & CXGB4_USING_MSIX) {
660 		pci_disable_msix(adapter->pdev);
661 		adapter->flags &= ~CXGB4_USING_MSIX;
662 	} else if (adapter->flags & CXGB4_USING_MSI) {
663 		pci_disable_msi(adapter->pdev);
664 		adapter->flags &= ~CXGB4_USING_MSI;
665 	}
666 }
667 
668 /*
669  * Interrupt handler for non-data events used with MSI-X.
670  */
671 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
672 {
673 	struct adapter *adap = cookie;
674 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
675 
676 	if (v & PFSW_F) {
677 		adap->swintr = 1;
678 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
679 	}
680 	if (adap->flags & CXGB4_MASTER_PF)
681 		t4_slow_intr_handler(adap);
682 	return IRQ_HANDLED;
683 }
684 
685 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
686 		       cpumask_var_t *aff_mask, int idx)
687 {
688 	int rv;
689 
690 	if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
691 		dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
692 		return -ENOMEM;
693 	}
694 
695 	cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
696 			*aff_mask);
697 
698 	rv = irq_set_affinity_hint(vec, *aff_mask);
699 	if (rv)
700 		dev_warn(adap->pdev_dev,
701 			 "irq_set_affinity_hint %u failed %d\n",
702 			 vec, rv);
703 
704 	return 0;
705 }
706 
707 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
708 {
709 	irq_set_affinity_hint(vec, NULL);
710 	free_cpumask_var(aff_mask);
711 }
712 
713 static int request_msix_queue_irqs(struct adapter *adap)
714 {
715 	struct sge *s = &adap->sge;
716 	struct msix_info *minfo;
717 	int err, ethqidx;
718 
719 	if (s->fwevtq_msix_idx < 0)
720 		return -ENOMEM;
721 
722 	err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
723 			  t4_sge_intr_msix, 0,
724 			  adap->msix_info[s->fwevtq_msix_idx].desc,
725 			  &s->fw_evtq);
726 	if (err)
727 		return err;
728 
729 	for_each_ethrxq(s, ethqidx) {
730 		minfo = s->ethrxq[ethqidx].msix;
731 		err = request_irq(minfo->vec,
732 				  t4_sge_intr_msix, 0,
733 				  minfo->desc,
734 				  &s->ethrxq[ethqidx].rspq);
735 		if (err)
736 			goto unwind;
737 
738 		cxgb4_set_msix_aff(adap, minfo->vec,
739 				   &minfo->aff_mask, ethqidx);
740 	}
741 	return 0;
742 
743 unwind:
744 	while (--ethqidx >= 0) {
745 		minfo = s->ethrxq[ethqidx].msix;
746 		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
747 		free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
748 	}
749 	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
750 	return err;
751 }
752 
753 static void free_msix_queue_irqs(struct adapter *adap)
754 {
755 	struct sge *s = &adap->sge;
756 	struct msix_info *minfo;
757 	int i;
758 
759 	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
760 	for_each_ethrxq(s, i) {
761 		minfo = s->ethrxq[i].msix;
762 		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
763 		free_irq(minfo->vec, &s->ethrxq[i].rspq);
764 	}
765 }
766 
767 static int setup_ppod_edram(struct adapter *adap)
768 {
769 	unsigned int param, val;
770 	int ret;
771 
772 	/* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
773 	 * if firmware supports ppod edram feature or not. If firmware
774 	 * returns 1, then driver can enable this feature by sending
775 	 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
776 	 * enable ppod edram feature.
777 	 */
778 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
779 		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
780 
781 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
782 	if (ret < 0) {
783 		dev_warn(adap->pdev_dev,
784 			 "querying PPOD_EDRAM support failed: %d\n",
785 			 ret);
786 		return -1;
787 	}
788 
789 	if (val != 1)
790 		return -1;
791 
792 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
793 	if (ret < 0) {
794 		dev_err(adap->pdev_dev,
795 			"setting PPOD_EDRAM failed: %d\n", ret);
796 		return -1;
797 	}
798 	return 0;
799 }
800 
801 static void adap_config_hpfilter(struct adapter *adapter)
802 {
803 	u32 param, val = 0;
804 	int ret;
805 
806 	/* Enable HP filter region. Older fw will fail this request and
807 	 * it is fine.
808 	 */
809 	param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
810 	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
811 			    1, &param, &val);
812 
813 	/* An error means FW doesn't know about HP filter support,
814 	 * it's not a problem, don't return an error.
815 	 */
816 	if (ret < 0)
817 		dev_err(adapter->pdev_dev,
818 			"HP filter region isn't supported by FW\n");
819 }
820 
821 /**
822  *	cxgb4_write_rss - write the RSS table for a given port
823  *	@pi: the port
824  *	@queues: array of queue indices for RSS
825  *
826  *	Sets up the portion of the HW RSS table for the port's VI to distribute
827  *	packets to the Rx queues in @queues.
828  *	Should never be called before setting up sge eth rx queues
829  */
830 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
831 {
832 	u16 *rss;
833 	int i, err;
834 	struct adapter *adapter = pi->adapter;
835 	const struct sge_eth_rxq *rxq;
836 
837 	rxq = &adapter->sge.ethrxq[pi->first_qset];
838 	rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
839 	if (!rss)
840 		return -ENOMEM;
841 
842 	/* map the queue indices to queue ids */
843 	for (i = 0; i < pi->rss_size; i++, queues++)
844 		rss[i] = rxq[*queues].rspq.abs_id;
845 
846 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
847 				  pi->rss_size, rss, pi->rss_size);
848 	/* If Tunnel All Lookup isn't specified in the global RSS
849 	 * Configuration, then we need to specify a default Ingress
850 	 * Queue for any ingress packets which aren't hashed.  We'll
851 	 * use our first ingress queue ...
852 	 */
853 	if (!err)
854 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
855 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
856 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
857 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
858 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
859 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
860 				       rss[0]);
861 	kfree(rss);
862 	return err;
863 }
864 
865 /**
866  *	setup_rss - configure RSS
867  *	@adap: the adapter
868  *
869  *	Sets up RSS for each port.
870  */
871 static int setup_rss(struct adapter *adap)
872 {
873 	int i, j, err;
874 
875 	for_each_port(adap, i) {
876 		const struct port_info *pi = adap2pinfo(adap, i);
877 
878 		/* Fill default values with equal distribution */
879 		for (j = 0; j < pi->rss_size; j++)
880 			pi->rss[j] = j % pi->nqsets;
881 
882 		err = cxgb4_write_rss(pi, pi->rss);
883 		if (err)
884 			return err;
885 	}
886 	return 0;
887 }
888 
889 /*
890  * Return the channel of the ingress queue with the given qid.
891  */
892 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
893 {
894 	qid -= p->ingr_start;
895 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
896 }
897 
898 void cxgb4_quiesce_rx(struct sge_rspq *q)
899 {
900 	if (q->handler)
901 		napi_disable(&q->napi);
902 }
903 
904 /*
905  * Wait until all NAPI handlers are descheduled.
906  */
907 static void quiesce_rx(struct adapter *adap)
908 {
909 	int i;
910 
911 	for (i = 0; i < adap->sge.ingr_sz; i++) {
912 		struct sge_rspq *q = adap->sge.ingr_map[i];
913 
914 		if (!q)
915 			continue;
916 
917 		cxgb4_quiesce_rx(q);
918 	}
919 }
920 
921 /* Disable interrupt and napi handler */
922 static void disable_interrupts(struct adapter *adap)
923 {
924 	struct sge *s = &adap->sge;
925 
926 	if (adap->flags & CXGB4_FULL_INIT_DONE) {
927 		t4_intr_disable(adap);
928 		if (adap->flags & CXGB4_USING_MSIX) {
929 			free_msix_queue_irqs(adap);
930 			free_irq(adap->msix_info[s->nd_msix_idx].vec,
931 				 adap);
932 		} else {
933 			free_irq(adap->pdev->irq, adap);
934 		}
935 		quiesce_rx(adap);
936 	}
937 }
938 
939 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
940 {
941 	if (q->handler)
942 		napi_enable(&q->napi);
943 
944 	/* 0-increment GTS to start the timer and enable interrupts */
945 	t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
946 		     SEINTARM_V(q->intr_params) |
947 		     INGRESSQID_V(q->cntxt_id));
948 }
949 
950 /*
951  * Enable NAPI scheduling and interrupt generation for all Rx queues.
952  */
953 static void enable_rx(struct adapter *adap)
954 {
955 	int i;
956 
957 	for (i = 0; i < adap->sge.ingr_sz; i++) {
958 		struct sge_rspq *q = adap->sge.ingr_map[i];
959 
960 		if (!q)
961 			continue;
962 
963 		cxgb4_enable_rx(adap, q);
964 	}
965 }
966 
967 static int setup_non_data_intr(struct adapter *adap)
968 {
969 	int msix;
970 
971 	adap->sge.nd_msix_idx = -1;
972 	if (!(adap->flags & CXGB4_USING_MSIX))
973 		return 0;
974 
975 	/* Request MSI-X vector for non-data interrupt */
976 	msix = cxgb4_get_msix_idx_from_bmap(adap);
977 	if (msix < 0)
978 		return -ENOMEM;
979 
980 	snprintf(adap->msix_info[msix].desc,
981 		 sizeof(adap->msix_info[msix].desc),
982 		 "%s", adap->port[0]->name);
983 
984 	adap->sge.nd_msix_idx = msix;
985 	return 0;
986 }
987 
988 static int setup_fw_sge_queues(struct adapter *adap)
989 {
990 	struct sge *s = &adap->sge;
991 	int msix, err = 0;
992 
993 	bitmap_zero(s->starving_fl, s->egr_sz);
994 	bitmap_zero(s->txq_maperr, s->egr_sz);
995 
996 	if (adap->flags & CXGB4_USING_MSIX) {
997 		s->fwevtq_msix_idx = -1;
998 		msix = cxgb4_get_msix_idx_from_bmap(adap);
999 		if (msix < 0)
1000 			return -ENOMEM;
1001 
1002 		snprintf(adap->msix_info[msix].desc,
1003 			 sizeof(adap->msix_info[msix].desc),
1004 			 "%s-FWeventq", adap->port[0]->name);
1005 	} else {
1006 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1007 				       NULL, NULL, NULL, -1);
1008 		if (err)
1009 			return err;
1010 		msix = -((int)s->intrq.abs_id + 1);
1011 	}
1012 
1013 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1014 			       msix, NULL, fwevtq_handler, NULL, -1);
1015 	if (err && msix >= 0)
1016 		cxgb4_free_msix_idx_in_bmap(adap, msix);
1017 
1018 	s->fwevtq_msix_idx = msix;
1019 	return err;
1020 }
1021 
1022 /**
1023  *	setup_sge_queues - configure SGE Tx/Rx/response queues
1024  *	@adap: the adapter
1025  *
1026  *	Determines how many sets of SGE queues to use and initializes them.
1027  *	We support multiple queue sets per port if we have MSI-X, otherwise
1028  *	just one queue set per port.
1029  */
1030 static int setup_sge_queues(struct adapter *adap)
1031 {
1032 	struct sge_uld_rxq_info *rxq_info = NULL;
1033 	struct sge *s = &adap->sge;
1034 	unsigned int cmplqid = 0;
1035 	int err, i, j, msix = 0;
1036 
1037 	if (is_uld(adap))
1038 		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1039 
1040 	if (!(adap->flags & CXGB4_USING_MSIX))
1041 		msix = -((int)s->intrq.abs_id + 1);
1042 
1043 	for_each_port(adap, i) {
1044 		struct net_device *dev = adap->port[i];
1045 		struct port_info *pi = netdev_priv(dev);
1046 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1047 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1048 
1049 		for (j = 0; j < pi->nqsets; j++, q++) {
1050 			if (msix >= 0) {
1051 				msix = cxgb4_get_msix_idx_from_bmap(adap);
1052 				if (msix < 0) {
1053 					err = msix;
1054 					goto freeout;
1055 				}
1056 
1057 				snprintf(adap->msix_info[msix].desc,
1058 					 sizeof(adap->msix_info[msix].desc),
1059 					 "%s-Rx%d", dev->name, j);
1060 				q->msix = &adap->msix_info[msix];
1061 			}
1062 
1063 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1064 					       msix, &q->fl,
1065 					       t4_ethrx_handler,
1066 					       NULL,
1067 					       t4_get_tp_ch_map(adap,
1068 								pi->tx_chan));
1069 			if (err)
1070 				goto freeout;
1071 			q->rspq.idx = j;
1072 			memset(&q->stats, 0, sizeof(q->stats));
1073 		}
1074 
1075 		q = &s->ethrxq[pi->first_qset];
1076 		for (j = 0; j < pi->nqsets; j++, t++, q++) {
1077 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1078 					netdev_get_tx_queue(dev, j),
1079 					q->rspq.cntxt_id,
1080 					!!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1081 			if (err)
1082 				goto freeout;
1083 		}
1084 	}
1085 
1086 	for_each_port(adap, i) {
1087 		/* Note that cmplqid below is 0 if we don't
1088 		 * have RDMA queues, and that's the right value.
1089 		 */
1090 		if (rxq_info)
1091 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
1092 
1093 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1094 					    s->fw_evtq.cntxt_id, cmplqid);
1095 		if (err)
1096 			goto freeout;
1097 	}
1098 
1099 	if (!is_t4(adap->params.chip)) {
1100 		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1101 					   netdev_get_tx_queue(adap->port[0], 0)
1102 					   , s->fw_evtq.cntxt_id, false);
1103 		if (err)
1104 			goto freeout;
1105 	}
1106 
1107 	t4_write_reg(adap, is_t4(adap->params.chip) ?
1108 				MPS_TRC_RSS_CONTROL_A :
1109 				MPS_T5_TRC_RSS_CONTROL_A,
1110 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1111 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1112 	return 0;
1113 freeout:
1114 	dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1115 	t4_free_sge_resources(adap);
1116 	return err;
1117 }
1118 
1119 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1120 			     struct net_device *sb_dev)
1121 {
1122 	int txq;
1123 
1124 #ifdef CONFIG_CHELSIO_T4_DCB
1125 	/* If a Data Center Bridging has been successfully negotiated on this
1126 	 * link then we'll use the skb's priority to map it to a TX Queue.
1127 	 * The skb's priority is determined via the VLAN Tag Priority Code
1128 	 * Point field.
1129 	 */
1130 	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1131 		u16 vlan_tci;
1132 		int err;
1133 
1134 		err = vlan_get_tag(skb, &vlan_tci);
1135 		if (unlikely(err)) {
1136 			if (net_ratelimit())
1137 				netdev_warn(dev,
1138 					    "TX Packet without VLAN Tag on DCB Link\n");
1139 			txq = 0;
1140 		} else {
1141 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1142 #ifdef CONFIG_CHELSIO_T4_FCOE
1143 			if (skb->protocol == htons(ETH_P_FCOE))
1144 				txq = skb->priority & 0x7;
1145 #endif /* CONFIG_CHELSIO_T4_FCOE */
1146 		}
1147 		return txq;
1148 	}
1149 #endif /* CONFIG_CHELSIO_T4_DCB */
1150 
1151 	if (dev->num_tc) {
1152 		struct port_info *pi = netdev2pinfo(dev);
1153 		u8 ver, proto;
1154 
1155 		ver = ip_hdr(skb)->version;
1156 		proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1157 				     ip_hdr(skb)->protocol;
1158 
1159 		/* Send unsupported traffic pattern to normal NIC queues. */
1160 		txq = netdev_pick_tx(dev, skb, sb_dev);
1161 		if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1162 		    skb->encapsulation ||
1163 		    (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1164 			txq = txq % pi->nqsets;
1165 
1166 		return txq;
1167 	}
1168 
1169 	if (select_queue) {
1170 		txq = (skb_rx_queue_recorded(skb)
1171 			? skb_get_rx_queue(skb)
1172 			: smp_processor_id());
1173 
1174 		while (unlikely(txq >= dev->real_num_tx_queues))
1175 			txq -= dev->real_num_tx_queues;
1176 
1177 		return txq;
1178 	}
1179 
1180 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1181 }
1182 
1183 static int closest_timer(const struct sge *s, int time)
1184 {
1185 	int i, delta, match = 0, min_delta = INT_MAX;
1186 
1187 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1188 		delta = time - s->timer_val[i];
1189 		if (delta < 0)
1190 			delta = -delta;
1191 		if (delta < min_delta) {
1192 			min_delta = delta;
1193 			match = i;
1194 		}
1195 	}
1196 	return match;
1197 }
1198 
1199 static int closest_thres(const struct sge *s, int thres)
1200 {
1201 	int i, delta, match = 0, min_delta = INT_MAX;
1202 
1203 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1204 		delta = thres - s->counter_val[i];
1205 		if (delta < 0)
1206 			delta = -delta;
1207 		if (delta < min_delta) {
1208 			min_delta = delta;
1209 			match = i;
1210 		}
1211 	}
1212 	return match;
1213 }
1214 
1215 /**
1216  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1217  *	@q: the Rx queue
1218  *	@us: the hold-off time in us, or 0 to disable timer
1219  *	@cnt: the hold-off packet count, or 0 to disable counter
1220  *
1221  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1222  *	one of the two needs to be enabled for the queue to generate interrupts.
1223  */
1224 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1225 			       unsigned int us, unsigned int cnt)
1226 {
1227 	struct adapter *adap = q->adap;
1228 
1229 	if ((us | cnt) == 0)
1230 		cnt = 1;
1231 
1232 	if (cnt) {
1233 		int err;
1234 		u32 v, new_idx;
1235 
1236 		new_idx = closest_thres(&adap->sge, cnt);
1237 		if (q->desc && q->pktcnt_idx != new_idx) {
1238 			/* the queue has already been created, update it */
1239 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1240 			    FW_PARAMS_PARAM_X_V(
1241 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1242 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1243 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1244 					    &v, &new_idx);
1245 			if (err)
1246 				return err;
1247 		}
1248 		q->pktcnt_idx = new_idx;
1249 	}
1250 
1251 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1252 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1253 	return 0;
1254 }
1255 
1256 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1257 {
1258 	const struct port_info *pi = netdev_priv(dev);
1259 	netdev_features_t changed = dev->features ^ features;
1260 	int err;
1261 
1262 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1263 		return 0;
1264 
1265 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1266 			    -1, -1, -1,
1267 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1268 	if (unlikely(err))
1269 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1270 	return err;
1271 }
1272 
1273 static int setup_debugfs(struct adapter *adap)
1274 {
1275 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1276 		return -1;
1277 
1278 #ifdef CONFIG_DEBUG_FS
1279 	t4_setup_debugfs(adap);
1280 #endif
1281 	return 0;
1282 }
1283 
1284 /*
1285  * upper-layer driver support
1286  */
1287 
1288 /*
1289  * Allocate an active-open TID and set it to the supplied value.
1290  */
1291 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1292 {
1293 	int atid = -1;
1294 
1295 	spin_lock_bh(&t->atid_lock);
1296 	if (t->afree) {
1297 		union aopen_entry *p = t->afree;
1298 
1299 		atid = (p - t->atid_tab) + t->atid_base;
1300 		t->afree = p->next;
1301 		p->data = data;
1302 		t->atids_in_use++;
1303 	}
1304 	spin_unlock_bh(&t->atid_lock);
1305 	return atid;
1306 }
1307 EXPORT_SYMBOL(cxgb4_alloc_atid);
1308 
1309 /*
1310  * Release an active-open TID.
1311  */
1312 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1313 {
1314 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1315 
1316 	spin_lock_bh(&t->atid_lock);
1317 	p->next = t->afree;
1318 	t->afree = p;
1319 	t->atids_in_use--;
1320 	spin_unlock_bh(&t->atid_lock);
1321 }
1322 EXPORT_SYMBOL(cxgb4_free_atid);
1323 
1324 /*
1325  * Allocate a server TID and set it to the supplied value.
1326  */
1327 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1328 {
1329 	int stid;
1330 
1331 	spin_lock_bh(&t->stid_lock);
1332 	if (family == PF_INET) {
1333 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1334 		if (stid < t->nstids)
1335 			__set_bit(stid, t->stid_bmap);
1336 		else
1337 			stid = -1;
1338 	} else {
1339 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1340 		if (stid < 0)
1341 			stid = -1;
1342 	}
1343 	if (stid >= 0) {
1344 		t->stid_tab[stid].data = data;
1345 		stid += t->stid_base;
1346 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1347 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1348 		 * needs 2 TIDs.
1349 		 */
1350 		if (family == PF_INET6) {
1351 			t->stids_in_use += 2;
1352 			t->v6_stids_in_use += 2;
1353 		} else {
1354 			t->stids_in_use++;
1355 		}
1356 	}
1357 	spin_unlock_bh(&t->stid_lock);
1358 	return stid;
1359 }
1360 EXPORT_SYMBOL(cxgb4_alloc_stid);
1361 
1362 /* Allocate a server filter TID and set it to the supplied value.
1363  */
1364 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1365 {
1366 	int stid;
1367 
1368 	spin_lock_bh(&t->stid_lock);
1369 	if (family == PF_INET) {
1370 		stid = find_next_zero_bit(t->stid_bmap,
1371 				t->nstids + t->nsftids, t->nstids);
1372 		if (stid < (t->nstids + t->nsftids))
1373 			__set_bit(stid, t->stid_bmap);
1374 		else
1375 			stid = -1;
1376 	} else {
1377 		stid = -1;
1378 	}
1379 	if (stid >= 0) {
1380 		t->stid_tab[stid].data = data;
1381 		stid -= t->nstids;
1382 		stid += t->sftid_base;
1383 		t->sftids_in_use++;
1384 	}
1385 	spin_unlock_bh(&t->stid_lock);
1386 	return stid;
1387 }
1388 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1389 
1390 /* Release a server TID.
1391  */
1392 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1393 {
1394 	/* Is it a server filter TID? */
1395 	if (t->nsftids && (stid >= t->sftid_base)) {
1396 		stid -= t->sftid_base;
1397 		stid += t->nstids;
1398 	} else {
1399 		stid -= t->stid_base;
1400 	}
1401 
1402 	spin_lock_bh(&t->stid_lock);
1403 	if (family == PF_INET)
1404 		__clear_bit(stid, t->stid_bmap);
1405 	else
1406 		bitmap_release_region(t->stid_bmap, stid, 1);
1407 	t->stid_tab[stid].data = NULL;
1408 	if (stid < t->nstids) {
1409 		if (family == PF_INET6) {
1410 			t->stids_in_use -= 2;
1411 			t->v6_stids_in_use -= 2;
1412 		} else {
1413 			t->stids_in_use--;
1414 		}
1415 	} else {
1416 		t->sftids_in_use--;
1417 	}
1418 
1419 	spin_unlock_bh(&t->stid_lock);
1420 }
1421 EXPORT_SYMBOL(cxgb4_free_stid);
1422 
1423 /*
1424  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1425  */
1426 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1427 			   unsigned int tid)
1428 {
1429 	struct cpl_tid_release *req;
1430 
1431 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1432 	req = __skb_put(skb, sizeof(*req));
1433 	INIT_TP_WR(req, tid);
1434 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1435 }
1436 
1437 /*
1438  * Queue a TID release request and if necessary schedule a work queue to
1439  * process it.
1440  */
1441 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1442 				    unsigned int tid)
1443 {
1444 	struct adapter *adap = container_of(t, struct adapter, tids);
1445 	void **p = &t->tid_tab[tid - t->tid_base];
1446 
1447 	spin_lock_bh(&adap->tid_release_lock);
1448 	*p = adap->tid_release_head;
1449 	/* Low 2 bits encode the Tx channel number */
1450 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1451 	if (!adap->tid_release_task_busy) {
1452 		adap->tid_release_task_busy = true;
1453 		queue_work(adap->workq, &adap->tid_release_task);
1454 	}
1455 	spin_unlock_bh(&adap->tid_release_lock);
1456 }
1457 
1458 /*
1459  * Process the list of pending TID release requests.
1460  */
1461 static void process_tid_release_list(struct work_struct *work)
1462 {
1463 	struct sk_buff *skb;
1464 	struct adapter *adap;
1465 
1466 	adap = container_of(work, struct adapter, tid_release_task);
1467 
1468 	spin_lock_bh(&adap->tid_release_lock);
1469 	while (adap->tid_release_head) {
1470 		void **p = adap->tid_release_head;
1471 		unsigned int chan = (uintptr_t)p & 3;
1472 		p = (void *)p - chan;
1473 
1474 		adap->tid_release_head = *p;
1475 		*p = NULL;
1476 		spin_unlock_bh(&adap->tid_release_lock);
1477 
1478 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1479 					 GFP_KERNEL)))
1480 			schedule_timeout_uninterruptible(1);
1481 
1482 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1483 		t4_ofld_send(adap, skb);
1484 		spin_lock_bh(&adap->tid_release_lock);
1485 	}
1486 	adap->tid_release_task_busy = false;
1487 	spin_unlock_bh(&adap->tid_release_lock);
1488 }
1489 
1490 /*
1491  * Release a TID and inform HW.  If we are unable to allocate the release
1492  * message we defer to a work queue.
1493  */
1494 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1495 		      unsigned short family)
1496 {
1497 	struct adapter *adap = container_of(t, struct adapter, tids);
1498 	struct sk_buff *skb;
1499 
1500 	WARN_ON(tid_out_of_range(&adap->tids, tid));
1501 
1502 	if (t->tid_tab[tid - adap->tids.tid_base]) {
1503 		t->tid_tab[tid - adap->tids.tid_base] = NULL;
1504 		atomic_dec(&t->conns_in_use);
1505 		if (t->hash_base && (tid >= t->hash_base)) {
1506 			if (family == AF_INET6)
1507 				atomic_sub(2, &t->hash_tids_in_use);
1508 			else
1509 				atomic_dec(&t->hash_tids_in_use);
1510 		} else {
1511 			if (family == AF_INET6)
1512 				atomic_sub(2, &t->tids_in_use);
1513 			else
1514 				atomic_dec(&t->tids_in_use);
1515 		}
1516 	}
1517 
1518 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1519 	if (likely(skb)) {
1520 		mk_tid_release(skb, chan, tid);
1521 		t4_ofld_send(adap, skb);
1522 	} else
1523 		cxgb4_queue_tid_release(t, chan, tid);
1524 }
1525 EXPORT_SYMBOL(cxgb4_remove_tid);
1526 
1527 /*
1528  * Allocate and initialize the TID tables.  Returns 0 on success.
1529  */
1530 static int tid_init(struct tid_info *t)
1531 {
1532 	struct adapter *adap = container_of(t, struct adapter, tids);
1533 	unsigned int max_ftids = t->nftids + t->nsftids;
1534 	unsigned int natids = t->natids;
1535 	unsigned int hpftid_bmap_size;
1536 	unsigned int eotid_bmap_size;
1537 	unsigned int stid_bmap_size;
1538 	unsigned int ftid_bmap_size;
1539 	size_t size;
1540 
1541 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1542 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1543 	hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids);
1544 	eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1545 	size = t->ntids * sizeof(*t->tid_tab) +
1546 	       natids * sizeof(*t->atid_tab) +
1547 	       t->nstids * sizeof(*t->stid_tab) +
1548 	       t->nsftids * sizeof(*t->stid_tab) +
1549 	       stid_bmap_size * sizeof(long) +
1550 	       t->nhpftids * sizeof(*t->hpftid_tab) +
1551 	       hpftid_bmap_size * sizeof(long) +
1552 	       max_ftids * sizeof(*t->ftid_tab) +
1553 	       ftid_bmap_size * sizeof(long) +
1554 	       t->neotids * sizeof(*t->eotid_tab) +
1555 	       eotid_bmap_size * sizeof(long);
1556 
1557 	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1558 	if (!t->tid_tab)
1559 		return -ENOMEM;
1560 
1561 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1562 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1563 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1564 	t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1565 	t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids];
1566 	t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size];
1567 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1568 	t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1569 	t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1570 	spin_lock_init(&t->stid_lock);
1571 	spin_lock_init(&t->atid_lock);
1572 	spin_lock_init(&t->ftid_lock);
1573 
1574 	t->stids_in_use = 0;
1575 	t->v6_stids_in_use = 0;
1576 	t->sftids_in_use = 0;
1577 	t->afree = NULL;
1578 	t->atids_in_use = 0;
1579 	atomic_set(&t->tids_in_use, 0);
1580 	atomic_set(&t->conns_in_use, 0);
1581 	atomic_set(&t->hash_tids_in_use, 0);
1582 
1583 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1584 	if (natids) {
1585 		while (--natids)
1586 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1587 		t->afree = t->atid_tab;
1588 	}
1589 
1590 	if (is_offload(adap)) {
1591 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1592 		/* Reserve stid 0 for T4/T5 adapters */
1593 		if (!t->stid_base &&
1594 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1595 			__set_bit(0, t->stid_bmap);
1596 
1597 		if (t->neotids)
1598 			bitmap_zero(t->eotid_bmap, t->neotids);
1599 	}
1600 
1601 	if (t->nhpftids)
1602 		bitmap_zero(t->hpftid_bmap, t->nhpftids);
1603 	bitmap_zero(t->ftid_bmap, t->nftids);
1604 	return 0;
1605 }
1606 
1607 /**
1608  *	cxgb4_create_server - create an IP server
1609  *	@dev: the device
1610  *	@stid: the server TID
1611  *	@sip: local IP address to bind server to
1612  *	@sport: the server's TCP port
1613  *	@queue: queue to direct messages from this server to
1614  *
1615  *	Create an IP server for the given port and address.
1616  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1617  */
1618 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1619 			__be32 sip, __be16 sport, __be16 vlan,
1620 			unsigned int queue)
1621 {
1622 	unsigned int chan;
1623 	struct sk_buff *skb;
1624 	struct adapter *adap;
1625 	struct cpl_pass_open_req *req;
1626 	int ret;
1627 
1628 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1629 	if (!skb)
1630 		return -ENOMEM;
1631 
1632 	adap = netdev2adap(dev);
1633 	req = __skb_put(skb, sizeof(*req));
1634 	INIT_TP_WR(req, 0);
1635 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1636 	req->local_port = sport;
1637 	req->peer_port = htons(0);
1638 	req->local_ip = sip;
1639 	req->peer_ip = htonl(0);
1640 	chan = rxq_to_chan(&adap->sge, queue);
1641 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1642 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1643 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1644 	ret = t4_mgmt_tx(adap, skb);
1645 	return net_xmit_eval(ret);
1646 }
1647 EXPORT_SYMBOL(cxgb4_create_server);
1648 
1649 /*	cxgb4_create_server6 - create an IPv6 server
1650  *	@dev: the device
1651  *	@stid: the server TID
1652  *	@sip: local IPv6 address to bind server to
1653  *	@sport: the server's TCP port
1654  *	@queue: queue to direct messages from this server to
1655  *
1656  *	Create an IPv6 server for the given port and address.
1657  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1658  */
1659 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1660 			 const struct in6_addr *sip, __be16 sport,
1661 			 unsigned int queue)
1662 {
1663 	unsigned int chan;
1664 	struct sk_buff *skb;
1665 	struct adapter *adap;
1666 	struct cpl_pass_open_req6 *req;
1667 	int ret;
1668 
1669 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1670 	if (!skb)
1671 		return -ENOMEM;
1672 
1673 	adap = netdev2adap(dev);
1674 	req = __skb_put(skb, sizeof(*req));
1675 	INIT_TP_WR(req, 0);
1676 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1677 	req->local_port = sport;
1678 	req->peer_port = htons(0);
1679 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1680 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1681 	req->peer_ip_hi = cpu_to_be64(0);
1682 	req->peer_ip_lo = cpu_to_be64(0);
1683 	chan = rxq_to_chan(&adap->sge, queue);
1684 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1685 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1686 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1687 	ret = t4_mgmt_tx(adap, skb);
1688 	return net_xmit_eval(ret);
1689 }
1690 EXPORT_SYMBOL(cxgb4_create_server6);
1691 
1692 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1693 			unsigned int queue, bool ipv6)
1694 {
1695 	struct sk_buff *skb;
1696 	struct adapter *adap;
1697 	struct cpl_close_listsvr_req *req;
1698 	int ret;
1699 
1700 	adap = netdev2adap(dev);
1701 
1702 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1703 	if (!skb)
1704 		return -ENOMEM;
1705 
1706 	req = __skb_put(skb, sizeof(*req));
1707 	INIT_TP_WR(req, 0);
1708 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1709 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1710 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1711 	ret = t4_mgmt_tx(adap, skb);
1712 	return net_xmit_eval(ret);
1713 }
1714 EXPORT_SYMBOL(cxgb4_remove_server);
1715 
1716 /**
1717  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1718  *	@mtus: the HW MTU table
1719  *	@mtu: the target MTU
1720  *	@idx: index of selected entry in the MTU table
1721  *
1722  *	Returns the index and the value in the HW MTU table that is closest to
1723  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1724  *	table, in which case that smallest available value is selected.
1725  */
1726 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1727 			    unsigned int *idx)
1728 {
1729 	unsigned int i = 0;
1730 
1731 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1732 		++i;
1733 	if (idx)
1734 		*idx = i;
1735 	return mtus[i];
1736 }
1737 EXPORT_SYMBOL(cxgb4_best_mtu);
1738 
1739 /**
1740  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1741  *     @mtus: the HW MTU table
1742  *     @header_size: Header Size
1743  *     @data_size_max: maximum Data Segment Size
1744  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1745  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1746  *
1747  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1748  *     MTU Table based solely on a Maximum MTU parameter, we break that
1749  *     parameter up into a Header Size and Maximum Data Segment Size, and
1750  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1751  *     the Hardware MTU Table which will result in a Data Segment Size with
1752  *     the requested alignment _and_ that MTU isn't "too far" from the
1753  *     closest MTU, then we'll return that rather than the closest MTU.
1754  */
1755 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1756 				    unsigned short header_size,
1757 				    unsigned short data_size_max,
1758 				    unsigned short data_size_align,
1759 				    unsigned int *mtu_idxp)
1760 {
1761 	unsigned short max_mtu = header_size + data_size_max;
1762 	unsigned short data_size_align_mask = data_size_align - 1;
1763 	int mtu_idx, aligned_mtu_idx;
1764 
1765 	/* Scan the MTU Table till we find an MTU which is larger than our
1766 	 * Maximum MTU or we reach the end of the table.  Along the way,
1767 	 * record the last MTU found, if any, which will result in a Data
1768 	 * Segment Length matching the requested alignment.
1769 	 */
1770 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1771 		unsigned short data_size = mtus[mtu_idx] - header_size;
1772 
1773 		/* If this MTU minus the Header Size would result in a
1774 		 * Data Segment Size of the desired alignment, remember it.
1775 		 */
1776 		if ((data_size & data_size_align_mask) == 0)
1777 			aligned_mtu_idx = mtu_idx;
1778 
1779 		/* If we're not at the end of the Hardware MTU Table and the
1780 		 * next element is larger than our Maximum MTU, drop out of
1781 		 * the loop.
1782 		 */
1783 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1784 			break;
1785 	}
1786 
1787 	/* If we fell out of the loop because we ran to the end of the table,
1788 	 * then we just have to use the last [largest] entry.
1789 	 */
1790 	if (mtu_idx == NMTUS)
1791 		mtu_idx--;
1792 
1793 	/* If we found an MTU which resulted in the requested Data Segment
1794 	 * Length alignment and that's "not far" from the largest MTU which is
1795 	 * less than or equal to the maximum MTU, then use that.
1796 	 */
1797 	if (aligned_mtu_idx >= 0 &&
1798 	    mtu_idx - aligned_mtu_idx <= 1)
1799 		mtu_idx = aligned_mtu_idx;
1800 
1801 	/* If the caller has passed in an MTU Index pointer, pass the
1802 	 * MTU Index back.  Return the MTU value.
1803 	 */
1804 	if (mtu_idxp)
1805 		*mtu_idxp = mtu_idx;
1806 	return mtus[mtu_idx];
1807 }
1808 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1809 
1810 /**
1811  *	cxgb4_port_chan - get the HW channel of a port
1812  *	@dev: the net device for the port
1813  *
1814  *	Return the HW Tx channel of the given port.
1815  */
1816 unsigned int cxgb4_port_chan(const struct net_device *dev)
1817 {
1818 	return netdev2pinfo(dev)->tx_chan;
1819 }
1820 EXPORT_SYMBOL(cxgb4_port_chan);
1821 
1822 /**
1823  *      cxgb4_port_e2cchan - get the HW c-channel of a port
1824  *      @dev: the net device for the port
1825  *
1826  *      Return the HW RX c-channel of the given port.
1827  */
1828 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
1829 {
1830 	return netdev2pinfo(dev)->rx_cchan;
1831 }
1832 EXPORT_SYMBOL(cxgb4_port_e2cchan);
1833 
1834 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1835 {
1836 	struct adapter *adap = netdev2adap(dev);
1837 	u32 v1, v2, lp_count, hp_count;
1838 
1839 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1840 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1841 	if (is_t4(adap->params.chip)) {
1842 		lp_count = LP_COUNT_G(v1);
1843 		hp_count = HP_COUNT_G(v1);
1844 	} else {
1845 		lp_count = LP_COUNT_T5_G(v1);
1846 		hp_count = HP_COUNT_T5_G(v2);
1847 	}
1848 	return lpfifo ? lp_count : hp_count;
1849 }
1850 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1851 
1852 /**
1853  *	cxgb4_port_viid - get the VI id of a port
1854  *	@dev: the net device for the port
1855  *
1856  *	Return the VI id of the given port.
1857  */
1858 unsigned int cxgb4_port_viid(const struct net_device *dev)
1859 {
1860 	return netdev2pinfo(dev)->viid;
1861 }
1862 EXPORT_SYMBOL(cxgb4_port_viid);
1863 
1864 /**
1865  *	cxgb4_port_idx - get the index of a port
1866  *	@dev: the net device for the port
1867  *
1868  *	Return the index of the given port.
1869  */
1870 unsigned int cxgb4_port_idx(const struct net_device *dev)
1871 {
1872 	return netdev2pinfo(dev)->port_id;
1873 }
1874 EXPORT_SYMBOL(cxgb4_port_idx);
1875 
1876 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1877 			 struct tp_tcp_stats *v6)
1878 {
1879 	struct adapter *adap = pci_get_drvdata(pdev);
1880 
1881 	spin_lock(&adap->stats_lock);
1882 	t4_tp_get_tcp_stats(adap, v4, v6, false);
1883 	spin_unlock(&adap->stats_lock);
1884 }
1885 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1886 
1887 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1888 		      const unsigned int *pgsz_order)
1889 {
1890 	struct adapter *adap = netdev2adap(dev);
1891 
1892 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1893 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1894 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1895 		     HPZ3_V(pgsz_order[3]));
1896 }
1897 EXPORT_SYMBOL(cxgb4_iscsi_init);
1898 
1899 int cxgb4_flush_eq_cache(struct net_device *dev)
1900 {
1901 	struct adapter *adap = netdev2adap(dev);
1902 
1903 	return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1904 }
1905 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1906 
1907 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1908 {
1909 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1910 	__be64 indices;
1911 	int ret;
1912 
1913 	spin_lock(&adap->win0_lock);
1914 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1915 			   sizeof(indices), (__be32 *)&indices,
1916 			   T4_MEMORY_READ);
1917 	spin_unlock(&adap->win0_lock);
1918 	if (!ret) {
1919 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1920 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1921 	}
1922 	return ret;
1923 }
1924 
1925 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1926 			u16 size)
1927 {
1928 	struct adapter *adap = netdev2adap(dev);
1929 	u16 hw_pidx, hw_cidx;
1930 	int ret;
1931 
1932 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1933 	if (ret)
1934 		goto out;
1935 
1936 	if (pidx != hw_pidx) {
1937 		u16 delta;
1938 		u32 val;
1939 
1940 		if (pidx >= hw_pidx)
1941 			delta = pidx - hw_pidx;
1942 		else
1943 			delta = size - hw_pidx + pidx;
1944 
1945 		if (is_t4(adap->params.chip))
1946 			val = PIDX_V(delta);
1947 		else
1948 			val = PIDX_T5_V(delta);
1949 		wmb();
1950 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1951 			     QID_V(qid) | val);
1952 	}
1953 out:
1954 	return ret;
1955 }
1956 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1957 
1958 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1959 {
1960 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1961 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1962 	u32 offset, memtype, memaddr;
1963 	struct adapter *adap;
1964 	u32 hma_size = 0;
1965 	int ret;
1966 
1967 	adap = netdev2adap(dev);
1968 
1969 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1970 
1971 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1972 	 * This code assumes that the memory is laid out starting at offset 0
1973 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1974 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1975 	 * MC0, and some have both MC0 and MC1.
1976 	 */
1977 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1978 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1979 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1980 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1981 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1982 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1983 
1984 	if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1985 		size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1986 		hma_size = EXT_MEM1_SIZE_G(size) << 20;
1987 	}
1988 	edc0_end = edc0_size;
1989 	edc1_end = edc0_end + edc1_size;
1990 	mc0_end = edc1_end + mc0_size;
1991 
1992 	if (offset < edc0_end) {
1993 		memtype = MEM_EDC0;
1994 		memaddr = offset;
1995 	} else if (offset < edc1_end) {
1996 		memtype = MEM_EDC1;
1997 		memaddr = offset - edc0_end;
1998 	} else {
1999 		if (hma_size && (offset < (edc1_end + hma_size))) {
2000 			memtype = MEM_HMA;
2001 			memaddr = offset - edc1_end;
2002 		} else if (offset < mc0_end) {
2003 			memtype = MEM_MC0;
2004 			memaddr = offset - edc1_end;
2005 		} else if (is_t5(adap->params.chip)) {
2006 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2007 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2008 			mc1_end = mc0_end + mc1_size;
2009 			if (offset < mc1_end) {
2010 				memtype = MEM_MC1;
2011 				memaddr = offset - mc0_end;
2012 			} else {
2013 				/* offset beyond the end of any memory */
2014 				goto err;
2015 			}
2016 		} else {
2017 			/* T4/T6 only has a single memory channel */
2018 			goto err;
2019 		}
2020 	}
2021 
2022 	spin_lock(&adap->win0_lock);
2023 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2024 	spin_unlock(&adap->win0_lock);
2025 	return ret;
2026 
2027 err:
2028 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2029 		stag, offset);
2030 	return -EINVAL;
2031 }
2032 EXPORT_SYMBOL(cxgb4_read_tpte);
2033 
2034 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2035 {
2036 	u32 hi, lo;
2037 	struct adapter *adap;
2038 
2039 	adap = netdev2adap(dev);
2040 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2041 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2042 
2043 	return ((u64)hi << 32) | (u64)lo;
2044 }
2045 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2046 
2047 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2048 			 unsigned int qid,
2049 			 enum cxgb4_bar2_qtype qtype,
2050 			 int user,
2051 			 u64 *pbar2_qoffset,
2052 			 unsigned int *pbar2_qid)
2053 {
2054 	return t4_bar2_sge_qregs(netdev2adap(dev),
2055 				 qid,
2056 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2057 				  ? T4_BAR2_QTYPE_EGRESS
2058 				  : T4_BAR2_QTYPE_INGRESS),
2059 				 user,
2060 				 pbar2_qoffset,
2061 				 pbar2_qid);
2062 }
2063 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2064 
2065 static struct pci_driver cxgb4_driver;
2066 
2067 static void check_neigh_update(struct neighbour *neigh)
2068 {
2069 	const struct device *parent;
2070 	const struct net_device *netdev = neigh->dev;
2071 
2072 	if (is_vlan_dev(netdev))
2073 		netdev = vlan_dev_real_dev(netdev);
2074 	parent = netdev->dev.parent;
2075 	if (parent && parent->driver == &cxgb4_driver.driver)
2076 		t4_l2t_update(dev_get_drvdata(parent), neigh);
2077 }
2078 
2079 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2080 		       void *data)
2081 {
2082 	switch (event) {
2083 	case NETEVENT_NEIGH_UPDATE:
2084 		check_neigh_update(data);
2085 		break;
2086 	case NETEVENT_REDIRECT:
2087 	default:
2088 		break;
2089 	}
2090 	return 0;
2091 }
2092 
2093 static bool netevent_registered;
2094 static struct notifier_block cxgb4_netevent_nb = {
2095 	.notifier_call = netevent_cb
2096 };
2097 
2098 static void drain_db_fifo(struct adapter *adap, int usecs)
2099 {
2100 	u32 v1, v2, lp_count, hp_count;
2101 
2102 	do {
2103 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2104 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2105 		if (is_t4(adap->params.chip)) {
2106 			lp_count = LP_COUNT_G(v1);
2107 			hp_count = HP_COUNT_G(v1);
2108 		} else {
2109 			lp_count = LP_COUNT_T5_G(v1);
2110 			hp_count = HP_COUNT_T5_G(v2);
2111 		}
2112 
2113 		if (lp_count == 0 && hp_count == 0)
2114 			break;
2115 		set_current_state(TASK_UNINTERRUPTIBLE);
2116 		schedule_timeout(usecs_to_jiffies(usecs));
2117 	} while (1);
2118 }
2119 
2120 static void disable_txq_db(struct sge_txq *q)
2121 {
2122 	unsigned long flags;
2123 
2124 	spin_lock_irqsave(&q->db_lock, flags);
2125 	q->db_disabled = 1;
2126 	spin_unlock_irqrestore(&q->db_lock, flags);
2127 }
2128 
2129 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2130 {
2131 	spin_lock_irq(&q->db_lock);
2132 	if (q->db_pidx_inc) {
2133 		/* Make sure that all writes to the TX descriptors
2134 		 * are committed before we tell HW about them.
2135 		 */
2136 		wmb();
2137 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2138 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2139 		q->db_pidx_inc = 0;
2140 	}
2141 	q->db_disabled = 0;
2142 	spin_unlock_irq(&q->db_lock);
2143 }
2144 
2145 static void disable_dbs(struct adapter *adap)
2146 {
2147 	int i;
2148 
2149 	for_each_ethrxq(&adap->sge, i)
2150 		disable_txq_db(&adap->sge.ethtxq[i].q);
2151 	if (is_offload(adap)) {
2152 		struct sge_uld_txq_info *txq_info =
2153 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2154 
2155 		if (txq_info) {
2156 			for_each_ofldtxq(&adap->sge, i) {
2157 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2158 
2159 				disable_txq_db(&txq->q);
2160 			}
2161 		}
2162 	}
2163 	for_each_port(adap, i)
2164 		disable_txq_db(&adap->sge.ctrlq[i].q);
2165 }
2166 
2167 static void enable_dbs(struct adapter *adap)
2168 {
2169 	int i;
2170 
2171 	for_each_ethrxq(&adap->sge, i)
2172 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2173 	if (is_offload(adap)) {
2174 		struct sge_uld_txq_info *txq_info =
2175 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2176 
2177 		if (txq_info) {
2178 			for_each_ofldtxq(&adap->sge, i) {
2179 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2180 
2181 				enable_txq_db(adap, &txq->q);
2182 			}
2183 		}
2184 	}
2185 	for_each_port(adap, i)
2186 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2187 }
2188 
2189 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2190 {
2191 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
2192 
2193 	if (adap->uld && adap->uld[type].handle)
2194 		adap->uld[type].control(adap->uld[type].handle, cmd);
2195 }
2196 
2197 static void process_db_full(struct work_struct *work)
2198 {
2199 	struct adapter *adap;
2200 
2201 	adap = container_of(work, struct adapter, db_full_task);
2202 
2203 	drain_db_fifo(adap, dbfifo_drain_delay);
2204 	enable_dbs(adap);
2205 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2206 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2207 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2208 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2209 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2210 	else
2211 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2212 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2213 }
2214 
2215 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2216 {
2217 	u16 hw_pidx, hw_cidx;
2218 	int ret;
2219 
2220 	spin_lock_irq(&q->db_lock);
2221 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2222 	if (ret)
2223 		goto out;
2224 	if (q->db_pidx != hw_pidx) {
2225 		u16 delta;
2226 		u32 val;
2227 
2228 		if (q->db_pidx >= hw_pidx)
2229 			delta = q->db_pidx - hw_pidx;
2230 		else
2231 			delta = q->size - hw_pidx + q->db_pidx;
2232 
2233 		if (is_t4(adap->params.chip))
2234 			val = PIDX_V(delta);
2235 		else
2236 			val = PIDX_T5_V(delta);
2237 		wmb();
2238 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2239 			     QID_V(q->cntxt_id) | val);
2240 	}
2241 out:
2242 	q->db_disabled = 0;
2243 	q->db_pidx_inc = 0;
2244 	spin_unlock_irq(&q->db_lock);
2245 	if (ret)
2246 		CH_WARN(adap, "DB drop recovery failed.\n");
2247 }
2248 
2249 static void recover_all_queues(struct adapter *adap)
2250 {
2251 	int i;
2252 
2253 	for_each_ethrxq(&adap->sge, i)
2254 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2255 	if (is_offload(adap)) {
2256 		struct sge_uld_txq_info *txq_info =
2257 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2258 		if (txq_info) {
2259 			for_each_ofldtxq(&adap->sge, i) {
2260 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2261 
2262 				sync_txq_pidx(adap, &txq->q);
2263 			}
2264 		}
2265 	}
2266 	for_each_port(adap, i)
2267 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2268 }
2269 
2270 static void process_db_drop(struct work_struct *work)
2271 {
2272 	struct adapter *adap;
2273 
2274 	adap = container_of(work, struct adapter, db_drop_task);
2275 
2276 	if (is_t4(adap->params.chip)) {
2277 		drain_db_fifo(adap, dbfifo_drain_delay);
2278 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2279 		drain_db_fifo(adap, dbfifo_drain_delay);
2280 		recover_all_queues(adap);
2281 		drain_db_fifo(adap, dbfifo_drain_delay);
2282 		enable_dbs(adap);
2283 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2284 	} else if (is_t5(adap->params.chip)) {
2285 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2286 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2287 		u16 pidx_inc = dropped_db & 0x1fff;
2288 		u64 bar2_qoffset;
2289 		unsigned int bar2_qid;
2290 		int ret;
2291 
2292 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2293 					0, &bar2_qoffset, &bar2_qid);
2294 		if (ret)
2295 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2296 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2297 		else
2298 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2299 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2300 
2301 		/* Re-enable BAR2 WC */
2302 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2303 	}
2304 
2305 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2306 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2307 }
2308 
2309 void t4_db_full(struct adapter *adap)
2310 {
2311 	if (is_t4(adap->params.chip)) {
2312 		disable_dbs(adap);
2313 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2314 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2315 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2316 		queue_work(adap->workq, &adap->db_full_task);
2317 	}
2318 }
2319 
2320 void t4_db_dropped(struct adapter *adap)
2321 {
2322 	if (is_t4(adap->params.chip)) {
2323 		disable_dbs(adap);
2324 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2325 	}
2326 	queue_work(adap->workq, &adap->db_drop_task);
2327 }
2328 
2329 void t4_register_netevent_notifier(void)
2330 {
2331 	if (!netevent_registered) {
2332 		register_netevent_notifier(&cxgb4_netevent_nb);
2333 		netevent_registered = true;
2334 	}
2335 }
2336 
2337 static void detach_ulds(struct adapter *adap)
2338 {
2339 	unsigned int i;
2340 
2341 	mutex_lock(&uld_mutex);
2342 	list_del(&adap->list_node);
2343 
2344 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2345 		if (adap->uld && adap->uld[i].handle)
2346 			adap->uld[i].state_change(adap->uld[i].handle,
2347 					     CXGB4_STATE_DETACH);
2348 
2349 	if (netevent_registered && list_empty(&adapter_list)) {
2350 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2351 		netevent_registered = false;
2352 	}
2353 	mutex_unlock(&uld_mutex);
2354 }
2355 
2356 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2357 {
2358 	unsigned int i;
2359 
2360 	mutex_lock(&uld_mutex);
2361 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2362 		if (adap->uld && adap->uld[i].handle)
2363 			adap->uld[i].state_change(adap->uld[i].handle,
2364 						  new_state);
2365 	mutex_unlock(&uld_mutex);
2366 }
2367 
2368 #if IS_ENABLED(CONFIG_IPV6)
2369 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2370 				   unsigned long event, void *data)
2371 {
2372 	struct inet6_ifaddr *ifa = data;
2373 	struct net_device *event_dev = ifa->idev->dev;
2374 	const struct device *parent = NULL;
2375 #if IS_ENABLED(CONFIG_BONDING)
2376 	struct adapter *adap;
2377 #endif
2378 	if (is_vlan_dev(event_dev))
2379 		event_dev = vlan_dev_real_dev(event_dev);
2380 #if IS_ENABLED(CONFIG_BONDING)
2381 	if (event_dev->flags & IFF_MASTER) {
2382 		list_for_each_entry(adap, &adapter_list, list_node) {
2383 			switch (event) {
2384 			case NETDEV_UP:
2385 				cxgb4_clip_get(adap->port[0],
2386 					       (const u32 *)ifa, 1);
2387 				break;
2388 			case NETDEV_DOWN:
2389 				cxgb4_clip_release(adap->port[0],
2390 						   (const u32 *)ifa, 1);
2391 				break;
2392 			default:
2393 				break;
2394 			}
2395 		}
2396 		return NOTIFY_OK;
2397 	}
2398 #endif
2399 
2400 	if (event_dev)
2401 		parent = event_dev->dev.parent;
2402 
2403 	if (parent && parent->driver == &cxgb4_driver.driver) {
2404 		switch (event) {
2405 		case NETDEV_UP:
2406 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2407 			break;
2408 		case NETDEV_DOWN:
2409 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2410 			break;
2411 		default:
2412 			break;
2413 		}
2414 	}
2415 	return NOTIFY_OK;
2416 }
2417 
2418 static bool inet6addr_registered;
2419 static struct notifier_block cxgb4_inet6addr_notifier = {
2420 	.notifier_call = cxgb4_inet6addr_handler
2421 };
2422 
2423 static void update_clip(const struct adapter *adap)
2424 {
2425 	int i;
2426 	struct net_device *dev;
2427 	int ret;
2428 
2429 	rcu_read_lock();
2430 
2431 	for (i = 0; i < MAX_NPORTS; i++) {
2432 		dev = adap->port[i];
2433 		ret = 0;
2434 
2435 		if (dev)
2436 			ret = cxgb4_update_root_dev_clip(dev);
2437 
2438 		if (ret < 0)
2439 			break;
2440 	}
2441 	rcu_read_unlock();
2442 }
2443 #endif /* IS_ENABLED(CONFIG_IPV6) */
2444 
2445 /**
2446  *	cxgb_up - enable the adapter
2447  *	@adap: adapter being enabled
2448  *
2449  *	Called when the first port is enabled, this function performs the
2450  *	actions necessary to make an adapter operational, such as completing
2451  *	the initialization of HW modules, and enabling interrupts.
2452  *
2453  *	Must be called with the rtnl lock held.
2454  */
2455 static int cxgb_up(struct adapter *adap)
2456 {
2457 	struct sge *s = &adap->sge;
2458 	int err;
2459 
2460 	mutex_lock(&uld_mutex);
2461 	err = setup_sge_queues(adap);
2462 	if (err)
2463 		goto rel_lock;
2464 	err = setup_rss(adap);
2465 	if (err)
2466 		goto freeq;
2467 
2468 	if (adap->flags & CXGB4_USING_MSIX) {
2469 		if (s->nd_msix_idx < 0) {
2470 			err = -ENOMEM;
2471 			goto irq_err;
2472 		}
2473 
2474 		err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2475 				  t4_nondata_intr, 0,
2476 				  adap->msix_info[s->nd_msix_idx].desc, adap);
2477 		if (err)
2478 			goto irq_err;
2479 
2480 		err = request_msix_queue_irqs(adap);
2481 		if (err)
2482 			goto irq_err_free_nd_msix;
2483 	} else {
2484 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2485 				  (adap->flags & CXGB4_USING_MSI) ? 0
2486 								  : IRQF_SHARED,
2487 				  adap->port[0]->name, adap);
2488 		if (err)
2489 			goto irq_err;
2490 	}
2491 
2492 	enable_rx(adap);
2493 	t4_sge_start(adap);
2494 	t4_intr_enable(adap);
2495 	adap->flags |= CXGB4_FULL_INIT_DONE;
2496 	mutex_unlock(&uld_mutex);
2497 
2498 	notify_ulds(adap, CXGB4_STATE_UP);
2499 #if IS_ENABLED(CONFIG_IPV6)
2500 	update_clip(adap);
2501 #endif
2502 	return err;
2503 
2504 irq_err_free_nd_msix:
2505 	free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2506 irq_err:
2507 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2508 freeq:
2509 	t4_free_sge_resources(adap);
2510 rel_lock:
2511 	mutex_unlock(&uld_mutex);
2512 	return err;
2513 }
2514 
2515 static void cxgb_down(struct adapter *adapter)
2516 {
2517 	cancel_work_sync(&adapter->tid_release_task);
2518 	cancel_work_sync(&adapter->db_full_task);
2519 	cancel_work_sync(&adapter->db_drop_task);
2520 	adapter->tid_release_task_busy = false;
2521 	adapter->tid_release_head = NULL;
2522 
2523 	t4_sge_stop(adapter);
2524 	t4_free_sge_resources(adapter);
2525 
2526 	adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2527 }
2528 
2529 /*
2530  * net_device operations
2531  */
2532 int cxgb_open(struct net_device *dev)
2533 {
2534 	struct port_info *pi = netdev_priv(dev);
2535 	struct adapter *adapter = pi->adapter;
2536 	int err;
2537 
2538 	netif_carrier_off(dev);
2539 
2540 	if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2541 		err = cxgb_up(adapter);
2542 		if (err < 0)
2543 			return err;
2544 	}
2545 
2546 	/* It's possible that the basic port information could have
2547 	 * changed since we first read it.
2548 	 */
2549 	err = t4_update_port_info(pi);
2550 	if (err < 0)
2551 		return err;
2552 
2553 	err = link_start(dev);
2554 	if (!err)
2555 		netif_tx_start_all_queues(dev);
2556 	return err;
2557 }
2558 
2559 int cxgb_close(struct net_device *dev)
2560 {
2561 	struct port_info *pi = netdev_priv(dev);
2562 	struct adapter *adapter = pi->adapter;
2563 	int ret;
2564 
2565 	netif_tx_stop_all_queues(dev);
2566 	netif_carrier_off(dev);
2567 	ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2568 				  false, false, false);
2569 #ifdef CONFIG_CHELSIO_T4_DCB
2570 	cxgb4_dcb_reset(dev);
2571 	dcb_tx_queue_prio_enable(dev, false);
2572 #endif
2573 	return ret;
2574 }
2575 
2576 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2577 		__be32 sip, __be16 sport, __be16 vlan,
2578 		unsigned int queue, unsigned char port, unsigned char mask)
2579 {
2580 	int ret;
2581 	struct filter_entry *f;
2582 	struct adapter *adap;
2583 	int i;
2584 	u8 *val;
2585 
2586 	adap = netdev2adap(dev);
2587 
2588 	/* Adjust stid to correct filter index */
2589 	stid -= adap->tids.sftid_base;
2590 	stid += adap->tids.nftids;
2591 
2592 	/* Check to make sure the filter requested is writable ...
2593 	 */
2594 	f = &adap->tids.ftid_tab[stid];
2595 	ret = writable_filter(f);
2596 	if (ret)
2597 		return ret;
2598 
2599 	/* Clear out any old resources being used by the filter before
2600 	 * we start constructing the new filter.
2601 	 */
2602 	if (f->valid)
2603 		clear_filter(adap, f);
2604 
2605 	/* Clear out filter specifications */
2606 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2607 	f->fs.val.lport = cpu_to_be16(sport);
2608 	f->fs.mask.lport  = ~0;
2609 	val = (u8 *)&sip;
2610 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2611 		for (i = 0; i < 4; i++) {
2612 			f->fs.val.lip[i] = val[i];
2613 			f->fs.mask.lip[i] = ~0;
2614 		}
2615 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2616 			f->fs.val.iport = port;
2617 			f->fs.mask.iport = mask;
2618 		}
2619 	}
2620 
2621 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2622 		f->fs.val.proto = IPPROTO_TCP;
2623 		f->fs.mask.proto = ~0;
2624 	}
2625 
2626 	f->fs.dirsteer = 1;
2627 	f->fs.iq = queue;
2628 	/* Mark filter as locked */
2629 	f->locked = 1;
2630 	f->fs.rpttid = 1;
2631 
2632 	/* Save the actual tid. We need this to get the corresponding
2633 	 * filter entry structure in filter_rpl.
2634 	 */
2635 	f->tid = stid + adap->tids.ftid_base;
2636 	ret = set_filter_wr(adap, stid);
2637 	if (ret) {
2638 		clear_filter(adap, f);
2639 		return ret;
2640 	}
2641 
2642 	return 0;
2643 }
2644 EXPORT_SYMBOL(cxgb4_create_server_filter);
2645 
2646 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2647 		unsigned int queue, bool ipv6)
2648 {
2649 	struct filter_entry *f;
2650 	struct adapter *adap;
2651 
2652 	adap = netdev2adap(dev);
2653 
2654 	/* Adjust stid to correct filter index */
2655 	stid -= adap->tids.sftid_base;
2656 	stid += adap->tids.nftids;
2657 
2658 	f = &adap->tids.ftid_tab[stid];
2659 	/* Unlock the filter */
2660 	f->locked = 0;
2661 
2662 	return delete_filter(adap, stid);
2663 }
2664 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2665 
2666 static void cxgb_get_stats(struct net_device *dev,
2667 			   struct rtnl_link_stats64 *ns)
2668 {
2669 	struct port_stats stats;
2670 	struct port_info *p = netdev_priv(dev);
2671 	struct adapter *adapter = p->adapter;
2672 
2673 	/* Block retrieving statistics during EEH error
2674 	 * recovery. Otherwise, the recovery might fail
2675 	 * and the PCI device will be removed permanently
2676 	 */
2677 	spin_lock(&adapter->stats_lock);
2678 	if (!netif_device_present(dev)) {
2679 		spin_unlock(&adapter->stats_lock);
2680 		return;
2681 	}
2682 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2683 				 &p->stats_base);
2684 	spin_unlock(&adapter->stats_lock);
2685 
2686 	ns->tx_bytes   = stats.tx_octets;
2687 	ns->tx_packets = stats.tx_frames;
2688 	ns->rx_bytes   = stats.rx_octets;
2689 	ns->rx_packets = stats.rx_frames;
2690 	ns->multicast  = stats.rx_mcast_frames;
2691 
2692 	/* detailed rx_errors */
2693 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2694 			       stats.rx_runt;
2695 	ns->rx_over_errors   = 0;
2696 	ns->rx_crc_errors    = stats.rx_fcs_err;
2697 	ns->rx_frame_errors  = stats.rx_symbol_err;
2698 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2699 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2700 			       stats.rx_trunc0 + stats.rx_trunc1 +
2701 			       stats.rx_trunc2 + stats.rx_trunc3;
2702 	ns->rx_missed_errors = 0;
2703 
2704 	/* detailed tx_errors */
2705 	ns->tx_aborted_errors   = 0;
2706 	ns->tx_carrier_errors   = 0;
2707 	ns->tx_fifo_errors      = 0;
2708 	ns->tx_heartbeat_errors = 0;
2709 	ns->tx_window_errors    = 0;
2710 
2711 	ns->tx_errors = stats.tx_error_frames;
2712 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2713 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2714 }
2715 
2716 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2717 {
2718 	unsigned int mbox;
2719 	int ret = 0, prtad, devad;
2720 	struct port_info *pi = netdev_priv(dev);
2721 	struct adapter *adapter = pi->adapter;
2722 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2723 
2724 	switch (cmd) {
2725 	case SIOCGMIIPHY:
2726 		if (pi->mdio_addr < 0)
2727 			return -EOPNOTSUPP;
2728 		data->phy_id = pi->mdio_addr;
2729 		break;
2730 	case SIOCGMIIREG:
2731 	case SIOCSMIIREG:
2732 		if (mdio_phy_id_is_c45(data->phy_id)) {
2733 			prtad = mdio_phy_id_prtad(data->phy_id);
2734 			devad = mdio_phy_id_devad(data->phy_id);
2735 		} else if (data->phy_id < 32) {
2736 			prtad = data->phy_id;
2737 			devad = 0;
2738 			data->reg_num &= 0x1f;
2739 		} else
2740 			return -EINVAL;
2741 
2742 		mbox = pi->adapter->pf;
2743 		if (cmd == SIOCGMIIREG)
2744 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2745 					 data->reg_num, &data->val_out);
2746 		else
2747 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2748 					 data->reg_num, data->val_in);
2749 		break;
2750 	case SIOCGHWTSTAMP:
2751 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2752 				    sizeof(pi->tstamp_config)) ?
2753 			-EFAULT : 0;
2754 	case SIOCSHWTSTAMP:
2755 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2756 				   sizeof(pi->tstamp_config)))
2757 			return -EFAULT;
2758 
2759 		if (!is_t4(adapter->params.chip)) {
2760 			switch (pi->tstamp_config.tx_type) {
2761 			case HWTSTAMP_TX_OFF:
2762 			case HWTSTAMP_TX_ON:
2763 				break;
2764 			default:
2765 				return -ERANGE;
2766 			}
2767 
2768 			switch (pi->tstamp_config.rx_filter) {
2769 			case HWTSTAMP_FILTER_NONE:
2770 				pi->rxtstamp = false;
2771 				break;
2772 			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2773 			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2774 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2775 							 PTP_TS_L4);
2776 				break;
2777 			case HWTSTAMP_FILTER_PTP_V2_EVENT:
2778 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2779 							 PTP_TS_L2_L4);
2780 				break;
2781 			case HWTSTAMP_FILTER_ALL:
2782 			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2783 			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2784 			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2785 			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2786 				pi->rxtstamp = true;
2787 				break;
2788 			default:
2789 				pi->tstamp_config.rx_filter =
2790 					HWTSTAMP_FILTER_NONE;
2791 				return -ERANGE;
2792 			}
2793 
2794 			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2795 			    (pi->tstamp_config.rx_filter ==
2796 				HWTSTAMP_FILTER_NONE)) {
2797 				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2798 					pi->ptp_enable = false;
2799 			}
2800 
2801 			if (pi->tstamp_config.rx_filter !=
2802 				HWTSTAMP_FILTER_NONE) {
2803 				if (cxgb4_ptp_redirect_rx_packet(adapter,
2804 								 pi) >= 0)
2805 					pi->ptp_enable = true;
2806 			}
2807 		} else {
2808 			/* For T4 Adapters */
2809 			switch (pi->tstamp_config.rx_filter) {
2810 			case HWTSTAMP_FILTER_NONE:
2811 			pi->rxtstamp = false;
2812 			break;
2813 			case HWTSTAMP_FILTER_ALL:
2814 			pi->rxtstamp = true;
2815 			break;
2816 			default:
2817 			pi->tstamp_config.rx_filter =
2818 			HWTSTAMP_FILTER_NONE;
2819 			return -ERANGE;
2820 			}
2821 		}
2822 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2823 				    sizeof(pi->tstamp_config)) ?
2824 			-EFAULT : 0;
2825 	default:
2826 		return -EOPNOTSUPP;
2827 	}
2828 	return ret;
2829 }
2830 
2831 static void cxgb_set_rxmode(struct net_device *dev)
2832 {
2833 	/* unfortunately we can't return errors to the stack */
2834 	set_rxmode(dev, -1, false);
2835 }
2836 
2837 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2838 {
2839 	int ret;
2840 	struct port_info *pi = netdev_priv(dev);
2841 
2842 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2843 			    -1, -1, -1, true);
2844 	if (!ret)
2845 		dev->mtu = new_mtu;
2846 	return ret;
2847 }
2848 
2849 #ifdef CONFIG_PCI_IOV
2850 static int cxgb4_mgmt_open(struct net_device *dev)
2851 {
2852 	/* Turn carrier off since we don't have to transmit anything on this
2853 	 * interface.
2854 	 */
2855 	netif_carrier_off(dev);
2856 	return 0;
2857 }
2858 
2859 /* Fill MAC address that will be assigned by the FW */
2860 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2861 {
2862 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2863 	unsigned int i, vf, nvfs;
2864 	u16 a, b;
2865 	int err;
2866 	u8 *na;
2867 
2868 	adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2869 							    PCI_CAP_ID_VPD);
2870 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2871 	if (err)
2872 		return;
2873 
2874 	na = adap->params.vpd.na;
2875 	for (i = 0; i < ETH_ALEN; i++)
2876 		hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2877 			      hex2val(na[2 * i + 1]));
2878 
2879 	a = (hw_addr[0] << 8) | hw_addr[1];
2880 	b = (hw_addr[1] << 8) | hw_addr[2];
2881 	a ^= b;
2882 	a |= 0x0200;    /* locally assigned Ethernet MAC address */
2883 	a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2884 	macaddr[0] = a >> 8;
2885 	macaddr[1] = a & 0xff;
2886 
2887 	for (i = 2; i < 5; i++)
2888 		macaddr[i] = hw_addr[i + 1];
2889 
2890 	for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2891 		vf < nvfs; vf++) {
2892 		macaddr[5] = adap->pf * nvfs + vf;
2893 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2894 	}
2895 }
2896 
2897 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2898 {
2899 	struct port_info *pi = netdev_priv(dev);
2900 	struct adapter *adap = pi->adapter;
2901 	int ret;
2902 
2903 	/* verify MAC addr is valid */
2904 	if (!is_valid_ether_addr(mac)) {
2905 		dev_err(pi->adapter->pdev_dev,
2906 			"Invalid Ethernet address %pM for VF %d\n",
2907 			mac, vf);
2908 		return -EINVAL;
2909 	}
2910 
2911 	dev_info(pi->adapter->pdev_dev,
2912 		 "Setting MAC %pM on VF %d\n", mac, vf);
2913 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2914 	if (!ret)
2915 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2916 	return ret;
2917 }
2918 
2919 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2920 				    int vf, struct ifla_vf_info *ivi)
2921 {
2922 	struct port_info *pi = netdev_priv(dev);
2923 	struct adapter *adap = pi->adapter;
2924 	struct vf_info *vfinfo;
2925 
2926 	if (vf >= adap->num_vfs)
2927 		return -EINVAL;
2928 	vfinfo = &adap->vfinfo[vf];
2929 
2930 	ivi->vf = vf;
2931 	ivi->max_tx_rate = vfinfo->tx_rate;
2932 	ivi->min_tx_rate = 0;
2933 	ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2934 	ivi->vlan = vfinfo->vlan;
2935 	ivi->linkstate = vfinfo->link_state;
2936 	return 0;
2937 }
2938 
2939 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2940 				       struct netdev_phys_item_id *ppid)
2941 {
2942 	struct port_info *pi = netdev_priv(dev);
2943 	unsigned int phy_port_id;
2944 
2945 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2946 	ppid->id_len = sizeof(phy_port_id);
2947 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
2948 	return 0;
2949 }
2950 
2951 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2952 				  int min_tx_rate, int max_tx_rate)
2953 {
2954 	struct port_info *pi = netdev_priv(dev);
2955 	struct adapter *adap = pi->adapter;
2956 	unsigned int link_ok, speed, mtu;
2957 	u32 fw_pfvf, fw_class;
2958 	int class_id = vf;
2959 	int ret;
2960 	u16 pktsize;
2961 
2962 	if (vf >= adap->num_vfs)
2963 		return -EINVAL;
2964 
2965 	if (min_tx_rate) {
2966 		dev_err(adap->pdev_dev,
2967 			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2968 			min_tx_rate, vf);
2969 		return -EINVAL;
2970 	}
2971 
2972 	if (max_tx_rate == 0) {
2973 		/* unbind VF to to any Traffic Class */
2974 		fw_pfvf =
2975 		    (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2976 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2977 		fw_class = 0xffffffff;
2978 		ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
2979 				    &fw_pfvf, &fw_class);
2980 		if (ret) {
2981 			dev_err(adap->pdev_dev,
2982 				"Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
2983 				ret, adap->pf, vf);
2984 			return -EINVAL;
2985 		}
2986 		dev_info(adap->pdev_dev,
2987 			 "PF %d VF %d is unbound from TX Rate Limiting\n",
2988 			 adap->pf, vf);
2989 		adap->vfinfo[vf].tx_rate = 0;
2990 		return 0;
2991 	}
2992 
2993 	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2994 	if (ret != FW_SUCCESS) {
2995 		dev_err(adap->pdev_dev,
2996 			"Failed to get link information for VF %d\n", vf);
2997 		return -EINVAL;
2998 	}
2999 
3000 	if (!link_ok) {
3001 		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
3002 		return -EINVAL;
3003 	}
3004 
3005 	if (max_tx_rate > speed) {
3006 		dev_err(adap->pdev_dev,
3007 			"Max tx rate %d for VF %d can't be > link-speed %u",
3008 			max_tx_rate, vf, speed);
3009 		return -EINVAL;
3010 	}
3011 
3012 	pktsize = mtu;
3013 	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
3014 	pktsize = pktsize - sizeof(struct ethhdr) - 4;
3015 	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
3016 	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
3017 	/* configure Traffic Class for rate-limiting */
3018 	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
3019 			      SCHED_CLASS_LEVEL_CL_RL,
3020 			      SCHED_CLASS_MODE_CLASS,
3021 			      SCHED_CLASS_RATEUNIT_BITS,
3022 			      SCHED_CLASS_RATEMODE_ABS,
3023 			      pi->tx_chan, class_id, 0,
3024 			      max_tx_rate * 1000, 0, pktsize);
3025 	if (ret) {
3026 		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3027 			ret);
3028 		return -EINVAL;
3029 	}
3030 	dev_info(adap->pdev_dev,
3031 		 "Class %d with MSS %u configured with rate %u\n",
3032 		 class_id, pktsize, max_tx_rate);
3033 
3034 	/* bind VF to configured Traffic Class */
3035 	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3036 		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3037 	fw_class = class_id;
3038 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3039 			    &fw_class);
3040 	if (ret) {
3041 		dev_err(adap->pdev_dev,
3042 			"Err %d in binding PF %d VF %d to Traffic Class %d\n",
3043 			ret, adap->pf, vf, class_id);
3044 		return -EINVAL;
3045 	}
3046 	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3047 		 adap->pf, vf, class_id);
3048 	adap->vfinfo[vf].tx_rate = max_tx_rate;
3049 	return 0;
3050 }
3051 
3052 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3053 				  u16 vlan, u8 qos, __be16 vlan_proto)
3054 {
3055 	struct port_info *pi = netdev_priv(dev);
3056 	struct adapter *adap = pi->adapter;
3057 	int ret;
3058 
3059 	if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3060 		return -EINVAL;
3061 
3062 	if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3063 		return -EPROTONOSUPPORT;
3064 
3065 	ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3066 	if (!ret) {
3067 		adap->vfinfo[vf].vlan = vlan;
3068 		return 0;
3069 	}
3070 
3071 	dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3072 		ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3073 	return ret;
3074 }
3075 
3076 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3077 					int link)
3078 {
3079 	struct port_info *pi = netdev_priv(dev);
3080 	struct adapter *adap = pi->adapter;
3081 	u32 param, val;
3082 	int ret = 0;
3083 
3084 	if (vf >= adap->num_vfs)
3085 		return -EINVAL;
3086 
3087 	switch (link) {
3088 	case IFLA_VF_LINK_STATE_AUTO:
3089 		val = FW_VF_LINK_STATE_AUTO;
3090 		break;
3091 
3092 	case IFLA_VF_LINK_STATE_ENABLE:
3093 		val = FW_VF_LINK_STATE_ENABLE;
3094 		break;
3095 
3096 	case IFLA_VF_LINK_STATE_DISABLE:
3097 		val = FW_VF_LINK_STATE_DISABLE;
3098 		break;
3099 
3100 	default:
3101 		return -EINVAL;
3102 	}
3103 
3104 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3105 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3106 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3107 			    &param, &val);
3108 	if (ret) {
3109 		dev_err(adap->pdev_dev,
3110 			"Error %d in setting PF %d VF %d link state\n",
3111 			ret, adap->pf, vf);
3112 		return -EINVAL;
3113 	}
3114 
3115 	adap->vfinfo[vf].link_state = link;
3116 	return ret;
3117 }
3118 #endif /* CONFIG_PCI_IOV */
3119 
3120 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3121 {
3122 	int ret;
3123 	struct sockaddr *addr = p;
3124 	struct port_info *pi = netdev_priv(dev);
3125 
3126 	if (!is_valid_ether_addr(addr->sa_data))
3127 		return -EADDRNOTAVAIL;
3128 
3129 	ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3130 				    addr->sa_data, true, &pi->smt_idx);
3131 	if (ret < 0)
3132 		return ret;
3133 
3134 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3135 	pi->xact_addr_filt = ret;
3136 	return 0;
3137 }
3138 
3139 #ifdef CONFIG_NET_POLL_CONTROLLER
3140 static void cxgb_netpoll(struct net_device *dev)
3141 {
3142 	struct port_info *pi = netdev_priv(dev);
3143 	struct adapter *adap = pi->adapter;
3144 
3145 	if (adap->flags & CXGB4_USING_MSIX) {
3146 		int i;
3147 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3148 
3149 		for (i = pi->nqsets; i; i--, rx++)
3150 			t4_sge_intr_msix(0, &rx->rspq);
3151 	} else
3152 		t4_intr_handler(adap)(0, adap);
3153 }
3154 #endif
3155 
3156 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3157 {
3158 	struct port_info *pi = netdev_priv(dev);
3159 	struct adapter *adap = pi->adapter;
3160 	struct ch_sched_queue qe = { 0 };
3161 	struct ch_sched_params p = { 0 };
3162 	struct sched_class *e;
3163 	u32 req_rate;
3164 	int err = 0;
3165 
3166 	if (!can_sched(dev))
3167 		return -ENOTSUPP;
3168 
3169 	if (index < 0 || index > pi->nqsets - 1)
3170 		return -EINVAL;
3171 
3172 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3173 		dev_err(adap->pdev_dev,
3174 			"Failed to rate limit on queue %d. Link Down?\n",
3175 			index);
3176 		return -EINVAL;
3177 	}
3178 
3179 	qe.queue = index;
3180 	e = cxgb4_sched_queue_lookup(dev, &qe);
3181 	if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) {
3182 		dev_err(adap->pdev_dev,
3183 			"Queue %u already bound to class %u of type: %u\n",
3184 			index, e->idx, e->info.u.params.level);
3185 		return -EBUSY;
3186 	}
3187 
3188 	/* Convert from Mbps to Kbps */
3189 	req_rate = rate * 1000;
3190 
3191 	/* Max rate is 100 Gbps */
3192 	if (req_rate > SCHED_MAX_RATE_KBPS) {
3193 		dev_err(adap->pdev_dev,
3194 			"Invalid rate %u Mbps, Max rate is %u Mbps\n",
3195 			rate, SCHED_MAX_RATE_KBPS / 1000);
3196 		return -ERANGE;
3197 	}
3198 
3199 	/* First unbind the queue from any existing class */
3200 	memset(&qe, 0, sizeof(qe));
3201 	qe.queue = index;
3202 	qe.class = SCHED_CLS_NONE;
3203 
3204 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3205 	if (err) {
3206 		dev_err(adap->pdev_dev,
3207 			"Unbinding Queue %d on port %d fail. Err: %d\n",
3208 			index, pi->port_id, err);
3209 		return err;
3210 	}
3211 
3212 	/* Queue already unbound */
3213 	if (!req_rate)
3214 		return 0;
3215 
3216 	/* Fetch any available unused or matching scheduling class */
3217 	p.type = SCHED_CLASS_TYPE_PACKET;
3218 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3219 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3220 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3221 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3222 	p.u.params.channel  = pi->tx_chan;
3223 	p.u.params.class    = SCHED_CLS_NONE;
3224 	p.u.params.minrate  = 0;
3225 	p.u.params.maxrate  = req_rate;
3226 	p.u.params.weight   = 0;
3227 	p.u.params.pktsize  = dev->mtu;
3228 
3229 	e = cxgb4_sched_class_alloc(dev, &p);
3230 	if (!e)
3231 		return -ENOMEM;
3232 
3233 	/* Bind the queue to a scheduling class */
3234 	memset(&qe, 0, sizeof(qe));
3235 	qe.queue = index;
3236 	qe.class = e->idx;
3237 
3238 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3239 	if (err)
3240 		dev_err(adap->pdev_dev,
3241 			"Queue rate limiting failed. Err: %d\n", err);
3242 	return err;
3243 }
3244 
3245 static int cxgb_setup_tc_flower(struct net_device *dev,
3246 				struct flow_cls_offload *cls_flower)
3247 {
3248 	switch (cls_flower->command) {
3249 	case FLOW_CLS_REPLACE:
3250 		return cxgb4_tc_flower_replace(dev, cls_flower);
3251 	case FLOW_CLS_DESTROY:
3252 		return cxgb4_tc_flower_destroy(dev, cls_flower);
3253 	case FLOW_CLS_STATS:
3254 		return cxgb4_tc_flower_stats(dev, cls_flower);
3255 	default:
3256 		return -EOPNOTSUPP;
3257 	}
3258 }
3259 
3260 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3261 				 struct tc_cls_u32_offload *cls_u32)
3262 {
3263 	switch (cls_u32->command) {
3264 	case TC_CLSU32_NEW_KNODE:
3265 	case TC_CLSU32_REPLACE_KNODE:
3266 		return cxgb4_config_knode(dev, cls_u32);
3267 	case TC_CLSU32_DELETE_KNODE:
3268 		return cxgb4_delete_knode(dev, cls_u32);
3269 	default:
3270 		return -EOPNOTSUPP;
3271 	}
3272 }
3273 
3274 static int cxgb_setup_tc_matchall(struct net_device *dev,
3275 				  struct tc_cls_matchall_offload *cls_matchall,
3276 				  bool ingress)
3277 {
3278 	struct adapter *adap = netdev2adap(dev);
3279 
3280 	if (!adap->tc_matchall)
3281 		return -ENOMEM;
3282 
3283 	switch (cls_matchall->command) {
3284 	case TC_CLSMATCHALL_REPLACE:
3285 		return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3286 	case TC_CLSMATCHALL_DESTROY:
3287 		return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3288 	case TC_CLSMATCHALL_STATS:
3289 		if (ingress)
3290 			return cxgb4_tc_matchall_stats(dev, cls_matchall);
3291 		break;
3292 	default:
3293 		break;
3294 	}
3295 
3296 	return -EOPNOTSUPP;
3297 }
3298 
3299 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3300 					  void *type_data, void *cb_priv)
3301 {
3302 	struct net_device *dev = cb_priv;
3303 	struct port_info *pi = netdev2pinfo(dev);
3304 	struct adapter *adap = netdev2adap(dev);
3305 
3306 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3307 		dev_err(adap->pdev_dev,
3308 			"Failed to setup tc on port %d. Link Down?\n",
3309 			pi->port_id);
3310 		return -EINVAL;
3311 	}
3312 
3313 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3314 		return -EOPNOTSUPP;
3315 
3316 	switch (type) {
3317 	case TC_SETUP_CLSU32:
3318 		return cxgb_setup_tc_cls_u32(dev, type_data);
3319 	case TC_SETUP_CLSFLOWER:
3320 		return cxgb_setup_tc_flower(dev, type_data);
3321 	case TC_SETUP_CLSMATCHALL:
3322 		return cxgb_setup_tc_matchall(dev, type_data, true);
3323 	default:
3324 		return -EOPNOTSUPP;
3325 	}
3326 }
3327 
3328 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3329 					 void *type_data, void *cb_priv)
3330 {
3331 	struct net_device *dev = cb_priv;
3332 	struct port_info *pi = netdev2pinfo(dev);
3333 	struct adapter *adap = netdev2adap(dev);
3334 
3335 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3336 		dev_err(adap->pdev_dev,
3337 			"Failed to setup tc on port %d. Link Down?\n",
3338 			pi->port_id);
3339 		return -EINVAL;
3340 	}
3341 
3342 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3343 		return -EOPNOTSUPP;
3344 
3345 	switch (type) {
3346 	case TC_SETUP_CLSMATCHALL:
3347 		return cxgb_setup_tc_matchall(dev, type_data, false);
3348 	default:
3349 		break;
3350 	}
3351 
3352 	return -EOPNOTSUPP;
3353 }
3354 
3355 static int cxgb_setup_tc_mqprio(struct net_device *dev,
3356 				struct tc_mqprio_qopt_offload *mqprio)
3357 {
3358 	struct adapter *adap = netdev2adap(dev);
3359 
3360 	if (!is_ethofld(adap) || !adap->tc_mqprio)
3361 		return -ENOMEM;
3362 
3363 	return cxgb4_setup_tc_mqprio(dev, mqprio);
3364 }
3365 
3366 static LIST_HEAD(cxgb_block_cb_list);
3367 
3368 static int cxgb_setup_tc_block(struct net_device *dev,
3369 			       struct flow_block_offload *f)
3370 {
3371 	struct port_info *pi = netdev_priv(dev);
3372 	flow_setup_cb_t *cb;
3373 	bool ingress_only;
3374 
3375 	pi->tc_block_shared = f->block_shared;
3376 	if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3377 		cb = cxgb_setup_tc_block_egress_cb;
3378 		ingress_only = false;
3379 	} else {
3380 		cb = cxgb_setup_tc_block_ingress_cb;
3381 		ingress_only = true;
3382 	}
3383 
3384 	return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3385 					  cb, pi, dev, ingress_only);
3386 }
3387 
3388 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3389 			 void *type_data)
3390 {
3391 	switch (type) {
3392 	case TC_SETUP_QDISC_MQPRIO:
3393 		return cxgb_setup_tc_mqprio(dev, type_data);
3394 	case TC_SETUP_BLOCK:
3395 		return cxgb_setup_tc_block(dev, type_data);
3396 	default:
3397 		return -EOPNOTSUPP;
3398 	}
3399 }
3400 
3401 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3402 				struct udp_tunnel_info *ti)
3403 {
3404 	struct port_info *pi = netdev_priv(netdev);
3405 	struct adapter *adapter = pi->adapter;
3406 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3407 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3408 	int ret = 0, i;
3409 
3410 	if (chip_ver < CHELSIO_T6)
3411 		return;
3412 
3413 	switch (ti->type) {
3414 	case UDP_TUNNEL_TYPE_VXLAN:
3415 		if (!adapter->vxlan_port_cnt ||
3416 		    adapter->vxlan_port != ti->port)
3417 			return; /* Invalid VxLAN destination port */
3418 
3419 		adapter->vxlan_port_cnt--;
3420 		if (adapter->vxlan_port_cnt)
3421 			return;
3422 
3423 		adapter->vxlan_port = 0;
3424 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3425 		break;
3426 	case UDP_TUNNEL_TYPE_GENEVE:
3427 		if (!adapter->geneve_port_cnt ||
3428 		    adapter->geneve_port != ti->port)
3429 			return; /* Invalid GENEVE destination port */
3430 
3431 		adapter->geneve_port_cnt--;
3432 		if (adapter->geneve_port_cnt)
3433 			return;
3434 
3435 		adapter->geneve_port = 0;
3436 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3437 		break;
3438 	default:
3439 		return;
3440 	}
3441 
3442 	/* Matchall mac entries can be deleted only after all tunnel ports
3443 	 * are brought down or removed.
3444 	 */
3445 	if (!adapter->rawf_cnt)
3446 		return;
3447 	for_each_port(adapter, i) {
3448 		pi = adap2pinfo(adapter, i);
3449 		ret = t4_free_raw_mac_filt(adapter, pi->viid,
3450 					   match_all_mac, match_all_mac,
3451 					   adapter->rawf_start +
3452 					    pi->port_id,
3453 					   1, pi->port_id, false);
3454 		if (ret < 0) {
3455 			netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3456 				    i);
3457 			return;
3458 		}
3459 	}
3460 }
3461 
3462 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3463 				struct udp_tunnel_info *ti)
3464 {
3465 	struct port_info *pi = netdev_priv(netdev);
3466 	struct adapter *adapter = pi->adapter;
3467 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3468 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3469 	int i, ret;
3470 
3471 	if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3472 		return;
3473 
3474 	switch (ti->type) {
3475 	case UDP_TUNNEL_TYPE_VXLAN:
3476 		/* Callback for adding vxlan port can be called with the same
3477 		 * port for both IPv4 and IPv6. We should not disable the
3478 		 * offloading when the same port for both protocols is added
3479 		 * and later one of them is removed.
3480 		 */
3481 		if (adapter->vxlan_port_cnt &&
3482 		    adapter->vxlan_port == ti->port) {
3483 			adapter->vxlan_port_cnt++;
3484 			return;
3485 		}
3486 
3487 		/* We will support only one VxLAN port */
3488 		if (adapter->vxlan_port_cnt) {
3489 			netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3490 				    be16_to_cpu(adapter->vxlan_port),
3491 				    be16_to_cpu(ti->port));
3492 			return;
3493 		}
3494 
3495 		adapter->vxlan_port = ti->port;
3496 		adapter->vxlan_port_cnt = 1;
3497 
3498 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3499 			     VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3500 		break;
3501 	case UDP_TUNNEL_TYPE_GENEVE:
3502 		if (adapter->geneve_port_cnt &&
3503 		    adapter->geneve_port == ti->port) {
3504 			adapter->geneve_port_cnt++;
3505 			return;
3506 		}
3507 
3508 		/* We will support only one GENEVE port */
3509 		if (adapter->geneve_port_cnt) {
3510 			netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3511 				    be16_to_cpu(adapter->geneve_port),
3512 				    be16_to_cpu(ti->port));
3513 			return;
3514 		}
3515 
3516 		adapter->geneve_port = ti->port;
3517 		adapter->geneve_port_cnt = 1;
3518 
3519 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3520 			     GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3521 		break;
3522 	default:
3523 		return;
3524 	}
3525 
3526 	/* Create a 'match all' mac filter entry for inner mac,
3527 	 * if raw mac interface is supported. Once the linux kernel provides
3528 	 * driver entry points for adding/deleting the inner mac addresses,
3529 	 * we will remove this 'match all' entry and fallback to adding
3530 	 * exact match filters.
3531 	 */
3532 	for_each_port(adapter, i) {
3533 		pi = adap2pinfo(adapter, i);
3534 
3535 		ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3536 					    match_all_mac,
3537 					    match_all_mac,
3538 					    adapter->rawf_start +
3539 					    pi->port_id,
3540 					    1, pi->port_id, false);
3541 		if (ret < 0) {
3542 			netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3543 				    be16_to_cpu(ti->port));
3544 			cxgb_del_udp_tunnel(netdev, ti);
3545 			return;
3546 		}
3547 	}
3548 }
3549 
3550 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3551 					     struct net_device *dev,
3552 					     netdev_features_t features)
3553 {
3554 	struct port_info *pi = netdev_priv(dev);
3555 	struct adapter *adapter = pi->adapter;
3556 
3557 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3558 		return features;
3559 
3560 	/* Check if hw supports offload for this packet */
3561 	if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3562 		return features;
3563 
3564 	/* Offload is not supported for this encapsulated packet */
3565 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3566 }
3567 
3568 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3569 					   netdev_features_t features)
3570 {
3571 	/* Disable GRO, if RX_CSUM is disabled */
3572 	if (!(features & NETIF_F_RXCSUM))
3573 		features &= ~NETIF_F_GRO;
3574 
3575 	return features;
3576 }
3577 
3578 static const struct net_device_ops cxgb4_netdev_ops = {
3579 	.ndo_open             = cxgb_open,
3580 	.ndo_stop             = cxgb_close,
3581 	.ndo_start_xmit       = t4_start_xmit,
3582 	.ndo_select_queue     =	cxgb_select_queue,
3583 	.ndo_get_stats64      = cxgb_get_stats,
3584 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3585 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3586 	.ndo_set_features     = cxgb_set_features,
3587 	.ndo_validate_addr    = eth_validate_addr,
3588 	.ndo_do_ioctl         = cxgb_ioctl,
3589 	.ndo_change_mtu       = cxgb_change_mtu,
3590 #ifdef CONFIG_NET_POLL_CONTROLLER
3591 	.ndo_poll_controller  = cxgb_netpoll,
3592 #endif
3593 #ifdef CONFIG_CHELSIO_T4_FCOE
3594 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3595 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3596 #endif /* CONFIG_CHELSIO_T4_FCOE */
3597 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3598 	.ndo_setup_tc         = cxgb_setup_tc,
3599 	.ndo_udp_tunnel_add   = cxgb_add_udp_tunnel,
3600 	.ndo_udp_tunnel_del   = cxgb_del_udp_tunnel,
3601 	.ndo_features_check   = cxgb_features_check,
3602 	.ndo_fix_features     = cxgb_fix_features,
3603 };
3604 
3605 #ifdef CONFIG_PCI_IOV
3606 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3607 	.ndo_open               = cxgb4_mgmt_open,
3608 	.ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3609 	.ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3610 	.ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3611 	.ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3612 	.ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3613 	.ndo_set_vf_link_state	= cxgb4_mgmt_set_vf_link_state,
3614 };
3615 #endif
3616 
3617 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3618 				   struct ethtool_drvinfo *info)
3619 {
3620 	struct adapter *adapter = netdev2adap(dev);
3621 
3622 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3623 	strlcpy(info->bus_info, pci_name(adapter->pdev),
3624 		sizeof(info->bus_info));
3625 }
3626 
3627 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3628 	.get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3629 };
3630 
3631 static void notify_fatal_err(struct work_struct *work)
3632 {
3633 	struct adapter *adap;
3634 
3635 	adap = container_of(work, struct adapter, fatal_err_notify_task);
3636 	notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3637 }
3638 
3639 void t4_fatal_err(struct adapter *adap)
3640 {
3641 	int port;
3642 
3643 	if (pci_channel_offline(adap->pdev))
3644 		return;
3645 
3646 	/* Disable the SGE since ULDs are going to free resources that
3647 	 * could be exposed to the adapter.  RDMA MWs for example...
3648 	 */
3649 	t4_shutdown_adapter(adap);
3650 	for_each_port(adap, port) {
3651 		struct net_device *dev = adap->port[port];
3652 
3653 		/* If we get here in very early initialization the network
3654 		 * devices may not have been set up yet.
3655 		 */
3656 		if (!dev)
3657 			continue;
3658 
3659 		netif_tx_stop_all_queues(dev);
3660 		netif_carrier_off(dev);
3661 	}
3662 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3663 	queue_work(adap->workq, &adap->fatal_err_notify_task);
3664 }
3665 
3666 static void setup_memwin(struct adapter *adap)
3667 {
3668 	u32 nic_win_base = t4_get_util_window(adap);
3669 
3670 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3671 }
3672 
3673 static void setup_memwin_rdma(struct adapter *adap)
3674 {
3675 	if (adap->vres.ocq.size) {
3676 		u32 start;
3677 		unsigned int sz_kb;
3678 
3679 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3680 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3681 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3682 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3683 		t4_write_reg(adap,
3684 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3685 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3686 		t4_write_reg(adap,
3687 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3688 			     adap->vres.ocq.start);
3689 		t4_read_reg(adap,
3690 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3691 	}
3692 }
3693 
3694 /* HMA Definitions */
3695 
3696 /* The maximum number of address that can be send in a single FW cmd */
3697 #define HMA_MAX_ADDR_IN_CMD	5
3698 
3699 #define HMA_PAGE_SIZE		PAGE_SIZE
3700 
3701 #define HMA_MAX_NO_FW_ADDRESS	(16 << 10)  /* FW supports 16K addresses */
3702 
3703 #define HMA_PAGE_ORDER					\
3704 	((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?	\
3705 	ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3706 
3707 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3708  * configuration(in units of MB).
3709  */
3710 #define HMA_MIN_TOTAL_SIZE	1
3711 #define HMA_MAX_TOTAL_SIZE				\
3712 	(((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *		\
3713 	  HMA_MAX_NO_FW_ADDRESS) >> 20)
3714 
3715 static void adap_free_hma_mem(struct adapter *adapter)
3716 {
3717 	struct scatterlist *iter;
3718 	struct page *page;
3719 	int i;
3720 
3721 	if (!adapter->hma.sgt)
3722 		return;
3723 
3724 	if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3725 		dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3726 			     adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3727 		adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3728 	}
3729 
3730 	for_each_sg(adapter->hma.sgt->sgl, iter,
3731 		    adapter->hma.sgt->orig_nents, i) {
3732 		page = sg_page(iter);
3733 		if (page)
3734 			__free_pages(page, HMA_PAGE_ORDER);
3735 	}
3736 
3737 	kfree(adapter->hma.phy_addr);
3738 	sg_free_table(adapter->hma.sgt);
3739 	kfree(adapter->hma.sgt);
3740 	adapter->hma.sgt = NULL;
3741 }
3742 
3743 static int adap_config_hma(struct adapter *adapter)
3744 {
3745 	struct scatterlist *sgl, *iter;
3746 	struct sg_table *sgt;
3747 	struct page *newpage;
3748 	unsigned int i, j, k;
3749 	u32 param, hma_size;
3750 	unsigned int ncmds;
3751 	size_t page_size;
3752 	u32 page_order;
3753 	int node, ret;
3754 
3755 	/* HMA is supported only for T6+ cards.
3756 	 * Avoid initializing HMA in kdump kernels.
3757 	 */
3758 	if (is_kdump_kernel() ||
3759 	    CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3760 		return 0;
3761 
3762 	/* Get the HMA region size required by fw */
3763 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3764 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3765 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3766 			      1, &param, &hma_size);
3767 	/* An error means card has its own memory or HMA is not supported by
3768 	 * the firmware. Return without any errors.
3769 	 */
3770 	if (ret || !hma_size)
3771 		return 0;
3772 
3773 	if (hma_size < HMA_MIN_TOTAL_SIZE ||
3774 	    hma_size > HMA_MAX_TOTAL_SIZE) {
3775 		dev_err(adapter->pdev_dev,
3776 			"HMA size %uMB beyond bounds(%u-%lu)MB\n",
3777 			hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3778 		return -EINVAL;
3779 	}
3780 
3781 	page_size = HMA_PAGE_SIZE;
3782 	page_order = HMA_PAGE_ORDER;
3783 	adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3784 	if (unlikely(!adapter->hma.sgt)) {
3785 		dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3786 		return -ENOMEM;
3787 	}
3788 	sgt = adapter->hma.sgt;
3789 	/* FW returned value will be in MB's
3790 	 */
3791 	sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3792 	if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3793 		dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3794 		kfree(adapter->hma.sgt);
3795 		adapter->hma.sgt = NULL;
3796 		return -ENOMEM;
3797 	}
3798 
3799 	sgl = adapter->hma.sgt->sgl;
3800 	node = dev_to_node(adapter->pdev_dev);
3801 	for_each_sg(sgl, iter, sgt->orig_nents, i) {
3802 		newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3803 					   __GFP_ZERO, page_order);
3804 		if (!newpage) {
3805 			dev_err(adapter->pdev_dev,
3806 				"Not enough memory for HMA page allocation\n");
3807 			ret = -ENOMEM;
3808 			goto free_hma;
3809 		}
3810 		sg_set_page(iter, newpage, page_size << page_order, 0);
3811 	}
3812 
3813 	sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3814 				DMA_BIDIRECTIONAL);
3815 	if (!sgt->nents) {
3816 		dev_err(adapter->pdev_dev,
3817 			"Not enough memory for HMA DMA mapping");
3818 		ret = -ENOMEM;
3819 		goto free_hma;
3820 	}
3821 	adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3822 
3823 	adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3824 					GFP_KERNEL);
3825 	if (unlikely(!adapter->hma.phy_addr))
3826 		goto free_hma;
3827 
3828 	for_each_sg(sgl, iter, sgt->nents, i) {
3829 		newpage = sg_page(iter);
3830 		adapter->hma.phy_addr[i] = sg_dma_address(iter);
3831 	}
3832 
3833 	ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3834 	/* Pass on the addresses to firmware */
3835 	for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3836 		struct fw_hma_cmd hma_cmd;
3837 		u8 naddr = HMA_MAX_ADDR_IN_CMD;
3838 		u8 soc = 0, eoc = 0;
3839 		u8 hma_mode = 1; /* Presently we support only Page table mode */
3840 
3841 		soc = (i == 0) ? 1 : 0;
3842 		eoc = (i == ncmds - 1) ? 1 : 0;
3843 
3844 		/* For last cmd, set naddr corresponding to remaining
3845 		 * addresses
3846 		 */
3847 		if (i == ncmds - 1) {
3848 			naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3849 			naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3850 		}
3851 		memset(&hma_cmd, 0, sizeof(hma_cmd));
3852 		hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3853 				       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3854 		hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3855 
3856 		hma_cmd.mode_to_pcie_params =
3857 			htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3858 			      FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3859 
3860 		/* HMA cmd size specified in MB's */
3861 		hma_cmd.naddr_size =
3862 			htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3863 			      FW_HMA_CMD_NADDR_V(naddr));
3864 
3865 		/* Total Page size specified in units of 4K */
3866 		hma_cmd.addr_size_pkd =
3867 			htonl(FW_HMA_CMD_ADDR_SIZE_V
3868 				((page_size << page_order) >> 12));
3869 
3870 		/* Fill the 5 addresses */
3871 		for (j = 0; j < naddr; j++) {
3872 			hma_cmd.phy_address[j] =
3873 				cpu_to_be64(adapter->hma.phy_addr[j + k]);
3874 		}
3875 		ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3876 				 sizeof(hma_cmd), &hma_cmd);
3877 		if (ret) {
3878 			dev_err(adapter->pdev_dev,
3879 				"HMA FW command failed with err %d\n", ret);
3880 			goto free_hma;
3881 		}
3882 	}
3883 
3884 	if (!ret)
3885 		dev_info(adapter->pdev_dev,
3886 			 "Reserved %uMB host memory for HMA\n", hma_size);
3887 	return ret;
3888 
3889 free_hma:
3890 	adap_free_hma_mem(adapter);
3891 	return ret;
3892 }
3893 
3894 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3895 {
3896 	u32 v;
3897 	int ret;
3898 
3899 	/* Now that we've successfully configured and initialized the adapter
3900 	 * can ask the Firmware what resources it has provisioned for us.
3901 	 */
3902 	ret = t4_get_pfres(adap);
3903 	if (ret) {
3904 		dev_err(adap->pdev_dev,
3905 			"Unable to retrieve resource provisioning information\n");
3906 		return ret;
3907 	}
3908 
3909 	/* get device capabilities */
3910 	memset(c, 0, sizeof(*c));
3911 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3912 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3913 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3914 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3915 	if (ret < 0)
3916 		return ret;
3917 
3918 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3919 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3920 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3921 	if (ret < 0)
3922 		return ret;
3923 
3924 	ret = t4_config_glbl_rss(adap, adap->pf,
3925 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3926 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3927 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3928 	if (ret < 0)
3929 		return ret;
3930 
3931 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3932 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3933 			  FW_CMD_CAP_PF);
3934 	if (ret < 0)
3935 		return ret;
3936 
3937 	t4_sge_init(adap);
3938 
3939 	/* tweak some settings */
3940 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3941 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3942 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3943 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3944 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3945 
3946 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3947 	adap->params.tp.tx_modq_map = 0xE4;
3948 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3949 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3950 
3951 	/* associate each Tx modulation queue with consecutive Tx channels */
3952 	v = 0x84218421;
3953 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3954 			  &v, 1, TP_TX_SCHED_HDR_A);
3955 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3956 			  &v, 1, TP_TX_SCHED_FIFO_A);
3957 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3958 			  &v, 1, TP_TX_SCHED_PCMD_A);
3959 
3960 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3961 	if (is_offload(adap)) {
3962 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3963 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3964 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3965 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3966 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3967 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3968 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3969 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3970 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3971 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3972 	}
3973 
3974 	/* get basic stuff going */
3975 	return t4_early_init(adap, adap->pf);
3976 }
3977 
3978 /*
3979  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3980  */
3981 #define MAX_ATIDS 8192U
3982 
3983 /*
3984  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3985  *
3986  * If the firmware we're dealing with has Configuration File support, then
3987  * we use that to perform all configuration
3988  */
3989 
3990 /*
3991  * Tweak configuration based on module parameters, etc.  Most of these have
3992  * defaults assigned to them by Firmware Configuration Files (if we're using
3993  * them) but need to be explicitly set if we're using hard-coded
3994  * initialization.  But even in the case of using Firmware Configuration
3995  * Files, we'd like to expose the ability to change these via module
3996  * parameters so these are essentially common tweaks/settings for
3997  * Configuration Files and hard-coded initialization ...
3998  */
3999 static int adap_init0_tweaks(struct adapter *adapter)
4000 {
4001 	/*
4002 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
4003 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
4004 	 * 64B Cache Line Size ...
4005 	 */
4006 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4007 
4008 	/*
4009 	 * Process module parameters which affect early initialization.
4010 	 */
4011 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4012 		dev_err(&adapter->pdev->dev,
4013 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
4014 			rx_dma_offset);
4015 		rx_dma_offset = 2;
4016 	}
4017 	t4_set_reg_field(adapter, SGE_CONTROL_A,
4018 			 PKTSHIFT_V(PKTSHIFT_M),
4019 			 PKTSHIFT_V(rx_dma_offset));
4020 
4021 	/*
4022 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4023 	 * adds the pseudo header itself.
4024 	 */
4025 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
4026 			       CSUM_HAS_PSEUDO_HDR_F, 0);
4027 
4028 	return 0;
4029 }
4030 
4031 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4032  * unto themselves and they contain their own firmware to perform their
4033  * tasks ...
4034  */
4035 static int phy_aq1202_version(const u8 *phy_fw_data,
4036 			      size_t phy_fw_size)
4037 {
4038 	int offset;
4039 
4040 	/* At offset 0x8 you're looking for the primary image's
4041 	 * starting offset which is 3 Bytes wide
4042 	 *
4043 	 * At offset 0xa of the primary image, you look for the offset
4044 	 * of the DRAM segment which is 3 Bytes wide.
4045 	 *
4046 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4047 	 * wide
4048 	 */
4049 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
4050 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4051 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
4052 
4053 	offset = le24(phy_fw_data + 0x8) << 12;
4054 	offset = le24(phy_fw_data + offset + 0xa);
4055 	return be16(phy_fw_data + offset + 0x27e);
4056 
4057 	#undef be16
4058 	#undef le16
4059 	#undef le24
4060 }
4061 
4062 static struct info_10gbt_phy_fw {
4063 	unsigned int phy_fw_id;		/* PCI Device ID */
4064 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
4065 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4066 	int phy_flash;			/* Has FLASH for PHY Firmware */
4067 } phy_info_array[] = {
4068 	{
4069 		PHY_AQ1202_DEVICEID,
4070 		PHY_AQ1202_FIRMWARE,
4071 		phy_aq1202_version,
4072 		1,
4073 	},
4074 	{
4075 		PHY_BCM84834_DEVICEID,
4076 		PHY_BCM84834_FIRMWARE,
4077 		NULL,
4078 		0,
4079 	},
4080 	{ 0, NULL, NULL },
4081 };
4082 
4083 static struct info_10gbt_phy_fw *find_phy_info(int devid)
4084 {
4085 	int i;
4086 
4087 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4088 		if (phy_info_array[i].phy_fw_id == devid)
4089 			return &phy_info_array[i];
4090 	}
4091 	return NULL;
4092 }
4093 
4094 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
4095  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
4096  * we return a negative error number.  If we transfer new firmware we return 1
4097  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
4098  */
4099 static int adap_init0_phy(struct adapter *adap)
4100 {
4101 	const struct firmware *phyf;
4102 	int ret;
4103 	struct info_10gbt_phy_fw *phy_info;
4104 
4105 	/* Use the device ID to determine which PHY file to flash.
4106 	 */
4107 	phy_info = find_phy_info(adap->pdev->device);
4108 	if (!phy_info) {
4109 		dev_warn(adap->pdev_dev,
4110 			 "No PHY Firmware file found for this PHY\n");
4111 		return -EOPNOTSUPP;
4112 	}
4113 
4114 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4115 	 * use that. The adapter firmware provides us with a memory buffer
4116 	 * where we can load a PHY firmware file from the host if we want to
4117 	 * override the PHY firmware File in flash.
4118 	 */
4119 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4120 				      adap->pdev_dev);
4121 	if (ret < 0) {
4122 		/* For adapters without FLASH attached to PHY for their
4123 		 * firmware, it's obviously a fatal error if we can't get the
4124 		 * firmware to the adapter.  For adapters with PHY firmware
4125 		 * FLASH storage, it's worth a warning if we can't find the
4126 		 * PHY Firmware but we'll neuter the error ...
4127 		 */
4128 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4129 			"/lib/firmware/%s, error %d\n",
4130 			phy_info->phy_fw_file, -ret);
4131 		if (phy_info->phy_flash) {
4132 			int cur_phy_fw_ver = 0;
4133 
4134 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4135 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4136 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
4137 			ret = 0;
4138 		}
4139 
4140 		return ret;
4141 	}
4142 
4143 	/* Load PHY Firmware onto adapter.
4144 	 */
4145 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
4146 			     phy_info->phy_fw_version,
4147 			     (u8 *)phyf->data, phyf->size);
4148 	if (ret < 0)
4149 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4150 			-ret);
4151 	else if (ret > 0) {
4152 		int new_phy_fw_ver = 0;
4153 
4154 		if (phy_info->phy_fw_version)
4155 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4156 								  phyf->size);
4157 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
4158 			 "Firmware /lib/firmware/%s, version %#x\n",
4159 			 phy_info->phy_fw_file, new_phy_fw_ver);
4160 	}
4161 
4162 	release_firmware(phyf);
4163 
4164 	return ret;
4165 }
4166 
4167 /*
4168  * Attempt to initialize the adapter via a Firmware Configuration File.
4169  */
4170 static int adap_init0_config(struct adapter *adapter, int reset)
4171 {
4172 	char *fw_config_file, fw_config_file_path[256];
4173 	u32 finiver, finicsum, cfcsum, param, val;
4174 	struct fw_caps_config_cmd caps_cmd;
4175 	unsigned long mtype = 0, maddr = 0;
4176 	const struct firmware *cf;
4177 	char *config_name = NULL;
4178 	int config_issued = 0;
4179 	int ret;
4180 
4181 	/*
4182 	 * Reset device if necessary.
4183 	 */
4184 	if (reset) {
4185 		ret = t4_fw_reset(adapter, adapter->mbox,
4186 				  PIORSTMODE_F | PIORST_F);
4187 		if (ret < 0)
4188 			goto bye;
4189 	}
4190 
4191 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
4192 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
4193 	 * to be performed after any global adapter RESET above since some
4194 	 * PHYs only have local RAM copies of the PHY firmware.
4195 	 */
4196 	if (is_10gbt_device(adapter->pdev->device)) {
4197 		ret = adap_init0_phy(adapter);
4198 		if (ret < 0)
4199 			goto bye;
4200 	}
4201 	/*
4202 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4203 	 * then use that.  Otherwise, use the configuration file stored
4204 	 * in the adapter flash ...
4205 	 */
4206 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4207 	case CHELSIO_T4:
4208 		fw_config_file = FW4_CFNAME;
4209 		break;
4210 	case CHELSIO_T5:
4211 		fw_config_file = FW5_CFNAME;
4212 		break;
4213 	case CHELSIO_T6:
4214 		fw_config_file = FW6_CFNAME;
4215 		break;
4216 	default:
4217 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4218 		       adapter->pdev->device);
4219 		ret = -EINVAL;
4220 		goto bye;
4221 	}
4222 
4223 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4224 	if (ret < 0) {
4225 		config_name = "On FLASH";
4226 		mtype = FW_MEMTYPE_CF_FLASH;
4227 		maddr = t4_flash_cfg_addr(adapter);
4228 	} else {
4229 		u32 params[7], val[7];
4230 
4231 		sprintf(fw_config_file_path,
4232 			"/lib/firmware/%s", fw_config_file);
4233 		config_name = fw_config_file_path;
4234 
4235 		if (cf->size >= FLASH_CFG_MAX_SIZE)
4236 			ret = -ENOMEM;
4237 		else {
4238 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4239 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4240 			ret = t4_query_params(adapter, adapter->mbox,
4241 					      adapter->pf, 0, 1, params, val);
4242 			if (ret == 0) {
4243 				/*
4244 				 * For t4_memory_rw() below addresses and
4245 				 * sizes have to be in terms of multiples of 4
4246 				 * bytes.  So, if the Configuration File isn't
4247 				 * a multiple of 4 bytes in length we'll have
4248 				 * to write that out separately since we can't
4249 				 * guarantee that the bytes following the
4250 				 * residual byte in the buffer returned by
4251 				 * request_firmware() are zeroed out ...
4252 				 */
4253 				size_t resid = cf->size & 0x3;
4254 				size_t size = cf->size & ~0x3;
4255 				__be32 *data = (__be32 *)cf->data;
4256 
4257 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4258 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4259 
4260 				spin_lock(&adapter->win0_lock);
4261 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
4262 						   size, data, T4_MEMORY_WRITE);
4263 				if (ret == 0 && resid != 0) {
4264 					union {
4265 						__be32 word;
4266 						char buf[4];
4267 					} last;
4268 					int i;
4269 
4270 					last.word = data[size >> 2];
4271 					for (i = resid; i < 4; i++)
4272 						last.buf[i] = 0;
4273 					ret = t4_memory_rw(adapter, 0, mtype,
4274 							   maddr + size,
4275 							   4, &last.word,
4276 							   T4_MEMORY_WRITE);
4277 				}
4278 				spin_unlock(&adapter->win0_lock);
4279 			}
4280 		}
4281 
4282 		release_firmware(cf);
4283 		if (ret)
4284 			goto bye;
4285 	}
4286 
4287 	val = 0;
4288 
4289 	/* Ofld + Hash filter is supported. Older fw will fail this request and
4290 	 * it is fine.
4291 	 */
4292 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4293 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4294 	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4295 			    1, &param, &val);
4296 
4297 	/* FW doesn't know about Hash filter + ofld support,
4298 	 * it's not a problem, don't return an error.
4299 	 */
4300 	if (ret < 0) {
4301 		dev_warn(adapter->pdev_dev,
4302 			 "Hash filter with ofld is not supported by FW\n");
4303 	}
4304 
4305 	/*
4306 	 * Issue a Capability Configuration command to the firmware to get it
4307 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
4308 	 * because we want the ability to modify various features after we've
4309 	 * processed the configuration file ...
4310 	 */
4311 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4312 	caps_cmd.op_to_write =
4313 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4314 		      FW_CMD_REQUEST_F |
4315 		      FW_CMD_READ_F);
4316 	caps_cmd.cfvalid_to_len16 =
4317 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4318 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4319 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4320 		      FW_LEN16(caps_cmd));
4321 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4322 			 &caps_cmd);
4323 
4324 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4325 	 * Configuration File in FLASH), our last gasp effort is to use the
4326 	 * Firmware Configuration File which is embedded in the firmware.  A
4327 	 * very few early versions of the firmware didn't have one embedded
4328 	 * but we can ignore those.
4329 	 */
4330 	if (ret == -ENOENT) {
4331 		memset(&caps_cmd, 0, sizeof(caps_cmd));
4332 		caps_cmd.op_to_write =
4333 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4334 					FW_CMD_REQUEST_F |
4335 					FW_CMD_READ_F);
4336 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4337 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4338 				sizeof(caps_cmd), &caps_cmd);
4339 		config_name = "Firmware Default";
4340 	}
4341 
4342 	config_issued = 1;
4343 	if (ret < 0)
4344 		goto bye;
4345 
4346 	finiver = ntohl(caps_cmd.finiver);
4347 	finicsum = ntohl(caps_cmd.finicsum);
4348 	cfcsum = ntohl(caps_cmd.cfcsum);
4349 	if (finicsum != cfcsum)
4350 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4351 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4352 			 finicsum, cfcsum);
4353 
4354 	/*
4355 	 * And now tell the firmware to use the configuration we just loaded.
4356 	 */
4357 	caps_cmd.op_to_write =
4358 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4359 		      FW_CMD_REQUEST_F |
4360 		      FW_CMD_WRITE_F);
4361 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4362 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4363 			 NULL);
4364 	if (ret < 0)
4365 		goto bye;
4366 
4367 	/*
4368 	 * Tweak configuration based on system architecture, module
4369 	 * parameters, etc.
4370 	 */
4371 	ret = adap_init0_tweaks(adapter);
4372 	if (ret < 0)
4373 		goto bye;
4374 
4375 	/* We will proceed even if HMA init fails. */
4376 	ret = adap_config_hma(adapter);
4377 	if (ret)
4378 		dev_err(adapter->pdev_dev,
4379 			"HMA configuration failed with error %d\n", ret);
4380 
4381 	if (is_t6(adapter->params.chip)) {
4382 		adap_config_hpfilter(adapter);
4383 		ret = setup_ppod_edram(adapter);
4384 		if (!ret)
4385 			dev_info(adapter->pdev_dev, "Successfully enabled "
4386 				 "ppod edram feature\n");
4387 	}
4388 
4389 	/*
4390 	 * And finally tell the firmware to initialize itself using the
4391 	 * parameters from the Configuration File.
4392 	 */
4393 	ret = t4_fw_initialize(adapter, adapter->mbox);
4394 	if (ret < 0)
4395 		goto bye;
4396 
4397 	/* Emit Firmware Configuration File information and return
4398 	 * successfully.
4399 	 */
4400 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4401 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4402 		 config_name, finiver, cfcsum);
4403 	return 0;
4404 
4405 	/*
4406 	 * Something bad happened.  Return the error ...  (If the "error"
4407 	 * is that there's no Configuration File on the adapter we don't
4408 	 * want to issue a warning since this is fairly common.)
4409 	 */
4410 bye:
4411 	if (config_issued && ret != -ENOENT)
4412 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4413 			 config_name, -ret);
4414 	return ret;
4415 }
4416 
4417 static struct fw_info fw_info_array[] = {
4418 	{
4419 		.chip = CHELSIO_T4,
4420 		.fs_name = FW4_CFNAME,
4421 		.fw_mod_name = FW4_FNAME,
4422 		.fw_hdr = {
4423 			.chip = FW_HDR_CHIP_T4,
4424 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4425 			.intfver_nic = FW_INTFVER(T4, NIC),
4426 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4427 			.intfver_ri = FW_INTFVER(T4, RI),
4428 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4429 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4430 		},
4431 	}, {
4432 		.chip = CHELSIO_T5,
4433 		.fs_name = FW5_CFNAME,
4434 		.fw_mod_name = FW5_FNAME,
4435 		.fw_hdr = {
4436 			.chip = FW_HDR_CHIP_T5,
4437 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4438 			.intfver_nic = FW_INTFVER(T5, NIC),
4439 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4440 			.intfver_ri = FW_INTFVER(T5, RI),
4441 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4442 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4443 		},
4444 	}, {
4445 		.chip = CHELSIO_T6,
4446 		.fs_name = FW6_CFNAME,
4447 		.fw_mod_name = FW6_FNAME,
4448 		.fw_hdr = {
4449 			.chip = FW_HDR_CHIP_T6,
4450 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4451 			.intfver_nic = FW_INTFVER(T6, NIC),
4452 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4453 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4454 			.intfver_ri = FW_INTFVER(T6, RI),
4455 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4456 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4457 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4458 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4459 		},
4460 	}
4461 
4462 };
4463 
4464 static struct fw_info *find_fw_info(int chip)
4465 {
4466 	int i;
4467 
4468 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4469 		if (fw_info_array[i].chip == chip)
4470 			return &fw_info_array[i];
4471 	}
4472 	return NULL;
4473 }
4474 
4475 /*
4476  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4477  */
4478 static int adap_init0(struct adapter *adap, int vpd_skip)
4479 {
4480 	struct fw_caps_config_cmd caps_cmd;
4481 	u32 params[7], val[7];
4482 	enum dev_state state;
4483 	u32 v, port_vec;
4484 	int reset = 1;
4485 	int ret;
4486 
4487 	/* Grab Firmware Device Log parameters as early as possible so we have
4488 	 * access to it for debugging, etc.
4489 	 */
4490 	ret = t4_init_devlog_params(adap);
4491 	if (ret < 0)
4492 		return ret;
4493 
4494 	/* Contact FW, advertising Master capability */
4495 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4496 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4497 	if (ret < 0) {
4498 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4499 			ret);
4500 		return ret;
4501 	}
4502 	if (ret == adap->mbox)
4503 		adap->flags |= CXGB4_MASTER_PF;
4504 
4505 	/*
4506 	 * If we're the Master PF Driver and the device is uninitialized,
4507 	 * then let's consider upgrading the firmware ...  (We always want
4508 	 * to check the firmware version number in order to A. get it for
4509 	 * later reporting and B. to warn if the currently loaded firmware
4510 	 * is excessively mismatched relative to the driver.)
4511 	 */
4512 
4513 	t4_get_version_info(adap);
4514 	ret = t4_check_fw_version(adap);
4515 	/* If firmware is too old (not supported by driver) force an update. */
4516 	if (ret)
4517 		state = DEV_STATE_UNINIT;
4518 	if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4519 		struct fw_info *fw_info;
4520 		struct fw_hdr *card_fw;
4521 		const struct firmware *fw;
4522 		const u8 *fw_data = NULL;
4523 		unsigned int fw_size = 0;
4524 
4525 		/* This is the firmware whose headers the driver was compiled
4526 		 * against
4527 		 */
4528 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4529 		if (fw_info == NULL) {
4530 			dev_err(adap->pdev_dev,
4531 				"unable to get firmware info for chip %d.\n",
4532 				CHELSIO_CHIP_VERSION(adap->params.chip));
4533 			return -EINVAL;
4534 		}
4535 
4536 		/* allocate memory to read the header of the firmware on the
4537 		 * card
4538 		 */
4539 		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4540 		if (!card_fw) {
4541 			ret = -ENOMEM;
4542 			goto bye;
4543 		}
4544 
4545 		/* Get FW from from /lib/firmware/ */
4546 		ret = request_firmware(&fw, fw_info->fw_mod_name,
4547 				       adap->pdev_dev);
4548 		if (ret < 0) {
4549 			dev_err(adap->pdev_dev,
4550 				"unable to load firmware image %s, error %d\n",
4551 				fw_info->fw_mod_name, ret);
4552 		} else {
4553 			fw_data = fw->data;
4554 			fw_size = fw->size;
4555 		}
4556 
4557 		/* upgrade FW logic */
4558 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4559 				 state, &reset);
4560 
4561 		/* Cleaning up */
4562 		release_firmware(fw);
4563 		kvfree(card_fw);
4564 
4565 		if (ret < 0)
4566 			goto bye;
4567 	}
4568 
4569 	/* If the firmware is initialized already, emit a simply note to that
4570 	 * effect. Otherwise, it's time to try initializing the adapter.
4571 	 */
4572 	if (state == DEV_STATE_INIT) {
4573 		ret = adap_config_hma(adap);
4574 		if (ret)
4575 			dev_err(adap->pdev_dev,
4576 				"HMA configuration failed with error %d\n",
4577 				ret);
4578 		dev_info(adap->pdev_dev, "Coming up as %s: "\
4579 			 "Adapter already initialized\n",
4580 			 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4581 	} else {
4582 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4583 			 "Initializing adapter\n");
4584 
4585 		/* Find out whether we're dealing with a version of the
4586 		 * firmware which has configuration file support.
4587 		 */
4588 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4589 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4590 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4591 				      params, val);
4592 
4593 		/* If the firmware doesn't support Configuration Files,
4594 		 * return an error.
4595 		 */
4596 		if (ret < 0) {
4597 			dev_err(adap->pdev_dev, "firmware doesn't support "
4598 				"Firmware Configuration Files\n");
4599 			goto bye;
4600 		}
4601 
4602 		/* The firmware provides us with a memory buffer where we can
4603 		 * load a Configuration File from the host if we want to
4604 		 * override the Configuration File in flash.
4605 		 */
4606 		ret = adap_init0_config(adap, reset);
4607 		if (ret == -ENOENT) {
4608 			dev_err(adap->pdev_dev, "no Configuration File "
4609 				"present on adapter.\n");
4610 			goto bye;
4611 		}
4612 		if (ret < 0) {
4613 			dev_err(adap->pdev_dev, "could not initialize "
4614 				"adapter, error %d\n", -ret);
4615 			goto bye;
4616 		}
4617 	}
4618 
4619 	/* Now that we've successfully configured and initialized the adapter
4620 	 * (or found it already initialized), we can ask the Firmware what
4621 	 * resources it has provisioned for us.
4622 	 */
4623 	ret = t4_get_pfres(adap);
4624 	if (ret) {
4625 		dev_err(adap->pdev_dev,
4626 			"Unable to retrieve resource provisioning information\n");
4627 		goto bye;
4628 	}
4629 
4630 	/* Grab VPD parameters.  This should be done after we establish a
4631 	 * connection to the firmware since some of the VPD parameters
4632 	 * (notably the Core Clock frequency) are retrieved via requests to
4633 	 * the firmware.  On the other hand, we need these fairly early on
4634 	 * so we do this right after getting ahold of the firmware.
4635 	 *
4636 	 * We need to do this after initializing the adapter because someone
4637 	 * could have FLASHed a new VPD which won't be read by the firmware
4638 	 * until we do the RESET ...
4639 	 */
4640 	if (!vpd_skip) {
4641 		ret = t4_get_vpd_params(adap, &adap->params.vpd);
4642 		if (ret < 0)
4643 			goto bye;
4644 	}
4645 
4646 	/* Find out what ports are available to us.  Note that we need to do
4647 	 * this before calling adap_init0_no_config() since it needs nports
4648 	 * and portvec ...
4649 	 */
4650 	v =
4651 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4652 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4653 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4654 	if (ret < 0)
4655 		goto bye;
4656 
4657 	adap->params.nports = hweight32(port_vec);
4658 	adap->params.portvec = port_vec;
4659 
4660 	/* Give the SGE code a chance to pull in anything that it needs ...
4661 	 * Note that this must be called after we retrieve our VPD parameters
4662 	 * in order to know how to convert core ticks to seconds, etc.
4663 	 */
4664 	ret = t4_sge_init(adap);
4665 	if (ret < 0)
4666 		goto bye;
4667 
4668 	/* Grab the SGE Doorbell Queue Timer values.  If successful, that
4669 	 * indicates that the Firmware and Hardware support this.
4670 	 */
4671 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4672 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4673 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4674 			      1, params, val);
4675 
4676 	if (!ret) {
4677 		adap->sge.dbqtimer_tick = val[0];
4678 		ret = t4_read_sge_dbqtimers(adap,
4679 					    ARRAY_SIZE(adap->sge.dbqtimer_val),
4680 					    adap->sge.dbqtimer_val);
4681 	}
4682 
4683 	if (!ret)
4684 		adap->flags |= CXGB4_SGE_DBQ_TIMER;
4685 
4686 	if (is_bypass_device(adap->pdev->device))
4687 		adap->params.bypass = 1;
4688 
4689 	/*
4690 	 * Grab some of our basic fundamental operating parameters.
4691 	 */
4692 	params[0] = FW_PARAM_PFVF(EQ_START);
4693 	params[1] = FW_PARAM_PFVF(L2T_START);
4694 	params[2] = FW_PARAM_PFVF(L2T_END);
4695 	params[3] = FW_PARAM_PFVF(FILTER_START);
4696 	params[4] = FW_PARAM_PFVF(FILTER_END);
4697 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
4698 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4699 	if (ret < 0)
4700 		goto bye;
4701 	adap->sge.egr_start = val[0];
4702 	adap->l2t_start = val[1];
4703 	adap->l2t_end = val[2];
4704 	adap->tids.ftid_base = val[3];
4705 	adap->tids.nftids = val[4] - val[3] + 1;
4706 	adap->sge.ingr_start = val[5];
4707 
4708 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4709 		params[0] = FW_PARAM_PFVF(HPFILTER_START);
4710 		params[1] = FW_PARAM_PFVF(HPFILTER_END);
4711 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4712 				      params, val);
4713 		if (ret < 0)
4714 			goto bye;
4715 
4716 		adap->tids.hpftid_base = val[0];
4717 		adap->tids.nhpftids = val[1] - val[0] + 1;
4718 
4719 		/* Read the raw mps entries. In T6, the last 2 tcam entries
4720 		 * are reserved for raw mac addresses (rawf = 2, one per port).
4721 		 */
4722 		params[0] = FW_PARAM_PFVF(RAWF_START);
4723 		params[1] = FW_PARAM_PFVF(RAWF_END);
4724 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4725 				      params, val);
4726 		if (ret == 0) {
4727 			adap->rawf_start = val[0];
4728 			adap->rawf_cnt = val[1] - val[0] + 1;
4729 		}
4730 
4731 		adap->tids.tid_base =
4732 			t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A);
4733 	}
4734 
4735 	/* qids (ingress/egress) returned from firmware can be anywhere
4736 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4737 	 * Hence driver needs to allocate memory for this range to
4738 	 * store the queue info. Get the highest IQFLINT/EQ index returned
4739 	 * in FW_EQ_*_CMD.alloc command.
4740 	 */
4741 	params[0] = FW_PARAM_PFVF(EQ_END);
4742 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
4743 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4744 	if (ret < 0)
4745 		goto bye;
4746 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4747 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4748 
4749 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4750 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
4751 	if (!adap->sge.egr_map) {
4752 		ret = -ENOMEM;
4753 		goto bye;
4754 	}
4755 
4756 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4757 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4758 	if (!adap->sge.ingr_map) {
4759 		ret = -ENOMEM;
4760 		goto bye;
4761 	}
4762 
4763 	/* Allocate the memory for the vaious egress queue bitmaps
4764 	 * ie starving_fl, txq_maperr and blocked_fl.
4765 	 */
4766 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4767 					sizeof(long), GFP_KERNEL);
4768 	if (!adap->sge.starving_fl) {
4769 		ret = -ENOMEM;
4770 		goto bye;
4771 	}
4772 
4773 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4774 				       sizeof(long), GFP_KERNEL);
4775 	if (!adap->sge.txq_maperr) {
4776 		ret = -ENOMEM;
4777 		goto bye;
4778 	}
4779 
4780 #ifdef CONFIG_DEBUG_FS
4781 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4782 				       sizeof(long), GFP_KERNEL);
4783 	if (!adap->sge.blocked_fl) {
4784 		ret = -ENOMEM;
4785 		goto bye;
4786 	}
4787 #endif
4788 
4789 	params[0] = FW_PARAM_PFVF(CLIP_START);
4790 	params[1] = FW_PARAM_PFVF(CLIP_END);
4791 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4792 	if (ret < 0)
4793 		goto bye;
4794 	adap->clipt_start = val[0];
4795 	adap->clipt_end = val[1];
4796 
4797 	/* Get the supported number of traffic classes */
4798 	params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
4799 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4800 	if (ret < 0) {
4801 		/* We couldn't retrieve the number of Traffic Classes
4802 		 * supported by the hardware/firmware. So we hard
4803 		 * code it here.
4804 		 */
4805 		adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4806 	} else {
4807 		adap->params.nsched_cls = val[0];
4808 	}
4809 
4810 	/* query params related to active filter region */
4811 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4812 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4813 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4814 	/* If Active filter size is set we enable establishing
4815 	 * offload connection through firmware work request
4816 	 */
4817 	if ((val[0] != val[1]) && (ret >= 0)) {
4818 		adap->flags |= CXGB4_FW_OFLD_CONN;
4819 		adap->tids.aftid_base = val[0];
4820 		adap->tids.aftid_end = val[1];
4821 	}
4822 
4823 	/* If we're running on newer firmware, let it know that we're
4824 	 * prepared to deal with encapsulated CPL messages.  Older
4825 	 * firmware won't understand this and we'll just get
4826 	 * unencapsulated messages ...
4827 	 */
4828 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4829 	val[0] = 1;
4830 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4831 
4832 	/*
4833 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4834 	 * capability.  Earlier versions of the firmware didn't have the
4835 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4836 	 * permission to use ULPTX MEMWRITE DSGL.
4837 	 */
4838 	if (is_t4(adap->params.chip)) {
4839 		adap->params.ulptx_memwrite_dsgl = false;
4840 	} else {
4841 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4842 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4843 				      1, params, val);
4844 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4845 	}
4846 
4847 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4848 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4849 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4850 			      1, params, val);
4851 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4852 
4853 	/* See if FW supports FW_FILTER2 work request */
4854 	if (is_t4(adap->params.chip)) {
4855 		adap->params.filter2_wr_support = 0;
4856 	} else {
4857 		params[0] = FW_PARAM_DEV(FILTER2_WR);
4858 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4859 				      1, params, val);
4860 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4861 	}
4862 
4863 	/* Check if FW supports returning vin and smt index.
4864 	 * If this is not supported, driver will interpret
4865 	 * these values from viid.
4866 	 */
4867 	params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
4868 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4869 			      1, params, val);
4870 	adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
4871 
4872 	/*
4873 	 * Get device capabilities so we can determine what resources we need
4874 	 * to manage.
4875 	 */
4876 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4877 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4878 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
4879 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4880 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4881 			 &caps_cmd);
4882 	if (ret < 0)
4883 		goto bye;
4884 
4885 	/* hash filter has some mandatory register settings to be tested and for
4886 	 * that it needs to test whether offload is enabled or not, hence
4887 	 * checking and setting it here.
4888 	 */
4889 	if (caps_cmd.ofldcaps)
4890 		adap->params.offload = 1;
4891 
4892 	if (caps_cmd.ofldcaps ||
4893 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
4894 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
4895 		/* query offload-related parameters */
4896 		params[0] = FW_PARAM_DEV(NTID);
4897 		params[1] = FW_PARAM_PFVF(SERVER_START);
4898 		params[2] = FW_PARAM_PFVF(SERVER_END);
4899 		params[3] = FW_PARAM_PFVF(TDDP_START);
4900 		params[4] = FW_PARAM_PFVF(TDDP_END);
4901 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4902 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4903 				      params, val);
4904 		if (ret < 0)
4905 			goto bye;
4906 		adap->tids.ntids = val[0];
4907 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4908 		adap->tids.stid_base = val[1];
4909 		adap->tids.nstids = val[2] - val[1] + 1;
4910 		/*
4911 		 * Setup server filter region. Divide the available filter
4912 		 * region into two parts. Regular filters get 1/3rd and server
4913 		 * filters get 2/3rd part. This is only enabled if workarond
4914 		 * path is enabled.
4915 		 * 1. For regular filters.
4916 		 * 2. Server filter: This are special filters which are used
4917 		 * to redirect SYN packets to offload queue.
4918 		 */
4919 		if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
4920 			adap->tids.sftid_base = adap->tids.ftid_base +
4921 					DIV_ROUND_UP(adap->tids.nftids, 3);
4922 			adap->tids.nsftids = adap->tids.nftids -
4923 					 DIV_ROUND_UP(adap->tids.nftids, 3);
4924 			adap->tids.nftids = adap->tids.sftid_base -
4925 						adap->tids.ftid_base;
4926 		}
4927 		adap->vres.ddp.start = val[3];
4928 		adap->vres.ddp.size = val[4] - val[3] + 1;
4929 		adap->params.ofldq_wr_cred = val[5];
4930 
4931 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4932 			init_hash_filter(adap);
4933 		} else {
4934 			adap->num_ofld_uld += 1;
4935 		}
4936 
4937 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
4938 			params[0] = FW_PARAM_PFVF(ETHOFLD_START);
4939 			params[1] = FW_PARAM_PFVF(ETHOFLD_END);
4940 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4941 					      params, val);
4942 			if (!ret) {
4943 				adap->tids.eotid_base = val[0];
4944 				adap->tids.neotids = min_t(u32, MAX_ATIDS,
4945 							   val[1] - val[0] + 1);
4946 				adap->params.ethofld = 1;
4947 			}
4948 		}
4949 	}
4950 	if (caps_cmd.rdmacaps) {
4951 		params[0] = FW_PARAM_PFVF(STAG_START);
4952 		params[1] = FW_PARAM_PFVF(STAG_END);
4953 		params[2] = FW_PARAM_PFVF(RQ_START);
4954 		params[3] = FW_PARAM_PFVF(RQ_END);
4955 		params[4] = FW_PARAM_PFVF(PBL_START);
4956 		params[5] = FW_PARAM_PFVF(PBL_END);
4957 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4958 				      params, val);
4959 		if (ret < 0)
4960 			goto bye;
4961 		adap->vres.stag.start = val[0];
4962 		adap->vres.stag.size = val[1] - val[0] + 1;
4963 		adap->vres.rq.start = val[2];
4964 		adap->vres.rq.size = val[3] - val[2] + 1;
4965 		adap->vres.pbl.start = val[4];
4966 		adap->vres.pbl.size = val[5] - val[4] + 1;
4967 
4968 		params[0] = FW_PARAM_PFVF(SRQ_START);
4969 		params[1] = FW_PARAM_PFVF(SRQ_END);
4970 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4971 				      params, val);
4972 		if (!ret) {
4973 			adap->vres.srq.start = val[0];
4974 			adap->vres.srq.size = val[1] - val[0] + 1;
4975 		}
4976 		if (adap->vres.srq.size) {
4977 			adap->srq = t4_init_srq(adap->vres.srq.size);
4978 			if (!adap->srq)
4979 				dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4980 		}
4981 
4982 		params[0] = FW_PARAM_PFVF(SQRQ_START);
4983 		params[1] = FW_PARAM_PFVF(SQRQ_END);
4984 		params[2] = FW_PARAM_PFVF(CQ_START);
4985 		params[3] = FW_PARAM_PFVF(CQ_END);
4986 		params[4] = FW_PARAM_PFVF(OCQ_START);
4987 		params[5] = FW_PARAM_PFVF(OCQ_END);
4988 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4989 				      val);
4990 		if (ret < 0)
4991 			goto bye;
4992 		adap->vres.qp.start = val[0];
4993 		adap->vres.qp.size = val[1] - val[0] + 1;
4994 		adap->vres.cq.start = val[2];
4995 		adap->vres.cq.size = val[3] - val[2] + 1;
4996 		adap->vres.ocq.start = val[4];
4997 		adap->vres.ocq.size = val[5] - val[4] + 1;
4998 
4999 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
5000 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5001 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
5002 				      val);
5003 		if (ret < 0) {
5004 			adap->params.max_ordird_qp = 8;
5005 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
5006 			ret = 0;
5007 		} else {
5008 			adap->params.max_ordird_qp = val[0];
5009 			adap->params.max_ird_adapter = val[1];
5010 		}
5011 		dev_info(adap->pdev_dev,
5012 			 "max_ordird_qp %d max_ird_adapter %d\n",
5013 			 adap->params.max_ordird_qp,
5014 			 adap->params.max_ird_adapter);
5015 
5016 		/* Enable write_with_immediate if FW supports it */
5017 		params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
5018 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5019 				      val);
5020 		adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
5021 
5022 		/* Enable write_cmpl if FW supports it */
5023 		params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
5024 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
5025 				      val);
5026 		adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
5027 		adap->num_ofld_uld += 2;
5028 	}
5029 	if (caps_cmd.iscsicaps) {
5030 		params[0] = FW_PARAM_PFVF(ISCSI_START);
5031 		params[1] = FW_PARAM_PFVF(ISCSI_END);
5032 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5033 				      params, val);
5034 		if (ret < 0)
5035 			goto bye;
5036 		adap->vres.iscsi.start = val[0];
5037 		adap->vres.iscsi.size = val[1] - val[0] + 1;
5038 		if (is_t6(adap->params.chip)) {
5039 			params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5040 			params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5041 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5042 					      params, val);
5043 			if (!ret) {
5044 				adap->vres.ppod_edram.start = val[0];
5045 				adap->vres.ppod_edram.size =
5046 					val[1] - val[0] + 1;
5047 
5048 				dev_info(adap->pdev_dev,
5049 					 "ppod edram start 0x%x end 0x%x size 0x%x\n",
5050 					 val[0], val[1],
5051 					 adap->vres.ppod_edram.size);
5052 			}
5053 		}
5054 		/* LIO target and cxgb4i initiaitor */
5055 		adap->num_ofld_uld += 2;
5056 	}
5057 	if (caps_cmd.cryptocaps) {
5058 		if (ntohs(caps_cmd.cryptocaps) &
5059 		    FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5060 			params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5061 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5062 					      2, params, val);
5063 			if (ret < 0) {
5064 				if (ret != -EINVAL)
5065 					goto bye;
5066 			} else {
5067 				adap->vres.ncrypto_fc = val[0];
5068 			}
5069 			adap->num_ofld_uld += 1;
5070 		}
5071 		if (ntohs(caps_cmd.cryptocaps) &
5072 		    FW_CAPS_CONFIG_TLS_INLINE) {
5073 			params[0] = FW_PARAM_PFVF(TLS_START);
5074 			params[1] = FW_PARAM_PFVF(TLS_END);
5075 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5076 					      2, params, val);
5077 			if (ret < 0)
5078 				goto bye;
5079 			adap->vres.key.start = val[0];
5080 			adap->vres.key.size = val[1] - val[0] + 1;
5081 			adap->num_uld += 1;
5082 		}
5083 		adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5084 	}
5085 
5086 	/* The MTU/MSS Table is initialized by now, so load their values.  If
5087 	 * we're initializing the adapter, then we'll make any modifications
5088 	 * we want to the MTU/MSS Table and also initialize the congestion
5089 	 * parameters.
5090 	 */
5091 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5092 	if (state != DEV_STATE_INIT) {
5093 		int i;
5094 
5095 		/* The default MTU Table contains values 1492 and 1500.
5096 		 * However, for TCP, it's better to have two values which are
5097 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5098 		 * This allows us to have a TCP Data Payload which is a
5099 		 * multiple of 8 regardless of what combination of TCP Options
5100 		 * are in use (always a multiple of 4 bytes) which is
5101 		 * important for performance reasons.  For instance, if no
5102 		 * options are in use, then we have a 20-byte IP header and a
5103 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
5104 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5105 		 * which is not a multiple of 8.  So using an MSS of 1488 in
5106 		 * this case results in a TCP Data Payload of 1448 bytes which
5107 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5108 		 * Stamps have been negotiated, then an MTU of 1500 bytes
5109 		 * results in a TCP Data Payload of 1448 bytes which, as
5110 		 * above, is a multiple of 8 bytes ...
5111 		 */
5112 		for (i = 0; i < NMTUS; i++)
5113 			if (adap->params.mtus[i] == 1492) {
5114 				adap->params.mtus[i] = 1488;
5115 				break;
5116 			}
5117 
5118 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5119 			     adap->params.b_wnd);
5120 	}
5121 	t4_init_sge_params(adap);
5122 	adap->flags |= CXGB4_FW_OK;
5123 	t4_init_tp_params(adap, true);
5124 	return 0;
5125 
5126 	/*
5127 	 * Something bad happened.  If a command timed out or failed with EIO
5128 	 * FW does not operate within its spec or something catastrophic
5129 	 * happened to HW/FW, stop issuing commands.
5130 	 */
5131 bye:
5132 	adap_free_hma_mem(adap);
5133 	kfree(adap->sge.egr_map);
5134 	kfree(adap->sge.ingr_map);
5135 	kfree(adap->sge.starving_fl);
5136 	kfree(adap->sge.txq_maperr);
5137 #ifdef CONFIG_DEBUG_FS
5138 	kfree(adap->sge.blocked_fl);
5139 #endif
5140 	if (ret != -ETIMEDOUT && ret != -EIO)
5141 		t4_fw_bye(adap, adap->mbox);
5142 	return ret;
5143 }
5144 
5145 /* EEH callbacks */
5146 
5147 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5148 					 pci_channel_state_t state)
5149 {
5150 	int i;
5151 	struct adapter *adap = pci_get_drvdata(pdev);
5152 
5153 	if (!adap)
5154 		goto out;
5155 
5156 	rtnl_lock();
5157 	adap->flags &= ~CXGB4_FW_OK;
5158 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5159 	spin_lock(&adap->stats_lock);
5160 	for_each_port(adap, i) {
5161 		struct net_device *dev = adap->port[i];
5162 		if (dev) {
5163 			netif_device_detach(dev);
5164 			netif_carrier_off(dev);
5165 		}
5166 	}
5167 	spin_unlock(&adap->stats_lock);
5168 	disable_interrupts(adap);
5169 	if (adap->flags & CXGB4_FULL_INIT_DONE)
5170 		cxgb_down(adap);
5171 	rtnl_unlock();
5172 	if ((adap->flags & CXGB4_DEV_ENABLED)) {
5173 		pci_disable_device(pdev);
5174 		adap->flags &= ~CXGB4_DEV_ENABLED;
5175 	}
5176 out:	return state == pci_channel_io_perm_failure ?
5177 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5178 }
5179 
5180 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5181 {
5182 	int i, ret;
5183 	struct fw_caps_config_cmd c;
5184 	struct adapter *adap = pci_get_drvdata(pdev);
5185 
5186 	if (!adap) {
5187 		pci_restore_state(pdev);
5188 		pci_save_state(pdev);
5189 		return PCI_ERS_RESULT_RECOVERED;
5190 	}
5191 
5192 	if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5193 		if (pci_enable_device(pdev)) {
5194 			dev_err(&pdev->dev, "Cannot reenable PCI "
5195 					    "device after reset\n");
5196 			return PCI_ERS_RESULT_DISCONNECT;
5197 		}
5198 		adap->flags |= CXGB4_DEV_ENABLED;
5199 	}
5200 
5201 	pci_set_master(pdev);
5202 	pci_restore_state(pdev);
5203 	pci_save_state(pdev);
5204 
5205 	if (t4_wait_dev_ready(adap->regs) < 0)
5206 		return PCI_ERS_RESULT_DISCONNECT;
5207 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5208 		return PCI_ERS_RESULT_DISCONNECT;
5209 	adap->flags |= CXGB4_FW_OK;
5210 	if (adap_init1(adap, &c))
5211 		return PCI_ERS_RESULT_DISCONNECT;
5212 
5213 	for_each_port(adap, i) {
5214 		struct port_info *pi = adap2pinfo(adap, i);
5215 		u8 vivld = 0, vin = 0;
5216 
5217 		ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5218 				  NULL, NULL, &vivld, &vin);
5219 		if (ret < 0)
5220 			return PCI_ERS_RESULT_DISCONNECT;
5221 		pi->viid = ret;
5222 		pi->xact_addr_filt = -1;
5223 		/* If fw supports returning the VIN as part of FW_VI_CMD,
5224 		 * save the returned values.
5225 		 */
5226 		if (adap->params.viid_smt_extn_support) {
5227 			pi->vivld = vivld;
5228 			pi->vin = vin;
5229 		} else {
5230 			/* Retrieve the values from VIID */
5231 			pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5232 			pi->vin = FW_VIID_VIN_G(pi->viid);
5233 		}
5234 	}
5235 
5236 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5237 		     adap->params.b_wnd);
5238 	setup_memwin(adap);
5239 	if (cxgb_up(adap))
5240 		return PCI_ERS_RESULT_DISCONNECT;
5241 	return PCI_ERS_RESULT_RECOVERED;
5242 }
5243 
5244 static void eeh_resume(struct pci_dev *pdev)
5245 {
5246 	int i;
5247 	struct adapter *adap = pci_get_drvdata(pdev);
5248 
5249 	if (!adap)
5250 		return;
5251 
5252 	rtnl_lock();
5253 	for_each_port(adap, i) {
5254 		struct net_device *dev = adap->port[i];
5255 		if (dev) {
5256 			if (netif_running(dev)) {
5257 				link_start(dev);
5258 				cxgb_set_rxmode(dev);
5259 			}
5260 			netif_device_attach(dev);
5261 		}
5262 	}
5263 	rtnl_unlock();
5264 }
5265 
5266 static void eeh_reset_prepare(struct pci_dev *pdev)
5267 {
5268 	struct adapter *adapter = pci_get_drvdata(pdev);
5269 	int i;
5270 
5271 	if (adapter->pf != 4)
5272 		return;
5273 
5274 	adapter->flags &= ~CXGB4_FW_OK;
5275 
5276 	notify_ulds(adapter, CXGB4_STATE_DOWN);
5277 
5278 	for_each_port(adapter, i)
5279 		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5280 			cxgb_close(adapter->port[i]);
5281 
5282 	disable_interrupts(adapter);
5283 	cxgb4_free_mps_ref_entries(adapter);
5284 
5285 	adap_free_hma_mem(adapter);
5286 
5287 	if (adapter->flags & CXGB4_FULL_INIT_DONE)
5288 		cxgb_down(adapter);
5289 }
5290 
5291 static void eeh_reset_done(struct pci_dev *pdev)
5292 {
5293 	struct adapter *adapter = pci_get_drvdata(pdev);
5294 	int err, i;
5295 
5296 	if (adapter->pf != 4)
5297 		return;
5298 
5299 	err = t4_wait_dev_ready(adapter->regs);
5300 	if (err < 0) {
5301 		dev_err(adapter->pdev_dev,
5302 			"Device not ready, err %d", err);
5303 		return;
5304 	}
5305 
5306 	setup_memwin(adapter);
5307 
5308 	err = adap_init0(adapter, 1);
5309 	if (err) {
5310 		dev_err(adapter->pdev_dev,
5311 			"Adapter init failed, err %d", err);
5312 		return;
5313 	}
5314 
5315 	setup_memwin_rdma(adapter);
5316 
5317 	if (adapter->flags & CXGB4_FW_OK) {
5318 		err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5319 		if (err) {
5320 			dev_err(adapter->pdev_dev,
5321 				"Port init failed, err %d", err);
5322 			return;
5323 		}
5324 	}
5325 
5326 	err = cfg_queues(adapter);
5327 	if (err) {
5328 		dev_err(adapter->pdev_dev,
5329 			"Config queues failed, err %d", err);
5330 		return;
5331 	}
5332 
5333 	cxgb4_init_mps_ref_entries(adapter);
5334 
5335 	err = setup_fw_sge_queues(adapter);
5336 	if (err) {
5337 		dev_err(adapter->pdev_dev,
5338 			"FW sge queue allocation failed, err %d", err);
5339 		return;
5340 	}
5341 
5342 	for_each_port(adapter, i)
5343 		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5344 			cxgb_open(adapter->port[i]);
5345 }
5346 
5347 static const struct pci_error_handlers cxgb4_eeh = {
5348 	.error_detected = eeh_err_detected,
5349 	.slot_reset     = eeh_slot_reset,
5350 	.resume         = eeh_resume,
5351 	.reset_prepare  = eeh_reset_prepare,
5352 	.reset_done     = eeh_reset_done,
5353 };
5354 
5355 /* Return true if the Link Configuration supports "High Speeds" (those greater
5356  * than 1Gb/s).
5357  */
5358 static inline bool is_x_10g_port(const struct link_config *lc)
5359 {
5360 	unsigned int speeds, high_speeds;
5361 
5362 	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5363 	high_speeds = speeds &
5364 			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5365 
5366 	return high_speeds != 0;
5367 }
5368 
5369 /* Perform default configuration of DMA queues depending on the number and type
5370  * of ports we found and the number of available CPUs.  Most settings can be
5371  * modified by the admin prior to actual use.
5372  */
5373 static int cfg_queues(struct adapter *adap)
5374 {
5375 	u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5376 	u32 niqflint, neq, num_ulds;
5377 	struct sge *s = &adap->sge;
5378 	u32 i, n10g = 0, qidx = 0;
5379 #ifndef CONFIG_CHELSIO_T4_DCB
5380 	int q10g = 0;
5381 #endif
5382 
5383 	/* Reduce memory usage in kdump environment, disable all offload. */
5384 	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5385 		adap->params.offload = 0;
5386 		adap->params.crypto = 0;
5387 		adap->params.ethofld = 0;
5388 	}
5389 
5390 	/* Calculate the number of Ethernet Queue Sets available based on
5391 	 * resources provisioned for us.  We always have an Asynchronous
5392 	 * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
5393 	 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5394 	 * Ingress Queue.  Meanwhile, we need two Egress Queues for each
5395 	 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5396 	 *
5397 	 * Note that we should also take into account all of the various
5398 	 * Offload Queues.  But, in any situation where we're operating in
5399 	 * a Resource Constrained Provisioning environment, doing any Offload
5400 	 * at all is problematic ...
5401 	 */
5402 	niqflint = adap->params.pfres.niqflint - 1;
5403 	if (!(adap->flags & CXGB4_USING_MSIX))
5404 		niqflint--;
5405 	neq = adap->params.pfres.neq / 2;
5406 	avail_qsets = min(niqflint, neq);
5407 
5408 	if (avail_qsets < adap->params.nports) {
5409 		dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5410 			avail_qsets, adap->params.nports);
5411 		return -ENOMEM;
5412 	}
5413 
5414 	/* Count the number of 10Gb/s or better ports */
5415 	for_each_port(adap, i)
5416 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5417 
5418 	avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5419 #ifdef CONFIG_CHELSIO_T4_DCB
5420 	/* For Data Center Bridging support we need to be able to support up
5421 	 * to 8 Traffic Priorities; each of which will be assigned to its
5422 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
5423 	 */
5424 	if (adap->params.nports * 8 > avail_eth_qsets) {
5425 		dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5426 			avail_eth_qsets, adap->params.nports * 8);
5427 		return -ENOMEM;
5428 	}
5429 
5430 	for_each_port(adap, i) {
5431 		struct port_info *pi = adap2pinfo(adap, i);
5432 
5433 		pi->first_qset = qidx;
5434 		pi->nqsets = is_kdump_kernel() ? 1 : 8;
5435 		qidx += pi->nqsets;
5436 	}
5437 #else /* !CONFIG_CHELSIO_T4_DCB */
5438 	/* We default to 1 queue per non-10G port and up to # of cores queues
5439 	 * per 10G port.
5440 	 */
5441 	if (n10g)
5442 		q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5443 	if (q10g > netif_get_num_default_rss_queues())
5444 		q10g = netif_get_num_default_rss_queues();
5445 
5446 	if (is_kdump_kernel())
5447 		q10g = 1;
5448 
5449 	for_each_port(adap, i) {
5450 		struct port_info *pi = adap2pinfo(adap, i);
5451 
5452 		pi->first_qset = qidx;
5453 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
5454 		qidx += pi->nqsets;
5455 	}
5456 #endif /* !CONFIG_CHELSIO_T4_DCB */
5457 
5458 	s->ethqsets = qidx;
5459 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5460 	avail_qsets -= qidx;
5461 
5462 	if (is_uld(adap)) {
5463 		/* For offload we use 1 queue/channel if all ports are up to 1G,
5464 		 * otherwise we divide all available queues amongst the channels
5465 		 * capped by the number of available cores.
5466 		 */
5467 		num_ulds = adap->num_uld + adap->num_ofld_uld;
5468 		i = min_t(u32, MAX_OFLD_QSETS, num_online_cpus());
5469 		avail_uld_qsets = roundup(i, adap->params.nports);
5470 		if (avail_qsets < num_ulds * adap->params.nports) {
5471 			adap->params.offload = 0;
5472 			adap->params.crypto = 0;
5473 			s->ofldqsets = 0;
5474 		} else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5475 			s->ofldqsets = adap->params.nports;
5476 		} else {
5477 			s->ofldqsets = avail_uld_qsets;
5478 		}
5479 
5480 		avail_qsets -= num_ulds * s->ofldqsets;
5481 	}
5482 
5483 	/* ETHOFLD Queues used for QoS offload should follow same
5484 	 * allocation scheme as normal Ethernet Queues.
5485 	 */
5486 	if (is_ethofld(adap)) {
5487 		if (avail_qsets < s->max_ethqsets) {
5488 			adap->params.ethofld = 0;
5489 			s->eoqsets = 0;
5490 		} else {
5491 			s->eoqsets = s->max_ethqsets;
5492 		}
5493 		avail_qsets -= s->eoqsets;
5494 	}
5495 
5496 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5497 		struct sge_eth_rxq *r = &s->ethrxq[i];
5498 
5499 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5500 		r->fl.size = 72;
5501 	}
5502 
5503 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5504 		s->ethtxq[i].q.size = 1024;
5505 
5506 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5507 		s->ctrlq[i].q.size = 512;
5508 
5509 	if (!is_t4(adap->params.chip))
5510 		s->ptptxq.q.size = 8;
5511 
5512 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5513 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5514 
5515 	return 0;
5516 }
5517 
5518 /*
5519  * Reduce the number of Ethernet queues across all ports to at most n.
5520  * n provides at least one queue per port.
5521  */
5522 static void reduce_ethqs(struct adapter *adap, int n)
5523 {
5524 	int i;
5525 	struct port_info *pi;
5526 
5527 	while (n < adap->sge.ethqsets)
5528 		for_each_port(adap, i) {
5529 			pi = adap2pinfo(adap, i);
5530 			if (pi->nqsets > 1) {
5531 				pi->nqsets--;
5532 				adap->sge.ethqsets--;
5533 				if (adap->sge.ethqsets <= n)
5534 					break;
5535 			}
5536 		}
5537 
5538 	n = 0;
5539 	for_each_port(adap, i) {
5540 		pi = adap2pinfo(adap, i);
5541 		pi->first_qset = n;
5542 		n += pi->nqsets;
5543 	}
5544 }
5545 
5546 static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5547 {
5548 	struct msix_info *msix_info;
5549 
5550 	msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5551 	if (!msix_info)
5552 		return -ENOMEM;
5553 
5554 	adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec),
5555 					    sizeof(long), GFP_KERNEL);
5556 	if (!adap->msix_bmap.msix_bmap) {
5557 		kfree(msix_info);
5558 		return -ENOMEM;
5559 	}
5560 
5561 	spin_lock_init(&adap->msix_bmap.lock);
5562 	adap->msix_bmap.mapsize = num_vec;
5563 
5564 	adap->msix_info = msix_info;
5565 	return 0;
5566 }
5567 
5568 static void free_msix_info(struct adapter *adap)
5569 {
5570 	kfree(adap->msix_bmap.msix_bmap);
5571 	kfree(adap->msix_info);
5572 }
5573 
5574 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5575 {
5576 	struct msix_bmap *bmap = &adap->msix_bmap;
5577 	unsigned int msix_idx;
5578 	unsigned long flags;
5579 
5580 	spin_lock_irqsave(&bmap->lock, flags);
5581 	msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5582 	if (msix_idx < bmap->mapsize) {
5583 		__set_bit(msix_idx, bmap->msix_bmap);
5584 	} else {
5585 		spin_unlock_irqrestore(&bmap->lock, flags);
5586 		return -ENOSPC;
5587 	}
5588 
5589 	spin_unlock_irqrestore(&bmap->lock, flags);
5590 	return msix_idx;
5591 }
5592 
5593 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5594 				 unsigned int msix_idx)
5595 {
5596 	struct msix_bmap *bmap = &adap->msix_bmap;
5597 	unsigned long flags;
5598 
5599 	spin_lock_irqsave(&bmap->lock, flags);
5600 	__clear_bit(msix_idx, bmap->msix_bmap);
5601 	spin_unlock_irqrestore(&bmap->lock, flags);
5602 }
5603 
5604 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5605 #define EXTRA_VECS 2
5606 
5607 static int enable_msix(struct adapter *adap)
5608 {
5609 	u32 eth_need, uld_need = 0, ethofld_need = 0;
5610 	u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0;
5611 	u8 num_uld = 0, nchan = adap->params.nports;
5612 	u32 i, want, need, num_vec;
5613 	struct sge *s = &adap->sge;
5614 	struct msix_entry *entries;
5615 	struct port_info *pi;
5616 	int allocated, ret;
5617 
5618 	want = s->max_ethqsets;
5619 #ifdef CONFIG_CHELSIO_T4_DCB
5620 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5621 	 * each port.
5622 	 */
5623 	need = 8 * nchan;
5624 #else
5625 	need = nchan;
5626 #endif
5627 	eth_need = need;
5628 	if (is_uld(adap)) {
5629 		num_uld = adap->num_ofld_uld + adap->num_uld;
5630 		want += num_uld * s->ofldqsets;
5631 		uld_need = num_uld * nchan;
5632 		need += uld_need;
5633 	}
5634 
5635 	if (is_ethofld(adap)) {
5636 		want += s->eoqsets;
5637 		ethofld_need = eth_need;
5638 		need += ethofld_need;
5639 	}
5640 
5641 	want += EXTRA_VECS;
5642 	need += EXTRA_VECS;
5643 
5644 	entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5645 	if (!entries)
5646 		return -ENOMEM;
5647 
5648 	for (i = 0; i < want; i++)
5649 		entries[i].entry = i;
5650 
5651 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5652 	if (allocated < 0) {
5653 		/* Disable offload and attempt to get vectors for NIC
5654 		 * only mode.
5655 		 */
5656 		want = s->max_ethqsets + EXTRA_VECS;
5657 		need = eth_need + EXTRA_VECS;
5658 		allocated = pci_enable_msix_range(adap->pdev, entries,
5659 						  need, want);
5660 		if (allocated < 0) {
5661 			dev_info(adap->pdev_dev,
5662 				 "Disabling MSI-X due to insufficient MSI-X vectors\n");
5663 			ret = allocated;
5664 			goto out_free;
5665 		}
5666 
5667 		dev_info(adap->pdev_dev,
5668 			 "Disabling offload due to insufficient MSI-X vectors\n");
5669 		adap->params.offload = 0;
5670 		adap->params.crypto = 0;
5671 		adap->params.ethofld = 0;
5672 		s->ofldqsets = 0;
5673 		s->eoqsets = 0;
5674 		uld_need = 0;
5675 		ethofld_need = 0;
5676 	}
5677 
5678 	num_vec = allocated;
5679 	if (num_vec < want) {
5680 		/* Distribute available vectors to the various queue groups.
5681 		 * Every group gets its minimum requirement and NIC gets top
5682 		 * priority for leftovers.
5683 		 */
5684 		ethqsets = eth_need;
5685 		if (is_uld(adap))
5686 			ofldqsets = nchan;
5687 		if (is_ethofld(adap))
5688 			eoqsets = ethofld_need;
5689 
5690 		num_vec -= need;
5691 		while (num_vec) {
5692 			if (num_vec < eth_need + ethofld_need ||
5693 			    ethqsets > s->max_ethqsets)
5694 				break;
5695 
5696 			for_each_port(adap, i) {
5697 				pi = adap2pinfo(adap, i);
5698 				if (pi->nqsets < 2)
5699 					continue;
5700 
5701 				ethqsets++;
5702 				num_vec--;
5703 				if (ethofld_need) {
5704 					eoqsets++;
5705 					num_vec--;
5706 				}
5707 			}
5708 		}
5709 
5710 		if (is_uld(adap)) {
5711 			while (num_vec) {
5712 				if (num_vec < uld_need ||
5713 				    ofldqsets > s->ofldqsets)
5714 					break;
5715 
5716 				ofldqsets++;
5717 				num_vec -= uld_need;
5718 			}
5719 		}
5720 	} else {
5721 		ethqsets = s->max_ethqsets;
5722 		if (is_uld(adap))
5723 			ofldqsets = s->ofldqsets;
5724 		if (is_ethofld(adap))
5725 			eoqsets = s->eoqsets;
5726 	}
5727 
5728 	if (ethqsets < s->max_ethqsets) {
5729 		s->max_ethqsets = ethqsets;
5730 		reduce_ethqs(adap, ethqsets);
5731 	}
5732 
5733 	if (is_uld(adap)) {
5734 		s->ofldqsets = ofldqsets;
5735 		s->nqs_per_uld = s->ofldqsets;
5736 	}
5737 
5738 	if (is_ethofld(adap))
5739 		s->eoqsets = eoqsets;
5740 
5741 	/* map for msix */
5742 	ret = alloc_msix_info(adap, allocated);
5743 	if (ret)
5744 		goto out_disable_msix;
5745 
5746 	for (i = 0; i < allocated; i++) {
5747 		adap->msix_info[i].vec = entries[i].vector;
5748 		adap->msix_info[i].idx = i;
5749 	}
5750 
5751 	dev_info(adap->pdev_dev,
5752 		 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d\n",
5753 		 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld);
5754 
5755 	kfree(entries);
5756 	return 0;
5757 
5758 out_disable_msix:
5759 	pci_disable_msix(adap->pdev);
5760 
5761 out_free:
5762 	kfree(entries);
5763 	return ret;
5764 }
5765 
5766 #undef EXTRA_VECS
5767 
5768 static int init_rss(struct adapter *adap)
5769 {
5770 	unsigned int i;
5771 	int err;
5772 
5773 	err = t4_init_rss_mode(adap, adap->mbox);
5774 	if (err)
5775 		return err;
5776 
5777 	for_each_port(adap, i) {
5778 		struct port_info *pi = adap2pinfo(adap, i);
5779 
5780 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5781 		if (!pi->rss)
5782 			return -ENOMEM;
5783 	}
5784 	return 0;
5785 }
5786 
5787 /* Dump basic information about the adapter */
5788 static void print_adapter_info(struct adapter *adapter)
5789 {
5790 	/* Hardware/Firmware/etc. Version/Revision IDs */
5791 	t4_dump_version_info(adapter);
5792 
5793 	/* Software/Hardware configuration */
5794 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5795 		 is_offload(adapter) ? "R" : "",
5796 		 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
5797 		  (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
5798 		 is_offload(adapter) ? "Offload" : "non-Offload");
5799 }
5800 
5801 static void print_port_info(const struct net_device *dev)
5802 {
5803 	char buf[80];
5804 	char *bufp = buf;
5805 	const struct port_info *pi = netdev_priv(dev);
5806 	const struct adapter *adap = pi->adapter;
5807 
5808 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5809 		bufp += sprintf(bufp, "100M/");
5810 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5811 		bufp += sprintf(bufp, "1G/");
5812 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5813 		bufp += sprintf(bufp, "10G/");
5814 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5815 		bufp += sprintf(bufp, "25G/");
5816 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5817 		bufp += sprintf(bufp, "40G/");
5818 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5819 		bufp += sprintf(bufp, "50G/");
5820 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5821 		bufp += sprintf(bufp, "100G/");
5822 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5823 		bufp += sprintf(bufp, "200G/");
5824 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5825 		bufp += sprintf(bufp, "400G/");
5826 	if (bufp != buf)
5827 		--bufp;
5828 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5829 
5830 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5831 		    dev->name, adap->params.vpd.id, adap->name, buf);
5832 }
5833 
5834 /*
5835  * Free the following resources:
5836  * - memory used for tables
5837  * - MSI/MSI-X
5838  * - net devices
5839  * - resources FW is holding for us
5840  */
5841 static void free_some_resources(struct adapter *adapter)
5842 {
5843 	unsigned int i;
5844 
5845 	kvfree(adapter->smt);
5846 	kvfree(adapter->l2t);
5847 	kvfree(adapter->srq);
5848 	t4_cleanup_sched(adapter);
5849 	kvfree(adapter->tids.tid_tab);
5850 	cxgb4_cleanup_tc_matchall(adapter);
5851 	cxgb4_cleanup_tc_mqprio(adapter);
5852 	cxgb4_cleanup_tc_flower(adapter);
5853 	cxgb4_cleanup_tc_u32(adapter);
5854 	kfree(adapter->sge.egr_map);
5855 	kfree(adapter->sge.ingr_map);
5856 	kfree(adapter->sge.starving_fl);
5857 	kfree(adapter->sge.txq_maperr);
5858 #ifdef CONFIG_DEBUG_FS
5859 	kfree(adapter->sge.blocked_fl);
5860 #endif
5861 	disable_msi(adapter);
5862 
5863 	for_each_port(adapter, i)
5864 		if (adapter->port[i]) {
5865 			struct port_info *pi = adap2pinfo(adapter, i);
5866 
5867 			if (pi->viid != 0)
5868 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
5869 					   0, pi->viid);
5870 			kfree(adap2pinfo(adapter, i)->rss);
5871 			free_netdev(adapter->port[i]);
5872 		}
5873 	if (adapter->flags & CXGB4_FW_OK)
5874 		t4_fw_bye(adapter, adapter->pf);
5875 }
5876 
5877 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
5878 		   NETIF_F_GSO_UDP_L4)
5879 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5880 		   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5881 #define SEGMENT_SIZE 128
5882 
5883 static int t4_get_chip_type(struct adapter *adap, int ver)
5884 {
5885 	u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5886 
5887 	switch (ver) {
5888 	case CHELSIO_T4:
5889 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5890 	case CHELSIO_T5:
5891 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5892 	case CHELSIO_T6:
5893 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5894 	default:
5895 		break;
5896 	}
5897 	return -EINVAL;
5898 }
5899 
5900 #ifdef CONFIG_PCI_IOV
5901 static void cxgb4_mgmt_setup(struct net_device *dev)
5902 {
5903 	dev->type = ARPHRD_NONE;
5904 	dev->mtu = 0;
5905 	dev->hard_header_len = 0;
5906 	dev->addr_len = 0;
5907 	dev->tx_queue_len = 0;
5908 	dev->flags |= IFF_NOARP;
5909 	dev->priv_flags |= IFF_NO_QUEUE;
5910 
5911 	/* Initialize the device structure. */
5912 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5913 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5914 }
5915 
5916 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5917 {
5918 	struct adapter *adap = pci_get_drvdata(pdev);
5919 	int err = 0;
5920 	int current_vfs = pci_num_vf(pdev);
5921 	u32 pcie_fw;
5922 
5923 	pcie_fw = readl(adap->regs + PCIE_FW_A);
5924 	/* Check if fw is initialized */
5925 	if (!(pcie_fw & PCIE_FW_INIT_F)) {
5926 		dev_warn(&pdev->dev, "Device not initialized\n");
5927 		return -EOPNOTSUPP;
5928 	}
5929 
5930 	/* If any of the VF's is already assigned to Guest OS, then
5931 	 * SRIOV for the same cannot be modified
5932 	 */
5933 	if (current_vfs && pci_vfs_assigned(pdev)) {
5934 		dev_err(&pdev->dev,
5935 			"Cannot modify SR-IOV while VFs are assigned\n");
5936 		return current_vfs;
5937 	}
5938 	/* Note that the upper-level code ensures that we're never called with
5939 	 * a non-zero "num_vfs" when we already have VFs instantiated.  But
5940 	 * it never hurts to code defensively.
5941 	 */
5942 	if (num_vfs != 0 && current_vfs != 0)
5943 		return -EBUSY;
5944 
5945 	/* Nothing to do for no change. */
5946 	if (num_vfs == current_vfs)
5947 		return num_vfs;
5948 
5949 	/* Disable SRIOV when zero is passed. */
5950 	if (!num_vfs) {
5951 		pci_disable_sriov(pdev);
5952 		/* free VF Management Interface */
5953 		unregister_netdev(adap->port[0]);
5954 		free_netdev(adap->port[0]);
5955 		adap->port[0] = NULL;
5956 
5957 		/* free VF resources */
5958 		adap->num_vfs = 0;
5959 		kfree(adap->vfinfo);
5960 		adap->vfinfo = NULL;
5961 		return 0;
5962 	}
5963 
5964 	if (!current_vfs) {
5965 		struct fw_pfvf_cmd port_cmd, port_rpl;
5966 		struct net_device *netdev;
5967 		unsigned int pmask, port;
5968 		struct pci_dev *pbridge;
5969 		struct port_info *pi;
5970 		char name[IFNAMSIZ];
5971 		u32 devcap2;
5972 		u16 flags;
5973 
5974 		/* If we want to instantiate Virtual Functions, then our
5975 		 * parent bridge's PCI-E needs to support Alternative Routing
5976 		 * ID (ARI) because our VFs will show up at function offset 8
5977 		 * and above.
5978 		 */
5979 		pbridge = pdev->bus->self;
5980 		pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
5981 		pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
5982 
5983 		if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5984 		    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5985 			/* Our parent bridge does not support ARI so issue a
5986 			 * warning and skip instantiating the VFs.  They
5987 			 * won't be reachable.
5988 			 */
5989 			dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5990 				 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5991 				 PCI_FUNC(pbridge->devfn));
5992 			return -ENOTSUPP;
5993 		}
5994 		memset(&port_cmd, 0, sizeof(port_cmd));
5995 		port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5996 						 FW_CMD_REQUEST_F |
5997 						 FW_CMD_READ_F |
5998 						 FW_PFVF_CMD_PFN_V(adap->pf) |
5999 						 FW_PFVF_CMD_VFN_V(0));
6000 		port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
6001 		err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
6002 				 &port_rpl);
6003 		if (err)
6004 			return err;
6005 		pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
6006 		port = ffs(pmask) - 1;
6007 		/* Allocate VF Management Interface. */
6008 		snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
6009 			 adap->pf);
6010 		netdev = alloc_netdev(sizeof(struct port_info),
6011 				      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
6012 		if (!netdev)
6013 			return -ENOMEM;
6014 
6015 		pi = netdev_priv(netdev);
6016 		pi->adapter = adap;
6017 		pi->lport = port;
6018 		pi->tx_chan = port;
6019 		SET_NETDEV_DEV(netdev, &pdev->dev);
6020 
6021 		adap->port[0] = netdev;
6022 		pi->port_id = 0;
6023 
6024 		err = register_netdev(adap->port[0]);
6025 		if (err) {
6026 			pr_info("Unable to register VF mgmt netdev %s\n", name);
6027 			free_netdev(adap->port[0]);
6028 			adap->port[0] = NULL;
6029 			return err;
6030 		}
6031 		/* Allocate and set up VF Information. */
6032 		adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6033 				       sizeof(struct vf_info), GFP_KERNEL);
6034 		if (!adap->vfinfo) {
6035 			unregister_netdev(adap->port[0]);
6036 			free_netdev(adap->port[0]);
6037 			adap->port[0] = NULL;
6038 			return -ENOMEM;
6039 		}
6040 		cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6041 	}
6042 	/* Instantiate the requested number of VFs. */
6043 	err = pci_enable_sriov(pdev, num_vfs);
6044 	if (err) {
6045 		pr_info("Unable to instantiate %d VFs\n", num_vfs);
6046 		if (!current_vfs) {
6047 			unregister_netdev(adap->port[0]);
6048 			free_netdev(adap->port[0]);
6049 			adap->port[0] = NULL;
6050 			kfree(adap->vfinfo);
6051 			adap->vfinfo = NULL;
6052 		}
6053 		return err;
6054 	}
6055 
6056 	adap->num_vfs = num_vfs;
6057 	return num_vfs;
6058 }
6059 #endif /* CONFIG_PCI_IOV */
6060 
6061 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6062 {
6063 	struct net_device *netdev;
6064 	struct adapter *adapter;
6065 	static int adap_idx = 1;
6066 	int s_qpp, qpp, num_seg;
6067 	struct port_info *pi;
6068 	bool highdma = false;
6069 	enum chip_type chip;
6070 	void __iomem *regs;
6071 	int func, chip_ver;
6072 	u16 device_id;
6073 	int i, err;
6074 	u32 whoami;
6075 
6076 	err = pci_request_regions(pdev, KBUILD_MODNAME);
6077 	if (err) {
6078 		/* Just info, some other driver may have claimed the device. */
6079 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6080 		return err;
6081 	}
6082 
6083 	err = pci_enable_device(pdev);
6084 	if (err) {
6085 		dev_err(&pdev->dev, "cannot enable PCI device\n");
6086 		goto out_release_regions;
6087 	}
6088 
6089 	regs = pci_ioremap_bar(pdev, 0);
6090 	if (!regs) {
6091 		dev_err(&pdev->dev, "cannot map device registers\n");
6092 		err = -ENOMEM;
6093 		goto out_disable_device;
6094 	}
6095 
6096 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6097 	if (!adapter) {
6098 		err = -ENOMEM;
6099 		goto out_unmap_bar0;
6100 	}
6101 
6102 	adapter->regs = regs;
6103 	err = t4_wait_dev_ready(regs);
6104 	if (err < 0)
6105 		goto out_free_adapter;
6106 
6107 	/* We control everything through one PF */
6108 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6109 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6110 	chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6111 	if ((int)chip < 0) {
6112 		dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6113 		err = chip;
6114 		goto out_free_adapter;
6115 	}
6116 	chip_ver = CHELSIO_CHIP_VERSION(chip);
6117 	func = chip_ver <= CHELSIO_T5 ?
6118 	       SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6119 
6120 	adapter->pdev = pdev;
6121 	adapter->pdev_dev = &pdev->dev;
6122 	adapter->name = pci_name(pdev);
6123 	adapter->mbox = func;
6124 	adapter->pf = func;
6125 	adapter->params.chip = chip;
6126 	adapter->adap_idx = adap_idx;
6127 	adapter->msg_enable = DFLT_MSG_ENABLE;
6128 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6129 				    (sizeof(struct mbox_cmd) *
6130 				     T4_OS_LOG_MBOX_CMDS),
6131 				    GFP_KERNEL);
6132 	if (!adapter->mbox_log) {
6133 		err = -ENOMEM;
6134 		goto out_free_adapter;
6135 	}
6136 	spin_lock_init(&adapter->mbox_lock);
6137 	INIT_LIST_HEAD(&adapter->mlist.list);
6138 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6139 	pci_set_drvdata(pdev, adapter);
6140 
6141 	if (func != ent->driver_data) {
6142 		pci_disable_device(pdev);
6143 		pci_save_state(pdev);        /* to restore SR-IOV later */
6144 		return 0;
6145 	}
6146 
6147 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6148 		highdma = true;
6149 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6150 		if (err) {
6151 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6152 				"coherent allocations\n");
6153 			goto out_free_adapter;
6154 		}
6155 	} else {
6156 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6157 		if (err) {
6158 			dev_err(&pdev->dev, "no usable DMA configuration\n");
6159 			goto out_free_adapter;
6160 		}
6161 	}
6162 
6163 	pci_enable_pcie_error_reporting(pdev);
6164 	pci_set_master(pdev);
6165 	pci_save_state(pdev);
6166 	adap_idx++;
6167 	adapter->workq = create_singlethread_workqueue("cxgb4");
6168 	if (!adapter->workq) {
6169 		err = -ENOMEM;
6170 		goto out_free_adapter;
6171 	}
6172 
6173 	/* PCI device has been enabled */
6174 	adapter->flags |= CXGB4_DEV_ENABLED;
6175 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6176 
6177 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6178 	 * Ingress Packet Data to Free List Buffers in order to allow for
6179 	 * chipset performance optimizations between the Root Complex and
6180 	 * Memory Controllers.  (Messages to the associated Ingress Queue
6181 	 * notifying new Packet Placement in the Free Lists Buffers will be
6182 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
6183 	 * all preceding PCIe Transaction Layer Packets will be processed
6184 	 * first.)  But some Root Complexes have various issues with Upstream
6185 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6186 	 * The PCIe devices which under the Root Complexes will be cleared the
6187 	 * Relaxed Ordering bit in the configuration space, So we check our
6188 	 * PCIe configuration space to see if it's flagged with advice against
6189 	 * using Relaxed Ordering.
6190 	 */
6191 	if (!pcie_relaxed_ordering_enabled(pdev))
6192 		adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6193 
6194 	spin_lock_init(&adapter->stats_lock);
6195 	spin_lock_init(&adapter->tid_release_lock);
6196 	spin_lock_init(&adapter->win0_lock);
6197 
6198 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6199 	INIT_WORK(&adapter->db_full_task, process_db_full);
6200 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
6201 	INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6202 
6203 	err = t4_prep_adapter(adapter);
6204 	if (err)
6205 		goto out_free_adapter;
6206 
6207 	if (is_kdump_kernel()) {
6208 		/* Collect hardware state and append to /proc/vmcore */
6209 		err = cxgb4_cudbg_vmcore_add_dump(adapter);
6210 		if (err) {
6211 			dev_warn(adapter->pdev_dev,
6212 				 "Fail collecting vmcore device dump, err: %d. Continuing\n",
6213 				 err);
6214 			err = 0;
6215 		}
6216 	}
6217 
6218 	if (!is_t4(adapter->params.chip)) {
6219 		s_qpp = (QUEUESPERPAGEPF0_S +
6220 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6221 			adapter->pf);
6222 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6223 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6224 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
6225 
6226 		/* Each segment size is 128B. Write coalescing is enabled only
6227 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6228 		 * queue is less no of segments that can be accommodated in
6229 		 * a page size.
6230 		 */
6231 		if (qpp > num_seg) {
6232 			dev_err(&pdev->dev,
6233 				"Incorrect number of egress queues per page\n");
6234 			err = -EINVAL;
6235 			goto out_free_adapter;
6236 		}
6237 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6238 		pci_resource_len(pdev, 2));
6239 		if (!adapter->bar2) {
6240 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
6241 			err = -ENOMEM;
6242 			goto out_free_adapter;
6243 		}
6244 	}
6245 
6246 	setup_memwin(adapter);
6247 	err = adap_init0(adapter, 0);
6248 #ifdef CONFIG_DEBUG_FS
6249 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
6250 #endif
6251 	setup_memwin_rdma(adapter);
6252 	if (err)
6253 		goto out_unmap_bar;
6254 
6255 	/* configure SGE_STAT_CFG_A to read WC stats */
6256 	if (!is_t4(adapter->params.chip))
6257 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6258 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6259 			      T6_STATMODE_V(0)));
6260 
6261 	/* Initialize hash mac addr list */
6262 	INIT_LIST_HEAD(&adapter->mac_hlist);
6263 
6264 	for_each_port(adapter, i) {
6265 		/* For supporting MQPRIO Offload, need some extra
6266 		 * queues for each ETHOFLD TIDs. Keep it equal to
6267 		 * MAX_ATIDs for now. Once we connect to firmware
6268 		 * later and query the EOTID params, we'll come to
6269 		 * know the actual # of EOTIDs supported.
6270 		 */
6271 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
6272 					   MAX_ETH_QSETS + MAX_ATIDS);
6273 		if (!netdev) {
6274 			err = -ENOMEM;
6275 			goto out_free_dev;
6276 		}
6277 
6278 		SET_NETDEV_DEV(netdev, &pdev->dev);
6279 
6280 		adapter->port[i] = netdev;
6281 		pi = netdev_priv(netdev);
6282 		pi->adapter = adapter;
6283 		pi->xact_addr_filt = -1;
6284 		pi->port_id = i;
6285 		netdev->irq = pdev->irq;
6286 
6287 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6288 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6289 			NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6290 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6291 			NETIF_F_HW_TC;
6292 
6293 		if (chip_ver > CHELSIO_T5) {
6294 			netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6295 						   NETIF_F_IPV6_CSUM |
6296 						   NETIF_F_RXCSUM |
6297 						   NETIF_F_GSO_UDP_TUNNEL |
6298 						   NETIF_F_GSO_UDP_TUNNEL_CSUM |
6299 						   NETIF_F_TSO | NETIF_F_TSO6;
6300 
6301 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6302 					       NETIF_F_GSO_UDP_TUNNEL_CSUM |
6303 					       NETIF_F_HW_TLS_RECORD;
6304 		}
6305 
6306 		if (highdma)
6307 			netdev->hw_features |= NETIF_F_HIGHDMA;
6308 		netdev->features |= netdev->hw_features;
6309 		netdev->vlan_features = netdev->features & VLAN_FEAT;
6310 
6311 		netdev->priv_flags |= IFF_UNICAST_FLT;
6312 
6313 		/* MTU range: 81 - 9600 */
6314 		netdev->min_mtu = 81;              /* accommodate SACK */
6315 		netdev->max_mtu = MAX_MTU;
6316 
6317 		netdev->netdev_ops = &cxgb4_netdev_ops;
6318 #ifdef CONFIG_CHELSIO_T4_DCB
6319 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
6320 		cxgb4_dcb_state_init(netdev);
6321 		cxgb4_dcb_version_init(netdev);
6322 #endif
6323 		cxgb4_set_ethtool_ops(netdev);
6324 	}
6325 
6326 	cxgb4_init_ethtool_dump(adapter);
6327 
6328 	pci_set_drvdata(pdev, adapter);
6329 
6330 	if (adapter->flags & CXGB4_FW_OK) {
6331 		err = t4_port_init(adapter, func, func, 0);
6332 		if (err)
6333 			goto out_free_dev;
6334 	} else if (adapter->params.nports == 1) {
6335 		/* If we don't have a connection to the firmware -- possibly
6336 		 * because of an error -- grab the raw VPD parameters so we
6337 		 * can set the proper MAC Address on the debug network
6338 		 * interface that we've created.
6339 		 */
6340 		u8 hw_addr[ETH_ALEN];
6341 		u8 *na = adapter->params.vpd.na;
6342 
6343 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6344 		if (!err) {
6345 			for (i = 0; i < ETH_ALEN; i++)
6346 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6347 					      hex2val(na[2 * i + 1]));
6348 			t4_set_hw_addr(adapter, 0, hw_addr);
6349 		}
6350 	}
6351 
6352 	if (!(adapter->flags & CXGB4_FW_OK))
6353 		goto fw_attach_fail;
6354 
6355 	/* Configure queues and allocate tables now, they can be needed as
6356 	 * soon as the first register_netdev completes.
6357 	 */
6358 	err = cfg_queues(adapter);
6359 	if (err)
6360 		goto out_free_dev;
6361 
6362 	adapter->smt = t4_init_smt();
6363 	if (!adapter->smt) {
6364 		/* We tolerate a lack of SMT, giving up some functionality */
6365 		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6366 	}
6367 
6368 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6369 	if (!adapter->l2t) {
6370 		/* We tolerate a lack of L2T, giving up some functionality */
6371 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6372 		adapter->params.offload = 0;
6373 	}
6374 
6375 #if IS_ENABLED(CONFIG_IPV6)
6376 	if (chip_ver <= CHELSIO_T5 &&
6377 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6378 		/* CLIP functionality is not present in hardware,
6379 		 * hence disable all offload features
6380 		 */
6381 		dev_warn(&pdev->dev,
6382 			 "CLIP not enabled in hardware, continuing\n");
6383 		adapter->params.offload = 0;
6384 	} else {
6385 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6386 						  adapter->clipt_end);
6387 		if (!adapter->clipt) {
6388 			/* We tolerate a lack of clip_table, giving up
6389 			 * some functionality
6390 			 */
6391 			dev_warn(&pdev->dev,
6392 				 "could not allocate Clip table, continuing\n");
6393 			adapter->params.offload = 0;
6394 		}
6395 	}
6396 #endif
6397 
6398 	for_each_port(adapter, i) {
6399 		pi = adap2pinfo(adapter, i);
6400 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6401 		if (!pi->sched_tbl)
6402 			dev_warn(&pdev->dev,
6403 				 "could not activate scheduling on port %d\n",
6404 				 i);
6405 	}
6406 
6407 	if (tid_init(&adapter->tids) < 0) {
6408 		dev_warn(&pdev->dev, "could not allocate TID table, "
6409 			 "continuing\n");
6410 		adapter->params.offload = 0;
6411 	} else {
6412 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6413 		if (!adapter->tc_u32)
6414 			dev_warn(&pdev->dev,
6415 				 "could not offload tc u32, continuing\n");
6416 
6417 		if (cxgb4_init_tc_flower(adapter))
6418 			dev_warn(&pdev->dev,
6419 				 "could not offload tc flower, continuing\n");
6420 
6421 		if (cxgb4_init_tc_mqprio(adapter))
6422 			dev_warn(&pdev->dev,
6423 				 "could not offload tc mqprio, continuing\n");
6424 
6425 		if (cxgb4_init_tc_matchall(adapter))
6426 			dev_warn(&pdev->dev,
6427 				 "could not offload tc matchall, continuing\n");
6428 	}
6429 
6430 	if (is_offload(adapter) || is_hashfilter(adapter)) {
6431 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6432 			u32 hash_base, hash_reg;
6433 
6434 			if (chip_ver <= CHELSIO_T5) {
6435 				hash_reg = LE_DB_TID_HASHBASE_A;
6436 				hash_base = t4_read_reg(adapter, hash_reg);
6437 				adapter->tids.hash_base = hash_base / 4;
6438 			} else {
6439 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
6440 				hash_base = t4_read_reg(adapter, hash_reg);
6441 				adapter->tids.hash_base = hash_base;
6442 			}
6443 		}
6444 	}
6445 
6446 	/* See what interrupts we'll be using */
6447 	if (msi > 1 && enable_msix(adapter) == 0)
6448 		adapter->flags |= CXGB4_USING_MSIX;
6449 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6450 		adapter->flags |= CXGB4_USING_MSI;
6451 		if (msi > 1)
6452 			free_msix_info(adapter);
6453 	}
6454 
6455 	/* check for PCI Express bandwidth capabiltites */
6456 	pcie_print_link_status(pdev);
6457 
6458 	cxgb4_init_mps_ref_entries(adapter);
6459 
6460 	err = init_rss(adapter);
6461 	if (err)
6462 		goto out_free_dev;
6463 
6464 	err = setup_non_data_intr(adapter);
6465 	if (err) {
6466 		dev_err(adapter->pdev_dev,
6467 			"Non Data interrupt allocation failed, err: %d\n", err);
6468 		goto out_free_dev;
6469 	}
6470 
6471 	err = setup_fw_sge_queues(adapter);
6472 	if (err) {
6473 		dev_err(adapter->pdev_dev,
6474 			"FW sge queue allocation failed, err %d", err);
6475 		goto out_free_dev;
6476 	}
6477 
6478 fw_attach_fail:
6479 	/*
6480 	 * The card is now ready to go.  If any errors occur during device
6481 	 * registration we do not fail the whole card but rather proceed only
6482 	 * with the ports we manage to register successfully.  However we must
6483 	 * register at least one net device.
6484 	 */
6485 	for_each_port(adapter, i) {
6486 		pi = adap2pinfo(adapter, i);
6487 		adapter->port[i]->dev_port = pi->lport;
6488 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6489 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6490 
6491 		netif_carrier_off(adapter->port[i]);
6492 
6493 		err = register_netdev(adapter->port[i]);
6494 		if (err)
6495 			break;
6496 		adapter->chan_map[pi->tx_chan] = i;
6497 		print_port_info(adapter->port[i]);
6498 	}
6499 	if (i == 0) {
6500 		dev_err(&pdev->dev, "could not register any net devices\n");
6501 		goto out_free_dev;
6502 	}
6503 	if (err) {
6504 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6505 		err = 0;
6506 	}
6507 
6508 	if (cxgb4_debugfs_root) {
6509 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6510 							   cxgb4_debugfs_root);
6511 		setup_debugfs(adapter);
6512 	}
6513 
6514 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6515 	pdev->needs_freset = 1;
6516 
6517 	if (is_uld(adapter)) {
6518 		mutex_lock(&uld_mutex);
6519 		list_add_tail(&adapter->list_node, &adapter_list);
6520 		mutex_unlock(&uld_mutex);
6521 	}
6522 
6523 	if (!is_t4(adapter->params.chip))
6524 		cxgb4_ptp_init(adapter);
6525 
6526 	if (IS_REACHABLE(CONFIG_THERMAL) &&
6527 	    !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
6528 		cxgb4_thermal_init(adapter);
6529 
6530 	print_adapter_info(adapter);
6531 	return 0;
6532 
6533  out_free_dev:
6534 	t4_free_sge_resources(adapter);
6535 	free_some_resources(adapter);
6536 	if (adapter->flags & CXGB4_USING_MSIX)
6537 		free_msix_info(adapter);
6538 	if (adapter->num_uld || adapter->num_ofld_uld)
6539 		t4_uld_mem_free(adapter);
6540  out_unmap_bar:
6541 	if (!is_t4(adapter->params.chip))
6542 		iounmap(adapter->bar2);
6543  out_free_adapter:
6544 	if (adapter->workq)
6545 		destroy_workqueue(adapter->workq);
6546 
6547 	kfree(adapter->mbox_log);
6548 	kfree(adapter);
6549  out_unmap_bar0:
6550 	iounmap(regs);
6551  out_disable_device:
6552 	pci_disable_pcie_error_reporting(pdev);
6553 	pci_disable_device(pdev);
6554  out_release_regions:
6555 	pci_release_regions(pdev);
6556 	return err;
6557 }
6558 
6559 static void remove_one(struct pci_dev *pdev)
6560 {
6561 	struct adapter *adapter = pci_get_drvdata(pdev);
6562 	struct hash_mac_addr *entry, *tmp;
6563 
6564 	if (!adapter) {
6565 		pci_release_regions(pdev);
6566 		return;
6567 	}
6568 
6569 	/* If we allocated filters, free up state associated with any
6570 	 * valid filters ...
6571 	 */
6572 	clear_all_filters(adapter);
6573 
6574 	adapter->flags |= CXGB4_SHUTTING_DOWN;
6575 
6576 	if (adapter->pf == 4) {
6577 		int i;
6578 
6579 		/* Tear down per-adapter Work Queue first since it can contain
6580 		 * references to our adapter data structure.
6581 		 */
6582 		destroy_workqueue(adapter->workq);
6583 
6584 		if (is_uld(adapter)) {
6585 			detach_ulds(adapter);
6586 			t4_uld_clean_up(adapter);
6587 		}
6588 
6589 		adap_free_hma_mem(adapter);
6590 
6591 		disable_interrupts(adapter);
6592 
6593 		cxgb4_free_mps_ref_entries(adapter);
6594 
6595 		for_each_port(adapter, i)
6596 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6597 				unregister_netdev(adapter->port[i]);
6598 
6599 		debugfs_remove_recursive(adapter->debugfs_root);
6600 
6601 		if (!is_t4(adapter->params.chip))
6602 			cxgb4_ptp_stop(adapter);
6603 		if (IS_REACHABLE(CONFIG_THERMAL))
6604 			cxgb4_thermal_remove(adapter);
6605 
6606 		if (adapter->flags & CXGB4_FULL_INIT_DONE)
6607 			cxgb_down(adapter);
6608 
6609 		if (adapter->flags & CXGB4_USING_MSIX)
6610 			free_msix_info(adapter);
6611 		if (adapter->num_uld || adapter->num_ofld_uld)
6612 			t4_uld_mem_free(adapter);
6613 		free_some_resources(adapter);
6614 		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
6615 					 list) {
6616 			list_del(&entry->list);
6617 			kfree(entry);
6618 		}
6619 
6620 #if IS_ENABLED(CONFIG_IPV6)
6621 		t4_cleanup_clip_tbl(adapter);
6622 #endif
6623 		if (!is_t4(adapter->params.chip))
6624 			iounmap(adapter->bar2);
6625 	}
6626 #ifdef CONFIG_PCI_IOV
6627 	else {
6628 		cxgb4_iov_configure(adapter->pdev, 0);
6629 	}
6630 #endif
6631 	iounmap(adapter->regs);
6632 	pci_disable_pcie_error_reporting(pdev);
6633 	if ((adapter->flags & CXGB4_DEV_ENABLED)) {
6634 		pci_disable_device(pdev);
6635 		adapter->flags &= ~CXGB4_DEV_ENABLED;
6636 	}
6637 	pci_release_regions(pdev);
6638 	kfree(adapter->mbox_log);
6639 	synchronize_rcu();
6640 	kfree(adapter);
6641 }
6642 
6643 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
6644  * delivery.  This is essentially a stripped down version of the PCI remove()
6645  * function where we do the minimal amount of work necessary to shutdown any
6646  * further activity.
6647  */
6648 static void shutdown_one(struct pci_dev *pdev)
6649 {
6650 	struct adapter *adapter = pci_get_drvdata(pdev);
6651 
6652 	/* As with remove_one() above (see extended comment), we only want do
6653 	 * do cleanup on PCI Devices which went all the way through init_one()
6654 	 * ...
6655 	 */
6656 	if (!adapter) {
6657 		pci_release_regions(pdev);
6658 		return;
6659 	}
6660 
6661 	adapter->flags |= CXGB4_SHUTTING_DOWN;
6662 
6663 	if (adapter->pf == 4) {
6664 		int i;
6665 
6666 		for_each_port(adapter, i)
6667 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6668 				cxgb_close(adapter->port[i]);
6669 
6670 		if (is_uld(adapter)) {
6671 			detach_ulds(adapter);
6672 			t4_uld_clean_up(adapter);
6673 		}
6674 
6675 		disable_interrupts(adapter);
6676 		disable_msi(adapter);
6677 
6678 		t4_sge_stop(adapter);
6679 		if (adapter->flags & CXGB4_FW_OK)
6680 			t4_fw_bye(adapter, adapter->mbox);
6681 	}
6682 }
6683 
6684 static struct pci_driver cxgb4_driver = {
6685 	.name     = KBUILD_MODNAME,
6686 	.id_table = cxgb4_pci_tbl,
6687 	.probe    = init_one,
6688 	.remove   = remove_one,
6689 	.shutdown = shutdown_one,
6690 #ifdef CONFIG_PCI_IOV
6691 	.sriov_configure = cxgb4_iov_configure,
6692 #endif
6693 	.err_handler = &cxgb4_eeh,
6694 };
6695 
6696 static int __init cxgb4_init_module(void)
6697 {
6698 	int ret;
6699 
6700 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6701 
6702 	ret = pci_register_driver(&cxgb4_driver);
6703 	if (ret < 0)
6704 		goto err_pci;
6705 
6706 #if IS_ENABLED(CONFIG_IPV6)
6707 	if (!inet6addr_registered) {
6708 		ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6709 		if (ret)
6710 			pci_unregister_driver(&cxgb4_driver);
6711 		else
6712 			inet6addr_registered = true;
6713 	}
6714 #endif
6715 
6716 	if (ret == 0)
6717 		return ret;
6718 
6719 err_pci:
6720 	debugfs_remove(cxgb4_debugfs_root);
6721 
6722 	return ret;
6723 }
6724 
6725 static void __exit cxgb4_cleanup_module(void)
6726 {
6727 #if IS_ENABLED(CONFIG_IPV6)
6728 	if (inet6addr_registered) {
6729 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6730 		inet6addr_registered = false;
6731 	}
6732 #endif
6733 	pci_unregister_driver(&cxgb4_driver);
6734 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6735 }
6736 
6737 module_init(cxgb4_init_module);
6738 module_exit(cxgb4_cleanup_module);
6739