1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <linux/uaccess.h> 67 #include <linux/crash_dump.h> 68 #include <net/udp_tunnel.h> 69 70 #include "cxgb4.h" 71 #include "cxgb4_filter.h" 72 #include "t4_regs.h" 73 #include "t4_values.h" 74 #include "t4_msg.h" 75 #include "t4fw_api.h" 76 #include "t4fw_version.h" 77 #include "cxgb4_dcb.h" 78 #include "srq.h" 79 #include "cxgb4_debugfs.h" 80 #include "clip_tbl.h" 81 #include "l2t.h" 82 #include "smt.h" 83 #include "sched.h" 84 #include "cxgb4_tc_u32.h" 85 #include "cxgb4_tc_flower.h" 86 #include "cxgb4_ptp.h" 87 #include "cxgb4_cudbg.h" 88 89 char cxgb4_driver_name[] = KBUILD_MODNAME; 90 91 #ifdef DRV_VERSION 92 #undef DRV_VERSION 93 #endif 94 #define DRV_VERSION "2.0.0-ko" 95 const char cxgb4_driver_version[] = DRV_VERSION; 96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 97 98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 99 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 100 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 101 102 /* Macros needed to support the PCI Device ID Table ... 103 */ 104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 105 static const struct pci_device_id cxgb4_pci_tbl[] = { 106 #define CXGB4_UNIFIED_PF 0x4 107 108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 109 110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 111 * called for both. 112 */ 113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 114 115 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 116 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 117 118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 119 { 0, } \ 120 } 121 122 #include "t4_pci_id_tbl.h" 123 124 #define FW4_FNAME "cxgb4/t4fw.bin" 125 #define FW5_FNAME "cxgb4/t5fw.bin" 126 #define FW6_FNAME "cxgb4/t6fw.bin" 127 #define FW4_CFNAME "cxgb4/t4-config.txt" 128 #define FW5_CFNAME "cxgb4/t5-config.txt" 129 #define FW6_CFNAME "cxgb4/t6-config.txt" 130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 132 #define PHY_AQ1202_DEVICEID 0x4409 133 #define PHY_BCM84834_DEVICEID 0x4486 134 135 MODULE_DESCRIPTION(DRV_DESC); 136 MODULE_AUTHOR("Chelsio Communications"); 137 MODULE_LICENSE("Dual BSD/GPL"); 138 MODULE_VERSION(DRV_VERSION); 139 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 140 MODULE_FIRMWARE(FW4_FNAME); 141 MODULE_FIRMWARE(FW5_FNAME); 142 MODULE_FIRMWARE(FW6_FNAME); 143 144 /* 145 * The driver uses the best interrupt scheme available on a platform in the 146 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 147 * of these schemes the driver may consider as follows: 148 * 149 * msi = 2: choose from among all three options 150 * msi = 1: only consider MSI and INTx interrupts 151 * msi = 0: force INTx interrupts 152 */ 153 static int msi = 2; 154 155 module_param(msi, int, 0644); 156 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 157 158 /* 159 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 160 * offset by 2 bytes in order to have the IP headers line up on 4-byte 161 * boundaries. This is a requirement for many architectures which will throw 162 * a machine check fault if an attempt is made to access one of the 4-byte IP 163 * header fields on a non-4-byte boundary. And it's a major performance issue 164 * even on some architectures which allow it like some implementations of the 165 * x86 ISA. However, some architectures don't mind this and for some very 166 * edge-case performance sensitive applications (like forwarding large volumes 167 * of small packets), setting this DMA offset to 0 will decrease the number of 168 * PCI-E Bus transfers enough to measurably affect performance. 169 */ 170 static int rx_dma_offset = 2; 171 172 /* TX Queue select used to determine what algorithm to use for selecting TX 173 * queue. Select between the kernel provided function (select_queue=0) or user 174 * cxgb_select_queue function (select_queue=1) 175 * 176 * Default: select_queue=0 177 */ 178 static int select_queue; 179 module_param(select_queue, int, 0644); 180 MODULE_PARM_DESC(select_queue, 181 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 182 183 static struct dentry *cxgb4_debugfs_root; 184 185 LIST_HEAD(adapter_list); 186 DEFINE_MUTEX(uld_mutex); 187 188 static void link_report(struct net_device *dev) 189 { 190 if (!netif_carrier_ok(dev)) 191 netdev_info(dev, "link down\n"); 192 else { 193 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 194 195 const char *s; 196 const struct port_info *p = netdev_priv(dev); 197 198 switch (p->link_cfg.speed) { 199 case 100: 200 s = "100Mbps"; 201 break; 202 case 1000: 203 s = "1Gbps"; 204 break; 205 case 10000: 206 s = "10Gbps"; 207 break; 208 case 25000: 209 s = "25Gbps"; 210 break; 211 case 40000: 212 s = "40Gbps"; 213 break; 214 case 50000: 215 s = "50Gbps"; 216 break; 217 case 100000: 218 s = "100Gbps"; 219 break; 220 default: 221 pr_info("%s: unsupported speed: %d\n", 222 dev->name, p->link_cfg.speed); 223 return; 224 } 225 226 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 227 fc[p->link_cfg.fc]); 228 } 229 } 230 231 #ifdef CONFIG_CHELSIO_T4_DCB 232 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 233 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 234 { 235 struct port_info *pi = netdev_priv(dev); 236 struct adapter *adap = pi->adapter; 237 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 238 int i; 239 240 /* We use a simple mapping of Port TX Queue Index to DCB 241 * Priority when we're enabling DCB. 242 */ 243 for (i = 0; i < pi->nqsets; i++, txq++) { 244 u32 name, value; 245 int err; 246 247 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 248 FW_PARAMS_PARAM_X_V( 249 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 250 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 251 value = enable ? i : 0xffffffff; 252 253 /* Since we can be called while atomic (from "interrupt 254 * level") we need to issue the Set Parameters Commannd 255 * without sleeping (timeout < 0). 256 */ 257 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 258 &name, &value, 259 -FW_CMD_MAX_TIMEOUT); 260 261 if (err) 262 dev_err(adap->pdev_dev, 263 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 264 enable ? "set" : "unset", pi->port_id, i, -err); 265 else 266 txq->dcb_prio = value; 267 } 268 } 269 270 static int cxgb4_dcb_enabled(const struct net_device *dev) 271 { 272 struct port_info *pi = netdev_priv(dev); 273 274 if (!pi->dcb.enabled) 275 return 0; 276 277 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 278 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 279 } 280 #endif /* CONFIG_CHELSIO_T4_DCB */ 281 282 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 283 { 284 struct net_device *dev = adapter->port[port_id]; 285 286 /* Skip changes from disabled ports. */ 287 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 288 if (link_stat) 289 netif_carrier_on(dev); 290 else { 291 #ifdef CONFIG_CHELSIO_T4_DCB 292 if (cxgb4_dcb_enabled(dev)) { 293 cxgb4_dcb_reset(dev); 294 dcb_tx_queue_prio_enable(dev, false); 295 } 296 #endif /* CONFIG_CHELSIO_T4_DCB */ 297 netif_carrier_off(dev); 298 } 299 300 link_report(dev); 301 } 302 } 303 304 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 305 { 306 static const char *mod_str[] = { 307 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 308 }; 309 310 const struct net_device *dev = adap->port[port_id]; 311 const struct port_info *pi = netdev_priv(dev); 312 313 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 314 netdev_info(dev, "port module unplugged\n"); 315 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 316 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 317 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 318 netdev_info(dev, "%s: unsupported port module inserted\n", 319 dev->name); 320 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 321 netdev_info(dev, "%s: unknown port module inserted\n", 322 dev->name); 323 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 324 netdev_info(dev, "%s: transceiver module error\n", dev->name); 325 else 326 netdev_info(dev, "%s: unknown module type %d inserted\n", 327 dev->name, pi->mod_type); 328 } 329 330 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 331 module_param(dbfifo_int_thresh, int, 0644); 332 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 333 334 /* 335 * usecs to sleep while draining the dbfifo 336 */ 337 static int dbfifo_drain_delay = 1000; 338 module_param(dbfifo_drain_delay, int, 0644); 339 MODULE_PARM_DESC(dbfifo_drain_delay, 340 "usecs to sleep while draining the dbfifo"); 341 342 static inline int cxgb4_set_addr_hash(struct port_info *pi) 343 { 344 struct adapter *adap = pi->adapter; 345 u64 vec = 0; 346 bool ucast = false; 347 struct hash_mac_addr *entry; 348 349 /* Calculate the hash vector for the updated list and program it */ 350 list_for_each_entry(entry, &adap->mac_hlist, list) { 351 ucast |= is_unicast_ether_addr(entry->addr); 352 vec |= (1ULL << hash_mac_addr(entry->addr)); 353 } 354 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 355 vec, false); 356 } 357 358 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 359 { 360 struct port_info *pi = netdev_priv(netdev); 361 struct adapter *adap = pi->adapter; 362 int ret; 363 u64 mhash = 0; 364 u64 uhash = 0; 365 bool free = false; 366 bool ucast = is_unicast_ether_addr(mac_addr); 367 const u8 *maclist[1] = {mac_addr}; 368 struct hash_mac_addr *new_entry; 369 370 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 371 NULL, ucast ? &uhash : &mhash, false); 372 if (ret < 0) 373 goto out; 374 /* if hash != 0, then add the addr to hash addr list 375 * so on the end we will calculate the hash for the 376 * list and program it 377 */ 378 if (uhash || mhash) { 379 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 380 if (!new_entry) 381 return -ENOMEM; 382 ether_addr_copy(new_entry->addr, mac_addr); 383 list_add_tail(&new_entry->list, &adap->mac_hlist); 384 ret = cxgb4_set_addr_hash(pi); 385 } 386 out: 387 return ret < 0 ? ret : 0; 388 } 389 390 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 391 { 392 struct port_info *pi = netdev_priv(netdev); 393 struct adapter *adap = pi->adapter; 394 int ret; 395 const u8 *maclist[1] = {mac_addr}; 396 struct hash_mac_addr *entry, *tmp; 397 398 /* If the MAC address to be removed is in the hash addr 399 * list, delete it from the list and update hash vector 400 */ 401 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 402 if (ether_addr_equal(entry->addr, mac_addr)) { 403 list_del(&entry->list); 404 kfree(entry); 405 return cxgb4_set_addr_hash(pi); 406 } 407 } 408 409 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 410 return ret < 0 ? -EINVAL : 0; 411 } 412 413 /* 414 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 415 * If @mtu is -1 it is left unchanged. 416 */ 417 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 418 { 419 struct port_info *pi = netdev_priv(dev); 420 struct adapter *adapter = pi->adapter; 421 422 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 423 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 424 425 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 426 (dev->flags & IFF_PROMISC) ? 1 : 0, 427 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 428 sleep_ok); 429 } 430 431 /** 432 * link_start - enable a port 433 * @dev: the port to enable 434 * 435 * Performs the MAC and PHY actions needed to enable a port. 436 */ 437 static int link_start(struct net_device *dev) 438 { 439 int ret; 440 struct port_info *pi = netdev_priv(dev); 441 unsigned int mb = pi->adapter->pf; 442 443 /* 444 * We do not set address filters and promiscuity here, the stack does 445 * that step explicitly. 446 */ 447 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 448 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 449 if (ret == 0) { 450 ret = t4_change_mac(pi->adapter, mb, pi->viid, 451 pi->xact_addr_filt, dev->dev_addr, true, 452 true); 453 if (ret >= 0) { 454 pi->xact_addr_filt = ret; 455 ret = 0; 456 } 457 } 458 if (ret == 0) 459 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 460 &pi->link_cfg); 461 if (ret == 0) { 462 local_bh_disable(); 463 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true, 464 true, CXGB4_DCB_ENABLED); 465 local_bh_enable(); 466 } 467 468 return ret; 469 } 470 471 #ifdef CONFIG_CHELSIO_T4_DCB 472 /* Handle a Data Center Bridging update message from the firmware. */ 473 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 474 { 475 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 476 struct net_device *dev = adap->port[adap->chan_map[port]]; 477 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 478 int new_dcb_enabled; 479 480 cxgb4_dcb_handle_fw_update(adap, pcmd); 481 new_dcb_enabled = cxgb4_dcb_enabled(dev); 482 483 /* If the DCB has become enabled or disabled on the port then we're 484 * going to need to set up/tear down DCB Priority parameters for the 485 * TX Queues associated with the port. 486 */ 487 if (new_dcb_enabled != old_dcb_enabled) 488 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 489 } 490 #endif /* CONFIG_CHELSIO_T4_DCB */ 491 492 /* Response queue handler for the FW event queue. 493 */ 494 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 495 const struct pkt_gl *gl) 496 { 497 u8 opcode = ((const struct rss_header *)rsp)->opcode; 498 499 rsp++; /* skip RSS header */ 500 501 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 502 */ 503 if (unlikely(opcode == CPL_FW4_MSG && 504 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 505 rsp++; 506 opcode = ((const struct rss_header *)rsp)->opcode; 507 rsp++; 508 if (opcode != CPL_SGE_EGR_UPDATE) { 509 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 510 , opcode); 511 goto out; 512 } 513 } 514 515 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 516 const struct cpl_sge_egr_update *p = (void *)rsp; 517 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 518 struct sge_txq *txq; 519 520 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 521 txq->restarts++; 522 if (txq->q_type == CXGB4_TXQ_ETH) { 523 struct sge_eth_txq *eq; 524 525 eq = container_of(txq, struct sge_eth_txq, q); 526 netif_tx_wake_queue(eq->txq); 527 } else { 528 struct sge_uld_txq *oq; 529 530 oq = container_of(txq, struct sge_uld_txq, q); 531 tasklet_schedule(&oq->qresume_tsk); 532 } 533 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 534 const struct cpl_fw6_msg *p = (void *)rsp; 535 536 #ifdef CONFIG_CHELSIO_T4_DCB 537 const struct fw_port_cmd *pcmd = (const void *)p->data; 538 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 539 unsigned int action = 540 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 541 542 if (cmd == FW_PORT_CMD && 543 (action == FW_PORT_ACTION_GET_PORT_INFO || 544 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 545 int port = FW_PORT_CMD_PORTID_G( 546 be32_to_cpu(pcmd->op_to_portid)); 547 struct net_device *dev; 548 int dcbxdis, state_input; 549 550 dev = q->adap->port[q->adap->chan_map[port]]; 551 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 552 ? !!(pcmd->u.info.dcbxdis_pkd & 553 FW_PORT_CMD_DCBXDIS_F) 554 : !!(pcmd->u.info32.lstatus32_to_cbllen32 & 555 FW_PORT_CMD_DCBXDIS32_F)); 556 state_input = (dcbxdis 557 ? CXGB4_DCB_INPUT_FW_DISABLED 558 : CXGB4_DCB_INPUT_FW_ENABLED); 559 560 cxgb4_dcb_state_fsm(dev, state_input); 561 } 562 563 if (cmd == FW_PORT_CMD && 564 action == FW_PORT_ACTION_L2_DCB_CFG) 565 dcb_rpl(q->adap, pcmd); 566 else 567 #endif 568 if (p->type == 0) 569 t4_handle_fw_rpl(q->adap, p->data); 570 } else if (opcode == CPL_L2T_WRITE_RPL) { 571 const struct cpl_l2t_write_rpl *p = (void *)rsp; 572 573 do_l2t_write_rpl(q->adap, p); 574 } else if (opcode == CPL_SMT_WRITE_RPL) { 575 const struct cpl_smt_write_rpl *p = (void *)rsp; 576 577 do_smt_write_rpl(q->adap, p); 578 } else if (opcode == CPL_SET_TCB_RPL) { 579 const struct cpl_set_tcb_rpl *p = (void *)rsp; 580 581 filter_rpl(q->adap, p); 582 } else if (opcode == CPL_ACT_OPEN_RPL) { 583 const struct cpl_act_open_rpl *p = (void *)rsp; 584 585 hash_filter_rpl(q->adap, p); 586 } else if (opcode == CPL_ABORT_RPL_RSS) { 587 const struct cpl_abort_rpl_rss *p = (void *)rsp; 588 589 hash_del_filter_rpl(q->adap, p); 590 } else if (opcode == CPL_SRQ_TABLE_RPL) { 591 const struct cpl_srq_table_rpl *p = (void *)rsp; 592 593 do_srq_table_rpl(q->adap, p); 594 } else 595 dev_err(q->adap->pdev_dev, 596 "unexpected CPL %#x on FW event queue\n", opcode); 597 out: 598 return 0; 599 } 600 601 static void disable_msi(struct adapter *adapter) 602 { 603 if (adapter->flags & USING_MSIX) { 604 pci_disable_msix(adapter->pdev); 605 adapter->flags &= ~USING_MSIX; 606 } else if (adapter->flags & USING_MSI) { 607 pci_disable_msi(adapter->pdev); 608 adapter->flags &= ~USING_MSI; 609 } 610 } 611 612 /* 613 * Interrupt handler for non-data events used with MSI-X. 614 */ 615 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 616 { 617 struct adapter *adap = cookie; 618 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 619 620 if (v & PFSW_F) { 621 adap->swintr = 1; 622 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 623 } 624 if (adap->flags & MASTER_PF) 625 t4_slow_intr_handler(adap); 626 return IRQ_HANDLED; 627 } 628 629 /* 630 * Name the MSI-X interrupts. 631 */ 632 static void name_msix_vecs(struct adapter *adap) 633 { 634 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 635 636 /* non-data interrupts */ 637 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 638 639 /* FW events */ 640 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 641 adap->port[0]->name); 642 643 /* Ethernet queues */ 644 for_each_port(adap, j) { 645 struct net_device *d = adap->port[j]; 646 const struct port_info *pi = netdev_priv(d); 647 648 for (i = 0; i < pi->nqsets; i++, msi_idx++) 649 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 650 d->name, i); 651 } 652 } 653 654 static int request_msix_queue_irqs(struct adapter *adap) 655 { 656 struct sge *s = &adap->sge; 657 int err, ethqidx; 658 int msi_index = 2; 659 660 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 661 adap->msix_info[1].desc, &s->fw_evtq); 662 if (err) 663 return err; 664 665 for_each_ethrxq(s, ethqidx) { 666 err = request_irq(adap->msix_info[msi_index].vec, 667 t4_sge_intr_msix, 0, 668 adap->msix_info[msi_index].desc, 669 &s->ethrxq[ethqidx].rspq); 670 if (err) 671 goto unwind; 672 msi_index++; 673 } 674 return 0; 675 676 unwind: 677 while (--ethqidx >= 0) 678 free_irq(adap->msix_info[--msi_index].vec, 679 &s->ethrxq[ethqidx].rspq); 680 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 681 return err; 682 } 683 684 static void free_msix_queue_irqs(struct adapter *adap) 685 { 686 int i, msi_index = 2; 687 struct sge *s = &adap->sge; 688 689 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 690 for_each_ethrxq(s, i) 691 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 692 } 693 694 /** 695 * cxgb4_write_rss - write the RSS table for a given port 696 * @pi: the port 697 * @queues: array of queue indices for RSS 698 * 699 * Sets up the portion of the HW RSS table for the port's VI to distribute 700 * packets to the Rx queues in @queues. 701 * Should never be called before setting up sge eth rx queues 702 */ 703 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 704 { 705 u16 *rss; 706 int i, err; 707 struct adapter *adapter = pi->adapter; 708 const struct sge_eth_rxq *rxq; 709 710 rxq = &adapter->sge.ethrxq[pi->first_qset]; 711 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 712 if (!rss) 713 return -ENOMEM; 714 715 /* map the queue indices to queue ids */ 716 for (i = 0; i < pi->rss_size; i++, queues++) 717 rss[i] = rxq[*queues].rspq.abs_id; 718 719 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 720 pi->rss_size, rss, pi->rss_size); 721 /* If Tunnel All Lookup isn't specified in the global RSS 722 * Configuration, then we need to specify a default Ingress 723 * Queue for any ingress packets which aren't hashed. We'll 724 * use our first ingress queue ... 725 */ 726 if (!err) 727 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 728 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 729 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 730 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 731 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 732 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 733 rss[0]); 734 kfree(rss); 735 return err; 736 } 737 738 /** 739 * setup_rss - configure RSS 740 * @adap: the adapter 741 * 742 * Sets up RSS for each port. 743 */ 744 static int setup_rss(struct adapter *adap) 745 { 746 int i, j, err; 747 748 for_each_port(adap, i) { 749 const struct port_info *pi = adap2pinfo(adap, i); 750 751 /* Fill default values with equal distribution */ 752 for (j = 0; j < pi->rss_size; j++) 753 pi->rss[j] = j % pi->nqsets; 754 755 err = cxgb4_write_rss(pi, pi->rss); 756 if (err) 757 return err; 758 } 759 return 0; 760 } 761 762 /* 763 * Return the channel of the ingress queue with the given qid. 764 */ 765 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 766 { 767 qid -= p->ingr_start; 768 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 769 } 770 771 /* 772 * Wait until all NAPI handlers are descheduled. 773 */ 774 static void quiesce_rx(struct adapter *adap) 775 { 776 int i; 777 778 for (i = 0; i < adap->sge.ingr_sz; i++) { 779 struct sge_rspq *q = adap->sge.ingr_map[i]; 780 781 if (q && q->handler) 782 napi_disable(&q->napi); 783 } 784 } 785 786 /* Disable interrupt and napi handler */ 787 static void disable_interrupts(struct adapter *adap) 788 { 789 if (adap->flags & FULL_INIT_DONE) { 790 t4_intr_disable(adap); 791 if (adap->flags & USING_MSIX) { 792 free_msix_queue_irqs(adap); 793 free_irq(adap->msix_info[0].vec, adap); 794 } else { 795 free_irq(adap->pdev->irq, adap); 796 } 797 quiesce_rx(adap); 798 } 799 } 800 801 /* 802 * Enable NAPI scheduling and interrupt generation for all Rx queues. 803 */ 804 static void enable_rx(struct adapter *adap) 805 { 806 int i; 807 808 for (i = 0; i < adap->sge.ingr_sz; i++) { 809 struct sge_rspq *q = adap->sge.ingr_map[i]; 810 811 if (!q) 812 continue; 813 if (q->handler) 814 napi_enable(&q->napi); 815 816 /* 0-increment GTS to start the timer and enable interrupts */ 817 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 818 SEINTARM_V(q->intr_params) | 819 INGRESSQID_V(q->cntxt_id)); 820 } 821 } 822 823 824 static int setup_fw_sge_queues(struct adapter *adap) 825 { 826 struct sge *s = &adap->sge; 827 int err = 0; 828 829 bitmap_zero(s->starving_fl, s->egr_sz); 830 bitmap_zero(s->txq_maperr, s->egr_sz); 831 832 if (adap->flags & USING_MSIX) 833 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 834 else { 835 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 836 NULL, NULL, NULL, -1); 837 if (err) 838 return err; 839 adap->msi_idx = -((int)s->intrq.abs_id + 1); 840 } 841 842 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 843 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 844 return err; 845 } 846 847 /** 848 * setup_sge_queues - configure SGE Tx/Rx/response queues 849 * @adap: the adapter 850 * 851 * Determines how many sets of SGE queues to use and initializes them. 852 * We support multiple queue sets per port if we have MSI-X, otherwise 853 * just one queue set per port. 854 */ 855 static int setup_sge_queues(struct adapter *adap) 856 { 857 int err, i, j; 858 struct sge *s = &adap->sge; 859 struct sge_uld_rxq_info *rxq_info = NULL; 860 unsigned int cmplqid = 0; 861 862 if (is_uld(adap)) 863 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 864 865 for_each_port(adap, i) { 866 struct net_device *dev = adap->port[i]; 867 struct port_info *pi = netdev_priv(dev); 868 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 869 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 870 871 for (j = 0; j < pi->nqsets; j++, q++) { 872 if (adap->msi_idx > 0) 873 adap->msi_idx++; 874 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 875 adap->msi_idx, &q->fl, 876 t4_ethrx_handler, 877 NULL, 878 t4_get_tp_ch_map(adap, 879 pi->tx_chan)); 880 if (err) 881 goto freeout; 882 q->rspq.idx = j; 883 memset(&q->stats, 0, sizeof(q->stats)); 884 } 885 for (j = 0; j < pi->nqsets; j++, t++) { 886 err = t4_sge_alloc_eth_txq(adap, t, dev, 887 netdev_get_tx_queue(dev, j), 888 s->fw_evtq.cntxt_id); 889 if (err) 890 goto freeout; 891 } 892 } 893 894 for_each_port(adap, i) { 895 /* Note that cmplqid below is 0 if we don't 896 * have RDMA queues, and that's the right value. 897 */ 898 if (rxq_info) 899 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 900 901 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 902 s->fw_evtq.cntxt_id, cmplqid); 903 if (err) 904 goto freeout; 905 } 906 907 if (!is_t4(adap->params.chip)) { 908 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 909 netdev_get_tx_queue(adap->port[0], 0) 910 , s->fw_evtq.cntxt_id); 911 if (err) 912 goto freeout; 913 } 914 915 t4_write_reg(adap, is_t4(adap->params.chip) ? 916 MPS_TRC_RSS_CONTROL_A : 917 MPS_T5_TRC_RSS_CONTROL_A, 918 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 919 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 920 return 0; 921 freeout: 922 t4_free_sge_resources(adap); 923 return err; 924 } 925 926 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 927 void *accel_priv, select_queue_fallback_t fallback) 928 { 929 int txq; 930 931 #ifdef CONFIG_CHELSIO_T4_DCB 932 /* If a Data Center Bridging has been successfully negotiated on this 933 * link then we'll use the skb's priority to map it to a TX Queue. 934 * The skb's priority is determined via the VLAN Tag Priority Code 935 * Point field. 936 */ 937 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 938 u16 vlan_tci; 939 int err; 940 941 err = vlan_get_tag(skb, &vlan_tci); 942 if (unlikely(err)) { 943 if (net_ratelimit()) 944 netdev_warn(dev, 945 "TX Packet without VLAN Tag on DCB Link\n"); 946 txq = 0; 947 } else { 948 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 949 #ifdef CONFIG_CHELSIO_T4_FCOE 950 if (skb->protocol == htons(ETH_P_FCOE)) 951 txq = skb->priority & 0x7; 952 #endif /* CONFIG_CHELSIO_T4_FCOE */ 953 } 954 return txq; 955 } 956 #endif /* CONFIG_CHELSIO_T4_DCB */ 957 958 if (select_queue) { 959 txq = (skb_rx_queue_recorded(skb) 960 ? skb_get_rx_queue(skb) 961 : smp_processor_id()); 962 963 while (unlikely(txq >= dev->real_num_tx_queues)) 964 txq -= dev->real_num_tx_queues; 965 966 return txq; 967 } 968 969 return fallback(dev, skb) % dev->real_num_tx_queues; 970 } 971 972 static int closest_timer(const struct sge *s, int time) 973 { 974 int i, delta, match = 0, min_delta = INT_MAX; 975 976 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 977 delta = time - s->timer_val[i]; 978 if (delta < 0) 979 delta = -delta; 980 if (delta < min_delta) { 981 min_delta = delta; 982 match = i; 983 } 984 } 985 return match; 986 } 987 988 static int closest_thres(const struct sge *s, int thres) 989 { 990 int i, delta, match = 0, min_delta = INT_MAX; 991 992 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 993 delta = thres - s->counter_val[i]; 994 if (delta < 0) 995 delta = -delta; 996 if (delta < min_delta) { 997 min_delta = delta; 998 match = i; 999 } 1000 } 1001 return match; 1002 } 1003 1004 /** 1005 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1006 * @q: the Rx queue 1007 * @us: the hold-off time in us, or 0 to disable timer 1008 * @cnt: the hold-off packet count, or 0 to disable counter 1009 * 1010 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1011 * one of the two needs to be enabled for the queue to generate interrupts. 1012 */ 1013 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1014 unsigned int us, unsigned int cnt) 1015 { 1016 struct adapter *adap = q->adap; 1017 1018 if ((us | cnt) == 0) 1019 cnt = 1; 1020 1021 if (cnt) { 1022 int err; 1023 u32 v, new_idx; 1024 1025 new_idx = closest_thres(&adap->sge, cnt); 1026 if (q->desc && q->pktcnt_idx != new_idx) { 1027 /* the queue has already been created, update it */ 1028 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1029 FW_PARAMS_PARAM_X_V( 1030 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1031 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1032 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1033 &v, &new_idx); 1034 if (err) 1035 return err; 1036 } 1037 q->pktcnt_idx = new_idx; 1038 } 1039 1040 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1041 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1042 return 0; 1043 } 1044 1045 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1046 { 1047 const struct port_info *pi = netdev_priv(dev); 1048 netdev_features_t changed = dev->features ^ features; 1049 int err; 1050 1051 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1052 return 0; 1053 1054 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1055 -1, -1, -1, 1056 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1057 if (unlikely(err)) 1058 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1059 return err; 1060 } 1061 1062 static int setup_debugfs(struct adapter *adap) 1063 { 1064 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1065 return -1; 1066 1067 #ifdef CONFIG_DEBUG_FS 1068 t4_setup_debugfs(adap); 1069 #endif 1070 return 0; 1071 } 1072 1073 /* 1074 * upper-layer driver support 1075 */ 1076 1077 /* 1078 * Allocate an active-open TID and set it to the supplied value. 1079 */ 1080 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1081 { 1082 int atid = -1; 1083 1084 spin_lock_bh(&t->atid_lock); 1085 if (t->afree) { 1086 union aopen_entry *p = t->afree; 1087 1088 atid = (p - t->atid_tab) + t->atid_base; 1089 t->afree = p->next; 1090 p->data = data; 1091 t->atids_in_use++; 1092 } 1093 spin_unlock_bh(&t->atid_lock); 1094 return atid; 1095 } 1096 EXPORT_SYMBOL(cxgb4_alloc_atid); 1097 1098 /* 1099 * Release an active-open TID. 1100 */ 1101 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1102 { 1103 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1104 1105 spin_lock_bh(&t->atid_lock); 1106 p->next = t->afree; 1107 t->afree = p; 1108 t->atids_in_use--; 1109 spin_unlock_bh(&t->atid_lock); 1110 } 1111 EXPORT_SYMBOL(cxgb4_free_atid); 1112 1113 /* 1114 * Allocate a server TID and set it to the supplied value. 1115 */ 1116 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1117 { 1118 int stid; 1119 1120 spin_lock_bh(&t->stid_lock); 1121 if (family == PF_INET) { 1122 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1123 if (stid < t->nstids) 1124 __set_bit(stid, t->stid_bmap); 1125 else 1126 stid = -1; 1127 } else { 1128 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1129 if (stid < 0) 1130 stid = -1; 1131 } 1132 if (stid >= 0) { 1133 t->stid_tab[stid].data = data; 1134 stid += t->stid_base; 1135 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1136 * This is equivalent to 4 TIDs. With CLIP enabled it 1137 * needs 2 TIDs. 1138 */ 1139 if (family == PF_INET6) { 1140 t->stids_in_use += 2; 1141 t->v6_stids_in_use += 2; 1142 } else { 1143 t->stids_in_use++; 1144 } 1145 } 1146 spin_unlock_bh(&t->stid_lock); 1147 return stid; 1148 } 1149 EXPORT_SYMBOL(cxgb4_alloc_stid); 1150 1151 /* Allocate a server filter TID and set it to the supplied value. 1152 */ 1153 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1154 { 1155 int stid; 1156 1157 spin_lock_bh(&t->stid_lock); 1158 if (family == PF_INET) { 1159 stid = find_next_zero_bit(t->stid_bmap, 1160 t->nstids + t->nsftids, t->nstids); 1161 if (stid < (t->nstids + t->nsftids)) 1162 __set_bit(stid, t->stid_bmap); 1163 else 1164 stid = -1; 1165 } else { 1166 stid = -1; 1167 } 1168 if (stid >= 0) { 1169 t->stid_tab[stid].data = data; 1170 stid -= t->nstids; 1171 stid += t->sftid_base; 1172 t->sftids_in_use++; 1173 } 1174 spin_unlock_bh(&t->stid_lock); 1175 return stid; 1176 } 1177 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1178 1179 /* Release a server TID. 1180 */ 1181 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1182 { 1183 /* Is it a server filter TID? */ 1184 if (t->nsftids && (stid >= t->sftid_base)) { 1185 stid -= t->sftid_base; 1186 stid += t->nstids; 1187 } else { 1188 stid -= t->stid_base; 1189 } 1190 1191 spin_lock_bh(&t->stid_lock); 1192 if (family == PF_INET) 1193 __clear_bit(stid, t->stid_bmap); 1194 else 1195 bitmap_release_region(t->stid_bmap, stid, 1); 1196 t->stid_tab[stid].data = NULL; 1197 if (stid < t->nstids) { 1198 if (family == PF_INET6) { 1199 t->stids_in_use -= 2; 1200 t->v6_stids_in_use -= 2; 1201 } else { 1202 t->stids_in_use--; 1203 } 1204 } else { 1205 t->sftids_in_use--; 1206 } 1207 1208 spin_unlock_bh(&t->stid_lock); 1209 } 1210 EXPORT_SYMBOL(cxgb4_free_stid); 1211 1212 /* 1213 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1214 */ 1215 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1216 unsigned int tid) 1217 { 1218 struct cpl_tid_release *req; 1219 1220 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1221 req = __skb_put(skb, sizeof(*req)); 1222 INIT_TP_WR(req, tid); 1223 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1224 } 1225 1226 /* 1227 * Queue a TID release request and if necessary schedule a work queue to 1228 * process it. 1229 */ 1230 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1231 unsigned int tid) 1232 { 1233 void **p = &t->tid_tab[tid]; 1234 struct adapter *adap = container_of(t, struct adapter, tids); 1235 1236 spin_lock_bh(&adap->tid_release_lock); 1237 *p = adap->tid_release_head; 1238 /* Low 2 bits encode the Tx channel number */ 1239 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1240 if (!adap->tid_release_task_busy) { 1241 adap->tid_release_task_busy = true; 1242 queue_work(adap->workq, &adap->tid_release_task); 1243 } 1244 spin_unlock_bh(&adap->tid_release_lock); 1245 } 1246 1247 /* 1248 * Process the list of pending TID release requests. 1249 */ 1250 static void process_tid_release_list(struct work_struct *work) 1251 { 1252 struct sk_buff *skb; 1253 struct adapter *adap; 1254 1255 adap = container_of(work, struct adapter, tid_release_task); 1256 1257 spin_lock_bh(&adap->tid_release_lock); 1258 while (adap->tid_release_head) { 1259 void **p = adap->tid_release_head; 1260 unsigned int chan = (uintptr_t)p & 3; 1261 p = (void *)p - chan; 1262 1263 adap->tid_release_head = *p; 1264 *p = NULL; 1265 spin_unlock_bh(&adap->tid_release_lock); 1266 1267 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1268 GFP_KERNEL))) 1269 schedule_timeout_uninterruptible(1); 1270 1271 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1272 t4_ofld_send(adap, skb); 1273 spin_lock_bh(&adap->tid_release_lock); 1274 } 1275 adap->tid_release_task_busy = false; 1276 spin_unlock_bh(&adap->tid_release_lock); 1277 } 1278 1279 /* 1280 * Release a TID and inform HW. If we are unable to allocate the release 1281 * message we defer to a work queue. 1282 */ 1283 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1284 unsigned short family) 1285 { 1286 struct sk_buff *skb; 1287 struct adapter *adap = container_of(t, struct adapter, tids); 1288 1289 WARN_ON(tid >= t->ntids); 1290 1291 if (t->tid_tab[tid]) { 1292 t->tid_tab[tid] = NULL; 1293 atomic_dec(&t->conns_in_use); 1294 if (t->hash_base && (tid >= t->hash_base)) { 1295 if (family == AF_INET6) 1296 atomic_sub(2, &t->hash_tids_in_use); 1297 else 1298 atomic_dec(&t->hash_tids_in_use); 1299 } else { 1300 if (family == AF_INET6) 1301 atomic_sub(2, &t->tids_in_use); 1302 else 1303 atomic_dec(&t->tids_in_use); 1304 } 1305 } 1306 1307 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1308 if (likely(skb)) { 1309 mk_tid_release(skb, chan, tid); 1310 t4_ofld_send(adap, skb); 1311 } else 1312 cxgb4_queue_tid_release(t, chan, tid); 1313 } 1314 EXPORT_SYMBOL(cxgb4_remove_tid); 1315 1316 /* 1317 * Allocate and initialize the TID tables. Returns 0 on success. 1318 */ 1319 static int tid_init(struct tid_info *t) 1320 { 1321 struct adapter *adap = container_of(t, struct adapter, tids); 1322 unsigned int max_ftids = t->nftids + t->nsftids; 1323 unsigned int natids = t->natids; 1324 unsigned int stid_bmap_size; 1325 unsigned int ftid_bmap_size; 1326 size_t size; 1327 1328 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1329 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1330 size = t->ntids * sizeof(*t->tid_tab) + 1331 natids * sizeof(*t->atid_tab) + 1332 t->nstids * sizeof(*t->stid_tab) + 1333 t->nsftids * sizeof(*t->stid_tab) + 1334 stid_bmap_size * sizeof(long) + 1335 max_ftids * sizeof(*t->ftid_tab) + 1336 ftid_bmap_size * sizeof(long); 1337 1338 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1339 if (!t->tid_tab) 1340 return -ENOMEM; 1341 1342 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1343 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1344 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1345 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1346 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1347 spin_lock_init(&t->stid_lock); 1348 spin_lock_init(&t->atid_lock); 1349 spin_lock_init(&t->ftid_lock); 1350 1351 t->stids_in_use = 0; 1352 t->v6_stids_in_use = 0; 1353 t->sftids_in_use = 0; 1354 t->afree = NULL; 1355 t->atids_in_use = 0; 1356 atomic_set(&t->tids_in_use, 0); 1357 atomic_set(&t->conns_in_use, 0); 1358 atomic_set(&t->hash_tids_in_use, 0); 1359 1360 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1361 if (natids) { 1362 while (--natids) 1363 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1364 t->afree = t->atid_tab; 1365 } 1366 1367 if (is_offload(adap)) { 1368 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1369 /* Reserve stid 0 for T4/T5 adapters */ 1370 if (!t->stid_base && 1371 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1372 __set_bit(0, t->stid_bmap); 1373 } 1374 1375 bitmap_zero(t->ftid_bmap, t->nftids); 1376 return 0; 1377 } 1378 1379 /** 1380 * cxgb4_create_server - create an IP server 1381 * @dev: the device 1382 * @stid: the server TID 1383 * @sip: local IP address to bind server to 1384 * @sport: the server's TCP port 1385 * @queue: queue to direct messages from this server to 1386 * 1387 * Create an IP server for the given port and address. 1388 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1389 */ 1390 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1391 __be32 sip, __be16 sport, __be16 vlan, 1392 unsigned int queue) 1393 { 1394 unsigned int chan; 1395 struct sk_buff *skb; 1396 struct adapter *adap; 1397 struct cpl_pass_open_req *req; 1398 int ret; 1399 1400 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1401 if (!skb) 1402 return -ENOMEM; 1403 1404 adap = netdev2adap(dev); 1405 req = __skb_put(skb, sizeof(*req)); 1406 INIT_TP_WR(req, 0); 1407 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1408 req->local_port = sport; 1409 req->peer_port = htons(0); 1410 req->local_ip = sip; 1411 req->peer_ip = htonl(0); 1412 chan = rxq_to_chan(&adap->sge, queue); 1413 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1414 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1415 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1416 ret = t4_mgmt_tx(adap, skb); 1417 return net_xmit_eval(ret); 1418 } 1419 EXPORT_SYMBOL(cxgb4_create_server); 1420 1421 /* cxgb4_create_server6 - create an IPv6 server 1422 * @dev: the device 1423 * @stid: the server TID 1424 * @sip: local IPv6 address to bind server to 1425 * @sport: the server's TCP port 1426 * @queue: queue to direct messages from this server to 1427 * 1428 * Create an IPv6 server for the given port and address. 1429 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1430 */ 1431 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1432 const struct in6_addr *sip, __be16 sport, 1433 unsigned int queue) 1434 { 1435 unsigned int chan; 1436 struct sk_buff *skb; 1437 struct adapter *adap; 1438 struct cpl_pass_open_req6 *req; 1439 int ret; 1440 1441 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1442 if (!skb) 1443 return -ENOMEM; 1444 1445 adap = netdev2adap(dev); 1446 req = __skb_put(skb, sizeof(*req)); 1447 INIT_TP_WR(req, 0); 1448 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1449 req->local_port = sport; 1450 req->peer_port = htons(0); 1451 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1452 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1453 req->peer_ip_hi = cpu_to_be64(0); 1454 req->peer_ip_lo = cpu_to_be64(0); 1455 chan = rxq_to_chan(&adap->sge, queue); 1456 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1457 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1458 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1459 ret = t4_mgmt_tx(adap, skb); 1460 return net_xmit_eval(ret); 1461 } 1462 EXPORT_SYMBOL(cxgb4_create_server6); 1463 1464 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1465 unsigned int queue, bool ipv6) 1466 { 1467 struct sk_buff *skb; 1468 struct adapter *adap; 1469 struct cpl_close_listsvr_req *req; 1470 int ret; 1471 1472 adap = netdev2adap(dev); 1473 1474 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1475 if (!skb) 1476 return -ENOMEM; 1477 1478 req = __skb_put(skb, sizeof(*req)); 1479 INIT_TP_WR(req, 0); 1480 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1481 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1482 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1483 ret = t4_mgmt_tx(adap, skb); 1484 return net_xmit_eval(ret); 1485 } 1486 EXPORT_SYMBOL(cxgb4_remove_server); 1487 1488 /** 1489 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1490 * @mtus: the HW MTU table 1491 * @mtu: the target MTU 1492 * @idx: index of selected entry in the MTU table 1493 * 1494 * Returns the index and the value in the HW MTU table that is closest to 1495 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1496 * table, in which case that smallest available value is selected. 1497 */ 1498 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1499 unsigned int *idx) 1500 { 1501 unsigned int i = 0; 1502 1503 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1504 ++i; 1505 if (idx) 1506 *idx = i; 1507 return mtus[i]; 1508 } 1509 EXPORT_SYMBOL(cxgb4_best_mtu); 1510 1511 /** 1512 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1513 * @mtus: the HW MTU table 1514 * @header_size: Header Size 1515 * @data_size_max: maximum Data Segment Size 1516 * @data_size_align: desired Data Segment Size Alignment (2^N) 1517 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1518 * 1519 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1520 * MTU Table based solely on a Maximum MTU parameter, we break that 1521 * parameter up into a Header Size and Maximum Data Segment Size, and 1522 * provide a desired Data Segment Size Alignment. If we find an MTU in 1523 * the Hardware MTU Table which will result in a Data Segment Size with 1524 * the requested alignment _and_ that MTU isn't "too far" from the 1525 * closest MTU, then we'll return that rather than the closest MTU. 1526 */ 1527 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1528 unsigned short header_size, 1529 unsigned short data_size_max, 1530 unsigned short data_size_align, 1531 unsigned int *mtu_idxp) 1532 { 1533 unsigned short max_mtu = header_size + data_size_max; 1534 unsigned short data_size_align_mask = data_size_align - 1; 1535 int mtu_idx, aligned_mtu_idx; 1536 1537 /* Scan the MTU Table till we find an MTU which is larger than our 1538 * Maximum MTU or we reach the end of the table. Along the way, 1539 * record the last MTU found, if any, which will result in a Data 1540 * Segment Length matching the requested alignment. 1541 */ 1542 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1543 unsigned short data_size = mtus[mtu_idx] - header_size; 1544 1545 /* If this MTU minus the Header Size would result in a 1546 * Data Segment Size of the desired alignment, remember it. 1547 */ 1548 if ((data_size & data_size_align_mask) == 0) 1549 aligned_mtu_idx = mtu_idx; 1550 1551 /* If we're not at the end of the Hardware MTU Table and the 1552 * next element is larger than our Maximum MTU, drop out of 1553 * the loop. 1554 */ 1555 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1556 break; 1557 } 1558 1559 /* If we fell out of the loop because we ran to the end of the table, 1560 * then we just have to use the last [largest] entry. 1561 */ 1562 if (mtu_idx == NMTUS) 1563 mtu_idx--; 1564 1565 /* If we found an MTU which resulted in the requested Data Segment 1566 * Length alignment and that's "not far" from the largest MTU which is 1567 * less than or equal to the maximum MTU, then use that. 1568 */ 1569 if (aligned_mtu_idx >= 0 && 1570 mtu_idx - aligned_mtu_idx <= 1) 1571 mtu_idx = aligned_mtu_idx; 1572 1573 /* If the caller has passed in an MTU Index pointer, pass the 1574 * MTU Index back. Return the MTU value. 1575 */ 1576 if (mtu_idxp) 1577 *mtu_idxp = mtu_idx; 1578 return mtus[mtu_idx]; 1579 } 1580 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1581 1582 /** 1583 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1584 * @chip: chip type 1585 * @viid: VI id of the given port 1586 * 1587 * Return the SMT index for this VI. 1588 */ 1589 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1590 { 1591 /* In T4/T5, SMT contains 256 SMAC entries organized in 1592 * 128 rows of 2 entries each. 1593 * In T6, SMT contains 256 SMAC entries in 256 rows. 1594 * TODO: The below code needs to be updated when we add support 1595 * for 256 VFs. 1596 */ 1597 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1598 return ((viid & 0x7f) << 1); 1599 else 1600 return (viid & 0x7f); 1601 } 1602 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1603 1604 /** 1605 * cxgb4_port_chan - get the HW channel of a port 1606 * @dev: the net device for the port 1607 * 1608 * Return the HW Tx channel of the given port. 1609 */ 1610 unsigned int cxgb4_port_chan(const struct net_device *dev) 1611 { 1612 return netdev2pinfo(dev)->tx_chan; 1613 } 1614 EXPORT_SYMBOL(cxgb4_port_chan); 1615 1616 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1617 { 1618 struct adapter *adap = netdev2adap(dev); 1619 u32 v1, v2, lp_count, hp_count; 1620 1621 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1622 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1623 if (is_t4(adap->params.chip)) { 1624 lp_count = LP_COUNT_G(v1); 1625 hp_count = HP_COUNT_G(v1); 1626 } else { 1627 lp_count = LP_COUNT_T5_G(v1); 1628 hp_count = HP_COUNT_T5_G(v2); 1629 } 1630 return lpfifo ? lp_count : hp_count; 1631 } 1632 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1633 1634 /** 1635 * cxgb4_port_viid - get the VI id of a port 1636 * @dev: the net device for the port 1637 * 1638 * Return the VI id of the given port. 1639 */ 1640 unsigned int cxgb4_port_viid(const struct net_device *dev) 1641 { 1642 return netdev2pinfo(dev)->viid; 1643 } 1644 EXPORT_SYMBOL(cxgb4_port_viid); 1645 1646 /** 1647 * cxgb4_port_idx - get the index of a port 1648 * @dev: the net device for the port 1649 * 1650 * Return the index of the given port. 1651 */ 1652 unsigned int cxgb4_port_idx(const struct net_device *dev) 1653 { 1654 return netdev2pinfo(dev)->port_id; 1655 } 1656 EXPORT_SYMBOL(cxgb4_port_idx); 1657 1658 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1659 struct tp_tcp_stats *v6) 1660 { 1661 struct adapter *adap = pci_get_drvdata(pdev); 1662 1663 spin_lock(&adap->stats_lock); 1664 t4_tp_get_tcp_stats(adap, v4, v6, false); 1665 spin_unlock(&adap->stats_lock); 1666 } 1667 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1668 1669 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1670 const unsigned int *pgsz_order) 1671 { 1672 struct adapter *adap = netdev2adap(dev); 1673 1674 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1675 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1676 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1677 HPZ3_V(pgsz_order[3])); 1678 } 1679 EXPORT_SYMBOL(cxgb4_iscsi_init); 1680 1681 int cxgb4_flush_eq_cache(struct net_device *dev) 1682 { 1683 struct adapter *adap = netdev2adap(dev); 1684 1685 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 1686 } 1687 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1688 1689 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1690 { 1691 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1692 __be64 indices; 1693 int ret; 1694 1695 spin_lock(&adap->win0_lock); 1696 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1697 sizeof(indices), (__be32 *)&indices, 1698 T4_MEMORY_READ); 1699 spin_unlock(&adap->win0_lock); 1700 if (!ret) { 1701 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1702 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1703 } 1704 return ret; 1705 } 1706 1707 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1708 u16 size) 1709 { 1710 struct adapter *adap = netdev2adap(dev); 1711 u16 hw_pidx, hw_cidx; 1712 int ret; 1713 1714 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1715 if (ret) 1716 goto out; 1717 1718 if (pidx != hw_pidx) { 1719 u16 delta; 1720 u32 val; 1721 1722 if (pidx >= hw_pidx) 1723 delta = pidx - hw_pidx; 1724 else 1725 delta = size - hw_pidx + pidx; 1726 1727 if (is_t4(adap->params.chip)) 1728 val = PIDX_V(delta); 1729 else 1730 val = PIDX_T5_V(delta); 1731 wmb(); 1732 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1733 QID_V(qid) | val); 1734 } 1735 out: 1736 return ret; 1737 } 1738 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1739 1740 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1741 { 1742 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1743 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1744 u32 offset, memtype, memaddr; 1745 struct adapter *adap; 1746 u32 hma_size = 0; 1747 int ret; 1748 1749 adap = netdev2adap(dev); 1750 1751 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1752 1753 /* Figure out where the offset lands in the Memory Type/Address scheme. 1754 * This code assumes that the memory is laid out starting at offset 0 1755 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1756 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1757 * MC0, and some have both MC0 and MC1. 1758 */ 1759 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1760 edc0_size = EDRAM0_SIZE_G(size) << 20; 1761 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1762 edc1_size = EDRAM1_SIZE_G(size) << 20; 1763 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1764 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1765 1766 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 1767 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1768 hma_size = EXT_MEM1_SIZE_G(size) << 20; 1769 } 1770 edc0_end = edc0_size; 1771 edc1_end = edc0_end + edc1_size; 1772 mc0_end = edc1_end + mc0_size; 1773 1774 if (offset < edc0_end) { 1775 memtype = MEM_EDC0; 1776 memaddr = offset; 1777 } else if (offset < edc1_end) { 1778 memtype = MEM_EDC1; 1779 memaddr = offset - edc0_end; 1780 } else { 1781 if (hma_size && (offset < (edc1_end + hma_size))) { 1782 memtype = MEM_HMA; 1783 memaddr = offset - edc1_end; 1784 } else if (offset < mc0_end) { 1785 memtype = MEM_MC0; 1786 memaddr = offset - edc1_end; 1787 } else if (is_t5(adap->params.chip)) { 1788 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1789 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1790 mc1_end = mc0_end + mc1_size; 1791 if (offset < mc1_end) { 1792 memtype = MEM_MC1; 1793 memaddr = offset - mc0_end; 1794 } else { 1795 /* offset beyond the end of any memory */ 1796 goto err; 1797 } 1798 } else { 1799 /* T4/T6 only has a single memory channel */ 1800 goto err; 1801 } 1802 } 1803 1804 spin_lock(&adap->win0_lock); 1805 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1806 spin_unlock(&adap->win0_lock); 1807 return ret; 1808 1809 err: 1810 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1811 stag, offset); 1812 return -EINVAL; 1813 } 1814 EXPORT_SYMBOL(cxgb4_read_tpte); 1815 1816 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1817 { 1818 u32 hi, lo; 1819 struct adapter *adap; 1820 1821 adap = netdev2adap(dev); 1822 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1823 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1824 1825 return ((u64)hi << 32) | (u64)lo; 1826 } 1827 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1828 1829 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1830 unsigned int qid, 1831 enum cxgb4_bar2_qtype qtype, 1832 int user, 1833 u64 *pbar2_qoffset, 1834 unsigned int *pbar2_qid) 1835 { 1836 return t4_bar2_sge_qregs(netdev2adap(dev), 1837 qid, 1838 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1839 ? T4_BAR2_QTYPE_EGRESS 1840 : T4_BAR2_QTYPE_INGRESS), 1841 user, 1842 pbar2_qoffset, 1843 pbar2_qid); 1844 } 1845 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1846 1847 static struct pci_driver cxgb4_driver; 1848 1849 static void check_neigh_update(struct neighbour *neigh) 1850 { 1851 const struct device *parent; 1852 const struct net_device *netdev = neigh->dev; 1853 1854 if (is_vlan_dev(netdev)) 1855 netdev = vlan_dev_real_dev(netdev); 1856 parent = netdev->dev.parent; 1857 if (parent && parent->driver == &cxgb4_driver.driver) 1858 t4_l2t_update(dev_get_drvdata(parent), neigh); 1859 } 1860 1861 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1862 void *data) 1863 { 1864 switch (event) { 1865 case NETEVENT_NEIGH_UPDATE: 1866 check_neigh_update(data); 1867 break; 1868 case NETEVENT_REDIRECT: 1869 default: 1870 break; 1871 } 1872 return 0; 1873 } 1874 1875 static bool netevent_registered; 1876 static struct notifier_block cxgb4_netevent_nb = { 1877 .notifier_call = netevent_cb 1878 }; 1879 1880 static void drain_db_fifo(struct adapter *adap, int usecs) 1881 { 1882 u32 v1, v2, lp_count, hp_count; 1883 1884 do { 1885 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1886 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1887 if (is_t4(adap->params.chip)) { 1888 lp_count = LP_COUNT_G(v1); 1889 hp_count = HP_COUNT_G(v1); 1890 } else { 1891 lp_count = LP_COUNT_T5_G(v1); 1892 hp_count = HP_COUNT_T5_G(v2); 1893 } 1894 1895 if (lp_count == 0 && hp_count == 0) 1896 break; 1897 set_current_state(TASK_UNINTERRUPTIBLE); 1898 schedule_timeout(usecs_to_jiffies(usecs)); 1899 } while (1); 1900 } 1901 1902 static void disable_txq_db(struct sge_txq *q) 1903 { 1904 unsigned long flags; 1905 1906 spin_lock_irqsave(&q->db_lock, flags); 1907 q->db_disabled = 1; 1908 spin_unlock_irqrestore(&q->db_lock, flags); 1909 } 1910 1911 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1912 { 1913 spin_lock_irq(&q->db_lock); 1914 if (q->db_pidx_inc) { 1915 /* Make sure that all writes to the TX descriptors 1916 * are committed before we tell HW about them. 1917 */ 1918 wmb(); 1919 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1920 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1921 q->db_pidx_inc = 0; 1922 } 1923 q->db_disabled = 0; 1924 spin_unlock_irq(&q->db_lock); 1925 } 1926 1927 static void disable_dbs(struct adapter *adap) 1928 { 1929 int i; 1930 1931 for_each_ethrxq(&adap->sge, i) 1932 disable_txq_db(&adap->sge.ethtxq[i].q); 1933 if (is_offload(adap)) { 1934 struct sge_uld_txq_info *txq_info = 1935 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1936 1937 if (txq_info) { 1938 for_each_ofldtxq(&adap->sge, i) { 1939 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1940 1941 disable_txq_db(&txq->q); 1942 } 1943 } 1944 } 1945 for_each_port(adap, i) 1946 disable_txq_db(&adap->sge.ctrlq[i].q); 1947 } 1948 1949 static void enable_dbs(struct adapter *adap) 1950 { 1951 int i; 1952 1953 for_each_ethrxq(&adap->sge, i) 1954 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1955 if (is_offload(adap)) { 1956 struct sge_uld_txq_info *txq_info = 1957 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1958 1959 if (txq_info) { 1960 for_each_ofldtxq(&adap->sge, i) { 1961 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1962 1963 enable_txq_db(adap, &txq->q); 1964 } 1965 } 1966 } 1967 for_each_port(adap, i) 1968 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 1969 } 1970 1971 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 1972 { 1973 enum cxgb4_uld type = CXGB4_ULD_RDMA; 1974 1975 if (adap->uld && adap->uld[type].handle) 1976 adap->uld[type].control(adap->uld[type].handle, cmd); 1977 } 1978 1979 static void process_db_full(struct work_struct *work) 1980 { 1981 struct adapter *adap; 1982 1983 adap = container_of(work, struct adapter, db_full_task); 1984 1985 drain_db_fifo(adap, dbfifo_drain_delay); 1986 enable_dbs(adap); 1987 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 1988 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1989 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1990 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 1991 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 1992 else 1993 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1994 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 1995 } 1996 1997 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 1998 { 1999 u16 hw_pidx, hw_cidx; 2000 int ret; 2001 2002 spin_lock_irq(&q->db_lock); 2003 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2004 if (ret) 2005 goto out; 2006 if (q->db_pidx != hw_pidx) { 2007 u16 delta; 2008 u32 val; 2009 2010 if (q->db_pidx >= hw_pidx) 2011 delta = q->db_pidx - hw_pidx; 2012 else 2013 delta = q->size - hw_pidx + q->db_pidx; 2014 2015 if (is_t4(adap->params.chip)) 2016 val = PIDX_V(delta); 2017 else 2018 val = PIDX_T5_V(delta); 2019 wmb(); 2020 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2021 QID_V(q->cntxt_id) | val); 2022 } 2023 out: 2024 q->db_disabled = 0; 2025 q->db_pidx_inc = 0; 2026 spin_unlock_irq(&q->db_lock); 2027 if (ret) 2028 CH_WARN(adap, "DB drop recovery failed.\n"); 2029 } 2030 2031 static void recover_all_queues(struct adapter *adap) 2032 { 2033 int i; 2034 2035 for_each_ethrxq(&adap->sge, i) 2036 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2037 if (is_offload(adap)) { 2038 struct sge_uld_txq_info *txq_info = 2039 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2040 if (txq_info) { 2041 for_each_ofldtxq(&adap->sge, i) { 2042 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2043 2044 sync_txq_pidx(adap, &txq->q); 2045 } 2046 } 2047 } 2048 for_each_port(adap, i) 2049 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2050 } 2051 2052 static void process_db_drop(struct work_struct *work) 2053 { 2054 struct adapter *adap; 2055 2056 adap = container_of(work, struct adapter, db_drop_task); 2057 2058 if (is_t4(adap->params.chip)) { 2059 drain_db_fifo(adap, dbfifo_drain_delay); 2060 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2061 drain_db_fifo(adap, dbfifo_drain_delay); 2062 recover_all_queues(adap); 2063 drain_db_fifo(adap, dbfifo_drain_delay); 2064 enable_dbs(adap); 2065 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2066 } else if (is_t5(adap->params.chip)) { 2067 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2068 u16 qid = (dropped_db >> 15) & 0x1ffff; 2069 u16 pidx_inc = dropped_db & 0x1fff; 2070 u64 bar2_qoffset; 2071 unsigned int bar2_qid; 2072 int ret; 2073 2074 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2075 0, &bar2_qoffset, &bar2_qid); 2076 if (ret) 2077 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2078 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2079 else 2080 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2081 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2082 2083 /* Re-enable BAR2 WC */ 2084 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2085 } 2086 2087 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2088 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2089 } 2090 2091 void t4_db_full(struct adapter *adap) 2092 { 2093 if (is_t4(adap->params.chip)) { 2094 disable_dbs(adap); 2095 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2096 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2097 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2098 queue_work(adap->workq, &adap->db_full_task); 2099 } 2100 } 2101 2102 void t4_db_dropped(struct adapter *adap) 2103 { 2104 if (is_t4(adap->params.chip)) { 2105 disable_dbs(adap); 2106 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2107 } 2108 queue_work(adap->workq, &adap->db_drop_task); 2109 } 2110 2111 void t4_register_netevent_notifier(void) 2112 { 2113 if (!netevent_registered) { 2114 register_netevent_notifier(&cxgb4_netevent_nb); 2115 netevent_registered = true; 2116 } 2117 } 2118 2119 static void detach_ulds(struct adapter *adap) 2120 { 2121 unsigned int i; 2122 2123 mutex_lock(&uld_mutex); 2124 list_del(&adap->list_node); 2125 2126 for (i = 0; i < CXGB4_ULD_MAX; i++) 2127 if (adap->uld && adap->uld[i].handle) 2128 adap->uld[i].state_change(adap->uld[i].handle, 2129 CXGB4_STATE_DETACH); 2130 2131 if (netevent_registered && list_empty(&adapter_list)) { 2132 unregister_netevent_notifier(&cxgb4_netevent_nb); 2133 netevent_registered = false; 2134 } 2135 mutex_unlock(&uld_mutex); 2136 } 2137 2138 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2139 { 2140 unsigned int i; 2141 2142 mutex_lock(&uld_mutex); 2143 for (i = 0; i < CXGB4_ULD_MAX; i++) 2144 if (adap->uld && adap->uld[i].handle) 2145 adap->uld[i].state_change(adap->uld[i].handle, 2146 new_state); 2147 mutex_unlock(&uld_mutex); 2148 } 2149 2150 #if IS_ENABLED(CONFIG_IPV6) 2151 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2152 unsigned long event, void *data) 2153 { 2154 struct inet6_ifaddr *ifa = data; 2155 struct net_device *event_dev = ifa->idev->dev; 2156 const struct device *parent = NULL; 2157 #if IS_ENABLED(CONFIG_BONDING) 2158 struct adapter *adap; 2159 #endif 2160 if (is_vlan_dev(event_dev)) 2161 event_dev = vlan_dev_real_dev(event_dev); 2162 #if IS_ENABLED(CONFIG_BONDING) 2163 if (event_dev->flags & IFF_MASTER) { 2164 list_for_each_entry(adap, &adapter_list, list_node) { 2165 switch (event) { 2166 case NETDEV_UP: 2167 cxgb4_clip_get(adap->port[0], 2168 (const u32 *)ifa, 1); 2169 break; 2170 case NETDEV_DOWN: 2171 cxgb4_clip_release(adap->port[0], 2172 (const u32 *)ifa, 1); 2173 break; 2174 default: 2175 break; 2176 } 2177 } 2178 return NOTIFY_OK; 2179 } 2180 #endif 2181 2182 if (event_dev) 2183 parent = event_dev->dev.parent; 2184 2185 if (parent && parent->driver == &cxgb4_driver.driver) { 2186 switch (event) { 2187 case NETDEV_UP: 2188 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2189 break; 2190 case NETDEV_DOWN: 2191 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2192 break; 2193 default: 2194 break; 2195 } 2196 } 2197 return NOTIFY_OK; 2198 } 2199 2200 static bool inet6addr_registered; 2201 static struct notifier_block cxgb4_inet6addr_notifier = { 2202 .notifier_call = cxgb4_inet6addr_handler 2203 }; 2204 2205 static void update_clip(const struct adapter *adap) 2206 { 2207 int i; 2208 struct net_device *dev; 2209 int ret; 2210 2211 rcu_read_lock(); 2212 2213 for (i = 0; i < MAX_NPORTS; i++) { 2214 dev = adap->port[i]; 2215 ret = 0; 2216 2217 if (dev) 2218 ret = cxgb4_update_root_dev_clip(dev); 2219 2220 if (ret < 0) 2221 break; 2222 } 2223 rcu_read_unlock(); 2224 } 2225 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2226 2227 /** 2228 * cxgb_up - enable the adapter 2229 * @adap: adapter being enabled 2230 * 2231 * Called when the first port is enabled, this function performs the 2232 * actions necessary to make an adapter operational, such as completing 2233 * the initialization of HW modules, and enabling interrupts. 2234 * 2235 * Must be called with the rtnl lock held. 2236 */ 2237 static int cxgb_up(struct adapter *adap) 2238 { 2239 int err; 2240 2241 mutex_lock(&uld_mutex); 2242 err = setup_sge_queues(adap); 2243 if (err) 2244 goto rel_lock; 2245 err = setup_rss(adap); 2246 if (err) 2247 goto freeq; 2248 2249 if (adap->flags & USING_MSIX) { 2250 name_msix_vecs(adap); 2251 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2252 adap->msix_info[0].desc, adap); 2253 if (err) 2254 goto irq_err; 2255 err = request_msix_queue_irqs(adap); 2256 if (err) { 2257 free_irq(adap->msix_info[0].vec, adap); 2258 goto irq_err; 2259 } 2260 } else { 2261 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2262 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2263 adap->port[0]->name, adap); 2264 if (err) 2265 goto irq_err; 2266 } 2267 2268 enable_rx(adap); 2269 t4_sge_start(adap); 2270 t4_intr_enable(adap); 2271 adap->flags |= FULL_INIT_DONE; 2272 mutex_unlock(&uld_mutex); 2273 2274 notify_ulds(adap, CXGB4_STATE_UP); 2275 #if IS_ENABLED(CONFIG_IPV6) 2276 update_clip(adap); 2277 #endif 2278 /* Initialize hash mac addr list*/ 2279 INIT_LIST_HEAD(&adap->mac_hlist); 2280 return err; 2281 2282 irq_err: 2283 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2284 freeq: 2285 t4_free_sge_resources(adap); 2286 rel_lock: 2287 mutex_unlock(&uld_mutex); 2288 return err; 2289 } 2290 2291 static void cxgb_down(struct adapter *adapter) 2292 { 2293 cancel_work_sync(&adapter->tid_release_task); 2294 cancel_work_sync(&adapter->db_full_task); 2295 cancel_work_sync(&adapter->db_drop_task); 2296 adapter->tid_release_task_busy = false; 2297 adapter->tid_release_head = NULL; 2298 2299 t4_sge_stop(adapter); 2300 t4_free_sge_resources(adapter); 2301 adapter->flags &= ~FULL_INIT_DONE; 2302 } 2303 2304 /* 2305 * net_device operations 2306 */ 2307 static int cxgb_open(struct net_device *dev) 2308 { 2309 int err; 2310 struct port_info *pi = netdev_priv(dev); 2311 struct adapter *adapter = pi->adapter; 2312 2313 netif_carrier_off(dev); 2314 2315 if (!(adapter->flags & FULL_INIT_DONE)) { 2316 err = cxgb_up(adapter); 2317 if (err < 0) 2318 return err; 2319 } 2320 2321 /* It's possible that the basic port information could have 2322 * changed since we first read it. 2323 */ 2324 err = t4_update_port_info(pi); 2325 if (err < 0) 2326 return err; 2327 2328 err = link_start(dev); 2329 if (!err) 2330 netif_tx_start_all_queues(dev); 2331 return err; 2332 } 2333 2334 static int cxgb_close(struct net_device *dev) 2335 { 2336 struct port_info *pi = netdev_priv(dev); 2337 struct adapter *adapter = pi->adapter; 2338 int ret; 2339 2340 netif_tx_stop_all_queues(dev); 2341 netif_carrier_off(dev); 2342 ret = t4_enable_vi(adapter, adapter->pf, pi->viid, false, false); 2343 #ifdef CONFIG_CHELSIO_T4_DCB 2344 cxgb4_dcb_reset(dev); 2345 dcb_tx_queue_prio_enable(dev, false); 2346 #endif 2347 return ret; 2348 } 2349 2350 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2351 __be32 sip, __be16 sport, __be16 vlan, 2352 unsigned int queue, unsigned char port, unsigned char mask) 2353 { 2354 int ret; 2355 struct filter_entry *f; 2356 struct adapter *adap; 2357 int i; 2358 u8 *val; 2359 2360 adap = netdev2adap(dev); 2361 2362 /* Adjust stid to correct filter index */ 2363 stid -= adap->tids.sftid_base; 2364 stid += adap->tids.nftids; 2365 2366 /* Check to make sure the filter requested is writable ... 2367 */ 2368 f = &adap->tids.ftid_tab[stid]; 2369 ret = writable_filter(f); 2370 if (ret) 2371 return ret; 2372 2373 /* Clear out any old resources being used by the filter before 2374 * we start constructing the new filter. 2375 */ 2376 if (f->valid) 2377 clear_filter(adap, f); 2378 2379 /* Clear out filter specifications */ 2380 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2381 f->fs.val.lport = cpu_to_be16(sport); 2382 f->fs.mask.lport = ~0; 2383 val = (u8 *)&sip; 2384 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2385 for (i = 0; i < 4; i++) { 2386 f->fs.val.lip[i] = val[i]; 2387 f->fs.mask.lip[i] = ~0; 2388 } 2389 if (adap->params.tp.vlan_pri_map & PORT_F) { 2390 f->fs.val.iport = port; 2391 f->fs.mask.iport = mask; 2392 } 2393 } 2394 2395 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2396 f->fs.val.proto = IPPROTO_TCP; 2397 f->fs.mask.proto = ~0; 2398 } 2399 2400 f->fs.dirsteer = 1; 2401 f->fs.iq = queue; 2402 /* Mark filter as locked */ 2403 f->locked = 1; 2404 f->fs.rpttid = 1; 2405 2406 /* Save the actual tid. We need this to get the corresponding 2407 * filter entry structure in filter_rpl. 2408 */ 2409 f->tid = stid + adap->tids.ftid_base; 2410 ret = set_filter_wr(adap, stid); 2411 if (ret) { 2412 clear_filter(adap, f); 2413 return ret; 2414 } 2415 2416 return 0; 2417 } 2418 EXPORT_SYMBOL(cxgb4_create_server_filter); 2419 2420 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2421 unsigned int queue, bool ipv6) 2422 { 2423 struct filter_entry *f; 2424 struct adapter *adap; 2425 2426 adap = netdev2adap(dev); 2427 2428 /* Adjust stid to correct filter index */ 2429 stid -= adap->tids.sftid_base; 2430 stid += adap->tids.nftids; 2431 2432 f = &adap->tids.ftid_tab[stid]; 2433 /* Unlock the filter */ 2434 f->locked = 0; 2435 2436 return delete_filter(adap, stid); 2437 } 2438 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2439 2440 static void cxgb_get_stats(struct net_device *dev, 2441 struct rtnl_link_stats64 *ns) 2442 { 2443 struct port_stats stats; 2444 struct port_info *p = netdev_priv(dev); 2445 struct adapter *adapter = p->adapter; 2446 2447 /* Block retrieving statistics during EEH error 2448 * recovery. Otherwise, the recovery might fail 2449 * and the PCI device will be removed permanently 2450 */ 2451 spin_lock(&adapter->stats_lock); 2452 if (!netif_device_present(dev)) { 2453 spin_unlock(&adapter->stats_lock); 2454 return; 2455 } 2456 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2457 &p->stats_base); 2458 spin_unlock(&adapter->stats_lock); 2459 2460 ns->tx_bytes = stats.tx_octets; 2461 ns->tx_packets = stats.tx_frames; 2462 ns->rx_bytes = stats.rx_octets; 2463 ns->rx_packets = stats.rx_frames; 2464 ns->multicast = stats.rx_mcast_frames; 2465 2466 /* detailed rx_errors */ 2467 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2468 stats.rx_runt; 2469 ns->rx_over_errors = 0; 2470 ns->rx_crc_errors = stats.rx_fcs_err; 2471 ns->rx_frame_errors = stats.rx_symbol_err; 2472 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2473 stats.rx_ovflow2 + stats.rx_ovflow3 + 2474 stats.rx_trunc0 + stats.rx_trunc1 + 2475 stats.rx_trunc2 + stats.rx_trunc3; 2476 ns->rx_missed_errors = 0; 2477 2478 /* detailed tx_errors */ 2479 ns->tx_aborted_errors = 0; 2480 ns->tx_carrier_errors = 0; 2481 ns->tx_fifo_errors = 0; 2482 ns->tx_heartbeat_errors = 0; 2483 ns->tx_window_errors = 0; 2484 2485 ns->tx_errors = stats.tx_error_frames; 2486 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2487 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2488 } 2489 2490 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2491 { 2492 unsigned int mbox; 2493 int ret = 0, prtad, devad; 2494 struct port_info *pi = netdev_priv(dev); 2495 struct adapter *adapter = pi->adapter; 2496 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2497 2498 switch (cmd) { 2499 case SIOCGMIIPHY: 2500 if (pi->mdio_addr < 0) 2501 return -EOPNOTSUPP; 2502 data->phy_id = pi->mdio_addr; 2503 break; 2504 case SIOCGMIIREG: 2505 case SIOCSMIIREG: 2506 if (mdio_phy_id_is_c45(data->phy_id)) { 2507 prtad = mdio_phy_id_prtad(data->phy_id); 2508 devad = mdio_phy_id_devad(data->phy_id); 2509 } else if (data->phy_id < 32) { 2510 prtad = data->phy_id; 2511 devad = 0; 2512 data->reg_num &= 0x1f; 2513 } else 2514 return -EINVAL; 2515 2516 mbox = pi->adapter->pf; 2517 if (cmd == SIOCGMIIREG) 2518 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2519 data->reg_num, &data->val_out); 2520 else 2521 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2522 data->reg_num, data->val_in); 2523 break; 2524 case SIOCGHWTSTAMP: 2525 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2526 sizeof(pi->tstamp_config)) ? 2527 -EFAULT : 0; 2528 case SIOCSHWTSTAMP: 2529 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2530 sizeof(pi->tstamp_config))) 2531 return -EFAULT; 2532 2533 if (!is_t4(adapter->params.chip)) { 2534 switch (pi->tstamp_config.tx_type) { 2535 case HWTSTAMP_TX_OFF: 2536 case HWTSTAMP_TX_ON: 2537 break; 2538 default: 2539 return -ERANGE; 2540 } 2541 2542 switch (pi->tstamp_config.rx_filter) { 2543 case HWTSTAMP_FILTER_NONE: 2544 pi->rxtstamp = false; 2545 break; 2546 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2547 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2548 cxgb4_ptprx_timestamping(pi, pi->port_id, 2549 PTP_TS_L4); 2550 break; 2551 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2552 cxgb4_ptprx_timestamping(pi, pi->port_id, 2553 PTP_TS_L2_L4); 2554 break; 2555 case HWTSTAMP_FILTER_ALL: 2556 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2557 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2558 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2559 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2560 pi->rxtstamp = true; 2561 break; 2562 default: 2563 pi->tstamp_config.rx_filter = 2564 HWTSTAMP_FILTER_NONE; 2565 return -ERANGE; 2566 } 2567 2568 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2569 (pi->tstamp_config.rx_filter == 2570 HWTSTAMP_FILTER_NONE)) { 2571 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2572 pi->ptp_enable = false; 2573 } 2574 2575 if (pi->tstamp_config.rx_filter != 2576 HWTSTAMP_FILTER_NONE) { 2577 if (cxgb4_ptp_redirect_rx_packet(adapter, 2578 pi) >= 0) 2579 pi->ptp_enable = true; 2580 } 2581 } else { 2582 /* For T4 Adapters */ 2583 switch (pi->tstamp_config.rx_filter) { 2584 case HWTSTAMP_FILTER_NONE: 2585 pi->rxtstamp = false; 2586 break; 2587 case HWTSTAMP_FILTER_ALL: 2588 pi->rxtstamp = true; 2589 break; 2590 default: 2591 pi->tstamp_config.rx_filter = 2592 HWTSTAMP_FILTER_NONE; 2593 return -ERANGE; 2594 } 2595 } 2596 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2597 sizeof(pi->tstamp_config)) ? 2598 -EFAULT : 0; 2599 default: 2600 return -EOPNOTSUPP; 2601 } 2602 return ret; 2603 } 2604 2605 static void cxgb_set_rxmode(struct net_device *dev) 2606 { 2607 /* unfortunately we can't return errors to the stack */ 2608 set_rxmode(dev, -1, false); 2609 } 2610 2611 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2612 { 2613 int ret; 2614 struct port_info *pi = netdev_priv(dev); 2615 2616 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2617 -1, -1, -1, true); 2618 if (!ret) 2619 dev->mtu = new_mtu; 2620 return ret; 2621 } 2622 2623 #ifdef CONFIG_PCI_IOV 2624 static int cxgb4_mgmt_open(struct net_device *dev) 2625 { 2626 /* Turn carrier off since we don't have to transmit anything on this 2627 * interface. 2628 */ 2629 netif_carrier_off(dev); 2630 return 0; 2631 } 2632 2633 /* Fill MAC address that will be assigned by the FW */ 2634 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 2635 { 2636 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2637 unsigned int i, vf, nvfs; 2638 u16 a, b; 2639 int err; 2640 u8 *na; 2641 2642 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, 2643 PCI_CAP_ID_VPD); 2644 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2645 if (err) 2646 return; 2647 2648 na = adap->params.vpd.na; 2649 for (i = 0; i < ETH_ALEN; i++) 2650 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2651 hex2val(na[2 * i + 1])); 2652 2653 a = (hw_addr[0] << 8) | hw_addr[1]; 2654 b = (hw_addr[1] << 8) | hw_addr[2]; 2655 a ^= b; 2656 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2657 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2658 macaddr[0] = a >> 8; 2659 macaddr[1] = a & 0xff; 2660 2661 for (i = 2; i < 5; i++) 2662 macaddr[i] = hw_addr[i + 1]; 2663 2664 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 2665 vf < nvfs; vf++) { 2666 macaddr[5] = adap->pf * 16 + vf; 2667 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 2668 } 2669 } 2670 2671 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2672 { 2673 struct port_info *pi = netdev_priv(dev); 2674 struct adapter *adap = pi->adapter; 2675 int ret; 2676 2677 /* verify MAC addr is valid */ 2678 if (!is_valid_ether_addr(mac)) { 2679 dev_err(pi->adapter->pdev_dev, 2680 "Invalid Ethernet address %pM for VF %d\n", 2681 mac, vf); 2682 return -EINVAL; 2683 } 2684 2685 dev_info(pi->adapter->pdev_dev, 2686 "Setting MAC %pM on VF %d\n", mac, vf); 2687 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2688 if (!ret) 2689 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2690 return ret; 2691 } 2692 2693 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 2694 int vf, struct ifla_vf_info *ivi) 2695 { 2696 struct port_info *pi = netdev_priv(dev); 2697 struct adapter *adap = pi->adapter; 2698 struct vf_info *vfinfo; 2699 2700 if (vf >= adap->num_vfs) 2701 return -EINVAL; 2702 vfinfo = &adap->vfinfo[vf]; 2703 2704 ivi->vf = vf; 2705 ivi->max_tx_rate = vfinfo->tx_rate; 2706 ivi->min_tx_rate = 0; 2707 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 2708 ivi->vlan = vfinfo->vlan; 2709 return 0; 2710 } 2711 2712 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 2713 struct netdev_phys_item_id *ppid) 2714 { 2715 struct port_info *pi = netdev_priv(dev); 2716 unsigned int phy_port_id; 2717 2718 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2719 ppid->id_len = sizeof(phy_port_id); 2720 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2721 return 0; 2722 } 2723 2724 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 2725 int min_tx_rate, int max_tx_rate) 2726 { 2727 struct port_info *pi = netdev_priv(dev); 2728 struct adapter *adap = pi->adapter; 2729 unsigned int link_ok, speed, mtu; 2730 u32 fw_pfvf, fw_class; 2731 int class_id = vf; 2732 int ret; 2733 u16 pktsize; 2734 2735 if (vf >= adap->num_vfs) 2736 return -EINVAL; 2737 2738 if (min_tx_rate) { 2739 dev_err(adap->pdev_dev, 2740 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2741 min_tx_rate, vf); 2742 return -EINVAL; 2743 } 2744 2745 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 2746 if (ret != FW_SUCCESS) { 2747 dev_err(adap->pdev_dev, 2748 "Failed to get link information for VF %d\n", vf); 2749 return -EINVAL; 2750 } 2751 2752 if (!link_ok) { 2753 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 2754 return -EINVAL; 2755 } 2756 2757 if (max_tx_rate > speed) { 2758 dev_err(adap->pdev_dev, 2759 "Max tx rate %d for VF %d can't be > link-speed %u", 2760 max_tx_rate, vf, speed); 2761 return -EINVAL; 2762 } 2763 2764 pktsize = mtu; 2765 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 2766 pktsize = pktsize - sizeof(struct ethhdr) - 4; 2767 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 2768 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 2769 /* configure Traffic Class for rate-limiting */ 2770 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 2771 SCHED_CLASS_LEVEL_CL_RL, 2772 SCHED_CLASS_MODE_CLASS, 2773 SCHED_CLASS_RATEUNIT_BITS, 2774 SCHED_CLASS_RATEMODE_ABS, 2775 pi->tx_chan, class_id, 0, 2776 max_tx_rate * 1000, 0, pktsize); 2777 if (ret) { 2778 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 2779 ret); 2780 return -EINVAL; 2781 } 2782 dev_info(adap->pdev_dev, 2783 "Class %d with MSS %u configured with rate %u\n", 2784 class_id, pktsize, max_tx_rate); 2785 2786 /* bind VF to configured Traffic Class */ 2787 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2788 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2789 fw_class = class_id; 2790 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 2791 &fw_class); 2792 if (ret) { 2793 dev_err(adap->pdev_dev, 2794 "Err %d in binding VF %d to Traffic Class %d\n", 2795 ret, vf, class_id); 2796 return -EINVAL; 2797 } 2798 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 2799 adap->pf, vf, class_id); 2800 adap->vfinfo[vf].tx_rate = max_tx_rate; 2801 return 0; 2802 } 2803 2804 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 2805 u16 vlan, u8 qos, __be16 vlan_proto) 2806 { 2807 struct port_info *pi = netdev_priv(dev); 2808 struct adapter *adap = pi->adapter; 2809 int ret; 2810 2811 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 2812 return -EINVAL; 2813 2814 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 2815 return -EPROTONOSUPPORT; 2816 2817 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 2818 if (!ret) { 2819 adap->vfinfo[vf].vlan = vlan; 2820 return 0; 2821 } 2822 2823 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 2824 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 2825 return ret; 2826 } 2827 #endif /* CONFIG_PCI_IOV */ 2828 2829 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2830 { 2831 int ret; 2832 struct sockaddr *addr = p; 2833 struct port_info *pi = netdev_priv(dev); 2834 2835 if (!is_valid_ether_addr(addr->sa_data)) 2836 return -EADDRNOTAVAIL; 2837 2838 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 2839 pi->xact_addr_filt, addr->sa_data, true, true); 2840 if (ret < 0) 2841 return ret; 2842 2843 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2844 pi->xact_addr_filt = ret; 2845 return 0; 2846 } 2847 2848 #ifdef CONFIG_NET_POLL_CONTROLLER 2849 static void cxgb_netpoll(struct net_device *dev) 2850 { 2851 struct port_info *pi = netdev_priv(dev); 2852 struct adapter *adap = pi->adapter; 2853 2854 if (adap->flags & USING_MSIX) { 2855 int i; 2856 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2857 2858 for (i = pi->nqsets; i; i--, rx++) 2859 t4_sge_intr_msix(0, &rx->rspq); 2860 } else 2861 t4_intr_handler(adap)(0, adap); 2862 } 2863 #endif 2864 2865 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2866 { 2867 struct port_info *pi = netdev_priv(dev); 2868 struct adapter *adap = pi->adapter; 2869 struct sched_class *e; 2870 struct ch_sched_params p; 2871 struct ch_sched_queue qe; 2872 u32 req_rate; 2873 int err = 0; 2874 2875 if (!can_sched(dev)) 2876 return -ENOTSUPP; 2877 2878 if (index < 0 || index > pi->nqsets - 1) 2879 return -EINVAL; 2880 2881 if (!(adap->flags & FULL_INIT_DONE)) { 2882 dev_err(adap->pdev_dev, 2883 "Failed to rate limit on queue %d. Link Down?\n", 2884 index); 2885 return -EINVAL; 2886 } 2887 2888 /* Convert from Mbps to Kbps */ 2889 req_rate = rate << 10; 2890 2891 /* Max rate is 100 Gbps */ 2892 if (req_rate >= SCHED_MAX_RATE_KBPS) { 2893 dev_err(adap->pdev_dev, 2894 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 2895 rate, SCHED_MAX_RATE_KBPS >> 10); 2896 return -ERANGE; 2897 } 2898 2899 /* First unbind the queue from any existing class */ 2900 memset(&qe, 0, sizeof(qe)); 2901 qe.queue = index; 2902 qe.class = SCHED_CLS_NONE; 2903 2904 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 2905 if (err) { 2906 dev_err(adap->pdev_dev, 2907 "Unbinding Queue %d on port %d fail. Err: %d\n", 2908 index, pi->port_id, err); 2909 return err; 2910 } 2911 2912 /* Queue already unbound */ 2913 if (!req_rate) 2914 return 0; 2915 2916 /* Fetch any available unused or matching scheduling class */ 2917 memset(&p, 0, sizeof(p)); 2918 p.type = SCHED_CLASS_TYPE_PACKET; 2919 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 2920 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 2921 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 2922 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 2923 p.u.params.channel = pi->tx_chan; 2924 p.u.params.class = SCHED_CLS_NONE; 2925 p.u.params.minrate = 0; 2926 p.u.params.maxrate = req_rate; 2927 p.u.params.weight = 0; 2928 p.u.params.pktsize = dev->mtu; 2929 2930 e = cxgb4_sched_class_alloc(dev, &p); 2931 if (!e) 2932 return -ENOMEM; 2933 2934 /* Bind the queue to a scheduling class */ 2935 memset(&qe, 0, sizeof(qe)); 2936 qe.queue = index; 2937 qe.class = e->idx; 2938 2939 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 2940 if (err) 2941 dev_err(adap->pdev_dev, 2942 "Queue rate limiting failed. Err: %d\n", err); 2943 return err; 2944 } 2945 2946 static int cxgb_setup_tc_flower(struct net_device *dev, 2947 struct tc_cls_flower_offload *cls_flower) 2948 { 2949 switch (cls_flower->command) { 2950 case TC_CLSFLOWER_REPLACE: 2951 return cxgb4_tc_flower_replace(dev, cls_flower); 2952 case TC_CLSFLOWER_DESTROY: 2953 return cxgb4_tc_flower_destroy(dev, cls_flower); 2954 case TC_CLSFLOWER_STATS: 2955 return cxgb4_tc_flower_stats(dev, cls_flower); 2956 default: 2957 return -EOPNOTSUPP; 2958 } 2959 } 2960 2961 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 2962 struct tc_cls_u32_offload *cls_u32) 2963 { 2964 switch (cls_u32->command) { 2965 case TC_CLSU32_NEW_KNODE: 2966 case TC_CLSU32_REPLACE_KNODE: 2967 return cxgb4_config_knode(dev, cls_u32); 2968 case TC_CLSU32_DELETE_KNODE: 2969 return cxgb4_delete_knode(dev, cls_u32); 2970 default: 2971 return -EOPNOTSUPP; 2972 } 2973 } 2974 2975 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 2976 void *cb_priv) 2977 { 2978 struct net_device *dev = cb_priv; 2979 struct port_info *pi = netdev2pinfo(dev); 2980 struct adapter *adap = netdev2adap(dev); 2981 2982 if (!(adap->flags & FULL_INIT_DONE)) { 2983 dev_err(adap->pdev_dev, 2984 "Failed to setup tc on port %d. Link Down?\n", 2985 pi->port_id); 2986 return -EINVAL; 2987 } 2988 2989 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 2990 return -EOPNOTSUPP; 2991 2992 switch (type) { 2993 case TC_SETUP_CLSU32: 2994 return cxgb_setup_tc_cls_u32(dev, type_data); 2995 case TC_SETUP_CLSFLOWER: 2996 return cxgb_setup_tc_flower(dev, type_data); 2997 default: 2998 return -EOPNOTSUPP; 2999 } 3000 } 3001 3002 static int cxgb_setup_tc_block(struct net_device *dev, 3003 struct tc_block_offload *f) 3004 { 3005 struct port_info *pi = netdev2pinfo(dev); 3006 3007 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 3008 return -EOPNOTSUPP; 3009 3010 switch (f->command) { 3011 case TC_BLOCK_BIND: 3012 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb, 3013 pi, dev); 3014 case TC_BLOCK_UNBIND: 3015 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi); 3016 return 0; 3017 default: 3018 return -EOPNOTSUPP; 3019 } 3020 } 3021 3022 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3023 void *type_data) 3024 { 3025 switch (type) { 3026 case TC_SETUP_BLOCK: 3027 return cxgb_setup_tc_block(dev, type_data); 3028 default: 3029 return -EOPNOTSUPP; 3030 } 3031 } 3032 3033 static void cxgb_del_udp_tunnel(struct net_device *netdev, 3034 struct udp_tunnel_info *ti) 3035 { 3036 struct port_info *pi = netdev_priv(netdev); 3037 struct adapter *adapter = pi->adapter; 3038 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3039 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3040 int ret = 0, i; 3041 3042 if (chip_ver < CHELSIO_T6) 3043 return; 3044 3045 switch (ti->type) { 3046 case UDP_TUNNEL_TYPE_VXLAN: 3047 if (!adapter->vxlan_port_cnt || 3048 adapter->vxlan_port != ti->port) 3049 return; /* Invalid VxLAN destination port */ 3050 3051 adapter->vxlan_port_cnt--; 3052 if (adapter->vxlan_port_cnt) 3053 return; 3054 3055 adapter->vxlan_port = 0; 3056 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3057 break; 3058 case UDP_TUNNEL_TYPE_GENEVE: 3059 if (!adapter->geneve_port_cnt || 3060 adapter->geneve_port != ti->port) 3061 return; /* Invalid GENEVE destination port */ 3062 3063 adapter->geneve_port_cnt--; 3064 if (adapter->geneve_port_cnt) 3065 return; 3066 3067 adapter->geneve_port = 0; 3068 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3069 default: 3070 return; 3071 } 3072 3073 /* Matchall mac entries can be deleted only after all tunnel ports 3074 * are brought down or removed. 3075 */ 3076 if (!adapter->rawf_cnt) 3077 return; 3078 for_each_port(adapter, i) { 3079 pi = adap2pinfo(adapter, i); 3080 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3081 match_all_mac, match_all_mac, 3082 adapter->rawf_start + 3083 pi->port_id, 3084 1, pi->port_id, true); 3085 if (ret < 0) { 3086 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3087 i); 3088 return; 3089 } 3090 atomic_dec(&adapter->mps_encap[adapter->rawf_start + 3091 pi->port_id].refcnt); 3092 } 3093 } 3094 3095 static void cxgb_add_udp_tunnel(struct net_device *netdev, 3096 struct udp_tunnel_info *ti) 3097 { 3098 struct port_info *pi = netdev_priv(netdev); 3099 struct adapter *adapter = pi->adapter; 3100 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3101 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3102 int i, ret; 3103 3104 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt) 3105 return; 3106 3107 switch (ti->type) { 3108 case UDP_TUNNEL_TYPE_VXLAN: 3109 /* Callback for adding vxlan port can be called with the same 3110 * port for both IPv4 and IPv6. We should not disable the 3111 * offloading when the same port for both protocols is added 3112 * and later one of them is removed. 3113 */ 3114 if (adapter->vxlan_port_cnt && 3115 adapter->vxlan_port == ti->port) { 3116 adapter->vxlan_port_cnt++; 3117 return; 3118 } 3119 3120 /* We will support only one VxLAN port */ 3121 if (adapter->vxlan_port_cnt) { 3122 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3123 be16_to_cpu(adapter->vxlan_port), 3124 be16_to_cpu(ti->port)); 3125 return; 3126 } 3127 3128 adapter->vxlan_port = ti->port; 3129 adapter->vxlan_port_cnt = 1; 3130 3131 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3132 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3133 break; 3134 case UDP_TUNNEL_TYPE_GENEVE: 3135 if (adapter->geneve_port_cnt && 3136 adapter->geneve_port == ti->port) { 3137 adapter->geneve_port_cnt++; 3138 return; 3139 } 3140 3141 /* We will support only one GENEVE port */ 3142 if (adapter->geneve_port_cnt) { 3143 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3144 be16_to_cpu(adapter->geneve_port), 3145 be16_to_cpu(ti->port)); 3146 return; 3147 } 3148 3149 adapter->geneve_port = ti->port; 3150 adapter->geneve_port_cnt = 1; 3151 3152 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3153 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3154 default: 3155 return; 3156 } 3157 3158 /* Create a 'match all' mac filter entry for inner mac, 3159 * if raw mac interface is supported. Once the linux kernel provides 3160 * driver entry points for adding/deleting the inner mac addresses, 3161 * we will remove this 'match all' entry and fallback to adding 3162 * exact match filters. 3163 */ 3164 for_each_port(adapter, i) { 3165 pi = adap2pinfo(adapter, i); 3166 3167 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3168 match_all_mac, 3169 match_all_mac, 3170 adapter->rawf_start + 3171 pi->port_id, 3172 1, pi->port_id, true); 3173 if (ret < 0) { 3174 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3175 be16_to_cpu(ti->port)); 3176 cxgb_del_udp_tunnel(netdev, ti); 3177 return; 3178 } 3179 atomic_inc(&adapter->mps_encap[ret].refcnt); 3180 } 3181 } 3182 3183 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3184 struct net_device *dev, 3185 netdev_features_t features) 3186 { 3187 struct port_info *pi = netdev_priv(dev); 3188 struct adapter *adapter = pi->adapter; 3189 3190 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3191 return features; 3192 3193 /* Check if hw supports offload for this packet */ 3194 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3195 return features; 3196 3197 /* Offload is not supported for this encapsulated packet */ 3198 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3199 } 3200 3201 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3202 netdev_features_t features) 3203 { 3204 /* Disable GRO, if RX_CSUM is disabled */ 3205 if (!(features & NETIF_F_RXCSUM)) 3206 features &= ~NETIF_F_GRO; 3207 3208 return features; 3209 } 3210 3211 static const struct net_device_ops cxgb4_netdev_ops = { 3212 .ndo_open = cxgb_open, 3213 .ndo_stop = cxgb_close, 3214 .ndo_start_xmit = t4_eth_xmit, 3215 .ndo_select_queue = cxgb_select_queue, 3216 .ndo_get_stats64 = cxgb_get_stats, 3217 .ndo_set_rx_mode = cxgb_set_rxmode, 3218 .ndo_set_mac_address = cxgb_set_mac_addr, 3219 .ndo_set_features = cxgb_set_features, 3220 .ndo_validate_addr = eth_validate_addr, 3221 .ndo_do_ioctl = cxgb_ioctl, 3222 .ndo_change_mtu = cxgb_change_mtu, 3223 #ifdef CONFIG_NET_POLL_CONTROLLER 3224 .ndo_poll_controller = cxgb_netpoll, 3225 #endif 3226 #ifdef CONFIG_CHELSIO_T4_FCOE 3227 .ndo_fcoe_enable = cxgb_fcoe_enable, 3228 .ndo_fcoe_disable = cxgb_fcoe_disable, 3229 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3230 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3231 .ndo_setup_tc = cxgb_setup_tc, 3232 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel, 3233 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel, 3234 .ndo_features_check = cxgb_features_check, 3235 .ndo_fix_features = cxgb_fix_features, 3236 }; 3237 3238 #ifdef CONFIG_PCI_IOV 3239 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3240 .ndo_open = cxgb4_mgmt_open, 3241 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3242 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3243 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3244 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3245 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3246 }; 3247 #endif 3248 3249 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3250 struct ethtool_drvinfo *info) 3251 { 3252 struct adapter *adapter = netdev2adap(dev); 3253 3254 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3255 strlcpy(info->version, cxgb4_driver_version, 3256 sizeof(info->version)); 3257 strlcpy(info->bus_info, pci_name(adapter->pdev), 3258 sizeof(info->bus_info)); 3259 } 3260 3261 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3262 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3263 }; 3264 3265 static void notify_fatal_err(struct work_struct *work) 3266 { 3267 struct adapter *adap; 3268 3269 adap = container_of(work, struct adapter, fatal_err_notify_task); 3270 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3271 } 3272 3273 void t4_fatal_err(struct adapter *adap) 3274 { 3275 int port; 3276 3277 if (pci_channel_offline(adap->pdev)) 3278 return; 3279 3280 /* Disable the SGE since ULDs are going to free resources that 3281 * could be exposed to the adapter. RDMA MWs for example... 3282 */ 3283 t4_shutdown_adapter(adap); 3284 for_each_port(adap, port) { 3285 struct net_device *dev = adap->port[port]; 3286 3287 /* If we get here in very early initialization the network 3288 * devices may not have been set up yet. 3289 */ 3290 if (!dev) 3291 continue; 3292 3293 netif_tx_stop_all_queues(dev); 3294 netif_carrier_off(dev); 3295 } 3296 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3297 queue_work(adap->workq, &adap->fatal_err_notify_task); 3298 } 3299 3300 static void setup_memwin(struct adapter *adap) 3301 { 3302 u32 nic_win_base = t4_get_util_window(adap); 3303 3304 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3305 } 3306 3307 static void setup_memwin_rdma(struct adapter *adap) 3308 { 3309 if (adap->vres.ocq.size) { 3310 u32 start; 3311 unsigned int sz_kb; 3312 3313 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3314 start &= PCI_BASE_ADDRESS_MEM_MASK; 3315 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3316 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3317 t4_write_reg(adap, 3318 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3319 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3320 t4_write_reg(adap, 3321 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3322 adap->vres.ocq.start); 3323 t4_read_reg(adap, 3324 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3325 } 3326 } 3327 3328 /* HMA Definitions */ 3329 3330 /* The maximum number of address that can be send in a single FW cmd */ 3331 #define HMA_MAX_ADDR_IN_CMD 5 3332 3333 #define HMA_PAGE_SIZE PAGE_SIZE 3334 3335 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3336 3337 #define HMA_PAGE_ORDER \ 3338 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3339 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3340 3341 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3342 * configuration(in units of MB). 3343 */ 3344 #define HMA_MIN_TOTAL_SIZE 1 3345 #define HMA_MAX_TOTAL_SIZE \ 3346 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3347 HMA_MAX_NO_FW_ADDRESS) >> 20) 3348 3349 static void adap_free_hma_mem(struct adapter *adapter) 3350 { 3351 struct scatterlist *iter; 3352 struct page *page; 3353 int i; 3354 3355 if (!adapter->hma.sgt) 3356 return; 3357 3358 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 3359 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 3360 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 3361 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 3362 } 3363 3364 for_each_sg(adapter->hma.sgt->sgl, iter, 3365 adapter->hma.sgt->orig_nents, i) { 3366 page = sg_page(iter); 3367 if (page) 3368 __free_pages(page, HMA_PAGE_ORDER); 3369 } 3370 3371 kfree(adapter->hma.phy_addr); 3372 sg_free_table(adapter->hma.sgt); 3373 kfree(adapter->hma.sgt); 3374 adapter->hma.sgt = NULL; 3375 } 3376 3377 static int adap_config_hma(struct adapter *adapter) 3378 { 3379 struct scatterlist *sgl, *iter; 3380 struct sg_table *sgt; 3381 struct page *newpage; 3382 unsigned int i, j, k; 3383 u32 param, hma_size; 3384 unsigned int ncmds; 3385 size_t page_size; 3386 u32 page_order; 3387 int node, ret; 3388 3389 /* HMA is supported only for T6+ cards. 3390 * Avoid initializing HMA in kdump kernels. 3391 */ 3392 if (is_kdump_kernel() || 3393 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3394 return 0; 3395 3396 /* Get the HMA region size required by fw */ 3397 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3398 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 3399 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3400 1, ¶m, &hma_size); 3401 /* An error means card has its own memory or HMA is not supported by 3402 * the firmware. Return without any errors. 3403 */ 3404 if (ret || !hma_size) 3405 return 0; 3406 3407 if (hma_size < HMA_MIN_TOTAL_SIZE || 3408 hma_size > HMA_MAX_TOTAL_SIZE) { 3409 dev_err(adapter->pdev_dev, 3410 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 3411 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 3412 return -EINVAL; 3413 } 3414 3415 page_size = HMA_PAGE_SIZE; 3416 page_order = HMA_PAGE_ORDER; 3417 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 3418 if (unlikely(!adapter->hma.sgt)) { 3419 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 3420 return -ENOMEM; 3421 } 3422 sgt = adapter->hma.sgt; 3423 /* FW returned value will be in MB's 3424 */ 3425 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 3426 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 3427 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 3428 kfree(adapter->hma.sgt); 3429 adapter->hma.sgt = NULL; 3430 return -ENOMEM; 3431 } 3432 3433 sgl = adapter->hma.sgt->sgl; 3434 node = dev_to_node(adapter->pdev_dev); 3435 for_each_sg(sgl, iter, sgt->orig_nents, i) { 3436 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL, 3437 page_order); 3438 if (!newpage) { 3439 dev_err(adapter->pdev_dev, 3440 "Not enough memory for HMA page allocation\n"); 3441 ret = -ENOMEM; 3442 goto free_hma; 3443 } 3444 sg_set_page(iter, newpage, page_size << page_order, 0); 3445 } 3446 3447 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 3448 DMA_BIDIRECTIONAL); 3449 if (!sgt->nents) { 3450 dev_err(adapter->pdev_dev, 3451 "Not enough memory for HMA DMA mapping"); 3452 ret = -ENOMEM; 3453 goto free_hma; 3454 } 3455 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 3456 3457 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 3458 GFP_KERNEL); 3459 if (unlikely(!adapter->hma.phy_addr)) 3460 goto free_hma; 3461 3462 for_each_sg(sgl, iter, sgt->nents, i) { 3463 newpage = sg_page(iter); 3464 adapter->hma.phy_addr[i] = sg_dma_address(iter); 3465 } 3466 3467 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 3468 /* Pass on the addresses to firmware */ 3469 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 3470 struct fw_hma_cmd hma_cmd; 3471 u8 naddr = HMA_MAX_ADDR_IN_CMD; 3472 u8 soc = 0, eoc = 0; 3473 u8 hma_mode = 1; /* Presently we support only Page table mode */ 3474 3475 soc = (i == 0) ? 1 : 0; 3476 eoc = (i == ncmds - 1) ? 1 : 0; 3477 3478 /* For last cmd, set naddr corresponding to remaining 3479 * addresses 3480 */ 3481 if (i == ncmds - 1) { 3482 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 3483 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 3484 } 3485 memset(&hma_cmd, 0, sizeof(hma_cmd)); 3486 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 3487 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3488 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 3489 3490 hma_cmd.mode_to_pcie_params = 3491 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 3492 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 3493 3494 /* HMA cmd size specified in MB's */ 3495 hma_cmd.naddr_size = 3496 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 3497 FW_HMA_CMD_NADDR_V(naddr)); 3498 3499 /* Total Page size specified in units of 4K */ 3500 hma_cmd.addr_size_pkd = 3501 htonl(FW_HMA_CMD_ADDR_SIZE_V 3502 ((page_size << page_order) >> 12)); 3503 3504 /* Fill the 5 addresses */ 3505 for (j = 0; j < naddr; j++) { 3506 hma_cmd.phy_address[j] = 3507 cpu_to_be64(adapter->hma.phy_addr[j + k]); 3508 } 3509 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 3510 sizeof(hma_cmd), &hma_cmd); 3511 if (ret) { 3512 dev_err(adapter->pdev_dev, 3513 "HMA FW command failed with err %d\n", ret); 3514 goto free_hma; 3515 } 3516 } 3517 3518 if (!ret) 3519 dev_info(adapter->pdev_dev, 3520 "Reserved %uMB host memory for HMA\n", hma_size); 3521 return ret; 3522 3523 free_hma: 3524 adap_free_hma_mem(adapter); 3525 return ret; 3526 } 3527 3528 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3529 { 3530 u32 v; 3531 int ret; 3532 3533 /* get device capabilities */ 3534 memset(c, 0, sizeof(*c)); 3535 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3536 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3537 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3538 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3539 if (ret < 0) 3540 return ret; 3541 3542 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3543 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3544 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3545 if (ret < 0) 3546 return ret; 3547 3548 ret = t4_config_glbl_rss(adap, adap->pf, 3549 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3550 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3551 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3552 if (ret < 0) 3553 return ret; 3554 3555 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3556 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3557 FW_CMD_CAP_PF); 3558 if (ret < 0) 3559 return ret; 3560 3561 t4_sge_init(adap); 3562 3563 /* tweak some settings */ 3564 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3565 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3566 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3567 v = t4_read_reg(adap, TP_PIO_DATA_A); 3568 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3569 3570 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3571 adap->params.tp.tx_modq_map = 0xE4; 3572 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3573 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3574 3575 /* associate each Tx modulation queue with consecutive Tx channels */ 3576 v = 0x84218421; 3577 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3578 &v, 1, TP_TX_SCHED_HDR_A); 3579 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3580 &v, 1, TP_TX_SCHED_FIFO_A); 3581 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3582 &v, 1, TP_TX_SCHED_PCMD_A); 3583 3584 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3585 if (is_offload(adap)) { 3586 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3587 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3588 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3589 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3590 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3591 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3592 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3593 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3594 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3595 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3596 } 3597 3598 /* get basic stuff going */ 3599 return t4_early_init(adap, adap->pf); 3600 } 3601 3602 /* 3603 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3604 */ 3605 #define MAX_ATIDS 8192U 3606 3607 /* 3608 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3609 * 3610 * If the firmware we're dealing with has Configuration File support, then 3611 * we use that to perform all configuration 3612 */ 3613 3614 /* 3615 * Tweak configuration based on module parameters, etc. Most of these have 3616 * defaults assigned to them by Firmware Configuration Files (if we're using 3617 * them) but need to be explicitly set if we're using hard-coded 3618 * initialization. But even in the case of using Firmware Configuration 3619 * Files, we'd like to expose the ability to change these via module 3620 * parameters so these are essentially common tweaks/settings for 3621 * Configuration Files and hard-coded initialization ... 3622 */ 3623 static int adap_init0_tweaks(struct adapter *adapter) 3624 { 3625 /* 3626 * Fix up various Host-Dependent Parameters like Page Size, Cache 3627 * Line Size, etc. The firmware default is for a 4KB Page Size and 3628 * 64B Cache Line Size ... 3629 */ 3630 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3631 3632 /* 3633 * Process module parameters which affect early initialization. 3634 */ 3635 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3636 dev_err(&adapter->pdev->dev, 3637 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3638 rx_dma_offset); 3639 rx_dma_offset = 2; 3640 } 3641 t4_set_reg_field(adapter, SGE_CONTROL_A, 3642 PKTSHIFT_V(PKTSHIFT_M), 3643 PKTSHIFT_V(rx_dma_offset)); 3644 3645 /* 3646 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3647 * adds the pseudo header itself. 3648 */ 3649 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3650 CSUM_HAS_PSEUDO_HDR_F, 0); 3651 3652 return 0; 3653 } 3654 3655 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3656 * unto themselves and they contain their own firmware to perform their 3657 * tasks ... 3658 */ 3659 static int phy_aq1202_version(const u8 *phy_fw_data, 3660 size_t phy_fw_size) 3661 { 3662 int offset; 3663 3664 /* At offset 0x8 you're looking for the primary image's 3665 * starting offset which is 3 Bytes wide 3666 * 3667 * At offset 0xa of the primary image, you look for the offset 3668 * of the DRAM segment which is 3 Bytes wide. 3669 * 3670 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3671 * wide 3672 */ 3673 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3674 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3675 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3676 3677 offset = le24(phy_fw_data + 0x8) << 12; 3678 offset = le24(phy_fw_data + offset + 0xa); 3679 return be16(phy_fw_data + offset + 0x27e); 3680 3681 #undef be16 3682 #undef le16 3683 #undef le24 3684 } 3685 3686 static struct info_10gbt_phy_fw { 3687 unsigned int phy_fw_id; /* PCI Device ID */ 3688 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3689 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3690 int phy_flash; /* Has FLASH for PHY Firmware */ 3691 } phy_info_array[] = { 3692 { 3693 PHY_AQ1202_DEVICEID, 3694 PHY_AQ1202_FIRMWARE, 3695 phy_aq1202_version, 3696 1, 3697 }, 3698 { 3699 PHY_BCM84834_DEVICEID, 3700 PHY_BCM84834_FIRMWARE, 3701 NULL, 3702 0, 3703 }, 3704 { 0, NULL, NULL }, 3705 }; 3706 3707 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3708 { 3709 int i; 3710 3711 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3712 if (phy_info_array[i].phy_fw_id == devid) 3713 return &phy_info_array[i]; 3714 } 3715 return NULL; 3716 } 3717 3718 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3719 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3720 * we return a negative error number. If we transfer new firmware we return 1 3721 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3722 */ 3723 static int adap_init0_phy(struct adapter *adap) 3724 { 3725 const struct firmware *phyf; 3726 int ret; 3727 struct info_10gbt_phy_fw *phy_info; 3728 3729 /* Use the device ID to determine which PHY file to flash. 3730 */ 3731 phy_info = find_phy_info(adap->pdev->device); 3732 if (!phy_info) { 3733 dev_warn(adap->pdev_dev, 3734 "No PHY Firmware file found for this PHY\n"); 3735 return -EOPNOTSUPP; 3736 } 3737 3738 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3739 * use that. The adapter firmware provides us with a memory buffer 3740 * where we can load a PHY firmware file from the host if we want to 3741 * override the PHY firmware File in flash. 3742 */ 3743 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3744 adap->pdev_dev); 3745 if (ret < 0) { 3746 /* For adapters without FLASH attached to PHY for their 3747 * firmware, it's obviously a fatal error if we can't get the 3748 * firmware to the adapter. For adapters with PHY firmware 3749 * FLASH storage, it's worth a warning if we can't find the 3750 * PHY Firmware but we'll neuter the error ... 3751 */ 3752 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3753 "/lib/firmware/%s, error %d\n", 3754 phy_info->phy_fw_file, -ret); 3755 if (phy_info->phy_flash) { 3756 int cur_phy_fw_ver = 0; 3757 3758 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3759 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3760 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3761 ret = 0; 3762 } 3763 3764 return ret; 3765 } 3766 3767 /* Load PHY Firmware onto adapter. 3768 */ 3769 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3770 phy_info->phy_fw_version, 3771 (u8 *)phyf->data, phyf->size); 3772 if (ret < 0) 3773 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3774 -ret); 3775 else if (ret > 0) { 3776 int new_phy_fw_ver = 0; 3777 3778 if (phy_info->phy_fw_version) 3779 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3780 phyf->size); 3781 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3782 "Firmware /lib/firmware/%s, version %#x\n", 3783 phy_info->phy_fw_file, new_phy_fw_ver); 3784 } 3785 3786 release_firmware(phyf); 3787 3788 return ret; 3789 } 3790 3791 /* 3792 * Attempt to initialize the adapter via a Firmware Configuration File. 3793 */ 3794 static int adap_init0_config(struct adapter *adapter, int reset) 3795 { 3796 struct fw_caps_config_cmd caps_cmd; 3797 const struct firmware *cf; 3798 unsigned long mtype = 0, maddr = 0; 3799 u32 finiver, finicsum, cfcsum; 3800 int ret; 3801 int config_issued = 0; 3802 char *fw_config_file, fw_config_file_path[256]; 3803 char *config_name = NULL; 3804 3805 /* 3806 * Reset device if necessary. 3807 */ 3808 if (reset) { 3809 ret = t4_fw_reset(adapter, adapter->mbox, 3810 PIORSTMODE_F | PIORST_F); 3811 if (ret < 0) 3812 goto bye; 3813 } 3814 3815 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3816 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3817 * to be performed after any global adapter RESET above since some 3818 * PHYs only have local RAM copies of the PHY firmware. 3819 */ 3820 if (is_10gbt_device(adapter->pdev->device)) { 3821 ret = adap_init0_phy(adapter); 3822 if (ret < 0) 3823 goto bye; 3824 } 3825 /* 3826 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3827 * then use that. Otherwise, use the configuration file stored 3828 * in the adapter flash ... 3829 */ 3830 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3831 case CHELSIO_T4: 3832 fw_config_file = FW4_CFNAME; 3833 break; 3834 case CHELSIO_T5: 3835 fw_config_file = FW5_CFNAME; 3836 break; 3837 case CHELSIO_T6: 3838 fw_config_file = FW6_CFNAME; 3839 break; 3840 default: 3841 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3842 adapter->pdev->device); 3843 ret = -EINVAL; 3844 goto bye; 3845 } 3846 3847 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3848 if (ret < 0) { 3849 config_name = "On FLASH"; 3850 mtype = FW_MEMTYPE_CF_FLASH; 3851 maddr = t4_flash_cfg_addr(adapter); 3852 } else { 3853 u32 params[7], val[7]; 3854 3855 sprintf(fw_config_file_path, 3856 "/lib/firmware/%s", fw_config_file); 3857 config_name = fw_config_file_path; 3858 3859 if (cf->size >= FLASH_CFG_MAX_SIZE) 3860 ret = -ENOMEM; 3861 else { 3862 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3863 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3864 ret = t4_query_params(adapter, adapter->mbox, 3865 adapter->pf, 0, 1, params, val); 3866 if (ret == 0) { 3867 /* 3868 * For t4_memory_rw() below addresses and 3869 * sizes have to be in terms of multiples of 4 3870 * bytes. So, if the Configuration File isn't 3871 * a multiple of 4 bytes in length we'll have 3872 * to write that out separately since we can't 3873 * guarantee that the bytes following the 3874 * residual byte in the buffer returned by 3875 * request_firmware() are zeroed out ... 3876 */ 3877 size_t resid = cf->size & 0x3; 3878 size_t size = cf->size & ~0x3; 3879 __be32 *data = (__be32 *)cf->data; 3880 3881 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3882 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3883 3884 spin_lock(&adapter->win0_lock); 3885 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3886 size, data, T4_MEMORY_WRITE); 3887 if (ret == 0 && resid != 0) { 3888 union { 3889 __be32 word; 3890 char buf[4]; 3891 } last; 3892 int i; 3893 3894 last.word = data[size >> 2]; 3895 for (i = resid; i < 4; i++) 3896 last.buf[i] = 0; 3897 ret = t4_memory_rw(adapter, 0, mtype, 3898 maddr + size, 3899 4, &last.word, 3900 T4_MEMORY_WRITE); 3901 } 3902 spin_unlock(&adapter->win0_lock); 3903 } 3904 } 3905 3906 release_firmware(cf); 3907 if (ret) 3908 goto bye; 3909 } 3910 3911 /* 3912 * Issue a Capability Configuration command to the firmware to get it 3913 * to parse the Configuration File. We don't use t4_fw_config_file() 3914 * because we want the ability to modify various features after we've 3915 * processed the configuration file ... 3916 */ 3917 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3918 caps_cmd.op_to_write = 3919 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3920 FW_CMD_REQUEST_F | 3921 FW_CMD_READ_F); 3922 caps_cmd.cfvalid_to_len16 = 3923 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3924 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3925 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3926 FW_LEN16(caps_cmd)); 3927 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3928 &caps_cmd); 3929 3930 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3931 * Configuration File in FLASH), our last gasp effort is to use the 3932 * Firmware Configuration File which is embedded in the firmware. A 3933 * very few early versions of the firmware didn't have one embedded 3934 * but we can ignore those. 3935 */ 3936 if (ret == -ENOENT) { 3937 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3938 caps_cmd.op_to_write = 3939 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3940 FW_CMD_REQUEST_F | 3941 FW_CMD_READ_F); 3942 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3943 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3944 sizeof(caps_cmd), &caps_cmd); 3945 config_name = "Firmware Default"; 3946 } 3947 3948 config_issued = 1; 3949 if (ret < 0) 3950 goto bye; 3951 3952 finiver = ntohl(caps_cmd.finiver); 3953 finicsum = ntohl(caps_cmd.finicsum); 3954 cfcsum = ntohl(caps_cmd.cfcsum); 3955 if (finicsum != cfcsum) 3956 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3957 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3958 finicsum, cfcsum); 3959 3960 /* 3961 * And now tell the firmware to use the configuration we just loaded. 3962 */ 3963 caps_cmd.op_to_write = 3964 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3965 FW_CMD_REQUEST_F | 3966 FW_CMD_WRITE_F); 3967 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3968 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3969 NULL); 3970 if (ret < 0) 3971 goto bye; 3972 3973 /* 3974 * Tweak configuration based on system architecture, module 3975 * parameters, etc. 3976 */ 3977 ret = adap_init0_tweaks(adapter); 3978 if (ret < 0) 3979 goto bye; 3980 3981 /* We will proceed even if HMA init fails. */ 3982 ret = adap_config_hma(adapter); 3983 if (ret) 3984 dev_err(adapter->pdev_dev, 3985 "HMA configuration failed with error %d\n", ret); 3986 3987 /* 3988 * And finally tell the firmware to initialize itself using the 3989 * parameters from the Configuration File. 3990 */ 3991 ret = t4_fw_initialize(adapter, adapter->mbox); 3992 if (ret < 0) 3993 goto bye; 3994 3995 /* Emit Firmware Configuration File information and return 3996 * successfully. 3997 */ 3998 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 3999 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4000 config_name, finiver, cfcsum); 4001 return 0; 4002 4003 /* 4004 * Something bad happened. Return the error ... (If the "error" 4005 * is that there's no Configuration File on the adapter we don't 4006 * want to issue a warning since this is fairly common.) 4007 */ 4008 bye: 4009 if (config_issued && ret != -ENOENT) 4010 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4011 config_name, -ret); 4012 return ret; 4013 } 4014 4015 static struct fw_info fw_info_array[] = { 4016 { 4017 .chip = CHELSIO_T4, 4018 .fs_name = FW4_CFNAME, 4019 .fw_mod_name = FW4_FNAME, 4020 .fw_hdr = { 4021 .chip = FW_HDR_CHIP_T4, 4022 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4023 .intfver_nic = FW_INTFVER(T4, NIC), 4024 .intfver_vnic = FW_INTFVER(T4, VNIC), 4025 .intfver_ri = FW_INTFVER(T4, RI), 4026 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4027 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4028 }, 4029 }, { 4030 .chip = CHELSIO_T5, 4031 .fs_name = FW5_CFNAME, 4032 .fw_mod_name = FW5_FNAME, 4033 .fw_hdr = { 4034 .chip = FW_HDR_CHIP_T5, 4035 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4036 .intfver_nic = FW_INTFVER(T5, NIC), 4037 .intfver_vnic = FW_INTFVER(T5, VNIC), 4038 .intfver_ri = FW_INTFVER(T5, RI), 4039 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4040 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4041 }, 4042 }, { 4043 .chip = CHELSIO_T6, 4044 .fs_name = FW6_CFNAME, 4045 .fw_mod_name = FW6_FNAME, 4046 .fw_hdr = { 4047 .chip = FW_HDR_CHIP_T6, 4048 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4049 .intfver_nic = FW_INTFVER(T6, NIC), 4050 .intfver_vnic = FW_INTFVER(T6, VNIC), 4051 .intfver_ofld = FW_INTFVER(T6, OFLD), 4052 .intfver_ri = FW_INTFVER(T6, RI), 4053 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4054 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4055 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4056 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4057 }, 4058 } 4059 4060 }; 4061 4062 static struct fw_info *find_fw_info(int chip) 4063 { 4064 int i; 4065 4066 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4067 if (fw_info_array[i].chip == chip) 4068 return &fw_info_array[i]; 4069 } 4070 return NULL; 4071 } 4072 4073 /* 4074 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4075 */ 4076 static int adap_init0(struct adapter *adap) 4077 { 4078 int ret; 4079 u32 v, port_vec; 4080 enum dev_state state; 4081 u32 params[7], val[7]; 4082 struct fw_caps_config_cmd caps_cmd; 4083 int reset = 1; 4084 4085 /* Grab Firmware Device Log parameters as early as possible so we have 4086 * access to it for debugging, etc. 4087 */ 4088 ret = t4_init_devlog_params(adap); 4089 if (ret < 0) 4090 return ret; 4091 4092 /* Contact FW, advertising Master capability */ 4093 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4094 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4095 if (ret < 0) { 4096 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4097 ret); 4098 return ret; 4099 } 4100 if (ret == adap->mbox) 4101 adap->flags |= MASTER_PF; 4102 4103 /* 4104 * If we're the Master PF Driver and the device is uninitialized, 4105 * then let's consider upgrading the firmware ... (We always want 4106 * to check the firmware version number in order to A. get it for 4107 * later reporting and B. to warn if the currently loaded firmware 4108 * is excessively mismatched relative to the driver.) 4109 */ 4110 4111 t4_get_version_info(adap); 4112 ret = t4_check_fw_version(adap); 4113 /* If firmware is too old (not supported by driver) force an update. */ 4114 if (ret) 4115 state = DEV_STATE_UNINIT; 4116 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 4117 struct fw_info *fw_info; 4118 struct fw_hdr *card_fw; 4119 const struct firmware *fw; 4120 const u8 *fw_data = NULL; 4121 unsigned int fw_size = 0; 4122 4123 /* This is the firmware whose headers the driver was compiled 4124 * against 4125 */ 4126 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4127 if (fw_info == NULL) { 4128 dev_err(adap->pdev_dev, 4129 "unable to get firmware info for chip %d.\n", 4130 CHELSIO_CHIP_VERSION(adap->params.chip)); 4131 return -EINVAL; 4132 } 4133 4134 /* allocate memory to read the header of the firmware on the 4135 * card 4136 */ 4137 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4138 4139 /* Get FW from from /lib/firmware/ */ 4140 ret = request_firmware(&fw, fw_info->fw_mod_name, 4141 adap->pdev_dev); 4142 if (ret < 0) { 4143 dev_err(adap->pdev_dev, 4144 "unable to load firmware image %s, error %d\n", 4145 fw_info->fw_mod_name, ret); 4146 } else { 4147 fw_data = fw->data; 4148 fw_size = fw->size; 4149 } 4150 4151 /* upgrade FW logic */ 4152 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4153 state, &reset); 4154 4155 /* Cleaning up */ 4156 release_firmware(fw); 4157 kvfree(card_fw); 4158 4159 if (ret < 0) 4160 goto bye; 4161 } 4162 4163 /* 4164 * Grab VPD parameters. This should be done after we establish a 4165 * connection to the firmware since some of the VPD parameters 4166 * (notably the Core Clock frequency) are retrieved via requests to 4167 * the firmware. On the other hand, we need these fairly early on 4168 * so we do this right after getting ahold of the firmware. 4169 */ 4170 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4171 if (ret < 0) 4172 goto bye; 4173 4174 /* 4175 * Find out what ports are available to us. Note that we need to do 4176 * this before calling adap_init0_no_config() since it needs nports 4177 * and portvec ... 4178 */ 4179 v = 4180 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4181 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4182 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4183 if (ret < 0) 4184 goto bye; 4185 4186 adap->params.nports = hweight32(port_vec); 4187 adap->params.portvec = port_vec; 4188 4189 /* If the firmware is initialized already, emit a simply note to that 4190 * effect. Otherwise, it's time to try initializing the adapter. 4191 */ 4192 if (state == DEV_STATE_INIT) { 4193 ret = adap_config_hma(adap); 4194 if (ret) 4195 dev_err(adap->pdev_dev, 4196 "HMA configuration failed with error %d\n", 4197 ret); 4198 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4199 "Adapter already initialized\n", 4200 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 4201 } else { 4202 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4203 "Initializing adapter\n"); 4204 4205 /* Find out whether we're dealing with a version of the 4206 * firmware which has configuration file support. 4207 */ 4208 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4209 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4210 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4211 params, val); 4212 4213 /* If the firmware doesn't support Configuration Files, 4214 * return an error. 4215 */ 4216 if (ret < 0) { 4217 dev_err(adap->pdev_dev, "firmware doesn't support " 4218 "Firmware Configuration Files\n"); 4219 goto bye; 4220 } 4221 4222 /* The firmware provides us with a memory buffer where we can 4223 * load a Configuration File from the host if we want to 4224 * override the Configuration File in flash. 4225 */ 4226 ret = adap_init0_config(adap, reset); 4227 if (ret == -ENOENT) { 4228 dev_err(adap->pdev_dev, "no Configuration File " 4229 "present on adapter.\n"); 4230 goto bye; 4231 } 4232 if (ret < 0) { 4233 dev_err(adap->pdev_dev, "could not initialize " 4234 "adapter, error %d\n", -ret); 4235 goto bye; 4236 } 4237 } 4238 4239 /* Give the SGE code a chance to pull in anything that it needs ... 4240 * Note that this must be called after we retrieve our VPD parameters 4241 * in order to know how to convert core ticks to seconds, etc. 4242 */ 4243 ret = t4_sge_init(adap); 4244 if (ret < 0) 4245 goto bye; 4246 4247 if (is_bypass_device(adap->pdev->device)) 4248 adap->params.bypass = 1; 4249 4250 /* 4251 * Grab some of our basic fundamental operating parameters. 4252 */ 4253 #define FW_PARAM_DEV(param) \ 4254 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 4255 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 4256 4257 #define FW_PARAM_PFVF(param) \ 4258 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 4259 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 4260 FW_PARAMS_PARAM_Y_V(0) | \ 4261 FW_PARAMS_PARAM_Z_V(0) 4262 4263 params[0] = FW_PARAM_PFVF(EQ_START); 4264 params[1] = FW_PARAM_PFVF(L2T_START); 4265 params[2] = FW_PARAM_PFVF(L2T_END); 4266 params[3] = FW_PARAM_PFVF(FILTER_START); 4267 params[4] = FW_PARAM_PFVF(FILTER_END); 4268 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4269 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4270 if (ret < 0) 4271 goto bye; 4272 adap->sge.egr_start = val[0]; 4273 adap->l2t_start = val[1]; 4274 adap->l2t_end = val[2]; 4275 adap->tids.ftid_base = val[3]; 4276 adap->tids.nftids = val[4] - val[3] + 1; 4277 adap->sge.ingr_start = val[5]; 4278 4279 /* qids (ingress/egress) returned from firmware can be anywhere 4280 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 4281 * Hence driver needs to allocate memory for this range to 4282 * store the queue info. Get the highest IQFLINT/EQ index returned 4283 * in FW_EQ_*_CMD.alloc command. 4284 */ 4285 params[0] = FW_PARAM_PFVF(EQ_END); 4286 params[1] = FW_PARAM_PFVF(IQFLINT_END); 4287 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4288 if (ret < 0) 4289 goto bye; 4290 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 4291 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 4292 4293 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 4294 sizeof(*adap->sge.egr_map), GFP_KERNEL); 4295 if (!adap->sge.egr_map) { 4296 ret = -ENOMEM; 4297 goto bye; 4298 } 4299 4300 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 4301 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 4302 if (!adap->sge.ingr_map) { 4303 ret = -ENOMEM; 4304 goto bye; 4305 } 4306 4307 /* Allocate the memory for the vaious egress queue bitmaps 4308 * ie starving_fl, txq_maperr and blocked_fl. 4309 */ 4310 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4311 sizeof(long), GFP_KERNEL); 4312 if (!adap->sge.starving_fl) { 4313 ret = -ENOMEM; 4314 goto bye; 4315 } 4316 4317 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4318 sizeof(long), GFP_KERNEL); 4319 if (!adap->sge.txq_maperr) { 4320 ret = -ENOMEM; 4321 goto bye; 4322 } 4323 4324 #ifdef CONFIG_DEBUG_FS 4325 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4326 sizeof(long), GFP_KERNEL); 4327 if (!adap->sge.blocked_fl) { 4328 ret = -ENOMEM; 4329 goto bye; 4330 } 4331 #endif 4332 4333 params[0] = FW_PARAM_PFVF(CLIP_START); 4334 params[1] = FW_PARAM_PFVF(CLIP_END); 4335 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4336 if (ret < 0) 4337 goto bye; 4338 adap->clipt_start = val[0]; 4339 adap->clipt_end = val[1]; 4340 4341 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 4342 * Classes supported by the hardware/firmware so we hard code it here 4343 * for now. 4344 */ 4345 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 4346 4347 /* query params related to active filter region */ 4348 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 4349 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 4350 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4351 /* If Active filter size is set we enable establishing 4352 * offload connection through firmware work request 4353 */ 4354 if ((val[0] != val[1]) && (ret >= 0)) { 4355 adap->flags |= FW_OFLD_CONN; 4356 adap->tids.aftid_base = val[0]; 4357 adap->tids.aftid_end = val[1]; 4358 } 4359 4360 /* If we're running on newer firmware, let it know that we're 4361 * prepared to deal with encapsulated CPL messages. Older 4362 * firmware won't understand this and we'll just get 4363 * unencapsulated messages ... 4364 */ 4365 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4366 val[0] = 1; 4367 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4368 4369 /* 4370 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 4371 * capability. Earlier versions of the firmware didn't have the 4372 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 4373 * permission to use ULPTX MEMWRITE DSGL. 4374 */ 4375 if (is_t4(adap->params.chip)) { 4376 adap->params.ulptx_memwrite_dsgl = false; 4377 } else { 4378 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4379 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4380 1, params, val); 4381 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4382 } 4383 4384 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 4385 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4386 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4387 1, params, val); 4388 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 4389 4390 /* See if FW supports FW_FILTER2 work request */ 4391 if (is_t4(adap->params.chip)) { 4392 adap->params.filter2_wr_support = 0; 4393 } else { 4394 params[0] = FW_PARAM_DEV(FILTER2_WR); 4395 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4396 1, params, val); 4397 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 4398 } 4399 4400 /* 4401 * Get device capabilities so we can determine what resources we need 4402 * to manage. 4403 */ 4404 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4405 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4406 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4407 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4408 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4409 &caps_cmd); 4410 if (ret < 0) 4411 goto bye; 4412 4413 if (caps_cmd.ofldcaps || 4414 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) { 4415 /* query offload-related parameters */ 4416 params[0] = FW_PARAM_DEV(NTID); 4417 params[1] = FW_PARAM_PFVF(SERVER_START); 4418 params[2] = FW_PARAM_PFVF(SERVER_END); 4419 params[3] = FW_PARAM_PFVF(TDDP_START); 4420 params[4] = FW_PARAM_PFVF(TDDP_END); 4421 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4422 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4423 params, val); 4424 if (ret < 0) 4425 goto bye; 4426 adap->tids.ntids = val[0]; 4427 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4428 adap->tids.stid_base = val[1]; 4429 adap->tids.nstids = val[2] - val[1] + 1; 4430 /* 4431 * Setup server filter region. Divide the available filter 4432 * region into two parts. Regular filters get 1/3rd and server 4433 * filters get 2/3rd part. This is only enabled if workarond 4434 * path is enabled. 4435 * 1. For regular filters. 4436 * 2. Server filter: This are special filters which are used 4437 * to redirect SYN packets to offload queue. 4438 */ 4439 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 4440 adap->tids.sftid_base = adap->tids.ftid_base + 4441 DIV_ROUND_UP(adap->tids.nftids, 3); 4442 adap->tids.nsftids = adap->tids.nftids - 4443 DIV_ROUND_UP(adap->tids.nftids, 3); 4444 adap->tids.nftids = adap->tids.sftid_base - 4445 adap->tids.ftid_base; 4446 } 4447 adap->vres.ddp.start = val[3]; 4448 adap->vres.ddp.size = val[4] - val[3] + 1; 4449 adap->params.ofldq_wr_cred = val[5]; 4450 4451 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4452 ret = init_hash_filter(adap); 4453 if (ret < 0) 4454 goto bye; 4455 } else { 4456 adap->params.offload = 1; 4457 adap->num_ofld_uld += 1; 4458 } 4459 } 4460 if (caps_cmd.rdmacaps) { 4461 params[0] = FW_PARAM_PFVF(STAG_START); 4462 params[1] = FW_PARAM_PFVF(STAG_END); 4463 params[2] = FW_PARAM_PFVF(RQ_START); 4464 params[3] = FW_PARAM_PFVF(RQ_END); 4465 params[4] = FW_PARAM_PFVF(PBL_START); 4466 params[5] = FW_PARAM_PFVF(PBL_END); 4467 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4468 params, val); 4469 if (ret < 0) 4470 goto bye; 4471 adap->vres.stag.start = val[0]; 4472 adap->vres.stag.size = val[1] - val[0] + 1; 4473 adap->vres.rq.start = val[2]; 4474 adap->vres.rq.size = val[3] - val[2] + 1; 4475 adap->vres.pbl.start = val[4]; 4476 adap->vres.pbl.size = val[5] - val[4] + 1; 4477 4478 params[0] = FW_PARAM_PFVF(SRQ_START); 4479 params[1] = FW_PARAM_PFVF(SRQ_END); 4480 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4481 params, val); 4482 if (!ret) { 4483 adap->vres.srq.start = val[0]; 4484 adap->vres.srq.size = val[1] - val[0] + 1; 4485 } 4486 if (adap->vres.srq.size) { 4487 adap->srq = t4_init_srq(adap->vres.srq.size); 4488 if (!adap->srq) 4489 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 4490 } 4491 4492 params[0] = FW_PARAM_PFVF(SQRQ_START); 4493 params[1] = FW_PARAM_PFVF(SQRQ_END); 4494 params[2] = FW_PARAM_PFVF(CQ_START); 4495 params[3] = FW_PARAM_PFVF(CQ_END); 4496 params[4] = FW_PARAM_PFVF(OCQ_START); 4497 params[5] = FW_PARAM_PFVF(OCQ_END); 4498 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4499 val); 4500 if (ret < 0) 4501 goto bye; 4502 adap->vres.qp.start = val[0]; 4503 adap->vres.qp.size = val[1] - val[0] + 1; 4504 adap->vres.cq.start = val[2]; 4505 adap->vres.cq.size = val[3] - val[2] + 1; 4506 adap->vres.ocq.start = val[4]; 4507 adap->vres.ocq.size = val[5] - val[4] + 1; 4508 4509 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4510 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4511 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 4512 val); 4513 if (ret < 0) { 4514 adap->params.max_ordird_qp = 8; 4515 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 4516 ret = 0; 4517 } else { 4518 adap->params.max_ordird_qp = val[0]; 4519 adap->params.max_ird_adapter = val[1]; 4520 } 4521 dev_info(adap->pdev_dev, 4522 "max_ordird_qp %d max_ird_adapter %d\n", 4523 adap->params.max_ordird_qp, 4524 adap->params.max_ird_adapter); 4525 4526 /* Enable write_with_immediate if FW supports it */ 4527 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 4528 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4529 val); 4530 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 4531 4532 /* Enable write_cmpl if FW supports it */ 4533 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 4534 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4535 val); 4536 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 4537 adap->num_ofld_uld += 2; 4538 } 4539 if (caps_cmd.iscsicaps) { 4540 params[0] = FW_PARAM_PFVF(ISCSI_START); 4541 params[1] = FW_PARAM_PFVF(ISCSI_END); 4542 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4543 params, val); 4544 if (ret < 0) 4545 goto bye; 4546 adap->vres.iscsi.start = val[0]; 4547 adap->vres.iscsi.size = val[1] - val[0] + 1; 4548 /* LIO target and cxgb4i initiaitor */ 4549 adap->num_ofld_uld += 2; 4550 } 4551 if (caps_cmd.cryptocaps) { 4552 if (ntohs(caps_cmd.cryptocaps) & 4553 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 4554 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 4555 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4556 2, params, val); 4557 if (ret < 0) { 4558 if (ret != -EINVAL) 4559 goto bye; 4560 } else { 4561 adap->vres.ncrypto_fc = val[0]; 4562 } 4563 adap->num_ofld_uld += 1; 4564 } 4565 if (ntohs(caps_cmd.cryptocaps) & 4566 FW_CAPS_CONFIG_TLS_INLINE) { 4567 params[0] = FW_PARAM_PFVF(TLS_START); 4568 params[1] = FW_PARAM_PFVF(TLS_END); 4569 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4570 2, params, val); 4571 if (ret < 0) 4572 goto bye; 4573 adap->vres.key.start = val[0]; 4574 adap->vres.key.size = val[1] - val[0] + 1; 4575 adap->num_uld += 1; 4576 } 4577 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 4578 } 4579 #undef FW_PARAM_PFVF 4580 #undef FW_PARAM_DEV 4581 4582 /* The MTU/MSS Table is initialized by now, so load their values. If 4583 * we're initializing the adapter, then we'll make any modifications 4584 * we want to the MTU/MSS Table and also initialize the congestion 4585 * parameters. 4586 */ 4587 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4588 if (state != DEV_STATE_INIT) { 4589 int i; 4590 4591 /* The default MTU Table contains values 1492 and 1500. 4592 * However, for TCP, it's better to have two values which are 4593 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4594 * This allows us to have a TCP Data Payload which is a 4595 * multiple of 8 regardless of what combination of TCP Options 4596 * are in use (always a multiple of 4 bytes) which is 4597 * important for performance reasons. For instance, if no 4598 * options are in use, then we have a 20-byte IP header and a 4599 * 20-byte TCP header. In this case, a 1500-byte MSS would 4600 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4601 * which is not a multiple of 8. So using an MSS of 1488 in 4602 * this case results in a TCP Data Payload of 1448 bytes which 4603 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4604 * Stamps have been negotiated, then an MTU of 1500 bytes 4605 * results in a TCP Data Payload of 1448 bytes which, as 4606 * above, is a multiple of 8 bytes ... 4607 */ 4608 for (i = 0; i < NMTUS; i++) 4609 if (adap->params.mtus[i] == 1492) { 4610 adap->params.mtus[i] = 1488; 4611 break; 4612 } 4613 4614 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4615 adap->params.b_wnd); 4616 } 4617 t4_init_sge_params(adap); 4618 adap->flags |= FW_OK; 4619 t4_init_tp_params(adap, true); 4620 return 0; 4621 4622 /* 4623 * Something bad happened. If a command timed out or failed with EIO 4624 * FW does not operate within its spec or something catastrophic 4625 * happened to HW/FW, stop issuing commands. 4626 */ 4627 bye: 4628 adap_free_hma_mem(adap); 4629 kfree(adap->sge.egr_map); 4630 kfree(adap->sge.ingr_map); 4631 kfree(adap->sge.starving_fl); 4632 kfree(adap->sge.txq_maperr); 4633 #ifdef CONFIG_DEBUG_FS 4634 kfree(adap->sge.blocked_fl); 4635 #endif 4636 if (ret != -ETIMEDOUT && ret != -EIO) 4637 t4_fw_bye(adap, adap->mbox); 4638 return ret; 4639 } 4640 4641 /* EEH callbacks */ 4642 4643 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4644 pci_channel_state_t state) 4645 { 4646 int i; 4647 struct adapter *adap = pci_get_drvdata(pdev); 4648 4649 if (!adap) 4650 goto out; 4651 4652 rtnl_lock(); 4653 adap->flags &= ~FW_OK; 4654 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4655 spin_lock(&adap->stats_lock); 4656 for_each_port(adap, i) { 4657 struct net_device *dev = adap->port[i]; 4658 if (dev) { 4659 netif_device_detach(dev); 4660 netif_carrier_off(dev); 4661 } 4662 } 4663 spin_unlock(&adap->stats_lock); 4664 disable_interrupts(adap); 4665 if (adap->flags & FULL_INIT_DONE) 4666 cxgb_down(adap); 4667 rtnl_unlock(); 4668 if ((adap->flags & DEV_ENABLED)) { 4669 pci_disable_device(pdev); 4670 adap->flags &= ~DEV_ENABLED; 4671 } 4672 out: return state == pci_channel_io_perm_failure ? 4673 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4674 } 4675 4676 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4677 { 4678 int i, ret; 4679 struct fw_caps_config_cmd c; 4680 struct adapter *adap = pci_get_drvdata(pdev); 4681 4682 if (!adap) { 4683 pci_restore_state(pdev); 4684 pci_save_state(pdev); 4685 return PCI_ERS_RESULT_RECOVERED; 4686 } 4687 4688 if (!(adap->flags & DEV_ENABLED)) { 4689 if (pci_enable_device(pdev)) { 4690 dev_err(&pdev->dev, "Cannot reenable PCI " 4691 "device after reset\n"); 4692 return PCI_ERS_RESULT_DISCONNECT; 4693 } 4694 adap->flags |= DEV_ENABLED; 4695 } 4696 4697 pci_set_master(pdev); 4698 pci_restore_state(pdev); 4699 pci_save_state(pdev); 4700 pci_cleanup_aer_uncorrect_error_status(pdev); 4701 4702 if (t4_wait_dev_ready(adap->regs) < 0) 4703 return PCI_ERS_RESULT_DISCONNECT; 4704 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4705 return PCI_ERS_RESULT_DISCONNECT; 4706 adap->flags |= FW_OK; 4707 if (adap_init1(adap, &c)) 4708 return PCI_ERS_RESULT_DISCONNECT; 4709 4710 for_each_port(adap, i) { 4711 struct port_info *p = adap2pinfo(adap, i); 4712 4713 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 4714 NULL, NULL); 4715 if (ret < 0) 4716 return PCI_ERS_RESULT_DISCONNECT; 4717 p->viid = ret; 4718 p->xact_addr_filt = -1; 4719 } 4720 4721 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4722 adap->params.b_wnd); 4723 setup_memwin(adap); 4724 if (cxgb_up(adap)) 4725 return PCI_ERS_RESULT_DISCONNECT; 4726 return PCI_ERS_RESULT_RECOVERED; 4727 } 4728 4729 static void eeh_resume(struct pci_dev *pdev) 4730 { 4731 int i; 4732 struct adapter *adap = pci_get_drvdata(pdev); 4733 4734 if (!adap) 4735 return; 4736 4737 rtnl_lock(); 4738 for_each_port(adap, i) { 4739 struct net_device *dev = adap->port[i]; 4740 if (dev) { 4741 if (netif_running(dev)) { 4742 link_start(dev); 4743 cxgb_set_rxmode(dev); 4744 } 4745 netif_device_attach(dev); 4746 } 4747 } 4748 rtnl_unlock(); 4749 } 4750 4751 static const struct pci_error_handlers cxgb4_eeh = { 4752 .error_detected = eeh_err_detected, 4753 .slot_reset = eeh_slot_reset, 4754 .resume = eeh_resume, 4755 }; 4756 4757 /* Return true if the Link Configuration supports "High Speeds" (those greater 4758 * than 1Gb/s). 4759 */ 4760 static inline bool is_x_10g_port(const struct link_config *lc) 4761 { 4762 unsigned int speeds, high_speeds; 4763 4764 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 4765 high_speeds = speeds & 4766 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 4767 4768 return high_speeds != 0; 4769 } 4770 4771 /* 4772 * Perform default configuration of DMA queues depending on the number and type 4773 * of ports we found and the number of available CPUs. Most settings can be 4774 * modified by the admin prior to actual use. 4775 */ 4776 static void cfg_queues(struct adapter *adap) 4777 { 4778 struct sge *s = &adap->sge; 4779 int i = 0, n10g = 0, qidx = 0; 4780 #ifndef CONFIG_CHELSIO_T4_DCB 4781 int q10g = 0; 4782 #endif 4783 4784 /* Reduce memory usage in kdump environment, disable all offload. 4785 */ 4786 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 4787 adap->params.offload = 0; 4788 adap->params.crypto = 0; 4789 } 4790 4791 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4792 #ifdef CONFIG_CHELSIO_T4_DCB 4793 /* For Data Center Bridging support we need to be able to support up 4794 * to 8 Traffic Priorities; each of which will be assigned to its 4795 * own TX Queue in order to prevent Head-Of-Line Blocking. 4796 */ 4797 if (adap->params.nports * 8 > MAX_ETH_QSETS) { 4798 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n", 4799 MAX_ETH_QSETS, adap->params.nports * 8); 4800 BUG_ON(1); 4801 } 4802 4803 for_each_port(adap, i) { 4804 struct port_info *pi = adap2pinfo(adap, i); 4805 4806 pi->first_qset = qidx; 4807 pi->nqsets = is_kdump_kernel() ? 1 : 8; 4808 qidx += pi->nqsets; 4809 } 4810 #else /* !CONFIG_CHELSIO_T4_DCB */ 4811 /* 4812 * We default to 1 queue per non-10G port and up to # of cores queues 4813 * per 10G port. 4814 */ 4815 if (n10g) 4816 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 4817 if (q10g > netif_get_num_default_rss_queues()) 4818 q10g = netif_get_num_default_rss_queues(); 4819 4820 if (is_kdump_kernel()) 4821 q10g = 1; 4822 4823 for_each_port(adap, i) { 4824 struct port_info *pi = adap2pinfo(adap, i); 4825 4826 pi->first_qset = qidx; 4827 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4828 qidx += pi->nqsets; 4829 } 4830 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4831 4832 s->ethqsets = qidx; 4833 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4834 4835 if (is_uld(adap)) { 4836 /* 4837 * For offload we use 1 queue/channel if all ports are up to 1G, 4838 * otherwise we divide all available queues amongst the channels 4839 * capped by the number of available cores. 4840 */ 4841 if (n10g) { 4842 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 4843 s->ofldqsets = roundup(i, adap->params.nports); 4844 } else { 4845 s->ofldqsets = adap->params.nports; 4846 } 4847 } 4848 4849 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4850 struct sge_eth_rxq *r = &s->ethrxq[i]; 4851 4852 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4853 r->fl.size = 72; 4854 } 4855 4856 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4857 s->ethtxq[i].q.size = 1024; 4858 4859 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4860 s->ctrlq[i].q.size = 512; 4861 4862 if (!is_t4(adap->params.chip)) 4863 s->ptptxq.q.size = 8; 4864 4865 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4866 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 4867 } 4868 4869 /* 4870 * Reduce the number of Ethernet queues across all ports to at most n. 4871 * n provides at least one queue per port. 4872 */ 4873 static void reduce_ethqs(struct adapter *adap, int n) 4874 { 4875 int i; 4876 struct port_info *pi; 4877 4878 while (n < adap->sge.ethqsets) 4879 for_each_port(adap, i) { 4880 pi = adap2pinfo(adap, i); 4881 if (pi->nqsets > 1) { 4882 pi->nqsets--; 4883 adap->sge.ethqsets--; 4884 if (adap->sge.ethqsets <= n) 4885 break; 4886 } 4887 } 4888 4889 n = 0; 4890 for_each_port(adap, i) { 4891 pi = adap2pinfo(adap, i); 4892 pi->first_qset = n; 4893 n += pi->nqsets; 4894 } 4895 } 4896 4897 static int get_msix_info(struct adapter *adap) 4898 { 4899 struct uld_msix_info *msix_info; 4900 unsigned int max_ingq = 0; 4901 4902 if (is_offload(adap)) 4903 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 4904 if (is_pci_uld(adap)) 4905 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 4906 4907 if (!max_ingq) 4908 goto out; 4909 4910 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 4911 if (!msix_info) 4912 return -ENOMEM; 4913 4914 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 4915 sizeof(long), GFP_KERNEL); 4916 if (!adap->msix_bmap_ulds.msix_bmap) { 4917 kfree(msix_info); 4918 return -ENOMEM; 4919 } 4920 spin_lock_init(&adap->msix_bmap_ulds.lock); 4921 adap->msix_info_ulds = msix_info; 4922 out: 4923 return 0; 4924 } 4925 4926 static void free_msix_info(struct adapter *adap) 4927 { 4928 if (!(adap->num_uld && adap->num_ofld_uld)) 4929 return; 4930 4931 kfree(adap->msix_info_ulds); 4932 kfree(adap->msix_bmap_ulds.msix_bmap); 4933 } 4934 4935 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 4936 #define EXTRA_VECS 2 4937 4938 static int enable_msix(struct adapter *adap) 4939 { 4940 int ofld_need = 0, uld_need = 0; 4941 int i, j, want, need, allocated; 4942 struct sge *s = &adap->sge; 4943 unsigned int nchan = adap->params.nports; 4944 struct msix_entry *entries; 4945 int max_ingq = MAX_INGQ; 4946 4947 if (is_pci_uld(adap)) 4948 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 4949 if (is_offload(adap)) 4950 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 4951 entries = kmalloc(sizeof(*entries) * (max_ingq + 1), 4952 GFP_KERNEL); 4953 if (!entries) 4954 return -ENOMEM; 4955 4956 /* map for msix */ 4957 if (get_msix_info(adap)) { 4958 adap->params.offload = 0; 4959 adap->params.crypto = 0; 4960 } 4961 4962 for (i = 0; i < max_ingq + 1; ++i) 4963 entries[i].entry = i; 4964 4965 want = s->max_ethqsets + EXTRA_VECS; 4966 if (is_offload(adap)) { 4967 want += adap->num_ofld_uld * s->ofldqsets; 4968 ofld_need = adap->num_ofld_uld * nchan; 4969 } 4970 if (is_pci_uld(adap)) { 4971 want += adap->num_uld * s->ofldqsets; 4972 uld_need = adap->num_uld * nchan; 4973 } 4974 #ifdef CONFIG_CHELSIO_T4_DCB 4975 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 4976 * each port. 4977 */ 4978 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4979 #else 4980 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4981 #endif 4982 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 4983 if (allocated < 0) { 4984 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 4985 " not using MSI-X\n"); 4986 kfree(entries); 4987 return allocated; 4988 } 4989 4990 /* Distribute available vectors to the various queue groups. 4991 * Every group gets its minimum requirement and NIC gets top 4992 * priority for leftovers. 4993 */ 4994 i = allocated - EXTRA_VECS - ofld_need - uld_need; 4995 if (i < s->max_ethqsets) { 4996 s->max_ethqsets = i; 4997 if (i < s->ethqsets) 4998 reduce_ethqs(adap, i); 4999 } 5000 if (is_uld(adap)) { 5001 if (allocated < want) 5002 s->nqs_per_uld = nchan; 5003 else 5004 s->nqs_per_uld = s->ofldqsets; 5005 } 5006 5007 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 5008 adap->msix_info[i].vec = entries[i].vector; 5009 if (is_uld(adap)) { 5010 for (j = 0 ; i < allocated; ++i, j++) { 5011 adap->msix_info_ulds[j].vec = entries[i].vector; 5012 adap->msix_info_ulds[j].idx = i; 5013 } 5014 adap->msix_bmap_ulds.mapsize = j; 5015 } 5016 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 5017 "nic %d per uld %d\n", 5018 allocated, s->max_ethqsets, s->nqs_per_uld); 5019 5020 kfree(entries); 5021 return 0; 5022 } 5023 5024 #undef EXTRA_VECS 5025 5026 static int init_rss(struct adapter *adap) 5027 { 5028 unsigned int i; 5029 int err; 5030 5031 err = t4_init_rss_mode(adap, adap->mbox); 5032 if (err) 5033 return err; 5034 5035 for_each_port(adap, i) { 5036 struct port_info *pi = adap2pinfo(adap, i); 5037 5038 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5039 if (!pi->rss) 5040 return -ENOMEM; 5041 } 5042 return 0; 5043 } 5044 5045 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap, 5046 enum pci_bus_speed *speed, 5047 enum pcie_link_width *width) 5048 { 5049 u32 lnkcap1, lnkcap2; 5050 int err1, err2; 5051 5052 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */ 5053 5054 *speed = PCI_SPEED_UNKNOWN; 5055 *width = PCIE_LNK_WIDTH_UNKNOWN; 5056 5057 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP, 5058 &lnkcap1); 5059 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2, 5060 &lnkcap2); 5061 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */ 5062 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 5063 *speed = PCIE_SPEED_8_0GT; 5064 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 5065 *speed = PCIE_SPEED_5_0GT; 5066 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 5067 *speed = PCIE_SPEED_2_5GT; 5068 } 5069 if (!err1) { 5070 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT; 5071 if (!lnkcap2) { /* pre-r3.0 */ 5072 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB) 5073 *speed = PCIE_SPEED_5_0GT; 5074 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB) 5075 *speed = PCIE_SPEED_2_5GT; 5076 } 5077 } 5078 5079 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5080 return err1 ? err1 : err2 ? err2 : -EINVAL; 5081 return 0; 5082 } 5083 5084 static void cxgb4_check_pcie_caps(struct adapter *adap) 5085 { 5086 enum pcie_link_width width, width_cap; 5087 enum pci_bus_speed speed, speed_cap; 5088 5089 #define PCIE_SPEED_STR(speed) \ 5090 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \ 5091 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \ 5092 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \ 5093 "Unknown") 5094 5095 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) { 5096 dev_warn(adap->pdev_dev, 5097 "Unable to determine PCIe device BW capabilities\n"); 5098 return; 5099 } 5100 5101 if (pcie_get_minimum_link(adap->pdev, &speed, &width) || 5102 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) { 5103 dev_warn(adap->pdev_dev, 5104 "Unable to determine PCI Express bandwidth.\n"); 5105 return; 5106 } 5107 5108 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n", 5109 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap)); 5110 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n", 5111 width, width_cap); 5112 if (speed < speed_cap || width < width_cap) 5113 dev_info(adap->pdev_dev, 5114 "A slot with more lanes and/or higher speed is " 5115 "suggested for optimal performance.\n"); 5116 } 5117 5118 /* Dump basic information about the adapter */ 5119 static void print_adapter_info(struct adapter *adapter) 5120 { 5121 /* Hardware/Firmware/etc. Version/Revision IDs */ 5122 t4_dump_version_info(adapter); 5123 5124 /* Software/Hardware configuration */ 5125 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 5126 is_offload(adapter) ? "R" : "", 5127 ((adapter->flags & USING_MSIX) ? "MSI-X" : 5128 (adapter->flags & USING_MSI) ? "MSI" : ""), 5129 is_offload(adapter) ? "Offload" : "non-Offload"); 5130 } 5131 5132 static void print_port_info(const struct net_device *dev) 5133 { 5134 char buf[80]; 5135 char *bufp = buf; 5136 const char *spd = ""; 5137 const struct port_info *pi = netdev_priv(dev); 5138 const struct adapter *adap = pi->adapter; 5139 5140 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 5141 spd = " 2.5 GT/s"; 5142 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 5143 spd = " 5 GT/s"; 5144 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 5145 spd = " 8 GT/s"; 5146 5147 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 5148 bufp += sprintf(bufp, "100M/"); 5149 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 5150 bufp += sprintf(bufp, "1G/"); 5151 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 5152 bufp += sprintf(bufp, "10G/"); 5153 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 5154 bufp += sprintf(bufp, "25G/"); 5155 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 5156 bufp += sprintf(bufp, "40G/"); 5157 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 5158 bufp += sprintf(bufp, "50G/"); 5159 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 5160 bufp += sprintf(bufp, "100G/"); 5161 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 5162 bufp += sprintf(bufp, "200G/"); 5163 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 5164 bufp += sprintf(bufp, "400G/"); 5165 if (bufp != buf) 5166 --bufp; 5167 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 5168 5169 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 5170 dev->name, adap->params.vpd.id, adap->name, buf); 5171 } 5172 5173 /* 5174 * Free the following resources: 5175 * - memory used for tables 5176 * - MSI/MSI-X 5177 * - net devices 5178 * - resources FW is holding for us 5179 */ 5180 static void free_some_resources(struct adapter *adapter) 5181 { 5182 unsigned int i; 5183 5184 kvfree(adapter->smt); 5185 kvfree(adapter->l2t); 5186 kvfree(adapter->srq); 5187 t4_cleanup_sched(adapter); 5188 kvfree(adapter->tids.tid_tab); 5189 cxgb4_cleanup_tc_flower(adapter); 5190 cxgb4_cleanup_tc_u32(adapter); 5191 kfree(adapter->sge.egr_map); 5192 kfree(adapter->sge.ingr_map); 5193 kfree(adapter->sge.starving_fl); 5194 kfree(adapter->sge.txq_maperr); 5195 #ifdef CONFIG_DEBUG_FS 5196 kfree(adapter->sge.blocked_fl); 5197 #endif 5198 disable_msi(adapter); 5199 5200 for_each_port(adapter, i) 5201 if (adapter->port[i]) { 5202 struct port_info *pi = adap2pinfo(adapter, i); 5203 5204 if (pi->viid != 0) 5205 t4_free_vi(adapter, adapter->mbox, adapter->pf, 5206 0, pi->viid); 5207 kfree(adap2pinfo(adapter, i)->rss); 5208 free_netdev(adapter->port[i]); 5209 } 5210 if (adapter->flags & FW_OK) 5211 t4_fw_bye(adapter, adapter->pf); 5212 } 5213 5214 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 5215 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5216 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5217 #define SEGMENT_SIZE 128 5218 5219 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev) 5220 { 5221 u16 device_id; 5222 5223 /* Retrieve adapter's device ID */ 5224 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 5225 5226 switch (device_id >> 12) { 5227 case CHELSIO_T4: 5228 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 5229 case CHELSIO_T5: 5230 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 5231 case CHELSIO_T6: 5232 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 5233 default: 5234 dev_err(&pdev->dev, "Device %d is not supported\n", 5235 device_id); 5236 } 5237 return -EINVAL; 5238 } 5239 5240 #ifdef CONFIG_PCI_IOV 5241 static void cxgb4_mgmt_setup(struct net_device *dev) 5242 { 5243 dev->type = ARPHRD_NONE; 5244 dev->mtu = 0; 5245 dev->hard_header_len = 0; 5246 dev->addr_len = 0; 5247 dev->tx_queue_len = 0; 5248 dev->flags |= IFF_NOARP; 5249 dev->priv_flags |= IFF_NO_QUEUE; 5250 5251 /* Initialize the device structure. */ 5252 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 5253 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 5254 } 5255 5256 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 5257 { 5258 struct adapter *adap = pci_get_drvdata(pdev); 5259 int err = 0; 5260 int current_vfs = pci_num_vf(pdev); 5261 u32 pcie_fw; 5262 5263 pcie_fw = readl(adap->regs + PCIE_FW_A); 5264 /* Check if cxgb4 is the MASTER and fw is initialized */ 5265 if (num_vfs && 5266 (!(pcie_fw & PCIE_FW_INIT_F) || 5267 !(pcie_fw & PCIE_FW_MASTER_VLD_F) || 5268 PCIE_FW_MASTER_G(pcie_fw) != CXGB4_UNIFIED_PF)) { 5269 dev_warn(&pdev->dev, 5270 "cxgb4 driver needs to be MASTER to support SRIOV\n"); 5271 return -EOPNOTSUPP; 5272 } 5273 5274 /* If any of the VF's is already assigned to Guest OS, then 5275 * SRIOV for the same cannot be modified 5276 */ 5277 if (current_vfs && pci_vfs_assigned(pdev)) { 5278 dev_err(&pdev->dev, 5279 "Cannot modify SR-IOV while VFs are assigned\n"); 5280 return current_vfs; 5281 } 5282 /* Note that the upper-level code ensures that we're never called with 5283 * a non-zero "num_vfs" when we already have VFs instantiated. But 5284 * it never hurts to code defensively. 5285 */ 5286 if (num_vfs != 0 && current_vfs != 0) 5287 return -EBUSY; 5288 5289 /* Nothing to do for no change. */ 5290 if (num_vfs == current_vfs) 5291 return num_vfs; 5292 5293 /* Disable SRIOV when zero is passed. */ 5294 if (!num_vfs) { 5295 pci_disable_sriov(pdev); 5296 /* free VF Management Interface */ 5297 unregister_netdev(adap->port[0]); 5298 free_netdev(adap->port[0]); 5299 adap->port[0] = NULL; 5300 5301 /* free VF resources */ 5302 adap->num_vfs = 0; 5303 kfree(adap->vfinfo); 5304 adap->vfinfo = NULL; 5305 return 0; 5306 } 5307 5308 if (!current_vfs) { 5309 struct fw_pfvf_cmd port_cmd, port_rpl; 5310 struct net_device *netdev; 5311 unsigned int pmask, port; 5312 struct pci_dev *pbridge; 5313 struct port_info *pi; 5314 char name[IFNAMSIZ]; 5315 u32 devcap2; 5316 u16 flags; 5317 int pos; 5318 5319 /* If we want to instantiate Virtual Functions, then our 5320 * parent bridge's PCI-E needs to support Alternative Routing 5321 * ID (ARI) because our VFs will show up at function offset 8 5322 * and above. 5323 */ 5324 pbridge = pdev->bus->self; 5325 pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP); 5326 pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags); 5327 pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2); 5328 5329 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 5330 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 5331 /* Our parent bridge does not support ARI so issue a 5332 * warning and skip instantiating the VFs. They 5333 * won't be reachable. 5334 */ 5335 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 5336 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 5337 PCI_FUNC(pbridge->devfn)); 5338 return -ENOTSUPP; 5339 } 5340 memset(&port_cmd, 0, sizeof(port_cmd)); 5341 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 5342 FW_CMD_REQUEST_F | 5343 FW_CMD_READ_F | 5344 FW_PFVF_CMD_PFN_V(adap->pf) | 5345 FW_PFVF_CMD_VFN_V(0)); 5346 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 5347 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 5348 &port_rpl); 5349 if (err) 5350 return err; 5351 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 5352 port = ffs(pmask) - 1; 5353 /* Allocate VF Management Interface. */ 5354 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 5355 adap->pf); 5356 netdev = alloc_netdev(sizeof(struct port_info), 5357 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 5358 if (!netdev) 5359 return -ENOMEM; 5360 5361 pi = netdev_priv(netdev); 5362 pi->adapter = adap; 5363 pi->lport = port; 5364 pi->tx_chan = port; 5365 SET_NETDEV_DEV(netdev, &pdev->dev); 5366 5367 adap->port[0] = netdev; 5368 pi->port_id = 0; 5369 5370 err = register_netdev(adap->port[0]); 5371 if (err) { 5372 pr_info("Unable to register VF mgmt netdev %s\n", name); 5373 free_netdev(adap->port[0]); 5374 adap->port[0] = NULL; 5375 return err; 5376 } 5377 /* Allocate and set up VF Information. */ 5378 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 5379 sizeof(struct vf_info), GFP_KERNEL); 5380 if (!adap->vfinfo) { 5381 unregister_netdev(adap->port[0]); 5382 free_netdev(adap->port[0]); 5383 adap->port[0] = NULL; 5384 return -ENOMEM; 5385 } 5386 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 5387 } 5388 /* Instantiate the requested number of VFs. */ 5389 err = pci_enable_sriov(pdev, num_vfs); 5390 if (err) { 5391 pr_info("Unable to instantiate %d VFs\n", num_vfs); 5392 if (!current_vfs) { 5393 unregister_netdev(adap->port[0]); 5394 free_netdev(adap->port[0]); 5395 adap->port[0] = NULL; 5396 kfree(adap->vfinfo); 5397 adap->vfinfo = NULL; 5398 } 5399 return err; 5400 } 5401 5402 adap->num_vfs = num_vfs; 5403 return num_vfs; 5404 } 5405 #endif /* CONFIG_PCI_IOV */ 5406 5407 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 5408 { 5409 int func, i, err, s_qpp, qpp, num_seg; 5410 struct port_info *pi; 5411 bool highdma = false; 5412 struct adapter *adapter = NULL; 5413 struct net_device *netdev; 5414 void __iomem *regs; 5415 u32 whoami, pl_rev; 5416 enum chip_type chip; 5417 static int adap_idx = 1; 5418 5419 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 5420 5421 err = pci_request_regions(pdev, KBUILD_MODNAME); 5422 if (err) { 5423 /* Just info, some other driver may have claimed the device. */ 5424 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 5425 return err; 5426 } 5427 5428 err = pci_enable_device(pdev); 5429 if (err) { 5430 dev_err(&pdev->dev, "cannot enable PCI device\n"); 5431 goto out_release_regions; 5432 } 5433 5434 regs = pci_ioremap_bar(pdev, 0); 5435 if (!regs) { 5436 dev_err(&pdev->dev, "cannot map device registers\n"); 5437 err = -ENOMEM; 5438 goto out_disable_device; 5439 } 5440 5441 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5442 if (!adapter) { 5443 err = -ENOMEM; 5444 goto out_unmap_bar0; 5445 } 5446 5447 adapter->regs = regs; 5448 err = t4_wait_dev_ready(regs); 5449 if (err < 0) 5450 goto out_free_adapter; 5451 5452 /* We control everything through one PF */ 5453 whoami = readl(regs + PL_WHOAMI_A); 5454 pl_rev = REV_G(readl(regs + PL_REV_A)); 5455 chip = get_chip_type(pdev, pl_rev); 5456 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ? 5457 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5458 5459 adapter->pdev = pdev; 5460 adapter->pdev_dev = &pdev->dev; 5461 adapter->name = pci_name(pdev); 5462 adapter->mbox = func; 5463 adapter->pf = func; 5464 adapter->params.chip = chip; 5465 adapter->adap_idx = adap_idx; 5466 adapter->msg_enable = DFLT_MSG_ENABLE; 5467 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5468 (sizeof(struct mbox_cmd) * 5469 T4_OS_LOG_MBOX_CMDS), 5470 GFP_KERNEL); 5471 if (!adapter->mbox_log) { 5472 err = -ENOMEM; 5473 goto out_free_adapter; 5474 } 5475 spin_lock_init(&adapter->mbox_lock); 5476 INIT_LIST_HEAD(&adapter->mlist.list); 5477 pci_set_drvdata(pdev, adapter); 5478 5479 if (func != ent->driver_data) { 5480 pci_disable_device(pdev); 5481 pci_save_state(pdev); /* to restore SR-IOV later */ 5482 return 0; 5483 } 5484 5485 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 5486 highdma = true; 5487 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 5488 if (err) { 5489 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 5490 "coherent allocations\n"); 5491 goto out_free_adapter; 5492 } 5493 } else { 5494 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 5495 if (err) { 5496 dev_err(&pdev->dev, "no usable DMA configuration\n"); 5497 goto out_free_adapter; 5498 } 5499 } 5500 5501 pci_enable_pcie_error_reporting(pdev); 5502 pci_set_master(pdev); 5503 pci_save_state(pdev); 5504 adap_idx++; 5505 adapter->workq = create_singlethread_workqueue("cxgb4"); 5506 if (!adapter->workq) { 5507 err = -ENOMEM; 5508 goto out_free_adapter; 5509 } 5510 5511 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 5512 5513 /* PCI device has been enabled */ 5514 adapter->flags |= DEV_ENABLED; 5515 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 5516 5517 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 5518 * Ingress Packet Data to Free List Buffers in order to allow for 5519 * chipset performance optimizations between the Root Complex and 5520 * Memory Controllers. (Messages to the associated Ingress Queue 5521 * notifying new Packet Placement in the Free Lists Buffers will be 5522 * send without the Relaxed Ordering Attribute thus guaranteeing that 5523 * all preceding PCIe Transaction Layer Packets will be processed 5524 * first.) But some Root Complexes have various issues with Upstream 5525 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 5526 * The PCIe devices which under the Root Complexes will be cleared the 5527 * Relaxed Ordering bit in the configuration space, So we check our 5528 * PCIe configuration space to see if it's flagged with advice against 5529 * using Relaxed Ordering. 5530 */ 5531 if (!pcie_relaxed_ordering_enabled(pdev)) 5532 adapter->flags |= ROOT_NO_RELAXED_ORDERING; 5533 5534 spin_lock_init(&adapter->stats_lock); 5535 spin_lock_init(&adapter->tid_release_lock); 5536 spin_lock_init(&adapter->win0_lock); 5537 5538 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 5539 INIT_WORK(&adapter->db_full_task, process_db_full); 5540 INIT_WORK(&adapter->db_drop_task, process_db_drop); 5541 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 5542 5543 err = t4_prep_adapter(adapter); 5544 if (err) 5545 goto out_free_adapter; 5546 5547 5548 if (!is_t4(adapter->params.chip)) { 5549 s_qpp = (QUEUESPERPAGEPF0_S + 5550 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 5551 adapter->pf); 5552 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 5553 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 5554 num_seg = PAGE_SIZE / SEGMENT_SIZE; 5555 5556 /* Each segment size is 128B. Write coalescing is enabled only 5557 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 5558 * queue is less no of segments that can be accommodated in 5559 * a page size. 5560 */ 5561 if (qpp > num_seg) { 5562 dev_err(&pdev->dev, 5563 "Incorrect number of egress queues per page\n"); 5564 err = -EINVAL; 5565 goto out_free_adapter; 5566 } 5567 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 5568 pci_resource_len(pdev, 2)); 5569 if (!adapter->bar2) { 5570 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 5571 err = -ENOMEM; 5572 goto out_free_adapter; 5573 } 5574 } 5575 5576 setup_memwin(adapter); 5577 err = adap_init0(adapter); 5578 #ifdef CONFIG_DEBUG_FS 5579 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 5580 #endif 5581 setup_memwin_rdma(adapter); 5582 if (err) 5583 goto out_unmap_bar; 5584 5585 /* configure SGE_STAT_CFG_A to read WC stats */ 5586 if (!is_t4(adapter->params.chip)) 5587 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 5588 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 5589 T6_STATMODE_V(0))); 5590 5591 for_each_port(adapter, i) { 5592 netdev = alloc_etherdev_mq(sizeof(struct port_info), 5593 MAX_ETH_QSETS); 5594 if (!netdev) { 5595 err = -ENOMEM; 5596 goto out_free_dev; 5597 } 5598 5599 SET_NETDEV_DEV(netdev, &pdev->dev); 5600 5601 adapter->port[i] = netdev; 5602 pi = netdev_priv(netdev); 5603 pi->adapter = adapter; 5604 pi->xact_addr_filt = -1; 5605 pi->port_id = i; 5606 netdev->irq = pdev->irq; 5607 5608 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 5609 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5610 NETIF_F_RXCSUM | NETIF_F_RXHASH | 5611 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 5612 NETIF_F_HW_TC; 5613 5614 if (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5) 5615 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; 5616 5617 if (highdma) 5618 netdev->hw_features |= NETIF_F_HIGHDMA; 5619 netdev->features |= netdev->hw_features; 5620 netdev->vlan_features = netdev->features & VLAN_FEAT; 5621 5622 netdev->priv_flags |= IFF_UNICAST_FLT; 5623 5624 /* MTU range: 81 - 9600 */ 5625 netdev->min_mtu = 81; /* accommodate SACK */ 5626 netdev->max_mtu = MAX_MTU; 5627 5628 netdev->netdev_ops = &cxgb4_netdev_ops; 5629 #ifdef CONFIG_CHELSIO_T4_DCB 5630 netdev->dcbnl_ops = &cxgb4_dcb_ops; 5631 cxgb4_dcb_state_init(netdev); 5632 #endif 5633 cxgb4_set_ethtool_ops(netdev); 5634 } 5635 5636 cxgb4_init_ethtool_dump(adapter); 5637 5638 pci_set_drvdata(pdev, adapter); 5639 5640 if (adapter->flags & FW_OK) { 5641 err = t4_port_init(adapter, func, func, 0); 5642 if (err) 5643 goto out_free_dev; 5644 } else if (adapter->params.nports == 1) { 5645 /* If we don't have a connection to the firmware -- possibly 5646 * because of an error -- grab the raw VPD parameters so we 5647 * can set the proper MAC Address on the debug network 5648 * interface that we've created. 5649 */ 5650 u8 hw_addr[ETH_ALEN]; 5651 u8 *na = adapter->params.vpd.na; 5652 5653 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 5654 if (!err) { 5655 for (i = 0; i < ETH_ALEN; i++) 5656 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 5657 hex2val(na[2 * i + 1])); 5658 t4_set_hw_addr(adapter, 0, hw_addr); 5659 } 5660 } 5661 5662 /* Configure queues and allocate tables now, they can be needed as 5663 * soon as the first register_netdev completes. 5664 */ 5665 cfg_queues(adapter); 5666 5667 adapter->smt = t4_init_smt(); 5668 if (!adapter->smt) { 5669 /* We tolerate a lack of SMT, giving up some functionality */ 5670 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 5671 } 5672 5673 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 5674 if (!adapter->l2t) { 5675 /* We tolerate a lack of L2T, giving up some functionality */ 5676 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 5677 adapter->params.offload = 0; 5678 } 5679 5680 #if IS_ENABLED(CONFIG_IPV6) 5681 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) && 5682 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 5683 /* CLIP functionality is not present in hardware, 5684 * hence disable all offload features 5685 */ 5686 dev_warn(&pdev->dev, 5687 "CLIP not enabled in hardware, continuing\n"); 5688 adapter->params.offload = 0; 5689 } else { 5690 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 5691 adapter->clipt_end); 5692 if (!adapter->clipt) { 5693 /* We tolerate a lack of clip_table, giving up 5694 * some functionality 5695 */ 5696 dev_warn(&pdev->dev, 5697 "could not allocate Clip table, continuing\n"); 5698 adapter->params.offload = 0; 5699 } 5700 } 5701 #endif 5702 5703 for_each_port(adapter, i) { 5704 pi = adap2pinfo(adapter, i); 5705 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 5706 if (!pi->sched_tbl) 5707 dev_warn(&pdev->dev, 5708 "could not activate scheduling on port %d\n", 5709 i); 5710 } 5711 5712 if (tid_init(&adapter->tids) < 0) { 5713 dev_warn(&pdev->dev, "could not allocate TID table, " 5714 "continuing\n"); 5715 adapter->params.offload = 0; 5716 } else { 5717 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 5718 if (!adapter->tc_u32) 5719 dev_warn(&pdev->dev, 5720 "could not offload tc u32, continuing\n"); 5721 5722 if (cxgb4_init_tc_flower(adapter)) 5723 dev_warn(&pdev->dev, 5724 "could not offload tc flower, continuing\n"); 5725 } 5726 5727 if (is_offload(adapter) || is_hashfilter(adapter)) { 5728 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 5729 u32 hash_base, hash_reg; 5730 5731 if (chip <= CHELSIO_T5) { 5732 hash_reg = LE_DB_TID_HASHBASE_A; 5733 hash_base = t4_read_reg(adapter, hash_reg); 5734 adapter->tids.hash_base = hash_base / 4; 5735 } else { 5736 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 5737 hash_base = t4_read_reg(adapter, hash_reg); 5738 adapter->tids.hash_base = hash_base; 5739 } 5740 } 5741 } 5742 5743 /* See what interrupts we'll be using */ 5744 if (msi > 1 && enable_msix(adapter) == 0) 5745 adapter->flags |= USING_MSIX; 5746 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 5747 adapter->flags |= USING_MSI; 5748 if (msi > 1) 5749 free_msix_info(adapter); 5750 } 5751 5752 /* check for PCI Express bandwidth capabiltites */ 5753 cxgb4_check_pcie_caps(adapter); 5754 5755 err = init_rss(adapter); 5756 if (err) 5757 goto out_free_dev; 5758 5759 err = setup_fw_sge_queues(adapter); 5760 if (err) { 5761 dev_err(adapter->pdev_dev, 5762 "FW sge queue allocation failed, err %d", err); 5763 goto out_free_dev; 5764 } 5765 5766 /* 5767 * The card is now ready to go. If any errors occur during device 5768 * registration we do not fail the whole card but rather proceed only 5769 * with the ports we manage to register successfully. However we must 5770 * register at least one net device. 5771 */ 5772 for_each_port(adapter, i) { 5773 pi = adap2pinfo(adapter, i); 5774 adapter->port[i]->dev_port = pi->lport; 5775 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 5776 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 5777 5778 netif_carrier_off(adapter->port[i]); 5779 5780 err = register_netdev(adapter->port[i]); 5781 if (err) 5782 break; 5783 adapter->chan_map[pi->tx_chan] = i; 5784 print_port_info(adapter->port[i]); 5785 } 5786 if (i == 0) { 5787 dev_err(&pdev->dev, "could not register any net devices\n"); 5788 goto out_free_dev; 5789 } 5790 if (err) { 5791 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 5792 err = 0; 5793 } 5794 5795 if (cxgb4_debugfs_root) { 5796 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 5797 cxgb4_debugfs_root); 5798 setup_debugfs(adapter); 5799 } 5800 5801 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 5802 pdev->needs_freset = 1; 5803 5804 if (is_uld(adapter)) { 5805 mutex_lock(&uld_mutex); 5806 list_add_tail(&adapter->list_node, &adapter_list); 5807 mutex_unlock(&uld_mutex); 5808 } 5809 5810 if (!is_t4(adapter->params.chip)) 5811 cxgb4_ptp_init(adapter); 5812 5813 print_adapter_info(adapter); 5814 return 0; 5815 5816 out_free_dev: 5817 t4_free_sge_resources(adapter); 5818 free_some_resources(adapter); 5819 if (adapter->flags & USING_MSIX) 5820 free_msix_info(adapter); 5821 if (adapter->num_uld || adapter->num_ofld_uld) 5822 t4_uld_mem_free(adapter); 5823 out_unmap_bar: 5824 if (!is_t4(adapter->params.chip)) 5825 iounmap(adapter->bar2); 5826 out_free_adapter: 5827 if (adapter->workq) 5828 destroy_workqueue(adapter->workq); 5829 5830 kfree(adapter->mbox_log); 5831 kfree(adapter); 5832 out_unmap_bar0: 5833 iounmap(regs); 5834 out_disable_device: 5835 pci_disable_pcie_error_reporting(pdev); 5836 pci_disable_device(pdev); 5837 out_release_regions: 5838 pci_release_regions(pdev); 5839 return err; 5840 } 5841 5842 static void remove_one(struct pci_dev *pdev) 5843 { 5844 struct adapter *adapter = pci_get_drvdata(pdev); 5845 5846 if (!adapter) { 5847 pci_release_regions(pdev); 5848 return; 5849 } 5850 5851 adapter->flags |= SHUTTING_DOWN; 5852 5853 if (adapter->pf == 4) { 5854 int i; 5855 5856 /* Tear down per-adapter Work Queue first since it can contain 5857 * references to our adapter data structure. 5858 */ 5859 destroy_workqueue(adapter->workq); 5860 5861 if (is_uld(adapter)) { 5862 detach_ulds(adapter); 5863 t4_uld_clean_up(adapter); 5864 } 5865 5866 adap_free_hma_mem(adapter); 5867 5868 disable_interrupts(adapter); 5869 5870 for_each_port(adapter, i) 5871 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5872 unregister_netdev(adapter->port[i]); 5873 5874 debugfs_remove_recursive(adapter->debugfs_root); 5875 5876 if (!is_t4(adapter->params.chip)) 5877 cxgb4_ptp_stop(adapter); 5878 5879 /* If we allocated filters, free up state associated with any 5880 * valid filters ... 5881 */ 5882 clear_all_filters(adapter); 5883 5884 if (adapter->flags & FULL_INIT_DONE) 5885 cxgb_down(adapter); 5886 5887 if (adapter->flags & USING_MSIX) 5888 free_msix_info(adapter); 5889 if (adapter->num_uld || adapter->num_ofld_uld) 5890 t4_uld_mem_free(adapter); 5891 free_some_resources(adapter); 5892 #if IS_ENABLED(CONFIG_IPV6) 5893 t4_cleanup_clip_tbl(adapter); 5894 #endif 5895 if (!is_t4(adapter->params.chip)) 5896 iounmap(adapter->bar2); 5897 } 5898 #ifdef CONFIG_PCI_IOV 5899 else { 5900 cxgb4_iov_configure(adapter->pdev, 0); 5901 } 5902 #endif 5903 iounmap(adapter->regs); 5904 pci_disable_pcie_error_reporting(pdev); 5905 if ((adapter->flags & DEV_ENABLED)) { 5906 pci_disable_device(pdev); 5907 adapter->flags &= ~DEV_ENABLED; 5908 } 5909 pci_release_regions(pdev); 5910 kfree(adapter->mbox_log); 5911 synchronize_rcu(); 5912 kfree(adapter); 5913 } 5914 5915 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 5916 * delivery. This is essentially a stripped down version of the PCI remove() 5917 * function where we do the minimal amount of work necessary to shutdown any 5918 * further activity. 5919 */ 5920 static void shutdown_one(struct pci_dev *pdev) 5921 { 5922 struct adapter *adapter = pci_get_drvdata(pdev); 5923 5924 /* As with remove_one() above (see extended comment), we only want do 5925 * do cleanup on PCI Devices which went all the way through init_one() 5926 * ... 5927 */ 5928 if (!adapter) { 5929 pci_release_regions(pdev); 5930 return; 5931 } 5932 5933 adapter->flags |= SHUTTING_DOWN; 5934 5935 if (adapter->pf == 4) { 5936 int i; 5937 5938 for_each_port(adapter, i) 5939 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5940 cxgb_close(adapter->port[i]); 5941 5942 if (is_uld(adapter)) { 5943 detach_ulds(adapter); 5944 t4_uld_clean_up(adapter); 5945 } 5946 5947 disable_interrupts(adapter); 5948 disable_msi(adapter); 5949 5950 t4_sge_stop(adapter); 5951 if (adapter->flags & FW_OK) 5952 t4_fw_bye(adapter, adapter->mbox); 5953 } 5954 } 5955 5956 static struct pci_driver cxgb4_driver = { 5957 .name = KBUILD_MODNAME, 5958 .id_table = cxgb4_pci_tbl, 5959 .probe = init_one, 5960 .remove = remove_one, 5961 .shutdown = shutdown_one, 5962 #ifdef CONFIG_PCI_IOV 5963 .sriov_configure = cxgb4_iov_configure, 5964 #endif 5965 .err_handler = &cxgb4_eeh, 5966 }; 5967 5968 static int __init cxgb4_init_module(void) 5969 { 5970 int ret; 5971 5972 /* Debugfs support is optional, just warn if this fails */ 5973 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 5974 if (!cxgb4_debugfs_root) 5975 pr_warn("could not create debugfs entry, continuing\n"); 5976 5977 ret = pci_register_driver(&cxgb4_driver); 5978 if (ret < 0) 5979 debugfs_remove(cxgb4_debugfs_root); 5980 5981 #if IS_ENABLED(CONFIG_IPV6) 5982 if (!inet6addr_registered) { 5983 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5984 inet6addr_registered = true; 5985 } 5986 #endif 5987 5988 return ret; 5989 } 5990 5991 static void __exit cxgb4_cleanup_module(void) 5992 { 5993 #if IS_ENABLED(CONFIG_IPV6) 5994 if (inet6addr_registered) { 5995 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5996 inet6addr_registered = false; 5997 } 5998 #endif 5999 pci_unregister_driver(&cxgb4_driver); 6000 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6001 } 6002 6003 module_init(cxgb4_init_module); 6004 module_exit(cxgb4_cleanup_module); 6005