1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68 #include <net/udp_tunnel.h>
69 
70 #include "cxgb4.h"
71 #include "cxgb4_filter.h"
72 #include "t4_regs.h"
73 #include "t4_values.h"
74 #include "t4_msg.h"
75 #include "t4fw_api.h"
76 #include "t4fw_version.h"
77 #include "cxgb4_dcb.h"
78 #include "srq.h"
79 #include "cxgb4_debugfs.h"
80 #include "clip_tbl.h"
81 #include "l2t.h"
82 #include "smt.h"
83 #include "sched.h"
84 #include "cxgb4_tc_u32.h"
85 #include "cxgb4_tc_flower.h"
86 #include "cxgb4_ptp.h"
87 #include "cxgb4_cudbg.h"
88 
89 char cxgb4_driver_name[] = KBUILD_MODNAME;
90 
91 #ifdef DRV_VERSION
92 #undef DRV_VERSION
93 #endif
94 #define DRV_VERSION "2.0.0-ko"
95 const char cxgb4_driver_version[] = DRV_VERSION;
96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
97 
98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
99 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
100 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
101 
102 /* Macros needed to support the PCI Device ID Table ...
103  */
104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
105 	static const struct pci_device_id cxgb4_pci_tbl[] = {
106 #define CXGB4_UNIFIED_PF 0x4
107 
108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
109 
110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
111  * called for both.
112  */
113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
114 
115 #define CH_PCI_ID_TABLE_ENTRY(devid) \
116 		{PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
117 
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
119 		{ 0, } \
120 	}
121 
122 #include "t4_pci_id_tbl.h"
123 
124 #define FW4_FNAME "cxgb4/t4fw.bin"
125 #define FW5_FNAME "cxgb4/t5fw.bin"
126 #define FW6_FNAME "cxgb4/t6fw.bin"
127 #define FW4_CFNAME "cxgb4/t4-config.txt"
128 #define FW5_CFNAME "cxgb4/t5-config.txt"
129 #define FW6_CFNAME "cxgb4/t6-config.txt"
130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
132 #define PHY_AQ1202_DEVICEID 0x4409
133 #define PHY_BCM84834_DEVICEID 0x4486
134 
135 MODULE_DESCRIPTION(DRV_DESC);
136 MODULE_AUTHOR("Chelsio Communications");
137 MODULE_LICENSE("Dual BSD/GPL");
138 MODULE_VERSION(DRV_VERSION);
139 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
140 MODULE_FIRMWARE(FW4_FNAME);
141 MODULE_FIRMWARE(FW5_FNAME);
142 MODULE_FIRMWARE(FW6_FNAME);
143 
144 /*
145  * The driver uses the best interrupt scheme available on a platform in the
146  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
147  * of these schemes the driver may consider as follows:
148  *
149  * msi = 2: choose from among all three options
150  * msi = 1: only consider MSI and INTx interrupts
151  * msi = 0: force INTx interrupts
152  */
153 static int msi = 2;
154 
155 module_param(msi, int, 0644);
156 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
157 
158 /*
159  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
160  * offset by 2 bytes in order to have the IP headers line up on 4-byte
161  * boundaries.  This is a requirement for many architectures which will throw
162  * a machine check fault if an attempt is made to access one of the 4-byte IP
163  * header fields on a non-4-byte boundary.  And it's a major performance issue
164  * even on some architectures which allow it like some implementations of the
165  * x86 ISA.  However, some architectures don't mind this and for some very
166  * edge-case performance sensitive applications (like forwarding large volumes
167  * of small packets), setting this DMA offset to 0 will decrease the number of
168  * PCI-E Bus transfers enough to measurably affect performance.
169  */
170 static int rx_dma_offset = 2;
171 
172 /* TX Queue select used to determine what algorithm to use for selecting TX
173  * queue. Select between the kernel provided function (select_queue=0) or user
174  * cxgb_select_queue function (select_queue=1)
175  *
176  * Default: select_queue=0
177  */
178 static int select_queue;
179 module_param(select_queue, int, 0644);
180 MODULE_PARM_DESC(select_queue,
181 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
182 
183 static struct dentry *cxgb4_debugfs_root;
184 
185 LIST_HEAD(adapter_list);
186 DEFINE_MUTEX(uld_mutex);
187 
188 static void link_report(struct net_device *dev)
189 {
190 	if (!netif_carrier_ok(dev))
191 		netdev_info(dev, "link down\n");
192 	else {
193 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
194 
195 		const char *s;
196 		const struct port_info *p = netdev_priv(dev);
197 
198 		switch (p->link_cfg.speed) {
199 		case 100:
200 			s = "100Mbps";
201 			break;
202 		case 1000:
203 			s = "1Gbps";
204 			break;
205 		case 10000:
206 			s = "10Gbps";
207 			break;
208 		case 25000:
209 			s = "25Gbps";
210 			break;
211 		case 40000:
212 			s = "40Gbps";
213 			break;
214 		case 50000:
215 			s = "50Gbps";
216 			break;
217 		case 100000:
218 			s = "100Gbps";
219 			break;
220 		default:
221 			pr_info("%s: unsupported speed: %d\n",
222 				dev->name, p->link_cfg.speed);
223 			return;
224 		}
225 
226 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
227 			    fc[p->link_cfg.fc]);
228 	}
229 }
230 
231 #ifdef CONFIG_CHELSIO_T4_DCB
232 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
233 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
234 {
235 	struct port_info *pi = netdev_priv(dev);
236 	struct adapter *adap = pi->adapter;
237 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
238 	int i;
239 
240 	/* We use a simple mapping of Port TX Queue Index to DCB
241 	 * Priority when we're enabling DCB.
242 	 */
243 	for (i = 0; i < pi->nqsets; i++, txq++) {
244 		u32 name, value;
245 		int err;
246 
247 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
248 			FW_PARAMS_PARAM_X_V(
249 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
250 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
251 		value = enable ? i : 0xffffffff;
252 
253 		/* Since we can be called while atomic (from "interrupt
254 		 * level") we need to issue the Set Parameters Commannd
255 		 * without sleeping (timeout < 0).
256 		 */
257 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
258 					    &name, &value,
259 					    -FW_CMD_MAX_TIMEOUT);
260 
261 		if (err)
262 			dev_err(adap->pdev_dev,
263 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
264 				enable ? "set" : "unset", pi->port_id, i, -err);
265 		else
266 			txq->dcb_prio = value;
267 	}
268 }
269 
270 static int cxgb4_dcb_enabled(const struct net_device *dev)
271 {
272 	struct port_info *pi = netdev_priv(dev);
273 
274 	if (!pi->dcb.enabled)
275 		return 0;
276 
277 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
278 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
279 }
280 #endif /* CONFIG_CHELSIO_T4_DCB */
281 
282 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
283 {
284 	struct net_device *dev = adapter->port[port_id];
285 
286 	/* Skip changes from disabled ports. */
287 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
288 		if (link_stat)
289 			netif_carrier_on(dev);
290 		else {
291 #ifdef CONFIG_CHELSIO_T4_DCB
292 			if (cxgb4_dcb_enabled(dev)) {
293 				cxgb4_dcb_reset(dev);
294 				dcb_tx_queue_prio_enable(dev, false);
295 			}
296 #endif /* CONFIG_CHELSIO_T4_DCB */
297 			netif_carrier_off(dev);
298 		}
299 
300 		link_report(dev);
301 	}
302 }
303 
304 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
305 {
306 	static const char *mod_str[] = {
307 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
308 	};
309 
310 	const struct net_device *dev = adap->port[port_id];
311 	const struct port_info *pi = netdev_priv(dev);
312 
313 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
314 		netdev_info(dev, "port module unplugged\n");
315 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
316 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
317 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
318 		netdev_info(dev, "%s: unsupported port module inserted\n",
319 			    dev->name);
320 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
321 		netdev_info(dev, "%s: unknown port module inserted\n",
322 			    dev->name);
323 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
324 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
325 	else
326 		netdev_info(dev, "%s: unknown module type %d inserted\n",
327 			    dev->name, pi->mod_type);
328 }
329 
330 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
331 module_param(dbfifo_int_thresh, int, 0644);
332 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
333 
334 /*
335  * usecs to sleep while draining the dbfifo
336  */
337 static int dbfifo_drain_delay = 1000;
338 module_param(dbfifo_drain_delay, int, 0644);
339 MODULE_PARM_DESC(dbfifo_drain_delay,
340 		 "usecs to sleep while draining the dbfifo");
341 
342 static inline int cxgb4_set_addr_hash(struct port_info *pi)
343 {
344 	struct adapter *adap = pi->adapter;
345 	u64 vec = 0;
346 	bool ucast = false;
347 	struct hash_mac_addr *entry;
348 
349 	/* Calculate the hash vector for the updated list and program it */
350 	list_for_each_entry(entry, &adap->mac_hlist, list) {
351 		ucast |= is_unicast_ether_addr(entry->addr);
352 		vec |= (1ULL << hash_mac_addr(entry->addr));
353 	}
354 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
355 				vec, false);
356 }
357 
358 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
359 {
360 	struct port_info *pi = netdev_priv(netdev);
361 	struct adapter *adap = pi->adapter;
362 	int ret;
363 	u64 mhash = 0;
364 	u64 uhash = 0;
365 	bool free = false;
366 	bool ucast = is_unicast_ether_addr(mac_addr);
367 	const u8 *maclist[1] = {mac_addr};
368 	struct hash_mac_addr *new_entry;
369 
370 	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
371 				NULL, ucast ? &uhash : &mhash, false);
372 	if (ret < 0)
373 		goto out;
374 	/* if hash != 0, then add the addr to hash addr list
375 	 * so on the end we will calculate the hash for the
376 	 * list and program it
377 	 */
378 	if (uhash || mhash) {
379 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
380 		if (!new_entry)
381 			return -ENOMEM;
382 		ether_addr_copy(new_entry->addr, mac_addr);
383 		list_add_tail(&new_entry->list, &adap->mac_hlist);
384 		ret = cxgb4_set_addr_hash(pi);
385 	}
386 out:
387 	return ret < 0 ? ret : 0;
388 }
389 
390 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
391 {
392 	struct port_info *pi = netdev_priv(netdev);
393 	struct adapter *adap = pi->adapter;
394 	int ret;
395 	const u8 *maclist[1] = {mac_addr};
396 	struct hash_mac_addr *entry, *tmp;
397 
398 	/* If the MAC address to be removed is in the hash addr
399 	 * list, delete it from the list and update hash vector
400 	 */
401 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
402 		if (ether_addr_equal(entry->addr, mac_addr)) {
403 			list_del(&entry->list);
404 			kfree(entry);
405 			return cxgb4_set_addr_hash(pi);
406 		}
407 	}
408 
409 	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
410 	return ret < 0 ? -EINVAL : 0;
411 }
412 
413 /*
414  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
415  * If @mtu is -1 it is left unchanged.
416  */
417 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
418 {
419 	struct port_info *pi = netdev_priv(dev);
420 	struct adapter *adapter = pi->adapter;
421 
422 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
423 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
424 
425 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
426 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
427 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
428 			     sleep_ok);
429 }
430 
431 /**
432  *	link_start - enable a port
433  *	@dev: the port to enable
434  *
435  *	Performs the MAC and PHY actions needed to enable a port.
436  */
437 static int link_start(struct net_device *dev)
438 {
439 	int ret;
440 	struct port_info *pi = netdev_priv(dev);
441 	unsigned int mb = pi->adapter->pf;
442 
443 	/*
444 	 * We do not set address filters and promiscuity here, the stack does
445 	 * that step explicitly.
446 	 */
447 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
448 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
449 	if (ret == 0) {
450 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
451 				    pi->xact_addr_filt, dev->dev_addr, true,
452 				    true);
453 		if (ret >= 0) {
454 			pi->xact_addr_filt = ret;
455 			ret = 0;
456 		}
457 	}
458 	if (ret == 0)
459 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
460 				    &pi->link_cfg);
461 	if (ret == 0) {
462 		local_bh_disable();
463 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
464 					  true, CXGB4_DCB_ENABLED);
465 		local_bh_enable();
466 	}
467 
468 	return ret;
469 }
470 
471 #ifdef CONFIG_CHELSIO_T4_DCB
472 /* Handle a Data Center Bridging update message from the firmware. */
473 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
474 {
475 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
476 	struct net_device *dev = adap->port[adap->chan_map[port]];
477 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
478 	int new_dcb_enabled;
479 
480 	cxgb4_dcb_handle_fw_update(adap, pcmd);
481 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
482 
483 	/* If the DCB has become enabled or disabled on the port then we're
484 	 * going to need to set up/tear down DCB Priority parameters for the
485 	 * TX Queues associated with the port.
486 	 */
487 	if (new_dcb_enabled != old_dcb_enabled)
488 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
489 }
490 #endif /* CONFIG_CHELSIO_T4_DCB */
491 
492 /* Response queue handler for the FW event queue.
493  */
494 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
495 			  const struct pkt_gl *gl)
496 {
497 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
498 
499 	rsp++;                                          /* skip RSS header */
500 
501 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
502 	 */
503 	if (unlikely(opcode == CPL_FW4_MSG &&
504 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
505 		rsp++;
506 		opcode = ((const struct rss_header *)rsp)->opcode;
507 		rsp++;
508 		if (opcode != CPL_SGE_EGR_UPDATE) {
509 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
510 				, opcode);
511 			goto out;
512 		}
513 	}
514 
515 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
516 		const struct cpl_sge_egr_update *p = (void *)rsp;
517 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
518 		struct sge_txq *txq;
519 
520 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
521 		txq->restarts++;
522 		if (txq->q_type == CXGB4_TXQ_ETH) {
523 			struct sge_eth_txq *eq;
524 
525 			eq = container_of(txq, struct sge_eth_txq, q);
526 			netif_tx_wake_queue(eq->txq);
527 		} else {
528 			struct sge_uld_txq *oq;
529 
530 			oq = container_of(txq, struct sge_uld_txq, q);
531 			tasklet_schedule(&oq->qresume_tsk);
532 		}
533 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
534 		const struct cpl_fw6_msg *p = (void *)rsp;
535 
536 #ifdef CONFIG_CHELSIO_T4_DCB
537 		const struct fw_port_cmd *pcmd = (const void *)p->data;
538 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
539 		unsigned int action =
540 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
541 
542 		if (cmd == FW_PORT_CMD &&
543 		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
544 		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
545 			int port = FW_PORT_CMD_PORTID_G(
546 					be32_to_cpu(pcmd->op_to_portid));
547 			struct net_device *dev;
548 			int dcbxdis, state_input;
549 
550 			dev = q->adap->port[q->adap->chan_map[port]];
551 			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
552 				   ? !!(pcmd->u.info.dcbxdis_pkd &
553 					FW_PORT_CMD_DCBXDIS_F)
554 				   : !!(pcmd->u.info32.lstatus32_to_cbllen32 &
555 					FW_PORT_CMD_DCBXDIS32_F));
556 			state_input = (dcbxdis
557 				       ? CXGB4_DCB_INPUT_FW_DISABLED
558 				       : CXGB4_DCB_INPUT_FW_ENABLED);
559 
560 			cxgb4_dcb_state_fsm(dev, state_input);
561 		}
562 
563 		if (cmd == FW_PORT_CMD &&
564 		    action == FW_PORT_ACTION_L2_DCB_CFG)
565 			dcb_rpl(q->adap, pcmd);
566 		else
567 #endif
568 			if (p->type == 0)
569 				t4_handle_fw_rpl(q->adap, p->data);
570 	} else if (opcode == CPL_L2T_WRITE_RPL) {
571 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
572 
573 		do_l2t_write_rpl(q->adap, p);
574 	} else if (opcode == CPL_SMT_WRITE_RPL) {
575 		const struct cpl_smt_write_rpl *p = (void *)rsp;
576 
577 		do_smt_write_rpl(q->adap, p);
578 	} else if (opcode == CPL_SET_TCB_RPL) {
579 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
580 
581 		filter_rpl(q->adap, p);
582 	} else if (opcode == CPL_ACT_OPEN_RPL) {
583 		const struct cpl_act_open_rpl *p = (void *)rsp;
584 
585 		hash_filter_rpl(q->adap, p);
586 	} else if (opcode == CPL_ABORT_RPL_RSS) {
587 		const struct cpl_abort_rpl_rss *p = (void *)rsp;
588 
589 		hash_del_filter_rpl(q->adap, p);
590 	} else if (opcode == CPL_SRQ_TABLE_RPL) {
591 		const struct cpl_srq_table_rpl *p = (void *)rsp;
592 
593 		do_srq_table_rpl(q->adap, p);
594 	} else
595 		dev_err(q->adap->pdev_dev,
596 			"unexpected CPL %#x on FW event queue\n", opcode);
597 out:
598 	return 0;
599 }
600 
601 static void disable_msi(struct adapter *adapter)
602 {
603 	if (adapter->flags & USING_MSIX) {
604 		pci_disable_msix(adapter->pdev);
605 		adapter->flags &= ~USING_MSIX;
606 	} else if (adapter->flags & USING_MSI) {
607 		pci_disable_msi(adapter->pdev);
608 		adapter->flags &= ~USING_MSI;
609 	}
610 }
611 
612 /*
613  * Interrupt handler for non-data events used with MSI-X.
614  */
615 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
616 {
617 	struct adapter *adap = cookie;
618 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
619 
620 	if (v & PFSW_F) {
621 		adap->swintr = 1;
622 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
623 	}
624 	if (adap->flags & MASTER_PF)
625 		t4_slow_intr_handler(adap);
626 	return IRQ_HANDLED;
627 }
628 
629 /*
630  * Name the MSI-X interrupts.
631  */
632 static void name_msix_vecs(struct adapter *adap)
633 {
634 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
635 
636 	/* non-data interrupts */
637 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
638 
639 	/* FW events */
640 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
641 		 adap->port[0]->name);
642 
643 	/* Ethernet queues */
644 	for_each_port(adap, j) {
645 		struct net_device *d = adap->port[j];
646 		const struct port_info *pi = netdev_priv(d);
647 
648 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
649 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
650 				 d->name, i);
651 	}
652 }
653 
654 static int request_msix_queue_irqs(struct adapter *adap)
655 {
656 	struct sge *s = &adap->sge;
657 	int err, ethqidx;
658 	int msi_index = 2;
659 
660 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
661 			  adap->msix_info[1].desc, &s->fw_evtq);
662 	if (err)
663 		return err;
664 
665 	for_each_ethrxq(s, ethqidx) {
666 		err = request_irq(adap->msix_info[msi_index].vec,
667 				  t4_sge_intr_msix, 0,
668 				  adap->msix_info[msi_index].desc,
669 				  &s->ethrxq[ethqidx].rspq);
670 		if (err)
671 			goto unwind;
672 		msi_index++;
673 	}
674 	return 0;
675 
676 unwind:
677 	while (--ethqidx >= 0)
678 		free_irq(adap->msix_info[--msi_index].vec,
679 			 &s->ethrxq[ethqidx].rspq);
680 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
681 	return err;
682 }
683 
684 static void free_msix_queue_irqs(struct adapter *adap)
685 {
686 	int i, msi_index = 2;
687 	struct sge *s = &adap->sge;
688 
689 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
690 	for_each_ethrxq(s, i)
691 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
692 }
693 
694 /**
695  *	cxgb4_write_rss - write the RSS table for a given port
696  *	@pi: the port
697  *	@queues: array of queue indices for RSS
698  *
699  *	Sets up the portion of the HW RSS table for the port's VI to distribute
700  *	packets to the Rx queues in @queues.
701  *	Should never be called before setting up sge eth rx queues
702  */
703 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
704 {
705 	u16 *rss;
706 	int i, err;
707 	struct adapter *adapter = pi->adapter;
708 	const struct sge_eth_rxq *rxq;
709 
710 	rxq = &adapter->sge.ethrxq[pi->first_qset];
711 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
712 	if (!rss)
713 		return -ENOMEM;
714 
715 	/* map the queue indices to queue ids */
716 	for (i = 0; i < pi->rss_size; i++, queues++)
717 		rss[i] = rxq[*queues].rspq.abs_id;
718 
719 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
720 				  pi->rss_size, rss, pi->rss_size);
721 	/* If Tunnel All Lookup isn't specified in the global RSS
722 	 * Configuration, then we need to specify a default Ingress
723 	 * Queue for any ingress packets which aren't hashed.  We'll
724 	 * use our first ingress queue ...
725 	 */
726 	if (!err)
727 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
728 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
729 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
730 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
731 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
732 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
733 				       rss[0]);
734 	kfree(rss);
735 	return err;
736 }
737 
738 /**
739  *	setup_rss - configure RSS
740  *	@adap: the adapter
741  *
742  *	Sets up RSS for each port.
743  */
744 static int setup_rss(struct adapter *adap)
745 {
746 	int i, j, err;
747 
748 	for_each_port(adap, i) {
749 		const struct port_info *pi = adap2pinfo(adap, i);
750 
751 		/* Fill default values with equal distribution */
752 		for (j = 0; j < pi->rss_size; j++)
753 			pi->rss[j] = j % pi->nqsets;
754 
755 		err = cxgb4_write_rss(pi, pi->rss);
756 		if (err)
757 			return err;
758 	}
759 	return 0;
760 }
761 
762 /*
763  * Return the channel of the ingress queue with the given qid.
764  */
765 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
766 {
767 	qid -= p->ingr_start;
768 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
769 }
770 
771 /*
772  * Wait until all NAPI handlers are descheduled.
773  */
774 static void quiesce_rx(struct adapter *adap)
775 {
776 	int i;
777 
778 	for (i = 0; i < adap->sge.ingr_sz; i++) {
779 		struct sge_rspq *q = adap->sge.ingr_map[i];
780 
781 		if (q && q->handler)
782 			napi_disable(&q->napi);
783 	}
784 }
785 
786 /* Disable interrupt and napi handler */
787 static void disable_interrupts(struct adapter *adap)
788 {
789 	if (adap->flags & FULL_INIT_DONE) {
790 		t4_intr_disable(adap);
791 		if (adap->flags & USING_MSIX) {
792 			free_msix_queue_irqs(adap);
793 			free_irq(adap->msix_info[0].vec, adap);
794 		} else {
795 			free_irq(adap->pdev->irq, adap);
796 		}
797 		quiesce_rx(adap);
798 	}
799 }
800 
801 /*
802  * Enable NAPI scheduling and interrupt generation for all Rx queues.
803  */
804 static void enable_rx(struct adapter *adap)
805 {
806 	int i;
807 
808 	for (i = 0; i < adap->sge.ingr_sz; i++) {
809 		struct sge_rspq *q = adap->sge.ingr_map[i];
810 
811 		if (!q)
812 			continue;
813 		if (q->handler)
814 			napi_enable(&q->napi);
815 
816 		/* 0-increment GTS to start the timer and enable interrupts */
817 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
818 			     SEINTARM_V(q->intr_params) |
819 			     INGRESSQID_V(q->cntxt_id));
820 	}
821 }
822 
823 
824 static int setup_fw_sge_queues(struct adapter *adap)
825 {
826 	struct sge *s = &adap->sge;
827 	int err = 0;
828 
829 	bitmap_zero(s->starving_fl, s->egr_sz);
830 	bitmap_zero(s->txq_maperr, s->egr_sz);
831 
832 	if (adap->flags & USING_MSIX)
833 		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
834 	else {
835 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
836 				       NULL, NULL, NULL, -1);
837 		if (err)
838 			return err;
839 		adap->msi_idx = -((int)s->intrq.abs_id + 1);
840 	}
841 
842 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
843 			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
844 	return err;
845 }
846 
847 /**
848  *	setup_sge_queues - configure SGE Tx/Rx/response queues
849  *	@adap: the adapter
850  *
851  *	Determines how many sets of SGE queues to use and initializes them.
852  *	We support multiple queue sets per port if we have MSI-X, otherwise
853  *	just one queue set per port.
854  */
855 static int setup_sge_queues(struct adapter *adap)
856 {
857 	int err, i, j;
858 	struct sge *s = &adap->sge;
859 	struct sge_uld_rxq_info *rxq_info = NULL;
860 	unsigned int cmplqid = 0;
861 
862 	if (is_uld(adap))
863 		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
864 
865 	for_each_port(adap, i) {
866 		struct net_device *dev = adap->port[i];
867 		struct port_info *pi = netdev_priv(dev);
868 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
869 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
870 
871 		for (j = 0; j < pi->nqsets; j++, q++) {
872 			if (adap->msi_idx > 0)
873 				adap->msi_idx++;
874 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
875 					       adap->msi_idx, &q->fl,
876 					       t4_ethrx_handler,
877 					       NULL,
878 					       t4_get_tp_ch_map(adap,
879 								pi->tx_chan));
880 			if (err)
881 				goto freeout;
882 			q->rspq.idx = j;
883 			memset(&q->stats, 0, sizeof(q->stats));
884 		}
885 		for (j = 0; j < pi->nqsets; j++, t++) {
886 			err = t4_sge_alloc_eth_txq(adap, t, dev,
887 					netdev_get_tx_queue(dev, j),
888 					s->fw_evtq.cntxt_id);
889 			if (err)
890 				goto freeout;
891 		}
892 	}
893 
894 	for_each_port(adap, i) {
895 		/* Note that cmplqid below is 0 if we don't
896 		 * have RDMA queues, and that's the right value.
897 		 */
898 		if (rxq_info)
899 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
900 
901 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
902 					    s->fw_evtq.cntxt_id, cmplqid);
903 		if (err)
904 			goto freeout;
905 	}
906 
907 	if (!is_t4(adap->params.chip)) {
908 		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
909 					   netdev_get_tx_queue(adap->port[0], 0)
910 					   , s->fw_evtq.cntxt_id);
911 		if (err)
912 			goto freeout;
913 	}
914 
915 	t4_write_reg(adap, is_t4(adap->params.chip) ?
916 				MPS_TRC_RSS_CONTROL_A :
917 				MPS_T5_TRC_RSS_CONTROL_A,
918 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
919 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
920 	return 0;
921 freeout:
922 	t4_free_sge_resources(adap);
923 	return err;
924 }
925 
926 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
927 			     void *accel_priv, select_queue_fallback_t fallback)
928 {
929 	int txq;
930 
931 #ifdef CONFIG_CHELSIO_T4_DCB
932 	/* If a Data Center Bridging has been successfully negotiated on this
933 	 * link then we'll use the skb's priority to map it to a TX Queue.
934 	 * The skb's priority is determined via the VLAN Tag Priority Code
935 	 * Point field.
936 	 */
937 	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
938 		u16 vlan_tci;
939 		int err;
940 
941 		err = vlan_get_tag(skb, &vlan_tci);
942 		if (unlikely(err)) {
943 			if (net_ratelimit())
944 				netdev_warn(dev,
945 					    "TX Packet without VLAN Tag on DCB Link\n");
946 			txq = 0;
947 		} else {
948 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
949 #ifdef CONFIG_CHELSIO_T4_FCOE
950 			if (skb->protocol == htons(ETH_P_FCOE))
951 				txq = skb->priority & 0x7;
952 #endif /* CONFIG_CHELSIO_T4_FCOE */
953 		}
954 		return txq;
955 	}
956 #endif /* CONFIG_CHELSIO_T4_DCB */
957 
958 	if (select_queue) {
959 		txq = (skb_rx_queue_recorded(skb)
960 			? skb_get_rx_queue(skb)
961 			: smp_processor_id());
962 
963 		while (unlikely(txq >= dev->real_num_tx_queues))
964 			txq -= dev->real_num_tx_queues;
965 
966 		return txq;
967 	}
968 
969 	return fallback(dev, skb) % dev->real_num_tx_queues;
970 }
971 
972 static int closest_timer(const struct sge *s, int time)
973 {
974 	int i, delta, match = 0, min_delta = INT_MAX;
975 
976 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
977 		delta = time - s->timer_val[i];
978 		if (delta < 0)
979 			delta = -delta;
980 		if (delta < min_delta) {
981 			min_delta = delta;
982 			match = i;
983 		}
984 	}
985 	return match;
986 }
987 
988 static int closest_thres(const struct sge *s, int thres)
989 {
990 	int i, delta, match = 0, min_delta = INT_MAX;
991 
992 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
993 		delta = thres - s->counter_val[i];
994 		if (delta < 0)
995 			delta = -delta;
996 		if (delta < min_delta) {
997 			min_delta = delta;
998 			match = i;
999 		}
1000 	}
1001 	return match;
1002 }
1003 
1004 /**
1005  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1006  *	@q: the Rx queue
1007  *	@us: the hold-off time in us, or 0 to disable timer
1008  *	@cnt: the hold-off packet count, or 0 to disable counter
1009  *
1010  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1011  *	one of the two needs to be enabled for the queue to generate interrupts.
1012  */
1013 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1014 			       unsigned int us, unsigned int cnt)
1015 {
1016 	struct adapter *adap = q->adap;
1017 
1018 	if ((us | cnt) == 0)
1019 		cnt = 1;
1020 
1021 	if (cnt) {
1022 		int err;
1023 		u32 v, new_idx;
1024 
1025 		new_idx = closest_thres(&adap->sge, cnt);
1026 		if (q->desc && q->pktcnt_idx != new_idx) {
1027 			/* the queue has already been created, update it */
1028 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1029 			    FW_PARAMS_PARAM_X_V(
1030 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1031 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1032 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1033 					    &v, &new_idx);
1034 			if (err)
1035 				return err;
1036 		}
1037 		q->pktcnt_idx = new_idx;
1038 	}
1039 
1040 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1041 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1042 	return 0;
1043 }
1044 
1045 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1046 {
1047 	const struct port_info *pi = netdev_priv(dev);
1048 	netdev_features_t changed = dev->features ^ features;
1049 	int err;
1050 
1051 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1052 		return 0;
1053 
1054 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1055 			    -1, -1, -1,
1056 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1057 	if (unlikely(err))
1058 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1059 	return err;
1060 }
1061 
1062 static int setup_debugfs(struct adapter *adap)
1063 {
1064 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1065 		return -1;
1066 
1067 #ifdef CONFIG_DEBUG_FS
1068 	t4_setup_debugfs(adap);
1069 #endif
1070 	return 0;
1071 }
1072 
1073 /*
1074  * upper-layer driver support
1075  */
1076 
1077 /*
1078  * Allocate an active-open TID and set it to the supplied value.
1079  */
1080 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1081 {
1082 	int atid = -1;
1083 
1084 	spin_lock_bh(&t->atid_lock);
1085 	if (t->afree) {
1086 		union aopen_entry *p = t->afree;
1087 
1088 		atid = (p - t->atid_tab) + t->atid_base;
1089 		t->afree = p->next;
1090 		p->data = data;
1091 		t->atids_in_use++;
1092 	}
1093 	spin_unlock_bh(&t->atid_lock);
1094 	return atid;
1095 }
1096 EXPORT_SYMBOL(cxgb4_alloc_atid);
1097 
1098 /*
1099  * Release an active-open TID.
1100  */
1101 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1102 {
1103 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1104 
1105 	spin_lock_bh(&t->atid_lock);
1106 	p->next = t->afree;
1107 	t->afree = p;
1108 	t->atids_in_use--;
1109 	spin_unlock_bh(&t->atid_lock);
1110 }
1111 EXPORT_SYMBOL(cxgb4_free_atid);
1112 
1113 /*
1114  * Allocate a server TID and set it to the supplied value.
1115  */
1116 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1117 {
1118 	int stid;
1119 
1120 	spin_lock_bh(&t->stid_lock);
1121 	if (family == PF_INET) {
1122 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1123 		if (stid < t->nstids)
1124 			__set_bit(stid, t->stid_bmap);
1125 		else
1126 			stid = -1;
1127 	} else {
1128 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1129 		if (stid < 0)
1130 			stid = -1;
1131 	}
1132 	if (stid >= 0) {
1133 		t->stid_tab[stid].data = data;
1134 		stid += t->stid_base;
1135 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1136 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1137 		 * needs 2 TIDs.
1138 		 */
1139 		if (family == PF_INET6) {
1140 			t->stids_in_use += 2;
1141 			t->v6_stids_in_use += 2;
1142 		} else {
1143 			t->stids_in_use++;
1144 		}
1145 	}
1146 	spin_unlock_bh(&t->stid_lock);
1147 	return stid;
1148 }
1149 EXPORT_SYMBOL(cxgb4_alloc_stid);
1150 
1151 /* Allocate a server filter TID and set it to the supplied value.
1152  */
1153 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1154 {
1155 	int stid;
1156 
1157 	spin_lock_bh(&t->stid_lock);
1158 	if (family == PF_INET) {
1159 		stid = find_next_zero_bit(t->stid_bmap,
1160 				t->nstids + t->nsftids, t->nstids);
1161 		if (stid < (t->nstids + t->nsftids))
1162 			__set_bit(stid, t->stid_bmap);
1163 		else
1164 			stid = -1;
1165 	} else {
1166 		stid = -1;
1167 	}
1168 	if (stid >= 0) {
1169 		t->stid_tab[stid].data = data;
1170 		stid -= t->nstids;
1171 		stid += t->sftid_base;
1172 		t->sftids_in_use++;
1173 	}
1174 	spin_unlock_bh(&t->stid_lock);
1175 	return stid;
1176 }
1177 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1178 
1179 /* Release a server TID.
1180  */
1181 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1182 {
1183 	/* Is it a server filter TID? */
1184 	if (t->nsftids && (stid >= t->sftid_base)) {
1185 		stid -= t->sftid_base;
1186 		stid += t->nstids;
1187 	} else {
1188 		stid -= t->stid_base;
1189 	}
1190 
1191 	spin_lock_bh(&t->stid_lock);
1192 	if (family == PF_INET)
1193 		__clear_bit(stid, t->stid_bmap);
1194 	else
1195 		bitmap_release_region(t->stid_bmap, stid, 1);
1196 	t->stid_tab[stid].data = NULL;
1197 	if (stid < t->nstids) {
1198 		if (family == PF_INET6) {
1199 			t->stids_in_use -= 2;
1200 			t->v6_stids_in_use -= 2;
1201 		} else {
1202 			t->stids_in_use--;
1203 		}
1204 	} else {
1205 		t->sftids_in_use--;
1206 	}
1207 
1208 	spin_unlock_bh(&t->stid_lock);
1209 }
1210 EXPORT_SYMBOL(cxgb4_free_stid);
1211 
1212 /*
1213  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1214  */
1215 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1216 			   unsigned int tid)
1217 {
1218 	struct cpl_tid_release *req;
1219 
1220 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1221 	req = __skb_put(skb, sizeof(*req));
1222 	INIT_TP_WR(req, tid);
1223 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1224 }
1225 
1226 /*
1227  * Queue a TID release request and if necessary schedule a work queue to
1228  * process it.
1229  */
1230 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1231 				    unsigned int tid)
1232 {
1233 	void **p = &t->tid_tab[tid];
1234 	struct adapter *adap = container_of(t, struct adapter, tids);
1235 
1236 	spin_lock_bh(&adap->tid_release_lock);
1237 	*p = adap->tid_release_head;
1238 	/* Low 2 bits encode the Tx channel number */
1239 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1240 	if (!adap->tid_release_task_busy) {
1241 		adap->tid_release_task_busy = true;
1242 		queue_work(adap->workq, &adap->tid_release_task);
1243 	}
1244 	spin_unlock_bh(&adap->tid_release_lock);
1245 }
1246 
1247 /*
1248  * Process the list of pending TID release requests.
1249  */
1250 static void process_tid_release_list(struct work_struct *work)
1251 {
1252 	struct sk_buff *skb;
1253 	struct adapter *adap;
1254 
1255 	adap = container_of(work, struct adapter, tid_release_task);
1256 
1257 	spin_lock_bh(&adap->tid_release_lock);
1258 	while (adap->tid_release_head) {
1259 		void **p = adap->tid_release_head;
1260 		unsigned int chan = (uintptr_t)p & 3;
1261 		p = (void *)p - chan;
1262 
1263 		adap->tid_release_head = *p;
1264 		*p = NULL;
1265 		spin_unlock_bh(&adap->tid_release_lock);
1266 
1267 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1268 					 GFP_KERNEL)))
1269 			schedule_timeout_uninterruptible(1);
1270 
1271 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1272 		t4_ofld_send(adap, skb);
1273 		spin_lock_bh(&adap->tid_release_lock);
1274 	}
1275 	adap->tid_release_task_busy = false;
1276 	spin_unlock_bh(&adap->tid_release_lock);
1277 }
1278 
1279 /*
1280  * Release a TID and inform HW.  If we are unable to allocate the release
1281  * message we defer to a work queue.
1282  */
1283 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1284 		      unsigned short family)
1285 {
1286 	struct sk_buff *skb;
1287 	struct adapter *adap = container_of(t, struct adapter, tids);
1288 
1289 	WARN_ON(tid >= t->ntids);
1290 
1291 	if (t->tid_tab[tid]) {
1292 		t->tid_tab[tid] = NULL;
1293 		atomic_dec(&t->conns_in_use);
1294 		if (t->hash_base && (tid >= t->hash_base)) {
1295 			if (family == AF_INET6)
1296 				atomic_sub(2, &t->hash_tids_in_use);
1297 			else
1298 				atomic_dec(&t->hash_tids_in_use);
1299 		} else {
1300 			if (family == AF_INET6)
1301 				atomic_sub(2, &t->tids_in_use);
1302 			else
1303 				atomic_dec(&t->tids_in_use);
1304 		}
1305 	}
1306 
1307 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1308 	if (likely(skb)) {
1309 		mk_tid_release(skb, chan, tid);
1310 		t4_ofld_send(adap, skb);
1311 	} else
1312 		cxgb4_queue_tid_release(t, chan, tid);
1313 }
1314 EXPORT_SYMBOL(cxgb4_remove_tid);
1315 
1316 /*
1317  * Allocate and initialize the TID tables.  Returns 0 on success.
1318  */
1319 static int tid_init(struct tid_info *t)
1320 {
1321 	struct adapter *adap = container_of(t, struct adapter, tids);
1322 	unsigned int max_ftids = t->nftids + t->nsftids;
1323 	unsigned int natids = t->natids;
1324 	unsigned int stid_bmap_size;
1325 	unsigned int ftid_bmap_size;
1326 	size_t size;
1327 
1328 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1329 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1330 	size = t->ntids * sizeof(*t->tid_tab) +
1331 	       natids * sizeof(*t->atid_tab) +
1332 	       t->nstids * sizeof(*t->stid_tab) +
1333 	       t->nsftids * sizeof(*t->stid_tab) +
1334 	       stid_bmap_size * sizeof(long) +
1335 	       max_ftids * sizeof(*t->ftid_tab) +
1336 	       ftid_bmap_size * sizeof(long);
1337 
1338 	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1339 	if (!t->tid_tab)
1340 		return -ENOMEM;
1341 
1342 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1343 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1344 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1345 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1346 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1347 	spin_lock_init(&t->stid_lock);
1348 	spin_lock_init(&t->atid_lock);
1349 	spin_lock_init(&t->ftid_lock);
1350 
1351 	t->stids_in_use = 0;
1352 	t->v6_stids_in_use = 0;
1353 	t->sftids_in_use = 0;
1354 	t->afree = NULL;
1355 	t->atids_in_use = 0;
1356 	atomic_set(&t->tids_in_use, 0);
1357 	atomic_set(&t->conns_in_use, 0);
1358 	atomic_set(&t->hash_tids_in_use, 0);
1359 
1360 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1361 	if (natids) {
1362 		while (--natids)
1363 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1364 		t->afree = t->atid_tab;
1365 	}
1366 
1367 	if (is_offload(adap)) {
1368 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1369 		/* Reserve stid 0 for T4/T5 adapters */
1370 		if (!t->stid_base &&
1371 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1372 			__set_bit(0, t->stid_bmap);
1373 	}
1374 
1375 	bitmap_zero(t->ftid_bmap, t->nftids);
1376 	return 0;
1377 }
1378 
1379 /**
1380  *	cxgb4_create_server - create an IP server
1381  *	@dev: the device
1382  *	@stid: the server TID
1383  *	@sip: local IP address to bind server to
1384  *	@sport: the server's TCP port
1385  *	@queue: queue to direct messages from this server to
1386  *
1387  *	Create an IP server for the given port and address.
1388  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1389  */
1390 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1391 			__be32 sip, __be16 sport, __be16 vlan,
1392 			unsigned int queue)
1393 {
1394 	unsigned int chan;
1395 	struct sk_buff *skb;
1396 	struct adapter *adap;
1397 	struct cpl_pass_open_req *req;
1398 	int ret;
1399 
1400 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1401 	if (!skb)
1402 		return -ENOMEM;
1403 
1404 	adap = netdev2adap(dev);
1405 	req = __skb_put(skb, sizeof(*req));
1406 	INIT_TP_WR(req, 0);
1407 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1408 	req->local_port = sport;
1409 	req->peer_port = htons(0);
1410 	req->local_ip = sip;
1411 	req->peer_ip = htonl(0);
1412 	chan = rxq_to_chan(&adap->sge, queue);
1413 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1414 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1415 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1416 	ret = t4_mgmt_tx(adap, skb);
1417 	return net_xmit_eval(ret);
1418 }
1419 EXPORT_SYMBOL(cxgb4_create_server);
1420 
1421 /*	cxgb4_create_server6 - create an IPv6 server
1422  *	@dev: the device
1423  *	@stid: the server TID
1424  *	@sip: local IPv6 address to bind server to
1425  *	@sport: the server's TCP port
1426  *	@queue: queue to direct messages from this server to
1427  *
1428  *	Create an IPv6 server for the given port and address.
1429  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1430  */
1431 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1432 			 const struct in6_addr *sip, __be16 sport,
1433 			 unsigned int queue)
1434 {
1435 	unsigned int chan;
1436 	struct sk_buff *skb;
1437 	struct adapter *adap;
1438 	struct cpl_pass_open_req6 *req;
1439 	int ret;
1440 
1441 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1442 	if (!skb)
1443 		return -ENOMEM;
1444 
1445 	adap = netdev2adap(dev);
1446 	req = __skb_put(skb, sizeof(*req));
1447 	INIT_TP_WR(req, 0);
1448 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1449 	req->local_port = sport;
1450 	req->peer_port = htons(0);
1451 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1452 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1453 	req->peer_ip_hi = cpu_to_be64(0);
1454 	req->peer_ip_lo = cpu_to_be64(0);
1455 	chan = rxq_to_chan(&adap->sge, queue);
1456 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1457 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1458 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1459 	ret = t4_mgmt_tx(adap, skb);
1460 	return net_xmit_eval(ret);
1461 }
1462 EXPORT_SYMBOL(cxgb4_create_server6);
1463 
1464 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1465 			unsigned int queue, bool ipv6)
1466 {
1467 	struct sk_buff *skb;
1468 	struct adapter *adap;
1469 	struct cpl_close_listsvr_req *req;
1470 	int ret;
1471 
1472 	adap = netdev2adap(dev);
1473 
1474 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1475 	if (!skb)
1476 		return -ENOMEM;
1477 
1478 	req = __skb_put(skb, sizeof(*req));
1479 	INIT_TP_WR(req, 0);
1480 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1481 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1482 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1483 	ret = t4_mgmt_tx(adap, skb);
1484 	return net_xmit_eval(ret);
1485 }
1486 EXPORT_SYMBOL(cxgb4_remove_server);
1487 
1488 /**
1489  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1490  *	@mtus: the HW MTU table
1491  *	@mtu: the target MTU
1492  *	@idx: index of selected entry in the MTU table
1493  *
1494  *	Returns the index and the value in the HW MTU table that is closest to
1495  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1496  *	table, in which case that smallest available value is selected.
1497  */
1498 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1499 			    unsigned int *idx)
1500 {
1501 	unsigned int i = 0;
1502 
1503 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1504 		++i;
1505 	if (idx)
1506 		*idx = i;
1507 	return mtus[i];
1508 }
1509 EXPORT_SYMBOL(cxgb4_best_mtu);
1510 
1511 /**
1512  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1513  *     @mtus: the HW MTU table
1514  *     @header_size: Header Size
1515  *     @data_size_max: maximum Data Segment Size
1516  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1517  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1518  *
1519  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1520  *     MTU Table based solely on a Maximum MTU parameter, we break that
1521  *     parameter up into a Header Size and Maximum Data Segment Size, and
1522  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1523  *     the Hardware MTU Table which will result in a Data Segment Size with
1524  *     the requested alignment _and_ that MTU isn't "too far" from the
1525  *     closest MTU, then we'll return that rather than the closest MTU.
1526  */
1527 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1528 				    unsigned short header_size,
1529 				    unsigned short data_size_max,
1530 				    unsigned short data_size_align,
1531 				    unsigned int *mtu_idxp)
1532 {
1533 	unsigned short max_mtu = header_size + data_size_max;
1534 	unsigned short data_size_align_mask = data_size_align - 1;
1535 	int mtu_idx, aligned_mtu_idx;
1536 
1537 	/* Scan the MTU Table till we find an MTU which is larger than our
1538 	 * Maximum MTU or we reach the end of the table.  Along the way,
1539 	 * record the last MTU found, if any, which will result in a Data
1540 	 * Segment Length matching the requested alignment.
1541 	 */
1542 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1543 		unsigned short data_size = mtus[mtu_idx] - header_size;
1544 
1545 		/* If this MTU minus the Header Size would result in a
1546 		 * Data Segment Size of the desired alignment, remember it.
1547 		 */
1548 		if ((data_size & data_size_align_mask) == 0)
1549 			aligned_mtu_idx = mtu_idx;
1550 
1551 		/* If we're not at the end of the Hardware MTU Table and the
1552 		 * next element is larger than our Maximum MTU, drop out of
1553 		 * the loop.
1554 		 */
1555 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1556 			break;
1557 	}
1558 
1559 	/* If we fell out of the loop because we ran to the end of the table,
1560 	 * then we just have to use the last [largest] entry.
1561 	 */
1562 	if (mtu_idx == NMTUS)
1563 		mtu_idx--;
1564 
1565 	/* If we found an MTU which resulted in the requested Data Segment
1566 	 * Length alignment and that's "not far" from the largest MTU which is
1567 	 * less than or equal to the maximum MTU, then use that.
1568 	 */
1569 	if (aligned_mtu_idx >= 0 &&
1570 	    mtu_idx - aligned_mtu_idx <= 1)
1571 		mtu_idx = aligned_mtu_idx;
1572 
1573 	/* If the caller has passed in an MTU Index pointer, pass the
1574 	 * MTU Index back.  Return the MTU value.
1575 	 */
1576 	if (mtu_idxp)
1577 		*mtu_idxp = mtu_idx;
1578 	return mtus[mtu_idx];
1579 }
1580 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1581 
1582 /**
1583  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1584  *	@chip: chip type
1585  *	@viid: VI id of the given port
1586  *
1587  *	Return the SMT index for this VI.
1588  */
1589 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1590 {
1591 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1592 	 * 128 rows of 2 entries each.
1593 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1594 	 * TODO: The below code needs to be updated when we add support
1595 	 * for 256 VFs.
1596 	 */
1597 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1598 		return ((viid & 0x7f) << 1);
1599 	else
1600 		return (viid & 0x7f);
1601 }
1602 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1603 
1604 /**
1605  *	cxgb4_port_chan - get the HW channel of a port
1606  *	@dev: the net device for the port
1607  *
1608  *	Return the HW Tx channel of the given port.
1609  */
1610 unsigned int cxgb4_port_chan(const struct net_device *dev)
1611 {
1612 	return netdev2pinfo(dev)->tx_chan;
1613 }
1614 EXPORT_SYMBOL(cxgb4_port_chan);
1615 
1616 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1617 {
1618 	struct adapter *adap = netdev2adap(dev);
1619 	u32 v1, v2, lp_count, hp_count;
1620 
1621 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1622 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1623 	if (is_t4(adap->params.chip)) {
1624 		lp_count = LP_COUNT_G(v1);
1625 		hp_count = HP_COUNT_G(v1);
1626 	} else {
1627 		lp_count = LP_COUNT_T5_G(v1);
1628 		hp_count = HP_COUNT_T5_G(v2);
1629 	}
1630 	return lpfifo ? lp_count : hp_count;
1631 }
1632 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1633 
1634 /**
1635  *	cxgb4_port_viid - get the VI id of a port
1636  *	@dev: the net device for the port
1637  *
1638  *	Return the VI id of the given port.
1639  */
1640 unsigned int cxgb4_port_viid(const struct net_device *dev)
1641 {
1642 	return netdev2pinfo(dev)->viid;
1643 }
1644 EXPORT_SYMBOL(cxgb4_port_viid);
1645 
1646 /**
1647  *	cxgb4_port_idx - get the index of a port
1648  *	@dev: the net device for the port
1649  *
1650  *	Return the index of the given port.
1651  */
1652 unsigned int cxgb4_port_idx(const struct net_device *dev)
1653 {
1654 	return netdev2pinfo(dev)->port_id;
1655 }
1656 EXPORT_SYMBOL(cxgb4_port_idx);
1657 
1658 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1659 			 struct tp_tcp_stats *v6)
1660 {
1661 	struct adapter *adap = pci_get_drvdata(pdev);
1662 
1663 	spin_lock(&adap->stats_lock);
1664 	t4_tp_get_tcp_stats(adap, v4, v6, false);
1665 	spin_unlock(&adap->stats_lock);
1666 }
1667 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1668 
1669 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1670 		      const unsigned int *pgsz_order)
1671 {
1672 	struct adapter *adap = netdev2adap(dev);
1673 
1674 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1675 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1676 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1677 		     HPZ3_V(pgsz_order[3]));
1678 }
1679 EXPORT_SYMBOL(cxgb4_iscsi_init);
1680 
1681 int cxgb4_flush_eq_cache(struct net_device *dev)
1682 {
1683 	struct adapter *adap = netdev2adap(dev);
1684 
1685 	return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1686 }
1687 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1688 
1689 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1690 {
1691 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1692 	__be64 indices;
1693 	int ret;
1694 
1695 	spin_lock(&adap->win0_lock);
1696 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1697 			   sizeof(indices), (__be32 *)&indices,
1698 			   T4_MEMORY_READ);
1699 	spin_unlock(&adap->win0_lock);
1700 	if (!ret) {
1701 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1702 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1703 	}
1704 	return ret;
1705 }
1706 
1707 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1708 			u16 size)
1709 {
1710 	struct adapter *adap = netdev2adap(dev);
1711 	u16 hw_pidx, hw_cidx;
1712 	int ret;
1713 
1714 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1715 	if (ret)
1716 		goto out;
1717 
1718 	if (pidx != hw_pidx) {
1719 		u16 delta;
1720 		u32 val;
1721 
1722 		if (pidx >= hw_pidx)
1723 			delta = pidx - hw_pidx;
1724 		else
1725 			delta = size - hw_pidx + pidx;
1726 
1727 		if (is_t4(adap->params.chip))
1728 			val = PIDX_V(delta);
1729 		else
1730 			val = PIDX_T5_V(delta);
1731 		wmb();
1732 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1733 			     QID_V(qid) | val);
1734 	}
1735 out:
1736 	return ret;
1737 }
1738 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1739 
1740 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1741 {
1742 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1743 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1744 	u32 offset, memtype, memaddr;
1745 	struct adapter *adap;
1746 	u32 hma_size = 0;
1747 	int ret;
1748 
1749 	adap = netdev2adap(dev);
1750 
1751 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1752 
1753 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1754 	 * This code assumes that the memory is laid out starting at offset 0
1755 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1756 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1757 	 * MC0, and some have both MC0 and MC1.
1758 	 */
1759 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1760 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1761 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1762 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1763 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1764 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1765 
1766 	if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1767 		size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1768 		hma_size = EXT_MEM1_SIZE_G(size) << 20;
1769 	}
1770 	edc0_end = edc0_size;
1771 	edc1_end = edc0_end + edc1_size;
1772 	mc0_end = edc1_end + mc0_size;
1773 
1774 	if (offset < edc0_end) {
1775 		memtype = MEM_EDC0;
1776 		memaddr = offset;
1777 	} else if (offset < edc1_end) {
1778 		memtype = MEM_EDC1;
1779 		memaddr = offset - edc0_end;
1780 	} else {
1781 		if (hma_size && (offset < (edc1_end + hma_size))) {
1782 			memtype = MEM_HMA;
1783 			memaddr = offset - edc1_end;
1784 		} else if (offset < mc0_end) {
1785 			memtype = MEM_MC0;
1786 			memaddr = offset - edc1_end;
1787 		} else if (is_t5(adap->params.chip)) {
1788 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1789 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1790 			mc1_end = mc0_end + mc1_size;
1791 			if (offset < mc1_end) {
1792 				memtype = MEM_MC1;
1793 				memaddr = offset - mc0_end;
1794 			} else {
1795 				/* offset beyond the end of any memory */
1796 				goto err;
1797 			}
1798 		} else {
1799 			/* T4/T6 only has a single memory channel */
1800 			goto err;
1801 		}
1802 	}
1803 
1804 	spin_lock(&adap->win0_lock);
1805 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1806 	spin_unlock(&adap->win0_lock);
1807 	return ret;
1808 
1809 err:
1810 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1811 		stag, offset);
1812 	return -EINVAL;
1813 }
1814 EXPORT_SYMBOL(cxgb4_read_tpte);
1815 
1816 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1817 {
1818 	u32 hi, lo;
1819 	struct adapter *adap;
1820 
1821 	adap = netdev2adap(dev);
1822 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1823 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1824 
1825 	return ((u64)hi << 32) | (u64)lo;
1826 }
1827 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1828 
1829 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1830 			 unsigned int qid,
1831 			 enum cxgb4_bar2_qtype qtype,
1832 			 int user,
1833 			 u64 *pbar2_qoffset,
1834 			 unsigned int *pbar2_qid)
1835 {
1836 	return t4_bar2_sge_qregs(netdev2adap(dev),
1837 				 qid,
1838 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1839 				  ? T4_BAR2_QTYPE_EGRESS
1840 				  : T4_BAR2_QTYPE_INGRESS),
1841 				 user,
1842 				 pbar2_qoffset,
1843 				 pbar2_qid);
1844 }
1845 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1846 
1847 static struct pci_driver cxgb4_driver;
1848 
1849 static void check_neigh_update(struct neighbour *neigh)
1850 {
1851 	const struct device *parent;
1852 	const struct net_device *netdev = neigh->dev;
1853 
1854 	if (is_vlan_dev(netdev))
1855 		netdev = vlan_dev_real_dev(netdev);
1856 	parent = netdev->dev.parent;
1857 	if (parent && parent->driver == &cxgb4_driver.driver)
1858 		t4_l2t_update(dev_get_drvdata(parent), neigh);
1859 }
1860 
1861 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1862 		       void *data)
1863 {
1864 	switch (event) {
1865 	case NETEVENT_NEIGH_UPDATE:
1866 		check_neigh_update(data);
1867 		break;
1868 	case NETEVENT_REDIRECT:
1869 	default:
1870 		break;
1871 	}
1872 	return 0;
1873 }
1874 
1875 static bool netevent_registered;
1876 static struct notifier_block cxgb4_netevent_nb = {
1877 	.notifier_call = netevent_cb
1878 };
1879 
1880 static void drain_db_fifo(struct adapter *adap, int usecs)
1881 {
1882 	u32 v1, v2, lp_count, hp_count;
1883 
1884 	do {
1885 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1886 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1887 		if (is_t4(adap->params.chip)) {
1888 			lp_count = LP_COUNT_G(v1);
1889 			hp_count = HP_COUNT_G(v1);
1890 		} else {
1891 			lp_count = LP_COUNT_T5_G(v1);
1892 			hp_count = HP_COUNT_T5_G(v2);
1893 		}
1894 
1895 		if (lp_count == 0 && hp_count == 0)
1896 			break;
1897 		set_current_state(TASK_UNINTERRUPTIBLE);
1898 		schedule_timeout(usecs_to_jiffies(usecs));
1899 	} while (1);
1900 }
1901 
1902 static void disable_txq_db(struct sge_txq *q)
1903 {
1904 	unsigned long flags;
1905 
1906 	spin_lock_irqsave(&q->db_lock, flags);
1907 	q->db_disabled = 1;
1908 	spin_unlock_irqrestore(&q->db_lock, flags);
1909 }
1910 
1911 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1912 {
1913 	spin_lock_irq(&q->db_lock);
1914 	if (q->db_pidx_inc) {
1915 		/* Make sure that all writes to the TX descriptors
1916 		 * are committed before we tell HW about them.
1917 		 */
1918 		wmb();
1919 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1920 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1921 		q->db_pidx_inc = 0;
1922 	}
1923 	q->db_disabled = 0;
1924 	spin_unlock_irq(&q->db_lock);
1925 }
1926 
1927 static void disable_dbs(struct adapter *adap)
1928 {
1929 	int i;
1930 
1931 	for_each_ethrxq(&adap->sge, i)
1932 		disable_txq_db(&adap->sge.ethtxq[i].q);
1933 	if (is_offload(adap)) {
1934 		struct sge_uld_txq_info *txq_info =
1935 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1936 
1937 		if (txq_info) {
1938 			for_each_ofldtxq(&adap->sge, i) {
1939 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1940 
1941 				disable_txq_db(&txq->q);
1942 			}
1943 		}
1944 	}
1945 	for_each_port(adap, i)
1946 		disable_txq_db(&adap->sge.ctrlq[i].q);
1947 }
1948 
1949 static void enable_dbs(struct adapter *adap)
1950 {
1951 	int i;
1952 
1953 	for_each_ethrxq(&adap->sge, i)
1954 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1955 	if (is_offload(adap)) {
1956 		struct sge_uld_txq_info *txq_info =
1957 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1958 
1959 		if (txq_info) {
1960 			for_each_ofldtxq(&adap->sge, i) {
1961 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1962 
1963 				enable_txq_db(adap, &txq->q);
1964 			}
1965 		}
1966 	}
1967 	for_each_port(adap, i)
1968 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1969 }
1970 
1971 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1972 {
1973 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
1974 
1975 	if (adap->uld && adap->uld[type].handle)
1976 		adap->uld[type].control(adap->uld[type].handle, cmd);
1977 }
1978 
1979 static void process_db_full(struct work_struct *work)
1980 {
1981 	struct adapter *adap;
1982 
1983 	adap = container_of(work, struct adapter, db_full_task);
1984 
1985 	drain_db_fifo(adap, dbfifo_drain_delay);
1986 	enable_dbs(adap);
1987 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1988 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1989 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1990 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1991 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1992 	else
1993 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1994 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1995 }
1996 
1997 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1998 {
1999 	u16 hw_pidx, hw_cidx;
2000 	int ret;
2001 
2002 	spin_lock_irq(&q->db_lock);
2003 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2004 	if (ret)
2005 		goto out;
2006 	if (q->db_pidx != hw_pidx) {
2007 		u16 delta;
2008 		u32 val;
2009 
2010 		if (q->db_pidx >= hw_pidx)
2011 			delta = q->db_pidx - hw_pidx;
2012 		else
2013 			delta = q->size - hw_pidx + q->db_pidx;
2014 
2015 		if (is_t4(adap->params.chip))
2016 			val = PIDX_V(delta);
2017 		else
2018 			val = PIDX_T5_V(delta);
2019 		wmb();
2020 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2021 			     QID_V(q->cntxt_id) | val);
2022 	}
2023 out:
2024 	q->db_disabled = 0;
2025 	q->db_pidx_inc = 0;
2026 	spin_unlock_irq(&q->db_lock);
2027 	if (ret)
2028 		CH_WARN(adap, "DB drop recovery failed.\n");
2029 }
2030 
2031 static void recover_all_queues(struct adapter *adap)
2032 {
2033 	int i;
2034 
2035 	for_each_ethrxq(&adap->sge, i)
2036 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2037 	if (is_offload(adap)) {
2038 		struct sge_uld_txq_info *txq_info =
2039 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2040 		if (txq_info) {
2041 			for_each_ofldtxq(&adap->sge, i) {
2042 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2043 
2044 				sync_txq_pidx(adap, &txq->q);
2045 			}
2046 		}
2047 	}
2048 	for_each_port(adap, i)
2049 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2050 }
2051 
2052 static void process_db_drop(struct work_struct *work)
2053 {
2054 	struct adapter *adap;
2055 
2056 	adap = container_of(work, struct adapter, db_drop_task);
2057 
2058 	if (is_t4(adap->params.chip)) {
2059 		drain_db_fifo(adap, dbfifo_drain_delay);
2060 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2061 		drain_db_fifo(adap, dbfifo_drain_delay);
2062 		recover_all_queues(adap);
2063 		drain_db_fifo(adap, dbfifo_drain_delay);
2064 		enable_dbs(adap);
2065 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2066 	} else if (is_t5(adap->params.chip)) {
2067 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2068 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2069 		u16 pidx_inc = dropped_db & 0x1fff;
2070 		u64 bar2_qoffset;
2071 		unsigned int bar2_qid;
2072 		int ret;
2073 
2074 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2075 					0, &bar2_qoffset, &bar2_qid);
2076 		if (ret)
2077 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2078 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2079 		else
2080 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2081 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2082 
2083 		/* Re-enable BAR2 WC */
2084 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2085 	}
2086 
2087 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2088 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2089 }
2090 
2091 void t4_db_full(struct adapter *adap)
2092 {
2093 	if (is_t4(adap->params.chip)) {
2094 		disable_dbs(adap);
2095 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2096 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2097 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2098 		queue_work(adap->workq, &adap->db_full_task);
2099 	}
2100 }
2101 
2102 void t4_db_dropped(struct adapter *adap)
2103 {
2104 	if (is_t4(adap->params.chip)) {
2105 		disable_dbs(adap);
2106 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2107 	}
2108 	queue_work(adap->workq, &adap->db_drop_task);
2109 }
2110 
2111 void t4_register_netevent_notifier(void)
2112 {
2113 	if (!netevent_registered) {
2114 		register_netevent_notifier(&cxgb4_netevent_nb);
2115 		netevent_registered = true;
2116 	}
2117 }
2118 
2119 static void detach_ulds(struct adapter *adap)
2120 {
2121 	unsigned int i;
2122 
2123 	mutex_lock(&uld_mutex);
2124 	list_del(&adap->list_node);
2125 
2126 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2127 		if (adap->uld && adap->uld[i].handle)
2128 			adap->uld[i].state_change(adap->uld[i].handle,
2129 					     CXGB4_STATE_DETACH);
2130 
2131 	if (netevent_registered && list_empty(&adapter_list)) {
2132 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2133 		netevent_registered = false;
2134 	}
2135 	mutex_unlock(&uld_mutex);
2136 }
2137 
2138 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2139 {
2140 	unsigned int i;
2141 
2142 	mutex_lock(&uld_mutex);
2143 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2144 		if (adap->uld && adap->uld[i].handle)
2145 			adap->uld[i].state_change(adap->uld[i].handle,
2146 						  new_state);
2147 	mutex_unlock(&uld_mutex);
2148 }
2149 
2150 #if IS_ENABLED(CONFIG_IPV6)
2151 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2152 				   unsigned long event, void *data)
2153 {
2154 	struct inet6_ifaddr *ifa = data;
2155 	struct net_device *event_dev = ifa->idev->dev;
2156 	const struct device *parent = NULL;
2157 #if IS_ENABLED(CONFIG_BONDING)
2158 	struct adapter *adap;
2159 #endif
2160 	if (is_vlan_dev(event_dev))
2161 		event_dev = vlan_dev_real_dev(event_dev);
2162 #if IS_ENABLED(CONFIG_BONDING)
2163 	if (event_dev->flags & IFF_MASTER) {
2164 		list_for_each_entry(adap, &adapter_list, list_node) {
2165 			switch (event) {
2166 			case NETDEV_UP:
2167 				cxgb4_clip_get(adap->port[0],
2168 					       (const u32 *)ifa, 1);
2169 				break;
2170 			case NETDEV_DOWN:
2171 				cxgb4_clip_release(adap->port[0],
2172 						   (const u32 *)ifa, 1);
2173 				break;
2174 			default:
2175 				break;
2176 			}
2177 		}
2178 		return NOTIFY_OK;
2179 	}
2180 #endif
2181 
2182 	if (event_dev)
2183 		parent = event_dev->dev.parent;
2184 
2185 	if (parent && parent->driver == &cxgb4_driver.driver) {
2186 		switch (event) {
2187 		case NETDEV_UP:
2188 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2189 			break;
2190 		case NETDEV_DOWN:
2191 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2192 			break;
2193 		default:
2194 			break;
2195 		}
2196 	}
2197 	return NOTIFY_OK;
2198 }
2199 
2200 static bool inet6addr_registered;
2201 static struct notifier_block cxgb4_inet6addr_notifier = {
2202 	.notifier_call = cxgb4_inet6addr_handler
2203 };
2204 
2205 static void update_clip(const struct adapter *adap)
2206 {
2207 	int i;
2208 	struct net_device *dev;
2209 	int ret;
2210 
2211 	rcu_read_lock();
2212 
2213 	for (i = 0; i < MAX_NPORTS; i++) {
2214 		dev = adap->port[i];
2215 		ret = 0;
2216 
2217 		if (dev)
2218 			ret = cxgb4_update_root_dev_clip(dev);
2219 
2220 		if (ret < 0)
2221 			break;
2222 	}
2223 	rcu_read_unlock();
2224 }
2225 #endif /* IS_ENABLED(CONFIG_IPV6) */
2226 
2227 /**
2228  *	cxgb_up - enable the adapter
2229  *	@adap: adapter being enabled
2230  *
2231  *	Called when the first port is enabled, this function performs the
2232  *	actions necessary to make an adapter operational, such as completing
2233  *	the initialization of HW modules, and enabling interrupts.
2234  *
2235  *	Must be called with the rtnl lock held.
2236  */
2237 static int cxgb_up(struct adapter *adap)
2238 {
2239 	int err;
2240 
2241 	mutex_lock(&uld_mutex);
2242 	err = setup_sge_queues(adap);
2243 	if (err)
2244 		goto rel_lock;
2245 	err = setup_rss(adap);
2246 	if (err)
2247 		goto freeq;
2248 
2249 	if (adap->flags & USING_MSIX) {
2250 		name_msix_vecs(adap);
2251 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2252 				  adap->msix_info[0].desc, adap);
2253 		if (err)
2254 			goto irq_err;
2255 		err = request_msix_queue_irqs(adap);
2256 		if (err) {
2257 			free_irq(adap->msix_info[0].vec, adap);
2258 			goto irq_err;
2259 		}
2260 	} else {
2261 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2262 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2263 				  adap->port[0]->name, adap);
2264 		if (err)
2265 			goto irq_err;
2266 	}
2267 
2268 	enable_rx(adap);
2269 	t4_sge_start(adap);
2270 	t4_intr_enable(adap);
2271 	adap->flags |= FULL_INIT_DONE;
2272 	mutex_unlock(&uld_mutex);
2273 
2274 	notify_ulds(adap, CXGB4_STATE_UP);
2275 #if IS_ENABLED(CONFIG_IPV6)
2276 	update_clip(adap);
2277 #endif
2278 	/* Initialize hash mac addr list*/
2279 	INIT_LIST_HEAD(&adap->mac_hlist);
2280 	return err;
2281 
2282  irq_err:
2283 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2284  freeq:
2285 	t4_free_sge_resources(adap);
2286  rel_lock:
2287 	mutex_unlock(&uld_mutex);
2288 	return err;
2289 }
2290 
2291 static void cxgb_down(struct adapter *adapter)
2292 {
2293 	cancel_work_sync(&adapter->tid_release_task);
2294 	cancel_work_sync(&adapter->db_full_task);
2295 	cancel_work_sync(&adapter->db_drop_task);
2296 	adapter->tid_release_task_busy = false;
2297 	adapter->tid_release_head = NULL;
2298 
2299 	t4_sge_stop(adapter);
2300 	t4_free_sge_resources(adapter);
2301 	adapter->flags &= ~FULL_INIT_DONE;
2302 }
2303 
2304 /*
2305  * net_device operations
2306  */
2307 static int cxgb_open(struct net_device *dev)
2308 {
2309 	int err;
2310 	struct port_info *pi = netdev_priv(dev);
2311 	struct adapter *adapter = pi->adapter;
2312 
2313 	netif_carrier_off(dev);
2314 
2315 	if (!(adapter->flags & FULL_INIT_DONE)) {
2316 		err = cxgb_up(adapter);
2317 		if (err < 0)
2318 			return err;
2319 	}
2320 
2321 	/* It's possible that the basic port information could have
2322 	 * changed since we first read it.
2323 	 */
2324 	err = t4_update_port_info(pi);
2325 	if (err < 0)
2326 		return err;
2327 
2328 	err = link_start(dev);
2329 	if (!err)
2330 		netif_tx_start_all_queues(dev);
2331 	return err;
2332 }
2333 
2334 static int cxgb_close(struct net_device *dev)
2335 {
2336 	struct port_info *pi = netdev_priv(dev);
2337 	struct adapter *adapter = pi->adapter;
2338 	int ret;
2339 
2340 	netif_tx_stop_all_queues(dev);
2341 	netif_carrier_off(dev);
2342 	ret = t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2343 #ifdef CONFIG_CHELSIO_T4_DCB
2344 	cxgb4_dcb_reset(dev);
2345 	dcb_tx_queue_prio_enable(dev, false);
2346 #endif
2347 	return ret;
2348 }
2349 
2350 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2351 		__be32 sip, __be16 sport, __be16 vlan,
2352 		unsigned int queue, unsigned char port, unsigned char mask)
2353 {
2354 	int ret;
2355 	struct filter_entry *f;
2356 	struct adapter *adap;
2357 	int i;
2358 	u8 *val;
2359 
2360 	adap = netdev2adap(dev);
2361 
2362 	/* Adjust stid to correct filter index */
2363 	stid -= adap->tids.sftid_base;
2364 	stid += adap->tids.nftids;
2365 
2366 	/* Check to make sure the filter requested is writable ...
2367 	 */
2368 	f = &adap->tids.ftid_tab[stid];
2369 	ret = writable_filter(f);
2370 	if (ret)
2371 		return ret;
2372 
2373 	/* Clear out any old resources being used by the filter before
2374 	 * we start constructing the new filter.
2375 	 */
2376 	if (f->valid)
2377 		clear_filter(adap, f);
2378 
2379 	/* Clear out filter specifications */
2380 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2381 	f->fs.val.lport = cpu_to_be16(sport);
2382 	f->fs.mask.lport  = ~0;
2383 	val = (u8 *)&sip;
2384 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2385 		for (i = 0; i < 4; i++) {
2386 			f->fs.val.lip[i] = val[i];
2387 			f->fs.mask.lip[i] = ~0;
2388 		}
2389 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2390 			f->fs.val.iport = port;
2391 			f->fs.mask.iport = mask;
2392 		}
2393 	}
2394 
2395 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2396 		f->fs.val.proto = IPPROTO_TCP;
2397 		f->fs.mask.proto = ~0;
2398 	}
2399 
2400 	f->fs.dirsteer = 1;
2401 	f->fs.iq = queue;
2402 	/* Mark filter as locked */
2403 	f->locked = 1;
2404 	f->fs.rpttid = 1;
2405 
2406 	/* Save the actual tid. We need this to get the corresponding
2407 	 * filter entry structure in filter_rpl.
2408 	 */
2409 	f->tid = stid + adap->tids.ftid_base;
2410 	ret = set_filter_wr(adap, stid);
2411 	if (ret) {
2412 		clear_filter(adap, f);
2413 		return ret;
2414 	}
2415 
2416 	return 0;
2417 }
2418 EXPORT_SYMBOL(cxgb4_create_server_filter);
2419 
2420 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2421 		unsigned int queue, bool ipv6)
2422 {
2423 	struct filter_entry *f;
2424 	struct adapter *adap;
2425 
2426 	adap = netdev2adap(dev);
2427 
2428 	/* Adjust stid to correct filter index */
2429 	stid -= adap->tids.sftid_base;
2430 	stid += adap->tids.nftids;
2431 
2432 	f = &adap->tids.ftid_tab[stid];
2433 	/* Unlock the filter */
2434 	f->locked = 0;
2435 
2436 	return delete_filter(adap, stid);
2437 }
2438 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2439 
2440 static void cxgb_get_stats(struct net_device *dev,
2441 			   struct rtnl_link_stats64 *ns)
2442 {
2443 	struct port_stats stats;
2444 	struct port_info *p = netdev_priv(dev);
2445 	struct adapter *adapter = p->adapter;
2446 
2447 	/* Block retrieving statistics during EEH error
2448 	 * recovery. Otherwise, the recovery might fail
2449 	 * and the PCI device will be removed permanently
2450 	 */
2451 	spin_lock(&adapter->stats_lock);
2452 	if (!netif_device_present(dev)) {
2453 		spin_unlock(&adapter->stats_lock);
2454 		return;
2455 	}
2456 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2457 				 &p->stats_base);
2458 	spin_unlock(&adapter->stats_lock);
2459 
2460 	ns->tx_bytes   = stats.tx_octets;
2461 	ns->tx_packets = stats.tx_frames;
2462 	ns->rx_bytes   = stats.rx_octets;
2463 	ns->rx_packets = stats.rx_frames;
2464 	ns->multicast  = stats.rx_mcast_frames;
2465 
2466 	/* detailed rx_errors */
2467 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2468 			       stats.rx_runt;
2469 	ns->rx_over_errors   = 0;
2470 	ns->rx_crc_errors    = stats.rx_fcs_err;
2471 	ns->rx_frame_errors  = stats.rx_symbol_err;
2472 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2473 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2474 			       stats.rx_trunc0 + stats.rx_trunc1 +
2475 			       stats.rx_trunc2 + stats.rx_trunc3;
2476 	ns->rx_missed_errors = 0;
2477 
2478 	/* detailed tx_errors */
2479 	ns->tx_aborted_errors   = 0;
2480 	ns->tx_carrier_errors   = 0;
2481 	ns->tx_fifo_errors      = 0;
2482 	ns->tx_heartbeat_errors = 0;
2483 	ns->tx_window_errors    = 0;
2484 
2485 	ns->tx_errors = stats.tx_error_frames;
2486 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2487 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2488 }
2489 
2490 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2491 {
2492 	unsigned int mbox;
2493 	int ret = 0, prtad, devad;
2494 	struct port_info *pi = netdev_priv(dev);
2495 	struct adapter *adapter = pi->adapter;
2496 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2497 
2498 	switch (cmd) {
2499 	case SIOCGMIIPHY:
2500 		if (pi->mdio_addr < 0)
2501 			return -EOPNOTSUPP;
2502 		data->phy_id = pi->mdio_addr;
2503 		break;
2504 	case SIOCGMIIREG:
2505 	case SIOCSMIIREG:
2506 		if (mdio_phy_id_is_c45(data->phy_id)) {
2507 			prtad = mdio_phy_id_prtad(data->phy_id);
2508 			devad = mdio_phy_id_devad(data->phy_id);
2509 		} else if (data->phy_id < 32) {
2510 			prtad = data->phy_id;
2511 			devad = 0;
2512 			data->reg_num &= 0x1f;
2513 		} else
2514 			return -EINVAL;
2515 
2516 		mbox = pi->adapter->pf;
2517 		if (cmd == SIOCGMIIREG)
2518 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2519 					 data->reg_num, &data->val_out);
2520 		else
2521 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2522 					 data->reg_num, data->val_in);
2523 		break;
2524 	case SIOCGHWTSTAMP:
2525 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2526 				    sizeof(pi->tstamp_config)) ?
2527 			-EFAULT : 0;
2528 	case SIOCSHWTSTAMP:
2529 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2530 				   sizeof(pi->tstamp_config)))
2531 			return -EFAULT;
2532 
2533 		if (!is_t4(adapter->params.chip)) {
2534 			switch (pi->tstamp_config.tx_type) {
2535 			case HWTSTAMP_TX_OFF:
2536 			case HWTSTAMP_TX_ON:
2537 				break;
2538 			default:
2539 				return -ERANGE;
2540 			}
2541 
2542 			switch (pi->tstamp_config.rx_filter) {
2543 			case HWTSTAMP_FILTER_NONE:
2544 				pi->rxtstamp = false;
2545 				break;
2546 			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2547 			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2548 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2549 							 PTP_TS_L4);
2550 				break;
2551 			case HWTSTAMP_FILTER_PTP_V2_EVENT:
2552 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2553 							 PTP_TS_L2_L4);
2554 				break;
2555 			case HWTSTAMP_FILTER_ALL:
2556 			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2557 			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2558 			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2559 			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2560 				pi->rxtstamp = true;
2561 				break;
2562 			default:
2563 				pi->tstamp_config.rx_filter =
2564 					HWTSTAMP_FILTER_NONE;
2565 				return -ERANGE;
2566 			}
2567 
2568 			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2569 			    (pi->tstamp_config.rx_filter ==
2570 				HWTSTAMP_FILTER_NONE)) {
2571 				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2572 					pi->ptp_enable = false;
2573 			}
2574 
2575 			if (pi->tstamp_config.rx_filter !=
2576 				HWTSTAMP_FILTER_NONE) {
2577 				if (cxgb4_ptp_redirect_rx_packet(adapter,
2578 								 pi) >= 0)
2579 					pi->ptp_enable = true;
2580 			}
2581 		} else {
2582 			/* For T4 Adapters */
2583 			switch (pi->tstamp_config.rx_filter) {
2584 			case HWTSTAMP_FILTER_NONE:
2585 			pi->rxtstamp = false;
2586 			break;
2587 			case HWTSTAMP_FILTER_ALL:
2588 			pi->rxtstamp = true;
2589 			break;
2590 			default:
2591 			pi->tstamp_config.rx_filter =
2592 			HWTSTAMP_FILTER_NONE;
2593 			return -ERANGE;
2594 			}
2595 		}
2596 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2597 				    sizeof(pi->tstamp_config)) ?
2598 			-EFAULT : 0;
2599 	default:
2600 		return -EOPNOTSUPP;
2601 	}
2602 	return ret;
2603 }
2604 
2605 static void cxgb_set_rxmode(struct net_device *dev)
2606 {
2607 	/* unfortunately we can't return errors to the stack */
2608 	set_rxmode(dev, -1, false);
2609 }
2610 
2611 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2612 {
2613 	int ret;
2614 	struct port_info *pi = netdev_priv(dev);
2615 
2616 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2617 			    -1, -1, -1, true);
2618 	if (!ret)
2619 		dev->mtu = new_mtu;
2620 	return ret;
2621 }
2622 
2623 #ifdef CONFIG_PCI_IOV
2624 static int cxgb4_mgmt_open(struct net_device *dev)
2625 {
2626 	/* Turn carrier off since we don't have to transmit anything on this
2627 	 * interface.
2628 	 */
2629 	netif_carrier_off(dev);
2630 	return 0;
2631 }
2632 
2633 /* Fill MAC address that will be assigned by the FW */
2634 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2635 {
2636 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2637 	unsigned int i, vf, nvfs;
2638 	u16 a, b;
2639 	int err;
2640 	u8 *na;
2641 
2642 	adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2643 							    PCI_CAP_ID_VPD);
2644 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2645 	if (err)
2646 		return;
2647 
2648 	na = adap->params.vpd.na;
2649 	for (i = 0; i < ETH_ALEN; i++)
2650 		hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2651 			      hex2val(na[2 * i + 1]));
2652 
2653 	a = (hw_addr[0] << 8) | hw_addr[1];
2654 	b = (hw_addr[1] << 8) | hw_addr[2];
2655 	a ^= b;
2656 	a |= 0x0200;    /* locally assigned Ethernet MAC address */
2657 	a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2658 	macaddr[0] = a >> 8;
2659 	macaddr[1] = a & 0xff;
2660 
2661 	for (i = 2; i < 5; i++)
2662 		macaddr[i] = hw_addr[i + 1];
2663 
2664 	for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2665 		vf < nvfs; vf++) {
2666 		macaddr[5] = adap->pf * 16 + vf;
2667 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2668 	}
2669 }
2670 
2671 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2672 {
2673 	struct port_info *pi = netdev_priv(dev);
2674 	struct adapter *adap = pi->adapter;
2675 	int ret;
2676 
2677 	/* verify MAC addr is valid */
2678 	if (!is_valid_ether_addr(mac)) {
2679 		dev_err(pi->adapter->pdev_dev,
2680 			"Invalid Ethernet address %pM for VF %d\n",
2681 			mac, vf);
2682 		return -EINVAL;
2683 	}
2684 
2685 	dev_info(pi->adapter->pdev_dev,
2686 		 "Setting MAC %pM on VF %d\n", mac, vf);
2687 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2688 	if (!ret)
2689 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2690 	return ret;
2691 }
2692 
2693 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2694 				    int vf, struct ifla_vf_info *ivi)
2695 {
2696 	struct port_info *pi = netdev_priv(dev);
2697 	struct adapter *adap = pi->adapter;
2698 	struct vf_info *vfinfo;
2699 
2700 	if (vf >= adap->num_vfs)
2701 		return -EINVAL;
2702 	vfinfo = &adap->vfinfo[vf];
2703 
2704 	ivi->vf = vf;
2705 	ivi->max_tx_rate = vfinfo->tx_rate;
2706 	ivi->min_tx_rate = 0;
2707 	ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2708 	ivi->vlan = vfinfo->vlan;
2709 	return 0;
2710 }
2711 
2712 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2713 				       struct netdev_phys_item_id *ppid)
2714 {
2715 	struct port_info *pi = netdev_priv(dev);
2716 	unsigned int phy_port_id;
2717 
2718 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2719 	ppid->id_len = sizeof(phy_port_id);
2720 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
2721 	return 0;
2722 }
2723 
2724 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2725 				  int min_tx_rate, int max_tx_rate)
2726 {
2727 	struct port_info *pi = netdev_priv(dev);
2728 	struct adapter *adap = pi->adapter;
2729 	unsigned int link_ok, speed, mtu;
2730 	u32 fw_pfvf, fw_class;
2731 	int class_id = vf;
2732 	int ret;
2733 	u16 pktsize;
2734 
2735 	if (vf >= adap->num_vfs)
2736 		return -EINVAL;
2737 
2738 	if (min_tx_rate) {
2739 		dev_err(adap->pdev_dev,
2740 			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2741 			min_tx_rate, vf);
2742 		return -EINVAL;
2743 	}
2744 
2745 	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2746 	if (ret != FW_SUCCESS) {
2747 		dev_err(adap->pdev_dev,
2748 			"Failed to get link information for VF %d\n", vf);
2749 		return -EINVAL;
2750 	}
2751 
2752 	if (!link_ok) {
2753 		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2754 		return -EINVAL;
2755 	}
2756 
2757 	if (max_tx_rate > speed) {
2758 		dev_err(adap->pdev_dev,
2759 			"Max tx rate %d for VF %d can't be > link-speed %u",
2760 			max_tx_rate, vf, speed);
2761 		return -EINVAL;
2762 	}
2763 
2764 	pktsize = mtu;
2765 	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2766 	pktsize = pktsize - sizeof(struct ethhdr) - 4;
2767 	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2768 	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2769 	/* configure Traffic Class for rate-limiting */
2770 	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2771 			      SCHED_CLASS_LEVEL_CL_RL,
2772 			      SCHED_CLASS_MODE_CLASS,
2773 			      SCHED_CLASS_RATEUNIT_BITS,
2774 			      SCHED_CLASS_RATEMODE_ABS,
2775 			      pi->tx_chan, class_id, 0,
2776 			      max_tx_rate * 1000, 0, pktsize);
2777 	if (ret) {
2778 		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2779 			ret);
2780 		return -EINVAL;
2781 	}
2782 	dev_info(adap->pdev_dev,
2783 		 "Class %d with MSS %u configured with rate %u\n",
2784 		 class_id, pktsize, max_tx_rate);
2785 
2786 	/* bind VF to configured Traffic Class */
2787 	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2788 		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2789 	fw_class = class_id;
2790 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2791 			    &fw_class);
2792 	if (ret) {
2793 		dev_err(adap->pdev_dev,
2794 			"Err %d in binding VF %d to Traffic Class %d\n",
2795 			ret, vf, class_id);
2796 		return -EINVAL;
2797 	}
2798 	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2799 		 adap->pf, vf, class_id);
2800 	adap->vfinfo[vf].tx_rate = max_tx_rate;
2801 	return 0;
2802 }
2803 
2804 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
2805 				  u16 vlan, u8 qos, __be16 vlan_proto)
2806 {
2807 	struct port_info *pi = netdev_priv(dev);
2808 	struct adapter *adap = pi->adapter;
2809 	int ret;
2810 
2811 	if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
2812 		return -EINVAL;
2813 
2814 	if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
2815 		return -EPROTONOSUPPORT;
2816 
2817 	ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
2818 	if (!ret) {
2819 		adap->vfinfo[vf].vlan = vlan;
2820 		return 0;
2821 	}
2822 
2823 	dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
2824 		ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
2825 	return ret;
2826 }
2827 #endif /* CONFIG_PCI_IOV */
2828 
2829 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2830 {
2831 	int ret;
2832 	struct sockaddr *addr = p;
2833 	struct port_info *pi = netdev_priv(dev);
2834 
2835 	if (!is_valid_ether_addr(addr->sa_data))
2836 		return -EADDRNOTAVAIL;
2837 
2838 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2839 			    pi->xact_addr_filt, addr->sa_data, true, true);
2840 	if (ret < 0)
2841 		return ret;
2842 
2843 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2844 	pi->xact_addr_filt = ret;
2845 	return 0;
2846 }
2847 
2848 #ifdef CONFIG_NET_POLL_CONTROLLER
2849 static void cxgb_netpoll(struct net_device *dev)
2850 {
2851 	struct port_info *pi = netdev_priv(dev);
2852 	struct adapter *adap = pi->adapter;
2853 
2854 	if (adap->flags & USING_MSIX) {
2855 		int i;
2856 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2857 
2858 		for (i = pi->nqsets; i; i--, rx++)
2859 			t4_sge_intr_msix(0, &rx->rspq);
2860 	} else
2861 		t4_intr_handler(adap)(0, adap);
2862 }
2863 #endif
2864 
2865 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2866 {
2867 	struct port_info *pi = netdev_priv(dev);
2868 	struct adapter *adap = pi->adapter;
2869 	struct sched_class *e;
2870 	struct ch_sched_params p;
2871 	struct ch_sched_queue qe;
2872 	u32 req_rate;
2873 	int err = 0;
2874 
2875 	if (!can_sched(dev))
2876 		return -ENOTSUPP;
2877 
2878 	if (index < 0 || index > pi->nqsets - 1)
2879 		return -EINVAL;
2880 
2881 	if (!(adap->flags & FULL_INIT_DONE)) {
2882 		dev_err(adap->pdev_dev,
2883 			"Failed to rate limit on queue %d. Link Down?\n",
2884 			index);
2885 		return -EINVAL;
2886 	}
2887 
2888 	/* Convert from Mbps to Kbps */
2889 	req_rate = rate << 10;
2890 
2891 	/* Max rate is 100 Gbps */
2892 	if (req_rate >= SCHED_MAX_RATE_KBPS) {
2893 		dev_err(adap->pdev_dev,
2894 			"Invalid rate %u Mbps, Max rate is %u Mbps\n",
2895 			rate, SCHED_MAX_RATE_KBPS >> 10);
2896 		return -ERANGE;
2897 	}
2898 
2899 	/* First unbind the queue from any existing class */
2900 	memset(&qe, 0, sizeof(qe));
2901 	qe.queue = index;
2902 	qe.class = SCHED_CLS_NONE;
2903 
2904 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2905 	if (err) {
2906 		dev_err(adap->pdev_dev,
2907 			"Unbinding Queue %d on port %d fail. Err: %d\n",
2908 			index, pi->port_id, err);
2909 		return err;
2910 	}
2911 
2912 	/* Queue already unbound */
2913 	if (!req_rate)
2914 		return 0;
2915 
2916 	/* Fetch any available unused or matching scheduling class */
2917 	memset(&p, 0, sizeof(p));
2918 	p.type = SCHED_CLASS_TYPE_PACKET;
2919 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2920 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2921 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2922 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2923 	p.u.params.channel  = pi->tx_chan;
2924 	p.u.params.class    = SCHED_CLS_NONE;
2925 	p.u.params.minrate  = 0;
2926 	p.u.params.maxrate  = req_rate;
2927 	p.u.params.weight   = 0;
2928 	p.u.params.pktsize  = dev->mtu;
2929 
2930 	e = cxgb4_sched_class_alloc(dev, &p);
2931 	if (!e)
2932 		return -ENOMEM;
2933 
2934 	/* Bind the queue to a scheduling class */
2935 	memset(&qe, 0, sizeof(qe));
2936 	qe.queue = index;
2937 	qe.class = e->idx;
2938 
2939 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2940 	if (err)
2941 		dev_err(adap->pdev_dev,
2942 			"Queue rate limiting failed. Err: %d\n", err);
2943 	return err;
2944 }
2945 
2946 static int cxgb_setup_tc_flower(struct net_device *dev,
2947 				struct tc_cls_flower_offload *cls_flower)
2948 {
2949 	switch (cls_flower->command) {
2950 	case TC_CLSFLOWER_REPLACE:
2951 		return cxgb4_tc_flower_replace(dev, cls_flower);
2952 	case TC_CLSFLOWER_DESTROY:
2953 		return cxgb4_tc_flower_destroy(dev, cls_flower);
2954 	case TC_CLSFLOWER_STATS:
2955 		return cxgb4_tc_flower_stats(dev, cls_flower);
2956 	default:
2957 		return -EOPNOTSUPP;
2958 	}
2959 }
2960 
2961 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
2962 				 struct tc_cls_u32_offload *cls_u32)
2963 {
2964 	switch (cls_u32->command) {
2965 	case TC_CLSU32_NEW_KNODE:
2966 	case TC_CLSU32_REPLACE_KNODE:
2967 		return cxgb4_config_knode(dev, cls_u32);
2968 	case TC_CLSU32_DELETE_KNODE:
2969 		return cxgb4_delete_knode(dev, cls_u32);
2970 	default:
2971 		return -EOPNOTSUPP;
2972 	}
2973 }
2974 
2975 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2976 				  void *cb_priv)
2977 {
2978 	struct net_device *dev = cb_priv;
2979 	struct port_info *pi = netdev2pinfo(dev);
2980 	struct adapter *adap = netdev2adap(dev);
2981 
2982 	if (!(adap->flags & FULL_INIT_DONE)) {
2983 		dev_err(adap->pdev_dev,
2984 			"Failed to setup tc on port %d. Link Down?\n",
2985 			pi->port_id);
2986 		return -EINVAL;
2987 	}
2988 
2989 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
2990 		return -EOPNOTSUPP;
2991 
2992 	switch (type) {
2993 	case TC_SETUP_CLSU32:
2994 		return cxgb_setup_tc_cls_u32(dev, type_data);
2995 	case TC_SETUP_CLSFLOWER:
2996 		return cxgb_setup_tc_flower(dev, type_data);
2997 	default:
2998 		return -EOPNOTSUPP;
2999 	}
3000 }
3001 
3002 static int cxgb_setup_tc_block(struct net_device *dev,
3003 			       struct tc_block_offload *f)
3004 {
3005 	struct port_info *pi = netdev2pinfo(dev);
3006 
3007 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3008 		return -EOPNOTSUPP;
3009 
3010 	switch (f->command) {
3011 	case TC_BLOCK_BIND:
3012 		return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb,
3013 					     pi, dev);
3014 	case TC_BLOCK_UNBIND:
3015 		tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi);
3016 		return 0;
3017 	default:
3018 		return -EOPNOTSUPP;
3019 	}
3020 }
3021 
3022 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3023 			 void *type_data)
3024 {
3025 	switch (type) {
3026 	case TC_SETUP_BLOCK:
3027 		return cxgb_setup_tc_block(dev, type_data);
3028 	default:
3029 		return -EOPNOTSUPP;
3030 	}
3031 }
3032 
3033 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3034 				struct udp_tunnel_info *ti)
3035 {
3036 	struct port_info *pi = netdev_priv(netdev);
3037 	struct adapter *adapter = pi->adapter;
3038 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3039 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3040 	int ret = 0, i;
3041 
3042 	if (chip_ver < CHELSIO_T6)
3043 		return;
3044 
3045 	switch (ti->type) {
3046 	case UDP_TUNNEL_TYPE_VXLAN:
3047 		if (!adapter->vxlan_port_cnt ||
3048 		    adapter->vxlan_port != ti->port)
3049 			return; /* Invalid VxLAN destination port */
3050 
3051 		adapter->vxlan_port_cnt--;
3052 		if (adapter->vxlan_port_cnt)
3053 			return;
3054 
3055 		adapter->vxlan_port = 0;
3056 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3057 		break;
3058 	case UDP_TUNNEL_TYPE_GENEVE:
3059 		if (!adapter->geneve_port_cnt ||
3060 		    adapter->geneve_port != ti->port)
3061 			return; /* Invalid GENEVE destination port */
3062 
3063 		adapter->geneve_port_cnt--;
3064 		if (adapter->geneve_port_cnt)
3065 			return;
3066 
3067 		adapter->geneve_port = 0;
3068 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3069 	default:
3070 		return;
3071 	}
3072 
3073 	/* Matchall mac entries can be deleted only after all tunnel ports
3074 	 * are brought down or removed.
3075 	 */
3076 	if (!adapter->rawf_cnt)
3077 		return;
3078 	for_each_port(adapter, i) {
3079 		pi = adap2pinfo(adapter, i);
3080 		ret = t4_free_raw_mac_filt(adapter, pi->viid,
3081 					   match_all_mac, match_all_mac,
3082 					   adapter->rawf_start +
3083 					    pi->port_id,
3084 					   1, pi->port_id, true);
3085 		if (ret < 0) {
3086 			netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3087 				    i);
3088 			return;
3089 		}
3090 		atomic_dec(&adapter->mps_encap[adapter->rawf_start +
3091 			   pi->port_id].refcnt);
3092 	}
3093 }
3094 
3095 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3096 				struct udp_tunnel_info *ti)
3097 {
3098 	struct port_info *pi = netdev_priv(netdev);
3099 	struct adapter *adapter = pi->adapter;
3100 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3101 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3102 	int i, ret;
3103 
3104 	if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3105 		return;
3106 
3107 	switch (ti->type) {
3108 	case UDP_TUNNEL_TYPE_VXLAN:
3109 		/* Callback for adding vxlan port can be called with the same
3110 		 * port for both IPv4 and IPv6. We should not disable the
3111 		 * offloading when the same port for both protocols is added
3112 		 * and later one of them is removed.
3113 		 */
3114 		if (adapter->vxlan_port_cnt &&
3115 		    adapter->vxlan_port == ti->port) {
3116 			adapter->vxlan_port_cnt++;
3117 			return;
3118 		}
3119 
3120 		/* We will support only one VxLAN port */
3121 		if (adapter->vxlan_port_cnt) {
3122 			netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3123 				    be16_to_cpu(adapter->vxlan_port),
3124 				    be16_to_cpu(ti->port));
3125 			return;
3126 		}
3127 
3128 		adapter->vxlan_port = ti->port;
3129 		adapter->vxlan_port_cnt = 1;
3130 
3131 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3132 			     VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3133 		break;
3134 	case UDP_TUNNEL_TYPE_GENEVE:
3135 		if (adapter->geneve_port_cnt &&
3136 		    adapter->geneve_port == ti->port) {
3137 			adapter->geneve_port_cnt++;
3138 			return;
3139 		}
3140 
3141 		/* We will support only one GENEVE port */
3142 		if (adapter->geneve_port_cnt) {
3143 			netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3144 				    be16_to_cpu(adapter->geneve_port),
3145 				    be16_to_cpu(ti->port));
3146 			return;
3147 		}
3148 
3149 		adapter->geneve_port = ti->port;
3150 		adapter->geneve_port_cnt = 1;
3151 
3152 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3153 			     GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3154 	default:
3155 		return;
3156 	}
3157 
3158 	/* Create a 'match all' mac filter entry for inner mac,
3159 	 * if raw mac interface is supported. Once the linux kernel provides
3160 	 * driver entry points for adding/deleting the inner mac addresses,
3161 	 * we will remove this 'match all' entry and fallback to adding
3162 	 * exact match filters.
3163 	 */
3164 	for_each_port(adapter, i) {
3165 		pi = adap2pinfo(adapter, i);
3166 
3167 		ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3168 					    match_all_mac,
3169 					    match_all_mac,
3170 					    adapter->rawf_start +
3171 					    pi->port_id,
3172 					    1, pi->port_id, true);
3173 		if (ret < 0) {
3174 			netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3175 				    be16_to_cpu(ti->port));
3176 			cxgb_del_udp_tunnel(netdev, ti);
3177 			return;
3178 		}
3179 		atomic_inc(&adapter->mps_encap[ret].refcnt);
3180 	}
3181 }
3182 
3183 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3184 					     struct net_device *dev,
3185 					     netdev_features_t features)
3186 {
3187 	struct port_info *pi = netdev_priv(dev);
3188 	struct adapter *adapter = pi->adapter;
3189 
3190 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3191 		return features;
3192 
3193 	/* Check if hw supports offload for this packet */
3194 	if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3195 		return features;
3196 
3197 	/* Offload is not supported for this encapsulated packet */
3198 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3199 }
3200 
3201 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3202 					   netdev_features_t features)
3203 {
3204 	/* Disable GRO, if RX_CSUM is disabled */
3205 	if (!(features & NETIF_F_RXCSUM))
3206 		features &= ~NETIF_F_GRO;
3207 
3208 	return features;
3209 }
3210 
3211 static const struct net_device_ops cxgb4_netdev_ops = {
3212 	.ndo_open             = cxgb_open,
3213 	.ndo_stop             = cxgb_close,
3214 	.ndo_start_xmit       = t4_eth_xmit,
3215 	.ndo_select_queue     =	cxgb_select_queue,
3216 	.ndo_get_stats64      = cxgb_get_stats,
3217 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3218 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3219 	.ndo_set_features     = cxgb_set_features,
3220 	.ndo_validate_addr    = eth_validate_addr,
3221 	.ndo_do_ioctl         = cxgb_ioctl,
3222 	.ndo_change_mtu       = cxgb_change_mtu,
3223 #ifdef CONFIG_NET_POLL_CONTROLLER
3224 	.ndo_poll_controller  = cxgb_netpoll,
3225 #endif
3226 #ifdef CONFIG_CHELSIO_T4_FCOE
3227 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3228 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3229 #endif /* CONFIG_CHELSIO_T4_FCOE */
3230 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3231 	.ndo_setup_tc         = cxgb_setup_tc,
3232 	.ndo_udp_tunnel_add   = cxgb_add_udp_tunnel,
3233 	.ndo_udp_tunnel_del   = cxgb_del_udp_tunnel,
3234 	.ndo_features_check   = cxgb_features_check,
3235 	.ndo_fix_features     = cxgb_fix_features,
3236 };
3237 
3238 #ifdef CONFIG_PCI_IOV
3239 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3240 	.ndo_open             = cxgb4_mgmt_open,
3241 	.ndo_set_vf_mac       = cxgb4_mgmt_set_vf_mac,
3242 	.ndo_get_vf_config    = cxgb4_mgmt_get_vf_config,
3243 	.ndo_set_vf_rate      = cxgb4_mgmt_set_vf_rate,
3244 	.ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
3245 	.ndo_set_vf_vlan      = cxgb4_mgmt_set_vf_vlan,
3246 };
3247 #endif
3248 
3249 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3250 				   struct ethtool_drvinfo *info)
3251 {
3252 	struct adapter *adapter = netdev2adap(dev);
3253 
3254 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3255 	strlcpy(info->version, cxgb4_driver_version,
3256 		sizeof(info->version));
3257 	strlcpy(info->bus_info, pci_name(adapter->pdev),
3258 		sizeof(info->bus_info));
3259 }
3260 
3261 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3262 	.get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3263 };
3264 
3265 static void notify_fatal_err(struct work_struct *work)
3266 {
3267 	struct adapter *adap;
3268 
3269 	adap = container_of(work, struct adapter, fatal_err_notify_task);
3270 	notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3271 }
3272 
3273 void t4_fatal_err(struct adapter *adap)
3274 {
3275 	int port;
3276 
3277 	if (pci_channel_offline(adap->pdev))
3278 		return;
3279 
3280 	/* Disable the SGE since ULDs are going to free resources that
3281 	 * could be exposed to the adapter.  RDMA MWs for example...
3282 	 */
3283 	t4_shutdown_adapter(adap);
3284 	for_each_port(adap, port) {
3285 		struct net_device *dev = adap->port[port];
3286 
3287 		/* If we get here in very early initialization the network
3288 		 * devices may not have been set up yet.
3289 		 */
3290 		if (!dev)
3291 			continue;
3292 
3293 		netif_tx_stop_all_queues(dev);
3294 		netif_carrier_off(dev);
3295 	}
3296 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3297 	queue_work(adap->workq, &adap->fatal_err_notify_task);
3298 }
3299 
3300 static void setup_memwin(struct adapter *adap)
3301 {
3302 	u32 nic_win_base = t4_get_util_window(adap);
3303 
3304 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3305 }
3306 
3307 static void setup_memwin_rdma(struct adapter *adap)
3308 {
3309 	if (adap->vres.ocq.size) {
3310 		u32 start;
3311 		unsigned int sz_kb;
3312 
3313 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3314 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3315 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3316 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3317 		t4_write_reg(adap,
3318 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3319 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3320 		t4_write_reg(adap,
3321 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3322 			     adap->vres.ocq.start);
3323 		t4_read_reg(adap,
3324 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3325 	}
3326 }
3327 
3328 /* HMA Definitions */
3329 
3330 /* The maximum number of address that can be send in a single FW cmd */
3331 #define HMA_MAX_ADDR_IN_CMD	5
3332 
3333 #define HMA_PAGE_SIZE		PAGE_SIZE
3334 
3335 #define HMA_MAX_NO_FW_ADDRESS	(16 << 10)  /* FW supports 16K addresses */
3336 
3337 #define HMA_PAGE_ORDER					\
3338 	((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?	\
3339 	ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3340 
3341 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3342  * configuration(in units of MB).
3343  */
3344 #define HMA_MIN_TOTAL_SIZE	1
3345 #define HMA_MAX_TOTAL_SIZE				\
3346 	(((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *		\
3347 	  HMA_MAX_NO_FW_ADDRESS) >> 20)
3348 
3349 static void adap_free_hma_mem(struct adapter *adapter)
3350 {
3351 	struct scatterlist *iter;
3352 	struct page *page;
3353 	int i;
3354 
3355 	if (!adapter->hma.sgt)
3356 		return;
3357 
3358 	if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3359 		dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3360 			     adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3361 		adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3362 	}
3363 
3364 	for_each_sg(adapter->hma.sgt->sgl, iter,
3365 		    adapter->hma.sgt->orig_nents, i) {
3366 		page = sg_page(iter);
3367 		if (page)
3368 			__free_pages(page, HMA_PAGE_ORDER);
3369 	}
3370 
3371 	kfree(adapter->hma.phy_addr);
3372 	sg_free_table(adapter->hma.sgt);
3373 	kfree(adapter->hma.sgt);
3374 	adapter->hma.sgt = NULL;
3375 }
3376 
3377 static int adap_config_hma(struct adapter *adapter)
3378 {
3379 	struct scatterlist *sgl, *iter;
3380 	struct sg_table *sgt;
3381 	struct page *newpage;
3382 	unsigned int i, j, k;
3383 	u32 param, hma_size;
3384 	unsigned int ncmds;
3385 	size_t page_size;
3386 	u32 page_order;
3387 	int node, ret;
3388 
3389 	/* HMA is supported only for T6+ cards.
3390 	 * Avoid initializing HMA in kdump kernels.
3391 	 */
3392 	if (is_kdump_kernel() ||
3393 	    CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3394 		return 0;
3395 
3396 	/* Get the HMA region size required by fw */
3397 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3398 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3399 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3400 			      1, &param, &hma_size);
3401 	/* An error means card has its own memory or HMA is not supported by
3402 	 * the firmware. Return without any errors.
3403 	 */
3404 	if (ret || !hma_size)
3405 		return 0;
3406 
3407 	if (hma_size < HMA_MIN_TOTAL_SIZE ||
3408 	    hma_size > HMA_MAX_TOTAL_SIZE) {
3409 		dev_err(adapter->pdev_dev,
3410 			"HMA size %uMB beyond bounds(%u-%lu)MB\n",
3411 			hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3412 		return -EINVAL;
3413 	}
3414 
3415 	page_size = HMA_PAGE_SIZE;
3416 	page_order = HMA_PAGE_ORDER;
3417 	adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3418 	if (unlikely(!adapter->hma.sgt)) {
3419 		dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3420 		return -ENOMEM;
3421 	}
3422 	sgt = adapter->hma.sgt;
3423 	/* FW returned value will be in MB's
3424 	 */
3425 	sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3426 	if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3427 		dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3428 		kfree(adapter->hma.sgt);
3429 		adapter->hma.sgt = NULL;
3430 		return -ENOMEM;
3431 	}
3432 
3433 	sgl = adapter->hma.sgt->sgl;
3434 	node = dev_to_node(adapter->pdev_dev);
3435 	for_each_sg(sgl, iter, sgt->orig_nents, i) {
3436 		newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL,
3437 					   page_order);
3438 		if (!newpage) {
3439 			dev_err(adapter->pdev_dev,
3440 				"Not enough memory for HMA page allocation\n");
3441 			ret = -ENOMEM;
3442 			goto free_hma;
3443 		}
3444 		sg_set_page(iter, newpage, page_size << page_order, 0);
3445 	}
3446 
3447 	sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3448 				DMA_BIDIRECTIONAL);
3449 	if (!sgt->nents) {
3450 		dev_err(adapter->pdev_dev,
3451 			"Not enough memory for HMA DMA mapping");
3452 		ret = -ENOMEM;
3453 		goto free_hma;
3454 	}
3455 	adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3456 
3457 	adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3458 					GFP_KERNEL);
3459 	if (unlikely(!adapter->hma.phy_addr))
3460 		goto free_hma;
3461 
3462 	for_each_sg(sgl, iter, sgt->nents, i) {
3463 		newpage = sg_page(iter);
3464 		adapter->hma.phy_addr[i] = sg_dma_address(iter);
3465 	}
3466 
3467 	ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3468 	/* Pass on the addresses to firmware */
3469 	for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3470 		struct fw_hma_cmd hma_cmd;
3471 		u8 naddr = HMA_MAX_ADDR_IN_CMD;
3472 		u8 soc = 0, eoc = 0;
3473 		u8 hma_mode = 1; /* Presently we support only Page table mode */
3474 
3475 		soc = (i == 0) ? 1 : 0;
3476 		eoc = (i == ncmds - 1) ? 1 : 0;
3477 
3478 		/* For last cmd, set naddr corresponding to remaining
3479 		 * addresses
3480 		 */
3481 		if (i == ncmds - 1) {
3482 			naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3483 			naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3484 		}
3485 		memset(&hma_cmd, 0, sizeof(hma_cmd));
3486 		hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3487 				       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3488 		hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3489 
3490 		hma_cmd.mode_to_pcie_params =
3491 			htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3492 			      FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3493 
3494 		/* HMA cmd size specified in MB's */
3495 		hma_cmd.naddr_size =
3496 			htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3497 			      FW_HMA_CMD_NADDR_V(naddr));
3498 
3499 		/* Total Page size specified in units of 4K */
3500 		hma_cmd.addr_size_pkd =
3501 			htonl(FW_HMA_CMD_ADDR_SIZE_V
3502 				((page_size << page_order) >> 12));
3503 
3504 		/* Fill the 5 addresses */
3505 		for (j = 0; j < naddr; j++) {
3506 			hma_cmd.phy_address[j] =
3507 				cpu_to_be64(adapter->hma.phy_addr[j + k]);
3508 		}
3509 		ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3510 				 sizeof(hma_cmd), &hma_cmd);
3511 		if (ret) {
3512 			dev_err(adapter->pdev_dev,
3513 				"HMA FW command failed with err %d\n", ret);
3514 			goto free_hma;
3515 		}
3516 	}
3517 
3518 	if (!ret)
3519 		dev_info(adapter->pdev_dev,
3520 			 "Reserved %uMB host memory for HMA\n", hma_size);
3521 	return ret;
3522 
3523 free_hma:
3524 	adap_free_hma_mem(adapter);
3525 	return ret;
3526 }
3527 
3528 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3529 {
3530 	u32 v;
3531 	int ret;
3532 
3533 	/* get device capabilities */
3534 	memset(c, 0, sizeof(*c));
3535 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3536 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3537 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3538 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3539 	if (ret < 0)
3540 		return ret;
3541 
3542 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3543 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3544 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3545 	if (ret < 0)
3546 		return ret;
3547 
3548 	ret = t4_config_glbl_rss(adap, adap->pf,
3549 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3550 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3551 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3552 	if (ret < 0)
3553 		return ret;
3554 
3555 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3556 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3557 			  FW_CMD_CAP_PF);
3558 	if (ret < 0)
3559 		return ret;
3560 
3561 	t4_sge_init(adap);
3562 
3563 	/* tweak some settings */
3564 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3565 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3566 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3567 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3568 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3569 
3570 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3571 	adap->params.tp.tx_modq_map = 0xE4;
3572 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3573 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3574 
3575 	/* associate each Tx modulation queue with consecutive Tx channels */
3576 	v = 0x84218421;
3577 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3578 			  &v, 1, TP_TX_SCHED_HDR_A);
3579 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3580 			  &v, 1, TP_TX_SCHED_FIFO_A);
3581 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3582 			  &v, 1, TP_TX_SCHED_PCMD_A);
3583 
3584 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3585 	if (is_offload(adap)) {
3586 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3587 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3588 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3589 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3590 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3591 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3592 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3593 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3594 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3595 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3596 	}
3597 
3598 	/* get basic stuff going */
3599 	return t4_early_init(adap, adap->pf);
3600 }
3601 
3602 /*
3603  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3604  */
3605 #define MAX_ATIDS 8192U
3606 
3607 /*
3608  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3609  *
3610  * If the firmware we're dealing with has Configuration File support, then
3611  * we use that to perform all configuration
3612  */
3613 
3614 /*
3615  * Tweak configuration based on module parameters, etc.  Most of these have
3616  * defaults assigned to them by Firmware Configuration Files (if we're using
3617  * them) but need to be explicitly set if we're using hard-coded
3618  * initialization.  But even in the case of using Firmware Configuration
3619  * Files, we'd like to expose the ability to change these via module
3620  * parameters so these are essentially common tweaks/settings for
3621  * Configuration Files and hard-coded initialization ...
3622  */
3623 static int adap_init0_tweaks(struct adapter *adapter)
3624 {
3625 	/*
3626 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3627 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3628 	 * 64B Cache Line Size ...
3629 	 */
3630 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3631 
3632 	/*
3633 	 * Process module parameters which affect early initialization.
3634 	 */
3635 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3636 		dev_err(&adapter->pdev->dev,
3637 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3638 			rx_dma_offset);
3639 		rx_dma_offset = 2;
3640 	}
3641 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3642 			 PKTSHIFT_V(PKTSHIFT_M),
3643 			 PKTSHIFT_V(rx_dma_offset));
3644 
3645 	/*
3646 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3647 	 * adds the pseudo header itself.
3648 	 */
3649 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3650 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3651 
3652 	return 0;
3653 }
3654 
3655 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3656  * unto themselves and they contain their own firmware to perform their
3657  * tasks ...
3658  */
3659 static int phy_aq1202_version(const u8 *phy_fw_data,
3660 			      size_t phy_fw_size)
3661 {
3662 	int offset;
3663 
3664 	/* At offset 0x8 you're looking for the primary image's
3665 	 * starting offset which is 3 Bytes wide
3666 	 *
3667 	 * At offset 0xa of the primary image, you look for the offset
3668 	 * of the DRAM segment which is 3 Bytes wide.
3669 	 *
3670 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3671 	 * wide
3672 	 */
3673 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
3674 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3675 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
3676 
3677 	offset = le24(phy_fw_data + 0x8) << 12;
3678 	offset = le24(phy_fw_data + offset + 0xa);
3679 	return be16(phy_fw_data + offset + 0x27e);
3680 
3681 	#undef be16
3682 	#undef le16
3683 	#undef le24
3684 }
3685 
3686 static struct info_10gbt_phy_fw {
3687 	unsigned int phy_fw_id;		/* PCI Device ID */
3688 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
3689 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3690 	int phy_flash;			/* Has FLASH for PHY Firmware */
3691 } phy_info_array[] = {
3692 	{
3693 		PHY_AQ1202_DEVICEID,
3694 		PHY_AQ1202_FIRMWARE,
3695 		phy_aq1202_version,
3696 		1,
3697 	},
3698 	{
3699 		PHY_BCM84834_DEVICEID,
3700 		PHY_BCM84834_FIRMWARE,
3701 		NULL,
3702 		0,
3703 	},
3704 	{ 0, NULL, NULL },
3705 };
3706 
3707 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3708 {
3709 	int i;
3710 
3711 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3712 		if (phy_info_array[i].phy_fw_id == devid)
3713 			return &phy_info_array[i];
3714 	}
3715 	return NULL;
3716 }
3717 
3718 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3719  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3720  * we return a negative error number.  If we transfer new firmware we return 1
3721  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3722  */
3723 static int adap_init0_phy(struct adapter *adap)
3724 {
3725 	const struct firmware *phyf;
3726 	int ret;
3727 	struct info_10gbt_phy_fw *phy_info;
3728 
3729 	/* Use the device ID to determine which PHY file to flash.
3730 	 */
3731 	phy_info = find_phy_info(adap->pdev->device);
3732 	if (!phy_info) {
3733 		dev_warn(adap->pdev_dev,
3734 			 "No PHY Firmware file found for this PHY\n");
3735 		return -EOPNOTSUPP;
3736 	}
3737 
3738 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3739 	 * use that. The adapter firmware provides us with a memory buffer
3740 	 * where we can load a PHY firmware file from the host if we want to
3741 	 * override the PHY firmware File in flash.
3742 	 */
3743 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3744 				      adap->pdev_dev);
3745 	if (ret < 0) {
3746 		/* For adapters without FLASH attached to PHY for their
3747 		 * firmware, it's obviously a fatal error if we can't get the
3748 		 * firmware to the adapter.  For adapters with PHY firmware
3749 		 * FLASH storage, it's worth a warning if we can't find the
3750 		 * PHY Firmware but we'll neuter the error ...
3751 		 */
3752 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3753 			"/lib/firmware/%s, error %d\n",
3754 			phy_info->phy_fw_file, -ret);
3755 		if (phy_info->phy_flash) {
3756 			int cur_phy_fw_ver = 0;
3757 
3758 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3759 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3760 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3761 			ret = 0;
3762 		}
3763 
3764 		return ret;
3765 	}
3766 
3767 	/* Load PHY Firmware onto adapter.
3768 	 */
3769 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3770 			     phy_info->phy_fw_version,
3771 			     (u8 *)phyf->data, phyf->size);
3772 	if (ret < 0)
3773 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3774 			-ret);
3775 	else if (ret > 0) {
3776 		int new_phy_fw_ver = 0;
3777 
3778 		if (phy_info->phy_fw_version)
3779 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3780 								  phyf->size);
3781 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3782 			 "Firmware /lib/firmware/%s, version %#x\n",
3783 			 phy_info->phy_fw_file, new_phy_fw_ver);
3784 	}
3785 
3786 	release_firmware(phyf);
3787 
3788 	return ret;
3789 }
3790 
3791 /*
3792  * Attempt to initialize the adapter via a Firmware Configuration File.
3793  */
3794 static int adap_init0_config(struct adapter *adapter, int reset)
3795 {
3796 	struct fw_caps_config_cmd caps_cmd;
3797 	const struct firmware *cf;
3798 	unsigned long mtype = 0, maddr = 0;
3799 	u32 finiver, finicsum, cfcsum;
3800 	int ret;
3801 	int config_issued = 0;
3802 	char *fw_config_file, fw_config_file_path[256];
3803 	char *config_name = NULL;
3804 
3805 	/*
3806 	 * Reset device if necessary.
3807 	 */
3808 	if (reset) {
3809 		ret = t4_fw_reset(adapter, adapter->mbox,
3810 				  PIORSTMODE_F | PIORST_F);
3811 		if (ret < 0)
3812 			goto bye;
3813 	}
3814 
3815 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3816 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3817 	 * to be performed after any global adapter RESET above since some
3818 	 * PHYs only have local RAM copies of the PHY firmware.
3819 	 */
3820 	if (is_10gbt_device(adapter->pdev->device)) {
3821 		ret = adap_init0_phy(adapter);
3822 		if (ret < 0)
3823 			goto bye;
3824 	}
3825 	/*
3826 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3827 	 * then use that.  Otherwise, use the configuration file stored
3828 	 * in the adapter flash ...
3829 	 */
3830 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3831 	case CHELSIO_T4:
3832 		fw_config_file = FW4_CFNAME;
3833 		break;
3834 	case CHELSIO_T5:
3835 		fw_config_file = FW5_CFNAME;
3836 		break;
3837 	case CHELSIO_T6:
3838 		fw_config_file = FW6_CFNAME;
3839 		break;
3840 	default:
3841 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3842 		       adapter->pdev->device);
3843 		ret = -EINVAL;
3844 		goto bye;
3845 	}
3846 
3847 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3848 	if (ret < 0) {
3849 		config_name = "On FLASH";
3850 		mtype = FW_MEMTYPE_CF_FLASH;
3851 		maddr = t4_flash_cfg_addr(adapter);
3852 	} else {
3853 		u32 params[7], val[7];
3854 
3855 		sprintf(fw_config_file_path,
3856 			"/lib/firmware/%s", fw_config_file);
3857 		config_name = fw_config_file_path;
3858 
3859 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3860 			ret = -ENOMEM;
3861 		else {
3862 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3863 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3864 			ret = t4_query_params(adapter, adapter->mbox,
3865 					      adapter->pf, 0, 1, params, val);
3866 			if (ret == 0) {
3867 				/*
3868 				 * For t4_memory_rw() below addresses and
3869 				 * sizes have to be in terms of multiples of 4
3870 				 * bytes.  So, if the Configuration File isn't
3871 				 * a multiple of 4 bytes in length we'll have
3872 				 * to write that out separately since we can't
3873 				 * guarantee that the bytes following the
3874 				 * residual byte in the buffer returned by
3875 				 * request_firmware() are zeroed out ...
3876 				 */
3877 				size_t resid = cf->size & 0x3;
3878 				size_t size = cf->size & ~0x3;
3879 				__be32 *data = (__be32 *)cf->data;
3880 
3881 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3882 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3883 
3884 				spin_lock(&adapter->win0_lock);
3885 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3886 						   size, data, T4_MEMORY_WRITE);
3887 				if (ret == 0 && resid != 0) {
3888 					union {
3889 						__be32 word;
3890 						char buf[4];
3891 					} last;
3892 					int i;
3893 
3894 					last.word = data[size >> 2];
3895 					for (i = resid; i < 4; i++)
3896 						last.buf[i] = 0;
3897 					ret = t4_memory_rw(adapter, 0, mtype,
3898 							   maddr + size,
3899 							   4, &last.word,
3900 							   T4_MEMORY_WRITE);
3901 				}
3902 				spin_unlock(&adapter->win0_lock);
3903 			}
3904 		}
3905 
3906 		release_firmware(cf);
3907 		if (ret)
3908 			goto bye;
3909 	}
3910 
3911 	/*
3912 	 * Issue a Capability Configuration command to the firmware to get it
3913 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3914 	 * because we want the ability to modify various features after we've
3915 	 * processed the configuration file ...
3916 	 */
3917 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3918 	caps_cmd.op_to_write =
3919 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3920 		      FW_CMD_REQUEST_F |
3921 		      FW_CMD_READ_F);
3922 	caps_cmd.cfvalid_to_len16 =
3923 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3924 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3925 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3926 		      FW_LEN16(caps_cmd));
3927 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3928 			 &caps_cmd);
3929 
3930 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3931 	 * Configuration File in FLASH), our last gasp effort is to use the
3932 	 * Firmware Configuration File which is embedded in the firmware.  A
3933 	 * very few early versions of the firmware didn't have one embedded
3934 	 * but we can ignore those.
3935 	 */
3936 	if (ret == -ENOENT) {
3937 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3938 		caps_cmd.op_to_write =
3939 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3940 					FW_CMD_REQUEST_F |
3941 					FW_CMD_READ_F);
3942 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3943 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3944 				sizeof(caps_cmd), &caps_cmd);
3945 		config_name = "Firmware Default";
3946 	}
3947 
3948 	config_issued = 1;
3949 	if (ret < 0)
3950 		goto bye;
3951 
3952 	finiver = ntohl(caps_cmd.finiver);
3953 	finicsum = ntohl(caps_cmd.finicsum);
3954 	cfcsum = ntohl(caps_cmd.cfcsum);
3955 	if (finicsum != cfcsum)
3956 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3957 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3958 			 finicsum, cfcsum);
3959 
3960 	/*
3961 	 * And now tell the firmware to use the configuration we just loaded.
3962 	 */
3963 	caps_cmd.op_to_write =
3964 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3965 		      FW_CMD_REQUEST_F |
3966 		      FW_CMD_WRITE_F);
3967 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3968 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3969 			 NULL);
3970 	if (ret < 0)
3971 		goto bye;
3972 
3973 	/*
3974 	 * Tweak configuration based on system architecture, module
3975 	 * parameters, etc.
3976 	 */
3977 	ret = adap_init0_tweaks(adapter);
3978 	if (ret < 0)
3979 		goto bye;
3980 
3981 	/* We will proceed even if HMA init fails. */
3982 	ret = adap_config_hma(adapter);
3983 	if (ret)
3984 		dev_err(adapter->pdev_dev,
3985 			"HMA configuration failed with error %d\n", ret);
3986 
3987 	/*
3988 	 * And finally tell the firmware to initialize itself using the
3989 	 * parameters from the Configuration File.
3990 	 */
3991 	ret = t4_fw_initialize(adapter, adapter->mbox);
3992 	if (ret < 0)
3993 		goto bye;
3994 
3995 	/* Emit Firmware Configuration File information and return
3996 	 * successfully.
3997 	 */
3998 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3999 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4000 		 config_name, finiver, cfcsum);
4001 	return 0;
4002 
4003 	/*
4004 	 * Something bad happened.  Return the error ...  (If the "error"
4005 	 * is that there's no Configuration File on the adapter we don't
4006 	 * want to issue a warning since this is fairly common.)
4007 	 */
4008 bye:
4009 	if (config_issued && ret != -ENOENT)
4010 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4011 			 config_name, -ret);
4012 	return ret;
4013 }
4014 
4015 static struct fw_info fw_info_array[] = {
4016 	{
4017 		.chip = CHELSIO_T4,
4018 		.fs_name = FW4_CFNAME,
4019 		.fw_mod_name = FW4_FNAME,
4020 		.fw_hdr = {
4021 			.chip = FW_HDR_CHIP_T4,
4022 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4023 			.intfver_nic = FW_INTFVER(T4, NIC),
4024 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4025 			.intfver_ri = FW_INTFVER(T4, RI),
4026 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4027 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4028 		},
4029 	}, {
4030 		.chip = CHELSIO_T5,
4031 		.fs_name = FW5_CFNAME,
4032 		.fw_mod_name = FW5_FNAME,
4033 		.fw_hdr = {
4034 			.chip = FW_HDR_CHIP_T5,
4035 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4036 			.intfver_nic = FW_INTFVER(T5, NIC),
4037 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4038 			.intfver_ri = FW_INTFVER(T5, RI),
4039 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4040 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4041 		},
4042 	}, {
4043 		.chip = CHELSIO_T6,
4044 		.fs_name = FW6_CFNAME,
4045 		.fw_mod_name = FW6_FNAME,
4046 		.fw_hdr = {
4047 			.chip = FW_HDR_CHIP_T6,
4048 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4049 			.intfver_nic = FW_INTFVER(T6, NIC),
4050 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4051 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4052 			.intfver_ri = FW_INTFVER(T6, RI),
4053 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4054 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4055 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4056 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4057 		},
4058 	}
4059 
4060 };
4061 
4062 static struct fw_info *find_fw_info(int chip)
4063 {
4064 	int i;
4065 
4066 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4067 		if (fw_info_array[i].chip == chip)
4068 			return &fw_info_array[i];
4069 	}
4070 	return NULL;
4071 }
4072 
4073 /*
4074  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4075  */
4076 static int adap_init0(struct adapter *adap)
4077 {
4078 	int ret;
4079 	u32 v, port_vec;
4080 	enum dev_state state;
4081 	u32 params[7], val[7];
4082 	struct fw_caps_config_cmd caps_cmd;
4083 	int reset = 1;
4084 
4085 	/* Grab Firmware Device Log parameters as early as possible so we have
4086 	 * access to it for debugging, etc.
4087 	 */
4088 	ret = t4_init_devlog_params(adap);
4089 	if (ret < 0)
4090 		return ret;
4091 
4092 	/* Contact FW, advertising Master capability */
4093 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4094 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4095 	if (ret < 0) {
4096 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4097 			ret);
4098 		return ret;
4099 	}
4100 	if (ret == adap->mbox)
4101 		adap->flags |= MASTER_PF;
4102 
4103 	/*
4104 	 * If we're the Master PF Driver and the device is uninitialized,
4105 	 * then let's consider upgrading the firmware ...  (We always want
4106 	 * to check the firmware version number in order to A. get it for
4107 	 * later reporting and B. to warn if the currently loaded firmware
4108 	 * is excessively mismatched relative to the driver.)
4109 	 */
4110 
4111 	t4_get_version_info(adap);
4112 	ret = t4_check_fw_version(adap);
4113 	/* If firmware is too old (not supported by driver) force an update. */
4114 	if (ret)
4115 		state = DEV_STATE_UNINIT;
4116 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
4117 		struct fw_info *fw_info;
4118 		struct fw_hdr *card_fw;
4119 		const struct firmware *fw;
4120 		const u8 *fw_data = NULL;
4121 		unsigned int fw_size = 0;
4122 
4123 		/* This is the firmware whose headers the driver was compiled
4124 		 * against
4125 		 */
4126 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4127 		if (fw_info == NULL) {
4128 			dev_err(adap->pdev_dev,
4129 				"unable to get firmware info for chip %d.\n",
4130 				CHELSIO_CHIP_VERSION(adap->params.chip));
4131 			return -EINVAL;
4132 		}
4133 
4134 		/* allocate memory to read the header of the firmware on the
4135 		 * card
4136 		 */
4137 		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4138 
4139 		/* Get FW from from /lib/firmware/ */
4140 		ret = request_firmware(&fw, fw_info->fw_mod_name,
4141 				       adap->pdev_dev);
4142 		if (ret < 0) {
4143 			dev_err(adap->pdev_dev,
4144 				"unable to load firmware image %s, error %d\n",
4145 				fw_info->fw_mod_name, ret);
4146 		} else {
4147 			fw_data = fw->data;
4148 			fw_size = fw->size;
4149 		}
4150 
4151 		/* upgrade FW logic */
4152 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4153 				 state, &reset);
4154 
4155 		/* Cleaning up */
4156 		release_firmware(fw);
4157 		kvfree(card_fw);
4158 
4159 		if (ret < 0)
4160 			goto bye;
4161 	}
4162 
4163 	/*
4164 	 * Grab VPD parameters.  This should be done after we establish a
4165 	 * connection to the firmware since some of the VPD parameters
4166 	 * (notably the Core Clock frequency) are retrieved via requests to
4167 	 * the firmware.  On the other hand, we need these fairly early on
4168 	 * so we do this right after getting ahold of the firmware.
4169 	 */
4170 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
4171 	if (ret < 0)
4172 		goto bye;
4173 
4174 	/*
4175 	 * Find out what ports are available to us.  Note that we need to do
4176 	 * this before calling adap_init0_no_config() since it needs nports
4177 	 * and portvec ...
4178 	 */
4179 	v =
4180 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4181 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4182 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4183 	if (ret < 0)
4184 		goto bye;
4185 
4186 	adap->params.nports = hweight32(port_vec);
4187 	adap->params.portvec = port_vec;
4188 
4189 	/* If the firmware is initialized already, emit a simply note to that
4190 	 * effect. Otherwise, it's time to try initializing the adapter.
4191 	 */
4192 	if (state == DEV_STATE_INIT) {
4193 		ret = adap_config_hma(adap);
4194 		if (ret)
4195 			dev_err(adap->pdev_dev,
4196 				"HMA configuration failed with error %d\n",
4197 				ret);
4198 		dev_info(adap->pdev_dev, "Coming up as %s: "\
4199 			 "Adapter already initialized\n",
4200 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
4201 	} else {
4202 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4203 			 "Initializing adapter\n");
4204 
4205 		/* Find out whether we're dealing with a version of the
4206 		 * firmware which has configuration file support.
4207 		 */
4208 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4209 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4210 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4211 				      params, val);
4212 
4213 		/* If the firmware doesn't support Configuration Files,
4214 		 * return an error.
4215 		 */
4216 		if (ret < 0) {
4217 			dev_err(adap->pdev_dev, "firmware doesn't support "
4218 				"Firmware Configuration Files\n");
4219 			goto bye;
4220 		}
4221 
4222 		/* The firmware provides us with a memory buffer where we can
4223 		 * load a Configuration File from the host if we want to
4224 		 * override the Configuration File in flash.
4225 		 */
4226 		ret = adap_init0_config(adap, reset);
4227 		if (ret == -ENOENT) {
4228 			dev_err(adap->pdev_dev, "no Configuration File "
4229 				"present on adapter.\n");
4230 			goto bye;
4231 		}
4232 		if (ret < 0) {
4233 			dev_err(adap->pdev_dev, "could not initialize "
4234 				"adapter, error %d\n", -ret);
4235 			goto bye;
4236 		}
4237 	}
4238 
4239 	/* Give the SGE code a chance to pull in anything that it needs ...
4240 	 * Note that this must be called after we retrieve our VPD parameters
4241 	 * in order to know how to convert core ticks to seconds, etc.
4242 	 */
4243 	ret = t4_sge_init(adap);
4244 	if (ret < 0)
4245 		goto bye;
4246 
4247 	if (is_bypass_device(adap->pdev->device))
4248 		adap->params.bypass = 1;
4249 
4250 	/*
4251 	 * Grab some of our basic fundamental operating parameters.
4252 	 */
4253 #define FW_PARAM_DEV(param) \
4254 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4255 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4256 
4257 #define FW_PARAM_PFVF(param) \
4258 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4259 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
4260 	FW_PARAMS_PARAM_Y_V(0) | \
4261 	FW_PARAMS_PARAM_Z_V(0)
4262 
4263 	params[0] = FW_PARAM_PFVF(EQ_START);
4264 	params[1] = FW_PARAM_PFVF(L2T_START);
4265 	params[2] = FW_PARAM_PFVF(L2T_END);
4266 	params[3] = FW_PARAM_PFVF(FILTER_START);
4267 	params[4] = FW_PARAM_PFVF(FILTER_END);
4268 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
4269 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4270 	if (ret < 0)
4271 		goto bye;
4272 	adap->sge.egr_start = val[0];
4273 	adap->l2t_start = val[1];
4274 	adap->l2t_end = val[2];
4275 	adap->tids.ftid_base = val[3];
4276 	adap->tids.nftids = val[4] - val[3] + 1;
4277 	adap->sge.ingr_start = val[5];
4278 
4279 	/* qids (ingress/egress) returned from firmware can be anywhere
4280 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4281 	 * Hence driver needs to allocate memory for this range to
4282 	 * store the queue info. Get the highest IQFLINT/EQ index returned
4283 	 * in FW_EQ_*_CMD.alloc command.
4284 	 */
4285 	params[0] = FW_PARAM_PFVF(EQ_END);
4286 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
4287 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4288 	if (ret < 0)
4289 		goto bye;
4290 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4291 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4292 
4293 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4294 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
4295 	if (!adap->sge.egr_map) {
4296 		ret = -ENOMEM;
4297 		goto bye;
4298 	}
4299 
4300 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4301 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4302 	if (!adap->sge.ingr_map) {
4303 		ret = -ENOMEM;
4304 		goto bye;
4305 	}
4306 
4307 	/* Allocate the memory for the vaious egress queue bitmaps
4308 	 * ie starving_fl, txq_maperr and blocked_fl.
4309 	 */
4310 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4311 					sizeof(long), GFP_KERNEL);
4312 	if (!adap->sge.starving_fl) {
4313 		ret = -ENOMEM;
4314 		goto bye;
4315 	}
4316 
4317 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4318 				       sizeof(long), GFP_KERNEL);
4319 	if (!adap->sge.txq_maperr) {
4320 		ret = -ENOMEM;
4321 		goto bye;
4322 	}
4323 
4324 #ifdef CONFIG_DEBUG_FS
4325 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4326 				       sizeof(long), GFP_KERNEL);
4327 	if (!adap->sge.blocked_fl) {
4328 		ret = -ENOMEM;
4329 		goto bye;
4330 	}
4331 #endif
4332 
4333 	params[0] = FW_PARAM_PFVF(CLIP_START);
4334 	params[1] = FW_PARAM_PFVF(CLIP_END);
4335 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4336 	if (ret < 0)
4337 		goto bye;
4338 	adap->clipt_start = val[0];
4339 	adap->clipt_end = val[1];
4340 
4341 	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
4342 	 * Classes supported by the hardware/firmware so we hard code it here
4343 	 * for now.
4344 	 */
4345 	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4346 
4347 	/* query params related to active filter region */
4348 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4349 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4350 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4351 	/* If Active filter size is set we enable establishing
4352 	 * offload connection through firmware work request
4353 	 */
4354 	if ((val[0] != val[1]) && (ret >= 0)) {
4355 		adap->flags |= FW_OFLD_CONN;
4356 		adap->tids.aftid_base = val[0];
4357 		adap->tids.aftid_end = val[1];
4358 	}
4359 
4360 	/* If we're running on newer firmware, let it know that we're
4361 	 * prepared to deal with encapsulated CPL messages.  Older
4362 	 * firmware won't understand this and we'll just get
4363 	 * unencapsulated messages ...
4364 	 */
4365 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4366 	val[0] = 1;
4367 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4368 
4369 	/*
4370 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4371 	 * capability.  Earlier versions of the firmware didn't have the
4372 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4373 	 * permission to use ULPTX MEMWRITE DSGL.
4374 	 */
4375 	if (is_t4(adap->params.chip)) {
4376 		adap->params.ulptx_memwrite_dsgl = false;
4377 	} else {
4378 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4379 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4380 				      1, params, val);
4381 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4382 	}
4383 
4384 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4385 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4386 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4387 			      1, params, val);
4388 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4389 
4390 	/* See if FW supports FW_FILTER2 work request */
4391 	if (is_t4(adap->params.chip)) {
4392 		adap->params.filter2_wr_support = 0;
4393 	} else {
4394 		params[0] = FW_PARAM_DEV(FILTER2_WR);
4395 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4396 				      1, params, val);
4397 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4398 	}
4399 
4400 	/*
4401 	 * Get device capabilities so we can determine what resources we need
4402 	 * to manage.
4403 	 */
4404 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4405 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4406 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
4407 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4408 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4409 			 &caps_cmd);
4410 	if (ret < 0)
4411 		goto bye;
4412 
4413 	if (caps_cmd.ofldcaps ||
4414 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
4415 		/* query offload-related parameters */
4416 		params[0] = FW_PARAM_DEV(NTID);
4417 		params[1] = FW_PARAM_PFVF(SERVER_START);
4418 		params[2] = FW_PARAM_PFVF(SERVER_END);
4419 		params[3] = FW_PARAM_PFVF(TDDP_START);
4420 		params[4] = FW_PARAM_PFVF(TDDP_END);
4421 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4422 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4423 				      params, val);
4424 		if (ret < 0)
4425 			goto bye;
4426 		adap->tids.ntids = val[0];
4427 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4428 		adap->tids.stid_base = val[1];
4429 		adap->tids.nstids = val[2] - val[1] + 1;
4430 		/*
4431 		 * Setup server filter region. Divide the available filter
4432 		 * region into two parts. Regular filters get 1/3rd and server
4433 		 * filters get 2/3rd part. This is only enabled if workarond
4434 		 * path is enabled.
4435 		 * 1. For regular filters.
4436 		 * 2. Server filter: This are special filters which are used
4437 		 * to redirect SYN packets to offload queue.
4438 		 */
4439 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4440 			adap->tids.sftid_base = adap->tids.ftid_base +
4441 					DIV_ROUND_UP(adap->tids.nftids, 3);
4442 			adap->tids.nsftids = adap->tids.nftids -
4443 					 DIV_ROUND_UP(adap->tids.nftids, 3);
4444 			adap->tids.nftids = adap->tids.sftid_base -
4445 						adap->tids.ftid_base;
4446 		}
4447 		adap->vres.ddp.start = val[3];
4448 		adap->vres.ddp.size = val[4] - val[3] + 1;
4449 		adap->params.ofldq_wr_cred = val[5];
4450 
4451 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4452 			ret = init_hash_filter(adap);
4453 			if (ret < 0)
4454 				goto bye;
4455 		} else {
4456 			adap->params.offload = 1;
4457 			adap->num_ofld_uld += 1;
4458 		}
4459 	}
4460 	if (caps_cmd.rdmacaps) {
4461 		params[0] = FW_PARAM_PFVF(STAG_START);
4462 		params[1] = FW_PARAM_PFVF(STAG_END);
4463 		params[2] = FW_PARAM_PFVF(RQ_START);
4464 		params[3] = FW_PARAM_PFVF(RQ_END);
4465 		params[4] = FW_PARAM_PFVF(PBL_START);
4466 		params[5] = FW_PARAM_PFVF(PBL_END);
4467 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4468 				      params, val);
4469 		if (ret < 0)
4470 			goto bye;
4471 		adap->vres.stag.start = val[0];
4472 		adap->vres.stag.size = val[1] - val[0] + 1;
4473 		adap->vres.rq.start = val[2];
4474 		adap->vres.rq.size = val[3] - val[2] + 1;
4475 		adap->vres.pbl.start = val[4];
4476 		adap->vres.pbl.size = val[5] - val[4] + 1;
4477 
4478 		params[0] = FW_PARAM_PFVF(SRQ_START);
4479 		params[1] = FW_PARAM_PFVF(SRQ_END);
4480 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4481 				      params, val);
4482 		if (!ret) {
4483 			adap->vres.srq.start = val[0];
4484 			adap->vres.srq.size = val[1] - val[0] + 1;
4485 		}
4486 		if (adap->vres.srq.size) {
4487 			adap->srq = t4_init_srq(adap->vres.srq.size);
4488 			if (!adap->srq)
4489 				dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4490 		}
4491 
4492 		params[0] = FW_PARAM_PFVF(SQRQ_START);
4493 		params[1] = FW_PARAM_PFVF(SQRQ_END);
4494 		params[2] = FW_PARAM_PFVF(CQ_START);
4495 		params[3] = FW_PARAM_PFVF(CQ_END);
4496 		params[4] = FW_PARAM_PFVF(OCQ_START);
4497 		params[5] = FW_PARAM_PFVF(OCQ_END);
4498 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4499 				      val);
4500 		if (ret < 0)
4501 			goto bye;
4502 		adap->vres.qp.start = val[0];
4503 		adap->vres.qp.size = val[1] - val[0] + 1;
4504 		adap->vres.cq.start = val[2];
4505 		adap->vres.cq.size = val[3] - val[2] + 1;
4506 		adap->vres.ocq.start = val[4];
4507 		adap->vres.ocq.size = val[5] - val[4] + 1;
4508 
4509 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4510 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4511 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4512 				      val);
4513 		if (ret < 0) {
4514 			adap->params.max_ordird_qp = 8;
4515 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4516 			ret = 0;
4517 		} else {
4518 			adap->params.max_ordird_qp = val[0];
4519 			adap->params.max_ird_adapter = val[1];
4520 		}
4521 		dev_info(adap->pdev_dev,
4522 			 "max_ordird_qp %d max_ird_adapter %d\n",
4523 			 adap->params.max_ordird_qp,
4524 			 adap->params.max_ird_adapter);
4525 
4526 		/* Enable write_with_immediate if FW supports it */
4527 		params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
4528 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4529 				      val);
4530 		adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
4531 
4532 		/* Enable write_cmpl if FW supports it */
4533 		params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
4534 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4535 				      val);
4536 		adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
4537 		adap->num_ofld_uld += 2;
4538 	}
4539 	if (caps_cmd.iscsicaps) {
4540 		params[0] = FW_PARAM_PFVF(ISCSI_START);
4541 		params[1] = FW_PARAM_PFVF(ISCSI_END);
4542 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4543 				      params, val);
4544 		if (ret < 0)
4545 			goto bye;
4546 		adap->vres.iscsi.start = val[0];
4547 		adap->vres.iscsi.size = val[1] - val[0] + 1;
4548 		/* LIO target and cxgb4i initiaitor */
4549 		adap->num_ofld_uld += 2;
4550 	}
4551 	if (caps_cmd.cryptocaps) {
4552 		if (ntohs(caps_cmd.cryptocaps) &
4553 		    FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
4554 			params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4555 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4556 					      2, params, val);
4557 			if (ret < 0) {
4558 				if (ret != -EINVAL)
4559 					goto bye;
4560 			} else {
4561 				adap->vres.ncrypto_fc = val[0];
4562 			}
4563 			adap->num_ofld_uld += 1;
4564 		}
4565 		if (ntohs(caps_cmd.cryptocaps) &
4566 		    FW_CAPS_CONFIG_TLS_INLINE) {
4567 			params[0] = FW_PARAM_PFVF(TLS_START);
4568 			params[1] = FW_PARAM_PFVF(TLS_END);
4569 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4570 					      2, params, val);
4571 			if (ret < 0)
4572 				goto bye;
4573 			adap->vres.key.start = val[0];
4574 			adap->vres.key.size = val[1] - val[0] + 1;
4575 			adap->num_uld += 1;
4576 		}
4577 		adap->params.crypto = ntohs(caps_cmd.cryptocaps);
4578 	}
4579 #undef FW_PARAM_PFVF
4580 #undef FW_PARAM_DEV
4581 
4582 	/* The MTU/MSS Table is initialized by now, so load their values.  If
4583 	 * we're initializing the adapter, then we'll make any modifications
4584 	 * we want to the MTU/MSS Table and also initialize the congestion
4585 	 * parameters.
4586 	 */
4587 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4588 	if (state != DEV_STATE_INIT) {
4589 		int i;
4590 
4591 		/* The default MTU Table contains values 1492 and 1500.
4592 		 * However, for TCP, it's better to have two values which are
4593 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4594 		 * This allows us to have a TCP Data Payload which is a
4595 		 * multiple of 8 regardless of what combination of TCP Options
4596 		 * are in use (always a multiple of 4 bytes) which is
4597 		 * important for performance reasons.  For instance, if no
4598 		 * options are in use, then we have a 20-byte IP header and a
4599 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4600 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4601 		 * which is not a multiple of 8.  So using an MSS of 1488 in
4602 		 * this case results in a TCP Data Payload of 1448 bytes which
4603 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4604 		 * Stamps have been negotiated, then an MTU of 1500 bytes
4605 		 * results in a TCP Data Payload of 1448 bytes which, as
4606 		 * above, is a multiple of 8 bytes ...
4607 		 */
4608 		for (i = 0; i < NMTUS; i++)
4609 			if (adap->params.mtus[i] == 1492) {
4610 				adap->params.mtus[i] = 1488;
4611 				break;
4612 			}
4613 
4614 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4615 			     adap->params.b_wnd);
4616 	}
4617 	t4_init_sge_params(adap);
4618 	adap->flags |= FW_OK;
4619 	t4_init_tp_params(adap, true);
4620 	return 0;
4621 
4622 	/*
4623 	 * Something bad happened.  If a command timed out or failed with EIO
4624 	 * FW does not operate within its spec or something catastrophic
4625 	 * happened to HW/FW, stop issuing commands.
4626 	 */
4627 bye:
4628 	adap_free_hma_mem(adap);
4629 	kfree(adap->sge.egr_map);
4630 	kfree(adap->sge.ingr_map);
4631 	kfree(adap->sge.starving_fl);
4632 	kfree(adap->sge.txq_maperr);
4633 #ifdef CONFIG_DEBUG_FS
4634 	kfree(adap->sge.blocked_fl);
4635 #endif
4636 	if (ret != -ETIMEDOUT && ret != -EIO)
4637 		t4_fw_bye(adap, adap->mbox);
4638 	return ret;
4639 }
4640 
4641 /* EEH callbacks */
4642 
4643 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4644 					 pci_channel_state_t state)
4645 {
4646 	int i;
4647 	struct adapter *adap = pci_get_drvdata(pdev);
4648 
4649 	if (!adap)
4650 		goto out;
4651 
4652 	rtnl_lock();
4653 	adap->flags &= ~FW_OK;
4654 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4655 	spin_lock(&adap->stats_lock);
4656 	for_each_port(adap, i) {
4657 		struct net_device *dev = adap->port[i];
4658 		if (dev) {
4659 			netif_device_detach(dev);
4660 			netif_carrier_off(dev);
4661 		}
4662 	}
4663 	spin_unlock(&adap->stats_lock);
4664 	disable_interrupts(adap);
4665 	if (adap->flags & FULL_INIT_DONE)
4666 		cxgb_down(adap);
4667 	rtnl_unlock();
4668 	if ((adap->flags & DEV_ENABLED)) {
4669 		pci_disable_device(pdev);
4670 		adap->flags &= ~DEV_ENABLED;
4671 	}
4672 out:	return state == pci_channel_io_perm_failure ?
4673 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4674 }
4675 
4676 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4677 {
4678 	int i, ret;
4679 	struct fw_caps_config_cmd c;
4680 	struct adapter *adap = pci_get_drvdata(pdev);
4681 
4682 	if (!adap) {
4683 		pci_restore_state(pdev);
4684 		pci_save_state(pdev);
4685 		return PCI_ERS_RESULT_RECOVERED;
4686 	}
4687 
4688 	if (!(adap->flags & DEV_ENABLED)) {
4689 		if (pci_enable_device(pdev)) {
4690 			dev_err(&pdev->dev, "Cannot reenable PCI "
4691 					    "device after reset\n");
4692 			return PCI_ERS_RESULT_DISCONNECT;
4693 		}
4694 		adap->flags |= DEV_ENABLED;
4695 	}
4696 
4697 	pci_set_master(pdev);
4698 	pci_restore_state(pdev);
4699 	pci_save_state(pdev);
4700 	pci_cleanup_aer_uncorrect_error_status(pdev);
4701 
4702 	if (t4_wait_dev_ready(adap->regs) < 0)
4703 		return PCI_ERS_RESULT_DISCONNECT;
4704 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4705 		return PCI_ERS_RESULT_DISCONNECT;
4706 	adap->flags |= FW_OK;
4707 	if (adap_init1(adap, &c))
4708 		return PCI_ERS_RESULT_DISCONNECT;
4709 
4710 	for_each_port(adap, i) {
4711 		struct port_info *p = adap2pinfo(adap, i);
4712 
4713 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4714 				  NULL, NULL);
4715 		if (ret < 0)
4716 			return PCI_ERS_RESULT_DISCONNECT;
4717 		p->viid = ret;
4718 		p->xact_addr_filt = -1;
4719 	}
4720 
4721 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4722 		     adap->params.b_wnd);
4723 	setup_memwin(adap);
4724 	if (cxgb_up(adap))
4725 		return PCI_ERS_RESULT_DISCONNECT;
4726 	return PCI_ERS_RESULT_RECOVERED;
4727 }
4728 
4729 static void eeh_resume(struct pci_dev *pdev)
4730 {
4731 	int i;
4732 	struct adapter *adap = pci_get_drvdata(pdev);
4733 
4734 	if (!adap)
4735 		return;
4736 
4737 	rtnl_lock();
4738 	for_each_port(adap, i) {
4739 		struct net_device *dev = adap->port[i];
4740 		if (dev) {
4741 			if (netif_running(dev)) {
4742 				link_start(dev);
4743 				cxgb_set_rxmode(dev);
4744 			}
4745 			netif_device_attach(dev);
4746 		}
4747 	}
4748 	rtnl_unlock();
4749 }
4750 
4751 static const struct pci_error_handlers cxgb4_eeh = {
4752 	.error_detected = eeh_err_detected,
4753 	.slot_reset     = eeh_slot_reset,
4754 	.resume         = eeh_resume,
4755 };
4756 
4757 /* Return true if the Link Configuration supports "High Speeds" (those greater
4758  * than 1Gb/s).
4759  */
4760 static inline bool is_x_10g_port(const struct link_config *lc)
4761 {
4762 	unsigned int speeds, high_speeds;
4763 
4764 	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
4765 	high_speeds = speeds &
4766 			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
4767 
4768 	return high_speeds != 0;
4769 }
4770 
4771 /*
4772  * Perform default configuration of DMA queues depending on the number and type
4773  * of ports we found and the number of available CPUs.  Most settings can be
4774  * modified by the admin prior to actual use.
4775  */
4776 static void cfg_queues(struct adapter *adap)
4777 {
4778 	struct sge *s = &adap->sge;
4779 	int i = 0, n10g = 0, qidx = 0;
4780 #ifndef CONFIG_CHELSIO_T4_DCB
4781 	int q10g = 0;
4782 #endif
4783 
4784 	/* Reduce memory usage in kdump environment, disable all offload.
4785 	 */
4786 	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4787 		adap->params.offload = 0;
4788 		adap->params.crypto = 0;
4789 	}
4790 
4791 	n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4792 #ifdef CONFIG_CHELSIO_T4_DCB
4793 	/* For Data Center Bridging support we need to be able to support up
4794 	 * to 8 Traffic Priorities; each of which will be assigned to its
4795 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4796 	 */
4797 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4798 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4799 			MAX_ETH_QSETS, adap->params.nports * 8);
4800 		BUG_ON(1);
4801 	}
4802 
4803 	for_each_port(adap, i) {
4804 		struct port_info *pi = adap2pinfo(adap, i);
4805 
4806 		pi->first_qset = qidx;
4807 		pi->nqsets = is_kdump_kernel() ? 1 : 8;
4808 		qidx += pi->nqsets;
4809 	}
4810 #else /* !CONFIG_CHELSIO_T4_DCB */
4811 	/*
4812 	 * We default to 1 queue per non-10G port and up to # of cores queues
4813 	 * per 10G port.
4814 	 */
4815 	if (n10g)
4816 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4817 	if (q10g > netif_get_num_default_rss_queues())
4818 		q10g = netif_get_num_default_rss_queues();
4819 
4820 	if (is_kdump_kernel())
4821 		q10g = 1;
4822 
4823 	for_each_port(adap, i) {
4824 		struct port_info *pi = adap2pinfo(adap, i);
4825 
4826 		pi->first_qset = qidx;
4827 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4828 		qidx += pi->nqsets;
4829 	}
4830 #endif /* !CONFIG_CHELSIO_T4_DCB */
4831 
4832 	s->ethqsets = qidx;
4833 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4834 
4835 	if (is_uld(adap)) {
4836 		/*
4837 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4838 		 * otherwise we divide all available queues amongst the channels
4839 		 * capped by the number of available cores.
4840 		 */
4841 		if (n10g) {
4842 			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4843 			s->ofldqsets = roundup(i, adap->params.nports);
4844 		} else {
4845 			s->ofldqsets = adap->params.nports;
4846 		}
4847 	}
4848 
4849 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4850 		struct sge_eth_rxq *r = &s->ethrxq[i];
4851 
4852 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4853 		r->fl.size = 72;
4854 	}
4855 
4856 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4857 		s->ethtxq[i].q.size = 1024;
4858 
4859 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4860 		s->ctrlq[i].q.size = 512;
4861 
4862 	if (!is_t4(adap->params.chip))
4863 		s->ptptxq.q.size = 8;
4864 
4865 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4866 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4867 }
4868 
4869 /*
4870  * Reduce the number of Ethernet queues across all ports to at most n.
4871  * n provides at least one queue per port.
4872  */
4873 static void reduce_ethqs(struct adapter *adap, int n)
4874 {
4875 	int i;
4876 	struct port_info *pi;
4877 
4878 	while (n < adap->sge.ethqsets)
4879 		for_each_port(adap, i) {
4880 			pi = adap2pinfo(adap, i);
4881 			if (pi->nqsets > 1) {
4882 				pi->nqsets--;
4883 				adap->sge.ethqsets--;
4884 				if (adap->sge.ethqsets <= n)
4885 					break;
4886 			}
4887 		}
4888 
4889 	n = 0;
4890 	for_each_port(adap, i) {
4891 		pi = adap2pinfo(adap, i);
4892 		pi->first_qset = n;
4893 		n += pi->nqsets;
4894 	}
4895 }
4896 
4897 static int get_msix_info(struct adapter *adap)
4898 {
4899 	struct uld_msix_info *msix_info;
4900 	unsigned int max_ingq = 0;
4901 
4902 	if (is_offload(adap))
4903 		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4904 	if (is_pci_uld(adap))
4905 		max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4906 
4907 	if (!max_ingq)
4908 		goto out;
4909 
4910 	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4911 	if (!msix_info)
4912 		return -ENOMEM;
4913 
4914 	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4915 						 sizeof(long), GFP_KERNEL);
4916 	if (!adap->msix_bmap_ulds.msix_bmap) {
4917 		kfree(msix_info);
4918 		return -ENOMEM;
4919 	}
4920 	spin_lock_init(&adap->msix_bmap_ulds.lock);
4921 	adap->msix_info_ulds = msix_info;
4922 out:
4923 	return 0;
4924 }
4925 
4926 static void free_msix_info(struct adapter *adap)
4927 {
4928 	if (!(adap->num_uld && adap->num_ofld_uld))
4929 		return;
4930 
4931 	kfree(adap->msix_info_ulds);
4932 	kfree(adap->msix_bmap_ulds.msix_bmap);
4933 }
4934 
4935 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4936 #define EXTRA_VECS 2
4937 
4938 static int enable_msix(struct adapter *adap)
4939 {
4940 	int ofld_need = 0, uld_need = 0;
4941 	int i, j, want, need, allocated;
4942 	struct sge *s = &adap->sge;
4943 	unsigned int nchan = adap->params.nports;
4944 	struct msix_entry *entries;
4945 	int max_ingq = MAX_INGQ;
4946 
4947 	if (is_pci_uld(adap))
4948 		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4949 	if (is_offload(adap))
4950 		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4951 	entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4952 			  GFP_KERNEL);
4953 	if (!entries)
4954 		return -ENOMEM;
4955 
4956 	/* map for msix */
4957 	if (get_msix_info(adap)) {
4958 		adap->params.offload = 0;
4959 		adap->params.crypto = 0;
4960 	}
4961 
4962 	for (i = 0; i < max_ingq + 1; ++i)
4963 		entries[i].entry = i;
4964 
4965 	want = s->max_ethqsets + EXTRA_VECS;
4966 	if (is_offload(adap)) {
4967 		want += adap->num_ofld_uld * s->ofldqsets;
4968 		ofld_need = adap->num_ofld_uld * nchan;
4969 	}
4970 	if (is_pci_uld(adap)) {
4971 		want += adap->num_uld * s->ofldqsets;
4972 		uld_need = adap->num_uld * nchan;
4973 	}
4974 #ifdef CONFIG_CHELSIO_T4_DCB
4975 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4976 	 * each port.
4977 	 */
4978 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4979 #else
4980 	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4981 #endif
4982 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4983 	if (allocated < 0) {
4984 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4985 			 " not using MSI-X\n");
4986 		kfree(entries);
4987 		return allocated;
4988 	}
4989 
4990 	/* Distribute available vectors to the various queue groups.
4991 	 * Every group gets its minimum requirement and NIC gets top
4992 	 * priority for leftovers.
4993 	 */
4994 	i = allocated - EXTRA_VECS - ofld_need - uld_need;
4995 	if (i < s->max_ethqsets) {
4996 		s->max_ethqsets = i;
4997 		if (i < s->ethqsets)
4998 			reduce_ethqs(adap, i);
4999 	}
5000 	if (is_uld(adap)) {
5001 		if (allocated < want)
5002 			s->nqs_per_uld = nchan;
5003 		else
5004 			s->nqs_per_uld = s->ofldqsets;
5005 	}
5006 
5007 	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
5008 		adap->msix_info[i].vec = entries[i].vector;
5009 	if (is_uld(adap)) {
5010 		for (j = 0 ; i < allocated; ++i, j++) {
5011 			adap->msix_info_ulds[j].vec = entries[i].vector;
5012 			adap->msix_info_ulds[j].idx = i;
5013 		}
5014 		adap->msix_bmap_ulds.mapsize = j;
5015 	}
5016 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
5017 		 "nic %d per uld %d\n",
5018 		 allocated, s->max_ethqsets, s->nqs_per_uld);
5019 
5020 	kfree(entries);
5021 	return 0;
5022 }
5023 
5024 #undef EXTRA_VECS
5025 
5026 static int init_rss(struct adapter *adap)
5027 {
5028 	unsigned int i;
5029 	int err;
5030 
5031 	err = t4_init_rss_mode(adap, adap->mbox);
5032 	if (err)
5033 		return err;
5034 
5035 	for_each_port(adap, i) {
5036 		struct port_info *pi = adap2pinfo(adap, i);
5037 
5038 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5039 		if (!pi->rss)
5040 			return -ENOMEM;
5041 	}
5042 	return 0;
5043 }
5044 
5045 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
5046 					enum pci_bus_speed *speed,
5047 					enum pcie_link_width *width)
5048 {
5049 	u32 lnkcap1, lnkcap2;
5050 	int err1, err2;
5051 
5052 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
5053 
5054 	*speed = PCI_SPEED_UNKNOWN;
5055 	*width = PCIE_LNK_WIDTH_UNKNOWN;
5056 
5057 	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
5058 					  &lnkcap1);
5059 	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
5060 					  &lnkcap2);
5061 	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
5062 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5063 			*speed = PCIE_SPEED_8_0GT;
5064 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5065 			*speed = PCIE_SPEED_5_0GT;
5066 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5067 			*speed = PCIE_SPEED_2_5GT;
5068 	}
5069 	if (!err1) {
5070 		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
5071 		if (!lnkcap2) { /* pre-r3.0 */
5072 			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
5073 				*speed = PCIE_SPEED_5_0GT;
5074 			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
5075 				*speed = PCIE_SPEED_2_5GT;
5076 		}
5077 	}
5078 
5079 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5080 		return err1 ? err1 : err2 ? err2 : -EINVAL;
5081 	return 0;
5082 }
5083 
5084 static void cxgb4_check_pcie_caps(struct adapter *adap)
5085 {
5086 	enum pcie_link_width width, width_cap;
5087 	enum pci_bus_speed speed, speed_cap;
5088 
5089 #define PCIE_SPEED_STR(speed) \
5090 	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
5091 	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
5092 	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
5093 	 "Unknown")
5094 
5095 	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
5096 		dev_warn(adap->pdev_dev,
5097 			 "Unable to determine PCIe device BW capabilities\n");
5098 		return;
5099 	}
5100 
5101 	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
5102 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
5103 		dev_warn(adap->pdev_dev,
5104 			 "Unable to determine PCI Express bandwidth.\n");
5105 		return;
5106 	}
5107 
5108 	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
5109 		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
5110 	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
5111 		 width, width_cap);
5112 	if (speed < speed_cap || width < width_cap)
5113 		dev_info(adap->pdev_dev,
5114 			 "A slot with more lanes and/or higher speed is "
5115 			 "suggested for optimal performance.\n");
5116 }
5117 
5118 /* Dump basic information about the adapter */
5119 static void print_adapter_info(struct adapter *adapter)
5120 {
5121 	/* Hardware/Firmware/etc. Version/Revision IDs */
5122 	t4_dump_version_info(adapter);
5123 
5124 	/* Software/Hardware configuration */
5125 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5126 		 is_offload(adapter) ? "R" : "",
5127 		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
5128 		  (adapter->flags & USING_MSI) ? "MSI" : ""),
5129 		 is_offload(adapter) ? "Offload" : "non-Offload");
5130 }
5131 
5132 static void print_port_info(const struct net_device *dev)
5133 {
5134 	char buf[80];
5135 	char *bufp = buf;
5136 	const char *spd = "";
5137 	const struct port_info *pi = netdev_priv(dev);
5138 	const struct adapter *adap = pi->adapter;
5139 
5140 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
5141 		spd = " 2.5 GT/s";
5142 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
5143 		spd = " 5 GT/s";
5144 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
5145 		spd = " 8 GT/s";
5146 
5147 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5148 		bufp += sprintf(bufp, "100M/");
5149 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5150 		bufp += sprintf(bufp, "1G/");
5151 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5152 		bufp += sprintf(bufp, "10G/");
5153 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5154 		bufp += sprintf(bufp, "25G/");
5155 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5156 		bufp += sprintf(bufp, "40G/");
5157 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5158 		bufp += sprintf(bufp, "50G/");
5159 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5160 		bufp += sprintf(bufp, "100G/");
5161 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5162 		bufp += sprintf(bufp, "200G/");
5163 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5164 		bufp += sprintf(bufp, "400G/");
5165 	if (bufp != buf)
5166 		--bufp;
5167 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5168 
5169 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5170 		    dev->name, adap->params.vpd.id, adap->name, buf);
5171 }
5172 
5173 /*
5174  * Free the following resources:
5175  * - memory used for tables
5176  * - MSI/MSI-X
5177  * - net devices
5178  * - resources FW is holding for us
5179  */
5180 static void free_some_resources(struct adapter *adapter)
5181 {
5182 	unsigned int i;
5183 
5184 	kvfree(adapter->smt);
5185 	kvfree(adapter->l2t);
5186 	kvfree(adapter->srq);
5187 	t4_cleanup_sched(adapter);
5188 	kvfree(adapter->tids.tid_tab);
5189 	cxgb4_cleanup_tc_flower(adapter);
5190 	cxgb4_cleanup_tc_u32(adapter);
5191 	kfree(adapter->sge.egr_map);
5192 	kfree(adapter->sge.ingr_map);
5193 	kfree(adapter->sge.starving_fl);
5194 	kfree(adapter->sge.txq_maperr);
5195 #ifdef CONFIG_DEBUG_FS
5196 	kfree(adapter->sge.blocked_fl);
5197 #endif
5198 	disable_msi(adapter);
5199 
5200 	for_each_port(adapter, i)
5201 		if (adapter->port[i]) {
5202 			struct port_info *pi = adap2pinfo(adapter, i);
5203 
5204 			if (pi->viid != 0)
5205 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
5206 					   0, pi->viid);
5207 			kfree(adap2pinfo(adapter, i)->rss);
5208 			free_netdev(adapter->port[i]);
5209 		}
5210 	if (adapter->flags & FW_OK)
5211 		t4_fw_bye(adapter, adapter->pf);
5212 }
5213 
5214 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5215 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5216 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5217 #define SEGMENT_SIZE 128
5218 
5219 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
5220 {
5221 	u16 device_id;
5222 
5223 	/* Retrieve adapter's device ID */
5224 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
5225 
5226 	switch (device_id >> 12) {
5227 	case CHELSIO_T4:
5228 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5229 	case CHELSIO_T5:
5230 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5231 	case CHELSIO_T6:
5232 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5233 	default:
5234 		dev_err(&pdev->dev, "Device %d is not supported\n",
5235 			device_id);
5236 	}
5237 	return -EINVAL;
5238 }
5239 
5240 #ifdef CONFIG_PCI_IOV
5241 static void cxgb4_mgmt_setup(struct net_device *dev)
5242 {
5243 	dev->type = ARPHRD_NONE;
5244 	dev->mtu = 0;
5245 	dev->hard_header_len = 0;
5246 	dev->addr_len = 0;
5247 	dev->tx_queue_len = 0;
5248 	dev->flags |= IFF_NOARP;
5249 	dev->priv_flags |= IFF_NO_QUEUE;
5250 
5251 	/* Initialize the device structure. */
5252 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5253 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5254 }
5255 
5256 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5257 {
5258 	struct adapter *adap = pci_get_drvdata(pdev);
5259 	int err = 0;
5260 	int current_vfs = pci_num_vf(pdev);
5261 	u32 pcie_fw;
5262 
5263 	pcie_fw = readl(adap->regs + PCIE_FW_A);
5264 	/* Check if cxgb4 is the MASTER and fw is initialized */
5265 	if (num_vfs &&
5266 	    (!(pcie_fw & PCIE_FW_INIT_F) ||
5267 	    !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
5268 	    PCIE_FW_MASTER_G(pcie_fw) != CXGB4_UNIFIED_PF)) {
5269 		dev_warn(&pdev->dev,
5270 			 "cxgb4 driver needs to be MASTER to support SRIOV\n");
5271 		return -EOPNOTSUPP;
5272 	}
5273 
5274 	/* If any of the VF's is already assigned to Guest OS, then
5275 	 * SRIOV for the same cannot be modified
5276 	 */
5277 	if (current_vfs && pci_vfs_assigned(pdev)) {
5278 		dev_err(&pdev->dev,
5279 			"Cannot modify SR-IOV while VFs are assigned\n");
5280 		return current_vfs;
5281 	}
5282 	/* Note that the upper-level code ensures that we're never called with
5283 	 * a non-zero "num_vfs" when we already have VFs instantiated.  But
5284 	 * it never hurts to code defensively.
5285 	 */
5286 	if (num_vfs != 0 && current_vfs != 0)
5287 		return -EBUSY;
5288 
5289 	/* Nothing to do for no change. */
5290 	if (num_vfs == current_vfs)
5291 		return num_vfs;
5292 
5293 	/* Disable SRIOV when zero is passed. */
5294 	if (!num_vfs) {
5295 		pci_disable_sriov(pdev);
5296 		/* free VF Management Interface */
5297 		unregister_netdev(adap->port[0]);
5298 		free_netdev(adap->port[0]);
5299 		adap->port[0] = NULL;
5300 
5301 		/* free VF resources */
5302 		adap->num_vfs = 0;
5303 		kfree(adap->vfinfo);
5304 		adap->vfinfo = NULL;
5305 		return 0;
5306 	}
5307 
5308 	if (!current_vfs) {
5309 		struct fw_pfvf_cmd port_cmd, port_rpl;
5310 		struct net_device *netdev;
5311 		unsigned int pmask, port;
5312 		struct pci_dev *pbridge;
5313 		struct port_info *pi;
5314 		char name[IFNAMSIZ];
5315 		u32 devcap2;
5316 		u16 flags;
5317 		int pos;
5318 
5319 		/* If we want to instantiate Virtual Functions, then our
5320 		 * parent bridge's PCI-E needs to support Alternative Routing
5321 		 * ID (ARI) because our VFs will show up at function offset 8
5322 		 * and above.
5323 		 */
5324 		pbridge = pdev->bus->self;
5325 		pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP);
5326 		pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags);
5327 		pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2);
5328 
5329 		if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5330 		    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5331 			/* Our parent bridge does not support ARI so issue a
5332 			 * warning and skip instantiating the VFs.  They
5333 			 * won't be reachable.
5334 			 */
5335 			dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5336 				 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5337 				 PCI_FUNC(pbridge->devfn));
5338 			return -ENOTSUPP;
5339 		}
5340 		memset(&port_cmd, 0, sizeof(port_cmd));
5341 		port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5342 						 FW_CMD_REQUEST_F |
5343 						 FW_CMD_READ_F |
5344 						 FW_PFVF_CMD_PFN_V(adap->pf) |
5345 						 FW_PFVF_CMD_VFN_V(0));
5346 		port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
5347 		err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
5348 				 &port_rpl);
5349 		if (err)
5350 			return err;
5351 		pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
5352 		port = ffs(pmask) - 1;
5353 		/* Allocate VF Management Interface. */
5354 		snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
5355 			 adap->pf);
5356 		netdev = alloc_netdev(sizeof(struct port_info),
5357 				      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
5358 		if (!netdev)
5359 			return -ENOMEM;
5360 
5361 		pi = netdev_priv(netdev);
5362 		pi->adapter = adap;
5363 		pi->lport = port;
5364 		pi->tx_chan = port;
5365 		SET_NETDEV_DEV(netdev, &pdev->dev);
5366 
5367 		adap->port[0] = netdev;
5368 		pi->port_id = 0;
5369 
5370 		err = register_netdev(adap->port[0]);
5371 		if (err) {
5372 			pr_info("Unable to register VF mgmt netdev %s\n", name);
5373 			free_netdev(adap->port[0]);
5374 			adap->port[0] = NULL;
5375 			return err;
5376 		}
5377 		/* Allocate and set up VF Information. */
5378 		adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
5379 				       sizeof(struct vf_info), GFP_KERNEL);
5380 		if (!adap->vfinfo) {
5381 			unregister_netdev(adap->port[0]);
5382 			free_netdev(adap->port[0]);
5383 			adap->port[0] = NULL;
5384 			return -ENOMEM;
5385 		}
5386 		cxgb4_mgmt_fill_vf_station_mac_addr(adap);
5387 	}
5388 	/* Instantiate the requested number of VFs. */
5389 	err = pci_enable_sriov(pdev, num_vfs);
5390 	if (err) {
5391 		pr_info("Unable to instantiate %d VFs\n", num_vfs);
5392 		if (!current_vfs) {
5393 			unregister_netdev(adap->port[0]);
5394 			free_netdev(adap->port[0]);
5395 			adap->port[0] = NULL;
5396 			kfree(adap->vfinfo);
5397 			adap->vfinfo = NULL;
5398 		}
5399 		return err;
5400 	}
5401 
5402 	adap->num_vfs = num_vfs;
5403 	return num_vfs;
5404 }
5405 #endif /* CONFIG_PCI_IOV */
5406 
5407 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5408 {
5409 	int func, i, err, s_qpp, qpp, num_seg;
5410 	struct port_info *pi;
5411 	bool highdma = false;
5412 	struct adapter *adapter = NULL;
5413 	struct net_device *netdev;
5414 	void __iomem *regs;
5415 	u32 whoami, pl_rev;
5416 	enum chip_type chip;
5417 	static int adap_idx = 1;
5418 
5419 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5420 
5421 	err = pci_request_regions(pdev, KBUILD_MODNAME);
5422 	if (err) {
5423 		/* Just info, some other driver may have claimed the device. */
5424 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5425 		return err;
5426 	}
5427 
5428 	err = pci_enable_device(pdev);
5429 	if (err) {
5430 		dev_err(&pdev->dev, "cannot enable PCI device\n");
5431 		goto out_release_regions;
5432 	}
5433 
5434 	regs = pci_ioremap_bar(pdev, 0);
5435 	if (!regs) {
5436 		dev_err(&pdev->dev, "cannot map device registers\n");
5437 		err = -ENOMEM;
5438 		goto out_disable_device;
5439 	}
5440 
5441 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5442 	if (!adapter) {
5443 		err = -ENOMEM;
5444 		goto out_unmap_bar0;
5445 	}
5446 
5447 	adapter->regs = regs;
5448 	err = t4_wait_dev_ready(regs);
5449 	if (err < 0)
5450 		goto out_free_adapter;
5451 
5452 	/* We control everything through one PF */
5453 	whoami = readl(regs + PL_WHOAMI_A);
5454 	pl_rev = REV_G(readl(regs + PL_REV_A));
5455 	chip = get_chip_type(pdev, pl_rev);
5456 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
5457 		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5458 
5459 	adapter->pdev = pdev;
5460 	adapter->pdev_dev = &pdev->dev;
5461 	adapter->name = pci_name(pdev);
5462 	adapter->mbox = func;
5463 	adapter->pf = func;
5464 	adapter->params.chip = chip;
5465 	adapter->adap_idx = adap_idx;
5466 	adapter->msg_enable = DFLT_MSG_ENABLE;
5467 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5468 				    (sizeof(struct mbox_cmd) *
5469 				     T4_OS_LOG_MBOX_CMDS),
5470 				    GFP_KERNEL);
5471 	if (!adapter->mbox_log) {
5472 		err = -ENOMEM;
5473 		goto out_free_adapter;
5474 	}
5475 	spin_lock_init(&adapter->mbox_lock);
5476 	INIT_LIST_HEAD(&adapter->mlist.list);
5477 	pci_set_drvdata(pdev, adapter);
5478 
5479 	if (func != ent->driver_data) {
5480 		pci_disable_device(pdev);
5481 		pci_save_state(pdev);        /* to restore SR-IOV later */
5482 		return 0;
5483 	}
5484 
5485 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5486 		highdma = true;
5487 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5488 		if (err) {
5489 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5490 				"coherent allocations\n");
5491 			goto out_free_adapter;
5492 		}
5493 	} else {
5494 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5495 		if (err) {
5496 			dev_err(&pdev->dev, "no usable DMA configuration\n");
5497 			goto out_free_adapter;
5498 		}
5499 	}
5500 
5501 	pci_enable_pcie_error_reporting(pdev);
5502 	pci_set_master(pdev);
5503 	pci_save_state(pdev);
5504 	adap_idx++;
5505 	adapter->workq = create_singlethread_workqueue("cxgb4");
5506 	if (!adapter->workq) {
5507 		err = -ENOMEM;
5508 		goto out_free_adapter;
5509 	}
5510 
5511 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5512 
5513 	/* PCI device has been enabled */
5514 	adapter->flags |= DEV_ENABLED;
5515 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5516 
5517 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
5518 	 * Ingress Packet Data to Free List Buffers in order to allow for
5519 	 * chipset performance optimizations between the Root Complex and
5520 	 * Memory Controllers.  (Messages to the associated Ingress Queue
5521 	 * notifying new Packet Placement in the Free Lists Buffers will be
5522 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
5523 	 * all preceding PCIe Transaction Layer Packets will be processed
5524 	 * first.)  But some Root Complexes have various issues with Upstream
5525 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
5526 	 * The PCIe devices which under the Root Complexes will be cleared the
5527 	 * Relaxed Ordering bit in the configuration space, So we check our
5528 	 * PCIe configuration space to see if it's flagged with advice against
5529 	 * using Relaxed Ordering.
5530 	 */
5531 	if (!pcie_relaxed_ordering_enabled(pdev))
5532 		adapter->flags |= ROOT_NO_RELAXED_ORDERING;
5533 
5534 	spin_lock_init(&adapter->stats_lock);
5535 	spin_lock_init(&adapter->tid_release_lock);
5536 	spin_lock_init(&adapter->win0_lock);
5537 
5538 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5539 	INIT_WORK(&adapter->db_full_task, process_db_full);
5540 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
5541 	INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
5542 
5543 	err = t4_prep_adapter(adapter);
5544 	if (err)
5545 		goto out_free_adapter;
5546 
5547 
5548 	if (!is_t4(adapter->params.chip)) {
5549 		s_qpp = (QUEUESPERPAGEPF0_S +
5550 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5551 			adapter->pf);
5552 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5553 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5554 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
5555 
5556 		/* Each segment size is 128B. Write coalescing is enabled only
5557 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5558 		 * queue is less no of segments that can be accommodated in
5559 		 * a page size.
5560 		 */
5561 		if (qpp > num_seg) {
5562 			dev_err(&pdev->dev,
5563 				"Incorrect number of egress queues per page\n");
5564 			err = -EINVAL;
5565 			goto out_free_adapter;
5566 		}
5567 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5568 		pci_resource_len(pdev, 2));
5569 		if (!adapter->bar2) {
5570 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
5571 			err = -ENOMEM;
5572 			goto out_free_adapter;
5573 		}
5574 	}
5575 
5576 	setup_memwin(adapter);
5577 	err = adap_init0(adapter);
5578 #ifdef CONFIG_DEBUG_FS
5579 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5580 #endif
5581 	setup_memwin_rdma(adapter);
5582 	if (err)
5583 		goto out_unmap_bar;
5584 
5585 	/* configure SGE_STAT_CFG_A to read WC stats */
5586 	if (!is_t4(adapter->params.chip))
5587 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5588 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5589 			      T6_STATMODE_V(0)));
5590 
5591 	for_each_port(adapter, i) {
5592 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
5593 					   MAX_ETH_QSETS);
5594 		if (!netdev) {
5595 			err = -ENOMEM;
5596 			goto out_free_dev;
5597 		}
5598 
5599 		SET_NETDEV_DEV(netdev, &pdev->dev);
5600 
5601 		adapter->port[i] = netdev;
5602 		pi = netdev_priv(netdev);
5603 		pi->adapter = adapter;
5604 		pi->xact_addr_filt = -1;
5605 		pi->port_id = i;
5606 		netdev->irq = pdev->irq;
5607 
5608 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5609 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5610 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
5611 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5612 			NETIF_F_HW_TC;
5613 
5614 		if (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5)
5615 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
5616 
5617 		if (highdma)
5618 			netdev->hw_features |= NETIF_F_HIGHDMA;
5619 		netdev->features |= netdev->hw_features;
5620 		netdev->vlan_features = netdev->features & VLAN_FEAT;
5621 
5622 		netdev->priv_flags |= IFF_UNICAST_FLT;
5623 
5624 		/* MTU range: 81 - 9600 */
5625 		netdev->min_mtu = 81;              /* accommodate SACK */
5626 		netdev->max_mtu = MAX_MTU;
5627 
5628 		netdev->netdev_ops = &cxgb4_netdev_ops;
5629 #ifdef CONFIG_CHELSIO_T4_DCB
5630 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
5631 		cxgb4_dcb_state_init(netdev);
5632 #endif
5633 		cxgb4_set_ethtool_ops(netdev);
5634 	}
5635 
5636 	cxgb4_init_ethtool_dump(adapter);
5637 
5638 	pci_set_drvdata(pdev, adapter);
5639 
5640 	if (adapter->flags & FW_OK) {
5641 		err = t4_port_init(adapter, func, func, 0);
5642 		if (err)
5643 			goto out_free_dev;
5644 	} else if (adapter->params.nports == 1) {
5645 		/* If we don't have a connection to the firmware -- possibly
5646 		 * because of an error -- grab the raw VPD parameters so we
5647 		 * can set the proper MAC Address on the debug network
5648 		 * interface that we've created.
5649 		 */
5650 		u8 hw_addr[ETH_ALEN];
5651 		u8 *na = adapter->params.vpd.na;
5652 
5653 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5654 		if (!err) {
5655 			for (i = 0; i < ETH_ALEN; i++)
5656 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5657 					      hex2val(na[2 * i + 1]));
5658 			t4_set_hw_addr(adapter, 0, hw_addr);
5659 		}
5660 	}
5661 
5662 	/* Configure queues and allocate tables now, they can be needed as
5663 	 * soon as the first register_netdev completes.
5664 	 */
5665 	cfg_queues(adapter);
5666 
5667 	adapter->smt = t4_init_smt();
5668 	if (!adapter->smt) {
5669 		/* We tolerate a lack of SMT, giving up some functionality */
5670 		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
5671 	}
5672 
5673 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5674 	if (!adapter->l2t) {
5675 		/* We tolerate a lack of L2T, giving up some functionality */
5676 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5677 		adapter->params.offload = 0;
5678 	}
5679 
5680 #if IS_ENABLED(CONFIG_IPV6)
5681 	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5682 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5683 		/* CLIP functionality is not present in hardware,
5684 		 * hence disable all offload features
5685 		 */
5686 		dev_warn(&pdev->dev,
5687 			 "CLIP not enabled in hardware, continuing\n");
5688 		adapter->params.offload = 0;
5689 	} else {
5690 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5691 						  adapter->clipt_end);
5692 		if (!adapter->clipt) {
5693 			/* We tolerate a lack of clip_table, giving up
5694 			 * some functionality
5695 			 */
5696 			dev_warn(&pdev->dev,
5697 				 "could not allocate Clip table, continuing\n");
5698 			adapter->params.offload = 0;
5699 		}
5700 	}
5701 #endif
5702 
5703 	for_each_port(adapter, i) {
5704 		pi = adap2pinfo(adapter, i);
5705 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5706 		if (!pi->sched_tbl)
5707 			dev_warn(&pdev->dev,
5708 				 "could not activate scheduling on port %d\n",
5709 				 i);
5710 	}
5711 
5712 	if (tid_init(&adapter->tids) < 0) {
5713 		dev_warn(&pdev->dev, "could not allocate TID table, "
5714 			 "continuing\n");
5715 		adapter->params.offload = 0;
5716 	} else {
5717 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5718 		if (!adapter->tc_u32)
5719 			dev_warn(&pdev->dev,
5720 				 "could not offload tc u32, continuing\n");
5721 
5722 		if (cxgb4_init_tc_flower(adapter))
5723 			dev_warn(&pdev->dev,
5724 				 "could not offload tc flower, continuing\n");
5725 	}
5726 
5727 	if (is_offload(adapter) || is_hashfilter(adapter)) {
5728 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5729 			u32 hash_base, hash_reg;
5730 
5731 			if (chip <= CHELSIO_T5) {
5732 				hash_reg = LE_DB_TID_HASHBASE_A;
5733 				hash_base = t4_read_reg(adapter, hash_reg);
5734 				adapter->tids.hash_base = hash_base / 4;
5735 			} else {
5736 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5737 				hash_base = t4_read_reg(adapter, hash_reg);
5738 				adapter->tids.hash_base = hash_base;
5739 			}
5740 		}
5741 	}
5742 
5743 	/* See what interrupts we'll be using */
5744 	if (msi > 1 && enable_msix(adapter) == 0)
5745 		adapter->flags |= USING_MSIX;
5746 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5747 		adapter->flags |= USING_MSI;
5748 		if (msi > 1)
5749 			free_msix_info(adapter);
5750 	}
5751 
5752 	/* check for PCI Express bandwidth capabiltites */
5753 	cxgb4_check_pcie_caps(adapter);
5754 
5755 	err = init_rss(adapter);
5756 	if (err)
5757 		goto out_free_dev;
5758 
5759 	err = setup_fw_sge_queues(adapter);
5760 	if (err) {
5761 		dev_err(adapter->pdev_dev,
5762 			"FW sge queue allocation failed, err %d", err);
5763 		goto out_free_dev;
5764 	}
5765 
5766 	/*
5767 	 * The card is now ready to go.  If any errors occur during device
5768 	 * registration we do not fail the whole card but rather proceed only
5769 	 * with the ports we manage to register successfully.  However we must
5770 	 * register at least one net device.
5771 	 */
5772 	for_each_port(adapter, i) {
5773 		pi = adap2pinfo(adapter, i);
5774 		adapter->port[i]->dev_port = pi->lport;
5775 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5776 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5777 
5778 		netif_carrier_off(adapter->port[i]);
5779 
5780 		err = register_netdev(adapter->port[i]);
5781 		if (err)
5782 			break;
5783 		adapter->chan_map[pi->tx_chan] = i;
5784 		print_port_info(adapter->port[i]);
5785 	}
5786 	if (i == 0) {
5787 		dev_err(&pdev->dev, "could not register any net devices\n");
5788 		goto out_free_dev;
5789 	}
5790 	if (err) {
5791 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5792 		err = 0;
5793 	}
5794 
5795 	if (cxgb4_debugfs_root) {
5796 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5797 							   cxgb4_debugfs_root);
5798 		setup_debugfs(adapter);
5799 	}
5800 
5801 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5802 	pdev->needs_freset = 1;
5803 
5804 	if (is_uld(adapter)) {
5805 		mutex_lock(&uld_mutex);
5806 		list_add_tail(&adapter->list_node, &adapter_list);
5807 		mutex_unlock(&uld_mutex);
5808 	}
5809 
5810 	if (!is_t4(adapter->params.chip))
5811 		cxgb4_ptp_init(adapter);
5812 
5813 	print_adapter_info(adapter);
5814 	return 0;
5815 
5816  out_free_dev:
5817 	t4_free_sge_resources(adapter);
5818 	free_some_resources(adapter);
5819 	if (adapter->flags & USING_MSIX)
5820 		free_msix_info(adapter);
5821 	if (adapter->num_uld || adapter->num_ofld_uld)
5822 		t4_uld_mem_free(adapter);
5823  out_unmap_bar:
5824 	if (!is_t4(adapter->params.chip))
5825 		iounmap(adapter->bar2);
5826  out_free_adapter:
5827 	if (adapter->workq)
5828 		destroy_workqueue(adapter->workq);
5829 
5830 	kfree(adapter->mbox_log);
5831 	kfree(adapter);
5832  out_unmap_bar0:
5833 	iounmap(regs);
5834  out_disable_device:
5835 	pci_disable_pcie_error_reporting(pdev);
5836 	pci_disable_device(pdev);
5837  out_release_regions:
5838 	pci_release_regions(pdev);
5839 	return err;
5840 }
5841 
5842 static void remove_one(struct pci_dev *pdev)
5843 {
5844 	struct adapter *adapter = pci_get_drvdata(pdev);
5845 
5846 	if (!adapter) {
5847 		pci_release_regions(pdev);
5848 		return;
5849 	}
5850 
5851 	adapter->flags |= SHUTTING_DOWN;
5852 
5853 	if (adapter->pf == 4) {
5854 		int i;
5855 
5856 		/* Tear down per-adapter Work Queue first since it can contain
5857 		 * references to our adapter data structure.
5858 		 */
5859 		destroy_workqueue(adapter->workq);
5860 
5861 		if (is_uld(adapter)) {
5862 			detach_ulds(adapter);
5863 			t4_uld_clean_up(adapter);
5864 		}
5865 
5866 		adap_free_hma_mem(adapter);
5867 
5868 		disable_interrupts(adapter);
5869 
5870 		for_each_port(adapter, i)
5871 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5872 				unregister_netdev(adapter->port[i]);
5873 
5874 		debugfs_remove_recursive(adapter->debugfs_root);
5875 
5876 		if (!is_t4(adapter->params.chip))
5877 			cxgb4_ptp_stop(adapter);
5878 
5879 		/* If we allocated filters, free up state associated with any
5880 		 * valid filters ...
5881 		 */
5882 		clear_all_filters(adapter);
5883 
5884 		if (adapter->flags & FULL_INIT_DONE)
5885 			cxgb_down(adapter);
5886 
5887 		if (adapter->flags & USING_MSIX)
5888 			free_msix_info(adapter);
5889 		if (adapter->num_uld || adapter->num_ofld_uld)
5890 			t4_uld_mem_free(adapter);
5891 		free_some_resources(adapter);
5892 #if IS_ENABLED(CONFIG_IPV6)
5893 		t4_cleanup_clip_tbl(adapter);
5894 #endif
5895 		if (!is_t4(adapter->params.chip))
5896 			iounmap(adapter->bar2);
5897 	}
5898 #ifdef CONFIG_PCI_IOV
5899 	else {
5900 		cxgb4_iov_configure(adapter->pdev, 0);
5901 	}
5902 #endif
5903 	iounmap(adapter->regs);
5904 	pci_disable_pcie_error_reporting(pdev);
5905 	if ((adapter->flags & DEV_ENABLED)) {
5906 		pci_disable_device(pdev);
5907 		adapter->flags &= ~DEV_ENABLED;
5908 	}
5909 	pci_release_regions(pdev);
5910 	kfree(adapter->mbox_log);
5911 	synchronize_rcu();
5912 	kfree(adapter);
5913 }
5914 
5915 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5916  * delivery.  This is essentially a stripped down version of the PCI remove()
5917  * function where we do the minimal amount of work necessary to shutdown any
5918  * further activity.
5919  */
5920 static void shutdown_one(struct pci_dev *pdev)
5921 {
5922 	struct adapter *adapter = pci_get_drvdata(pdev);
5923 
5924 	/* As with remove_one() above (see extended comment), we only want do
5925 	 * do cleanup on PCI Devices which went all the way through init_one()
5926 	 * ...
5927 	 */
5928 	if (!adapter) {
5929 		pci_release_regions(pdev);
5930 		return;
5931 	}
5932 
5933 	adapter->flags |= SHUTTING_DOWN;
5934 
5935 	if (adapter->pf == 4) {
5936 		int i;
5937 
5938 		for_each_port(adapter, i)
5939 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5940 				cxgb_close(adapter->port[i]);
5941 
5942 		if (is_uld(adapter)) {
5943 			detach_ulds(adapter);
5944 			t4_uld_clean_up(adapter);
5945 		}
5946 
5947 		disable_interrupts(adapter);
5948 		disable_msi(adapter);
5949 
5950 		t4_sge_stop(adapter);
5951 		if (adapter->flags & FW_OK)
5952 			t4_fw_bye(adapter, adapter->mbox);
5953 	}
5954 }
5955 
5956 static struct pci_driver cxgb4_driver = {
5957 	.name     = KBUILD_MODNAME,
5958 	.id_table = cxgb4_pci_tbl,
5959 	.probe    = init_one,
5960 	.remove   = remove_one,
5961 	.shutdown = shutdown_one,
5962 #ifdef CONFIG_PCI_IOV
5963 	.sriov_configure = cxgb4_iov_configure,
5964 #endif
5965 	.err_handler = &cxgb4_eeh,
5966 };
5967 
5968 static int __init cxgb4_init_module(void)
5969 {
5970 	int ret;
5971 
5972 	/* Debugfs support is optional, just warn if this fails */
5973 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5974 	if (!cxgb4_debugfs_root)
5975 		pr_warn("could not create debugfs entry, continuing\n");
5976 
5977 	ret = pci_register_driver(&cxgb4_driver);
5978 	if (ret < 0)
5979 		debugfs_remove(cxgb4_debugfs_root);
5980 
5981 #if IS_ENABLED(CONFIG_IPV6)
5982 	if (!inet6addr_registered) {
5983 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5984 		inet6addr_registered = true;
5985 	}
5986 #endif
5987 
5988 	return ret;
5989 }
5990 
5991 static void __exit cxgb4_cleanup_module(void)
5992 {
5993 #if IS_ENABLED(CONFIG_IPV6)
5994 	if (inet6addr_registered) {
5995 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5996 		inet6addr_registered = false;
5997 	}
5998 #endif
5999 	pci_unregister_driver(&cxgb4_driver);
6000 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6001 }
6002 
6003 module_init(cxgb4_init_module);
6004 module_exit(cxgb4_cleanup_module);
6005