1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <linux/uaccess.h> 66 #include <linux/crash_dump.h> 67 #include <net/udp_tunnel.h> 68 #include <net/xfrm.h> 69 #if defined(CONFIG_CHELSIO_TLS_DEVICE) 70 #include <net/tls.h> 71 #endif 72 73 #include "cxgb4.h" 74 #include "cxgb4_filter.h" 75 #include "t4_regs.h" 76 #include "t4_values.h" 77 #include "t4_msg.h" 78 #include "t4fw_api.h" 79 #include "t4fw_version.h" 80 #include "cxgb4_dcb.h" 81 #include "srq.h" 82 #include "cxgb4_debugfs.h" 83 #include "clip_tbl.h" 84 #include "l2t.h" 85 #include "smt.h" 86 #include "sched.h" 87 #include "cxgb4_tc_u32.h" 88 #include "cxgb4_tc_flower.h" 89 #include "cxgb4_tc_mqprio.h" 90 #include "cxgb4_tc_matchall.h" 91 #include "cxgb4_ptp.h" 92 #include "cxgb4_cudbg.h" 93 94 char cxgb4_driver_name[] = KBUILD_MODNAME; 95 96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 97 98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 99 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 100 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 101 102 /* Macros needed to support the PCI Device ID Table ... 103 */ 104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 105 static const struct pci_device_id cxgb4_pci_tbl[] = { 106 #define CXGB4_UNIFIED_PF 0x4 107 108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 109 110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 111 * called for both. 112 */ 113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 114 115 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 116 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 117 118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 119 { 0, } \ 120 } 121 122 #include "t4_pci_id_tbl.h" 123 124 #define FW4_FNAME "cxgb4/t4fw.bin" 125 #define FW5_FNAME "cxgb4/t5fw.bin" 126 #define FW6_FNAME "cxgb4/t6fw.bin" 127 #define FW4_CFNAME "cxgb4/t4-config.txt" 128 #define FW5_CFNAME "cxgb4/t5-config.txt" 129 #define FW6_CFNAME "cxgb4/t6-config.txt" 130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 132 #define PHY_AQ1202_DEVICEID 0x4409 133 #define PHY_BCM84834_DEVICEID 0x4486 134 135 MODULE_DESCRIPTION(DRV_DESC); 136 MODULE_AUTHOR("Chelsio Communications"); 137 MODULE_LICENSE("Dual BSD/GPL"); 138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 139 MODULE_FIRMWARE(FW4_FNAME); 140 MODULE_FIRMWARE(FW5_FNAME); 141 MODULE_FIRMWARE(FW6_FNAME); 142 143 /* 144 * The driver uses the best interrupt scheme available on a platform in the 145 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 146 * of these schemes the driver may consider as follows: 147 * 148 * msi = 2: choose from among all three options 149 * msi = 1: only consider MSI and INTx interrupts 150 * msi = 0: force INTx interrupts 151 */ 152 static int msi = 2; 153 154 module_param(msi, int, 0644); 155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 156 157 /* 158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 159 * offset by 2 bytes in order to have the IP headers line up on 4-byte 160 * boundaries. This is a requirement for many architectures which will throw 161 * a machine check fault if an attempt is made to access one of the 4-byte IP 162 * header fields on a non-4-byte boundary. And it's a major performance issue 163 * even on some architectures which allow it like some implementations of the 164 * x86 ISA. However, some architectures don't mind this and for some very 165 * edge-case performance sensitive applications (like forwarding large volumes 166 * of small packets), setting this DMA offset to 0 will decrease the number of 167 * PCI-E Bus transfers enough to measurably affect performance. 168 */ 169 static int rx_dma_offset = 2; 170 171 /* TX Queue select used to determine what algorithm to use for selecting TX 172 * queue. Select between the kernel provided function (select_queue=0) or user 173 * cxgb_select_queue function (select_queue=1) 174 * 175 * Default: select_queue=0 176 */ 177 static int select_queue; 178 module_param(select_queue, int, 0644); 179 MODULE_PARM_DESC(select_queue, 180 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 181 182 static struct dentry *cxgb4_debugfs_root; 183 184 LIST_HEAD(adapter_list); 185 DEFINE_MUTEX(uld_mutex); 186 LIST_HEAD(uld_list); 187 188 static int cfg_queues(struct adapter *adap); 189 190 static void link_report(struct net_device *dev) 191 { 192 if (!netif_carrier_ok(dev)) 193 netdev_info(dev, "link down\n"); 194 else { 195 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 196 197 const char *s; 198 const struct port_info *p = netdev_priv(dev); 199 200 switch (p->link_cfg.speed) { 201 case 100: 202 s = "100Mbps"; 203 break; 204 case 1000: 205 s = "1Gbps"; 206 break; 207 case 10000: 208 s = "10Gbps"; 209 break; 210 case 25000: 211 s = "25Gbps"; 212 break; 213 case 40000: 214 s = "40Gbps"; 215 break; 216 case 50000: 217 s = "50Gbps"; 218 break; 219 case 100000: 220 s = "100Gbps"; 221 break; 222 default: 223 pr_info("%s: unsupported speed: %d\n", 224 dev->name, p->link_cfg.speed); 225 return; 226 } 227 228 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 229 fc[p->link_cfg.fc]); 230 } 231 } 232 233 #ifdef CONFIG_CHELSIO_T4_DCB 234 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 235 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 236 { 237 struct port_info *pi = netdev_priv(dev); 238 struct adapter *adap = pi->adapter; 239 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 240 int i; 241 242 /* We use a simple mapping of Port TX Queue Index to DCB 243 * Priority when we're enabling DCB. 244 */ 245 for (i = 0; i < pi->nqsets; i++, txq++) { 246 u32 name, value; 247 int err; 248 249 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 250 FW_PARAMS_PARAM_X_V( 251 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 252 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 253 value = enable ? i : 0xffffffff; 254 255 /* Since we can be called while atomic (from "interrupt 256 * level") we need to issue the Set Parameters Commannd 257 * without sleeping (timeout < 0). 258 */ 259 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 260 &name, &value, 261 -FW_CMD_MAX_TIMEOUT); 262 263 if (err) 264 dev_err(adap->pdev_dev, 265 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 266 enable ? "set" : "unset", pi->port_id, i, -err); 267 else 268 txq->dcb_prio = enable ? value : 0; 269 } 270 } 271 272 int cxgb4_dcb_enabled(const struct net_device *dev) 273 { 274 struct port_info *pi = netdev_priv(dev); 275 276 if (!pi->dcb.enabled) 277 return 0; 278 279 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 280 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 281 } 282 #endif /* CONFIG_CHELSIO_T4_DCB */ 283 284 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 285 { 286 struct net_device *dev = adapter->port[port_id]; 287 288 /* Skip changes from disabled ports. */ 289 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 290 if (link_stat) 291 netif_carrier_on(dev); 292 else { 293 #ifdef CONFIG_CHELSIO_T4_DCB 294 if (cxgb4_dcb_enabled(dev)) { 295 cxgb4_dcb_reset(dev); 296 dcb_tx_queue_prio_enable(dev, false); 297 } 298 #endif /* CONFIG_CHELSIO_T4_DCB */ 299 netif_carrier_off(dev); 300 } 301 302 link_report(dev); 303 } 304 } 305 306 void t4_os_portmod_changed(struct adapter *adap, int port_id) 307 { 308 static const char *mod_str[] = { 309 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 310 }; 311 312 struct net_device *dev = adap->port[port_id]; 313 struct port_info *pi = netdev_priv(dev); 314 315 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 316 netdev_info(dev, "port module unplugged\n"); 317 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 318 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 319 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 320 netdev_info(dev, "%s: unsupported port module inserted\n", 321 dev->name); 322 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 323 netdev_info(dev, "%s: unknown port module inserted\n", 324 dev->name); 325 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 326 netdev_info(dev, "%s: transceiver module error\n", dev->name); 327 else 328 netdev_info(dev, "%s: unknown module type %d inserted\n", 329 dev->name, pi->mod_type); 330 331 /* If the interface is running, then we'll need any "sticky" Link 332 * Parameters redone with a new Transceiver Module. 333 */ 334 pi->link_cfg.redo_l1cfg = netif_running(dev); 335 } 336 337 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 338 module_param(dbfifo_int_thresh, int, 0644); 339 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 340 341 /* 342 * usecs to sleep while draining the dbfifo 343 */ 344 static int dbfifo_drain_delay = 1000; 345 module_param(dbfifo_drain_delay, int, 0644); 346 MODULE_PARM_DESC(dbfifo_drain_delay, 347 "usecs to sleep while draining the dbfifo"); 348 349 static inline int cxgb4_set_addr_hash(struct port_info *pi) 350 { 351 struct adapter *adap = pi->adapter; 352 u64 vec = 0; 353 bool ucast = false; 354 struct hash_mac_addr *entry; 355 356 /* Calculate the hash vector for the updated list and program it */ 357 list_for_each_entry(entry, &adap->mac_hlist, list) { 358 ucast |= is_unicast_ether_addr(entry->addr); 359 vec |= (1ULL << hash_mac_addr(entry->addr)); 360 } 361 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 362 vec, false); 363 } 364 365 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 366 { 367 struct port_info *pi = netdev_priv(netdev); 368 struct adapter *adap = pi->adapter; 369 int ret; 370 u64 mhash = 0; 371 u64 uhash = 0; 372 /* idx stores the index of allocated filters, 373 * its size should be modified based on the number of 374 * MAC addresses that we allocate filters for 375 */ 376 377 u16 idx[1] = {}; 378 bool free = false; 379 bool ucast = is_unicast_ether_addr(mac_addr); 380 const u8 *maclist[1] = {mac_addr}; 381 struct hash_mac_addr *new_entry; 382 383 ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist, 384 idx, ucast ? &uhash : &mhash, false); 385 if (ret < 0) 386 goto out; 387 /* if hash != 0, then add the addr to hash addr list 388 * so on the end we will calculate the hash for the 389 * list and program it 390 */ 391 if (uhash || mhash) { 392 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 393 if (!new_entry) 394 return -ENOMEM; 395 ether_addr_copy(new_entry->addr, mac_addr); 396 list_add_tail(&new_entry->list, &adap->mac_hlist); 397 ret = cxgb4_set_addr_hash(pi); 398 } 399 out: 400 return ret < 0 ? ret : 0; 401 } 402 403 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 404 { 405 struct port_info *pi = netdev_priv(netdev); 406 struct adapter *adap = pi->adapter; 407 int ret; 408 const u8 *maclist[1] = {mac_addr}; 409 struct hash_mac_addr *entry, *tmp; 410 411 /* If the MAC address to be removed is in the hash addr 412 * list, delete it from the list and update hash vector 413 */ 414 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 415 if (ether_addr_equal(entry->addr, mac_addr)) { 416 list_del(&entry->list); 417 kfree(entry); 418 return cxgb4_set_addr_hash(pi); 419 } 420 } 421 422 ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false); 423 return ret < 0 ? -EINVAL : 0; 424 } 425 426 /* 427 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 428 * If @mtu is -1 it is left unchanged. 429 */ 430 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 431 { 432 struct port_info *pi = netdev_priv(dev); 433 struct adapter *adapter = pi->adapter; 434 435 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 436 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 437 438 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 439 (dev->flags & IFF_PROMISC) ? 1 : 0, 440 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 441 sleep_ok); 442 } 443 444 /** 445 * cxgb4_change_mac - Update match filter for a MAC address. 446 * @pi: the port_info 447 * @viid: the VI id 448 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 449 * or -1 450 * @addr: the new MAC address value 451 * @persist: whether a new MAC allocation should be persistent 452 * @smt_idx: the destination to store the new SMT index. 453 * 454 * Modifies an MPS filter and sets it to the new MAC address if 455 * @tcam_idx >= 0, or adds the MAC address to a new filter if 456 * @tcam_idx < 0. In the latter case the address is added persistently 457 * if @persist is %true. 458 * Addresses are programmed to hash region, if tcam runs out of entries. 459 * 460 */ 461 int cxgb4_change_mac(struct port_info *pi, unsigned int viid, 462 int *tcam_idx, const u8 *addr, bool persist, 463 u8 *smt_idx) 464 { 465 struct adapter *adapter = pi->adapter; 466 struct hash_mac_addr *entry, *new_entry; 467 int ret; 468 469 ret = t4_change_mac(adapter, adapter->mbox, viid, 470 *tcam_idx, addr, persist, smt_idx); 471 /* We ran out of TCAM entries. try programming hash region. */ 472 if (ret == -ENOMEM) { 473 /* If the MAC address to be updated is in the hash addr 474 * list, update it from the list 475 */ 476 list_for_each_entry(entry, &adapter->mac_hlist, list) { 477 if (entry->iface_mac) { 478 ether_addr_copy(entry->addr, addr); 479 goto set_hash; 480 } 481 } 482 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 483 if (!new_entry) 484 return -ENOMEM; 485 ether_addr_copy(new_entry->addr, addr); 486 new_entry->iface_mac = true; 487 list_add_tail(&new_entry->list, &adapter->mac_hlist); 488 set_hash: 489 ret = cxgb4_set_addr_hash(pi); 490 } else if (ret >= 0) { 491 *tcam_idx = ret; 492 ret = 0; 493 } 494 495 return ret; 496 } 497 498 /* 499 * link_start - enable a port 500 * @dev: the port to enable 501 * 502 * Performs the MAC and PHY actions needed to enable a port. 503 */ 504 static int link_start(struct net_device *dev) 505 { 506 int ret; 507 struct port_info *pi = netdev_priv(dev); 508 unsigned int mb = pi->adapter->pf; 509 510 /* 511 * We do not set address filters and promiscuity here, the stack does 512 * that step explicitly. 513 */ 514 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 515 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 516 if (ret == 0) 517 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 518 dev->dev_addr, true, &pi->smt_idx); 519 if (ret == 0) 520 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 521 &pi->link_cfg); 522 if (ret == 0) { 523 local_bh_disable(); 524 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 525 true, CXGB4_DCB_ENABLED); 526 local_bh_enable(); 527 } 528 529 return ret; 530 } 531 532 #ifdef CONFIG_CHELSIO_T4_DCB 533 /* Handle a Data Center Bridging update message from the firmware. */ 534 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 535 { 536 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 537 struct net_device *dev = adap->port[adap->chan_map[port]]; 538 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 539 int new_dcb_enabled; 540 541 cxgb4_dcb_handle_fw_update(adap, pcmd); 542 new_dcb_enabled = cxgb4_dcb_enabled(dev); 543 544 /* If the DCB has become enabled or disabled on the port then we're 545 * going to need to set up/tear down DCB Priority parameters for the 546 * TX Queues associated with the port. 547 */ 548 if (new_dcb_enabled != old_dcb_enabled) 549 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 550 } 551 #endif /* CONFIG_CHELSIO_T4_DCB */ 552 553 /* Response queue handler for the FW event queue. 554 */ 555 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 556 const struct pkt_gl *gl) 557 { 558 u8 opcode = ((const struct rss_header *)rsp)->opcode; 559 560 rsp++; /* skip RSS header */ 561 562 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 563 */ 564 if (unlikely(opcode == CPL_FW4_MSG && 565 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 566 rsp++; 567 opcode = ((const struct rss_header *)rsp)->opcode; 568 rsp++; 569 if (opcode != CPL_SGE_EGR_UPDATE) { 570 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 571 , opcode); 572 goto out; 573 } 574 } 575 576 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 577 const struct cpl_sge_egr_update *p = (void *)rsp; 578 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 579 struct sge_txq *txq; 580 581 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 582 txq->restarts++; 583 if (txq->q_type == CXGB4_TXQ_ETH) { 584 struct sge_eth_txq *eq; 585 586 eq = container_of(txq, struct sge_eth_txq, q); 587 t4_sge_eth_txq_egress_update(q->adap, eq, -1); 588 } else { 589 struct sge_uld_txq *oq; 590 591 oq = container_of(txq, struct sge_uld_txq, q); 592 tasklet_schedule(&oq->qresume_tsk); 593 } 594 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 595 const struct cpl_fw6_msg *p = (void *)rsp; 596 597 #ifdef CONFIG_CHELSIO_T4_DCB 598 const struct fw_port_cmd *pcmd = (const void *)p->data; 599 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 600 unsigned int action = 601 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 602 603 if (cmd == FW_PORT_CMD && 604 (action == FW_PORT_ACTION_GET_PORT_INFO || 605 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 606 int port = FW_PORT_CMD_PORTID_G( 607 be32_to_cpu(pcmd->op_to_portid)); 608 struct net_device *dev; 609 int dcbxdis, state_input; 610 611 dev = q->adap->port[q->adap->chan_map[port]]; 612 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 613 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) 614 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) 615 & FW_PORT_CMD_DCBXDIS32_F)); 616 state_input = (dcbxdis 617 ? CXGB4_DCB_INPUT_FW_DISABLED 618 : CXGB4_DCB_INPUT_FW_ENABLED); 619 620 cxgb4_dcb_state_fsm(dev, state_input); 621 } 622 623 if (cmd == FW_PORT_CMD && 624 action == FW_PORT_ACTION_L2_DCB_CFG) 625 dcb_rpl(q->adap, pcmd); 626 else 627 #endif 628 if (p->type == 0) 629 t4_handle_fw_rpl(q->adap, p->data); 630 } else if (opcode == CPL_L2T_WRITE_RPL) { 631 const struct cpl_l2t_write_rpl *p = (void *)rsp; 632 633 do_l2t_write_rpl(q->adap, p); 634 } else if (opcode == CPL_SMT_WRITE_RPL) { 635 const struct cpl_smt_write_rpl *p = (void *)rsp; 636 637 do_smt_write_rpl(q->adap, p); 638 } else if (opcode == CPL_SET_TCB_RPL) { 639 const struct cpl_set_tcb_rpl *p = (void *)rsp; 640 641 filter_rpl(q->adap, p); 642 } else if (opcode == CPL_ACT_OPEN_RPL) { 643 const struct cpl_act_open_rpl *p = (void *)rsp; 644 645 hash_filter_rpl(q->adap, p); 646 } else if (opcode == CPL_ABORT_RPL_RSS) { 647 const struct cpl_abort_rpl_rss *p = (void *)rsp; 648 649 hash_del_filter_rpl(q->adap, p); 650 } else if (opcode == CPL_SRQ_TABLE_RPL) { 651 const struct cpl_srq_table_rpl *p = (void *)rsp; 652 653 do_srq_table_rpl(q->adap, p); 654 } else 655 dev_err(q->adap->pdev_dev, 656 "unexpected CPL %#x on FW event queue\n", opcode); 657 out: 658 return 0; 659 } 660 661 static void disable_msi(struct adapter *adapter) 662 { 663 if (adapter->flags & CXGB4_USING_MSIX) { 664 pci_disable_msix(adapter->pdev); 665 adapter->flags &= ~CXGB4_USING_MSIX; 666 } else if (adapter->flags & CXGB4_USING_MSI) { 667 pci_disable_msi(adapter->pdev); 668 adapter->flags &= ~CXGB4_USING_MSI; 669 } 670 } 671 672 /* 673 * Interrupt handler for non-data events used with MSI-X. 674 */ 675 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 676 { 677 struct adapter *adap = cookie; 678 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 679 680 if (v & PFSW_F) { 681 adap->swintr = 1; 682 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 683 } 684 if (adap->flags & CXGB4_MASTER_PF) 685 t4_slow_intr_handler(adap); 686 return IRQ_HANDLED; 687 } 688 689 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec, 690 cpumask_var_t *aff_mask, int idx) 691 { 692 int rv; 693 694 if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) { 695 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n"); 696 return -ENOMEM; 697 } 698 699 cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)), 700 *aff_mask); 701 702 rv = irq_set_affinity_hint(vec, *aff_mask); 703 if (rv) 704 dev_warn(adap->pdev_dev, 705 "irq_set_affinity_hint %u failed %d\n", 706 vec, rv); 707 708 return 0; 709 } 710 711 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask) 712 { 713 irq_set_affinity_hint(vec, NULL); 714 free_cpumask_var(aff_mask); 715 } 716 717 static int request_msix_queue_irqs(struct adapter *adap) 718 { 719 struct sge *s = &adap->sge; 720 struct msix_info *minfo; 721 int err, ethqidx; 722 723 if (s->fwevtq_msix_idx < 0) 724 return -ENOMEM; 725 726 err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec, 727 t4_sge_intr_msix, 0, 728 adap->msix_info[s->fwevtq_msix_idx].desc, 729 &s->fw_evtq); 730 if (err) 731 return err; 732 733 for_each_ethrxq(s, ethqidx) { 734 minfo = s->ethrxq[ethqidx].msix; 735 err = request_irq(minfo->vec, 736 t4_sge_intr_msix, 0, 737 minfo->desc, 738 &s->ethrxq[ethqidx].rspq); 739 if (err) 740 goto unwind; 741 742 cxgb4_set_msix_aff(adap, minfo->vec, 743 &minfo->aff_mask, ethqidx); 744 } 745 return 0; 746 747 unwind: 748 while (--ethqidx >= 0) { 749 minfo = s->ethrxq[ethqidx].msix; 750 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 751 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq); 752 } 753 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); 754 return err; 755 } 756 757 static void free_msix_queue_irqs(struct adapter *adap) 758 { 759 struct sge *s = &adap->sge; 760 struct msix_info *minfo; 761 int i; 762 763 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); 764 for_each_ethrxq(s, i) { 765 minfo = s->ethrxq[i].msix; 766 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 767 free_irq(minfo->vec, &s->ethrxq[i].rspq); 768 } 769 } 770 771 static int setup_ppod_edram(struct adapter *adap) 772 { 773 unsigned int param, val; 774 int ret; 775 776 /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check 777 * if firmware supports ppod edram feature or not. If firmware 778 * returns 1, then driver can enable this feature by sending 779 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to 780 * enable ppod edram feature. 781 */ 782 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 783 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM)); 784 785 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 786 if (ret < 0) { 787 dev_warn(adap->pdev_dev, 788 "querying PPOD_EDRAM support failed: %d\n", 789 ret); 790 return -1; 791 } 792 793 if (val != 1) 794 return -1; 795 796 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 797 if (ret < 0) { 798 dev_err(adap->pdev_dev, 799 "setting PPOD_EDRAM failed: %d\n", ret); 800 return -1; 801 } 802 return 0; 803 } 804 805 static void adap_config_hpfilter(struct adapter *adapter) 806 { 807 u32 param, val = 0; 808 int ret; 809 810 /* Enable HP filter region. Older fw will fail this request and 811 * it is fine. 812 */ 813 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 814 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 815 1, ¶m, &val); 816 817 /* An error means FW doesn't know about HP filter support, 818 * it's not a problem, don't return an error. 819 */ 820 if (ret < 0) 821 dev_err(adapter->pdev_dev, 822 "HP filter region isn't supported by FW\n"); 823 } 824 825 /** 826 * cxgb4_write_rss - write the RSS table for a given port 827 * @pi: the port 828 * @queues: array of queue indices for RSS 829 * 830 * Sets up the portion of the HW RSS table for the port's VI to distribute 831 * packets to the Rx queues in @queues. 832 * Should never be called before setting up sge eth rx queues 833 */ 834 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 835 { 836 u16 *rss; 837 int i, err; 838 struct adapter *adapter = pi->adapter; 839 const struct sge_eth_rxq *rxq; 840 841 rxq = &adapter->sge.ethrxq[pi->first_qset]; 842 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 843 if (!rss) 844 return -ENOMEM; 845 846 /* map the queue indices to queue ids */ 847 for (i = 0; i < pi->rss_size; i++, queues++) 848 rss[i] = rxq[*queues].rspq.abs_id; 849 850 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 851 pi->rss_size, rss, pi->rss_size); 852 /* If Tunnel All Lookup isn't specified in the global RSS 853 * Configuration, then we need to specify a default Ingress 854 * Queue for any ingress packets which aren't hashed. We'll 855 * use our first ingress queue ... 856 */ 857 if (!err) 858 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 859 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 860 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 861 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 862 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 863 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 864 rss[0]); 865 kfree(rss); 866 return err; 867 } 868 869 /** 870 * setup_rss - configure RSS 871 * @adap: the adapter 872 * 873 * Sets up RSS for each port. 874 */ 875 static int setup_rss(struct adapter *adap) 876 { 877 int i, j, err; 878 879 for_each_port(adap, i) { 880 const struct port_info *pi = adap2pinfo(adap, i); 881 882 /* Fill default values with equal distribution */ 883 for (j = 0; j < pi->rss_size; j++) 884 pi->rss[j] = j % pi->nqsets; 885 886 err = cxgb4_write_rss(pi, pi->rss); 887 if (err) 888 return err; 889 } 890 return 0; 891 } 892 893 /* 894 * Return the channel of the ingress queue with the given qid. 895 */ 896 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 897 { 898 qid -= p->ingr_start; 899 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 900 } 901 902 void cxgb4_quiesce_rx(struct sge_rspq *q) 903 { 904 if (q->handler) 905 napi_disable(&q->napi); 906 } 907 908 /* 909 * Wait until all NAPI handlers are descheduled. 910 */ 911 static void quiesce_rx(struct adapter *adap) 912 { 913 int i; 914 915 for (i = 0; i < adap->sge.ingr_sz; i++) { 916 struct sge_rspq *q = adap->sge.ingr_map[i]; 917 918 if (!q) 919 continue; 920 921 cxgb4_quiesce_rx(q); 922 } 923 } 924 925 /* Disable interrupt and napi handler */ 926 static void disable_interrupts(struct adapter *adap) 927 { 928 struct sge *s = &adap->sge; 929 930 if (adap->flags & CXGB4_FULL_INIT_DONE) { 931 t4_intr_disable(adap); 932 if (adap->flags & CXGB4_USING_MSIX) { 933 free_msix_queue_irqs(adap); 934 free_irq(adap->msix_info[s->nd_msix_idx].vec, 935 adap); 936 } else { 937 free_irq(adap->pdev->irq, adap); 938 } 939 quiesce_rx(adap); 940 } 941 } 942 943 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q) 944 { 945 if (q->handler) 946 napi_enable(&q->napi); 947 948 /* 0-increment GTS to start the timer and enable interrupts */ 949 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 950 SEINTARM_V(q->intr_params) | 951 INGRESSQID_V(q->cntxt_id)); 952 } 953 954 /* 955 * Enable NAPI scheduling and interrupt generation for all Rx queues. 956 */ 957 static void enable_rx(struct adapter *adap) 958 { 959 int i; 960 961 for (i = 0; i < adap->sge.ingr_sz; i++) { 962 struct sge_rspq *q = adap->sge.ingr_map[i]; 963 964 if (!q) 965 continue; 966 967 cxgb4_enable_rx(adap, q); 968 } 969 } 970 971 static int setup_non_data_intr(struct adapter *adap) 972 { 973 int msix; 974 975 adap->sge.nd_msix_idx = -1; 976 if (!(adap->flags & CXGB4_USING_MSIX)) 977 return 0; 978 979 /* Request MSI-X vector for non-data interrupt */ 980 msix = cxgb4_get_msix_idx_from_bmap(adap); 981 if (msix < 0) 982 return -ENOMEM; 983 984 snprintf(adap->msix_info[msix].desc, 985 sizeof(adap->msix_info[msix].desc), 986 "%s", adap->port[0]->name); 987 988 adap->sge.nd_msix_idx = msix; 989 return 0; 990 } 991 992 static int setup_fw_sge_queues(struct adapter *adap) 993 { 994 struct sge *s = &adap->sge; 995 int msix, err = 0; 996 997 bitmap_zero(s->starving_fl, s->egr_sz); 998 bitmap_zero(s->txq_maperr, s->egr_sz); 999 1000 if (adap->flags & CXGB4_USING_MSIX) { 1001 s->fwevtq_msix_idx = -1; 1002 msix = cxgb4_get_msix_idx_from_bmap(adap); 1003 if (msix < 0) 1004 return -ENOMEM; 1005 1006 snprintf(adap->msix_info[msix].desc, 1007 sizeof(adap->msix_info[msix].desc), 1008 "%s-FWeventq", adap->port[0]->name); 1009 } else { 1010 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 1011 NULL, NULL, NULL, -1); 1012 if (err) 1013 return err; 1014 msix = -((int)s->intrq.abs_id + 1); 1015 } 1016 1017 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 1018 msix, NULL, fwevtq_handler, NULL, -1); 1019 if (err && msix >= 0) 1020 cxgb4_free_msix_idx_in_bmap(adap, msix); 1021 1022 s->fwevtq_msix_idx = msix; 1023 return err; 1024 } 1025 1026 /** 1027 * setup_sge_queues - configure SGE Tx/Rx/response queues 1028 * @adap: the adapter 1029 * 1030 * Determines how many sets of SGE queues to use and initializes them. 1031 * We support multiple queue sets per port if we have MSI-X, otherwise 1032 * just one queue set per port. 1033 */ 1034 static int setup_sge_queues(struct adapter *adap) 1035 { 1036 struct sge_uld_rxq_info *rxq_info = NULL; 1037 struct sge *s = &adap->sge; 1038 unsigned int cmplqid = 0; 1039 int err, i, j, msix = 0; 1040 1041 if (is_uld(adap)) 1042 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 1043 1044 if (!(adap->flags & CXGB4_USING_MSIX)) 1045 msix = -((int)s->intrq.abs_id + 1); 1046 1047 for_each_port(adap, i) { 1048 struct net_device *dev = adap->port[i]; 1049 struct port_info *pi = netdev_priv(dev); 1050 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1051 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1052 1053 for (j = 0; j < pi->nqsets; j++, q++) { 1054 if (msix >= 0) { 1055 msix = cxgb4_get_msix_idx_from_bmap(adap); 1056 if (msix < 0) { 1057 err = msix; 1058 goto freeout; 1059 } 1060 1061 snprintf(adap->msix_info[msix].desc, 1062 sizeof(adap->msix_info[msix].desc), 1063 "%s-Rx%d", dev->name, j); 1064 q->msix = &adap->msix_info[msix]; 1065 } 1066 1067 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1068 msix, &q->fl, 1069 t4_ethrx_handler, 1070 NULL, 1071 t4_get_tp_ch_map(adap, 1072 pi->tx_chan)); 1073 if (err) 1074 goto freeout; 1075 q->rspq.idx = j; 1076 memset(&q->stats, 0, sizeof(q->stats)); 1077 } 1078 1079 q = &s->ethrxq[pi->first_qset]; 1080 for (j = 0; j < pi->nqsets; j++, t++, q++) { 1081 err = t4_sge_alloc_eth_txq(adap, t, dev, 1082 netdev_get_tx_queue(dev, j), 1083 q->rspq.cntxt_id, 1084 !!(adap->flags & CXGB4_SGE_DBQ_TIMER)); 1085 if (err) 1086 goto freeout; 1087 } 1088 } 1089 1090 for_each_port(adap, i) { 1091 /* Note that cmplqid below is 0 if we don't 1092 * have RDMA queues, and that's the right value. 1093 */ 1094 if (rxq_info) 1095 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 1096 1097 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1098 s->fw_evtq.cntxt_id, cmplqid); 1099 if (err) 1100 goto freeout; 1101 } 1102 1103 if (!is_t4(adap->params.chip)) { 1104 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 1105 netdev_get_tx_queue(adap->port[0], 0) 1106 , s->fw_evtq.cntxt_id, false); 1107 if (err) 1108 goto freeout; 1109 } 1110 1111 t4_write_reg(adap, is_t4(adap->params.chip) ? 1112 MPS_TRC_RSS_CONTROL_A : 1113 MPS_T5_TRC_RSS_CONTROL_A, 1114 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 1115 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 1116 return 0; 1117 freeout: 1118 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 1119 t4_free_sge_resources(adap); 1120 return err; 1121 } 1122 1123 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 1124 struct net_device *sb_dev) 1125 { 1126 int txq; 1127 1128 #ifdef CONFIG_CHELSIO_T4_DCB 1129 /* If a Data Center Bridging has been successfully negotiated on this 1130 * link then we'll use the skb's priority to map it to a TX Queue. 1131 * The skb's priority is determined via the VLAN Tag Priority Code 1132 * Point field. 1133 */ 1134 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 1135 u16 vlan_tci; 1136 int err; 1137 1138 err = vlan_get_tag(skb, &vlan_tci); 1139 if (unlikely(err)) { 1140 if (net_ratelimit()) 1141 netdev_warn(dev, 1142 "TX Packet without VLAN Tag on DCB Link\n"); 1143 txq = 0; 1144 } else { 1145 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1146 #ifdef CONFIG_CHELSIO_T4_FCOE 1147 if (skb->protocol == htons(ETH_P_FCOE)) 1148 txq = skb->priority & 0x7; 1149 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1150 } 1151 return txq; 1152 } 1153 #endif /* CONFIG_CHELSIO_T4_DCB */ 1154 1155 if (dev->num_tc) { 1156 struct port_info *pi = netdev2pinfo(dev); 1157 u8 ver, proto; 1158 1159 ver = ip_hdr(skb)->version; 1160 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : 1161 ip_hdr(skb)->protocol; 1162 1163 /* Send unsupported traffic pattern to normal NIC queues. */ 1164 txq = netdev_pick_tx(dev, skb, sb_dev); 1165 if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) || 1166 skb->encapsulation || 1167 (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) 1168 txq = txq % pi->nqsets; 1169 1170 return txq; 1171 } 1172 1173 if (select_queue) { 1174 txq = (skb_rx_queue_recorded(skb) 1175 ? skb_get_rx_queue(skb) 1176 : smp_processor_id()); 1177 1178 while (unlikely(txq >= dev->real_num_tx_queues)) 1179 txq -= dev->real_num_tx_queues; 1180 1181 return txq; 1182 } 1183 1184 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 1185 } 1186 1187 static int closest_timer(const struct sge *s, int time) 1188 { 1189 int i, delta, match = 0, min_delta = INT_MAX; 1190 1191 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1192 delta = time - s->timer_val[i]; 1193 if (delta < 0) 1194 delta = -delta; 1195 if (delta < min_delta) { 1196 min_delta = delta; 1197 match = i; 1198 } 1199 } 1200 return match; 1201 } 1202 1203 static int closest_thres(const struct sge *s, int thres) 1204 { 1205 int i, delta, match = 0, min_delta = INT_MAX; 1206 1207 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1208 delta = thres - s->counter_val[i]; 1209 if (delta < 0) 1210 delta = -delta; 1211 if (delta < min_delta) { 1212 min_delta = delta; 1213 match = i; 1214 } 1215 } 1216 return match; 1217 } 1218 1219 /** 1220 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1221 * @q: the Rx queue 1222 * @us: the hold-off time in us, or 0 to disable timer 1223 * @cnt: the hold-off packet count, or 0 to disable counter 1224 * 1225 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1226 * one of the two needs to be enabled for the queue to generate interrupts. 1227 */ 1228 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1229 unsigned int us, unsigned int cnt) 1230 { 1231 struct adapter *adap = q->adap; 1232 1233 if ((us | cnt) == 0) 1234 cnt = 1; 1235 1236 if (cnt) { 1237 int err; 1238 u32 v, new_idx; 1239 1240 new_idx = closest_thres(&adap->sge, cnt); 1241 if (q->desc && q->pktcnt_idx != new_idx) { 1242 /* the queue has already been created, update it */ 1243 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1244 FW_PARAMS_PARAM_X_V( 1245 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1246 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1247 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1248 &v, &new_idx); 1249 if (err) 1250 return err; 1251 } 1252 q->pktcnt_idx = new_idx; 1253 } 1254 1255 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1256 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1257 return 0; 1258 } 1259 1260 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1261 { 1262 const struct port_info *pi = netdev_priv(dev); 1263 netdev_features_t changed = dev->features ^ features; 1264 int err; 1265 1266 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1267 return 0; 1268 1269 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1270 -1, -1, -1, 1271 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1272 if (unlikely(err)) 1273 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1274 return err; 1275 } 1276 1277 static int setup_debugfs(struct adapter *adap) 1278 { 1279 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1280 return -1; 1281 1282 #ifdef CONFIG_DEBUG_FS 1283 t4_setup_debugfs(adap); 1284 #endif 1285 return 0; 1286 } 1287 1288 /* 1289 * upper-layer driver support 1290 */ 1291 1292 /* 1293 * Allocate an active-open TID and set it to the supplied value. 1294 */ 1295 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1296 { 1297 int atid = -1; 1298 1299 spin_lock_bh(&t->atid_lock); 1300 if (t->afree) { 1301 union aopen_entry *p = t->afree; 1302 1303 atid = (p - t->atid_tab) + t->atid_base; 1304 t->afree = p->next; 1305 p->data = data; 1306 t->atids_in_use++; 1307 } 1308 spin_unlock_bh(&t->atid_lock); 1309 return atid; 1310 } 1311 EXPORT_SYMBOL(cxgb4_alloc_atid); 1312 1313 /* 1314 * Release an active-open TID. 1315 */ 1316 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1317 { 1318 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1319 1320 spin_lock_bh(&t->atid_lock); 1321 p->next = t->afree; 1322 t->afree = p; 1323 t->atids_in_use--; 1324 spin_unlock_bh(&t->atid_lock); 1325 } 1326 EXPORT_SYMBOL(cxgb4_free_atid); 1327 1328 /* 1329 * Allocate a server TID and set it to the supplied value. 1330 */ 1331 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1332 { 1333 int stid; 1334 1335 spin_lock_bh(&t->stid_lock); 1336 if (family == PF_INET) { 1337 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1338 if (stid < t->nstids) 1339 __set_bit(stid, t->stid_bmap); 1340 else 1341 stid = -1; 1342 } else { 1343 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1344 if (stid < 0) 1345 stid = -1; 1346 } 1347 if (stid >= 0) { 1348 t->stid_tab[stid].data = data; 1349 stid += t->stid_base; 1350 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1351 * This is equivalent to 4 TIDs. With CLIP enabled it 1352 * needs 2 TIDs. 1353 */ 1354 if (family == PF_INET6) { 1355 t->stids_in_use += 2; 1356 t->v6_stids_in_use += 2; 1357 } else { 1358 t->stids_in_use++; 1359 } 1360 } 1361 spin_unlock_bh(&t->stid_lock); 1362 return stid; 1363 } 1364 EXPORT_SYMBOL(cxgb4_alloc_stid); 1365 1366 /* Allocate a server filter TID and set it to the supplied value. 1367 */ 1368 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1369 { 1370 int stid; 1371 1372 spin_lock_bh(&t->stid_lock); 1373 if (family == PF_INET) { 1374 stid = find_next_zero_bit(t->stid_bmap, 1375 t->nstids + t->nsftids, t->nstids); 1376 if (stid < (t->nstids + t->nsftids)) 1377 __set_bit(stid, t->stid_bmap); 1378 else 1379 stid = -1; 1380 } else { 1381 stid = -1; 1382 } 1383 if (stid >= 0) { 1384 t->stid_tab[stid].data = data; 1385 stid -= t->nstids; 1386 stid += t->sftid_base; 1387 t->sftids_in_use++; 1388 } 1389 spin_unlock_bh(&t->stid_lock); 1390 return stid; 1391 } 1392 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1393 1394 /* Release a server TID. 1395 */ 1396 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1397 { 1398 /* Is it a server filter TID? */ 1399 if (t->nsftids && (stid >= t->sftid_base)) { 1400 stid -= t->sftid_base; 1401 stid += t->nstids; 1402 } else { 1403 stid -= t->stid_base; 1404 } 1405 1406 spin_lock_bh(&t->stid_lock); 1407 if (family == PF_INET) 1408 __clear_bit(stid, t->stid_bmap); 1409 else 1410 bitmap_release_region(t->stid_bmap, stid, 1); 1411 t->stid_tab[stid].data = NULL; 1412 if (stid < t->nstids) { 1413 if (family == PF_INET6) { 1414 t->stids_in_use -= 2; 1415 t->v6_stids_in_use -= 2; 1416 } else { 1417 t->stids_in_use--; 1418 } 1419 } else { 1420 t->sftids_in_use--; 1421 } 1422 1423 spin_unlock_bh(&t->stid_lock); 1424 } 1425 EXPORT_SYMBOL(cxgb4_free_stid); 1426 1427 /* 1428 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1429 */ 1430 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1431 unsigned int tid) 1432 { 1433 struct cpl_tid_release *req; 1434 1435 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1436 req = __skb_put(skb, sizeof(*req)); 1437 INIT_TP_WR(req, tid); 1438 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1439 } 1440 1441 /* 1442 * Queue a TID release request and if necessary schedule a work queue to 1443 * process it. 1444 */ 1445 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1446 unsigned int tid) 1447 { 1448 struct adapter *adap = container_of(t, struct adapter, tids); 1449 void **p = &t->tid_tab[tid - t->tid_base]; 1450 1451 spin_lock_bh(&adap->tid_release_lock); 1452 *p = adap->tid_release_head; 1453 /* Low 2 bits encode the Tx channel number */ 1454 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1455 if (!adap->tid_release_task_busy) { 1456 adap->tid_release_task_busy = true; 1457 queue_work(adap->workq, &adap->tid_release_task); 1458 } 1459 spin_unlock_bh(&adap->tid_release_lock); 1460 } 1461 1462 /* 1463 * Process the list of pending TID release requests. 1464 */ 1465 static void process_tid_release_list(struct work_struct *work) 1466 { 1467 struct sk_buff *skb; 1468 struct adapter *adap; 1469 1470 adap = container_of(work, struct adapter, tid_release_task); 1471 1472 spin_lock_bh(&adap->tid_release_lock); 1473 while (adap->tid_release_head) { 1474 void **p = adap->tid_release_head; 1475 unsigned int chan = (uintptr_t)p & 3; 1476 p = (void *)p - chan; 1477 1478 adap->tid_release_head = *p; 1479 *p = NULL; 1480 spin_unlock_bh(&adap->tid_release_lock); 1481 1482 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1483 GFP_KERNEL))) 1484 schedule_timeout_uninterruptible(1); 1485 1486 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1487 t4_ofld_send(adap, skb); 1488 spin_lock_bh(&adap->tid_release_lock); 1489 } 1490 adap->tid_release_task_busy = false; 1491 spin_unlock_bh(&adap->tid_release_lock); 1492 } 1493 1494 /* 1495 * Release a TID and inform HW. If we are unable to allocate the release 1496 * message we defer to a work queue. 1497 */ 1498 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1499 unsigned short family) 1500 { 1501 struct adapter *adap = container_of(t, struct adapter, tids); 1502 struct sk_buff *skb; 1503 1504 WARN_ON(tid_out_of_range(&adap->tids, tid)); 1505 1506 if (t->tid_tab[tid - adap->tids.tid_base]) { 1507 t->tid_tab[tid - adap->tids.tid_base] = NULL; 1508 atomic_dec(&t->conns_in_use); 1509 if (t->hash_base && (tid >= t->hash_base)) { 1510 if (family == AF_INET6) 1511 atomic_sub(2, &t->hash_tids_in_use); 1512 else 1513 atomic_dec(&t->hash_tids_in_use); 1514 } else { 1515 if (family == AF_INET6) 1516 atomic_sub(2, &t->tids_in_use); 1517 else 1518 atomic_dec(&t->tids_in_use); 1519 } 1520 } 1521 1522 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1523 if (likely(skb)) { 1524 mk_tid_release(skb, chan, tid); 1525 t4_ofld_send(adap, skb); 1526 } else 1527 cxgb4_queue_tid_release(t, chan, tid); 1528 } 1529 EXPORT_SYMBOL(cxgb4_remove_tid); 1530 1531 /* 1532 * Allocate and initialize the TID tables. Returns 0 on success. 1533 */ 1534 static int tid_init(struct tid_info *t) 1535 { 1536 struct adapter *adap = container_of(t, struct adapter, tids); 1537 unsigned int max_ftids = t->nftids + t->nsftids; 1538 unsigned int natids = t->natids; 1539 unsigned int hpftid_bmap_size; 1540 unsigned int eotid_bmap_size; 1541 unsigned int stid_bmap_size; 1542 unsigned int ftid_bmap_size; 1543 size_t size; 1544 1545 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1546 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1547 hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids); 1548 eotid_bmap_size = BITS_TO_LONGS(t->neotids); 1549 size = t->ntids * sizeof(*t->tid_tab) + 1550 natids * sizeof(*t->atid_tab) + 1551 t->nstids * sizeof(*t->stid_tab) + 1552 t->nsftids * sizeof(*t->stid_tab) + 1553 stid_bmap_size * sizeof(long) + 1554 t->nhpftids * sizeof(*t->hpftid_tab) + 1555 hpftid_bmap_size * sizeof(long) + 1556 max_ftids * sizeof(*t->ftid_tab) + 1557 ftid_bmap_size * sizeof(long) + 1558 t->neotids * sizeof(*t->eotid_tab) + 1559 eotid_bmap_size * sizeof(long); 1560 1561 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1562 if (!t->tid_tab) 1563 return -ENOMEM; 1564 1565 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1566 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1567 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1568 t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1569 t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids]; 1570 t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size]; 1571 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1572 t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size]; 1573 t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids]; 1574 spin_lock_init(&t->stid_lock); 1575 spin_lock_init(&t->atid_lock); 1576 spin_lock_init(&t->ftid_lock); 1577 1578 t->stids_in_use = 0; 1579 t->v6_stids_in_use = 0; 1580 t->sftids_in_use = 0; 1581 t->afree = NULL; 1582 t->atids_in_use = 0; 1583 atomic_set(&t->tids_in_use, 0); 1584 atomic_set(&t->conns_in_use, 0); 1585 atomic_set(&t->hash_tids_in_use, 0); 1586 atomic_set(&t->eotids_in_use, 0); 1587 1588 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1589 if (natids) { 1590 while (--natids) 1591 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1592 t->afree = t->atid_tab; 1593 } 1594 1595 if (is_offload(adap)) { 1596 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1597 /* Reserve stid 0 for T4/T5 adapters */ 1598 if (!t->stid_base && 1599 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1600 __set_bit(0, t->stid_bmap); 1601 1602 if (t->neotids) 1603 bitmap_zero(t->eotid_bmap, t->neotids); 1604 } 1605 1606 if (t->nhpftids) 1607 bitmap_zero(t->hpftid_bmap, t->nhpftids); 1608 bitmap_zero(t->ftid_bmap, t->nftids); 1609 return 0; 1610 } 1611 1612 /** 1613 * cxgb4_create_server - create an IP server 1614 * @dev: the device 1615 * @stid: the server TID 1616 * @sip: local IP address to bind server to 1617 * @sport: the server's TCP port 1618 * @vlan: the VLAN header information 1619 * @queue: queue to direct messages from this server to 1620 * 1621 * Create an IP server for the given port and address. 1622 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1623 */ 1624 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1625 __be32 sip, __be16 sport, __be16 vlan, 1626 unsigned int queue) 1627 { 1628 unsigned int chan; 1629 struct sk_buff *skb; 1630 struct adapter *adap; 1631 struct cpl_pass_open_req *req; 1632 int ret; 1633 1634 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1635 if (!skb) 1636 return -ENOMEM; 1637 1638 adap = netdev2adap(dev); 1639 req = __skb_put(skb, sizeof(*req)); 1640 INIT_TP_WR(req, 0); 1641 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1642 req->local_port = sport; 1643 req->peer_port = htons(0); 1644 req->local_ip = sip; 1645 req->peer_ip = htonl(0); 1646 chan = rxq_to_chan(&adap->sge, queue); 1647 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1648 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1649 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1650 ret = t4_mgmt_tx(adap, skb); 1651 return net_xmit_eval(ret); 1652 } 1653 EXPORT_SYMBOL(cxgb4_create_server); 1654 1655 /* cxgb4_create_server6 - create an IPv6 server 1656 * @dev: the device 1657 * @stid: the server TID 1658 * @sip: local IPv6 address to bind server to 1659 * @sport: the server's TCP port 1660 * @queue: queue to direct messages from this server to 1661 * 1662 * Create an IPv6 server for the given port and address. 1663 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1664 */ 1665 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1666 const struct in6_addr *sip, __be16 sport, 1667 unsigned int queue) 1668 { 1669 unsigned int chan; 1670 struct sk_buff *skb; 1671 struct adapter *adap; 1672 struct cpl_pass_open_req6 *req; 1673 int ret; 1674 1675 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1676 if (!skb) 1677 return -ENOMEM; 1678 1679 adap = netdev2adap(dev); 1680 req = __skb_put(skb, sizeof(*req)); 1681 INIT_TP_WR(req, 0); 1682 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1683 req->local_port = sport; 1684 req->peer_port = htons(0); 1685 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1686 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1687 req->peer_ip_hi = cpu_to_be64(0); 1688 req->peer_ip_lo = cpu_to_be64(0); 1689 chan = rxq_to_chan(&adap->sge, queue); 1690 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1691 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1692 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1693 ret = t4_mgmt_tx(adap, skb); 1694 return net_xmit_eval(ret); 1695 } 1696 EXPORT_SYMBOL(cxgb4_create_server6); 1697 1698 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1699 unsigned int queue, bool ipv6) 1700 { 1701 struct sk_buff *skb; 1702 struct adapter *adap; 1703 struct cpl_close_listsvr_req *req; 1704 int ret; 1705 1706 adap = netdev2adap(dev); 1707 1708 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1709 if (!skb) 1710 return -ENOMEM; 1711 1712 req = __skb_put(skb, sizeof(*req)); 1713 INIT_TP_WR(req, 0); 1714 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1715 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1716 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1717 ret = t4_mgmt_tx(adap, skb); 1718 return net_xmit_eval(ret); 1719 } 1720 EXPORT_SYMBOL(cxgb4_remove_server); 1721 1722 /** 1723 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1724 * @mtus: the HW MTU table 1725 * @mtu: the target MTU 1726 * @idx: index of selected entry in the MTU table 1727 * 1728 * Returns the index and the value in the HW MTU table that is closest to 1729 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1730 * table, in which case that smallest available value is selected. 1731 */ 1732 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1733 unsigned int *idx) 1734 { 1735 unsigned int i = 0; 1736 1737 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1738 ++i; 1739 if (idx) 1740 *idx = i; 1741 return mtus[i]; 1742 } 1743 EXPORT_SYMBOL(cxgb4_best_mtu); 1744 1745 /** 1746 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1747 * @mtus: the HW MTU table 1748 * @header_size: Header Size 1749 * @data_size_max: maximum Data Segment Size 1750 * @data_size_align: desired Data Segment Size Alignment (2^N) 1751 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1752 * 1753 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1754 * MTU Table based solely on a Maximum MTU parameter, we break that 1755 * parameter up into a Header Size and Maximum Data Segment Size, and 1756 * provide a desired Data Segment Size Alignment. If we find an MTU in 1757 * the Hardware MTU Table which will result in a Data Segment Size with 1758 * the requested alignment _and_ that MTU isn't "too far" from the 1759 * closest MTU, then we'll return that rather than the closest MTU. 1760 */ 1761 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1762 unsigned short header_size, 1763 unsigned short data_size_max, 1764 unsigned short data_size_align, 1765 unsigned int *mtu_idxp) 1766 { 1767 unsigned short max_mtu = header_size + data_size_max; 1768 unsigned short data_size_align_mask = data_size_align - 1; 1769 int mtu_idx, aligned_mtu_idx; 1770 1771 /* Scan the MTU Table till we find an MTU which is larger than our 1772 * Maximum MTU or we reach the end of the table. Along the way, 1773 * record the last MTU found, if any, which will result in a Data 1774 * Segment Length matching the requested alignment. 1775 */ 1776 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1777 unsigned short data_size = mtus[mtu_idx] - header_size; 1778 1779 /* If this MTU minus the Header Size would result in a 1780 * Data Segment Size of the desired alignment, remember it. 1781 */ 1782 if ((data_size & data_size_align_mask) == 0) 1783 aligned_mtu_idx = mtu_idx; 1784 1785 /* If we're not at the end of the Hardware MTU Table and the 1786 * next element is larger than our Maximum MTU, drop out of 1787 * the loop. 1788 */ 1789 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1790 break; 1791 } 1792 1793 /* If we fell out of the loop because we ran to the end of the table, 1794 * then we just have to use the last [largest] entry. 1795 */ 1796 if (mtu_idx == NMTUS) 1797 mtu_idx--; 1798 1799 /* If we found an MTU which resulted in the requested Data Segment 1800 * Length alignment and that's "not far" from the largest MTU which is 1801 * less than or equal to the maximum MTU, then use that. 1802 */ 1803 if (aligned_mtu_idx >= 0 && 1804 mtu_idx - aligned_mtu_idx <= 1) 1805 mtu_idx = aligned_mtu_idx; 1806 1807 /* If the caller has passed in an MTU Index pointer, pass the 1808 * MTU Index back. Return the MTU value. 1809 */ 1810 if (mtu_idxp) 1811 *mtu_idxp = mtu_idx; 1812 return mtus[mtu_idx]; 1813 } 1814 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1815 1816 /** 1817 * cxgb4_port_chan - get the HW channel of a port 1818 * @dev: the net device for the port 1819 * 1820 * Return the HW Tx channel of the given port. 1821 */ 1822 unsigned int cxgb4_port_chan(const struct net_device *dev) 1823 { 1824 return netdev2pinfo(dev)->tx_chan; 1825 } 1826 EXPORT_SYMBOL(cxgb4_port_chan); 1827 1828 /** 1829 * cxgb4_port_e2cchan - get the HW c-channel of a port 1830 * @dev: the net device for the port 1831 * 1832 * Return the HW RX c-channel of the given port. 1833 */ 1834 unsigned int cxgb4_port_e2cchan(const struct net_device *dev) 1835 { 1836 return netdev2pinfo(dev)->rx_cchan; 1837 } 1838 EXPORT_SYMBOL(cxgb4_port_e2cchan); 1839 1840 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1841 { 1842 struct adapter *adap = netdev2adap(dev); 1843 u32 v1, v2, lp_count, hp_count; 1844 1845 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1846 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1847 if (is_t4(adap->params.chip)) { 1848 lp_count = LP_COUNT_G(v1); 1849 hp_count = HP_COUNT_G(v1); 1850 } else { 1851 lp_count = LP_COUNT_T5_G(v1); 1852 hp_count = HP_COUNT_T5_G(v2); 1853 } 1854 return lpfifo ? lp_count : hp_count; 1855 } 1856 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1857 1858 /** 1859 * cxgb4_port_viid - get the VI id of a port 1860 * @dev: the net device for the port 1861 * 1862 * Return the VI id of the given port. 1863 */ 1864 unsigned int cxgb4_port_viid(const struct net_device *dev) 1865 { 1866 return netdev2pinfo(dev)->viid; 1867 } 1868 EXPORT_SYMBOL(cxgb4_port_viid); 1869 1870 /** 1871 * cxgb4_port_idx - get the index of a port 1872 * @dev: the net device for the port 1873 * 1874 * Return the index of the given port. 1875 */ 1876 unsigned int cxgb4_port_idx(const struct net_device *dev) 1877 { 1878 return netdev2pinfo(dev)->port_id; 1879 } 1880 EXPORT_SYMBOL(cxgb4_port_idx); 1881 1882 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1883 struct tp_tcp_stats *v6) 1884 { 1885 struct adapter *adap = pci_get_drvdata(pdev); 1886 1887 spin_lock(&adap->stats_lock); 1888 t4_tp_get_tcp_stats(adap, v4, v6, false); 1889 spin_unlock(&adap->stats_lock); 1890 } 1891 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1892 1893 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1894 const unsigned int *pgsz_order) 1895 { 1896 struct adapter *adap = netdev2adap(dev); 1897 1898 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1899 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1900 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1901 HPZ3_V(pgsz_order[3])); 1902 } 1903 EXPORT_SYMBOL(cxgb4_iscsi_init); 1904 1905 int cxgb4_flush_eq_cache(struct net_device *dev) 1906 { 1907 struct adapter *adap = netdev2adap(dev); 1908 1909 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 1910 } 1911 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1912 1913 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1914 { 1915 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1916 __be64 indices; 1917 int ret; 1918 1919 spin_lock(&adap->win0_lock); 1920 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1921 sizeof(indices), (__be32 *)&indices, 1922 T4_MEMORY_READ); 1923 spin_unlock(&adap->win0_lock); 1924 if (!ret) { 1925 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1926 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1927 } 1928 return ret; 1929 } 1930 1931 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1932 u16 size) 1933 { 1934 struct adapter *adap = netdev2adap(dev); 1935 u16 hw_pidx, hw_cidx; 1936 int ret; 1937 1938 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1939 if (ret) 1940 goto out; 1941 1942 if (pidx != hw_pidx) { 1943 u16 delta; 1944 u32 val; 1945 1946 if (pidx >= hw_pidx) 1947 delta = pidx - hw_pidx; 1948 else 1949 delta = size - hw_pidx + pidx; 1950 1951 if (is_t4(adap->params.chip)) 1952 val = PIDX_V(delta); 1953 else 1954 val = PIDX_T5_V(delta); 1955 wmb(); 1956 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1957 QID_V(qid) | val); 1958 } 1959 out: 1960 return ret; 1961 } 1962 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1963 1964 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1965 { 1966 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1967 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1968 u32 offset, memtype, memaddr; 1969 struct adapter *adap; 1970 u32 hma_size = 0; 1971 int ret; 1972 1973 adap = netdev2adap(dev); 1974 1975 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1976 1977 /* Figure out where the offset lands in the Memory Type/Address scheme. 1978 * This code assumes that the memory is laid out starting at offset 0 1979 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1980 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1981 * MC0, and some have both MC0 and MC1. 1982 */ 1983 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1984 edc0_size = EDRAM0_SIZE_G(size) << 20; 1985 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1986 edc1_size = EDRAM1_SIZE_G(size) << 20; 1987 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1988 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1989 1990 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 1991 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1992 hma_size = EXT_MEM1_SIZE_G(size) << 20; 1993 } 1994 edc0_end = edc0_size; 1995 edc1_end = edc0_end + edc1_size; 1996 mc0_end = edc1_end + mc0_size; 1997 1998 if (offset < edc0_end) { 1999 memtype = MEM_EDC0; 2000 memaddr = offset; 2001 } else if (offset < edc1_end) { 2002 memtype = MEM_EDC1; 2003 memaddr = offset - edc0_end; 2004 } else { 2005 if (hma_size && (offset < (edc1_end + hma_size))) { 2006 memtype = MEM_HMA; 2007 memaddr = offset - edc1_end; 2008 } else if (offset < mc0_end) { 2009 memtype = MEM_MC0; 2010 memaddr = offset - edc1_end; 2011 } else if (is_t5(adap->params.chip)) { 2012 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2013 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 2014 mc1_end = mc0_end + mc1_size; 2015 if (offset < mc1_end) { 2016 memtype = MEM_MC1; 2017 memaddr = offset - mc0_end; 2018 } else { 2019 /* offset beyond the end of any memory */ 2020 goto err; 2021 } 2022 } else { 2023 /* T4/T6 only has a single memory channel */ 2024 goto err; 2025 } 2026 } 2027 2028 spin_lock(&adap->win0_lock); 2029 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 2030 spin_unlock(&adap->win0_lock); 2031 return ret; 2032 2033 err: 2034 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 2035 stag, offset); 2036 return -EINVAL; 2037 } 2038 EXPORT_SYMBOL(cxgb4_read_tpte); 2039 2040 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 2041 { 2042 u32 hi, lo; 2043 struct adapter *adap; 2044 2045 adap = netdev2adap(dev); 2046 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 2047 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 2048 2049 return ((u64)hi << 32) | (u64)lo; 2050 } 2051 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 2052 2053 int cxgb4_bar2_sge_qregs(struct net_device *dev, 2054 unsigned int qid, 2055 enum cxgb4_bar2_qtype qtype, 2056 int user, 2057 u64 *pbar2_qoffset, 2058 unsigned int *pbar2_qid) 2059 { 2060 return t4_bar2_sge_qregs(netdev2adap(dev), 2061 qid, 2062 (qtype == CXGB4_BAR2_QTYPE_EGRESS 2063 ? T4_BAR2_QTYPE_EGRESS 2064 : T4_BAR2_QTYPE_INGRESS), 2065 user, 2066 pbar2_qoffset, 2067 pbar2_qid); 2068 } 2069 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 2070 2071 static struct pci_driver cxgb4_driver; 2072 2073 static void check_neigh_update(struct neighbour *neigh) 2074 { 2075 const struct device *parent; 2076 const struct net_device *netdev = neigh->dev; 2077 2078 if (is_vlan_dev(netdev)) 2079 netdev = vlan_dev_real_dev(netdev); 2080 parent = netdev->dev.parent; 2081 if (parent && parent->driver == &cxgb4_driver.driver) 2082 t4_l2t_update(dev_get_drvdata(parent), neigh); 2083 } 2084 2085 static int netevent_cb(struct notifier_block *nb, unsigned long event, 2086 void *data) 2087 { 2088 switch (event) { 2089 case NETEVENT_NEIGH_UPDATE: 2090 check_neigh_update(data); 2091 break; 2092 case NETEVENT_REDIRECT: 2093 default: 2094 break; 2095 } 2096 return 0; 2097 } 2098 2099 static bool netevent_registered; 2100 static struct notifier_block cxgb4_netevent_nb = { 2101 .notifier_call = netevent_cb 2102 }; 2103 2104 static void drain_db_fifo(struct adapter *adap, int usecs) 2105 { 2106 u32 v1, v2, lp_count, hp_count; 2107 2108 do { 2109 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2110 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2111 if (is_t4(adap->params.chip)) { 2112 lp_count = LP_COUNT_G(v1); 2113 hp_count = HP_COUNT_G(v1); 2114 } else { 2115 lp_count = LP_COUNT_T5_G(v1); 2116 hp_count = HP_COUNT_T5_G(v2); 2117 } 2118 2119 if (lp_count == 0 && hp_count == 0) 2120 break; 2121 set_current_state(TASK_UNINTERRUPTIBLE); 2122 schedule_timeout(usecs_to_jiffies(usecs)); 2123 } while (1); 2124 } 2125 2126 static void disable_txq_db(struct sge_txq *q) 2127 { 2128 unsigned long flags; 2129 2130 spin_lock_irqsave(&q->db_lock, flags); 2131 q->db_disabled = 1; 2132 spin_unlock_irqrestore(&q->db_lock, flags); 2133 } 2134 2135 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 2136 { 2137 spin_lock_irq(&q->db_lock); 2138 if (q->db_pidx_inc) { 2139 /* Make sure that all writes to the TX descriptors 2140 * are committed before we tell HW about them. 2141 */ 2142 wmb(); 2143 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2144 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 2145 q->db_pidx_inc = 0; 2146 } 2147 q->db_disabled = 0; 2148 spin_unlock_irq(&q->db_lock); 2149 } 2150 2151 static void disable_dbs(struct adapter *adap) 2152 { 2153 int i; 2154 2155 for_each_ethrxq(&adap->sge, i) 2156 disable_txq_db(&adap->sge.ethtxq[i].q); 2157 if (is_offload(adap)) { 2158 struct sge_uld_txq_info *txq_info = 2159 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2160 2161 if (txq_info) { 2162 for_each_ofldtxq(&adap->sge, i) { 2163 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2164 2165 disable_txq_db(&txq->q); 2166 } 2167 } 2168 } 2169 for_each_port(adap, i) 2170 disable_txq_db(&adap->sge.ctrlq[i].q); 2171 } 2172 2173 static void enable_dbs(struct adapter *adap) 2174 { 2175 int i; 2176 2177 for_each_ethrxq(&adap->sge, i) 2178 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 2179 if (is_offload(adap)) { 2180 struct sge_uld_txq_info *txq_info = 2181 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2182 2183 if (txq_info) { 2184 for_each_ofldtxq(&adap->sge, i) { 2185 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2186 2187 enable_txq_db(adap, &txq->q); 2188 } 2189 } 2190 } 2191 for_each_port(adap, i) 2192 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2193 } 2194 2195 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2196 { 2197 enum cxgb4_uld type = CXGB4_ULD_RDMA; 2198 2199 if (adap->uld && adap->uld[type].handle) 2200 adap->uld[type].control(adap->uld[type].handle, cmd); 2201 } 2202 2203 static void process_db_full(struct work_struct *work) 2204 { 2205 struct adapter *adap; 2206 2207 adap = container_of(work, struct adapter, db_full_task); 2208 2209 drain_db_fifo(adap, dbfifo_drain_delay); 2210 enable_dbs(adap); 2211 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2212 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2213 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2214 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2215 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2216 else 2217 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2218 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2219 } 2220 2221 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2222 { 2223 u16 hw_pidx, hw_cidx; 2224 int ret; 2225 2226 spin_lock_irq(&q->db_lock); 2227 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2228 if (ret) 2229 goto out; 2230 if (q->db_pidx != hw_pidx) { 2231 u16 delta; 2232 u32 val; 2233 2234 if (q->db_pidx >= hw_pidx) 2235 delta = q->db_pidx - hw_pidx; 2236 else 2237 delta = q->size - hw_pidx + q->db_pidx; 2238 2239 if (is_t4(adap->params.chip)) 2240 val = PIDX_V(delta); 2241 else 2242 val = PIDX_T5_V(delta); 2243 wmb(); 2244 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2245 QID_V(q->cntxt_id) | val); 2246 } 2247 out: 2248 q->db_disabled = 0; 2249 q->db_pidx_inc = 0; 2250 spin_unlock_irq(&q->db_lock); 2251 if (ret) 2252 CH_WARN(adap, "DB drop recovery failed.\n"); 2253 } 2254 2255 static void recover_all_queues(struct adapter *adap) 2256 { 2257 int i; 2258 2259 for_each_ethrxq(&adap->sge, i) 2260 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2261 if (is_offload(adap)) { 2262 struct sge_uld_txq_info *txq_info = 2263 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2264 if (txq_info) { 2265 for_each_ofldtxq(&adap->sge, i) { 2266 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2267 2268 sync_txq_pidx(adap, &txq->q); 2269 } 2270 } 2271 } 2272 for_each_port(adap, i) 2273 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2274 } 2275 2276 static void process_db_drop(struct work_struct *work) 2277 { 2278 struct adapter *adap; 2279 2280 adap = container_of(work, struct adapter, db_drop_task); 2281 2282 if (is_t4(adap->params.chip)) { 2283 drain_db_fifo(adap, dbfifo_drain_delay); 2284 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2285 drain_db_fifo(adap, dbfifo_drain_delay); 2286 recover_all_queues(adap); 2287 drain_db_fifo(adap, dbfifo_drain_delay); 2288 enable_dbs(adap); 2289 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2290 } else if (is_t5(adap->params.chip)) { 2291 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2292 u16 qid = (dropped_db >> 15) & 0x1ffff; 2293 u16 pidx_inc = dropped_db & 0x1fff; 2294 u64 bar2_qoffset; 2295 unsigned int bar2_qid; 2296 int ret; 2297 2298 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2299 0, &bar2_qoffset, &bar2_qid); 2300 if (ret) 2301 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2302 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2303 else 2304 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2305 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2306 2307 /* Re-enable BAR2 WC */ 2308 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2309 } 2310 2311 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2312 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2313 } 2314 2315 void t4_db_full(struct adapter *adap) 2316 { 2317 if (is_t4(adap->params.chip)) { 2318 disable_dbs(adap); 2319 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2320 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2321 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2322 queue_work(adap->workq, &adap->db_full_task); 2323 } 2324 } 2325 2326 void t4_db_dropped(struct adapter *adap) 2327 { 2328 if (is_t4(adap->params.chip)) { 2329 disable_dbs(adap); 2330 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2331 } 2332 queue_work(adap->workq, &adap->db_drop_task); 2333 } 2334 2335 void t4_register_netevent_notifier(void) 2336 { 2337 if (!netevent_registered) { 2338 register_netevent_notifier(&cxgb4_netevent_nb); 2339 netevent_registered = true; 2340 } 2341 } 2342 2343 static void detach_ulds(struct adapter *adap) 2344 { 2345 unsigned int i; 2346 2347 mutex_lock(&uld_mutex); 2348 list_del(&adap->list_node); 2349 2350 for (i = 0; i < CXGB4_ULD_MAX; i++) 2351 if (adap->uld && adap->uld[i].handle) 2352 adap->uld[i].state_change(adap->uld[i].handle, 2353 CXGB4_STATE_DETACH); 2354 2355 if (netevent_registered && list_empty(&adapter_list)) { 2356 unregister_netevent_notifier(&cxgb4_netevent_nb); 2357 netevent_registered = false; 2358 } 2359 mutex_unlock(&uld_mutex); 2360 } 2361 2362 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2363 { 2364 unsigned int i; 2365 2366 mutex_lock(&uld_mutex); 2367 for (i = 0; i < CXGB4_ULD_MAX; i++) 2368 if (adap->uld && adap->uld[i].handle) 2369 adap->uld[i].state_change(adap->uld[i].handle, 2370 new_state); 2371 mutex_unlock(&uld_mutex); 2372 } 2373 2374 #if IS_ENABLED(CONFIG_IPV6) 2375 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2376 unsigned long event, void *data) 2377 { 2378 struct inet6_ifaddr *ifa = data; 2379 struct net_device *event_dev = ifa->idev->dev; 2380 const struct device *parent = NULL; 2381 #if IS_ENABLED(CONFIG_BONDING) 2382 struct adapter *adap; 2383 #endif 2384 if (is_vlan_dev(event_dev)) 2385 event_dev = vlan_dev_real_dev(event_dev); 2386 #if IS_ENABLED(CONFIG_BONDING) 2387 if (event_dev->flags & IFF_MASTER) { 2388 list_for_each_entry(adap, &adapter_list, list_node) { 2389 switch (event) { 2390 case NETDEV_UP: 2391 cxgb4_clip_get(adap->port[0], 2392 (const u32 *)ifa, 1); 2393 break; 2394 case NETDEV_DOWN: 2395 cxgb4_clip_release(adap->port[0], 2396 (const u32 *)ifa, 1); 2397 break; 2398 default: 2399 break; 2400 } 2401 } 2402 return NOTIFY_OK; 2403 } 2404 #endif 2405 2406 if (event_dev) 2407 parent = event_dev->dev.parent; 2408 2409 if (parent && parent->driver == &cxgb4_driver.driver) { 2410 switch (event) { 2411 case NETDEV_UP: 2412 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2413 break; 2414 case NETDEV_DOWN: 2415 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2416 break; 2417 default: 2418 break; 2419 } 2420 } 2421 return NOTIFY_OK; 2422 } 2423 2424 static bool inet6addr_registered; 2425 static struct notifier_block cxgb4_inet6addr_notifier = { 2426 .notifier_call = cxgb4_inet6addr_handler 2427 }; 2428 2429 static void update_clip(const struct adapter *adap) 2430 { 2431 int i; 2432 struct net_device *dev; 2433 int ret; 2434 2435 rcu_read_lock(); 2436 2437 for (i = 0; i < MAX_NPORTS; i++) { 2438 dev = adap->port[i]; 2439 ret = 0; 2440 2441 if (dev) 2442 ret = cxgb4_update_root_dev_clip(dev); 2443 2444 if (ret < 0) 2445 break; 2446 } 2447 rcu_read_unlock(); 2448 } 2449 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2450 2451 /** 2452 * cxgb_up - enable the adapter 2453 * @adap: adapter being enabled 2454 * 2455 * Called when the first port is enabled, this function performs the 2456 * actions necessary to make an adapter operational, such as completing 2457 * the initialization of HW modules, and enabling interrupts. 2458 * 2459 * Must be called with the rtnl lock held. 2460 */ 2461 static int cxgb_up(struct adapter *adap) 2462 { 2463 struct sge *s = &adap->sge; 2464 int err; 2465 2466 mutex_lock(&uld_mutex); 2467 err = setup_sge_queues(adap); 2468 if (err) 2469 goto rel_lock; 2470 err = setup_rss(adap); 2471 if (err) 2472 goto freeq; 2473 2474 if (adap->flags & CXGB4_USING_MSIX) { 2475 if (s->nd_msix_idx < 0) { 2476 err = -ENOMEM; 2477 goto irq_err; 2478 } 2479 2480 err = request_irq(adap->msix_info[s->nd_msix_idx].vec, 2481 t4_nondata_intr, 0, 2482 adap->msix_info[s->nd_msix_idx].desc, adap); 2483 if (err) 2484 goto irq_err; 2485 2486 err = request_msix_queue_irqs(adap); 2487 if (err) 2488 goto irq_err_free_nd_msix; 2489 } else { 2490 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2491 (adap->flags & CXGB4_USING_MSI) ? 0 2492 : IRQF_SHARED, 2493 adap->port[0]->name, adap); 2494 if (err) 2495 goto irq_err; 2496 } 2497 2498 enable_rx(adap); 2499 t4_sge_start(adap); 2500 t4_intr_enable(adap); 2501 adap->flags |= CXGB4_FULL_INIT_DONE; 2502 mutex_unlock(&uld_mutex); 2503 2504 notify_ulds(adap, CXGB4_STATE_UP); 2505 #if IS_ENABLED(CONFIG_IPV6) 2506 update_clip(adap); 2507 #endif 2508 return err; 2509 2510 irq_err_free_nd_msix: 2511 free_irq(adap->msix_info[s->nd_msix_idx].vec, adap); 2512 irq_err: 2513 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2514 freeq: 2515 t4_free_sge_resources(adap); 2516 rel_lock: 2517 mutex_unlock(&uld_mutex); 2518 return err; 2519 } 2520 2521 static void cxgb_down(struct adapter *adapter) 2522 { 2523 cancel_work_sync(&adapter->tid_release_task); 2524 cancel_work_sync(&adapter->db_full_task); 2525 cancel_work_sync(&adapter->db_drop_task); 2526 adapter->tid_release_task_busy = false; 2527 adapter->tid_release_head = NULL; 2528 2529 t4_sge_stop(adapter); 2530 t4_free_sge_resources(adapter); 2531 2532 adapter->flags &= ~CXGB4_FULL_INIT_DONE; 2533 } 2534 2535 /* 2536 * net_device operations 2537 */ 2538 int cxgb_open(struct net_device *dev) 2539 { 2540 struct port_info *pi = netdev_priv(dev); 2541 struct adapter *adapter = pi->adapter; 2542 int err; 2543 2544 netif_carrier_off(dev); 2545 2546 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) { 2547 err = cxgb_up(adapter); 2548 if (err < 0) 2549 return err; 2550 } 2551 2552 /* It's possible that the basic port information could have 2553 * changed since we first read it. 2554 */ 2555 err = t4_update_port_info(pi); 2556 if (err < 0) 2557 return err; 2558 2559 err = link_start(dev); 2560 if (!err) 2561 netif_tx_start_all_queues(dev); 2562 return err; 2563 } 2564 2565 int cxgb_close(struct net_device *dev) 2566 { 2567 struct port_info *pi = netdev_priv(dev); 2568 struct adapter *adapter = pi->adapter; 2569 int ret; 2570 2571 netif_tx_stop_all_queues(dev); 2572 netif_carrier_off(dev); 2573 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2574 false, false, false); 2575 #ifdef CONFIG_CHELSIO_T4_DCB 2576 cxgb4_dcb_reset(dev); 2577 dcb_tx_queue_prio_enable(dev, false); 2578 #endif 2579 return ret; 2580 } 2581 2582 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2583 __be32 sip, __be16 sport, __be16 vlan, 2584 unsigned int queue, unsigned char port, unsigned char mask) 2585 { 2586 int ret; 2587 struct filter_entry *f; 2588 struct adapter *adap; 2589 int i; 2590 u8 *val; 2591 2592 adap = netdev2adap(dev); 2593 2594 /* Adjust stid to correct filter index */ 2595 stid -= adap->tids.sftid_base; 2596 stid += adap->tids.nftids; 2597 2598 /* Check to make sure the filter requested is writable ... 2599 */ 2600 f = &adap->tids.ftid_tab[stid]; 2601 ret = writable_filter(f); 2602 if (ret) 2603 return ret; 2604 2605 /* Clear out any old resources being used by the filter before 2606 * we start constructing the new filter. 2607 */ 2608 if (f->valid) 2609 clear_filter(adap, f); 2610 2611 /* Clear out filter specifications */ 2612 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2613 f->fs.val.lport = be16_to_cpu(sport); 2614 f->fs.mask.lport = ~0; 2615 val = (u8 *)&sip; 2616 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2617 for (i = 0; i < 4; i++) { 2618 f->fs.val.lip[i] = val[i]; 2619 f->fs.mask.lip[i] = ~0; 2620 } 2621 if (adap->params.tp.vlan_pri_map & PORT_F) { 2622 f->fs.val.iport = port; 2623 f->fs.mask.iport = mask; 2624 } 2625 } 2626 2627 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2628 f->fs.val.proto = IPPROTO_TCP; 2629 f->fs.mask.proto = ~0; 2630 } 2631 2632 f->fs.dirsteer = 1; 2633 f->fs.iq = queue; 2634 /* Mark filter as locked */ 2635 f->locked = 1; 2636 f->fs.rpttid = 1; 2637 2638 /* Save the actual tid. We need this to get the corresponding 2639 * filter entry structure in filter_rpl. 2640 */ 2641 f->tid = stid + adap->tids.ftid_base; 2642 ret = set_filter_wr(adap, stid); 2643 if (ret) { 2644 clear_filter(adap, f); 2645 return ret; 2646 } 2647 2648 return 0; 2649 } 2650 EXPORT_SYMBOL(cxgb4_create_server_filter); 2651 2652 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2653 unsigned int queue, bool ipv6) 2654 { 2655 struct filter_entry *f; 2656 struct adapter *adap; 2657 2658 adap = netdev2adap(dev); 2659 2660 /* Adjust stid to correct filter index */ 2661 stid -= adap->tids.sftid_base; 2662 stid += adap->tids.nftids; 2663 2664 f = &adap->tids.ftid_tab[stid]; 2665 /* Unlock the filter */ 2666 f->locked = 0; 2667 2668 return delete_filter(adap, stid); 2669 } 2670 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2671 2672 static void cxgb_get_stats(struct net_device *dev, 2673 struct rtnl_link_stats64 *ns) 2674 { 2675 struct port_stats stats; 2676 struct port_info *p = netdev_priv(dev); 2677 struct adapter *adapter = p->adapter; 2678 2679 /* Block retrieving statistics during EEH error 2680 * recovery. Otherwise, the recovery might fail 2681 * and the PCI device will be removed permanently 2682 */ 2683 spin_lock(&adapter->stats_lock); 2684 if (!netif_device_present(dev)) { 2685 spin_unlock(&adapter->stats_lock); 2686 return; 2687 } 2688 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2689 &p->stats_base); 2690 spin_unlock(&adapter->stats_lock); 2691 2692 ns->tx_bytes = stats.tx_octets; 2693 ns->tx_packets = stats.tx_frames; 2694 ns->rx_bytes = stats.rx_octets; 2695 ns->rx_packets = stats.rx_frames; 2696 ns->multicast = stats.rx_mcast_frames; 2697 2698 /* detailed rx_errors */ 2699 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2700 stats.rx_runt; 2701 ns->rx_over_errors = 0; 2702 ns->rx_crc_errors = stats.rx_fcs_err; 2703 ns->rx_frame_errors = stats.rx_symbol_err; 2704 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2705 stats.rx_ovflow2 + stats.rx_ovflow3 + 2706 stats.rx_trunc0 + stats.rx_trunc1 + 2707 stats.rx_trunc2 + stats.rx_trunc3; 2708 ns->rx_missed_errors = 0; 2709 2710 /* detailed tx_errors */ 2711 ns->tx_aborted_errors = 0; 2712 ns->tx_carrier_errors = 0; 2713 ns->tx_fifo_errors = 0; 2714 ns->tx_heartbeat_errors = 0; 2715 ns->tx_window_errors = 0; 2716 2717 ns->tx_errors = stats.tx_error_frames; 2718 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2719 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2720 } 2721 2722 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2723 { 2724 unsigned int mbox; 2725 int ret = 0, prtad, devad; 2726 struct port_info *pi = netdev_priv(dev); 2727 struct adapter *adapter = pi->adapter; 2728 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2729 2730 switch (cmd) { 2731 case SIOCGMIIPHY: 2732 if (pi->mdio_addr < 0) 2733 return -EOPNOTSUPP; 2734 data->phy_id = pi->mdio_addr; 2735 break; 2736 case SIOCGMIIREG: 2737 case SIOCSMIIREG: 2738 if (mdio_phy_id_is_c45(data->phy_id)) { 2739 prtad = mdio_phy_id_prtad(data->phy_id); 2740 devad = mdio_phy_id_devad(data->phy_id); 2741 } else if (data->phy_id < 32) { 2742 prtad = data->phy_id; 2743 devad = 0; 2744 data->reg_num &= 0x1f; 2745 } else 2746 return -EINVAL; 2747 2748 mbox = pi->adapter->pf; 2749 if (cmd == SIOCGMIIREG) 2750 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2751 data->reg_num, &data->val_out); 2752 else 2753 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2754 data->reg_num, data->val_in); 2755 break; 2756 case SIOCGHWTSTAMP: 2757 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2758 sizeof(pi->tstamp_config)) ? 2759 -EFAULT : 0; 2760 case SIOCSHWTSTAMP: 2761 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2762 sizeof(pi->tstamp_config))) 2763 return -EFAULT; 2764 2765 if (!is_t4(adapter->params.chip)) { 2766 switch (pi->tstamp_config.tx_type) { 2767 case HWTSTAMP_TX_OFF: 2768 case HWTSTAMP_TX_ON: 2769 break; 2770 default: 2771 return -ERANGE; 2772 } 2773 2774 switch (pi->tstamp_config.rx_filter) { 2775 case HWTSTAMP_FILTER_NONE: 2776 pi->rxtstamp = false; 2777 break; 2778 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2779 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2780 cxgb4_ptprx_timestamping(pi, pi->port_id, 2781 PTP_TS_L4); 2782 break; 2783 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2784 cxgb4_ptprx_timestamping(pi, pi->port_id, 2785 PTP_TS_L2_L4); 2786 break; 2787 case HWTSTAMP_FILTER_ALL: 2788 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2789 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2790 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2791 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2792 pi->rxtstamp = true; 2793 break; 2794 default: 2795 pi->tstamp_config.rx_filter = 2796 HWTSTAMP_FILTER_NONE; 2797 return -ERANGE; 2798 } 2799 2800 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2801 (pi->tstamp_config.rx_filter == 2802 HWTSTAMP_FILTER_NONE)) { 2803 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2804 pi->ptp_enable = false; 2805 } 2806 2807 if (pi->tstamp_config.rx_filter != 2808 HWTSTAMP_FILTER_NONE) { 2809 if (cxgb4_ptp_redirect_rx_packet(adapter, 2810 pi) >= 0) 2811 pi->ptp_enable = true; 2812 } 2813 } else { 2814 /* For T4 Adapters */ 2815 switch (pi->tstamp_config.rx_filter) { 2816 case HWTSTAMP_FILTER_NONE: 2817 pi->rxtstamp = false; 2818 break; 2819 case HWTSTAMP_FILTER_ALL: 2820 pi->rxtstamp = true; 2821 break; 2822 default: 2823 pi->tstamp_config.rx_filter = 2824 HWTSTAMP_FILTER_NONE; 2825 return -ERANGE; 2826 } 2827 } 2828 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2829 sizeof(pi->tstamp_config)) ? 2830 -EFAULT : 0; 2831 default: 2832 return -EOPNOTSUPP; 2833 } 2834 return ret; 2835 } 2836 2837 static void cxgb_set_rxmode(struct net_device *dev) 2838 { 2839 /* unfortunately we can't return errors to the stack */ 2840 set_rxmode(dev, -1, false); 2841 } 2842 2843 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2844 { 2845 int ret; 2846 struct port_info *pi = netdev_priv(dev); 2847 2848 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2849 -1, -1, -1, true); 2850 if (!ret) 2851 dev->mtu = new_mtu; 2852 return ret; 2853 } 2854 2855 #ifdef CONFIG_PCI_IOV 2856 static int cxgb4_mgmt_open(struct net_device *dev) 2857 { 2858 /* Turn carrier off since we don't have to transmit anything on this 2859 * interface. 2860 */ 2861 netif_carrier_off(dev); 2862 return 0; 2863 } 2864 2865 /* Fill MAC address that will be assigned by the FW */ 2866 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 2867 { 2868 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2869 unsigned int i, vf, nvfs; 2870 u16 a, b; 2871 int err; 2872 u8 *na; 2873 2874 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, 2875 PCI_CAP_ID_VPD); 2876 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2877 if (err) 2878 return; 2879 2880 na = adap->params.vpd.na; 2881 for (i = 0; i < ETH_ALEN; i++) 2882 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2883 hex2val(na[2 * i + 1])); 2884 2885 a = (hw_addr[0] << 8) | hw_addr[1]; 2886 b = (hw_addr[1] << 8) | hw_addr[2]; 2887 a ^= b; 2888 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2889 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2890 macaddr[0] = a >> 8; 2891 macaddr[1] = a & 0xff; 2892 2893 for (i = 2; i < 5; i++) 2894 macaddr[i] = hw_addr[i + 1]; 2895 2896 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 2897 vf < nvfs; vf++) { 2898 macaddr[5] = adap->pf * nvfs + vf; 2899 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 2900 } 2901 } 2902 2903 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2904 { 2905 struct port_info *pi = netdev_priv(dev); 2906 struct adapter *adap = pi->adapter; 2907 int ret; 2908 2909 /* verify MAC addr is valid */ 2910 if (!is_valid_ether_addr(mac)) { 2911 dev_err(pi->adapter->pdev_dev, 2912 "Invalid Ethernet address %pM for VF %d\n", 2913 mac, vf); 2914 return -EINVAL; 2915 } 2916 2917 dev_info(pi->adapter->pdev_dev, 2918 "Setting MAC %pM on VF %d\n", mac, vf); 2919 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2920 if (!ret) 2921 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2922 return ret; 2923 } 2924 2925 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 2926 int vf, struct ifla_vf_info *ivi) 2927 { 2928 struct port_info *pi = netdev_priv(dev); 2929 struct adapter *adap = pi->adapter; 2930 struct vf_info *vfinfo; 2931 2932 if (vf >= adap->num_vfs) 2933 return -EINVAL; 2934 vfinfo = &adap->vfinfo[vf]; 2935 2936 ivi->vf = vf; 2937 ivi->max_tx_rate = vfinfo->tx_rate; 2938 ivi->min_tx_rate = 0; 2939 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 2940 ivi->vlan = vfinfo->vlan; 2941 ivi->linkstate = vfinfo->link_state; 2942 return 0; 2943 } 2944 2945 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 2946 struct netdev_phys_item_id *ppid) 2947 { 2948 struct port_info *pi = netdev_priv(dev); 2949 unsigned int phy_port_id; 2950 2951 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2952 ppid->id_len = sizeof(phy_port_id); 2953 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2954 return 0; 2955 } 2956 2957 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 2958 int min_tx_rate, int max_tx_rate) 2959 { 2960 struct port_info *pi = netdev_priv(dev); 2961 struct adapter *adap = pi->adapter; 2962 unsigned int link_ok, speed, mtu; 2963 u32 fw_pfvf, fw_class; 2964 int class_id = vf; 2965 int ret; 2966 u16 pktsize; 2967 2968 if (vf >= adap->num_vfs) 2969 return -EINVAL; 2970 2971 if (min_tx_rate) { 2972 dev_err(adap->pdev_dev, 2973 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2974 min_tx_rate, vf); 2975 return -EINVAL; 2976 } 2977 2978 if (max_tx_rate == 0) { 2979 /* unbind VF to to any Traffic Class */ 2980 fw_pfvf = 2981 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2982 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2983 fw_class = 0xffffffff; 2984 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 2985 &fw_pfvf, &fw_class); 2986 if (ret) { 2987 dev_err(adap->pdev_dev, 2988 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n", 2989 ret, adap->pf, vf); 2990 return -EINVAL; 2991 } 2992 dev_info(adap->pdev_dev, 2993 "PF %d VF %d is unbound from TX Rate Limiting\n", 2994 adap->pf, vf); 2995 adap->vfinfo[vf].tx_rate = 0; 2996 return 0; 2997 } 2998 2999 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 3000 if (ret != FW_SUCCESS) { 3001 dev_err(adap->pdev_dev, 3002 "Failed to get link information for VF %d\n", vf); 3003 return -EINVAL; 3004 } 3005 3006 if (!link_ok) { 3007 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 3008 return -EINVAL; 3009 } 3010 3011 if (max_tx_rate > speed) { 3012 dev_err(adap->pdev_dev, 3013 "Max tx rate %d for VF %d can't be > link-speed %u", 3014 max_tx_rate, vf, speed); 3015 return -EINVAL; 3016 } 3017 3018 pktsize = mtu; 3019 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 3020 pktsize = pktsize - sizeof(struct ethhdr) - 4; 3021 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 3022 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 3023 /* configure Traffic Class for rate-limiting */ 3024 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 3025 SCHED_CLASS_LEVEL_CL_RL, 3026 SCHED_CLASS_MODE_CLASS, 3027 SCHED_CLASS_RATEUNIT_BITS, 3028 SCHED_CLASS_RATEMODE_ABS, 3029 pi->tx_chan, class_id, 0, 3030 max_tx_rate * 1000, 0, pktsize, 0); 3031 if (ret) { 3032 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 3033 ret); 3034 return -EINVAL; 3035 } 3036 dev_info(adap->pdev_dev, 3037 "Class %d with MSS %u configured with rate %u\n", 3038 class_id, pktsize, max_tx_rate); 3039 3040 /* bind VF to configured Traffic Class */ 3041 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3042 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 3043 fw_class = class_id; 3044 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 3045 &fw_class); 3046 if (ret) { 3047 dev_err(adap->pdev_dev, 3048 "Err %d in binding PF %d VF %d to Traffic Class %d\n", 3049 ret, adap->pf, vf, class_id); 3050 return -EINVAL; 3051 } 3052 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 3053 adap->pf, vf, class_id); 3054 adap->vfinfo[vf].tx_rate = max_tx_rate; 3055 return 0; 3056 } 3057 3058 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 3059 u16 vlan, u8 qos, __be16 vlan_proto) 3060 { 3061 struct port_info *pi = netdev_priv(dev); 3062 struct adapter *adap = pi->adapter; 3063 int ret; 3064 3065 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 3066 return -EINVAL; 3067 3068 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 3069 return -EPROTONOSUPPORT; 3070 3071 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 3072 if (!ret) { 3073 adap->vfinfo[vf].vlan = vlan; 3074 return 0; 3075 } 3076 3077 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 3078 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 3079 return ret; 3080 } 3081 3082 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf, 3083 int link) 3084 { 3085 struct port_info *pi = netdev_priv(dev); 3086 struct adapter *adap = pi->adapter; 3087 u32 param, val; 3088 int ret = 0; 3089 3090 if (vf >= adap->num_vfs) 3091 return -EINVAL; 3092 3093 switch (link) { 3094 case IFLA_VF_LINK_STATE_AUTO: 3095 val = FW_VF_LINK_STATE_AUTO; 3096 break; 3097 3098 case IFLA_VF_LINK_STATE_ENABLE: 3099 val = FW_VF_LINK_STATE_ENABLE; 3100 break; 3101 3102 case IFLA_VF_LINK_STATE_DISABLE: 3103 val = FW_VF_LINK_STATE_DISABLE; 3104 break; 3105 3106 default: 3107 return -EINVAL; 3108 } 3109 3110 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3111 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE)); 3112 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 3113 ¶m, &val); 3114 if (ret) { 3115 dev_err(adap->pdev_dev, 3116 "Error %d in setting PF %d VF %d link state\n", 3117 ret, adap->pf, vf); 3118 return -EINVAL; 3119 } 3120 3121 adap->vfinfo[vf].link_state = link; 3122 return ret; 3123 } 3124 #endif /* CONFIG_PCI_IOV */ 3125 3126 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 3127 { 3128 int ret; 3129 struct sockaddr *addr = p; 3130 struct port_info *pi = netdev_priv(dev); 3131 3132 if (!is_valid_ether_addr(addr->sa_data)) 3133 return -EADDRNOTAVAIL; 3134 3135 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 3136 addr->sa_data, true, &pi->smt_idx); 3137 if (ret < 0) 3138 return ret; 3139 3140 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 3141 return 0; 3142 } 3143 3144 #ifdef CONFIG_NET_POLL_CONTROLLER 3145 static void cxgb_netpoll(struct net_device *dev) 3146 { 3147 struct port_info *pi = netdev_priv(dev); 3148 struct adapter *adap = pi->adapter; 3149 3150 if (adap->flags & CXGB4_USING_MSIX) { 3151 int i; 3152 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 3153 3154 for (i = pi->nqsets; i; i--, rx++) 3155 t4_sge_intr_msix(0, &rx->rspq); 3156 } else 3157 t4_intr_handler(adap)(0, adap); 3158 } 3159 #endif 3160 3161 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 3162 { 3163 struct port_info *pi = netdev_priv(dev); 3164 struct adapter *adap = pi->adapter; 3165 struct ch_sched_queue qe = { 0 }; 3166 struct ch_sched_params p = { 0 }; 3167 struct sched_class *e; 3168 u32 req_rate; 3169 int err = 0; 3170 3171 if (!can_sched(dev)) 3172 return -ENOTSUPP; 3173 3174 if (index < 0 || index > pi->nqsets - 1) 3175 return -EINVAL; 3176 3177 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3178 dev_err(adap->pdev_dev, 3179 "Failed to rate limit on queue %d. Link Down?\n", 3180 index); 3181 return -EINVAL; 3182 } 3183 3184 qe.queue = index; 3185 e = cxgb4_sched_queue_lookup(dev, &qe); 3186 if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) { 3187 dev_err(adap->pdev_dev, 3188 "Queue %u already bound to class %u of type: %u\n", 3189 index, e->idx, e->info.u.params.level); 3190 return -EBUSY; 3191 } 3192 3193 /* Convert from Mbps to Kbps */ 3194 req_rate = rate * 1000; 3195 3196 /* Max rate is 100 Gbps */ 3197 if (req_rate > SCHED_MAX_RATE_KBPS) { 3198 dev_err(adap->pdev_dev, 3199 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 3200 rate, SCHED_MAX_RATE_KBPS / 1000); 3201 return -ERANGE; 3202 } 3203 3204 /* First unbind the queue from any existing class */ 3205 memset(&qe, 0, sizeof(qe)); 3206 qe.queue = index; 3207 qe.class = SCHED_CLS_NONE; 3208 3209 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 3210 if (err) { 3211 dev_err(adap->pdev_dev, 3212 "Unbinding Queue %d on port %d fail. Err: %d\n", 3213 index, pi->port_id, err); 3214 return err; 3215 } 3216 3217 /* Queue already unbound */ 3218 if (!req_rate) 3219 return 0; 3220 3221 /* Fetch any available unused or matching scheduling class */ 3222 p.type = SCHED_CLASS_TYPE_PACKET; 3223 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 3224 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 3225 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 3226 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 3227 p.u.params.channel = pi->tx_chan; 3228 p.u.params.class = SCHED_CLS_NONE; 3229 p.u.params.minrate = 0; 3230 p.u.params.maxrate = req_rate; 3231 p.u.params.weight = 0; 3232 p.u.params.pktsize = dev->mtu; 3233 3234 e = cxgb4_sched_class_alloc(dev, &p); 3235 if (!e) 3236 return -ENOMEM; 3237 3238 /* Bind the queue to a scheduling class */ 3239 memset(&qe, 0, sizeof(qe)); 3240 qe.queue = index; 3241 qe.class = e->idx; 3242 3243 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 3244 if (err) 3245 dev_err(adap->pdev_dev, 3246 "Queue rate limiting failed. Err: %d\n", err); 3247 return err; 3248 } 3249 3250 static int cxgb_setup_tc_flower(struct net_device *dev, 3251 struct flow_cls_offload *cls_flower) 3252 { 3253 switch (cls_flower->command) { 3254 case FLOW_CLS_REPLACE: 3255 return cxgb4_tc_flower_replace(dev, cls_flower); 3256 case FLOW_CLS_DESTROY: 3257 return cxgb4_tc_flower_destroy(dev, cls_flower); 3258 case FLOW_CLS_STATS: 3259 return cxgb4_tc_flower_stats(dev, cls_flower); 3260 default: 3261 return -EOPNOTSUPP; 3262 } 3263 } 3264 3265 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 3266 struct tc_cls_u32_offload *cls_u32) 3267 { 3268 switch (cls_u32->command) { 3269 case TC_CLSU32_NEW_KNODE: 3270 case TC_CLSU32_REPLACE_KNODE: 3271 return cxgb4_config_knode(dev, cls_u32); 3272 case TC_CLSU32_DELETE_KNODE: 3273 return cxgb4_delete_knode(dev, cls_u32); 3274 default: 3275 return -EOPNOTSUPP; 3276 } 3277 } 3278 3279 static int cxgb_setup_tc_matchall(struct net_device *dev, 3280 struct tc_cls_matchall_offload *cls_matchall, 3281 bool ingress) 3282 { 3283 struct adapter *adap = netdev2adap(dev); 3284 3285 if (!adap->tc_matchall) 3286 return -ENOMEM; 3287 3288 switch (cls_matchall->command) { 3289 case TC_CLSMATCHALL_REPLACE: 3290 return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress); 3291 case TC_CLSMATCHALL_DESTROY: 3292 return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress); 3293 case TC_CLSMATCHALL_STATS: 3294 if (ingress) 3295 return cxgb4_tc_matchall_stats(dev, cls_matchall); 3296 break; 3297 default: 3298 break; 3299 } 3300 3301 return -EOPNOTSUPP; 3302 } 3303 3304 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type, 3305 void *type_data, void *cb_priv) 3306 { 3307 struct net_device *dev = cb_priv; 3308 struct port_info *pi = netdev2pinfo(dev); 3309 struct adapter *adap = netdev2adap(dev); 3310 3311 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3312 dev_err(adap->pdev_dev, 3313 "Failed to setup tc on port %d. Link Down?\n", 3314 pi->port_id); 3315 return -EINVAL; 3316 } 3317 3318 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3319 return -EOPNOTSUPP; 3320 3321 switch (type) { 3322 case TC_SETUP_CLSU32: 3323 return cxgb_setup_tc_cls_u32(dev, type_data); 3324 case TC_SETUP_CLSFLOWER: 3325 return cxgb_setup_tc_flower(dev, type_data); 3326 case TC_SETUP_CLSMATCHALL: 3327 return cxgb_setup_tc_matchall(dev, type_data, true); 3328 default: 3329 return -EOPNOTSUPP; 3330 } 3331 } 3332 3333 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type, 3334 void *type_data, void *cb_priv) 3335 { 3336 struct net_device *dev = cb_priv; 3337 struct port_info *pi = netdev2pinfo(dev); 3338 struct adapter *adap = netdev2adap(dev); 3339 3340 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3341 dev_err(adap->pdev_dev, 3342 "Failed to setup tc on port %d. Link Down?\n", 3343 pi->port_id); 3344 return -EINVAL; 3345 } 3346 3347 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3348 return -EOPNOTSUPP; 3349 3350 switch (type) { 3351 case TC_SETUP_CLSMATCHALL: 3352 return cxgb_setup_tc_matchall(dev, type_data, false); 3353 default: 3354 break; 3355 } 3356 3357 return -EOPNOTSUPP; 3358 } 3359 3360 static int cxgb_setup_tc_mqprio(struct net_device *dev, 3361 struct tc_mqprio_qopt_offload *mqprio) 3362 { 3363 struct adapter *adap = netdev2adap(dev); 3364 3365 if (!is_ethofld(adap) || !adap->tc_mqprio) 3366 return -ENOMEM; 3367 3368 return cxgb4_setup_tc_mqprio(dev, mqprio); 3369 } 3370 3371 static LIST_HEAD(cxgb_block_cb_list); 3372 3373 static int cxgb_setup_tc_block(struct net_device *dev, 3374 struct flow_block_offload *f) 3375 { 3376 struct port_info *pi = netdev_priv(dev); 3377 flow_setup_cb_t *cb; 3378 bool ingress_only; 3379 3380 pi->tc_block_shared = f->block_shared; 3381 if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) { 3382 cb = cxgb_setup_tc_block_egress_cb; 3383 ingress_only = false; 3384 } else { 3385 cb = cxgb_setup_tc_block_ingress_cb; 3386 ingress_only = true; 3387 } 3388 3389 return flow_block_cb_setup_simple(f, &cxgb_block_cb_list, 3390 cb, pi, dev, ingress_only); 3391 } 3392 3393 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3394 void *type_data) 3395 { 3396 switch (type) { 3397 case TC_SETUP_QDISC_MQPRIO: 3398 return cxgb_setup_tc_mqprio(dev, type_data); 3399 case TC_SETUP_BLOCK: 3400 return cxgb_setup_tc_block(dev, type_data); 3401 default: 3402 return -EOPNOTSUPP; 3403 } 3404 } 3405 3406 static void cxgb_del_udp_tunnel(struct net_device *netdev, 3407 struct udp_tunnel_info *ti) 3408 { 3409 struct port_info *pi = netdev_priv(netdev); 3410 struct adapter *adapter = pi->adapter; 3411 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3412 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3413 int ret = 0, i; 3414 3415 if (chip_ver < CHELSIO_T6) 3416 return; 3417 3418 switch (ti->type) { 3419 case UDP_TUNNEL_TYPE_VXLAN: 3420 if (!adapter->vxlan_port_cnt || 3421 adapter->vxlan_port != ti->port) 3422 return; /* Invalid VxLAN destination port */ 3423 3424 adapter->vxlan_port_cnt--; 3425 if (adapter->vxlan_port_cnt) 3426 return; 3427 3428 adapter->vxlan_port = 0; 3429 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3430 break; 3431 case UDP_TUNNEL_TYPE_GENEVE: 3432 if (!adapter->geneve_port_cnt || 3433 adapter->geneve_port != ti->port) 3434 return; /* Invalid GENEVE destination port */ 3435 3436 adapter->geneve_port_cnt--; 3437 if (adapter->geneve_port_cnt) 3438 return; 3439 3440 adapter->geneve_port = 0; 3441 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3442 break; 3443 default: 3444 return; 3445 } 3446 3447 /* Matchall mac entries can be deleted only after all tunnel ports 3448 * are brought down or removed. 3449 */ 3450 if (!adapter->rawf_cnt) 3451 return; 3452 for_each_port(adapter, i) { 3453 pi = adap2pinfo(adapter, i); 3454 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3455 match_all_mac, match_all_mac, 3456 adapter->rawf_start + 3457 pi->port_id, 3458 1, pi->port_id, false); 3459 if (ret < 0) { 3460 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3461 i); 3462 return; 3463 } 3464 } 3465 } 3466 3467 static void cxgb_add_udp_tunnel(struct net_device *netdev, 3468 struct udp_tunnel_info *ti) 3469 { 3470 struct port_info *pi = netdev_priv(netdev); 3471 struct adapter *adapter = pi->adapter; 3472 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3473 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3474 int i, ret; 3475 3476 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt) 3477 return; 3478 3479 switch (ti->type) { 3480 case UDP_TUNNEL_TYPE_VXLAN: 3481 /* Callback for adding vxlan port can be called with the same 3482 * port for both IPv4 and IPv6. We should not disable the 3483 * offloading when the same port for both protocols is added 3484 * and later one of them is removed. 3485 */ 3486 if (adapter->vxlan_port_cnt && 3487 adapter->vxlan_port == ti->port) { 3488 adapter->vxlan_port_cnt++; 3489 return; 3490 } 3491 3492 /* We will support only one VxLAN port */ 3493 if (adapter->vxlan_port_cnt) { 3494 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3495 be16_to_cpu(adapter->vxlan_port), 3496 be16_to_cpu(ti->port)); 3497 return; 3498 } 3499 3500 adapter->vxlan_port = ti->port; 3501 adapter->vxlan_port_cnt = 1; 3502 3503 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3504 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3505 break; 3506 case UDP_TUNNEL_TYPE_GENEVE: 3507 if (adapter->geneve_port_cnt && 3508 adapter->geneve_port == ti->port) { 3509 adapter->geneve_port_cnt++; 3510 return; 3511 } 3512 3513 /* We will support only one GENEVE port */ 3514 if (adapter->geneve_port_cnt) { 3515 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3516 be16_to_cpu(adapter->geneve_port), 3517 be16_to_cpu(ti->port)); 3518 return; 3519 } 3520 3521 adapter->geneve_port = ti->port; 3522 adapter->geneve_port_cnt = 1; 3523 3524 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3525 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3526 break; 3527 default: 3528 return; 3529 } 3530 3531 /* Create a 'match all' mac filter entry for inner mac, 3532 * if raw mac interface is supported. Once the linux kernel provides 3533 * driver entry points for adding/deleting the inner mac addresses, 3534 * we will remove this 'match all' entry and fallback to adding 3535 * exact match filters. 3536 */ 3537 for_each_port(adapter, i) { 3538 pi = adap2pinfo(adapter, i); 3539 3540 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3541 match_all_mac, 3542 match_all_mac, 3543 adapter->rawf_start + 3544 pi->port_id, 3545 1, pi->port_id, false); 3546 if (ret < 0) { 3547 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3548 be16_to_cpu(ti->port)); 3549 cxgb_del_udp_tunnel(netdev, ti); 3550 return; 3551 } 3552 } 3553 } 3554 3555 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3556 struct net_device *dev, 3557 netdev_features_t features) 3558 { 3559 struct port_info *pi = netdev_priv(dev); 3560 struct adapter *adapter = pi->adapter; 3561 3562 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3563 return features; 3564 3565 /* Check if hw supports offload for this packet */ 3566 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3567 return features; 3568 3569 /* Offload is not supported for this encapsulated packet */ 3570 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3571 } 3572 3573 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3574 netdev_features_t features) 3575 { 3576 /* Disable GRO, if RX_CSUM is disabled */ 3577 if (!(features & NETIF_F_RXCSUM)) 3578 features &= ~NETIF_F_GRO; 3579 3580 return features; 3581 } 3582 3583 static const struct net_device_ops cxgb4_netdev_ops = { 3584 .ndo_open = cxgb_open, 3585 .ndo_stop = cxgb_close, 3586 .ndo_start_xmit = t4_start_xmit, 3587 .ndo_select_queue = cxgb_select_queue, 3588 .ndo_get_stats64 = cxgb_get_stats, 3589 .ndo_set_rx_mode = cxgb_set_rxmode, 3590 .ndo_set_mac_address = cxgb_set_mac_addr, 3591 .ndo_set_features = cxgb_set_features, 3592 .ndo_validate_addr = eth_validate_addr, 3593 .ndo_do_ioctl = cxgb_ioctl, 3594 .ndo_change_mtu = cxgb_change_mtu, 3595 #ifdef CONFIG_NET_POLL_CONTROLLER 3596 .ndo_poll_controller = cxgb_netpoll, 3597 #endif 3598 #ifdef CONFIG_CHELSIO_T4_FCOE 3599 .ndo_fcoe_enable = cxgb_fcoe_enable, 3600 .ndo_fcoe_disable = cxgb_fcoe_disable, 3601 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3602 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3603 .ndo_setup_tc = cxgb_setup_tc, 3604 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel, 3605 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel, 3606 .ndo_features_check = cxgb_features_check, 3607 .ndo_fix_features = cxgb_fix_features, 3608 }; 3609 3610 #ifdef CONFIG_PCI_IOV 3611 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3612 .ndo_open = cxgb4_mgmt_open, 3613 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3614 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3615 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3616 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3617 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3618 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state, 3619 }; 3620 #endif 3621 3622 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3623 struct ethtool_drvinfo *info) 3624 { 3625 struct adapter *adapter = netdev2adap(dev); 3626 3627 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3628 strlcpy(info->bus_info, pci_name(adapter->pdev), 3629 sizeof(info->bus_info)); 3630 } 3631 3632 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3633 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3634 }; 3635 3636 static void notify_fatal_err(struct work_struct *work) 3637 { 3638 struct adapter *adap; 3639 3640 adap = container_of(work, struct adapter, fatal_err_notify_task); 3641 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3642 } 3643 3644 void t4_fatal_err(struct adapter *adap) 3645 { 3646 int port; 3647 3648 if (pci_channel_offline(adap->pdev)) 3649 return; 3650 3651 /* Disable the SGE since ULDs are going to free resources that 3652 * could be exposed to the adapter. RDMA MWs for example... 3653 */ 3654 t4_shutdown_adapter(adap); 3655 for_each_port(adap, port) { 3656 struct net_device *dev = adap->port[port]; 3657 3658 /* If we get here in very early initialization the network 3659 * devices may not have been set up yet. 3660 */ 3661 if (!dev) 3662 continue; 3663 3664 netif_tx_stop_all_queues(dev); 3665 netif_carrier_off(dev); 3666 } 3667 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3668 queue_work(adap->workq, &adap->fatal_err_notify_task); 3669 } 3670 3671 static void setup_memwin(struct adapter *adap) 3672 { 3673 u32 nic_win_base = t4_get_util_window(adap); 3674 3675 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3676 } 3677 3678 static void setup_memwin_rdma(struct adapter *adap) 3679 { 3680 if (adap->vres.ocq.size) { 3681 u32 start; 3682 unsigned int sz_kb; 3683 3684 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3685 start &= PCI_BASE_ADDRESS_MEM_MASK; 3686 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3687 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3688 t4_write_reg(adap, 3689 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3690 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3691 t4_write_reg(adap, 3692 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3693 adap->vres.ocq.start); 3694 t4_read_reg(adap, 3695 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3696 } 3697 } 3698 3699 /* HMA Definitions */ 3700 3701 /* The maximum number of address that can be send in a single FW cmd */ 3702 #define HMA_MAX_ADDR_IN_CMD 5 3703 3704 #define HMA_PAGE_SIZE PAGE_SIZE 3705 3706 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3707 3708 #define HMA_PAGE_ORDER \ 3709 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3710 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3711 3712 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3713 * configuration(in units of MB). 3714 */ 3715 #define HMA_MIN_TOTAL_SIZE 1 3716 #define HMA_MAX_TOTAL_SIZE \ 3717 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3718 HMA_MAX_NO_FW_ADDRESS) >> 20) 3719 3720 static void adap_free_hma_mem(struct adapter *adapter) 3721 { 3722 struct scatterlist *iter; 3723 struct page *page; 3724 int i; 3725 3726 if (!adapter->hma.sgt) 3727 return; 3728 3729 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 3730 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 3731 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 3732 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 3733 } 3734 3735 for_each_sg(adapter->hma.sgt->sgl, iter, 3736 adapter->hma.sgt->orig_nents, i) { 3737 page = sg_page(iter); 3738 if (page) 3739 __free_pages(page, HMA_PAGE_ORDER); 3740 } 3741 3742 kfree(adapter->hma.phy_addr); 3743 sg_free_table(adapter->hma.sgt); 3744 kfree(adapter->hma.sgt); 3745 adapter->hma.sgt = NULL; 3746 } 3747 3748 static int adap_config_hma(struct adapter *adapter) 3749 { 3750 struct scatterlist *sgl, *iter; 3751 struct sg_table *sgt; 3752 struct page *newpage; 3753 unsigned int i, j, k; 3754 u32 param, hma_size; 3755 unsigned int ncmds; 3756 size_t page_size; 3757 u32 page_order; 3758 int node, ret; 3759 3760 /* HMA is supported only for T6+ cards. 3761 * Avoid initializing HMA in kdump kernels. 3762 */ 3763 if (is_kdump_kernel() || 3764 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3765 return 0; 3766 3767 /* Get the HMA region size required by fw */ 3768 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3769 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 3770 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3771 1, ¶m, &hma_size); 3772 /* An error means card has its own memory or HMA is not supported by 3773 * the firmware. Return without any errors. 3774 */ 3775 if (ret || !hma_size) 3776 return 0; 3777 3778 if (hma_size < HMA_MIN_TOTAL_SIZE || 3779 hma_size > HMA_MAX_TOTAL_SIZE) { 3780 dev_err(adapter->pdev_dev, 3781 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 3782 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 3783 return -EINVAL; 3784 } 3785 3786 page_size = HMA_PAGE_SIZE; 3787 page_order = HMA_PAGE_ORDER; 3788 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 3789 if (unlikely(!adapter->hma.sgt)) { 3790 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 3791 return -ENOMEM; 3792 } 3793 sgt = adapter->hma.sgt; 3794 /* FW returned value will be in MB's 3795 */ 3796 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 3797 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 3798 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 3799 kfree(adapter->hma.sgt); 3800 adapter->hma.sgt = NULL; 3801 return -ENOMEM; 3802 } 3803 3804 sgl = adapter->hma.sgt->sgl; 3805 node = dev_to_node(adapter->pdev_dev); 3806 for_each_sg(sgl, iter, sgt->orig_nents, i) { 3807 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 3808 __GFP_ZERO, page_order); 3809 if (!newpage) { 3810 dev_err(adapter->pdev_dev, 3811 "Not enough memory for HMA page allocation\n"); 3812 ret = -ENOMEM; 3813 goto free_hma; 3814 } 3815 sg_set_page(iter, newpage, page_size << page_order, 0); 3816 } 3817 3818 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 3819 DMA_BIDIRECTIONAL); 3820 if (!sgt->nents) { 3821 dev_err(adapter->pdev_dev, 3822 "Not enough memory for HMA DMA mapping"); 3823 ret = -ENOMEM; 3824 goto free_hma; 3825 } 3826 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 3827 3828 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 3829 GFP_KERNEL); 3830 if (unlikely(!adapter->hma.phy_addr)) 3831 goto free_hma; 3832 3833 for_each_sg(sgl, iter, sgt->nents, i) { 3834 newpage = sg_page(iter); 3835 adapter->hma.phy_addr[i] = sg_dma_address(iter); 3836 } 3837 3838 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 3839 /* Pass on the addresses to firmware */ 3840 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 3841 struct fw_hma_cmd hma_cmd; 3842 u8 naddr = HMA_MAX_ADDR_IN_CMD; 3843 u8 soc = 0, eoc = 0; 3844 u8 hma_mode = 1; /* Presently we support only Page table mode */ 3845 3846 soc = (i == 0) ? 1 : 0; 3847 eoc = (i == ncmds - 1) ? 1 : 0; 3848 3849 /* For last cmd, set naddr corresponding to remaining 3850 * addresses 3851 */ 3852 if (i == ncmds - 1) { 3853 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 3854 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 3855 } 3856 memset(&hma_cmd, 0, sizeof(hma_cmd)); 3857 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 3858 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3859 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 3860 3861 hma_cmd.mode_to_pcie_params = 3862 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 3863 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 3864 3865 /* HMA cmd size specified in MB's */ 3866 hma_cmd.naddr_size = 3867 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 3868 FW_HMA_CMD_NADDR_V(naddr)); 3869 3870 /* Total Page size specified in units of 4K */ 3871 hma_cmd.addr_size_pkd = 3872 htonl(FW_HMA_CMD_ADDR_SIZE_V 3873 ((page_size << page_order) >> 12)); 3874 3875 /* Fill the 5 addresses */ 3876 for (j = 0; j < naddr; j++) { 3877 hma_cmd.phy_address[j] = 3878 cpu_to_be64(adapter->hma.phy_addr[j + k]); 3879 } 3880 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 3881 sizeof(hma_cmd), &hma_cmd); 3882 if (ret) { 3883 dev_err(adapter->pdev_dev, 3884 "HMA FW command failed with err %d\n", ret); 3885 goto free_hma; 3886 } 3887 } 3888 3889 if (!ret) 3890 dev_info(adapter->pdev_dev, 3891 "Reserved %uMB host memory for HMA\n", hma_size); 3892 return ret; 3893 3894 free_hma: 3895 adap_free_hma_mem(adapter); 3896 return ret; 3897 } 3898 3899 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3900 { 3901 u32 v; 3902 int ret; 3903 3904 /* Now that we've successfully configured and initialized the adapter 3905 * can ask the Firmware what resources it has provisioned for us. 3906 */ 3907 ret = t4_get_pfres(adap); 3908 if (ret) { 3909 dev_err(adap->pdev_dev, 3910 "Unable to retrieve resource provisioning information\n"); 3911 return ret; 3912 } 3913 3914 /* get device capabilities */ 3915 memset(c, 0, sizeof(*c)); 3916 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3917 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3918 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3919 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3920 if (ret < 0) 3921 return ret; 3922 3923 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3924 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3925 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3926 if (ret < 0) 3927 return ret; 3928 3929 ret = t4_config_glbl_rss(adap, adap->pf, 3930 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3931 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3932 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3933 if (ret < 0) 3934 return ret; 3935 3936 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3937 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3938 FW_CMD_CAP_PF); 3939 if (ret < 0) 3940 return ret; 3941 3942 t4_sge_init(adap); 3943 3944 /* tweak some settings */ 3945 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3946 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3947 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3948 v = t4_read_reg(adap, TP_PIO_DATA_A); 3949 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3950 3951 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3952 adap->params.tp.tx_modq_map = 0xE4; 3953 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3954 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3955 3956 /* associate each Tx modulation queue with consecutive Tx channels */ 3957 v = 0x84218421; 3958 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3959 &v, 1, TP_TX_SCHED_HDR_A); 3960 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3961 &v, 1, TP_TX_SCHED_FIFO_A); 3962 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3963 &v, 1, TP_TX_SCHED_PCMD_A); 3964 3965 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3966 if (is_offload(adap)) { 3967 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3968 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3969 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3970 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3971 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3972 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3973 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3974 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3975 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3976 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3977 } 3978 3979 /* get basic stuff going */ 3980 return t4_early_init(adap, adap->pf); 3981 } 3982 3983 /* 3984 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3985 */ 3986 #define MAX_ATIDS 8192U 3987 3988 /* 3989 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3990 * 3991 * If the firmware we're dealing with has Configuration File support, then 3992 * we use that to perform all configuration 3993 */ 3994 3995 /* 3996 * Tweak configuration based on module parameters, etc. Most of these have 3997 * defaults assigned to them by Firmware Configuration Files (if we're using 3998 * them) but need to be explicitly set if we're using hard-coded 3999 * initialization. But even in the case of using Firmware Configuration 4000 * Files, we'd like to expose the ability to change these via module 4001 * parameters so these are essentially common tweaks/settings for 4002 * Configuration Files and hard-coded initialization ... 4003 */ 4004 static int adap_init0_tweaks(struct adapter *adapter) 4005 { 4006 /* 4007 * Fix up various Host-Dependent Parameters like Page Size, Cache 4008 * Line Size, etc. The firmware default is for a 4KB Page Size and 4009 * 64B Cache Line Size ... 4010 */ 4011 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 4012 4013 /* 4014 * Process module parameters which affect early initialization. 4015 */ 4016 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 4017 dev_err(&adapter->pdev->dev, 4018 "Ignoring illegal rx_dma_offset=%d, using 2\n", 4019 rx_dma_offset); 4020 rx_dma_offset = 2; 4021 } 4022 t4_set_reg_field(adapter, SGE_CONTROL_A, 4023 PKTSHIFT_V(PKTSHIFT_M), 4024 PKTSHIFT_V(rx_dma_offset)); 4025 4026 /* 4027 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 4028 * adds the pseudo header itself. 4029 */ 4030 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 4031 CSUM_HAS_PSEUDO_HDR_F, 0); 4032 4033 return 0; 4034 } 4035 4036 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 4037 * unto themselves and they contain their own firmware to perform their 4038 * tasks ... 4039 */ 4040 static int phy_aq1202_version(const u8 *phy_fw_data, 4041 size_t phy_fw_size) 4042 { 4043 int offset; 4044 4045 /* At offset 0x8 you're looking for the primary image's 4046 * starting offset which is 3 Bytes wide 4047 * 4048 * At offset 0xa of the primary image, you look for the offset 4049 * of the DRAM segment which is 3 Bytes wide. 4050 * 4051 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 4052 * wide 4053 */ 4054 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 4055 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 4056 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 4057 4058 offset = le24(phy_fw_data + 0x8) << 12; 4059 offset = le24(phy_fw_data + offset + 0xa); 4060 return be16(phy_fw_data + offset + 0x27e); 4061 4062 #undef be16 4063 #undef le16 4064 #undef le24 4065 } 4066 4067 static struct info_10gbt_phy_fw { 4068 unsigned int phy_fw_id; /* PCI Device ID */ 4069 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 4070 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 4071 int phy_flash; /* Has FLASH for PHY Firmware */ 4072 } phy_info_array[] = { 4073 { 4074 PHY_AQ1202_DEVICEID, 4075 PHY_AQ1202_FIRMWARE, 4076 phy_aq1202_version, 4077 1, 4078 }, 4079 { 4080 PHY_BCM84834_DEVICEID, 4081 PHY_BCM84834_FIRMWARE, 4082 NULL, 4083 0, 4084 }, 4085 { 0, NULL, NULL }, 4086 }; 4087 4088 static struct info_10gbt_phy_fw *find_phy_info(int devid) 4089 { 4090 int i; 4091 4092 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 4093 if (phy_info_array[i].phy_fw_id == devid) 4094 return &phy_info_array[i]; 4095 } 4096 return NULL; 4097 } 4098 4099 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 4100 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 4101 * we return a negative error number. If we transfer new firmware we return 1 4102 * (from t4_load_phy_fw()). If we don't do anything we return 0. 4103 */ 4104 static int adap_init0_phy(struct adapter *adap) 4105 { 4106 const struct firmware *phyf; 4107 int ret; 4108 struct info_10gbt_phy_fw *phy_info; 4109 4110 /* Use the device ID to determine which PHY file to flash. 4111 */ 4112 phy_info = find_phy_info(adap->pdev->device); 4113 if (!phy_info) { 4114 dev_warn(adap->pdev_dev, 4115 "No PHY Firmware file found for this PHY\n"); 4116 return -EOPNOTSUPP; 4117 } 4118 4119 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 4120 * use that. The adapter firmware provides us with a memory buffer 4121 * where we can load a PHY firmware file from the host if we want to 4122 * override the PHY firmware File in flash. 4123 */ 4124 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 4125 adap->pdev_dev); 4126 if (ret < 0) { 4127 /* For adapters without FLASH attached to PHY for their 4128 * firmware, it's obviously a fatal error if we can't get the 4129 * firmware to the adapter. For adapters with PHY firmware 4130 * FLASH storage, it's worth a warning if we can't find the 4131 * PHY Firmware but we'll neuter the error ... 4132 */ 4133 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 4134 "/lib/firmware/%s, error %d\n", 4135 phy_info->phy_fw_file, -ret); 4136 if (phy_info->phy_flash) { 4137 int cur_phy_fw_ver = 0; 4138 4139 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 4140 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 4141 "FLASH copy, version %#x\n", cur_phy_fw_ver); 4142 ret = 0; 4143 } 4144 4145 return ret; 4146 } 4147 4148 /* Load PHY Firmware onto adapter. 4149 */ 4150 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 4151 phy_info->phy_fw_version, 4152 (u8 *)phyf->data, phyf->size); 4153 if (ret < 0) 4154 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 4155 -ret); 4156 else if (ret > 0) { 4157 int new_phy_fw_ver = 0; 4158 4159 if (phy_info->phy_fw_version) 4160 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 4161 phyf->size); 4162 dev_info(adap->pdev_dev, "Successfully transferred PHY " 4163 "Firmware /lib/firmware/%s, version %#x\n", 4164 phy_info->phy_fw_file, new_phy_fw_ver); 4165 } 4166 4167 release_firmware(phyf); 4168 4169 return ret; 4170 } 4171 4172 /* 4173 * Attempt to initialize the adapter via a Firmware Configuration File. 4174 */ 4175 static int adap_init0_config(struct adapter *adapter, int reset) 4176 { 4177 char *fw_config_file, fw_config_file_path[256]; 4178 u32 finiver, finicsum, cfcsum, param, val; 4179 struct fw_caps_config_cmd caps_cmd; 4180 unsigned long mtype = 0, maddr = 0; 4181 const struct firmware *cf; 4182 char *config_name = NULL; 4183 int config_issued = 0; 4184 int ret; 4185 4186 /* 4187 * Reset device if necessary. 4188 */ 4189 if (reset) { 4190 ret = t4_fw_reset(adapter, adapter->mbox, 4191 PIORSTMODE_F | PIORST_F); 4192 if (ret < 0) 4193 goto bye; 4194 } 4195 4196 /* If this is a 10Gb/s-BT adapter make sure the chip-external 4197 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 4198 * to be performed after any global adapter RESET above since some 4199 * PHYs only have local RAM copies of the PHY firmware. 4200 */ 4201 if (is_10gbt_device(adapter->pdev->device)) { 4202 ret = adap_init0_phy(adapter); 4203 if (ret < 0) 4204 goto bye; 4205 } 4206 /* 4207 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 4208 * then use that. Otherwise, use the configuration file stored 4209 * in the adapter flash ... 4210 */ 4211 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 4212 case CHELSIO_T4: 4213 fw_config_file = FW4_CFNAME; 4214 break; 4215 case CHELSIO_T5: 4216 fw_config_file = FW5_CFNAME; 4217 break; 4218 case CHELSIO_T6: 4219 fw_config_file = FW6_CFNAME; 4220 break; 4221 default: 4222 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 4223 adapter->pdev->device); 4224 ret = -EINVAL; 4225 goto bye; 4226 } 4227 4228 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 4229 if (ret < 0) { 4230 config_name = "On FLASH"; 4231 mtype = FW_MEMTYPE_CF_FLASH; 4232 maddr = t4_flash_cfg_addr(adapter); 4233 } else { 4234 u32 params[7], val[7]; 4235 4236 sprintf(fw_config_file_path, 4237 "/lib/firmware/%s", fw_config_file); 4238 config_name = fw_config_file_path; 4239 4240 if (cf->size >= FLASH_CFG_MAX_SIZE) 4241 ret = -ENOMEM; 4242 else { 4243 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4244 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4245 ret = t4_query_params(adapter, adapter->mbox, 4246 adapter->pf, 0, 1, params, val); 4247 if (ret == 0) { 4248 /* 4249 * For t4_memory_rw() below addresses and 4250 * sizes have to be in terms of multiples of 4 4251 * bytes. So, if the Configuration File isn't 4252 * a multiple of 4 bytes in length we'll have 4253 * to write that out separately since we can't 4254 * guarantee that the bytes following the 4255 * residual byte in the buffer returned by 4256 * request_firmware() are zeroed out ... 4257 */ 4258 size_t resid = cf->size & 0x3; 4259 size_t size = cf->size & ~0x3; 4260 __be32 *data = (__be32 *)cf->data; 4261 4262 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 4263 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 4264 4265 spin_lock(&adapter->win0_lock); 4266 ret = t4_memory_rw(adapter, 0, mtype, maddr, 4267 size, data, T4_MEMORY_WRITE); 4268 if (ret == 0 && resid != 0) { 4269 union { 4270 __be32 word; 4271 char buf[4]; 4272 } last; 4273 int i; 4274 4275 last.word = data[size >> 2]; 4276 for (i = resid; i < 4; i++) 4277 last.buf[i] = 0; 4278 ret = t4_memory_rw(adapter, 0, mtype, 4279 maddr + size, 4280 4, &last.word, 4281 T4_MEMORY_WRITE); 4282 } 4283 spin_unlock(&adapter->win0_lock); 4284 } 4285 } 4286 4287 release_firmware(cf); 4288 if (ret) 4289 goto bye; 4290 } 4291 4292 val = 0; 4293 4294 /* Ofld + Hash filter is supported. Older fw will fail this request and 4295 * it is fine. 4296 */ 4297 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4298 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD)); 4299 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 4300 1, ¶m, &val); 4301 4302 /* FW doesn't know about Hash filter + ofld support, 4303 * it's not a problem, don't return an error. 4304 */ 4305 if (ret < 0) { 4306 dev_warn(adapter->pdev_dev, 4307 "Hash filter with ofld is not supported by FW\n"); 4308 } 4309 4310 /* 4311 * Issue a Capability Configuration command to the firmware to get it 4312 * to parse the Configuration File. We don't use t4_fw_config_file() 4313 * because we want the ability to modify various features after we've 4314 * processed the configuration file ... 4315 */ 4316 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4317 caps_cmd.op_to_write = 4318 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4319 FW_CMD_REQUEST_F | 4320 FW_CMD_READ_F); 4321 caps_cmd.cfvalid_to_len16 = 4322 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 4323 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 4324 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 4325 FW_LEN16(caps_cmd)); 4326 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4327 &caps_cmd); 4328 4329 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 4330 * Configuration File in FLASH), our last gasp effort is to use the 4331 * Firmware Configuration File which is embedded in the firmware. A 4332 * very few early versions of the firmware didn't have one embedded 4333 * but we can ignore those. 4334 */ 4335 if (ret == -ENOENT) { 4336 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4337 caps_cmd.op_to_write = 4338 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4339 FW_CMD_REQUEST_F | 4340 FW_CMD_READ_F); 4341 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4342 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 4343 sizeof(caps_cmd), &caps_cmd); 4344 config_name = "Firmware Default"; 4345 } 4346 4347 config_issued = 1; 4348 if (ret < 0) 4349 goto bye; 4350 4351 finiver = ntohl(caps_cmd.finiver); 4352 finicsum = ntohl(caps_cmd.finicsum); 4353 cfcsum = ntohl(caps_cmd.cfcsum); 4354 if (finicsum != cfcsum) 4355 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 4356 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 4357 finicsum, cfcsum); 4358 4359 /* 4360 * And now tell the firmware to use the configuration we just loaded. 4361 */ 4362 caps_cmd.op_to_write = 4363 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4364 FW_CMD_REQUEST_F | 4365 FW_CMD_WRITE_F); 4366 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4367 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4368 NULL); 4369 if (ret < 0) 4370 goto bye; 4371 4372 /* 4373 * Tweak configuration based on system architecture, module 4374 * parameters, etc. 4375 */ 4376 ret = adap_init0_tweaks(adapter); 4377 if (ret < 0) 4378 goto bye; 4379 4380 /* We will proceed even if HMA init fails. */ 4381 ret = adap_config_hma(adapter); 4382 if (ret) 4383 dev_err(adapter->pdev_dev, 4384 "HMA configuration failed with error %d\n", ret); 4385 4386 if (is_t6(adapter->params.chip)) { 4387 adap_config_hpfilter(adapter); 4388 ret = setup_ppod_edram(adapter); 4389 if (!ret) 4390 dev_info(adapter->pdev_dev, "Successfully enabled " 4391 "ppod edram feature\n"); 4392 } 4393 4394 /* 4395 * And finally tell the firmware to initialize itself using the 4396 * parameters from the Configuration File. 4397 */ 4398 ret = t4_fw_initialize(adapter, adapter->mbox); 4399 if (ret < 0) 4400 goto bye; 4401 4402 /* Emit Firmware Configuration File information and return 4403 * successfully. 4404 */ 4405 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4406 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4407 config_name, finiver, cfcsum); 4408 return 0; 4409 4410 /* 4411 * Something bad happened. Return the error ... (If the "error" 4412 * is that there's no Configuration File on the adapter we don't 4413 * want to issue a warning since this is fairly common.) 4414 */ 4415 bye: 4416 if (config_issued && ret != -ENOENT) 4417 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4418 config_name, -ret); 4419 return ret; 4420 } 4421 4422 static struct fw_info fw_info_array[] = { 4423 { 4424 .chip = CHELSIO_T4, 4425 .fs_name = FW4_CFNAME, 4426 .fw_mod_name = FW4_FNAME, 4427 .fw_hdr = { 4428 .chip = FW_HDR_CHIP_T4, 4429 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4430 .intfver_nic = FW_INTFVER(T4, NIC), 4431 .intfver_vnic = FW_INTFVER(T4, VNIC), 4432 .intfver_ri = FW_INTFVER(T4, RI), 4433 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4434 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4435 }, 4436 }, { 4437 .chip = CHELSIO_T5, 4438 .fs_name = FW5_CFNAME, 4439 .fw_mod_name = FW5_FNAME, 4440 .fw_hdr = { 4441 .chip = FW_HDR_CHIP_T5, 4442 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4443 .intfver_nic = FW_INTFVER(T5, NIC), 4444 .intfver_vnic = FW_INTFVER(T5, VNIC), 4445 .intfver_ri = FW_INTFVER(T5, RI), 4446 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4447 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4448 }, 4449 }, { 4450 .chip = CHELSIO_T6, 4451 .fs_name = FW6_CFNAME, 4452 .fw_mod_name = FW6_FNAME, 4453 .fw_hdr = { 4454 .chip = FW_HDR_CHIP_T6, 4455 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4456 .intfver_nic = FW_INTFVER(T6, NIC), 4457 .intfver_vnic = FW_INTFVER(T6, VNIC), 4458 .intfver_ofld = FW_INTFVER(T6, OFLD), 4459 .intfver_ri = FW_INTFVER(T6, RI), 4460 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4461 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4462 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4463 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4464 }, 4465 } 4466 4467 }; 4468 4469 static struct fw_info *find_fw_info(int chip) 4470 { 4471 int i; 4472 4473 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4474 if (fw_info_array[i].chip == chip) 4475 return &fw_info_array[i]; 4476 } 4477 return NULL; 4478 } 4479 4480 /* 4481 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4482 */ 4483 static int adap_init0(struct adapter *adap, int vpd_skip) 4484 { 4485 struct fw_caps_config_cmd caps_cmd; 4486 u32 params[7], val[7]; 4487 enum dev_state state; 4488 u32 v, port_vec; 4489 int reset = 1; 4490 int ret; 4491 4492 /* Grab Firmware Device Log parameters as early as possible so we have 4493 * access to it for debugging, etc. 4494 */ 4495 ret = t4_init_devlog_params(adap); 4496 if (ret < 0) 4497 return ret; 4498 4499 /* Contact FW, advertising Master capability */ 4500 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4501 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4502 if (ret < 0) { 4503 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4504 ret); 4505 return ret; 4506 } 4507 if (ret == adap->mbox) 4508 adap->flags |= CXGB4_MASTER_PF; 4509 4510 /* 4511 * If we're the Master PF Driver and the device is uninitialized, 4512 * then let's consider upgrading the firmware ... (We always want 4513 * to check the firmware version number in order to A. get it for 4514 * later reporting and B. to warn if the currently loaded firmware 4515 * is excessively mismatched relative to the driver.) 4516 */ 4517 4518 t4_get_version_info(adap); 4519 ret = t4_check_fw_version(adap); 4520 /* If firmware is too old (not supported by driver) force an update. */ 4521 if (ret) 4522 state = DEV_STATE_UNINIT; 4523 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) { 4524 struct fw_info *fw_info; 4525 struct fw_hdr *card_fw; 4526 const struct firmware *fw; 4527 const u8 *fw_data = NULL; 4528 unsigned int fw_size = 0; 4529 4530 /* This is the firmware whose headers the driver was compiled 4531 * against 4532 */ 4533 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4534 if (fw_info == NULL) { 4535 dev_err(adap->pdev_dev, 4536 "unable to get firmware info for chip %d.\n", 4537 CHELSIO_CHIP_VERSION(adap->params.chip)); 4538 return -EINVAL; 4539 } 4540 4541 /* allocate memory to read the header of the firmware on the 4542 * card 4543 */ 4544 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4545 if (!card_fw) { 4546 ret = -ENOMEM; 4547 goto bye; 4548 } 4549 4550 /* Get FW from from /lib/firmware/ */ 4551 ret = request_firmware(&fw, fw_info->fw_mod_name, 4552 adap->pdev_dev); 4553 if (ret < 0) { 4554 dev_err(adap->pdev_dev, 4555 "unable to load firmware image %s, error %d\n", 4556 fw_info->fw_mod_name, ret); 4557 } else { 4558 fw_data = fw->data; 4559 fw_size = fw->size; 4560 } 4561 4562 /* upgrade FW logic */ 4563 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4564 state, &reset); 4565 4566 /* Cleaning up */ 4567 release_firmware(fw); 4568 kvfree(card_fw); 4569 4570 if (ret < 0) 4571 goto bye; 4572 } 4573 4574 /* If the firmware is initialized already, emit a simply note to that 4575 * effect. Otherwise, it's time to try initializing the adapter. 4576 */ 4577 if (state == DEV_STATE_INIT) { 4578 ret = adap_config_hma(adap); 4579 if (ret) 4580 dev_err(adap->pdev_dev, 4581 "HMA configuration failed with error %d\n", 4582 ret); 4583 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4584 "Adapter already initialized\n", 4585 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE"); 4586 } else { 4587 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4588 "Initializing adapter\n"); 4589 4590 /* Find out whether we're dealing with a version of the 4591 * firmware which has configuration file support. 4592 */ 4593 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4594 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4595 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4596 params, val); 4597 4598 /* If the firmware doesn't support Configuration Files, 4599 * return an error. 4600 */ 4601 if (ret < 0) { 4602 dev_err(adap->pdev_dev, "firmware doesn't support " 4603 "Firmware Configuration Files\n"); 4604 goto bye; 4605 } 4606 4607 /* The firmware provides us with a memory buffer where we can 4608 * load a Configuration File from the host if we want to 4609 * override the Configuration File in flash. 4610 */ 4611 ret = adap_init0_config(adap, reset); 4612 if (ret == -ENOENT) { 4613 dev_err(adap->pdev_dev, "no Configuration File " 4614 "present on adapter.\n"); 4615 goto bye; 4616 } 4617 if (ret < 0) { 4618 dev_err(adap->pdev_dev, "could not initialize " 4619 "adapter, error %d\n", -ret); 4620 goto bye; 4621 } 4622 } 4623 4624 /* Now that we've successfully configured and initialized the adapter 4625 * (or found it already initialized), we can ask the Firmware what 4626 * resources it has provisioned for us. 4627 */ 4628 ret = t4_get_pfres(adap); 4629 if (ret) { 4630 dev_err(adap->pdev_dev, 4631 "Unable to retrieve resource provisioning information\n"); 4632 goto bye; 4633 } 4634 4635 /* Grab VPD parameters. This should be done after we establish a 4636 * connection to the firmware since some of the VPD parameters 4637 * (notably the Core Clock frequency) are retrieved via requests to 4638 * the firmware. On the other hand, we need these fairly early on 4639 * so we do this right after getting ahold of the firmware. 4640 * 4641 * We need to do this after initializing the adapter because someone 4642 * could have FLASHed a new VPD which won't be read by the firmware 4643 * until we do the RESET ... 4644 */ 4645 if (!vpd_skip) { 4646 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4647 if (ret < 0) 4648 goto bye; 4649 } 4650 4651 /* Find out what ports are available to us. Note that we need to do 4652 * this before calling adap_init0_no_config() since it needs nports 4653 * and portvec ... 4654 */ 4655 v = 4656 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4657 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4658 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4659 if (ret < 0) 4660 goto bye; 4661 4662 adap->params.nports = hweight32(port_vec); 4663 adap->params.portvec = port_vec; 4664 4665 /* Give the SGE code a chance to pull in anything that it needs ... 4666 * Note that this must be called after we retrieve our VPD parameters 4667 * in order to know how to convert core ticks to seconds, etc. 4668 */ 4669 ret = t4_sge_init(adap); 4670 if (ret < 0) 4671 goto bye; 4672 4673 /* Grab the SGE Doorbell Queue Timer values. If successful, that 4674 * indicates that the Firmware and Hardware support this. 4675 */ 4676 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4677 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK)); 4678 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4679 1, params, val); 4680 4681 if (!ret) { 4682 adap->sge.dbqtimer_tick = val[0]; 4683 ret = t4_read_sge_dbqtimers(adap, 4684 ARRAY_SIZE(adap->sge.dbqtimer_val), 4685 adap->sge.dbqtimer_val); 4686 } 4687 4688 if (!ret) 4689 adap->flags |= CXGB4_SGE_DBQ_TIMER; 4690 4691 if (is_bypass_device(adap->pdev->device)) 4692 adap->params.bypass = 1; 4693 4694 /* 4695 * Grab some of our basic fundamental operating parameters. 4696 */ 4697 params[0] = FW_PARAM_PFVF(EQ_START); 4698 params[1] = FW_PARAM_PFVF(L2T_START); 4699 params[2] = FW_PARAM_PFVF(L2T_END); 4700 params[3] = FW_PARAM_PFVF(FILTER_START); 4701 params[4] = FW_PARAM_PFVF(FILTER_END); 4702 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4703 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4704 if (ret < 0) 4705 goto bye; 4706 adap->sge.egr_start = val[0]; 4707 adap->l2t_start = val[1]; 4708 adap->l2t_end = val[2]; 4709 adap->tids.ftid_base = val[3]; 4710 adap->tids.nftids = val[4] - val[3] + 1; 4711 adap->sge.ingr_start = val[5]; 4712 4713 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4714 params[0] = FW_PARAM_PFVF(HPFILTER_START); 4715 params[1] = FW_PARAM_PFVF(HPFILTER_END); 4716 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4717 params, val); 4718 if (ret < 0) 4719 goto bye; 4720 4721 adap->tids.hpftid_base = val[0]; 4722 adap->tids.nhpftids = val[1] - val[0] + 1; 4723 4724 /* Read the raw mps entries. In T6, the last 2 tcam entries 4725 * are reserved for raw mac addresses (rawf = 2, one per port). 4726 */ 4727 params[0] = FW_PARAM_PFVF(RAWF_START); 4728 params[1] = FW_PARAM_PFVF(RAWF_END); 4729 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4730 params, val); 4731 if (ret == 0) { 4732 adap->rawf_start = val[0]; 4733 adap->rawf_cnt = val[1] - val[0] + 1; 4734 } 4735 4736 adap->tids.tid_base = 4737 t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A); 4738 } 4739 4740 /* qids (ingress/egress) returned from firmware can be anywhere 4741 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 4742 * Hence driver needs to allocate memory for this range to 4743 * store the queue info. Get the highest IQFLINT/EQ index returned 4744 * in FW_EQ_*_CMD.alloc command. 4745 */ 4746 params[0] = FW_PARAM_PFVF(EQ_END); 4747 params[1] = FW_PARAM_PFVF(IQFLINT_END); 4748 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4749 if (ret < 0) 4750 goto bye; 4751 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 4752 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 4753 4754 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 4755 sizeof(*adap->sge.egr_map), GFP_KERNEL); 4756 if (!adap->sge.egr_map) { 4757 ret = -ENOMEM; 4758 goto bye; 4759 } 4760 4761 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 4762 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 4763 if (!adap->sge.ingr_map) { 4764 ret = -ENOMEM; 4765 goto bye; 4766 } 4767 4768 /* Allocate the memory for the vaious egress queue bitmaps 4769 * ie starving_fl, txq_maperr and blocked_fl. 4770 */ 4771 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4772 sizeof(long), GFP_KERNEL); 4773 if (!adap->sge.starving_fl) { 4774 ret = -ENOMEM; 4775 goto bye; 4776 } 4777 4778 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4779 sizeof(long), GFP_KERNEL); 4780 if (!adap->sge.txq_maperr) { 4781 ret = -ENOMEM; 4782 goto bye; 4783 } 4784 4785 #ifdef CONFIG_DEBUG_FS 4786 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4787 sizeof(long), GFP_KERNEL); 4788 if (!adap->sge.blocked_fl) { 4789 ret = -ENOMEM; 4790 goto bye; 4791 } 4792 #endif 4793 4794 params[0] = FW_PARAM_PFVF(CLIP_START); 4795 params[1] = FW_PARAM_PFVF(CLIP_END); 4796 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4797 if (ret < 0) 4798 goto bye; 4799 adap->clipt_start = val[0]; 4800 adap->clipt_end = val[1]; 4801 4802 /* Get the supported number of traffic classes */ 4803 params[0] = FW_PARAM_DEV(NUM_TM_CLASS); 4804 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4805 if (ret < 0) { 4806 /* We couldn't retrieve the number of Traffic Classes 4807 * supported by the hardware/firmware. So we hard 4808 * code it here. 4809 */ 4810 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 4811 } else { 4812 adap->params.nsched_cls = val[0]; 4813 } 4814 4815 /* query params related to active filter region */ 4816 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 4817 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 4818 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4819 /* If Active filter size is set we enable establishing 4820 * offload connection through firmware work request 4821 */ 4822 if ((val[0] != val[1]) && (ret >= 0)) { 4823 adap->flags |= CXGB4_FW_OFLD_CONN; 4824 adap->tids.aftid_base = val[0]; 4825 adap->tids.aftid_end = val[1]; 4826 } 4827 4828 /* If we're running on newer firmware, let it know that we're 4829 * prepared to deal with encapsulated CPL messages. Older 4830 * firmware won't understand this and we'll just get 4831 * unencapsulated messages ... 4832 */ 4833 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4834 val[0] = 1; 4835 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4836 4837 /* 4838 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 4839 * capability. Earlier versions of the firmware didn't have the 4840 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 4841 * permission to use ULPTX MEMWRITE DSGL. 4842 */ 4843 if (is_t4(adap->params.chip)) { 4844 adap->params.ulptx_memwrite_dsgl = false; 4845 } else { 4846 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4847 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4848 1, params, val); 4849 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4850 } 4851 4852 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 4853 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4854 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4855 1, params, val); 4856 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 4857 4858 /* See if FW supports FW_FILTER2 work request */ 4859 if (is_t4(adap->params.chip)) { 4860 adap->params.filter2_wr_support = 0; 4861 } else { 4862 params[0] = FW_PARAM_DEV(FILTER2_WR); 4863 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4864 1, params, val); 4865 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 4866 } 4867 4868 /* Check if FW supports returning vin and smt index. 4869 * If this is not supported, driver will interpret 4870 * these values from viid. 4871 */ 4872 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 4873 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4874 1, params, val); 4875 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0); 4876 4877 /* 4878 * Get device capabilities so we can determine what resources we need 4879 * to manage. 4880 */ 4881 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4882 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4883 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4884 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4885 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4886 &caps_cmd); 4887 if (ret < 0) 4888 goto bye; 4889 4890 /* hash filter has some mandatory register settings to be tested and for 4891 * that it needs to test whether offload is enabled or not, hence 4892 * checking and setting it here. 4893 */ 4894 if (caps_cmd.ofldcaps) 4895 adap->params.offload = 1; 4896 4897 if (caps_cmd.ofldcaps || 4898 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) || 4899 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) { 4900 /* query offload-related parameters */ 4901 params[0] = FW_PARAM_DEV(NTID); 4902 params[1] = FW_PARAM_PFVF(SERVER_START); 4903 params[2] = FW_PARAM_PFVF(SERVER_END); 4904 params[3] = FW_PARAM_PFVF(TDDP_START); 4905 params[4] = FW_PARAM_PFVF(TDDP_END); 4906 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4907 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4908 params, val); 4909 if (ret < 0) 4910 goto bye; 4911 adap->tids.ntids = val[0]; 4912 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4913 adap->tids.stid_base = val[1]; 4914 adap->tids.nstids = val[2] - val[1] + 1; 4915 /* 4916 * Setup server filter region. Divide the available filter 4917 * region into two parts. Regular filters get 1/3rd and server 4918 * filters get 2/3rd part. This is only enabled if workarond 4919 * path is enabled. 4920 * 1. For regular filters. 4921 * 2. Server filter: This are special filters which are used 4922 * to redirect SYN packets to offload queue. 4923 */ 4924 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) { 4925 adap->tids.sftid_base = adap->tids.ftid_base + 4926 DIV_ROUND_UP(adap->tids.nftids, 3); 4927 adap->tids.nsftids = adap->tids.nftids - 4928 DIV_ROUND_UP(adap->tids.nftids, 3); 4929 adap->tids.nftids = adap->tids.sftid_base - 4930 adap->tids.ftid_base; 4931 } 4932 adap->vres.ddp.start = val[3]; 4933 adap->vres.ddp.size = val[4] - val[3] + 1; 4934 adap->params.ofldq_wr_cred = val[5]; 4935 4936 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4937 init_hash_filter(adap); 4938 } else { 4939 adap->num_ofld_uld += 1; 4940 } 4941 4942 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) { 4943 params[0] = FW_PARAM_PFVF(ETHOFLD_START); 4944 params[1] = FW_PARAM_PFVF(ETHOFLD_END); 4945 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4946 params, val); 4947 if (!ret) { 4948 adap->tids.eotid_base = val[0]; 4949 adap->tids.neotids = min_t(u32, MAX_ATIDS, 4950 val[1] - val[0] + 1); 4951 adap->params.ethofld = 1; 4952 } 4953 } 4954 } 4955 if (caps_cmd.rdmacaps) { 4956 params[0] = FW_PARAM_PFVF(STAG_START); 4957 params[1] = FW_PARAM_PFVF(STAG_END); 4958 params[2] = FW_PARAM_PFVF(RQ_START); 4959 params[3] = FW_PARAM_PFVF(RQ_END); 4960 params[4] = FW_PARAM_PFVF(PBL_START); 4961 params[5] = FW_PARAM_PFVF(PBL_END); 4962 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4963 params, val); 4964 if (ret < 0) 4965 goto bye; 4966 adap->vres.stag.start = val[0]; 4967 adap->vres.stag.size = val[1] - val[0] + 1; 4968 adap->vres.rq.start = val[2]; 4969 adap->vres.rq.size = val[3] - val[2] + 1; 4970 adap->vres.pbl.start = val[4]; 4971 adap->vres.pbl.size = val[5] - val[4] + 1; 4972 4973 params[0] = FW_PARAM_PFVF(SRQ_START); 4974 params[1] = FW_PARAM_PFVF(SRQ_END); 4975 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4976 params, val); 4977 if (!ret) { 4978 adap->vres.srq.start = val[0]; 4979 adap->vres.srq.size = val[1] - val[0] + 1; 4980 } 4981 if (adap->vres.srq.size) { 4982 adap->srq = t4_init_srq(adap->vres.srq.size); 4983 if (!adap->srq) 4984 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 4985 } 4986 4987 params[0] = FW_PARAM_PFVF(SQRQ_START); 4988 params[1] = FW_PARAM_PFVF(SQRQ_END); 4989 params[2] = FW_PARAM_PFVF(CQ_START); 4990 params[3] = FW_PARAM_PFVF(CQ_END); 4991 params[4] = FW_PARAM_PFVF(OCQ_START); 4992 params[5] = FW_PARAM_PFVF(OCQ_END); 4993 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4994 val); 4995 if (ret < 0) 4996 goto bye; 4997 adap->vres.qp.start = val[0]; 4998 adap->vres.qp.size = val[1] - val[0] + 1; 4999 adap->vres.cq.start = val[2]; 5000 adap->vres.cq.size = val[3] - val[2] + 1; 5001 adap->vres.ocq.start = val[4]; 5002 adap->vres.ocq.size = val[5] - val[4] + 1; 5003 5004 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 5005 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5006 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 5007 val); 5008 if (ret < 0) { 5009 adap->params.max_ordird_qp = 8; 5010 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 5011 ret = 0; 5012 } else { 5013 adap->params.max_ordird_qp = val[0]; 5014 adap->params.max_ird_adapter = val[1]; 5015 } 5016 dev_info(adap->pdev_dev, 5017 "max_ordird_qp %d max_ird_adapter %d\n", 5018 adap->params.max_ordird_qp, 5019 adap->params.max_ird_adapter); 5020 5021 /* Enable write_with_immediate if FW supports it */ 5022 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 5023 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 5024 val); 5025 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 5026 5027 /* Enable write_cmpl if FW supports it */ 5028 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 5029 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 5030 val); 5031 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 5032 adap->num_ofld_uld += 2; 5033 } 5034 if (caps_cmd.iscsicaps) { 5035 params[0] = FW_PARAM_PFVF(ISCSI_START); 5036 params[1] = FW_PARAM_PFVF(ISCSI_END); 5037 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5038 params, val); 5039 if (ret < 0) 5040 goto bye; 5041 adap->vres.iscsi.start = val[0]; 5042 adap->vres.iscsi.size = val[1] - val[0] + 1; 5043 if (is_t6(adap->params.chip)) { 5044 params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START); 5045 params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END); 5046 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5047 params, val); 5048 if (!ret) { 5049 adap->vres.ppod_edram.start = val[0]; 5050 adap->vres.ppod_edram.size = 5051 val[1] - val[0] + 1; 5052 5053 dev_info(adap->pdev_dev, 5054 "ppod edram start 0x%x end 0x%x size 0x%x\n", 5055 val[0], val[1], 5056 adap->vres.ppod_edram.size); 5057 } 5058 } 5059 /* LIO target and cxgb4i initiaitor */ 5060 adap->num_ofld_uld += 2; 5061 } 5062 if (caps_cmd.cryptocaps) { 5063 if (ntohs(caps_cmd.cryptocaps) & 5064 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 5065 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 5066 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5067 2, params, val); 5068 if (ret < 0) { 5069 if (ret != -EINVAL) 5070 goto bye; 5071 } else { 5072 adap->vres.ncrypto_fc = val[0]; 5073 } 5074 adap->num_ofld_uld += 1; 5075 } 5076 if (ntohs(caps_cmd.cryptocaps) & 5077 FW_CAPS_CONFIG_TLS_INLINE) { 5078 params[0] = FW_PARAM_PFVF(TLS_START); 5079 params[1] = FW_PARAM_PFVF(TLS_END); 5080 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5081 2, params, val); 5082 if (ret < 0) 5083 goto bye; 5084 adap->vres.key.start = val[0]; 5085 adap->vres.key.size = val[1] - val[0] + 1; 5086 adap->num_uld += 1; 5087 } 5088 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 5089 } 5090 5091 /* The MTU/MSS Table is initialized by now, so load their values. If 5092 * we're initializing the adapter, then we'll make any modifications 5093 * we want to the MTU/MSS Table and also initialize the congestion 5094 * parameters. 5095 */ 5096 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 5097 if (state != DEV_STATE_INIT) { 5098 int i; 5099 5100 /* The default MTU Table contains values 1492 and 1500. 5101 * However, for TCP, it's better to have two values which are 5102 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 5103 * This allows us to have a TCP Data Payload which is a 5104 * multiple of 8 regardless of what combination of TCP Options 5105 * are in use (always a multiple of 4 bytes) which is 5106 * important for performance reasons. For instance, if no 5107 * options are in use, then we have a 20-byte IP header and a 5108 * 20-byte TCP header. In this case, a 1500-byte MSS would 5109 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 5110 * which is not a multiple of 8. So using an MSS of 1488 in 5111 * this case results in a TCP Data Payload of 1448 bytes which 5112 * is a multiple of 8. On the other hand, if 12-byte TCP Time 5113 * Stamps have been negotiated, then an MTU of 1500 bytes 5114 * results in a TCP Data Payload of 1448 bytes which, as 5115 * above, is a multiple of 8 bytes ... 5116 */ 5117 for (i = 0; i < NMTUS; i++) 5118 if (adap->params.mtus[i] == 1492) { 5119 adap->params.mtus[i] = 1488; 5120 break; 5121 } 5122 5123 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5124 adap->params.b_wnd); 5125 } 5126 t4_init_sge_params(adap); 5127 adap->flags |= CXGB4_FW_OK; 5128 t4_init_tp_params(adap, true); 5129 return 0; 5130 5131 /* 5132 * Something bad happened. If a command timed out or failed with EIO 5133 * FW does not operate within its spec or something catastrophic 5134 * happened to HW/FW, stop issuing commands. 5135 */ 5136 bye: 5137 adap_free_hma_mem(adap); 5138 kfree(adap->sge.egr_map); 5139 kfree(adap->sge.ingr_map); 5140 kfree(adap->sge.starving_fl); 5141 kfree(adap->sge.txq_maperr); 5142 #ifdef CONFIG_DEBUG_FS 5143 kfree(adap->sge.blocked_fl); 5144 #endif 5145 if (ret != -ETIMEDOUT && ret != -EIO) 5146 t4_fw_bye(adap, adap->mbox); 5147 return ret; 5148 } 5149 5150 /* EEH callbacks */ 5151 5152 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 5153 pci_channel_state_t state) 5154 { 5155 int i; 5156 struct adapter *adap = pci_get_drvdata(pdev); 5157 5158 if (!adap) 5159 goto out; 5160 5161 rtnl_lock(); 5162 adap->flags &= ~CXGB4_FW_OK; 5163 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 5164 spin_lock(&adap->stats_lock); 5165 for_each_port(adap, i) { 5166 struct net_device *dev = adap->port[i]; 5167 if (dev) { 5168 netif_device_detach(dev); 5169 netif_carrier_off(dev); 5170 } 5171 } 5172 spin_unlock(&adap->stats_lock); 5173 disable_interrupts(adap); 5174 if (adap->flags & CXGB4_FULL_INIT_DONE) 5175 cxgb_down(adap); 5176 rtnl_unlock(); 5177 if ((adap->flags & CXGB4_DEV_ENABLED)) { 5178 pci_disable_device(pdev); 5179 adap->flags &= ~CXGB4_DEV_ENABLED; 5180 } 5181 out: return state == pci_channel_io_perm_failure ? 5182 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 5183 } 5184 5185 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 5186 { 5187 int i, ret; 5188 struct fw_caps_config_cmd c; 5189 struct adapter *adap = pci_get_drvdata(pdev); 5190 5191 if (!adap) { 5192 pci_restore_state(pdev); 5193 pci_save_state(pdev); 5194 return PCI_ERS_RESULT_RECOVERED; 5195 } 5196 5197 if (!(adap->flags & CXGB4_DEV_ENABLED)) { 5198 if (pci_enable_device(pdev)) { 5199 dev_err(&pdev->dev, "Cannot reenable PCI " 5200 "device after reset\n"); 5201 return PCI_ERS_RESULT_DISCONNECT; 5202 } 5203 adap->flags |= CXGB4_DEV_ENABLED; 5204 } 5205 5206 pci_set_master(pdev); 5207 pci_restore_state(pdev); 5208 pci_save_state(pdev); 5209 5210 if (t4_wait_dev_ready(adap->regs) < 0) 5211 return PCI_ERS_RESULT_DISCONNECT; 5212 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 5213 return PCI_ERS_RESULT_DISCONNECT; 5214 adap->flags |= CXGB4_FW_OK; 5215 if (adap_init1(adap, &c)) 5216 return PCI_ERS_RESULT_DISCONNECT; 5217 5218 for_each_port(adap, i) { 5219 struct port_info *pi = adap2pinfo(adap, i); 5220 u8 vivld = 0, vin = 0; 5221 5222 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1, 5223 NULL, NULL, &vivld, &vin); 5224 if (ret < 0) 5225 return PCI_ERS_RESULT_DISCONNECT; 5226 pi->viid = ret; 5227 pi->xact_addr_filt = -1; 5228 /* If fw supports returning the VIN as part of FW_VI_CMD, 5229 * save the returned values. 5230 */ 5231 if (adap->params.viid_smt_extn_support) { 5232 pi->vivld = vivld; 5233 pi->vin = vin; 5234 } else { 5235 /* Retrieve the values from VIID */ 5236 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 5237 pi->vin = FW_VIID_VIN_G(pi->viid); 5238 } 5239 } 5240 5241 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5242 adap->params.b_wnd); 5243 setup_memwin(adap); 5244 if (cxgb_up(adap)) 5245 return PCI_ERS_RESULT_DISCONNECT; 5246 return PCI_ERS_RESULT_RECOVERED; 5247 } 5248 5249 static void eeh_resume(struct pci_dev *pdev) 5250 { 5251 int i; 5252 struct adapter *adap = pci_get_drvdata(pdev); 5253 5254 if (!adap) 5255 return; 5256 5257 rtnl_lock(); 5258 for_each_port(adap, i) { 5259 struct net_device *dev = adap->port[i]; 5260 if (dev) { 5261 if (netif_running(dev)) { 5262 link_start(dev); 5263 cxgb_set_rxmode(dev); 5264 } 5265 netif_device_attach(dev); 5266 } 5267 } 5268 rtnl_unlock(); 5269 } 5270 5271 static void eeh_reset_prepare(struct pci_dev *pdev) 5272 { 5273 struct adapter *adapter = pci_get_drvdata(pdev); 5274 int i; 5275 5276 if (adapter->pf != 4) 5277 return; 5278 5279 adapter->flags &= ~CXGB4_FW_OK; 5280 5281 notify_ulds(adapter, CXGB4_STATE_DOWN); 5282 5283 for_each_port(adapter, i) 5284 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5285 cxgb_close(adapter->port[i]); 5286 5287 disable_interrupts(adapter); 5288 cxgb4_free_mps_ref_entries(adapter); 5289 5290 adap_free_hma_mem(adapter); 5291 5292 if (adapter->flags & CXGB4_FULL_INIT_DONE) 5293 cxgb_down(adapter); 5294 } 5295 5296 static void eeh_reset_done(struct pci_dev *pdev) 5297 { 5298 struct adapter *adapter = pci_get_drvdata(pdev); 5299 int err, i; 5300 5301 if (adapter->pf != 4) 5302 return; 5303 5304 err = t4_wait_dev_ready(adapter->regs); 5305 if (err < 0) { 5306 dev_err(adapter->pdev_dev, 5307 "Device not ready, err %d", err); 5308 return; 5309 } 5310 5311 setup_memwin(adapter); 5312 5313 err = adap_init0(adapter, 1); 5314 if (err) { 5315 dev_err(adapter->pdev_dev, 5316 "Adapter init failed, err %d", err); 5317 return; 5318 } 5319 5320 setup_memwin_rdma(adapter); 5321 5322 if (adapter->flags & CXGB4_FW_OK) { 5323 err = t4_port_init(adapter, adapter->pf, adapter->pf, 0); 5324 if (err) { 5325 dev_err(adapter->pdev_dev, 5326 "Port init failed, err %d", err); 5327 return; 5328 } 5329 } 5330 5331 err = cfg_queues(adapter); 5332 if (err) { 5333 dev_err(adapter->pdev_dev, 5334 "Config queues failed, err %d", err); 5335 return; 5336 } 5337 5338 cxgb4_init_mps_ref_entries(adapter); 5339 5340 err = setup_fw_sge_queues(adapter); 5341 if (err) { 5342 dev_err(adapter->pdev_dev, 5343 "FW sge queue allocation failed, err %d", err); 5344 return; 5345 } 5346 5347 for_each_port(adapter, i) 5348 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5349 cxgb_open(adapter->port[i]); 5350 } 5351 5352 static const struct pci_error_handlers cxgb4_eeh = { 5353 .error_detected = eeh_err_detected, 5354 .slot_reset = eeh_slot_reset, 5355 .resume = eeh_resume, 5356 .reset_prepare = eeh_reset_prepare, 5357 .reset_done = eeh_reset_done, 5358 }; 5359 5360 /* Return true if the Link Configuration supports "High Speeds" (those greater 5361 * than 1Gb/s). 5362 */ 5363 static inline bool is_x_10g_port(const struct link_config *lc) 5364 { 5365 unsigned int speeds, high_speeds; 5366 5367 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 5368 high_speeds = speeds & 5369 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 5370 5371 return high_speeds != 0; 5372 } 5373 5374 /* Perform default configuration of DMA queues depending on the number and type 5375 * of ports we found and the number of available CPUs. Most settings can be 5376 * modified by the admin prior to actual use. 5377 */ 5378 static int cfg_queues(struct adapter *adap) 5379 { 5380 u32 avail_qsets, avail_eth_qsets, avail_uld_qsets; 5381 u32 ncpus = num_online_cpus(); 5382 u32 niqflint, neq, num_ulds; 5383 struct sge *s = &adap->sge; 5384 u32 i, n10g = 0, qidx = 0; 5385 u32 q10g = 0, q1g; 5386 5387 /* Reduce memory usage in kdump environment, disable all offload. */ 5388 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 5389 adap->params.offload = 0; 5390 adap->params.crypto = 0; 5391 adap->params.ethofld = 0; 5392 } 5393 5394 /* Calculate the number of Ethernet Queue Sets available based on 5395 * resources provisioned for us. We always have an Asynchronous 5396 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 5397 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 5398 * Ingress Queue. Meanwhile, we need two Egress Queues for each 5399 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 5400 * 5401 * Note that we should also take into account all of the various 5402 * Offload Queues. But, in any situation where we're operating in 5403 * a Resource Constrained Provisioning environment, doing any Offload 5404 * at all is problematic ... 5405 */ 5406 niqflint = adap->params.pfres.niqflint - 1; 5407 if (!(adap->flags & CXGB4_USING_MSIX)) 5408 niqflint--; 5409 neq = adap->params.pfres.neq / 2; 5410 avail_qsets = min(niqflint, neq); 5411 5412 if (avail_qsets < adap->params.nports) { 5413 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 5414 avail_qsets, adap->params.nports); 5415 return -ENOMEM; 5416 } 5417 5418 /* Count the number of 10Gb/s or better ports */ 5419 for_each_port(adap, i) 5420 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 5421 5422 avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS); 5423 5424 /* We default to 1 queue per non-10G port and up to # of cores queues 5425 * per 10G port. 5426 */ 5427 if (n10g) 5428 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 5429 5430 #ifdef CONFIG_CHELSIO_T4_DCB 5431 /* For Data Center Bridging support we need to be able to support up 5432 * to 8 Traffic Priorities; each of which will be assigned to its 5433 * own TX Queue in order to prevent Head-Of-Line Blocking. 5434 */ 5435 q1g = 8; 5436 if (adap->params.nports * 8 > avail_eth_qsets) { 5437 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 5438 avail_eth_qsets, adap->params.nports * 8); 5439 return -ENOMEM; 5440 } 5441 5442 if (adap->params.nports * ncpus < avail_eth_qsets) 5443 q10g = max(8U, ncpus); 5444 else 5445 q10g = max(8U, q10g); 5446 5447 while ((q10g * n10g) > 5448 (avail_eth_qsets - (adap->params.nports - n10g) * q1g)) 5449 q10g--; 5450 5451 #else /* !CONFIG_CHELSIO_T4_DCB */ 5452 q1g = 1; 5453 q10g = min(q10g, ncpus); 5454 #endif /* !CONFIG_CHELSIO_T4_DCB */ 5455 if (is_kdump_kernel()) { 5456 q10g = 1; 5457 q1g = 1; 5458 } 5459 5460 for_each_port(adap, i) { 5461 struct port_info *pi = adap2pinfo(adap, i); 5462 5463 pi->first_qset = qidx; 5464 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g; 5465 qidx += pi->nqsets; 5466 } 5467 5468 s->ethqsets = qidx; 5469 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 5470 avail_qsets -= qidx; 5471 5472 if (is_uld(adap)) { 5473 /* For offload we use 1 queue/channel if all ports are up to 1G, 5474 * otherwise we divide all available queues amongst the channels 5475 * capped by the number of available cores. 5476 */ 5477 num_ulds = adap->num_uld + adap->num_ofld_uld; 5478 i = min_t(u32, MAX_OFLD_QSETS, ncpus); 5479 avail_uld_qsets = roundup(i, adap->params.nports); 5480 if (avail_qsets < num_ulds * adap->params.nports) { 5481 adap->params.offload = 0; 5482 adap->params.crypto = 0; 5483 s->ofldqsets = 0; 5484 } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) { 5485 s->ofldqsets = adap->params.nports; 5486 } else { 5487 s->ofldqsets = avail_uld_qsets; 5488 } 5489 5490 avail_qsets -= num_ulds * s->ofldqsets; 5491 } 5492 5493 /* ETHOFLD Queues used for QoS offload should follow same 5494 * allocation scheme as normal Ethernet Queues. 5495 */ 5496 if (is_ethofld(adap)) { 5497 if (avail_qsets < s->max_ethqsets) { 5498 adap->params.ethofld = 0; 5499 s->eoqsets = 0; 5500 } else { 5501 s->eoqsets = s->max_ethqsets; 5502 } 5503 avail_qsets -= s->eoqsets; 5504 } 5505 5506 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 5507 struct sge_eth_rxq *r = &s->ethrxq[i]; 5508 5509 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 5510 r->fl.size = 72; 5511 } 5512 5513 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 5514 s->ethtxq[i].q.size = 1024; 5515 5516 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 5517 s->ctrlq[i].q.size = 512; 5518 5519 if (!is_t4(adap->params.chip)) 5520 s->ptptxq.q.size = 8; 5521 5522 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 5523 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 5524 5525 return 0; 5526 } 5527 5528 /* 5529 * Reduce the number of Ethernet queues across all ports to at most n. 5530 * n provides at least one queue per port. 5531 */ 5532 static void reduce_ethqs(struct adapter *adap, int n) 5533 { 5534 int i; 5535 struct port_info *pi; 5536 5537 while (n < adap->sge.ethqsets) 5538 for_each_port(adap, i) { 5539 pi = adap2pinfo(adap, i); 5540 if (pi->nqsets > 1) { 5541 pi->nqsets--; 5542 adap->sge.ethqsets--; 5543 if (adap->sge.ethqsets <= n) 5544 break; 5545 } 5546 } 5547 5548 n = 0; 5549 for_each_port(adap, i) { 5550 pi = adap2pinfo(adap, i); 5551 pi->first_qset = n; 5552 n += pi->nqsets; 5553 } 5554 } 5555 5556 static int alloc_msix_info(struct adapter *adap, u32 num_vec) 5557 { 5558 struct msix_info *msix_info; 5559 5560 msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL); 5561 if (!msix_info) 5562 return -ENOMEM; 5563 5564 adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec), 5565 sizeof(long), GFP_KERNEL); 5566 if (!adap->msix_bmap.msix_bmap) { 5567 kfree(msix_info); 5568 return -ENOMEM; 5569 } 5570 5571 spin_lock_init(&adap->msix_bmap.lock); 5572 adap->msix_bmap.mapsize = num_vec; 5573 5574 adap->msix_info = msix_info; 5575 return 0; 5576 } 5577 5578 static void free_msix_info(struct adapter *adap) 5579 { 5580 kfree(adap->msix_bmap.msix_bmap); 5581 kfree(adap->msix_info); 5582 } 5583 5584 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap) 5585 { 5586 struct msix_bmap *bmap = &adap->msix_bmap; 5587 unsigned int msix_idx; 5588 unsigned long flags; 5589 5590 spin_lock_irqsave(&bmap->lock, flags); 5591 msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize); 5592 if (msix_idx < bmap->mapsize) { 5593 __set_bit(msix_idx, bmap->msix_bmap); 5594 } else { 5595 spin_unlock_irqrestore(&bmap->lock, flags); 5596 return -ENOSPC; 5597 } 5598 5599 spin_unlock_irqrestore(&bmap->lock, flags); 5600 return msix_idx; 5601 } 5602 5603 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap, 5604 unsigned int msix_idx) 5605 { 5606 struct msix_bmap *bmap = &adap->msix_bmap; 5607 unsigned long flags; 5608 5609 spin_lock_irqsave(&bmap->lock, flags); 5610 __clear_bit(msix_idx, bmap->msix_bmap); 5611 spin_unlock_irqrestore(&bmap->lock, flags); 5612 } 5613 5614 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5615 #define EXTRA_VECS 2 5616 5617 static int enable_msix(struct adapter *adap) 5618 { 5619 u32 eth_need, uld_need = 0, ethofld_need = 0; 5620 u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0; 5621 u8 num_uld = 0, nchan = adap->params.nports; 5622 u32 i, want, need, num_vec; 5623 struct sge *s = &adap->sge; 5624 struct msix_entry *entries; 5625 struct port_info *pi; 5626 int allocated, ret; 5627 5628 want = s->max_ethqsets; 5629 #ifdef CONFIG_CHELSIO_T4_DCB 5630 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5631 * each port. 5632 */ 5633 need = 8 * nchan; 5634 #else 5635 need = nchan; 5636 #endif 5637 eth_need = need; 5638 if (is_uld(adap)) { 5639 num_uld = adap->num_ofld_uld + adap->num_uld; 5640 want += num_uld * s->ofldqsets; 5641 uld_need = num_uld * nchan; 5642 need += uld_need; 5643 } 5644 5645 if (is_ethofld(adap)) { 5646 want += s->eoqsets; 5647 ethofld_need = eth_need; 5648 need += ethofld_need; 5649 } 5650 5651 want += EXTRA_VECS; 5652 need += EXTRA_VECS; 5653 5654 entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL); 5655 if (!entries) 5656 return -ENOMEM; 5657 5658 for (i = 0; i < want; i++) 5659 entries[i].entry = i; 5660 5661 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5662 if (allocated < 0) { 5663 /* Disable offload and attempt to get vectors for NIC 5664 * only mode. 5665 */ 5666 want = s->max_ethqsets + EXTRA_VECS; 5667 need = eth_need + EXTRA_VECS; 5668 allocated = pci_enable_msix_range(adap->pdev, entries, 5669 need, want); 5670 if (allocated < 0) { 5671 dev_info(adap->pdev_dev, 5672 "Disabling MSI-X due to insufficient MSI-X vectors\n"); 5673 ret = allocated; 5674 goto out_free; 5675 } 5676 5677 dev_info(adap->pdev_dev, 5678 "Disabling offload due to insufficient MSI-X vectors\n"); 5679 adap->params.offload = 0; 5680 adap->params.crypto = 0; 5681 adap->params.ethofld = 0; 5682 s->ofldqsets = 0; 5683 s->eoqsets = 0; 5684 uld_need = 0; 5685 ethofld_need = 0; 5686 } 5687 5688 num_vec = allocated; 5689 if (num_vec < want) { 5690 /* Distribute available vectors to the various queue groups. 5691 * Every group gets its minimum requirement and NIC gets top 5692 * priority for leftovers. 5693 */ 5694 ethqsets = eth_need; 5695 if (is_uld(adap)) 5696 ofldqsets = nchan; 5697 if (is_ethofld(adap)) 5698 eoqsets = ethofld_need; 5699 5700 num_vec -= need; 5701 while (num_vec) { 5702 if (num_vec < eth_need + ethofld_need || 5703 ethqsets > s->max_ethqsets) 5704 break; 5705 5706 for_each_port(adap, i) { 5707 pi = adap2pinfo(adap, i); 5708 if (pi->nqsets < 2) 5709 continue; 5710 5711 ethqsets++; 5712 num_vec--; 5713 if (ethofld_need) { 5714 eoqsets++; 5715 num_vec--; 5716 } 5717 } 5718 } 5719 5720 if (is_uld(adap)) { 5721 while (num_vec) { 5722 if (num_vec < uld_need || 5723 ofldqsets > s->ofldqsets) 5724 break; 5725 5726 ofldqsets++; 5727 num_vec -= uld_need; 5728 } 5729 } 5730 } else { 5731 ethqsets = s->max_ethqsets; 5732 if (is_uld(adap)) 5733 ofldqsets = s->ofldqsets; 5734 if (is_ethofld(adap)) 5735 eoqsets = s->eoqsets; 5736 } 5737 5738 if (ethqsets < s->max_ethqsets) { 5739 s->max_ethqsets = ethqsets; 5740 reduce_ethqs(adap, ethqsets); 5741 } 5742 5743 if (is_uld(adap)) { 5744 s->ofldqsets = ofldqsets; 5745 s->nqs_per_uld = s->ofldqsets; 5746 } 5747 5748 if (is_ethofld(adap)) 5749 s->eoqsets = eoqsets; 5750 5751 /* map for msix */ 5752 ret = alloc_msix_info(adap, allocated); 5753 if (ret) 5754 goto out_disable_msix; 5755 5756 for (i = 0; i < allocated; i++) { 5757 adap->msix_info[i].vec = entries[i].vector; 5758 adap->msix_info[i].idx = i; 5759 } 5760 5761 dev_info(adap->pdev_dev, 5762 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d\n", 5763 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld); 5764 5765 kfree(entries); 5766 return 0; 5767 5768 out_disable_msix: 5769 pci_disable_msix(adap->pdev); 5770 5771 out_free: 5772 kfree(entries); 5773 return ret; 5774 } 5775 5776 #undef EXTRA_VECS 5777 5778 static int init_rss(struct adapter *adap) 5779 { 5780 unsigned int i; 5781 int err; 5782 5783 err = t4_init_rss_mode(adap, adap->mbox); 5784 if (err) 5785 return err; 5786 5787 for_each_port(adap, i) { 5788 struct port_info *pi = adap2pinfo(adap, i); 5789 5790 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5791 if (!pi->rss) 5792 return -ENOMEM; 5793 } 5794 return 0; 5795 } 5796 5797 /* Dump basic information about the adapter */ 5798 static void print_adapter_info(struct adapter *adapter) 5799 { 5800 /* Hardware/Firmware/etc. Version/Revision IDs */ 5801 t4_dump_version_info(adapter); 5802 5803 /* Software/Hardware configuration */ 5804 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 5805 is_offload(adapter) ? "R" : "", 5806 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" : 5807 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""), 5808 is_offload(adapter) ? "Offload" : "non-Offload"); 5809 } 5810 5811 static void print_port_info(const struct net_device *dev) 5812 { 5813 char buf[80]; 5814 char *bufp = buf; 5815 const struct port_info *pi = netdev_priv(dev); 5816 const struct adapter *adap = pi->adapter; 5817 5818 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 5819 bufp += sprintf(bufp, "100M/"); 5820 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 5821 bufp += sprintf(bufp, "1G/"); 5822 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 5823 bufp += sprintf(bufp, "10G/"); 5824 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 5825 bufp += sprintf(bufp, "25G/"); 5826 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 5827 bufp += sprintf(bufp, "40G/"); 5828 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 5829 bufp += sprintf(bufp, "50G/"); 5830 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 5831 bufp += sprintf(bufp, "100G/"); 5832 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 5833 bufp += sprintf(bufp, "200G/"); 5834 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 5835 bufp += sprintf(bufp, "400G/"); 5836 if (bufp != buf) 5837 --bufp; 5838 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 5839 5840 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 5841 dev->name, adap->params.vpd.id, adap->name, buf); 5842 } 5843 5844 /* 5845 * Free the following resources: 5846 * - memory used for tables 5847 * - MSI/MSI-X 5848 * - net devices 5849 * - resources FW is holding for us 5850 */ 5851 static void free_some_resources(struct adapter *adapter) 5852 { 5853 unsigned int i; 5854 5855 kvfree(adapter->smt); 5856 kvfree(adapter->l2t); 5857 kvfree(adapter->srq); 5858 t4_cleanup_sched(adapter); 5859 kvfree(adapter->tids.tid_tab); 5860 cxgb4_cleanup_tc_matchall(adapter); 5861 cxgb4_cleanup_tc_mqprio(adapter); 5862 cxgb4_cleanup_tc_flower(adapter); 5863 cxgb4_cleanup_tc_u32(adapter); 5864 kfree(adapter->sge.egr_map); 5865 kfree(adapter->sge.ingr_map); 5866 kfree(adapter->sge.starving_fl); 5867 kfree(adapter->sge.txq_maperr); 5868 #ifdef CONFIG_DEBUG_FS 5869 kfree(adapter->sge.blocked_fl); 5870 #endif 5871 disable_msi(adapter); 5872 5873 for_each_port(adapter, i) 5874 if (adapter->port[i]) { 5875 struct port_info *pi = adap2pinfo(adapter, i); 5876 5877 if (pi->viid != 0) 5878 t4_free_vi(adapter, adapter->mbox, adapter->pf, 5879 0, pi->viid); 5880 kfree(adap2pinfo(adapter, i)->rss); 5881 free_netdev(adapter->port[i]); 5882 } 5883 if (adapter->flags & CXGB4_FW_OK) 5884 t4_fw_bye(adapter, adapter->pf); 5885 } 5886 5887 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \ 5888 NETIF_F_GSO_UDP_L4) 5889 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5890 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5891 #define SEGMENT_SIZE 128 5892 5893 static int t4_get_chip_type(struct adapter *adap, int ver) 5894 { 5895 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 5896 5897 switch (ver) { 5898 case CHELSIO_T4: 5899 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 5900 case CHELSIO_T5: 5901 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 5902 case CHELSIO_T6: 5903 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 5904 default: 5905 break; 5906 } 5907 return -EINVAL; 5908 } 5909 5910 #ifdef CONFIG_PCI_IOV 5911 static void cxgb4_mgmt_setup(struct net_device *dev) 5912 { 5913 dev->type = ARPHRD_NONE; 5914 dev->mtu = 0; 5915 dev->hard_header_len = 0; 5916 dev->addr_len = 0; 5917 dev->tx_queue_len = 0; 5918 dev->flags |= IFF_NOARP; 5919 dev->priv_flags |= IFF_NO_QUEUE; 5920 5921 /* Initialize the device structure. */ 5922 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 5923 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 5924 } 5925 5926 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 5927 { 5928 struct adapter *adap = pci_get_drvdata(pdev); 5929 int err = 0; 5930 int current_vfs = pci_num_vf(pdev); 5931 u32 pcie_fw; 5932 5933 pcie_fw = readl(adap->regs + PCIE_FW_A); 5934 /* Check if fw is initialized */ 5935 if (!(pcie_fw & PCIE_FW_INIT_F)) { 5936 dev_warn(&pdev->dev, "Device not initialized\n"); 5937 return -EOPNOTSUPP; 5938 } 5939 5940 /* If any of the VF's is already assigned to Guest OS, then 5941 * SRIOV for the same cannot be modified 5942 */ 5943 if (current_vfs && pci_vfs_assigned(pdev)) { 5944 dev_err(&pdev->dev, 5945 "Cannot modify SR-IOV while VFs are assigned\n"); 5946 return current_vfs; 5947 } 5948 /* Note that the upper-level code ensures that we're never called with 5949 * a non-zero "num_vfs" when we already have VFs instantiated. But 5950 * it never hurts to code defensively. 5951 */ 5952 if (num_vfs != 0 && current_vfs != 0) 5953 return -EBUSY; 5954 5955 /* Nothing to do for no change. */ 5956 if (num_vfs == current_vfs) 5957 return num_vfs; 5958 5959 /* Disable SRIOV when zero is passed. */ 5960 if (!num_vfs) { 5961 pci_disable_sriov(pdev); 5962 /* free VF Management Interface */ 5963 unregister_netdev(adap->port[0]); 5964 free_netdev(adap->port[0]); 5965 adap->port[0] = NULL; 5966 5967 /* free VF resources */ 5968 adap->num_vfs = 0; 5969 kfree(adap->vfinfo); 5970 adap->vfinfo = NULL; 5971 return 0; 5972 } 5973 5974 if (!current_vfs) { 5975 struct fw_pfvf_cmd port_cmd, port_rpl; 5976 struct net_device *netdev; 5977 unsigned int pmask, port; 5978 struct pci_dev *pbridge; 5979 struct port_info *pi; 5980 char name[IFNAMSIZ]; 5981 u32 devcap2; 5982 u16 flags; 5983 5984 /* If we want to instantiate Virtual Functions, then our 5985 * parent bridge's PCI-E needs to support Alternative Routing 5986 * ID (ARI) because our VFs will show up at function offset 8 5987 * and above. 5988 */ 5989 pbridge = pdev->bus->self; 5990 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags); 5991 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2); 5992 5993 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 5994 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 5995 /* Our parent bridge does not support ARI so issue a 5996 * warning and skip instantiating the VFs. They 5997 * won't be reachable. 5998 */ 5999 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 6000 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 6001 PCI_FUNC(pbridge->devfn)); 6002 return -ENOTSUPP; 6003 } 6004 memset(&port_cmd, 0, sizeof(port_cmd)); 6005 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 6006 FW_CMD_REQUEST_F | 6007 FW_CMD_READ_F | 6008 FW_PFVF_CMD_PFN_V(adap->pf) | 6009 FW_PFVF_CMD_VFN_V(0)); 6010 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 6011 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 6012 &port_rpl); 6013 if (err) 6014 return err; 6015 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 6016 port = ffs(pmask) - 1; 6017 /* Allocate VF Management Interface. */ 6018 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 6019 adap->pf); 6020 netdev = alloc_netdev(sizeof(struct port_info), 6021 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 6022 if (!netdev) 6023 return -ENOMEM; 6024 6025 pi = netdev_priv(netdev); 6026 pi->adapter = adap; 6027 pi->lport = port; 6028 pi->tx_chan = port; 6029 SET_NETDEV_DEV(netdev, &pdev->dev); 6030 6031 adap->port[0] = netdev; 6032 pi->port_id = 0; 6033 6034 err = register_netdev(adap->port[0]); 6035 if (err) { 6036 pr_info("Unable to register VF mgmt netdev %s\n", name); 6037 free_netdev(adap->port[0]); 6038 adap->port[0] = NULL; 6039 return err; 6040 } 6041 /* Allocate and set up VF Information. */ 6042 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 6043 sizeof(struct vf_info), GFP_KERNEL); 6044 if (!adap->vfinfo) { 6045 unregister_netdev(adap->port[0]); 6046 free_netdev(adap->port[0]); 6047 adap->port[0] = NULL; 6048 return -ENOMEM; 6049 } 6050 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 6051 } 6052 /* Instantiate the requested number of VFs. */ 6053 err = pci_enable_sriov(pdev, num_vfs); 6054 if (err) { 6055 pr_info("Unable to instantiate %d VFs\n", num_vfs); 6056 if (!current_vfs) { 6057 unregister_netdev(adap->port[0]); 6058 free_netdev(adap->port[0]); 6059 adap->port[0] = NULL; 6060 kfree(adap->vfinfo); 6061 adap->vfinfo = NULL; 6062 } 6063 return err; 6064 } 6065 6066 adap->num_vfs = num_vfs; 6067 return num_vfs; 6068 } 6069 #endif /* CONFIG_PCI_IOV */ 6070 6071 #if defined(CONFIG_CHELSIO_TLS_DEVICE) 6072 6073 static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk, 6074 enum tls_offload_ctx_dir direction, 6075 struct tls_crypto_info *crypto_info, 6076 u32 tcp_sn) 6077 { 6078 struct adapter *adap = netdev2adap(netdev); 6079 int ret = 0; 6080 6081 mutex_lock(&uld_mutex); 6082 if (!adap->uld[CXGB4_ULD_CRYPTO].handle) { 6083 dev_err(adap->pdev_dev, "chcr driver is not loaded\n"); 6084 ret = -EOPNOTSUPP; 6085 goto out_unlock; 6086 } 6087 6088 if (!adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops) { 6089 dev_err(adap->pdev_dev, 6090 "chcr driver has no registered tlsdev_ops()\n"); 6091 ret = -EOPNOTSUPP; 6092 goto out_unlock; 6093 } 6094 6095 ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE); 6096 if (ret) 6097 goto out_unlock; 6098 6099 ret = adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops->tls_dev_add(netdev, sk, 6100 direction, 6101 crypto_info, 6102 tcp_sn); 6103 /* if there is a failure, clear the refcount */ 6104 if (ret) 6105 cxgb4_set_ktls_feature(adap, 6106 FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE); 6107 out_unlock: 6108 mutex_unlock(&uld_mutex); 6109 return ret; 6110 } 6111 6112 static void cxgb4_ktls_dev_del(struct net_device *netdev, 6113 struct tls_context *tls_ctx, 6114 enum tls_offload_ctx_dir direction) 6115 { 6116 struct adapter *adap = netdev2adap(netdev); 6117 6118 mutex_lock(&uld_mutex); 6119 if (!adap->uld[CXGB4_ULD_CRYPTO].handle) { 6120 dev_err(adap->pdev_dev, "chcr driver is not loaded\n"); 6121 goto out_unlock; 6122 } 6123 6124 if (!adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops) { 6125 dev_err(adap->pdev_dev, 6126 "chcr driver has no registered tlsdev_ops\n"); 6127 goto out_unlock; 6128 } 6129 6130 adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops->tls_dev_del(netdev, tls_ctx, 6131 direction); 6132 cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE); 6133 6134 out_unlock: 6135 mutex_unlock(&uld_mutex); 6136 } 6137 6138 static const struct tlsdev_ops cxgb4_ktls_ops = { 6139 .tls_dev_add = cxgb4_ktls_dev_add, 6140 .tls_dev_del = cxgb4_ktls_dev_del, 6141 }; 6142 #endif /* CONFIG_CHELSIO_TLS_DEVICE */ 6143 6144 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 6145 { 6146 struct net_device *netdev; 6147 struct adapter *adapter; 6148 static int adap_idx = 1; 6149 int s_qpp, qpp, num_seg; 6150 struct port_info *pi; 6151 bool highdma = false; 6152 enum chip_type chip; 6153 void __iomem *regs; 6154 int func, chip_ver; 6155 u16 device_id; 6156 int i, err; 6157 u32 whoami; 6158 6159 err = pci_request_regions(pdev, KBUILD_MODNAME); 6160 if (err) { 6161 /* Just info, some other driver may have claimed the device. */ 6162 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 6163 return err; 6164 } 6165 6166 err = pci_enable_device(pdev); 6167 if (err) { 6168 dev_err(&pdev->dev, "cannot enable PCI device\n"); 6169 goto out_release_regions; 6170 } 6171 6172 regs = pci_ioremap_bar(pdev, 0); 6173 if (!regs) { 6174 dev_err(&pdev->dev, "cannot map device registers\n"); 6175 err = -ENOMEM; 6176 goto out_disable_device; 6177 } 6178 6179 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 6180 if (!adapter) { 6181 err = -ENOMEM; 6182 goto out_unmap_bar0; 6183 } 6184 6185 adapter->regs = regs; 6186 err = t4_wait_dev_ready(regs); 6187 if (err < 0) 6188 goto out_free_adapter; 6189 6190 /* We control everything through one PF */ 6191 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 6192 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 6193 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 6194 if ((int)chip < 0) { 6195 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 6196 err = chip; 6197 goto out_free_adapter; 6198 } 6199 chip_ver = CHELSIO_CHIP_VERSION(chip); 6200 func = chip_ver <= CHELSIO_T5 ? 6201 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 6202 6203 adapter->pdev = pdev; 6204 adapter->pdev_dev = &pdev->dev; 6205 adapter->name = pci_name(pdev); 6206 adapter->mbox = func; 6207 adapter->pf = func; 6208 adapter->params.chip = chip; 6209 adapter->adap_idx = adap_idx; 6210 adapter->msg_enable = DFLT_MSG_ENABLE; 6211 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 6212 (sizeof(struct mbox_cmd) * 6213 T4_OS_LOG_MBOX_CMDS), 6214 GFP_KERNEL); 6215 if (!adapter->mbox_log) { 6216 err = -ENOMEM; 6217 goto out_free_adapter; 6218 } 6219 spin_lock_init(&adapter->mbox_lock); 6220 INIT_LIST_HEAD(&adapter->mlist.list); 6221 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 6222 pci_set_drvdata(pdev, adapter); 6223 6224 if (func != ent->driver_data) { 6225 pci_disable_device(pdev); 6226 pci_save_state(pdev); /* to restore SR-IOV later */ 6227 return 0; 6228 } 6229 6230 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 6231 highdma = true; 6232 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 6233 if (err) { 6234 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 6235 "coherent allocations\n"); 6236 goto out_free_adapter; 6237 } 6238 } else { 6239 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 6240 if (err) { 6241 dev_err(&pdev->dev, "no usable DMA configuration\n"); 6242 goto out_free_adapter; 6243 } 6244 } 6245 6246 pci_enable_pcie_error_reporting(pdev); 6247 pci_set_master(pdev); 6248 pci_save_state(pdev); 6249 adap_idx++; 6250 adapter->workq = create_singlethread_workqueue("cxgb4"); 6251 if (!adapter->workq) { 6252 err = -ENOMEM; 6253 goto out_free_adapter; 6254 } 6255 6256 /* PCI device has been enabled */ 6257 adapter->flags |= CXGB4_DEV_ENABLED; 6258 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 6259 6260 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 6261 * Ingress Packet Data to Free List Buffers in order to allow for 6262 * chipset performance optimizations between the Root Complex and 6263 * Memory Controllers. (Messages to the associated Ingress Queue 6264 * notifying new Packet Placement in the Free Lists Buffers will be 6265 * send without the Relaxed Ordering Attribute thus guaranteeing that 6266 * all preceding PCIe Transaction Layer Packets will be processed 6267 * first.) But some Root Complexes have various issues with Upstream 6268 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 6269 * The PCIe devices which under the Root Complexes will be cleared the 6270 * Relaxed Ordering bit in the configuration space, So we check our 6271 * PCIe configuration space to see if it's flagged with advice against 6272 * using Relaxed Ordering. 6273 */ 6274 if (!pcie_relaxed_ordering_enabled(pdev)) 6275 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING; 6276 6277 spin_lock_init(&adapter->stats_lock); 6278 spin_lock_init(&adapter->tid_release_lock); 6279 spin_lock_init(&adapter->win0_lock); 6280 6281 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 6282 INIT_WORK(&adapter->db_full_task, process_db_full); 6283 INIT_WORK(&adapter->db_drop_task, process_db_drop); 6284 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 6285 6286 err = t4_prep_adapter(adapter); 6287 if (err) 6288 goto out_free_adapter; 6289 6290 if (is_kdump_kernel()) { 6291 /* Collect hardware state and append to /proc/vmcore */ 6292 err = cxgb4_cudbg_vmcore_add_dump(adapter); 6293 if (err) { 6294 dev_warn(adapter->pdev_dev, 6295 "Fail collecting vmcore device dump, err: %d. Continuing\n", 6296 err); 6297 err = 0; 6298 } 6299 } 6300 6301 if (!is_t4(adapter->params.chip)) { 6302 s_qpp = (QUEUESPERPAGEPF0_S + 6303 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 6304 adapter->pf); 6305 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 6306 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 6307 num_seg = PAGE_SIZE / SEGMENT_SIZE; 6308 6309 /* Each segment size is 128B. Write coalescing is enabled only 6310 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 6311 * queue is less no of segments that can be accommodated in 6312 * a page size. 6313 */ 6314 if (qpp > num_seg) { 6315 dev_err(&pdev->dev, 6316 "Incorrect number of egress queues per page\n"); 6317 err = -EINVAL; 6318 goto out_free_adapter; 6319 } 6320 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 6321 pci_resource_len(pdev, 2)); 6322 if (!adapter->bar2) { 6323 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 6324 err = -ENOMEM; 6325 goto out_free_adapter; 6326 } 6327 } 6328 6329 setup_memwin(adapter); 6330 err = adap_init0(adapter, 0); 6331 #ifdef CONFIG_DEBUG_FS 6332 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 6333 #endif 6334 setup_memwin_rdma(adapter); 6335 if (err) 6336 goto out_unmap_bar; 6337 6338 /* configure SGE_STAT_CFG_A to read WC stats */ 6339 if (!is_t4(adapter->params.chip)) 6340 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 6341 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 6342 T6_STATMODE_V(0))); 6343 6344 /* Initialize hash mac addr list */ 6345 INIT_LIST_HEAD(&adapter->mac_hlist); 6346 6347 for_each_port(adapter, i) { 6348 /* For supporting MQPRIO Offload, need some extra 6349 * queues for each ETHOFLD TIDs. Keep it equal to 6350 * MAX_ATIDs for now. Once we connect to firmware 6351 * later and query the EOTID params, we'll come to 6352 * know the actual # of EOTIDs supported. 6353 */ 6354 netdev = alloc_etherdev_mq(sizeof(struct port_info), 6355 MAX_ETH_QSETS + MAX_ATIDS); 6356 if (!netdev) { 6357 err = -ENOMEM; 6358 goto out_free_dev; 6359 } 6360 6361 SET_NETDEV_DEV(netdev, &pdev->dev); 6362 6363 adapter->port[i] = netdev; 6364 pi = netdev_priv(netdev); 6365 pi->adapter = adapter; 6366 pi->xact_addr_filt = -1; 6367 pi->port_id = i; 6368 netdev->irq = pdev->irq; 6369 6370 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 6371 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 6372 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO | 6373 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 6374 NETIF_F_HW_TC; 6375 6376 if (chip_ver > CHELSIO_T5) { 6377 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 6378 NETIF_F_IPV6_CSUM | 6379 NETIF_F_RXCSUM | 6380 NETIF_F_GSO_UDP_TUNNEL | 6381 NETIF_F_GSO_UDP_TUNNEL_CSUM | 6382 NETIF_F_TSO | NETIF_F_TSO6; 6383 6384 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 6385 NETIF_F_GSO_UDP_TUNNEL_CSUM | 6386 NETIF_F_HW_TLS_RECORD; 6387 } 6388 6389 if (highdma) 6390 netdev->hw_features |= NETIF_F_HIGHDMA; 6391 netdev->features |= netdev->hw_features; 6392 netdev->vlan_features = netdev->features & VLAN_FEAT; 6393 #if defined(CONFIG_CHELSIO_TLS_DEVICE) 6394 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) { 6395 netdev->hw_features |= NETIF_F_HW_TLS_TX; 6396 netdev->tlsdev_ops = &cxgb4_ktls_ops; 6397 /* initialize the refcount */ 6398 refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0); 6399 } 6400 #endif 6401 netdev->priv_flags |= IFF_UNICAST_FLT; 6402 6403 /* MTU range: 81 - 9600 */ 6404 netdev->min_mtu = 81; /* accommodate SACK */ 6405 netdev->max_mtu = MAX_MTU; 6406 6407 netdev->netdev_ops = &cxgb4_netdev_ops; 6408 #ifdef CONFIG_CHELSIO_T4_DCB 6409 netdev->dcbnl_ops = &cxgb4_dcb_ops; 6410 cxgb4_dcb_state_init(netdev); 6411 cxgb4_dcb_version_init(netdev); 6412 #endif 6413 cxgb4_set_ethtool_ops(netdev); 6414 } 6415 6416 cxgb4_init_ethtool_dump(adapter); 6417 6418 pci_set_drvdata(pdev, adapter); 6419 6420 if (adapter->flags & CXGB4_FW_OK) { 6421 err = t4_port_init(adapter, func, func, 0); 6422 if (err) 6423 goto out_free_dev; 6424 } else if (adapter->params.nports == 1) { 6425 /* If we don't have a connection to the firmware -- possibly 6426 * because of an error -- grab the raw VPD parameters so we 6427 * can set the proper MAC Address on the debug network 6428 * interface that we've created. 6429 */ 6430 u8 hw_addr[ETH_ALEN]; 6431 u8 *na = adapter->params.vpd.na; 6432 6433 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 6434 if (!err) { 6435 for (i = 0; i < ETH_ALEN; i++) 6436 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 6437 hex2val(na[2 * i + 1])); 6438 t4_set_hw_addr(adapter, 0, hw_addr); 6439 } 6440 } 6441 6442 if (!(adapter->flags & CXGB4_FW_OK)) 6443 goto fw_attach_fail; 6444 6445 /* Configure queues and allocate tables now, they can be needed as 6446 * soon as the first register_netdev completes. 6447 */ 6448 err = cfg_queues(adapter); 6449 if (err) 6450 goto out_free_dev; 6451 6452 adapter->smt = t4_init_smt(); 6453 if (!adapter->smt) { 6454 /* We tolerate a lack of SMT, giving up some functionality */ 6455 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 6456 } 6457 6458 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 6459 if (!adapter->l2t) { 6460 /* We tolerate a lack of L2T, giving up some functionality */ 6461 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 6462 adapter->params.offload = 0; 6463 } 6464 6465 #if IS_ENABLED(CONFIG_IPV6) 6466 if (chip_ver <= CHELSIO_T5 && 6467 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 6468 /* CLIP functionality is not present in hardware, 6469 * hence disable all offload features 6470 */ 6471 dev_warn(&pdev->dev, 6472 "CLIP not enabled in hardware, continuing\n"); 6473 adapter->params.offload = 0; 6474 } else { 6475 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 6476 adapter->clipt_end); 6477 if (!adapter->clipt) { 6478 /* We tolerate a lack of clip_table, giving up 6479 * some functionality 6480 */ 6481 dev_warn(&pdev->dev, 6482 "could not allocate Clip table, continuing\n"); 6483 adapter->params.offload = 0; 6484 } 6485 } 6486 #endif 6487 6488 for_each_port(adapter, i) { 6489 pi = adap2pinfo(adapter, i); 6490 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 6491 if (!pi->sched_tbl) 6492 dev_warn(&pdev->dev, 6493 "could not activate scheduling on port %d\n", 6494 i); 6495 } 6496 6497 if (tid_init(&adapter->tids) < 0) { 6498 dev_warn(&pdev->dev, "could not allocate TID table, " 6499 "continuing\n"); 6500 adapter->params.offload = 0; 6501 } else { 6502 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 6503 if (!adapter->tc_u32) 6504 dev_warn(&pdev->dev, 6505 "could not offload tc u32, continuing\n"); 6506 6507 if (cxgb4_init_tc_flower(adapter)) 6508 dev_warn(&pdev->dev, 6509 "could not offload tc flower, continuing\n"); 6510 6511 if (cxgb4_init_tc_mqprio(adapter)) 6512 dev_warn(&pdev->dev, 6513 "could not offload tc mqprio, continuing\n"); 6514 6515 if (cxgb4_init_tc_matchall(adapter)) 6516 dev_warn(&pdev->dev, 6517 "could not offload tc matchall, continuing\n"); 6518 } 6519 6520 if (is_offload(adapter) || is_hashfilter(adapter)) { 6521 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 6522 u32 hash_base, hash_reg; 6523 6524 if (chip_ver <= CHELSIO_T5) { 6525 hash_reg = LE_DB_TID_HASHBASE_A; 6526 hash_base = t4_read_reg(adapter, hash_reg); 6527 adapter->tids.hash_base = hash_base / 4; 6528 } else { 6529 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 6530 hash_base = t4_read_reg(adapter, hash_reg); 6531 adapter->tids.hash_base = hash_base; 6532 } 6533 } 6534 } 6535 6536 /* See what interrupts we'll be using */ 6537 if (msi > 1 && enable_msix(adapter) == 0) 6538 adapter->flags |= CXGB4_USING_MSIX; 6539 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 6540 adapter->flags |= CXGB4_USING_MSI; 6541 if (msi > 1) 6542 free_msix_info(adapter); 6543 } 6544 6545 /* check for PCI Express bandwidth capabiltites */ 6546 pcie_print_link_status(pdev); 6547 6548 cxgb4_init_mps_ref_entries(adapter); 6549 6550 err = init_rss(adapter); 6551 if (err) 6552 goto out_free_dev; 6553 6554 err = setup_non_data_intr(adapter); 6555 if (err) { 6556 dev_err(adapter->pdev_dev, 6557 "Non Data interrupt allocation failed, err: %d\n", err); 6558 goto out_free_dev; 6559 } 6560 6561 err = setup_fw_sge_queues(adapter); 6562 if (err) { 6563 dev_err(adapter->pdev_dev, 6564 "FW sge queue allocation failed, err %d", err); 6565 goto out_free_dev; 6566 } 6567 6568 fw_attach_fail: 6569 /* 6570 * The card is now ready to go. If any errors occur during device 6571 * registration we do not fail the whole card but rather proceed only 6572 * with the ports we manage to register successfully. However we must 6573 * register at least one net device. 6574 */ 6575 for_each_port(adapter, i) { 6576 pi = adap2pinfo(adapter, i); 6577 adapter->port[i]->dev_port = pi->lport; 6578 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 6579 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 6580 6581 netif_carrier_off(adapter->port[i]); 6582 6583 err = register_netdev(adapter->port[i]); 6584 if (err) 6585 break; 6586 adapter->chan_map[pi->tx_chan] = i; 6587 print_port_info(adapter->port[i]); 6588 } 6589 if (i == 0) { 6590 dev_err(&pdev->dev, "could not register any net devices\n"); 6591 goto out_free_dev; 6592 } 6593 if (err) { 6594 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 6595 err = 0; 6596 } 6597 6598 if (cxgb4_debugfs_root) { 6599 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 6600 cxgb4_debugfs_root); 6601 setup_debugfs(adapter); 6602 } 6603 6604 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 6605 pdev->needs_freset = 1; 6606 6607 if (is_uld(adapter)) 6608 cxgb4_uld_enable(adapter); 6609 6610 if (!is_t4(adapter->params.chip)) 6611 cxgb4_ptp_init(adapter); 6612 6613 if (IS_REACHABLE(CONFIG_THERMAL) && 6614 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK)) 6615 cxgb4_thermal_init(adapter); 6616 6617 print_adapter_info(adapter); 6618 return 0; 6619 6620 out_free_dev: 6621 t4_free_sge_resources(adapter); 6622 free_some_resources(adapter); 6623 if (adapter->flags & CXGB4_USING_MSIX) 6624 free_msix_info(adapter); 6625 if (adapter->num_uld || adapter->num_ofld_uld) 6626 t4_uld_mem_free(adapter); 6627 out_unmap_bar: 6628 if (!is_t4(adapter->params.chip)) 6629 iounmap(adapter->bar2); 6630 out_free_adapter: 6631 if (adapter->workq) 6632 destroy_workqueue(adapter->workq); 6633 6634 kfree(adapter->mbox_log); 6635 kfree(adapter); 6636 out_unmap_bar0: 6637 iounmap(regs); 6638 out_disable_device: 6639 pci_disable_pcie_error_reporting(pdev); 6640 pci_disable_device(pdev); 6641 out_release_regions: 6642 pci_release_regions(pdev); 6643 return err; 6644 } 6645 6646 static void remove_one(struct pci_dev *pdev) 6647 { 6648 struct adapter *adapter = pci_get_drvdata(pdev); 6649 struct hash_mac_addr *entry, *tmp; 6650 6651 if (!adapter) { 6652 pci_release_regions(pdev); 6653 return; 6654 } 6655 6656 /* If we allocated filters, free up state associated with any 6657 * valid filters ... 6658 */ 6659 clear_all_filters(adapter); 6660 6661 adapter->flags |= CXGB4_SHUTTING_DOWN; 6662 6663 if (adapter->pf == 4) { 6664 int i; 6665 6666 /* Tear down per-adapter Work Queue first since it can contain 6667 * references to our adapter data structure. 6668 */ 6669 destroy_workqueue(adapter->workq); 6670 6671 if (is_uld(adapter)) { 6672 detach_ulds(adapter); 6673 t4_uld_clean_up(adapter); 6674 } 6675 6676 adap_free_hma_mem(adapter); 6677 6678 disable_interrupts(adapter); 6679 6680 cxgb4_free_mps_ref_entries(adapter); 6681 6682 for_each_port(adapter, i) 6683 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6684 unregister_netdev(adapter->port[i]); 6685 6686 debugfs_remove_recursive(adapter->debugfs_root); 6687 6688 if (!is_t4(adapter->params.chip)) 6689 cxgb4_ptp_stop(adapter); 6690 if (IS_REACHABLE(CONFIG_THERMAL)) 6691 cxgb4_thermal_remove(adapter); 6692 6693 if (adapter->flags & CXGB4_FULL_INIT_DONE) 6694 cxgb_down(adapter); 6695 6696 if (adapter->flags & CXGB4_USING_MSIX) 6697 free_msix_info(adapter); 6698 if (adapter->num_uld || adapter->num_ofld_uld) 6699 t4_uld_mem_free(adapter); 6700 free_some_resources(adapter); 6701 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 6702 list) { 6703 list_del(&entry->list); 6704 kfree(entry); 6705 } 6706 6707 #if IS_ENABLED(CONFIG_IPV6) 6708 t4_cleanup_clip_tbl(adapter); 6709 #endif 6710 if (!is_t4(adapter->params.chip)) 6711 iounmap(adapter->bar2); 6712 } 6713 #ifdef CONFIG_PCI_IOV 6714 else { 6715 cxgb4_iov_configure(adapter->pdev, 0); 6716 } 6717 #endif 6718 iounmap(adapter->regs); 6719 pci_disable_pcie_error_reporting(pdev); 6720 if ((adapter->flags & CXGB4_DEV_ENABLED)) { 6721 pci_disable_device(pdev); 6722 adapter->flags &= ~CXGB4_DEV_ENABLED; 6723 } 6724 pci_release_regions(pdev); 6725 kfree(adapter->mbox_log); 6726 synchronize_rcu(); 6727 kfree(adapter); 6728 } 6729 6730 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 6731 * delivery. This is essentially a stripped down version of the PCI remove() 6732 * function where we do the minimal amount of work necessary to shutdown any 6733 * further activity. 6734 */ 6735 static void shutdown_one(struct pci_dev *pdev) 6736 { 6737 struct adapter *adapter = pci_get_drvdata(pdev); 6738 6739 /* As with remove_one() above (see extended comment), we only want do 6740 * do cleanup on PCI Devices which went all the way through init_one() 6741 * ... 6742 */ 6743 if (!adapter) { 6744 pci_release_regions(pdev); 6745 return; 6746 } 6747 6748 adapter->flags |= CXGB4_SHUTTING_DOWN; 6749 6750 if (adapter->pf == 4) { 6751 int i; 6752 6753 for_each_port(adapter, i) 6754 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6755 cxgb_close(adapter->port[i]); 6756 6757 rtnl_lock(); 6758 cxgb4_mqprio_stop_offload(adapter); 6759 rtnl_unlock(); 6760 6761 if (is_uld(adapter)) { 6762 detach_ulds(adapter); 6763 t4_uld_clean_up(adapter); 6764 } 6765 6766 disable_interrupts(adapter); 6767 disable_msi(adapter); 6768 6769 t4_sge_stop(adapter); 6770 if (adapter->flags & CXGB4_FW_OK) 6771 t4_fw_bye(adapter, adapter->mbox); 6772 } 6773 } 6774 6775 static struct pci_driver cxgb4_driver = { 6776 .name = KBUILD_MODNAME, 6777 .id_table = cxgb4_pci_tbl, 6778 .probe = init_one, 6779 .remove = remove_one, 6780 .shutdown = shutdown_one, 6781 #ifdef CONFIG_PCI_IOV 6782 .sriov_configure = cxgb4_iov_configure, 6783 #endif 6784 .err_handler = &cxgb4_eeh, 6785 }; 6786 6787 static int __init cxgb4_init_module(void) 6788 { 6789 int ret; 6790 6791 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6792 6793 ret = pci_register_driver(&cxgb4_driver); 6794 if (ret < 0) 6795 goto err_pci; 6796 6797 #if IS_ENABLED(CONFIG_IPV6) 6798 if (!inet6addr_registered) { 6799 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6800 if (ret) 6801 pci_unregister_driver(&cxgb4_driver); 6802 else 6803 inet6addr_registered = true; 6804 } 6805 #endif 6806 6807 if (ret == 0) 6808 return ret; 6809 6810 err_pci: 6811 debugfs_remove(cxgb4_debugfs_root); 6812 6813 return ret; 6814 } 6815 6816 static void __exit cxgb4_cleanup_module(void) 6817 { 6818 #if IS_ENABLED(CONFIG_IPV6) 6819 if (inet6addr_registered) { 6820 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6821 inet6addr_registered = false; 6822 } 6823 #endif 6824 pci_unregister_driver(&cxgb4_driver); 6825 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6826 } 6827 6828 module_init(cxgb4_init_module); 6829 module_exit(cxgb4_cleanup_module); 6830