1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <linux/uaccess.h> 66 #include <linux/crash_dump.h> 67 #include <net/udp_tunnel.h> 68 #include <net/xfrm.h> 69 #if defined(CONFIG_CHELSIO_TLS_DEVICE) 70 #include <net/tls.h> 71 #endif 72 73 #include "cxgb4.h" 74 #include "cxgb4_filter.h" 75 #include "t4_regs.h" 76 #include "t4_values.h" 77 #include "t4_msg.h" 78 #include "t4fw_api.h" 79 #include "t4fw_version.h" 80 #include "cxgb4_dcb.h" 81 #include "srq.h" 82 #include "cxgb4_debugfs.h" 83 #include "clip_tbl.h" 84 #include "l2t.h" 85 #include "smt.h" 86 #include "sched.h" 87 #include "cxgb4_tc_u32.h" 88 #include "cxgb4_tc_flower.h" 89 #include "cxgb4_tc_mqprio.h" 90 #include "cxgb4_tc_matchall.h" 91 #include "cxgb4_ptp.h" 92 #include "cxgb4_cudbg.h" 93 94 char cxgb4_driver_name[] = KBUILD_MODNAME; 95 96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 97 98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 99 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 100 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 101 102 /* Macros needed to support the PCI Device ID Table ... 103 */ 104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 105 static const struct pci_device_id cxgb4_pci_tbl[] = { 106 #define CXGB4_UNIFIED_PF 0x4 107 108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 109 110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 111 * called for both. 112 */ 113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 114 115 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 116 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 117 118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 119 { 0, } \ 120 } 121 122 #include "t4_pci_id_tbl.h" 123 124 #define FW4_FNAME "cxgb4/t4fw.bin" 125 #define FW5_FNAME "cxgb4/t5fw.bin" 126 #define FW6_FNAME "cxgb4/t6fw.bin" 127 #define FW4_CFNAME "cxgb4/t4-config.txt" 128 #define FW5_CFNAME "cxgb4/t5-config.txt" 129 #define FW6_CFNAME "cxgb4/t6-config.txt" 130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 132 #define PHY_AQ1202_DEVICEID 0x4409 133 #define PHY_BCM84834_DEVICEID 0x4486 134 135 MODULE_DESCRIPTION(DRV_DESC); 136 MODULE_AUTHOR("Chelsio Communications"); 137 MODULE_LICENSE("Dual BSD/GPL"); 138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 139 MODULE_FIRMWARE(FW4_FNAME); 140 MODULE_FIRMWARE(FW5_FNAME); 141 MODULE_FIRMWARE(FW6_FNAME); 142 143 /* 144 * The driver uses the best interrupt scheme available on a platform in the 145 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 146 * of these schemes the driver may consider as follows: 147 * 148 * msi = 2: choose from among all three options 149 * msi = 1: only consider MSI and INTx interrupts 150 * msi = 0: force INTx interrupts 151 */ 152 static int msi = 2; 153 154 module_param(msi, int, 0644); 155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 156 157 /* 158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 159 * offset by 2 bytes in order to have the IP headers line up on 4-byte 160 * boundaries. This is a requirement for many architectures which will throw 161 * a machine check fault if an attempt is made to access one of the 4-byte IP 162 * header fields on a non-4-byte boundary. And it's a major performance issue 163 * even on some architectures which allow it like some implementations of the 164 * x86 ISA. However, some architectures don't mind this and for some very 165 * edge-case performance sensitive applications (like forwarding large volumes 166 * of small packets), setting this DMA offset to 0 will decrease the number of 167 * PCI-E Bus transfers enough to measurably affect performance. 168 */ 169 static int rx_dma_offset = 2; 170 171 /* TX Queue select used to determine what algorithm to use for selecting TX 172 * queue. Select between the kernel provided function (select_queue=0) or user 173 * cxgb_select_queue function (select_queue=1) 174 * 175 * Default: select_queue=0 176 */ 177 static int select_queue; 178 module_param(select_queue, int, 0644); 179 MODULE_PARM_DESC(select_queue, 180 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 181 182 static struct dentry *cxgb4_debugfs_root; 183 184 LIST_HEAD(adapter_list); 185 DEFINE_MUTEX(uld_mutex); 186 LIST_HEAD(uld_list); 187 188 static int cfg_queues(struct adapter *adap); 189 190 static void link_report(struct net_device *dev) 191 { 192 if (!netif_carrier_ok(dev)) 193 netdev_info(dev, "link down\n"); 194 else { 195 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 196 197 const char *s; 198 const struct port_info *p = netdev_priv(dev); 199 200 switch (p->link_cfg.speed) { 201 case 100: 202 s = "100Mbps"; 203 break; 204 case 1000: 205 s = "1Gbps"; 206 break; 207 case 10000: 208 s = "10Gbps"; 209 break; 210 case 25000: 211 s = "25Gbps"; 212 break; 213 case 40000: 214 s = "40Gbps"; 215 break; 216 case 50000: 217 s = "50Gbps"; 218 break; 219 case 100000: 220 s = "100Gbps"; 221 break; 222 default: 223 pr_info("%s: unsupported speed: %d\n", 224 dev->name, p->link_cfg.speed); 225 return; 226 } 227 228 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 229 fc[p->link_cfg.fc]); 230 } 231 } 232 233 #ifdef CONFIG_CHELSIO_T4_DCB 234 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 235 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 236 { 237 struct port_info *pi = netdev_priv(dev); 238 struct adapter *adap = pi->adapter; 239 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 240 int i; 241 242 /* We use a simple mapping of Port TX Queue Index to DCB 243 * Priority when we're enabling DCB. 244 */ 245 for (i = 0; i < pi->nqsets; i++, txq++) { 246 u32 name, value; 247 int err; 248 249 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 250 FW_PARAMS_PARAM_X_V( 251 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 252 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 253 value = enable ? i : 0xffffffff; 254 255 /* Since we can be called while atomic (from "interrupt 256 * level") we need to issue the Set Parameters Commannd 257 * without sleeping (timeout < 0). 258 */ 259 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 260 &name, &value, 261 -FW_CMD_MAX_TIMEOUT); 262 263 if (err) 264 dev_err(adap->pdev_dev, 265 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 266 enable ? "set" : "unset", pi->port_id, i, -err); 267 else 268 txq->dcb_prio = enable ? value : 0; 269 } 270 } 271 272 int cxgb4_dcb_enabled(const struct net_device *dev) 273 { 274 struct port_info *pi = netdev_priv(dev); 275 276 if (!pi->dcb.enabled) 277 return 0; 278 279 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 280 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 281 } 282 #endif /* CONFIG_CHELSIO_T4_DCB */ 283 284 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 285 { 286 struct net_device *dev = adapter->port[port_id]; 287 288 /* Skip changes from disabled ports. */ 289 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 290 if (link_stat) 291 netif_carrier_on(dev); 292 else { 293 #ifdef CONFIG_CHELSIO_T4_DCB 294 if (cxgb4_dcb_enabled(dev)) { 295 cxgb4_dcb_reset(dev); 296 dcb_tx_queue_prio_enable(dev, false); 297 } 298 #endif /* CONFIG_CHELSIO_T4_DCB */ 299 netif_carrier_off(dev); 300 } 301 302 link_report(dev); 303 } 304 } 305 306 void t4_os_portmod_changed(struct adapter *adap, int port_id) 307 { 308 static const char *mod_str[] = { 309 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 310 }; 311 312 struct net_device *dev = adap->port[port_id]; 313 struct port_info *pi = netdev_priv(dev); 314 315 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 316 netdev_info(dev, "port module unplugged\n"); 317 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 318 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 319 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 320 netdev_info(dev, "%s: unsupported port module inserted\n", 321 dev->name); 322 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 323 netdev_info(dev, "%s: unknown port module inserted\n", 324 dev->name); 325 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 326 netdev_info(dev, "%s: transceiver module error\n", dev->name); 327 else 328 netdev_info(dev, "%s: unknown module type %d inserted\n", 329 dev->name, pi->mod_type); 330 331 /* If the interface is running, then we'll need any "sticky" Link 332 * Parameters redone with a new Transceiver Module. 333 */ 334 pi->link_cfg.redo_l1cfg = netif_running(dev); 335 } 336 337 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 338 module_param(dbfifo_int_thresh, int, 0644); 339 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 340 341 /* 342 * usecs to sleep while draining the dbfifo 343 */ 344 static int dbfifo_drain_delay = 1000; 345 module_param(dbfifo_drain_delay, int, 0644); 346 MODULE_PARM_DESC(dbfifo_drain_delay, 347 "usecs to sleep while draining the dbfifo"); 348 349 static inline int cxgb4_set_addr_hash(struct port_info *pi) 350 { 351 struct adapter *adap = pi->adapter; 352 u64 vec = 0; 353 bool ucast = false; 354 struct hash_mac_addr *entry; 355 356 /* Calculate the hash vector for the updated list and program it */ 357 list_for_each_entry(entry, &adap->mac_hlist, list) { 358 ucast |= is_unicast_ether_addr(entry->addr); 359 vec |= (1ULL << hash_mac_addr(entry->addr)); 360 } 361 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 362 vec, false); 363 } 364 365 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 366 { 367 struct port_info *pi = netdev_priv(netdev); 368 struct adapter *adap = pi->adapter; 369 int ret; 370 u64 mhash = 0; 371 u64 uhash = 0; 372 /* idx stores the index of allocated filters, 373 * its size should be modified based on the number of 374 * MAC addresses that we allocate filters for 375 */ 376 377 u16 idx[1] = {}; 378 bool free = false; 379 bool ucast = is_unicast_ether_addr(mac_addr); 380 const u8 *maclist[1] = {mac_addr}; 381 struct hash_mac_addr *new_entry; 382 383 ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist, 384 idx, ucast ? &uhash : &mhash, false); 385 if (ret < 0) 386 goto out; 387 /* if hash != 0, then add the addr to hash addr list 388 * so on the end we will calculate the hash for the 389 * list and program it 390 */ 391 if (uhash || mhash) { 392 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 393 if (!new_entry) 394 return -ENOMEM; 395 ether_addr_copy(new_entry->addr, mac_addr); 396 list_add_tail(&new_entry->list, &adap->mac_hlist); 397 ret = cxgb4_set_addr_hash(pi); 398 } 399 out: 400 return ret < 0 ? ret : 0; 401 } 402 403 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 404 { 405 struct port_info *pi = netdev_priv(netdev); 406 struct adapter *adap = pi->adapter; 407 int ret; 408 const u8 *maclist[1] = {mac_addr}; 409 struct hash_mac_addr *entry, *tmp; 410 411 /* If the MAC address to be removed is in the hash addr 412 * list, delete it from the list and update hash vector 413 */ 414 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 415 if (ether_addr_equal(entry->addr, mac_addr)) { 416 list_del(&entry->list); 417 kfree(entry); 418 return cxgb4_set_addr_hash(pi); 419 } 420 } 421 422 ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false); 423 return ret < 0 ? -EINVAL : 0; 424 } 425 426 /* 427 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 428 * If @mtu is -1 it is left unchanged. 429 */ 430 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 431 { 432 struct port_info *pi = netdev_priv(dev); 433 struct adapter *adapter = pi->adapter; 434 435 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 436 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 437 438 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 439 (dev->flags & IFF_PROMISC) ? 1 : 0, 440 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 441 sleep_ok); 442 } 443 444 /** 445 * cxgb4_change_mac - Update match filter for a MAC address. 446 * @pi: the port_info 447 * @viid: the VI id 448 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 449 * or -1 450 * @addr: the new MAC address value 451 * @persist: whether a new MAC allocation should be persistent 452 * @add_smt: if true also add the address to the HW SMT 453 * 454 * Modifies an MPS filter and sets it to the new MAC address if 455 * @tcam_idx >= 0, or adds the MAC address to a new filter if 456 * @tcam_idx < 0. In the latter case the address is added persistently 457 * if @persist is %true. 458 * Addresses are programmed to hash region, if tcam runs out of entries. 459 * 460 */ 461 int cxgb4_change_mac(struct port_info *pi, unsigned int viid, 462 int *tcam_idx, const u8 *addr, bool persist, 463 u8 *smt_idx) 464 { 465 struct adapter *adapter = pi->adapter; 466 struct hash_mac_addr *entry, *new_entry; 467 int ret; 468 469 ret = t4_change_mac(adapter, adapter->mbox, viid, 470 *tcam_idx, addr, persist, smt_idx); 471 /* We ran out of TCAM entries. try programming hash region. */ 472 if (ret == -ENOMEM) { 473 /* If the MAC address to be updated is in the hash addr 474 * list, update it from the list 475 */ 476 list_for_each_entry(entry, &adapter->mac_hlist, list) { 477 if (entry->iface_mac) { 478 ether_addr_copy(entry->addr, addr); 479 goto set_hash; 480 } 481 } 482 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 483 if (!new_entry) 484 return -ENOMEM; 485 ether_addr_copy(new_entry->addr, addr); 486 new_entry->iface_mac = true; 487 list_add_tail(&new_entry->list, &adapter->mac_hlist); 488 set_hash: 489 ret = cxgb4_set_addr_hash(pi); 490 } else if (ret >= 0) { 491 *tcam_idx = ret; 492 ret = 0; 493 } 494 495 return ret; 496 } 497 498 /* 499 * link_start - enable a port 500 * @dev: the port to enable 501 * 502 * Performs the MAC and PHY actions needed to enable a port. 503 */ 504 static int link_start(struct net_device *dev) 505 { 506 int ret; 507 struct port_info *pi = netdev_priv(dev); 508 unsigned int mb = pi->adapter->pf; 509 510 /* 511 * We do not set address filters and promiscuity here, the stack does 512 * that step explicitly. 513 */ 514 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 515 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 516 if (ret == 0) 517 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 518 dev->dev_addr, true, &pi->smt_idx); 519 if (ret == 0) 520 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 521 &pi->link_cfg); 522 if (ret == 0) { 523 local_bh_disable(); 524 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 525 true, CXGB4_DCB_ENABLED); 526 local_bh_enable(); 527 } 528 529 return ret; 530 } 531 532 #ifdef CONFIG_CHELSIO_T4_DCB 533 /* Handle a Data Center Bridging update message from the firmware. */ 534 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 535 { 536 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 537 struct net_device *dev = adap->port[adap->chan_map[port]]; 538 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 539 int new_dcb_enabled; 540 541 cxgb4_dcb_handle_fw_update(adap, pcmd); 542 new_dcb_enabled = cxgb4_dcb_enabled(dev); 543 544 /* If the DCB has become enabled or disabled on the port then we're 545 * going to need to set up/tear down DCB Priority parameters for the 546 * TX Queues associated with the port. 547 */ 548 if (new_dcb_enabled != old_dcb_enabled) 549 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 550 } 551 #endif /* CONFIG_CHELSIO_T4_DCB */ 552 553 /* Response queue handler for the FW event queue. 554 */ 555 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 556 const struct pkt_gl *gl) 557 { 558 u8 opcode = ((const struct rss_header *)rsp)->opcode; 559 560 rsp++; /* skip RSS header */ 561 562 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 563 */ 564 if (unlikely(opcode == CPL_FW4_MSG && 565 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 566 rsp++; 567 opcode = ((const struct rss_header *)rsp)->opcode; 568 rsp++; 569 if (opcode != CPL_SGE_EGR_UPDATE) { 570 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 571 , opcode); 572 goto out; 573 } 574 } 575 576 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 577 const struct cpl_sge_egr_update *p = (void *)rsp; 578 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 579 struct sge_txq *txq; 580 581 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 582 txq->restarts++; 583 if (txq->q_type == CXGB4_TXQ_ETH) { 584 struct sge_eth_txq *eq; 585 586 eq = container_of(txq, struct sge_eth_txq, q); 587 t4_sge_eth_txq_egress_update(q->adap, eq, -1); 588 } else { 589 struct sge_uld_txq *oq; 590 591 oq = container_of(txq, struct sge_uld_txq, q); 592 tasklet_schedule(&oq->qresume_tsk); 593 } 594 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 595 const struct cpl_fw6_msg *p = (void *)rsp; 596 597 #ifdef CONFIG_CHELSIO_T4_DCB 598 const struct fw_port_cmd *pcmd = (const void *)p->data; 599 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 600 unsigned int action = 601 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 602 603 if (cmd == FW_PORT_CMD && 604 (action == FW_PORT_ACTION_GET_PORT_INFO || 605 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 606 int port = FW_PORT_CMD_PORTID_G( 607 be32_to_cpu(pcmd->op_to_portid)); 608 struct net_device *dev; 609 int dcbxdis, state_input; 610 611 dev = q->adap->port[q->adap->chan_map[port]]; 612 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 613 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) 614 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) 615 & FW_PORT_CMD_DCBXDIS32_F)); 616 state_input = (dcbxdis 617 ? CXGB4_DCB_INPUT_FW_DISABLED 618 : CXGB4_DCB_INPUT_FW_ENABLED); 619 620 cxgb4_dcb_state_fsm(dev, state_input); 621 } 622 623 if (cmd == FW_PORT_CMD && 624 action == FW_PORT_ACTION_L2_DCB_CFG) 625 dcb_rpl(q->adap, pcmd); 626 else 627 #endif 628 if (p->type == 0) 629 t4_handle_fw_rpl(q->adap, p->data); 630 } else if (opcode == CPL_L2T_WRITE_RPL) { 631 const struct cpl_l2t_write_rpl *p = (void *)rsp; 632 633 do_l2t_write_rpl(q->adap, p); 634 } else if (opcode == CPL_SMT_WRITE_RPL) { 635 const struct cpl_smt_write_rpl *p = (void *)rsp; 636 637 do_smt_write_rpl(q->adap, p); 638 } else if (opcode == CPL_SET_TCB_RPL) { 639 const struct cpl_set_tcb_rpl *p = (void *)rsp; 640 641 filter_rpl(q->adap, p); 642 } else if (opcode == CPL_ACT_OPEN_RPL) { 643 const struct cpl_act_open_rpl *p = (void *)rsp; 644 645 hash_filter_rpl(q->adap, p); 646 } else if (opcode == CPL_ABORT_RPL_RSS) { 647 const struct cpl_abort_rpl_rss *p = (void *)rsp; 648 649 hash_del_filter_rpl(q->adap, p); 650 } else if (opcode == CPL_SRQ_TABLE_RPL) { 651 const struct cpl_srq_table_rpl *p = (void *)rsp; 652 653 do_srq_table_rpl(q->adap, p); 654 } else 655 dev_err(q->adap->pdev_dev, 656 "unexpected CPL %#x on FW event queue\n", opcode); 657 out: 658 return 0; 659 } 660 661 static void disable_msi(struct adapter *adapter) 662 { 663 if (adapter->flags & CXGB4_USING_MSIX) { 664 pci_disable_msix(adapter->pdev); 665 adapter->flags &= ~CXGB4_USING_MSIX; 666 } else if (adapter->flags & CXGB4_USING_MSI) { 667 pci_disable_msi(adapter->pdev); 668 adapter->flags &= ~CXGB4_USING_MSI; 669 } 670 } 671 672 /* 673 * Interrupt handler for non-data events used with MSI-X. 674 */ 675 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 676 { 677 struct adapter *adap = cookie; 678 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 679 680 if (v & PFSW_F) { 681 adap->swintr = 1; 682 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 683 } 684 if (adap->flags & CXGB4_MASTER_PF) 685 t4_slow_intr_handler(adap); 686 return IRQ_HANDLED; 687 } 688 689 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec, 690 cpumask_var_t *aff_mask, int idx) 691 { 692 int rv; 693 694 if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) { 695 dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n"); 696 return -ENOMEM; 697 } 698 699 cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)), 700 *aff_mask); 701 702 rv = irq_set_affinity_hint(vec, *aff_mask); 703 if (rv) 704 dev_warn(adap->pdev_dev, 705 "irq_set_affinity_hint %u failed %d\n", 706 vec, rv); 707 708 return 0; 709 } 710 711 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask) 712 { 713 irq_set_affinity_hint(vec, NULL); 714 free_cpumask_var(aff_mask); 715 } 716 717 static int request_msix_queue_irqs(struct adapter *adap) 718 { 719 struct sge *s = &adap->sge; 720 struct msix_info *minfo; 721 int err, ethqidx; 722 723 if (s->fwevtq_msix_idx < 0) 724 return -ENOMEM; 725 726 err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec, 727 t4_sge_intr_msix, 0, 728 adap->msix_info[s->fwevtq_msix_idx].desc, 729 &s->fw_evtq); 730 if (err) 731 return err; 732 733 for_each_ethrxq(s, ethqidx) { 734 minfo = s->ethrxq[ethqidx].msix; 735 err = request_irq(minfo->vec, 736 t4_sge_intr_msix, 0, 737 minfo->desc, 738 &s->ethrxq[ethqidx].rspq); 739 if (err) 740 goto unwind; 741 742 cxgb4_set_msix_aff(adap, minfo->vec, 743 &minfo->aff_mask, ethqidx); 744 } 745 return 0; 746 747 unwind: 748 while (--ethqidx >= 0) { 749 minfo = s->ethrxq[ethqidx].msix; 750 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 751 free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq); 752 } 753 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); 754 return err; 755 } 756 757 static void free_msix_queue_irqs(struct adapter *adap) 758 { 759 struct sge *s = &adap->sge; 760 struct msix_info *minfo; 761 int i; 762 763 free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq); 764 for_each_ethrxq(s, i) { 765 minfo = s->ethrxq[i].msix; 766 cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask); 767 free_irq(minfo->vec, &s->ethrxq[i].rspq); 768 } 769 } 770 771 static int setup_ppod_edram(struct adapter *adap) 772 { 773 unsigned int param, val; 774 int ret; 775 776 /* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check 777 * if firmware supports ppod edram feature or not. If firmware 778 * returns 1, then driver can enable this feature by sending 779 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to 780 * enable ppod edram feature. 781 */ 782 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 783 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM)); 784 785 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 786 if (ret < 0) { 787 dev_warn(adap->pdev_dev, 788 "querying PPOD_EDRAM support failed: %d\n", 789 ret); 790 return -1; 791 } 792 793 if (val != 1) 794 return -1; 795 796 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 797 if (ret < 0) { 798 dev_err(adap->pdev_dev, 799 "setting PPOD_EDRAM failed: %d\n", ret); 800 return -1; 801 } 802 return 0; 803 } 804 805 static void adap_config_hpfilter(struct adapter *adapter) 806 { 807 u32 param, val = 0; 808 int ret; 809 810 /* Enable HP filter region. Older fw will fail this request and 811 * it is fine. 812 */ 813 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 814 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 815 1, ¶m, &val); 816 817 /* An error means FW doesn't know about HP filter support, 818 * it's not a problem, don't return an error. 819 */ 820 if (ret < 0) 821 dev_err(adapter->pdev_dev, 822 "HP filter region isn't supported by FW\n"); 823 } 824 825 /** 826 * cxgb4_write_rss - write the RSS table for a given port 827 * @pi: the port 828 * @queues: array of queue indices for RSS 829 * 830 * Sets up the portion of the HW RSS table for the port's VI to distribute 831 * packets to the Rx queues in @queues. 832 * Should never be called before setting up sge eth rx queues 833 */ 834 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 835 { 836 u16 *rss; 837 int i, err; 838 struct adapter *adapter = pi->adapter; 839 const struct sge_eth_rxq *rxq; 840 841 rxq = &adapter->sge.ethrxq[pi->first_qset]; 842 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 843 if (!rss) 844 return -ENOMEM; 845 846 /* map the queue indices to queue ids */ 847 for (i = 0; i < pi->rss_size; i++, queues++) 848 rss[i] = rxq[*queues].rspq.abs_id; 849 850 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 851 pi->rss_size, rss, pi->rss_size); 852 /* If Tunnel All Lookup isn't specified in the global RSS 853 * Configuration, then we need to specify a default Ingress 854 * Queue for any ingress packets which aren't hashed. We'll 855 * use our first ingress queue ... 856 */ 857 if (!err) 858 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 859 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 860 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 861 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 862 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 863 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 864 rss[0]); 865 kfree(rss); 866 return err; 867 } 868 869 /** 870 * setup_rss - configure RSS 871 * @adap: the adapter 872 * 873 * Sets up RSS for each port. 874 */ 875 static int setup_rss(struct adapter *adap) 876 { 877 int i, j, err; 878 879 for_each_port(adap, i) { 880 const struct port_info *pi = adap2pinfo(adap, i); 881 882 /* Fill default values with equal distribution */ 883 for (j = 0; j < pi->rss_size; j++) 884 pi->rss[j] = j % pi->nqsets; 885 886 err = cxgb4_write_rss(pi, pi->rss); 887 if (err) 888 return err; 889 } 890 return 0; 891 } 892 893 /* 894 * Return the channel of the ingress queue with the given qid. 895 */ 896 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 897 { 898 qid -= p->ingr_start; 899 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 900 } 901 902 void cxgb4_quiesce_rx(struct sge_rspq *q) 903 { 904 if (q->handler) 905 napi_disable(&q->napi); 906 } 907 908 /* 909 * Wait until all NAPI handlers are descheduled. 910 */ 911 static void quiesce_rx(struct adapter *adap) 912 { 913 int i; 914 915 for (i = 0; i < adap->sge.ingr_sz; i++) { 916 struct sge_rspq *q = adap->sge.ingr_map[i]; 917 918 if (!q) 919 continue; 920 921 cxgb4_quiesce_rx(q); 922 } 923 } 924 925 /* Disable interrupt and napi handler */ 926 static void disable_interrupts(struct adapter *adap) 927 { 928 struct sge *s = &adap->sge; 929 930 if (adap->flags & CXGB4_FULL_INIT_DONE) { 931 t4_intr_disable(adap); 932 if (adap->flags & CXGB4_USING_MSIX) { 933 free_msix_queue_irqs(adap); 934 free_irq(adap->msix_info[s->nd_msix_idx].vec, 935 adap); 936 } else { 937 free_irq(adap->pdev->irq, adap); 938 } 939 quiesce_rx(adap); 940 } 941 } 942 943 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q) 944 { 945 if (q->handler) 946 napi_enable(&q->napi); 947 948 /* 0-increment GTS to start the timer and enable interrupts */ 949 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 950 SEINTARM_V(q->intr_params) | 951 INGRESSQID_V(q->cntxt_id)); 952 } 953 954 /* 955 * Enable NAPI scheduling and interrupt generation for all Rx queues. 956 */ 957 static void enable_rx(struct adapter *adap) 958 { 959 int i; 960 961 for (i = 0; i < adap->sge.ingr_sz; i++) { 962 struct sge_rspq *q = adap->sge.ingr_map[i]; 963 964 if (!q) 965 continue; 966 967 cxgb4_enable_rx(adap, q); 968 } 969 } 970 971 static int setup_non_data_intr(struct adapter *adap) 972 { 973 int msix; 974 975 adap->sge.nd_msix_idx = -1; 976 if (!(adap->flags & CXGB4_USING_MSIX)) 977 return 0; 978 979 /* Request MSI-X vector for non-data interrupt */ 980 msix = cxgb4_get_msix_idx_from_bmap(adap); 981 if (msix < 0) 982 return -ENOMEM; 983 984 snprintf(adap->msix_info[msix].desc, 985 sizeof(adap->msix_info[msix].desc), 986 "%s", adap->port[0]->name); 987 988 adap->sge.nd_msix_idx = msix; 989 return 0; 990 } 991 992 static int setup_fw_sge_queues(struct adapter *adap) 993 { 994 struct sge *s = &adap->sge; 995 int msix, err = 0; 996 997 bitmap_zero(s->starving_fl, s->egr_sz); 998 bitmap_zero(s->txq_maperr, s->egr_sz); 999 1000 if (adap->flags & CXGB4_USING_MSIX) { 1001 s->fwevtq_msix_idx = -1; 1002 msix = cxgb4_get_msix_idx_from_bmap(adap); 1003 if (msix < 0) 1004 return -ENOMEM; 1005 1006 snprintf(adap->msix_info[msix].desc, 1007 sizeof(adap->msix_info[msix].desc), 1008 "%s-FWeventq", adap->port[0]->name); 1009 } else { 1010 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 1011 NULL, NULL, NULL, -1); 1012 if (err) 1013 return err; 1014 msix = -((int)s->intrq.abs_id + 1); 1015 } 1016 1017 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 1018 msix, NULL, fwevtq_handler, NULL, -1); 1019 if (err && msix >= 0) 1020 cxgb4_free_msix_idx_in_bmap(adap, msix); 1021 1022 s->fwevtq_msix_idx = msix; 1023 return err; 1024 } 1025 1026 /** 1027 * setup_sge_queues - configure SGE Tx/Rx/response queues 1028 * @adap: the adapter 1029 * 1030 * Determines how many sets of SGE queues to use and initializes them. 1031 * We support multiple queue sets per port if we have MSI-X, otherwise 1032 * just one queue set per port. 1033 */ 1034 static int setup_sge_queues(struct adapter *adap) 1035 { 1036 struct sge_uld_rxq_info *rxq_info = NULL; 1037 struct sge *s = &adap->sge; 1038 unsigned int cmplqid = 0; 1039 int err, i, j, msix = 0; 1040 1041 if (is_uld(adap)) 1042 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 1043 1044 if (!(adap->flags & CXGB4_USING_MSIX)) 1045 msix = -((int)s->intrq.abs_id + 1); 1046 1047 for_each_port(adap, i) { 1048 struct net_device *dev = adap->port[i]; 1049 struct port_info *pi = netdev_priv(dev); 1050 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1051 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1052 1053 for (j = 0; j < pi->nqsets; j++, q++) { 1054 if (msix >= 0) { 1055 msix = cxgb4_get_msix_idx_from_bmap(adap); 1056 if (msix < 0) { 1057 err = msix; 1058 goto freeout; 1059 } 1060 1061 snprintf(adap->msix_info[msix].desc, 1062 sizeof(adap->msix_info[msix].desc), 1063 "%s-Rx%d", dev->name, j); 1064 q->msix = &adap->msix_info[msix]; 1065 } 1066 1067 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1068 msix, &q->fl, 1069 t4_ethrx_handler, 1070 NULL, 1071 t4_get_tp_ch_map(adap, 1072 pi->tx_chan)); 1073 if (err) 1074 goto freeout; 1075 q->rspq.idx = j; 1076 memset(&q->stats, 0, sizeof(q->stats)); 1077 } 1078 1079 q = &s->ethrxq[pi->first_qset]; 1080 for (j = 0; j < pi->nqsets; j++, t++, q++) { 1081 err = t4_sge_alloc_eth_txq(adap, t, dev, 1082 netdev_get_tx_queue(dev, j), 1083 q->rspq.cntxt_id, 1084 !!(adap->flags & CXGB4_SGE_DBQ_TIMER)); 1085 if (err) 1086 goto freeout; 1087 } 1088 } 1089 1090 for_each_port(adap, i) { 1091 /* Note that cmplqid below is 0 if we don't 1092 * have RDMA queues, and that's the right value. 1093 */ 1094 if (rxq_info) 1095 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 1096 1097 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1098 s->fw_evtq.cntxt_id, cmplqid); 1099 if (err) 1100 goto freeout; 1101 } 1102 1103 if (!is_t4(adap->params.chip)) { 1104 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 1105 netdev_get_tx_queue(adap->port[0], 0) 1106 , s->fw_evtq.cntxt_id, false); 1107 if (err) 1108 goto freeout; 1109 } 1110 1111 t4_write_reg(adap, is_t4(adap->params.chip) ? 1112 MPS_TRC_RSS_CONTROL_A : 1113 MPS_T5_TRC_RSS_CONTROL_A, 1114 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 1115 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 1116 return 0; 1117 freeout: 1118 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 1119 t4_free_sge_resources(adap); 1120 return err; 1121 } 1122 1123 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 1124 struct net_device *sb_dev) 1125 { 1126 int txq; 1127 1128 #ifdef CONFIG_CHELSIO_T4_DCB 1129 /* If a Data Center Bridging has been successfully negotiated on this 1130 * link then we'll use the skb's priority to map it to a TX Queue. 1131 * The skb's priority is determined via the VLAN Tag Priority Code 1132 * Point field. 1133 */ 1134 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 1135 u16 vlan_tci; 1136 int err; 1137 1138 err = vlan_get_tag(skb, &vlan_tci); 1139 if (unlikely(err)) { 1140 if (net_ratelimit()) 1141 netdev_warn(dev, 1142 "TX Packet without VLAN Tag on DCB Link\n"); 1143 txq = 0; 1144 } else { 1145 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1146 #ifdef CONFIG_CHELSIO_T4_FCOE 1147 if (skb->protocol == htons(ETH_P_FCOE)) 1148 txq = skb->priority & 0x7; 1149 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1150 } 1151 return txq; 1152 } 1153 #endif /* CONFIG_CHELSIO_T4_DCB */ 1154 1155 if (dev->num_tc) { 1156 struct port_info *pi = netdev2pinfo(dev); 1157 u8 ver, proto; 1158 1159 ver = ip_hdr(skb)->version; 1160 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : 1161 ip_hdr(skb)->protocol; 1162 1163 /* Send unsupported traffic pattern to normal NIC queues. */ 1164 txq = netdev_pick_tx(dev, skb, sb_dev); 1165 if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) || 1166 skb->encapsulation || 1167 (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) 1168 txq = txq % pi->nqsets; 1169 1170 return txq; 1171 } 1172 1173 if (select_queue) { 1174 txq = (skb_rx_queue_recorded(skb) 1175 ? skb_get_rx_queue(skb) 1176 : smp_processor_id()); 1177 1178 while (unlikely(txq >= dev->real_num_tx_queues)) 1179 txq -= dev->real_num_tx_queues; 1180 1181 return txq; 1182 } 1183 1184 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 1185 } 1186 1187 static int closest_timer(const struct sge *s, int time) 1188 { 1189 int i, delta, match = 0, min_delta = INT_MAX; 1190 1191 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1192 delta = time - s->timer_val[i]; 1193 if (delta < 0) 1194 delta = -delta; 1195 if (delta < min_delta) { 1196 min_delta = delta; 1197 match = i; 1198 } 1199 } 1200 return match; 1201 } 1202 1203 static int closest_thres(const struct sge *s, int thres) 1204 { 1205 int i, delta, match = 0, min_delta = INT_MAX; 1206 1207 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1208 delta = thres - s->counter_val[i]; 1209 if (delta < 0) 1210 delta = -delta; 1211 if (delta < min_delta) { 1212 min_delta = delta; 1213 match = i; 1214 } 1215 } 1216 return match; 1217 } 1218 1219 /** 1220 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1221 * @q: the Rx queue 1222 * @us: the hold-off time in us, or 0 to disable timer 1223 * @cnt: the hold-off packet count, or 0 to disable counter 1224 * 1225 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1226 * one of the two needs to be enabled for the queue to generate interrupts. 1227 */ 1228 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1229 unsigned int us, unsigned int cnt) 1230 { 1231 struct adapter *adap = q->adap; 1232 1233 if ((us | cnt) == 0) 1234 cnt = 1; 1235 1236 if (cnt) { 1237 int err; 1238 u32 v, new_idx; 1239 1240 new_idx = closest_thres(&adap->sge, cnt); 1241 if (q->desc && q->pktcnt_idx != new_idx) { 1242 /* the queue has already been created, update it */ 1243 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1244 FW_PARAMS_PARAM_X_V( 1245 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1246 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1247 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1248 &v, &new_idx); 1249 if (err) 1250 return err; 1251 } 1252 q->pktcnt_idx = new_idx; 1253 } 1254 1255 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1256 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1257 return 0; 1258 } 1259 1260 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1261 { 1262 const struct port_info *pi = netdev_priv(dev); 1263 netdev_features_t changed = dev->features ^ features; 1264 int err; 1265 1266 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1267 return 0; 1268 1269 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1270 -1, -1, -1, 1271 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1272 if (unlikely(err)) 1273 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1274 return err; 1275 } 1276 1277 static int setup_debugfs(struct adapter *adap) 1278 { 1279 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1280 return -1; 1281 1282 #ifdef CONFIG_DEBUG_FS 1283 t4_setup_debugfs(adap); 1284 #endif 1285 return 0; 1286 } 1287 1288 /* 1289 * upper-layer driver support 1290 */ 1291 1292 /* 1293 * Allocate an active-open TID and set it to the supplied value. 1294 */ 1295 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1296 { 1297 int atid = -1; 1298 1299 spin_lock_bh(&t->atid_lock); 1300 if (t->afree) { 1301 union aopen_entry *p = t->afree; 1302 1303 atid = (p - t->atid_tab) + t->atid_base; 1304 t->afree = p->next; 1305 p->data = data; 1306 t->atids_in_use++; 1307 } 1308 spin_unlock_bh(&t->atid_lock); 1309 return atid; 1310 } 1311 EXPORT_SYMBOL(cxgb4_alloc_atid); 1312 1313 /* 1314 * Release an active-open TID. 1315 */ 1316 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1317 { 1318 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1319 1320 spin_lock_bh(&t->atid_lock); 1321 p->next = t->afree; 1322 t->afree = p; 1323 t->atids_in_use--; 1324 spin_unlock_bh(&t->atid_lock); 1325 } 1326 EXPORT_SYMBOL(cxgb4_free_atid); 1327 1328 /* 1329 * Allocate a server TID and set it to the supplied value. 1330 */ 1331 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1332 { 1333 int stid; 1334 1335 spin_lock_bh(&t->stid_lock); 1336 if (family == PF_INET) { 1337 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1338 if (stid < t->nstids) 1339 __set_bit(stid, t->stid_bmap); 1340 else 1341 stid = -1; 1342 } else { 1343 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1344 if (stid < 0) 1345 stid = -1; 1346 } 1347 if (stid >= 0) { 1348 t->stid_tab[stid].data = data; 1349 stid += t->stid_base; 1350 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1351 * This is equivalent to 4 TIDs. With CLIP enabled it 1352 * needs 2 TIDs. 1353 */ 1354 if (family == PF_INET6) { 1355 t->stids_in_use += 2; 1356 t->v6_stids_in_use += 2; 1357 } else { 1358 t->stids_in_use++; 1359 } 1360 } 1361 spin_unlock_bh(&t->stid_lock); 1362 return stid; 1363 } 1364 EXPORT_SYMBOL(cxgb4_alloc_stid); 1365 1366 /* Allocate a server filter TID and set it to the supplied value. 1367 */ 1368 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1369 { 1370 int stid; 1371 1372 spin_lock_bh(&t->stid_lock); 1373 if (family == PF_INET) { 1374 stid = find_next_zero_bit(t->stid_bmap, 1375 t->nstids + t->nsftids, t->nstids); 1376 if (stid < (t->nstids + t->nsftids)) 1377 __set_bit(stid, t->stid_bmap); 1378 else 1379 stid = -1; 1380 } else { 1381 stid = -1; 1382 } 1383 if (stid >= 0) { 1384 t->stid_tab[stid].data = data; 1385 stid -= t->nstids; 1386 stid += t->sftid_base; 1387 t->sftids_in_use++; 1388 } 1389 spin_unlock_bh(&t->stid_lock); 1390 return stid; 1391 } 1392 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1393 1394 /* Release a server TID. 1395 */ 1396 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1397 { 1398 /* Is it a server filter TID? */ 1399 if (t->nsftids && (stid >= t->sftid_base)) { 1400 stid -= t->sftid_base; 1401 stid += t->nstids; 1402 } else { 1403 stid -= t->stid_base; 1404 } 1405 1406 spin_lock_bh(&t->stid_lock); 1407 if (family == PF_INET) 1408 __clear_bit(stid, t->stid_bmap); 1409 else 1410 bitmap_release_region(t->stid_bmap, stid, 1); 1411 t->stid_tab[stid].data = NULL; 1412 if (stid < t->nstids) { 1413 if (family == PF_INET6) { 1414 t->stids_in_use -= 2; 1415 t->v6_stids_in_use -= 2; 1416 } else { 1417 t->stids_in_use--; 1418 } 1419 } else { 1420 t->sftids_in_use--; 1421 } 1422 1423 spin_unlock_bh(&t->stid_lock); 1424 } 1425 EXPORT_SYMBOL(cxgb4_free_stid); 1426 1427 /* 1428 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1429 */ 1430 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1431 unsigned int tid) 1432 { 1433 struct cpl_tid_release *req; 1434 1435 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1436 req = __skb_put(skb, sizeof(*req)); 1437 INIT_TP_WR(req, tid); 1438 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1439 } 1440 1441 /* 1442 * Queue a TID release request and if necessary schedule a work queue to 1443 * process it. 1444 */ 1445 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1446 unsigned int tid) 1447 { 1448 struct adapter *adap = container_of(t, struct adapter, tids); 1449 void **p = &t->tid_tab[tid - t->tid_base]; 1450 1451 spin_lock_bh(&adap->tid_release_lock); 1452 *p = adap->tid_release_head; 1453 /* Low 2 bits encode the Tx channel number */ 1454 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1455 if (!adap->tid_release_task_busy) { 1456 adap->tid_release_task_busy = true; 1457 queue_work(adap->workq, &adap->tid_release_task); 1458 } 1459 spin_unlock_bh(&adap->tid_release_lock); 1460 } 1461 1462 /* 1463 * Process the list of pending TID release requests. 1464 */ 1465 static void process_tid_release_list(struct work_struct *work) 1466 { 1467 struct sk_buff *skb; 1468 struct adapter *adap; 1469 1470 adap = container_of(work, struct adapter, tid_release_task); 1471 1472 spin_lock_bh(&adap->tid_release_lock); 1473 while (adap->tid_release_head) { 1474 void **p = adap->tid_release_head; 1475 unsigned int chan = (uintptr_t)p & 3; 1476 p = (void *)p - chan; 1477 1478 adap->tid_release_head = *p; 1479 *p = NULL; 1480 spin_unlock_bh(&adap->tid_release_lock); 1481 1482 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1483 GFP_KERNEL))) 1484 schedule_timeout_uninterruptible(1); 1485 1486 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1487 t4_ofld_send(adap, skb); 1488 spin_lock_bh(&adap->tid_release_lock); 1489 } 1490 adap->tid_release_task_busy = false; 1491 spin_unlock_bh(&adap->tid_release_lock); 1492 } 1493 1494 /* 1495 * Release a TID and inform HW. If we are unable to allocate the release 1496 * message we defer to a work queue. 1497 */ 1498 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1499 unsigned short family) 1500 { 1501 struct adapter *adap = container_of(t, struct adapter, tids); 1502 struct sk_buff *skb; 1503 1504 WARN_ON(tid_out_of_range(&adap->tids, tid)); 1505 1506 if (t->tid_tab[tid - adap->tids.tid_base]) { 1507 t->tid_tab[tid - adap->tids.tid_base] = NULL; 1508 atomic_dec(&t->conns_in_use); 1509 if (t->hash_base && (tid >= t->hash_base)) { 1510 if (family == AF_INET6) 1511 atomic_sub(2, &t->hash_tids_in_use); 1512 else 1513 atomic_dec(&t->hash_tids_in_use); 1514 } else { 1515 if (family == AF_INET6) 1516 atomic_sub(2, &t->tids_in_use); 1517 else 1518 atomic_dec(&t->tids_in_use); 1519 } 1520 } 1521 1522 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1523 if (likely(skb)) { 1524 mk_tid_release(skb, chan, tid); 1525 t4_ofld_send(adap, skb); 1526 } else 1527 cxgb4_queue_tid_release(t, chan, tid); 1528 } 1529 EXPORT_SYMBOL(cxgb4_remove_tid); 1530 1531 /* 1532 * Allocate and initialize the TID tables. Returns 0 on success. 1533 */ 1534 static int tid_init(struct tid_info *t) 1535 { 1536 struct adapter *adap = container_of(t, struct adapter, tids); 1537 unsigned int max_ftids = t->nftids + t->nsftids; 1538 unsigned int natids = t->natids; 1539 unsigned int hpftid_bmap_size; 1540 unsigned int eotid_bmap_size; 1541 unsigned int stid_bmap_size; 1542 unsigned int ftid_bmap_size; 1543 size_t size; 1544 1545 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1546 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1547 hpftid_bmap_size = BITS_TO_LONGS(t->nhpftids); 1548 eotid_bmap_size = BITS_TO_LONGS(t->neotids); 1549 size = t->ntids * sizeof(*t->tid_tab) + 1550 natids * sizeof(*t->atid_tab) + 1551 t->nstids * sizeof(*t->stid_tab) + 1552 t->nsftids * sizeof(*t->stid_tab) + 1553 stid_bmap_size * sizeof(long) + 1554 t->nhpftids * sizeof(*t->hpftid_tab) + 1555 hpftid_bmap_size * sizeof(long) + 1556 max_ftids * sizeof(*t->ftid_tab) + 1557 ftid_bmap_size * sizeof(long) + 1558 t->neotids * sizeof(*t->eotid_tab) + 1559 eotid_bmap_size * sizeof(long); 1560 1561 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1562 if (!t->tid_tab) 1563 return -ENOMEM; 1564 1565 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1566 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1567 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1568 t->hpftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1569 t->hpftid_bmap = (unsigned long *)&t->hpftid_tab[t->nhpftids]; 1570 t->ftid_tab = (struct filter_entry *)&t->hpftid_bmap[hpftid_bmap_size]; 1571 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1572 t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size]; 1573 t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids]; 1574 spin_lock_init(&t->stid_lock); 1575 spin_lock_init(&t->atid_lock); 1576 spin_lock_init(&t->ftid_lock); 1577 1578 t->stids_in_use = 0; 1579 t->v6_stids_in_use = 0; 1580 t->sftids_in_use = 0; 1581 t->afree = NULL; 1582 t->atids_in_use = 0; 1583 atomic_set(&t->tids_in_use, 0); 1584 atomic_set(&t->conns_in_use, 0); 1585 atomic_set(&t->hash_tids_in_use, 0); 1586 atomic_set(&t->eotids_in_use, 0); 1587 1588 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1589 if (natids) { 1590 while (--natids) 1591 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1592 t->afree = t->atid_tab; 1593 } 1594 1595 if (is_offload(adap)) { 1596 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1597 /* Reserve stid 0 for T4/T5 adapters */ 1598 if (!t->stid_base && 1599 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1600 __set_bit(0, t->stid_bmap); 1601 1602 if (t->neotids) 1603 bitmap_zero(t->eotid_bmap, t->neotids); 1604 } 1605 1606 if (t->nhpftids) 1607 bitmap_zero(t->hpftid_bmap, t->nhpftids); 1608 bitmap_zero(t->ftid_bmap, t->nftids); 1609 return 0; 1610 } 1611 1612 /** 1613 * cxgb4_create_server - create an IP server 1614 * @dev: the device 1615 * @stid: the server TID 1616 * @sip: local IP address to bind server to 1617 * @sport: the server's TCP port 1618 * @queue: queue to direct messages from this server to 1619 * 1620 * Create an IP server for the given port and address. 1621 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1622 */ 1623 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1624 __be32 sip, __be16 sport, __be16 vlan, 1625 unsigned int queue) 1626 { 1627 unsigned int chan; 1628 struct sk_buff *skb; 1629 struct adapter *adap; 1630 struct cpl_pass_open_req *req; 1631 int ret; 1632 1633 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1634 if (!skb) 1635 return -ENOMEM; 1636 1637 adap = netdev2adap(dev); 1638 req = __skb_put(skb, sizeof(*req)); 1639 INIT_TP_WR(req, 0); 1640 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1641 req->local_port = sport; 1642 req->peer_port = htons(0); 1643 req->local_ip = sip; 1644 req->peer_ip = htonl(0); 1645 chan = rxq_to_chan(&adap->sge, queue); 1646 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1647 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1648 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1649 ret = t4_mgmt_tx(adap, skb); 1650 return net_xmit_eval(ret); 1651 } 1652 EXPORT_SYMBOL(cxgb4_create_server); 1653 1654 /* cxgb4_create_server6 - create an IPv6 server 1655 * @dev: the device 1656 * @stid: the server TID 1657 * @sip: local IPv6 address to bind server to 1658 * @sport: the server's TCP port 1659 * @queue: queue to direct messages from this server to 1660 * 1661 * Create an IPv6 server for the given port and address. 1662 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1663 */ 1664 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1665 const struct in6_addr *sip, __be16 sport, 1666 unsigned int queue) 1667 { 1668 unsigned int chan; 1669 struct sk_buff *skb; 1670 struct adapter *adap; 1671 struct cpl_pass_open_req6 *req; 1672 int ret; 1673 1674 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1675 if (!skb) 1676 return -ENOMEM; 1677 1678 adap = netdev2adap(dev); 1679 req = __skb_put(skb, sizeof(*req)); 1680 INIT_TP_WR(req, 0); 1681 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1682 req->local_port = sport; 1683 req->peer_port = htons(0); 1684 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1685 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1686 req->peer_ip_hi = cpu_to_be64(0); 1687 req->peer_ip_lo = cpu_to_be64(0); 1688 chan = rxq_to_chan(&adap->sge, queue); 1689 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1690 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1691 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1692 ret = t4_mgmt_tx(adap, skb); 1693 return net_xmit_eval(ret); 1694 } 1695 EXPORT_SYMBOL(cxgb4_create_server6); 1696 1697 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1698 unsigned int queue, bool ipv6) 1699 { 1700 struct sk_buff *skb; 1701 struct adapter *adap; 1702 struct cpl_close_listsvr_req *req; 1703 int ret; 1704 1705 adap = netdev2adap(dev); 1706 1707 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1708 if (!skb) 1709 return -ENOMEM; 1710 1711 req = __skb_put(skb, sizeof(*req)); 1712 INIT_TP_WR(req, 0); 1713 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1714 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1715 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1716 ret = t4_mgmt_tx(adap, skb); 1717 return net_xmit_eval(ret); 1718 } 1719 EXPORT_SYMBOL(cxgb4_remove_server); 1720 1721 /** 1722 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1723 * @mtus: the HW MTU table 1724 * @mtu: the target MTU 1725 * @idx: index of selected entry in the MTU table 1726 * 1727 * Returns the index and the value in the HW MTU table that is closest to 1728 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1729 * table, in which case that smallest available value is selected. 1730 */ 1731 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1732 unsigned int *idx) 1733 { 1734 unsigned int i = 0; 1735 1736 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1737 ++i; 1738 if (idx) 1739 *idx = i; 1740 return mtus[i]; 1741 } 1742 EXPORT_SYMBOL(cxgb4_best_mtu); 1743 1744 /** 1745 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1746 * @mtus: the HW MTU table 1747 * @header_size: Header Size 1748 * @data_size_max: maximum Data Segment Size 1749 * @data_size_align: desired Data Segment Size Alignment (2^N) 1750 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1751 * 1752 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1753 * MTU Table based solely on a Maximum MTU parameter, we break that 1754 * parameter up into a Header Size and Maximum Data Segment Size, and 1755 * provide a desired Data Segment Size Alignment. If we find an MTU in 1756 * the Hardware MTU Table which will result in a Data Segment Size with 1757 * the requested alignment _and_ that MTU isn't "too far" from the 1758 * closest MTU, then we'll return that rather than the closest MTU. 1759 */ 1760 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1761 unsigned short header_size, 1762 unsigned short data_size_max, 1763 unsigned short data_size_align, 1764 unsigned int *mtu_idxp) 1765 { 1766 unsigned short max_mtu = header_size + data_size_max; 1767 unsigned short data_size_align_mask = data_size_align - 1; 1768 int mtu_idx, aligned_mtu_idx; 1769 1770 /* Scan the MTU Table till we find an MTU which is larger than our 1771 * Maximum MTU or we reach the end of the table. Along the way, 1772 * record the last MTU found, if any, which will result in a Data 1773 * Segment Length matching the requested alignment. 1774 */ 1775 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1776 unsigned short data_size = mtus[mtu_idx] - header_size; 1777 1778 /* If this MTU minus the Header Size would result in a 1779 * Data Segment Size of the desired alignment, remember it. 1780 */ 1781 if ((data_size & data_size_align_mask) == 0) 1782 aligned_mtu_idx = mtu_idx; 1783 1784 /* If we're not at the end of the Hardware MTU Table and the 1785 * next element is larger than our Maximum MTU, drop out of 1786 * the loop. 1787 */ 1788 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1789 break; 1790 } 1791 1792 /* If we fell out of the loop because we ran to the end of the table, 1793 * then we just have to use the last [largest] entry. 1794 */ 1795 if (mtu_idx == NMTUS) 1796 mtu_idx--; 1797 1798 /* If we found an MTU which resulted in the requested Data Segment 1799 * Length alignment and that's "not far" from the largest MTU which is 1800 * less than or equal to the maximum MTU, then use that. 1801 */ 1802 if (aligned_mtu_idx >= 0 && 1803 mtu_idx - aligned_mtu_idx <= 1) 1804 mtu_idx = aligned_mtu_idx; 1805 1806 /* If the caller has passed in an MTU Index pointer, pass the 1807 * MTU Index back. Return the MTU value. 1808 */ 1809 if (mtu_idxp) 1810 *mtu_idxp = mtu_idx; 1811 return mtus[mtu_idx]; 1812 } 1813 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1814 1815 /** 1816 * cxgb4_port_chan - get the HW channel of a port 1817 * @dev: the net device for the port 1818 * 1819 * Return the HW Tx channel of the given port. 1820 */ 1821 unsigned int cxgb4_port_chan(const struct net_device *dev) 1822 { 1823 return netdev2pinfo(dev)->tx_chan; 1824 } 1825 EXPORT_SYMBOL(cxgb4_port_chan); 1826 1827 /** 1828 * cxgb4_port_e2cchan - get the HW c-channel of a port 1829 * @dev: the net device for the port 1830 * 1831 * Return the HW RX c-channel of the given port. 1832 */ 1833 unsigned int cxgb4_port_e2cchan(const struct net_device *dev) 1834 { 1835 return netdev2pinfo(dev)->rx_cchan; 1836 } 1837 EXPORT_SYMBOL(cxgb4_port_e2cchan); 1838 1839 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1840 { 1841 struct adapter *adap = netdev2adap(dev); 1842 u32 v1, v2, lp_count, hp_count; 1843 1844 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1845 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1846 if (is_t4(adap->params.chip)) { 1847 lp_count = LP_COUNT_G(v1); 1848 hp_count = HP_COUNT_G(v1); 1849 } else { 1850 lp_count = LP_COUNT_T5_G(v1); 1851 hp_count = HP_COUNT_T5_G(v2); 1852 } 1853 return lpfifo ? lp_count : hp_count; 1854 } 1855 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1856 1857 /** 1858 * cxgb4_port_viid - get the VI id of a port 1859 * @dev: the net device for the port 1860 * 1861 * Return the VI id of the given port. 1862 */ 1863 unsigned int cxgb4_port_viid(const struct net_device *dev) 1864 { 1865 return netdev2pinfo(dev)->viid; 1866 } 1867 EXPORT_SYMBOL(cxgb4_port_viid); 1868 1869 /** 1870 * cxgb4_port_idx - get the index of a port 1871 * @dev: the net device for the port 1872 * 1873 * Return the index of the given port. 1874 */ 1875 unsigned int cxgb4_port_idx(const struct net_device *dev) 1876 { 1877 return netdev2pinfo(dev)->port_id; 1878 } 1879 EXPORT_SYMBOL(cxgb4_port_idx); 1880 1881 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1882 struct tp_tcp_stats *v6) 1883 { 1884 struct adapter *adap = pci_get_drvdata(pdev); 1885 1886 spin_lock(&adap->stats_lock); 1887 t4_tp_get_tcp_stats(adap, v4, v6, false); 1888 spin_unlock(&adap->stats_lock); 1889 } 1890 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1891 1892 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1893 const unsigned int *pgsz_order) 1894 { 1895 struct adapter *adap = netdev2adap(dev); 1896 1897 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1898 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1899 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1900 HPZ3_V(pgsz_order[3])); 1901 } 1902 EXPORT_SYMBOL(cxgb4_iscsi_init); 1903 1904 int cxgb4_flush_eq_cache(struct net_device *dev) 1905 { 1906 struct adapter *adap = netdev2adap(dev); 1907 1908 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 1909 } 1910 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1911 1912 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1913 { 1914 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1915 __be64 indices; 1916 int ret; 1917 1918 spin_lock(&adap->win0_lock); 1919 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1920 sizeof(indices), (__be32 *)&indices, 1921 T4_MEMORY_READ); 1922 spin_unlock(&adap->win0_lock); 1923 if (!ret) { 1924 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1925 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1926 } 1927 return ret; 1928 } 1929 1930 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1931 u16 size) 1932 { 1933 struct adapter *adap = netdev2adap(dev); 1934 u16 hw_pidx, hw_cidx; 1935 int ret; 1936 1937 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1938 if (ret) 1939 goto out; 1940 1941 if (pidx != hw_pidx) { 1942 u16 delta; 1943 u32 val; 1944 1945 if (pidx >= hw_pidx) 1946 delta = pidx - hw_pidx; 1947 else 1948 delta = size - hw_pidx + pidx; 1949 1950 if (is_t4(adap->params.chip)) 1951 val = PIDX_V(delta); 1952 else 1953 val = PIDX_T5_V(delta); 1954 wmb(); 1955 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1956 QID_V(qid) | val); 1957 } 1958 out: 1959 return ret; 1960 } 1961 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1962 1963 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1964 { 1965 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1966 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1967 u32 offset, memtype, memaddr; 1968 struct adapter *adap; 1969 u32 hma_size = 0; 1970 int ret; 1971 1972 adap = netdev2adap(dev); 1973 1974 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1975 1976 /* Figure out where the offset lands in the Memory Type/Address scheme. 1977 * This code assumes that the memory is laid out starting at offset 0 1978 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1979 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1980 * MC0, and some have both MC0 and MC1. 1981 */ 1982 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1983 edc0_size = EDRAM0_SIZE_G(size) << 20; 1984 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1985 edc1_size = EDRAM1_SIZE_G(size) << 20; 1986 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1987 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1988 1989 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 1990 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1991 hma_size = EXT_MEM1_SIZE_G(size) << 20; 1992 } 1993 edc0_end = edc0_size; 1994 edc1_end = edc0_end + edc1_size; 1995 mc0_end = edc1_end + mc0_size; 1996 1997 if (offset < edc0_end) { 1998 memtype = MEM_EDC0; 1999 memaddr = offset; 2000 } else if (offset < edc1_end) { 2001 memtype = MEM_EDC1; 2002 memaddr = offset - edc0_end; 2003 } else { 2004 if (hma_size && (offset < (edc1_end + hma_size))) { 2005 memtype = MEM_HMA; 2006 memaddr = offset - edc1_end; 2007 } else if (offset < mc0_end) { 2008 memtype = MEM_MC0; 2009 memaddr = offset - edc1_end; 2010 } else if (is_t5(adap->params.chip)) { 2011 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2012 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 2013 mc1_end = mc0_end + mc1_size; 2014 if (offset < mc1_end) { 2015 memtype = MEM_MC1; 2016 memaddr = offset - mc0_end; 2017 } else { 2018 /* offset beyond the end of any memory */ 2019 goto err; 2020 } 2021 } else { 2022 /* T4/T6 only has a single memory channel */ 2023 goto err; 2024 } 2025 } 2026 2027 spin_lock(&adap->win0_lock); 2028 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 2029 spin_unlock(&adap->win0_lock); 2030 return ret; 2031 2032 err: 2033 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 2034 stag, offset); 2035 return -EINVAL; 2036 } 2037 EXPORT_SYMBOL(cxgb4_read_tpte); 2038 2039 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 2040 { 2041 u32 hi, lo; 2042 struct adapter *adap; 2043 2044 adap = netdev2adap(dev); 2045 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 2046 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 2047 2048 return ((u64)hi << 32) | (u64)lo; 2049 } 2050 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 2051 2052 int cxgb4_bar2_sge_qregs(struct net_device *dev, 2053 unsigned int qid, 2054 enum cxgb4_bar2_qtype qtype, 2055 int user, 2056 u64 *pbar2_qoffset, 2057 unsigned int *pbar2_qid) 2058 { 2059 return t4_bar2_sge_qregs(netdev2adap(dev), 2060 qid, 2061 (qtype == CXGB4_BAR2_QTYPE_EGRESS 2062 ? T4_BAR2_QTYPE_EGRESS 2063 : T4_BAR2_QTYPE_INGRESS), 2064 user, 2065 pbar2_qoffset, 2066 pbar2_qid); 2067 } 2068 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 2069 2070 static struct pci_driver cxgb4_driver; 2071 2072 static void check_neigh_update(struct neighbour *neigh) 2073 { 2074 const struct device *parent; 2075 const struct net_device *netdev = neigh->dev; 2076 2077 if (is_vlan_dev(netdev)) 2078 netdev = vlan_dev_real_dev(netdev); 2079 parent = netdev->dev.parent; 2080 if (parent && parent->driver == &cxgb4_driver.driver) 2081 t4_l2t_update(dev_get_drvdata(parent), neigh); 2082 } 2083 2084 static int netevent_cb(struct notifier_block *nb, unsigned long event, 2085 void *data) 2086 { 2087 switch (event) { 2088 case NETEVENT_NEIGH_UPDATE: 2089 check_neigh_update(data); 2090 break; 2091 case NETEVENT_REDIRECT: 2092 default: 2093 break; 2094 } 2095 return 0; 2096 } 2097 2098 static bool netevent_registered; 2099 static struct notifier_block cxgb4_netevent_nb = { 2100 .notifier_call = netevent_cb 2101 }; 2102 2103 static void drain_db_fifo(struct adapter *adap, int usecs) 2104 { 2105 u32 v1, v2, lp_count, hp_count; 2106 2107 do { 2108 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2109 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2110 if (is_t4(adap->params.chip)) { 2111 lp_count = LP_COUNT_G(v1); 2112 hp_count = HP_COUNT_G(v1); 2113 } else { 2114 lp_count = LP_COUNT_T5_G(v1); 2115 hp_count = HP_COUNT_T5_G(v2); 2116 } 2117 2118 if (lp_count == 0 && hp_count == 0) 2119 break; 2120 set_current_state(TASK_UNINTERRUPTIBLE); 2121 schedule_timeout(usecs_to_jiffies(usecs)); 2122 } while (1); 2123 } 2124 2125 static void disable_txq_db(struct sge_txq *q) 2126 { 2127 unsigned long flags; 2128 2129 spin_lock_irqsave(&q->db_lock, flags); 2130 q->db_disabled = 1; 2131 spin_unlock_irqrestore(&q->db_lock, flags); 2132 } 2133 2134 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 2135 { 2136 spin_lock_irq(&q->db_lock); 2137 if (q->db_pidx_inc) { 2138 /* Make sure that all writes to the TX descriptors 2139 * are committed before we tell HW about them. 2140 */ 2141 wmb(); 2142 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2143 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 2144 q->db_pidx_inc = 0; 2145 } 2146 q->db_disabled = 0; 2147 spin_unlock_irq(&q->db_lock); 2148 } 2149 2150 static void disable_dbs(struct adapter *adap) 2151 { 2152 int i; 2153 2154 for_each_ethrxq(&adap->sge, i) 2155 disable_txq_db(&adap->sge.ethtxq[i].q); 2156 if (is_offload(adap)) { 2157 struct sge_uld_txq_info *txq_info = 2158 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2159 2160 if (txq_info) { 2161 for_each_ofldtxq(&adap->sge, i) { 2162 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2163 2164 disable_txq_db(&txq->q); 2165 } 2166 } 2167 } 2168 for_each_port(adap, i) 2169 disable_txq_db(&adap->sge.ctrlq[i].q); 2170 } 2171 2172 static void enable_dbs(struct adapter *adap) 2173 { 2174 int i; 2175 2176 for_each_ethrxq(&adap->sge, i) 2177 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 2178 if (is_offload(adap)) { 2179 struct sge_uld_txq_info *txq_info = 2180 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2181 2182 if (txq_info) { 2183 for_each_ofldtxq(&adap->sge, i) { 2184 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2185 2186 enable_txq_db(adap, &txq->q); 2187 } 2188 } 2189 } 2190 for_each_port(adap, i) 2191 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2192 } 2193 2194 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2195 { 2196 enum cxgb4_uld type = CXGB4_ULD_RDMA; 2197 2198 if (adap->uld && adap->uld[type].handle) 2199 adap->uld[type].control(adap->uld[type].handle, cmd); 2200 } 2201 2202 static void process_db_full(struct work_struct *work) 2203 { 2204 struct adapter *adap; 2205 2206 adap = container_of(work, struct adapter, db_full_task); 2207 2208 drain_db_fifo(adap, dbfifo_drain_delay); 2209 enable_dbs(adap); 2210 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2211 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2212 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2213 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2214 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2215 else 2216 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2217 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2218 } 2219 2220 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2221 { 2222 u16 hw_pidx, hw_cidx; 2223 int ret; 2224 2225 spin_lock_irq(&q->db_lock); 2226 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2227 if (ret) 2228 goto out; 2229 if (q->db_pidx != hw_pidx) { 2230 u16 delta; 2231 u32 val; 2232 2233 if (q->db_pidx >= hw_pidx) 2234 delta = q->db_pidx - hw_pidx; 2235 else 2236 delta = q->size - hw_pidx + q->db_pidx; 2237 2238 if (is_t4(adap->params.chip)) 2239 val = PIDX_V(delta); 2240 else 2241 val = PIDX_T5_V(delta); 2242 wmb(); 2243 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2244 QID_V(q->cntxt_id) | val); 2245 } 2246 out: 2247 q->db_disabled = 0; 2248 q->db_pidx_inc = 0; 2249 spin_unlock_irq(&q->db_lock); 2250 if (ret) 2251 CH_WARN(adap, "DB drop recovery failed.\n"); 2252 } 2253 2254 static void recover_all_queues(struct adapter *adap) 2255 { 2256 int i; 2257 2258 for_each_ethrxq(&adap->sge, i) 2259 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2260 if (is_offload(adap)) { 2261 struct sge_uld_txq_info *txq_info = 2262 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2263 if (txq_info) { 2264 for_each_ofldtxq(&adap->sge, i) { 2265 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2266 2267 sync_txq_pidx(adap, &txq->q); 2268 } 2269 } 2270 } 2271 for_each_port(adap, i) 2272 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2273 } 2274 2275 static void process_db_drop(struct work_struct *work) 2276 { 2277 struct adapter *adap; 2278 2279 adap = container_of(work, struct adapter, db_drop_task); 2280 2281 if (is_t4(adap->params.chip)) { 2282 drain_db_fifo(adap, dbfifo_drain_delay); 2283 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2284 drain_db_fifo(adap, dbfifo_drain_delay); 2285 recover_all_queues(adap); 2286 drain_db_fifo(adap, dbfifo_drain_delay); 2287 enable_dbs(adap); 2288 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2289 } else if (is_t5(adap->params.chip)) { 2290 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2291 u16 qid = (dropped_db >> 15) & 0x1ffff; 2292 u16 pidx_inc = dropped_db & 0x1fff; 2293 u64 bar2_qoffset; 2294 unsigned int bar2_qid; 2295 int ret; 2296 2297 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2298 0, &bar2_qoffset, &bar2_qid); 2299 if (ret) 2300 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2301 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2302 else 2303 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2304 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2305 2306 /* Re-enable BAR2 WC */ 2307 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2308 } 2309 2310 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2311 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2312 } 2313 2314 void t4_db_full(struct adapter *adap) 2315 { 2316 if (is_t4(adap->params.chip)) { 2317 disable_dbs(adap); 2318 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2319 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2320 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2321 queue_work(adap->workq, &adap->db_full_task); 2322 } 2323 } 2324 2325 void t4_db_dropped(struct adapter *adap) 2326 { 2327 if (is_t4(adap->params.chip)) { 2328 disable_dbs(adap); 2329 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2330 } 2331 queue_work(adap->workq, &adap->db_drop_task); 2332 } 2333 2334 void t4_register_netevent_notifier(void) 2335 { 2336 if (!netevent_registered) { 2337 register_netevent_notifier(&cxgb4_netevent_nb); 2338 netevent_registered = true; 2339 } 2340 } 2341 2342 static void detach_ulds(struct adapter *adap) 2343 { 2344 unsigned int i; 2345 2346 mutex_lock(&uld_mutex); 2347 list_del(&adap->list_node); 2348 2349 for (i = 0; i < CXGB4_ULD_MAX; i++) 2350 if (adap->uld && adap->uld[i].handle) 2351 adap->uld[i].state_change(adap->uld[i].handle, 2352 CXGB4_STATE_DETACH); 2353 2354 if (netevent_registered && list_empty(&adapter_list)) { 2355 unregister_netevent_notifier(&cxgb4_netevent_nb); 2356 netevent_registered = false; 2357 } 2358 mutex_unlock(&uld_mutex); 2359 } 2360 2361 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2362 { 2363 unsigned int i; 2364 2365 mutex_lock(&uld_mutex); 2366 for (i = 0; i < CXGB4_ULD_MAX; i++) 2367 if (adap->uld && adap->uld[i].handle) 2368 adap->uld[i].state_change(adap->uld[i].handle, 2369 new_state); 2370 mutex_unlock(&uld_mutex); 2371 } 2372 2373 #if IS_ENABLED(CONFIG_IPV6) 2374 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2375 unsigned long event, void *data) 2376 { 2377 struct inet6_ifaddr *ifa = data; 2378 struct net_device *event_dev = ifa->idev->dev; 2379 const struct device *parent = NULL; 2380 #if IS_ENABLED(CONFIG_BONDING) 2381 struct adapter *adap; 2382 #endif 2383 if (is_vlan_dev(event_dev)) 2384 event_dev = vlan_dev_real_dev(event_dev); 2385 #if IS_ENABLED(CONFIG_BONDING) 2386 if (event_dev->flags & IFF_MASTER) { 2387 list_for_each_entry(adap, &adapter_list, list_node) { 2388 switch (event) { 2389 case NETDEV_UP: 2390 cxgb4_clip_get(adap->port[0], 2391 (const u32 *)ifa, 1); 2392 break; 2393 case NETDEV_DOWN: 2394 cxgb4_clip_release(adap->port[0], 2395 (const u32 *)ifa, 1); 2396 break; 2397 default: 2398 break; 2399 } 2400 } 2401 return NOTIFY_OK; 2402 } 2403 #endif 2404 2405 if (event_dev) 2406 parent = event_dev->dev.parent; 2407 2408 if (parent && parent->driver == &cxgb4_driver.driver) { 2409 switch (event) { 2410 case NETDEV_UP: 2411 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2412 break; 2413 case NETDEV_DOWN: 2414 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2415 break; 2416 default: 2417 break; 2418 } 2419 } 2420 return NOTIFY_OK; 2421 } 2422 2423 static bool inet6addr_registered; 2424 static struct notifier_block cxgb4_inet6addr_notifier = { 2425 .notifier_call = cxgb4_inet6addr_handler 2426 }; 2427 2428 static void update_clip(const struct adapter *adap) 2429 { 2430 int i; 2431 struct net_device *dev; 2432 int ret; 2433 2434 rcu_read_lock(); 2435 2436 for (i = 0; i < MAX_NPORTS; i++) { 2437 dev = adap->port[i]; 2438 ret = 0; 2439 2440 if (dev) 2441 ret = cxgb4_update_root_dev_clip(dev); 2442 2443 if (ret < 0) 2444 break; 2445 } 2446 rcu_read_unlock(); 2447 } 2448 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2449 2450 /** 2451 * cxgb_up - enable the adapter 2452 * @adap: adapter being enabled 2453 * 2454 * Called when the first port is enabled, this function performs the 2455 * actions necessary to make an adapter operational, such as completing 2456 * the initialization of HW modules, and enabling interrupts. 2457 * 2458 * Must be called with the rtnl lock held. 2459 */ 2460 static int cxgb_up(struct adapter *adap) 2461 { 2462 struct sge *s = &adap->sge; 2463 int err; 2464 2465 mutex_lock(&uld_mutex); 2466 err = setup_sge_queues(adap); 2467 if (err) 2468 goto rel_lock; 2469 err = setup_rss(adap); 2470 if (err) 2471 goto freeq; 2472 2473 if (adap->flags & CXGB4_USING_MSIX) { 2474 if (s->nd_msix_idx < 0) { 2475 err = -ENOMEM; 2476 goto irq_err; 2477 } 2478 2479 err = request_irq(adap->msix_info[s->nd_msix_idx].vec, 2480 t4_nondata_intr, 0, 2481 adap->msix_info[s->nd_msix_idx].desc, adap); 2482 if (err) 2483 goto irq_err; 2484 2485 err = request_msix_queue_irqs(adap); 2486 if (err) 2487 goto irq_err_free_nd_msix; 2488 } else { 2489 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2490 (adap->flags & CXGB4_USING_MSI) ? 0 2491 : IRQF_SHARED, 2492 adap->port[0]->name, adap); 2493 if (err) 2494 goto irq_err; 2495 } 2496 2497 enable_rx(adap); 2498 t4_sge_start(adap); 2499 t4_intr_enable(adap); 2500 adap->flags |= CXGB4_FULL_INIT_DONE; 2501 mutex_unlock(&uld_mutex); 2502 2503 notify_ulds(adap, CXGB4_STATE_UP); 2504 #if IS_ENABLED(CONFIG_IPV6) 2505 update_clip(adap); 2506 #endif 2507 return err; 2508 2509 irq_err_free_nd_msix: 2510 free_irq(adap->msix_info[s->nd_msix_idx].vec, adap); 2511 irq_err: 2512 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2513 freeq: 2514 t4_free_sge_resources(adap); 2515 rel_lock: 2516 mutex_unlock(&uld_mutex); 2517 return err; 2518 } 2519 2520 static void cxgb_down(struct adapter *adapter) 2521 { 2522 cancel_work_sync(&adapter->tid_release_task); 2523 cancel_work_sync(&adapter->db_full_task); 2524 cancel_work_sync(&adapter->db_drop_task); 2525 adapter->tid_release_task_busy = false; 2526 adapter->tid_release_head = NULL; 2527 2528 t4_sge_stop(adapter); 2529 t4_free_sge_resources(adapter); 2530 2531 adapter->flags &= ~CXGB4_FULL_INIT_DONE; 2532 } 2533 2534 /* 2535 * net_device operations 2536 */ 2537 int cxgb_open(struct net_device *dev) 2538 { 2539 struct port_info *pi = netdev_priv(dev); 2540 struct adapter *adapter = pi->adapter; 2541 int err; 2542 2543 netif_carrier_off(dev); 2544 2545 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) { 2546 err = cxgb_up(adapter); 2547 if (err < 0) 2548 return err; 2549 } 2550 2551 /* It's possible that the basic port information could have 2552 * changed since we first read it. 2553 */ 2554 err = t4_update_port_info(pi); 2555 if (err < 0) 2556 return err; 2557 2558 err = link_start(dev); 2559 if (!err) 2560 netif_tx_start_all_queues(dev); 2561 return err; 2562 } 2563 2564 int cxgb_close(struct net_device *dev) 2565 { 2566 struct port_info *pi = netdev_priv(dev); 2567 struct adapter *adapter = pi->adapter; 2568 int ret; 2569 2570 netif_tx_stop_all_queues(dev); 2571 netif_carrier_off(dev); 2572 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2573 false, false, false); 2574 #ifdef CONFIG_CHELSIO_T4_DCB 2575 cxgb4_dcb_reset(dev); 2576 dcb_tx_queue_prio_enable(dev, false); 2577 #endif 2578 return ret; 2579 } 2580 2581 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2582 __be32 sip, __be16 sport, __be16 vlan, 2583 unsigned int queue, unsigned char port, unsigned char mask) 2584 { 2585 int ret; 2586 struct filter_entry *f; 2587 struct adapter *adap; 2588 int i; 2589 u8 *val; 2590 2591 adap = netdev2adap(dev); 2592 2593 /* Adjust stid to correct filter index */ 2594 stid -= adap->tids.sftid_base; 2595 stid += adap->tids.nftids; 2596 2597 /* Check to make sure the filter requested is writable ... 2598 */ 2599 f = &adap->tids.ftid_tab[stid]; 2600 ret = writable_filter(f); 2601 if (ret) 2602 return ret; 2603 2604 /* Clear out any old resources being used by the filter before 2605 * we start constructing the new filter. 2606 */ 2607 if (f->valid) 2608 clear_filter(adap, f); 2609 2610 /* Clear out filter specifications */ 2611 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2612 f->fs.val.lport = cpu_to_be16(sport); 2613 f->fs.mask.lport = ~0; 2614 val = (u8 *)&sip; 2615 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2616 for (i = 0; i < 4; i++) { 2617 f->fs.val.lip[i] = val[i]; 2618 f->fs.mask.lip[i] = ~0; 2619 } 2620 if (adap->params.tp.vlan_pri_map & PORT_F) { 2621 f->fs.val.iport = port; 2622 f->fs.mask.iport = mask; 2623 } 2624 } 2625 2626 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2627 f->fs.val.proto = IPPROTO_TCP; 2628 f->fs.mask.proto = ~0; 2629 } 2630 2631 f->fs.dirsteer = 1; 2632 f->fs.iq = queue; 2633 /* Mark filter as locked */ 2634 f->locked = 1; 2635 f->fs.rpttid = 1; 2636 2637 /* Save the actual tid. We need this to get the corresponding 2638 * filter entry structure in filter_rpl. 2639 */ 2640 f->tid = stid + adap->tids.ftid_base; 2641 ret = set_filter_wr(adap, stid); 2642 if (ret) { 2643 clear_filter(adap, f); 2644 return ret; 2645 } 2646 2647 return 0; 2648 } 2649 EXPORT_SYMBOL(cxgb4_create_server_filter); 2650 2651 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2652 unsigned int queue, bool ipv6) 2653 { 2654 struct filter_entry *f; 2655 struct adapter *adap; 2656 2657 adap = netdev2adap(dev); 2658 2659 /* Adjust stid to correct filter index */ 2660 stid -= adap->tids.sftid_base; 2661 stid += adap->tids.nftids; 2662 2663 f = &adap->tids.ftid_tab[stid]; 2664 /* Unlock the filter */ 2665 f->locked = 0; 2666 2667 return delete_filter(adap, stid); 2668 } 2669 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2670 2671 static void cxgb_get_stats(struct net_device *dev, 2672 struct rtnl_link_stats64 *ns) 2673 { 2674 struct port_stats stats; 2675 struct port_info *p = netdev_priv(dev); 2676 struct adapter *adapter = p->adapter; 2677 2678 /* Block retrieving statistics during EEH error 2679 * recovery. Otherwise, the recovery might fail 2680 * and the PCI device will be removed permanently 2681 */ 2682 spin_lock(&adapter->stats_lock); 2683 if (!netif_device_present(dev)) { 2684 spin_unlock(&adapter->stats_lock); 2685 return; 2686 } 2687 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2688 &p->stats_base); 2689 spin_unlock(&adapter->stats_lock); 2690 2691 ns->tx_bytes = stats.tx_octets; 2692 ns->tx_packets = stats.tx_frames; 2693 ns->rx_bytes = stats.rx_octets; 2694 ns->rx_packets = stats.rx_frames; 2695 ns->multicast = stats.rx_mcast_frames; 2696 2697 /* detailed rx_errors */ 2698 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2699 stats.rx_runt; 2700 ns->rx_over_errors = 0; 2701 ns->rx_crc_errors = stats.rx_fcs_err; 2702 ns->rx_frame_errors = stats.rx_symbol_err; 2703 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2704 stats.rx_ovflow2 + stats.rx_ovflow3 + 2705 stats.rx_trunc0 + stats.rx_trunc1 + 2706 stats.rx_trunc2 + stats.rx_trunc3; 2707 ns->rx_missed_errors = 0; 2708 2709 /* detailed tx_errors */ 2710 ns->tx_aborted_errors = 0; 2711 ns->tx_carrier_errors = 0; 2712 ns->tx_fifo_errors = 0; 2713 ns->tx_heartbeat_errors = 0; 2714 ns->tx_window_errors = 0; 2715 2716 ns->tx_errors = stats.tx_error_frames; 2717 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2718 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2719 } 2720 2721 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2722 { 2723 unsigned int mbox; 2724 int ret = 0, prtad, devad; 2725 struct port_info *pi = netdev_priv(dev); 2726 struct adapter *adapter = pi->adapter; 2727 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2728 2729 switch (cmd) { 2730 case SIOCGMIIPHY: 2731 if (pi->mdio_addr < 0) 2732 return -EOPNOTSUPP; 2733 data->phy_id = pi->mdio_addr; 2734 break; 2735 case SIOCGMIIREG: 2736 case SIOCSMIIREG: 2737 if (mdio_phy_id_is_c45(data->phy_id)) { 2738 prtad = mdio_phy_id_prtad(data->phy_id); 2739 devad = mdio_phy_id_devad(data->phy_id); 2740 } else if (data->phy_id < 32) { 2741 prtad = data->phy_id; 2742 devad = 0; 2743 data->reg_num &= 0x1f; 2744 } else 2745 return -EINVAL; 2746 2747 mbox = pi->adapter->pf; 2748 if (cmd == SIOCGMIIREG) 2749 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2750 data->reg_num, &data->val_out); 2751 else 2752 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2753 data->reg_num, data->val_in); 2754 break; 2755 case SIOCGHWTSTAMP: 2756 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2757 sizeof(pi->tstamp_config)) ? 2758 -EFAULT : 0; 2759 case SIOCSHWTSTAMP: 2760 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2761 sizeof(pi->tstamp_config))) 2762 return -EFAULT; 2763 2764 if (!is_t4(adapter->params.chip)) { 2765 switch (pi->tstamp_config.tx_type) { 2766 case HWTSTAMP_TX_OFF: 2767 case HWTSTAMP_TX_ON: 2768 break; 2769 default: 2770 return -ERANGE; 2771 } 2772 2773 switch (pi->tstamp_config.rx_filter) { 2774 case HWTSTAMP_FILTER_NONE: 2775 pi->rxtstamp = false; 2776 break; 2777 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2778 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2779 cxgb4_ptprx_timestamping(pi, pi->port_id, 2780 PTP_TS_L4); 2781 break; 2782 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2783 cxgb4_ptprx_timestamping(pi, pi->port_id, 2784 PTP_TS_L2_L4); 2785 break; 2786 case HWTSTAMP_FILTER_ALL: 2787 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2788 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2789 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2790 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2791 pi->rxtstamp = true; 2792 break; 2793 default: 2794 pi->tstamp_config.rx_filter = 2795 HWTSTAMP_FILTER_NONE; 2796 return -ERANGE; 2797 } 2798 2799 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2800 (pi->tstamp_config.rx_filter == 2801 HWTSTAMP_FILTER_NONE)) { 2802 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2803 pi->ptp_enable = false; 2804 } 2805 2806 if (pi->tstamp_config.rx_filter != 2807 HWTSTAMP_FILTER_NONE) { 2808 if (cxgb4_ptp_redirect_rx_packet(adapter, 2809 pi) >= 0) 2810 pi->ptp_enable = true; 2811 } 2812 } else { 2813 /* For T4 Adapters */ 2814 switch (pi->tstamp_config.rx_filter) { 2815 case HWTSTAMP_FILTER_NONE: 2816 pi->rxtstamp = false; 2817 break; 2818 case HWTSTAMP_FILTER_ALL: 2819 pi->rxtstamp = true; 2820 break; 2821 default: 2822 pi->tstamp_config.rx_filter = 2823 HWTSTAMP_FILTER_NONE; 2824 return -ERANGE; 2825 } 2826 } 2827 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2828 sizeof(pi->tstamp_config)) ? 2829 -EFAULT : 0; 2830 default: 2831 return -EOPNOTSUPP; 2832 } 2833 return ret; 2834 } 2835 2836 static void cxgb_set_rxmode(struct net_device *dev) 2837 { 2838 /* unfortunately we can't return errors to the stack */ 2839 set_rxmode(dev, -1, false); 2840 } 2841 2842 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2843 { 2844 int ret; 2845 struct port_info *pi = netdev_priv(dev); 2846 2847 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2848 -1, -1, -1, true); 2849 if (!ret) 2850 dev->mtu = new_mtu; 2851 return ret; 2852 } 2853 2854 #ifdef CONFIG_PCI_IOV 2855 static int cxgb4_mgmt_open(struct net_device *dev) 2856 { 2857 /* Turn carrier off since we don't have to transmit anything on this 2858 * interface. 2859 */ 2860 netif_carrier_off(dev); 2861 return 0; 2862 } 2863 2864 /* Fill MAC address that will be assigned by the FW */ 2865 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 2866 { 2867 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2868 unsigned int i, vf, nvfs; 2869 u16 a, b; 2870 int err; 2871 u8 *na; 2872 2873 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, 2874 PCI_CAP_ID_VPD); 2875 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2876 if (err) 2877 return; 2878 2879 na = adap->params.vpd.na; 2880 for (i = 0; i < ETH_ALEN; i++) 2881 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2882 hex2val(na[2 * i + 1])); 2883 2884 a = (hw_addr[0] << 8) | hw_addr[1]; 2885 b = (hw_addr[1] << 8) | hw_addr[2]; 2886 a ^= b; 2887 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2888 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2889 macaddr[0] = a >> 8; 2890 macaddr[1] = a & 0xff; 2891 2892 for (i = 2; i < 5; i++) 2893 macaddr[i] = hw_addr[i + 1]; 2894 2895 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 2896 vf < nvfs; vf++) { 2897 macaddr[5] = adap->pf * nvfs + vf; 2898 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 2899 } 2900 } 2901 2902 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2903 { 2904 struct port_info *pi = netdev_priv(dev); 2905 struct adapter *adap = pi->adapter; 2906 int ret; 2907 2908 /* verify MAC addr is valid */ 2909 if (!is_valid_ether_addr(mac)) { 2910 dev_err(pi->adapter->pdev_dev, 2911 "Invalid Ethernet address %pM for VF %d\n", 2912 mac, vf); 2913 return -EINVAL; 2914 } 2915 2916 dev_info(pi->adapter->pdev_dev, 2917 "Setting MAC %pM on VF %d\n", mac, vf); 2918 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2919 if (!ret) 2920 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2921 return ret; 2922 } 2923 2924 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 2925 int vf, struct ifla_vf_info *ivi) 2926 { 2927 struct port_info *pi = netdev_priv(dev); 2928 struct adapter *adap = pi->adapter; 2929 struct vf_info *vfinfo; 2930 2931 if (vf >= adap->num_vfs) 2932 return -EINVAL; 2933 vfinfo = &adap->vfinfo[vf]; 2934 2935 ivi->vf = vf; 2936 ivi->max_tx_rate = vfinfo->tx_rate; 2937 ivi->min_tx_rate = 0; 2938 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 2939 ivi->vlan = vfinfo->vlan; 2940 ivi->linkstate = vfinfo->link_state; 2941 return 0; 2942 } 2943 2944 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 2945 struct netdev_phys_item_id *ppid) 2946 { 2947 struct port_info *pi = netdev_priv(dev); 2948 unsigned int phy_port_id; 2949 2950 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2951 ppid->id_len = sizeof(phy_port_id); 2952 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2953 return 0; 2954 } 2955 2956 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 2957 int min_tx_rate, int max_tx_rate) 2958 { 2959 struct port_info *pi = netdev_priv(dev); 2960 struct adapter *adap = pi->adapter; 2961 unsigned int link_ok, speed, mtu; 2962 u32 fw_pfvf, fw_class; 2963 int class_id = vf; 2964 int ret; 2965 u16 pktsize; 2966 2967 if (vf >= adap->num_vfs) 2968 return -EINVAL; 2969 2970 if (min_tx_rate) { 2971 dev_err(adap->pdev_dev, 2972 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2973 min_tx_rate, vf); 2974 return -EINVAL; 2975 } 2976 2977 if (max_tx_rate == 0) { 2978 /* unbind VF to to any Traffic Class */ 2979 fw_pfvf = 2980 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2981 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2982 fw_class = 0xffffffff; 2983 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 2984 &fw_pfvf, &fw_class); 2985 if (ret) { 2986 dev_err(adap->pdev_dev, 2987 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n", 2988 ret, adap->pf, vf); 2989 return -EINVAL; 2990 } 2991 dev_info(adap->pdev_dev, 2992 "PF %d VF %d is unbound from TX Rate Limiting\n", 2993 adap->pf, vf); 2994 adap->vfinfo[vf].tx_rate = 0; 2995 return 0; 2996 } 2997 2998 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 2999 if (ret != FW_SUCCESS) { 3000 dev_err(adap->pdev_dev, 3001 "Failed to get link information for VF %d\n", vf); 3002 return -EINVAL; 3003 } 3004 3005 if (!link_ok) { 3006 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 3007 return -EINVAL; 3008 } 3009 3010 if (max_tx_rate > speed) { 3011 dev_err(adap->pdev_dev, 3012 "Max tx rate %d for VF %d can't be > link-speed %u", 3013 max_tx_rate, vf, speed); 3014 return -EINVAL; 3015 } 3016 3017 pktsize = mtu; 3018 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 3019 pktsize = pktsize - sizeof(struct ethhdr) - 4; 3020 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 3021 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 3022 /* configure Traffic Class for rate-limiting */ 3023 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 3024 SCHED_CLASS_LEVEL_CL_RL, 3025 SCHED_CLASS_MODE_CLASS, 3026 SCHED_CLASS_RATEUNIT_BITS, 3027 SCHED_CLASS_RATEMODE_ABS, 3028 pi->tx_chan, class_id, 0, 3029 max_tx_rate * 1000, 0, pktsize, 0); 3030 if (ret) { 3031 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 3032 ret); 3033 return -EINVAL; 3034 } 3035 dev_info(adap->pdev_dev, 3036 "Class %d with MSS %u configured with rate %u\n", 3037 class_id, pktsize, max_tx_rate); 3038 3039 /* bind VF to configured Traffic Class */ 3040 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3041 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 3042 fw_class = class_id; 3043 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 3044 &fw_class); 3045 if (ret) { 3046 dev_err(adap->pdev_dev, 3047 "Err %d in binding PF %d VF %d to Traffic Class %d\n", 3048 ret, adap->pf, vf, class_id); 3049 return -EINVAL; 3050 } 3051 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 3052 adap->pf, vf, class_id); 3053 adap->vfinfo[vf].tx_rate = max_tx_rate; 3054 return 0; 3055 } 3056 3057 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 3058 u16 vlan, u8 qos, __be16 vlan_proto) 3059 { 3060 struct port_info *pi = netdev_priv(dev); 3061 struct adapter *adap = pi->adapter; 3062 int ret; 3063 3064 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 3065 return -EINVAL; 3066 3067 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 3068 return -EPROTONOSUPPORT; 3069 3070 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 3071 if (!ret) { 3072 adap->vfinfo[vf].vlan = vlan; 3073 return 0; 3074 } 3075 3076 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 3077 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 3078 return ret; 3079 } 3080 3081 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf, 3082 int link) 3083 { 3084 struct port_info *pi = netdev_priv(dev); 3085 struct adapter *adap = pi->adapter; 3086 u32 param, val; 3087 int ret = 0; 3088 3089 if (vf >= adap->num_vfs) 3090 return -EINVAL; 3091 3092 switch (link) { 3093 case IFLA_VF_LINK_STATE_AUTO: 3094 val = FW_VF_LINK_STATE_AUTO; 3095 break; 3096 3097 case IFLA_VF_LINK_STATE_ENABLE: 3098 val = FW_VF_LINK_STATE_ENABLE; 3099 break; 3100 3101 case IFLA_VF_LINK_STATE_DISABLE: 3102 val = FW_VF_LINK_STATE_DISABLE; 3103 break; 3104 3105 default: 3106 return -EINVAL; 3107 } 3108 3109 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 3110 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE)); 3111 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 3112 ¶m, &val); 3113 if (ret) { 3114 dev_err(adap->pdev_dev, 3115 "Error %d in setting PF %d VF %d link state\n", 3116 ret, adap->pf, vf); 3117 return -EINVAL; 3118 } 3119 3120 adap->vfinfo[vf].link_state = link; 3121 return ret; 3122 } 3123 #endif /* CONFIG_PCI_IOV */ 3124 3125 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 3126 { 3127 int ret; 3128 struct sockaddr *addr = p; 3129 struct port_info *pi = netdev_priv(dev); 3130 3131 if (!is_valid_ether_addr(addr->sa_data)) 3132 return -EADDRNOTAVAIL; 3133 3134 ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt, 3135 addr->sa_data, true, &pi->smt_idx); 3136 if (ret < 0) 3137 return ret; 3138 3139 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 3140 return 0; 3141 } 3142 3143 #ifdef CONFIG_NET_POLL_CONTROLLER 3144 static void cxgb_netpoll(struct net_device *dev) 3145 { 3146 struct port_info *pi = netdev_priv(dev); 3147 struct adapter *adap = pi->adapter; 3148 3149 if (adap->flags & CXGB4_USING_MSIX) { 3150 int i; 3151 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 3152 3153 for (i = pi->nqsets; i; i--, rx++) 3154 t4_sge_intr_msix(0, &rx->rspq); 3155 } else 3156 t4_intr_handler(adap)(0, adap); 3157 } 3158 #endif 3159 3160 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 3161 { 3162 struct port_info *pi = netdev_priv(dev); 3163 struct adapter *adap = pi->adapter; 3164 struct ch_sched_queue qe = { 0 }; 3165 struct ch_sched_params p = { 0 }; 3166 struct sched_class *e; 3167 u32 req_rate; 3168 int err = 0; 3169 3170 if (!can_sched(dev)) 3171 return -ENOTSUPP; 3172 3173 if (index < 0 || index > pi->nqsets - 1) 3174 return -EINVAL; 3175 3176 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3177 dev_err(adap->pdev_dev, 3178 "Failed to rate limit on queue %d. Link Down?\n", 3179 index); 3180 return -EINVAL; 3181 } 3182 3183 qe.queue = index; 3184 e = cxgb4_sched_queue_lookup(dev, &qe); 3185 if (e && e->info.u.params.level != SCHED_CLASS_LEVEL_CL_RL) { 3186 dev_err(adap->pdev_dev, 3187 "Queue %u already bound to class %u of type: %u\n", 3188 index, e->idx, e->info.u.params.level); 3189 return -EBUSY; 3190 } 3191 3192 /* Convert from Mbps to Kbps */ 3193 req_rate = rate * 1000; 3194 3195 /* Max rate is 100 Gbps */ 3196 if (req_rate > SCHED_MAX_RATE_KBPS) { 3197 dev_err(adap->pdev_dev, 3198 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 3199 rate, SCHED_MAX_RATE_KBPS / 1000); 3200 return -ERANGE; 3201 } 3202 3203 /* First unbind the queue from any existing class */ 3204 memset(&qe, 0, sizeof(qe)); 3205 qe.queue = index; 3206 qe.class = SCHED_CLS_NONE; 3207 3208 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 3209 if (err) { 3210 dev_err(adap->pdev_dev, 3211 "Unbinding Queue %d on port %d fail. Err: %d\n", 3212 index, pi->port_id, err); 3213 return err; 3214 } 3215 3216 /* Queue already unbound */ 3217 if (!req_rate) 3218 return 0; 3219 3220 /* Fetch any available unused or matching scheduling class */ 3221 p.type = SCHED_CLASS_TYPE_PACKET; 3222 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 3223 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 3224 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 3225 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 3226 p.u.params.channel = pi->tx_chan; 3227 p.u.params.class = SCHED_CLS_NONE; 3228 p.u.params.minrate = 0; 3229 p.u.params.maxrate = req_rate; 3230 p.u.params.weight = 0; 3231 p.u.params.pktsize = dev->mtu; 3232 3233 e = cxgb4_sched_class_alloc(dev, &p); 3234 if (!e) 3235 return -ENOMEM; 3236 3237 /* Bind the queue to a scheduling class */ 3238 memset(&qe, 0, sizeof(qe)); 3239 qe.queue = index; 3240 qe.class = e->idx; 3241 3242 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 3243 if (err) 3244 dev_err(adap->pdev_dev, 3245 "Queue rate limiting failed. Err: %d\n", err); 3246 return err; 3247 } 3248 3249 static int cxgb_setup_tc_flower(struct net_device *dev, 3250 struct flow_cls_offload *cls_flower) 3251 { 3252 switch (cls_flower->command) { 3253 case FLOW_CLS_REPLACE: 3254 return cxgb4_tc_flower_replace(dev, cls_flower); 3255 case FLOW_CLS_DESTROY: 3256 return cxgb4_tc_flower_destroy(dev, cls_flower); 3257 case FLOW_CLS_STATS: 3258 return cxgb4_tc_flower_stats(dev, cls_flower); 3259 default: 3260 return -EOPNOTSUPP; 3261 } 3262 } 3263 3264 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 3265 struct tc_cls_u32_offload *cls_u32) 3266 { 3267 switch (cls_u32->command) { 3268 case TC_CLSU32_NEW_KNODE: 3269 case TC_CLSU32_REPLACE_KNODE: 3270 return cxgb4_config_knode(dev, cls_u32); 3271 case TC_CLSU32_DELETE_KNODE: 3272 return cxgb4_delete_knode(dev, cls_u32); 3273 default: 3274 return -EOPNOTSUPP; 3275 } 3276 } 3277 3278 static int cxgb_setup_tc_matchall(struct net_device *dev, 3279 struct tc_cls_matchall_offload *cls_matchall, 3280 bool ingress) 3281 { 3282 struct adapter *adap = netdev2adap(dev); 3283 3284 if (!adap->tc_matchall) 3285 return -ENOMEM; 3286 3287 switch (cls_matchall->command) { 3288 case TC_CLSMATCHALL_REPLACE: 3289 return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress); 3290 case TC_CLSMATCHALL_DESTROY: 3291 return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress); 3292 case TC_CLSMATCHALL_STATS: 3293 if (ingress) 3294 return cxgb4_tc_matchall_stats(dev, cls_matchall); 3295 break; 3296 default: 3297 break; 3298 } 3299 3300 return -EOPNOTSUPP; 3301 } 3302 3303 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type, 3304 void *type_data, void *cb_priv) 3305 { 3306 struct net_device *dev = cb_priv; 3307 struct port_info *pi = netdev2pinfo(dev); 3308 struct adapter *adap = netdev2adap(dev); 3309 3310 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3311 dev_err(adap->pdev_dev, 3312 "Failed to setup tc on port %d. Link Down?\n", 3313 pi->port_id); 3314 return -EINVAL; 3315 } 3316 3317 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3318 return -EOPNOTSUPP; 3319 3320 switch (type) { 3321 case TC_SETUP_CLSU32: 3322 return cxgb_setup_tc_cls_u32(dev, type_data); 3323 case TC_SETUP_CLSFLOWER: 3324 return cxgb_setup_tc_flower(dev, type_data); 3325 case TC_SETUP_CLSMATCHALL: 3326 return cxgb_setup_tc_matchall(dev, type_data, true); 3327 default: 3328 return -EOPNOTSUPP; 3329 } 3330 } 3331 3332 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type, 3333 void *type_data, void *cb_priv) 3334 { 3335 struct net_device *dev = cb_priv; 3336 struct port_info *pi = netdev2pinfo(dev); 3337 struct adapter *adap = netdev2adap(dev); 3338 3339 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3340 dev_err(adap->pdev_dev, 3341 "Failed to setup tc on port %d. Link Down?\n", 3342 pi->port_id); 3343 return -EINVAL; 3344 } 3345 3346 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3347 return -EOPNOTSUPP; 3348 3349 switch (type) { 3350 case TC_SETUP_CLSMATCHALL: 3351 return cxgb_setup_tc_matchall(dev, type_data, false); 3352 default: 3353 break; 3354 } 3355 3356 return -EOPNOTSUPP; 3357 } 3358 3359 static int cxgb_setup_tc_mqprio(struct net_device *dev, 3360 struct tc_mqprio_qopt_offload *mqprio) 3361 { 3362 struct adapter *adap = netdev2adap(dev); 3363 3364 if (!is_ethofld(adap) || !adap->tc_mqprio) 3365 return -ENOMEM; 3366 3367 return cxgb4_setup_tc_mqprio(dev, mqprio); 3368 } 3369 3370 static LIST_HEAD(cxgb_block_cb_list); 3371 3372 static int cxgb_setup_tc_block(struct net_device *dev, 3373 struct flow_block_offload *f) 3374 { 3375 struct port_info *pi = netdev_priv(dev); 3376 flow_setup_cb_t *cb; 3377 bool ingress_only; 3378 3379 pi->tc_block_shared = f->block_shared; 3380 if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) { 3381 cb = cxgb_setup_tc_block_egress_cb; 3382 ingress_only = false; 3383 } else { 3384 cb = cxgb_setup_tc_block_ingress_cb; 3385 ingress_only = true; 3386 } 3387 3388 return flow_block_cb_setup_simple(f, &cxgb_block_cb_list, 3389 cb, pi, dev, ingress_only); 3390 } 3391 3392 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3393 void *type_data) 3394 { 3395 switch (type) { 3396 case TC_SETUP_QDISC_MQPRIO: 3397 return cxgb_setup_tc_mqprio(dev, type_data); 3398 case TC_SETUP_BLOCK: 3399 return cxgb_setup_tc_block(dev, type_data); 3400 default: 3401 return -EOPNOTSUPP; 3402 } 3403 } 3404 3405 static void cxgb_del_udp_tunnel(struct net_device *netdev, 3406 struct udp_tunnel_info *ti) 3407 { 3408 struct port_info *pi = netdev_priv(netdev); 3409 struct adapter *adapter = pi->adapter; 3410 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3411 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3412 int ret = 0, i; 3413 3414 if (chip_ver < CHELSIO_T6) 3415 return; 3416 3417 switch (ti->type) { 3418 case UDP_TUNNEL_TYPE_VXLAN: 3419 if (!adapter->vxlan_port_cnt || 3420 adapter->vxlan_port != ti->port) 3421 return; /* Invalid VxLAN destination port */ 3422 3423 adapter->vxlan_port_cnt--; 3424 if (adapter->vxlan_port_cnt) 3425 return; 3426 3427 adapter->vxlan_port = 0; 3428 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3429 break; 3430 case UDP_TUNNEL_TYPE_GENEVE: 3431 if (!adapter->geneve_port_cnt || 3432 adapter->geneve_port != ti->port) 3433 return; /* Invalid GENEVE destination port */ 3434 3435 adapter->geneve_port_cnt--; 3436 if (adapter->geneve_port_cnt) 3437 return; 3438 3439 adapter->geneve_port = 0; 3440 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3441 break; 3442 default: 3443 return; 3444 } 3445 3446 /* Matchall mac entries can be deleted only after all tunnel ports 3447 * are brought down or removed. 3448 */ 3449 if (!adapter->rawf_cnt) 3450 return; 3451 for_each_port(adapter, i) { 3452 pi = adap2pinfo(adapter, i); 3453 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3454 match_all_mac, match_all_mac, 3455 adapter->rawf_start + 3456 pi->port_id, 3457 1, pi->port_id, false); 3458 if (ret < 0) { 3459 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3460 i); 3461 return; 3462 } 3463 } 3464 } 3465 3466 static void cxgb_add_udp_tunnel(struct net_device *netdev, 3467 struct udp_tunnel_info *ti) 3468 { 3469 struct port_info *pi = netdev_priv(netdev); 3470 struct adapter *adapter = pi->adapter; 3471 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3472 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3473 int i, ret; 3474 3475 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt) 3476 return; 3477 3478 switch (ti->type) { 3479 case UDP_TUNNEL_TYPE_VXLAN: 3480 /* Callback for adding vxlan port can be called with the same 3481 * port for both IPv4 and IPv6. We should not disable the 3482 * offloading when the same port for both protocols is added 3483 * and later one of them is removed. 3484 */ 3485 if (adapter->vxlan_port_cnt && 3486 adapter->vxlan_port == ti->port) { 3487 adapter->vxlan_port_cnt++; 3488 return; 3489 } 3490 3491 /* We will support only one VxLAN port */ 3492 if (adapter->vxlan_port_cnt) { 3493 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3494 be16_to_cpu(adapter->vxlan_port), 3495 be16_to_cpu(ti->port)); 3496 return; 3497 } 3498 3499 adapter->vxlan_port = ti->port; 3500 adapter->vxlan_port_cnt = 1; 3501 3502 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3503 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3504 break; 3505 case UDP_TUNNEL_TYPE_GENEVE: 3506 if (adapter->geneve_port_cnt && 3507 adapter->geneve_port == ti->port) { 3508 adapter->geneve_port_cnt++; 3509 return; 3510 } 3511 3512 /* We will support only one GENEVE port */ 3513 if (adapter->geneve_port_cnt) { 3514 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3515 be16_to_cpu(adapter->geneve_port), 3516 be16_to_cpu(ti->port)); 3517 return; 3518 } 3519 3520 adapter->geneve_port = ti->port; 3521 adapter->geneve_port_cnt = 1; 3522 3523 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3524 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3525 break; 3526 default: 3527 return; 3528 } 3529 3530 /* Create a 'match all' mac filter entry for inner mac, 3531 * if raw mac interface is supported. Once the linux kernel provides 3532 * driver entry points for adding/deleting the inner mac addresses, 3533 * we will remove this 'match all' entry and fallback to adding 3534 * exact match filters. 3535 */ 3536 for_each_port(adapter, i) { 3537 pi = adap2pinfo(adapter, i); 3538 3539 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3540 match_all_mac, 3541 match_all_mac, 3542 adapter->rawf_start + 3543 pi->port_id, 3544 1, pi->port_id, false); 3545 if (ret < 0) { 3546 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3547 be16_to_cpu(ti->port)); 3548 cxgb_del_udp_tunnel(netdev, ti); 3549 return; 3550 } 3551 } 3552 } 3553 3554 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3555 struct net_device *dev, 3556 netdev_features_t features) 3557 { 3558 struct port_info *pi = netdev_priv(dev); 3559 struct adapter *adapter = pi->adapter; 3560 3561 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3562 return features; 3563 3564 /* Check if hw supports offload for this packet */ 3565 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3566 return features; 3567 3568 /* Offload is not supported for this encapsulated packet */ 3569 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3570 } 3571 3572 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3573 netdev_features_t features) 3574 { 3575 /* Disable GRO, if RX_CSUM is disabled */ 3576 if (!(features & NETIF_F_RXCSUM)) 3577 features &= ~NETIF_F_GRO; 3578 3579 return features; 3580 } 3581 3582 static const struct net_device_ops cxgb4_netdev_ops = { 3583 .ndo_open = cxgb_open, 3584 .ndo_stop = cxgb_close, 3585 .ndo_start_xmit = t4_start_xmit, 3586 .ndo_select_queue = cxgb_select_queue, 3587 .ndo_get_stats64 = cxgb_get_stats, 3588 .ndo_set_rx_mode = cxgb_set_rxmode, 3589 .ndo_set_mac_address = cxgb_set_mac_addr, 3590 .ndo_set_features = cxgb_set_features, 3591 .ndo_validate_addr = eth_validate_addr, 3592 .ndo_do_ioctl = cxgb_ioctl, 3593 .ndo_change_mtu = cxgb_change_mtu, 3594 #ifdef CONFIG_NET_POLL_CONTROLLER 3595 .ndo_poll_controller = cxgb_netpoll, 3596 #endif 3597 #ifdef CONFIG_CHELSIO_T4_FCOE 3598 .ndo_fcoe_enable = cxgb_fcoe_enable, 3599 .ndo_fcoe_disable = cxgb_fcoe_disable, 3600 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3601 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3602 .ndo_setup_tc = cxgb_setup_tc, 3603 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel, 3604 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel, 3605 .ndo_features_check = cxgb_features_check, 3606 .ndo_fix_features = cxgb_fix_features, 3607 }; 3608 3609 #ifdef CONFIG_PCI_IOV 3610 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3611 .ndo_open = cxgb4_mgmt_open, 3612 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3613 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3614 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3615 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3616 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3617 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state, 3618 }; 3619 #endif 3620 3621 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3622 struct ethtool_drvinfo *info) 3623 { 3624 struct adapter *adapter = netdev2adap(dev); 3625 3626 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3627 strlcpy(info->bus_info, pci_name(adapter->pdev), 3628 sizeof(info->bus_info)); 3629 } 3630 3631 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3632 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3633 }; 3634 3635 static void notify_fatal_err(struct work_struct *work) 3636 { 3637 struct adapter *adap; 3638 3639 adap = container_of(work, struct adapter, fatal_err_notify_task); 3640 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3641 } 3642 3643 void t4_fatal_err(struct adapter *adap) 3644 { 3645 int port; 3646 3647 if (pci_channel_offline(adap->pdev)) 3648 return; 3649 3650 /* Disable the SGE since ULDs are going to free resources that 3651 * could be exposed to the adapter. RDMA MWs for example... 3652 */ 3653 t4_shutdown_adapter(adap); 3654 for_each_port(adap, port) { 3655 struct net_device *dev = adap->port[port]; 3656 3657 /* If we get here in very early initialization the network 3658 * devices may not have been set up yet. 3659 */ 3660 if (!dev) 3661 continue; 3662 3663 netif_tx_stop_all_queues(dev); 3664 netif_carrier_off(dev); 3665 } 3666 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3667 queue_work(adap->workq, &adap->fatal_err_notify_task); 3668 } 3669 3670 static void setup_memwin(struct adapter *adap) 3671 { 3672 u32 nic_win_base = t4_get_util_window(adap); 3673 3674 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3675 } 3676 3677 static void setup_memwin_rdma(struct adapter *adap) 3678 { 3679 if (adap->vres.ocq.size) { 3680 u32 start; 3681 unsigned int sz_kb; 3682 3683 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3684 start &= PCI_BASE_ADDRESS_MEM_MASK; 3685 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3686 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3687 t4_write_reg(adap, 3688 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3689 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3690 t4_write_reg(adap, 3691 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3692 adap->vres.ocq.start); 3693 t4_read_reg(adap, 3694 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3695 } 3696 } 3697 3698 /* HMA Definitions */ 3699 3700 /* The maximum number of address that can be send in a single FW cmd */ 3701 #define HMA_MAX_ADDR_IN_CMD 5 3702 3703 #define HMA_PAGE_SIZE PAGE_SIZE 3704 3705 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3706 3707 #define HMA_PAGE_ORDER \ 3708 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3709 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3710 3711 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3712 * configuration(in units of MB). 3713 */ 3714 #define HMA_MIN_TOTAL_SIZE 1 3715 #define HMA_MAX_TOTAL_SIZE \ 3716 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3717 HMA_MAX_NO_FW_ADDRESS) >> 20) 3718 3719 static void adap_free_hma_mem(struct adapter *adapter) 3720 { 3721 struct scatterlist *iter; 3722 struct page *page; 3723 int i; 3724 3725 if (!adapter->hma.sgt) 3726 return; 3727 3728 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 3729 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 3730 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 3731 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 3732 } 3733 3734 for_each_sg(adapter->hma.sgt->sgl, iter, 3735 adapter->hma.sgt->orig_nents, i) { 3736 page = sg_page(iter); 3737 if (page) 3738 __free_pages(page, HMA_PAGE_ORDER); 3739 } 3740 3741 kfree(adapter->hma.phy_addr); 3742 sg_free_table(adapter->hma.sgt); 3743 kfree(adapter->hma.sgt); 3744 adapter->hma.sgt = NULL; 3745 } 3746 3747 static int adap_config_hma(struct adapter *adapter) 3748 { 3749 struct scatterlist *sgl, *iter; 3750 struct sg_table *sgt; 3751 struct page *newpage; 3752 unsigned int i, j, k; 3753 u32 param, hma_size; 3754 unsigned int ncmds; 3755 size_t page_size; 3756 u32 page_order; 3757 int node, ret; 3758 3759 /* HMA is supported only for T6+ cards. 3760 * Avoid initializing HMA in kdump kernels. 3761 */ 3762 if (is_kdump_kernel() || 3763 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3764 return 0; 3765 3766 /* Get the HMA region size required by fw */ 3767 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3768 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 3769 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3770 1, ¶m, &hma_size); 3771 /* An error means card has its own memory or HMA is not supported by 3772 * the firmware. Return without any errors. 3773 */ 3774 if (ret || !hma_size) 3775 return 0; 3776 3777 if (hma_size < HMA_MIN_TOTAL_SIZE || 3778 hma_size > HMA_MAX_TOTAL_SIZE) { 3779 dev_err(adapter->pdev_dev, 3780 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 3781 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 3782 return -EINVAL; 3783 } 3784 3785 page_size = HMA_PAGE_SIZE; 3786 page_order = HMA_PAGE_ORDER; 3787 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 3788 if (unlikely(!adapter->hma.sgt)) { 3789 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 3790 return -ENOMEM; 3791 } 3792 sgt = adapter->hma.sgt; 3793 /* FW returned value will be in MB's 3794 */ 3795 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 3796 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 3797 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 3798 kfree(adapter->hma.sgt); 3799 adapter->hma.sgt = NULL; 3800 return -ENOMEM; 3801 } 3802 3803 sgl = adapter->hma.sgt->sgl; 3804 node = dev_to_node(adapter->pdev_dev); 3805 for_each_sg(sgl, iter, sgt->orig_nents, i) { 3806 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 3807 __GFP_ZERO, page_order); 3808 if (!newpage) { 3809 dev_err(adapter->pdev_dev, 3810 "Not enough memory for HMA page allocation\n"); 3811 ret = -ENOMEM; 3812 goto free_hma; 3813 } 3814 sg_set_page(iter, newpage, page_size << page_order, 0); 3815 } 3816 3817 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 3818 DMA_BIDIRECTIONAL); 3819 if (!sgt->nents) { 3820 dev_err(adapter->pdev_dev, 3821 "Not enough memory for HMA DMA mapping"); 3822 ret = -ENOMEM; 3823 goto free_hma; 3824 } 3825 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 3826 3827 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 3828 GFP_KERNEL); 3829 if (unlikely(!adapter->hma.phy_addr)) 3830 goto free_hma; 3831 3832 for_each_sg(sgl, iter, sgt->nents, i) { 3833 newpage = sg_page(iter); 3834 adapter->hma.phy_addr[i] = sg_dma_address(iter); 3835 } 3836 3837 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 3838 /* Pass on the addresses to firmware */ 3839 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 3840 struct fw_hma_cmd hma_cmd; 3841 u8 naddr = HMA_MAX_ADDR_IN_CMD; 3842 u8 soc = 0, eoc = 0; 3843 u8 hma_mode = 1; /* Presently we support only Page table mode */ 3844 3845 soc = (i == 0) ? 1 : 0; 3846 eoc = (i == ncmds - 1) ? 1 : 0; 3847 3848 /* For last cmd, set naddr corresponding to remaining 3849 * addresses 3850 */ 3851 if (i == ncmds - 1) { 3852 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 3853 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 3854 } 3855 memset(&hma_cmd, 0, sizeof(hma_cmd)); 3856 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 3857 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3858 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 3859 3860 hma_cmd.mode_to_pcie_params = 3861 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 3862 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 3863 3864 /* HMA cmd size specified in MB's */ 3865 hma_cmd.naddr_size = 3866 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 3867 FW_HMA_CMD_NADDR_V(naddr)); 3868 3869 /* Total Page size specified in units of 4K */ 3870 hma_cmd.addr_size_pkd = 3871 htonl(FW_HMA_CMD_ADDR_SIZE_V 3872 ((page_size << page_order) >> 12)); 3873 3874 /* Fill the 5 addresses */ 3875 for (j = 0; j < naddr; j++) { 3876 hma_cmd.phy_address[j] = 3877 cpu_to_be64(adapter->hma.phy_addr[j + k]); 3878 } 3879 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 3880 sizeof(hma_cmd), &hma_cmd); 3881 if (ret) { 3882 dev_err(adapter->pdev_dev, 3883 "HMA FW command failed with err %d\n", ret); 3884 goto free_hma; 3885 } 3886 } 3887 3888 if (!ret) 3889 dev_info(adapter->pdev_dev, 3890 "Reserved %uMB host memory for HMA\n", hma_size); 3891 return ret; 3892 3893 free_hma: 3894 adap_free_hma_mem(adapter); 3895 return ret; 3896 } 3897 3898 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3899 { 3900 u32 v; 3901 int ret; 3902 3903 /* Now that we've successfully configured and initialized the adapter 3904 * can ask the Firmware what resources it has provisioned for us. 3905 */ 3906 ret = t4_get_pfres(adap); 3907 if (ret) { 3908 dev_err(adap->pdev_dev, 3909 "Unable to retrieve resource provisioning information\n"); 3910 return ret; 3911 } 3912 3913 /* get device capabilities */ 3914 memset(c, 0, sizeof(*c)); 3915 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3916 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3917 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3918 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3919 if (ret < 0) 3920 return ret; 3921 3922 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3923 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3924 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3925 if (ret < 0) 3926 return ret; 3927 3928 ret = t4_config_glbl_rss(adap, adap->pf, 3929 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3930 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3931 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3932 if (ret < 0) 3933 return ret; 3934 3935 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3936 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3937 FW_CMD_CAP_PF); 3938 if (ret < 0) 3939 return ret; 3940 3941 t4_sge_init(adap); 3942 3943 /* tweak some settings */ 3944 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3945 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3946 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3947 v = t4_read_reg(adap, TP_PIO_DATA_A); 3948 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3949 3950 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3951 adap->params.tp.tx_modq_map = 0xE4; 3952 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3953 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3954 3955 /* associate each Tx modulation queue with consecutive Tx channels */ 3956 v = 0x84218421; 3957 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3958 &v, 1, TP_TX_SCHED_HDR_A); 3959 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3960 &v, 1, TP_TX_SCHED_FIFO_A); 3961 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3962 &v, 1, TP_TX_SCHED_PCMD_A); 3963 3964 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3965 if (is_offload(adap)) { 3966 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3967 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3968 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3969 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3970 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3971 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3972 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3973 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3974 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3975 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3976 } 3977 3978 /* get basic stuff going */ 3979 return t4_early_init(adap, adap->pf); 3980 } 3981 3982 /* 3983 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3984 */ 3985 #define MAX_ATIDS 8192U 3986 3987 /* 3988 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3989 * 3990 * If the firmware we're dealing with has Configuration File support, then 3991 * we use that to perform all configuration 3992 */ 3993 3994 /* 3995 * Tweak configuration based on module parameters, etc. Most of these have 3996 * defaults assigned to them by Firmware Configuration Files (if we're using 3997 * them) but need to be explicitly set if we're using hard-coded 3998 * initialization. But even in the case of using Firmware Configuration 3999 * Files, we'd like to expose the ability to change these via module 4000 * parameters so these are essentially common tweaks/settings for 4001 * Configuration Files and hard-coded initialization ... 4002 */ 4003 static int adap_init0_tweaks(struct adapter *adapter) 4004 { 4005 /* 4006 * Fix up various Host-Dependent Parameters like Page Size, Cache 4007 * Line Size, etc. The firmware default is for a 4KB Page Size and 4008 * 64B Cache Line Size ... 4009 */ 4010 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 4011 4012 /* 4013 * Process module parameters which affect early initialization. 4014 */ 4015 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 4016 dev_err(&adapter->pdev->dev, 4017 "Ignoring illegal rx_dma_offset=%d, using 2\n", 4018 rx_dma_offset); 4019 rx_dma_offset = 2; 4020 } 4021 t4_set_reg_field(adapter, SGE_CONTROL_A, 4022 PKTSHIFT_V(PKTSHIFT_M), 4023 PKTSHIFT_V(rx_dma_offset)); 4024 4025 /* 4026 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 4027 * adds the pseudo header itself. 4028 */ 4029 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 4030 CSUM_HAS_PSEUDO_HDR_F, 0); 4031 4032 return 0; 4033 } 4034 4035 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 4036 * unto themselves and they contain their own firmware to perform their 4037 * tasks ... 4038 */ 4039 static int phy_aq1202_version(const u8 *phy_fw_data, 4040 size_t phy_fw_size) 4041 { 4042 int offset; 4043 4044 /* At offset 0x8 you're looking for the primary image's 4045 * starting offset which is 3 Bytes wide 4046 * 4047 * At offset 0xa of the primary image, you look for the offset 4048 * of the DRAM segment which is 3 Bytes wide. 4049 * 4050 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 4051 * wide 4052 */ 4053 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 4054 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 4055 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 4056 4057 offset = le24(phy_fw_data + 0x8) << 12; 4058 offset = le24(phy_fw_data + offset + 0xa); 4059 return be16(phy_fw_data + offset + 0x27e); 4060 4061 #undef be16 4062 #undef le16 4063 #undef le24 4064 } 4065 4066 static struct info_10gbt_phy_fw { 4067 unsigned int phy_fw_id; /* PCI Device ID */ 4068 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 4069 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 4070 int phy_flash; /* Has FLASH for PHY Firmware */ 4071 } phy_info_array[] = { 4072 { 4073 PHY_AQ1202_DEVICEID, 4074 PHY_AQ1202_FIRMWARE, 4075 phy_aq1202_version, 4076 1, 4077 }, 4078 { 4079 PHY_BCM84834_DEVICEID, 4080 PHY_BCM84834_FIRMWARE, 4081 NULL, 4082 0, 4083 }, 4084 { 0, NULL, NULL }, 4085 }; 4086 4087 static struct info_10gbt_phy_fw *find_phy_info(int devid) 4088 { 4089 int i; 4090 4091 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 4092 if (phy_info_array[i].phy_fw_id == devid) 4093 return &phy_info_array[i]; 4094 } 4095 return NULL; 4096 } 4097 4098 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 4099 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 4100 * we return a negative error number. If we transfer new firmware we return 1 4101 * (from t4_load_phy_fw()). If we don't do anything we return 0. 4102 */ 4103 static int adap_init0_phy(struct adapter *adap) 4104 { 4105 const struct firmware *phyf; 4106 int ret; 4107 struct info_10gbt_phy_fw *phy_info; 4108 4109 /* Use the device ID to determine which PHY file to flash. 4110 */ 4111 phy_info = find_phy_info(adap->pdev->device); 4112 if (!phy_info) { 4113 dev_warn(adap->pdev_dev, 4114 "No PHY Firmware file found for this PHY\n"); 4115 return -EOPNOTSUPP; 4116 } 4117 4118 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 4119 * use that. The adapter firmware provides us with a memory buffer 4120 * where we can load a PHY firmware file from the host if we want to 4121 * override the PHY firmware File in flash. 4122 */ 4123 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 4124 adap->pdev_dev); 4125 if (ret < 0) { 4126 /* For adapters without FLASH attached to PHY for their 4127 * firmware, it's obviously a fatal error if we can't get the 4128 * firmware to the adapter. For adapters with PHY firmware 4129 * FLASH storage, it's worth a warning if we can't find the 4130 * PHY Firmware but we'll neuter the error ... 4131 */ 4132 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 4133 "/lib/firmware/%s, error %d\n", 4134 phy_info->phy_fw_file, -ret); 4135 if (phy_info->phy_flash) { 4136 int cur_phy_fw_ver = 0; 4137 4138 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 4139 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 4140 "FLASH copy, version %#x\n", cur_phy_fw_ver); 4141 ret = 0; 4142 } 4143 4144 return ret; 4145 } 4146 4147 /* Load PHY Firmware onto adapter. 4148 */ 4149 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 4150 phy_info->phy_fw_version, 4151 (u8 *)phyf->data, phyf->size); 4152 if (ret < 0) 4153 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 4154 -ret); 4155 else if (ret > 0) { 4156 int new_phy_fw_ver = 0; 4157 4158 if (phy_info->phy_fw_version) 4159 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 4160 phyf->size); 4161 dev_info(adap->pdev_dev, "Successfully transferred PHY " 4162 "Firmware /lib/firmware/%s, version %#x\n", 4163 phy_info->phy_fw_file, new_phy_fw_ver); 4164 } 4165 4166 release_firmware(phyf); 4167 4168 return ret; 4169 } 4170 4171 /* 4172 * Attempt to initialize the adapter via a Firmware Configuration File. 4173 */ 4174 static int adap_init0_config(struct adapter *adapter, int reset) 4175 { 4176 char *fw_config_file, fw_config_file_path[256]; 4177 u32 finiver, finicsum, cfcsum, param, val; 4178 struct fw_caps_config_cmd caps_cmd; 4179 unsigned long mtype = 0, maddr = 0; 4180 const struct firmware *cf; 4181 char *config_name = NULL; 4182 int config_issued = 0; 4183 int ret; 4184 4185 /* 4186 * Reset device if necessary. 4187 */ 4188 if (reset) { 4189 ret = t4_fw_reset(adapter, adapter->mbox, 4190 PIORSTMODE_F | PIORST_F); 4191 if (ret < 0) 4192 goto bye; 4193 } 4194 4195 /* If this is a 10Gb/s-BT adapter make sure the chip-external 4196 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 4197 * to be performed after any global adapter RESET above since some 4198 * PHYs only have local RAM copies of the PHY firmware. 4199 */ 4200 if (is_10gbt_device(adapter->pdev->device)) { 4201 ret = adap_init0_phy(adapter); 4202 if (ret < 0) 4203 goto bye; 4204 } 4205 /* 4206 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 4207 * then use that. Otherwise, use the configuration file stored 4208 * in the adapter flash ... 4209 */ 4210 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 4211 case CHELSIO_T4: 4212 fw_config_file = FW4_CFNAME; 4213 break; 4214 case CHELSIO_T5: 4215 fw_config_file = FW5_CFNAME; 4216 break; 4217 case CHELSIO_T6: 4218 fw_config_file = FW6_CFNAME; 4219 break; 4220 default: 4221 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 4222 adapter->pdev->device); 4223 ret = -EINVAL; 4224 goto bye; 4225 } 4226 4227 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 4228 if (ret < 0) { 4229 config_name = "On FLASH"; 4230 mtype = FW_MEMTYPE_CF_FLASH; 4231 maddr = t4_flash_cfg_addr(adapter); 4232 } else { 4233 u32 params[7], val[7]; 4234 4235 sprintf(fw_config_file_path, 4236 "/lib/firmware/%s", fw_config_file); 4237 config_name = fw_config_file_path; 4238 4239 if (cf->size >= FLASH_CFG_MAX_SIZE) 4240 ret = -ENOMEM; 4241 else { 4242 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4243 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4244 ret = t4_query_params(adapter, adapter->mbox, 4245 adapter->pf, 0, 1, params, val); 4246 if (ret == 0) { 4247 /* 4248 * For t4_memory_rw() below addresses and 4249 * sizes have to be in terms of multiples of 4 4250 * bytes. So, if the Configuration File isn't 4251 * a multiple of 4 bytes in length we'll have 4252 * to write that out separately since we can't 4253 * guarantee that the bytes following the 4254 * residual byte in the buffer returned by 4255 * request_firmware() are zeroed out ... 4256 */ 4257 size_t resid = cf->size & 0x3; 4258 size_t size = cf->size & ~0x3; 4259 __be32 *data = (__be32 *)cf->data; 4260 4261 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 4262 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 4263 4264 spin_lock(&adapter->win0_lock); 4265 ret = t4_memory_rw(adapter, 0, mtype, maddr, 4266 size, data, T4_MEMORY_WRITE); 4267 if (ret == 0 && resid != 0) { 4268 union { 4269 __be32 word; 4270 char buf[4]; 4271 } last; 4272 int i; 4273 4274 last.word = data[size >> 2]; 4275 for (i = resid; i < 4; i++) 4276 last.buf[i] = 0; 4277 ret = t4_memory_rw(adapter, 0, mtype, 4278 maddr + size, 4279 4, &last.word, 4280 T4_MEMORY_WRITE); 4281 } 4282 spin_unlock(&adapter->win0_lock); 4283 } 4284 } 4285 4286 release_firmware(cf); 4287 if (ret) 4288 goto bye; 4289 } 4290 4291 val = 0; 4292 4293 /* Ofld + Hash filter is supported. Older fw will fail this request and 4294 * it is fine. 4295 */ 4296 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4297 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD)); 4298 ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0, 4299 1, ¶m, &val); 4300 4301 /* FW doesn't know about Hash filter + ofld support, 4302 * it's not a problem, don't return an error. 4303 */ 4304 if (ret < 0) { 4305 dev_warn(adapter->pdev_dev, 4306 "Hash filter with ofld is not supported by FW\n"); 4307 } 4308 4309 /* 4310 * Issue a Capability Configuration command to the firmware to get it 4311 * to parse the Configuration File. We don't use t4_fw_config_file() 4312 * because we want the ability to modify various features after we've 4313 * processed the configuration file ... 4314 */ 4315 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4316 caps_cmd.op_to_write = 4317 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4318 FW_CMD_REQUEST_F | 4319 FW_CMD_READ_F); 4320 caps_cmd.cfvalid_to_len16 = 4321 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 4322 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 4323 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 4324 FW_LEN16(caps_cmd)); 4325 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4326 &caps_cmd); 4327 4328 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 4329 * Configuration File in FLASH), our last gasp effort is to use the 4330 * Firmware Configuration File which is embedded in the firmware. A 4331 * very few early versions of the firmware didn't have one embedded 4332 * but we can ignore those. 4333 */ 4334 if (ret == -ENOENT) { 4335 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4336 caps_cmd.op_to_write = 4337 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4338 FW_CMD_REQUEST_F | 4339 FW_CMD_READ_F); 4340 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4341 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 4342 sizeof(caps_cmd), &caps_cmd); 4343 config_name = "Firmware Default"; 4344 } 4345 4346 config_issued = 1; 4347 if (ret < 0) 4348 goto bye; 4349 4350 finiver = ntohl(caps_cmd.finiver); 4351 finicsum = ntohl(caps_cmd.finicsum); 4352 cfcsum = ntohl(caps_cmd.cfcsum); 4353 if (finicsum != cfcsum) 4354 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 4355 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 4356 finicsum, cfcsum); 4357 4358 /* 4359 * And now tell the firmware to use the configuration we just loaded. 4360 */ 4361 caps_cmd.op_to_write = 4362 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4363 FW_CMD_REQUEST_F | 4364 FW_CMD_WRITE_F); 4365 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4366 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4367 NULL); 4368 if (ret < 0) 4369 goto bye; 4370 4371 /* 4372 * Tweak configuration based on system architecture, module 4373 * parameters, etc. 4374 */ 4375 ret = adap_init0_tweaks(adapter); 4376 if (ret < 0) 4377 goto bye; 4378 4379 /* We will proceed even if HMA init fails. */ 4380 ret = adap_config_hma(adapter); 4381 if (ret) 4382 dev_err(adapter->pdev_dev, 4383 "HMA configuration failed with error %d\n", ret); 4384 4385 if (is_t6(adapter->params.chip)) { 4386 adap_config_hpfilter(adapter); 4387 ret = setup_ppod_edram(adapter); 4388 if (!ret) 4389 dev_info(adapter->pdev_dev, "Successfully enabled " 4390 "ppod edram feature\n"); 4391 } 4392 4393 /* 4394 * And finally tell the firmware to initialize itself using the 4395 * parameters from the Configuration File. 4396 */ 4397 ret = t4_fw_initialize(adapter, adapter->mbox); 4398 if (ret < 0) 4399 goto bye; 4400 4401 /* Emit Firmware Configuration File information and return 4402 * successfully. 4403 */ 4404 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4405 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4406 config_name, finiver, cfcsum); 4407 return 0; 4408 4409 /* 4410 * Something bad happened. Return the error ... (If the "error" 4411 * is that there's no Configuration File on the adapter we don't 4412 * want to issue a warning since this is fairly common.) 4413 */ 4414 bye: 4415 if (config_issued && ret != -ENOENT) 4416 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4417 config_name, -ret); 4418 return ret; 4419 } 4420 4421 static struct fw_info fw_info_array[] = { 4422 { 4423 .chip = CHELSIO_T4, 4424 .fs_name = FW4_CFNAME, 4425 .fw_mod_name = FW4_FNAME, 4426 .fw_hdr = { 4427 .chip = FW_HDR_CHIP_T4, 4428 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4429 .intfver_nic = FW_INTFVER(T4, NIC), 4430 .intfver_vnic = FW_INTFVER(T4, VNIC), 4431 .intfver_ri = FW_INTFVER(T4, RI), 4432 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4433 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4434 }, 4435 }, { 4436 .chip = CHELSIO_T5, 4437 .fs_name = FW5_CFNAME, 4438 .fw_mod_name = FW5_FNAME, 4439 .fw_hdr = { 4440 .chip = FW_HDR_CHIP_T5, 4441 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4442 .intfver_nic = FW_INTFVER(T5, NIC), 4443 .intfver_vnic = FW_INTFVER(T5, VNIC), 4444 .intfver_ri = FW_INTFVER(T5, RI), 4445 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4446 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4447 }, 4448 }, { 4449 .chip = CHELSIO_T6, 4450 .fs_name = FW6_CFNAME, 4451 .fw_mod_name = FW6_FNAME, 4452 .fw_hdr = { 4453 .chip = FW_HDR_CHIP_T6, 4454 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4455 .intfver_nic = FW_INTFVER(T6, NIC), 4456 .intfver_vnic = FW_INTFVER(T6, VNIC), 4457 .intfver_ofld = FW_INTFVER(T6, OFLD), 4458 .intfver_ri = FW_INTFVER(T6, RI), 4459 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4460 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4461 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4462 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4463 }, 4464 } 4465 4466 }; 4467 4468 static struct fw_info *find_fw_info(int chip) 4469 { 4470 int i; 4471 4472 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4473 if (fw_info_array[i].chip == chip) 4474 return &fw_info_array[i]; 4475 } 4476 return NULL; 4477 } 4478 4479 /* 4480 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4481 */ 4482 static int adap_init0(struct adapter *adap, int vpd_skip) 4483 { 4484 struct fw_caps_config_cmd caps_cmd; 4485 u32 params[7], val[7]; 4486 enum dev_state state; 4487 u32 v, port_vec; 4488 int reset = 1; 4489 int ret; 4490 4491 /* Grab Firmware Device Log parameters as early as possible so we have 4492 * access to it for debugging, etc. 4493 */ 4494 ret = t4_init_devlog_params(adap); 4495 if (ret < 0) 4496 return ret; 4497 4498 /* Contact FW, advertising Master capability */ 4499 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4500 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4501 if (ret < 0) { 4502 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4503 ret); 4504 return ret; 4505 } 4506 if (ret == adap->mbox) 4507 adap->flags |= CXGB4_MASTER_PF; 4508 4509 /* 4510 * If we're the Master PF Driver and the device is uninitialized, 4511 * then let's consider upgrading the firmware ... (We always want 4512 * to check the firmware version number in order to A. get it for 4513 * later reporting and B. to warn if the currently loaded firmware 4514 * is excessively mismatched relative to the driver.) 4515 */ 4516 4517 t4_get_version_info(adap); 4518 ret = t4_check_fw_version(adap); 4519 /* If firmware is too old (not supported by driver) force an update. */ 4520 if (ret) 4521 state = DEV_STATE_UNINIT; 4522 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) { 4523 struct fw_info *fw_info; 4524 struct fw_hdr *card_fw; 4525 const struct firmware *fw; 4526 const u8 *fw_data = NULL; 4527 unsigned int fw_size = 0; 4528 4529 /* This is the firmware whose headers the driver was compiled 4530 * against 4531 */ 4532 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4533 if (fw_info == NULL) { 4534 dev_err(adap->pdev_dev, 4535 "unable to get firmware info for chip %d.\n", 4536 CHELSIO_CHIP_VERSION(adap->params.chip)); 4537 return -EINVAL; 4538 } 4539 4540 /* allocate memory to read the header of the firmware on the 4541 * card 4542 */ 4543 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4544 if (!card_fw) { 4545 ret = -ENOMEM; 4546 goto bye; 4547 } 4548 4549 /* Get FW from from /lib/firmware/ */ 4550 ret = request_firmware(&fw, fw_info->fw_mod_name, 4551 adap->pdev_dev); 4552 if (ret < 0) { 4553 dev_err(adap->pdev_dev, 4554 "unable to load firmware image %s, error %d\n", 4555 fw_info->fw_mod_name, ret); 4556 } else { 4557 fw_data = fw->data; 4558 fw_size = fw->size; 4559 } 4560 4561 /* upgrade FW logic */ 4562 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4563 state, &reset); 4564 4565 /* Cleaning up */ 4566 release_firmware(fw); 4567 kvfree(card_fw); 4568 4569 if (ret < 0) 4570 goto bye; 4571 } 4572 4573 /* If the firmware is initialized already, emit a simply note to that 4574 * effect. Otherwise, it's time to try initializing the adapter. 4575 */ 4576 if (state == DEV_STATE_INIT) { 4577 ret = adap_config_hma(adap); 4578 if (ret) 4579 dev_err(adap->pdev_dev, 4580 "HMA configuration failed with error %d\n", 4581 ret); 4582 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4583 "Adapter already initialized\n", 4584 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE"); 4585 } else { 4586 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4587 "Initializing adapter\n"); 4588 4589 /* Find out whether we're dealing with a version of the 4590 * firmware which has configuration file support. 4591 */ 4592 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4593 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4594 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4595 params, val); 4596 4597 /* If the firmware doesn't support Configuration Files, 4598 * return an error. 4599 */ 4600 if (ret < 0) { 4601 dev_err(adap->pdev_dev, "firmware doesn't support " 4602 "Firmware Configuration Files\n"); 4603 goto bye; 4604 } 4605 4606 /* The firmware provides us with a memory buffer where we can 4607 * load a Configuration File from the host if we want to 4608 * override the Configuration File in flash. 4609 */ 4610 ret = adap_init0_config(adap, reset); 4611 if (ret == -ENOENT) { 4612 dev_err(adap->pdev_dev, "no Configuration File " 4613 "present on adapter.\n"); 4614 goto bye; 4615 } 4616 if (ret < 0) { 4617 dev_err(adap->pdev_dev, "could not initialize " 4618 "adapter, error %d\n", -ret); 4619 goto bye; 4620 } 4621 } 4622 4623 /* Now that we've successfully configured and initialized the adapter 4624 * (or found it already initialized), we can ask the Firmware what 4625 * resources it has provisioned for us. 4626 */ 4627 ret = t4_get_pfres(adap); 4628 if (ret) { 4629 dev_err(adap->pdev_dev, 4630 "Unable to retrieve resource provisioning information\n"); 4631 goto bye; 4632 } 4633 4634 /* Grab VPD parameters. This should be done after we establish a 4635 * connection to the firmware since some of the VPD parameters 4636 * (notably the Core Clock frequency) are retrieved via requests to 4637 * the firmware. On the other hand, we need these fairly early on 4638 * so we do this right after getting ahold of the firmware. 4639 * 4640 * We need to do this after initializing the adapter because someone 4641 * could have FLASHed a new VPD which won't be read by the firmware 4642 * until we do the RESET ... 4643 */ 4644 if (!vpd_skip) { 4645 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4646 if (ret < 0) 4647 goto bye; 4648 } 4649 4650 /* Find out what ports are available to us. Note that we need to do 4651 * this before calling adap_init0_no_config() since it needs nports 4652 * and portvec ... 4653 */ 4654 v = 4655 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4656 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4657 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4658 if (ret < 0) 4659 goto bye; 4660 4661 adap->params.nports = hweight32(port_vec); 4662 adap->params.portvec = port_vec; 4663 4664 /* Give the SGE code a chance to pull in anything that it needs ... 4665 * Note that this must be called after we retrieve our VPD parameters 4666 * in order to know how to convert core ticks to seconds, etc. 4667 */ 4668 ret = t4_sge_init(adap); 4669 if (ret < 0) 4670 goto bye; 4671 4672 /* Grab the SGE Doorbell Queue Timer values. If successful, that 4673 * indicates that the Firmware and Hardware support this. 4674 */ 4675 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4676 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK)); 4677 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4678 1, params, val); 4679 4680 if (!ret) { 4681 adap->sge.dbqtimer_tick = val[0]; 4682 ret = t4_read_sge_dbqtimers(adap, 4683 ARRAY_SIZE(adap->sge.dbqtimer_val), 4684 adap->sge.dbqtimer_val); 4685 } 4686 4687 if (!ret) 4688 adap->flags |= CXGB4_SGE_DBQ_TIMER; 4689 4690 if (is_bypass_device(adap->pdev->device)) 4691 adap->params.bypass = 1; 4692 4693 /* 4694 * Grab some of our basic fundamental operating parameters. 4695 */ 4696 params[0] = FW_PARAM_PFVF(EQ_START); 4697 params[1] = FW_PARAM_PFVF(L2T_START); 4698 params[2] = FW_PARAM_PFVF(L2T_END); 4699 params[3] = FW_PARAM_PFVF(FILTER_START); 4700 params[4] = FW_PARAM_PFVF(FILTER_END); 4701 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4702 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4703 if (ret < 0) 4704 goto bye; 4705 adap->sge.egr_start = val[0]; 4706 adap->l2t_start = val[1]; 4707 adap->l2t_end = val[2]; 4708 adap->tids.ftid_base = val[3]; 4709 adap->tids.nftids = val[4] - val[3] + 1; 4710 adap->sge.ingr_start = val[5]; 4711 4712 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4713 params[0] = FW_PARAM_PFVF(HPFILTER_START); 4714 params[1] = FW_PARAM_PFVF(HPFILTER_END); 4715 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4716 params, val); 4717 if (ret < 0) 4718 goto bye; 4719 4720 adap->tids.hpftid_base = val[0]; 4721 adap->tids.nhpftids = val[1] - val[0] + 1; 4722 4723 /* Read the raw mps entries. In T6, the last 2 tcam entries 4724 * are reserved for raw mac addresses (rawf = 2, one per port). 4725 */ 4726 params[0] = FW_PARAM_PFVF(RAWF_START); 4727 params[1] = FW_PARAM_PFVF(RAWF_END); 4728 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4729 params, val); 4730 if (ret == 0) { 4731 adap->rawf_start = val[0]; 4732 adap->rawf_cnt = val[1] - val[0] + 1; 4733 } 4734 4735 adap->tids.tid_base = 4736 t4_read_reg(adap, LE_DB_ACTIVE_TABLE_START_INDEX_A); 4737 } 4738 4739 /* qids (ingress/egress) returned from firmware can be anywhere 4740 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 4741 * Hence driver needs to allocate memory for this range to 4742 * store the queue info. Get the highest IQFLINT/EQ index returned 4743 * in FW_EQ_*_CMD.alloc command. 4744 */ 4745 params[0] = FW_PARAM_PFVF(EQ_END); 4746 params[1] = FW_PARAM_PFVF(IQFLINT_END); 4747 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4748 if (ret < 0) 4749 goto bye; 4750 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 4751 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 4752 4753 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 4754 sizeof(*adap->sge.egr_map), GFP_KERNEL); 4755 if (!adap->sge.egr_map) { 4756 ret = -ENOMEM; 4757 goto bye; 4758 } 4759 4760 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 4761 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 4762 if (!adap->sge.ingr_map) { 4763 ret = -ENOMEM; 4764 goto bye; 4765 } 4766 4767 /* Allocate the memory for the vaious egress queue bitmaps 4768 * ie starving_fl, txq_maperr and blocked_fl. 4769 */ 4770 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4771 sizeof(long), GFP_KERNEL); 4772 if (!adap->sge.starving_fl) { 4773 ret = -ENOMEM; 4774 goto bye; 4775 } 4776 4777 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4778 sizeof(long), GFP_KERNEL); 4779 if (!adap->sge.txq_maperr) { 4780 ret = -ENOMEM; 4781 goto bye; 4782 } 4783 4784 #ifdef CONFIG_DEBUG_FS 4785 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4786 sizeof(long), GFP_KERNEL); 4787 if (!adap->sge.blocked_fl) { 4788 ret = -ENOMEM; 4789 goto bye; 4790 } 4791 #endif 4792 4793 params[0] = FW_PARAM_PFVF(CLIP_START); 4794 params[1] = FW_PARAM_PFVF(CLIP_END); 4795 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4796 if (ret < 0) 4797 goto bye; 4798 adap->clipt_start = val[0]; 4799 adap->clipt_end = val[1]; 4800 4801 /* Get the supported number of traffic classes */ 4802 params[0] = FW_PARAM_DEV(NUM_TM_CLASS); 4803 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4804 if (ret < 0) { 4805 /* We couldn't retrieve the number of Traffic Classes 4806 * supported by the hardware/firmware. So we hard 4807 * code it here. 4808 */ 4809 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 4810 } else { 4811 adap->params.nsched_cls = val[0]; 4812 } 4813 4814 /* query params related to active filter region */ 4815 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 4816 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 4817 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4818 /* If Active filter size is set we enable establishing 4819 * offload connection through firmware work request 4820 */ 4821 if ((val[0] != val[1]) && (ret >= 0)) { 4822 adap->flags |= CXGB4_FW_OFLD_CONN; 4823 adap->tids.aftid_base = val[0]; 4824 adap->tids.aftid_end = val[1]; 4825 } 4826 4827 /* If we're running on newer firmware, let it know that we're 4828 * prepared to deal with encapsulated CPL messages. Older 4829 * firmware won't understand this and we'll just get 4830 * unencapsulated messages ... 4831 */ 4832 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4833 val[0] = 1; 4834 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4835 4836 /* 4837 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 4838 * capability. Earlier versions of the firmware didn't have the 4839 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 4840 * permission to use ULPTX MEMWRITE DSGL. 4841 */ 4842 if (is_t4(adap->params.chip)) { 4843 adap->params.ulptx_memwrite_dsgl = false; 4844 } else { 4845 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4846 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4847 1, params, val); 4848 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4849 } 4850 4851 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 4852 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4853 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4854 1, params, val); 4855 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 4856 4857 /* See if FW supports FW_FILTER2 work request */ 4858 if (is_t4(adap->params.chip)) { 4859 adap->params.filter2_wr_support = 0; 4860 } else { 4861 params[0] = FW_PARAM_DEV(FILTER2_WR); 4862 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4863 1, params, val); 4864 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 4865 } 4866 4867 /* Check if FW supports returning vin and smt index. 4868 * If this is not supported, driver will interpret 4869 * these values from viid. 4870 */ 4871 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 4872 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4873 1, params, val); 4874 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0); 4875 4876 /* 4877 * Get device capabilities so we can determine what resources we need 4878 * to manage. 4879 */ 4880 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4881 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4882 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4883 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4884 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4885 &caps_cmd); 4886 if (ret < 0) 4887 goto bye; 4888 4889 /* hash filter has some mandatory register settings to be tested and for 4890 * that it needs to test whether offload is enabled or not, hence 4891 * checking and setting it here. 4892 */ 4893 if (caps_cmd.ofldcaps) 4894 adap->params.offload = 1; 4895 4896 if (caps_cmd.ofldcaps || 4897 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) || 4898 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) { 4899 /* query offload-related parameters */ 4900 params[0] = FW_PARAM_DEV(NTID); 4901 params[1] = FW_PARAM_PFVF(SERVER_START); 4902 params[2] = FW_PARAM_PFVF(SERVER_END); 4903 params[3] = FW_PARAM_PFVF(TDDP_START); 4904 params[4] = FW_PARAM_PFVF(TDDP_END); 4905 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4906 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4907 params, val); 4908 if (ret < 0) 4909 goto bye; 4910 adap->tids.ntids = val[0]; 4911 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4912 adap->tids.stid_base = val[1]; 4913 adap->tids.nstids = val[2] - val[1] + 1; 4914 /* 4915 * Setup server filter region. Divide the available filter 4916 * region into two parts. Regular filters get 1/3rd and server 4917 * filters get 2/3rd part. This is only enabled if workarond 4918 * path is enabled. 4919 * 1. For regular filters. 4920 * 2. Server filter: This are special filters which are used 4921 * to redirect SYN packets to offload queue. 4922 */ 4923 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) { 4924 adap->tids.sftid_base = adap->tids.ftid_base + 4925 DIV_ROUND_UP(adap->tids.nftids, 3); 4926 adap->tids.nsftids = adap->tids.nftids - 4927 DIV_ROUND_UP(adap->tids.nftids, 3); 4928 adap->tids.nftids = adap->tids.sftid_base - 4929 adap->tids.ftid_base; 4930 } 4931 adap->vres.ddp.start = val[3]; 4932 adap->vres.ddp.size = val[4] - val[3] + 1; 4933 adap->params.ofldq_wr_cred = val[5]; 4934 4935 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4936 init_hash_filter(adap); 4937 } else { 4938 adap->num_ofld_uld += 1; 4939 } 4940 4941 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) { 4942 params[0] = FW_PARAM_PFVF(ETHOFLD_START); 4943 params[1] = FW_PARAM_PFVF(ETHOFLD_END); 4944 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4945 params, val); 4946 if (!ret) { 4947 adap->tids.eotid_base = val[0]; 4948 adap->tids.neotids = min_t(u32, MAX_ATIDS, 4949 val[1] - val[0] + 1); 4950 adap->params.ethofld = 1; 4951 } 4952 } 4953 } 4954 if (caps_cmd.rdmacaps) { 4955 params[0] = FW_PARAM_PFVF(STAG_START); 4956 params[1] = FW_PARAM_PFVF(STAG_END); 4957 params[2] = FW_PARAM_PFVF(RQ_START); 4958 params[3] = FW_PARAM_PFVF(RQ_END); 4959 params[4] = FW_PARAM_PFVF(PBL_START); 4960 params[5] = FW_PARAM_PFVF(PBL_END); 4961 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4962 params, val); 4963 if (ret < 0) 4964 goto bye; 4965 adap->vres.stag.start = val[0]; 4966 adap->vres.stag.size = val[1] - val[0] + 1; 4967 adap->vres.rq.start = val[2]; 4968 adap->vres.rq.size = val[3] - val[2] + 1; 4969 adap->vres.pbl.start = val[4]; 4970 adap->vres.pbl.size = val[5] - val[4] + 1; 4971 4972 params[0] = FW_PARAM_PFVF(SRQ_START); 4973 params[1] = FW_PARAM_PFVF(SRQ_END); 4974 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4975 params, val); 4976 if (!ret) { 4977 adap->vres.srq.start = val[0]; 4978 adap->vres.srq.size = val[1] - val[0] + 1; 4979 } 4980 if (adap->vres.srq.size) { 4981 adap->srq = t4_init_srq(adap->vres.srq.size); 4982 if (!adap->srq) 4983 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 4984 } 4985 4986 params[0] = FW_PARAM_PFVF(SQRQ_START); 4987 params[1] = FW_PARAM_PFVF(SQRQ_END); 4988 params[2] = FW_PARAM_PFVF(CQ_START); 4989 params[3] = FW_PARAM_PFVF(CQ_END); 4990 params[4] = FW_PARAM_PFVF(OCQ_START); 4991 params[5] = FW_PARAM_PFVF(OCQ_END); 4992 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4993 val); 4994 if (ret < 0) 4995 goto bye; 4996 adap->vres.qp.start = val[0]; 4997 adap->vres.qp.size = val[1] - val[0] + 1; 4998 adap->vres.cq.start = val[2]; 4999 adap->vres.cq.size = val[3] - val[2] + 1; 5000 adap->vres.ocq.start = val[4]; 5001 adap->vres.ocq.size = val[5] - val[4] + 1; 5002 5003 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 5004 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5005 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 5006 val); 5007 if (ret < 0) { 5008 adap->params.max_ordird_qp = 8; 5009 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 5010 ret = 0; 5011 } else { 5012 adap->params.max_ordird_qp = val[0]; 5013 adap->params.max_ird_adapter = val[1]; 5014 } 5015 dev_info(adap->pdev_dev, 5016 "max_ordird_qp %d max_ird_adapter %d\n", 5017 adap->params.max_ordird_qp, 5018 adap->params.max_ird_adapter); 5019 5020 /* Enable write_with_immediate if FW supports it */ 5021 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 5022 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 5023 val); 5024 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 5025 5026 /* Enable write_cmpl if FW supports it */ 5027 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 5028 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 5029 val); 5030 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 5031 adap->num_ofld_uld += 2; 5032 } 5033 if (caps_cmd.iscsicaps) { 5034 params[0] = FW_PARAM_PFVF(ISCSI_START); 5035 params[1] = FW_PARAM_PFVF(ISCSI_END); 5036 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5037 params, val); 5038 if (ret < 0) 5039 goto bye; 5040 adap->vres.iscsi.start = val[0]; 5041 adap->vres.iscsi.size = val[1] - val[0] + 1; 5042 if (is_t6(adap->params.chip)) { 5043 params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START); 5044 params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END); 5045 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 5046 params, val); 5047 if (!ret) { 5048 adap->vres.ppod_edram.start = val[0]; 5049 adap->vres.ppod_edram.size = 5050 val[1] - val[0] + 1; 5051 5052 dev_info(adap->pdev_dev, 5053 "ppod edram start 0x%x end 0x%x size 0x%x\n", 5054 val[0], val[1], 5055 adap->vres.ppod_edram.size); 5056 } 5057 } 5058 /* LIO target and cxgb4i initiaitor */ 5059 adap->num_ofld_uld += 2; 5060 } 5061 if (caps_cmd.cryptocaps) { 5062 if (ntohs(caps_cmd.cryptocaps) & 5063 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 5064 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 5065 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5066 2, params, val); 5067 if (ret < 0) { 5068 if (ret != -EINVAL) 5069 goto bye; 5070 } else { 5071 adap->vres.ncrypto_fc = val[0]; 5072 } 5073 adap->num_ofld_uld += 1; 5074 } 5075 if (ntohs(caps_cmd.cryptocaps) & 5076 FW_CAPS_CONFIG_TLS_INLINE) { 5077 params[0] = FW_PARAM_PFVF(TLS_START); 5078 params[1] = FW_PARAM_PFVF(TLS_END); 5079 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 5080 2, params, val); 5081 if (ret < 0) 5082 goto bye; 5083 adap->vres.key.start = val[0]; 5084 adap->vres.key.size = val[1] - val[0] + 1; 5085 adap->num_uld += 1; 5086 } 5087 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 5088 } 5089 5090 /* The MTU/MSS Table is initialized by now, so load their values. If 5091 * we're initializing the adapter, then we'll make any modifications 5092 * we want to the MTU/MSS Table and also initialize the congestion 5093 * parameters. 5094 */ 5095 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 5096 if (state != DEV_STATE_INIT) { 5097 int i; 5098 5099 /* The default MTU Table contains values 1492 and 1500. 5100 * However, for TCP, it's better to have two values which are 5101 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 5102 * This allows us to have a TCP Data Payload which is a 5103 * multiple of 8 regardless of what combination of TCP Options 5104 * are in use (always a multiple of 4 bytes) which is 5105 * important for performance reasons. For instance, if no 5106 * options are in use, then we have a 20-byte IP header and a 5107 * 20-byte TCP header. In this case, a 1500-byte MSS would 5108 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 5109 * which is not a multiple of 8. So using an MSS of 1488 in 5110 * this case results in a TCP Data Payload of 1448 bytes which 5111 * is a multiple of 8. On the other hand, if 12-byte TCP Time 5112 * Stamps have been negotiated, then an MTU of 1500 bytes 5113 * results in a TCP Data Payload of 1448 bytes which, as 5114 * above, is a multiple of 8 bytes ... 5115 */ 5116 for (i = 0; i < NMTUS; i++) 5117 if (adap->params.mtus[i] == 1492) { 5118 adap->params.mtus[i] = 1488; 5119 break; 5120 } 5121 5122 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5123 adap->params.b_wnd); 5124 } 5125 t4_init_sge_params(adap); 5126 adap->flags |= CXGB4_FW_OK; 5127 t4_init_tp_params(adap, true); 5128 return 0; 5129 5130 /* 5131 * Something bad happened. If a command timed out or failed with EIO 5132 * FW does not operate within its spec or something catastrophic 5133 * happened to HW/FW, stop issuing commands. 5134 */ 5135 bye: 5136 adap_free_hma_mem(adap); 5137 kfree(adap->sge.egr_map); 5138 kfree(adap->sge.ingr_map); 5139 kfree(adap->sge.starving_fl); 5140 kfree(adap->sge.txq_maperr); 5141 #ifdef CONFIG_DEBUG_FS 5142 kfree(adap->sge.blocked_fl); 5143 #endif 5144 if (ret != -ETIMEDOUT && ret != -EIO) 5145 t4_fw_bye(adap, adap->mbox); 5146 return ret; 5147 } 5148 5149 /* EEH callbacks */ 5150 5151 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 5152 pci_channel_state_t state) 5153 { 5154 int i; 5155 struct adapter *adap = pci_get_drvdata(pdev); 5156 5157 if (!adap) 5158 goto out; 5159 5160 rtnl_lock(); 5161 adap->flags &= ~CXGB4_FW_OK; 5162 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 5163 spin_lock(&adap->stats_lock); 5164 for_each_port(adap, i) { 5165 struct net_device *dev = adap->port[i]; 5166 if (dev) { 5167 netif_device_detach(dev); 5168 netif_carrier_off(dev); 5169 } 5170 } 5171 spin_unlock(&adap->stats_lock); 5172 disable_interrupts(adap); 5173 if (adap->flags & CXGB4_FULL_INIT_DONE) 5174 cxgb_down(adap); 5175 rtnl_unlock(); 5176 if ((adap->flags & CXGB4_DEV_ENABLED)) { 5177 pci_disable_device(pdev); 5178 adap->flags &= ~CXGB4_DEV_ENABLED; 5179 } 5180 out: return state == pci_channel_io_perm_failure ? 5181 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 5182 } 5183 5184 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 5185 { 5186 int i, ret; 5187 struct fw_caps_config_cmd c; 5188 struct adapter *adap = pci_get_drvdata(pdev); 5189 5190 if (!adap) { 5191 pci_restore_state(pdev); 5192 pci_save_state(pdev); 5193 return PCI_ERS_RESULT_RECOVERED; 5194 } 5195 5196 if (!(adap->flags & CXGB4_DEV_ENABLED)) { 5197 if (pci_enable_device(pdev)) { 5198 dev_err(&pdev->dev, "Cannot reenable PCI " 5199 "device after reset\n"); 5200 return PCI_ERS_RESULT_DISCONNECT; 5201 } 5202 adap->flags |= CXGB4_DEV_ENABLED; 5203 } 5204 5205 pci_set_master(pdev); 5206 pci_restore_state(pdev); 5207 pci_save_state(pdev); 5208 5209 if (t4_wait_dev_ready(adap->regs) < 0) 5210 return PCI_ERS_RESULT_DISCONNECT; 5211 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 5212 return PCI_ERS_RESULT_DISCONNECT; 5213 adap->flags |= CXGB4_FW_OK; 5214 if (adap_init1(adap, &c)) 5215 return PCI_ERS_RESULT_DISCONNECT; 5216 5217 for_each_port(adap, i) { 5218 struct port_info *pi = adap2pinfo(adap, i); 5219 u8 vivld = 0, vin = 0; 5220 5221 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1, 5222 NULL, NULL, &vivld, &vin); 5223 if (ret < 0) 5224 return PCI_ERS_RESULT_DISCONNECT; 5225 pi->viid = ret; 5226 pi->xact_addr_filt = -1; 5227 /* If fw supports returning the VIN as part of FW_VI_CMD, 5228 * save the returned values. 5229 */ 5230 if (adap->params.viid_smt_extn_support) { 5231 pi->vivld = vivld; 5232 pi->vin = vin; 5233 } else { 5234 /* Retrieve the values from VIID */ 5235 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 5236 pi->vin = FW_VIID_VIN_G(pi->viid); 5237 } 5238 } 5239 5240 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 5241 adap->params.b_wnd); 5242 setup_memwin(adap); 5243 if (cxgb_up(adap)) 5244 return PCI_ERS_RESULT_DISCONNECT; 5245 return PCI_ERS_RESULT_RECOVERED; 5246 } 5247 5248 static void eeh_resume(struct pci_dev *pdev) 5249 { 5250 int i; 5251 struct adapter *adap = pci_get_drvdata(pdev); 5252 5253 if (!adap) 5254 return; 5255 5256 rtnl_lock(); 5257 for_each_port(adap, i) { 5258 struct net_device *dev = adap->port[i]; 5259 if (dev) { 5260 if (netif_running(dev)) { 5261 link_start(dev); 5262 cxgb_set_rxmode(dev); 5263 } 5264 netif_device_attach(dev); 5265 } 5266 } 5267 rtnl_unlock(); 5268 } 5269 5270 static void eeh_reset_prepare(struct pci_dev *pdev) 5271 { 5272 struct adapter *adapter = pci_get_drvdata(pdev); 5273 int i; 5274 5275 if (adapter->pf != 4) 5276 return; 5277 5278 adapter->flags &= ~CXGB4_FW_OK; 5279 5280 notify_ulds(adapter, CXGB4_STATE_DOWN); 5281 5282 for_each_port(adapter, i) 5283 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5284 cxgb_close(adapter->port[i]); 5285 5286 disable_interrupts(adapter); 5287 cxgb4_free_mps_ref_entries(adapter); 5288 5289 adap_free_hma_mem(adapter); 5290 5291 if (adapter->flags & CXGB4_FULL_INIT_DONE) 5292 cxgb_down(adapter); 5293 } 5294 5295 static void eeh_reset_done(struct pci_dev *pdev) 5296 { 5297 struct adapter *adapter = pci_get_drvdata(pdev); 5298 int err, i; 5299 5300 if (adapter->pf != 4) 5301 return; 5302 5303 err = t4_wait_dev_ready(adapter->regs); 5304 if (err < 0) { 5305 dev_err(adapter->pdev_dev, 5306 "Device not ready, err %d", err); 5307 return; 5308 } 5309 5310 setup_memwin(adapter); 5311 5312 err = adap_init0(adapter, 1); 5313 if (err) { 5314 dev_err(adapter->pdev_dev, 5315 "Adapter init failed, err %d", err); 5316 return; 5317 } 5318 5319 setup_memwin_rdma(adapter); 5320 5321 if (adapter->flags & CXGB4_FW_OK) { 5322 err = t4_port_init(adapter, adapter->pf, adapter->pf, 0); 5323 if (err) { 5324 dev_err(adapter->pdev_dev, 5325 "Port init failed, err %d", err); 5326 return; 5327 } 5328 } 5329 5330 err = cfg_queues(adapter); 5331 if (err) { 5332 dev_err(adapter->pdev_dev, 5333 "Config queues failed, err %d", err); 5334 return; 5335 } 5336 5337 cxgb4_init_mps_ref_entries(adapter); 5338 5339 err = setup_fw_sge_queues(adapter); 5340 if (err) { 5341 dev_err(adapter->pdev_dev, 5342 "FW sge queue allocation failed, err %d", err); 5343 return; 5344 } 5345 5346 for_each_port(adapter, i) 5347 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5348 cxgb_open(adapter->port[i]); 5349 } 5350 5351 static const struct pci_error_handlers cxgb4_eeh = { 5352 .error_detected = eeh_err_detected, 5353 .slot_reset = eeh_slot_reset, 5354 .resume = eeh_resume, 5355 .reset_prepare = eeh_reset_prepare, 5356 .reset_done = eeh_reset_done, 5357 }; 5358 5359 /* Return true if the Link Configuration supports "High Speeds" (those greater 5360 * than 1Gb/s). 5361 */ 5362 static inline bool is_x_10g_port(const struct link_config *lc) 5363 { 5364 unsigned int speeds, high_speeds; 5365 5366 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 5367 high_speeds = speeds & 5368 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 5369 5370 return high_speeds != 0; 5371 } 5372 5373 /* Perform default configuration of DMA queues depending on the number and type 5374 * of ports we found and the number of available CPUs. Most settings can be 5375 * modified by the admin prior to actual use. 5376 */ 5377 static int cfg_queues(struct adapter *adap) 5378 { 5379 u32 avail_qsets, avail_eth_qsets, avail_uld_qsets; 5380 u32 i, n10g = 0, qidx = 0, n1g = 0; 5381 u32 ncpus = num_online_cpus(); 5382 u32 niqflint, neq, num_ulds; 5383 struct sge *s = &adap->sge; 5384 u32 q10g = 0, q1g; 5385 5386 /* Reduce memory usage in kdump environment, disable all offload. */ 5387 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 5388 adap->params.offload = 0; 5389 adap->params.crypto = 0; 5390 adap->params.ethofld = 0; 5391 } 5392 5393 /* Calculate the number of Ethernet Queue Sets available based on 5394 * resources provisioned for us. We always have an Asynchronous 5395 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 5396 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 5397 * Ingress Queue. Meanwhile, we need two Egress Queues for each 5398 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 5399 * 5400 * Note that we should also take into account all of the various 5401 * Offload Queues. But, in any situation where we're operating in 5402 * a Resource Constrained Provisioning environment, doing any Offload 5403 * at all is problematic ... 5404 */ 5405 niqflint = adap->params.pfres.niqflint - 1; 5406 if (!(adap->flags & CXGB4_USING_MSIX)) 5407 niqflint--; 5408 neq = adap->params.pfres.neq / 2; 5409 avail_qsets = min(niqflint, neq); 5410 5411 if (avail_qsets < adap->params.nports) { 5412 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 5413 avail_qsets, adap->params.nports); 5414 return -ENOMEM; 5415 } 5416 5417 /* Count the number of 10Gb/s or better ports */ 5418 for_each_port(adap, i) 5419 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 5420 5421 avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS); 5422 5423 /* We default to 1 queue per non-10G port and up to # of cores queues 5424 * per 10G port. 5425 */ 5426 if (n10g) 5427 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 5428 5429 n1g = adap->params.nports - n10g; 5430 #ifdef CONFIG_CHELSIO_T4_DCB 5431 /* For Data Center Bridging support we need to be able to support up 5432 * to 8 Traffic Priorities; each of which will be assigned to its 5433 * own TX Queue in order to prevent Head-Of-Line Blocking. 5434 */ 5435 q1g = 8; 5436 if (adap->params.nports * 8 > avail_eth_qsets) { 5437 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 5438 avail_eth_qsets, adap->params.nports * 8); 5439 return -ENOMEM; 5440 } 5441 5442 if (adap->params.nports * ncpus < avail_eth_qsets) 5443 q10g = max(8U, ncpus); 5444 else 5445 q10g = max(8U, q10g); 5446 5447 while ((q10g * n10g) > (avail_eth_qsets - n1g * q1g)) 5448 q10g--; 5449 5450 #else /* !CONFIG_CHELSIO_T4_DCB */ 5451 q1g = 1; 5452 q10g = min(q10g, ncpus); 5453 #endif /* !CONFIG_CHELSIO_T4_DCB */ 5454 if (is_kdump_kernel()) { 5455 q10g = 1; 5456 q1g = 1; 5457 } 5458 5459 for_each_port(adap, i) { 5460 struct port_info *pi = adap2pinfo(adap, i); 5461 5462 pi->first_qset = qidx; 5463 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : q1g; 5464 qidx += pi->nqsets; 5465 } 5466 5467 s->ethqsets = qidx; 5468 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 5469 avail_qsets -= qidx; 5470 5471 if (is_uld(adap)) { 5472 /* For offload we use 1 queue/channel if all ports are up to 1G, 5473 * otherwise we divide all available queues amongst the channels 5474 * capped by the number of available cores. 5475 */ 5476 num_ulds = adap->num_uld + adap->num_ofld_uld; 5477 i = min_t(u32, MAX_OFLD_QSETS, ncpus); 5478 avail_uld_qsets = roundup(i, adap->params.nports); 5479 if (avail_qsets < num_ulds * adap->params.nports) { 5480 adap->params.offload = 0; 5481 adap->params.crypto = 0; 5482 s->ofldqsets = 0; 5483 } else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) { 5484 s->ofldqsets = adap->params.nports; 5485 } else { 5486 s->ofldqsets = avail_uld_qsets; 5487 } 5488 5489 avail_qsets -= num_ulds * s->ofldqsets; 5490 } 5491 5492 /* ETHOFLD Queues used for QoS offload should follow same 5493 * allocation scheme as normal Ethernet Queues. 5494 */ 5495 if (is_ethofld(adap)) { 5496 if (avail_qsets < s->max_ethqsets) { 5497 adap->params.ethofld = 0; 5498 s->eoqsets = 0; 5499 } else { 5500 s->eoqsets = s->max_ethqsets; 5501 } 5502 avail_qsets -= s->eoqsets; 5503 } 5504 5505 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 5506 struct sge_eth_rxq *r = &s->ethrxq[i]; 5507 5508 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 5509 r->fl.size = 72; 5510 } 5511 5512 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 5513 s->ethtxq[i].q.size = 1024; 5514 5515 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 5516 s->ctrlq[i].q.size = 512; 5517 5518 if (!is_t4(adap->params.chip)) 5519 s->ptptxq.q.size = 8; 5520 5521 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 5522 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 5523 5524 return 0; 5525 } 5526 5527 /* 5528 * Reduce the number of Ethernet queues across all ports to at most n. 5529 * n provides at least one queue per port. 5530 */ 5531 static void reduce_ethqs(struct adapter *adap, int n) 5532 { 5533 int i; 5534 struct port_info *pi; 5535 5536 while (n < adap->sge.ethqsets) 5537 for_each_port(adap, i) { 5538 pi = adap2pinfo(adap, i); 5539 if (pi->nqsets > 1) { 5540 pi->nqsets--; 5541 adap->sge.ethqsets--; 5542 if (adap->sge.ethqsets <= n) 5543 break; 5544 } 5545 } 5546 5547 n = 0; 5548 for_each_port(adap, i) { 5549 pi = adap2pinfo(adap, i); 5550 pi->first_qset = n; 5551 n += pi->nqsets; 5552 } 5553 } 5554 5555 static int alloc_msix_info(struct adapter *adap, u32 num_vec) 5556 { 5557 struct msix_info *msix_info; 5558 5559 msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL); 5560 if (!msix_info) 5561 return -ENOMEM; 5562 5563 adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec), 5564 sizeof(long), GFP_KERNEL); 5565 if (!adap->msix_bmap.msix_bmap) { 5566 kfree(msix_info); 5567 return -ENOMEM; 5568 } 5569 5570 spin_lock_init(&adap->msix_bmap.lock); 5571 adap->msix_bmap.mapsize = num_vec; 5572 5573 adap->msix_info = msix_info; 5574 return 0; 5575 } 5576 5577 static void free_msix_info(struct adapter *adap) 5578 { 5579 kfree(adap->msix_bmap.msix_bmap); 5580 kfree(adap->msix_info); 5581 } 5582 5583 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap) 5584 { 5585 struct msix_bmap *bmap = &adap->msix_bmap; 5586 unsigned int msix_idx; 5587 unsigned long flags; 5588 5589 spin_lock_irqsave(&bmap->lock, flags); 5590 msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize); 5591 if (msix_idx < bmap->mapsize) { 5592 __set_bit(msix_idx, bmap->msix_bmap); 5593 } else { 5594 spin_unlock_irqrestore(&bmap->lock, flags); 5595 return -ENOSPC; 5596 } 5597 5598 spin_unlock_irqrestore(&bmap->lock, flags); 5599 return msix_idx; 5600 } 5601 5602 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap, 5603 unsigned int msix_idx) 5604 { 5605 struct msix_bmap *bmap = &adap->msix_bmap; 5606 unsigned long flags; 5607 5608 spin_lock_irqsave(&bmap->lock, flags); 5609 __clear_bit(msix_idx, bmap->msix_bmap); 5610 spin_unlock_irqrestore(&bmap->lock, flags); 5611 } 5612 5613 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5614 #define EXTRA_VECS 2 5615 5616 static int enable_msix(struct adapter *adap) 5617 { 5618 u32 eth_need, uld_need = 0, ethofld_need = 0; 5619 u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0; 5620 u8 num_uld = 0, nchan = adap->params.nports; 5621 u32 i, want, need, num_vec; 5622 struct sge *s = &adap->sge; 5623 struct msix_entry *entries; 5624 struct port_info *pi; 5625 int allocated, ret; 5626 5627 want = s->max_ethqsets; 5628 #ifdef CONFIG_CHELSIO_T4_DCB 5629 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5630 * each port. 5631 */ 5632 need = 8 * nchan; 5633 #else 5634 need = nchan; 5635 #endif 5636 eth_need = need; 5637 if (is_uld(adap)) { 5638 num_uld = adap->num_ofld_uld + adap->num_uld; 5639 want += num_uld * s->ofldqsets; 5640 uld_need = num_uld * nchan; 5641 need += uld_need; 5642 } 5643 5644 if (is_ethofld(adap)) { 5645 want += s->eoqsets; 5646 ethofld_need = eth_need; 5647 need += ethofld_need; 5648 } 5649 5650 want += EXTRA_VECS; 5651 need += EXTRA_VECS; 5652 5653 entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL); 5654 if (!entries) 5655 return -ENOMEM; 5656 5657 for (i = 0; i < want; i++) 5658 entries[i].entry = i; 5659 5660 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5661 if (allocated < 0) { 5662 /* Disable offload and attempt to get vectors for NIC 5663 * only mode. 5664 */ 5665 want = s->max_ethqsets + EXTRA_VECS; 5666 need = eth_need + EXTRA_VECS; 5667 allocated = pci_enable_msix_range(adap->pdev, entries, 5668 need, want); 5669 if (allocated < 0) { 5670 dev_info(adap->pdev_dev, 5671 "Disabling MSI-X due to insufficient MSI-X vectors\n"); 5672 ret = allocated; 5673 goto out_free; 5674 } 5675 5676 dev_info(adap->pdev_dev, 5677 "Disabling offload due to insufficient MSI-X vectors\n"); 5678 adap->params.offload = 0; 5679 adap->params.crypto = 0; 5680 adap->params.ethofld = 0; 5681 s->ofldqsets = 0; 5682 s->eoqsets = 0; 5683 uld_need = 0; 5684 ethofld_need = 0; 5685 } 5686 5687 num_vec = allocated; 5688 if (num_vec < want) { 5689 /* Distribute available vectors to the various queue groups. 5690 * Every group gets its minimum requirement and NIC gets top 5691 * priority for leftovers. 5692 */ 5693 ethqsets = eth_need; 5694 if (is_uld(adap)) 5695 ofldqsets = nchan; 5696 if (is_ethofld(adap)) 5697 eoqsets = ethofld_need; 5698 5699 num_vec -= need; 5700 while (num_vec) { 5701 if (num_vec < eth_need + ethofld_need || 5702 ethqsets > s->max_ethqsets) 5703 break; 5704 5705 for_each_port(adap, i) { 5706 pi = adap2pinfo(adap, i); 5707 if (pi->nqsets < 2) 5708 continue; 5709 5710 ethqsets++; 5711 num_vec--; 5712 if (ethofld_need) { 5713 eoqsets++; 5714 num_vec--; 5715 } 5716 } 5717 } 5718 5719 if (is_uld(adap)) { 5720 while (num_vec) { 5721 if (num_vec < uld_need || 5722 ofldqsets > s->ofldqsets) 5723 break; 5724 5725 ofldqsets++; 5726 num_vec -= uld_need; 5727 } 5728 } 5729 } else { 5730 ethqsets = s->max_ethqsets; 5731 if (is_uld(adap)) 5732 ofldqsets = s->ofldqsets; 5733 if (is_ethofld(adap)) 5734 eoqsets = s->eoqsets; 5735 } 5736 5737 if (ethqsets < s->max_ethqsets) { 5738 s->max_ethqsets = ethqsets; 5739 reduce_ethqs(adap, ethqsets); 5740 } 5741 5742 if (is_uld(adap)) { 5743 s->ofldqsets = ofldqsets; 5744 s->nqs_per_uld = s->ofldqsets; 5745 } 5746 5747 if (is_ethofld(adap)) 5748 s->eoqsets = eoqsets; 5749 5750 /* map for msix */ 5751 ret = alloc_msix_info(adap, allocated); 5752 if (ret) 5753 goto out_disable_msix; 5754 5755 for (i = 0; i < allocated; i++) { 5756 adap->msix_info[i].vec = entries[i].vector; 5757 adap->msix_info[i].idx = i; 5758 } 5759 5760 dev_info(adap->pdev_dev, 5761 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d\n", 5762 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld); 5763 5764 kfree(entries); 5765 return 0; 5766 5767 out_disable_msix: 5768 pci_disable_msix(adap->pdev); 5769 5770 out_free: 5771 kfree(entries); 5772 return ret; 5773 } 5774 5775 #undef EXTRA_VECS 5776 5777 static int init_rss(struct adapter *adap) 5778 { 5779 unsigned int i; 5780 int err; 5781 5782 err = t4_init_rss_mode(adap, adap->mbox); 5783 if (err) 5784 return err; 5785 5786 for_each_port(adap, i) { 5787 struct port_info *pi = adap2pinfo(adap, i); 5788 5789 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5790 if (!pi->rss) 5791 return -ENOMEM; 5792 } 5793 return 0; 5794 } 5795 5796 /* Dump basic information about the adapter */ 5797 static void print_adapter_info(struct adapter *adapter) 5798 { 5799 /* Hardware/Firmware/etc. Version/Revision IDs */ 5800 t4_dump_version_info(adapter); 5801 5802 /* Software/Hardware configuration */ 5803 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 5804 is_offload(adapter) ? "R" : "", 5805 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" : 5806 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""), 5807 is_offload(adapter) ? "Offload" : "non-Offload"); 5808 } 5809 5810 static void print_port_info(const struct net_device *dev) 5811 { 5812 char buf[80]; 5813 char *bufp = buf; 5814 const struct port_info *pi = netdev_priv(dev); 5815 const struct adapter *adap = pi->adapter; 5816 5817 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 5818 bufp += sprintf(bufp, "100M/"); 5819 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 5820 bufp += sprintf(bufp, "1G/"); 5821 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 5822 bufp += sprintf(bufp, "10G/"); 5823 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 5824 bufp += sprintf(bufp, "25G/"); 5825 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 5826 bufp += sprintf(bufp, "40G/"); 5827 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 5828 bufp += sprintf(bufp, "50G/"); 5829 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 5830 bufp += sprintf(bufp, "100G/"); 5831 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 5832 bufp += sprintf(bufp, "200G/"); 5833 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 5834 bufp += sprintf(bufp, "400G/"); 5835 if (bufp != buf) 5836 --bufp; 5837 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 5838 5839 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 5840 dev->name, adap->params.vpd.id, adap->name, buf); 5841 } 5842 5843 /* 5844 * Free the following resources: 5845 * - memory used for tables 5846 * - MSI/MSI-X 5847 * - net devices 5848 * - resources FW is holding for us 5849 */ 5850 static void free_some_resources(struct adapter *adapter) 5851 { 5852 unsigned int i; 5853 5854 kvfree(adapter->smt); 5855 kvfree(adapter->l2t); 5856 kvfree(adapter->srq); 5857 t4_cleanup_sched(adapter); 5858 kvfree(adapter->tids.tid_tab); 5859 cxgb4_cleanup_tc_matchall(adapter); 5860 cxgb4_cleanup_tc_mqprio(adapter); 5861 cxgb4_cleanup_tc_flower(adapter); 5862 cxgb4_cleanup_tc_u32(adapter); 5863 kfree(adapter->sge.egr_map); 5864 kfree(adapter->sge.ingr_map); 5865 kfree(adapter->sge.starving_fl); 5866 kfree(adapter->sge.txq_maperr); 5867 #ifdef CONFIG_DEBUG_FS 5868 kfree(adapter->sge.blocked_fl); 5869 #endif 5870 disable_msi(adapter); 5871 5872 for_each_port(adapter, i) 5873 if (adapter->port[i]) { 5874 struct port_info *pi = adap2pinfo(adapter, i); 5875 5876 if (pi->viid != 0) 5877 t4_free_vi(adapter, adapter->mbox, adapter->pf, 5878 0, pi->viid); 5879 kfree(adap2pinfo(adapter, i)->rss); 5880 free_netdev(adapter->port[i]); 5881 } 5882 if (adapter->flags & CXGB4_FW_OK) 5883 t4_fw_bye(adapter, adapter->pf); 5884 } 5885 5886 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \ 5887 NETIF_F_GSO_UDP_L4) 5888 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5889 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5890 #define SEGMENT_SIZE 128 5891 5892 static int t4_get_chip_type(struct adapter *adap, int ver) 5893 { 5894 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 5895 5896 switch (ver) { 5897 case CHELSIO_T4: 5898 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 5899 case CHELSIO_T5: 5900 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 5901 case CHELSIO_T6: 5902 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 5903 default: 5904 break; 5905 } 5906 return -EINVAL; 5907 } 5908 5909 #ifdef CONFIG_PCI_IOV 5910 static void cxgb4_mgmt_setup(struct net_device *dev) 5911 { 5912 dev->type = ARPHRD_NONE; 5913 dev->mtu = 0; 5914 dev->hard_header_len = 0; 5915 dev->addr_len = 0; 5916 dev->tx_queue_len = 0; 5917 dev->flags |= IFF_NOARP; 5918 dev->priv_flags |= IFF_NO_QUEUE; 5919 5920 /* Initialize the device structure. */ 5921 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 5922 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 5923 } 5924 5925 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 5926 { 5927 struct adapter *adap = pci_get_drvdata(pdev); 5928 int err = 0; 5929 int current_vfs = pci_num_vf(pdev); 5930 u32 pcie_fw; 5931 5932 pcie_fw = readl(adap->regs + PCIE_FW_A); 5933 /* Check if fw is initialized */ 5934 if (!(pcie_fw & PCIE_FW_INIT_F)) { 5935 dev_warn(&pdev->dev, "Device not initialized\n"); 5936 return -EOPNOTSUPP; 5937 } 5938 5939 /* If any of the VF's is already assigned to Guest OS, then 5940 * SRIOV for the same cannot be modified 5941 */ 5942 if (current_vfs && pci_vfs_assigned(pdev)) { 5943 dev_err(&pdev->dev, 5944 "Cannot modify SR-IOV while VFs are assigned\n"); 5945 return current_vfs; 5946 } 5947 /* Note that the upper-level code ensures that we're never called with 5948 * a non-zero "num_vfs" when we already have VFs instantiated. But 5949 * it never hurts to code defensively. 5950 */ 5951 if (num_vfs != 0 && current_vfs != 0) 5952 return -EBUSY; 5953 5954 /* Nothing to do for no change. */ 5955 if (num_vfs == current_vfs) 5956 return num_vfs; 5957 5958 /* Disable SRIOV when zero is passed. */ 5959 if (!num_vfs) { 5960 pci_disable_sriov(pdev); 5961 /* free VF Management Interface */ 5962 unregister_netdev(adap->port[0]); 5963 free_netdev(adap->port[0]); 5964 adap->port[0] = NULL; 5965 5966 /* free VF resources */ 5967 adap->num_vfs = 0; 5968 kfree(adap->vfinfo); 5969 adap->vfinfo = NULL; 5970 return 0; 5971 } 5972 5973 if (!current_vfs) { 5974 struct fw_pfvf_cmd port_cmd, port_rpl; 5975 struct net_device *netdev; 5976 unsigned int pmask, port; 5977 struct pci_dev *pbridge; 5978 struct port_info *pi; 5979 char name[IFNAMSIZ]; 5980 u32 devcap2; 5981 u16 flags; 5982 5983 /* If we want to instantiate Virtual Functions, then our 5984 * parent bridge's PCI-E needs to support Alternative Routing 5985 * ID (ARI) because our VFs will show up at function offset 8 5986 * and above. 5987 */ 5988 pbridge = pdev->bus->self; 5989 pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags); 5990 pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2); 5991 5992 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 5993 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 5994 /* Our parent bridge does not support ARI so issue a 5995 * warning and skip instantiating the VFs. They 5996 * won't be reachable. 5997 */ 5998 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 5999 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 6000 PCI_FUNC(pbridge->devfn)); 6001 return -ENOTSUPP; 6002 } 6003 memset(&port_cmd, 0, sizeof(port_cmd)); 6004 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 6005 FW_CMD_REQUEST_F | 6006 FW_CMD_READ_F | 6007 FW_PFVF_CMD_PFN_V(adap->pf) | 6008 FW_PFVF_CMD_VFN_V(0)); 6009 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 6010 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 6011 &port_rpl); 6012 if (err) 6013 return err; 6014 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 6015 port = ffs(pmask) - 1; 6016 /* Allocate VF Management Interface. */ 6017 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 6018 adap->pf); 6019 netdev = alloc_netdev(sizeof(struct port_info), 6020 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 6021 if (!netdev) 6022 return -ENOMEM; 6023 6024 pi = netdev_priv(netdev); 6025 pi->adapter = adap; 6026 pi->lport = port; 6027 pi->tx_chan = port; 6028 SET_NETDEV_DEV(netdev, &pdev->dev); 6029 6030 adap->port[0] = netdev; 6031 pi->port_id = 0; 6032 6033 err = register_netdev(adap->port[0]); 6034 if (err) { 6035 pr_info("Unable to register VF mgmt netdev %s\n", name); 6036 free_netdev(adap->port[0]); 6037 adap->port[0] = NULL; 6038 return err; 6039 } 6040 /* Allocate and set up VF Information. */ 6041 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 6042 sizeof(struct vf_info), GFP_KERNEL); 6043 if (!adap->vfinfo) { 6044 unregister_netdev(adap->port[0]); 6045 free_netdev(adap->port[0]); 6046 adap->port[0] = NULL; 6047 return -ENOMEM; 6048 } 6049 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 6050 } 6051 /* Instantiate the requested number of VFs. */ 6052 err = pci_enable_sriov(pdev, num_vfs); 6053 if (err) { 6054 pr_info("Unable to instantiate %d VFs\n", num_vfs); 6055 if (!current_vfs) { 6056 unregister_netdev(adap->port[0]); 6057 free_netdev(adap->port[0]); 6058 adap->port[0] = NULL; 6059 kfree(adap->vfinfo); 6060 adap->vfinfo = NULL; 6061 } 6062 return err; 6063 } 6064 6065 adap->num_vfs = num_vfs; 6066 return num_vfs; 6067 } 6068 #endif /* CONFIG_PCI_IOV */ 6069 6070 #if defined(CONFIG_CHELSIO_TLS_DEVICE) 6071 6072 static int cxgb4_ktls_dev_add(struct net_device *netdev, struct sock *sk, 6073 enum tls_offload_ctx_dir direction, 6074 struct tls_crypto_info *crypto_info, 6075 u32 tcp_sn) 6076 { 6077 struct adapter *adap = netdev2adap(netdev); 6078 int ret = 0; 6079 6080 mutex_lock(&uld_mutex); 6081 if (!adap->uld[CXGB4_ULD_CRYPTO].handle) { 6082 dev_err(adap->pdev_dev, "chcr driver is not loaded\n"); 6083 ret = -EOPNOTSUPP; 6084 goto out_unlock; 6085 } 6086 6087 if (!adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops) { 6088 dev_err(adap->pdev_dev, 6089 "chcr driver has no registered tlsdev_ops()\n"); 6090 ret = -EOPNOTSUPP; 6091 goto out_unlock; 6092 } 6093 6094 ret = cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_ENABLE); 6095 if (ret) 6096 goto out_unlock; 6097 6098 ret = adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops->tls_dev_add(netdev, sk, 6099 direction, 6100 crypto_info, 6101 tcp_sn); 6102 /* if there is a failure, clear the refcount */ 6103 if (ret) 6104 cxgb4_set_ktls_feature(adap, 6105 FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE); 6106 out_unlock: 6107 mutex_unlock(&uld_mutex); 6108 return ret; 6109 } 6110 6111 static void cxgb4_ktls_dev_del(struct net_device *netdev, 6112 struct tls_context *tls_ctx, 6113 enum tls_offload_ctx_dir direction) 6114 { 6115 struct adapter *adap = netdev2adap(netdev); 6116 6117 mutex_lock(&uld_mutex); 6118 if (!adap->uld[CXGB4_ULD_CRYPTO].handle) { 6119 dev_err(adap->pdev_dev, "chcr driver is not loaded\n"); 6120 goto out_unlock; 6121 } 6122 6123 if (!adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops) { 6124 dev_err(adap->pdev_dev, 6125 "chcr driver has no registered tlsdev_ops\n"); 6126 goto out_unlock; 6127 } 6128 6129 adap->uld[CXGB4_ULD_CRYPTO].tlsdev_ops->tls_dev_del(netdev, tls_ctx, 6130 direction); 6131 cxgb4_set_ktls_feature(adap, FW_PARAMS_PARAM_DEV_KTLS_HW_DISABLE); 6132 6133 out_unlock: 6134 mutex_unlock(&uld_mutex); 6135 } 6136 6137 static const struct tlsdev_ops cxgb4_ktls_ops = { 6138 .tls_dev_add = cxgb4_ktls_dev_add, 6139 .tls_dev_del = cxgb4_ktls_dev_del, 6140 }; 6141 #endif /* CONFIG_CHELSIO_TLS_DEVICE */ 6142 6143 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 6144 { 6145 struct net_device *netdev; 6146 struct adapter *adapter; 6147 static int adap_idx = 1; 6148 int s_qpp, qpp, num_seg; 6149 struct port_info *pi; 6150 bool highdma = false; 6151 enum chip_type chip; 6152 void __iomem *regs; 6153 int func, chip_ver; 6154 u16 device_id; 6155 int i, err; 6156 u32 whoami; 6157 6158 err = pci_request_regions(pdev, KBUILD_MODNAME); 6159 if (err) { 6160 /* Just info, some other driver may have claimed the device. */ 6161 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 6162 return err; 6163 } 6164 6165 err = pci_enable_device(pdev); 6166 if (err) { 6167 dev_err(&pdev->dev, "cannot enable PCI device\n"); 6168 goto out_release_regions; 6169 } 6170 6171 regs = pci_ioremap_bar(pdev, 0); 6172 if (!regs) { 6173 dev_err(&pdev->dev, "cannot map device registers\n"); 6174 err = -ENOMEM; 6175 goto out_disable_device; 6176 } 6177 6178 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 6179 if (!adapter) { 6180 err = -ENOMEM; 6181 goto out_unmap_bar0; 6182 } 6183 6184 adapter->regs = regs; 6185 err = t4_wait_dev_ready(regs); 6186 if (err < 0) 6187 goto out_free_adapter; 6188 6189 /* We control everything through one PF */ 6190 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 6191 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 6192 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 6193 if ((int)chip < 0) { 6194 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 6195 err = chip; 6196 goto out_free_adapter; 6197 } 6198 chip_ver = CHELSIO_CHIP_VERSION(chip); 6199 func = chip_ver <= CHELSIO_T5 ? 6200 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 6201 6202 adapter->pdev = pdev; 6203 adapter->pdev_dev = &pdev->dev; 6204 adapter->name = pci_name(pdev); 6205 adapter->mbox = func; 6206 adapter->pf = func; 6207 adapter->params.chip = chip; 6208 adapter->adap_idx = adap_idx; 6209 adapter->msg_enable = DFLT_MSG_ENABLE; 6210 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 6211 (sizeof(struct mbox_cmd) * 6212 T4_OS_LOG_MBOX_CMDS), 6213 GFP_KERNEL); 6214 if (!adapter->mbox_log) { 6215 err = -ENOMEM; 6216 goto out_free_adapter; 6217 } 6218 spin_lock_init(&adapter->mbox_lock); 6219 INIT_LIST_HEAD(&adapter->mlist.list); 6220 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 6221 pci_set_drvdata(pdev, adapter); 6222 6223 if (func != ent->driver_data) { 6224 pci_disable_device(pdev); 6225 pci_save_state(pdev); /* to restore SR-IOV later */ 6226 return 0; 6227 } 6228 6229 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 6230 highdma = true; 6231 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 6232 if (err) { 6233 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 6234 "coherent allocations\n"); 6235 goto out_free_adapter; 6236 } 6237 } else { 6238 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 6239 if (err) { 6240 dev_err(&pdev->dev, "no usable DMA configuration\n"); 6241 goto out_free_adapter; 6242 } 6243 } 6244 6245 pci_enable_pcie_error_reporting(pdev); 6246 pci_set_master(pdev); 6247 pci_save_state(pdev); 6248 adap_idx++; 6249 adapter->workq = create_singlethread_workqueue("cxgb4"); 6250 if (!adapter->workq) { 6251 err = -ENOMEM; 6252 goto out_free_adapter; 6253 } 6254 6255 /* PCI device has been enabled */ 6256 adapter->flags |= CXGB4_DEV_ENABLED; 6257 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 6258 6259 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 6260 * Ingress Packet Data to Free List Buffers in order to allow for 6261 * chipset performance optimizations between the Root Complex and 6262 * Memory Controllers. (Messages to the associated Ingress Queue 6263 * notifying new Packet Placement in the Free Lists Buffers will be 6264 * send without the Relaxed Ordering Attribute thus guaranteeing that 6265 * all preceding PCIe Transaction Layer Packets will be processed 6266 * first.) But some Root Complexes have various issues with Upstream 6267 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 6268 * The PCIe devices which under the Root Complexes will be cleared the 6269 * Relaxed Ordering bit in the configuration space, So we check our 6270 * PCIe configuration space to see if it's flagged with advice against 6271 * using Relaxed Ordering. 6272 */ 6273 if (!pcie_relaxed_ordering_enabled(pdev)) 6274 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING; 6275 6276 spin_lock_init(&adapter->stats_lock); 6277 spin_lock_init(&adapter->tid_release_lock); 6278 spin_lock_init(&adapter->win0_lock); 6279 6280 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 6281 INIT_WORK(&adapter->db_full_task, process_db_full); 6282 INIT_WORK(&adapter->db_drop_task, process_db_drop); 6283 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 6284 6285 err = t4_prep_adapter(adapter); 6286 if (err) 6287 goto out_free_adapter; 6288 6289 if (is_kdump_kernel()) { 6290 /* Collect hardware state and append to /proc/vmcore */ 6291 err = cxgb4_cudbg_vmcore_add_dump(adapter); 6292 if (err) { 6293 dev_warn(adapter->pdev_dev, 6294 "Fail collecting vmcore device dump, err: %d. Continuing\n", 6295 err); 6296 err = 0; 6297 } 6298 } 6299 6300 if (!is_t4(adapter->params.chip)) { 6301 s_qpp = (QUEUESPERPAGEPF0_S + 6302 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 6303 adapter->pf); 6304 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 6305 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 6306 num_seg = PAGE_SIZE / SEGMENT_SIZE; 6307 6308 /* Each segment size is 128B. Write coalescing is enabled only 6309 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 6310 * queue is less no of segments that can be accommodated in 6311 * a page size. 6312 */ 6313 if (qpp > num_seg) { 6314 dev_err(&pdev->dev, 6315 "Incorrect number of egress queues per page\n"); 6316 err = -EINVAL; 6317 goto out_free_adapter; 6318 } 6319 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 6320 pci_resource_len(pdev, 2)); 6321 if (!adapter->bar2) { 6322 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 6323 err = -ENOMEM; 6324 goto out_free_adapter; 6325 } 6326 } 6327 6328 setup_memwin(adapter); 6329 err = adap_init0(adapter, 0); 6330 #ifdef CONFIG_DEBUG_FS 6331 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 6332 #endif 6333 setup_memwin_rdma(adapter); 6334 if (err) 6335 goto out_unmap_bar; 6336 6337 /* configure SGE_STAT_CFG_A to read WC stats */ 6338 if (!is_t4(adapter->params.chip)) 6339 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 6340 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 6341 T6_STATMODE_V(0))); 6342 6343 /* Initialize hash mac addr list */ 6344 INIT_LIST_HEAD(&adapter->mac_hlist); 6345 6346 for_each_port(adapter, i) { 6347 /* For supporting MQPRIO Offload, need some extra 6348 * queues for each ETHOFLD TIDs. Keep it equal to 6349 * MAX_ATIDs for now. Once we connect to firmware 6350 * later and query the EOTID params, we'll come to 6351 * know the actual # of EOTIDs supported. 6352 */ 6353 netdev = alloc_etherdev_mq(sizeof(struct port_info), 6354 MAX_ETH_QSETS + MAX_ATIDS); 6355 if (!netdev) { 6356 err = -ENOMEM; 6357 goto out_free_dev; 6358 } 6359 6360 SET_NETDEV_DEV(netdev, &pdev->dev); 6361 6362 adapter->port[i] = netdev; 6363 pi = netdev_priv(netdev); 6364 pi->adapter = adapter; 6365 pi->xact_addr_filt = -1; 6366 pi->port_id = i; 6367 netdev->irq = pdev->irq; 6368 6369 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 6370 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 6371 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO | 6372 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 6373 NETIF_F_HW_TC; 6374 6375 if (chip_ver > CHELSIO_T5) { 6376 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 6377 NETIF_F_IPV6_CSUM | 6378 NETIF_F_RXCSUM | 6379 NETIF_F_GSO_UDP_TUNNEL | 6380 NETIF_F_GSO_UDP_TUNNEL_CSUM | 6381 NETIF_F_TSO | NETIF_F_TSO6; 6382 6383 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 6384 NETIF_F_GSO_UDP_TUNNEL_CSUM | 6385 NETIF_F_HW_TLS_RECORD; 6386 } 6387 6388 if (highdma) 6389 netdev->hw_features |= NETIF_F_HIGHDMA; 6390 netdev->features |= netdev->hw_features; 6391 netdev->vlan_features = netdev->features & VLAN_FEAT; 6392 #if defined(CONFIG_CHELSIO_TLS_DEVICE) 6393 if (pi->adapter->params.crypto & FW_CAPS_CONFIG_TLS_HW) { 6394 netdev->hw_features |= NETIF_F_HW_TLS_TX; 6395 netdev->tlsdev_ops = &cxgb4_ktls_ops; 6396 /* initialize the refcount */ 6397 refcount_set(&pi->adapter->chcr_ktls.ktls_refcount, 0); 6398 } 6399 #endif 6400 netdev->priv_flags |= IFF_UNICAST_FLT; 6401 6402 /* MTU range: 81 - 9600 */ 6403 netdev->min_mtu = 81; /* accommodate SACK */ 6404 netdev->max_mtu = MAX_MTU; 6405 6406 netdev->netdev_ops = &cxgb4_netdev_ops; 6407 #ifdef CONFIG_CHELSIO_T4_DCB 6408 netdev->dcbnl_ops = &cxgb4_dcb_ops; 6409 cxgb4_dcb_state_init(netdev); 6410 cxgb4_dcb_version_init(netdev); 6411 #endif 6412 cxgb4_set_ethtool_ops(netdev); 6413 } 6414 6415 cxgb4_init_ethtool_dump(adapter); 6416 6417 pci_set_drvdata(pdev, adapter); 6418 6419 if (adapter->flags & CXGB4_FW_OK) { 6420 err = t4_port_init(adapter, func, func, 0); 6421 if (err) 6422 goto out_free_dev; 6423 } else if (adapter->params.nports == 1) { 6424 /* If we don't have a connection to the firmware -- possibly 6425 * because of an error -- grab the raw VPD parameters so we 6426 * can set the proper MAC Address on the debug network 6427 * interface that we've created. 6428 */ 6429 u8 hw_addr[ETH_ALEN]; 6430 u8 *na = adapter->params.vpd.na; 6431 6432 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 6433 if (!err) { 6434 for (i = 0; i < ETH_ALEN; i++) 6435 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 6436 hex2val(na[2 * i + 1])); 6437 t4_set_hw_addr(adapter, 0, hw_addr); 6438 } 6439 } 6440 6441 if (!(adapter->flags & CXGB4_FW_OK)) 6442 goto fw_attach_fail; 6443 6444 /* Configure queues and allocate tables now, they can be needed as 6445 * soon as the first register_netdev completes. 6446 */ 6447 err = cfg_queues(adapter); 6448 if (err) 6449 goto out_free_dev; 6450 6451 adapter->smt = t4_init_smt(); 6452 if (!adapter->smt) { 6453 /* We tolerate a lack of SMT, giving up some functionality */ 6454 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 6455 } 6456 6457 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 6458 if (!adapter->l2t) { 6459 /* We tolerate a lack of L2T, giving up some functionality */ 6460 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 6461 adapter->params.offload = 0; 6462 } 6463 6464 #if IS_ENABLED(CONFIG_IPV6) 6465 if (chip_ver <= CHELSIO_T5 && 6466 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 6467 /* CLIP functionality is not present in hardware, 6468 * hence disable all offload features 6469 */ 6470 dev_warn(&pdev->dev, 6471 "CLIP not enabled in hardware, continuing\n"); 6472 adapter->params.offload = 0; 6473 } else { 6474 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 6475 adapter->clipt_end); 6476 if (!adapter->clipt) { 6477 /* We tolerate a lack of clip_table, giving up 6478 * some functionality 6479 */ 6480 dev_warn(&pdev->dev, 6481 "could not allocate Clip table, continuing\n"); 6482 adapter->params.offload = 0; 6483 } 6484 } 6485 #endif 6486 6487 for_each_port(adapter, i) { 6488 pi = adap2pinfo(adapter, i); 6489 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 6490 if (!pi->sched_tbl) 6491 dev_warn(&pdev->dev, 6492 "could not activate scheduling on port %d\n", 6493 i); 6494 } 6495 6496 if (tid_init(&adapter->tids) < 0) { 6497 dev_warn(&pdev->dev, "could not allocate TID table, " 6498 "continuing\n"); 6499 adapter->params.offload = 0; 6500 } else { 6501 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 6502 if (!adapter->tc_u32) 6503 dev_warn(&pdev->dev, 6504 "could not offload tc u32, continuing\n"); 6505 6506 if (cxgb4_init_tc_flower(adapter)) 6507 dev_warn(&pdev->dev, 6508 "could not offload tc flower, continuing\n"); 6509 6510 if (cxgb4_init_tc_mqprio(adapter)) 6511 dev_warn(&pdev->dev, 6512 "could not offload tc mqprio, continuing\n"); 6513 6514 if (cxgb4_init_tc_matchall(adapter)) 6515 dev_warn(&pdev->dev, 6516 "could not offload tc matchall, continuing\n"); 6517 } 6518 6519 if (is_offload(adapter) || is_hashfilter(adapter)) { 6520 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 6521 u32 hash_base, hash_reg; 6522 6523 if (chip_ver <= CHELSIO_T5) { 6524 hash_reg = LE_DB_TID_HASHBASE_A; 6525 hash_base = t4_read_reg(adapter, hash_reg); 6526 adapter->tids.hash_base = hash_base / 4; 6527 } else { 6528 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 6529 hash_base = t4_read_reg(adapter, hash_reg); 6530 adapter->tids.hash_base = hash_base; 6531 } 6532 } 6533 } 6534 6535 /* See what interrupts we'll be using */ 6536 if (msi > 1 && enable_msix(adapter) == 0) 6537 adapter->flags |= CXGB4_USING_MSIX; 6538 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 6539 adapter->flags |= CXGB4_USING_MSI; 6540 if (msi > 1) 6541 free_msix_info(adapter); 6542 } 6543 6544 /* check for PCI Express bandwidth capabiltites */ 6545 pcie_print_link_status(pdev); 6546 6547 cxgb4_init_mps_ref_entries(adapter); 6548 6549 err = init_rss(adapter); 6550 if (err) 6551 goto out_free_dev; 6552 6553 err = setup_non_data_intr(adapter); 6554 if (err) { 6555 dev_err(adapter->pdev_dev, 6556 "Non Data interrupt allocation failed, err: %d\n", err); 6557 goto out_free_dev; 6558 } 6559 6560 err = setup_fw_sge_queues(adapter); 6561 if (err) { 6562 dev_err(adapter->pdev_dev, 6563 "FW sge queue allocation failed, err %d", err); 6564 goto out_free_dev; 6565 } 6566 6567 fw_attach_fail: 6568 /* 6569 * The card is now ready to go. If any errors occur during device 6570 * registration we do not fail the whole card but rather proceed only 6571 * with the ports we manage to register successfully. However we must 6572 * register at least one net device. 6573 */ 6574 for_each_port(adapter, i) { 6575 pi = adap2pinfo(adapter, i); 6576 adapter->port[i]->dev_port = pi->lport; 6577 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 6578 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 6579 6580 netif_carrier_off(adapter->port[i]); 6581 6582 err = register_netdev(adapter->port[i]); 6583 if (err) 6584 break; 6585 adapter->chan_map[pi->tx_chan] = i; 6586 print_port_info(adapter->port[i]); 6587 } 6588 if (i == 0) { 6589 dev_err(&pdev->dev, "could not register any net devices\n"); 6590 goto out_free_dev; 6591 } 6592 if (err) { 6593 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 6594 err = 0; 6595 } 6596 6597 if (cxgb4_debugfs_root) { 6598 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 6599 cxgb4_debugfs_root); 6600 setup_debugfs(adapter); 6601 } 6602 6603 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 6604 pdev->needs_freset = 1; 6605 6606 if (is_uld(adapter)) 6607 cxgb4_uld_enable(adapter); 6608 6609 if (!is_t4(adapter->params.chip)) 6610 cxgb4_ptp_init(adapter); 6611 6612 if (IS_REACHABLE(CONFIG_THERMAL) && 6613 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK)) 6614 cxgb4_thermal_init(adapter); 6615 6616 print_adapter_info(adapter); 6617 return 0; 6618 6619 out_free_dev: 6620 t4_free_sge_resources(adapter); 6621 free_some_resources(adapter); 6622 if (adapter->flags & CXGB4_USING_MSIX) 6623 free_msix_info(adapter); 6624 if (adapter->num_uld || adapter->num_ofld_uld) 6625 t4_uld_mem_free(adapter); 6626 out_unmap_bar: 6627 if (!is_t4(adapter->params.chip)) 6628 iounmap(adapter->bar2); 6629 out_free_adapter: 6630 if (adapter->workq) 6631 destroy_workqueue(adapter->workq); 6632 6633 kfree(adapter->mbox_log); 6634 kfree(adapter); 6635 out_unmap_bar0: 6636 iounmap(regs); 6637 out_disable_device: 6638 pci_disable_pcie_error_reporting(pdev); 6639 pci_disable_device(pdev); 6640 out_release_regions: 6641 pci_release_regions(pdev); 6642 return err; 6643 } 6644 6645 static void remove_one(struct pci_dev *pdev) 6646 { 6647 struct adapter *adapter = pci_get_drvdata(pdev); 6648 struct hash_mac_addr *entry, *tmp; 6649 6650 if (!adapter) { 6651 pci_release_regions(pdev); 6652 return; 6653 } 6654 6655 /* If we allocated filters, free up state associated with any 6656 * valid filters ... 6657 */ 6658 clear_all_filters(adapter); 6659 6660 adapter->flags |= CXGB4_SHUTTING_DOWN; 6661 6662 if (adapter->pf == 4) { 6663 int i; 6664 6665 /* Tear down per-adapter Work Queue first since it can contain 6666 * references to our adapter data structure. 6667 */ 6668 destroy_workqueue(adapter->workq); 6669 6670 if (is_uld(adapter)) { 6671 detach_ulds(adapter); 6672 t4_uld_clean_up(adapter); 6673 } 6674 6675 adap_free_hma_mem(adapter); 6676 6677 disable_interrupts(adapter); 6678 6679 cxgb4_free_mps_ref_entries(adapter); 6680 6681 for_each_port(adapter, i) 6682 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6683 unregister_netdev(adapter->port[i]); 6684 6685 debugfs_remove_recursive(adapter->debugfs_root); 6686 6687 if (!is_t4(adapter->params.chip)) 6688 cxgb4_ptp_stop(adapter); 6689 if (IS_REACHABLE(CONFIG_THERMAL)) 6690 cxgb4_thermal_remove(adapter); 6691 6692 if (adapter->flags & CXGB4_FULL_INIT_DONE) 6693 cxgb_down(adapter); 6694 6695 if (adapter->flags & CXGB4_USING_MSIX) 6696 free_msix_info(adapter); 6697 if (adapter->num_uld || adapter->num_ofld_uld) 6698 t4_uld_mem_free(adapter); 6699 free_some_resources(adapter); 6700 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 6701 list) { 6702 list_del(&entry->list); 6703 kfree(entry); 6704 } 6705 6706 #if IS_ENABLED(CONFIG_IPV6) 6707 t4_cleanup_clip_tbl(adapter); 6708 #endif 6709 if (!is_t4(adapter->params.chip)) 6710 iounmap(adapter->bar2); 6711 } 6712 #ifdef CONFIG_PCI_IOV 6713 else { 6714 cxgb4_iov_configure(adapter->pdev, 0); 6715 } 6716 #endif 6717 iounmap(adapter->regs); 6718 pci_disable_pcie_error_reporting(pdev); 6719 if ((adapter->flags & CXGB4_DEV_ENABLED)) { 6720 pci_disable_device(pdev); 6721 adapter->flags &= ~CXGB4_DEV_ENABLED; 6722 } 6723 pci_release_regions(pdev); 6724 kfree(adapter->mbox_log); 6725 synchronize_rcu(); 6726 kfree(adapter); 6727 } 6728 6729 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 6730 * delivery. This is essentially a stripped down version of the PCI remove() 6731 * function where we do the minimal amount of work necessary to shutdown any 6732 * further activity. 6733 */ 6734 static void shutdown_one(struct pci_dev *pdev) 6735 { 6736 struct adapter *adapter = pci_get_drvdata(pdev); 6737 6738 /* As with remove_one() above (see extended comment), we only want do 6739 * do cleanup on PCI Devices which went all the way through init_one() 6740 * ... 6741 */ 6742 if (!adapter) { 6743 pci_release_regions(pdev); 6744 return; 6745 } 6746 6747 adapter->flags |= CXGB4_SHUTTING_DOWN; 6748 6749 if (adapter->pf == 4) { 6750 int i; 6751 6752 for_each_port(adapter, i) 6753 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6754 cxgb_close(adapter->port[i]); 6755 6756 rtnl_lock(); 6757 cxgb4_mqprio_stop_offload(adapter); 6758 rtnl_unlock(); 6759 6760 if (is_uld(adapter)) { 6761 detach_ulds(adapter); 6762 t4_uld_clean_up(adapter); 6763 } 6764 6765 disable_interrupts(adapter); 6766 disable_msi(adapter); 6767 6768 t4_sge_stop(adapter); 6769 if (adapter->flags & CXGB4_FW_OK) 6770 t4_fw_bye(adapter, adapter->mbox); 6771 } 6772 } 6773 6774 static struct pci_driver cxgb4_driver = { 6775 .name = KBUILD_MODNAME, 6776 .id_table = cxgb4_pci_tbl, 6777 .probe = init_one, 6778 .remove = remove_one, 6779 .shutdown = shutdown_one, 6780 #ifdef CONFIG_PCI_IOV 6781 .sriov_configure = cxgb4_iov_configure, 6782 #endif 6783 .err_handler = &cxgb4_eeh, 6784 }; 6785 6786 static int __init cxgb4_init_module(void) 6787 { 6788 int ret; 6789 6790 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6791 6792 ret = pci_register_driver(&cxgb4_driver); 6793 if (ret < 0) 6794 goto err_pci; 6795 6796 #if IS_ENABLED(CONFIG_IPV6) 6797 if (!inet6addr_registered) { 6798 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6799 if (ret) 6800 pci_unregister_driver(&cxgb4_driver); 6801 else 6802 inet6addr_registered = true; 6803 } 6804 #endif 6805 6806 if (ret == 0) 6807 return ret; 6808 6809 err_pci: 6810 debugfs_remove(cxgb4_debugfs_root); 6811 6812 return ret; 6813 } 6814 6815 static void __exit cxgb4_cleanup_module(void) 6816 { 6817 #if IS_ENABLED(CONFIG_IPV6) 6818 if (inet6addr_registered) { 6819 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6820 inet6addr_registered = false; 6821 } 6822 #endif 6823 pci_unregister_driver(&cxgb4_driver); 6824 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6825 } 6826 6827 module_init(cxgb4_init_module); 6828 module_exit(cxgb4_cleanup_module); 6829