1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <linux/uaccess.h>
66 #include <linux/crash_dump.h>
67 #include <net/udp_tunnel.h>
68 #include <net/xfrm.h>
69 
70 #include "cxgb4.h"
71 #include "cxgb4_filter.h"
72 #include "t4_regs.h"
73 #include "t4_values.h"
74 #include "t4_msg.h"
75 #include "t4fw_api.h"
76 #include "t4fw_version.h"
77 #include "cxgb4_dcb.h"
78 #include "srq.h"
79 #include "cxgb4_debugfs.h"
80 #include "clip_tbl.h"
81 #include "l2t.h"
82 #include "smt.h"
83 #include "sched.h"
84 #include "cxgb4_tc_u32.h"
85 #include "cxgb4_tc_flower.h"
86 #include "cxgb4_tc_mqprio.h"
87 #include "cxgb4_tc_matchall.h"
88 #include "cxgb4_ptp.h"
89 #include "cxgb4_cudbg.h"
90 
91 char cxgb4_driver_name[] = KBUILD_MODNAME;
92 
93 #ifdef DRV_VERSION
94 #undef DRV_VERSION
95 #endif
96 #define DRV_VERSION "2.0.0-ko"
97 const char cxgb4_driver_version[] = DRV_VERSION;
98 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
99 
100 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
101 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
102 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
103 
104 /* Macros needed to support the PCI Device ID Table ...
105  */
106 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
107 	static const struct pci_device_id cxgb4_pci_tbl[] = {
108 #define CXGB4_UNIFIED_PF 0x4
109 
110 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
111 
112 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
113  * called for both.
114  */
115 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
116 
117 #define CH_PCI_ID_TABLE_ENTRY(devid) \
118 		{PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
119 
120 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
121 		{ 0, } \
122 	}
123 
124 #include "t4_pci_id_tbl.h"
125 
126 #define FW4_FNAME "cxgb4/t4fw.bin"
127 #define FW5_FNAME "cxgb4/t5fw.bin"
128 #define FW6_FNAME "cxgb4/t6fw.bin"
129 #define FW4_CFNAME "cxgb4/t4-config.txt"
130 #define FW5_CFNAME "cxgb4/t5-config.txt"
131 #define FW6_CFNAME "cxgb4/t6-config.txt"
132 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
133 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
134 #define PHY_AQ1202_DEVICEID 0x4409
135 #define PHY_BCM84834_DEVICEID 0x4486
136 
137 MODULE_DESCRIPTION(DRV_DESC);
138 MODULE_AUTHOR("Chelsio Communications");
139 MODULE_LICENSE("Dual BSD/GPL");
140 MODULE_VERSION(DRV_VERSION);
141 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
142 MODULE_FIRMWARE(FW4_FNAME);
143 MODULE_FIRMWARE(FW5_FNAME);
144 MODULE_FIRMWARE(FW6_FNAME);
145 
146 /*
147  * The driver uses the best interrupt scheme available on a platform in the
148  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
149  * of these schemes the driver may consider as follows:
150  *
151  * msi = 2: choose from among all three options
152  * msi = 1: only consider MSI and INTx interrupts
153  * msi = 0: force INTx interrupts
154  */
155 static int msi = 2;
156 
157 module_param(msi, int, 0644);
158 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
159 
160 /*
161  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
162  * offset by 2 bytes in order to have the IP headers line up on 4-byte
163  * boundaries.  This is a requirement for many architectures which will throw
164  * a machine check fault if an attempt is made to access one of the 4-byte IP
165  * header fields on a non-4-byte boundary.  And it's a major performance issue
166  * even on some architectures which allow it like some implementations of the
167  * x86 ISA.  However, some architectures don't mind this and for some very
168  * edge-case performance sensitive applications (like forwarding large volumes
169  * of small packets), setting this DMA offset to 0 will decrease the number of
170  * PCI-E Bus transfers enough to measurably affect performance.
171  */
172 static int rx_dma_offset = 2;
173 
174 /* TX Queue select used to determine what algorithm to use for selecting TX
175  * queue. Select between the kernel provided function (select_queue=0) or user
176  * cxgb_select_queue function (select_queue=1)
177  *
178  * Default: select_queue=0
179  */
180 static int select_queue;
181 module_param(select_queue, int, 0644);
182 MODULE_PARM_DESC(select_queue,
183 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
184 
185 static struct dentry *cxgb4_debugfs_root;
186 
187 LIST_HEAD(adapter_list);
188 DEFINE_MUTEX(uld_mutex);
189 
190 static int cfg_queues(struct adapter *adap);
191 
192 static void link_report(struct net_device *dev)
193 {
194 	if (!netif_carrier_ok(dev))
195 		netdev_info(dev, "link down\n");
196 	else {
197 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
198 
199 		const char *s;
200 		const struct port_info *p = netdev_priv(dev);
201 
202 		switch (p->link_cfg.speed) {
203 		case 100:
204 			s = "100Mbps";
205 			break;
206 		case 1000:
207 			s = "1Gbps";
208 			break;
209 		case 10000:
210 			s = "10Gbps";
211 			break;
212 		case 25000:
213 			s = "25Gbps";
214 			break;
215 		case 40000:
216 			s = "40Gbps";
217 			break;
218 		case 50000:
219 			s = "50Gbps";
220 			break;
221 		case 100000:
222 			s = "100Gbps";
223 			break;
224 		default:
225 			pr_info("%s: unsupported speed: %d\n",
226 				dev->name, p->link_cfg.speed);
227 			return;
228 		}
229 
230 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
231 			    fc[p->link_cfg.fc]);
232 	}
233 }
234 
235 #ifdef CONFIG_CHELSIO_T4_DCB
236 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
237 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
238 {
239 	struct port_info *pi = netdev_priv(dev);
240 	struct adapter *adap = pi->adapter;
241 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
242 	int i;
243 
244 	/* We use a simple mapping of Port TX Queue Index to DCB
245 	 * Priority when we're enabling DCB.
246 	 */
247 	for (i = 0; i < pi->nqsets; i++, txq++) {
248 		u32 name, value;
249 		int err;
250 
251 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
252 			FW_PARAMS_PARAM_X_V(
253 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
254 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
255 		value = enable ? i : 0xffffffff;
256 
257 		/* Since we can be called while atomic (from "interrupt
258 		 * level") we need to issue the Set Parameters Commannd
259 		 * without sleeping (timeout < 0).
260 		 */
261 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
262 					    &name, &value,
263 					    -FW_CMD_MAX_TIMEOUT);
264 
265 		if (err)
266 			dev_err(adap->pdev_dev,
267 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
268 				enable ? "set" : "unset", pi->port_id, i, -err);
269 		else
270 			txq->dcb_prio = enable ? value : 0;
271 	}
272 }
273 
274 int cxgb4_dcb_enabled(const struct net_device *dev)
275 {
276 	struct port_info *pi = netdev_priv(dev);
277 
278 	if (!pi->dcb.enabled)
279 		return 0;
280 
281 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
282 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
283 }
284 #endif /* CONFIG_CHELSIO_T4_DCB */
285 
286 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
287 {
288 	struct net_device *dev = adapter->port[port_id];
289 
290 	/* Skip changes from disabled ports. */
291 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
292 		if (link_stat)
293 			netif_carrier_on(dev);
294 		else {
295 #ifdef CONFIG_CHELSIO_T4_DCB
296 			if (cxgb4_dcb_enabled(dev)) {
297 				cxgb4_dcb_reset(dev);
298 				dcb_tx_queue_prio_enable(dev, false);
299 			}
300 #endif /* CONFIG_CHELSIO_T4_DCB */
301 			netif_carrier_off(dev);
302 		}
303 
304 		link_report(dev);
305 	}
306 }
307 
308 void t4_os_portmod_changed(struct adapter *adap, int port_id)
309 {
310 	static const char *mod_str[] = {
311 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
312 	};
313 
314 	struct net_device *dev = adap->port[port_id];
315 	struct port_info *pi = netdev_priv(dev);
316 
317 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
318 		netdev_info(dev, "port module unplugged\n");
319 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
320 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
321 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
322 		netdev_info(dev, "%s: unsupported port module inserted\n",
323 			    dev->name);
324 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
325 		netdev_info(dev, "%s: unknown port module inserted\n",
326 			    dev->name);
327 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
328 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
329 	else
330 		netdev_info(dev, "%s: unknown module type %d inserted\n",
331 			    dev->name, pi->mod_type);
332 
333 	/* If the interface is running, then we'll need any "sticky" Link
334 	 * Parameters redone with a new Transceiver Module.
335 	 */
336 	pi->link_cfg.redo_l1cfg = netif_running(dev);
337 }
338 
339 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
340 module_param(dbfifo_int_thresh, int, 0644);
341 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
342 
343 /*
344  * usecs to sleep while draining the dbfifo
345  */
346 static int dbfifo_drain_delay = 1000;
347 module_param(dbfifo_drain_delay, int, 0644);
348 MODULE_PARM_DESC(dbfifo_drain_delay,
349 		 "usecs to sleep while draining the dbfifo");
350 
351 static inline int cxgb4_set_addr_hash(struct port_info *pi)
352 {
353 	struct adapter *adap = pi->adapter;
354 	u64 vec = 0;
355 	bool ucast = false;
356 	struct hash_mac_addr *entry;
357 
358 	/* Calculate the hash vector for the updated list and program it */
359 	list_for_each_entry(entry, &adap->mac_hlist, list) {
360 		ucast |= is_unicast_ether_addr(entry->addr);
361 		vec |= (1ULL << hash_mac_addr(entry->addr));
362 	}
363 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
364 				vec, false);
365 }
366 
367 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
368 {
369 	struct port_info *pi = netdev_priv(netdev);
370 	struct adapter *adap = pi->adapter;
371 	int ret;
372 	u64 mhash = 0;
373 	u64 uhash = 0;
374 	/* idx stores the index of allocated filters,
375 	 * its size should be modified based on the number of
376 	 * MAC addresses that we allocate filters for
377 	 */
378 
379 	u16 idx[1] = {};
380 	bool free = false;
381 	bool ucast = is_unicast_ether_addr(mac_addr);
382 	const u8 *maclist[1] = {mac_addr};
383 	struct hash_mac_addr *new_entry;
384 
385 	ret = cxgb4_alloc_mac_filt(adap, pi->viid, free, 1, maclist,
386 				   idx, ucast ? &uhash : &mhash, false);
387 	if (ret < 0)
388 		goto out;
389 	/* if hash != 0, then add the addr to hash addr list
390 	 * so on the end we will calculate the hash for the
391 	 * list and program it
392 	 */
393 	if (uhash || mhash) {
394 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
395 		if (!new_entry)
396 			return -ENOMEM;
397 		ether_addr_copy(new_entry->addr, mac_addr);
398 		list_add_tail(&new_entry->list, &adap->mac_hlist);
399 		ret = cxgb4_set_addr_hash(pi);
400 	}
401 out:
402 	return ret < 0 ? ret : 0;
403 }
404 
405 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
406 {
407 	struct port_info *pi = netdev_priv(netdev);
408 	struct adapter *adap = pi->adapter;
409 	int ret;
410 	const u8 *maclist[1] = {mac_addr};
411 	struct hash_mac_addr *entry, *tmp;
412 
413 	/* If the MAC address to be removed is in the hash addr
414 	 * list, delete it from the list and update hash vector
415 	 */
416 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
417 		if (ether_addr_equal(entry->addr, mac_addr)) {
418 			list_del(&entry->list);
419 			kfree(entry);
420 			return cxgb4_set_addr_hash(pi);
421 		}
422 	}
423 
424 	ret = cxgb4_free_mac_filt(adap, pi->viid, 1, maclist, false);
425 	return ret < 0 ? -EINVAL : 0;
426 }
427 
428 /*
429  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
430  * If @mtu is -1 it is left unchanged.
431  */
432 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
433 {
434 	struct port_info *pi = netdev_priv(dev);
435 	struct adapter *adapter = pi->adapter;
436 
437 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
438 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
439 
440 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
441 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
442 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
443 			     sleep_ok);
444 }
445 
446 /**
447  *	cxgb4_change_mac - Update match filter for a MAC address.
448  *	@pi: the port_info
449  *	@viid: the VI id
450  *	@tcam_idx: TCAM index of existing filter for old value of MAC address,
451  *		   or -1
452  *	@addr: the new MAC address value
453  *	@persist: whether a new MAC allocation should be persistent
454  *	@add_smt: if true also add the address to the HW SMT
455  *
456  *	Modifies an MPS filter and sets it to the new MAC address if
457  *	@tcam_idx >= 0, or adds the MAC address to a new filter if
458  *	@tcam_idx < 0. In the latter case the address is added persistently
459  *	if @persist is %true.
460  *	Addresses are programmed to hash region, if tcam runs out of entries.
461  *
462  */
463 int cxgb4_change_mac(struct port_info *pi, unsigned int viid,
464 		     int *tcam_idx, const u8 *addr, bool persist,
465 		     u8 *smt_idx)
466 {
467 	struct adapter *adapter = pi->adapter;
468 	struct hash_mac_addr *entry, *new_entry;
469 	int ret;
470 
471 	ret = t4_change_mac(adapter, adapter->mbox, viid,
472 			    *tcam_idx, addr, persist, smt_idx);
473 	/* We ran out of TCAM entries. try programming hash region. */
474 	if (ret == -ENOMEM) {
475 		/* If the MAC address to be updated is in the hash addr
476 		 * list, update it from the list
477 		 */
478 		list_for_each_entry(entry, &adapter->mac_hlist, list) {
479 			if (entry->iface_mac) {
480 				ether_addr_copy(entry->addr, addr);
481 				goto set_hash;
482 			}
483 		}
484 		new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL);
485 		if (!new_entry)
486 			return -ENOMEM;
487 		ether_addr_copy(new_entry->addr, addr);
488 		new_entry->iface_mac = true;
489 		list_add_tail(&new_entry->list, &adapter->mac_hlist);
490 set_hash:
491 		ret = cxgb4_set_addr_hash(pi);
492 	} else if (ret >= 0) {
493 		*tcam_idx = ret;
494 		ret = 0;
495 	}
496 
497 	return ret;
498 }
499 
500 /*
501  *	link_start - enable a port
502  *	@dev: the port to enable
503  *
504  *	Performs the MAC and PHY actions needed to enable a port.
505  */
506 static int link_start(struct net_device *dev)
507 {
508 	int ret;
509 	struct port_info *pi = netdev_priv(dev);
510 	unsigned int mb = pi->adapter->pf;
511 
512 	/*
513 	 * We do not set address filters and promiscuity here, the stack does
514 	 * that step explicitly.
515 	 */
516 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
517 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
518 	if (ret == 0)
519 		ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
520 					    dev->dev_addr, true, &pi->smt_idx);
521 	if (ret == 0)
522 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
523 				    &pi->link_cfg);
524 	if (ret == 0) {
525 		local_bh_disable();
526 		ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
527 					  true, CXGB4_DCB_ENABLED);
528 		local_bh_enable();
529 	}
530 
531 	return ret;
532 }
533 
534 #ifdef CONFIG_CHELSIO_T4_DCB
535 /* Handle a Data Center Bridging update message from the firmware. */
536 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
537 {
538 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
539 	struct net_device *dev = adap->port[adap->chan_map[port]];
540 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
541 	int new_dcb_enabled;
542 
543 	cxgb4_dcb_handle_fw_update(adap, pcmd);
544 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
545 
546 	/* If the DCB has become enabled or disabled on the port then we're
547 	 * going to need to set up/tear down DCB Priority parameters for the
548 	 * TX Queues associated with the port.
549 	 */
550 	if (new_dcb_enabled != old_dcb_enabled)
551 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
552 }
553 #endif /* CONFIG_CHELSIO_T4_DCB */
554 
555 /* Response queue handler for the FW event queue.
556  */
557 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
558 			  const struct pkt_gl *gl)
559 {
560 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
561 
562 	rsp++;                                          /* skip RSS header */
563 
564 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
565 	 */
566 	if (unlikely(opcode == CPL_FW4_MSG &&
567 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
568 		rsp++;
569 		opcode = ((const struct rss_header *)rsp)->opcode;
570 		rsp++;
571 		if (opcode != CPL_SGE_EGR_UPDATE) {
572 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
573 				, opcode);
574 			goto out;
575 		}
576 	}
577 
578 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
579 		const struct cpl_sge_egr_update *p = (void *)rsp;
580 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
581 		struct sge_txq *txq;
582 
583 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
584 		txq->restarts++;
585 		if (txq->q_type == CXGB4_TXQ_ETH) {
586 			struct sge_eth_txq *eq;
587 
588 			eq = container_of(txq, struct sge_eth_txq, q);
589 			t4_sge_eth_txq_egress_update(q->adap, eq, -1);
590 		} else {
591 			struct sge_uld_txq *oq;
592 
593 			oq = container_of(txq, struct sge_uld_txq, q);
594 			tasklet_schedule(&oq->qresume_tsk);
595 		}
596 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
597 		const struct cpl_fw6_msg *p = (void *)rsp;
598 
599 #ifdef CONFIG_CHELSIO_T4_DCB
600 		const struct fw_port_cmd *pcmd = (const void *)p->data;
601 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
602 		unsigned int action =
603 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
604 
605 		if (cmd == FW_PORT_CMD &&
606 		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
607 		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
608 			int port = FW_PORT_CMD_PORTID_G(
609 					be32_to_cpu(pcmd->op_to_portid));
610 			struct net_device *dev;
611 			int dcbxdis, state_input;
612 
613 			dev = q->adap->port[q->adap->chan_map[port]];
614 			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
615 			  ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
616 			  : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
617 			       & FW_PORT_CMD_DCBXDIS32_F));
618 			state_input = (dcbxdis
619 				       ? CXGB4_DCB_INPUT_FW_DISABLED
620 				       : CXGB4_DCB_INPUT_FW_ENABLED);
621 
622 			cxgb4_dcb_state_fsm(dev, state_input);
623 		}
624 
625 		if (cmd == FW_PORT_CMD &&
626 		    action == FW_PORT_ACTION_L2_DCB_CFG)
627 			dcb_rpl(q->adap, pcmd);
628 		else
629 #endif
630 			if (p->type == 0)
631 				t4_handle_fw_rpl(q->adap, p->data);
632 	} else if (opcode == CPL_L2T_WRITE_RPL) {
633 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
634 
635 		do_l2t_write_rpl(q->adap, p);
636 	} else if (opcode == CPL_SMT_WRITE_RPL) {
637 		const struct cpl_smt_write_rpl *p = (void *)rsp;
638 
639 		do_smt_write_rpl(q->adap, p);
640 	} else if (opcode == CPL_SET_TCB_RPL) {
641 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
642 
643 		filter_rpl(q->adap, p);
644 	} else if (opcode == CPL_ACT_OPEN_RPL) {
645 		const struct cpl_act_open_rpl *p = (void *)rsp;
646 
647 		hash_filter_rpl(q->adap, p);
648 	} else if (opcode == CPL_ABORT_RPL_RSS) {
649 		const struct cpl_abort_rpl_rss *p = (void *)rsp;
650 
651 		hash_del_filter_rpl(q->adap, p);
652 	} else if (opcode == CPL_SRQ_TABLE_RPL) {
653 		const struct cpl_srq_table_rpl *p = (void *)rsp;
654 
655 		do_srq_table_rpl(q->adap, p);
656 	} else
657 		dev_err(q->adap->pdev_dev,
658 			"unexpected CPL %#x on FW event queue\n", opcode);
659 out:
660 	return 0;
661 }
662 
663 static void disable_msi(struct adapter *adapter)
664 {
665 	if (adapter->flags & CXGB4_USING_MSIX) {
666 		pci_disable_msix(adapter->pdev);
667 		adapter->flags &= ~CXGB4_USING_MSIX;
668 	} else if (adapter->flags & CXGB4_USING_MSI) {
669 		pci_disable_msi(adapter->pdev);
670 		adapter->flags &= ~CXGB4_USING_MSI;
671 	}
672 }
673 
674 /*
675  * Interrupt handler for non-data events used with MSI-X.
676  */
677 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
678 {
679 	struct adapter *adap = cookie;
680 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
681 
682 	if (v & PFSW_F) {
683 		adap->swintr = 1;
684 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
685 	}
686 	if (adap->flags & CXGB4_MASTER_PF)
687 		t4_slow_intr_handler(adap);
688 	return IRQ_HANDLED;
689 }
690 
691 int cxgb4_set_msix_aff(struct adapter *adap, unsigned short vec,
692 		       cpumask_var_t *aff_mask, int idx)
693 {
694 	int rv;
695 
696 	if (!zalloc_cpumask_var(aff_mask, GFP_KERNEL)) {
697 		dev_err(adap->pdev_dev, "alloc_cpumask_var failed\n");
698 		return -ENOMEM;
699 	}
700 
701 	cpumask_set_cpu(cpumask_local_spread(idx, dev_to_node(adap->pdev_dev)),
702 			*aff_mask);
703 
704 	rv = irq_set_affinity_hint(vec, *aff_mask);
705 	if (rv)
706 		dev_warn(adap->pdev_dev,
707 			 "irq_set_affinity_hint %u failed %d\n",
708 			 vec, rv);
709 
710 	return 0;
711 }
712 
713 void cxgb4_clear_msix_aff(unsigned short vec, cpumask_var_t aff_mask)
714 {
715 	irq_set_affinity_hint(vec, NULL);
716 	free_cpumask_var(aff_mask);
717 }
718 
719 static int request_msix_queue_irqs(struct adapter *adap)
720 {
721 	struct sge *s = &adap->sge;
722 	struct msix_info *minfo;
723 	int err, ethqidx;
724 
725 	if (s->fwevtq_msix_idx < 0)
726 		return -ENOMEM;
727 
728 	err = request_irq(adap->msix_info[s->fwevtq_msix_idx].vec,
729 			  t4_sge_intr_msix, 0,
730 			  adap->msix_info[s->fwevtq_msix_idx].desc,
731 			  &s->fw_evtq);
732 	if (err)
733 		return err;
734 
735 	for_each_ethrxq(s, ethqidx) {
736 		minfo = s->ethrxq[ethqidx].msix;
737 		err = request_irq(minfo->vec,
738 				  t4_sge_intr_msix, 0,
739 				  minfo->desc,
740 				  &s->ethrxq[ethqidx].rspq);
741 		if (err)
742 			goto unwind;
743 
744 		cxgb4_set_msix_aff(adap, minfo->vec,
745 				   &minfo->aff_mask, ethqidx);
746 	}
747 	return 0;
748 
749 unwind:
750 	while (--ethqidx >= 0) {
751 		minfo = s->ethrxq[ethqidx].msix;
752 		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
753 		free_irq(minfo->vec, &s->ethrxq[ethqidx].rspq);
754 	}
755 	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
756 	return err;
757 }
758 
759 static void free_msix_queue_irqs(struct adapter *adap)
760 {
761 	struct sge *s = &adap->sge;
762 	struct msix_info *minfo;
763 	int i;
764 
765 	free_irq(adap->msix_info[s->fwevtq_msix_idx].vec, &s->fw_evtq);
766 	for_each_ethrxq(s, i) {
767 		minfo = s->ethrxq[i].msix;
768 		cxgb4_clear_msix_aff(minfo->vec, minfo->aff_mask);
769 		free_irq(minfo->vec, &s->ethrxq[i].rspq);
770 	}
771 }
772 
773 static int setup_ppod_edram(struct adapter *adap)
774 {
775 	unsigned int param, val;
776 	int ret;
777 
778 	/* Driver sends FW_PARAMS_PARAM_DEV_PPOD_EDRAM read command to check
779 	 * if firmware supports ppod edram feature or not. If firmware
780 	 * returns 1, then driver can enable this feature by sending
781 	 * FW_PARAMS_PARAM_DEV_PPOD_EDRAM write command with value 1 to
782 	 * enable ppod edram feature.
783 	 */
784 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
785 		FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PPOD_EDRAM));
786 
787 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
788 	if (ret < 0) {
789 		dev_warn(adap->pdev_dev,
790 			 "querying PPOD_EDRAM support failed: %d\n",
791 			 ret);
792 		return -1;
793 	}
794 
795 	if (val != 1)
796 		return -1;
797 
798 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
799 	if (ret < 0) {
800 		dev_err(adap->pdev_dev,
801 			"setting PPOD_EDRAM failed: %d\n", ret);
802 		return -1;
803 	}
804 	return 0;
805 }
806 
807 /**
808  *	cxgb4_write_rss - write the RSS table for a given port
809  *	@pi: the port
810  *	@queues: array of queue indices for RSS
811  *
812  *	Sets up the portion of the HW RSS table for the port's VI to distribute
813  *	packets to the Rx queues in @queues.
814  *	Should never be called before setting up sge eth rx queues
815  */
816 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
817 {
818 	u16 *rss;
819 	int i, err;
820 	struct adapter *adapter = pi->adapter;
821 	const struct sge_eth_rxq *rxq;
822 
823 	rxq = &adapter->sge.ethrxq[pi->first_qset];
824 	rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
825 	if (!rss)
826 		return -ENOMEM;
827 
828 	/* map the queue indices to queue ids */
829 	for (i = 0; i < pi->rss_size; i++, queues++)
830 		rss[i] = rxq[*queues].rspq.abs_id;
831 
832 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
833 				  pi->rss_size, rss, pi->rss_size);
834 	/* If Tunnel All Lookup isn't specified in the global RSS
835 	 * Configuration, then we need to specify a default Ingress
836 	 * Queue for any ingress packets which aren't hashed.  We'll
837 	 * use our first ingress queue ...
838 	 */
839 	if (!err)
840 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
841 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
842 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
843 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
844 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
845 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
846 				       rss[0]);
847 	kfree(rss);
848 	return err;
849 }
850 
851 /**
852  *	setup_rss - configure RSS
853  *	@adap: the adapter
854  *
855  *	Sets up RSS for each port.
856  */
857 static int setup_rss(struct adapter *adap)
858 {
859 	int i, j, err;
860 
861 	for_each_port(adap, i) {
862 		const struct port_info *pi = adap2pinfo(adap, i);
863 
864 		/* Fill default values with equal distribution */
865 		for (j = 0; j < pi->rss_size; j++)
866 			pi->rss[j] = j % pi->nqsets;
867 
868 		err = cxgb4_write_rss(pi, pi->rss);
869 		if (err)
870 			return err;
871 	}
872 	return 0;
873 }
874 
875 /*
876  * Return the channel of the ingress queue with the given qid.
877  */
878 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
879 {
880 	qid -= p->ingr_start;
881 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
882 }
883 
884 void cxgb4_quiesce_rx(struct sge_rspq *q)
885 {
886 	if (q->handler)
887 		napi_disable(&q->napi);
888 }
889 
890 /*
891  * Wait until all NAPI handlers are descheduled.
892  */
893 static void quiesce_rx(struct adapter *adap)
894 {
895 	int i;
896 
897 	for (i = 0; i < adap->sge.ingr_sz; i++) {
898 		struct sge_rspq *q = adap->sge.ingr_map[i];
899 
900 		if (!q)
901 			continue;
902 
903 		cxgb4_quiesce_rx(q);
904 	}
905 }
906 
907 /* Disable interrupt and napi handler */
908 static void disable_interrupts(struct adapter *adap)
909 {
910 	struct sge *s = &adap->sge;
911 
912 	if (adap->flags & CXGB4_FULL_INIT_DONE) {
913 		t4_intr_disable(adap);
914 		if (adap->flags & CXGB4_USING_MSIX) {
915 			free_msix_queue_irqs(adap);
916 			free_irq(adap->msix_info[s->nd_msix_idx].vec,
917 				 adap);
918 		} else {
919 			free_irq(adap->pdev->irq, adap);
920 		}
921 		quiesce_rx(adap);
922 	}
923 }
924 
925 void cxgb4_enable_rx(struct adapter *adap, struct sge_rspq *q)
926 {
927 	if (q->handler)
928 		napi_enable(&q->napi);
929 
930 	/* 0-increment GTS to start the timer and enable interrupts */
931 	t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
932 		     SEINTARM_V(q->intr_params) |
933 		     INGRESSQID_V(q->cntxt_id));
934 }
935 
936 /*
937  * Enable NAPI scheduling and interrupt generation for all Rx queues.
938  */
939 static void enable_rx(struct adapter *adap)
940 {
941 	int i;
942 
943 	for (i = 0; i < adap->sge.ingr_sz; i++) {
944 		struct sge_rspq *q = adap->sge.ingr_map[i];
945 
946 		if (!q)
947 			continue;
948 
949 		cxgb4_enable_rx(adap, q);
950 	}
951 }
952 
953 static int setup_non_data_intr(struct adapter *adap)
954 {
955 	int msix;
956 
957 	adap->sge.nd_msix_idx = -1;
958 	if (!(adap->flags & CXGB4_USING_MSIX))
959 		return 0;
960 
961 	/* Request MSI-X vector for non-data interrupt */
962 	msix = cxgb4_get_msix_idx_from_bmap(adap);
963 	if (msix < 0)
964 		return -ENOMEM;
965 
966 	snprintf(adap->msix_info[msix].desc,
967 		 sizeof(adap->msix_info[msix].desc),
968 		 "%s", adap->port[0]->name);
969 
970 	adap->sge.nd_msix_idx = msix;
971 	return 0;
972 }
973 
974 static int setup_fw_sge_queues(struct adapter *adap)
975 {
976 	struct sge *s = &adap->sge;
977 	int msix, err = 0;
978 
979 	bitmap_zero(s->starving_fl, s->egr_sz);
980 	bitmap_zero(s->txq_maperr, s->egr_sz);
981 
982 	if (adap->flags & CXGB4_USING_MSIX) {
983 		s->fwevtq_msix_idx = -1;
984 		msix = cxgb4_get_msix_idx_from_bmap(adap);
985 		if (msix < 0)
986 			return -ENOMEM;
987 
988 		snprintf(adap->msix_info[msix].desc,
989 			 sizeof(adap->msix_info[msix].desc),
990 			 "%s-FWeventq", adap->port[0]->name);
991 	} else {
992 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
993 				       NULL, NULL, NULL, -1);
994 		if (err)
995 			return err;
996 		msix = -((int)s->intrq.abs_id + 1);
997 	}
998 
999 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1000 			       msix, NULL, fwevtq_handler, NULL, -1);
1001 	if (err && msix >= 0)
1002 		cxgb4_free_msix_idx_in_bmap(adap, msix);
1003 
1004 	s->fwevtq_msix_idx = msix;
1005 	return err;
1006 }
1007 
1008 /**
1009  *	setup_sge_queues - configure SGE Tx/Rx/response queues
1010  *	@adap: the adapter
1011  *
1012  *	Determines how many sets of SGE queues to use and initializes them.
1013  *	We support multiple queue sets per port if we have MSI-X, otherwise
1014  *	just one queue set per port.
1015  */
1016 static int setup_sge_queues(struct adapter *adap)
1017 {
1018 	struct sge_uld_rxq_info *rxq_info = NULL;
1019 	struct sge *s = &adap->sge;
1020 	unsigned int cmplqid = 0;
1021 	int err, i, j, msix = 0;
1022 
1023 	if (is_uld(adap))
1024 		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
1025 
1026 	if (!(adap->flags & CXGB4_USING_MSIX))
1027 		msix = -((int)s->intrq.abs_id + 1);
1028 
1029 	for_each_port(adap, i) {
1030 		struct net_device *dev = adap->port[i];
1031 		struct port_info *pi = netdev_priv(dev);
1032 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1033 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1034 
1035 		for (j = 0; j < pi->nqsets; j++, q++) {
1036 			if (msix >= 0) {
1037 				msix = cxgb4_get_msix_idx_from_bmap(adap);
1038 				if (msix < 0) {
1039 					err = msix;
1040 					goto freeout;
1041 				}
1042 
1043 				snprintf(adap->msix_info[msix].desc,
1044 					 sizeof(adap->msix_info[msix].desc),
1045 					 "%s-Rx%d", dev->name, j);
1046 				q->msix = &adap->msix_info[msix];
1047 			}
1048 
1049 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1050 					       msix, &q->fl,
1051 					       t4_ethrx_handler,
1052 					       NULL,
1053 					       t4_get_tp_ch_map(adap,
1054 								pi->tx_chan));
1055 			if (err)
1056 				goto freeout;
1057 			q->rspq.idx = j;
1058 			memset(&q->stats, 0, sizeof(q->stats));
1059 		}
1060 
1061 		q = &s->ethrxq[pi->first_qset];
1062 		for (j = 0; j < pi->nqsets; j++, t++, q++) {
1063 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1064 					netdev_get_tx_queue(dev, j),
1065 					q->rspq.cntxt_id,
1066 					!!(adap->flags & CXGB4_SGE_DBQ_TIMER));
1067 			if (err)
1068 				goto freeout;
1069 		}
1070 	}
1071 
1072 	for_each_port(adap, i) {
1073 		/* Note that cmplqid below is 0 if we don't
1074 		 * have RDMA queues, and that's the right value.
1075 		 */
1076 		if (rxq_info)
1077 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
1078 
1079 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1080 					    s->fw_evtq.cntxt_id, cmplqid);
1081 		if (err)
1082 			goto freeout;
1083 	}
1084 
1085 	if (!is_t4(adap->params.chip)) {
1086 		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
1087 					   netdev_get_tx_queue(adap->port[0], 0)
1088 					   , s->fw_evtq.cntxt_id, false);
1089 		if (err)
1090 			goto freeout;
1091 	}
1092 
1093 	t4_write_reg(adap, is_t4(adap->params.chip) ?
1094 				MPS_TRC_RSS_CONTROL_A :
1095 				MPS_T5_TRC_RSS_CONTROL_A,
1096 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1097 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1098 	return 0;
1099 freeout:
1100 	dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
1101 	t4_free_sge_resources(adap);
1102 	return err;
1103 }
1104 
1105 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1106 			     struct net_device *sb_dev)
1107 {
1108 	int txq;
1109 
1110 #ifdef CONFIG_CHELSIO_T4_DCB
1111 	/* If a Data Center Bridging has been successfully negotiated on this
1112 	 * link then we'll use the skb's priority to map it to a TX Queue.
1113 	 * The skb's priority is determined via the VLAN Tag Priority Code
1114 	 * Point field.
1115 	 */
1116 	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
1117 		u16 vlan_tci;
1118 		int err;
1119 
1120 		err = vlan_get_tag(skb, &vlan_tci);
1121 		if (unlikely(err)) {
1122 			if (net_ratelimit())
1123 				netdev_warn(dev,
1124 					    "TX Packet without VLAN Tag on DCB Link\n");
1125 			txq = 0;
1126 		} else {
1127 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1128 #ifdef CONFIG_CHELSIO_T4_FCOE
1129 			if (skb->protocol == htons(ETH_P_FCOE))
1130 				txq = skb->priority & 0x7;
1131 #endif /* CONFIG_CHELSIO_T4_FCOE */
1132 		}
1133 		return txq;
1134 	}
1135 #endif /* CONFIG_CHELSIO_T4_DCB */
1136 
1137 	if (dev->num_tc) {
1138 		struct port_info *pi = netdev2pinfo(dev);
1139 		u8 ver, proto;
1140 
1141 		ver = ip_hdr(skb)->version;
1142 		proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr :
1143 				     ip_hdr(skb)->protocol;
1144 
1145 		/* Send unsupported traffic pattern to normal NIC queues. */
1146 		txq = netdev_pick_tx(dev, skb, sb_dev);
1147 		if (xfrm_offload(skb) || is_ptp_enabled(skb, dev) ||
1148 		    skb->encapsulation ||
1149 		    (proto != IPPROTO_TCP && proto != IPPROTO_UDP))
1150 			txq = txq % pi->nqsets;
1151 
1152 		return txq;
1153 	}
1154 
1155 	if (select_queue) {
1156 		txq = (skb_rx_queue_recorded(skb)
1157 			? skb_get_rx_queue(skb)
1158 			: smp_processor_id());
1159 
1160 		while (unlikely(txq >= dev->real_num_tx_queues))
1161 			txq -= dev->real_num_tx_queues;
1162 
1163 		return txq;
1164 	}
1165 
1166 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
1167 }
1168 
1169 static int closest_timer(const struct sge *s, int time)
1170 {
1171 	int i, delta, match = 0, min_delta = INT_MAX;
1172 
1173 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1174 		delta = time - s->timer_val[i];
1175 		if (delta < 0)
1176 			delta = -delta;
1177 		if (delta < min_delta) {
1178 			min_delta = delta;
1179 			match = i;
1180 		}
1181 	}
1182 	return match;
1183 }
1184 
1185 static int closest_thres(const struct sge *s, int thres)
1186 {
1187 	int i, delta, match = 0, min_delta = INT_MAX;
1188 
1189 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1190 		delta = thres - s->counter_val[i];
1191 		if (delta < 0)
1192 			delta = -delta;
1193 		if (delta < min_delta) {
1194 			min_delta = delta;
1195 			match = i;
1196 		}
1197 	}
1198 	return match;
1199 }
1200 
1201 /**
1202  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1203  *	@q: the Rx queue
1204  *	@us: the hold-off time in us, or 0 to disable timer
1205  *	@cnt: the hold-off packet count, or 0 to disable counter
1206  *
1207  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1208  *	one of the two needs to be enabled for the queue to generate interrupts.
1209  */
1210 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1211 			       unsigned int us, unsigned int cnt)
1212 {
1213 	struct adapter *adap = q->adap;
1214 
1215 	if ((us | cnt) == 0)
1216 		cnt = 1;
1217 
1218 	if (cnt) {
1219 		int err;
1220 		u32 v, new_idx;
1221 
1222 		new_idx = closest_thres(&adap->sge, cnt);
1223 		if (q->desc && q->pktcnt_idx != new_idx) {
1224 			/* the queue has already been created, update it */
1225 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1226 			    FW_PARAMS_PARAM_X_V(
1227 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1228 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1229 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1230 					    &v, &new_idx);
1231 			if (err)
1232 				return err;
1233 		}
1234 		q->pktcnt_idx = new_idx;
1235 	}
1236 
1237 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1238 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1239 	return 0;
1240 }
1241 
1242 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1243 {
1244 	const struct port_info *pi = netdev_priv(dev);
1245 	netdev_features_t changed = dev->features ^ features;
1246 	int err;
1247 
1248 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1249 		return 0;
1250 
1251 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1252 			    -1, -1, -1,
1253 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1254 	if (unlikely(err))
1255 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1256 	return err;
1257 }
1258 
1259 static int setup_debugfs(struct adapter *adap)
1260 {
1261 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1262 		return -1;
1263 
1264 #ifdef CONFIG_DEBUG_FS
1265 	t4_setup_debugfs(adap);
1266 #endif
1267 	return 0;
1268 }
1269 
1270 /*
1271  * upper-layer driver support
1272  */
1273 
1274 /*
1275  * Allocate an active-open TID and set it to the supplied value.
1276  */
1277 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1278 {
1279 	int atid = -1;
1280 
1281 	spin_lock_bh(&t->atid_lock);
1282 	if (t->afree) {
1283 		union aopen_entry *p = t->afree;
1284 
1285 		atid = (p - t->atid_tab) + t->atid_base;
1286 		t->afree = p->next;
1287 		p->data = data;
1288 		t->atids_in_use++;
1289 	}
1290 	spin_unlock_bh(&t->atid_lock);
1291 	return atid;
1292 }
1293 EXPORT_SYMBOL(cxgb4_alloc_atid);
1294 
1295 /*
1296  * Release an active-open TID.
1297  */
1298 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1299 {
1300 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1301 
1302 	spin_lock_bh(&t->atid_lock);
1303 	p->next = t->afree;
1304 	t->afree = p;
1305 	t->atids_in_use--;
1306 	spin_unlock_bh(&t->atid_lock);
1307 }
1308 EXPORT_SYMBOL(cxgb4_free_atid);
1309 
1310 /*
1311  * Allocate a server TID and set it to the supplied value.
1312  */
1313 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1314 {
1315 	int stid;
1316 
1317 	spin_lock_bh(&t->stid_lock);
1318 	if (family == PF_INET) {
1319 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1320 		if (stid < t->nstids)
1321 			__set_bit(stid, t->stid_bmap);
1322 		else
1323 			stid = -1;
1324 	} else {
1325 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1326 		if (stid < 0)
1327 			stid = -1;
1328 	}
1329 	if (stid >= 0) {
1330 		t->stid_tab[stid].data = data;
1331 		stid += t->stid_base;
1332 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1333 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1334 		 * needs 2 TIDs.
1335 		 */
1336 		if (family == PF_INET6) {
1337 			t->stids_in_use += 2;
1338 			t->v6_stids_in_use += 2;
1339 		} else {
1340 			t->stids_in_use++;
1341 		}
1342 	}
1343 	spin_unlock_bh(&t->stid_lock);
1344 	return stid;
1345 }
1346 EXPORT_SYMBOL(cxgb4_alloc_stid);
1347 
1348 /* Allocate a server filter TID and set it to the supplied value.
1349  */
1350 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1351 {
1352 	int stid;
1353 
1354 	spin_lock_bh(&t->stid_lock);
1355 	if (family == PF_INET) {
1356 		stid = find_next_zero_bit(t->stid_bmap,
1357 				t->nstids + t->nsftids, t->nstids);
1358 		if (stid < (t->nstids + t->nsftids))
1359 			__set_bit(stid, t->stid_bmap);
1360 		else
1361 			stid = -1;
1362 	} else {
1363 		stid = -1;
1364 	}
1365 	if (stid >= 0) {
1366 		t->stid_tab[stid].data = data;
1367 		stid -= t->nstids;
1368 		stid += t->sftid_base;
1369 		t->sftids_in_use++;
1370 	}
1371 	spin_unlock_bh(&t->stid_lock);
1372 	return stid;
1373 }
1374 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1375 
1376 /* Release a server TID.
1377  */
1378 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1379 {
1380 	/* Is it a server filter TID? */
1381 	if (t->nsftids && (stid >= t->sftid_base)) {
1382 		stid -= t->sftid_base;
1383 		stid += t->nstids;
1384 	} else {
1385 		stid -= t->stid_base;
1386 	}
1387 
1388 	spin_lock_bh(&t->stid_lock);
1389 	if (family == PF_INET)
1390 		__clear_bit(stid, t->stid_bmap);
1391 	else
1392 		bitmap_release_region(t->stid_bmap, stid, 1);
1393 	t->stid_tab[stid].data = NULL;
1394 	if (stid < t->nstids) {
1395 		if (family == PF_INET6) {
1396 			t->stids_in_use -= 2;
1397 			t->v6_stids_in_use -= 2;
1398 		} else {
1399 			t->stids_in_use--;
1400 		}
1401 	} else {
1402 		t->sftids_in_use--;
1403 	}
1404 
1405 	spin_unlock_bh(&t->stid_lock);
1406 }
1407 EXPORT_SYMBOL(cxgb4_free_stid);
1408 
1409 /*
1410  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1411  */
1412 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1413 			   unsigned int tid)
1414 {
1415 	struct cpl_tid_release *req;
1416 
1417 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1418 	req = __skb_put(skb, sizeof(*req));
1419 	INIT_TP_WR(req, tid);
1420 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1421 }
1422 
1423 /*
1424  * Queue a TID release request and if necessary schedule a work queue to
1425  * process it.
1426  */
1427 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1428 				    unsigned int tid)
1429 {
1430 	void **p = &t->tid_tab[tid];
1431 	struct adapter *adap = container_of(t, struct adapter, tids);
1432 
1433 	spin_lock_bh(&adap->tid_release_lock);
1434 	*p = adap->tid_release_head;
1435 	/* Low 2 bits encode the Tx channel number */
1436 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1437 	if (!adap->tid_release_task_busy) {
1438 		adap->tid_release_task_busy = true;
1439 		queue_work(adap->workq, &adap->tid_release_task);
1440 	}
1441 	spin_unlock_bh(&adap->tid_release_lock);
1442 }
1443 
1444 /*
1445  * Process the list of pending TID release requests.
1446  */
1447 static void process_tid_release_list(struct work_struct *work)
1448 {
1449 	struct sk_buff *skb;
1450 	struct adapter *adap;
1451 
1452 	adap = container_of(work, struct adapter, tid_release_task);
1453 
1454 	spin_lock_bh(&adap->tid_release_lock);
1455 	while (adap->tid_release_head) {
1456 		void **p = adap->tid_release_head;
1457 		unsigned int chan = (uintptr_t)p & 3;
1458 		p = (void *)p - chan;
1459 
1460 		adap->tid_release_head = *p;
1461 		*p = NULL;
1462 		spin_unlock_bh(&adap->tid_release_lock);
1463 
1464 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1465 					 GFP_KERNEL)))
1466 			schedule_timeout_uninterruptible(1);
1467 
1468 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1469 		t4_ofld_send(adap, skb);
1470 		spin_lock_bh(&adap->tid_release_lock);
1471 	}
1472 	adap->tid_release_task_busy = false;
1473 	spin_unlock_bh(&adap->tid_release_lock);
1474 }
1475 
1476 /*
1477  * Release a TID and inform HW.  If we are unable to allocate the release
1478  * message we defer to a work queue.
1479  */
1480 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1481 		      unsigned short family)
1482 {
1483 	struct sk_buff *skb;
1484 	struct adapter *adap = container_of(t, struct adapter, tids);
1485 
1486 	WARN_ON(tid >= t->ntids);
1487 
1488 	if (t->tid_tab[tid]) {
1489 		t->tid_tab[tid] = NULL;
1490 		atomic_dec(&t->conns_in_use);
1491 		if (t->hash_base && (tid >= t->hash_base)) {
1492 			if (family == AF_INET6)
1493 				atomic_sub(2, &t->hash_tids_in_use);
1494 			else
1495 				atomic_dec(&t->hash_tids_in_use);
1496 		} else {
1497 			if (family == AF_INET6)
1498 				atomic_sub(2, &t->tids_in_use);
1499 			else
1500 				atomic_dec(&t->tids_in_use);
1501 		}
1502 	}
1503 
1504 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1505 	if (likely(skb)) {
1506 		mk_tid_release(skb, chan, tid);
1507 		t4_ofld_send(adap, skb);
1508 	} else
1509 		cxgb4_queue_tid_release(t, chan, tid);
1510 }
1511 EXPORT_SYMBOL(cxgb4_remove_tid);
1512 
1513 /*
1514  * Allocate and initialize the TID tables.  Returns 0 on success.
1515  */
1516 static int tid_init(struct tid_info *t)
1517 {
1518 	struct adapter *adap = container_of(t, struct adapter, tids);
1519 	unsigned int max_ftids = t->nftids + t->nsftids;
1520 	unsigned int natids = t->natids;
1521 	unsigned int eotid_bmap_size;
1522 	unsigned int stid_bmap_size;
1523 	unsigned int ftid_bmap_size;
1524 	size_t size;
1525 
1526 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1527 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1528 	eotid_bmap_size = BITS_TO_LONGS(t->neotids);
1529 	size = t->ntids * sizeof(*t->tid_tab) +
1530 	       natids * sizeof(*t->atid_tab) +
1531 	       t->nstids * sizeof(*t->stid_tab) +
1532 	       t->nsftids * sizeof(*t->stid_tab) +
1533 	       stid_bmap_size * sizeof(long) +
1534 	       max_ftids * sizeof(*t->ftid_tab) +
1535 	       ftid_bmap_size * sizeof(long) +
1536 	       t->neotids * sizeof(*t->eotid_tab) +
1537 	       eotid_bmap_size * sizeof(long);
1538 
1539 	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1540 	if (!t->tid_tab)
1541 		return -ENOMEM;
1542 
1543 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1544 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1545 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1546 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1547 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1548 	t->eotid_tab = (struct eotid_entry *)&t->ftid_bmap[ftid_bmap_size];
1549 	t->eotid_bmap = (unsigned long *)&t->eotid_tab[t->neotids];
1550 	spin_lock_init(&t->stid_lock);
1551 	spin_lock_init(&t->atid_lock);
1552 	spin_lock_init(&t->ftid_lock);
1553 
1554 	t->stids_in_use = 0;
1555 	t->v6_stids_in_use = 0;
1556 	t->sftids_in_use = 0;
1557 	t->afree = NULL;
1558 	t->atids_in_use = 0;
1559 	atomic_set(&t->tids_in_use, 0);
1560 	atomic_set(&t->conns_in_use, 0);
1561 	atomic_set(&t->hash_tids_in_use, 0);
1562 
1563 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1564 	if (natids) {
1565 		while (--natids)
1566 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1567 		t->afree = t->atid_tab;
1568 	}
1569 
1570 	if (is_offload(adap)) {
1571 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1572 		/* Reserve stid 0 for T4/T5 adapters */
1573 		if (!t->stid_base &&
1574 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1575 			__set_bit(0, t->stid_bmap);
1576 
1577 		if (t->neotids)
1578 			bitmap_zero(t->eotid_bmap, t->neotids);
1579 	}
1580 
1581 	bitmap_zero(t->ftid_bmap, t->nftids);
1582 	return 0;
1583 }
1584 
1585 /**
1586  *	cxgb4_create_server - create an IP server
1587  *	@dev: the device
1588  *	@stid: the server TID
1589  *	@sip: local IP address to bind server to
1590  *	@sport: the server's TCP port
1591  *	@queue: queue to direct messages from this server to
1592  *
1593  *	Create an IP server for the given port and address.
1594  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1595  */
1596 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1597 			__be32 sip, __be16 sport, __be16 vlan,
1598 			unsigned int queue)
1599 {
1600 	unsigned int chan;
1601 	struct sk_buff *skb;
1602 	struct adapter *adap;
1603 	struct cpl_pass_open_req *req;
1604 	int ret;
1605 
1606 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1607 	if (!skb)
1608 		return -ENOMEM;
1609 
1610 	adap = netdev2adap(dev);
1611 	req = __skb_put(skb, sizeof(*req));
1612 	INIT_TP_WR(req, 0);
1613 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1614 	req->local_port = sport;
1615 	req->peer_port = htons(0);
1616 	req->local_ip = sip;
1617 	req->peer_ip = htonl(0);
1618 	chan = rxq_to_chan(&adap->sge, queue);
1619 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1620 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1621 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1622 	ret = t4_mgmt_tx(adap, skb);
1623 	return net_xmit_eval(ret);
1624 }
1625 EXPORT_SYMBOL(cxgb4_create_server);
1626 
1627 /*	cxgb4_create_server6 - create an IPv6 server
1628  *	@dev: the device
1629  *	@stid: the server TID
1630  *	@sip: local IPv6 address to bind server to
1631  *	@sport: the server's TCP port
1632  *	@queue: queue to direct messages from this server to
1633  *
1634  *	Create an IPv6 server for the given port and address.
1635  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1636  */
1637 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1638 			 const struct in6_addr *sip, __be16 sport,
1639 			 unsigned int queue)
1640 {
1641 	unsigned int chan;
1642 	struct sk_buff *skb;
1643 	struct adapter *adap;
1644 	struct cpl_pass_open_req6 *req;
1645 	int ret;
1646 
1647 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1648 	if (!skb)
1649 		return -ENOMEM;
1650 
1651 	adap = netdev2adap(dev);
1652 	req = __skb_put(skb, sizeof(*req));
1653 	INIT_TP_WR(req, 0);
1654 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1655 	req->local_port = sport;
1656 	req->peer_port = htons(0);
1657 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1658 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1659 	req->peer_ip_hi = cpu_to_be64(0);
1660 	req->peer_ip_lo = cpu_to_be64(0);
1661 	chan = rxq_to_chan(&adap->sge, queue);
1662 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1663 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1664 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1665 	ret = t4_mgmt_tx(adap, skb);
1666 	return net_xmit_eval(ret);
1667 }
1668 EXPORT_SYMBOL(cxgb4_create_server6);
1669 
1670 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1671 			unsigned int queue, bool ipv6)
1672 {
1673 	struct sk_buff *skb;
1674 	struct adapter *adap;
1675 	struct cpl_close_listsvr_req *req;
1676 	int ret;
1677 
1678 	adap = netdev2adap(dev);
1679 
1680 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1681 	if (!skb)
1682 		return -ENOMEM;
1683 
1684 	req = __skb_put(skb, sizeof(*req));
1685 	INIT_TP_WR(req, 0);
1686 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1687 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1688 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1689 	ret = t4_mgmt_tx(adap, skb);
1690 	return net_xmit_eval(ret);
1691 }
1692 EXPORT_SYMBOL(cxgb4_remove_server);
1693 
1694 /**
1695  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1696  *	@mtus: the HW MTU table
1697  *	@mtu: the target MTU
1698  *	@idx: index of selected entry in the MTU table
1699  *
1700  *	Returns the index and the value in the HW MTU table that is closest to
1701  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1702  *	table, in which case that smallest available value is selected.
1703  */
1704 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1705 			    unsigned int *idx)
1706 {
1707 	unsigned int i = 0;
1708 
1709 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1710 		++i;
1711 	if (idx)
1712 		*idx = i;
1713 	return mtus[i];
1714 }
1715 EXPORT_SYMBOL(cxgb4_best_mtu);
1716 
1717 /**
1718  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1719  *     @mtus: the HW MTU table
1720  *     @header_size: Header Size
1721  *     @data_size_max: maximum Data Segment Size
1722  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1723  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1724  *
1725  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1726  *     MTU Table based solely on a Maximum MTU parameter, we break that
1727  *     parameter up into a Header Size and Maximum Data Segment Size, and
1728  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1729  *     the Hardware MTU Table which will result in a Data Segment Size with
1730  *     the requested alignment _and_ that MTU isn't "too far" from the
1731  *     closest MTU, then we'll return that rather than the closest MTU.
1732  */
1733 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1734 				    unsigned short header_size,
1735 				    unsigned short data_size_max,
1736 				    unsigned short data_size_align,
1737 				    unsigned int *mtu_idxp)
1738 {
1739 	unsigned short max_mtu = header_size + data_size_max;
1740 	unsigned short data_size_align_mask = data_size_align - 1;
1741 	int mtu_idx, aligned_mtu_idx;
1742 
1743 	/* Scan the MTU Table till we find an MTU which is larger than our
1744 	 * Maximum MTU or we reach the end of the table.  Along the way,
1745 	 * record the last MTU found, if any, which will result in a Data
1746 	 * Segment Length matching the requested alignment.
1747 	 */
1748 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1749 		unsigned short data_size = mtus[mtu_idx] - header_size;
1750 
1751 		/* If this MTU minus the Header Size would result in a
1752 		 * Data Segment Size of the desired alignment, remember it.
1753 		 */
1754 		if ((data_size & data_size_align_mask) == 0)
1755 			aligned_mtu_idx = mtu_idx;
1756 
1757 		/* If we're not at the end of the Hardware MTU Table and the
1758 		 * next element is larger than our Maximum MTU, drop out of
1759 		 * the loop.
1760 		 */
1761 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1762 			break;
1763 	}
1764 
1765 	/* If we fell out of the loop because we ran to the end of the table,
1766 	 * then we just have to use the last [largest] entry.
1767 	 */
1768 	if (mtu_idx == NMTUS)
1769 		mtu_idx--;
1770 
1771 	/* If we found an MTU which resulted in the requested Data Segment
1772 	 * Length alignment and that's "not far" from the largest MTU which is
1773 	 * less than or equal to the maximum MTU, then use that.
1774 	 */
1775 	if (aligned_mtu_idx >= 0 &&
1776 	    mtu_idx - aligned_mtu_idx <= 1)
1777 		mtu_idx = aligned_mtu_idx;
1778 
1779 	/* If the caller has passed in an MTU Index pointer, pass the
1780 	 * MTU Index back.  Return the MTU value.
1781 	 */
1782 	if (mtu_idxp)
1783 		*mtu_idxp = mtu_idx;
1784 	return mtus[mtu_idx];
1785 }
1786 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1787 
1788 /**
1789  *	cxgb4_port_chan - get the HW channel of a port
1790  *	@dev: the net device for the port
1791  *
1792  *	Return the HW Tx channel of the given port.
1793  */
1794 unsigned int cxgb4_port_chan(const struct net_device *dev)
1795 {
1796 	return netdev2pinfo(dev)->tx_chan;
1797 }
1798 EXPORT_SYMBOL(cxgb4_port_chan);
1799 
1800 /**
1801  *      cxgb4_port_e2cchan - get the HW c-channel of a port
1802  *      @dev: the net device for the port
1803  *
1804  *      Return the HW RX c-channel of the given port.
1805  */
1806 unsigned int cxgb4_port_e2cchan(const struct net_device *dev)
1807 {
1808 	return netdev2pinfo(dev)->rx_cchan;
1809 }
1810 EXPORT_SYMBOL(cxgb4_port_e2cchan);
1811 
1812 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1813 {
1814 	struct adapter *adap = netdev2adap(dev);
1815 	u32 v1, v2, lp_count, hp_count;
1816 
1817 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1818 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1819 	if (is_t4(adap->params.chip)) {
1820 		lp_count = LP_COUNT_G(v1);
1821 		hp_count = HP_COUNT_G(v1);
1822 	} else {
1823 		lp_count = LP_COUNT_T5_G(v1);
1824 		hp_count = HP_COUNT_T5_G(v2);
1825 	}
1826 	return lpfifo ? lp_count : hp_count;
1827 }
1828 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1829 
1830 /**
1831  *	cxgb4_port_viid - get the VI id of a port
1832  *	@dev: the net device for the port
1833  *
1834  *	Return the VI id of the given port.
1835  */
1836 unsigned int cxgb4_port_viid(const struct net_device *dev)
1837 {
1838 	return netdev2pinfo(dev)->viid;
1839 }
1840 EXPORT_SYMBOL(cxgb4_port_viid);
1841 
1842 /**
1843  *	cxgb4_port_idx - get the index of a port
1844  *	@dev: the net device for the port
1845  *
1846  *	Return the index of the given port.
1847  */
1848 unsigned int cxgb4_port_idx(const struct net_device *dev)
1849 {
1850 	return netdev2pinfo(dev)->port_id;
1851 }
1852 EXPORT_SYMBOL(cxgb4_port_idx);
1853 
1854 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1855 			 struct tp_tcp_stats *v6)
1856 {
1857 	struct adapter *adap = pci_get_drvdata(pdev);
1858 
1859 	spin_lock(&adap->stats_lock);
1860 	t4_tp_get_tcp_stats(adap, v4, v6, false);
1861 	spin_unlock(&adap->stats_lock);
1862 }
1863 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1864 
1865 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1866 		      const unsigned int *pgsz_order)
1867 {
1868 	struct adapter *adap = netdev2adap(dev);
1869 
1870 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1871 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1872 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1873 		     HPZ3_V(pgsz_order[3]));
1874 }
1875 EXPORT_SYMBOL(cxgb4_iscsi_init);
1876 
1877 int cxgb4_flush_eq_cache(struct net_device *dev)
1878 {
1879 	struct adapter *adap = netdev2adap(dev);
1880 
1881 	return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1882 }
1883 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1884 
1885 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1886 {
1887 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1888 	__be64 indices;
1889 	int ret;
1890 
1891 	spin_lock(&adap->win0_lock);
1892 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1893 			   sizeof(indices), (__be32 *)&indices,
1894 			   T4_MEMORY_READ);
1895 	spin_unlock(&adap->win0_lock);
1896 	if (!ret) {
1897 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1898 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1899 	}
1900 	return ret;
1901 }
1902 
1903 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1904 			u16 size)
1905 {
1906 	struct adapter *adap = netdev2adap(dev);
1907 	u16 hw_pidx, hw_cidx;
1908 	int ret;
1909 
1910 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1911 	if (ret)
1912 		goto out;
1913 
1914 	if (pidx != hw_pidx) {
1915 		u16 delta;
1916 		u32 val;
1917 
1918 		if (pidx >= hw_pidx)
1919 			delta = pidx - hw_pidx;
1920 		else
1921 			delta = size - hw_pidx + pidx;
1922 
1923 		if (is_t4(adap->params.chip))
1924 			val = PIDX_V(delta);
1925 		else
1926 			val = PIDX_T5_V(delta);
1927 		wmb();
1928 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1929 			     QID_V(qid) | val);
1930 	}
1931 out:
1932 	return ret;
1933 }
1934 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1935 
1936 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1937 {
1938 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1939 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1940 	u32 offset, memtype, memaddr;
1941 	struct adapter *adap;
1942 	u32 hma_size = 0;
1943 	int ret;
1944 
1945 	adap = netdev2adap(dev);
1946 
1947 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1948 
1949 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1950 	 * This code assumes that the memory is laid out starting at offset 0
1951 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1952 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1953 	 * MC0, and some have both MC0 and MC1.
1954 	 */
1955 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1956 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1957 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1958 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1959 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1960 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1961 
1962 	if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1963 		size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1964 		hma_size = EXT_MEM1_SIZE_G(size) << 20;
1965 	}
1966 	edc0_end = edc0_size;
1967 	edc1_end = edc0_end + edc1_size;
1968 	mc0_end = edc1_end + mc0_size;
1969 
1970 	if (offset < edc0_end) {
1971 		memtype = MEM_EDC0;
1972 		memaddr = offset;
1973 	} else if (offset < edc1_end) {
1974 		memtype = MEM_EDC1;
1975 		memaddr = offset - edc0_end;
1976 	} else {
1977 		if (hma_size && (offset < (edc1_end + hma_size))) {
1978 			memtype = MEM_HMA;
1979 			memaddr = offset - edc1_end;
1980 		} else if (offset < mc0_end) {
1981 			memtype = MEM_MC0;
1982 			memaddr = offset - edc1_end;
1983 		} else if (is_t5(adap->params.chip)) {
1984 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1985 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1986 			mc1_end = mc0_end + mc1_size;
1987 			if (offset < mc1_end) {
1988 				memtype = MEM_MC1;
1989 				memaddr = offset - mc0_end;
1990 			} else {
1991 				/* offset beyond the end of any memory */
1992 				goto err;
1993 			}
1994 		} else {
1995 			/* T4/T6 only has a single memory channel */
1996 			goto err;
1997 		}
1998 	}
1999 
2000 	spin_lock(&adap->win0_lock);
2001 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2002 	spin_unlock(&adap->win0_lock);
2003 	return ret;
2004 
2005 err:
2006 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2007 		stag, offset);
2008 	return -EINVAL;
2009 }
2010 EXPORT_SYMBOL(cxgb4_read_tpte);
2011 
2012 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2013 {
2014 	u32 hi, lo;
2015 	struct adapter *adap;
2016 
2017 	adap = netdev2adap(dev);
2018 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2019 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2020 
2021 	return ((u64)hi << 32) | (u64)lo;
2022 }
2023 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2024 
2025 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2026 			 unsigned int qid,
2027 			 enum cxgb4_bar2_qtype qtype,
2028 			 int user,
2029 			 u64 *pbar2_qoffset,
2030 			 unsigned int *pbar2_qid)
2031 {
2032 	return t4_bar2_sge_qregs(netdev2adap(dev),
2033 				 qid,
2034 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2035 				  ? T4_BAR2_QTYPE_EGRESS
2036 				  : T4_BAR2_QTYPE_INGRESS),
2037 				 user,
2038 				 pbar2_qoffset,
2039 				 pbar2_qid);
2040 }
2041 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2042 
2043 static struct pci_driver cxgb4_driver;
2044 
2045 static void check_neigh_update(struct neighbour *neigh)
2046 {
2047 	const struct device *parent;
2048 	const struct net_device *netdev = neigh->dev;
2049 
2050 	if (is_vlan_dev(netdev))
2051 		netdev = vlan_dev_real_dev(netdev);
2052 	parent = netdev->dev.parent;
2053 	if (parent && parent->driver == &cxgb4_driver.driver)
2054 		t4_l2t_update(dev_get_drvdata(parent), neigh);
2055 }
2056 
2057 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2058 		       void *data)
2059 {
2060 	switch (event) {
2061 	case NETEVENT_NEIGH_UPDATE:
2062 		check_neigh_update(data);
2063 		break;
2064 	case NETEVENT_REDIRECT:
2065 	default:
2066 		break;
2067 	}
2068 	return 0;
2069 }
2070 
2071 static bool netevent_registered;
2072 static struct notifier_block cxgb4_netevent_nb = {
2073 	.notifier_call = netevent_cb
2074 };
2075 
2076 static void drain_db_fifo(struct adapter *adap, int usecs)
2077 {
2078 	u32 v1, v2, lp_count, hp_count;
2079 
2080 	do {
2081 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2082 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2083 		if (is_t4(adap->params.chip)) {
2084 			lp_count = LP_COUNT_G(v1);
2085 			hp_count = HP_COUNT_G(v1);
2086 		} else {
2087 			lp_count = LP_COUNT_T5_G(v1);
2088 			hp_count = HP_COUNT_T5_G(v2);
2089 		}
2090 
2091 		if (lp_count == 0 && hp_count == 0)
2092 			break;
2093 		set_current_state(TASK_UNINTERRUPTIBLE);
2094 		schedule_timeout(usecs_to_jiffies(usecs));
2095 	} while (1);
2096 }
2097 
2098 static void disable_txq_db(struct sge_txq *q)
2099 {
2100 	unsigned long flags;
2101 
2102 	spin_lock_irqsave(&q->db_lock, flags);
2103 	q->db_disabled = 1;
2104 	spin_unlock_irqrestore(&q->db_lock, flags);
2105 }
2106 
2107 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2108 {
2109 	spin_lock_irq(&q->db_lock);
2110 	if (q->db_pidx_inc) {
2111 		/* Make sure that all writes to the TX descriptors
2112 		 * are committed before we tell HW about them.
2113 		 */
2114 		wmb();
2115 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2116 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2117 		q->db_pidx_inc = 0;
2118 	}
2119 	q->db_disabled = 0;
2120 	spin_unlock_irq(&q->db_lock);
2121 }
2122 
2123 static void disable_dbs(struct adapter *adap)
2124 {
2125 	int i;
2126 
2127 	for_each_ethrxq(&adap->sge, i)
2128 		disable_txq_db(&adap->sge.ethtxq[i].q);
2129 	if (is_offload(adap)) {
2130 		struct sge_uld_txq_info *txq_info =
2131 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2132 
2133 		if (txq_info) {
2134 			for_each_ofldtxq(&adap->sge, i) {
2135 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2136 
2137 				disable_txq_db(&txq->q);
2138 			}
2139 		}
2140 	}
2141 	for_each_port(adap, i)
2142 		disable_txq_db(&adap->sge.ctrlq[i].q);
2143 }
2144 
2145 static void enable_dbs(struct adapter *adap)
2146 {
2147 	int i;
2148 
2149 	for_each_ethrxq(&adap->sge, i)
2150 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2151 	if (is_offload(adap)) {
2152 		struct sge_uld_txq_info *txq_info =
2153 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2154 
2155 		if (txq_info) {
2156 			for_each_ofldtxq(&adap->sge, i) {
2157 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2158 
2159 				enable_txq_db(adap, &txq->q);
2160 			}
2161 		}
2162 	}
2163 	for_each_port(adap, i)
2164 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2165 }
2166 
2167 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2168 {
2169 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
2170 
2171 	if (adap->uld && adap->uld[type].handle)
2172 		adap->uld[type].control(adap->uld[type].handle, cmd);
2173 }
2174 
2175 static void process_db_full(struct work_struct *work)
2176 {
2177 	struct adapter *adap;
2178 
2179 	adap = container_of(work, struct adapter, db_full_task);
2180 
2181 	drain_db_fifo(adap, dbfifo_drain_delay);
2182 	enable_dbs(adap);
2183 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2184 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2185 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2186 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2187 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2188 	else
2189 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2190 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2191 }
2192 
2193 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2194 {
2195 	u16 hw_pidx, hw_cidx;
2196 	int ret;
2197 
2198 	spin_lock_irq(&q->db_lock);
2199 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2200 	if (ret)
2201 		goto out;
2202 	if (q->db_pidx != hw_pidx) {
2203 		u16 delta;
2204 		u32 val;
2205 
2206 		if (q->db_pidx >= hw_pidx)
2207 			delta = q->db_pidx - hw_pidx;
2208 		else
2209 			delta = q->size - hw_pidx + q->db_pidx;
2210 
2211 		if (is_t4(adap->params.chip))
2212 			val = PIDX_V(delta);
2213 		else
2214 			val = PIDX_T5_V(delta);
2215 		wmb();
2216 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2217 			     QID_V(q->cntxt_id) | val);
2218 	}
2219 out:
2220 	q->db_disabled = 0;
2221 	q->db_pidx_inc = 0;
2222 	spin_unlock_irq(&q->db_lock);
2223 	if (ret)
2224 		CH_WARN(adap, "DB drop recovery failed.\n");
2225 }
2226 
2227 static void recover_all_queues(struct adapter *adap)
2228 {
2229 	int i;
2230 
2231 	for_each_ethrxq(&adap->sge, i)
2232 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2233 	if (is_offload(adap)) {
2234 		struct sge_uld_txq_info *txq_info =
2235 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2236 		if (txq_info) {
2237 			for_each_ofldtxq(&adap->sge, i) {
2238 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2239 
2240 				sync_txq_pidx(adap, &txq->q);
2241 			}
2242 		}
2243 	}
2244 	for_each_port(adap, i)
2245 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2246 }
2247 
2248 static void process_db_drop(struct work_struct *work)
2249 {
2250 	struct adapter *adap;
2251 
2252 	adap = container_of(work, struct adapter, db_drop_task);
2253 
2254 	if (is_t4(adap->params.chip)) {
2255 		drain_db_fifo(adap, dbfifo_drain_delay);
2256 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2257 		drain_db_fifo(adap, dbfifo_drain_delay);
2258 		recover_all_queues(adap);
2259 		drain_db_fifo(adap, dbfifo_drain_delay);
2260 		enable_dbs(adap);
2261 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2262 	} else if (is_t5(adap->params.chip)) {
2263 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2264 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2265 		u16 pidx_inc = dropped_db & 0x1fff;
2266 		u64 bar2_qoffset;
2267 		unsigned int bar2_qid;
2268 		int ret;
2269 
2270 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2271 					0, &bar2_qoffset, &bar2_qid);
2272 		if (ret)
2273 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2274 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2275 		else
2276 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2277 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2278 
2279 		/* Re-enable BAR2 WC */
2280 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2281 	}
2282 
2283 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2284 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2285 }
2286 
2287 void t4_db_full(struct adapter *adap)
2288 {
2289 	if (is_t4(adap->params.chip)) {
2290 		disable_dbs(adap);
2291 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2292 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2293 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2294 		queue_work(adap->workq, &adap->db_full_task);
2295 	}
2296 }
2297 
2298 void t4_db_dropped(struct adapter *adap)
2299 {
2300 	if (is_t4(adap->params.chip)) {
2301 		disable_dbs(adap);
2302 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2303 	}
2304 	queue_work(adap->workq, &adap->db_drop_task);
2305 }
2306 
2307 void t4_register_netevent_notifier(void)
2308 {
2309 	if (!netevent_registered) {
2310 		register_netevent_notifier(&cxgb4_netevent_nb);
2311 		netevent_registered = true;
2312 	}
2313 }
2314 
2315 static void detach_ulds(struct adapter *adap)
2316 {
2317 	unsigned int i;
2318 
2319 	mutex_lock(&uld_mutex);
2320 	list_del(&adap->list_node);
2321 
2322 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2323 		if (adap->uld && adap->uld[i].handle)
2324 			adap->uld[i].state_change(adap->uld[i].handle,
2325 					     CXGB4_STATE_DETACH);
2326 
2327 	if (netevent_registered && list_empty(&adapter_list)) {
2328 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2329 		netevent_registered = false;
2330 	}
2331 	mutex_unlock(&uld_mutex);
2332 }
2333 
2334 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2335 {
2336 	unsigned int i;
2337 
2338 	mutex_lock(&uld_mutex);
2339 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2340 		if (adap->uld && adap->uld[i].handle)
2341 			adap->uld[i].state_change(adap->uld[i].handle,
2342 						  new_state);
2343 	mutex_unlock(&uld_mutex);
2344 }
2345 
2346 #if IS_ENABLED(CONFIG_IPV6)
2347 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2348 				   unsigned long event, void *data)
2349 {
2350 	struct inet6_ifaddr *ifa = data;
2351 	struct net_device *event_dev = ifa->idev->dev;
2352 	const struct device *parent = NULL;
2353 #if IS_ENABLED(CONFIG_BONDING)
2354 	struct adapter *adap;
2355 #endif
2356 	if (is_vlan_dev(event_dev))
2357 		event_dev = vlan_dev_real_dev(event_dev);
2358 #if IS_ENABLED(CONFIG_BONDING)
2359 	if (event_dev->flags & IFF_MASTER) {
2360 		list_for_each_entry(adap, &adapter_list, list_node) {
2361 			switch (event) {
2362 			case NETDEV_UP:
2363 				cxgb4_clip_get(adap->port[0],
2364 					       (const u32 *)ifa, 1);
2365 				break;
2366 			case NETDEV_DOWN:
2367 				cxgb4_clip_release(adap->port[0],
2368 						   (const u32 *)ifa, 1);
2369 				break;
2370 			default:
2371 				break;
2372 			}
2373 		}
2374 		return NOTIFY_OK;
2375 	}
2376 #endif
2377 
2378 	if (event_dev)
2379 		parent = event_dev->dev.parent;
2380 
2381 	if (parent && parent->driver == &cxgb4_driver.driver) {
2382 		switch (event) {
2383 		case NETDEV_UP:
2384 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2385 			break;
2386 		case NETDEV_DOWN:
2387 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2388 			break;
2389 		default:
2390 			break;
2391 		}
2392 	}
2393 	return NOTIFY_OK;
2394 }
2395 
2396 static bool inet6addr_registered;
2397 static struct notifier_block cxgb4_inet6addr_notifier = {
2398 	.notifier_call = cxgb4_inet6addr_handler
2399 };
2400 
2401 static void update_clip(const struct adapter *adap)
2402 {
2403 	int i;
2404 	struct net_device *dev;
2405 	int ret;
2406 
2407 	rcu_read_lock();
2408 
2409 	for (i = 0; i < MAX_NPORTS; i++) {
2410 		dev = adap->port[i];
2411 		ret = 0;
2412 
2413 		if (dev)
2414 			ret = cxgb4_update_root_dev_clip(dev);
2415 
2416 		if (ret < 0)
2417 			break;
2418 	}
2419 	rcu_read_unlock();
2420 }
2421 #endif /* IS_ENABLED(CONFIG_IPV6) */
2422 
2423 /**
2424  *	cxgb_up - enable the adapter
2425  *	@adap: adapter being enabled
2426  *
2427  *	Called when the first port is enabled, this function performs the
2428  *	actions necessary to make an adapter operational, such as completing
2429  *	the initialization of HW modules, and enabling interrupts.
2430  *
2431  *	Must be called with the rtnl lock held.
2432  */
2433 static int cxgb_up(struct adapter *adap)
2434 {
2435 	struct sge *s = &adap->sge;
2436 	int err;
2437 
2438 	mutex_lock(&uld_mutex);
2439 	err = setup_sge_queues(adap);
2440 	if (err)
2441 		goto rel_lock;
2442 	err = setup_rss(adap);
2443 	if (err)
2444 		goto freeq;
2445 
2446 	if (adap->flags & CXGB4_USING_MSIX) {
2447 		if (s->nd_msix_idx < 0) {
2448 			err = -ENOMEM;
2449 			goto irq_err;
2450 		}
2451 
2452 		err = request_irq(adap->msix_info[s->nd_msix_idx].vec,
2453 				  t4_nondata_intr, 0,
2454 				  adap->msix_info[s->nd_msix_idx].desc, adap);
2455 		if (err)
2456 			goto irq_err;
2457 
2458 		err = request_msix_queue_irqs(adap);
2459 		if (err)
2460 			goto irq_err_free_nd_msix;
2461 	} else {
2462 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2463 				  (adap->flags & CXGB4_USING_MSI) ? 0
2464 								  : IRQF_SHARED,
2465 				  adap->port[0]->name, adap);
2466 		if (err)
2467 			goto irq_err;
2468 	}
2469 
2470 	enable_rx(adap);
2471 	t4_sge_start(adap);
2472 	t4_intr_enable(adap);
2473 	adap->flags |= CXGB4_FULL_INIT_DONE;
2474 	mutex_unlock(&uld_mutex);
2475 
2476 	notify_ulds(adap, CXGB4_STATE_UP);
2477 #if IS_ENABLED(CONFIG_IPV6)
2478 	update_clip(adap);
2479 #endif
2480 	return err;
2481 
2482 irq_err_free_nd_msix:
2483 	free_irq(adap->msix_info[s->nd_msix_idx].vec, adap);
2484 irq_err:
2485 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2486 freeq:
2487 	t4_free_sge_resources(adap);
2488 rel_lock:
2489 	mutex_unlock(&uld_mutex);
2490 	return err;
2491 }
2492 
2493 static void cxgb_down(struct adapter *adapter)
2494 {
2495 	cancel_work_sync(&adapter->tid_release_task);
2496 	cancel_work_sync(&adapter->db_full_task);
2497 	cancel_work_sync(&adapter->db_drop_task);
2498 	adapter->tid_release_task_busy = false;
2499 	adapter->tid_release_head = NULL;
2500 
2501 	t4_sge_stop(adapter);
2502 	t4_free_sge_resources(adapter);
2503 
2504 	adapter->flags &= ~CXGB4_FULL_INIT_DONE;
2505 }
2506 
2507 /*
2508  * net_device operations
2509  */
2510 int cxgb_open(struct net_device *dev)
2511 {
2512 	struct port_info *pi = netdev_priv(dev);
2513 	struct adapter *adapter = pi->adapter;
2514 	int err;
2515 
2516 	netif_carrier_off(dev);
2517 
2518 	if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) {
2519 		err = cxgb_up(adapter);
2520 		if (err < 0)
2521 			return err;
2522 	}
2523 
2524 	/* It's possible that the basic port information could have
2525 	 * changed since we first read it.
2526 	 */
2527 	err = t4_update_port_info(pi);
2528 	if (err < 0)
2529 		return err;
2530 
2531 	err = link_start(dev);
2532 	if (!err)
2533 		netif_tx_start_all_queues(dev);
2534 	return err;
2535 }
2536 
2537 int cxgb_close(struct net_device *dev)
2538 {
2539 	struct port_info *pi = netdev_priv(dev);
2540 	struct adapter *adapter = pi->adapter;
2541 	int ret;
2542 
2543 	netif_tx_stop_all_queues(dev);
2544 	netif_carrier_off(dev);
2545 	ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2546 				  false, false, false);
2547 #ifdef CONFIG_CHELSIO_T4_DCB
2548 	cxgb4_dcb_reset(dev);
2549 	dcb_tx_queue_prio_enable(dev, false);
2550 #endif
2551 	return ret;
2552 }
2553 
2554 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2555 		__be32 sip, __be16 sport, __be16 vlan,
2556 		unsigned int queue, unsigned char port, unsigned char mask)
2557 {
2558 	int ret;
2559 	struct filter_entry *f;
2560 	struct adapter *adap;
2561 	int i;
2562 	u8 *val;
2563 
2564 	adap = netdev2adap(dev);
2565 
2566 	/* Adjust stid to correct filter index */
2567 	stid -= adap->tids.sftid_base;
2568 	stid += adap->tids.nftids;
2569 
2570 	/* Check to make sure the filter requested is writable ...
2571 	 */
2572 	f = &adap->tids.ftid_tab[stid];
2573 	ret = writable_filter(f);
2574 	if (ret)
2575 		return ret;
2576 
2577 	/* Clear out any old resources being used by the filter before
2578 	 * we start constructing the new filter.
2579 	 */
2580 	if (f->valid)
2581 		clear_filter(adap, f);
2582 
2583 	/* Clear out filter specifications */
2584 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2585 	f->fs.val.lport = cpu_to_be16(sport);
2586 	f->fs.mask.lport  = ~0;
2587 	val = (u8 *)&sip;
2588 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2589 		for (i = 0; i < 4; i++) {
2590 			f->fs.val.lip[i] = val[i];
2591 			f->fs.mask.lip[i] = ~0;
2592 		}
2593 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2594 			f->fs.val.iport = port;
2595 			f->fs.mask.iport = mask;
2596 		}
2597 	}
2598 
2599 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2600 		f->fs.val.proto = IPPROTO_TCP;
2601 		f->fs.mask.proto = ~0;
2602 	}
2603 
2604 	f->fs.dirsteer = 1;
2605 	f->fs.iq = queue;
2606 	/* Mark filter as locked */
2607 	f->locked = 1;
2608 	f->fs.rpttid = 1;
2609 
2610 	/* Save the actual tid. We need this to get the corresponding
2611 	 * filter entry structure in filter_rpl.
2612 	 */
2613 	f->tid = stid + adap->tids.ftid_base;
2614 	ret = set_filter_wr(adap, stid);
2615 	if (ret) {
2616 		clear_filter(adap, f);
2617 		return ret;
2618 	}
2619 
2620 	return 0;
2621 }
2622 EXPORT_SYMBOL(cxgb4_create_server_filter);
2623 
2624 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2625 		unsigned int queue, bool ipv6)
2626 {
2627 	struct filter_entry *f;
2628 	struct adapter *adap;
2629 
2630 	adap = netdev2adap(dev);
2631 
2632 	/* Adjust stid to correct filter index */
2633 	stid -= adap->tids.sftid_base;
2634 	stid += adap->tids.nftids;
2635 
2636 	f = &adap->tids.ftid_tab[stid];
2637 	/* Unlock the filter */
2638 	f->locked = 0;
2639 
2640 	return delete_filter(adap, stid);
2641 }
2642 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2643 
2644 static void cxgb_get_stats(struct net_device *dev,
2645 			   struct rtnl_link_stats64 *ns)
2646 {
2647 	struct port_stats stats;
2648 	struct port_info *p = netdev_priv(dev);
2649 	struct adapter *adapter = p->adapter;
2650 
2651 	/* Block retrieving statistics during EEH error
2652 	 * recovery. Otherwise, the recovery might fail
2653 	 * and the PCI device will be removed permanently
2654 	 */
2655 	spin_lock(&adapter->stats_lock);
2656 	if (!netif_device_present(dev)) {
2657 		spin_unlock(&adapter->stats_lock);
2658 		return;
2659 	}
2660 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2661 				 &p->stats_base);
2662 	spin_unlock(&adapter->stats_lock);
2663 
2664 	ns->tx_bytes   = stats.tx_octets;
2665 	ns->tx_packets = stats.tx_frames;
2666 	ns->rx_bytes   = stats.rx_octets;
2667 	ns->rx_packets = stats.rx_frames;
2668 	ns->multicast  = stats.rx_mcast_frames;
2669 
2670 	/* detailed rx_errors */
2671 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2672 			       stats.rx_runt;
2673 	ns->rx_over_errors   = 0;
2674 	ns->rx_crc_errors    = stats.rx_fcs_err;
2675 	ns->rx_frame_errors  = stats.rx_symbol_err;
2676 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2677 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2678 			       stats.rx_trunc0 + stats.rx_trunc1 +
2679 			       stats.rx_trunc2 + stats.rx_trunc3;
2680 	ns->rx_missed_errors = 0;
2681 
2682 	/* detailed tx_errors */
2683 	ns->tx_aborted_errors   = 0;
2684 	ns->tx_carrier_errors   = 0;
2685 	ns->tx_fifo_errors      = 0;
2686 	ns->tx_heartbeat_errors = 0;
2687 	ns->tx_window_errors    = 0;
2688 
2689 	ns->tx_errors = stats.tx_error_frames;
2690 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2691 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2692 }
2693 
2694 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2695 {
2696 	unsigned int mbox;
2697 	int ret = 0, prtad, devad;
2698 	struct port_info *pi = netdev_priv(dev);
2699 	struct adapter *adapter = pi->adapter;
2700 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2701 
2702 	switch (cmd) {
2703 	case SIOCGMIIPHY:
2704 		if (pi->mdio_addr < 0)
2705 			return -EOPNOTSUPP;
2706 		data->phy_id = pi->mdio_addr;
2707 		break;
2708 	case SIOCGMIIREG:
2709 	case SIOCSMIIREG:
2710 		if (mdio_phy_id_is_c45(data->phy_id)) {
2711 			prtad = mdio_phy_id_prtad(data->phy_id);
2712 			devad = mdio_phy_id_devad(data->phy_id);
2713 		} else if (data->phy_id < 32) {
2714 			prtad = data->phy_id;
2715 			devad = 0;
2716 			data->reg_num &= 0x1f;
2717 		} else
2718 			return -EINVAL;
2719 
2720 		mbox = pi->adapter->pf;
2721 		if (cmd == SIOCGMIIREG)
2722 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2723 					 data->reg_num, &data->val_out);
2724 		else
2725 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2726 					 data->reg_num, data->val_in);
2727 		break;
2728 	case SIOCGHWTSTAMP:
2729 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2730 				    sizeof(pi->tstamp_config)) ?
2731 			-EFAULT : 0;
2732 	case SIOCSHWTSTAMP:
2733 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2734 				   sizeof(pi->tstamp_config)))
2735 			return -EFAULT;
2736 
2737 		if (!is_t4(adapter->params.chip)) {
2738 			switch (pi->tstamp_config.tx_type) {
2739 			case HWTSTAMP_TX_OFF:
2740 			case HWTSTAMP_TX_ON:
2741 				break;
2742 			default:
2743 				return -ERANGE;
2744 			}
2745 
2746 			switch (pi->tstamp_config.rx_filter) {
2747 			case HWTSTAMP_FILTER_NONE:
2748 				pi->rxtstamp = false;
2749 				break;
2750 			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2751 			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2752 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2753 							 PTP_TS_L4);
2754 				break;
2755 			case HWTSTAMP_FILTER_PTP_V2_EVENT:
2756 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2757 							 PTP_TS_L2_L4);
2758 				break;
2759 			case HWTSTAMP_FILTER_ALL:
2760 			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2761 			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2762 			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2763 			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2764 				pi->rxtstamp = true;
2765 				break;
2766 			default:
2767 				pi->tstamp_config.rx_filter =
2768 					HWTSTAMP_FILTER_NONE;
2769 				return -ERANGE;
2770 			}
2771 
2772 			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2773 			    (pi->tstamp_config.rx_filter ==
2774 				HWTSTAMP_FILTER_NONE)) {
2775 				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2776 					pi->ptp_enable = false;
2777 			}
2778 
2779 			if (pi->tstamp_config.rx_filter !=
2780 				HWTSTAMP_FILTER_NONE) {
2781 				if (cxgb4_ptp_redirect_rx_packet(adapter,
2782 								 pi) >= 0)
2783 					pi->ptp_enable = true;
2784 			}
2785 		} else {
2786 			/* For T4 Adapters */
2787 			switch (pi->tstamp_config.rx_filter) {
2788 			case HWTSTAMP_FILTER_NONE:
2789 			pi->rxtstamp = false;
2790 			break;
2791 			case HWTSTAMP_FILTER_ALL:
2792 			pi->rxtstamp = true;
2793 			break;
2794 			default:
2795 			pi->tstamp_config.rx_filter =
2796 			HWTSTAMP_FILTER_NONE;
2797 			return -ERANGE;
2798 			}
2799 		}
2800 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2801 				    sizeof(pi->tstamp_config)) ?
2802 			-EFAULT : 0;
2803 	default:
2804 		return -EOPNOTSUPP;
2805 	}
2806 	return ret;
2807 }
2808 
2809 static void cxgb_set_rxmode(struct net_device *dev)
2810 {
2811 	/* unfortunately we can't return errors to the stack */
2812 	set_rxmode(dev, -1, false);
2813 }
2814 
2815 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2816 {
2817 	int ret;
2818 	struct port_info *pi = netdev_priv(dev);
2819 
2820 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2821 			    -1, -1, -1, true);
2822 	if (!ret)
2823 		dev->mtu = new_mtu;
2824 	return ret;
2825 }
2826 
2827 #ifdef CONFIG_PCI_IOV
2828 static int cxgb4_mgmt_open(struct net_device *dev)
2829 {
2830 	/* Turn carrier off since we don't have to transmit anything on this
2831 	 * interface.
2832 	 */
2833 	netif_carrier_off(dev);
2834 	return 0;
2835 }
2836 
2837 /* Fill MAC address that will be assigned by the FW */
2838 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2839 {
2840 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2841 	unsigned int i, vf, nvfs;
2842 	u16 a, b;
2843 	int err;
2844 	u8 *na;
2845 
2846 	adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2847 							    PCI_CAP_ID_VPD);
2848 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2849 	if (err)
2850 		return;
2851 
2852 	na = adap->params.vpd.na;
2853 	for (i = 0; i < ETH_ALEN; i++)
2854 		hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2855 			      hex2val(na[2 * i + 1]));
2856 
2857 	a = (hw_addr[0] << 8) | hw_addr[1];
2858 	b = (hw_addr[1] << 8) | hw_addr[2];
2859 	a ^= b;
2860 	a |= 0x0200;    /* locally assigned Ethernet MAC address */
2861 	a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2862 	macaddr[0] = a >> 8;
2863 	macaddr[1] = a & 0xff;
2864 
2865 	for (i = 2; i < 5; i++)
2866 		macaddr[i] = hw_addr[i + 1];
2867 
2868 	for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2869 		vf < nvfs; vf++) {
2870 		macaddr[5] = adap->pf * nvfs + vf;
2871 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2872 	}
2873 }
2874 
2875 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2876 {
2877 	struct port_info *pi = netdev_priv(dev);
2878 	struct adapter *adap = pi->adapter;
2879 	int ret;
2880 
2881 	/* verify MAC addr is valid */
2882 	if (!is_valid_ether_addr(mac)) {
2883 		dev_err(pi->adapter->pdev_dev,
2884 			"Invalid Ethernet address %pM for VF %d\n",
2885 			mac, vf);
2886 		return -EINVAL;
2887 	}
2888 
2889 	dev_info(pi->adapter->pdev_dev,
2890 		 "Setting MAC %pM on VF %d\n", mac, vf);
2891 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2892 	if (!ret)
2893 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2894 	return ret;
2895 }
2896 
2897 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2898 				    int vf, struct ifla_vf_info *ivi)
2899 {
2900 	struct port_info *pi = netdev_priv(dev);
2901 	struct adapter *adap = pi->adapter;
2902 	struct vf_info *vfinfo;
2903 
2904 	if (vf >= adap->num_vfs)
2905 		return -EINVAL;
2906 	vfinfo = &adap->vfinfo[vf];
2907 
2908 	ivi->vf = vf;
2909 	ivi->max_tx_rate = vfinfo->tx_rate;
2910 	ivi->min_tx_rate = 0;
2911 	ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2912 	ivi->vlan = vfinfo->vlan;
2913 	ivi->linkstate = vfinfo->link_state;
2914 	return 0;
2915 }
2916 
2917 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2918 				       struct netdev_phys_item_id *ppid)
2919 {
2920 	struct port_info *pi = netdev_priv(dev);
2921 	unsigned int phy_port_id;
2922 
2923 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2924 	ppid->id_len = sizeof(phy_port_id);
2925 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
2926 	return 0;
2927 }
2928 
2929 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2930 				  int min_tx_rate, int max_tx_rate)
2931 {
2932 	struct port_info *pi = netdev_priv(dev);
2933 	struct adapter *adap = pi->adapter;
2934 	unsigned int link_ok, speed, mtu;
2935 	u32 fw_pfvf, fw_class;
2936 	int class_id = vf;
2937 	int ret;
2938 	u16 pktsize;
2939 
2940 	if (vf >= adap->num_vfs)
2941 		return -EINVAL;
2942 
2943 	if (min_tx_rate) {
2944 		dev_err(adap->pdev_dev,
2945 			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2946 			min_tx_rate, vf);
2947 		return -EINVAL;
2948 	}
2949 
2950 	if (max_tx_rate == 0) {
2951 		/* unbind VF to to any Traffic Class */
2952 		fw_pfvf =
2953 		    (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2954 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2955 		fw_class = 0xffffffff;
2956 		ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
2957 				    &fw_pfvf, &fw_class);
2958 		if (ret) {
2959 			dev_err(adap->pdev_dev,
2960 				"Err %d in unbinding PF %d VF %d from TX Rate Limiting\n",
2961 				ret, adap->pf, vf);
2962 			return -EINVAL;
2963 		}
2964 		dev_info(adap->pdev_dev,
2965 			 "PF %d VF %d is unbound from TX Rate Limiting\n",
2966 			 adap->pf, vf);
2967 		adap->vfinfo[vf].tx_rate = 0;
2968 		return 0;
2969 	}
2970 
2971 	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2972 	if (ret != FW_SUCCESS) {
2973 		dev_err(adap->pdev_dev,
2974 			"Failed to get link information for VF %d\n", vf);
2975 		return -EINVAL;
2976 	}
2977 
2978 	if (!link_ok) {
2979 		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2980 		return -EINVAL;
2981 	}
2982 
2983 	if (max_tx_rate > speed) {
2984 		dev_err(adap->pdev_dev,
2985 			"Max tx rate %d for VF %d can't be > link-speed %u",
2986 			max_tx_rate, vf, speed);
2987 		return -EINVAL;
2988 	}
2989 
2990 	pktsize = mtu;
2991 	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2992 	pktsize = pktsize - sizeof(struct ethhdr) - 4;
2993 	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2994 	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2995 	/* configure Traffic Class for rate-limiting */
2996 	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2997 			      SCHED_CLASS_LEVEL_CL_RL,
2998 			      SCHED_CLASS_MODE_CLASS,
2999 			      SCHED_CLASS_RATEUNIT_BITS,
3000 			      SCHED_CLASS_RATEMODE_ABS,
3001 			      pi->tx_chan, class_id, 0,
3002 			      max_tx_rate * 1000, 0, pktsize);
3003 	if (ret) {
3004 		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
3005 			ret);
3006 		return -EINVAL;
3007 	}
3008 	dev_info(adap->pdev_dev,
3009 		 "Class %d with MSS %u configured with rate %u\n",
3010 		 class_id, pktsize, max_tx_rate);
3011 
3012 	/* bind VF to configured Traffic Class */
3013 	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3014 		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
3015 	fw_class = class_id;
3016 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
3017 			    &fw_class);
3018 	if (ret) {
3019 		dev_err(adap->pdev_dev,
3020 			"Err %d in binding PF %d VF %d to Traffic Class %d\n",
3021 			ret, adap->pf, vf, class_id);
3022 		return -EINVAL;
3023 	}
3024 	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
3025 		 adap->pf, vf, class_id);
3026 	adap->vfinfo[vf].tx_rate = max_tx_rate;
3027 	return 0;
3028 }
3029 
3030 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
3031 				  u16 vlan, u8 qos, __be16 vlan_proto)
3032 {
3033 	struct port_info *pi = netdev_priv(dev);
3034 	struct adapter *adap = pi->adapter;
3035 	int ret;
3036 
3037 	if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
3038 		return -EINVAL;
3039 
3040 	if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
3041 		return -EPROTONOSUPPORT;
3042 
3043 	ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
3044 	if (!ret) {
3045 		adap->vfinfo[vf].vlan = vlan;
3046 		return 0;
3047 	}
3048 
3049 	dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
3050 		ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
3051 	return ret;
3052 }
3053 
3054 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf,
3055 					int link)
3056 {
3057 	struct port_info *pi = netdev_priv(dev);
3058 	struct adapter *adap = pi->adapter;
3059 	u32 param, val;
3060 	int ret = 0;
3061 
3062 	if (vf >= adap->num_vfs)
3063 		return -EINVAL;
3064 
3065 	switch (link) {
3066 	case IFLA_VF_LINK_STATE_AUTO:
3067 		val = FW_VF_LINK_STATE_AUTO;
3068 		break;
3069 
3070 	case IFLA_VF_LINK_STATE_ENABLE:
3071 		val = FW_VF_LINK_STATE_ENABLE;
3072 		break;
3073 
3074 	case IFLA_VF_LINK_STATE_DISABLE:
3075 		val = FW_VF_LINK_STATE_DISABLE;
3076 		break;
3077 
3078 	default:
3079 		return -EINVAL;
3080 	}
3081 
3082 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
3083 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE));
3084 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1,
3085 			    &param, &val);
3086 	if (ret) {
3087 		dev_err(adap->pdev_dev,
3088 			"Error %d in setting PF %d VF %d link state\n",
3089 			ret, adap->pf, vf);
3090 		return -EINVAL;
3091 	}
3092 
3093 	adap->vfinfo[vf].link_state = link;
3094 	return ret;
3095 }
3096 #endif /* CONFIG_PCI_IOV */
3097 
3098 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3099 {
3100 	int ret;
3101 	struct sockaddr *addr = p;
3102 	struct port_info *pi = netdev_priv(dev);
3103 
3104 	if (!is_valid_ether_addr(addr->sa_data))
3105 		return -EADDRNOTAVAIL;
3106 
3107 	ret = cxgb4_update_mac_filt(pi, pi->viid, &pi->xact_addr_filt,
3108 				    addr->sa_data, true, &pi->smt_idx);
3109 	if (ret < 0)
3110 		return ret;
3111 
3112 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3113 	pi->xact_addr_filt = ret;
3114 	return 0;
3115 }
3116 
3117 #ifdef CONFIG_NET_POLL_CONTROLLER
3118 static void cxgb_netpoll(struct net_device *dev)
3119 {
3120 	struct port_info *pi = netdev_priv(dev);
3121 	struct adapter *adap = pi->adapter;
3122 
3123 	if (adap->flags & CXGB4_USING_MSIX) {
3124 		int i;
3125 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3126 
3127 		for (i = pi->nqsets; i; i--, rx++)
3128 			t4_sge_intr_msix(0, &rx->rspq);
3129 	} else
3130 		t4_intr_handler(adap)(0, adap);
3131 }
3132 #endif
3133 
3134 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
3135 {
3136 	struct port_info *pi = netdev_priv(dev);
3137 	struct adapter *adap = pi->adapter;
3138 	struct sched_class *e;
3139 	struct ch_sched_params p;
3140 	struct ch_sched_queue qe;
3141 	u32 req_rate;
3142 	int err = 0;
3143 
3144 	if (!can_sched(dev))
3145 		return -ENOTSUPP;
3146 
3147 	if (index < 0 || index > pi->nqsets - 1)
3148 		return -EINVAL;
3149 
3150 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3151 		dev_err(adap->pdev_dev,
3152 			"Failed to rate limit on queue %d. Link Down?\n",
3153 			index);
3154 		return -EINVAL;
3155 	}
3156 
3157 	/* Convert from Mbps to Kbps */
3158 	req_rate = rate * 1000;
3159 
3160 	/* Max rate is 100 Gbps */
3161 	if (req_rate > SCHED_MAX_RATE_KBPS) {
3162 		dev_err(adap->pdev_dev,
3163 			"Invalid rate %u Mbps, Max rate is %u Mbps\n",
3164 			rate, SCHED_MAX_RATE_KBPS / 1000);
3165 		return -ERANGE;
3166 	}
3167 
3168 	/* First unbind the queue from any existing class */
3169 	memset(&qe, 0, sizeof(qe));
3170 	qe.queue = index;
3171 	qe.class = SCHED_CLS_NONE;
3172 
3173 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
3174 	if (err) {
3175 		dev_err(adap->pdev_dev,
3176 			"Unbinding Queue %d on port %d fail. Err: %d\n",
3177 			index, pi->port_id, err);
3178 		return err;
3179 	}
3180 
3181 	/* Queue already unbound */
3182 	if (!req_rate)
3183 		return 0;
3184 
3185 	/* Fetch any available unused or matching scheduling class */
3186 	memset(&p, 0, sizeof(p));
3187 	p.type = SCHED_CLASS_TYPE_PACKET;
3188 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
3189 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
3190 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
3191 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
3192 	p.u.params.channel  = pi->tx_chan;
3193 	p.u.params.class    = SCHED_CLS_NONE;
3194 	p.u.params.minrate  = 0;
3195 	p.u.params.maxrate  = req_rate;
3196 	p.u.params.weight   = 0;
3197 	p.u.params.pktsize  = dev->mtu;
3198 
3199 	e = cxgb4_sched_class_alloc(dev, &p);
3200 	if (!e)
3201 		return -ENOMEM;
3202 
3203 	/* Bind the queue to a scheduling class */
3204 	memset(&qe, 0, sizeof(qe));
3205 	qe.queue = index;
3206 	qe.class = e->idx;
3207 
3208 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
3209 	if (err)
3210 		dev_err(adap->pdev_dev,
3211 			"Queue rate limiting failed. Err: %d\n", err);
3212 	return err;
3213 }
3214 
3215 static int cxgb_setup_tc_flower(struct net_device *dev,
3216 				struct flow_cls_offload *cls_flower)
3217 {
3218 	switch (cls_flower->command) {
3219 	case FLOW_CLS_REPLACE:
3220 		return cxgb4_tc_flower_replace(dev, cls_flower);
3221 	case FLOW_CLS_DESTROY:
3222 		return cxgb4_tc_flower_destroy(dev, cls_flower);
3223 	case FLOW_CLS_STATS:
3224 		return cxgb4_tc_flower_stats(dev, cls_flower);
3225 	default:
3226 		return -EOPNOTSUPP;
3227 	}
3228 }
3229 
3230 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
3231 				 struct tc_cls_u32_offload *cls_u32)
3232 {
3233 	switch (cls_u32->command) {
3234 	case TC_CLSU32_NEW_KNODE:
3235 	case TC_CLSU32_REPLACE_KNODE:
3236 		return cxgb4_config_knode(dev, cls_u32);
3237 	case TC_CLSU32_DELETE_KNODE:
3238 		return cxgb4_delete_knode(dev, cls_u32);
3239 	default:
3240 		return -EOPNOTSUPP;
3241 	}
3242 }
3243 
3244 static int cxgb_setup_tc_matchall(struct net_device *dev,
3245 				  struct tc_cls_matchall_offload *cls_matchall,
3246 				  bool ingress)
3247 {
3248 	struct adapter *adap = netdev2adap(dev);
3249 
3250 	if (!adap->tc_matchall)
3251 		return -ENOMEM;
3252 
3253 	switch (cls_matchall->command) {
3254 	case TC_CLSMATCHALL_REPLACE:
3255 		return cxgb4_tc_matchall_replace(dev, cls_matchall, ingress);
3256 	case TC_CLSMATCHALL_DESTROY:
3257 		return cxgb4_tc_matchall_destroy(dev, cls_matchall, ingress);
3258 	case TC_CLSMATCHALL_STATS:
3259 		if (ingress)
3260 			return cxgb4_tc_matchall_stats(dev, cls_matchall);
3261 		break;
3262 	default:
3263 		break;
3264 	}
3265 
3266 	return -EOPNOTSUPP;
3267 }
3268 
3269 static int cxgb_setup_tc_block_ingress_cb(enum tc_setup_type type,
3270 					  void *type_data, void *cb_priv)
3271 {
3272 	struct net_device *dev = cb_priv;
3273 	struct port_info *pi = netdev2pinfo(dev);
3274 	struct adapter *adap = netdev2adap(dev);
3275 
3276 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3277 		dev_err(adap->pdev_dev,
3278 			"Failed to setup tc on port %d. Link Down?\n",
3279 			pi->port_id);
3280 		return -EINVAL;
3281 	}
3282 
3283 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3284 		return -EOPNOTSUPP;
3285 
3286 	switch (type) {
3287 	case TC_SETUP_CLSU32:
3288 		return cxgb_setup_tc_cls_u32(dev, type_data);
3289 	case TC_SETUP_CLSFLOWER:
3290 		return cxgb_setup_tc_flower(dev, type_data);
3291 	case TC_SETUP_CLSMATCHALL:
3292 		return cxgb_setup_tc_matchall(dev, type_data, true);
3293 	default:
3294 		return -EOPNOTSUPP;
3295 	}
3296 }
3297 
3298 static int cxgb_setup_tc_block_egress_cb(enum tc_setup_type type,
3299 					 void *type_data, void *cb_priv)
3300 {
3301 	struct net_device *dev = cb_priv;
3302 	struct port_info *pi = netdev2pinfo(dev);
3303 	struct adapter *adap = netdev2adap(dev);
3304 
3305 	if (!(adap->flags & CXGB4_FULL_INIT_DONE)) {
3306 		dev_err(adap->pdev_dev,
3307 			"Failed to setup tc on port %d. Link Down?\n",
3308 			pi->port_id);
3309 		return -EINVAL;
3310 	}
3311 
3312 	if (!tc_cls_can_offload_and_chain0(dev, type_data))
3313 		return -EOPNOTSUPP;
3314 
3315 	switch (type) {
3316 	case TC_SETUP_CLSMATCHALL:
3317 		return cxgb_setup_tc_matchall(dev, type_data, false);
3318 	default:
3319 		break;
3320 	}
3321 
3322 	return -EOPNOTSUPP;
3323 }
3324 
3325 static int cxgb_setup_tc_mqprio(struct net_device *dev,
3326 				struct tc_mqprio_qopt_offload *mqprio)
3327 {
3328 	struct adapter *adap = netdev2adap(dev);
3329 
3330 	if (!is_ethofld(adap) || !adap->tc_mqprio)
3331 		return -ENOMEM;
3332 
3333 	return cxgb4_setup_tc_mqprio(dev, mqprio);
3334 }
3335 
3336 static LIST_HEAD(cxgb_block_cb_list);
3337 
3338 static int cxgb_setup_tc_block(struct net_device *dev,
3339 			       struct flow_block_offload *f)
3340 {
3341 	struct port_info *pi = netdev_priv(dev);
3342 	flow_setup_cb_t *cb;
3343 	bool ingress_only;
3344 
3345 	pi->tc_block_shared = f->block_shared;
3346 	if (f->binder_type == FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS) {
3347 		cb = cxgb_setup_tc_block_egress_cb;
3348 		ingress_only = false;
3349 	} else {
3350 		cb = cxgb_setup_tc_block_ingress_cb;
3351 		ingress_only = true;
3352 	}
3353 
3354 	return flow_block_cb_setup_simple(f, &cxgb_block_cb_list,
3355 					  cb, pi, dev, ingress_only);
3356 }
3357 
3358 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3359 			 void *type_data)
3360 {
3361 	switch (type) {
3362 	case TC_SETUP_QDISC_MQPRIO:
3363 		return cxgb_setup_tc_mqprio(dev, type_data);
3364 	case TC_SETUP_BLOCK:
3365 		return cxgb_setup_tc_block(dev, type_data);
3366 	default:
3367 		return -EOPNOTSUPP;
3368 	}
3369 }
3370 
3371 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3372 				struct udp_tunnel_info *ti)
3373 {
3374 	struct port_info *pi = netdev_priv(netdev);
3375 	struct adapter *adapter = pi->adapter;
3376 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3377 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3378 	int ret = 0, i;
3379 
3380 	if (chip_ver < CHELSIO_T6)
3381 		return;
3382 
3383 	switch (ti->type) {
3384 	case UDP_TUNNEL_TYPE_VXLAN:
3385 		if (!adapter->vxlan_port_cnt ||
3386 		    adapter->vxlan_port != ti->port)
3387 			return; /* Invalid VxLAN destination port */
3388 
3389 		adapter->vxlan_port_cnt--;
3390 		if (adapter->vxlan_port_cnt)
3391 			return;
3392 
3393 		adapter->vxlan_port = 0;
3394 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3395 		break;
3396 	case UDP_TUNNEL_TYPE_GENEVE:
3397 		if (!adapter->geneve_port_cnt ||
3398 		    adapter->geneve_port != ti->port)
3399 			return; /* Invalid GENEVE destination port */
3400 
3401 		adapter->geneve_port_cnt--;
3402 		if (adapter->geneve_port_cnt)
3403 			return;
3404 
3405 		adapter->geneve_port = 0;
3406 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3407 		break;
3408 	default:
3409 		return;
3410 	}
3411 
3412 	/* Matchall mac entries can be deleted only after all tunnel ports
3413 	 * are brought down or removed.
3414 	 */
3415 	if (!adapter->rawf_cnt)
3416 		return;
3417 	for_each_port(adapter, i) {
3418 		pi = adap2pinfo(adapter, i);
3419 		ret = t4_free_raw_mac_filt(adapter, pi->viid,
3420 					   match_all_mac, match_all_mac,
3421 					   adapter->rawf_start +
3422 					    pi->port_id,
3423 					   1, pi->port_id, false);
3424 		if (ret < 0) {
3425 			netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3426 				    i);
3427 			return;
3428 		}
3429 	}
3430 }
3431 
3432 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3433 				struct udp_tunnel_info *ti)
3434 {
3435 	struct port_info *pi = netdev_priv(netdev);
3436 	struct adapter *adapter = pi->adapter;
3437 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3438 	u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3439 	int i, ret;
3440 
3441 	if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3442 		return;
3443 
3444 	switch (ti->type) {
3445 	case UDP_TUNNEL_TYPE_VXLAN:
3446 		/* Callback for adding vxlan port can be called with the same
3447 		 * port for both IPv4 and IPv6. We should not disable the
3448 		 * offloading when the same port for both protocols is added
3449 		 * and later one of them is removed.
3450 		 */
3451 		if (adapter->vxlan_port_cnt &&
3452 		    adapter->vxlan_port == ti->port) {
3453 			adapter->vxlan_port_cnt++;
3454 			return;
3455 		}
3456 
3457 		/* We will support only one VxLAN port */
3458 		if (adapter->vxlan_port_cnt) {
3459 			netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3460 				    be16_to_cpu(adapter->vxlan_port),
3461 				    be16_to_cpu(ti->port));
3462 			return;
3463 		}
3464 
3465 		adapter->vxlan_port = ti->port;
3466 		adapter->vxlan_port_cnt = 1;
3467 
3468 		t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3469 			     VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3470 		break;
3471 	case UDP_TUNNEL_TYPE_GENEVE:
3472 		if (adapter->geneve_port_cnt &&
3473 		    adapter->geneve_port == ti->port) {
3474 			adapter->geneve_port_cnt++;
3475 			return;
3476 		}
3477 
3478 		/* We will support only one GENEVE port */
3479 		if (adapter->geneve_port_cnt) {
3480 			netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3481 				    be16_to_cpu(adapter->geneve_port),
3482 				    be16_to_cpu(ti->port));
3483 			return;
3484 		}
3485 
3486 		adapter->geneve_port = ti->port;
3487 		adapter->geneve_port_cnt = 1;
3488 
3489 		t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3490 			     GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3491 		break;
3492 	default:
3493 		return;
3494 	}
3495 
3496 	/* Create a 'match all' mac filter entry for inner mac,
3497 	 * if raw mac interface is supported. Once the linux kernel provides
3498 	 * driver entry points for adding/deleting the inner mac addresses,
3499 	 * we will remove this 'match all' entry and fallback to adding
3500 	 * exact match filters.
3501 	 */
3502 	for_each_port(adapter, i) {
3503 		pi = adap2pinfo(adapter, i);
3504 
3505 		ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3506 					    match_all_mac,
3507 					    match_all_mac,
3508 					    adapter->rawf_start +
3509 					    pi->port_id,
3510 					    1, pi->port_id, false);
3511 		if (ret < 0) {
3512 			netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3513 				    be16_to_cpu(ti->port));
3514 			cxgb_del_udp_tunnel(netdev, ti);
3515 			return;
3516 		}
3517 	}
3518 }
3519 
3520 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3521 					     struct net_device *dev,
3522 					     netdev_features_t features)
3523 {
3524 	struct port_info *pi = netdev_priv(dev);
3525 	struct adapter *adapter = pi->adapter;
3526 
3527 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3528 		return features;
3529 
3530 	/* Check if hw supports offload for this packet */
3531 	if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3532 		return features;
3533 
3534 	/* Offload is not supported for this encapsulated packet */
3535 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3536 }
3537 
3538 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3539 					   netdev_features_t features)
3540 {
3541 	/* Disable GRO, if RX_CSUM is disabled */
3542 	if (!(features & NETIF_F_RXCSUM))
3543 		features &= ~NETIF_F_GRO;
3544 
3545 	return features;
3546 }
3547 
3548 static const struct net_device_ops cxgb4_netdev_ops = {
3549 	.ndo_open             = cxgb_open,
3550 	.ndo_stop             = cxgb_close,
3551 	.ndo_start_xmit       = t4_start_xmit,
3552 	.ndo_select_queue     =	cxgb_select_queue,
3553 	.ndo_get_stats64      = cxgb_get_stats,
3554 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3555 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3556 	.ndo_set_features     = cxgb_set_features,
3557 	.ndo_validate_addr    = eth_validate_addr,
3558 	.ndo_do_ioctl         = cxgb_ioctl,
3559 	.ndo_change_mtu       = cxgb_change_mtu,
3560 #ifdef CONFIG_NET_POLL_CONTROLLER
3561 	.ndo_poll_controller  = cxgb_netpoll,
3562 #endif
3563 #ifdef CONFIG_CHELSIO_T4_FCOE
3564 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3565 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3566 #endif /* CONFIG_CHELSIO_T4_FCOE */
3567 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3568 	.ndo_setup_tc         = cxgb_setup_tc,
3569 	.ndo_udp_tunnel_add   = cxgb_add_udp_tunnel,
3570 	.ndo_udp_tunnel_del   = cxgb_del_udp_tunnel,
3571 	.ndo_features_check   = cxgb_features_check,
3572 	.ndo_fix_features     = cxgb_fix_features,
3573 };
3574 
3575 #ifdef CONFIG_PCI_IOV
3576 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3577 	.ndo_open               = cxgb4_mgmt_open,
3578 	.ndo_set_vf_mac         = cxgb4_mgmt_set_vf_mac,
3579 	.ndo_get_vf_config      = cxgb4_mgmt_get_vf_config,
3580 	.ndo_set_vf_rate        = cxgb4_mgmt_set_vf_rate,
3581 	.ndo_get_phys_port_id   = cxgb4_mgmt_get_phys_port_id,
3582 	.ndo_set_vf_vlan        = cxgb4_mgmt_set_vf_vlan,
3583 	.ndo_set_vf_link_state	= cxgb4_mgmt_set_vf_link_state,
3584 };
3585 #endif
3586 
3587 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3588 				   struct ethtool_drvinfo *info)
3589 {
3590 	struct adapter *adapter = netdev2adap(dev);
3591 
3592 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3593 	strlcpy(info->version, cxgb4_driver_version,
3594 		sizeof(info->version));
3595 	strlcpy(info->bus_info, pci_name(adapter->pdev),
3596 		sizeof(info->bus_info));
3597 }
3598 
3599 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3600 	.get_drvinfo       = cxgb4_mgmt_get_drvinfo,
3601 };
3602 
3603 static void notify_fatal_err(struct work_struct *work)
3604 {
3605 	struct adapter *adap;
3606 
3607 	adap = container_of(work, struct adapter, fatal_err_notify_task);
3608 	notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3609 }
3610 
3611 void t4_fatal_err(struct adapter *adap)
3612 {
3613 	int port;
3614 
3615 	if (pci_channel_offline(adap->pdev))
3616 		return;
3617 
3618 	/* Disable the SGE since ULDs are going to free resources that
3619 	 * could be exposed to the adapter.  RDMA MWs for example...
3620 	 */
3621 	t4_shutdown_adapter(adap);
3622 	for_each_port(adap, port) {
3623 		struct net_device *dev = adap->port[port];
3624 
3625 		/* If we get here in very early initialization the network
3626 		 * devices may not have been set up yet.
3627 		 */
3628 		if (!dev)
3629 			continue;
3630 
3631 		netif_tx_stop_all_queues(dev);
3632 		netif_carrier_off(dev);
3633 	}
3634 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3635 	queue_work(adap->workq, &adap->fatal_err_notify_task);
3636 }
3637 
3638 static void setup_memwin(struct adapter *adap)
3639 {
3640 	u32 nic_win_base = t4_get_util_window(adap);
3641 
3642 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3643 }
3644 
3645 static void setup_memwin_rdma(struct adapter *adap)
3646 {
3647 	if (adap->vres.ocq.size) {
3648 		u32 start;
3649 		unsigned int sz_kb;
3650 
3651 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3652 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3653 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3654 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3655 		t4_write_reg(adap,
3656 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3657 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3658 		t4_write_reg(adap,
3659 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3660 			     adap->vres.ocq.start);
3661 		t4_read_reg(adap,
3662 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3663 	}
3664 }
3665 
3666 /* HMA Definitions */
3667 
3668 /* The maximum number of address that can be send in a single FW cmd */
3669 #define HMA_MAX_ADDR_IN_CMD	5
3670 
3671 #define HMA_PAGE_SIZE		PAGE_SIZE
3672 
3673 #define HMA_MAX_NO_FW_ADDRESS	(16 << 10)  /* FW supports 16K addresses */
3674 
3675 #define HMA_PAGE_ORDER					\
3676 	((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ?	\
3677 	ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3678 
3679 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3680  * configuration(in units of MB).
3681  */
3682 #define HMA_MIN_TOTAL_SIZE	1
3683 #define HMA_MAX_TOTAL_SIZE				\
3684 	(((HMA_PAGE_SIZE << HMA_PAGE_ORDER) *		\
3685 	  HMA_MAX_NO_FW_ADDRESS) >> 20)
3686 
3687 static void adap_free_hma_mem(struct adapter *adapter)
3688 {
3689 	struct scatterlist *iter;
3690 	struct page *page;
3691 	int i;
3692 
3693 	if (!adapter->hma.sgt)
3694 		return;
3695 
3696 	if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3697 		dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3698 			     adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3699 		adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3700 	}
3701 
3702 	for_each_sg(adapter->hma.sgt->sgl, iter,
3703 		    adapter->hma.sgt->orig_nents, i) {
3704 		page = sg_page(iter);
3705 		if (page)
3706 			__free_pages(page, HMA_PAGE_ORDER);
3707 	}
3708 
3709 	kfree(adapter->hma.phy_addr);
3710 	sg_free_table(adapter->hma.sgt);
3711 	kfree(adapter->hma.sgt);
3712 	adapter->hma.sgt = NULL;
3713 }
3714 
3715 static int adap_config_hma(struct adapter *adapter)
3716 {
3717 	struct scatterlist *sgl, *iter;
3718 	struct sg_table *sgt;
3719 	struct page *newpage;
3720 	unsigned int i, j, k;
3721 	u32 param, hma_size;
3722 	unsigned int ncmds;
3723 	size_t page_size;
3724 	u32 page_order;
3725 	int node, ret;
3726 
3727 	/* HMA is supported only for T6+ cards.
3728 	 * Avoid initializing HMA in kdump kernels.
3729 	 */
3730 	if (is_kdump_kernel() ||
3731 	    CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3732 		return 0;
3733 
3734 	/* Get the HMA region size required by fw */
3735 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3736 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3737 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3738 			      1, &param, &hma_size);
3739 	/* An error means card has its own memory or HMA is not supported by
3740 	 * the firmware. Return without any errors.
3741 	 */
3742 	if (ret || !hma_size)
3743 		return 0;
3744 
3745 	if (hma_size < HMA_MIN_TOTAL_SIZE ||
3746 	    hma_size > HMA_MAX_TOTAL_SIZE) {
3747 		dev_err(adapter->pdev_dev,
3748 			"HMA size %uMB beyond bounds(%u-%lu)MB\n",
3749 			hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3750 		return -EINVAL;
3751 	}
3752 
3753 	page_size = HMA_PAGE_SIZE;
3754 	page_order = HMA_PAGE_ORDER;
3755 	adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3756 	if (unlikely(!adapter->hma.sgt)) {
3757 		dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3758 		return -ENOMEM;
3759 	}
3760 	sgt = adapter->hma.sgt;
3761 	/* FW returned value will be in MB's
3762 	 */
3763 	sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3764 	if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3765 		dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3766 		kfree(adapter->hma.sgt);
3767 		adapter->hma.sgt = NULL;
3768 		return -ENOMEM;
3769 	}
3770 
3771 	sgl = adapter->hma.sgt->sgl;
3772 	node = dev_to_node(adapter->pdev_dev);
3773 	for_each_sg(sgl, iter, sgt->orig_nents, i) {
3774 		newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3775 					   __GFP_ZERO, page_order);
3776 		if (!newpage) {
3777 			dev_err(adapter->pdev_dev,
3778 				"Not enough memory for HMA page allocation\n");
3779 			ret = -ENOMEM;
3780 			goto free_hma;
3781 		}
3782 		sg_set_page(iter, newpage, page_size << page_order, 0);
3783 	}
3784 
3785 	sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3786 				DMA_BIDIRECTIONAL);
3787 	if (!sgt->nents) {
3788 		dev_err(adapter->pdev_dev,
3789 			"Not enough memory for HMA DMA mapping");
3790 		ret = -ENOMEM;
3791 		goto free_hma;
3792 	}
3793 	adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3794 
3795 	adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3796 					GFP_KERNEL);
3797 	if (unlikely(!adapter->hma.phy_addr))
3798 		goto free_hma;
3799 
3800 	for_each_sg(sgl, iter, sgt->nents, i) {
3801 		newpage = sg_page(iter);
3802 		adapter->hma.phy_addr[i] = sg_dma_address(iter);
3803 	}
3804 
3805 	ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3806 	/* Pass on the addresses to firmware */
3807 	for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3808 		struct fw_hma_cmd hma_cmd;
3809 		u8 naddr = HMA_MAX_ADDR_IN_CMD;
3810 		u8 soc = 0, eoc = 0;
3811 		u8 hma_mode = 1; /* Presently we support only Page table mode */
3812 
3813 		soc = (i == 0) ? 1 : 0;
3814 		eoc = (i == ncmds - 1) ? 1 : 0;
3815 
3816 		/* For last cmd, set naddr corresponding to remaining
3817 		 * addresses
3818 		 */
3819 		if (i == ncmds - 1) {
3820 			naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3821 			naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3822 		}
3823 		memset(&hma_cmd, 0, sizeof(hma_cmd));
3824 		hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3825 				       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3826 		hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3827 
3828 		hma_cmd.mode_to_pcie_params =
3829 			htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3830 			      FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3831 
3832 		/* HMA cmd size specified in MB's */
3833 		hma_cmd.naddr_size =
3834 			htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3835 			      FW_HMA_CMD_NADDR_V(naddr));
3836 
3837 		/* Total Page size specified in units of 4K */
3838 		hma_cmd.addr_size_pkd =
3839 			htonl(FW_HMA_CMD_ADDR_SIZE_V
3840 				((page_size << page_order) >> 12));
3841 
3842 		/* Fill the 5 addresses */
3843 		for (j = 0; j < naddr; j++) {
3844 			hma_cmd.phy_address[j] =
3845 				cpu_to_be64(adapter->hma.phy_addr[j + k]);
3846 		}
3847 		ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3848 				 sizeof(hma_cmd), &hma_cmd);
3849 		if (ret) {
3850 			dev_err(adapter->pdev_dev,
3851 				"HMA FW command failed with err %d\n", ret);
3852 			goto free_hma;
3853 		}
3854 	}
3855 
3856 	if (!ret)
3857 		dev_info(adapter->pdev_dev,
3858 			 "Reserved %uMB host memory for HMA\n", hma_size);
3859 	return ret;
3860 
3861 free_hma:
3862 	adap_free_hma_mem(adapter);
3863 	return ret;
3864 }
3865 
3866 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3867 {
3868 	u32 v;
3869 	int ret;
3870 
3871 	/* Now that we've successfully configured and initialized the adapter
3872 	 * can ask the Firmware what resources it has provisioned for us.
3873 	 */
3874 	ret = t4_get_pfres(adap);
3875 	if (ret) {
3876 		dev_err(adap->pdev_dev,
3877 			"Unable to retrieve resource provisioning information\n");
3878 		return ret;
3879 	}
3880 
3881 	/* get device capabilities */
3882 	memset(c, 0, sizeof(*c));
3883 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3884 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3885 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3886 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3887 	if (ret < 0)
3888 		return ret;
3889 
3890 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3891 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3892 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3893 	if (ret < 0)
3894 		return ret;
3895 
3896 	ret = t4_config_glbl_rss(adap, adap->pf,
3897 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3898 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3899 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3900 	if (ret < 0)
3901 		return ret;
3902 
3903 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3904 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3905 			  FW_CMD_CAP_PF);
3906 	if (ret < 0)
3907 		return ret;
3908 
3909 	t4_sge_init(adap);
3910 
3911 	/* tweak some settings */
3912 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3913 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3914 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3915 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3916 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3917 
3918 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3919 	adap->params.tp.tx_modq_map = 0xE4;
3920 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3921 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3922 
3923 	/* associate each Tx modulation queue with consecutive Tx channels */
3924 	v = 0x84218421;
3925 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3926 			  &v, 1, TP_TX_SCHED_HDR_A);
3927 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3928 			  &v, 1, TP_TX_SCHED_FIFO_A);
3929 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3930 			  &v, 1, TP_TX_SCHED_PCMD_A);
3931 
3932 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3933 	if (is_offload(adap)) {
3934 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3935 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3936 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3937 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3938 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3939 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3940 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3941 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3942 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3943 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3944 	}
3945 
3946 	/* get basic stuff going */
3947 	return t4_early_init(adap, adap->pf);
3948 }
3949 
3950 /*
3951  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3952  */
3953 #define MAX_ATIDS 8192U
3954 
3955 /*
3956  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3957  *
3958  * If the firmware we're dealing with has Configuration File support, then
3959  * we use that to perform all configuration
3960  */
3961 
3962 /*
3963  * Tweak configuration based on module parameters, etc.  Most of these have
3964  * defaults assigned to them by Firmware Configuration Files (if we're using
3965  * them) but need to be explicitly set if we're using hard-coded
3966  * initialization.  But even in the case of using Firmware Configuration
3967  * Files, we'd like to expose the ability to change these via module
3968  * parameters so these are essentially common tweaks/settings for
3969  * Configuration Files and hard-coded initialization ...
3970  */
3971 static int adap_init0_tweaks(struct adapter *adapter)
3972 {
3973 	/*
3974 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3975 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3976 	 * 64B Cache Line Size ...
3977 	 */
3978 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3979 
3980 	/*
3981 	 * Process module parameters which affect early initialization.
3982 	 */
3983 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3984 		dev_err(&adapter->pdev->dev,
3985 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3986 			rx_dma_offset);
3987 		rx_dma_offset = 2;
3988 	}
3989 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3990 			 PKTSHIFT_V(PKTSHIFT_M),
3991 			 PKTSHIFT_V(rx_dma_offset));
3992 
3993 	/*
3994 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3995 	 * adds the pseudo header itself.
3996 	 */
3997 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3998 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3999 
4000 	return 0;
4001 }
4002 
4003 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
4004  * unto themselves and they contain their own firmware to perform their
4005  * tasks ...
4006  */
4007 static int phy_aq1202_version(const u8 *phy_fw_data,
4008 			      size_t phy_fw_size)
4009 {
4010 	int offset;
4011 
4012 	/* At offset 0x8 you're looking for the primary image's
4013 	 * starting offset which is 3 Bytes wide
4014 	 *
4015 	 * At offset 0xa of the primary image, you look for the offset
4016 	 * of the DRAM segment which is 3 Bytes wide.
4017 	 *
4018 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
4019 	 * wide
4020 	 */
4021 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
4022 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
4023 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
4024 
4025 	offset = le24(phy_fw_data + 0x8) << 12;
4026 	offset = le24(phy_fw_data + offset + 0xa);
4027 	return be16(phy_fw_data + offset + 0x27e);
4028 
4029 	#undef be16
4030 	#undef le16
4031 	#undef le24
4032 }
4033 
4034 static struct info_10gbt_phy_fw {
4035 	unsigned int phy_fw_id;		/* PCI Device ID */
4036 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
4037 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
4038 	int phy_flash;			/* Has FLASH for PHY Firmware */
4039 } phy_info_array[] = {
4040 	{
4041 		PHY_AQ1202_DEVICEID,
4042 		PHY_AQ1202_FIRMWARE,
4043 		phy_aq1202_version,
4044 		1,
4045 	},
4046 	{
4047 		PHY_BCM84834_DEVICEID,
4048 		PHY_BCM84834_FIRMWARE,
4049 		NULL,
4050 		0,
4051 	},
4052 	{ 0, NULL, NULL },
4053 };
4054 
4055 static struct info_10gbt_phy_fw *find_phy_info(int devid)
4056 {
4057 	int i;
4058 
4059 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
4060 		if (phy_info_array[i].phy_fw_id == devid)
4061 			return &phy_info_array[i];
4062 	}
4063 	return NULL;
4064 }
4065 
4066 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
4067  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
4068  * we return a negative error number.  If we transfer new firmware we return 1
4069  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
4070  */
4071 static int adap_init0_phy(struct adapter *adap)
4072 {
4073 	const struct firmware *phyf;
4074 	int ret;
4075 	struct info_10gbt_phy_fw *phy_info;
4076 
4077 	/* Use the device ID to determine which PHY file to flash.
4078 	 */
4079 	phy_info = find_phy_info(adap->pdev->device);
4080 	if (!phy_info) {
4081 		dev_warn(adap->pdev_dev,
4082 			 "No PHY Firmware file found for this PHY\n");
4083 		return -EOPNOTSUPP;
4084 	}
4085 
4086 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
4087 	 * use that. The adapter firmware provides us with a memory buffer
4088 	 * where we can load a PHY firmware file from the host if we want to
4089 	 * override the PHY firmware File in flash.
4090 	 */
4091 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
4092 				      adap->pdev_dev);
4093 	if (ret < 0) {
4094 		/* For adapters without FLASH attached to PHY for their
4095 		 * firmware, it's obviously a fatal error if we can't get the
4096 		 * firmware to the adapter.  For adapters with PHY firmware
4097 		 * FLASH storage, it's worth a warning if we can't find the
4098 		 * PHY Firmware but we'll neuter the error ...
4099 		 */
4100 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
4101 			"/lib/firmware/%s, error %d\n",
4102 			phy_info->phy_fw_file, -ret);
4103 		if (phy_info->phy_flash) {
4104 			int cur_phy_fw_ver = 0;
4105 
4106 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
4107 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
4108 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
4109 			ret = 0;
4110 		}
4111 
4112 		return ret;
4113 	}
4114 
4115 	/* Load PHY Firmware onto adapter.
4116 	 */
4117 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
4118 			     phy_info->phy_fw_version,
4119 			     (u8 *)phyf->data, phyf->size);
4120 	if (ret < 0)
4121 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
4122 			-ret);
4123 	else if (ret > 0) {
4124 		int new_phy_fw_ver = 0;
4125 
4126 		if (phy_info->phy_fw_version)
4127 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
4128 								  phyf->size);
4129 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
4130 			 "Firmware /lib/firmware/%s, version %#x\n",
4131 			 phy_info->phy_fw_file, new_phy_fw_ver);
4132 	}
4133 
4134 	release_firmware(phyf);
4135 
4136 	return ret;
4137 }
4138 
4139 /*
4140  * Attempt to initialize the adapter via a Firmware Configuration File.
4141  */
4142 static int adap_init0_config(struct adapter *adapter, int reset)
4143 {
4144 	char *fw_config_file, fw_config_file_path[256];
4145 	u32 finiver, finicsum, cfcsum, param, val;
4146 	struct fw_caps_config_cmd caps_cmd;
4147 	unsigned long mtype = 0, maddr = 0;
4148 	const struct firmware *cf;
4149 	char *config_name = NULL;
4150 	int config_issued = 0;
4151 	int ret;
4152 
4153 	/*
4154 	 * Reset device if necessary.
4155 	 */
4156 	if (reset) {
4157 		ret = t4_fw_reset(adapter, adapter->mbox,
4158 				  PIORSTMODE_F | PIORST_F);
4159 		if (ret < 0)
4160 			goto bye;
4161 	}
4162 
4163 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
4164 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
4165 	 * to be performed after any global adapter RESET above since some
4166 	 * PHYs only have local RAM copies of the PHY firmware.
4167 	 */
4168 	if (is_10gbt_device(adapter->pdev->device)) {
4169 		ret = adap_init0_phy(adapter);
4170 		if (ret < 0)
4171 			goto bye;
4172 	}
4173 	/*
4174 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4175 	 * then use that.  Otherwise, use the configuration file stored
4176 	 * in the adapter flash ...
4177 	 */
4178 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4179 	case CHELSIO_T4:
4180 		fw_config_file = FW4_CFNAME;
4181 		break;
4182 	case CHELSIO_T5:
4183 		fw_config_file = FW5_CFNAME;
4184 		break;
4185 	case CHELSIO_T6:
4186 		fw_config_file = FW6_CFNAME;
4187 		break;
4188 	default:
4189 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4190 		       adapter->pdev->device);
4191 		ret = -EINVAL;
4192 		goto bye;
4193 	}
4194 
4195 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4196 	if (ret < 0) {
4197 		config_name = "On FLASH";
4198 		mtype = FW_MEMTYPE_CF_FLASH;
4199 		maddr = t4_flash_cfg_addr(adapter);
4200 	} else {
4201 		u32 params[7], val[7];
4202 
4203 		sprintf(fw_config_file_path,
4204 			"/lib/firmware/%s", fw_config_file);
4205 		config_name = fw_config_file_path;
4206 
4207 		if (cf->size >= FLASH_CFG_MAX_SIZE)
4208 			ret = -ENOMEM;
4209 		else {
4210 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4211 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4212 			ret = t4_query_params(adapter, adapter->mbox,
4213 					      adapter->pf, 0, 1, params, val);
4214 			if (ret == 0) {
4215 				/*
4216 				 * For t4_memory_rw() below addresses and
4217 				 * sizes have to be in terms of multiples of 4
4218 				 * bytes.  So, if the Configuration File isn't
4219 				 * a multiple of 4 bytes in length we'll have
4220 				 * to write that out separately since we can't
4221 				 * guarantee that the bytes following the
4222 				 * residual byte in the buffer returned by
4223 				 * request_firmware() are zeroed out ...
4224 				 */
4225 				size_t resid = cf->size & 0x3;
4226 				size_t size = cf->size & ~0x3;
4227 				__be32 *data = (__be32 *)cf->data;
4228 
4229 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
4230 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
4231 
4232 				spin_lock(&adapter->win0_lock);
4233 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
4234 						   size, data, T4_MEMORY_WRITE);
4235 				if (ret == 0 && resid != 0) {
4236 					union {
4237 						__be32 word;
4238 						char buf[4];
4239 					} last;
4240 					int i;
4241 
4242 					last.word = data[size >> 2];
4243 					for (i = resid; i < 4; i++)
4244 						last.buf[i] = 0;
4245 					ret = t4_memory_rw(adapter, 0, mtype,
4246 							   maddr + size,
4247 							   4, &last.word,
4248 							   T4_MEMORY_WRITE);
4249 				}
4250 				spin_unlock(&adapter->win0_lock);
4251 			}
4252 		}
4253 
4254 		release_firmware(cf);
4255 		if (ret)
4256 			goto bye;
4257 	}
4258 
4259 	val = 0;
4260 
4261 	/* Ofld + Hash filter is supported. Older fw will fail this request and
4262 	 * it is fine.
4263 	 */
4264 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4265 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HASHFILTER_WITH_OFLD));
4266 	ret = t4_set_params(adapter, adapter->mbox, adapter->pf, 0,
4267 			    1, &param, &val);
4268 
4269 	/* FW doesn't know about Hash filter + ofld support,
4270 	 * it's not a problem, don't return an error.
4271 	 */
4272 	if (ret < 0) {
4273 		dev_warn(adapter->pdev_dev,
4274 			 "Hash filter with ofld is not supported by FW\n");
4275 	}
4276 
4277 	/*
4278 	 * Issue a Capability Configuration command to the firmware to get it
4279 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
4280 	 * because we want the ability to modify various features after we've
4281 	 * processed the configuration file ...
4282 	 */
4283 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4284 	caps_cmd.op_to_write =
4285 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4286 		      FW_CMD_REQUEST_F |
4287 		      FW_CMD_READ_F);
4288 	caps_cmd.cfvalid_to_len16 =
4289 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
4290 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
4291 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
4292 		      FW_LEN16(caps_cmd));
4293 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4294 			 &caps_cmd);
4295 
4296 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4297 	 * Configuration File in FLASH), our last gasp effort is to use the
4298 	 * Firmware Configuration File which is embedded in the firmware.  A
4299 	 * very few early versions of the firmware didn't have one embedded
4300 	 * but we can ignore those.
4301 	 */
4302 	if (ret == -ENOENT) {
4303 		memset(&caps_cmd, 0, sizeof(caps_cmd));
4304 		caps_cmd.op_to_write =
4305 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4306 					FW_CMD_REQUEST_F |
4307 					FW_CMD_READ_F);
4308 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4309 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4310 				sizeof(caps_cmd), &caps_cmd);
4311 		config_name = "Firmware Default";
4312 	}
4313 
4314 	config_issued = 1;
4315 	if (ret < 0)
4316 		goto bye;
4317 
4318 	finiver = ntohl(caps_cmd.finiver);
4319 	finicsum = ntohl(caps_cmd.finicsum);
4320 	cfcsum = ntohl(caps_cmd.cfcsum);
4321 	if (finicsum != cfcsum)
4322 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4323 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4324 			 finicsum, cfcsum);
4325 
4326 	/*
4327 	 * And now tell the firmware to use the configuration we just loaded.
4328 	 */
4329 	caps_cmd.op_to_write =
4330 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4331 		      FW_CMD_REQUEST_F |
4332 		      FW_CMD_WRITE_F);
4333 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4334 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4335 			 NULL);
4336 	if (ret < 0)
4337 		goto bye;
4338 
4339 	/*
4340 	 * Tweak configuration based on system architecture, module
4341 	 * parameters, etc.
4342 	 */
4343 	ret = adap_init0_tweaks(adapter);
4344 	if (ret < 0)
4345 		goto bye;
4346 
4347 	/* We will proceed even if HMA init fails. */
4348 	ret = adap_config_hma(adapter);
4349 	if (ret)
4350 		dev_err(adapter->pdev_dev,
4351 			"HMA configuration failed with error %d\n", ret);
4352 
4353 	if (is_t6(adapter->params.chip)) {
4354 		ret = setup_ppod_edram(adapter);
4355 		if (!ret)
4356 			dev_info(adapter->pdev_dev, "Successfully enabled "
4357 				 "ppod edram feature\n");
4358 	}
4359 
4360 	/*
4361 	 * And finally tell the firmware to initialize itself using the
4362 	 * parameters from the Configuration File.
4363 	 */
4364 	ret = t4_fw_initialize(adapter, adapter->mbox);
4365 	if (ret < 0)
4366 		goto bye;
4367 
4368 	/* Emit Firmware Configuration File information and return
4369 	 * successfully.
4370 	 */
4371 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4372 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4373 		 config_name, finiver, cfcsum);
4374 	return 0;
4375 
4376 	/*
4377 	 * Something bad happened.  Return the error ...  (If the "error"
4378 	 * is that there's no Configuration File on the adapter we don't
4379 	 * want to issue a warning since this is fairly common.)
4380 	 */
4381 bye:
4382 	if (config_issued && ret != -ENOENT)
4383 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4384 			 config_name, -ret);
4385 	return ret;
4386 }
4387 
4388 static struct fw_info fw_info_array[] = {
4389 	{
4390 		.chip = CHELSIO_T4,
4391 		.fs_name = FW4_CFNAME,
4392 		.fw_mod_name = FW4_FNAME,
4393 		.fw_hdr = {
4394 			.chip = FW_HDR_CHIP_T4,
4395 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4396 			.intfver_nic = FW_INTFVER(T4, NIC),
4397 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4398 			.intfver_ri = FW_INTFVER(T4, RI),
4399 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4400 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4401 		},
4402 	}, {
4403 		.chip = CHELSIO_T5,
4404 		.fs_name = FW5_CFNAME,
4405 		.fw_mod_name = FW5_FNAME,
4406 		.fw_hdr = {
4407 			.chip = FW_HDR_CHIP_T5,
4408 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4409 			.intfver_nic = FW_INTFVER(T5, NIC),
4410 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4411 			.intfver_ri = FW_INTFVER(T5, RI),
4412 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4413 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4414 		},
4415 	}, {
4416 		.chip = CHELSIO_T6,
4417 		.fs_name = FW6_CFNAME,
4418 		.fw_mod_name = FW6_FNAME,
4419 		.fw_hdr = {
4420 			.chip = FW_HDR_CHIP_T6,
4421 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4422 			.intfver_nic = FW_INTFVER(T6, NIC),
4423 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4424 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4425 			.intfver_ri = FW_INTFVER(T6, RI),
4426 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4427 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4428 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4429 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4430 		},
4431 	}
4432 
4433 };
4434 
4435 static struct fw_info *find_fw_info(int chip)
4436 {
4437 	int i;
4438 
4439 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4440 		if (fw_info_array[i].chip == chip)
4441 			return &fw_info_array[i];
4442 	}
4443 	return NULL;
4444 }
4445 
4446 /*
4447  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4448  */
4449 static int adap_init0(struct adapter *adap, int vpd_skip)
4450 {
4451 	struct fw_caps_config_cmd caps_cmd;
4452 	u32 params[7], val[7];
4453 	enum dev_state state;
4454 	u32 v, port_vec;
4455 	int reset = 1;
4456 	int ret;
4457 
4458 	/* Grab Firmware Device Log parameters as early as possible so we have
4459 	 * access to it for debugging, etc.
4460 	 */
4461 	ret = t4_init_devlog_params(adap);
4462 	if (ret < 0)
4463 		return ret;
4464 
4465 	/* Contact FW, advertising Master capability */
4466 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4467 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4468 	if (ret < 0) {
4469 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4470 			ret);
4471 		return ret;
4472 	}
4473 	if (ret == adap->mbox)
4474 		adap->flags |= CXGB4_MASTER_PF;
4475 
4476 	/*
4477 	 * If we're the Master PF Driver and the device is uninitialized,
4478 	 * then let's consider upgrading the firmware ...  (We always want
4479 	 * to check the firmware version number in order to A. get it for
4480 	 * later reporting and B. to warn if the currently loaded firmware
4481 	 * is excessively mismatched relative to the driver.)
4482 	 */
4483 
4484 	t4_get_version_info(adap);
4485 	ret = t4_check_fw_version(adap);
4486 	/* If firmware is too old (not supported by driver) force an update. */
4487 	if (ret)
4488 		state = DEV_STATE_UNINIT;
4489 	if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) {
4490 		struct fw_info *fw_info;
4491 		struct fw_hdr *card_fw;
4492 		const struct firmware *fw;
4493 		const u8 *fw_data = NULL;
4494 		unsigned int fw_size = 0;
4495 
4496 		/* This is the firmware whose headers the driver was compiled
4497 		 * against
4498 		 */
4499 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4500 		if (fw_info == NULL) {
4501 			dev_err(adap->pdev_dev,
4502 				"unable to get firmware info for chip %d.\n",
4503 				CHELSIO_CHIP_VERSION(adap->params.chip));
4504 			return -EINVAL;
4505 		}
4506 
4507 		/* allocate memory to read the header of the firmware on the
4508 		 * card
4509 		 */
4510 		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4511 		if (!card_fw) {
4512 			ret = -ENOMEM;
4513 			goto bye;
4514 		}
4515 
4516 		/* Get FW from from /lib/firmware/ */
4517 		ret = request_firmware(&fw, fw_info->fw_mod_name,
4518 				       adap->pdev_dev);
4519 		if (ret < 0) {
4520 			dev_err(adap->pdev_dev,
4521 				"unable to load firmware image %s, error %d\n",
4522 				fw_info->fw_mod_name, ret);
4523 		} else {
4524 			fw_data = fw->data;
4525 			fw_size = fw->size;
4526 		}
4527 
4528 		/* upgrade FW logic */
4529 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4530 				 state, &reset);
4531 
4532 		/* Cleaning up */
4533 		release_firmware(fw);
4534 		kvfree(card_fw);
4535 
4536 		if (ret < 0)
4537 			goto bye;
4538 	}
4539 
4540 	/* If the firmware is initialized already, emit a simply note to that
4541 	 * effect. Otherwise, it's time to try initializing the adapter.
4542 	 */
4543 	if (state == DEV_STATE_INIT) {
4544 		ret = adap_config_hma(adap);
4545 		if (ret)
4546 			dev_err(adap->pdev_dev,
4547 				"HMA configuration failed with error %d\n",
4548 				ret);
4549 		dev_info(adap->pdev_dev, "Coming up as %s: "\
4550 			 "Adapter already initialized\n",
4551 			 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE");
4552 	} else {
4553 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4554 			 "Initializing adapter\n");
4555 
4556 		/* Find out whether we're dealing with a version of the
4557 		 * firmware which has configuration file support.
4558 		 */
4559 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4560 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4561 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4562 				      params, val);
4563 
4564 		/* If the firmware doesn't support Configuration Files,
4565 		 * return an error.
4566 		 */
4567 		if (ret < 0) {
4568 			dev_err(adap->pdev_dev, "firmware doesn't support "
4569 				"Firmware Configuration Files\n");
4570 			goto bye;
4571 		}
4572 
4573 		/* The firmware provides us with a memory buffer where we can
4574 		 * load a Configuration File from the host if we want to
4575 		 * override the Configuration File in flash.
4576 		 */
4577 		ret = adap_init0_config(adap, reset);
4578 		if (ret == -ENOENT) {
4579 			dev_err(adap->pdev_dev, "no Configuration File "
4580 				"present on adapter.\n");
4581 			goto bye;
4582 		}
4583 		if (ret < 0) {
4584 			dev_err(adap->pdev_dev, "could not initialize "
4585 				"adapter, error %d\n", -ret);
4586 			goto bye;
4587 		}
4588 	}
4589 
4590 	/* Now that we've successfully configured and initialized the adapter
4591 	 * (or found it already initialized), we can ask the Firmware what
4592 	 * resources it has provisioned for us.
4593 	 */
4594 	ret = t4_get_pfres(adap);
4595 	if (ret) {
4596 		dev_err(adap->pdev_dev,
4597 			"Unable to retrieve resource provisioning information\n");
4598 		goto bye;
4599 	}
4600 
4601 	/* Grab VPD parameters.  This should be done after we establish a
4602 	 * connection to the firmware since some of the VPD parameters
4603 	 * (notably the Core Clock frequency) are retrieved via requests to
4604 	 * the firmware.  On the other hand, we need these fairly early on
4605 	 * so we do this right after getting ahold of the firmware.
4606 	 *
4607 	 * We need to do this after initializing the adapter because someone
4608 	 * could have FLASHed a new VPD which won't be read by the firmware
4609 	 * until we do the RESET ...
4610 	 */
4611 	if (!vpd_skip) {
4612 		ret = t4_get_vpd_params(adap, &adap->params.vpd);
4613 		if (ret < 0)
4614 			goto bye;
4615 	}
4616 
4617 	/* Find out what ports are available to us.  Note that we need to do
4618 	 * this before calling adap_init0_no_config() since it needs nports
4619 	 * and portvec ...
4620 	 */
4621 	v =
4622 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4623 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4624 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4625 	if (ret < 0)
4626 		goto bye;
4627 
4628 	adap->params.nports = hweight32(port_vec);
4629 	adap->params.portvec = port_vec;
4630 
4631 	/* Give the SGE code a chance to pull in anything that it needs ...
4632 	 * Note that this must be called after we retrieve our VPD parameters
4633 	 * in order to know how to convert core ticks to seconds, etc.
4634 	 */
4635 	ret = t4_sge_init(adap);
4636 	if (ret < 0)
4637 		goto bye;
4638 
4639 	/* Grab the SGE Doorbell Queue Timer values.  If successful, that
4640 	 * indicates that the Firmware and Hardware support this.
4641 	 */
4642 	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4643 		    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK));
4644 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4645 			      1, params, val);
4646 
4647 	if (!ret) {
4648 		adap->sge.dbqtimer_tick = val[0];
4649 		ret = t4_read_sge_dbqtimers(adap,
4650 					    ARRAY_SIZE(adap->sge.dbqtimer_val),
4651 					    adap->sge.dbqtimer_val);
4652 	}
4653 
4654 	if (!ret)
4655 		adap->flags |= CXGB4_SGE_DBQ_TIMER;
4656 
4657 	if (is_bypass_device(adap->pdev->device))
4658 		adap->params.bypass = 1;
4659 
4660 	/*
4661 	 * Grab some of our basic fundamental operating parameters.
4662 	 */
4663 #define FW_PARAM_DEV(param) \
4664 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4665 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4666 
4667 #define FW_PARAM_PFVF(param) \
4668 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4669 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
4670 	FW_PARAMS_PARAM_Y_V(0) | \
4671 	FW_PARAMS_PARAM_Z_V(0)
4672 
4673 	params[0] = FW_PARAM_PFVF(EQ_START);
4674 	params[1] = FW_PARAM_PFVF(L2T_START);
4675 	params[2] = FW_PARAM_PFVF(L2T_END);
4676 	params[3] = FW_PARAM_PFVF(FILTER_START);
4677 	params[4] = FW_PARAM_PFVF(FILTER_END);
4678 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
4679 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4680 	if (ret < 0)
4681 		goto bye;
4682 	adap->sge.egr_start = val[0];
4683 	adap->l2t_start = val[1];
4684 	adap->l2t_end = val[2];
4685 	adap->tids.ftid_base = val[3];
4686 	adap->tids.nftids = val[4] - val[3] + 1;
4687 	adap->sge.ingr_start = val[5];
4688 
4689 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4690 		/* Read the raw mps entries. In T6, the last 2 tcam entries
4691 		 * are reserved for raw mac addresses (rawf = 2, one per port).
4692 		 */
4693 		params[0] = FW_PARAM_PFVF(RAWF_START);
4694 		params[1] = FW_PARAM_PFVF(RAWF_END);
4695 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4696 				      params, val);
4697 		if (ret == 0) {
4698 			adap->rawf_start = val[0];
4699 			adap->rawf_cnt = val[1] - val[0] + 1;
4700 		}
4701 	}
4702 
4703 	/* qids (ingress/egress) returned from firmware can be anywhere
4704 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4705 	 * Hence driver needs to allocate memory for this range to
4706 	 * store the queue info. Get the highest IQFLINT/EQ index returned
4707 	 * in FW_EQ_*_CMD.alloc command.
4708 	 */
4709 	params[0] = FW_PARAM_PFVF(EQ_END);
4710 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
4711 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4712 	if (ret < 0)
4713 		goto bye;
4714 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4715 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4716 
4717 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4718 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
4719 	if (!adap->sge.egr_map) {
4720 		ret = -ENOMEM;
4721 		goto bye;
4722 	}
4723 
4724 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4725 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4726 	if (!adap->sge.ingr_map) {
4727 		ret = -ENOMEM;
4728 		goto bye;
4729 	}
4730 
4731 	/* Allocate the memory for the vaious egress queue bitmaps
4732 	 * ie starving_fl, txq_maperr and blocked_fl.
4733 	 */
4734 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4735 					sizeof(long), GFP_KERNEL);
4736 	if (!adap->sge.starving_fl) {
4737 		ret = -ENOMEM;
4738 		goto bye;
4739 	}
4740 
4741 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4742 				       sizeof(long), GFP_KERNEL);
4743 	if (!adap->sge.txq_maperr) {
4744 		ret = -ENOMEM;
4745 		goto bye;
4746 	}
4747 
4748 #ifdef CONFIG_DEBUG_FS
4749 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4750 				       sizeof(long), GFP_KERNEL);
4751 	if (!adap->sge.blocked_fl) {
4752 		ret = -ENOMEM;
4753 		goto bye;
4754 	}
4755 #endif
4756 
4757 	params[0] = FW_PARAM_PFVF(CLIP_START);
4758 	params[1] = FW_PARAM_PFVF(CLIP_END);
4759 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4760 	if (ret < 0)
4761 		goto bye;
4762 	adap->clipt_start = val[0];
4763 	adap->clipt_end = val[1];
4764 
4765 	/* Get the supported number of traffic classes */
4766 	params[0] = FW_PARAM_DEV(NUM_TM_CLASS);
4767 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4768 	if (ret < 0) {
4769 		/* We couldn't retrieve the number of Traffic Classes
4770 		 * supported by the hardware/firmware. So we hard
4771 		 * code it here.
4772 		 */
4773 		adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4774 	} else {
4775 		adap->params.nsched_cls = val[0];
4776 	}
4777 
4778 	/* query params related to active filter region */
4779 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4780 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4781 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4782 	/* If Active filter size is set we enable establishing
4783 	 * offload connection through firmware work request
4784 	 */
4785 	if ((val[0] != val[1]) && (ret >= 0)) {
4786 		adap->flags |= CXGB4_FW_OFLD_CONN;
4787 		adap->tids.aftid_base = val[0];
4788 		adap->tids.aftid_end = val[1];
4789 	}
4790 
4791 	/* If we're running on newer firmware, let it know that we're
4792 	 * prepared to deal with encapsulated CPL messages.  Older
4793 	 * firmware won't understand this and we'll just get
4794 	 * unencapsulated messages ...
4795 	 */
4796 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4797 	val[0] = 1;
4798 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4799 
4800 	/*
4801 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4802 	 * capability.  Earlier versions of the firmware didn't have the
4803 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4804 	 * permission to use ULPTX MEMWRITE DSGL.
4805 	 */
4806 	if (is_t4(adap->params.chip)) {
4807 		adap->params.ulptx_memwrite_dsgl = false;
4808 	} else {
4809 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4810 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4811 				      1, params, val);
4812 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4813 	}
4814 
4815 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4816 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4817 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4818 			      1, params, val);
4819 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4820 
4821 	/* See if FW supports FW_FILTER2 work request */
4822 	if (is_t4(adap->params.chip)) {
4823 		adap->params.filter2_wr_support = 0;
4824 	} else {
4825 		params[0] = FW_PARAM_DEV(FILTER2_WR);
4826 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4827 				      1, params, val);
4828 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4829 	}
4830 
4831 	/* Check if FW supports returning vin and smt index.
4832 	 * If this is not supported, driver will interpret
4833 	 * these values from viid.
4834 	 */
4835 	params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
4836 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4837 			      1, params, val);
4838 	adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0);
4839 
4840 	/*
4841 	 * Get device capabilities so we can determine what resources we need
4842 	 * to manage.
4843 	 */
4844 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4845 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4846 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
4847 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4848 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4849 			 &caps_cmd);
4850 	if (ret < 0)
4851 		goto bye;
4852 
4853 	/* hash filter has some mandatory register settings to be tested and for
4854 	 * that it needs to test whether offload is enabled or not, hence
4855 	 * checking and setting it here.
4856 	 */
4857 	if (caps_cmd.ofldcaps)
4858 		adap->params.offload = 1;
4859 
4860 	if (caps_cmd.ofldcaps ||
4861 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) ||
4862 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD))) {
4863 		/* query offload-related parameters */
4864 		params[0] = FW_PARAM_DEV(NTID);
4865 		params[1] = FW_PARAM_PFVF(SERVER_START);
4866 		params[2] = FW_PARAM_PFVF(SERVER_END);
4867 		params[3] = FW_PARAM_PFVF(TDDP_START);
4868 		params[4] = FW_PARAM_PFVF(TDDP_END);
4869 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4870 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4871 				      params, val);
4872 		if (ret < 0)
4873 			goto bye;
4874 		adap->tids.ntids = val[0];
4875 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4876 		adap->tids.stid_base = val[1];
4877 		adap->tids.nstids = val[2] - val[1] + 1;
4878 		/*
4879 		 * Setup server filter region. Divide the available filter
4880 		 * region into two parts. Regular filters get 1/3rd and server
4881 		 * filters get 2/3rd part. This is only enabled if workarond
4882 		 * path is enabled.
4883 		 * 1. For regular filters.
4884 		 * 2. Server filter: This are special filters which are used
4885 		 * to redirect SYN packets to offload queue.
4886 		 */
4887 		if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) {
4888 			adap->tids.sftid_base = adap->tids.ftid_base +
4889 					DIV_ROUND_UP(adap->tids.nftids, 3);
4890 			adap->tids.nsftids = adap->tids.nftids -
4891 					 DIV_ROUND_UP(adap->tids.nftids, 3);
4892 			adap->tids.nftids = adap->tids.sftid_base -
4893 						adap->tids.ftid_base;
4894 		}
4895 		adap->vres.ddp.start = val[3];
4896 		adap->vres.ddp.size = val[4] - val[3] + 1;
4897 		adap->params.ofldq_wr_cred = val[5];
4898 
4899 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4900 			init_hash_filter(adap);
4901 		} else {
4902 			adap->num_ofld_uld += 1;
4903 		}
4904 
4905 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_ETHOFLD)) {
4906 			params[0] = FW_PARAM_PFVF(ETHOFLD_START);
4907 			params[1] = FW_PARAM_PFVF(ETHOFLD_END);
4908 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4909 					      params, val);
4910 			if (!ret) {
4911 				adap->tids.eotid_base = val[0];
4912 				adap->tids.neotids = min_t(u32, MAX_ATIDS,
4913 							   val[1] - val[0] + 1);
4914 				adap->params.ethofld = 1;
4915 			}
4916 		}
4917 	}
4918 	if (caps_cmd.rdmacaps) {
4919 		params[0] = FW_PARAM_PFVF(STAG_START);
4920 		params[1] = FW_PARAM_PFVF(STAG_END);
4921 		params[2] = FW_PARAM_PFVF(RQ_START);
4922 		params[3] = FW_PARAM_PFVF(RQ_END);
4923 		params[4] = FW_PARAM_PFVF(PBL_START);
4924 		params[5] = FW_PARAM_PFVF(PBL_END);
4925 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4926 				      params, val);
4927 		if (ret < 0)
4928 			goto bye;
4929 		adap->vres.stag.start = val[0];
4930 		adap->vres.stag.size = val[1] - val[0] + 1;
4931 		adap->vres.rq.start = val[2];
4932 		adap->vres.rq.size = val[3] - val[2] + 1;
4933 		adap->vres.pbl.start = val[4];
4934 		adap->vres.pbl.size = val[5] - val[4] + 1;
4935 
4936 		params[0] = FW_PARAM_PFVF(SRQ_START);
4937 		params[1] = FW_PARAM_PFVF(SRQ_END);
4938 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4939 				      params, val);
4940 		if (!ret) {
4941 			adap->vres.srq.start = val[0];
4942 			adap->vres.srq.size = val[1] - val[0] + 1;
4943 		}
4944 		if (adap->vres.srq.size) {
4945 			adap->srq = t4_init_srq(adap->vres.srq.size);
4946 			if (!adap->srq)
4947 				dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4948 		}
4949 
4950 		params[0] = FW_PARAM_PFVF(SQRQ_START);
4951 		params[1] = FW_PARAM_PFVF(SQRQ_END);
4952 		params[2] = FW_PARAM_PFVF(CQ_START);
4953 		params[3] = FW_PARAM_PFVF(CQ_END);
4954 		params[4] = FW_PARAM_PFVF(OCQ_START);
4955 		params[5] = FW_PARAM_PFVF(OCQ_END);
4956 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4957 				      val);
4958 		if (ret < 0)
4959 			goto bye;
4960 		adap->vres.qp.start = val[0];
4961 		adap->vres.qp.size = val[1] - val[0] + 1;
4962 		adap->vres.cq.start = val[2];
4963 		adap->vres.cq.size = val[3] - val[2] + 1;
4964 		adap->vres.ocq.start = val[4];
4965 		adap->vres.ocq.size = val[5] - val[4] + 1;
4966 
4967 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4968 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4969 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4970 				      val);
4971 		if (ret < 0) {
4972 			adap->params.max_ordird_qp = 8;
4973 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4974 			ret = 0;
4975 		} else {
4976 			adap->params.max_ordird_qp = val[0];
4977 			adap->params.max_ird_adapter = val[1];
4978 		}
4979 		dev_info(adap->pdev_dev,
4980 			 "max_ordird_qp %d max_ird_adapter %d\n",
4981 			 adap->params.max_ordird_qp,
4982 			 adap->params.max_ird_adapter);
4983 
4984 		/* Enable write_with_immediate if FW supports it */
4985 		params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
4986 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4987 				      val);
4988 		adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
4989 
4990 		/* Enable write_cmpl if FW supports it */
4991 		params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
4992 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4993 				      val);
4994 		adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
4995 		adap->num_ofld_uld += 2;
4996 	}
4997 	if (caps_cmd.iscsicaps) {
4998 		params[0] = FW_PARAM_PFVF(ISCSI_START);
4999 		params[1] = FW_PARAM_PFVF(ISCSI_END);
5000 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5001 				      params, val);
5002 		if (ret < 0)
5003 			goto bye;
5004 		adap->vres.iscsi.start = val[0];
5005 		adap->vres.iscsi.size = val[1] - val[0] + 1;
5006 		if (is_t6(adap->params.chip)) {
5007 			params[0] = FW_PARAM_PFVF(PPOD_EDRAM_START);
5008 			params[1] = FW_PARAM_PFVF(PPOD_EDRAM_END);
5009 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
5010 					      params, val);
5011 			if (!ret) {
5012 				adap->vres.ppod_edram.start = val[0];
5013 				adap->vres.ppod_edram.size =
5014 					val[1] - val[0] + 1;
5015 
5016 				dev_info(adap->pdev_dev,
5017 					 "ppod edram start 0x%x end 0x%x size 0x%x\n",
5018 					 val[0], val[1],
5019 					 adap->vres.ppod_edram.size);
5020 			}
5021 		}
5022 		/* LIO target and cxgb4i initiaitor */
5023 		adap->num_ofld_uld += 2;
5024 	}
5025 	if (caps_cmd.cryptocaps) {
5026 		if (ntohs(caps_cmd.cryptocaps) &
5027 		    FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
5028 			params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
5029 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5030 					      2, params, val);
5031 			if (ret < 0) {
5032 				if (ret != -EINVAL)
5033 					goto bye;
5034 			} else {
5035 				adap->vres.ncrypto_fc = val[0];
5036 			}
5037 			adap->num_ofld_uld += 1;
5038 		}
5039 		if (ntohs(caps_cmd.cryptocaps) &
5040 		    FW_CAPS_CONFIG_TLS_INLINE) {
5041 			params[0] = FW_PARAM_PFVF(TLS_START);
5042 			params[1] = FW_PARAM_PFVF(TLS_END);
5043 			ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
5044 					      2, params, val);
5045 			if (ret < 0)
5046 				goto bye;
5047 			adap->vres.key.start = val[0];
5048 			adap->vres.key.size = val[1] - val[0] + 1;
5049 			adap->num_uld += 1;
5050 		}
5051 		adap->params.crypto = ntohs(caps_cmd.cryptocaps);
5052 	}
5053 #undef FW_PARAM_PFVF
5054 #undef FW_PARAM_DEV
5055 
5056 	/* The MTU/MSS Table is initialized by now, so load their values.  If
5057 	 * we're initializing the adapter, then we'll make any modifications
5058 	 * we want to the MTU/MSS Table and also initialize the congestion
5059 	 * parameters.
5060 	 */
5061 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5062 	if (state != DEV_STATE_INIT) {
5063 		int i;
5064 
5065 		/* The default MTU Table contains values 1492 and 1500.
5066 		 * However, for TCP, it's better to have two values which are
5067 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5068 		 * This allows us to have a TCP Data Payload which is a
5069 		 * multiple of 8 regardless of what combination of TCP Options
5070 		 * are in use (always a multiple of 4 bytes) which is
5071 		 * important for performance reasons.  For instance, if no
5072 		 * options are in use, then we have a 20-byte IP header and a
5073 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
5074 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5075 		 * which is not a multiple of 8.  So using an MSS of 1488 in
5076 		 * this case results in a TCP Data Payload of 1448 bytes which
5077 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5078 		 * Stamps have been negotiated, then an MTU of 1500 bytes
5079 		 * results in a TCP Data Payload of 1448 bytes which, as
5080 		 * above, is a multiple of 8 bytes ...
5081 		 */
5082 		for (i = 0; i < NMTUS; i++)
5083 			if (adap->params.mtus[i] == 1492) {
5084 				adap->params.mtus[i] = 1488;
5085 				break;
5086 			}
5087 
5088 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5089 			     adap->params.b_wnd);
5090 	}
5091 	t4_init_sge_params(adap);
5092 	adap->flags |= CXGB4_FW_OK;
5093 	t4_init_tp_params(adap, true);
5094 	return 0;
5095 
5096 	/*
5097 	 * Something bad happened.  If a command timed out or failed with EIO
5098 	 * FW does not operate within its spec or something catastrophic
5099 	 * happened to HW/FW, stop issuing commands.
5100 	 */
5101 bye:
5102 	adap_free_hma_mem(adap);
5103 	kfree(adap->sge.egr_map);
5104 	kfree(adap->sge.ingr_map);
5105 	kfree(adap->sge.starving_fl);
5106 	kfree(adap->sge.txq_maperr);
5107 #ifdef CONFIG_DEBUG_FS
5108 	kfree(adap->sge.blocked_fl);
5109 #endif
5110 	if (ret != -ETIMEDOUT && ret != -EIO)
5111 		t4_fw_bye(adap, adap->mbox);
5112 	return ret;
5113 }
5114 
5115 /* EEH callbacks */
5116 
5117 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5118 					 pci_channel_state_t state)
5119 {
5120 	int i;
5121 	struct adapter *adap = pci_get_drvdata(pdev);
5122 
5123 	if (!adap)
5124 		goto out;
5125 
5126 	rtnl_lock();
5127 	adap->flags &= ~CXGB4_FW_OK;
5128 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5129 	spin_lock(&adap->stats_lock);
5130 	for_each_port(adap, i) {
5131 		struct net_device *dev = adap->port[i];
5132 		if (dev) {
5133 			netif_device_detach(dev);
5134 			netif_carrier_off(dev);
5135 		}
5136 	}
5137 	spin_unlock(&adap->stats_lock);
5138 	disable_interrupts(adap);
5139 	if (adap->flags & CXGB4_FULL_INIT_DONE)
5140 		cxgb_down(adap);
5141 	rtnl_unlock();
5142 	if ((adap->flags & CXGB4_DEV_ENABLED)) {
5143 		pci_disable_device(pdev);
5144 		adap->flags &= ~CXGB4_DEV_ENABLED;
5145 	}
5146 out:	return state == pci_channel_io_perm_failure ?
5147 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5148 }
5149 
5150 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5151 {
5152 	int i, ret;
5153 	struct fw_caps_config_cmd c;
5154 	struct adapter *adap = pci_get_drvdata(pdev);
5155 
5156 	if (!adap) {
5157 		pci_restore_state(pdev);
5158 		pci_save_state(pdev);
5159 		return PCI_ERS_RESULT_RECOVERED;
5160 	}
5161 
5162 	if (!(adap->flags & CXGB4_DEV_ENABLED)) {
5163 		if (pci_enable_device(pdev)) {
5164 			dev_err(&pdev->dev, "Cannot reenable PCI "
5165 					    "device after reset\n");
5166 			return PCI_ERS_RESULT_DISCONNECT;
5167 		}
5168 		adap->flags |= CXGB4_DEV_ENABLED;
5169 	}
5170 
5171 	pci_set_master(pdev);
5172 	pci_restore_state(pdev);
5173 	pci_save_state(pdev);
5174 
5175 	if (t4_wait_dev_ready(adap->regs) < 0)
5176 		return PCI_ERS_RESULT_DISCONNECT;
5177 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
5178 		return PCI_ERS_RESULT_DISCONNECT;
5179 	adap->flags |= CXGB4_FW_OK;
5180 	if (adap_init1(adap, &c))
5181 		return PCI_ERS_RESULT_DISCONNECT;
5182 
5183 	for_each_port(adap, i) {
5184 		struct port_info *pi = adap2pinfo(adap, i);
5185 		u8 vivld = 0, vin = 0;
5186 
5187 		ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1,
5188 				  NULL, NULL, &vivld, &vin);
5189 		if (ret < 0)
5190 			return PCI_ERS_RESULT_DISCONNECT;
5191 		pi->viid = ret;
5192 		pi->xact_addr_filt = -1;
5193 		/* If fw supports returning the VIN as part of FW_VI_CMD,
5194 		 * save the returned values.
5195 		 */
5196 		if (adap->params.viid_smt_extn_support) {
5197 			pi->vivld = vivld;
5198 			pi->vin = vin;
5199 		} else {
5200 			/* Retrieve the values from VIID */
5201 			pi->vivld = FW_VIID_VIVLD_G(pi->viid);
5202 			pi->vin = FW_VIID_VIN_G(pi->viid);
5203 		}
5204 	}
5205 
5206 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5207 		     adap->params.b_wnd);
5208 	setup_memwin(adap);
5209 	if (cxgb_up(adap))
5210 		return PCI_ERS_RESULT_DISCONNECT;
5211 	return PCI_ERS_RESULT_RECOVERED;
5212 }
5213 
5214 static void eeh_resume(struct pci_dev *pdev)
5215 {
5216 	int i;
5217 	struct adapter *adap = pci_get_drvdata(pdev);
5218 
5219 	if (!adap)
5220 		return;
5221 
5222 	rtnl_lock();
5223 	for_each_port(adap, i) {
5224 		struct net_device *dev = adap->port[i];
5225 		if (dev) {
5226 			if (netif_running(dev)) {
5227 				link_start(dev);
5228 				cxgb_set_rxmode(dev);
5229 			}
5230 			netif_device_attach(dev);
5231 		}
5232 	}
5233 	rtnl_unlock();
5234 }
5235 
5236 static void eeh_reset_prepare(struct pci_dev *pdev)
5237 {
5238 	struct adapter *adapter = pci_get_drvdata(pdev);
5239 	int i;
5240 
5241 	if (adapter->pf != 4)
5242 		return;
5243 
5244 	adapter->flags &= ~CXGB4_FW_OK;
5245 
5246 	notify_ulds(adapter, CXGB4_STATE_DOWN);
5247 
5248 	for_each_port(adapter, i)
5249 		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5250 			cxgb_close(adapter->port[i]);
5251 
5252 	disable_interrupts(adapter);
5253 	cxgb4_free_mps_ref_entries(adapter);
5254 
5255 	adap_free_hma_mem(adapter);
5256 
5257 	if (adapter->flags & CXGB4_FULL_INIT_DONE)
5258 		cxgb_down(adapter);
5259 }
5260 
5261 static void eeh_reset_done(struct pci_dev *pdev)
5262 {
5263 	struct adapter *adapter = pci_get_drvdata(pdev);
5264 	int err, i;
5265 
5266 	if (adapter->pf != 4)
5267 		return;
5268 
5269 	err = t4_wait_dev_ready(adapter->regs);
5270 	if (err < 0) {
5271 		dev_err(adapter->pdev_dev,
5272 			"Device not ready, err %d", err);
5273 		return;
5274 	}
5275 
5276 	setup_memwin(adapter);
5277 
5278 	err = adap_init0(adapter, 1);
5279 	if (err) {
5280 		dev_err(adapter->pdev_dev,
5281 			"Adapter init failed, err %d", err);
5282 		return;
5283 	}
5284 
5285 	setup_memwin_rdma(adapter);
5286 
5287 	if (adapter->flags & CXGB4_FW_OK) {
5288 		err = t4_port_init(adapter, adapter->pf, adapter->pf, 0);
5289 		if (err) {
5290 			dev_err(adapter->pdev_dev,
5291 				"Port init failed, err %d", err);
5292 			return;
5293 		}
5294 	}
5295 
5296 	err = cfg_queues(adapter);
5297 	if (err) {
5298 		dev_err(adapter->pdev_dev,
5299 			"Config queues failed, err %d", err);
5300 		return;
5301 	}
5302 
5303 	cxgb4_init_mps_ref_entries(adapter);
5304 
5305 	err = setup_fw_sge_queues(adapter);
5306 	if (err) {
5307 		dev_err(adapter->pdev_dev,
5308 			"FW sge queue allocation failed, err %d", err);
5309 		return;
5310 	}
5311 
5312 	for_each_port(adapter, i)
5313 		if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5314 			cxgb_open(adapter->port[i]);
5315 }
5316 
5317 static const struct pci_error_handlers cxgb4_eeh = {
5318 	.error_detected = eeh_err_detected,
5319 	.slot_reset     = eeh_slot_reset,
5320 	.resume         = eeh_resume,
5321 	.reset_prepare  = eeh_reset_prepare,
5322 	.reset_done     = eeh_reset_done,
5323 };
5324 
5325 /* Return true if the Link Configuration supports "High Speeds" (those greater
5326  * than 1Gb/s).
5327  */
5328 static inline bool is_x_10g_port(const struct link_config *lc)
5329 {
5330 	unsigned int speeds, high_speeds;
5331 
5332 	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
5333 	high_speeds = speeds &
5334 			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
5335 
5336 	return high_speeds != 0;
5337 }
5338 
5339 /* Perform default configuration of DMA queues depending on the number and type
5340  * of ports we found and the number of available CPUs.  Most settings can be
5341  * modified by the admin prior to actual use.
5342  */
5343 static int cfg_queues(struct adapter *adap)
5344 {
5345 	u32 avail_qsets, avail_eth_qsets, avail_uld_qsets;
5346 	u32 niqflint, neq, num_ulds;
5347 	struct sge *s = &adap->sge;
5348 	u32 i, n10g = 0, qidx = 0;
5349 #ifndef CONFIG_CHELSIO_T4_DCB
5350 	int q10g = 0;
5351 #endif
5352 
5353 	/* Reduce memory usage in kdump environment, disable all offload. */
5354 	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
5355 		adap->params.offload = 0;
5356 		adap->params.crypto = 0;
5357 		adap->params.ethofld = 0;
5358 	}
5359 
5360 	/* Calculate the number of Ethernet Queue Sets available based on
5361 	 * resources provisioned for us.  We always have an Asynchronous
5362 	 * Firmware Event Ingress Queue.  If we're operating in MSI or Legacy
5363 	 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
5364 	 * Ingress Queue.  Meanwhile, we need two Egress Queues for each
5365 	 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
5366 	 *
5367 	 * Note that we should also take into account all of the various
5368 	 * Offload Queues.  But, in any situation where we're operating in
5369 	 * a Resource Constrained Provisioning environment, doing any Offload
5370 	 * at all is problematic ...
5371 	 */
5372 	niqflint = adap->params.pfres.niqflint - 1;
5373 	if (!(adap->flags & CXGB4_USING_MSIX))
5374 		niqflint--;
5375 	neq = adap->params.pfres.neq / 2;
5376 	avail_qsets = min(niqflint, neq);
5377 
5378 	if (avail_qsets < adap->params.nports) {
5379 		dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
5380 			avail_qsets, adap->params.nports);
5381 		return -ENOMEM;
5382 	}
5383 
5384 	/* Count the number of 10Gb/s or better ports */
5385 	for_each_port(adap, i)
5386 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5387 
5388 	avail_eth_qsets = min_t(u32, avail_qsets, MAX_ETH_QSETS);
5389 #ifdef CONFIG_CHELSIO_T4_DCB
5390 	/* For Data Center Bridging support we need to be able to support up
5391 	 * to 8 Traffic Priorities; each of which will be assigned to its
5392 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
5393 	 */
5394 	if (adap->params.nports * 8 > avail_eth_qsets) {
5395 		dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
5396 			avail_eth_qsets, adap->params.nports * 8);
5397 		return -ENOMEM;
5398 	}
5399 
5400 	for_each_port(adap, i) {
5401 		struct port_info *pi = adap2pinfo(adap, i);
5402 
5403 		pi->first_qset = qidx;
5404 		pi->nqsets = is_kdump_kernel() ? 1 : 8;
5405 		qidx += pi->nqsets;
5406 	}
5407 #else /* !CONFIG_CHELSIO_T4_DCB */
5408 	/* We default to 1 queue per non-10G port and up to # of cores queues
5409 	 * per 10G port.
5410 	 */
5411 	if (n10g)
5412 		q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
5413 	if (q10g > netif_get_num_default_rss_queues())
5414 		q10g = netif_get_num_default_rss_queues();
5415 
5416 	if (is_kdump_kernel())
5417 		q10g = 1;
5418 
5419 	for_each_port(adap, i) {
5420 		struct port_info *pi = adap2pinfo(adap, i);
5421 
5422 		pi->first_qset = qidx;
5423 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
5424 		qidx += pi->nqsets;
5425 	}
5426 #endif /* !CONFIG_CHELSIO_T4_DCB */
5427 
5428 	s->ethqsets = qidx;
5429 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5430 	avail_qsets -= qidx;
5431 
5432 	if (is_uld(adap)) {
5433 		/* For offload we use 1 queue/channel if all ports are up to 1G,
5434 		 * otherwise we divide all available queues amongst the channels
5435 		 * capped by the number of available cores.
5436 		 */
5437 		num_ulds = adap->num_uld + adap->num_ofld_uld;
5438 		i = min_t(u32, MAX_OFLD_QSETS, num_online_cpus());
5439 		avail_uld_qsets = roundup(i, adap->params.nports);
5440 		if (avail_qsets < num_ulds * adap->params.nports) {
5441 			adap->params.offload = 0;
5442 			adap->params.crypto = 0;
5443 			s->ofldqsets = 0;
5444 		} else if (avail_qsets < num_ulds * avail_uld_qsets || !n10g) {
5445 			s->ofldqsets = adap->params.nports;
5446 		} else {
5447 			s->ofldqsets = avail_uld_qsets;
5448 		}
5449 
5450 		avail_qsets -= num_ulds * s->ofldqsets;
5451 	}
5452 
5453 	/* ETHOFLD Queues used for QoS offload should follow same
5454 	 * allocation scheme as normal Ethernet Queues.
5455 	 */
5456 	if (is_ethofld(adap)) {
5457 		if (avail_qsets < s->max_ethqsets) {
5458 			adap->params.ethofld = 0;
5459 			s->eoqsets = 0;
5460 		} else {
5461 			s->eoqsets = s->max_ethqsets;
5462 		}
5463 		avail_qsets -= s->eoqsets;
5464 	}
5465 
5466 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5467 		struct sge_eth_rxq *r = &s->ethrxq[i];
5468 
5469 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5470 		r->fl.size = 72;
5471 	}
5472 
5473 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5474 		s->ethtxq[i].q.size = 1024;
5475 
5476 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5477 		s->ctrlq[i].q.size = 512;
5478 
5479 	if (!is_t4(adap->params.chip))
5480 		s->ptptxq.q.size = 8;
5481 
5482 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5483 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
5484 
5485 	return 0;
5486 }
5487 
5488 /*
5489  * Reduce the number of Ethernet queues across all ports to at most n.
5490  * n provides at least one queue per port.
5491  */
5492 static void reduce_ethqs(struct adapter *adap, int n)
5493 {
5494 	int i;
5495 	struct port_info *pi;
5496 
5497 	while (n < adap->sge.ethqsets)
5498 		for_each_port(adap, i) {
5499 			pi = adap2pinfo(adap, i);
5500 			if (pi->nqsets > 1) {
5501 				pi->nqsets--;
5502 				adap->sge.ethqsets--;
5503 				if (adap->sge.ethqsets <= n)
5504 					break;
5505 			}
5506 		}
5507 
5508 	n = 0;
5509 	for_each_port(adap, i) {
5510 		pi = adap2pinfo(adap, i);
5511 		pi->first_qset = n;
5512 		n += pi->nqsets;
5513 	}
5514 }
5515 
5516 static int alloc_msix_info(struct adapter *adap, u32 num_vec)
5517 {
5518 	struct msix_info *msix_info;
5519 
5520 	msix_info = kcalloc(num_vec, sizeof(*msix_info), GFP_KERNEL);
5521 	if (!msix_info)
5522 		return -ENOMEM;
5523 
5524 	adap->msix_bmap.msix_bmap = kcalloc(BITS_TO_LONGS(num_vec),
5525 					    sizeof(long), GFP_KERNEL);
5526 	if (!adap->msix_bmap.msix_bmap) {
5527 		kfree(msix_info);
5528 		return -ENOMEM;
5529 	}
5530 
5531 	spin_lock_init(&adap->msix_bmap.lock);
5532 	adap->msix_bmap.mapsize = num_vec;
5533 
5534 	adap->msix_info = msix_info;
5535 	return 0;
5536 }
5537 
5538 static void free_msix_info(struct adapter *adap)
5539 {
5540 	kfree(adap->msix_bmap.msix_bmap);
5541 	kfree(adap->msix_info);
5542 }
5543 
5544 int cxgb4_get_msix_idx_from_bmap(struct adapter *adap)
5545 {
5546 	struct msix_bmap *bmap = &adap->msix_bmap;
5547 	unsigned int msix_idx;
5548 	unsigned long flags;
5549 
5550 	spin_lock_irqsave(&bmap->lock, flags);
5551 	msix_idx = find_first_zero_bit(bmap->msix_bmap, bmap->mapsize);
5552 	if (msix_idx < bmap->mapsize) {
5553 		__set_bit(msix_idx, bmap->msix_bmap);
5554 	} else {
5555 		spin_unlock_irqrestore(&bmap->lock, flags);
5556 		return -ENOSPC;
5557 	}
5558 
5559 	spin_unlock_irqrestore(&bmap->lock, flags);
5560 	return msix_idx;
5561 }
5562 
5563 void cxgb4_free_msix_idx_in_bmap(struct adapter *adap,
5564 				 unsigned int msix_idx)
5565 {
5566 	struct msix_bmap *bmap = &adap->msix_bmap;
5567 	unsigned long flags;
5568 
5569 	spin_lock_irqsave(&bmap->lock, flags);
5570 	__clear_bit(msix_idx, bmap->msix_bmap);
5571 	spin_unlock_irqrestore(&bmap->lock, flags);
5572 }
5573 
5574 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5575 #define EXTRA_VECS 2
5576 
5577 static int enable_msix(struct adapter *adap)
5578 {
5579 	u32 eth_need, uld_need = 0, ethofld_need = 0;
5580 	u32 ethqsets = 0, ofldqsets = 0, eoqsets = 0;
5581 	u8 num_uld = 0, nchan = adap->params.nports;
5582 	u32 i, want, need, num_vec;
5583 	struct sge *s = &adap->sge;
5584 	struct msix_entry *entries;
5585 	struct port_info *pi;
5586 	int allocated, ret;
5587 
5588 	want = s->max_ethqsets;
5589 #ifdef CONFIG_CHELSIO_T4_DCB
5590 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5591 	 * each port.
5592 	 */
5593 	need = 8 * nchan;
5594 #else
5595 	need = nchan;
5596 #endif
5597 	eth_need = need;
5598 	if (is_uld(adap)) {
5599 		num_uld = adap->num_ofld_uld + adap->num_uld;
5600 		want += num_uld * s->ofldqsets;
5601 		uld_need = num_uld * nchan;
5602 		need += uld_need;
5603 	}
5604 
5605 	if (is_ethofld(adap)) {
5606 		want += s->eoqsets;
5607 		ethofld_need = eth_need;
5608 		need += ethofld_need;
5609 	}
5610 
5611 	want += EXTRA_VECS;
5612 	need += EXTRA_VECS;
5613 
5614 	entries = kmalloc_array(want, sizeof(*entries), GFP_KERNEL);
5615 	if (!entries)
5616 		return -ENOMEM;
5617 
5618 	for (i = 0; i < want; i++)
5619 		entries[i].entry = i;
5620 
5621 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5622 	if (allocated < 0) {
5623 		/* Disable offload and attempt to get vectors for NIC
5624 		 * only mode.
5625 		 */
5626 		want = s->max_ethqsets + EXTRA_VECS;
5627 		need = eth_need + EXTRA_VECS;
5628 		allocated = pci_enable_msix_range(adap->pdev, entries,
5629 						  need, want);
5630 		if (allocated < 0) {
5631 			dev_info(adap->pdev_dev,
5632 				 "Disabling MSI-X due to insufficient MSI-X vectors\n");
5633 			ret = allocated;
5634 			goto out_free;
5635 		}
5636 
5637 		dev_info(adap->pdev_dev,
5638 			 "Disabling offload due to insufficient MSI-X vectors\n");
5639 		adap->params.offload = 0;
5640 		adap->params.crypto = 0;
5641 		adap->params.ethofld = 0;
5642 		s->ofldqsets = 0;
5643 		s->eoqsets = 0;
5644 		uld_need = 0;
5645 		ethofld_need = 0;
5646 	}
5647 
5648 	num_vec = allocated;
5649 	if (num_vec < want) {
5650 		/* Distribute available vectors to the various queue groups.
5651 		 * Every group gets its minimum requirement and NIC gets top
5652 		 * priority for leftovers.
5653 		 */
5654 		ethqsets = eth_need;
5655 		if (is_uld(adap))
5656 			ofldqsets = nchan;
5657 		if (is_ethofld(adap))
5658 			eoqsets = ethofld_need;
5659 
5660 		num_vec -= need;
5661 		while (num_vec) {
5662 			if (num_vec < eth_need + ethofld_need ||
5663 			    ethqsets > s->max_ethqsets)
5664 				break;
5665 
5666 			for_each_port(adap, i) {
5667 				pi = adap2pinfo(adap, i);
5668 				if (pi->nqsets < 2)
5669 					continue;
5670 
5671 				ethqsets++;
5672 				num_vec--;
5673 				if (ethofld_need) {
5674 					eoqsets++;
5675 					num_vec--;
5676 				}
5677 			}
5678 		}
5679 
5680 		if (is_uld(adap)) {
5681 			while (num_vec) {
5682 				if (num_vec < uld_need ||
5683 				    ofldqsets > s->ofldqsets)
5684 					break;
5685 
5686 				ofldqsets++;
5687 				num_vec -= uld_need;
5688 			}
5689 		}
5690 	} else {
5691 		ethqsets = s->max_ethqsets;
5692 		if (is_uld(adap))
5693 			ofldqsets = s->ofldqsets;
5694 		if (is_ethofld(adap))
5695 			eoqsets = s->eoqsets;
5696 	}
5697 
5698 	if (ethqsets < s->max_ethqsets) {
5699 		s->max_ethqsets = ethqsets;
5700 		reduce_ethqs(adap, ethqsets);
5701 	}
5702 
5703 	if (is_uld(adap)) {
5704 		s->ofldqsets = ofldqsets;
5705 		s->nqs_per_uld = s->ofldqsets;
5706 	}
5707 
5708 	if (is_ethofld(adap))
5709 		s->eoqsets = eoqsets;
5710 
5711 	/* map for msix */
5712 	ret = alloc_msix_info(adap, allocated);
5713 	if (ret)
5714 		goto out_disable_msix;
5715 
5716 	for (i = 0; i < allocated; i++) {
5717 		adap->msix_info[i].vec = entries[i].vector;
5718 		adap->msix_info[i].idx = i;
5719 	}
5720 
5721 	dev_info(adap->pdev_dev,
5722 		 "%d MSI-X vectors allocated, nic %d eoqsets %d per uld %d\n",
5723 		 allocated, s->max_ethqsets, s->eoqsets, s->nqs_per_uld);
5724 
5725 	kfree(entries);
5726 	return 0;
5727 
5728 out_disable_msix:
5729 	pci_disable_msix(adap->pdev);
5730 
5731 out_free:
5732 	kfree(entries);
5733 	return ret;
5734 }
5735 
5736 #undef EXTRA_VECS
5737 
5738 static int init_rss(struct adapter *adap)
5739 {
5740 	unsigned int i;
5741 	int err;
5742 
5743 	err = t4_init_rss_mode(adap, adap->mbox);
5744 	if (err)
5745 		return err;
5746 
5747 	for_each_port(adap, i) {
5748 		struct port_info *pi = adap2pinfo(adap, i);
5749 
5750 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5751 		if (!pi->rss)
5752 			return -ENOMEM;
5753 	}
5754 	return 0;
5755 }
5756 
5757 /* Dump basic information about the adapter */
5758 static void print_adapter_info(struct adapter *adapter)
5759 {
5760 	/* Hardware/Firmware/etc. Version/Revision IDs */
5761 	t4_dump_version_info(adapter);
5762 
5763 	/* Software/Hardware configuration */
5764 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5765 		 is_offload(adapter) ? "R" : "",
5766 		 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" :
5767 		  (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""),
5768 		 is_offload(adapter) ? "Offload" : "non-Offload");
5769 }
5770 
5771 static void print_port_info(const struct net_device *dev)
5772 {
5773 	char buf[80];
5774 	char *bufp = buf;
5775 	const struct port_info *pi = netdev_priv(dev);
5776 	const struct adapter *adap = pi->adapter;
5777 
5778 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5779 		bufp += sprintf(bufp, "100M/");
5780 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5781 		bufp += sprintf(bufp, "1G/");
5782 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5783 		bufp += sprintf(bufp, "10G/");
5784 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5785 		bufp += sprintf(bufp, "25G/");
5786 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5787 		bufp += sprintf(bufp, "40G/");
5788 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5789 		bufp += sprintf(bufp, "50G/");
5790 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5791 		bufp += sprintf(bufp, "100G/");
5792 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5793 		bufp += sprintf(bufp, "200G/");
5794 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5795 		bufp += sprintf(bufp, "400G/");
5796 	if (bufp != buf)
5797 		--bufp;
5798 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5799 
5800 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5801 		    dev->name, adap->params.vpd.id, adap->name, buf);
5802 }
5803 
5804 /*
5805  * Free the following resources:
5806  * - memory used for tables
5807  * - MSI/MSI-X
5808  * - net devices
5809  * - resources FW is holding for us
5810  */
5811 static void free_some_resources(struct adapter *adapter)
5812 {
5813 	unsigned int i;
5814 
5815 	kvfree(adapter->smt);
5816 	kvfree(adapter->l2t);
5817 	kvfree(adapter->srq);
5818 	t4_cleanup_sched(adapter);
5819 	kvfree(adapter->tids.tid_tab);
5820 	cxgb4_cleanup_tc_matchall(adapter);
5821 	cxgb4_cleanup_tc_mqprio(adapter);
5822 	cxgb4_cleanup_tc_flower(adapter);
5823 	cxgb4_cleanup_tc_u32(adapter);
5824 	kfree(adapter->sge.egr_map);
5825 	kfree(adapter->sge.ingr_map);
5826 	kfree(adapter->sge.starving_fl);
5827 	kfree(adapter->sge.txq_maperr);
5828 #ifdef CONFIG_DEBUG_FS
5829 	kfree(adapter->sge.blocked_fl);
5830 #endif
5831 	disable_msi(adapter);
5832 
5833 	for_each_port(adapter, i)
5834 		if (adapter->port[i]) {
5835 			struct port_info *pi = adap2pinfo(adapter, i);
5836 
5837 			if (pi->viid != 0)
5838 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
5839 					   0, pi->viid);
5840 			kfree(adap2pinfo(adapter, i)->rss);
5841 			free_netdev(adapter->port[i]);
5842 		}
5843 	if (adapter->flags & CXGB4_FW_OK)
5844 		t4_fw_bye(adapter, adapter->pf);
5845 }
5846 
5847 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | \
5848 		   NETIF_F_GSO_UDP_L4)
5849 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5850 		   NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5851 #define SEGMENT_SIZE 128
5852 
5853 static int t4_get_chip_type(struct adapter *adap, int ver)
5854 {
5855 	u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5856 
5857 	switch (ver) {
5858 	case CHELSIO_T4:
5859 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5860 	case CHELSIO_T5:
5861 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5862 	case CHELSIO_T6:
5863 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5864 	default:
5865 		break;
5866 	}
5867 	return -EINVAL;
5868 }
5869 
5870 #ifdef CONFIG_PCI_IOV
5871 static void cxgb4_mgmt_setup(struct net_device *dev)
5872 {
5873 	dev->type = ARPHRD_NONE;
5874 	dev->mtu = 0;
5875 	dev->hard_header_len = 0;
5876 	dev->addr_len = 0;
5877 	dev->tx_queue_len = 0;
5878 	dev->flags |= IFF_NOARP;
5879 	dev->priv_flags |= IFF_NO_QUEUE;
5880 
5881 	/* Initialize the device structure. */
5882 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5883 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5884 }
5885 
5886 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5887 {
5888 	struct adapter *adap = pci_get_drvdata(pdev);
5889 	int err = 0;
5890 	int current_vfs = pci_num_vf(pdev);
5891 	u32 pcie_fw;
5892 
5893 	pcie_fw = readl(adap->regs + PCIE_FW_A);
5894 	/* Check if fw is initialized */
5895 	if (!(pcie_fw & PCIE_FW_INIT_F)) {
5896 		dev_warn(&pdev->dev, "Device not initialized\n");
5897 		return -EOPNOTSUPP;
5898 	}
5899 
5900 	/* If any of the VF's is already assigned to Guest OS, then
5901 	 * SRIOV for the same cannot be modified
5902 	 */
5903 	if (current_vfs && pci_vfs_assigned(pdev)) {
5904 		dev_err(&pdev->dev,
5905 			"Cannot modify SR-IOV while VFs are assigned\n");
5906 		return current_vfs;
5907 	}
5908 	/* Note that the upper-level code ensures that we're never called with
5909 	 * a non-zero "num_vfs" when we already have VFs instantiated.  But
5910 	 * it never hurts to code defensively.
5911 	 */
5912 	if (num_vfs != 0 && current_vfs != 0)
5913 		return -EBUSY;
5914 
5915 	/* Nothing to do for no change. */
5916 	if (num_vfs == current_vfs)
5917 		return num_vfs;
5918 
5919 	/* Disable SRIOV when zero is passed. */
5920 	if (!num_vfs) {
5921 		pci_disable_sriov(pdev);
5922 		/* free VF Management Interface */
5923 		unregister_netdev(adap->port[0]);
5924 		free_netdev(adap->port[0]);
5925 		adap->port[0] = NULL;
5926 
5927 		/* free VF resources */
5928 		adap->num_vfs = 0;
5929 		kfree(adap->vfinfo);
5930 		adap->vfinfo = NULL;
5931 		return 0;
5932 	}
5933 
5934 	if (!current_vfs) {
5935 		struct fw_pfvf_cmd port_cmd, port_rpl;
5936 		struct net_device *netdev;
5937 		unsigned int pmask, port;
5938 		struct pci_dev *pbridge;
5939 		struct port_info *pi;
5940 		char name[IFNAMSIZ];
5941 		u32 devcap2;
5942 		u16 flags;
5943 
5944 		/* If we want to instantiate Virtual Functions, then our
5945 		 * parent bridge's PCI-E needs to support Alternative Routing
5946 		 * ID (ARI) because our VFs will show up at function offset 8
5947 		 * and above.
5948 		 */
5949 		pbridge = pdev->bus->self;
5950 		pcie_capability_read_word(pbridge, PCI_EXP_FLAGS, &flags);
5951 		pcie_capability_read_dword(pbridge, PCI_EXP_DEVCAP2, &devcap2);
5952 
5953 		if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5954 		    !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5955 			/* Our parent bridge does not support ARI so issue a
5956 			 * warning and skip instantiating the VFs.  They
5957 			 * won't be reachable.
5958 			 */
5959 			dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5960 				 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5961 				 PCI_FUNC(pbridge->devfn));
5962 			return -ENOTSUPP;
5963 		}
5964 		memset(&port_cmd, 0, sizeof(port_cmd));
5965 		port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5966 						 FW_CMD_REQUEST_F |
5967 						 FW_CMD_READ_F |
5968 						 FW_PFVF_CMD_PFN_V(adap->pf) |
5969 						 FW_PFVF_CMD_VFN_V(0));
5970 		port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
5971 		err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
5972 				 &port_rpl);
5973 		if (err)
5974 			return err;
5975 		pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
5976 		port = ffs(pmask) - 1;
5977 		/* Allocate VF Management Interface. */
5978 		snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
5979 			 adap->pf);
5980 		netdev = alloc_netdev(sizeof(struct port_info),
5981 				      name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
5982 		if (!netdev)
5983 			return -ENOMEM;
5984 
5985 		pi = netdev_priv(netdev);
5986 		pi->adapter = adap;
5987 		pi->lport = port;
5988 		pi->tx_chan = port;
5989 		SET_NETDEV_DEV(netdev, &pdev->dev);
5990 
5991 		adap->port[0] = netdev;
5992 		pi->port_id = 0;
5993 
5994 		err = register_netdev(adap->port[0]);
5995 		if (err) {
5996 			pr_info("Unable to register VF mgmt netdev %s\n", name);
5997 			free_netdev(adap->port[0]);
5998 			adap->port[0] = NULL;
5999 			return err;
6000 		}
6001 		/* Allocate and set up VF Information. */
6002 		adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
6003 				       sizeof(struct vf_info), GFP_KERNEL);
6004 		if (!adap->vfinfo) {
6005 			unregister_netdev(adap->port[0]);
6006 			free_netdev(adap->port[0]);
6007 			adap->port[0] = NULL;
6008 			return -ENOMEM;
6009 		}
6010 		cxgb4_mgmt_fill_vf_station_mac_addr(adap);
6011 	}
6012 	/* Instantiate the requested number of VFs. */
6013 	err = pci_enable_sriov(pdev, num_vfs);
6014 	if (err) {
6015 		pr_info("Unable to instantiate %d VFs\n", num_vfs);
6016 		if (!current_vfs) {
6017 			unregister_netdev(adap->port[0]);
6018 			free_netdev(adap->port[0]);
6019 			adap->port[0] = NULL;
6020 			kfree(adap->vfinfo);
6021 			adap->vfinfo = NULL;
6022 		}
6023 		return err;
6024 	}
6025 
6026 	adap->num_vfs = num_vfs;
6027 	return num_vfs;
6028 }
6029 #endif /* CONFIG_PCI_IOV */
6030 
6031 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6032 {
6033 	struct net_device *netdev;
6034 	struct adapter *adapter;
6035 	static int adap_idx = 1;
6036 	int s_qpp, qpp, num_seg;
6037 	struct port_info *pi;
6038 	bool highdma = false;
6039 	enum chip_type chip;
6040 	void __iomem *regs;
6041 	int func, chip_ver;
6042 	u16 device_id;
6043 	int i, err;
6044 	u32 whoami;
6045 
6046 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6047 
6048 	err = pci_request_regions(pdev, KBUILD_MODNAME);
6049 	if (err) {
6050 		/* Just info, some other driver may have claimed the device. */
6051 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6052 		return err;
6053 	}
6054 
6055 	err = pci_enable_device(pdev);
6056 	if (err) {
6057 		dev_err(&pdev->dev, "cannot enable PCI device\n");
6058 		goto out_release_regions;
6059 	}
6060 
6061 	regs = pci_ioremap_bar(pdev, 0);
6062 	if (!regs) {
6063 		dev_err(&pdev->dev, "cannot map device registers\n");
6064 		err = -ENOMEM;
6065 		goto out_disable_device;
6066 	}
6067 
6068 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6069 	if (!adapter) {
6070 		err = -ENOMEM;
6071 		goto out_unmap_bar0;
6072 	}
6073 
6074 	adapter->regs = regs;
6075 	err = t4_wait_dev_ready(regs);
6076 	if (err < 0)
6077 		goto out_free_adapter;
6078 
6079 	/* We control everything through one PF */
6080 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
6081 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
6082 	chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
6083 	if ((int)chip < 0) {
6084 		dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
6085 		err = chip;
6086 		goto out_free_adapter;
6087 	}
6088 	chip_ver = CHELSIO_CHIP_VERSION(chip);
6089 	func = chip_ver <= CHELSIO_T5 ?
6090 	       SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
6091 
6092 	adapter->pdev = pdev;
6093 	adapter->pdev_dev = &pdev->dev;
6094 	adapter->name = pci_name(pdev);
6095 	adapter->mbox = func;
6096 	adapter->pf = func;
6097 	adapter->params.chip = chip;
6098 	adapter->adap_idx = adap_idx;
6099 	adapter->msg_enable = DFLT_MSG_ENABLE;
6100 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
6101 				    (sizeof(struct mbox_cmd) *
6102 				     T4_OS_LOG_MBOX_CMDS),
6103 				    GFP_KERNEL);
6104 	if (!adapter->mbox_log) {
6105 		err = -ENOMEM;
6106 		goto out_free_adapter;
6107 	}
6108 	spin_lock_init(&adapter->mbox_lock);
6109 	INIT_LIST_HEAD(&adapter->mlist.list);
6110 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
6111 	pci_set_drvdata(pdev, adapter);
6112 
6113 	if (func != ent->driver_data) {
6114 		pci_disable_device(pdev);
6115 		pci_save_state(pdev);        /* to restore SR-IOV later */
6116 		return 0;
6117 	}
6118 
6119 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6120 		highdma = true;
6121 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6122 		if (err) {
6123 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6124 				"coherent allocations\n");
6125 			goto out_free_adapter;
6126 		}
6127 	} else {
6128 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6129 		if (err) {
6130 			dev_err(&pdev->dev, "no usable DMA configuration\n");
6131 			goto out_free_adapter;
6132 		}
6133 	}
6134 
6135 	pci_enable_pcie_error_reporting(pdev);
6136 	pci_set_master(pdev);
6137 	pci_save_state(pdev);
6138 	adap_idx++;
6139 	adapter->workq = create_singlethread_workqueue("cxgb4");
6140 	if (!adapter->workq) {
6141 		err = -ENOMEM;
6142 		goto out_free_adapter;
6143 	}
6144 
6145 	/* PCI device has been enabled */
6146 	adapter->flags |= CXGB4_DEV_ENABLED;
6147 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6148 
6149 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
6150 	 * Ingress Packet Data to Free List Buffers in order to allow for
6151 	 * chipset performance optimizations between the Root Complex and
6152 	 * Memory Controllers.  (Messages to the associated Ingress Queue
6153 	 * notifying new Packet Placement in the Free Lists Buffers will be
6154 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
6155 	 * all preceding PCIe Transaction Layer Packets will be processed
6156 	 * first.)  But some Root Complexes have various issues with Upstream
6157 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
6158 	 * The PCIe devices which under the Root Complexes will be cleared the
6159 	 * Relaxed Ordering bit in the configuration space, So we check our
6160 	 * PCIe configuration space to see if it's flagged with advice against
6161 	 * using Relaxed Ordering.
6162 	 */
6163 	if (!pcie_relaxed_ordering_enabled(pdev))
6164 		adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING;
6165 
6166 	spin_lock_init(&adapter->stats_lock);
6167 	spin_lock_init(&adapter->tid_release_lock);
6168 	spin_lock_init(&adapter->win0_lock);
6169 
6170 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6171 	INIT_WORK(&adapter->db_full_task, process_db_full);
6172 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
6173 	INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
6174 
6175 	err = t4_prep_adapter(adapter);
6176 	if (err)
6177 		goto out_free_adapter;
6178 
6179 	if (is_kdump_kernel()) {
6180 		/* Collect hardware state and append to /proc/vmcore */
6181 		err = cxgb4_cudbg_vmcore_add_dump(adapter);
6182 		if (err) {
6183 			dev_warn(adapter->pdev_dev,
6184 				 "Fail collecting vmcore device dump, err: %d. Continuing\n",
6185 				 err);
6186 			err = 0;
6187 		}
6188 	}
6189 
6190 	if (!is_t4(adapter->params.chip)) {
6191 		s_qpp = (QUEUESPERPAGEPF0_S +
6192 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
6193 			adapter->pf);
6194 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
6195 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
6196 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
6197 
6198 		/* Each segment size is 128B. Write coalescing is enabled only
6199 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6200 		 * queue is less no of segments that can be accommodated in
6201 		 * a page size.
6202 		 */
6203 		if (qpp > num_seg) {
6204 			dev_err(&pdev->dev,
6205 				"Incorrect number of egress queues per page\n");
6206 			err = -EINVAL;
6207 			goto out_free_adapter;
6208 		}
6209 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6210 		pci_resource_len(pdev, 2));
6211 		if (!adapter->bar2) {
6212 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
6213 			err = -ENOMEM;
6214 			goto out_free_adapter;
6215 		}
6216 	}
6217 
6218 	setup_memwin(adapter);
6219 	err = adap_init0(adapter, 0);
6220 #ifdef CONFIG_DEBUG_FS
6221 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
6222 #endif
6223 	setup_memwin_rdma(adapter);
6224 	if (err)
6225 		goto out_unmap_bar;
6226 
6227 	/* configure SGE_STAT_CFG_A to read WC stats */
6228 	if (!is_t4(adapter->params.chip))
6229 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
6230 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
6231 			      T6_STATMODE_V(0)));
6232 
6233 	/* Initialize hash mac addr list */
6234 	INIT_LIST_HEAD(&adapter->mac_hlist);
6235 
6236 	for_each_port(adapter, i) {
6237 		/* For supporting MQPRIO Offload, need some extra
6238 		 * queues for each ETHOFLD TIDs. Keep it equal to
6239 		 * MAX_ATIDs for now. Once we connect to firmware
6240 		 * later and query the EOTID params, we'll come to
6241 		 * know the actual # of EOTIDs supported.
6242 		 */
6243 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
6244 					   MAX_ETH_QSETS + MAX_ATIDS);
6245 		if (!netdev) {
6246 			err = -ENOMEM;
6247 			goto out_free_dev;
6248 		}
6249 
6250 		SET_NETDEV_DEV(netdev, &pdev->dev);
6251 
6252 		adapter->port[i] = netdev;
6253 		pi = netdev_priv(netdev);
6254 		pi->adapter = adapter;
6255 		pi->xact_addr_filt = -1;
6256 		pi->port_id = i;
6257 		netdev->irq = pdev->irq;
6258 
6259 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6260 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6261 			NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO |
6262 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
6263 			NETIF_F_HW_TC;
6264 
6265 		if (chip_ver > CHELSIO_T5) {
6266 			netdev->hw_enc_features |= NETIF_F_IP_CSUM |
6267 						   NETIF_F_IPV6_CSUM |
6268 						   NETIF_F_RXCSUM |
6269 						   NETIF_F_GSO_UDP_TUNNEL |
6270 						   NETIF_F_GSO_UDP_TUNNEL_CSUM |
6271 						   NETIF_F_TSO | NETIF_F_TSO6;
6272 
6273 			netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL |
6274 					       NETIF_F_GSO_UDP_TUNNEL_CSUM |
6275 					       NETIF_F_HW_TLS_RECORD;
6276 		}
6277 
6278 		if (highdma)
6279 			netdev->hw_features |= NETIF_F_HIGHDMA;
6280 		netdev->features |= netdev->hw_features;
6281 		netdev->vlan_features = netdev->features & VLAN_FEAT;
6282 
6283 		netdev->priv_flags |= IFF_UNICAST_FLT;
6284 
6285 		/* MTU range: 81 - 9600 */
6286 		netdev->min_mtu = 81;              /* accommodate SACK */
6287 		netdev->max_mtu = MAX_MTU;
6288 
6289 		netdev->netdev_ops = &cxgb4_netdev_ops;
6290 #ifdef CONFIG_CHELSIO_T4_DCB
6291 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
6292 		cxgb4_dcb_state_init(netdev);
6293 		cxgb4_dcb_version_init(netdev);
6294 #endif
6295 		cxgb4_set_ethtool_ops(netdev);
6296 	}
6297 
6298 	cxgb4_init_ethtool_dump(adapter);
6299 
6300 	pci_set_drvdata(pdev, adapter);
6301 
6302 	if (adapter->flags & CXGB4_FW_OK) {
6303 		err = t4_port_init(adapter, func, func, 0);
6304 		if (err)
6305 			goto out_free_dev;
6306 	} else if (adapter->params.nports == 1) {
6307 		/* If we don't have a connection to the firmware -- possibly
6308 		 * because of an error -- grab the raw VPD parameters so we
6309 		 * can set the proper MAC Address on the debug network
6310 		 * interface that we've created.
6311 		 */
6312 		u8 hw_addr[ETH_ALEN];
6313 		u8 *na = adapter->params.vpd.na;
6314 
6315 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
6316 		if (!err) {
6317 			for (i = 0; i < ETH_ALEN; i++)
6318 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
6319 					      hex2val(na[2 * i + 1]));
6320 			t4_set_hw_addr(adapter, 0, hw_addr);
6321 		}
6322 	}
6323 
6324 	if (!(adapter->flags & CXGB4_FW_OK))
6325 		goto fw_attach_fail;
6326 
6327 	/* Configure queues and allocate tables now, they can be needed as
6328 	 * soon as the first register_netdev completes.
6329 	 */
6330 	err = cfg_queues(adapter);
6331 	if (err)
6332 		goto out_free_dev;
6333 
6334 	adapter->smt = t4_init_smt();
6335 	if (!adapter->smt) {
6336 		/* We tolerate a lack of SMT, giving up some functionality */
6337 		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
6338 	}
6339 
6340 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
6341 	if (!adapter->l2t) {
6342 		/* We tolerate a lack of L2T, giving up some functionality */
6343 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6344 		adapter->params.offload = 0;
6345 	}
6346 
6347 #if IS_ENABLED(CONFIG_IPV6)
6348 	if (chip_ver <= CHELSIO_T5 &&
6349 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
6350 		/* CLIP functionality is not present in hardware,
6351 		 * hence disable all offload features
6352 		 */
6353 		dev_warn(&pdev->dev,
6354 			 "CLIP not enabled in hardware, continuing\n");
6355 		adapter->params.offload = 0;
6356 	} else {
6357 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
6358 						  adapter->clipt_end);
6359 		if (!adapter->clipt) {
6360 			/* We tolerate a lack of clip_table, giving up
6361 			 * some functionality
6362 			 */
6363 			dev_warn(&pdev->dev,
6364 				 "could not allocate Clip table, continuing\n");
6365 			adapter->params.offload = 0;
6366 		}
6367 	}
6368 #endif
6369 
6370 	for_each_port(adapter, i) {
6371 		pi = adap2pinfo(adapter, i);
6372 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
6373 		if (!pi->sched_tbl)
6374 			dev_warn(&pdev->dev,
6375 				 "could not activate scheduling on port %d\n",
6376 				 i);
6377 	}
6378 
6379 	if (tid_init(&adapter->tids) < 0) {
6380 		dev_warn(&pdev->dev, "could not allocate TID table, "
6381 			 "continuing\n");
6382 		adapter->params.offload = 0;
6383 	} else {
6384 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
6385 		if (!adapter->tc_u32)
6386 			dev_warn(&pdev->dev,
6387 				 "could not offload tc u32, continuing\n");
6388 
6389 		if (cxgb4_init_tc_flower(adapter))
6390 			dev_warn(&pdev->dev,
6391 				 "could not offload tc flower, continuing\n");
6392 
6393 		if (cxgb4_init_tc_mqprio(adapter))
6394 			dev_warn(&pdev->dev,
6395 				 "could not offload tc mqprio, continuing\n");
6396 
6397 		if (cxgb4_init_tc_matchall(adapter))
6398 			dev_warn(&pdev->dev,
6399 				 "could not offload tc matchall, continuing\n");
6400 	}
6401 
6402 	if (is_offload(adapter) || is_hashfilter(adapter)) {
6403 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
6404 			u32 hash_base, hash_reg;
6405 
6406 			if (chip_ver <= CHELSIO_T5) {
6407 				hash_reg = LE_DB_TID_HASHBASE_A;
6408 				hash_base = t4_read_reg(adapter, hash_reg);
6409 				adapter->tids.hash_base = hash_base / 4;
6410 			} else {
6411 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
6412 				hash_base = t4_read_reg(adapter, hash_reg);
6413 				adapter->tids.hash_base = hash_base;
6414 			}
6415 		}
6416 	}
6417 
6418 	/* See what interrupts we'll be using */
6419 	if (msi > 1 && enable_msix(adapter) == 0)
6420 		adapter->flags |= CXGB4_USING_MSIX;
6421 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
6422 		adapter->flags |= CXGB4_USING_MSI;
6423 		if (msi > 1)
6424 			free_msix_info(adapter);
6425 	}
6426 
6427 	/* check for PCI Express bandwidth capabiltites */
6428 	pcie_print_link_status(pdev);
6429 
6430 	cxgb4_init_mps_ref_entries(adapter);
6431 
6432 	err = init_rss(adapter);
6433 	if (err)
6434 		goto out_free_dev;
6435 
6436 	err = setup_non_data_intr(adapter);
6437 	if (err) {
6438 		dev_err(adapter->pdev_dev,
6439 			"Non Data interrupt allocation failed, err: %d\n", err);
6440 		goto out_free_dev;
6441 	}
6442 
6443 	err = setup_fw_sge_queues(adapter);
6444 	if (err) {
6445 		dev_err(adapter->pdev_dev,
6446 			"FW sge queue allocation failed, err %d", err);
6447 		goto out_free_dev;
6448 	}
6449 
6450 fw_attach_fail:
6451 	/*
6452 	 * The card is now ready to go.  If any errors occur during device
6453 	 * registration we do not fail the whole card but rather proceed only
6454 	 * with the ports we manage to register successfully.  However we must
6455 	 * register at least one net device.
6456 	 */
6457 	for_each_port(adapter, i) {
6458 		pi = adap2pinfo(adapter, i);
6459 		adapter->port[i]->dev_port = pi->lport;
6460 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6461 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6462 
6463 		netif_carrier_off(adapter->port[i]);
6464 
6465 		err = register_netdev(adapter->port[i]);
6466 		if (err)
6467 			break;
6468 		adapter->chan_map[pi->tx_chan] = i;
6469 		print_port_info(adapter->port[i]);
6470 	}
6471 	if (i == 0) {
6472 		dev_err(&pdev->dev, "could not register any net devices\n");
6473 		goto out_free_dev;
6474 	}
6475 	if (err) {
6476 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6477 		err = 0;
6478 	}
6479 
6480 	if (cxgb4_debugfs_root) {
6481 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6482 							   cxgb4_debugfs_root);
6483 		setup_debugfs(adapter);
6484 	}
6485 
6486 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6487 	pdev->needs_freset = 1;
6488 
6489 	if (is_uld(adapter)) {
6490 		mutex_lock(&uld_mutex);
6491 		list_add_tail(&adapter->list_node, &adapter_list);
6492 		mutex_unlock(&uld_mutex);
6493 	}
6494 
6495 	if (!is_t4(adapter->params.chip))
6496 		cxgb4_ptp_init(adapter);
6497 
6498 	if (IS_REACHABLE(CONFIG_THERMAL) &&
6499 	    !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK))
6500 		cxgb4_thermal_init(adapter);
6501 
6502 	print_adapter_info(adapter);
6503 	return 0;
6504 
6505  out_free_dev:
6506 	t4_free_sge_resources(adapter);
6507 	free_some_resources(adapter);
6508 	if (adapter->flags & CXGB4_USING_MSIX)
6509 		free_msix_info(adapter);
6510 	if (adapter->num_uld || adapter->num_ofld_uld)
6511 		t4_uld_mem_free(adapter);
6512  out_unmap_bar:
6513 	if (!is_t4(adapter->params.chip))
6514 		iounmap(adapter->bar2);
6515  out_free_adapter:
6516 	if (adapter->workq)
6517 		destroy_workqueue(adapter->workq);
6518 
6519 	kfree(adapter->mbox_log);
6520 	kfree(adapter);
6521  out_unmap_bar0:
6522 	iounmap(regs);
6523  out_disable_device:
6524 	pci_disable_pcie_error_reporting(pdev);
6525 	pci_disable_device(pdev);
6526  out_release_regions:
6527 	pci_release_regions(pdev);
6528 	return err;
6529 }
6530 
6531 static void remove_one(struct pci_dev *pdev)
6532 {
6533 	struct adapter *adapter = pci_get_drvdata(pdev);
6534 	struct hash_mac_addr *entry, *tmp;
6535 
6536 	if (!adapter) {
6537 		pci_release_regions(pdev);
6538 		return;
6539 	}
6540 
6541 	/* If we allocated filters, free up state associated with any
6542 	 * valid filters ...
6543 	 */
6544 	clear_all_filters(adapter);
6545 
6546 	adapter->flags |= CXGB4_SHUTTING_DOWN;
6547 
6548 	if (adapter->pf == 4) {
6549 		int i;
6550 
6551 		/* Tear down per-adapter Work Queue first since it can contain
6552 		 * references to our adapter data structure.
6553 		 */
6554 		destroy_workqueue(adapter->workq);
6555 
6556 		if (is_uld(adapter)) {
6557 			detach_ulds(adapter);
6558 			t4_uld_clean_up(adapter);
6559 		}
6560 
6561 		adap_free_hma_mem(adapter);
6562 
6563 		disable_interrupts(adapter);
6564 
6565 		cxgb4_free_mps_ref_entries(adapter);
6566 
6567 		for_each_port(adapter, i)
6568 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6569 				unregister_netdev(adapter->port[i]);
6570 
6571 		debugfs_remove_recursive(adapter->debugfs_root);
6572 
6573 		if (!is_t4(adapter->params.chip))
6574 			cxgb4_ptp_stop(adapter);
6575 		if (IS_REACHABLE(CONFIG_THERMAL))
6576 			cxgb4_thermal_remove(adapter);
6577 
6578 		if (adapter->flags & CXGB4_FULL_INIT_DONE)
6579 			cxgb_down(adapter);
6580 
6581 		if (adapter->flags & CXGB4_USING_MSIX)
6582 			free_msix_info(adapter);
6583 		if (adapter->num_uld || adapter->num_ofld_uld)
6584 			t4_uld_mem_free(adapter);
6585 		free_some_resources(adapter);
6586 		list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
6587 					 list) {
6588 			list_del(&entry->list);
6589 			kfree(entry);
6590 		}
6591 
6592 #if IS_ENABLED(CONFIG_IPV6)
6593 		t4_cleanup_clip_tbl(adapter);
6594 #endif
6595 		if (!is_t4(adapter->params.chip))
6596 			iounmap(adapter->bar2);
6597 	}
6598 #ifdef CONFIG_PCI_IOV
6599 	else {
6600 		cxgb4_iov_configure(adapter->pdev, 0);
6601 	}
6602 #endif
6603 	iounmap(adapter->regs);
6604 	pci_disable_pcie_error_reporting(pdev);
6605 	if ((adapter->flags & CXGB4_DEV_ENABLED)) {
6606 		pci_disable_device(pdev);
6607 		adapter->flags &= ~CXGB4_DEV_ENABLED;
6608 	}
6609 	pci_release_regions(pdev);
6610 	kfree(adapter->mbox_log);
6611 	synchronize_rcu();
6612 	kfree(adapter);
6613 }
6614 
6615 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
6616  * delivery.  This is essentially a stripped down version of the PCI remove()
6617  * function where we do the minimal amount of work necessary to shutdown any
6618  * further activity.
6619  */
6620 static void shutdown_one(struct pci_dev *pdev)
6621 {
6622 	struct adapter *adapter = pci_get_drvdata(pdev);
6623 
6624 	/* As with remove_one() above (see extended comment), we only want do
6625 	 * do cleanup on PCI Devices which went all the way through init_one()
6626 	 * ...
6627 	 */
6628 	if (!adapter) {
6629 		pci_release_regions(pdev);
6630 		return;
6631 	}
6632 
6633 	adapter->flags |= CXGB4_SHUTTING_DOWN;
6634 
6635 	if (adapter->pf == 4) {
6636 		int i;
6637 
6638 		for_each_port(adapter, i)
6639 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6640 				cxgb_close(adapter->port[i]);
6641 
6642 		if (is_uld(adapter)) {
6643 			detach_ulds(adapter);
6644 			t4_uld_clean_up(adapter);
6645 		}
6646 
6647 		disable_interrupts(adapter);
6648 		disable_msi(adapter);
6649 
6650 		t4_sge_stop(adapter);
6651 		if (adapter->flags & CXGB4_FW_OK)
6652 			t4_fw_bye(adapter, adapter->mbox);
6653 	}
6654 }
6655 
6656 static struct pci_driver cxgb4_driver = {
6657 	.name     = KBUILD_MODNAME,
6658 	.id_table = cxgb4_pci_tbl,
6659 	.probe    = init_one,
6660 	.remove   = remove_one,
6661 	.shutdown = shutdown_one,
6662 #ifdef CONFIG_PCI_IOV
6663 	.sriov_configure = cxgb4_iov_configure,
6664 #endif
6665 	.err_handler = &cxgb4_eeh,
6666 };
6667 
6668 static int __init cxgb4_init_module(void)
6669 {
6670 	int ret;
6671 
6672 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6673 
6674 	ret = pci_register_driver(&cxgb4_driver);
6675 	if (ret < 0)
6676 		goto err_pci;
6677 
6678 #if IS_ENABLED(CONFIG_IPV6)
6679 	if (!inet6addr_registered) {
6680 		ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6681 		if (ret)
6682 			pci_unregister_driver(&cxgb4_driver);
6683 		else
6684 			inet6addr_registered = true;
6685 	}
6686 #endif
6687 
6688 	if (ret == 0)
6689 		return ret;
6690 
6691 err_pci:
6692 	debugfs_remove(cxgb4_debugfs_root);
6693 
6694 	return ret;
6695 }
6696 
6697 static void __exit cxgb4_cleanup_module(void)
6698 {
6699 #if IS_ENABLED(CONFIG_IPV6)
6700 	if (inet6addr_registered) {
6701 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6702 		inet6addr_registered = false;
6703 	}
6704 #endif
6705 	pci_unregister_driver(&cxgb4_driver);
6706 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6707 }
6708 
6709 module_init(cxgb4_init_module);
6710 module_exit(cxgb4_cleanup_module);
6711