1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68 
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "cxgb4_debugfs.h"
78 #include "clip_tbl.h"
79 #include "l2t.h"
80 #include "smt.h"
81 #include "sched.h"
82 #include "cxgb4_tc_u32.h"
83 #include "cxgb4_tc_flower.h"
84 #include "cxgb4_ptp.h"
85 #include "cxgb4_cudbg.h"
86 
87 char cxgb4_driver_name[] = KBUILD_MODNAME;
88 
89 #ifdef DRV_VERSION
90 #undef DRV_VERSION
91 #endif
92 #define DRV_VERSION "2.0.0-ko"
93 const char cxgb4_driver_version[] = DRV_VERSION;
94 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
95 
96 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
97 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
98 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
99 
100 /* Macros needed to support the PCI Device ID Table ...
101  */
102 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
103 	static const struct pci_device_id cxgb4_pci_tbl[] = {
104 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
105 
106 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
107  * called for both.
108  */
109 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
110 
111 #define CH_PCI_ID_TABLE_ENTRY(devid) \
112 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
113 
114 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
115 		{ 0, } \
116 	}
117 
118 #include "t4_pci_id_tbl.h"
119 
120 #define FW4_FNAME "cxgb4/t4fw.bin"
121 #define FW5_FNAME "cxgb4/t5fw.bin"
122 #define FW6_FNAME "cxgb4/t6fw.bin"
123 #define FW4_CFNAME "cxgb4/t4-config.txt"
124 #define FW5_CFNAME "cxgb4/t5-config.txt"
125 #define FW6_CFNAME "cxgb4/t6-config.txt"
126 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
127 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
128 #define PHY_AQ1202_DEVICEID 0x4409
129 #define PHY_BCM84834_DEVICEID 0x4486
130 
131 MODULE_DESCRIPTION(DRV_DESC);
132 MODULE_AUTHOR("Chelsio Communications");
133 MODULE_LICENSE("Dual BSD/GPL");
134 MODULE_VERSION(DRV_VERSION);
135 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
136 MODULE_FIRMWARE(FW4_FNAME);
137 MODULE_FIRMWARE(FW5_FNAME);
138 MODULE_FIRMWARE(FW6_FNAME);
139 
140 /*
141  * The driver uses the best interrupt scheme available on a platform in the
142  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
143  * of these schemes the driver may consider as follows:
144  *
145  * msi = 2: choose from among all three options
146  * msi = 1: only consider MSI and INTx interrupts
147  * msi = 0: force INTx interrupts
148  */
149 static int msi = 2;
150 
151 module_param(msi, int, 0644);
152 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
153 
154 /*
155  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
156  * offset by 2 bytes in order to have the IP headers line up on 4-byte
157  * boundaries.  This is a requirement for many architectures which will throw
158  * a machine check fault if an attempt is made to access one of the 4-byte IP
159  * header fields on a non-4-byte boundary.  And it's a major performance issue
160  * even on some architectures which allow it like some implementations of the
161  * x86 ISA.  However, some architectures don't mind this and for some very
162  * edge-case performance sensitive applications (like forwarding large volumes
163  * of small packets), setting this DMA offset to 0 will decrease the number of
164  * PCI-E Bus transfers enough to measurably affect performance.
165  */
166 static int rx_dma_offset = 2;
167 
168 /* TX Queue select used to determine what algorithm to use for selecting TX
169  * queue. Select between the kernel provided function (select_queue=0) or user
170  * cxgb_select_queue function (select_queue=1)
171  *
172  * Default: select_queue=0
173  */
174 static int select_queue;
175 module_param(select_queue, int, 0644);
176 MODULE_PARM_DESC(select_queue,
177 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
178 
179 static struct dentry *cxgb4_debugfs_root;
180 
181 LIST_HEAD(adapter_list);
182 DEFINE_MUTEX(uld_mutex);
183 
184 static void link_report(struct net_device *dev)
185 {
186 	if (!netif_carrier_ok(dev))
187 		netdev_info(dev, "link down\n");
188 	else {
189 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
190 
191 		const char *s;
192 		const struct port_info *p = netdev_priv(dev);
193 
194 		switch (p->link_cfg.speed) {
195 		case 100:
196 			s = "100Mbps";
197 			break;
198 		case 1000:
199 			s = "1Gbps";
200 			break;
201 		case 10000:
202 			s = "10Gbps";
203 			break;
204 		case 25000:
205 			s = "25Gbps";
206 			break;
207 		case 40000:
208 			s = "40Gbps";
209 			break;
210 		case 100000:
211 			s = "100Gbps";
212 			break;
213 		default:
214 			pr_info("%s: unsupported speed: %d\n",
215 				dev->name, p->link_cfg.speed);
216 			return;
217 		}
218 
219 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
220 			    fc[p->link_cfg.fc]);
221 	}
222 }
223 
224 #ifdef CONFIG_CHELSIO_T4_DCB
225 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
226 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
227 {
228 	struct port_info *pi = netdev_priv(dev);
229 	struct adapter *adap = pi->adapter;
230 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
231 	int i;
232 
233 	/* We use a simple mapping of Port TX Queue Index to DCB
234 	 * Priority when we're enabling DCB.
235 	 */
236 	for (i = 0; i < pi->nqsets; i++, txq++) {
237 		u32 name, value;
238 		int err;
239 
240 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
241 			FW_PARAMS_PARAM_X_V(
242 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
243 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
244 		value = enable ? i : 0xffffffff;
245 
246 		/* Since we can be called while atomic (from "interrupt
247 		 * level") we need to issue the Set Parameters Commannd
248 		 * without sleeping (timeout < 0).
249 		 */
250 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
251 					    &name, &value,
252 					    -FW_CMD_MAX_TIMEOUT);
253 
254 		if (err)
255 			dev_err(adap->pdev_dev,
256 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
257 				enable ? "set" : "unset", pi->port_id, i, -err);
258 		else
259 			txq->dcb_prio = value;
260 	}
261 }
262 
263 static int cxgb4_dcb_enabled(const struct net_device *dev)
264 {
265 	struct port_info *pi = netdev_priv(dev);
266 
267 	if (!pi->dcb.enabled)
268 		return 0;
269 
270 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
271 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
272 }
273 #endif /* CONFIG_CHELSIO_T4_DCB */
274 
275 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
276 {
277 	struct net_device *dev = adapter->port[port_id];
278 
279 	/* Skip changes from disabled ports. */
280 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
281 		if (link_stat)
282 			netif_carrier_on(dev);
283 		else {
284 #ifdef CONFIG_CHELSIO_T4_DCB
285 			if (cxgb4_dcb_enabled(dev)) {
286 				cxgb4_dcb_reset(dev);
287 				dcb_tx_queue_prio_enable(dev, false);
288 			}
289 #endif /* CONFIG_CHELSIO_T4_DCB */
290 			netif_carrier_off(dev);
291 		}
292 
293 		link_report(dev);
294 	}
295 }
296 
297 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
298 {
299 	static const char *mod_str[] = {
300 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
301 	};
302 
303 	const struct net_device *dev = adap->port[port_id];
304 	const struct port_info *pi = netdev_priv(dev);
305 
306 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
307 		netdev_info(dev, "port module unplugged\n");
308 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
309 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
310 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
311 		netdev_info(dev, "%s: unsupported port module inserted\n",
312 			    dev->name);
313 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
314 		netdev_info(dev, "%s: unknown port module inserted\n",
315 			    dev->name);
316 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
317 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
318 	else
319 		netdev_info(dev, "%s: unknown module type %d inserted\n",
320 			    dev->name, pi->mod_type);
321 }
322 
323 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
324 module_param(dbfifo_int_thresh, int, 0644);
325 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
326 
327 /*
328  * usecs to sleep while draining the dbfifo
329  */
330 static int dbfifo_drain_delay = 1000;
331 module_param(dbfifo_drain_delay, int, 0644);
332 MODULE_PARM_DESC(dbfifo_drain_delay,
333 		 "usecs to sleep while draining the dbfifo");
334 
335 static inline int cxgb4_set_addr_hash(struct port_info *pi)
336 {
337 	struct adapter *adap = pi->adapter;
338 	u64 vec = 0;
339 	bool ucast = false;
340 	struct hash_mac_addr *entry;
341 
342 	/* Calculate the hash vector for the updated list and program it */
343 	list_for_each_entry(entry, &adap->mac_hlist, list) {
344 		ucast |= is_unicast_ether_addr(entry->addr);
345 		vec |= (1ULL << hash_mac_addr(entry->addr));
346 	}
347 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
348 				vec, false);
349 }
350 
351 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
352 {
353 	struct port_info *pi = netdev_priv(netdev);
354 	struct adapter *adap = pi->adapter;
355 	int ret;
356 	u64 mhash = 0;
357 	u64 uhash = 0;
358 	bool free = false;
359 	bool ucast = is_unicast_ether_addr(mac_addr);
360 	const u8 *maclist[1] = {mac_addr};
361 	struct hash_mac_addr *new_entry;
362 
363 	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
364 				NULL, ucast ? &uhash : &mhash, false);
365 	if (ret < 0)
366 		goto out;
367 	/* if hash != 0, then add the addr to hash addr list
368 	 * so on the end we will calculate the hash for the
369 	 * list and program it
370 	 */
371 	if (uhash || mhash) {
372 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
373 		if (!new_entry)
374 			return -ENOMEM;
375 		ether_addr_copy(new_entry->addr, mac_addr);
376 		list_add_tail(&new_entry->list, &adap->mac_hlist);
377 		ret = cxgb4_set_addr_hash(pi);
378 	}
379 out:
380 	return ret < 0 ? ret : 0;
381 }
382 
383 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
384 {
385 	struct port_info *pi = netdev_priv(netdev);
386 	struct adapter *adap = pi->adapter;
387 	int ret;
388 	const u8 *maclist[1] = {mac_addr};
389 	struct hash_mac_addr *entry, *tmp;
390 
391 	/* If the MAC address to be removed is in the hash addr
392 	 * list, delete it from the list and update hash vector
393 	 */
394 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
395 		if (ether_addr_equal(entry->addr, mac_addr)) {
396 			list_del(&entry->list);
397 			kfree(entry);
398 			return cxgb4_set_addr_hash(pi);
399 		}
400 	}
401 
402 	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
403 	return ret < 0 ? -EINVAL : 0;
404 }
405 
406 /*
407  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
408  * If @mtu is -1 it is left unchanged.
409  */
410 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
411 {
412 	struct port_info *pi = netdev_priv(dev);
413 	struct adapter *adapter = pi->adapter;
414 
415 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
416 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
417 
418 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
419 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
420 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
421 			     sleep_ok);
422 }
423 
424 /**
425  *	link_start - enable a port
426  *	@dev: the port to enable
427  *
428  *	Performs the MAC and PHY actions needed to enable a port.
429  */
430 static int link_start(struct net_device *dev)
431 {
432 	int ret;
433 	struct port_info *pi = netdev_priv(dev);
434 	unsigned int mb = pi->adapter->pf;
435 
436 	/*
437 	 * We do not set address filters and promiscuity here, the stack does
438 	 * that step explicitly.
439 	 */
440 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
441 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
442 	if (ret == 0) {
443 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
444 				    pi->xact_addr_filt, dev->dev_addr, true,
445 				    true);
446 		if (ret >= 0) {
447 			pi->xact_addr_filt = ret;
448 			ret = 0;
449 		}
450 	}
451 	if (ret == 0)
452 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
453 				    &pi->link_cfg);
454 	if (ret == 0) {
455 		local_bh_disable();
456 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
457 					  true, CXGB4_DCB_ENABLED);
458 		local_bh_enable();
459 	}
460 
461 	return ret;
462 }
463 
464 #ifdef CONFIG_CHELSIO_T4_DCB
465 /* Handle a Data Center Bridging update message from the firmware. */
466 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
467 {
468 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
469 	struct net_device *dev = adap->port[adap->chan_map[port]];
470 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
471 	int new_dcb_enabled;
472 
473 	cxgb4_dcb_handle_fw_update(adap, pcmd);
474 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
475 
476 	/* If the DCB has become enabled or disabled on the port then we're
477 	 * going to need to set up/tear down DCB Priority parameters for the
478 	 * TX Queues associated with the port.
479 	 */
480 	if (new_dcb_enabled != old_dcb_enabled)
481 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
482 }
483 #endif /* CONFIG_CHELSIO_T4_DCB */
484 
485 /* Response queue handler for the FW event queue.
486  */
487 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
488 			  const struct pkt_gl *gl)
489 {
490 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
491 
492 	rsp++;                                          /* skip RSS header */
493 
494 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
495 	 */
496 	if (unlikely(opcode == CPL_FW4_MSG &&
497 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
498 		rsp++;
499 		opcode = ((const struct rss_header *)rsp)->opcode;
500 		rsp++;
501 		if (opcode != CPL_SGE_EGR_UPDATE) {
502 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
503 				, opcode);
504 			goto out;
505 		}
506 	}
507 
508 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
509 		const struct cpl_sge_egr_update *p = (void *)rsp;
510 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
511 		struct sge_txq *txq;
512 
513 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
514 		txq->restarts++;
515 		if (txq->q_type == CXGB4_TXQ_ETH) {
516 			struct sge_eth_txq *eq;
517 
518 			eq = container_of(txq, struct sge_eth_txq, q);
519 			netif_tx_wake_queue(eq->txq);
520 		} else {
521 			struct sge_uld_txq *oq;
522 
523 			oq = container_of(txq, struct sge_uld_txq, q);
524 			tasklet_schedule(&oq->qresume_tsk);
525 		}
526 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
527 		const struct cpl_fw6_msg *p = (void *)rsp;
528 
529 #ifdef CONFIG_CHELSIO_T4_DCB
530 		const struct fw_port_cmd *pcmd = (const void *)p->data;
531 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
532 		unsigned int action =
533 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
534 
535 		if (cmd == FW_PORT_CMD &&
536 		    (action == FW_PORT_ACTION_GET_PORT_INFO ||
537 		     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
538 			int port = FW_PORT_CMD_PORTID_G(
539 					be32_to_cpu(pcmd->op_to_portid));
540 			struct net_device *dev;
541 			int dcbxdis, state_input;
542 
543 			dev = q->adap->port[q->adap->chan_map[port]];
544 			dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
545 				   ? !!(pcmd->u.info.dcbxdis_pkd &
546 					FW_PORT_CMD_DCBXDIS_F)
547 				   : !!(pcmd->u.info32.lstatus32_to_cbllen32 &
548 					FW_PORT_CMD_DCBXDIS32_F));
549 			state_input = (dcbxdis
550 				       ? CXGB4_DCB_INPUT_FW_DISABLED
551 				       : CXGB4_DCB_INPUT_FW_ENABLED);
552 
553 			cxgb4_dcb_state_fsm(dev, state_input);
554 		}
555 
556 		if (cmd == FW_PORT_CMD &&
557 		    action == FW_PORT_ACTION_L2_DCB_CFG)
558 			dcb_rpl(q->adap, pcmd);
559 		else
560 #endif
561 			if (p->type == 0)
562 				t4_handle_fw_rpl(q->adap, p->data);
563 	} else if (opcode == CPL_L2T_WRITE_RPL) {
564 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
565 
566 		do_l2t_write_rpl(q->adap, p);
567 	} else if (opcode == CPL_SMT_WRITE_RPL) {
568 		const struct cpl_smt_write_rpl *p = (void *)rsp;
569 
570 		do_smt_write_rpl(q->adap, p);
571 	} else if (opcode == CPL_SET_TCB_RPL) {
572 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
573 
574 		filter_rpl(q->adap, p);
575 	} else if (opcode == CPL_ACT_OPEN_RPL) {
576 		const struct cpl_act_open_rpl *p = (void *)rsp;
577 
578 		hash_filter_rpl(q->adap, p);
579 	} else if (opcode == CPL_ABORT_RPL_RSS) {
580 		const struct cpl_abort_rpl_rss *p = (void *)rsp;
581 
582 		hash_del_filter_rpl(q->adap, p);
583 	} else
584 		dev_err(q->adap->pdev_dev,
585 			"unexpected CPL %#x on FW event queue\n", opcode);
586 out:
587 	return 0;
588 }
589 
590 static void disable_msi(struct adapter *adapter)
591 {
592 	if (adapter->flags & USING_MSIX) {
593 		pci_disable_msix(adapter->pdev);
594 		adapter->flags &= ~USING_MSIX;
595 	} else if (adapter->flags & USING_MSI) {
596 		pci_disable_msi(adapter->pdev);
597 		adapter->flags &= ~USING_MSI;
598 	}
599 }
600 
601 /*
602  * Interrupt handler for non-data events used with MSI-X.
603  */
604 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
605 {
606 	struct adapter *adap = cookie;
607 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
608 
609 	if (v & PFSW_F) {
610 		adap->swintr = 1;
611 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
612 	}
613 	if (adap->flags & MASTER_PF)
614 		t4_slow_intr_handler(adap);
615 	return IRQ_HANDLED;
616 }
617 
618 /*
619  * Name the MSI-X interrupts.
620  */
621 static void name_msix_vecs(struct adapter *adap)
622 {
623 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
624 
625 	/* non-data interrupts */
626 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
627 
628 	/* FW events */
629 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
630 		 adap->port[0]->name);
631 
632 	/* Ethernet queues */
633 	for_each_port(adap, j) {
634 		struct net_device *d = adap->port[j];
635 		const struct port_info *pi = netdev_priv(d);
636 
637 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
638 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
639 				 d->name, i);
640 	}
641 }
642 
643 static int request_msix_queue_irqs(struct adapter *adap)
644 {
645 	struct sge *s = &adap->sge;
646 	int err, ethqidx;
647 	int msi_index = 2;
648 
649 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
650 			  adap->msix_info[1].desc, &s->fw_evtq);
651 	if (err)
652 		return err;
653 
654 	for_each_ethrxq(s, ethqidx) {
655 		err = request_irq(adap->msix_info[msi_index].vec,
656 				  t4_sge_intr_msix, 0,
657 				  adap->msix_info[msi_index].desc,
658 				  &s->ethrxq[ethqidx].rspq);
659 		if (err)
660 			goto unwind;
661 		msi_index++;
662 	}
663 	return 0;
664 
665 unwind:
666 	while (--ethqidx >= 0)
667 		free_irq(adap->msix_info[--msi_index].vec,
668 			 &s->ethrxq[ethqidx].rspq);
669 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
670 	return err;
671 }
672 
673 static void free_msix_queue_irqs(struct adapter *adap)
674 {
675 	int i, msi_index = 2;
676 	struct sge *s = &adap->sge;
677 
678 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
679 	for_each_ethrxq(s, i)
680 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
681 }
682 
683 /**
684  *	cxgb4_write_rss - write the RSS table for a given port
685  *	@pi: the port
686  *	@queues: array of queue indices for RSS
687  *
688  *	Sets up the portion of the HW RSS table for the port's VI to distribute
689  *	packets to the Rx queues in @queues.
690  *	Should never be called before setting up sge eth rx queues
691  */
692 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
693 {
694 	u16 *rss;
695 	int i, err;
696 	struct adapter *adapter = pi->adapter;
697 	const struct sge_eth_rxq *rxq;
698 
699 	rxq = &adapter->sge.ethrxq[pi->first_qset];
700 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
701 	if (!rss)
702 		return -ENOMEM;
703 
704 	/* map the queue indices to queue ids */
705 	for (i = 0; i < pi->rss_size; i++, queues++)
706 		rss[i] = rxq[*queues].rspq.abs_id;
707 
708 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
709 				  pi->rss_size, rss, pi->rss_size);
710 	/* If Tunnel All Lookup isn't specified in the global RSS
711 	 * Configuration, then we need to specify a default Ingress
712 	 * Queue for any ingress packets which aren't hashed.  We'll
713 	 * use our first ingress queue ...
714 	 */
715 	if (!err)
716 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
717 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
718 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
719 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
720 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
721 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
722 				       rss[0]);
723 	kfree(rss);
724 	return err;
725 }
726 
727 /**
728  *	setup_rss - configure RSS
729  *	@adap: the adapter
730  *
731  *	Sets up RSS for each port.
732  */
733 static int setup_rss(struct adapter *adap)
734 {
735 	int i, j, err;
736 
737 	for_each_port(adap, i) {
738 		const struct port_info *pi = adap2pinfo(adap, i);
739 
740 		/* Fill default values with equal distribution */
741 		for (j = 0; j < pi->rss_size; j++)
742 			pi->rss[j] = j % pi->nqsets;
743 
744 		err = cxgb4_write_rss(pi, pi->rss);
745 		if (err)
746 			return err;
747 	}
748 	return 0;
749 }
750 
751 /*
752  * Return the channel of the ingress queue with the given qid.
753  */
754 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
755 {
756 	qid -= p->ingr_start;
757 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
758 }
759 
760 /*
761  * Wait until all NAPI handlers are descheduled.
762  */
763 static void quiesce_rx(struct adapter *adap)
764 {
765 	int i;
766 
767 	for (i = 0; i < adap->sge.ingr_sz; i++) {
768 		struct sge_rspq *q = adap->sge.ingr_map[i];
769 
770 		if (q && q->handler)
771 			napi_disable(&q->napi);
772 	}
773 }
774 
775 /* Disable interrupt and napi handler */
776 static void disable_interrupts(struct adapter *adap)
777 {
778 	if (adap->flags & FULL_INIT_DONE) {
779 		t4_intr_disable(adap);
780 		if (adap->flags & USING_MSIX) {
781 			free_msix_queue_irqs(adap);
782 			free_irq(adap->msix_info[0].vec, adap);
783 		} else {
784 			free_irq(adap->pdev->irq, adap);
785 		}
786 		quiesce_rx(adap);
787 	}
788 }
789 
790 /*
791  * Enable NAPI scheduling and interrupt generation for all Rx queues.
792  */
793 static void enable_rx(struct adapter *adap)
794 {
795 	int i;
796 
797 	for (i = 0; i < adap->sge.ingr_sz; i++) {
798 		struct sge_rspq *q = adap->sge.ingr_map[i];
799 
800 		if (!q)
801 			continue;
802 		if (q->handler)
803 			napi_enable(&q->napi);
804 
805 		/* 0-increment GTS to start the timer and enable interrupts */
806 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
807 			     SEINTARM_V(q->intr_params) |
808 			     INGRESSQID_V(q->cntxt_id));
809 	}
810 }
811 
812 
813 static int setup_fw_sge_queues(struct adapter *adap)
814 {
815 	struct sge *s = &adap->sge;
816 	int err = 0;
817 
818 	bitmap_zero(s->starving_fl, s->egr_sz);
819 	bitmap_zero(s->txq_maperr, s->egr_sz);
820 
821 	if (adap->flags & USING_MSIX)
822 		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
823 	else {
824 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
825 				       NULL, NULL, NULL, -1);
826 		if (err)
827 			return err;
828 		adap->msi_idx = -((int)s->intrq.abs_id + 1);
829 	}
830 
831 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
832 			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
833 	if (err)
834 		t4_free_sge_resources(adap);
835 	return err;
836 }
837 
838 /**
839  *	setup_sge_queues - configure SGE Tx/Rx/response queues
840  *	@adap: the adapter
841  *
842  *	Determines how many sets of SGE queues to use and initializes them.
843  *	We support multiple queue sets per port if we have MSI-X, otherwise
844  *	just one queue set per port.
845  */
846 static int setup_sge_queues(struct adapter *adap)
847 {
848 	int err, i, j;
849 	struct sge *s = &adap->sge;
850 	struct sge_uld_rxq_info *rxq_info = NULL;
851 	unsigned int cmplqid = 0;
852 
853 	if (is_uld(adap))
854 		rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
855 
856 	for_each_port(adap, i) {
857 		struct net_device *dev = adap->port[i];
858 		struct port_info *pi = netdev_priv(dev);
859 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
860 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
861 
862 		for (j = 0; j < pi->nqsets; j++, q++) {
863 			if (adap->msi_idx > 0)
864 				adap->msi_idx++;
865 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
866 					       adap->msi_idx, &q->fl,
867 					       t4_ethrx_handler,
868 					       NULL,
869 					       t4_get_tp_ch_map(adap,
870 								pi->tx_chan));
871 			if (err)
872 				goto freeout;
873 			q->rspq.idx = j;
874 			memset(&q->stats, 0, sizeof(q->stats));
875 		}
876 		for (j = 0; j < pi->nqsets; j++, t++) {
877 			err = t4_sge_alloc_eth_txq(adap, t, dev,
878 					netdev_get_tx_queue(dev, j),
879 					s->fw_evtq.cntxt_id);
880 			if (err)
881 				goto freeout;
882 		}
883 	}
884 
885 	for_each_port(adap, i) {
886 		/* Note that cmplqid below is 0 if we don't
887 		 * have RDMA queues, and that's the right value.
888 		 */
889 		if (rxq_info)
890 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
891 
892 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
893 					    s->fw_evtq.cntxt_id, cmplqid);
894 		if (err)
895 			goto freeout;
896 	}
897 
898 	if (!is_t4(adap->params.chip)) {
899 		err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
900 					   netdev_get_tx_queue(adap->port[0], 0)
901 					   , s->fw_evtq.cntxt_id);
902 		if (err)
903 			goto freeout;
904 	}
905 
906 	t4_write_reg(adap, is_t4(adap->params.chip) ?
907 				MPS_TRC_RSS_CONTROL_A :
908 				MPS_T5_TRC_RSS_CONTROL_A,
909 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
910 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
911 	return 0;
912 freeout:
913 	t4_free_sge_resources(adap);
914 	return err;
915 }
916 
917 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
918 			     void *accel_priv, select_queue_fallback_t fallback)
919 {
920 	int txq;
921 
922 #ifdef CONFIG_CHELSIO_T4_DCB
923 	/* If a Data Center Bridging has been successfully negotiated on this
924 	 * link then we'll use the skb's priority to map it to a TX Queue.
925 	 * The skb's priority is determined via the VLAN Tag Priority Code
926 	 * Point field.
927 	 */
928 	if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
929 		u16 vlan_tci;
930 		int err;
931 
932 		err = vlan_get_tag(skb, &vlan_tci);
933 		if (unlikely(err)) {
934 			if (net_ratelimit())
935 				netdev_warn(dev,
936 					    "TX Packet without VLAN Tag on DCB Link\n");
937 			txq = 0;
938 		} else {
939 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
940 #ifdef CONFIG_CHELSIO_T4_FCOE
941 			if (skb->protocol == htons(ETH_P_FCOE))
942 				txq = skb->priority & 0x7;
943 #endif /* CONFIG_CHELSIO_T4_FCOE */
944 		}
945 		return txq;
946 	}
947 #endif /* CONFIG_CHELSIO_T4_DCB */
948 
949 	if (select_queue) {
950 		txq = (skb_rx_queue_recorded(skb)
951 			? skb_get_rx_queue(skb)
952 			: smp_processor_id());
953 
954 		while (unlikely(txq >= dev->real_num_tx_queues))
955 			txq -= dev->real_num_tx_queues;
956 
957 		return txq;
958 	}
959 
960 	return fallback(dev, skb) % dev->real_num_tx_queues;
961 }
962 
963 static int closest_timer(const struct sge *s, int time)
964 {
965 	int i, delta, match = 0, min_delta = INT_MAX;
966 
967 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
968 		delta = time - s->timer_val[i];
969 		if (delta < 0)
970 			delta = -delta;
971 		if (delta < min_delta) {
972 			min_delta = delta;
973 			match = i;
974 		}
975 	}
976 	return match;
977 }
978 
979 static int closest_thres(const struct sge *s, int thres)
980 {
981 	int i, delta, match = 0, min_delta = INT_MAX;
982 
983 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
984 		delta = thres - s->counter_val[i];
985 		if (delta < 0)
986 			delta = -delta;
987 		if (delta < min_delta) {
988 			min_delta = delta;
989 			match = i;
990 		}
991 	}
992 	return match;
993 }
994 
995 /**
996  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
997  *	@q: the Rx queue
998  *	@us: the hold-off time in us, or 0 to disable timer
999  *	@cnt: the hold-off packet count, or 0 to disable counter
1000  *
1001  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1002  *	one of the two needs to be enabled for the queue to generate interrupts.
1003  */
1004 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1005 			       unsigned int us, unsigned int cnt)
1006 {
1007 	struct adapter *adap = q->adap;
1008 
1009 	if ((us | cnt) == 0)
1010 		cnt = 1;
1011 
1012 	if (cnt) {
1013 		int err;
1014 		u32 v, new_idx;
1015 
1016 		new_idx = closest_thres(&adap->sge, cnt);
1017 		if (q->desc && q->pktcnt_idx != new_idx) {
1018 			/* the queue has already been created, update it */
1019 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1020 			    FW_PARAMS_PARAM_X_V(
1021 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1022 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1023 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1024 					    &v, &new_idx);
1025 			if (err)
1026 				return err;
1027 		}
1028 		q->pktcnt_idx = new_idx;
1029 	}
1030 
1031 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1032 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1033 	return 0;
1034 }
1035 
1036 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1037 {
1038 	const struct port_info *pi = netdev_priv(dev);
1039 	netdev_features_t changed = dev->features ^ features;
1040 	int err;
1041 
1042 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1043 		return 0;
1044 
1045 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1046 			    -1, -1, -1,
1047 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1048 	if (unlikely(err))
1049 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1050 	return err;
1051 }
1052 
1053 static int setup_debugfs(struct adapter *adap)
1054 {
1055 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1056 		return -1;
1057 
1058 #ifdef CONFIG_DEBUG_FS
1059 	t4_setup_debugfs(adap);
1060 #endif
1061 	return 0;
1062 }
1063 
1064 /*
1065  * upper-layer driver support
1066  */
1067 
1068 /*
1069  * Allocate an active-open TID and set it to the supplied value.
1070  */
1071 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1072 {
1073 	int atid = -1;
1074 
1075 	spin_lock_bh(&t->atid_lock);
1076 	if (t->afree) {
1077 		union aopen_entry *p = t->afree;
1078 
1079 		atid = (p - t->atid_tab) + t->atid_base;
1080 		t->afree = p->next;
1081 		p->data = data;
1082 		t->atids_in_use++;
1083 	}
1084 	spin_unlock_bh(&t->atid_lock);
1085 	return atid;
1086 }
1087 EXPORT_SYMBOL(cxgb4_alloc_atid);
1088 
1089 /*
1090  * Release an active-open TID.
1091  */
1092 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1093 {
1094 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1095 
1096 	spin_lock_bh(&t->atid_lock);
1097 	p->next = t->afree;
1098 	t->afree = p;
1099 	t->atids_in_use--;
1100 	spin_unlock_bh(&t->atid_lock);
1101 }
1102 EXPORT_SYMBOL(cxgb4_free_atid);
1103 
1104 /*
1105  * Allocate a server TID and set it to the supplied value.
1106  */
1107 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1108 {
1109 	int stid;
1110 
1111 	spin_lock_bh(&t->stid_lock);
1112 	if (family == PF_INET) {
1113 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1114 		if (stid < t->nstids)
1115 			__set_bit(stid, t->stid_bmap);
1116 		else
1117 			stid = -1;
1118 	} else {
1119 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1120 		if (stid < 0)
1121 			stid = -1;
1122 	}
1123 	if (stid >= 0) {
1124 		t->stid_tab[stid].data = data;
1125 		stid += t->stid_base;
1126 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1127 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1128 		 * needs 2 TIDs.
1129 		 */
1130 		if (family == PF_INET6) {
1131 			t->stids_in_use += 2;
1132 			t->v6_stids_in_use += 2;
1133 		} else {
1134 			t->stids_in_use++;
1135 		}
1136 	}
1137 	spin_unlock_bh(&t->stid_lock);
1138 	return stid;
1139 }
1140 EXPORT_SYMBOL(cxgb4_alloc_stid);
1141 
1142 /* Allocate a server filter TID and set it to the supplied value.
1143  */
1144 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1145 {
1146 	int stid;
1147 
1148 	spin_lock_bh(&t->stid_lock);
1149 	if (family == PF_INET) {
1150 		stid = find_next_zero_bit(t->stid_bmap,
1151 				t->nstids + t->nsftids, t->nstids);
1152 		if (stid < (t->nstids + t->nsftids))
1153 			__set_bit(stid, t->stid_bmap);
1154 		else
1155 			stid = -1;
1156 	} else {
1157 		stid = -1;
1158 	}
1159 	if (stid >= 0) {
1160 		t->stid_tab[stid].data = data;
1161 		stid -= t->nstids;
1162 		stid += t->sftid_base;
1163 		t->sftids_in_use++;
1164 	}
1165 	spin_unlock_bh(&t->stid_lock);
1166 	return stid;
1167 }
1168 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1169 
1170 /* Release a server TID.
1171  */
1172 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1173 {
1174 	/* Is it a server filter TID? */
1175 	if (t->nsftids && (stid >= t->sftid_base)) {
1176 		stid -= t->sftid_base;
1177 		stid += t->nstids;
1178 	} else {
1179 		stid -= t->stid_base;
1180 	}
1181 
1182 	spin_lock_bh(&t->stid_lock);
1183 	if (family == PF_INET)
1184 		__clear_bit(stid, t->stid_bmap);
1185 	else
1186 		bitmap_release_region(t->stid_bmap, stid, 1);
1187 	t->stid_tab[stid].data = NULL;
1188 	if (stid < t->nstids) {
1189 		if (family == PF_INET6) {
1190 			t->stids_in_use -= 2;
1191 			t->v6_stids_in_use -= 2;
1192 		} else {
1193 			t->stids_in_use--;
1194 		}
1195 	} else {
1196 		t->sftids_in_use--;
1197 	}
1198 
1199 	spin_unlock_bh(&t->stid_lock);
1200 }
1201 EXPORT_SYMBOL(cxgb4_free_stid);
1202 
1203 /*
1204  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1205  */
1206 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1207 			   unsigned int tid)
1208 {
1209 	struct cpl_tid_release *req;
1210 
1211 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1212 	req = __skb_put(skb, sizeof(*req));
1213 	INIT_TP_WR(req, tid);
1214 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1215 }
1216 
1217 /*
1218  * Queue a TID release request and if necessary schedule a work queue to
1219  * process it.
1220  */
1221 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1222 				    unsigned int tid)
1223 {
1224 	void **p = &t->tid_tab[tid];
1225 	struct adapter *adap = container_of(t, struct adapter, tids);
1226 
1227 	spin_lock_bh(&adap->tid_release_lock);
1228 	*p = adap->tid_release_head;
1229 	/* Low 2 bits encode the Tx channel number */
1230 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1231 	if (!adap->tid_release_task_busy) {
1232 		adap->tid_release_task_busy = true;
1233 		queue_work(adap->workq, &adap->tid_release_task);
1234 	}
1235 	spin_unlock_bh(&adap->tid_release_lock);
1236 }
1237 
1238 /*
1239  * Process the list of pending TID release requests.
1240  */
1241 static void process_tid_release_list(struct work_struct *work)
1242 {
1243 	struct sk_buff *skb;
1244 	struct adapter *adap;
1245 
1246 	adap = container_of(work, struct adapter, tid_release_task);
1247 
1248 	spin_lock_bh(&adap->tid_release_lock);
1249 	while (adap->tid_release_head) {
1250 		void **p = adap->tid_release_head;
1251 		unsigned int chan = (uintptr_t)p & 3;
1252 		p = (void *)p - chan;
1253 
1254 		adap->tid_release_head = *p;
1255 		*p = NULL;
1256 		spin_unlock_bh(&adap->tid_release_lock);
1257 
1258 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1259 					 GFP_KERNEL)))
1260 			schedule_timeout_uninterruptible(1);
1261 
1262 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1263 		t4_ofld_send(adap, skb);
1264 		spin_lock_bh(&adap->tid_release_lock);
1265 	}
1266 	adap->tid_release_task_busy = false;
1267 	spin_unlock_bh(&adap->tid_release_lock);
1268 }
1269 
1270 /*
1271  * Release a TID and inform HW.  If we are unable to allocate the release
1272  * message we defer to a work queue.
1273  */
1274 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1275 		      unsigned short family)
1276 {
1277 	struct sk_buff *skb;
1278 	struct adapter *adap = container_of(t, struct adapter, tids);
1279 
1280 	WARN_ON(tid >= t->ntids);
1281 
1282 	if (t->tid_tab[tid]) {
1283 		t->tid_tab[tid] = NULL;
1284 		atomic_dec(&t->conns_in_use);
1285 		if (t->hash_base && (tid >= t->hash_base)) {
1286 			if (family == AF_INET6)
1287 				atomic_sub(2, &t->hash_tids_in_use);
1288 			else
1289 				atomic_dec(&t->hash_tids_in_use);
1290 		} else {
1291 			if (family == AF_INET6)
1292 				atomic_sub(2, &t->tids_in_use);
1293 			else
1294 				atomic_dec(&t->tids_in_use);
1295 		}
1296 	}
1297 
1298 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1299 	if (likely(skb)) {
1300 		mk_tid_release(skb, chan, tid);
1301 		t4_ofld_send(adap, skb);
1302 	} else
1303 		cxgb4_queue_tid_release(t, chan, tid);
1304 }
1305 EXPORT_SYMBOL(cxgb4_remove_tid);
1306 
1307 /*
1308  * Allocate and initialize the TID tables.  Returns 0 on success.
1309  */
1310 static int tid_init(struct tid_info *t)
1311 {
1312 	struct adapter *adap = container_of(t, struct adapter, tids);
1313 	unsigned int max_ftids = t->nftids + t->nsftids;
1314 	unsigned int natids = t->natids;
1315 	unsigned int stid_bmap_size;
1316 	unsigned int ftid_bmap_size;
1317 	size_t size;
1318 
1319 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1320 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1321 	size = t->ntids * sizeof(*t->tid_tab) +
1322 	       natids * sizeof(*t->atid_tab) +
1323 	       t->nstids * sizeof(*t->stid_tab) +
1324 	       t->nsftids * sizeof(*t->stid_tab) +
1325 	       stid_bmap_size * sizeof(long) +
1326 	       max_ftids * sizeof(*t->ftid_tab) +
1327 	       ftid_bmap_size * sizeof(long);
1328 
1329 	t->tid_tab = kvzalloc(size, GFP_KERNEL);
1330 	if (!t->tid_tab)
1331 		return -ENOMEM;
1332 
1333 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1334 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1335 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1336 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1337 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1338 	spin_lock_init(&t->stid_lock);
1339 	spin_lock_init(&t->atid_lock);
1340 	spin_lock_init(&t->ftid_lock);
1341 
1342 	t->stids_in_use = 0;
1343 	t->v6_stids_in_use = 0;
1344 	t->sftids_in_use = 0;
1345 	t->afree = NULL;
1346 	t->atids_in_use = 0;
1347 	atomic_set(&t->tids_in_use, 0);
1348 	atomic_set(&t->conns_in_use, 0);
1349 	atomic_set(&t->hash_tids_in_use, 0);
1350 
1351 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1352 	if (natids) {
1353 		while (--natids)
1354 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1355 		t->afree = t->atid_tab;
1356 	}
1357 
1358 	if (is_offload(adap)) {
1359 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1360 		/* Reserve stid 0 for T4/T5 adapters */
1361 		if (!t->stid_base &&
1362 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1363 			__set_bit(0, t->stid_bmap);
1364 	}
1365 
1366 	bitmap_zero(t->ftid_bmap, t->nftids);
1367 	return 0;
1368 }
1369 
1370 /**
1371  *	cxgb4_create_server - create an IP server
1372  *	@dev: the device
1373  *	@stid: the server TID
1374  *	@sip: local IP address to bind server to
1375  *	@sport: the server's TCP port
1376  *	@queue: queue to direct messages from this server to
1377  *
1378  *	Create an IP server for the given port and address.
1379  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1380  */
1381 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1382 			__be32 sip, __be16 sport, __be16 vlan,
1383 			unsigned int queue)
1384 {
1385 	unsigned int chan;
1386 	struct sk_buff *skb;
1387 	struct adapter *adap;
1388 	struct cpl_pass_open_req *req;
1389 	int ret;
1390 
1391 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1392 	if (!skb)
1393 		return -ENOMEM;
1394 
1395 	adap = netdev2adap(dev);
1396 	req = __skb_put(skb, sizeof(*req));
1397 	INIT_TP_WR(req, 0);
1398 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1399 	req->local_port = sport;
1400 	req->peer_port = htons(0);
1401 	req->local_ip = sip;
1402 	req->peer_ip = htonl(0);
1403 	chan = rxq_to_chan(&adap->sge, queue);
1404 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1405 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1406 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1407 	ret = t4_mgmt_tx(adap, skb);
1408 	return net_xmit_eval(ret);
1409 }
1410 EXPORT_SYMBOL(cxgb4_create_server);
1411 
1412 /*	cxgb4_create_server6 - create an IPv6 server
1413  *	@dev: the device
1414  *	@stid: the server TID
1415  *	@sip: local IPv6 address to bind server to
1416  *	@sport: the server's TCP port
1417  *	@queue: queue to direct messages from this server to
1418  *
1419  *	Create an IPv6 server for the given port and address.
1420  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1421  */
1422 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1423 			 const struct in6_addr *sip, __be16 sport,
1424 			 unsigned int queue)
1425 {
1426 	unsigned int chan;
1427 	struct sk_buff *skb;
1428 	struct adapter *adap;
1429 	struct cpl_pass_open_req6 *req;
1430 	int ret;
1431 
1432 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1433 	if (!skb)
1434 		return -ENOMEM;
1435 
1436 	adap = netdev2adap(dev);
1437 	req = __skb_put(skb, sizeof(*req));
1438 	INIT_TP_WR(req, 0);
1439 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1440 	req->local_port = sport;
1441 	req->peer_port = htons(0);
1442 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1443 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1444 	req->peer_ip_hi = cpu_to_be64(0);
1445 	req->peer_ip_lo = cpu_to_be64(0);
1446 	chan = rxq_to_chan(&adap->sge, queue);
1447 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1448 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1449 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1450 	ret = t4_mgmt_tx(adap, skb);
1451 	return net_xmit_eval(ret);
1452 }
1453 EXPORT_SYMBOL(cxgb4_create_server6);
1454 
1455 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1456 			unsigned int queue, bool ipv6)
1457 {
1458 	struct sk_buff *skb;
1459 	struct adapter *adap;
1460 	struct cpl_close_listsvr_req *req;
1461 	int ret;
1462 
1463 	adap = netdev2adap(dev);
1464 
1465 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1466 	if (!skb)
1467 		return -ENOMEM;
1468 
1469 	req = __skb_put(skb, sizeof(*req));
1470 	INIT_TP_WR(req, 0);
1471 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1472 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1473 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1474 	ret = t4_mgmt_tx(adap, skb);
1475 	return net_xmit_eval(ret);
1476 }
1477 EXPORT_SYMBOL(cxgb4_remove_server);
1478 
1479 /**
1480  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1481  *	@mtus: the HW MTU table
1482  *	@mtu: the target MTU
1483  *	@idx: index of selected entry in the MTU table
1484  *
1485  *	Returns the index and the value in the HW MTU table that is closest to
1486  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1487  *	table, in which case that smallest available value is selected.
1488  */
1489 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1490 			    unsigned int *idx)
1491 {
1492 	unsigned int i = 0;
1493 
1494 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1495 		++i;
1496 	if (idx)
1497 		*idx = i;
1498 	return mtus[i];
1499 }
1500 EXPORT_SYMBOL(cxgb4_best_mtu);
1501 
1502 /**
1503  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1504  *     @mtus: the HW MTU table
1505  *     @header_size: Header Size
1506  *     @data_size_max: maximum Data Segment Size
1507  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1508  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1509  *
1510  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1511  *     MTU Table based solely on a Maximum MTU parameter, we break that
1512  *     parameter up into a Header Size and Maximum Data Segment Size, and
1513  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1514  *     the Hardware MTU Table which will result in a Data Segment Size with
1515  *     the requested alignment _and_ that MTU isn't "too far" from the
1516  *     closest MTU, then we'll return that rather than the closest MTU.
1517  */
1518 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1519 				    unsigned short header_size,
1520 				    unsigned short data_size_max,
1521 				    unsigned short data_size_align,
1522 				    unsigned int *mtu_idxp)
1523 {
1524 	unsigned short max_mtu = header_size + data_size_max;
1525 	unsigned short data_size_align_mask = data_size_align - 1;
1526 	int mtu_idx, aligned_mtu_idx;
1527 
1528 	/* Scan the MTU Table till we find an MTU which is larger than our
1529 	 * Maximum MTU or we reach the end of the table.  Along the way,
1530 	 * record the last MTU found, if any, which will result in a Data
1531 	 * Segment Length matching the requested alignment.
1532 	 */
1533 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1534 		unsigned short data_size = mtus[mtu_idx] - header_size;
1535 
1536 		/* If this MTU minus the Header Size would result in a
1537 		 * Data Segment Size of the desired alignment, remember it.
1538 		 */
1539 		if ((data_size & data_size_align_mask) == 0)
1540 			aligned_mtu_idx = mtu_idx;
1541 
1542 		/* If we're not at the end of the Hardware MTU Table and the
1543 		 * next element is larger than our Maximum MTU, drop out of
1544 		 * the loop.
1545 		 */
1546 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1547 			break;
1548 	}
1549 
1550 	/* If we fell out of the loop because we ran to the end of the table,
1551 	 * then we just have to use the last [largest] entry.
1552 	 */
1553 	if (mtu_idx == NMTUS)
1554 		mtu_idx--;
1555 
1556 	/* If we found an MTU which resulted in the requested Data Segment
1557 	 * Length alignment and that's "not far" from the largest MTU which is
1558 	 * less than or equal to the maximum MTU, then use that.
1559 	 */
1560 	if (aligned_mtu_idx >= 0 &&
1561 	    mtu_idx - aligned_mtu_idx <= 1)
1562 		mtu_idx = aligned_mtu_idx;
1563 
1564 	/* If the caller has passed in an MTU Index pointer, pass the
1565 	 * MTU Index back.  Return the MTU value.
1566 	 */
1567 	if (mtu_idxp)
1568 		*mtu_idxp = mtu_idx;
1569 	return mtus[mtu_idx];
1570 }
1571 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1572 
1573 /**
1574  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1575  *	@chip: chip type
1576  *	@viid: VI id of the given port
1577  *
1578  *	Return the SMT index for this VI.
1579  */
1580 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1581 {
1582 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1583 	 * 128 rows of 2 entries each.
1584 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1585 	 * TODO: The below code needs to be updated when we add support
1586 	 * for 256 VFs.
1587 	 */
1588 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1589 		return ((viid & 0x7f) << 1);
1590 	else
1591 		return (viid & 0x7f);
1592 }
1593 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1594 
1595 /**
1596  *	cxgb4_port_chan - get the HW channel of a port
1597  *	@dev: the net device for the port
1598  *
1599  *	Return the HW Tx channel of the given port.
1600  */
1601 unsigned int cxgb4_port_chan(const struct net_device *dev)
1602 {
1603 	return netdev2pinfo(dev)->tx_chan;
1604 }
1605 EXPORT_SYMBOL(cxgb4_port_chan);
1606 
1607 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1608 {
1609 	struct adapter *adap = netdev2adap(dev);
1610 	u32 v1, v2, lp_count, hp_count;
1611 
1612 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1613 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1614 	if (is_t4(adap->params.chip)) {
1615 		lp_count = LP_COUNT_G(v1);
1616 		hp_count = HP_COUNT_G(v1);
1617 	} else {
1618 		lp_count = LP_COUNT_T5_G(v1);
1619 		hp_count = HP_COUNT_T5_G(v2);
1620 	}
1621 	return lpfifo ? lp_count : hp_count;
1622 }
1623 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1624 
1625 /**
1626  *	cxgb4_port_viid - get the VI id of a port
1627  *	@dev: the net device for the port
1628  *
1629  *	Return the VI id of the given port.
1630  */
1631 unsigned int cxgb4_port_viid(const struct net_device *dev)
1632 {
1633 	return netdev2pinfo(dev)->viid;
1634 }
1635 EXPORT_SYMBOL(cxgb4_port_viid);
1636 
1637 /**
1638  *	cxgb4_port_idx - get the index of a port
1639  *	@dev: the net device for the port
1640  *
1641  *	Return the index of the given port.
1642  */
1643 unsigned int cxgb4_port_idx(const struct net_device *dev)
1644 {
1645 	return netdev2pinfo(dev)->port_id;
1646 }
1647 EXPORT_SYMBOL(cxgb4_port_idx);
1648 
1649 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1650 			 struct tp_tcp_stats *v6)
1651 {
1652 	struct adapter *adap = pci_get_drvdata(pdev);
1653 
1654 	spin_lock(&adap->stats_lock);
1655 	t4_tp_get_tcp_stats(adap, v4, v6, false);
1656 	spin_unlock(&adap->stats_lock);
1657 }
1658 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1659 
1660 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1661 		      const unsigned int *pgsz_order)
1662 {
1663 	struct adapter *adap = netdev2adap(dev);
1664 
1665 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1666 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1667 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1668 		     HPZ3_V(pgsz_order[3]));
1669 }
1670 EXPORT_SYMBOL(cxgb4_iscsi_init);
1671 
1672 int cxgb4_flush_eq_cache(struct net_device *dev)
1673 {
1674 	struct adapter *adap = netdev2adap(dev);
1675 
1676 	return t4_sge_ctxt_flush(adap, adap->mbox);
1677 }
1678 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1679 
1680 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1681 {
1682 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1683 	__be64 indices;
1684 	int ret;
1685 
1686 	spin_lock(&adap->win0_lock);
1687 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1688 			   sizeof(indices), (__be32 *)&indices,
1689 			   T4_MEMORY_READ);
1690 	spin_unlock(&adap->win0_lock);
1691 	if (!ret) {
1692 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1693 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1694 	}
1695 	return ret;
1696 }
1697 
1698 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1699 			u16 size)
1700 {
1701 	struct adapter *adap = netdev2adap(dev);
1702 	u16 hw_pidx, hw_cidx;
1703 	int ret;
1704 
1705 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1706 	if (ret)
1707 		goto out;
1708 
1709 	if (pidx != hw_pidx) {
1710 		u16 delta;
1711 		u32 val;
1712 
1713 		if (pidx >= hw_pidx)
1714 			delta = pidx - hw_pidx;
1715 		else
1716 			delta = size - hw_pidx + pidx;
1717 
1718 		if (is_t4(adap->params.chip))
1719 			val = PIDX_V(delta);
1720 		else
1721 			val = PIDX_T5_V(delta);
1722 		wmb();
1723 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1724 			     QID_V(qid) | val);
1725 	}
1726 out:
1727 	return ret;
1728 }
1729 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1730 
1731 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1732 {
1733 	struct adapter *adap;
1734 	u32 offset, memtype, memaddr;
1735 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1736 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1737 	int ret;
1738 
1739 	adap = netdev2adap(dev);
1740 
1741 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1742 
1743 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1744 	 * This code assumes that the memory is laid out starting at offset 0
1745 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1746 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1747 	 * MC0, and some have both MC0 and MC1.
1748 	 */
1749 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1750 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1751 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1752 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1753 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1754 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1755 
1756 	edc0_end = edc0_size;
1757 	edc1_end = edc0_end + edc1_size;
1758 	mc0_end = edc1_end + mc0_size;
1759 
1760 	if (offset < edc0_end) {
1761 		memtype = MEM_EDC0;
1762 		memaddr = offset;
1763 	} else if (offset < edc1_end) {
1764 		memtype = MEM_EDC1;
1765 		memaddr = offset - edc0_end;
1766 	} else {
1767 		if (offset < mc0_end) {
1768 			memtype = MEM_MC0;
1769 			memaddr = offset - edc1_end;
1770 		} else if (is_t5(adap->params.chip)) {
1771 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1772 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1773 			mc1_end = mc0_end + mc1_size;
1774 			if (offset < mc1_end) {
1775 				memtype = MEM_MC1;
1776 				memaddr = offset - mc0_end;
1777 			} else {
1778 				/* offset beyond the end of any memory */
1779 				goto err;
1780 			}
1781 		} else {
1782 			/* T4/T6 only has a single memory channel */
1783 			goto err;
1784 		}
1785 	}
1786 
1787 	spin_lock(&adap->win0_lock);
1788 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1789 	spin_unlock(&adap->win0_lock);
1790 	return ret;
1791 
1792 err:
1793 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1794 		stag, offset);
1795 	return -EINVAL;
1796 }
1797 EXPORT_SYMBOL(cxgb4_read_tpte);
1798 
1799 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1800 {
1801 	u32 hi, lo;
1802 	struct adapter *adap;
1803 
1804 	adap = netdev2adap(dev);
1805 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1806 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1807 
1808 	return ((u64)hi << 32) | (u64)lo;
1809 }
1810 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1811 
1812 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1813 			 unsigned int qid,
1814 			 enum cxgb4_bar2_qtype qtype,
1815 			 int user,
1816 			 u64 *pbar2_qoffset,
1817 			 unsigned int *pbar2_qid)
1818 {
1819 	return t4_bar2_sge_qregs(netdev2adap(dev),
1820 				 qid,
1821 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1822 				  ? T4_BAR2_QTYPE_EGRESS
1823 				  : T4_BAR2_QTYPE_INGRESS),
1824 				 user,
1825 				 pbar2_qoffset,
1826 				 pbar2_qid);
1827 }
1828 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1829 
1830 static struct pci_driver cxgb4_driver;
1831 
1832 static void check_neigh_update(struct neighbour *neigh)
1833 {
1834 	const struct device *parent;
1835 	const struct net_device *netdev = neigh->dev;
1836 
1837 	if (is_vlan_dev(netdev))
1838 		netdev = vlan_dev_real_dev(netdev);
1839 	parent = netdev->dev.parent;
1840 	if (parent && parent->driver == &cxgb4_driver.driver)
1841 		t4_l2t_update(dev_get_drvdata(parent), neigh);
1842 }
1843 
1844 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1845 		       void *data)
1846 {
1847 	switch (event) {
1848 	case NETEVENT_NEIGH_UPDATE:
1849 		check_neigh_update(data);
1850 		break;
1851 	case NETEVENT_REDIRECT:
1852 	default:
1853 		break;
1854 	}
1855 	return 0;
1856 }
1857 
1858 static bool netevent_registered;
1859 static struct notifier_block cxgb4_netevent_nb = {
1860 	.notifier_call = netevent_cb
1861 };
1862 
1863 static void drain_db_fifo(struct adapter *adap, int usecs)
1864 {
1865 	u32 v1, v2, lp_count, hp_count;
1866 
1867 	do {
1868 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1869 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1870 		if (is_t4(adap->params.chip)) {
1871 			lp_count = LP_COUNT_G(v1);
1872 			hp_count = HP_COUNT_G(v1);
1873 		} else {
1874 			lp_count = LP_COUNT_T5_G(v1);
1875 			hp_count = HP_COUNT_T5_G(v2);
1876 		}
1877 
1878 		if (lp_count == 0 && hp_count == 0)
1879 			break;
1880 		set_current_state(TASK_UNINTERRUPTIBLE);
1881 		schedule_timeout(usecs_to_jiffies(usecs));
1882 	} while (1);
1883 }
1884 
1885 static void disable_txq_db(struct sge_txq *q)
1886 {
1887 	unsigned long flags;
1888 
1889 	spin_lock_irqsave(&q->db_lock, flags);
1890 	q->db_disabled = 1;
1891 	spin_unlock_irqrestore(&q->db_lock, flags);
1892 }
1893 
1894 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1895 {
1896 	spin_lock_irq(&q->db_lock);
1897 	if (q->db_pidx_inc) {
1898 		/* Make sure that all writes to the TX descriptors
1899 		 * are committed before we tell HW about them.
1900 		 */
1901 		wmb();
1902 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1903 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1904 		q->db_pidx_inc = 0;
1905 	}
1906 	q->db_disabled = 0;
1907 	spin_unlock_irq(&q->db_lock);
1908 }
1909 
1910 static void disable_dbs(struct adapter *adap)
1911 {
1912 	int i;
1913 
1914 	for_each_ethrxq(&adap->sge, i)
1915 		disable_txq_db(&adap->sge.ethtxq[i].q);
1916 	if (is_offload(adap)) {
1917 		struct sge_uld_txq_info *txq_info =
1918 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1919 
1920 		if (txq_info) {
1921 			for_each_ofldtxq(&adap->sge, i) {
1922 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1923 
1924 				disable_txq_db(&txq->q);
1925 			}
1926 		}
1927 	}
1928 	for_each_port(adap, i)
1929 		disable_txq_db(&adap->sge.ctrlq[i].q);
1930 }
1931 
1932 static void enable_dbs(struct adapter *adap)
1933 {
1934 	int i;
1935 
1936 	for_each_ethrxq(&adap->sge, i)
1937 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1938 	if (is_offload(adap)) {
1939 		struct sge_uld_txq_info *txq_info =
1940 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1941 
1942 		if (txq_info) {
1943 			for_each_ofldtxq(&adap->sge, i) {
1944 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1945 
1946 				enable_txq_db(adap, &txq->q);
1947 			}
1948 		}
1949 	}
1950 	for_each_port(adap, i)
1951 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1952 }
1953 
1954 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1955 {
1956 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
1957 
1958 	if (adap->uld && adap->uld[type].handle)
1959 		adap->uld[type].control(adap->uld[type].handle, cmd);
1960 }
1961 
1962 static void process_db_full(struct work_struct *work)
1963 {
1964 	struct adapter *adap;
1965 
1966 	adap = container_of(work, struct adapter, db_full_task);
1967 
1968 	drain_db_fifo(adap, dbfifo_drain_delay);
1969 	enable_dbs(adap);
1970 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1971 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1972 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1973 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1974 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1975 	else
1976 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1977 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1978 }
1979 
1980 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1981 {
1982 	u16 hw_pidx, hw_cidx;
1983 	int ret;
1984 
1985 	spin_lock_irq(&q->db_lock);
1986 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1987 	if (ret)
1988 		goto out;
1989 	if (q->db_pidx != hw_pidx) {
1990 		u16 delta;
1991 		u32 val;
1992 
1993 		if (q->db_pidx >= hw_pidx)
1994 			delta = q->db_pidx - hw_pidx;
1995 		else
1996 			delta = q->size - hw_pidx + q->db_pidx;
1997 
1998 		if (is_t4(adap->params.chip))
1999 			val = PIDX_V(delta);
2000 		else
2001 			val = PIDX_T5_V(delta);
2002 		wmb();
2003 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2004 			     QID_V(q->cntxt_id) | val);
2005 	}
2006 out:
2007 	q->db_disabled = 0;
2008 	q->db_pidx_inc = 0;
2009 	spin_unlock_irq(&q->db_lock);
2010 	if (ret)
2011 		CH_WARN(adap, "DB drop recovery failed.\n");
2012 }
2013 
2014 static void recover_all_queues(struct adapter *adap)
2015 {
2016 	int i;
2017 
2018 	for_each_ethrxq(&adap->sge, i)
2019 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2020 	if (is_offload(adap)) {
2021 		struct sge_uld_txq_info *txq_info =
2022 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2023 		if (txq_info) {
2024 			for_each_ofldtxq(&adap->sge, i) {
2025 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2026 
2027 				sync_txq_pidx(adap, &txq->q);
2028 			}
2029 		}
2030 	}
2031 	for_each_port(adap, i)
2032 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2033 }
2034 
2035 static void process_db_drop(struct work_struct *work)
2036 {
2037 	struct adapter *adap;
2038 
2039 	adap = container_of(work, struct adapter, db_drop_task);
2040 
2041 	if (is_t4(adap->params.chip)) {
2042 		drain_db_fifo(adap, dbfifo_drain_delay);
2043 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2044 		drain_db_fifo(adap, dbfifo_drain_delay);
2045 		recover_all_queues(adap);
2046 		drain_db_fifo(adap, dbfifo_drain_delay);
2047 		enable_dbs(adap);
2048 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2049 	} else if (is_t5(adap->params.chip)) {
2050 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2051 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2052 		u16 pidx_inc = dropped_db & 0x1fff;
2053 		u64 bar2_qoffset;
2054 		unsigned int bar2_qid;
2055 		int ret;
2056 
2057 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2058 					0, &bar2_qoffset, &bar2_qid);
2059 		if (ret)
2060 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2061 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2062 		else
2063 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2064 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2065 
2066 		/* Re-enable BAR2 WC */
2067 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2068 	}
2069 
2070 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2071 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2072 }
2073 
2074 void t4_db_full(struct adapter *adap)
2075 {
2076 	if (is_t4(adap->params.chip)) {
2077 		disable_dbs(adap);
2078 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2079 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2080 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2081 		queue_work(adap->workq, &adap->db_full_task);
2082 	}
2083 }
2084 
2085 void t4_db_dropped(struct adapter *adap)
2086 {
2087 	if (is_t4(adap->params.chip)) {
2088 		disable_dbs(adap);
2089 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2090 	}
2091 	queue_work(adap->workq, &adap->db_drop_task);
2092 }
2093 
2094 void t4_register_netevent_notifier(void)
2095 {
2096 	if (!netevent_registered) {
2097 		register_netevent_notifier(&cxgb4_netevent_nb);
2098 		netevent_registered = true;
2099 	}
2100 }
2101 
2102 static void detach_ulds(struct adapter *adap)
2103 {
2104 	unsigned int i;
2105 
2106 	mutex_lock(&uld_mutex);
2107 	list_del(&adap->list_node);
2108 
2109 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2110 		if (adap->uld && adap->uld[i].handle)
2111 			adap->uld[i].state_change(adap->uld[i].handle,
2112 					     CXGB4_STATE_DETACH);
2113 
2114 	if (netevent_registered && list_empty(&adapter_list)) {
2115 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2116 		netevent_registered = false;
2117 	}
2118 	mutex_unlock(&uld_mutex);
2119 }
2120 
2121 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2122 {
2123 	unsigned int i;
2124 
2125 	mutex_lock(&uld_mutex);
2126 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2127 		if (adap->uld && adap->uld[i].handle)
2128 			adap->uld[i].state_change(adap->uld[i].handle,
2129 						  new_state);
2130 	mutex_unlock(&uld_mutex);
2131 }
2132 
2133 #if IS_ENABLED(CONFIG_IPV6)
2134 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2135 				   unsigned long event, void *data)
2136 {
2137 	struct inet6_ifaddr *ifa = data;
2138 	struct net_device *event_dev = ifa->idev->dev;
2139 	const struct device *parent = NULL;
2140 #if IS_ENABLED(CONFIG_BONDING)
2141 	struct adapter *adap;
2142 #endif
2143 	if (is_vlan_dev(event_dev))
2144 		event_dev = vlan_dev_real_dev(event_dev);
2145 #if IS_ENABLED(CONFIG_BONDING)
2146 	if (event_dev->flags & IFF_MASTER) {
2147 		list_for_each_entry(adap, &adapter_list, list_node) {
2148 			switch (event) {
2149 			case NETDEV_UP:
2150 				cxgb4_clip_get(adap->port[0],
2151 					       (const u32 *)ifa, 1);
2152 				break;
2153 			case NETDEV_DOWN:
2154 				cxgb4_clip_release(adap->port[0],
2155 						   (const u32 *)ifa, 1);
2156 				break;
2157 			default:
2158 				break;
2159 			}
2160 		}
2161 		return NOTIFY_OK;
2162 	}
2163 #endif
2164 
2165 	if (event_dev)
2166 		parent = event_dev->dev.parent;
2167 
2168 	if (parent && parent->driver == &cxgb4_driver.driver) {
2169 		switch (event) {
2170 		case NETDEV_UP:
2171 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2172 			break;
2173 		case NETDEV_DOWN:
2174 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2175 			break;
2176 		default:
2177 			break;
2178 		}
2179 	}
2180 	return NOTIFY_OK;
2181 }
2182 
2183 static bool inet6addr_registered;
2184 static struct notifier_block cxgb4_inet6addr_notifier = {
2185 	.notifier_call = cxgb4_inet6addr_handler
2186 };
2187 
2188 static void update_clip(const struct adapter *adap)
2189 {
2190 	int i;
2191 	struct net_device *dev;
2192 	int ret;
2193 
2194 	rcu_read_lock();
2195 
2196 	for (i = 0; i < MAX_NPORTS; i++) {
2197 		dev = adap->port[i];
2198 		ret = 0;
2199 
2200 		if (dev)
2201 			ret = cxgb4_update_root_dev_clip(dev);
2202 
2203 		if (ret < 0)
2204 			break;
2205 	}
2206 	rcu_read_unlock();
2207 }
2208 #endif /* IS_ENABLED(CONFIG_IPV6) */
2209 
2210 /**
2211  *	cxgb_up - enable the adapter
2212  *	@adap: adapter being enabled
2213  *
2214  *	Called when the first port is enabled, this function performs the
2215  *	actions necessary to make an adapter operational, such as completing
2216  *	the initialization of HW modules, and enabling interrupts.
2217  *
2218  *	Must be called with the rtnl lock held.
2219  */
2220 static int cxgb_up(struct adapter *adap)
2221 {
2222 	int err;
2223 
2224 	mutex_lock(&uld_mutex);
2225 	err = setup_sge_queues(adap);
2226 	if (err)
2227 		goto rel_lock;
2228 	err = setup_rss(adap);
2229 	if (err)
2230 		goto freeq;
2231 
2232 	if (adap->flags & USING_MSIX) {
2233 		name_msix_vecs(adap);
2234 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2235 				  adap->msix_info[0].desc, adap);
2236 		if (err)
2237 			goto irq_err;
2238 		err = request_msix_queue_irqs(adap);
2239 		if (err) {
2240 			free_irq(adap->msix_info[0].vec, adap);
2241 			goto irq_err;
2242 		}
2243 	} else {
2244 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2245 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2246 				  adap->port[0]->name, adap);
2247 		if (err)
2248 			goto irq_err;
2249 	}
2250 
2251 	enable_rx(adap);
2252 	t4_sge_start(adap);
2253 	t4_intr_enable(adap);
2254 	adap->flags |= FULL_INIT_DONE;
2255 	mutex_unlock(&uld_mutex);
2256 
2257 	notify_ulds(adap, CXGB4_STATE_UP);
2258 #if IS_ENABLED(CONFIG_IPV6)
2259 	update_clip(adap);
2260 #endif
2261 	/* Initialize hash mac addr list*/
2262 	INIT_LIST_HEAD(&adap->mac_hlist);
2263 	return err;
2264 
2265  irq_err:
2266 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2267  freeq:
2268 	t4_free_sge_resources(adap);
2269  rel_lock:
2270 	mutex_unlock(&uld_mutex);
2271 	return err;
2272 }
2273 
2274 static void cxgb_down(struct adapter *adapter)
2275 {
2276 	cancel_work_sync(&adapter->tid_release_task);
2277 	cancel_work_sync(&adapter->db_full_task);
2278 	cancel_work_sync(&adapter->db_drop_task);
2279 	adapter->tid_release_task_busy = false;
2280 	adapter->tid_release_head = NULL;
2281 
2282 	t4_sge_stop(adapter);
2283 	t4_free_sge_resources(adapter);
2284 	adapter->flags &= ~FULL_INIT_DONE;
2285 }
2286 
2287 /*
2288  * net_device operations
2289  */
2290 static int cxgb_open(struct net_device *dev)
2291 {
2292 	int err;
2293 	struct port_info *pi = netdev_priv(dev);
2294 	struct adapter *adapter = pi->adapter;
2295 
2296 	netif_carrier_off(dev);
2297 
2298 	if (!(adapter->flags & FULL_INIT_DONE)) {
2299 		err = cxgb_up(adapter);
2300 		if (err < 0)
2301 			return err;
2302 	}
2303 
2304 	/* It's possible that the basic port information could have
2305 	 * changed since we first read it.
2306 	 */
2307 	err = t4_update_port_info(pi);
2308 	if (err < 0)
2309 		return err;
2310 
2311 	err = link_start(dev);
2312 	if (!err)
2313 		netif_tx_start_all_queues(dev);
2314 	return err;
2315 }
2316 
2317 static int cxgb_close(struct net_device *dev)
2318 {
2319 	struct port_info *pi = netdev_priv(dev);
2320 	struct adapter *adapter = pi->adapter;
2321 	int ret;
2322 
2323 	netif_tx_stop_all_queues(dev);
2324 	netif_carrier_off(dev);
2325 	ret = t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2326 #ifdef CONFIG_CHELSIO_T4_DCB
2327 	cxgb4_dcb_reset(dev);
2328 	dcb_tx_queue_prio_enable(dev, false);
2329 #endif
2330 	return ret;
2331 }
2332 
2333 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2334 		__be32 sip, __be16 sport, __be16 vlan,
2335 		unsigned int queue, unsigned char port, unsigned char mask)
2336 {
2337 	int ret;
2338 	struct filter_entry *f;
2339 	struct adapter *adap;
2340 	int i;
2341 	u8 *val;
2342 
2343 	adap = netdev2adap(dev);
2344 
2345 	/* Adjust stid to correct filter index */
2346 	stid -= adap->tids.sftid_base;
2347 	stid += adap->tids.nftids;
2348 
2349 	/* Check to make sure the filter requested is writable ...
2350 	 */
2351 	f = &adap->tids.ftid_tab[stid];
2352 	ret = writable_filter(f);
2353 	if (ret)
2354 		return ret;
2355 
2356 	/* Clear out any old resources being used by the filter before
2357 	 * we start constructing the new filter.
2358 	 */
2359 	if (f->valid)
2360 		clear_filter(adap, f);
2361 
2362 	/* Clear out filter specifications */
2363 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2364 	f->fs.val.lport = cpu_to_be16(sport);
2365 	f->fs.mask.lport  = ~0;
2366 	val = (u8 *)&sip;
2367 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2368 		for (i = 0; i < 4; i++) {
2369 			f->fs.val.lip[i] = val[i];
2370 			f->fs.mask.lip[i] = ~0;
2371 		}
2372 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2373 			f->fs.val.iport = port;
2374 			f->fs.mask.iport = mask;
2375 		}
2376 	}
2377 
2378 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2379 		f->fs.val.proto = IPPROTO_TCP;
2380 		f->fs.mask.proto = ~0;
2381 	}
2382 
2383 	f->fs.dirsteer = 1;
2384 	f->fs.iq = queue;
2385 	/* Mark filter as locked */
2386 	f->locked = 1;
2387 	f->fs.rpttid = 1;
2388 
2389 	/* Save the actual tid. We need this to get the corresponding
2390 	 * filter entry structure in filter_rpl.
2391 	 */
2392 	f->tid = stid + adap->tids.ftid_base;
2393 	ret = set_filter_wr(adap, stid);
2394 	if (ret) {
2395 		clear_filter(adap, f);
2396 		return ret;
2397 	}
2398 
2399 	return 0;
2400 }
2401 EXPORT_SYMBOL(cxgb4_create_server_filter);
2402 
2403 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2404 		unsigned int queue, bool ipv6)
2405 {
2406 	struct filter_entry *f;
2407 	struct adapter *adap;
2408 
2409 	adap = netdev2adap(dev);
2410 
2411 	/* Adjust stid to correct filter index */
2412 	stid -= adap->tids.sftid_base;
2413 	stid += adap->tids.nftids;
2414 
2415 	f = &adap->tids.ftid_tab[stid];
2416 	/* Unlock the filter */
2417 	f->locked = 0;
2418 
2419 	return delete_filter(adap, stid);
2420 }
2421 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2422 
2423 static void cxgb_get_stats(struct net_device *dev,
2424 			   struct rtnl_link_stats64 *ns)
2425 {
2426 	struct port_stats stats;
2427 	struct port_info *p = netdev_priv(dev);
2428 	struct adapter *adapter = p->adapter;
2429 
2430 	/* Block retrieving statistics during EEH error
2431 	 * recovery. Otherwise, the recovery might fail
2432 	 * and the PCI device will be removed permanently
2433 	 */
2434 	spin_lock(&adapter->stats_lock);
2435 	if (!netif_device_present(dev)) {
2436 		spin_unlock(&adapter->stats_lock);
2437 		return;
2438 	}
2439 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2440 				 &p->stats_base);
2441 	spin_unlock(&adapter->stats_lock);
2442 
2443 	ns->tx_bytes   = stats.tx_octets;
2444 	ns->tx_packets = stats.tx_frames;
2445 	ns->rx_bytes   = stats.rx_octets;
2446 	ns->rx_packets = stats.rx_frames;
2447 	ns->multicast  = stats.rx_mcast_frames;
2448 
2449 	/* detailed rx_errors */
2450 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2451 			       stats.rx_runt;
2452 	ns->rx_over_errors   = 0;
2453 	ns->rx_crc_errors    = stats.rx_fcs_err;
2454 	ns->rx_frame_errors  = stats.rx_symbol_err;
2455 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2456 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2457 			       stats.rx_trunc0 + stats.rx_trunc1 +
2458 			       stats.rx_trunc2 + stats.rx_trunc3;
2459 	ns->rx_missed_errors = 0;
2460 
2461 	/* detailed tx_errors */
2462 	ns->tx_aborted_errors   = 0;
2463 	ns->tx_carrier_errors   = 0;
2464 	ns->tx_fifo_errors      = 0;
2465 	ns->tx_heartbeat_errors = 0;
2466 	ns->tx_window_errors    = 0;
2467 
2468 	ns->tx_errors = stats.tx_error_frames;
2469 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2470 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2471 }
2472 
2473 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2474 {
2475 	unsigned int mbox;
2476 	int ret = 0, prtad, devad;
2477 	struct port_info *pi = netdev_priv(dev);
2478 	struct adapter *adapter = pi->adapter;
2479 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2480 
2481 	switch (cmd) {
2482 	case SIOCGMIIPHY:
2483 		if (pi->mdio_addr < 0)
2484 			return -EOPNOTSUPP;
2485 		data->phy_id = pi->mdio_addr;
2486 		break;
2487 	case SIOCGMIIREG:
2488 	case SIOCSMIIREG:
2489 		if (mdio_phy_id_is_c45(data->phy_id)) {
2490 			prtad = mdio_phy_id_prtad(data->phy_id);
2491 			devad = mdio_phy_id_devad(data->phy_id);
2492 		} else if (data->phy_id < 32) {
2493 			prtad = data->phy_id;
2494 			devad = 0;
2495 			data->reg_num &= 0x1f;
2496 		} else
2497 			return -EINVAL;
2498 
2499 		mbox = pi->adapter->pf;
2500 		if (cmd == SIOCGMIIREG)
2501 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2502 					 data->reg_num, &data->val_out);
2503 		else
2504 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2505 					 data->reg_num, data->val_in);
2506 		break;
2507 	case SIOCGHWTSTAMP:
2508 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2509 				    sizeof(pi->tstamp_config)) ?
2510 			-EFAULT : 0;
2511 	case SIOCSHWTSTAMP:
2512 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2513 				   sizeof(pi->tstamp_config)))
2514 			return -EFAULT;
2515 
2516 		if (!is_t4(adapter->params.chip)) {
2517 			switch (pi->tstamp_config.tx_type) {
2518 			case HWTSTAMP_TX_OFF:
2519 			case HWTSTAMP_TX_ON:
2520 				break;
2521 			default:
2522 				return -ERANGE;
2523 			}
2524 
2525 			switch (pi->tstamp_config.rx_filter) {
2526 			case HWTSTAMP_FILTER_NONE:
2527 				pi->rxtstamp = false;
2528 				break;
2529 			case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2530 			case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2531 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2532 							 PTP_TS_L4);
2533 				break;
2534 			case HWTSTAMP_FILTER_PTP_V2_EVENT:
2535 				cxgb4_ptprx_timestamping(pi, pi->port_id,
2536 							 PTP_TS_L2_L4);
2537 				break;
2538 			case HWTSTAMP_FILTER_ALL:
2539 			case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2540 			case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2541 			case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2542 			case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2543 				pi->rxtstamp = true;
2544 				break;
2545 			default:
2546 				pi->tstamp_config.rx_filter =
2547 					HWTSTAMP_FILTER_NONE;
2548 				return -ERANGE;
2549 			}
2550 
2551 			if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2552 			    (pi->tstamp_config.rx_filter ==
2553 				HWTSTAMP_FILTER_NONE)) {
2554 				if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2555 					pi->ptp_enable = false;
2556 			}
2557 
2558 			if (pi->tstamp_config.rx_filter !=
2559 				HWTSTAMP_FILTER_NONE) {
2560 				if (cxgb4_ptp_redirect_rx_packet(adapter,
2561 								 pi) >= 0)
2562 					pi->ptp_enable = true;
2563 			}
2564 		} else {
2565 			/* For T4 Adapters */
2566 			switch (pi->tstamp_config.rx_filter) {
2567 			case HWTSTAMP_FILTER_NONE:
2568 			pi->rxtstamp = false;
2569 			break;
2570 			case HWTSTAMP_FILTER_ALL:
2571 			pi->rxtstamp = true;
2572 			break;
2573 			default:
2574 			pi->tstamp_config.rx_filter =
2575 			HWTSTAMP_FILTER_NONE;
2576 			return -ERANGE;
2577 			}
2578 		}
2579 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2580 				    sizeof(pi->tstamp_config)) ?
2581 			-EFAULT : 0;
2582 	default:
2583 		return -EOPNOTSUPP;
2584 	}
2585 	return ret;
2586 }
2587 
2588 static void cxgb_set_rxmode(struct net_device *dev)
2589 {
2590 	/* unfortunately we can't return errors to the stack */
2591 	set_rxmode(dev, -1, false);
2592 }
2593 
2594 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2595 {
2596 	int ret;
2597 	struct port_info *pi = netdev_priv(dev);
2598 
2599 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2600 			    -1, -1, -1, true);
2601 	if (!ret)
2602 		dev->mtu = new_mtu;
2603 	return ret;
2604 }
2605 
2606 #ifdef CONFIG_PCI_IOV
2607 static int dummy_open(struct net_device *dev)
2608 {
2609 	/* Turn carrier off since we don't have to transmit anything on this
2610 	 * interface.
2611 	 */
2612 	netif_carrier_off(dev);
2613 	return 0;
2614 }
2615 
2616 /* Fill MAC address that will be assigned by the FW */
2617 static void fill_vf_station_mac_addr(struct adapter *adap)
2618 {
2619 	unsigned int i;
2620 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2621 	int err;
2622 	u8 *na;
2623 	u16 a, b;
2624 
2625 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2626 	if (!err) {
2627 		na = adap->params.vpd.na;
2628 		for (i = 0; i < ETH_ALEN; i++)
2629 			hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2630 				      hex2val(na[2 * i + 1]));
2631 		a = (hw_addr[0] << 8) | hw_addr[1];
2632 		b = (hw_addr[1] << 8) | hw_addr[2];
2633 		a ^= b;
2634 		a |= 0x0200;    /* locally assigned Ethernet MAC address */
2635 		a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2636 		macaddr[0] = a >> 8;
2637 		macaddr[1] = a & 0xff;
2638 
2639 		for (i = 2; i < 5; i++)
2640 			macaddr[i] = hw_addr[i + 1];
2641 
2642 		for (i = 0; i < adap->num_vfs; i++) {
2643 			macaddr[5] = adap->pf * 16 + i;
2644 			ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2645 		}
2646 	}
2647 }
2648 
2649 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2650 {
2651 	struct port_info *pi = netdev_priv(dev);
2652 	struct adapter *adap = pi->adapter;
2653 	int ret;
2654 
2655 	/* verify MAC addr is valid */
2656 	if (!is_valid_ether_addr(mac)) {
2657 		dev_err(pi->adapter->pdev_dev,
2658 			"Invalid Ethernet address %pM for VF %d\n",
2659 			mac, vf);
2660 		return -EINVAL;
2661 	}
2662 
2663 	dev_info(pi->adapter->pdev_dev,
2664 		 "Setting MAC %pM on VF %d\n", mac, vf);
2665 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2666 	if (!ret)
2667 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2668 	return ret;
2669 }
2670 
2671 static int cxgb_get_vf_config(struct net_device *dev,
2672 			      int vf, struct ifla_vf_info *ivi)
2673 {
2674 	struct port_info *pi = netdev_priv(dev);
2675 	struct adapter *adap = pi->adapter;
2676 
2677 	if (vf >= adap->num_vfs)
2678 		return -EINVAL;
2679 	ivi->vf = vf;
2680 	ivi->max_tx_rate = adap->vfinfo[vf].tx_rate;
2681 	ivi->min_tx_rate = 0;
2682 	ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2683 	return 0;
2684 }
2685 
2686 static int cxgb_get_phys_port_id(struct net_device *dev,
2687 				 struct netdev_phys_item_id *ppid)
2688 {
2689 	struct port_info *pi = netdev_priv(dev);
2690 	unsigned int phy_port_id;
2691 
2692 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2693 	ppid->id_len = sizeof(phy_port_id);
2694 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
2695 	return 0;
2696 }
2697 
2698 static int cxgb_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate,
2699 			    int max_tx_rate)
2700 {
2701 	struct port_info *pi = netdev_priv(dev);
2702 	struct adapter *adap = pi->adapter;
2703 	unsigned int link_ok, speed, mtu;
2704 	u32 fw_pfvf, fw_class;
2705 	int class_id = vf;
2706 	int ret;
2707 	u16 pktsize;
2708 
2709 	if (vf >= adap->num_vfs)
2710 		return -EINVAL;
2711 
2712 	if (min_tx_rate) {
2713 		dev_err(adap->pdev_dev,
2714 			"Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2715 			min_tx_rate, vf);
2716 		return -EINVAL;
2717 	}
2718 
2719 	ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2720 	if (ret != FW_SUCCESS) {
2721 		dev_err(adap->pdev_dev,
2722 			"Failed to get link information for VF %d\n", vf);
2723 		return -EINVAL;
2724 	}
2725 
2726 	if (!link_ok) {
2727 		dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2728 		return -EINVAL;
2729 	}
2730 
2731 	if (max_tx_rate > speed) {
2732 		dev_err(adap->pdev_dev,
2733 			"Max tx rate %d for VF %d can't be > link-speed %u",
2734 			max_tx_rate, vf, speed);
2735 		return -EINVAL;
2736 	}
2737 
2738 	pktsize = mtu;
2739 	/* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2740 	pktsize = pktsize - sizeof(struct ethhdr) - 4;
2741 	/* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2742 	pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2743 	/* configure Traffic Class for rate-limiting */
2744 	ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2745 			      SCHED_CLASS_LEVEL_CL_RL,
2746 			      SCHED_CLASS_MODE_CLASS,
2747 			      SCHED_CLASS_RATEUNIT_BITS,
2748 			      SCHED_CLASS_RATEMODE_ABS,
2749 			      pi->tx_chan, class_id, 0,
2750 			      max_tx_rate * 1000, 0, pktsize);
2751 	if (ret) {
2752 		dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2753 			ret);
2754 		return -EINVAL;
2755 	}
2756 	dev_info(adap->pdev_dev,
2757 		 "Class %d with MSS %u configured with rate %u\n",
2758 		 class_id, pktsize, max_tx_rate);
2759 
2760 	/* bind VF to configured Traffic Class */
2761 	fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2762 		   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2763 	fw_class = class_id;
2764 	ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2765 			    &fw_class);
2766 	if (ret) {
2767 		dev_err(adap->pdev_dev,
2768 			"Err %d in binding VF %d to Traffic Class %d\n",
2769 			ret, vf, class_id);
2770 		return -EINVAL;
2771 	}
2772 	dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2773 		 adap->pf, vf, class_id);
2774 	adap->vfinfo[vf].tx_rate = max_tx_rate;
2775 	return 0;
2776 }
2777 
2778 #endif
2779 
2780 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2781 {
2782 	int ret;
2783 	struct sockaddr *addr = p;
2784 	struct port_info *pi = netdev_priv(dev);
2785 
2786 	if (!is_valid_ether_addr(addr->sa_data))
2787 		return -EADDRNOTAVAIL;
2788 
2789 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2790 			    pi->xact_addr_filt, addr->sa_data, true, true);
2791 	if (ret < 0)
2792 		return ret;
2793 
2794 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2795 	pi->xact_addr_filt = ret;
2796 	return 0;
2797 }
2798 
2799 #ifdef CONFIG_NET_POLL_CONTROLLER
2800 static void cxgb_netpoll(struct net_device *dev)
2801 {
2802 	struct port_info *pi = netdev_priv(dev);
2803 	struct adapter *adap = pi->adapter;
2804 
2805 	if (adap->flags & USING_MSIX) {
2806 		int i;
2807 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2808 
2809 		for (i = pi->nqsets; i; i--, rx++)
2810 			t4_sge_intr_msix(0, &rx->rspq);
2811 	} else
2812 		t4_intr_handler(adap)(0, adap);
2813 }
2814 #endif
2815 
2816 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2817 {
2818 	struct port_info *pi = netdev_priv(dev);
2819 	struct adapter *adap = pi->adapter;
2820 	struct sched_class *e;
2821 	struct ch_sched_params p;
2822 	struct ch_sched_queue qe;
2823 	u32 req_rate;
2824 	int err = 0;
2825 
2826 	if (!can_sched(dev))
2827 		return -ENOTSUPP;
2828 
2829 	if (index < 0 || index > pi->nqsets - 1)
2830 		return -EINVAL;
2831 
2832 	if (!(adap->flags & FULL_INIT_DONE)) {
2833 		dev_err(adap->pdev_dev,
2834 			"Failed to rate limit on queue %d. Link Down?\n",
2835 			index);
2836 		return -EINVAL;
2837 	}
2838 
2839 	/* Convert from Mbps to Kbps */
2840 	req_rate = rate << 10;
2841 
2842 	/* Max rate is 10 Gbps */
2843 	if (req_rate >= SCHED_MAX_RATE_KBPS) {
2844 		dev_err(adap->pdev_dev,
2845 			"Invalid rate %u Mbps, Max rate is %u Gbps\n",
2846 			rate, SCHED_MAX_RATE_KBPS);
2847 		return -ERANGE;
2848 	}
2849 
2850 	/* First unbind the queue from any existing class */
2851 	memset(&qe, 0, sizeof(qe));
2852 	qe.queue = index;
2853 	qe.class = SCHED_CLS_NONE;
2854 
2855 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2856 	if (err) {
2857 		dev_err(adap->pdev_dev,
2858 			"Unbinding Queue %d on port %d fail. Err: %d\n",
2859 			index, pi->port_id, err);
2860 		return err;
2861 	}
2862 
2863 	/* Queue already unbound */
2864 	if (!req_rate)
2865 		return 0;
2866 
2867 	/* Fetch any available unused or matching scheduling class */
2868 	memset(&p, 0, sizeof(p));
2869 	p.type = SCHED_CLASS_TYPE_PACKET;
2870 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2871 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2872 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2873 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2874 	p.u.params.channel  = pi->tx_chan;
2875 	p.u.params.class    = SCHED_CLS_NONE;
2876 	p.u.params.minrate  = 0;
2877 	p.u.params.maxrate  = req_rate;
2878 	p.u.params.weight   = 0;
2879 	p.u.params.pktsize  = dev->mtu;
2880 
2881 	e = cxgb4_sched_class_alloc(dev, &p);
2882 	if (!e)
2883 		return -ENOMEM;
2884 
2885 	/* Bind the queue to a scheduling class */
2886 	memset(&qe, 0, sizeof(qe));
2887 	qe.queue = index;
2888 	qe.class = e->idx;
2889 
2890 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2891 	if (err)
2892 		dev_err(adap->pdev_dev,
2893 			"Queue rate limiting failed. Err: %d\n", err);
2894 	return err;
2895 }
2896 
2897 static int cxgb_setup_tc_flower(struct net_device *dev,
2898 				struct tc_cls_flower_offload *cls_flower)
2899 {
2900 	if (cls_flower->common.chain_index)
2901 		return -EOPNOTSUPP;
2902 
2903 	switch (cls_flower->command) {
2904 	case TC_CLSFLOWER_REPLACE:
2905 		return cxgb4_tc_flower_replace(dev, cls_flower);
2906 	case TC_CLSFLOWER_DESTROY:
2907 		return cxgb4_tc_flower_destroy(dev, cls_flower);
2908 	case TC_CLSFLOWER_STATS:
2909 		return cxgb4_tc_flower_stats(dev, cls_flower);
2910 	default:
2911 		return -EOPNOTSUPP;
2912 	}
2913 }
2914 
2915 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
2916 				 struct tc_cls_u32_offload *cls_u32)
2917 {
2918 	if (cls_u32->common.chain_index)
2919 		return -EOPNOTSUPP;
2920 
2921 	switch (cls_u32->command) {
2922 	case TC_CLSU32_NEW_KNODE:
2923 	case TC_CLSU32_REPLACE_KNODE:
2924 		return cxgb4_config_knode(dev, cls_u32);
2925 	case TC_CLSU32_DELETE_KNODE:
2926 		return cxgb4_delete_knode(dev, cls_u32);
2927 	default:
2928 		return -EOPNOTSUPP;
2929 	}
2930 }
2931 
2932 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2933 				  void *cb_priv)
2934 {
2935 	struct net_device *dev = cb_priv;
2936 	struct port_info *pi = netdev2pinfo(dev);
2937 	struct adapter *adap = netdev2adap(dev);
2938 
2939 	if (!(adap->flags & FULL_INIT_DONE)) {
2940 		dev_err(adap->pdev_dev,
2941 			"Failed to setup tc on port %d. Link Down?\n",
2942 			pi->port_id);
2943 		return -EINVAL;
2944 	}
2945 
2946 	if (!tc_can_offload(dev))
2947 		return -EOPNOTSUPP;
2948 
2949 	switch (type) {
2950 	case TC_SETUP_CLSU32:
2951 		return cxgb_setup_tc_cls_u32(dev, type_data);
2952 	case TC_SETUP_CLSFLOWER:
2953 		return cxgb_setup_tc_flower(dev, type_data);
2954 	default:
2955 		return -EOPNOTSUPP;
2956 	}
2957 }
2958 
2959 static int cxgb_setup_tc_block(struct net_device *dev,
2960 			       struct tc_block_offload *f)
2961 {
2962 	struct port_info *pi = netdev2pinfo(dev);
2963 
2964 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
2965 		return -EOPNOTSUPP;
2966 
2967 	switch (f->command) {
2968 	case TC_BLOCK_BIND:
2969 		return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb,
2970 					     pi, dev);
2971 	case TC_BLOCK_UNBIND:
2972 		tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi);
2973 		return 0;
2974 	default:
2975 		return -EOPNOTSUPP;
2976 	}
2977 }
2978 
2979 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2980 			 void *type_data)
2981 {
2982 	switch (type) {
2983 	case TC_SETUP_BLOCK:
2984 		return cxgb_setup_tc_block(dev, type_data);
2985 	default:
2986 		return -EOPNOTSUPP;
2987 	}
2988 }
2989 
2990 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2991 					   netdev_features_t features)
2992 {
2993 	/* Disable GRO, if RX_CSUM is disabled */
2994 	if (!(features & NETIF_F_RXCSUM))
2995 		features &= ~NETIF_F_GRO;
2996 
2997 	return features;
2998 }
2999 
3000 static const struct net_device_ops cxgb4_netdev_ops = {
3001 	.ndo_open             = cxgb_open,
3002 	.ndo_stop             = cxgb_close,
3003 	.ndo_start_xmit       = t4_eth_xmit,
3004 	.ndo_select_queue     =	cxgb_select_queue,
3005 	.ndo_get_stats64      = cxgb_get_stats,
3006 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3007 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3008 	.ndo_set_features     = cxgb_set_features,
3009 	.ndo_validate_addr    = eth_validate_addr,
3010 	.ndo_do_ioctl         = cxgb_ioctl,
3011 	.ndo_change_mtu       = cxgb_change_mtu,
3012 #ifdef CONFIG_NET_POLL_CONTROLLER
3013 	.ndo_poll_controller  = cxgb_netpoll,
3014 #endif
3015 #ifdef CONFIG_CHELSIO_T4_FCOE
3016 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3017 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3018 #endif /* CONFIG_CHELSIO_T4_FCOE */
3019 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
3020 	.ndo_setup_tc         = cxgb_setup_tc,
3021 	.ndo_fix_features     = cxgb_fix_features,
3022 };
3023 
3024 #ifdef CONFIG_PCI_IOV
3025 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3026 	.ndo_open             = dummy_open,
3027 	.ndo_set_vf_mac       = cxgb_set_vf_mac,
3028 	.ndo_get_vf_config    = cxgb_get_vf_config,
3029 	.ndo_set_vf_rate      = cxgb_set_vf_rate,
3030 	.ndo_get_phys_port_id = cxgb_get_phys_port_id,
3031 };
3032 #endif
3033 
3034 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3035 {
3036 	struct adapter *adapter = netdev2adap(dev);
3037 
3038 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3039 	strlcpy(info->version, cxgb4_driver_version,
3040 		sizeof(info->version));
3041 	strlcpy(info->bus_info, pci_name(adapter->pdev),
3042 		sizeof(info->bus_info));
3043 }
3044 
3045 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3046 	.get_drvinfo       = get_drvinfo,
3047 };
3048 
3049 void t4_fatal_err(struct adapter *adap)
3050 {
3051 	int port;
3052 
3053 	if (pci_channel_offline(adap->pdev))
3054 		return;
3055 
3056 	/* Disable the SGE since ULDs are going to free resources that
3057 	 * could be exposed to the adapter.  RDMA MWs for example...
3058 	 */
3059 	t4_shutdown_adapter(adap);
3060 	for_each_port(adap, port) {
3061 		struct net_device *dev = adap->port[port];
3062 
3063 		/* If we get here in very early initialization the network
3064 		 * devices may not have been set up yet.
3065 		 */
3066 		if (!dev)
3067 			continue;
3068 
3069 		netif_tx_stop_all_queues(dev);
3070 		netif_carrier_off(dev);
3071 	}
3072 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3073 }
3074 
3075 static void setup_memwin(struct adapter *adap)
3076 {
3077 	u32 nic_win_base = t4_get_util_window(adap);
3078 
3079 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3080 }
3081 
3082 static void setup_memwin_rdma(struct adapter *adap)
3083 {
3084 	if (adap->vres.ocq.size) {
3085 		u32 start;
3086 		unsigned int sz_kb;
3087 
3088 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3089 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3090 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3091 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3092 		t4_write_reg(adap,
3093 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3094 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3095 		t4_write_reg(adap,
3096 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3097 			     adap->vres.ocq.start);
3098 		t4_read_reg(adap,
3099 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3100 	}
3101 }
3102 
3103 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3104 {
3105 	u32 v;
3106 	int ret;
3107 
3108 	/* get device capabilities */
3109 	memset(c, 0, sizeof(*c));
3110 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3111 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3112 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3113 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3114 	if (ret < 0)
3115 		return ret;
3116 
3117 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3118 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3119 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3120 	if (ret < 0)
3121 		return ret;
3122 
3123 	ret = t4_config_glbl_rss(adap, adap->pf,
3124 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3125 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3126 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3127 	if (ret < 0)
3128 		return ret;
3129 
3130 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3131 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3132 			  FW_CMD_CAP_PF);
3133 	if (ret < 0)
3134 		return ret;
3135 
3136 	t4_sge_init(adap);
3137 
3138 	/* tweak some settings */
3139 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3140 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3141 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3142 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3143 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3144 
3145 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3146 	adap->params.tp.tx_modq_map = 0xE4;
3147 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3148 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3149 
3150 	/* associate each Tx modulation queue with consecutive Tx channels */
3151 	v = 0x84218421;
3152 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3153 			  &v, 1, TP_TX_SCHED_HDR_A);
3154 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3155 			  &v, 1, TP_TX_SCHED_FIFO_A);
3156 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3157 			  &v, 1, TP_TX_SCHED_PCMD_A);
3158 
3159 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3160 	if (is_offload(adap)) {
3161 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3162 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3163 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3164 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3165 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3166 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3167 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3168 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3169 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3170 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3171 	}
3172 
3173 	/* get basic stuff going */
3174 	return t4_early_init(adap, adap->pf);
3175 }
3176 
3177 /*
3178  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3179  */
3180 #define MAX_ATIDS 8192U
3181 
3182 /*
3183  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3184  *
3185  * If the firmware we're dealing with has Configuration File support, then
3186  * we use that to perform all configuration
3187  */
3188 
3189 /*
3190  * Tweak configuration based on module parameters, etc.  Most of these have
3191  * defaults assigned to them by Firmware Configuration Files (if we're using
3192  * them) but need to be explicitly set if we're using hard-coded
3193  * initialization.  But even in the case of using Firmware Configuration
3194  * Files, we'd like to expose the ability to change these via module
3195  * parameters so these are essentially common tweaks/settings for
3196  * Configuration Files and hard-coded initialization ...
3197  */
3198 static int adap_init0_tweaks(struct adapter *adapter)
3199 {
3200 	/*
3201 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3202 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3203 	 * 64B Cache Line Size ...
3204 	 */
3205 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3206 
3207 	/*
3208 	 * Process module parameters which affect early initialization.
3209 	 */
3210 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3211 		dev_err(&adapter->pdev->dev,
3212 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3213 			rx_dma_offset);
3214 		rx_dma_offset = 2;
3215 	}
3216 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3217 			 PKTSHIFT_V(PKTSHIFT_M),
3218 			 PKTSHIFT_V(rx_dma_offset));
3219 
3220 	/*
3221 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3222 	 * adds the pseudo header itself.
3223 	 */
3224 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3225 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3226 
3227 	return 0;
3228 }
3229 
3230 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3231  * unto themselves and they contain their own firmware to perform their
3232  * tasks ...
3233  */
3234 static int phy_aq1202_version(const u8 *phy_fw_data,
3235 			      size_t phy_fw_size)
3236 {
3237 	int offset;
3238 
3239 	/* At offset 0x8 you're looking for the primary image's
3240 	 * starting offset which is 3 Bytes wide
3241 	 *
3242 	 * At offset 0xa of the primary image, you look for the offset
3243 	 * of the DRAM segment which is 3 Bytes wide.
3244 	 *
3245 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3246 	 * wide
3247 	 */
3248 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
3249 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3250 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
3251 
3252 	offset = le24(phy_fw_data + 0x8) << 12;
3253 	offset = le24(phy_fw_data + offset + 0xa);
3254 	return be16(phy_fw_data + offset + 0x27e);
3255 
3256 	#undef be16
3257 	#undef le16
3258 	#undef le24
3259 }
3260 
3261 static struct info_10gbt_phy_fw {
3262 	unsigned int phy_fw_id;		/* PCI Device ID */
3263 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
3264 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3265 	int phy_flash;			/* Has FLASH for PHY Firmware */
3266 } phy_info_array[] = {
3267 	{
3268 		PHY_AQ1202_DEVICEID,
3269 		PHY_AQ1202_FIRMWARE,
3270 		phy_aq1202_version,
3271 		1,
3272 	},
3273 	{
3274 		PHY_BCM84834_DEVICEID,
3275 		PHY_BCM84834_FIRMWARE,
3276 		NULL,
3277 		0,
3278 	},
3279 	{ 0, NULL, NULL },
3280 };
3281 
3282 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3283 {
3284 	int i;
3285 
3286 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3287 		if (phy_info_array[i].phy_fw_id == devid)
3288 			return &phy_info_array[i];
3289 	}
3290 	return NULL;
3291 }
3292 
3293 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3294  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3295  * we return a negative error number.  If we transfer new firmware we return 1
3296  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3297  */
3298 static int adap_init0_phy(struct adapter *adap)
3299 {
3300 	const struct firmware *phyf;
3301 	int ret;
3302 	struct info_10gbt_phy_fw *phy_info;
3303 
3304 	/* Use the device ID to determine which PHY file to flash.
3305 	 */
3306 	phy_info = find_phy_info(adap->pdev->device);
3307 	if (!phy_info) {
3308 		dev_warn(adap->pdev_dev,
3309 			 "No PHY Firmware file found for this PHY\n");
3310 		return -EOPNOTSUPP;
3311 	}
3312 
3313 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3314 	 * use that. The adapter firmware provides us with a memory buffer
3315 	 * where we can load a PHY firmware file from the host if we want to
3316 	 * override the PHY firmware File in flash.
3317 	 */
3318 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3319 				      adap->pdev_dev);
3320 	if (ret < 0) {
3321 		/* For adapters without FLASH attached to PHY for their
3322 		 * firmware, it's obviously a fatal error if we can't get the
3323 		 * firmware to the adapter.  For adapters with PHY firmware
3324 		 * FLASH storage, it's worth a warning if we can't find the
3325 		 * PHY Firmware but we'll neuter the error ...
3326 		 */
3327 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3328 			"/lib/firmware/%s, error %d\n",
3329 			phy_info->phy_fw_file, -ret);
3330 		if (phy_info->phy_flash) {
3331 			int cur_phy_fw_ver = 0;
3332 
3333 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3334 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3335 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3336 			ret = 0;
3337 		}
3338 
3339 		return ret;
3340 	}
3341 
3342 	/* Load PHY Firmware onto adapter.
3343 	 */
3344 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3345 			     phy_info->phy_fw_version,
3346 			     (u8 *)phyf->data, phyf->size);
3347 	if (ret < 0)
3348 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3349 			-ret);
3350 	else if (ret > 0) {
3351 		int new_phy_fw_ver = 0;
3352 
3353 		if (phy_info->phy_fw_version)
3354 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3355 								  phyf->size);
3356 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3357 			 "Firmware /lib/firmware/%s, version %#x\n",
3358 			 phy_info->phy_fw_file, new_phy_fw_ver);
3359 	}
3360 
3361 	release_firmware(phyf);
3362 
3363 	return ret;
3364 }
3365 
3366 /*
3367  * Attempt to initialize the adapter via a Firmware Configuration File.
3368  */
3369 static int adap_init0_config(struct adapter *adapter, int reset)
3370 {
3371 	struct fw_caps_config_cmd caps_cmd;
3372 	const struct firmware *cf;
3373 	unsigned long mtype = 0, maddr = 0;
3374 	u32 finiver, finicsum, cfcsum;
3375 	int ret;
3376 	int config_issued = 0;
3377 	char *fw_config_file, fw_config_file_path[256];
3378 	char *config_name = NULL;
3379 
3380 	/*
3381 	 * Reset device if necessary.
3382 	 */
3383 	if (reset) {
3384 		ret = t4_fw_reset(adapter, adapter->mbox,
3385 				  PIORSTMODE_F | PIORST_F);
3386 		if (ret < 0)
3387 			goto bye;
3388 	}
3389 
3390 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3391 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3392 	 * to be performed after any global adapter RESET above since some
3393 	 * PHYs only have local RAM copies of the PHY firmware.
3394 	 */
3395 	if (is_10gbt_device(adapter->pdev->device)) {
3396 		ret = adap_init0_phy(adapter);
3397 		if (ret < 0)
3398 			goto bye;
3399 	}
3400 	/*
3401 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3402 	 * then use that.  Otherwise, use the configuration file stored
3403 	 * in the adapter flash ...
3404 	 */
3405 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3406 	case CHELSIO_T4:
3407 		fw_config_file = FW4_CFNAME;
3408 		break;
3409 	case CHELSIO_T5:
3410 		fw_config_file = FW5_CFNAME;
3411 		break;
3412 	case CHELSIO_T6:
3413 		fw_config_file = FW6_CFNAME;
3414 		break;
3415 	default:
3416 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3417 		       adapter->pdev->device);
3418 		ret = -EINVAL;
3419 		goto bye;
3420 	}
3421 
3422 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3423 	if (ret < 0) {
3424 		config_name = "On FLASH";
3425 		mtype = FW_MEMTYPE_CF_FLASH;
3426 		maddr = t4_flash_cfg_addr(adapter);
3427 	} else {
3428 		u32 params[7], val[7];
3429 
3430 		sprintf(fw_config_file_path,
3431 			"/lib/firmware/%s", fw_config_file);
3432 		config_name = fw_config_file_path;
3433 
3434 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3435 			ret = -ENOMEM;
3436 		else {
3437 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3438 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3439 			ret = t4_query_params(adapter, adapter->mbox,
3440 					      adapter->pf, 0, 1, params, val);
3441 			if (ret == 0) {
3442 				/*
3443 				 * For t4_memory_rw() below addresses and
3444 				 * sizes have to be in terms of multiples of 4
3445 				 * bytes.  So, if the Configuration File isn't
3446 				 * a multiple of 4 bytes in length we'll have
3447 				 * to write that out separately since we can't
3448 				 * guarantee that the bytes following the
3449 				 * residual byte in the buffer returned by
3450 				 * request_firmware() are zeroed out ...
3451 				 */
3452 				size_t resid = cf->size & 0x3;
3453 				size_t size = cf->size & ~0x3;
3454 				__be32 *data = (__be32 *)cf->data;
3455 
3456 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3457 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3458 
3459 				spin_lock(&adapter->win0_lock);
3460 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3461 						   size, data, T4_MEMORY_WRITE);
3462 				if (ret == 0 && resid != 0) {
3463 					union {
3464 						__be32 word;
3465 						char buf[4];
3466 					} last;
3467 					int i;
3468 
3469 					last.word = data[size >> 2];
3470 					for (i = resid; i < 4; i++)
3471 						last.buf[i] = 0;
3472 					ret = t4_memory_rw(adapter, 0, mtype,
3473 							   maddr + size,
3474 							   4, &last.word,
3475 							   T4_MEMORY_WRITE);
3476 				}
3477 				spin_unlock(&adapter->win0_lock);
3478 			}
3479 		}
3480 
3481 		release_firmware(cf);
3482 		if (ret)
3483 			goto bye;
3484 	}
3485 
3486 	/*
3487 	 * Issue a Capability Configuration command to the firmware to get it
3488 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3489 	 * because we want the ability to modify various features after we've
3490 	 * processed the configuration file ...
3491 	 */
3492 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3493 	caps_cmd.op_to_write =
3494 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3495 		      FW_CMD_REQUEST_F |
3496 		      FW_CMD_READ_F);
3497 	caps_cmd.cfvalid_to_len16 =
3498 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3499 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3500 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3501 		      FW_LEN16(caps_cmd));
3502 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3503 			 &caps_cmd);
3504 
3505 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3506 	 * Configuration File in FLASH), our last gasp effort is to use the
3507 	 * Firmware Configuration File which is embedded in the firmware.  A
3508 	 * very few early versions of the firmware didn't have one embedded
3509 	 * but we can ignore those.
3510 	 */
3511 	if (ret == -ENOENT) {
3512 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3513 		caps_cmd.op_to_write =
3514 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3515 					FW_CMD_REQUEST_F |
3516 					FW_CMD_READ_F);
3517 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3518 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3519 				sizeof(caps_cmd), &caps_cmd);
3520 		config_name = "Firmware Default";
3521 	}
3522 
3523 	config_issued = 1;
3524 	if (ret < 0)
3525 		goto bye;
3526 
3527 	finiver = ntohl(caps_cmd.finiver);
3528 	finicsum = ntohl(caps_cmd.finicsum);
3529 	cfcsum = ntohl(caps_cmd.cfcsum);
3530 	if (finicsum != cfcsum)
3531 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3532 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3533 			 finicsum, cfcsum);
3534 
3535 	/*
3536 	 * And now tell the firmware to use the configuration we just loaded.
3537 	 */
3538 	caps_cmd.op_to_write =
3539 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3540 		      FW_CMD_REQUEST_F |
3541 		      FW_CMD_WRITE_F);
3542 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3543 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3544 			 NULL);
3545 	if (ret < 0)
3546 		goto bye;
3547 
3548 	/*
3549 	 * Tweak configuration based on system architecture, module
3550 	 * parameters, etc.
3551 	 */
3552 	ret = adap_init0_tweaks(adapter);
3553 	if (ret < 0)
3554 		goto bye;
3555 
3556 	/*
3557 	 * And finally tell the firmware to initialize itself using the
3558 	 * parameters from the Configuration File.
3559 	 */
3560 	ret = t4_fw_initialize(adapter, adapter->mbox);
3561 	if (ret < 0)
3562 		goto bye;
3563 
3564 	/* Emit Firmware Configuration File information and return
3565 	 * successfully.
3566 	 */
3567 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3568 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3569 		 config_name, finiver, cfcsum);
3570 	return 0;
3571 
3572 	/*
3573 	 * Something bad happened.  Return the error ...  (If the "error"
3574 	 * is that there's no Configuration File on the adapter we don't
3575 	 * want to issue a warning since this is fairly common.)
3576 	 */
3577 bye:
3578 	if (config_issued && ret != -ENOENT)
3579 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3580 			 config_name, -ret);
3581 	return ret;
3582 }
3583 
3584 static struct fw_info fw_info_array[] = {
3585 	{
3586 		.chip = CHELSIO_T4,
3587 		.fs_name = FW4_CFNAME,
3588 		.fw_mod_name = FW4_FNAME,
3589 		.fw_hdr = {
3590 			.chip = FW_HDR_CHIP_T4,
3591 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3592 			.intfver_nic = FW_INTFVER(T4, NIC),
3593 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3594 			.intfver_ri = FW_INTFVER(T4, RI),
3595 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3596 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3597 		},
3598 	}, {
3599 		.chip = CHELSIO_T5,
3600 		.fs_name = FW5_CFNAME,
3601 		.fw_mod_name = FW5_FNAME,
3602 		.fw_hdr = {
3603 			.chip = FW_HDR_CHIP_T5,
3604 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3605 			.intfver_nic = FW_INTFVER(T5, NIC),
3606 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3607 			.intfver_ri = FW_INTFVER(T5, RI),
3608 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3609 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3610 		},
3611 	}, {
3612 		.chip = CHELSIO_T6,
3613 		.fs_name = FW6_CFNAME,
3614 		.fw_mod_name = FW6_FNAME,
3615 		.fw_hdr = {
3616 			.chip = FW_HDR_CHIP_T6,
3617 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3618 			.intfver_nic = FW_INTFVER(T6, NIC),
3619 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3620 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3621 			.intfver_ri = FW_INTFVER(T6, RI),
3622 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3623 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3624 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3625 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3626 		},
3627 	}
3628 
3629 };
3630 
3631 static struct fw_info *find_fw_info(int chip)
3632 {
3633 	int i;
3634 
3635 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3636 		if (fw_info_array[i].chip == chip)
3637 			return &fw_info_array[i];
3638 	}
3639 	return NULL;
3640 }
3641 
3642 /*
3643  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3644  */
3645 static int adap_init0(struct adapter *adap)
3646 {
3647 	int ret;
3648 	u32 v, port_vec;
3649 	enum dev_state state;
3650 	u32 params[7], val[7];
3651 	struct fw_caps_config_cmd caps_cmd;
3652 	int reset = 1;
3653 
3654 	/* Grab Firmware Device Log parameters as early as possible so we have
3655 	 * access to it for debugging, etc.
3656 	 */
3657 	ret = t4_init_devlog_params(adap);
3658 	if (ret < 0)
3659 		return ret;
3660 
3661 	/* Contact FW, advertising Master capability */
3662 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3663 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3664 	if (ret < 0) {
3665 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3666 			ret);
3667 		return ret;
3668 	}
3669 	if (ret == adap->mbox)
3670 		adap->flags |= MASTER_PF;
3671 
3672 	/*
3673 	 * If we're the Master PF Driver and the device is uninitialized,
3674 	 * then let's consider upgrading the firmware ...  (We always want
3675 	 * to check the firmware version number in order to A. get it for
3676 	 * later reporting and B. to warn if the currently loaded firmware
3677 	 * is excessively mismatched relative to the driver.)
3678 	 */
3679 
3680 	t4_get_version_info(adap);
3681 	ret = t4_check_fw_version(adap);
3682 	/* If firmware is too old (not supported by driver) force an update. */
3683 	if (ret)
3684 		state = DEV_STATE_UNINIT;
3685 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3686 		struct fw_info *fw_info;
3687 		struct fw_hdr *card_fw;
3688 		const struct firmware *fw;
3689 		const u8 *fw_data = NULL;
3690 		unsigned int fw_size = 0;
3691 
3692 		/* This is the firmware whose headers the driver was compiled
3693 		 * against
3694 		 */
3695 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3696 		if (fw_info == NULL) {
3697 			dev_err(adap->pdev_dev,
3698 				"unable to get firmware info for chip %d.\n",
3699 				CHELSIO_CHIP_VERSION(adap->params.chip));
3700 			return -EINVAL;
3701 		}
3702 
3703 		/* allocate memory to read the header of the firmware on the
3704 		 * card
3705 		 */
3706 		card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
3707 
3708 		/* Get FW from from /lib/firmware/ */
3709 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3710 				       adap->pdev_dev);
3711 		if (ret < 0) {
3712 			dev_err(adap->pdev_dev,
3713 				"unable to load firmware image %s, error %d\n",
3714 				fw_info->fw_mod_name, ret);
3715 		} else {
3716 			fw_data = fw->data;
3717 			fw_size = fw->size;
3718 		}
3719 
3720 		/* upgrade FW logic */
3721 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3722 				 state, &reset);
3723 
3724 		/* Cleaning up */
3725 		release_firmware(fw);
3726 		kvfree(card_fw);
3727 
3728 		if (ret < 0)
3729 			goto bye;
3730 	}
3731 
3732 	/*
3733 	 * Grab VPD parameters.  This should be done after we establish a
3734 	 * connection to the firmware since some of the VPD parameters
3735 	 * (notably the Core Clock frequency) are retrieved via requests to
3736 	 * the firmware.  On the other hand, we need these fairly early on
3737 	 * so we do this right after getting ahold of the firmware.
3738 	 */
3739 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3740 	if (ret < 0)
3741 		goto bye;
3742 
3743 	/*
3744 	 * Find out what ports are available to us.  Note that we need to do
3745 	 * this before calling adap_init0_no_config() since it needs nports
3746 	 * and portvec ...
3747 	 */
3748 	v =
3749 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3750 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3751 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3752 	if (ret < 0)
3753 		goto bye;
3754 
3755 	adap->params.nports = hweight32(port_vec);
3756 	adap->params.portvec = port_vec;
3757 
3758 	/* If the firmware is initialized already, emit a simply note to that
3759 	 * effect. Otherwise, it's time to try initializing the adapter.
3760 	 */
3761 	if (state == DEV_STATE_INIT) {
3762 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3763 			 "Adapter already initialized\n",
3764 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3765 	} else {
3766 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3767 			 "Initializing adapter\n");
3768 
3769 		/* Find out whether we're dealing with a version of the
3770 		 * firmware which has configuration file support.
3771 		 */
3772 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3773 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3774 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3775 				      params, val);
3776 
3777 		/* If the firmware doesn't support Configuration Files,
3778 		 * return an error.
3779 		 */
3780 		if (ret < 0) {
3781 			dev_err(adap->pdev_dev, "firmware doesn't support "
3782 				"Firmware Configuration Files\n");
3783 			goto bye;
3784 		}
3785 
3786 		/* The firmware provides us with a memory buffer where we can
3787 		 * load a Configuration File from the host if we want to
3788 		 * override the Configuration File in flash.
3789 		 */
3790 		ret = adap_init0_config(adap, reset);
3791 		if (ret == -ENOENT) {
3792 			dev_err(adap->pdev_dev, "no Configuration File "
3793 				"present on adapter.\n");
3794 			goto bye;
3795 		}
3796 		if (ret < 0) {
3797 			dev_err(adap->pdev_dev, "could not initialize "
3798 				"adapter, error %d\n", -ret);
3799 			goto bye;
3800 		}
3801 	}
3802 
3803 	/* Give the SGE code a chance to pull in anything that it needs ...
3804 	 * Note that this must be called after we retrieve our VPD parameters
3805 	 * in order to know how to convert core ticks to seconds, etc.
3806 	 */
3807 	ret = t4_sge_init(adap);
3808 	if (ret < 0)
3809 		goto bye;
3810 
3811 	if (is_bypass_device(adap->pdev->device))
3812 		adap->params.bypass = 1;
3813 
3814 	/*
3815 	 * Grab some of our basic fundamental operating parameters.
3816 	 */
3817 #define FW_PARAM_DEV(param) \
3818 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3819 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3820 
3821 #define FW_PARAM_PFVF(param) \
3822 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3823 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3824 	FW_PARAMS_PARAM_Y_V(0) | \
3825 	FW_PARAMS_PARAM_Z_V(0)
3826 
3827 	params[0] = FW_PARAM_PFVF(EQ_START);
3828 	params[1] = FW_PARAM_PFVF(L2T_START);
3829 	params[2] = FW_PARAM_PFVF(L2T_END);
3830 	params[3] = FW_PARAM_PFVF(FILTER_START);
3831 	params[4] = FW_PARAM_PFVF(FILTER_END);
3832 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3833 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3834 	if (ret < 0)
3835 		goto bye;
3836 	adap->sge.egr_start = val[0];
3837 	adap->l2t_start = val[1];
3838 	adap->l2t_end = val[2];
3839 	adap->tids.ftid_base = val[3];
3840 	adap->tids.nftids = val[4] - val[3] + 1;
3841 	adap->sge.ingr_start = val[5];
3842 
3843 	/* qids (ingress/egress) returned from firmware can be anywhere
3844 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3845 	 * Hence driver needs to allocate memory for this range to
3846 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3847 	 * in FW_EQ_*_CMD.alloc command.
3848 	 */
3849 	params[0] = FW_PARAM_PFVF(EQ_END);
3850 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3851 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3852 	if (ret < 0)
3853 		goto bye;
3854 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3855 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3856 
3857 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3858 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3859 	if (!adap->sge.egr_map) {
3860 		ret = -ENOMEM;
3861 		goto bye;
3862 	}
3863 
3864 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3865 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3866 	if (!adap->sge.ingr_map) {
3867 		ret = -ENOMEM;
3868 		goto bye;
3869 	}
3870 
3871 	/* Allocate the memory for the vaious egress queue bitmaps
3872 	 * ie starving_fl, txq_maperr and blocked_fl.
3873 	 */
3874 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3875 					sizeof(long), GFP_KERNEL);
3876 	if (!adap->sge.starving_fl) {
3877 		ret = -ENOMEM;
3878 		goto bye;
3879 	}
3880 
3881 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3882 				       sizeof(long), GFP_KERNEL);
3883 	if (!adap->sge.txq_maperr) {
3884 		ret = -ENOMEM;
3885 		goto bye;
3886 	}
3887 
3888 #ifdef CONFIG_DEBUG_FS
3889 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3890 				       sizeof(long), GFP_KERNEL);
3891 	if (!adap->sge.blocked_fl) {
3892 		ret = -ENOMEM;
3893 		goto bye;
3894 	}
3895 #endif
3896 
3897 	params[0] = FW_PARAM_PFVF(CLIP_START);
3898 	params[1] = FW_PARAM_PFVF(CLIP_END);
3899 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3900 	if (ret < 0)
3901 		goto bye;
3902 	adap->clipt_start = val[0];
3903 	adap->clipt_end = val[1];
3904 
3905 	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
3906 	 * Classes supported by the hardware/firmware so we hard code it here
3907 	 * for now.
3908 	 */
3909 	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3910 
3911 	/* query params related to active filter region */
3912 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3913 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3914 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3915 	/* If Active filter size is set we enable establishing
3916 	 * offload connection through firmware work request
3917 	 */
3918 	if ((val[0] != val[1]) && (ret >= 0)) {
3919 		adap->flags |= FW_OFLD_CONN;
3920 		adap->tids.aftid_base = val[0];
3921 		adap->tids.aftid_end = val[1];
3922 	}
3923 
3924 	/* If we're running on newer firmware, let it know that we're
3925 	 * prepared to deal with encapsulated CPL messages.  Older
3926 	 * firmware won't understand this and we'll just get
3927 	 * unencapsulated messages ...
3928 	 */
3929 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3930 	val[0] = 1;
3931 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3932 
3933 	/*
3934 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3935 	 * capability.  Earlier versions of the firmware didn't have the
3936 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3937 	 * permission to use ULPTX MEMWRITE DSGL.
3938 	 */
3939 	if (is_t4(adap->params.chip)) {
3940 		adap->params.ulptx_memwrite_dsgl = false;
3941 	} else {
3942 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3943 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3944 				      1, params, val);
3945 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3946 	}
3947 
3948 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
3949 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
3950 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3951 			      1, params, val);
3952 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
3953 
3954 	/* See if FW supports FW_FILTER2 work request */
3955 	if (is_t4(adap->params.chip)) {
3956 		adap->params.filter2_wr_support = 0;
3957 	} else {
3958 		params[0] = FW_PARAM_DEV(FILTER2_WR);
3959 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3960 				      1, params, val);
3961 		adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
3962 	}
3963 
3964 	/*
3965 	 * Get device capabilities so we can determine what resources we need
3966 	 * to manage.
3967 	 */
3968 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3969 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3970 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3971 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3972 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3973 			 &caps_cmd);
3974 	if (ret < 0)
3975 		goto bye;
3976 
3977 	if (caps_cmd.ofldcaps ||
3978 	    (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
3979 		/* query offload-related parameters */
3980 		params[0] = FW_PARAM_DEV(NTID);
3981 		params[1] = FW_PARAM_PFVF(SERVER_START);
3982 		params[2] = FW_PARAM_PFVF(SERVER_END);
3983 		params[3] = FW_PARAM_PFVF(TDDP_START);
3984 		params[4] = FW_PARAM_PFVF(TDDP_END);
3985 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3986 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3987 				      params, val);
3988 		if (ret < 0)
3989 			goto bye;
3990 		adap->tids.ntids = val[0];
3991 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3992 		adap->tids.stid_base = val[1];
3993 		adap->tids.nstids = val[2] - val[1] + 1;
3994 		/*
3995 		 * Setup server filter region. Divide the available filter
3996 		 * region into two parts. Regular filters get 1/3rd and server
3997 		 * filters get 2/3rd part. This is only enabled if workarond
3998 		 * path is enabled.
3999 		 * 1. For regular filters.
4000 		 * 2. Server filter: This are special filters which are used
4001 		 * to redirect SYN packets to offload queue.
4002 		 */
4003 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4004 			adap->tids.sftid_base = adap->tids.ftid_base +
4005 					DIV_ROUND_UP(adap->tids.nftids, 3);
4006 			adap->tids.nsftids = adap->tids.nftids -
4007 					 DIV_ROUND_UP(adap->tids.nftids, 3);
4008 			adap->tids.nftids = adap->tids.sftid_base -
4009 						adap->tids.ftid_base;
4010 		}
4011 		adap->vres.ddp.start = val[3];
4012 		adap->vres.ddp.size = val[4] - val[3] + 1;
4013 		adap->params.ofldq_wr_cred = val[5];
4014 
4015 		if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4016 			if (init_hash_filter(adap) < 0)
4017 				goto bye;
4018 		} else {
4019 			adap->params.offload = 1;
4020 			adap->num_ofld_uld += 1;
4021 		}
4022 	}
4023 	if (caps_cmd.rdmacaps) {
4024 		params[0] = FW_PARAM_PFVF(STAG_START);
4025 		params[1] = FW_PARAM_PFVF(STAG_END);
4026 		params[2] = FW_PARAM_PFVF(RQ_START);
4027 		params[3] = FW_PARAM_PFVF(RQ_END);
4028 		params[4] = FW_PARAM_PFVF(PBL_START);
4029 		params[5] = FW_PARAM_PFVF(PBL_END);
4030 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4031 				      params, val);
4032 		if (ret < 0)
4033 			goto bye;
4034 		adap->vres.stag.start = val[0];
4035 		adap->vres.stag.size = val[1] - val[0] + 1;
4036 		adap->vres.rq.start = val[2];
4037 		adap->vres.rq.size = val[3] - val[2] + 1;
4038 		adap->vres.pbl.start = val[4];
4039 		adap->vres.pbl.size = val[5] - val[4] + 1;
4040 
4041 		params[0] = FW_PARAM_PFVF(SQRQ_START);
4042 		params[1] = FW_PARAM_PFVF(SQRQ_END);
4043 		params[2] = FW_PARAM_PFVF(CQ_START);
4044 		params[3] = FW_PARAM_PFVF(CQ_END);
4045 		params[4] = FW_PARAM_PFVF(OCQ_START);
4046 		params[5] = FW_PARAM_PFVF(OCQ_END);
4047 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4048 				      val);
4049 		if (ret < 0)
4050 			goto bye;
4051 		adap->vres.qp.start = val[0];
4052 		adap->vres.qp.size = val[1] - val[0] + 1;
4053 		adap->vres.cq.start = val[2];
4054 		adap->vres.cq.size = val[3] - val[2] + 1;
4055 		adap->vres.ocq.start = val[4];
4056 		adap->vres.ocq.size = val[5] - val[4] + 1;
4057 
4058 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4059 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4060 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4061 				      val);
4062 		if (ret < 0) {
4063 			adap->params.max_ordird_qp = 8;
4064 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4065 			ret = 0;
4066 		} else {
4067 			adap->params.max_ordird_qp = val[0];
4068 			adap->params.max_ird_adapter = val[1];
4069 		}
4070 		dev_info(adap->pdev_dev,
4071 			 "max_ordird_qp %d max_ird_adapter %d\n",
4072 			 adap->params.max_ordird_qp,
4073 			 adap->params.max_ird_adapter);
4074 		adap->num_ofld_uld += 2;
4075 	}
4076 	if (caps_cmd.iscsicaps) {
4077 		params[0] = FW_PARAM_PFVF(ISCSI_START);
4078 		params[1] = FW_PARAM_PFVF(ISCSI_END);
4079 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4080 				      params, val);
4081 		if (ret < 0)
4082 			goto bye;
4083 		adap->vres.iscsi.start = val[0];
4084 		adap->vres.iscsi.size = val[1] - val[0] + 1;
4085 		/* LIO target and cxgb4i initiaitor */
4086 		adap->num_ofld_uld += 2;
4087 	}
4088 	if (caps_cmd.cryptocaps) {
4089 		/* Should query params here...TODO */
4090 		params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4091 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4092 				      params, val);
4093 		if (ret < 0) {
4094 			if (ret != -EINVAL)
4095 				goto bye;
4096 		} else {
4097 			adap->vres.ncrypto_fc = val[0];
4098 		}
4099 		adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
4100 		adap->num_uld += 1;
4101 	}
4102 #undef FW_PARAM_PFVF
4103 #undef FW_PARAM_DEV
4104 
4105 	/* The MTU/MSS Table is initialized by now, so load their values.  If
4106 	 * we're initializing the adapter, then we'll make any modifications
4107 	 * we want to the MTU/MSS Table and also initialize the congestion
4108 	 * parameters.
4109 	 */
4110 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4111 	if (state != DEV_STATE_INIT) {
4112 		int i;
4113 
4114 		/* The default MTU Table contains values 1492 and 1500.
4115 		 * However, for TCP, it's better to have two values which are
4116 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4117 		 * This allows us to have a TCP Data Payload which is a
4118 		 * multiple of 8 regardless of what combination of TCP Options
4119 		 * are in use (always a multiple of 4 bytes) which is
4120 		 * important for performance reasons.  For instance, if no
4121 		 * options are in use, then we have a 20-byte IP header and a
4122 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4123 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4124 		 * which is not a multiple of 8.  So using an MSS of 1488 in
4125 		 * this case results in a TCP Data Payload of 1448 bytes which
4126 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4127 		 * Stamps have been negotiated, then an MTU of 1500 bytes
4128 		 * results in a TCP Data Payload of 1448 bytes which, as
4129 		 * above, is a multiple of 8 bytes ...
4130 		 */
4131 		for (i = 0; i < NMTUS; i++)
4132 			if (adap->params.mtus[i] == 1492) {
4133 				adap->params.mtus[i] = 1488;
4134 				break;
4135 			}
4136 
4137 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4138 			     adap->params.b_wnd);
4139 	}
4140 	t4_init_sge_params(adap);
4141 	adap->flags |= FW_OK;
4142 	t4_init_tp_params(adap, true);
4143 	return 0;
4144 
4145 	/*
4146 	 * Something bad happened.  If a command timed out or failed with EIO
4147 	 * FW does not operate within its spec or something catastrophic
4148 	 * happened to HW/FW, stop issuing commands.
4149 	 */
4150 bye:
4151 	kfree(adap->sge.egr_map);
4152 	kfree(adap->sge.ingr_map);
4153 	kfree(adap->sge.starving_fl);
4154 	kfree(adap->sge.txq_maperr);
4155 #ifdef CONFIG_DEBUG_FS
4156 	kfree(adap->sge.blocked_fl);
4157 #endif
4158 	if (ret != -ETIMEDOUT && ret != -EIO)
4159 		t4_fw_bye(adap, adap->mbox);
4160 	return ret;
4161 }
4162 
4163 /* EEH callbacks */
4164 
4165 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4166 					 pci_channel_state_t state)
4167 {
4168 	int i;
4169 	struct adapter *adap = pci_get_drvdata(pdev);
4170 
4171 	if (!adap)
4172 		goto out;
4173 
4174 	rtnl_lock();
4175 	adap->flags &= ~FW_OK;
4176 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4177 	spin_lock(&adap->stats_lock);
4178 	for_each_port(adap, i) {
4179 		struct net_device *dev = adap->port[i];
4180 		if (dev) {
4181 			netif_device_detach(dev);
4182 			netif_carrier_off(dev);
4183 		}
4184 	}
4185 	spin_unlock(&adap->stats_lock);
4186 	disable_interrupts(adap);
4187 	if (adap->flags & FULL_INIT_DONE)
4188 		cxgb_down(adap);
4189 	rtnl_unlock();
4190 	if ((adap->flags & DEV_ENABLED)) {
4191 		pci_disable_device(pdev);
4192 		adap->flags &= ~DEV_ENABLED;
4193 	}
4194 out:	return state == pci_channel_io_perm_failure ?
4195 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4196 }
4197 
4198 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4199 {
4200 	int i, ret;
4201 	struct fw_caps_config_cmd c;
4202 	struct adapter *adap = pci_get_drvdata(pdev);
4203 
4204 	if (!adap) {
4205 		pci_restore_state(pdev);
4206 		pci_save_state(pdev);
4207 		return PCI_ERS_RESULT_RECOVERED;
4208 	}
4209 
4210 	if (!(adap->flags & DEV_ENABLED)) {
4211 		if (pci_enable_device(pdev)) {
4212 			dev_err(&pdev->dev, "Cannot reenable PCI "
4213 					    "device after reset\n");
4214 			return PCI_ERS_RESULT_DISCONNECT;
4215 		}
4216 		adap->flags |= DEV_ENABLED;
4217 	}
4218 
4219 	pci_set_master(pdev);
4220 	pci_restore_state(pdev);
4221 	pci_save_state(pdev);
4222 	pci_cleanup_aer_uncorrect_error_status(pdev);
4223 
4224 	if (t4_wait_dev_ready(adap->regs) < 0)
4225 		return PCI_ERS_RESULT_DISCONNECT;
4226 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4227 		return PCI_ERS_RESULT_DISCONNECT;
4228 	adap->flags |= FW_OK;
4229 	if (adap_init1(adap, &c))
4230 		return PCI_ERS_RESULT_DISCONNECT;
4231 
4232 	for_each_port(adap, i) {
4233 		struct port_info *p = adap2pinfo(adap, i);
4234 
4235 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4236 				  NULL, NULL);
4237 		if (ret < 0)
4238 			return PCI_ERS_RESULT_DISCONNECT;
4239 		p->viid = ret;
4240 		p->xact_addr_filt = -1;
4241 	}
4242 
4243 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4244 		     adap->params.b_wnd);
4245 	setup_memwin(adap);
4246 	if (cxgb_up(adap))
4247 		return PCI_ERS_RESULT_DISCONNECT;
4248 	return PCI_ERS_RESULT_RECOVERED;
4249 }
4250 
4251 static void eeh_resume(struct pci_dev *pdev)
4252 {
4253 	int i;
4254 	struct adapter *adap = pci_get_drvdata(pdev);
4255 
4256 	if (!adap)
4257 		return;
4258 
4259 	rtnl_lock();
4260 	for_each_port(adap, i) {
4261 		struct net_device *dev = adap->port[i];
4262 		if (dev) {
4263 			if (netif_running(dev)) {
4264 				link_start(dev);
4265 				cxgb_set_rxmode(dev);
4266 			}
4267 			netif_device_attach(dev);
4268 		}
4269 	}
4270 	rtnl_unlock();
4271 }
4272 
4273 static const struct pci_error_handlers cxgb4_eeh = {
4274 	.error_detected = eeh_err_detected,
4275 	.slot_reset     = eeh_slot_reset,
4276 	.resume         = eeh_resume,
4277 };
4278 
4279 /* Return true if the Link Configuration supports "High Speeds" (those greater
4280  * than 1Gb/s).
4281  */
4282 static inline bool is_x_10g_port(const struct link_config *lc)
4283 {
4284 	unsigned int speeds, high_speeds;
4285 
4286 	speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
4287 	high_speeds = speeds &
4288 			~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
4289 
4290 	return high_speeds != 0;
4291 }
4292 
4293 /*
4294  * Perform default configuration of DMA queues depending on the number and type
4295  * of ports we found and the number of available CPUs.  Most settings can be
4296  * modified by the admin prior to actual use.
4297  */
4298 static void cfg_queues(struct adapter *adap)
4299 {
4300 	struct sge *s = &adap->sge;
4301 	int i = 0, n10g = 0, qidx = 0;
4302 #ifndef CONFIG_CHELSIO_T4_DCB
4303 	int q10g = 0;
4304 #endif
4305 
4306 	/* Reduce memory usage in kdump environment, disable all offload.
4307 	 */
4308 	if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4309 		adap->params.offload = 0;
4310 		adap->params.crypto = 0;
4311 	}
4312 
4313 	n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4314 #ifdef CONFIG_CHELSIO_T4_DCB
4315 	/* For Data Center Bridging support we need to be able to support up
4316 	 * to 8 Traffic Priorities; each of which will be assigned to its
4317 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4318 	 */
4319 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4320 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4321 			MAX_ETH_QSETS, adap->params.nports * 8);
4322 		BUG_ON(1);
4323 	}
4324 
4325 	for_each_port(adap, i) {
4326 		struct port_info *pi = adap2pinfo(adap, i);
4327 
4328 		pi->first_qset = qidx;
4329 		pi->nqsets = is_kdump_kernel() ? 1 : 8;
4330 		qidx += pi->nqsets;
4331 	}
4332 #else /* !CONFIG_CHELSIO_T4_DCB */
4333 	/*
4334 	 * We default to 1 queue per non-10G port and up to # of cores queues
4335 	 * per 10G port.
4336 	 */
4337 	if (n10g)
4338 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4339 	if (q10g > netif_get_num_default_rss_queues())
4340 		q10g = netif_get_num_default_rss_queues();
4341 
4342 	if (is_kdump_kernel())
4343 		q10g = 1;
4344 
4345 	for_each_port(adap, i) {
4346 		struct port_info *pi = adap2pinfo(adap, i);
4347 
4348 		pi->first_qset = qidx;
4349 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4350 		qidx += pi->nqsets;
4351 	}
4352 #endif /* !CONFIG_CHELSIO_T4_DCB */
4353 
4354 	s->ethqsets = qidx;
4355 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4356 
4357 	if (is_uld(adap)) {
4358 		/*
4359 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4360 		 * otherwise we divide all available queues amongst the channels
4361 		 * capped by the number of available cores.
4362 		 */
4363 		if (n10g) {
4364 			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4365 			s->ofldqsets = roundup(i, adap->params.nports);
4366 		} else {
4367 			s->ofldqsets = adap->params.nports;
4368 		}
4369 	}
4370 
4371 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4372 		struct sge_eth_rxq *r = &s->ethrxq[i];
4373 
4374 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4375 		r->fl.size = 72;
4376 	}
4377 
4378 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4379 		s->ethtxq[i].q.size = 1024;
4380 
4381 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4382 		s->ctrlq[i].q.size = 512;
4383 
4384 	if (!is_t4(adap->params.chip))
4385 		s->ptptxq.q.size = 8;
4386 
4387 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4388 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4389 }
4390 
4391 /*
4392  * Reduce the number of Ethernet queues across all ports to at most n.
4393  * n provides at least one queue per port.
4394  */
4395 static void reduce_ethqs(struct adapter *adap, int n)
4396 {
4397 	int i;
4398 	struct port_info *pi;
4399 
4400 	while (n < adap->sge.ethqsets)
4401 		for_each_port(adap, i) {
4402 			pi = adap2pinfo(adap, i);
4403 			if (pi->nqsets > 1) {
4404 				pi->nqsets--;
4405 				adap->sge.ethqsets--;
4406 				if (adap->sge.ethqsets <= n)
4407 					break;
4408 			}
4409 		}
4410 
4411 	n = 0;
4412 	for_each_port(adap, i) {
4413 		pi = adap2pinfo(adap, i);
4414 		pi->first_qset = n;
4415 		n += pi->nqsets;
4416 	}
4417 }
4418 
4419 static int get_msix_info(struct adapter *adap)
4420 {
4421 	struct uld_msix_info *msix_info;
4422 	unsigned int max_ingq = 0;
4423 
4424 	if (is_offload(adap))
4425 		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4426 	if (is_pci_uld(adap))
4427 		max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4428 
4429 	if (!max_ingq)
4430 		goto out;
4431 
4432 	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4433 	if (!msix_info)
4434 		return -ENOMEM;
4435 
4436 	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4437 						 sizeof(long), GFP_KERNEL);
4438 	if (!adap->msix_bmap_ulds.msix_bmap) {
4439 		kfree(msix_info);
4440 		return -ENOMEM;
4441 	}
4442 	spin_lock_init(&adap->msix_bmap_ulds.lock);
4443 	adap->msix_info_ulds = msix_info;
4444 out:
4445 	return 0;
4446 }
4447 
4448 static void free_msix_info(struct adapter *adap)
4449 {
4450 	if (!(adap->num_uld && adap->num_ofld_uld))
4451 		return;
4452 
4453 	kfree(adap->msix_info_ulds);
4454 	kfree(adap->msix_bmap_ulds.msix_bmap);
4455 }
4456 
4457 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4458 #define EXTRA_VECS 2
4459 
4460 static int enable_msix(struct adapter *adap)
4461 {
4462 	int ofld_need = 0, uld_need = 0;
4463 	int i, j, want, need, allocated;
4464 	struct sge *s = &adap->sge;
4465 	unsigned int nchan = adap->params.nports;
4466 	struct msix_entry *entries;
4467 	int max_ingq = MAX_INGQ;
4468 
4469 	if (is_pci_uld(adap))
4470 		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4471 	if (is_offload(adap))
4472 		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4473 	entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4474 			  GFP_KERNEL);
4475 	if (!entries)
4476 		return -ENOMEM;
4477 
4478 	/* map for msix */
4479 	if (get_msix_info(adap)) {
4480 		adap->params.offload = 0;
4481 		adap->params.crypto = 0;
4482 	}
4483 
4484 	for (i = 0; i < max_ingq + 1; ++i)
4485 		entries[i].entry = i;
4486 
4487 	want = s->max_ethqsets + EXTRA_VECS;
4488 	if (is_offload(adap)) {
4489 		want += adap->num_ofld_uld * s->ofldqsets;
4490 		ofld_need = adap->num_ofld_uld * nchan;
4491 	}
4492 	if (is_pci_uld(adap)) {
4493 		want += adap->num_uld * s->ofldqsets;
4494 		uld_need = adap->num_uld * nchan;
4495 	}
4496 #ifdef CONFIG_CHELSIO_T4_DCB
4497 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4498 	 * each port.
4499 	 */
4500 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4501 #else
4502 	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4503 #endif
4504 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4505 	if (allocated < 0) {
4506 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4507 			 " not using MSI-X\n");
4508 		kfree(entries);
4509 		return allocated;
4510 	}
4511 
4512 	/* Distribute available vectors to the various queue groups.
4513 	 * Every group gets its minimum requirement and NIC gets top
4514 	 * priority for leftovers.
4515 	 */
4516 	i = allocated - EXTRA_VECS - ofld_need - uld_need;
4517 	if (i < s->max_ethqsets) {
4518 		s->max_ethqsets = i;
4519 		if (i < s->ethqsets)
4520 			reduce_ethqs(adap, i);
4521 	}
4522 	if (is_uld(adap)) {
4523 		if (allocated < want)
4524 			s->nqs_per_uld = nchan;
4525 		else
4526 			s->nqs_per_uld = s->ofldqsets;
4527 	}
4528 
4529 	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4530 		adap->msix_info[i].vec = entries[i].vector;
4531 	if (is_uld(adap)) {
4532 		for (j = 0 ; i < allocated; ++i, j++) {
4533 			adap->msix_info_ulds[j].vec = entries[i].vector;
4534 			adap->msix_info_ulds[j].idx = i;
4535 		}
4536 		adap->msix_bmap_ulds.mapsize = j;
4537 	}
4538 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4539 		 "nic %d per uld %d\n",
4540 		 allocated, s->max_ethqsets, s->nqs_per_uld);
4541 
4542 	kfree(entries);
4543 	return 0;
4544 }
4545 
4546 #undef EXTRA_VECS
4547 
4548 static int init_rss(struct adapter *adap)
4549 {
4550 	unsigned int i;
4551 	int err;
4552 
4553 	err = t4_init_rss_mode(adap, adap->mbox);
4554 	if (err)
4555 		return err;
4556 
4557 	for_each_port(adap, i) {
4558 		struct port_info *pi = adap2pinfo(adap, i);
4559 
4560 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4561 		if (!pi->rss)
4562 			return -ENOMEM;
4563 	}
4564 	return 0;
4565 }
4566 
4567 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4568 					enum pci_bus_speed *speed,
4569 					enum pcie_link_width *width)
4570 {
4571 	u32 lnkcap1, lnkcap2;
4572 	int err1, err2;
4573 
4574 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4575 
4576 	*speed = PCI_SPEED_UNKNOWN;
4577 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4578 
4579 	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4580 					  &lnkcap1);
4581 	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4582 					  &lnkcap2);
4583 	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4584 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4585 			*speed = PCIE_SPEED_8_0GT;
4586 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4587 			*speed = PCIE_SPEED_5_0GT;
4588 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4589 			*speed = PCIE_SPEED_2_5GT;
4590 	}
4591 	if (!err1) {
4592 		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4593 		if (!lnkcap2) { /* pre-r3.0 */
4594 			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4595 				*speed = PCIE_SPEED_5_0GT;
4596 			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4597 				*speed = PCIE_SPEED_2_5GT;
4598 		}
4599 	}
4600 
4601 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4602 		return err1 ? err1 : err2 ? err2 : -EINVAL;
4603 	return 0;
4604 }
4605 
4606 static void cxgb4_check_pcie_caps(struct adapter *adap)
4607 {
4608 	enum pcie_link_width width, width_cap;
4609 	enum pci_bus_speed speed, speed_cap;
4610 
4611 #define PCIE_SPEED_STR(speed) \
4612 	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4613 	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4614 	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4615 	 "Unknown")
4616 
4617 	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4618 		dev_warn(adap->pdev_dev,
4619 			 "Unable to determine PCIe device BW capabilities\n");
4620 		return;
4621 	}
4622 
4623 	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4624 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4625 		dev_warn(adap->pdev_dev,
4626 			 "Unable to determine PCI Express bandwidth.\n");
4627 		return;
4628 	}
4629 
4630 	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4631 		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4632 	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4633 		 width, width_cap);
4634 	if (speed < speed_cap || width < width_cap)
4635 		dev_info(adap->pdev_dev,
4636 			 "A slot with more lanes and/or higher speed is "
4637 			 "suggested for optimal performance.\n");
4638 }
4639 
4640 /* Dump basic information about the adapter */
4641 static void print_adapter_info(struct adapter *adapter)
4642 {
4643 	/* Hardware/Firmware/etc. Version/Revision IDs */
4644 	t4_dump_version_info(adapter);
4645 
4646 	/* Software/Hardware configuration */
4647 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4648 		 is_offload(adapter) ? "R" : "",
4649 		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4650 		  (adapter->flags & USING_MSI) ? "MSI" : ""),
4651 		 is_offload(adapter) ? "Offload" : "non-Offload");
4652 }
4653 
4654 static void print_port_info(const struct net_device *dev)
4655 {
4656 	char buf[80];
4657 	char *bufp = buf;
4658 	const char *spd = "";
4659 	const struct port_info *pi = netdev_priv(dev);
4660 	const struct adapter *adap = pi->adapter;
4661 
4662 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4663 		spd = " 2.5 GT/s";
4664 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4665 		spd = " 5 GT/s";
4666 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4667 		spd = " 8 GT/s";
4668 
4669 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
4670 		bufp += sprintf(bufp, "100M/");
4671 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
4672 		bufp += sprintf(bufp, "1G/");
4673 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
4674 		bufp += sprintf(bufp, "10G/");
4675 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
4676 		bufp += sprintf(bufp, "25G/");
4677 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
4678 		bufp += sprintf(bufp, "40G/");
4679 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
4680 		bufp += sprintf(bufp, "50G/");
4681 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
4682 		bufp += sprintf(bufp, "100G/");
4683 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
4684 		bufp += sprintf(bufp, "200G/");
4685 	if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
4686 		bufp += sprintf(bufp, "400G/");
4687 	if (bufp != buf)
4688 		--bufp;
4689 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4690 
4691 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4692 		    dev->name, adap->params.vpd.id, adap->name, buf);
4693 }
4694 
4695 /*
4696  * Free the following resources:
4697  * - memory used for tables
4698  * - MSI/MSI-X
4699  * - net devices
4700  * - resources FW is holding for us
4701  */
4702 static void free_some_resources(struct adapter *adapter)
4703 {
4704 	unsigned int i;
4705 
4706 	kvfree(adapter->smt);
4707 	kvfree(adapter->l2t);
4708 	t4_cleanup_sched(adapter);
4709 	kvfree(adapter->tids.tid_tab);
4710 	cxgb4_cleanup_tc_flower(adapter);
4711 	cxgb4_cleanup_tc_u32(adapter);
4712 	kfree(adapter->sge.egr_map);
4713 	kfree(adapter->sge.ingr_map);
4714 	kfree(adapter->sge.starving_fl);
4715 	kfree(adapter->sge.txq_maperr);
4716 #ifdef CONFIG_DEBUG_FS
4717 	kfree(adapter->sge.blocked_fl);
4718 #endif
4719 	disable_msi(adapter);
4720 
4721 	for_each_port(adapter, i)
4722 		if (adapter->port[i]) {
4723 			struct port_info *pi = adap2pinfo(adapter, i);
4724 
4725 			if (pi->viid != 0)
4726 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
4727 					   0, pi->viid);
4728 			kfree(adap2pinfo(adapter, i)->rss);
4729 			free_netdev(adapter->port[i]);
4730 		}
4731 	if (adapter->flags & FW_OK)
4732 		t4_fw_bye(adapter, adapter->pf);
4733 }
4734 
4735 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4736 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4737 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4738 #define SEGMENT_SIZE 128
4739 
4740 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4741 {
4742 	u16 device_id;
4743 
4744 	/* Retrieve adapter's device ID */
4745 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4746 
4747 	switch (device_id >> 12) {
4748 	case CHELSIO_T4:
4749 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4750 	case CHELSIO_T5:
4751 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4752 	case CHELSIO_T6:
4753 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4754 	default:
4755 		dev_err(&pdev->dev, "Device %d is not supported\n",
4756 			device_id);
4757 	}
4758 	return -EINVAL;
4759 }
4760 
4761 #ifdef CONFIG_PCI_IOV
4762 static void dummy_setup(struct net_device *dev)
4763 {
4764 	dev->type = ARPHRD_NONE;
4765 	dev->mtu = 0;
4766 	dev->hard_header_len = 0;
4767 	dev->addr_len = 0;
4768 	dev->tx_queue_len = 0;
4769 	dev->flags |= IFF_NOARP;
4770 	dev->priv_flags |= IFF_NO_QUEUE;
4771 
4772 	/* Initialize the device structure. */
4773 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4774 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4775 	dev->needs_free_netdev = true;
4776 }
4777 
4778 static int config_mgmt_dev(struct pci_dev *pdev)
4779 {
4780 	struct adapter *adap = pci_get_drvdata(pdev);
4781 	struct net_device *netdev;
4782 	struct port_info *pi;
4783 	char name[IFNAMSIZ];
4784 	int err;
4785 
4786 	snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4787 	netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN,
4788 			      dummy_setup);
4789 	if (!netdev)
4790 		return -ENOMEM;
4791 
4792 	pi = netdev_priv(netdev);
4793 	pi->adapter = adap;
4794 	pi->tx_chan = adap->pf % adap->params.nports;
4795 	SET_NETDEV_DEV(netdev, &pdev->dev);
4796 
4797 	adap->port[0] = netdev;
4798 	pi->port_id = 0;
4799 
4800 	err = register_netdev(adap->port[0]);
4801 	if (err) {
4802 		pr_info("Unable to register VF mgmt netdev %s\n", name);
4803 		free_netdev(adap->port[0]);
4804 		adap->port[0] = NULL;
4805 		return err;
4806 	}
4807 	return 0;
4808 }
4809 
4810 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4811 {
4812 	struct adapter *adap = pci_get_drvdata(pdev);
4813 	int err = 0;
4814 	int current_vfs = pci_num_vf(pdev);
4815 	u32 pcie_fw;
4816 
4817 	pcie_fw = readl(adap->regs + PCIE_FW_A);
4818 	/* Check if cxgb4 is the MASTER and fw is initialized */
4819 	if (!(pcie_fw & PCIE_FW_INIT_F) ||
4820 	    !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4821 	    PCIE_FW_MASTER_G(pcie_fw) != 4) {
4822 		dev_warn(&pdev->dev,
4823 			 "cxgb4 driver needs to be MASTER to support SRIOV\n");
4824 		return -EOPNOTSUPP;
4825 	}
4826 
4827 	/* If any of the VF's is already assigned to Guest OS, then
4828 	 * SRIOV for the same cannot be modified
4829 	 */
4830 	if (current_vfs && pci_vfs_assigned(pdev)) {
4831 		dev_err(&pdev->dev,
4832 			"Cannot modify SR-IOV while VFs are assigned\n");
4833 		num_vfs = current_vfs;
4834 		return num_vfs;
4835 	}
4836 
4837 	/* Disable SRIOV when zero is passed.
4838 	 * One needs to disable SRIOV before modifying it, else
4839 	 * stack throws the below warning:
4840 	 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4841 	 */
4842 	if (!num_vfs) {
4843 		pci_disable_sriov(pdev);
4844 		if (adap->port[0]) {
4845 			unregister_netdev(adap->port[0]);
4846 			adap->port[0] = NULL;
4847 		}
4848 		/* free VF resources */
4849 		kfree(adap->vfinfo);
4850 		adap->vfinfo = NULL;
4851 		adap->num_vfs = 0;
4852 		return num_vfs;
4853 	}
4854 
4855 	if (num_vfs != current_vfs) {
4856 		err = pci_enable_sriov(pdev, num_vfs);
4857 		if (err)
4858 			return err;
4859 
4860 		adap->num_vfs = num_vfs;
4861 		err = config_mgmt_dev(pdev);
4862 		if (err)
4863 			return err;
4864 	}
4865 
4866 	adap->vfinfo = kcalloc(adap->num_vfs,
4867 			       sizeof(struct vf_info), GFP_KERNEL);
4868 	if (adap->vfinfo)
4869 		fill_vf_station_mac_addr(adap);
4870 	return num_vfs;
4871 }
4872 #endif
4873 
4874 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4875 {
4876 	int func, i, err, s_qpp, qpp, num_seg;
4877 	struct port_info *pi;
4878 	bool highdma = false;
4879 	struct adapter *adapter = NULL;
4880 	struct net_device *netdev;
4881 	void __iomem *regs;
4882 	u32 whoami, pl_rev;
4883 	enum chip_type chip;
4884 	static int adap_idx = 1;
4885 #ifdef CONFIG_PCI_IOV
4886 	u32 v, port_vec;
4887 #endif
4888 
4889 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4890 
4891 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4892 	if (err) {
4893 		/* Just info, some other driver may have claimed the device. */
4894 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4895 		return err;
4896 	}
4897 
4898 	err = pci_enable_device(pdev);
4899 	if (err) {
4900 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4901 		goto out_release_regions;
4902 	}
4903 
4904 	regs = pci_ioremap_bar(pdev, 0);
4905 	if (!regs) {
4906 		dev_err(&pdev->dev, "cannot map device registers\n");
4907 		err = -ENOMEM;
4908 		goto out_disable_device;
4909 	}
4910 
4911 	err = t4_wait_dev_ready(regs);
4912 	if (err < 0)
4913 		goto out_unmap_bar0;
4914 
4915 	/* We control everything through one PF */
4916 	whoami = readl(regs + PL_WHOAMI_A);
4917 	pl_rev = REV_G(readl(regs + PL_REV_A));
4918 	chip = get_chip_type(pdev, pl_rev);
4919 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4920 		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4921 	if (func != ent->driver_data) {
4922 #ifndef CONFIG_PCI_IOV
4923 		iounmap(regs);
4924 #endif
4925 		pci_disable_device(pdev);
4926 		pci_save_state(pdev);        /* to restore SR-IOV later */
4927 		goto sriov;
4928 	}
4929 
4930 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4931 		highdma = true;
4932 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4933 		if (err) {
4934 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4935 				"coherent allocations\n");
4936 			goto out_unmap_bar0;
4937 		}
4938 	} else {
4939 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4940 		if (err) {
4941 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4942 			goto out_unmap_bar0;
4943 		}
4944 	}
4945 
4946 	pci_enable_pcie_error_reporting(pdev);
4947 	pci_set_master(pdev);
4948 	pci_save_state(pdev);
4949 
4950 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4951 	if (!adapter) {
4952 		err = -ENOMEM;
4953 		goto out_unmap_bar0;
4954 	}
4955 	adap_idx++;
4956 
4957 	adapter->workq = create_singlethread_workqueue("cxgb4");
4958 	if (!adapter->workq) {
4959 		err = -ENOMEM;
4960 		goto out_free_adapter;
4961 	}
4962 
4963 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4964 				    (sizeof(struct mbox_cmd) *
4965 				     T4_OS_LOG_MBOX_CMDS),
4966 				    GFP_KERNEL);
4967 	if (!adapter->mbox_log) {
4968 		err = -ENOMEM;
4969 		goto out_free_adapter;
4970 	}
4971 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4972 
4973 	/* PCI device has been enabled */
4974 	adapter->flags |= DEV_ENABLED;
4975 
4976 	adapter->regs = regs;
4977 	adapter->pdev = pdev;
4978 	adapter->pdev_dev = &pdev->dev;
4979 	adapter->name = pci_name(pdev);
4980 	adapter->mbox = func;
4981 	adapter->pf = func;
4982 	adapter->msg_enable = DFLT_MSG_ENABLE;
4983 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4984 
4985 	/* If possible, we use PCIe Relaxed Ordering Attribute to deliver
4986 	 * Ingress Packet Data to Free List Buffers in order to allow for
4987 	 * chipset performance optimizations between the Root Complex and
4988 	 * Memory Controllers.  (Messages to the associated Ingress Queue
4989 	 * notifying new Packet Placement in the Free Lists Buffers will be
4990 	 * send without the Relaxed Ordering Attribute thus guaranteeing that
4991 	 * all preceding PCIe Transaction Layer Packets will be processed
4992 	 * first.)  But some Root Complexes have various issues with Upstream
4993 	 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
4994 	 * The PCIe devices which under the Root Complexes will be cleared the
4995 	 * Relaxed Ordering bit in the configuration space, So we check our
4996 	 * PCIe configuration space to see if it's flagged with advice against
4997 	 * using Relaxed Ordering.
4998 	 */
4999 	if (!pcie_relaxed_ordering_enabled(pdev))
5000 		adapter->flags |= ROOT_NO_RELAXED_ORDERING;
5001 
5002 	spin_lock_init(&adapter->stats_lock);
5003 	spin_lock_init(&adapter->tid_release_lock);
5004 	spin_lock_init(&adapter->win0_lock);
5005 	spin_lock_init(&adapter->mbox_lock);
5006 
5007 	INIT_LIST_HEAD(&adapter->mlist.list);
5008 
5009 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5010 	INIT_WORK(&adapter->db_full_task, process_db_full);
5011 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
5012 
5013 	err = t4_prep_adapter(adapter);
5014 	if (err)
5015 		goto out_free_adapter;
5016 
5017 
5018 	if (!is_t4(adapter->params.chip)) {
5019 		s_qpp = (QUEUESPERPAGEPF0_S +
5020 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5021 			adapter->pf);
5022 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5023 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5024 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
5025 
5026 		/* Each segment size is 128B. Write coalescing is enabled only
5027 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5028 		 * queue is less no of segments that can be accommodated in
5029 		 * a page size.
5030 		 */
5031 		if (qpp > num_seg) {
5032 			dev_err(&pdev->dev,
5033 				"Incorrect number of egress queues per page\n");
5034 			err = -EINVAL;
5035 			goto out_free_adapter;
5036 		}
5037 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5038 		pci_resource_len(pdev, 2));
5039 		if (!adapter->bar2) {
5040 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
5041 			err = -ENOMEM;
5042 			goto out_free_adapter;
5043 		}
5044 	}
5045 
5046 	setup_memwin(adapter);
5047 	err = adap_init0(adapter);
5048 #ifdef CONFIG_DEBUG_FS
5049 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5050 #endif
5051 	setup_memwin_rdma(adapter);
5052 	if (err)
5053 		goto out_unmap_bar;
5054 
5055 	/* configure SGE_STAT_CFG_A to read WC stats */
5056 	if (!is_t4(adapter->params.chip))
5057 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5058 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5059 			      T6_STATMODE_V(0)));
5060 
5061 	for_each_port(adapter, i) {
5062 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
5063 					   MAX_ETH_QSETS);
5064 		if (!netdev) {
5065 			err = -ENOMEM;
5066 			goto out_free_dev;
5067 		}
5068 
5069 		SET_NETDEV_DEV(netdev, &pdev->dev);
5070 
5071 		adapter->port[i] = netdev;
5072 		pi = netdev_priv(netdev);
5073 		pi->adapter = adapter;
5074 		pi->xact_addr_filt = -1;
5075 		pi->port_id = i;
5076 		netdev->irq = pdev->irq;
5077 
5078 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5079 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5080 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
5081 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5082 			NETIF_F_HW_TC;
5083 		if (highdma)
5084 			netdev->hw_features |= NETIF_F_HIGHDMA;
5085 		netdev->features |= netdev->hw_features;
5086 		netdev->vlan_features = netdev->features & VLAN_FEAT;
5087 
5088 		netdev->priv_flags |= IFF_UNICAST_FLT;
5089 
5090 		/* MTU range: 81 - 9600 */
5091 		netdev->min_mtu = 81;              /* accommodate SACK */
5092 		netdev->max_mtu = MAX_MTU;
5093 
5094 		netdev->netdev_ops = &cxgb4_netdev_ops;
5095 #ifdef CONFIG_CHELSIO_T4_DCB
5096 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
5097 		cxgb4_dcb_state_init(netdev);
5098 #endif
5099 		cxgb4_set_ethtool_ops(netdev);
5100 	}
5101 
5102 	cxgb4_init_ethtool_dump(adapter);
5103 
5104 	pci_set_drvdata(pdev, adapter);
5105 
5106 	if (adapter->flags & FW_OK) {
5107 		err = t4_port_init(adapter, func, func, 0);
5108 		if (err)
5109 			goto out_free_dev;
5110 	} else if (adapter->params.nports == 1) {
5111 		/* If we don't have a connection to the firmware -- possibly
5112 		 * because of an error -- grab the raw VPD parameters so we
5113 		 * can set the proper MAC Address on the debug network
5114 		 * interface that we've created.
5115 		 */
5116 		u8 hw_addr[ETH_ALEN];
5117 		u8 *na = adapter->params.vpd.na;
5118 
5119 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5120 		if (!err) {
5121 			for (i = 0; i < ETH_ALEN; i++)
5122 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5123 					      hex2val(na[2 * i + 1]));
5124 			t4_set_hw_addr(adapter, 0, hw_addr);
5125 		}
5126 	}
5127 
5128 	/* Configure queues and allocate tables now, they can be needed as
5129 	 * soon as the first register_netdev completes.
5130 	 */
5131 	cfg_queues(adapter);
5132 
5133 	adapter->smt = t4_init_smt();
5134 	if (!adapter->smt) {
5135 		/* We tolerate a lack of SMT, giving up some functionality */
5136 		dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
5137 	}
5138 
5139 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5140 	if (!adapter->l2t) {
5141 		/* We tolerate a lack of L2T, giving up some functionality */
5142 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5143 		adapter->params.offload = 0;
5144 	}
5145 
5146 #if IS_ENABLED(CONFIG_IPV6)
5147 	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5148 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5149 		/* CLIP functionality is not present in hardware,
5150 		 * hence disable all offload features
5151 		 */
5152 		dev_warn(&pdev->dev,
5153 			 "CLIP not enabled in hardware, continuing\n");
5154 		adapter->params.offload = 0;
5155 	} else {
5156 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5157 						  adapter->clipt_end);
5158 		if (!adapter->clipt) {
5159 			/* We tolerate a lack of clip_table, giving up
5160 			 * some functionality
5161 			 */
5162 			dev_warn(&pdev->dev,
5163 				 "could not allocate Clip table, continuing\n");
5164 			adapter->params.offload = 0;
5165 		}
5166 	}
5167 #endif
5168 
5169 	for_each_port(adapter, i) {
5170 		pi = adap2pinfo(adapter, i);
5171 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5172 		if (!pi->sched_tbl)
5173 			dev_warn(&pdev->dev,
5174 				 "could not activate scheduling on port %d\n",
5175 				 i);
5176 	}
5177 
5178 	if (tid_init(&adapter->tids) < 0) {
5179 		dev_warn(&pdev->dev, "could not allocate TID table, "
5180 			 "continuing\n");
5181 		adapter->params.offload = 0;
5182 	} else {
5183 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5184 		if (!adapter->tc_u32)
5185 			dev_warn(&pdev->dev,
5186 				 "could not offload tc u32, continuing\n");
5187 
5188 		if (cxgb4_init_tc_flower(adapter))
5189 			dev_warn(&pdev->dev,
5190 				 "could not offload tc flower, continuing\n");
5191 	}
5192 
5193 	if (is_offload(adapter) || is_hashfilter(adapter)) {
5194 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5195 			u32 hash_base, hash_reg;
5196 
5197 			if (chip <= CHELSIO_T5) {
5198 				hash_reg = LE_DB_TID_HASHBASE_A;
5199 				hash_base = t4_read_reg(adapter, hash_reg);
5200 				adapter->tids.hash_base = hash_base / 4;
5201 			} else {
5202 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5203 				hash_base = t4_read_reg(adapter, hash_reg);
5204 				adapter->tids.hash_base = hash_base;
5205 			}
5206 		}
5207 	}
5208 
5209 	/* See what interrupts we'll be using */
5210 	if (msi > 1 && enable_msix(adapter) == 0)
5211 		adapter->flags |= USING_MSIX;
5212 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5213 		adapter->flags |= USING_MSI;
5214 		if (msi > 1)
5215 			free_msix_info(adapter);
5216 	}
5217 
5218 	/* check for PCI Express bandwidth capabiltites */
5219 	cxgb4_check_pcie_caps(adapter);
5220 
5221 	err = init_rss(adapter);
5222 	if (err)
5223 		goto out_free_dev;
5224 
5225 	/*
5226 	 * The card is now ready to go.  If any errors occur during device
5227 	 * registration we do not fail the whole card but rather proceed only
5228 	 * with the ports we manage to register successfully.  However we must
5229 	 * register at least one net device.
5230 	 */
5231 	for_each_port(adapter, i) {
5232 		pi = adap2pinfo(adapter, i);
5233 		adapter->port[i]->dev_port = pi->lport;
5234 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5235 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5236 
5237 		netif_carrier_off(adapter->port[i]);
5238 
5239 		err = register_netdev(adapter->port[i]);
5240 		if (err)
5241 			break;
5242 		adapter->chan_map[pi->tx_chan] = i;
5243 		print_port_info(adapter->port[i]);
5244 	}
5245 	if (i == 0) {
5246 		dev_err(&pdev->dev, "could not register any net devices\n");
5247 		goto out_free_dev;
5248 	}
5249 	if (err) {
5250 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5251 		err = 0;
5252 	}
5253 
5254 	if (cxgb4_debugfs_root) {
5255 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5256 							   cxgb4_debugfs_root);
5257 		setup_debugfs(adapter);
5258 	}
5259 
5260 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5261 	pdev->needs_freset = 1;
5262 
5263 	if (is_uld(adapter)) {
5264 		mutex_lock(&uld_mutex);
5265 		list_add_tail(&adapter->list_node, &adapter_list);
5266 		mutex_unlock(&uld_mutex);
5267 	}
5268 
5269 	if (!is_t4(adapter->params.chip))
5270 		cxgb4_ptp_init(adapter);
5271 
5272 	print_adapter_info(adapter);
5273 	setup_fw_sge_queues(adapter);
5274 	return 0;
5275 
5276 sriov:
5277 #ifdef CONFIG_PCI_IOV
5278 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5279 	if (!adapter) {
5280 		err = -ENOMEM;
5281 		goto free_pci_region;
5282 	}
5283 
5284 	adapter->pdev = pdev;
5285 	adapter->pdev_dev = &pdev->dev;
5286 	adapter->name = pci_name(pdev);
5287 	adapter->mbox = func;
5288 	adapter->pf = func;
5289 	adapter->regs = regs;
5290 	adapter->adap_idx = adap_idx;
5291 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5292 				    (sizeof(struct mbox_cmd) *
5293 				     T4_OS_LOG_MBOX_CMDS),
5294 				    GFP_KERNEL);
5295 	if (!adapter->mbox_log) {
5296 		err = -ENOMEM;
5297 		goto free_adapter;
5298 	}
5299 	spin_lock_init(&adapter->mbox_lock);
5300 	INIT_LIST_HEAD(&adapter->mlist.list);
5301 
5302 	v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5303 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
5304 	err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1,
5305 			      &v, &port_vec);
5306 	if (err < 0) {
5307 		dev_err(adapter->pdev_dev, "Could not fetch port params\n");
5308 		goto free_mbox_log;
5309 	}
5310 
5311 	adapter->params.nports = hweight32(port_vec);
5312 	pci_set_drvdata(pdev, adapter);
5313 	return 0;
5314 
5315 free_mbox_log:
5316 	kfree(adapter->mbox_log);
5317  free_adapter:
5318 	kfree(adapter);
5319  free_pci_region:
5320 	iounmap(regs);
5321 	pci_disable_sriov(pdev);
5322 	pci_release_regions(pdev);
5323 	return err;
5324 #else
5325 	return 0;
5326 #endif
5327 
5328  out_free_dev:
5329 	free_some_resources(adapter);
5330 	if (adapter->flags & USING_MSIX)
5331 		free_msix_info(adapter);
5332 	if (adapter->num_uld || adapter->num_ofld_uld)
5333 		t4_uld_mem_free(adapter);
5334  out_unmap_bar:
5335 	if (!is_t4(adapter->params.chip))
5336 		iounmap(adapter->bar2);
5337  out_free_adapter:
5338 	if (adapter->workq)
5339 		destroy_workqueue(adapter->workq);
5340 
5341 	kfree(adapter->mbox_log);
5342 	kfree(adapter);
5343  out_unmap_bar0:
5344 	iounmap(regs);
5345  out_disable_device:
5346 	pci_disable_pcie_error_reporting(pdev);
5347 	pci_disable_device(pdev);
5348  out_release_regions:
5349 	pci_release_regions(pdev);
5350 	return err;
5351 }
5352 
5353 static void remove_one(struct pci_dev *pdev)
5354 {
5355 	struct adapter *adapter = pci_get_drvdata(pdev);
5356 
5357 	if (!adapter) {
5358 		pci_release_regions(pdev);
5359 		return;
5360 	}
5361 
5362 	adapter->flags |= SHUTTING_DOWN;
5363 
5364 	if (adapter->pf == 4) {
5365 		int i;
5366 
5367 		/* Tear down per-adapter Work Queue first since it can contain
5368 		 * references to our adapter data structure.
5369 		 */
5370 		destroy_workqueue(adapter->workq);
5371 
5372 		if (is_uld(adapter)) {
5373 			detach_ulds(adapter);
5374 			t4_uld_clean_up(adapter);
5375 		}
5376 
5377 		disable_interrupts(adapter);
5378 
5379 		for_each_port(adapter, i)
5380 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5381 				unregister_netdev(adapter->port[i]);
5382 
5383 		debugfs_remove_recursive(adapter->debugfs_root);
5384 
5385 		if (!is_t4(adapter->params.chip))
5386 			cxgb4_ptp_stop(adapter);
5387 
5388 		/* If we allocated filters, free up state associated with any
5389 		 * valid filters ...
5390 		 */
5391 		clear_all_filters(adapter);
5392 
5393 		if (adapter->flags & FULL_INIT_DONE)
5394 			cxgb_down(adapter);
5395 
5396 		if (adapter->flags & USING_MSIX)
5397 			free_msix_info(adapter);
5398 		if (adapter->num_uld || adapter->num_ofld_uld)
5399 			t4_uld_mem_free(adapter);
5400 		free_some_resources(adapter);
5401 #if IS_ENABLED(CONFIG_IPV6)
5402 		t4_cleanup_clip_tbl(adapter);
5403 #endif
5404 		iounmap(adapter->regs);
5405 		if (!is_t4(adapter->params.chip))
5406 			iounmap(adapter->bar2);
5407 		pci_disable_pcie_error_reporting(pdev);
5408 		if ((adapter->flags & DEV_ENABLED)) {
5409 			pci_disable_device(pdev);
5410 			adapter->flags &= ~DEV_ENABLED;
5411 		}
5412 		pci_release_regions(pdev);
5413 		kfree(adapter->mbox_log);
5414 		synchronize_rcu();
5415 		kfree(adapter);
5416 	}
5417 #ifdef CONFIG_PCI_IOV
5418 	else {
5419 		if (adapter->port[0])
5420 			unregister_netdev(adapter->port[0]);
5421 		iounmap(adapter->regs);
5422 		kfree(adapter->vfinfo);
5423 		kfree(adapter->mbox_log);
5424 		kfree(adapter);
5425 		pci_disable_sriov(pdev);
5426 		pci_release_regions(pdev);
5427 	}
5428 #endif
5429 }
5430 
5431 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5432  * delivery.  This is essentially a stripped down version of the PCI remove()
5433  * function where we do the minimal amount of work necessary to shutdown any
5434  * further activity.
5435  */
5436 static void shutdown_one(struct pci_dev *pdev)
5437 {
5438 	struct adapter *adapter = pci_get_drvdata(pdev);
5439 
5440 	/* As with remove_one() above (see extended comment), we only want do
5441 	 * do cleanup on PCI Devices which went all the way through init_one()
5442 	 * ...
5443 	 */
5444 	if (!adapter) {
5445 		pci_release_regions(pdev);
5446 		return;
5447 	}
5448 
5449 	adapter->flags |= SHUTTING_DOWN;
5450 
5451 	if (adapter->pf == 4) {
5452 		int i;
5453 
5454 		for_each_port(adapter, i)
5455 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5456 				cxgb_close(adapter->port[i]);
5457 
5458 		if (is_uld(adapter)) {
5459 			detach_ulds(adapter);
5460 			t4_uld_clean_up(adapter);
5461 		}
5462 
5463 		disable_interrupts(adapter);
5464 		disable_msi(adapter);
5465 
5466 		t4_sge_stop(adapter);
5467 		if (adapter->flags & FW_OK)
5468 			t4_fw_bye(adapter, adapter->mbox);
5469 	}
5470 #ifdef CONFIG_PCI_IOV
5471 	else {
5472 		if (adapter->port[0])
5473 			unregister_netdev(adapter->port[0]);
5474 		iounmap(adapter->regs);
5475 		kfree(adapter->vfinfo);
5476 		kfree(adapter->mbox_log);
5477 		kfree(adapter);
5478 		pci_disable_sriov(pdev);
5479 		pci_release_regions(pdev);
5480 	}
5481 #endif
5482 }
5483 
5484 static struct pci_driver cxgb4_driver = {
5485 	.name     = KBUILD_MODNAME,
5486 	.id_table = cxgb4_pci_tbl,
5487 	.probe    = init_one,
5488 	.remove   = remove_one,
5489 	.shutdown = shutdown_one,
5490 #ifdef CONFIG_PCI_IOV
5491 	.sriov_configure = cxgb4_iov_configure,
5492 #endif
5493 	.err_handler = &cxgb4_eeh,
5494 };
5495 
5496 static int __init cxgb4_init_module(void)
5497 {
5498 	int ret;
5499 
5500 	/* Debugfs support is optional, just warn if this fails */
5501 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5502 	if (!cxgb4_debugfs_root)
5503 		pr_warn("could not create debugfs entry, continuing\n");
5504 
5505 	ret = pci_register_driver(&cxgb4_driver);
5506 	if (ret < 0)
5507 		debugfs_remove(cxgb4_debugfs_root);
5508 
5509 #if IS_ENABLED(CONFIG_IPV6)
5510 	if (!inet6addr_registered) {
5511 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5512 		inet6addr_registered = true;
5513 	}
5514 #endif
5515 
5516 	return ret;
5517 }
5518 
5519 static void __exit cxgb4_cleanup_module(void)
5520 {
5521 #if IS_ENABLED(CONFIG_IPV6)
5522 	if (inet6addr_registered) {
5523 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5524 		inet6addr_registered = false;
5525 	}
5526 #endif
5527 	pci_unregister_driver(&cxgb4_driver);
5528 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5529 }
5530 
5531 module_init(cxgb4_init_module);
5532 module_exit(cxgb4_cleanup_module);
5533