1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <linux/uaccess.h> 67 #include <linux/crash_dump.h> 68 69 #include "cxgb4.h" 70 #include "cxgb4_filter.h" 71 #include "t4_regs.h" 72 #include "t4_values.h" 73 #include "t4_msg.h" 74 #include "t4fw_api.h" 75 #include "t4fw_version.h" 76 #include "cxgb4_dcb.h" 77 #include "cxgb4_debugfs.h" 78 #include "clip_tbl.h" 79 #include "l2t.h" 80 #include "smt.h" 81 #include "sched.h" 82 #include "cxgb4_tc_u32.h" 83 #include "cxgb4_tc_flower.h" 84 #include "cxgb4_ptp.h" 85 #include "cxgb4_cudbg.h" 86 87 char cxgb4_driver_name[] = KBUILD_MODNAME; 88 89 #ifdef DRV_VERSION 90 #undef DRV_VERSION 91 #endif 92 #define DRV_VERSION "2.0.0-ko" 93 const char cxgb4_driver_version[] = DRV_VERSION; 94 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 95 96 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 97 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 98 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 99 100 /* Macros needed to support the PCI Device ID Table ... 101 */ 102 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 103 static const struct pci_device_id cxgb4_pci_tbl[] = { 104 #define CH_PCI_DEVICE_ID_FUNCTION 0x4 105 106 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 107 * called for both. 108 */ 109 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 110 111 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 112 {PCI_VDEVICE(CHELSIO, (devid)), 4} 113 114 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 115 { 0, } \ 116 } 117 118 #include "t4_pci_id_tbl.h" 119 120 #define FW4_FNAME "cxgb4/t4fw.bin" 121 #define FW5_FNAME "cxgb4/t5fw.bin" 122 #define FW6_FNAME "cxgb4/t6fw.bin" 123 #define FW4_CFNAME "cxgb4/t4-config.txt" 124 #define FW5_CFNAME "cxgb4/t5-config.txt" 125 #define FW6_CFNAME "cxgb4/t6-config.txt" 126 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 127 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 128 #define PHY_AQ1202_DEVICEID 0x4409 129 #define PHY_BCM84834_DEVICEID 0x4486 130 131 MODULE_DESCRIPTION(DRV_DESC); 132 MODULE_AUTHOR("Chelsio Communications"); 133 MODULE_LICENSE("Dual BSD/GPL"); 134 MODULE_VERSION(DRV_VERSION); 135 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 136 MODULE_FIRMWARE(FW4_FNAME); 137 MODULE_FIRMWARE(FW5_FNAME); 138 MODULE_FIRMWARE(FW6_FNAME); 139 140 /* 141 * The driver uses the best interrupt scheme available on a platform in the 142 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 143 * of these schemes the driver may consider as follows: 144 * 145 * msi = 2: choose from among all three options 146 * msi = 1: only consider MSI and INTx interrupts 147 * msi = 0: force INTx interrupts 148 */ 149 static int msi = 2; 150 151 module_param(msi, int, 0644); 152 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 153 154 /* 155 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 156 * offset by 2 bytes in order to have the IP headers line up on 4-byte 157 * boundaries. This is a requirement for many architectures which will throw 158 * a machine check fault if an attempt is made to access one of the 4-byte IP 159 * header fields on a non-4-byte boundary. And it's a major performance issue 160 * even on some architectures which allow it like some implementations of the 161 * x86 ISA. However, some architectures don't mind this and for some very 162 * edge-case performance sensitive applications (like forwarding large volumes 163 * of small packets), setting this DMA offset to 0 will decrease the number of 164 * PCI-E Bus transfers enough to measurably affect performance. 165 */ 166 static int rx_dma_offset = 2; 167 168 /* TX Queue select used to determine what algorithm to use for selecting TX 169 * queue. Select between the kernel provided function (select_queue=0) or user 170 * cxgb_select_queue function (select_queue=1) 171 * 172 * Default: select_queue=0 173 */ 174 static int select_queue; 175 module_param(select_queue, int, 0644); 176 MODULE_PARM_DESC(select_queue, 177 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 178 179 static struct dentry *cxgb4_debugfs_root; 180 181 LIST_HEAD(adapter_list); 182 DEFINE_MUTEX(uld_mutex); 183 184 static void link_report(struct net_device *dev) 185 { 186 if (!netif_carrier_ok(dev)) 187 netdev_info(dev, "link down\n"); 188 else { 189 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 190 191 const char *s; 192 const struct port_info *p = netdev_priv(dev); 193 194 switch (p->link_cfg.speed) { 195 case 100: 196 s = "100Mbps"; 197 break; 198 case 1000: 199 s = "1Gbps"; 200 break; 201 case 10000: 202 s = "10Gbps"; 203 break; 204 case 25000: 205 s = "25Gbps"; 206 break; 207 case 40000: 208 s = "40Gbps"; 209 break; 210 case 100000: 211 s = "100Gbps"; 212 break; 213 default: 214 pr_info("%s: unsupported speed: %d\n", 215 dev->name, p->link_cfg.speed); 216 return; 217 } 218 219 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 220 fc[p->link_cfg.fc]); 221 } 222 } 223 224 #ifdef CONFIG_CHELSIO_T4_DCB 225 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 226 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 227 { 228 struct port_info *pi = netdev_priv(dev); 229 struct adapter *adap = pi->adapter; 230 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 231 int i; 232 233 /* We use a simple mapping of Port TX Queue Index to DCB 234 * Priority when we're enabling DCB. 235 */ 236 for (i = 0; i < pi->nqsets; i++, txq++) { 237 u32 name, value; 238 int err; 239 240 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 241 FW_PARAMS_PARAM_X_V( 242 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 243 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 244 value = enable ? i : 0xffffffff; 245 246 /* Since we can be called while atomic (from "interrupt 247 * level") we need to issue the Set Parameters Commannd 248 * without sleeping (timeout < 0). 249 */ 250 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 251 &name, &value, 252 -FW_CMD_MAX_TIMEOUT); 253 254 if (err) 255 dev_err(adap->pdev_dev, 256 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 257 enable ? "set" : "unset", pi->port_id, i, -err); 258 else 259 txq->dcb_prio = value; 260 } 261 } 262 263 static int cxgb4_dcb_enabled(const struct net_device *dev) 264 { 265 struct port_info *pi = netdev_priv(dev); 266 267 if (!pi->dcb.enabled) 268 return 0; 269 270 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 271 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 272 } 273 #endif /* CONFIG_CHELSIO_T4_DCB */ 274 275 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 276 { 277 struct net_device *dev = adapter->port[port_id]; 278 279 /* Skip changes from disabled ports. */ 280 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 281 if (link_stat) 282 netif_carrier_on(dev); 283 else { 284 #ifdef CONFIG_CHELSIO_T4_DCB 285 if (cxgb4_dcb_enabled(dev)) { 286 cxgb4_dcb_reset(dev); 287 dcb_tx_queue_prio_enable(dev, false); 288 } 289 #endif /* CONFIG_CHELSIO_T4_DCB */ 290 netif_carrier_off(dev); 291 } 292 293 link_report(dev); 294 } 295 } 296 297 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 298 { 299 static const char *mod_str[] = { 300 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 301 }; 302 303 const struct net_device *dev = adap->port[port_id]; 304 const struct port_info *pi = netdev_priv(dev); 305 306 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 307 netdev_info(dev, "port module unplugged\n"); 308 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 309 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 310 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 311 netdev_info(dev, "%s: unsupported port module inserted\n", 312 dev->name); 313 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 314 netdev_info(dev, "%s: unknown port module inserted\n", 315 dev->name); 316 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 317 netdev_info(dev, "%s: transceiver module error\n", dev->name); 318 else 319 netdev_info(dev, "%s: unknown module type %d inserted\n", 320 dev->name, pi->mod_type); 321 } 322 323 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 324 module_param(dbfifo_int_thresh, int, 0644); 325 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 326 327 /* 328 * usecs to sleep while draining the dbfifo 329 */ 330 static int dbfifo_drain_delay = 1000; 331 module_param(dbfifo_drain_delay, int, 0644); 332 MODULE_PARM_DESC(dbfifo_drain_delay, 333 "usecs to sleep while draining the dbfifo"); 334 335 static inline int cxgb4_set_addr_hash(struct port_info *pi) 336 { 337 struct adapter *adap = pi->adapter; 338 u64 vec = 0; 339 bool ucast = false; 340 struct hash_mac_addr *entry; 341 342 /* Calculate the hash vector for the updated list and program it */ 343 list_for_each_entry(entry, &adap->mac_hlist, list) { 344 ucast |= is_unicast_ether_addr(entry->addr); 345 vec |= (1ULL << hash_mac_addr(entry->addr)); 346 } 347 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 348 vec, false); 349 } 350 351 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 352 { 353 struct port_info *pi = netdev_priv(netdev); 354 struct adapter *adap = pi->adapter; 355 int ret; 356 u64 mhash = 0; 357 u64 uhash = 0; 358 bool free = false; 359 bool ucast = is_unicast_ether_addr(mac_addr); 360 const u8 *maclist[1] = {mac_addr}; 361 struct hash_mac_addr *new_entry; 362 363 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 364 NULL, ucast ? &uhash : &mhash, false); 365 if (ret < 0) 366 goto out; 367 /* if hash != 0, then add the addr to hash addr list 368 * so on the end we will calculate the hash for the 369 * list and program it 370 */ 371 if (uhash || mhash) { 372 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 373 if (!new_entry) 374 return -ENOMEM; 375 ether_addr_copy(new_entry->addr, mac_addr); 376 list_add_tail(&new_entry->list, &adap->mac_hlist); 377 ret = cxgb4_set_addr_hash(pi); 378 } 379 out: 380 return ret < 0 ? ret : 0; 381 } 382 383 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 384 { 385 struct port_info *pi = netdev_priv(netdev); 386 struct adapter *adap = pi->adapter; 387 int ret; 388 const u8 *maclist[1] = {mac_addr}; 389 struct hash_mac_addr *entry, *tmp; 390 391 /* If the MAC address to be removed is in the hash addr 392 * list, delete it from the list and update hash vector 393 */ 394 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 395 if (ether_addr_equal(entry->addr, mac_addr)) { 396 list_del(&entry->list); 397 kfree(entry); 398 return cxgb4_set_addr_hash(pi); 399 } 400 } 401 402 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 403 return ret < 0 ? -EINVAL : 0; 404 } 405 406 /* 407 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 408 * If @mtu is -1 it is left unchanged. 409 */ 410 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 411 { 412 struct port_info *pi = netdev_priv(dev); 413 struct adapter *adapter = pi->adapter; 414 415 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 416 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 417 418 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 419 (dev->flags & IFF_PROMISC) ? 1 : 0, 420 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 421 sleep_ok); 422 } 423 424 /** 425 * link_start - enable a port 426 * @dev: the port to enable 427 * 428 * Performs the MAC and PHY actions needed to enable a port. 429 */ 430 static int link_start(struct net_device *dev) 431 { 432 int ret; 433 struct port_info *pi = netdev_priv(dev); 434 unsigned int mb = pi->adapter->pf; 435 436 /* 437 * We do not set address filters and promiscuity here, the stack does 438 * that step explicitly. 439 */ 440 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 441 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 442 if (ret == 0) { 443 ret = t4_change_mac(pi->adapter, mb, pi->viid, 444 pi->xact_addr_filt, dev->dev_addr, true, 445 true); 446 if (ret >= 0) { 447 pi->xact_addr_filt = ret; 448 ret = 0; 449 } 450 } 451 if (ret == 0) 452 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 453 &pi->link_cfg); 454 if (ret == 0) { 455 local_bh_disable(); 456 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true, 457 true, CXGB4_DCB_ENABLED); 458 local_bh_enable(); 459 } 460 461 return ret; 462 } 463 464 #ifdef CONFIG_CHELSIO_T4_DCB 465 /* Handle a Data Center Bridging update message from the firmware. */ 466 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 467 { 468 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 469 struct net_device *dev = adap->port[adap->chan_map[port]]; 470 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 471 int new_dcb_enabled; 472 473 cxgb4_dcb_handle_fw_update(adap, pcmd); 474 new_dcb_enabled = cxgb4_dcb_enabled(dev); 475 476 /* If the DCB has become enabled or disabled on the port then we're 477 * going to need to set up/tear down DCB Priority parameters for the 478 * TX Queues associated with the port. 479 */ 480 if (new_dcb_enabled != old_dcb_enabled) 481 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 482 } 483 #endif /* CONFIG_CHELSIO_T4_DCB */ 484 485 /* Response queue handler for the FW event queue. 486 */ 487 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 488 const struct pkt_gl *gl) 489 { 490 u8 opcode = ((const struct rss_header *)rsp)->opcode; 491 492 rsp++; /* skip RSS header */ 493 494 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 495 */ 496 if (unlikely(opcode == CPL_FW4_MSG && 497 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 498 rsp++; 499 opcode = ((const struct rss_header *)rsp)->opcode; 500 rsp++; 501 if (opcode != CPL_SGE_EGR_UPDATE) { 502 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 503 , opcode); 504 goto out; 505 } 506 } 507 508 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 509 const struct cpl_sge_egr_update *p = (void *)rsp; 510 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 511 struct sge_txq *txq; 512 513 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 514 txq->restarts++; 515 if (txq->q_type == CXGB4_TXQ_ETH) { 516 struct sge_eth_txq *eq; 517 518 eq = container_of(txq, struct sge_eth_txq, q); 519 netif_tx_wake_queue(eq->txq); 520 } else { 521 struct sge_uld_txq *oq; 522 523 oq = container_of(txq, struct sge_uld_txq, q); 524 tasklet_schedule(&oq->qresume_tsk); 525 } 526 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 527 const struct cpl_fw6_msg *p = (void *)rsp; 528 529 #ifdef CONFIG_CHELSIO_T4_DCB 530 const struct fw_port_cmd *pcmd = (const void *)p->data; 531 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 532 unsigned int action = 533 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 534 535 if (cmd == FW_PORT_CMD && 536 (action == FW_PORT_ACTION_GET_PORT_INFO || 537 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 538 int port = FW_PORT_CMD_PORTID_G( 539 be32_to_cpu(pcmd->op_to_portid)); 540 struct net_device *dev; 541 int dcbxdis, state_input; 542 543 dev = q->adap->port[q->adap->chan_map[port]]; 544 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 545 ? !!(pcmd->u.info.dcbxdis_pkd & 546 FW_PORT_CMD_DCBXDIS_F) 547 : !!(pcmd->u.info32.lstatus32_to_cbllen32 & 548 FW_PORT_CMD_DCBXDIS32_F)); 549 state_input = (dcbxdis 550 ? CXGB4_DCB_INPUT_FW_DISABLED 551 : CXGB4_DCB_INPUT_FW_ENABLED); 552 553 cxgb4_dcb_state_fsm(dev, state_input); 554 } 555 556 if (cmd == FW_PORT_CMD && 557 action == FW_PORT_ACTION_L2_DCB_CFG) 558 dcb_rpl(q->adap, pcmd); 559 else 560 #endif 561 if (p->type == 0) 562 t4_handle_fw_rpl(q->adap, p->data); 563 } else if (opcode == CPL_L2T_WRITE_RPL) { 564 const struct cpl_l2t_write_rpl *p = (void *)rsp; 565 566 do_l2t_write_rpl(q->adap, p); 567 } else if (opcode == CPL_SMT_WRITE_RPL) { 568 const struct cpl_smt_write_rpl *p = (void *)rsp; 569 570 do_smt_write_rpl(q->adap, p); 571 } else if (opcode == CPL_SET_TCB_RPL) { 572 const struct cpl_set_tcb_rpl *p = (void *)rsp; 573 574 filter_rpl(q->adap, p); 575 } else if (opcode == CPL_ACT_OPEN_RPL) { 576 const struct cpl_act_open_rpl *p = (void *)rsp; 577 578 hash_filter_rpl(q->adap, p); 579 } else if (opcode == CPL_ABORT_RPL_RSS) { 580 const struct cpl_abort_rpl_rss *p = (void *)rsp; 581 582 hash_del_filter_rpl(q->adap, p); 583 } else 584 dev_err(q->adap->pdev_dev, 585 "unexpected CPL %#x on FW event queue\n", opcode); 586 out: 587 return 0; 588 } 589 590 static void disable_msi(struct adapter *adapter) 591 { 592 if (adapter->flags & USING_MSIX) { 593 pci_disable_msix(adapter->pdev); 594 adapter->flags &= ~USING_MSIX; 595 } else if (adapter->flags & USING_MSI) { 596 pci_disable_msi(adapter->pdev); 597 adapter->flags &= ~USING_MSI; 598 } 599 } 600 601 /* 602 * Interrupt handler for non-data events used with MSI-X. 603 */ 604 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 605 { 606 struct adapter *adap = cookie; 607 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 608 609 if (v & PFSW_F) { 610 adap->swintr = 1; 611 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 612 } 613 if (adap->flags & MASTER_PF) 614 t4_slow_intr_handler(adap); 615 return IRQ_HANDLED; 616 } 617 618 /* 619 * Name the MSI-X interrupts. 620 */ 621 static void name_msix_vecs(struct adapter *adap) 622 { 623 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 624 625 /* non-data interrupts */ 626 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 627 628 /* FW events */ 629 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 630 adap->port[0]->name); 631 632 /* Ethernet queues */ 633 for_each_port(adap, j) { 634 struct net_device *d = adap->port[j]; 635 const struct port_info *pi = netdev_priv(d); 636 637 for (i = 0; i < pi->nqsets; i++, msi_idx++) 638 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 639 d->name, i); 640 } 641 } 642 643 static int request_msix_queue_irqs(struct adapter *adap) 644 { 645 struct sge *s = &adap->sge; 646 int err, ethqidx; 647 int msi_index = 2; 648 649 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 650 adap->msix_info[1].desc, &s->fw_evtq); 651 if (err) 652 return err; 653 654 for_each_ethrxq(s, ethqidx) { 655 err = request_irq(adap->msix_info[msi_index].vec, 656 t4_sge_intr_msix, 0, 657 adap->msix_info[msi_index].desc, 658 &s->ethrxq[ethqidx].rspq); 659 if (err) 660 goto unwind; 661 msi_index++; 662 } 663 return 0; 664 665 unwind: 666 while (--ethqidx >= 0) 667 free_irq(adap->msix_info[--msi_index].vec, 668 &s->ethrxq[ethqidx].rspq); 669 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 670 return err; 671 } 672 673 static void free_msix_queue_irqs(struct adapter *adap) 674 { 675 int i, msi_index = 2; 676 struct sge *s = &adap->sge; 677 678 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 679 for_each_ethrxq(s, i) 680 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 681 } 682 683 /** 684 * cxgb4_write_rss - write the RSS table for a given port 685 * @pi: the port 686 * @queues: array of queue indices for RSS 687 * 688 * Sets up the portion of the HW RSS table for the port's VI to distribute 689 * packets to the Rx queues in @queues. 690 * Should never be called before setting up sge eth rx queues 691 */ 692 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 693 { 694 u16 *rss; 695 int i, err; 696 struct adapter *adapter = pi->adapter; 697 const struct sge_eth_rxq *rxq; 698 699 rxq = &adapter->sge.ethrxq[pi->first_qset]; 700 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 701 if (!rss) 702 return -ENOMEM; 703 704 /* map the queue indices to queue ids */ 705 for (i = 0; i < pi->rss_size; i++, queues++) 706 rss[i] = rxq[*queues].rspq.abs_id; 707 708 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 709 pi->rss_size, rss, pi->rss_size); 710 /* If Tunnel All Lookup isn't specified in the global RSS 711 * Configuration, then we need to specify a default Ingress 712 * Queue for any ingress packets which aren't hashed. We'll 713 * use our first ingress queue ... 714 */ 715 if (!err) 716 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 717 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 718 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 719 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 720 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 721 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 722 rss[0]); 723 kfree(rss); 724 return err; 725 } 726 727 /** 728 * setup_rss - configure RSS 729 * @adap: the adapter 730 * 731 * Sets up RSS for each port. 732 */ 733 static int setup_rss(struct adapter *adap) 734 { 735 int i, j, err; 736 737 for_each_port(adap, i) { 738 const struct port_info *pi = adap2pinfo(adap, i); 739 740 /* Fill default values with equal distribution */ 741 for (j = 0; j < pi->rss_size; j++) 742 pi->rss[j] = j % pi->nqsets; 743 744 err = cxgb4_write_rss(pi, pi->rss); 745 if (err) 746 return err; 747 } 748 return 0; 749 } 750 751 /* 752 * Return the channel of the ingress queue with the given qid. 753 */ 754 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 755 { 756 qid -= p->ingr_start; 757 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 758 } 759 760 /* 761 * Wait until all NAPI handlers are descheduled. 762 */ 763 static void quiesce_rx(struct adapter *adap) 764 { 765 int i; 766 767 for (i = 0; i < adap->sge.ingr_sz; i++) { 768 struct sge_rspq *q = adap->sge.ingr_map[i]; 769 770 if (q && q->handler) 771 napi_disable(&q->napi); 772 } 773 } 774 775 /* Disable interrupt and napi handler */ 776 static void disable_interrupts(struct adapter *adap) 777 { 778 if (adap->flags & FULL_INIT_DONE) { 779 t4_intr_disable(adap); 780 if (adap->flags & USING_MSIX) { 781 free_msix_queue_irqs(adap); 782 free_irq(adap->msix_info[0].vec, adap); 783 } else { 784 free_irq(adap->pdev->irq, adap); 785 } 786 quiesce_rx(adap); 787 } 788 } 789 790 /* 791 * Enable NAPI scheduling and interrupt generation for all Rx queues. 792 */ 793 static void enable_rx(struct adapter *adap) 794 { 795 int i; 796 797 for (i = 0; i < adap->sge.ingr_sz; i++) { 798 struct sge_rspq *q = adap->sge.ingr_map[i]; 799 800 if (!q) 801 continue; 802 if (q->handler) 803 napi_enable(&q->napi); 804 805 /* 0-increment GTS to start the timer and enable interrupts */ 806 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 807 SEINTARM_V(q->intr_params) | 808 INGRESSQID_V(q->cntxt_id)); 809 } 810 } 811 812 813 static int setup_fw_sge_queues(struct adapter *adap) 814 { 815 struct sge *s = &adap->sge; 816 int err = 0; 817 818 bitmap_zero(s->starving_fl, s->egr_sz); 819 bitmap_zero(s->txq_maperr, s->egr_sz); 820 821 if (adap->flags & USING_MSIX) 822 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 823 else { 824 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 825 NULL, NULL, NULL, -1); 826 if (err) 827 return err; 828 adap->msi_idx = -((int)s->intrq.abs_id + 1); 829 } 830 831 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 832 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 833 if (err) 834 t4_free_sge_resources(adap); 835 return err; 836 } 837 838 /** 839 * setup_sge_queues - configure SGE Tx/Rx/response queues 840 * @adap: the adapter 841 * 842 * Determines how many sets of SGE queues to use and initializes them. 843 * We support multiple queue sets per port if we have MSI-X, otherwise 844 * just one queue set per port. 845 */ 846 static int setup_sge_queues(struct adapter *adap) 847 { 848 int err, i, j; 849 struct sge *s = &adap->sge; 850 struct sge_uld_rxq_info *rxq_info = NULL; 851 unsigned int cmplqid = 0; 852 853 if (is_uld(adap)) 854 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 855 856 for_each_port(adap, i) { 857 struct net_device *dev = adap->port[i]; 858 struct port_info *pi = netdev_priv(dev); 859 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 860 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 861 862 for (j = 0; j < pi->nqsets; j++, q++) { 863 if (adap->msi_idx > 0) 864 adap->msi_idx++; 865 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 866 adap->msi_idx, &q->fl, 867 t4_ethrx_handler, 868 NULL, 869 t4_get_tp_ch_map(adap, 870 pi->tx_chan)); 871 if (err) 872 goto freeout; 873 q->rspq.idx = j; 874 memset(&q->stats, 0, sizeof(q->stats)); 875 } 876 for (j = 0; j < pi->nqsets; j++, t++) { 877 err = t4_sge_alloc_eth_txq(adap, t, dev, 878 netdev_get_tx_queue(dev, j), 879 s->fw_evtq.cntxt_id); 880 if (err) 881 goto freeout; 882 } 883 } 884 885 for_each_port(adap, i) { 886 /* Note that cmplqid below is 0 if we don't 887 * have RDMA queues, and that's the right value. 888 */ 889 if (rxq_info) 890 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 891 892 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 893 s->fw_evtq.cntxt_id, cmplqid); 894 if (err) 895 goto freeout; 896 } 897 898 if (!is_t4(adap->params.chip)) { 899 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 900 netdev_get_tx_queue(adap->port[0], 0) 901 , s->fw_evtq.cntxt_id); 902 if (err) 903 goto freeout; 904 } 905 906 t4_write_reg(adap, is_t4(adap->params.chip) ? 907 MPS_TRC_RSS_CONTROL_A : 908 MPS_T5_TRC_RSS_CONTROL_A, 909 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 910 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 911 return 0; 912 freeout: 913 t4_free_sge_resources(adap); 914 return err; 915 } 916 917 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 918 void *accel_priv, select_queue_fallback_t fallback) 919 { 920 int txq; 921 922 #ifdef CONFIG_CHELSIO_T4_DCB 923 /* If a Data Center Bridging has been successfully negotiated on this 924 * link then we'll use the skb's priority to map it to a TX Queue. 925 * The skb's priority is determined via the VLAN Tag Priority Code 926 * Point field. 927 */ 928 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 929 u16 vlan_tci; 930 int err; 931 932 err = vlan_get_tag(skb, &vlan_tci); 933 if (unlikely(err)) { 934 if (net_ratelimit()) 935 netdev_warn(dev, 936 "TX Packet without VLAN Tag on DCB Link\n"); 937 txq = 0; 938 } else { 939 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 940 #ifdef CONFIG_CHELSIO_T4_FCOE 941 if (skb->protocol == htons(ETH_P_FCOE)) 942 txq = skb->priority & 0x7; 943 #endif /* CONFIG_CHELSIO_T4_FCOE */ 944 } 945 return txq; 946 } 947 #endif /* CONFIG_CHELSIO_T4_DCB */ 948 949 if (select_queue) { 950 txq = (skb_rx_queue_recorded(skb) 951 ? skb_get_rx_queue(skb) 952 : smp_processor_id()); 953 954 while (unlikely(txq >= dev->real_num_tx_queues)) 955 txq -= dev->real_num_tx_queues; 956 957 return txq; 958 } 959 960 return fallback(dev, skb) % dev->real_num_tx_queues; 961 } 962 963 static int closest_timer(const struct sge *s, int time) 964 { 965 int i, delta, match = 0, min_delta = INT_MAX; 966 967 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 968 delta = time - s->timer_val[i]; 969 if (delta < 0) 970 delta = -delta; 971 if (delta < min_delta) { 972 min_delta = delta; 973 match = i; 974 } 975 } 976 return match; 977 } 978 979 static int closest_thres(const struct sge *s, int thres) 980 { 981 int i, delta, match = 0, min_delta = INT_MAX; 982 983 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 984 delta = thres - s->counter_val[i]; 985 if (delta < 0) 986 delta = -delta; 987 if (delta < min_delta) { 988 min_delta = delta; 989 match = i; 990 } 991 } 992 return match; 993 } 994 995 /** 996 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 997 * @q: the Rx queue 998 * @us: the hold-off time in us, or 0 to disable timer 999 * @cnt: the hold-off packet count, or 0 to disable counter 1000 * 1001 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1002 * one of the two needs to be enabled for the queue to generate interrupts. 1003 */ 1004 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1005 unsigned int us, unsigned int cnt) 1006 { 1007 struct adapter *adap = q->adap; 1008 1009 if ((us | cnt) == 0) 1010 cnt = 1; 1011 1012 if (cnt) { 1013 int err; 1014 u32 v, new_idx; 1015 1016 new_idx = closest_thres(&adap->sge, cnt); 1017 if (q->desc && q->pktcnt_idx != new_idx) { 1018 /* the queue has already been created, update it */ 1019 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1020 FW_PARAMS_PARAM_X_V( 1021 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1022 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1023 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1024 &v, &new_idx); 1025 if (err) 1026 return err; 1027 } 1028 q->pktcnt_idx = new_idx; 1029 } 1030 1031 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1032 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1033 return 0; 1034 } 1035 1036 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1037 { 1038 const struct port_info *pi = netdev_priv(dev); 1039 netdev_features_t changed = dev->features ^ features; 1040 int err; 1041 1042 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1043 return 0; 1044 1045 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1046 -1, -1, -1, 1047 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1048 if (unlikely(err)) 1049 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1050 return err; 1051 } 1052 1053 static int setup_debugfs(struct adapter *adap) 1054 { 1055 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1056 return -1; 1057 1058 #ifdef CONFIG_DEBUG_FS 1059 t4_setup_debugfs(adap); 1060 #endif 1061 return 0; 1062 } 1063 1064 /* 1065 * upper-layer driver support 1066 */ 1067 1068 /* 1069 * Allocate an active-open TID and set it to the supplied value. 1070 */ 1071 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1072 { 1073 int atid = -1; 1074 1075 spin_lock_bh(&t->atid_lock); 1076 if (t->afree) { 1077 union aopen_entry *p = t->afree; 1078 1079 atid = (p - t->atid_tab) + t->atid_base; 1080 t->afree = p->next; 1081 p->data = data; 1082 t->atids_in_use++; 1083 } 1084 spin_unlock_bh(&t->atid_lock); 1085 return atid; 1086 } 1087 EXPORT_SYMBOL(cxgb4_alloc_atid); 1088 1089 /* 1090 * Release an active-open TID. 1091 */ 1092 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1093 { 1094 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1095 1096 spin_lock_bh(&t->atid_lock); 1097 p->next = t->afree; 1098 t->afree = p; 1099 t->atids_in_use--; 1100 spin_unlock_bh(&t->atid_lock); 1101 } 1102 EXPORT_SYMBOL(cxgb4_free_atid); 1103 1104 /* 1105 * Allocate a server TID and set it to the supplied value. 1106 */ 1107 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1108 { 1109 int stid; 1110 1111 spin_lock_bh(&t->stid_lock); 1112 if (family == PF_INET) { 1113 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1114 if (stid < t->nstids) 1115 __set_bit(stid, t->stid_bmap); 1116 else 1117 stid = -1; 1118 } else { 1119 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1120 if (stid < 0) 1121 stid = -1; 1122 } 1123 if (stid >= 0) { 1124 t->stid_tab[stid].data = data; 1125 stid += t->stid_base; 1126 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1127 * This is equivalent to 4 TIDs. With CLIP enabled it 1128 * needs 2 TIDs. 1129 */ 1130 if (family == PF_INET6) { 1131 t->stids_in_use += 2; 1132 t->v6_stids_in_use += 2; 1133 } else { 1134 t->stids_in_use++; 1135 } 1136 } 1137 spin_unlock_bh(&t->stid_lock); 1138 return stid; 1139 } 1140 EXPORT_SYMBOL(cxgb4_alloc_stid); 1141 1142 /* Allocate a server filter TID and set it to the supplied value. 1143 */ 1144 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1145 { 1146 int stid; 1147 1148 spin_lock_bh(&t->stid_lock); 1149 if (family == PF_INET) { 1150 stid = find_next_zero_bit(t->stid_bmap, 1151 t->nstids + t->nsftids, t->nstids); 1152 if (stid < (t->nstids + t->nsftids)) 1153 __set_bit(stid, t->stid_bmap); 1154 else 1155 stid = -1; 1156 } else { 1157 stid = -1; 1158 } 1159 if (stid >= 0) { 1160 t->stid_tab[stid].data = data; 1161 stid -= t->nstids; 1162 stid += t->sftid_base; 1163 t->sftids_in_use++; 1164 } 1165 spin_unlock_bh(&t->stid_lock); 1166 return stid; 1167 } 1168 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1169 1170 /* Release a server TID. 1171 */ 1172 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1173 { 1174 /* Is it a server filter TID? */ 1175 if (t->nsftids && (stid >= t->sftid_base)) { 1176 stid -= t->sftid_base; 1177 stid += t->nstids; 1178 } else { 1179 stid -= t->stid_base; 1180 } 1181 1182 spin_lock_bh(&t->stid_lock); 1183 if (family == PF_INET) 1184 __clear_bit(stid, t->stid_bmap); 1185 else 1186 bitmap_release_region(t->stid_bmap, stid, 1); 1187 t->stid_tab[stid].data = NULL; 1188 if (stid < t->nstids) { 1189 if (family == PF_INET6) { 1190 t->stids_in_use -= 2; 1191 t->v6_stids_in_use -= 2; 1192 } else { 1193 t->stids_in_use--; 1194 } 1195 } else { 1196 t->sftids_in_use--; 1197 } 1198 1199 spin_unlock_bh(&t->stid_lock); 1200 } 1201 EXPORT_SYMBOL(cxgb4_free_stid); 1202 1203 /* 1204 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1205 */ 1206 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1207 unsigned int tid) 1208 { 1209 struct cpl_tid_release *req; 1210 1211 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1212 req = __skb_put(skb, sizeof(*req)); 1213 INIT_TP_WR(req, tid); 1214 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1215 } 1216 1217 /* 1218 * Queue a TID release request and if necessary schedule a work queue to 1219 * process it. 1220 */ 1221 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1222 unsigned int tid) 1223 { 1224 void **p = &t->tid_tab[tid]; 1225 struct adapter *adap = container_of(t, struct adapter, tids); 1226 1227 spin_lock_bh(&adap->tid_release_lock); 1228 *p = adap->tid_release_head; 1229 /* Low 2 bits encode the Tx channel number */ 1230 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1231 if (!adap->tid_release_task_busy) { 1232 adap->tid_release_task_busy = true; 1233 queue_work(adap->workq, &adap->tid_release_task); 1234 } 1235 spin_unlock_bh(&adap->tid_release_lock); 1236 } 1237 1238 /* 1239 * Process the list of pending TID release requests. 1240 */ 1241 static void process_tid_release_list(struct work_struct *work) 1242 { 1243 struct sk_buff *skb; 1244 struct adapter *adap; 1245 1246 adap = container_of(work, struct adapter, tid_release_task); 1247 1248 spin_lock_bh(&adap->tid_release_lock); 1249 while (adap->tid_release_head) { 1250 void **p = adap->tid_release_head; 1251 unsigned int chan = (uintptr_t)p & 3; 1252 p = (void *)p - chan; 1253 1254 adap->tid_release_head = *p; 1255 *p = NULL; 1256 spin_unlock_bh(&adap->tid_release_lock); 1257 1258 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1259 GFP_KERNEL))) 1260 schedule_timeout_uninterruptible(1); 1261 1262 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1263 t4_ofld_send(adap, skb); 1264 spin_lock_bh(&adap->tid_release_lock); 1265 } 1266 adap->tid_release_task_busy = false; 1267 spin_unlock_bh(&adap->tid_release_lock); 1268 } 1269 1270 /* 1271 * Release a TID and inform HW. If we are unable to allocate the release 1272 * message we defer to a work queue. 1273 */ 1274 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1275 unsigned short family) 1276 { 1277 struct sk_buff *skb; 1278 struct adapter *adap = container_of(t, struct adapter, tids); 1279 1280 WARN_ON(tid >= t->ntids); 1281 1282 if (t->tid_tab[tid]) { 1283 t->tid_tab[tid] = NULL; 1284 atomic_dec(&t->conns_in_use); 1285 if (t->hash_base && (tid >= t->hash_base)) { 1286 if (family == AF_INET6) 1287 atomic_sub(2, &t->hash_tids_in_use); 1288 else 1289 atomic_dec(&t->hash_tids_in_use); 1290 } else { 1291 if (family == AF_INET6) 1292 atomic_sub(2, &t->tids_in_use); 1293 else 1294 atomic_dec(&t->tids_in_use); 1295 } 1296 } 1297 1298 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1299 if (likely(skb)) { 1300 mk_tid_release(skb, chan, tid); 1301 t4_ofld_send(adap, skb); 1302 } else 1303 cxgb4_queue_tid_release(t, chan, tid); 1304 } 1305 EXPORT_SYMBOL(cxgb4_remove_tid); 1306 1307 /* 1308 * Allocate and initialize the TID tables. Returns 0 on success. 1309 */ 1310 static int tid_init(struct tid_info *t) 1311 { 1312 struct adapter *adap = container_of(t, struct adapter, tids); 1313 unsigned int max_ftids = t->nftids + t->nsftids; 1314 unsigned int natids = t->natids; 1315 unsigned int stid_bmap_size; 1316 unsigned int ftid_bmap_size; 1317 size_t size; 1318 1319 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1320 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1321 size = t->ntids * sizeof(*t->tid_tab) + 1322 natids * sizeof(*t->atid_tab) + 1323 t->nstids * sizeof(*t->stid_tab) + 1324 t->nsftids * sizeof(*t->stid_tab) + 1325 stid_bmap_size * sizeof(long) + 1326 max_ftids * sizeof(*t->ftid_tab) + 1327 ftid_bmap_size * sizeof(long); 1328 1329 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1330 if (!t->tid_tab) 1331 return -ENOMEM; 1332 1333 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1334 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1335 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1336 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1337 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1338 spin_lock_init(&t->stid_lock); 1339 spin_lock_init(&t->atid_lock); 1340 spin_lock_init(&t->ftid_lock); 1341 1342 t->stids_in_use = 0; 1343 t->v6_stids_in_use = 0; 1344 t->sftids_in_use = 0; 1345 t->afree = NULL; 1346 t->atids_in_use = 0; 1347 atomic_set(&t->tids_in_use, 0); 1348 atomic_set(&t->conns_in_use, 0); 1349 atomic_set(&t->hash_tids_in_use, 0); 1350 1351 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1352 if (natids) { 1353 while (--natids) 1354 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1355 t->afree = t->atid_tab; 1356 } 1357 1358 if (is_offload(adap)) { 1359 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1360 /* Reserve stid 0 for T4/T5 adapters */ 1361 if (!t->stid_base && 1362 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1363 __set_bit(0, t->stid_bmap); 1364 } 1365 1366 bitmap_zero(t->ftid_bmap, t->nftids); 1367 return 0; 1368 } 1369 1370 /** 1371 * cxgb4_create_server - create an IP server 1372 * @dev: the device 1373 * @stid: the server TID 1374 * @sip: local IP address to bind server to 1375 * @sport: the server's TCP port 1376 * @queue: queue to direct messages from this server to 1377 * 1378 * Create an IP server for the given port and address. 1379 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1380 */ 1381 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1382 __be32 sip, __be16 sport, __be16 vlan, 1383 unsigned int queue) 1384 { 1385 unsigned int chan; 1386 struct sk_buff *skb; 1387 struct adapter *adap; 1388 struct cpl_pass_open_req *req; 1389 int ret; 1390 1391 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1392 if (!skb) 1393 return -ENOMEM; 1394 1395 adap = netdev2adap(dev); 1396 req = __skb_put(skb, sizeof(*req)); 1397 INIT_TP_WR(req, 0); 1398 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1399 req->local_port = sport; 1400 req->peer_port = htons(0); 1401 req->local_ip = sip; 1402 req->peer_ip = htonl(0); 1403 chan = rxq_to_chan(&adap->sge, queue); 1404 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1405 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1406 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1407 ret = t4_mgmt_tx(adap, skb); 1408 return net_xmit_eval(ret); 1409 } 1410 EXPORT_SYMBOL(cxgb4_create_server); 1411 1412 /* cxgb4_create_server6 - create an IPv6 server 1413 * @dev: the device 1414 * @stid: the server TID 1415 * @sip: local IPv6 address to bind server to 1416 * @sport: the server's TCP port 1417 * @queue: queue to direct messages from this server to 1418 * 1419 * Create an IPv6 server for the given port and address. 1420 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1421 */ 1422 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1423 const struct in6_addr *sip, __be16 sport, 1424 unsigned int queue) 1425 { 1426 unsigned int chan; 1427 struct sk_buff *skb; 1428 struct adapter *adap; 1429 struct cpl_pass_open_req6 *req; 1430 int ret; 1431 1432 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1433 if (!skb) 1434 return -ENOMEM; 1435 1436 adap = netdev2adap(dev); 1437 req = __skb_put(skb, sizeof(*req)); 1438 INIT_TP_WR(req, 0); 1439 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1440 req->local_port = sport; 1441 req->peer_port = htons(0); 1442 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1443 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1444 req->peer_ip_hi = cpu_to_be64(0); 1445 req->peer_ip_lo = cpu_to_be64(0); 1446 chan = rxq_to_chan(&adap->sge, queue); 1447 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1448 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1449 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1450 ret = t4_mgmt_tx(adap, skb); 1451 return net_xmit_eval(ret); 1452 } 1453 EXPORT_SYMBOL(cxgb4_create_server6); 1454 1455 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1456 unsigned int queue, bool ipv6) 1457 { 1458 struct sk_buff *skb; 1459 struct adapter *adap; 1460 struct cpl_close_listsvr_req *req; 1461 int ret; 1462 1463 adap = netdev2adap(dev); 1464 1465 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1466 if (!skb) 1467 return -ENOMEM; 1468 1469 req = __skb_put(skb, sizeof(*req)); 1470 INIT_TP_WR(req, 0); 1471 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1472 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1473 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1474 ret = t4_mgmt_tx(adap, skb); 1475 return net_xmit_eval(ret); 1476 } 1477 EXPORT_SYMBOL(cxgb4_remove_server); 1478 1479 /** 1480 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1481 * @mtus: the HW MTU table 1482 * @mtu: the target MTU 1483 * @idx: index of selected entry in the MTU table 1484 * 1485 * Returns the index and the value in the HW MTU table that is closest to 1486 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1487 * table, in which case that smallest available value is selected. 1488 */ 1489 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1490 unsigned int *idx) 1491 { 1492 unsigned int i = 0; 1493 1494 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1495 ++i; 1496 if (idx) 1497 *idx = i; 1498 return mtus[i]; 1499 } 1500 EXPORT_SYMBOL(cxgb4_best_mtu); 1501 1502 /** 1503 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1504 * @mtus: the HW MTU table 1505 * @header_size: Header Size 1506 * @data_size_max: maximum Data Segment Size 1507 * @data_size_align: desired Data Segment Size Alignment (2^N) 1508 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1509 * 1510 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1511 * MTU Table based solely on a Maximum MTU parameter, we break that 1512 * parameter up into a Header Size and Maximum Data Segment Size, and 1513 * provide a desired Data Segment Size Alignment. If we find an MTU in 1514 * the Hardware MTU Table which will result in a Data Segment Size with 1515 * the requested alignment _and_ that MTU isn't "too far" from the 1516 * closest MTU, then we'll return that rather than the closest MTU. 1517 */ 1518 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1519 unsigned short header_size, 1520 unsigned short data_size_max, 1521 unsigned short data_size_align, 1522 unsigned int *mtu_idxp) 1523 { 1524 unsigned short max_mtu = header_size + data_size_max; 1525 unsigned short data_size_align_mask = data_size_align - 1; 1526 int mtu_idx, aligned_mtu_idx; 1527 1528 /* Scan the MTU Table till we find an MTU which is larger than our 1529 * Maximum MTU or we reach the end of the table. Along the way, 1530 * record the last MTU found, if any, which will result in a Data 1531 * Segment Length matching the requested alignment. 1532 */ 1533 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1534 unsigned short data_size = mtus[mtu_idx] - header_size; 1535 1536 /* If this MTU minus the Header Size would result in a 1537 * Data Segment Size of the desired alignment, remember it. 1538 */ 1539 if ((data_size & data_size_align_mask) == 0) 1540 aligned_mtu_idx = mtu_idx; 1541 1542 /* If we're not at the end of the Hardware MTU Table and the 1543 * next element is larger than our Maximum MTU, drop out of 1544 * the loop. 1545 */ 1546 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1547 break; 1548 } 1549 1550 /* If we fell out of the loop because we ran to the end of the table, 1551 * then we just have to use the last [largest] entry. 1552 */ 1553 if (mtu_idx == NMTUS) 1554 mtu_idx--; 1555 1556 /* If we found an MTU which resulted in the requested Data Segment 1557 * Length alignment and that's "not far" from the largest MTU which is 1558 * less than or equal to the maximum MTU, then use that. 1559 */ 1560 if (aligned_mtu_idx >= 0 && 1561 mtu_idx - aligned_mtu_idx <= 1) 1562 mtu_idx = aligned_mtu_idx; 1563 1564 /* If the caller has passed in an MTU Index pointer, pass the 1565 * MTU Index back. Return the MTU value. 1566 */ 1567 if (mtu_idxp) 1568 *mtu_idxp = mtu_idx; 1569 return mtus[mtu_idx]; 1570 } 1571 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1572 1573 /** 1574 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1575 * @chip: chip type 1576 * @viid: VI id of the given port 1577 * 1578 * Return the SMT index for this VI. 1579 */ 1580 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1581 { 1582 /* In T4/T5, SMT contains 256 SMAC entries organized in 1583 * 128 rows of 2 entries each. 1584 * In T6, SMT contains 256 SMAC entries in 256 rows. 1585 * TODO: The below code needs to be updated when we add support 1586 * for 256 VFs. 1587 */ 1588 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1589 return ((viid & 0x7f) << 1); 1590 else 1591 return (viid & 0x7f); 1592 } 1593 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1594 1595 /** 1596 * cxgb4_port_chan - get the HW channel of a port 1597 * @dev: the net device for the port 1598 * 1599 * Return the HW Tx channel of the given port. 1600 */ 1601 unsigned int cxgb4_port_chan(const struct net_device *dev) 1602 { 1603 return netdev2pinfo(dev)->tx_chan; 1604 } 1605 EXPORT_SYMBOL(cxgb4_port_chan); 1606 1607 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1608 { 1609 struct adapter *adap = netdev2adap(dev); 1610 u32 v1, v2, lp_count, hp_count; 1611 1612 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1613 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1614 if (is_t4(adap->params.chip)) { 1615 lp_count = LP_COUNT_G(v1); 1616 hp_count = HP_COUNT_G(v1); 1617 } else { 1618 lp_count = LP_COUNT_T5_G(v1); 1619 hp_count = HP_COUNT_T5_G(v2); 1620 } 1621 return lpfifo ? lp_count : hp_count; 1622 } 1623 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1624 1625 /** 1626 * cxgb4_port_viid - get the VI id of a port 1627 * @dev: the net device for the port 1628 * 1629 * Return the VI id of the given port. 1630 */ 1631 unsigned int cxgb4_port_viid(const struct net_device *dev) 1632 { 1633 return netdev2pinfo(dev)->viid; 1634 } 1635 EXPORT_SYMBOL(cxgb4_port_viid); 1636 1637 /** 1638 * cxgb4_port_idx - get the index of a port 1639 * @dev: the net device for the port 1640 * 1641 * Return the index of the given port. 1642 */ 1643 unsigned int cxgb4_port_idx(const struct net_device *dev) 1644 { 1645 return netdev2pinfo(dev)->port_id; 1646 } 1647 EXPORT_SYMBOL(cxgb4_port_idx); 1648 1649 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1650 struct tp_tcp_stats *v6) 1651 { 1652 struct adapter *adap = pci_get_drvdata(pdev); 1653 1654 spin_lock(&adap->stats_lock); 1655 t4_tp_get_tcp_stats(adap, v4, v6, false); 1656 spin_unlock(&adap->stats_lock); 1657 } 1658 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1659 1660 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1661 const unsigned int *pgsz_order) 1662 { 1663 struct adapter *adap = netdev2adap(dev); 1664 1665 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1666 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1667 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1668 HPZ3_V(pgsz_order[3])); 1669 } 1670 EXPORT_SYMBOL(cxgb4_iscsi_init); 1671 1672 int cxgb4_flush_eq_cache(struct net_device *dev) 1673 { 1674 struct adapter *adap = netdev2adap(dev); 1675 1676 return t4_sge_ctxt_flush(adap, adap->mbox); 1677 } 1678 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1679 1680 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1681 { 1682 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1683 __be64 indices; 1684 int ret; 1685 1686 spin_lock(&adap->win0_lock); 1687 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1688 sizeof(indices), (__be32 *)&indices, 1689 T4_MEMORY_READ); 1690 spin_unlock(&adap->win0_lock); 1691 if (!ret) { 1692 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1693 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1694 } 1695 return ret; 1696 } 1697 1698 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1699 u16 size) 1700 { 1701 struct adapter *adap = netdev2adap(dev); 1702 u16 hw_pidx, hw_cidx; 1703 int ret; 1704 1705 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1706 if (ret) 1707 goto out; 1708 1709 if (pidx != hw_pidx) { 1710 u16 delta; 1711 u32 val; 1712 1713 if (pidx >= hw_pidx) 1714 delta = pidx - hw_pidx; 1715 else 1716 delta = size - hw_pidx + pidx; 1717 1718 if (is_t4(adap->params.chip)) 1719 val = PIDX_V(delta); 1720 else 1721 val = PIDX_T5_V(delta); 1722 wmb(); 1723 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1724 QID_V(qid) | val); 1725 } 1726 out: 1727 return ret; 1728 } 1729 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1730 1731 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1732 { 1733 struct adapter *adap; 1734 u32 offset, memtype, memaddr; 1735 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1736 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1737 int ret; 1738 1739 adap = netdev2adap(dev); 1740 1741 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1742 1743 /* Figure out where the offset lands in the Memory Type/Address scheme. 1744 * This code assumes that the memory is laid out starting at offset 0 1745 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1746 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1747 * MC0, and some have both MC0 and MC1. 1748 */ 1749 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1750 edc0_size = EDRAM0_SIZE_G(size) << 20; 1751 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1752 edc1_size = EDRAM1_SIZE_G(size) << 20; 1753 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1754 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1755 1756 edc0_end = edc0_size; 1757 edc1_end = edc0_end + edc1_size; 1758 mc0_end = edc1_end + mc0_size; 1759 1760 if (offset < edc0_end) { 1761 memtype = MEM_EDC0; 1762 memaddr = offset; 1763 } else if (offset < edc1_end) { 1764 memtype = MEM_EDC1; 1765 memaddr = offset - edc0_end; 1766 } else { 1767 if (offset < mc0_end) { 1768 memtype = MEM_MC0; 1769 memaddr = offset - edc1_end; 1770 } else if (is_t5(adap->params.chip)) { 1771 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1772 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1773 mc1_end = mc0_end + mc1_size; 1774 if (offset < mc1_end) { 1775 memtype = MEM_MC1; 1776 memaddr = offset - mc0_end; 1777 } else { 1778 /* offset beyond the end of any memory */ 1779 goto err; 1780 } 1781 } else { 1782 /* T4/T6 only has a single memory channel */ 1783 goto err; 1784 } 1785 } 1786 1787 spin_lock(&adap->win0_lock); 1788 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1789 spin_unlock(&adap->win0_lock); 1790 return ret; 1791 1792 err: 1793 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1794 stag, offset); 1795 return -EINVAL; 1796 } 1797 EXPORT_SYMBOL(cxgb4_read_tpte); 1798 1799 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1800 { 1801 u32 hi, lo; 1802 struct adapter *adap; 1803 1804 adap = netdev2adap(dev); 1805 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1806 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1807 1808 return ((u64)hi << 32) | (u64)lo; 1809 } 1810 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1811 1812 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1813 unsigned int qid, 1814 enum cxgb4_bar2_qtype qtype, 1815 int user, 1816 u64 *pbar2_qoffset, 1817 unsigned int *pbar2_qid) 1818 { 1819 return t4_bar2_sge_qregs(netdev2adap(dev), 1820 qid, 1821 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1822 ? T4_BAR2_QTYPE_EGRESS 1823 : T4_BAR2_QTYPE_INGRESS), 1824 user, 1825 pbar2_qoffset, 1826 pbar2_qid); 1827 } 1828 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1829 1830 static struct pci_driver cxgb4_driver; 1831 1832 static void check_neigh_update(struct neighbour *neigh) 1833 { 1834 const struct device *parent; 1835 const struct net_device *netdev = neigh->dev; 1836 1837 if (is_vlan_dev(netdev)) 1838 netdev = vlan_dev_real_dev(netdev); 1839 parent = netdev->dev.parent; 1840 if (parent && parent->driver == &cxgb4_driver.driver) 1841 t4_l2t_update(dev_get_drvdata(parent), neigh); 1842 } 1843 1844 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1845 void *data) 1846 { 1847 switch (event) { 1848 case NETEVENT_NEIGH_UPDATE: 1849 check_neigh_update(data); 1850 break; 1851 case NETEVENT_REDIRECT: 1852 default: 1853 break; 1854 } 1855 return 0; 1856 } 1857 1858 static bool netevent_registered; 1859 static struct notifier_block cxgb4_netevent_nb = { 1860 .notifier_call = netevent_cb 1861 }; 1862 1863 static void drain_db_fifo(struct adapter *adap, int usecs) 1864 { 1865 u32 v1, v2, lp_count, hp_count; 1866 1867 do { 1868 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1869 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1870 if (is_t4(adap->params.chip)) { 1871 lp_count = LP_COUNT_G(v1); 1872 hp_count = HP_COUNT_G(v1); 1873 } else { 1874 lp_count = LP_COUNT_T5_G(v1); 1875 hp_count = HP_COUNT_T5_G(v2); 1876 } 1877 1878 if (lp_count == 0 && hp_count == 0) 1879 break; 1880 set_current_state(TASK_UNINTERRUPTIBLE); 1881 schedule_timeout(usecs_to_jiffies(usecs)); 1882 } while (1); 1883 } 1884 1885 static void disable_txq_db(struct sge_txq *q) 1886 { 1887 unsigned long flags; 1888 1889 spin_lock_irqsave(&q->db_lock, flags); 1890 q->db_disabled = 1; 1891 spin_unlock_irqrestore(&q->db_lock, flags); 1892 } 1893 1894 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1895 { 1896 spin_lock_irq(&q->db_lock); 1897 if (q->db_pidx_inc) { 1898 /* Make sure that all writes to the TX descriptors 1899 * are committed before we tell HW about them. 1900 */ 1901 wmb(); 1902 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1903 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1904 q->db_pidx_inc = 0; 1905 } 1906 q->db_disabled = 0; 1907 spin_unlock_irq(&q->db_lock); 1908 } 1909 1910 static void disable_dbs(struct adapter *adap) 1911 { 1912 int i; 1913 1914 for_each_ethrxq(&adap->sge, i) 1915 disable_txq_db(&adap->sge.ethtxq[i].q); 1916 if (is_offload(adap)) { 1917 struct sge_uld_txq_info *txq_info = 1918 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1919 1920 if (txq_info) { 1921 for_each_ofldtxq(&adap->sge, i) { 1922 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1923 1924 disable_txq_db(&txq->q); 1925 } 1926 } 1927 } 1928 for_each_port(adap, i) 1929 disable_txq_db(&adap->sge.ctrlq[i].q); 1930 } 1931 1932 static void enable_dbs(struct adapter *adap) 1933 { 1934 int i; 1935 1936 for_each_ethrxq(&adap->sge, i) 1937 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1938 if (is_offload(adap)) { 1939 struct sge_uld_txq_info *txq_info = 1940 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1941 1942 if (txq_info) { 1943 for_each_ofldtxq(&adap->sge, i) { 1944 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1945 1946 enable_txq_db(adap, &txq->q); 1947 } 1948 } 1949 } 1950 for_each_port(adap, i) 1951 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 1952 } 1953 1954 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 1955 { 1956 enum cxgb4_uld type = CXGB4_ULD_RDMA; 1957 1958 if (adap->uld && adap->uld[type].handle) 1959 adap->uld[type].control(adap->uld[type].handle, cmd); 1960 } 1961 1962 static void process_db_full(struct work_struct *work) 1963 { 1964 struct adapter *adap; 1965 1966 adap = container_of(work, struct adapter, db_full_task); 1967 1968 drain_db_fifo(adap, dbfifo_drain_delay); 1969 enable_dbs(adap); 1970 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 1971 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1972 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1973 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 1974 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 1975 else 1976 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1977 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 1978 } 1979 1980 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 1981 { 1982 u16 hw_pidx, hw_cidx; 1983 int ret; 1984 1985 spin_lock_irq(&q->db_lock); 1986 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 1987 if (ret) 1988 goto out; 1989 if (q->db_pidx != hw_pidx) { 1990 u16 delta; 1991 u32 val; 1992 1993 if (q->db_pidx >= hw_pidx) 1994 delta = q->db_pidx - hw_pidx; 1995 else 1996 delta = q->size - hw_pidx + q->db_pidx; 1997 1998 if (is_t4(adap->params.chip)) 1999 val = PIDX_V(delta); 2000 else 2001 val = PIDX_T5_V(delta); 2002 wmb(); 2003 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2004 QID_V(q->cntxt_id) | val); 2005 } 2006 out: 2007 q->db_disabled = 0; 2008 q->db_pidx_inc = 0; 2009 spin_unlock_irq(&q->db_lock); 2010 if (ret) 2011 CH_WARN(adap, "DB drop recovery failed.\n"); 2012 } 2013 2014 static void recover_all_queues(struct adapter *adap) 2015 { 2016 int i; 2017 2018 for_each_ethrxq(&adap->sge, i) 2019 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2020 if (is_offload(adap)) { 2021 struct sge_uld_txq_info *txq_info = 2022 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2023 if (txq_info) { 2024 for_each_ofldtxq(&adap->sge, i) { 2025 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2026 2027 sync_txq_pidx(adap, &txq->q); 2028 } 2029 } 2030 } 2031 for_each_port(adap, i) 2032 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2033 } 2034 2035 static void process_db_drop(struct work_struct *work) 2036 { 2037 struct adapter *adap; 2038 2039 adap = container_of(work, struct adapter, db_drop_task); 2040 2041 if (is_t4(adap->params.chip)) { 2042 drain_db_fifo(adap, dbfifo_drain_delay); 2043 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2044 drain_db_fifo(adap, dbfifo_drain_delay); 2045 recover_all_queues(adap); 2046 drain_db_fifo(adap, dbfifo_drain_delay); 2047 enable_dbs(adap); 2048 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2049 } else if (is_t5(adap->params.chip)) { 2050 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2051 u16 qid = (dropped_db >> 15) & 0x1ffff; 2052 u16 pidx_inc = dropped_db & 0x1fff; 2053 u64 bar2_qoffset; 2054 unsigned int bar2_qid; 2055 int ret; 2056 2057 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2058 0, &bar2_qoffset, &bar2_qid); 2059 if (ret) 2060 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2061 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2062 else 2063 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2064 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2065 2066 /* Re-enable BAR2 WC */ 2067 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2068 } 2069 2070 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2071 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2072 } 2073 2074 void t4_db_full(struct adapter *adap) 2075 { 2076 if (is_t4(adap->params.chip)) { 2077 disable_dbs(adap); 2078 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2079 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2080 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2081 queue_work(adap->workq, &adap->db_full_task); 2082 } 2083 } 2084 2085 void t4_db_dropped(struct adapter *adap) 2086 { 2087 if (is_t4(adap->params.chip)) { 2088 disable_dbs(adap); 2089 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2090 } 2091 queue_work(adap->workq, &adap->db_drop_task); 2092 } 2093 2094 void t4_register_netevent_notifier(void) 2095 { 2096 if (!netevent_registered) { 2097 register_netevent_notifier(&cxgb4_netevent_nb); 2098 netevent_registered = true; 2099 } 2100 } 2101 2102 static void detach_ulds(struct adapter *adap) 2103 { 2104 unsigned int i; 2105 2106 mutex_lock(&uld_mutex); 2107 list_del(&adap->list_node); 2108 2109 for (i = 0; i < CXGB4_ULD_MAX; i++) 2110 if (adap->uld && adap->uld[i].handle) 2111 adap->uld[i].state_change(adap->uld[i].handle, 2112 CXGB4_STATE_DETACH); 2113 2114 if (netevent_registered && list_empty(&adapter_list)) { 2115 unregister_netevent_notifier(&cxgb4_netevent_nb); 2116 netevent_registered = false; 2117 } 2118 mutex_unlock(&uld_mutex); 2119 } 2120 2121 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2122 { 2123 unsigned int i; 2124 2125 mutex_lock(&uld_mutex); 2126 for (i = 0; i < CXGB4_ULD_MAX; i++) 2127 if (adap->uld && adap->uld[i].handle) 2128 adap->uld[i].state_change(adap->uld[i].handle, 2129 new_state); 2130 mutex_unlock(&uld_mutex); 2131 } 2132 2133 #if IS_ENABLED(CONFIG_IPV6) 2134 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2135 unsigned long event, void *data) 2136 { 2137 struct inet6_ifaddr *ifa = data; 2138 struct net_device *event_dev = ifa->idev->dev; 2139 const struct device *parent = NULL; 2140 #if IS_ENABLED(CONFIG_BONDING) 2141 struct adapter *adap; 2142 #endif 2143 if (is_vlan_dev(event_dev)) 2144 event_dev = vlan_dev_real_dev(event_dev); 2145 #if IS_ENABLED(CONFIG_BONDING) 2146 if (event_dev->flags & IFF_MASTER) { 2147 list_for_each_entry(adap, &adapter_list, list_node) { 2148 switch (event) { 2149 case NETDEV_UP: 2150 cxgb4_clip_get(adap->port[0], 2151 (const u32 *)ifa, 1); 2152 break; 2153 case NETDEV_DOWN: 2154 cxgb4_clip_release(adap->port[0], 2155 (const u32 *)ifa, 1); 2156 break; 2157 default: 2158 break; 2159 } 2160 } 2161 return NOTIFY_OK; 2162 } 2163 #endif 2164 2165 if (event_dev) 2166 parent = event_dev->dev.parent; 2167 2168 if (parent && parent->driver == &cxgb4_driver.driver) { 2169 switch (event) { 2170 case NETDEV_UP: 2171 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2172 break; 2173 case NETDEV_DOWN: 2174 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2175 break; 2176 default: 2177 break; 2178 } 2179 } 2180 return NOTIFY_OK; 2181 } 2182 2183 static bool inet6addr_registered; 2184 static struct notifier_block cxgb4_inet6addr_notifier = { 2185 .notifier_call = cxgb4_inet6addr_handler 2186 }; 2187 2188 static void update_clip(const struct adapter *adap) 2189 { 2190 int i; 2191 struct net_device *dev; 2192 int ret; 2193 2194 rcu_read_lock(); 2195 2196 for (i = 0; i < MAX_NPORTS; i++) { 2197 dev = adap->port[i]; 2198 ret = 0; 2199 2200 if (dev) 2201 ret = cxgb4_update_root_dev_clip(dev); 2202 2203 if (ret < 0) 2204 break; 2205 } 2206 rcu_read_unlock(); 2207 } 2208 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2209 2210 /** 2211 * cxgb_up - enable the adapter 2212 * @adap: adapter being enabled 2213 * 2214 * Called when the first port is enabled, this function performs the 2215 * actions necessary to make an adapter operational, such as completing 2216 * the initialization of HW modules, and enabling interrupts. 2217 * 2218 * Must be called with the rtnl lock held. 2219 */ 2220 static int cxgb_up(struct adapter *adap) 2221 { 2222 int err; 2223 2224 mutex_lock(&uld_mutex); 2225 err = setup_sge_queues(adap); 2226 if (err) 2227 goto rel_lock; 2228 err = setup_rss(adap); 2229 if (err) 2230 goto freeq; 2231 2232 if (adap->flags & USING_MSIX) { 2233 name_msix_vecs(adap); 2234 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2235 adap->msix_info[0].desc, adap); 2236 if (err) 2237 goto irq_err; 2238 err = request_msix_queue_irqs(adap); 2239 if (err) { 2240 free_irq(adap->msix_info[0].vec, adap); 2241 goto irq_err; 2242 } 2243 } else { 2244 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2245 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2246 adap->port[0]->name, adap); 2247 if (err) 2248 goto irq_err; 2249 } 2250 2251 enable_rx(adap); 2252 t4_sge_start(adap); 2253 t4_intr_enable(adap); 2254 adap->flags |= FULL_INIT_DONE; 2255 mutex_unlock(&uld_mutex); 2256 2257 notify_ulds(adap, CXGB4_STATE_UP); 2258 #if IS_ENABLED(CONFIG_IPV6) 2259 update_clip(adap); 2260 #endif 2261 /* Initialize hash mac addr list*/ 2262 INIT_LIST_HEAD(&adap->mac_hlist); 2263 return err; 2264 2265 irq_err: 2266 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2267 freeq: 2268 t4_free_sge_resources(adap); 2269 rel_lock: 2270 mutex_unlock(&uld_mutex); 2271 return err; 2272 } 2273 2274 static void cxgb_down(struct adapter *adapter) 2275 { 2276 cancel_work_sync(&adapter->tid_release_task); 2277 cancel_work_sync(&adapter->db_full_task); 2278 cancel_work_sync(&adapter->db_drop_task); 2279 adapter->tid_release_task_busy = false; 2280 adapter->tid_release_head = NULL; 2281 2282 t4_sge_stop(adapter); 2283 t4_free_sge_resources(adapter); 2284 adapter->flags &= ~FULL_INIT_DONE; 2285 } 2286 2287 /* 2288 * net_device operations 2289 */ 2290 static int cxgb_open(struct net_device *dev) 2291 { 2292 int err; 2293 struct port_info *pi = netdev_priv(dev); 2294 struct adapter *adapter = pi->adapter; 2295 2296 netif_carrier_off(dev); 2297 2298 if (!(adapter->flags & FULL_INIT_DONE)) { 2299 err = cxgb_up(adapter); 2300 if (err < 0) 2301 return err; 2302 } 2303 2304 /* It's possible that the basic port information could have 2305 * changed since we first read it. 2306 */ 2307 err = t4_update_port_info(pi); 2308 if (err < 0) 2309 return err; 2310 2311 err = link_start(dev); 2312 if (!err) 2313 netif_tx_start_all_queues(dev); 2314 return err; 2315 } 2316 2317 static int cxgb_close(struct net_device *dev) 2318 { 2319 struct port_info *pi = netdev_priv(dev); 2320 struct adapter *adapter = pi->adapter; 2321 int ret; 2322 2323 netif_tx_stop_all_queues(dev); 2324 netif_carrier_off(dev); 2325 ret = t4_enable_vi(adapter, adapter->pf, pi->viid, false, false); 2326 #ifdef CONFIG_CHELSIO_T4_DCB 2327 cxgb4_dcb_reset(dev); 2328 dcb_tx_queue_prio_enable(dev, false); 2329 #endif 2330 return ret; 2331 } 2332 2333 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2334 __be32 sip, __be16 sport, __be16 vlan, 2335 unsigned int queue, unsigned char port, unsigned char mask) 2336 { 2337 int ret; 2338 struct filter_entry *f; 2339 struct adapter *adap; 2340 int i; 2341 u8 *val; 2342 2343 adap = netdev2adap(dev); 2344 2345 /* Adjust stid to correct filter index */ 2346 stid -= adap->tids.sftid_base; 2347 stid += adap->tids.nftids; 2348 2349 /* Check to make sure the filter requested is writable ... 2350 */ 2351 f = &adap->tids.ftid_tab[stid]; 2352 ret = writable_filter(f); 2353 if (ret) 2354 return ret; 2355 2356 /* Clear out any old resources being used by the filter before 2357 * we start constructing the new filter. 2358 */ 2359 if (f->valid) 2360 clear_filter(adap, f); 2361 2362 /* Clear out filter specifications */ 2363 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2364 f->fs.val.lport = cpu_to_be16(sport); 2365 f->fs.mask.lport = ~0; 2366 val = (u8 *)&sip; 2367 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2368 for (i = 0; i < 4; i++) { 2369 f->fs.val.lip[i] = val[i]; 2370 f->fs.mask.lip[i] = ~0; 2371 } 2372 if (adap->params.tp.vlan_pri_map & PORT_F) { 2373 f->fs.val.iport = port; 2374 f->fs.mask.iport = mask; 2375 } 2376 } 2377 2378 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2379 f->fs.val.proto = IPPROTO_TCP; 2380 f->fs.mask.proto = ~0; 2381 } 2382 2383 f->fs.dirsteer = 1; 2384 f->fs.iq = queue; 2385 /* Mark filter as locked */ 2386 f->locked = 1; 2387 f->fs.rpttid = 1; 2388 2389 /* Save the actual tid. We need this to get the corresponding 2390 * filter entry structure in filter_rpl. 2391 */ 2392 f->tid = stid + adap->tids.ftid_base; 2393 ret = set_filter_wr(adap, stid); 2394 if (ret) { 2395 clear_filter(adap, f); 2396 return ret; 2397 } 2398 2399 return 0; 2400 } 2401 EXPORT_SYMBOL(cxgb4_create_server_filter); 2402 2403 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2404 unsigned int queue, bool ipv6) 2405 { 2406 struct filter_entry *f; 2407 struct adapter *adap; 2408 2409 adap = netdev2adap(dev); 2410 2411 /* Adjust stid to correct filter index */ 2412 stid -= adap->tids.sftid_base; 2413 stid += adap->tids.nftids; 2414 2415 f = &adap->tids.ftid_tab[stid]; 2416 /* Unlock the filter */ 2417 f->locked = 0; 2418 2419 return delete_filter(adap, stid); 2420 } 2421 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2422 2423 static void cxgb_get_stats(struct net_device *dev, 2424 struct rtnl_link_stats64 *ns) 2425 { 2426 struct port_stats stats; 2427 struct port_info *p = netdev_priv(dev); 2428 struct adapter *adapter = p->adapter; 2429 2430 /* Block retrieving statistics during EEH error 2431 * recovery. Otherwise, the recovery might fail 2432 * and the PCI device will be removed permanently 2433 */ 2434 spin_lock(&adapter->stats_lock); 2435 if (!netif_device_present(dev)) { 2436 spin_unlock(&adapter->stats_lock); 2437 return; 2438 } 2439 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2440 &p->stats_base); 2441 spin_unlock(&adapter->stats_lock); 2442 2443 ns->tx_bytes = stats.tx_octets; 2444 ns->tx_packets = stats.tx_frames; 2445 ns->rx_bytes = stats.rx_octets; 2446 ns->rx_packets = stats.rx_frames; 2447 ns->multicast = stats.rx_mcast_frames; 2448 2449 /* detailed rx_errors */ 2450 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2451 stats.rx_runt; 2452 ns->rx_over_errors = 0; 2453 ns->rx_crc_errors = stats.rx_fcs_err; 2454 ns->rx_frame_errors = stats.rx_symbol_err; 2455 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2456 stats.rx_ovflow2 + stats.rx_ovflow3 + 2457 stats.rx_trunc0 + stats.rx_trunc1 + 2458 stats.rx_trunc2 + stats.rx_trunc3; 2459 ns->rx_missed_errors = 0; 2460 2461 /* detailed tx_errors */ 2462 ns->tx_aborted_errors = 0; 2463 ns->tx_carrier_errors = 0; 2464 ns->tx_fifo_errors = 0; 2465 ns->tx_heartbeat_errors = 0; 2466 ns->tx_window_errors = 0; 2467 2468 ns->tx_errors = stats.tx_error_frames; 2469 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2470 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2471 } 2472 2473 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2474 { 2475 unsigned int mbox; 2476 int ret = 0, prtad, devad; 2477 struct port_info *pi = netdev_priv(dev); 2478 struct adapter *adapter = pi->adapter; 2479 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2480 2481 switch (cmd) { 2482 case SIOCGMIIPHY: 2483 if (pi->mdio_addr < 0) 2484 return -EOPNOTSUPP; 2485 data->phy_id = pi->mdio_addr; 2486 break; 2487 case SIOCGMIIREG: 2488 case SIOCSMIIREG: 2489 if (mdio_phy_id_is_c45(data->phy_id)) { 2490 prtad = mdio_phy_id_prtad(data->phy_id); 2491 devad = mdio_phy_id_devad(data->phy_id); 2492 } else if (data->phy_id < 32) { 2493 prtad = data->phy_id; 2494 devad = 0; 2495 data->reg_num &= 0x1f; 2496 } else 2497 return -EINVAL; 2498 2499 mbox = pi->adapter->pf; 2500 if (cmd == SIOCGMIIREG) 2501 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2502 data->reg_num, &data->val_out); 2503 else 2504 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2505 data->reg_num, data->val_in); 2506 break; 2507 case SIOCGHWTSTAMP: 2508 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2509 sizeof(pi->tstamp_config)) ? 2510 -EFAULT : 0; 2511 case SIOCSHWTSTAMP: 2512 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2513 sizeof(pi->tstamp_config))) 2514 return -EFAULT; 2515 2516 if (!is_t4(adapter->params.chip)) { 2517 switch (pi->tstamp_config.tx_type) { 2518 case HWTSTAMP_TX_OFF: 2519 case HWTSTAMP_TX_ON: 2520 break; 2521 default: 2522 return -ERANGE; 2523 } 2524 2525 switch (pi->tstamp_config.rx_filter) { 2526 case HWTSTAMP_FILTER_NONE: 2527 pi->rxtstamp = false; 2528 break; 2529 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2530 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2531 cxgb4_ptprx_timestamping(pi, pi->port_id, 2532 PTP_TS_L4); 2533 break; 2534 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2535 cxgb4_ptprx_timestamping(pi, pi->port_id, 2536 PTP_TS_L2_L4); 2537 break; 2538 case HWTSTAMP_FILTER_ALL: 2539 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2540 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2541 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2542 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2543 pi->rxtstamp = true; 2544 break; 2545 default: 2546 pi->tstamp_config.rx_filter = 2547 HWTSTAMP_FILTER_NONE; 2548 return -ERANGE; 2549 } 2550 2551 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2552 (pi->tstamp_config.rx_filter == 2553 HWTSTAMP_FILTER_NONE)) { 2554 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2555 pi->ptp_enable = false; 2556 } 2557 2558 if (pi->tstamp_config.rx_filter != 2559 HWTSTAMP_FILTER_NONE) { 2560 if (cxgb4_ptp_redirect_rx_packet(adapter, 2561 pi) >= 0) 2562 pi->ptp_enable = true; 2563 } 2564 } else { 2565 /* For T4 Adapters */ 2566 switch (pi->tstamp_config.rx_filter) { 2567 case HWTSTAMP_FILTER_NONE: 2568 pi->rxtstamp = false; 2569 break; 2570 case HWTSTAMP_FILTER_ALL: 2571 pi->rxtstamp = true; 2572 break; 2573 default: 2574 pi->tstamp_config.rx_filter = 2575 HWTSTAMP_FILTER_NONE; 2576 return -ERANGE; 2577 } 2578 } 2579 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2580 sizeof(pi->tstamp_config)) ? 2581 -EFAULT : 0; 2582 default: 2583 return -EOPNOTSUPP; 2584 } 2585 return ret; 2586 } 2587 2588 static void cxgb_set_rxmode(struct net_device *dev) 2589 { 2590 /* unfortunately we can't return errors to the stack */ 2591 set_rxmode(dev, -1, false); 2592 } 2593 2594 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2595 { 2596 int ret; 2597 struct port_info *pi = netdev_priv(dev); 2598 2599 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2600 -1, -1, -1, true); 2601 if (!ret) 2602 dev->mtu = new_mtu; 2603 return ret; 2604 } 2605 2606 #ifdef CONFIG_PCI_IOV 2607 static int dummy_open(struct net_device *dev) 2608 { 2609 /* Turn carrier off since we don't have to transmit anything on this 2610 * interface. 2611 */ 2612 netif_carrier_off(dev); 2613 return 0; 2614 } 2615 2616 /* Fill MAC address that will be assigned by the FW */ 2617 static void fill_vf_station_mac_addr(struct adapter *adap) 2618 { 2619 unsigned int i; 2620 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2621 int err; 2622 u8 *na; 2623 u16 a, b; 2624 2625 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2626 if (!err) { 2627 na = adap->params.vpd.na; 2628 for (i = 0; i < ETH_ALEN; i++) 2629 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2630 hex2val(na[2 * i + 1])); 2631 a = (hw_addr[0] << 8) | hw_addr[1]; 2632 b = (hw_addr[1] << 8) | hw_addr[2]; 2633 a ^= b; 2634 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2635 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2636 macaddr[0] = a >> 8; 2637 macaddr[1] = a & 0xff; 2638 2639 for (i = 2; i < 5; i++) 2640 macaddr[i] = hw_addr[i + 1]; 2641 2642 for (i = 0; i < adap->num_vfs; i++) { 2643 macaddr[5] = adap->pf * 16 + i; 2644 ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr); 2645 } 2646 } 2647 } 2648 2649 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2650 { 2651 struct port_info *pi = netdev_priv(dev); 2652 struct adapter *adap = pi->adapter; 2653 int ret; 2654 2655 /* verify MAC addr is valid */ 2656 if (!is_valid_ether_addr(mac)) { 2657 dev_err(pi->adapter->pdev_dev, 2658 "Invalid Ethernet address %pM for VF %d\n", 2659 mac, vf); 2660 return -EINVAL; 2661 } 2662 2663 dev_info(pi->adapter->pdev_dev, 2664 "Setting MAC %pM on VF %d\n", mac, vf); 2665 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2666 if (!ret) 2667 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2668 return ret; 2669 } 2670 2671 static int cxgb_get_vf_config(struct net_device *dev, 2672 int vf, struct ifla_vf_info *ivi) 2673 { 2674 struct port_info *pi = netdev_priv(dev); 2675 struct adapter *adap = pi->adapter; 2676 2677 if (vf >= adap->num_vfs) 2678 return -EINVAL; 2679 ivi->vf = vf; 2680 ivi->max_tx_rate = adap->vfinfo[vf].tx_rate; 2681 ivi->min_tx_rate = 0; 2682 ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr); 2683 return 0; 2684 } 2685 2686 static int cxgb_get_phys_port_id(struct net_device *dev, 2687 struct netdev_phys_item_id *ppid) 2688 { 2689 struct port_info *pi = netdev_priv(dev); 2690 unsigned int phy_port_id; 2691 2692 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2693 ppid->id_len = sizeof(phy_port_id); 2694 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2695 return 0; 2696 } 2697 2698 static int cxgb_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate, 2699 int max_tx_rate) 2700 { 2701 struct port_info *pi = netdev_priv(dev); 2702 struct adapter *adap = pi->adapter; 2703 unsigned int link_ok, speed, mtu; 2704 u32 fw_pfvf, fw_class; 2705 int class_id = vf; 2706 int ret; 2707 u16 pktsize; 2708 2709 if (vf >= adap->num_vfs) 2710 return -EINVAL; 2711 2712 if (min_tx_rate) { 2713 dev_err(adap->pdev_dev, 2714 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2715 min_tx_rate, vf); 2716 return -EINVAL; 2717 } 2718 2719 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 2720 if (ret != FW_SUCCESS) { 2721 dev_err(adap->pdev_dev, 2722 "Failed to get link information for VF %d\n", vf); 2723 return -EINVAL; 2724 } 2725 2726 if (!link_ok) { 2727 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 2728 return -EINVAL; 2729 } 2730 2731 if (max_tx_rate > speed) { 2732 dev_err(adap->pdev_dev, 2733 "Max tx rate %d for VF %d can't be > link-speed %u", 2734 max_tx_rate, vf, speed); 2735 return -EINVAL; 2736 } 2737 2738 pktsize = mtu; 2739 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 2740 pktsize = pktsize - sizeof(struct ethhdr) - 4; 2741 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 2742 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 2743 /* configure Traffic Class for rate-limiting */ 2744 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 2745 SCHED_CLASS_LEVEL_CL_RL, 2746 SCHED_CLASS_MODE_CLASS, 2747 SCHED_CLASS_RATEUNIT_BITS, 2748 SCHED_CLASS_RATEMODE_ABS, 2749 pi->tx_chan, class_id, 0, 2750 max_tx_rate * 1000, 0, pktsize); 2751 if (ret) { 2752 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 2753 ret); 2754 return -EINVAL; 2755 } 2756 dev_info(adap->pdev_dev, 2757 "Class %d with MSS %u configured with rate %u\n", 2758 class_id, pktsize, max_tx_rate); 2759 2760 /* bind VF to configured Traffic Class */ 2761 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2762 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2763 fw_class = class_id; 2764 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 2765 &fw_class); 2766 if (ret) { 2767 dev_err(adap->pdev_dev, 2768 "Err %d in binding VF %d to Traffic Class %d\n", 2769 ret, vf, class_id); 2770 return -EINVAL; 2771 } 2772 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 2773 adap->pf, vf, class_id); 2774 adap->vfinfo[vf].tx_rate = max_tx_rate; 2775 return 0; 2776 } 2777 2778 #endif 2779 2780 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2781 { 2782 int ret; 2783 struct sockaddr *addr = p; 2784 struct port_info *pi = netdev_priv(dev); 2785 2786 if (!is_valid_ether_addr(addr->sa_data)) 2787 return -EADDRNOTAVAIL; 2788 2789 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 2790 pi->xact_addr_filt, addr->sa_data, true, true); 2791 if (ret < 0) 2792 return ret; 2793 2794 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2795 pi->xact_addr_filt = ret; 2796 return 0; 2797 } 2798 2799 #ifdef CONFIG_NET_POLL_CONTROLLER 2800 static void cxgb_netpoll(struct net_device *dev) 2801 { 2802 struct port_info *pi = netdev_priv(dev); 2803 struct adapter *adap = pi->adapter; 2804 2805 if (adap->flags & USING_MSIX) { 2806 int i; 2807 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2808 2809 for (i = pi->nqsets; i; i--, rx++) 2810 t4_sge_intr_msix(0, &rx->rspq); 2811 } else 2812 t4_intr_handler(adap)(0, adap); 2813 } 2814 #endif 2815 2816 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2817 { 2818 struct port_info *pi = netdev_priv(dev); 2819 struct adapter *adap = pi->adapter; 2820 struct sched_class *e; 2821 struct ch_sched_params p; 2822 struct ch_sched_queue qe; 2823 u32 req_rate; 2824 int err = 0; 2825 2826 if (!can_sched(dev)) 2827 return -ENOTSUPP; 2828 2829 if (index < 0 || index > pi->nqsets - 1) 2830 return -EINVAL; 2831 2832 if (!(adap->flags & FULL_INIT_DONE)) { 2833 dev_err(adap->pdev_dev, 2834 "Failed to rate limit on queue %d. Link Down?\n", 2835 index); 2836 return -EINVAL; 2837 } 2838 2839 /* Convert from Mbps to Kbps */ 2840 req_rate = rate << 10; 2841 2842 /* Max rate is 10 Gbps */ 2843 if (req_rate >= SCHED_MAX_RATE_KBPS) { 2844 dev_err(adap->pdev_dev, 2845 "Invalid rate %u Mbps, Max rate is %u Gbps\n", 2846 rate, SCHED_MAX_RATE_KBPS); 2847 return -ERANGE; 2848 } 2849 2850 /* First unbind the queue from any existing class */ 2851 memset(&qe, 0, sizeof(qe)); 2852 qe.queue = index; 2853 qe.class = SCHED_CLS_NONE; 2854 2855 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 2856 if (err) { 2857 dev_err(adap->pdev_dev, 2858 "Unbinding Queue %d on port %d fail. Err: %d\n", 2859 index, pi->port_id, err); 2860 return err; 2861 } 2862 2863 /* Queue already unbound */ 2864 if (!req_rate) 2865 return 0; 2866 2867 /* Fetch any available unused or matching scheduling class */ 2868 memset(&p, 0, sizeof(p)); 2869 p.type = SCHED_CLASS_TYPE_PACKET; 2870 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 2871 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 2872 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 2873 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 2874 p.u.params.channel = pi->tx_chan; 2875 p.u.params.class = SCHED_CLS_NONE; 2876 p.u.params.minrate = 0; 2877 p.u.params.maxrate = req_rate; 2878 p.u.params.weight = 0; 2879 p.u.params.pktsize = dev->mtu; 2880 2881 e = cxgb4_sched_class_alloc(dev, &p); 2882 if (!e) 2883 return -ENOMEM; 2884 2885 /* Bind the queue to a scheduling class */ 2886 memset(&qe, 0, sizeof(qe)); 2887 qe.queue = index; 2888 qe.class = e->idx; 2889 2890 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 2891 if (err) 2892 dev_err(adap->pdev_dev, 2893 "Queue rate limiting failed. Err: %d\n", err); 2894 return err; 2895 } 2896 2897 static int cxgb_setup_tc_flower(struct net_device *dev, 2898 struct tc_cls_flower_offload *cls_flower) 2899 { 2900 if (cls_flower->common.chain_index) 2901 return -EOPNOTSUPP; 2902 2903 switch (cls_flower->command) { 2904 case TC_CLSFLOWER_REPLACE: 2905 return cxgb4_tc_flower_replace(dev, cls_flower); 2906 case TC_CLSFLOWER_DESTROY: 2907 return cxgb4_tc_flower_destroy(dev, cls_flower); 2908 case TC_CLSFLOWER_STATS: 2909 return cxgb4_tc_flower_stats(dev, cls_flower); 2910 default: 2911 return -EOPNOTSUPP; 2912 } 2913 } 2914 2915 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 2916 struct tc_cls_u32_offload *cls_u32) 2917 { 2918 if (cls_u32->common.chain_index) 2919 return -EOPNOTSUPP; 2920 2921 switch (cls_u32->command) { 2922 case TC_CLSU32_NEW_KNODE: 2923 case TC_CLSU32_REPLACE_KNODE: 2924 return cxgb4_config_knode(dev, cls_u32); 2925 case TC_CLSU32_DELETE_KNODE: 2926 return cxgb4_delete_knode(dev, cls_u32); 2927 default: 2928 return -EOPNOTSUPP; 2929 } 2930 } 2931 2932 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 2933 void *cb_priv) 2934 { 2935 struct net_device *dev = cb_priv; 2936 struct port_info *pi = netdev2pinfo(dev); 2937 struct adapter *adap = netdev2adap(dev); 2938 2939 if (!(adap->flags & FULL_INIT_DONE)) { 2940 dev_err(adap->pdev_dev, 2941 "Failed to setup tc on port %d. Link Down?\n", 2942 pi->port_id); 2943 return -EINVAL; 2944 } 2945 2946 if (!tc_can_offload(dev)) 2947 return -EOPNOTSUPP; 2948 2949 switch (type) { 2950 case TC_SETUP_CLSU32: 2951 return cxgb_setup_tc_cls_u32(dev, type_data); 2952 case TC_SETUP_CLSFLOWER: 2953 return cxgb_setup_tc_flower(dev, type_data); 2954 default: 2955 return -EOPNOTSUPP; 2956 } 2957 } 2958 2959 static int cxgb_setup_tc_block(struct net_device *dev, 2960 struct tc_block_offload *f) 2961 { 2962 struct port_info *pi = netdev2pinfo(dev); 2963 2964 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 2965 return -EOPNOTSUPP; 2966 2967 switch (f->command) { 2968 case TC_BLOCK_BIND: 2969 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb, 2970 pi, dev); 2971 case TC_BLOCK_UNBIND: 2972 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi); 2973 return 0; 2974 default: 2975 return -EOPNOTSUPP; 2976 } 2977 } 2978 2979 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 2980 void *type_data) 2981 { 2982 switch (type) { 2983 case TC_SETUP_BLOCK: 2984 return cxgb_setup_tc_block(dev, type_data); 2985 default: 2986 return -EOPNOTSUPP; 2987 } 2988 } 2989 2990 static netdev_features_t cxgb_fix_features(struct net_device *dev, 2991 netdev_features_t features) 2992 { 2993 /* Disable GRO, if RX_CSUM is disabled */ 2994 if (!(features & NETIF_F_RXCSUM)) 2995 features &= ~NETIF_F_GRO; 2996 2997 return features; 2998 } 2999 3000 static const struct net_device_ops cxgb4_netdev_ops = { 3001 .ndo_open = cxgb_open, 3002 .ndo_stop = cxgb_close, 3003 .ndo_start_xmit = t4_eth_xmit, 3004 .ndo_select_queue = cxgb_select_queue, 3005 .ndo_get_stats64 = cxgb_get_stats, 3006 .ndo_set_rx_mode = cxgb_set_rxmode, 3007 .ndo_set_mac_address = cxgb_set_mac_addr, 3008 .ndo_set_features = cxgb_set_features, 3009 .ndo_validate_addr = eth_validate_addr, 3010 .ndo_do_ioctl = cxgb_ioctl, 3011 .ndo_change_mtu = cxgb_change_mtu, 3012 #ifdef CONFIG_NET_POLL_CONTROLLER 3013 .ndo_poll_controller = cxgb_netpoll, 3014 #endif 3015 #ifdef CONFIG_CHELSIO_T4_FCOE 3016 .ndo_fcoe_enable = cxgb_fcoe_enable, 3017 .ndo_fcoe_disable = cxgb_fcoe_disable, 3018 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3019 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3020 .ndo_setup_tc = cxgb_setup_tc, 3021 .ndo_fix_features = cxgb_fix_features, 3022 }; 3023 3024 #ifdef CONFIG_PCI_IOV 3025 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3026 .ndo_open = dummy_open, 3027 .ndo_set_vf_mac = cxgb_set_vf_mac, 3028 .ndo_get_vf_config = cxgb_get_vf_config, 3029 .ndo_set_vf_rate = cxgb_set_vf_rate, 3030 .ndo_get_phys_port_id = cxgb_get_phys_port_id, 3031 }; 3032 #endif 3033 3034 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 3035 { 3036 struct adapter *adapter = netdev2adap(dev); 3037 3038 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3039 strlcpy(info->version, cxgb4_driver_version, 3040 sizeof(info->version)); 3041 strlcpy(info->bus_info, pci_name(adapter->pdev), 3042 sizeof(info->bus_info)); 3043 } 3044 3045 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3046 .get_drvinfo = get_drvinfo, 3047 }; 3048 3049 void t4_fatal_err(struct adapter *adap) 3050 { 3051 int port; 3052 3053 if (pci_channel_offline(adap->pdev)) 3054 return; 3055 3056 /* Disable the SGE since ULDs are going to free resources that 3057 * could be exposed to the adapter. RDMA MWs for example... 3058 */ 3059 t4_shutdown_adapter(adap); 3060 for_each_port(adap, port) { 3061 struct net_device *dev = adap->port[port]; 3062 3063 /* If we get here in very early initialization the network 3064 * devices may not have been set up yet. 3065 */ 3066 if (!dev) 3067 continue; 3068 3069 netif_tx_stop_all_queues(dev); 3070 netif_carrier_off(dev); 3071 } 3072 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3073 } 3074 3075 static void setup_memwin(struct adapter *adap) 3076 { 3077 u32 nic_win_base = t4_get_util_window(adap); 3078 3079 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3080 } 3081 3082 static void setup_memwin_rdma(struct adapter *adap) 3083 { 3084 if (adap->vres.ocq.size) { 3085 u32 start; 3086 unsigned int sz_kb; 3087 3088 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3089 start &= PCI_BASE_ADDRESS_MEM_MASK; 3090 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3091 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3092 t4_write_reg(adap, 3093 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3094 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3095 t4_write_reg(adap, 3096 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3097 adap->vres.ocq.start); 3098 t4_read_reg(adap, 3099 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3100 } 3101 } 3102 3103 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3104 { 3105 u32 v; 3106 int ret; 3107 3108 /* get device capabilities */ 3109 memset(c, 0, sizeof(*c)); 3110 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3111 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3112 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3113 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3114 if (ret < 0) 3115 return ret; 3116 3117 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3118 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3119 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3120 if (ret < 0) 3121 return ret; 3122 3123 ret = t4_config_glbl_rss(adap, adap->pf, 3124 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3125 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3126 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3127 if (ret < 0) 3128 return ret; 3129 3130 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3131 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3132 FW_CMD_CAP_PF); 3133 if (ret < 0) 3134 return ret; 3135 3136 t4_sge_init(adap); 3137 3138 /* tweak some settings */ 3139 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3140 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3141 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3142 v = t4_read_reg(adap, TP_PIO_DATA_A); 3143 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3144 3145 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3146 adap->params.tp.tx_modq_map = 0xE4; 3147 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3148 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3149 3150 /* associate each Tx modulation queue with consecutive Tx channels */ 3151 v = 0x84218421; 3152 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3153 &v, 1, TP_TX_SCHED_HDR_A); 3154 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3155 &v, 1, TP_TX_SCHED_FIFO_A); 3156 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3157 &v, 1, TP_TX_SCHED_PCMD_A); 3158 3159 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3160 if (is_offload(adap)) { 3161 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3162 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3163 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3164 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3165 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3166 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3167 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3168 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3169 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3170 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3171 } 3172 3173 /* get basic stuff going */ 3174 return t4_early_init(adap, adap->pf); 3175 } 3176 3177 /* 3178 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3179 */ 3180 #define MAX_ATIDS 8192U 3181 3182 /* 3183 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3184 * 3185 * If the firmware we're dealing with has Configuration File support, then 3186 * we use that to perform all configuration 3187 */ 3188 3189 /* 3190 * Tweak configuration based on module parameters, etc. Most of these have 3191 * defaults assigned to them by Firmware Configuration Files (if we're using 3192 * them) but need to be explicitly set if we're using hard-coded 3193 * initialization. But even in the case of using Firmware Configuration 3194 * Files, we'd like to expose the ability to change these via module 3195 * parameters so these are essentially common tweaks/settings for 3196 * Configuration Files and hard-coded initialization ... 3197 */ 3198 static int adap_init0_tweaks(struct adapter *adapter) 3199 { 3200 /* 3201 * Fix up various Host-Dependent Parameters like Page Size, Cache 3202 * Line Size, etc. The firmware default is for a 4KB Page Size and 3203 * 64B Cache Line Size ... 3204 */ 3205 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3206 3207 /* 3208 * Process module parameters which affect early initialization. 3209 */ 3210 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3211 dev_err(&adapter->pdev->dev, 3212 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3213 rx_dma_offset); 3214 rx_dma_offset = 2; 3215 } 3216 t4_set_reg_field(adapter, SGE_CONTROL_A, 3217 PKTSHIFT_V(PKTSHIFT_M), 3218 PKTSHIFT_V(rx_dma_offset)); 3219 3220 /* 3221 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3222 * adds the pseudo header itself. 3223 */ 3224 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3225 CSUM_HAS_PSEUDO_HDR_F, 0); 3226 3227 return 0; 3228 } 3229 3230 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3231 * unto themselves and they contain their own firmware to perform their 3232 * tasks ... 3233 */ 3234 static int phy_aq1202_version(const u8 *phy_fw_data, 3235 size_t phy_fw_size) 3236 { 3237 int offset; 3238 3239 /* At offset 0x8 you're looking for the primary image's 3240 * starting offset which is 3 Bytes wide 3241 * 3242 * At offset 0xa of the primary image, you look for the offset 3243 * of the DRAM segment which is 3 Bytes wide. 3244 * 3245 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3246 * wide 3247 */ 3248 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3249 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3250 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3251 3252 offset = le24(phy_fw_data + 0x8) << 12; 3253 offset = le24(phy_fw_data + offset + 0xa); 3254 return be16(phy_fw_data + offset + 0x27e); 3255 3256 #undef be16 3257 #undef le16 3258 #undef le24 3259 } 3260 3261 static struct info_10gbt_phy_fw { 3262 unsigned int phy_fw_id; /* PCI Device ID */ 3263 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3264 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3265 int phy_flash; /* Has FLASH for PHY Firmware */ 3266 } phy_info_array[] = { 3267 { 3268 PHY_AQ1202_DEVICEID, 3269 PHY_AQ1202_FIRMWARE, 3270 phy_aq1202_version, 3271 1, 3272 }, 3273 { 3274 PHY_BCM84834_DEVICEID, 3275 PHY_BCM84834_FIRMWARE, 3276 NULL, 3277 0, 3278 }, 3279 { 0, NULL, NULL }, 3280 }; 3281 3282 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3283 { 3284 int i; 3285 3286 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3287 if (phy_info_array[i].phy_fw_id == devid) 3288 return &phy_info_array[i]; 3289 } 3290 return NULL; 3291 } 3292 3293 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3294 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3295 * we return a negative error number. If we transfer new firmware we return 1 3296 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3297 */ 3298 static int adap_init0_phy(struct adapter *adap) 3299 { 3300 const struct firmware *phyf; 3301 int ret; 3302 struct info_10gbt_phy_fw *phy_info; 3303 3304 /* Use the device ID to determine which PHY file to flash. 3305 */ 3306 phy_info = find_phy_info(adap->pdev->device); 3307 if (!phy_info) { 3308 dev_warn(adap->pdev_dev, 3309 "No PHY Firmware file found for this PHY\n"); 3310 return -EOPNOTSUPP; 3311 } 3312 3313 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3314 * use that. The adapter firmware provides us with a memory buffer 3315 * where we can load a PHY firmware file from the host if we want to 3316 * override the PHY firmware File in flash. 3317 */ 3318 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3319 adap->pdev_dev); 3320 if (ret < 0) { 3321 /* For adapters without FLASH attached to PHY for their 3322 * firmware, it's obviously a fatal error if we can't get the 3323 * firmware to the adapter. For adapters with PHY firmware 3324 * FLASH storage, it's worth a warning if we can't find the 3325 * PHY Firmware but we'll neuter the error ... 3326 */ 3327 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3328 "/lib/firmware/%s, error %d\n", 3329 phy_info->phy_fw_file, -ret); 3330 if (phy_info->phy_flash) { 3331 int cur_phy_fw_ver = 0; 3332 3333 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3334 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3335 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3336 ret = 0; 3337 } 3338 3339 return ret; 3340 } 3341 3342 /* Load PHY Firmware onto adapter. 3343 */ 3344 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3345 phy_info->phy_fw_version, 3346 (u8 *)phyf->data, phyf->size); 3347 if (ret < 0) 3348 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3349 -ret); 3350 else if (ret > 0) { 3351 int new_phy_fw_ver = 0; 3352 3353 if (phy_info->phy_fw_version) 3354 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3355 phyf->size); 3356 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3357 "Firmware /lib/firmware/%s, version %#x\n", 3358 phy_info->phy_fw_file, new_phy_fw_ver); 3359 } 3360 3361 release_firmware(phyf); 3362 3363 return ret; 3364 } 3365 3366 /* 3367 * Attempt to initialize the adapter via a Firmware Configuration File. 3368 */ 3369 static int adap_init0_config(struct adapter *adapter, int reset) 3370 { 3371 struct fw_caps_config_cmd caps_cmd; 3372 const struct firmware *cf; 3373 unsigned long mtype = 0, maddr = 0; 3374 u32 finiver, finicsum, cfcsum; 3375 int ret; 3376 int config_issued = 0; 3377 char *fw_config_file, fw_config_file_path[256]; 3378 char *config_name = NULL; 3379 3380 /* 3381 * Reset device if necessary. 3382 */ 3383 if (reset) { 3384 ret = t4_fw_reset(adapter, adapter->mbox, 3385 PIORSTMODE_F | PIORST_F); 3386 if (ret < 0) 3387 goto bye; 3388 } 3389 3390 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3391 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3392 * to be performed after any global adapter RESET above since some 3393 * PHYs only have local RAM copies of the PHY firmware. 3394 */ 3395 if (is_10gbt_device(adapter->pdev->device)) { 3396 ret = adap_init0_phy(adapter); 3397 if (ret < 0) 3398 goto bye; 3399 } 3400 /* 3401 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3402 * then use that. Otherwise, use the configuration file stored 3403 * in the adapter flash ... 3404 */ 3405 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3406 case CHELSIO_T4: 3407 fw_config_file = FW4_CFNAME; 3408 break; 3409 case CHELSIO_T5: 3410 fw_config_file = FW5_CFNAME; 3411 break; 3412 case CHELSIO_T6: 3413 fw_config_file = FW6_CFNAME; 3414 break; 3415 default: 3416 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3417 adapter->pdev->device); 3418 ret = -EINVAL; 3419 goto bye; 3420 } 3421 3422 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3423 if (ret < 0) { 3424 config_name = "On FLASH"; 3425 mtype = FW_MEMTYPE_CF_FLASH; 3426 maddr = t4_flash_cfg_addr(adapter); 3427 } else { 3428 u32 params[7], val[7]; 3429 3430 sprintf(fw_config_file_path, 3431 "/lib/firmware/%s", fw_config_file); 3432 config_name = fw_config_file_path; 3433 3434 if (cf->size >= FLASH_CFG_MAX_SIZE) 3435 ret = -ENOMEM; 3436 else { 3437 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3438 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3439 ret = t4_query_params(adapter, adapter->mbox, 3440 adapter->pf, 0, 1, params, val); 3441 if (ret == 0) { 3442 /* 3443 * For t4_memory_rw() below addresses and 3444 * sizes have to be in terms of multiples of 4 3445 * bytes. So, if the Configuration File isn't 3446 * a multiple of 4 bytes in length we'll have 3447 * to write that out separately since we can't 3448 * guarantee that the bytes following the 3449 * residual byte in the buffer returned by 3450 * request_firmware() are zeroed out ... 3451 */ 3452 size_t resid = cf->size & 0x3; 3453 size_t size = cf->size & ~0x3; 3454 __be32 *data = (__be32 *)cf->data; 3455 3456 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3457 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3458 3459 spin_lock(&adapter->win0_lock); 3460 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3461 size, data, T4_MEMORY_WRITE); 3462 if (ret == 0 && resid != 0) { 3463 union { 3464 __be32 word; 3465 char buf[4]; 3466 } last; 3467 int i; 3468 3469 last.word = data[size >> 2]; 3470 for (i = resid; i < 4; i++) 3471 last.buf[i] = 0; 3472 ret = t4_memory_rw(adapter, 0, mtype, 3473 maddr + size, 3474 4, &last.word, 3475 T4_MEMORY_WRITE); 3476 } 3477 spin_unlock(&adapter->win0_lock); 3478 } 3479 } 3480 3481 release_firmware(cf); 3482 if (ret) 3483 goto bye; 3484 } 3485 3486 /* 3487 * Issue a Capability Configuration command to the firmware to get it 3488 * to parse the Configuration File. We don't use t4_fw_config_file() 3489 * because we want the ability to modify various features after we've 3490 * processed the configuration file ... 3491 */ 3492 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3493 caps_cmd.op_to_write = 3494 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3495 FW_CMD_REQUEST_F | 3496 FW_CMD_READ_F); 3497 caps_cmd.cfvalid_to_len16 = 3498 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3499 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3500 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3501 FW_LEN16(caps_cmd)); 3502 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3503 &caps_cmd); 3504 3505 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3506 * Configuration File in FLASH), our last gasp effort is to use the 3507 * Firmware Configuration File which is embedded in the firmware. A 3508 * very few early versions of the firmware didn't have one embedded 3509 * but we can ignore those. 3510 */ 3511 if (ret == -ENOENT) { 3512 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3513 caps_cmd.op_to_write = 3514 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3515 FW_CMD_REQUEST_F | 3516 FW_CMD_READ_F); 3517 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3518 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3519 sizeof(caps_cmd), &caps_cmd); 3520 config_name = "Firmware Default"; 3521 } 3522 3523 config_issued = 1; 3524 if (ret < 0) 3525 goto bye; 3526 3527 finiver = ntohl(caps_cmd.finiver); 3528 finicsum = ntohl(caps_cmd.finicsum); 3529 cfcsum = ntohl(caps_cmd.cfcsum); 3530 if (finicsum != cfcsum) 3531 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3532 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3533 finicsum, cfcsum); 3534 3535 /* 3536 * And now tell the firmware to use the configuration we just loaded. 3537 */ 3538 caps_cmd.op_to_write = 3539 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3540 FW_CMD_REQUEST_F | 3541 FW_CMD_WRITE_F); 3542 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3543 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3544 NULL); 3545 if (ret < 0) 3546 goto bye; 3547 3548 /* 3549 * Tweak configuration based on system architecture, module 3550 * parameters, etc. 3551 */ 3552 ret = adap_init0_tweaks(adapter); 3553 if (ret < 0) 3554 goto bye; 3555 3556 /* 3557 * And finally tell the firmware to initialize itself using the 3558 * parameters from the Configuration File. 3559 */ 3560 ret = t4_fw_initialize(adapter, adapter->mbox); 3561 if (ret < 0) 3562 goto bye; 3563 3564 /* Emit Firmware Configuration File information and return 3565 * successfully. 3566 */ 3567 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 3568 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 3569 config_name, finiver, cfcsum); 3570 return 0; 3571 3572 /* 3573 * Something bad happened. Return the error ... (If the "error" 3574 * is that there's no Configuration File on the adapter we don't 3575 * want to issue a warning since this is fairly common.) 3576 */ 3577 bye: 3578 if (config_issued && ret != -ENOENT) 3579 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 3580 config_name, -ret); 3581 return ret; 3582 } 3583 3584 static struct fw_info fw_info_array[] = { 3585 { 3586 .chip = CHELSIO_T4, 3587 .fs_name = FW4_CFNAME, 3588 .fw_mod_name = FW4_FNAME, 3589 .fw_hdr = { 3590 .chip = FW_HDR_CHIP_T4, 3591 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 3592 .intfver_nic = FW_INTFVER(T4, NIC), 3593 .intfver_vnic = FW_INTFVER(T4, VNIC), 3594 .intfver_ri = FW_INTFVER(T4, RI), 3595 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3596 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3597 }, 3598 }, { 3599 .chip = CHELSIO_T5, 3600 .fs_name = FW5_CFNAME, 3601 .fw_mod_name = FW5_FNAME, 3602 .fw_hdr = { 3603 .chip = FW_HDR_CHIP_T5, 3604 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 3605 .intfver_nic = FW_INTFVER(T5, NIC), 3606 .intfver_vnic = FW_INTFVER(T5, VNIC), 3607 .intfver_ri = FW_INTFVER(T5, RI), 3608 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3609 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3610 }, 3611 }, { 3612 .chip = CHELSIO_T6, 3613 .fs_name = FW6_CFNAME, 3614 .fw_mod_name = FW6_FNAME, 3615 .fw_hdr = { 3616 .chip = FW_HDR_CHIP_T6, 3617 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 3618 .intfver_nic = FW_INTFVER(T6, NIC), 3619 .intfver_vnic = FW_INTFVER(T6, VNIC), 3620 .intfver_ofld = FW_INTFVER(T6, OFLD), 3621 .intfver_ri = FW_INTFVER(T6, RI), 3622 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 3623 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 3624 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 3625 .intfver_fcoe = FW_INTFVER(T6, FCOE), 3626 }, 3627 } 3628 3629 }; 3630 3631 static struct fw_info *find_fw_info(int chip) 3632 { 3633 int i; 3634 3635 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 3636 if (fw_info_array[i].chip == chip) 3637 return &fw_info_array[i]; 3638 } 3639 return NULL; 3640 } 3641 3642 /* 3643 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3644 */ 3645 static int adap_init0(struct adapter *adap) 3646 { 3647 int ret; 3648 u32 v, port_vec; 3649 enum dev_state state; 3650 u32 params[7], val[7]; 3651 struct fw_caps_config_cmd caps_cmd; 3652 int reset = 1; 3653 3654 /* Grab Firmware Device Log parameters as early as possible so we have 3655 * access to it for debugging, etc. 3656 */ 3657 ret = t4_init_devlog_params(adap); 3658 if (ret < 0) 3659 return ret; 3660 3661 /* Contact FW, advertising Master capability */ 3662 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 3663 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 3664 if (ret < 0) { 3665 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 3666 ret); 3667 return ret; 3668 } 3669 if (ret == adap->mbox) 3670 adap->flags |= MASTER_PF; 3671 3672 /* 3673 * If we're the Master PF Driver and the device is uninitialized, 3674 * then let's consider upgrading the firmware ... (We always want 3675 * to check the firmware version number in order to A. get it for 3676 * later reporting and B. to warn if the currently loaded firmware 3677 * is excessively mismatched relative to the driver.) 3678 */ 3679 3680 t4_get_version_info(adap); 3681 ret = t4_check_fw_version(adap); 3682 /* If firmware is too old (not supported by driver) force an update. */ 3683 if (ret) 3684 state = DEV_STATE_UNINIT; 3685 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 3686 struct fw_info *fw_info; 3687 struct fw_hdr *card_fw; 3688 const struct firmware *fw; 3689 const u8 *fw_data = NULL; 3690 unsigned int fw_size = 0; 3691 3692 /* This is the firmware whose headers the driver was compiled 3693 * against 3694 */ 3695 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 3696 if (fw_info == NULL) { 3697 dev_err(adap->pdev_dev, 3698 "unable to get firmware info for chip %d.\n", 3699 CHELSIO_CHIP_VERSION(adap->params.chip)); 3700 return -EINVAL; 3701 } 3702 3703 /* allocate memory to read the header of the firmware on the 3704 * card 3705 */ 3706 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 3707 3708 /* Get FW from from /lib/firmware/ */ 3709 ret = request_firmware(&fw, fw_info->fw_mod_name, 3710 adap->pdev_dev); 3711 if (ret < 0) { 3712 dev_err(adap->pdev_dev, 3713 "unable to load firmware image %s, error %d\n", 3714 fw_info->fw_mod_name, ret); 3715 } else { 3716 fw_data = fw->data; 3717 fw_size = fw->size; 3718 } 3719 3720 /* upgrade FW logic */ 3721 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 3722 state, &reset); 3723 3724 /* Cleaning up */ 3725 release_firmware(fw); 3726 kvfree(card_fw); 3727 3728 if (ret < 0) 3729 goto bye; 3730 } 3731 3732 /* 3733 * Grab VPD parameters. This should be done after we establish a 3734 * connection to the firmware since some of the VPD parameters 3735 * (notably the Core Clock frequency) are retrieved via requests to 3736 * the firmware. On the other hand, we need these fairly early on 3737 * so we do this right after getting ahold of the firmware. 3738 */ 3739 ret = t4_get_vpd_params(adap, &adap->params.vpd); 3740 if (ret < 0) 3741 goto bye; 3742 3743 /* 3744 * Find out what ports are available to us. Note that we need to do 3745 * this before calling adap_init0_no_config() since it needs nports 3746 * and portvec ... 3747 */ 3748 v = 3749 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3750 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 3751 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 3752 if (ret < 0) 3753 goto bye; 3754 3755 adap->params.nports = hweight32(port_vec); 3756 adap->params.portvec = port_vec; 3757 3758 /* If the firmware is initialized already, emit a simply note to that 3759 * effect. Otherwise, it's time to try initializing the adapter. 3760 */ 3761 if (state == DEV_STATE_INIT) { 3762 dev_info(adap->pdev_dev, "Coming up as %s: "\ 3763 "Adapter already initialized\n", 3764 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 3765 } else { 3766 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 3767 "Initializing adapter\n"); 3768 3769 /* Find out whether we're dealing with a version of the 3770 * firmware which has configuration file support. 3771 */ 3772 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3773 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3774 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3775 params, val); 3776 3777 /* If the firmware doesn't support Configuration Files, 3778 * return an error. 3779 */ 3780 if (ret < 0) { 3781 dev_err(adap->pdev_dev, "firmware doesn't support " 3782 "Firmware Configuration Files\n"); 3783 goto bye; 3784 } 3785 3786 /* The firmware provides us with a memory buffer where we can 3787 * load a Configuration File from the host if we want to 3788 * override the Configuration File in flash. 3789 */ 3790 ret = adap_init0_config(adap, reset); 3791 if (ret == -ENOENT) { 3792 dev_err(adap->pdev_dev, "no Configuration File " 3793 "present on adapter.\n"); 3794 goto bye; 3795 } 3796 if (ret < 0) { 3797 dev_err(adap->pdev_dev, "could not initialize " 3798 "adapter, error %d\n", -ret); 3799 goto bye; 3800 } 3801 } 3802 3803 /* Give the SGE code a chance to pull in anything that it needs ... 3804 * Note that this must be called after we retrieve our VPD parameters 3805 * in order to know how to convert core ticks to seconds, etc. 3806 */ 3807 ret = t4_sge_init(adap); 3808 if (ret < 0) 3809 goto bye; 3810 3811 if (is_bypass_device(adap->pdev->device)) 3812 adap->params.bypass = 1; 3813 3814 /* 3815 * Grab some of our basic fundamental operating parameters. 3816 */ 3817 #define FW_PARAM_DEV(param) \ 3818 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 3819 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 3820 3821 #define FW_PARAM_PFVF(param) \ 3822 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 3823 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 3824 FW_PARAMS_PARAM_Y_V(0) | \ 3825 FW_PARAMS_PARAM_Z_V(0) 3826 3827 params[0] = FW_PARAM_PFVF(EQ_START); 3828 params[1] = FW_PARAM_PFVF(L2T_START); 3829 params[2] = FW_PARAM_PFVF(L2T_END); 3830 params[3] = FW_PARAM_PFVF(FILTER_START); 3831 params[4] = FW_PARAM_PFVF(FILTER_END); 3832 params[5] = FW_PARAM_PFVF(IQFLINT_START); 3833 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 3834 if (ret < 0) 3835 goto bye; 3836 adap->sge.egr_start = val[0]; 3837 adap->l2t_start = val[1]; 3838 adap->l2t_end = val[2]; 3839 adap->tids.ftid_base = val[3]; 3840 adap->tids.nftids = val[4] - val[3] + 1; 3841 adap->sge.ingr_start = val[5]; 3842 3843 /* qids (ingress/egress) returned from firmware can be anywhere 3844 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 3845 * Hence driver needs to allocate memory for this range to 3846 * store the queue info. Get the highest IQFLINT/EQ index returned 3847 * in FW_EQ_*_CMD.alloc command. 3848 */ 3849 params[0] = FW_PARAM_PFVF(EQ_END); 3850 params[1] = FW_PARAM_PFVF(IQFLINT_END); 3851 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3852 if (ret < 0) 3853 goto bye; 3854 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 3855 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 3856 3857 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 3858 sizeof(*adap->sge.egr_map), GFP_KERNEL); 3859 if (!adap->sge.egr_map) { 3860 ret = -ENOMEM; 3861 goto bye; 3862 } 3863 3864 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 3865 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 3866 if (!adap->sge.ingr_map) { 3867 ret = -ENOMEM; 3868 goto bye; 3869 } 3870 3871 /* Allocate the memory for the vaious egress queue bitmaps 3872 * ie starving_fl, txq_maperr and blocked_fl. 3873 */ 3874 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3875 sizeof(long), GFP_KERNEL); 3876 if (!adap->sge.starving_fl) { 3877 ret = -ENOMEM; 3878 goto bye; 3879 } 3880 3881 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3882 sizeof(long), GFP_KERNEL); 3883 if (!adap->sge.txq_maperr) { 3884 ret = -ENOMEM; 3885 goto bye; 3886 } 3887 3888 #ifdef CONFIG_DEBUG_FS 3889 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3890 sizeof(long), GFP_KERNEL); 3891 if (!adap->sge.blocked_fl) { 3892 ret = -ENOMEM; 3893 goto bye; 3894 } 3895 #endif 3896 3897 params[0] = FW_PARAM_PFVF(CLIP_START); 3898 params[1] = FW_PARAM_PFVF(CLIP_END); 3899 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3900 if (ret < 0) 3901 goto bye; 3902 adap->clipt_start = val[0]; 3903 adap->clipt_end = val[1]; 3904 3905 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 3906 * Classes supported by the hardware/firmware so we hard code it here 3907 * for now. 3908 */ 3909 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 3910 3911 /* query params related to active filter region */ 3912 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 3913 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 3914 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3915 /* If Active filter size is set we enable establishing 3916 * offload connection through firmware work request 3917 */ 3918 if ((val[0] != val[1]) && (ret >= 0)) { 3919 adap->flags |= FW_OFLD_CONN; 3920 adap->tids.aftid_base = val[0]; 3921 adap->tids.aftid_end = val[1]; 3922 } 3923 3924 /* If we're running on newer firmware, let it know that we're 3925 * prepared to deal with encapsulated CPL messages. Older 3926 * firmware won't understand this and we'll just get 3927 * unencapsulated messages ... 3928 */ 3929 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 3930 val[0] = 1; 3931 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 3932 3933 /* 3934 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 3935 * capability. Earlier versions of the firmware didn't have the 3936 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 3937 * permission to use ULPTX MEMWRITE DSGL. 3938 */ 3939 if (is_t4(adap->params.chip)) { 3940 adap->params.ulptx_memwrite_dsgl = false; 3941 } else { 3942 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 3943 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3944 1, params, val); 3945 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 3946 } 3947 3948 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 3949 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 3950 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3951 1, params, val); 3952 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 3953 3954 /* See if FW supports FW_FILTER2 work request */ 3955 if (is_t4(adap->params.chip)) { 3956 adap->params.filter2_wr_support = 0; 3957 } else { 3958 params[0] = FW_PARAM_DEV(FILTER2_WR); 3959 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3960 1, params, val); 3961 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 3962 } 3963 3964 /* 3965 * Get device capabilities so we can determine what resources we need 3966 * to manage. 3967 */ 3968 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3969 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3970 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3971 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3972 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 3973 &caps_cmd); 3974 if (ret < 0) 3975 goto bye; 3976 3977 if (caps_cmd.ofldcaps || 3978 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) { 3979 /* query offload-related parameters */ 3980 params[0] = FW_PARAM_DEV(NTID); 3981 params[1] = FW_PARAM_PFVF(SERVER_START); 3982 params[2] = FW_PARAM_PFVF(SERVER_END); 3983 params[3] = FW_PARAM_PFVF(TDDP_START); 3984 params[4] = FW_PARAM_PFVF(TDDP_END); 3985 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3986 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3987 params, val); 3988 if (ret < 0) 3989 goto bye; 3990 adap->tids.ntids = val[0]; 3991 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 3992 adap->tids.stid_base = val[1]; 3993 adap->tids.nstids = val[2] - val[1] + 1; 3994 /* 3995 * Setup server filter region. Divide the available filter 3996 * region into two parts. Regular filters get 1/3rd and server 3997 * filters get 2/3rd part. This is only enabled if workarond 3998 * path is enabled. 3999 * 1. For regular filters. 4000 * 2. Server filter: This are special filters which are used 4001 * to redirect SYN packets to offload queue. 4002 */ 4003 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 4004 adap->tids.sftid_base = adap->tids.ftid_base + 4005 DIV_ROUND_UP(adap->tids.nftids, 3); 4006 adap->tids.nsftids = adap->tids.nftids - 4007 DIV_ROUND_UP(adap->tids.nftids, 3); 4008 adap->tids.nftids = adap->tids.sftid_base - 4009 adap->tids.ftid_base; 4010 } 4011 adap->vres.ddp.start = val[3]; 4012 adap->vres.ddp.size = val[4] - val[3] + 1; 4013 adap->params.ofldq_wr_cred = val[5]; 4014 4015 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4016 if (init_hash_filter(adap) < 0) 4017 goto bye; 4018 } else { 4019 adap->params.offload = 1; 4020 adap->num_ofld_uld += 1; 4021 } 4022 } 4023 if (caps_cmd.rdmacaps) { 4024 params[0] = FW_PARAM_PFVF(STAG_START); 4025 params[1] = FW_PARAM_PFVF(STAG_END); 4026 params[2] = FW_PARAM_PFVF(RQ_START); 4027 params[3] = FW_PARAM_PFVF(RQ_END); 4028 params[4] = FW_PARAM_PFVF(PBL_START); 4029 params[5] = FW_PARAM_PFVF(PBL_END); 4030 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4031 params, val); 4032 if (ret < 0) 4033 goto bye; 4034 adap->vres.stag.start = val[0]; 4035 adap->vres.stag.size = val[1] - val[0] + 1; 4036 adap->vres.rq.start = val[2]; 4037 adap->vres.rq.size = val[3] - val[2] + 1; 4038 adap->vres.pbl.start = val[4]; 4039 adap->vres.pbl.size = val[5] - val[4] + 1; 4040 4041 params[0] = FW_PARAM_PFVF(SQRQ_START); 4042 params[1] = FW_PARAM_PFVF(SQRQ_END); 4043 params[2] = FW_PARAM_PFVF(CQ_START); 4044 params[3] = FW_PARAM_PFVF(CQ_END); 4045 params[4] = FW_PARAM_PFVF(OCQ_START); 4046 params[5] = FW_PARAM_PFVF(OCQ_END); 4047 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4048 val); 4049 if (ret < 0) 4050 goto bye; 4051 adap->vres.qp.start = val[0]; 4052 adap->vres.qp.size = val[1] - val[0] + 1; 4053 adap->vres.cq.start = val[2]; 4054 adap->vres.cq.size = val[3] - val[2] + 1; 4055 adap->vres.ocq.start = val[4]; 4056 adap->vres.ocq.size = val[5] - val[4] + 1; 4057 4058 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4059 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4060 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 4061 val); 4062 if (ret < 0) { 4063 adap->params.max_ordird_qp = 8; 4064 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 4065 ret = 0; 4066 } else { 4067 adap->params.max_ordird_qp = val[0]; 4068 adap->params.max_ird_adapter = val[1]; 4069 } 4070 dev_info(adap->pdev_dev, 4071 "max_ordird_qp %d max_ird_adapter %d\n", 4072 adap->params.max_ordird_qp, 4073 adap->params.max_ird_adapter); 4074 adap->num_ofld_uld += 2; 4075 } 4076 if (caps_cmd.iscsicaps) { 4077 params[0] = FW_PARAM_PFVF(ISCSI_START); 4078 params[1] = FW_PARAM_PFVF(ISCSI_END); 4079 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4080 params, val); 4081 if (ret < 0) 4082 goto bye; 4083 adap->vres.iscsi.start = val[0]; 4084 adap->vres.iscsi.size = val[1] - val[0] + 1; 4085 /* LIO target and cxgb4i initiaitor */ 4086 adap->num_ofld_uld += 2; 4087 } 4088 if (caps_cmd.cryptocaps) { 4089 /* Should query params here...TODO */ 4090 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 4091 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4092 params, val); 4093 if (ret < 0) { 4094 if (ret != -EINVAL) 4095 goto bye; 4096 } else { 4097 adap->vres.ncrypto_fc = val[0]; 4098 } 4099 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE; 4100 adap->num_uld += 1; 4101 } 4102 #undef FW_PARAM_PFVF 4103 #undef FW_PARAM_DEV 4104 4105 /* The MTU/MSS Table is initialized by now, so load their values. If 4106 * we're initializing the adapter, then we'll make any modifications 4107 * we want to the MTU/MSS Table and also initialize the congestion 4108 * parameters. 4109 */ 4110 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4111 if (state != DEV_STATE_INIT) { 4112 int i; 4113 4114 /* The default MTU Table contains values 1492 and 1500. 4115 * However, for TCP, it's better to have two values which are 4116 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4117 * This allows us to have a TCP Data Payload which is a 4118 * multiple of 8 regardless of what combination of TCP Options 4119 * are in use (always a multiple of 4 bytes) which is 4120 * important for performance reasons. For instance, if no 4121 * options are in use, then we have a 20-byte IP header and a 4122 * 20-byte TCP header. In this case, a 1500-byte MSS would 4123 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4124 * which is not a multiple of 8. So using an MSS of 1488 in 4125 * this case results in a TCP Data Payload of 1448 bytes which 4126 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4127 * Stamps have been negotiated, then an MTU of 1500 bytes 4128 * results in a TCP Data Payload of 1448 bytes which, as 4129 * above, is a multiple of 8 bytes ... 4130 */ 4131 for (i = 0; i < NMTUS; i++) 4132 if (adap->params.mtus[i] == 1492) { 4133 adap->params.mtus[i] = 1488; 4134 break; 4135 } 4136 4137 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4138 adap->params.b_wnd); 4139 } 4140 t4_init_sge_params(adap); 4141 adap->flags |= FW_OK; 4142 t4_init_tp_params(adap, true); 4143 return 0; 4144 4145 /* 4146 * Something bad happened. If a command timed out or failed with EIO 4147 * FW does not operate within its spec or something catastrophic 4148 * happened to HW/FW, stop issuing commands. 4149 */ 4150 bye: 4151 kfree(adap->sge.egr_map); 4152 kfree(adap->sge.ingr_map); 4153 kfree(adap->sge.starving_fl); 4154 kfree(adap->sge.txq_maperr); 4155 #ifdef CONFIG_DEBUG_FS 4156 kfree(adap->sge.blocked_fl); 4157 #endif 4158 if (ret != -ETIMEDOUT && ret != -EIO) 4159 t4_fw_bye(adap, adap->mbox); 4160 return ret; 4161 } 4162 4163 /* EEH callbacks */ 4164 4165 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4166 pci_channel_state_t state) 4167 { 4168 int i; 4169 struct adapter *adap = pci_get_drvdata(pdev); 4170 4171 if (!adap) 4172 goto out; 4173 4174 rtnl_lock(); 4175 adap->flags &= ~FW_OK; 4176 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4177 spin_lock(&adap->stats_lock); 4178 for_each_port(adap, i) { 4179 struct net_device *dev = adap->port[i]; 4180 if (dev) { 4181 netif_device_detach(dev); 4182 netif_carrier_off(dev); 4183 } 4184 } 4185 spin_unlock(&adap->stats_lock); 4186 disable_interrupts(adap); 4187 if (adap->flags & FULL_INIT_DONE) 4188 cxgb_down(adap); 4189 rtnl_unlock(); 4190 if ((adap->flags & DEV_ENABLED)) { 4191 pci_disable_device(pdev); 4192 adap->flags &= ~DEV_ENABLED; 4193 } 4194 out: return state == pci_channel_io_perm_failure ? 4195 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4196 } 4197 4198 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4199 { 4200 int i, ret; 4201 struct fw_caps_config_cmd c; 4202 struct adapter *adap = pci_get_drvdata(pdev); 4203 4204 if (!adap) { 4205 pci_restore_state(pdev); 4206 pci_save_state(pdev); 4207 return PCI_ERS_RESULT_RECOVERED; 4208 } 4209 4210 if (!(adap->flags & DEV_ENABLED)) { 4211 if (pci_enable_device(pdev)) { 4212 dev_err(&pdev->dev, "Cannot reenable PCI " 4213 "device after reset\n"); 4214 return PCI_ERS_RESULT_DISCONNECT; 4215 } 4216 adap->flags |= DEV_ENABLED; 4217 } 4218 4219 pci_set_master(pdev); 4220 pci_restore_state(pdev); 4221 pci_save_state(pdev); 4222 pci_cleanup_aer_uncorrect_error_status(pdev); 4223 4224 if (t4_wait_dev_ready(adap->regs) < 0) 4225 return PCI_ERS_RESULT_DISCONNECT; 4226 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4227 return PCI_ERS_RESULT_DISCONNECT; 4228 adap->flags |= FW_OK; 4229 if (adap_init1(adap, &c)) 4230 return PCI_ERS_RESULT_DISCONNECT; 4231 4232 for_each_port(adap, i) { 4233 struct port_info *p = adap2pinfo(adap, i); 4234 4235 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 4236 NULL, NULL); 4237 if (ret < 0) 4238 return PCI_ERS_RESULT_DISCONNECT; 4239 p->viid = ret; 4240 p->xact_addr_filt = -1; 4241 } 4242 4243 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4244 adap->params.b_wnd); 4245 setup_memwin(adap); 4246 if (cxgb_up(adap)) 4247 return PCI_ERS_RESULT_DISCONNECT; 4248 return PCI_ERS_RESULT_RECOVERED; 4249 } 4250 4251 static void eeh_resume(struct pci_dev *pdev) 4252 { 4253 int i; 4254 struct adapter *adap = pci_get_drvdata(pdev); 4255 4256 if (!adap) 4257 return; 4258 4259 rtnl_lock(); 4260 for_each_port(adap, i) { 4261 struct net_device *dev = adap->port[i]; 4262 if (dev) { 4263 if (netif_running(dev)) { 4264 link_start(dev); 4265 cxgb_set_rxmode(dev); 4266 } 4267 netif_device_attach(dev); 4268 } 4269 } 4270 rtnl_unlock(); 4271 } 4272 4273 static const struct pci_error_handlers cxgb4_eeh = { 4274 .error_detected = eeh_err_detected, 4275 .slot_reset = eeh_slot_reset, 4276 .resume = eeh_resume, 4277 }; 4278 4279 /* Return true if the Link Configuration supports "High Speeds" (those greater 4280 * than 1Gb/s). 4281 */ 4282 static inline bool is_x_10g_port(const struct link_config *lc) 4283 { 4284 unsigned int speeds, high_speeds; 4285 4286 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 4287 high_speeds = speeds & 4288 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 4289 4290 return high_speeds != 0; 4291 } 4292 4293 /* 4294 * Perform default configuration of DMA queues depending on the number and type 4295 * of ports we found and the number of available CPUs. Most settings can be 4296 * modified by the admin prior to actual use. 4297 */ 4298 static void cfg_queues(struct adapter *adap) 4299 { 4300 struct sge *s = &adap->sge; 4301 int i = 0, n10g = 0, qidx = 0; 4302 #ifndef CONFIG_CHELSIO_T4_DCB 4303 int q10g = 0; 4304 #endif 4305 4306 /* Reduce memory usage in kdump environment, disable all offload. 4307 */ 4308 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 4309 adap->params.offload = 0; 4310 adap->params.crypto = 0; 4311 } 4312 4313 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4314 #ifdef CONFIG_CHELSIO_T4_DCB 4315 /* For Data Center Bridging support we need to be able to support up 4316 * to 8 Traffic Priorities; each of which will be assigned to its 4317 * own TX Queue in order to prevent Head-Of-Line Blocking. 4318 */ 4319 if (adap->params.nports * 8 > MAX_ETH_QSETS) { 4320 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n", 4321 MAX_ETH_QSETS, adap->params.nports * 8); 4322 BUG_ON(1); 4323 } 4324 4325 for_each_port(adap, i) { 4326 struct port_info *pi = adap2pinfo(adap, i); 4327 4328 pi->first_qset = qidx; 4329 pi->nqsets = is_kdump_kernel() ? 1 : 8; 4330 qidx += pi->nqsets; 4331 } 4332 #else /* !CONFIG_CHELSIO_T4_DCB */ 4333 /* 4334 * We default to 1 queue per non-10G port and up to # of cores queues 4335 * per 10G port. 4336 */ 4337 if (n10g) 4338 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 4339 if (q10g > netif_get_num_default_rss_queues()) 4340 q10g = netif_get_num_default_rss_queues(); 4341 4342 if (is_kdump_kernel()) 4343 q10g = 1; 4344 4345 for_each_port(adap, i) { 4346 struct port_info *pi = adap2pinfo(adap, i); 4347 4348 pi->first_qset = qidx; 4349 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4350 qidx += pi->nqsets; 4351 } 4352 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4353 4354 s->ethqsets = qidx; 4355 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4356 4357 if (is_uld(adap)) { 4358 /* 4359 * For offload we use 1 queue/channel if all ports are up to 1G, 4360 * otherwise we divide all available queues amongst the channels 4361 * capped by the number of available cores. 4362 */ 4363 if (n10g) { 4364 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 4365 s->ofldqsets = roundup(i, adap->params.nports); 4366 } else { 4367 s->ofldqsets = adap->params.nports; 4368 } 4369 } 4370 4371 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4372 struct sge_eth_rxq *r = &s->ethrxq[i]; 4373 4374 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4375 r->fl.size = 72; 4376 } 4377 4378 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4379 s->ethtxq[i].q.size = 1024; 4380 4381 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4382 s->ctrlq[i].q.size = 512; 4383 4384 if (!is_t4(adap->params.chip)) 4385 s->ptptxq.q.size = 8; 4386 4387 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4388 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 4389 } 4390 4391 /* 4392 * Reduce the number of Ethernet queues across all ports to at most n. 4393 * n provides at least one queue per port. 4394 */ 4395 static void reduce_ethqs(struct adapter *adap, int n) 4396 { 4397 int i; 4398 struct port_info *pi; 4399 4400 while (n < adap->sge.ethqsets) 4401 for_each_port(adap, i) { 4402 pi = adap2pinfo(adap, i); 4403 if (pi->nqsets > 1) { 4404 pi->nqsets--; 4405 adap->sge.ethqsets--; 4406 if (adap->sge.ethqsets <= n) 4407 break; 4408 } 4409 } 4410 4411 n = 0; 4412 for_each_port(adap, i) { 4413 pi = adap2pinfo(adap, i); 4414 pi->first_qset = n; 4415 n += pi->nqsets; 4416 } 4417 } 4418 4419 static int get_msix_info(struct adapter *adap) 4420 { 4421 struct uld_msix_info *msix_info; 4422 unsigned int max_ingq = 0; 4423 4424 if (is_offload(adap)) 4425 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 4426 if (is_pci_uld(adap)) 4427 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 4428 4429 if (!max_ingq) 4430 goto out; 4431 4432 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 4433 if (!msix_info) 4434 return -ENOMEM; 4435 4436 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 4437 sizeof(long), GFP_KERNEL); 4438 if (!adap->msix_bmap_ulds.msix_bmap) { 4439 kfree(msix_info); 4440 return -ENOMEM; 4441 } 4442 spin_lock_init(&adap->msix_bmap_ulds.lock); 4443 adap->msix_info_ulds = msix_info; 4444 out: 4445 return 0; 4446 } 4447 4448 static void free_msix_info(struct adapter *adap) 4449 { 4450 if (!(adap->num_uld && adap->num_ofld_uld)) 4451 return; 4452 4453 kfree(adap->msix_info_ulds); 4454 kfree(adap->msix_bmap_ulds.msix_bmap); 4455 } 4456 4457 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 4458 #define EXTRA_VECS 2 4459 4460 static int enable_msix(struct adapter *adap) 4461 { 4462 int ofld_need = 0, uld_need = 0; 4463 int i, j, want, need, allocated; 4464 struct sge *s = &adap->sge; 4465 unsigned int nchan = adap->params.nports; 4466 struct msix_entry *entries; 4467 int max_ingq = MAX_INGQ; 4468 4469 if (is_pci_uld(adap)) 4470 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 4471 if (is_offload(adap)) 4472 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 4473 entries = kmalloc(sizeof(*entries) * (max_ingq + 1), 4474 GFP_KERNEL); 4475 if (!entries) 4476 return -ENOMEM; 4477 4478 /* map for msix */ 4479 if (get_msix_info(adap)) { 4480 adap->params.offload = 0; 4481 adap->params.crypto = 0; 4482 } 4483 4484 for (i = 0; i < max_ingq + 1; ++i) 4485 entries[i].entry = i; 4486 4487 want = s->max_ethqsets + EXTRA_VECS; 4488 if (is_offload(adap)) { 4489 want += adap->num_ofld_uld * s->ofldqsets; 4490 ofld_need = adap->num_ofld_uld * nchan; 4491 } 4492 if (is_pci_uld(adap)) { 4493 want += adap->num_uld * s->ofldqsets; 4494 uld_need = adap->num_uld * nchan; 4495 } 4496 #ifdef CONFIG_CHELSIO_T4_DCB 4497 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 4498 * each port. 4499 */ 4500 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4501 #else 4502 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4503 #endif 4504 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 4505 if (allocated < 0) { 4506 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 4507 " not using MSI-X\n"); 4508 kfree(entries); 4509 return allocated; 4510 } 4511 4512 /* Distribute available vectors to the various queue groups. 4513 * Every group gets its minimum requirement and NIC gets top 4514 * priority for leftovers. 4515 */ 4516 i = allocated - EXTRA_VECS - ofld_need - uld_need; 4517 if (i < s->max_ethqsets) { 4518 s->max_ethqsets = i; 4519 if (i < s->ethqsets) 4520 reduce_ethqs(adap, i); 4521 } 4522 if (is_uld(adap)) { 4523 if (allocated < want) 4524 s->nqs_per_uld = nchan; 4525 else 4526 s->nqs_per_uld = s->ofldqsets; 4527 } 4528 4529 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 4530 adap->msix_info[i].vec = entries[i].vector; 4531 if (is_uld(adap)) { 4532 for (j = 0 ; i < allocated; ++i, j++) { 4533 adap->msix_info_ulds[j].vec = entries[i].vector; 4534 adap->msix_info_ulds[j].idx = i; 4535 } 4536 adap->msix_bmap_ulds.mapsize = j; 4537 } 4538 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 4539 "nic %d per uld %d\n", 4540 allocated, s->max_ethqsets, s->nqs_per_uld); 4541 4542 kfree(entries); 4543 return 0; 4544 } 4545 4546 #undef EXTRA_VECS 4547 4548 static int init_rss(struct adapter *adap) 4549 { 4550 unsigned int i; 4551 int err; 4552 4553 err = t4_init_rss_mode(adap, adap->mbox); 4554 if (err) 4555 return err; 4556 4557 for_each_port(adap, i) { 4558 struct port_info *pi = adap2pinfo(adap, i); 4559 4560 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 4561 if (!pi->rss) 4562 return -ENOMEM; 4563 } 4564 return 0; 4565 } 4566 4567 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap, 4568 enum pci_bus_speed *speed, 4569 enum pcie_link_width *width) 4570 { 4571 u32 lnkcap1, lnkcap2; 4572 int err1, err2; 4573 4574 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */ 4575 4576 *speed = PCI_SPEED_UNKNOWN; 4577 *width = PCIE_LNK_WIDTH_UNKNOWN; 4578 4579 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP, 4580 &lnkcap1); 4581 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2, 4582 &lnkcap2); 4583 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */ 4584 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 4585 *speed = PCIE_SPEED_8_0GT; 4586 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 4587 *speed = PCIE_SPEED_5_0GT; 4588 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 4589 *speed = PCIE_SPEED_2_5GT; 4590 } 4591 if (!err1) { 4592 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT; 4593 if (!lnkcap2) { /* pre-r3.0 */ 4594 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB) 4595 *speed = PCIE_SPEED_5_0GT; 4596 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB) 4597 *speed = PCIE_SPEED_2_5GT; 4598 } 4599 } 4600 4601 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 4602 return err1 ? err1 : err2 ? err2 : -EINVAL; 4603 return 0; 4604 } 4605 4606 static void cxgb4_check_pcie_caps(struct adapter *adap) 4607 { 4608 enum pcie_link_width width, width_cap; 4609 enum pci_bus_speed speed, speed_cap; 4610 4611 #define PCIE_SPEED_STR(speed) \ 4612 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \ 4613 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \ 4614 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \ 4615 "Unknown") 4616 4617 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) { 4618 dev_warn(adap->pdev_dev, 4619 "Unable to determine PCIe device BW capabilities\n"); 4620 return; 4621 } 4622 4623 if (pcie_get_minimum_link(adap->pdev, &speed, &width) || 4624 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) { 4625 dev_warn(adap->pdev_dev, 4626 "Unable to determine PCI Express bandwidth.\n"); 4627 return; 4628 } 4629 4630 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n", 4631 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap)); 4632 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n", 4633 width, width_cap); 4634 if (speed < speed_cap || width < width_cap) 4635 dev_info(adap->pdev_dev, 4636 "A slot with more lanes and/or higher speed is " 4637 "suggested for optimal performance.\n"); 4638 } 4639 4640 /* Dump basic information about the adapter */ 4641 static void print_adapter_info(struct adapter *adapter) 4642 { 4643 /* Hardware/Firmware/etc. Version/Revision IDs */ 4644 t4_dump_version_info(adapter); 4645 4646 /* Software/Hardware configuration */ 4647 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 4648 is_offload(adapter) ? "R" : "", 4649 ((adapter->flags & USING_MSIX) ? "MSI-X" : 4650 (adapter->flags & USING_MSI) ? "MSI" : ""), 4651 is_offload(adapter) ? "Offload" : "non-Offload"); 4652 } 4653 4654 static void print_port_info(const struct net_device *dev) 4655 { 4656 char buf[80]; 4657 char *bufp = buf; 4658 const char *spd = ""; 4659 const struct port_info *pi = netdev_priv(dev); 4660 const struct adapter *adap = pi->adapter; 4661 4662 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 4663 spd = " 2.5 GT/s"; 4664 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 4665 spd = " 5 GT/s"; 4666 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 4667 spd = " 8 GT/s"; 4668 4669 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 4670 bufp += sprintf(bufp, "100M/"); 4671 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 4672 bufp += sprintf(bufp, "1G/"); 4673 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 4674 bufp += sprintf(bufp, "10G/"); 4675 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 4676 bufp += sprintf(bufp, "25G/"); 4677 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 4678 bufp += sprintf(bufp, "40G/"); 4679 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 4680 bufp += sprintf(bufp, "50G/"); 4681 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 4682 bufp += sprintf(bufp, "100G/"); 4683 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 4684 bufp += sprintf(bufp, "200G/"); 4685 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 4686 bufp += sprintf(bufp, "400G/"); 4687 if (bufp != buf) 4688 --bufp; 4689 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 4690 4691 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 4692 dev->name, adap->params.vpd.id, adap->name, buf); 4693 } 4694 4695 /* 4696 * Free the following resources: 4697 * - memory used for tables 4698 * - MSI/MSI-X 4699 * - net devices 4700 * - resources FW is holding for us 4701 */ 4702 static void free_some_resources(struct adapter *adapter) 4703 { 4704 unsigned int i; 4705 4706 kvfree(adapter->smt); 4707 kvfree(adapter->l2t); 4708 t4_cleanup_sched(adapter); 4709 kvfree(adapter->tids.tid_tab); 4710 cxgb4_cleanup_tc_flower(adapter); 4711 cxgb4_cleanup_tc_u32(adapter); 4712 kfree(adapter->sge.egr_map); 4713 kfree(adapter->sge.ingr_map); 4714 kfree(adapter->sge.starving_fl); 4715 kfree(adapter->sge.txq_maperr); 4716 #ifdef CONFIG_DEBUG_FS 4717 kfree(adapter->sge.blocked_fl); 4718 #endif 4719 disable_msi(adapter); 4720 4721 for_each_port(adapter, i) 4722 if (adapter->port[i]) { 4723 struct port_info *pi = adap2pinfo(adapter, i); 4724 4725 if (pi->viid != 0) 4726 t4_free_vi(adapter, adapter->mbox, adapter->pf, 4727 0, pi->viid); 4728 kfree(adap2pinfo(adapter, i)->rss); 4729 free_netdev(adapter->port[i]); 4730 } 4731 if (adapter->flags & FW_OK) 4732 t4_fw_bye(adapter, adapter->pf); 4733 } 4734 4735 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 4736 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 4737 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 4738 #define SEGMENT_SIZE 128 4739 4740 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev) 4741 { 4742 u16 device_id; 4743 4744 /* Retrieve adapter's device ID */ 4745 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 4746 4747 switch (device_id >> 12) { 4748 case CHELSIO_T4: 4749 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 4750 case CHELSIO_T5: 4751 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 4752 case CHELSIO_T6: 4753 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 4754 default: 4755 dev_err(&pdev->dev, "Device %d is not supported\n", 4756 device_id); 4757 } 4758 return -EINVAL; 4759 } 4760 4761 #ifdef CONFIG_PCI_IOV 4762 static void dummy_setup(struct net_device *dev) 4763 { 4764 dev->type = ARPHRD_NONE; 4765 dev->mtu = 0; 4766 dev->hard_header_len = 0; 4767 dev->addr_len = 0; 4768 dev->tx_queue_len = 0; 4769 dev->flags |= IFF_NOARP; 4770 dev->priv_flags |= IFF_NO_QUEUE; 4771 4772 /* Initialize the device structure. */ 4773 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 4774 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 4775 dev->needs_free_netdev = true; 4776 } 4777 4778 static int config_mgmt_dev(struct pci_dev *pdev) 4779 { 4780 struct adapter *adap = pci_get_drvdata(pdev); 4781 struct net_device *netdev; 4782 struct port_info *pi; 4783 char name[IFNAMSIZ]; 4784 int err; 4785 4786 snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf); 4787 netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN, 4788 dummy_setup); 4789 if (!netdev) 4790 return -ENOMEM; 4791 4792 pi = netdev_priv(netdev); 4793 pi->adapter = adap; 4794 pi->tx_chan = adap->pf % adap->params.nports; 4795 SET_NETDEV_DEV(netdev, &pdev->dev); 4796 4797 adap->port[0] = netdev; 4798 pi->port_id = 0; 4799 4800 err = register_netdev(adap->port[0]); 4801 if (err) { 4802 pr_info("Unable to register VF mgmt netdev %s\n", name); 4803 free_netdev(adap->port[0]); 4804 adap->port[0] = NULL; 4805 return err; 4806 } 4807 return 0; 4808 } 4809 4810 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 4811 { 4812 struct adapter *adap = pci_get_drvdata(pdev); 4813 int err = 0; 4814 int current_vfs = pci_num_vf(pdev); 4815 u32 pcie_fw; 4816 4817 pcie_fw = readl(adap->regs + PCIE_FW_A); 4818 /* Check if cxgb4 is the MASTER and fw is initialized */ 4819 if (!(pcie_fw & PCIE_FW_INIT_F) || 4820 !(pcie_fw & PCIE_FW_MASTER_VLD_F) || 4821 PCIE_FW_MASTER_G(pcie_fw) != 4) { 4822 dev_warn(&pdev->dev, 4823 "cxgb4 driver needs to be MASTER to support SRIOV\n"); 4824 return -EOPNOTSUPP; 4825 } 4826 4827 /* If any of the VF's is already assigned to Guest OS, then 4828 * SRIOV for the same cannot be modified 4829 */ 4830 if (current_vfs && pci_vfs_assigned(pdev)) { 4831 dev_err(&pdev->dev, 4832 "Cannot modify SR-IOV while VFs are assigned\n"); 4833 num_vfs = current_vfs; 4834 return num_vfs; 4835 } 4836 4837 /* Disable SRIOV when zero is passed. 4838 * One needs to disable SRIOV before modifying it, else 4839 * stack throws the below warning: 4840 * " 'n' VFs already enabled. Disable before enabling 'm' VFs." 4841 */ 4842 if (!num_vfs) { 4843 pci_disable_sriov(pdev); 4844 if (adap->port[0]) { 4845 unregister_netdev(adap->port[0]); 4846 adap->port[0] = NULL; 4847 } 4848 /* free VF resources */ 4849 kfree(adap->vfinfo); 4850 adap->vfinfo = NULL; 4851 adap->num_vfs = 0; 4852 return num_vfs; 4853 } 4854 4855 if (num_vfs != current_vfs) { 4856 err = pci_enable_sriov(pdev, num_vfs); 4857 if (err) 4858 return err; 4859 4860 adap->num_vfs = num_vfs; 4861 err = config_mgmt_dev(pdev); 4862 if (err) 4863 return err; 4864 } 4865 4866 adap->vfinfo = kcalloc(adap->num_vfs, 4867 sizeof(struct vf_info), GFP_KERNEL); 4868 if (adap->vfinfo) 4869 fill_vf_station_mac_addr(adap); 4870 return num_vfs; 4871 } 4872 #endif 4873 4874 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4875 { 4876 int func, i, err, s_qpp, qpp, num_seg; 4877 struct port_info *pi; 4878 bool highdma = false; 4879 struct adapter *adapter = NULL; 4880 struct net_device *netdev; 4881 void __iomem *regs; 4882 u32 whoami, pl_rev; 4883 enum chip_type chip; 4884 static int adap_idx = 1; 4885 #ifdef CONFIG_PCI_IOV 4886 u32 v, port_vec; 4887 #endif 4888 4889 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 4890 4891 err = pci_request_regions(pdev, KBUILD_MODNAME); 4892 if (err) { 4893 /* Just info, some other driver may have claimed the device. */ 4894 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 4895 return err; 4896 } 4897 4898 err = pci_enable_device(pdev); 4899 if (err) { 4900 dev_err(&pdev->dev, "cannot enable PCI device\n"); 4901 goto out_release_regions; 4902 } 4903 4904 regs = pci_ioremap_bar(pdev, 0); 4905 if (!regs) { 4906 dev_err(&pdev->dev, "cannot map device registers\n"); 4907 err = -ENOMEM; 4908 goto out_disable_device; 4909 } 4910 4911 err = t4_wait_dev_ready(regs); 4912 if (err < 0) 4913 goto out_unmap_bar0; 4914 4915 /* We control everything through one PF */ 4916 whoami = readl(regs + PL_WHOAMI_A); 4917 pl_rev = REV_G(readl(regs + PL_REV_A)); 4918 chip = get_chip_type(pdev, pl_rev); 4919 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ? 4920 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4921 if (func != ent->driver_data) { 4922 #ifndef CONFIG_PCI_IOV 4923 iounmap(regs); 4924 #endif 4925 pci_disable_device(pdev); 4926 pci_save_state(pdev); /* to restore SR-IOV later */ 4927 goto sriov; 4928 } 4929 4930 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4931 highdma = true; 4932 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4933 if (err) { 4934 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 4935 "coherent allocations\n"); 4936 goto out_unmap_bar0; 4937 } 4938 } else { 4939 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4940 if (err) { 4941 dev_err(&pdev->dev, "no usable DMA configuration\n"); 4942 goto out_unmap_bar0; 4943 } 4944 } 4945 4946 pci_enable_pcie_error_reporting(pdev); 4947 pci_set_master(pdev); 4948 pci_save_state(pdev); 4949 4950 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4951 if (!adapter) { 4952 err = -ENOMEM; 4953 goto out_unmap_bar0; 4954 } 4955 adap_idx++; 4956 4957 adapter->workq = create_singlethread_workqueue("cxgb4"); 4958 if (!adapter->workq) { 4959 err = -ENOMEM; 4960 goto out_free_adapter; 4961 } 4962 4963 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 4964 (sizeof(struct mbox_cmd) * 4965 T4_OS_LOG_MBOX_CMDS), 4966 GFP_KERNEL); 4967 if (!adapter->mbox_log) { 4968 err = -ENOMEM; 4969 goto out_free_adapter; 4970 } 4971 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 4972 4973 /* PCI device has been enabled */ 4974 adapter->flags |= DEV_ENABLED; 4975 4976 adapter->regs = regs; 4977 adapter->pdev = pdev; 4978 adapter->pdev_dev = &pdev->dev; 4979 adapter->name = pci_name(pdev); 4980 adapter->mbox = func; 4981 adapter->pf = func; 4982 adapter->msg_enable = DFLT_MSG_ENABLE; 4983 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 4984 4985 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 4986 * Ingress Packet Data to Free List Buffers in order to allow for 4987 * chipset performance optimizations between the Root Complex and 4988 * Memory Controllers. (Messages to the associated Ingress Queue 4989 * notifying new Packet Placement in the Free Lists Buffers will be 4990 * send without the Relaxed Ordering Attribute thus guaranteeing that 4991 * all preceding PCIe Transaction Layer Packets will be processed 4992 * first.) But some Root Complexes have various issues with Upstream 4993 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 4994 * The PCIe devices which under the Root Complexes will be cleared the 4995 * Relaxed Ordering bit in the configuration space, So we check our 4996 * PCIe configuration space to see if it's flagged with advice against 4997 * using Relaxed Ordering. 4998 */ 4999 if (!pcie_relaxed_ordering_enabled(pdev)) 5000 adapter->flags |= ROOT_NO_RELAXED_ORDERING; 5001 5002 spin_lock_init(&adapter->stats_lock); 5003 spin_lock_init(&adapter->tid_release_lock); 5004 spin_lock_init(&adapter->win0_lock); 5005 spin_lock_init(&adapter->mbox_lock); 5006 5007 INIT_LIST_HEAD(&adapter->mlist.list); 5008 5009 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 5010 INIT_WORK(&adapter->db_full_task, process_db_full); 5011 INIT_WORK(&adapter->db_drop_task, process_db_drop); 5012 5013 err = t4_prep_adapter(adapter); 5014 if (err) 5015 goto out_free_adapter; 5016 5017 5018 if (!is_t4(adapter->params.chip)) { 5019 s_qpp = (QUEUESPERPAGEPF0_S + 5020 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 5021 adapter->pf); 5022 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 5023 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 5024 num_seg = PAGE_SIZE / SEGMENT_SIZE; 5025 5026 /* Each segment size is 128B. Write coalescing is enabled only 5027 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 5028 * queue is less no of segments that can be accommodated in 5029 * a page size. 5030 */ 5031 if (qpp > num_seg) { 5032 dev_err(&pdev->dev, 5033 "Incorrect number of egress queues per page\n"); 5034 err = -EINVAL; 5035 goto out_free_adapter; 5036 } 5037 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 5038 pci_resource_len(pdev, 2)); 5039 if (!adapter->bar2) { 5040 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 5041 err = -ENOMEM; 5042 goto out_free_adapter; 5043 } 5044 } 5045 5046 setup_memwin(adapter); 5047 err = adap_init0(adapter); 5048 #ifdef CONFIG_DEBUG_FS 5049 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 5050 #endif 5051 setup_memwin_rdma(adapter); 5052 if (err) 5053 goto out_unmap_bar; 5054 5055 /* configure SGE_STAT_CFG_A to read WC stats */ 5056 if (!is_t4(adapter->params.chip)) 5057 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 5058 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 5059 T6_STATMODE_V(0))); 5060 5061 for_each_port(adapter, i) { 5062 netdev = alloc_etherdev_mq(sizeof(struct port_info), 5063 MAX_ETH_QSETS); 5064 if (!netdev) { 5065 err = -ENOMEM; 5066 goto out_free_dev; 5067 } 5068 5069 SET_NETDEV_DEV(netdev, &pdev->dev); 5070 5071 adapter->port[i] = netdev; 5072 pi = netdev_priv(netdev); 5073 pi->adapter = adapter; 5074 pi->xact_addr_filt = -1; 5075 pi->port_id = i; 5076 netdev->irq = pdev->irq; 5077 5078 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 5079 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5080 NETIF_F_RXCSUM | NETIF_F_RXHASH | 5081 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 5082 NETIF_F_HW_TC; 5083 if (highdma) 5084 netdev->hw_features |= NETIF_F_HIGHDMA; 5085 netdev->features |= netdev->hw_features; 5086 netdev->vlan_features = netdev->features & VLAN_FEAT; 5087 5088 netdev->priv_flags |= IFF_UNICAST_FLT; 5089 5090 /* MTU range: 81 - 9600 */ 5091 netdev->min_mtu = 81; /* accommodate SACK */ 5092 netdev->max_mtu = MAX_MTU; 5093 5094 netdev->netdev_ops = &cxgb4_netdev_ops; 5095 #ifdef CONFIG_CHELSIO_T4_DCB 5096 netdev->dcbnl_ops = &cxgb4_dcb_ops; 5097 cxgb4_dcb_state_init(netdev); 5098 #endif 5099 cxgb4_set_ethtool_ops(netdev); 5100 } 5101 5102 cxgb4_init_ethtool_dump(adapter); 5103 5104 pci_set_drvdata(pdev, adapter); 5105 5106 if (adapter->flags & FW_OK) { 5107 err = t4_port_init(adapter, func, func, 0); 5108 if (err) 5109 goto out_free_dev; 5110 } else if (adapter->params.nports == 1) { 5111 /* If we don't have a connection to the firmware -- possibly 5112 * because of an error -- grab the raw VPD parameters so we 5113 * can set the proper MAC Address on the debug network 5114 * interface that we've created. 5115 */ 5116 u8 hw_addr[ETH_ALEN]; 5117 u8 *na = adapter->params.vpd.na; 5118 5119 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 5120 if (!err) { 5121 for (i = 0; i < ETH_ALEN; i++) 5122 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 5123 hex2val(na[2 * i + 1])); 5124 t4_set_hw_addr(adapter, 0, hw_addr); 5125 } 5126 } 5127 5128 /* Configure queues and allocate tables now, they can be needed as 5129 * soon as the first register_netdev completes. 5130 */ 5131 cfg_queues(adapter); 5132 5133 adapter->smt = t4_init_smt(); 5134 if (!adapter->smt) { 5135 /* We tolerate a lack of SMT, giving up some functionality */ 5136 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 5137 } 5138 5139 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 5140 if (!adapter->l2t) { 5141 /* We tolerate a lack of L2T, giving up some functionality */ 5142 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 5143 adapter->params.offload = 0; 5144 } 5145 5146 #if IS_ENABLED(CONFIG_IPV6) 5147 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) && 5148 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 5149 /* CLIP functionality is not present in hardware, 5150 * hence disable all offload features 5151 */ 5152 dev_warn(&pdev->dev, 5153 "CLIP not enabled in hardware, continuing\n"); 5154 adapter->params.offload = 0; 5155 } else { 5156 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 5157 adapter->clipt_end); 5158 if (!adapter->clipt) { 5159 /* We tolerate a lack of clip_table, giving up 5160 * some functionality 5161 */ 5162 dev_warn(&pdev->dev, 5163 "could not allocate Clip table, continuing\n"); 5164 adapter->params.offload = 0; 5165 } 5166 } 5167 #endif 5168 5169 for_each_port(adapter, i) { 5170 pi = adap2pinfo(adapter, i); 5171 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 5172 if (!pi->sched_tbl) 5173 dev_warn(&pdev->dev, 5174 "could not activate scheduling on port %d\n", 5175 i); 5176 } 5177 5178 if (tid_init(&adapter->tids) < 0) { 5179 dev_warn(&pdev->dev, "could not allocate TID table, " 5180 "continuing\n"); 5181 adapter->params.offload = 0; 5182 } else { 5183 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 5184 if (!adapter->tc_u32) 5185 dev_warn(&pdev->dev, 5186 "could not offload tc u32, continuing\n"); 5187 5188 if (cxgb4_init_tc_flower(adapter)) 5189 dev_warn(&pdev->dev, 5190 "could not offload tc flower, continuing\n"); 5191 } 5192 5193 if (is_offload(adapter) || is_hashfilter(adapter)) { 5194 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 5195 u32 hash_base, hash_reg; 5196 5197 if (chip <= CHELSIO_T5) { 5198 hash_reg = LE_DB_TID_HASHBASE_A; 5199 hash_base = t4_read_reg(adapter, hash_reg); 5200 adapter->tids.hash_base = hash_base / 4; 5201 } else { 5202 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 5203 hash_base = t4_read_reg(adapter, hash_reg); 5204 adapter->tids.hash_base = hash_base; 5205 } 5206 } 5207 } 5208 5209 /* See what interrupts we'll be using */ 5210 if (msi > 1 && enable_msix(adapter) == 0) 5211 adapter->flags |= USING_MSIX; 5212 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 5213 adapter->flags |= USING_MSI; 5214 if (msi > 1) 5215 free_msix_info(adapter); 5216 } 5217 5218 /* check for PCI Express bandwidth capabiltites */ 5219 cxgb4_check_pcie_caps(adapter); 5220 5221 err = init_rss(adapter); 5222 if (err) 5223 goto out_free_dev; 5224 5225 /* 5226 * The card is now ready to go. If any errors occur during device 5227 * registration we do not fail the whole card but rather proceed only 5228 * with the ports we manage to register successfully. However we must 5229 * register at least one net device. 5230 */ 5231 for_each_port(adapter, i) { 5232 pi = adap2pinfo(adapter, i); 5233 adapter->port[i]->dev_port = pi->lport; 5234 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 5235 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 5236 5237 netif_carrier_off(adapter->port[i]); 5238 5239 err = register_netdev(adapter->port[i]); 5240 if (err) 5241 break; 5242 adapter->chan_map[pi->tx_chan] = i; 5243 print_port_info(adapter->port[i]); 5244 } 5245 if (i == 0) { 5246 dev_err(&pdev->dev, "could not register any net devices\n"); 5247 goto out_free_dev; 5248 } 5249 if (err) { 5250 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 5251 err = 0; 5252 } 5253 5254 if (cxgb4_debugfs_root) { 5255 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 5256 cxgb4_debugfs_root); 5257 setup_debugfs(adapter); 5258 } 5259 5260 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 5261 pdev->needs_freset = 1; 5262 5263 if (is_uld(adapter)) { 5264 mutex_lock(&uld_mutex); 5265 list_add_tail(&adapter->list_node, &adapter_list); 5266 mutex_unlock(&uld_mutex); 5267 } 5268 5269 if (!is_t4(adapter->params.chip)) 5270 cxgb4_ptp_init(adapter); 5271 5272 print_adapter_info(adapter); 5273 setup_fw_sge_queues(adapter); 5274 return 0; 5275 5276 sriov: 5277 #ifdef CONFIG_PCI_IOV 5278 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5279 if (!adapter) { 5280 err = -ENOMEM; 5281 goto free_pci_region; 5282 } 5283 5284 adapter->pdev = pdev; 5285 adapter->pdev_dev = &pdev->dev; 5286 adapter->name = pci_name(pdev); 5287 adapter->mbox = func; 5288 adapter->pf = func; 5289 adapter->regs = regs; 5290 adapter->adap_idx = adap_idx; 5291 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5292 (sizeof(struct mbox_cmd) * 5293 T4_OS_LOG_MBOX_CMDS), 5294 GFP_KERNEL); 5295 if (!adapter->mbox_log) { 5296 err = -ENOMEM; 5297 goto free_adapter; 5298 } 5299 spin_lock_init(&adapter->mbox_lock); 5300 INIT_LIST_HEAD(&adapter->mlist.list); 5301 5302 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 5303 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 5304 err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1, 5305 &v, &port_vec); 5306 if (err < 0) { 5307 dev_err(adapter->pdev_dev, "Could not fetch port params\n"); 5308 goto free_mbox_log; 5309 } 5310 5311 adapter->params.nports = hweight32(port_vec); 5312 pci_set_drvdata(pdev, adapter); 5313 return 0; 5314 5315 free_mbox_log: 5316 kfree(adapter->mbox_log); 5317 free_adapter: 5318 kfree(adapter); 5319 free_pci_region: 5320 iounmap(regs); 5321 pci_disable_sriov(pdev); 5322 pci_release_regions(pdev); 5323 return err; 5324 #else 5325 return 0; 5326 #endif 5327 5328 out_free_dev: 5329 free_some_resources(adapter); 5330 if (adapter->flags & USING_MSIX) 5331 free_msix_info(adapter); 5332 if (adapter->num_uld || adapter->num_ofld_uld) 5333 t4_uld_mem_free(adapter); 5334 out_unmap_bar: 5335 if (!is_t4(adapter->params.chip)) 5336 iounmap(adapter->bar2); 5337 out_free_adapter: 5338 if (adapter->workq) 5339 destroy_workqueue(adapter->workq); 5340 5341 kfree(adapter->mbox_log); 5342 kfree(adapter); 5343 out_unmap_bar0: 5344 iounmap(regs); 5345 out_disable_device: 5346 pci_disable_pcie_error_reporting(pdev); 5347 pci_disable_device(pdev); 5348 out_release_regions: 5349 pci_release_regions(pdev); 5350 return err; 5351 } 5352 5353 static void remove_one(struct pci_dev *pdev) 5354 { 5355 struct adapter *adapter = pci_get_drvdata(pdev); 5356 5357 if (!adapter) { 5358 pci_release_regions(pdev); 5359 return; 5360 } 5361 5362 adapter->flags |= SHUTTING_DOWN; 5363 5364 if (adapter->pf == 4) { 5365 int i; 5366 5367 /* Tear down per-adapter Work Queue first since it can contain 5368 * references to our adapter data structure. 5369 */ 5370 destroy_workqueue(adapter->workq); 5371 5372 if (is_uld(adapter)) { 5373 detach_ulds(adapter); 5374 t4_uld_clean_up(adapter); 5375 } 5376 5377 disable_interrupts(adapter); 5378 5379 for_each_port(adapter, i) 5380 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5381 unregister_netdev(adapter->port[i]); 5382 5383 debugfs_remove_recursive(adapter->debugfs_root); 5384 5385 if (!is_t4(adapter->params.chip)) 5386 cxgb4_ptp_stop(adapter); 5387 5388 /* If we allocated filters, free up state associated with any 5389 * valid filters ... 5390 */ 5391 clear_all_filters(adapter); 5392 5393 if (adapter->flags & FULL_INIT_DONE) 5394 cxgb_down(adapter); 5395 5396 if (adapter->flags & USING_MSIX) 5397 free_msix_info(adapter); 5398 if (adapter->num_uld || adapter->num_ofld_uld) 5399 t4_uld_mem_free(adapter); 5400 free_some_resources(adapter); 5401 #if IS_ENABLED(CONFIG_IPV6) 5402 t4_cleanup_clip_tbl(adapter); 5403 #endif 5404 iounmap(adapter->regs); 5405 if (!is_t4(adapter->params.chip)) 5406 iounmap(adapter->bar2); 5407 pci_disable_pcie_error_reporting(pdev); 5408 if ((adapter->flags & DEV_ENABLED)) { 5409 pci_disable_device(pdev); 5410 adapter->flags &= ~DEV_ENABLED; 5411 } 5412 pci_release_regions(pdev); 5413 kfree(adapter->mbox_log); 5414 synchronize_rcu(); 5415 kfree(adapter); 5416 } 5417 #ifdef CONFIG_PCI_IOV 5418 else { 5419 if (adapter->port[0]) 5420 unregister_netdev(adapter->port[0]); 5421 iounmap(adapter->regs); 5422 kfree(adapter->vfinfo); 5423 kfree(adapter->mbox_log); 5424 kfree(adapter); 5425 pci_disable_sriov(pdev); 5426 pci_release_regions(pdev); 5427 } 5428 #endif 5429 } 5430 5431 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 5432 * delivery. This is essentially a stripped down version of the PCI remove() 5433 * function where we do the minimal amount of work necessary to shutdown any 5434 * further activity. 5435 */ 5436 static void shutdown_one(struct pci_dev *pdev) 5437 { 5438 struct adapter *adapter = pci_get_drvdata(pdev); 5439 5440 /* As with remove_one() above (see extended comment), we only want do 5441 * do cleanup on PCI Devices which went all the way through init_one() 5442 * ... 5443 */ 5444 if (!adapter) { 5445 pci_release_regions(pdev); 5446 return; 5447 } 5448 5449 adapter->flags |= SHUTTING_DOWN; 5450 5451 if (adapter->pf == 4) { 5452 int i; 5453 5454 for_each_port(adapter, i) 5455 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5456 cxgb_close(adapter->port[i]); 5457 5458 if (is_uld(adapter)) { 5459 detach_ulds(adapter); 5460 t4_uld_clean_up(adapter); 5461 } 5462 5463 disable_interrupts(adapter); 5464 disable_msi(adapter); 5465 5466 t4_sge_stop(adapter); 5467 if (adapter->flags & FW_OK) 5468 t4_fw_bye(adapter, adapter->mbox); 5469 } 5470 #ifdef CONFIG_PCI_IOV 5471 else { 5472 if (adapter->port[0]) 5473 unregister_netdev(adapter->port[0]); 5474 iounmap(adapter->regs); 5475 kfree(adapter->vfinfo); 5476 kfree(adapter->mbox_log); 5477 kfree(adapter); 5478 pci_disable_sriov(pdev); 5479 pci_release_regions(pdev); 5480 } 5481 #endif 5482 } 5483 5484 static struct pci_driver cxgb4_driver = { 5485 .name = KBUILD_MODNAME, 5486 .id_table = cxgb4_pci_tbl, 5487 .probe = init_one, 5488 .remove = remove_one, 5489 .shutdown = shutdown_one, 5490 #ifdef CONFIG_PCI_IOV 5491 .sriov_configure = cxgb4_iov_configure, 5492 #endif 5493 .err_handler = &cxgb4_eeh, 5494 }; 5495 5496 static int __init cxgb4_init_module(void) 5497 { 5498 int ret; 5499 5500 /* Debugfs support is optional, just warn if this fails */ 5501 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 5502 if (!cxgb4_debugfs_root) 5503 pr_warn("could not create debugfs entry, continuing\n"); 5504 5505 ret = pci_register_driver(&cxgb4_driver); 5506 if (ret < 0) 5507 debugfs_remove(cxgb4_debugfs_root); 5508 5509 #if IS_ENABLED(CONFIG_IPV6) 5510 if (!inet6addr_registered) { 5511 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5512 inet6addr_registered = true; 5513 } 5514 #endif 5515 5516 return ret; 5517 } 5518 5519 static void __exit cxgb4_cleanup_module(void) 5520 { 5521 #if IS_ENABLED(CONFIG_IPV6) 5522 if (inet6addr_registered) { 5523 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5524 inet6addr_registered = false; 5525 } 5526 #endif 5527 pci_unregister_driver(&cxgb4_driver); 5528 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 5529 } 5530 5531 module_init(cxgb4_init_module); 5532 module_exit(cxgb4_cleanup_module); 5533