1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <asm/uaccess.h>
65 
66 #include "cxgb4.h"
67 #include "t4_regs.h"
68 #include "t4_msg.h"
69 #include "t4fw_api.h"
70 #include "cxgb4_dcb.h"
71 #include "l2t.h"
72 
73 #include <../drivers/net/bonding/bonding.h>
74 
75 #ifdef DRV_VERSION
76 #undef DRV_VERSION
77 #endif
78 #define DRV_VERSION "2.0.0-ko"
79 #define DRV_DESC "Chelsio T4/T5 Network Driver"
80 
81 /*
82  * Max interrupt hold-off timer value in us.  Queues fall back to this value
83  * under extreme memory pressure so it's largish to give the system time to
84  * recover.
85  */
86 #define MAX_SGE_TIMERVAL 200U
87 
88 enum {
89 	/*
90 	 * Physical Function provisioning constants.
91 	 */
92 	PFRES_NVI = 4,			/* # of Virtual Interfaces */
93 	PFRES_NETHCTRL = 128,		/* # of EQs used for ETH or CTRL Qs */
94 	PFRES_NIQFLINT = 128,		/* # of ingress Qs/w Free List(s)/intr
95 					 */
96 	PFRES_NEQ = 256,		/* # of egress queues */
97 	PFRES_NIQ = 0,			/* # of ingress queues */
98 	PFRES_TC = 0,			/* PCI-E traffic class */
99 	PFRES_NEXACTF = 128,		/* # of exact MPS filters */
100 
101 	PFRES_R_CAPS = FW_CMD_CAP_PF,
102 	PFRES_WX_CAPS = FW_CMD_CAP_PF,
103 
104 #ifdef CONFIG_PCI_IOV
105 	/*
106 	 * Virtual Function provisioning constants.  We need two extra Ingress
107 	 * Queues with Interrupt capability to serve as the VF's Firmware
108 	 * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
109 	 * neither will have Free Lists associated with them).  For each
110 	 * Ethernet/Control Egress Queue and for each Free List, we need an
111 	 * Egress Context.
112 	 */
113 	VFRES_NPORTS = 1,		/* # of "ports" per VF */
114 	VFRES_NQSETS = 2,		/* # of "Queue Sets" per VF */
115 
116 	VFRES_NVI = VFRES_NPORTS,	/* # of Virtual Interfaces */
117 	VFRES_NETHCTRL = VFRES_NQSETS,	/* # of EQs used for ETH or CTRL Qs */
118 	VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
119 	VFRES_NEQ = VFRES_NQSETS*2,	/* # of egress queues */
120 	VFRES_NIQ = 0,			/* # of non-fl/int ingress queues */
121 	VFRES_TC = 0,			/* PCI-E traffic class */
122 	VFRES_NEXACTF = 16,		/* # of exact MPS filters */
123 
124 	VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
125 	VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
126 #endif
127 };
128 
129 /*
130  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
131  * static and likely not to be useful in the long run.  We really need to
132  * implement some form of persistent configuration which the firmware
133  * controls.
134  */
135 static unsigned int pfvfres_pmask(struct adapter *adapter,
136 				  unsigned int pf, unsigned int vf)
137 {
138 	unsigned int portn, portvec;
139 
140 	/*
141 	 * Give PF's access to all of the ports.
142 	 */
143 	if (vf == 0)
144 		return FW_PFVF_CMD_PMASK_MASK;
145 
146 	/*
147 	 * For VFs, we'll assign them access to the ports based purely on the
148 	 * PF.  We assign active ports in order, wrapping around if there are
149 	 * fewer active ports than PFs: e.g. active port[pf % nports].
150 	 * Unfortunately the adapter's port_info structs haven't been
151 	 * initialized yet so we have to compute this.
152 	 */
153 	if (adapter->params.nports == 0)
154 		return 0;
155 
156 	portn = pf % adapter->params.nports;
157 	portvec = adapter->params.portvec;
158 	for (;;) {
159 		/*
160 		 * Isolate the lowest set bit in the port vector.  If we're at
161 		 * the port number that we want, return that as the pmask.
162 		 * otherwise mask that bit out of the port vector and
163 		 * decrement our port number ...
164 		 */
165 		unsigned int pmask = portvec ^ (portvec & (portvec-1));
166 		if (portn == 0)
167 			return pmask;
168 		portn--;
169 		portvec &= ~pmask;
170 	}
171 	/*NOTREACHED*/
172 }
173 
174 enum {
175 	MAX_TXQ_ENTRIES      = 16384,
176 	MAX_CTRL_TXQ_ENTRIES = 1024,
177 	MAX_RSPQ_ENTRIES     = 16384,
178 	MAX_RX_BUFFERS       = 16384,
179 	MIN_TXQ_ENTRIES      = 32,
180 	MIN_CTRL_TXQ_ENTRIES = 32,
181 	MIN_RSPQ_ENTRIES     = 128,
182 	MIN_FL_ENTRIES       = 16
183 };
184 
185 /* Host shadow copy of ingress filter entry.  This is in host native format
186  * and doesn't match the ordering or bit order, etc. of the hardware of the
187  * firmware command.  The use of bit-field structure elements is purely to
188  * remind ourselves of the field size limitations and save memory in the case
189  * where the filter table is large.
190  */
191 struct filter_entry {
192 	/* Administrative fields for filter.
193 	 */
194 	u32 valid:1;            /* filter allocated and valid */
195 	u32 locked:1;           /* filter is administratively locked */
196 
197 	u32 pending:1;          /* filter action is pending firmware reply */
198 	u32 smtidx:8;           /* Source MAC Table index for smac */
199 	struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
200 
201 	/* The filter itself.  Most of this is a straight copy of information
202 	 * provided by the extended ioctl().  Some fields are translated to
203 	 * internal forms -- for instance the Ingress Queue ID passed in from
204 	 * the ioctl() is translated into the Absolute Ingress Queue ID.
205 	 */
206 	struct ch_filter_specification fs;
207 };
208 
209 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
210 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
211 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
212 
213 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
214 
215 static const struct pci_device_id cxgb4_pci_tbl[] = {
216 	CH_DEVICE(0xa000, 0),  /* PE10K */
217 	CH_DEVICE(0x4001, -1),
218 	CH_DEVICE(0x4002, -1),
219 	CH_DEVICE(0x4003, -1),
220 	CH_DEVICE(0x4004, -1),
221 	CH_DEVICE(0x4005, -1),
222 	CH_DEVICE(0x4006, -1),
223 	CH_DEVICE(0x4007, -1),
224 	CH_DEVICE(0x4008, -1),
225 	CH_DEVICE(0x4009, -1),
226 	CH_DEVICE(0x400a, -1),
227 	CH_DEVICE(0x400d, -1),
228 	CH_DEVICE(0x400e, -1),
229 	CH_DEVICE(0x4080, -1),
230 	CH_DEVICE(0x4081, -1),
231 	CH_DEVICE(0x4082, -1),
232 	CH_DEVICE(0x4083, -1),
233 	CH_DEVICE(0x4084, -1),
234 	CH_DEVICE(0x4085, -1),
235 	CH_DEVICE(0x4086, -1),
236 	CH_DEVICE(0x4087, -1),
237 	CH_DEVICE(0x4088, -1),
238 	CH_DEVICE(0x4401, 4),
239 	CH_DEVICE(0x4402, 4),
240 	CH_DEVICE(0x4403, 4),
241 	CH_DEVICE(0x4404, 4),
242 	CH_DEVICE(0x4405, 4),
243 	CH_DEVICE(0x4406, 4),
244 	CH_DEVICE(0x4407, 4),
245 	CH_DEVICE(0x4408, 4),
246 	CH_DEVICE(0x4409, 4),
247 	CH_DEVICE(0x440a, 4),
248 	CH_DEVICE(0x440d, 4),
249 	CH_DEVICE(0x440e, 4),
250 	CH_DEVICE(0x4480, 4),
251 	CH_DEVICE(0x4481, 4),
252 	CH_DEVICE(0x4482, 4),
253 	CH_DEVICE(0x4483, 4),
254 	CH_DEVICE(0x4484, 4),
255 	CH_DEVICE(0x4485, 4),
256 	CH_DEVICE(0x4486, 4),
257 	CH_DEVICE(0x4487, 4),
258 	CH_DEVICE(0x4488, 4),
259 	CH_DEVICE(0x5001, 4),
260 	CH_DEVICE(0x5002, 4),
261 	CH_DEVICE(0x5003, 4),
262 	CH_DEVICE(0x5004, 4),
263 	CH_DEVICE(0x5005, 4),
264 	CH_DEVICE(0x5006, 4),
265 	CH_DEVICE(0x5007, 4),
266 	CH_DEVICE(0x5008, 4),
267 	CH_DEVICE(0x5009, 4),
268 	CH_DEVICE(0x500A, 4),
269 	CH_DEVICE(0x500B, 4),
270 	CH_DEVICE(0x500C, 4),
271 	CH_DEVICE(0x500D, 4),
272 	CH_DEVICE(0x500E, 4),
273 	CH_DEVICE(0x500F, 4),
274 	CH_DEVICE(0x5010, 4),
275 	CH_DEVICE(0x5011, 4),
276 	CH_DEVICE(0x5012, 4),
277 	CH_DEVICE(0x5013, 4),
278 	CH_DEVICE(0x5014, 4),
279 	CH_DEVICE(0x5015, 4),
280 	CH_DEVICE(0x5080, 4),
281 	CH_DEVICE(0x5081, 4),
282 	CH_DEVICE(0x5082, 4),
283 	CH_DEVICE(0x5083, 4),
284 	CH_DEVICE(0x5084, 4),
285 	CH_DEVICE(0x5085, 4),
286 	CH_DEVICE(0x5086, 4),
287 	CH_DEVICE(0x5087, 4),
288 	CH_DEVICE(0x5088, 4),
289 	CH_DEVICE(0x5401, 4),
290 	CH_DEVICE(0x5402, 4),
291 	CH_DEVICE(0x5403, 4),
292 	CH_DEVICE(0x5404, 4),
293 	CH_DEVICE(0x5405, 4),
294 	CH_DEVICE(0x5406, 4),
295 	CH_DEVICE(0x5407, 4),
296 	CH_DEVICE(0x5408, 4),
297 	CH_DEVICE(0x5409, 4),
298 	CH_DEVICE(0x540A, 4),
299 	CH_DEVICE(0x540B, 4),
300 	CH_DEVICE(0x540C, 4),
301 	CH_DEVICE(0x540D, 4),
302 	CH_DEVICE(0x540E, 4),
303 	CH_DEVICE(0x540F, 4),
304 	CH_DEVICE(0x5410, 4),
305 	CH_DEVICE(0x5411, 4),
306 	CH_DEVICE(0x5412, 4),
307 	CH_DEVICE(0x5413, 4),
308 	CH_DEVICE(0x5414, 4),
309 	CH_DEVICE(0x5415, 4),
310 	CH_DEVICE(0x5480, 4),
311 	CH_DEVICE(0x5481, 4),
312 	CH_DEVICE(0x5482, 4),
313 	CH_DEVICE(0x5483, 4),
314 	CH_DEVICE(0x5484, 4),
315 	CH_DEVICE(0x5485, 4),
316 	CH_DEVICE(0x5486, 4),
317 	CH_DEVICE(0x5487, 4),
318 	CH_DEVICE(0x5488, 4),
319 	{ 0, }
320 };
321 
322 #define FW4_FNAME "cxgb4/t4fw.bin"
323 #define FW5_FNAME "cxgb4/t5fw.bin"
324 #define FW4_CFNAME "cxgb4/t4-config.txt"
325 #define FW5_CFNAME "cxgb4/t5-config.txt"
326 
327 MODULE_DESCRIPTION(DRV_DESC);
328 MODULE_AUTHOR("Chelsio Communications");
329 MODULE_LICENSE("Dual BSD/GPL");
330 MODULE_VERSION(DRV_VERSION);
331 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
332 MODULE_FIRMWARE(FW4_FNAME);
333 MODULE_FIRMWARE(FW5_FNAME);
334 
335 /*
336  * Normally we're willing to become the firmware's Master PF but will be happy
337  * if another PF has already become the Master and initialized the adapter.
338  * Setting "force_init" will cause this driver to forcibly establish itself as
339  * the Master PF and initialize the adapter.
340  */
341 static uint force_init;
342 
343 module_param(force_init, uint, 0644);
344 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
345 
346 /*
347  * Normally if the firmware we connect to has Configuration File support, we
348  * use that and only fall back to the old Driver-based initialization if the
349  * Configuration File fails for some reason.  If force_old_init is set, then
350  * we'll always use the old Driver-based initialization sequence.
351  */
352 static uint force_old_init;
353 
354 module_param(force_old_init, uint, 0644);
355 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
356 
357 static int dflt_msg_enable = DFLT_MSG_ENABLE;
358 
359 module_param(dflt_msg_enable, int, 0644);
360 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
361 
362 /*
363  * The driver uses the best interrupt scheme available on a platform in the
364  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
365  * of these schemes the driver may consider as follows:
366  *
367  * msi = 2: choose from among all three options
368  * msi = 1: only consider MSI and INTx interrupts
369  * msi = 0: force INTx interrupts
370  */
371 static int msi = 2;
372 
373 module_param(msi, int, 0644);
374 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
375 
376 /*
377  * Queue interrupt hold-off timer values.  Queues default to the first of these
378  * upon creation.
379  */
380 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
381 
382 module_param_array(intr_holdoff, uint, NULL, 0644);
383 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
384 		 "0..4 in microseconds");
385 
386 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
387 
388 module_param_array(intr_cnt, uint, NULL, 0644);
389 MODULE_PARM_DESC(intr_cnt,
390 		 "thresholds 1..3 for queue interrupt packet counters");
391 
392 /*
393  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
394  * offset by 2 bytes in order to have the IP headers line up on 4-byte
395  * boundaries.  This is a requirement for many architectures which will throw
396  * a machine check fault if an attempt is made to access one of the 4-byte IP
397  * header fields on a non-4-byte boundary.  And it's a major performance issue
398  * even on some architectures which allow it like some implementations of the
399  * x86 ISA.  However, some architectures don't mind this and for some very
400  * edge-case performance sensitive applications (like forwarding large volumes
401  * of small packets), setting this DMA offset to 0 will decrease the number of
402  * PCI-E Bus transfers enough to measurably affect performance.
403  */
404 static int rx_dma_offset = 2;
405 
406 static bool vf_acls;
407 
408 #ifdef CONFIG_PCI_IOV
409 module_param(vf_acls, bool, 0644);
410 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
411 
412 /* Configure the number of PCI-E Virtual Function which are to be instantiated
413  * on SR-IOV Capable Physical Functions.
414  */
415 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
416 
417 module_param_array(num_vf, uint, NULL, 0644);
418 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
419 #endif
420 
421 /* TX Queue select used to determine what algorithm to use for selecting TX
422  * queue. Select between the kernel provided function (select_queue=0) or user
423  * cxgb_select_queue function (select_queue=1)
424  *
425  * Default: select_queue=0
426  */
427 static int select_queue;
428 module_param(select_queue, int, 0644);
429 MODULE_PARM_DESC(select_queue,
430 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
431 
432 /*
433  * The filter TCAM has a fixed portion and a variable portion.  The fixed
434  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
435  * ports.  The variable portion is 36 bits which can include things like Exact
436  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
437  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
438  * far exceed the 36-bit budget for this "compressed" header portion of the
439  * filter.  Thus, we have a scarce resource which must be carefully managed.
440  *
441  * By default we set this up to mostly match the set of filter matching
442  * capabilities of T3 but with accommodations for some of T4's more
443  * interesting features:
444  *
445  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
446  *     [Inner] VLAN (17), Port (3), FCoE (1) }
447  */
448 enum {
449 	TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
450 	TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
451 	TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
452 };
453 
454 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
455 
456 module_param(tp_vlan_pri_map, uint, 0644);
457 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
458 
459 static struct dentry *cxgb4_debugfs_root;
460 
461 static LIST_HEAD(adapter_list);
462 static DEFINE_MUTEX(uld_mutex);
463 /* Adapter list to be accessed from atomic context */
464 static LIST_HEAD(adap_rcu_list);
465 static DEFINE_SPINLOCK(adap_rcu_lock);
466 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
467 static const char *uld_str[] = { "RDMA", "iSCSI" };
468 
469 static void link_report(struct net_device *dev)
470 {
471 	if (!netif_carrier_ok(dev))
472 		netdev_info(dev, "link down\n");
473 	else {
474 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
475 
476 		const char *s = "10Mbps";
477 		const struct port_info *p = netdev_priv(dev);
478 
479 		switch (p->link_cfg.speed) {
480 		case 10000:
481 			s = "10Gbps";
482 			break;
483 		case 1000:
484 			s = "1000Mbps";
485 			break;
486 		case 100:
487 			s = "100Mbps";
488 			break;
489 		case 40000:
490 			s = "40Gbps";
491 			break;
492 		}
493 
494 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
495 			    fc[p->link_cfg.fc]);
496 	}
497 }
498 
499 #ifdef CONFIG_CHELSIO_T4_DCB
500 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
501 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
502 {
503 	struct port_info *pi = netdev_priv(dev);
504 	struct adapter *adap = pi->adapter;
505 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
506 	int i;
507 
508 	/* We use a simple mapping of Port TX Queue Index to DCB
509 	 * Priority when we're enabling DCB.
510 	 */
511 	for (i = 0; i < pi->nqsets; i++, txq++) {
512 		u32 name, value;
513 		int err;
514 
515 		name = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
516 			FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
517 			FW_PARAMS_PARAM_YZ(txq->q.cntxt_id));
518 		value = enable ? i : 0xffffffff;
519 
520 		/* Since we can be called while atomic (from "interrupt
521 		 * level") we need to issue the Set Parameters Commannd
522 		 * without sleeping (timeout < 0).
523 		 */
524 		err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
525 					    &name, &value);
526 
527 		if (err)
528 			dev_err(adap->pdev_dev,
529 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
530 				enable ? "set" : "unset", pi->port_id, i, -err);
531 		else
532 			txq->dcb_prio = value;
533 	}
534 }
535 #endif /* CONFIG_CHELSIO_T4_DCB */
536 
537 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
538 {
539 	struct net_device *dev = adapter->port[port_id];
540 
541 	/* Skip changes from disabled ports. */
542 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
543 		if (link_stat)
544 			netif_carrier_on(dev);
545 		else {
546 #ifdef CONFIG_CHELSIO_T4_DCB
547 			cxgb4_dcb_state_init(dev);
548 			dcb_tx_queue_prio_enable(dev, false);
549 #endif /* CONFIG_CHELSIO_T4_DCB */
550 			netif_carrier_off(dev);
551 		}
552 
553 		link_report(dev);
554 	}
555 }
556 
557 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
558 {
559 	static const char *mod_str[] = {
560 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
561 	};
562 
563 	const struct net_device *dev = adap->port[port_id];
564 	const struct port_info *pi = netdev_priv(dev);
565 
566 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
567 		netdev_info(dev, "port module unplugged\n");
568 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
569 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
570 }
571 
572 /*
573  * Configure the exact and hash address filters to handle a port's multicast
574  * and secondary unicast MAC addresses.
575  */
576 static int set_addr_filters(const struct net_device *dev, bool sleep)
577 {
578 	u64 mhash = 0;
579 	u64 uhash = 0;
580 	bool free = true;
581 	u16 filt_idx[7];
582 	const u8 *addr[7];
583 	int ret, naddr = 0;
584 	const struct netdev_hw_addr *ha;
585 	int uc_cnt = netdev_uc_count(dev);
586 	int mc_cnt = netdev_mc_count(dev);
587 	const struct port_info *pi = netdev_priv(dev);
588 	unsigned int mb = pi->adapter->fn;
589 
590 	/* first do the secondary unicast addresses */
591 	netdev_for_each_uc_addr(ha, dev) {
592 		addr[naddr++] = ha->addr;
593 		if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
594 			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
595 					naddr, addr, filt_idx, &uhash, sleep);
596 			if (ret < 0)
597 				return ret;
598 
599 			free = false;
600 			naddr = 0;
601 		}
602 	}
603 
604 	/* next set up the multicast addresses */
605 	netdev_for_each_mc_addr(ha, dev) {
606 		addr[naddr++] = ha->addr;
607 		if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
608 			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
609 					naddr, addr, filt_idx, &mhash, sleep);
610 			if (ret < 0)
611 				return ret;
612 
613 			free = false;
614 			naddr = 0;
615 		}
616 	}
617 
618 	return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
619 				uhash | mhash, sleep);
620 }
621 
622 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
623 module_param(dbfifo_int_thresh, int, 0644);
624 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
625 
626 /*
627  * usecs to sleep while draining the dbfifo
628  */
629 static int dbfifo_drain_delay = 1000;
630 module_param(dbfifo_drain_delay, int, 0644);
631 MODULE_PARM_DESC(dbfifo_drain_delay,
632 		 "usecs to sleep while draining the dbfifo");
633 
634 /*
635  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
636  * If @mtu is -1 it is left unchanged.
637  */
638 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
639 {
640 	int ret;
641 	struct port_info *pi = netdev_priv(dev);
642 
643 	ret = set_addr_filters(dev, sleep_ok);
644 	if (ret == 0)
645 		ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
646 				    (dev->flags & IFF_PROMISC) ? 1 : 0,
647 				    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
648 				    sleep_ok);
649 	return ret;
650 }
651 
652 /**
653  *	link_start - enable a port
654  *	@dev: the port to enable
655  *
656  *	Performs the MAC and PHY actions needed to enable a port.
657  */
658 static int link_start(struct net_device *dev)
659 {
660 	int ret;
661 	struct port_info *pi = netdev_priv(dev);
662 	unsigned int mb = pi->adapter->fn;
663 
664 	/*
665 	 * We do not set address filters and promiscuity here, the stack does
666 	 * that step explicitly.
667 	 */
668 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
669 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
670 	if (ret == 0) {
671 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
672 				    pi->xact_addr_filt, dev->dev_addr, true,
673 				    true);
674 		if (ret >= 0) {
675 			pi->xact_addr_filt = ret;
676 			ret = 0;
677 		}
678 	}
679 	if (ret == 0)
680 		ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
681 				    &pi->link_cfg);
682 	if (ret == 0) {
683 		local_bh_disable();
684 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
685 					  true, CXGB4_DCB_ENABLED);
686 		local_bh_enable();
687 	}
688 
689 	return ret;
690 }
691 
692 int cxgb4_dcb_enabled(const struct net_device *dev)
693 {
694 #ifdef CONFIG_CHELSIO_T4_DCB
695 	struct port_info *pi = netdev_priv(dev);
696 
697 	if (!pi->dcb.enabled)
698 		return 0;
699 
700 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
701 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
702 #else
703 	return 0;
704 #endif
705 }
706 EXPORT_SYMBOL(cxgb4_dcb_enabled);
707 
708 #ifdef CONFIG_CHELSIO_T4_DCB
709 /* Handle a Data Center Bridging update message from the firmware. */
710 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
711 {
712 	int port = FW_PORT_CMD_PORTID_GET(ntohl(pcmd->op_to_portid));
713 	struct net_device *dev = adap->port[port];
714 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
715 	int new_dcb_enabled;
716 
717 	cxgb4_dcb_handle_fw_update(adap, pcmd);
718 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
719 
720 	/* If the DCB has become enabled or disabled on the port then we're
721 	 * going to need to set up/tear down DCB Priority parameters for the
722 	 * TX Queues associated with the port.
723 	 */
724 	if (new_dcb_enabled != old_dcb_enabled)
725 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
726 }
727 #endif /* CONFIG_CHELSIO_T4_DCB */
728 
729 /* Clear a filter and release any of its resources that we own.  This also
730  * clears the filter's "pending" status.
731  */
732 static void clear_filter(struct adapter *adap, struct filter_entry *f)
733 {
734 	/* If the new or old filter have loopback rewriteing rules then we'll
735 	 * need to free any existing Layer Two Table (L2T) entries of the old
736 	 * filter rule.  The firmware will handle freeing up any Source MAC
737 	 * Table (SMT) entries used for rewriting Source MAC Addresses in
738 	 * loopback rules.
739 	 */
740 	if (f->l2t)
741 		cxgb4_l2t_release(f->l2t);
742 
743 	/* The zeroing of the filter rule below clears the filter valid,
744 	 * pending, locked flags, l2t pointer, etc. so it's all we need for
745 	 * this operation.
746 	 */
747 	memset(f, 0, sizeof(*f));
748 }
749 
750 /* Handle a filter write/deletion reply.
751  */
752 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
753 {
754 	unsigned int idx = GET_TID(rpl);
755 	unsigned int nidx = idx - adap->tids.ftid_base;
756 	unsigned int ret;
757 	struct filter_entry *f;
758 
759 	if (idx >= adap->tids.ftid_base && nidx <
760 	   (adap->tids.nftids + adap->tids.nsftids)) {
761 		idx = nidx;
762 		ret = GET_TCB_COOKIE(rpl->cookie);
763 		f = &adap->tids.ftid_tab[idx];
764 
765 		if (ret == FW_FILTER_WR_FLT_DELETED) {
766 			/* Clear the filter when we get confirmation from the
767 			 * hardware that the filter has been deleted.
768 			 */
769 			clear_filter(adap, f);
770 		} else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
771 			dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
772 				idx);
773 			clear_filter(adap, f);
774 		} else if (ret == FW_FILTER_WR_FLT_ADDED) {
775 			f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
776 			f->pending = 0;  /* asynchronous setup completed */
777 			f->valid = 1;
778 		} else {
779 			/* Something went wrong.  Issue a warning about the
780 			 * problem and clear everything out.
781 			 */
782 			dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
783 				idx, ret);
784 			clear_filter(adap, f);
785 		}
786 	}
787 }
788 
789 /* Response queue handler for the FW event queue.
790  */
791 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
792 			  const struct pkt_gl *gl)
793 {
794 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
795 
796 	rsp++;                                          /* skip RSS header */
797 
798 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
799 	 */
800 	if (unlikely(opcode == CPL_FW4_MSG &&
801 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
802 		rsp++;
803 		opcode = ((const struct rss_header *)rsp)->opcode;
804 		rsp++;
805 		if (opcode != CPL_SGE_EGR_UPDATE) {
806 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
807 				, opcode);
808 			goto out;
809 		}
810 	}
811 
812 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
813 		const struct cpl_sge_egr_update *p = (void *)rsp;
814 		unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
815 		struct sge_txq *txq;
816 
817 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
818 		txq->restarts++;
819 		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
820 			struct sge_eth_txq *eq;
821 
822 			eq = container_of(txq, struct sge_eth_txq, q);
823 			netif_tx_wake_queue(eq->txq);
824 		} else {
825 			struct sge_ofld_txq *oq;
826 
827 			oq = container_of(txq, struct sge_ofld_txq, q);
828 			tasklet_schedule(&oq->qresume_tsk);
829 		}
830 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
831 		const struct cpl_fw6_msg *p = (void *)rsp;
832 
833 #ifdef CONFIG_CHELSIO_T4_DCB
834 		const struct fw_port_cmd *pcmd = (const void *)p->data;
835 		unsigned int cmd = FW_CMD_OP_GET(ntohl(pcmd->op_to_portid));
836 		unsigned int action =
837 			FW_PORT_CMD_ACTION_GET(ntohl(pcmd->action_to_len16));
838 
839 		if (cmd == FW_PORT_CMD &&
840 		    action == FW_PORT_ACTION_GET_PORT_INFO) {
841 			int port = FW_PORT_CMD_PORTID_GET(
842 					be32_to_cpu(pcmd->op_to_portid));
843 			struct net_device *dev = q->adap->port[port];
844 			int state_input = ((pcmd->u.info.dcbxdis_pkd &
845 					    FW_PORT_CMD_DCBXDIS)
846 					   ? CXGB4_DCB_INPUT_FW_DISABLED
847 					   : CXGB4_DCB_INPUT_FW_ENABLED);
848 
849 			cxgb4_dcb_state_fsm(dev, state_input);
850 		}
851 
852 		if (cmd == FW_PORT_CMD &&
853 		    action == FW_PORT_ACTION_L2_DCB_CFG)
854 			dcb_rpl(q->adap, pcmd);
855 		else
856 #endif
857 			if (p->type == 0)
858 				t4_handle_fw_rpl(q->adap, p->data);
859 	} else if (opcode == CPL_L2T_WRITE_RPL) {
860 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
861 
862 		do_l2t_write_rpl(q->adap, p);
863 	} else if (opcode == CPL_SET_TCB_RPL) {
864 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
865 
866 		filter_rpl(q->adap, p);
867 	} else
868 		dev_err(q->adap->pdev_dev,
869 			"unexpected CPL %#x on FW event queue\n", opcode);
870 out:
871 	return 0;
872 }
873 
874 /**
875  *	uldrx_handler - response queue handler for ULD queues
876  *	@q: the response queue that received the packet
877  *	@rsp: the response queue descriptor holding the offload message
878  *	@gl: the gather list of packet fragments
879  *
880  *	Deliver an ingress offload packet to a ULD.  All processing is done by
881  *	the ULD, we just maintain statistics.
882  */
883 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
884 			 const struct pkt_gl *gl)
885 {
886 	struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
887 
888 	/* FW can send CPLs encapsulated in a CPL_FW4_MSG.
889 	 */
890 	if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
891 	    ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
892 		rsp += 2;
893 
894 	if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
895 		rxq->stats.nomem++;
896 		return -1;
897 	}
898 	if (gl == NULL)
899 		rxq->stats.imm++;
900 	else if (gl == CXGB4_MSG_AN)
901 		rxq->stats.an++;
902 	else
903 		rxq->stats.pkts++;
904 	return 0;
905 }
906 
907 static void disable_msi(struct adapter *adapter)
908 {
909 	if (adapter->flags & USING_MSIX) {
910 		pci_disable_msix(adapter->pdev);
911 		adapter->flags &= ~USING_MSIX;
912 	} else if (adapter->flags & USING_MSI) {
913 		pci_disable_msi(adapter->pdev);
914 		adapter->flags &= ~USING_MSI;
915 	}
916 }
917 
918 /*
919  * Interrupt handler for non-data events used with MSI-X.
920  */
921 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
922 {
923 	struct adapter *adap = cookie;
924 
925 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
926 	if (v & PFSW) {
927 		adap->swintr = 1;
928 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
929 	}
930 	t4_slow_intr_handler(adap);
931 	return IRQ_HANDLED;
932 }
933 
934 /*
935  * Name the MSI-X interrupts.
936  */
937 static void name_msix_vecs(struct adapter *adap)
938 {
939 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
940 
941 	/* non-data interrupts */
942 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
943 
944 	/* FW events */
945 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
946 		 adap->port[0]->name);
947 
948 	/* Ethernet queues */
949 	for_each_port(adap, j) {
950 		struct net_device *d = adap->port[j];
951 		const struct port_info *pi = netdev_priv(d);
952 
953 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
954 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
955 				 d->name, i);
956 	}
957 
958 	/* offload queues */
959 	for_each_ofldrxq(&adap->sge, i)
960 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
961 			 adap->port[0]->name, i);
962 
963 	for_each_rdmarxq(&adap->sge, i)
964 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
965 			 adap->port[0]->name, i);
966 
967 	for_each_rdmaciq(&adap->sge, i)
968 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
969 			 adap->port[0]->name, i);
970 }
971 
972 static int request_msix_queue_irqs(struct adapter *adap)
973 {
974 	struct sge *s = &adap->sge;
975 	int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
976 	int msi_index = 2;
977 
978 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
979 			  adap->msix_info[1].desc, &s->fw_evtq);
980 	if (err)
981 		return err;
982 
983 	for_each_ethrxq(s, ethqidx) {
984 		err = request_irq(adap->msix_info[msi_index].vec,
985 				  t4_sge_intr_msix, 0,
986 				  adap->msix_info[msi_index].desc,
987 				  &s->ethrxq[ethqidx].rspq);
988 		if (err)
989 			goto unwind;
990 		msi_index++;
991 	}
992 	for_each_ofldrxq(s, ofldqidx) {
993 		err = request_irq(adap->msix_info[msi_index].vec,
994 				  t4_sge_intr_msix, 0,
995 				  adap->msix_info[msi_index].desc,
996 				  &s->ofldrxq[ofldqidx].rspq);
997 		if (err)
998 			goto unwind;
999 		msi_index++;
1000 	}
1001 	for_each_rdmarxq(s, rdmaqidx) {
1002 		err = request_irq(adap->msix_info[msi_index].vec,
1003 				  t4_sge_intr_msix, 0,
1004 				  adap->msix_info[msi_index].desc,
1005 				  &s->rdmarxq[rdmaqidx].rspq);
1006 		if (err)
1007 			goto unwind;
1008 		msi_index++;
1009 	}
1010 	for_each_rdmaciq(s, rdmaciqqidx) {
1011 		err = request_irq(adap->msix_info[msi_index].vec,
1012 				  t4_sge_intr_msix, 0,
1013 				  adap->msix_info[msi_index].desc,
1014 				  &s->rdmaciq[rdmaciqqidx].rspq);
1015 		if (err)
1016 			goto unwind;
1017 		msi_index++;
1018 	}
1019 	return 0;
1020 
1021 unwind:
1022 	while (--rdmaciqqidx >= 0)
1023 		free_irq(adap->msix_info[--msi_index].vec,
1024 			 &s->rdmaciq[rdmaciqqidx].rspq);
1025 	while (--rdmaqidx >= 0)
1026 		free_irq(adap->msix_info[--msi_index].vec,
1027 			 &s->rdmarxq[rdmaqidx].rspq);
1028 	while (--ofldqidx >= 0)
1029 		free_irq(adap->msix_info[--msi_index].vec,
1030 			 &s->ofldrxq[ofldqidx].rspq);
1031 	while (--ethqidx >= 0)
1032 		free_irq(adap->msix_info[--msi_index].vec,
1033 			 &s->ethrxq[ethqidx].rspq);
1034 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1035 	return err;
1036 }
1037 
1038 static void free_msix_queue_irqs(struct adapter *adap)
1039 {
1040 	int i, msi_index = 2;
1041 	struct sge *s = &adap->sge;
1042 
1043 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
1044 	for_each_ethrxq(s, i)
1045 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
1046 	for_each_ofldrxq(s, i)
1047 		free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
1048 	for_each_rdmarxq(s, i)
1049 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
1050 	for_each_rdmaciq(s, i)
1051 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
1052 }
1053 
1054 /**
1055  *	write_rss - write the RSS table for a given port
1056  *	@pi: the port
1057  *	@queues: array of queue indices for RSS
1058  *
1059  *	Sets up the portion of the HW RSS table for the port's VI to distribute
1060  *	packets to the Rx queues in @queues.
1061  */
1062 static int write_rss(const struct port_info *pi, const u16 *queues)
1063 {
1064 	u16 *rss;
1065 	int i, err;
1066 	const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
1067 
1068 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
1069 	if (!rss)
1070 		return -ENOMEM;
1071 
1072 	/* map the queue indices to queue ids */
1073 	for (i = 0; i < pi->rss_size; i++, queues++)
1074 		rss[i] = q[*queues].rspq.abs_id;
1075 
1076 	err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
1077 				  pi->rss_size, rss, pi->rss_size);
1078 	kfree(rss);
1079 	return err;
1080 }
1081 
1082 /**
1083  *	setup_rss - configure RSS
1084  *	@adap: the adapter
1085  *
1086  *	Sets up RSS for each port.
1087  */
1088 static int setup_rss(struct adapter *adap)
1089 {
1090 	int i, err;
1091 
1092 	for_each_port(adap, i) {
1093 		const struct port_info *pi = adap2pinfo(adap, i);
1094 
1095 		err = write_rss(pi, pi->rss);
1096 		if (err)
1097 			return err;
1098 	}
1099 	return 0;
1100 }
1101 
1102 /*
1103  * Return the channel of the ingress queue with the given qid.
1104  */
1105 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
1106 {
1107 	qid -= p->ingr_start;
1108 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
1109 }
1110 
1111 /*
1112  * Wait until all NAPI handlers are descheduled.
1113  */
1114 static void quiesce_rx(struct adapter *adap)
1115 {
1116 	int i;
1117 
1118 	for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1119 		struct sge_rspq *q = adap->sge.ingr_map[i];
1120 
1121 		if (q && q->handler)
1122 			napi_disable(&q->napi);
1123 	}
1124 }
1125 
1126 /*
1127  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1128  */
1129 static void enable_rx(struct adapter *adap)
1130 {
1131 	int i;
1132 
1133 	for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
1134 		struct sge_rspq *q = adap->sge.ingr_map[i];
1135 
1136 		if (!q)
1137 			continue;
1138 		if (q->handler)
1139 			napi_enable(&q->napi);
1140 		/* 0-increment GTS to start the timer and enable interrupts */
1141 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
1142 			     SEINTARM(q->intr_params) |
1143 			     INGRESSQID(q->cntxt_id));
1144 	}
1145 }
1146 
1147 /**
1148  *	setup_sge_queues - configure SGE Tx/Rx/response queues
1149  *	@adap: the adapter
1150  *
1151  *	Determines how many sets of SGE queues to use and initializes them.
1152  *	We support multiple queue sets per port if we have MSI-X, otherwise
1153  *	just one queue set per port.
1154  */
1155 static int setup_sge_queues(struct adapter *adap)
1156 {
1157 	int err, msi_idx, i, j;
1158 	struct sge *s = &adap->sge;
1159 
1160 	bitmap_zero(s->starving_fl, MAX_EGRQ);
1161 	bitmap_zero(s->txq_maperr, MAX_EGRQ);
1162 
1163 	if (adap->flags & USING_MSIX)
1164 		msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1165 	else {
1166 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1167 				       NULL, NULL);
1168 		if (err)
1169 			return err;
1170 		msi_idx = -((int)s->intrq.abs_id + 1);
1171 	}
1172 
1173 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1174 			       msi_idx, NULL, fwevtq_handler);
1175 	if (err) {
1176 freeout:	t4_free_sge_resources(adap);
1177 		return err;
1178 	}
1179 
1180 	for_each_port(adap, i) {
1181 		struct net_device *dev = adap->port[i];
1182 		struct port_info *pi = netdev_priv(dev);
1183 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1184 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1185 
1186 		for (j = 0; j < pi->nqsets; j++, q++) {
1187 			if (msi_idx > 0)
1188 				msi_idx++;
1189 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1190 					       msi_idx, &q->fl,
1191 					       t4_ethrx_handler);
1192 			if (err)
1193 				goto freeout;
1194 			q->rspq.idx = j;
1195 			memset(&q->stats, 0, sizeof(q->stats));
1196 		}
1197 		for (j = 0; j < pi->nqsets; j++, t++) {
1198 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1199 					netdev_get_tx_queue(dev, j),
1200 					s->fw_evtq.cntxt_id);
1201 			if (err)
1202 				goto freeout;
1203 		}
1204 	}
1205 
1206 	j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1207 	for_each_ofldrxq(s, i) {
1208 		struct sge_ofld_rxq *q = &s->ofldrxq[i];
1209 		struct net_device *dev = adap->port[i / j];
1210 
1211 		if (msi_idx > 0)
1212 			msi_idx++;
1213 		err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1214 				       q->fl.size ? &q->fl : NULL,
1215 				       uldrx_handler);
1216 		if (err)
1217 			goto freeout;
1218 		memset(&q->stats, 0, sizeof(q->stats));
1219 		s->ofld_rxq[i] = q->rspq.abs_id;
1220 		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1221 					    s->fw_evtq.cntxt_id);
1222 		if (err)
1223 			goto freeout;
1224 	}
1225 
1226 	for_each_rdmarxq(s, i) {
1227 		struct sge_ofld_rxq *q = &s->rdmarxq[i];
1228 
1229 		if (msi_idx > 0)
1230 			msi_idx++;
1231 		err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1232 				       msi_idx, q->fl.size ? &q->fl : NULL,
1233 				       uldrx_handler);
1234 		if (err)
1235 			goto freeout;
1236 		memset(&q->stats, 0, sizeof(q->stats));
1237 		s->rdma_rxq[i] = q->rspq.abs_id;
1238 	}
1239 
1240 	for_each_rdmaciq(s, i) {
1241 		struct sge_ofld_rxq *q = &s->rdmaciq[i];
1242 
1243 		if (msi_idx > 0)
1244 			msi_idx++;
1245 		err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1246 				       msi_idx, q->fl.size ? &q->fl : NULL,
1247 				       uldrx_handler);
1248 		if (err)
1249 			goto freeout;
1250 		memset(&q->stats, 0, sizeof(q->stats));
1251 		s->rdma_ciq[i] = q->rspq.abs_id;
1252 	}
1253 
1254 	for_each_port(adap, i) {
1255 		/*
1256 		 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1257 		 * have RDMA queues, and that's the right value.
1258 		 */
1259 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1260 					    s->fw_evtq.cntxt_id,
1261 					    s->rdmarxq[i].rspq.cntxt_id);
1262 		if (err)
1263 			goto freeout;
1264 	}
1265 
1266 	t4_write_reg(adap, is_t4(adap->params.chip) ?
1267 				MPS_TRC_RSS_CONTROL :
1268 				MPS_T5_TRC_RSS_CONTROL,
1269 		     RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1270 		     QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1271 	return 0;
1272 }
1273 
1274 /*
1275  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1276  * The allocated memory is cleared.
1277  */
1278 void *t4_alloc_mem(size_t size)
1279 {
1280 	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1281 
1282 	if (!p)
1283 		p = vzalloc(size);
1284 	return p;
1285 }
1286 
1287 /*
1288  * Free memory allocated through alloc_mem().
1289  */
1290 static void t4_free_mem(void *addr)
1291 {
1292 	if (is_vmalloc_addr(addr))
1293 		vfree(addr);
1294 	else
1295 		kfree(addr);
1296 }
1297 
1298 /* Send a Work Request to write the filter at a specified index.  We construct
1299  * a Firmware Filter Work Request to have the work done and put the indicated
1300  * filter into "pending" mode which will prevent any further actions against
1301  * it till we get a reply from the firmware on the completion status of the
1302  * request.
1303  */
1304 static int set_filter_wr(struct adapter *adapter, int fidx)
1305 {
1306 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1307 	struct sk_buff *skb;
1308 	struct fw_filter_wr *fwr;
1309 	unsigned int ftid;
1310 
1311 	/* If the new filter requires loopback Destination MAC and/or VLAN
1312 	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1313 	 * the filter.
1314 	 */
1315 	if (f->fs.newdmac || f->fs.newvlan) {
1316 		/* allocate L2T entry for new filter */
1317 		f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1318 		if (f->l2t == NULL)
1319 			return -EAGAIN;
1320 		if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1321 					f->fs.eport, f->fs.dmac)) {
1322 			cxgb4_l2t_release(f->l2t);
1323 			f->l2t = NULL;
1324 			return -ENOMEM;
1325 		}
1326 	}
1327 
1328 	ftid = adapter->tids.ftid_base + fidx;
1329 
1330 	skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1331 	fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1332 	memset(fwr, 0, sizeof(*fwr));
1333 
1334 	/* It would be nice to put most of the following in t4_hw.c but most
1335 	 * of the work is translating the cxgbtool ch_filter_specification
1336 	 * into the Work Request and the definition of that structure is
1337 	 * currently in cxgbtool.h which isn't appropriate to pull into the
1338 	 * common code.  We may eventually try to come up with a more neutral
1339 	 * filter specification structure but for now it's easiest to simply
1340 	 * put this fairly direct code in line ...
1341 	 */
1342 	fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1343 	fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1344 	fwr->tid_to_iq =
1345 		htonl(V_FW_FILTER_WR_TID(ftid) |
1346 		      V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1347 		      V_FW_FILTER_WR_NOREPLY(0) |
1348 		      V_FW_FILTER_WR_IQ(f->fs.iq));
1349 	fwr->del_filter_to_l2tix =
1350 		htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1351 		      V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1352 		      V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1353 		      V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1354 		      V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1355 		      V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1356 		      V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1357 		      V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1358 		      V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1359 					     f->fs.newvlan == VLAN_REWRITE) |
1360 		      V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1361 					    f->fs.newvlan == VLAN_REWRITE) |
1362 		      V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1363 		      V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1364 		      V_FW_FILTER_WR_PRIO(f->fs.prio) |
1365 		      V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1366 	fwr->ethtype = htons(f->fs.val.ethtype);
1367 	fwr->ethtypem = htons(f->fs.mask.ethtype);
1368 	fwr->frag_to_ovlan_vldm =
1369 		(V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1370 		 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1371 		 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1372 		 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1373 		 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1374 		 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1375 	fwr->smac_sel = 0;
1376 	fwr->rx_chan_rx_rpl_iq =
1377 		htons(V_FW_FILTER_WR_RX_CHAN(0) |
1378 		      V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1379 	fwr->maci_to_matchtypem =
1380 		htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1381 		      V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1382 		      V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1383 		      V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1384 		      V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1385 		      V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1386 		      V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1387 		      V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1388 	fwr->ptcl = f->fs.val.proto;
1389 	fwr->ptclm = f->fs.mask.proto;
1390 	fwr->ttyp = f->fs.val.tos;
1391 	fwr->ttypm = f->fs.mask.tos;
1392 	fwr->ivlan = htons(f->fs.val.ivlan);
1393 	fwr->ivlanm = htons(f->fs.mask.ivlan);
1394 	fwr->ovlan = htons(f->fs.val.ovlan);
1395 	fwr->ovlanm = htons(f->fs.mask.ovlan);
1396 	memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1397 	memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1398 	memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1399 	memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1400 	fwr->lp = htons(f->fs.val.lport);
1401 	fwr->lpm = htons(f->fs.mask.lport);
1402 	fwr->fp = htons(f->fs.val.fport);
1403 	fwr->fpm = htons(f->fs.mask.fport);
1404 	if (f->fs.newsmac)
1405 		memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1406 
1407 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1408 	 * When we get the Work Request Reply we'll clear the pending status.
1409 	 */
1410 	f->pending = 1;
1411 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1412 	t4_ofld_send(adapter, skb);
1413 	return 0;
1414 }
1415 
1416 /* Delete the filter at a specified index.
1417  */
1418 static int del_filter_wr(struct adapter *adapter, int fidx)
1419 {
1420 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1421 	struct sk_buff *skb;
1422 	struct fw_filter_wr *fwr;
1423 	unsigned int len, ftid;
1424 
1425 	len = sizeof(*fwr);
1426 	ftid = adapter->tids.ftid_base + fidx;
1427 
1428 	skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1429 	fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1430 	t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1431 
1432 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1433 	 * When we get the Work Request Reply we'll clear the pending status.
1434 	 */
1435 	f->pending = 1;
1436 	t4_mgmt_tx(adapter, skb);
1437 	return 0;
1438 }
1439 
1440 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1441 			     void *accel_priv, select_queue_fallback_t fallback)
1442 {
1443 	int txq;
1444 
1445 #ifdef CONFIG_CHELSIO_T4_DCB
1446 	/* If a Data Center Bridging has been successfully negotiated on this
1447 	 * link then we'll use the skb's priority to map it to a TX Queue.
1448 	 * The skb's priority is determined via the VLAN Tag Priority Code
1449 	 * Point field.
1450 	 */
1451 	if (cxgb4_dcb_enabled(dev)) {
1452 		u16 vlan_tci;
1453 		int err;
1454 
1455 		err = vlan_get_tag(skb, &vlan_tci);
1456 		if (unlikely(err)) {
1457 			if (net_ratelimit())
1458 				netdev_warn(dev,
1459 					    "TX Packet without VLAN Tag on DCB Link\n");
1460 			txq = 0;
1461 		} else {
1462 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1463 		}
1464 		return txq;
1465 	}
1466 #endif /* CONFIG_CHELSIO_T4_DCB */
1467 
1468 	if (select_queue) {
1469 		txq = (skb_rx_queue_recorded(skb)
1470 			? skb_get_rx_queue(skb)
1471 			: smp_processor_id());
1472 
1473 		while (unlikely(txq >= dev->real_num_tx_queues))
1474 			txq -= dev->real_num_tx_queues;
1475 
1476 		return txq;
1477 	}
1478 
1479 	return fallback(dev, skb) % dev->real_num_tx_queues;
1480 }
1481 
1482 static inline int is_offload(const struct adapter *adap)
1483 {
1484 	return adap->params.offload;
1485 }
1486 
1487 /*
1488  * Implementation of ethtool operations.
1489  */
1490 
1491 static u32 get_msglevel(struct net_device *dev)
1492 {
1493 	return netdev2adap(dev)->msg_enable;
1494 }
1495 
1496 static void set_msglevel(struct net_device *dev, u32 val)
1497 {
1498 	netdev2adap(dev)->msg_enable = val;
1499 }
1500 
1501 static char stats_strings[][ETH_GSTRING_LEN] = {
1502 	"TxOctetsOK         ",
1503 	"TxFramesOK         ",
1504 	"TxBroadcastFrames  ",
1505 	"TxMulticastFrames  ",
1506 	"TxUnicastFrames    ",
1507 	"TxErrorFrames      ",
1508 
1509 	"TxFrames64         ",
1510 	"TxFrames65To127    ",
1511 	"TxFrames128To255   ",
1512 	"TxFrames256To511   ",
1513 	"TxFrames512To1023  ",
1514 	"TxFrames1024To1518 ",
1515 	"TxFrames1519ToMax  ",
1516 
1517 	"TxFramesDropped    ",
1518 	"TxPauseFrames      ",
1519 	"TxPPP0Frames       ",
1520 	"TxPPP1Frames       ",
1521 	"TxPPP2Frames       ",
1522 	"TxPPP3Frames       ",
1523 	"TxPPP4Frames       ",
1524 	"TxPPP5Frames       ",
1525 	"TxPPP6Frames       ",
1526 	"TxPPP7Frames       ",
1527 
1528 	"RxOctetsOK         ",
1529 	"RxFramesOK         ",
1530 	"RxBroadcastFrames  ",
1531 	"RxMulticastFrames  ",
1532 	"RxUnicastFrames    ",
1533 
1534 	"RxFramesTooLong    ",
1535 	"RxJabberErrors     ",
1536 	"RxFCSErrors        ",
1537 	"RxLengthErrors     ",
1538 	"RxSymbolErrors     ",
1539 	"RxRuntFrames       ",
1540 
1541 	"RxFrames64         ",
1542 	"RxFrames65To127    ",
1543 	"RxFrames128To255   ",
1544 	"RxFrames256To511   ",
1545 	"RxFrames512To1023  ",
1546 	"RxFrames1024To1518 ",
1547 	"RxFrames1519ToMax  ",
1548 
1549 	"RxPauseFrames      ",
1550 	"RxPPP0Frames       ",
1551 	"RxPPP1Frames       ",
1552 	"RxPPP2Frames       ",
1553 	"RxPPP3Frames       ",
1554 	"RxPPP4Frames       ",
1555 	"RxPPP5Frames       ",
1556 	"RxPPP6Frames       ",
1557 	"RxPPP7Frames       ",
1558 
1559 	"RxBG0FramesDropped ",
1560 	"RxBG1FramesDropped ",
1561 	"RxBG2FramesDropped ",
1562 	"RxBG3FramesDropped ",
1563 	"RxBG0FramesTrunc   ",
1564 	"RxBG1FramesTrunc   ",
1565 	"RxBG2FramesTrunc   ",
1566 	"RxBG3FramesTrunc   ",
1567 
1568 	"TSO                ",
1569 	"TxCsumOffload      ",
1570 	"RxCsumGood         ",
1571 	"VLANextractions    ",
1572 	"VLANinsertions     ",
1573 	"GROpackets         ",
1574 	"GROmerged          ",
1575 	"WriteCoalSuccess   ",
1576 	"WriteCoalFail      ",
1577 };
1578 
1579 static int get_sset_count(struct net_device *dev, int sset)
1580 {
1581 	switch (sset) {
1582 	case ETH_SS_STATS:
1583 		return ARRAY_SIZE(stats_strings);
1584 	default:
1585 		return -EOPNOTSUPP;
1586 	}
1587 }
1588 
1589 #define T4_REGMAP_SIZE (160 * 1024)
1590 #define T5_REGMAP_SIZE (332 * 1024)
1591 
1592 static int get_regs_len(struct net_device *dev)
1593 {
1594 	struct adapter *adap = netdev2adap(dev);
1595 	if (is_t4(adap->params.chip))
1596 		return T4_REGMAP_SIZE;
1597 	else
1598 		return T5_REGMAP_SIZE;
1599 }
1600 
1601 static int get_eeprom_len(struct net_device *dev)
1602 {
1603 	return EEPROMSIZE;
1604 }
1605 
1606 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1607 {
1608 	struct adapter *adapter = netdev2adap(dev);
1609 
1610 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1611 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1612 	strlcpy(info->bus_info, pci_name(adapter->pdev),
1613 		sizeof(info->bus_info));
1614 
1615 	if (adapter->params.fw_vers)
1616 		snprintf(info->fw_version, sizeof(info->fw_version),
1617 			"%u.%u.%u.%u, TP %u.%u.%u.%u",
1618 			FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1619 			FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1620 			FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1621 			FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1622 			FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1623 			FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1624 			FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1625 			FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1626 }
1627 
1628 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1629 {
1630 	if (stringset == ETH_SS_STATS)
1631 		memcpy(data, stats_strings, sizeof(stats_strings));
1632 }
1633 
1634 /*
1635  * port stats maintained per queue of the port.  They should be in the same
1636  * order as in stats_strings above.
1637  */
1638 struct queue_port_stats {
1639 	u64 tso;
1640 	u64 tx_csum;
1641 	u64 rx_csum;
1642 	u64 vlan_ex;
1643 	u64 vlan_ins;
1644 	u64 gro_pkts;
1645 	u64 gro_merged;
1646 };
1647 
1648 static void collect_sge_port_stats(const struct adapter *adap,
1649 		const struct port_info *p, struct queue_port_stats *s)
1650 {
1651 	int i;
1652 	const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1653 	const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1654 
1655 	memset(s, 0, sizeof(*s));
1656 	for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1657 		s->tso += tx->tso;
1658 		s->tx_csum += tx->tx_cso;
1659 		s->rx_csum += rx->stats.rx_cso;
1660 		s->vlan_ex += rx->stats.vlan_ex;
1661 		s->vlan_ins += tx->vlan_ins;
1662 		s->gro_pkts += rx->stats.lro_pkts;
1663 		s->gro_merged += rx->stats.lro_merged;
1664 	}
1665 }
1666 
1667 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1668 		      u64 *data)
1669 {
1670 	struct port_info *pi = netdev_priv(dev);
1671 	struct adapter *adapter = pi->adapter;
1672 	u32 val1, val2;
1673 
1674 	t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1675 
1676 	data += sizeof(struct port_stats) / sizeof(u64);
1677 	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1678 	data += sizeof(struct queue_port_stats) / sizeof(u64);
1679 	if (!is_t4(adapter->params.chip)) {
1680 		t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1681 		val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1682 		val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1683 		*data = val1 - val2;
1684 		data++;
1685 		*data = val2;
1686 		data++;
1687 	} else {
1688 		memset(data, 0, 2 * sizeof(u64));
1689 		*data += 2;
1690 	}
1691 }
1692 
1693 /*
1694  * Return a version number to identify the type of adapter.  The scheme is:
1695  * - bits 0..9: chip version
1696  * - bits 10..15: chip revision
1697  * - bits 16..23: register dump version
1698  */
1699 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1700 {
1701 	return CHELSIO_CHIP_VERSION(ap->params.chip) |
1702 		(CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
1703 }
1704 
1705 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1706 			   unsigned int end)
1707 {
1708 	u32 *p = buf + start;
1709 
1710 	for ( ; start <= end; start += sizeof(u32))
1711 		*p++ = t4_read_reg(ap, start);
1712 }
1713 
1714 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1715 		     void *buf)
1716 {
1717 	static const unsigned int t4_reg_ranges[] = {
1718 		0x1008, 0x1108,
1719 		0x1180, 0x11b4,
1720 		0x11fc, 0x123c,
1721 		0x1300, 0x173c,
1722 		0x1800, 0x18fc,
1723 		0x3000, 0x30d8,
1724 		0x30e0, 0x5924,
1725 		0x5960, 0x59d4,
1726 		0x5a00, 0x5af8,
1727 		0x6000, 0x6098,
1728 		0x6100, 0x6150,
1729 		0x6200, 0x6208,
1730 		0x6240, 0x6248,
1731 		0x6280, 0x6338,
1732 		0x6370, 0x638c,
1733 		0x6400, 0x643c,
1734 		0x6500, 0x6524,
1735 		0x6a00, 0x6a38,
1736 		0x6a60, 0x6a78,
1737 		0x6b00, 0x6b84,
1738 		0x6bf0, 0x6c84,
1739 		0x6cf0, 0x6d84,
1740 		0x6df0, 0x6e84,
1741 		0x6ef0, 0x6f84,
1742 		0x6ff0, 0x7084,
1743 		0x70f0, 0x7184,
1744 		0x71f0, 0x7284,
1745 		0x72f0, 0x7384,
1746 		0x73f0, 0x7450,
1747 		0x7500, 0x7530,
1748 		0x7600, 0x761c,
1749 		0x7680, 0x76cc,
1750 		0x7700, 0x7798,
1751 		0x77c0, 0x77fc,
1752 		0x7900, 0x79fc,
1753 		0x7b00, 0x7c38,
1754 		0x7d00, 0x7efc,
1755 		0x8dc0, 0x8e1c,
1756 		0x8e30, 0x8e78,
1757 		0x8ea0, 0x8f6c,
1758 		0x8fc0, 0x9074,
1759 		0x90fc, 0x90fc,
1760 		0x9400, 0x9458,
1761 		0x9600, 0x96bc,
1762 		0x9800, 0x9808,
1763 		0x9820, 0x983c,
1764 		0x9850, 0x9864,
1765 		0x9c00, 0x9c6c,
1766 		0x9c80, 0x9cec,
1767 		0x9d00, 0x9d6c,
1768 		0x9d80, 0x9dec,
1769 		0x9e00, 0x9e6c,
1770 		0x9e80, 0x9eec,
1771 		0x9f00, 0x9f6c,
1772 		0x9f80, 0x9fec,
1773 		0xd004, 0xd03c,
1774 		0xdfc0, 0xdfe0,
1775 		0xe000, 0xea7c,
1776 		0xf000, 0x11110,
1777 		0x11118, 0x11190,
1778 		0x19040, 0x1906c,
1779 		0x19078, 0x19080,
1780 		0x1908c, 0x19124,
1781 		0x19150, 0x191b0,
1782 		0x191d0, 0x191e8,
1783 		0x19238, 0x1924c,
1784 		0x193f8, 0x19474,
1785 		0x19490, 0x194f8,
1786 		0x19800, 0x19f30,
1787 		0x1a000, 0x1a06c,
1788 		0x1a0b0, 0x1a120,
1789 		0x1a128, 0x1a138,
1790 		0x1a190, 0x1a1c4,
1791 		0x1a1fc, 0x1a1fc,
1792 		0x1e040, 0x1e04c,
1793 		0x1e284, 0x1e28c,
1794 		0x1e2c0, 0x1e2c0,
1795 		0x1e2e0, 0x1e2e0,
1796 		0x1e300, 0x1e384,
1797 		0x1e3c0, 0x1e3c8,
1798 		0x1e440, 0x1e44c,
1799 		0x1e684, 0x1e68c,
1800 		0x1e6c0, 0x1e6c0,
1801 		0x1e6e0, 0x1e6e0,
1802 		0x1e700, 0x1e784,
1803 		0x1e7c0, 0x1e7c8,
1804 		0x1e840, 0x1e84c,
1805 		0x1ea84, 0x1ea8c,
1806 		0x1eac0, 0x1eac0,
1807 		0x1eae0, 0x1eae0,
1808 		0x1eb00, 0x1eb84,
1809 		0x1ebc0, 0x1ebc8,
1810 		0x1ec40, 0x1ec4c,
1811 		0x1ee84, 0x1ee8c,
1812 		0x1eec0, 0x1eec0,
1813 		0x1eee0, 0x1eee0,
1814 		0x1ef00, 0x1ef84,
1815 		0x1efc0, 0x1efc8,
1816 		0x1f040, 0x1f04c,
1817 		0x1f284, 0x1f28c,
1818 		0x1f2c0, 0x1f2c0,
1819 		0x1f2e0, 0x1f2e0,
1820 		0x1f300, 0x1f384,
1821 		0x1f3c0, 0x1f3c8,
1822 		0x1f440, 0x1f44c,
1823 		0x1f684, 0x1f68c,
1824 		0x1f6c0, 0x1f6c0,
1825 		0x1f6e0, 0x1f6e0,
1826 		0x1f700, 0x1f784,
1827 		0x1f7c0, 0x1f7c8,
1828 		0x1f840, 0x1f84c,
1829 		0x1fa84, 0x1fa8c,
1830 		0x1fac0, 0x1fac0,
1831 		0x1fae0, 0x1fae0,
1832 		0x1fb00, 0x1fb84,
1833 		0x1fbc0, 0x1fbc8,
1834 		0x1fc40, 0x1fc4c,
1835 		0x1fe84, 0x1fe8c,
1836 		0x1fec0, 0x1fec0,
1837 		0x1fee0, 0x1fee0,
1838 		0x1ff00, 0x1ff84,
1839 		0x1ffc0, 0x1ffc8,
1840 		0x20000, 0x2002c,
1841 		0x20100, 0x2013c,
1842 		0x20190, 0x201c8,
1843 		0x20200, 0x20318,
1844 		0x20400, 0x20528,
1845 		0x20540, 0x20614,
1846 		0x21000, 0x21040,
1847 		0x2104c, 0x21060,
1848 		0x210c0, 0x210ec,
1849 		0x21200, 0x21268,
1850 		0x21270, 0x21284,
1851 		0x212fc, 0x21388,
1852 		0x21400, 0x21404,
1853 		0x21500, 0x21518,
1854 		0x2152c, 0x2153c,
1855 		0x21550, 0x21554,
1856 		0x21600, 0x21600,
1857 		0x21608, 0x21628,
1858 		0x21630, 0x2163c,
1859 		0x21700, 0x2171c,
1860 		0x21780, 0x2178c,
1861 		0x21800, 0x21c38,
1862 		0x21c80, 0x21d7c,
1863 		0x21e00, 0x21e04,
1864 		0x22000, 0x2202c,
1865 		0x22100, 0x2213c,
1866 		0x22190, 0x221c8,
1867 		0x22200, 0x22318,
1868 		0x22400, 0x22528,
1869 		0x22540, 0x22614,
1870 		0x23000, 0x23040,
1871 		0x2304c, 0x23060,
1872 		0x230c0, 0x230ec,
1873 		0x23200, 0x23268,
1874 		0x23270, 0x23284,
1875 		0x232fc, 0x23388,
1876 		0x23400, 0x23404,
1877 		0x23500, 0x23518,
1878 		0x2352c, 0x2353c,
1879 		0x23550, 0x23554,
1880 		0x23600, 0x23600,
1881 		0x23608, 0x23628,
1882 		0x23630, 0x2363c,
1883 		0x23700, 0x2371c,
1884 		0x23780, 0x2378c,
1885 		0x23800, 0x23c38,
1886 		0x23c80, 0x23d7c,
1887 		0x23e00, 0x23e04,
1888 		0x24000, 0x2402c,
1889 		0x24100, 0x2413c,
1890 		0x24190, 0x241c8,
1891 		0x24200, 0x24318,
1892 		0x24400, 0x24528,
1893 		0x24540, 0x24614,
1894 		0x25000, 0x25040,
1895 		0x2504c, 0x25060,
1896 		0x250c0, 0x250ec,
1897 		0x25200, 0x25268,
1898 		0x25270, 0x25284,
1899 		0x252fc, 0x25388,
1900 		0x25400, 0x25404,
1901 		0x25500, 0x25518,
1902 		0x2552c, 0x2553c,
1903 		0x25550, 0x25554,
1904 		0x25600, 0x25600,
1905 		0x25608, 0x25628,
1906 		0x25630, 0x2563c,
1907 		0x25700, 0x2571c,
1908 		0x25780, 0x2578c,
1909 		0x25800, 0x25c38,
1910 		0x25c80, 0x25d7c,
1911 		0x25e00, 0x25e04,
1912 		0x26000, 0x2602c,
1913 		0x26100, 0x2613c,
1914 		0x26190, 0x261c8,
1915 		0x26200, 0x26318,
1916 		0x26400, 0x26528,
1917 		0x26540, 0x26614,
1918 		0x27000, 0x27040,
1919 		0x2704c, 0x27060,
1920 		0x270c0, 0x270ec,
1921 		0x27200, 0x27268,
1922 		0x27270, 0x27284,
1923 		0x272fc, 0x27388,
1924 		0x27400, 0x27404,
1925 		0x27500, 0x27518,
1926 		0x2752c, 0x2753c,
1927 		0x27550, 0x27554,
1928 		0x27600, 0x27600,
1929 		0x27608, 0x27628,
1930 		0x27630, 0x2763c,
1931 		0x27700, 0x2771c,
1932 		0x27780, 0x2778c,
1933 		0x27800, 0x27c38,
1934 		0x27c80, 0x27d7c,
1935 		0x27e00, 0x27e04
1936 	};
1937 
1938 	static const unsigned int t5_reg_ranges[] = {
1939 		0x1008, 0x1148,
1940 		0x1180, 0x11b4,
1941 		0x11fc, 0x123c,
1942 		0x1280, 0x173c,
1943 		0x1800, 0x18fc,
1944 		0x3000, 0x3028,
1945 		0x3060, 0x30d8,
1946 		0x30e0, 0x30fc,
1947 		0x3140, 0x357c,
1948 		0x35a8, 0x35cc,
1949 		0x35ec, 0x35ec,
1950 		0x3600, 0x5624,
1951 		0x56cc, 0x575c,
1952 		0x580c, 0x5814,
1953 		0x5890, 0x58bc,
1954 		0x5940, 0x59dc,
1955 		0x59fc, 0x5a18,
1956 		0x5a60, 0x5a9c,
1957 		0x5b9c, 0x5bfc,
1958 		0x6000, 0x6040,
1959 		0x6058, 0x614c,
1960 		0x7700, 0x7798,
1961 		0x77c0, 0x78fc,
1962 		0x7b00, 0x7c54,
1963 		0x7d00, 0x7efc,
1964 		0x8dc0, 0x8de0,
1965 		0x8df8, 0x8e84,
1966 		0x8ea0, 0x8f84,
1967 		0x8fc0, 0x90f8,
1968 		0x9400, 0x9470,
1969 		0x9600, 0x96f4,
1970 		0x9800, 0x9808,
1971 		0x9820, 0x983c,
1972 		0x9850, 0x9864,
1973 		0x9c00, 0x9c6c,
1974 		0x9c80, 0x9cec,
1975 		0x9d00, 0x9d6c,
1976 		0x9d80, 0x9dec,
1977 		0x9e00, 0x9e6c,
1978 		0x9e80, 0x9eec,
1979 		0x9f00, 0x9f6c,
1980 		0x9f80, 0xa020,
1981 		0xd004, 0xd03c,
1982 		0xdfc0, 0xdfe0,
1983 		0xe000, 0x11088,
1984 		0x1109c, 0x11110,
1985 		0x11118, 0x1117c,
1986 		0x11190, 0x11204,
1987 		0x19040, 0x1906c,
1988 		0x19078, 0x19080,
1989 		0x1908c, 0x19124,
1990 		0x19150, 0x191b0,
1991 		0x191d0, 0x191e8,
1992 		0x19238, 0x19290,
1993 		0x193f8, 0x19474,
1994 		0x19490, 0x194cc,
1995 		0x194f0, 0x194f8,
1996 		0x19c00, 0x19c60,
1997 		0x19c94, 0x19e10,
1998 		0x19e50, 0x19f34,
1999 		0x19f40, 0x19f50,
2000 		0x19f90, 0x19fe4,
2001 		0x1a000, 0x1a06c,
2002 		0x1a0b0, 0x1a120,
2003 		0x1a128, 0x1a138,
2004 		0x1a190, 0x1a1c4,
2005 		0x1a1fc, 0x1a1fc,
2006 		0x1e008, 0x1e00c,
2007 		0x1e040, 0x1e04c,
2008 		0x1e284, 0x1e290,
2009 		0x1e2c0, 0x1e2c0,
2010 		0x1e2e0, 0x1e2e0,
2011 		0x1e300, 0x1e384,
2012 		0x1e3c0, 0x1e3c8,
2013 		0x1e408, 0x1e40c,
2014 		0x1e440, 0x1e44c,
2015 		0x1e684, 0x1e690,
2016 		0x1e6c0, 0x1e6c0,
2017 		0x1e6e0, 0x1e6e0,
2018 		0x1e700, 0x1e784,
2019 		0x1e7c0, 0x1e7c8,
2020 		0x1e808, 0x1e80c,
2021 		0x1e840, 0x1e84c,
2022 		0x1ea84, 0x1ea90,
2023 		0x1eac0, 0x1eac0,
2024 		0x1eae0, 0x1eae0,
2025 		0x1eb00, 0x1eb84,
2026 		0x1ebc0, 0x1ebc8,
2027 		0x1ec08, 0x1ec0c,
2028 		0x1ec40, 0x1ec4c,
2029 		0x1ee84, 0x1ee90,
2030 		0x1eec0, 0x1eec0,
2031 		0x1eee0, 0x1eee0,
2032 		0x1ef00, 0x1ef84,
2033 		0x1efc0, 0x1efc8,
2034 		0x1f008, 0x1f00c,
2035 		0x1f040, 0x1f04c,
2036 		0x1f284, 0x1f290,
2037 		0x1f2c0, 0x1f2c0,
2038 		0x1f2e0, 0x1f2e0,
2039 		0x1f300, 0x1f384,
2040 		0x1f3c0, 0x1f3c8,
2041 		0x1f408, 0x1f40c,
2042 		0x1f440, 0x1f44c,
2043 		0x1f684, 0x1f690,
2044 		0x1f6c0, 0x1f6c0,
2045 		0x1f6e0, 0x1f6e0,
2046 		0x1f700, 0x1f784,
2047 		0x1f7c0, 0x1f7c8,
2048 		0x1f808, 0x1f80c,
2049 		0x1f840, 0x1f84c,
2050 		0x1fa84, 0x1fa90,
2051 		0x1fac0, 0x1fac0,
2052 		0x1fae0, 0x1fae0,
2053 		0x1fb00, 0x1fb84,
2054 		0x1fbc0, 0x1fbc8,
2055 		0x1fc08, 0x1fc0c,
2056 		0x1fc40, 0x1fc4c,
2057 		0x1fe84, 0x1fe90,
2058 		0x1fec0, 0x1fec0,
2059 		0x1fee0, 0x1fee0,
2060 		0x1ff00, 0x1ff84,
2061 		0x1ffc0, 0x1ffc8,
2062 		0x30000, 0x30030,
2063 		0x30100, 0x30144,
2064 		0x30190, 0x301d0,
2065 		0x30200, 0x30318,
2066 		0x30400, 0x3052c,
2067 		0x30540, 0x3061c,
2068 		0x30800, 0x30834,
2069 		0x308c0, 0x30908,
2070 		0x30910, 0x309ac,
2071 		0x30a00, 0x30a04,
2072 		0x30a0c, 0x30a2c,
2073 		0x30a44, 0x30a50,
2074 		0x30a74, 0x30c24,
2075 		0x30d08, 0x30d14,
2076 		0x30d1c, 0x30d20,
2077 		0x30d3c, 0x30d50,
2078 		0x31200, 0x3120c,
2079 		0x31220, 0x31220,
2080 		0x31240, 0x31240,
2081 		0x31600, 0x31600,
2082 		0x31608, 0x3160c,
2083 		0x31a00, 0x31a1c,
2084 		0x31e04, 0x31e20,
2085 		0x31e38, 0x31e3c,
2086 		0x31e80, 0x31e80,
2087 		0x31e88, 0x31ea8,
2088 		0x31eb0, 0x31eb4,
2089 		0x31ec8, 0x31ed4,
2090 		0x31fb8, 0x32004,
2091 		0x32208, 0x3223c,
2092 		0x32600, 0x32630,
2093 		0x32a00, 0x32abc,
2094 		0x32b00, 0x32b70,
2095 		0x33000, 0x33048,
2096 		0x33060, 0x3309c,
2097 		0x330f0, 0x33148,
2098 		0x33160, 0x3319c,
2099 		0x331f0, 0x332e4,
2100 		0x332f8, 0x333e4,
2101 		0x333f8, 0x33448,
2102 		0x33460, 0x3349c,
2103 		0x334f0, 0x33548,
2104 		0x33560, 0x3359c,
2105 		0x335f0, 0x336e4,
2106 		0x336f8, 0x337e4,
2107 		0x337f8, 0x337fc,
2108 		0x33814, 0x33814,
2109 		0x3382c, 0x3382c,
2110 		0x33880, 0x3388c,
2111 		0x338e8, 0x338ec,
2112 		0x33900, 0x33948,
2113 		0x33960, 0x3399c,
2114 		0x339f0, 0x33ae4,
2115 		0x33af8, 0x33b10,
2116 		0x33b28, 0x33b28,
2117 		0x33b3c, 0x33b50,
2118 		0x33bf0, 0x33c10,
2119 		0x33c28, 0x33c28,
2120 		0x33c3c, 0x33c50,
2121 		0x33cf0, 0x33cfc,
2122 		0x34000, 0x34030,
2123 		0x34100, 0x34144,
2124 		0x34190, 0x341d0,
2125 		0x34200, 0x34318,
2126 		0x34400, 0x3452c,
2127 		0x34540, 0x3461c,
2128 		0x34800, 0x34834,
2129 		0x348c0, 0x34908,
2130 		0x34910, 0x349ac,
2131 		0x34a00, 0x34a04,
2132 		0x34a0c, 0x34a2c,
2133 		0x34a44, 0x34a50,
2134 		0x34a74, 0x34c24,
2135 		0x34d08, 0x34d14,
2136 		0x34d1c, 0x34d20,
2137 		0x34d3c, 0x34d50,
2138 		0x35200, 0x3520c,
2139 		0x35220, 0x35220,
2140 		0x35240, 0x35240,
2141 		0x35600, 0x35600,
2142 		0x35608, 0x3560c,
2143 		0x35a00, 0x35a1c,
2144 		0x35e04, 0x35e20,
2145 		0x35e38, 0x35e3c,
2146 		0x35e80, 0x35e80,
2147 		0x35e88, 0x35ea8,
2148 		0x35eb0, 0x35eb4,
2149 		0x35ec8, 0x35ed4,
2150 		0x35fb8, 0x36004,
2151 		0x36208, 0x3623c,
2152 		0x36600, 0x36630,
2153 		0x36a00, 0x36abc,
2154 		0x36b00, 0x36b70,
2155 		0x37000, 0x37048,
2156 		0x37060, 0x3709c,
2157 		0x370f0, 0x37148,
2158 		0x37160, 0x3719c,
2159 		0x371f0, 0x372e4,
2160 		0x372f8, 0x373e4,
2161 		0x373f8, 0x37448,
2162 		0x37460, 0x3749c,
2163 		0x374f0, 0x37548,
2164 		0x37560, 0x3759c,
2165 		0x375f0, 0x376e4,
2166 		0x376f8, 0x377e4,
2167 		0x377f8, 0x377fc,
2168 		0x37814, 0x37814,
2169 		0x3782c, 0x3782c,
2170 		0x37880, 0x3788c,
2171 		0x378e8, 0x378ec,
2172 		0x37900, 0x37948,
2173 		0x37960, 0x3799c,
2174 		0x379f0, 0x37ae4,
2175 		0x37af8, 0x37b10,
2176 		0x37b28, 0x37b28,
2177 		0x37b3c, 0x37b50,
2178 		0x37bf0, 0x37c10,
2179 		0x37c28, 0x37c28,
2180 		0x37c3c, 0x37c50,
2181 		0x37cf0, 0x37cfc,
2182 		0x38000, 0x38030,
2183 		0x38100, 0x38144,
2184 		0x38190, 0x381d0,
2185 		0x38200, 0x38318,
2186 		0x38400, 0x3852c,
2187 		0x38540, 0x3861c,
2188 		0x38800, 0x38834,
2189 		0x388c0, 0x38908,
2190 		0x38910, 0x389ac,
2191 		0x38a00, 0x38a04,
2192 		0x38a0c, 0x38a2c,
2193 		0x38a44, 0x38a50,
2194 		0x38a74, 0x38c24,
2195 		0x38d08, 0x38d14,
2196 		0x38d1c, 0x38d20,
2197 		0x38d3c, 0x38d50,
2198 		0x39200, 0x3920c,
2199 		0x39220, 0x39220,
2200 		0x39240, 0x39240,
2201 		0x39600, 0x39600,
2202 		0x39608, 0x3960c,
2203 		0x39a00, 0x39a1c,
2204 		0x39e04, 0x39e20,
2205 		0x39e38, 0x39e3c,
2206 		0x39e80, 0x39e80,
2207 		0x39e88, 0x39ea8,
2208 		0x39eb0, 0x39eb4,
2209 		0x39ec8, 0x39ed4,
2210 		0x39fb8, 0x3a004,
2211 		0x3a208, 0x3a23c,
2212 		0x3a600, 0x3a630,
2213 		0x3aa00, 0x3aabc,
2214 		0x3ab00, 0x3ab70,
2215 		0x3b000, 0x3b048,
2216 		0x3b060, 0x3b09c,
2217 		0x3b0f0, 0x3b148,
2218 		0x3b160, 0x3b19c,
2219 		0x3b1f0, 0x3b2e4,
2220 		0x3b2f8, 0x3b3e4,
2221 		0x3b3f8, 0x3b448,
2222 		0x3b460, 0x3b49c,
2223 		0x3b4f0, 0x3b548,
2224 		0x3b560, 0x3b59c,
2225 		0x3b5f0, 0x3b6e4,
2226 		0x3b6f8, 0x3b7e4,
2227 		0x3b7f8, 0x3b7fc,
2228 		0x3b814, 0x3b814,
2229 		0x3b82c, 0x3b82c,
2230 		0x3b880, 0x3b88c,
2231 		0x3b8e8, 0x3b8ec,
2232 		0x3b900, 0x3b948,
2233 		0x3b960, 0x3b99c,
2234 		0x3b9f0, 0x3bae4,
2235 		0x3baf8, 0x3bb10,
2236 		0x3bb28, 0x3bb28,
2237 		0x3bb3c, 0x3bb50,
2238 		0x3bbf0, 0x3bc10,
2239 		0x3bc28, 0x3bc28,
2240 		0x3bc3c, 0x3bc50,
2241 		0x3bcf0, 0x3bcfc,
2242 		0x3c000, 0x3c030,
2243 		0x3c100, 0x3c144,
2244 		0x3c190, 0x3c1d0,
2245 		0x3c200, 0x3c318,
2246 		0x3c400, 0x3c52c,
2247 		0x3c540, 0x3c61c,
2248 		0x3c800, 0x3c834,
2249 		0x3c8c0, 0x3c908,
2250 		0x3c910, 0x3c9ac,
2251 		0x3ca00, 0x3ca04,
2252 		0x3ca0c, 0x3ca2c,
2253 		0x3ca44, 0x3ca50,
2254 		0x3ca74, 0x3cc24,
2255 		0x3cd08, 0x3cd14,
2256 		0x3cd1c, 0x3cd20,
2257 		0x3cd3c, 0x3cd50,
2258 		0x3d200, 0x3d20c,
2259 		0x3d220, 0x3d220,
2260 		0x3d240, 0x3d240,
2261 		0x3d600, 0x3d600,
2262 		0x3d608, 0x3d60c,
2263 		0x3da00, 0x3da1c,
2264 		0x3de04, 0x3de20,
2265 		0x3de38, 0x3de3c,
2266 		0x3de80, 0x3de80,
2267 		0x3de88, 0x3dea8,
2268 		0x3deb0, 0x3deb4,
2269 		0x3dec8, 0x3ded4,
2270 		0x3dfb8, 0x3e004,
2271 		0x3e208, 0x3e23c,
2272 		0x3e600, 0x3e630,
2273 		0x3ea00, 0x3eabc,
2274 		0x3eb00, 0x3eb70,
2275 		0x3f000, 0x3f048,
2276 		0x3f060, 0x3f09c,
2277 		0x3f0f0, 0x3f148,
2278 		0x3f160, 0x3f19c,
2279 		0x3f1f0, 0x3f2e4,
2280 		0x3f2f8, 0x3f3e4,
2281 		0x3f3f8, 0x3f448,
2282 		0x3f460, 0x3f49c,
2283 		0x3f4f0, 0x3f548,
2284 		0x3f560, 0x3f59c,
2285 		0x3f5f0, 0x3f6e4,
2286 		0x3f6f8, 0x3f7e4,
2287 		0x3f7f8, 0x3f7fc,
2288 		0x3f814, 0x3f814,
2289 		0x3f82c, 0x3f82c,
2290 		0x3f880, 0x3f88c,
2291 		0x3f8e8, 0x3f8ec,
2292 		0x3f900, 0x3f948,
2293 		0x3f960, 0x3f99c,
2294 		0x3f9f0, 0x3fae4,
2295 		0x3faf8, 0x3fb10,
2296 		0x3fb28, 0x3fb28,
2297 		0x3fb3c, 0x3fb50,
2298 		0x3fbf0, 0x3fc10,
2299 		0x3fc28, 0x3fc28,
2300 		0x3fc3c, 0x3fc50,
2301 		0x3fcf0, 0x3fcfc,
2302 		0x40000, 0x4000c,
2303 		0x40040, 0x40068,
2304 		0x40080, 0x40144,
2305 		0x40180, 0x4018c,
2306 		0x40200, 0x40298,
2307 		0x402ac, 0x4033c,
2308 		0x403f8, 0x403fc,
2309 		0x41304, 0x413c4,
2310 		0x41400, 0x4141c,
2311 		0x41480, 0x414d0,
2312 		0x44000, 0x44078,
2313 		0x440c0, 0x44278,
2314 		0x442c0, 0x44478,
2315 		0x444c0, 0x44678,
2316 		0x446c0, 0x44878,
2317 		0x448c0, 0x449fc,
2318 		0x45000, 0x45068,
2319 		0x45080, 0x45084,
2320 		0x450a0, 0x450b0,
2321 		0x45200, 0x45268,
2322 		0x45280, 0x45284,
2323 		0x452a0, 0x452b0,
2324 		0x460c0, 0x460e4,
2325 		0x47000, 0x4708c,
2326 		0x47200, 0x47250,
2327 		0x47400, 0x47420,
2328 		0x47600, 0x47618,
2329 		0x47800, 0x47814,
2330 		0x48000, 0x4800c,
2331 		0x48040, 0x48068,
2332 		0x48080, 0x48144,
2333 		0x48180, 0x4818c,
2334 		0x48200, 0x48298,
2335 		0x482ac, 0x4833c,
2336 		0x483f8, 0x483fc,
2337 		0x49304, 0x493c4,
2338 		0x49400, 0x4941c,
2339 		0x49480, 0x494d0,
2340 		0x4c000, 0x4c078,
2341 		0x4c0c0, 0x4c278,
2342 		0x4c2c0, 0x4c478,
2343 		0x4c4c0, 0x4c678,
2344 		0x4c6c0, 0x4c878,
2345 		0x4c8c0, 0x4c9fc,
2346 		0x4d000, 0x4d068,
2347 		0x4d080, 0x4d084,
2348 		0x4d0a0, 0x4d0b0,
2349 		0x4d200, 0x4d268,
2350 		0x4d280, 0x4d284,
2351 		0x4d2a0, 0x4d2b0,
2352 		0x4e0c0, 0x4e0e4,
2353 		0x4f000, 0x4f08c,
2354 		0x4f200, 0x4f250,
2355 		0x4f400, 0x4f420,
2356 		0x4f600, 0x4f618,
2357 		0x4f800, 0x4f814,
2358 		0x50000, 0x500cc,
2359 		0x50400, 0x50400,
2360 		0x50800, 0x508cc,
2361 		0x50c00, 0x50c00,
2362 		0x51000, 0x5101c,
2363 		0x51300, 0x51308,
2364 	};
2365 
2366 	int i;
2367 	struct adapter *ap = netdev2adap(dev);
2368 	static const unsigned int *reg_ranges;
2369 	int arr_size = 0, buf_size = 0;
2370 
2371 	if (is_t4(ap->params.chip)) {
2372 		reg_ranges = &t4_reg_ranges[0];
2373 		arr_size = ARRAY_SIZE(t4_reg_ranges);
2374 		buf_size = T4_REGMAP_SIZE;
2375 	} else {
2376 		reg_ranges = &t5_reg_ranges[0];
2377 		arr_size = ARRAY_SIZE(t5_reg_ranges);
2378 		buf_size = T5_REGMAP_SIZE;
2379 	}
2380 
2381 	regs->version = mk_adap_vers(ap);
2382 
2383 	memset(buf, 0, buf_size);
2384 	for (i = 0; i < arr_size; i += 2)
2385 		reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2386 }
2387 
2388 static int restart_autoneg(struct net_device *dev)
2389 {
2390 	struct port_info *p = netdev_priv(dev);
2391 
2392 	if (!netif_running(dev))
2393 		return -EAGAIN;
2394 	if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2395 		return -EINVAL;
2396 	t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2397 	return 0;
2398 }
2399 
2400 static int identify_port(struct net_device *dev,
2401 			 enum ethtool_phys_id_state state)
2402 {
2403 	unsigned int val;
2404 	struct adapter *adap = netdev2adap(dev);
2405 
2406 	if (state == ETHTOOL_ID_ACTIVE)
2407 		val = 0xffff;
2408 	else if (state == ETHTOOL_ID_INACTIVE)
2409 		val = 0;
2410 	else
2411 		return -EINVAL;
2412 
2413 	return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2414 }
2415 
2416 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2417 {
2418 	unsigned int v = 0;
2419 
2420 	if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2421 	    type == FW_PORT_TYPE_BT_XAUI) {
2422 		v |= SUPPORTED_TP;
2423 		if (caps & FW_PORT_CAP_SPEED_100M)
2424 			v |= SUPPORTED_100baseT_Full;
2425 		if (caps & FW_PORT_CAP_SPEED_1G)
2426 			v |= SUPPORTED_1000baseT_Full;
2427 		if (caps & FW_PORT_CAP_SPEED_10G)
2428 			v |= SUPPORTED_10000baseT_Full;
2429 	} else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2430 		v |= SUPPORTED_Backplane;
2431 		if (caps & FW_PORT_CAP_SPEED_1G)
2432 			v |= SUPPORTED_1000baseKX_Full;
2433 		if (caps & FW_PORT_CAP_SPEED_10G)
2434 			v |= SUPPORTED_10000baseKX4_Full;
2435 	} else if (type == FW_PORT_TYPE_KR)
2436 		v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2437 	else if (type == FW_PORT_TYPE_BP_AP)
2438 		v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2439 		     SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2440 	else if (type == FW_PORT_TYPE_BP4_AP)
2441 		v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2442 		     SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2443 		     SUPPORTED_10000baseKX4_Full;
2444 	else if (type == FW_PORT_TYPE_FIBER_XFI ||
2445 		 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2446 		v |= SUPPORTED_FIBRE;
2447 	else if (type == FW_PORT_TYPE_BP40_BA)
2448 		v |= SUPPORTED_40000baseSR4_Full;
2449 
2450 	if (caps & FW_PORT_CAP_ANEG)
2451 		v |= SUPPORTED_Autoneg;
2452 	return v;
2453 }
2454 
2455 static unsigned int to_fw_linkcaps(unsigned int caps)
2456 {
2457 	unsigned int v = 0;
2458 
2459 	if (caps & ADVERTISED_100baseT_Full)
2460 		v |= FW_PORT_CAP_SPEED_100M;
2461 	if (caps & ADVERTISED_1000baseT_Full)
2462 		v |= FW_PORT_CAP_SPEED_1G;
2463 	if (caps & ADVERTISED_10000baseT_Full)
2464 		v |= FW_PORT_CAP_SPEED_10G;
2465 	if (caps & ADVERTISED_40000baseSR4_Full)
2466 		v |= FW_PORT_CAP_SPEED_40G;
2467 	return v;
2468 }
2469 
2470 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2471 {
2472 	const struct port_info *p = netdev_priv(dev);
2473 
2474 	if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2475 	    p->port_type == FW_PORT_TYPE_BT_XFI ||
2476 	    p->port_type == FW_PORT_TYPE_BT_XAUI)
2477 		cmd->port = PORT_TP;
2478 	else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2479 		 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2480 		cmd->port = PORT_FIBRE;
2481 	else if (p->port_type == FW_PORT_TYPE_SFP ||
2482 		 p->port_type == FW_PORT_TYPE_QSFP_10G ||
2483 		 p->port_type == FW_PORT_TYPE_QSFP) {
2484 		if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2485 		    p->mod_type == FW_PORT_MOD_TYPE_SR ||
2486 		    p->mod_type == FW_PORT_MOD_TYPE_ER ||
2487 		    p->mod_type == FW_PORT_MOD_TYPE_LRM)
2488 			cmd->port = PORT_FIBRE;
2489 		else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2490 			 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2491 			cmd->port = PORT_DA;
2492 		else
2493 			cmd->port = PORT_OTHER;
2494 	} else
2495 		cmd->port = PORT_OTHER;
2496 
2497 	if (p->mdio_addr >= 0) {
2498 		cmd->phy_address = p->mdio_addr;
2499 		cmd->transceiver = XCVR_EXTERNAL;
2500 		cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2501 			MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2502 	} else {
2503 		cmd->phy_address = 0;  /* not really, but no better option */
2504 		cmd->transceiver = XCVR_INTERNAL;
2505 		cmd->mdio_support = 0;
2506 	}
2507 
2508 	cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2509 	cmd->advertising = from_fw_linkcaps(p->port_type,
2510 					    p->link_cfg.advertising);
2511 	ethtool_cmd_speed_set(cmd,
2512 			      netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2513 	cmd->duplex = DUPLEX_FULL;
2514 	cmd->autoneg = p->link_cfg.autoneg;
2515 	cmd->maxtxpkt = 0;
2516 	cmd->maxrxpkt = 0;
2517 	return 0;
2518 }
2519 
2520 static unsigned int speed_to_caps(int speed)
2521 {
2522 	if (speed == 100)
2523 		return FW_PORT_CAP_SPEED_100M;
2524 	if (speed == 1000)
2525 		return FW_PORT_CAP_SPEED_1G;
2526 	if (speed == 10000)
2527 		return FW_PORT_CAP_SPEED_10G;
2528 	if (speed == 40000)
2529 		return FW_PORT_CAP_SPEED_40G;
2530 	return 0;
2531 }
2532 
2533 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2534 {
2535 	unsigned int cap;
2536 	struct port_info *p = netdev_priv(dev);
2537 	struct link_config *lc = &p->link_cfg;
2538 	u32 speed = ethtool_cmd_speed(cmd);
2539 
2540 	if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
2541 		return -EINVAL;
2542 
2543 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2544 		/*
2545 		 * PHY offers a single speed.  See if that's what's
2546 		 * being requested.
2547 		 */
2548 		if (cmd->autoneg == AUTONEG_DISABLE &&
2549 		    (lc->supported & speed_to_caps(speed)))
2550 			return 0;
2551 		return -EINVAL;
2552 	}
2553 
2554 	if (cmd->autoneg == AUTONEG_DISABLE) {
2555 		cap = speed_to_caps(speed);
2556 
2557 		if (!(lc->supported & cap) ||
2558 		    (speed == 1000) ||
2559 		    (speed == 10000) ||
2560 		    (speed == 40000))
2561 			return -EINVAL;
2562 		lc->requested_speed = cap;
2563 		lc->advertising = 0;
2564 	} else {
2565 		cap = to_fw_linkcaps(cmd->advertising);
2566 		if (!(lc->supported & cap))
2567 			return -EINVAL;
2568 		lc->requested_speed = 0;
2569 		lc->advertising = cap | FW_PORT_CAP_ANEG;
2570 	}
2571 	lc->autoneg = cmd->autoneg;
2572 
2573 	if (netif_running(dev))
2574 		return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2575 				     lc);
2576 	return 0;
2577 }
2578 
2579 static void get_pauseparam(struct net_device *dev,
2580 			   struct ethtool_pauseparam *epause)
2581 {
2582 	struct port_info *p = netdev_priv(dev);
2583 
2584 	epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2585 	epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2586 	epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2587 }
2588 
2589 static int set_pauseparam(struct net_device *dev,
2590 			  struct ethtool_pauseparam *epause)
2591 {
2592 	struct port_info *p = netdev_priv(dev);
2593 	struct link_config *lc = &p->link_cfg;
2594 
2595 	if (epause->autoneg == AUTONEG_DISABLE)
2596 		lc->requested_fc = 0;
2597 	else if (lc->supported & FW_PORT_CAP_ANEG)
2598 		lc->requested_fc = PAUSE_AUTONEG;
2599 	else
2600 		return -EINVAL;
2601 
2602 	if (epause->rx_pause)
2603 		lc->requested_fc |= PAUSE_RX;
2604 	if (epause->tx_pause)
2605 		lc->requested_fc |= PAUSE_TX;
2606 	if (netif_running(dev))
2607 		return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2608 				     lc);
2609 	return 0;
2610 }
2611 
2612 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2613 {
2614 	const struct port_info *pi = netdev_priv(dev);
2615 	const struct sge *s = &pi->adapter->sge;
2616 
2617 	e->rx_max_pending = MAX_RX_BUFFERS;
2618 	e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2619 	e->rx_jumbo_max_pending = 0;
2620 	e->tx_max_pending = MAX_TXQ_ENTRIES;
2621 
2622 	e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2623 	e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2624 	e->rx_jumbo_pending = 0;
2625 	e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2626 }
2627 
2628 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2629 {
2630 	int i;
2631 	const struct port_info *pi = netdev_priv(dev);
2632 	struct adapter *adapter = pi->adapter;
2633 	struct sge *s = &adapter->sge;
2634 
2635 	if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2636 	    e->tx_pending > MAX_TXQ_ENTRIES ||
2637 	    e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2638 	    e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2639 	    e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2640 		return -EINVAL;
2641 
2642 	if (adapter->flags & FULL_INIT_DONE)
2643 		return -EBUSY;
2644 
2645 	for (i = 0; i < pi->nqsets; ++i) {
2646 		s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2647 		s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2648 		s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2649 	}
2650 	return 0;
2651 }
2652 
2653 static int closest_timer(const struct sge *s, int time)
2654 {
2655 	int i, delta, match = 0, min_delta = INT_MAX;
2656 
2657 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2658 		delta = time - s->timer_val[i];
2659 		if (delta < 0)
2660 			delta = -delta;
2661 		if (delta < min_delta) {
2662 			min_delta = delta;
2663 			match = i;
2664 		}
2665 	}
2666 	return match;
2667 }
2668 
2669 static int closest_thres(const struct sge *s, int thres)
2670 {
2671 	int i, delta, match = 0, min_delta = INT_MAX;
2672 
2673 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2674 		delta = thres - s->counter_val[i];
2675 		if (delta < 0)
2676 			delta = -delta;
2677 		if (delta < min_delta) {
2678 			min_delta = delta;
2679 			match = i;
2680 		}
2681 	}
2682 	return match;
2683 }
2684 
2685 /*
2686  * Return a queue's interrupt hold-off time in us.  0 means no timer.
2687  */
2688 static unsigned int qtimer_val(const struct adapter *adap,
2689 			       const struct sge_rspq *q)
2690 {
2691 	unsigned int idx = q->intr_params >> 1;
2692 
2693 	return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2694 }
2695 
2696 /**
2697  *	set_rspq_intr_params - set a queue's interrupt holdoff parameters
2698  *	@q: the Rx queue
2699  *	@us: the hold-off time in us, or 0 to disable timer
2700  *	@cnt: the hold-off packet count, or 0 to disable counter
2701  *
2702  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
2703  *	one of the two needs to be enabled for the queue to generate interrupts.
2704  */
2705 static int set_rspq_intr_params(struct sge_rspq *q,
2706 				unsigned int us, unsigned int cnt)
2707 {
2708 	struct adapter *adap = q->adap;
2709 
2710 	if ((us | cnt) == 0)
2711 		cnt = 1;
2712 
2713 	if (cnt) {
2714 		int err;
2715 		u32 v, new_idx;
2716 
2717 		new_idx = closest_thres(&adap->sge, cnt);
2718 		if (q->desc && q->pktcnt_idx != new_idx) {
2719 			/* the queue has already been created, update it */
2720 			v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2721 			    FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2722 			    FW_PARAMS_PARAM_YZ(q->cntxt_id);
2723 			err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2724 					    &new_idx);
2725 			if (err)
2726 				return err;
2727 		}
2728 		q->pktcnt_idx = new_idx;
2729 	}
2730 
2731 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2732 	q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2733 	return 0;
2734 }
2735 
2736 /**
2737  * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2738  * @dev: the network device
2739  * @us: the hold-off time in us, or 0 to disable timer
2740  * @cnt: the hold-off packet count, or 0 to disable counter
2741  *
2742  * Set the RX interrupt hold-off parameters for a network device.
2743  */
2744 static int set_rx_intr_params(struct net_device *dev,
2745 			      unsigned int us, unsigned int cnt)
2746 {
2747 	int i, err;
2748 	struct port_info *pi = netdev_priv(dev);
2749 	struct adapter *adap = pi->adapter;
2750 	struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2751 
2752 	for (i = 0; i < pi->nqsets; i++, q++) {
2753 		err = set_rspq_intr_params(&q->rspq, us, cnt);
2754 		if (err)
2755 			return err;
2756 	}
2757 	return 0;
2758 }
2759 
2760 static int set_adaptive_rx_setting(struct net_device *dev, int adaptive_rx)
2761 {
2762 	int i;
2763 	struct port_info *pi = netdev_priv(dev);
2764 	struct adapter *adap = pi->adapter;
2765 	struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2766 
2767 	for (i = 0; i < pi->nqsets; i++, q++)
2768 		q->rspq.adaptive_rx = adaptive_rx;
2769 
2770 	return 0;
2771 }
2772 
2773 static int get_adaptive_rx_setting(struct net_device *dev)
2774 {
2775 	struct port_info *pi = netdev_priv(dev);
2776 	struct adapter *adap = pi->adapter;
2777 	struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2778 
2779 	return q->rspq.adaptive_rx;
2780 }
2781 
2782 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2783 {
2784 	set_adaptive_rx_setting(dev, c->use_adaptive_rx_coalesce);
2785 	return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2786 				  c->rx_max_coalesced_frames);
2787 }
2788 
2789 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2790 {
2791 	const struct port_info *pi = netdev_priv(dev);
2792 	const struct adapter *adap = pi->adapter;
2793 	const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2794 
2795 	c->rx_coalesce_usecs = qtimer_val(adap, rq);
2796 	c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2797 		adap->sge.counter_val[rq->pktcnt_idx] : 0;
2798 	c->use_adaptive_rx_coalesce = get_adaptive_rx_setting(dev);
2799 	return 0;
2800 }
2801 
2802 /**
2803  *	eeprom_ptov - translate a physical EEPROM address to virtual
2804  *	@phys_addr: the physical EEPROM address
2805  *	@fn: the PCI function number
2806  *	@sz: size of function-specific area
2807  *
2808  *	Translate a physical EEPROM address to virtual.  The first 1K is
2809  *	accessed through virtual addresses starting at 31K, the rest is
2810  *	accessed through virtual addresses starting at 0.
2811  *
2812  *	The mapping is as follows:
2813  *	[0..1K) -> [31K..32K)
2814  *	[1K..1K+A) -> [31K-A..31K)
2815  *	[1K+A..ES) -> [0..ES-A-1K)
2816  *
2817  *	where A = @fn * @sz, and ES = EEPROM size.
2818  */
2819 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2820 {
2821 	fn *= sz;
2822 	if (phys_addr < 1024)
2823 		return phys_addr + (31 << 10);
2824 	if (phys_addr < 1024 + fn)
2825 		return 31744 - fn + phys_addr - 1024;
2826 	if (phys_addr < EEPROMSIZE)
2827 		return phys_addr - 1024 - fn;
2828 	return -EINVAL;
2829 }
2830 
2831 /*
2832  * The next two routines implement eeprom read/write from physical addresses.
2833  */
2834 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2835 {
2836 	int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2837 
2838 	if (vaddr >= 0)
2839 		vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2840 	return vaddr < 0 ? vaddr : 0;
2841 }
2842 
2843 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2844 {
2845 	int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2846 
2847 	if (vaddr >= 0)
2848 		vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2849 	return vaddr < 0 ? vaddr : 0;
2850 }
2851 
2852 #define EEPROM_MAGIC 0x38E2F10C
2853 
2854 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2855 		      u8 *data)
2856 {
2857 	int i, err = 0;
2858 	struct adapter *adapter = netdev2adap(dev);
2859 
2860 	u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2861 	if (!buf)
2862 		return -ENOMEM;
2863 
2864 	e->magic = EEPROM_MAGIC;
2865 	for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2866 		err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2867 
2868 	if (!err)
2869 		memcpy(data, buf + e->offset, e->len);
2870 	kfree(buf);
2871 	return err;
2872 }
2873 
2874 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2875 		      u8 *data)
2876 {
2877 	u8 *buf;
2878 	int err = 0;
2879 	u32 aligned_offset, aligned_len, *p;
2880 	struct adapter *adapter = netdev2adap(dev);
2881 
2882 	if (eeprom->magic != EEPROM_MAGIC)
2883 		return -EINVAL;
2884 
2885 	aligned_offset = eeprom->offset & ~3;
2886 	aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2887 
2888 	if (adapter->fn > 0) {
2889 		u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2890 
2891 		if (aligned_offset < start ||
2892 		    aligned_offset + aligned_len > start + EEPROMPFSIZE)
2893 			return -EPERM;
2894 	}
2895 
2896 	if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2897 		/*
2898 		 * RMW possibly needed for first or last words.
2899 		 */
2900 		buf = kmalloc(aligned_len, GFP_KERNEL);
2901 		if (!buf)
2902 			return -ENOMEM;
2903 		err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2904 		if (!err && aligned_len > 4)
2905 			err = eeprom_rd_phys(adapter,
2906 					     aligned_offset + aligned_len - 4,
2907 					     (u32 *)&buf[aligned_len - 4]);
2908 		if (err)
2909 			goto out;
2910 		memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2911 	} else
2912 		buf = data;
2913 
2914 	err = t4_seeprom_wp(adapter, false);
2915 	if (err)
2916 		goto out;
2917 
2918 	for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2919 		err = eeprom_wr_phys(adapter, aligned_offset, *p);
2920 		aligned_offset += 4;
2921 	}
2922 
2923 	if (!err)
2924 		err = t4_seeprom_wp(adapter, true);
2925 out:
2926 	if (buf != data)
2927 		kfree(buf);
2928 	return err;
2929 }
2930 
2931 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2932 {
2933 	int ret;
2934 	const struct firmware *fw;
2935 	struct adapter *adap = netdev2adap(netdev);
2936 	unsigned int mbox = FW_PCIE_FW_MASTER_MASK + 1;
2937 
2938 	ef->data[sizeof(ef->data) - 1] = '\0';
2939 	ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2940 	if (ret < 0)
2941 		return ret;
2942 
2943 	/* If the adapter has been fully initialized then we'll go ahead and
2944 	 * try to get the firmware's cooperation in upgrading to the new
2945 	 * firmware image otherwise we'll try to do the entire job from the
2946 	 * host ... and we always "force" the operation in this path.
2947 	 */
2948 	if (adap->flags & FULL_INIT_DONE)
2949 		mbox = adap->mbox;
2950 
2951 	ret = t4_fw_upgrade(adap, mbox, fw->data, fw->size, 1);
2952 	release_firmware(fw);
2953 	if (!ret)
2954 		dev_info(adap->pdev_dev, "loaded firmware %s,"
2955 			 " reload cxgb4 driver\n", ef->data);
2956 	return ret;
2957 }
2958 
2959 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2960 #define BCAST_CRC 0xa0ccc1a6
2961 
2962 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2963 {
2964 	wol->supported = WAKE_BCAST | WAKE_MAGIC;
2965 	wol->wolopts = netdev2adap(dev)->wol;
2966 	memset(&wol->sopass, 0, sizeof(wol->sopass));
2967 }
2968 
2969 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2970 {
2971 	int err = 0;
2972 	struct port_info *pi = netdev_priv(dev);
2973 
2974 	if (wol->wolopts & ~WOL_SUPPORTED)
2975 		return -EINVAL;
2976 	t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2977 			    (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2978 	if (wol->wolopts & WAKE_BCAST) {
2979 		err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2980 					~0ULL, 0, false);
2981 		if (!err)
2982 			err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2983 						~6ULL, ~0ULL, BCAST_CRC, true);
2984 	} else
2985 		t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2986 	return err;
2987 }
2988 
2989 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2990 {
2991 	const struct port_info *pi = netdev_priv(dev);
2992 	netdev_features_t changed = dev->features ^ features;
2993 	int err;
2994 
2995 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2996 		return 0;
2997 
2998 	err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2999 			    -1, -1, -1,
3000 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
3001 	if (unlikely(err))
3002 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
3003 	return err;
3004 }
3005 
3006 static u32 get_rss_table_size(struct net_device *dev)
3007 {
3008 	const struct port_info *pi = netdev_priv(dev);
3009 
3010 	return pi->rss_size;
3011 }
3012 
3013 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
3014 {
3015 	const struct port_info *pi = netdev_priv(dev);
3016 	unsigned int n = pi->rss_size;
3017 
3018 	while (n--)
3019 		p[n] = pi->rss[n];
3020 	return 0;
3021 }
3022 
3023 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
3024 {
3025 	unsigned int i;
3026 	struct port_info *pi = netdev_priv(dev);
3027 
3028 	for (i = 0; i < pi->rss_size; i++)
3029 		pi->rss[i] = p[i];
3030 	if (pi->adapter->flags & FULL_INIT_DONE)
3031 		return write_rss(pi, pi->rss);
3032 	return 0;
3033 }
3034 
3035 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
3036 		     u32 *rules)
3037 {
3038 	const struct port_info *pi = netdev_priv(dev);
3039 
3040 	switch (info->cmd) {
3041 	case ETHTOOL_GRXFH: {
3042 		unsigned int v = pi->rss_mode;
3043 
3044 		info->data = 0;
3045 		switch (info->flow_type) {
3046 		case TCP_V4_FLOW:
3047 			if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
3048 				info->data = RXH_IP_SRC | RXH_IP_DST |
3049 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
3050 			else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3051 				info->data = RXH_IP_SRC | RXH_IP_DST;
3052 			break;
3053 		case UDP_V4_FLOW:
3054 			if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
3055 			    (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3056 				info->data = RXH_IP_SRC | RXH_IP_DST |
3057 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
3058 			else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3059 				info->data = RXH_IP_SRC | RXH_IP_DST;
3060 			break;
3061 		case SCTP_V4_FLOW:
3062 		case AH_ESP_V4_FLOW:
3063 		case IPV4_FLOW:
3064 			if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
3065 				info->data = RXH_IP_SRC | RXH_IP_DST;
3066 			break;
3067 		case TCP_V6_FLOW:
3068 			if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
3069 				info->data = RXH_IP_SRC | RXH_IP_DST |
3070 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
3071 			else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3072 				info->data = RXH_IP_SRC | RXH_IP_DST;
3073 			break;
3074 		case UDP_V6_FLOW:
3075 			if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
3076 			    (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
3077 				info->data = RXH_IP_SRC | RXH_IP_DST |
3078 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
3079 			else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3080 				info->data = RXH_IP_SRC | RXH_IP_DST;
3081 			break;
3082 		case SCTP_V6_FLOW:
3083 		case AH_ESP_V6_FLOW:
3084 		case IPV6_FLOW:
3085 			if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
3086 				info->data = RXH_IP_SRC | RXH_IP_DST;
3087 			break;
3088 		}
3089 		return 0;
3090 	}
3091 	case ETHTOOL_GRXRINGS:
3092 		info->data = pi->nqsets;
3093 		return 0;
3094 	}
3095 	return -EOPNOTSUPP;
3096 }
3097 
3098 static const struct ethtool_ops cxgb_ethtool_ops = {
3099 	.get_settings      = get_settings,
3100 	.set_settings      = set_settings,
3101 	.get_drvinfo       = get_drvinfo,
3102 	.get_msglevel      = get_msglevel,
3103 	.set_msglevel      = set_msglevel,
3104 	.get_ringparam     = get_sge_param,
3105 	.set_ringparam     = set_sge_param,
3106 	.get_coalesce      = get_coalesce,
3107 	.set_coalesce      = set_coalesce,
3108 	.get_eeprom_len    = get_eeprom_len,
3109 	.get_eeprom        = get_eeprom,
3110 	.set_eeprom        = set_eeprom,
3111 	.get_pauseparam    = get_pauseparam,
3112 	.set_pauseparam    = set_pauseparam,
3113 	.get_link          = ethtool_op_get_link,
3114 	.get_strings       = get_strings,
3115 	.set_phys_id       = identify_port,
3116 	.nway_reset        = restart_autoneg,
3117 	.get_sset_count    = get_sset_count,
3118 	.get_ethtool_stats = get_stats,
3119 	.get_regs_len      = get_regs_len,
3120 	.get_regs          = get_regs,
3121 	.get_wol           = get_wol,
3122 	.set_wol           = set_wol,
3123 	.get_rxnfc         = get_rxnfc,
3124 	.get_rxfh_indir_size = get_rss_table_size,
3125 	.get_rxfh	   = get_rss_table,
3126 	.set_rxfh	   = set_rss_table,
3127 	.flash_device      = set_flash,
3128 };
3129 
3130 /*
3131  * debugfs support
3132  */
3133 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
3134 			loff_t *ppos)
3135 {
3136 	loff_t pos = *ppos;
3137 	loff_t avail = file_inode(file)->i_size;
3138 	unsigned int mem = (uintptr_t)file->private_data & 3;
3139 	struct adapter *adap = file->private_data - mem;
3140 	__be32 *data;
3141 	int ret;
3142 
3143 	if (pos < 0)
3144 		return -EINVAL;
3145 	if (pos >= avail)
3146 		return 0;
3147 	if (count > avail - pos)
3148 		count = avail - pos;
3149 
3150 	data = t4_alloc_mem(count);
3151 	if (!data)
3152 		return -ENOMEM;
3153 
3154 	spin_lock(&adap->win0_lock);
3155 	ret = t4_memory_rw(adap, 0, mem, pos, count, data, T4_MEMORY_READ);
3156 	spin_unlock(&adap->win0_lock);
3157 	if (ret) {
3158 		t4_free_mem(data);
3159 		return ret;
3160 	}
3161 	ret = copy_to_user(buf, data, count);
3162 
3163 	t4_free_mem(data);
3164 	if (ret)
3165 		return -EFAULT;
3166 
3167 	*ppos = pos + count;
3168 	return count;
3169 }
3170 
3171 static const struct file_operations mem_debugfs_fops = {
3172 	.owner   = THIS_MODULE,
3173 	.open    = simple_open,
3174 	.read    = mem_read,
3175 	.llseek  = default_llseek,
3176 };
3177 
3178 static void add_debugfs_mem(struct adapter *adap, const char *name,
3179 			    unsigned int idx, unsigned int size_mb)
3180 {
3181 	struct dentry *de;
3182 
3183 	de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
3184 				 (void *)adap + idx, &mem_debugfs_fops);
3185 	if (de && de->d_inode)
3186 		de->d_inode->i_size = size_mb << 20;
3187 }
3188 
3189 static int setup_debugfs(struct adapter *adap)
3190 {
3191 	int i;
3192 	u32 size;
3193 
3194 	if (IS_ERR_OR_NULL(adap->debugfs_root))
3195 		return -1;
3196 
3197 	i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
3198 	if (i & EDRAM0_ENABLE) {
3199 		size = t4_read_reg(adap, MA_EDRAM0_BAR);
3200 		add_debugfs_mem(adap, "edc0", MEM_EDC0,	EDRAM_SIZE_GET(size));
3201 	}
3202 	if (i & EDRAM1_ENABLE) {
3203 		size = t4_read_reg(adap, MA_EDRAM1_BAR);
3204 		add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
3205 	}
3206 	if (is_t4(adap->params.chip)) {
3207 		size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3208 		if (i & EXT_MEM_ENABLE)
3209 			add_debugfs_mem(adap, "mc", MEM_MC,
3210 					EXT_MEM_SIZE_GET(size));
3211 	} else {
3212 		if (i & EXT_MEM_ENABLE) {
3213 			size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
3214 			add_debugfs_mem(adap, "mc0", MEM_MC0,
3215 					EXT_MEM_SIZE_GET(size));
3216 		}
3217 		if (i & EXT_MEM1_ENABLE) {
3218 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
3219 			add_debugfs_mem(adap, "mc1", MEM_MC1,
3220 					EXT_MEM_SIZE_GET(size));
3221 		}
3222 	}
3223 	if (adap->l2t)
3224 		debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
3225 				    &t4_l2t_fops);
3226 	return 0;
3227 }
3228 
3229 /*
3230  * upper-layer driver support
3231  */
3232 
3233 /*
3234  * Allocate an active-open TID and set it to the supplied value.
3235  */
3236 int cxgb4_alloc_atid(struct tid_info *t, void *data)
3237 {
3238 	int atid = -1;
3239 
3240 	spin_lock_bh(&t->atid_lock);
3241 	if (t->afree) {
3242 		union aopen_entry *p = t->afree;
3243 
3244 		atid = (p - t->atid_tab) + t->atid_base;
3245 		t->afree = p->next;
3246 		p->data = data;
3247 		t->atids_in_use++;
3248 	}
3249 	spin_unlock_bh(&t->atid_lock);
3250 	return atid;
3251 }
3252 EXPORT_SYMBOL(cxgb4_alloc_atid);
3253 
3254 /*
3255  * Release an active-open TID.
3256  */
3257 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3258 {
3259 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
3260 
3261 	spin_lock_bh(&t->atid_lock);
3262 	p->next = t->afree;
3263 	t->afree = p;
3264 	t->atids_in_use--;
3265 	spin_unlock_bh(&t->atid_lock);
3266 }
3267 EXPORT_SYMBOL(cxgb4_free_atid);
3268 
3269 /*
3270  * Allocate a server TID and set it to the supplied value.
3271  */
3272 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3273 {
3274 	int stid;
3275 
3276 	spin_lock_bh(&t->stid_lock);
3277 	if (family == PF_INET) {
3278 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3279 		if (stid < t->nstids)
3280 			__set_bit(stid, t->stid_bmap);
3281 		else
3282 			stid = -1;
3283 	} else {
3284 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3285 		if (stid < 0)
3286 			stid = -1;
3287 	}
3288 	if (stid >= 0) {
3289 		t->stid_tab[stid].data = data;
3290 		stid += t->stid_base;
3291 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
3292 		 * This is equivalent to 4 TIDs. With CLIP enabled it
3293 		 * needs 2 TIDs.
3294 		 */
3295 		if (family == PF_INET)
3296 			t->stids_in_use++;
3297 		else
3298 			t->stids_in_use += 4;
3299 	}
3300 	spin_unlock_bh(&t->stid_lock);
3301 	return stid;
3302 }
3303 EXPORT_SYMBOL(cxgb4_alloc_stid);
3304 
3305 /* Allocate a server filter TID and set it to the supplied value.
3306  */
3307 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3308 {
3309 	int stid;
3310 
3311 	spin_lock_bh(&t->stid_lock);
3312 	if (family == PF_INET) {
3313 		stid = find_next_zero_bit(t->stid_bmap,
3314 				t->nstids + t->nsftids, t->nstids);
3315 		if (stid < (t->nstids + t->nsftids))
3316 			__set_bit(stid, t->stid_bmap);
3317 		else
3318 			stid = -1;
3319 	} else {
3320 		stid = -1;
3321 	}
3322 	if (stid >= 0) {
3323 		t->stid_tab[stid].data = data;
3324 		stid -= t->nstids;
3325 		stid += t->sftid_base;
3326 		t->stids_in_use++;
3327 	}
3328 	spin_unlock_bh(&t->stid_lock);
3329 	return stid;
3330 }
3331 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3332 
3333 /* Release a server TID.
3334  */
3335 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3336 {
3337 	/* Is it a server filter TID? */
3338 	if (t->nsftids && (stid >= t->sftid_base)) {
3339 		stid -= t->sftid_base;
3340 		stid += t->nstids;
3341 	} else {
3342 		stid -= t->stid_base;
3343 	}
3344 
3345 	spin_lock_bh(&t->stid_lock);
3346 	if (family == PF_INET)
3347 		__clear_bit(stid, t->stid_bmap);
3348 	else
3349 		bitmap_release_region(t->stid_bmap, stid, 2);
3350 	t->stid_tab[stid].data = NULL;
3351 	if (family == PF_INET)
3352 		t->stids_in_use--;
3353 	else
3354 		t->stids_in_use -= 4;
3355 	spin_unlock_bh(&t->stid_lock);
3356 }
3357 EXPORT_SYMBOL(cxgb4_free_stid);
3358 
3359 /*
3360  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
3361  */
3362 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3363 			   unsigned int tid)
3364 {
3365 	struct cpl_tid_release *req;
3366 
3367 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3368 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3369 	INIT_TP_WR(req, tid);
3370 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3371 }
3372 
3373 /*
3374  * Queue a TID release request and if necessary schedule a work queue to
3375  * process it.
3376  */
3377 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3378 				    unsigned int tid)
3379 {
3380 	void **p = &t->tid_tab[tid];
3381 	struct adapter *adap = container_of(t, struct adapter, tids);
3382 
3383 	spin_lock_bh(&adap->tid_release_lock);
3384 	*p = adap->tid_release_head;
3385 	/* Low 2 bits encode the Tx channel number */
3386 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
3387 	if (!adap->tid_release_task_busy) {
3388 		adap->tid_release_task_busy = true;
3389 		queue_work(adap->workq, &adap->tid_release_task);
3390 	}
3391 	spin_unlock_bh(&adap->tid_release_lock);
3392 }
3393 
3394 /*
3395  * Process the list of pending TID release requests.
3396  */
3397 static void process_tid_release_list(struct work_struct *work)
3398 {
3399 	struct sk_buff *skb;
3400 	struct adapter *adap;
3401 
3402 	adap = container_of(work, struct adapter, tid_release_task);
3403 
3404 	spin_lock_bh(&adap->tid_release_lock);
3405 	while (adap->tid_release_head) {
3406 		void **p = adap->tid_release_head;
3407 		unsigned int chan = (uintptr_t)p & 3;
3408 		p = (void *)p - chan;
3409 
3410 		adap->tid_release_head = *p;
3411 		*p = NULL;
3412 		spin_unlock_bh(&adap->tid_release_lock);
3413 
3414 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3415 					 GFP_KERNEL)))
3416 			schedule_timeout_uninterruptible(1);
3417 
3418 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3419 		t4_ofld_send(adap, skb);
3420 		spin_lock_bh(&adap->tid_release_lock);
3421 	}
3422 	adap->tid_release_task_busy = false;
3423 	spin_unlock_bh(&adap->tid_release_lock);
3424 }
3425 
3426 /*
3427  * Release a TID and inform HW.  If we are unable to allocate the release
3428  * message we defer to a work queue.
3429  */
3430 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3431 {
3432 	void *old;
3433 	struct sk_buff *skb;
3434 	struct adapter *adap = container_of(t, struct adapter, tids);
3435 
3436 	old = t->tid_tab[tid];
3437 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3438 	if (likely(skb)) {
3439 		t->tid_tab[tid] = NULL;
3440 		mk_tid_release(skb, chan, tid);
3441 		t4_ofld_send(adap, skb);
3442 	} else
3443 		cxgb4_queue_tid_release(t, chan, tid);
3444 	if (old)
3445 		atomic_dec(&t->tids_in_use);
3446 }
3447 EXPORT_SYMBOL(cxgb4_remove_tid);
3448 
3449 /*
3450  * Allocate and initialize the TID tables.  Returns 0 on success.
3451  */
3452 static int tid_init(struct tid_info *t)
3453 {
3454 	size_t size;
3455 	unsigned int stid_bmap_size;
3456 	unsigned int natids = t->natids;
3457 	struct adapter *adap = container_of(t, struct adapter, tids);
3458 
3459 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3460 	size = t->ntids * sizeof(*t->tid_tab) +
3461 	       natids * sizeof(*t->atid_tab) +
3462 	       t->nstids * sizeof(*t->stid_tab) +
3463 	       t->nsftids * sizeof(*t->stid_tab) +
3464 	       stid_bmap_size * sizeof(long) +
3465 	       t->nftids * sizeof(*t->ftid_tab) +
3466 	       t->nsftids * sizeof(*t->ftid_tab);
3467 
3468 	t->tid_tab = t4_alloc_mem(size);
3469 	if (!t->tid_tab)
3470 		return -ENOMEM;
3471 
3472 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3473 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3474 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3475 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3476 	spin_lock_init(&t->stid_lock);
3477 	spin_lock_init(&t->atid_lock);
3478 
3479 	t->stids_in_use = 0;
3480 	t->afree = NULL;
3481 	t->atids_in_use = 0;
3482 	atomic_set(&t->tids_in_use, 0);
3483 
3484 	/* Setup the free list for atid_tab and clear the stid bitmap. */
3485 	if (natids) {
3486 		while (--natids)
3487 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3488 		t->afree = t->atid_tab;
3489 	}
3490 	bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3491 	/* Reserve stid 0 for T4/T5 adapters */
3492 	if (!t->stid_base &&
3493 	    (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3494 		__set_bit(0, t->stid_bmap);
3495 
3496 	return 0;
3497 }
3498 
3499 int cxgb4_clip_get(const struct net_device *dev,
3500 		   const struct in6_addr *lip)
3501 {
3502 	struct adapter *adap;
3503 	struct fw_clip_cmd c;
3504 
3505 	adap = netdev2adap(dev);
3506 	memset(&c, 0, sizeof(c));
3507 	c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3508 			FW_CMD_REQUEST | FW_CMD_WRITE);
3509 	c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
3510 	c.ip_hi = *(__be64 *)(lip->s6_addr);
3511 	c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3512 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3513 }
3514 EXPORT_SYMBOL(cxgb4_clip_get);
3515 
3516 int cxgb4_clip_release(const struct net_device *dev,
3517 		       const struct in6_addr *lip)
3518 {
3519 	struct adapter *adap;
3520 	struct fw_clip_cmd c;
3521 
3522 	adap = netdev2adap(dev);
3523 	memset(&c, 0, sizeof(c));
3524 	c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3525 			FW_CMD_REQUEST | FW_CMD_READ);
3526 	c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
3527 	c.ip_hi = *(__be64 *)(lip->s6_addr);
3528 	c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3529 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3530 }
3531 EXPORT_SYMBOL(cxgb4_clip_release);
3532 
3533 /**
3534  *	cxgb4_create_server - create an IP server
3535  *	@dev: the device
3536  *	@stid: the server TID
3537  *	@sip: local IP address to bind server to
3538  *	@sport: the server's TCP port
3539  *	@queue: queue to direct messages from this server to
3540  *
3541  *	Create an IP server for the given port and address.
3542  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
3543  */
3544 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3545 			__be32 sip, __be16 sport, __be16 vlan,
3546 			unsigned int queue)
3547 {
3548 	unsigned int chan;
3549 	struct sk_buff *skb;
3550 	struct adapter *adap;
3551 	struct cpl_pass_open_req *req;
3552 	int ret;
3553 
3554 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3555 	if (!skb)
3556 		return -ENOMEM;
3557 
3558 	adap = netdev2adap(dev);
3559 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3560 	INIT_TP_WR(req, 0);
3561 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3562 	req->local_port = sport;
3563 	req->peer_port = htons(0);
3564 	req->local_ip = sip;
3565 	req->peer_ip = htonl(0);
3566 	chan = rxq_to_chan(&adap->sge, queue);
3567 	req->opt0 = cpu_to_be64(TX_CHAN(chan));
3568 	req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3569 				SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3570 	ret = t4_mgmt_tx(adap, skb);
3571 	return net_xmit_eval(ret);
3572 }
3573 EXPORT_SYMBOL(cxgb4_create_server);
3574 
3575 /*	cxgb4_create_server6 - create an IPv6 server
3576  *	@dev: the device
3577  *	@stid: the server TID
3578  *	@sip: local IPv6 address to bind server to
3579  *	@sport: the server's TCP port
3580  *	@queue: queue to direct messages from this server to
3581  *
3582  *	Create an IPv6 server for the given port and address.
3583  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
3584  */
3585 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3586 			 const struct in6_addr *sip, __be16 sport,
3587 			 unsigned int queue)
3588 {
3589 	unsigned int chan;
3590 	struct sk_buff *skb;
3591 	struct adapter *adap;
3592 	struct cpl_pass_open_req6 *req;
3593 	int ret;
3594 
3595 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3596 	if (!skb)
3597 		return -ENOMEM;
3598 
3599 	adap = netdev2adap(dev);
3600 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3601 	INIT_TP_WR(req, 0);
3602 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3603 	req->local_port = sport;
3604 	req->peer_port = htons(0);
3605 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3606 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3607 	req->peer_ip_hi = cpu_to_be64(0);
3608 	req->peer_ip_lo = cpu_to_be64(0);
3609 	chan = rxq_to_chan(&adap->sge, queue);
3610 	req->opt0 = cpu_to_be64(TX_CHAN(chan));
3611 	req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3612 				SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3613 	ret = t4_mgmt_tx(adap, skb);
3614 	return net_xmit_eval(ret);
3615 }
3616 EXPORT_SYMBOL(cxgb4_create_server6);
3617 
3618 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3619 			unsigned int queue, bool ipv6)
3620 {
3621 	struct sk_buff *skb;
3622 	struct adapter *adap;
3623 	struct cpl_close_listsvr_req *req;
3624 	int ret;
3625 
3626 	adap = netdev2adap(dev);
3627 
3628 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3629 	if (!skb)
3630 		return -ENOMEM;
3631 
3632 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3633 	INIT_TP_WR(req, 0);
3634 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3635 	req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3636 				LISTSVR_IPV6(0)) | QUEUENO(queue));
3637 	ret = t4_mgmt_tx(adap, skb);
3638 	return net_xmit_eval(ret);
3639 }
3640 EXPORT_SYMBOL(cxgb4_remove_server);
3641 
3642 /**
3643  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3644  *	@mtus: the HW MTU table
3645  *	@mtu: the target MTU
3646  *	@idx: index of selected entry in the MTU table
3647  *
3648  *	Returns the index and the value in the HW MTU table that is closest to
3649  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
3650  *	table, in which case that smallest available value is selected.
3651  */
3652 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3653 			    unsigned int *idx)
3654 {
3655 	unsigned int i = 0;
3656 
3657 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3658 		++i;
3659 	if (idx)
3660 		*idx = i;
3661 	return mtus[i];
3662 }
3663 EXPORT_SYMBOL(cxgb4_best_mtu);
3664 
3665 /**
3666  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3667  *     @mtus: the HW MTU table
3668  *     @header_size: Header Size
3669  *     @data_size_max: maximum Data Segment Size
3670  *     @data_size_align: desired Data Segment Size Alignment (2^N)
3671  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3672  *
3673  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
3674  *     MTU Table based solely on a Maximum MTU parameter, we break that
3675  *     parameter up into a Header Size and Maximum Data Segment Size, and
3676  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
3677  *     the Hardware MTU Table which will result in a Data Segment Size with
3678  *     the requested alignment _and_ that MTU isn't "too far" from the
3679  *     closest MTU, then we'll return that rather than the closest MTU.
3680  */
3681 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3682 				    unsigned short header_size,
3683 				    unsigned short data_size_max,
3684 				    unsigned short data_size_align,
3685 				    unsigned int *mtu_idxp)
3686 {
3687 	unsigned short max_mtu = header_size + data_size_max;
3688 	unsigned short data_size_align_mask = data_size_align - 1;
3689 	int mtu_idx, aligned_mtu_idx;
3690 
3691 	/* Scan the MTU Table till we find an MTU which is larger than our
3692 	 * Maximum MTU or we reach the end of the table.  Along the way,
3693 	 * record the last MTU found, if any, which will result in a Data
3694 	 * Segment Length matching the requested alignment.
3695 	 */
3696 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3697 		unsigned short data_size = mtus[mtu_idx] - header_size;
3698 
3699 		/* If this MTU minus the Header Size would result in a
3700 		 * Data Segment Size of the desired alignment, remember it.
3701 		 */
3702 		if ((data_size & data_size_align_mask) == 0)
3703 			aligned_mtu_idx = mtu_idx;
3704 
3705 		/* If we're not at the end of the Hardware MTU Table and the
3706 		 * next element is larger than our Maximum MTU, drop out of
3707 		 * the loop.
3708 		 */
3709 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3710 			break;
3711 	}
3712 
3713 	/* If we fell out of the loop because we ran to the end of the table,
3714 	 * then we just have to use the last [largest] entry.
3715 	 */
3716 	if (mtu_idx == NMTUS)
3717 		mtu_idx--;
3718 
3719 	/* If we found an MTU which resulted in the requested Data Segment
3720 	 * Length alignment and that's "not far" from the largest MTU which is
3721 	 * less than or equal to the maximum MTU, then use that.
3722 	 */
3723 	if (aligned_mtu_idx >= 0 &&
3724 	    mtu_idx - aligned_mtu_idx <= 1)
3725 		mtu_idx = aligned_mtu_idx;
3726 
3727 	/* If the caller has passed in an MTU Index pointer, pass the
3728 	 * MTU Index back.  Return the MTU value.
3729 	 */
3730 	if (mtu_idxp)
3731 		*mtu_idxp = mtu_idx;
3732 	return mtus[mtu_idx];
3733 }
3734 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3735 
3736 /**
3737  *	cxgb4_port_chan - get the HW channel of a port
3738  *	@dev: the net device for the port
3739  *
3740  *	Return the HW Tx channel of the given port.
3741  */
3742 unsigned int cxgb4_port_chan(const struct net_device *dev)
3743 {
3744 	return netdev2pinfo(dev)->tx_chan;
3745 }
3746 EXPORT_SYMBOL(cxgb4_port_chan);
3747 
3748 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3749 {
3750 	struct adapter *adap = netdev2adap(dev);
3751 	u32 v1, v2, lp_count, hp_count;
3752 
3753 	v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3754 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3755 	if (is_t4(adap->params.chip)) {
3756 		lp_count = G_LP_COUNT(v1);
3757 		hp_count = G_HP_COUNT(v1);
3758 	} else {
3759 		lp_count = G_LP_COUNT_T5(v1);
3760 		hp_count = G_HP_COUNT_T5(v2);
3761 	}
3762 	return lpfifo ? lp_count : hp_count;
3763 }
3764 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3765 
3766 /**
3767  *	cxgb4_port_viid - get the VI id of a port
3768  *	@dev: the net device for the port
3769  *
3770  *	Return the VI id of the given port.
3771  */
3772 unsigned int cxgb4_port_viid(const struct net_device *dev)
3773 {
3774 	return netdev2pinfo(dev)->viid;
3775 }
3776 EXPORT_SYMBOL(cxgb4_port_viid);
3777 
3778 /**
3779  *	cxgb4_port_idx - get the index of a port
3780  *	@dev: the net device for the port
3781  *
3782  *	Return the index of the given port.
3783  */
3784 unsigned int cxgb4_port_idx(const struct net_device *dev)
3785 {
3786 	return netdev2pinfo(dev)->port_id;
3787 }
3788 EXPORT_SYMBOL(cxgb4_port_idx);
3789 
3790 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3791 			 struct tp_tcp_stats *v6)
3792 {
3793 	struct adapter *adap = pci_get_drvdata(pdev);
3794 
3795 	spin_lock(&adap->stats_lock);
3796 	t4_tp_get_tcp_stats(adap, v4, v6);
3797 	spin_unlock(&adap->stats_lock);
3798 }
3799 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3800 
3801 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3802 		      const unsigned int *pgsz_order)
3803 {
3804 	struct adapter *adap = netdev2adap(dev);
3805 
3806 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3807 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3808 		     HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3809 		     HPZ3(pgsz_order[3]));
3810 }
3811 EXPORT_SYMBOL(cxgb4_iscsi_init);
3812 
3813 int cxgb4_flush_eq_cache(struct net_device *dev)
3814 {
3815 	struct adapter *adap = netdev2adap(dev);
3816 	int ret;
3817 
3818 	ret = t4_fwaddrspace_write(adap, adap->mbox,
3819 				   0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3820 	return ret;
3821 }
3822 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3823 
3824 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3825 {
3826 	u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3827 	__be64 indices;
3828 	int ret;
3829 
3830 	spin_lock(&adap->win0_lock);
3831 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
3832 			   sizeof(indices), (__be32 *)&indices,
3833 			   T4_MEMORY_READ);
3834 	spin_unlock(&adap->win0_lock);
3835 	if (!ret) {
3836 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3837 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3838 	}
3839 	return ret;
3840 }
3841 
3842 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3843 			u16 size)
3844 {
3845 	struct adapter *adap = netdev2adap(dev);
3846 	u16 hw_pidx, hw_cidx;
3847 	int ret;
3848 
3849 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3850 	if (ret)
3851 		goto out;
3852 
3853 	if (pidx != hw_pidx) {
3854 		u16 delta;
3855 
3856 		if (pidx >= hw_pidx)
3857 			delta = pidx - hw_pidx;
3858 		else
3859 			delta = size - hw_pidx + pidx;
3860 		wmb();
3861 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3862 			     QID(qid) | PIDX(delta));
3863 	}
3864 out:
3865 	return ret;
3866 }
3867 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3868 
3869 void cxgb4_disable_db_coalescing(struct net_device *dev)
3870 {
3871 	struct adapter *adap;
3872 
3873 	adap = netdev2adap(dev);
3874 	t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3875 			 F_NOCOALESCE);
3876 }
3877 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3878 
3879 void cxgb4_enable_db_coalescing(struct net_device *dev)
3880 {
3881 	struct adapter *adap;
3882 
3883 	adap = netdev2adap(dev);
3884 	t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3885 }
3886 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3887 
3888 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
3889 {
3890 	struct adapter *adap;
3891 	u32 offset, memtype, memaddr;
3892 	u32 edc0_size, edc1_size, mc0_size, mc1_size;
3893 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
3894 	int ret;
3895 
3896 	adap = netdev2adap(dev);
3897 
3898 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
3899 
3900 	/* Figure out where the offset lands in the Memory Type/Address scheme.
3901 	 * This code assumes that the memory is laid out starting at offset 0
3902 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
3903 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
3904 	 * MC0, and some have both MC0 and MC1.
3905 	 */
3906 	edc0_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM0_BAR)) << 20;
3907 	edc1_size = EDRAM_SIZE_GET(t4_read_reg(adap, MA_EDRAM1_BAR)) << 20;
3908 	mc0_size = EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)) << 20;
3909 
3910 	edc0_end = edc0_size;
3911 	edc1_end = edc0_end + edc1_size;
3912 	mc0_end = edc1_end + mc0_size;
3913 
3914 	if (offset < edc0_end) {
3915 		memtype = MEM_EDC0;
3916 		memaddr = offset;
3917 	} else if (offset < edc1_end) {
3918 		memtype = MEM_EDC1;
3919 		memaddr = offset - edc0_end;
3920 	} else {
3921 		if (offset < mc0_end) {
3922 			memtype = MEM_MC0;
3923 			memaddr = offset - edc1_end;
3924 		} else if (is_t4(adap->params.chip)) {
3925 			/* T4 only has a single memory channel */
3926 			goto err;
3927 		} else {
3928 			mc1_size = EXT_MEM_SIZE_GET(
3929 					t4_read_reg(adap,
3930 						    MA_EXT_MEMORY1_BAR)) << 20;
3931 			mc1_end = mc0_end + mc1_size;
3932 			if (offset < mc1_end) {
3933 				memtype = MEM_MC1;
3934 				memaddr = offset - mc0_end;
3935 			} else {
3936 				/* offset beyond the end of any memory */
3937 				goto err;
3938 			}
3939 		}
3940 	}
3941 
3942 	spin_lock(&adap->win0_lock);
3943 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
3944 	spin_unlock(&adap->win0_lock);
3945 	return ret;
3946 
3947 err:
3948 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
3949 		stag, offset);
3950 	return -EINVAL;
3951 }
3952 EXPORT_SYMBOL(cxgb4_read_tpte);
3953 
3954 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
3955 {
3956 	u32 hi, lo;
3957 	struct adapter *adap;
3958 
3959 	adap = netdev2adap(dev);
3960 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO);
3961 	hi = GET_TSVAL(t4_read_reg(adap, SGE_TIMESTAMP_HI));
3962 
3963 	return ((u64)hi << 32) | (u64)lo;
3964 }
3965 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
3966 
3967 static struct pci_driver cxgb4_driver;
3968 
3969 static void check_neigh_update(struct neighbour *neigh)
3970 {
3971 	const struct device *parent;
3972 	const struct net_device *netdev = neigh->dev;
3973 
3974 	if (netdev->priv_flags & IFF_802_1Q_VLAN)
3975 		netdev = vlan_dev_real_dev(netdev);
3976 	parent = netdev->dev.parent;
3977 	if (parent && parent->driver == &cxgb4_driver.driver)
3978 		t4_l2t_update(dev_get_drvdata(parent), neigh);
3979 }
3980 
3981 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3982 		       void *data)
3983 {
3984 	switch (event) {
3985 	case NETEVENT_NEIGH_UPDATE:
3986 		check_neigh_update(data);
3987 		break;
3988 	case NETEVENT_REDIRECT:
3989 	default:
3990 		break;
3991 	}
3992 	return 0;
3993 }
3994 
3995 static bool netevent_registered;
3996 static struct notifier_block cxgb4_netevent_nb = {
3997 	.notifier_call = netevent_cb
3998 };
3999 
4000 static void drain_db_fifo(struct adapter *adap, int usecs)
4001 {
4002 	u32 v1, v2, lp_count, hp_count;
4003 
4004 	do {
4005 		v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
4006 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
4007 		if (is_t4(adap->params.chip)) {
4008 			lp_count = G_LP_COUNT(v1);
4009 			hp_count = G_HP_COUNT(v1);
4010 		} else {
4011 			lp_count = G_LP_COUNT_T5(v1);
4012 			hp_count = G_HP_COUNT_T5(v2);
4013 		}
4014 
4015 		if (lp_count == 0 && hp_count == 0)
4016 			break;
4017 		set_current_state(TASK_UNINTERRUPTIBLE);
4018 		schedule_timeout(usecs_to_jiffies(usecs));
4019 	} while (1);
4020 }
4021 
4022 static void disable_txq_db(struct sge_txq *q)
4023 {
4024 	unsigned long flags;
4025 
4026 	spin_lock_irqsave(&q->db_lock, flags);
4027 	q->db_disabled = 1;
4028 	spin_unlock_irqrestore(&q->db_lock, flags);
4029 }
4030 
4031 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
4032 {
4033 	spin_lock_irq(&q->db_lock);
4034 	if (q->db_pidx_inc) {
4035 		/* Make sure that all writes to the TX descriptors
4036 		 * are committed before we tell HW about them.
4037 		 */
4038 		wmb();
4039 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4040 			     QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
4041 		q->db_pidx_inc = 0;
4042 	}
4043 	q->db_disabled = 0;
4044 	spin_unlock_irq(&q->db_lock);
4045 }
4046 
4047 static void disable_dbs(struct adapter *adap)
4048 {
4049 	int i;
4050 
4051 	for_each_ethrxq(&adap->sge, i)
4052 		disable_txq_db(&adap->sge.ethtxq[i].q);
4053 	for_each_ofldrxq(&adap->sge, i)
4054 		disable_txq_db(&adap->sge.ofldtxq[i].q);
4055 	for_each_port(adap, i)
4056 		disable_txq_db(&adap->sge.ctrlq[i].q);
4057 }
4058 
4059 static void enable_dbs(struct adapter *adap)
4060 {
4061 	int i;
4062 
4063 	for_each_ethrxq(&adap->sge, i)
4064 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
4065 	for_each_ofldrxq(&adap->sge, i)
4066 		enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
4067 	for_each_port(adap, i)
4068 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
4069 }
4070 
4071 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
4072 {
4073 	if (adap->uld_handle[CXGB4_ULD_RDMA])
4074 		ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
4075 				cmd);
4076 }
4077 
4078 static void process_db_full(struct work_struct *work)
4079 {
4080 	struct adapter *adap;
4081 
4082 	adap = container_of(work, struct adapter, db_full_task);
4083 
4084 	drain_db_fifo(adap, dbfifo_drain_delay);
4085 	enable_dbs(adap);
4086 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4087 	t4_set_reg_field(adap, SGE_INT_ENABLE3,
4088 			 DBFIFO_HP_INT | DBFIFO_LP_INT,
4089 			 DBFIFO_HP_INT | DBFIFO_LP_INT);
4090 }
4091 
4092 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
4093 {
4094 	u16 hw_pidx, hw_cidx;
4095 	int ret;
4096 
4097 	spin_lock_irq(&q->db_lock);
4098 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
4099 	if (ret)
4100 		goto out;
4101 	if (q->db_pidx != hw_pidx) {
4102 		u16 delta;
4103 
4104 		if (q->db_pidx >= hw_pidx)
4105 			delta = q->db_pidx - hw_pidx;
4106 		else
4107 			delta = q->size - hw_pidx + q->db_pidx;
4108 		wmb();
4109 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
4110 			     QID(q->cntxt_id) | PIDX(delta));
4111 	}
4112 out:
4113 	q->db_disabled = 0;
4114 	q->db_pidx_inc = 0;
4115 	spin_unlock_irq(&q->db_lock);
4116 	if (ret)
4117 		CH_WARN(adap, "DB drop recovery failed.\n");
4118 }
4119 static void recover_all_queues(struct adapter *adap)
4120 {
4121 	int i;
4122 
4123 	for_each_ethrxq(&adap->sge, i)
4124 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
4125 	for_each_ofldrxq(&adap->sge, i)
4126 		sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
4127 	for_each_port(adap, i)
4128 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
4129 }
4130 
4131 static void process_db_drop(struct work_struct *work)
4132 {
4133 	struct adapter *adap;
4134 
4135 	adap = container_of(work, struct adapter, db_drop_task);
4136 
4137 	if (is_t4(adap->params.chip)) {
4138 		drain_db_fifo(adap, dbfifo_drain_delay);
4139 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
4140 		drain_db_fifo(adap, dbfifo_drain_delay);
4141 		recover_all_queues(adap);
4142 		drain_db_fifo(adap, dbfifo_drain_delay);
4143 		enable_dbs(adap);
4144 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
4145 	} else {
4146 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
4147 		u16 qid = (dropped_db >> 15) & 0x1ffff;
4148 		u16 pidx_inc = dropped_db & 0x1fff;
4149 		unsigned int s_qpp;
4150 		unsigned short udb_density;
4151 		unsigned long qpshift;
4152 		int page;
4153 		u32 udb;
4154 
4155 		dev_warn(adap->pdev_dev,
4156 			 "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
4157 			 dropped_db, qid,
4158 			 (dropped_db >> 14) & 1,
4159 			 (dropped_db >> 13) & 1,
4160 			 pidx_inc);
4161 
4162 		drain_db_fifo(adap, 1);
4163 
4164 		s_qpp = QUEUESPERPAGEPF1 * adap->fn;
4165 		udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
4166 				SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
4167 		qpshift = PAGE_SHIFT - ilog2(udb_density);
4168 		udb = qid << qpshift;
4169 		udb &= PAGE_MASK;
4170 		page = udb / PAGE_SIZE;
4171 		udb += (qid - (page * udb_density)) * 128;
4172 
4173 		writel(PIDX(pidx_inc),  adap->bar2 + udb + 8);
4174 
4175 		/* Re-enable BAR2 WC */
4176 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
4177 	}
4178 
4179 	t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
4180 }
4181 
4182 void t4_db_full(struct adapter *adap)
4183 {
4184 	if (is_t4(adap->params.chip)) {
4185 		disable_dbs(adap);
4186 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4187 		t4_set_reg_field(adap, SGE_INT_ENABLE3,
4188 				 DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
4189 		queue_work(adap->workq, &adap->db_full_task);
4190 	}
4191 }
4192 
4193 void t4_db_dropped(struct adapter *adap)
4194 {
4195 	if (is_t4(adap->params.chip)) {
4196 		disable_dbs(adap);
4197 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
4198 	}
4199 	queue_work(adap->workq, &adap->db_drop_task);
4200 }
4201 
4202 static void uld_attach(struct adapter *adap, unsigned int uld)
4203 {
4204 	void *handle;
4205 	struct cxgb4_lld_info lli;
4206 	unsigned short i;
4207 
4208 	lli.pdev = adap->pdev;
4209 	lli.pf = adap->fn;
4210 	lli.l2t = adap->l2t;
4211 	lli.tids = &adap->tids;
4212 	lli.ports = adap->port;
4213 	lli.vr = &adap->vres;
4214 	lli.mtus = adap->params.mtus;
4215 	if (uld == CXGB4_ULD_RDMA) {
4216 		lli.rxq_ids = adap->sge.rdma_rxq;
4217 		lli.ciq_ids = adap->sge.rdma_ciq;
4218 		lli.nrxq = adap->sge.rdmaqs;
4219 		lli.nciq = adap->sge.rdmaciqs;
4220 	} else if (uld == CXGB4_ULD_ISCSI) {
4221 		lli.rxq_ids = adap->sge.ofld_rxq;
4222 		lli.nrxq = adap->sge.ofldqsets;
4223 	}
4224 	lli.ntxq = adap->sge.ofldqsets;
4225 	lli.nchan = adap->params.nports;
4226 	lli.nports = adap->params.nports;
4227 	lli.wr_cred = adap->params.ofldq_wr_cred;
4228 	lli.adapter_type = adap->params.chip;
4229 	lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
4230 	lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
4231 	lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
4232 			t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
4233 			(adap->fn * 4));
4234 	lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
4235 			t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
4236 			(adap->fn * 4));
4237 	lli.filt_mode = adap->params.tp.vlan_pri_map;
4238 	/* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
4239 	for (i = 0; i < NCHAN; i++)
4240 		lli.tx_modq[i] = i;
4241 	lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
4242 	lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
4243 	lli.fw_vers = adap->params.fw_vers;
4244 	lli.dbfifo_int_thresh = dbfifo_int_thresh;
4245 	lli.sge_ingpadboundary = adap->sge.fl_align;
4246 	lli.sge_egrstatuspagesize = adap->sge.stat_len;
4247 	lli.sge_pktshift = adap->sge.pktshift;
4248 	lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
4249 	lli.max_ordird_qp = adap->params.max_ordird_qp;
4250 	lli.max_ird_adapter = adap->params.max_ird_adapter;
4251 	lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
4252 
4253 	handle = ulds[uld].add(&lli);
4254 	if (IS_ERR(handle)) {
4255 		dev_warn(adap->pdev_dev,
4256 			 "could not attach to the %s driver, error %ld\n",
4257 			 uld_str[uld], PTR_ERR(handle));
4258 		return;
4259 	}
4260 
4261 	adap->uld_handle[uld] = handle;
4262 
4263 	if (!netevent_registered) {
4264 		register_netevent_notifier(&cxgb4_netevent_nb);
4265 		netevent_registered = true;
4266 	}
4267 
4268 	if (adap->flags & FULL_INIT_DONE)
4269 		ulds[uld].state_change(handle, CXGB4_STATE_UP);
4270 }
4271 
4272 static void attach_ulds(struct adapter *adap)
4273 {
4274 	unsigned int i;
4275 
4276 	spin_lock(&adap_rcu_lock);
4277 	list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
4278 	spin_unlock(&adap_rcu_lock);
4279 
4280 	mutex_lock(&uld_mutex);
4281 	list_add_tail(&adap->list_node, &adapter_list);
4282 	for (i = 0; i < CXGB4_ULD_MAX; i++)
4283 		if (ulds[i].add)
4284 			uld_attach(adap, i);
4285 	mutex_unlock(&uld_mutex);
4286 }
4287 
4288 static void detach_ulds(struct adapter *adap)
4289 {
4290 	unsigned int i;
4291 
4292 	mutex_lock(&uld_mutex);
4293 	list_del(&adap->list_node);
4294 	for (i = 0; i < CXGB4_ULD_MAX; i++)
4295 		if (adap->uld_handle[i]) {
4296 			ulds[i].state_change(adap->uld_handle[i],
4297 					     CXGB4_STATE_DETACH);
4298 			adap->uld_handle[i] = NULL;
4299 		}
4300 	if (netevent_registered && list_empty(&adapter_list)) {
4301 		unregister_netevent_notifier(&cxgb4_netevent_nb);
4302 		netevent_registered = false;
4303 	}
4304 	mutex_unlock(&uld_mutex);
4305 
4306 	spin_lock(&adap_rcu_lock);
4307 	list_del_rcu(&adap->rcu_node);
4308 	spin_unlock(&adap_rcu_lock);
4309 }
4310 
4311 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
4312 {
4313 	unsigned int i;
4314 
4315 	mutex_lock(&uld_mutex);
4316 	for (i = 0; i < CXGB4_ULD_MAX; i++)
4317 		if (adap->uld_handle[i])
4318 			ulds[i].state_change(adap->uld_handle[i], new_state);
4319 	mutex_unlock(&uld_mutex);
4320 }
4321 
4322 /**
4323  *	cxgb4_register_uld - register an upper-layer driver
4324  *	@type: the ULD type
4325  *	@p: the ULD methods
4326  *
4327  *	Registers an upper-layer driver with this driver and notifies the ULD
4328  *	about any presently available devices that support its type.  Returns
4329  *	%-EBUSY if a ULD of the same type is already registered.
4330  */
4331 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4332 {
4333 	int ret = 0;
4334 	struct adapter *adap;
4335 
4336 	if (type >= CXGB4_ULD_MAX)
4337 		return -EINVAL;
4338 	mutex_lock(&uld_mutex);
4339 	if (ulds[type].add) {
4340 		ret = -EBUSY;
4341 		goto out;
4342 	}
4343 	ulds[type] = *p;
4344 	list_for_each_entry(adap, &adapter_list, list_node)
4345 		uld_attach(adap, type);
4346 out:	mutex_unlock(&uld_mutex);
4347 	return ret;
4348 }
4349 EXPORT_SYMBOL(cxgb4_register_uld);
4350 
4351 /**
4352  *	cxgb4_unregister_uld - unregister an upper-layer driver
4353  *	@type: the ULD type
4354  *
4355  *	Unregisters an existing upper-layer driver.
4356  */
4357 int cxgb4_unregister_uld(enum cxgb4_uld type)
4358 {
4359 	struct adapter *adap;
4360 
4361 	if (type >= CXGB4_ULD_MAX)
4362 		return -EINVAL;
4363 	mutex_lock(&uld_mutex);
4364 	list_for_each_entry(adap, &adapter_list, list_node)
4365 		adap->uld_handle[type] = NULL;
4366 	ulds[type].add = NULL;
4367 	mutex_unlock(&uld_mutex);
4368 	return 0;
4369 }
4370 EXPORT_SYMBOL(cxgb4_unregister_uld);
4371 
4372 /* Check if netdev on which event is occured belongs to us or not. Return
4373  * success (true) if it belongs otherwise failure (false).
4374  * Called with rcu_read_lock() held.
4375  */
4376 #if IS_ENABLED(CONFIG_IPV6)
4377 static bool cxgb4_netdev(const struct net_device *netdev)
4378 {
4379 	struct adapter *adap;
4380 	int i;
4381 
4382 	list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4383 		for (i = 0; i < MAX_NPORTS; i++)
4384 			if (adap->port[i] == netdev)
4385 				return true;
4386 	return false;
4387 }
4388 
4389 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4390 		    unsigned long event)
4391 {
4392 	int ret = NOTIFY_DONE;
4393 
4394 	rcu_read_lock();
4395 	if (cxgb4_netdev(event_dev)) {
4396 		switch (event) {
4397 		case NETDEV_UP:
4398 			ret = cxgb4_clip_get(event_dev,
4399 				(const struct in6_addr *)ifa->addr.s6_addr);
4400 			if (ret < 0) {
4401 				rcu_read_unlock();
4402 				return ret;
4403 			}
4404 			ret = NOTIFY_OK;
4405 			break;
4406 		case NETDEV_DOWN:
4407 			cxgb4_clip_release(event_dev,
4408 				(const struct in6_addr *)ifa->addr.s6_addr);
4409 			ret = NOTIFY_OK;
4410 			break;
4411 		default:
4412 			break;
4413 		}
4414 	}
4415 	rcu_read_unlock();
4416 	return ret;
4417 }
4418 
4419 static int cxgb4_inet6addr_handler(struct notifier_block *this,
4420 		unsigned long event, void *data)
4421 {
4422 	struct inet6_ifaddr *ifa = data;
4423 	struct net_device *event_dev;
4424 	int ret = NOTIFY_DONE;
4425 	struct bonding *bond = netdev_priv(ifa->idev->dev);
4426 	struct list_head *iter;
4427 	struct slave *slave;
4428 	struct pci_dev *first_pdev = NULL;
4429 
4430 	if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4431 		event_dev = vlan_dev_real_dev(ifa->idev->dev);
4432 		ret = clip_add(event_dev, ifa, event);
4433 	} else if (ifa->idev->dev->flags & IFF_MASTER) {
4434 		/* It is possible that two different adapters are bonded in one
4435 		 * bond. We need to find such different adapters and add clip
4436 		 * in all of them only once.
4437 		 */
4438 		bond_for_each_slave(bond, slave, iter) {
4439 			if (!first_pdev) {
4440 				ret = clip_add(slave->dev, ifa, event);
4441 				/* If clip_add is success then only initialize
4442 				 * first_pdev since it means it is our device
4443 				 */
4444 				if (ret == NOTIFY_OK)
4445 					first_pdev = to_pci_dev(
4446 							slave->dev->dev.parent);
4447 			} else if (first_pdev !=
4448 				   to_pci_dev(slave->dev->dev.parent))
4449 					ret = clip_add(slave->dev, ifa, event);
4450 		}
4451 	} else
4452 		ret = clip_add(ifa->idev->dev, ifa, event);
4453 
4454 	return ret;
4455 }
4456 
4457 static struct notifier_block cxgb4_inet6addr_notifier = {
4458 	.notifier_call = cxgb4_inet6addr_handler
4459 };
4460 
4461 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4462  * a physical device.
4463  * The physical device reference is needed to send the actul CLIP command.
4464  */
4465 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4466 {
4467 	struct inet6_dev *idev = NULL;
4468 	struct inet6_ifaddr *ifa;
4469 	int ret = 0;
4470 
4471 	idev = __in6_dev_get(root_dev);
4472 	if (!idev)
4473 		return ret;
4474 
4475 	read_lock_bh(&idev->lock);
4476 	list_for_each_entry(ifa, &idev->addr_list, if_list) {
4477 		ret = cxgb4_clip_get(dev,
4478 				(const struct in6_addr *)ifa->addr.s6_addr);
4479 		if (ret < 0)
4480 			break;
4481 	}
4482 	read_unlock_bh(&idev->lock);
4483 
4484 	return ret;
4485 }
4486 
4487 static int update_root_dev_clip(struct net_device *dev)
4488 {
4489 	struct net_device *root_dev = NULL;
4490 	int i, ret = 0;
4491 
4492 	/* First populate the real net device's IPv6 addresses */
4493 	ret = update_dev_clip(dev, dev);
4494 	if (ret)
4495 		return ret;
4496 
4497 	/* Parse all bond and vlan devices layered on top of the physical dev */
4498 	root_dev = netdev_master_upper_dev_get_rcu(dev);
4499 	if (root_dev) {
4500 		ret = update_dev_clip(root_dev, dev);
4501 		if (ret)
4502 			return ret;
4503 	}
4504 
4505 	for (i = 0; i < VLAN_N_VID; i++) {
4506 		root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
4507 		if (!root_dev)
4508 			continue;
4509 
4510 		ret = update_dev_clip(root_dev, dev);
4511 		if (ret)
4512 			break;
4513 	}
4514 	return ret;
4515 }
4516 
4517 static void update_clip(const struct adapter *adap)
4518 {
4519 	int i;
4520 	struct net_device *dev;
4521 	int ret;
4522 
4523 	rcu_read_lock();
4524 
4525 	for (i = 0; i < MAX_NPORTS; i++) {
4526 		dev = adap->port[i];
4527 		ret = 0;
4528 
4529 		if (dev)
4530 			ret = update_root_dev_clip(dev);
4531 
4532 		if (ret < 0)
4533 			break;
4534 	}
4535 	rcu_read_unlock();
4536 }
4537 #endif /* IS_ENABLED(CONFIG_IPV6) */
4538 
4539 /**
4540  *	cxgb_up - enable the adapter
4541  *	@adap: adapter being enabled
4542  *
4543  *	Called when the first port is enabled, this function performs the
4544  *	actions necessary to make an adapter operational, such as completing
4545  *	the initialization of HW modules, and enabling interrupts.
4546  *
4547  *	Must be called with the rtnl lock held.
4548  */
4549 static int cxgb_up(struct adapter *adap)
4550 {
4551 	int err;
4552 
4553 	err = setup_sge_queues(adap);
4554 	if (err)
4555 		goto out;
4556 	err = setup_rss(adap);
4557 	if (err)
4558 		goto freeq;
4559 
4560 	if (adap->flags & USING_MSIX) {
4561 		name_msix_vecs(adap);
4562 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4563 				  adap->msix_info[0].desc, adap);
4564 		if (err)
4565 			goto irq_err;
4566 
4567 		err = request_msix_queue_irqs(adap);
4568 		if (err) {
4569 			free_irq(adap->msix_info[0].vec, adap);
4570 			goto irq_err;
4571 		}
4572 	} else {
4573 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4574 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
4575 				  adap->port[0]->name, adap);
4576 		if (err)
4577 			goto irq_err;
4578 	}
4579 	enable_rx(adap);
4580 	t4_sge_start(adap);
4581 	t4_intr_enable(adap);
4582 	adap->flags |= FULL_INIT_DONE;
4583 	notify_ulds(adap, CXGB4_STATE_UP);
4584 #if IS_ENABLED(CONFIG_IPV6)
4585 	update_clip(adap);
4586 #endif
4587  out:
4588 	return err;
4589  irq_err:
4590 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
4591  freeq:
4592 	t4_free_sge_resources(adap);
4593 	goto out;
4594 }
4595 
4596 static void cxgb_down(struct adapter *adapter)
4597 {
4598 	t4_intr_disable(adapter);
4599 	cancel_work_sync(&adapter->tid_release_task);
4600 	cancel_work_sync(&adapter->db_full_task);
4601 	cancel_work_sync(&adapter->db_drop_task);
4602 	adapter->tid_release_task_busy = false;
4603 	adapter->tid_release_head = NULL;
4604 
4605 	if (adapter->flags & USING_MSIX) {
4606 		free_msix_queue_irqs(adapter);
4607 		free_irq(adapter->msix_info[0].vec, adapter);
4608 	} else
4609 		free_irq(adapter->pdev->irq, adapter);
4610 	quiesce_rx(adapter);
4611 	t4_sge_stop(adapter);
4612 	t4_free_sge_resources(adapter);
4613 	adapter->flags &= ~FULL_INIT_DONE;
4614 }
4615 
4616 /*
4617  * net_device operations
4618  */
4619 static int cxgb_open(struct net_device *dev)
4620 {
4621 	int err;
4622 	struct port_info *pi = netdev_priv(dev);
4623 	struct adapter *adapter = pi->adapter;
4624 
4625 	netif_carrier_off(dev);
4626 
4627 	if (!(adapter->flags & FULL_INIT_DONE)) {
4628 		err = cxgb_up(adapter);
4629 		if (err < 0)
4630 			return err;
4631 	}
4632 
4633 	err = link_start(dev);
4634 	if (!err)
4635 		netif_tx_start_all_queues(dev);
4636 	return err;
4637 }
4638 
4639 static int cxgb_close(struct net_device *dev)
4640 {
4641 	struct port_info *pi = netdev_priv(dev);
4642 	struct adapter *adapter = pi->adapter;
4643 
4644 	netif_tx_stop_all_queues(dev);
4645 	netif_carrier_off(dev);
4646 	return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
4647 }
4648 
4649 /* Return an error number if the indicated filter isn't writable ...
4650  */
4651 static int writable_filter(struct filter_entry *f)
4652 {
4653 	if (f->locked)
4654 		return -EPERM;
4655 	if (f->pending)
4656 		return -EBUSY;
4657 
4658 	return 0;
4659 }
4660 
4661 /* Delete the filter at the specified index (if valid).  The checks for all
4662  * the common problems with doing this like the filter being locked, currently
4663  * pending in another operation, etc.
4664  */
4665 static int delete_filter(struct adapter *adapter, unsigned int fidx)
4666 {
4667 	struct filter_entry *f;
4668 	int ret;
4669 
4670 	if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
4671 		return -EINVAL;
4672 
4673 	f = &adapter->tids.ftid_tab[fidx];
4674 	ret = writable_filter(f);
4675 	if (ret)
4676 		return ret;
4677 	if (f->valid)
4678 		return del_filter_wr(adapter, fidx);
4679 
4680 	return 0;
4681 }
4682 
4683 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
4684 		__be32 sip, __be16 sport, __be16 vlan,
4685 		unsigned int queue, unsigned char port, unsigned char mask)
4686 {
4687 	int ret;
4688 	struct filter_entry *f;
4689 	struct adapter *adap;
4690 	int i;
4691 	u8 *val;
4692 
4693 	adap = netdev2adap(dev);
4694 
4695 	/* Adjust stid to correct filter index */
4696 	stid -= adap->tids.sftid_base;
4697 	stid += adap->tids.nftids;
4698 
4699 	/* Check to make sure the filter requested is writable ...
4700 	 */
4701 	f = &adap->tids.ftid_tab[stid];
4702 	ret = writable_filter(f);
4703 	if (ret)
4704 		return ret;
4705 
4706 	/* Clear out any old resources being used by the filter before
4707 	 * we start constructing the new filter.
4708 	 */
4709 	if (f->valid)
4710 		clear_filter(adap, f);
4711 
4712 	/* Clear out filter specifications */
4713 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4714 	f->fs.val.lport = cpu_to_be16(sport);
4715 	f->fs.mask.lport  = ~0;
4716 	val = (u8 *)&sip;
4717 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
4718 		for (i = 0; i < 4; i++) {
4719 			f->fs.val.lip[i] = val[i];
4720 			f->fs.mask.lip[i] = ~0;
4721 		}
4722 		if (adap->params.tp.vlan_pri_map & F_PORT) {
4723 			f->fs.val.iport = port;
4724 			f->fs.mask.iport = mask;
4725 		}
4726 	}
4727 
4728 	if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
4729 		f->fs.val.proto = IPPROTO_TCP;
4730 		f->fs.mask.proto = ~0;
4731 	}
4732 
4733 	f->fs.dirsteer = 1;
4734 	f->fs.iq = queue;
4735 	/* Mark filter as locked */
4736 	f->locked = 1;
4737 	f->fs.rpttid = 1;
4738 
4739 	ret = set_filter_wr(adap, stid);
4740 	if (ret) {
4741 		clear_filter(adap, f);
4742 		return ret;
4743 	}
4744 
4745 	return 0;
4746 }
4747 EXPORT_SYMBOL(cxgb4_create_server_filter);
4748 
4749 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4750 		unsigned int queue, bool ipv6)
4751 {
4752 	int ret;
4753 	struct filter_entry *f;
4754 	struct adapter *adap;
4755 
4756 	adap = netdev2adap(dev);
4757 
4758 	/* Adjust stid to correct filter index */
4759 	stid -= adap->tids.sftid_base;
4760 	stid += adap->tids.nftids;
4761 
4762 	f = &adap->tids.ftid_tab[stid];
4763 	/* Unlock the filter */
4764 	f->locked = 0;
4765 
4766 	ret = delete_filter(adap, stid);
4767 	if (ret)
4768 		return ret;
4769 
4770 	return 0;
4771 }
4772 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4773 
4774 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4775 						struct rtnl_link_stats64 *ns)
4776 {
4777 	struct port_stats stats;
4778 	struct port_info *p = netdev_priv(dev);
4779 	struct adapter *adapter = p->adapter;
4780 
4781 	/* Block retrieving statistics during EEH error
4782 	 * recovery. Otherwise, the recovery might fail
4783 	 * and the PCI device will be removed permanently
4784 	 */
4785 	spin_lock(&adapter->stats_lock);
4786 	if (!netif_device_present(dev)) {
4787 		spin_unlock(&adapter->stats_lock);
4788 		return ns;
4789 	}
4790 	t4_get_port_stats(adapter, p->tx_chan, &stats);
4791 	spin_unlock(&adapter->stats_lock);
4792 
4793 	ns->tx_bytes   = stats.tx_octets;
4794 	ns->tx_packets = stats.tx_frames;
4795 	ns->rx_bytes   = stats.rx_octets;
4796 	ns->rx_packets = stats.rx_frames;
4797 	ns->multicast  = stats.rx_mcast_frames;
4798 
4799 	/* detailed rx_errors */
4800 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4801 			       stats.rx_runt;
4802 	ns->rx_over_errors   = 0;
4803 	ns->rx_crc_errors    = stats.rx_fcs_err;
4804 	ns->rx_frame_errors  = stats.rx_symbol_err;
4805 	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
4806 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
4807 			       stats.rx_trunc0 + stats.rx_trunc1 +
4808 			       stats.rx_trunc2 + stats.rx_trunc3;
4809 	ns->rx_missed_errors = 0;
4810 
4811 	/* detailed tx_errors */
4812 	ns->tx_aborted_errors   = 0;
4813 	ns->tx_carrier_errors   = 0;
4814 	ns->tx_fifo_errors      = 0;
4815 	ns->tx_heartbeat_errors = 0;
4816 	ns->tx_window_errors    = 0;
4817 
4818 	ns->tx_errors = stats.tx_error_frames;
4819 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4820 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4821 	return ns;
4822 }
4823 
4824 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4825 {
4826 	unsigned int mbox;
4827 	int ret = 0, prtad, devad;
4828 	struct port_info *pi = netdev_priv(dev);
4829 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4830 
4831 	switch (cmd) {
4832 	case SIOCGMIIPHY:
4833 		if (pi->mdio_addr < 0)
4834 			return -EOPNOTSUPP;
4835 		data->phy_id = pi->mdio_addr;
4836 		break;
4837 	case SIOCGMIIREG:
4838 	case SIOCSMIIREG:
4839 		if (mdio_phy_id_is_c45(data->phy_id)) {
4840 			prtad = mdio_phy_id_prtad(data->phy_id);
4841 			devad = mdio_phy_id_devad(data->phy_id);
4842 		} else if (data->phy_id < 32) {
4843 			prtad = data->phy_id;
4844 			devad = 0;
4845 			data->reg_num &= 0x1f;
4846 		} else
4847 			return -EINVAL;
4848 
4849 		mbox = pi->adapter->fn;
4850 		if (cmd == SIOCGMIIREG)
4851 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4852 					 data->reg_num, &data->val_out);
4853 		else
4854 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4855 					 data->reg_num, data->val_in);
4856 		break;
4857 	default:
4858 		return -EOPNOTSUPP;
4859 	}
4860 	return ret;
4861 }
4862 
4863 static void cxgb_set_rxmode(struct net_device *dev)
4864 {
4865 	/* unfortunately we can't return errors to the stack */
4866 	set_rxmode(dev, -1, false);
4867 }
4868 
4869 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4870 {
4871 	int ret;
4872 	struct port_info *pi = netdev_priv(dev);
4873 
4874 	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
4875 		return -EINVAL;
4876 	ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4877 			    -1, -1, -1, true);
4878 	if (!ret)
4879 		dev->mtu = new_mtu;
4880 	return ret;
4881 }
4882 
4883 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4884 {
4885 	int ret;
4886 	struct sockaddr *addr = p;
4887 	struct port_info *pi = netdev_priv(dev);
4888 
4889 	if (!is_valid_ether_addr(addr->sa_data))
4890 		return -EADDRNOTAVAIL;
4891 
4892 	ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4893 			    pi->xact_addr_filt, addr->sa_data, true, true);
4894 	if (ret < 0)
4895 		return ret;
4896 
4897 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4898 	pi->xact_addr_filt = ret;
4899 	return 0;
4900 }
4901 
4902 #ifdef CONFIG_NET_POLL_CONTROLLER
4903 static void cxgb_netpoll(struct net_device *dev)
4904 {
4905 	struct port_info *pi = netdev_priv(dev);
4906 	struct adapter *adap = pi->adapter;
4907 
4908 	if (adap->flags & USING_MSIX) {
4909 		int i;
4910 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4911 
4912 		for (i = pi->nqsets; i; i--, rx++)
4913 			t4_sge_intr_msix(0, &rx->rspq);
4914 	} else
4915 		t4_intr_handler(adap)(0, adap);
4916 }
4917 #endif
4918 
4919 static const struct net_device_ops cxgb4_netdev_ops = {
4920 	.ndo_open             = cxgb_open,
4921 	.ndo_stop             = cxgb_close,
4922 	.ndo_start_xmit       = t4_eth_xmit,
4923 	.ndo_select_queue     =	cxgb_select_queue,
4924 	.ndo_get_stats64      = cxgb_get_stats,
4925 	.ndo_set_rx_mode      = cxgb_set_rxmode,
4926 	.ndo_set_mac_address  = cxgb_set_mac_addr,
4927 	.ndo_set_features     = cxgb_set_features,
4928 	.ndo_validate_addr    = eth_validate_addr,
4929 	.ndo_do_ioctl         = cxgb_ioctl,
4930 	.ndo_change_mtu       = cxgb_change_mtu,
4931 #ifdef CONFIG_NET_POLL_CONTROLLER
4932 	.ndo_poll_controller  = cxgb_netpoll,
4933 #endif
4934 };
4935 
4936 void t4_fatal_err(struct adapter *adap)
4937 {
4938 	t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4939 	t4_intr_disable(adap);
4940 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4941 }
4942 
4943 /* Return the specified PCI-E Configuration Space register from our Physical
4944  * Function.  We try first via a Firmware LDST Command since we prefer to let
4945  * the firmware own all of these registers, but if that fails we go for it
4946  * directly ourselves.
4947  */
4948 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
4949 {
4950 	struct fw_ldst_cmd ldst_cmd;
4951 	u32 val;
4952 	int ret;
4953 
4954 	/* Construct and send the Firmware LDST Command to retrieve the
4955 	 * specified PCI-E Configuration Space register.
4956 	 */
4957 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
4958 	ldst_cmd.op_to_addrspace =
4959 		htonl(FW_CMD_OP(FW_LDST_CMD) |
4960 		      FW_CMD_REQUEST |
4961 		      FW_CMD_READ |
4962 		      FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
4963 	ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
4964 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS(1);
4965 	ldst_cmd.u.pcie.ctrl_to_fn =
4966 		(FW_LDST_CMD_LC | FW_LDST_CMD_FN(adap->fn));
4967 	ldst_cmd.u.pcie.r = reg;
4968 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
4969 			 &ldst_cmd);
4970 
4971 	/* If the LDST Command suucceeded, exctract the returned register
4972 	 * value.  Otherwise read it directly ourself.
4973 	 */
4974 	if (ret == 0)
4975 		val = ntohl(ldst_cmd.u.pcie.data[0]);
4976 	else
4977 		t4_hw_pci_read_cfg4(adap, reg, &val);
4978 
4979 	return val;
4980 }
4981 
4982 static void setup_memwin(struct adapter *adap)
4983 {
4984 	u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
4985 
4986 	if (is_t4(adap->params.chip)) {
4987 		u32 bar0;
4988 
4989 		/* Truncation intentional: we only read the bottom 32-bits of
4990 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
4991 		 * mechanism to read BAR0 instead of using
4992 		 * pci_resource_start() because we could be operating from
4993 		 * within a Virtual Machine which is trapping our accesses to
4994 		 * our Configuration Space and we need to set up the PCI-E
4995 		 * Memory Window decoders with the actual addresses which will
4996 		 * be coming across the PCI-E link.
4997 		 */
4998 		bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
4999 		bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
5000 		adap->t4_bar0 = bar0;
5001 
5002 		mem_win0_base = bar0 + MEMWIN0_BASE;
5003 		mem_win1_base = bar0 + MEMWIN1_BASE;
5004 		mem_win2_base = bar0 + MEMWIN2_BASE;
5005 		mem_win2_aperture = MEMWIN2_APERTURE;
5006 	} else {
5007 		/* For T5, only relative offset inside the PCIe BAR is passed */
5008 		mem_win0_base = MEMWIN0_BASE;
5009 		mem_win1_base = MEMWIN1_BASE;
5010 		mem_win2_base = MEMWIN2_BASE_T5;
5011 		mem_win2_aperture = MEMWIN2_APERTURE_T5;
5012 	}
5013 	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
5014 		     mem_win0_base | BIR(0) |
5015 		     WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
5016 	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
5017 		     mem_win1_base | BIR(0) |
5018 		     WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
5019 	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
5020 		     mem_win2_base | BIR(0) |
5021 		     WINDOW(ilog2(mem_win2_aperture) - 10));
5022 	t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
5023 }
5024 
5025 static void setup_memwin_rdma(struct adapter *adap)
5026 {
5027 	if (adap->vres.ocq.size) {
5028 		u32 start;
5029 		unsigned int sz_kb;
5030 
5031 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
5032 		start &= PCI_BASE_ADDRESS_MEM_MASK;
5033 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
5034 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
5035 		t4_write_reg(adap,
5036 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
5037 			     start | BIR(1) | WINDOW(ilog2(sz_kb)));
5038 		t4_write_reg(adap,
5039 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
5040 			     adap->vres.ocq.start);
5041 		t4_read_reg(adap,
5042 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
5043 	}
5044 }
5045 
5046 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
5047 {
5048 	u32 v;
5049 	int ret;
5050 
5051 	/* get device capabilities */
5052 	memset(c, 0, sizeof(*c));
5053 	c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5054 			       FW_CMD_REQUEST | FW_CMD_READ);
5055 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
5056 	ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
5057 	if (ret < 0)
5058 		return ret;
5059 
5060 	/* select capabilities we'll be using */
5061 	if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5062 		if (!vf_acls)
5063 			c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5064 		else
5065 			c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5066 	} else if (vf_acls) {
5067 		dev_err(adap->pdev_dev, "virtualization ACLs not supported");
5068 		return ret;
5069 	}
5070 	c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5071 			       FW_CMD_REQUEST | FW_CMD_WRITE);
5072 	ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
5073 	if (ret < 0)
5074 		return ret;
5075 
5076 	ret = t4_config_glbl_rss(adap, adap->fn,
5077 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5078 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5079 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
5080 	if (ret < 0)
5081 		return ret;
5082 
5083 	ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
5084 			  0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
5085 	if (ret < 0)
5086 		return ret;
5087 
5088 	t4_sge_init(adap);
5089 
5090 	/* tweak some settings */
5091 	t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
5092 	t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
5093 	t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
5094 	v = t4_read_reg(adap, TP_PIO_DATA);
5095 	t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
5096 
5097 	/* first 4 Tx modulation queues point to consecutive Tx channels */
5098 	adap->params.tp.tx_modq_map = 0xE4;
5099 	t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
5100 		     V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
5101 
5102 	/* associate each Tx modulation queue with consecutive Tx channels */
5103 	v = 0x84218421;
5104 	t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5105 			  &v, 1, A_TP_TX_SCHED_HDR);
5106 	t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5107 			  &v, 1, A_TP_TX_SCHED_FIFO);
5108 	t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
5109 			  &v, 1, A_TP_TX_SCHED_PCMD);
5110 
5111 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
5112 	if (is_offload(adap)) {
5113 		t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
5114 			     V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5115 			     V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5116 			     V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5117 			     V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5118 		t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
5119 			     V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5120 			     V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5121 			     V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
5122 			     V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
5123 	}
5124 
5125 	/* get basic stuff going */
5126 	return t4_early_init(adap, adap->fn);
5127 }
5128 
5129 /*
5130  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
5131  */
5132 #define MAX_ATIDS 8192U
5133 
5134 /*
5135  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5136  *
5137  * If the firmware we're dealing with has Configuration File support, then
5138  * we use that to perform all configuration
5139  */
5140 
5141 /*
5142  * Tweak configuration based on module parameters, etc.  Most of these have
5143  * defaults assigned to them by Firmware Configuration Files (if we're using
5144  * them) but need to be explicitly set if we're using hard-coded
5145  * initialization.  But even in the case of using Firmware Configuration
5146  * Files, we'd like to expose the ability to change these via module
5147  * parameters so these are essentially common tweaks/settings for
5148  * Configuration Files and hard-coded initialization ...
5149  */
5150 static int adap_init0_tweaks(struct adapter *adapter)
5151 {
5152 	/*
5153 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
5154 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
5155 	 * 64B Cache Line Size ...
5156 	 */
5157 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
5158 
5159 	/*
5160 	 * Process module parameters which affect early initialization.
5161 	 */
5162 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
5163 		dev_err(&adapter->pdev->dev,
5164 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
5165 			rx_dma_offset);
5166 		rx_dma_offset = 2;
5167 	}
5168 	t4_set_reg_field(adapter, SGE_CONTROL,
5169 			 PKTSHIFT_MASK,
5170 			 PKTSHIFT(rx_dma_offset));
5171 
5172 	/*
5173 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
5174 	 * adds the pseudo header itself.
5175 	 */
5176 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
5177 			       CSUM_HAS_PSEUDO_HDR, 0);
5178 
5179 	return 0;
5180 }
5181 
5182 /*
5183  * Attempt to initialize the adapter via a Firmware Configuration File.
5184  */
5185 static int adap_init0_config(struct adapter *adapter, int reset)
5186 {
5187 	struct fw_caps_config_cmd caps_cmd;
5188 	const struct firmware *cf;
5189 	unsigned long mtype = 0, maddr = 0;
5190 	u32 finiver, finicsum, cfcsum;
5191 	int ret;
5192 	int config_issued = 0;
5193 	char *fw_config_file, fw_config_file_path[256];
5194 	char *config_name = NULL;
5195 
5196 	/*
5197 	 * Reset device if necessary.
5198 	 */
5199 	if (reset) {
5200 		ret = t4_fw_reset(adapter, adapter->mbox,
5201 				  PIORSTMODE | PIORST);
5202 		if (ret < 0)
5203 			goto bye;
5204 	}
5205 
5206 	/*
5207 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
5208 	 * then use that.  Otherwise, use the configuration file stored
5209 	 * in the adapter flash ...
5210 	 */
5211 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
5212 	case CHELSIO_T4:
5213 		fw_config_file = FW4_CFNAME;
5214 		break;
5215 	case CHELSIO_T5:
5216 		fw_config_file = FW5_CFNAME;
5217 		break;
5218 	default:
5219 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
5220 		       adapter->pdev->device);
5221 		ret = -EINVAL;
5222 		goto bye;
5223 	}
5224 
5225 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
5226 	if (ret < 0) {
5227 		config_name = "On FLASH";
5228 		mtype = FW_MEMTYPE_CF_FLASH;
5229 		maddr = t4_flash_cfg_addr(adapter);
5230 	} else {
5231 		u32 params[7], val[7];
5232 
5233 		sprintf(fw_config_file_path,
5234 			"/lib/firmware/%s", fw_config_file);
5235 		config_name = fw_config_file_path;
5236 
5237 		if (cf->size >= FLASH_CFG_MAX_SIZE)
5238 			ret = -ENOMEM;
5239 		else {
5240 			params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5241 			     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5242 			ret = t4_query_params(adapter, adapter->mbox,
5243 					      adapter->fn, 0, 1, params, val);
5244 			if (ret == 0) {
5245 				/*
5246 				 * For t4_memory_rw() below addresses and
5247 				 * sizes have to be in terms of multiples of 4
5248 				 * bytes.  So, if the Configuration File isn't
5249 				 * a multiple of 4 bytes in length we'll have
5250 				 * to write that out separately since we can't
5251 				 * guarantee that the bytes following the
5252 				 * residual byte in the buffer returned by
5253 				 * request_firmware() are zeroed out ...
5254 				 */
5255 				size_t resid = cf->size & 0x3;
5256 				size_t size = cf->size & ~0x3;
5257 				__be32 *data = (__be32 *)cf->data;
5258 
5259 				mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
5260 				maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
5261 
5262 				spin_lock(&adapter->win0_lock);
5263 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
5264 						   size, data, T4_MEMORY_WRITE);
5265 				if (ret == 0 && resid != 0) {
5266 					union {
5267 						__be32 word;
5268 						char buf[4];
5269 					} last;
5270 					int i;
5271 
5272 					last.word = data[size >> 2];
5273 					for (i = resid; i < 4; i++)
5274 						last.buf[i] = 0;
5275 					ret = t4_memory_rw(adapter, 0, mtype,
5276 							   maddr + size,
5277 							   4, &last.word,
5278 							   T4_MEMORY_WRITE);
5279 				}
5280 				spin_unlock(&adapter->win0_lock);
5281 			}
5282 		}
5283 
5284 		release_firmware(cf);
5285 		if (ret)
5286 			goto bye;
5287 	}
5288 
5289 	/*
5290 	 * Issue a Capability Configuration command to the firmware to get it
5291 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
5292 	 * because we want the ability to modify various features after we've
5293 	 * processed the configuration file ...
5294 	 */
5295 	memset(&caps_cmd, 0, sizeof(caps_cmd));
5296 	caps_cmd.op_to_write =
5297 		htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5298 		      FW_CMD_REQUEST |
5299 		      FW_CMD_READ);
5300 	caps_cmd.cfvalid_to_len16 =
5301 		htonl(FW_CAPS_CONFIG_CMD_CFVALID |
5302 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
5303 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
5304 		      FW_LEN16(caps_cmd));
5305 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5306 			 &caps_cmd);
5307 
5308 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
5309 	 * Configuration File in FLASH), our last gasp effort is to use the
5310 	 * Firmware Configuration File which is embedded in the firmware.  A
5311 	 * very few early versions of the firmware didn't have one embedded
5312 	 * but we can ignore those.
5313 	 */
5314 	if (ret == -ENOENT) {
5315 		memset(&caps_cmd, 0, sizeof(caps_cmd));
5316 		caps_cmd.op_to_write =
5317 			htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5318 					FW_CMD_REQUEST |
5319 					FW_CMD_READ);
5320 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5321 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
5322 				sizeof(caps_cmd), &caps_cmd);
5323 		config_name = "Firmware Default";
5324 	}
5325 
5326 	config_issued = 1;
5327 	if (ret < 0)
5328 		goto bye;
5329 
5330 	finiver = ntohl(caps_cmd.finiver);
5331 	finicsum = ntohl(caps_cmd.finicsum);
5332 	cfcsum = ntohl(caps_cmd.cfcsum);
5333 	if (finicsum != cfcsum)
5334 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
5335 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
5336 			 finicsum, cfcsum);
5337 
5338 	/*
5339 	 * And now tell the firmware to use the configuration we just loaded.
5340 	 */
5341 	caps_cmd.op_to_write =
5342 		htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5343 		      FW_CMD_REQUEST |
5344 		      FW_CMD_WRITE);
5345 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5346 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5347 			 NULL);
5348 	if (ret < 0)
5349 		goto bye;
5350 
5351 	/*
5352 	 * Tweak configuration based on system architecture, module
5353 	 * parameters, etc.
5354 	 */
5355 	ret = adap_init0_tweaks(adapter);
5356 	if (ret < 0)
5357 		goto bye;
5358 
5359 	/*
5360 	 * And finally tell the firmware to initialize itself using the
5361 	 * parameters from the Configuration File.
5362 	 */
5363 	ret = t4_fw_initialize(adapter, adapter->mbox);
5364 	if (ret < 0)
5365 		goto bye;
5366 
5367 	/*
5368 	 * Return successfully and note that we're operating with parameters
5369 	 * not supplied by the driver, rather than from hard-wired
5370 	 * initialization constants burried in the driver.
5371 	 */
5372 	adapter->flags |= USING_SOFT_PARAMS;
5373 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
5374 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
5375 		 config_name, finiver, cfcsum);
5376 	return 0;
5377 
5378 	/*
5379 	 * Something bad happened.  Return the error ...  (If the "error"
5380 	 * is that there's no Configuration File on the adapter we don't
5381 	 * want to issue a warning since this is fairly common.)
5382 	 */
5383 bye:
5384 	if (config_issued && ret != -ENOENT)
5385 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5386 			 config_name, -ret);
5387 	return ret;
5388 }
5389 
5390 /*
5391  * Attempt to initialize the adapter via hard-coded, driver supplied
5392  * parameters ...
5393  */
5394 static int adap_init0_no_config(struct adapter *adapter, int reset)
5395 {
5396 	struct sge *s = &adapter->sge;
5397 	struct fw_caps_config_cmd caps_cmd;
5398 	u32 v;
5399 	int i, ret;
5400 
5401 	/*
5402 	 * Reset device if necessary
5403 	 */
5404 	if (reset) {
5405 		ret = t4_fw_reset(adapter, adapter->mbox,
5406 				  PIORSTMODE | PIORST);
5407 		if (ret < 0)
5408 			goto bye;
5409 	}
5410 
5411 	/*
5412 	 * Get device capabilities and select which we'll be using.
5413 	 */
5414 	memset(&caps_cmd, 0, sizeof(caps_cmd));
5415 	caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5416 				     FW_CMD_REQUEST | FW_CMD_READ);
5417 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5418 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5419 			 &caps_cmd);
5420 	if (ret < 0)
5421 		goto bye;
5422 
5423 	if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5424 		if (!vf_acls)
5425 			caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5426 		else
5427 			caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5428 	} else if (vf_acls) {
5429 		dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5430 		goto bye;
5431 	}
5432 	caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5433 			      FW_CMD_REQUEST | FW_CMD_WRITE);
5434 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5435 			 NULL);
5436 	if (ret < 0)
5437 		goto bye;
5438 
5439 	/*
5440 	 * Tweak configuration based on system architecture, module
5441 	 * parameters, etc.
5442 	 */
5443 	ret = adap_init0_tweaks(adapter);
5444 	if (ret < 0)
5445 		goto bye;
5446 
5447 	/*
5448 	 * Select RSS Global Mode we want to use.  We use "Basic Virtual"
5449 	 * mode which maps each Virtual Interface to its own section of
5450 	 * the RSS Table and we turn on all map and hash enables ...
5451 	 */
5452 	adapter->flags |= RSS_TNLALLLOOKUP;
5453 	ret = t4_config_glbl_rss(adapter, adapter->mbox,
5454 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5455 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5456 				 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5457 				 ((adapter->flags & RSS_TNLALLLOOKUP) ?
5458 					FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5459 	if (ret < 0)
5460 		goto bye;
5461 
5462 	/*
5463 	 * Set up our own fundamental resource provisioning ...
5464 	 */
5465 	ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5466 			  PFRES_NEQ, PFRES_NETHCTRL,
5467 			  PFRES_NIQFLINT, PFRES_NIQ,
5468 			  PFRES_TC, PFRES_NVI,
5469 			  FW_PFVF_CMD_CMASK_MASK,
5470 			  pfvfres_pmask(adapter, adapter->fn, 0),
5471 			  PFRES_NEXACTF,
5472 			  PFRES_R_CAPS, PFRES_WX_CAPS);
5473 	if (ret < 0)
5474 		goto bye;
5475 
5476 	/*
5477 	 * Perform low level SGE initialization.  We need to do this before we
5478 	 * send the firmware the INITIALIZE command because that will cause
5479 	 * any other PF Drivers which are waiting for the Master
5480 	 * Initialization to proceed forward.
5481 	 */
5482 	for (i = 0; i < SGE_NTIMERS - 1; i++)
5483 		s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5484 	s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5485 	s->counter_val[0] = 1;
5486 	for (i = 1; i < SGE_NCOUNTERS; i++)
5487 		s->counter_val[i] = min(intr_cnt[i - 1],
5488 					THRESHOLD_0_GET(THRESHOLD_0_MASK));
5489 	t4_sge_init(adapter);
5490 
5491 #ifdef CONFIG_PCI_IOV
5492 	/*
5493 	 * Provision resource limits for Virtual Functions.  We currently
5494 	 * grant them all the same static resource limits except for the Port
5495 	 * Access Rights Mask which we're assigning based on the PF.  All of
5496 	 * the static provisioning stuff for both the PF and VF really needs
5497 	 * to be managed in a persistent manner for each device which the
5498 	 * firmware controls.
5499 	 */
5500 	{
5501 		int pf, vf;
5502 
5503 		for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
5504 			if (num_vf[pf] <= 0)
5505 				continue;
5506 
5507 			/* VF numbering starts at 1! */
5508 			for (vf = 1; vf <= num_vf[pf]; vf++) {
5509 				ret = t4_cfg_pfvf(adapter, adapter->mbox,
5510 						  pf, vf,
5511 						  VFRES_NEQ, VFRES_NETHCTRL,
5512 						  VFRES_NIQFLINT, VFRES_NIQ,
5513 						  VFRES_TC, VFRES_NVI,
5514 						  FW_PFVF_CMD_CMASK_MASK,
5515 						  pfvfres_pmask(
5516 						  adapter, pf, vf),
5517 						  VFRES_NEXACTF,
5518 						  VFRES_R_CAPS, VFRES_WX_CAPS);
5519 				if (ret < 0)
5520 					dev_warn(adapter->pdev_dev,
5521 						 "failed to "\
5522 						 "provision pf/vf=%d/%d; "
5523 						 "err=%d\n", pf, vf, ret);
5524 			}
5525 		}
5526 	}
5527 #endif
5528 
5529 	/*
5530 	 * Set up the default filter mode.  Later we'll want to implement this
5531 	 * via a firmware command, etc. ...  This needs to be done before the
5532 	 * firmare initialization command ...  If the selected set of fields
5533 	 * isn't equal to the default value, we'll need to make sure that the
5534 	 * field selections will fit in the 36-bit budget.
5535 	 */
5536 	if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
5537 		int j, bits = 0;
5538 
5539 		for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5540 			switch (tp_vlan_pri_map & (1 << j)) {
5541 			case 0:
5542 				/* compressed filter field not enabled */
5543 				break;
5544 			case FCOE_MASK:
5545 				bits +=  1;
5546 				break;
5547 			case PORT_MASK:
5548 				bits +=  3;
5549 				break;
5550 			case VNIC_ID_MASK:
5551 				bits += 17;
5552 				break;
5553 			case VLAN_MASK:
5554 				bits += 17;
5555 				break;
5556 			case TOS_MASK:
5557 				bits +=  8;
5558 				break;
5559 			case PROTOCOL_MASK:
5560 				bits +=  8;
5561 				break;
5562 			case ETHERTYPE_MASK:
5563 				bits += 16;
5564 				break;
5565 			case MACMATCH_MASK:
5566 				bits +=  9;
5567 				break;
5568 			case MPSHITTYPE_MASK:
5569 				bits +=  3;
5570 				break;
5571 			case FRAGMENTATION_MASK:
5572 				bits +=  1;
5573 				break;
5574 			}
5575 
5576 		if (bits > 36) {
5577 			dev_err(adapter->pdev_dev,
5578 				"tp_vlan_pri_map=%#x needs %d bits > 36;"\
5579 				" using %#x\n", tp_vlan_pri_map, bits,
5580 				TP_VLAN_PRI_MAP_DEFAULT);
5581 			tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5582 		}
5583 	}
5584 	v = tp_vlan_pri_map;
5585 	t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5586 			  &v, 1, TP_VLAN_PRI_MAP);
5587 
5588 	/*
5589 	 * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5590 	 * to support any of the compressed filter fields above.  Newer
5591 	 * versions of the firmware do this automatically but it doesn't hurt
5592 	 * to set it here.  Meanwhile, we do _not_ need to set Lookup Every
5593 	 * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5594 	 * since the firmware automatically turns this on and off when we have
5595 	 * a non-zero number of filters active (since it does have a
5596 	 * performance impact).
5597 	 */
5598 	if (tp_vlan_pri_map)
5599 		t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5600 				 FIVETUPLELOOKUP_MASK,
5601 				 FIVETUPLELOOKUP_MASK);
5602 
5603 	/*
5604 	 * Tweak some settings.
5605 	 */
5606 	t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5607 		     RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5608 		     PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5609 		     KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5610 
5611 	/*
5612 	 * Get basic stuff going by issuing the Firmware Initialize command.
5613 	 * Note that this _must_ be after all PFVF commands ...
5614 	 */
5615 	ret = t4_fw_initialize(adapter, adapter->mbox);
5616 	if (ret < 0)
5617 		goto bye;
5618 
5619 	/*
5620 	 * Return successfully!
5621 	 */
5622 	dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5623 		 "driver parameters\n");
5624 	return 0;
5625 
5626 	/*
5627 	 * Something bad happened.  Return the error ...
5628 	 */
5629 bye:
5630 	return ret;
5631 }
5632 
5633 static struct fw_info fw_info_array[] = {
5634 	{
5635 		.chip = CHELSIO_T4,
5636 		.fs_name = FW4_CFNAME,
5637 		.fw_mod_name = FW4_FNAME,
5638 		.fw_hdr = {
5639 			.chip = FW_HDR_CHIP_T4,
5640 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5641 			.intfver_nic = FW_INTFVER(T4, NIC),
5642 			.intfver_vnic = FW_INTFVER(T4, VNIC),
5643 			.intfver_ri = FW_INTFVER(T4, RI),
5644 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
5645 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
5646 		},
5647 	}, {
5648 		.chip = CHELSIO_T5,
5649 		.fs_name = FW5_CFNAME,
5650 		.fw_mod_name = FW5_FNAME,
5651 		.fw_hdr = {
5652 			.chip = FW_HDR_CHIP_T5,
5653 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5654 			.intfver_nic = FW_INTFVER(T5, NIC),
5655 			.intfver_vnic = FW_INTFVER(T5, VNIC),
5656 			.intfver_ri = FW_INTFVER(T5, RI),
5657 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
5658 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
5659 		},
5660 	}
5661 };
5662 
5663 static struct fw_info *find_fw_info(int chip)
5664 {
5665 	int i;
5666 
5667 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5668 		if (fw_info_array[i].chip == chip)
5669 			return &fw_info_array[i];
5670 	}
5671 	return NULL;
5672 }
5673 
5674 /*
5675  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5676  */
5677 static int adap_init0(struct adapter *adap)
5678 {
5679 	int ret;
5680 	u32 v, port_vec;
5681 	enum dev_state state;
5682 	u32 params[7], val[7];
5683 	struct fw_caps_config_cmd caps_cmd;
5684 	int reset = 1;
5685 
5686 	/*
5687 	 * Contact FW, advertising Master capability (and potentially forcing
5688 	 * ourselves as the Master PF if our module parameter force_init is
5689 	 * set).
5690 	 */
5691 	ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5692 			  force_init ? MASTER_MUST : MASTER_MAY,
5693 			  &state);
5694 	if (ret < 0) {
5695 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5696 			ret);
5697 		return ret;
5698 	}
5699 	if (ret == adap->mbox)
5700 		adap->flags |= MASTER_PF;
5701 	if (force_init && state == DEV_STATE_INIT)
5702 		state = DEV_STATE_UNINIT;
5703 
5704 	/*
5705 	 * If we're the Master PF Driver and the device is uninitialized,
5706 	 * then let's consider upgrading the firmware ...  (We always want
5707 	 * to check the firmware version number in order to A. get it for
5708 	 * later reporting and B. to warn if the currently loaded firmware
5709 	 * is excessively mismatched relative to the driver.)
5710 	 */
5711 	t4_get_fw_version(adap, &adap->params.fw_vers);
5712 	t4_get_tp_version(adap, &adap->params.tp_vers);
5713 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
5714 		struct fw_info *fw_info;
5715 		struct fw_hdr *card_fw;
5716 		const struct firmware *fw;
5717 		const u8 *fw_data = NULL;
5718 		unsigned int fw_size = 0;
5719 
5720 		/* This is the firmware whose headers the driver was compiled
5721 		 * against
5722 		 */
5723 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5724 		if (fw_info == NULL) {
5725 			dev_err(adap->pdev_dev,
5726 				"unable to get firmware info for chip %d.\n",
5727 				CHELSIO_CHIP_VERSION(adap->params.chip));
5728 			return -EINVAL;
5729 		}
5730 
5731 		/* allocate memory to read the header of the firmware on the
5732 		 * card
5733 		 */
5734 		card_fw = t4_alloc_mem(sizeof(*card_fw));
5735 
5736 		/* Get FW from from /lib/firmware/ */
5737 		ret = request_firmware(&fw, fw_info->fw_mod_name,
5738 				       adap->pdev_dev);
5739 		if (ret < 0) {
5740 			dev_err(adap->pdev_dev,
5741 				"unable to load firmware image %s, error %d\n",
5742 				fw_info->fw_mod_name, ret);
5743 		} else {
5744 			fw_data = fw->data;
5745 			fw_size = fw->size;
5746 		}
5747 
5748 		/* upgrade FW logic */
5749 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5750 				 state, &reset);
5751 
5752 		/* Cleaning up */
5753 		if (fw != NULL)
5754 			release_firmware(fw);
5755 		t4_free_mem(card_fw);
5756 
5757 		if (ret < 0)
5758 			goto bye;
5759 	}
5760 
5761 	/*
5762 	 * Grab VPD parameters.  This should be done after we establish a
5763 	 * connection to the firmware since some of the VPD parameters
5764 	 * (notably the Core Clock frequency) are retrieved via requests to
5765 	 * the firmware.  On the other hand, we need these fairly early on
5766 	 * so we do this right after getting ahold of the firmware.
5767 	 */
5768 	ret = get_vpd_params(adap, &adap->params.vpd);
5769 	if (ret < 0)
5770 		goto bye;
5771 
5772 	/*
5773 	 * Find out what ports are available to us.  Note that we need to do
5774 	 * this before calling adap_init0_no_config() since it needs nports
5775 	 * and portvec ...
5776 	 */
5777 	v =
5778 	    FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5779 	    FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5780 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
5781 	if (ret < 0)
5782 		goto bye;
5783 
5784 	adap->params.nports = hweight32(port_vec);
5785 	adap->params.portvec = port_vec;
5786 
5787 	/*
5788 	 * If the firmware is initialized already (and we're not forcing a
5789 	 * master initialization), note that we're living with existing
5790 	 * adapter parameters.  Otherwise, it's time to try initializing the
5791 	 * adapter ...
5792 	 */
5793 	if (state == DEV_STATE_INIT) {
5794 		dev_info(adap->pdev_dev, "Coming up as %s: "\
5795 			 "Adapter already initialized\n",
5796 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5797 		adap->flags |= USING_SOFT_PARAMS;
5798 	} else {
5799 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5800 			 "Initializing adapter\n");
5801 
5802 		/*
5803 		 * If the firmware doesn't support Configuration
5804 		 * Files warn user and exit,
5805 		 */
5806 		if (ret < 0)
5807 			dev_warn(adap->pdev_dev, "Firmware doesn't support "
5808 				 "configuration file.\n");
5809 		if (force_old_init)
5810 			ret = adap_init0_no_config(adap, reset);
5811 		else {
5812 			/*
5813 			 * Find out whether we're dealing with a version of
5814 			 * the firmware which has configuration file support.
5815 			 */
5816 			params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5817 				     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5818 			ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5819 					      params, val);
5820 
5821 			/*
5822 			 * If the firmware doesn't support Configuration
5823 			 * Files, use the old Driver-based, hard-wired
5824 			 * initialization.  Otherwise, try using the
5825 			 * Configuration File support and fall back to the
5826 			 * Driver-based initialization if there's no
5827 			 * Configuration File found.
5828 			 */
5829 			if (ret < 0)
5830 				ret = adap_init0_no_config(adap, reset);
5831 			else {
5832 				/*
5833 				 * The firmware provides us with a memory
5834 				 * buffer where we can load a Configuration
5835 				 * File from the host if we want to override
5836 				 * the Configuration File in flash.
5837 				 */
5838 
5839 				ret = adap_init0_config(adap, reset);
5840 				if (ret == -ENOENT) {
5841 					dev_info(adap->pdev_dev,
5842 					    "No Configuration File present "
5843 					    "on adapter. Using hard-wired "
5844 					    "configuration parameters.\n");
5845 					ret = adap_init0_no_config(adap, reset);
5846 				}
5847 			}
5848 		}
5849 		if (ret < 0) {
5850 			dev_err(adap->pdev_dev,
5851 				"could not initialize adapter, error %d\n",
5852 				-ret);
5853 			goto bye;
5854 		}
5855 	}
5856 
5857 	/*
5858 	 * If we're living with non-hard-coded parameters (either from a
5859 	 * Firmware Configuration File or values programmed by a different PF
5860 	 * Driver), give the SGE code a chance to pull in anything that it
5861 	 * needs ...  Note that this must be called after we retrieve our VPD
5862 	 * parameters in order to know how to convert core ticks to seconds.
5863 	 */
5864 	if (adap->flags & USING_SOFT_PARAMS) {
5865 		ret = t4_sge_init(adap);
5866 		if (ret < 0)
5867 			goto bye;
5868 	}
5869 
5870 	if (is_bypass_device(adap->pdev->device))
5871 		adap->params.bypass = 1;
5872 
5873 	/*
5874 	 * Grab some of our basic fundamental operating parameters.
5875 	 */
5876 #define FW_PARAM_DEV(param) \
5877 	(FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5878 	FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5879 
5880 #define FW_PARAM_PFVF(param) \
5881 	FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5882 	FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)|  \
5883 	FW_PARAMS_PARAM_Y(0) | \
5884 	FW_PARAMS_PARAM_Z(0)
5885 
5886 	params[0] = FW_PARAM_PFVF(EQ_START);
5887 	params[1] = FW_PARAM_PFVF(L2T_START);
5888 	params[2] = FW_PARAM_PFVF(L2T_END);
5889 	params[3] = FW_PARAM_PFVF(FILTER_START);
5890 	params[4] = FW_PARAM_PFVF(FILTER_END);
5891 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
5892 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5893 	if (ret < 0)
5894 		goto bye;
5895 	adap->sge.egr_start = val[0];
5896 	adap->l2t_start = val[1];
5897 	adap->l2t_end = val[2];
5898 	adap->tids.ftid_base = val[3];
5899 	adap->tids.nftids = val[4] - val[3] + 1;
5900 	adap->sge.ingr_start = val[5];
5901 
5902 	/* query params related to active filter region */
5903 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5904 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5905 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5906 	/* If Active filter size is set we enable establishing
5907 	 * offload connection through firmware work request
5908 	 */
5909 	if ((val[0] != val[1]) && (ret >= 0)) {
5910 		adap->flags |= FW_OFLD_CONN;
5911 		adap->tids.aftid_base = val[0];
5912 		adap->tids.aftid_end = val[1];
5913 	}
5914 
5915 	/* If we're running on newer firmware, let it know that we're
5916 	 * prepared to deal with encapsulated CPL messages.  Older
5917 	 * firmware won't understand this and we'll just get
5918 	 * unencapsulated messages ...
5919 	 */
5920 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5921 	val[0] = 1;
5922 	(void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5923 
5924 	/*
5925 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5926 	 * capability.  Earlier versions of the firmware didn't have the
5927 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5928 	 * permission to use ULPTX MEMWRITE DSGL.
5929 	 */
5930 	if (is_t4(adap->params.chip)) {
5931 		adap->params.ulptx_memwrite_dsgl = false;
5932 	} else {
5933 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5934 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5935 				      1, params, val);
5936 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5937 	}
5938 
5939 	/*
5940 	 * Get device capabilities so we can determine what resources we need
5941 	 * to manage.
5942 	 */
5943 	memset(&caps_cmd, 0, sizeof(caps_cmd));
5944 	caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5945 				     FW_CMD_REQUEST | FW_CMD_READ);
5946 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5947 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5948 			 &caps_cmd);
5949 	if (ret < 0)
5950 		goto bye;
5951 
5952 	if (caps_cmd.ofldcaps) {
5953 		/* query offload-related parameters */
5954 		params[0] = FW_PARAM_DEV(NTID);
5955 		params[1] = FW_PARAM_PFVF(SERVER_START);
5956 		params[2] = FW_PARAM_PFVF(SERVER_END);
5957 		params[3] = FW_PARAM_PFVF(TDDP_START);
5958 		params[4] = FW_PARAM_PFVF(TDDP_END);
5959 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5960 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5961 				      params, val);
5962 		if (ret < 0)
5963 			goto bye;
5964 		adap->tids.ntids = val[0];
5965 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5966 		adap->tids.stid_base = val[1];
5967 		adap->tids.nstids = val[2] - val[1] + 1;
5968 		/*
5969 		 * Setup server filter region. Divide the availble filter
5970 		 * region into two parts. Regular filters get 1/3rd and server
5971 		 * filters get 2/3rd part. This is only enabled if workarond
5972 		 * path is enabled.
5973 		 * 1. For regular filters.
5974 		 * 2. Server filter: This are special filters which are used
5975 		 * to redirect SYN packets to offload queue.
5976 		 */
5977 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5978 			adap->tids.sftid_base = adap->tids.ftid_base +
5979 					DIV_ROUND_UP(adap->tids.nftids, 3);
5980 			adap->tids.nsftids = adap->tids.nftids -
5981 					 DIV_ROUND_UP(adap->tids.nftids, 3);
5982 			adap->tids.nftids = adap->tids.sftid_base -
5983 						adap->tids.ftid_base;
5984 		}
5985 		adap->vres.ddp.start = val[3];
5986 		adap->vres.ddp.size = val[4] - val[3] + 1;
5987 		adap->params.ofldq_wr_cred = val[5];
5988 
5989 		adap->params.offload = 1;
5990 	}
5991 	if (caps_cmd.rdmacaps) {
5992 		params[0] = FW_PARAM_PFVF(STAG_START);
5993 		params[1] = FW_PARAM_PFVF(STAG_END);
5994 		params[2] = FW_PARAM_PFVF(RQ_START);
5995 		params[3] = FW_PARAM_PFVF(RQ_END);
5996 		params[4] = FW_PARAM_PFVF(PBL_START);
5997 		params[5] = FW_PARAM_PFVF(PBL_END);
5998 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5999 				      params, val);
6000 		if (ret < 0)
6001 			goto bye;
6002 		adap->vres.stag.start = val[0];
6003 		adap->vres.stag.size = val[1] - val[0] + 1;
6004 		adap->vres.rq.start = val[2];
6005 		adap->vres.rq.size = val[3] - val[2] + 1;
6006 		adap->vres.pbl.start = val[4];
6007 		adap->vres.pbl.size = val[5] - val[4] + 1;
6008 
6009 		params[0] = FW_PARAM_PFVF(SQRQ_START);
6010 		params[1] = FW_PARAM_PFVF(SQRQ_END);
6011 		params[2] = FW_PARAM_PFVF(CQ_START);
6012 		params[3] = FW_PARAM_PFVF(CQ_END);
6013 		params[4] = FW_PARAM_PFVF(OCQ_START);
6014 		params[5] = FW_PARAM_PFVF(OCQ_END);
6015 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
6016 				      val);
6017 		if (ret < 0)
6018 			goto bye;
6019 		adap->vres.qp.start = val[0];
6020 		adap->vres.qp.size = val[1] - val[0] + 1;
6021 		adap->vres.cq.start = val[2];
6022 		adap->vres.cq.size = val[3] - val[2] + 1;
6023 		adap->vres.ocq.start = val[4];
6024 		adap->vres.ocq.size = val[5] - val[4] + 1;
6025 
6026 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
6027 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
6028 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
6029 				      val);
6030 		if (ret < 0) {
6031 			adap->params.max_ordird_qp = 8;
6032 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
6033 			ret = 0;
6034 		} else {
6035 			adap->params.max_ordird_qp = val[0];
6036 			adap->params.max_ird_adapter = val[1];
6037 		}
6038 		dev_info(adap->pdev_dev,
6039 			 "max_ordird_qp %d max_ird_adapter %d\n",
6040 			 adap->params.max_ordird_qp,
6041 			 adap->params.max_ird_adapter);
6042 	}
6043 	if (caps_cmd.iscsicaps) {
6044 		params[0] = FW_PARAM_PFVF(ISCSI_START);
6045 		params[1] = FW_PARAM_PFVF(ISCSI_END);
6046 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
6047 				      params, val);
6048 		if (ret < 0)
6049 			goto bye;
6050 		adap->vres.iscsi.start = val[0];
6051 		adap->vres.iscsi.size = val[1] - val[0] + 1;
6052 	}
6053 #undef FW_PARAM_PFVF
6054 #undef FW_PARAM_DEV
6055 
6056 	/* The MTU/MSS Table is initialized by now, so load their values.  If
6057 	 * we're initializing the adapter, then we'll make any modifications
6058 	 * we want to the MTU/MSS Table and also initialize the congestion
6059 	 * parameters.
6060 	 */
6061 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
6062 	if (state != DEV_STATE_INIT) {
6063 		int i;
6064 
6065 		/* The default MTU Table contains values 1492 and 1500.
6066 		 * However, for TCP, it's better to have two values which are
6067 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
6068 		 * This allows us to have a TCP Data Payload which is a
6069 		 * multiple of 8 regardless of what combination of TCP Options
6070 		 * are in use (always a multiple of 4 bytes) which is
6071 		 * important for performance reasons.  For instance, if no
6072 		 * options are in use, then we have a 20-byte IP header and a
6073 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
6074 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
6075 		 * which is not a multiple of 8.  So using an MSS of 1488 in
6076 		 * this case results in a TCP Data Payload of 1448 bytes which
6077 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
6078 		 * Stamps have been negotiated, then an MTU of 1500 bytes
6079 		 * results in a TCP Data Payload of 1448 bytes which, as
6080 		 * above, is a multiple of 8 bytes ...
6081 		 */
6082 		for (i = 0; i < NMTUS; i++)
6083 			if (adap->params.mtus[i] == 1492) {
6084 				adap->params.mtus[i] = 1488;
6085 				break;
6086 			}
6087 
6088 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6089 			     adap->params.b_wnd);
6090 	}
6091 	t4_init_tp_params(adap);
6092 	adap->flags |= FW_OK;
6093 	return 0;
6094 
6095 	/*
6096 	 * Something bad happened.  If a command timed out or failed with EIO
6097 	 * FW does not operate within its spec or something catastrophic
6098 	 * happened to HW/FW, stop issuing commands.
6099 	 */
6100 bye:
6101 	if (ret != -ETIMEDOUT && ret != -EIO)
6102 		t4_fw_bye(adap, adap->mbox);
6103 	return ret;
6104 }
6105 
6106 /* EEH callbacks */
6107 
6108 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
6109 					 pci_channel_state_t state)
6110 {
6111 	int i;
6112 	struct adapter *adap = pci_get_drvdata(pdev);
6113 
6114 	if (!adap)
6115 		goto out;
6116 
6117 	rtnl_lock();
6118 	adap->flags &= ~FW_OK;
6119 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
6120 	spin_lock(&adap->stats_lock);
6121 	for_each_port(adap, i) {
6122 		struct net_device *dev = adap->port[i];
6123 
6124 		netif_device_detach(dev);
6125 		netif_carrier_off(dev);
6126 	}
6127 	spin_unlock(&adap->stats_lock);
6128 	if (adap->flags & FULL_INIT_DONE)
6129 		cxgb_down(adap);
6130 	rtnl_unlock();
6131 	if ((adap->flags & DEV_ENABLED)) {
6132 		pci_disable_device(pdev);
6133 		adap->flags &= ~DEV_ENABLED;
6134 	}
6135 out:	return state == pci_channel_io_perm_failure ?
6136 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
6137 }
6138 
6139 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
6140 {
6141 	int i, ret;
6142 	struct fw_caps_config_cmd c;
6143 	struct adapter *adap = pci_get_drvdata(pdev);
6144 
6145 	if (!adap) {
6146 		pci_restore_state(pdev);
6147 		pci_save_state(pdev);
6148 		return PCI_ERS_RESULT_RECOVERED;
6149 	}
6150 
6151 	if (!(adap->flags & DEV_ENABLED)) {
6152 		if (pci_enable_device(pdev)) {
6153 			dev_err(&pdev->dev, "Cannot reenable PCI "
6154 					    "device after reset\n");
6155 			return PCI_ERS_RESULT_DISCONNECT;
6156 		}
6157 		adap->flags |= DEV_ENABLED;
6158 	}
6159 
6160 	pci_set_master(pdev);
6161 	pci_restore_state(pdev);
6162 	pci_save_state(pdev);
6163 	pci_cleanup_aer_uncorrect_error_status(pdev);
6164 
6165 	if (t4_wait_dev_ready(adap->regs) < 0)
6166 		return PCI_ERS_RESULT_DISCONNECT;
6167 	if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
6168 		return PCI_ERS_RESULT_DISCONNECT;
6169 	adap->flags |= FW_OK;
6170 	if (adap_init1(adap, &c))
6171 		return PCI_ERS_RESULT_DISCONNECT;
6172 
6173 	for_each_port(adap, i) {
6174 		struct port_info *p = adap2pinfo(adap, i);
6175 
6176 		ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
6177 				  NULL, NULL);
6178 		if (ret < 0)
6179 			return PCI_ERS_RESULT_DISCONNECT;
6180 		p->viid = ret;
6181 		p->xact_addr_filt = -1;
6182 	}
6183 
6184 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
6185 		     adap->params.b_wnd);
6186 	setup_memwin(adap);
6187 	if (cxgb_up(adap))
6188 		return PCI_ERS_RESULT_DISCONNECT;
6189 	return PCI_ERS_RESULT_RECOVERED;
6190 }
6191 
6192 static void eeh_resume(struct pci_dev *pdev)
6193 {
6194 	int i;
6195 	struct adapter *adap = pci_get_drvdata(pdev);
6196 
6197 	if (!adap)
6198 		return;
6199 
6200 	rtnl_lock();
6201 	for_each_port(adap, i) {
6202 		struct net_device *dev = adap->port[i];
6203 
6204 		if (netif_running(dev)) {
6205 			link_start(dev);
6206 			cxgb_set_rxmode(dev);
6207 		}
6208 		netif_device_attach(dev);
6209 	}
6210 	rtnl_unlock();
6211 }
6212 
6213 static const struct pci_error_handlers cxgb4_eeh = {
6214 	.error_detected = eeh_err_detected,
6215 	.slot_reset     = eeh_slot_reset,
6216 	.resume         = eeh_resume,
6217 };
6218 
6219 static inline bool is_x_10g_port(const struct link_config *lc)
6220 {
6221 	return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
6222 	       (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
6223 }
6224 
6225 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
6226 			     unsigned int us, unsigned int cnt,
6227 			     unsigned int size, unsigned int iqe_size)
6228 {
6229 	q->adap = adap;
6230 	set_rspq_intr_params(q, us, cnt);
6231 	q->iqe_len = iqe_size;
6232 	q->size = size;
6233 }
6234 
6235 /*
6236  * Perform default configuration of DMA queues depending on the number and type
6237  * of ports we found and the number of available CPUs.  Most settings can be
6238  * modified by the admin prior to actual use.
6239  */
6240 static void cfg_queues(struct adapter *adap)
6241 {
6242 	struct sge *s = &adap->sge;
6243 	int i, n10g = 0, qidx = 0;
6244 #ifndef CONFIG_CHELSIO_T4_DCB
6245 	int q10g = 0;
6246 #endif
6247 	int ciq_size;
6248 
6249 	for_each_port(adap, i)
6250 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
6251 #ifdef CONFIG_CHELSIO_T4_DCB
6252 	/* For Data Center Bridging support we need to be able to support up
6253 	 * to 8 Traffic Priorities; each of which will be assigned to its
6254 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
6255 	 */
6256 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
6257 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
6258 			MAX_ETH_QSETS, adap->params.nports * 8);
6259 		BUG_ON(1);
6260 	}
6261 
6262 	for_each_port(adap, i) {
6263 		struct port_info *pi = adap2pinfo(adap, i);
6264 
6265 		pi->first_qset = qidx;
6266 		pi->nqsets = 8;
6267 		qidx += pi->nqsets;
6268 	}
6269 #else /* !CONFIG_CHELSIO_T4_DCB */
6270 	/*
6271 	 * We default to 1 queue per non-10G port and up to # of cores queues
6272 	 * per 10G port.
6273 	 */
6274 	if (n10g)
6275 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
6276 	if (q10g > netif_get_num_default_rss_queues())
6277 		q10g = netif_get_num_default_rss_queues();
6278 
6279 	for_each_port(adap, i) {
6280 		struct port_info *pi = adap2pinfo(adap, i);
6281 
6282 		pi->first_qset = qidx;
6283 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
6284 		qidx += pi->nqsets;
6285 	}
6286 #endif /* !CONFIG_CHELSIO_T4_DCB */
6287 
6288 	s->ethqsets = qidx;
6289 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
6290 
6291 	if (is_offload(adap)) {
6292 		/*
6293 		 * For offload we use 1 queue/channel if all ports are up to 1G,
6294 		 * otherwise we divide all available queues amongst the channels
6295 		 * capped by the number of available cores.
6296 		 */
6297 		if (n10g) {
6298 			i = min_t(int, ARRAY_SIZE(s->ofldrxq),
6299 				  num_online_cpus());
6300 			s->ofldqsets = roundup(i, adap->params.nports);
6301 		} else
6302 			s->ofldqsets = adap->params.nports;
6303 		/* For RDMA one Rx queue per channel suffices */
6304 		s->rdmaqs = adap->params.nports;
6305 		s->rdmaciqs = adap->params.nports;
6306 	}
6307 
6308 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
6309 		struct sge_eth_rxq *r = &s->ethrxq[i];
6310 
6311 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
6312 		r->fl.size = 72;
6313 	}
6314 
6315 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
6316 		s->ethtxq[i].q.size = 1024;
6317 
6318 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
6319 		s->ctrlq[i].q.size = 512;
6320 
6321 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
6322 		s->ofldtxq[i].q.size = 1024;
6323 
6324 	for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
6325 		struct sge_ofld_rxq *r = &s->ofldrxq[i];
6326 
6327 		init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
6328 		r->rspq.uld = CXGB4_ULD_ISCSI;
6329 		r->fl.size = 72;
6330 	}
6331 
6332 	for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
6333 		struct sge_ofld_rxq *r = &s->rdmarxq[i];
6334 
6335 		init_rspq(adap, &r->rspq, 5, 1, 511, 64);
6336 		r->rspq.uld = CXGB4_ULD_RDMA;
6337 		r->fl.size = 72;
6338 	}
6339 
6340 	ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
6341 	if (ciq_size > SGE_MAX_IQ_SIZE) {
6342 		CH_WARN(adap, "CIQ size too small for available IQs\n");
6343 		ciq_size = SGE_MAX_IQ_SIZE;
6344 	}
6345 
6346 	for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
6347 		struct sge_ofld_rxq *r = &s->rdmaciq[i];
6348 
6349 		init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
6350 		r->rspq.uld = CXGB4_ULD_RDMA;
6351 	}
6352 
6353 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
6354 	init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
6355 }
6356 
6357 /*
6358  * Reduce the number of Ethernet queues across all ports to at most n.
6359  * n provides at least one queue per port.
6360  */
6361 static void reduce_ethqs(struct adapter *adap, int n)
6362 {
6363 	int i;
6364 	struct port_info *pi;
6365 
6366 	while (n < adap->sge.ethqsets)
6367 		for_each_port(adap, i) {
6368 			pi = adap2pinfo(adap, i);
6369 			if (pi->nqsets > 1) {
6370 				pi->nqsets--;
6371 				adap->sge.ethqsets--;
6372 				if (adap->sge.ethqsets <= n)
6373 					break;
6374 			}
6375 		}
6376 
6377 	n = 0;
6378 	for_each_port(adap, i) {
6379 		pi = adap2pinfo(adap, i);
6380 		pi->first_qset = n;
6381 		n += pi->nqsets;
6382 	}
6383 }
6384 
6385 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
6386 #define EXTRA_VECS 2
6387 
6388 static int enable_msix(struct adapter *adap)
6389 {
6390 	int ofld_need = 0;
6391 	int i, want, need;
6392 	struct sge *s = &adap->sge;
6393 	unsigned int nchan = adap->params.nports;
6394 	struct msix_entry entries[MAX_INGQ + 1];
6395 
6396 	for (i = 0; i < ARRAY_SIZE(entries); ++i)
6397 		entries[i].entry = i;
6398 
6399 	want = s->max_ethqsets + EXTRA_VECS;
6400 	if (is_offload(adap)) {
6401 		want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
6402 		/* need nchan for each possible ULD */
6403 		ofld_need = 3 * nchan;
6404 	}
6405 #ifdef CONFIG_CHELSIO_T4_DCB
6406 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
6407 	 * each port.
6408 	 */
6409 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
6410 #else
6411 	need = adap->params.nports + EXTRA_VECS + ofld_need;
6412 #endif
6413 	want = pci_enable_msix_range(adap->pdev, entries, need, want);
6414 	if (want < 0)
6415 		return want;
6416 
6417 	/*
6418 	 * Distribute available vectors to the various queue groups.
6419 	 * Every group gets its minimum requirement and NIC gets top
6420 	 * priority for leftovers.
6421 	 */
6422 	i = want - EXTRA_VECS - ofld_need;
6423 	if (i < s->max_ethqsets) {
6424 		s->max_ethqsets = i;
6425 		if (i < s->ethqsets)
6426 			reduce_ethqs(adap, i);
6427 	}
6428 	if (is_offload(adap)) {
6429 		i = want - EXTRA_VECS - s->max_ethqsets;
6430 		i -= ofld_need - nchan;
6431 		s->ofldqsets = (i / nchan) * nchan;  /* round down */
6432 	}
6433 	for (i = 0; i < want; ++i)
6434 		adap->msix_info[i].vec = entries[i].vector;
6435 
6436 	return 0;
6437 }
6438 
6439 #undef EXTRA_VECS
6440 
6441 static int init_rss(struct adapter *adap)
6442 {
6443 	unsigned int i, j;
6444 
6445 	for_each_port(adap, i) {
6446 		struct port_info *pi = adap2pinfo(adap, i);
6447 
6448 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6449 		if (!pi->rss)
6450 			return -ENOMEM;
6451 		for (j = 0; j < pi->rss_size; j++)
6452 			pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
6453 	}
6454 	return 0;
6455 }
6456 
6457 static void print_port_info(const struct net_device *dev)
6458 {
6459 	char buf[80];
6460 	char *bufp = buf;
6461 	const char *spd = "";
6462 	const struct port_info *pi = netdev_priv(dev);
6463 	const struct adapter *adap = pi->adapter;
6464 
6465 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6466 		spd = " 2.5 GT/s";
6467 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6468 		spd = " 5 GT/s";
6469 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6470 		spd = " 8 GT/s";
6471 
6472 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6473 		bufp += sprintf(bufp, "100/");
6474 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6475 		bufp += sprintf(bufp, "1000/");
6476 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6477 		bufp += sprintf(bufp, "10G/");
6478 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6479 		bufp += sprintf(bufp, "40G/");
6480 	if (bufp != buf)
6481 		--bufp;
6482 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6483 
6484 	netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
6485 		    adap->params.vpd.id,
6486 		    CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
6487 		    is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6488 		    (adap->flags & USING_MSIX) ? " MSI-X" :
6489 		    (adap->flags & USING_MSI) ? " MSI" : "");
6490 	netdev_info(dev, "S/N: %s, P/N: %s\n",
6491 		    adap->params.vpd.sn, adap->params.vpd.pn);
6492 }
6493 
6494 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
6495 {
6496 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
6497 }
6498 
6499 /*
6500  * Free the following resources:
6501  * - memory used for tables
6502  * - MSI/MSI-X
6503  * - net devices
6504  * - resources FW is holding for us
6505  */
6506 static void free_some_resources(struct adapter *adapter)
6507 {
6508 	unsigned int i;
6509 
6510 	t4_free_mem(adapter->l2t);
6511 	t4_free_mem(adapter->tids.tid_tab);
6512 	disable_msi(adapter);
6513 
6514 	for_each_port(adapter, i)
6515 		if (adapter->port[i]) {
6516 			kfree(adap2pinfo(adapter, i)->rss);
6517 			free_netdev(adapter->port[i]);
6518 		}
6519 	if (adapter->flags & FW_OK)
6520 		t4_fw_bye(adapter, adapter->fn);
6521 }
6522 
6523 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
6524 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6525 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6526 #define SEGMENT_SIZE 128
6527 
6528 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6529 {
6530 	int func, i, err, s_qpp, qpp, num_seg;
6531 	struct port_info *pi;
6532 	bool highdma = false;
6533 	struct adapter *adapter = NULL;
6534 	void __iomem *regs;
6535 
6536 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6537 
6538 	err = pci_request_regions(pdev, KBUILD_MODNAME);
6539 	if (err) {
6540 		/* Just info, some other driver may have claimed the device. */
6541 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6542 		return err;
6543 	}
6544 
6545 	err = pci_enable_device(pdev);
6546 	if (err) {
6547 		dev_err(&pdev->dev, "cannot enable PCI device\n");
6548 		goto out_release_regions;
6549 	}
6550 
6551 	regs = pci_ioremap_bar(pdev, 0);
6552 	if (!regs) {
6553 		dev_err(&pdev->dev, "cannot map device registers\n");
6554 		err = -ENOMEM;
6555 		goto out_disable_device;
6556 	}
6557 
6558 	err = t4_wait_dev_ready(regs);
6559 	if (err < 0)
6560 		goto out_unmap_bar0;
6561 
6562 	/* We control everything through one PF */
6563 	func = SOURCEPF_GET(readl(regs + PL_WHOAMI));
6564 	if (func != ent->driver_data) {
6565 		iounmap(regs);
6566 		pci_disable_device(pdev);
6567 		pci_save_state(pdev);        /* to restore SR-IOV later */
6568 		goto sriov;
6569 	}
6570 
6571 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6572 		highdma = true;
6573 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6574 		if (err) {
6575 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6576 				"coherent allocations\n");
6577 			goto out_unmap_bar0;
6578 		}
6579 	} else {
6580 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6581 		if (err) {
6582 			dev_err(&pdev->dev, "no usable DMA configuration\n");
6583 			goto out_unmap_bar0;
6584 		}
6585 	}
6586 
6587 	pci_enable_pcie_error_reporting(pdev);
6588 	enable_pcie_relaxed_ordering(pdev);
6589 	pci_set_master(pdev);
6590 	pci_save_state(pdev);
6591 
6592 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6593 	if (!adapter) {
6594 		err = -ENOMEM;
6595 		goto out_unmap_bar0;
6596 	}
6597 
6598 	adapter->workq = create_singlethread_workqueue("cxgb4");
6599 	if (!adapter->workq) {
6600 		err = -ENOMEM;
6601 		goto out_free_adapter;
6602 	}
6603 
6604 	/* PCI device has been enabled */
6605 	adapter->flags |= DEV_ENABLED;
6606 
6607 	adapter->regs = regs;
6608 	adapter->pdev = pdev;
6609 	adapter->pdev_dev = &pdev->dev;
6610 	adapter->mbox = func;
6611 	adapter->fn = func;
6612 	adapter->msg_enable = dflt_msg_enable;
6613 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6614 
6615 	spin_lock_init(&adapter->stats_lock);
6616 	spin_lock_init(&adapter->tid_release_lock);
6617 	spin_lock_init(&adapter->win0_lock);
6618 
6619 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6620 	INIT_WORK(&adapter->db_full_task, process_db_full);
6621 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
6622 
6623 	err = t4_prep_adapter(adapter);
6624 	if (err)
6625 		goto out_free_adapter;
6626 
6627 
6628 	if (!is_t4(adapter->params.chip)) {
6629 		s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6630 		qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6631 		      SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6632 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
6633 
6634 		/* Each segment size is 128B. Write coalescing is enabled only
6635 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6636 		 * queue is less no of segments that can be accommodated in
6637 		 * a page size.
6638 		 */
6639 		if (qpp > num_seg) {
6640 			dev_err(&pdev->dev,
6641 				"Incorrect number of egress queues per page\n");
6642 			err = -EINVAL;
6643 			goto out_free_adapter;
6644 		}
6645 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6646 		pci_resource_len(pdev, 2));
6647 		if (!adapter->bar2) {
6648 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
6649 			err = -ENOMEM;
6650 			goto out_free_adapter;
6651 		}
6652 	}
6653 
6654 	setup_memwin(adapter);
6655 	err = adap_init0(adapter);
6656 	setup_memwin_rdma(adapter);
6657 	if (err)
6658 		goto out_unmap_bar;
6659 
6660 	for_each_port(adapter, i) {
6661 		struct net_device *netdev;
6662 
6663 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
6664 					   MAX_ETH_QSETS);
6665 		if (!netdev) {
6666 			err = -ENOMEM;
6667 			goto out_free_dev;
6668 		}
6669 
6670 		SET_NETDEV_DEV(netdev, &pdev->dev);
6671 
6672 		adapter->port[i] = netdev;
6673 		pi = netdev_priv(netdev);
6674 		pi->adapter = adapter;
6675 		pi->xact_addr_filt = -1;
6676 		pi->port_id = i;
6677 		netdev->irq = pdev->irq;
6678 
6679 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6680 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6681 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
6682 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
6683 		if (highdma)
6684 			netdev->hw_features |= NETIF_F_HIGHDMA;
6685 		netdev->features |= netdev->hw_features;
6686 		netdev->vlan_features = netdev->features & VLAN_FEAT;
6687 
6688 		netdev->priv_flags |= IFF_UNICAST_FLT;
6689 
6690 		netdev->netdev_ops = &cxgb4_netdev_ops;
6691 #ifdef CONFIG_CHELSIO_T4_DCB
6692 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
6693 		cxgb4_dcb_state_init(netdev);
6694 #endif
6695 		netdev->ethtool_ops = &cxgb_ethtool_ops;
6696 	}
6697 
6698 	pci_set_drvdata(pdev, adapter);
6699 
6700 	if (adapter->flags & FW_OK) {
6701 		err = t4_port_init(adapter, func, func, 0);
6702 		if (err)
6703 			goto out_free_dev;
6704 	}
6705 
6706 	/*
6707 	 * Configure queues and allocate tables now, they can be needed as
6708 	 * soon as the first register_netdev completes.
6709 	 */
6710 	cfg_queues(adapter);
6711 
6712 	adapter->l2t = t4_init_l2t();
6713 	if (!adapter->l2t) {
6714 		/* We tolerate a lack of L2T, giving up some functionality */
6715 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6716 		adapter->params.offload = 0;
6717 	}
6718 
6719 	if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6720 		dev_warn(&pdev->dev, "could not allocate TID table, "
6721 			 "continuing\n");
6722 		adapter->params.offload = 0;
6723 	}
6724 
6725 	/* See what interrupts we'll be using */
6726 	if (msi > 1 && enable_msix(adapter) == 0)
6727 		adapter->flags |= USING_MSIX;
6728 	else if (msi > 0 && pci_enable_msi(pdev) == 0)
6729 		adapter->flags |= USING_MSI;
6730 
6731 	err = init_rss(adapter);
6732 	if (err)
6733 		goto out_free_dev;
6734 
6735 	/*
6736 	 * The card is now ready to go.  If any errors occur during device
6737 	 * registration we do not fail the whole card but rather proceed only
6738 	 * with the ports we manage to register successfully.  However we must
6739 	 * register at least one net device.
6740 	 */
6741 	for_each_port(adapter, i) {
6742 		pi = adap2pinfo(adapter, i);
6743 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6744 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6745 
6746 		err = register_netdev(adapter->port[i]);
6747 		if (err)
6748 			break;
6749 		adapter->chan_map[pi->tx_chan] = i;
6750 		print_port_info(adapter->port[i]);
6751 	}
6752 	if (i == 0) {
6753 		dev_err(&pdev->dev, "could not register any net devices\n");
6754 		goto out_free_dev;
6755 	}
6756 	if (err) {
6757 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6758 		err = 0;
6759 	}
6760 
6761 	if (cxgb4_debugfs_root) {
6762 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6763 							   cxgb4_debugfs_root);
6764 		setup_debugfs(adapter);
6765 	}
6766 
6767 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6768 	pdev->needs_freset = 1;
6769 
6770 	if (is_offload(adapter))
6771 		attach_ulds(adapter);
6772 
6773 sriov:
6774 #ifdef CONFIG_PCI_IOV
6775 	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
6776 		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6777 			dev_info(&pdev->dev,
6778 				 "instantiated %u virtual functions\n",
6779 				 num_vf[func]);
6780 #endif
6781 	return 0;
6782 
6783  out_free_dev:
6784 	free_some_resources(adapter);
6785  out_unmap_bar:
6786 	if (!is_t4(adapter->params.chip))
6787 		iounmap(adapter->bar2);
6788  out_free_adapter:
6789 	if (adapter->workq)
6790 		destroy_workqueue(adapter->workq);
6791 
6792 	kfree(adapter);
6793  out_unmap_bar0:
6794 	iounmap(regs);
6795  out_disable_device:
6796 	pci_disable_pcie_error_reporting(pdev);
6797 	pci_disable_device(pdev);
6798  out_release_regions:
6799 	pci_release_regions(pdev);
6800 	return err;
6801 }
6802 
6803 static void remove_one(struct pci_dev *pdev)
6804 {
6805 	struct adapter *adapter = pci_get_drvdata(pdev);
6806 
6807 #ifdef CONFIG_PCI_IOV
6808 	pci_disable_sriov(pdev);
6809 
6810 #endif
6811 
6812 	if (adapter) {
6813 		int i;
6814 
6815 		/* Tear down per-adapter Work Queue first since it can contain
6816 		 * references to our adapter data structure.
6817 		 */
6818 		destroy_workqueue(adapter->workq);
6819 
6820 		if (is_offload(adapter))
6821 			detach_ulds(adapter);
6822 
6823 		for_each_port(adapter, i)
6824 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6825 				unregister_netdev(adapter->port[i]);
6826 
6827 		debugfs_remove_recursive(adapter->debugfs_root);
6828 
6829 		/* If we allocated filters, free up state associated with any
6830 		 * valid filters ...
6831 		 */
6832 		if (adapter->tids.ftid_tab) {
6833 			struct filter_entry *f = &adapter->tids.ftid_tab[0];
6834 			for (i = 0; i < (adapter->tids.nftids +
6835 					adapter->tids.nsftids); i++, f++)
6836 				if (f->valid)
6837 					clear_filter(adapter, f);
6838 		}
6839 
6840 		if (adapter->flags & FULL_INIT_DONE)
6841 			cxgb_down(adapter);
6842 
6843 		free_some_resources(adapter);
6844 		iounmap(adapter->regs);
6845 		if (!is_t4(adapter->params.chip))
6846 			iounmap(adapter->bar2);
6847 		pci_disable_pcie_error_reporting(pdev);
6848 		if ((adapter->flags & DEV_ENABLED)) {
6849 			pci_disable_device(pdev);
6850 			adapter->flags &= ~DEV_ENABLED;
6851 		}
6852 		pci_release_regions(pdev);
6853 		synchronize_rcu();
6854 		kfree(adapter);
6855 	} else
6856 		pci_release_regions(pdev);
6857 }
6858 
6859 static struct pci_driver cxgb4_driver = {
6860 	.name     = KBUILD_MODNAME,
6861 	.id_table = cxgb4_pci_tbl,
6862 	.probe    = init_one,
6863 	.remove   = remove_one,
6864 	.shutdown = remove_one,
6865 	.err_handler = &cxgb4_eeh,
6866 };
6867 
6868 static int __init cxgb4_init_module(void)
6869 {
6870 	int ret;
6871 
6872 	/* Debugfs support is optional, just warn if this fails */
6873 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6874 	if (!cxgb4_debugfs_root)
6875 		pr_warn("could not create debugfs entry, continuing\n");
6876 
6877 	ret = pci_register_driver(&cxgb4_driver);
6878 	if (ret < 0)
6879 		debugfs_remove(cxgb4_debugfs_root);
6880 
6881 #if IS_ENABLED(CONFIG_IPV6)
6882 	register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6883 #endif
6884 
6885 	return ret;
6886 }
6887 
6888 static void __exit cxgb4_cleanup_module(void)
6889 {
6890 #if IS_ENABLED(CONFIG_IPV6)
6891 	unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6892 #endif
6893 	pci_unregister_driver(&cxgb4_driver);
6894 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6895 }
6896 
6897 module_init(cxgb4_init_module);
6898 module_exit(cxgb4_cleanup_module);
6899