1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <asm/uaccess.h> 67 68 #include "cxgb4.h" 69 #include "t4_regs.h" 70 #include "t4_values.h" 71 #include "t4_msg.h" 72 #include "t4fw_api.h" 73 #include "t4fw_version.h" 74 #include "cxgb4_dcb.h" 75 #include "cxgb4_debugfs.h" 76 #include "clip_tbl.h" 77 #include "l2t.h" 78 79 char cxgb4_driver_name[] = KBUILD_MODNAME; 80 81 #ifdef DRV_VERSION 82 #undef DRV_VERSION 83 #endif 84 #define DRV_VERSION "2.0.0-ko" 85 const char cxgb4_driver_version[] = DRV_VERSION; 86 #define DRV_DESC "Chelsio T4/T5 Network Driver" 87 88 /* Host shadow copy of ingress filter entry. This is in host native format 89 * and doesn't match the ordering or bit order, etc. of the hardware of the 90 * firmware command. The use of bit-field structure elements is purely to 91 * remind ourselves of the field size limitations and save memory in the case 92 * where the filter table is large. 93 */ 94 struct filter_entry { 95 /* Administrative fields for filter. 96 */ 97 u32 valid:1; /* filter allocated and valid */ 98 u32 locked:1; /* filter is administratively locked */ 99 100 u32 pending:1; /* filter action is pending firmware reply */ 101 u32 smtidx:8; /* Source MAC Table index for smac */ 102 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ 103 104 /* The filter itself. Most of this is a straight copy of information 105 * provided by the extended ioctl(). Some fields are translated to 106 * internal forms -- for instance the Ingress Queue ID passed in from 107 * the ioctl() is translated into the Absolute Ingress Queue ID. 108 */ 109 struct ch_filter_specification fs; 110 }; 111 112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 113 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 114 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 115 116 /* Macros needed to support the PCI Device ID Table ... 117 */ 118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 119 static const struct pci_device_id cxgb4_pci_tbl[] = { 120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4 121 122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 123 * called for both. 124 */ 125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 126 127 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 128 {PCI_VDEVICE(CHELSIO, (devid)), 4} 129 130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 131 { 0, } \ 132 } 133 134 #include "t4_pci_id_tbl.h" 135 136 #define FW4_FNAME "cxgb4/t4fw.bin" 137 #define FW5_FNAME "cxgb4/t5fw.bin" 138 #define FW4_CFNAME "cxgb4/t4-config.txt" 139 #define FW5_CFNAME "cxgb4/t5-config.txt" 140 141 MODULE_DESCRIPTION(DRV_DESC); 142 MODULE_AUTHOR("Chelsio Communications"); 143 MODULE_LICENSE("Dual BSD/GPL"); 144 MODULE_VERSION(DRV_VERSION); 145 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 146 MODULE_FIRMWARE(FW4_FNAME); 147 MODULE_FIRMWARE(FW5_FNAME); 148 149 /* 150 * Normally we're willing to become the firmware's Master PF but will be happy 151 * if another PF has already become the Master and initialized the adapter. 152 * Setting "force_init" will cause this driver to forcibly establish itself as 153 * the Master PF and initialize the adapter. 154 */ 155 static uint force_init; 156 157 module_param(force_init, uint, 0644); 158 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter"); 159 160 /* 161 * Normally if the firmware we connect to has Configuration File support, we 162 * use that and only fall back to the old Driver-based initialization if the 163 * Configuration File fails for some reason. If force_old_init is set, then 164 * we'll always use the old Driver-based initialization sequence. 165 */ 166 static uint force_old_init; 167 168 module_param(force_old_init, uint, 0644); 169 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated" 170 " parameter"); 171 172 static int dflt_msg_enable = DFLT_MSG_ENABLE; 173 174 module_param(dflt_msg_enable, int, 0644); 175 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap"); 176 177 /* 178 * The driver uses the best interrupt scheme available on a platform in the 179 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 180 * of these schemes the driver may consider as follows: 181 * 182 * msi = 2: choose from among all three options 183 * msi = 1: only consider MSI and INTx interrupts 184 * msi = 0: force INTx interrupts 185 */ 186 static int msi = 2; 187 188 module_param(msi, int, 0644); 189 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 190 191 /* 192 * Queue interrupt hold-off timer values. Queues default to the first of these 193 * upon creation. 194 */ 195 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 }; 196 197 module_param_array(intr_holdoff, uint, NULL, 0644); 198 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers " 199 "0..4 in microseconds, deprecated parameter"); 200 201 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 }; 202 203 module_param_array(intr_cnt, uint, NULL, 0644); 204 MODULE_PARM_DESC(intr_cnt, 205 "thresholds 1..3 for queue interrupt packet counters, " 206 "deprecated parameter"); 207 208 /* 209 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 210 * offset by 2 bytes in order to have the IP headers line up on 4-byte 211 * boundaries. This is a requirement for many architectures which will throw 212 * a machine check fault if an attempt is made to access one of the 4-byte IP 213 * header fields on a non-4-byte boundary. And it's a major performance issue 214 * even on some architectures which allow it like some implementations of the 215 * x86 ISA. However, some architectures don't mind this and for some very 216 * edge-case performance sensitive applications (like forwarding large volumes 217 * of small packets), setting this DMA offset to 0 will decrease the number of 218 * PCI-E Bus transfers enough to measurably affect performance. 219 */ 220 static int rx_dma_offset = 2; 221 222 static bool vf_acls; 223 224 #ifdef CONFIG_PCI_IOV 225 module_param(vf_acls, bool, 0644); 226 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, " 227 "deprecated parameter"); 228 229 /* Configure the number of PCI-E Virtual Function which are to be instantiated 230 * on SR-IOV Capable Physical Functions. 231 */ 232 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV]; 233 234 module_param_array(num_vf, uint, NULL, 0644); 235 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3"); 236 #endif 237 238 /* TX Queue select used to determine what algorithm to use for selecting TX 239 * queue. Select between the kernel provided function (select_queue=0) or user 240 * cxgb_select_queue function (select_queue=1) 241 * 242 * Default: select_queue=0 243 */ 244 static int select_queue; 245 module_param(select_queue, int, 0644); 246 MODULE_PARM_DESC(select_queue, 247 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 248 249 static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC; 250 251 module_param(tp_vlan_pri_map, uint, 0644); 252 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, " 253 "deprecated parameter"); 254 255 static struct dentry *cxgb4_debugfs_root; 256 257 static LIST_HEAD(adapter_list); 258 static DEFINE_MUTEX(uld_mutex); 259 /* Adapter list to be accessed from atomic context */ 260 static LIST_HEAD(adap_rcu_list); 261 static DEFINE_SPINLOCK(adap_rcu_lock); 262 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX]; 263 static const char *uld_str[] = { "RDMA", "iSCSI" }; 264 265 static void link_report(struct net_device *dev) 266 { 267 if (!netif_carrier_ok(dev)) 268 netdev_info(dev, "link down\n"); 269 else { 270 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 271 272 const char *s = "10Mbps"; 273 const struct port_info *p = netdev_priv(dev); 274 275 switch (p->link_cfg.speed) { 276 case 10000: 277 s = "10Gbps"; 278 break; 279 case 1000: 280 s = "1000Mbps"; 281 break; 282 case 100: 283 s = "100Mbps"; 284 break; 285 case 40000: 286 s = "40Gbps"; 287 break; 288 } 289 290 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 291 fc[p->link_cfg.fc]); 292 } 293 } 294 295 #ifdef CONFIG_CHELSIO_T4_DCB 296 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 297 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 298 { 299 struct port_info *pi = netdev_priv(dev); 300 struct adapter *adap = pi->adapter; 301 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 302 int i; 303 304 /* We use a simple mapping of Port TX Queue Index to DCB 305 * Priority when we're enabling DCB. 306 */ 307 for (i = 0; i < pi->nqsets; i++, txq++) { 308 u32 name, value; 309 int err; 310 311 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 312 FW_PARAMS_PARAM_X_V( 313 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 314 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 315 value = enable ? i : 0xffffffff; 316 317 /* Since we can be called while atomic (from "interrupt 318 * level") we need to issue the Set Parameters Commannd 319 * without sleeping (timeout < 0). 320 */ 321 err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1, 322 &name, &value); 323 324 if (err) 325 dev_err(adap->pdev_dev, 326 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 327 enable ? "set" : "unset", pi->port_id, i, -err); 328 else 329 txq->dcb_prio = value; 330 } 331 } 332 #endif /* CONFIG_CHELSIO_T4_DCB */ 333 334 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 335 { 336 struct net_device *dev = adapter->port[port_id]; 337 338 /* Skip changes from disabled ports. */ 339 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 340 if (link_stat) 341 netif_carrier_on(dev); 342 else { 343 #ifdef CONFIG_CHELSIO_T4_DCB 344 cxgb4_dcb_state_init(dev); 345 dcb_tx_queue_prio_enable(dev, false); 346 #endif /* CONFIG_CHELSIO_T4_DCB */ 347 netif_carrier_off(dev); 348 } 349 350 link_report(dev); 351 } 352 } 353 354 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 355 { 356 static const char *mod_str[] = { 357 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 358 }; 359 360 const struct net_device *dev = adap->port[port_id]; 361 const struct port_info *pi = netdev_priv(dev); 362 363 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 364 netdev_info(dev, "port module unplugged\n"); 365 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 366 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 367 } 368 369 /* 370 * Configure the exact and hash address filters to handle a port's multicast 371 * and secondary unicast MAC addresses. 372 */ 373 static int set_addr_filters(const struct net_device *dev, bool sleep) 374 { 375 u64 mhash = 0; 376 u64 uhash = 0; 377 bool free = true; 378 u16 filt_idx[7]; 379 const u8 *addr[7]; 380 int ret, naddr = 0; 381 const struct netdev_hw_addr *ha; 382 int uc_cnt = netdev_uc_count(dev); 383 int mc_cnt = netdev_mc_count(dev); 384 const struct port_info *pi = netdev_priv(dev); 385 unsigned int mb = pi->adapter->fn; 386 387 /* first do the secondary unicast addresses */ 388 netdev_for_each_uc_addr(ha, dev) { 389 addr[naddr++] = ha->addr; 390 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 391 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 392 naddr, addr, filt_idx, &uhash, sleep); 393 if (ret < 0) 394 return ret; 395 396 free = false; 397 naddr = 0; 398 } 399 } 400 401 /* next set up the multicast addresses */ 402 netdev_for_each_mc_addr(ha, dev) { 403 addr[naddr++] = ha->addr; 404 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { 405 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, 406 naddr, addr, filt_idx, &mhash, sleep); 407 if (ret < 0) 408 return ret; 409 410 free = false; 411 naddr = 0; 412 } 413 } 414 415 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0, 416 uhash | mhash, sleep); 417 } 418 419 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 420 module_param(dbfifo_int_thresh, int, 0644); 421 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 422 423 /* 424 * usecs to sleep while draining the dbfifo 425 */ 426 static int dbfifo_drain_delay = 1000; 427 module_param(dbfifo_drain_delay, int, 0644); 428 MODULE_PARM_DESC(dbfifo_drain_delay, 429 "usecs to sleep while draining the dbfifo"); 430 431 /* 432 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 433 * If @mtu is -1 it is left unchanged. 434 */ 435 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 436 { 437 int ret; 438 struct port_info *pi = netdev_priv(dev); 439 440 ret = set_addr_filters(dev, sleep_ok); 441 if (ret == 0) 442 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu, 443 (dev->flags & IFF_PROMISC) ? 1 : 0, 444 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 445 sleep_ok); 446 return ret; 447 } 448 449 /** 450 * link_start - enable a port 451 * @dev: the port to enable 452 * 453 * Performs the MAC and PHY actions needed to enable a port. 454 */ 455 static int link_start(struct net_device *dev) 456 { 457 int ret; 458 struct port_info *pi = netdev_priv(dev); 459 unsigned int mb = pi->adapter->fn; 460 461 /* 462 * We do not set address filters and promiscuity here, the stack does 463 * that step explicitly. 464 */ 465 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 466 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 467 if (ret == 0) { 468 ret = t4_change_mac(pi->adapter, mb, pi->viid, 469 pi->xact_addr_filt, dev->dev_addr, true, 470 true); 471 if (ret >= 0) { 472 pi->xact_addr_filt = ret; 473 ret = 0; 474 } 475 } 476 if (ret == 0) 477 ret = t4_link_start(pi->adapter, mb, pi->tx_chan, 478 &pi->link_cfg); 479 if (ret == 0) { 480 local_bh_disable(); 481 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true, 482 true, CXGB4_DCB_ENABLED); 483 local_bh_enable(); 484 } 485 486 return ret; 487 } 488 489 int cxgb4_dcb_enabled(const struct net_device *dev) 490 { 491 #ifdef CONFIG_CHELSIO_T4_DCB 492 struct port_info *pi = netdev_priv(dev); 493 494 if (!pi->dcb.enabled) 495 return 0; 496 497 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 498 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 499 #else 500 return 0; 501 #endif 502 } 503 EXPORT_SYMBOL(cxgb4_dcb_enabled); 504 505 #ifdef CONFIG_CHELSIO_T4_DCB 506 /* Handle a Data Center Bridging update message from the firmware. */ 507 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 508 { 509 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 510 struct net_device *dev = adap->port[port]; 511 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 512 int new_dcb_enabled; 513 514 cxgb4_dcb_handle_fw_update(adap, pcmd); 515 new_dcb_enabled = cxgb4_dcb_enabled(dev); 516 517 /* If the DCB has become enabled or disabled on the port then we're 518 * going to need to set up/tear down DCB Priority parameters for the 519 * TX Queues associated with the port. 520 */ 521 if (new_dcb_enabled != old_dcb_enabled) 522 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 523 } 524 #endif /* CONFIG_CHELSIO_T4_DCB */ 525 526 /* Clear a filter and release any of its resources that we own. This also 527 * clears the filter's "pending" status. 528 */ 529 static void clear_filter(struct adapter *adap, struct filter_entry *f) 530 { 531 /* If the new or old filter have loopback rewriteing rules then we'll 532 * need to free any existing Layer Two Table (L2T) entries of the old 533 * filter rule. The firmware will handle freeing up any Source MAC 534 * Table (SMT) entries used for rewriting Source MAC Addresses in 535 * loopback rules. 536 */ 537 if (f->l2t) 538 cxgb4_l2t_release(f->l2t); 539 540 /* The zeroing of the filter rule below clears the filter valid, 541 * pending, locked flags, l2t pointer, etc. so it's all we need for 542 * this operation. 543 */ 544 memset(f, 0, sizeof(*f)); 545 } 546 547 /* Handle a filter write/deletion reply. 548 */ 549 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl) 550 { 551 unsigned int idx = GET_TID(rpl); 552 unsigned int nidx = idx - adap->tids.ftid_base; 553 unsigned int ret; 554 struct filter_entry *f; 555 556 if (idx >= adap->tids.ftid_base && nidx < 557 (adap->tids.nftids + adap->tids.nsftids)) { 558 idx = nidx; 559 ret = TCB_COOKIE_G(rpl->cookie); 560 f = &adap->tids.ftid_tab[idx]; 561 562 if (ret == FW_FILTER_WR_FLT_DELETED) { 563 /* Clear the filter when we get confirmation from the 564 * hardware that the filter has been deleted. 565 */ 566 clear_filter(adap, f); 567 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) { 568 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n", 569 idx); 570 clear_filter(adap, f); 571 } else if (ret == FW_FILTER_WR_FLT_ADDED) { 572 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff; 573 f->pending = 0; /* asynchronous setup completed */ 574 f->valid = 1; 575 } else { 576 /* Something went wrong. Issue a warning about the 577 * problem and clear everything out. 578 */ 579 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n", 580 idx, ret); 581 clear_filter(adap, f); 582 } 583 } 584 } 585 586 /* Response queue handler for the FW event queue. 587 */ 588 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 589 const struct pkt_gl *gl) 590 { 591 u8 opcode = ((const struct rss_header *)rsp)->opcode; 592 593 rsp++; /* skip RSS header */ 594 595 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 596 */ 597 if (unlikely(opcode == CPL_FW4_MSG && 598 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 599 rsp++; 600 opcode = ((const struct rss_header *)rsp)->opcode; 601 rsp++; 602 if (opcode != CPL_SGE_EGR_UPDATE) { 603 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 604 , opcode); 605 goto out; 606 } 607 } 608 609 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 610 const struct cpl_sge_egr_update *p = (void *)rsp; 611 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 612 struct sge_txq *txq; 613 614 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 615 txq->restarts++; 616 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) { 617 struct sge_eth_txq *eq; 618 619 eq = container_of(txq, struct sge_eth_txq, q); 620 netif_tx_wake_queue(eq->txq); 621 } else { 622 struct sge_ofld_txq *oq; 623 624 oq = container_of(txq, struct sge_ofld_txq, q); 625 tasklet_schedule(&oq->qresume_tsk); 626 } 627 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 628 const struct cpl_fw6_msg *p = (void *)rsp; 629 630 #ifdef CONFIG_CHELSIO_T4_DCB 631 const struct fw_port_cmd *pcmd = (const void *)p->data; 632 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 633 unsigned int action = 634 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 635 636 if (cmd == FW_PORT_CMD && 637 action == FW_PORT_ACTION_GET_PORT_INFO) { 638 int port = FW_PORT_CMD_PORTID_G( 639 be32_to_cpu(pcmd->op_to_portid)); 640 struct net_device *dev = q->adap->port[port]; 641 int state_input = ((pcmd->u.info.dcbxdis_pkd & 642 FW_PORT_CMD_DCBXDIS_F) 643 ? CXGB4_DCB_INPUT_FW_DISABLED 644 : CXGB4_DCB_INPUT_FW_ENABLED); 645 646 cxgb4_dcb_state_fsm(dev, state_input); 647 } 648 649 if (cmd == FW_PORT_CMD && 650 action == FW_PORT_ACTION_L2_DCB_CFG) 651 dcb_rpl(q->adap, pcmd); 652 else 653 #endif 654 if (p->type == 0) 655 t4_handle_fw_rpl(q->adap, p->data); 656 } else if (opcode == CPL_L2T_WRITE_RPL) { 657 const struct cpl_l2t_write_rpl *p = (void *)rsp; 658 659 do_l2t_write_rpl(q->adap, p); 660 } else if (opcode == CPL_SET_TCB_RPL) { 661 const struct cpl_set_tcb_rpl *p = (void *)rsp; 662 663 filter_rpl(q->adap, p); 664 } else 665 dev_err(q->adap->pdev_dev, 666 "unexpected CPL %#x on FW event queue\n", opcode); 667 out: 668 return 0; 669 } 670 671 /** 672 * uldrx_handler - response queue handler for ULD queues 673 * @q: the response queue that received the packet 674 * @rsp: the response queue descriptor holding the offload message 675 * @gl: the gather list of packet fragments 676 * 677 * Deliver an ingress offload packet to a ULD. All processing is done by 678 * the ULD, we just maintain statistics. 679 */ 680 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp, 681 const struct pkt_gl *gl) 682 { 683 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq); 684 685 /* FW can send CPLs encapsulated in a CPL_FW4_MSG. 686 */ 687 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG && 688 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL) 689 rsp += 2; 690 691 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) { 692 rxq->stats.nomem++; 693 return -1; 694 } 695 if (gl == NULL) 696 rxq->stats.imm++; 697 else if (gl == CXGB4_MSG_AN) 698 rxq->stats.an++; 699 else 700 rxq->stats.pkts++; 701 return 0; 702 } 703 704 static void disable_msi(struct adapter *adapter) 705 { 706 if (adapter->flags & USING_MSIX) { 707 pci_disable_msix(adapter->pdev); 708 adapter->flags &= ~USING_MSIX; 709 } else if (adapter->flags & USING_MSI) { 710 pci_disable_msi(adapter->pdev); 711 adapter->flags &= ~USING_MSI; 712 } 713 } 714 715 /* 716 * Interrupt handler for non-data events used with MSI-X. 717 */ 718 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 719 { 720 struct adapter *adap = cookie; 721 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 722 723 if (v & PFSW_F) { 724 adap->swintr = 1; 725 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 726 } 727 if (adap->flags & MASTER_PF) 728 t4_slow_intr_handler(adap); 729 return IRQ_HANDLED; 730 } 731 732 /* 733 * Name the MSI-X interrupts. 734 */ 735 static void name_msix_vecs(struct adapter *adap) 736 { 737 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 738 739 /* non-data interrupts */ 740 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 741 742 /* FW events */ 743 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 744 adap->port[0]->name); 745 746 /* Ethernet queues */ 747 for_each_port(adap, j) { 748 struct net_device *d = adap->port[j]; 749 const struct port_info *pi = netdev_priv(d); 750 751 for (i = 0; i < pi->nqsets; i++, msi_idx++) 752 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 753 d->name, i); 754 } 755 756 /* offload queues */ 757 for_each_ofldrxq(&adap->sge, i) 758 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d", 759 adap->port[0]->name, i); 760 761 for_each_rdmarxq(&adap->sge, i) 762 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d", 763 adap->port[0]->name, i); 764 765 for_each_rdmaciq(&adap->sge, i) 766 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d", 767 adap->port[0]->name, i); 768 } 769 770 static int request_msix_queue_irqs(struct adapter *adap) 771 { 772 struct sge *s = &adap->sge; 773 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0; 774 int msi_index = 2; 775 776 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 777 adap->msix_info[1].desc, &s->fw_evtq); 778 if (err) 779 return err; 780 781 for_each_ethrxq(s, ethqidx) { 782 err = request_irq(adap->msix_info[msi_index].vec, 783 t4_sge_intr_msix, 0, 784 adap->msix_info[msi_index].desc, 785 &s->ethrxq[ethqidx].rspq); 786 if (err) 787 goto unwind; 788 msi_index++; 789 } 790 for_each_ofldrxq(s, ofldqidx) { 791 err = request_irq(adap->msix_info[msi_index].vec, 792 t4_sge_intr_msix, 0, 793 adap->msix_info[msi_index].desc, 794 &s->ofldrxq[ofldqidx].rspq); 795 if (err) 796 goto unwind; 797 msi_index++; 798 } 799 for_each_rdmarxq(s, rdmaqidx) { 800 err = request_irq(adap->msix_info[msi_index].vec, 801 t4_sge_intr_msix, 0, 802 adap->msix_info[msi_index].desc, 803 &s->rdmarxq[rdmaqidx].rspq); 804 if (err) 805 goto unwind; 806 msi_index++; 807 } 808 for_each_rdmaciq(s, rdmaciqqidx) { 809 err = request_irq(adap->msix_info[msi_index].vec, 810 t4_sge_intr_msix, 0, 811 adap->msix_info[msi_index].desc, 812 &s->rdmaciq[rdmaciqqidx].rspq); 813 if (err) 814 goto unwind; 815 msi_index++; 816 } 817 return 0; 818 819 unwind: 820 while (--rdmaciqqidx >= 0) 821 free_irq(adap->msix_info[--msi_index].vec, 822 &s->rdmaciq[rdmaciqqidx].rspq); 823 while (--rdmaqidx >= 0) 824 free_irq(adap->msix_info[--msi_index].vec, 825 &s->rdmarxq[rdmaqidx].rspq); 826 while (--ofldqidx >= 0) 827 free_irq(adap->msix_info[--msi_index].vec, 828 &s->ofldrxq[ofldqidx].rspq); 829 while (--ethqidx >= 0) 830 free_irq(adap->msix_info[--msi_index].vec, 831 &s->ethrxq[ethqidx].rspq); 832 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 833 return err; 834 } 835 836 static void free_msix_queue_irqs(struct adapter *adap) 837 { 838 int i, msi_index = 2; 839 struct sge *s = &adap->sge; 840 841 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 842 for_each_ethrxq(s, i) 843 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 844 for_each_ofldrxq(s, i) 845 free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq); 846 for_each_rdmarxq(s, i) 847 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq); 848 for_each_rdmaciq(s, i) 849 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq); 850 } 851 852 /** 853 * cxgb4_write_rss - write the RSS table for a given port 854 * @pi: the port 855 * @queues: array of queue indices for RSS 856 * 857 * Sets up the portion of the HW RSS table for the port's VI to distribute 858 * packets to the Rx queues in @queues. 859 */ 860 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 861 { 862 u16 *rss; 863 int i, err; 864 const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset]; 865 866 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 867 if (!rss) 868 return -ENOMEM; 869 870 /* map the queue indices to queue ids */ 871 for (i = 0; i < pi->rss_size; i++, queues++) 872 rss[i] = q[*queues].rspq.abs_id; 873 874 err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0, 875 pi->rss_size, rss, pi->rss_size); 876 kfree(rss); 877 return err; 878 } 879 880 /** 881 * setup_rss - configure RSS 882 * @adap: the adapter 883 * 884 * Sets up RSS for each port. 885 */ 886 static int setup_rss(struct adapter *adap) 887 { 888 int i, err; 889 890 for_each_port(adap, i) { 891 const struct port_info *pi = adap2pinfo(adap, i); 892 893 err = cxgb4_write_rss(pi, pi->rss); 894 if (err) 895 return err; 896 } 897 return 0; 898 } 899 900 /* 901 * Return the channel of the ingress queue with the given qid. 902 */ 903 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 904 { 905 qid -= p->ingr_start; 906 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 907 } 908 909 /* 910 * Wait until all NAPI handlers are descheduled. 911 */ 912 static void quiesce_rx(struct adapter *adap) 913 { 914 int i; 915 916 for (i = 0; i < adap->sge.ingr_sz; i++) { 917 struct sge_rspq *q = adap->sge.ingr_map[i]; 918 919 if (q && q->handler) { 920 napi_disable(&q->napi); 921 local_bh_disable(); 922 while (!cxgb_poll_lock_napi(q)) 923 mdelay(1); 924 local_bh_enable(); 925 } 926 927 } 928 } 929 930 /* Disable interrupt and napi handler */ 931 static void disable_interrupts(struct adapter *adap) 932 { 933 if (adap->flags & FULL_INIT_DONE) { 934 t4_intr_disable(adap); 935 if (adap->flags & USING_MSIX) { 936 free_msix_queue_irqs(adap); 937 free_irq(adap->msix_info[0].vec, adap); 938 } else { 939 free_irq(adap->pdev->irq, adap); 940 } 941 quiesce_rx(adap); 942 } 943 } 944 945 /* 946 * Enable NAPI scheduling and interrupt generation for all Rx queues. 947 */ 948 static void enable_rx(struct adapter *adap) 949 { 950 int i; 951 952 for (i = 0; i < adap->sge.ingr_sz; i++) { 953 struct sge_rspq *q = adap->sge.ingr_map[i]; 954 955 if (!q) 956 continue; 957 if (q->handler) { 958 cxgb_busy_poll_init_lock(q); 959 napi_enable(&q->napi); 960 } 961 /* 0-increment GTS to start the timer and enable interrupts */ 962 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 963 SEINTARM_V(q->intr_params) | 964 INGRESSQID_V(q->cntxt_id)); 965 } 966 } 967 968 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q, 969 unsigned int nq, unsigned int per_chan, int msi_idx, 970 u16 *ids) 971 { 972 int i, err; 973 974 for (i = 0; i < nq; i++, q++) { 975 if (msi_idx > 0) 976 msi_idx++; 977 err = t4_sge_alloc_rxq(adap, &q->rspq, false, 978 adap->port[i / per_chan], 979 msi_idx, q->fl.size ? &q->fl : NULL, 980 uldrx_handler); 981 if (err) 982 return err; 983 memset(&q->stats, 0, sizeof(q->stats)); 984 if (ids) 985 ids[i] = q->rspq.abs_id; 986 } 987 return 0; 988 } 989 990 /** 991 * setup_sge_queues - configure SGE Tx/Rx/response queues 992 * @adap: the adapter 993 * 994 * Determines how many sets of SGE queues to use and initializes them. 995 * We support multiple queue sets per port if we have MSI-X, otherwise 996 * just one queue set per port. 997 */ 998 static int setup_sge_queues(struct adapter *adap) 999 { 1000 int err, msi_idx, i, j; 1001 struct sge *s = &adap->sge; 1002 1003 bitmap_zero(s->starving_fl, s->egr_sz); 1004 bitmap_zero(s->txq_maperr, s->egr_sz); 1005 1006 if (adap->flags & USING_MSIX) 1007 msi_idx = 1; /* vector 0 is for non-queue interrupts */ 1008 else { 1009 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 1010 NULL, NULL); 1011 if (err) 1012 return err; 1013 msi_idx = -((int)s->intrq.abs_id + 1); 1014 } 1015 1016 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here, 1017 * don't forget to update the following which need to be 1018 * synchronized to and changes here. 1019 * 1020 * 1. The calculations of MAX_INGQ in cxgb4.h. 1021 * 1022 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs 1023 * to accommodate any new/deleted Ingress Queues 1024 * which need MSI-X Vectors. 1025 * 1026 * 3. Update sge_qinfo_show() to include information on the 1027 * new/deleted queues. 1028 */ 1029 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 1030 msi_idx, NULL, fwevtq_handler); 1031 if (err) { 1032 freeout: t4_free_sge_resources(adap); 1033 return err; 1034 } 1035 1036 for_each_port(adap, i) { 1037 struct net_device *dev = adap->port[i]; 1038 struct port_info *pi = netdev_priv(dev); 1039 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1040 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1041 1042 for (j = 0; j < pi->nqsets; j++, q++) { 1043 if (msi_idx > 0) 1044 msi_idx++; 1045 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1046 msi_idx, &q->fl, 1047 t4_ethrx_handler); 1048 if (err) 1049 goto freeout; 1050 q->rspq.idx = j; 1051 memset(&q->stats, 0, sizeof(q->stats)); 1052 } 1053 for (j = 0; j < pi->nqsets; j++, t++) { 1054 err = t4_sge_alloc_eth_txq(adap, t, dev, 1055 netdev_get_tx_queue(dev, j), 1056 s->fw_evtq.cntxt_id); 1057 if (err) 1058 goto freeout; 1059 } 1060 } 1061 1062 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */ 1063 for_each_ofldrxq(s, i) { 1064 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], 1065 adap->port[i / j], 1066 s->fw_evtq.cntxt_id); 1067 if (err) 1068 goto freeout; 1069 } 1070 1071 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \ 1072 err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \ 1073 if (err) \ 1074 goto freeout; \ 1075 if (msi_idx > 0) \ 1076 msi_idx += nq; \ 1077 } while (0) 1078 1079 ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq); 1080 ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq); 1081 j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */ 1082 ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq); 1083 1084 #undef ALLOC_OFLD_RXQS 1085 1086 for_each_port(adap, i) { 1087 /* 1088 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't 1089 * have RDMA queues, and that's the right value. 1090 */ 1091 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1092 s->fw_evtq.cntxt_id, 1093 s->rdmarxq[i].rspq.cntxt_id); 1094 if (err) 1095 goto freeout; 1096 } 1097 1098 t4_write_reg(adap, is_t4(adap->params.chip) ? 1099 MPS_TRC_RSS_CONTROL_A : 1100 MPS_T5_TRC_RSS_CONTROL_A, 1101 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 1102 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 1103 return 0; 1104 } 1105 1106 /* 1107 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 1108 * The allocated memory is cleared. 1109 */ 1110 void *t4_alloc_mem(size_t size) 1111 { 1112 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1113 1114 if (!p) 1115 p = vzalloc(size); 1116 return p; 1117 } 1118 1119 /* 1120 * Free memory allocated through alloc_mem(). 1121 */ 1122 void t4_free_mem(void *addr) 1123 { 1124 if (is_vmalloc_addr(addr)) 1125 vfree(addr); 1126 else 1127 kfree(addr); 1128 } 1129 1130 /* Send a Work Request to write the filter at a specified index. We construct 1131 * a Firmware Filter Work Request to have the work done and put the indicated 1132 * filter into "pending" mode which will prevent any further actions against 1133 * it till we get a reply from the firmware on the completion status of the 1134 * request. 1135 */ 1136 static int set_filter_wr(struct adapter *adapter, int fidx) 1137 { 1138 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1139 struct sk_buff *skb; 1140 struct fw_filter_wr *fwr; 1141 unsigned int ftid; 1142 1143 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL); 1144 if (!skb) 1145 return -ENOMEM; 1146 1147 /* If the new filter requires loopback Destination MAC and/or VLAN 1148 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for 1149 * the filter. 1150 */ 1151 if (f->fs.newdmac || f->fs.newvlan) { 1152 /* allocate L2T entry for new filter */ 1153 f->l2t = t4_l2t_alloc_switching(adapter->l2t); 1154 if (f->l2t == NULL) { 1155 kfree_skb(skb); 1156 return -EAGAIN; 1157 } 1158 if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan, 1159 f->fs.eport, f->fs.dmac)) { 1160 cxgb4_l2t_release(f->l2t); 1161 f->l2t = NULL; 1162 kfree_skb(skb); 1163 return -ENOMEM; 1164 } 1165 } 1166 1167 ftid = adapter->tids.ftid_base + fidx; 1168 1169 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr)); 1170 memset(fwr, 0, sizeof(*fwr)); 1171 1172 /* It would be nice to put most of the following in t4_hw.c but most 1173 * of the work is translating the cxgbtool ch_filter_specification 1174 * into the Work Request and the definition of that structure is 1175 * currently in cxgbtool.h which isn't appropriate to pull into the 1176 * common code. We may eventually try to come up with a more neutral 1177 * filter specification structure but for now it's easiest to simply 1178 * put this fairly direct code in line ... 1179 */ 1180 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR)); 1181 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16)); 1182 fwr->tid_to_iq = 1183 htonl(FW_FILTER_WR_TID_V(ftid) | 1184 FW_FILTER_WR_RQTYPE_V(f->fs.type) | 1185 FW_FILTER_WR_NOREPLY_V(0) | 1186 FW_FILTER_WR_IQ_V(f->fs.iq)); 1187 fwr->del_filter_to_l2tix = 1188 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) | 1189 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) | 1190 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) | 1191 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) | 1192 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) | 1193 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) | 1194 FW_FILTER_WR_DMAC_V(f->fs.newdmac) | 1195 FW_FILTER_WR_SMAC_V(f->fs.newsmac) | 1196 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT || 1197 f->fs.newvlan == VLAN_REWRITE) | 1198 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE || 1199 f->fs.newvlan == VLAN_REWRITE) | 1200 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) | 1201 FW_FILTER_WR_TXCHAN_V(f->fs.eport) | 1202 FW_FILTER_WR_PRIO_V(f->fs.prio) | 1203 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0)); 1204 fwr->ethtype = htons(f->fs.val.ethtype); 1205 fwr->ethtypem = htons(f->fs.mask.ethtype); 1206 fwr->frag_to_ovlan_vldm = 1207 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) | 1208 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) | 1209 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) | 1210 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) | 1211 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) | 1212 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld)); 1213 fwr->smac_sel = 0; 1214 fwr->rx_chan_rx_rpl_iq = 1215 htons(FW_FILTER_WR_RX_CHAN_V(0) | 1216 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id)); 1217 fwr->maci_to_matchtypem = 1218 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) | 1219 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) | 1220 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) | 1221 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) | 1222 FW_FILTER_WR_PORT_V(f->fs.val.iport) | 1223 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) | 1224 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) | 1225 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype)); 1226 fwr->ptcl = f->fs.val.proto; 1227 fwr->ptclm = f->fs.mask.proto; 1228 fwr->ttyp = f->fs.val.tos; 1229 fwr->ttypm = f->fs.mask.tos; 1230 fwr->ivlan = htons(f->fs.val.ivlan); 1231 fwr->ivlanm = htons(f->fs.mask.ivlan); 1232 fwr->ovlan = htons(f->fs.val.ovlan); 1233 fwr->ovlanm = htons(f->fs.mask.ovlan); 1234 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip)); 1235 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm)); 1236 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip)); 1237 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm)); 1238 fwr->lp = htons(f->fs.val.lport); 1239 fwr->lpm = htons(f->fs.mask.lport); 1240 fwr->fp = htons(f->fs.val.fport); 1241 fwr->fpm = htons(f->fs.mask.fport); 1242 if (f->fs.newsmac) 1243 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma)); 1244 1245 /* Mark the filter as "pending" and ship off the Filter Work Request. 1246 * When we get the Work Request Reply we'll clear the pending status. 1247 */ 1248 f->pending = 1; 1249 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3); 1250 t4_ofld_send(adapter, skb); 1251 return 0; 1252 } 1253 1254 /* Delete the filter at a specified index. 1255 */ 1256 static int del_filter_wr(struct adapter *adapter, int fidx) 1257 { 1258 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1259 struct sk_buff *skb; 1260 struct fw_filter_wr *fwr; 1261 unsigned int len, ftid; 1262 1263 len = sizeof(*fwr); 1264 ftid = adapter->tids.ftid_base + fidx; 1265 1266 skb = alloc_skb(len, GFP_KERNEL); 1267 if (!skb) 1268 return -ENOMEM; 1269 1270 fwr = (struct fw_filter_wr *)__skb_put(skb, len); 1271 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id); 1272 1273 /* Mark the filter as "pending" and ship off the Filter Work Request. 1274 * When we get the Work Request Reply we'll clear the pending status. 1275 */ 1276 f->pending = 1; 1277 t4_mgmt_tx(adapter, skb); 1278 return 0; 1279 } 1280 1281 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 1282 void *accel_priv, select_queue_fallback_t fallback) 1283 { 1284 int txq; 1285 1286 #ifdef CONFIG_CHELSIO_T4_DCB 1287 /* If a Data Center Bridging has been successfully negotiated on this 1288 * link then we'll use the skb's priority to map it to a TX Queue. 1289 * The skb's priority is determined via the VLAN Tag Priority Code 1290 * Point field. 1291 */ 1292 if (cxgb4_dcb_enabled(dev)) { 1293 u16 vlan_tci; 1294 int err; 1295 1296 err = vlan_get_tag(skb, &vlan_tci); 1297 if (unlikely(err)) { 1298 if (net_ratelimit()) 1299 netdev_warn(dev, 1300 "TX Packet without VLAN Tag on DCB Link\n"); 1301 txq = 0; 1302 } else { 1303 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1304 #ifdef CONFIG_CHELSIO_T4_FCOE 1305 if (skb->protocol == htons(ETH_P_FCOE)) 1306 txq = skb->priority & 0x7; 1307 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1308 } 1309 return txq; 1310 } 1311 #endif /* CONFIG_CHELSIO_T4_DCB */ 1312 1313 if (select_queue) { 1314 txq = (skb_rx_queue_recorded(skb) 1315 ? skb_get_rx_queue(skb) 1316 : smp_processor_id()); 1317 1318 while (unlikely(txq >= dev->real_num_tx_queues)) 1319 txq -= dev->real_num_tx_queues; 1320 1321 return txq; 1322 } 1323 1324 return fallback(dev, skb) % dev->real_num_tx_queues; 1325 } 1326 1327 static inline int is_offload(const struct adapter *adap) 1328 { 1329 return adap->params.offload; 1330 } 1331 1332 static int closest_timer(const struct sge *s, int time) 1333 { 1334 int i, delta, match = 0, min_delta = INT_MAX; 1335 1336 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1337 delta = time - s->timer_val[i]; 1338 if (delta < 0) 1339 delta = -delta; 1340 if (delta < min_delta) { 1341 min_delta = delta; 1342 match = i; 1343 } 1344 } 1345 return match; 1346 } 1347 1348 static int closest_thres(const struct sge *s, int thres) 1349 { 1350 int i, delta, match = 0, min_delta = INT_MAX; 1351 1352 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1353 delta = thres - s->counter_val[i]; 1354 if (delta < 0) 1355 delta = -delta; 1356 if (delta < min_delta) { 1357 min_delta = delta; 1358 match = i; 1359 } 1360 } 1361 return match; 1362 } 1363 1364 /** 1365 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1366 * @q: the Rx queue 1367 * @us: the hold-off time in us, or 0 to disable timer 1368 * @cnt: the hold-off packet count, or 0 to disable counter 1369 * 1370 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1371 * one of the two needs to be enabled for the queue to generate interrupts. 1372 */ 1373 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1374 unsigned int us, unsigned int cnt) 1375 { 1376 struct adapter *adap = q->adap; 1377 1378 if ((us | cnt) == 0) 1379 cnt = 1; 1380 1381 if (cnt) { 1382 int err; 1383 u32 v, new_idx; 1384 1385 new_idx = closest_thres(&adap->sge, cnt); 1386 if (q->desc && q->pktcnt_idx != new_idx) { 1387 /* the queue has already been created, update it */ 1388 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1389 FW_PARAMS_PARAM_X_V( 1390 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1391 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1392 err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v, 1393 &new_idx); 1394 if (err) 1395 return err; 1396 } 1397 q->pktcnt_idx = new_idx; 1398 } 1399 1400 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1401 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0); 1402 return 0; 1403 } 1404 1405 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1406 { 1407 const struct port_info *pi = netdev_priv(dev); 1408 netdev_features_t changed = dev->features ^ features; 1409 int err; 1410 1411 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1412 return 0; 1413 1414 err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1, 1415 -1, -1, -1, 1416 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1417 if (unlikely(err)) 1418 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1419 return err; 1420 } 1421 1422 static int setup_debugfs(struct adapter *adap) 1423 { 1424 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1425 return -1; 1426 1427 #ifdef CONFIG_DEBUG_FS 1428 t4_setup_debugfs(adap); 1429 #endif 1430 return 0; 1431 } 1432 1433 /* 1434 * upper-layer driver support 1435 */ 1436 1437 /* 1438 * Allocate an active-open TID and set it to the supplied value. 1439 */ 1440 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1441 { 1442 int atid = -1; 1443 1444 spin_lock_bh(&t->atid_lock); 1445 if (t->afree) { 1446 union aopen_entry *p = t->afree; 1447 1448 atid = (p - t->atid_tab) + t->atid_base; 1449 t->afree = p->next; 1450 p->data = data; 1451 t->atids_in_use++; 1452 } 1453 spin_unlock_bh(&t->atid_lock); 1454 return atid; 1455 } 1456 EXPORT_SYMBOL(cxgb4_alloc_atid); 1457 1458 /* 1459 * Release an active-open TID. 1460 */ 1461 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1462 { 1463 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1464 1465 spin_lock_bh(&t->atid_lock); 1466 p->next = t->afree; 1467 t->afree = p; 1468 t->atids_in_use--; 1469 spin_unlock_bh(&t->atid_lock); 1470 } 1471 EXPORT_SYMBOL(cxgb4_free_atid); 1472 1473 /* 1474 * Allocate a server TID and set it to the supplied value. 1475 */ 1476 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1477 { 1478 int stid; 1479 1480 spin_lock_bh(&t->stid_lock); 1481 if (family == PF_INET) { 1482 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1483 if (stid < t->nstids) 1484 __set_bit(stid, t->stid_bmap); 1485 else 1486 stid = -1; 1487 } else { 1488 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2); 1489 if (stid < 0) 1490 stid = -1; 1491 } 1492 if (stid >= 0) { 1493 t->stid_tab[stid].data = data; 1494 stid += t->stid_base; 1495 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1496 * This is equivalent to 4 TIDs. With CLIP enabled it 1497 * needs 2 TIDs. 1498 */ 1499 if (family == PF_INET) 1500 t->stids_in_use++; 1501 else 1502 t->stids_in_use += 4; 1503 } 1504 spin_unlock_bh(&t->stid_lock); 1505 return stid; 1506 } 1507 EXPORT_SYMBOL(cxgb4_alloc_stid); 1508 1509 /* Allocate a server filter TID and set it to the supplied value. 1510 */ 1511 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1512 { 1513 int stid; 1514 1515 spin_lock_bh(&t->stid_lock); 1516 if (family == PF_INET) { 1517 stid = find_next_zero_bit(t->stid_bmap, 1518 t->nstids + t->nsftids, t->nstids); 1519 if (stid < (t->nstids + t->nsftids)) 1520 __set_bit(stid, t->stid_bmap); 1521 else 1522 stid = -1; 1523 } else { 1524 stid = -1; 1525 } 1526 if (stid >= 0) { 1527 t->stid_tab[stid].data = data; 1528 stid -= t->nstids; 1529 stid += t->sftid_base; 1530 t->stids_in_use++; 1531 } 1532 spin_unlock_bh(&t->stid_lock); 1533 return stid; 1534 } 1535 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1536 1537 /* Release a server TID. 1538 */ 1539 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1540 { 1541 /* Is it a server filter TID? */ 1542 if (t->nsftids && (stid >= t->sftid_base)) { 1543 stid -= t->sftid_base; 1544 stid += t->nstids; 1545 } else { 1546 stid -= t->stid_base; 1547 } 1548 1549 spin_lock_bh(&t->stid_lock); 1550 if (family == PF_INET) 1551 __clear_bit(stid, t->stid_bmap); 1552 else 1553 bitmap_release_region(t->stid_bmap, stid, 2); 1554 t->stid_tab[stid].data = NULL; 1555 if (family == PF_INET) 1556 t->stids_in_use--; 1557 else 1558 t->stids_in_use -= 4; 1559 spin_unlock_bh(&t->stid_lock); 1560 } 1561 EXPORT_SYMBOL(cxgb4_free_stid); 1562 1563 /* 1564 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1565 */ 1566 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1567 unsigned int tid) 1568 { 1569 struct cpl_tid_release *req; 1570 1571 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1572 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 1573 INIT_TP_WR(req, tid); 1574 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1575 } 1576 1577 /* 1578 * Queue a TID release request and if necessary schedule a work queue to 1579 * process it. 1580 */ 1581 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1582 unsigned int tid) 1583 { 1584 void **p = &t->tid_tab[tid]; 1585 struct adapter *adap = container_of(t, struct adapter, tids); 1586 1587 spin_lock_bh(&adap->tid_release_lock); 1588 *p = adap->tid_release_head; 1589 /* Low 2 bits encode the Tx channel number */ 1590 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1591 if (!adap->tid_release_task_busy) { 1592 adap->tid_release_task_busy = true; 1593 queue_work(adap->workq, &adap->tid_release_task); 1594 } 1595 spin_unlock_bh(&adap->tid_release_lock); 1596 } 1597 1598 /* 1599 * Process the list of pending TID release requests. 1600 */ 1601 static void process_tid_release_list(struct work_struct *work) 1602 { 1603 struct sk_buff *skb; 1604 struct adapter *adap; 1605 1606 adap = container_of(work, struct adapter, tid_release_task); 1607 1608 spin_lock_bh(&adap->tid_release_lock); 1609 while (adap->tid_release_head) { 1610 void **p = adap->tid_release_head; 1611 unsigned int chan = (uintptr_t)p & 3; 1612 p = (void *)p - chan; 1613 1614 adap->tid_release_head = *p; 1615 *p = NULL; 1616 spin_unlock_bh(&adap->tid_release_lock); 1617 1618 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1619 GFP_KERNEL))) 1620 schedule_timeout_uninterruptible(1); 1621 1622 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1623 t4_ofld_send(adap, skb); 1624 spin_lock_bh(&adap->tid_release_lock); 1625 } 1626 adap->tid_release_task_busy = false; 1627 spin_unlock_bh(&adap->tid_release_lock); 1628 } 1629 1630 /* 1631 * Release a TID and inform HW. If we are unable to allocate the release 1632 * message we defer to a work queue. 1633 */ 1634 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) 1635 { 1636 void *old; 1637 struct sk_buff *skb; 1638 struct adapter *adap = container_of(t, struct adapter, tids); 1639 1640 old = t->tid_tab[tid]; 1641 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1642 if (likely(skb)) { 1643 t->tid_tab[tid] = NULL; 1644 mk_tid_release(skb, chan, tid); 1645 t4_ofld_send(adap, skb); 1646 } else 1647 cxgb4_queue_tid_release(t, chan, tid); 1648 if (old) 1649 atomic_dec(&t->tids_in_use); 1650 } 1651 EXPORT_SYMBOL(cxgb4_remove_tid); 1652 1653 /* 1654 * Allocate and initialize the TID tables. Returns 0 on success. 1655 */ 1656 static int tid_init(struct tid_info *t) 1657 { 1658 size_t size; 1659 unsigned int stid_bmap_size; 1660 unsigned int natids = t->natids; 1661 struct adapter *adap = container_of(t, struct adapter, tids); 1662 1663 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1664 size = t->ntids * sizeof(*t->tid_tab) + 1665 natids * sizeof(*t->atid_tab) + 1666 t->nstids * sizeof(*t->stid_tab) + 1667 t->nsftids * sizeof(*t->stid_tab) + 1668 stid_bmap_size * sizeof(long) + 1669 t->nftids * sizeof(*t->ftid_tab) + 1670 t->nsftids * sizeof(*t->ftid_tab); 1671 1672 t->tid_tab = t4_alloc_mem(size); 1673 if (!t->tid_tab) 1674 return -ENOMEM; 1675 1676 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1677 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1678 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1679 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1680 spin_lock_init(&t->stid_lock); 1681 spin_lock_init(&t->atid_lock); 1682 1683 t->stids_in_use = 0; 1684 t->afree = NULL; 1685 t->atids_in_use = 0; 1686 atomic_set(&t->tids_in_use, 0); 1687 1688 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1689 if (natids) { 1690 while (--natids) 1691 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1692 t->afree = t->atid_tab; 1693 } 1694 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1695 /* Reserve stid 0 for T4/T5 adapters */ 1696 if (!t->stid_base && 1697 (is_t4(adap->params.chip) || is_t5(adap->params.chip))) 1698 __set_bit(0, t->stid_bmap); 1699 1700 return 0; 1701 } 1702 1703 /** 1704 * cxgb4_create_server - create an IP server 1705 * @dev: the device 1706 * @stid: the server TID 1707 * @sip: local IP address to bind server to 1708 * @sport: the server's TCP port 1709 * @queue: queue to direct messages from this server to 1710 * 1711 * Create an IP server for the given port and address. 1712 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1713 */ 1714 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1715 __be32 sip, __be16 sport, __be16 vlan, 1716 unsigned int queue) 1717 { 1718 unsigned int chan; 1719 struct sk_buff *skb; 1720 struct adapter *adap; 1721 struct cpl_pass_open_req *req; 1722 int ret; 1723 1724 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1725 if (!skb) 1726 return -ENOMEM; 1727 1728 adap = netdev2adap(dev); 1729 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); 1730 INIT_TP_WR(req, 0); 1731 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1732 req->local_port = sport; 1733 req->peer_port = htons(0); 1734 req->local_ip = sip; 1735 req->peer_ip = htonl(0); 1736 chan = rxq_to_chan(&adap->sge, queue); 1737 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1738 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1739 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1740 ret = t4_mgmt_tx(adap, skb); 1741 return net_xmit_eval(ret); 1742 } 1743 EXPORT_SYMBOL(cxgb4_create_server); 1744 1745 /* cxgb4_create_server6 - create an IPv6 server 1746 * @dev: the device 1747 * @stid: the server TID 1748 * @sip: local IPv6 address to bind server to 1749 * @sport: the server's TCP port 1750 * @queue: queue to direct messages from this server to 1751 * 1752 * Create an IPv6 server for the given port and address. 1753 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1754 */ 1755 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1756 const struct in6_addr *sip, __be16 sport, 1757 unsigned int queue) 1758 { 1759 unsigned int chan; 1760 struct sk_buff *skb; 1761 struct adapter *adap; 1762 struct cpl_pass_open_req6 *req; 1763 int ret; 1764 1765 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1766 if (!skb) 1767 return -ENOMEM; 1768 1769 adap = netdev2adap(dev); 1770 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req)); 1771 INIT_TP_WR(req, 0); 1772 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1773 req->local_port = sport; 1774 req->peer_port = htons(0); 1775 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1776 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1777 req->peer_ip_hi = cpu_to_be64(0); 1778 req->peer_ip_lo = cpu_to_be64(0); 1779 chan = rxq_to_chan(&adap->sge, queue); 1780 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1781 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1782 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1783 ret = t4_mgmt_tx(adap, skb); 1784 return net_xmit_eval(ret); 1785 } 1786 EXPORT_SYMBOL(cxgb4_create_server6); 1787 1788 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1789 unsigned int queue, bool ipv6) 1790 { 1791 struct sk_buff *skb; 1792 struct adapter *adap; 1793 struct cpl_close_listsvr_req *req; 1794 int ret; 1795 1796 adap = netdev2adap(dev); 1797 1798 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1799 if (!skb) 1800 return -ENOMEM; 1801 1802 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req)); 1803 INIT_TP_WR(req, 0); 1804 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1805 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1806 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1807 ret = t4_mgmt_tx(adap, skb); 1808 return net_xmit_eval(ret); 1809 } 1810 EXPORT_SYMBOL(cxgb4_remove_server); 1811 1812 /** 1813 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1814 * @mtus: the HW MTU table 1815 * @mtu: the target MTU 1816 * @idx: index of selected entry in the MTU table 1817 * 1818 * Returns the index and the value in the HW MTU table that is closest to 1819 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1820 * table, in which case that smallest available value is selected. 1821 */ 1822 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1823 unsigned int *idx) 1824 { 1825 unsigned int i = 0; 1826 1827 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1828 ++i; 1829 if (idx) 1830 *idx = i; 1831 return mtus[i]; 1832 } 1833 EXPORT_SYMBOL(cxgb4_best_mtu); 1834 1835 /** 1836 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1837 * @mtus: the HW MTU table 1838 * @header_size: Header Size 1839 * @data_size_max: maximum Data Segment Size 1840 * @data_size_align: desired Data Segment Size Alignment (2^N) 1841 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1842 * 1843 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1844 * MTU Table based solely on a Maximum MTU parameter, we break that 1845 * parameter up into a Header Size and Maximum Data Segment Size, and 1846 * provide a desired Data Segment Size Alignment. If we find an MTU in 1847 * the Hardware MTU Table which will result in a Data Segment Size with 1848 * the requested alignment _and_ that MTU isn't "too far" from the 1849 * closest MTU, then we'll return that rather than the closest MTU. 1850 */ 1851 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1852 unsigned short header_size, 1853 unsigned short data_size_max, 1854 unsigned short data_size_align, 1855 unsigned int *mtu_idxp) 1856 { 1857 unsigned short max_mtu = header_size + data_size_max; 1858 unsigned short data_size_align_mask = data_size_align - 1; 1859 int mtu_idx, aligned_mtu_idx; 1860 1861 /* Scan the MTU Table till we find an MTU which is larger than our 1862 * Maximum MTU or we reach the end of the table. Along the way, 1863 * record the last MTU found, if any, which will result in a Data 1864 * Segment Length matching the requested alignment. 1865 */ 1866 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1867 unsigned short data_size = mtus[mtu_idx] - header_size; 1868 1869 /* If this MTU minus the Header Size would result in a 1870 * Data Segment Size of the desired alignment, remember it. 1871 */ 1872 if ((data_size & data_size_align_mask) == 0) 1873 aligned_mtu_idx = mtu_idx; 1874 1875 /* If we're not at the end of the Hardware MTU Table and the 1876 * next element is larger than our Maximum MTU, drop out of 1877 * the loop. 1878 */ 1879 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1880 break; 1881 } 1882 1883 /* If we fell out of the loop because we ran to the end of the table, 1884 * then we just have to use the last [largest] entry. 1885 */ 1886 if (mtu_idx == NMTUS) 1887 mtu_idx--; 1888 1889 /* If we found an MTU which resulted in the requested Data Segment 1890 * Length alignment and that's "not far" from the largest MTU which is 1891 * less than or equal to the maximum MTU, then use that. 1892 */ 1893 if (aligned_mtu_idx >= 0 && 1894 mtu_idx - aligned_mtu_idx <= 1) 1895 mtu_idx = aligned_mtu_idx; 1896 1897 /* If the caller has passed in an MTU Index pointer, pass the 1898 * MTU Index back. Return the MTU value. 1899 */ 1900 if (mtu_idxp) 1901 *mtu_idxp = mtu_idx; 1902 return mtus[mtu_idx]; 1903 } 1904 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1905 1906 /** 1907 * cxgb4_port_chan - get the HW channel of a port 1908 * @dev: the net device for the port 1909 * 1910 * Return the HW Tx channel of the given port. 1911 */ 1912 unsigned int cxgb4_port_chan(const struct net_device *dev) 1913 { 1914 return netdev2pinfo(dev)->tx_chan; 1915 } 1916 EXPORT_SYMBOL(cxgb4_port_chan); 1917 1918 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1919 { 1920 struct adapter *adap = netdev2adap(dev); 1921 u32 v1, v2, lp_count, hp_count; 1922 1923 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1924 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1925 if (is_t4(adap->params.chip)) { 1926 lp_count = LP_COUNT_G(v1); 1927 hp_count = HP_COUNT_G(v1); 1928 } else { 1929 lp_count = LP_COUNT_T5_G(v1); 1930 hp_count = HP_COUNT_T5_G(v2); 1931 } 1932 return lpfifo ? lp_count : hp_count; 1933 } 1934 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1935 1936 /** 1937 * cxgb4_port_viid - get the VI id of a port 1938 * @dev: the net device for the port 1939 * 1940 * Return the VI id of the given port. 1941 */ 1942 unsigned int cxgb4_port_viid(const struct net_device *dev) 1943 { 1944 return netdev2pinfo(dev)->viid; 1945 } 1946 EXPORT_SYMBOL(cxgb4_port_viid); 1947 1948 /** 1949 * cxgb4_port_idx - get the index of a port 1950 * @dev: the net device for the port 1951 * 1952 * Return the index of the given port. 1953 */ 1954 unsigned int cxgb4_port_idx(const struct net_device *dev) 1955 { 1956 return netdev2pinfo(dev)->port_id; 1957 } 1958 EXPORT_SYMBOL(cxgb4_port_idx); 1959 1960 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1961 struct tp_tcp_stats *v6) 1962 { 1963 struct adapter *adap = pci_get_drvdata(pdev); 1964 1965 spin_lock(&adap->stats_lock); 1966 t4_tp_get_tcp_stats(adap, v4, v6); 1967 spin_unlock(&adap->stats_lock); 1968 } 1969 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1970 1971 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1972 const unsigned int *pgsz_order) 1973 { 1974 struct adapter *adap = netdev2adap(dev); 1975 1976 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1977 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1978 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1979 HPZ3_V(pgsz_order[3])); 1980 } 1981 EXPORT_SYMBOL(cxgb4_iscsi_init); 1982 1983 int cxgb4_flush_eq_cache(struct net_device *dev) 1984 { 1985 struct adapter *adap = netdev2adap(dev); 1986 int ret; 1987 1988 ret = t4_fwaddrspace_write(adap, adap->mbox, 1989 0xe1000000 + SGE_CTXT_CMD_A, 0x20000000); 1990 return ret; 1991 } 1992 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1993 1994 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1995 { 1996 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1997 __be64 indices; 1998 int ret; 1999 2000 spin_lock(&adap->win0_lock); 2001 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 2002 sizeof(indices), (__be32 *)&indices, 2003 T4_MEMORY_READ); 2004 spin_unlock(&adap->win0_lock); 2005 if (!ret) { 2006 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 2007 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 2008 } 2009 return ret; 2010 } 2011 2012 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 2013 u16 size) 2014 { 2015 struct adapter *adap = netdev2adap(dev); 2016 u16 hw_pidx, hw_cidx; 2017 int ret; 2018 2019 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 2020 if (ret) 2021 goto out; 2022 2023 if (pidx != hw_pidx) { 2024 u16 delta; 2025 u32 val; 2026 2027 if (pidx >= hw_pidx) 2028 delta = pidx - hw_pidx; 2029 else 2030 delta = size - hw_pidx + pidx; 2031 2032 if (is_t4(adap->params.chip)) 2033 val = PIDX_V(delta); 2034 else 2035 val = PIDX_T5_V(delta); 2036 wmb(); 2037 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2038 QID_V(qid) | val); 2039 } 2040 out: 2041 return ret; 2042 } 2043 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 2044 2045 void cxgb4_disable_db_coalescing(struct net_device *dev) 2046 { 2047 struct adapter *adap; 2048 2049 adap = netdev2adap(dev); 2050 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 2051 NOCOALESCE_F); 2052 } 2053 EXPORT_SYMBOL(cxgb4_disable_db_coalescing); 2054 2055 void cxgb4_enable_db_coalescing(struct net_device *dev) 2056 { 2057 struct adapter *adap; 2058 2059 adap = netdev2adap(dev); 2060 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 0); 2061 } 2062 EXPORT_SYMBOL(cxgb4_enable_db_coalescing); 2063 2064 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 2065 { 2066 struct adapter *adap; 2067 u32 offset, memtype, memaddr; 2068 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 2069 u32 edc0_end, edc1_end, mc0_end, mc1_end; 2070 int ret; 2071 2072 adap = netdev2adap(dev); 2073 2074 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 2075 2076 /* Figure out where the offset lands in the Memory Type/Address scheme. 2077 * This code assumes that the memory is laid out starting at offset 0 2078 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 2079 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 2080 * MC0, and some have both MC0 and MC1. 2081 */ 2082 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 2083 edc0_size = EDRAM0_SIZE_G(size) << 20; 2084 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 2085 edc1_size = EDRAM1_SIZE_G(size) << 20; 2086 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 2087 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 2088 2089 edc0_end = edc0_size; 2090 edc1_end = edc0_end + edc1_size; 2091 mc0_end = edc1_end + mc0_size; 2092 2093 if (offset < edc0_end) { 2094 memtype = MEM_EDC0; 2095 memaddr = offset; 2096 } else if (offset < edc1_end) { 2097 memtype = MEM_EDC1; 2098 memaddr = offset - edc0_end; 2099 } else { 2100 if (offset < mc0_end) { 2101 memtype = MEM_MC0; 2102 memaddr = offset - edc1_end; 2103 } else if (is_t4(adap->params.chip)) { 2104 /* T4 only has a single memory channel */ 2105 goto err; 2106 } else { 2107 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2108 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 2109 mc1_end = mc0_end + mc1_size; 2110 if (offset < mc1_end) { 2111 memtype = MEM_MC1; 2112 memaddr = offset - mc0_end; 2113 } else { 2114 /* offset beyond the end of any memory */ 2115 goto err; 2116 } 2117 } 2118 } 2119 2120 spin_lock(&adap->win0_lock); 2121 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 2122 spin_unlock(&adap->win0_lock); 2123 return ret; 2124 2125 err: 2126 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 2127 stag, offset); 2128 return -EINVAL; 2129 } 2130 EXPORT_SYMBOL(cxgb4_read_tpte); 2131 2132 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 2133 { 2134 u32 hi, lo; 2135 struct adapter *adap; 2136 2137 adap = netdev2adap(dev); 2138 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 2139 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 2140 2141 return ((u64)hi << 32) | (u64)lo; 2142 } 2143 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 2144 2145 int cxgb4_bar2_sge_qregs(struct net_device *dev, 2146 unsigned int qid, 2147 enum cxgb4_bar2_qtype qtype, 2148 u64 *pbar2_qoffset, 2149 unsigned int *pbar2_qid) 2150 { 2151 return cxgb4_t4_bar2_sge_qregs(netdev2adap(dev), 2152 qid, 2153 (qtype == CXGB4_BAR2_QTYPE_EGRESS 2154 ? T4_BAR2_QTYPE_EGRESS 2155 : T4_BAR2_QTYPE_INGRESS), 2156 pbar2_qoffset, 2157 pbar2_qid); 2158 } 2159 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 2160 2161 static struct pci_driver cxgb4_driver; 2162 2163 static void check_neigh_update(struct neighbour *neigh) 2164 { 2165 const struct device *parent; 2166 const struct net_device *netdev = neigh->dev; 2167 2168 if (netdev->priv_flags & IFF_802_1Q_VLAN) 2169 netdev = vlan_dev_real_dev(netdev); 2170 parent = netdev->dev.parent; 2171 if (parent && parent->driver == &cxgb4_driver.driver) 2172 t4_l2t_update(dev_get_drvdata(parent), neigh); 2173 } 2174 2175 static int netevent_cb(struct notifier_block *nb, unsigned long event, 2176 void *data) 2177 { 2178 switch (event) { 2179 case NETEVENT_NEIGH_UPDATE: 2180 check_neigh_update(data); 2181 break; 2182 case NETEVENT_REDIRECT: 2183 default: 2184 break; 2185 } 2186 return 0; 2187 } 2188 2189 static bool netevent_registered; 2190 static struct notifier_block cxgb4_netevent_nb = { 2191 .notifier_call = netevent_cb 2192 }; 2193 2194 static void drain_db_fifo(struct adapter *adap, int usecs) 2195 { 2196 u32 v1, v2, lp_count, hp_count; 2197 2198 do { 2199 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2200 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2201 if (is_t4(adap->params.chip)) { 2202 lp_count = LP_COUNT_G(v1); 2203 hp_count = HP_COUNT_G(v1); 2204 } else { 2205 lp_count = LP_COUNT_T5_G(v1); 2206 hp_count = HP_COUNT_T5_G(v2); 2207 } 2208 2209 if (lp_count == 0 && hp_count == 0) 2210 break; 2211 set_current_state(TASK_UNINTERRUPTIBLE); 2212 schedule_timeout(usecs_to_jiffies(usecs)); 2213 } while (1); 2214 } 2215 2216 static void disable_txq_db(struct sge_txq *q) 2217 { 2218 unsigned long flags; 2219 2220 spin_lock_irqsave(&q->db_lock, flags); 2221 q->db_disabled = 1; 2222 spin_unlock_irqrestore(&q->db_lock, flags); 2223 } 2224 2225 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 2226 { 2227 spin_lock_irq(&q->db_lock); 2228 if (q->db_pidx_inc) { 2229 /* Make sure that all writes to the TX descriptors 2230 * are committed before we tell HW about them. 2231 */ 2232 wmb(); 2233 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2234 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 2235 q->db_pidx_inc = 0; 2236 } 2237 q->db_disabled = 0; 2238 spin_unlock_irq(&q->db_lock); 2239 } 2240 2241 static void disable_dbs(struct adapter *adap) 2242 { 2243 int i; 2244 2245 for_each_ethrxq(&adap->sge, i) 2246 disable_txq_db(&adap->sge.ethtxq[i].q); 2247 for_each_ofldrxq(&adap->sge, i) 2248 disable_txq_db(&adap->sge.ofldtxq[i].q); 2249 for_each_port(adap, i) 2250 disable_txq_db(&adap->sge.ctrlq[i].q); 2251 } 2252 2253 static void enable_dbs(struct adapter *adap) 2254 { 2255 int i; 2256 2257 for_each_ethrxq(&adap->sge, i) 2258 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 2259 for_each_ofldrxq(&adap->sge, i) 2260 enable_txq_db(adap, &adap->sge.ofldtxq[i].q); 2261 for_each_port(adap, i) 2262 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2263 } 2264 2265 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2266 { 2267 if (adap->uld_handle[CXGB4_ULD_RDMA]) 2268 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA], 2269 cmd); 2270 } 2271 2272 static void process_db_full(struct work_struct *work) 2273 { 2274 struct adapter *adap; 2275 2276 adap = container_of(work, struct adapter, db_full_task); 2277 2278 drain_db_fifo(adap, dbfifo_drain_delay); 2279 enable_dbs(adap); 2280 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2281 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2282 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2283 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2284 } 2285 2286 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2287 { 2288 u16 hw_pidx, hw_cidx; 2289 int ret; 2290 2291 spin_lock_irq(&q->db_lock); 2292 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2293 if (ret) 2294 goto out; 2295 if (q->db_pidx != hw_pidx) { 2296 u16 delta; 2297 u32 val; 2298 2299 if (q->db_pidx >= hw_pidx) 2300 delta = q->db_pidx - hw_pidx; 2301 else 2302 delta = q->size - hw_pidx + q->db_pidx; 2303 2304 if (is_t4(adap->params.chip)) 2305 val = PIDX_V(delta); 2306 else 2307 val = PIDX_T5_V(delta); 2308 wmb(); 2309 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2310 QID_V(q->cntxt_id) | val); 2311 } 2312 out: 2313 q->db_disabled = 0; 2314 q->db_pidx_inc = 0; 2315 spin_unlock_irq(&q->db_lock); 2316 if (ret) 2317 CH_WARN(adap, "DB drop recovery failed.\n"); 2318 } 2319 static void recover_all_queues(struct adapter *adap) 2320 { 2321 int i; 2322 2323 for_each_ethrxq(&adap->sge, i) 2324 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2325 for_each_ofldrxq(&adap->sge, i) 2326 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q); 2327 for_each_port(adap, i) 2328 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2329 } 2330 2331 static void process_db_drop(struct work_struct *work) 2332 { 2333 struct adapter *adap; 2334 2335 adap = container_of(work, struct adapter, db_drop_task); 2336 2337 if (is_t4(adap->params.chip)) { 2338 drain_db_fifo(adap, dbfifo_drain_delay); 2339 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2340 drain_db_fifo(adap, dbfifo_drain_delay); 2341 recover_all_queues(adap); 2342 drain_db_fifo(adap, dbfifo_drain_delay); 2343 enable_dbs(adap); 2344 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2345 } else { 2346 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2347 u16 qid = (dropped_db >> 15) & 0x1ffff; 2348 u16 pidx_inc = dropped_db & 0x1fff; 2349 u64 bar2_qoffset; 2350 unsigned int bar2_qid; 2351 int ret; 2352 2353 ret = cxgb4_t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2354 &bar2_qoffset, &bar2_qid); 2355 if (ret) 2356 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2357 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2358 else 2359 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2360 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2361 2362 /* Re-enable BAR2 WC */ 2363 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2364 } 2365 2366 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2367 } 2368 2369 void t4_db_full(struct adapter *adap) 2370 { 2371 if (is_t4(adap->params.chip)) { 2372 disable_dbs(adap); 2373 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2374 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2375 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2376 queue_work(adap->workq, &adap->db_full_task); 2377 } 2378 } 2379 2380 void t4_db_dropped(struct adapter *adap) 2381 { 2382 if (is_t4(adap->params.chip)) { 2383 disable_dbs(adap); 2384 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2385 } 2386 queue_work(adap->workq, &adap->db_drop_task); 2387 } 2388 2389 static void uld_attach(struct adapter *adap, unsigned int uld) 2390 { 2391 void *handle; 2392 struct cxgb4_lld_info lli; 2393 unsigned short i; 2394 2395 lli.pdev = adap->pdev; 2396 lli.pf = adap->fn; 2397 lli.l2t = adap->l2t; 2398 lli.tids = &adap->tids; 2399 lli.ports = adap->port; 2400 lli.vr = &adap->vres; 2401 lli.mtus = adap->params.mtus; 2402 if (uld == CXGB4_ULD_RDMA) { 2403 lli.rxq_ids = adap->sge.rdma_rxq; 2404 lli.ciq_ids = adap->sge.rdma_ciq; 2405 lli.nrxq = adap->sge.rdmaqs; 2406 lli.nciq = adap->sge.rdmaciqs; 2407 } else if (uld == CXGB4_ULD_ISCSI) { 2408 lli.rxq_ids = adap->sge.ofld_rxq; 2409 lli.nrxq = adap->sge.ofldqsets; 2410 } 2411 lli.ntxq = adap->sge.ofldqsets; 2412 lli.nchan = adap->params.nports; 2413 lli.nports = adap->params.nports; 2414 lli.wr_cred = adap->params.ofldq_wr_cred; 2415 lli.adapter_type = adap->params.chip; 2416 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A)); 2417 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk; 2418 lli.udb_density = 1 << adap->params.sge.eq_qpp; 2419 lli.ucq_density = 1 << adap->params.sge.iq_qpp; 2420 lli.filt_mode = adap->params.tp.vlan_pri_map; 2421 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */ 2422 for (i = 0; i < NCHAN; i++) 2423 lli.tx_modq[i] = i; 2424 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A); 2425 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A); 2426 lli.fw_vers = adap->params.fw_vers; 2427 lli.dbfifo_int_thresh = dbfifo_int_thresh; 2428 lli.sge_ingpadboundary = adap->sge.fl_align; 2429 lli.sge_egrstatuspagesize = adap->sge.stat_len; 2430 lli.sge_pktshift = adap->sge.pktshift; 2431 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN; 2432 lli.max_ordird_qp = adap->params.max_ordird_qp; 2433 lli.max_ird_adapter = adap->params.max_ird_adapter; 2434 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl; 2435 2436 handle = ulds[uld].add(&lli); 2437 if (IS_ERR(handle)) { 2438 dev_warn(adap->pdev_dev, 2439 "could not attach to the %s driver, error %ld\n", 2440 uld_str[uld], PTR_ERR(handle)); 2441 return; 2442 } 2443 2444 adap->uld_handle[uld] = handle; 2445 2446 if (!netevent_registered) { 2447 register_netevent_notifier(&cxgb4_netevent_nb); 2448 netevent_registered = true; 2449 } 2450 2451 if (adap->flags & FULL_INIT_DONE) 2452 ulds[uld].state_change(handle, CXGB4_STATE_UP); 2453 } 2454 2455 static void attach_ulds(struct adapter *adap) 2456 { 2457 unsigned int i; 2458 2459 spin_lock(&adap_rcu_lock); 2460 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list); 2461 spin_unlock(&adap_rcu_lock); 2462 2463 mutex_lock(&uld_mutex); 2464 list_add_tail(&adap->list_node, &adapter_list); 2465 for (i = 0; i < CXGB4_ULD_MAX; i++) 2466 if (ulds[i].add) 2467 uld_attach(adap, i); 2468 mutex_unlock(&uld_mutex); 2469 } 2470 2471 static void detach_ulds(struct adapter *adap) 2472 { 2473 unsigned int i; 2474 2475 mutex_lock(&uld_mutex); 2476 list_del(&adap->list_node); 2477 for (i = 0; i < CXGB4_ULD_MAX; i++) 2478 if (adap->uld_handle[i]) { 2479 ulds[i].state_change(adap->uld_handle[i], 2480 CXGB4_STATE_DETACH); 2481 adap->uld_handle[i] = NULL; 2482 } 2483 if (netevent_registered && list_empty(&adapter_list)) { 2484 unregister_netevent_notifier(&cxgb4_netevent_nb); 2485 netevent_registered = false; 2486 } 2487 mutex_unlock(&uld_mutex); 2488 2489 spin_lock(&adap_rcu_lock); 2490 list_del_rcu(&adap->rcu_node); 2491 spin_unlock(&adap_rcu_lock); 2492 } 2493 2494 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2495 { 2496 unsigned int i; 2497 2498 mutex_lock(&uld_mutex); 2499 for (i = 0; i < CXGB4_ULD_MAX; i++) 2500 if (adap->uld_handle[i]) 2501 ulds[i].state_change(adap->uld_handle[i], new_state); 2502 mutex_unlock(&uld_mutex); 2503 } 2504 2505 /** 2506 * cxgb4_register_uld - register an upper-layer driver 2507 * @type: the ULD type 2508 * @p: the ULD methods 2509 * 2510 * Registers an upper-layer driver with this driver and notifies the ULD 2511 * about any presently available devices that support its type. Returns 2512 * %-EBUSY if a ULD of the same type is already registered. 2513 */ 2514 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p) 2515 { 2516 int ret = 0; 2517 struct adapter *adap; 2518 2519 if (type >= CXGB4_ULD_MAX) 2520 return -EINVAL; 2521 mutex_lock(&uld_mutex); 2522 if (ulds[type].add) { 2523 ret = -EBUSY; 2524 goto out; 2525 } 2526 ulds[type] = *p; 2527 list_for_each_entry(adap, &adapter_list, list_node) 2528 uld_attach(adap, type); 2529 out: mutex_unlock(&uld_mutex); 2530 return ret; 2531 } 2532 EXPORT_SYMBOL(cxgb4_register_uld); 2533 2534 /** 2535 * cxgb4_unregister_uld - unregister an upper-layer driver 2536 * @type: the ULD type 2537 * 2538 * Unregisters an existing upper-layer driver. 2539 */ 2540 int cxgb4_unregister_uld(enum cxgb4_uld type) 2541 { 2542 struct adapter *adap; 2543 2544 if (type >= CXGB4_ULD_MAX) 2545 return -EINVAL; 2546 mutex_lock(&uld_mutex); 2547 list_for_each_entry(adap, &adapter_list, list_node) 2548 adap->uld_handle[type] = NULL; 2549 ulds[type].add = NULL; 2550 mutex_unlock(&uld_mutex); 2551 return 0; 2552 } 2553 EXPORT_SYMBOL(cxgb4_unregister_uld); 2554 2555 #if IS_ENABLED(CONFIG_IPV6) 2556 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2557 unsigned long event, void *data) 2558 { 2559 struct inet6_ifaddr *ifa = data; 2560 struct net_device *event_dev = ifa->idev->dev; 2561 const struct device *parent = NULL; 2562 #if IS_ENABLED(CONFIG_BONDING) 2563 struct adapter *adap; 2564 #endif 2565 if (event_dev->priv_flags & IFF_802_1Q_VLAN) 2566 event_dev = vlan_dev_real_dev(event_dev); 2567 #if IS_ENABLED(CONFIG_BONDING) 2568 if (event_dev->flags & IFF_MASTER) { 2569 list_for_each_entry(adap, &adapter_list, list_node) { 2570 switch (event) { 2571 case NETDEV_UP: 2572 cxgb4_clip_get(adap->port[0], 2573 (const u32 *)ifa, 1); 2574 break; 2575 case NETDEV_DOWN: 2576 cxgb4_clip_release(adap->port[0], 2577 (const u32 *)ifa, 1); 2578 break; 2579 default: 2580 break; 2581 } 2582 } 2583 return NOTIFY_OK; 2584 } 2585 #endif 2586 2587 if (event_dev) 2588 parent = event_dev->dev.parent; 2589 2590 if (parent && parent->driver == &cxgb4_driver.driver) { 2591 switch (event) { 2592 case NETDEV_UP: 2593 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2594 break; 2595 case NETDEV_DOWN: 2596 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2597 break; 2598 default: 2599 break; 2600 } 2601 } 2602 return NOTIFY_OK; 2603 } 2604 2605 static bool inet6addr_registered; 2606 static struct notifier_block cxgb4_inet6addr_notifier = { 2607 .notifier_call = cxgb4_inet6addr_handler 2608 }; 2609 2610 static void update_clip(const struct adapter *adap) 2611 { 2612 int i; 2613 struct net_device *dev; 2614 int ret; 2615 2616 rcu_read_lock(); 2617 2618 for (i = 0; i < MAX_NPORTS; i++) { 2619 dev = adap->port[i]; 2620 ret = 0; 2621 2622 if (dev) 2623 ret = cxgb4_update_root_dev_clip(dev); 2624 2625 if (ret < 0) 2626 break; 2627 } 2628 rcu_read_unlock(); 2629 } 2630 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2631 2632 /** 2633 * cxgb_up - enable the adapter 2634 * @adap: adapter being enabled 2635 * 2636 * Called when the first port is enabled, this function performs the 2637 * actions necessary to make an adapter operational, such as completing 2638 * the initialization of HW modules, and enabling interrupts. 2639 * 2640 * Must be called with the rtnl lock held. 2641 */ 2642 static int cxgb_up(struct adapter *adap) 2643 { 2644 int err; 2645 2646 err = setup_sge_queues(adap); 2647 if (err) 2648 goto out; 2649 err = setup_rss(adap); 2650 if (err) 2651 goto freeq; 2652 2653 if (adap->flags & USING_MSIX) { 2654 name_msix_vecs(adap); 2655 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2656 adap->msix_info[0].desc, adap); 2657 if (err) 2658 goto irq_err; 2659 2660 err = request_msix_queue_irqs(adap); 2661 if (err) { 2662 free_irq(adap->msix_info[0].vec, adap); 2663 goto irq_err; 2664 } 2665 } else { 2666 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2667 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2668 adap->port[0]->name, adap); 2669 if (err) 2670 goto irq_err; 2671 } 2672 enable_rx(adap); 2673 t4_sge_start(adap); 2674 t4_intr_enable(adap); 2675 adap->flags |= FULL_INIT_DONE; 2676 notify_ulds(adap, CXGB4_STATE_UP); 2677 #if IS_ENABLED(CONFIG_IPV6) 2678 update_clip(adap); 2679 #endif 2680 out: 2681 return err; 2682 irq_err: 2683 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2684 freeq: 2685 t4_free_sge_resources(adap); 2686 goto out; 2687 } 2688 2689 static void cxgb_down(struct adapter *adapter) 2690 { 2691 cancel_work_sync(&adapter->tid_release_task); 2692 cancel_work_sync(&adapter->db_full_task); 2693 cancel_work_sync(&adapter->db_drop_task); 2694 adapter->tid_release_task_busy = false; 2695 adapter->tid_release_head = NULL; 2696 2697 t4_sge_stop(adapter); 2698 t4_free_sge_resources(adapter); 2699 adapter->flags &= ~FULL_INIT_DONE; 2700 } 2701 2702 /* 2703 * net_device operations 2704 */ 2705 static int cxgb_open(struct net_device *dev) 2706 { 2707 int err; 2708 struct port_info *pi = netdev_priv(dev); 2709 struct adapter *adapter = pi->adapter; 2710 2711 netif_carrier_off(dev); 2712 2713 if (!(adapter->flags & FULL_INIT_DONE)) { 2714 err = cxgb_up(adapter); 2715 if (err < 0) 2716 return err; 2717 } 2718 2719 err = link_start(dev); 2720 if (!err) 2721 netif_tx_start_all_queues(dev); 2722 return err; 2723 } 2724 2725 static int cxgb_close(struct net_device *dev) 2726 { 2727 struct port_info *pi = netdev_priv(dev); 2728 struct adapter *adapter = pi->adapter; 2729 2730 netif_tx_stop_all_queues(dev); 2731 netif_carrier_off(dev); 2732 return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false); 2733 } 2734 2735 /* Return an error number if the indicated filter isn't writable ... 2736 */ 2737 static int writable_filter(struct filter_entry *f) 2738 { 2739 if (f->locked) 2740 return -EPERM; 2741 if (f->pending) 2742 return -EBUSY; 2743 2744 return 0; 2745 } 2746 2747 /* Delete the filter at the specified index (if valid). The checks for all 2748 * the common problems with doing this like the filter being locked, currently 2749 * pending in another operation, etc. 2750 */ 2751 static int delete_filter(struct adapter *adapter, unsigned int fidx) 2752 { 2753 struct filter_entry *f; 2754 int ret; 2755 2756 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids) 2757 return -EINVAL; 2758 2759 f = &adapter->tids.ftid_tab[fidx]; 2760 ret = writable_filter(f); 2761 if (ret) 2762 return ret; 2763 if (f->valid) 2764 return del_filter_wr(adapter, fidx); 2765 2766 return 0; 2767 } 2768 2769 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2770 __be32 sip, __be16 sport, __be16 vlan, 2771 unsigned int queue, unsigned char port, unsigned char mask) 2772 { 2773 int ret; 2774 struct filter_entry *f; 2775 struct adapter *adap; 2776 int i; 2777 u8 *val; 2778 2779 adap = netdev2adap(dev); 2780 2781 /* Adjust stid to correct filter index */ 2782 stid -= adap->tids.sftid_base; 2783 stid += adap->tids.nftids; 2784 2785 /* Check to make sure the filter requested is writable ... 2786 */ 2787 f = &adap->tids.ftid_tab[stid]; 2788 ret = writable_filter(f); 2789 if (ret) 2790 return ret; 2791 2792 /* Clear out any old resources being used by the filter before 2793 * we start constructing the new filter. 2794 */ 2795 if (f->valid) 2796 clear_filter(adap, f); 2797 2798 /* Clear out filter specifications */ 2799 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2800 f->fs.val.lport = cpu_to_be16(sport); 2801 f->fs.mask.lport = ~0; 2802 val = (u8 *)&sip; 2803 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2804 for (i = 0; i < 4; i++) { 2805 f->fs.val.lip[i] = val[i]; 2806 f->fs.mask.lip[i] = ~0; 2807 } 2808 if (adap->params.tp.vlan_pri_map & PORT_F) { 2809 f->fs.val.iport = port; 2810 f->fs.mask.iport = mask; 2811 } 2812 } 2813 2814 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2815 f->fs.val.proto = IPPROTO_TCP; 2816 f->fs.mask.proto = ~0; 2817 } 2818 2819 f->fs.dirsteer = 1; 2820 f->fs.iq = queue; 2821 /* Mark filter as locked */ 2822 f->locked = 1; 2823 f->fs.rpttid = 1; 2824 2825 ret = set_filter_wr(adap, stid); 2826 if (ret) { 2827 clear_filter(adap, f); 2828 return ret; 2829 } 2830 2831 return 0; 2832 } 2833 EXPORT_SYMBOL(cxgb4_create_server_filter); 2834 2835 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2836 unsigned int queue, bool ipv6) 2837 { 2838 int ret; 2839 struct filter_entry *f; 2840 struct adapter *adap; 2841 2842 adap = netdev2adap(dev); 2843 2844 /* Adjust stid to correct filter index */ 2845 stid -= adap->tids.sftid_base; 2846 stid += adap->tids.nftids; 2847 2848 f = &adap->tids.ftid_tab[stid]; 2849 /* Unlock the filter */ 2850 f->locked = 0; 2851 2852 ret = delete_filter(adap, stid); 2853 if (ret) 2854 return ret; 2855 2856 return 0; 2857 } 2858 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2859 2860 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev, 2861 struct rtnl_link_stats64 *ns) 2862 { 2863 struct port_stats stats; 2864 struct port_info *p = netdev_priv(dev); 2865 struct adapter *adapter = p->adapter; 2866 2867 /* Block retrieving statistics during EEH error 2868 * recovery. Otherwise, the recovery might fail 2869 * and the PCI device will be removed permanently 2870 */ 2871 spin_lock(&adapter->stats_lock); 2872 if (!netif_device_present(dev)) { 2873 spin_unlock(&adapter->stats_lock); 2874 return ns; 2875 } 2876 t4_get_port_stats(adapter, p->tx_chan, &stats); 2877 spin_unlock(&adapter->stats_lock); 2878 2879 ns->tx_bytes = stats.tx_octets; 2880 ns->tx_packets = stats.tx_frames; 2881 ns->rx_bytes = stats.rx_octets; 2882 ns->rx_packets = stats.rx_frames; 2883 ns->multicast = stats.rx_mcast_frames; 2884 2885 /* detailed rx_errors */ 2886 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2887 stats.rx_runt; 2888 ns->rx_over_errors = 0; 2889 ns->rx_crc_errors = stats.rx_fcs_err; 2890 ns->rx_frame_errors = stats.rx_symbol_err; 2891 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 + 2892 stats.rx_ovflow2 + stats.rx_ovflow3 + 2893 stats.rx_trunc0 + stats.rx_trunc1 + 2894 stats.rx_trunc2 + stats.rx_trunc3; 2895 ns->rx_missed_errors = 0; 2896 2897 /* detailed tx_errors */ 2898 ns->tx_aborted_errors = 0; 2899 ns->tx_carrier_errors = 0; 2900 ns->tx_fifo_errors = 0; 2901 ns->tx_heartbeat_errors = 0; 2902 ns->tx_window_errors = 0; 2903 2904 ns->tx_errors = stats.tx_error_frames; 2905 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2906 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2907 return ns; 2908 } 2909 2910 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2911 { 2912 unsigned int mbox; 2913 int ret = 0, prtad, devad; 2914 struct port_info *pi = netdev_priv(dev); 2915 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2916 2917 switch (cmd) { 2918 case SIOCGMIIPHY: 2919 if (pi->mdio_addr < 0) 2920 return -EOPNOTSUPP; 2921 data->phy_id = pi->mdio_addr; 2922 break; 2923 case SIOCGMIIREG: 2924 case SIOCSMIIREG: 2925 if (mdio_phy_id_is_c45(data->phy_id)) { 2926 prtad = mdio_phy_id_prtad(data->phy_id); 2927 devad = mdio_phy_id_devad(data->phy_id); 2928 } else if (data->phy_id < 32) { 2929 prtad = data->phy_id; 2930 devad = 0; 2931 data->reg_num &= 0x1f; 2932 } else 2933 return -EINVAL; 2934 2935 mbox = pi->adapter->fn; 2936 if (cmd == SIOCGMIIREG) 2937 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2938 data->reg_num, &data->val_out); 2939 else 2940 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2941 data->reg_num, data->val_in); 2942 break; 2943 default: 2944 return -EOPNOTSUPP; 2945 } 2946 return ret; 2947 } 2948 2949 static void cxgb_set_rxmode(struct net_device *dev) 2950 { 2951 /* unfortunately we can't return errors to the stack */ 2952 set_rxmode(dev, -1, false); 2953 } 2954 2955 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2956 { 2957 int ret; 2958 struct port_info *pi = netdev_priv(dev); 2959 2960 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */ 2961 return -EINVAL; 2962 ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1, 2963 -1, -1, -1, true); 2964 if (!ret) 2965 dev->mtu = new_mtu; 2966 return ret; 2967 } 2968 2969 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2970 { 2971 int ret; 2972 struct sockaddr *addr = p; 2973 struct port_info *pi = netdev_priv(dev); 2974 2975 if (!is_valid_ether_addr(addr->sa_data)) 2976 return -EADDRNOTAVAIL; 2977 2978 ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid, 2979 pi->xact_addr_filt, addr->sa_data, true, true); 2980 if (ret < 0) 2981 return ret; 2982 2983 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2984 pi->xact_addr_filt = ret; 2985 return 0; 2986 } 2987 2988 #ifdef CONFIG_NET_POLL_CONTROLLER 2989 static void cxgb_netpoll(struct net_device *dev) 2990 { 2991 struct port_info *pi = netdev_priv(dev); 2992 struct adapter *adap = pi->adapter; 2993 2994 if (adap->flags & USING_MSIX) { 2995 int i; 2996 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2997 2998 for (i = pi->nqsets; i; i--, rx++) 2999 t4_sge_intr_msix(0, &rx->rspq); 3000 } else 3001 t4_intr_handler(adap)(0, adap); 3002 } 3003 #endif 3004 3005 static const struct net_device_ops cxgb4_netdev_ops = { 3006 .ndo_open = cxgb_open, 3007 .ndo_stop = cxgb_close, 3008 .ndo_start_xmit = t4_eth_xmit, 3009 .ndo_select_queue = cxgb_select_queue, 3010 .ndo_get_stats64 = cxgb_get_stats, 3011 .ndo_set_rx_mode = cxgb_set_rxmode, 3012 .ndo_set_mac_address = cxgb_set_mac_addr, 3013 .ndo_set_features = cxgb_set_features, 3014 .ndo_validate_addr = eth_validate_addr, 3015 .ndo_do_ioctl = cxgb_ioctl, 3016 .ndo_change_mtu = cxgb_change_mtu, 3017 #ifdef CONFIG_NET_POLL_CONTROLLER 3018 .ndo_poll_controller = cxgb_netpoll, 3019 #endif 3020 #ifdef CONFIG_CHELSIO_T4_FCOE 3021 .ndo_fcoe_enable = cxgb_fcoe_enable, 3022 .ndo_fcoe_disable = cxgb_fcoe_disable, 3023 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3024 #ifdef CONFIG_NET_RX_BUSY_POLL 3025 .ndo_busy_poll = cxgb_busy_poll, 3026 #endif 3027 3028 }; 3029 3030 void t4_fatal_err(struct adapter *adap) 3031 { 3032 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0); 3033 t4_intr_disable(adap); 3034 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3035 } 3036 3037 /* Return the specified PCI-E Configuration Space register from our Physical 3038 * Function. We try first via a Firmware LDST Command since we prefer to let 3039 * the firmware own all of these registers, but if that fails we go for it 3040 * directly ourselves. 3041 */ 3042 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 3043 { 3044 struct fw_ldst_cmd ldst_cmd; 3045 u32 val; 3046 int ret; 3047 3048 /* Construct and send the Firmware LDST Command to retrieve the 3049 * specified PCI-E Configuration Space register. 3050 */ 3051 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 3052 ldst_cmd.op_to_addrspace = 3053 htonl(FW_CMD_OP_V(FW_LDST_CMD) | 3054 FW_CMD_REQUEST_F | 3055 FW_CMD_READ_F | 3056 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE)); 3057 ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd)); 3058 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 3059 ldst_cmd.u.pcie.ctrl_to_fn = 3060 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->fn)); 3061 ldst_cmd.u.pcie.r = reg; 3062 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 3063 &ldst_cmd); 3064 3065 /* If the LDST Command suucceeded, exctract the returned register 3066 * value. Otherwise read it directly ourself. 3067 */ 3068 if (ret == 0) 3069 val = ntohl(ldst_cmd.u.pcie.data[0]); 3070 else 3071 t4_hw_pci_read_cfg4(adap, reg, &val); 3072 3073 return val; 3074 } 3075 3076 static void setup_memwin(struct adapter *adap) 3077 { 3078 u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture; 3079 3080 if (is_t4(adap->params.chip)) { 3081 u32 bar0; 3082 3083 /* Truncation intentional: we only read the bottom 32-bits of 3084 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 3085 * mechanism to read BAR0 instead of using 3086 * pci_resource_start() because we could be operating from 3087 * within a Virtual Machine which is trapping our accesses to 3088 * our Configuration Space and we need to set up the PCI-E 3089 * Memory Window decoders with the actual addresses which will 3090 * be coming across the PCI-E link. 3091 */ 3092 bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0); 3093 bar0 &= PCI_BASE_ADDRESS_MEM_MASK; 3094 adap->t4_bar0 = bar0; 3095 3096 mem_win0_base = bar0 + MEMWIN0_BASE; 3097 mem_win1_base = bar0 + MEMWIN1_BASE; 3098 mem_win2_base = bar0 + MEMWIN2_BASE; 3099 mem_win2_aperture = MEMWIN2_APERTURE; 3100 } else { 3101 /* For T5, only relative offset inside the PCIe BAR is passed */ 3102 mem_win0_base = MEMWIN0_BASE; 3103 mem_win1_base = MEMWIN1_BASE; 3104 mem_win2_base = MEMWIN2_BASE_T5; 3105 mem_win2_aperture = MEMWIN2_APERTURE_T5; 3106 } 3107 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 0), 3108 mem_win0_base | BIR_V(0) | 3109 WINDOW_V(ilog2(MEMWIN0_APERTURE) - 10)); 3110 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 1), 3111 mem_win1_base | BIR_V(0) | 3112 WINDOW_V(ilog2(MEMWIN1_APERTURE) - 10)); 3113 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2), 3114 mem_win2_base | BIR_V(0) | 3115 WINDOW_V(ilog2(mem_win2_aperture) - 10)); 3116 t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2)); 3117 } 3118 3119 static void setup_memwin_rdma(struct adapter *adap) 3120 { 3121 if (adap->vres.ocq.size) { 3122 u32 start; 3123 unsigned int sz_kb; 3124 3125 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3126 start &= PCI_BASE_ADDRESS_MEM_MASK; 3127 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3128 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3129 t4_write_reg(adap, 3130 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3131 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3132 t4_write_reg(adap, 3133 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3134 adap->vres.ocq.start); 3135 t4_read_reg(adap, 3136 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3137 } 3138 } 3139 3140 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3141 { 3142 u32 v; 3143 int ret; 3144 3145 /* get device capabilities */ 3146 memset(c, 0, sizeof(*c)); 3147 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3148 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3149 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3150 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c); 3151 if (ret < 0) 3152 return ret; 3153 3154 /* select capabilities we'll be using */ 3155 if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) { 3156 if (!vf_acls) 3157 c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM); 3158 else 3159 c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM); 3160 } else if (vf_acls) { 3161 dev_err(adap->pdev_dev, "virtualization ACLs not supported"); 3162 return ret; 3163 } 3164 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3165 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3166 ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL); 3167 if (ret < 0) 3168 return ret; 3169 3170 ret = t4_config_glbl_rss(adap, adap->fn, 3171 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3172 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3173 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3174 if (ret < 0) 3175 return ret; 3176 3177 ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, adap->sge.egr_sz, 64, 3178 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3179 FW_CMD_CAP_PF); 3180 if (ret < 0) 3181 return ret; 3182 3183 t4_sge_init(adap); 3184 3185 /* tweak some settings */ 3186 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3187 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3188 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3189 v = t4_read_reg(adap, TP_PIO_DATA_A); 3190 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3191 3192 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3193 adap->params.tp.tx_modq_map = 0xE4; 3194 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3195 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3196 3197 /* associate each Tx modulation queue with consecutive Tx channels */ 3198 v = 0x84218421; 3199 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3200 &v, 1, TP_TX_SCHED_HDR_A); 3201 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3202 &v, 1, TP_TX_SCHED_FIFO_A); 3203 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3204 &v, 1, TP_TX_SCHED_PCMD_A); 3205 3206 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3207 if (is_offload(adap)) { 3208 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3209 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3210 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3211 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3212 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3213 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3214 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3215 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3216 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3217 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3218 } 3219 3220 /* get basic stuff going */ 3221 return t4_early_init(adap, adap->fn); 3222 } 3223 3224 /* 3225 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3226 */ 3227 #define MAX_ATIDS 8192U 3228 3229 /* 3230 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3231 * 3232 * If the firmware we're dealing with has Configuration File support, then 3233 * we use that to perform all configuration 3234 */ 3235 3236 /* 3237 * Tweak configuration based on module parameters, etc. Most of these have 3238 * defaults assigned to them by Firmware Configuration Files (if we're using 3239 * them) but need to be explicitly set if we're using hard-coded 3240 * initialization. But even in the case of using Firmware Configuration 3241 * Files, we'd like to expose the ability to change these via module 3242 * parameters so these are essentially common tweaks/settings for 3243 * Configuration Files and hard-coded initialization ... 3244 */ 3245 static int adap_init0_tweaks(struct adapter *adapter) 3246 { 3247 /* 3248 * Fix up various Host-Dependent Parameters like Page Size, Cache 3249 * Line Size, etc. The firmware default is for a 4KB Page Size and 3250 * 64B Cache Line Size ... 3251 */ 3252 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3253 3254 /* 3255 * Process module parameters which affect early initialization. 3256 */ 3257 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3258 dev_err(&adapter->pdev->dev, 3259 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3260 rx_dma_offset); 3261 rx_dma_offset = 2; 3262 } 3263 t4_set_reg_field(adapter, SGE_CONTROL_A, 3264 PKTSHIFT_V(PKTSHIFT_M), 3265 PKTSHIFT_V(rx_dma_offset)); 3266 3267 /* 3268 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3269 * adds the pseudo header itself. 3270 */ 3271 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3272 CSUM_HAS_PSEUDO_HDR_F, 0); 3273 3274 return 0; 3275 } 3276 3277 /* 3278 * Attempt to initialize the adapter via a Firmware Configuration File. 3279 */ 3280 static int adap_init0_config(struct adapter *adapter, int reset) 3281 { 3282 struct fw_caps_config_cmd caps_cmd; 3283 const struct firmware *cf; 3284 unsigned long mtype = 0, maddr = 0; 3285 u32 finiver, finicsum, cfcsum; 3286 int ret; 3287 int config_issued = 0; 3288 char *fw_config_file, fw_config_file_path[256]; 3289 char *config_name = NULL; 3290 3291 /* 3292 * Reset device if necessary. 3293 */ 3294 if (reset) { 3295 ret = t4_fw_reset(adapter, adapter->mbox, 3296 PIORSTMODE_F | PIORST_F); 3297 if (ret < 0) 3298 goto bye; 3299 } 3300 3301 /* 3302 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3303 * then use that. Otherwise, use the configuration file stored 3304 * in the adapter flash ... 3305 */ 3306 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3307 case CHELSIO_T4: 3308 fw_config_file = FW4_CFNAME; 3309 break; 3310 case CHELSIO_T5: 3311 fw_config_file = FW5_CFNAME; 3312 break; 3313 default: 3314 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3315 adapter->pdev->device); 3316 ret = -EINVAL; 3317 goto bye; 3318 } 3319 3320 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3321 if (ret < 0) { 3322 config_name = "On FLASH"; 3323 mtype = FW_MEMTYPE_CF_FLASH; 3324 maddr = t4_flash_cfg_addr(adapter); 3325 } else { 3326 u32 params[7], val[7]; 3327 3328 sprintf(fw_config_file_path, 3329 "/lib/firmware/%s", fw_config_file); 3330 config_name = fw_config_file_path; 3331 3332 if (cf->size >= FLASH_CFG_MAX_SIZE) 3333 ret = -ENOMEM; 3334 else { 3335 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3336 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3337 ret = t4_query_params(adapter, adapter->mbox, 3338 adapter->fn, 0, 1, params, val); 3339 if (ret == 0) { 3340 /* 3341 * For t4_memory_rw() below addresses and 3342 * sizes have to be in terms of multiples of 4 3343 * bytes. So, if the Configuration File isn't 3344 * a multiple of 4 bytes in length we'll have 3345 * to write that out separately since we can't 3346 * guarantee that the bytes following the 3347 * residual byte in the buffer returned by 3348 * request_firmware() are zeroed out ... 3349 */ 3350 size_t resid = cf->size & 0x3; 3351 size_t size = cf->size & ~0x3; 3352 __be32 *data = (__be32 *)cf->data; 3353 3354 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3355 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3356 3357 spin_lock(&adapter->win0_lock); 3358 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3359 size, data, T4_MEMORY_WRITE); 3360 if (ret == 0 && resid != 0) { 3361 union { 3362 __be32 word; 3363 char buf[4]; 3364 } last; 3365 int i; 3366 3367 last.word = data[size >> 2]; 3368 for (i = resid; i < 4; i++) 3369 last.buf[i] = 0; 3370 ret = t4_memory_rw(adapter, 0, mtype, 3371 maddr + size, 3372 4, &last.word, 3373 T4_MEMORY_WRITE); 3374 } 3375 spin_unlock(&adapter->win0_lock); 3376 } 3377 } 3378 3379 release_firmware(cf); 3380 if (ret) 3381 goto bye; 3382 } 3383 3384 /* 3385 * Issue a Capability Configuration command to the firmware to get it 3386 * to parse the Configuration File. We don't use t4_fw_config_file() 3387 * because we want the ability to modify various features after we've 3388 * processed the configuration file ... 3389 */ 3390 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3391 caps_cmd.op_to_write = 3392 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3393 FW_CMD_REQUEST_F | 3394 FW_CMD_READ_F); 3395 caps_cmd.cfvalid_to_len16 = 3396 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3397 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3398 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3399 FW_LEN16(caps_cmd)); 3400 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3401 &caps_cmd); 3402 3403 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3404 * Configuration File in FLASH), our last gasp effort is to use the 3405 * Firmware Configuration File which is embedded in the firmware. A 3406 * very few early versions of the firmware didn't have one embedded 3407 * but we can ignore those. 3408 */ 3409 if (ret == -ENOENT) { 3410 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3411 caps_cmd.op_to_write = 3412 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3413 FW_CMD_REQUEST_F | 3414 FW_CMD_READ_F); 3415 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3416 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3417 sizeof(caps_cmd), &caps_cmd); 3418 config_name = "Firmware Default"; 3419 } 3420 3421 config_issued = 1; 3422 if (ret < 0) 3423 goto bye; 3424 3425 finiver = ntohl(caps_cmd.finiver); 3426 finicsum = ntohl(caps_cmd.finicsum); 3427 cfcsum = ntohl(caps_cmd.cfcsum); 3428 if (finicsum != cfcsum) 3429 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3430 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3431 finicsum, cfcsum); 3432 3433 /* 3434 * And now tell the firmware to use the configuration we just loaded. 3435 */ 3436 caps_cmd.op_to_write = 3437 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3438 FW_CMD_REQUEST_F | 3439 FW_CMD_WRITE_F); 3440 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3441 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3442 NULL); 3443 if (ret < 0) 3444 goto bye; 3445 3446 /* 3447 * Tweak configuration based on system architecture, module 3448 * parameters, etc. 3449 */ 3450 ret = adap_init0_tweaks(adapter); 3451 if (ret < 0) 3452 goto bye; 3453 3454 /* 3455 * And finally tell the firmware to initialize itself using the 3456 * parameters from the Configuration File. 3457 */ 3458 ret = t4_fw_initialize(adapter, adapter->mbox); 3459 if (ret < 0) 3460 goto bye; 3461 3462 /* Emit Firmware Configuration File information and return 3463 * successfully. 3464 */ 3465 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 3466 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 3467 config_name, finiver, cfcsum); 3468 return 0; 3469 3470 /* 3471 * Something bad happened. Return the error ... (If the "error" 3472 * is that there's no Configuration File on the adapter we don't 3473 * want to issue a warning since this is fairly common.) 3474 */ 3475 bye: 3476 if (config_issued && ret != -ENOENT) 3477 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 3478 config_name, -ret); 3479 return ret; 3480 } 3481 3482 static struct fw_info fw_info_array[] = { 3483 { 3484 .chip = CHELSIO_T4, 3485 .fs_name = FW4_CFNAME, 3486 .fw_mod_name = FW4_FNAME, 3487 .fw_hdr = { 3488 .chip = FW_HDR_CHIP_T4, 3489 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 3490 .intfver_nic = FW_INTFVER(T4, NIC), 3491 .intfver_vnic = FW_INTFVER(T4, VNIC), 3492 .intfver_ri = FW_INTFVER(T4, RI), 3493 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3494 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3495 }, 3496 }, { 3497 .chip = CHELSIO_T5, 3498 .fs_name = FW5_CFNAME, 3499 .fw_mod_name = FW5_FNAME, 3500 .fw_hdr = { 3501 .chip = FW_HDR_CHIP_T5, 3502 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 3503 .intfver_nic = FW_INTFVER(T5, NIC), 3504 .intfver_vnic = FW_INTFVER(T5, VNIC), 3505 .intfver_ri = FW_INTFVER(T5, RI), 3506 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3507 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3508 }, 3509 } 3510 }; 3511 3512 static struct fw_info *find_fw_info(int chip) 3513 { 3514 int i; 3515 3516 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 3517 if (fw_info_array[i].chip == chip) 3518 return &fw_info_array[i]; 3519 } 3520 return NULL; 3521 } 3522 3523 /* 3524 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3525 */ 3526 static int adap_init0(struct adapter *adap) 3527 { 3528 int ret; 3529 u32 v, port_vec; 3530 enum dev_state state; 3531 u32 params[7], val[7]; 3532 struct fw_caps_config_cmd caps_cmd; 3533 int reset = 1; 3534 3535 /* Grab Firmware Device Log parameters as early as possible so we have 3536 * access to it for debugging, etc. 3537 */ 3538 ret = t4_init_devlog_params(adap); 3539 if (ret < 0) 3540 return ret; 3541 3542 /* Contact FW, advertising Master capability */ 3543 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state); 3544 if (ret < 0) { 3545 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 3546 ret); 3547 return ret; 3548 } 3549 if (ret == adap->mbox) 3550 adap->flags |= MASTER_PF; 3551 3552 /* 3553 * If we're the Master PF Driver and the device is uninitialized, 3554 * then let's consider upgrading the firmware ... (We always want 3555 * to check the firmware version number in order to A. get it for 3556 * later reporting and B. to warn if the currently loaded firmware 3557 * is excessively mismatched relative to the driver.) 3558 */ 3559 t4_get_fw_version(adap, &adap->params.fw_vers); 3560 t4_get_tp_version(adap, &adap->params.tp_vers); 3561 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 3562 struct fw_info *fw_info; 3563 struct fw_hdr *card_fw; 3564 const struct firmware *fw; 3565 const u8 *fw_data = NULL; 3566 unsigned int fw_size = 0; 3567 3568 /* This is the firmware whose headers the driver was compiled 3569 * against 3570 */ 3571 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 3572 if (fw_info == NULL) { 3573 dev_err(adap->pdev_dev, 3574 "unable to get firmware info for chip %d.\n", 3575 CHELSIO_CHIP_VERSION(adap->params.chip)); 3576 return -EINVAL; 3577 } 3578 3579 /* allocate memory to read the header of the firmware on the 3580 * card 3581 */ 3582 card_fw = t4_alloc_mem(sizeof(*card_fw)); 3583 3584 /* Get FW from from /lib/firmware/ */ 3585 ret = request_firmware(&fw, fw_info->fw_mod_name, 3586 adap->pdev_dev); 3587 if (ret < 0) { 3588 dev_err(adap->pdev_dev, 3589 "unable to load firmware image %s, error %d\n", 3590 fw_info->fw_mod_name, ret); 3591 } else { 3592 fw_data = fw->data; 3593 fw_size = fw->size; 3594 } 3595 3596 /* upgrade FW logic */ 3597 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 3598 state, &reset); 3599 3600 /* Cleaning up */ 3601 release_firmware(fw); 3602 t4_free_mem(card_fw); 3603 3604 if (ret < 0) 3605 goto bye; 3606 } 3607 3608 /* 3609 * Grab VPD parameters. This should be done after we establish a 3610 * connection to the firmware since some of the VPD parameters 3611 * (notably the Core Clock frequency) are retrieved via requests to 3612 * the firmware. On the other hand, we need these fairly early on 3613 * so we do this right after getting ahold of the firmware. 3614 */ 3615 ret = get_vpd_params(adap, &adap->params.vpd); 3616 if (ret < 0) 3617 goto bye; 3618 3619 /* 3620 * Find out what ports are available to us. Note that we need to do 3621 * this before calling adap_init0_no_config() since it needs nports 3622 * and portvec ... 3623 */ 3624 v = 3625 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3626 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 3627 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec); 3628 if (ret < 0) 3629 goto bye; 3630 3631 adap->params.nports = hweight32(port_vec); 3632 adap->params.portvec = port_vec; 3633 3634 /* If the firmware is initialized already, emit a simply note to that 3635 * effect. Otherwise, it's time to try initializing the adapter. 3636 */ 3637 if (state == DEV_STATE_INIT) { 3638 dev_info(adap->pdev_dev, "Coming up as %s: "\ 3639 "Adapter already initialized\n", 3640 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 3641 } else { 3642 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 3643 "Initializing adapter\n"); 3644 3645 /* Find out whether we're dealing with a version of the 3646 * firmware which has configuration file support. 3647 */ 3648 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3649 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3650 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, 3651 params, val); 3652 3653 /* If the firmware doesn't support Configuration Files, 3654 * return an error. 3655 */ 3656 if (ret < 0) { 3657 dev_err(adap->pdev_dev, "firmware doesn't support " 3658 "Firmware Configuration Files\n"); 3659 goto bye; 3660 } 3661 3662 /* The firmware provides us with a memory buffer where we can 3663 * load a Configuration File from the host if we want to 3664 * override the Configuration File in flash. 3665 */ 3666 ret = adap_init0_config(adap, reset); 3667 if (ret == -ENOENT) { 3668 dev_err(adap->pdev_dev, "no Configuration File " 3669 "present on adapter.\n"); 3670 goto bye; 3671 } 3672 if (ret < 0) { 3673 dev_err(adap->pdev_dev, "could not initialize " 3674 "adapter, error %d\n", -ret); 3675 goto bye; 3676 } 3677 } 3678 3679 /* Give the SGE code a chance to pull in anything that it needs ... 3680 * Note that this must be called after we retrieve our VPD parameters 3681 * in order to know how to convert core ticks to seconds, etc. 3682 */ 3683 ret = t4_sge_init(adap); 3684 if (ret < 0) 3685 goto bye; 3686 3687 if (is_bypass_device(adap->pdev->device)) 3688 adap->params.bypass = 1; 3689 3690 /* 3691 * Grab some of our basic fundamental operating parameters. 3692 */ 3693 #define FW_PARAM_DEV(param) \ 3694 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 3695 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 3696 3697 #define FW_PARAM_PFVF(param) \ 3698 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 3699 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 3700 FW_PARAMS_PARAM_Y_V(0) | \ 3701 FW_PARAMS_PARAM_Z_V(0) 3702 3703 params[0] = FW_PARAM_PFVF(EQ_START); 3704 params[1] = FW_PARAM_PFVF(L2T_START); 3705 params[2] = FW_PARAM_PFVF(L2T_END); 3706 params[3] = FW_PARAM_PFVF(FILTER_START); 3707 params[4] = FW_PARAM_PFVF(FILTER_END); 3708 params[5] = FW_PARAM_PFVF(IQFLINT_START); 3709 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val); 3710 if (ret < 0) 3711 goto bye; 3712 adap->sge.egr_start = val[0]; 3713 adap->l2t_start = val[1]; 3714 adap->l2t_end = val[2]; 3715 adap->tids.ftid_base = val[3]; 3716 adap->tids.nftids = val[4] - val[3] + 1; 3717 adap->sge.ingr_start = val[5]; 3718 3719 /* qids (ingress/egress) returned from firmware can be anywhere 3720 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 3721 * Hence driver needs to allocate memory for this range to 3722 * store the queue info. Get the highest IQFLINT/EQ index returned 3723 * in FW_EQ_*_CMD.alloc command. 3724 */ 3725 params[0] = FW_PARAM_PFVF(EQ_END); 3726 params[1] = FW_PARAM_PFVF(IQFLINT_END); 3727 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val); 3728 if (ret < 0) 3729 goto bye; 3730 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 3731 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 3732 3733 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 3734 sizeof(*adap->sge.egr_map), GFP_KERNEL); 3735 if (!adap->sge.egr_map) { 3736 ret = -ENOMEM; 3737 goto bye; 3738 } 3739 3740 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 3741 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 3742 if (!adap->sge.ingr_map) { 3743 ret = -ENOMEM; 3744 goto bye; 3745 } 3746 3747 /* Allocate the memory for the vaious egress queue bitmaps 3748 * ie starving_fl and txq_maperr. 3749 */ 3750 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3751 sizeof(long), GFP_KERNEL); 3752 if (!adap->sge.starving_fl) { 3753 ret = -ENOMEM; 3754 goto bye; 3755 } 3756 3757 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3758 sizeof(long), GFP_KERNEL); 3759 if (!adap->sge.txq_maperr) { 3760 ret = -ENOMEM; 3761 goto bye; 3762 } 3763 3764 params[0] = FW_PARAM_PFVF(CLIP_START); 3765 params[1] = FW_PARAM_PFVF(CLIP_END); 3766 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val); 3767 if (ret < 0) 3768 goto bye; 3769 adap->clipt_start = val[0]; 3770 adap->clipt_end = val[1]; 3771 3772 /* query params related to active filter region */ 3773 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 3774 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 3775 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val); 3776 /* If Active filter size is set we enable establishing 3777 * offload connection through firmware work request 3778 */ 3779 if ((val[0] != val[1]) && (ret >= 0)) { 3780 adap->flags |= FW_OFLD_CONN; 3781 adap->tids.aftid_base = val[0]; 3782 adap->tids.aftid_end = val[1]; 3783 } 3784 3785 /* If we're running on newer firmware, let it know that we're 3786 * prepared to deal with encapsulated CPL messages. Older 3787 * firmware won't understand this and we'll just get 3788 * unencapsulated messages ... 3789 */ 3790 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 3791 val[0] = 1; 3792 (void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val); 3793 3794 /* 3795 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 3796 * capability. Earlier versions of the firmware didn't have the 3797 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 3798 * permission to use ULPTX MEMWRITE DSGL. 3799 */ 3800 if (is_t4(adap->params.chip)) { 3801 adap->params.ulptx_memwrite_dsgl = false; 3802 } else { 3803 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 3804 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 3805 1, params, val); 3806 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 3807 } 3808 3809 /* 3810 * Get device capabilities so we can determine what resources we need 3811 * to manage. 3812 */ 3813 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3814 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3815 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3816 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3817 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 3818 &caps_cmd); 3819 if (ret < 0) 3820 goto bye; 3821 3822 if (caps_cmd.ofldcaps) { 3823 /* query offload-related parameters */ 3824 params[0] = FW_PARAM_DEV(NTID); 3825 params[1] = FW_PARAM_PFVF(SERVER_START); 3826 params[2] = FW_PARAM_PFVF(SERVER_END); 3827 params[3] = FW_PARAM_PFVF(TDDP_START); 3828 params[4] = FW_PARAM_PFVF(TDDP_END); 3829 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3830 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, 3831 params, val); 3832 if (ret < 0) 3833 goto bye; 3834 adap->tids.ntids = val[0]; 3835 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 3836 adap->tids.stid_base = val[1]; 3837 adap->tids.nstids = val[2] - val[1] + 1; 3838 /* 3839 * Setup server filter region. Divide the available filter 3840 * region into two parts. Regular filters get 1/3rd and server 3841 * filters get 2/3rd part. This is only enabled if workarond 3842 * path is enabled. 3843 * 1. For regular filters. 3844 * 2. Server filter: This are special filters which are used 3845 * to redirect SYN packets to offload queue. 3846 */ 3847 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 3848 adap->tids.sftid_base = adap->tids.ftid_base + 3849 DIV_ROUND_UP(adap->tids.nftids, 3); 3850 adap->tids.nsftids = adap->tids.nftids - 3851 DIV_ROUND_UP(adap->tids.nftids, 3); 3852 adap->tids.nftids = adap->tids.sftid_base - 3853 adap->tids.ftid_base; 3854 } 3855 adap->vres.ddp.start = val[3]; 3856 adap->vres.ddp.size = val[4] - val[3] + 1; 3857 adap->params.ofldq_wr_cred = val[5]; 3858 3859 adap->params.offload = 1; 3860 } 3861 if (caps_cmd.rdmacaps) { 3862 params[0] = FW_PARAM_PFVF(STAG_START); 3863 params[1] = FW_PARAM_PFVF(STAG_END); 3864 params[2] = FW_PARAM_PFVF(RQ_START); 3865 params[3] = FW_PARAM_PFVF(RQ_END); 3866 params[4] = FW_PARAM_PFVF(PBL_START); 3867 params[5] = FW_PARAM_PFVF(PBL_END); 3868 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, 3869 params, val); 3870 if (ret < 0) 3871 goto bye; 3872 adap->vres.stag.start = val[0]; 3873 adap->vres.stag.size = val[1] - val[0] + 1; 3874 adap->vres.rq.start = val[2]; 3875 adap->vres.rq.size = val[3] - val[2] + 1; 3876 adap->vres.pbl.start = val[4]; 3877 adap->vres.pbl.size = val[5] - val[4] + 1; 3878 3879 params[0] = FW_PARAM_PFVF(SQRQ_START); 3880 params[1] = FW_PARAM_PFVF(SQRQ_END); 3881 params[2] = FW_PARAM_PFVF(CQ_START); 3882 params[3] = FW_PARAM_PFVF(CQ_END); 3883 params[4] = FW_PARAM_PFVF(OCQ_START); 3884 params[5] = FW_PARAM_PFVF(OCQ_END); 3885 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, 3886 val); 3887 if (ret < 0) 3888 goto bye; 3889 adap->vres.qp.start = val[0]; 3890 adap->vres.qp.size = val[1] - val[0] + 1; 3891 adap->vres.cq.start = val[2]; 3892 adap->vres.cq.size = val[3] - val[2] + 1; 3893 adap->vres.ocq.start = val[4]; 3894 adap->vres.ocq.size = val[5] - val[4] + 1; 3895 3896 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 3897 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 3898 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, 3899 val); 3900 if (ret < 0) { 3901 adap->params.max_ordird_qp = 8; 3902 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 3903 ret = 0; 3904 } else { 3905 adap->params.max_ordird_qp = val[0]; 3906 adap->params.max_ird_adapter = val[1]; 3907 } 3908 dev_info(adap->pdev_dev, 3909 "max_ordird_qp %d max_ird_adapter %d\n", 3910 adap->params.max_ordird_qp, 3911 adap->params.max_ird_adapter); 3912 } 3913 if (caps_cmd.iscsicaps) { 3914 params[0] = FW_PARAM_PFVF(ISCSI_START); 3915 params[1] = FW_PARAM_PFVF(ISCSI_END); 3916 ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, 3917 params, val); 3918 if (ret < 0) 3919 goto bye; 3920 adap->vres.iscsi.start = val[0]; 3921 adap->vres.iscsi.size = val[1] - val[0] + 1; 3922 } 3923 #undef FW_PARAM_PFVF 3924 #undef FW_PARAM_DEV 3925 3926 /* The MTU/MSS Table is initialized by now, so load their values. If 3927 * we're initializing the adapter, then we'll make any modifications 3928 * we want to the MTU/MSS Table and also initialize the congestion 3929 * parameters. 3930 */ 3931 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 3932 if (state != DEV_STATE_INIT) { 3933 int i; 3934 3935 /* The default MTU Table contains values 1492 and 1500. 3936 * However, for TCP, it's better to have two values which are 3937 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 3938 * This allows us to have a TCP Data Payload which is a 3939 * multiple of 8 regardless of what combination of TCP Options 3940 * are in use (always a multiple of 4 bytes) which is 3941 * important for performance reasons. For instance, if no 3942 * options are in use, then we have a 20-byte IP header and a 3943 * 20-byte TCP header. In this case, a 1500-byte MSS would 3944 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 3945 * which is not a multiple of 8. So using an MSS of 1488 in 3946 * this case results in a TCP Data Payload of 1448 bytes which 3947 * is a multiple of 8. On the other hand, if 12-byte TCP Time 3948 * Stamps have been negotiated, then an MTU of 1500 bytes 3949 * results in a TCP Data Payload of 1448 bytes which, as 3950 * above, is a multiple of 8 bytes ... 3951 */ 3952 for (i = 0; i < NMTUS; i++) 3953 if (adap->params.mtus[i] == 1492) { 3954 adap->params.mtus[i] = 1488; 3955 break; 3956 } 3957 3958 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 3959 adap->params.b_wnd); 3960 } 3961 t4_init_sge_params(adap); 3962 t4_init_tp_params(adap); 3963 adap->flags |= FW_OK; 3964 return 0; 3965 3966 /* 3967 * Something bad happened. If a command timed out or failed with EIO 3968 * FW does not operate within its spec or something catastrophic 3969 * happened to HW/FW, stop issuing commands. 3970 */ 3971 bye: 3972 kfree(adap->sge.egr_map); 3973 kfree(adap->sge.ingr_map); 3974 kfree(adap->sge.starving_fl); 3975 kfree(adap->sge.txq_maperr); 3976 if (ret != -ETIMEDOUT && ret != -EIO) 3977 t4_fw_bye(adap, adap->mbox); 3978 return ret; 3979 } 3980 3981 /* EEH callbacks */ 3982 3983 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 3984 pci_channel_state_t state) 3985 { 3986 int i; 3987 struct adapter *adap = pci_get_drvdata(pdev); 3988 3989 if (!adap) 3990 goto out; 3991 3992 rtnl_lock(); 3993 adap->flags &= ~FW_OK; 3994 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 3995 spin_lock(&adap->stats_lock); 3996 for_each_port(adap, i) { 3997 struct net_device *dev = adap->port[i]; 3998 3999 netif_device_detach(dev); 4000 netif_carrier_off(dev); 4001 } 4002 spin_unlock(&adap->stats_lock); 4003 disable_interrupts(adap); 4004 if (adap->flags & FULL_INIT_DONE) 4005 cxgb_down(adap); 4006 rtnl_unlock(); 4007 if ((adap->flags & DEV_ENABLED)) { 4008 pci_disable_device(pdev); 4009 adap->flags &= ~DEV_ENABLED; 4010 } 4011 out: return state == pci_channel_io_perm_failure ? 4012 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4013 } 4014 4015 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4016 { 4017 int i, ret; 4018 struct fw_caps_config_cmd c; 4019 struct adapter *adap = pci_get_drvdata(pdev); 4020 4021 if (!adap) { 4022 pci_restore_state(pdev); 4023 pci_save_state(pdev); 4024 return PCI_ERS_RESULT_RECOVERED; 4025 } 4026 4027 if (!(adap->flags & DEV_ENABLED)) { 4028 if (pci_enable_device(pdev)) { 4029 dev_err(&pdev->dev, "Cannot reenable PCI " 4030 "device after reset\n"); 4031 return PCI_ERS_RESULT_DISCONNECT; 4032 } 4033 adap->flags |= DEV_ENABLED; 4034 } 4035 4036 pci_set_master(pdev); 4037 pci_restore_state(pdev); 4038 pci_save_state(pdev); 4039 pci_cleanup_aer_uncorrect_error_status(pdev); 4040 4041 if (t4_wait_dev_ready(adap->regs) < 0) 4042 return PCI_ERS_RESULT_DISCONNECT; 4043 if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0) 4044 return PCI_ERS_RESULT_DISCONNECT; 4045 adap->flags |= FW_OK; 4046 if (adap_init1(adap, &c)) 4047 return PCI_ERS_RESULT_DISCONNECT; 4048 4049 for_each_port(adap, i) { 4050 struct port_info *p = adap2pinfo(adap, i); 4051 4052 ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1, 4053 NULL, NULL); 4054 if (ret < 0) 4055 return PCI_ERS_RESULT_DISCONNECT; 4056 p->viid = ret; 4057 p->xact_addr_filt = -1; 4058 } 4059 4060 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4061 adap->params.b_wnd); 4062 setup_memwin(adap); 4063 if (cxgb_up(adap)) 4064 return PCI_ERS_RESULT_DISCONNECT; 4065 return PCI_ERS_RESULT_RECOVERED; 4066 } 4067 4068 static void eeh_resume(struct pci_dev *pdev) 4069 { 4070 int i; 4071 struct adapter *adap = pci_get_drvdata(pdev); 4072 4073 if (!adap) 4074 return; 4075 4076 rtnl_lock(); 4077 for_each_port(adap, i) { 4078 struct net_device *dev = adap->port[i]; 4079 4080 if (netif_running(dev)) { 4081 link_start(dev); 4082 cxgb_set_rxmode(dev); 4083 } 4084 netif_device_attach(dev); 4085 } 4086 rtnl_unlock(); 4087 } 4088 4089 static const struct pci_error_handlers cxgb4_eeh = { 4090 .error_detected = eeh_err_detected, 4091 .slot_reset = eeh_slot_reset, 4092 .resume = eeh_resume, 4093 }; 4094 4095 static inline bool is_x_10g_port(const struct link_config *lc) 4096 { 4097 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 || 4098 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0; 4099 } 4100 4101 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q, 4102 unsigned int us, unsigned int cnt, 4103 unsigned int size, unsigned int iqe_size) 4104 { 4105 q->adap = adap; 4106 cxgb4_set_rspq_intr_params(q, us, cnt); 4107 q->iqe_len = iqe_size; 4108 q->size = size; 4109 } 4110 4111 /* 4112 * Perform default configuration of DMA queues depending on the number and type 4113 * of ports we found and the number of available CPUs. Most settings can be 4114 * modified by the admin prior to actual use. 4115 */ 4116 static void cfg_queues(struct adapter *adap) 4117 { 4118 struct sge *s = &adap->sge; 4119 int i, n10g = 0, qidx = 0; 4120 #ifndef CONFIG_CHELSIO_T4_DCB 4121 int q10g = 0; 4122 #endif 4123 int ciq_size; 4124 4125 for_each_port(adap, i) 4126 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4127 #ifdef CONFIG_CHELSIO_T4_DCB 4128 /* For Data Center Bridging support we need to be able to support up 4129 * to 8 Traffic Priorities; each of which will be assigned to its 4130 * own TX Queue in order to prevent Head-Of-Line Blocking. 4131 */ 4132 if (adap->params.nports * 8 > MAX_ETH_QSETS) { 4133 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n", 4134 MAX_ETH_QSETS, adap->params.nports * 8); 4135 BUG_ON(1); 4136 } 4137 4138 for_each_port(adap, i) { 4139 struct port_info *pi = adap2pinfo(adap, i); 4140 4141 pi->first_qset = qidx; 4142 pi->nqsets = 8; 4143 qidx += pi->nqsets; 4144 } 4145 #else /* !CONFIG_CHELSIO_T4_DCB */ 4146 /* 4147 * We default to 1 queue per non-10G port and up to # of cores queues 4148 * per 10G port. 4149 */ 4150 if (n10g) 4151 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 4152 if (q10g > netif_get_num_default_rss_queues()) 4153 q10g = netif_get_num_default_rss_queues(); 4154 4155 for_each_port(adap, i) { 4156 struct port_info *pi = adap2pinfo(adap, i); 4157 4158 pi->first_qset = qidx; 4159 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4160 qidx += pi->nqsets; 4161 } 4162 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4163 4164 s->ethqsets = qidx; 4165 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4166 4167 if (is_offload(adap)) { 4168 /* 4169 * For offload we use 1 queue/channel if all ports are up to 1G, 4170 * otherwise we divide all available queues amongst the channels 4171 * capped by the number of available cores. 4172 */ 4173 if (n10g) { 4174 i = min_t(int, ARRAY_SIZE(s->ofldrxq), 4175 num_online_cpus()); 4176 s->ofldqsets = roundup(i, adap->params.nports); 4177 } else 4178 s->ofldqsets = adap->params.nports; 4179 /* For RDMA one Rx queue per channel suffices */ 4180 s->rdmaqs = adap->params.nports; 4181 /* Try and allow at least 1 CIQ per cpu rounding down 4182 * to the number of ports, with a minimum of 1 per port. 4183 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port. 4184 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port. 4185 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port. 4186 */ 4187 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus()); 4188 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) * 4189 adap->params.nports; 4190 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports); 4191 } 4192 4193 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4194 struct sge_eth_rxq *r = &s->ethrxq[i]; 4195 4196 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4197 r->fl.size = 72; 4198 } 4199 4200 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4201 s->ethtxq[i].q.size = 1024; 4202 4203 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4204 s->ctrlq[i].q.size = 512; 4205 4206 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) 4207 s->ofldtxq[i].q.size = 1024; 4208 4209 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) { 4210 struct sge_ofld_rxq *r = &s->ofldrxq[i]; 4211 4212 init_rspq(adap, &r->rspq, 5, 1, 1024, 64); 4213 r->rspq.uld = CXGB4_ULD_ISCSI; 4214 r->fl.size = 72; 4215 } 4216 4217 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) { 4218 struct sge_ofld_rxq *r = &s->rdmarxq[i]; 4219 4220 init_rspq(adap, &r->rspq, 5, 1, 511, 64); 4221 r->rspq.uld = CXGB4_ULD_RDMA; 4222 r->fl.size = 72; 4223 } 4224 4225 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids; 4226 if (ciq_size > SGE_MAX_IQ_SIZE) { 4227 CH_WARN(adap, "CIQ size too small for available IQs\n"); 4228 ciq_size = SGE_MAX_IQ_SIZE; 4229 } 4230 4231 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) { 4232 struct sge_ofld_rxq *r = &s->rdmaciq[i]; 4233 4234 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64); 4235 r->rspq.uld = CXGB4_ULD_RDMA; 4236 } 4237 4238 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4239 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64); 4240 } 4241 4242 /* 4243 * Reduce the number of Ethernet queues across all ports to at most n. 4244 * n provides at least one queue per port. 4245 */ 4246 static void reduce_ethqs(struct adapter *adap, int n) 4247 { 4248 int i; 4249 struct port_info *pi; 4250 4251 while (n < adap->sge.ethqsets) 4252 for_each_port(adap, i) { 4253 pi = adap2pinfo(adap, i); 4254 if (pi->nqsets > 1) { 4255 pi->nqsets--; 4256 adap->sge.ethqsets--; 4257 if (adap->sge.ethqsets <= n) 4258 break; 4259 } 4260 } 4261 4262 n = 0; 4263 for_each_port(adap, i) { 4264 pi = adap2pinfo(adap, i); 4265 pi->first_qset = n; 4266 n += pi->nqsets; 4267 } 4268 } 4269 4270 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 4271 #define EXTRA_VECS 2 4272 4273 static int enable_msix(struct adapter *adap) 4274 { 4275 int ofld_need = 0; 4276 int i, want, need, allocated; 4277 struct sge *s = &adap->sge; 4278 unsigned int nchan = adap->params.nports; 4279 struct msix_entry *entries; 4280 4281 entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1), 4282 GFP_KERNEL); 4283 if (!entries) 4284 return -ENOMEM; 4285 4286 for (i = 0; i < MAX_INGQ + 1; ++i) 4287 entries[i].entry = i; 4288 4289 want = s->max_ethqsets + EXTRA_VECS; 4290 if (is_offload(adap)) { 4291 want += s->rdmaqs + s->rdmaciqs + s->ofldqsets; 4292 /* need nchan for each possible ULD */ 4293 ofld_need = 3 * nchan; 4294 } 4295 #ifdef CONFIG_CHELSIO_T4_DCB 4296 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 4297 * each port. 4298 */ 4299 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need; 4300 #else 4301 need = adap->params.nports + EXTRA_VECS + ofld_need; 4302 #endif 4303 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 4304 if (allocated < 0) { 4305 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 4306 " not using MSI-X\n"); 4307 kfree(entries); 4308 return allocated; 4309 } 4310 4311 /* Distribute available vectors to the various queue groups. 4312 * Every group gets its minimum requirement and NIC gets top 4313 * priority for leftovers. 4314 */ 4315 i = allocated - EXTRA_VECS - ofld_need; 4316 if (i < s->max_ethqsets) { 4317 s->max_ethqsets = i; 4318 if (i < s->ethqsets) 4319 reduce_ethqs(adap, i); 4320 } 4321 if (is_offload(adap)) { 4322 if (allocated < want) { 4323 s->rdmaqs = nchan; 4324 s->rdmaciqs = nchan; 4325 } 4326 4327 /* leftovers go to OFLD */ 4328 i = allocated - EXTRA_VECS - s->max_ethqsets - 4329 s->rdmaqs - s->rdmaciqs; 4330 s->ofldqsets = (i / nchan) * nchan; /* round down */ 4331 } 4332 for (i = 0; i < allocated; ++i) 4333 adap->msix_info[i].vec = entries[i].vector; 4334 4335 kfree(entries); 4336 return 0; 4337 } 4338 4339 #undef EXTRA_VECS 4340 4341 static int init_rss(struct adapter *adap) 4342 { 4343 unsigned int i, j; 4344 4345 for_each_port(adap, i) { 4346 struct port_info *pi = adap2pinfo(adap, i); 4347 4348 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 4349 if (!pi->rss) 4350 return -ENOMEM; 4351 for (j = 0; j < pi->rss_size; j++) 4352 pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets); 4353 } 4354 return 0; 4355 } 4356 4357 static void print_port_info(const struct net_device *dev) 4358 { 4359 char buf[80]; 4360 char *bufp = buf; 4361 const char *spd = ""; 4362 const struct port_info *pi = netdev_priv(dev); 4363 const struct adapter *adap = pi->adapter; 4364 4365 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 4366 spd = " 2.5 GT/s"; 4367 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 4368 spd = " 5 GT/s"; 4369 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 4370 spd = " 8 GT/s"; 4371 4372 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 4373 bufp += sprintf(bufp, "100/"); 4374 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 4375 bufp += sprintf(bufp, "1000/"); 4376 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 4377 bufp += sprintf(bufp, "10G/"); 4378 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G) 4379 bufp += sprintf(bufp, "40G/"); 4380 if (bufp != buf) 4381 --bufp; 4382 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 4383 4384 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n", 4385 adap->params.vpd.id, 4386 CHELSIO_CHIP_RELEASE(adap->params.chip), buf, 4387 is_offload(adap) ? "R" : "", adap->params.pci.width, spd, 4388 (adap->flags & USING_MSIX) ? " MSI-X" : 4389 (adap->flags & USING_MSI) ? " MSI" : ""); 4390 netdev_info(dev, "S/N: %s, P/N: %s\n", 4391 adap->params.vpd.sn, adap->params.vpd.pn); 4392 } 4393 4394 static void enable_pcie_relaxed_ordering(struct pci_dev *dev) 4395 { 4396 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 4397 } 4398 4399 /* 4400 * Free the following resources: 4401 * - memory used for tables 4402 * - MSI/MSI-X 4403 * - net devices 4404 * - resources FW is holding for us 4405 */ 4406 static void free_some_resources(struct adapter *adapter) 4407 { 4408 unsigned int i; 4409 4410 t4_free_mem(adapter->l2t); 4411 t4_free_mem(adapter->tids.tid_tab); 4412 kfree(adapter->sge.egr_map); 4413 kfree(adapter->sge.ingr_map); 4414 kfree(adapter->sge.starving_fl); 4415 kfree(adapter->sge.txq_maperr); 4416 disable_msi(adapter); 4417 4418 for_each_port(adapter, i) 4419 if (adapter->port[i]) { 4420 kfree(adap2pinfo(adapter, i)->rss); 4421 free_netdev(adapter->port[i]); 4422 } 4423 if (adapter->flags & FW_OK) 4424 t4_fw_bye(adapter, adapter->fn); 4425 } 4426 4427 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 4428 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 4429 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 4430 #define SEGMENT_SIZE 128 4431 4432 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4433 { 4434 int func, i, err, s_qpp, qpp, num_seg; 4435 struct port_info *pi; 4436 bool highdma = false; 4437 struct adapter *adapter = NULL; 4438 void __iomem *regs; 4439 4440 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 4441 4442 err = pci_request_regions(pdev, KBUILD_MODNAME); 4443 if (err) { 4444 /* Just info, some other driver may have claimed the device. */ 4445 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 4446 return err; 4447 } 4448 4449 err = pci_enable_device(pdev); 4450 if (err) { 4451 dev_err(&pdev->dev, "cannot enable PCI device\n"); 4452 goto out_release_regions; 4453 } 4454 4455 regs = pci_ioremap_bar(pdev, 0); 4456 if (!regs) { 4457 dev_err(&pdev->dev, "cannot map device registers\n"); 4458 err = -ENOMEM; 4459 goto out_disable_device; 4460 } 4461 4462 err = t4_wait_dev_ready(regs); 4463 if (err < 0) 4464 goto out_unmap_bar0; 4465 4466 /* We control everything through one PF */ 4467 func = SOURCEPF_G(readl(regs + PL_WHOAMI_A)); 4468 if (func != ent->driver_data) { 4469 iounmap(regs); 4470 pci_disable_device(pdev); 4471 pci_save_state(pdev); /* to restore SR-IOV later */ 4472 goto sriov; 4473 } 4474 4475 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4476 highdma = true; 4477 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4478 if (err) { 4479 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 4480 "coherent allocations\n"); 4481 goto out_unmap_bar0; 4482 } 4483 } else { 4484 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4485 if (err) { 4486 dev_err(&pdev->dev, "no usable DMA configuration\n"); 4487 goto out_unmap_bar0; 4488 } 4489 } 4490 4491 pci_enable_pcie_error_reporting(pdev); 4492 enable_pcie_relaxed_ordering(pdev); 4493 pci_set_master(pdev); 4494 pci_save_state(pdev); 4495 4496 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4497 if (!adapter) { 4498 err = -ENOMEM; 4499 goto out_unmap_bar0; 4500 } 4501 4502 adapter->workq = create_singlethread_workqueue("cxgb4"); 4503 if (!adapter->workq) { 4504 err = -ENOMEM; 4505 goto out_free_adapter; 4506 } 4507 4508 /* PCI device has been enabled */ 4509 adapter->flags |= DEV_ENABLED; 4510 4511 adapter->regs = regs; 4512 adapter->pdev = pdev; 4513 adapter->pdev_dev = &pdev->dev; 4514 adapter->mbox = func; 4515 adapter->fn = func; 4516 adapter->msg_enable = dflt_msg_enable; 4517 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 4518 4519 spin_lock_init(&adapter->stats_lock); 4520 spin_lock_init(&adapter->tid_release_lock); 4521 spin_lock_init(&adapter->win0_lock); 4522 4523 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 4524 INIT_WORK(&adapter->db_full_task, process_db_full); 4525 INIT_WORK(&adapter->db_drop_task, process_db_drop); 4526 4527 err = t4_prep_adapter(adapter); 4528 if (err) 4529 goto out_free_adapter; 4530 4531 4532 if (!is_t4(adapter->params.chip)) { 4533 s_qpp = (QUEUESPERPAGEPF0_S + 4534 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 4535 adapter->fn); 4536 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 4537 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 4538 num_seg = PAGE_SIZE / SEGMENT_SIZE; 4539 4540 /* Each segment size is 128B. Write coalescing is enabled only 4541 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 4542 * queue is less no of segments that can be accommodated in 4543 * a page size. 4544 */ 4545 if (qpp > num_seg) { 4546 dev_err(&pdev->dev, 4547 "Incorrect number of egress queues per page\n"); 4548 err = -EINVAL; 4549 goto out_free_adapter; 4550 } 4551 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 4552 pci_resource_len(pdev, 2)); 4553 if (!adapter->bar2) { 4554 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 4555 err = -ENOMEM; 4556 goto out_free_adapter; 4557 } 4558 } 4559 4560 setup_memwin(adapter); 4561 err = adap_init0(adapter); 4562 setup_memwin_rdma(adapter); 4563 if (err) 4564 goto out_unmap_bar; 4565 4566 for_each_port(adapter, i) { 4567 struct net_device *netdev; 4568 4569 netdev = alloc_etherdev_mq(sizeof(struct port_info), 4570 MAX_ETH_QSETS); 4571 if (!netdev) { 4572 err = -ENOMEM; 4573 goto out_free_dev; 4574 } 4575 4576 SET_NETDEV_DEV(netdev, &pdev->dev); 4577 4578 adapter->port[i] = netdev; 4579 pi = netdev_priv(netdev); 4580 pi->adapter = adapter; 4581 pi->xact_addr_filt = -1; 4582 pi->port_id = i; 4583 netdev->irq = pdev->irq; 4584 4585 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 4586 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4587 NETIF_F_RXCSUM | NETIF_F_RXHASH | 4588 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 4589 if (highdma) 4590 netdev->hw_features |= NETIF_F_HIGHDMA; 4591 netdev->features |= netdev->hw_features; 4592 netdev->vlan_features = netdev->features & VLAN_FEAT; 4593 4594 netdev->priv_flags |= IFF_UNICAST_FLT; 4595 4596 netdev->netdev_ops = &cxgb4_netdev_ops; 4597 #ifdef CONFIG_CHELSIO_T4_DCB 4598 netdev->dcbnl_ops = &cxgb4_dcb_ops; 4599 cxgb4_dcb_state_init(netdev); 4600 #endif 4601 cxgb4_set_ethtool_ops(netdev); 4602 } 4603 4604 pci_set_drvdata(pdev, adapter); 4605 4606 if (adapter->flags & FW_OK) { 4607 err = t4_port_init(adapter, func, func, 0); 4608 if (err) 4609 goto out_free_dev; 4610 } 4611 4612 /* 4613 * Configure queues and allocate tables now, they can be needed as 4614 * soon as the first register_netdev completes. 4615 */ 4616 cfg_queues(adapter); 4617 4618 adapter->l2t = t4_init_l2t(); 4619 if (!adapter->l2t) { 4620 /* We tolerate a lack of L2T, giving up some functionality */ 4621 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 4622 adapter->params.offload = 0; 4623 } 4624 4625 #if IS_ENABLED(CONFIG_IPV6) 4626 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 4627 adapter->clipt_end); 4628 if (!adapter->clipt) { 4629 /* We tolerate a lack of clip_table, giving up 4630 * some functionality 4631 */ 4632 dev_warn(&pdev->dev, 4633 "could not allocate Clip table, continuing\n"); 4634 adapter->params.offload = 0; 4635 } 4636 #endif 4637 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) { 4638 dev_warn(&pdev->dev, "could not allocate TID table, " 4639 "continuing\n"); 4640 adapter->params.offload = 0; 4641 } 4642 4643 /* See what interrupts we'll be using */ 4644 if (msi > 1 && enable_msix(adapter) == 0) 4645 adapter->flags |= USING_MSIX; 4646 else if (msi > 0 && pci_enable_msi(pdev) == 0) 4647 adapter->flags |= USING_MSI; 4648 4649 err = init_rss(adapter); 4650 if (err) 4651 goto out_free_dev; 4652 4653 /* 4654 * The card is now ready to go. If any errors occur during device 4655 * registration we do not fail the whole card but rather proceed only 4656 * with the ports we manage to register successfully. However we must 4657 * register at least one net device. 4658 */ 4659 for_each_port(adapter, i) { 4660 pi = adap2pinfo(adapter, i); 4661 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 4662 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 4663 4664 err = register_netdev(adapter->port[i]); 4665 if (err) 4666 break; 4667 adapter->chan_map[pi->tx_chan] = i; 4668 print_port_info(adapter->port[i]); 4669 } 4670 if (i == 0) { 4671 dev_err(&pdev->dev, "could not register any net devices\n"); 4672 goto out_free_dev; 4673 } 4674 if (err) { 4675 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 4676 err = 0; 4677 } 4678 4679 if (cxgb4_debugfs_root) { 4680 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 4681 cxgb4_debugfs_root); 4682 setup_debugfs(adapter); 4683 } 4684 4685 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 4686 pdev->needs_freset = 1; 4687 4688 if (is_offload(adapter)) 4689 attach_ulds(adapter); 4690 4691 sriov: 4692 #ifdef CONFIG_PCI_IOV 4693 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) 4694 if (pci_enable_sriov(pdev, num_vf[func]) == 0) 4695 dev_info(&pdev->dev, 4696 "instantiated %u virtual functions\n", 4697 num_vf[func]); 4698 #endif 4699 return 0; 4700 4701 out_free_dev: 4702 free_some_resources(adapter); 4703 out_unmap_bar: 4704 if (!is_t4(adapter->params.chip)) 4705 iounmap(adapter->bar2); 4706 out_free_adapter: 4707 if (adapter->workq) 4708 destroy_workqueue(adapter->workq); 4709 4710 kfree(adapter); 4711 out_unmap_bar0: 4712 iounmap(regs); 4713 out_disable_device: 4714 pci_disable_pcie_error_reporting(pdev); 4715 pci_disable_device(pdev); 4716 out_release_regions: 4717 pci_release_regions(pdev); 4718 return err; 4719 } 4720 4721 static void remove_one(struct pci_dev *pdev) 4722 { 4723 struct adapter *adapter = pci_get_drvdata(pdev); 4724 4725 #ifdef CONFIG_PCI_IOV 4726 pci_disable_sriov(pdev); 4727 4728 #endif 4729 4730 if (adapter) { 4731 int i; 4732 4733 /* Tear down per-adapter Work Queue first since it can contain 4734 * references to our adapter data structure. 4735 */ 4736 destroy_workqueue(adapter->workq); 4737 4738 if (is_offload(adapter)) 4739 detach_ulds(adapter); 4740 4741 disable_interrupts(adapter); 4742 4743 for_each_port(adapter, i) 4744 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 4745 unregister_netdev(adapter->port[i]); 4746 4747 debugfs_remove_recursive(adapter->debugfs_root); 4748 4749 /* If we allocated filters, free up state associated with any 4750 * valid filters ... 4751 */ 4752 if (adapter->tids.ftid_tab) { 4753 struct filter_entry *f = &adapter->tids.ftid_tab[0]; 4754 for (i = 0; i < (adapter->tids.nftids + 4755 adapter->tids.nsftids); i++, f++) 4756 if (f->valid) 4757 clear_filter(adapter, f); 4758 } 4759 4760 if (adapter->flags & FULL_INIT_DONE) 4761 cxgb_down(adapter); 4762 4763 free_some_resources(adapter); 4764 #if IS_ENABLED(CONFIG_IPV6) 4765 t4_cleanup_clip_tbl(adapter); 4766 #endif 4767 iounmap(adapter->regs); 4768 if (!is_t4(adapter->params.chip)) 4769 iounmap(adapter->bar2); 4770 pci_disable_pcie_error_reporting(pdev); 4771 if ((adapter->flags & DEV_ENABLED)) { 4772 pci_disable_device(pdev); 4773 adapter->flags &= ~DEV_ENABLED; 4774 } 4775 pci_release_regions(pdev); 4776 synchronize_rcu(); 4777 kfree(adapter); 4778 } else 4779 pci_release_regions(pdev); 4780 } 4781 4782 static struct pci_driver cxgb4_driver = { 4783 .name = KBUILD_MODNAME, 4784 .id_table = cxgb4_pci_tbl, 4785 .probe = init_one, 4786 .remove = remove_one, 4787 .shutdown = remove_one, 4788 .err_handler = &cxgb4_eeh, 4789 }; 4790 4791 static int __init cxgb4_init_module(void) 4792 { 4793 int ret; 4794 4795 /* Debugfs support is optional, just warn if this fails */ 4796 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 4797 if (!cxgb4_debugfs_root) 4798 pr_warn("could not create debugfs entry, continuing\n"); 4799 4800 ret = pci_register_driver(&cxgb4_driver); 4801 if (ret < 0) 4802 debugfs_remove(cxgb4_debugfs_root); 4803 4804 #if IS_ENABLED(CONFIG_IPV6) 4805 if (!inet6addr_registered) { 4806 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 4807 inet6addr_registered = true; 4808 } 4809 #endif 4810 4811 return ret; 4812 } 4813 4814 static void __exit cxgb4_cleanup_module(void) 4815 { 4816 #if IS_ENABLED(CONFIG_IPV6) 4817 if (inet6addr_registered) { 4818 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 4819 inet6addr_registered = false; 4820 } 4821 #endif 4822 pci_unregister_driver(&cxgb4_driver); 4823 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 4824 } 4825 4826 module_init(cxgb4_init_module); 4827 module_exit(cxgb4_cleanup_module); 4828