1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67 
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78 
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80 
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5 Network Driver"
87 
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95 	/* Administrative fields for filter.
96 	 */
97 	u32 valid:1;            /* filter allocated and valid */
98 	u32 locked:1;           /* filter is administratively locked */
99 
100 	u32 pending:1;          /* filter action is pending firmware reply */
101 	u32 smtidx:8;           /* Source MAC Table index for smac */
102 	struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103 
104 	/* The filter itself.  Most of this is a straight copy of information
105 	 * provided by the extended ioctl().  Some fields are translated to
106 	 * internal forms -- for instance the Ingress Queue ID passed in from
107 	 * the ioctl() is translated into the Absolute Ingress Queue ID.
108 	 */
109 	struct ch_filter_specification fs;
110 };
111 
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115 
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119 	static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121 
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126 
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
129 
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131 		{ 0, } \
132 	}
133 
134 #include "t4_pci_id_tbl.h"
135 
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW4_CFNAME "cxgb4/t4-config.txt"
139 #define FW5_CFNAME "cxgb4/t5-config.txt"
140 
141 MODULE_DESCRIPTION(DRV_DESC);
142 MODULE_AUTHOR("Chelsio Communications");
143 MODULE_LICENSE("Dual BSD/GPL");
144 MODULE_VERSION(DRV_VERSION);
145 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
146 MODULE_FIRMWARE(FW4_FNAME);
147 MODULE_FIRMWARE(FW5_FNAME);
148 
149 /*
150  * Normally we're willing to become the firmware's Master PF but will be happy
151  * if another PF has already become the Master and initialized the adapter.
152  * Setting "force_init" will cause this driver to forcibly establish itself as
153  * the Master PF and initialize the adapter.
154  */
155 static uint force_init;
156 
157 module_param(force_init, uint, 0644);
158 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
159 
160 /*
161  * Normally if the firmware we connect to has Configuration File support, we
162  * use that and only fall back to the old Driver-based initialization if the
163  * Configuration File fails for some reason.  If force_old_init is set, then
164  * we'll always use the old Driver-based initialization sequence.
165  */
166 static uint force_old_init;
167 
168 module_param(force_old_init, uint, 0644);
169 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
170 		 " parameter");
171 
172 static int dflt_msg_enable = DFLT_MSG_ENABLE;
173 
174 module_param(dflt_msg_enable, int, 0644);
175 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
176 
177 /*
178  * The driver uses the best interrupt scheme available on a platform in the
179  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
180  * of these schemes the driver may consider as follows:
181  *
182  * msi = 2: choose from among all three options
183  * msi = 1: only consider MSI and INTx interrupts
184  * msi = 0: force INTx interrupts
185  */
186 static int msi = 2;
187 
188 module_param(msi, int, 0644);
189 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
190 
191 /*
192  * Queue interrupt hold-off timer values.  Queues default to the first of these
193  * upon creation.
194  */
195 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
196 
197 module_param_array(intr_holdoff, uint, NULL, 0644);
198 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
199 		 "0..4 in microseconds, deprecated parameter");
200 
201 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
202 
203 module_param_array(intr_cnt, uint, NULL, 0644);
204 MODULE_PARM_DESC(intr_cnt,
205 		 "thresholds 1..3 for queue interrupt packet counters, "
206 		 "deprecated parameter");
207 
208 /*
209  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
210  * offset by 2 bytes in order to have the IP headers line up on 4-byte
211  * boundaries.  This is a requirement for many architectures which will throw
212  * a machine check fault if an attempt is made to access one of the 4-byte IP
213  * header fields on a non-4-byte boundary.  And it's a major performance issue
214  * even on some architectures which allow it like some implementations of the
215  * x86 ISA.  However, some architectures don't mind this and for some very
216  * edge-case performance sensitive applications (like forwarding large volumes
217  * of small packets), setting this DMA offset to 0 will decrease the number of
218  * PCI-E Bus transfers enough to measurably affect performance.
219  */
220 static int rx_dma_offset = 2;
221 
222 static bool vf_acls;
223 
224 #ifdef CONFIG_PCI_IOV
225 module_param(vf_acls, bool, 0644);
226 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
227 		 "deprecated parameter");
228 
229 /* Configure the number of PCI-E Virtual Function which are to be instantiated
230  * on SR-IOV Capable Physical Functions.
231  */
232 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
233 
234 module_param_array(num_vf, uint, NULL, 0644);
235 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
236 #endif
237 
238 /* TX Queue select used to determine what algorithm to use for selecting TX
239  * queue. Select between the kernel provided function (select_queue=0) or user
240  * cxgb_select_queue function (select_queue=1)
241  *
242  * Default: select_queue=0
243  */
244 static int select_queue;
245 module_param(select_queue, int, 0644);
246 MODULE_PARM_DESC(select_queue,
247 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
248 
249 static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
250 
251 module_param(tp_vlan_pri_map, uint, 0644);
252 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
253 		 "deprecated parameter");
254 
255 static struct dentry *cxgb4_debugfs_root;
256 
257 static LIST_HEAD(adapter_list);
258 static DEFINE_MUTEX(uld_mutex);
259 /* Adapter list to be accessed from atomic context */
260 static LIST_HEAD(adap_rcu_list);
261 static DEFINE_SPINLOCK(adap_rcu_lock);
262 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
263 static const char *uld_str[] = { "RDMA", "iSCSI" };
264 
265 static void link_report(struct net_device *dev)
266 {
267 	if (!netif_carrier_ok(dev))
268 		netdev_info(dev, "link down\n");
269 	else {
270 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
271 
272 		const char *s = "10Mbps";
273 		const struct port_info *p = netdev_priv(dev);
274 
275 		switch (p->link_cfg.speed) {
276 		case 10000:
277 			s = "10Gbps";
278 			break;
279 		case 1000:
280 			s = "1000Mbps";
281 			break;
282 		case 100:
283 			s = "100Mbps";
284 			break;
285 		case 40000:
286 			s = "40Gbps";
287 			break;
288 		}
289 
290 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
291 			    fc[p->link_cfg.fc]);
292 	}
293 }
294 
295 #ifdef CONFIG_CHELSIO_T4_DCB
296 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
297 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
298 {
299 	struct port_info *pi = netdev_priv(dev);
300 	struct adapter *adap = pi->adapter;
301 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
302 	int i;
303 
304 	/* We use a simple mapping of Port TX Queue Index to DCB
305 	 * Priority when we're enabling DCB.
306 	 */
307 	for (i = 0; i < pi->nqsets; i++, txq++) {
308 		u32 name, value;
309 		int err;
310 
311 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
312 			FW_PARAMS_PARAM_X_V(
313 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
314 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
315 		value = enable ? i : 0xffffffff;
316 
317 		/* Since we can be called while atomic (from "interrupt
318 		 * level") we need to issue the Set Parameters Commannd
319 		 * without sleeping (timeout < 0).
320 		 */
321 		err = t4_set_params_nosleep(adap, adap->mbox, adap->fn, 0, 1,
322 					    &name, &value);
323 
324 		if (err)
325 			dev_err(adap->pdev_dev,
326 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
327 				enable ? "set" : "unset", pi->port_id, i, -err);
328 		else
329 			txq->dcb_prio = value;
330 	}
331 }
332 #endif /* CONFIG_CHELSIO_T4_DCB */
333 
334 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
335 {
336 	struct net_device *dev = adapter->port[port_id];
337 
338 	/* Skip changes from disabled ports. */
339 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
340 		if (link_stat)
341 			netif_carrier_on(dev);
342 		else {
343 #ifdef CONFIG_CHELSIO_T4_DCB
344 			cxgb4_dcb_state_init(dev);
345 			dcb_tx_queue_prio_enable(dev, false);
346 #endif /* CONFIG_CHELSIO_T4_DCB */
347 			netif_carrier_off(dev);
348 		}
349 
350 		link_report(dev);
351 	}
352 }
353 
354 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
355 {
356 	static const char *mod_str[] = {
357 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
358 	};
359 
360 	const struct net_device *dev = adap->port[port_id];
361 	const struct port_info *pi = netdev_priv(dev);
362 
363 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
364 		netdev_info(dev, "port module unplugged\n");
365 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
366 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
367 }
368 
369 /*
370  * Configure the exact and hash address filters to handle a port's multicast
371  * and secondary unicast MAC addresses.
372  */
373 static int set_addr_filters(const struct net_device *dev, bool sleep)
374 {
375 	u64 mhash = 0;
376 	u64 uhash = 0;
377 	bool free = true;
378 	u16 filt_idx[7];
379 	const u8 *addr[7];
380 	int ret, naddr = 0;
381 	const struct netdev_hw_addr *ha;
382 	int uc_cnt = netdev_uc_count(dev);
383 	int mc_cnt = netdev_mc_count(dev);
384 	const struct port_info *pi = netdev_priv(dev);
385 	unsigned int mb = pi->adapter->fn;
386 
387 	/* first do the secondary unicast addresses */
388 	netdev_for_each_uc_addr(ha, dev) {
389 		addr[naddr++] = ha->addr;
390 		if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
391 			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
392 					naddr, addr, filt_idx, &uhash, sleep);
393 			if (ret < 0)
394 				return ret;
395 
396 			free = false;
397 			naddr = 0;
398 		}
399 	}
400 
401 	/* next set up the multicast addresses */
402 	netdev_for_each_mc_addr(ha, dev) {
403 		addr[naddr++] = ha->addr;
404 		if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
405 			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
406 					naddr, addr, filt_idx, &mhash, sleep);
407 			if (ret < 0)
408 				return ret;
409 
410 			free = false;
411 			naddr = 0;
412 		}
413 	}
414 
415 	return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
416 				uhash | mhash, sleep);
417 }
418 
419 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
420 module_param(dbfifo_int_thresh, int, 0644);
421 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
422 
423 /*
424  * usecs to sleep while draining the dbfifo
425  */
426 static int dbfifo_drain_delay = 1000;
427 module_param(dbfifo_drain_delay, int, 0644);
428 MODULE_PARM_DESC(dbfifo_drain_delay,
429 		 "usecs to sleep while draining the dbfifo");
430 
431 /*
432  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
433  * If @mtu is -1 it is left unchanged.
434  */
435 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
436 {
437 	int ret;
438 	struct port_info *pi = netdev_priv(dev);
439 
440 	ret = set_addr_filters(dev, sleep_ok);
441 	if (ret == 0)
442 		ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
443 				    (dev->flags & IFF_PROMISC) ? 1 : 0,
444 				    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
445 				    sleep_ok);
446 	return ret;
447 }
448 
449 /**
450  *	link_start - enable a port
451  *	@dev: the port to enable
452  *
453  *	Performs the MAC and PHY actions needed to enable a port.
454  */
455 static int link_start(struct net_device *dev)
456 {
457 	int ret;
458 	struct port_info *pi = netdev_priv(dev);
459 	unsigned int mb = pi->adapter->fn;
460 
461 	/*
462 	 * We do not set address filters and promiscuity here, the stack does
463 	 * that step explicitly.
464 	 */
465 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
466 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
467 	if (ret == 0) {
468 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
469 				    pi->xact_addr_filt, dev->dev_addr, true,
470 				    true);
471 		if (ret >= 0) {
472 			pi->xact_addr_filt = ret;
473 			ret = 0;
474 		}
475 	}
476 	if (ret == 0)
477 		ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
478 				    &pi->link_cfg);
479 	if (ret == 0) {
480 		local_bh_disable();
481 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
482 					  true, CXGB4_DCB_ENABLED);
483 		local_bh_enable();
484 	}
485 
486 	return ret;
487 }
488 
489 int cxgb4_dcb_enabled(const struct net_device *dev)
490 {
491 #ifdef CONFIG_CHELSIO_T4_DCB
492 	struct port_info *pi = netdev_priv(dev);
493 
494 	if (!pi->dcb.enabled)
495 		return 0;
496 
497 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
498 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
499 #else
500 	return 0;
501 #endif
502 }
503 EXPORT_SYMBOL(cxgb4_dcb_enabled);
504 
505 #ifdef CONFIG_CHELSIO_T4_DCB
506 /* Handle a Data Center Bridging update message from the firmware. */
507 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
508 {
509 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
510 	struct net_device *dev = adap->port[port];
511 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
512 	int new_dcb_enabled;
513 
514 	cxgb4_dcb_handle_fw_update(adap, pcmd);
515 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
516 
517 	/* If the DCB has become enabled or disabled on the port then we're
518 	 * going to need to set up/tear down DCB Priority parameters for the
519 	 * TX Queues associated with the port.
520 	 */
521 	if (new_dcb_enabled != old_dcb_enabled)
522 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
523 }
524 #endif /* CONFIG_CHELSIO_T4_DCB */
525 
526 /* Clear a filter and release any of its resources that we own.  This also
527  * clears the filter's "pending" status.
528  */
529 static void clear_filter(struct adapter *adap, struct filter_entry *f)
530 {
531 	/* If the new or old filter have loopback rewriteing rules then we'll
532 	 * need to free any existing Layer Two Table (L2T) entries of the old
533 	 * filter rule.  The firmware will handle freeing up any Source MAC
534 	 * Table (SMT) entries used for rewriting Source MAC Addresses in
535 	 * loopback rules.
536 	 */
537 	if (f->l2t)
538 		cxgb4_l2t_release(f->l2t);
539 
540 	/* The zeroing of the filter rule below clears the filter valid,
541 	 * pending, locked flags, l2t pointer, etc. so it's all we need for
542 	 * this operation.
543 	 */
544 	memset(f, 0, sizeof(*f));
545 }
546 
547 /* Handle a filter write/deletion reply.
548  */
549 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
550 {
551 	unsigned int idx = GET_TID(rpl);
552 	unsigned int nidx = idx - adap->tids.ftid_base;
553 	unsigned int ret;
554 	struct filter_entry *f;
555 
556 	if (idx >= adap->tids.ftid_base && nidx <
557 	   (adap->tids.nftids + adap->tids.nsftids)) {
558 		idx = nidx;
559 		ret = TCB_COOKIE_G(rpl->cookie);
560 		f = &adap->tids.ftid_tab[idx];
561 
562 		if (ret == FW_FILTER_WR_FLT_DELETED) {
563 			/* Clear the filter when we get confirmation from the
564 			 * hardware that the filter has been deleted.
565 			 */
566 			clear_filter(adap, f);
567 		} else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
568 			dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
569 				idx);
570 			clear_filter(adap, f);
571 		} else if (ret == FW_FILTER_WR_FLT_ADDED) {
572 			f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
573 			f->pending = 0;  /* asynchronous setup completed */
574 			f->valid = 1;
575 		} else {
576 			/* Something went wrong.  Issue a warning about the
577 			 * problem and clear everything out.
578 			 */
579 			dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
580 				idx, ret);
581 			clear_filter(adap, f);
582 		}
583 	}
584 }
585 
586 /* Response queue handler for the FW event queue.
587  */
588 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
589 			  const struct pkt_gl *gl)
590 {
591 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
592 
593 	rsp++;                                          /* skip RSS header */
594 
595 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
596 	 */
597 	if (unlikely(opcode == CPL_FW4_MSG &&
598 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
599 		rsp++;
600 		opcode = ((const struct rss_header *)rsp)->opcode;
601 		rsp++;
602 		if (opcode != CPL_SGE_EGR_UPDATE) {
603 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
604 				, opcode);
605 			goto out;
606 		}
607 	}
608 
609 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
610 		const struct cpl_sge_egr_update *p = (void *)rsp;
611 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
612 		struct sge_txq *txq;
613 
614 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
615 		txq->restarts++;
616 		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
617 			struct sge_eth_txq *eq;
618 
619 			eq = container_of(txq, struct sge_eth_txq, q);
620 			netif_tx_wake_queue(eq->txq);
621 		} else {
622 			struct sge_ofld_txq *oq;
623 
624 			oq = container_of(txq, struct sge_ofld_txq, q);
625 			tasklet_schedule(&oq->qresume_tsk);
626 		}
627 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
628 		const struct cpl_fw6_msg *p = (void *)rsp;
629 
630 #ifdef CONFIG_CHELSIO_T4_DCB
631 		const struct fw_port_cmd *pcmd = (const void *)p->data;
632 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
633 		unsigned int action =
634 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
635 
636 		if (cmd == FW_PORT_CMD &&
637 		    action == FW_PORT_ACTION_GET_PORT_INFO) {
638 			int port = FW_PORT_CMD_PORTID_G(
639 					be32_to_cpu(pcmd->op_to_portid));
640 			struct net_device *dev = q->adap->port[port];
641 			int state_input = ((pcmd->u.info.dcbxdis_pkd &
642 					    FW_PORT_CMD_DCBXDIS_F)
643 					   ? CXGB4_DCB_INPUT_FW_DISABLED
644 					   : CXGB4_DCB_INPUT_FW_ENABLED);
645 
646 			cxgb4_dcb_state_fsm(dev, state_input);
647 		}
648 
649 		if (cmd == FW_PORT_CMD &&
650 		    action == FW_PORT_ACTION_L2_DCB_CFG)
651 			dcb_rpl(q->adap, pcmd);
652 		else
653 #endif
654 			if (p->type == 0)
655 				t4_handle_fw_rpl(q->adap, p->data);
656 	} else if (opcode == CPL_L2T_WRITE_RPL) {
657 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
658 
659 		do_l2t_write_rpl(q->adap, p);
660 	} else if (opcode == CPL_SET_TCB_RPL) {
661 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
662 
663 		filter_rpl(q->adap, p);
664 	} else
665 		dev_err(q->adap->pdev_dev,
666 			"unexpected CPL %#x on FW event queue\n", opcode);
667 out:
668 	return 0;
669 }
670 
671 /**
672  *	uldrx_handler - response queue handler for ULD queues
673  *	@q: the response queue that received the packet
674  *	@rsp: the response queue descriptor holding the offload message
675  *	@gl: the gather list of packet fragments
676  *
677  *	Deliver an ingress offload packet to a ULD.  All processing is done by
678  *	the ULD, we just maintain statistics.
679  */
680 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
681 			 const struct pkt_gl *gl)
682 {
683 	struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
684 
685 	/* FW can send CPLs encapsulated in a CPL_FW4_MSG.
686 	 */
687 	if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
688 	    ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
689 		rsp += 2;
690 
691 	if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
692 		rxq->stats.nomem++;
693 		return -1;
694 	}
695 	if (gl == NULL)
696 		rxq->stats.imm++;
697 	else if (gl == CXGB4_MSG_AN)
698 		rxq->stats.an++;
699 	else
700 		rxq->stats.pkts++;
701 	return 0;
702 }
703 
704 static void disable_msi(struct adapter *adapter)
705 {
706 	if (adapter->flags & USING_MSIX) {
707 		pci_disable_msix(adapter->pdev);
708 		adapter->flags &= ~USING_MSIX;
709 	} else if (adapter->flags & USING_MSI) {
710 		pci_disable_msi(adapter->pdev);
711 		adapter->flags &= ~USING_MSI;
712 	}
713 }
714 
715 /*
716  * Interrupt handler for non-data events used with MSI-X.
717  */
718 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
719 {
720 	struct adapter *adap = cookie;
721 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
722 
723 	if (v & PFSW_F) {
724 		adap->swintr = 1;
725 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
726 	}
727 	if (adap->flags & MASTER_PF)
728 		t4_slow_intr_handler(adap);
729 	return IRQ_HANDLED;
730 }
731 
732 /*
733  * Name the MSI-X interrupts.
734  */
735 static void name_msix_vecs(struct adapter *adap)
736 {
737 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
738 
739 	/* non-data interrupts */
740 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
741 
742 	/* FW events */
743 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
744 		 adap->port[0]->name);
745 
746 	/* Ethernet queues */
747 	for_each_port(adap, j) {
748 		struct net_device *d = adap->port[j];
749 		const struct port_info *pi = netdev_priv(d);
750 
751 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
752 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
753 				 d->name, i);
754 	}
755 
756 	/* offload queues */
757 	for_each_ofldrxq(&adap->sge, i)
758 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
759 			 adap->port[0]->name, i);
760 
761 	for_each_rdmarxq(&adap->sge, i)
762 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
763 			 adap->port[0]->name, i);
764 
765 	for_each_rdmaciq(&adap->sge, i)
766 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
767 			 adap->port[0]->name, i);
768 }
769 
770 static int request_msix_queue_irqs(struct adapter *adap)
771 {
772 	struct sge *s = &adap->sge;
773 	int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
774 	int msi_index = 2;
775 
776 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
777 			  adap->msix_info[1].desc, &s->fw_evtq);
778 	if (err)
779 		return err;
780 
781 	for_each_ethrxq(s, ethqidx) {
782 		err = request_irq(adap->msix_info[msi_index].vec,
783 				  t4_sge_intr_msix, 0,
784 				  adap->msix_info[msi_index].desc,
785 				  &s->ethrxq[ethqidx].rspq);
786 		if (err)
787 			goto unwind;
788 		msi_index++;
789 	}
790 	for_each_ofldrxq(s, ofldqidx) {
791 		err = request_irq(adap->msix_info[msi_index].vec,
792 				  t4_sge_intr_msix, 0,
793 				  adap->msix_info[msi_index].desc,
794 				  &s->ofldrxq[ofldqidx].rspq);
795 		if (err)
796 			goto unwind;
797 		msi_index++;
798 	}
799 	for_each_rdmarxq(s, rdmaqidx) {
800 		err = request_irq(adap->msix_info[msi_index].vec,
801 				  t4_sge_intr_msix, 0,
802 				  adap->msix_info[msi_index].desc,
803 				  &s->rdmarxq[rdmaqidx].rspq);
804 		if (err)
805 			goto unwind;
806 		msi_index++;
807 	}
808 	for_each_rdmaciq(s, rdmaciqqidx) {
809 		err = request_irq(adap->msix_info[msi_index].vec,
810 				  t4_sge_intr_msix, 0,
811 				  adap->msix_info[msi_index].desc,
812 				  &s->rdmaciq[rdmaciqqidx].rspq);
813 		if (err)
814 			goto unwind;
815 		msi_index++;
816 	}
817 	return 0;
818 
819 unwind:
820 	while (--rdmaciqqidx >= 0)
821 		free_irq(adap->msix_info[--msi_index].vec,
822 			 &s->rdmaciq[rdmaciqqidx].rspq);
823 	while (--rdmaqidx >= 0)
824 		free_irq(adap->msix_info[--msi_index].vec,
825 			 &s->rdmarxq[rdmaqidx].rspq);
826 	while (--ofldqidx >= 0)
827 		free_irq(adap->msix_info[--msi_index].vec,
828 			 &s->ofldrxq[ofldqidx].rspq);
829 	while (--ethqidx >= 0)
830 		free_irq(adap->msix_info[--msi_index].vec,
831 			 &s->ethrxq[ethqidx].rspq);
832 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
833 	return err;
834 }
835 
836 static void free_msix_queue_irqs(struct adapter *adap)
837 {
838 	int i, msi_index = 2;
839 	struct sge *s = &adap->sge;
840 
841 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
842 	for_each_ethrxq(s, i)
843 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
844 	for_each_ofldrxq(s, i)
845 		free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
846 	for_each_rdmarxq(s, i)
847 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
848 	for_each_rdmaciq(s, i)
849 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
850 }
851 
852 /**
853  *	cxgb4_write_rss - write the RSS table for a given port
854  *	@pi: the port
855  *	@queues: array of queue indices for RSS
856  *
857  *	Sets up the portion of the HW RSS table for the port's VI to distribute
858  *	packets to the Rx queues in @queues.
859  */
860 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
861 {
862 	u16 *rss;
863 	int i, err;
864 	const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
865 
866 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
867 	if (!rss)
868 		return -ENOMEM;
869 
870 	/* map the queue indices to queue ids */
871 	for (i = 0; i < pi->rss_size; i++, queues++)
872 		rss[i] = q[*queues].rspq.abs_id;
873 
874 	err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
875 				  pi->rss_size, rss, pi->rss_size);
876 	kfree(rss);
877 	return err;
878 }
879 
880 /**
881  *	setup_rss - configure RSS
882  *	@adap: the adapter
883  *
884  *	Sets up RSS for each port.
885  */
886 static int setup_rss(struct adapter *adap)
887 {
888 	int i, err;
889 
890 	for_each_port(adap, i) {
891 		const struct port_info *pi = adap2pinfo(adap, i);
892 
893 		err = cxgb4_write_rss(pi, pi->rss);
894 		if (err)
895 			return err;
896 	}
897 	return 0;
898 }
899 
900 /*
901  * Return the channel of the ingress queue with the given qid.
902  */
903 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
904 {
905 	qid -= p->ingr_start;
906 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
907 }
908 
909 /*
910  * Wait until all NAPI handlers are descheduled.
911  */
912 static void quiesce_rx(struct adapter *adap)
913 {
914 	int i;
915 
916 	for (i = 0; i < adap->sge.ingr_sz; i++) {
917 		struct sge_rspq *q = adap->sge.ingr_map[i];
918 
919 		if (q && q->handler) {
920 			napi_disable(&q->napi);
921 			local_bh_disable();
922 			while (!cxgb_poll_lock_napi(q))
923 				mdelay(1);
924 			local_bh_enable();
925 		}
926 
927 	}
928 }
929 
930 /* Disable interrupt and napi handler */
931 static void disable_interrupts(struct adapter *adap)
932 {
933 	if (adap->flags & FULL_INIT_DONE) {
934 		t4_intr_disable(adap);
935 		if (adap->flags & USING_MSIX) {
936 			free_msix_queue_irqs(adap);
937 			free_irq(adap->msix_info[0].vec, adap);
938 		} else {
939 			free_irq(adap->pdev->irq, adap);
940 		}
941 		quiesce_rx(adap);
942 	}
943 }
944 
945 /*
946  * Enable NAPI scheduling and interrupt generation for all Rx queues.
947  */
948 static void enable_rx(struct adapter *adap)
949 {
950 	int i;
951 
952 	for (i = 0; i < adap->sge.ingr_sz; i++) {
953 		struct sge_rspq *q = adap->sge.ingr_map[i];
954 
955 		if (!q)
956 			continue;
957 		if (q->handler) {
958 			cxgb_busy_poll_init_lock(q);
959 			napi_enable(&q->napi);
960 		}
961 		/* 0-increment GTS to start the timer and enable interrupts */
962 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
963 			     SEINTARM_V(q->intr_params) |
964 			     INGRESSQID_V(q->cntxt_id));
965 	}
966 }
967 
968 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
969 			   unsigned int nq, unsigned int per_chan, int msi_idx,
970 			   u16 *ids)
971 {
972 	int i, err;
973 
974 	for (i = 0; i < nq; i++, q++) {
975 		if (msi_idx > 0)
976 			msi_idx++;
977 		err = t4_sge_alloc_rxq(adap, &q->rspq, false,
978 				       adap->port[i / per_chan],
979 				       msi_idx, q->fl.size ? &q->fl : NULL,
980 				       uldrx_handler);
981 		if (err)
982 			return err;
983 		memset(&q->stats, 0, sizeof(q->stats));
984 		if (ids)
985 			ids[i] = q->rspq.abs_id;
986 	}
987 	return 0;
988 }
989 
990 /**
991  *	setup_sge_queues - configure SGE Tx/Rx/response queues
992  *	@adap: the adapter
993  *
994  *	Determines how many sets of SGE queues to use and initializes them.
995  *	We support multiple queue sets per port if we have MSI-X, otherwise
996  *	just one queue set per port.
997  */
998 static int setup_sge_queues(struct adapter *adap)
999 {
1000 	int err, msi_idx, i, j;
1001 	struct sge *s = &adap->sge;
1002 
1003 	bitmap_zero(s->starving_fl, s->egr_sz);
1004 	bitmap_zero(s->txq_maperr, s->egr_sz);
1005 
1006 	if (adap->flags & USING_MSIX)
1007 		msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1008 	else {
1009 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1010 				       NULL, NULL);
1011 		if (err)
1012 			return err;
1013 		msi_idx = -((int)s->intrq.abs_id + 1);
1014 	}
1015 
1016 	/* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1017 	 * don't forget to update the following which need to be
1018 	 * synchronized to and changes here.
1019 	 *
1020 	 * 1. The calculations of MAX_INGQ in cxgb4.h.
1021 	 *
1022 	 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1023 	 *    to accommodate any new/deleted Ingress Queues
1024 	 *    which need MSI-X Vectors.
1025 	 *
1026 	 * 3. Update sge_qinfo_show() to include information on the
1027 	 *    new/deleted queues.
1028 	 */
1029 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1030 			       msi_idx, NULL, fwevtq_handler);
1031 	if (err) {
1032 freeout:	t4_free_sge_resources(adap);
1033 		return err;
1034 	}
1035 
1036 	for_each_port(adap, i) {
1037 		struct net_device *dev = adap->port[i];
1038 		struct port_info *pi = netdev_priv(dev);
1039 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1040 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1041 
1042 		for (j = 0; j < pi->nqsets; j++, q++) {
1043 			if (msi_idx > 0)
1044 				msi_idx++;
1045 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1046 					       msi_idx, &q->fl,
1047 					       t4_ethrx_handler);
1048 			if (err)
1049 				goto freeout;
1050 			q->rspq.idx = j;
1051 			memset(&q->stats, 0, sizeof(q->stats));
1052 		}
1053 		for (j = 0; j < pi->nqsets; j++, t++) {
1054 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1055 					netdev_get_tx_queue(dev, j),
1056 					s->fw_evtq.cntxt_id);
1057 			if (err)
1058 				goto freeout;
1059 		}
1060 	}
1061 
1062 	j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1063 	for_each_ofldrxq(s, i) {
1064 		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1065 					    adap->port[i / j],
1066 					    s->fw_evtq.cntxt_id);
1067 		if (err)
1068 			goto freeout;
1069 	}
1070 
1071 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1072 	err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1073 	if (err) \
1074 		goto freeout; \
1075 	if (msi_idx > 0) \
1076 		msi_idx += nq; \
1077 } while (0)
1078 
1079 	ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
1080 	ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1081 	j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1082 	ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1083 
1084 #undef ALLOC_OFLD_RXQS
1085 
1086 	for_each_port(adap, i) {
1087 		/*
1088 		 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1089 		 * have RDMA queues, and that's the right value.
1090 		 */
1091 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1092 					    s->fw_evtq.cntxt_id,
1093 					    s->rdmarxq[i].rspq.cntxt_id);
1094 		if (err)
1095 			goto freeout;
1096 	}
1097 
1098 	t4_write_reg(adap, is_t4(adap->params.chip) ?
1099 				MPS_TRC_RSS_CONTROL_A :
1100 				MPS_T5_TRC_RSS_CONTROL_A,
1101 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1102 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1103 	return 0;
1104 }
1105 
1106 /*
1107  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1108  * The allocated memory is cleared.
1109  */
1110 void *t4_alloc_mem(size_t size)
1111 {
1112 	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1113 
1114 	if (!p)
1115 		p = vzalloc(size);
1116 	return p;
1117 }
1118 
1119 /*
1120  * Free memory allocated through alloc_mem().
1121  */
1122 void t4_free_mem(void *addr)
1123 {
1124 	if (is_vmalloc_addr(addr))
1125 		vfree(addr);
1126 	else
1127 		kfree(addr);
1128 }
1129 
1130 /* Send a Work Request to write the filter at a specified index.  We construct
1131  * a Firmware Filter Work Request to have the work done and put the indicated
1132  * filter into "pending" mode which will prevent any further actions against
1133  * it till we get a reply from the firmware on the completion status of the
1134  * request.
1135  */
1136 static int set_filter_wr(struct adapter *adapter, int fidx)
1137 {
1138 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1139 	struct sk_buff *skb;
1140 	struct fw_filter_wr *fwr;
1141 	unsigned int ftid;
1142 
1143 	skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1144 	if (!skb)
1145 		return -ENOMEM;
1146 
1147 	/* If the new filter requires loopback Destination MAC and/or VLAN
1148 	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1149 	 * the filter.
1150 	 */
1151 	if (f->fs.newdmac || f->fs.newvlan) {
1152 		/* allocate L2T entry for new filter */
1153 		f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1154 		if (f->l2t == NULL) {
1155 			kfree_skb(skb);
1156 			return -EAGAIN;
1157 		}
1158 		if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1159 					f->fs.eport, f->fs.dmac)) {
1160 			cxgb4_l2t_release(f->l2t);
1161 			f->l2t = NULL;
1162 			kfree_skb(skb);
1163 			return -ENOMEM;
1164 		}
1165 	}
1166 
1167 	ftid = adapter->tids.ftid_base + fidx;
1168 
1169 	fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1170 	memset(fwr, 0, sizeof(*fwr));
1171 
1172 	/* It would be nice to put most of the following in t4_hw.c but most
1173 	 * of the work is translating the cxgbtool ch_filter_specification
1174 	 * into the Work Request and the definition of that structure is
1175 	 * currently in cxgbtool.h which isn't appropriate to pull into the
1176 	 * common code.  We may eventually try to come up with a more neutral
1177 	 * filter specification structure but for now it's easiest to simply
1178 	 * put this fairly direct code in line ...
1179 	 */
1180 	fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1181 	fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1182 	fwr->tid_to_iq =
1183 		htonl(FW_FILTER_WR_TID_V(ftid) |
1184 		      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1185 		      FW_FILTER_WR_NOREPLY_V(0) |
1186 		      FW_FILTER_WR_IQ_V(f->fs.iq));
1187 	fwr->del_filter_to_l2tix =
1188 		htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1189 		      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1190 		      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1191 		      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1192 		      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1193 		      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1194 		      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1195 		      FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1196 		      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1197 					     f->fs.newvlan == VLAN_REWRITE) |
1198 		      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1199 					    f->fs.newvlan == VLAN_REWRITE) |
1200 		      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1201 		      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1202 		      FW_FILTER_WR_PRIO_V(f->fs.prio) |
1203 		      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1204 	fwr->ethtype = htons(f->fs.val.ethtype);
1205 	fwr->ethtypem = htons(f->fs.mask.ethtype);
1206 	fwr->frag_to_ovlan_vldm =
1207 		(FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1208 		 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1209 		 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1210 		 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1211 		 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1212 		 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1213 	fwr->smac_sel = 0;
1214 	fwr->rx_chan_rx_rpl_iq =
1215 		htons(FW_FILTER_WR_RX_CHAN_V(0) |
1216 		      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1217 	fwr->maci_to_matchtypem =
1218 		htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1219 		      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1220 		      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1221 		      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1222 		      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1223 		      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1224 		      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1225 		      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1226 	fwr->ptcl = f->fs.val.proto;
1227 	fwr->ptclm = f->fs.mask.proto;
1228 	fwr->ttyp = f->fs.val.tos;
1229 	fwr->ttypm = f->fs.mask.tos;
1230 	fwr->ivlan = htons(f->fs.val.ivlan);
1231 	fwr->ivlanm = htons(f->fs.mask.ivlan);
1232 	fwr->ovlan = htons(f->fs.val.ovlan);
1233 	fwr->ovlanm = htons(f->fs.mask.ovlan);
1234 	memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1235 	memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1236 	memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1237 	memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1238 	fwr->lp = htons(f->fs.val.lport);
1239 	fwr->lpm = htons(f->fs.mask.lport);
1240 	fwr->fp = htons(f->fs.val.fport);
1241 	fwr->fpm = htons(f->fs.mask.fport);
1242 	if (f->fs.newsmac)
1243 		memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1244 
1245 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1246 	 * When we get the Work Request Reply we'll clear the pending status.
1247 	 */
1248 	f->pending = 1;
1249 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1250 	t4_ofld_send(adapter, skb);
1251 	return 0;
1252 }
1253 
1254 /* Delete the filter at a specified index.
1255  */
1256 static int del_filter_wr(struct adapter *adapter, int fidx)
1257 {
1258 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1259 	struct sk_buff *skb;
1260 	struct fw_filter_wr *fwr;
1261 	unsigned int len, ftid;
1262 
1263 	len = sizeof(*fwr);
1264 	ftid = adapter->tids.ftid_base + fidx;
1265 
1266 	skb = alloc_skb(len, GFP_KERNEL);
1267 	if (!skb)
1268 		return -ENOMEM;
1269 
1270 	fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1271 	t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1272 
1273 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1274 	 * When we get the Work Request Reply we'll clear the pending status.
1275 	 */
1276 	f->pending = 1;
1277 	t4_mgmt_tx(adapter, skb);
1278 	return 0;
1279 }
1280 
1281 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1282 			     void *accel_priv, select_queue_fallback_t fallback)
1283 {
1284 	int txq;
1285 
1286 #ifdef CONFIG_CHELSIO_T4_DCB
1287 	/* If a Data Center Bridging has been successfully negotiated on this
1288 	 * link then we'll use the skb's priority to map it to a TX Queue.
1289 	 * The skb's priority is determined via the VLAN Tag Priority Code
1290 	 * Point field.
1291 	 */
1292 	if (cxgb4_dcb_enabled(dev)) {
1293 		u16 vlan_tci;
1294 		int err;
1295 
1296 		err = vlan_get_tag(skb, &vlan_tci);
1297 		if (unlikely(err)) {
1298 			if (net_ratelimit())
1299 				netdev_warn(dev,
1300 					    "TX Packet without VLAN Tag on DCB Link\n");
1301 			txq = 0;
1302 		} else {
1303 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1304 #ifdef CONFIG_CHELSIO_T4_FCOE
1305 			if (skb->protocol == htons(ETH_P_FCOE))
1306 				txq = skb->priority & 0x7;
1307 #endif /* CONFIG_CHELSIO_T4_FCOE */
1308 		}
1309 		return txq;
1310 	}
1311 #endif /* CONFIG_CHELSIO_T4_DCB */
1312 
1313 	if (select_queue) {
1314 		txq = (skb_rx_queue_recorded(skb)
1315 			? skb_get_rx_queue(skb)
1316 			: smp_processor_id());
1317 
1318 		while (unlikely(txq >= dev->real_num_tx_queues))
1319 			txq -= dev->real_num_tx_queues;
1320 
1321 		return txq;
1322 	}
1323 
1324 	return fallback(dev, skb) % dev->real_num_tx_queues;
1325 }
1326 
1327 static inline int is_offload(const struct adapter *adap)
1328 {
1329 	return adap->params.offload;
1330 }
1331 
1332 static int closest_timer(const struct sge *s, int time)
1333 {
1334 	int i, delta, match = 0, min_delta = INT_MAX;
1335 
1336 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1337 		delta = time - s->timer_val[i];
1338 		if (delta < 0)
1339 			delta = -delta;
1340 		if (delta < min_delta) {
1341 			min_delta = delta;
1342 			match = i;
1343 		}
1344 	}
1345 	return match;
1346 }
1347 
1348 static int closest_thres(const struct sge *s, int thres)
1349 {
1350 	int i, delta, match = 0, min_delta = INT_MAX;
1351 
1352 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1353 		delta = thres - s->counter_val[i];
1354 		if (delta < 0)
1355 			delta = -delta;
1356 		if (delta < min_delta) {
1357 			min_delta = delta;
1358 			match = i;
1359 		}
1360 	}
1361 	return match;
1362 }
1363 
1364 /**
1365  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1366  *	@q: the Rx queue
1367  *	@us: the hold-off time in us, or 0 to disable timer
1368  *	@cnt: the hold-off packet count, or 0 to disable counter
1369  *
1370  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1371  *	one of the two needs to be enabled for the queue to generate interrupts.
1372  */
1373 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1374 			       unsigned int us, unsigned int cnt)
1375 {
1376 	struct adapter *adap = q->adap;
1377 
1378 	if ((us | cnt) == 0)
1379 		cnt = 1;
1380 
1381 	if (cnt) {
1382 		int err;
1383 		u32 v, new_idx;
1384 
1385 		new_idx = closest_thres(&adap->sge, cnt);
1386 		if (q->desc && q->pktcnt_idx != new_idx) {
1387 			/* the queue has already been created, update it */
1388 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1389 			    FW_PARAMS_PARAM_X_V(
1390 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1391 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1392 			err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
1393 					    &new_idx);
1394 			if (err)
1395 				return err;
1396 		}
1397 		q->pktcnt_idx = new_idx;
1398 	}
1399 
1400 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1401 	q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
1402 	return 0;
1403 }
1404 
1405 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1406 {
1407 	const struct port_info *pi = netdev_priv(dev);
1408 	netdev_features_t changed = dev->features ^ features;
1409 	int err;
1410 
1411 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1412 		return 0;
1413 
1414 	err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
1415 			    -1, -1, -1,
1416 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1417 	if (unlikely(err))
1418 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1419 	return err;
1420 }
1421 
1422 static int setup_debugfs(struct adapter *adap)
1423 {
1424 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1425 		return -1;
1426 
1427 #ifdef CONFIG_DEBUG_FS
1428 	t4_setup_debugfs(adap);
1429 #endif
1430 	return 0;
1431 }
1432 
1433 /*
1434  * upper-layer driver support
1435  */
1436 
1437 /*
1438  * Allocate an active-open TID and set it to the supplied value.
1439  */
1440 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1441 {
1442 	int atid = -1;
1443 
1444 	spin_lock_bh(&t->atid_lock);
1445 	if (t->afree) {
1446 		union aopen_entry *p = t->afree;
1447 
1448 		atid = (p - t->atid_tab) + t->atid_base;
1449 		t->afree = p->next;
1450 		p->data = data;
1451 		t->atids_in_use++;
1452 	}
1453 	spin_unlock_bh(&t->atid_lock);
1454 	return atid;
1455 }
1456 EXPORT_SYMBOL(cxgb4_alloc_atid);
1457 
1458 /*
1459  * Release an active-open TID.
1460  */
1461 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1462 {
1463 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1464 
1465 	spin_lock_bh(&t->atid_lock);
1466 	p->next = t->afree;
1467 	t->afree = p;
1468 	t->atids_in_use--;
1469 	spin_unlock_bh(&t->atid_lock);
1470 }
1471 EXPORT_SYMBOL(cxgb4_free_atid);
1472 
1473 /*
1474  * Allocate a server TID and set it to the supplied value.
1475  */
1476 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1477 {
1478 	int stid;
1479 
1480 	spin_lock_bh(&t->stid_lock);
1481 	if (family == PF_INET) {
1482 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1483 		if (stid < t->nstids)
1484 			__set_bit(stid, t->stid_bmap);
1485 		else
1486 			stid = -1;
1487 	} else {
1488 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1489 		if (stid < 0)
1490 			stid = -1;
1491 	}
1492 	if (stid >= 0) {
1493 		t->stid_tab[stid].data = data;
1494 		stid += t->stid_base;
1495 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1496 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1497 		 * needs 2 TIDs.
1498 		 */
1499 		if (family == PF_INET)
1500 			t->stids_in_use++;
1501 		else
1502 			t->stids_in_use += 4;
1503 	}
1504 	spin_unlock_bh(&t->stid_lock);
1505 	return stid;
1506 }
1507 EXPORT_SYMBOL(cxgb4_alloc_stid);
1508 
1509 /* Allocate a server filter TID and set it to the supplied value.
1510  */
1511 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1512 {
1513 	int stid;
1514 
1515 	spin_lock_bh(&t->stid_lock);
1516 	if (family == PF_INET) {
1517 		stid = find_next_zero_bit(t->stid_bmap,
1518 				t->nstids + t->nsftids, t->nstids);
1519 		if (stid < (t->nstids + t->nsftids))
1520 			__set_bit(stid, t->stid_bmap);
1521 		else
1522 			stid = -1;
1523 	} else {
1524 		stid = -1;
1525 	}
1526 	if (stid >= 0) {
1527 		t->stid_tab[stid].data = data;
1528 		stid -= t->nstids;
1529 		stid += t->sftid_base;
1530 		t->stids_in_use++;
1531 	}
1532 	spin_unlock_bh(&t->stid_lock);
1533 	return stid;
1534 }
1535 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1536 
1537 /* Release a server TID.
1538  */
1539 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1540 {
1541 	/* Is it a server filter TID? */
1542 	if (t->nsftids && (stid >= t->sftid_base)) {
1543 		stid -= t->sftid_base;
1544 		stid += t->nstids;
1545 	} else {
1546 		stid -= t->stid_base;
1547 	}
1548 
1549 	spin_lock_bh(&t->stid_lock);
1550 	if (family == PF_INET)
1551 		__clear_bit(stid, t->stid_bmap);
1552 	else
1553 		bitmap_release_region(t->stid_bmap, stid, 2);
1554 	t->stid_tab[stid].data = NULL;
1555 	if (family == PF_INET)
1556 		t->stids_in_use--;
1557 	else
1558 		t->stids_in_use -= 4;
1559 	spin_unlock_bh(&t->stid_lock);
1560 }
1561 EXPORT_SYMBOL(cxgb4_free_stid);
1562 
1563 /*
1564  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1565  */
1566 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1567 			   unsigned int tid)
1568 {
1569 	struct cpl_tid_release *req;
1570 
1571 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1572 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1573 	INIT_TP_WR(req, tid);
1574 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1575 }
1576 
1577 /*
1578  * Queue a TID release request and if necessary schedule a work queue to
1579  * process it.
1580  */
1581 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1582 				    unsigned int tid)
1583 {
1584 	void **p = &t->tid_tab[tid];
1585 	struct adapter *adap = container_of(t, struct adapter, tids);
1586 
1587 	spin_lock_bh(&adap->tid_release_lock);
1588 	*p = adap->tid_release_head;
1589 	/* Low 2 bits encode the Tx channel number */
1590 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1591 	if (!adap->tid_release_task_busy) {
1592 		adap->tid_release_task_busy = true;
1593 		queue_work(adap->workq, &adap->tid_release_task);
1594 	}
1595 	spin_unlock_bh(&adap->tid_release_lock);
1596 }
1597 
1598 /*
1599  * Process the list of pending TID release requests.
1600  */
1601 static void process_tid_release_list(struct work_struct *work)
1602 {
1603 	struct sk_buff *skb;
1604 	struct adapter *adap;
1605 
1606 	adap = container_of(work, struct adapter, tid_release_task);
1607 
1608 	spin_lock_bh(&adap->tid_release_lock);
1609 	while (adap->tid_release_head) {
1610 		void **p = adap->tid_release_head;
1611 		unsigned int chan = (uintptr_t)p & 3;
1612 		p = (void *)p - chan;
1613 
1614 		adap->tid_release_head = *p;
1615 		*p = NULL;
1616 		spin_unlock_bh(&adap->tid_release_lock);
1617 
1618 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1619 					 GFP_KERNEL)))
1620 			schedule_timeout_uninterruptible(1);
1621 
1622 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1623 		t4_ofld_send(adap, skb);
1624 		spin_lock_bh(&adap->tid_release_lock);
1625 	}
1626 	adap->tid_release_task_busy = false;
1627 	spin_unlock_bh(&adap->tid_release_lock);
1628 }
1629 
1630 /*
1631  * Release a TID and inform HW.  If we are unable to allocate the release
1632  * message we defer to a work queue.
1633  */
1634 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1635 {
1636 	void *old;
1637 	struct sk_buff *skb;
1638 	struct adapter *adap = container_of(t, struct adapter, tids);
1639 
1640 	old = t->tid_tab[tid];
1641 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1642 	if (likely(skb)) {
1643 		t->tid_tab[tid] = NULL;
1644 		mk_tid_release(skb, chan, tid);
1645 		t4_ofld_send(adap, skb);
1646 	} else
1647 		cxgb4_queue_tid_release(t, chan, tid);
1648 	if (old)
1649 		atomic_dec(&t->tids_in_use);
1650 }
1651 EXPORT_SYMBOL(cxgb4_remove_tid);
1652 
1653 /*
1654  * Allocate and initialize the TID tables.  Returns 0 on success.
1655  */
1656 static int tid_init(struct tid_info *t)
1657 {
1658 	size_t size;
1659 	unsigned int stid_bmap_size;
1660 	unsigned int natids = t->natids;
1661 	struct adapter *adap = container_of(t, struct adapter, tids);
1662 
1663 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1664 	size = t->ntids * sizeof(*t->tid_tab) +
1665 	       natids * sizeof(*t->atid_tab) +
1666 	       t->nstids * sizeof(*t->stid_tab) +
1667 	       t->nsftids * sizeof(*t->stid_tab) +
1668 	       stid_bmap_size * sizeof(long) +
1669 	       t->nftids * sizeof(*t->ftid_tab) +
1670 	       t->nsftids * sizeof(*t->ftid_tab);
1671 
1672 	t->tid_tab = t4_alloc_mem(size);
1673 	if (!t->tid_tab)
1674 		return -ENOMEM;
1675 
1676 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1677 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1678 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1679 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1680 	spin_lock_init(&t->stid_lock);
1681 	spin_lock_init(&t->atid_lock);
1682 
1683 	t->stids_in_use = 0;
1684 	t->afree = NULL;
1685 	t->atids_in_use = 0;
1686 	atomic_set(&t->tids_in_use, 0);
1687 
1688 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1689 	if (natids) {
1690 		while (--natids)
1691 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1692 		t->afree = t->atid_tab;
1693 	}
1694 	bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1695 	/* Reserve stid 0 for T4/T5 adapters */
1696 	if (!t->stid_base &&
1697 	    (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
1698 		__set_bit(0, t->stid_bmap);
1699 
1700 	return 0;
1701 }
1702 
1703 /**
1704  *	cxgb4_create_server - create an IP server
1705  *	@dev: the device
1706  *	@stid: the server TID
1707  *	@sip: local IP address to bind server to
1708  *	@sport: the server's TCP port
1709  *	@queue: queue to direct messages from this server to
1710  *
1711  *	Create an IP server for the given port and address.
1712  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1713  */
1714 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1715 			__be32 sip, __be16 sport, __be16 vlan,
1716 			unsigned int queue)
1717 {
1718 	unsigned int chan;
1719 	struct sk_buff *skb;
1720 	struct adapter *adap;
1721 	struct cpl_pass_open_req *req;
1722 	int ret;
1723 
1724 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1725 	if (!skb)
1726 		return -ENOMEM;
1727 
1728 	adap = netdev2adap(dev);
1729 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1730 	INIT_TP_WR(req, 0);
1731 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1732 	req->local_port = sport;
1733 	req->peer_port = htons(0);
1734 	req->local_ip = sip;
1735 	req->peer_ip = htonl(0);
1736 	chan = rxq_to_chan(&adap->sge, queue);
1737 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1738 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1739 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1740 	ret = t4_mgmt_tx(adap, skb);
1741 	return net_xmit_eval(ret);
1742 }
1743 EXPORT_SYMBOL(cxgb4_create_server);
1744 
1745 /*	cxgb4_create_server6 - create an IPv6 server
1746  *	@dev: the device
1747  *	@stid: the server TID
1748  *	@sip: local IPv6 address to bind server to
1749  *	@sport: the server's TCP port
1750  *	@queue: queue to direct messages from this server to
1751  *
1752  *	Create an IPv6 server for the given port and address.
1753  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1754  */
1755 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1756 			 const struct in6_addr *sip, __be16 sport,
1757 			 unsigned int queue)
1758 {
1759 	unsigned int chan;
1760 	struct sk_buff *skb;
1761 	struct adapter *adap;
1762 	struct cpl_pass_open_req6 *req;
1763 	int ret;
1764 
1765 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1766 	if (!skb)
1767 		return -ENOMEM;
1768 
1769 	adap = netdev2adap(dev);
1770 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1771 	INIT_TP_WR(req, 0);
1772 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1773 	req->local_port = sport;
1774 	req->peer_port = htons(0);
1775 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1776 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1777 	req->peer_ip_hi = cpu_to_be64(0);
1778 	req->peer_ip_lo = cpu_to_be64(0);
1779 	chan = rxq_to_chan(&adap->sge, queue);
1780 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1781 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1782 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1783 	ret = t4_mgmt_tx(adap, skb);
1784 	return net_xmit_eval(ret);
1785 }
1786 EXPORT_SYMBOL(cxgb4_create_server6);
1787 
1788 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1789 			unsigned int queue, bool ipv6)
1790 {
1791 	struct sk_buff *skb;
1792 	struct adapter *adap;
1793 	struct cpl_close_listsvr_req *req;
1794 	int ret;
1795 
1796 	adap = netdev2adap(dev);
1797 
1798 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1799 	if (!skb)
1800 		return -ENOMEM;
1801 
1802 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1803 	INIT_TP_WR(req, 0);
1804 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1805 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1806 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1807 	ret = t4_mgmt_tx(adap, skb);
1808 	return net_xmit_eval(ret);
1809 }
1810 EXPORT_SYMBOL(cxgb4_remove_server);
1811 
1812 /**
1813  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1814  *	@mtus: the HW MTU table
1815  *	@mtu: the target MTU
1816  *	@idx: index of selected entry in the MTU table
1817  *
1818  *	Returns the index and the value in the HW MTU table that is closest to
1819  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1820  *	table, in which case that smallest available value is selected.
1821  */
1822 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1823 			    unsigned int *idx)
1824 {
1825 	unsigned int i = 0;
1826 
1827 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1828 		++i;
1829 	if (idx)
1830 		*idx = i;
1831 	return mtus[i];
1832 }
1833 EXPORT_SYMBOL(cxgb4_best_mtu);
1834 
1835 /**
1836  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1837  *     @mtus: the HW MTU table
1838  *     @header_size: Header Size
1839  *     @data_size_max: maximum Data Segment Size
1840  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1841  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1842  *
1843  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1844  *     MTU Table based solely on a Maximum MTU parameter, we break that
1845  *     parameter up into a Header Size and Maximum Data Segment Size, and
1846  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1847  *     the Hardware MTU Table which will result in a Data Segment Size with
1848  *     the requested alignment _and_ that MTU isn't "too far" from the
1849  *     closest MTU, then we'll return that rather than the closest MTU.
1850  */
1851 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1852 				    unsigned short header_size,
1853 				    unsigned short data_size_max,
1854 				    unsigned short data_size_align,
1855 				    unsigned int *mtu_idxp)
1856 {
1857 	unsigned short max_mtu = header_size + data_size_max;
1858 	unsigned short data_size_align_mask = data_size_align - 1;
1859 	int mtu_idx, aligned_mtu_idx;
1860 
1861 	/* Scan the MTU Table till we find an MTU which is larger than our
1862 	 * Maximum MTU or we reach the end of the table.  Along the way,
1863 	 * record the last MTU found, if any, which will result in a Data
1864 	 * Segment Length matching the requested alignment.
1865 	 */
1866 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1867 		unsigned short data_size = mtus[mtu_idx] - header_size;
1868 
1869 		/* If this MTU minus the Header Size would result in a
1870 		 * Data Segment Size of the desired alignment, remember it.
1871 		 */
1872 		if ((data_size & data_size_align_mask) == 0)
1873 			aligned_mtu_idx = mtu_idx;
1874 
1875 		/* If we're not at the end of the Hardware MTU Table and the
1876 		 * next element is larger than our Maximum MTU, drop out of
1877 		 * the loop.
1878 		 */
1879 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1880 			break;
1881 	}
1882 
1883 	/* If we fell out of the loop because we ran to the end of the table,
1884 	 * then we just have to use the last [largest] entry.
1885 	 */
1886 	if (mtu_idx == NMTUS)
1887 		mtu_idx--;
1888 
1889 	/* If we found an MTU which resulted in the requested Data Segment
1890 	 * Length alignment and that's "not far" from the largest MTU which is
1891 	 * less than or equal to the maximum MTU, then use that.
1892 	 */
1893 	if (aligned_mtu_idx >= 0 &&
1894 	    mtu_idx - aligned_mtu_idx <= 1)
1895 		mtu_idx = aligned_mtu_idx;
1896 
1897 	/* If the caller has passed in an MTU Index pointer, pass the
1898 	 * MTU Index back.  Return the MTU value.
1899 	 */
1900 	if (mtu_idxp)
1901 		*mtu_idxp = mtu_idx;
1902 	return mtus[mtu_idx];
1903 }
1904 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1905 
1906 /**
1907  *	cxgb4_port_chan - get the HW channel of a port
1908  *	@dev: the net device for the port
1909  *
1910  *	Return the HW Tx channel of the given port.
1911  */
1912 unsigned int cxgb4_port_chan(const struct net_device *dev)
1913 {
1914 	return netdev2pinfo(dev)->tx_chan;
1915 }
1916 EXPORT_SYMBOL(cxgb4_port_chan);
1917 
1918 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1919 {
1920 	struct adapter *adap = netdev2adap(dev);
1921 	u32 v1, v2, lp_count, hp_count;
1922 
1923 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1924 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1925 	if (is_t4(adap->params.chip)) {
1926 		lp_count = LP_COUNT_G(v1);
1927 		hp_count = HP_COUNT_G(v1);
1928 	} else {
1929 		lp_count = LP_COUNT_T5_G(v1);
1930 		hp_count = HP_COUNT_T5_G(v2);
1931 	}
1932 	return lpfifo ? lp_count : hp_count;
1933 }
1934 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1935 
1936 /**
1937  *	cxgb4_port_viid - get the VI id of a port
1938  *	@dev: the net device for the port
1939  *
1940  *	Return the VI id of the given port.
1941  */
1942 unsigned int cxgb4_port_viid(const struct net_device *dev)
1943 {
1944 	return netdev2pinfo(dev)->viid;
1945 }
1946 EXPORT_SYMBOL(cxgb4_port_viid);
1947 
1948 /**
1949  *	cxgb4_port_idx - get the index of a port
1950  *	@dev: the net device for the port
1951  *
1952  *	Return the index of the given port.
1953  */
1954 unsigned int cxgb4_port_idx(const struct net_device *dev)
1955 {
1956 	return netdev2pinfo(dev)->port_id;
1957 }
1958 EXPORT_SYMBOL(cxgb4_port_idx);
1959 
1960 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1961 			 struct tp_tcp_stats *v6)
1962 {
1963 	struct adapter *adap = pci_get_drvdata(pdev);
1964 
1965 	spin_lock(&adap->stats_lock);
1966 	t4_tp_get_tcp_stats(adap, v4, v6);
1967 	spin_unlock(&adap->stats_lock);
1968 }
1969 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1970 
1971 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1972 		      const unsigned int *pgsz_order)
1973 {
1974 	struct adapter *adap = netdev2adap(dev);
1975 
1976 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1977 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1978 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1979 		     HPZ3_V(pgsz_order[3]));
1980 }
1981 EXPORT_SYMBOL(cxgb4_iscsi_init);
1982 
1983 int cxgb4_flush_eq_cache(struct net_device *dev)
1984 {
1985 	struct adapter *adap = netdev2adap(dev);
1986 	int ret;
1987 
1988 	ret = t4_fwaddrspace_write(adap, adap->mbox,
1989 				   0xe1000000 + SGE_CTXT_CMD_A, 0x20000000);
1990 	return ret;
1991 }
1992 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1993 
1994 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1995 {
1996 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1997 	__be64 indices;
1998 	int ret;
1999 
2000 	spin_lock(&adap->win0_lock);
2001 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2002 			   sizeof(indices), (__be32 *)&indices,
2003 			   T4_MEMORY_READ);
2004 	spin_unlock(&adap->win0_lock);
2005 	if (!ret) {
2006 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2007 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2008 	}
2009 	return ret;
2010 }
2011 
2012 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2013 			u16 size)
2014 {
2015 	struct adapter *adap = netdev2adap(dev);
2016 	u16 hw_pidx, hw_cidx;
2017 	int ret;
2018 
2019 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2020 	if (ret)
2021 		goto out;
2022 
2023 	if (pidx != hw_pidx) {
2024 		u16 delta;
2025 		u32 val;
2026 
2027 		if (pidx >= hw_pidx)
2028 			delta = pidx - hw_pidx;
2029 		else
2030 			delta = size - hw_pidx + pidx;
2031 
2032 		if (is_t4(adap->params.chip))
2033 			val = PIDX_V(delta);
2034 		else
2035 			val = PIDX_T5_V(delta);
2036 		wmb();
2037 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2038 			     QID_V(qid) | val);
2039 	}
2040 out:
2041 	return ret;
2042 }
2043 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2044 
2045 void cxgb4_disable_db_coalescing(struct net_device *dev)
2046 {
2047 	struct adapter *adap;
2048 
2049 	adap = netdev2adap(dev);
2050 	t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F,
2051 			 NOCOALESCE_F);
2052 }
2053 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
2054 
2055 void cxgb4_enable_db_coalescing(struct net_device *dev)
2056 {
2057 	struct adapter *adap;
2058 
2059 	adap = netdev2adap(dev);
2060 	t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 0);
2061 }
2062 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
2063 
2064 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2065 {
2066 	struct adapter *adap;
2067 	u32 offset, memtype, memaddr;
2068 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2069 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
2070 	int ret;
2071 
2072 	adap = netdev2adap(dev);
2073 
2074 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2075 
2076 	/* Figure out where the offset lands in the Memory Type/Address scheme.
2077 	 * This code assumes that the memory is laid out starting at offset 0
2078 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2079 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2080 	 * MC0, and some have both MC0 and MC1.
2081 	 */
2082 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2083 	edc0_size = EDRAM0_SIZE_G(size) << 20;
2084 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2085 	edc1_size = EDRAM1_SIZE_G(size) << 20;
2086 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2087 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2088 
2089 	edc0_end = edc0_size;
2090 	edc1_end = edc0_end + edc1_size;
2091 	mc0_end = edc1_end + mc0_size;
2092 
2093 	if (offset < edc0_end) {
2094 		memtype = MEM_EDC0;
2095 		memaddr = offset;
2096 	} else if (offset < edc1_end) {
2097 		memtype = MEM_EDC1;
2098 		memaddr = offset - edc0_end;
2099 	} else {
2100 		if (offset < mc0_end) {
2101 			memtype = MEM_MC0;
2102 			memaddr = offset - edc1_end;
2103 		} else if (is_t4(adap->params.chip)) {
2104 			/* T4 only has a single memory channel */
2105 			goto err;
2106 		} else {
2107 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2108 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2109 			mc1_end = mc0_end + mc1_size;
2110 			if (offset < mc1_end) {
2111 				memtype = MEM_MC1;
2112 				memaddr = offset - mc0_end;
2113 			} else {
2114 				/* offset beyond the end of any memory */
2115 				goto err;
2116 			}
2117 		}
2118 	}
2119 
2120 	spin_lock(&adap->win0_lock);
2121 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2122 	spin_unlock(&adap->win0_lock);
2123 	return ret;
2124 
2125 err:
2126 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2127 		stag, offset);
2128 	return -EINVAL;
2129 }
2130 EXPORT_SYMBOL(cxgb4_read_tpte);
2131 
2132 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2133 {
2134 	u32 hi, lo;
2135 	struct adapter *adap;
2136 
2137 	adap = netdev2adap(dev);
2138 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2139 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2140 
2141 	return ((u64)hi << 32) | (u64)lo;
2142 }
2143 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2144 
2145 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2146 			 unsigned int qid,
2147 			 enum cxgb4_bar2_qtype qtype,
2148 			 u64 *pbar2_qoffset,
2149 			 unsigned int *pbar2_qid)
2150 {
2151 	return cxgb4_t4_bar2_sge_qregs(netdev2adap(dev),
2152 				 qid,
2153 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2154 				  ? T4_BAR2_QTYPE_EGRESS
2155 				  : T4_BAR2_QTYPE_INGRESS),
2156 				 pbar2_qoffset,
2157 				 pbar2_qid);
2158 }
2159 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2160 
2161 static struct pci_driver cxgb4_driver;
2162 
2163 static void check_neigh_update(struct neighbour *neigh)
2164 {
2165 	const struct device *parent;
2166 	const struct net_device *netdev = neigh->dev;
2167 
2168 	if (netdev->priv_flags & IFF_802_1Q_VLAN)
2169 		netdev = vlan_dev_real_dev(netdev);
2170 	parent = netdev->dev.parent;
2171 	if (parent && parent->driver == &cxgb4_driver.driver)
2172 		t4_l2t_update(dev_get_drvdata(parent), neigh);
2173 }
2174 
2175 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2176 		       void *data)
2177 {
2178 	switch (event) {
2179 	case NETEVENT_NEIGH_UPDATE:
2180 		check_neigh_update(data);
2181 		break;
2182 	case NETEVENT_REDIRECT:
2183 	default:
2184 		break;
2185 	}
2186 	return 0;
2187 }
2188 
2189 static bool netevent_registered;
2190 static struct notifier_block cxgb4_netevent_nb = {
2191 	.notifier_call = netevent_cb
2192 };
2193 
2194 static void drain_db_fifo(struct adapter *adap, int usecs)
2195 {
2196 	u32 v1, v2, lp_count, hp_count;
2197 
2198 	do {
2199 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2200 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2201 		if (is_t4(adap->params.chip)) {
2202 			lp_count = LP_COUNT_G(v1);
2203 			hp_count = HP_COUNT_G(v1);
2204 		} else {
2205 			lp_count = LP_COUNT_T5_G(v1);
2206 			hp_count = HP_COUNT_T5_G(v2);
2207 		}
2208 
2209 		if (lp_count == 0 && hp_count == 0)
2210 			break;
2211 		set_current_state(TASK_UNINTERRUPTIBLE);
2212 		schedule_timeout(usecs_to_jiffies(usecs));
2213 	} while (1);
2214 }
2215 
2216 static void disable_txq_db(struct sge_txq *q)
2217 {
2218 	unsigned long flags;
2219 
2220 	spin_lock_irqsave(&q->db_lock, flags);
2221 	q->db_disabled = 1;
2222 	spin_unlock_irqrestore(&q->db_lock, flags);
2223 }
2224 
2225 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2226 {
2227 	spin_lock_irq(&q->db_lock);
2228 	if (q->db_pidx_inc) {
2229 		/* Make sure that all writes to the TX descriptors
2230 		 * are committed before we tell HW about them.
2231 		 */
2232 		wmb();
2233 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2234 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2235 		q->db_pidx_inc = 0;
2236 	}
2237 	q->db_disabled = 0;
2238 	spin_unlock_irq(&q->db_lock);
2239 }
2240 
2241 static void disable_dbs(struct adapter *adap)
2242 {
2243 	int i;
2244 
2245 	for_each_ethrxq(&adap->sge, i)
2246 		disable_txq_db(&adap->sge.ethtxq[i].q);
2247 	for_each_ofldrxq(&adap->sge, i)
2248 		disable_txq_db(&adap->sge.ofldtxq[i].q);
2249 	for_each_port(adap, i)
2250 		disable_txq_db(&adap->sge.ctrlq[i].q);
2251 }
2252 
2253 static void enable_dbs(struct adapter *adap)
2254 {
2255 	int i;
2256 
2257 	for_each_ethrxq(&adap->sge, i)
2258 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2259 	for_each_ofldrxq(&adap->sge, i)
2260 		enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2261 	for_each_port(adap, i)
2262 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2263 }
2264 
2265 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2266 {
2267 	if (adap->uld_handle[CXGB4_ULD_RDMA])
2268 		ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2269 				cmd);
2270 }
2271 
2272 static void process_db_full(struct work_struct *work)
2273 {
2274 	struct adapter *adap;
2275 
2276 	adap = container_of(work, struct adapter, db_full_task);
2277 
2278 	drain_db_fifo(adap, dbfifo_drain_delay);
2279 	enable_dbs(adap);
2280 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2281 	t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2282 			 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2283 			 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2284 }
2285 
2286 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2287 {
2288 	u16 hw_pidx, hw_cidx;
2289 	int ret;
2290 
2291 	spin_lock_irq(&q->db_lock);
2292 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2293 	if (ret)
2294 		goto out;
2295 	if (q->db_pidx != hw_pidx) {
2296 		u16 delta;
2297 		u32 val;
2298 
2299 		if (q->db_pidx >= hw_pidx)
2300 			delta = q->db_pidx - hw_pidx;
2301 		else
2302 			delta = q->size - hw_pidx + q->db_pidx;
2303 
2304 		if (is_t4(adap->params.chip))
2305 			val = PIDX_V(delta);
2306 		else
2307 			val = PIDX_T5_V(delta);
2308 		wmb();
2309 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2310 			     QID_V(q->cntxt_id) | val);
2311 	}
2312 out:
2313 	q->db_disabled = 0;
2314 	q->db_pidx_inc = 0;
2315 	spin_unlock_irq(&q->db_lock);
2316 	if (ret)
2317 		CH_WARN(adap, "DB drop recovery failed.\n");
2318 }
2319 static void recover_all_queues(struct adapter *adap)
2320 {
2321 	int i;
2322 
2323 	for_each_ethrxq(&adap->sge, i)
2324 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2325 	for_each_ofldrxq(&adap->sge, i)
2326 		sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2327 	for_each_port(adap, i)
2328 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2329 }
2330 
2331 static void process_db_drop(struct work_struct *work)
2332 {
2333 	struct adapter *adap;
2334 
2335 	adap = container_of(work, struct adapter, db_drop_task);
2336 
2337 	if (is_t4(adap->params.chip)) {
2338 		drain_db_fifo(adap, dbfifo_drain_delay);
2339 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2340 		drain_db_fifo(adap, dbfifo_drain_delay);
2341 		recover_all_queues(adap);
2342 		drain_db_fifo(adap, dbfifo_drain_delay);
2343 		enable_dbs(adap);
2344 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2345 	} else {
2346 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2347 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2348 		u16 pidx_inc = dropped_db & 0x1fff;
2349 		u64 bar2_qoffset;
2350 		unsigned int bar2_qid;
2351 		int ret;
2352 
2353 		ret = cxgb4_t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2354 					&bar2_qoffset, &bar2_qid);
2355 		if (ret)
2356 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2357 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2358 		else
2359 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2360 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2361 
2362 		/* Re-enable BAR2 WC */
2363 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2364 	}
2365 
2366 	t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2367 }
2368 
2369 void t4_db_full(struct adapter *adap)
2370 {
2371 	if (is_t4(adap->params.chip)) {
2372 		disable_dbs(adap);
2373 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2374 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2375 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2376 		queue_work(adap->workq, &adap->db_full_task);
2377 	}
2378 }
2379 
2380 void t4_db_dropped(struct adapter *adap)
2381 {
2382 	if (is_t4(adap->params.chip)) {
2383 		disable_dbs(adap);
2384 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2385 	}
2386 	queue_work(adap->workq, &adap->db_drop_task);
2387 }
2388 
2389 static void uld_attach(struct adapter *adap, unsigned int uld)
2390 {
2391 	void *handle;
2392 	struct cxgb4_lld_info lli;
2393 	unsigned short i;
2394 
2395 	lli.pdev = adap->pdev;
2396 	lli.pf = adap->fn;
2397 	lli.l2t = adap->l2t;
2398 	lli.tids = &adap->tids;
2399 	lli.ports = adap->port;
2400 	lli.vr = &adap->vres;
2401 	lli.mtus = adap->params.mtus;
2402 	if (uld == CXGB4_ULD_RDMA) {
2403 		lli.rxq_ids = adap->sge.rdma_rxq;
2404 		lli.ciq_ids = adap->sge.rdma_ciq;
2405 		lli.nrxq = adap->sge.rdmaqs;
2406 		lli.nciq = adap->sge.rdmaciqs;
2407 	} else if (uld == CXGB4_ULD_ISCSI) {
2408 		lli.rxq_ids = adap->sge.ofld_rxq;
2409 		lli.nrxq = adap->sge.ofldqsets;
2410 	}
2411 	lli.ntxq = adap->sge.ofldqsets;
2412 	lli.nchan = adap->params.nports;
2413 	lli.nports = adap->params.nports;
2414 	lli.wr_cred = adap->params.ofldq_wr_cred;
2415 	lli.adapter_type = adap->params.chip;
2416 	lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2417 	lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2418 	lli.udb_density = 1 << adap->params.sge.eq_qpp;
2419 	lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2420 	lli.filt_mode = adap->params.tp.vlan_pri_map;
2421 	/* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2422 	for (i = 0; i < NCHAN; i++)
2423 		lli.tx_modq[i] = i;
2424 	lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2425 	lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2426 	lli.fw_vers = adap->params.fw_vers;
2427 	lli.dbfifo_int_thresh = dbfifo_int_thresh;
2428 	lli.sge_ingpadboundary = adap->sge.fl_align;
2429 	lli.sge_egrstatuspagesize = adap->sge.stat_len;
2430 	lli.sge_pktshift = adap->sge.pktshift;
2431 	lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2432 	lli.max_ordird_qp = adap->params.max_ordird_qp;
2433 	lli.max_ird_adapter = adap->params.max_ird_adapter;
2434 	lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2435 
2436 	handle = ulds[uld].add(&lli);
2437 	if (IS_ERR(handle)) {
2438 		dev_warn(adap->pdev_dev,
2439 			 "could not attach to the %s driver, error %ld\n",
2440 			 uld_str[uld], PTR_ERR(handle));
2441 		return;
2442 	}
2443 
2444 	adap->uld_handle[uld] = handle;
2445 
2446 	if (!netevent_registered) {
2447 		register_netevent_notifier(&cxgb4_netevent_nb);
2448 		netevent_registered = true;
2449 	}
2450 
2451 	if (adap->flags & FULL_INIT_DONE)
2452 		ulds[uld].state_change(handle, CXGB4_STATE_UP);
2453 }
2454 
2455 static void attach_ulds(struct adapter *adap)
2456 {
2457 	unsigned int i;
2458 
2459 	spin_lock(&adap_rcu_lock);
2460 	list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2461 	spin_unlock(&adap_rcu_lock);
2462 
2463 	mutex_lock(&uld_mutex);
2464 	list_add_tail(&adap->list_node, &adapter_list);
2465 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2466 		if (ulds[i].add)
2467 			uld_attach(adap, i);
2468 	mutex_unlock(&uld_mutex);
2469 }
2470 
2471 static void detach_ulds(struct adapter *adap)
2472 {
2473 	unsigned int i;
2474 
2475 	mutex_lock(&uld_mutex);
2476 	list_del(&adap->list_node);
2477 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2478 		if (adap->uld_handle[i]) {
2479 			ulds[i].state_change(adap->uld_handle[i],
2480 					     CXGB4_STATE_DETACH);
2481 			adap->uld_handle[i] = NULL;
2482 		}
2483 	if (netevent_registered && list_empty(&adapter_list)) {
2484 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2485 		netevent_registered = false;
2486 	}
2487 	mutex_unlock(&uld_mutex);
2488 
2489 	spin_lock(&adap_rcu_lock);
2490 	list_del_rcu(&adap->rcu_node);
2491 	spin_unlock(&adap_rcu_lock);
2492 }
2493 
2494 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2495 {
2496 	unsigned int i;
2497 
2498 	mutex_lock(&uld_mutex);
2499 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2500 		if (adap->uld_handle[i])
2501 			ulds[i].state_change(adap->uld_handle[i], new_state);
2502 	mutex_unlock(&uld_mutex);
2503 }
2504 
2505 /**
2506  *	cxgb4_register_uld - register an upper-layer driver
2507  *	@type: the ULD type
2508  *	@p: the ULD methods
2509  *
2510  *	Registers an upper-layer driver with this driver and notifies the ULD
2511  *	about any presently available devices that support its type.  Returns
2512  *	%-EBUSY if a ULD of the same type is already registered.
2513  */
2514 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2515 {
2516 	int ret = 0;
2517 	struct adapter *adap;
2518 
2519 	if (type >= CXGB4_ULD_MAX)
2520 		return -EINVAL;
2521 	mutex_lock(&uld_mutex);
2522 	if (ulds[type].add) {
2523 		ret = -EBUSY;
2524 		goto out;
2525 	}
2526 	ulds[type] = *p;
2527 	list_for_each_entry(adap, &adapter_list, list_node)
2528 		uld_attach(adap, type);
2529 out:	mutex_unlock(&uld_mutex);
2530 	return ret;
2531 }
2532 EXPORT_SYMBOL(cxgb4_register_uld);
2533 
2534 /**
2535  *	cxgb4_unregister_uld - unregister an upper-layer driver
2536  *	@type: the ULD type
2537  *
2538  *	Unregisters an existing upper-layer driver.
2539  */
2540 int cxgb4_unregister_uld(enum cxgb4_uld type)
2541 {
2542 	struct adapter *adap;
2543 
2544 	if (type >= CXGB4_ULD_MAX)
2545 		return -EINVAL;
2546 	mutex_lock(&uld_mutex);
2547 	list_for_each_entry(adap, &adapter_list, list_node)
2548 		adap->uld_handle[type] = NULL;
2549 	ulds[type].add = NULL;
2550 	mutex_unlock(&uld_mutex);
2551 	return 0;
2552 }
2553 EXPORT_SYMBOL(cxgb4_unregister_uld);
2554 
2555 #if IS_ENABLED(CONFIG_IPV6)
2556 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2557 				   unsigned long event, void *data)
2558 {
2559 	struct inet6_ifaddr *ifa = data;
2560 	struct net_device *event_dev = ifa->idev->dev;
2561 	const struct device *parent = NULL;
2562 #if IS_ENABLED(CONFIG_BONDING)
2563 	struct adapter *adap;
2564 #endif
2565 	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2566 		event_dev = vlan_dev_real_dev(event_dev);
2567 #if IS_ENABLED(CONFIG_BONDING)
2568 	if (event_dev->flags & IFF_MASTER) {
2569 		list_for_each_entry(adap, &adapter_list, list_node) {
2570 			switch (event) {
2571 			case NETDEV_UP:
2572 				cxgb4_clip_get(adap->port[0],
2573 					       (const u32 *)ifa, 1);
2574 				break;
2575 			case NETDEV_DOWN:
2576 				cxgb4_clip_release(adap->port[0],
2577 						   (const u32 *)ifa, 1);
2578 				break;
2579 			default:
2580 				break;
2581 			}
2582 		}
2583 		return NOTIFY_OK;
2584 	}
2585 #endif
2586 
2587 	if (event_dev)
2588 		parent = event_dev->dev.parent;
2589 
2590 	if (parent && parent->driver == &cxgb4_driver.driver) {
2591 		switch (event) {
2592 		case NETDEV_UP:
2593 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2594 			break;
2595 		case NETDEV_DOWN:
2596 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2597 			break;
2598 		default:
2599 			break;
2600 		}
2601 	}
2602 	return NOTIFY_OK;
2603 }
2604 
2605 static bool inet6addr_registered;
2606 static struct notifier_block cxgb4_inet6addr_notifier = {
2607 	.notifier_call = cxgb4_inet6addr_handler
2608 };
2609 
2610 static void update_clip(const struct adapter *adap)
2611 {
2612 	int i;
2613 	struct net_device *dev;
2614 	int ret;
2615 
2616 	rcu_read_lock();
2617 
2618 	for (i = 0; i < MAX_NPORTS; i++) {
2619 		dev = adap->port[i];
2620 		ret = 0;
2621 
2622 		if (dev)
2623 			ret = cxgb4_update_root_dev_clip(dev);
2624 
2625 		if (ret < 0)
2626 			break;
2627 	}
2628 	rcu_read_unlock();
2629 }
2630 #endif /* IS_ENABLED(CONFIG_IPV6) */
2631 
2632 /**
2633  *	cxgb_up - enable the adapter
2634  *	@adap: adapter being enabled
2635  *
2636  *	Called when the first port is enabled, this function performs the
2637  *	actions necessary to make an adapter operational, such as completing
2638  *	the initialization of HW modules, and enabling interrupts.
2639  *
2640  *	Must be called with the rtnl lock held.
2641  */
2642 static int cxgb_up(struct adapter *adap)
2643 {
2644 	int err;
2645 
2646 	err = setup_sge_queues(adap);
2647 	if (err)
2648 		goto out;
2649 	err = setup_rss(adap);
2650 	if (err)
2651 		goto freeq;
2652 
2653 	if (adap->flags & USING_MSIX) {
2654 		name_msix_vecs(adap);
2655 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2656 				  adap->msix_info[0].desc, adap);
2657 		if (err)
2658 			goto irq_err;
2659 
2660 		err = request_msix_queue_irqs(adap);
2661 		if (err) {
2662 			free_irq(adap->msix_info[0].vec, adap);
2663 			goto irq_err;
2664 		}
2665 	} else {
2666 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2667 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2668 				  adap->port[0]->name, adap);
2669 		if (err)
2670 			goto irq_err;
2671 	}
2672 	enable_rx(adap);
2673 	t4_sge_start(adap);
2674 	t4_intr_enable(adap);
2675 	adap->flags |= FULL_INIT_DONE;
2676 	notify_ulds(adap, CXGB4_STATE_UP);
2677 #if IS_ENABLED(CONFIG_IPV6)
2678 	update_clip(adap);
2679 #endif
2680  out:
2681 	return err;
2682  irq_err:
2683 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2684  freeq:
2685 	t4_free_sge_resources(adap);
2686 	goto out;
2687 }
2688 
2689 static void cxgb_down(struct adapter *adapter)
2690 {
2691 	cancel_work_sync(&adapter->tid_release_task);
2692 	cancel_work_sync(&adapter->db_full_task);
2693 	cancel_work_sync(&adapter->db_drop_task);
2694 	adapter->tid_release_task_busy = false;
2695 	adapter->tid_release_head = NULL;
2696 
2697 	t4_sge_stop(adapter);
2698 	t4_free_sge_resources(adapter);
2699 	adapter->flags &= ~FULL_INIT_DONE;
2700 }
2701 
2702 /*
2703  * net_device operations
2704  */
2705 static int cxgb_open(struct net_device *dev)
2706 {
2707 	int err;
2708 	struct port_info *pi = netdev_priv(dev);
2709 	struct adapter *adapter = pi->adapter;
2710 
2711 	netif_carrier_off(dev);
2712 
2713 	if (!(adapter->flags & FULL_INIT_DONE)) {
2714 		err = cxgb_up(adapter);
2715 		if (err < 0)
2716 			return err;
2717 	}
2718 
2719 	err = link_start(dev);
2720 	if (!err)
2721 		netif_tx_start_all_queues(dev);
2722 	return err;
2723 }
2724 
2725 static int cxgb_close(struct net_device *dev)
2726 {
2727 	struct port_info *pi = netdev_priv(dev);
2728 	struct adapter *adapter = pi->adapter;
2729 
2730 	netif_tx_stop_all_queues(dev);
2731 	netif_carrier_off(dev);
2732 	return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
2733 }
2734 
2735 /* Return an error number if the indicated filter isn't writable ...
2736  */
2737 static int writable_filter(struct filter_entry *f)
2738 {
2739 	if (f->locked)
2740 		return -EPERM;
2741 	if (f->pending)
2742 		return -EBUSY;
2743 
2744 	return 0;
2745 }
2746 
2747 /* Delete the filter at the specified index (if valid).  The checks for all
2748  * the common problems with doing this like the filter being locked, currently
2749  * pending in another operation, etc.
2750  */
2751 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2752 {
2753 	struct filter_entry *f;
2754 	int ret;
2755 
2756 	if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2757 		return -EINVAL;
2758 
2759 	f = &adapter->tids.ftid_tab[fidx];
2760 	ret = writable_filter(f);
2761 	if (ret)
2762 		return ret;
2763 	if (f->valid)
2764 		return del_filter_wr(adapter, fidx);
2765 
2766 	return 0;
2767 }
2768 
2769 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2770 		__be32 sip, __be16 sport, __be16 vlan,
2771 		unsigned int queue, unsigned char port, unsigned char mask)
2772 {
2773 	int ret;
2774 	struct filter_entry *f;
2775 	struct adapter *adap;
2776 	int i;
2777 	u8 *val;
2778 
2779 	adap = netdev2adap(dev);
2780 
2781 	/* Adjust stid to correct filter index */
2782 	stid -= adap->tids.sftid_base;
2783 	stid += adap->tids.nftids;
2784 
2785 	/* Check to make sure the filter requested is writable ...
2786 	 */
2787 	f = &adap->tids.ftid_tab[stid];
2788 	ret = writable_filter(f);
2789 	if (ret)
2790 		return ret;
2791 
2792 	/* Clear out any old resources being used by the filter before
2793 	 * we start constructing the new filter.
2794 	 */
2795 	if (f->valid)
2796 		clear_filter(adap, f);
2797 
2798 	/* Clear out filter specifications */
2799 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2800 	f->fs.val.lport = cpu_to_be16(sport);
2801 	f->fs.mask.lport  = ~0;
2802 	val = (u8 *)&sip;
2803 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2804 		for (i = 0; i < 4; i++) {
2805 			f->fs.val.lip[i] = val[i];
2806 			f->fs.mask.lip[i] = ~0;
2807 		}
2808 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2809 			f->fs.val.iport = port;
2810 			f->fs.mask.iport = mask;
2811 		}
2812 	}
2813 
2814 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2815 		f->fs.val.proto = IPPROTO_TCP;
2816 		f->fs.mask.proto = ~0;
2817 	}
2818 
2819 	f->fs.dirsteer = 1;
2820 	f->fs.iq = queue;
2821 	/* Mark filter as locked */
2822 	f->locked = 1;
2823 	f->fs.rpttid = 1;
2824 
2825 	ret = set_filter_wr(adap, stid);
2826 	if (ret) {
2827 		clear_filter(adap, f);
2828 		return ret;
2829 	}
2830 
2831 	return 0;
2832 }
2833 EXPORT_SYMBOL(cxgb4_create_server_filter);
2834 
2835 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2836 		unsigned int queue, bool ipv6)
2837 {
2838 	int ret;
2839 	struct filter_entry *f;
2840 	struct adapter *adap;
2841 
2842 	adap = netdev2adap(dev);
2843 
2844 	/* Adjust stid to correct filter index */
2845 	stid -= adap->tids.sftid_base;
2846 	stid += adap->tids.nftids;
2847 
2848 	f = &adap->tids.ftid_tab[stid];
2849 	/* Unlock the filter */
2850 	f->locked = 0;
2851 
2852 	ret = delete_filter(adap, stid);
2853 	if (ret)
2854 		return ret;
2855 
2856 	return 0;
2857 }
2858 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2859 
2860 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2861 						struct rtnl_link_stats64 *ns)
2862 {
2863 	struct port_stats stats;
2864 	struct port_info *p = netdev_priv(dev);
2865 	struct adapter *adapter = p->adapter;
2866 
2867 	/* Block retrieving statistics during EEH error
2868 	 * recovery. Otherwise, the recovery might fail
2869 	 * and the PCI device will be removed permanently
2870 	 */
2871 	spin_lock(&adapter->stats_lock);
2872 	if (!netif_device_present(dev)) {
2873 		spin_unlock(&adapter->stats_lock);
2874 		return ns;
2875 	}
2876 	t4_get_port_stats(adapter, p->tx_chan, &stats);
2877 	spin_unlock(&adapter->stats_lock);
2878 
2879 	ns->tx_bytes   = stats.tx_octets;
2880 	ns->tx_packets = stats.tx_frames;
2881 	ns->rx_bytes   = stats.rx_octets;
2882 	ns->rx_packets = stats.rx_frames;
2883 	ns->multicast  = stats.rx_mcast_frames;
2884 
2885 	/* detailed rx_errors */
2886 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2887 			       stats.rx_runt;
2888 	ns->rx_over_errors   = 0;
2889 	ns->rx_crc_errors    = stats.rx_fcs_err;
2890 	ns->rx_frame_errors  = stats.rx_symbol_err;
2891 	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2892 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2893 			       stats.rx_trunc0 + stats.rx_trunc1 +
2894 			       stats.rx_trunc2 + stats.rx_trunc3;
2895 	ns->rx_missed_errors = 0;
2896 
2897 	/* detailed tx_errors */
2898 	ns->tx_aborted_errors   = 0;
2899 	ns->tx_carrier_errors   = 0;
2900 	ns->tx_fifo_errors      = 0;
2901 	ns->tx_heartbeat_errors = 0;
2902 	ns->tx_window_errors    = 0;
2903 
2904 	ns->tx_errors = stats.tx_error_frames;
2905 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2906 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2907 	return ns;
2908 }
2909 
2910 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2911 {
2912 	unsigned int mbox;
2913 	int ret = 0, prtad, devad;
2914 	struct port_info *pi = netdev_priv(dev);
2915 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2916 
2917 	switch (cmd) {
2918 	case SIOCGMIIPHY:
2919 		if (pi->mdio_addr < 0)
2920 			return -EOPNOTSUPP;
2921 		data->phy_id = pi->mdio_addr;
2922 		break;
2923 	case SIOCGMIIREG:
2924 	case SIOCSMIIREG:
2925 		if (mdio_phy_id_is_c45(data->phy_id)) {
2926 			prtad = mdio_phy_id_prtad(data->phy_id);
2927 			devad = mdio_phy_id_devad(data->phy_id);
2928 		} else if (data->phy_id < 32) {
2929 			prtad = data->phy_id;
2930 			devad = 0;
2931 			data->reg_num &= 0x1f;
2932 		} else
2933 			return -EINVAL;
2934 
2935 		mbox = pi->adapter->fn;
2936 		if (cmd == SIOCGMIIREG)
2937 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2938 					 data->reg_num, &data->val_out);
2939 		else
2940 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2941 					 data->reg_num, data->val_in);
2942 		break;
2943 	default:
2944 		return -EOPNOTSUPP;
2945 	}
2946 	return ret;
2947 }
2948 
2949 static void cxgb_set_rxmode(struct net_device *dev)
2950 {
2951 	/* unfortunately we can't return errors to the stack */
2952 	set_rxmode(dev, -1, false);
2953 }
2954 
2955 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2956 {
2957 	int ret;
2958 	struct port_info *pi = netdev_priv(dev);
2959 
2960 	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2961 		return -EINVAL;
2962 	ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
2963 			    -1, -1, -1, true);
2964 	if (!ret)
2965 		dev->mtu = new_mtu;
2966 	return ret;
2967 }
2968 
2969 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2970 {
2971 	int ret;
2972 	struct sockaddr *addr = p;
2973 	struct port_info *pi = netdev_priv(dev);
2974 
2975 	if (!is_valid_ether_addr(addr->sa_data))
2976 		return -EADDRNOTAVAIL;
2977 
2978 	ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
2979 			    pi->xact_addr_filt, addr->sa_data, true, true);
2980 	if (ret < 0)
2981 		return ret;
2982 
2983 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2984 	pi->xact_addr_filt = ret;
2985 	return 0;
2986 }
2987 
2988 #ifdef CONFIG_NET_POLL_CONTROLLER
2989 static void cxgb_netpoll(struct net_device *dev)
2990 {
2991 	struct port_info *pi = netdev_priv(dev);
2992 	struct adapter *adap = pi->adapter;
2993 
2994 	if (adap->flags & USING_MSIX) {
2995 		int i;
2996 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2997 
2998 		for (i = pi->nqsets; i; i--, rx++)
2999 			t4_sge_intr_msix(0, &rx->rspq);
3000 	} else
3001 		t4_intr_handler(adap)(0, adap);
3002 }
3003 #endif
3004 
3005 static const struct net_device_ops cxgb4_netdev_ops = {
3006 	.ndo_open             = cxgb_open,
3007 	.ndo_stop             = cxgb_close,
3008 	.ndo_start_xmit       = t4_eth_xmit,
3009 	.ndo_select_queue     =	cxgb_select_queue,
3010 	.ndo_get_stats64      = cxgb_get_stats,
3011 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3012 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3013 	.ndo_set_features     = cxgb_set_features,
3014 	.ndo_validate_addr    = eth_validate_addr,
3015 	.ndo_do_ioctl         = cxgb_ioctl,
3016 	.ndo_change_mtu       = cxgb_change_mtu,
3017 #ifdef CONFIG_NET_POLL_CONTROLLER
3018 	.ndo_poll_controller  = cxgb_netpoll,
3019 #endif
3020 #ifdef CONFIG_CHELSIO_T4_FCOE
3021 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3022 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3023 #endif /* CONFIG_CHELSIO_T4_FCOE */
3024 #ifdef CONFIG_NET_RX_BUSY_POLL
3025 	.ndo_busy_poll        = cxgb_busy_poll,
3026 #endif
3027 
3028 };
3029 
3030 void t4_fatal_err(struct adapter *adap)
3031 {
3032 	t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3033 	t4_intr_disable(adap);
3034 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3035 }
3036 
3037 /* Return the specified PCI-E Configuration Space register from our Physical
3038  * Function.  We try first via a Firmware LDST Command since we prefer to let
3039  * the firmware own all of these registers, but if that fails we go for it
3040  * directly ourselves.
3041  */
3042 static u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
3043 {
3044 	struct fw_ldst_cmd ldst_cmd;
3045 	u32 val;
3046 	int ret;
3047 
3048 	/* Construct and send the Firmware LDST Command to retrieve the
3049 	 * specified PCI-E Configuration Space register.
3050 	 */
3051 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
3052 	ldst_cmd.op_to_addrspace =
3053 		htonl(FW_CMD_OP_V(FW_LDST_CMD) |
3054 		      FW_CMD_REQUEST_F |
3055 		      FW_CMD_READ_F |
3056 		      FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE));
3057 	ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd));
3058 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
3059 	ldst_cmd.u.pcie.ctrl_to_fn =
3060 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->fn));
3061 	ldst_cmd.u.pcie.r = reg;
3062 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
3063 			 &ldst_cmd);
3064 
3065 	/* If the LDST Command suucceeded, exctract the returned register
3066 	 * value.  Otherwise read it directly ourself.
3067 	 */
3068 	if (ret == 0)
3069 		val = ntohl(ldst_cmd.u.pcie.data[0]);
3070 	else
3071 		t4_hw_pci_read_cfg4(adap, reg, &val);
3072 
3073 	return val;
3074 }
3075 
3076 static void setup_memwin(struct adapter *adap)
3077 {
3078 	u32 mem_win0_base, mem_win1_base, mem_win2_base, mem_win2_aperture;
3079 
3080 	if (is_t4(adap->params.chip)) {
3081 		u32 bar0;
3082 
3083 		/* Truncation intentional: we only read the bottom 32-bits of
3084 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
3085 		 * mechanism to read BAR0 instead of using
3086 		 * pci_resource_start() because we could be operating from
3087 		 * within a Virtual Machine which is trapping our accesses to
3088 		 * our Configuration Space and we need to set up the PCI-E
3089 		 * Memory Window decoders with the actual addresses which will
3090 		 * be coming across the PCI-E link.
3091 		 */
3092 		bar0 = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_0);
3093 		bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
3094 		adap->t4_bar0 = bar0;
3095 
3096 		mem_win0_base = bar0 + MEMWIN0_BASE;
3097 		mem_win1_base = bar0 + MEMWIN1_BASE;
3098 		mem_win2_base = bar0 + MEMWIN2_BASE;
3099 		mem_win2_aperture = MEMWIN2_APERTURE;
3100 	} else {
3101 		/* For T5, only relative offset inside the PCIe BAR is passed */
3102 		mem_win0_base = MEMWIN0_BASE;
3103 		mem_win1_base = MEMWIN1_BASE;
3104 		mem_win2_base = MEMWIN2_BASE_T5;
3105 		mem_win2_aperture = MEMWIN2_APERTURE_T5;
3106 	}
3107 	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 0),
3108 		     mem_win0_base | BIR_V(0) |
3109 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - 10));
3110 	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 1),
3111 		     mem_win1_base | BIR_V(0) |
3112 		     WINDOW_V(ilog2(MEMWIN1_APERTURE) - 10));
3113 	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2),
3114 		     mem_win2_base | BIR_V(0) |
3115 		     WINDOW_V(ilog2(mem_win2_aperture) - 10));
3116 	t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 2));
3117 }
3118 
3119 static void setup_memwin_rdma(struct adapter *adap)
3120 {
3121 	if (adap->vres.ocq.size) {
3122 		u32 start;
3123 		unsigned int sz_kb;
3124 
3125 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3126 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3127 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3128 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3129 		t4_write_reg(adap,
3130 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3131 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3132 		t4_write_reg(adap,
3133 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3134 			     adap->vres.ocq.start);
3135 		t4_read_reg(adap,
3136 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3137 	}
3138 }
3139 
3140 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3141 {
3142 	u32 v;
3143 	int ret;
3144 
3145 	/* get device capabilities */
3146 	memset(c, 0, sizeof(*c));
3147 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3148 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3149 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3150 	ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
3151 	if (ret < 0)
3152 		return ret;
3153 
3154 	/* select capabilities we'll be using */
3155 	if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
3156 		if (!vf_acls)
3157 			c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
3158 		else
3159 			c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
3160 	} else if (vf_acls) {
3161 		dev_err(adap->pdev_dev, "virtualization ACLs not supported");
3162 		return ret;
3163 	}
3164 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3165 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3166 	ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
3167 	if (ret < 0)
3168 		return ret;
3169 
3170 	ret = t4_config_glbl_rss(adap, adap->fn,
3171 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3172 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3173 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3174 	if (ret < 0)
3175 		return ret;
3176 
3177 	ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, adap->sge.egr_sz, 64,
3178 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3179 			  FW_CMD_CAP_PF);
3180 	if (ret < 0)
3181 		return ret;
3182 
3183 	t4_sge_init(adap);
3184 
3185 	/* tweak some settings */
3186 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3187 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3188 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3189 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3190 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3191 
3192 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3193 	adap->params.tp.tx_modq_map = 0xE4;
3194 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3195 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3196 
3197 	/* associate each Tx modulation queue with consecutive Tx channels */
3198 	v = 0x84218421;
3199 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3200 			  &v, 1, TP_TX_SCHED_HDR_A);
3201 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3202 			  &v, 1, TP_TX_SCHED_FIFO_A);
3203 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3204 			  &v, 1, TP_TX_SCHED_PCMD_A);
3205 
3206 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3207 	if (is_offload(adap)) {
3208 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3209 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3210 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3211 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3212 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3213 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3214 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3215 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3216 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3217 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3218 	}
3219 
3220 	/* get basic stuff going */
3221 	return t4_early_init(adap, adap->fn);
3222 }
3223 
3224 /*
3225  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3226  */
3227 #define MAX_ATIDS 8192U
3228 
3229 /*
3230  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3231  *
3232  * If the firmware we're dealing with has Configuration File support, then
3233  * we use that to perform all configuration
3234  */
3235 
3236 /*
3237  * Tweak configuration based on module parameters, etc.  Most of these have
3238  * defaults assigned to them by Firmware Configuration Files (if we're using
3239  * them) but need to be explicitly set if we're using hard-coded
3240  * initialization.  But even in the case of using Firmware Configuration
3241  * Files, we'd like to expose the ability to change these via module
3242  * parameters so these are essentially common tweaks/settings for
3243  * Configuration Files and hard-coded initialization ...
3244  */
3245 static int adap_init0_tweaks(struct adapter *adapter)
3246 {
3247 	/*
3248 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3249 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3250 	 * 64B Cache Line Size ...
3251 	 */
3252 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3253 
3254 	/*
3255 	 * Process module parameters which affect early initialization.
3256 	 */
3257 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3258 		dev_err(&adapter->pdev->dev,
3259 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3260 			rx_dma_offset);
3261 		rx_dma_offset = 2;
3262 	}
3263 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3264 			 PKTSHIFT_V(PKTSHIFT_M),
3265 			 PKTSHIFT_V(rx_dma_offset));
3266 
3267 	/*
3268 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3269 	 * adds the pseudo header itself.
3270 	 */
3271 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3272 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3273 
3274 	return 0;
3275 }
3276 
3277 /*
3278  * Attempt to initialize the adapter via a Firmware Configuration File.
3279  */
3280 static int adap_init0_config(struct adapter *adapter, int reset)
3281 {
3282 	struct fw_caps_config_cmd caps_cmd;
3283 	const struct firmware *cf;
3284 	unsigned long mtype = 0, maddr = 0;
3285 	u32 finiver, finicsum, cfcsum;
3286 	int ret;
3287 	int config_issued = 0;
3288 	char *fw_config_file, fw_config_file_path[256];
3289 	char *config_name = NULL;
3290 
3291 	/*
3292 	 * Reset device if necessary.
3293 	 */
3294 	if (reset) {
3295 		ret = t4_fw_reset(adapter, adapter->mbox,
3296 				  PIORSTMODE_F | PIORST_F);
3297 		if (ret < 0)
3298 			goto bye;
3299 	}
3300 
3301 	/*
3302 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3303 	 * then use that.  Otherwise, use the configuration file stored
3304 	 * in the adapter flash ...
3305 	 */
3306 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3307 	case CHELSIO_T4:
3308 		fw_config_file = FW4_CFNAME;
3309 		break;
3310 	case CHELSIO_T5:
3311 		fw_config_file = FW5_CFNAME;
3312 		break;
3313 	default:
3314 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3315 		       adapter->pdev->device);
3316 		ret = -EINVAL;
3317 		goto bye;
3318 	}
3319 
3320 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3321 	if (ret < 0) {
3322 		config_name = "On FLASH";
3323 		mtype = FW_MEMTYPE_CF_FLASH;
3324 		maddr = t4_flash_cfg_addr(adapter);
3325 	} else {
3326 		u32 params[7], val[7];
3327 
3328 		sprintf(fw_config_file_path,
3329 			"/lib/firmware/%s", fw_config_file);
3330 		config_name = fw_config_file_path;
3331 
3332 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3333 			ret = -ENOMEM;
3334 		else {
3335 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3336 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3337 			ret = t4_query_params(adapter, adapter->mbox,
3338 					      adapter->fn, 0, 1, params, val);
3339 			if (ret == 0) {
3340 				/*
3341 				 * For t4_memory_rw() below addresses and
3342 				 * sizes have to be in terms of multiples of 4
3343 				 * bytes.  So, if the Configuration File isn't
3344 				 * a multiple of 4 bytes in length we'll have
3345 				 * to write that out separately since we can't
3346 				 * guarantee that the bytes following the
3347 				 * residual byte in the buffer returned by
3348 				 * request_firmware() are zeroed out ...
3349 				 */
3350 				size_t resid = cf->size & 0x3;
3351 				size_t size = cf->size & ~0x3;
3352 				__be32 *data = (__be32 *)cf->data;
3353 
3354 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3355 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3356 
3357 				spin_lock(&adapter->win0_lock);
3358 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3359 						   size, data, T4_MEMORY_WRITE);
3360 				if (ret == 0 && resid != 0) {
3361 					union {
3362 						__be32 word;
3363 						char buf[4];
3364 					} last;
3365 					int i;
3366 
3367 					last.word = data[size >> 2];
3368 					for (i = resid; i < 4; i++)
3369 						last.buf[i] = 0;
3370 					ret = t4_memory_rw(adapter, 0, mtype,
3371 							   maddr + size,
3372 							   4, &last.word,
3373 							   T4_MEMORY_WRITE);
3374 				}
3375 				spin_unlock(&adapter->win0_lock);
3376 			}
3377 		}
3378 
3379 		release_firmware(cf);
3380 		if (ret)
3381 			goto bye;
3382 	}
3383 
3384 	/*
3385 	 * Issue a Capability Configuration command to the firmware to get it
3386 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3387 	 * because we want the ability to modify various features after we've
3388 	 * processed the configuration file ...
3389 	 */
3390 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3391 	caps_cmd.op_to_write =
3392 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3393 		      FW_CMD_REQUEST_F |
3394 		      FW_CMD_READ_F);
3395 	caps_cmd.cfvalid_to_len16 =
3396 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3397 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3398 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3399 		      FW_LEN16(caps_cmd));
3400 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3401 			 &caps_cmd);
3402 
3403 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3404 	 * Configuration File in FLASH), our last gasp effort is to use the
3405 	 * Firmware Configuration File which is embedded in the firmware.  A
3406 	 * very few early versions of the firmware didn't have one embedded
3407 	 * but we can ignore those.
3408 	 */
3409 	if (ret == -ENOENT) {
3410 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3411 		caps_cmd.op_to_write =
3412 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3413 					FW_CMD_REQUEST_F |
3414 					FW_CMD_READ_F);
3415 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3416 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3417 				sizeof(caps_cmd), &caps_cmd);
3418 		config_name = "Firmware Default";
3419 	}
3420 
3421 	config_issued = 1;
3422 	if (ret < 0)
3423 		goto bye;
3424 
3425 	finiver = ntohl(caps_cmd.finiver);
3426 	finicsum = ntohl(caps_cmd.finicsum);
3427 	cfcsum = ntohl(caps_cmd.cfcsum);
3428 	if (finicsum != cfcsum)
3429 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3430 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3431 			 finicsum, cfcsum);
3432 
3433 	/*
3434 	 * And now tell the firmware to use the configuration we just loaded.
3435 	 */
3436 	caps_cmd.op_to_write =
3437 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3438 		      FW_CMD_REQUEST_F |
3439 		      FW_CMD_WRITE_F);
3440 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3441 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3442 			 NULL);
3443 	if (ret < 0)
3444 		goto bye;
3445 
3446 	/*
3447 	 * Tweak configuration based on system architecture, module
3448 	 * parameters, etc.
3449 	 */
3450 	ret = adap_init0_tweaks(adapter);
3451 	if (ret < 0)
3452 		goto bye;
3453 
3454 	/*
3455 	 * And finally tell the firmware to initialize itself using the
3456 	 * parameters from the Configuration File.
3457 	 */
3458 	ret = t4_fw_initialize(adapter, adapter->mbox);
3459 	if (ret < 0)
3460 		goto bye;
3461 
3462 	/* Emit Firmware Configuration File information and return
3463 	 * successfully.
3464 	 */
3465 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3466 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3467 		 config_name, finiver, cfcsum);
3468 	return 0;
3469 
3470 	/*
3471 	 * Something bad happened.  Return the error ...  (If the "error"
3472 	 * is that there's no Configuration File on the adapter we don't
3473 	 * want to issue a warning since this is fairly common.)
3474 	 */
3475 bye:
3476 	if (config_issued && ret != -ENOENT)
3477 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3478 			 config_name, -ret);
3479 	return ret;
3480 }
3481 
3482 static struct fw_info fw_info_array[] = {
3483 	{
3484 		.chip = CHELSIO_T4,
3485 		.fs_name = FW4_CFNAME,
3486 		.fw_mod_name = FW4_FNAME,
3487 		.fw_hdr = {
3488 			.chip = FW_HDR_CHIP_T4,
3489 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3490 			.intfver_nic = FW_INTFVER(T4, NIC),
3491 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3492 			.intfver_ri = FW_INTFVER(T4, RI),
3493 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3494 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3495 		},
3496 	}, {
3497 		.chip = CHELSIO_T5,
3498 		.fs_name = FW5_CFNAME,
3499 		.fw_mod_name = FW5_FNAME,
3500 		.fw_hdr = {
3501 			.chip = FW_HDR_CHIP_T5,
3502 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3503 			.intfver_nic = FW_INTFVER(T5, NIC),
3504 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3505 			.intfver_ri = FW_INTFVER(T5, RI),
3506 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3507 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3508 		},
3509 	}
3510 };
3511 
3512 static struct fw_info *find_fw_info(int chip)
3513 {
3514 	int i;
3515 
3516 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3517 		if (fw_info_array[i].chip == chip)
3518 			return &fw_info_array[i];
3519 	}
3520 	return NULL;
3521 }
3522 
3523 /*
3524  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3525  */
3526 static int adap_init0(struct adapter *adap)
3527 {
3528 	int ret;
3529 	u32 v, port_vec;
3530 	enum dev_state state;
3531 	u32 params[7], val[7];
3532 	struct fw_caps_config_cmd caps_cmd;
3533 	int reset = 1;
3534 
3535 	/* Grab Firmware Device Log parameters as early as possible so we have
3536 	 * access to it for debugging, etc.
3537 	 */
3538 	ret = t4_init_devlog_params(adap);
3539 	if (ret < 0)
3540 		return ret;
3541 
3542 	/* Contact FW, advertising Master capability */
3543 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3544 	if (ret < 0) {
3545 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3546 			ret);
3547 		return ret;
3548 	}
3549 	if (ret == adap->mbox)
3550 		adap->flags |= MASTER_PF;
3551 
3552 	/*
3553 	 * If we're the Master PF Driver and the device is uninitialized,
3554 	 * then let's consider upgrading the firmware ...  (We always want
3555 	 * to check the firmware version number in order to A. get it for
3556 	 * later reporting and B. to warn if the currently loaded firmware
3557 	 * is excessively mismatched relative to the driver.)
3558 	 */
3559 	t4_get_fw_version(adap, &adap->params.fw_vers);
3560 	t4_get_tp_version(adap, &adap->params.tp_vers);
3561 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3562 		struct fw_info *fw_info;
3563 		struct fw_hdr *card_fw;
3564 		const struct firmware *fw;
3565 		const u8 *fw_data = NULL;
3566 		unsigned int fw_size = 0;
3567 
3568 		/* This is the firmware whose headers the driver was compiled
3569 		 * against
3570 		 */
3571 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3572 		if (fw_info == NULL) {
3573 			dev_err(adap->pdev_dev,
3574 				"unable to get firmware info for chip %d.\n",
3575 				CHELSIO_CHIP_VERSION(adap->params.chip));
3576 			return -EINVAL;
3577 		}
3578 
3579 		/* allocate memory to read the header of the firmware on the
3580 		 * card
3581 		 */
3582 		card_fw = t4_alloc_mem(sizeof(*card_fw));
3583 
3584 		/* Get FW from from /lib/firmware/ */
3585 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3586 				       adap->pdev_dev);
3587 		if (ret < 0) {
3588 			dev_err(adap->pdev_dev,
3589 				"unable to load firmware image %s, error %d\n",
3590 				fw_info->fw_mod_name, ret);
3591 		} else {
3592 			fw_data = fw->data;
3593 			fw_size = fw->size;
3594 		}
3595 
3596 		/* upgrade FW logic */
3597 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3598 				 state, &reset);
3599 
3600 		/* Cleaning up */
3601 		release_firmware(fw);
3602 		t4_free_mem(card_fw);
3603 
3604 		if (ret < 0)
3605 			goto bye;
3606 	}
3607 
3608 	/*
3609 	 * Grab VPD parameters.  This should be done after we establish a
3610 	 * connection to the firmware since some of the VPD parameters
3611 	 * (notably the Core Clock frequency) are retrieved via requests to
3612 	 * the firmware.  On the other hand, we need these fairly early on
3613 	 * so we do this right after getting ahold of the firmware.
3614 	 */
3615 	ret = get_vpd_params(adap, &adap->params.vpd);
3616 	if (ret < 0)
3617 		goto bye;
3618 
3619 	/*
3620 	 * Find out what ports are available to us.  Note that we need to do
3621 	 * this before calling adap_init0_no_config() since it needs nports
3622 	 * and portvec ...
3623 	 */
3624 	v =
3625 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3626 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3627 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
3628 	if (ret < 0)
3629 		goto bye;
3630 
3631 	adap->params.nports = hweight32(port_vec);
3632 	adap->params.portvec = port_vec;
3633 
3634 	/* If the firmware is initialized already, emit a simply note to that
3635 	 * effect. Otherwise, it's time to try initializing the adapter.
3636 	 */
3637 	if (state == DEV_STATE_INIT) {
3638 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3639 			 "Adapter already initialized\n",
3640 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3641 	} else {
3642 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3643 			 "Initializing adapter\n");
3644 
3645 		/* Find out whether we're dealing with a version of the
3646 		 * firmware which has configuration file support.
3647 		 */
3648 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3649 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3650 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
3651 				      params, val);
3652 
3653 		/* If the firmware doesn't support Configuration Files,
3654 		 * return an error.
3655 		 */
3656 		if (ret < 0) {
3657 			dev_err(adap->pdev_dev, "firmware doesn't support "
3658 				"Firmware Configuration Files\n");
3659 			goto bye;
3660 		}
3661 
3662 		/* The firmware provides us with a memory buffer where we can
3663 		 * load a Configuration File from the host if we want to
3664 		 * override the Configuration File in flash.
3665 		 */
3666 		ret = adap_init0_config(adap, reset);
3667 		if (ret == -ENOENT) {
3668 			dev_err(adap->pdev_dev, "no Configuration File "
3669 				"present on adapter.\n");
3670 			goto bye;
3671 		}
3672 		if (ret < 0) {
3673 			dev_err(adap->pdev_dev, "could not initialize "
3674 				"adapter, error %d\n", -ret);
3675 			goto bye;
3676 		}
3677 	}
3678 
3679 	/* Give the SGE code a chance to pull in anything that it needs ...
3680 	 * Note that this must be called after we retrieve our VPD parameters
3681 	 * in order to know how to convert core ticks to seconds, etc.
3682 	 */
3683 	ret = t4_sge_init(adap);
3684 	if (ret < 0)
3685 		goto bye;
3686 
3687 	if (is_bypass_device(adap->pdev->device))
3688 		adap->params.bypass = 1;
3689 
3690 	/*
3691 	 * Grab some of our basic fundamental operating parameters.
3692 	 */
3693 #define FW_PARAM_DEV(param) \
3694 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3695 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3696 
3697 #define FW_PARAM_PFVF(param) \
3698 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3699 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3700 	FW_PARAMS_PARAM_Y_V(0) | \
3701 	FW_PARAMS_PARAM_Z_V(0)
3702 
3703 	params[0] = FW_PARAM_PFVF(EQ_START);
3704 	params[1] = FW_PARAM_PFVF(L2T_START);
3705 	params[2] = FW_PARAM_PFVF(L2T_END);
3706 	params[3] = FW_PARAM_PFVF(FILTER_START);
3707 	params[4] = FW_PARAM_PFVF(FILTER_END);
3708 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3709 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
3710 	if (ret < 0)
3711 		goto bye;
3712 	adap->sge.egr_start = val[0];
3713 	adap->l2t_start = val[1];
3714 	adap->l2t_end = val[2];
3715 	adap->tids.ftid_base = val[3];
3716 	adap->tids.nftids = val[4] - val[3] + 1;
3717 	adap->sge.ingr_start = val[5];
3718 
3719 	/* qids (ingress/egress) returned from firmware can be anywhere
3720 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3721 	 * Hence driver needs to allocate memory for this range to
3722 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3723 	 * in FW_EQ_*_CMD.alloc command.
3724 	 */
3725 	params[0] = FW_PARAM_PFVF(EQ_END);
3726 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3727 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3728 	if (ret < 0)
3729 		goto bye;
3730 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3731 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3732 
3733 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3734 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3735 	if (!adap->sge.egr_map) {
3736 		ret = -ENOMEM;
3737 		goto bye;
3738 	}
3739 
3740 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3741 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3742 	if (!adap->sge.ingr_map) {
3743 		ret = -ENOMEM;
3744 		goto bye;
3745 	}
3746 
3747 	/* Allocate the memory for the vaious egress queue bitmaps
3748 	 * ie starving_fl and txq_maperr.
3749 	 */
3750 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3751 					sizeof(long), GFP_KERNEL);
3752 	if (!adap->sge.starving_fl) {
3753 		ret = -ENOMEM;
3754 		goto bye;
3755 	}
3756 
3757 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3758 				       sizeof(long), GFP_KERNEL);
3759 	if (!adap->sge.txq_maperr) {
3760 		ret = -ENOMEM;
3761 		goto bye;
3762 	}
3763 
3764 	params[0] = FW_PARAM_PFVF(CLIP_START);
3765 	params[1] = FW_PARAM_PFVF(CLIP_END);
3766 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3767 	if (ret < 0)
3768 		goto bye;
3769 	adap->clipt_start = val[0];
3770 	adap->clipt_end = val[1];
3771 
3772 	/* query params related to active filter region */
3773 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3774 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3775 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
3776 	/* If Active filter size is set we enable establishing
3777 	 * offload connection through firmware work request
3778 	 */
3779 	if ((val[0] != val[1]) && (ret >= 0)) {
3780 		adap->flags |= FW_OFLD_CONN;
3781 		adap->tids.aftid_base = val[0];
3782 		adap->tids.aftid_end = val[1];
3783 	}
3784 
3785 	/* If we're running on newer firmware, let it know that we're
3786 	 * prepared to deal with encapsulated CPL messages.  Older
3787 	 * firmware won't understand this and we'll just get
3788 	 * unencapsulated messages ...
3789 	 */
3790 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3791 	val[0] = 1;
3792 	(void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
3793 
3794 	/*
3795 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3796 	 * capability.  Earlier versions of the firmware didn't have the
3797 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3798 	 * permission to use ULPTX MEMWRITE DSGL.
3799 	 */
3800 	if (is_t4(adap->params.chip)) {
3801 		adap->params.ulptx_memwrite_dsgl = false;
3802 	} else {
3803 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3804 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
3805 				      1, params, val);
3806 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3807 	}
3808 
3809 	/*
3810 	 * Get device capabilities so we can determine what resources we need
3811 	 * to manage.
3812 	 */
3813 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3814 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3815 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3816 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3817 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3818 			 &caps_cmd);
3819 	if (ret < 0)
3820 		goto bye;
3821 
3822 	if (caps_cmd.ofldcaps) {
3823 		/* query offload-related parameters */
3824 		params[0] = FW_PARAM_DEV(NTID);
3825 		params[1] = FW_PARAM_PFVF(SERVER_START);
3826 		params[2] = FW_PARAM_PFVF(SERVER_END);
3827 		params[3] = FW_PARAM_PFVF(TDDP_START);
3828 		params[4] = FW_PARAM_PFVF(TDDP_END);
3829 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3830 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3831 				      params, val);
3832 		if (ret < 0)
3833 			goto bye;
3834 		adap->tids.ntids = val[0];
3835 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3836 		adap->tids.stid_base = val[1];
3837 		adap->tids.nstids = val[2] - val[1] + 1;
3838 		/*
3839 		 * Setup server filter region. Divide the available filter
3840 		 * region into two parts. Regular filters get 1/3rd and server
3841 		 * filters get 2/3rd part. This is only enabled if workarond
3842 		 * path is enabled.
3843 		 * 1. For regular filters.
3844 		 * 2. Server filter: This are special filters which are used
3845 		 * to redirect SYN packets to offload queue.
3846 		 */
3847 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3848 			adap->tids.sftid_base = adap->tids.ftid_base +
3849 					DIV_ROUND_UP(adap->tids.nftids, 3);
3850 			adap->tids.nsftids = adap->tids.nftids -
3851 					 DIV_ROUND_UP(adap->tids.nftids, 3);
3852 			adap->tids.nftids = adap->tids.sftid_base -
3853 						adap->tids.ftid_base;
3854 		}
3855 		adap->vres.ddp.start = val[3];
3856 		adap->vres.ddp.size = val[4] - val[3] + 1;
3857 		adap->params.ofldq_wr_cred = val[5];
3858 
3859 		adap->params.offload = 1;
3860 	}
3861 	if (caps_cmd.rdmacaps) {
3862 		params[0] = FW_PARAM_PFVF(STAG_START);
3863 		params[1] = FW_PARAM_PFVF(STAG_END);
3864 		params[2] = FW_PARAM_PFVF(RQ_START);
3865 		params[3] = FW_PARAM_PFVF(RQ_END);
3866 		params[4] = FW_PARAM_PFVF(PBL_START);
3867 		params[5] = FW_PARAM_PFVF(PBL_END);
3868 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
3869 				      params, val);
3870 		if (ret < 0)
3871 			goto bye;
3872 		adap->vres.stag.start = val[0];
3873 		adap->vres.stag.size = val[1] - val[0] + 1;
3874 		adap->vres.rq.start = val[2];
3875 		adap->vres.rq.size = val[3] - val[2] + 1;
3876 		adap->vres.pbl.start = val[4];
3877 		adap->vres.pbl.size = val[5] - val[4] + 1;
3878 
3879 		params[0] = FW_PARAM_PFVF(SQRQ_START);
3880 		params[1] = FW_PARAM_PFVF(SQRQ_END);
3881 		params[2] = FW_PARAM_PFVF(CQ_START);
3882 		params[3] = FW_PARAM_PFVF(CQ_END);
3883 		params[4] = FW_PARAM_PFVF(OCQ_START);
3884 		params[5] = FW_PARAM_PFVF(OCQ_END);
3885 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params,
3886 				      val);
3887 		if (ret < 0)
3888 			goto bye;
3889 		adap->vres.qp.start = val[0];
3890 		adap->vres.qp.size = val[1] - val[0] + 1;
3891 		adap->vres.cq.start = val[2];
3892 		adap->vres.cq.size = val[3] - val[2] + 1;
3893 		adap->vres.ocq.start = val[4];
3894 		adap->vres.ocq.size = val[5] - val[4] + 1;
3895 
3896 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3897 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3898 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params,
3899 				      val);
3900 		if (ret < 0) {
3901 			adap->params.max_ordird_qp = 8;
3902 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3903 			ret = 0;
3904 		} else {
3905 			adap->params.max_ordird_qp = val[0];
3906 			adap->params.max_ird_adapter = val[1];
3907 		}
3908 		dev_info(adap->pdev_dev,
3909 			 "max_ordird_qp %d max_ird_adapter %d\n",
3910 			 adap->params.max_ordird_qp,
3911 			 adap->params.max_ird_adapter);
3912 	}
3913 	if (caps_cmd.iscsicaps) {
3914 		params[0] = FW_PARAM_PFVF(ISCSI_START);
3915 		params[1] = FW_PARAM_PFVF(ISCSI_END);
3916 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
3917 				      params, val);
3918 		if (ret < 0)
3919 			goto bye;
3920 		adap->vres.iscsi.start = val[0];
3921 		adap->vres.iscsi.size = val[1] - val[0] + 1;
3922 	}
3923 #undef FW_PARAM_PFVF
3924 #undef FW_PARAM_DEV
3925 
3926 	/* The MTU/MSS Table is initialized by now, so load their values.  If
3927 	 * we're initializing the adapter, then we'll make any modifications
3928 	 * we want to the MTU/MSS Table and also initialize the congestion
3929 	 * parameters.
3930 	 */
3931 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3932 	if (state != DEV_STATE_INIT) {
3933 		int i;
3934 
3935 		/* The default MTU Table contains values 1492 and 1500.
3936 		 * However, for TCP, it's better to have two values which are
3937 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3938 		 * This allows us to have a TCP Data Payload which is a
3939 		 * multiple of 8 regardless of what combination of TCP Options
3940 		 * are in use (always a multiple of 4 bytes) which is
3941 		 * important for performance reasons.  For instance, if no
3942 		 * options are in use, then we have a 20-byte IP header and a
3943 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
3944 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3945 		 * which is not a multiple of 8.  So using an MSS of 1488 in
3946 		 * this case results in a TCP Data Payload of 1448 bytes which
3947 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
3948 		 * Stamps have been negotiated, then an MTU of 1500 bytes
3949 		 * results in a TCP Data Payload of 1448 bytes which, as
3950 		 * above, is a multiple of 8 bytes ...
3951 		 */
3952 		for (i = 0; i < NMTUS; i++)
3953 			if (adap->params.mtus[i] == 1492) {
3954 				adap->params.mtus[i] = 1488;
3955 				break;
3956 			}
3957 
3958 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3959 			     adap->params.b_wnd);
3960 	}
3961 	t4_init_sge_params(adap);
3962 	t4_init_tp_params(adap);
3963 	adap->flags |= FW_OK;
3964 	return 0;
3965 
3966 	/*
3967 	 * Something bad happened.  If a command timed out or failed with EIO
3968 	 * FW does not operate within its spec or something catastrophic
3969 	 * happened to HW/FW, stop issuing commands.
3970 	 */
3971 bye:
3972 	kfree(adap->sge.egr_map);
3973 	kfree(adap->sge.ingr_map);
3974 	kfree(adap->sge.starving_fl);
3975 	kfree(adap->sge.txq_maperr);
3976 	if (ret != -ETIMEDOUT && ret != -EIO)
3977 		t4_fw_bye(adap, adap->mbox);
3978 	return ret;
3979 }
3980 
3981 /* EEH callbacks */
3982 
3983 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3984 					 pci_channel_state_t state)
3985 {
3986 	int i;
3987 	struct adapter *adap = pci_get_drvdata(pdev);
3988 
3989 	if (!adap)
3990 		goto out;
3991 
3992 	rtnl_lock();
3993 	adap->flags &= ~FW_OK;
3994 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3995 	spin_lock(&adap->stats_lock);
3996 	for_each_port(adap, i) {
3997 		struct net_device *dev = adap->port[i];
3998 
3999 		netif_device_detach(dev);
4000 		netif_carrier_off(dev);
4001 	}
4002 	spin_unlock(&adap->stats_lock);
4003 	disable_interrupts(adap);
4004 	if (adap->flags & FULL_INIT_DONE)
4005 		cxgb_down(adap);
4006 	rtnl_unlock();
4007 	if ((adap->flags & DEV_ENABLED)) {
4008 		pci_disable_device(pdev);
4009 		adap->flags &= ~DEV_ENABLED;
4010 	}
4011 out:	return state == pci_channel_io_perm_failure ?
4012 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4013 }
4014 
4015 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4016 {
4017 	int i, ret;
4018 	struct fw_caps_config_cmd c;
4019 	struct adapter *adap = pci_get_drvdata(pdev);
4020 
4021 	if (!adap) {
4022 		pci_restore_state(pdev);
4023 		pci_save_state(pdev);
4024 		return PCI_ERS_RESULT_RECOVERED;
4025 	}
4026 
4027 	if (!(adap->flags & DEV_ENABLED)) {
4028 		if (pci_enable_device(pdev)) {
4029 			dev_err(&pdev->dev, "Cannot reenable PCI "
4030 					    "device after reset\n");
4031 			return PCI_ERS_RESULT_DISCONNECT;
4032 		}
4033 		adap->flags |= DEV_ENABLED;
4034 	}
4035 
4036 	pci_set_master(pdev);
4037 	pci_restore_state(pdev);
4038 	pci_save_state(pdev);
4039 	pci_cleanup_aer_uncorrect_error_status(pdev);
4040 
4041 	if (t4_wait_dev_ready(adap->regs) < 0)
4042 		return PCI_ERS_RESULT_DISCONNECT;
4043 	if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
4044 		return PCI_ERS_RESULT_DISCONNECT;
4045 	adap->flags |= FW_OK;
4046 	if (adap_init1(adap, &c))
4047 		return PCI_ERS_RESULT_DISCONNECT;
4048 
4049 	for_each_port(adap, i) {
4050 		struct port_info *p = adap2pinfo(adap, i);
4051 
4052 		ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
4053 				  NULL, NULL);
4054 		if (ret < 0)
4055 			return PCI_ERS_RESULT_DISCONNECT;
4056 		p->viid = ret;
4057 		p->xact_addr_filt = -1;
4058 	}
4059 
4060 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4061 		     adap->params.b_wnd);
4062 	setup_memwin(adap);
4063 	if (cxgb_up(adap))
4064 		return PCI_ERS_RESULT_DISCONNECT;
4065 	return PCI_ERS_RESULT_RECOVERED;
4066 }
4067 
4068 static void eeh_resume(struct pci_dev *pdev)
4069 {
4070 	int i;
4071 	struct adapter *adap = pci_get_drvdata(pdev);
4072 
4073 	if (!adap)
4074 		return;
4075 
4076 	rtnl_lock();
4077 	for_each_port(adap, i) {
4078 		struct net_device *dev = adap->port[i];
4079 
4080 		if (netif_running(dev)) {
4081 			link_start(dev);
4082 			cxgb_set_rxmode(dev);
4083 		}
4084 		netif_device_attach(dev);
4085 	}
4086 	rtnl_unlock();
4087 }
4088 
4089 static const struct pci_error_handlers cxgb4_eeh = {
4090 	.error_detected = eeh_err_detected,
4091 	.slot_reset     = eeh_slot_reset,
4092 	.resume         = eeh_resume,
4093 };
4094 
4095 static inline bool is_x_10g_port(const struct link_config *lc)
4096 {
4097 	return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4098 	       (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4099 }
4100 
4101 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4102 			     unsigned int us, unsigned int cnt,
4103 			     unsigned int size, unsigned int iqe_size)
4104 {
4105 	q->adap = adap;
4106 	cxgb4_set_rspq_intr_params(q, us, cnt);
4107 	q->iqe_len = iqe_size;
4108 	q->size = size;
4109 }
4110 
4111 /*
4112  * Perform default configuration of DMA queues depending on the number and type
4113  * of ports we found and the number of available CPUs.  Most settings can be
4114  * modified by the admin prior to actual use.
4115  */
4116 static void cfg_queues(struct adapter *adap)
4117 {
4118 	struct sge *s = &adap->sge;
4119 	int i, n10g = 0, qidx = 0;
4120 #ifndef CONFIG_CHELSIO_T4_DCB
4121 	int q10g = 0;
4122 #endif
4123 	int ciq_size;
4124 
4125 	for_each_port(adap, i)
4126 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4127 #ifdef CONFIG_CHELSIO_T4_DCB
4128 	/* For Data Center Bridging support we need to be able to support up
4129 	 * to 8 Traffic Priorities; each of which will be assigned to its
4130 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4131 	 */
4132 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4133 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4134 			MAX_ETH_QSETS, adap->params.nports * 8);
4135 		BUG_ON(1);
4136 	}
4137 
4138 	for_each_port(adap, i) {
4139 		struct port_info *pi = adap2pinfo(adap, i);
4140 
4141 		pi->first_qset = qidx;
4142 		pi->nqsets = 8;
4143 		qidx += pi->nqsets;
4144 	}
4145 #else /* !CONFIG_CHELSIO_T4_DCB */
4146 	/*
4147 	 * We default to 1 queue per non-10G port and up to # of cores queues
4148 	 * per 10G port.
4149 	 */
4150 	if (n10g)
4151 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4152 	if (q10g > netif_get_num_default_rss_queues())
4153 		q10g = netif_get_num_default_rss_queues();
4154 
4155 	for_each_port(adap, i) {
4156 		struct port_info *pi = adap2pinfo(adap, i);
4157 
4158 		pi->first_qset = qidx;
4159 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4160 		qidx += pi->nqsets;
4161 	}
4162 #endif /* !CONFIG_CHELSIO_T4_DCB */
4163 
4164 	s->ethqsets = qidx;
4165 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4166 
4167 	if (is_offload(adap)) {
4168 		/*
4169 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4170 		 * otherwise we divide all available queues amongst the channels
4171 		 * capped by the number of available cores.
4172 		 */
4173 		if (n10g) {
4174 			i = min_t(int, ARRAY_SIZE(s->ofldrxq),
4175 				  num_online_cpus());
4176 			s->ofldqsets = roundup(i, adap->params.nports);
4177 		} else
4178 			s->ofldqsets = adap->params.nports;
4179 		/* For RDMA one Rx queue per channel suffices */
4180 		s->rdmaqs = adap->params.nports;
4181 		/* Try and allow at least 1 CIQ per cpu rounding down
4182 		 * to the number of ports, with a minimum of 1 per port.
4183 		 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4184 		 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4185 		 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4186 		 */
4187 		s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4188 		s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4189 				adap->params.nports;
4190 		s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4191 	}
4192 
4193 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4194 		struct sge_eth_rxq *r = &s->ethrxq[i];
4195 
4196 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4197 		r->fl.size = 72;
4198 	}
4199 
4200 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4201 		s->ethtxq[i].q.size = 1024;
4202 
4203 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4204 		s->ctrlq[i].q.size = 512;
4205 
4206 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4207 		s->ofldtxq[i].q.size = 1024;
4208 
4209 	for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
4210 		struct sge_ofld_rxq *r = &s->ofldrxq[i];
4211 
4212 		init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4213 		r->rspq.uld = CXGB4_ULD_ISCSI;
4214 		r->fl.size = 72;
4215 	}
4216 
4217 	for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4218 		struct sge_ofld_rxq *r = &s->rdmarxq[i];
4219 
4220 		init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4221 		r->rspq.uld = CXGB4_ULD_RDMA;
4222 		r->fl.size = 72;
4223 	}
4224 
4225 	ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4226 	if (ciq_size > SGE_MAX_IQ_SIZE) {
4227 		CH_WARN(adap, "CIQ size too small for available IQs\n");
4228 		ciq_size = SGE_MAX_IQ_SIZE;
4229 	}
4230 
4231 	for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4232 		struct sge_ofld_rxq *r = &s->rdmaciq[i];
4233 
4234 		init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4235 		r->rspq.uld = CXGB4_ULD_RDMA;
4236 	}
4237 
4238 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4239 	init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4240 }
4241 
4242 /*
4243  * Reduce the number of Ethernet queues across all ports to at most n.
4244  * n provides at least one queue per port.
4245  */
4246 static void reduce_ethqs(struct adapter *adap, int n)
4247 {
4248 	int i;
4249 	struct port_info *pi;
4250 
4251 	while (n < adap->sge.ethqsets)
4252 		for_each_port(adap, i) {
4253 			pi = adap2pinfo(adap, i);
4254 			if (pi->nqsets > 1) {
4255 				pi->nqsets--;
4256 				adap->sge.ethqsets--;
4257 				if (adap->sge.ethqsets <= n)
4258 					break;
4259 			}
4260 		}
4261 
4262 	n = 0;
4263 	for_each_port(adap, i) {
4264 		pi = adap2pinfo(adap, i);
4265 		pi->first_qset = n;
4266 		n += pi->nqsets;
4267 	}
4268 }
4269 
4270 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4271 #define EXTRA_VECS 2
4272 
4273 static int enable_msix(struct adapter *adap)
4274 {
4275 	int ofld_need = 0;
4276 	int i, want, need, allocated;
4277 	struct sge *s = &adap->sge;
4278 	unsigned int nchan = adap->params.nports;
4279 	struct msix_entry *entries;
4280 
4281 	entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4282 			  GFP_KERNEL);
4283 	if (!entries)
4284 		return -ENOMEM;
4285 
4286 	for (i = 0; i < MAX_INGQ + 1; ++i)
4287 		entries[i].entry = i;
4288 
4289 	want = s->max_ethqsets + EXTRA_VECS;
4290 	if (is_offload(adap)) {
4291 		want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4292 		/* need nchan for each possible ULD */
4293 		ofld_need = 3 * nchan;
4294 	}
4295 #ifdef CONFIG_CHELSIO_T4_DCB
4296 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4297 	 * each port.
4298 	 */
4299 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4300 #else
4301 	need = adap->params.nports + EXTRA_VECS + ofld_need;
4302 #endif
4303 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4304 	if (allocated < 0) {
4305 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4306 			 " not using MSI-X\n");
4307 		kfree(entries);
4308 		return allocated;
4309 	}
4310 
4311 	/* Distribute available vectors to the various queue groups.
4312 	 * Every group gets its minimum requirement and NIC gets top
4313 	 * priority for leftovers.
4314 	 */
4315 	i = allocated - EXTRA_VECS - ofld_need;
4316 	if (i < s->max_ethqsets) {
4317 		s->max_ethqsets = i;
4318 		if (i < s->ethqsets)
4319 			reduce_ethqs(adap, i);
4320 	}
4321 	if (is_offload(adap)) {
4322 		if (allocated < want) {
4323 			s->rdmaqs = nchan;
4324 			s->rdmaciqs = nchan;
4325 		}
4326 
4327 		/* leftovers go to OFLD */
4328 		i = allocated - EXTRA_VECS - s->max_ethqsets -
4329 		    s->rdmaqs - s->rdmaciqs;
4330 		s->ofldqsets = (i / nchan) * nchan;  /* round down */
4331 	}
4332 	for (i = 0; i < allocated; ++i)
4333 		adap->msix_info[i].vec = entries[i].vector;
4334 
4335 	kfree(entries);
4336 	return 0;
4337 }
4338 
4339 #undef EXTRA_VECS
4340 
4341 static int init_rss(struct adapter *adap)
4342 {
4343 	unsigned int i, j;
4344 
4345 	for_each_port(adap, i) {
4346 		struct port_info *pi = adap2pinfo(adap, i);
4347 
4348 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4349 		if (!pi->rss)
4350 			return -ENOMEM;
4351 		for (j = 0; j < pi->rss_size; j++)
4352 			pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
4353 	}
4354 	return 0;
4355 }
4356 
4357 static void print_port_info(const struct net_device *dev)
4358 {
4359 	char buf[80];
4360 	char *bufp = buf;
4361 	const char *spd = "";
4362 	const struct port_info *pi = netdev_priv(dev);
4363 	const struct adapter *adap = pi->adapter;
4364 
4365 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4366 		spd = " 2.5 GT/s";
4367 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4368 		spd = " 5 GT/s";
4369 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4370 		spd = " 8 GT/s";
4371 
4372 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4373 		bufp += sprintf(bufp, "100/");
4374 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4375 		bufp += sprintf(bufp, "1000/");
4376 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4377 		bufp += sprintf(bufp, "10G/");
4378 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4379 		bufp += sprintf(bufp, "40G/");
4380 	if (bufp != buf)
4381 		--bufp;
4382 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4383 
4384 	netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
4385 		    adap->params.vpd.id,
4386 		    CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4387 		    is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
4388 		    (adap->flags & USING_MSIX) ? " MSI-X" :
4389 		    (adap->flags & USING_MSI) ? " MSI" : "");
4390 	netdev_info(dev, "S/N: %s, P/N: %s\n",
4391 		    adap->params.vpd.sn, adap->params.vpd.pn);
4392 }
4393 
4394 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4395 {
4396 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4397 }
4398 
4399 /*
4400  * Free the following resources:
4401  * - memory used for tables
4402  * - MSI/MSI-X
4403  * - net devices
4404  * - resources FW is holding for us
4405  */
4406 static void free_some_resources(struct adapter *adapter)
4407 {
4408 	unsigned int i;
4409 
4410 	t4_free_mem(adapter->l2t);
4411 	t4_free_mem(adapter->tids.tid_tab);
4412 	kfree(adapter->sge.egr_map);
4413 	kfree(adapter->sge.ingr_map);
4414 	kfree(adapter->sge.starving_fl);
4415 	kfree(adapter->sge.txq_maperr);
4416 	disable_msi(adapter);
4417 
4418 	for_each_port(adapter, i)
4419 		if (adapter->port[i]) {
4420 			kfree(adap2pinfo(adapter, i)->rss);
4421 			free_netdev(adapter->port[i]);
4422 		}
4423 	if (adapter->flags & FW_OK)
4424 		t4_fw_bye(adapter, adapter->fn);
4425 }
4426 
4427 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4428 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4429 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4430 #define SEGMENT_SIZE 128
4431 
4432 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4433 {
4434 	int func, i, err, s_qpp, qpp, num_seg;
4435 	struct port_info *pi;
4436 	bool highdma = false;
4437 	struct adapter *adapter = NULL;
4438 	void __iomem *regs;
4439 
4440 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4441 
4442 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4443 	if (err) {
4444 		/* Just info, some other driver may have claimed the device. */
4445 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4446 		return err;
4447 	}
4448 
4449 	err = pci_enable_device(pdev);
4450 	if (err) {
4451 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4452 		goto out_release_regions;
4453 	}
4454 
4455 	regs = pci_ioremap_bar(pdev, 0);
4456 	if (!regs) {
4457 		dev_err(&pdev->dev, "cannot map device registers\n");
4458 		err = -ENOMEM;
4459 		goto out_disable_device;
4460 	}
4461 
4462 	err = t4_wait_dev_ready(regs);
4463 	if (err < 0)
4464 		goto out_unmap_bar0;
4465 
4466 	/* We control everything through one PF */
4467 	func = SOURCEPF_G(readl(regs + PL_WHOAMI_A));
4468 	if (func != ent->driver_data) {
4469 		iounmap(regs);
4470 		pci_disable_device(pdev);
4471 		pci_save_state(pdev);        /* to restore SR-IOV later */
4472 		goto sriov;
4473 	}
4474 
4475 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4476 		highdma = true;
4477 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4478 		if (err) {
4479 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4480 				"coherent allocations\n");
4481 			goto out_unmap_bar0;
4482 		}
4483 	} else {
4484 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4485 		if (err) {
4486 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4487 			goto out_unmap_bar0;
4488 		}
4489 	}
4490 
4491 	pci_enable_pcie_error_reporting(pdev);
4492 	enable_pcie_relaxed_ordering(pdev);
4493 	pci_set_master(pdev);
4494 	pci_save_state(pdev);
4495 
4496 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4497 	if (!adapter) {
4498 		err = -ENOMEM;
4499 		goto out_unmap_bar0;
4500 	}
4501 
4502 	adapter->workq = create_singlethread_workqueue("cxgb4");
4503 	if (!adapter->workq) {
4504 		err = -ENOMEM;
4505 		goto out_free_adapter;
4506 	}
4507 
4508 	/* PCI device has been enabled */
4509 	adapter->flags |= DEV_ENABLED;
4510 
4511 	adapter->regs = regs;
4512 	adapter->pdev = pdev;
4513 	adapter->pdev_dev = &pdev->dev;
4514 	adapter->mbox = func;
4515 	adapter->fn = func;
4516 	adapter->msg_enable = dflt_msg_enable;
4517 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4518 
4519 	spin_lock_init(&adapter->stats_lock);
4520 	spin_lock_init(&adapter->tid_release_lock);
4521 	spin_lock_init(&adapter->win0_lock);
4522 
4523 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4524 	INIT_WORK(&adapter->db_full_task, process_db_full);
4525 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4526 
4527 	err = t4_prep_adapter(adapter);
4528 	if (err)
4529 		goto out_free_adapter;
4530 
4531 
4532 	if (!is_t4(adapter->params.chip)) {
4533 		s_qpp = (QUEUESPERPAGEPF0_S +
4534 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4535 			adapter->fn);
4536 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4537 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4538 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
4539 
4540 		/* Each segment size is 128B. Write coalescing is enabled only
4541 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4542 		 * queue is less no of segments that can be accommodated in
4543 		 * a page size.
4544 		 */
4545 		if (qpp > num_seg) {
4546 			dev_err(&pdev->dev,
4547 				"Incorrect number of egress queues per page\n");
4548 			err = -EINVAL;
4549 			goto out_free_adapter;
4550 		}
4551 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4552 		pci_resource_len(pdev, 2));
4553 		if (!adapter->bar2) {
4554 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
4555 			err = -ENOMEM;
4556 			goto out_free_adapter;
4557 		}
4558 	}
4559 
4560 	setup_memwin(adapter);
4561 	err = adap_init0(adapter);
4562 	setup_memwin_rdma(adapter);
4563 	if (err)
4564 		goto out_unmap_bar;
4565 
4566 	for_each_port(adapter, i) {
4567 		struct net_device *netdev;
4568 
4569 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
4570 					   MAX_ETH_QSETS);
4571 		if (!netdev) {
4572 			err = -ENOMEM;
4573 			goto out_free_dev;
4574 		}
4575 
4576 		SET_NETDEV_DEV(netdev, &pdev->dev);
4577 
4578 		adapter->port[i] = netdev;
4579 		pi = netdev_priv(netdev);
4580 		pi->adapter = adapter;
4581 		pi->xact_addr_filt = -1;
4582 		pi->port_id = i;
4583 		netdev->irq = pdev->irq;
4584 
4585 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4586 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4587 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4588 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4589 		if (highdma)
4590 			netdev->hw_features |= NETIF_F_HIGHDMA;
4591 		netdev->features |= netdev->hw_features;
4592 		netdev->vlan_features = netdev->features & VLAN_FEAT;
4593 
4594 		netdev->priv_flags |= IFF_UNICAST_FLT;
4595 
4596 		netdev->netdev_ops = &cxgb4_netdev_ops;
4597 #ifdef CONFIG_CHELSIO_T4_DCB
4598 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
4599 		cxgb4_dcb_state_init(netdev);
4600 #endif
4601 		cxgb4_set_ethtool_ops(netdev);
4602 	}
4603 
4604 	pci_set_drvdata(pdev, adapter);
4605 
4606 	if (adapter->flags & FW_OK) {
4607 		err = t4_port_init(adapter, func, func, 0);
4608 		if (err)
4609 			goto out_free_dev;
4610 	}
4611 
4612 	/*
4613 	 * Configure queues and allocate tables now, they can be needed as
4614 	 * soon as the first register_netdev completes.
4615 	 */
4616 	cfg_queues(adapter);
4617 
4618 	adapter->l2t = t4_init_l2t();
4619 	if (!adapter->l2t) {
4620 		/* We tolerate a lack of L2T, giving up some functionality */
4621 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4622 		adapter->params.offload = 0;
4623 	}
4624 
4625 #if IS_ENABLED(CONFIG_IPV6)
4626 	adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4627 					  adapter->clipt_end);
4628 	if (!adapter->clipt) {
4629 		/* We tolerate a lack of clip_table, giving up
4630 		 * some functionality
4631 		 */
4632 		dev_warn(&pdev->dev,
4633 			 "could not allocate Clip table, continuing\n");
4634 		adapter->params.offload = 0;
4635 	}
4636 #endif
4637 	if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4638 		dev_warn(&pdev->dev, "could not allocate TID table, "
4639 			 "continuing\n");
4640 		adapter->params.offload = 0;
4641 	}
4642 
4643 	/* See what interrupts we'll be using */
4644 	if (msi > 1 && enable_msix(adapter) == 0)
4645 		adapter->flags |= USING_MSIX;
4646 	else if (msi > 0 && pci_enable_msi(pdev) == 0)
4647 		adapter->flags |= USING_MSI;
4648 
4649 	err = init_rss(adapter);
4650 	if (err)
4651 		goto out_free_dev;
4652 
4653 	/*
4654 	 * The card is now ready to go.  If any errors occur during device
4655 	 * registration we do not fail the whole card but rather proceed only
4656 	 * with the ports we manage to register successfully.  However we must
4657 	 * register at least one net device.
4658 	 */
4659 	for_each_port(adapter, i) {
4660 		pi = adap2pinfo(adapter, i);
4661 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4662 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4663 
4664 		err = register_netdev(adapter->port[i]);
4665 		if (err)
4666 			break;
4667 		adapter->chan_map[pi->tx_chan] = i;
4668 		print_port_info(adapter->port[i]);
4669 	}
4670 	if (i == 0) {
4671 		dev_err(&pdev->dev, "could not register any net devices\n");
4672 		goto out_free_dev;
4673 	}
4674 	if (err) {
4675 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4676 		err = 0;
4677 	}
4678 
4679 	if (cxgb4_debugfs_root) {
4680 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4681 							   cxgb4_debugfs_root);
4682 		setup_debugfs(adapter);
4683 	}
4684 
4685 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4686 	pdev->needs_freset = 1;
4687 
4688 	if (is_offload(adapter))
4689 		attach_ulds(adapter);
4690 
4691 sriov:
4692 #ifdef CONFIG_PCI_IOV
4693 	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4694 		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4695 			dev_info(&pdev->dev,
4696 				 "instantiated %u virtual functions\n",
4697 				 num_vf[func]);
4698 #endif
4699 	return 0;
4700 
4701  out_free_dev:
4702 	free_some_resources(adapter);
4703  out_unmap_bar:
4704 	if (!is_t4(adapter->params.chip))
4705 		iounmap(adapter->bar2);
4706  out_free_adapter:
4707 	if (adapter->workq)
4708 		destroy_workqueue(adapter->workq);
4709 
4710 	kfree(adapter);
4711  out_unmap_bar0:
4712 	iounmap(regs);
4713  out_disable_device:
4714 	pci_disable_pcie_error_reporting(pdev);
4715 	pci_disable_device(pdev);
4716  out_release_regions:
4717 	pci_release_regions(pdev);
4718 	return err;
4719 }
4720 
4721 static void remove_one(struct pci_dev *pdev)
4722 {
4723 	struct adapter *adapter = pci_get_drvdata(pdev);
4724 
4725 #ifdef CONFIG_PCI_IOV
4726 	pci_disable_sriov(pdev);
4727 
4728 #endif
4729 
4730 	if (adapter) {
4731 		int i;
4732 
4733 		/* Tear down per-adapter Work Queue first since it can contain
4734 		 * references to our adapter data structure.
4735 		 */
4736 		destroy_workqueue(adapter->workq);
4737 
4738 		if (is_offload(adapter))
4739 			detach_ulds(adapter);
4740 
4741 		disable_interrupts(adapter);
4742 
4743 		for_each_port(adapter, i)
4744 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
4745 				unregister_netdev(adapter->port[i]);
4746 
4747 		debugfs_remove_recursive(adapter->debugfs_root);
4748 
4749 		/* If we allocated filters, free up state associated with any
4750 		 * valid filters ...
4751 		 */
4752 		if (adapter->tids.ftid_tab) {
4753 			struct filter_entry *f = &adapter->tids.ftid_tab[0];
4754 			for (i = 0; i < (adapter->tids.nftids +
4755 					adapter->tids.nsftids); i++, f++)
4756 				if (f->valid)
4757 					clear_filter(adapter, f);
4758 		}
4759 
4760 		if (adapter->flags & FULL_INIT_DONE)
4761 			cxgb_down(adapter);
4762 
4763 		free_some_resources(adapter);
4764 #if IS_ENABLED(CONFIG_IPV6)
4765 		t4_cleanup_clip_tbl(adapter);
4766 #endif
4767 		iounmap(adapter->regs);
4768 		if (!is_t4(adapter->params.chip))
4769 			iounmap(adapter->bar2);
4770 		pci_disable_pcie_error_reporting(pdev);
4771 		if ((adapter->flags & DEV_ENABLED)) {
4772 			pci_disable_device(pdev);
4773 			adapter->flags &= ~DEV_ENABLED;
4774 		}
4775 		pci_release_regions(pdev);
4776 		synchronize_rcu();
4777 		kfree(adapter);
4778 	} else
4779 		pci_release_regions(pdev);
4780 }
4781 
4782 static struct pci_driver cxgb4_driver = {
4783 	.name     = KBUILD_MODNAME,
4784 	.id_table = cxgb4_pci_tbl,
4785 	.probe    = init_one,
4786 	.remove   = remove_one,
4787 	.shutdown = remove_one,
4788 	.err_handler = &cxgb4_eeh,
4789 };
4790 
4791 static int __init cxgb4_init_module(void)
4792 {
4793 	int ret;
4794 
4795 	/* Debugfs support is optional, just warn if this fails */
4796 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
4797 	if (!cxgb4_debugfs_root)
4798 		pr_warn("could not create debugfs entry, continuing\n");
4799 
4800 	ret = pci_register_driver(&cxgb4_driver);
4801 	if (ret < 0)
4802 		debugfs_remove(cxgb4_debugfs_root);
4803 
4804 #if IS_ENABLED(CONFIG_IPV6)
4805 	if (!inet6addr_registered) {
4806 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4807 		inet6addr_registered = true;
4808 	}
4809 #endif
4810 
4811 	return ret;
4812 }
4813 
4814 static void __exit cxgb4_cleanup_module(void)
4815 {
4816 #if IS_ENABLED(CONFIG_IPV6)
4817 	if (inet6addr_registered) {
4818 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
4819 		inet6addr_registered = false;
4820 	}
4821 #endif
4822 	pci_unregister_driver(&cxgb4_driver);
4823 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
4824 }
4825 
4826 module_init(cxgb4_init_module);
4827 module_exit(cxgb4_cleanup_module);
4828