1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68 
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "cxgb4_debugfs.h"
78 #include "clip_tbl.h"
79 #include "l2t.h"
80 #include "sched.h"
81 #include "cxgb4_tc_u32.h"
82 
83 char cxgb4_driver_name[] = KBUILD_MODNAME;
84 
85 #ifdef DRV_VERSION
86 #undef DRV_VERSION
87 #endif
88 #define DRV_VERSION "2.0.0-ko"
89 const char cxgb4_driver_version[] = DRV_VERSION;
90 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
91 
92 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
93 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
94 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
95 
96 /* Macros needed to support the PCI Device ID Table ...
97  */
98 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
99 	static const struct pci_device_id cxgb4_pci_tbl[] = {
100 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
101 
102 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
103  * called for both.
104  */
105 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
106 
107 #define CH_PCI_ID_TABLE_ENTRY(devid) \
108 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
109 
110 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
111 		{ 0, } \
112 	}
113 
114 #include "t4_pci_id_tbl.h"
115 
116 #define FW4_FNAME "cxgb4/t4fw.bin"
117 #define FW5_FNAME "cxgb4/t5fw.bin"
118 #define FW6_FNAME "cxgb4/t6fw.bin"
119 #define FW4_CFNAME "cxgb4/t4-config.txt"
120 #define FW5_CFNAME "cxgb4/t5-config.txt"
121 #define FW6_CFNAME "cxgb4/t6-config.txt"
122 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
123 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
124 #define PHY_AQ1202_DEVICEID 0x4409
125 #define PHY_BCM84834_DEVICEID 0x4486
126 
127 MODULE_DESCRIPTION(DRV_DESC);
128 MODULE_AUTHOR("Chelsio Communications");
129 MODULE_LICENSE("Dual BSD/GPL");
130 MODULE_VERSION(DRV_VERSION);
131 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
132 MODULE_FIRMWARE(FW4_FNAME);
133 MODULE_FIRMWARE(FW5_FNAME);
134 MODULE_FIRMWARE(FW6_FNAME);
135 
136 /*
137  * The driver uses the best interrupt scheme available on a platform in the
138  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
139  * of these schemes the driver may consider as follows:
140  *
141  * msi = 2: choose from among all three options
142  * msi = 1: only consider MSI and INTx interrupts
143  * msi = 0: force INTx interrupts
144  */
145 static int msi = 2;
146 
147 module_param(msi, int, 0644);
148 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
149 
150 /*
151  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
152  * offset by 2 bytes in order to have the IP headers line up on 4-byte
153  * boundaries.  This is a requirement for many architectures which will throw
154  * a machine check fault if an attempt is made to access one of the 4-byte IP
155  * header fields on a non-4-byte boundary.  And it's a major performance issue
156  * even on some architectures which allow it like some implementations of the
157  * x86 ISA.  However, some architectures don't mind this and for some very
158  * edge-case performance sensitive applications (like forwarding large volumes
159  * of small packets), setting this DMA offset to 0 will decrease the number of
160  * PCI-E Bus transfers enough to measurably affect performance.
161  */
162 static int rx_dma_offset = 2;
163 
164 /* TX Queue select used to determine what algorithm to use for selecting TX
165  * queue. Select between the kernel provided function (select_queue=0) or user
166  * cxgb_select_queue function (select_queue=1)
167  *
168  * Default: select_queue=0
169  */
170 static int select_queue;
171 module_param(select_queue, int, 0644);
172 MODULE_PARM_DESC(select_queue,
173 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
174 
175 static struct dentry *cxgb4_debugfs_root;
176 
177 LIST_HEAD(adapter_list);
178 DEFINE_MUTEX(uld_mutex);
179 
180 static void link_report(struct net_device *dev)
181 {
182 	if (!netif_carrier_ok(dev))
183 		netdev_info(dev, "link down\n");
184 	else {
185 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
186 
187 		const char *s;
188 		const struct port_info *p = netdev_priv(dev);
189 
190 		switch (p->link_cfg.speed) {
191 		case 100:
192 			s = "100Mbps";
193 			break;
194 		case 1000:
195 			s = "1Gbps";
196 			break;
197 		case 10000:
198 			s = "10Gbps";
199 			break;
200 		case 25000:
201 			s = "25Gbps";
202 			break;
203 		case 40000:
204 			s = "40Gbps";
205 			break;
206 		case 100000:
207 			s = "100Gbps";
208 			break;
209 		default:
210 			pr_info("%s: unsupported speed: %d\n",
211 				dev->name, p->link_cfg.speed);
212 			return;
213 		}
214 
215 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
216 			    fc[p->link_cfg.fc]);
217 	}
218 }
219 
220 #ifdef CONFIG_CHELSIO_T4_DCB
221 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
222 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
223 {
224 	struct port_info *pi = netdev_priv(dev);
225 	struct adapter *adap = pi->adapter;
226 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
227 	int i;
228 
229 	/* We use a simple mapping of Port TX Queue Index to DCB
230 	 * Priority when we're enabling DCB.
231 	 */
232 	for (i = 0; i < pi->nqsets; i++, txq++) {
233 		u32 name, value;
234 		int err;
235 
236 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
237 			FW_PARAMS_PARAM_X_V(
238 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
239 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
240 		value = enable ? i : 0xffffffff;
241 
242 		/* Since we can be called while atomic (from "interrupt
243 		 * level") we need to issue the Set Parameters Commannd
244 		 * without sleeping (timeout < 0).
245 		 */
246 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
247 					    &name, &value,
248 					    -FW_CMD_MAX_TIMEOUT);
249 
250 		if (err)
251 			dev_err(adap->pdev_dev,
252 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
253 				enable ? "set" : "unset", pi->port_id, i, -err);
254 		else
255 			txq->dcb_prio = value;
256 	}
257 }
258 
259 static int cxgb4_dcb_enabled(const struct net_device *dev)
260 {
261 	struct port_info *pi = netdev_priv(dev);
262 
263 	if (!pi->dcb.enabled)
264 		return 0;
265 
266 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
267 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
268 }
269 #endif /* CONFIG_CHELSIO_T4_DCB */
270 
271 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
272 {
273 	struct net_device *dev = adapter->port[port_id];
274 
275 	/* Skip changes from disabled ports. */
276 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
277 		if (link_stat)
278 			netif_carrier_on(dev);
279 		else {
280 #ifdef CONFIG_CHELSIO_T4_DCB
281 			if (cxgb4_dcb_enabled(dev)) {
282 				cxgb4_dcb_state_init(dev);
283 				dcb_tx_queue_prio_enable(dev, false);
284 			}
285 #endif /* CONFIG_CHELSIO_T4_DCB */
286 			netif_carrier_off(dev);
287 		}
288 
289 		link_report(dev);
290 	}
291 }
292 
293 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
294 {
295 	static const char *mod_str[] = {
296 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
297 	};
298 
299 	const struct net_device *dev = adap->port[port_id];
300 	const struct port_info *pi = netdev_priv(dev);
301 
302 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
303 		netdev_info(dev, "port module unplugged\n");
304 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
305 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
306 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
307 		netdev_info(dev, "%s: unsupported port module inserted\n",
308 			    dev->name);
309 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
310 		netdev_info(dev, "%s: unknown port module inserted\n",
311 			    dev->name);
312 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
313 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
314 	else
315 		netdev_info(dev, "%s: unknown module type %d inserted\n",
316 			    dev->name, pi->mod_type);
317 }
318 
319 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
320 module_param(dbfifo_int_thresh, int, 0644);
321 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
322 
323 /*
324  * usecs to sleep while draining the dbfifo
325  */
326 static int dbfifo_drain_delay = 1000;
327 module_param(dbfifo_drain_delay, int, 0644);
328 MODULE_PARM_DESC(dbfifo_drain_delay,
329 		 "usecs to sleep while draining the dbfifo");
330 
331 static inline int cxgb4_set_addr_hash(struct port_info *pi)
332 {
333 	struct adapter *adap = pi->adapter;
334 	u64 vec = 0;
335 	bool ucast = false;
336 	struct hash_mac_addr *entry;
337 
338 	/* Calculate the hash vector for the updated list and program it */
339 	list_for_each_entry(entry, &adap->mac_hlist, list) {
340 		ucast |= is_unicast_ether_addr(entry->addr);
341 		vec |= (1ULL << hash_mac_addr(entry->addr));
342 	}
343 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
344 				vec, false);
345 }
346 
347 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
348 {
349 	struct port_info *pi = netdev_priv(netdev);
350 	struct adapter *adap = pi->adapter;
351 	int ret;
352 	u64 mhash = 0;
353 	u64 uhash = 0;
354 	bool free = false;
355 	bool ucast = is_unicast_ether_addr(mac_addr);
356 	const u8 *maclist[1] = {mac_addr};
357 	struct hash_mac_addr *new_entry;
358 
359 	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
360 				NULL, ucast ? &uhash : &mhash, false);
361 	if (ret < 0)
362 		goto out;
363 	/* if hash != 0, then add the addr to hash addr list
364 	 * so on the end we will calculate the hash for the
365 	 * list and program it
366 	 */
367 	if (uhash || mhash) {
368 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
369 		if (!new_entry)
370 			return -ENOMEM;
371 		ether_addr_copy(new_entry->addr, mac_addr);
372 		list_add_tail(&new_entry->list, &adap->mac_hlist);
373 		ret = cxgb4_set_addr_hash(pi);
374 	}
375 out:
376 	return ret < 0 ? ret : 0;
377 }
378 
379 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
380 {
381 	struct port_info *pi = netdev_priv(netdev);
382 	struct adapter *adap = pi->adapter;
383 	int ret;
384 	const u8 *maclist[1] = {mac_addr};
385 	struct hash_mac_addr *entry, *tmp;
386 
387 	/* If the MAC address to be removed is in the hash addr
388 	 * list, delete it from the list and update hash vector
389 	 */
390 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
391 		if (ether_addr_equal(entry->addr, mac_addr)) {
392 			list_del(&entry->list);
393 			kfree(entry);
394 			return cxgb4_set_addr_hash(pi);
395 		}
396 	}
397 
398 	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
399 	return ret < 0 ? -EINVAL : 0;
400 }
401 
402 /*
403  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
404  * If @mtu is -1 it is left unchanged.
405  */
406 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
407 {
408 	struct port_info *pi = netdev_priv(dev);
409 	struct adapter *adapter = pi->adapter;
410 
411 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
412 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
413 
414 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
415 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
416 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
417 			     sleep_ok);
418 }
419 
420 /**
421  *	link_start - enable a port
422  *	@dev: the port to enable
423  *
424  *	Performs the MAC and PHY actions needed to enable a port.
425  */
426 static int link_start(struct net_device *dev)
427 {
428 	int ret;
429 	struct port_info *pi = netdev_priv(dev);
430 	unsigned int mb = pi->adapter->pf;
431 
432 	/*
433 	 * We do not set address filters and promiscuity here, the stack does
434 	 * that step explicitly.
435 	 */
436 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
437 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
438 	if (ret == 0) {
439 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
440 				    pi->xact_addr_filt, dev->dev_addr, true,
441 				    true);
442 		if (ret >= 0) {
443 			pi->xact_addr_filt = ret;
444 			ret = 0;
445 		}
446 	}
447 	if (ret == 0)
448 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
449 				    &pi->link_cfg);
450 	if (ret == 0) {
451 		local_bh_disable();
452 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
453 					  true, CXGB4_DCB_ENABLED);
454 		local_bh_enable();
455 	}
456 
457 	return ret;
458 }
459 
460 #ifdef CONFIG_CHELSIO_T4_DCB
461 /* Handle a Data Center Bridging update message from the firmware. */
462 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
463 {
464 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
465 	struct net_device *dev = adap->port[adap->chan_map[port]];
466 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
467 	int new_dcb_enabled;
468 
469 	cxgb4_dcb_handle_fw_update(adap, pcmd);
470 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
471 
472 	/* If the DCB has become enabled or disabled on the port then we're
473 	 * going to need to set up/tear down DCB Priority parameters for the
474 	 * TX Queues associated with the port.
475 	 */
476 	if (new_dcb_enabled != old_dcb_enabled)
477 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
478 }
479 #endif /* CONFIG_CHELSIO_T4_DCB */
480 
481 /* Response queue handler for the FW event queue.
482  */
483 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
484 			  const struct pkt_gl *gl)
485 {
486 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
487 
488 	rsp++;                                          /* skip RSS header */
489 
490 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
491 	 */
492 	if (unlikely(opcode == CPL_FW4_MSG &&
493 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
494 		rsp++;
495 		opcode = ((const struct rss_header *)rsp)->opcode;
496 		rsp++;
497 		if (opcode != CPL_SGE_EGR_UPDATE) {
498 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
499 				, opcode);
500 			goto out;
501 		}
502 	}
503 
504 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
505 		const struct cpl_sge_egr_update *p = (void *)rsp;
506 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
507 		struct sge_txq *txq;
508 
509 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
510 		txq->restarts++;
511 		if (txq->q_type == CXGB4_TXQ_ETH) {
512 			struct sge_eth_txq *eq;
513 
514 			eq = container_of(txq, struct sge_eth_txq, q);
515 			netif_tx_wake_queue(eq->txq);
516 		} else {
517 			struct sge_uld_txq *oq;
518 
519 			oq = container_of(txq, struct sge_uld_txq, q);
520 			tasklet_schedule(&oq->qresume_tsk);
521 		}
522 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
523 		const struct cpl_fw6_msg *p = (void *)rsp;
524 
525 #ifdef CONFIG_CHELSIO_T4_DCB
526 		const struct fw_port_cmd *pcmd = (const void *)p->data;
527 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
528 		unsigned int action =
529 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
530 
531 		if (cmd == FW_PORT_CMD &&
532 		    action == FW_PORT_ACTION_GET_PORT_INFO) {
533 			int port = FW_PORT_CMD_PORTID_G(
534 					be32_to_cpu(pcmd->op_to_portid));
535 			struct net_device *dev =
536 				q->adap->port[q->adap->chan_map[port]];
537 			int state_input = ((pcmd->u.info.dcbxdis_pkd &
538 					    FW_PORT_CMD_DCBXDIS_F)
539 					   ? CXGB4_DCB_INPUT_FW_DISABLED
540 					   : CXGB4_DCB_INPUT_FW_ENABLED);
541 
542 			cxgb4_dcb_state_fsm(dev, state_input);
543 		}
544 
545 		if (cmd == FW_PORT_CMD &&
546 		    action == FW_PORT_ACTION_L2_DCB_CFG)
547 			dcb_rpl(q->adap, pcmd);
548 		else
549 #endif
550 			if (p->type == 0)
551 				t4_handle_fw_rpl(q->adap, p->data);
552 	} else if (opcode == CPL_L2T_WRITE_RPL) {
553 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
554 
555 		do_l2t_write_rpl(q->adap, p);
556 	} else if (opcode == CPL_SET_TCB_RPL) {
557 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
558 
559 		filter_rpl(q->adap, p);
560 	} else
561 		dev_err(q->adap->pdev_dev,
562 			"unexpected CPL %#x on FW event queue\n", opcode);
563 out:
564 	return 0;
565 }
566 
567 static void disable_msi(struct adapter *adapter)
568 {
569 	if (adapter->flags & USING_MSIX) {
570 		pci_disable_msix(adapter->pdev);
571 		adapter->flags &= ~USING_MSIX;
572 	} else if (adapter->flags & USING_MSI) {
573 		pci_disable_msi(adapter->pdev);
574 		adapter->flags &= ~USING_MSI;
575 	}
576 }
577 
578 /*
579  * Interrupt handler for non-data events used with MSI-X.
580  */
581 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
582 {
583 	struct adapter *adap = cookie;
584 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
585 
586 	if (v & PFSW_F) {
587 		adap->swintr = 1;
588 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
589 	}
590 	if (adap->flags & MASTER_PF)
591 		t4_slow_intr_handler(adap);
592 	return IRQ_HANDLED;
593 }
594 
595 /*
596  * Name the MSI-X interrupts.
597  */
598 static void name_msix_vecs(struct adapter *adap)
599 {
600 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
601 
602 	/* non-data interrupts */
603 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
604 
605 	/* FW events */
606 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
607 		 adap->port[0]->name);
608 
609 	/* Ethernet queues */
610 	for_each_port(adap, j) {
611 		struct net_device *d = adap->port[j];
612 		const struct port_info *pi = netdev_priv(d);
613 
614 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
615 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
616 				 d->name, i);
617 	}
618 }
619 
620 static int request_msix_queue_irqs(struct adapter *adap)
621 {
622 	struct sge *s = &adap->sge;
623 	int err, ethqidx;
624 	int msi_index = 2;
625 
626 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
627 			  adap->msix_info[1].desc, &s->fw_evtq);
628 	if (err)
629 		return err;
630 
631 	for_each_ethrxq(s, ethqidx) {
632 		err = request_irq(adap->msix_info[msi_index].vec,
633 				  t4_sge_intr_msix, 0,
634 				  adap->msix_info[msi_index].desc,
635 				  &s->ethrxq[ethqidx].rspq);
636 		if (err)
637 			goto unwind;
638 		msi_index++;
639 	}
640 	return 0;
641 
642 unwind:
643 	while (--ethqidx >= 0)
644 		free_irq(adap->msix_info[--msi_index].vec,
645 			 &s->ethrxq[ethqidx].rspq);
646 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
647 	return err;
648 }
649 
650 static void free_msix_queue_irqs(struct adapter *adap)
651 {
652 	int i, msi_index = 2;
653 	struct sge *s = &adap->sge;
654 
655 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
656 	for_each_ethrxq(s, i)
657 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
658 }
659 
660 /**
661  *	cxgb4_write_rss - write the RSS table for a given port
662  *	@pi: the port
663  *	@queues: array of queue indices for RSS
664  *
665  *	Sets up the portion of the HW RSS table for the port's VI to distribute
666  *	packets to the Rx queues in @queues.
667  *	Should never be called before setting up sge eth rx queues
668  */
669 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
670 {
671 	u16 *rss;
672 	int i, err;
673 	struct adapter *adapter = pi->adapter;
674 	const struct sge_eth_rxq *rxq;
675 
676 	rxq = &adapter->sge.ethrxq[pi->first_qset];
677 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
678 	if (!rss)
679 		return -ENOMEM;
680 
681 	/* map the queue indices to queue ids */
682 	for (i = 0; i < pi->rss_size; i++, queues++)
683 		rss[i] = rxq[*queues].rspq.abs_id;
684 
685 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
686 				  pi->rss_size, rss, pi->rss_size);
687 	/* If Tunnel All Lookup isn't specified in the global RSS
688 	 * Configuration, then we need to specify a default Ingress
689 	 * Queue for any ingress packets which aren't hashed.  We'll
690 	 * use our first ingress queue ...
691 	 */
692 	if (!err)
693 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
694 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
695 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
696 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
697 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
698 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
699 				       rss[0]);
700 	kfree(rss);
701 	return err;
702 }
703 
704 /**
705  *	setup_rss - configure RSS
706  *	@adap: the adapter
707  *
708  *	Sets up RSS for each port.
709  */
710 static int setup_rss(struct adapter *adap)
711 {
712 	int i, j, err;
713 
714 	for_each_port(adap, i) {
715 		const struct port_info *pi = adap2pinfo(adap, i);
716 
717 		/* Fill default values with equal distribution */
718 		for (j = 0; j < pi->rss_size; j++)
719 			pi->rss[j] = j % pi->nqsets;
720 
721 		err = cxgb4_write_rss(pi, pi->rss);
722 		if (err)
723 			return err;
724 	}
725 	return 0;
726 }
727 
728 /*
729  * Return the channel of the ingress queue with the given qid.
730  */
731 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
732 {
733 	qid -= p->ingr_start;
734 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
735 }
736 
737 /*
738  * Wait until all NAPI handlers are descheduled.
739  */
740 static void quiesce_rx(struct adapter *adap)
741 {
742 	int i;
743 
744 	for (i = 0; i < adap->sge.ingr_sz; i++) {
745 		struct sge_rspq *q = adap->sge.ingr_map[i];
746 
747 		if (q && q->handler)
748 			napi_disable(&q->napi);
749 	}
750 }
751 
752 /* Disable interrupt and napi handler */
753 static void disable_interrupts(struct adapter *adap)
754 {
755 	if (adap->flags & FULL_INIT_DONE) {
756 		t4_intr_disable(adap);
757 		if (adap->flags & USING_MSIX) {
758 			free_msix_queue_irqs(adap);
759 			free_irq(adap->msix_info[0].vec, adap);
760 		} else {
761 			free_irq(adap->pdev->irq, adap);
762 		}
763 		quiesce_rx(adap);
764 	}
765 }
766 
767 /*
768  * Enable NAPI scheduling and interrupt generation for all Rx queues.
769  */
770 static void enable_rx(struct adapter *adap)
771 {
772 	int i;
773 
774 	for (i = 0; i < adap->sge.ingr_sz; i++) {
775 		struct sge_rspq *q = adap->sge.ingr_map[i];
776 
777 		if (!q)
778 			continue;
779 		if (q->handler)
780 			napi_enable(&q->napi);
781 
782 		/* 0-increment GTS to start the timer and enable interrupts */
783 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
784 			     SEINTARM_V(q->intr_params) |
785 			     INGRESSQID_V(q->cntxt_id));
786 	}
787 }
788 
789 
790 static int setup_fw_sge_queues(struct adapter *adap)
791 {
792 	struct sge *s = &adap->sge;
793 	int err = 0;
794 
795 	bitmap_zero(s->starving_fl, s->egr_sz);
796 	bitmap_zero(s->txq_maperr, s->egr_sz);
797 
798 	if (adap->flags & USING_MSIX)
799 		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
800 	else {
801 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
802 				       NULL, NULL, NULL, -1);
803 		if (err)
804 			return err;
805 		adap->msi_idx = -((int)s->intrq.abs_id + 1);
806 	}
807 
808 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
809 			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
810 	if (err)
811 		t4_free_sge_resources(adap);
812 	return err;
813 }
814 
815 /**
816  *	setup_sge_queues - configure SGE Tx/Rx/response queues
817  *	@adap: the adapter
818  *
819  *	Determines how many sets of SGE queues to use and initializes them.
820  *	We support multiple queue sets per port if we have MSI-X, otherwise
821  *	just one queue set per port.
822  */
823 static int setup_sge_queues(struct adapter *adap)
824 {
825 	int err, i, j;
826 	struct sge *s = &adap->sge;
827 	struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
828 	unsigned int cmplqid = 0;
829 
830 	for_each_port(adap, i) {
831 		struct net_device *dev = adap->port[i];
832 		struct port_info *pi = netdev_priv(dev);
833 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
834 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
835 
836 		for (j = 0; j < pi->nqsets; j++, q++) {
837 			if (adap->msi_idx > 0)
838 				adap->msi_idx++;
839 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
840 					       adap->msi_idx, &q->fl,
841 					       t4_ethrx_handler,
842 					       NULL,
843 					       t4_get_mps_bg_map(adap,
844 								 pi->tx_chan));
845 			if (err)
846 				goto freeout;
847 			q->rspq.idx = j;
848 			memset(&q->stats, 0, sizeof(q->stats));
849 		}
850 		for (j = 0; j < pi->nqsets; j++, t++) {
851 			err = t4_sge_alloc_eth_txq(adap, t, dev,
852 					netdev_get_tx_queue(dev, j),
853 					s->fw_evtq.cntxt_id);
854 			if (err)
855 				goto freeout;
856 		}
857 	}
858 
859 	for_each_port(adap, i) {
860 		/* Note that cmplqid below is 0 if we don't
861 		 * have RDMA queues, and that's the right value.
862 		 */
863 		if (rxq_info)
864 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
865 
866 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
867 					    s->fw_evtq.cntxt_id, cmplqid);
868 		if (err)
869 			goto freeout;
870 	}
871 
872 	t4_write_reg(adap, is_t4(adap->params.chip) ?
873 				MPS_TRC_RSS_CONTROL_A :
874 				MPS_T5_TRC_RSS_CONTROL_A,
875 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
876 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
877 	return 0;
878 freeout:
879 	t4_free_sge_resources(adap);
880 	return err;
881 }
882 
883 /*
884  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
885  * The allocated memory is cleared.
886  */
887 void *t4_alloc_mem(size_t size)
888 {
889 	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
890 
891 	if (!p)
892 		p = vzalloc(size);
893 	return p;
894 }
895 
896 /*
897  * Free memory allocated through alloc_mem().
898  */
899 void t4_free_mem(void *addr)
900 {
901 	kvfree(addr);
902 }
903 
904 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
905 			     void *accel_priv, select_queue_fallback_t fallback)
906 {
907 	int txq;
908 
909 #ifdef CONFIG_CHELSIO_T4_DCB
910 	/* If a Data Center Bridging has been successfully negotiated on this
911 	 * link then we'll use the skb's priority to map it to a TX Queue.
912 	 * The skb's priority is determined via the VLAN Tag Priority Code
913 	 * Point field.
914 	 */
915 	if (cxgb4_dcb_enabled(dev)) {
916 		u16 vlan_tci;
917 		int err;
918 
919 		err = vlan_get_tag(skb, &vlan_tci);
920 		if (unlikely(err)) {
921 			if (net_ratelimit())
922 				netdev_warn(dev,
923 					    "TX Packet without VLAN Tag on DCB Link\n");
924 			txq = 0;
925 		} else {
926 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
927 #ifdef CONFIG_CHELSIO_T4_FCOE
928 			if (skb->protocol == htons(ETH_P_FCOE))
929 				txq = skb->priority & 0x7;
930 #endif /* CONFIG_CHELSIO_T4_FCOE */
931 		}
932 		return txq;
933 	}
934 #endif /* CONFIG_CHELSIO_T4_DCB */
935 
936 	if (select_queue) {
937 		txq = (skb_rx_queue_recorded(skb)
938 			? skb_get_rx_queue(skb)
939 			: smp_processor_id());
940 
941 		while (unlikely(txq >= dev->real_num_tx_queues))
942 			txq -= dev->real_num_tx_queues;
943 
944 		return txq;
945 	}
946 
947 	return fallback(dev, skb) % dev->real_num_tx_queues;
948 }
949 
950 static int closest_timer(const struct sge *s, int time)
951 {
952 	int i, delta, match = 0, min_delta = INT_MAX;
953 
954 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
955 		delta = time - s->timer_val[i];
956 		if (delta < 0)
957 			delta = -delta;
958 		if (delta < min_delta) {
959 			min_delta = delta;
960 			match = i;
961 		}
962 	}
963 	return match;
964 }
965 
966 static int closest_thres(const struct sge *s, int thres)
967 {
968 	int i, delta, match = 0, min_delta = INT_MAX;
969 
970 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
971 		delta = thres - s->counter_val[i];
972 		if (delta < 0)
973 			delta = -delta;
974 		if (delta < min_delta) {
975 			min_delta = delta;
976 			match = i;
977 		}
978 	}
979 	return match;
980 }
981 
982 /**
983  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
984  *	@q: the Rx queue
985  *	@us: the hold-off time in us, or 0 to disable timer
986  *	@cnt: the hold-off packet count, or 0 to disable counter
987  *
988  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
989  *	one of the two needs to be enabled for the queue to generate interrupts.
990  */
991 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
992 			       unsigned int us, unsigned int cnt)
993 {
994 	struct adapter *adap = q->adap;
995 
996 	if ((us | cnt) == 0)
997 		cnt = 1;
998 
999 	if (cnt) {
1000 		int err;
1001 		u32 v, new_idx;
1002 
1003 		new_idx = closest_thres(&adap->sge, cnt);
1004 		if (q->desc && q->pktcnt_idx != new_idx) {
1005 			/* the queue has already been created, update it */
1006 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1007 			    FW_PARAMS_PARAM_X_V(
1008 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1009 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1010 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1011 					    &v, &new_idx);
1012 			if (err)
1013 				return err;
1014 		}
1015 		q->pktcnt_idx = new_idx;
1016 	}
1017 
1018 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1019 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1020 	return 0;
1021 }
1022 
1023 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1024 {
1025 	const struct port_info *pi = netdev_priv(dev);
1026 	netdev_features_t changed = dev->features ^ features;
1027 	int err;
1028 
1029 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1030 		return 0;
1031 
1032 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1033 			    -1, -1, -1,
1034 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1035 	if (unlikely(err))
1036 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1037 	return err;
1038 }
1039 
1040 static int setup_debugfs(struct adapter *adap)
1041 {
1042 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1043 		return -1;
1044 
1045 #ifdef CONFIG_DEBUG_FS
1046 	t4_setup_debugfs(adap);
1047 #endif
1048 	return 0;
1049 }
1050 
1051 /*
1052  * upper-layer driver support
1053  */
1054 
1055 /*
1056  * Allocate an active-open TID and set it to the supplied value.
1057  */
1058 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1059 {
1060 	int atid = -1;
1061 
1062 	spin_lock_bh(&t->atid_lock);
1063 	if (t->afree) {
1064 		union aopen_entry *p = t->afree;
1065 
1066 		atid = (p - t->atid_tab) + t->atid_base;
1067 		t->afree = p->next;
1068 		p->data = data;
1069 		t->atids_in_use++;
1070 	}
1071 	spin_unlock_bh(&t->atid_lock);
1072 	return atid;
1073 }
1074 EXPORT_SYMBOL(cxgb4_alloc_atid);
1075 
1076 /*
1077  * Release an active-open TID.
1078  */
1079 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1080 {
1081 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1082 
1083 	spin_lock_bh(&t->atid_lock);
1084 	p->next = t->afree;
1085 	t->afree = p;
1086 	t->atids_in_use--;
1087 	spin_unlock_bh(&t->atid_lock);
1088 }
1089 EXPORT_SYMBOL(cxgb4_free_atid);
1090 
1091 /*
1092  * Allocate a server TID and set it to the supplied value.
1093  */
1094 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1095 {
1096 	int stid;
1097 
1098 	spin_lock_bh(&t->stid_lock);
1099 	if (family == PF_INET) {
1100 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1101 		if (stid < t->nstids)
1102 			__set_bit(stid, t->stid_bmap);
1103 		else
1104 			stid = -1;
1105 	} else {
1106 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1107 		if (stid < 0)
1108 			stid = -1;
1109 	}
1110 	if (stid >= 0) {
1111 		t->stid_tab[stid].data = data;
1112 		stid += t->stid_base;
1113 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1114 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1115 		 * needs 2 TIDs.
1116 		 */
1117 		if (family == PF_INET)
1118 			t->stids_in_use++;
1119 		else
1120 			t->stids_in_use += 2;
1121 	}
1122 	spin_unlock_bh(&t->stid_lock);
1123 	return stid;
1124 }
1125 EXPORT_SYMBOL(cxgb4_alloc_stid);
1126 
1127 /* Allocate a server filter TID and set it to the supplied value.
1128  */
1129 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1130 {
1131 	int stid;
1132 
1133 	spin_lock_bh(&t->stid_lock);
1134 	if (family == PF_INET) {
1135 		stid = find_next_zero_bit(t->stid_bmap,
1136 				t->nstids + t->nsftids, t->nstids);
1137 		if (stid < (t->nstids + t->nsftids))
1138 			__set_bit(stid, t->stid_bmap);
1139 		else
1140 			stid = -1;
1141 	} else {
1142 		stid = -1;
1143 	}
1144 	if (stid >= 0) {
1145 		t->stid_tab[stid].data = data;
1146 		stid -= t->nstids;
1147 		stid += t->sftid_base;
1148 		t->sftids_in_use++;
1149 	}
1150 	spin_unlock_bh(&t->stid_lock);
1151 	return stid;
1152 }
1153 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1154 
1155 /* Release a server TID.
1156  */
1157 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1158 {
1159 	/* Is it a server filter TID? */
1160 	if (t->nsftids && (stid >= t->sftid_base)) {
1161 		stid -= t->sftid_base;
1162 		stid += t->nstids;
1163 	} else {
1164 		stid -= t->stid_base;
1165 	}
1166 
1167 	spin_lock_bh(&t->stid_lock);
1168 	if (family == PF_INET)
1169 		__clear_bit(stid, t->stid_bmap);
1170 	else
1171 		bitmap_release_region(t->stid_bmap, stid, 1);
1172 	t->stid_tab[stid].data = NULL;
1173 	if (stid < t->nstids) {
1174 		if (family == PF_INET)
1175 			t->stids_in_use--;
1176 		else
1177 			t->stids_in_use -= 2;
1178 	} else {
1179 		t->sftids_in_use--;
1180 	}
1181 	spin_unlock_bh(&t->stid_lock);
1182 }
1183 EXPORT_SYMBOL(cxgb4_free_stid);
1184 
1185 /*
1186  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1187  */
1188 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1189 			   unsigned int tid)
1190 {
1191 	struct cpl_tid_release *req;
1192 
1193 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1194 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1195 	INIT_TP_WR(req, tid);
1196 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1197 }
1198 
1199 /*
1200  * Queue a TID release request and if necessary schedule a work queue to
1201  * process it.
1202  */
1203 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1204 				    unsigned int tid)
1205 {
1206 	void **p = &t->tid_tab[tid];
1207 	struct adapter *adap = container_of(t, struct adapter, tids);
1208 
1209 	spin_lock_bh(&adap->tid_release_lock);
1210 	*p = adap->tid_release_head;
1211 	/* Low 2 bits encode the Tx channel number */
1212 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1213 	if (!adap->tid_release_task_busy) {
1214 		adap->tid_release_task_busy = true;
1215 		queue_work(adap->workq, &adap->tid_release_task);
1216 	}
1217 	spin_unlock_bh(&adap->tid_release_lock);
1218 }
1219 
1220 /*
1221  * Process the list of pending TID release requests.
1222  */
1223 static void process_tid_release_list(struct work_struct *work)
1224 {
1225 	struct sk_buff *skb;
1226 	struct adapter *adap;
1227 
1228 	adap = container_of(work, struct adapter, tid_release_task);
1229 
1230 	spin_lock_bh(&adap->tid_release_lock);
1231 	while (adap->tid_release_head) {
1232 		void **p = adap->tid_release_head;
1233 		unsigned int chan = (uintptr_t)p & 3;
1234 		p = (void *)p - chan;
1235 
1236 		adap->tid_release_head = *p;
1237 		*p = NULL;
1238 		spin_unlock_bh(&adap->tid_release_lock);
1239 
1240 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1241 					 GFP_KERNEL)))
1242 			schedule_timeout_uninterruptible(1);
1243 
1244 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1245 		t4_ofld_send(adap, skb);
1246 		spin_lock_bh(&adap->tid_release_lock);
1247 	}
1248 	adap->tid_release_task_busy = false;
1249 	spin_unlock_bh(&adap->tid_release_lock);
1250 }
1251 
1252 /*
1253  * Release a TID and inform HW.  If we are unable to allocate the release
1254  * message we defer to a work queue.
1255  */
1256 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1257 {
1258 	struct sk_buff *skb;
1259 	struct adapter *adap = container_of(t, struct adapter, tids);
1260 
1261 	WARN_ON(tid >= t->ntids);
1262 
1263 	if (t->tid_tab[tid]) {
1264 		t->tid_tab[tid] = NULL;
1265 		if (t->hash_base && (tid >= t->hash_base))
1266 			atomic_dec(&t->hash_tids_in_use);
1267 		else
1268 			atomic_dec(&t->tids_in_use);
1269 	}
1270 
1271 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1272 	if (likely(skb)) {
1273 		mk_tid_release(skb, chan, tid);
1274 		t4_ofld_send(adap, skb);
1275 	} else
1276 		cxgb4_queue_tid_release(t, chan, tid);
1277 }
1278 EXPORT_SYMBOL(cxgb4_remove_tid);
1279 
1280 /*
1281  * Allocate and initialize the TID tables.  Returns 0 on success.
1282  */
1283 static int tid_init(struct tid_info *t)
1284 {
1285 	struct adapter *adap = container_of(t, struct adapter, tids);
1286 	unsigned int max_ftids = t->nftids + t->nsftids;
1287 	unsigned int natids = t->natids;
1288 	unsigned int stid_bmap_size;
1289 	unsigned int ftid_bmap_size;
1290 	size_t size;
1291 
1292 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1293 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1294 	size = t->ntids * sizeof(*t->tid_tab) +
1295 	       natids * sizeof(*t->atid_tab) +
1296 	       t->nstids * sizeof(*t->stid_tab) +
1297 	       t->nsftids * sizeof(*t->stid_tab) +
1298 	       stid_bmap_size * sizeof(long) +
1299 	       max_ftids * sizeof(*t->ftid_tab) +
1300 	       ftid_bmap_size * sizeof(long);
1301 
1302 	t->tid_tab = t4_alloc_mem(size);
1303 	if (!t->tid_tab)
1304 		return -ENOMEM;
1305 
1306 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1307 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1308 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1309 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1310 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1311 	spin_lock_init(&t->stid_lock);
1312 	spin_lock_init(&t->atid_lock);
1313 	spin_lock_init(&t->ftid_lock);
1314 
1315 	t->stids_in_use = 0;
1316 	t->sftids_in_use = 0;
1317 	t->afree = NULL;
1318 	t->atids_in_use = 0;
1319 	atomic_set(&t->tids_in_use, 0);
1320 	atomic_set(&t->hash_tids_in_use, 0);
1321 
1322 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1323 	if (natids) {
1324 		while (--natids)
1325 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1326 		t->afree = t->atid_tab;
1327 	}
1328 
1329 	if (is_offload(adap)) {
1330 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1331 		/* Reserve stid 0 for T4/T5 adapters */
1332 		if (!t->stid_base &&
1333 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1334 			__set_bit(0, t->stid_bmap);
1335 	}
1336 
1337 	bitmap_zero(t->ftid_bmap, t->nftids);
1338 	return 0;
1339 }
1340 
1341 /**
1342  *	cxgb4_create_server - create an IP server
1343  *	@dev: the device
1344  *	@stid: the server TID
1345  *	@sip: local IP address to bind server to
1346  *	@sport: the server's TCP port
1347  *	@queue: queue to direct messages from this server to
1348  *
1349  *	Create an IP server for the given port and address.
1350  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1351  */
1352 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1353 			__be32 sip, __be16 sport, __be16 vlan,
1354 			unsigned int queue)
1355 {
1356 	unsigned int chan;
1357 	struct sk_buff *skb;
1358 	struct adapter *adap;
1359 	struct cpl_pass_open_req *req;
1360 	int ret;
1361 
1362 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1363 	if (!skb)
1364 		return -ENOMEM;
1365 
1366 	adap = netdev2adap(dev);
1367 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1368 	INIT_TP_WR(req, 0);
1369 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1370 	req->local_port = sport;
1371 	req->peer_port = htons(0);
1372 	req->local_ip = sip;
1373 	req->peer_ip = htonl(0);
1374 	chan = rxq_to_chan(&adap->sge, queue);
1375 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1376 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1377 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1378 	ret = t4_mgmt_tx(adap, skb);
1379 	return net_xmit_eval(ret);
1380 }
1381 EXPORT_SYMBOL(cxgb4_create_server);
1382 
1383 /*	cxgb4_create_server6 - create an IPv6 server
1384  *	@dev: the device
1385  *	@stid: the server TID
1386  *	@sip: local IPv6 address to bind server to
1387  *	@sport: the server's TCP port
1388  *	@queue: queue to direct messages from this server to
1389  *
1390  *	Create an IPv6 server for the given port and address.
1391  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1392  */
1393 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1394 			 const struct in6_addr *sip, __be16 sport,
1395 			 unsigned int queue)
1396 {
1397 	unsigned int chan;
1398 	struct sk_buff *skb;
1399 	struct adapter *adap;
1400 	struct cpl_pass_open_req6 *req;
1401 	int ret;
1402 
1403 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1404 	if (!skb)
1405 		return -ENOMEM;
1406 
1407 	adap = netdev2adap(dev);
1408 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1409 	INIT_TP_WR(req, 0);
1410 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1411 	req->local_port = sport;
1412 	req->peer_port = htons(0);
1413 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1414 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1415 	req->peer_ip_hi = cpu_to_be64(0);
1416 	req->peer_ip_lo = cpu_to_be64(0);
1417 	chan = rxq_to_chan(&adap->sge, queue);
1418 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1419 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1420 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1421 	ret = t4_mgmt_tx(adap, skb);
1422 	return net_xmit_eval(ret);
1423 }
1424 EXPORT_SYMBOL(cxgb4_create_server6);
1425 
1426 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1427 			unsigned int queue, bool ipv6)
1428 {
1429 	struct sk_buff *skb;
1430 	struct adapter *adap;
1431 	struct cpl_close_listsvr_req *req;
1432 	int ret;
1433 
1434 	adap = netdev2adap(dev);
1435 
1436 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1437 	if (!skb)
1438 		return -ENOMEM;
1439 
1440 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1441 	INIT_TP_WR(req, 0);
1442 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1443 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1444 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1445 	ret = t4_mgmt_tx(adap, skb);
1446 	return net_xmit_eval(ret);
1447 }
1448 EXPORT_SYMBOL(cxgb4_remove_server);
1449 
1450 /**
1451  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1452  *	@mtus: the HW MTU table
1453  *	@mtu: the target MTU
1454  *	@idx: index of selected entry in the MTU table
1455  *
1456  *	Returns the index and the value in the HW MTU table that is closest to
1457  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1458  *	table, in which case that smallest available value is selected.
1459  */
1460 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1461 			    unsigned int *idx)
1462 {
1463 	unsigned int i = 0;
1464 
1465 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1466 		++i;
1467 	if (idx)
1468 		*idx = i;
1469 	return mtus[i];
1470 }
1471 EXPORT_SYMBOL(cxgb4_best_mtu);
1472 
1473 /**
1474  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1475  *     @mtus: the HW MTU table
1476  *     @header_size: Header Size
1477  *     @data_size_max: maximum Data Segment Size
1478  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1479  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1480  *
1481  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1482  *     MTU Table based solely on a Maximum MTU parameter, we break that
1483  *     parameter up into a Header Size and Maximum Data Segment Size, and
1484  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1485  *     the Hardware MTU Table which will result in a Data Segment Size with
1486  *     the requested alignment _and_ that MTU isn't "too far" from the
1487  *     closest MTU, then we'll return that rather than the closest MTU.
1488  */
1489 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1490 				    unsigned short header_size,
1491 				    unsigned short data_size_max,
1492 				    unsigned short data_size_align,
1493 				    unsigned int *mtu_idxp)
1494 {
1495 	unsigned short max_mtu = header_size + data_size_max;
1496 	unsigned short data_size_align_mask = data_size_align - 1;
1497 	int mtu_idx, aligned_mtu_idx;
1498 
1499 	/* Scan the MTU Table till we find an MTU which is larger than our
1500 	 * Maximum MTU or we reach the end of the table.  Along the way,
1501 	 * record the last MTU found, if any, which will result in a Data
1502 	 * Segment Length matching the requested alignment.
1503 	 */
1504 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1505 		unsigned short data_size = mtus[mtu_idx] - header_size;
1506 
1507 		/* If this MTU minus the Header Size would result in a
1508 		 * Data Segment Size of the desired alignment, remember it.
1509 		 */
1510 		if ((data_size & data_size_align_mask) == 0)
1511 			aligned_mtu_idx = mtu_idx;
1512 
1513 		/* If we're not at the end of the Hardware MTU Table and the
1514 		 * next element is larger than our Maximum MTU, drop out of
1515 		 * the loop.
1516 		 */
1517 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1518 			break;
1519 	}
1520 
1521 	/* If we fell out of the loop because we ran to the end of the table,
1522 	 * then we just have to use the last [largest] entry.
1523 	 */
1524 	if (mtu_idx == NMTUS)
1525 		mtu_idx--;
1526 
1527 	/* If we found an MTU which resulted in the requested Data Segment
1528 	 * Length alignment and that's "not far" from the largest MTU which is
1529 	 * less than or equal to the maximum MTU, then use that.
1530 	 */
1531 	if (aligned_mtu_idx >= 0 &&
1532 	    mtu_idx - aligned_mtu_idx <= 1)
1533 		mtu_idx = aligned_mtu_idx;
1534 
1535 	/* If the caller has passed in an MTU Index pointer, pass the
1536 	 * MTU Index back.  Return the MTU value.
1537 	 */
1538 	if (mtu_idxp)
1539 		*mtu_idxp = mtu_idx;
1540 	return mtus[mtu_idx];
1541 }
1542 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1543 
1544 /**
1545  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1546  *	@chip: chip type
1547  *	@viid: VI id of the given port
1548  *
1549  *	Return the SMT index for this VI.
1550  */
1551 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1552 {
1553 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1554 	 * 128 rows of 2 entries each.
1555 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1556 	 * TODO: The below code needs to be updated when we add support
1557 	 * for 256 VFs.
1558 	 */
1559 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1560 		return ((viid & 0x7f) << 1);
1561 	else
1562 		return (viid & 0x7f);
1563 }
1564 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1565 
1566 /**
1567  *	cxgb4_port_chan - get the HW channel of a port
1568  *	@dev: the net device for the port
1569  *
1570  *	Return the HW Tx channel of the given port.
1571  */
1572 unsigned int cxgb4_port_chan(const struct net_device *dev)
1573 {
1574 	return netdev2pinfo(dev)->tx_chan;
1575 }
1576 EXPORT_SYMBOL(cxgb4_port_chan);
1577 
1578 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1579 {
1580 	struct adapter *adap = netdev2adap(dev);
1581 	u32 v1, v2, lp_count, hp_count;
1582 
1583 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1584 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1585 	if (is_t4(adap->params.chip)) {
1586 		lp_count = LP_COUNT_G(v1);
1587 		hp_count = HP_COUNT_G(v1);
1588 	} else {
1589 		lp_count = LP_COUNT_T5_G(v1);
1590 		hp_count = HP_COUNT_T5_G(v2);
1591 	}
1592 	return lpfifo ? lp_count : hp_count;
1593 }
1594 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1595 
1596 /**
1597  *	cxgb4_port_viid - get the VI id of a port
1598  *	@dev: the net device for the port
1599  *
1600  *	Return the VI id of the given port.
1601  */
1602 unsigned int cxgb4_port_viid(const struct net_device *dev)
1603 {
1604 	return netdev2pinfo(dev)->viid;
1605 }
1606 EXPORT_SYMBOL(cxgb4_port_viid);
1607 
1608 /**
1609  *	cxgb4_port_idx - get the index of a port
1610  *	@dev: the net device for the port
1611  *
1612  *	Return the index of the given port.
1613  */
1614 unsigned int cxgb4_port_idx(const struct net_device *dev)
1615 {
1616 	return netdev2pinfo(dev)->port_id;
1617 }
1618 EXPORT_SYMBOL(cxgb4_port_idx);
1619 
1620 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1621 			 struct tp_tcp_stats *v6)
1622 {
1623 	struct adapter *adap = pci_get_drvdata(pdev);
1624 
1625 	spin_lock(&adap->stats_lock);
1626 	t4_tp_get_tcp_stats(adap, v4, v6);
1627 	spin_unlock(&adap->stats_lock);
1628 }
1629 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1630 
1631 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1632 		      const unsigned int *pgsz_order)
1633 {
1634 	struct adapter *adap = netdev2adap(dev);
1635 
1636 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1637 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1638 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1639 		     HPZ3_V(pgsz_order[3]));
1640 }
1641 EXPORT_SYMBOL(cxgb4_iscsi_init);
1642 
1643 int cxgb4_flush_eq_cache(struct net_device *dev)
1644 {
1645 	struct adapter *adap = netdev2adap(dev);
1646 
1647 	return t4_sge_ctxt_flush(adap, adap->mbox);
1648 }
1649 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1650 
1651 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1652 {
1653 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1654 	__be64 indices;
1655 	int ret;
1656 
1657 	spin_lock(&adap->win0_lock);
1658 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1659 			   sizeof(indices), (__be32 *)&indices,
1660 			   T4_MEMORY_READ);
1661 	spin_unlock(&adap->win0_lock);
1662 	if (!ret) {
1663 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1664 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1665 	}
1666 	return ret;
1667 }
1668 
1669 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1670 			u16 size)
1671 {
1672 	struct adapter *adap = netdev2adap(dev);
1673 	u16 hw_pidx, hw_cidx;
1674 	int ret;
1675 
1676 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1677 	if (ret)
1678 		goto out;
1679 
1680 	if (pidx != hw_pidx) {
1681 		u16 delta;
1682 		u32 val;
1683 
1684 		if (pidx >= hw_pidx)
1685 			delta = pidx - hw_pidx;
1686 		else
1687 			delta = size - hw_pidx + pidx;
1688 
1689 		if (is_t4(adap->params.chip))
1690 			val = PIDX_V(delta);
1691 		else
1692 			val = PIDX_T5_V(delta);
1693 		wmb();
1694 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1695 			     QID_V(qid) | val);
1696 	}
1697 out:
1698 	return ret;
1699 }
1700 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1701 
1702 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1703 {
1704 	struct adapter *adap;
1705 	u32 offset, memtype, memaddr;
1706 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1707 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1708 	int ret;
1709 
1710 	adap = netdev2adap(dev);
1711 
1712 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1713 
1714 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1715 	 * This code assumes that the memory is laid out starting at offset 0
1716 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1717 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1718 	 * MC0, and some have both MC0 and MC1.
1719 	 */
1720 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1721 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1722 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1723 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1724 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1725 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1726 
1727 	edc0_end = edc0_size;
1728 	edc1_end = edc0_end + edc1_size;
1729 	mc0_end = edc1_end + mc0_size;
1730 
1731 	if (offset < edc0_end) {
1732 		memtype = MEM_EDC0;
1733 		memaddr = offset;
1734 	} else if (offset < edc1_end) {
1735 		memtype = MEM_EDC1;
1736 		memaddr = offset - edc0_end;
1737 	} else {
1738 		if (offset < mc0_end) {
1739 			memtype = MEM_MC0;
1740 			memaddr = offset - edc1_end;
1741 		} else if (is_t5(adap->params.chip)) {
1742 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1743 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1744 			mc1_end = mc0_end + mc1_size;
1745 			if (offset < mc1_end) {
1746 				memtype = MEM_MC1;
1747 				memaddr = offset - mc0_end;
1748 			} else {
1749 				/* offset beyond the end of any memory */
1750 				goto err;
1751 			}
1752 		} else {
1753 			/* T4/T6 only has a single memory channel */
1754 			goto err;
1755 		}
1756 	}
1757 
1758 	spin_lock(&adap->win0_lock);
1759 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1760 	spin_unlock(&adap->win0_lock);
1761 	return ret;
1762 
1763 err:
1764 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1765 		stag, offset);
1766 	return -EINVAL;
1767 }
1768 EXPORT_SYMBOL(cxgb4_read_tpte);
1769 
1770 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1771 {
1772 	u32 hi, lo;
1773 	struct adapter *adap;
1774 
1775 	adap = netdev2adap(dev);
1776 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1777 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1778 
1779 	return ((u64)hi << 32) | (u64)lo;
1780 }
1781 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1782 
1783 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1784 			 unsigned int qid,
1785 			 enum cxgb4_bar2_qtype qtype,
1786 			 int user,
1787 			 u64 *pbar2_qoffset,
1788 			 unsigned int *pbar2_qid)
1789 {
1790 	return t4_bar2_sge_qregs(netdev2adap(dev),
1791 				 qid,
1792 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1793 				  ? T4_BAR2_QTYPE_EGRESS
1794 				  : T4_BAR2_QTYPE_INGRESS),
1795 				 user,
1796 				 pbar2_qoffset,
1797 				 pbar2_qid);
1798 }
1799 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1800 
1801 static struct pci_driver cxgb4_driver;
1802 
1803 static void check_neigh_update(struct neighbour *neigh)
1804 {
1805 	const struct device *parent;
1806 	const struct net_device *netdev = neigh->dev;
1807 
1808 	if (is_vlan_dev(netdev))
1809 		netdev = vlan_dev_real_dev(netdev);
1810 	parent = netdev->dev.parent;
1811 	if (parent && parent->driver == &cxgb4_driver.driver)
1812 		t4_l2t_update(dev_get_drvdata(parent), neigh);
1813 }
1814 
1815 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1816 		       void *data)
1817 {
1818 	switch (event) {
1819 	case NETEVENT_NEIGH_UPDATE:
1820 		check_neigh_update(data);
1821 		break;
1822 	case NETEVENT_REDIRECT:
1823 	default:
1824 		break;
1825 	}
1826 	return 0;
1827 }
1828 
1829 static bool netevent_registered;
1830 static struct notifier_block cxgb4_netevent_nb = {
1831 	.notifier_call = netevent_cb
1832 };
1833 
1834 static void drain_db_fifo(struct adapter *adap, int usecs)
1835 {
1836 	u32 v1, v2, lp_count, hp_count;
1837 
1838 	do {
1839 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1840 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1841 		if (is_t4(adap->params.chip)) {
1842 			lp_count = LP_COUNT_G(v1);
1843 			hp_count = HP_COUNT_G(v1);
1844 		} else {
1845 			lp_count = LP_COUNT_T5_G(v1);
1846 			hp_count = HP_COUNT_T5_G(v2);
1847 		}
1848 
1849 		if (lp_count == 0 && hp_count == 0)
1850 			break;
1851 		set_current_state(TASK_UNINTERRUPTIBLE);
1852 		schedule_timeout(usecs_to_jiffies(usecs));
1853 	} while (1);
1854 }
1855 
1856 static void disable_txq_db(struct sge_txq *q)
1857 {
1858 	unsigned long flags;
1859 
1860 	spin_lock_irqsave(&q->db_lock, flags);
1861 	q->db_disabled = 1;
1862 	spin_unlock_irqrestore(&q->db_lock, flags);
1863 }
1864 
1865 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1866 {
1867 	spin_lock_irq(&q->db_lock);
1868 	if (q->db_pidx_inc) {
1869 		/* Make sure that all writes to the TX descriptors
1870 		 * are committed before we tell HW about them.
1871 		 */
1872 		wmb();
1873 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1874 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1875 		q->db_pidx_inc = 0;
1876 	}
1877 	q->db_disabled = 0;
1878 	spin_unlock_irq(&q->db_lock);
1879 }
1880 
1881 static void disable_dbs(struct adapter *adap)
1882 {
1883 	int i;
1884 
1885 	for_each_ethrxq(&adap->sge, i)
1886 		disable_txq_db(&adap->sge.ethtxq[i].q);
1887 	if (is_offload(adap)) {
1888 		struct sge_uld_txq_info *txq_info =
1889 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1890 
1891 		if (txq_info) {
1892 			for_each_ofldtxq(&adap->sge, i) {
1893 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1894 
1895 				disable_txq_db(&txq->q);
1896 			}
1897 		}
1898 	}
1899 	for_each_port(adap, i)
1900 		disable_txq_db(&adap->sge.ctrlq[i].q);
1901 }
1902 
1903 static void enable_dbs(struct adapter *adap)
1904 {
1905 	int i;
1906 
1907 	for_each_ethrxq(&adap->sge, i)
1908 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1909 	if (is_offload(adap)) {
1910 		struct sge_uld_txq_info *txq_info =
1911 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1912 
1913 		if (txq_info) {
1914 			for_each_ofldtxq(&adap->sge, i) {
1915 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1916 
1917 				enable_txq_db(adap, &txq->q);
1918 			}
1919 		}
1920 	}
1921 	for_each_port(adap, i)
1922 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1923 }
1924 
1925 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1926 {
1927 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
1928 
1929 	if (adap->uld && adap->uld[type].handle)
1930 		adap->uld[type].control(adap->uld[type].handle, cmd);
1931 }
1932 
1933 static void process_db_full(struct work_struct *work)
1934 {
1935 	struct adapter *adap;
1936 
1937 	adap = container_of(work, struct adapter, db_full_task);
1938 
1939 	drain_db_fifo(adap, dbfifo_drain_delay);
1940 	enable_dbs(adap);
1941 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1942 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1943 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1944 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1945 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1946 	else
1947 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1948 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1949 }
1950 
1951 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1952 {
1953 	u16 hw_pidx, hw_cidx;
1954 	int ret;
1955 
1956 	spin_lock_irq(&q->db_lock);
1957 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1958 	if (ret)
1959 		goto out;
1960 	if (q->db_pidx != hw_pidx) {
1961 		u16 delta;
1962 		u32 val;
1963 
1964 		if (q->db_pidx >= hw_pidx)
1965 			delta = q->db_pidx - hw_pidx;
1966 		else
1967 			delta = q->size - hw_pidx + q->db_pidx;
1968 
1969 		if (is_t4(adap->params.chip))
1970 			val = PIDX_V(delta);
1971 		else
1972 			val = PIDX_T5_V(delta);
1973 		wmb();
1974 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1975 			     QID_V(q->cntxt_id) | val);
1976 	}
1977 out:
1978 	q->db_disabled = 0;
1979 	q->db_pidx_inc = 0;
1980 	spin_unlock_irq(&q->db_lock);
1981 	if (ret)
1982 		CH_WARN(adap, "DB drop recovery failed.\n");
1983 }
1984 
1985 static void recover_all_queues(struct adapter *adap)
1986 {
1987 	int i;
1988 
1989 	for_each_ethrxq(&adap->sge, i)
1990 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
1991 	if (is_offload(adap)) {
1992 		struct sge_uld_txq_info *txq_info =
1993 			adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1994 		if (txq_info) {
1995 			for_each_ofldtxq(&adap->sge, i) {
1996 				struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1997 
1998 				sync_txq_pidx(adap, &txq->q);
1999 			}
2000 		}
2001 	}
2002 	for_each_port(adap, i)
2003 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2004 }
2005 
2006 static void process_db_drop(struct work_struct *work)
2007 {
2008 	struct adapter *adap;
2009 
2010 	adap = container_of(work, struct adapter, db_drop_task);
2011 
2012 	if (is_t4(adap->params.chip)) {
2013 		drain_db_fifo(adap, dbfifo_drain_delay);
2014 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2015 		drain_db_fifo(adap, dbfifo_drain_delay);
2016 		recover_all_queues(adap);
2017 		drain_db_fifo(adap, dbfifo_drain_delay);
2018 		enable_dbs(adap);
2019 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2020 	} else if (is_t5(adap->params.chip)) {
2021 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2022 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2023 		u16 pidx_inc = dropped_db & 0x1fff;
2024 		u64 bar2_qoffset;
2025 		unsigned int bar2_qid;
2026 		int ret;
2027 
2028 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2029 					0, &bar2_qoffset, &bar2_qid);
2030 		if (ret)
2031 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2032 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2033 		else
2034 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2035 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2036 
2037 		/* Re-enable BAR2 WC */
2038 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2039 	}
2040 
2041 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2042 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2043 }
2044 
2045 void t4_db_full(struct adapter *adap)
2046 {
2047 	if (is_t4(adap->params.chip)) {
2048 		disable_dbs(adap);
2049 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2050 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2051 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2052 		queue_work(adap->workq, &adap->db_full_task);
2053 	}
2054 }
2055 
2056 void t4_db_dropped(struct adapter *adap)
2057 {
2058 	if (is_t4(adap->params.chip)) {
2059 		disable_dbs(adap);
2060 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2061 	}
2062 	queue_work(adap->workq, &adap->db_drop_task);
2063 }
2064 
2065 void t4_register_netevent_notifier(void)
2066 {
2067 	if (!netevent_registered) {
2068 		register_netevent_notifier(&cxgb4_netevent_nb);
2069 		netevent_registered = true;
2070 	}
2071 }
2072 
2073 static void detach_ulds(struct adapter *adap)
2074 {
2075 	unsigned int i;
2076 
2077 	mutex_lock(&uld_mutex);
2078 	list_del(&adap->list_node);
2079 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2080 		if (adap->uld && adap->uld[i].handle) {
2081 			adap->uld[i].state_change(adap->uld[i].handle,
2082 					     CXGB4_STATE_DETACH);
2083 			adap->uld[i].handle = NULL;
2084 		}
2085 	if (netevent_registered && list_empty(&adapter_list)) {
2086 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2087 		netevent_registered = false;
2088 	}
2089 	mutex_unlock(&uld_mutex);
2090 }
2091 
2092 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2093 {
2094 	unsigned int i;
2095 
2096 	mutex_lock(&uld_mutex);
2097 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2098 		if (adap->uld && adap->uld[i].handle)
2099 			adap->uld[i].state_change(adap->uld[i].handle,
2100 						  new_state);
2101 	mutex_unlock(&uld_mutex);
2102 }
2103 
2104 #if IS_ENABLED(CONFIG_IPV6)
2105 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2106 				   unsigned long event, void *data)
2107 {
2108 	struct inet6_ifaddr *ifa = data;
2109 	struct net_device *event_dev = ifa->idev->dev;
2110 	const struct device *parent = NULL;
2111 #if IS_ENABLED(CONFIG_BONDING)
2112 	struct adapter *adap;
2113 #endif
2114 	if (is_vlan_dev(event_dev))
2115 		event_dev = vlan_dev_real_dev(event_dev);
2116 #if IS_ENABLED(CONFIG_BONDING)
2117 	if (event_dev->flags & IFF_MASTER) {
2118 		list_for_each_entry(adap, &adapter_list, list_node) {
2119 			switch (event) {
2120 			case NETDEV_UP:
2121 				cxgb4_clip_get(adap->port[0],
2122 					       (const u32 *)ifa, 1);
2123 				break;
2124 			case NETDEV_DOWN:
2125 				cxgb4_clip_release(adap->port[0],
2126 						   (const u32 *)ifa, 1);
2127 				break;
2128 			default:
2129 				break;
2130 			}
2131 		}
2132 		return NOTIFY_OK;
2133 	}
2134 #endif
2135 
2136 	if (event_dev)
2137 		parent = event_dev->dev.parent;
2138 
2139 	if (parent && parent->driver == &cxgb4_driver.driver) {
2140 		switch (event) {
2141 		case NETDEV_UP:
2142 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2143 			break;
2144 		case NETDEV_DOWN:
2145 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2146 			break;
2147 		default:
2148 			break;
2149 		}
2150 	}
2151 	return NOTIFY_OK;
2152 }
2153 
2154 static bool inet6addr_registered;
2155 static struct notifier_block cxgb4_inet6addr_notifier = {
2156 	.notifier_call = cxgb4_inet6addr_handler
2157 };
2158 
2159 static void update_clip(const struct adapter *adap)
2160 {
2161 	int i;
2162 	struct net_device *dev;
2163 	int ret;
2164 
2165 	rcu_read_lock();
2166 
2167 	for (i = 0; i < MAX_NPORTS; i++) {
2168 		dev = adap->port[i];
2169 		ret = 0;
2170 
2171 		if (dev)
2172 			ret = cxgb4_update_root_dev_clip(dev);
2173 
2174 		if (ret < 0)
2175 			break;
2176 	}
2177 	rcu_read_unlock();
2178 }
2179 #endif /* IS_ENABLED(CONFIG_IPV6) */
2180 
2181 /**
2182  *	cxgb_up - enable the adapter
2183  *	@adap: adapter being enabled
2184  *
2185  *	Called when the first port is enabled, this function performs the
2186  *	actions necessary to make an adapter operational, such as completing
2187  *	the initialization of HW modules, and enabling interrupts.
2188  *
2189  *	Must be called with the rtnl lock held.
2190  */
2191 static int cxgb_up(struct adapter *adap)
2192 {
2193 	int err;
2194 
2195 	err = setup_sge_queues(adap);
2196 	if (err)
2197 		goto out;
2198 	err = setup_rss(adap);
2199 	if (err)
2200 		goto freeq;
2201 
2202 	if (adap->flags & USING_MSIX) {
2203 		name_msix_vecs(adap);
2204 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2205 				  adap->msix_info[0].desc, adap);
2206 		if (err)
2207 			goto irq_err;
2208 		err = request_msix_queue_irqs(adap);
2209 		if (err) {
2210 			free_irq(adap->msix_info[0].vec, adap);
2211 			goto irq_err;
2212 		}
2213 	} else {
2214 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2215 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2216 				  adap->port[0]->name, adap);
2217 		if (err)
2218 			goto irq_err;
2219 	}
2220 	enable_rx(adap);
2221 	t4_sge_start(adap);
2222 	t4_intr_enable(adap);
2223 	adap->flags |= FULL_INIT_DONE;
2224 	notify_ulds(adap, CXGB4_STATE_UP);
2225 #if IS_ENABLED(CONFIG_IPV6)
2226 	update_clip(adap);
2227 #endif
2228 	/* Initialize hash mac addr list*/
2229 	INIT_LIST_HEAD(&adap->mac_hlist);
2230  out:
2231 	return err;
2232  irq_err:
2233 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2234  freeq:
2235 	t4_free_sge_resources(adap);
2236 	goto out;
2237 }
2238 
2239 static void cxgb_down(struct adapter *adapter)
2240 {
2241 	cancel_work_sync(&adapter->tid_release_task);
2242 	cancel_work_sync(&adapter->db_full_task);
2243 	cancel_work_sync(&adapter->db_drop_task);
2244 	adapter->tid_release_task_busy = false;
2245 	adapter->tid_release_head = NULL;
2246 
2247 	t4_sge_stop(adapter);
2248 	t4_free_sge_resources(adapter);
2249 	adapter->flags &= ~FULL_INIT_DONE;
2250 }
2251 
2252 /*
2253  * net_device operations
2254  */
2255 static int cxgb_open(struct net_device *dev)
2256 {
2257 	int err;
2258 	struct port_info *pi = netdev_priv(dev);
2259 	struct adapter *adapter = pi->adapter;
2260 
2261 	netif_carrier_off(dev);
2262 
2263 	if (!(adapter->flags & FULL_INIT_DONE)) {
2264 		err = cxgb_up(adapter);
2265 		if (err < 0)
2266 			return err;
2267 	}
2268 
2269 	err = link_start(dev);
2270 	if (!err)
2271 		netif_tx_start_all_queues(dev);
2272 	return err;
2273 }
2274 
2275 static int cxgb_close(struct net_device *dev)
2276 {
2277 	struct port_info *pi = netdev_priv(dev);
2278 	struct adapter *adapter = pi->adapter;
2279 
2280 	netif_tx_stop_all_queues(dev);
2281 	netif_carrier_off(dev);
2282 	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2283 }
2284 
2285 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2286 		__be32 sip, __be16 sport, __be16 vlan,
2287 		unsigned int queue, unsigned char port, unsigned char mask)
2288 {
2289 	int ret;
2290 	struct filter_entry *f;
2291 	struct adapter *adap;
2292 	int i;
2293 	u8 *val;
2294 
2295 	adap = netdev2adap(dev);
2296 
2297 	/* Adjust stid to correct filter index */
2298 	stid -= adap->tids.sftid_base;
2299 	stid += adap->tids.nftids;
2300 
2301 	/* Check to make sure the filter requested is writable ...
2302 	 */
2303 	f = &adap->tids.ftid_tab[stid];
2304 	ret = writable_filter(f);
2305 	if (ret)
2306 		return ret;
2307 
2308 	/* Clear out any old resources being used by the filter before
2309 	 * we start constructing the new filter.
2310 	 */
2311 	if (f->valid)
2312 		clear_filter(adap, f);
2313 
2314 	/* Clear out filter specifications */
2315 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2316 	f->fs.val.lport = cpu_to_be16(sport);
2317 	f->fs.mask.lport  = ~0;
2318 	val = (u8 *)&sip;
2319 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2320 		for (i = 0; i < 4; i++) {
2321 			f->fs.val.lip[i] = val[i];
2322 			f->fs.mask.lip[i] = ~0;
2323 		}
2324 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2325 			f->fs.val.iport = port;
2326 			f->fs.mask.iport = mask;
2327 		}
2328 	}
2329 
2330 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2331 		f->fs.val.proto = IPPROTO_TCP;
2332 		f->fs.mask.proto = ~0;
2333 	}
2334 
2335 	f->fs.dirsteer = 1;
2336 	f->fs.iq = queue;
2337 	/* Mark filter as locked */
2338 	f->locked = 1;
2339 	f->fs.rpttid = 1;
2340 
2341 	ret = set_filter_wr(adap, stid);
2342 	if (ret) {
2343 		clear_filter(adap, f);
2344 		return ret;
2345 	}
2346 
2347 	return 0;
2348 }
2349 EXPORT_SYMBOL(cxgb4_create_server_filter);
2350 
2351 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2352 		unsigned int queue, bool ipv6)
2353 {
2354 	struct filter_entry *f;
2355 	struct adapter *adap;
2356 
2357 	adap = netdev2adap(dev);
2358 
2359 	/* Adjust stid to correct filter index */
2360 	stid -= adap->tids.sftid_base;
2361 	stid += adap->tids.nftids;
2362 
2363 	f = &adap->tids.ftid_tab[stid];
2364 	/* Unlock the filter */
2365 	f->locked = 0;
2366 
2367 	return delete_filter(adap, stid);
2368 }
2369 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2370 
2371 static void cxgb_get_stats(struct net_device *dev,
2372 			   struct rtnl_link_stats64 *ns)
2373 {
2374 	struct port_stats stats;
2375 	struct port_info *p = netdev_priv(dev);
2376 	struct adapter *adapter = p->adapter;
2377 
2378 	/* Block retrieving statistics during EEH error
2379 	 * recovery. Otherwise, the recovery might fail
2380 	 * and the PCI device will be removed permanently
2381 	 */
2382 	spin_lock(&adapter->stats_lock);
2383 	if (!netif_device_present(dev)) {
2384 		spin_unlock(&adapter->stats_lock);
2385 		return;
2386 	}
2387 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2388 				 &p->stats_base);
2389 	spin_unlock(&adapter->stats_lock);
2390 
2391 	ns->tx_bytes   = stats.tx_octets;
2392 	ns->tx_packets = stats.tx_frames;
2393 	ns->rx_bytes   = stats.rx_octets;
2394 	ns->rx_packets = stats.rx_frames;
2395 	ns->multicast  = stats.rx_mcast_frames;
2396 
2397 	/* detailed rx_errors */
2398 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2399 			       stats.rx_runt;
2400 	ns->rx_over_errors   = 0;
2401 	ns->rx_crc_errors    = stats.rx_fcs_err;
2402 	ns->rx_frame_errors  = stats.rx_symbol_err;
2403 	ns->rx_dropped	     = stats.rx_ovflow0 + stats.rx_ovflow1 +
2404 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2405 			       stats.rx_trunc0 + stats.rx_trunc1 +
2406 			       stats.rx_trunc2 + stats.rx_trunc3;
2407 	ns->rx_missed_errors = 0;
2408 
2409 	/* detailed tx_errors */
2410 	ns->tx_aborted_errors   = 0;
2411 	ns->tx_carrier_errors   = 0;
2412 	ns->tx_fifo_errors      = 0;
2413 	ns->tx_heartbeat_errors = 0;
2414 	ns->tx_window_errors    = 0;
2415 
2416 	ns->tx_errors = stats.tx_error_frames;
2417 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2418 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2419 }
2420 
2421 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2422 {
2423 	unsigned int mbox;
2424 	int ret = 0, prtad, devad;
2425 	struct port_info *pi = netdev_priv(dev);
2426 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2427 
2428 	switch (cmd) {
2429 	case SIOCGMIIPHY:
2430 		if (pi->mdio_addr < 0)
2431 			return -EOPNOTSUPP;
2432 		data->phy_id = pi->mdio_addr;
2433 		break;
2434 	case SIOCGMIIREG:
2435 	case SIOCSMIIREG:
2436 		if (mdio_phy_id_is_c45(data->phy_id)) {
2437 			prtad = mdio_phy_id_prtad(data->phy_id);
2438 			devad = mdio_phy_id_devad(data->phy_id);
2439 		} else if (data->phy_id < 32) {
2440 			prtad = data->phy_id;
2441 			devad = 0;
2442 			data->reg_num &= 0x1f;
2443 		} else
2444 			return -EINVAL;
2445 
2446 		mbox = pi->adapter->pf;
2447 		if (cmd == SIOCGMIIREG)
2448 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2449 					 data->reg_num, &data->val_out);
2450 		else
2451 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2452 					 data->reg_num, data->val_in);
2453 		break;
2454 	case SIOCGHWTSTAMP:
2455 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2456 				    sizeof(pi->tstamp_config)) ?
2457 			-EFAULT : 0;
2458 	case SIOCSHWTSTAMP:
2459 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2460 				   sizeof(pi->tstamp_config)))
2461 			return -EFAULT;
2462 
2463 		switch (pi->tstamp_config.rx_filter) {
2464 		case HWTSTAMP_FILTER_NONE:
2465 			pi->rxtstamp = false;
2466 			break;
2467 		case HWTSTAMP_FILTER_ALL:
2468 			pi->rxtstamp = true;
2469 			break;
2470 		default:
2471 			pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2472 			return -ERANGE;
2473 		}
2474 
2475 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2476 				    sizeof(pi->tstamp_config)) ?
2477 			-EFAULT : 0;
2478 	default:
2479 		return -EOPNOTSUPP;
2480 	}
2481 	return ret;
2482 }
2483 
2484 static void cxgb_set_rxmode(struct net_device *dev)
2485 {
2486 	/* unfortunately we can't return errors to the stack */
2487 	set_rxmode(dev, -1, false);
2488 }
2489 
2490 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2491 {
2492 	int ret;
2493 	struct port_info *pi = netdev_priv(dev);
2494 
2495 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2496 			    -1, -1, -1, true);
2497 	if (!ret)
2498 		dev->mtu = new_mtu;
2499 	return ret;
2500 }
2501 
2502 #ifdef CONFIG_PCI_IOV
2503 static int dummy_open(struct net_device *dev)
2504 {
2505 	/* Turn carrier off since we don't have to transmit anything on this
2506 	 * interface.
2507 	 */
2508 	netif_carrier_off(dev);
2509 	return 0;
2510 }
2511 
2512 /* Fill MAC address that will be assigned by the FW */
2513 static void fill_vf_station_mac_addr(struct adapter *adap)
2514 {
2515 	unsigned int i;
2516 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2517 	int err;
2518 	u8 *na;
2519 	u16 a, b;
2520 
2521 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2522 	if (!err) {
2523 		na = adap->params.vpd.na;
2524 		for (i = 0; i < ETH_ALEN; i++)
2525 			hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2526 				      hex2val(na[2 * i + 1]));
2527 		a = (hw_addr[0] << 8) | hw_addr[1];
2528 		b = (hw_addr[1] << 8) | hw_addr[2];
2529 		a ^= b;
2530 		a |= 0x0200;    /* locally assigned Ethernet MAC address */
2531 		a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2532 		macaddr[0] = a >> 8;
2533 		macaddr[1] = a & 0xff;
2534 
2535 		for (i = 2; i < 5; i++)
2536 			macaddr[i] = hw_addr[i + 1];
2537 
2538 		for (i = 0; i < adap->num_vfs; i++) {
2539 			macaddr[5] = adap->pf * 16 + i;
2540 			ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2541 		}
2542 	}
2543 }
2544 
2545 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2546 {
2547 	struct port_info *pi = netdev_priv(dev);
2548 	struct adapter *adap = pi->adapter;
2549 	int ret;
2550 
2551 	/* verify MAC addr is valid */
2552 	if (!is_valid_ether_addr(mac)) {
2553 		dev_err(pi->adapter->pdev_dev,
2554 			"Invalid Ethernet address %pM for VF %d\n",
2555 			mac, vf);
2556 		return -EINVAL;
2557 	}
2558 
2559 	dev_info(pi->adapter->pdev_dev,
2560 		 "Setting MAC %pM on VF %d\n", mac, vf);
2561 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2562 	if (!ret)
2563 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2564 	return ret;
2565 }
2566 
2567 static int cxgb_get_vf_config(struct net_device *dev,
2568 			      int vf, struct ifla_vf_info *ivi)
2569 {
2570 	struct port_info *pi = netdev_priv(dev);
2571 	struct adapter *adap = pi->adapter;
2572 
2573 	if (vf >= adap->num_vfs)
2574 		return -EINVAL;
2575 	ivi->vf = vf;
2576 	ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2577 	return 0;
2578 }
2579 
2580 static int cxgb_get_phys_port_id(struct net_device *dev,
2581 				 struct netdev_phys_item_id *ppid)
2582 {
2583 	struct port_info *pi = netdev_priv(dev);
2584 	unsigned int phy_port_id;
2585 
2586 	phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2587 	ppid->id_len = sizeof(phy_port_id);
2588 	memcpy(ppid->id, &phy_port_id, ppid->id_len);
2589 	return 0;
2590 }
2591 
2592 #endif
2593 
2594 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2595 {
2596 	int ret;
2597 	struct sockaddr *addr = p;
2598 	struct port_info *pi = netdev_priv(dev);
2599 
2600 	if (!is_valid_ether_addr(addr->sa_data))
2601 		return -EADDRNOTAVAIL;
2602 
2603 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2604 			    pi->xact_addr_filt, addr->sa_data, true, true);
2605 	if (ret < 0)
2606 		return ret;
2607 
2608 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2609 	pi->xact_addr_filt = ret;
2610 	return 0;
2611 }
2612 
2613 #ifdef CONFIG_NET_POLL_CONTROLLER
2614 static void cxgb_netpoll(struct net_device *dev)
2615 {
2616 	struct port_info *pi = netdev_priv(dev);
2617 	struct adapter *adap = pi->adapter;
2618 
2619 	if (adap->flags & USING_MSIX) {
2620 		int i;
2621 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2622 
2623 		for (i = pi->nqsets; i; i--, rx++)
2624 			t4_sge_intr_msix(0, &rx->rspq);
2625 	} else
2626 		t4_intr_handler(adap)(0, adap);
2627 }
2628 #endif
2629 
2630 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2631 {
2632 	struct port_info *pi = netdev_priv(dev);
2633 	struct adapter *adap = pi->adapter;
2634 	struct sched_class *e;
2635 	struct ch_sched_params p;
2636 	struct ch_sched_queue qe;
2637 	u32 req_rate;
2638 	int err = 0;
2639 
2640 	if (!can_sched(dev))
2641 		return -ENOTSUPP;
2642 
2643 	if (index < 0 || index > pi->nqsets - 1)
2644 		return -EINVAL;
2645 
2646 	if (!(adap->flags & FULL_INIT_DONE)) {
2647 		dev_err(adap->pdev_dev,
2648 			"Failed to rate limit on queue %d. Link Down?\n",
2649 			index);
2650 		return -EINVAL;
2651 	}
2652 
2653 	/* Convert from Mbps to Kbps */
2654 	req_rate = rate << 10;
2655 
2656 	/* Max rate is 10 Gbps */
2657 	if (req_rate >= SCHED_MAX_RATE_KBPS) {
2658 		dev_err(adap->pdev_dev,
2659 			"Invalid rate %u Mbps, Max rate is %u Gbps\n",
2660 			rate, SCHED_MAX_RATE_KBPS);
2661 		return -ERANGE;
2662 	}
2663 
2664 	/* First unbind the queue from any existing class */
2665 	memset(&qe, 0, sizeof(qe));
2666 	qe.queue = index;
2667 	qe.class = SCHED_CLS_NONE;
2668 
2669 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2670 	if (err) {
2671 		dev_err(adap->pdev_dev,
2672 			"Unbinding Queue %d on port %d fail. Err: %d\n",
2673 			index, pi->port_id, err);
2674 		return err;
2675 	}
2676 
2677 	/* Queue already unbound */
2678 	if (!req_rate)
2679 		return 0;
2680 
2681 	/* Fetch any available unused or matching scheduling class */
2682 	memset(&p, 0, sizeof(p));
2683 	p.type = SCHED_CLASS_TYPE_PACKET;
2684 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2685 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2686 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2687 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2688 	p.u.params.channel  = pi->tx_chan;
2689 	p.u.params.class    = SCHED_CLS_NONE;
2690 	p.u.params.minrate  = 0;
2691 	p.u.params.maxrate  = req_rate;
2692 	p.u.params.weight   = 0;
2693 	p.u.params.pktsize  = dev->mtu;
2694 
2695 	e = cxgb4_sched_class_alloc(dev, &p);
2696 	if (!e)
2697 		return -ENOMEM;
2698 
2699 	/* Bind the queue to a scheduling class */
2700 	memset(&qe, 0, sizeof(qe));
2701 	qe.queue = index;
2702 	qe.class = e->idx;
2703 
2704 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2705 	if (err)
2706 		dev_err(adap->pdev_dev,
2707 			"Queue rate limiting failed. Err: %d\n", err);
2708 	return err;
2709 }
2710 
2711 static int cxgb_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
2712 			 struct tc_to_netdev *tc)
2713 {
2714 	struct port_info *pi = netdev2pinfo(dev);
2715 	struct adapter *adap = netdev2adap(dev);
2716 
2717 	if (!(adap->flags & FULL_INIT_DONE)) {
2718 		dev_err(adap->pdev_dev,
2719 			"Failed to setup tc on port %d. Link Down?\n",
2720 			pi->port_id);
2721 		return -EINVAL;
2722 	}
2723 
2724 	if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) &&
2725 	    tc->type == TC_SETUP_CLSU32) {
2726 		switch (tc->cls_u32->command) {
2727 		case TC_CLSU32_NEW_KNODE:
2728 		case TC_CLSU32_REPLACE_KNODE:
2729 			return cxgb4_config_knode(dev, proto, tc->cls_u32);
2730 		case TC_CLSU32_DELETE_KNODE:
2731 			return cxgb4_delete_knode(dev, proto, tc->cls_u32);
2732 		default:
2733 			return -EOPNOTSUPP;
2734 		}
2735 	}
2736 
2737 	return -EOPNOTSUPP;
2738 }
2739 
2740 static const struct net_device_ops cxgb4_netdev_ops = {
2741 	.ndo_open             = cxgb_open,
2742 	.ndo_stop             = cxgb_close,
2743 	.ndo_start_xmit       = t4_eth_xmit,
2744 	.ndo_select_queue     =	cxgb_select_queue,
2745 	.ndo_get_stats64      = cxgb_get_stats,
2746 	.ndo_set_rx_mode      = cxgb_set_rxmode,
2747 	.ndo_set_mac_address  = cxgb_set_mac_addr,
2748 	.ndo_set_features     = cxgb_set_features,
2749 	.ndo_validate_addr    = eth_validate_addr,
2750 	.ndo_do_ioctl         = cxgb_ioctl,
2751 	.ndo_change_mtu       = cxgb_change_mtu,
2752 #ifdef CONFIG_NET_POLL_CONTROLLER
2753 	.ndo_poll_controller  = cxgb_netpoll,
2754 #endif
2755 #ifdef CONFIG_CHELSIO_T4_FCOE
2756 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
2757 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
2758 #endif /* CONFIG_CHELSIO_T4_FCOE */
2759 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
2760 	.ndo_setup_tc         = cxgb_setup_tc,
2761 };
2762 
2763 #ifdef CONFIG_PCI_IOV
2764 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
2765 	.ndo_open             = dummy_open,
2766 	.ndo_set_vf_mac       = cxgb_set_vf_mac,
2767 	.ndo_get_vf_config    = cxgb_get_vf_config,
2768 	.ndo_get_phys_port_id = cxgb_get_phys_port_id,
2769 };
2770 #endif
2771 
2772 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2773 {
2774 	struct adapter *adapter = netdev2adap(dev);
2775 
2776 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
2777 	strlcpy(info->version, cxgb4_driver_version,
2778 		sizeof(info->version));
2779 	strlcpy(info->bus_info, pci_name(adapter->pdev),
2780 		sizeof(info->bus_info));
2781 }
2782 
2783 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
2784 	.get_drvinfo       = get_drvinfo,
2785 };
2786 
2787 void t4_fatal_err(struct adapter *adap)
2788 {
2789 	int port;
2790 
2791 	/* Disable the SGE since ULDs are going to free resources that
2792 	 * could be exposed to the adapter.  RDMA MWs for example...
2793 	 */
2794 	t4_shutdown_adapter(adap);
2795 	for_each_port(adap, port) {
2796 		struct net_device *dev = adap->port[port];
2797 
2798 		/* If we get here in very early initialization the network
2799 		 * devices may not have been set up yet.
2800 		 */
2801 		if (!dev)
2802 			continue;
2803 
2804 		netif_tx_stop_all_queues(dev);
2805 		netif_carrier_off(dev);
2806 	}
2807 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2808 }
2809 
2810 static void setup_memwin(struct adapter *adap)
2811 {
2812 	u32 nic_win_base = t4_get_util_window(adap);
2813 
2814 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
2815 }
2816 
2817 static void setup_memwin_rdma(struct adapter *adap)
2818 {
2819 	if (adap->vres.ocq.size) {
2820 		u32 start;
2821 		unsigned int sz_kb;
2822 
2823 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
2824 		start &= PCI_BASE_ADDRESS_MEM_MASK;
2825 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2826 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
2827 		t4_write_reg(adap,
2828 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
2829 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
2830 		t4_write_reg(adap,
2831 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
2832 			     adap->vres.ocq.start);
2833 		t4_read_reg(adap,
2834 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
2835 	}
2836 }
2837 
2838 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
2839 {
2840 	u32 v;
2841 	int ret;
2842 
2843 	/* get device capabilities */
2844 	memset(c, 0, sizeof(*c));
2845 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2846 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
2847 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
2848 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
2849 	if (ret < 0)
2850 		return ret;
2851 
2852 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2853 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
2854 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
2855 	if (ret < 0)
2856 		return ret;
2857 
2858 	ret = t4_config_glbl_rss(adap, adap->pf,
2859 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2860 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
2861 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
2862 	if (ret < 0)
2863 		return ret;
2864 
2865 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
2866 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
2867 			  FW_CMD_CAP_PF);
2868 	if (ret < 0)
2869 		return ret;
2870 
2871 	t4_sge_init(adap);
2872 
2873 	/* tweak some settings */
2874 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
2875 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
2876 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
2877 	v = t4_read_reg(adap, TP_PIO_DATA_A);
2878 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
2879 
2880 	/* first 4 Tx modulation queues point to consecutive Tx channels */
2881 	adap->params.tp.tx_modq_map = 0xE4;
2882 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
2883 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
2884 
2885 	/* associate each Tx modulation queue with consecutive Tx channels */
2886 	v = 0x84218421;
2887 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2888 			  &v, 1, TP_TX_SCHED_HDR_A);
2889 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2890 			  &v, 1, TP_TX_SCHED_FIFO_A);
2891 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2892 			  &v, 1, TP_TX_SCHED_PCMD_A);
2893 
2894 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
2895 	if (is_offload(adap)) {
2896 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
2897 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2898 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2899 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2900 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2901 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
2902 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2903 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2904 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2905 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2906 	}
2907 
2908 	/* get basic stuff going */
2909 	return t4_early_init(adap, adap->pf);
2910 }
2911 
2912 /*
2913  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
2914  */
2915 #define MAX_ATIDS 8192U
2916 
2917 /*
2918  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2919  *
2920  * If the firmware we're dealing with has Configuration File support, then
2921  * we use that to perform all configuration
2922  */
2923 
2924 /*
2925  * Tweak configuration based on module parameters, etc.  Most of these have
2926  * defaults assigned to them by Firmware Configuration Files (if we're using
2927  * them) but need to be explicitly set if we're using hard-coded
2928  * initialization.  But even in the case of using Firmware Configuration
2929  * Files, we'd like to expose the ability to change these via module
2930  * parameters so these are essentially common tweaks/settings for
2931  * Configuration Files and hard-coded initialization ...
2932  */
2933 static int adap_init0_tweaks(struct adapter *adapter)
2934 {
2935 	/*
2936 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
2937 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
2938 	 * 64B Cache Line Size ...
2939 	 */
2940 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
2941 
2942 	/*
2943 	 * Process module parameters which affect early initialization.
2944 	 */
2945 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
2946 		dev_err(&adapter->pdev->dev,
2947 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
2948 			rx_dma_offset);
2949 		rx_dma_offset = 2;
2950 	}
2951 	t4_set_reg_field(adapter, SGE_CONTROL_A,
2952 			 PKTSHIFT_V(PKTSHIFT_M),
2953 			 PKTSHIFT_V(rx_dma_offset));
2954 
2955 	/*
2956 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
2957 	 * adds the pseudo header itself.
2958 	 */
2959 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
2960 			       CSUM_HAS_PSEUDO_HDR_F, 0);
2961 
2962 	return 0;
2963 }
2964 
2965 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
2966  * unto themselves and they contain their own firmware to perform their
2967  * tasks ...
2968  */
2969 static int phy_aq1202_version(const u8 *phy_fw_data,
2970 			      size_t phy_fw_size)
2971 {
2972 	int offset;
2973 
2974 	/* At offset 0x8 you're looking for the primary image's
2975 	 * starting offset which is 3 Bytes wide
2976 	 *
2977 	 * At offset 0xa of the primary image, you look for the offset
2978 	 * of the DRAM segment which is 3 Bytes wide.
2979 	 *
2980 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
2981 	 * wide
2982 	 */
2983 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
2984 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
2985 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
2986 
2987 	offset = le24(phy_fw_data + 0x8) << 12;
2988 	offset = le24(phy_fw_data + offset + 0xa);
2989 	return be16(phy_fw_data + offset + 0x27e);
2990 
2991 	#undef be16
2992 	#undef le16
2993 	#undef le24
2994 }
2995 
2996 static struct info_10gbt_phy_fw {
2997 	unsigned int phy_fw_id;		/* PCI Device ID */
2998 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
2999 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3000 	int phy_flash;			/* Has FLASH for PHY Firmware */
3001 } phy_info_array[] = {
3002 	{
3003 		PHY_AQ1202_DEVICEID,
3004 		PHY_AQ1202_FIRMWARE,
3005 		phy_aq1202_version,
3006 		1,
3007 	},
3008 	{
3009 		PHY_BCM84834_DEVICEID,
3010 		PHY_BCM84834_FIRMWARE,
3011 		NULL,
3012 		0,
3013 	},
3014 	{ 0, NULL, NULL },
3015 };
3016 
3017 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3018 {
3019 	int i;
3020 
3021 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3022 		if (phy_info_array[i].phy_fw_id == devid)
3023 			return &phy_info_array[i];
3024 	}
3025 	return NULL;
3026 }
3027 
3028 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3029  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3030  * we return a negative error number.  If we transfer new firmware we return 1
3031  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3032  */
3033 static int adap_init0_phy(struct adapter *adap)
3034 {
3035 	const struct firmware *phyf;
3036 	int ret;
3037 	struct info_10gbt_phy_fw *phy_info;
3038 
3039 	/* Use the device ID to determine which PHY file to flash.
3040 	 */
3041 	phy_info = find_phy_info(adap->pdev->device);
3042 	if (!phy_info) {
3043 		dev_warn(adap->pdev_dev,
3044 			 "No PHY Firmware file found for this PHY\n");
3045 		return -EOPNOTSUPP;
3046 	}
3047 
3048 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3049 	 * use that. The adapter firmware provides us with a memory buffer
3050 	 * where we can load a PHY firmware file from the host if we want to
3051 	 * override the PHY firmware File in flash.
3052 	 */
3053 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3054 				      adap->pdev_dev);
3055 	if (ret < 0) {
3056 		/* For adapters without FLASH attached to PHY for their
3057 		 * firmware, it's obviously a fatal error if we can't get the
3058 		 * firmware to the adapter.  For adapters with PHY firmware
3059 		 * FLASH storage, it's worth a warning if we can't find the
3060 		 * PHY Firmware but we'll neuter the error ...
3061 		 */
3062 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3063 			"/lib/firmware/%s, error %d\n",
3064 			phy_info->phy_fw_file, -ret);
3065 		if (phy_info->phy_flash) {
3066 			int cur_phy_fw_ver = 0;
3067 
3068 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3069 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3070 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3071 			ret = 0;
3072 		}
3073 
3074 		return ret;
3075 	}
3076 
3077 	/* Load PHY Firmware onto adapter.
3078 	 */
3079 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3080 			     phy_info->phy_fw_version,
3081 			     (u8 *)phyf->data, phyf->size);
3082 	if (ret < 0)
3083 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3084 			-ret);
3085 	else if (ret > 0) {
3086 		int new_phy_fw_ver = 0;
3087 
3088 		if (phy_info->phy_fw_version)
3089 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3090 								  phyf->size);
3091 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3092 			 "Firmware /lib/firmware/%s, version %#x\n",
3093 			 phy_info->phy_fw_file, new_phy_fw_ver);
3094 	}
3095 
3096 	release_firmware(phyf);
3097 
3098 	return ret;
3099 }
3100 
3101 /*
3102  * Attempt to initialize the adapter via a Firmware Configuration File.
3103  */
3104 static int adap_init0_config(struct adapter *adapter, int reset)
3105 {
3106 	struct fw_caps_config_cmd caps_cmd;
3107 	const struct firmware *cf;
3108 	unsigned long mtype = 0, maddr = 0;
3109 	u32 finiver, finicsum, cfcsum;
3110 	int ret;
3111 	int config_issued = 0;
3112 	char *fw_config_file, fw_config_file_path[256];
3113 	char *config_name = NULL;
3114 
3115 	/*
3116 	 * Reset device if necessary.
3117 	 */
3118 	if (reset) {
3119 		ret = t4_fw_reset(adapter, adapter->mbox,
3120 				  PIORSTMODE_F | PIORST_F);
3121 		if (ret < 0)
3122 			goto bye;
3123 	}
3124 
3125 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3126 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3127 	 * to be performed after any global adapter RESET above since some
3128 	 * PHYs only have local RAM copies of the PHY firmware.
3129 	 */
3130 	if (is_10gbt_device(adapter->pdev->device)) {
3131 		ret = adap_init0_phy(adapter);
3132 		if (ret < 0)
3133 			goto bye;
3134 	}
3135 	/*
3136 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3137 	 * then use that.  Otherwise, use the configuration file stored
3138 	 * in the adapter flash ...
3139 	 */
3140 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3141 	case CHELSIO_T4:
3142 		fw_config_file = FW4_CFNAME;
3143 		break;
3144 	case CHELSIO_T5:
3145 		fw_config_file = FW5_CFNAME;
3146 		break;
3147 	case CHELSIO_T6:
3148 		fw_config_file = FW6_CFNAME;
3149 		break;
3150 	default:
3151 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3152 		       adapter->pdev->device);
3153 		ret = -EINVAL;
3154 		goto bye;
3155 	}
3156 
3157 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3158 	if (ret < 0) {
3159 		config_name = "On FLASH";
3160 		mtype = FW_MEMTYPE_CF_FLASH;
3161 		maddr = t4_flash_cfg_addr(adapter);
3162 	} else {
3163 		u32 params[7], val[7];
3164 
3165 		sprintf(fw_config_file_path,
3166 			"/lib/firmware/%s", fw_config_file);
3167 		config_name = fw_config_file_path;
3168 
3169 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3170 			ret = -ENOMEM;
3171 		else {
3172 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3173 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3174 			ret = t4_query_params(adapter, adapter->mbox,
3175 					      adapter->pf, 0, 1, params, val);
3176 			if (ret == 0) {
3177 				/*
3178 				 * For t4_memory_rw() below addresses and
3179 				 * sizes have to be in terms of multiples of 4
3180 				 * bytes.  So, if the Configuration File isn't
3181 				 * a multiple of 4 bytes in length we'll have
3182 				 * to write that out separately since we can't
3183 				 * guarantee that the bytes following the
3184 				 * residual byte in the buffer returned by
3185 				 * request_firmware() are zeroed out ...
3186 				 */
3187 				size_t resid = cf->size & 0x3;
3188 				size_t size = cf->size & ~0x3;
3189 				__be32 *data = (__be32 *)cf->data;
3190 
3191 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3192 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3193 
3194 				spin_lock(&adapter->win0_lock);
3195 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3196 						   size, data, T4_MEMORY_WRITE);
3197 				if (ret == 0 && resid != 0) {
3198 					union {
3199 						__be32 word;
3200 						char buf[4];
3201 					} last;
3202 					int i;
3203 
3204 					last.word = data[size >> 2];
3205 					for (i = resid; i < 4; i++)
3206 						last.buf[i] = 0;
3207 					ret = t4_memory_rw(adapter, 0, mtype,
3208 							   maddr + size,
3209 							   4, &last.word,
3210 							   T4_MEMORY_WRITE);
3211 				}
3212 				spin_unlock(&adapter->win0_lock);
3213 			}
3214 		}
3215 
3216 		release_firmware(cf);
3217 		if (ret)
3218 			goto bye;
3219 	}
3220 
3221 	/*
3222 	 * Issue a Capability Configuration command to the firmware to get it
3223 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3224 	 * because we want the ability to modify various features after we've
3225 	 * processed the configuration file ...
3226 	 */
3227 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3228 	caps_cmd.op_to_write =
3229 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3230 		      FW_CMD_REQUEST_F |
3231 		      FW_CMD_READ_F);
3232 	caps_cmd.cfvalid_to_len16 =
3233 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3234 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3235 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3236 		      FW_LEN16(caps_cmd));
3237 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3238 			 &caps_cmd);
3239 
3240 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3241 	 * Configuration File in FLASH), our last gasp effort is to use the
3242 	 * Firmware Configuration File which is embedded in the firmware.  A
3243 	 * very few early versions of the firmware didn't have one embedded
3244 	 * but we can ignore those.
3245 	 */
3246 	if (ret == -ENOENT) {
3247 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3248 		caps_cmd.op_to_write =
3249 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3250 					FW_CMD_REQUEST_F |
3251 					FW_CMD_READ_F);
3252 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3253 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3254 				sizeof(caps_cmd), &caps_cmd);
3255 		config_name = "Firmware Default";
3256 	}
3257 
3258 	config_issued = 1;
3259 	if (ret < 0)
3260 		goto bye;
3261 
3262 	finiver = ntohl(caps_cmd.finiver);
3263 	finicsum = ntohl(caps_cmd.finicsum);
3264 	cfcsum = ntohl(caps_cmd.cfcsum);
3265 	if (finicsum != cfcsum)
3266 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3267 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3268 			 finicsum, cfcsum);
3269 
3270 	/*
3271 	 * And now tell the firmware to use the configuration we just loaded.
3272 	 */
3273 	caps_cmd.op_to_write =
3274 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3275 		      FW_CMD_REQUEST_F |
3276 		      FW_CMD_WRITE_F);
3277 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3278 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3279 			 NULL);
3280 	if (ret < 0)
3281 		goto bye;
3282 
3283 	/*
3284 	 * Tweak configuration based on system architecture, module
3285 	 * parameters, etc.
3286 	 */
3287 	ret = adap_init0_tweaks(adapter);
3288 	if (ret < 0)
3289 		goto bye;
3290 
3291 	/*
3292 	 * And finally tell the firmware to initialize itself using the
3293 	 * parameters from the Configuration File.
3294 	 */
3295 	ret = t4_fw_initialize(adapter, adapter->mbox);
3296 	if (ret < 0)
3297 		goto bye;
3298 
3299 	/* Emit Firmware Configuration File information and return
3300 	 * successfully.
3301 	 */
3302 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3303 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3304 		 config_name, finiver, cfcsum);
3305 	return 0;
3306 
3307 	/*
3308 	 * Something bad happened.  Return the error ...  (If the "error"
3309 	 * is that there's no Configuration File on the adapter we don't
3310 	 * want to issue a warning since this is fairly common.)
3311 	 */
3312 bye:
3313 	if (config_issued && ret != -ENOENT)
3314 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3315 			 config_name, -ret);
3316 	return ret;
3317 }
3318 
3319 static struct fw_info fw_info_array[] = {
3320 	{
3321 		.chip = CHELSIO_T4,
3322 		.fs_name = FW4_CFNAME,
3323 		.fw_mod_name = FW4_FNAME,
3324 		.fw_hdr = {
3325 			.chip = FW_HDR_CHIP_T4,
3326 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3327 			.intfver_nic = FW_INTFVER(T4, NIC),
3328 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3329 			.intfver_ri = FW_INTFVER(T4, RI),
3330 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3331 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3332 		},
3333 	}, {
3334 		.chip = CHELSIO_T5,
3335 		.fs_name = FW5_CFNAME,
3336 		.fw_mod_name = FW5_FNAME,
3337 		.fw_hdr = {
3338 			.chip = FW_HDR_CHIP_T5,
3339 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3340 			.intfver_nic = FW_INTFVER(T5, NIC),
3341 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3342 			.intfver_ri = FW_INTFVER(T5, RI),
3343 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3344 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3345 		},
3346 	}, {
3347 		.chip = CHELSIO_T6,
3348 		.fs_name = FW6_CFNAME,
3349 		.fw_mod_name = FW6_FNAME,
3350 		.fw_hdr = {
3351 			.chip = FW_HDR_CHIP_T6,
3352 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3353 			.intfver_nic = FW_INTFVER(T6, NIC),
3354 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3355 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3356 			.intfver_ri = FW_INTFVER(T6, RI),
3357 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3358 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3359 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3360 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3361 		},
3362 	}
3363 
3364 };
3365 
3366 static struct fw_info *find_fw_info(int chip)
3367 {
3368 	int i;
3369 
3370 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3371 		if (fw_info_array[i].chip == chip)
3372 			return &fw_info_array[i];
3373 	}
3374 	return NULL;
3375 }
3376 
3377 /*
3378  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3379  */
3380 static int adap_init0(struct adapter *adap)
3381 {
3382 	int ret;
3383 	u32 v, port_vec;
3384 	enum dev_state state;
3385 	u32 params[7], val[7];
3386 	struct fw_caps_config_cmd caps_cmd;
3387 	int reset = 1;
3388 
3389 	/* Grab Firmware Device Log parameters as early as possible so we have
3390 	 * access to it for debugging, etc.
3391 	 */
3392 	ret = t4_init_devlog_params(adap);
3393 	if (ret < 0)
3394 		return ret;
3395 
3396 	/* Contact FW, advertising Master capability */
3397 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3398 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3399 	if (ret < 0) {
3400 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3401 			ret);
3402 		return ret;
3403 	}
3404 	if (ret == adap->mbox)
3405 		adap->flags |= MASTER_PF;
3406 
3407 	/*
3408 	 * If we're the Master PF Driver and the device is uninitialized,
3409 	 * then let's consider upgrading the firmware ...  (We always want
3410 	 * to check the firmware version number in order to A. get it for
3411 	 * later reporting and B. to warn if the currently loaded firmware
3412 	 * is excessively mismatched relative to the driver.)
3413 	 */
3414 	t4_get_fw_version(adap, &adap->params.fw_vers);
3415 	t4_get_bs_version(adap, &adap->params.bs_vers);
3416 	t4_get_tp_version(adap, &adap->params.tp_vers);
3417 	t4_get_exprom_version(adap, &adap->params.er_vers);
3418 
3419 	ret = t4_check_fw_version(adap);
3420 	/* If firmware is too old (not supported by driver) force an update. */
3421 	if (ret)
3422 		state = DEV_STATE_UNINIT;
3423 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3424 		struct fw_info *fw_info;
3425 		struct fw_hdr *card_fw;
3426 		const struct firmware *fw;
3427 		const u8 *fw_data = NULL;
3428 		unsigned int fw_size = 0;
3429 
3430 		/* This is the firmware whose headers the driver was compiled
3431 		 * against
3432 		 */
3433 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3434 		if (fw_info == NULL) {
3435 			dev_err(adap->pdev_dev,
3436 				"unable to get firmware info for chip %d.\n",
3437 				CHELSIO_CHIP_VERSION(adap->params.chip));
3438 			return -EINVAL;
3439 		}
3440 
3441 		/* allocate memory to read the header of the firmware on the
3442 		 * card
3443 		 */
3444 		card_fw = t4_alloc_mem(sizeof(*card_fw));
3445 
3446 		/* Get FW from from /lib/firmware/ */
3447 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3448 				       adap->pdev_dev);
3449 		if (ret < 0) {
3450 			dev_err(adap->pdev_dev,
3451 				"unable to load firmware image %s, error %d\n",
3452 				fw_info->fw_mod_name, ret);
3453 		} else {
3454 			fw_data = fw->data;
3455 			fw_size = fw->size;
3456 		}
3457 
3458 		/* upgrade FW logic */
3459 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3460 				 state, &reset);
3461 
3462 		/* Cleaning up */
3463 		release_firmware(fw);
3464 		t4_free_mem(card_fw);
3465 
3466 		if (ret < 0)
3467 			goto bye;
3468 	}
3469 
3470 	/*
3471 	 * Grab VPD parameters.  This should be done after we establish a
3472 	 * connection to the firmware since some of the VPD parameters
3473 	 * (notably the Core Clock frequency) are retrieved via requests to
3474 	 * the firmware.  On the other hand, we need these fairly early on
3475 	 * so we do this right after getting ahold of the firmware.
3476 	 */
3477 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3478 	if (ret < 0)
3479 		goto bye;
3480 
3481 	/*
3482 	 * Find out what ports are available to us.  Note that we need to do
3483 	 * this before calling adap_init0_no_config() since it needs nports
3484 	 * and portvec ...
3485 	 */
3486 	v =
3487 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3488 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3489 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3490 	if (ret < 0)
3491 		goto bye;
3492 
3493 	adap->params.nports = hweight32(port_vec);
3494 	adap->params.portvec = port_vec;
3495 
3496 	/* If the firmware is initialized already, emit a simply note to that
3497 	 * effect. Otherwise, it's time to try initializing the adapter.
3498 	 */
3499 	if (state == DEV_STATE_INIT) {
3500 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3501 			 "Adapter already initialized\n",
3502 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3503 	} else {
3504 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3505 			 "Initializing adapter\n");
3506 
3507 		/* Find out whether we're dealing with a version of the
3508 		 * firmware which has configuration file support.
3509 		 */
3510 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3511 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3512 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3513 				      params, val);
3514 
3515 		/* If the firmware doesn't support Configuration Files,
3516 		 * return an error.
3517 		 */
3518 		if (ret < 0) {
3519 			dev_err(adap->pdev_dev, "firmware doesn't support "
3520 				"Firmware Configuration Files\n");
3521 			goto bye;
3522 		}
3523 
3524 		/* The firmware provides us with a memory buffer where we can
3525 		 * load a Configuration File from the host if we want to
3526 		 * override the Configuration File in flash.
3527 		 */
3528 		ret = adap_init0_config(adap, reset);
3529 		if (ret == -ENOENT) {
3530 			dev_err(adap->pdev_dev, "no Configuration File "
3531 				"present on adapter.\n");
3532 			goto bye;
3533 		}
3534 		if (ret < 0) {
3535 			dev_err(adap->pdev_dev, "could not initialize "
3536 				"adapter, error %d\n", -ret);
3537 			goto bye;
3538 		}
3539 	}
3540 
3541 	/* Give the SGE code a chance to pull in anything that it needs ...
3542 	 * Note that this must be called after we retrieve our VPD parameters
3543 	 * in order to know how to convert core ticks to seconds, etc.
3544 	 */
3545 	ret = t4_sge_init(adap);
3546 	if (ret < 0)
3547 		goto bye;
3548 
3549 	if (is_bypass_device(adap->pdev->device))
3550 		adap->params.bypass = 1;
3551 
3552 	/*
3553 	 * Grab some of our basic fundamental operating parameters.
3554 	 */
3555 #define FW_PARAM_DEV(param) \
3556 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3557 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3558 
3559 #define FW_PARAM_PFVF(param) \
3560 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3561 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3562 	FW_PARAMS_PARAM_Y_V(0) | \
3563 	FW_PARAMS_PARAM_Z_V(0)
3564 
3565 	params[0] = FW_PARAM_PFVF(EQ_START);
3566 	params[1] = FW_PARAM_PFVF(L2T_START);
3567 	params[2] = FW_PARAM_PFVF(L2T_END);
3568 	params[3] = FW_PARAM_PFVF(FILTER_START);
3569 	params[4] = FW_PARAM_PFVF(FILTER_END);
3570 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3571 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3572 	if (ret < 0)
3573 		goto bye;
3574 	adap->sge.egr_start = val[0];
3575 	adap->l2t_start = val[1];
3576 	adap->l2t_end = val[2];
3577 	adap->tids.ftid_base = val[3];
3578 	adap->tids.nftids = val[4] - val[3] + 1;
3579 	adap->sge.ingr_start = val[5];
3580 
3581 	/* qids (ingress/egress) returned from firmware can be anywhere
3582 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3583 	 * Hence driver needs to allocate memory for this range to
3584 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3585 	 * in FW_EQ_*_CMD.alloc command.
3586 	 */
3587 	params[0] = FW_PARAM_PFVF(EQ_END);
3588 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3589 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3590 	if (ret < 0)
3591 		goto bye;
3592 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3593 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3594 
3595 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3596 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3597 	if (!adap->sge.egr_map) {
3598 		ret = -ENOMEM;
3599 		goto bye;
3600 	}
3601 
3602 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3603 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3604 	if (!adap->sge.ingr_map) {
3605 		ret = -ENOMEM;
3606 		goto bye;
3607 	}
3608 
3609 	/* Allocate the memory for the vaious egress queue bitmaps
3610 	 * ie starving_fl, txq_maperr and blocked_fl.
3611 	 */
3612 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3613 					sizeof(long), GFP_KERNEL);
3614 	if (!adap->sge.starving_fl) {
3615 		ret = -ENOMEM;
3616 		goto bye;
3617 	}
3618 
3619 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3620 				       sizeof(long), GFP_KERNEL);
3621 	if (!adap->sge.txq_maperr) {
3622 		ret = -ENOMEM;
3623 		goto bye;
3624 	}
3625 
3626 #ifdef CONFIG_DEBUG_FS
3627 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3628 				       sizeof(long), GFP_KERNEL);
3629 	if (!adap->sge.blocked_fl) {
3630 		ret = -ENOMEM;
3631 		goto bye;
3632 	}
3633 #endif
3634 
3635 	params[0] = FW_PARAM_PFVF(CLIP_START);
3636 	params[1] = FW_PARAM_PFVF(CLIP_END);
3637 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3638 	if (ret < 0)
3639 		goto bye;
3640 	adap->clipt_start = val[0];
3641 	adap->clipt_end = val[1];
3642 
3643 	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
3644 	 * Classes supported by the hardware/firmware so we hard code it here
3645 	 * for now.
3646 	 */
3647 	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3648 
3649 	/* query params related to active filter region */
3650 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3651 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3652 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3653 	/* If Active filter size is set we enable establishing
3654 	 * offload connection through firmware work request
3655 	 */
3656 	if ((val[0] != val[1]) && (ret >= 0)) {
3657 		adap->flags |= FW_OFLD_CONN;
3658 		adap->tids.aftid_base = val[0];
3659 		adap->tids.aftid_end = val[1];
3660 	}
3661 
3662 	/* If we're running on newer firmware, let it know that we're
3663 	 * prepared to deal with encapsulated CPL messages.  Older
3664 	 * firmware won't understand this and we'll just get
3665 	 * unencapsulated messages ...
3666 	 */
3667 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3668 	val[0] = 1;
3669 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3670 
3671 	/*
3672 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3673 	 * capability.  Earlier versions of the firmware didn't have the
3674 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3675 	 * permission to use ULPTX MEMWRITE DSGL.
3676 	 */
3677 	if (is_t4(adap->params.chip)) {
3678 		adap->params.ulptx_memwrite_dsgl = false;
3679 	} else {
3680 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3681 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3682 				      1, params, val);
3683 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3684 	}
3685 
3686 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
3687 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
3688 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3689 			      1, params, val);
3690 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
3691 
3692 	/*
3693 	 * Get device capabilities so we can determine what resources we need
3694 	 * to manage.
3695 	 */
3696 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3697 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3698 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3699 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3700 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3701 			 &caps_cmd);
3702 	if (ret < 0)
3703 		goto bye;
3704 
3705 	if (caps_cmd.ofldcaps) {
3706 		/* query offload-related parameters */
3707 		params[0] = FW_PARAM_DEV(NTID);
3708 		params[1] = FW_PARAM_PFVF(SERVER_START);
3709 		params[2] = FW_PARAM_PFVF(SERVER_END);
3710 		params[3] = FW_PARAM_PFVF(TDDP_START);
3711 		params[4] = FW_PARAM_PFVF(TDDP_END);
3712 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3713 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3714 				      params, val);
3715 		if (ret < 0)
3716 			goto bye;
3717 		adap->tids.ntids = val[0];
3718 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3719 		adap->tids.stid_base = val[1];
3720 		adap->tids.nstids = val[2] - val[1] + 1;
3721 		/*
3722 		 * Setup server filter region. Divide the available filter
3723 		 * region into two parts. Regular filters get 1/3rd and server
3724 		 * filters get 2/3rd part. This is only enabled if workarond
3725 		 * path is enabled.
3726 		 * 1. For regular filters.
3727 		 * 2. Server filter: This are special filters which are used
3728 		 * to redirect SYN packets to offload queue.
3729 		 */
3730 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3731 			adap->tids.sftid_base = adap->tids.ftid_base +
3732 					DIV_ROUND_UP(adap->tids.nftids, 3);
3733 			adap->tids.nsftids = adap->tids.nftids -
3734 					 DIV_ROUND_UP(adap->tids.nftids, 3);
3735 			adap->tids.nftids = adap->tids.sftid_base -
3736 						adap->tids.ftid_base;
3737 		}
3738 		adap->vres.ddp.start = val[3];
3739 		adap->vres.ddp.size = val[4] - val[3] + 1;
3740 		adap->params.ofldq_wr_cred = val[5];
3741 
3742 		adap->params.offload = 1;
3743 		adap->num_ofld_uld += 1;
3744 	}
3745 	if (caps_cmd.rdmacaps) {
3746 		params[0] = FW_PARAM_PFVF(STAG_START);
3747 		params[1] = FW_PARAM_PFVF(STAG_END);
3748 		params[2] = FW_PARAM_PFVF(RQ_START);
3749 		params[3] = FW_PARAM_PFVF(RQ_END);
3750 		params[4] = FW_PARAM_PFVF(PBL_START);
3751 		params[5] = FW_PARAM_PFVF(PBL_END);
3752 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3753 				      params, val);
3754 		if (ret < 0)
3755 			goto bye;
3756 		adap->vres.stag.start = val[0];
3757 		adap->vres.stag.size = val[1] - val[0] + 1;
3758 		adap->vres.rq.start = val[2];
3759 		adap->vres.rq.size = val[3] - val[2] + 1;
3760 		adap->vres.pbl.start = val[4];
3761 		adap->vres.pbl.size = val[5] - val[4] + 1;
3762 
3763 		params[0] = FW_PARAM_PFVF(SQRQ_START);
3764 		params[1] = FW_PARAM_PFVF(SQRQ_END);
3765 		params[2] = FW_PARAM_PFVF(CQ_START);
3766 		params[3] = FW_PARAM_PFVF(CQ_END);
3767 		params[4] = FW_PARAM_PFVF(OCQ_START);
3768 		params[5] = FW_PARAM_PFVF(OCQ_END);
3769 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3770 				      val);
3771 		if (ret < 0)
3772 			goto bye;
3773 		adap->vres.qp.start = val[0];
3774 		adap->vres.qp.size = val[1] - val[0] + 1;
3775 		adap->vres.cq.start = val[2];
3776 		adap->vres.cq.size = val[3] - val[2] + 1;
3777 		adap->vres.ocq.start = val[4];
3778 		adap->vres.ocq.size = val[5] - val[4] + 1;
3779 
3780 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3781 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3782 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3783 				      val);
3784 		if (ret < 0) {
3785 			adap->params.max_ordird_qp = 8;
3786 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3787 			ret = 0;
3788 		} else {
3789 			adap->params.max_ordird_qp = val[0];
3790 			adap->params.max_ird_adapter = val[1];
3791 		}
3792 		dev_info(adap->pdev_dev,
3793 			 "max_ordird_qp %d max_ird_adapter %d\n",
3794 			 adap->params.max_ordird_qp,
3795 			 adap->params.max_ird_adapter);
3796 		adap->num_ofld_uld += 2;
3797 	}
3798 	if (caps_cmd.iscsicaps) {
3799 		params[0] = FW_PARAM_PFVF(ISCSI_START);
3800 		params[1] = FW_PARAM_PFVF(ISCSI_END);
3801 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3802 				      params, val);
3803 		if (ret < 0)
3804 			goto bye;
3805 		adap->vres.iscsi.start = val[0];
3806 		adap->vres.iscsi.size = val[1] - val[0] + 1;
3807 		/* LIO target and cxgb4i initiaitor */
3808 		adap->num_ofld_uld += 2;
3809 	}
3810 	if (caps_cmd.cryptocaps) {
3811 		/* Should query params here...TODO */
3812 		adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
3813 		adap->num_uld += 1;
3814 	}
3815 #undef FW_PARAM_PFVF
3816 #undef FW_PARAM_DEV
3817 
3818 	/* The MTU/MSS Table is initialized by now, so load their values.  If
3819 	 * we're initializing the adapter, then we'll make any modifications
3820 	 * we want to the MTU/MSS Table and also initialize the congestion
3821 	 * parameters.
3822 	 */
3823 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3824 	if (state != DEV_STATE_INIT) {
3825 		int i;
3826 
3827 		/* The default MTU Table contains values 1492 and 1500.
3828 		 * However, for TCP, it's better to have two values which are
3829 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3830 		 * This allows us to have a TCP Data Payload which is a
3831 		 * multiple of 8 regardless of what combination of TCP Options
3832 		 * are in use (always a multiple of 4 bytes) which is
3833 		 * important for performance reasons.  For instance, if no
3834 		 * options are in use, then we have a 20-byte IP header and a
3835 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
3836 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3837 		 * which is not a multiple of 8.  So using an MSS of 1488 in
3838 		 * this case results in a TCP Data Payload of 1448 bytes which
3839 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
3840 		 * Stamps have been negotiated, then an MTU of 1500 bytes
3841 		 * results in a TCP Data Payload of 1448 bytes which, as
3842 		 * above, is a multiple of 8 bytes ...
3843 		 */
3844 		for (i = 0; i < NMTUS; i++)
3845 			if (adap->params.mtus[i] == 1492) {
3846 				adap->params.mtus[i] = 1488;
3847 				break;
3848 			}
3849 
3850 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3851 			     adap->params.b_wnd);
3852 	}
3853 	t4_init_sge_params(adap);
3854 	adap->flags |= FW_OK;
3855 	t4_init_tp_params(adap);
3856 	return 0;
3857 
3858 	/*
3859 	 * Something bad happened.  If a command timed out or failed with EIO
3860 	 * FW does not operate within its spec or something catastrophic
3861 	 * happened to HW/FW, stop issuing commands.
3862 	 */
3863 bye:
3864 	kfree(adap->sge.egr_map);
3865 	kfree(adap->sge.ingr_map);
3866 	kfree(adap->sge.starving_fl);
3867 	kfree(adap->sge.txq_maperr);
3868 #ifdef CONFIG_DEBUG_FS
3869 	kfree(adap->sge.blocked_fl);
3870 #endif
3871 	if (ret != -ETIMEDOUT && ret != -EIO)
3872 		t4_fw_bye(adap, adap->mbox);
3873 	return ret;
3874 }
3875 
3876 /* EEH callbacks */
3877 
3878 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3879 					 pci_channel_state_t state)
3880 {
3881 	int i;
3882 	struct adapter *adap = pci_get_drvdata(pdev);
3883 
3884 	if (!adap)
3885 		goto out;
3886 
3887 	rtnl_lock();
3888 	adap->flags &= ~FW_OK;
3889 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3890 	spin_lock(&adap->stats_lock);
3891 	for_each_port(adap, i) {
3892 		struct net_device *dev = adap->port[i];
3893 
3894 		netif_device_detach(dev);
3895 		netif_carrier_off(dev);
3896 	}
3897 	spin_unlock(&adap->stats_lock);
3898 	disable_interrupts(adap);
3899 	if (adap->flags & FULL_INIT_DONE)
3900 		cxgb_down(adap);
3901 	rtnl_unlock();
3902 	if ((adap->flags & DEV_ENABLED)) {
3903 		pci_disable_device(pdev);
3904 		adap->flags &= ~DEV_ENABLED;
3905 	}
3906 out:	return state == pci_channel_io_perm_failure ?
3907 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3908 }
3909 
3910 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3911 {
3912 	int i, ret;
3913 	struct fw_caps_config_cmd c;
3914 	struct adapter *adap = pci_get_drvdata(pdev);
3915 
3916 	if (!adap) {
3917 		pci_restore_state(pdev);
3918 		pci_save_state(pdev);
3919 		return PCI_ERS_RESULT_RECOVERED;
3920 	}
3921 
3922 	if (!(adap->flags & DEV_ENABLED)) {
3923 		if (pci_enable_device(pdev)) {
3924 			dev_err(&pdev->dev, "Cannot reenable PCI "
3925 					    "device after reset\n");
3926 			return PCI_ERS_RESULT_DISCONNECT;
3927 		}
3928 		adap->flags |= DEV_ENABLED;
3929 	}
3930 
3931 	pci_set_master(pdev);
3932 	pci_restore_state(pdev);
3933 	pci_save_state(pdev);
3934 	pci_cleanup_aer_uncorrect_error_status(pdev);
3935 
3936 	if (t4_wait_dev_ready(adap->regs) < 0)
3937 		return PCI_ERS_RESULT_DISCONNECT;
3938 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
3939 		return PCI_ERS_RESULT_DISCONNECT;
3940 	adap->flags |= FW_OK;
3941 	if (adap_init1(adap, &c))
3942 		return PCI_ERS_RESULT_DISCONNECT;
3943 
3944 	for_each_port(adap, i) {
3945 		struct port_info *p = adap2pinfo(adap, i);
3946 
3947 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
3948 				  NULL, NULL);
3949 		if (ret < 0)
3950 			return PCI_ERS_RESULT_DISCONNECT;
3951 		p->viid = ret;
3952 		p->xact_addr_filt = -1;
3953 	}
3954 
3955 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3956 		     adap->params.b_wnd);
3957 	setup_memwin(adap);
3958 	if (cxgb_up(adap))
3959 		return PCI_ERS_RESULT_DISCONNECT;
3960 	return PCI_ERS_RESULT_RECOVERED;
3961 }
3962 
3963 static void eeh_resume(struct pci_dev *pdev)
3964 {
3965 	int i;
3966 	struct adapter *adap = pci_get_drvdata(pdev);
3967 
3968 	if (!adap)
3969 		return;
3970 
3971 	rtnl_lock();
3972 	for_each_port(adap, i) {
3973 		struct net_device *dev = adap->port[i];
3974 
3975 		if (netif_running(dev)) {
3976 			link_start(dev);
3977 			cxgb_set_rxmode(dev);
3978 		}
3979 		netif_device_attach(dev);
3980 	}
3981 	rtnl_unlock();
3982 }
3983 
3984 static const struct pci_error_handlers cxgb4_eeh = {
3985 	.error_detected = eeh_err_detected,
3986 	.slot_reset     = eeh_slot_reset,
3987 	.resume         = eeh_resume,
3988 };
3989 
3990 /* Return true if the Link Configuration supports "High Speeds" (those greater
3991  * than 1Gb/s).
3992  */
3993 static inline bool is_x_10g_port(const struct link_config *lc)
3994 {
3995 	unsigned int speeds, high_speeds;
3996 
3997 	speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
3998 	high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);
3999 
4000 	return high_speeds != 0;
4001 }
4002 
4003 /*
4004  * Perform default configuration of DMA queues depending on the number and type
4005  * of ports we found and the number of available CPUs.  Most settings can be
4006  * modified by the admin prior to actual use.
4007  */
4008 static void cfg_queues(struct adapter *adap)
4009 {
4010 	struct sge *s = &adap->sge;
4011 	int i = 0, n10g = 0, qidx = 0;
4012 #ifndef CONFIG_CHELSIO_T4_DCB
4013 	int q10g = 0;
4014 #endif
4015 
4016 	/* Reduce memory usage in kdump environment, disable all offload.
4017 	 */
4018 	if (is_kdump_kernel()) {
4019 		adap->params.offload = 0;
4020 		adap->params.crypto = 0;
4021 	} else if (is_uld(adap) && t4_uld_mem_alloc(adap)) {
4022 		adap->params.offload = 0;
4023 		adap->params.crypto = 0;
4024 	}
4025 
4026 	n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4027 #ifdef CONFIG_CHELSIO_T4_DCB
4028 	/* For Data Center Bridging support we need to be able to support up
4029 	 * to 8 Traffic Priorities; each of which will be assigned to its
4030 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4031 	 */
4032 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4033 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4034 			MAX_ETH_QSETS, adap->params.nports * 8);
4035 		BUG_ON(1);
4036 	}
4037 
4038 	for_each_port(adap, i) {
4039 		struct port_info *pi = adap2pinfo(adap, i);
4040 
4041 		pi->first_qset = qidx;
4042 		pi->nqsets = 8;
4043 		qidx += pi->nqsets;
4044 	}
4045 #else /* !CONFIG_CHELSIO_T4_DCB */
4046 	/*
4047 	 * We default to 1 queue per non-10G port and up to # of cores queues
4048 	 * per 10G port.
4049 	 */
4050 	if (n10g)
4051 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4052 	if (q10g > netif_get_num_default_rss_queues())
4053 		q10g = netif_get_num_default_rss_queues();
4054 
4055 	for_each_port(adap, i) {
4056 		struct port_info *pi = adap2pinfo(adap, i);
4057 
4058 		pi->first_qset = qidx;
4059 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4060 		qidx += pi->nqsets;
4061 	}
4062 #endif /* !CONFIG_CHELSIO_T4_DCB */
4063 
4064 	s->ethqsets = qidx;
4065 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4066 
4067 	if (is_uld(adap)) {
4068 		/*
4069 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4070 		 * otherwise we divide all available queues amongst the channels
4071 		 * capped by the number of available cores.
4072 		 */
4073 		if (n10g) {
4074 			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4075 			s->ofldqsets = roundup(i, adap->params.nports);
4076 		} else {
4077 			s->ofldqsets = adap->params.nports;
4078 		}
4079 	}
4080 
4081 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4082 		struct sge_eth_rxq *r = &s->ethrxq[i];
4083 
4084 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4085 		r->fl.size = 72;
4086 	}
4087 
4088 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4089 		s->ethtxq[i].q.size = 1024;
4090 
4091 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4092 		s->ctrlq[i].q.size = 512;
4093 
4094 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4095 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4096 }
4097 
4098 /*
4099  * Reduce the number of Ethernet queues across all ports to at most n.
4100  * n provides at least one queue per port.
4101  */
4102 static void reduce_ethqs(struct adapter *adap, int n)
4103 {
4104 	int i;
4105 	struct port_info *pi;
4106 
4107 	while (n < adap->sge.ethqsets)
4108 		for_each_port(adap, i) {
4109 			pi = adap2pinfo(adap, i);
4110 			if (pi->nqsets > 1) {
4111 				pi->nqsets--;
4112 				adap->sge.ethqsets--;
4113 				if (adap->sge.ethqsets <= n)
4114 					break;
4115 			}
4116 		}
4117 
4118 	n = 0;
4119 	for_each_port(adap, i) {
4120 		pi = adap2pinfo(adap, i);
4121 		pi->first_qset = n;
4122 		n += pi->nqsets;
4123 	}
4124 }
4125 
4126 static int get_msix_info(struct adapter *adap)
4127 {
4128 	struct uld_msix_info *msix_info;
4129 	unsigned int max_ingq = 0;
4130 
4131 	if (is_offload(adap))
4132 		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4133 	if (is_pci_uld(adap))
4134 		max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4135 
4136 	if (!max_ingq)
4137 		goto out;
4138 
4139 	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4140 	if (!msix_info)
4141 		return -ENOMEM;
4142 
4143 	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4144 						 sizeof(long), GFP_KERNEL);
4145 	if (!adap->msix_bmap_ulds.msix_bmap) {
4146 		kfree(msix_info);
4147 		return -ENOMEM;
4148 	}
4149 	spin_lock_init(&adap->msix_bmap_ulds.lock);
4150 	adap->msix_info_ulds = msix_info;
4151 out:
4152 	return 0;
4153 }
4154 
4155 static void free_msix_info(struct adapter *adap)
4156 {
4157 	if (!(adap->num_uld && adap->num_ofld_uld))
4158 		return;
4159 
4160 	kfree(adap->msix_info_ulds);
4161 	kfree(adap->msix_bmap_ulds.msix_bmap);
4162 }
4163 
4164 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4165 #define EXTRA_VECS 2
4166 
4167 static int enable_msix(struct adapter *adap)
4168 {
4169 	int ofld_need = 0, uld_need = 0;
4170 	int i, j, want, need, allocated;
4171 	struct sge *s = &adap->sge;
4172 	unsigned int nchan = adap->params.nports;
4173 	struct msix_entry *entries;
4174 	int max_ingq = MAX_INGQ;
4175 
4176 	if (is_pci_uld(adap))
4177 		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4178 	if (is_offload(adap))
4179 		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4180 	entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4181 			  GFP_KERNEL);
4182 	if (!entries)
4183 		return -ENOMEM;
4184 
4185 	/* map for msix */
4186 	if (get_msix_info(adap)) {
4187 		adap->params.offload = 0;
4188 		adap->params.crypto = 0;
4189 	}
4190 
4191 	for (i = 0; i < max_ingq + 1; ++i)
4192 		entries[i].entry = i;
4193 
4194 	want = s->max_ethqsets + EXTRA_VECS;
4195 	if (is_offload(adap)) {
4196 		want += adap->num_ofld_uld * s->ofldqsets;
4197 		ofld_need = adap->num_ofld_uld * nchan;
4198 	}
4199 	if (is_pci_uld(adap)) {
4200 		want += adap->num_uld * s->ofldqsets;
4201 		uld_need = adap->num_uld * nchan;
4202 	}
4203 #ifdef CONFIG_CHELSIO_T4_DCB
4204 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4205 	 * each port.
4206 	 */
4207 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4208 #else
4209 	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4210 #endif
4211 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4212 	if (allocated < 0) {
4213 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4214 			 " not using MSI-X\n");
4215 		kfree(entries);
4216 		return allocated;
4217 	}
4218 
4219 	/* Distribute available vectors to the various queue groups.
4220 	 * Every group gets its minimum requirement and NIC gets top
4221 	 * priority for leftovers.
4222 	 */
4223 	i = allocated - EXTRA_VECS - ofld_need - uld_need;
4224 	if (i < s->max_ethqsets) {
4225 		s->max_ethqsets = i;
4226 		if (i < s->ethqsets)
4227 			reduce_ethqs(adap, i);
4228 	}
4229 	if (is_uld(adap)) {
4230 		if (allocated < want)
4231 			s->nqs_per_uld = nchan;
4232 		else
4233 			s->nqs_per_uld = s->ofldqsets;
4234 	}
4235 
4236 	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4237 		adap->msix_info[i].vec = entries[i].vector;
4238 	if (is_uld(adap)) {
4239 		for (j = 0 ; i < allocated; ++i, j++) {
4240 			adap->msix_info_ulds[j].vec = entries[i].vector;
4241 			adap->msix_info_ulds[j].idx = i;
4242 		}
4243 		adap->msix_bmap_ulds.mapsize = j;
4244 	}
4245 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4246 		 "nic %d per uld %d\n",
4247 		 allocated, s->max_ethqsets, s->nqs_per_uld);
4248 
4249 	kfree(entries);
4250 	return 0;
4251 }
4252 
4253 #undef EXTRA_VECS
4254 
4255 static int init_rss(struct adapter *adap)
4256 {
4257 	unsigned int i;
4258 	int err;
4259 
4260 	err = t4_init_rss_mode(adap, adap->mbox);
4261 	if (err)
4262 		return err;
4263 
4264 	for_each_port(adap, i) {
4265 		struct port_info *pi = adap2pinfo(adap, i);
4266 
4267 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4268 		if (!pi->rss)
4269 			return -ENOMEM;
4270 	}
4271 	return 0;
4272 }
4273 
4274 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4275 					enum pci_bus_speed *speed,
4276 					enum pcie_link_width *width)
4277 {
4278 	u32 lnkcap1, lnkcap2;
4279 	int err1, err2;
4280 
4281 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4282 
4283 	*speed = PCI_SPEED_UNKNOWN;
4284 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4285 
4286 	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4287 					  &lnkcap1);
4288 	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4289 					  &lnkcap2);
4290 	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4291 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4292 			*speed = PCIE_SPEED_8_0GT;
4293 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4294 			*speed = PCIE_SPEED_5_0GT;
4295 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4296 			*speed = PCIE_SPEED_2_5GT;
4297 	}
4298 	if (!err1) {
4299 		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4300 		if (!lnkcap2) { /* pre-r3.0 */
4301 			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4302 				*speed = PCIE_SPEED_5_0GT;
4303 			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4304 				*speed = PCIE_SPEED_2_5GT;
4305 		}
4306 	}
4307 
4308 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4309 		return err1 ? err1 : err2 ? err2 : -EINVAL;
4310 	return 0;
4311 }
4312 
4313 static void cxgb4_check_pcie_caps(struct adapter *adap)
4314 {
4315 	enum pcie_link_width width, width_cap;
4316 	enum pci_bus_speed speed, speed_cap;
4317 
4318 #define PCIE_SPEED_STR(speed) \
4319 	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4320 	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4321 	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4322 	 "Unknown")
4323 
4324 	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4325 		dev_warn(adap->pdev_dev,
4326 			 "Unable to determine PCIe device BW capabilities\n");
4327 		return;
4328 	}
4329 
4330 	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4331 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4332 		dev_warn(adap->pdev_dev,
4333 			 "Unable to determine PCI Express bandwidth.\n");
4334 		return;
4335 	}
4336 
4337 	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4338 		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4339 	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4340 		 width, width_cap);
4341 	if (speed < speed_cap || width < width_cap)
4342 		dev_info(adap->pdev_dev,
4343 			 "A slot with more lanes and/or higher speed is "
4344 			 "suggested for optimal performance.\n");
4345 }
4346 
4347 /* Dump basic information about the adapter */
4348 static void print_adapter_info(struct adapter *adapter)
4349 {
4350 	/* Device information */
4351 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4352 		 adapter->params.vpd.id,
4353 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4354 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4355 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
4356 
4357 	/* Firmware Version */
4358 	if (!adapter->params.fw_vers)
4359 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4360 	else
4361 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4362 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4363 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4364 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4365 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4366 
4367 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4368 	 * Firmware, so dev_info() is more appropriate here.)
4369 	 */
4370 	if (!adapter->params.bs_vers)
4371 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4372 	else
4373 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4374 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4375 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4376 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4377 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4378 
4379 	/* TP Microcode Version */
4380 	if (!adapter->params.tp_vers)
4381 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4382 	else
4383 		dev_info(adapter->pdev_dev,
4384 			 "TP Microcode version: %u.%u.%u.%u\n",
4385 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4386 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4387 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4388 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4389 
4390 	/* Expansion ROM version */
4391 	if (!adapter->params.er_vers)
4392 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4393 	else
4394 		dev_info(adapter->pdev_dev,
4395 			 "Expansion ROM version: %u.%u.%u.%u\n",
4396 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4397 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4398 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4399 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4400 
4401 	/* Software/Hardware configuration */
4402 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4403 		 is_offload(adapter) ? "R" : "",
4404 		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4405 		  (adapter->flags & USING_MSI) ? "MSI" : ""),
4406 		 is_offload(adapter) ? "Offload" : "non-Offload");
4407 }
4408 
4409 static void print_port_info(const struct net_device *dev)
4410 {
4411 	char buf[80];
4412 	char *bufp = buf;
4413 	const char *spd = "";
4414 	const struct port_info *pi = netdev_priv(dev);
4415 	const struct adapter *adap = pi->adapter;
4416 
4417 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4418 		spd = " 2.5 GT/s";
4419 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4420 		spd = " 5 GT/s";
4421 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4422 		spd = " 8 GT/s";
4423 
4424 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4425 		bufp += sprintf(bufp, "100M/");
4426 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4427 		bufp += sprintf(bufp, "1G/");
4428 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4429 		bufp += sprintf(bufp, "10G/");
4430 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
4431 		bufp += sprintf(bufp, "25G/");
4432 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4433 		bufp += sprintf(bufp, "40G/");
4434 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
4435 		bufp += sprintf(bufp, "100G/");
4436 	if (bufp != buf)
4437 		--bufp;
4438 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4439 
4440 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4441 		    dev->name, adap->params.vpd.id, adap->name, buf);
4442 }
4443 
4444 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4445 {
4446 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4447 }
4448 
4449 /*
4450  * Free the following resources:
4451  * - memory used for tables
4452  * - MSI/MSI-X
4453  * - net devices
4454  * - resources FW is holding for us
4455  */
4456 static void free_some_resources(struct adapter *adapter)
4457 {
4458 	unsigned int i;
4459 
4460 	t4_free_mem(adapter->l2t);
4461 	t4_cleanup_sched(adapter);
4462 	t4_free_mem(adapter->tids.tid_tab);
4463 	cxgb4_cleanup_tc_u32(adapter);
4464 	kfree(adapter->sge.egr_map);
4465 	kfree(adapter->sge.ingr_map);
4466 	kfree(adapter->sge.starving_fl);
4467 	kfree(adapter->sge.txq_maperr);
4468 #ifdef CONFIG_DEBUG_FS
4469 	kfree(adapter->sge.blocked_fl);
4470 #endif
4471 	disable_msi(adapter);
4472 
4473 	for_each_port(adapter, i)
4474 		if (adapter->port[i]) {
4475 			struct port_info *pi = adap2pinfo(adapter, i);
4476 
4477 			if (pi->viid != 0)
4478 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
4479 					   0, pi->viid);
4480 			kfree(adap2pinfo(adapter, i)->rss);
4481 			free_netdev(adapter->port[i]);
4482 		}
4483 	if (adapter->flags & FW_OK)
4484 		t4_fw_bye(adapter, adapter->pf);
4485 }
4486 
4487 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4488 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4489 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4490 #define SEGMENT_SIZE 128
4491 
4492 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4493 {
4494 	u16 device_id;
4495 
4496 	/* Retrieve adapter's device ID */
4497 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4498 
4499 	switch (device_id >> 12) {
4500 	case CHELSIO_T4:
4501 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4502 	case CHELSIO_T5:
4503 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4504 	case CHELSIO_T6:
4505 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4506 	default:
4507 		dev_err(&pdev->dev, "Device %d is not supported\n",
4508 			device_id);
4509 	}
4510 	return -EINVAL;
4511 }
4512 
4513 #ifdef CONFIG_PCI_IOV
4514 static void dummy_setup(struct net_device *dev)
4515 {
4516 	dev->type = ARPHRD_NONE;
4517 	dev->mtu = 0;
4518 	dev->hard_header_len = 0;
4519 	dev->addr_len = 0;
4520 	dev->tx_queue_len = 0;
4521 	dev->flags |= IFF_NOARP;
4522 	dev->priv_flags |= IFF_NO_QUEUE;
4523 
4524 	/* Initialize the device structure. */
4525 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4526 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4527 	dev->destructor = free_netdev;
4528 }
4529 
4530 static int config_mgmt_dev(struct pci_dev *pdev)
4531 {
4532 	struct adapter *adap = pci_get_drvdata(pdev);
4533 	struct net_device *netdev;
4534 	struct port_info *pi;
4535 	char name[IFNAMSIZ];
4536 	int err;
4537 
4538 	snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4539 	netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN,
4540 			      dummy_setup);
4541 	if (!netdev)
4542 		return -ENOMEM;
4543 
4544 	pi = netdev_priv(netdev);
4545 	pi->adapter = adap;
4546 	pi->port_id = adap->pf % adap->params.nports;
4547 	SET_NETDEV_DEV(netdev, &pdev->dev);
4548 
4549 	adap->port[0] = netdev;
4550 
4551 	err = register_netdev(adap->port[0]);
4552 	if (err) {
4553 		pr_info("Unable to register VF mgmt netdev %s\n", name);
4554 		free_netdev(adap->port[0]);
4555 		adap->port[0] = NULL;
4556 		return err;
4557 	}
4558 	return 0;
4559 }
4560 
4561 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4562 {
4563 	struct adapter *adap = pci_get_drvdata(pdev);
4564 	int err = 0;
4565 	int current_vfs = pci_num_vf(pdev);
4566 	u32 pcie_fw;
4567 
4568 	pcie_fw = readl(adap->regs + PCIE_FW_A);
4569 	/* Check if cxgb4 is the MASTER and fw is initialized */
4570 	if (!(pcie_fw & PCIE_FW_INIT_F) ||
4571 	    !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4572 	    PCIE_FW_MASTER_G(pcie_fw) != 4) {
4573 		dev_warn(&pdev->dev,
4574 			 "cxgb4 driver needs to be MASTER to support SRIOV\n");
4575 		return -EOPNOTSUPP;
4576 	}
4577 
4578 	/* If any of the VF's is already assigned to Guest OS, then
4579 	 * SRIOV for the same cannot be modified
4580 	 */
4581 	if (current_vfs && pci_vfs_assigned(pdev)) {
4582 		dev_err(&pdev->dev,
4583 			"Cannot modify SR-IOV while VFs are assigned\n");
4584 		num_vfs = current_vfs;
4585 		return num_vfs;
4586 	}
4587 
4588 	/* Disable SRIOV when zero is passed.
4589 	 * One needs to disable SRIOV before modifying it, else
4590 	 * stack throws the below warning:
4591 	 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4592 	 */
4593 	if (!num_vfs) {
4594 		pci_disable_sriov(pdev);
4595 		if (adap->port[0]) {
4596 			unregister_netdev(adap->port[0]);
4597 			adap->port[0] = NULL;
4598 		}
4599 		/* free VF resources */
4600 		kfree(adap->vfinfo);
4601 		adap->vfinfo = NULL;
4602 		adap->num_vfs = 0;
4603 		return num_vfs;
4604 	}
4605 
4606 	if (num_vfs != current_vfs) {
4607 		err = pci_enable_sriov(pdev, num_vfs);
4608 		if (err)
4609 			return err;
4610 
4611 		adap->num_vfs = num_vfs;
4612 		err = config_mgmt_dev(pdev);
4613 		if (err)
4614 			return err;
4615 	}
4616 
4617 	adap->vfinfo = kcalloc(adap->num_vfs,
4618 			       sizeof(struct vf_info), GFP_KERNEL);
4619 	if (adap->vfinfo)
4620 		fill_vf_station_mac_addr(adap);
4621 	return num_vfs;
4622 }
4623 #endif
4624 
4625 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4626 {
4627 	int func, i, err, s_qpp, qpp, num_seg;
4628 	struct port_info *pi;
4629 	bool highdma = false;
4630 	struct adapter *adapter = NULL;
4631 	struct net_device *netdev;
4632 	void __iomem *regs;
4633 	u32 whoami, pl_rev;
4634 	enum chip_type chip;
4635 	static int adap_idx = 1;
4636 #ifdef CONFIG_PCI_IOV
4637 	u32 v, port_vec;
4638 #endif
4639 
4640 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4641 
4642 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4643 	if (err) {
4644 		/* Just info, some other driver may have claimed the device. */
4645 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4646 		return err;
4647 	}
4648 
4649 	err = pci_enable_device(pdev);
4650 	if (err) {
4651 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4652 		goto out_release_regions;
4653 	}
4654 
4655 	regs = pci_ioremap_bar(pdev, 0);
4656 	if (!regs) {
4657 		dev_err(&pdev->dev, "cannot map device registers\n");
4658 		err = -ENOMEM;
4659 		goto out_disable_device;
4660 	}
4661 
4662 	err = t4_wait_dev_ready(regs);
4663 	if (err < 0)
4664 		goto out_unmap_bar0;
4665 
4666 	/* We control everything through one PF */
4667 	whoami = readl(regs + PL_WHOAMI_A);
4668 	pl_rev = REV_G(readl(regs + PL_REV_A));
4669 	chip = get_chip_type(pdev, pl_rev);
4670 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4671 		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4672 	if (func != ent->driver_data) {
4673 #ifndef CONFIG_PCI_IOV
4674 		iounmap(regs);
4675 #endif
4676 		pci_disable_device(pdev);
4677 		pci_save_state(pdev);        /* to restore SR-IOV later */
4678 		goto sriov;
4679 	}
4680 
4681 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4682 		highdma = true;
4683 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4684 		if (err) {
4685 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4686 				"coherent allocations\n");
4687 			goto out_unmap_bar0;
4688 		}
4689 	} else {
4690 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4691 		if (err) {
4692 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4693 			goto out_unmap_bar0;
4694 		}
4695 	}
4696 
4697 	pci_enable_pcie_error_reporting(pdev);
4698 	enable_pcie_relaxed_ordering(pdev);
4699 	pci_set_master(pdev);
4700 	pci_save_state(pdev);
4701 
4702 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4703 	if (!adapter) {
4704 		err = -ENOMEM;
4705 		goto out_unmap_bar0;
4706 	}
4707 	adap_idx++;
4708 
4709 	adapter->workq = create_singlethread_workqueue("cxgb4");
4710 	if (!adapter->workq) {
4711 		err = -ENOMEM;
4712 		goto out_free_adapter;
4713 	}
4714 
4715 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4716 				    (sizeof(struct mbox_cmd) *
4717 				     T4_OS_LOG_MBOX_CMDS),
4718 				    GFP_KERNEL);
4719 	if (!adapter->mbox_log) {
4720 		err = -ENOMEM;
4721 		goto out_free_adapter;
4722 	}
4723 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4724 
4725 	/* PCI device has been enabled */
4726 	adapter->flags |= DEV_ENABLED;
4727 
4728 	adapter->regs = regs;
4729 	adapter->pdev = pdev;
4730 	adapter->pdev_dev = &pdev->dev;
4731 	adapter->name = pci_name(pdev);
4732 	adapter->mbox = func;
4733 	adapter->pf = func;
4734 	adapter->msg_enable = DFLT_MSG_ENABLE;
4735 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4736 
4737 	spin_lock_init(&adapter->stats_lock);
4738 	spin_lock_init(&adapter->tid_release_lock);
4739 	spin_lock_init(&adapter->win0_lock);
4740 	spin_lock_init(&adapter->mbox_lock);
4741 
4742 	INIT_LIST_HEAD(&adapter->mlist.list);
4743 
4744 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4745 	INIT_WORK(&adapter->db_full_task, process_db_full);
4746 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4747 
4748 	err = t4_prep_adapter(adapter);
4749 	if (err)
4750 		goto out_free_adapter;
4751 
4752 
4753 	if (!is_t4(adapter->params.chip)) {
4754 		s_qpp = (QUEUESPERPAGEPF0_S +
4755 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4756 			adapter->pf);
4757 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4758 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4759 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
4760 
4761 		/* Each segment size is 128B. Write coalescing is enabled only
4762 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4763 		 * queue is less no of segments that can be accommodated in
4764 		 * a page size.
4765 		 */
4766 		if (qpp > num_seg) {
4767 			dev_err(&pdev->dev,
4768 				"Incorrect number of egress queues per page\n");
4769 			err = -EINVAL;
4770 			goto out_free_adapter;
4771 		}
4772 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4773 		pci_resource_len(pdev, 2));
4774 		if (!adapter->bar2) {
4775 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
4776 			err = -ENOMEM;
4777 			goto out_free_adapter;
4778 		}
4779 	}
4780 
4781 	setup_memwin(adapter);
4782 	err = adap_init0(adapter);
4783 #ifdef CONFIG_DEBUG_FS
4784 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4785 #endif
4786 	setup_memwin_rdma(adapter);
4787 	if (err)
4788 		goto out_unmap_bar;
4789 
4790 	/* configure SGE_STAT_CFG_A to read WC stats */
4791 	if (!is_t4(adapter->params.chip))
4792 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4793 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4794 			      T6_STATMODE_V(0)));
4795 
4796 	for_each_port(adapter, i) {
4797 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
4798 					   MAX_ETH_QSETS);
4799 		if (!netdev) {
4800 			err = -ENOMEM;
4801 			goto out_free_dev;
4802 		}
4803 
4804 		SET_NETDEV_DEV(netdev, &pdev->dev);
4805 
4806 		adapter->port[i] = netdev;
4807 		pi = netdev_priv(netdev);
4808 		pi->adapter = adapter;
4809 		pi->xact_addr_filt = -1;
4810 		pi->port_id = i;
4811 		netdev->irq = pdev->irq;
4812 
4813 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4814 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4815 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4816 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
4817 			NETIF_F_HW_TC;
4818 		if (highdma)
4819 			netdev->hw_features |= NETIF_F_HIGHDMA;
4820 		netdev->features |= netdev->hw_features;
4821 		netdev->vlan_features = netdev->features & VLAN_FEAT;
4822 
4823 		netdev->priv_flags |= IFF_UNICAST_FLT;
4824 
4825 		/* MTU range: 81 - 9600 */
4826 		netdev->min_mtu = 81;
4827 		netdev->max_mtu = MAX_MTU;
4828 
4829 		netdev->netdev_ops = &cxgb4_netdev_ops;
4830 #ifdef CONFIG_CHELSIO_T4_DCB
4831 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
4832 		cxgb4_dcb_state_init(netdev);
4833 #endif
4834 		cxgb4_set_ethtool_ops(netdev);
4835 	}
4836 
4837 	pci_set_drvdata(pdev, adapter);
4838 
4839 	if (adapter->flags & FW_OK) {
4840 		err = t4_port_init(adapter, func, func, 0);
4841 		if (err)
4842 			goto out_free_dev;
4843 	} else if (adapter->params.nports == 1) {
4844 		/* If we don't have a connection to the firmware -- possibly
4845 		 * because of an error -- grab the raw VPD parameters so we
4846 		 * can set the proper MAC Address on the debug network
4847 		 * interface that we've created.
4848 		 */
4849 		u8 hw_addr[ETH_ALEN];
4850 		u8 *na = adapter->params.vpd.na;
4851 
4852 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4853 		if (!err) {
4854 			for (i = 0; i < ETH_ALEN; i++)
4855 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4856 					      hex2val(na[2 * i + 1]));
4857 			t4_set_hw_addr(adapter, 0, hw_addr);
4858 		}
4859 	}
4860 
4861 	/* Configure queues and allocate tables now, they can be needed as
4862 	 * soon as the first register_netdev completes.
4863 	 */
4864 	cfg_queues(adapter);
4865 
4866 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4867 	if (!adapter->l2t) {
4868 		/* We tolerate a lack of L2T, giving up some functionality */
4869 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4870 		adapter->params.offload = 0;
4871 	}
4872 
4873 #if IS_ENABLED(CONFIG_IPV6)
4874 	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4875 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4876 		/* CLIP functionality is not present in hardware,
4877 		 * hence disable all offload features
4878 		 */
4879 		dev_warn(&pdev->dev,
4880 			 "CLIP not enabled in hardware, continuing\n");
4881 		adapter->params.offload = 0;
4882 	} else {
4883 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4884 						  adapter->clipt_end);
4885 		if (!adapter->clipt) {
4886 			/* We tolerate a lack of clip_table, giving up
4887 			 * some functionality
4888 			 */
4889 			dev_warn(&pdev->dev,
4890 				 "could not allocate Clip table, continuing\n");
4891 			adapter->params.offload = 0;
4892 		}
4893 	}
4894 #endif
4895 
4896 	for_each_port(adapter, i) {
4897 		pi = adap2pinfo(adapter, i);
4898 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
4899 		if (!pi->sched_tbl)
4900 			dev_warn(&pdev->dev,
4901 				 "could not activate scheduling on port %d\n",
4902 				 i);
4903 	}
4904 
4905 	if (tid_init(&adapter->tids) < 0) {
4906 		dev_warn(&pdev->dev, "could not allocate TID table, "
4907 			 "continuing\n");
4908 		adapter->params.offload = 0;
4909 	} else {
4910 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
4911 		if (!adapter->tc_u32)
4912 			dev_warn(&pdev->dev,
4913 				 "could not offload tc u32, continuing\n");
4914 	}
4915 
4916 	if (is_offload(adapter)) {
4917 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4918 			u32 hash_base, hash_reg;
4919 
4920 			if (chip <= CHELSIO_T5) {
4921 				hash_reg = LE_DB_TID_HASHBASE_A;
4922 				hash_base = t4_read_reg(adapter, hash_reg);
4923 				adapter->tids.hash_base = hash_base / 4;
4924 			} else {
4925 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4926 				hash_base = t4_read_reg(adapter, hash_reg);
4927 				adapter->tids.hash_base = hash_base;
4928 			}
4929 		}
4930 	}
4931 
4932 	/* See what interrupts we'll be using */
4933 	if (msi > 1 && enable_msix(adapter) == 0)
4934 		adapter->flags |= USING_MSIX;
4935 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
4936 		adapter->flags |= USING_MSI;
4937 		if (msi > 1)
4938 			free_msix_info(adapter);
4939 	}
4940 
4941 	/* check for PCI Express bandwidth capabiltites */
4942 	cxgb4_check_pcie_caps(adapter);
4943 
4944 	err = init_rss(adapter);
4945 	if (err)
4946 		goto out_free_dev;
4947 
4948 	/*
4949 	 * The card is now ready to go.  If any errors occur during device
4950 	 * registration we do not fail the whole card but rather proceed only
4951 	 * with the ports we manage to register successfully.  However we must
4952 	 * register at least one net device.
4953 	 */
4954 	for_each_port(adapter, i) {
4955 		pi = adap2pinfo(adapter, i);
4956 		adapter->port[i]->dev_port = pi->lport;
4957 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4958 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4959 
4960 		err = register_netdev(adapter->port[i]);
4961 		if (err)
4962 			break;
4963 		adapter->chan_map[pi->tx_chan] = i;
4964 		print_port_info(adapter->port[i]);
4965 	}
4966 	if (i == 0) {
4967 		dev_err(&pdev->dev, "could not register any net devices\n");
4968 		goto out_free_dev;
4969 	}
4970 	if (err) {
4971 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4972 		err = 0;
4973 	}
4974 
4975 	if (cxgb4_debugfs_root) {
4976 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4977 							   cxgb4_debugfs_root);
4978 		setup_debugfs(adapter);
4979 	}
4980 
4981 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4982 	pdev->needs_freset = 1;
4983 
4984 	if (is_uld(adapter)) {
4985 		mutex_lock(&uld_mutex);
4986 		list_add_tail(&adapter->list_node, &adapter_list);
4987 		mutex_unlock(&uld_mutex);
4988 	}
4989 
4990 	print_adapter_info(adapter);
4991 	setup_fw_sge_queues(adapter);
4992 	return 0;
4993 
4994 sriov:
4995 #ifdef CONFIG_PCI_IOV
4996 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4997 	if (!adapter) {
4998 		err = -ENOMEM;
4999 		goto free_pci_region;
5000 	}
5001 
5002 	adapter->pdev = pdev;
5003 	adapter->pdev_dev = &pdev->dev;
5004 	adapter->name = pci_name(pdev);
5005 	adapter->mbox = func;
5006 	adapter->pf = func;
5007 	adapter->regs = regs;
5008 	adapter->adap_idx = adap_idx;
5009 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5010 				    (sizeof(struct mbox_cmd) *
5011 				     T4_OS_LOG_MBOX_CMDS),
5012 				    GFP_KERNEL);
5013 	if (!adapter->mbox_log) {
5014 		err = -ENOMEM;
5015 		goto free_adapter;
5016 	}
5017 	spin_lock_init(&adapter->mbox_lock);
5018 	INIT_LIST_HEAD(&adapter->mlist.list);
5019 
5020 	v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
5021 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
5022 	err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1,
5023 			      &v, &port_vec);
5024 	if (err < 0) {
5025 		dev_err(adapter->pdev_dev, "Could not fetch port params\n");
5026 		goto free_adapter;
5027 	}
5028 
5029 	adapter->params.nports = hweight32(port_vec);
5030 	pci_set_drvdata(pdev, adapter);
5031 	return 0;
5032 
5033  free_adapter:
5034 	kfree(adapter);
5035  free_pci_region:
5036 	iounmap(regs);
5037 	pci_disable_sriov(pdev);
5038 	pci_release_regions(pdev);
5039 	return err;
5040 #else
5041 	return 0;
5042 #endif
5043 
5044  out_free_dev:
5045 	free_some_resources(adapter);
5046 	if (adapter->flags & USING_MSIX)
5047 		free_msix_info(adapter);
5048 	if (adapter->num_uld || adapter->num_ofld_uld)
5049 		t4_uld_mem_free(adapter);
5050  out_unmap_bar:
5051 	if (!is_t4(adapter->params.chip))
5052 		iounmap(adapter->bar2);
5053  out_free_adapter:
5054 	if (adapter->workq)
5055 		destroy_workqueue(adapter->workq);
5056 
5057 	kfree(adapter->mbox_log);
5058 	kfree(adapter);
5059  out_unmap_bar0:
5060 	iounmap(regs);
5061  out_disable_device:
5062 	pci_disable_pcie_error_reporting(pdev);
5063 	pci_disable_device(pdev);
5064  out_release_regions:
5065 	pci_release_regions(pdev);
5066 	return err;
5067 }
5068 
5069 static void remove_one(struct pci_dev *pdev)
5070 {
5071 	struct adapter *adapter = pci_get_drvdata(pdev);
5072 
5073 	if (!adapter) {
5074 		pci_release_regions(pdev);
5075 		return;
5076 	}
5077 
5078 	if (adapter->pf == 4) {
5079 		int i;
5080 
5081 		/* Tear down per-adapter Work Queue first since it can contain
5082 		 * references to our adapter data structure.
5083 		 */
5084 		destroy_workqueue(adapter->workq);
5085 
5086 		if (is_uld(adapter))
5087 			detach_ulds(adapter);
5088 
5089 		disable_interrupts(adapter);
5090 
5091 		for_each_port(adapter, i)
5092 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5093 				unregister_netdev(adapter->port[i]);
5094 
5095 		debugfs_remove_recursive(adapter->debugfs_root);
5096 
5097 		/* If we allocated filters, free up state associated with any
5098 		 * valid filters ...
5099 		 */
5100 		clear_all_filters(adapter);
5101 
5102 		if (adapter->flags & FULL_INIT_DONE)
5103 			cxgb_down(adapter);
5104 
5105 		if (adapter->flags & USING_MSIX)
5106 			free_msix_info(adapter);
5107 		if (adapter->num_uld || adapter->num_ofld_uld)
5108 			t4_uld_mem_free(adapter);
5109 		free_some_resources(adapter);
5110 #if IS_ENABLED(CONFIG_IPV6)
5111 		t4_cleanup_clip_tbl(adapter);
5112 #endif
5113 		iounmap(adapter->regs);
5114 		if (!is_t4(adapter->params.chip))
5115 			iounmap(adapter->bar2);
5116 		pci_disable_pcie_error_reporting(pdev);
5117 		if ((adapter->flags & DEV_ENABLED)) {
5118 			pci_disable_device(pdev);
5119 			adapter->flags &= ~DEV_ENABLED;
5120 		}
5121 		pci_release_regions(pdev);
5122 		kfree(adapter->mbox_log);
5123 		synchronize_rcu();
5124 		kfree(adapter);
5125 	}
5126 #ifdef CONFIG_PCI_IOV
5127 	else {
5128 		if (adapter->port[0])
5129 			unregister_netdev(adapter->port[0]);
5130 		iounmap(adapter->regs);
5131 		kfree(adapter->vfinfo);
5132 		kfree(adapter);
5133 		pci_disable_sriov(pdev);
5134 		pci_release_regions(pdev);
5135 	}
5136 #endif
5137 }
5138 
5139 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5140  * delivery.  This is essentially a stripped down version of the PCI remove()
5141  * function where we do the minimal amount of work necessary to shutdown any
5142  * further activity.
5143  */
5144 static void shutdown_one(struct pci_dev *pdev)
5145 {
5146 	struct adapter *adapter = pci_get_drvdata(pdev);
5147 
5148 	/* As with remove_one() above (see extended comment), we only want do
5149 	 * do cleanup on PCI Devices which went all the way through init_one()
5150 	 * ...
5151 	 */
5152 	if (!adapter) {
5153 		pci_release_regions(pdev);
5154 		return;
5155 	}
5156 
5157 	if (adapter->pf == 4) {
5158 		int i;
5159 
5160 		for_each_port(adapter, i)
5161 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5162 				cxgb_close(adapter->port[i]);
5163 
5164 		t4_uld_clean_up(adapter);
5165 		disable_interrupts(adapter);
5166 		disable_msi(adapter);
5167 
5168 		t4_sge_stop(adapter);
5169 		if (adapter->flags & FW_OK)
5170 			t4_fw_bye(adapter, adapter->mbox);
5171 	}
5172 #ifdef CONFIG_PCI_IOV
5173 	else {
5174 		if (adapter->port[0])
5175 			unregister_netdev(adapter->port[0]);
5176 		iounmap(adapter->regs);
5177 		kfree(adapter->vfinfo);
5178 		kfree(adapter);
5179 		pci_disable_sriov(pdev);
5180 		pci_release_regions(pdev);
5181 	}
5182 #endif
5183 }
5184 
5185 static struct pci_driver cxgb4_driver = {
5186 	.name     = KBUILD_MODNAME,
5187 	.id_table = cxgb4_pci_tbl,
5188 	.probe    = init_one,
5189 	.remove   = remove_one,
5190 	.shutdown = shutdown_one,
5191 #ifdef CONFIG_PCI_IOV
5192 	.sriov_configure = cxgb4_iov_configure,
5193 #endif
5194 	.err_handler = &cxgb4_eeh,
5195 };
5196 
5197 static int __init cxgb4_init_module(void)
5198 {
5199 	int ret;
5200 
5201 	/* Debugfs support is optional, just warn if this fails */
5202 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5203 	if (!cxgb4_debugfs_root)
5204 		pr_warn("could not create debugfs entry, continuing\n");
5205 
5206 	ret = pci_register_driver(&cxgb4_driver);
5207 	if (ret < 0)
5208 		debugfs_remove(cxgb4_debugfs_root);
5209 
5210 #if IS_ENABLED(CONFIG_IPV6)
5211 	if (!inet6addr_registered) {
5212 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5213 		inet6addr_registered = true;
5214 	}
5215 #endif
5216 
5217 	return ret;
5218 }
5219 
5220 static void __exit cxgb4_cleanup_module(void)
5221 {
5222 #if IS_ENABLED(CONFIG_IPV6)
5223 	if (inet6addr_registered) {
5224 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5225 		inet6addr_registered = false;
5226 	}
5227 #endif
5228 	pci_unregister_driver(&cxgb4_driver);
5229 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5230 }
5231 
5232 module_init(cxgb4_init_module);
5233 module_exit(cxgb4_cleanup_module);
5234