1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <linux/uaccess.h> 67 #include <linux/crash_dump.h> 68 69 #include "cxgb4.h" 70 #include "cxgb4_filter.h" 71 #include "t4_regs.h" 72 #include "t4_values.h" 73 #include "t4_msg.h" 74 #include "t4fw_api.h" 75 #include "t4fw_version.h" 76 #include "cxgb4_dcb.h" 77 #include "cxgb4_debugfs.h" 78 #include "clip_tbl.h" 79 #include "l2t.h" 80 #include "sched.h" 81 #include "cxgb4_tc_u32.h" 82 83 char cxgb4_driver_name[] = KBUILD_MODNAME; 84 85 #ifdef DRV_VERSION 86 #undef DRV_VERSION 87 #endif 88 #define DRV_VERSION "2.0.0-ko" 89 const char cxgb4_driver_version[] = DRV_VERSION; 90 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 91 92 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 93 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 94 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 95 96 /* Macros needed to support the PCI Device ID Table ... 97 */ 98 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 99 static const struct pci_device_id cxgb4_pci_tbl[] = { 100 #define CH_PCI_DEVICE_ID_FUNCTION 0x4 101 102 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 103 * called for both. 104 */ 105 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 106 107 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 108 {PCI_VDEVICE(CHELSIO, (devid)), 4} 109 110 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 111 { 0, } \ 112 } 113 114 #include "t4_pci_id_tbl.h" 115 116 #define FW4_FNAME "cxgb4/t4fw.bin" 117 #define FW5_FNAME "cxgb4/t5fw.bin" 118 #define FW6_FNAME "cxgb4/t6fw.bin" 119 #define FW4_CFNAME "cxgb4/t4-config.txt" 120 #define FW5_CFNAME "cxgb4/t5-config.txt" 121 #define FW6_CFNAME "cxgb4/t6-config.txt" 122 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 123 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 124 #define PHY_AQ1202_DEVICEID 0x4409 125 #define PHY_BCM84834_DEVICEID 0x4486 126 127 MODULE_DESCRIPTION(DRV_DESC); 128 MODULE_AUTHOR("Chelsio Communications"); 129 MODULE_LICENSE("Dual BSD/GPL"); 130 MODULE_VERSION(DRV_VERSION); 131 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 132 MODULE_FIRMWARE(FW4_FNAME); 133 MODULE_FIRMWARE(FW5_FNAME); 134 MODULE_FIRMWARE(FW6_FNAME); 135 136 /* 137 * The driver uses the best interrupt scheme available on a platform in the 138 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 139 * of these schemes the driver may consider as follows: 140 * 141 * msi = 2: choose from among all three options 142 * msi = 1: only consider MSI and INTx interrupts 143 * msi = 0: force INTx interrupts 144 */ 145 static int msi = 2; 146 147 module_param(msi, int, 0644); 148 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 149 150 /* 151 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 152 * offset by 2 bytes in order to have the IP headers line up on 4-byte 153 * boundaries. This is a requirement for many architectures which will throw 154 * a machine check fault if an attempt is made to access one of the 4-byte IP 155 * header fields on a non-4-byte boundary. And it's a major performance issue 156 * even on some architectures which allow it like some implementations of the 157 * x86 ISA. However, some architectures don't mind this and for some very 158 * edge-case performance sensitive applications (like forwarding large volumes 159 * of small packets), setting this DMA offset to 0 will decrease the number of 160 * PCI-E Bus transfers enough to measurably affect performance. 161 */ 162 static int rx_dma_offset = 2; 163 164 /* TX Queue select used to determine what algorithm to use for selecting TX 165 * queue. Select between the kernel provided function (select_queue=0) or user 166 * cxgb_select_queue function (select_queue=1) 167 * 168 * Default: select_queue=0 169 */ 170 static int select_queue; 171 module_param(select_queue, int, 0644); 172 MODULE_PARM_DESC(select_queue, 173 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 174 175 static struct dentry *cxgb4_debugfs_root; 176 177 LIST_HEAD(adapter_list); 178 DEFINE_MUTEX(uld_mutex); 179 180 static void link_report(struct net_device *dev) 181 { 182 if (!netif_carrier_ok(dev)) 183 netdev_info(dev, "link down\n"); 184 else { 185 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 186 187 const char *s; 188 const struct port_info *p = netdev_priv(dev); 189 190 switch (p->link_cfg.speed) { 191 case 100: 192 s = "100Mbps"; 193 break; 194 case 1000: 195 s = "1Gbps"; 196 break; 197 case 10000: 198 s = "10Gbps"; 199 break; 200 case 25000: 201 s = "25Gbps"; 202 break; 203 case 40000: 204 s = "40Gbps"; 205 break; 206 case 100000: 207 s = "100Gbps"; 208 break; 209 default: 210 pr_info("%s: unsupported speed: %d\n", 211 dev->name, p->link_cfg.speed); 212 return; 213 } 214 215 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 216 fc[p->link_cfg.fc]); 217 } 218 } 219 220 #ifdef CONFIG_CHELSIO_T4_DCB 221 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 222 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 223 { 224 struct port_info *pi = netdev_priv(dev); 225 struct adapter *adap = pi->adapter; 226 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 227 int i; 228 229 /* We use a simple mapping of Port TX Queue Index to DCB 230 * Priority when we're enabling DCB. 231 */ 232 for (i = 0; i < pi->nqsets; i++, txq++) { 233 u32 name, value; 234 int err; 235 236 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 237 FW_PARAMS_PARAM_X_V( 238 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 239 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 240 value = enable ? i : 0xffffffff; 241 242 /* Since we can be called while atomic (from "interrupt 243 * level") we need to issue the Set Parameters Commannd 244 * without sleeping (timeout < 0). 245 */ 246 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 247 &name, &value, 248 -FW_CMD_MAX_TIMEOUT); 249 250 if (err) 251 dev_err(adap->pdev_dev, 252 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 253 enable ? "set" : "unset", pi->port_id, i, -err); 254 else 255 txq->dcb_prio = value; 256 } 257 } 258 259 static int cxgb4_dcb_enabled(const struct net_device *dev) 260 { 261 struct port_info *pi = netdev_priv(dev); 262 263 if (!pi->dcb.enabled) 264 return 0; 265 266 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 267 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 268 } 269 #endif /* CONFIG_CHELSIO_T4_DCB */ 270 271 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 272 { 273 struct net_device *dev = adapter->port[port_id]; 274 275 /* Skip changes from disabled ports. */ 276 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 277 if (link_stat) 278 netif_carrier_on(dev); 279 else { 280 #ifdef CONFIG_CHELSIO_T4_DCB 281 if (cxgb4_dcb_enabled(dev)) { 282 cxgb4_dcb_state_init(dev); 283 dcb_tx_queue_prio_enable(dev, false); 284 } 285 #endif /* CONFIG_CHELSIO_T4_DCB */ 286 netif_carrier_off(dev); 287 } 288 289 link_report(dev); 290 } 291 } 292 293 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 294 { 295 static const char *mod_str[] = { 296 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 297 }; 298 299 const struct net_device *dev = adap->port[port_id]; 300 const struct port_info *pi = netdev_priv(dev); 301 302 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 303 netdev_info(dev, "port module unplugged\n"); 304 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 305 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 306 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 307 netdev_info(dev, "%s: unsupported port module inserted\n", 308 dev->name); 309 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 310 netdev_info(dev, "%s: unknown port module inserted\n", 311 dev->name); 312 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 313 netdev_info(dev, "%s: transceiver module error\n", dev->name); 314 else 315 netdev_info(dev, "%s: unknown module type %d inserted\n", 316 dev->name, pi->mod_type); 317 } 318 319 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 320 module_param(dbfifo_int_thresh, int, 0644); 321 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 322 323 /* 324 * usecs to sleep while draining the dbfifo 325 */ 326 static int dbfifo_drain_delay = 1000; 327 module_param(dbfifo_drain_delay, int, 0644); 328 MODULE_PARM_DESC(dbfifo_drain_delay, 329 "usecs to sleep while draining the dbfifo"); 330 331 static inline int cxgb4_set_addr_hash(struct port_info *pi) 332 { 333 struct adapter *adap = pi->adapter; 334 u64 vec = 0; 335 bool ucast = false; 336 struct hash_mac_addr *entry; 337 338 /* Calculate the hash vector for the updated list and program it */ 339 list_for_each_entry(entry, &adap->mac_hlist, list) { 340 ucast |= is_unicast_ether_addr(entry->addr); 341 vec |= (1ULL << hash_mac_addr(entry->addr)); 342 } 343 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 344 vec, false); 345 } 346 347 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 348 { 349 struct port_info *pi = netdev_priv(netdev); 350 struct adapter *adap = pi->adapter; 351 int ret; 352 u64 mhash = 0; 353 u64 uhash = 0; 354 bool free = false; 355 bool ucast = is_unicast_ether_addr(mac_addr); 356 const u8 *maclist[1] = {mac_addr}; 357 struct hash_mac_addr *new_entry; 358 359 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 360 NULL, ucast ? &uhash : &mhash, false); 361 if (ret < 0) 362 goto out; 363 /* if hash != 0, then add the addr to hash addr list 364 * so on the end we will calculate the hash for the 365 * list and program it 366 */ 367 if (uhash || mhash) { 368 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 369 if (!new_entry) 370 return -ENOMEM; 371 ether_addr_copy(new_entry->addr, mac_addr); 372 list_add_tail(&new_entry->list, &adap->mac_hlist); 373 ret = cxgb4_set_addr_hash(pi); 374 } 375 out: 376 return ret < 0 ? ret : 0; 377 } 378 379 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 380 { 381 struct port_info *pi = netdev_priv(netdev); 382 struct adapter *adap = pi->adapter; 383 int ret; 384 const u8 *maclist[1] = {mac_addr}; 385 struct hash_mac_addr *entry, *tmp; 386 387 /* If the MAC address to be removed is in the hash addr 388 * list, delete it from the list and update hash vector 389 */ 390 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 391 if (ether_addr_equal(entry->addr, mac_addr)) { 392 list_del(&entry->list); 393 kfree(entry); 394 return cxgb4_set_addr_hash(pi); 395 } 396 } 397 398 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 399 return ret < 0 ? -EINVAL : 0; 400 } 401 402 /* 403 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 404 * If @mtu is -1 it is left unchanged. 405 */ 406 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 407 { 408 struct port_info *pi = netdev_priv(dev); 409 struct adapter *adapter = pi->adapter; 410 411 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 412 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 413 414 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 415 (dev->flags & IFF_PROMISC) ? 1 : 0, 416 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 417 sleep_ok); 418 } 419 420 /** 421 * link_start - enable a port 422 * @dev: the port to enable 423 * 424 * Performs the MAC and PHY actions needed to enable a port. 425 */ 426 static int link_start(struct net_device *dev) 427 { 428 int ret; 429 struct port_info *pi = netdev_priv(dev); 430 unsigned int mb = pi->adapter->pf; 431 432 /* 433 * We do not set address filters and promiscuity here, the stack does 434 * that step explicitly. 435 */ 436 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 437 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 438 if (ret == 0) { 439 ret = t4_change_mac(pi->adapter, mb, pi->viid, 440 pi->xact_addr_filt, dev->dev_addr, true, 441 true); 442 if (ret >= 0) { 443 pi->xact_addr_filt = ret; 444 ret = 0; 445 } 446 } 447 if (ret == 0) 448 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 449 &pi->link_cfg); 450 if (ret == 0) { 451 local_bh_disable(); 452 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true, 453 true, CXGB4_DCB_ENABLED); 454 local_bh_enable(); 455 } 456 457 return ret; 458 } 459 460 #ifdef CONFIG_CHELSIO_T4_DCB 461 /* Handle a Data Center Bridging update message from the firmware. */ 462 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 463 { 464 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 465 struct net_device *dev = adap->port[adap->chan_map[port]]; 466 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 467 int new_dcb_enabled; 468 469 cxgb4_dcb_handle_fw_update(adap, pcmd); 470 new_dcb_enabled = cxgb4_dcb_enabled(dev); 471 472 /* If the DCB has become enabled or disabled on the port then we're 473 * going to need to set up/tear down DCB Priority parameters for the 474 * TX Queues associated with the port. 475 */ 476 if (new_dcb_enabled != old_dcb_enabled) 477 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 478 } 479 #endif /* CONFIG_CHELSIO_T4_DCB */ 480 481 /* Response queue handler for the FW event queue. 482 */ 483 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 484 const struct pkt_gl *gl) 485 { 486 u8 opcode = ((const struct rss_header *)rsp)->opcode; 487 488 rsp++; /* skip RSS header */ 489 490 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 491 */ 492 if (unlikely(opcode == CPL_FW4_MSG && 493 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 494 rsp++; 495 opcode = ((const struct rss_header *)rsp)->opcode; 496 rsp++; 497 if (opcode != CPL_SGE_EGR_UPDATE) { 498 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 499 , opcode); 500 goto out; 501 } 502 } 503 504 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 505 const struct cpl_sge_egr_update *p = (void *)rsp; 506 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 507 struct sge_txq *txq; 508 509 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 510 txq->restarts++; 511 if (txq->q_type == CXGB4_TXQ_ETH) { 512 struct sge_eth_txq *eq; 513 514 eq = container_of(txq, struct sge_eth_txq, q); 515 netif_tx_wake_queue(eq->txq); 516 } else { 517 struct sge_uld_txq *oq; 518 519 oq = container_of(txq, struct sge_uld_txq, q); 520 tasklet_schedule(&oq->qresume_tsk); 521 } 522 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 523 const struct cpl_fw6_msg *p = (void *)rsp; 524 525 #ifdef CONFIG_CHELSIO_T4_DCB 526 const struct fw_port_cmd *pcmd = (const void *)p->data; 527 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 528 unsigned int action = 529 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 530 531 if (cmd == FW_PORT_CMD && 532 action == FW_PORT_ACTION_GET_PORT_INFO) { 533 int port = FW_PORT_CMD_PORTID_G( 534 be32_to_cpu(pcmd->op_to_portid)); 535 struct net_device *dev = 536 q->adap->port[q->adap->chan_map[port]]; 537 int state_input = ((pcmd->u.info.dcbxdis_pkd & 538 FW_PORT_CMD_DCBXDIS_F) 539 ? CXGB4_DCB_INPUT_FW_DISABLED 540 : CXGB4_DCB_INPUT_FW_ENABLED); 541 542 cxgb4_dcb_state_fsm(dev, state_input); 543 } 544 545 if (cmd == FW_PORT_CMD && 546 action == FW_PORT_ACTION_L2_DCB_CFG) 547 dcb_rpl(q->adap, pcmd); 548 else 549 #endif 550 if (p->type == 0) 551 t4_handle_fw_rpl(q->adap, p->data); 552 } else if (opcode == CPL_L2T_WRITE_RPL) { 553 const struct cpl_l2t_write_rpl *p = (void *)rsp; 554 555 do_l2t_write_rpl(q->adap, p); 556 } else if (opcode == CPL_SET_TCB_RPL) { 557 const struct cpl_set_tcb_rpl *p = (void *)rsp; 558 559 filter_rpl(q->adap, p); 560 } else 561 dev_err(q->adap->pdev_dev, 562 "unexpected CPL %#x on FW event queue\n", opcode); 563 out: 564 return 0; 565 } 566 567 static void disable_msi(struct adapter *adapter) 568 { 569 if (adapter->flags & USING_MSIX) { 570 pci_disable_msix(adapter->pdev); 571 adapter->flags &= ~USING_MSIX; 572 } else if (adapter->flags & USING_MSI) { 573 pci_disable_msi(adapter->pdev); 574 adapter->flags &= ~USING_MSI; 575 } 576 } 577 578 /* 579 * Interrupt handler for non-data events used with MSI-X. 580 */ 581 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 582 { 583 struct adapter *adap = cookie; 584 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 585 586 if (v & PFSW_F) { 587 adap->swintr = 1; 588 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 589 } 590 if (adap->flags & MASTER_PF) 591 t4_slow_intr_handler(adap); 592 return IRQ_HANDLED; 593 } 594 595 /* 596 * Name the MSI-X interrupts. 597 */ 598 static void name_msix_vecs(struct adapter *adap) 599 { 600 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 601 602 /* non-data interrupts */ 603 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 604 605 /* FW events */ 606 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 607 adap->port[0]->name); 608 609 /* Ethernet queues */ 610 for_each_port(adap, j) { 611 struct net_device *d = adap->port[j]; 612 const struct port_info *pi = netdev_priv(d); 613 614 for (i = 0; i < pi->nqsets; i++, msi_idx++) 615 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 616 d->name, i); 617 } 618 } 619 620 static int request_msix_queue_irqs(struct adapter *adap) 621 { 622 struct sge *s = &adap->sge; 623 int err, ethqidx; 624 int msi_index = 2; 625 626 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 627 adap->msix_info[1].desc, &s->fw_evtq); 628 if (err) 629 return err; 630 631 for_each_ethrxq(s, ethqidx) { 632 err = request_irq(adap->msix_info[msi_index].vec, 633 t4_sge_intr_msix, 0, 634 adap->msix_info[msi_index].desc, 635 &s->ethrxq[ethqidx].rspq); 636 if (err) 637 goto unwind; 638 msi_index++; 639 } 640 return 0; 641 642 unwind: 643 while (--ethqidx >= 0) 644 free_irq(adap->msix_info[--msi_index].vec, 645 &s->ethrxq[ethqidx].rspq); 646 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 647 return err; 648 } 649 650 static void free_msix_queue_irqs(struct adapter *adap) 651 { 652 int i, msi_index = 2; 653 struct sge *s = &adap->sge; 654 655 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 656 for_each_ethrxq(s, i) 657 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 658 } 659 660 /** 661 * cxgb4_write_rss - write the RSS table for a given port 662 * @pi: the port 663 * @queues: array of queue indices for RSS 664 * 665 * Sets up the portion of the HW RSS table for the port's VI to distribute 666 * packets to the Rx queues in @queues. 667 * Should never be called before setting up sge eth rx queues 668 */ 669 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 670 { 671 u16 *rss; 672 int i, err; 673 struct adapter *adapter = pi->adapter; 674 const struct sge_eth_rxq *rxq; 675 676 rxq = &adapter->sge.ethrxq[pi->first_qset]; 677 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 678 if (!rss) 679 return -ENOMEM; 680 681 /* map the queue indices to queue ids */ 682 for (i = 0; i < pi->rss_size; i++, queues++) 683 rss[i] = rxq[*queues].rspq.abs_id; 684 685 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 686 pi->rss_size, rss, pi->rss_size); 687 /* If Tunnel All Lookup isn't specified in the global RSS 688 * Configuration, then we need to specify a default Ingress 689 * Queue for any ingress packets which aren't hashed. We'll 690 * use our first ingress queue ... 691 */ 692 if (!err) 693 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 694 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 695 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 696 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 697 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 698 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 699 rss[0]); 700 kfree(rss); 701 return err; 702 } 703 704 /** 705 * setup_rss - configure RSS 706 * @adap: the adapter 707 * 708 * Sets up RSS for each port. 709 */ 710 static int setup_rss(struct adapter *adap) 711 { 712 int i, j, err; 713 714 for_each_port(adap, i) { 715 const struct port_info *pi = adap2pinfo(adap, i); 716 717 /* Fill default values with equal distribution */ 718 for (j = 0; j < pi->rss_size; j++) 719 pi->rss[j] = j % pi->nqsets; 720 721 err = cxgb4_write_rss(pi, pi->rss); 722 if (err) 723 return err; 724 } 725 return 0; 726 } 727 728 /* 729 * Return the channel of the ingress queue with the given qid. 730 */ 731 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 732 { 733 qid -= p->ingr_start; 734 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 735 } 736 737 /* 738 * Wait until all NAPI handlers are descheduled. 739 */ 740 static void quiesce_rx(struct adapter *adap) 741 { 742 int i; 743 744 for (i = 0; i < adap->sge.ingr_sz; i++) { 745 struct sge_rspq *q = adap->sge.ingr_map[i]; 746 747 if (q && q->handler) 748 napi_disable(&q->napi); 749 } 750 } 751 752 /* Disable interrupt and napi handler */ 753 static void disable_interrupts(struct adapter *adap) 754 { 755 if (adap->flags & FULL_INIT_DONE) { 756 t4_intr_disable(adap); 757 if (adap->flags & USING_MSIX) { 758 free_msix_queue_irqs(adap); 759 free_irq(adap->msix_info[0].vec, adap); 760 } else { 761 free_irq(adap->pdev->irq, adap); 762 } 763 quiesce_rx(adap); 764 } 765 } 766 767 /* 768 * Enable NAPI scheduling and interrupt generation for all Rx queues. 769 */ 770 static void enable_rx(struct adapter *adap) 771 { 772 int i; 773 774 for (i = 0; i < adap->sge.ingr_sz; i++) { 775 struct sge_rspq *q = adap->sge.ingr_map[i]; 776 777 if (!q) 778 continue; 779 if (q->handler) 780 napi_enable(&q->napi); 781 782 /* 0-increment GTS to start the timer and enable interrupts */ 783 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 784 SEINTARM_V(q->intr_params) | 785 INGRESSQID_V(q->cntxt_id)); 786 } 787 } 788 789 790 static int setup_fw_sge_queues(struct adapter *adap) 791 { 792 struct sge *s = &adap->sge; 793 int err = 0; 794 795 bitmap_zero(s->starving_fl, s->egr_sz); 796 bitmap_zero(s->txq_maperr, s->egr_sz); 797 798 if (adap->flags & USING_MSIX) 799 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 800 else { 801 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 802 NULL, NULL, NULL, -1); 803 if (err) 804 return err; 805 adap->msi_idx = -((int)s->intrq.abs_id + 1); 806 } 807 808 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 809 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 810 if (err) 811 t4_free_sge_resources(adap); 812 return err; 813 } 814 815 /** 816 * setup_sge_queues - configure SGE Tx/Rx/response queues 817 * @adap: the adapter 818 * 819 * Determines how many sets of SGE queues to use and initializes them. 820 * We support multiple queue sets per port if we have MSI-X, otherwise 821 * just one queue set per port. 822 */ 823 static int setup_sge_queues(struct adapter *adap) 824 { 825 int err, i, j; 826 struct sge *s = &adap->sge; 827 struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 828 unsigned int cmplqid = 0; 829 830 for_each_port(adap, i) { 831 struct net_device *dev = adap->port[i]; 832 struct port_info *pi = netdev_priv(dev); 833 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 834 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 835 836 for (j = 0; j < pi->nqsets; j++, q++) { 837 if (adap->msi_idx > 0) 838 adap->msi_idx++; 839 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 840 adap->msi_idx, &q->fl, 841 t4_ethrx_handler, 842 NULL, 843 t4_get_mps_bg_map(adap, 844 pi->tx_chan)); 845 if (err) 846 goto freeout; 847 q->rspq.idx = j; 848 memset(&q->stats, 0, sizeof(q->stats)); 849 } 850 for (j = 0; j < pi->nqsets; j++, t++) { 851 err = t4_sge_alloc_eth_txq(adap, t, dev, 852 netdev_get_tx_queue(dev, j), 853 s->fw_evtq.cntxt_id); 854 if (err) 855 goto freeout; 856 } 857 } 858 859 for_each_port(adap, i) { 860 /* Note that cmplqid below is 0 if we don't 861 * have RDMA queues, and that's the right value. 862 */ 863 if (rxq_info) 864 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 865 866 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 867 s->fw_evtq.cntxt_id, cmplqid); 868 if (err) 869 goto freeout; 870 } 871 872 t4_write_reg(adap, is_t4(adap->params.chip) ? 873 MPS_TRC_RSS_CONTROL_A : 874 MPS_T5_TRC_RSS_CONTROL_A, 875 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 876 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 877 return 0; 878 freeout: 879 t4_free_sge_resources(adap); 880 return err; 881 } 882 883 /* 884 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 885 * The allocated memory is cleared. 886 */ 887 void *t4_alloc_mem(size_t size) 888 { 889 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 890 891 if (!p) 892 p = vzalloc(size); 893 return p; 894 } 895 896 /* 897 * Free memory allocated through alloc_mem(). 898 */ 899 void t4_free_mem(void *addr) 900 { 901 kvfree(addr); 902 } 903 904 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 905 void *accel_priv, select_queue_fallback_t fallback) 906 { 907 int txq; 908 909 #ifdef CONFIG_CHELSIO_T4_DCB 910 /* If a Data Center Bridging has been successfully negotiated on this 911 * link then we'll use the skb's priority to map it to a TX Queue. 912 * The skb's priority is determined via the VLAN Tag Priority Code 913 * Point field. 914 */ 915 if (cxgb4_dcb_enabled(dev)) { 916 u16 vlan_tci; 917 int err; 918 919 err = vlan_get_tag(skb, &vlan_tci); 920 if (unlikely(err)) { 921 if (net_ratelimit()) 922 netdev_warn(dev, 923 "TX Packet without VLAN Tag on DCB Link\n"); 924 txq = 0; 925 } else { 926 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 927 #ifdef CONFIG_CHELSIO_T4_FCOE 928 if (skb->protocol == htons(ETH_P_FCOE)) 929 txq = skb->priority & 0x7; 930 #endif /* CONFIG_CHELSIO_T4_FCOE */ 931 } 932 return txq; 933 } 934 #endif /* CONFIG_CHELSIO_T4_DCB */ 935 936 if (select_queue) { 937 txq = (skb_rx_queue_recorded(skb) 938 ? skb_get_rx_queue(skb) 939 : smp_processor_id()); 940 941 while (unlikely(txq >= dev->real_num_tx_queues)) 942 txq -= dev->real_num_tx_queues; 943 944 return txq; 945 } 946 947 return fallback(dev, skb) % dev->real_num_tx_queues; 948 } 949 950 static int closest_timer(const struct sge *s, int time) 951 { 952 int i, delta, match = 0, min_delta = INT_MAX; 953 954 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 955 delta = time - s->timer_val[i]; 956 if (delta < 0) 957 delta = -delta; 958 if (delta < min_delta) { 959 min_delta = delta; 960 match = i; 961 } 962 } 963 return match; 964 } 965 966 static int closest_thres(const struct sge *s, int thres) 967 { 968 int i, delta, match = 0, min_delta = INT_MAX; 969 970 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 971 delta = thres - s->counter_val[i]; 972 if (delta < 0) 973 delta = -delta; 974 if (delta < min_delta) { 975 min_delta = delta; 976 match = i; 977 } 978 } 979 return match; 980 } 981 982 /** 983 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 984 * @q: the Rx queue 985 * @us: the hold-off time in us, or 0 to disable timer 986 * @cnt: the hold-off packet count, or 0 to disable counter 987 * 988 * Sets an Rx queue's interrupt hold-off time and packet count. At least 989 * one of the two needs to be enabled for the queue to generate interrupts. 990 */ 991 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 992 unsigned int us, unsigned int cnt) 993 { 994 struct adapter *adap = q->adap; 995 996 if ((us | cnt) == 0) 997 cnt = 1; 998 999 if (cnt) { 1000 int err; 1001 u32 v, new_idx; 1002 1003 new_idx = closest_thres(&adap->sge, cnt); 1004 if (q->desc && q->pktcnt_idx != new_idx) { 1005 /* the queue has already been created, update it */ 1006 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1007 FW_PARAMS_PARAM_X_V( 1008 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1009 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1010 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1011 &v, &new_idx); 1012 if (err) 1013 return err; 1014 } 1015 q->pktcnt_idx = new_idx; 1016 } 1017 1018 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1019 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1020 return 0; 1021 } 1022 1023 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1024 { 1025 const struct port_info *pi = netdev_priv(dev); 1026 netdev_features_t changed = dev->features ^ features; 1027 int err; 1028 1029 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1030 return 0; 1031 1032 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1033 -1, -1, -1, 1034 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1035 if (unlikely(err)) 1036 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1037 return err; 1038 } 1039 1040 static int setup_debugfs(struct adapter *adap) 1041 { 1042 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1043 return -1; 1044 1045 #ifdef CONFIG_DEBUG_FS 1046 t4_setup_debugfs(adap); 1047 #endif 1048 return 0; 1049 } 1050 1051 /* 1052 * upper-layer driver support 1053 */ 1054 1055 /* 1056 * Allocate an active-open TID and set it to the supplied value. 1057 */ 1058 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1059 { 1060 int atid = -1; 1061 1062 spin_lock_bh(&t->atid_lock); 1063 if (t->afree) { 1064 union aopen_entry *p = t->afree; 1065 1066 atid = (p - t->atid_tab) + t->atid_base; 1067 t->afree = p->next; 1068 p->data = data; 1069 t->atids_in_use++; 1070 } 1071 spin_unlock_bh(&t->atid_lock); 1072 return atid; 1073 } 1074 EXPORT_SYMBOL(cxgb4_alloc_atid); 1075 1076 /* 1077 * Release an active-open TID. 1078 */ 1079 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1080 { 1081 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1082 1083 spin_lock_bh(&t->atid_lock); 1084 p->next = t->afree; 1085 t->afree = p; 1086 t->atids_in_use--; 1087 spin_unlock_bh(&t->atid_lock); 1088 } 1089 EXPORT_SYMBOL(cxgb4_free_atid); 1090 1091 /* 1092 * Allocate a server TID and set it to the supplied value. 1093 */ 1094 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1095 { 1096 int stid; 1097 1098 spin_lock_bh(&t->stid_lock); 1099 if (family == PF_INET) { 1100 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1101 if (stid < t->nstids) 1102 __set_bit(stid, t->stid_bmap); 1103 else 1104 stid = -1; 1105 } else { 1106 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1107 if (stid < 0) 1108 stid = -1; 1109 } 1110 if (stid >= 0) { 1111 t->stid_tab[stid].data = data; 1112 stid += t->stid_base; 1113 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1114 * This is equivalent to 4 TIDs. With CLIP enabled it 1115 * needs 2 TIDs. 1116 */ 1117 if (family == PF_INET) 1118 t->stids_in_use++; 1119 else 1120 t->stids_in_use += 2; 1121 } 1122 spin_unlock_bh(&t->stid_lock); 1123 return stid; 1124 } 1125 EXPORT_SYMBOL(cxgb4_alloc_stid); 1126 1127 /* Allocate a server filter TID and set it to the supplied value. 1128 */ 1129 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1130 { 1131 int stid; 1132 1133 spin_lock_bh(&t->stid_lock); 1134 if (family == PF_INET) { 1135 stid = find_next_zero_bit(t->stid_bmap, 1136 t->nstids + t->nsftids, t->nstids); 1137 if (stid < (t->nstids + t->nsftids)) 1138 __set_bit(stid, t->stid_bmap); 1139 else 1140 stid = -1; 1141 } else { 1142 stid = -1; 1143 } 1144 if (stid >= 0) { 1145 t->stid_tab[stid].data = data; 1146 stid -= t->nstids; 1147 stid += t->sftid_base; 1148 t->sftids_in_use++; 1149 } 1150 spin_unlock_bh(&t->stid_lock); 1151 return stid; 1152 } 1153 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1154 1155 /* Release a server TID. 1156 */ 1157 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1158 { 1159 /* Is it a server filter TID? */ 1160 if (t->nsftids && (stid >= t->sftid_base)) { 1161 stid -= t->sftid_base; 1162 stid += t->nstids; 1163 } else { 1164 stid -= t->stid_base; 1165 } 1166 1167 spin_lock_bh(&t->stid_lock); 1168 if (family == PF_INET) 1169 __clear_bit(stid, t->stid_bmap); 1170 else 1171 bitmap_release_region(t->stid_bmap, stid, 1); 1172 t->stid_tab[stid].data = NULL; 1173 if (stid < t->nstids) { 1174 if (family == PF_INET) 1175 t->stids_in_use--; 1176 else 1177 t->stids_in_use -= 2; 1178 } else { 1179 t->sftids_in_use--; 1180 } 1181 spin_unlock_bh(&t->stid_lock); 1182 } 1183 EXPORT_SYMBOL(cxgb4_free_stid); 1184 1185 /* 1186 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1187 */ 1188 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1189 unsigned int tid) 1190 { 1191 struct cpl_tid_release *req; 1192 1193 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1194 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 1195 INIT_TP_WR(req, tid); 1196 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1197 } 1198 1199 /* 1200 * Queue a TID release request and if necessary schedule a work queue to 1201 * process it. 1202 */ 1203 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1204 unsigned int tid) 1205 { 1206 void **p = &t->tid_tab[tid]; 1207 struct adapter *adap = container_of(t, struct adapter, tids); 1208 1209 spin_lock_bh(&adap->tid_release_lock); 1210 *p = adap->tid_release_head; 1211 /* Low 2 bits encode the Tx channel number */ 1212 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1213 if (!adap->tid_release_task_busy) { 1214 adap->tid_release_task_busy = true; 1215 queue_work(adap->workq, &adap->tid_release_task); 1216 } 1217 spin_unlock_bh(&adap->tid_release_lock); 1218 } 1219 1220 /* 1221 * Process the list of pending TID release requests. 1222 */ 1223 static void process_tid_release_list(struct work_struct *work) 1224 { 1225 struct sk_buff *skb; 1226 struct adapter *adap; 1227 1228 adap = container_of(work, struct adapter, tid_release_task); 1229 1230 spin_lock_bh(&adap->tid_release_lock); 1231 while (adap->tid_release_head) { 1232 void **p = adap->tid_release_head; 1233 unsigned int chan = (uintptr_t)p & 3; 1234 p = (void *)p - chan; 1235 1236 adap->tid_release_head = *p; 1237 *p = NULL; 1238 spin_unlock_bh(&adap->tid_release_lock); 1239 1240 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1241 GFP_KERNEL))) 1242 schedule_timeout_uninterruptible(1); 1243 1244 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1245 t4_ofld_send(adap, skb); 1246 spin_lock_bh(&adap->tid_release_lock); 1247 } 1248 adap->tid_release_task_busy = false; 1249 spin_unlock_bh(&adap->tid_release_lock); 1250 } 1251 1252 /* 1253 * Release a TID and inform HW. If we are unable to allocate the release 1254 * message we defer to a work queue. 1255 */ 1256 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) 1257 { 1258 struct sk_buff *skb; 1259 struct adapter *adap = container_of(t, struct adapter, tids); 1260 1261 WARN_ON(tid >= t->ntids); 1262 1263 if (t->tid_tab[tid]) { 1264 t->tid_tab[tid] = NULL; 1265 if (t->hash_base && (tid >= t->hash_base)) 1266 atomic_dec(&t->hash_tids_in_use); 1267 else 1268 atomic_dec(&t->tids_in_use); 1269 } 1270 1271 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1272 if (likely(skb)) { 1273 mk_tid_release(skb, chan, tid); 1274 t4_ofld_send(adap, skb); 1275 } else 1276 cxgb4_queue_tid_release(t, chan, tid); 1277 } 1278 EXPORT_SYMBOL(cxgb4_remove_tid); 1279 1280 /* 1281 * Allocate and initialize the TID tables. Returns 0 on success. 1282 */ 1283 static int tid_init(struct tid_info *t) 1284 { 1285 struct adapter *adap = container_of(t, struct adapter, tids); 1286 unsigned int max_ftids = t->nftids + t->nsftids; 1287 unsigned int natids = t->natids; 1288 unsigned int stid_bmap_size; 1289 unsigned int ftid_bmap_size; 1290 size_t size; 1291 1292 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1293 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1294 size = t->ntids * sizeof(*t->tid_tab) + 1295 natids * sizeof(*t->atid_tab) + 1296 t->nstids * sizeof(*t->stid_tab) + 1297 t->nsftids * sizeof(*t->stid_tab) + 1298 stid_bmap_size * sizeof(long) + 1299 max_ftids * sizeof(*t->ftid_tab) + 1300 ftid_bmap_size * sizeof(long); 1301 1302 t->tid_tab = t4_alloc_mem(size); 1303 if (!t->tid_tab) 1304 return -ENOMEM; 1305 1306 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1307 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1308 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1309 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1310 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1311 spin_lock_init(&t->stid_lock); 1312 spin_lock_init(&t->atid_lock); 1313 spin_lock_init(&t->ftid_lock); 1314 1315 t->stids_in_use = 0; 1316 t->sftids_in_use = 0; 1317 t->afree = NULL; 1318 t->atids_in_use = 0; 1319 atomic_set(&t->tids_in_use, 0); 1320 atomic_set(&t->hash_tids_in_use, 0); 1321 1322 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1323 if (natids) { 1324 while (--natids) 1325 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1326 t->afree = t->atid_tab; 1327 } 1328 1329 if (is_offload(adap)) { 1330 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1331 /* Reserve stid 0 for T4/T5 adapters */ 1332 if (!t->stid_base && 1333 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1334 __set_bit(0, t->stid_bmap); 1335 } 1336 1337 bitmap_zero(t->ftid_bmap, t->nftids); 1338 return 0; 1339 } 1340 1341 /** 1342 * cxgb4_create_server - create an IP server 1343 * @dev: the device 1344 * @stid: the server TID 1345 * @sip: local IP address to bind server to 1346 * @sport: the server's TCP port 1347 * @queue: queue to direct messages from this server to 1348 * 1349 * Create an IP server for the given port and address. 1350 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1351 */ 1352 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1353 __be32 sip, __be16 sport, __be16 vlan, 1354 unsigned int queue) 1355 { 1356 unsigned int chan; 1357 struct sk_buff *skb; 1358 struct adapter *adap; 1359 struct cpl_pass_open_req *req; 1360 int ret; 1361 1362 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1363 if (!skb) 1364 return -ENOMEM; 1365 1366 adap = netdev2adap(dev); 1367 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); 1368 INIT_TP_WR(req, 0); 1369 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1370 req->local_port = sport; 1371 req->peer_port = htons(0); 1372 req->local_ip = sip; 1373 req->peer_ip = htonl(0); 1374 chan = rxq_to_chan(&adap->sge, queue); 1375 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1376 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1377 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1378 ret = t4_mgmt_tx(adap, skb); 1379 return net_xmit_eval(ret); 1380 } 1381 EXPORT_SYMBOL(cxgb4_create_server); 1382 1383 /* cxgb4_create_server6 - create an IPv6 server 1384 * @dev: the device 1385 * @stid: the server TID 1386 * @sip: local IPv6 address to bind server to 1387 * @sport: the server's TCP port 1388 * @queue: queue to direct messages from this server to 1389 * 1390 * Create an IPv6 server for the given port and address. 1391 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1392 */ 1393 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1394 const struct in6_addr *sip, __be16 sport, 1395 unsigned int queue) 1396 { 1397 unsigned int chan; 1398 struct sk_buff *skb; 1399 struct adapter *adap; 1400 struct cpl_pass_open_req6 *req; 1401 int ret; 1402 1403 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1404 if (!skb) 1405 return -ENOMEM; 1406 1407 adap = netdev2adap(dev); 1408 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req)); 1409 INIT_TP_WR(req, 0); 1410 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1411 req->local_port = sport; 1412 req->peer_port = htons(0); 1413 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1414 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1415 req->peer_ip_hi = cpu_to_be64(0); 1416 req->peer_ip_lo = cpu_to_be64(0); 1417 chan = rxq_to_chan(&adap->sge, queue); 1418 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1419 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1420 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1421 ret = t4_mgmt_tx(adap, skb); 1422 return net_xmit_eval(ret); 1423 } 1424 EXPORT_SYMBOL(cxgb4_create_server6); 1425 1426 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1427 unsigned int queue, bool ipv6) 1428 { 1429 struct sk_buff *skb; 1430 struct adapter *adap; 1431 struct cpl_close_listsvr_req *req; 1432 int ret; 1433 1434 adap = netdev2adap(dev); 1435 1436 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1437 if (!skb) 1438 return -ENOMEM; 1439 1440 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req)); 1441 INIT_TP_WR(req, 0); 1442 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1443 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1444 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1445 ret = t4_mgmt_tx(adap, skb); 1446 return net_xmit_eval(ret); 1447 } 1448 EXPORT_SYMBOL(cxgb4_remove_server); 1449 1450 /** 1451 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1452 * @mtus: the HW MTU table 1453 * @mtu: the target MTU 1454 * @idx: index of selected entry in the MTU table 1455 * 1456 * Returns the index and the value in the HW MTU table that is closest to 1457 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1458 * table, in which case that smallest available value is selected. 1459 */ 1460 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1461 unsigned int *idx) 1462 { 1463 unsigned int i = 0; 1464 1465 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1466 ++i; 1467 if (idx) 1468 *idx = i; 1469 return mtus[i]; 1470 } 1471 EXPORT_SYMBOL(cxgb4_best_mtu); 1472 1473 /** 1474 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1475 * @mtus: the HW MTU table 1476 * @header_size: Header Size 1477 * @data_size_max: maximum Data Segment Size 1478 * @data_size_align: desired Data Segment Size Alignment (2^N) 1479 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1480 * 1481 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1482 * MTU Table based solely on a Maximum MTU parameter, we break that 1483 * parameter up into a Header Size and Maximum Data Segment Size, and 1484 * provide a desired Data Segment Size Alignment. If we find an MTU in 1485 * the Hardware MTU Table which will result in a Data Segment Size with 1486 * the requested alignment _and_ that MTU isn't "too far" from the 1487 * closest MTU, then we'll return that rather than the closest MTU. 1488 */ 1489 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1490 unsigned short header_size, 1491 unsigned short data_size_max, 1492 unsigned short data_size_align, 1493 unsigned int *mtu_idxp) 1494 { 1495 unsigned short max_mtu = header_size + data_size_max; 1496 unsigned short data_size_align_mask = data_size_align - 1; 1497 int mtu_idx, aligned_mtu_idx; 1498 1499 /* Scan the MTU Table till we find an MTU which is larger than our 1500 * Maximum MTU or we reach the end of the table. Along the way, 1501 * record the last MTU found, if any, which will result in a Data 1502 * Segment Length matching the requested alignment. 1503 */ 1504 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1505 unsigned short data_size = mtus[mtu_idx] - header_size; 1506 1507 /* If this MTU minus the Header Size would result in a 1508 * Data Segment Size of the desired alignment, remember it. 1509 */ 1510 if ((data_size & data_size_align_mask) == 0) 1511 aligned_mtu_idx = mtu_idx; 1512 1513 /* If we're not at the end of the Hardware MTU Table and the 1514 * next element is larger than our Maximum MTU, drop out of 1515 * the loop. 1516 */ 1517 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1518 break; 1519 } 1520 1521 /* If we fell out of the loop because we ran to the end of the table, 1522 * then we just have to use the last [largest] entry. 1523 */ 1524 if (mtu_idx == NMTUS) 1525 mtu_idx--; 1526 1527 /* If we found an MTU which resulted in the requested Data Segment 1528 * Length alignment and that's "not far" from the largest MTU which is 1529 * less than or equal to the maximum MTU, then use that. 1530 */ 1531 if (aligned_mtu_idx >= 0 && 1532 mtu_idx - aligned_mtu_idx <= 1) 1533 mtu_idx = aligned_mtu_idx; 1534 1535 /* If the caller has passed in an MTU Index pointer, pass the 1536 * MTU Index back. Return the MTU value. 1537 */ 1538 if (mtu_idxp) 1539 *mtu_idxp = mtu_idx; 1540 return mtus[mtu_idx]; 1541 } 1542 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1543 1544 /** 1545 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1546 * @chip: chip type 1547 * @viid: VI id of the given port 1548 * 1549 * Return the SMT index for this VI. 1550 */ 1551 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1552 { 1553 /* In T4/T5, SMT contains 256 SMAC entries organized in 1554 * 128 rows of 2 entries each. 1555 * In T6, SMT contains 256 SMAC entries in 256 rows. 1556 * TODO: The below code needs to be updated when we add support 1557 * for 256 VFs. 1558 */ 1559 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1560 return ((viid & 0x7f) << 1); 1561 else 1562 return (viid & 0x7f); 1563 } 1564 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1565 1566 /** 1567 * cxgb4_port_chan - get the HW channel of a port 1568 * @dev: the net device for the port 1569 * 1570 * Return the HW Tx channel of the given port. 1571 */ 1572 unsigned int cxgb4_port_chan(const struct net_device *dev) 1573 { 1574 return netdev2pinfo(dev)->tx_chan; 1575 } 1576 EXPORT_SYMBOL(cxgb4_port_chan); 1577 1578 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1579 { 1580 struct adapter *adap = netdev2adap(dev); 1581 u32 v1, v2, lp_count, hp_count; 1582 1583 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1584 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1585 if (is_t4(adap->params.chip)) { 1586 lp_count = LP_COUNT_G(v1); 1587 hp_count = HP_COUNT_G(v1); 1588 } else { 1589 lp_count = LP_COUNT_T5_G(v1); 1590 hp_count = HP_COUNT_T5_G(v2); 1591 } 1592 return lpfifo ? lp_count : hp_count; 1593 } 1594 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1595 1596 /** 1597 * cxgb4_port_viid - get the VI id of a port 1598 * @dev: the net device for the port 1599 * 1600 * Return the VI id of the given port. 1601 */ 1602 unsigned int cxgb4_port_viid(const struct net_device *dev) 1603 { 1604 return netdev2pinfo(dev)->viid; 1605 } 1606 EXPORT_SYMBOL(cxgb4_port_viid); 1607 1608 /** 1609 * cxgb4_port_idx - get the index of a port 1610 * @dev: the net device for the port 1611 * 1612 * Return the index of the given port. 1613 */ 1614 unsigned int cxgb4_port_idx(const struct net_device *dev) 1615 { 1616 return netdev2pinfo(dev)->port_id; 1617 } 1618 EXPORT_SYMBOL(cxgb4_port_idx); 1619 1620 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1621 struct tp_tcp_stats *v6) 1622 { 1623 struct adapter *adap = pci_get_drvdata(pdev); 1624 1625 spin_lock(&adap->stats_lock); 1626 t4_tp_get_tcp_stats(adap, v4, v6); 1627 spin_unlock(&adap->stats_lock); 1628 } 1629 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1630 1631 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1632 const unsigned int *pgsz_order) 1633 { 1634 struct adapter *adap = netdev2adap(dev); 1635 1636 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1637 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1638 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1639 HPZ3_V(pgsz_order[3])); 1640 } 1641 EXPORT_SYMBOL(cxgb4_iscsi_init); 1642 1643 int cxgb4_flush_eq_cache(struct net_device *dev) 1644 { 1645 struct adapter *adap = netdev2adap(dev); 1646 1647 return t4_sge_ctxt_flush(adap, adap->mbox); 1648 } 1649 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1650 1651 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1652 { 1653 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1654 __be64 indices; 1655 int ret; 1656 1657 spin_lock(&adap->win0_lock); 1658 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1659 sizeof(indices), (__be32 *)&indices, 1660 T4_MEMORY_READ); 1661 spin_unlock(&adap->win0_lock); 1662 if (!ret) { 1663 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1664 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1665 } 1666 return ret; 1667 } 1668 1669 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1670 u16 size) 1671 { 1672 struct adapter *adap = netdev2adap(dev); 1673 u16 hw_pidx, hw_cidx; 1674 int ret; 1675 1676 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1677 if (ret) 1678 goto out; 1679 1680 if (pidx != hw_pidx) { 1681 u16 delta; 1682 u32 val; 1683 1684 if (pidx >= hw_pidx) 1685 delta = pidx - hw_pidx; 1686 else 1687 delta = size - hw_pidx + pidx; 1688 1689 if (is_t4(adap->params.chip)) 1690 val = PIDX_V(delta); 1691 else 1692 val = PIDX_T5_V(delta); 1693 wmb(); 1694 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1695 QID_V(qid) | val); 1696 } 1697 out: 1698 return ret; 1699 } 1700 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1701 1702 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1703 { 1704 struct adapter *adap; 1705 u32 offset, memtype, memaddr; 1706 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1707 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1708 int ret; 1709 1710 adap = netdev2adap(dev); 1711 1712 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1713 1714 /* Figure out where the offset lands in the Memory Type/Address scheme. 1715 * This code assumes that the memory is laid out starting at offset 0 1716 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1717 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1718 * MC0, and some have both MC0 and MC1. 1719 */ 1720 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1721 edc0_size = EDRAM0_SIZE_G(size) << 20; 1722 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1723 edc1_size = EDRAM1_SIZE_G(size) << 20; 1724 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1725 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1726 1727 edc0_end = edc0_size; 1728 edc1_end = edc0_end + edc1_size; 1729 mc0_end = edc1_end + mc0_size; 1730 1731 if (offset < edc0_end) { 1732 memtype = MEM_EDC0; 1733 memaddr = offset; 1734 } else if (offset < edc1_end) { 1735 memtype = MEM_EDC1; 1736 memaddr = offset - edc0_end; 1737 } else { 1738 if (offset < mc0_end) { 1739 memtype = MEM_MC0; 1740 memaddr = offset - edc1_end; 1741 } else if (is_t5(adap->params.chip)) { 1742 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1743 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1744 mc1_end = mc0_end + mc1_size; 1745 if (offset < mc1_end) { 1746 memtype = MEM_MC1; 1747 memaddr = offset - mc0_end; 1748 } else { 1749 /* offset beyond the end of any memory */ 1750 goto err; 1751 } 1752 } else { 1753 /* T4/T6 only has a single memory channel */ 1754 goto err; 1755 } 1756 } 1757 1758 spin_lock(&adap->win0_lock); 1759 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1760 spin_unlock(&adap->win0_lock); 1761 return ret; 1762 1763 err: 1764 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1765 stag, offset); 1766 return -EINVAL; 1767 } 1768 EXPORT_SYMBOL(cxgb4_read_tpte); 1769 1770 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1771 { 1772 u32 hi, lo; 1773 struct adapter *adap; 1774 1775 adap = netdev2adap(dev); 1776 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1777 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1778 1779 return ((u64)hi << 32) | (u64)lo; 1780 } 1781 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1782 1783 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1784 unsigned int qid, 1785 enum cxgb4_bar2_qtype qtype, 1786 int user, 1787 u64 *pbar2_qoffset, 1788 unsigned int *pbar2_qid) 1789 { 1790 return t4_bar2_sge_qregs(netdev2adap(dev), 1791 qid, 1792 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1793 ? T4_BAR2_QTYPE_EGRESS 1794 : T4_BAR2_QTYPE_INGRESS), 1795 user, 1796 pbar2_qoffset, 1797 pbar2_qid); 1798 } 1799 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1800 1801 static struct pci_driver cxgb4_driver; 1802 1803 static void check_neigh_update(struct neighbour *neigh) 1804 { 1805 const struct device *parent; 1806 const struct net_device *netdev = neigh->dev; 1807 1808 if (is_vlan_dev(netdev)) 1809 netdev = vlan_dev_real_dev(netdev); 1810 parent = netdev->dev.parent; 1811 if (parent && parent->driver == &cxgb4_driver.driver) 1812 t4_l2t_update(dev_get_drvdata(parent), neigh); 1813 } 1814 1815 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1816 void *data) 1817 { 1818 switch (event) { 1819 case NETEVENT_NEIGH_UPDATE: 1820 check_neigh_update(data); 1821 break; 1822 case NETEVENT_REDIRECT: 1823 default: 1824 break; 1825 } 1826 return 0; 1827 } 1828 1829 static bool netevent_registered; 1830 static struct notifier_block cxgb4_netevent_nb = { 1831 .notifier_call = netevent_cb 1832 }; 1833 1834 static void drain_db_fifo(struct adapter *adap, int usecs) 1835 { 1836 u32 v1, v2, lp_count, hp_count; 1837 1838 do { 1839 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1840 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1841 if (is_t4(adap->params.chip)) { 1842 lp_count = LP_COUNT_G(v1); 1843 hp_count = HP_COUNT_G(v1); 1844 } else { 1845 lp_count = LP_COUNT_T5_G(v1); 1846 hp_count = HP_COUNT_T5_G(v2); 1847 } 1848 1849 if (lp_count == 0 && hp_count == 0) 1850 break; 1851 set_current_state(TASK_UNINTERRUPTIBLE); 1852 schedule_timeout(usecs_to_jiffies(usecs)); 1853 } while (1); 1854 } 1855 1856 static void disable_txq_db(struct sge_txq *q) 1857 { 1858 unsigned long flags; 1859 1860 spin_lock_irqsave(&q->db_lock, flags); 1861 q->db_disabled = 1; 1862 spin_unlock_irqrestore(&q->db_lock, flags); 1863 } 1864 1865 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1866 { 1867 spin_lock_irq(&q->db_lock); 1868 if (q->db_pidx_inc) { 1869 /* Make sure that all writes to the TX descriptors 1870 * are committed before we tell HW about them. 1871 */ 1872 wmb(); 1873 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1874 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1875 q->db_pidx_inc = 0; 1876 } 1877 q->db_disabled = 0; 1878 spin_unlock_irq(&q->db_lock); 1879 } 1880 1881 static void disable_dbs(struct adapter *adap) 1882 { 1883 int i; 1884 1885 for_each_ethrxq(&adap->sge, i) 1886 disable_txq_db(&adap->sge.ethtxq[i].q); 1887 if (is_offload(adap)) { 1888 struct sge_uld_txq_info *txq_info = 1889 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1890 1891 if (txq_info) { 1892 for_each_ofldtxq(&adap->sge, i) { 1893 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1894 1895 disable_txq_db(&txq->q); 1896 } 1897 } 1898 } 1899 for_each_port(adap, i) 1900 disable_txq_db(&adap->sge.ctrlq[i].q); 1901 } 1902 1903 static void enable_dbs(struct adapter *adap) 1904 { 1905 int i; 1906 1907 for_each_ethrxq(&adap->sge, i) 1908 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1909 if (is_offload(adap)) { 1910 struct sge_uld_txq_info *txq_info = 1911 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1912 1913 if (txq_info) { 1914 for_each_ofldtxq(&adap->sge, i) { 1915 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1916 1917 enable_txq_db(adap, &txq->q); 1918 } 1919 } 1920 } 1921 for_each_port(adap, i) 1922 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 1923 } 1924 1925 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 1926 { 1927 enum cxgb4_uld type = CXGB4_ULD_RDMA; 1928 1929 if (adap->uld && adap->uld[type].handle) 1930 adap->uld[type].control(adap->uld[type].handle, cmd); 1931 } 1932 1933 static void process_db_full(struct work_struct *work) 1934 { 1935 struct adapter *adap; 1936 1937 adap = container_of(work, struct adapter, db_full_task); 1938 1939 drain_db_fifo(adap, dbfifo_drain_delay); 1940 enable_dbs(adap); 1941 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 1942 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1943 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1944 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 1945 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 1946 else 1947 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1948 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 1949 } 1950 1951 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 1952 { 1953 u16 hw_pidx, hw_cidx; 1954 int ret; 1955 1956 spin_lock_irq(&q->db_lock); 1957 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 1958 if (ret) 1959 goto out; 1960 if (q->db_pidx != hw_pidx) { 1961 u16 delta; 1962 u32 val; 1963 1964 if (q->db_pidx >= hw_pidx) 1965 delta = q->db_pidx - hw_pidx; 1966 else 1967 delta = q->size - hw_pidx + q->db_pidx; 1968 1969 if (is_t4(adap->params.chip)) 1970 val = PIDX_V(delta); 1971 else 1972 val = PIDX_T5_V(delta); 1973 wmb(); 1974 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1975 QID_V(q->cntxt_id) | val); 1976 } 1977 out: 1978 q->db_disabled = 0; 1979 q->db_pidx_inc = 0; 1980 spin_unlock_irq(&q->db_lock); 1981 if (ret) 1982 CH_WARN(adap, "DB drop recovery failed.\n"); 1983 } 1984 1985 static void recover_all_queues(struct adapter *adap) 1986 { 1987 int i; 1988 1989 for_each_ethrxq(&adap->sge, i) 1990 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 1991 if (is_offload(adap)) { 1992 struct sge_uld_txq_info *txq_info = 1993 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1994 if (txq_info) { 1995 for_each_ofldtxq(&adap->sge, i) { 1996 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1997 1998 sync_txq_pidx(adap, &txq->q); 1999 } 2000 } 2001 } 2002 for_each_port(adap, i) 2003 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2004 } 2005 2006 static void process_db_drop(struct work_struct *work) 2007 { 2008 struct adapter *adap; 2009 2010 adap = container_of(work, struct adapter, db_drop_task); 2011 2012 if (is_t4(adap->params.chip)) { 2013 drain_db_fifo(adap, dbfifo_drain_delay); 2014 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2015 drain_db_fifo(adap, dbfifo_drain_delay); 2016 recover_all_queues(adap); 2017 drain_db_fifo(adap, dbfifo_drain_delay); 2018 enable_dbs(adap); 2019 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2020 } else if (is_t5(adap->params.chip)) { 2021 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2022 u16 qid = (dropped_db >> 15) & 0x1ffff; 2023 u16 pidx_inc = dropped_db & 0x1fff; 2024 u64 bar2_qoffset; 2025 unsigned int bar2_qid; 2026 int ret; 2027 2028 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2029 0, &bar2_qoffset, &bar2_qid); 2030 if (ret) 2031 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2032 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2033 else 2034 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2035 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2036 2037 /* Re-enable BAR2 WC */ 2038 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2039 } 2040 2041 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2042 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2043 } 2044 2045 void t4_db_full(struct adapter *adap) 2046 { 2047 if (is_t4(adap->params.chip)) { 2048 disable_dbs(adap); 2049 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2050 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2051 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2052 queue_work(adap->workq, &adap->db_full_task); 2053 } 2054 } 2055 2056 void t4_db_dropped(struct adapter *adap) 2057 { 2058 if (is_t4(adap->params.chip)) { 2059 disable_dbs(adap); 2060 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2061 } 2062 queue_work(adap->workq, &adap->db_drop_task); 2063 } 2064 2065 void t4_register_netevent_notifier(void) 2066 { 2067 if (!netevent_registered) { 2068 register_netevent_notifier(&cxgb4_netevent_nb); 2069 netevent_registered = true; 2070 } 2071 } 2072 2073 static void detach_ulds(struct adapter *adap) 2074 { 2075 unsigned int i; 2076 2077 mutex_lock(&uld_mutex); 2078 list_del(&adap->list_node); 2079 for (i = 0; i < CXGB4_ULD_MAX; i++) 2080 if (adap->uld && adap->uld[i].handle) { 2081 adap->uld[i].state_change(adap->uld[i].handle, 2082 CXGB4_STATE_DETACH); 2083 adap->uld[i].handle = NULL; 2084 } 2085 if (netevent_registered && list_empty(&adapter_list)) { 2086 unregister_netevent_notifier(&cxgb4_netevent_nb); 2087 netevent_registered = false; 2088 } 2089 mutex_unlock(&uld_mutex); 2090 } 2091 2092 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2093 { 2094 unsigned int i; 2095 2096 mutex_lock(&uld_mutex); 2097 for (i = 0; i < CXGB4_ULD_MAX; i++) 2098 if (adap->uld && adap->uld[i].handle) 2099 adap->uld[i].state_change(adap->uld[i].handle, 2100 new_state); 2101 mutex_unlock(&uld_mutex); 2102 } 2103 2104 #if IS_ENABLED(CONFIG_IPV6) 2105 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2106 unsigned long event, void *data) 2107 { 2108 struct inet6_ifaddr *ifa = data; 2109 struct net_device *event_dev = ifa->idev->dev; 2110 const struct device *parent = NULL; 2111 #if IS_ENABLED(CONFIG_BONDING) 2112 struct adapter *adap; 2113 #endif 2114 if (is_vlan_dev(event_dev)) 2115 event_dev = vlan_dev_real_dev(event_dev); 2116 #if IS_ENABLED(CONFIG_BONDING) 2117 if (event_dev->flags & IFF_MASTER) { 2118 list_for_each_entry(adap, &adapter_list, list_node) { 2119 switch (event) { 2120 case NETDEV_UP: 2121 cxgb4_clip_get(adap->port[0], 2122 (const u32 *)ifa, 1); 2123 break; 2124 case NETDEV_DOWN: 2125 cxgb4_clip_release(adap->port[0], 2126 (const u32 *)ifa, 1); 2127 break; 2128 default: 2129 break; 2130 } 2131 } 2132 return NOTIFY_OK; 2133 } 2134 #endif 2135 2136 if (event_dev) 2137 parent = event_dev->dev.parent; 2138 2139 if (parent && parent->driver == &cxgb4_driver.driver) { 2140 switch (event) { 2141 case NETDEV_UP: 2142 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2143 break; 2144 case NETDEV_DOWN: 2145 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2146 break; 2147 default: 2148 break; 2149 } 2150 } 2151 return NOTIFY_OK; 2152 } 2153 2154 static bool inet6addr_registered; 2155 static struct notifier_block cxgb4_inet6addr_notifier = { 2156 .notifier_call = cxgb4_inet6addr_handler 2157 }; 2158 2159 static void update_clip(const struct adapter *adap) 2160 { 2161 int i; 2162 struct net_device *dev; 2163 int ret; 2164 2165 rcu_read_lock(); 2166 2167 for (i = 0; i < MAX_NPORTS; i++) { 2168 dev = adap->port[i]; 2169 ret = 0; 2170 2171 if (dev) 2172 ret = cxgb4_update_root_dev_clip(dev); 2173 2174 if (ret < 0) 2175 break; 2176 } 2177 rcu_read_unlock(); 2178 } 2179 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2180 2181 /** 2182 * cxgb_up - enable the adapter 2183 * @adap: adapter being enabled 2184 * 2185 * Called when the first port is enabled, this function performs the 2186 * actions necessary to make an adapter operational, such as completing 2187 * the initialization of HW modules, and enabling interrupts. 2188 * 2189 * Must be called with the rtnl lock held. 2190 */ 2191 static int cxgb_up(struct adapter *adap) 2192 { 2193 int err; 2194 2195 err = setup_sge_queues(adap); 2196 if (err) 2197 goto out; 2198 err = setup_rss(adap); 2199 if (err) 2200 goto freeq; 2201 2202 if (adap->flags & USING_MSIX) { 2203 name_msix_vecs(adap); 2204 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2205 adap->msix_info[0].desc, adap); 2206 if (err) 2207 goto irq_err; 2208 err = request_msix_queue_irqs(adap); 2209 if (err) { 2210 free_irq(adap->msix_info[0].vec, adap); 2211 goto irq_err; 2212 } 2213 } else { 2214 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2215 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2216 adap->port[0]->name, adap); 2217 if (err) 2218 goto irq_err; 2219 } 2220 enable_rx(adap); 2221 t4_sge_start(adap); 2222 t4_intr_enable(adap); 2223 adap->flags |= FULL_INIT_DONE; 2224 notify_ulds(adap, CXGB4_STATE_UP); 2225 #if IS_ENABLED(CONFIG_IPV6) 2226 update_clip(adap); 2227 #endif 2228 /* Initialize hash mac addr list*/ 2229 INIT_LIST_HEAD(&adap->mac_hlist); 2230 out: 2231 return err; 2232 irq_err: 2233 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2234 freeq: 2235 t4_free_sge_resources(adap); 2236 goto out; 2237 } 2238 2239 static void cxgb_down(struct adapter *adapter) 2240 { 2241 cancel_work_sync(&adapter->tid_release_task); 2242 cancel_work_sync(&adapter->db_full_task); 2243 cancel_work_sync(&adapter->db_drop_task); 2244 adapter->tid_release_task_busy = false; 2245 adapter->tid_release_head = NULL; 2246 2247 t4_sge_stop(adapter); 2248 t4_free_sge_resources(adapter); 2249 adapter->flags &= ~FULL_INIT_DONE; 2250 } 2251 2252 /* 2253 * net_device operations 2254 */ 2255 static int cxgb_open(struct net_device *dev) 2256 { 2257 int err; 2258 struct port_info *pi = netdev_priv(dev); 2259 struct adapter *adapter = pi->adapter; 2260 2261 netif_carrier_off(dev); 2262 2263 if (!(adapter->flags & FULL_INIT_DONE)) { 2264 err = cxgb_up(adapter); 2265 if (err < 0) 2266 return err; 2267 } 2268 2269 err = link_start(dev); 2270 if (!err) 2271 netif_tx_start_all_queues(dev); 2272 return err; 2273 } 2274 2275 static int cxgb_close(struct net_device *dev) 2276 { 2277 struct port_info *pi = netdev_priv(dev); 2278 struct adapter *adapter = pi->adapter; 2279 2280 netif_tx_stop_all_queues(dev); 2281 netif_carrier_off(dev); 2282 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false); 2283 } 2284 2285 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2286 __be32 sip, __be16 sport, __be16 vlan, 2287 unsigned int queue, unsigned char port, unsigned char mask) 2288 { 2289 int ret; 2290 struct filter_entry *f; 2291 struct adapter *adap; 2292 int i; 2293 u8 *val; 2294 2295 adap = netdev2adap(dev); 2296 2297 /* Adjust stid to correct filter index */ 2298 stid -= adap->tids.sftid_base; 2299 stid += adap->tids.nftids; 2300 2301 /* Check to make sure the filter requested is writable ... 2302 */ 2303 f = &adap->tids.ftid_tab[stid]; 2304 ret = writable_filter(f); 2305 if (ret) 2306 return ret; 2307 2308 /* Clear out any old resources being used by the filter before 2309 * we start constructing the new filter. 2310 */ 2311 if (f->valid) 2312 clear_filter(adap, f); 2313 2314 /* Clear out filter specifications */ 2315 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2316 f->fs.val.lport = cpu_to_be16(sport); 2317 f->fs.mask.lport = ~0; 2318 val = (u8 *)&sip; 2319 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2320 for (i = 0; i < 4; i++) { 2321 f->fs.val.lip[i] = val[i]; 2322 f->fs.mask.lip[i] = ~0; 2323 } 2324 if (adap->params.tp.vlan_pri_map & PORT_F) { 2325 f->fs.val.iport = port; 2326 f->fs.mask.iport = mask; 2327 } 2328 } 2329 2330 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2331 f->fs.val.proto = IPPROTO_TCP; 2332 f->fs.mask.proto = ~0; 2333 } 2334 2335 f->fs.dirsteer = 1; 2336 f->fs.iq = queue; 2337 /* Mark filter as locked */ 2338 f->locked = 1; 2339 f->fs.rpttid = 1; 2340 2341 ret = set_filter_wr(adap, stid); 2342 if (ret) { 2343 clear_filter(adap, f); 2344 return ret; 2345 } 2346 2347 return 0; 2348 } 2349 EXPORT_SYMBOL(cxgb4_create_server_filter); 2350 2351 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2352 unsigned int queue, bool ipv6) 2353 { 2354 struct filter_entry *f; 2355 struct adapter *adap; 2356 2357 adap = netdev2adap(dev); 2358 2359 /* Adjust stid to correct filter index */ 2360 stid -= adap->tids.sftid_base; 2361 stid += adap->tids.nftids; 2362 2363 f = &adap->tids.ftid_tab[stid]; 2364 /* Unlock the filter */ 2365 f->locked = 0; 2366 2367 return delete_filter(adap, stid); 2368 } 2369 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2370 2371 static void cxgb_get_stats(struct net_device *dev, 2372 struct rtnl_link_stats64 *ns) 2373 { 2374 struct port_stats stats; 2375 struct port_info *p = netdev_priv(dev); 2376 struct adapter *adapter = p->adapter; 2377 2378 /* Block retrieving statistics during EEH error 2379 * recovery. Otherwise, the recovery might fail 2380 * and the PCI device will be removed permanently 2381 */ 2382 spin_lock(&adapter->stats_lock); 2383 if (!netif_device_present(dev)) { 2384 spin_unlock(&adapter->stats_lock); 2385 return; 2386 } 2387 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2388 &p->stats_base); 2389 spin_unlock(&adapter->stats_lock); 2390 2391 ns->tx_bytes = stats.tx_octets; 2392 ns->tx_packets = stats.tx_frames; 2393 ns->rx_bytes = stats.rx_octets; 2394 ns->rx_packets = stats.rx_frames; 2395 ns->multicast = stats.rx_mcast_frames; 2396 2397 /* detailed rx_errors */ 2398 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2399 stats.rx_runt; 2400 ns->rx_over_errors = 0; 2401 ns->rx_crc_errors = stats.rx_fcs_err; 2402 ns->rx_frame_errors = stats.rx_symbol_err; 2403 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2404 stats.rx_ovflow2 + stats.rx_ovflow3 + 2405 stats.rx_trunc0 + stats.rx_trunc1 + 2406 stats.rx_trunc2 + stats.rx_trunc3; 2407 ns->rx_missed_errors = 0; 2408 2409 /* detailed tx_errors */ 2410 ns->tx_aborted_errors = 0; 2411 ns->tx_carrier_errors = 0; 2412 ns->tx_fifo_errors = 0; 2413 ns->tx_heartbeat_errors = 0; 2414 ns->tx_window_errors = 0; 2415 2416 ns->tx_errors = stats.tx_error_frames; 2417 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2418 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2419 } 2420 2421 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2422 { 2423 unsigned int mbox; 2424 int ret = 0, prtad, devad; 2425 struct port_info *pi = netdev_priv(dev); 2426 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2427 2428 switch (cmd) { 2429 case SIOCGMIIPHY: 2430 if (pi->mdio_addr < 0) 2431 return -EOPNOTSUPP; 2432 data->phy_id = pi->mdio_addr; 2433 break; 2434 case SIOCGMIIREG: 2435 case SIOCSMIIREG: 2436 if (mdio_phy_id_is_c45(data->phy_id)) { 2437 prtad = mdio_phy_id_prtad(data->phy_id); 2438 devad = mdio_phy_id_devad(data->phy_id); 2439 } else if (data->phy_id < 32) { 2440 prtad = data->phy_id; 2441 devad = 0; 2442 data->reg_num &= 0x1f; 2443 } else 2444 return -EINVAL; 2445 2446 mbox = pi->adapter->pf; 2447 if (cmd == SIOCGMIIREG) 2448 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2449 data->reg_num, &data->val_out); 2450 else 2451 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2452 data->reg_num, data->val_in); 2453 break; 2454 case SIOCGHWTSTAMP: 2455 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2456 sizeof(pi->tstamp_config)) ? 2457 -EFAULT : 0; 2458 case SIOCSHWTSTAMP: 2459 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2460 sizeof(pi->tstamp_config))) 2461 return -EFAULT; 2462 2463 switch (pi->tstamp_config.rx_filter) { 2464 case HWTSTAMP_FILTER_NONE: 2465 pi->rxtstamp = false; 2466 break; 2467 case HWTSTAMP_FILTER_ALL: 2468 pi->rxtstamp = true; 2469 break; 2470 default: 2471 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 2472 return -ERANGE; 2473 } 2474 2475 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2476 sizeof(pi->tstamp_config)) ? 2477 -EFAULT : 0; 2478 default: 2479 return -EOPNOTSUPP; 2480 } 2481 return ret; 2482 } 2483 2484 static void cxgb_set_rxmode(struct net_device *dev) 2485 { 2486 /* unfortunately we can't return errors to the stack */ 2487 set_rxmode(dev, -1, false); 2488 } 2489 2490 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2491 { 2492 int ret; 2493 struct port_info *pi = netdev_priv(dev); 2494 2495 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2496 -1, -1, -1, true); 2497 if (!ret) 2498 dev->mtu = new_mtu; 2499 return ret; 2500 } 2501 2502 #ifdef CONFIG_PCI_IOV 2503 static int dummy_open(struct net_device *dev) 2504 { 2505 /* Turn carrier off since we don't have to transmit anything on this 2506 * interface. 2507 */ 2508 netif_carrier_off(dev); 2509 return 0; 2510 } 2511 2512 /* Fill MAC address that will be assigned by the FW */ 2513 static void fill_vf_station_mac_addr(struct adapter *adap) 2514 { 2515 unsigned int i; 2516 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2517 int err; 2518 u8 *na; 2519 u16 a, b; 2520 2521 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2522 if (!err) { 2523 na = adap->params.vpd.na; 2524 for (i = 0; i < ETH_ALEN; i++) 2525 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2526 hex2val(na[2 * i + 1])); 2527 a = (hw_addr[0] << 8) | hw_addr[1]; 2528 b = (hw_addr[1] << 8) | hw_addr[2]; 2529 a ^= b; 2530 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2531 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2532 macaddr[0] = a >> 8; 2533 macaddr[1] = a & 0xff; 2534 2535 for (i = 2; i < 5; i++) 2536 macaddr[i] = hw_addr[i + 1]; 2537 2538 for (i = 0; i < adap->num_vfs; i++) { 2539 macaddr[5] = adap->pf * 16 + i; 2540 ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr); 2541 } 2542 } 2543 } 2544 2545 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2546 { 2547 struct port_info *pi = netdev_priv(dev); 2548 struct adapter *adap = pi->adapter; 2549 int ret; 2550 2551 /* verify MAC addr is valid */ 2552 if (!is_valid_ether_addr(mac)) { 2553 dev_err(pi->adapter->pdev_dev, 2554 "Invalid Ethernet address %pM for VF %d\n", 2555 mac, vf); 2556 return -EINVAL; 2557 } 2558 2559 dev_info(pi->adapter->pdev_dev, 2560 "Setting MAC %pM on VF %d\n", mac, vf); 2561 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2562 if (!ret) 2563 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2564 return ret; 2565 } 2566 2567 static int cxgb_get_vf_config(struct net_device *dev, 2568 int vf, struct ifla_vf_info *ivi) 2569 { 2570 struct port_info *pi = netdev_priv(dev); 2571 struct adapter *adap = pi->adapter; 2572 2573 if (vf >= adap->num_vfs) 2574 return -EINVAL; 2575 ivi->vf = vf; 2576 ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr); 2577 return 0; 2578 } 2579 2580 static int cxgb_get_phys_port_id(struct net_device *dev, 2581 struct netdev_phys_item_id *ppid) 2582 { 2583 struct port_info *pi = netdev_priv(dev); 2584 unsigned int phy_port_id; 2585 2586 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2587 ppid->id_len = sizeof(phy_port_id); 2588 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2589 return 0; 2590 } 2591 2592 #endif 2593 2594 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2595 { 2596 int ret; 2597 struct sockaddr *addr = p; 2598 struct port_info *pi = netdev_priv(dev); 2599 2600 if (!is_valid_ether_addr(addr->sa_data)) 2601 return -EADDRNOTAVAIL; 2602 2603 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 2604 pi->xact_addr_filt, addr->sa_data, true, true); 2605 if (ret < 0) 2606 return ret; 2607 2608 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2609 pi->xact_addr_filt = ret; 2610 return 0; 2611 } 2612 2613 #ifdef CONFIG_NET_POLL_CONTROLLER 2614 static void cxgb_netpoll(struct net_device *dev) 2615 { 2616 struct port_info *pi = netdev_priv(dev); 2617 struct adapter *adap = pi->adapter; 2618 2619 if (adap->flags & USING_MSIX) { 2620 int i; 2621 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2622 2623 for (i = pi->nqsets; i; i--, rx++) 2624 t4_sge_intr_msix(0, &rx->rspq); 2625 } else 2626 t4_intr_handler(adap)(0, adap); 2627 } 2628 #endif 2629 2630 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2631 { 2632 struct port_info *pi = netdev_priv(dev); 2633 struct adapter *adap = pi->adapter; 2634 struct sched_class *e; 2635 struct ch_sched_params p; 2636 struct ch_sched_queue qe; 2637 u32 req_rate; 2638 int err = 0; 2639 2640 if (!can_sched(dev)) 2641 return -ENOTSUPP; 2642 2643 if (index < 0 || index > pi->nqsets - 1) 2644 return -EINVAL; 2645 2646 if (!(adap->flags & FULL_INIT_DONE)) { 2647 dev_err(adap->pdev_dev, 2648 "Failed to rate limit on queue %d. Link Down?\n", 2649 index); 2650 return -EINVAL; 2651 } 2652 2653 /* Convert from Mbps to Kbps */ 2654 req_rate = rate << 10; 2655 2656 /* Max rate is 10 Gbps */ 2657 if (req_rate >= SCHED_MAX_RATE_KBPS) { 2658 dev_err(adap->pdev_dev, 2659 "Invalid rate %u Mbps, Max rate is %u Gbps\n", 2660 rate, SCHED_MAX_RATE_KBPS); 2661 return -ERANGE; 2662 } 2663 2664 /* First unbind the queue from any existing class */ 2665 memset(&qe, 0, sizeof(qe)); 2666 qe.queue = index; 2667 qe.class = SCHED_CLS_NONE; 2668 2669 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 2670 if (err) { 2671 dev_err(adap->pdev_dev, 2672 "Unbinding Queue %d on port %d fail. Err: %d\n", 2673 index, pi->port_id, err); 2674 return err; 2675 } 2676 2677 /* Queue already unbound */ 2678 if (!req_rate) 2679 return 0; 2680 2681 /* Fetch any available unused or matching scheduling class */ 2682 memset(&p, 0, sizeof(p)); 2683 p.type = SCHED_CLASS_TYPE_PACKET; 2684 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 2685 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 2686 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 2687 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 2688 p.u.params.channel = pi->tx_chan; 2689 p.u.params.class = SCHED_CLS_NONE; 2690 p.u.params.minrate = 0; 2691 p.u.params.maxrate = req_rate; 2692 p.u.params.weight = 0; 2693 p.u.params.pktsize = dev->mtu; 2694 2695 e = cxgb4_sched_class_alloc(dev, &p); 2696 if (!e) 2697 return -ENOMEM; 2698 2699 /* Bind the queue to a scheduling class */ 2700 memset(&qe, 0, sizeof(qe)); 2701 qe.queue = index; 2702 qe.class = e->idx; 2703 2704 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 2705 if (err) 2706 dev_err(adap->pdev_dev, 2707 "Queue rate limiting failed. Err: %d\n", err); 2708 return err; 2709 } 2710 2711 static int cxgb_setup_tc(struct net_device *dev, u32 handle, __be16 proto, 2712 struct tc_to_netdev *tc) 2713 { 2714 struct port_info *pi = netdev2pinfo(dev); 2715 struct adapter *adap = netdev2adap(dev); 2716 2717 if (!(adap->flags & FULL_INIT_DONE)) { 2718 dev_err(adap->pdev_dev, 2719 "Failed to setup tc on port %d. Link Down?\n", 2720 pi->port_id); 2721 return -EINVAL; 2722 } 2723 2724 if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) && 2725 tc->type == TC_SETUP_CLSU32) { 2726 switch (tc->cls_u32->command) { 2727 case TC_CLSU32_NEW_KNODE: 2728 case TC_CLSU32_REPLACE_KNODE: 2729 return cxgb4_config_knode(dev, proto, tc->cls_u32); 2730 case TC_CLSU32_DELETE_KNODE: 2731 return cxgb4_delete_knode(dev, proto, tc->cls_u32); 2732 default: 2733 return -EOPNOTSUPP; 2734 } 2735 } 2736 2737 return -EOPNOTSUPP; 2738 } 2739 2740 static const struct net_device_ops cxgb4_netdev_ops = { 2741 .ndo_open = cxgb_open, 2742 .ndo_stop = cxgb_close, 2743 .ndo_start_xmit = t4_eth_xmit, 2744 .ndo_select_queue = cxgb_select_queue, 2745 .ndo_get_stats64 = cxgb_get_stats, 2746 .ndo_set_rx_mode = cxgb_set_rxmode, 2747 .ndo_set_mac_address = cxgb_set_mac_addr, 2748 .ndo_set_features = cxgb_set_features, 2749 .ndo_validate_addr = eth_validate_addr, 2750 .ndo_do_ioctl = cxgb_ioctl, 2751 .ndo_change_mtu = cxgb_change_mtu, 2752 #ifdef CONFIG_NET_POLL_CONTROLLER 2753 .ndo_poll_controller = cxgb_netpoll, 2754 #endif 2755 #ifdef CONFIG_CHELSIO_T4_FCOE 2756 .ndo_fcoe_enable = cxgb_fcoe_enable, 2757 .ndo_fcoe_disable = cxgb_fcoe_disable, 2758 #endif /* CONFIG_CHELSIO_T4_FCOE */ 2759 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 2760 .ndo_setup_tc = cxgb_setup_tc, 2761 }; 2762 2763 #ifdef CONFIG_PCI_IOV 2764 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 2765 .ndo_open = dummy_open, 2766 .ndo_set_vf_mac = cxgb_set_vf_mac, 2767 .ndo_get_vf_config = cxgb_get_vf_config, 2768 .ndo_get_phys_port_id = cxgb_get_phys_port_id, 2769 }; 2770 #endif 2771 2772 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 2773 { 2774 struct adapter *adapter = netdev2adap(dev); 2775 2776 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 2777 strlcpy(info->version, cxgb4_driver_version, 2778 sizeof(info->version)); 2779 strlcpy(info->bus_info, pci_name(adapter->pdev), 2780 sizeof(info->bus_info)); 2781 } 2782 2783 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 2784 .get_drvinfo = get_drvinfo, 2785 }; 2786 2787 void t4_fatal_err(struct adapter *adap) 2788 { 2789 int port; 2790 2791 /* Disable the SGE since ULDs are going to free resources that 2792 * could be exposed to the adapter. RDMA MWs for example... 2793 */ 2794 t4_shutdown_adapter(adap); 2795 for_each_port(adap, port) { 2796 struct net_device *dev = adap->port[port]; 2797 2798 /* If we get here in very early initialization the network 2799 * devices may not have been set up yet. 2800 */ 2801 if (!dev) 2802 continue; 2803 2804 netif_tx_stop_all_queues(dev); 2805 netif_carrier_off(dev); 2806 } 2807 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 2808 } 2809 2810 static void setup_memwin(struct adapter *adap) 2811 { 2812 u32 nic_win_base = t4_get_util_window(adap); 2813 2814 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 2815 } 2816 2817 static void setup_memwin_rdma(struct adapter *adap) 2818 { 2819 if (adap->vres.ocq.size) { 2820 u32 start; 2821 unsigned int sz_kb; 2822 2823 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 2824 start &= PCI_BASE_ADDRESS_MEM_MASK; 2825 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 2826 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 2827 t4_write_reg(adap, 2828 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 2829 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 2830 t4_write_reg(adap, 2831 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 2832 adap->vres.ocq.start); 2833 t4_read_reg(adap, 2834 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 2835 } 2836 } 2837 2838 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 2839 { 2840 u32 v; 2841 int ret; 2842 2843 /* get device capabilities */ 2844 memset(c, 0, sizeof(*c)); 2845 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 2846 FW_CMD_REQUEST_F | FW_CMD_READ_F); 2847 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 2848 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 2849 if (ret < 0) 2850 return ret; 2851 2852 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 2853 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 2854 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 2855 if (ret < 0) 2856 return ret; 2857 2858 ret = t4_config_glbl_rss(adap, adap->pf, 2859 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 2860 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 2861 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 2862 if (ret < 0) 2863 return ret; 2864 2865 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 2866 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 2867 FW_CMD_CAP_PF); 2868 if (ret < 0) 2869 return ret; 2870 2871 t4_sge_init(adap); 2872 2873 /* tweak some settings */ 2874 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 2875 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 2876 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 2877 v = t4_read_reg(adap, TP_PIO_DATA_A); 2878 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 2879 2880 /* first 4 Tx modulation queues point to consecutive Tx channels */ 2881 adap->params.tp.tx_modq_map = 0xE4; 2882 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 2883 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 2884 2885 /* associate each Tx modulation queue with consecutive Tx channels */ 2886 v = 0x84218421; 2887 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 2888 &v, 1, TP_TX_SCHED_HDR_A); 2889 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 2890 &v, 1, TP_TX_SCHED_FIFO_A); 2891 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 2892 &v, 1, TP_TX_SCHED_PCMD_A); 2893 2894 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 2895 if (is_offload(adap)) { 2896 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 2897 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2898 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2899 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2900 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 2901 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 2902 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2903 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2904 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 2905 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 2906 } 2907 2908 /* get basic stuff going */ 2909 return t4_early_init(adap, adap->pf); 2910 } 2911 2912 /* 2913 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 2914 */ 2915 #define MAX_ATIDS 8192U 2916 2917 /* 2918 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 2919 * 2920 * If the firmware we're dealing with has Configuration File support, then 2921 * we use that to perform all configuration 2922 */ 2923 2924 /* 2925 * Tweak configuration based on module parameters, etc. Most of these have 2926 * defaults assigned to them by Firmware Configuration Files (if we're using 2927 * them) but need to be explicitly set if we're using hard-coded 2928 * initialization. But even in the case of using Firmware Configuration 2929 * Files, we'd like to expose the ability to change these via module 2930 * parameters so these are essentially common tweaks/settings for 2931 * Configuration Files and hard-coded initialization ... 2932 */ 2933 static int adap_init0_tweaks(struct adapter *adapter) 2934 { 2935 /* 2936 * Fix up various Host-Dependent Parameters like Page Size, Cache 2937 * Line Size, etc. The firmware default is for a 4KB Page Size and 2938 * 64B Cache Line Size ... 2939 */ 2940 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 2941 2942 /* 2943 * Process module parameters which affect early initialization. 2944 */ 2945 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 2946 dev_err(&adapter->pdev->dev, 2947 "Ignoring illegal rx_dma_offset=%d, using 2\n", 2948 rx_dma_offset); 2949 rx_dma_offset = 2; 2950 } 2951 t4_set_reg_field(adapter, SGE_CONTROL_A, 2952 PKTSHIFT_V(PKTSHIFT_M), 2953 PKTSHIFT_V(rx_dma_offset)); 2954 2955 /* 2956 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 2957 * adds the pseudo header itself. 2958 */ 2959 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 2960 CSUM_HAS_PSEUDO_HDR_F, 0); 2961 2962 return 0; 2963 } 2964 2965 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 2966 * unto themselves and they contain their own firmware to perform their 2967 * tasks ... 2968 */ 2969 static int phy_aq1202_version(const u8 *phy_fw_data, 2970 size_t phy_fw_size) 2971 { 2972 int offset; 2973 2974 /* At offset 0x8 you're looking for the primary image's 2975 * starting offset which is 3 Bytes wide 2976 * 2977 * At offset 0xa of the primary image, you look for the offset 2978 * of the DRAM segment which is 3 Bytes wide. 2979 * 2980 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 2981 * wide 2982 */ 2983 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 2984 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 2985 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 2986 2987 offset = le24(phy_fw_data + 0x8) << 12; 2988 offset = le24(phy_fw_data + offset + 0xa); 2989 return be16(phy_fw_data + offset + 0x27e); 2990 2991 #undef be16 2992 #undef le16 2993 #undef le24 2994 } 2995 2996 static struct info_10gbt_phy_fw { 2997 unsigned int phy_fw_id; /* PCI Device ID */ 2998 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 2999 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3000 int phy_flash; /* Has FLASH for PHY Firmware */ 3001 } phy_info_array[] = { 3002 { 3003 PHY_AQ1202_DEVICEID, 3004 PHY_AQ1202_FIRMWARE, 3005 phy_aq1202_version, 3006 1, 3007 }, 3008 { 3009 PHY_BCM84834_DEVICEID, 3010 PHY_BCM84834_FIRMWARE, 3011 NULL, 3012 0, 3013 }, 3014 { 0, NULL, NULL }, 3015 }; 3016 3017 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3018 { 3019 int i; 3020 3021 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3022 if (phy_info_array[i].phy_fw_id == devid) 3023 return &phy_info_array[i]; 3024 } 3025 return NULL; 3026 } 3027 3028 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3029 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3030 * we return a negative error number. If we transfer new firmware we return 1 3031 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3032 */ 3033 static int adap_init0_phy(struct adapter *adap) 3034 { 3035 const struct firmware *phyf; 3036 int ret; 3037 struct info_10gbt_phy_fw *phy_info; 3038 3039 /* Use the device ID to determine which PHY file to flash. 3040 */ 3041 phy_info = find_phy_info(adap->pdev->device); 3042 if (!phy_info) { 3043 dev_warn(adap->pdev_dev, 3044 "No PHY Firmware file found for this PHY\n"); 3045 return -EOPNOTSUPP; 3046 } 3047 3048 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3049 * use that. The adapter firmware provides us with a memory buffer 3050 * where we can load a PHY firmware file from the host if we want to 3051 * override the PHY firmware File in flash. 3052 */ 3053 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3054 adap->pdev_dev); 3055 if (ret < 0) { 3056 /* For adapters without FLASH attached to PHY for their 3057 * firmware, it's obviously a fatal error if we can't get the 3058 * firmware to the adapter. For adapters with PHY firmware 3059 * FLASH storage, it's worth a warning if we can't find the 3060 * PHY Firmware but we'll neuter the error ... 3061 */ 3062 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3063 "/lib/firmware/%s, error %d\n", 3064 phy_info->phy_fw_file, -ret); 3065 if (phy_info->phy_flash) { 3066 int cur_phy_fw_ver = 0; 3067 3068 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3069 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3070 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3071 ret = 0; 3072 } 3073 3074 return ret; 3075 } 3076 3077 /* Load PHY Firmware onto adapter. 3078 */ 3079 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3080 phy_info->phy_fw_version, 3081 (u8 *)phyf->data, phyf->size); 3082 if (ret < 0) 3083 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3084 -ret); 3085 else if (ret > 0) { 3086 int new_phy_fw_ver = 0; 3087 3088 if (phy_info->phy_fw_version) 3089 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3090 phyf->size); 3091 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3092 "Firmware /lib/firmware/%s, version %#x\n", 3093 phy_info->phy_fw_file, new_phy_fw_ver); 3094 } 3095 3096 release_firmware(phyf); 3097 3098 return ret; 3099 } 3100 3101 /* 3102 * Attempt to initialize the adapter via a Firmware Configuration File. 3103 */ 3104 static int adap_init0_config(struct adapter *adapter, int reset) 3105 { 3106 struct fw_caps_config_cmd caps_cmd; 3107 const struct firmware *cf; 3108 unsigned long mtype = 0, maddr = 0; 3109 u32 finiver, finicsum, cfcsum; 3110 int ret; 3111 int config_issued = 0; 3112 char *fw_config_file, fw_config_file_path[256]; 3113 char *config_name = NULL; 3114 3115 /* 3116 * Reset device if necessary. 3117 */ 3118 if (reset) { 3119 ret = t4_fw_reset(adapter, adapter->mbox, 3120 PIORSTMODE_F | PIORST_F); 3121 if (ret < 0) 3122 goto bye; 3123 } 3124 3125 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3126 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3127 * to be performed after any global adapter RESET above since some 3128 * PHYs only have local RAM copies of the PHY firmware. 3129 */ 3130 if (is_10gbt_device(adapter->pdev->device)) { 3131 ret = adap_init0_phy(adapter); 3132 if (ret < 0) 3133 goto bye; 3134 } 3135 /* 3136 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3137 * then use that. Otherwise, use the configuration file stored 3138 * in the adapter flash ... 3139 */ 3140 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3141 case CHELSIO_T4: 3142 fw_config_file = FW4_CFNAME; 3143 break; 3144 case CHELSIO_T5: 3145 fw_config_file = FW5_CFNAME; 3146 break; 3147 case CHELSIO_T6: 3148 fw_config_file = FW6_CFNAME; 3149 break; 3150 default: 3151 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3152 adapter->pdev->device); 3153 ret = -EINVAL; 3154 goto bye; 3155 } 3156 3157 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3158 if (ret < 0) { 3159 config_name = "On FLASH"; 3160 mtype = FW_MEMTYPE_CF_FLASH; 3161 maddr = t4_flash_cfg_addr(adapter); 3162 } else { 3163 u32 params[7], val[7]; 3164 3165 sprintf(fw_config_file_path, 3166 "/lib/firmware/%s", fw_config_file); 3167 config_name = fw_config_file_path; 3168 3169 if (cf->size >= FLASH_CFG_MAX_SIZE) 3170 ret = -ENOMEM; 3171 else { 3172 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3173 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3174 ret = t4_query_params(adapter, adapter->mbox, 3175 adapter->pf, 0, 1, params, val); 3176 if (ret == 0) { 3177 /* 3178 * For t4_memory_rw() below addresses and 3179 * sizes have to be in terms of multiples of 4 3180 * bytes. So, if the Configuration File isn't 3181 * a multiple of 4 bytes in length we'll have 3182 * to write that out separately since we can't 3183 * guarantee that the bytes following the 3184 * residual byte in the buffer returned by 3185 * request_firmware() are zeroed out ... 3186 */ 3187 size_t resid = cf->size & 0x3; 3188 size_t size = cf->size & ~0x3; 3189 __be32 *data = (__be32 *)cf->data; 3190 3191 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3192 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3193 3194 spin_lock(&adapter->win0_lock); 3195 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3196 size, data, T4_MEMORY_WRITE); 3197 if (ret == 0 && resid != 0) { 3198 union { 3199 __be32 word; 3200 char buf[4]; 3201 } last; 3202 int i; 3203 3204 last.word = data[size >> 2]; 3205 for (i = resid; i < 4; i++) 3206 last.buf[i] = 0; 3207 ret = t4_memory_rw(adapter, 0, mtype, 3208 maddr + size, 3209 4, &last.word, 3210 T4_MEMORY_WRITE); 3211 } 3212 spin_unlock(&adapter->win0_lock); 3213 } 3214 } 3215 3216 release_firmware(cf); 3217 if (ret) 3218 goto bye; 3219 } 3220 3221 /* 3222 * Issue a Capability Configuration command to the firmware to get it 3223 * to parse the Configuration File. We don't use t4_fw_config_file() 3224 * because we want the ability to modify various features after we've 3225 * processed the configuration file ... 3226 */ 3227 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3228 caps_cmd.op_to_write = 3229 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3230 FW_CMD_REQUEST_F | 3231 FW_CMD_READ_F); 3232 caps_cmd.cfvalid_to_len16 = 3233 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3234 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3235 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3236 FW_LEN16(caps_cmd)); 3237 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3238 &caps_cmd); 3239 3240 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3241 * Configuration File in FLASH), our last gasp effort is to use the 3242 * Firmware Configuration File which is embedded in the firmware. A 3243 * very few early versions of the firmware didn't have one embedded 3244 * but we can ignore those. 3245 */ 3246 if (ret == -ENOENT) { 3247 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3248 caps_cmd.op_to_write = 3249 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3250 FW_CMD_REQUEST_F | 3251 FW_CMD_READ_F); 3252 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3253 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3254 sizeof(caps_cmd), &caps_cmd); 3255 config_name = "Firmware Default"; 3256 } 3257 3258 config_issued = 1; 3259 if (ret < 0) 3260 goto bye; 3261 3262 finiver = ntohl(caps_cmd.finiver); 3263 finicsum = ntohl(caps_cmd.finicsum); 3264 cfcsum = ntohl(caps_cmd.cfcsum); 3265 if (finicsum != cfcsum) 3266 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3267 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3268 finicsum, cfcsum); 3269 3270 /* 3271 * And now tell the firmware to use the configuration we just loaded. 3272 */ 3273 caps_cmd.op_to_write = 3274 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3275 FW_CMD_REQUEST_F | 3276 FW_CMD_WRITE_F); 3277 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3278 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3279 NULL); 3280 if (ret < 0) 3281 goto bye; 3282 3283 /* 3284 * Tweak configuration based on system architecture, module 3285 * parameters, etc. 3286 */ 3287 ret = adap_init0_tweaks(adapter); 3288 if (ret < 0) 3289 goto bye; 3290 3291 /* 3292 * And finally tell the firmware to initialize itself using the 3293 * parameters from the Configuration File. 3294 */ 3295 ret = t4_fw_initialize(adapter, adapter->mbox); 3296 if (ret < 0) 3297 goto bye; 3298 3299 /* Emit Firmware Configuration File information and return 3300 * successfully. 3301 */ 3302 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 3303 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 3304 config_name, finiver, cfcsum); 3305 return 0; 3306 3307 /* 3308 * Something bad happened. Return the error ... (If the "error" 3309 * is that there's no Configuration File on the adapter we don't 3310 * want to issue a warning since this is fairly common.) 3311 */ 3312 bye: 3313 if (config_issued && ret != -ENOENT) 3314 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 3315 config_name, -ret); 3316 return ret; 3317 } 3318 3319 static struct fw_info fw_info_array[] = { 3320 { 3321 .chip = CHELSIO_T4, 3322 .fs_name = FW4_CFNAME, 3323 .fw_mod_name = FW4_FNAME, 3324 .fw_hdr = { 3325 .chip = FW_HDR_CHIP_T4, 3326 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 3327 .intfver_nic = FW_INTFVER(T4, NIC), 3328 .intfver_vnic = FW_INTFVER(T4, VNIC), 3329 .intfver_ri = FW_INTFVER(T4, RI), 3330 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3331 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3332 }, 3333 }, { 3334 .chip = CHELSIO_T5, 3335 .fs_name = FW5_CFNAME, 3336 .fw_mod_name = FW5_FNAME, 3337 .fw_hdr = { 3338 .chip = FW_HDR_CHIP_T5, 3339 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 3340 .intfver_nic = FW_INTFVER(T5, NIC), 3341 .intfver_vnic = FW_INTFVER(T5, VNIC), 3342 .intfver_ri = FW_INTFVER(T5, RI), 3343 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3344 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3345 }, 3346 }, { 3347 .chip = CHELSIO_T6, 3348 .fs_name = FW6_CFNAME, 3349 .fw_mod_name = FW6_FNAME, 3350 .fw_hdr = { 3351 .chip = FW_HDR_CHIP_T6, 3352 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 3353 .intfver_nic = FW_INTFVER(T6, NIC), 3354 .intfver_vnic = FW_INTFVER(T6, VNIC), 3355 .intfver_ofld = FW_INTFVER(T6, OFLD), 3356 .intfver_ri = FW_INTFVER(T6, RI), 3357 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 3358 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 3359 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 3360 .intfver_fcoe = FW_INTFVER(T6, FCOE), 3361 }, 3362 } 3363 3364 }; 3365 3366 static struct fw_info *find_fw_info(int chip) 3367 { 3368 int i; 3369 3370 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 3371 if (fw_info_array[i].chip == chip) 3372 return &fw_info_array[i]; 3373 } 3374 return NULL; 3375 } 3376 3377 /* 3378 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3379 */ 3380 static int adap_init0(struct adapter *adap) 3381 { 3382 int ret; 3383 u32 v, port_vec; 3384 enum dev_state state; 3385 u32 params[7], val[7]; 3386 struct fw_caps_config_cmd caps_cmd; 3387 int reset = 1; 3388 3389 /* Grab Firmware Device Log parameters as early as possible so we have 3390 * access to it for debugging, etc. 3391 */ 3392 ret = t4_init_devlog_params(adap); 3393 if (ret < 0) 3394 return ret; 3395 3396 /* Contact FW, advertising Master capability */ 3397 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 3398 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 3399 if (ret < 0) { 3400 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 3401 ret); 3402 return ret; 3403 } 3404 if (ret == adap->mbox) 3405 adap->flags |= MASTER_PF; 3406 3407 /* 3408 * If we're the Master PF Driver and the device is uninitialized, 3409 * then let's consider upgrading the firmware ... (We always want 3410 * to check the firmware version number in order to A. get it for 3411 * later reporting and B. to warn if the currently loaded firmware 3412 * is excessively mismatched relative to the driver.) 3413 */ 3414 t4_get_fw_version(adap, &adap->params.fw_vers); 3415 t4_get_bs_version(adap, &adap->params.bs_vers); 3416 t4_get_tp_version(adap, &adap->params.tp_vers); 3417 t4_get_exprom_version(adap, &adap->params.er_vers); 3418 3419 ret = t4_check_fw_version(adap); 3420 /* If firmware is too old (not supported by driver) force an update. */ 3421 if (ret) 3422 state = DEV_STATE_UNINIT; 3423 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 3424 struct fw_info *fw_info; 3425 struct fw_hdr *card_fw; 3426 const struct firmware *fw; 3427 const u8 *fw_data = NULL; 3428 unsigned int fw_size = 0; 3429 3430 /* This is the firmware whose headers the driver was compiled 3431 * against 3432 */ 3433 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 3434 if (fw_info == NULL) { 3435 dev_err(adap->pdev_dev, 3436 "unable to get firmware info for chip %d.\n", 3437 CHELSIO_CHIP_VERSION(adap->params.chip)); 3438 return -EINVAL; 3439 } 3440 3441 /* allocate memory to read the header of the firmware on the 3442 * card 3443 */ 3444 card_fw = t4_alloc_mem(sizeof(*card_fw)); 3445 3446 /* Get FW from from /lib/firmware/ */ 3447 ret = request_firmware(&fw, fw_info->fw_mod_name, 3448 adap->pdev_dev); 3449 if (ret < 0) { 3450 dev_err(adap->pdev_dev, 3451 "unable to load firmware image %s, error %d\n", 3452 fw_info->fw_mod_name, ret); 3453 } else { 3454 fw_data = fw->data; 3455 fw_size = fw->size; 3456 } 3457 3458 /* upgrade FW logic */ 3459 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 3460 state, &reset); 3461 3462 /* Cleaning up */ 3463 release_firmware(fw); 3464 t4_free_mem(card_fw); 3465 3466 if (ret < 0) 3467 goto bye; 3468 } 3469 3470 /* 3471 * Grab VPD parameters. This should be done after we establish a 3472 * connection to the firmware since some of the VPD parameters 3473 * (notably the Core Clock frequency) are retrieved via requests to 3474 * the firmware. On the other hand, we need these fairly early on 3475 * so we do this right after getting ahold of the firmware. 3476 */ 3477 ret = t4_get_vpd_params(adap, &adap->params.vpd); 3478 if (ret < 0) 3479 goto bye; 3480 3481 /* 3482 * Find out what ports are available to us. Note that we need to do 3483 * this before calling adap_init0_no_config() since it needs nports 3484 * and portvec ... 3485 */ 3486 v = 3487 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3488 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 3489 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 3490 if (ret < 0) 3491 goto bye; 3492 3493 adap->params.nports = hweight32(port_vec); 3494 adap->params.portvec = port_vec; 3495 3496 /* If the firmware is initialized already, emit a simply note to that 3497 * effect. Otherwise, it's time to try initializing the adapter. 3498 */ 3499 if (state == DEV_STATE_INIT) { 3500 dev_info(adap->pdev_dev, "Coming up as %s: "\ 3501 "Adapter already initialized\n", 3502 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 3503 } else { 3504 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 3505 "Initializing adapter\n"); 3506 3507 /* Find out whether we're dealing with a version of the 3508 * firmware which has configuration file support. 3509 */ 3510 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3511 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3512 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3513 params, val); 3514 3515 /* If the firmware doesn't support Configuration Files, 3516 * return an error. 3517 */ 3518 if (ret < 0) { 3519 dev_err(adap->pdev_dev, "firmware doesn't support " 3520 "Firmware Configuration Files\n"); 3521 goto bye; 3522 } 3523 3524 /* The firmware provides us with a memory buffer where we can 3525 * load a Configuration File from the host if we want to 3526 * override the Configuration File in flash. 3527 */ 3528 ret = adap_init0_config(adap, reset); 3529 if (ret == -ENOENT) { 3530 dev_err(adap->pdev_dev, "no Configuration File " 3531 "present on adapter.\n"); 3532 goto bye; 3533 } 3534 if (ret < 0) { 3535 dev_err(adap->pdev_dev, "could not initialize " 3536 "adapter, error %d\n", -ret); 3537 goto bye; 3538 } 3539 } 3540 3541 /* Give the SGE code a chance to pull in anything that it needs ... 3542 * Note that this must be called after we retrieve our VPD parameters 3543 * in order to know how to convert core ticks to seconds, etc. 3544 */ 3545 ret = t4_sge_init(adap); 3546 if (ret < 0) 3547 goto bye; 3548 3549 if (is_bypass_device(adap->pdev->device)) 3550 adap->params.bypass = 1; 3551 3552 /* 3553 * Grab some of our basic fundamental operating parameters. 3554 */ 3555 #define FW_PARAM_DEV(param) \ 3556 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 3557 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 3558 3559 #define FW_PARAM_PFVF(param) \ 3560 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 3561 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 3562 FW_PARAMS_PARAM_Y_V(0) | \ 3563 FW_PARAMS_PARAM_Z_V(0) 3564 3565 params[0] = FW_PARAM_PFVF(EQ_START); 3566 params[1] = FW_PARAM_PFVF(L2T_START); 3567 params[2] = FW_PARAM_PFVF(L2T_END); 3568 params[3] = FW_PARAM_PFVF(FILTER_START); 3569 params[4] = FW_PARAM_PFVF(FILTER_END); 3570 params[5] = FW_PARAM_PFVF(IQFLINT_START); 3571 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 3572 if (ret < 0) 3573 goto bye; 3574 adap->sge.egr_start = val[0]; 3575 adap->l2t_start = val[1]; 3576 adap->l2t_end = val[2]; 3577 adap->tids.ftid_base = val[3]; 3578 adap->tids.nftids = val[4] - val[3] + 1; 3579 adap->sge.ingr_start = val[5]; 3580 3581 /* qids (ingress/egress) returned from firmware can be anywhere 3582 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 3583 * Hence driver needs to allocate memory for this range to 3584 * store the queue info. Get the highest IQFLINT/EQ index returned 3585 * in FW_EQ_*_CMD.alloc command. 3586 */ 3587 params[0] = FW_PARAM_PFVF(EQ_END); 3588 params[1] = FW_PARAM_PFVF(IQFLINT_END); 3589 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3590 if (ret < 0) 3591 goto bye; 3592 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 3593 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 3594 3595 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 3596 sizeof(*adap->sge.egr_map), GFP_KERNEL); 3597 if (!adap->sge.egr_map) { 3598 ret = -ENOMEM; 3599 goto bye; 3600 } 3601 3602 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 3603 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 3604 if (!adap->sge.ingr_map) { 3605 ret = -ENOMEM; 3606 goto bye; 3607 } 3608 3609 /* Allocate the memory for the vaious egress queue bitmaps 3610 * ie starving_fl, txq_maperr and blocked_fl. 3611 */ 3612 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3613 sizeof(long), GFP_KERNEL); 3614 if (!adap->sge.starving_fl) { 3615 ret = -ENOMEM; 3616 goto bye; 3617 } 3618 3619 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3620 sizeof(long), GFP_KERNEL); 3621 if (!adap->sge.txq_maperr) { 3622 ret = -ENOMEM; 3623 goto bye; 3624 } 3625 3626 #ifdef CONFIG_DEBUG_FS 3627 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3628 sizeof(long), GFP_KERNEL); 3629 if (!adap->sge.blocked_fl) { 3630 ret = -ENOMEM; 3631 goto bye; 3632 } 3633 #endif 3634 3635 params[0] = FW_PARAM_PFVF(CLIP_START); 3636 params[1] = FW_PARAM_PFVF(CLIP_END); 3637 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3638 if (ret < 0) 3639 goto bye; 3640 adap->clipt_start = val[0]; 3641 adap->clipt_end = val[1]; 3642 3643 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 3644 * Classes supported by the hardware/firmware so we hard code it here 3645 * for now. 3646 */ 3647 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 3648 3649 /* query params related to active filter region */ 3650 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 3651 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 3652 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3653 /* If Active filter size is set we enable establishing 3654 * offload connection through firmware work request 3655 */ 3656 if ((val[0] != val[1]) && (ret >= 0)) { 3657 adap->flags |= FW_OFLD_CONN; 3658 adap->tids.aftid_base = val[0]; 3659 adap->tids.aftid_end = val[1]; 3660 } 3661 3662 /* If we're running on newer firmware, let it know that we're 3663 * prepared to deal with encapsulated CPL messages. Older 3664 * firmware won't understand this and we'll just get 3665 * unencapsulated messages ... 3666 */ 3667 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 3668 val[0] = 1; 3669 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 3670 3671 /* 3672 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 3673 * capability. Earlier versions of the firmware didn't have the 3674 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 3675 * permission to use ULPTX MEMWRITE DSGL. 3676 */ 3677 if (is_t4(adap->params.chip)) { 3678 adap->params.ulptx_memwrite_dsgl = false; 3679 } else { 3680 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 3681 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3682 1, params, val); 3683 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 3684 } 3685 3686 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 3687 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 3688 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3689 1, params, val); 3690 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 3691 3692 /* 3693 * Get device capabilities so we can determine what resources we need 3694 * to manage. 3695 */ 3696 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3697 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3698 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3699 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3700 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 3701 &caps_cmd); 3702 if (ret < 0) 3703 goto bye; 3704 3705 if (caps_cmd.ofldcaps) { 3706 /* query offload-related parameters */ 3707 params[0] = FW_PARAM_DEV(NTID); 3708 params[1] = FW_PARAM_PFVF(SERVER_START); 3709 params[2] = FW_PARAM_PFVF(SERVER_END); 3710 params[3] = FW_PARAM_PFVF(TDDP_START); 3711 params[4] = FW_PARAM_PFVF(TDDP_END); 3712 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 3713 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3714 params, val); 3715 if (ret < 0) 3716 goto bye; 3717 adap->tids.ntids = val[0]; 3718 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 3719 adap->tids.stid_base = val[1]; 3720 adap->tids.nstids = val[2] - val[1] + 1; 3721 /* 3722 * Setup server filter region. Divide the available filter 3723 * region into two parts. Regular filters get 1/3rd and server 3724 * filters get 2/3rd part. This is only enabled if workarond 3725 * path is enabled. 3726 * 1. For regular filters. 3727 * 2. Server filter: This are special filters which are used 3728 * to redirect SYN packets to offload queue. 3729 */ 3730 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 3731 adap->tids.sftid_base = adap->tids.ftid_base + 3732 DIV_ROUND_UP(adap->tids.nftids, 3); 3733 adap->tids.nsftids = adap->tids.nftids - 3734 DIV_ROUND_UP(adap->tids.nftids, 3); 3735 adap->tids.nftids = adap->tids.sftid_base - 3736 adap->tids.ftid_base; 3737 } 3738 adap->vres.ddp.start = val[3]; 3739 adap->vres.ddp.size = val[4] - val[3] + 1; 3740 adap->params.ofldq_wr_cred = val[5]; 3741 3742 adap->params.offload = 1; 3743 adap->num_ofld_uld += 1; 3744 } 3745 if (caps_cmd.rdmacaps) { 3746 params[0] = FW_PARAM_PFVF(STAG_START); 3747 params[1] = FW_PARAM_PFVF(STAG_END); 3748 params[2] = FW_PARAM_PFVF(RQ_START); 3749 params[3] = FW_PARAM_PFVF(RQ_END); 3750 params[4] = FW_PARAM_PFVF(PBL_START); 3751 params[5] = FW_PARAM_PFVF(PBL_END); 3752 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 3753 params, val); 3754 if (ret < 0) 3755 goto bye; 3756 adap->vres.stag.start = val[0]; 3757 adap->vres.stag.size = val[1] - val[0] + 1; 3758 adap->vres.rq.start = val[2]; 3759 adap->vres.rq.size = val[3] - val[2] + 1; 3760 adap->vres.pbl.start = val[4]; 3761 adap->vres.pbl.size = val[5] - val[4] + 1; 3762 3763 params[0] = FW_PARAM_PFVF(SQRQ_START); 3764 params[1] = FW_PARAM_PFVF(SQRQ_END); 3765 params[2] = FW_PARAM_PFVF(CQ_START); 3766 params[3] = FW_PARAM_PFVF(CQ_END); 3767 params[4] = FW_PARAM_PFVF(OCQ_START); 3768 params[5] = FW_PARAM_PFVF(OCQ_END); 3769 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 3770 val); 3771 if (ret < 0) 3772 goto bye; 3773 adap->vres.qp.start = val[0]; 3774 adap->vres.qp.size = val[1] - val[0] + 1; 3775 adap->vres.cq.start = val[2]; 3776 adap->vres.cq.size = val[3] - val[2] + 1; 3777 adap->vres.ocq.start = val[4]; 3778 adap->vres.ocq.size = val[5] - val[4] + 1; 3779 3780 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 3781 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 3782 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 3783 val); 3784 if (ret < 0) { 3785 adap->params.max_ordird_qp = 8; 3786 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 3787 ret = 0; 3788 } else { 3789 adap->params.max_ordird_qp = val[0]; 3790 adap->params.max_ird_adapter = val[1]; 3791 } 3792 dev_info(adap->pdev_dev, 3793 "max_ordird_qp %d max_ird_adapter %d\n", 3794 adap->params.max_ordird_qp, 3795 adap->params.max_ird_adapter); 3796 adap->num_ofld_uld += 2; 3797 } 3798 if (caps_cmd.iscsicaps) { 3799 params[0] = FW_PARAM_PFVF(ISCSI_START); 3800 params[1] = FW_PARAM_PFVF(ISCSI_END); 3801 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 3802 params, val); 3803 if (ret < 0) 3804 goto bye; 3805 adap->vres.iscsi.start = val[0]; 3806 adap->vres.iscsi.size = val[1] - val[0] + 1; 3807 /* LIO target and cxgb4i initiaitor */ 3808 adap->num_ofld_uld += 2; 3809 } 3810 if (caps_cmd.cryptocaps) { 3811 /* Should query params here...TODO */ 3812 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE; 3813 adap->num_uld += 1; 3814 } 3815 #undef FW_PARAM_PFVF 3816 #undef FW_PARAM_DEV 3817 3818 /* The MTU/MSS Table is initialized by now, so load their values. If 3819 * we're initializing the adapter, then we'll make any modifications 3820 * we want to the MTU/MSS Table and also initialize the congestion 3821 * parameters. 3822 */ 3823 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 3824 if (state != DEV_STATE_INIT) { 3825 int i; 3826 3827 /* The default MTU Table contains values 1492 and 1500. 3828 * However, for TCP, it's better to have two values which are 3829 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 3830 * This allows us to have a TCP Data Payload which is a 3831 * multiple of 8 regardless of what combination of TCP Options 3832 * are in use (always a multiple of 4 bytes) which is 3833 * important for performance reasons. For instance, if no 3834 * options are in use, then we have a 20-byte IP header and a 3835 * 20-byte TCP header. In this case, a 1500-byte MSS would 3836 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 3837 * which is not a multiple of 8. So using an MSS of 1488 in 3838 * this case results in a TCP Data Payload of 1448 bytes which 3839 * is a multiple of 8. On the other hand, if 12-byte TCP Time 3840 * Stamps have been negotiated, then an MTU of 1500 bytes 3841 * results in a TCP Data Payload of 1448 bytes which, as 3842 * above, is a multiple of 8 bytes ... 3843 */ 3844 for (i = 0; i < NMTUS; i++) 3845 if (adap->params.mtus[i] == 1492) { 3846 adap->params.mtus[i] = 1488; 3847 break; 3848 } 3849 3850 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 3851 adap->params.b_wnd); 3852 } 3853 t4_init_sge_params(adap); 3854 adap->flags |= FW_OK; 3855 t4_init_tp_params(adap); 3856 return 0; 3857 3858 /* 3859 * Something bad happened. If a command timed out or failed with EIO 3860 * FW does not operate within its spec or something catastrophic 3861 * happened to HW/FW, stop issuing commands. 3862 */ 3863 bye: 3864 kfree(adap->sge.egr_map); 3865 kfree(adap->sge.ingr_map); 3866 kfree(adap->sge.starving_fl); 3867 kfree(adap->sge.txq_maperr); 3868 #ifdef CONFIG_DEBUG_FS 3869 kfree(adap->sge.blocked_fl); 3870 #endif 3871 if (ret != -ETIMEDOUT && ret != -EIO) 3872 t4_fw_bye(adap, adap->mbox); 3873 return ret; 3874 } 3875 3876 /* EEH callbacks */ 3877 3878 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 3879 pci_channel_state_t state) 3880 { 3881 int i; 3882 struct adapter *adap = pci_get_drvdata(pdev); 3883 3884 if (!adap) 3885 goto out; 3886 3887 rtnl_lock(); 3888 adap->flags &= ~FW_OK; 3889 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 3890 spin_lock(&adap->stats_lock); 3891 for_each_port(adap, i) { 3892 struct net_device *dev = adap->port[i]; 3893 3894 netif_device_detach(dev); 3895 netif_carrier_off(dev); 3896 } 3897 spin_unlock(&adap->stats_lock); 3898 disable_interrupts(adap); 3899 if (adap->flags & FULL_INIT_DONE) 3900 cxgb_down(adap); 3901 rtnl_unlock(); 3902 if ((adap->flags & DEV_ENABLED)) { 3903 pci_disable_device(pdev); 3904 adap->flags &= ~DEV_ENABLED; 3905 } 3906 out: return state == pci_channel_io_perm_failure ? 3907 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 3908 } 3909 3910 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 3911 { 3912 int i, ret; 3913 struct fw_caps_config_cmd c; 3914 struct adapter *adap = pci_get_drvdata(pdev); 3915 3916 if (!adap) { 3917 pci_restore_state(pdev); 3918 pci_save_state(pdev); 3919 return PCI_ERS_RESULT_RECOVERED; 3920 } 3921 3922 if (!(adap->flags & DEV_ENABLED)) { 3923 if (pci_enable_device(pdev)) { 3924 dev_err(&pdev->dev, "Cannot reenable PCI " 3925 "device after reset\n"); 3926 return PCI_ERS_RESULT_DISCONNECT; 3927 } 3928 adap->flags |= DEV_ENABLED; 3929 } 3930 3931 pci_set_master(pdev); 3932 pci_restore_state(pdev); 3933 pci_save_state(pdev); 3934 pci_cleanup_aer_uncorrect_error_status(pdev); 3935 3936 if (t4_wait_dev_ready(adap->regs) < 0) 3937 return PCI_ERS_RESULT_DISCONNECT; 3938 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 3939 return PCI_ERS_RESULT_DISCONNECT; 3940 adap->flags |= FW_OK; 3941 if (adap_init1(adap, &c)) 3942 return PCI_ERS_RESULT_DISCONNECT; 3943 3944 for_each_port(adap, i) { 3945 struct port_info *p = adap2pinfo(adap, i); 3946 3947 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 3948 NULL, NULL); 3949 if (ret < 0) 3950 return PCI_ERS_RESULT_DISCONNECT; 3951 p->viid = ret; 3952 p->xact_addr_filt = -1; 3953 } 3954 3955 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 3956 adap->params.b_wnd); 3957 setup_memwin(adap); 3958 if (cxgb_up(adap)) 3959 return PCI_ERS_RESULT_DISCONNECT; 3960 return PCI_ERS_RESULT_RECOVERED; 3961 } 3962 3963 static void eeh_resume(struct pci_dev *pdev) 3964 { 3965 int i; 3966 struct adapter *adap = pci_get_drvdata(pdev); 3967 3968 if (!adap) 3969 return; 3970 3971 rtnl_lock(); 3972 for_each_port(adap, i) { 3973 struct net_device *dev = adap->port[i]; 3974 3975 if (netif_running(dev)) { 3976 link_start(dev); 3977 cxgb_set_rxmode(dev); 3978 } 3979 netif_device_attach(dev); 3980 } 3981 rtnl_unlock(); 3982 } 3983 3984 static const struct pci_error_handlers cxgb4_eeh = { 3985 .error_detected = eeh_err_detected, 3986 .slot_reset = eeh_slot_reset, 3987 .resume = eeh_resume, 3988 }; 3989 3990 /* Return true if the Link Configuration supports "High Speeds" (those greater 3991 * than 1Gb/s). 3992 */ 3993 static inline bool is_x_10g_port(const struct link_config *lc) 3994 { 3995 unsigned int speeds, high_speeds; 3996 3997 speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported)); 3998 high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G); 3999 4000 return high_speeds != 0; 4001 } 4002 4003 /* 4004 * Perform default configuration of DMA queues depending on the number and type 4005 * of ports we found and the number of available CPUs. Most settings can be 4006 * modified by the admin prior to actual use. 4007 */ 4008 static void cfg_queues(struct adapter *adap) 4009 { 4010 struct sge *s = &adap->sge; 4011 int i = 0, n10g = 0, qidx = 0; 4012 #ifndef CONFIG_CHELSIO_T4_DCB 4013 int q10g = 0; 4014 #endif 4015 4016 /* Reduce memory usage in kdump environment, disable all offload. 4017 */ 4018 if (is_kdump_kernel()) { 4019 adap->params.offload = 0; 4020 adap->params.crypto = 0; 4021 } else if (is_uld(adap) && t4_uld_mem_alloc(adap)) { 4022 adap->params.offload = 0; 4023 adap->params.crypto = 0; 4024 } 4025 4026 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4027 #ifdef CONFIG_CHELSIO_T4_DCB 4028 /* For Data Center Bridging support we need to be able to support up 4029 * to 8 Traffic Priorities; each of which will be assigned to its 4030 * own TX Queue in order to prevent Head-Of-Line Blocking. 4031 */ 4032 if (adap->params.nports * 8 > MAX_ETH_QSETS) { 4033 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n", 4034 MAX_ETH_QSETS, adap->params.nports * 8); 4035 BUG_ON(1); 4036 } 4037 4038 for_each_port(adap, i) { 4039 struct port_info *pi = adap2pinfo(adap, i); 4040 4041 pi->first_qset = qidx; 4042 pi->nqsets = 8; 4043 qidx += pi->nqsets; 4044 } 4045 #else /* !CONFIG_CHELSIO_T4_DCB */ 4046 /* 4047 * We default to 1 queue per non-10G port and up to # of cores queues 4048 * per 10G port. 4049 */ 4050 if (n10g) 4051 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 4052 if (q10g > netif_get_num_default_rss_queues()) 4053 q10g = netif_get_num_default_rss_queues(); 4054 4055 for_each_port(adap, i) { 4056 struct port_info *pi = adap2pinfo(adap, i); 4057 4058 pi->first_qset = qidx; 4059 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4060 qidx += pi->nqsets; 4061 } 4062 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4063 4064 s->ethqsets = qidx; 4065 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4066 4067 if (is_uld(adap)) { 4068 /* 4069 * For offload we use 1 queue/channel if all ports are up to 1G, 4070 * otherwise we divide all available queues amongst the channels 4071 * capped by the number of available cores. 4072 */ 4073 if (n10g) { 4074 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 4075 s->ofldqsets = roundup(i, adap->params.nports); 4076 } else { 4077 s->ofldqsets = adap->params.nports; 4078 } 4079 } 4080 4081 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4082 struct sge_eth_rxq *r = &s->ethrxq[i]; 4083 4084 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4085 r->fl.size = 72; 4086 } 4087 4088 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4089 s->ethtxq[i].q.size = 1024; 4090 4091 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4092 s->ctrlq[i].q.size = 512; 4093 4094 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4095 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 4096 } 4097 4098 /* 4099 * Reduce the number of Ethernet queues across all ports to at most n. 4100 * n provides at least one queue per port. 4101 */ 4102 static void reduce_ethqs(struct adapter *adap, int n) 4103 { 4104 int i; 4105 struct port_info *pi; 4106 4107 while (n < adap->sge.ethqsets) 4108 for_each_port(adap, i) { 4109 pi = adap2pinfo(adap, i); 4110 if (pi->nqsets > 1) { 4111 pi->nqsets--; 4112 adap->sge.ethqsets--; 4113 if (adap->sge.ethqsets <= n) 4114 break; 4115 } 4116 } 4117 4118 n = 0; 4119 for_each_port(adap, i) { 4120 pi = adap2pinfo(adap, i); 4121 pi->first_qset = n; 4122 n += pi->nqsets; 4123 } 4124 } 4125 4126 static int get_msix_info(struct adapter *adap) 4127 { 4128 struct uld_msix_info *msix_info; 4129 unsigned int max_ingq = 0; 4130 4131 if (is_offload(adap)) 4132 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 4133 if (is_pci_uld(adap)) 4134 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 4135 4136 if (!max_ingq) 4137 goto out; 4138 4139 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 4140 if (!msix_info) 4141 return -ENOMEM; 4142 4143 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 4144 sizeof(long), GFP_KERNEL); 4145 if (!adap->msix_bmap_ulds.msix_bmap) { 4146 kfree(msix_info); 4147 return -ENOMEM; 4148 } 4149 spin_lock_init(&adap->msix_bmap_ulds.lock); 4150 adap->msix_info_ulds = msix_info; 4151 out: 4152 return 0; 4153 } 4154 4155 static void free_msix_info(struct adapter *adap) 4156 { 4157 if (!(adap->num_uld && adap->num_ofld_uld)) 4158 return; 4159 4160 kfree(adap->msix_info_ulds); 4161 kfree(adap->msix_bmap_ulds.msix_bmap); 4162 } 4163 4164 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 4165 #define EXTRA_VECS 2 4166 4167 static int enable_msix(struct adapter *adap) 4168 { 4169 int ofld_need = 0, uld_need = 0; 4170 int i, j, want, need, allocated; 4171 struct sge *s = &adap->sge; 4172 unsigned int nchan = adap->params.nports; 4173 struct msix_entry *entries; 4174 int max_ingq = MAX_INGQ; 4175 4176 if (is_pci_uld(adap)) 4177 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 4178 if (is_offload(adap)) 4179 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 4180 entries = kmalloc(sizeof(*entries) * (max_ingq + 1), 4181 GFP_KERNEL); 4182 if (!entries) 4183 return -ENOMEM; 4184 4185 /* map for msix */ 4186 if (get_msix_info(adap)) { 4187 adap->params.offload = 0; 4188 adap->params.crypto = 0; 4189 } 4190 4191 for (i = 0; i < max_ingq + 1; ++i) 4192 entries[i].entry = i; 4193 4194 want = s->max_ethqsets + EXTRA_VECS; 4195 if (is_offload(adap)) { 4196 want += adap->num_ofld_uld * s->ofldqsets; 4197 ofld_need = adap->num_ofld_uld * nchan; 4198 } 4199 if (is_pci_uld(adap)) { 4200 want += adap->num_uld * s->ofldqsets; 4201 uld_need = adap->num_uld * nchan; 4202 } 4203 #ifdef CONFIG_CHELSIO_T4_DCB 4204 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 4205 * each port. 4206 */ 4207 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4208 #else 4209 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 4210 #endif 4211 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 4212 if (allocated < 0) { 4213 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 4214 " not using MSI-X\n"); 4215 kfree(entries); 4216 return allocated; 4217 } 4218 4219 /* Distribute available vectors to the various queue groups. 4220 * Every group gets its minimum requirement and NIC gets top 4221 * priority for leftovers. 4222 */ 4223 i = allocated - EXTRA_VECS - ofld_need - uld_need; 4224 if (i < s->max_ethqsets) { 4225 s->max_ethqsets = i; 4226 if (i < s->ethqsets) 4227 reduce_ethqs(adap, i); 4228 } 4229 if (is_uld(adap)) { 4230 if (allocated < want) 4231 s->nqs_per_uld = nchan; 4232 else 4233 s->nqs_per_uld = s->ofldqsets; 4234 } 4235 4236 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 4237 adap->msix_info[i].vec = entries[i].vector; 4238 if (is_uld(adap)) { 4239 for (j = 0 ; i < allocated; ++i, j++) { 4240 adap->msix_info_ulds[j].vec = entries[i].vector; 4241 adap->msix_info_ulds[j].idx = i; 4242 } 4243 adap->msix_bmap_ulds.mapsize = j; 4244 } 4245 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 4246 "nic %d per uld %d\n", 4247 allocated, s->max_ethqsets, s->nqs_per_uld); 4248 4249 kfree(entries); 4250 return 0; 4251 } 4252 4253 #undef EXTRA_VECS 4254 4255 static int init_rss(struct adapter *adap) 4256 { 4257 unsigned int i; 4258 int err; 4259 4260 err = t4_init_rss_mode(adap, adap->mbox); 4261 if (err) 4262 return err; 4263 4264 for_each_port(adap, i) { 4265 struct port_info *pi = adap2pinfo(adap, i); 4266 4267 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 4268 if (!pi->rss) 4269 return -ENOMEM; 4270 } 4271 return 0; 4272 } 4273 4274 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap, 4275 enum pci_bus_speed *speed, 4276 enum pcie_link_width *width) 4277 { 4278 u32 lnkcap1, lnkcap2; 4279 int err1, err2; 4280 4281 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */ 4282 4283 *speed = PCI_SPEED_UNKNOWN; 4284 *width = PCIE_LNK_WIDTH_UNKNOWN; 4285 4286 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP, 4287 &lnkcap1); 4288 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2, 4289 &lnkcap2); 4290 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */ 4291 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 4292 *speed = PCIE_SPEED_8_0GT; 4293 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 4294 *speed = PCIE_SPEED_5_0GT; 4295 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 4296 *speed = PCIE_SPEED_2_5GT; 4297 } 4298 if (!err1) { 4299 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT; 4300 if (!lnkcap2) { /* pre-r3.0 */ 4301 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB) 4302 *speed = PCIE_SPEED_5_0GT; 4303 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB) 4304 *speed = PCIE_SPEED_2_5GT; 4305 } 4306 } 4307 4308 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 4309 return err1 ? err1 : err2 ? err2 : -EINVAL; 4310 return 0; 4311 } 4312 4313 static void cxgb4_check_pcie_caps(struct adapter *adap) 4314 { 4315 enum pcie_link_width width, width_cap; 4316 enum pci_bus_speed speed, speed_cap; 4317 4318 #define PCIE_SPEED_STR(speed) \ 4319 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \ 4320 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \ 4321 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \ 4322 "Unknown") 4323 4324 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) { 4325 dev_warn(adap->pdev_dev, 4326 "Unable to determine PCIe device BW capabilities\n"); 4327 return; 4328 } 4329 4330 if (pcie_get_minimum_link(adap->pdev, &speed, &width) || 4331 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) { 4332 dev_warn(adap->pdev_dev, 4333 "Unable to determine PCI Express bandwidth.\n"); 4334 return; 4335 } 4336 4337 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n", 4338 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap)); 4339 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n", 4340 width, width_cap); 4341 if (speed < speed_cap || width < width_cap) 4342 dev_info(adap->pdev_dev, 4343 "A slot with more lanes and/or higher speed is " 4344 "suggested for optimal performance.\n"); 4345 } 4346 4347 /* Dump basic information about the adapter */ 4348 static void print_adapter_info(struct adapter *adapter) 4349 { 4350 /* Device information */ 4351 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 4352 adapter->params.vpd.id, 4353 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 4354 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 4355 adapter->params.vpd.sn, adapter->params.vpd.pn); 4356 4357 /* Firmware Version */ 4358 if (!adapter->params.fw_vers) 4359 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 4360 else 4361 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 4362 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 4363 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 4364 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 4365 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 4366 4367 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 4368 * Firmware, so dev_info() is more appropriate here.) 4369 */ 4370 if (!adapter->params.bs_vers) 4371 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 4372 else 4373 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 4374 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 4375 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 4376 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 4377 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 4378 4379 /* TP Microcode Version */ 4380 if (!adapter->params.tp_vers) 4381 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 4382 else 4383 dev_info(adapter->pdev_dev, 4384 "TP Microcode version: %u.%u.%u.%u\n", 4385 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 4386 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 4387 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 4388 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 4389 4390 /* Expansion ROM version */ 4391 if (!adapter->params.er_vers) 4392 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 4393 else 4394 dev_info(adapter->pdev_dev, 4395 "Expansion ROM version: %u.%u.%u.%u\n", 4396 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 4397 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 4398 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 4399 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 4400 4401 /* Software/Hardware configuration */ 4402 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 4403 is_offload(adapter) ? "R" : "", 4404 ((adapter->flags & USING_MSIX) ? "MSI-X" : 4405 (adapter->flags & USING_MSI) ? "MSI" : ""), 4406 is_offload(adapter) ? "Offload" : "non-Offload"); 4407 } 4408 4409 static void print_port_info(const struct net_device *dev) 4410 { 4411 char buf[80]; 4412 char *bufp = buf; 4413 const char *spd = ""; 4414 const struct port_info *pi = netdev_priv(dev); 4415 const struct adapter *adap = pi->adapter; 4416 4417 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 4418 spd = " 2.5 GT/s"; 4419 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 4420 spd = " 5 GT/s"; 4421 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 4422 spd = " 8 GT/s"; 4423 4424 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 4425 bufp += sprintf(bufp, "100M/"); 4426 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 4427 bufp += sprintf(bufp, "1G/"); 4428 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 4429 bufp += sprintf(bufp, "10G/"); 4430 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G) 4431 bufp += sprintf(bufp, "25G/"); 4432 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G) 4433 bufp += sprintf(bufp, "40G/"); 4434 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G) 4435 bufp += sprintf(bufp, "100G/"); 4436 if (bufp != buf) 4437 --bufp; 4438 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 4439 4440 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 4441 dev->name, adap->params.vpd.id, adap->name, buf); 4442 } 4443 4444 static void enable_pcie_relaxed_ordering(struct pci_dev *dev) 4445 { 4446 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 4447 } 4448 4449 /* 4450 * Free the following resources: 4451 * - memory used for tables 4452 * - MSI/MSI-X 4453 * - net devices 4454 * - resources FW is holding for us 4455 */ 4456 static void free_some_resources(struct adapter *adapter) 4457 { 4458 unsigned int i; 4459 4460 t4_free_mem(adapter->l2t); 4461 t4_cleanup_sched(adapter); 4462 t4_free_mem(adapter->tids.tid_tab); 4463 cxgb4_cleanup_tc_u32(adapter); 4464 kfree(adapter->sge.egr_map); 4465 kfree(adapter->sge.ingr_map); 4466 kfree(adapter->sge.starving_fl); 4467 kfree(adapter->sge.txq_maperr); 4468 #ifdef CONFIG_DEBUG_FS 4469 kfree(adapter->sge.blocked_fl); 4470 #endif 4471 disable_msi(adapter); 4472 4473 for_each_port(adapter, i) 4474 if (adapter->port[i]) { 4475 struct port_info *pi = adap2pinfo(adapter, i); 4476 4477 if (pi->viid != 0) 4478 t4_free_vi(adapter, adapter->mbox, adapter->pf, 4479 0, pi->viid); 4480 kfree(adap2pinfo(adapter, i)->rss); 4481 free_netdev(adapter->port[i]); 4482 } 4483 if (adapter->flags & FW_OK) 4484 t4_fw_bye(adapter, adapter->pf); 4485 } 4486 4487 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 4488 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 4489 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 4490 #define SEGMENT_SIZE 128 4491 4492 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev) 4493 { 4494 u16 device_id; 4495 4496 /* Retrieve adapter's device ID */ 4497 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 4498 4499 switch (device_id >> 12) { 4500 case CHELSIO_T4: 4501 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 4502 case CHELSIO_T5: 4503 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 4504 case CHELSIO_T6: 4505 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 4506 default: 4507 dev_err(&pdev->dev, "Device %d is not supported\n", 4508 device_id); 4509 } 4510 return -EINVAL; 4511 } 4512 4513 #ifdef CONFIG_PCI_IOV 4514 static void dummy_setup(struct net_device *dev) 4515 { 4516 dev->type = ARPHRD_NONE; 4517 dev->mtu = 0; 4518 dev->hard_header_len = 0; 4519 dev->addr_len = 0; 4520 dev->tx_queue_len = 0; 4521 dev->flags |= IFF_NOARP; 4522 dev->priv_flags |= IFF_NO_QUEUE; 4523 4524 /* Initialize the device structure. */ 4525 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 4526 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 4527 dev->destructor = free_netdev; 4528 } 4529 4530 static int config_mgmt_dev(struct pci_dev *pdev) 4531 { 4532 struct adapter *adap = pci_get_drvdata(pdev); 4533 struct net_device *netdev; 4534 struct port_info *pi; 4535 char name[IFNAMSIZ]; 4536 int err; 4537 4538 snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf); 4539 netdev = alloc_netdev(sizeof(struct port_info), name, NET_NAME_UNKNOWN, 4540 dummy_setup); 4541 if (!netdev) 4542 return -ENOMEM; 4543 4544 pi = netdev_priv(netdev); 4545 pi->adapter = adap; 4546 pi->port_id = adap->pf % adap->params.nports; 4547 SET_NETDEV_DEV(netdev, &pdev->dev); 4548 4549 adap->port[0] = netdev; 4550 4551 err = register_netdev(adap->port[0]); 4552 if (err) { 4553 pr_info("Unable to register VF mgmt netdev %s\n", name); 4554 free_netdev(adap->port[0]); 4555 adap->port[0] = NULL; 4556 return err; 4557 } 4558 return 0; 4559 } 4560 4561 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 4562 { 4563 struct adapter *adap = pci_get_drvdata(pdev); 4564 int err = 0; 4565 int current_vfs = pci_num_vf(pdev); 4566 u32 pcie_fw; 4567 4568 pcie_fw = readl(adap->regs + PCIE_FW_A); 4569 /* Check if cxgb4 is the MASTER and fw is initialized */ 4570 if (!(pcie_fw & PCIE_FW_INIT_F) || 4571 !(pcie_fw & PCIE_FW_MASTER_VLD_F) || 4572 PCIE_FW_MASTER_G(pcie_fw) != 4) { 4573 dev_warn(&pdev->dev, 4574 "cxgb4 driver needs to be MASTER to support SRIOV\n"); 4575 return -EOPNOTSUPP; 4576 } 4577 4578 /* If any of the VF's is already assigned to Guest OS, then 4579 * SRIOV for the same cannot be modified 4580 */ 4581 if (current_vfs && pci_vfs_assigned(pdev)) { 4582 dev_err(&pdev->dev, 4583 "Cannot modify SR-IOV while VFs are assigned\n"); 4584 num_vfs = current_vfs; 4585 return num_vfs; 4586 } 4587 4588 /* Disable SRIOV when zero is passed. 4589 * One needs to disable SRIOV before modifying it, else 4590 * stack throws the below warning: 4591 * " 'n' VFs already enabled. Disable before enabling 'm' VFs." 4592 */ 4593 if (!num_vfs) { 4594 pci_disable_sriov(pdev); 4595 if (adap->port[0]) { 4596 unregister_netdev(adap->port[0]); 4597 adap->port[0] = NULL; 4598 } 4599 /* free VF resources */ 4600 kfree(adap->vfinfo); 4601 adap->vfinfo = NULL; 4602 adap->num_vfs = 0; 4603 return num_vfs; 4604 } 4605 4606 if (num_vfs != current_vfs) { 4607 err = pci_enable_sriov(pdev, num_vfs); 4608 if (err) 4609 return err; 4610 4611 adap->num_vfs = num_vfs; 4612 err = config_mgmt_dev(pdev); 4613 if (err) 4614 return err; 4615 } 4616 4617 adap->vfinfo = kcalloc(adap->num_vfs, 4618 sizeof(struct vf_info), GFP_KERNEL); 4619 if (adap->vfinfo) 4620 fill_vf_station_mac_addr(adap); 4621 return num_vfs; 4622 } 4623 #endif 4624 4625 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4626 { 4627 int func, i, err, s_qpp, qpp, num_seg; 4628 struct port_info *pi; 4629 bool highdma = false; 4630 struct adapter *adapter = NULL; 4631 struct net_device *netdev; 4632 void __iomem *regs; 4633 u32 whoami, pl_rev; 4634 enum chip_type chip; 4635 static int adap_idx = 1; 4636 #ifdef CONFIG_PCI_IOV 4637 u32 v, port_vec; 4638 #endif 4639 4640 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 4641 4642 err = pci_request_regions(pdev, KBUILD_MODNAME); 4643 if (err) { 4644 /* Just info, some other driver may have claimed the device. */ 4645 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 4646 return err; 4647 } 4648 4649 err = pci_enable_device(pdev); 4650 if (err) { 4651 dev_err(&pdev->dev, "cannot enable PCI device\n"); 4652 goto out_release_regions; 4653 } 4654 4655 regs = pci_ioremap_bar(pdev, 0); 4656 if (!regs) { 4657 dev_err(&pdev->dev, "cannot map device registers\n"); 4658 err = -ENOMEM; 4659 goto out_disable_device; 4660 } 4661 4662 err = t4_wait_dev_ready(regs); 4663 if (err < 0) 4664 goto out_unmap_bar0; 4665 4666 /* We control everything through one PF */ 4667 whoami = readl(regs + PL_WHOAMI_A); 4668 pl_rev = REV_G(readl(regs + PL_REV_A)); 4669 chip = get_chip_type(pdev, pl_rev); 4670 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ? 4671 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4672 if (func != ent->driver_data) { 4673 #ifndef CONFIG_PCI_IOV 4674 iounmap(regs); 4675 #endif 4676 pci_disable_device(pdev); 4677 pci_save_state(pdev); /* to restore SR-IOV later */ 4678 goto sriov; 4679 } 4680 4681 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4682 highdma = true; 4683 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4684 if (err) { 4685 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 4686 "coherent allocations\n"); 4687 goto out_unmap_bar0; 4688 } 4689 } else { 4690 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4691 if (err) { 4692 dev_err(&pdev->dev, "no usable DMA configuration\n"); 4693 goto out_unmap_bar0; 4694 } 4695 } 4696 4697 pci_enable_pcie_error_reporting(pdev); 4698 enable_pcie_relaxed_ordering(pdev); 4699 pci_set_master(pdev); 4700 pci_save_state(pdev); 4701 4702 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4703 if (!adapter) { 4704 err = -ENOMEM; 4705 goto out_unmap_bar0; 4706 } 4707 adap_idx++; 4708 4709 adapter->workq = create_singlethread_workqueue("cxgb4"); 4710 if (!adapter->workq) { 4711 err = -ENOMEM; 4712 goto out_free_adapter; 4713 } 4714 4715 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 4716 (sizeof(struct mbox_cmd) * 4717 T4_OS_LOG_MBOX_CMDS), 4718 GFP_KERNEL); 4719 if (!adapter->mbox_log) { 4720 err = -ENOMEM; 4721 goto out_free_adapter; 4722 } 4723 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 4724 4725 /* PCI device has been enabled */ 4726 adapter->flags |= DEV_ENABLED; 4727 4728 adapter->regs = regs; 4729 adapter->pdev = pdev; 4730 adapter->pdev_dev = &pdev->dev; 4731 adapter->name = pci_name(pdev); 4732 adapter->mbox = func; 4733 adapter->pf = func; 4734 adapter->msg_enable = DFLT_MSG_ENABLE; 4735 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 4736 4737 spin_lock_init(&adapter->stats_lock); 4738 spin_lock_init(&adapter->tid_release_lock); 4739 spin_lock_init(&adapter->win0_lock); 4740 spin_lock_init(&adapter->mbox_lock); 4741 4742 INIT_LIST_HEAD(&adapter->mlist.list); 4743 4744 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 4745 INIT_WORK(&adapter->db_full_task, process_db_full); 4746 INIT_WORK(&adapter->db_drop_task, process_db_drop); 4747 4748 err = t4_prep_adapter(adapter); 4749 if (err) 4750 goto out_free_adapter; 4751 4752 4753 if (!is_t4(adapter->params.chip)) { 4754 s_qpp = (QUEUESPERPAGEPF0_S + 4755 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 4756 adapter->pf); 4757 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 4758 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 4759 num_seg = PAGE_SIZE / SEGMENT_SIZE; 4760 4761 /* Each segment size is 128B. Write coalescing is enabled only 4762 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 4763 * queue is less no of segments that can be accommodated in 4764 * a page size. 4765 */ 4766 if (qpp > num_seg) { 4767 dev_err(&pdev->dev, 4768 "Incorrect number of egress queues per page\n"); 4769 err = -EINVAL; 4770 goto out_free_adapter; 4771 } 4772 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 4773 pci_resource_len(pdev, 2)); 4774 if (!adapter->bar2) { 4775 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 4776 err = -ENOMEM; 4777 goto out_free_adapter; 4778 } 4779 } 4780 4781 setup_memwin(adapter); 4782 err = adap_init0(adapter); 4783 #ifdef CONFIG_DEBUG_FS 4784 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 4785 #endif 4786 setup_memwin_rdma(adapter); 4787 if (err) 4788 goto out_unmap_bar; 4789 4790 /* configure SGE_STAT_CFG_A to read WC stats */ 4791 if (!is_t4(adapter->params.chip)) 4792 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 4793 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 4794 T6_STATMODE_V(0))); 4795 4796 for_each_port(adapter, i) { 4797 netdev = alloc_etherdev_mq(sizeof(struct port_info), 4798 MAX_ETH_QSETS); 4799 if (!netdev) { 4800 err = -ENOMEM; 4801 goto out_free_dev; 4802 } 4803 4804 SET_NETDEV_DEV(netdev, &pdev->dev); 4805 4806 adapter->port[i] = netdev; 4807 pi = netdev_priv(netdev); 4808 pi->adapter = adapter; 4809 pi->xact_addr_filt = -1; 4810 pi->port_id = i; 4811 netdev->irq = pdev->irq; 4812 4813 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 4814 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4815 NETIF_F_RXCSUM | NETIF_F_RXHASH | 4816 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 4817 NETIF_F_HW_TC; 4818 if (highdma) 4819 netdev->hw_features |= NETIF_F_HIGHDMA; 4820 netdev->features |= netdev->hw_features; 4821 netdev->vlan_features = netdev->features & VLAN_FEAT; 4822 4823 netdev->priv_flags |= IFF_UNICAST_FLT; 4824 4825 /* MTU range: 81 - 9600 */ 4826 netdev->min_mtu = 81; 4827 netdev->max_mtu = MAX_MTU; 4828 4829 netdev->netdev_ops = &cxgb4_netdev_ops; 4830 #ifdef CONFIG_CHELSIO_T4_DCB 4831 netdev->dcbnl_ops = &cxgb4_dcb_ops; 4832 cxgb4_dcb_state_init(netdev); 4833 #endif 4834 cxgb4_set_ethtool_ops(netdev); 4835 } 4836 4837 pci_set_drvdata(pdev, adapter); 4838 4839 if (adapter->flags & FW_OK) { 4840 err = t4_port_init(adapter, func, func, 0); 4841 if (err) 4842 goto out_free_dev; 4843 } else if (adapter->params.nports == 1) { 4844 /* If we don't have a connection to the firmware -- possibly 4845 * because of an error -- grab the raw VPD parameters so we 4846 * can set the proper MAC Address on the debug network 4847 * interface that we've created. 4848 */ 4849 u8 hw_addr[ETH_ALEN]; 4850 u8 *na = adapter->params.vpd.na; 4851 4852 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 4853 if (!err) { 4854 for (i = 0; i < ETH_ALEN; i++) 4855 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 4856 hex2val(na[2 * i + 1])); 4857 t4_set_hw_addr(adapter, 0, hw_addr); 4858 } 4859 } 4860 4861 /* Configure queues and allocate tables now, they can be needed as 4862 * soon as the first register_netdev completes. 4863 */ 4864 cfg_queues(adapter); 4865 4866 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 4867 if (!adapter->l2t) { 4868 /* We tolerate a lack of L2T, giving up some functionality */ 4869 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 4870 adapter->params.offload = 0; 4871 } 4872 4873 #if IS_ENABLED(CONFIG_IPV6) 4874 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) && 4875 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 4876 /* CLIP functionality is not present in hardware, 4877 * hence disable all offload features 4878 */ 4879 dev_warn(&pdev->dev, 4880 "CLIP not enabled in hardware, continuing\n"); 4881 adapter->params.offload = 0; 4882 } else { 4883 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 4884 adapter->clipt_end); 4885 if (!adapter->clipt) { 4886 /* We tolerate a lack of clip_table, giving up 4887 * some functionality 4888 */ 4889 dev_warn(&pdev->dev, 4890 "could not allocate Clip table, continuing\n"); 4891 adapter->params.offload = 0; 4892 } 4893 } 4894 #endif 4895 4896 for_each_port(adapter, i) { 4897 pi = adap2pinfo(adapter, i); 4898 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 4899 if (!pi->sched_tbl) 4900 dev_warn(&pdev->dev, 4901 "could not activate scheduling on port %d\n", 4902 i); 4903 } 4904 4905 if (tid_init(&adapter->tids) < 0) { 4906 dev_warn(&pdev->dev, "could not allocate TID table, " 4907 "continuing\n"); 4908 adapter->params.offload = 0; 4909 } else { 4910 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 4911 if (!adapter->tc_u32) 4912 dev_warn(&pdev->dev, 4913 "could not offload tc u32, continuing\n"); 4914 } 4915 4916 if (is_offload(adapter)) { 4917 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 4918 u32 hash_base, hash_reg; 4919 4920 if (chip <= CHELSIO_T5) { 4921 hash_reg = LE_DB_TID_HASHBASE_A; 4922 hash_base = t4_read_reg(adapter, hash_reg); 4923 adapter->tids.hash_base = hash_base / 4; 4924 } else { 4925 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 4926 hash_base = t4_read_reg(adapter, hash_reg); 4927 adapter->tids.hash_base = hash_base; 4928 } 4929 } 4930 } 4931 4932 /* See what interrupts we'll be using */ 4933 if (msi > 1 && enable_msix(adapter) == 0) 4934 adapter->flags |= USING_MSIX; 4935 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 4936 adapter->flags |= USING_MSI; 4937 if (msi > 1) 4938 free_msix_info(adapter); 4939 } 4940 4941 /* check for PCI Express bandwidth capabiltites */ 4942 cxgb4_check_pcie_caps(adapter); 4943 4944 err = init_rss(adapter); 4945 if (err) 4946 goto out_free_dev; 4947 4948 /* 4949 * The card is now ready to go. If any errors occur during device 4950 * registration we do not fail the whole card but rather proceed only 4951 * with the ports we manage to register successfully. However we must 4952 * register at least one net device. 4953 */ 4954 for_each_port(adapter, i) { 4955 pi = adap2pinfo(adapter, i); 4956 adapter->port[i]->dev_port = pi->lport; 4957 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 4958 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 4959 4960 err = register_netdev(adapter->port[i]); 4961 if (err) 4962 break; 4963 adapter->chan_map[pi->tx_chan] = i; 4964 print_port_info(adapter->port[i]); 4965 } 4966 if (i == 0) { 4967 dev_err(&pdev->dev, "could not register any net devices\n"); 4968 goto out_free_dev; 4969 } 4970 if (err) { 4971 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 4972 err = 0; 4973 } 4974 4975 if (cxgb4_debugfs_root) { 4976 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 4977 cxgb4_debugfs_root); 4978 setup_debugfs(adapter); 4979 } 4980 4981 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 4982 pdev->needs_freset = 1; 4983 4984 if (is_uld(adapter)) { 4985 mutex_lock(&uld_mutex); 4986 list_add_tail(&adapter->list_node, &adapter_list); 4987 mutex_unlock(&uld_mutex); 4988 } 4989 4990 print_adapter_info(adapter); 4991 setup_fw_sge_queues(adapter); 4992 return 0; 4993 4994 sriov: 4995 #ifdef CONFIG_PCI_IOV 4996 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4997 if (!adapter) { 4998 err = -ENOMEM; 4999 goto free_pci_region; 5000 } 5001 5002 adapter->pdev = pdev; 5003 adapter->pdev_dev = &pdev->dev; 5004 adapter->name = pci_name(pdev); 5005 adapter->mbox = func; 5006 adapter->pf = func; 5007 adapter->regs = regs; 5008 adapter->adap_idx = adap_idx; 5009 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5010 (sizeof(struct mbox_cmd) * 5011 T4_OS_LOG_MBOX_CMDS), 5012 GFP_KERNEL); 5013 if (!adapter->mbox_log) { 5014 err = -ENOMEM; 5015 goto free_adapter; 5016 } 5017 spin_lock_init(&adapter->mbox_lock); 5018 INIT_LIST_HEAD(&adapter->mlist.list); 5019 5020 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 5021 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 5022 err = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1, 5023 &v, &port_vec); 5024 if (err < 0) { 5025 dev_err(adapter->pdev_dev, "Could not fetch port params\n"); 5026 goto free_adapter; 5027 } 5028 5029 adapter->params.nports = hweight32(port_vec); 5030 pci_set_drvdata(pdev, adapter); 5031 return 0; 5032 5033 free_adapter: 5034 kfree(adapter); 5035 free_pci_region: 5036 iounmap(regs); 5037 pci_disable_sriov(pdev); 5038 pci_release_regions(pdev); 5039 return err; 5040 #else 5041 return 0; 5042 #endif 5043 5044 out_free_dev: 5045 free_some_resources(adapter); 5046 if (adapter->flags & USING_MSIX) 5047 free_msix_info(adapter); 5048 if (adapter->num_uld || adapter->num_ofld_uld) 5049 t4_uld_mem_free(adapter); 5050 out_unmap_bar: 5051 if (!is_t4(adapter->params.chip)) 5052 iounmap(adapter->bar2); 5053 out_free_adapter: 5054 if (adapter->workq) 5055 destroy_workqueue(adapter->workq); 5056 5057 kfree(adapter->mbox_log); 5058 kfree(adapter); 5059 out_unmap_bar0: 5060 iounmap(regs); 5061 out_disable_device: 5062 pci_disable_pcie_error_reporting(pdev); 5063 pci_disable_device(pdev); 5064 out_release_regions: 5065 pci_release_regions(pdev); 5066 return err; 5067 } 5068 5069 static void remove_one(struct pci_dev *pdev) 5070 { 5071 struct adapter *adapter = pci_get_drvdata(pdev); 5072 5073 if (!adapter) { 5074 pci_release_regions(pdev); 5075 return; 5076 } 5077 5078 if (adapter->pf == 4) { 5079 int i; 5080 5081 /* Tear down per-adapter Work Queue first since it can contain 5082 * references to our adapter data structure. 5083 */ 5084 destroy_workqueue(adapter->workq); 5085 5086 if (is_uld(adapter)) 5087 detach_ulds(adapter); 5088 5089 disable_interrupts(adapter); 5090 5091 for_each_port(adapter, i) 5092 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5093 unregister_netdev(adapter->port[i]); 5094 5095 debugfs_remove_recursive(adapter->debugfs_root); 5096 5097 /* If we allocated filters, free up state associated with any 5098 * valid filters ... 5099 */ 5100 clear_all_filters(adapter); 5101 5102 if (adapter->flags & FULL_INIT_DONE) 5103 cxgb_down(adapter); 5104 5105 if (adapter->flags & USING_MSIX) 5106 free_msix_info(adapter); 5107 if (adapter->num_uld || adapter->num_ofld_uld) 5108 t4_uld_mem_free(adapter); 5109 free_some_resources(adapter); 5110 #if IS_ENABLED(CONFIG_IPV6) 5111 t4_cleanup_clip_tbl(adapter); 5112 #endif 5113 iounmap(adapter->regs); 5114 if (!is_t4(adapter->params.chip)) 5115 iounmap(adapter->bar2); 5116 pci_disable_pcie_error_reporting(pdev); 5117 if ((adapter->flags & DEV_ENABLED)) { 5118 pci_disable_device(pdev); 5119 adapter->flags &= ~DEV_ENABLED; 5120 } 5121 pci_release_regions(pdev); 5122 kfree(adapter->mbox_log); 5123 synchronize_rcu(); 5124 kfree(adapter); 5125 } 5126 #ifdef CONFIG_PCI_IOV 5127 else { 5128 if (adapter->port[0]) 5129 unregister_netdev(adapter->port[0]); 5130 iounmap(adapter->regs); 5131 kfree(adapter->vfinfo); 5132 kfree(adapter); 5133 pci_disable_sriov(pdev); 5134 pci_release_regions(pdev); 5135 } 5136 #endif 5137 } 5138 5139 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 5140 * delivery. This is essentially a stripped down version of the PCI remove() 5141 * function where we do the minimal amount of work necessary to shutdown any 5142 * further activity. 5143 */ 5144 static void shutdown_one(struct pci_dev *pdev) 5145 { 5146 struct adapter *adapter = pci_get_drvdata(pdev); 5147 5148 /* As with remove_one() above (see extended comment), we only want do 5149 * do cleanup on PCI Devices which went all the way through init_one() 5150 * ... 5151 */ 5152 if (!adapter) { 5153 pci_release_regions(pdev); 5154 return; 5155 } 5156 5157 if (adapter->pf == 4) { 5158 int i; 5159 5160 for_each_port(adapter, i) 5161 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5162 cxgb_close(adapter->port[i]); 5163 5164 t4_uld_clean_up(adapter); 5165 disable_interrupts(adapter); 5166 disable_msi(adapter); 5167 5168 t4_sge_stop(adapter); 5169 if (adapter->flags & FW_OK) 5170 t4_fw_bye(adapter, adapter->mbox); 5171 } 5172 #ifdef CONFIG_PCI_IOV 5173 else { 5174 if (adapter->port[0]) 5175 unregister_netdev(adapter->port[0]); 5176 iounmap(adapter->regs); 5177 kfree(adapter->vfinfo); 5178 kfree(adapter); 5179 pci_disable_sriov(pdev); 5180 pci_release_regions(pdev); 5181 } 5182 #endif 5183 } 5184 5185 static struct pci_driver cxgb4_driver = { 5186 .name = KBUILD_MODNAME, 5187 .id_table = cxgb4_pci_tbl, 5188 .probe = init_one, 5189 .remove = remove_one, 5190 .shutdown = shutdown_one, 5191 #ifdef CONFIG_PCI_IOV 5192 .sriov_configure = cxgb4_iov_configure, 5193 #endif 5194 .err_handler = &cxgb4_eeh, 5195 }; 5196 5197 static int __init cxgb4_init_module(void) 5198 { 5199 int ret; 5200 5201 /* Debugfs support is optional, just warn if this fails */ 5202 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 5203 if (!cxgb4_debugfs_root) 5204 pr_warn("could not create debugfs entry, continuing\n"); 5205 5206 ret = pci_register_driver(&cxgb4_driver); 5207 if (ret < 0) 5208 debugfs_remove(cxgb4_debugfs_root); 5209 5210 #if IS_ENABLED(CONFIG_IPV6) 5211 if (!inet6addr_registered) { 5212 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5213 inet6addr_registered = true; 5214 } 5215 #endif 5216 5217 return ret; 5218 } 5219 5220 static void __exit cxgb4_cleanup_module(void) 5221 { 5222 #if IS_ENABLED(CONFIG_IPV6) 5223 if (inet6addr_registered) { 5224 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5225 inet6addr_registered = false; 5226 } 5227 #endif 5228 pci_unregister_driver(&cxgb4_driver); 5229 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 5230 } 5231 5232 module_init(cxgb4_init_module); 5233 module_exit(cxgb4_cleanup_module); 5234