1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <asm/uaccess.h>
65 
66 #include "cxgb4.h"
67 #include "t4_regs.h"
68 #include "t4_msg.h"
69 #include "t4fw_api.h"
70 #include "l2t.h"
71 
72 #include <../drivers/net/bonding/bonding.h>
73 
74 #ifdef DRV_VERSION
75 #undef DRV_VERSION
76 #endif
77 #define DRV_VERSION "2.0.0-ko"
78 #define DRV_DESC "Chelsio T4/T5 Network Driver"
79 
80 /*
81  * Max interrupt hold-off timer value in us.  Queues fall back to this value
82  * under extreme memory pressure so it's largish to give the system time to
83  * recover.
84  */
85 #define MAX_SGE_TIMERVAL 200U
86 
87 enum {
88 	/*
89 	 * Physical Function provisioning constants.
90 	 */
91 	PFRES_NVI = 4,			/* # of Virtual Interfaces */
92 	PFRES_NETHCTRL = 128,		/* # of EQs used for ETH or CTRL Qs */
93 	PFRES_NIQFLINT = 128,		/* # of ingress Qs/w Free List(s)/intr
94 					 */
95 	PFRES_NEQ = 256,		/* # of egress queues */
96 	PFRES_NIQ = 0,			/* # of ingress queues */
97 	PFRES_TC = 0,			/* PCI-E traffic class */
98 	PFRES_NEXACTF = 128,		/* # of exact MPS filters */
99 
100 	PFRES_R_CAPS = FW_CMD_CAP_PF,
101 	PFRES_WX_CAPS = FW_CMD_CAP_PF,
102 
103 #ifdef CONFIG_PCI_IOV
104 	/*
105 	 * Virtual Function provisioning constants.  We need two extra Ingress
106 	 * Queues with Interrupt capability to serve as the VF's Firmware
107 	 * Event Queue and Forwarded Interrupt Queue (when using MSI mode) --
108 	 * neither will have Free Lists associated with them).  For each
109 	 * Ethernet/Control Egress Queue and for each Free List, we need an
110 	 * Egress Context.
111 	 */
112 	VFRES_NPORTS = 1,		/* # of "ports" per VF */
113 	VFRES_NQSETS = 2,		/* # of "Queue Sets" per VF */
114 
115 	VFRES_NVI = VFRES_NPORTS,	/* # of Virtual Interfaces */
116 	VFRES_NETHCTRL = VFRES_NQSETS,	/* # of EQs used for ETH or CTRL Qs */
117 	VFRES_NIQFLINT = VFRES_NQSETS+2,/* # of ingress Qs/w Free List(s)/intr */
118 	VFRES_NEQ = VFRES_NQSETS*2,	/* # of egress queues */
119 	VFRES_NIQ = 0,			/* # of non-fl/int ingress queues */
120 	VFRES_TC = 0,			/* PCI-E traffic class */
121 	VFRES_NEXACTF = 16,		/* # of exact MPS filters */
122 
123 	VFRES_R_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF|FW_CMD_CAP_PORT,
124 	VFRES_WX_CAPS = FW_CMD_CAP_DMAQ|FW_CMD_CAP_VF,
125 #endif
126 };
127 
128 /*
129  * Provide a Port Access Rights Mask for the specified PF/VF.  This is very
130  * static and likely not to be useful in the long run.  We really need to
131  * implement some form of persistent configuration which the firmware
132  * controls.
133  */
134 static unsigned int pfvfres_pmask(struct adapter *adapter,
135 				  unsigned int pf, unsigned int vf)
136 {
137 	unsigned int portn, portvec;
138 
139 	/*
140 	 * Give PF's access to all of the ports.
141 	 */
142 	if (vf == 0)
143 		return FW_PFVF_CMD_PMASK_MASK;
144 
145 	/*
146 	 * For VFs, we'll assign them access to the ports based purely on the
147 	 * PF.  We assign active ports in order, wrapping around if there are
148 	 * fewer active ports than PFs: e.g. active port[pf % nports].
149 	 * Unfortunately the adapter's port_info structs haven't been
150 	 * initialized yet so we have to compute this.
151 	 */
152 	if (adapter->params.nports == 0)
153 		return 0;
154 
155 	portn = pf % adapter->params.nports;
156 	portvec = adapter->params.portvec;
157 	for (;;) {
158 		/*
159 		 * Isolate the lowest set bit in the port vector.  If we're at
160 		 * the port number that we want, return that as the pmask.
161 		 * otherwise mask that bit out of the port vector and
162 		 * decrement our port number ...
163 		 */
164 		unsigned int pmask = portvec ^ (portvec & (portvec-1));
165 		if (portn == 0)
166 			return pmask;
167 		portn--;
168 		portvec &= ~pmask;
169 	}
170 	/*NOTREACHED*/
171 }
172 
173 enum {
174 	MAX_TXQ_ENTRIES      = 16384,
175 	MAX_CTRL_TXQ_ENTRIES = 1024,
176 	MAX_RSPQ_ENTRIES     = 16384,
177 	MAX_RX_BUFFERS       = 16384,
178 	MIN_TXQ_ENTRIES      = 32,
179 	MIN_CTRL_TXQ_ENTRIES = 32,
180 	MIN_RSPQ_ENTRIES     = 128,
181 	MIN_FL_ENTRIES       = 16
182 };
183 
184 /* Host shadow copy of ingress filter entry.  This is in host native format
185  * and doesn't match the ordering or bit order, etc. of the hardware of the
186  * firmware command.  The use of bit-field structure elements is purely to
187  * remind ourselves of the field size limitations and save memory in the case
188  * where the filter table is large.
189  */
190 struct filter_entry {
191 	/* Administrative fields for filter.
192 	 */
193 	u32 valid:1;            /* filter allocated and valid */
194 	u32 locked:1;           /* filter is administratively locked */
195 
196 	u32 pending:1;          /* filter action is pending firmware reply */
197 	u32 smtidx:8;           /* Source MAC Table index for smac */
198 	struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
199 
200 	/* The filter itself.  Most of this is a straight copy of information
201 	 * provided by the extended ioctl().  Some fields are translated to
202 	 * internal forms -- for instance the Ingress Queue ID passed in from
203 	 * the ioctl() is translated into the Absolute Ingress Queue ID.
204 	 */
205 	struct ch_filter_specification fs;
206 };
207 
208 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
209 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
210 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
211 
212 #define CH_DEVICE(devid, data) { PCI_VDEVICE(CHELSIO, devid), (data) }
213 
214 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
215 	CH_DEVICE(0xa000, 0),  /* PE10K */
216 	CH_DEVICE(0x4001, -1),
217 	CH_DEVICE(0x4002, -1),
218 	CH_DEVICE(0x4003, -1),
219 	CH_DEVICE(0x4004, -1),
220 	CH_DEVICE(0x4005, -1),
221 	CH_DEVICE(0x4006, -1),
222 	CH_DEVICE(0x4007, -1),
223 	CH_DEVICE(0x4008, -1),
224 	CH_DEVICE(0x4009, -1),
225 	CH_DEVICE(0x400a, -1),
226 	CH_DEVICE(0x4401, 4),
227 	CH_DEVICE(0x4402, 4),
228 	CH_DEVICE(0x4403, 4),
229 	CH_DEVICE(0x4404, 4),
230 	CH_DEVICE(0x4405, 4),
231 	CH_DEVICE(0x4406, 4),
232 	CH_DEVICE(0x4407, 4),
233 	CH_DEVICE(0x4408, 4),
234 	CH_DEVICE(0x4409, 4),
235 	CH_DEVICE(0x440a, 4),
236 	CH_DEVICE(0x440d, 4),
237 	CH_DEVICE(0x440e, 4),
238 	CH_DEVICE(0x5001, 4),
239 	CH_DEVICE(0x5002, 4),
240 	CH_DEVICE(0x5003, 4),
241 	CH_DEVICE(0x5004, 4),
242 	CH_DEVICE(0x5005, 4),
243 	CH_DEVICE(0x5006, 4),
244 	CH_DEVICE(0x5007, 4),
245 	CH_DEVICE(0x5008, 4),
246 	CH_DEVICE(0x5009, 4),
247 	CH_DEVICE(0x500A, 4),
248 	CH_DEVICE(0x500B, 4),
249 	CH_DEVICE(0x500C, 4),
250 	CH_DEVICE(0x500D, 4),
251 	CH_DEVICE(0x500E, 4),
252 	CH_DEVICE(0x500F, 4),
253 	CH_DEVICE(0x5010, 4),
254 	CH_DEVICE(0x5011, 4),
255 	CH_DEVICE(0x5012, 4),
256 	CH_DEVICE(0x5013, 4),
257 	CH_DEVICE(0x5014, 4),
258 	CH_DEVICE(0x5015, 4),
259 	CH_DEVICE(0x5080, 4),
260 	CH_DEVICE(0x5081, 4),
261 	CH_DEVICE(0x5082, 4),
262 	CH_DEVICE(0x5083, 4),
263 	CH_DEVICE(0x5084, 4),
264 	CH_DEVICE(0x5085, 4),
265 	CH_DEVICE(0x5401, 4),
266 	CH_DEVICE(0x5402, 4),
267 	CH_DEVICE(0x5403, 4),
268 	CH_DEVICE(0x5404, 4),
269 	CH_DEVICE(0x5405, 4),
270 	CH_DEVICE(0x5406, 4),
271 	CH_DEVICE(0x5407, 4),
272 	CH_DEVICE(0x5408, 4),
273 	CH_DEVICE(0x5409, 4),
274 	CH_DEVICE(0x540A, 4),
275 	CH_DEVICE(0x540B, 4),
276 	CH_DEVICE(0x540C, 4),
277 	CH_DEVICE(0x540D, 4),
278 	CH_DEVICE(0x540E, 4),
279 	CH_DEVICE(0x540F, 4),
280 	CH_DEVICE(0x5410, 4),
281 	CH_DEVICE(0x5411, 4),
282 	CH_DEVICE(0x5412, 4),
283 	CH_DEVICE(0x5413, 4),
284 	CH_DEVICE(0x5414, 4),
285 	CH_DEVICE(0x5415, 4),
286 	CH_DEVICE(0x5480, 4),
287 	CH_DEVICE(0x5481, 4),
288 	CH_DEVICE(0x5482, 4),
289 	CH_DEVICE(0x5483, 4),
290 	CH_DEVICE(0x5484, 4),
291 	CH_DEVICE(0x5485, 4),
292 	{ 0, }
293 };
294 
295 #define FW4_FNAME "cxgb4/t4fw.bin"
296 #define FW5_FNAME "cxgb4/t5fw.bin"
297 #define FW4_CFNAME "cxgb4/t4-config.txt"
298 #define FW5_CFNAME "cxgb4/t5-config.txt"
299 
300 MODULE_DESCRIPTION(DRV_DESC);
301 MODULE_AUTHOR("Chelsio Communications");
302 MODULE_LICENSE("Dual BSD/GPL");
303 MODULE_VERSION(DRV_VERSION);
304 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
305 MODULE_FIRMWARE(FW4_FNAME);
306 MODULE_FIRMWARE(FW5_FNAME);
307 
308 /*
309  * Normally we're willing to become the firmware's Master PF but will be happy
310  * if another PF has already become the Master and initialized the adapter.
311  * Setting "force_init" will cause this driver to forcibly establish itself as
312  * the Master PF and initialize the adapter.
313  */
314 static uint force_init;
315 
316 module_param(force_init, uint, 0644);
317 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");
318 
319 /*
320  * Normally if the firmware we connect to has Configuration File support, we
321  * use that and only fall back to the old Driver-based initialization if the
322  * Configuration File fails for some reason.  If force_old_init is set, then
323  * we'll always use the old Driver-based initialization sequence.
324  */
325 static uint force_old_init;
326 
327 module_param(force_old_init, uint, 0644);
328 MODULE_PARM_DESC(force_old_init, "Force old initialization sequence");
329 
330 static int dflt_msg_enable = DFLT_MSG_ENABLE;
331 
332 module_param(dflt_msg_enable, int, 0644);
333 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
334 
335 /*
336  * The driver uses the best interrupt scheme available on a platform in the
337  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
338  * of these schemes the driver may consider as follows:
339  *
340  * msi = 2: choose from among all three options
341  * msi = 1: only consider MSI and INTx interrupts
342  * msi = 0: force INTx interrupts
343  */
344 static int msi = 2;
345 
346 module_param(msi, int, 0644);
347 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
348 
349 /*
350  * Queue interrupt hold-off timer values.  Queues default to the first of these
351  * upon creation.
352  */
353 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
354 
355 module_param_array(intr_holdoff, uint, NULL, 0644);
356 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
357 		 "0..4 in microseconds");
358 
359 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
360 
361 module_param_array(intr_cnt, uint, NULL, 0644);
362 MODULE_PARM_DESC(intr_cnt,
363 		 "thresholds 1..3 for queue interrupt packet counters");
364 
365 /*
366  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
367  * offset by 2 bytes in order to have the IP headers line up on 4-byte
368  * boundaries.  This is a requirement for many architectures which will throw
369  * a machine check fault if an attempt is made to access one of the 4-byte IP
370  * header fields on a non-4-byte boundary.  And it's a major performance issue
371  * even on some architectures which allow it like some implementations of the
372  * x86 ISA.  However, some architectures don't mind this and for some very
373  * edge-case performance sensitive applications (like forwarding large volumes
374  * of small packets), setting this DMA offset to 0 will decrease the number of
375  * PCI-E Bus transfers enough to measurably affect performance.
376  */
377 static int rx_dma_offset = 2;
378 
379 static bool vf_acls;
380 
381 #ifdef CONFIG_PCI_IOV
382 module_param(vf_acls, bool, 0644);
383 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
384 
385 /* Configure the number of PCI-E Virtual Function which are to be instantiated
386  * on SR-IOV Capable Physical Functions.
387  */
388 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
389 
390 module_param_array(num_vf, uint, NULL, 0644);
391 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
392 #endif
393 
394 /*
395  * The filter TCAM has a fixed portion and a variable portion.  The fixed
396  * portion can match on source/destination IP IPv4/IPv6 addresses and TCP/UDP
397  * ports.  The variable portion is 36 bits which can include things like Exact
398  * Match MAC Index (9 bits), Ether Type (16 bits), IP Protocol (8 bits),
399  * [Inner] VLAN Tag (17 bits), etc. which, if all were somehow selected, would
400  * far exceed the 36-bit budget for this "compressed" header portion of the
401  * filter.  Thus, we have a scarce resource which must be carefully managed.
402  *
403  * By default we set this up to mostly match the set of filter matching
404  * capabilities of T3 but with accommodations for some of T4's more
405  * interesting features:
406  *
407  *   { IP Fragment (1), MPS Match Type (3), IP Protocol (8),
408  *     [Inner] VLAN (17), Port (3), FCoE (1) }
409  */
410 enum {
411 	TP_VLAN_PRI_MAP_DEFAULT = HW_TPL_FR_MT_PR_IV_P_FC,
412 	TP_VLAN_PRI_MAP_FIRST = FCOE_SHIFT,
413 	TP_VLAN_PRI_MAP_LAST = FRAGMENTATION_SHIFT,
414 };
415 
416 static unsigned int tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
417 
418 module_param(tp_vlan_pri_map, uint, 0644);
419 MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration");
420 
421 static struct dentry *cxgb4_debugfs_root;
422 
423 static LIST_HEAD(adapter_list);
424 static DEFINE_MUTEX(uld_mutex);
425 /* Adapter list to be accessed from atomic context */
426 static LIST_HEAD(adap_rcu_list);
427 static DEFINE_SPINLOCK(adap_rcu_lock);
428 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
429 static const char *uld_str[] = { "RDMA", "iSCSI" };
430 
431 static void link_report(struct net_device *dev)
432 {
433 	if (!netif_carrier_ok(dev))
434 		netdev_info(dev, "link down\n");
435 	else {
436 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
437 
438 		const char *s = "10Mbps";
439 		const struct port_info *p = netdev_priv(dev);
440 
441 		switch (p->link_cfg.speed) {
442 		case 10000:
443 			s = "10Gbps";
444 			break;
445 		case 1000:
446 			s = "1000Mbps";
447 			break;
448 		case 100:
449 			s = "100Mbps";
450 			break;
451 		case 40000:
452 			s = "40Gbps";
453 			break;
454 		}
455 
456 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
457 			    fc[p->link_cfg.fc]);
458 	}
459 }
460 
461 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
462 {
463 	struct net_device *dev = adapter->port[port_id];
464 
465 	/* Skip changes from disabled ports. */
466 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
467 		if (link_stat)
468 			netif_carrier_on(dev);
469 		else
470 			netif_carrier_off(dev);
471 
472 		link_report(dev);
473 	}
474 }
475 
476 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
477 {
478 	static const char *mod_str[] = {
479 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
480 	};
481 
482 	const struct net_device *dev = adap->port[port_id];
483 	const struct port_info *pi = netdev_priv(dev);
484 
485 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
486 		netdev_info(dev, "port module unplugged\n");
487 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
488 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
489 }
490 
491 /*
492  * Configure the exact and hash address filters to handle a port's multicast
493  * and secondary unicast MAC addresses.
494  */
495 static int set_addr_filters(const struct net_device *dev, bool sleep)
496 {
497 	u64 mhash = 0;
498 	u64 uhash = 0;
499 	bool free = true;
500 	u16 filt_idx[7];
501 	const u8 *addr[7];
502 	int ret, naddr = 0;
503 	const struct netdev_hw_addr *ha;
504 	int uc_cnt = netdev_uc_count(dev);
505 	int mc_cnt = netdev_mc_count(dev);
506 	const struct port_info *pi = netdev_priv(dev);
507 	unsigned int mb = pi->adapter->fn;
508 
509 	/* first do the secondary unicast addresses */
510 	netdev_for_each_uc_addr(ha, dev) {
511 		addr[naddr++] = ha->addr;
512 		if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
513 			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
514 					naddr, addr, filt_idx, &uhash, sleep);
515 			if (ret < 0)
516 				return ret;
517 
518 			free = false;
519 			naddr = 0;
520 		}
521 	}
522 
523 	/* next set up the multicast addresses */
524 	netdev_for_each_mc_addr(ha, dev) {
525 		addr[naddr++] = ha->addr;
526 		if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
527 			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
528 					naddr, addr, filt_idx, &mhash, sleep);
529 			if (ret < 0)
530 				return ret;
531 
532 			free = false;
533 			naddr = 0;
534 		}
535 	}
536 
537 	return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
538 				uhash | mhash, sleep);
539 }
540 
541 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
542 module_param(dbfifo_int_thresh, int, 0644);
543 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
544 
545 /*
546  * usecs to sleep while draining the dbfifo
547  */
548 static int dbfifo_drain_delay = 1000;
549 module_param(dbfifo_drain_delay, int, 0644);
550 MODULE_PARM_DESC(dbfifo_drain_delay,
551 		 "usecs to sleep while draining the dbfifo");
552 
553 /*
554  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
555  * If @mtu is -1 it is left unchanged.
556  */
557 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
558 {
559 	int ret;
560 	struct port_info *pi = netdev_priv(dev);
561 
562 	ret = set_addr_filters(dev, sleep_ok);
563 	if (ret == 0)
564 		ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, mtu,
565 				    (dev->flags & IFF_PROMISC) ? 1 : 0,
566 				    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
567 				    sleep_ok);
568 	return ret;
569 }
570 
571 static struct workqueue_struct *workq;
572 
573 /**
574  *	link_start - enable a port
575  *	@dev: the port to enable
576  *
577  *	Performs the MAC and PHY actions needed to enable a port.
578  */
579 static int link_start(struct net_device *dev)
580 {
581 	int ret;
582 	struct port_info *pi = netdev_priv(dev);
583 	unsigned int mb = pi->adapter->fn;
584 
585 	/*
586 	 * We do not set address filters and promiscuity here, the stack does
587 	 * that step explicitly.
588 	 */
589 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
590 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
591 	if (ret == 0) {
592 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
593 				    pi->xact_addr_filt, dev->dev_addr, true,
594 				    true);
595 		if (ret >= 0) {
596 			pi->xact_addr_filt = ret;
597 			ret = 0;
598 		}
599 	}
600 	if (ret == 0)
601 		ret = t4_link_start(pi->adapter, mb, pi->tx_chan,
602 				    &pi->link_cfg);
603 	if (ret == 0)
604 		ret = t4_enable_vi(pi->adapter, mb, pi->viid, true, true);
605 	return ret;
606 }
607 
608 /* Clear a filter and release any of its resources that we own.  This also
609  * clears the filter's "pending" status.
610  */
611 static void clear_filter(struct adapter *adap, struct filter_entry *f)
612 {
613 	/* If the new or old filter have loopback rewriteing rules then we'll
614 	 * need to free any existing Layer Two Table (L2T) entries of the old
615 	 * filter rule.  The firmware will handle freeing up any Source MAC
616 	 * Table (SMT) entries used for rewriting Source MAC Addresses in
617 	 * loopback rules.
618 	 */
619 	if (f->l2t)
620 		cxgb4_l2t_release(f->l2t);
621 
622 	/* The zeroing of the filter rule below clears the filter valid,
623 	 * pending, locked flags, l2t pointer, etc. so it's all we need for
624 	 * this operation.
625 	 */
626 	memset(f, 0, sizeof(*f));
627 }
628 
629 /* Handle a filter write/deletion reply.
630  */
631 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
632 {
633 	unsigned int idx = GET_TID(rpl);
634 	unsigned int nidx = idx - adap->tids.ftid_base;
635 	unsigned int ret;
636 	struct filter_entry *f;
637 
638 	if (idx >= adap->tids.ftid_base && nidx <
639 	   (adap->tids.nftids + adap->tids.nsftids)) {
640 		idx = nidx;
641 		ret = GET_TCB_COOKIE(rpl->cookie);
642 		f = &adap->tids.ftid_tab[idx];
643 
644 		if (ret == FW_FILTER_WR_FLT_DELETED) {
645 			/* Clear the filter when we get confirmation from the
646 			 * hardware that the filter has been deleted.
647 			 */
648 			clear_filter(adap, f);
649 		} else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
650 			dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
651 				idx);
652 			clear_filter(adap, f);
653 		} else if (ret == FW_FILTER_WR_FLT_ADDED) {
654 			f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
655 			f->pending = 0;  /* asynchronous setup completed */
656 			f->valid = 1;
657 		} else {
658 			/* Something went wrong.  Issue a warning about the
659 			 * problem and clear everything out.
660 			 */
661 			dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
662 				idx, ret);
663 			clear_filter(adap, f);
664 		}
665 	}
666 }
667 
668 /* Response queue handler for the FW event queue.
669  */
670 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
671 			  const struct pkt_gl *gl)
672 {
673 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
674 
675 	rsp++;                                          /* skip RSS header */
676 
677 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
678 	 */
679 	if (unlikely(opcode == CPL_FW4_MSG &&
680 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
681 		rsp++;
682 		opcode = ((const struct rss_header *)rsp)->opcode;
683 		rsp++;
684 		if (opcode != CPL_SGE_EGR_UPDATE) {
685 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
686 				, opcode);
687 			goto out;
688 		}
689 	}
690 
691 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
692 		const struct cpl_sge_egr_update *p = (void *)rsp;
693 		unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
694 		struct sge_txq *txq;
695 
696 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
697 		txq->restarts++;
698 		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
699 			struct sge_eth_txq *eq;
700 
701 			eq = container_of(txq, struct sge_eth_txq, q);
702 			netif_tx_wake_queue(eq->txq);
703 		} else {
704 			struct sge_ofld_txq *oq;
705 
706 			oq = container_of(txq, struct sge_ofld_txq, q);
707 			tasklet_schedule(&oq->qresume_tsk);
708 		}
709 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
710 		const struct cpl_fw6_msg *p = (void *)rsp;
711 
712 		if (p->type == 0)
713 			t4_handle_fw_rpl(q->adap, p->data);
714 	} else if (opcode == CPL_L2T_WRITE_RPL) {
715 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
716 
717 		do_l2t_write_rpl(q->adap, p);
718 	} else if (opcode == CPL_SET_TCB_RPL) {
719 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
720 
721 		filter_rpl(q->adap, p);
722 	} else
723 		dev_err(q->adap->pdev_dev,
724 			"unexpected CPL %#x on FW event queue\n", opcode);
725 out:
726 	return 0;
727 }
728 
729 /**
730  *	uldrx_handler - response queue handler for ULD queues
731  *	@q: the response queue that received the packet
732  *	@rsp: the response queue descriptor holding the offload message
733  *	@gl: the gather list of packet fragments
734  *
735  *	Deliver an ingress offload packet to a ULD.  All processing is done by
736  *	the ULD, we just maintain statistics.
737  */
738 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
739 			 const struct pkt_gl *gl)
740 {
741 	struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
742 
743 	/* FW can send CPLs encapsulated in a CPL_FW4_MSG.
744 	 */
745 	if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
746 	    ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
747 		rsp += 2;
748 
749 	if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
750 		rxq->stats.nomem++;
751 		return -1;
752 	}
753 	if (gl == NULL)
754 		rxq->stats.imm++;
755 	else if (gl == CXGB4_MSG_AN)
756 		rxq->stats.an++;
757 	else
758 		rxq->stats.pkts++;
759 	return 0;
760 }
761 
762 static void disable_msi(struct adapter *adapter)
763 {
764 	if (adapter->flags & USING_MSIX) {
765 		pci_disable_msix(adapter->pdev);
766 		adapter->flags &= ~USING_MSIX;
767 	} else if (adapter->flags & USING_MSI) {
768 		pci_disable_msi(adapter->pdev);
769 		adapter->flags &= ~USING_MSI;
770 	}
771 }
772 
773 /*
774  * Interrupt handler for non-data events used with MSI-X.
775  */
776 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
777 {
778 	struct adapter *adap = cookie;
779 
780 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
781 	if (v & PFSW) {
782 		adap->swintr = 1;
783 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
784 	}
785 	t4_slow_intr_handler(adap);
786 	return IRQ_HANDLED;
787 }
788 
789 /*
790  * Name the MSI-X interrupts.
791  */
792 static void name_msix_vecs(struct adapter *adap)
793 {
794 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
795 
796 	/* non-data interrupts */
797 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
798 
799 	/* FW events */
800 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
801 		 adap->port[0]->name);
802 
803 	/* Ethernet queues */
804 	for_each_port(adap, j) {
805 		struct net_device *d = adap->port[j];
806 		const struct port_info *pi = netdev_priv(d);
807 
808 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
809 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
810 				 d->name, i);
811 	}
812 
813 	/* offload queues */
814 	for_each_ofldrxq(&adap->sge, i)
815 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
816 			 adap->port[0]->name, i);
817 
818 	for_each_rdmarxq(&adap->sge, i)
819 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
820 			 adap->port[0]->name, i);
821 
822 	for_each_rdmaciq(&adap->sge, i)
823 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
824 			 adap->port[0]->name, i);
825 }
826 
827 static int request_msix_queue_irqs(struct adapter *adap)
828 {
829 	struct sge *s = &adap->sge;
830 	int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
831 	int msi_index = 2;
832 
833 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
834 			  adap->msix_info[1].desc, &s->fw_evtq);
835 	if (err)
836 		return err;
837 
838 	for_each_ethrxq(s, ethqidx) {
839 		err = request_irq(adap->msix_info[msi_index].vec,
840 				  t4_sge_intr_msix, 0,
841 				  adap->msix_info[msi_index].desc,
842 				  &s->ethrxq[ethqidx].rspq);
843 		if (err)
844 			goto unwind;
845 		msi_index++;
846 	}
847 	for_each_ofldrxq(s, ofldqidx) {
848 		err = request_irq(adap->msix_info[msi_index].vec,
849 				  t4_sge_intr_msix, 0,
850 				  adap->msix_info[msi_index].desc,
851 				  &s->ofldrxq[ofldqidx].rspq);
852 		if (err)
853 			goto unwind;
854 		msi_index++;
855 	}
856 	for_each_rdmarxq(s, rdmaqidx) {
857 		err = request_irq(adap->msix_info[msi_index].vec,
858 				  t4_sge_intr_msix, 0,
859 				  adap->msix_info[msi_index].desc,
860 				  &s->rdmarxq[rdmaqidx].rspq);
861 		if (err)
862 			goto unwind;
863 		msi_index++;
864 	}
865 	for_each_rdmaciq(s, rdmaciqqidx) {
866 		err = request_irq(adap->msix_info[msi_index].vec,
867 				  t4_sge_intr_msix, 0,
868 				  adap->msix_info[msi_index].desc,
869 				  &s->rdmaciq[rdmaciqqidx].rspq);
870 		if (err)
871 			goto unwind;
872 		msi_index++;
873 	}
874 	return 0;
875 
876 unwind:
877 	while (--rdmaciqqidx >= 0)
878 		free_irq(adap->msix_info[--msi_index].vec,
879 			 &s->rdmaciq[rdmaciqqidx].rspq);
880 	while (--rdmaqidx >= 0)
881 		free_irq(adap->msix_info[--msi_index].vec,
882 			 &s->rdmarxq[rdmaqidx].rspq);
883 	while (--ofldqidx >= 0)
884 		free_irq(adap->msix_info[--msi_index].vec,
885 			 &s->ofldrxq[ofldqidx].rspq);
886 	while (--ethqidx >= 0)
887 		free_irq(adap->msix_info[--msi_index].vec,
888 			 &s->ethrxq[ethqidx].rspq);
889 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
890 	return err;
891 }
892 
893 static void free_msix_queue_irqs(struct adapter *adap)
894 {
895 	int i, msi_index = 2;
896 	struct sge *s = &adap->sge;
897 
898 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
899 	for_each_ethrxq(s, i)
900 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
901 	for_each_ofldrxq(s, i)
902 		free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
903 	for_each_rdmarxq(s, i)
904 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
905 	for_each_rdmaciq(s, i)
906 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
907 }
908 
909 /**
910  *	write_rss - write the RSS table for a given port
911  *	@pi: the port
912  *	@queues: array of queue indices for RSS
913  *
914  *	Sets up the portion of the HW RSS table for the port's VI to distribute
915  *	packets to the Rx queues in @queues.
916  */
917 static int write_rss(const struct port_info *pi, const u16 *queues)
918 {
919 	u16 *rss;
920 	int i, err;
921 	const struct sge_eth_rxq *q = &pi->adapter->sge.ethrxq[pi->first_qset];
922 
923 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
924 	if (!rss)
925 		return -ENOMEM;
926 
927 	/* map the queue indices to queue ids */
928 	for (i = 0; i < pi->rss_size; i++, queues++)
929 		rss[i] = q[*queues].rspq.abs_id;
930 
931 	err = t4_config_rss_range(pi->adapter, pi->adapter->fn, pi->viid, 0,
932 				  pi->rss_size, rss, pi->rss_size);
933 	kfree(rss);
934 	return err;
935 }
936 
937 /**
938  *	setup_rss - configure RSS
939  *	@adap: the adapter
940  *
941  *	Sets up RSS for each port.
942  */
943 static int setup_rss(struct adapter *adap)
944 {
945 	int i, err;
946 
947 	for_each_port(adap, i) {
948 		const struct port_info *pi = adap2pinfo(adap, i);
949 
950 		err = write_rss(pi, pi->rss);
951 		if (err)
952 			return err;
953 	}
954 	return 0;
955 }
956 
957 /*
958  * Return the channel of the ingress queue with the given qid.
959  */
960 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
961 {
962 	qid -= p->ingr_start;
963 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
964 }
965 
966 /*
967  * Wait until all NAPI handlers are descheduled.
968  */
969 static void quiesce_rx(struct adapter *adap)
970 {
971 	int i;
972 
973 	for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
974 		struct sge_rspq *q = adap->sge.ingr_map[i];
975 
976 		if (q && q->handler)
977 			napi_disable(&q->napi);
978 	}
979 }
980 
981 /*
982  * Enable NAPI scheduling and interrupt generation for all Rx queues.
983  */
984 static void enable_rx(struct adapter *adap)
985 {
986 	int i;
987 
988 	for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
989 		struct sge_rspq *q = adap->sge.ingr_map[i];
990 
991 		if (!q)
992 			continue;
993 		if (q->handler)
994 			napi_enable(&q->napi);
995 		/* 0-increment GTS to start the timer and enable interrupts */
996 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
997 			     SEINTARM(q->intr_params) |
998 			     INGRESSQID(q->cntxt_id));
999 	}
1000 }
1001 
1002 /**
1003  *	setup_sge_queues - configure SGE Tx/Rx/response queues
1004  *	@adap: the adapter
1005  *
1006  *	Determines how many sets of SGE queues to use and initializes them.
1007  *	We support multiple queue sets per port if we have MSI-X, otherwise
1008  *	just one queue set per port.
1009  */
1010 static int setup_sge_queues(struct adapter *adap)
1011 {
1012 	int err, msi_idx, i, j;
1013 	struct sge *s = &adap->sge;
1014 
1015 	bitmap_zero(s->starving_fl, MAX_EGRQ);
1016 	bitmap_zero(s->txq_maperr, MAX_EGRQ);
1017 
1018 	if (adap->flags & USING_MSIX)
1019 		msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1020 	else {
1021 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1022 				       NULL, NULL);
1023 		if (err)
1024 			return err;
1025 		msi_idx = -((int)s->intrq.abs_id + 1);
1026 	}
1027 
1028 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1029 			       msi_idx, NULL, fwevtq_handler);
1030 	if (err) {
1031 freeout:	t4_free_sge_resources(adap);
1032 		return err;
1033 	}
1034 
1035 	for_each_port(adap, i) {
1036 		struct net_device *dev = adap->port[i];
1037 		struct port_info *pi = netdev_priv(dev);
1038 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1039 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1040 
1041 		for (j = 0; j < pi->nqsets; j++, q++) {
1042 			if (msi_idx > 0)
1043 				msi_idx++;
1044 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1045 					       msi_idx, &q->fl,
1046 					       t4_ethrx_handler);
1047 			if (err)
1048 				goto freeout;
1049 			q->rspq.idx = j;
1050 			memset(&q->stats, 0, sizeof(q->stats));
1051 		}
1052 		for (j = 0; j < pi->nqsets; j++, t++) {
1053 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1054 					netdev_get_tx_queue(dev, j),
1055 					s->fw_evtq.cntxt_id);
1056 			if (err)
1057 				goto freeout;
1058 		}
1059 	}
1060 
1061 	j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
1062 	for_each_ofldrxq(s, i) {
1063 		struct sge_ofld_rxq *q = &s->ofldrxq[i];
1064 		struct net_device *dev = adap->port[i / j];
1065 
1066 		if (msi_idx > 0)
1067 			msi_idx++;
1068 		err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
1069 				       q->fl.size ? &q->fl : NULL,
1070 				       uldrx_handler);
1071 		if (err)
1072 			goto freeout;
1073 		memset(&q->stats, 0, sizeof(q->stats));
1074 		s->ofld_rxq[i] = q->rspq.abs_id;
1075 		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
1076 					    s->fw_evtq.cntxt_id);
1077 		if (err)
1078 			goto freeout;
1079 	}
1080 
1081 	for_each_rdmarxq(s, i) {
1082 		struct sge_ofld_rxq *q = &s->rdmarxq[i];
1083 
1084 		if (msi_idx > 0)
1085 			msi_idx++;
1086 		err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1087 				       msi_idx, q->fl.size ? &q->fl : NULL,
1088 				       uldrx_handler);
1089 		if (err)
1090 			goto freeout;
1091 		memset(&q->stats, 0, sizeof(q->stats));
1092 		s->rdma_rxq[i] = q->rspq.abs_id;
1093 	}
1094 
1095 	for_each_rdmaciq(s, i) {
1096 		struct sge_ofld_rxq *q = &s->rdmaciq[i];
1097 
1098 		if (msi_idx > 0)
1099 			msi_idx++;
1100 		err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
1101 				       msi_idx, q->fl.size ? &q->fl : NULL,
1102 				       uldrx_handler);
1103 		if (err)
1104 			goto freeout;
1105 		memset(&q->stats, 0, sizeof(q->stats));
1106 		s->rdma_ciq[i] = q->rspq.abs_id;
1107 	}
1108 
1109 	for_each_port(adap, i) {
1110 		/*
1111 		 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1112 		 * have RDMA queues, and that's the right value.
1113 		 */
1114 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1115 					    s->fw_evtq.cntxt_id,
1116 					    s->rdmarxq[i].rspq.cntxt_id);
1117 		if (err)
1118 			goto freeout;
1119 	}
1120 
1121 	t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
1122 		     RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
1123 		     QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
1124 	return 0;
1125 }
1126 
1127 /*
1128  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1129  * The allocated memory is cleared.
1130  */
1131 void *t4_alloc_mem(size_t size)
1132 {
1133 	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1134 
1135 	if (!p)
1136 		p = vzalloc(size);
1137 	return p;
1138 }
1139 
1140 /*
1141  * Free memory allocated through alloc_mem().
1142  */
1143 static void t4_free_mem(void *addr)
1144 {
1145 	if (is_vmalloc_addr(addr))
1146 		vfree(addr);
1147 	else
1148 		kfree(addr);
1149 }
1150 
1151 /* Send a Work Request to write the filter at a specified index.  We construct
1152  * a Firmware Filter Work Request to have the work done and put the indicated
1153  * filter into "pending" mode which will prevent any further actions against
1154  * it till we get a reply from the firmware on the completion status of the
1155  * request.
1156  */
1157 static int set_filter_wr(struct adapter *adapter, int fidx)
1158 {
1159 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1160 	struct sk_buff *skb;
1161 	struct fw_filter_wr *fwr;
1162 	unsigned int ftid;
1163 
1164 	/* If the new filter requires loopback Destination MAC and/or VLAN
1165 	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1166 	 * the filter.
1167 	 */
1168 	if (f->fs.newdmac || f->fs.newvlan) {
1169 		/* allocate L2T entry for new filter */
1170 		f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1171 		if (f->l2t == NULL)
1172 			return -EAGAIN;
1173 		if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
1174 					f->fs.eport, f->fs.dmac)) {
1175 			cxgb4_l2t_release(f->l2t);
1176 			f->l2t = NULL;
1177 			return -ENOMEM;
1178 		}
1179 	}
1180 
1181 	ftid = adapter->tids.ftid_base + fidx;
1182 
1183 	skb = alloc_skb(sizeof(*fwr), GFP_KERNEL | __GFP_NOFAIL);
1184 	fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1185 	memset(fwr, 0, sizeof(*fwr));
1186 
1187 	/* It would be nice to put most of the following in t4_hw.c but most
1188 	 * of the work is translating the cxgbtool ch_filter_specification
1189 	 * into the Work Request and the definition of that structure is
1190 	 * currently in cxgbtool.h which isn't appropriate to pull into the
1191 	 * common code.  We may eventually try to come up with a more neutral
1192 	 * filter specification structure but for now it's easiest to simply
1193 	 * put this fairly direct code in line ...
1194 	 */
1195 	fwr->op_pkd = htonl(FW_WR_OP(FW_FILTER_WR));
1196 	fwr->len16_pkd = htonl(FW_WR_LEN16(sizeof(*fwr)/16));
1197 	fwr->tid_to_iq =
1198 		htonl(V_FW_FILTER_WR_TID(ftid) |
1199 		      V_FW_FILTER_WR_RQTYPE(f->fs.type) |
1200 		      V_FW_FILTER_WR_NOREPLY(0) |
1201 		      V_FW_FILTER_WR_IQ(f->fs.iq));
1202 	fwr->del_filter_to_l2tix =
1203 		htonl(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
1204 		      V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
1205 		      V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
1206 		      V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
1207 		      V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
1208 		      V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
1209 		      V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
1210 		      V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
1211 		      V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
1212 					     f->fs.newvlan == VLAN_REWRITE) |
1213 		      V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
1214 					    f->fs.newvlan == VLAN_REWRITE) |
1215 		      V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
1216 		      V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
1217 		      V_FW_FILTER_WR_PRIO(f->fs.prio) |
1218 		      V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
1219 	fwr->ethtype = htons(f->fs.val.ethtype);
1220 	fwr->ethtypem = htons(f->fs.mask.ethtype);
1221 	fwr->frag_to_ovlan_vldm =
1222 		(V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
1223 		 V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
1224 		 V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.ivlan_vld) |
1225 		 V_FW_FILTER_WR_OVLAN_VLD(f->fs.val.ovlan_vld) |
1226 		 V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.ivlan_vld) |
1227 		 V_FW_FILTER_WR_OVLAN_VLDM(f->fs.mask.ovlan_vld));
1228 	fwr->smac_sel = 0;
1229 	fwr->rx_chan_rx_rpl_iq =
1230 		htons(V_FW_FILTER_WR_RX_CHAN(0) |
1231 		      V_FW_FILTER_WR_RX_RPL_IQ(adapter->sge.fw_evtq.abs_id));
1232 	fwr->maci_to_matchtypem =
1233 		htonl(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
1234 		      V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
1235 		      V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
1236 		      V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
1237 		      V_FW_FILTER_WR_PORT(f->fs.val.iport) |
1238 		      V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
1239 		      V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
1240 		      V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
1241 	fwr->ptcl = f->fs.val.proto;
1242 	fwr->ptclm = f->fs.mask.proto;
1243 	fwr->ttyp = f->fs.val.tos;
1244 	fwr->ttypm = f->fs.mask.tos;
1245 	fwr->ivlan = htons(f->fs.val.ivlan);
1246 	fwr->ivlanm = htons(f->fs.mask.ivlan);
1247 	fwr->ovlan = htons(f->fs.val.ovlan);
1248 	fwr->ovlanm = htons(f->fs.mask.ovlan);
1249 	memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1250 	memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1251 	memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1252 	memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1253 	fwr->lp = htons(f->fs.val.lport);
1254 	fwr->lpm = htons(f->fs.mask.lport);
1255 	fwr->fp = htons(f->fs.val.fport);
1256 	fwr->fpm = htons(f->fs.mask.fport);
1257 	if (f->fs.newsmac)
1258 		memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1259 
1260 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1261 	 * When we get the Work Request Reply we'll clear the pending status.
1262 	 */
1263 	f->pending = 1;
1264 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1265 	t4_ofld_send(adapter, skb);
1266 	return 0;
1267 }
1268 
1269 /* Delete the filter at a specified index.
1270  */
1271 static int del_filter_wr(struct adapter *adapter, int fidx)
1272 {
1273 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1274 	struct sk_buff *skb;
1275 	struct fw_filter_wr *fwr;
1276 	unsigned int len, ftid;
1277 
1278 	len = sizeof(*fwr);
1279 	ftid = adapter->tids.ftid_base + fidx;
1280 
1281 	skb = alloc_skb(len, GFP_KERNEL | __GFP_NOFAIL);
1282 	fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1283 	t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1284 
1285 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1286 	 * When we get the Work Request Reply we'll clear the pending status.
1287 	 */
1288 	f->pending = 1;
1289 	t4_mgmt_tx(adapter, skb);
1290 	return 0;
1291 }
1292 
1293 static inline int is_offload(const struct adapter *adap)
1294 {
1295 	return adap->params.offload;
1296 }
1297 
1298 /*
1299  * Implementation of ethtool operations.
1300  */
1301 
1302 static u32 get_msglevel(struct net_device *dev)
1303 {
1304 	return netdev2adap(dev)->msg_enable;
1305 }
1306 
1307 static void set_msglevel(struct net_device *dev, u32 val)
1308 {
1309 	netdev2adap(dev)->msg_enable = val;
1310 }
1311 
1312 static char stats_strings[][ETH_GSTRING_LEN] = {
1313 	"TxOctetsOK         ",
1314 	"TxFramesOK         ",
1315 	"TxBroadcastFrames  ",
1316 	"TxMulticastFrames  ",
1317 	"TxUnicastFrames    ",
1318 	"TxErrorFrames      ",
1319 
1320 	"TxFrames64         ",
1321 	"TxFrames65To127    ",
1322 	"TxFrames128To255   ",
1323 	"TxFrames256To511   ",
1324 	"TxFrames512To1023  ",
1325 	"TxFrames1024To1518 ",
1326 	"TxFrames1519ToMax  ",
1327 
1328 	"TxFramesDropped    ",
1329 	"TxPauseFrames      ",
1330 	"TxPPP0Frames       ",
1331 	"TxPPP1Frames       ",
1332 	"TxPPP2Frames       ",
1333 	"TxPPP3Frames       ",
1334 	"TxPPP4Frames       ",
1335 	"TxPPP5Frames       ",
1336 	"TxPPP6Frames       ",
1337 	"TxPPP7Frames       ",
1338 
1339 	"RxOctetsOK         ",
1340 	"RxFramesOK         ",
1341 	"RxBroadcastFrames  ",
1342 	"RxMulticastFrames  ",
1343 	"RxUnicastFrames    ",
1344 
1345 	"RxFramesTooLong    ",
1346 	"RxJabberErrors     ",
1347 	"RxFCSErrors        ",
1348 	"RxLengthErrors     ",
1349 	"RxSymbolErrors     ",
1350 	"RxRuntFrames       ",
1351 
1352 	"RxFrames64         ",
1353 	"RxFrames65To127    ",
1354 	"RxFrames128To255   ",
1355 	"RxFrames256To511   ",
1356 	"RxFrames512To1023  ",
1357 	"RxFrames1024To1518 ",
1358 	"RxFrames1519ToMax  ",
1359 
1360 	"RxPauseFrames      ",
1361 	"RxPPP0Frames       ",
1362 	"RxPPP1Frames       ",
1363 	"RxPPP2Frames       ",
1364 	"RxPPP3Frames       ",
1365 	"RxPPP4Frames       ",
1366 	"RxPPP5Frames       ",
1367 	"RxPPP6Frames       ",
1368 	"RxPPP7Frames       ",
1369 
1370 	"RxBG0FramesDropped ",
1371 	"RxBG1FramesDropped ",
1372 	"RxBG2FramesDropped ",
1373 	"RxBG3FramesDropped ",
1374 	"RxBG0FramesTrunc   ",
1375 	"RxBG1FramesTrunc   ",
1376 	"RxBG2FramesTrunc   ",
1377 	"RxBG3FramesTrunc   ",
1378 
1379 	"TSO                ",
1380 	"TxCsumOffload      ",
1381 	"RxCsumGood         ",
1382 	"VLANextractions    ",
1383 	"VLANinsertions     ",
1384 	"GROpackets         ",
1385 	"GROmerged          ",
1386 	"WriteCoalSuccess   ",
1387 	"WriteCoalFail      ",
1388 };
1389 
1390 static int get_sset_count(struct net_device *dev, int sset)
1391 {
1392 	switch (sset) {
1393 	case ETH_SS_STATS:
1394 		return ARRAY_SIZE(stats_strings);
1395 	default:
1396 		return -EOPNOTSUPP;
1397 	}
1398 }
1399 
1400 #define T4_REGMAP_SIZE (160 * 1024)
1401 #define T5_REGMAP_SIZE (332 * 1024)
1402 
1403 static int get_regs_len(struct net_device *dev)
1404 {
1405 	struct adapter *adap = netdev2adap(dev);
1406 	if (is_t4(adap->params.chip))
1407 		return T4_REGMAP_SIZE;
1408 	else
1409 		return T5_REGMAP_SIZE;
1410 }
1411 
1412 static int get_eeprom_len(struct net_device *dev)
1413 {
1414 	return EEPROMSIZE;
1415 }
1416 
1417 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1418 {
1419 	struct adapter *adapter = netdev2adap(dev);
1420 
1421 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
1422 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1423 	strlcpy(info->bus_info, pci_name(adapter->pdev),
1424 		sizeof(info->bus_info));
1425 
1426 	if (adapter->params.fw_vers)
1427 		snprintf(info->fw_version, sizeof(info->fw_version),
1428 			"%u.%u.%u.%u, TP %u.%u.%u.%u",
1429 			FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
1430 			FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
1431 			FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
1432 			FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
1433 			FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
1434 			FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
1435 			FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
1436 			FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
1437 }
1438 
1439 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
1440 {
1441 	if (stringset == ETH_SS_STATS)
1442 		memcpy(data, stats_strings, sizeof(stats_strings));
1443 }
1444 
1445 /*
1446  * port stats maintained per queue of the port.  They should be in the same
1447  * order as in stats_strings above.
1448  */
1449 struct queue_port_stats {
1450 	u64 tso;
1451 	u64 tx_csum;
1452 	u64 rx_csum;
1453 	u64 vlan_ex;
1454 	u64 vlan_ins;
1455 	u64 gro_pkts;
1456 	u64 gro_merged;
1457 };
1458 
1459 static void collect_sge_port_stats(const struct adapter *adap,
1460 		const struct port_info *p, struct queue_port_stats *s)
1461 {
1462 	int i;
1463 	const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
1464 	const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
1465 
1466 	memset(s, 0, sizeof(*s));
1467 	for (i = 0; i < p->nqsets; i++, rx++, tx++) {
1468 		s->tso += tx->tso;
1469 		s->tx_csum += tx->tx_cso;
1470 		s->rx_csum += rx->stats.rx_cso;
1471 		s->vlan_ex += rx->stats.vlan_ex;
1472 		s->vlan_ins += tx->vlan_ins;
1473 		s->gro_pkts += rx->stats.lro_pkts;
1474 		s->gro_merged += rx->stats.lro_merged;
1475 	}
1476 }
1477 
1478 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1479 		      u64 *data)
1480 {
1481 	struct port_info *pi = netdev_priv(dev);
1482 	struct adapter *adapter = pi->adapter;
1483 	u32 val1, val2;
1484 
1485 	t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
1486 
1487 	data += sizeof(struct port_stats) / sizeof(u64);
1488 	collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1489 	data += sizeof(struct queue_port_stats) / sizeof(u64);
1490 	if (!is_t4(adapter->params.chip)) {
1491 		t4_write_reg(adapter, SGE_STAT_CFG, STATSOURCE_T5(7));
1492 		val1 = t4_read_reg(adapter, SGE_STAT_TOTAL);
1493 		val2 = t4_read_reg(adapter, SGE_STAT_MATCH);
1494 		*data = val1 - val2;
1495 		data++;
1496 		*data = val2;
1497 		data++;
1498 	} else {
1499 		memset(data, 0, 2 * sizeof(u64));
1500 		*data += 2;
1501 	}
1502 }
1503 
1504 /*
1505  * Return a version number to identify the type of adapter.  The scheme is:
1506  * - bits 0..9: chip version
1507  * - bits 10..15: chip revision
1508  * - bits 16..23: register dump version
1509  */
1510 static inline unsigned int mk_adap_vers(const struct adapter *ap)
1511 {
1512 	return CHELSIO_CHIP_VERSION(ap->params.chip) |
1513 		(CHELSIO_CHIP_RELEASE(ap->params.chip) << 10) | (1 << 16);
1514 }
1515 
1516 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
1517 			   unsigned int end)
1518 {
1519 	u32 *p = buf + start;
1520 
1521 	for ( ; start <= end; start += sizeof(u32))
1522 		*p++ = t4_read_reg(ap, start);
1523 }
1524 
1525 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1526 		     void *buf)
1527 {
1528 	static const unsigned int t4_reg_ranges[] = {
1529 		0x1008, 0x1108,
1530 		0x1180, 0x11b4,
1531 		0x11fc, 0x123c,
1532 		0x1300, 0x173c,
1533 		0x1800, 0x18fc,
1534 		0x3000, 0x30d8,
1535 		0x30e0, 0x5924,
1536 		0x5960, 0x59d4,
1537 		0x5a00, 0x5af8,
1538 		0x6000, 0x6098,
1539 		0x6100, 0x6150,
1540 		0x6200, 0x6208,
1541 		0x6240, 0x6248,
1542 		0x6280, 0x6338,
1543 		0x6370, 0x638c,
1544 		0x6400, 0x643c,
1545 		0x6500, 0x6524,
1546 		0x6a00, 0x6a38,
1547 		0x6a60, 0x6a78,
1548 		0x6b00, 0x6b84,
1549 		0x6bf0, 0x6c84,
1550 		0x6cf0, 0x6d84,
1551 		0x6df0, 0x6e84,
1552 		0x6ef0, 0x6f84,
1553 		0x6ff0, 0x7084,
1554 		0x70f0, 0x7184,
1555 		0x71f0, 0x7284,
1556 		0x72f0, 0x7384,
1557 		0x73f0, 0x7450,
1558 		0x7500, 0x7530,
1559 		0x7600, 0x761c,
1560 		0x7680, 0x76cc,
1561 		0x7700, 0x7798,
1562 		0x77c0, 0x77fc,
1563 		0x7900, 0x79fc,
1564 		0x7b00, 0x7c38,
1565 		0x7d00, 0x7efc,
1566 		0x8dc0, 0x8e1c,
1567 		0x8e30, 0x8e78,
1568 		0x8ea0, 0x8f6c,
1569 		0x8fc0, 0x9074,
1570 		0x90fc, 0x90fc,
1571 		0x9400, 0x9458,
1572 		0x9600, 0x96bc,
1573 		0x9800, 0x9808,
1574 		0x9820, 0x983c,
1575 		0x9850, 0x9864,
1576 		0x9c00, 0x9c6c,
1577 		0x9c80, 0x9cec,
1578 		0x9d00, 0x9d6c,
1579 		0x9d80, 0x9dec,
1580 		0x9e00, 0x9e6c,
1581 		0x9e80, 0x9eec,
1582 		0x9f00, 0x9f6c,
1583 		0x9f80, 0x9fec,
1584 		0xd004, 0xd03c,
1585 		0xdfc0, 0xdfe0,
1586 		0xe000, 0xea7c,
1587 		0xf000, 0x11190,
1588 		0x19040, 0x1906c,
1589 		0x19078, 0x19080,
1590 		0x1908c, 0x19124,
1591 		0x19150, 0x191b0,
1592 		0x191d0, 0x191e8,
1593 		0x19238, 0x1924c,
1594 		0x193f8, 0x19474,
1595 		0x19490, 0x194f8,
1596 		0x19800, 0x19f30,
1597 		0x1a000, 0x1a06c,
1598 		0x1a0b0, 0x1a120,
1599 		0x1a128, 0x1a138,
1600 		0x1a190, 0x1a1c4,
1601 		0x1a1fc, 0x1a1fc,
1602 		0x1e040, 0x1e04c,
1603 		0x1e284, 0x1e28c,
1604 		0x1e2c0, 0x1e2c0,
1605 		0x1e2e0, 0x1e2e0,
1606 		0x1e300, 0x1e384,
1607 		0x1e3c0, 0x1e3c8,
1608 		0x1e440, 0x1e44c,
1609 		0x1e684, 0x1e68c,
1610 		0x1e6c0, 0x1e6c0,
1611 		0x1e6e0, 0x1e6e0,
1612 		0x1e700, 0x1e784,
1613 		0x1e7c0, 0x1e7c8,
1614 		0x1e840, 0x1e84c,
1615 		0x1ea84, 0x1ea8c,
1616 		0x1eac0, 0x1eac0,
1617 		0x1eae0, 0x1eae0,
1618 		0x1eb00, 0x1eb84,
1619 		0x1ebc0, 0x1ebc8,
1620 		0x1ec40, 0x1ec4c,
1621 		0x1ee84, 0x1ee8c,
1622 		0x1eec0, 0x1eec0,
1623 		0x1eee0, 0x1eee0,
1624 		0x1ef00, 0x1ef84,
1625 		0x1efc0, 0x1efc8,
1626 		0x1f040, 0x1f04c,
1627 		0x1f284, 0x1f28c,
1628 		0x1f2c0, 0x1f2c0,
1629 		0x1f2e0, 0x1f2e0,
1630 		0x1f300, 0x1f384,
1631 		0x1f3c0, 0x1f3c8,
1632 		0x1f440, 0x1f44c,
1633 		0x1f684, 0x1f68c,
1634 		0x1f6c0, 0x1f6c0,
1635 		0x1f6e0, 0x1f6e0,
1636 		0x1f700, 0x1f784,
1637 		0x1f7c0, 0x1f7c8,
1638 		0x1f840, 0x1f84c,
1639 		0x1fa84, 0x1fa8c,
1640 		0x1fac0, 0x1fac0,
1641 		0x1fae0, 0x1fae0,
1642 		0x1fb00, 0x1fb84,
1643 		0x1fbc0, 0x1fbc8,
1644 		0x1fc40, 0x1fc4c,
1645 		0x1fe84, 0x1fe8c,
1646 		0x1fec0, 0x1fec0,
1647 		0x1fee0, 0x1fee0,
1648 		0x1ff00, 0x1ff84,
1649 		0x1ffc0, 0x1ffc8,
1650 		0x20000, 0x2002c,
1651 		0x20100, 0x2013c,
1652 		0x20190, 0x201c8,
1653 		0x20200, 0x20318,
1654 		0x20400, 0x20528,
1655 		0x20540, 0x20614,
1656 		0x21000, 0x21040,
1657 		0x2104c, 0x21060,
1658 		0x210c0, 0x210ec,
1659 		0x21200, 0x21268,
1660 		0x21270, 0x21284,
1661 		0x212fc, 0x21388,
1662 		0x21400, 0x21404,
1663 		0x21500, 0x21518,
1664 		0x2152c, 0x2153c,
1665 		0x21550, 0x21554,
1666 		0x21600, 0x21600,
1667 		0x21608, 0x21628,
1668 		0x21630, 0x2163c,
1669 		0x21700, 0x2171c,
1670 		0x21780, 0x2178c,
1671 		0x21800, 0x21c38,
1672 		0x21c80, 0x21d7c,
1673 		0x21e00, 0x21e04,
1674 		0x22000, 0x2202c,
1675 		0x22100, 0x2213c,
1676 		0x22190, 0x221c8,
1677 		0x22200, 0x22318,
1678 		0x22400, 0x22528,
1679 		0x22540, 0x22614,
1680 		0x23000, 0x23040,
1681 		0x2304c, 0x23060,
1682 		0x230c0, 0x230ec,
1683 		0x23200, 0x23268,
1684 		0x23270, 0x23284,
1685 		0x232fc, 0x23388,
1686 		0x23400, 0x23404,
1687 		0x23500, 0x23518,
1688 		0x2352c, 0x2353c,
1689 		0x23550, 0x23554,
1690 		0x23600, 0x23600,
1691 		0x23608, 0x23628,
1692 		0x23630, 0x2363c,
1693 		0x23700, 0x2371c,
1694 		0x23780, 0x2378c,
1695 		0x23800, 0x23c38,
1696 		0x23c80, 0x23d7c,
1697 		0x23e00, 0x23e04,
1698 		0x24000, 0x2402c,
1699 		0x24100, 0x2413c,
1700 		0x24190, 0x241c8,
1701 		0x24200, 0x24318,
1702 		0x24400, 0x24528,
1703 		0x24540, 0x24614,
1704 		0x25000, 0x25040,
1705 		0x2504c, 0x25060,
1706 		0x250c0, 0x250ec,
1707 		0x25200, 0x25268,
1708 		0x25270, 0x25284,
1709 		0x252fc, 0x25388,
1710 		0x25400, 0x25404,
1711 		0x25500, 0x25518,
1712 		0x2552c, 0x2553c,
1713 		0x25550, 0x25554,
1714 		0x25600, 0x25600,
1715 		0x25608, 0x25628,
1716 		0x25630, 0x2563c,
1717 		0x25700, 0x2571c,
1718 		0x25780, 0x2578c,
1719 		0x25800, 0x25c38,
1720 		0x25c80, 0x25d7c,
1721 		0x25e00, 0x25e04,
1722 		0x26000, 0x2602c,
1723 		0x26100, 0x2613c,
1724 		0x26190, 0x261c8,
1725 		0x26200, 0x26318,
1726 		0x26400, 0x26528,
1727 		0x26540, 0x26614,
1728 		0x27000, 0x27040,
1729 		0x2704c, 0x27060,
1730 		0x270c0, 0x270ec,
1731 		0x27200, 0x27268,
1732 		0x27270, 0x27284,
1733 		0x272fc, 0x27388,
1734 		0x27400, 0x27404,
1735 		0x27500, 0x27518,
1736 		0x2752c, 0x2753c,
1737 		0x27550, 0x27554,
1738 		0x27600, 0x27600,
1739 		0x27608, 0x27628,
1740 		0x27630, 0x2763c,
1741 		0x27700, 0x2771c,
1742 		0x27780, 0x2778c,
1743 		0x27800, 0x27c38,
1744 		0x27c80, 0x27d7c,
1745 		0x27e00, 0x27e04
1746 	};
1747 
1748 	static const unsigned int t5_reg_ranges[] = {
1749 		0x1008, 0x1148,
1750 		0x1180, 0x11b4,
1751 		0x11fc, 0x123c,
1752 		0x1280, 0x173c,
1753 		0x1800, 0x18fc,
1754 		0x3000, 0x3028,
1755 		0x3060, 0x30d8,
1756 		0x30e0, 0x30fc,
1757 		0x3140, 0x357c,
1758 		0x35a8, 0x35cc,
1759 		0x35ec, 0x35ec,
1760 		0x3600, 0x5624,
1761 		0x56cc, 0x575c,
1762 		0x580c, 0x5814,
1763 		0x5890, 0x58bc,
1764 		0x5940, 0x59dc,
1765 		0x59fc, 0x5a18,
1766 		0x5a60, 0x5a9c,
1767 		0x5b9c, 0x5bfc,
1768 		0x6000, 0x6040,
1769 		0x6058, 0x614c,
1770 		0x7700, 0x7798,
1771 		0x77c0, 0x78fc,
1772 		0x7b00, 0x7c54,
1773 		0x7d00, 0x7efc,
1774 		0x8dc0, 0x8de0,
1775 		0x8df8, 0x8e84,
1776 		0x8ea0, 0x8f84,
1777 		0x8fc0, 0x90f8,
1778 		0x9400, 0x9470,
1779 		0x9600, 0x96f4,
1780 		0x9800, 0x9808,
1781 		0x9820, 0x983c,
1782 		0x9850, 0x9864,
1783 		0x9c00, 0x9c6c,
1784 		0x9c80, 0x9cec,
1785 		0x9d00, 0x9d6c,
1786 		0x9d80, 0x9dec,
1787 		0x9e00, 0x9e6c,
1788 		0x9e80, 0x9eec,
1789 		0x9f00, 0x9f6c,
1790 		0x9f80, 0xa020,
1791 		0xd004, 0xd03c,
1792 		0xdfc0, 0xdfe0,
1793 		0xe000, 0x11088,
1794 		0x1109c, 0x1117c,
1795 		0x11190, 0x11204,
1796 		0x19040, 0x1906c,
1797 		0x19078, 0x19080,
1798 		0x1908c, 0x19124,
1799 		0x19150, 0x191b0,
1800 		0x191d0, 0x191e8,
1801 		0x19238, 0x19290,
1802 		0x193f8, 0x19474,
1803 		0x19490, 0x194cc,
1804 		0x194f0, 0x194f8,
1805 		0x19c00, 0x19c60,
1806 		0x19c94, 0x19e10,
1807 		0x19e50, 0x19f34,
1808 		0x19f40, 0x19f50,
1809 		0x19f90, 0x19fe4,
1810 		0x1a000, 0x1a06c,
1811 		0x1a0b0, 0x1a120,
1812 		0x1a128, 0x1a138,
1813 		0x1a190, 0x1a1c4,
1814 		0x1a1fc, 0x1a1fc,
1815 		0x1e008, 0x1e00c,
1816 		0x1e040, 0x1e04c,
1817 		0x1e284, 0x1e290,
1818 		0x1e2c0, 0x1e2c0,
1819 		0x1e2e0, 0x1e2e0,
1820 		0x1e300, 0x1e384,
1821 		0x1e3c0, 0x1e3c8,
1822 		0x1e408, 0x1e40c,
1823 		0x1e440, 0x1e44c,
1824 		0x1e684, 0x1e690,
1825 		0x1e6c0, 0x1e6c0,
1826 		0x1e6e0, 0x1e6e0,
1827 		0x1e700, 0x1e784,
1828 		0x1e7c0, 0x1e7c8,
1829 		0x1e808, 0x1e80c,
1830 		0x1e840, 0x1e84c,
1831 		0x1ea84, 0x1ea90,
1832 		0x1eac0, 0x1eac0,
1833 		0x1eae0, 0x1eae0,
1834 		0x1eb00, 0x1eb84,
1835 		0x1ebc0, 0x1ebc8,
1836 		0x1ec08, 0x1ec0c,
1837 		0x1ec40, 0x1ec4c,
1838 		0x1ee84, 0x1ee90,
1839 		0x1eec0, 0x1eec0,
1840 		0x1eee0, 0x1eee0,
1841 		0x1ef00, 0x1ef84,
1842 		0x1efc0, 0x1efc8,
1843 		0x1f008, 0x1f00c,
1844 		0x1f040, 0x1f04c,
1845 		0x1f284, 0x1f290,
1846 		0x1f2c0, 0x1f2c0,
1847 		0x1f2e0, 0x1f2e0,
1848 		0x1f300, 0x1f384,
1849 		0x1f3c0, 0x1f3c8,
1850 		0x1f408, 0x1f40c,
1851 		0x1f440, 0x1f44c,
1852 		0x1f684, 0x1f690,
1853 		0x1f6c0, 0x1f6c0,
1854 		0x1f6e0, 0x1f6e0,
1855 		0x1f700, 0x1f784,
1856 		0x1f7c0, 0x1f7c8,
1857 		0x1f808, 0x1f80c,
1858 		0x1f840, 0x1f84c,
1859 		0x1fa84, 0x1fa90,
1860 		0x1fac0, 0x1fac0,
1861 		0x1fae0, 0x1fae0,
1862 		0x1fb00, 0x1fb84,
1863 		0x1fbc0, 0x1fbc8,
1864 		0x1fc08, 0x1fc0c,
1865 		0x1fc40, 0x1fc4c,
1866 		0x1fe84, 0x1fe90,
1867 		0x1fec0, 0x1fec0,
1868 		0x1fee0, 0x1fee0,
1869 		0x1ff00, 0x1ff84,
1870 		0x1ffc0, 0x1ffc8,
1871 		0x30000, 0x30030,
1872 		0x30100, 0x30144,
1873 		0x30190, 0x301d0,
1874 		0x30200, 0x30318,
1875 		0x30400, 0x3052c,
1876 		0x30540, 0x3061c,
1877 		0x30800, 0x30834,
1878 		0x308c0, 0x30908,
1879 		0x30910, 0x309ac,
1880 		0x30a00, 0x30a04,
1881 		0x30a0c, 0x30a2c,
1882 		0x30a44, 0x30a50,
1883 		0x30a74, 0x30c24,
1884 		0x30d08, 0x30d14,
1885 		0x30d1c, 0x30d20,
1886 		0x30d3c, 0x30d50,
1887 		0x31200, 0x3120c,
1888 		0x31220, 0x31220,
1889 		0x31240, 0x31240,
1890 		0x31600, 0x31600,
1891 		0x31608, 0x3160c,
1892 		0x31a00, 0x31a1c,
1893 		0x31e04, 0x31e20,
1894 		0x31e38, 0x31e3c,
1895 		0x31e80, 0x31e80,
1896 		0x31e88, 0x31ea8,
1897 		0x31eb0, 0x31eb4,
1898 		0x31ec8, 0x31ed4,
1899 		0x31fb8, 0x32004,
1900 		0x32208, 0x3223c,
1901 		0x32600, 0x32630,
1902 		0x32a00, 0x32abc,
1903 		0x32b00, 0x32b70,
1904 		0x33000, 0x33048,
1905 		0x33060, 0x3309c,
1906 		0x330f0, 0x33148,
1907 		0x33160, 0x3319c,
1908 		0x331f0, 0x332e4,
1909 		0x332f8, 0x333e4,
1910 		0x333f8, 0x33448,
1911 		0x33460, 0x3349c,
1912 		0x334f0, 0x33548,
1913 		0x33560, 0x3359c,
1914 		0x335f0, 0x336e4,
1915 		0x336f8, 0x337e4,
1916 		0x337f8, 0x337fc,
1917 		0x33814, 0x33814,
1918 		0x3382c, 0x3382c,
1919 		0x33880, 0x3388c,
1920 		0x338e8, 0x338ec,
1921 		0x33900, 0x33948,
1922 		0x33960, 0x3399c,
1923 		0x339f0, 0x33ae4,
1924 		0x33af8, 0x33b10,
1925 		0x33b28, 0x33b28,
1926 		0x33b3c, 0x33b50,
1927 		0x33bf0, 0x33c10,
1928 		0x33c28, 0x33c28,
1929 		0x33c3c, 0x33c50,
1930 		0x33cf0, 0x33cfc,
1931 		0x34000, 0x34030,
1932 		0x34100, 0x34144,
1933 		0x34190, 0x341d0,
1934 		0x34200, 0x34318,
1935 		0x34400, 0x3452c,
1936 		0x34540, 0x3461c,
1937 		0x34800, 0x34834,
1938 		0x348c0, 0x34908,
1939 		0x34910, 0x349ac,
1940 		0x34a00, 0x34a04,
1941 		0x34a0c, 0x34a2c,
1942 		0x34a44, 0x34a50,
1943 		0x34a74, 0x34c24,
1944 		0x34d08, 0x34d14,
1945 		0x34d1c, 0x34d20,
1946 		0x34d3c, 0x34d50,
1947 		0x35200, 0x3520c,
1948 		0x35220, 0x35220,
1949 		0x35240, 0x35240,
1950 		0x35600, 0x35600,
1951 		0x35608, 0x3560c,
1952 		0x35a00, 0x35a1c,
1953 		0x35e04, 0x35e20,
1954 		0x35e38, 0x35e3c,
1955 		0x35e80, 0x35e80,
1956 		0x35e88, 0x35ea8,
1957 		0x35eb0, 0x35eb4,
1958 		0x35ec8, 0x35ed4,
1959 		0x35fb8, 0x36004,
1960 		0x36208, 0x3623c,
1961 		0x36600, 0x36630,
1962 		0x36a00, 0x36abc,
1963 		0x36b00, 0x36b70,
1964 		0x37000, 0x37048,
1965 		0x37060, 0x3709c,
1966 		0x370f0, 0x37148,
1967 		0x37160, 0x3719c,
1968 		0x371f0, 0x372e4,
1969 		0x372f8, 0x373e4,
1970 		0x373f8, 0x37448,
1971 		0x37460, 0x3749c,
1972 		0x374f0, 0x37548,
1973 		0x37560, 0x3759c,
1974 		0x375f0, 0x376e4,
1975 		0x376f8, 0x377e4,
1976 		0x377f8, 0x377fc,
1977 		0x37814, 0x37814,
1978 		0x3782c, 0x3782c,
1979 		0x37880, 0x3788c,
1980 		0x378e8, 0x378ec,
1981 		0x37900, 0x37948,
1982 		0x37960, 0x3799c,
1983 		0x379f0, 0x37ae4,
1984 		0x37af8, 0x37b10,
1985 		0x37b28, 0x37b28,
1986 		0x37b3c, 0x37b50,
1987 		0x37bf0, 0x37c10,
1988 		0x37c28, 0x37c28,
1989 		0x37c3c, 0x37c50,
1990 		0x37cf0, 0x37cfc,
1991 		0x38000, 0x38030,
1992 		0x38100, 0x38144,
1993 		0x38190, 0x381d0,
1994 		0x38200, 0x38318,
1995 		0x38400, 0x3852c,
1996 		0x38540, 0x3861c,
1997 		0x38800, 0x38834,
1998 		0x388c0, 0x38908,
1999 		0x38910, 0x389ac,
2000 		0x38a00, 0x38a04,
2001 		0x38a0c, 0x38a2c,
2002 		0x38a44, 0x38a50,
2003 		0x38a74, 0x38c24,
2004 		0x38d08, 0x38d14,
2005 		0x38d1c, 0x38d20,
2006 		0x38d3c, 0x38d50,
2007 		0x39200, 0x3920c,
2008 		0x39220, 0x39220,
2009 		0x39240, 0x39240,
2010 		0x39600, 0x39600,
2011 		0x39608, 0x3960c,
2012 		0x39a00, 0x39a1c,
2013 		0x39e04, 0x39e20,
2014 		0x39e38, 0x39e3c,
2015 		0x39e80, 0x39e80,
2016 		0x39e88, 0x39ea8,
2017 		0x39eb0, 0x39eb4,
2018 		0x39ec8, 0x39ed4,
2019 		0x39fb8, 0x3a004,
2020 		0x3a208, 0x3a23c,
2021 		0x3a600, 0x3a630,
2022 		0x3aa00, 0x3aabc,
2023 		0x3ab00, 0x3ab70,
2024 		0x3b000, 0x3b048,
2025 		0x3b060, 0x3b09c,
2026 		0x3b0f0, 0x3b148,
2027 		0x3b160, 0x3b19c,
2028 		0x3b1f0, 0x3b2e4,
2029 		0x3b2f8, 0x3b3e4,
2030 		0x3b3f8, 0x3b448,
2031 		0x3b460, 0x3b49c,
2032 		0x3b4f0, 0x3b548,
2033 		0x3b560, 0x3b59c,
2034 		0x3b5f0, 0x3b6e4,
2035 		0x3b6f8, 0x3b7e4,
2036 		0x3b7f8, 0x3b7fc,
2037 		0x3b814, 0x3b814,
2038 		0x3b82c, 0x3b82c,
2039 		0x3b880, 0x3b88c,
2040 		0x3b8e8, 0x3b8ec,
2041 		0x3b900, 0x3b948,
2042 		0x3b960, 0x3b99c,
2043 		0x3b9f0, 0x3bae4,
2044 		0x3baf8, 0x3bb10,
2045 		0x3bb28, 0x3bb28,
2046 		0x3bb3c, 0x3bb50,
2047 		0x3bbf0, 0x3bc10,
2048 		0x3bc28, 0x3bc28,
2049 		0x3bc3c, 0x3bc50,
2050 		0x3bcf0, 0x3bcfc,
2051 		0x3c000, 0x3c030,
2052 		0x3c100, 0x3c144,
2053 		0x3c190, 0x3c1d0,
2054 		0x3c200, 0x3c318,
2055 		0x3c400, 0x3c52c,
2056 		0x3c540, 0x3c61c,
2057 		0x3c800, 0x3c834,
2058 		0x3c8c0, 0x3c908,
2059 		0x3c910, 0x3c9ac,
2060 		0x3ca00, 0x3ca04,
2061 		0x3ca0c, 0x3ca2c,
2062 		0x3ca44, 0x3ca50,
2063 		0x3ca74, 0x3cc24,
2064 		0x3cd08, 0x3cd14,
2065 		0x3cd1c, 0x3cd20,
2066 		0x3cd3c, 0x3cd50,
2067 		0x3d200, 0x3d20c,
2068 		0x3d220, 0x3d220,
2069 		0x3d240, 0x3d240,
2070 		0x3d600, 0x3d600,
2071 		0x3d608, 0x3d60c,
2072 		0x3da00, 0x3da1c,
2073 		0x3de04, 0x3de20,
2074 		0x3de38, 0x3de3c,
2075 		0x3de80, 0x3de80,
2076 		0x3de88, 0x3dea8,
2077 		0x3deb0, 0x3deb4,
2078 		0x3dec8, 0x3ded4,
2079 		0x3dfb8, 0x3e004,
2080 		0x3e208, 0x3e23c,
2081 		0x3e600, 0x3e630,
2082 		0x3ea00, 0x3eabc,
2083 		0x3eb00, 0x3eb70,
2084 		0x3f000, 0x3f048,
2085 		0x3f060, 0x3f09c,
2086 		0x3f0f0, 0x3f148,
2087 		0x3f160, 0x3f19c,
2088 		0x3f1f0, 0x3f2e4,
2089 		0x3f2f8, 0x3f3e4,
2090 		0x3f3f8, 0x3f448,
2091 		0x3f460, 0x3f49c,
2092 		0x3f4f0, 0x3f548,
2093 		0x3f560, 0x3f59c,
2094 		0x3f5f0, 0x3f6e4,
2095 		0x3f6f8, 0x3f7e4,
2096 		0x3f7f8, 0x3f7fc,
2097 		0x3f814, 0x3f814,
2098 		0x3f82c, 0x3f82c,
2099 		0x3f880, 0x3f88c,
2100 		0x3f8e8, 0x3f8ec,
2101 		0x3f900, 0x3f948,
2102 		0x3f960, 0x3f99c,
2103 		0x3f9f0, 0x3fae4,
2104 		0x3faf8, 0x3fb10,
2105 		0x3fb28, 0x3fb28,
2106 		0x3fb3c, 0x3fb50,
2107 		0x3fbf0, 0x3fc10,
2108 		0x3fc28, 0x3fc28,
2109 		0x3fc3c, 0x3fc50,
2110 		0x3fcf0, 0x3fcfc,
2111 		0x40000, 0x4000c,
2112 		0x40040, 0x40068,
2113 		0x40080, 0x40144,
2114 		0x40180, 0x4018c,
2115 		0x40200, 0x40298,
2116 		0x402ac, 0x4033c,
2117 		0x403f8, 0x403fc,
2118 		0x41304, 0x413c4,
2119 		0x41400, 0x4141c,
2120 		0x41480, 0x414d0,
2121 		0x44000, 0x44078,
2122 		0x440c0, 0x44278,
2123 		0x442c0, 0x44478,
2124 		0x444c0, 0x44678,
2125 		0x446c0, 0x44878,
2126 		0x448c0, 0x449fc,
2127 		0x45000, 0x45068,
2128 		0x45080, 0x45084,
2129 		0x450a0, 0x450b0,
2130 		0x45200, 0x45268,
2131 		0x45280, 0x45284,
2132 		0x452a0, 0x452b0,
2133 		0x460c0, 0x460e4,
2134 		0x47000, 0x4708c,
2135 		0x47200, 0x47250,
2136 		0x47400, 0x47420,
2137 		0x47600, 0x47618,
2138 		0x47800, 0x47814,
2139 		0x48000, 0x4800c,
2140 		0x48040, 0x48068,
2141 		0x48080, 0x48144,
2142 		0x48180, 0x4818c,
2143 		0x48200, 0x48298,
2144 		0x482ac, 0x4833c,
2145 		0x483f8, 0x483fc,
2146 		0x49304, 0x493c4,
2147 		0x49400, 0x4941c,
2148 		0x49480, 0x494d0,
2149 		0x4c000, 0x4c078,
2150 		0x4c0c0, 0x4c278,
2151 		0x4c2c0, 0x4c478,
2152 		0x4c4c0, 0x4c678,
2153 		0x4c6c0, 0x4c878,
2154 		0x4c8c0, 0x4c9fc,
2155 		0x4d000, 0x4d068,
2156 		0x4d080, 0x4d084,
2157 		0x4d0a0, 0x4d0b0,
2158 		0x4d200, 0x4d268,
2159 		0x4d280, 0x4d284,
2160 		0x4d2a0, 0x4d2b0,
2161 		0x4e0c0, 0x4e0e4,
2162 		0x4f000, 0x4f08c,
2163 		0x4f200, 0x4f250,
2164 		0x4f400, 0x4f420,
2165 		0x4f600, 0x4f618,
2166 		0x4f800, 0x4f814,
2167 		0x50000, 0x500cc,
2168 		0x50400, 0x50400,
2169 		0x50800, 0x508cc,
2170 		0x50c00, 0x50c00,
2171 		0x51000, 0x5101c,
2172 		0x51300, 0x51308,
2173 	};
2174 
2175 	int i;
2176 	struct adapter *ap = netdev2adap(dev);
2177 	static const unsigned int *reg_ranges;
2178 	int arr_size = 0, buf_size = 0;
2179 
2180 	if (is_t4(ap->params.chip)) {
2181 		reg_ranges = &t4_reg_ranges[0];
2182 		arr_size = ARRAY_SIZE(t4_reg_ranges);
2183 		buf_size = T4_REGMAP_SIZE;
2184 	} else {
2185 		reg_ranges = &t5_reg_ranges[0];
2186 		arr_size = ARRAY_SIZE(t5_reg_ranges);
2187 		buf_size = T5_REGMAP_SIZE;
2188 	}
2189 
2190 	regs->version = mk_adap_vers(ap);
2191 
2192 	memset(buf, 0, buf_size);
2193 	for (i = 0; i < arr_size; i += 2)
2194 		reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
2195 }
2196 
2197 static int restart_autoneg(struct net_device *dev)
2198 {
2199 	struct port_info *p = netdev_priv(dev);
2200 
2201 	if (!netif_running(dev))
2202 		return -EAGAIN;
2203 	if (p->link_cfg.autoneg != AUTONEG_ENABLE)
2204 		return -EINVAL;
2205 	t4_restart_aneg(p->adapter, p->adapter->fn, p->tx_chan);
2206 	return 0;
2207 }
2208 
2209 static int identify_port(struct net_device *dev,
2210 			 enum ethtool_phys_id_state state)
2211 {
2212 	unsigned int val;
2213 	struct adapter *adap = netdev2adap(dev);
2214 
2215 	if (state == ETHTOOL_ID_ACTIVE)
2216 		val = 0xffff;
2217 	else if (state == ETHTOOL_ID_INACTIVE)
2218 		val = 0;
2219 	else
2220 		return -EINVAL;
2221 
2222 	return t4_identify_port(adap, adap->fn, netdev2pinfo(dev)->viid, val);
2223 }
2224 
2225 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
2226 {
2227 	unsigned int v = 0;
2228 
2229 	if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
2230 	    type == FW_PORT_TYPE_BT_XAUI) {
2231 		v |= SUPPORTED_TP;
2232 		if (caps & FW_PORT_CAP_SPEED_100M)
2233 			v |= SUPPORTED_100baseT_Full;
2234 		if (caps & FW_PORT_CAP_SPEED_1G)
2235 			v |= SUPPORTED_1000baseT_Full;
2236 		if (caps & FW_PORT_CAP_SPEED_10G)
2237 			v |= SUPPORTED_10000baseT_Full;
2238 	} else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
2239 		v |= SUPPORTED_Backplane;
2240 		if (caps & FW_PORT_CAP_SPEED_1G)
2241 			v |= SUPPORTED_1000baseKX_Full;
2242 		if (caps & FW_PORT_CAP_SPEED_10G)
2243 			v |= SUPPORTED_10000baseKX4_Full;
2244 	} else if (type == FW_PORT_TYPE_KR)
2245 		v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
2246 	else if (type == FW_PORT_TYPE_BP_AP)
2247 		v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2248 		     SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
2249 	else if (type == FW_PORT_TYPE_BP4_AP)
2250 		v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
2251 		     SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
2252 		     SUPPORTED_10000baseKX4_Full;
2253 	else if (type == FW_PORT_TYPE_FIBER_XFI ||
2254 		 type == FW_PORT_TYPE_FIBER_XAUI || type == FW_PORT_TYPE_SFP)
2255 		v |= SUPPORTED_FIBRE;
2256 	else if (type == FW_PORT_TYPE_BP40_BA)
2257 		v |= SUPPORTED_40000baseSR4_Full;
2258 
2259 	if (caps & FW_PORT_CAP_ANEG)
2260 		v |= SUPPORTED_Autoneg;
2261 	return v;
2262 }
2263 
2264 static unsigned int to_fw_linkcaps(unsigned int caps)
2265 {
2266 	unsigned int v = 0;
2267 
2268 	if (caps & ADVERTISED_100baseT_Full)
2269 		v |= FW_PORT_CAP_SPEED_100M;
2270 	if (caps & ADVERTISED_1000baseT_Full)
2271 		v |= FW_PORT_CAP_SPEED_1G;
2272 	if (caps & ADVERTISED_10000baseT_Full)
2273 		v |= FW_PORT_CAP_SPEED_10G;
2274 	if (caps & ADVERTISED_40000baseSR4_Full)
2275 		v |= FW_PORT_CAP_SPEED_40G;
2276 	return v;
2277 }
2278 
2279 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2280 {
2281 	const struct port_info *p = netdev_priv(dev);
2282 
2283 	if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
2284 	    p->port_type == FW_PORT_TYPE_BT_XFI ||
2285 	    p->port_type == FW_PORT_TYPE_BT_XAUI)
2286 		cmd->port = PORT_TP;
2287 	else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
2288 		 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
2289 		cmd->port = PORT_FIBRE;
2290 	else if (p->port_type == FW_PORT_TYPE_SFP ||
2291 		 p->port_type == FW_PORT_TYPE_QSFP_10G ||
2292 		 p->port_type == FW_PORT_TYPE_QSFP) {
2293 		if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
2294 		    p->mod_type == FW_PORT_MOD_TYPE_SR ||
2295 		    p->mod_type == FW_PORT_MOD_TYPE_ER ||
2296 		    p->mod_type == FW_PORT_MOD_TYPE_LRM)
2297 			cmd->port = PORT_FIBRE;
2298 		else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
2299 			 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
2300 			cmd->port = PORT_DA;
2301 		else
2302 			cmd->port = PORT_OTHER;
2303 	} else
2304 		cmd->port = PORT_OTHER;
2305 
2306 	if (p->mdio_addr >= 0) {
2307 		cmd->phy_address = p->mdio_addr;
2308 		cmd->transceiver = XCVR_EXTERNAL;
2309 		cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
2310 			MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
2311 	} else {
2312 		cmd->phy_address = 0;  /* not really, but no better option */
2313 		cmd->transceiver = XCVR_INTERNAL;
2314 		cmd->mdio_support = 0;
2315 	}
2316 
2317 	cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
2318 	cmd->advertising = from_fw_linkcaps(p->port_type,
2319 					    p->link_cfg.advertising);
2320 	ethtool_cmd_speed_set(cmd,
2321 			      netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
2322 	cmd->duplex = DUPLEX_FULL;
2323 	cmd->autoneg = p->link_cfg.autoneg;
2324 	cmd->maxtxpkt = 0;
2325 	cmd->maxrxpkt = 0;
2326 	return 0;
2327 }
2328 
2329 static unsigned int speed_to_caps(int speed)
2330 {
2331 	if (speed == 100)
2332 		return FW_PORT_CAP_SPEED_100M;
2333 	if (speed == 1000)
2334 		return FW_PORT_CAP_SPEED_1G;
2335 	if (speed == 10000)
2336 		return FW_PORT_CAP_SPEED_10G;
2337 	if (speed == 40000)
2338 		return FW_PORT_CAP_SPEED_40G;
2339 	return 0;
2340 }
2341 
2342 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2343 {
2344 	unsigned int cap;
2345 	struct port_info *p = netdev_priv(dev);
2346 	struct link_config *lc = &p->link_cfg;
2347 	u32 speed = ethtool_cmd_speed(cmd);
2348 
2349 	if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
2350 		return -EINVAL;
2351 
2352 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2353 		/*
2354 		 * PHY offers a single speed.  See if that's what's
2355 		 * being requested.
2356 		 */
2357 		if (cmd->autoneg == AUTONEG_DISABLE &&
2358 		    (lc->supported & speed_to_caps(speed)))
2359 			return 0;
2360 		return -EINVAL;
2361 	}
2362 
2363 	if (cmd->autoneg == AUTONEG_DISABLE) {
2364 		cap = speed_to_caps(speed);
2365 
2366 		if (!(lc->supported & cap) ||
2367 		    (speed == 1000) ||
2368 		    (speed == 10000) ||
2369 		    (speed == 40000))
2370 			return -EINVAL;
2371 		lc->requested_speed = cap;
2372 		lc->advertising = 0;
2373 	} else {
2374 		cap = to_fw_linkcaps(cmd->advertising);
2375 		if (!(lc->supported & cap))
2376 			return -EINVAL;
2377 		lc->requested_speed = 0;
2378 		lc->advertising = cap | FW_PORT_CAP_ANEG;
2379 	}
2380 	lc->autoneg = cmd->autoneg;
2381 
2382 	if (netif_running(dev))
2383 		return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2384 				     lc);
2385 	return 0;
2386 }
2387 
2388 static void get_pauseparam(struct net_device *dev,
2389 			   struct ethtool_pauseparam *epause)
2390 {
2391 	struct port_info *p = netdev_priv(dev);
2392 
2393 	epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
2394 	epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
2395 	epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
2396 }
2397 
2398 static int set_pauseparam(struct net_device *dev,
2399 			  struct ethtool_pauseparam *epause)
2400 {
2401 	struct port_info *p = netdev_priv(dev);
2402 	struct link_config *lc = &p->link_cfg;
2403 
2404 	if (epause->autoneg == AUTONEG_DISABLE)
2405 		lc->requested_fc = 0;
2406 	else if (lc->supported & FW_PORT_CAP_ANEG)
2407 		lc->requested_fc = PAUSE_AUTONEG;
2408 	else
2409 		return -EINVAL;
2410 
2411 	if (epause->rx_pause)
2412 		lc->requested_fc |= PAUSE_RX;
2413 	if (epause->tx_pause)
2414 		lc->requested_fc |= PAUSE_TX;
2415 	if (netif_running(dev))
2416 		return t4_link_start(p->adapter, p->adapter->fn, p->tx_chan,
2417 				     lc);
2418 	return 0;
2419 }
2420 
2421 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2422 {
2423 	const struct port_info *pi = netdev_priv(dev);
2424 	const struct sge *s = &pi->adapter->sge;
2425 
2426 	e->rx_max_pending = MAX_RX_BUFFERS;
2427 	e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
2428 	e->rx_jumbo_max_pending = 0;
2429 	e->tx_max_pending = MAX_TXQ_ENTRIES;
2430 
2431 	e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
2432 	e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
2433 	e->rx_jumbo_pending = 0;
2434 	e->tx_pending = s->ethtxq[pi->first_qset].q.size;
2435 }
2436 
2437 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
2438 {
2439 	int i;
2440 	const struct port_info *pi = netdev_priv(dev);
2441 	struct adapter *adapter = pi->adapter;
2442 	struct sge *s = &adapter->sge;
2443 
2444 	if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
2445 	    e->tx_pending > MAX_TXQ_ENTRIES ||
2446 	    e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
2447 	    e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
2448 	    e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
2449 		return -EINVAL;
2450 
2451 	if (adapter->flags & FULL_INIT_DONE)
2452 		return -EBUSY;
2453 
2454 	for (i = 0; i < pi->nqsets; ++i) {
2455 		s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
2456 		s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
2457 		s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
2458 	}
2459 	return 0;
2460 }
2461 
2462 static int closest_timer(const struct sge *s, int time)
2463 {
2464 	int i, delta, match = 0, min_delta = INT_MAX;
2465 
2466 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
2467 		delta = time - s->timer_val[i];
2468 		if (delta < 0)
2469 			delta = -delta;
2470 		if (delta < min_delta) {
2471 			min_delta = delta;
2472 			match = i;
2473 		}
2474 	}
2475 	return match;
2476 }
2477 
2478 static int closest_thres(const struct sge *s, int thres)
2479 {
2480 	int i, delta, match = 0, min_delta = INT_MAX;
2481 
2482 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
2483 		delta = thres - s->counter_val[i];
2484 		if (delta < 0)
2485 			delta = -delta;
2486 		if (delta < min_delta) {
2487 			min_delta = delta;
2488 			match = i;
2489 		}
2490 	}
2491 	return match;
2492 }
2493 
2494 /*
2495  * Return a queue's interrupt hold-off time in us.  0 means no timer.
2496  */
2497 static unsigned int qtimer_val(const struct adapter *adap,
2498 			       const struct sge_rspq *q)
2499 {
2500 	unsigned int idx = q->intr_params >> 1;
2501 
2502 	return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
2503 }
2504 
2505 /**
2506  *	set_rspq_intr_params - set a queue's interrupt holdoff parameters
2507  *	@q: the Rx queue
2508  *	@us: the hold-off time in us, or 0 to disable timer
2509  *	@cnt: the hold-off packet count, or 0 to disable counter
2510  *
2511  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
2512  *	one of the two needs to be enabled for the queue to generate interrupts.
2513  */
2514 static int set_rspq_intr_params(struct sge_rspq *q,
2515 				unsigned int us, unsigned int cnt)
2516 {
2517 	struct adapter *adap = q->adap;
2518 
2519 	if ((us | cnt) == 0)
2520 		cnt = 1;
2521 
2522 	if (cnt) {
2523 		int err;
2524 		u32 v, new_idx;
2525 
2526 		new_idx = closest_thres(&adap->sge, cnt);
2527 		if (q->desc && q->pktcnt_idx != new_idx) {
2528 			/* the queue has already been created, update it */
2529 			v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2530 			    FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
2531 			    FW_PARAMS_PARAM_YZ(q->cntxt_id);
2532 			err = t4_set_params(adap, adap->fn, adap->fn, 0, 1, &v,
2533 					    &new_idx);
2534 			if (err)
2535 				return err;
2536 		}
2537 		q->pktcnt_idx = new_idx;
2538 	}
2539 
2540 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
2541 	q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
2542 	return 0;
2543 }
2544 
2545 /**
2546  * set_rx_intr_params - set a net devices's RX interrupt holdoff paramete!
2547  * @dev: the network device
2548  * @us: the hold-off time in us, or 0 to disable timer
2549  * @cnt: the hold-off packet count, or 0 to disable counter
2550  *
2551  * Set the RX interrupt hold-off parameters for a network device.
2552  */
2553 static int set_rx_intr_params(struct net_device *dev,
2554 			      unsigned int us, unsigned int cnt)
2555 {
2556 	int i, err;
2557 	struct port_info *pi = netdev_priv(dev);
2558 	struct adapter *adap = pi->adapter;
2559 	struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
2560 
2561 	for (i = 0; i < pi->nqsets; i++, q++) {
2562 		err = set_rspq_intr_params(&q->rspq, us, cnt);
2563 		if (err)
2564 			return err;
2565 	}
2566 	return 0;
2567 }
2568 
2569 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2570 {
2571 	return set_rx_intr_params(dev, c->rx_coalesce_usecs,
2572 				  c->rx_max_coalesced_frames);
2573 }
2574 
2575 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2576 {
2577 	const struct port_info *pi = netdev_priv(dev);
2578 	const struct adapter *adap = pi->adapter;
2579 	const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
2580 
2581 	c->rx_coalesce_usecs = qtimer_val(adap, rq);
2582 	c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
2583 		adap->sge.counter_val[rq->pktcnt_idx] : 0;
2584 	return 0;
2585 }
2586 
2587 /**
2588  *	eeprom_ptov - translate a physical EEPROM address to virtual
2589  *	@phys_addr: the physical EEPROM address
2590  *	@fn: the PCI function number
2591  *	@sz: size of function-specific area
2592  *
2593  *	Translate a physical EEPROM address to virtual.  The first 1K is
2594  *	accessed through virtual addresses starting at 31K, the rest is
2595  *	accessed through virtual addresses starting at 0.
2596  *
2597  *	The mapping is as follows:
2598  *	[0..1K) -> [31K..32K)
2599  *	[1K..1K+A) -> [31K-A..31K)
2600  *	[1K+A..ES) -> [0..ES-A-1K)
2601  *
2602  *	where A = @fn * @sz, and ES = EEPROM size.
2603  */
2604 static int eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2605 {
2606 	fn *= sz;
2607 	if (phys_addr < 1024)
2608 		return phys_addr + (31 << 10);
2609 	if (phys_addr < 1024 + fn)
2610 		return 31744 - fn + phys_addr - 1024;
2611 	if (phys_addr < EEPROMSIZE)
2612 		return phys_addr - 1024 - fn;
2613 	return -EINVAL;
2614 }
2615 
2616 /*
2617  * The next two routines implement eeprom read/write from physical addresses.
2618  */
2619 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
2620 {
2621 	int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2622 
2623 	if (vaddr >= 0)
2624 		vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
2625 	return vaddr < 0 ? vaddr : 0;
2626 }
2627 
2628 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
2629 {
2630 	int vaddr = eeprom_ptov(phys_addr, adap->fn, EEPROMPFSIZE);
2631 
2632 	if (vaddr >= 0)
2633 		vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
2634 	return vaddr < 0 ? vaddr : 0;
2635 }
2636 
2637 #define EEPROM_MAGIC 0x38E2F10C
2638 
2639 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2640 		      u8 *data)
2641 {
2642 	int i, err = 0;
2643 	struct adapter *adapter = netdev2adap(dev);
2644 
2645 	u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2646 	if (!buf)
2647 		return -ENOMEM;
2648 
2649 	e->magic = EEPROM_MAGIC;
2650 	for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2651 		err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
2652 
2653 	if (!err)
2654 		memcpy(data, buf + e->offset, e->len);
2655 	kfree(buf);
2656 	return err;
2657 }
2658 
2659 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2660 		      u8 *data)
2661 {
2662 	u8 *buf;
2663 	int err = 0;
2664 	u32 aligned_offset, aligned_len, *p;
2665 	struct adapter *adapter = netdev2adap(dev);
2666 
2667 	if (eeprom->magic != EEPROM_MAGIC)
2668 		return -EINVAL;
2669 
2670 	aligned_offset = eeprom->offset & ~3;
2671 	aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2672 
2673 	if (adapter->fn > 0) {
2674 		u32 start = 1024 + adapter->fn * EEPROMPFSIZE;
2675 
2676 		if (aligned_offset < start ||
2677 		    aligned_offset + aligned_len > start + EEPROMPFSIZE)
2678 			return -EPERM;
2679 	}
2680 
2681 	if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2682 		/*
2683 		 * RMW possibly needed for first or last words.
2684 		 */
2685 		buf = kmalloc(aligned_len, GFP_KERNEL);
2686 		if (!buf)
2687 			return -ENOMEM;
2688 		err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
2689 		if (!err && aligned_len > 4)
2690 			err = eeprom_rd_phys(adapter,
2691 					     aligned_offset + aligned_len - 4,
2692 					     (u32 *)&buf[aligned_len - 4]);
2693 		if (err)
2694 			goto out;
2695 		memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2696 	} else
2697 		buf = data;
2698 
2699 	err = t4_seeprom_wp(adapter, false);
2700 	if (err)
2701 		goto out;
2702 
2703 	for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
2704 		err = eeprom_wr_phys(adapter, aligned_offset, *p);
2705 		aligned_offset += 4;
2706 	}
2707 
2708 	if (!err)
2709 		err = t4_seeprom_wp(adapter, true);
2710 out:
2711 	if (buf != data)
2712 		kfree(buf);
2713 	return err;
2714 }
2715 
2716 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
2717 {
2718 	int ret;
2719 	const struct firmware *fw;
2720 	struct adapter *adap = netdev2adap(netdev);
2721 
2722 	ef->data[sizeof(ef->data) - 1] = '\0';
2723 	ret = request_firmware(&fw, ef->data, adap->pdev_dev);
2724 	if (ret < 0)
2725 		return ret;
2726 
2727 	ret = t4_load_fw(adap, fw->data, fw->size);
2728 	release_firmware(fw);
2729 	if (!ret)
2730 		dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
2731 	return ret;
2732 }
2733 
2734 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
2735 #define BCAST_CRC 0xa0ccc1a6
2736 
2737 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2738 {
2739 	wol->supported = WAKE_BCAST | WAKE_MAGIC;
2740 	wol->wolopts = netdev2adap(dev)->wol;
2741 	memset(&wol->sopass, 0, sizeof(wol->sopass));
2742 }
2743 
2744 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2745 {
2746 	int err = 0;
2747 	struct port_info *pi = netdev_priv(dev);
2748 
2749 	if (wol->wolopts & ~WOL_SUPPORTED)
2750 		return -EINVAL;
2751 	t4_wol_magic_enable(pi->adapter, pi->tx_chan,
2752 			    (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
2753 	if (wol->wolopts & WAKE_BCAST) {
2754 		err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
2755 					~0ULL, 0, false);
2756 		if (!err)
2757 			err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
2758 						~6ULL, ~0ULL, BCAST_CRC, true);
2759 	} else
2760 		t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
2761 	return err;
2762 }
2763 
2764 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2765 {
2766 	const struct port_info *pi = netdev_priv(dev);
2767 	netdev_features_t changed = dev->features ^ features;
2768 	int err;
2769 
2770 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
2771 		return 0;
2772 
2773 	err = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, -1,
2774 			    -1, -1, -1,
2775 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
2776 	if (unlikely(err))
2777 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
2778 	return err;
2779 }
2780 
2781 static u32 get_rss_table_size(struct net_device *dev)
2782 {
2783 	const struct port_info *pi = netdev_priv(dev);
2784 
2785 	return pi->rss_size;
2786 }
2787 
2788 static int get_rss_table(struct net_device *dev, u32 *p, u8 *key)
2789 {
2790 	const struct port_info *pi = netdev_priv(dev);
2791 	unsigned int n = pi->rss_size;
2792 
2793 	while (n--)
2794 		p[n] = pi->rss[n];
2795 	return 0;
2796 }
2797 
2798 static int set_rss_table(struct net_device *dev, const u32 *p, const u8 *key)
2799 {
2800 	unsigned int i;
2801 	struct port_info *pi = netdev_priv(dev);
2802 
2803 	for (i = 0; i < pi->rss_size; i++)
2804 		pi->rss[i] = p[i];
2805 	if (pi->adapter->flags & FULL_INIT_DONE)
2806 		return write_rss(pi, pi->rss);
2807 	return 0;
2808 }
2809 
2810 static int get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
2811 		     u32 *rules)
2812 {
2813 	const struct port_info *pi = netdev_priv(dev);
2814 
2815 	switch (info->cmd) {
2816 	case ETHTOOL_GRXFH: {
2817 		unsigned int v = pi->rss_mode;
2818 
2819 		info->data = 0;
2820 		switch (info->flow_type) {
2821 		case TCP_V4_FLOW:
2822 			if (v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
2823 				info->data = RXH_IP_SRC | RXH_IP_DST |
2824 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
2825 			else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2826 				info->data = RXH_IP_SRC | RXH_IP_DST;
2827 			break;
2828 		case UDP_V4_FLOW:
2829 			if ((v & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) &&
2830 			    (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2831 				info->data = RXH_IP_SRC | RXH_IP_DST |
2832 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
2833 			else if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2834 				info->data = RXH_IP_SRC | RXH_IP_DST;
2835 			break;
2836 		case SCTP_V4_FLOW:
2837 		case AH_ESP_V4_FLOW:
2838 		case IPV4_FLOW:
2839 			if (v & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
2840 				info->data = RXH_IP_SRC | RXH_IP_DST;
2841 			break;
2842 		case TCP_V6_FLOW:
2843 			if (v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
2844 				info->data = RXH_IP_SRC | RXH_IP_DST |
2845 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
2846 			else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2847 				info->data = RXH_IP_SRC | RXH_IP_DST;
2848 			break;
2849 		case UDP_V6_FLOW:
2850 			if ((v & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) &&
2851 			    (v & FW_RSS_VI_CONFIG_CMD_UDPEN))
2852 				info->data = RXH_IP_SRC | RXH_IP_DST |
2853 					     RXH_L4_B_0_1 | RXH_L4_B_2_3;
2854 			else if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2855 				info->data = RXH_IP_SRC | RXH_IP_DST;
2856 			break;
2857 		case SCTP_V6_FLOW:
2858 		case AH_ESP_V6_FLOW:
2859 		case IPV6_FLOW:
2860 			if (v & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
2861 				info->data = RXH_IP_SRC | RXH_IP_DST;
2862 			break;
2863 		}
2864 		return 0;
2865 	}
2866 	case ETHTOOL_GRXRINGS:
2867 		info->data = pi->nqsets;
2868 		return 0;
2869 	}
2870 	return -EOPNOTSUPP;
2871 }
2872 
2873 static const struct ethtool_ops cxgb_ethtool_ops = {
2874 	.get_settings      = get_settings,
2875 	.set_settings      = set_settings,
2876 	.get_drvinfo       = get_drvinfo,
2877 	.get_msglevel      = get_msglevel,
2878 	.set_msglevel      = set_msglevel,
2879 	.get_ringparam     = get_sge_param,
2880 	.set_ringparam     = set_sge_param,
2881 	.get_coalesce      = get_coalesce,
2882 	.set_coalesce      = set_coalesce,
2883 	.get_eeprom_len    = get_eeprom_len,
2884 	.get_eeprom        = get_eeprom,
2885 	.set_eeprom        = set_eeprom,
2886 	.get_pauseparam    = get_pauseparam,
2887 	.set_pauseparam    = set_pauseparam,
2888 	.get_link          = ethtool_op_get_link,
2889 	.get_strings       = get_strings,
2890 	.set_phys_id       = identify_port,
2891 	.nway_reset        = restart_autoneg,
2892 	.get_sset_count    = get_sset_count,
2893 	.get_ethtool_stats = get_stats,
2894 	.get_regs_len      = get_regs_len,
2895 	.get_regs          = get_regs,
2896 	.get_wol           = get_wol,
2897 	.set_wol           = set_wol,
2898 	.get_rxnfc         = get_rxnfc,
2899 	.get_rxfh_indir_size = get_rss_table_size,
2900 	.get_rxfh	   = get_rss_table,
2901 	.set_rxfh	   = set_rss_table,
2902 	.flash_device      = set_flash,
2903 };
2904 
2905 /*
2906  * debugfs support
2907  */
2908 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
2909 			loff_t *ppos)
2910 {
2911 	loff_t pos = *ppos;
2912 	loff_t avail = file_inode(file)->i_size;
2913 	unsigned int mem = (uintptr_t)file->private_data & 3;
2914 	struct adapter *adap = file->private_data - mem;
2915 
2916 	if (pos < 0)
2917 		return -EINVAL;
2918 	if (pos >= avail)
2919 		return 0;
2920 	if (count > avail - pos)
2921 		count = avail - pos;
2922 
2923 	while (count) {
2924 		size_t len;
2925 		int ret, ofst;
2926 		__be32 data[16];
2927 
2928 		if ((mem == MEM_MC) || (mem == MEM_MC1))
2929 			ret = t4_mc_read(adap, mem % MEM_MC, pos, data, NULL);
2930 		else
2931 			ret = t4_edc_read(adap, mem, pos, data, NULL);
2932 		if (ret)
2933 			return ret;
2934 
2935 		ofst = pos % sizeof(data);
2936 		len = min(count, sizeof(data) - ofst);
2937 		if (copy_to_user(buf, (u8 *)data + ofst, len))
2938 			return -EFAULT;
2939 
2940 		buf += len;
2941 		pos += len;
2942 		count -= len;
2943 	}
2944 	count = pos - *ppos;
2945 	*ppos = pos;
2946 	return count;
2947 }
2948 
2949 static const struct file_operations mem_debugfs_fops = {
2950 	.owner   = THIS_MODULE,
2951 	.open    = simple_open,
2952 	.read    = mem_read,
2953 	.llseek  = default_llseek,
2954 };
2955 
2956 static void add_debugfs_mem(struct adapter *adap, const char *name,
2957 			    unsigned int idx, unsigned int size_mb)
2958 {
2959 	struct dentry *de;
2960 
2961 	de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
2962 				 (void *)adap + idx, &mem_debugfs_fops);
2963 	if (de && de->d_inode)
2964 		de->d_inode->i_size = size_mb << 20;
2965 }
2966 
2967 static int setup_debugfs(struct adapter *adap)
2968 {
2969 	int i;
2970 	u32 size;
2971 
2972 	if (IS_ERR_OR_NULL(adap->debugfs_root))
2973 		return -1;
2974 
2975 	i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
2976 	if (i & EDRAM0_ENABLE) {
2977 		size = t4_read_reg(adap, MA_EDRAM0_BAR);
2978 		add_debugfs_mem(adap, "edc0", MEM_EDC0,	EDRAM_SIZE_GET(size));
2979 	}
2980 	if (i & EDRAM1_ENABLE) {
2981 		size = t4_read_reg(adap, MA_EDRAM1_BAR);
2982 		add_debugfs_mem(adap, "edc1", MEM_EDC1, EDRAM_SIZE_GET(size));
2983 	}
2984 	if (is_t4(adap->params.chip)) {
2985 		size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
2986 		if (i & EXT_MEM_ENABLE)
2987 			add_debugfs_mem(adap, "mc", MEM_MC,
2988 					EXT_MEM_SIZE_GET(size));
2989 	} else {
2990 		if (i & EXT_MEM_ENABLE) {
2991 			size = t4_read_reg(adap, MA_EXT_MEMORY_BAR);
2992 			add_debugfs_mem(adap, "mc0", MEM_MC0,
2993 					EXT_MEM_SIZE_GET(size));
2994 		}
2995 		if (i & EXT_MEM1_ENABLE) {
2996 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR);
2997 			add_debugfs_mem(adap, "mc1", MEM_MC1,
2998 					EXT_MEM_SIZE_GET(size));
2999 		}
3000 	}
3001 	if (adap->l2t)
3002 		debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
3003 				    &t4_l2t_fops);
3004 	return 0;
3005 }
3006 
3007 /*
3008  * upper-layer driver support
3009  */
3010 
3011 /*
3012  * Allocate an active-open TID and set it to the supplied value.
3013  */
3014 int cxgb4_alloc_atid(struct tid_info *t, void *data)
3015 {
3016 	int atid = -1;
3017 
3018 	spin_lock_bh(&t->atid_lock);
3019 	if (t->afree) {
3020 		union aopen_entry *p = t->afree;
3021 
3022 		atid = (p - t->atid_tab) + t->atid_base;
3023 		t->afree = p->next;
3024 		p->data = data;
3025 		t->atids_in_use++;
3026 	}
3027 	spin_unlock_bh(&t->atid_lock);
3028 	return atid;
3029 }
3030 EXPORT_SYMBOL(cxgb4_alloc_atid);
3031 
3032 /*
3033  * Release an active-open TID.
3034  */
3035 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
3036 {
3037 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
3038 
3039 	spin_lock_bh(&t->atid_lock);
3040 	p->next = t->afree;
3041 	t->afree = p;
3042 	t->atids_in_use--;
3043 	spin_unlock_bh(&t->atid_lock);
3044 }
3045 EXPORT_SYMBOL(cxgb4_free_atid);
3046 
3047 /*
3048  * Allocate a server TID and set it to the supplied value.
3049  */
3050 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
3051 {
3052 	int stid;
3053 
3054 	spin_lock_bh(&t->stid_lock);
3055 	if (family == PF_INET) {
3056 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
3057 		if (stid < t->nstids)
3058 			__set_bit(stid, t->stid_bmap);
3059 		else
3060 			stid = -1;
3061 	} else {
3062 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
3063 		if (stid < 0)
3064 			stid = -1;
3065 	}
3066 	if (stid >= 0) {
3067 		t->stid_tab[stid].data = data;
3068 		stid += t->stid_base;
3069 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
3070 		 * This is equivalent to 4 TIDs. With CLIP enabled it
3071 		 * needs 2 TIDs.
3072 		 */
3073 		if (family == PF_INET)
3074 			t->stids_in_use++;
3075 		else
3076 			t->stids_in_use += 4;
3077 	}
3078 	spin_unlock_bh(&t->stid_lock);
3079 	return stid;
3080 }
3081 EXPORT_SYMBOL(cxgb4_alloc_stid);
3082 
3083 /* Allocate a server filter TID and set it to the supplied value.
3084  */
3085 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
3086 {
3087 	int stid;
3088 
3089 	spin_lock_bh(&t->stid_lock);
3090 	if (family == PF_INET) {
3091 		stid = find_next_zero_bit(t->stid_bmap,
3092 				t->nstids + t->nsftids, t->nstids);
3093 		if (stid < (t->nstids + t->nsftids))
3094 			__set_bit(stid, t->stid_bmap);
3095 		else
3096 			stid = -1;
3097 	} else {
3098 		stid = -1;
3099 	}
3100 	if (stid >= 0) {
3101 		t->stid_tab[stid].data = data;
3102 		stid -= t->nstids;
3103 		stid += t->sftid_base;
3104 		t->stids_in_use++;
3105 	}
3106 	spin_unlock_bh(&t->stid_lock);
3107 	return stid;
3108 }
3109 EXPORT_SYMBOL(cxgb4_alloc_sftid);
3110 
3111 /* Release a server TID.
3112  */
3113 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
3114 {
3115 	/* Is it a server filter TID? */
3116 	if (t->nsftids && (stid >= t->sftid_base)) {
3117 		stid -= t->sftid_base;
3118 		stid += t->nstids;
3119 	} else {
3120 		stid -= t->stid_base;
3121 	}
3122 
3123 	spin_lock_bh(&t->stid_lock);
3124 	if (family == PF_INET)
3125 		__clear_bit(stid, t->stid_bmap);
3126 	else
3127 		bitmap_release_region(t->stid_bmap, stid, 2);
3128 	t->stid_tab[stid].data = NULL;
3129 	if (family == PF_INET)
3130 		t->stids_in_use--;
3131 	else
3132 		t->stids_in_use -= 4;
3133 	spin_unlock_bh(&t->stid_lock);
3134 }
3135 EXPORT_SYMBOL(cxgb4_free_stid);
3136 
3137 /*
3138  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
3139  */
3140 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
3141 			   unsigned int tid)
3142 {
3143 	struct cpl_tid_release *req;
3144 
3145 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
3146 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
3147 	INIT_TP_WR(req, tid);
3148 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
3149 }
3150 
3151 /*
3152  * Queue a TID release request and if necessary schedule a work queue to
3153  * process it.
3154  */
3155 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
3156 				    unsigned int tid)
3157 {
3158 	void **p = &t->tid_tab[tid];
3159 	struct adapter *adap = container_of(t, struct adapter, tids);
3160 
3161 	spin_lock_bh(&adap->tid_release_lock);
3162 	*p = adap->tid_release_head;
3163 	/* Low 2 bits encode the Tx channel number */
3164 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
3165 	if (!adap->tid_release_task_busy) {
3166 		adap->tid_release_task_busy = true;
3167 		queue_work(workq, &adap->tid_release_task);
3168 	}
3169 	spin_unlock_bh(&adap->tid_release_lock);
3170 }
3171 
3172 /*
3173  * Process the list of pending TID release requests.
3174  */
3175 static void process_tid_release_list(struct work_struct *work)
3176 {
3177 	struct sk_buff *skb;
3178 	struct adapter *adap;
3179 
3180 	adap = container_of(work, struct adapter, tid_release_task);
3181 
3182 	spin_lock_bh(&adap->tid_release_lock);
3183 	while (adap->tid_release_head) {
3184 		void **p = adap->tid_release_head;
3185 		unsigned int chan = (uintptr_t)p & 3;
3186 		p = (void *)p - chan;
3187 
3188 		adap->tid_release_head = *p;
3189 		*p = NULL;
3190 		spin_unlock_bh(&adap->tid_release_lock);
3191 
3192 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
3193 					 GFP_KERNEL)))
3194 			schedule_timeout_uninterruptible(1);
3195 
3196 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
3197 		t4_ofld_send(adap, skb);
3198 		spin_lock_bh(&adap->tid_release_lock);
3199 	}
3200 	adap->tid_release_task_busy = false;
3201 	spin_unlock_bh(&adap->tid_release_lock);
3202 }
3203 
3204 /*
3205  * Release a TID and inform HW.  If we are unable to allocate the release
3206  * message we defer to a work queue.
3207  */
3208 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
3209 {
3210 	void *old;
3211 	struct sk_buff *skb;
3212 	struct adapter *adap = container_of(t, struct adapter, tids);
3213 
3214 	old = t->tid_tab[tid];
3215 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
3216 	if (likely(skb)) {
3217 		t->tid_tab[tid] = NULL;
3218 		mk_tid_release(skb, chan, tid);
3219 		t4_ofld_send(adap, skb);
3220 	} else
3221 		cxgb4_queue_tid_release(t, chan, tid);
3222 	if (old)
3223 		atomic_dec(&t->tids_in_use);
3224 }
3225 EXPORT_SYMBOL(cxgb4_remove_tid);
3226 
3227 /*
3228  * Allocate and initialize the TID tables.  Returns 0 on success.
3229  */
3230 static int tid_init(struct tid_info *t)
3231 {
3232 	size_t size;
3233 	unsigned int stid_bmap_size;
3234 	unsigned int natids = t->natids;
3235 	struct adapter *adap = container_of(t, struct adapter, tids);
3236 
3237 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
3238 	size = t->ntids * sizeof(*t->tid_tab) +
3239 	       natids * sizeof(*t->atid_tab) +
3240 	       t->nstids * sizeof(*t->stid_tab) +
3241 	       t->nsftids * sizeof(*t->stid_tab) +
3242 	       stid_bmap_size * sizeof(long) +
3243 	       t->nftids * sizeof(*t->ftid_tab) +
3244 	       t->nsftids * sizeof(*t->ftid_tab);
3245 
3246 	t->tid_tab = t4_alloc_mem(size);
3247 	if (!t->tid_tab)
3248 		return -ENOMEM;
3249 
3250 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
3251 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
3252 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
3253 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
3254 	spin_lock_init(&t->stid_lock);
3255 	spin_lock_init(&t->atid_lock);
3256 
3257 	t->stids_in_use = 0;
3258 	t->afree = NULL;
3259 	t->atids_in_use = 0;
3260 	atomic_set(&t->tids_in_use, 0);
3261 
3262 	/* Setup the free list for atid_tab and clear the stid bitmap. */
3263 	if (natids) {
3264 		while (--natids)
3265 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
3266 		t->afree = t->atid_tab;
3267 	}
3268 	bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
3269 	/* Reserve stid 0 for T4/T5 adapters */
3270 	if (!t->stid_base &&
3271 	    (is_t4(adap->params.chip) || is_t5(adap->params.chip)))
3272 		__set_bit(0, t->stid_bmap);
3273 
3274 	return 0;
3275 }
3276 
3277 static int cxgb4_clip_get(const struct net_device *dev,
3278 			  const struct in6_addr *lip)
3279 {
3280 	struct adapter *adap;
3281 	struct fw_clip_cmd c;
3282 
3283 	adap = netdev2adap(dev);
3284 	memset(&c, 0, sizeof(c));
3285 	c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3286 			FW_CMD_REQUEST | FW_CMD_WRITE);
3287 	c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_ALLOC | FW_LEN16(c));
3288 	c.ip_hi = *(__be64 *)(lip->s6_addr);
3289 	c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3290 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3291 }
3292 
3293 static int cxgb4_clip_release(const struct net_device *dev,
3294 			      const struct in6_addr *lip)
3295 {
3296 	struct adapter *adap;
3297 	struct fw_clip_cmd c;
3298 
3299 	adap = netdev2adap(dev);
3300 	memset(&c, 0, sizeof(c));
3301 	c.op_to_write = htonl(FW_CMD_OP(FW_CLIP_CMD) |
3302 			FW_CMD_REQUEST | FW_CMD_READ);
3303 	c.alloc_to_len16 = htonl(F_FW_CLIP_CMD_FREE | FW_LEN16(c));
3304 	c.ip_hi = *(__be64 *)(lip->s6_addr);
3305 	c.ip_lo = *(__be64 *)(lip->s6_addr + 8);
3306 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, false);
3307 }
3308 
3309 /**
3310  *	cxgb4_create_server - create an IP server
3311  *	@dev: the device
3312  *	@stid: the server TID
3313  *	@sip: local IP address to bind server to
3314  *	@sport: the server's TCP port
3315  *	@queue: queue to direct messages from this server to
3316  *
3317  *	Create an IP server for the given port and address.
3318  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
3319  */
3320 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
3321 			__be32 sip, __be16 sport, __be16 vlan,
3322 			unsigned int queue)
3323 {
3324 	unsigned int chan;
3325 	struct sk_buff *skb;
3326 	struct adapter *adap;
3327 	struct cpl_pass_open_req *req;
3328 	int ret;
3329 
3330 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3331 	if (!skb)
3332 		return -ENOMEM;
3333 
3334 	adap = netdev2adap(dev);
3335 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
3336 	INIT_TP_WR(req, 0);
3337 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
3338 	req->local_port = sport;
3339 	req->peer_port = htons(0);
3340 	req->local_ip = sip;
3341 	req->peer_ip = htonl(0);
3342 	chan = rxq_to_chan(&adap->sge, queue);
3343 	req->opt0 = cpu_to_be64(TX_CHAN(chan));
3344 	req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3345 				SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3346 	ret = t4_mgmt_tx(adap, skb);
3347 	return net_xmit_eval(ret);
3348 }
3349 EXPORT_SYMBOL(cxgb4_create_server);
3350 
3351 /*	cxgb4_create_server6 - create an IPv6 server
3352  *	@dev: the device
3353  *	@stid: the server TID
3354  *	@sip: local IPv6 address to bind server to
3355  *	@sport: the server's TCP port
3356  *	@queue: queue to direct messages from this server to
3357  *
3358  *	Create an IPv6 server for the given port and address.
3359  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
3360  */
3361 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
3362 			 const struct in6_addr *sip, __be16 sport,
3363 			 unsigned int queue)
3364 {
3365 	unsigned int chan;
3366 	struct sk_buff *skb;
3367 	struct adapter *adap;
3368 	struct cpl_pass_open_req6 *req;
3369 	int ret;
3370 
3371 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3372 	if (!skb)
3373 		return -ENOMEM;
3374 
3375 	adap = netdev2adap(dev);
3376 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
3377 	INIT_TP_WR(req, 0);
3378 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
3379 	req->local_port = sport;
3380 	req->peer_port = htons(0);
3381 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
3382 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
3383 	req->peer_ip_hi = cpu_to_be64(0);
3384 	req->peer_ip_lo = cpu_to_be64(0);
3385 	chan = rxq_to_chan(&adap->sge, queue);
3386 	req->opt0 = cpu_to_be64(TX_CHAN(chan));
3387 	req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
3388 				SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
3389 	ret = t4_mgmt_tx(adap, skb);
3390 	return net_xmit_eval(ret);
3391 }
3392 EXPORT_SYMBOL(cxgb4_create_server6);
3393 
3394 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
3395 			unsigned int queue, bool ipv6)
3396 {
3397 	struct sk_buff *skb;
3398 	struct adapter *adap;
3399 	struct cpl_close_listsvr_req *req;
3400 	int ret;
3401 
3402 	adap = netdev2adap(dev);
3403 
3404 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
3405 	if (!skb)
3406 		return -ENOMEM;
3407 
3408 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
3409 	INIT_TP_WR(req, 0);
3410 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
3411 	req->reply_ctrl = htons(NO_REPLY(0) | (ipv6 ? LISTSVR_IPV6(1) :
3412 				LISTSVR_IPV6(0)) | QUEUENO(queue));
3413 	ret = t4_mgmt_tx(adap, skb);
3414 	return net_xmit_eval(ret);
3415 }
3416 EXPORT_SYMBOL(cxgb4_remove_server);
3417 
3418 /**
3419  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
3420  *	@mtus: the HW MTU table
3421  *	@mtu: the target MTU
3422  *	@idx: index of selected entry in the MTU table
3423  *
3424  *	Returns the index and the value in the HW MTU table that is closest to
3425  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
3426  *	table, in which case that smallest available value is selected.
3427  */
3428 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
3429 			    unsigned int *idx)
3430 {
3431 	unsigned int i = 0;
3432 
3433 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
3434 		++i;
3435 	if (idx)
3436 		*idx = i;
3437 	return mtus[i];
3438 }
3439 EXPORT_SYMBOL(cxgb4_best_mtu);
3440 
3441 /**
3442  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
3443  *     @mtus: the HW MTU table
3444  *     @header_size: Header Size
3445  *     @data_size_max: maximum Data Segment Size
3446  *     @data_size_align: desired Data Segment Size Alignment (2^N)
3447  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
3448  *
3449  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
3450  *     MTU Table based solely on a Maximum MTU parameter, we break that
3451  *     parameter up into a Header Size and Maximum Data Segment Size, and
3452  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
3453  *     the Hardware MTU Table which will result in a Data Segment Size with
3454  *     the requested alignment _and_ that MTU isn't "too far" from the
3455  *     closest MTU, then we'll return that rather than the closest MTU.
3456  */
3457 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
3458 				    unsigned short header_size,
3459 				    unsigned short data_size_max,
3460 				    unsigned short data_size_align,
3461 				    unsigned int *mtu_idxp)
3462 {
3463 	unsigned short max_mtu = header_size + data_size_max;
3464 	unsigned short data_size_align_mask = data_size_align - 1;
3465 	int mtu_idx, aligned_mtu_idx;
3466 
3467 	/* Scan the MTU Table till we find an MTU which is larger than our
3468 	 * Maximum MTU or we reach the end of the table.  Along the way,
3469 	 * record the last MTU found, if any, which will result in a Data
3470 	 * Segment Length matching the requested alignment.
3471 	 */
3472 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
3473 		unsigned short data_size = mtus[mtu_idx] - header_size;
3474 
3475 		/* If this MTU minus the Header Size would result in a
3476 		 * Data Segment Size of the desired alignment, remember it.
3477 		 */
3478 		if ((data_size & data_size_align_mask) == 0)
3479 			aligned_mtu_idx = mtu_idx;
3480 
3481 		/* If we're not at the end of the Hardware MTU Table and the
3482 		 * next element is larger than our Maximum MTU, drop out of
3483 		 * the loop.
3484 		 */
3485 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
3486 			break;
3487 	}
3488 
3489 	/* If we fell out of the loop because we ran to the end of the table,
3490 	 * then we just have to use the last [largest] entry.
3491 	 */
3492 	if (mtu_idx == NMTUS)
3493 		mtu_idx--;
3494 
3495 	/* If we found an MTU which resulted in the requested Data Segment
3496 	 * Length alignment and that's "not far" from the largest MTU which is
3497 	 * less than or equal to the maximum MTU, then use that.
3498 	 */
3499 	if (aligned_mtu_idx >= 0 &&
3500 	    mtu_idx - aligned_mtu_idx <= 1)
3501 		mtu_idx = aligned_mtu_idx;
3502 
3503 	/* If the caller has passed in an MTU Index pointer, pass the
3504 	 * MTU Index back.  Return the MTU value.
3505 	 */
3506 	if (mtu_idxp)
3507 		*mtu_idxp = mtu_idx;
3508 	return mtus[mtu_idx];
3509 }
3510 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
3511 
3512 /**
3513  *	cxgb4_port_chan - get the HW channel of a port
3514  *	@dev: the net device for the port
3515  *
3516  *	Return the HW Tx channel of the given port.
3517  */
3518 unsigned int cxgb4_port_chan(const struct net_device *dev)
3519 {
3520 	return netdev2pinfo(dev)->tx_chan;
3521 }
3522 EXPORT_SYMBOL(cxgb4_port_chan);
3523 
3524 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
3525 {
3526 	struct adapter *adap = netdev2adap(dev);
3527 	u32 v1, v2, lp_count, hp_count;
3528 
3529 	v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3530 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3531 	if (is_t4(adap->params.chip)) {
3532 		lp_count = G_LP_COUNT(v1);
3533 		hp_count = G_HP_COUNT(v1);
3534 	} else {
3535 		lp_count = G_LP_COUNT_T5(v1);
3536 		hp_count = G_HP_COUNT_T5(v2);
3537 	}
3538 	return lpfifo ? lp_count : hp_count;
3539 }
3540 EXPORT_SYMBOL(cxgb4_dbfifo_count);
3541 
3542 /**
3543  *	cxgb4_port_viid - get the VI id of a port
3544  *	@dev: the net device for the port
3545  *
3546  *	Return the VI id of the given port.
3547  */
3548 unsigned int cxgb4_port_viid(const struct net_device *dev)
3549 {
3550 	return netdev2pinfo(dev)->viid;
3551 }
3552 EXPORT_SYMBOL(cxgb4_port_viid);
3553 
3554 /**
3555  *	cxgb4_port_idx - get the index of a port
3556  *	@dev: the net device for the port
3557  *
3558  *	Return the index of the given port.
3559  */
3560 unsigned int cxgb4_port_idx(const struct net_device *dev)
3561 {
3562 	return netdev2pinfo(dev)->port_id;
3563 }
3564 EXPORT_SYMBOL(cxgb4_port_idx);
3565 
3566 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
3567 			 struct tp_tcp_stats *v6)
3568 {
3569 	struct adapter *adap = pci_get_drvdata(pdev);
3570 
3571 	spin_lock(&adap->stats_lock);
3572 	t4_tp_get_tcp_stats(adap, v4, v6);
3573 	spin_unlock(&adap->stats_lock);
3574 }
3575 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
3576 
3577 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
3578 		      const unsigned int *pgsz_order)
3579 {
3580 	struct adapter *adap = netdev2adap(dev);
3581 
3582 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
3583 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
3584 		     HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
3585 		     HPZ3(pgsz_order[3]));
3586 }
3587 EXPORT_SYMBOL(cxgb4_iscsi_init);
3588 
3589 int cxgb4_flush_eq_cache(struct net_device *dev)
3590 {
3591 	struct adapter *adap = netdev2adap(dev);
3592 	int ret;
3593 
3594 	ret = t4_fwaddrspace_write(adap, adap->mbox,
3595 				   0xe1000000 + A_SGE_CTXT_CMD, 0x20000000);
3596 	return ret;
3597 }
3598 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
3599 
3600 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
3601 {
3602 	u32 addr = t4_read_reg(adap, A_SGE_DBQ_CTXT_BADDR) + 24 * qid + 8;
3603 	__be64 indices;
3604 	int ret;
3605 
3606 	ret = t4_mem_win_read_len(adap, addr, (__be32 *)&indices, 8);
3607 	if (!ret) {
3608 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
3609 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
3610 	}
3611 	return ret;
3612 }
3613 
3614 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
3615 			u16 size)
3616 {
3617 	struct adapter *adap = netdev2adap(dev);
3618 	u16 hw_pidx, hw_cidx;
3619 	int ret;
3620 
3621 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
3622 	if (ret)
3623 		goto out;
3624 
3625 	if (pidx != hw_pidx) {
3626 		u16 delta;
3627 
3628 		if (pidx >= hw_pidx)
3629 			delta = pidx - hw_pidx;
3630 		else
3631 			delta = size - hw_pidx + pidx;
3632 		wmb();
3633 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3634 			     QID(qid) | PIDX(delta));
3635 	}
3636 out:
3637 	return ret;
3638 }
3639 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
3640 
3641 void cxgb4_disable_db_coalescing(struct net_device *dev)
3642 {
3643 	struct adapter *adap;
3644 
3645 	adap = netdev2adap(dev);
3646 	t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE,
3647 			 F_NOCOALESCE);
3648 }
3649 EXPORT_SYMBOL(cxgb4_disable_db_coalescing);
3650 
3651 void cxgb4_enable_db_coalescing(struct net_device *dev)
3652 {
3653 	struct adapter *adap;
3654 
3655 	adap = netdev2adap(dev);
3656 	t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_NOCOALESCE, 0);
3657 }
3658 EXPORT_SYMBOL(cxgb4_enable_db_coalescing);
3659 
3660 static struct pci_driver cxgb4_driver;
3661 
3662 static void check_neigh_update(struct neighbour *neigh)
3663 {
3664 	const struct device *parent;
3665 	const struct net_device *netdev = neigh->dev;
3666 
3667 	if (netdev->priv_flags & IFF_802_1Q_VLAN)
3668 		netdev = vlan_dev_real_dev(netdev);
3669 	parent = netdev->dev.parent;
3670 	if (parent && parent->driver == &cxgb4_driver.driver)
3671 		t4_l2t_update(dev_get_drvdata(parent), neigh);
3672 }
3673 
3674 static int netevent_cb(struct notifier_block *nb, unsigned long event,
3675 		       void *data)
3676 {
3677 	switch (event) {
3678 	case NETEVENT_NEIGH_UPDATE:
3679 		check_neigh_update(data);
3680 		break;
3681 	case NETEVENT_REDIRECT:
3682 	default:
3683 		break;
3684 	}
3685 	return 0;
3686 }
3687 
3688 static bool netevent_registered;
3689 static struct notifier_block cxgb4_netevent_nb = {
3690 	.notifier_call = netevent_cb
3691 };
3692 
3693 static void drain_db_fifo(struct adapter *adap, int usecs)
3694 {
3695 	u32 v1, v2, lp_count, hp_count;
3696 
3697 	do {
3698 		v1 = t4_read_reg(adap, A_SGE_DBFIFO_STATUS);
3699 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2);
3700 		if (is_t4(adap->params.chip)) {
3701 			lp_count = G_LP_COUNT(v1);
3702 			hp_count = G_HP_COUNT(v1);
3703 		} else {
3704 			lp_count = G_LP_COUNT_T5(v1);
3705 			hp_count = G_HP_COUNT_T5(v2);
3706 		}
3707 
3708 		if (lp_count == 0 && hp_count == 0)
3709 			break;
3710 		set_current_state(TASK_UNINTERRUPTIBLE);
3711 		schedule_timeout(usecs_to_jiffies(usecs));
3712 	} while (1);
3713 }
3714 
3715 static void disable_txq_db(struct sge_txq *q)
3716 {
3717 	unsigned long flags;
3718 
3719 	spin_lock_irqsave(&q->db_lock, flags);
3720 	q->db_disabled = 1;
3721 	spin_unlock_irqrestore(&q->db_lock, flags);
3722 }
3723 
3724 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
3725 {
3726 	spin_lock_irq(&q->db_lock);
3727 	if (q->db_pidx_inc) {
3728 		/* Make sure that all writes to the TX descriptors
3729 		 * are committed before we tell HW about them.
3730 		 */
3731 		wmb();
3732 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3733 			     QID(q->cntxt_id) | PIDX(q->db_pidx_inc));
3734 		q->db_pidx_inc = 0;
3735 	}
3736 	q->db_disabled = 0;
3737 	spin_unlock_irq(&q->db_lock);
3738 }
3739 
3740 static void disable_dbs(struct adapter *adap)
3741 {
3742 	int i;
3743 
3744 	for_each_ethrxq(&adap->sge, i)
3745 		disable_txq_db(&adap->sge.ethtxq[i].q);
3746 	for_each_ofldrxq(&adap->sge, i)
3747 		disable_txq_db(&adap->sge.ofldtxq[i].q);
3748 	for_each_port(adap, i)
3749 		disable_txq_db(&adap->sge.ctrlq[i].q);
3750 }
3751 
3752 static void enable_dbs(struct adapter *adap)
3753 {
3754 	int i;
3755 
3756 	for_each_ethrxq(&adap->sge, i)
3757 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
3758 	for_each_ofldrxq(&adap->sge, i)
3759 		enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
3760 	for_each_port(adap, i)
3761 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
3762 }
3763 
3764 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
3765 {
3766 	if (adap->uld_handle[CXGB4_ULD_RDMA])
3767 		ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
3768 				cmd);
3769 }
3770 
3771 static void process_db_full(struct work_struct *work)
3772 {
3773 	struct adapter *adap;
3774 
3775 	adap = container_of(work, struct adapter, db_full_task);
3776 
3777 	drain_db_fifo(adap, dbfifo_drain_delay);
3778 	enable_dbs(adap);
3779 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3780 	t4_set_reg_field(adap, SGE_INT_ENABLE3,
3781 			 DBFIFO_HP_INT | DBFIFO_LP_INT,
3782 			 DBFIFO_HP_INT | DBFIFO_LP_INT);
3783 }
3784 
3785 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
3786 {
3787 	u16 hw_pidx, hw_cidx;
3788 	int ret;
3789 
3790 	spin_lock_irq(&q->db_lock);
3791 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
3792 	if (ret)
3793 		goto out;
3794 	if (q->db_pidx != hw_pidx) {
3795 		u16 delta;
3796 
3797 		if (q->db_pidx >= hw_pidx)
3798 			delta = q->db_pidx - hw_pidx;
3799 		else
3800 			delta = q->size - hw_pidx + q->db_pidx;
3801 		wmb();
3802 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL),
3803 			     QID(q->cntxt_id) | PIDX(delta));
3804 	}
3805 out:
3806 	q->db_disabled = 0;
3807 	q->db_pidx_inc = 0;
3808 	spin_unlock_irq(&q->db_lock);
3809 	if (ret)
3810 		CH_WARN(adap, "DB drop recovery failed.\n");
3811 }
3812 static void recover_all_queues(struct adapter *adap)
3813 {
3814 	int i;
3815 
3816 	for_each_ethrxq(&adap->sge, i)
3817 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
3818 	for_each_ofldrxq(&adap->sge, i)
3819 		sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
3820 	for_each_port(adap, i)
3821 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
3822 }
3823 
3824 static void process_db_drop(struct work_struct *work)
3825 {
3826 	struct adapter *adap;
3827 
3828 	adap = container_of(work, struct adapter, db_drop_task);
3829 
3830 	if (is_t4(adap->params.chip)) {
3831 		drain_db_fifo(adap, dbfifo_drain_delay);
3832 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
3833 		drain_db_fifo(adap, dbfifo_drain_delay);
3834 		recover_all_queues(adap);
3835 		drain_db_fifo(adap, dbfifo_drain_delay);
3836 		enable_dbs(adap);
3837 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
3838 	} else {
3839 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
3840 		u16 qid = (dropped_db >> 15) & 0x1ffff;
3841 		u16 pidx_inc = dropped_db & 0x1fff;
3842 		unsigned int s_qpp;
3843 		unsigned short udb_density;
3844 		unsigned long qpshift;
3845 		int page;
3846 		u32 udb;
3847 
3848 		dev_warn(adap->pdev_dev,
3849 			 "Dropped DB 0x%x qid %d bar2 %d coalesce %d pidx %d\n",
3850 			 dropped_db, qid,
3851 			 (dropped_db >> 14) & 1,
3852 			 (dropped_db >> 13) & 1,
3853 			 pidx_inc);
3854 
3855 		drain_db_fifo(adap, 1);
3856 
3857 		s_qpp = QUEUESPERPAGEPF1 * adap->fn;
3858 		udb_density = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adap,
3859 				SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
3860 		qpshift = PAGE_SHIFT - ilog2(udb_density);
3861 		udb = qid << qpshift;
3862 		udb &= PAGE_MASK;
3863 		page = udb / PAGE_SIZE;
3864 		udb += (qid - (page * udb_density)) * 128;
3865 
3866 		writel(PIDX(pidx_inc),  adap->bar2 + udb + 8);
3867 
3868 		/* Re-enable BAR2 WC */
3869 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
3870 	}
3871 
3872 	t4_set_reg_field(adap, A_SGE_DOORBELL_CONTROL, F_DROPPED_DB, 0);
3873 }
3874 
3875 void t4_db_full(struct adapter *adap)
3876 {
3877 	if (is_t4(adap->params.chip)) {
3878 		disable_dbs(adap);
3879 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
3880 		t4_set_reg_field(adap, SGE_INT_ENABLE3,
3881 				 DBFIFO_HP_INT | DBFIFO_LP_INT, 0);
3882 		queue_work(workq, &adap->db_full_task);
3883 	}
3884 }
3885 
3886 void t4_db_dropped(struct adapter *adap)
3887 {
3888 	if (is_t4(adap->params.chip)) {
3889 		disable_dbs(adap);
3890 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
3891 	}
3892 	queue_work(workq, &adap->db_drop_task);
3893 }
3894 
3895 static void uld_attach(struct adapter *adap, unsigned int uld)
3896 {
3897 	void *handle;
3898 	struct cxgb4_lld_info lli;
3899 	unsigned short i;
3900 
3901 	lli.pdev = adap->pdev;
3902 	lli.l2t = adap->l2t;
3903 	lli.tids = &adap->tids;
3904 	lli.ports = adap->port;
3905 	lli.vr = &adap->vres;
3906 	lli.mtus = adap->params.mtus;
3907 	if (uld == CXGB4_ULD_RDMA) {
3908 		lli.rxq_ids = adap->sge.rdma_rxq;
3909 		lli.ciq_ids = adap->sge.rdma_ciq;
3910 		lli.nrxq = adap->sge.rdmaqs;
3911 		lli.nciq = adap->sge.rdmaciqs;
3912 	} else if (uld == CXGB4_ULD_ISCSI) {
3913 		lli.rxq_ids = adap->sge.ofld_rxq;
3914 		lli.nrxq = adap->sge.ofldqsets;
3915 	}
3916 	lli.ntxq = adap->sge.ofldqsets;
3917 	lli.nchan = adap->params.nports;
3918 	lli.nports = adap->params.nports;
3919 	lli.wr_cred = adap->params.ofldq_wr_cred;
3920 	lli.adapter_type = adap->params.chip;
3921 	lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
3922 	lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
3923 			t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF) >>
3924 			(adap->fn * 4));
3925 	lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
3926 			t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF) >>
3927 			(adap->fn * 4));
3928 	lli.filt_mode = adap->params.tp.vlan_pri_map;
3929 	/* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
3930 	for (i = 0; i < NCHAN; i++)
3931 		lli.tx_modq[i] = i;
3932 	lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
3933 	lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
3934 	lli.fw_vers = adap->params.fw_vers;
3935 	lli.dbfifo_int_thresh = dbfifo_int_thresh;
3936 	lli.sge_pktshift = adap->sge.pktshift;
3937 	lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
3938 	lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
3939 
3940 	handle = ulds[uld].add(&lli);
3941 	if (IS_ERR(handle)) {
3942 		dev_warn(adap->pdev_dev,
3943 			 "could not attach to the %s driver, error %ld\n",
3944 			 uld_str[uld], PTR_ERR(handle));
3945 		return;
3946 	}
3947 
3948 	adap->uld_handle[uld] = handle;
3949 
3950 	if (!netevent_registered) {
3951 		register_netevent_notifier(&cxgb4_netevent_nb);
3952 		netevent_registered = true;
3953 	}
3954 
3955 	if (adap->flags & FULL_INIT_DONE)
3956 		ulds[uld].state_change(handle, CXGB4_STATE_UP);
3957 }
3958 
3959 static void attach_ulds(struct adapter *adap)
3960 {
3961 	unsigned int i;
3962 
3963 	spin_lock(&adap_rcu_lock);
3964 	list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
3965 	spin_unlock(&adap_rcu_lock);
3966 
3967 	mutex_lock(&uld_mutex);
3968 	list_add_tail(&adap->list_node, &adapter_list);
3969 	for (i = 0; i < CXGB4_ULD_MAX; i++)
3970 		if (ulds[i].add)
3971 			uld_attach(adap, i);
3972 	mutex_unlock(&uld_mutex);
3973 }
3974 
3975 static void detach_ulds(struct adapter *adap)
3976 {
3977 	unsigned int i;
3978 
3979 	mutex_lock(&uld_mutex);
3980 	list_del(&adap->list_node);
3981 	for (i = 0; i < CXGB4_ULD_MAX; i++)
3982 		if (adap->uld_handle[i]) {
3983 			ulds[i].state_change(adap->uld_handle[i],
3984 					     CXGB4_STATE_DETACH);
3985 			adap->uld_handle[i] = NULL;
3986 		}
3987 	if (netevent_registered && list_empty(&adapter_list)) {
3988 		unregister_netevent_notifier(&cxgb4_netevent_nb);
3989 		netevent_registered = false;
3990 	}
3991 	mutex_unlock(&uld_mutex);
3992 
3993 	spin_lock(&adap_rcu_lock);
3994 	list_del_rcu(&adap->rcu_node);
3995 	spin_unlock(&adap_rcu_lock);
3996 }
3997 
3998 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
3999 {
4000 	unsigned int i;
4001 
4002 	mutex_lock(&uld_mutex);
4003 	for (i = 0; i < CXGB4_ULD_MAX; i++)
4004 		if (adap->uld_handle[i])
4005 			ulds[i].state_change(adap->uld_handle[i], new_state);
4006 	mutex_unlock(&uld_mutex);
4007 }
4008 
4009 /**
4010  *	cxgb4_register_uld - register an upper-layer driver
4011  *	@type: the ULD type
4012  *	@p: the ULD methods
4013  *
4014  *	Registers an upper-layer driver with this driver and notifies the ULD
4015  *	about any presently available devices that support its type.  Returns
4016  *	%-EBUSY if a ULD of the same type is already registered.
4017  */
4018 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
4019 {
4020 	int ret = 0;
4021 	struct adapter *adap;
4022 
4023 	if (type >= CXGB4_ULD_MAX)
4024 		return -EINVAL;
4025 	mutex_lock(&uld_mutex);
4026 	if (ulds[type].add) {
4027 		ret = -EBUSY;
4028 		goto out;
4029 	}
4030 	ulds[type] = *p;
4031 	list_for_each_entry(adap, &adapter_list, list_node)
4032 		uld_attach(adap, type);
4033 out:	mutex_unlock(&uld_mutex);
4034 	return ret;
4035 }
4036 EXPORT_SYMBOL(cxgb4_register_uld);
4037 
4038 /**
4039  *	cxgb4_unregister_uld - unregister an upper-layer driver
4040  *	@type: the ULD type
4041  *
4042  *	Unregisters an existing upper-layer driver.
4043  */
4044 int cxgb4_unregister_uld(enum cxgb4_uld type)
4045 {
4046 	struct adapter *adap;
4047 
4048 	if (type >= CXGB4_ULD_MAX)
4049 		return -EINVAL;
4050 	mutex_lock(&uld_mutex);
4051 	list_for_each_entry(adap, &adapter_list, list_node)
4052 		adap->uld_handle[type] = NULL;
4053 	ulds[type].add = NULL;
4054 	mutex_unlock(&uld_mutex);
4055 	return 0;
4056 }
4057 EXPORT_SYMBOL(cxgb4_unregister_uld);
4058 
4059 /* Check if netdev on which event is occured belongs to us or not. Return
4060  * success (true) if it belongs otherwise failure (false).
4061  * Called with rcu_read_lock() held.
4062  */
4063 static bool cxgb4_netdev(const struct net_device *netdev)
4064 {
4065 	struct adapter *adap;
4066 	int i;
4067 
4068 	list_for_each_entry_rcu(adap, &adap_rcu_list, rcu_node)
4069 		for (i = 0; i < MAX_NPORTS; i++)
4070 			if (adap->port[i] == netdev)
4071 				return true;
4072 	return false;
4073 }
4074 
4075 static int clip_add(struct net_device *event_dev, struct inet6_ifaddr *ifa,
4076 		    unsigned long event)
4077 {
4078 	int ret = NOTIFY_DONE;
4079 
4080 	rcu_read_lock();
4081 	if (cxgb4_netdev(event_dev)) {
4082 		switch (event) {
4083 		case NETDEV_UP:
4084 			ret = cxgb4_clip_get(event_dev,
4085 				(const struct in6_addr *)ifa->addr.s6_addr);
4086 			if (ret < 0) {
4087 				rcu_read_unlock();
4088 				return ret;
4089 			}
4090 			ret = NOTIFY_OK;
4091 			break;
4092 		case NETDEV_DOWN:
4093 			cxgb4_clip_release(event_dev,
4094 				(const struct in6_addr *)ifa->addr.s6_addr);
4095 			ret = NOTIFY_OK;
4096 			break;
4097 		default:
4098 			break;
4099 		}
4100 	}
4101 	rcu_read_unlock();
4102 	return ret;
4103 }
4104 
4105 static int cxgb4_inet6addr_handler(struct notifier_block *this,
4106 		unsigned long event, void *data)
4107 {
4108 	struct inet6_ifaddr *ifa = data;
4109 	struct net_device *event_dev;
4110 	int ret = NOTIFY_DONE;
4111 	struct bonding *bond = netdev_priv(ifa->idev->dev);
4112 	struct list_head *iter;
4113 	struct slave *slave;
4114 	struct pci_dev *first_pdev = NULL;
4115 
4116 	if (ifa->idev->dev->priv_flags & IFF_802_1Q_VLAN) {
4117 		event_dev = vlan_dev_real_dev(ifa->idev->dev);
4118 		ret = clip_add(event_dev, ifa, event);
4119 	} else if (ifa->idev->dev->flags & IFF_MASTER) {
4120 		/* It is possible that two different adapters are bonded in one
4121 		 * bond. We need to find such different adapters and add clip
4122 		 * in all of them only once.
4123 		 */
4124 		read_lock(&bond->lock);
4125 		bond_for_each_slave(bond, slave, iter) {
4126 			if (!first_pdev) {
4127 				ret = clip_add(slave->dev, ifa, event);
4128 				/* If clip_add is success then only initialize
4129 				 * first_pdev since it means it is our device
4130 				 */
4131 				if (ret == NOTIFY_OK)
4132 					first_pdev = to_pci_dev(
4133 							slave->dev->dev.parent);
4134 			} else if (first_pdev !=
4135 				   to_pci_dev(slave->dev->dev.parent))
4136 					ret = clip_add(slave->dev, ifa, event);
4137 		}
4138 		read_unlock(&bond->lock);
4139 	} else
4140 		ret = clip_add(ifa->idev->dev, ifa, event);
4141 
4142 	return ret;
4143 }
4144 
4145 static struct notifier_block cxgb4_inet6addr_notifier = {
4146 	.notifier_call = cxgb4_inet6addr_handler
4147 };
4148 
4149 /* Retrieves IPv6 addresses from a root device (bond, vlan) associated with
4150  * a physical device.
4151  * The physical device reference is needed to send the actul CLIP command.
4152  */
4153 static int update_dev_clip(struct net_device *root_dev, struct net_device *dev)
4154 {
4155 	struct inet6_dev *idev = NULL;
4156 	struct inet6_ifaddr *ifa;
4157 	int ret = 0;
4158 
4159 	idev = __in6_dev_get(root_dev);
4160 	if (!idev)
4161 		return ret;
4162 
4163 	read_lock_bh(&idev->lock);
4164 	list_for_each_entry(ifa, &idev->addr_list, if_list) {
4165 		ret = cxgb4_clip_get(dev,
4166 				(const struct in6_addr *)ifa->addr.s6_addr);
4167 		if (ret < 0)
4168 			break;
4169 	}
4170 	read_unlock_bh(&idev->lock);
4171 
4172 	return ret;
4173 }
4174 
4175 static int update_root_dev_clip(struct net_device *dev)
4176 {
4177 	struct net_device *root_dev = NULL;
4178 	int i, ret = 0;
4179 
4180 	/* First populate the real net device's IPv6 addresses */
4181 	ret = update_dev_clip(dev, dev);
4182 	if (ret)
4183 		return ret;
4184 
4185 	/* Parse all bond and vlan devices layered on top of the physical dev */
4186 	for (i = 0; i < VLAN_N_VID; i++) {
4187 		root_dev = __vlan_find_dev_deep_rcu(dev, htons(ETH_P_8021Q), i);
4188 		if (!root_dev)
4189 			continue;
4190 
4191 		ret = update_dev_clip(root_dev, dev);
4192 		if (ret)
4193 			break;
4194 	}
4195 	return ret;
4196 }
4197 
4198 static void update_clip(const struct adapter *adap)
4199 {
4200 	int i;
4201 	struct net_device *dev;
4202 	int ret;
4203 
4204 	rcu_read_lock();
4205 
4206 	for (i = 0; i < MAX_NPORTS; i++) {
4207 		dev = adap->port[i];
4208 		ret = 0;
4209 
4210 		if (dev)
4211 			ret = update_root_dev_clip(dev);
4212 
4213 		if (ret < 0)
4214 			break;
4215 	}
4216 	rcu_read_unlock();
4217 }
4218 
4219 /**
4220  *	cxgb_up - enable the adapter
4221  *	@adap: adapter being enabled
4222  *
4223  *	Called when the first port is enabled, this function performs the
4224  *	actions necessary to make an adapter operational, such as completing
4225  *	the initialization of HW modules, and enabling interrupts.
4226  *
4227  *	Must be called with the rtnl lock held.
4228  */
4229 static int cxgb_up(struct adapter *adap)
4230 {
4231 	int err;
4232 
4233 	err = setup_sge_queues(adap);
4234 	if (err)
4235 		goto out;
4236 	err = setup_rss(adap);
4237 	if (err)
4238 		goto freeq;
4239 
4240 	if (adap->flags & USING_MSIX) {
4241 		name_msix_vecs(adap);
4242 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
4243 				  adap->msix_info[0].desc, adap);
4244 		if (err)
4245 			goto irq_err;
4246 
4247 		err = request_msix_queue_irqs(adap);
4248 		if (err) {
4249 			free_irq(adap->msix_info[0].vec, adap);
4250 			goto irq_err;
4251 		}
4252 	} else {
4253 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
4254 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
4255 				  adap->port[0]->name, adap);
4256 		if (err)
4257 			goto irq_err;
4258 	}
4259 	enable_rx(adap);
4260 	t4_sge_start(adap);
4261 	t4_intr_enable(adap);
4262 	adap->flags |= FULL_INIT_DONE;
4263 	notify_ulds(adap, CXGB4_STATE_UP);
4264 	update_clip(adap);
4265  out:
4266 	return err;
4267  irq_err:
4268 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
4269  freeq:
4270 	t4_free_sge_resources(adap);
4271 	goto out;
4272 }
4273 
4274 static void cxgb_down(struct adapter *adapter)
4275 {
4276 	t4_intr_disable(adapter);
4277 	cancel_work_sync(&adapter->tid_release_task);
4278 	cancel_work_sync(&adapter->db_full_task);
4279 	cancel_work_sync(&adapter->db_drop_task);
4280 	adapter->tid_release_task_busy = false;
4281 	adapter->tid_release_head = NULL;
4282 
4283 	if (adapter->flags & USING_MSIX) {
4284 		free_msix_queue_irqs(adapter);
4285 		free_irq(adapter->msix_info[0].vec, adapter);
4286 	} else
4287 		free_irq(adapter->pdev->irq, adapter);
4288 	quiesce_rx(adapter);
4289 	t4_sge_stop(adapter);
4290 	t4_free_sge_resources(adapter);
4291 	adapter->flags &= ~FULL_INIT_DONE;
4292 }
4293 
4294 /*
4295  * net_device operations
4296  */
4297 static int cxgb_open(struct net_device *dev)
4298 {
4299 	int err;
4300 	struct port_info *pi = netdev_priv(dev);
4301 	struct adapter *adapter = pi->adapter;
4302 
4303 	netif_carrier_off(dev);
4304 
4305 	if (!(adapter->flags & FULL_INIT_DONE)) {
4306 		err = cxgb_up(adapter);
4307 		if (err < 0)
4308 			return err;
4309 	}
4310 
4311 	err = link_start(dev);
4312 	if (!err)
4313 		netif_tx_start_all_queues(dev);
4314 	return err;
4315 }
4316 
4317 static int cxgb_close(struct net_device *dev)
4318 {
4319 	struct port_info *pi = netdev_priv(dev);
4320 	struct adapter *adapter = pi->adapter;
4321 
4322 	netif_tx_stop_all_queues(dev);
4323 	netif_carrier_off(dev);
4324 	return t4_enable_vi(adapter, adapter->fn, pi->viid, false, false);
4325 }
4326 
4327 /* Return an error number if the indicated filter isn't writable ...
4328  */
4329 static int writable_filter(struct filter_entry *f)
4330 {
4331 	if (f->locked)
4332 		return -EPERM;
4333 	if (f->pending)
4334 		return -EBUSY;
4335 
4336 	return 0;
4337 }
4338 
4339 /* Delete the filter at the specified index (if valid).  The checks for all
4340  * the common problems with doing this like the filter being locked, currently
4341  * pending in another operation, etc.
4342  */
4343 static int delete_filter(struct adapter *adapter, unsigned int fidx)
4344 {
4345 	struct filter_entry *f;
4346 	int ret;
4347 
4348 	if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
4349 		return -EINVAL;
4350 
4351 	f = &adapter->tids.ftid_tab[fidx];
4352 	ret = writable_filter(f);
4353 	if (ret)
4354 		return ret;
4355 	if (f->valid)
4356 		return del_filter_wr(adapter, fidx);
4357 
4358 	return 0;
4359 }
4360 
4361 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
4362 		__be32 sip, __be16 sport, __be16 vlan,
4363 		unsigned int queue, unsigned char port, unsigned char mask)
4364 {
4365 	int ret;
4366 	struct filter_entry *f;
4367 	struct adapter *adap;
4368 	int i;
4369 	u8 *val;
4370 
4371 	adap = netdev2adap(dev);
4372 
4373 	/* Adjust stid to correct filter index */
4374 	stid -= adap->tids.sftid_base;
4375 	stid += adap->tids.nftids;
4376 
4377 	/* Check to make sure the filter requested is writable ...
4378 	 */
4379 	f = &adap->tids.ftid_tab[stid];
4380 	ret = writable_filter(f);
4381 	if (ret)
4382 		return ret;
4383 
4384 	/* Clear out any old resources being used by the filter before
4385 	 * we start constructing the new filter.
4386 	 */
4387 	if (f->valid)
4388 		clear_filter(adap, f);
4389 
4390 	/* Clear out filter specifications */
4391 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
4392 	f->fs.val.lport = cpu_to_be16(sport);
4393 	f->fs.mask.lport  = ~0;
4394 	val = (u8 *)&sip;
4395 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
4396 		for (i = 0; i < 4; i++) {
4397 			f->fs.val.lip[i] = val[i];
4398 			f->fs.mask.lip[i] = ~0;
4399 		}
4400 		if (adap->params.tp.vlan_pri_map & F_PORT) {
4401 			f->fs.val.iport = port;
4402 			f->fs.mask.iport = mask;
4403 		}
4404 	}
4405 
4406 	if (adap->params.tp.vlan_pri_map & F_PROTOCOL) {
4407 		f->fs.val.proto = IPPROTO_TCP;
4408 		f->fs.mask.proto = ~0;
4409 	}
4410 
4411 	f->fs.dirsteer = 1;
4412 	f->fs.iq = queue;
4413 	/* Mark filter as locked */
4414 	f->locked = 1;
4415 	f->fs.rpttid = 1;
4416 
4417 	ret = set_filter_wr(adap, stid);
4418 	if (ret) {
4419 		clear_filter(adap, f);
4420 		return ret;
4421 	}
4422 
4423 	return 0;
4424 }
4425 EXPORT_SYMBOL(cxgb4_create_server_filter);
4426 
4427 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
4428 		unsigned int queue, bool ipv6)
4429 {
4430 	int ret;
4431 	struct filter_entry *f;
4432 	struct adapter *adap;
4433 
4434 	adap = netdev2adap(dev);
4435 
4436 	/* Adjust stid to correct filter index */
4437 	stid -= adap->tids.sftid_base;
4438 	stid += adap->tids.nftids;
4439 
4440 	f = &adap->tids.ftid_tab[stid];
4441 	/* Unlock the filter */
4442 	f->locked = 0;
4443 
4444 	ret = delete_filter(adap, stid);
4445 	if (ret)
4446 		return ret;
4447 
4448 	return 0;
4449 }
4450 EXPORT_SYMBOL(cxgb4_remove_server_filter);
4451 
4452 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
4453 						struct rtnl_link_stats64 *ns)
4454 {
4455 	struct port_stats stats;
4456 	struct port_info *p = netdev_priv(dev);
4457 	struct adapter *adapter = p->adapter;
4458 
4459 	/* Block retrieving statistics during EEH error
4460 	 * recovery. Otherwise, the recovery might fail
4461 	 * and the PCI device will be removed permanently
4462 	 */
4463 	spin_lock(&adapter->stats_lock);
4464 	if (!netif_device_present(dev)) {
4465 		spin_unlock(&adapter->stats_lock);
4466 		return ns;
4467 	}
4468 	t4_get_port_stats(adapter, p->tx_chan, &stats);
4469 	spin_unlock(&adapter->stats_lock);
4470 
4471 	ns->tx_bytes   = stats.tx_octets;
4472 	ns->tx_packets = stats.tx_frames;
4473 	ns->rx_bytes   = stats.rx_octets;
4474 	ns->rx_packets = stats.rx_frames;
4475 	ns->multicast  = stats.rx_mcast_frames;
4476 
4477 	/* detailed rx_errors */
4478 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
4479 			       stats.rx_runt;
4480 	ns->rx_over_errors   = 0;
4481 	ns->rx_crc_errors    = stats.rx_fcs_err;
4482 	ns->rx_frame_errors  = stats.rx_symbol_err;
4483 	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
4484 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
4485 			       stats.rx_trunc0 + stats.rx_trunc1 +
4486 			       stats.rx_trunc2 + stats.rx_trunc3;
4487 	ns->rx_missed_errors = 0;
4488 
4489 	/* detailed tx_errors */
4490 	ns->tx_aborted_errors   = 0;
4491 	ns->tx_carrier_errors   = 0;
4492 	ns->tx_fifo_errors      = 0;
4493 	ns->tx_heartbeat_errors = 0;
4494 	ns->tx_window_errors    = 0;
4495 
4496 	ns->tx_errors = stats.tx_error_frames;
4497 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
4498 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
4499 	return ns;
4500 }
4501 
4502 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
4503 {
4504 	unsigned int mbox;
4505 	int ret = 0, prtad, devad;
4506 	struct port_info *pi = netdev_priv(dev);
4507 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
4508 
4509 	switch (cmd) {
4510 	case SIOCGMIIPHY:
4511 		if (pi->mdio_addr < 0)
4512 			return -EOPNOTSUPP;
4513 		data->phy_id = pi->mdio_addr;
4514 		break;
4515 	case SIOCGMIIREG:
4516 	case SIOCSMIIREG:
4517 		if (mdio_phy_id_is_c45(data->phy_id)) {
4518 			prtad = mdio_phy_id_prtad(data->phy_id);
4519 			devad = mdio_phy_id_devad(data->phy_id);
4520 		} else if (data->phy_id < 32) {
4521 			prtad = data->phy_id;
4522 			devad = 0;
4523 			data->reg_num &= 0x1f;
4524 		} else
4525 			return -EINVAL;
4526 
4527 		mbox = pi->adapter->fn;
4528 		if (cmd == SIOCGMIIREG)
4529 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
4530 					 data->reg_num, &data->val_out);
4531 		else
4532 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
4533 					 data->reg_num, data->val_in);
4534 		break;
4535 	default:
4536 		return -EOPNOTSUPP;
4537 	}
4538 	return ret;
4539 }
4540 
4541 static void cxgb_set_rxmode(struct net_device *dev)
4542 {
4543 	/* unfortunately we can't return errors to the stack */
4544 	set_rxmode(dev, -1, false);
4545 }
4546 
4547 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
4548 {
4549 	int ret;
4550 	struct port_info *pi = netdev_priv(dev);
4551 
4552 	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
4553 		return -EINVAL;
4554 	ret = t4_set_rxmode(pi->adapter, pi->adapter->fn, pi->viid, new_mtu, -1,
4555 			    -1, -1, -1, true);
4556 	if (!ret)
4557 		dev->mtu = new_mtu;
4558 	return ret;
4559 }
4560 
4561 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
4562 {
4563 	int ret;
4564 	struct sockaddr *addr = p;
4565 	struct port_info *pi = netdev_priv(dev);
4566 
4567 	if (!is_valid_ether_addr(addr->sa_data))
4568 		return -EADDRNOTAVAIL;
4569 
4570 	ret = t4_change_mac(pi->adapter, pi->adapter->fn, pi->viid,
4571 			    pi->xact_addr_filt, addr->sa_data, true, true);
4572 	if (ret < 0)
4573 		return ret;
4574 
4575 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4576 	pi->xact_addr_filt = ret;
4577 	return 0;
4578 }
4579 
4580 #ifdef CONFIG_NET_POLL_CONTROLLER
4581 static void cxgb_netpoll(struct net_device *dev)
4582 {
4583 	struct port_info *pi = netdev_priv(dev);
4584 	struct adapter *adap = pi->adapter;
4585 
4586 	if (adap->flags & USING_MSIX) {
4587 		int i;
4588 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
4589 
4590 		for (i = pi->nqsets; i; i--, rx++)
4591 			t4_sge_intr_msix(0, &rx->rspq);
4592 	} else
4593 		t4_intr_handler(adap)(0, adap);
4594 }
4595 #endif
4596 
4597 static const struct net_device_ops cxgb4_netdev_ops = {
4598 	.ndo_open             = cxgb_open,
4599 	.ndo_stop             = cxgb_close,
4600 	.ndo_start_xmit       = t4_eth_xmit,
4601 	.ndo_get_stats64      = cxgb_get_stats,
4602 	.ndo_set_rx_mode      = cxgb_set_rxmode,
4603 	.ndo_set_mac_address  = cxgb_set_mac_addr,
4604 	.ndo_set_features     = cxgb_set_features,
4605 	.ndo_validate_addr    = eth_validate_addr,
4606 	.ndo_do_ioctl         = cxgb_ioctl,
4607 	.ndo_change_mtu       = cxgb_change_mtu,
4608 #ifdef CONFIG_NET_POLL_CONTROLLER
4609 	.ndo_poll_controller  = cxgb_netpoll,
4610 #endif
4611 };
4612 
4613 void t4_fatal_err(struct adapter *adap)
4614 {
4615 	t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
4616 	t4_intr_disable(adap);
4617 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
4618 }
4619 
4620 static void setup_memwin(struct adapter *adap)
4621 {
4622 	u32 bar0, mem_win0_base, mem_win1_base, mem_win2_base;
4623 
4624 	bar0 = pci_resource_start(adap->pdev, 0);  /* truncation intentional */
4625 	if (is_t4(adap->params.chip)) {
4626 		mem_win0_base = bar0 + MEMWIN0_BASE;
4627 		mem_win1_base = bar0 + MEMWIN1_BASE;
4628 		mem_win2_base = bar0 + MEMWIN2_BASE;
4629 	} else {
4630 		/* For T5, only relative offset inside the PCIe BAR is passed */
4631 		mem_win0_base = MEMWIN0_BASE;
4632 		mem_win1_base = MEMWIN1_BASE_T5;
4633 		mem_win2_base = MEMWIN2_BASE_T5;
4634 	}
4635 	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
4636 		     mem_win0_base | BIR(0) |
4637 		     WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
4638 	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
4639 		     mem_win1_base | BIR(0) |
4640 		     WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
4641 	t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
4642 		     mem_win2_base | BIR(0) |
4643 		     WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
4644 }
4645 
4646 static void setup_memwin_rdma(struct adapter *adap)
4647 {
4648 	if (adap->vres.ocq.size) {
4649 		unsigned int start, sz_kb;
4650 
4651 		start = pci_resource_start(adap->pdev, 2) +
4652 			OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
4653 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
4654 		t4_write_reg(adap,
4655 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 3),
4656 			     start | BIR(1) | WINDOW(ilog2(sz_kb)));
4657 		t4_write_reg(adap,
4658 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3),
4659 			     adap->vres.ocq.start);
4660 		t4_read_reg(adap,
4661 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, 3));
4662 	}
4663 }
4664 
4665 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
4666 {
4667 	u32 v;
4668 	int ret;
4669 
4670 	/* get device capabilities */
4671 	memset(c, 0, sizeof(*c));
4672 	c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4673 			       FW_CMD_REQUEST | FW_CMD_READ);
4674 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
4675 	ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), c);
4676 	if (ret < 0)
4677 		return ret;
4678 
4679 	/* select capabilities we'll be using */
4680 	if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
4681 		if (!vf_acls)
4682 			c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
4683 		else
4684 			c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
4685 	} else if (vf_acls) {
4686 		dev_err(adap->pdev_dev, "virtualization ACLs not supported");
4687 		return ret;
4688 	}
4689 	c->op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4690 			       FW_CMD_REQUEST | FW_CMD_WRITE);
4691 	ret = t4_wr_mbox(adap, adap->fn, c, sizeof(*c), NULL);
4692 	if (ret < 0)
4693 		return ret;
4694 
4695 	ret = t4_config_glbl_rss(adap, adap->fn,
4696 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
4697 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
4698 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
4699 	if (ret < 0)
4700 		return ret;
4701 
4702 	ret = t4_cfg_pfvf(adap, adap->fn, adap->fn, 0, MAX_EGRQ, 64, MAX_INGQ,
4703 			  0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF);
4704 	if (ret < 0)
4705 		return ret;
4706 
4707 	t4_sge_init(adap);
4708 
4709 	/* tweak some settings */
4710 	t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
4711 	t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
4712 	t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
4713 	v = t4_read_reg(adap, TP_PIO_DATA);
4714 	t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
4715 
4716 	/* first 4 Tx modulation queues point to consecutive Tx channels */
4717 	adap->params.tp.tx_modq_map = 0xE4;
4718 	t4_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
4719 		     V_TX_MOD_QUEUE_REQ_MAP(adap->params.tp.tx_modq_map));
4720 
4721 	/* associate each Tx modulation queue with consecutive Tx channels */
4722 	v = 0x84218421;
4723 	t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4724 			  &v, 1, A_TP_TX_SCHED_HDR);
4725 	t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4726 			  &v, 1, A_TP_TX_SCHED_FIFO);
4727 	t4_write_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA,
4728 			  &v, 1, A_TP_TX_SCHED_PCMD);
4729 
4730 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
4731 	if (is_offload(adap)) {
4732 		t4_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0,
4733 			     V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4734 			     V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4735 			     V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4736 			     V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4737 		t4_write_reg(adap, A_TP_TX_MOD_CHANNEL_WEIGHT,
4738 			     V_TX_MODQ_WEIGHT0(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4739 			     V_TX_MODQ_WEIGHT1(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4740 			     V_TX_MODQ_WEIGHT2(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
4741 			     V_TX_MODQ_WEIGHT3(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
4742 	}
4743 
4744 	/* get basic stuff going */
4745 	return t4_early_init(adap, adap->fn);
4746 }
4747 
4748 /*
4749  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
4750  */
4751 #define MAX_ATIDS 8192U
4752 
4753 /*
4754  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4755  *
4756  * If the firmware we're dealing with has Configuration File support, then
4757  * we use that to perform all configuration
4758  */
4759 
4760 /*
4761  * Tweak configuration based on module parameters, etc.  Most of these have
4762  * defaults assigned to them by Firmware Configuration Files (if we're using
4763  * them) but need to be explicitly set if we're using hard-coded
4764  * initialization.  But even in the case of using Firmware Configuration
4765  * Files, we'd like to expose the ability to change these via module
4766  * parameters so these are essentially common tweaks/settings for
4767  * Configuration Files and hard-coded initialization ...
4768  */
4769 static int adap_init0_tweaks(struct adapter *adapter)
4770 {
4771 	/*
4772 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
4773 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
4774 	 * 64B Cache Line Size ...
4775 	 */
4776 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
4777 
4778 	/*
4779 	 * Process module parameters which affect early initialization.
4780 	 */
4781 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
4782 		dev_err(&adapter->pdev->dev,
4783 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
4784 			rx_dma_offset);
4785 		rx_dma_offset = 2;
4786 	}
4787 	t4_set_reg_field(adapter, SGE_CONTROL,
4788 			 PKTSHIFT_MASK,
4789 			 PKTSHIFT(rx_dma_offset));
4790 
4791 	/*
4792 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
4793 	 * adds the pseudo header itself.
4794 	 */
4795 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG,
4796 			       CSUM_HAS_PSEUDO_HDR, 0);
4797 
4798 	return 0;
4799 }
4800 
4801 /*
4802  * Attempt to initialize the adapter via a Firmware Configuration File.
4803  */
4804 static int adap_init0_config(struct adapter *adapter, int reset)
4805 {
4806 	struct fw_caps_config_cmd caps_cmd;
4807 	const struct firmware *cf;
4808 	unsigned long mtype = 0, maddr = 0;
4809 	u32 finiver, finicsum, cfcsum;
4810 	int ret;
4811 	int config_issued = 0;
4812 	char *fw_config_file, fw_config_file_path[256];
4813 	char *config_name = NULL;
4814 
4815 	/*
4816 	 * Reset device if necessary.
4817 	 */
4818 	if (reset) {
4819 		ret = t4_fw_reset(adapter, adapter->mbox,
4820 				  PIORSTMODE | PIORST);
4821 		if (ret < 0)
4822 			goto bye;
4823 	}
4824 
4825 	/*
4826 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
4827 	 * then use that.  Otherwise, use the configuration file stored
4828 	 * in the adapter flash ...
4829 	 */
4830 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
4831 	case CHELSIO_T4:
4832 		fw_config_file = FW4_CFNAME;
4833 		break;
4834 	case CHELSIO_T5:
4835 		fw_config_file = FW5_CFNAME;
4836 		break;
4837 	default:
4838 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
4839 		       adapter->pdev->device);
4840 		ret = -EINVAL;
4841 		goto bye;
4842 	}
4843 
4844 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
4845 	if (ret < 0) {
4846 		config_name = "On FLASH";
4847 		mtype = FW_MEMTYPE_CF_FLASH;
4848 		maddr = t4_flash_cfg_addr(adapter);
4849 	} else {
4850 		u32 params[7], val[7];
4851 
4852 		sprintf(fw_config_file_path,
4853 			"/lib/firmware/%s", fw_config_file);
4854 		config_name = fw_config_file_path;
4855 
4856 		if (cf->size >= FLASH_CFG_MAX_SIZE)
4857 			ret = -ENOMEM;
4858 		else {
4859 			params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4860 			     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
4861 			ret = t4_query_params(adapter, adapter->mbox,
4862 					      adapter->fn, 0, 1, params, val);
4863 			if (ret == 0) {
4864 				/*
4865 				 * For t4_memory_write() below addresses and
4866 				 * sizes have to be in terms of multiples of 4
4867 				 * bytes.  So, if the Configuration File isn't
4868 				 * a multiple of 4 bytes in length we'll have
4869 				 * to write that out separately since we can't
4870 				 * guarantee that the bytes following the
4871 				 * residual byte in the buffer returned by
4872 				 * request_firmware() are zeroed out ...
4873 				 */
4874 				size_t resid = cf->size & 0x3;
4875 				size_t size = cf->size & ~0x3;
4876 				__be32 *data = (__be32 *)cf->data;
4877 
4878 				mtype = FW_PARAMS_PARAM_Y_GET(val[0]);
4879 				maddr = FW_PARAMS_PARAM_Z_GET(val[0]) << 16;
4880 
4881 				ret = t4_memory_write(adapter, mtype, maddr,
4882 						      size, data);
4883 				if (ret == 0 && resid != 0) {
4884 					union {
4885 						__be32 word;
4886 						char buf[4];
4887 					} last;
4888 					int i;
4889 
4890 					last.word = data[size >> 2];
4891 					for (i = resid; i < 4; i++)
4892 						last.buf[i] = 0;
4893 					ret = t4_memory_write(adapter, mtype,
4894 							      maddr + size,
4895 							      4, &last.word);
4896 				}
4897 			}
4898 		}
4899 
4900 		release_firmware(cf);
4901 		if (ret)
4902 			goto bye;
4903 	}
4904 
4905 	/*
4906 	 * Issue a Capability Configuration command to the firmware to get it
4907 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
4908 	 * because we want the ability to modify various features after we've
4909 	 * processed the configuration file ...
4910 	 */
4911 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4912 	caps_cmd.op_to_write =
4913 		htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4914 		      FW_CMD_REQUEST |
4915 		      FW_CMD_READ);
4916 	caps_cmd.cfvalid_to_len16 =
4917 		htonl(FW_CAPS_CONFIG_CMD_CFVALID |
4918 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4919 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
4920 		      FW_LEN16(caps_cmd));
4921 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4922 			 &caps_cmd);
4923 
4924 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
4925 	 * Configuration File in FLASH), our last gasp effort is to use the
4926 	 * Firmware Configuration File which is embedded in the firmware.  A
4927 	 * very few early versions of the firmware didn't have one embedded
4928 	 * but we can ignore those.
4929 	 */
4930 	if (ret == -ENOENT) {
4931 		memset(&caps_cmd, 0, sizeof(caps_cmd));
4932 		caps_cmd.op_to_write =
4933 			htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4934 					FW_CMD_REQUEST |
4935 					FW_CMD_READ);
4936 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4937 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
4938 				sizeof(caps_cmd), &caps_cmd);
4939 		config_name = "Firmware Default";
4940 	}
4941 
4942 	config_issued = 1;
4943 	if (ret < 0)
4944 		goto bye;
4945 
4946 	finiver = ntohl(caps_cmd.finiver);
4947 	finicsum = ntohl(caps_cmd.finicsum);
4948 	cfcsum = ntohl(caps_cmd.cfcsum);
4949 	if (finicsum != cfcsum)
4950 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
4951 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
4952 			 finicsum, cfcsum);
4953 
4954 	/*
4955 	 * And now tell the firmware to use the configuration we just loaded.
4956 	 */
4957 	caps_cmd.op_to_write =
4958 		htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4959 		      FW_CMD_REQUEST |
4960 		      FW_CMD_WRITE);
4961 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4962 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
4963 			 NULL);
4964 	if (ret < 0)
4965 		goto bye;
4966 
4967 	/*
4968 	 * Tweak configuration based on system architecture, module
4969 	 * parameters, etc.
4970 	 */
4971 	ret = adap_init0_tweaks(adapter);
4972 	if (ret < 0)
4973 		goto bye;
4974 
4975 	/*
4976 	 * And finally tell the firmware to initialize itself using the
4977 	 * parameters from the Configuration File.
4978 	 */
4979 	ret = t4_fw_initialize(adapter, adapter->mbox);
4980 	if (ret < 0)
4981 		goto bye;
4982 
4983 	/*
4984 	 * Return successfully and note that we're operating with parameters
4985 	 * not supplied by the driver, rather than from hard-wired
4986 	 * initialization constants burried in the driver.
4987 	 */
4988 	adapter->flags |= USING_SOFT_PARAMS;
4989 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4990 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4991 		 config_name, finiver, cfcsum);
4992 	return 0;
4993 
4994 	/*
4995 	 * Something bad happened.  Return the error ...  (If the "error"
4996 	 * is that there's no Configuration File on the adapter we don't
4997 	 * want to issue a warning since this is fairly common.)
4998 	 */
4999 bye:
5000 	if (config_issued && ret != -ENOENT)
5001 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
5002 			 config_name, -ret);
5003 	return ret;
5004 }
5005 
5006 /*
5007  * Attempt to initialize the adapter via hard-coded, driver supplied
5008  * parameters ...
5009  */
5010 static int adap_init0_no_config(struct adapter *adapter, int reset)
5011 {
5012 	struct sge *s = &adapter->sge;
5013 	struct fw_caps_config_cmd caps_cmd;
5014 	u32 v;
5015 	int i, ret;
5016 
5017 	/*
5018 	 * Reset device if necessary
5019 	 */
5020 	if (reset) {
5021 		ret = t4_fw_reset(adapter, adapter->mbox,
5022 				  PIORSTMODE | PIORST);
5023 		if (ret < 0)
5024 			goto bye;
5025 	}
5026 
5027 	/*
5028 	 * Get device capabilities and select which we'll be using.
5029 	 */
5030 	memset(&caps_cmd, 0, sizeof(caps_cmd));
5031 	caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5032 				     FW_CMD_REQUEST | FW_CMD_READ);
5033 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5034 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5035 			 &caps_cmd);
5036 	if (ret < 0)
5037 		goto bye;
5038 
5039 	if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
5040 		if (!vf_acls)
5041 			caps_cmd.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
5042 		else
5043 			caps_cmd.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
5044 	} else if (vf_acls) {
5045 		dev_err(adapter->pdev_dev, "virtualization ACLs not supported");
5046 		goto bye;
5047 	}
5048 	caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5049 			      FW_CMD_REQUEST | FW_CMD_WRITE);
5050 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
5051 			 NULL);
5052 	if (ret < 0)
5053 		goto bye;
5054 
5055 	/*
5056 	 * Tweak configuration based on system architecture, module
5057 	 * parameters, etc.
5058 	 */
5059 	ret = adap_init0_tweaks(adapter);
5060 	if (ret < 0)
5061 		goto bye;
5062 
5063 	/*
5064 	 * Select RSS Global Mode we want to use.  We use "Basic Virtual"
5065 	 * mode which maps each Virtual Interface to its own section of
5066 	 * the RSS Table and we turn on all map and hash enables ...
5067 	 */
5068 	adapter->flags |= RSS_TNLALLLOOKUP;
5069 	ret = t4_config_glbl_rss(adapter, adapter->mbox,
5070 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
5071 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
5072 				 FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
5073 				 ((adapter->flags & RSS_TNLALLLOOKUP) ?
5074 					FW_RSS_GLB_CONFIG_CMD_TNLALLLKP : 0));
5075 	if (ret < 0)
5076 		goto bye;
5077 
5078 	/*
5079 	 * Set up our own fundamental resource provisioning ...
5080 	 */
5081 	ret = t4_cfg_pfvf(adapter, adapter->mbox, adapter->fn, 0,
5082 			  PFRES_NEQ, PFRES_NETHCTRL,
5083 			  PFRES_NIQFLINT, PFRES_NIQ,
5084 			  PFRES_TC, PFRES_NVI,
5085 			  FW_PFVF_CMD_CMASK_MASK,
5086 			  pfvfres_pmask(adapter, adapter->fn, 0),
5087 			  PFRES_NEXACTF,
5088 			  PFRES_R_CAPS, PFRES_WX_CAPS);
5089 	if (ret < 0)
5090 		goto bye;
5091 
5092 	/*
5093 	 * Perform low level SGE initialization.  We need to do this before we
5094 	 * send the firmware the INITIALIZE command because that will cause
5095 	 * any other PF Drivers which are waiting for the Master
5096 	 * Initialization to proceed forward.
5097 	 */
5098 	for (i = 0; i < SGE_NTIMERS - 1; i++)
5099 		s->timer_val[i] = min(intr_holdoff[i], MAX_SGE_TIMERVAL);
5100 	s->timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
5101 	s->counter_val[0] = 1;
5102 	for (i = 1; i < SGE_NCOUNTERS; i++)
5103 		s->counter_val[i] = min(intr_cnt[i - 1],
5104 					THRESHOLD_0_GET(THRESHOLD_0_MASK));
5105 	t4_sge_init(adapter);
5106 
5107 #ifdef CONFIG_PCI_IOV
5108 	/*
5109 	 * Provision resource limits for Virtual Functions.  We currently
5110 	 * grant them all the same static resource limits except for the Port
5111 	 * Access Rights Mask which we're assigning based on the PF.  All of
5112 	 * the static provisioning stuff for both the PF and VF really needs
5113 	 * to be managed in a persistent manner for each device which the
5114 	 * firmware controls.
5115 	 */
5116 	{
5117 		int pf, vf;
5118 
5119 		for (pf = 0; pf < ARRAY_SIZE(num_vf); pf++) {
5120 			if (num_vf[pf] <= 0)
5121 				continue;
5122 
5123 			/* VF numbering starts at 1! */
5124 			for (vf = 1; vf <= num_vf[pf]; vf++) {
5125 				ret = t4_cfg_pfvf(adapter, adapter->mbox,
5126 						  pf, vf,
5127 						  VFRES_NEQ, VFRES_NETHCTRL,
5128 						  VFRES_NIQFLINT, VFRES_NIQ,
5129 						  VFRES_TC, VFRES_NVI,
5130 						  FW_PFVF_CMD_CMASK_MASK,
5131 						  pfvfres_pmask(
5132 						  adapter, pf, vf),
5133 						  VFRES_NEXACTF,
5134 						  VFRES_R_CAPS, VFRES_WX_CAPS);
5135 				if (ret < 0)
5136 					dev_warn(adapter->pdev_dev,
5137 						 "failed to "\
5138 						 "provision pf/vf=%d/%d; "
5139 						 "err=%d\n", pf, vf, ret);
5140 			}
5141 		}
5142 	}
5143 #endif
5144 
5145 	/*
5146 	 * Set up the default filter mode.  Later we'll want to implement this
5147 	 * via a firmware command, etc. ...  This needs to be done before the
5148 	 * firmare initialization command ...  If the selected set of fields
5149 	 * isn't equal to the default value, we'll need to make sure that the
5150 	 * field selections will fit in the 36-bit budget.
5151 	 */
5152 	if (tp_vlan_pri_map != TP_VLAN_PRI_MAP_DEFAULT) {
5153 		int j, bits = 0;
5154 
5155 		for (j = TP_VLAN_PRI_MAP_FIRST; j <= TP_VLAN_PRI_MAP_LAST; j++)
5156 			switch (tp_vlan_pri_map & (1 << j)) {
5157 			case 0:
5158 				/* compressed filter field not enabled */
5159 				break;
5160 			case FCOE_MASK:
5161 				bits +=  1;
5162 				break;
5163 			case PORT_MASK:
5164 				bits +=  3;
5165 				break;
5166 			case VNIC_ID_MASK:
5167 				bits += 17;
5168 				break;
5169 			case VLAN_MASK:
5170 				bits += 17;
5171 				break;
5172 			case TOS_MASK:
5173 				bits +=  8;
5174 				break;
5175 			case PROTOCOL_MASK:
5176 				bits +=  8;
5177 				break;
5178 			case ETHERTYPE_MASK:
5179 				bits += 16;
5180 				break;
5181 			case MACMATCH_MASK:
5182 				bits +=  9;
5183 				break;
5184 			case MPSHITTYPE_MASK:
5185 				bits +=  3;
5186 				break;
5187 			case FRAGMENTATION_MASK:
5188 				bits +=  1;
5189 				break;
5190 			}
5191 
5192 		if (bits > 36) {
5193 			dev_err(adapter->pdev_dev,
5194 				"tp_vlan_pri_map=%#x needs %d bits > 36;"\
5195 				" using %#x\n", tp_vlan_pri_map, bits,
5196 				TP_VLAN_PRI_MAP_DEFAULT);
5197 			tp_vlan_pri_map = TP_VLAN_PRI_MAP_DEFAULT;
5198 		}
5199 	}
5200 	v = tp_vlan_pri_map;
5201 	t4_write_indirect(adapter, TP_PIO_ADDR, TP_PIO_DATA,
5202 			  &v, 1, TP_VLAN_PRI_MAP);
5203 
5204 	/*
5205 	 * We need Five Tuple Lookup mode to be set in TP_GLOBAL_CONFIG order
5206 	 * to support any of the compressed filter fields above.  Newer
5207 	 * versions of the firmware do this automatically but it doesn't hurt
5208 	 * to set it here.  Meanwhile, we do _not_ need to set Lookup Every
5209 	 * Packet in TP_INGRESS_CONFIG to support matching non-TCP packets
5210 	 * since the firmware automatically turns this on and off when we have
5211 	 * a non-zero number of filters active (since it does have a
5212 	 * performance impact).
5213 	 */
5214 	if (tp_vlan_pri_map)
5215 		t4_set_reg_field(adapter, TP_GLOBAL_CONFIG,
5216 				 FIVETUPLELOOKUP_MASK,
5217 				 FIVETUPLELOOKUP_MASK);
5218 
5219 	/*
5220 	 * Tweak some settings.
5221 	 */
5222 	t4_write_reg(adapter, TP_SHIFT_CNT, SYNSHIFTMAX(6) |
5223 		     RXTSHIFTMAXR1(4) | RXTSHIFTMAXR2(15) |
5224 		     PERSHIFTBACKOFFMAX(8) | PERSHIFTMAX(8) |
5225 		     KEEPALIVEMAXR1(4) | KEEPALIVEMAXR2(9));
5226 
5227 	/*
5228 	 * Get basic stuff going by issuing the Firmware Initialize command.
5229 	 * Note that this _must_ be after all PFVF commands ...
5230 	 */
5231 	ret = t4_fw_initialize(adapter, adapter->mbox);
5232 	if (ret < 0)
5233 		goto bye;
5234 
5235 	/*
5236 	 * Return successfully!
5237 	 */
5238 	dev_info(adapter->pdev_dev, "Successfully configured using built-in "\
5239 		 "driver parameters\n");
5240 	return 0;
5241 
5242 	/*
5243 	 * Something bad happened.  Return the error ...
5244 	 */
5245 bye:
5246 	return ret;
5247 }
5248 
5249 static struct fw_info fw_info_array[] = {
5250 	{
5251 		.chip = CHELSIO_T4,
5252 		.fs_name = FW4_CFNAME,
5253 		.fw_mod_name = FW4_FNAME,
5254 		.fw_hdr = {
5255 			.chip = FW_HDR_CHIP_T4,
5256 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
5257 			.intfver_nic = FW_INTFVER(T4, NIC),
5258 			.intfver_vnic = FW_INTFVER(T4, VNIC),
5259 			.intfver_ri = FW_INTFVER(T4, RI),
5260 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
5261 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
5262 		},
5263 	}, {
5264 		.chip = CHELSIO_T5,
5265 		.fs_name = FW5_CFNAME,
5266 		.fw_mod_name = FW5_FNAME,
5267 		.fw_hdr = {
5268 			.chip = FW_HDR_CHIP_T5,
5269 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
5270 			.intfver_nic = FW_INTFVER(T5, NIC),
5271 			.intfver_vnic = FW_INTFVER(T5, VNIC),
5272 			.intfver_ri = FW_INTFVER(T5, RI),
5273 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
5274 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
5275 		},
5276 	}
5277 };
5278 
5279 static struct fw_info *find_fw_info(int chip)
5280 {
5281 	int i;
5282 
5283 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
5284 		if (fw_info_array[i].chip == chip)
5285 			return &fw_info_array[i];
5286 	}
5287 	return NULL;
5288 }
5289 
5290 /*
5291  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
5292  */
5293 static int adap_init0(struct adapter *adap)
5294 {
5295 	int ret;
5296 	u32 v, port_vec;
5297 	enum dev_state state;
5298 	u32 params[7], val[7];
5299 	struct fw_caps_config_cmd caps_cmd;
5300 	int reset = 1;
5301 
5302 	/*
5303 	 * Contact FW, advertising Master capability (and potentially forcing
5304 	 * ourselves as the Master PF if our module parameter force_init is
5305 	 * set).
5306 	 */
5307 	ret = t4_fw_hello(adap, adap->mbox, adap->fn,
5308 			  force_init ? MASTER_MUST : MASTER_MAY,
5309 			  &state);
5310 	if (ret < 0) {
5311 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
5312 			ret);
5313 		return ret;
5314 	}
5315 	if (ret == adap->mbox)
5316 		adap->flags |= MASTER_PF;
5317 	if (force_init && state == DEV_STATE_INIT)
5318 		state = DEV_STATE_UNINIT;
5319 
5320 	/*
5321 	 * If we're the Master PF Driver and the device is uninitialized,
5322 	 * then let's consider upgrading the firmware ...  (We always want
5323 	 * to check the firmware version number in order to A. get it for
5324 	 * later reporting and B. to warn if the currently loaded firmware
5325 	 * is excessively mismatched relative to the driver.)
5326 	 */
5327 	t4_get_fw_version(adap, &adap->params.fw_vers);
5328 	t4_get_tp_version(adap, &adap->params.tp_vers);
5329 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
5330 		struct fw_info *fw_info;
5331 		struct fw_hdr *card_fw;
5332 		const struct firmware *fw;
5333 		const u8 *fw_data = NULL;
5334 		unsigned int fw_size = 0;
5335 
5336 		/* This is the firmware whose headers the driver was compiled
5337 		 * against
5338 		 */
5339 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
5340 		if (fw_info == NULL) {
5341 			dev_err(adap->pdev_dev,
5342 				"unable to get firmware info for chip %d.\n",
5343 				CHELSIO_CHIP_VERSION(adap->params.chip));
5344 			return -EINVAL;
5345 		}
5346 
5347 		/* allocate memory to read the header of the firmware on the
5348 		 * card
5349 		 */
5350 		card_fw = t4_alloc_mem(sizeof(*card_fw));
5351 
5352 		/* Get FW from from /lib/firmware/ */
5353 		ret = request_firmware(&fw, fw_info->fw_mod_name,
5354 				       adap->pdev_dev);
5355 		if (ret < 0) {
5356 			dev_err(adap->pdev_dev,
5357 				"unable to load firmware image %s, error %d\n",
5358 				fw_info->fw_mod_name, ret);
5359 		} else {
5360 			fw_data = fw->data;
5361 			fw_size = fw->size;
5362 		}
5363 
5364 		/* upgrade FW logic */
5365 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
5366 				 state, &reset);
5367 
5368 		/* Cleaning up */
5369 		if (fw != NULL)
5370 			release_firmware(fw);
5371 		t4_free_mem(card_fw);
5372 
5373 		if (ret < 0)
5374 			goto bye;
5375 	}
5376 
5377 	/*
5378 	 * Grab VPD parameters.  This should be done after we establish a
5379 	 * connection to the firmware since some of the VPD parameters
5380 	 * (notably the Core Clock frequency) are retrieved via requests to
5381 	 * the firmware.  On the other hand, we need these fairly early on
5382 	 * so we do this right after getting ahold of the firmware.
5383 	 */
5384 	ret = get_vpd_params(adap, &adap->params.vpd);
5385 	if (ret < 0)
5386 		goto bye;
5387 
5388 	/*
5389 	 * Find out what ports are available to us.  Note that we need to do
5390 	 * this before calling adap_init0_no_config() since it needs nports
5391 	 * and portvec ...
5392 	 */
5393 	v =
5394 	    FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5395 	    FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
5396 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1, &v, &port_vec);
5397 	if (ret < 0)
5398 		goto bye;
5399 
5400 	adap->params.nports = hweight32(port_vec);
5401 	adap->params.portvec = port_vec;
5402 
5403 	/*
5404 	 * If the firmware is initialized already (and we're not forcing a
5405 	 * master initialization), note that we're living with existing
5406 	 * adapter parameters.  Otherwise, it's time to try initializing the
5407 	 * adapter ...
5408 	 */
5409 	if (state == DEV_STATE_INIT) {
5410 		dev_info(adap->pdev_dev, "Coming up as %s: "\
5411 			 "Adapter already initialized\n",
5412 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
5413 		adap->flags |= USING_SOFT_PARAMS;
5414 	} else {
5415 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
5416 			 "Initializing adapter\n");
5417 
5418 		/*
5419 		 * If the firmware doesn't support Configuration
5420 		 * Files warn user and exit,
5421 		 */
5422 		if (ret < 0)
5423 			dev_warn(adap->pdev_dev, "Firmware doesn't support "
5424 				 "configuration file.\n");
5425 		if (force_old_init)
5426 			ret = adap_init0_no_config(adap, reset);
5427 		else {
5428 			/*
5429 			 * Find out whether we're dealing with a version of
5430 			 * the firmware which has configuration file support.
5431 			 */
5432 			params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5433 				     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
5434 			ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 1,
5435 					      params, val);
5436 
5437 			/*
5438 			 * If the firmware doesn't support Configuration
5439 			 * Files, use the old Driver-based, hard-wired
5440 			 * initialization.  Otherwise, try using the
5441 			 * Configuration File support and fall back to the
5442 			 * Driver-based initialization if there's no
5443 			 * Configuration File found.
5444 			 */
5445 			if (ret < 0)
5446 				ret = adap_init0_no_config(adap, reset);
5447 			else {
5448 				/*
5449 				 * The firmware provides us with a memory
5450 				 * buffer where we can load a Configuration
5451 				 * File from the host if we want to override
5452 				 * the Configuration File in flash.
5453 				 */
5454 
5455 				ret = adap_init0_config(adap, reset);
5456 				if (ret == -ENOENT) {
5457 					dev_info(adap->pdev_dev,
5458 					    "No Configuration File present "
5459 					    "on adapter. Using hard-wired "
5460 					    "configuration parameters.\n");
5461 					ret = adap_init0_no_config(adap, reset);
5462 				}
5463 			}
5464 		}
5465 		if (ret < 0) {
5466 			dev_err(adap->pdev_dev,
5467 				"could not initialize adapter, error %d\n",
5468 				-ret);
5469 			goto bye;
5470 		}
5471 	}
5472 
5473 	/*
5474 	 * If we're living with non-hard-coded parameters (either from a
5475 	 * Firmware Configuration File or values programmed by a different PF
5476 	 * Driver), give the SGE code a chance to pull in anything that it
5477 	 * needs ...  Note that this must be called after we retrieve our VPD
5478 	 * parameters in order to know how to convert core ticks to seconds.
5479 	 */
5480 	if (adap->flags & USING_SOFT_PARAMS) {
5481 		ret = t4_sge_init(adap);
5482 		if (ret < 0)
5483 			goto bye;
5484 	}
5485 
5486 	if (is_bypass_device(adap->pdev->device))
5487 		adap->params.bypass = 1;
5488 
5489 	/*
5490 	 * Grab some of our basic fundamental operating parameters.
5491 	 */
5492 #define FW_PARAM_DEV(param) \
5493 	(FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
5494 	FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
5495 
5496 #define FW_PARAM_PFVF(param) \
5497 	FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
5498 	FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)|  \
5499 	FW_PARAMS_PARAM_Y(0) | \
5500 	FW_PARAMS_PARAM_Z(0)
5501 
5502 	params[0] = FW_PARAM_PFVF(EQ_START);
5503 	params[1] = FW_PARAM_PFVF(L2T_START);
5504 	params[2] = FW_PARAM_PFVF(L2T_END);
5505 	params[3] = FW_PARAM_PFVF(FILTER_START);
5506 	params[4] = FW_PARAM_PFVF(FILTER_END);
5507 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
5508 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6, params, val);
5509 	if (ret < 0)
5510 		goto bye;
5511 	adap->sge.egr_start = val[0];
5512 	adap->l2t_start = val[1];
5513 	adap->l2t_end = val[2];
5514 	adap->tids.ftid_base = val[3];
5515 	adap->tids.nftids = val[4] - val[3] + 1;
5516 	adap->sge.ingr_start = val[5];
5517 
5518 	/* query params related to active filter region */
5519 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
5520 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
5521 	ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2, params, val);
5522 	/* If Active filter size is set we enable establishing
5523 	 * offload connection through firmware work request
5524 	 */
5525 	if ((val[0] != val[1]) && (ret >= 0)) {
5526 		adap->flags |= FW_OFLD_CONN;
5527 		adap->tids.aftid_base = val[0];
5528 		adap->tids.aftid_end = val[1];
5529 	}
5530 
5531 	/* If we're running on newer firmware, let it know that we're
5532 	 * prepared to deal with encapsulated CPL messages.  Older
5533 	 * firmware won't understand this and we'll just get
5534 	 * unencapsulated messages ...
5535 	 */
5536 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5537 	val[0] = 1;
5538 	(void) t4_set_params(adap, adap->mbox, adap->fn, 0, 1, params, val);
5539 
5540 	/*
5541 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
5542 	 * capability.  Earlier versions of the firmware didn't have the
5543 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
5544 	 * permission to use ULPTX MEMWRITE DSGL.
5545 	 */
5546 	if (is_t4(adap->params.chip)) {
5547 		adap->params.ulptx_memwrite_dsgl = false;
5548 	} else {
5549 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5550 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0,
5551 				      1, params, val);
5552 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
5553 	}
5554 
5555 	/*
5556 	 * Get device capabilities so we can determine what resources we need
5557 	 * to manage.
5558 	 */
5559 	memset(&caps_cmd, 0, sizeof(caps_cmd));
5560 	caps_cmd.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5561 				     FW_CMD_REQUEST | FW_CMD_READ);
5562 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
5563 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
5564 			 &caps_cmd);
5565 	if (ret < 0)
5566 		goto bye;
5567 
5568 	if (caps_cmd.ofldcaps) {
5569 		/* query offload-related parameters */
5570 		params[0] = FW_PARAM_DEV(NTID);
5571 		params[1] = FW_PARAM_PFVF(SERVER_START);
5572 		params[2] = FW_PARAM_PFVF(SERVER_END);
5573 		params[3] = FW_PARAM_PFVF(TDDP_START);
5574 		params[4] = FW_PARAM_PFVF(TDDP_END);
5575 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5576 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5577 				      params, val);
5578 		if (ret < 0)
5579 			goto bye;
5580 		adap->tids.ntids = val[0];
5581 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
5582 		adap->tids.stid_base = val[1];
5583 		adap->tids.nstids = val[2] - val[1] + 1;
5584 		/*
5585 		 * Setup server filter region. Divide the availble filter
5586 		 * region into two parts. Regular filters get 1/3rd and server
5587 		 * filters get 2/3rd part. This is only enabled if workarond
5588 		 * path is enabled.
5589 		 * 1. For regular filters.
5590 		 * 2. Server filter: This are special filters which are used
5591 		 * to redirect SYN packets to offload queue.
5592 		 */
5593 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
5594 			adap->tids.sftid_base = adap->tids.ftid_base +
5595 					DIV_ROUND_UP(adap->tids.nftids, 3);
5596 			adap->tids.nsftids = adap->tids.nftids -
5597 					 DIV_ROUND_UP(adap->tids.nftids, 3);
5598 			adap->tids.nftids = adap->tids.sftid_base -
5599 						adap->tids.ftid_base;
5600 		}
5601 		adap->vres.ddp.start = val[3];
5602 		adap->vres.ddp.size = val[4] - val[3] + 1;
5603 		adap->params.ofldq_wr_cred = val[5];
5604 
5605 		adap->params.offload = 1;
5606 	}
5607 	if (caps_cmd.rdmacaps) {
5608 		params[0] = FW_PARAM_PFVF(STAG_START);
5609 		params[1] = FW_PARAM_PFVF(STAG_END);
5610 		params[2] = FW_PARAM_PFVF(RQ_START);
5611 		params[3] = FW_PARAM_PFVF(RQ_END);
5612 		params[4] = FW_PARAM_PFVF(PBL_START);
5613 		params[5] = FW_PARAM_PFVF(PBL_END);
5614 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 6,
5615 				      params, val);
5616 		if (ret < 0)
5617 			goto bye;
5618 		adap->vres.stag.start = val[0];
5619 		adap->vres.stag.size = val[1] - val[0] + 1;
5620 		adap->vres.rq.start = val[2];
5621 		adap->vres.rq.size = val[3] - val[2] + 1;
5622 		adap->vres.pbl.start = val[4];
5623 		adap->vres.pbl.size = val[5] - val[4] + 1;
5624 
5625 		params[0] = FW_PARAM_PFVF(SQRQ_START);
5626 		params[1] = FW_PARAM_PFVF(SQRQ_END);
5627 		params[2] = FW_PARAM_PFVF(CQ_START);
5628 		params[3] = FW_PARAM_PFVF(CQ_END);
5629 		params[4] = FW_PARAM_PFVF(OCQ_START);
5630 		params[5] = FW_PARAM_PFVF(OCQ_END);
5631 		ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
5632 		if (ret < 0)
5633 			goto bye;
5634 		adap->vres.qp.start = val[0];
5635 		adap->vres.qp.size = val[1] - val[0] + 1;
5636 		adap->vres.cq.start = val[2];
5637 		adap->vres.cq.size = val[3] - val[2] + 1;
5638 		adap->vres.ocq.start = val[4];
5639 		adap->vres.ocq.size = val[5] - val[4] + 1;
5640 	}
5641 	if (caps_cmd.iscsicaps) {
5642 		params[0] = FW_PARAM_PFVF(ISCSI_START);
5643 		params[1] = FW_PARAM_PFVF(ISCSI_END);
5644 		ret = t4_query_params(adap, adap->mbox, adap->fn, 0, 2,
5645 				      params, val);
5646 		if (ret < 0)
5647 			goto bye;
5648 		adap->vres.iscsi.start = val[0];
5649 		adap->vres.iscsi.size = val[1] - val[0] + 1;
5650 	}
5651 #undef FW_PARAM_PFVF
5652 #undef FW_PARAM_DEV
5653 
5654 	/* The MTU/MSS Table is initialized by now, so load their values.  If
5655 	 * we're initializing the adapter, then we'll make any modifications
5656 	 * we want to the MTU/MSS Table and also initialize the congestion
5657 	 * parameters.
5658 	 */
5659 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
5660 	if (state != DEV_STATE_INIT) {
5661 		int i;
5662 
5663 		/* The default MTU Table contains values 1492 and 1500.
5664 		 * However, for TCP, it's better to have two values which are
5665 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
5666 		 * This allows us to have a TCP Data Payload which is a
5667 		 * multiple of 8 regardless of what combination of TCP Options
5668 		 * are in use (always a multiple of 4 bytes) which is
5669 		 * important for performance reasons.  For instance, if no
5670 		 * options are in use, then we have a 20-byte IP header and a
5671 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
5672 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
5673 		 * which is not a multiple of 8.  So using an MSS of 1488 in
5674 		 * this case results in a TCP Data Payload of 1448 bytes which
5675 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
5676 		 * Stamps have been negotiated, then an MTU of 1500 bytes
5677 		 * results in a TCP Data Payload of 1448 bytes which, as
5678 		 * above, is a multiple of 8 bytes ...
5679 		 */
5680 		for (i = 0; i < NMTUS; i++)
5681 			if (adap->params.mtus[i] == 1492) {
5682 				adap->params.mtus[i] = 1488;
5683 				break;
5684 			}
5685 
5686 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5687 			     adap->params.b_wnd);
5688 	}
5689 	t4_init_tp_params(adap);
5690 	adap->flags |= FW_OK;
5691 	return 0;
5692 
5693 	/*
5694 	 * Something bad happened.  If a command timed out or failed with EIO
5695 	 * FW does not operate within its spec or something catastrophic
5696 	 * happened to HW/FW, stop issuing commands.
5697 	 */
5698 bye:
5699 	if (ret != -ETIMEDOUT && ret != -EIO)
5700 		t4_fw_bye(adap, adap->mbox);
5701 	return ret;
5702 }
5703 
5704 /* EEH callbacks */
5705 
5706 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
5707 					 pci_channel_state_t state)
5708 {
5709 	int i;
5710 	struct adapter *adap = pci_get_drvdata(pdev);
5711 
5712 	if (!adap)
5713 		goto out;
5714 
5715 	rtnl_lock();
5716 	adap->flags &= ~FW_OK;
5717 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
5718 	spin_lock(&adap->stats_lock);
5719 	for_each_port(adap, i) {
5720 		struct net_device *dev = adap->port[i];
5721 
5722 		netif_device_detach(dev);
5723 		netif_carrier_off(dev);
5724 	}
5725 	spin_unlock(&adap->stats_lock);
5726 	if (adap->flags & FULL_INIT_DONE)
5727 		cxgb_down(adap);
5728 	rtnl_unlock();
5729 	if ((adap->flags & DEV_ENABLED)) {
5730 		pci_disable_device(pdev);
5731 		adap->flags &= ~DEV_ENABLED;
5732 	}
5733 out:	return state == pci_channel_io_perm_failure ?
5734 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
5735 }
5736 
5737 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
5738 {
5739 	int i, ret;
5740 	struct fw_caps_config_cmd c;
5741 	struct adapter *adap = pci_get_drvdata(pdev);
5742 
5743 	if (!adap) {
5744 		pci_restore_state(pdev);
5745 		pci_save_state(pdev);
5746 		return PCI_ERS_RESULT_RECOVERED;
5747 	}
5748 
5749 	if (!(adap->flags & DEV_ENABLED)) {
5750 		if (pci_enable_device(pdev)) {
5751 			dev_err(&pdev->dev, "Cannot reenable PCI "
5752 					    "device after reset\n");
5753 			return PCI_ERS_RESULT_DISCONNECT;
5754 		}
5755 		adap->flags |= DEV_ENABLED;
5756 	}
5757 
5758 	pci_set_master(pdev);
5759 	pci_restore_state(pdev);
5760 	pci_save_state(pdev);
5761 	pci_cleanup_aer_uncorrect_error_status(pdev);
5762 
5763 	if (t4_wait_dev_ready(adap) < 0)
5764 		return PCI_ERS_RESULT_DISCONNECT;
5765 	if (t4_fw_hello(adap, adap->fn, adap->fn, MASTER_MUST, NULL) < 0)
5766 		return PCI_ERS_RESULT_DISCONNECT;
5767 	adap->flags |= FW_OK;
5768 	if (adap_init1(adap, &c))
5769 		return PCI_ERS_RESULT_DISCONNECT;
5770 
5771 	for_each_port(adap, i) {
5772 		struct port_info *p = adap2pinfo(adap, i);
5773 
5774 		ret = t4_alloc_vi(adap, adap->fn, p->tx_chan, adap->fn, 0, 1,
5775 				  NULL, NULL);
5776 		if (ret < 0)
5777 			return PCI_ERS_RESULT_DISCONNECT;
5778 		p->viid = ret;
5779 		p->xact_addr_filt = -1;
5780 	}
5781 
5782 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
5783 		     adap->params.b_wnd);
5784 	setup_memwin(adap);
5785 	if (cxgb_up(adap))
5786 		return PCI_ERS_RESULT_DISCONNECT;
5787 	return PCI_ERS_RESULT_RECOVERED;
5788 }
5789 
5790 static void eeh_resume(struct pci_dev *pdev)
5791 {
5792 	int i;
5793 	struct adapter *adap = pci_get_drvdata(pdev);
5794 
5795 	if (!adap)
5796 		return;
5797 
5798 	rtnl_lock();
5799 	for_each_port(adap, i) {
5800 		struct net_device *dev = adap->port[i];
5801 
5802 		if (netif_running(dev)) {
5803 			link_start(dev);
5804 			cxgb_set_rxmode(dev);
5805 		}
5806 		netif_device_attach(dev);
5807 	}
5808 	rtnl_unlock();
5809 }
5810 
5811 static const struct pci_error_handlers cxgb4_eeh = {
5812 	.error_detected = eeh_err_detected,
5813 	.slot_reset     = eeh_slot_reset,
5814 	.resume         = eeh_resume,
5815 };
5816 
5817 static inline bool is_x_10g_port(const struct link_config *lc)
5818 {
5819 	return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
5820 	       (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
5821 }
5822 
5823 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
5824 			     unsigned int us, unsigned int cnt,
5825 			     unsigned int size, unsigned int iqe_size)
5826 {
5827 	q->adap = adap;
5828 	set_rspq_intr_params(q, us, cnt);
5829 	q->iqe_len = iqe_size;
5830 	q->size = size;
5831 }
5832 
5833 /*
5834  * Perform default configuration of DMA queues depending on the number and type
5835  * of ports we found and the number of available CPUs.  Most settings can be
5836  * modified by the admin prior to actual use.
5837  */
5838 static void cfg_queues(struct adapter *adap)
5839 {
5840 	struct sge *s = &adap->sge;
5841 	int i, q10g = 0, n10g = 0, qidx = 0;
5842 	int ciq_size;
5843 
5844 	for_each_port(adap, i)
5845 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
5846 
5847 	/*
5848 	 * We default to 1 queue per non-10G port and up to # of cores queues
5849 	 * per 10G port.
5850 	 */
5851 	if (n10g)
5852 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
5853 	if (q10g > netif_get_num_default_rss_queues())
5854 		q10g = netif_get_num_default_rss_queues();
5855 
5856 	for_each_port(adap, i) {
5857 		struct port_info *pi = adap2pinfo(adap, i);
5858 
5859 		pi->first_qset = qidx;
5860 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
5861 		qidx += pi->nqsets;
5862 	}
5863 
5864 	s->ethqsets = qidx;
5865 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
5866 
5867 	if (is_offload(adap)) {
5868 		/*
5869 		 * For offload we use 1 queue/channel if all ports are up to 1G,
5870 		 * otherwise we divide all available queues amongst the channels
5871 		 * capped by the number of available cores.
5872 		 */
5873 		if (n10g) {
5874 			i = min_t(int, ARRAY_SIZE(s->ofldrxq),
5875 				  num_online_cpus());
5876 			s->ofldqsets = roundup(i, adap->params.nports);
5877 		} else
5878 			s->ofldqsets = adap->params.nports;
5879 		/* For RDMA one Rx queue per channel suffices */
5880 		s->rdmaqs = adap->params.nports;
5881 		s->rdmaciqs = adap->params.nports;
5882 	}
5883 
5884 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
5885 		struct sge_eth_rxq *r = &s->ethrxq[i];
5886 
5887 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
5888 		r->fl.size = 72;
5889 	}
5890 
5891 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
5892 		s->ethtxq[i].q.size = 1024;
5893 
5894 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
5895 		s->ctrlq[i].q.size = 512;
5896 
5897 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
5898 		s->ofldtxq[i].q.size = 1024;
5899 
5900 	for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
5901 		struct sge_ofld_rxq *r = &s->ofldrxq[i];
5902 
5903 		init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
5904 		r->rspq.uld = CXGB4_ULD_ISCSI;
5905 		r->fl.size = 72;
5906 	}
5907 
5908 	for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
5909 		struct sge_ofld_rxq *r = &s->rdmarxq[i];
5910 
5911 		init_rspq(adap, &r->rspq, 5, 1, 511, 64);
5912 		r->rspq.uld = CXGB4_ULD_RDMA;
5913 		r->fl.size = 72;
5914 	}
5915 
5916 	ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
5917 	if (ciq_size > SGE_MAX_IQ_SIZE) {
5918 		CH_WARN(adap, "CIQ size too small for available IQs\n");
5919 		ciq_size = SGE_MAX_IQ_SIZE;
5920 	}
5921 
5922 	for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
5923 		struct sge_ofld_rxq *r = &s->rdmaciq[i];
5924 
5925 		init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
5926 		r->rspq.uld = CXGB4_ULD_RDMA;
5927 	}
5928 
5929 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
5930 	init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
5931 }
5932 
5933 /*
5934  * Reduce the number of Ethernet queues across all ports to at most n.
5935  * n provides at least one queue per port.
5936  */
5937 static void reduce_ethqs(struct adapter *adap, int n)
5938 {
5939 	int i;
5940 	struct port_info *pi;
5941 
5942 	while (n < adap->sge.ethqsets)
5943 		for_each_port(adap, i) {
5944 			pi = adap2pinfo(adap, i);
5945 			if (pi->nqsets > 1) {
5946 				pi->nqsets--;
5947 				adap->sge.ethqsets--;
5948 				if (adap->sge.ethqsets <= n)
5949 					break;
5950 			}
5951 		}
5952 
5953 	n = 0;
5954 	for_each_port(adap, i) {
5955 		pi = adap2pinfo(adap, i);
5956 		pi->first_qset = n;
5957 		n += pi->nqsets;
5958 	}
5959 }
5960 
5961 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5962 #define EXTRA_VECS 2
5963 
5964 static int enable_msix(struct adapter *adap)
5965 {
5966 	int ofld_need = 0;
5967 	int i, want, need;
5968 	struct sge *s = &adap->sge;
5969 	unsigned int nchan = adap->params.nports;
5970 	struct msix_entry entries[MAX_INGQ + 1];
5971 
5972 	for (i = 0; i < ARRAY_SIZE(entries); ++i)
5973 		entries[i].entry = i;
5974 
5975 	want = s->max_ethqsets + EXTRA_VECS;
5976 	if (is_offload(adap)) {
5977 		want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
5978 		/* need nchan for each possible ULD */
5979 		ofld_need = 3 * nchan;
5980 	}
5981 	need = adap->params.nports + EXTRA_VECS + ofld_need;
5982 
5983 	want = pci_enable_msix_range(adap->pdev, entries, need, want);
5984 	if (want < 0)
5985 		return want;
5986 
5987 	/*
5988 	 * Distribute available vectors to the various queue groups.
5989 	 * Every group gets its minimum requirement and NIC gets top
5990 	 * priority for leftovers.
5991 	 */
5992 	i = want - EXTRA_VECS - ofld_need;
5993 	if (i < s->max_ethqsets) {
5994 		s->max_ethqsets = i;
5995 		if (i < s->ethqsets)
5996 			reduce_ethqs(adap, i);
5997 	}
5998 	if (is_offload(adap)) {
5999 		i = want - EXTRA_VECS - s->max_ethqsets;
6000 		i -= ofld_need - nchan;
6001 		s->ofldqsets = (i / nchan) * nchan;  /* round down */
6002 	}
6003 	for (i = 0; i < want; ++i)
6004 		adap->msix_info[i].vec = entries[i].vector;
6005 
6006 	return 0;
6007 }
6008 
6009 #undef EXTRA_VECS
6010 
6011 static int init_rss(struct adapter *adap)
6012 {
6013 	unsigned int i, j;
6014 
6015 	for_each_port(adap, i) {
6016 		struct port_info *pi = adap2pinfo(adap, i);
6017 
6018 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
6019 		if (!pi->rss)
6020 			return -ENOMEM;
6021 		for (j = 0; j < pi->rss_size; j++)
6022 			pi->rss[j] = ethtool_rxfh_indir_default(j, pi->nqsets);
6023 	}
6024 	return 0;
6025 }
6026 
6027 static void print_port_info(const struct net_device *dev)
6028 {
6029 	char buf[80];
6030 	char *bufp = buf;
6031 	const char *spd = "";
6032 	const struct port_info *pi = netdev_priv(dev);
6033 	const struct adapter *adap = pi->adapter;
6034 
6035 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
6036 		spd = " 2.5 GT/s";
6037 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
6038 		spd = " 5 GT/s";
6039 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
6040 		spd = " 8 GT/s";
6041 
6042 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
6043 		bufp += sprintf(bufp, "100/");
6044 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
6045 		bufp += sprintf(bufp, "1000/");
6046 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
6047 		bufp += sprintf(bufp, "10G/");
6048 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
6049 		bufp += sprintf(bufp, "40G/");
6050 	if (bufp != buf)
6051 		--bufp;
6052 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
6053 
6054 	netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
6055 		    adap->params.vpd.id,
6056 		    CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
6057 		    is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
6058 		    (adap->flags & USING_MSIX) ? " MSI-X" :
6059 		    (adap->flags & USING_MSI) ? " MSI" : "");
6060 	netdev_info(dev, "S/N: %s, P/N: %s\n",
6061 		    adap->params.vpd.sn, adap->params.vpd.pn);
6062 }
6063 
6064 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
6065 {
6066 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
6067 }
6068 
6069 /*
6070  * Free the following resources:
6071  * - memory used for tables
6072  * - MSI/MSI-X
6073  * - net devices
6074  * - resources FW is holding for us
6075  */
6076 static void free_some_resources(struct adapter *adapter)
6077 {
6078 	unsigned int i;
6079 
6080 	t4_free_mem(adapter->l2t);
6081 	t4_free_mem(adapter->tids.tid_tab);
6082 	disable_msi(adapter);
6083 
6084 	for_each_port(adapter, i)
6085 		if (adapter->port[i]) {
6086 			kfree(adap2pinfo(adapter, i)->rss);
6087 			free_netdev(adapter->port[i]);
6088 		}
6089 	if (adapter->flags & FW_OK)
6090 		t4_fw_bye(adapter, adapter->fn);
6091 }
6092 
6093 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
6094 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
6095 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
6096 #define SEGMENT_SIZE 128
6097 
6098 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6099 {
6100 	int func, i, err, s_qpp, qpp, num_seg;
6101 	struct port_info *pi;
6102 	bool highdma = false;
6103 	struct adapter *adapter = NULL;
6104 
6105 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
6106 
6107 	err = pci_request_regions(pdev, KBUILD_MODNAME);
6108 	if (err) {
6109 		/* Just info, some other driver may have claimed the device. */
6110 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
6111 		return err;
6112 	}
6113 
6114 	/* We control everything through one PF */
6115 	func = PCI_FUNC(pdev->devfn);
6116 	if (func != ent->driver_data) {
6117 		pci_save_state(pdev);        /* to restore SR-IOV later */
6118 		goto sriov;
6119 	}
6120 
6121 	err = pci_enable_device(pdev);
6122 	if (err) {
6123 		dev_err(&pdev->dev, "cannot enable PCI device\n");
6124 		goto out_release_regions;
6125 	}
6126 
6127 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
6128 		highdma = true;
6129 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
6130 		if (err) {
6131 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
6132 				"coherent allocations\n");
6133 			goto out_disable_device;
6134 		}
6135 	} else {
6136 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6137 		if (err) {
6138 			dev_err(&pdev->dev, "no usable DMA configuration\n");
6139 			goto out_disable_device;
6140 		}
6141 	}
6142 
6143 	pci_enable_pcie_error_reporting(pdev);
6144 	enable_pcie_relaxed_ordering(pdev);
6145 	pci_set_master(pdev);
6146 	pci_save_state(pdev);
6147 
6148 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
6149 	if (!adapter) {
6150 		err = -ENOMEM;
6151 		goto out_disable_device;
6152 	}
6153 
6154 	/* PCI device has been enabled */
6155 	adapter->flags |= DEV_ENABLED;
6156 
6157 	adapter->regs = pci_ioremap_bar(pdev, 0);
6158 	if (!adapter->regs) {
6159 		dev_err(&pdev->dev, "cannot map device registers\n");
6160 		err = -ENOMEM;
6161 		goto out_free_adapter;
6162 	}
6163 
6164 	adapter->pdev = pdev;
6165 	adapter->pdev_dev = &pdev->dev;
6166 	adapter->mbox = func;
6167 	adapter->fn = func;
6168 	adapter->msg_enable = dflt_msg_enable;
6169 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
6170 
6171 	spin_lock_init(&adapter->stats_lock);
6172 	spin_lock_init(&adapter->tid_release_lock);
6173 
6174 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
6175 	INIT_WORK(&adapter->db_full_task, process_db_full);
6176 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
6177 
6178 	err = t4_prep_adapter(adapter);
6179 	if (err)
6180 		goto out_unmap_bar0;
6181 
6182 	if (!is_t4(adapter->params.chip)) {
6183 		s_qpp = QUEUESPERPAGEPF1 * adapter->fn;
6184 		qpp = 1 << QUEUESPERPAGEPF0_GET(t4_read_reg(adapter,
6185 		      SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp);
6186 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
6187 
6188 		/* Each segment size is 128B. Write coalescing is enabled only
6189 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
6190 		 * queue is less no of segments that can be accommodated in
6191 		 * a page size.
6192 		 */
6193 		if (qpp > num_seg) {
6194 			dev_err(&pdev->dev,
6195 				"Incorrect number of egress queues per page\n");
6196 			err = -EINVAL;
6197 			goto out_unmap_bar0;
6198 		}
6199 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
6200 		pci_resource_len(pdev, 2));
6201 		if (!adapter->bar2) {
6202 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
6203 			err = -ENOMEM;
6204 			goto out_unmap_bar0;
6205 		}
6206 	}
6207 
6208 	setup_memwin(adapter);
6209 	err = adap_init0(adapter);
6210 	setup_memwin_rdma(adapter);
6211 	if (err)
6212 		goto out_unmap_bar;
6213 
6214 	for_each_port(adapter, i) {
6215 		struct net_device *netdev;
6216 
6217 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
6218 					   MAX_ETH_QSETS);
6219 		if (!netdev) {
6220 			err = -ENOMEM;
6221 			goto out_free_dev;
6222 		}
6223 
6224 		SET_NETDEV_DEV(netdev, &pdev->dev);
6225 
6226 		adapter->port[i] = netdev;
6227 		pi = netdev_priv(netdev);
6228 		pi->adapter = adapter;
6229 		pi->xact_addr_filt = -1;
6230 		pi->port_id = i;
6231 		netdev->irq = pdev->irq;
6232 
6233 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
6234 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6235 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
6236 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
6237 		if (highdma)
6238 			netdev->hw_features |= NETIF_F_HIGHDMA;
6239 		netdev->features |= netdev->hw_features;
6240 		netdev->vlan_features = netdev->features & VLAN_FEAT;
6241 
6242 		netdev->priv_flags |= IFF_UNICAST_FLT;
6243 
6244 		netdev->netdev_ops = &cxgb4_netdev_ops;
6245 		netdev->ethtool_ops = &cxgb_ethtool_ops;
6246 	}
6247 
6248 	pci_set_drvdata(pdev, adapter);
6249 
6250 	if (adapter->flags & FW_OK) {
6251 		err = t4_port_init(adapter, func, func, 0);
6252 		if (err)
6253 			goto out_free_dev;
6254 	}
6255 
6256 	/*
6257 	 * Configure queues and allocate tables now, they can be needed as
6258 	 * soon as the first register_netdev completes.
6259 	 */
6260 	cfg_queues(adapter);
6261 
6262 	adapter->l2t = t4_init_l2t();
6263 	if (!adapter->l2t) {
6264 		/* We tolerate a lack of L2T, giving up some functionality */
6265 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
6266 		adapter->params.offload = 0;
6267 	}
6268 
6269 	if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
6270 		dev_warn(&pdev->dev, "could not allocate TID table, "
6271 			 "continuing\n");
6272 		adapter->params.offload = 0;
6273 	}
6274 
6275 	/* See what interrupts we'll be using */
6276 	if (msi > 1 && enable_msix(adapter) == 0)
6277 		adapter->flags |= USING_MSIX;
6278 	else if (msi > 0 && pci_enable_msi(pdev) == 0)
6279 		adapter->flags |= USING_MSI;
6280 
6281 	err = init_rss(adapter);
6282 	if (err)
6283 		goto out_free_dev;
6284 
6285 	/*
6286 	 * The card is now ready to go.  If any errors occur during device
6287 	 * registration we do not fail the whole card but rather proceed only
6288 	 * with the ports we manage to register successfully.  However we must
6289 	 * register at least one net device.
6290 	 */
6291 	for_each_port(adapter, i) {
6292 		pi = adap2pinfo(adapter, i);
6293 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
6294 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
6295 
6296 		err = register_netdev(adapter->port[i]);
6297 		if (err)
6298 			break;
6299 		adapter->chan_map[pi->tx_chan] = i;
6300 		print_port_info(adapter->port[i]);
6301 	}
6302 	if (i == 0) {
6303 		dev_err(&pdev->dev, "could not register any net devices\n");
6304 		goto out_free_dev;
6305 	}
6306 	if (err) {
6307 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
6308 		err = 0;
6309 	}
6310 
6311 	if (cxgb4_debugfs_root) {
6312 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
6313 							   cxgb4_debugfs_root);
6314 		setup_debugfs(adapter);
6315 	}
6316 
6317 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
6318 	pdev->needs_freset = 1;
6319 
6320 	if (is_offload(adapter))
6321 		attach_ulds(adapter);
6322 
6323 sriov:
6324 #ifdef CONFIG_PCI_IOV
6325 	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
6326 		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
6327 			dev_info(&pdev->dev,
6328 				 "instantiated %u virtual functions\n",
6329 				 num_vf[func]);
6330 #endif
6331 	return 0;
6332 
6333  out_free_dev:
6334 	free_some_resources(adapter);
6335  out_unmap_bar:
6336 	if (!is_t4(adapter->params.chip))
6337 		iounmap(adapter->bar2);
6338  out_unmap_bar0:
6339 	iounmap(adapter->regs);
6340  out_free_adapter:
6341 	kfree(adapter);
6342  out_disable_device:
6343 	pci_disable_pcie_error_reporting(pdev);
6344 	pci_disable_device(pdev);
6345  out_release_regions:
6346 	pci_release_regions(pdev);
6347 	return err;
6348 }
6349 
6350 static void remove_one(struct pci_dev *pdev)
6351 {
6352 	struct adapter *adapter = pci_get_drvdata(pdev);
6353 
6354 #ifdef CONFIG_PCI_IOV
6355 	pci_disable_sriov(pdev);
6356 
6357 #endif
6358 
6359 	if (adapter) {
6360 		int i;
6361 
6362 		if (is_offload(adapter))
6363 			detach_ulds(adapter);
6364 
6365 		for_each_port(adapter, i)
6366 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
6367 				unregister_netdev(adapter->port[i]);
6368 
6369 		if (adapter->debugfs_root)
6370 			debugfs_remove_recursive(adapter->debugfs_root);
6371 
6372 		/* If we allocated filters, free up state associated with any
6373 		 * valid filters ...
6374 		 */
6375 		if (adapter->tids.ftid_tab) {
6376 			struct filter_entry *f = &adapter->tids.ftid_tab[0];
6377 			for (i = 0; i < (adapter->tids.nftids +
6378 					adapter->tids.nsftids); i++, f++)
6379 				if (f->valid)
6380 					clear_filter(adapter, f);
6381 		}
6382 
6383 		if (adapter->flags & FULL_INIT_DONE)
6384 			cxgb_down(adapter);
6385 
6386 		free_some_resources(adapter);
6387 		iounmap(adapter->regs);
6388 		if (!is_t4(adapter->params.chip))
6389 			iounmap(adapter->bar2);
6390 		pci_disable_pcie_error_reporting(pdev);
6391 		if ((adapter->flags & DEV_ENABLED)) {
6392 			pci_disable_device(pdev);
6393 			adapter->flags &= ~DEV_ENABLED;
6394 		}
6395 		pci_release_regions(pdev);
6396 		synchronize_rcu();
6397 		kfree(adapter);
6398 	} else
6399 		pci_release_regions(pdev);
6400 }
6401 
6402 static struct pci_driver cxgb4_driver = {
6403 	.name     = KBUILD_MODNAME,
6404 	.id_table = cxgb4_pci_tbl,
6405 	.probe    = init_one,
6406 	.remove   = remove_one,
6407 	.shutdown = remove_one,
6408 	.err_handler = &cxgb4_eeh,
6409 };
6410 
6411 static int __init cxgb4_init_module(void)
6412 {
6413 	int ret;
6414 
6415 	workq = create_singlethread_workqueue("cxgb4");
6416 	if (!workq)
6417 		return -ENOMEM;
6418 
6419 	/* Debugfs support is optional, just warn if this fails */
6420 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6421 	if (!cxgb4_debugfs_root)
6422 		pr_warn("could not create debugfs entry, continuing\n");
6423 
6424 	ret = pci_register_driver(&cxgb4_driver);
6425 	if (ret < 0) {
6426 		debugfs_remove(cxgb4_debugfs_root);
6427 		destroy_workqueue(workq);
6428 	}
6429 
6430 	register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6431 
6432 	return ret;
6433 }
6434 
6435 static void __exit cxgb4_cleanup_module(void)
6436 {
6437 	unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6438 	pci_unregister_driver(&cxgb4_driver);
6439 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
6440 	flush_workqueue(workq);
6441 	destroy_workqueue(workq);
6442 }
6443 
6444 module_init(cxgb4_init_module);
6445 module_exit(cxgb4_cleanup_module);
6446