1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <linux/uaccess.h> 66 #include <linux/crash_dump.h> 67 #include <net/udp_tunnel.h> 68 69 #include "cxgb4.h" 70 #include "cxgb4_filter.h" 71 #include "t4_regs.h" 72 #include "t4_values.h" 73 #include "t4_msg.h" 74 #include "t4fw_api.h" 75 #include "t4fw_version.h" 76 #include "cxgb4_dcb.h" 77 #include "srq.h" 78 #include "cxgb4_debugfs.h" 79 #include "clip_tbl.h" 80 #include "l2t.h" 81 #include "smt.h" 82 #include "sched.h" 83 #include "cxgb4_tc_u32.h" 84 #include "cxgb4_tc_flower.h" 85 #include "cxgb4_ptp.h" 86 #include "cxgb4_cudbg.h" 87 88 char cxgb4_driver_name[] = KBUILD_MODNAME; 89 90 #ifdef DRV_VERSION 91 #undef DRV_VERSION 92 #endif 93 #define DRV_VERSION "2.0.0-ko" 94 const char cxgb4_driver_version[] = DRV_VERSION; 95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 96 97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 98 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 99 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 100 101 /* Macros needed to support the PCI Device ID Table ... 102 */ 103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 104 static const struct pci_device_id cxgb4_pci_tbl[] = { 105 #define CXGB4_UNIFIED_PF 0x4 106 107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 108 109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 110 * called for both. 111 */ 112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 113 114 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 115 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 116 117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 118 { 0, } \ 119 } 120 121 #include "t4_pci_id_tbl.h" 122 123 #define FW4_FNAME "cxgb4/t4fw.bin" 124 #define FW5_FNAME "cxgb4/t5fw.bin" 125 #define FW6_FNAME "cxgb4/t6fw.bin" 126 #define FW4_CFNAME "cxgb4/t4-config.txt" 127 #define FW5_CFNAME "cxgb4/t5-config.txt" 128 #define FW6_CFNAME "cxgb4/t6-config.txt" 129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 131 #define PHY_AQ1202_DEVICEID 0x4409 132 #define PHY_BCM84834_DEVICEID 0x4486 133 134 MODULE_DESCRIPTION(DRV_DESC); 135 MODULE_AUTHOR("Chelsio Communications"); 136 MODULE_LICENSE("Dual BSD/GPL"); 137 MODULE_VERSION(DRV_VERSION); 138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 139 MODULE_FIRMWARE(FW4_FNAME); 140 MODULE_FIRMWARE(FW5_FNAME); 141 MODULE_FIRMWARE(FW6_FNAME); 142 143 /* 144 * The driver uses the best interrupt scheme available on a platform in the 145 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 146 * of these schemes the driver may consider as follows: 147 * 148 * msi = 2: choose from among all three options 149 * msi = 1: only consider MSI and INTx interrupts 150 * msi = 0: force INTx interrupts 151 */ 152 static int msi = 2; 153 154 module_param(msi, int, 0644); 155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 156 157 /* 158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 159 * offset by 2 bytes in order to have the IP headers line up on 4-byte 160 * boundaries. This is a requirement for many architectures which will throw 161 * a machine check fault if an attempt is made to access one of the 4-byte IP 162 * header fields on a non-4-byte boundary. And it's a major performance issue 163 * even on some architectures which allow it like some implementations of the 164 * x86 ISA. However, some architectures don't mind this and for some very 165 * edge-case performance sensitive applications (like forwarding large volumes 166 * of small packets), setting this DMA offset to 0 will decrease the number of 167 * PCI-E Bus transfers enough to measurably affect performance. 168 */ 169 static int rx_dma_offset = 2; 170 171 /* TX Queue select used to determine what algorithm to use for selecting TX 172 * queue. Select between the kernel provided function (select_queue=0) or user 173 * cxgb_select_queue function (select_queue=1) 174 * 175 * Default: select_queue=0 176 */ 177 static int select_queue; 178 module_param(select_queue, int, 0644); 179 MODULE_PARM_DESC(select_queue, 180 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 181 182 static struct dentry *cxgb4_debugfs_root; 183 184 LIST_HEAD(adapter_list); 185 DEFINE_MUTEX(uld_mutex); 186 187 static void link_report(struct net_device *dev) 188 { 189 if (!netif_carrier_ok(dev)) 190 netdev_info(dev, "link down\n"); 191 else { 192 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 193 194 const char *s; 195 const struct port_info *p = netdev_priv(dev); 196 197 switch (p->link_cfg.speed) { 198 case 100: 199 s = "100Mbps"; 200 break; 201 case 1000: 202 s = "1Gbps"; 203 break; 204 case 10000: 205 s = "10Gbps"; 206 break; 207 case 25000: 208 s = "25Gbps"; 209 break; 210 case 40000: 211 s = "40Gbps"; 212 break; 213 case 50000: 214 s = "50Gbps"; 215 break; 216 case 100000: 217 s = "100Gbps"; 218 break; 219 default: 220 pr_info("%s: unsupported speed: %d\n", 221 dev->name, p->link_cfg.speed); 222 return; 223 } 224 225 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 226 fc[p->link_cfg.fc]); 227 } 228 } 229 230 #ifdef CONFIG_CHELSIO_T4_DCB 231 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 232 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 233 { 234 struct port_info *pi = netdev_priv(dev); 235 struct adapter *adap = pi->adapter; 236 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 237 int i; 238 239 /* We use a simple mapping of Port TX Queue Index to DCB 240 * Priority when we're enabling DCB. 241 */ 242 for (i = 0; i < pi->nqsets; i++, txq++) { 243 u32 name, value; 244 int err; 245 246 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 247 FW_PARAMS_PARAM_X_V( 248 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 249 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 250 value = enable ? i : 0xffffffff; 251 252 /* Since we can be called while atomic (from "interrupt 253 * level") we need to issue the Set Parameters Commannd 254 * without sleeping (timeout < 0). 255 */ 256 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 257 &name, &value, 258 -FW_CMD_MAX_TIMEOUT); 259 260 if (err) 261 dev_err(adap->pdev_dev, 262 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 263 enable ? "set" : "unset", pi->port_id, i, -err); 264 else 265 txq->dcb_prio = enable ? value : 0; 266 } 267 } 268 269 int cxgb4_dcb_enabled(const struct net_device *dev) 270 { 271 struct port_info *pi = netdev_priv(dev); 272 273 if (!pi->dcb.enabled) 274 return 0; 275 276 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 277 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 278 } 279 #endif /* CONFIG_CHELSIO_T4_DCB */ 280 281 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 282 { 283 struct net_device *dev = adapter->port[port_id]; 284 285 /* Skip changes from disabled ports. */ 286 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 287 if (link_stat) 288 netif_carrier_on(dev); 289 else { 290 #ifdef CONFIG_CHELSIO_T4_DCB 291 if (cxgb4_dcb_enabled(dev)) { 292 cxgb4_dcb_reset(dev); 293 dcb_tx_queue_prio_enable(dev, false); 294 } 295 #endif /* CONFIG_CHELSIO_T4_DCB */ 296 netif_carrier_off(dev); 297 } 298 299 link_report(dev); 300 } 301 } 302 303 void t4_os_portmod_changed(struct adapter *adap, int port_id) 304 { 305 static const char *mod_str[] = { 306 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 307 }; 308 309 struct net_device *dev = adap->port[port_id]; 310 struct port_info *pi = netdev_priv(dev); 311 312 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 313 netdev_info(dev, "port module unplugged\n"); 314 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 315 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 316 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 317 netdev_info(dev, "%s: unsupported port module inserted\n", 318 dev->name); 319 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 320 netdev_info(dev, "%s: unknown port module inserted\n", 321 dev->name); 322 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 323 netdev_info(dev, "%s: transceiver module error\n", dev->name); 324 else 325 netdev_info(dev, "%s: unknown module type %d inserted\n", 326 dev->name, pi->mod_type); 327 328 /* If the interface is running, then we'll need any "sticky" Link 329 * Parameters redone with a new Transceiver Module. 330 */ 331 pi->link_cfg.redo_l1cfg = netif_running(dev); 332 } 333 334 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 335 module_param(dbfifo_int_thresh, int, 0644); 336 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 337 338 /* 339 * usecs to sleep while draining the dbfifo 340 */ 341 static int dbfifo_drain_delay = 1000; 342 module_param(dbfifo_drain_delay, int, 0644); 343 MODULE_PARM_DESC(dbfifo_drain_delay, 344 "usecs to sleep while draining the dbfifo"); 345 346 static inline int cxgb4_set_addr_hash(struct port_info *pi) 347 { 348 struct adapter *adap = pi->adapter; 349 u64 vec = 0; 350 bool ucast = false; 351 struct hash_mac_addr *entry; 352 353 /* Calculate the hash vector for the updated list and program it */ 354 list_for_each_entry(entry, &adap->mac_hlist, list) { 355 ucast |= is_unicast_ether_addr(entry->addr); 356 vec |= (1ULL << hash_mac_addr(entry->addr)); 357 } 358 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 359 vec, false); 360 } 361 362 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 363 { 364 struct port_info *pi = netdev_priv(netdev); 365 struct adapter *adap = pi->adapter; 366 int ret; 367 u64 mhash = 0; 368 u64 uhash = 0; 369 bool free = false; 370 bool ucast = is_unicast_ether_addr(mac_addr); 371 const u8 *maclist[1] = {mac_addr}; 372 struct hash_mac_addr *new_entry; 373 374 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 375 NULL, ucast ? &uhash : &mhash, false); 376 if (ret < 0) 377 goto out; 378 /* if hash != 0, then add the addr to hash addr list 379 * so on the end we will calculate the hash for the 380 * list and program it 381 */ 382 if (uhash || mhash) { 383 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 384 if (!new_entry) 385 return -ENOMEM; 386 ether_addr_copy(new_entry->addr, mac_addr); 387 list_add_tail(&new_entry->list, &adap->mac_hlist); 388 ret = cxgb4_set_addr_hash(pi); 389 } 390 out: 391 return ret < 0 ? ret : 0; 392 } 393 394 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 395 { 396 struct port_info *pi = netdev_priv(netdev); 397 struct adapter *adap = pi->adapter; 398 int ret; 399 const u8 *maclist[1] = {mac_addr}; 400 struct hash_mac_addr *entry, *tmp; 401 402 /* If the MAC address to be removed is in the hash addr 403 * list, delete it from the list and update hash vector 404 */ 405 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 406 if (ether_addr_equal(entry->addr, mac_addr)) { 407 list_del(&entry->list); 408 kfree(entry); 409 return cxgb4_set_addr_hash(pi); 410 } 411 } 412 413 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 414 return ret < 0 ? -EINVAL : 0; 415 } 416 417 /* 418 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 419 * If @mtu is -1 it is left unchanged. 420 */ 421 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 422 { 423 struct port_info *pi = netdev_priv(dev); 424 struct adapter *adapter = pi->adapter; 425 426 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 427 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 428 429 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 430 (dev->flags & IFF_PROMISC) ? 1 : 0, 431 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 432 sleep_ok); 433 } 434 435 /** 436 * link_start - enable a port 437 * @dev: the port to enable 438 * 439 * Performs the MAC and PHY actions needed to enable a port. 440 */ 441 static int link_start(struct net_device *dev) 442 { 443 int ret; 444 struct port_info *pi = netdev_priv(dev); 445 unsigned int mb = pi->adapter->pf; 446 447 /* 448 * We do not set address filters and promiscuity here, the stack does 449 * that step explicitly. 450 */ 451 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 452 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 453 if (ret == 0) { 454 ret = t4_change_mac(pi->adapter, mb, pi->viid, 455 pi->xact_addr_filt, dev->dev_addr, true, 456 true); 457 if (ret >= 0) { 458 pi->xact_addr_filt = ret; 459 ret = 0; 460 } 461 } 462 if (ret == 0) 463 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 464 &pi->link_cfg); 465 if (ret == 0) { 466 local_bh_disable(); 467 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 468 true, CXGB4_DCB_ENABLED); 469 local_bh_enable(); 470 } 471 472 return ret; 473 } 474 475 #ifdef CONFIG_CHELSIO_T4_DCB 476 /* Handle a Data Center Bridging update message from the firmware. */ 477 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 478 { 479 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 480 struct net_device *dev = adap->port[adap->chan_map[port]]; 481 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 482 int new_dcb_enabled; 483 484 cxgb4_dcb_handle_fw_update(adap, pcmd); 485 new_dcb_enabled = cxgb4_dcb_enabled(dev); 486 487 /* If the DCB has become enabled or disabled on the port then we're 488 * going to need to set up/tear down DCB Priority parameters for the 489 * TX Queues associated with the port. 490 */ 491 if (new_dcb_enabled != old_dcb_enabled) 492 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 493 } 494 #endif /* CONFIG_CHELSIO_T4_DCB */ 495 496 /* Response queue handler for the FW event queue. 497 */ 498 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 499 const struct pkt_gl *gl) 500 { 501 u8 opcode = ((const struct rss_header *)rsp)->opcode; 502 503 rsp++; /* skip RSS header */ 504 505 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 506 */ 507 if (unlikely(opcode == CPL_FW4_MSG && 508 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 509 rsp++; 510 opcode = ((const struct rss_header *)rsp)->opcode; 511 rsp++; 512 if (opcode != CPL_SGE_EGR_UPDATE) { 513 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 514 , opcode); 515 goto out; 516 } 517 } 518 519 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 520 const struct cpl_sge_egr_update *p = (void *)rsp; 521 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 522 struct sge_txq *txq; 523 524 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 525 txq->restarts++; 526 if (txq->q_type == CXGB4_TXQ_ETH) { 527 struct sge_eth_txq *eq; 528 529 eq = container_of(txq, struct sge_eth_txq, q); 530 netif_tx_wake_queue(eq->txq); 531 } else { 532 struct sge_uld_txq *oq; 533 534 oq = container_of(txq, struct sge_uld_txq, q); 535 tasklet_schedule(&oq->qresume_tsk); 536 } 537 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 538 const struct cpl_fw6_msg *p = (void *)rsp; 539 540 #ifdef CONFIG_CHELSIO_T4_DCB 541 const struct fw_port_cmd *pcmd = (const void *)p->data; 542 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 543 unsigned int action = 544 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 545 546 if (cmd == FW_PORT_CMD && 547 (action == FW_PORT_ACTION_GET_PORT_INFO || 548 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 549 int port = FW_PORT_CMD_PORTID_G( 550 be32_to_cpu(pcmd->op_to_portid)); 551 struct net_device *dev; 552 int dcbxdis, state_input; 553 554 dev = q->adap->port[q->adap->chan_map[port]]; 555 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 556 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) 557 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) 558 & FW_PORT_CMD_DCBXDIS32_F)); 559 state_input = (dcbxdis 560 ? CXGB4_DCB_INPUT_FW_DISABLED 561 : CXGB4_DCB_INPUT_FW_ENABLED); 562 563 cxgb4_dcb_state_fsm(dev, state_input); 564 } 565 566 if (cmd == FW_PORT_CMD && 567 action == FW_PORT_ACTION_L2_DCB_CFG) 568 dcb_rpl(q->adap, pcmd); 569 else 570 #endif 571 if (p->type == 0) 572 t4_handle_fw_rpl(q->adap, p->data); 573 } else if (opcode == CPL_L2T_WRITE_RPL) { 574 const struct cpl_l2t_write_rpl *p = (void *)rsp; 575 576 do_l2t_write_rpl(q->adap, p); 577 } else if (opcode == CPL_SMT_WRITE_RPL) { 578 const struct cpl_smt_write_rpl *p = (void *)rsp; 579 580 do_smt_write_rpl(q->adap, p); 581 } else if (opcode == CPL_SET_TCB_RPL) { 582 const struct cpl_set_tcb_rpl *p = (void *)rsp; 583 584 filter_rpl(q->adap, p); 585 } else if (opcode == CPL_ACT_OPEN_RPL) { 586 const struct cpl_act_open_rpl *p = (void *)rsp; 587 588 hash_filter_rpl(q->adap, p); 589 } else if (opcode == CPL_ABORT_RPL_RSS) { 590 const struct cpl_abort_rpl_rss *p = (void *)rsp; 591 592 hash_del_filter_rpl(q->adap, p); 593 } else if (opcode == CPL_SRQ_TABLE_RPL) { 594 const struct cpl_srq_table_rpl *p = (void *)rsp; 595 596 do_srq_table_rpl(q->adap, p); 597 } else 598 dev_err(q->adap->pdev_dev, 599 "unexpected CPL %#x on FW event queue\n", opcode); 600 out: 601 return 0; 602 } 603 604 static void disable_msi(struct adapter *adapter) 605 { 606 if (adapter->flags & USING_MSIX) { 607 pci_disable_msix(adapter->pdev); 608 adapter->flags &= ~USING_MSIX; 609 } else if (adapter->flags & USING_MSI) { 610 pci_disable_msi(adapter->pdev); 611 adapter->flags &= ~USING_MSI; 612 } 613 } 614 615 /* 616 * Interrupt handler for non-data events used with MSI-X. 617 */ 618 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 619 { 620 struct adapter *adap = cookie; 621 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 622 623 if (v & PFSW_F) { 624 adap->swintr = 1; 625 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 626 } 627 if (adap->flags & MASTER_PF) 628 t4_slow_intr_handler(adap); 629 return IRQ_HANDLED; 630 } 631 632 /* 633 * Name the MSI-X interrupts. 634 */ 635 static void name_msix_vecs(struct adapter *adap) 636 { 637 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 638 639 /* non-data interrupts */ 640 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 641 642 /* FW events */ 643 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 644 adap->port[0]->name); 645 646 /* Ethernet queues */ 647 for_each_port(adap, j) { 648 struct net_device *d = adap->port[j]; 649 const struct port_info *pi = netdev_priv(d); 650 651 for (i = 0; i < pi->nqsets; i++, msi_idx++) 652 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 653 d->name, i); 654 } 655 } 656 657 static int request_msix_queue_irqs(struct adapter *adap) 658 { 659 struct sge *s = &adap->sge; 660 int err, ethqidx; 661 int msi_index = 2; 662 663 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 664 adap->msix_info[1].desc, &s->fw_evtq); 665 if (err) 666 return err; 667 668 for_each_ethrxq(s, ethqidx) { 669 err = request_irq(adap->msix_info[msi_index].vec, 670 t4_sge_intr_msix, 0, 671 adap->msix_info[msi_index].desc, 672 &s->ethrxq[ethqidx].rspq); 673 if (err) 674 goto unwind; 675 msi_index++; 676 } 677 return 0; 678 679 unwind: 680 while (--ethqidx >= 0) 681 free_irq(adap->msix_info[--msi_index].vec, 682 &s->ethrxq[ethqidx].rspq); 683 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 684 return err; 685 } 686 687 static void free_msix_queue_irqs(struct adapter *adap) 688 { 689 int i, msi_index = 2; 690 struct sge *s = &adap->sge; 691 692 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 693 for_each_ethrxq(s, i) 694 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 695 } 696 697 /** 698 * cxgb4_write_rss - write the RSS table for a given port 699 * @pi: the port 700 * @queues: array of queue indices for RSS 701 * 702 * Sets up the portion of the HW RSS table for the port's VI to distribute 703 * packets to the Rx queues in @queues. 704 * Should never be called before setting up sge eth rx queues 705 */ 706 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 707 { 708 u16 *rss; 709 int i, err; 710 struct adapter *adapter = pi->adapter; 711 const struct sge_eth_rxq *rxq; 712 713 rxq = &adapter->sge.ethrxq[pi->first_qset]; 714 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 715 if (!rss) 716 return -ENOMEM; 717 718 /* map the queue indices to queue ids */ 719 for (i = 0; i < pi->rss_size; i++, queues++) 720 rss[i] = rxq[*queues].rspq.abs_id; 721 722 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 723 pi->rss_size, rss, pi->rss_size); 724 /* If Tunnel All Lookup isn't specified in the global RSS 725 * Configuration, then we need to specify a default Ingress 726 * Queue for any ingress packets which aren't hashed. We'll 727 * use our first ingress queue ... 728 */ 729 if (!err) 730 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 731 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 732 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 733 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 734 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 735 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 736 rss[0]); 737 kfree(rss); 738 return err; 739 } 740 741 /** 742 * setup_rss - configure RSS 743 * @adap: the adapter 744 * 745 * Sets up RSS for each port. 746 */ 747 static int setup_rss(struct adapter *adap) 748 { 749 int i, j, err; 750 751 for_each_port(adap, i) { 752 const struct port_info *pi = adap2pinfo(adap, i); 753 754 /* Fill default values with equal distribution */ 755 for (j = 0; j < pi->rss_size; j++) 756 pi->rss[j] = j % pi->nqsets; 757 758 err = cxgb4_write_rss(pi, pi->rss); 759 if (err) 760 return err; 761 } 762 return 0; 763 } 764 765 /* 766 * Return the channel of the ingress queue with the given qid. 767 */ 768 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 769 { 770 qid -= p->ingr_start; 771 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 772 } 773 774 /* 775 * Wait until all NAPI handlers are descheduled. 776 */ 777 static void quiesce_rx(struct adapter *adap) 778 { 779 int i; 780 781 for (i = 0; i < adap->sge.ingr_sz; i++) { 782 struct sge_rspq *q = adap->sge.ingr_map[i]; 783 784 if (q && q->handler) 785 napi_disable(&q->napi); 786 } 787 } 788 789 /* Disable interrupt and napi handler */ 790 static void disable_interrupts(struct adapter *adap) 791 { 792 if (adap->flags & FULL_INIT_DONE) { 793 t4_intr_disable(adap); 794 if (adap->flags & USING_MSIX) { 795 free_msix_queue_irqs(adap); 796 free_irq(adap->msix_info[0].vec, adap); 797 } else { 798 free_irq(adap->pdev->irq, adap); 799 } 800 quiesce_rx(adap); 801 } 802 } 803 804 /* 805 * Enable NAPI scheduling and interrupt generation for all Rx queues. 806 */ 807 static void enable_rx(struct adapter *adap) 808 { 809 int i; 810 811 for (i = 0; i < adap->sge.ingr_sz; i++) { 812 struct sge_rspq *q = adap->sge.ingr_map[i]; 813 814 if (!q) 815 continue; 816 if (q->handler) 817 napi_enable(&q->napi); 818 819 /* 0-increment GTS to start the timer and enable interrupts */ 820 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 821 SEINTARM_V(q->intr_params) | 822 INGRESSQID_V(q->cntxt_id)); 823 } 824 } 825 826 827 static int setup_fw_sge_queues(struct adapter *adap) 828 { 829 struct sge *s = &adap->sge; 830 int err = 0; 831 832 bitmap_zero(s->starving_fl, s->egr_sz); 833 bitmap_zero(s->txq_maperr, s->egr_sz); 834 835 if (adap->flags & USING_MSIX) 836 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 837 else { 838 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 839 NULL, NULL, NULL, -1); 840 if (err) 841 return err; 842 adap->msi_idx = -((int)s->intrq.abs_id + 1); 843 } 844 845 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 846 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 847 return err; 848 } 849 850 /** 851 * setup_sge_queues - configure SGE Tx/Rx/response queues 852 * @adap: the adapter 853 * 854 * Determines how many sets of SGE queues to use and initializes them. 855 * We support multiple queue sets per port if we have MSI-X, otherwise 856 * just one queue set per port. 857 */ 858 static int setup_sge_queues(struct adapter *adap) 859 { 860 int err, i, j; 861 struct sge *s = &adap->sge; 862 struct sge_uld_rxq_info *rxq_info = NULL; 863 unsigned int cmplqid = 0; 864 865 if (is_uld(adap)) 866 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 867 868 for_each_port(adap, i) { 869 struct net_device *dev = adap->port[i]; 870 struct port_info *pi = netdev_priv(dev); 871 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 872 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 873 874 for (j = 0; j < pi->nqsets; j++, q++) { 875 if (adap->msi_idx > 0) 876 adap->msi_idx++; 877 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 878 adap->msi_idx, &q->fl, 879 t4_ethrx_handler, 880 NULL, 881 t4_get_tp_ch_map(adap, 882 pi->tx_chan)); 883 if (err) 884 goto freeout; 885 q->rspq.idx = j; 886 memset(&q->stats, 0, sizeof(q->stats)); 887 } 888 for (j = 0; j < pi->nqsets; j++, t++) { 889 err = t4_sge_alloc_eth_txq(adap, t, dev, 890 netdev_get_tx_queue(dev, j), 891 s->fw_evtq.cntxt_id); 892 if (err) 893 goto freeout; 894 } 895 } 896 897 for_each_port(adap, i) { 898 /* Note that cmplqid below is 0 if we don't 899 * have RDMA queues, and that's the right value. 900 */ 901 if (rxq_info) 902 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 903 904 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 905 s->fw_evtq.cntxt_id, cmplqid); 906 if (err) 907 goto freeout; 908 } 909 910 if (!is_t4(adap->params.chip)) { 911 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 912 netdev_get_tx_queue(adap->port[0], 0) 913 , s->fw_evtq.cntxt_id); 914 if (err) 915 goto freeout; 916 } 917 918 t4_write_reg(adap, is_t4(adap->params.chip) ? 919 MPS_TRC_RSS_CONTROL_A : 920 MPS_T5_TRC_RSS_CONTROL_A, 921 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 922 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 923 return 0; 924 freeout: 925 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 926 t4_free_sge_resources(adap); 927 return err; 928 } 929 930 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 931 struct net_device *sb_dev, 932 select_queue_fallback_t fallback) 933 { 934 int txq; 935 936 #ifdef CONFIG_CHELSIO_T4_DCB 937 /* If a Data Center Bridging has been successfully negotiated on this 938 * link then we'll use the skb's priority to map it to a TX Queue. 939 * The skb's priority is determined via the VLAN Tag Priority Code 940 * Point field. 941 */ 942 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 943 u16 vlan_tci; 944 int err; 945 946 err = vlan_get_tag(skb, &vlan_tci); 947 if (unlikely(err)) { 948 if (net_ratelimit()) 949 netdev_warn(dev, 950 "TX Packet without VLAN Tag on DCB Link\n"); 951 txq = 0; 952 } else { 953 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 954 #ifdef CONFIG_CHELSIO_T4_FCOE 955 if (skb->protocol == htons(ETH_P_FCOE)) 956 txq = skb->priority & 0x7; 957 #endif /* CONFIG_CHELSIO_T4_FCOE */ 958 } 959 return txq; 960 } 961 #endif /* CONFIG_CHELSIO_T4_DCB */ 962 963 if (select_queue) { 964 txq = (skb_rx_queue_recorded(skb) 965 ? skb_get_rx_queue(skb) 966 : smp_processor_id()); 967 968 while (unlikely(txq >= dev->real_num_tx_queues)) 969 txq -= dev->real_num_tx_queues; 970 971 return txq; 972 } 973 974 return fallback(dev, skb, NULL) % dev->real_num_tx_queues; 975 } 976 977 static int closest_timer(const struct sge *s, int time) 978 { 979 int i, delta, match = 0, min_delta = INT_MAX; 980 981 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 982 delta = time - s->timer_val[i]; 983 if (delta < 0) 984 delta = -delta; 985 if (delta < min_delta) { 986 min_delta = delta; 987 match = i; 988 } 989 } 990 return match; 991 } 992 993 static int closest_thres(const struct sge *s, int thres) 994 { 995 int i, delta, match = 0, min_delta = INT_MAX; 996 997 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 998 delta = thres - s->counter_val[i]; 999 if (delta < 0) 1000 delta = -delta; 1001 if (delta < min_delta) { 1002 min_delta = delta; 1003 match = i; 1004 } 1005 } 1006 return match; 1007 } 1008 1009 /** 1010 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1011 * @q: the Rx queue 1012 * @us: the hold-off time in us, or 0 to disable timer 1013 * @cnt: the hold-off packet count, or 0 to disable counter 1014 * 1015 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1016 * one of the two needs to be enabled for the queue to generate interrupts. 1017 */ 1018 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1019 unsigned int us, unsigned int cnt) 1020 { 1021 struct adapter *adap = q->adap; 1022 1023 if ((us | cnt) == 0) 1024 cnt = 1; 1025 1026 if (cnt) { 1027 int err; 1028 u32 v, new_idx; 1029 1030 new_idx = closest_thres(&adap->sge, cnt); 1031 if (q->desc && q->pktcnt_idx != new_idx) { 1032 /* the queue has already been created, update it */ 1033 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1034 FW_PARAMS_PARAM_X_V( 1035 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1036 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1037 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1038 &v, &new_idx); 1039 if (err) 1040 return err; 1041 } 1042 q->pktcnt_idx = new_idx; 1043 } 1044 1045 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1046 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1047 return 0; 1048 } 1049 1050 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1051 { 1052 const struct port_info *pi = netdev_priv(dev); 1053 netdev_features_t changed = dev->features ^ features; 1054 int err; 1055 1056 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1057 return 0; 1058 1059 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1060 -1, -1, -1, 1061 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1062 if (unlikely(err)) 1063 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1064 return err; 1065 } 1066 1067 static int setup_debugfs(struct adapter *adap) 1068 { 1069 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1070 return -1; 1071 1072 #ifdef CONFIG_DEBUG_FS 1073 t4_setup_debugfs(adap); 1074 #endif 1075 return 0; 1076 } 1077 1078 /* 1079 * upper-layer driver support 1080 */ 1081 1082 /* 1083 * Allocate an active-open TID and set it to the supplied value. 1084 */ 1085 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1086 { 1087 int atid = -1; 1088 1089 spin_lock_bh(&t->atid_lock); 1090 if (t->afree) { 1091 union aopen_entry *p = t->afree; 1092 1093 atid = (p - t->atid_tab) + t->atid_base; 1094 t->afree = p->next; 1095 p->data = data; 1096 t->atids_in_use++; 1097 } 1098 spin_unlock_bh(&t->atid_lock); 1099 return atid; 1100 } 1101 EXPORT_SYMBOL(cxgb4_alloc_atid); 1102 1103 /* 1104 * Release an active-open TID. 1105 */ 1106 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1107 { 1108 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1109 1110 spin_lock_bh(&t->atid_lock); 1111 p->next = t->afree; 1112 t->afree = p; 1113 t->atids_in_use--; 1114 spin_unlock_bh(&t->atid_lock); 1115 } 1116 EXPORT_SYMBOL(cxgb4_free_atid); 1117 1118 /* 1119 * Allocate a server TID and set it to the supplied value. 1120 */ 1121 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1122 { 1123 int stid; 1124 1125 spin_lock_bh(&t->stid_lock); 1126 if (family == PF_INET) { 1127 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1128 if (stid < t->nstids) 1129 __set_bit(stid, t->stid_bmap); 1130 else 1131 stid = -1; 1132 } else { 1133 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1134 if (stid < 0) 1135 stid = -1; 1136 } 1137 if (stid >= 0) { 1138 t->stid_tab[stid].data = data; 1139 stid += t->stid_base; 1140 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1141 * This is equivalent to 4 TIDs. With CLIP enabled it 1142 * needs 2 TIDs. 1143 */ 1144 if (family == PF_INET6) { 1145 t->stids_in_use += 2; 1146 t->v6_stids_in_use += 2; 1147 } else { 1148 t->stids_in_use++; 1149 } 1150 } 1151 spin_unlock_bh(&t->stid_lock); 1152 return stid; 1153 } 1154 EXPORT_SYMBOL(cxgb4_alloc_stid); 1155 1156 /* Allocate a server filter TID and set it to the supplied value. 1157 */ 1158 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1159 { 1160 int stid; 1161 1162 spin_lock_bh(&t->stid_lock); 1163 if (family == PF_INET) { 1164 stid = find_next_zero_bit(t->stid_bmap, 1165 t->nstids + t->nsftids, t->nstids); 1166 if (stid < (t->nstids + t->nsftids)) 1167 __set_bit(stid, t->stid_bmap); 1168 else 1169 stid = -1; 1170 } else { 1171 stid = -1; 1172 } 1173 if (stid >= 0) { 1174 t->stid_tab[stid].data = data; 1175 stid -= t->nstids; 1176 stid += t->sftid_base; 1177 t->sftids_in_use++; 1178 } 1179 spin_unlock_bh(&t->stid_lock); 1180 return stid; 1181 } 1182 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1183 1184 /* Release a server TID. 1185 */ 1186 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1187 { 1188 /* Is it a server filter TID? */ 1189 if (t->nsftids && (stid >= t->sftid_base)) { 1190 stid -= t->sftid_base; 1191 stid += t->nstids; 1192 } else { 1193 stid -= t->stid_base; 1194 } 1195 1196 spin_lock_bh(&t->stid_lock); 1197 if (family == PF_INET) 1198 __clear_bit(stid, t->stid_bmap); 1199 else 1200 bitmap_release_region(t->stid_bmap, stid, 1); 1201 t->stid_tab[stid].data = NULL; 1202 if (stid < t->nstids) { 1203 if (family == PF_INET6) { 1204 t->stids_in_use -= 2; 1205 t->v6_stids_in_use -= 2; 1206 } else { 1207 t->stids_in_use--; 1208 } 1209 } else { 1210 t->sftids_in_use--; 1211 } 1212 1213 spin_unlock_bh(&t->stid_lock); 1214 } 1215 EXPORT_SYMBOL(cxgb4_free_stid); 1216 1217 /* 1218 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1219 */ 1220 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1221 unsigned int tid) 1222 { 1223 struct cpl_tid_release *req; 1224 1225 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1226 req = __skb_put(skb, sizeof(*req)); 1227 INIT_TP_WR(req, tid); 1228 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1229 } 1230 1231 /* 1232 * Queue a TID release request and if necessary schedule a work queue to 1233 * process it. 1234 */ 1235 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1236 unsigned int tid) 1237 { 1238 void **p = &t->tid_tab[tid]; 1239 struct adapter *adap = container_of(t, struct adapter, tids); 1240 1241 spin_lock_bh(&adap->tid_release_lock); 1242 *p = adap->tid_release_head; 1243 /* Low 2 bits encode the Tx channel number */ 1244 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1245 if (!adap->tid_release_task_busy) { 1246 adap->tid_release_task_busy = true; 1247 queue_work(adap->workq, &adap->tid_release_task); 1248 } 1249 spin_unlock_bh(&adap->tid_release_lock); 1250 } 1251 1252 /* 1253 * Process the list of pending TID release requests. 1254 */ 1255 static void process_tid_release_list(struct work_struct *work) 1256 { 1257 struct sk_buff *skb; 1258 struct adapter *adap; 1259 1260 adap = container_of(work, struct adapter, tid_release_task); 1261 1262 spin_lock_bh(&adap->tid_release_lock); 1263 while (adap->tid_release_head) { 1264 void **p = adap->tid_release_head; 1265 unsigned int chan = (uintptr_t)p & 3; 1266 p = (void *)p - chan; 1267 1268 adap->tid_release_head = *p; 1269 *p = NULL; 1270 spin_unlock_bh(&adap->tid_release_lock); 1271 1272 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1273 GFP_KERNEL))) 1274 schedule_timeout_uninterruptible(1); 1275 1276 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1277 t4_ofld_send(adap, skb); 1278 spin_lock_bh(&adap->tid_release_lock); 1279 } 1280 adap->tid_release_task_busy = false; 1281 spin_unlock_bh(&adap->tid_release_lock); 1282 } 1283 1284 /* 1285 * Release a TID and inform HW. If we are unable to allocate the release 1286 * message we defer to a work queue. 1287 */ 1288 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1289 unsigned short family) 1290 { 1291 struct sk_buff *skb; 1292 struct adapter *adap = container_of(t, struct adapter, tids); 1293 1294 WARN_ON(tid >= t->ntids); 1295 1296 if (t->tid_tab[tid]) { 1297 t->tid_tab[tid] = NULL; 1298 atomic_dec(&t->conns_in_use); 1299 if (t->hash_base && (tid >= t->hash_base)) { 1300 if (family == AF_INET6) 1301 atomic_sub(2, &t->hash_tids_in_use); 1302 else 1303 atomic_dec(&t->hash_tids_in_use); 1304 } else { 1305 if (family == AF_INET6) 1306 atomic_sub(2, &t->tids_in_use); 1307 else 1308 atomic_dec(&t->tids_in_use); 1309 } 1310 } 1311 1312 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1313 if (likely(skb)) { 1314 mk_tid_release(skb, chan, tid); 1315 t4_ofld_send(adap, skb); 1316 } else 1317 cxgb4_queue_tid_release(t, chan, tid); 1318 } 1319 EXPORT_SYMBOL(cxgb4_remove_tid); 1320 1321 /* 1322 * Allocate and initialize the TID tables. Returns 0 on success. 1323 */ 1324 static int tid_init(struct tid_info *t) 1325 { 1326 struct adapter *adap = container_of(t, struct adapter, tids); 1327 unsigned int max_ftids = t->nftids + t->nsftids; 1328 unsigned int natids = t->natids; 1329 unsigned int stid_bmap_size; 1330 unsigned int ftid_bmap_size; 1331 size_t size; 1332 1333 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1334 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1335 size = t->ntids * sizeof(*t->tid_tab) + 1336 natids * sizeof(*t->atid_tab) + 1337 t->nstids * sizeof(*t->stid_tab) + 1338 t->nsftids * sizeof(*t->stid_tab) + 1339 stid_bmap_size * sizeof(long) + 1340 max_ftids * sizeof(*t->ftid_tab) + 1341 ftid_bmap_size * sizeof(long); 1342 1343 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1344 if (!t->tid_tab) 1345 return -ENOMEM; 1346 1347 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1348 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1349 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1350 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1351 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1352 spin_lock_init(&t->stid_lock); 1353 spin_lock_init(&t->atid_lock); 1354 spin_lock_init(&t->ftid_lock); 1355 1356 t->stids_in_use = 0; 1357 t->v6_stids_in_use = 0; 1358 t->sftids_in_use = 0; 1359 t->afree = NULL; 1360 t->atids_in_use = 0; 1361 atomic_set(&t->tids_in_use, 0); 1362 atomic_set(&t->conns_in_use, 0); 1363 atomic_set(&t->hash_tids_in_use, 0); 1364 1365 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1366 if (natids) { 1367 while (--natids) 1368 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1369 t->afree = t->atid_tab; 1370 } 1371 1372 if (is_offload(adap)) { 1373 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1374 /* Reserve stid 0 for T4/T5 adapters */ 1375 if (!t->stid_base && 1376 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1377 __set_bit(0, t->stid_bmap); 1378 } 1379 1380 bitmap_zero(t->ftid_bmap, t->nftids); 1381 return 0; 1382 } 1383 1384 /** 1385 * cxgb4_create_server - create an IP server 1386 * @dev: the device 1387 * @stid: the server TID 1388 * @sip: local IP address to bind server to 1389 * @sport: the server's TCP port 1390 * @queue: queue to direct messages from this server to 1391 * 1392 * Create an IP server for the given port and address. 1393 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1394 */ 1395 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1396 __be32 sip, __be16 sport, __be16 vlan, 1397 unsigned int queue) 1398 { 1399 unsigned int chan; 1400 struct sk_buff *skb; 1401 struct adapter *adap; 1402 struct cpl_pass_open_req *req; 1403 int ret; 1404 1405 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1406 if (!skb) 1407 return -ENOMEM; 1408 1409 adap = netdev2adap(dev); 1410 req = __skb_put(skb, sizeof(*req)); 1411 INIT_TP_WR(req, 0); 1412 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1413 req->local_port = sport; 1414 req->peer_port = htons(0); 1415 req->local_ip = sip; 1416 req->peer_ip = htonl(0); 1417 chan = rxq_to_chan(&adap->sge, queue); 1418 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1419 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1420 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1421 ret = t4_mgmt_tx(adap, skb); 1422 return net_xmit_eval(ret); 1423 } 1424 EXPORT_SYMBOL(cxgb4_create_server); 1425 1426 /* cxgb4_create_server6 - create an IPv6 server 1427 * @dev: the device 1428 * @stid: the server TID 1429 * @sip: local IPv6 address to bind server to 1430 * @sport: the server's TCP port 1431 * @queue: queue to direct messages from this server to 1432 * 1433 * Create an IPv6 server for the given port and address. 1434 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1435 */ 1436 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1437 const struct in6_addr *sip, __be16 sport, 1438 unsigned int queue) 1439 { 1440 unsigned int chan; 1441 struct sk_buff *skb; 1442 struct adapter *adap; 1443 struct cpl_pass_open_req6 *req; 1444 int ret; 1445 1446 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1447 if (!skb) 1448 return -ENOMEM; 1449 1450 adap = netdev2adap(dev); 1451 req = __skb_put(skb, sizeof(*req)); 1452 INIT_TP_WR(req, 0); 1453 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1454 req->local_port = sport; 1455 req->peer_port = htons(0); 1456 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1457 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1458 req->peer_ip_hi = cpu_to_be64(0); 1459 req->peer_ip_lo = cpu_to_be64(0); 1460 chan = rxq_to_chan(&adap->sge, queue); 1461 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1462 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1463 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1464 ret = t4_mgmt_tx(adap, skb); 1465 return net_xmit_eval(ret); 1466 } 1467 EXPORT_SYMBOL(cxgb4_create_server6); 1468 1469 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1470 unsigned int queue, bool ipv6) 1471 { 1472 struct sk_buff *skb; 1473 struct adapter *adap; 1474 struct cpl_close_listsvr_req *req; 1475 int ret; 1476 1477 adap = netdev2adap(dev); 1478 1479 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1480 if (!skb) 1481 return -ENOMEM; 1482 1483 req = __skb_put(skb, sizeof(*req)); 1484 INIT_TP_WR(req, 0); 1485 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1486 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1487 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1488 ret = t4_mgmt_tx(adap, skb); 1489 return net_xmit_eval(ret); 1490 } 1491 EXPORT_SYMBOL(cxgb4_remove_server); 1492 1493 /** 1494 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1495 * @mtus: the HW MTU table 1496 * @mtu: the target MTU 1497 * @idx: index of selected entry in the MTU table 1498 * 1499 * Returns the index and the value in the HW MTU table that is closest to 1500 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1501 * table, in which case that smallest available value is selected. 1502 */ 1503 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1504 unsigned int *idx) 1505 { 1506 unsigned int i = 0; 1507 1508 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1509 ++i; 1510 if (idx) 1511 *idx = i; 1512 return mtus[i]; 1513 } 1514 EXPORT_SYMBOL(cxgb4_best_mtu); 1515 1516 /** 1517 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1518 * @mtus: the HW MTU table 1519 * @header_size: Header Size 1520 * @data_size_max: maximum Data Segment Size 1521 * @data_size_align: desired Data Segment Size Alignment (2^N) 1522 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1523 * 1524 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1525 * MTU Table based solely on a Maximum MTU parameter, we break that 1526 * parameter up into a Header Size and Maximum Data Segment Size, and 1527 * provide a desired Data Segment Size Alignment. If we find an MTU in 1528 * the Hardware MTU Table which will result in a Data Segment Size with 1529 * the requested alignment _and_ that MTU isn't "too far" from the 1530 * closest MTU, then we'll return that rather than the closest MTU. 1531 */ 1532 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1533 unsigned short header_size, 1534 unsigned short data_size_max, 1535 unsigned short data_size_align, 1536 unsigned int *mtu_idxp) 1537 { 1538 unsigned short max_mtu = header_size + data_size_max; 1539 unsigned short data_size_align_mask = data_size_align - 1; 1540 int mtu_idx, aligned_mtu_idx; 1541 1542 /* Scan the MTU Table till we find an MTU which is larger than our 1543 * Maximum MTU or we reach the end of the table. Along the way, 1544 * record the last MTU found, if any, which will result in a Data 1545 * Segment Length matching the requested alignment. 1546 */ 1547 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1548 unsigned short data_size = mtus[mtu_idx] - header_size; 1549 1550 /* If this MTU minus the Header Size would result in a 1551 * Data Segment Size of the desired alignment, remember it. 1552 */ 1553 if ((data_size & data_size_align_mask) == 0) 1554 aligned_mtu_idx = mtu_idx; 1555 1556 /* If we're not at the end of the Hardware MTU Table and the 1557 * next element is larger than our Maximum MTU, drop out of 1558 * the loop. 1559 */ 1560 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1561 break; 1562 } 1563 1564 /* If we fell out of the loop because we ran to the end of the table, 1565 * then we just have to use the last [largest] entry. 1566 */ 1567 if (mtu_idx == NMTUS) 1568 mtu_idx--; 1569 1570 /* If we found an MTU which resulted in the requested Data Segment 1571 * Length alignment and that's "not far" from the largest MTU which is 1572 * less than or equal to the maximum MTU, then use that. 1573 */ 1574 if (aligned_mtu_idx >= 0 && 1575 mtu_idx - aligned_mtu_idx <= 1) 1576 mtu_idx = aligned_mtu_idx; 1577 1578 /* If the caller has passed in an MTU Index pointer, pass the 1579 * MTU Index back. Return the MTU value. 1580 */ 1581 if (mtu_idxp) 1582 *mtu_idxp = mtu_idx; 1583 return mtus[mtu_idx]; 1584 } 1585 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1586 1587 /** 1588 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1589 * @chip: chip type 1590 * @viid: VI id of the given port 1591 * 1592 * Return the SMT index for this VI. 1593 */ 1594 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1595 { 1596 /* In T4/T5, SMT contains 256 SMAC entries organized in 1597 * 128 rows of 2 entries each. 1598 * In T6, SMT contains 256 SMAC entries in 256 rows. 1599 * TODO: The below code needs to be updated when we add support 1600 * for 256 VFs. 1601 */ 1602 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1603 return ((viid & 0x7f) << 1); 1604 else 1605 return (viid & 0x7f); 1606 } 1607 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1608 1609 /** 1610 * cxgb4_port_chan - get the HW channel of a port 1611 * @dev: the net device for the port 1612 * 1613 * Return the HW Tx channel of the given port. 1614 */ 1615 unsigned int cxgb4_port_chan(const struct net_device *dev) 1616 { 1617 return netdev2pinfo(dev)->tx_chan; 1618 } 1619 EXPORT_SYMBOL(cxgb4_port_chan); 1620 1621 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1622 { 1623 struct adapter *adap = netdev2adap(dev); 1624 u32 v1, v2, lp_count, hp_count; 1625 1626 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1627 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1628 if (is_t4(adap->params.chip)) { 1629 lp_count = LP_COUNT_G(v1); 1630 hp_count = HP_COUNT_G(v1); 1631 } else { 1632 lp_count = LP_COUNT_T5_G(v1); 1633 hp_count = HP_COUNT_T5_G(v2); 1634 } 1635 return lpfifo ? lp_count : hp_count; 1636 } 1637 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1638 1639 /** 1640 * cxgb4_port_viid - get the VI id of a port 1641 * @dev: the net device for the port 1642 * 1643 * Return the VI id of the given port. 1644 */ 1645 unsigned int cxgb4_port_viid(const struct net_device *dev) 1646 { 1647 return netdev2pinfo(dev)->viid; 1648 } 1649 EXPORT_SYMBOL(cxgb4_port_viid); 1650 1651 /** 1652 * cxgb4_port_idx - get the index of a port 1653 * @dev: the net device for the port 1654 * 1655 * Return the index of the given port. 1656 */ 1657 unsigned int cxgb4_port_idx(const struct net_device *dev) 1658 { 1659 return netdev2pinfo(dev)->port_id; 1660 } 1661 EXPORT_SYMBOL(cxgb4_port_idx); 1662 1663 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1664 struct tp_tcp_stats *v6) 1665 { 1666 struct adapter *adap = pci_get_drvdata(pdev); 1667 1668 spin_lock(&adap->stats_lock); 1669 t4_tp_get_tcp_stats(adap, v4, v6, false); 1670 spin_unlock(&adap->stats_lock); 1671 } 1672 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1673 1674 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1675 const unsigned int *pgsz_order) 1676 { 1677 struct adapter *adap = netdev2adap(dev); 1678 1679 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1680 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1681 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1682 HPZ3_V(pgsz_order[3])); 1683 } 1684 EXPORT_SYMBOL(cxgb4_iscsi_init); 1685 1686 int cxgb4_flush_eq_cache(struct net_device *dev) 1687 { 1688 struct adapter *adap = netdev2adap(dev); 1689 1690 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 1691 } 1692 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1693 1694 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1695 { 1696 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1697 __be64 indices; 1698 int ret; 1699 1700 spin_lock(&adap->win0_lock); 1701 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1702 sizeof(indices), (__be32 *)&indices, 1703 T4_MEMORY_READ); 1704 spin_unlock(&adap->win0_lock); 1705 if (!ret) { 1706 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1707 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1708 } 1709 return ret; 1710 } 1711 1712 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1713 u16 size) 1714 { 1715 struct adapter *adap = netdev2adap(dev); 1716 u16 hw_pidx, hw_cidx; 1717 int ret; 1718 1719 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1720 if (ret) 1721 goto out; 1722 1723 if (pidx != hw_pidx) { 1724 u16 delta; 1725 u32 val; 1726 1727 if (pidx >= hw_pidx) 1728 delta = pidx - hw_pidx; 1729 else 1730 delta = size - hw_pidx + pidx; 1731 1732 if (is_t4(adap->params.chip)) 1733 val = PIDX_V(delta); 1734 else 1735 val = PIDX_T5_V(delta); 1736 wmb(); 1737 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1738 QID_V(qid) | val); 1739 } 1740 out: 1741 return ret; 1742 } 1743 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1744 1745 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1746 { 1747 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1748 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1749 u32 offset, memtype, memaddr; 1750 struct adapter *adap; 1751 u32 hma_size = 0; 1752 int ret; 1753 1754 adap = netdev2adap(dev); 1755 1756 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1757 1758 /* Figure out where the offset lands in the Memory Type/Address scheme. 1759 * This code assumes that the memory is laid out starting at offset 0 1760 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1761 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1762 * MC0, and some have both MC0 and MC1. 1763 */ 1764 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1765 edc0_size = EDRAM0_SIZE_G(size) << 20; 1766 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1767 edc1_size = EDRAM1_SIZE_G(size) << 20; 1768 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1769 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1770 1771 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 1772 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1773 hma_size = EXT_MEM1_SIZE_G(size) << 20; 1774 } 1775 edc0_end = edc0_size; 1776 edc1_end = edc0_end + edc1_size; 1777 mc0_end = edc1_end + mc0_size; 1778 1779 if (offset < edc0_end) { 1780 memtype = MEM_EDC0; 1781 memaddr = offset; 1782 } else if (offset < edc1_end) { 1783 memtype = MEM_EDC1; 1784 memaddr = offset - edc0_end; 1785 } else { 1786 if (hma_size && (offset < (edc1_end + hma_size))) { 1787 memtype = MEM_HMA; 1788 memaddr = offset - edc1_end; 1789 } else if (offset < mc0_end) { 1790 memtype = MEM_MC0; 1791 memaddr = offset - edc1_end; 1792 } else if (is_t5(adap->params.chip)) { 1793 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1794 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1795 mc1_end = mc0_end + mc1_size; 1796 if (offset < mc1_end) { 1797 memtype = MEM_MC1; 1798 memaddr = offset - mc0_end; 1799 } else { 1800 /* offset beyond the end of any memory */ 1801 goto err; 1802 } 1803 } else { 1804 /* T4/T6 only has a single memory channel */ 1805 goto err; 1806 } 1807 } 1808 1809 spin_lock(&adap->win0_lock); 1810 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1811 spin_unlock(&adap->win0_lock); 1812 return ret; 1813 1814 err: 1815 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1816 stag, offset); 1817 return -EINVAL; 1818 } 1819 EXPORT_SYMBOL(cxgb4_read_tpte); 1820 1821 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1822 { 1823 u32 hi, lo; 1824 struct adapter *adap; 1825 1826 adap = netdev2adap(dev); 1827 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1828 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1829 1830 return ((u64)hi << 32) | (u64)lo; 1831 } 1832 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1833 1834 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1835 unsigned int qid, 1836 enum cxgb4_bar2_qtype qtype, 1837 int user, 1838 u64 *pbar2_qoffset, 1839 unsigned int *pbar2_qid) 1840 { 1841 return t4_bar2_sge_qregs(netdev2adap(dev), 1842 qid, 1843 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1844 ? T4_BAR2_QTYPE_EGRESS 1845 : T4_BAR2_QTYPE_INGRESS), 1846 user, 1847 pbar2_qoffset, 1848 pbar2_qid); 1849 } 1850 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1851 1852 static struct pci_driver cxgb4_driver; 1853 1854 static void check_neigh_update(struct neighbour *neigh) 1855 { 1856 const struct device *parent; 1857 const struct net_device *netdev = neigh->dev; 1858 1859 if (is_vlan_dev(netdev)) 1860 netdev = vlan_dev_real_dev(netdev); 1861 parent = netdev->dev.parent; 1862 if (parent && parent->driver == &cxgb4_driver.driver) 1863 t4_l2t_update(dev_get_drvdata(parent), neigh); 1864 } 1865 1866 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1867 void *data) 1868 { 1869 switch (event) { 1870 case NETEVENT_NEIGH_UPDATE: 1871 check_neigh_update(data); 1872 break; 1873 case NETEVENT_REDIRECT: 1874 default: 1875 break; 1876 } 1877 return 0; 1878 } 1879 1880 static bool netevent_registered; 1881 static struct notifier_block cxgb4_netevent_nb = { 1882 .notifier_call = netevent_cb 1883 }; 1884 1885 static void drain_db_fifo(struct adapter *adap, int usecs) 1886 { 1887 u32 v1, v2, lp_count, hp_count; 1888 1889 do { 1890 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1891 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1892 if (is_t4(adap->params.chip)) { 1893 lp_count = LP_COUNT_G(v1); 1894 hp_count = HP_COUNT_G(v1); 1895 } else { 1896 lp_count = LP_COUNT_T5_G(v1); 1897 hp_count = HP_COUNT_T5_G(v2); 1898 } 1899 1900 if (lp_count == 0 && hp_count == 0) 1901 break; 1902 set_current_state(TASK_UNINTERRUPTIBLE); 1903 schedule_timeout(usecs_to_jiffies(usecs)); 1904 } while (1); 1905 } 1906 1907 static void disable_txq_db(struct sge_txq *q) 1908 { 1909 unsigned long flags; 1910 1911 spin_lock_irqsave(&q->db_lock, flags); 1912 q->db_disabled = 1; 1913 spin_unlock_irqrestore(&q->db_lock, flags); 1914 } 1915 1916 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1917 { 1918 spin_lock_irq(&q->db_lock); 1919 if (q->db_pidx_inc) { 1920 /* Make sure that all writes to the TX descriptors 1921 * are committed before we tell HW about them. 1922 */ 1923 wmb(); 1924 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1925 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1926 q->db_pidx_inc = 0; 1927 } 1928 q->db_disabled = 0; 1929 spin_unlock_irq(&q->db_lock); 1930 } 1931 1932 static void disable_dbs(struct adapter *adap) 1933 { 1934 int i; 1935 1936 for_each_ethrxq(&adap->sge, i) 1937 disable_txq_db(&adap->sge.ethtxq[i].q); 1938 if (is_offload(adap)) { 1939 struct sge_uld_txq_info *txq_info = 1940 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1941 1942 if (txq_info) { 1943 for_each_ofldtxq(&adap->sge, i) { 1944 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1945 1946 disable_txq_db(&txq->q); 1947 } 1948 } 1949 } 1950 for_each_port(adap, i) 1951 disable_txq_db(&adap->sge.ctrlq[i].q); 1952 } 1953 1954 static void enable_dbs(struct adapter *adap) 1955 { 1956 int i; 1957 1958 for_each_ethrxq(&adap->sge, i) 1959 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1960 if (is_offload(adap)) { 1961 struct sge_uld_txq_info *txq_info = 1962 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1963 1964 if (txq_info) { 1965 for_each_ofldtxq(&adap->sge, i) { 1966 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1967 1968 enable_txq_db(adap, &txq->q); 1969 } 1970 } 1971 } 1972 for_each_port(adap, i) 1973 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 1974 } 1975 1976 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 1977 { 1978 enum cxgb4_uld type = CXGB4_ULD_RDMA; 1979 1980 if (adap->uld && adap->uld[type].handle) 1981 adap->uld[type].control(adap->uld[type].handle, cmd); 1982 } 1983 1984 static void process_db_full(struct work_struct *work) 1985 { 1986 struct adapter *adap; 1987 1988 adap = container_of(work, struct adapter, db_full_task); 1989 1990 drain_db_fifo(adap, dbfifo_drain_delay); 1991 enable_dbs(adap); 1992 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 1993 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1994 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1995 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 1996 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 1997 else 1998 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 1999 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2000 } 2001 2002 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2003 { 2004 u16 hw_pidx, hw_cidx; 2005 int ret; 2006 2007 spin_lock_irq(&q->db_lock); 2008 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2009 if (ret) 2010 goto out; 2011 if (q->db_pidx != hw_pidx) { 2012 u16 delta; 2013 u32 val; 2014 2015 if (q->db_pidx >= hw_pidx) 2016 delta = q->db_pidx - hw_pidx; 2017 else 2018 delta = q->size - hw_pidx + q->db_pidx; 2019 2020 if (is_t4(adap->params.chip)) 2021 val = PIDX_V(delta); 2022 else 2023 val = PIDX_T5_V(delta); 2024 wmb(); 2025 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2026 QID_V(q->cntxt_id) | val); 2027 } 2028 out: 2029 q->db_disabled = 0; 2030 q->db_pidx_inc = 0; 2031 spin_unlock_irq(&q->db_lock); 2032 if (ret) 2033 CH_WARN(adap, "DB drop recovery failed.\n"); 2034 } 2035 2036 static void recover_all_queues(struct adapter *adap) 2037 { 2038 int i; 2039 2040 for_each_ethrxq(&adap->sge, i) 2041 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2042 if (is_offload(adap)) { 2043 struct sge_uld_txq_info *txq_info = 2044 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2045 if (txq_info) { 2046 for_each_ofldtxq(&adap->sge, i) { 2047 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2048 2049 sync_txq_pidx(adap, &txq->q); 2050 } 2051 } 2052 } 2053 for_each_port(adap, i) 2054 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2055 } 2056 2057 static void process_db_drop(struct work_struct *work) 2058 { 2059 struct adapter *adap; 2060 2061 adap = container_of(work, struct adapter, db_drop_task); 2062 2063 if (is_t4(adap->params.chip)) { 2064 drain_db_fifo(adap, dbfifo_drain_delay); 2065 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2066 drain_db_fifo(adap, dbfifo_drain_delay); 2067 recover_all_queues(adap); 2068 drain_db_fifo(adap, dbfifo_drain_delay); 2069 enable_dbs(adap); 2070 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2071 } else if (is_t5(adap->params.chip)) { 2072 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2073 u16 qid = (dropped_db >> 15) & 0x1ffff; 2074 u16 pidx_inc = dropped_db & 0x1fff; 2075 u64 bar2_qoffset; 2076 unsigned int bar2_qid; 2077 int ret; 2078 2079 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2080 0, &bar2_qoffset, &bar2_qid); 2081 if (ret) 2082 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2083 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2084 else 2085 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2086 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2087 2088 /* Re-enable BAR2 WC */ 2089 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2090 } 2091 2092 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2093 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2094 } 2095 2096 void t4_db_full(struct adapter *adap) 2097 { 2098 if (is_t4(adap->params.chip)) { 2099 disable_dbs(adap); 2100 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2101 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2102 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2103 queue_work(adap->workq, &adap->db_full_task); 2104 } 2105 } 2106 2107 void t4_db_dropped(struct adapter *adap) 2108 { 2109 if (is_t4(adap->params.chip)) { 2110 disable_dbs(adap); 2111 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2112 } 2113 queue_work(adap->workq, &adap->db_drop_task); 2114 } 2115 2116 void t4_register_netevent_notifier(void) 2117 { 2118 if (!netevent_registered) { 2119 register_netevent_notifier(&cxgb4_netevent_nb); 2120 netevent_registered = true; 2121 } 2122 } 2123 2124 static void detach_ulds(struct adapter *adap) 2125 { 2126 unsigned int i; 2127 2128 mutex_lock(&uld_mutex); 2129 list_del(&adap->list_node); 2130 2131 for (i = 0; i < CXGB4_ULD_MAX; i++) 2132 if (adap->uld && adap->uld[i].handle) 2133 adap->uld[i].state_change(adap->uld[i].handle, 2134 CXGB4_STATE_DETACH); 2135 2136 if (netevent_registered && list_empty(&adapter_list)) { 2137 unregister_netevent_notifier(&cxgb4_netevent_nb); 2138 netevent_registered = false; 2139 } 2140 mutex_unlock(&uld_mutex); 2141 } 2142 2143 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2144 { 2145 unsigned int i; 2146 2147 mutex_lock(&uld_mutex); 2148 for (i = 0; i < CXGB4_ULD_MAX; i++) 2149 if (adap->uld && adap->uld[i].handle) 2150 adap->uld[i].state_change(adap->uld[i].handle, 2151 new_state); 2152 mutex_unlock(&uld_mutex); 2153 } 2154 2155 #if IS_ENABLED(CONFIG_IPV6) 2156 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2157 unsigned long event, void *data) 2158 { 2159 struct inet6_ifaddr *ifa = data; 2160 struct net_device *event_dev = ifa->idev->dev; 2161 const struct device *parent = NULL; 2162 #if IS_ENABLED(CONFIG_BONDING) 2163 struct adapter *adap; 2164 #endif 2165 if (is_vlan_dev(event_dev)) 2166 event_dev = vlan_dev_real_dev(event_dev); 2167 #if IS_ENABLED(CONFIG_BONDING) 2168 if (event_dev->flags & IFF_MASTER) { 2169 list_for_each_entry(adap, &adapter_list, list_node) { 2170 switch (event) { 2171 case NETDEV_UP: 2172 cxgb4_clip_get(adap->port[0], 2173 (const u32 *)ifa, 1); 2174 break; 2175 case NETDEV_DOWN: 2176 cxgb4_clip_release(adap->port[0], 2177 (const u32 *)ifa, 1); 2178 break; 2179 default: 2180 break; 2181 } 2182 } 2183 return NOTIFY_OK; 2184 } 2185 #endif 2186 2187 if (event_dev) 2188 parent = event_dev->dev.parent; 2189 2190 if (parent && parent->driver == &cxgb4_driver.driver) { 2191 switch (event) { 2192 case NETDEV_UP: 2193 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2194 break; 2195 case NETDEV_DOWN: 2196 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2197 break; 2198 default: 2199 break; 2200 } 2201 } 2202 return NOTIFY_OK; 2203 } 2204 2205 static bool inet6addr_registered; 2206 static struct notifier_block cxgb4_inet6addr_notifier = { 2207 .notifier_call = cxgb4_inet6addr_handler 2208 }; 2209 2210 static void update_clip(const struct adapter *adap) 2211 { 2212 int i; 2213 struct net_device *dev; 2214 int ret; 2215 2216 rcu_read_lock(); 2217 2218 for (i = 0; i < MAX_NPORTS; i++) { 2219 dev = adap->port[i]; 2220 ret = 0; 2221 2222 if (dev) 2223 ret = cxgb4_update_root_dev_clip(dev); 2224 2225 if (ret < 0) 2226 break; 2227 } 2228 rcu_read_unlock(); 2229 } 2230 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2231 2232 /** 2233 * cxgb_up - enable the adapter 2234 * @adap: adapter being enabled 2235 * 2236 * Called when the first port is enabled, this function performs the 2237 * actions necessary to make an adapter operational, such as completing 2238 * the initialization of HW modules, and enabling interrupts. 2239 * 2240 * Must be called with the rtnl lock held. 2241 */ 2242 static int cxgb_up(struct adapter *adap) 2243 { 2244 int err; 2245 2246 mutex_lock(&uld_mutex); 2247 err = setup_sge_queues(adap); 2248 if (err) 2249 goto rel_lock; 2250 err = setup_rss(adap); 2251 if (err) 2252 goto freeq; 2253 2254 if (adap->flags & USING_MSIX) { 2255 name_msix_vecs(adap); 2256 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2257 adap->msix_info[0].desc, adap); 2258 if (err) 2259 goto irq_err; 2260 err = request_msix_queue_irqs(adap); 2261 if (err) { 2262 free_irq(adap->msix_info[0].vec, adap); 2263 goto irq_err; 2264 } 2265 } else { 2266 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2267 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2268 adap->port[0]->name, adap); 2269 if (err) 2270 goto irq_err; 2271 } 2272 2273 enable_rx(adap); 2274 t4_sge_start(adap); 2275 t4_intr_enable(adap); 2276 adap->flags |= FULL_INIT_DONE; 2277 mutex_unlock(&uld_mutex); 2278 2279 notify_ulds(adap, CXGB4_STATE_UP); 2280 #if IS_ENABLED(CONFIG_IPV6) 2281 update_clip(adap); 2282 #endif 2283 /* Initialize hash mac addr list*/ 2284 INIT_LIST_HEAD(&adap->mac_hlist); 2285 return err; 2286 2287 irq_err: 2288 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2289 freeq: 2290 t4_free_sge_resources(adap); 2291 rel_lock: 2292 mutex_unlock(&uld_mutex); 2293 return err; 2294 } 2295 2296 static void cxgb_down(struct adapter *adapter) 2297 { 2298 cancel_work_sync(&adapter->tid_release_task); 2299 cancel_work_sync(&adapter->db_full_task); 2300 cancel_work_sync(&adapter->db_drop_task); 2301 adapter->tid_release_task_busy = false; 2302 adapter->tid_release_head = NULL; 2303 2304 t4_sge_stop(adapter); 2305 t4_free_sge_resources(adapter); 2306 adapter->flags &= ~FULL_INIT_DONE; 2307 } 2308 2309 /* 2310 * net_device operations 2311 */ 2312 static int cxgb_open(struct net_device *dev) 2313 { 2314 int err; 2315 struct port_info *pi = netdev_priv(dev); 2316 struct adapter *adapter = pi->adapter; 2317 2318 netif_carrier_off(dev); 2319 2320 if (!(adapter->flags & FULL_INIT_DONE)) { 2321 err = cxgb_up(adapter); 2322 if (err < 0) 2323 return err; 2324 } 2325 2326 /* It's possible that the basic port information could have 2327 * changed since we first read it. 2328 */ 2329 err = t4_update_port_info(pi); 2330 if (err < 0) 2331 return err; 2332 2333 err = link_start(dev); 2334 if (!err) 2335 netif_tx_start_all_queues(dev); 2336 return err; 2337 } 2338 2339 static int cxgb_close(struct net_device *dev) 2340 { 2341 struct port_info *pi = netdev_priv(dev); 2342 struct adapter *adapter = pi->adapter; 2343 int ret; 2344 2345 netif_tx_stop_all_queues(dev); 2346 netif_carrier_off(dev); 2347 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2348 false, false, false); 2349 #ifdef CONFIG_CHELSIO_T4_DCB 2350 cxgb4_dcb_reset(dev); 2351 dcb_tx_queue_prio_enable(dev, false); 2352 #endif 2353 return ret; 2354 } 2355 2356 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2357 __be32 sip, __be16 sport, __be16 vlan, 2358 unsigned int queue, unsigned char port, unsigned char mask) 2359 { 2360 int ret; 2361 struct filter_entry *f; 2362 struct adapter *adap; 2363 int i; 2364 u8 *val; 2365 2366 adap = netdev2adap(dev); 2367 2368 /* Adjust stid to correct filter index */ 2369 stid -= adap->tids.sftid_base; 2370 stid += adap->tids.nftids; 2371 2372 /* Check to make sure the filter requested is writable ... 2373 */ 2374 f = &adap->tids.ftid_tab[stid]; 2375 ret = writable_filter(f); 2376 if (ret) 2377 return ret; 2378 2379 /* Clear out any old resources being used by the filter before 2380 * we start constructing the new filter. 2381 */ 2382 if (f->valid) 2383 clear_filter(adap, f); 2384 2385 /* Clear out filter specifications */ 2386 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2387 f->fs.val.lport = cpu_to_be16(sport); 2388 f->fs.mask.lport = ~0; 2389 val = (u8 *)&sip; 2390 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2391 for (i = 0; i < 4; i++) { 2392 f->fs.val.lip[i] = val[i]; 2393 f->fs.mask.lip[i] = ~0; 2394 } 2395 if (adap->params.tp.vlan_pri_map & PORT_F) { 2396 f->fs.val.iport = port; 2397 f->fs.mask.iport = mask; 2398 } 2399 } 2400 2401 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2402 f->fs.val.proto = IPPROTO_TCP; 2403 f->fs.mask.proto = ~0; 2404 } 2405 2406 f->fs.dirsteer = 1; 2407 f->fs.iq = queue; 2408 /* Mark filter as locked */ 2409 f->locked = 1; 2410 f->fs.rpttid = 1; 2411 2412 /* Save the actual tid. We need this to get the corresponding 2413 * filter entry structure in filter_rpl. 2414 */ 2415 f->tid = stid + adap->tids.ftid_base; 2416 ret = set_filter_wr(adap, stid); 2417 if (ret) { 2418 clear_filter(adap, f); 2419 return ret; 2420 } 2421 2422 return 0; 2423 } 2424 EXPORT_SYMBOL(cxgb4_create_server_filter); 2425 2426 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2427 unsigned int queue, bool ipv6) 2428 { 2429 struct filter_entry *f; 2430 struct adapter *adap; 2431 2432 adap = netdev2adap(dev); 2433 2434 /* Adjust stid to correct filter index */ 2435 stid -= adap->tids.sftid_base; 2436 stid += adap->tids.nftids; 2437 2438 f = &adap->tids.ftid_tab[stid]; 2439 /* Unlock the filter */ 2440 f->locked = 0; 2441 2442 return delete_filter(adap, stid); 2443 } 2444 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2445 2446 static void cxgb_get_stats(struct net_device *dev, 2447 struct rtnl_link_stats64 *ns) 2448 { 2449 struct port_stats stats; 2450 struct port_info *p = netdev_priv(dev); 2451 struct adapter *adapter = p->adapter; 2452 2453 /* Block retrieving statistics during EEH error 2454 * recovery. Otherwise, the recovery might fail 2455 * and the PCI device will be removed permanently 2456 */ 2457 spin_lock(&adapter->stats_lock); 2458 if (!netif_device_present(dev)) { 2459 spin_unlock(&adapter->stats_lock); 2460 return; 2461 } 2462 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2463 &p->stats_base); 2464 spin_unlock(&adapter->stats_lock); 2465 2466 ns->tx_bytes = stats.tx_octets; 2467 ns->tx_packets = stats.tx_frames; 2468 ns->rx_bytes = stats.rx_octets; 2469 ns->rx_packets = stats.rx_frames; 2470 ns->multicast = stats.rx_mcast_frames; 2471 2472 /* detailed rx_errors */ 2473 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2474 stats.rx_runt; 2475 ns->rx_over_errors = 0; 2476 ns->rx_crc_errors = stats.rx_fcs_err; 2477 ns->rx_frame_errors = stats.rx_symbol_err; 2478 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2479 stats.rx_ovflow2 + stats.rx_ovflow3 + 2480 stats.rx_trunc0 + stats.rx_trunc1 + 2481 stats.rx_trunc2 + stats.rx_trunc3; 2482 ns->rx_missed_errors = 0; 2483 2484 /* detailed tx_errors */ 2485 ns->tx_aborted_errors = 0; 2486 ns->tx_carrier_errors = 0; 2487 ns->tx_fifo_errors = 0; 2488 ns->tx_heartbeat_errors = 0; 2489 ns->tx_window_errors = 0; 2490 2491 ns->tx_errors = stats.tx_error_frames; 2492 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2493 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2494 } 2495 2496 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2497 { 2498 unsigned int mbox; 2499 int ret = 0, prtad, devad; 2500 struct port_info *pi = netdev_priv(dev); 2501 struct adapter *adapter = pi->adapter; 2502 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2503 2504 switch (cmd) { 2505 case SIOCGMIIPHY: 2506 if (pi->mdio_addr < 0) 2507 return -EOPNOTSUPP; 2508 data->phy_id = pi->mdio_addr; 2509 break; 2510 case SIOCGMIIREG: 2511 case SIOCSMIIREG: 2512 if (mdio_phy_id_is_c45(data->phy_id)) { 2513 prtad = mdio_phy_id_prtad(data->phy_id); 2514 devad = mdio_phy_id_devad(data->phy_id); 2515 } else if (data->phy_id < 32) { 2516 prtad = data->phy_id; 2517 devad = 0; 2518 data->reg_num &= 0x1f; 2519 } else 2520 return -EINVAL; 2521 2522 mbox = pi->adapter->pf; 2523 if (cmd == SIOCGMIIREG) 2524 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2525 data->reg_num, &data->val_out); 2526 else 2527 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2528 data->reg_num, data->val_in); 2529 break; 2530 case SIOCGHWTSTAMP: 2531 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2532 sizeof(pi->tstamp_config)) ? 2533 -EFAULT : 0; 2534 case SIOCSHWTSTAMP: 2535 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2536 sizeof(pi->tstamp_config))) 2537 return -EFAULT; 2538 2539 if (!is_t4(adapter->params.chip)) { 2540 switch (pi->tstamp_config.tx_type) { 2541 case HWTSTAMP_TX_OFF: 2542 case HWTSTAMP_TX_ON: 2543 break; 2544 default: 2545 return -ERANGE; 2546 } 2547 2548 switch (pi->tstamp_config.rx_filter) { 2549 case HWTSTAMP_FILTER_NONE: 2550 pi->rxtstamp = false; 2551 break; 2552 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2553 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2554 cxgb4_ptprx_timestamping(pi, pi->port_id, 2555 PTP_TS_L4); 2556 break; 2557 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2558 cxgb4_ptprx_timestamping(pi, pi->port_id, 2559 PTP_TS_L2_L4); 2560 break; 2561 case HWTSTAMP_FILTER_ALL: 2562 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2563 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2564 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2565 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2566 pi->rxtstamp = true; 2567 break; 2568 default: 2569 pi->tstamp_config.rx_filter = 2570 HWTSTAMP_FILTER_NONE; 2571 return -ERANGE; 2572 } 2573 2574 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2575 (pi->tstamp_config.rx_filter == 2576 HWTSTAMP_FILTER_NONE)) { 2577 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2578 pi->ptp_enable = false; 2579 } 2580 2581 if (pi->tstamp_config.rx_filter != 2582 HWTSTAMP_FILTER_NONE) { 2583 if (cxgb4_ptp_redirect_rx_packet(adapter, 2584 pi) >= 0) 2585 pi->ptp_enable = true; 2586 } 2587 } else { 2588 /* For T4 Adapters */ 2589 switch (pi->tstamp_config.rx_filter) { 2590 case HWTSTAMP_FILTER_NONE: 2591 pi->rxtstamp = false; 2592 break; 2593 case HWTSTAMP_FILTER_ALL: 2594 pi->rxtstamp = true; 2595 break; 2596 default: 2597 pi->tstamp_config.rx_filter = 2598 HWTSTAMP_FILTER_NONE; 2599 return -ERANGE; 2600 } 2601 } 2602 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2603 sizeof(pi->tstamp_config)) ? 2604 -EFAULT : 0; 2605 default: 2606 return -EOPNOTSUPP; 2607 } 2608 return ret; 2609 } 2610 2611 static void cxgb_set_rxmode(struct net_device *dev) 2612 { 2613 /* unfortunately we can't return errors to the stack */ 2614 set_rxmode(dev, -1, false); 2615 } 2616 2617 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2618 { 2619 int ret; 2620 struct port_info *pi = netdev_priv(dev); 2621 2622 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2623 -1, -1, -1, true); 2624 if (!ret) 2625 dev->mtu = new_mtu; 2626 return ret; 2627 } 2628 2629 #ifdef CONFIG_PCI_IOV 2630 static int cxgb4_mgmt_open(struct net_device *dev) 2631 { 2632 /* Turn carrier off since we don't have to transmit anything on this 2633 * interface. 2634 */ 2635 netif_carrier_off(dev); 2636 return 0; 2637 } 2638 2639 /* Fill MAC address that will be assigned by the FW */ 2640 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 2641 { 2642 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2643 unsigned int i, vf, nvfs; 2644 u16 a, b; 2645 int err; 2646 u8 *na; 2647 2648 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, 2649 PCI_CAP_ID_VPD); 2650 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2651 if (err) 2652 return; 2653 2654 na = adap->params.vpd.na; 2655 for (i = 0; i < ETH_ALEN; i++) 2656 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2657 hex2val(na[2 * i + 1])); 2658 2659 a = (hw_addr[0] << 8) | hw_addr[1]; 2660 b = (hw_addr[1] << 8) | hw_addr[2]; 2661 a ^= b; 2662 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2663 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2664 macaddr[0] = a >> 8; 2665 macaddr[1] = a & 0xff; 2666 2667 for (i = 2; i < 5; i++) 2668 macaddr[i] = hw_addr[i + 1]; 2669 2670 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 2671 vf < nvfs; vf++) { 2672 macaddr[5] = adap->pf * 16 + vf; 2673 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 2674 } 2675 } 2676 2677 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2678 { 2679 struct port_info *pi = netdev_priv(dev); 2680 struct adapter *adap = pi->adapter; 2681 int ret; 2682 2683 /* verify MAC addr is valid */ 2684 if (!is_valid_ether_addr(mac)) { 2685 dev_err(pi->adapter->pdev_dev, 2686 "Invalid Ethernet address %pM for VF %d\n", 2687 mac, vf); 2688 return -EINVAL; 2689 } 2690 2691 dev_info(pi->adapter->pdev_dev, 2692 "Setting MAC %pM on VF %d\n", mac, vf); 2693 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2694 if (!ret) 2695 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2696 return ret; 2697 } 2698 2699 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 2700 int vf, struct ifla_vf_info *ivi) 2701 { 2702 struct port_info *pi = netdev_priv(dev); 2703 struct adapter *adap = pi->adapter; 2704 struct vf_info *vfinfo; 2705 2706 if (vf >= adap->num_vfs) 2707 return -EINVAL; 2708 vfinfo = &adap->vfinfo[vf]; 2709 2710 ivi->vf = vf; 2711 ivi->max_tx_rate = vfinfo->tx_rate; 2712 ivi->min_tx_rate = 0; 2713 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 2714 ivi->vlan = vfinfo->vlan; 2715 return 0; 2716 } 2717 2718 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 2719 struct netdev_phys_item_id *ppid) 2720 { 2721 struct port_info *pi = netdev_priv(dev); 2722 unsigned int phy_port_id; 2723 2724 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2725 ppid->id_len = sizeof(phy_port_id); 2726 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2727 return 0; 2728 } 2729 2730 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 2731 int min_tx_rate, int max_tx_rate) 2732 { 2733 struct port_info *pi = netdev_priv(dev); 2734 struct adapter *adap = pi->adapter; 2735 unsigned int link_ok, speed, mtu; 2736 u32 fw_pfvf, fw_class; 2737 int class_id = vf; 2738 int ret; 2739 u16 pktsize; 2740 2741 if (vf >= adap->num_vfs) 2742 return -EINVAL; 2743 2744 if (min_tx_rate) { 2745 dev_err(adap->pdev_dev, 2746 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2747 min_tx_rate, vf); 2748 return -EINVAL; 2749 } 2750 2751 if (max_tx_rate == 0) { 2752 /* unbind VF to to any Traffic Class */ 2753 fw_pfvf = 2754 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2755 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2756 fw_class = 0xffffffff; 2757 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 2758 &fw_pfvf, &fw_class); 2759 if (ret) { 2760 dev_err(adap->pdev_dev, 2761 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n", 2762 ret, adap->pf, vf); 2763 return -EINVAL; 2764 } 2765 dev_info(adap->pdev_dev, 2766 "PF %d VF %d is unbound from TX Rate Limiting\n", 2767 adap->pf, vf); 2768 adap->vfinfo[vf].tx_rate = 0; 2769 return 0; 2770 } 2771 2772 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 2773 if (ret != FW_SUCCESS) { 2774 dev_err(adap->pdev_dev, 2775 "Failed to get link information for VF %d\n", vf); 2776 return -EINVAL; 2777 } 2778 2779 if (!link_ok) { 2780 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 2781 return -EINVAL; 2782 } 2783 2784 if (max_tx_rate > speed) { 2785 dev_err(adap->pdev_dev, 2786 "Max tx rate %d for VF %d can't be > link-speed %u", 2787 max_tx_rate, vf, speed); 2788 return -EINVAL; 2789 } 2790 2791 pktsize = mtu; 2792 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 2793 pktsize = pktsize - sizeof(struct ethhdr) - 4; 2794 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 2795 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 2796 /* configure Traffic Class for rate-limiting */ 2797 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 2798 SCHED_CLASS_LEVEL_CL_RL, 2799 SCHED_CLASS_MODE_CLASS, 2800 SCHED_CLASS_RATEUNIT_BITS, 2801 SCHED_CLASS_RATEMODE_ABS, 2802 pi->tx_chan, class_id, 0, 2803 max_tx_rate * 1000, 0, pktsize); 2804 if (ret) { 2805 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 2806 ret); 2807 return -EINVAL; 2808 } 2809 dev_info(adap->pdev_dev, 2810 "Class %d with MSS %u configured with rate %u\n", 2811 class_id, pktsize, max_tx_rate); 2812 2813 /* bind VF to configured Traffic Class */ 2814 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2815 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2816 fw_class = class_id; 2817 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 2818 &fw_class); 2819 if (ret) { 2820 dev_err(adap->pdev_dev, 2821 "Err %d in binding PF %d VF %d to Traffic Class %d\n", 2822 ret, adap->pf, vf, class_id); 2823 return -EINVAL; 2824 } 2825 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 2826 adap->pf, vf, class_id); 2827 adap->vfinfo[vf].tx_rate = max_tx_rate; 2828 return 0; 2829 } 2830 2831 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 2832 u16 vlan, u8 qos, __be16 vlan_proto) 2833 { 2834 struct port_info *pi = netdev_priv(dev); 2835 struct adapter *adap = pi->adapter; 2836 int ret; 2837 2838 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 2839 return -EINVAL; 2840 2841 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 2842 return -EPROTONOSUPPORT; 2843 2844 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 2845 if (!ret) { 2846 adap->vfinfo[vf].vlan = vlan; 2847 return 0; 2848 } 2849 2850 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 2851 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 2852 return ret; 2853 } 2854 #endif /* CONFIG_PCI_IOV */ 2855 2856 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2857 { 2858 int ret; 2859 struct sockaddr *addr = p; 2860 struct port_info *pi = netdev_priv(dev); 2861 2862 if (!is_valid_ether_addr(addr->sa_data)) 2863 return -EADDRNOTAVAIL; 2864 2865 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 2866 pi->xact_addr_filt, addr->sa_data, true, true); 2867 if (ret < 0) 2868 return ret; 2869 2870 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2871 pi->xact_addr_filt = ret; 2872 return 0; 2873 } 2874 2875 #ifdef CONFIG_NET_POLL_CONTROLLER 2876 static void cxgb_netpoll(struct net_device *dev) 2877 { 2878 struct port_info *pi = netdev_priv(dev); 2879 struct adapter *adap = pi->adapter; 2880 2881 if (adap->flags & USING_MSIX) { 2882 int i; 2883 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2884 2885 for (i = pi->nqsets; i; i--, rx++) 2886 t4_sge_intr_msix(0, &rx->rspq); 2887 } else 2888 t4_intr_handler(adap)(0, adap); 2889 } 2890 #endif 2891 2892 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2893 { 2894 struct port_info *pi = netdev_priv(dev); 2895 struct adapter *adap = pi->adapter; 2896 struct sched_class *e; 2897 struct ch_sched_params p; 2898 struct ch_sched_queue qe; 2899 u32 req_rate; 2900 int err = 0; 2901 2902 if (!can_sched(dev)) 2903 return -ENOTSUPP; 2904 2905 if (index < 0 || index > pi->nqsets - 1) 2906 return -EINVAL; 2907 2908 if (!(adap->flags & FULL_INIT_DONE)) { 2909 dev_err(adap->pdev_dev, 2910 "Failed to rate limit on queue %d. Link Down?\n", 2911 index); 2912 return -EINVAL; 2913 } 2914 2915 /* Convert from Mbps to Kbps */ 2916 req_rate = rate * 1000; 2917 2918 /* Max rate is 100 Gbps */ 2919 if (req_rate > SCHED_MAX_RATE_KBPS) { 2920 dev_err(adap->pdev_dev, 2921 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 2922 rate, SCHED_MAX_RATE_KBPS / 1000); 2923 return -ERANGE; 2924 } 2925 2926 /* First unbind the queue from any existing class */ 2927 memset(&qe, 0, sizeof(qe)); 2928 qe.queue = index; 2929 qe.class = SCHED_CLS_NONE; 2930 2931 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 2932 if (err) { 2933 dev_err(adap->pdev_dev, 2934 "Unbinding Queue %d on port %d fail. Err: %d\n", 2935 index, pi->port_id, err); 2936 return err; 2937 } 2938 2939 /* Queue already unbound */ 2940 if (!req_rate) 2941 return 0; 2942 2943 /* Fetch any available unused or matching scheduling class */ 2944 memset(&p, 0, sizeof(p)); 2945 p.type = SCHED_CLASS_TYPE_PACKET; 2946 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 2947 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 2948 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 2949 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 2950 p.u.params.channel = pi->tx_chan; 2951 p.u.params.class = SCHED_CLS_NONE; 2952 p.u.params.minrate = 0; 2953 p.u.params.maxrate = req_rate; 2954 p.u.params.weight = 0; 2955 p.u.params.pktsize = dev->mtu; 2956 2957 e = cxgb4_sched_class_alloc(dev, &p); 2958 if (!e) 2959 return -ENOMEM; 2960 2961 /* Bind the queue to a scheduling class */ 2962 memset(&qe, 0, sizeof(qe)); 2963 qe.queue = index; 2964 qe.class = e->idx; 2965 2966 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 2967 if (err) 2968 dev_err(adap->pdev_dev, 2969 "Queue rate limiting failed. Err: %d\n", err); 2970 return err; 2971 } 2972 2973 static int cxgb_setup_tc_flower(struct net_device *dev, 2974 struct tc_cls_flower_offload *cls_flower) 2975 { 2976 switch (cls_flower->command) { 2977 case TC_CLSFLOWER_REPLACE: 2978 return cxgb4_tc_flower_replace(dev, cls_flower); 2979 case TC_CLSFLOWER_DESTROY: 2980 return cxgb4_tc_flower_destroy(dev, cls_flower); 2981 case TC_CLSFLOWER_STATS: 2982 return cxgb4_tc_flower_stats(dev, cls_flower); 2983 default: 2984 return -EOPNOTSUPP; 2985 } 2986 } 2987 2988 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 2989 struct tc_cls_u32_offload *cls_u32) 2990 { 2991 switch (cls_u32->command) { 2992 case TC_CLSU32_NEW_KNODE: 2993 case TC_CLSU32_REPLACE_KNODE: 2994 return cxgb4_config_knode(dev, cls_u32); 2995 case TC_CLSU32_DELETE_KNODE: 2996 return cxgb4_delete_knode(dev, cls_u32); 2997 default: 2998 return -EOPNOTSUPP; 2999 } 3000 } 3001 3002 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3003 void *cb_priv) 3004 { 3005 struct net_device *dev = cb_priv; 3006 struct port_info *pi = netdev2pinfo(dev); 3007 struct adapter *adap = netdev2adap(dev); 3008 3009 if (!(adap->flags & FULL_INIT_DONE)) { 3010 dev_err(adap->pdev_dev, 3011 "Failed to setup tc on port %d. Link Down?\n", 3012 pi->port_id); 3013 return -EINVAL; 3014 } 3015 3016 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3017 return -EOPNOTSUPP; 3018 3019 switch (type) { 3020 case TC_SETUP_CLSU32: 3021 return cxgb_setup_tc_cls_u32(dev, type_data); 3022 case TC_SETUP_CLSFLOWER: 3023 return cxgb_setup_tc_flower(dev, type_data); 3024 default: 3025 return -EOPNOTSUPP; 3026 } 3027 } 3028 3029 static int cxgb_setup_tc_block(struct net_device *dev, 3030 struct tc_block_offload *f) 3031 { 3032 struct port_info *pi = netdev2pinfo(dev); 3033 3034 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 3035 return -EOPNOTSUPP; 3036 3037 switch (f->command) { 3038 case TC_BLOCK_BIND: 3039 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb, 3040 pi, dev, f->extack); 3041 case TC_BLOCK_UNBIND: 3042 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi); 3043 return 0; 3044 default: 3045 return -EOPNOTSUPP; 3046 } 3047 } 3048 3049 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3050 void *type_data) 3051 { 3052 switch (type) { 3053 case TC_SETUP_BLOCK: 3054 return cxgb_setup_tc_block(dev, type_data); 3055 default: 3056 return -EOPNOTSUPP; 3057 } 3058 } 3059 3060 static void cxgb_del_udp_tunnel(struct net_device *netdev, 3061 struct udp_tunnel_info *ti) 3062 { 3063 struct port_info *pi = netdev_priv(netdev); 3064 struct adapter *adapter = pi->adapter; 3065 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3066 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3067 int ret = 0, i; 3068 3069 if (chip_ver < CHELSIO_T6) 3070 return; 3071 3072 switch (ti->type) { 3073 case UDP_TUNNEL_TYPE_VXLAN: 3074 if (!adapter->vxlan_port_cnt || 3075 adapter->vxlan_port != ti->port) 3076 return; /* Invalid VxLAN destination port */ 3077 3078 adapter->vxlan_port_cnt--; 3079 if (adapter->vxlan_port_cnt) 3080 return; 3081 3082 adapter->vxlan_port = 0; 3083 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3084 break; 3085 case UDP_TUNNEL_TYPE_GENEVE: 3086 if (!adapter->geneve_port_cnt || 3087 adapter->geneve_port != ti->port) 3088 return; /* Invalid GENEVE destination port */ 3089 3090 adapter->geneve_port_cnt--; 3091 if (adapter->geneve_port_cnt) 3092 return; 3093 3094 adapter->geneve_port = 0; 3095 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3096 break; 3097 default: 3098 return; 3099 } 3100 3101 /* Matchall mac entries can be deleted only after all tunnel ports 3102 * are brought down or removed. 3103 */ 3104 if (!adapter->rawf_cnt) 3105 return; 3106 for_each_port(adapter, i) { 3107 pi = adap2pinfo(adapter, i); 3108 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3109 match_all_mac, match_all_mac, 3110 adapter->rawf_start + 3111 pi->port_id, 3112 1, pi->port_id, false); 3113 if (ret < 0) { 3114 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3115 i); 3116 return; 3117 } 3118 atomic_dec(&adapter->mps_encap[adapter->rawf_start + 3119 pi->port_id].refcnt); 3120 } 3121 } 3122 3123 static void cxgb_add_udp_tunnel(struct net_device *netdev, 3124 struct udp_tunnel_info *ti) 3125 { 3126 struct port_info *pi = netdev_priv(netdev); 3127 struct adapter *adapter = pi->adapter; 3128 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3129 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3130 int i, ret; 3131 3132 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt) 3133 return; 3134 3135 switch (ti->type) { 3136 case UDP_TUNNEL_TYPE_VXLAN: 3137 /* Callback for adding vxlan port can be called with the same 3138 * port for both IPv4 and IPv6. We should not disable the 3139 * offloading when the same port for both protocols is added 3140 * and later one of them is removed. 3141 */ 3142 if (adapter->vxlan_port_cnt && 3143 adapter->vxlan_port == ti->port) { 3144 adapter->vxlan_port_cnt++; 3145 return; 3146 } 3147 3148 /* We will support only one VxLAN port */ 3149 if (adapter->vxlan_port_cnt) { 3150 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3151 be16_to_cpu(adapter->vxlan_port), 3152 be16_to_cpu(ti->port)); 3153 return; 3154 } 3155 3156 adapter->vxlan_port = ti->port; 3157 adapter->vxlan_port_cnt = 1; 3158 3159 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3160 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3161 break; 3162 case UDP_TUNNEL_TYPE_GENEVE: 3163 if (adapter->geneve_port_cnt && 3164 adapter->geneve_port == ti->port) { 3165 adapter->geneve_port_cnt++; 3166 return; 3167 } 3168 3169 /* We will support only one GENEVE port */ 3170 if (adapter->geneve_port_cnt) { 3171 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3172 be16_to_cpu(adapter->geneve_port), 3173 be16_to_cpu(ti->port)); 3174 return; 3175 } 3176 3177 adapter->geneve_port = ti->port; 3178 adapter->geneve_port_cnt = 1; 3179 3180 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3181 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3182 break; 3183 default: 3184 return; 3185 } 3186 3187 /* Create a 'match all' mac filter entry for inner mac, 3188 * if raw mac interface is supported. Once the linux kernel provides 3189 * driver entry points for adding/deleting the inner mac addresses, 3190 * we will remove this 'match all' entry and fallback to adding 3191 * exact match filters. 3192 */ 3193 for_each_port(adapter, i) { 3194 pi = adap2pinfo(adapter, i); 3195 3196 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3197 match_all_mac, 3198 match_all_mac, 3199 adapter->rawf_start + 3200 pi->port_id, 3201 1, pi->port_id, false); 3202 if (ret < 0) { 3203 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3204 be16_to_cpu(ti->port)); 3205 cxgb_del_udp_tunnel(netdev, ti); 3206 return; 3207 } 3208 atomic_inc(&adapter->mps_encap[ret].refcnt); 3209 } 3210 } 3211 3212 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3213 struct net_device *dev, 3214 netdev_features_t features) 3215 { 3216 struct port_info *pi = netdev_priv(dev); 3217 struct adapter *adapter = pi->adapter; 3218 3219 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3220 return features; 3221 3222 /* Check if hw supports offload for this packet */ 3223 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3224 return features; 3225 3226 /* Offload is not supported for this encapsulated packet */ 3227 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3228 } 3229 3230 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3231 netdev_features_t features) 3232 { 3233 /* Disable GRO, if RX_CSUM is disabled */ 3234 if (!(features & NETIF_F_RXCSUM)) 3235 features &= ~NETIF_F_GRO; 3236 3237 return features; 3238 } 3239 3240 static const struct net_device_ops cxgb4_netdev_ops = { 3241 .ndo_open = cxgb_open, 3242 .ndo_stop = cxgb_close, 3243 .ndo_start_xmit = t4_start_xmit, 3244 .ndo_select_queue = cxgb_select_queue, 3245 .ndo_get_stats64 = cxgb_get_stats, 3246 .ndo_set_rx_mode = cxgb_set_rxmode, 3247 .ndo_set_mac_address = cxgb_set_mac_addr, 3248 .ndo_set_features = cxgb_set_features, 3249 .ndo_validate_addr = eth_validate_addr, 3250 .ndo_do_ioctl = cxgb_ioctl, 3251 .ndo_change_mtu = cxgb_change_mtu, 3252 #ifdef CONFIG_NET_POLL_CONTROLLER 3253 .ndo_poll_controller = cxgb_netpoll, 3254 #endif 3255 #ifdef CONFIG_CHELSIO_T4_FCOE 3256 .ndo_fcoe_enable = cxgb_fcoe_enable, 3257 .ndo_fcoe_disable = cxgb_fcoe_disable, 3258 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3259 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3260 .ndo_setup_tc = cxgb_setup_tc, 3261 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel, 3262 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel, 3263 .ndo_features_check = cxgb_features_check, 3264 .ndo_fix_features = cxgb_fix_features, 3265 }; 3266 3267 #ifdef CONFIG_PCI_IOV 3268 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3269 .ndo_open = cxgb4_mgmt_open, 3270 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3271 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3272 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3273 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3274 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3275 }; 3276 #endif 3277 3278 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3279 struct ethtool_drvinfo *info) 3280 { 3281 struct adapter *adapter = netdev2adap(dev); 3282 3283 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3284 strlcpy(info->version, cxgb4_driver_version, 3285 sizeof(info->version)); 3286 strlcpy(info->bus_info, pci_name(adapter->pdev), 3287 sizeof(info->bus_info)); 3288 } 3289 3290 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3291 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3292 }; 3293 3294 static void notify_fatal_err(struct work_struct *work) 3295 { 3296 struct adapter *adap; 3297 3298 adap = container_of(work, struct adapter, fatal_err_notify_task); 3299 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3300 } 3301 3302 void t4_fatal_err(struct adapter *adap) 3303 { 3304 int port; 3305 3306 if (pci_channel_offline(adap->pdev)) 3307 return; 3308 3309 /* Disable the SGE since ULDs are going to free resources that 3310 * could be exposed to the adapter. RDMA MWs for example... 3311 */ 3312 t4_shutdown_adapter(adap); 3313 for_each_port(adap, port) { 3314 struct net_device *dev = adap->port[port]; 3315 3316 /* If we get here in very early initialization the network 3317 * devices may not have been set up yet. 3318 */ 3319 if (!dev) 3320 continue; 3321 3322 netif_tx_stop_all_queues(dev); 3323 netif_carrier_off(dev); 3324 } 3325 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3326 queue_work(adap->workq, &adap->fatal_err_notify_task); 3327 } 3328 3329 static void setup_memwin(struct adapter *adap) 3330 { 3331 u32 nic_win_base = t4_get_util_window(adap); 3332 3333 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3334 } 3335 3336 static void setup_memwin_rdma(struct adapter *adap) 3337 { 3338 if (adap->vres.ocq.size) { 3339 u32 start; 3340 unsigned int sz_kb; 3341 3342 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3343 start &= PCI_BASE_ADDRESS_MEM_MASK; 3344 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3345 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3346 t4_write_reg(adap, 3347 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3348 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3349 t4_write_reg(adap, 3350 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3351 adap->vres.ocq.start); 3352 t4_read_reg(adap, 3353 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3354 } 3355 } 3356 3357 /* HMA Definitions */ 3358 3359 /* The maximum number of address that can be send in a single FW cmd */ 3360 #define HMA_MAX_ADDR_IN_CMD 5 3361 3362 #define HMA_PAGE_SIZE PAGE_SIZE 3363 3364 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3365 3366 #define HMA_PAGE_ORDER \ 3367 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3368 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3369 3370 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3371 * configuration(in units of MB). 3372 */ 3373 #define HMA_MIN_TOTAL_SIZE 1 3374 #define HMA_MAX_TOTAL_SIZE \ 3375 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3376 HMA_MAX_NO_FW_ADDRESS) >> 20) 3377 3378 static void adap_free_hma_mem(struct adapter *adapter) 3379 { 3380 struct scatterlist *iter; 3381 struct page *page; 3382 int i; 3383 3384 if (!adapter->hma.sgt) 3385 return; 3386 3387 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 3388 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 3389 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 3390 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 3391 } 3392 3393 for_each_sg(adapter->hma.sgt->sgl, iter, 3394 adapter->hma.sgt->orig_nents, i) { 3395 page = sg_page(iter); 3396 if (page) 3397 __free_pages(page, HMA_PAGE_ORDER); 3398 } 3399 3400 kfree(adapter->hma.phy_addr); 3401 sg_free_table(adapter->hma.sgt); 3402 kfree(adapter->hma.sgt); 3403 adapter->hma.sgt = NULL; 3404 } 3405 3406 static int adap_config_hma(struct adapter *adapter) 3407 { 3408 struct scatterlist *sgl, *iter; 3409 struct sg_table *sgt; 3410 struct page *newpage; 3411 unsigned int i, j, k; 3412 u32 param, hma_size; 3413 unsigned int ncmds; 3414 size_t page_size; 3415 u32 page_order; 3416 int node, ret; 3417 3418 /* HMA is supported only for T6+ cards. 3419 * Avoid initializing HMA in kdump kernels. 3420 */ 3421 if (is_kdump_kernel() || 3422 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3423 return 0; 3424 3425 /* Get the HMA region size required by fw */ 3426 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3427 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 3428 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3429 1, ¶m, &hma_size); 3430 /* An error means card has its own memory or HMA is not supported by 3431 * the firmware. Return without any errors. 3432 */ 3433 if (ret || !hma_size) 3434 return 0; 3435 3436 if (hma_size < HMA_MIN_TOTAL_SIZE || 3437 hma_size > HMA_MAX_TOTAL_SIZE) { 3438 dev_err(adapter->pdev_dev, 3439 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 3440 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 3441 return -EINVAL; 3442 } 3443 3444 page_size = HMA_PAGE_SIZE; 3445 page_order = HMA_PAGE_ORDER; 3446 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 3447 if (unlikely(!adapter->hma.sgt)) { 3448 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 3449 return -ENOMEM; 3450 } 3451 sgt = adapter->hma.sgt; 3452 /* FW returned value will be in MB's 3453 */ 3454 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 3455 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 3456 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 3457 kfree(adapter->hma.sgt); 3458 adapter->hma.sgt = NULL; 3459 return -ENOMEM; 3460 } 3461 3462 sgl = adapter->hma.sgt->sgl; 3463 node = dev_to_node(adapter->pdev_dev); 3464 for_each_sg(sgl, iter, sgt->orig_nents, i) { 3465 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 3466 __GFP_ZERO, page_order); 3467 if (!newpage) { 3468 dev_err(adapter->pdev_dev, 3469 "Not enough memory for HMA page allocation\n"); 3470 ret = -ENOMEM; 3471 goto free_hma; 3472 } 3473 sg_set_page(iter, newpage, page_size << page_order, 0); 3474 } 3475 3476 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 3477 DMA_BIDIRECTIONAL); 3478 if (!sgt->nents) { 3479 dev_err(adapter->pdev_dev, 3480 "Not enough memory for HMA DMA mapping"); 3481 ret = -ENOMEM; 3482 goto free_hma; 3483 } 3484 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 3485 3486 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 3487 GFP_KERNEL); 3488 if (unlikely(!adapter->hma.phy_addr)) 3489 goto free_hma; 3490 3491 for_each_sg(sgl, iter, sgt->nents, i) { 3492 newpage = sg_page(iter); 3493 adapter->hma.phy_addr[i] = sg_dma_address(iter); 3494 } 3495 3496 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 3497 /* Pass on the addresses to firmware */ 3498 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 3499 struct fw_hma_cmd hma_cmd; 3500 u8 naddr = HMA_MAX_ADDR_IN_CMD; 3501 u8 soc = 0, eoc = 0; 3502 u8 hma_mode = 1; /* Presently we support only Page table mode */ 3503 3504 soc = (i == 0) ? 1 : 0; 3505 eoc = (i == ncmds - 1) ? 1 : 0; 3506 3507 /* For last cmd, set naddr corresponding to remaining 3508 * addresses 3509 */ 3510 if (i == ncmds - 1) { 3511 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 3512 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 3513 } 3514 memset(&hma_cmd, 0, sizeof(hma_cmd)); 3515 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 3516 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3517 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 3518 3519 hma_cmd.mode_to_pcie_params = 3520 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 3521 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 3522 3523 /* HMA cmd size specified in MB's */ 3524 hma_cmd.naddr_size = 3525 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 3526 FW_HMA_CMD_NADDR_V(naddr)); 3527 3528 /* Total Page size specified in units of 4K */ 3529 hma_cmd.addr_size_pkd = 3530 htonl(FW_HMA_CMD_ADDR_SIZE_V 3531 ((page_size << page_order) >> 12)); 3532 3533 /* Fill the 5 addresses */ 3534 for (j = 0; j < naddr; j++) { 3535 hma_cmd.phy_address[j] = 3536 cpu_to_be64(adapter->hma.phy_addr[j + k]); 3537 } 3538 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 3539 sizeof(hma_cmd), &hma_cmd); 3540 if (ret) { 3541 dev_err(adapter->pdev_dev, 3542 "HMA FW command failed with err %d\n", ret); 3543 goto free_hma; 3544 } 3545 } 3546 3547 if (!ret) 3548 dev_info(adapter->pdev_dev, 3549 "Reserved %uMB host memory for HMA\n", hma_size); 3550 return ret; 3551 3552 free_hma: 3553 adap_free_hma_mem(adapter); 3554 return ret; 3555 } 3556 3557 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3558 { 3559 u32 v; 3560 int ret; 3561 3562 /* Now that we've successfully configured and initialized the adapter 3563 * can ask the Firmware what resources it has provisioned for us. 3564 */ 3565 ret = t4_get_pfres(adap); 3566 if (ret) { 3567 dev_err(adap->pdev_dev, 3568 "Unable to retrieve resource provisioning information\n"); 3569 return ret; 3570 } 3571 3572 /* get device capabilities */ 3573 memset(c, 0, sizeof(*c)); 3574 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3575 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3576 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3577 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3578 if (ret < 0) 3579 return ret; 3580 3581 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3582 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3583 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3584 if (ret < 0) 3585 return ret; 3586 3587 ret = t4_config_glbl_rss(adap, adap->pf, 3588 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3589 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3590 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3591 if (ret < 0) 3592 return ret; 3593 3594 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3595 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3596 FW_CMD_CAP_PF); 3597 if (ret < 0) 3598 return ret; 3599 3600 t4_sge_init(adap); 3601 3602 /* tweak some settings */ 3603 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3604 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3605 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3606 v = t4_read_reg(adap, TP_PIO_DATA_A); 3607 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3608 3609 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3610 adap->params.tp.tx_modq_map = 0xE4; 3611 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3612 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3613 3614 /* associate each Tx modulation queue with consecutive Tx channels */ 3615 v = 0x84218421; 3616 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3617 &v, 1, TP_TX_SCHED_HDR_A); 3618 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3619 &v, 1, TP_TX_SCHED_FIFO_A); 3620 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3621 &v, 1, TP_TX_SCHED_PCMD_A); 3622 3623 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3624 if (is_offload(adap)) { 3625 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3626 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3627 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3628 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3629 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3630 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3631 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3632 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3633 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3634 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3635 } 3636 3637 /* get basic stuff going */ 3638 return t4_early_init(adap, adap->pf); 3639 } 3640 3641 /* 3642 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3643 */ 3644 #define MAX_ATIDS 8192U 3645 3646 /* 3647 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3648 * 3649 * If the firmware we're dealing with has Configuration File support, then 3650 * we use that to perform all configuration 3651 */ 3652 3653 /* 3654 * Tweak configuration based on module parameters, etc. Most of these have 3655 * defaults assigned to them by Firmware Configuration Files (if we're using 3656 * them) but need to be explicitly set if we're using hard-coded 3657 * initialization. But even in the case of using Firmware Configuration 3658 * Files, we'd like to expose the ability to change these via module 3659 * parameters so these are essentially common tweaks/settings for 3660 * Configuration Files and hard-coded initialization ... 3661 */ 3662 static int adap_init0_tweaks(struct adapter *adapter) 3663 { 3664 /* 3665 * Fix up various Host-Dependent Parameters like Page Size, Cache 3666 * Line Size, etc. The firmware default is for a 4KB Page Size and 3667 * 64B Cache Line Size ... 3668 */ 3669 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3670 3671 /* 3672 * Process module parameters which affect early initialization. 3673 */ 3674 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3675 dev_err(&adapter->pdev->dev, 3676 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3677 rx_dma_offset); 3678 rx_dma_offset = 2; 3679 } 3680 t4_set_reg_field(adapter, SGE_CONTROL_A, 3681 PKTSHIFT_V(PKTSHIFT_M), 3682 PKTSHIFT_V(rx_dma_offset)); 3683 3684 /* 3685 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3686 * adds the pseudo header itself. 3687 */ 3688 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3689 CSUM_HAS_PSEUDO_HDR_F, 0); 3690 3691 return 0; 3692 } 3693 3694 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3695 * unto themselves and they contain their own firmware to perform their 3696 * tasks ... 3697 */ 3698 static int phy_aq1202_version(const u8 *phy_fw_data, 3699 size_t phy_fw_size) 3700 { 3701 int offset; 3702 3703 /* At offset 0x8 you're looking for the primary image's 3704 * starting offset which is 3 Bytes wide 3705 * 3706 * At offset 0xa of the primary image, you look for the offset 3707 * of the DRAM segment which is 3 Bytes wide. 3708 * 3709 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3710 * wide 3711 */ 3712 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3713 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3714 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3715 3716 offset = le24(phy_fw_data + 0x8) << 12; 3717 offset = le24(phy_fw_data + offset + 0xa); 3718 return be16(phy_fw_data + offset + 0x27e); 3719 3720 #undef be16 3721 #undef le16 3722 #undef le24 3723 } 3724 3725 static struct info_10gbt_phy_fw { 3726 unsigned int phy_fw_id; /* PCI Device ID */ 3727 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3728 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3729 int phy_flash; /* Has FLASH for PHY Firmware */ 3730 } phy_info_array[] = { 3731 { 3732 PHY_AQ1202_DEVICEID, 3733 PHY_AQ1202_FIRMWARE, 3734 phy_aq1202_version, 3735 1, 3736 }, 3737 { 3738 PHY_BCM84834_DEVICEID, 3739 PHY_BCM84834_FIRMWARE, 3740 NULL, 3741 0, 3742 }, 3743 { 0, NULL, NULL }, 3744 }; 3745 3746 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3747 { 3748 int i; 3749 3750 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3751 if (phy_info_array[i].phy_fw_id == devid) 3752 return &phy_info_array[i]; 3753 } 3754 return NULL; 3755 } 3756 3757 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3758 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3759 * we return a negative error number. If we transfer new firmware we return 1 3760 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3761 */ 3762 static int adap_init0_phy(struct adapter *adap) 3763 { 3764 const struct firmware *phyf; 3765 int ret; 3766 struct info_10gbt_phy_fw *phy_info; 3767 3768 /* Use the device ID to determine which PHY file to flash. 3769 */ 3770 phy_info = find_phy_info(adap->pdev->device); 3771 if (!phy_info) { 3772 dev_warn(adap->pdev_dev, 3773 "No PHY Firmware file found for this PHY\n"); 3774 return -EOPNOTSUPP; 3775 } 3776 3777 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3778 * use that. The adapter firmware provides us with a memory buffer 3779 * where we can load a PHY firmware file from the host if we want to 3780 * override the PHY firmware File in flash. 3781 */ 3782 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3783 adap->pdev_dev); 3784 if (ret < 0) { 3785 /* For adapters without FLASH attached to PHY for their 3786 * firmware, it's obviously a fatal error if we can't get the 3787 * firmware to the adapter. For adapters with PHY firmware 3788 * FLASH storage, it's worth a warning if we can't find the 3789 * PHY Firmware but we'll neuter the error ... 3790 */ 3791 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3792 "/lib/firmware/%s, error %d\n", 3793 phy_info->phy_fw_file, -ret); 3794 if (phy_info->phy_flash) { 3795 int cur_phy_fw_ver = 0; 3796 3797 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3798 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3799 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3800 ret = 0; 3801 } 3802 3803 return ret; 3804 } 3805 3806 /* Load PHY Firmware onto adapter. 3807 */ 3808 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3809 phy_info->phy_fw_version, 3810 (u8 *)phyf->data, phyf->size); 3811 if (ret < 0) 3812 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3813 -ret); 3814 else if (ret > 0) { 3815 int new_phy_fw_ver = 0; 3816 3817 if (phy_info->phy_fw_version) 3818 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3819 phyf->size); 3820 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3821 "Firmware /lib/firmware/%s, version %#x\n", 3822 phy_info->phy_fw_file, new_phy_fw_ver); 3823 } 3824 3825 release_firmware(phyf); 3826 3827 return ret; 3828 } 3829 3830 /* 3831 * Attempt to initialize the adapter via a Firmware Configuration File. 3832 */ 3833 static int adap_init0_config(struct adapter *adapter, int reset) 3834 { 3835 struct fw_caps_config_cmd caps_cmd; 3836 const struct firmware *cf; 3837 unsigned long mtype = 0, maddr = 0; 3838 u32 finiver, finicsum, cfcsum; 3839 int ret; 3840 int config_issued = 0; 3841 char *fw_config_file, fw_config_file_path[256]; 3842 char *config_name = NULL; 3843 3844 /* 3845 * Reset device if necessary. 3846 */ 3847 if (reset) { 3848 ret = t4_fw_reset(adapter, adapter->mbox, 3849 PIORSTMODE_F | PIORST_F); 3850 if (ret < 0) 3851 goto bye; 3852 } 3853 3854 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3855 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3856 * to be performed after any global adapter RESET above since some 3857 * PHYs only have local RAM copies of the PHY firmware. 3858 */ 3859 if (is_10gbt_device(adapter->pdev->device)) { 3860 ret = adap_init0_phy(adapter); 3861 if (ret < 0) 3862 goto bye; 3863 } 3864 /* 3865 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3866 * then use that. Otherwise, use the configuration file stored 3867 * in the adapter flash ... 3868 */ 3869 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3870 case CHELSIO_T4: 3871 fw_config_file = FW4_CFNAME; 3872 break; 3873 case CHELSIO_T5: 3874 fw_config_file = FW5_CFNAME; 3875 break; 3876 case CHELSIO_T6: 3877 fw_config_file = FW6_CFNAME; 3878 break; 3879 default: 3880 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3881 adapter->pdev->device); 3882 ret = -EINVAL; 3883 goto bye; 3884 } 3885 3886 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3887 if (ret < 0) { 3888 config_name = "On FLASH"; 3889 mtype = FW_MEMTYPE_CF_FLASH; 3890 maddr = t4_flash_cfg_addr(adapter); 3891 } else { 3892 u32 params[7], val[7]; 3893 3894 sprintf(fw_config_file_path, 3895 "/lib/firmware/%s", fw_config_file); 3896 config_name = fw_config_file_path; 3897 3898 if (cf->size >= FLASH_CFG_MAX_SIZE) 3899 ret = -ENOMEM; 3900 else { 3901 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3902 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3903 ret = t4_query_params(adapter, adapter->mbox, 3904 adapter->pf, 0, 1, params, val); 3905 if (ret == 0) { 3906 /* 3907 * For t4_memory_rw() below addresses and 3908 * sizes have to be in terms of multiples of 4 3909 * bytes. So, if the Configuration File isn't 3910 * a multiple of 4 bytes in length we'll have 3911 * to write that out separately since we can't 3912 * guarantee that the bytes following the 3913 * residual byte in the buffer returned by 3914 * request_firmware() are zeroed out ... 3915 */ 3916 size_t resid = cf->size & 0x3; 3917 size_t size = cf->size & ~0x3; 3918 __be32 *data = (__be32 *)cf->data; 3919 3920 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3921 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3922 3923 spin_lock(&adapter->win0_lock); 3924 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3925 size, data, T4_MEMORY_WRITE); 3926 if (ret == 0 && resid != 0) { 3927 union { 3928 __be32 word; 3929 char buf[4]; 3930 } last; 3931 int i; 3932 3933 last.word = data[size >> 2]; 3934 for (i = resid; i < 4; i++) 3935 last.buf[i] = 0; 3936 ret = t4_memory_rw(adapter, 0, mtype, 3937 maddr + size, 3938 4, &last.word, 3939 T4_MEMORY_WRITE); 3940 } 3941 spin_unlock(&adapter->win0_lock); 3942 } 3943 } 3944 3945 release_firmware(cf); 3946 if (ret) 3947 goto bye; 3948 } 3949 3950 /* 3951 * Issue a Capability Configuration command to the firmware to get it 3952 * to parse the Configuration File. We don't use t4_fw_config_file() 3953 * because we want the ability to modify various features after we've 3954 * processed the configuration file ... 3955 */ 3956 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3957 caps_cmd.op_to_write = 3958 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3959 FW_CMD_REQUEST_F | 3960 FW_CMD_READ_F); 3961 caps_cmd.cfvalid_to_len16 = 3962 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3963 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3964 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3965 FW_LEN16(caps_cmd)); 3966 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3967 &caps_cmd); 3968 3969 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3970 * Configuration File in FLASH), our last gasp effort is to use the 3971 * Firmware Configuration File which is embedded in the firmware. A 3972 * very few early versions of the firmware didn't have one embedded 3973 * but we can ignore those. 3974 */ 3975 if (ret == -ENOENT) { 3976 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3977 caps_cmd.op_to_write = 3978 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3979 FW_CMD_REQUEST_F | 3980 FW_CMD_READ_F); 3981 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3982 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3983 sizeof(caps_cmd), &caps_cmd); 3984 config_name = "Firmware Default"; 3985 } 3986 3987 config_issued = 1; 3988 if (ret < 0) 3989 goto bye; 3990 3991 finiver = ntohl(caps_cmd.finiver); 3992 finicsum = ntohl(caps_cmd.finicsum); 3993 cfcsum = ntohl(caps_cmd.cfcsum); 3994 if (finicsum != cfcsum) 3995 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3996 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3997 finicsum, cfcsum); 3998 3999 /* 4000 * And now tell the firmware to use the configuration we just loaded. 4001 */ 4002 caps_cmd.op_to_write = 4003 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4004 FW_CMD_REQUEST_F | 4005 FW_CMD_WRITE_F); 4006 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4007 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4008 NULL); 4009 if (ret < 0) 4010 goto bye; 4011 4012 /* 4013 * Tweak configuration based on system architecture, module 4014 * parameters, etc. 4015 */ 4016 ret = adap_init0_tweaks(adapter); 4017 if (ret < 0) 4018 goto bye; 4019 4020 /* We will proceed even if HMA init fails. */ 4021 ret = adap_config_hma(adapter); 4022 if (ret) 4023 dev_err(adapter->pdev_dev, 4024 "HMA configuration failed with error %d\n", ret); 4025 4026 /* 4027 * And finally tell the firmware to initialize itself using the 4028 * parameters from the Configuration File. 4029 */ 4030 ret = t4_fw_initialize(adapter, adapter->mbox); 4031 if (ret < 0) 4032 goto bye; 4033 4034 /* Emit Firmware Configuration File information and return 4035 * successfully. 4036 */ 4037 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4038 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4039 config_name, finiver, cfcsum); 4040 return 0; 4041 4042 /* 4043 * Something bad happened. Return the error ... (If the "error" 4044 * is that there's no Configuration File on the adapter we don't 4045 * want to issue a warning since this is fairly common.) 4046 */ 4047 bye: 4048 if (config_issued && ret != -ENOENT) 4049 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4050 config_name, -ret); 4051 return ret; 4052 } 4053 4054 static struct fw_info fw_info_array[] = { 4055 { 4056 .chip = CHELSIO_T4, 4057 .fs_name = FW4_CFNAME, 4058 .fw_mod_name = FW4_FNAME, 4059 .fw_hdr = { 4060 .chip = FW_HDR_CHIP_T4, 4061 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4062 .intfver_nic = FW_INTFVER(T4, NIC), 4063 .intfver_vnic = FW_INTFVER(T4, VNIC), 4064 .intfver_ri = FW_INTFVER(T4, RI), 4065 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4066 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4067 }, 4068 }, { 4069 .chip = CHELSIO_T5, 4070 .fs_name = FW5_CFNAME, 4071 .fw_mod_name = FW5_FNAME, 4072 .fw_hdr = { 4073 .chip = FW_HDR_CHIP_T5, 4074 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4075 .intfver_nic = FW_INTFVER(T5, NIC), 4076 .intfver_vnic = FW_INTFVER(T5, VNIC), 4077 .intfver_ri = FW_INTFVER(T5, RI), 4078 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4079 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4080 }, 4081 }, { 4082 .chip = CHELSIO_T6, 4083 .fs_name = FW6_CFNAME, 4084 .fw_mod_name = FW6_FNAME, 4085 .fw_hdr = { 4086 .chip = FW_HDR_CHIP_T6, 4087 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4088 .intfver_nic = FW_INTFVER(T6, NIC), 4089 .intfver_vnic = FW_INTFVER(T6, VNIC), 4090 .intfver_ofld = FW_INTFVER(T6, OFLD), 4091 .intfver_ri = FW_INTFVER(T6, RI), 4092 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4093 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4094 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4095 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4096 }, 4097 } 4098 4099 }; 4100 4101 static struct fw_info *find_fw_info(int chip) 4102 { 4103 int i; 4104 4105 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4106 if (fw_info_array[i].chip == chip) 4107 return &fw_info_array[i]; 4108 } 4109 return NULL; 4110 } 4111 4112 /* 4113 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4114 */ 4115 static int adap_init0(struct adapter *adap) 4116 { 4117 int ret; 4118 u32 v, port_vec; 4119 enum dev_state state; 4120 u32 params[7], val[7]; 4121 struct fw_caps_config_cmd caps_cmd; 4122 int reset = 1; 4123 4124 /* Grab Firmware Device Log parameters as early as possible so we have 4125 * access to it for debugging, etc. 4126 */ 4127 ret = t4_init_devlog_params(adap); 4128 if (ret < 0) 4129 return ret; 4130 4131 /* Contact FW, advertising Master capability */ 4132 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4133 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4134 if (ret < 0) { 4135 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4136 ret); 4137 return ret; 4138 } 4139 if (ret == adap->mbox) 4140 adap->flags |= MASTER_PF; 4141 4142 /* 4143 * If we're the Master PF Driver and the device is uninitialized, 4144 * then let's consider upgrading the firmware ... (We always want 4145 * to check the firmware version number in order to A. get it for 4146 * later reporting and B. to warn if the currently loaded firmware 4147 * is excessively mismatched relative to the driver.) 4148 */ 4149 4150 t4_get_version_info(adap); 4151 ret = t4_check_fw_version(adap); 4152 /* If firmware is too old (not supported by driver) force an update. */ 4153 if (ret) 4154 state = DEV_STATE_UNINIT; 4155 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 4156 struct fw_info *fw_info; 4157 struct fw_hdr *card_fw; 4158 const struct firmware *fw; 4159 const u8 *fw_data = NULL; 4160 unsigned int fw_size = 0; 4161 4162 /* This is the firmware whose headers the driver was compiled 4163 * against 4164 */ 4165 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4166 if (fw_info == NULL) { 4167 dev_err(adap->pdev_dev, 4168 "unable to get firmware info for chip %d.\n", 4169 CHELSIO_CHIP_VERSION(adap->params.chip)); 4170 return -EINVAL; 4171 } 4172 4173 /* allocate memory to read the header of the firmware on the 4174 * card 4175 */ 4176 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4177 if (!card_fw) { 4178 ret = -ENOMEM; 4179 goto bye; 4180 } 4181 4182 /* Get FW from from /lib/firmware/ */ 4183 ret = request_firmware(&fw, fw_info->fw_mod_name, 4184 adap->pdev_dev); 4185 if (ret < 0) { 4186 dev_err(adap->pdev_dev, 4187 "unable to load firmware image %s, error %d\n", 4188 fw_info->fw_mod_name, ret); 4189 } else { 4190 fw_data = fw->data; 4191 fw_size = fw->size; 4192 } 4193 4194 /* upgrade FW logic */ 4195 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4196 state, &reset); 4197 4198 /* Cleaning up */ 4199 release_firmware(fw); 4200 kvfree(card_fw); 4201 4202 if (ret < 0) 4203 goto bye; 4204 } 4205 4206 /* If the firmware is initialized already, emit a simply note to that 4207 * effect. Otherwise, it's time to try initializing the adapter. 4208 */ 4209 if (state == DEV_STATE_INIT) { 4210 ret = adap_config_hma(adap); 4211 if (ret) 4212 dev_err(adap->pdev_dev, 4213 "HMA configuration failed with error %d\n", 4214 ret); 4215 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4216 "Adapter already initialized\n", 4217 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 4218 } else { 4219 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4220 "Initializing adapter\n"); 4221 4222 /* Find out whether we're dealing with a version of the 4223 * firmware which has configuration file support. 4224 */ 4225 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4226 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4227 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4228 params, val); 4229 4230 /* If the firmware doesn't support Configuration Files, 4231 * return an error. 4232 */ 4233 if (ret < 0) { 4234 dev_err(adap->pdev_dev, "firmware doesn't support " 4235 "Firmware Configuration Files\n"); 4236 goto bye; 4237 } 4238 4239 /* The firmware provides us with a memory buffer where we can 4240 * load a Configuration File from the host if we want to 4241 * override the Configuration File in flash. 4242 */ 4243 ret = adap_init0_config(adap, reset); 4244 if (ret == -ENOENT) { 4245 dev_err(adap->pdev_dev, "no Configuration File " 4246 "present on adapter.\n"); 4247 goto bye; 4248 } 4249 if (ret < 0) { 4250 dev_err(adap->pdev_dev, "could not initialize " 4251 "adapter, error %d\n", -ret); 4252 goto bye; 4253 } 4254 } 4255 4256 /* Now that we've successfully configured and initialized the adapter 4257 * (or found it already initialized), we can ask the Firmware what 4258 * resources it has provisioned for us. 4259 */ 4260 ret = t4_get_pfres(adap); 4261 if (ret) { 4262 dev_err(adap->pdev_dev, 4263 "Unable to retrieve resource provisioning information\n"); 4264 goto bye; 4265 } 4266 4267 /* Grab VPD parameters. This should be done after we establish a 4268 * connection to the firmware since some of the VPD parameters 4269 * (notably the Core Clock frequency) are retrieved via requests to 4270 * the firmware. On the other hand, we need these fairly early on 4271 * so we do this right after getting ahold of the firmware. 4272 * 4273 * We need to do this after initializing the adapter because someone 4274 * could have FLASHed a new VPD which won't be read by the firmware 4275 * until we do the RESET ... 4276 */ 4277 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4278 if (ret < 0) 4279 goto bye; 4280 4281 /* Find out what ports are available to us. Note that we need to do 4282 * this before calling adap_init0_no_config() since it needs nports 4283 * and portvec ... 4284 */ 4285 v = 4286 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4287 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4288 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4289 if (ret < 0) 4290 goto bye; 4291 4292 adap->params.nports = hweight32(port_vec); 4293 adap->params.portvec = port_vec; 4294 4295 /* Give the SGE code a chance to pull in anything that it needs ... 4296 * Note that this must be called after we retrieve our VPD parameters 4297 * in order to know how to convert core ticks to seconds, etc. 4298 */ 4299 ret = t4_sge_init(adap); 4300 if (ret < 0) 4301 goto bye; 4302 4303 if (is_bypass_device(adap->pdev->device)) 4304 adap->params.bypass = 1; 4305 4306 /* 4307 * Grab some of our basic fundamental operating parameters. 4308 */ 4309 #define FW_PARAM_DEV(param) \ 4310 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 4311 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 4312 4313 #define FW_PARAM_PFVF(param) \ 4314 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 4315 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 4316 FW_PARAMS_PARAM_Y_V(0) | \ 4317 FW_PARAMS_PARAM_Z_V(0) 4318 4319 params[0] = FW_PARAM_PFVF(EQ_START); 4320 params[1] = FW_PARAM_PFVF(L2T_START); 4321 params[2] = FW_PARAM_PFVF(L2T_END); 4322 params[3] = FW_PARAM_PFVF(FILTER_START); 4323 params[4] = FW_PARAM_PFVF(FILTER_END); 4324 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4325 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4326 if (ret < 0) 4327 goto bye; 4328 adap->sge.egr_start = val[0]; 4329 adap->l2t_start = val[1]; 4330 adap->l2t_end = val[2]; 4331 adap->tids.ftid_base = val[3]; 4332 adap->tids.nftids = val[4] - val[3] + 1; 4333 adap->sge.ingr_start = val[5]; 4334 4335 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4336 /* Read the raw mps entries. In T6, the last 2 tcam entries 4337 * are reserved for raw mac addresses (rawf = 2, one per port). 4338 */ 4339 params[0] = FW_PARAM_PFVF(RAWF_START); 4340 params[1] = FW_PARAM_PFVF(RAWF_END); 4341 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4342 params, val); 4343 if (ret == 0) { 4344 adap->rawf_start = val[0]; 4345 adap->rawf_cnt = val[1] - val[0] + 1; 4346 } 4347 } 4348 4349 /* qids (ingress/egress) returned from firmware can be anywhere 4350 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 4351 * Hence driver needs to allocate memory for this range to 4352 * store the queue info. Get the highest IQFLINT/EQ index returned 4353 * in FW_EQ_*_CMD.alloc command. 4354 */ 4355 params[0] = FW_PARAM_PFVF(EQ_END); 4356 params[1] = FW_PARAM_PFVF(IQFLINT_END); 4357 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4358 if (ret < 0) 4359 goto bye; 4360 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 4361 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 4362 4363 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 4364 sizeof(*adap->sge.egr_map), GFP_KERNEL); 4365 if (!adap->sge.egr_map) { 4366 ret = -ENOMEM; 4367 goto bye; 4368 } 4369 4370 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 4371 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 4372 if (!adap->sge.ingr_map) { 4373 ret = -ENOMEM; 4374 goto bye; 4375 } 4376 4377 /* Allocate the memory for the vaious egress queue bitmaps 4378 * ie starving_fl, txq_maperr and blocked_fl. 4379 */ 4380 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4381 sizeof(long), GFP_KERNEL); 4382 if (!adap->sge.starving_fl) { 4383 ret = -ENOMEM; 4384 goto bye; 4385 } 4386 4387 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4388 sizeof(long), GFP_KERNEL); 4389 if (!adap->sge.txq_maperr) { 4390 ret = -ENOMEM; 4391 goto bye; 4392 } 4393 4394 #ifdef CONFIG_DEBUG_FS 4395 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4396 sizeof(long), GFP_KERNEL); 4397 if (!adap->sge.blocked_fl) { 4398 ret = -ENOMEM; 4399 goto bye; 4400 } 4401 #endif 4402 4403 params[0] = FW_PARAM_PFVF(CLIP_START); 4404 params[1] = FW_PARAM_PFVF(CLIP_END); 4405 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4406 if (ret < 0) 4407 goto bye; 4408 adap->clipt_start = val[0]; 4409 adap->clipt_end = val[1]; 4410 4411 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 4412 * Classes supported by the hardware/firmware so we hard code it here 4413 * for now. 4414 */ 4415 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 4416 4417 /* query params related to active filter region */ 4418 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 4419 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 4420 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4421 /* If Active filter size is set we enable establishing 4422 * offload connection through firmware work request 4423 */ 4424 if ((val[0] != val[1]) && (ret >= 0)) { 4425 adap->flags |= FW_OFLD_CONN; 4426 adap->tids.aftid_base = val[0]; 4427 adap->tids.aftid_end = val[1]; 4428 } 4429 4430 /* If we're running on newer firmware, let it know that we're 4431 * prepared to deal with encapsulated CPL messages. Older 4432 * firmware won't understand this and we'll just get 4433 * unencapsulated messages ... 4434 */ 4435 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4436 val[0] = 1; 4437 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4438 4439 /* 4440 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 4441 * capability. Earlier versions of the firmware didn't have the 4442 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 4443 * permission to use ULPTX MEMWRITE DSGL. 4444 */ 4445 if (is_t4(adap->params.chip)) { 4446 adap->params.ulptx_memwrite_dsgl = false; 4447 } else { 4448 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4449 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4450 1, params, val); 4451 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4452 } 4453 4454 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 4455 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4456 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4457 1, params, val); 4458 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 4459 4460 /* See if FW supports FW_FILTER2 work request */ 4461 if (is_t4(adap->params.chip)) { 4462 adap->params.filter2_wr_support = 0; 4463 } else { 4464 params[0] = FW_PARAM_DEV(FILTER2_WR); 4465 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4466 1, params, val); 4467 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 4468 } 4469 4470 /* 4471 * Get device capabilities so we can determine what resources we need 4472 * to manage. 4473 */ 4474 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4475 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4476 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4477 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4478 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4479 &caps_cmd); 4480 if (ret < 0) 4481 goto bye; 4482 4483 if (caps_cmd.ofldcaps || 4484 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) { 4485 /* query offload-related parameters */ 4486 params[0] = FW_PARAM_DEV(NTID); 4487 params[1] = FW_PARAM_PFVF(SERVER_START); 4488 params[2] = FW_PARAM_PFVF(SERVER_END); 4489 params[3] = FW_PARAM_PFVF(TDDP_START); 4490 params[4] = FW_PARAM_PFVF(TDDP_END); 4491 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4492 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4493 params, val); 4494 if (ret < 0) 4495 goto bye; 4496 adap->tids.ntids = val[0]; 4497 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4498 adap->tids.stid_base = val[1]; 4499 adap->tids.nstids = val[2] - val[1] + 1; 4500 /* 4501 * Setup server filter region. Divide the available filter 4502 * region into two parts. Regular filters get 1/3rd and server 4503 * filters get 2/3rd part. This is only enabled if workarond 4504 * path is enabled. 4505 * 1. For regular filters. 4506 * 2. Server filter: This are special filters which are used 4507 * to redirect SYN packets to offload queue. 4508 */ 4509 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 4510 adap->tids.sftid_base = adap->tids.ftid_base + 4511 DIV_ROUND_UP(adap->tids.nftids, 3); 4512 adap->tids.nsftids = adap->tids.nftids - 4513 DIV_ROUND_UP(adap->tids.nftids, 3); 4514 adap->tids.nftids = adap->tids.sftid_base - 4515 adap->tids.ftid_base; 4516 } 4517 adap->vres.ddp.start = val[3]; 4518 adap->vres.ddp.size = val[4] - val[3] + 1; 4519 adap->params.ofldq_wr_cred = val[5]; 4520 4521 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4522 ret = init_hash_filter(adap); 4523 if (ret < 0) 4524 goto bye; 4525 } else { 4526 adap->params.offload = 1; 4527 adap->num_ofld_uld += 1; 4528 } 4529 } 4530 if (caps_cmd.rdmacaps) { 4531 params[0] = FW_PARAM_PFVF(STAG_START); 4532 params[1] = FW_PARAM_PFVF(STAG_END); 4533 params[2] = FW_PARAM_PFVF(RQ_START); 4534 params[3] = FW_PARAM_PFVF(RQ_END); 4535 params[4] = FW_PARAM_PFVF(PBL_START); 4536 params[5] = FW_PARAM_PFVF(PBL_END); 4537 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4538 params, val); 4539 if (ret < 0) 4540 goto bye; 4541 adap->vres.stag.start = val[0]; 4542 adap->vres.stag.size = val[1] - val[0] + 1; 4543 adap->vres.rq.start = val[2]; 4544 adap->vres.rq.size = val[3] - val[2] + 1; 4545 adap->vres.pbl.start = val[4]; 4546 adap->vres.pbl.size = val[5] - val[4] + 1; 4547 4548 params[0] = FW_PARAM_PFVF(SRQ_START); 4549 params[1] = FW_PARAM_PFVF(SRQ_END); 4550 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4551 params, val); 4552 if (!ret) { 4553 adap->vres.srq.start = val[0]; 4554 adap->vres.srq.size = val[1] - val[0] + 1; 4555 } 4556 if (adap->vres.srq.size) { 4557 adap->srq = t4_init_srq(adap->vres.srq.size); 4558 if (!adap->srq) 4559 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 4560 } 4561 4562 params[0] = FW_PARAM_PFVF(SQRQ_START); 4563 params[1] = FW_PARAM_PFVF(SQRQ_END); 4564 params[2] = FW_PARAM_PFVF(CQ_START); 4565 params[3] = FW_PARAM_PFVF(CQ_END); 4566 params[4] = FW_PARAM_PFVF(OCQ_START); 4567 params[5] = FW_PARAM_PFVF(OCQ_END); 4568 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4569 val); 4570 if (ret < 0) 4571 goto bye; 4572 adap->vres.qp.start = val[0]; 4573 adap->vres.qp.size = val[1] - val[0] + 1; 4574 adap->vres.cq.start = val[2]; 4575 adap->vres.cq.size = val[3] - val[2] + 1; 4576 adap->vres.ocq.start = val[4]; 4577 adap->vres.ocq.size = val[5] - val[4] + 1; 4578 4579 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4580 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4581 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 4582 val); 4583 if (ret < 0) { 4584 adap->params.max_ordird_qp = 8; 4585 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 4586 ret = 0; 4587 } else { 4588 adap->params.max_ordird_qp = val[0]; 4589 adap->params.max_ird_adapter = val[1]; 4590 } 4591 dev_info(adap->pdev_dev, 4592 "max_ordird_qp %d max_ird_adapter %d\n", 4593 adap->params.max_ordird_qp, 4594 adap->params.max_ird_adapter); 4595 4596 /* Enable write_with_immediate if FW supports it */ 4597 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 4598 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4599 val); 4600 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 4601 4602 /* Enable write_cmpl if FW supports it */ 4603 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 4604 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4605 val); 4606 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 4607 adap->num_ofld_uld += 2; 4608 } 4609 if (caps_cmd.iscsicaps) { 4610 params[0] = FW_PARAM_PFVF(ISCSI_START); 4611 params[1] = FW_PARAM_PFVF(ISCSI_END); 4612 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4613 params, val); 4614 if (ret < 0) 4615 goto bye; 4616 adap->vres.iscsi.start = val[0]; 4617 adap->vres.iscsi.size = val[1] - val[0] + 1; 4618 /* LIO target and cxgb4i initiaitor */ 4619 adap->num_ofld_uld += 2; 4620 } 4621 if (caps_cmd.cryptocaps) { 4622 if (ntohs(caps_cmd.cryptocaps) & 4623 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 4624 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 4625 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4626 2, params, val); 4627 if (ret < 0) { 4628 if (ret != -EINVAL) 4629 goto bye; 4630 } else { 4631 adap->vres.ncrypto_fc = val[0]; 4632 } 4633 adap->num_ofld_uld += 1; 4634 } 4635 if (ntohs(caps_cmd.cryptocaps) & 4636 FW_CAPS_CONFIG_TLS_INLINE) { 4637 params[0] = FW_PARAM_PFVF(TLS_START); 4638 params[1] = FW_PARAM_PFVF(TLS_END); 4639 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4640 2, params, val); 4641 if (ret < 0) 4642 goto bye; 4643 adap->vres.key.start = val[0]; 4644 adap->vres.key.size = val[1] - val[0] + 1; 4645 adap->num_uld += 1; 4646 } 4647 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 4648 } 4649 #undef FW_PARAM_PFVF 4650 #undef FW_PARAM_DEV 4651 4652 /* The MTU/MSS Table is initialized by now, so load their values. If 4653 * we're initializing the adapter, then we'll make any modifications 4654 * we want to the MTU/MSS Table and also initialize the congestion 4655 * parameters. 4656 */ 4657 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4658 if (state != DEV_STATE_INIT) { 4659 int i; 4660 4661 /* The default MTU Table contains values 1492 and 1500. 4662 * However, for TCP, it's better to have two values which are 4663 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4664 * This allows us to have a TCP Data Payload which is a 4665 * multiple of 8 regardless of what combination of TCP Options 4666 * are in use (always a multiple of 4 bytes) which is 4667 * important for performance reasons. For instance, if no 4668 * options are in use, then we have a 20-byte IP header and a 4669 * 20-byte TCP header. In this case, a 1500-byte MSS would 4670 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4671 * which is not a multiple of 8. So using an MSS of 1488 in 4672 * this case results in a TCP Data Payload of 1448 bytes which 4673 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4674 * Stamps have been negotiated, then an MTU of 1500 bytes 4675 * results in a TCP Data Payload of 1448 bytes which, as 4676 * above, is a multiple of 8 bytes ... 4677 */ 4678 for (i = 0; i < NMTUS; i++) 4679 if (adap->params.mtus[i] == 1492) { 4680 adap->params.mtus[i] = 1488; 4681 break; 4682 } 4683 4684 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4685 adap->params.b_wnd); 4686 } 4687 t4_init_sge_params(adap); 4688 adap->flags |= FW_OK; 4689 t4_init_tp_params(adap, true); 4690 return 0; 4691 4692 /* 4693 * Something bad happened. If a command timed out or failed with EIO 4694 * FW does not operate within its spec or something catastrophic 4695 * happened to HW/FW, stop issuing commands. 4696 */ 4697 bye: 4698 adap_free_hma_mem(adap); 4699 kfree(adap->sge.egr_map); 4700 kfree(adap->sge.ingr_map); 4701 kfree(adap->sge.starving_fl); 4702 kfree(adap->sge.txq_maperr); 4703 #ifdef CONFIG_DEBUG_FS 4704 kfree(adap->sge.blocked_fl); 4705 #endif 4706 if (ret != -ETIMEDOUT && ret != -EIO) 4707 t4_fw_bye(adap, adap->mbox); 4708 return ret; 4709 } 4710 4711 /* EEH callbacks */ 4712 4713 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4714 pci_channel_state_t state) 4715 { 4716 int i; 4717 struct adapter *adap = pci_get_drvdata(pdev); 4718 4719 if (!adap) 4720 goto out; 4721 4722 rtnl_lock(); 4723 adap->flags &= ~FW_OK; 4724 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4725 spin_lock(&adap->stats_lock); 4726 for_each_port(adap, i) { 4727 struct net_device *dev = adap->port[i]; 4728 if (dev) { 4729 netif_device_detach(dev); 4730 netif_carrier_off(dev); 4731 } 4732 } 4733 spin_unlock(&adap->stats_lock); 4734 disable_interrupts(adap); 4735 if (adap->flags & FULL_INIT_DONE) 4736 cxgb_down(adap); 4737 rtnl_unlock(); 4738 if ((adap->flags & DEV_ENABLED)) { 4739 pci_disable_device(pdev); 4740 adap->flags &= ~DEV_ENABLED; 4741 } 4742 out: return state == pci_channel_io_perm_failure ? 4743 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4744 } 4745 4746 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4747 { 4748 int i, ret; 4749 struct fw_caps_config_cmd c; 4750 struct adapter *adap = pci_get_drvdata(pdev); 4751 4752 if (!adap) { 4753 pci_restore_state(pdev); 4754 pci_save_state(pdev); 4755 return PCI_ERS_RESULT_RECOVERED; 4756 } 4757 4758 if (!(adap->flags & DEV_ENABLED)) { 4759 if (pci_enable_device(pdev)) { 4760 dev_err(&pdev->dev, "Cannot reenable PCI " 4761 "device after reset\n"); 4762 return PCI_ERS_RESULT_DISCONNECT; 4763 } 4764 adap->flags |= DEV_ENABLED; 4765 } 4766 4767 pci_set_master(pdev); 4768 pci_restore_state(pdev); 4769 pci_save_state(pdev); 4770 4771 if (t4_wait_dev_ready(adap->regs) < 0) 4772 return PCI_ERS_RESULT_DISCONNECT; 4773 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4774 return PCI_ERS_RESULT_DISCONNECT; 4775 adap->flags |= FW_OK; 4776 if (adap_init1(adap, &c)) 4777 return PCI_ERS_RESULT_DISCONNECT; 4778 4779 for_each_port(adap, i) { 4780 struct port_info *p = adap2pinfo(adap, i); 4781 4782 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 4783 NULL, NULL); 4784 if (ret < 0) 4785 return PCI_ERS_RESULT_DISCONNECT; 4786 p->viid = ret; 4787 p->xact_addr_filt = -1; 4788 } 4789 4790 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4791 adap->params.b_wnd); 4792 setup_memwin(adap); 4793 if (cxgb_up(adap)) 4794 return PCI_ERS_RESULT_DISCONNECT; 4795 return PCI_ERS_RESULT_RECOVERED; 4796 } 4797 4798 static void eeh_resume(struct pci_dev *pdev) 4799 { 4800 int i; 4801 struct adapter *adap = pci_get_drvdata(pdev); 4802 4803 if (!adap) 4804 return; 4805 4806 rtnl_lock(); 4807 for_each_port(adap, i) { 4808 struct net_device *dev = adap->port[i]; 4809 if (dev) { 4810 if (netif_running(dev)) { 4811 link_start(dev); 4812 cxgb_set_rxmode(dev); 4813 } 4814 netif_device_attach(dev); 4815 } 4816 } 4817 rtnl_unlock(); 4818 } 4819 4820 static const struct pci_error_handlers cxgb4_eeh = { 4821 .error_detected = eeh_err_detected, 4822 .slot_reset = eeh_slot_reset, 4823 .resume = eeh_resume, 4824 }; 4825 4826 /* Return true if the Link Configuration supports "High Speeds" (those greater 4827 * than 1Gb/s). 4828 */ 4829 static inline bool is_x_10g_port(const struct link_config *lc) 4830 { 4831 unsigned int speeds, high_speeds; 4832 4833 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 4834 high_speeds = speeds & 4835 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 4836 4837 return high_speeds != 0; 4838 } 4839 4840 /* 4841 * Perform default configuration of DMA queues depending on the number and type 4842 * of ports we found and the number of available CPUs. Most settings can be 4843 * modified by the admin prior to actual use. 4844 */ 4845 static int cfg_queues(struct adapter *adap) 4846 { 4847 struct sge *s = &adap->sge; 4848 int i, n10g = 0, qidx = 0; 4849 int niqflint, neq, avail_eth_qsets; 4850 int max_eth_qsets = 32; 4851 #ifndef CONFIG_CHELSIO_T4_DCB 4852 int q10g = 0; 4853 #endif 4854 4855 /* Reduce memory usage in kdump environment, disable all offload. 4856 */ 4857 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 4858 adap->params.offload = 0; 4859 adap->params.crypto = 0; 4860 } 4861 4862 /* Calculate the number of Ethernet Queue Sets available based on 4863 * resources provisioned for us. We always have an Asynchronous 4864 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 4865 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 4866 * Ingress Queue. Meanwhile, we need two Egress Queues for each 4867 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 4868 * 4869 * Note that we should also take into account all of the various 4870 * Offload Queues. But, in any situation where we're operating in 4871 * a Resource Constrained Provisioning environment, doing any Offload 4872 * at all is problematic ... 4873 */ 4874 niqflint = adap->params.pfres.niqflint - 1; 4875 if (!(adap->flags & USING_MSIX)) 4876 niqflint--; 4877 neq = adap->params.pfres.neq / 2; 4878 avail_eth_qsets = min(niqflint, neq); 4879 4880 if (avail_eth_qsets > max_eth_qsets) 4881 avail_eth_qsets = max_eth_qsets; 4882 4883 if (avail_eth_qsets < adap->params.nports) { 4884 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 4885 avail_eth_qsets, adap->params.nports); 4886 return -ENOMEM; 4887 } 4888 4889 /* Count the number of 10Gb/s or better ports */ 4890 for_each_port(adap, i) 4891 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4892 4893 #ifdef CONFIG_CHELSIO_T4_DCB 4894 /* For Data Center Bridging support we need to be able to support up 4895 * to 8 Traffic Priorities; each of which will be assigned to its 4896 * own TX Queue in order to prevent Head-Of-Line Blocking. 4897 */ 4898 if (adap->params.nports * 8 > avail_eth_qsets) { 4899 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 4900 avail_eth_qsets, adap->params.nports * 8); 4901 return -ENOMEM; 4902 } 4903 4904 for_each_port(adap, i) { 4905 struct port_info *pi = adap2pinfo(adap, i); 4906 4907 pi->first_qset = qidx; 4908 pi->nqsets = is_kdump_kernel() ? 1 : 8; 4909 qidx += pi->nqsets; 4910 } 4911 #else /* !CONFIG_CHELSIO_T4_DCB */ 4912 /* 4913 * We default to 1 queue per non-10G port and up to # of cores queues 4914 * per 10G port. 4915 */ 4916 if (n10g) 4917 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 4918 if (q10g > netif_get_num_default_rss_queues()) 4919 q10g = netif_get_num_default_rss_queues(); 4920 4921 if (is_kdump_kernel()) 4922 q10g = 1; 4923 4924 for_each_port(adap, i) { 4925 struct port_info *pi = adap2pinfo(adap, i); 4926 4927 pi->first_qset = qidx; 4928 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4929 qidx += pi->nqsets; 4930 } 4931 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4932 4933 s->ethqsets = qidx; 4934 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4935 4936 if (is_uld(adap)) { 4937 /* 4938 * For offload we use 1 queue/channel if all ports are up to 1G, 4939 * otherwise we divide all available queues amongst the channels 4940 * capped by the number of available cores. 4941 */ 4942 if (n10g) { 4943 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 4944 s->ofldqsets = roundup(i, adap->params.nports); 4945 } else { 4946 s->ofldqsets = adap->params.nports; 4947 } 4948 } 4949 4950 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4951 struct sge_eth_rxq *r = &s->ethrxq[i]; 4952 4953 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4954 r->fl.size = 72; 4955 } 4956 4957 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4958 s->ethtxq[i].q.size = 1024; 4959 4960 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4961 s->ctrlq[i].q.size = 512; 4962 4963 if (!is_t4(adap->params.chip)) 4964 s->ptptxq.q.size = 8; 4965 4966 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4967 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 4968 4969 return 0; 4970 } 4971 4972 /* 4973 * Reduce the number of Ethernet queues across all ports to at most n. 4974 * n provides at least one queue per port. 4975 */ 4976 static void reduce_ethqs(struct adapter *adap, int n) 4977 { 4978 int i; 4979 struct port_info *pi; 4980 4981 while (n < adap->sge.ethqsets) 4982 for_each_port(adap, i) { 4983 pi = adap2pinfo(adap, i); 4984 if (pi->nqsets > 1) { 4985 pi->nqsets--; 4986 adap->sge.ethqsets--; 4987 if (adap->sge.ethqsets <= n) 4988 break; 4989 } 4990 } 4991 4992 n = 0; 4993 for_each_port(adap, i) { 4994 pi = adap2pinfo(adap, i); 4995 pi->first_qset = n; 4996 n += pi->nqsets; 4997 } 4998 } 4999 5000 static int get_msix_info(struct adapter *adap) 5001 { 5002 struct uld_msix_info *msix_info; 5003 unsigned int max_ingq = 0; 5004 5005 if (is_offload(adap)) 5006 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 5007 if (is_pci_uld(adap)) 5008 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 5009 5010 if (!max_ingq) 5011 goto out; 5012 5013 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 5014 if (!msix_info) 5015 return -ENOMEM; 5016 5017 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 5018 sizeof(long), GFP_KERNEL); 5019 if (!adap->msix_bmap_ulds.msix_bmap) { 5020 kfree(msix_info); 5021 return -ENOMEM; 5022 } 5023 spin_lock_init(&adap->msix_bmap_ulds.lock); 5024 adap->msix_info_ulds = msix_info; 5025 out: 5026 return 0; 5027 } 5028 5029 static void free_msix_info(struct adapter *adap) 5030 { 5031 if (!(adap->num_uld && adap->num_ofld_uld)) 5032 return; 5033 5034 kfree(adap->msix_info_ulds); 5035 kfree(adap->msix_bmap_ulds.msix_bmap); 5036 } 5037 5038 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5039 #define EXTRA_VECS 2 5040 5041 static int enable_msix(struct adapter *adap) 5042 { 5043 int ofld_need = 0, uld_need = 0; 5044 int i, j, want, need, allocated; 5045 struct sge *s = &adap->sge; 5046 unsigned int nchan = adap->params.nports; 5047 struct msix_entry *entries; 5048 int max_ingq = MAX_INGQ; 5049 5050 if (is_pci_uld(adap)) 5051 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 5052 if (is_offload(adap)) 5053 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 5054 entries = kmalloc_array(max_ingq + 1, sizeof(*entries), 5055 GFP_KERNEL); 5056 if (!entries) 5057 return -ENOMEM; 5058 5059 /* map for msix */ 5060 if (get_msix_info(adap)) { 5061 adap->params.offload = 0; 5062 adap->params.crypto = 0; 5063 } 5064 5065 for (i = 0; i < max_ingq + 1; ++i) 5066 entries[i].entry = i; 5067 5068 want = s->max_ethqsets + EXTRA_VECS; 5069 if (is_offload(adap)) { 5070 want += adap->num_ofld_uld * s->ofldqsets; 5071 ofld_need = adap->num_ofld_uld * nchan; 5072 } 5073 if (is_pci_uld(adap)) { 5074 want += adap->num_uld * s->ofldqsets; 5075 uld_need = adap->num_uld * nchan; 5076 } 5077 #ifdef CONFIG_CHELSIO_T4_DCB 5078 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5079 * each port. 5080 */ 5081 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5082 #else 5083 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5084 #endif 5085 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5086 if (allocated < 0) { 5087 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 5088 " not using MSI-X\n"); 5089 kfree(entries); 5090 return allocated; 5091 } 5092 5093 /* Distribute available vectors to the various queue groups. 5094 * Every group gets its minimum requirement and NIC gets top 5095 * priority for leftovers. 5096 */ 5097 i = allocated - EXTRA_VECS - ofld_need - uld_need; 5098 if (i < s->max_ethqsets) { 5099 s->max_ethqsets = i; 5100 if (i < s->ethqsets) 5101 reduce_ethqs(adap, i); 5102 } 5103 if (is_uld(adap)) { 5104 if (allocated < want) 5105 s->nqs_per_uld = nchan; 5106 else 5107 s->nqs_per_uld = s->ofldqsets; 5108 } 5109 5110 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 5111 adap->msix_info[i].vec = entries[i].vector; 5112 if (is_uld(adap)) { 5113 for (j = 0 ; i < allocated; ++i, j++) { 5114 adap->msix_info_ulds[j].vec = entries[i].vector; 5115 adap->msix_info_ulds[j].idx = i; 5116 } 5117 adap->msix_bmap_ulds.mapsize = j; 5118 } 5119 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 5120 "nic %d per uld %d\n", 5121 allocated, s->max_ethqsets, s->nqs_per_uld); 5122 5123 kfree(entries); 5124 return 0; 5125 } 5126 5127 #undef EXTRA_VECS 5128 5129 static int init_rss(struct adapter *adap) 5130 { 5131 unsigned int i; 5132 int err; 5133 5134 err = t4_init_rss_mode(adap, adap->mbox); 5135 if (err) 5136 return err; 5137 5138 for_each_port(adap, i) { 5139 struct port_info *pi = adap2pinfo(adap, i); 5140 5141 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5142 if (!pi->rss) 5143 return -ENOMEM; 5144 } 5145 return 0; 5146 } 5147 5148 /* Dump basic information about the adapter */ 5149 static void print_adapter_info(struct adapter *adapter) 5150 { 5151 /* Hardware/Firmware/etc. Version/Revision IDs */ 5152 t4_dump_version_info(adapter); 5153 5154 /* Software/Hardware configuration */ 5155 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 5156 is_offload(adapter) ? "R" : "", 5157 ((adapter->flags & USING_MSIX) ? "MSI-X" : 5158 (adapter->flags & USING_MSI) ? "MSI" : ""), 5159 is_offload(adapter) ? "Offload" : "non-Offload"); 5160 } 5161 5162 static void print_port_info(const struct net_device *dev) 5163 { 5164 char buf[80]; 5165 char *bufp = buf; 5166 const struct port_info *pi = netdev_priv(dev); 5167 const struct adapter *adap = pi->adapter; 5168 5169 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 5170 bufp += sprintf(bufp, "100M/"); 5171 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 5172 bufp += sprintf(bufp, "1G/"); 5173 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 5174 bufp += sprintf(bufp, "10G/"); 5175 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 5176 bufp += sprintf(bufp, "25G/"); 5177 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 5178 bufp += sprintf(bufp, "40G/"); 5179 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 5180 bufp += sprintf(bufp, "50G/"); 5181 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 5182 bufp += sprintf(bufp, "100G/"); 5183 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 5184 bufp += sprintf(bufp, "200G/"); 5185 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 5186 bufp += sprintf(bufp, "400G/"); 5187 if (bufp != buf) 5188 --bufp; 5189 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 5190 5191 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 5192 dev->name, adap->params.vpd.id, adap->name, buf); 5193 } 5194 5195 /* 5196 * Free the following resources: 5197 * - memory used for tables 5198 * - MSI/MSI-X 5199 * - net devices 5200 * - resources FW is holding for us 5201 */ 5202 static void free_some_resources(struct adapter *adapter) 5203 { 5204 unsigned int i; 5205 5206 kvfree(adapter->mps_encap); 5207 kvfree(adapter->smt); 5208 kvfree(adapter->l2t); 5209 kvfree(adapter->srq); 5210 t4_cleanup_sched(adapter); 5211 kvfree(adapter->tids.tid_tab); 5212 cxgb4_cleanup_tc_flower(adapter); 5213 cxgb4_cleanup_tc_u32(adapter); 5214 kfree(adapter->sge.egr_map); 5215 kfree(adapter->sge.ingr_map); 5216 kfree(adapter->sge.starving_fl); 5217 kfree(adapter->sge.txq_maperr); 5218 #ifdef CONFIG_DEBUG_FS 5219 kfree(adapter->sge.blocked_fl); 5220 #endif 5221 disable_msi(adapter); 5222 5223 for_each_port(adapter, i) 5224 if (adapter->port[i]) { 5225 struct port_info *pi = adap2pinfo(adapter, i); 5226 5227 if (pi->viid != 0) 5228 t4_free_vi(adapter, adapter->mbox, adapter->pf, 5229 0, pi->viid); 5230 kfree(adap2pinfo(adapter, i)->rss); 5231 free_netdev(adapter->port[i]); 5232 } 5233 if (adapter->flags & FW_OK) 5234 t4_fw_bye(adapter, adapter->pf); 5235 } 5236 5237 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 5238 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5239 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5240 #define SEGMENT_SIZE 128 5241 5242 static int t4_get_chip_type(struct adapter *adap, int ver) 5243 { 5244 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 5245 5246 switch (ver) { 5247 case CHELSIO_T4: 5248 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 5249 case CHELSIO_T5: 5250 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 5251 case CHELSIO_T6: 5252 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 5253 default: 5254 break; 5255 } 5256 return -EINVAL; 5257 } 5258 5259 #ifdef CONFIG_PCI_IOV 5260 static void cxgb4_mgmt_setup(struct net_device *dev) 5261 { 5262 dev->type = ARPHRD_NONE; 5263 dev->mtu = 0; 5264 dev->hard_header_len = 0; 5265 dev->addr_len = 0; 5266 dev->tx_queue_len = 0; 5267 dev->flags |= IFF_NOARP; 5268 dev->priv_flags |= IFF_NO_QUEUE; 5269 5270 /* Initialize the device structure. */ 5271 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 5272 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 5273 } 5274 5275 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 5276 { 5277 struct adapter *adap = pci_get_drvdata(pdev); 5278 int err = 0; 5279 int current_vfs = pci_num_vf(pdev); 5280 u32 pcie_fw; 5281 5282 pcie_fw = readl(adap->regs + PCIE_FW_A); 5283 /* Check if fw is initialized */ 5284 if (!(pcie_fw & PCIE_FW_INIT_F)) { 5285 dev_warn(&pdev->dev, "Device not initialized\n"); 5286 return -EOPNOTSUPP; 5287 } 5288 5289 /* If any of the VF's is already assigned to Guest OS, then 5290 * SRIOV for the same cannot be modified 5291 */ 5292 if (current_vfs && pci_vfs_assigned(pdev)) { 5293 dev_err(&pdev->dev, 5294 "Cannot modify SR-IOV while VFs are assigned\n"); 5295 return current_vfs; 5296 } 5297 /* Note that the upper-level code ensures that we're never called with 5298 * a non-zero "num_vfs" when we already have VFs instantiated. But 5299 * it never hurts to code defensively. 5300 */ 5301 if (num_vfs != 0 && current_vfs != 0) 5302 return -EBUSY; 5303 5304 /* Nothing to do for no change. */ 5305 if (num_vfs == current_vfs) 5306 return num_vfs; 5307 5308 /* Disable SRIOV when zero is passed. */ 5309 if (!num_vfs) { 5310 pci_disable_sriov(pdev); 5311 /* free VF Management Interface */ 5312 unregister_netdev(adap->port[0]); 5313 free_netdev(adap->port[0]); 5314 adap->port[0] = NULL; 5315 5316 /* free VF resources */ 5317 adap->num_vfs = 0; 5318 kfree(adap->vfinfo); 5319 adap->vfinfo = NULL; 5320 return 0; 5321 } 5322 5323 if (!current_vfs) { 5324 struct fw_pfvf_cmd port_cmd, port_rpl; 5325 struct net_device *netdev; 5326 unsigned int pmask, port; 5327 struct pci_dev *pbridge; 5328 struct port_info *pi; 5329 char name[IFNAMSIZ]; 5330 u32 devcap2; 5331 u16 flags; 5332 int pos; 5333 5334 /* If we want to instantiate Virtual Functions, then our 5335 * parent bridge's PCI-E needs to support Alternative Routing 5336 * ID (ARI) because our VFs will show up at function offset 8 5337 * and above. 5338 */ 5339 pbridge = pdev->bus->self; 5340 pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP); 5341 pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags); 5342 pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2); 5343 5344 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 5345 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 5346 /* Our parent bridge does not support ARI so issue a 5347 * warning and skip instantiating the VFs. They 5348 * won't be reachable. 5349 */ 5350 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 5351 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 5352 PCI_FUNC(pbridge->devfn)); 5353 return -ENOTSUPP; 5354 } 5355 memset(&port_cmd, 0, sizeof(port_cmd)); 5356 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 5357 FW_CMD_REQUEST_F | 5358 FW_CMD_READ_F | 5359 FW_PFVF_CMD_PFN_V(adap->pf) | 5360 FW_PFVF_CMD_VFN_V(0)); 5361 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 5362 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 5363 &port_rpl); 5364 if (err) 5365 return err; 5366 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 5367 port = ffs(pmask) - 1; 5368 /* Allocate VF Management Interface. */ 5369 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 5370 adap->pf); 5371 netdev = alloc_netdev(sizeof(struct port_info), 5372 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 5373 if (!netdev) 5374 return -ENOMEM; 5375 5376 pi = netdev_priv(netdev); 5377 pi->adapter = adap; 5378 pi->lport = port; 5379 pi->tx_chan = port; 5380 SET_NETDEV_DEV(netdev, &pdev->dev); 5381 5382 adap->port[0] = netdev; 5383 pi->port_id = 0; 5384 5385 err = register_netdev(adap->port[0]); 5386 if (err) { 5387 pr_info("Unable to register VF mgmt netdev %s\n", name); 5388 free_netdev(adap->port[0]); 5389 adap->port[0] = NULL; 5390 return err; 5391 } 5392 /* Allocate and set up VF Information. */ 5393 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 5394 sizeof(struct vf_info), GFP_KERNEL); 5395 if (!adap->vfinfo) { 5396 unregister_netdev(adap->port[0]); 5397 free_netdev(adap->port[0]); 5398 adap->port[0] = NULL; 5399 return -ENOMEM; 5400 } 5401 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 5402 } 5403 /* Instantiate the requested number of VFs. */ 5404 err = pci_enable_sriov(pdev, num_vfs); 5405 if (err) { 5406 pr_info("Unable to instantiate %d VFs\n", num_vfs); 5407 if (!current_vfs) { 5408 unregister_netdev(adap->port[0]); 5409 free_netdev(adap->port[0]); 5410 adap->port[0] = NULL; 5411 kfree(adap->vfinfo); 5412 adap->vfinfo = NULL; 5413 } 5414 return err; 5415 } 5416 5417 adap->num_vfs = num_vfs; 5418 return num_vfs; 5419 } 5420 #endif /* CONFIG_PCI_IOV */ 5421 5422 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 5423 { 5424 struct net_device *netdev; 5425 struct adapter *adapter; 5426 static int adap_idx = 1; 5427 int s_qpp, qpp, num_seg; 5428 struct port_info *pi; 5429 bool highdma = false; 5430 enum chip_type chip; 5431 void __iomem *regs; 5432 int func, chip_ver; 5433 u16 device_id; 5434 int i, err; 5435 u32 whoami; 5436 5437 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 5438 5439 err = pci_request_regions(pdev, KBUILD_MODNAME); 5440 if (err) { 5441 /* Just info, some other driver may have claimed the device. */ 5442 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 5443 return err; 5444 } 5445 5446 err = pci_enable_device(pdev); 5447 if (err) { 5448 dev_err(&pdev->dev, "cannot enable PCI device\n"); 5449 goto out_release_regions; 5450 } 5451 5452 regs = pci_ioremap_bar(pdev, 0); 5453 if (!regs) { 5454 dev_err(&pdev->dev, "cannot map device registers\n"); 5455 err = -ENOMEM; 5456 goto out_disable_device; 5457 } 5458 5459 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5460 if (!adapter) { 5461 err = -ENOMEM; 5462 goto out_unmap_bar0; 5463 } 5464 5465 adapter->regs = regs; 5466 err = t4_wait_dev_ready(regs); 5467 if (err < 0) 5468 goto out_free_adapter; 5469 5470 /* We control everything through one PF */ 5471 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5472 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 5473 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 5474 if (chip < 0) { 5475 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 5476 err = chip; 5477 goto out_free_adapter; 5478 } 5479 chip_ver = CHELSIO_CHIP_VERSION(chip); 5480 func = chip_ver <= CHELSIO_T5 ? 5481 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5482 5483 adapter->pdev = pdev; 5484 adapter->pdev_dev = &pdev->dev; 5485 adapter->name = pci_name(pdev); 5486 adapter->mbox = func; 5487 adapter->pf = func; 5488 adapter->params.chip = chip; 5489 adapter->adap_idx = adap_idx; 5490 adapter->msg_enable = DFLT_MSG_ENABLE; 5491 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5492 (sizeof(struct mbox_cmd) * 5493 T4_OS_LOG_MBOX_CMDS), 5494 GFP_KERNEL); 5495 if (!adapter->mbox_log) { 5496 err = -ENOMEM; 5497 goto out_free_adapter; 5498 } 5499 spin_lock_init(&adapter->mbox_lock); 5500 INIT_LIST_HEAD(&adapter->mlist.list); 5501 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 5502 pci_set_drvdata(pdev, adapter); 5503 5504 if (func != ent->driver_data) { 5505 pci_disable_device(pdev); 5506 pci_save_state(pdev); /* to restore SR-IOV later */ 5507 return 0; 5508 } 5509 5510 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 5511 highdma = true; 5512 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 5513 if (err) { 5514 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 5515 "coherent allocations\n"); 5516 goto out_free_adapter; 5517 } 5518 } else { 5519 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 5520 if (err) { 5521 dev_err(&pdev->dev, "no usable DMA configuration\n"); 5522 goto out_free_adapter; 5523 } 5524 } 5525 5526 pci_enable_pcie_error_reporting(pdev); 5527 pci_set_master(pdev); 5528 pci_save_state(pdev); 5529 adap_idx++; 5530 adapter->workq = create_singlethread_workqueue("cxgb4"); 5531 if (!adapter->workq) { 5532 err = -ENOMEM; 5533 goto out_free_adapter; 5534 } 5535 5536 /* PCI device has been enabled */ 5537 adapter->flags |= DEV_ENABLED; 5538 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 5539 5540 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 5541 * Ingress Packet Data to Free List Buffers in order to allow for 5542 * chipset performance optimizations between the Root Complex and 5543 * Memory Controllers. (Messages to the associated Ingress Queue 5544 * notifying new Packet Placement in the Free Lists Buffers will be 5545 * send without the Relaxed Ordering Attribute thus guaranteeing that 5546 * all preceding PCIe Transaction Layer Packets will be processed 5547 * first.) But some Root Complexes have various issues with Upstream 5548 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 5549 * The PCIe devices which under the Root Complexes will be cleared the 5550 * Relaxed Ordering bit in the configuration space, So we check our 5551 * PCIe configuration space to see if it's flagged with advice against 5552 * using Relaxed Ordering. 5553 */ 5554 if (!pcie_relaxed_ordering_enabled(pdev)) 5555 adapter->flags |= ROOT_NO_RELAXED_ORDERING; 5556 5557 spin_lock_init(&adapter->stats_lock); 5558 spin_lock_init(&adapter->tid_release_lock); 5559 spin_lock_init(&adapter->win0_lock); 5560 5561 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 5562 INIT_WORK(&adapter->db_full_task, process_db_full); 5563 INIT_WORK(&adapter->db_drop_task, process_db_drop); 5564 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 5565 5566 err = t4_prep_adapter(adapter); 5567 if (err) 5568 goto out_free_adapter; 5569 5570 if (is_kdump_kernel()) { 5571 /* Collect hardware state and append to /proc/vmcore */ 5572 err = cxgb4_cudbg_vmcore_add_dump(adapter); 5573 if (err) { 5574 dev_warn(adapter->pdev_dev, 5575 "Fail collecting vmcore device dump, err: %d. Continuing\n", 5576 err); 5577 err = 0; 5578 } 5579 } 5580 5581 if (!is_t4(adapter->params.chip)) { 5582 s_qpp = (QUEUESPERPAGEPF0_S + 5583 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 5584 adapter->pf); 5585 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 5586 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 5587 num_seg = PAGE_SIZE / SEGMENT_SIZE; 5588 5589 /* Each segment size is 128B. Write coalescing is enabled only 5590 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 5591 * queue is less no of segments that can be accommodated in 5592 * a page size. 5593 */ 5594 if (qpp > num_seg) { 5595 dev_err(&pdev->dev, 5596 "Incorrect number of egress queues per page\n"); 5597 err = -EINVAL; 5598 goto out_free_adapter; 5599 } 5600 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 5601 pci_resource_len(pdev, 2)); 5602 if (!adapter->bar2) { 5603 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 5604 err = -ENOMEM; 5605 goto out_free_adapter; 5606 } 5607 } 5608 5609 setup_memwin(adapter); 5610 err = adap_init0(adapter); 5611 #ifdef CONFIG_DEBUG_FS 5612 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 5613 #endif 5614 setup_memwin_rdma(adapter); 5615 if (err) 5616 goto out_unmap_bar; 5617 5618 /* configure SGE_STAT_CFG_A to read WC stats */ 5619 if (!is_t4(adapter->params.chip)) 5620 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 5621 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 5622 T6_STATMODE_V(0))); 5623 5624 for_each_port(adapter, i) { 5625 netdev = alloc_etherdev_mq(sizeof(struct port_info), 5626 MAX_ETH_QSETS); 5627 if (!netdev) { 5628 err = -ENOMEM; 5629 goto out_free_dev; 5630 } 5631 5632 SET_NETDEV_DEV(netdev, &pdev->dev); 5633 5634 adapter->port[i] = netdev; 5635 pi = netdev_priv(netdev); 5636 pi->adapter = adapter; 5637 pi->xact_addr_filt = -1; 5638 pi->port_id = i; 5639 netdev->irq = pdev->irq; 5640 5641 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 5642 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5643 NETIF_F_RXCSUM | NETIF_F_RXHASH | 5644 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 5645 NETIF_F_HW_TC; 5646 5647 if (chip_ver > CHELSIO_T5) { 5648 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 5649 NETIF_F_IPV6_CSUM | 5650 NETIF_F_RXCSUM | 5651 NETIF_F_GSO_UDP_TUNNEL | 5652 NETIF_F_TSO | NETIF_F_TSO6; 5653 5654 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; 5655 } 5656 5657 if (highdma) 5658 netdev->hw_features |= NETIF_F_HIGHDMA; 5659 netdev->features |= netdev->hw_features; 5660 netdev->vlan_features = netdev->features & VLAN_FEAT; 5661 5662 netdev->priv_flags |= IFF_UNICAST_FLT; 5663 5664 /* MTU range: 81 - 9600 */ 5665 netdev->min_mtu = 81; /* accommodate SACK */ 5666 netdev->max_mtu = MAX_MTU; 5667 5668 netdev->netdev_ops = &cxgb4_netdev_ops; 5669 #ifdef CONFIG_CHELSIO_T4_DCB 5670 netdev->dcbnl_ops = &cxgb4_dcb_ops; 5671 cxgb4_dcb_state_init(netdev); 5672 cxgb4_dcb_version_init(netdev); 5673 #endif 5674 cxgb4_set_ethtool_ops(netdev); 5675 } 5676 5677 cxgb4_init_ethtool_dump(adapter); 5678 5679 pci_set_drvdata(pdev, adapter); 5680 5681 if (adapter->flags & FW_OK) { 5682 err = t4_port_init(adapter, func, func, 0); 5683 if (err) 5684 goto out_free_dev; 5685 } else if (adapter->params.nports == 1) { 5686 /* If we don't have a connection to the firmware -- possibly 5687 * because of an error -- grab the raw VPD parameters so we 5688 * can set the proper MAC Address on the debug network 5689 * interface that we've created. 5690 */ 5691 u8 hw_addr[ETH_ALEN]; 5692 u8 *na = adapter->params.vpd.na; 5693 5694 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 5695 if (!err) { 5696 for (i = 0; i < ETH_ALEN; i++) 5697 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 5698 hex2val(na[2 * i + 1])); 5699 t4_set_hw_addr(adapter, 0, hw_addr); 5700 } 5701 } 5702 5703 if (!(adapter->flags & FW_OK)) 5704 goto fw_attach_fail; 5705 5706 /* Configure queues and allocate tables now, they can be needed as 5707 * soon as the first register_netdev completes. 5708 */ 5709 err = cfg_queues(adapter); 5710 if (err) 5711 goto out_free_dev; 5712 5713 adapter->smt = t4_init_smt(); 5714 if (!adapter->smt) { 5715 /* We tolerate a lack of SMT, giving up some functionality */ 5716 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 5717 } 5718 5719 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 5720 if (!adapter->l2t) { 5721 /* We tolerate a lack of L2T, giving up some functionality */ 5722 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 5723 adapter->params.offload = 0; 5724 } 5725 5726 adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size, 5727 sizeof(struct mps_encap_entry), 5728 GFP_KERNEL); 5729 if (!adapter->mps_encap) 5730 dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n"); 5731 5732 #if IS_ENABLED(CONFIG_IPV6) 5733 if (chip_ver <= CHELSIO_T5 && 5734 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 5735 /* CLIP functionality is not present in hardware, 5736 * hence disable all offload features 5737 */ 5738 dev_warn(&pdev->dev, 5739 "CLIP not enabled in hardware, continuing\n"); 5740 adapter->params.offload = 0; 5741 } else { 5742 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 5743 adapter->clipt_end); 5744 if (!adapter->clipt) { 5745 /* We tolerate a lack of clip_table, giving up 5746 * some functionality 5747 */ 5748 dev_warn(&pdev->dev, 5749 "could not allocate Clip table, continuing\n"); 5750 adapter->params.offload = 0; 5751 } 5752 } 5753 #endif 5754 5755 for_each_port(adapter, i) { 5756 pi = adap2pinfo(adapter, i); 5757 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 5758 if (!pi->sched_tbl) 5759 dev_warn(&pdev->dev, 5760 "could not activate scheduling on port %d\n", 5761 i); 5762 } 5763 5764 if (tid_init(&adapter->tids) < 0) { 5765 dev_warn(&pdev->dev, "could not allocate TID table, " 5766 "continuing\n"); 5767 adapter->params.offload = 0; 5768 } else { 5769 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 5770 if (!adapter->tc_u32) 5771 dev_warn(&pdev->dev, 5772 "could not offload tc u32, continuing\n"); 5773 5774 if (cxgb4_init_tc_flower(adapter)) 5775 dev_warn(&pdev->dev, 5776 "could not offload tc flower, continuing\n"); 5777 } 5778 5779 if (is_offload(adapter) || is_hashfilter(adapter)) { 5780 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 5781 u32 hash_base, hash_reg; 5782 5783 if (chip_ver <= CHELSIO_T5) { 5784 hash_reg = LE_DB_TID_HASHBASE_A; 5785 hash_base = t4_read_reg(adapter, hash_reg); 5786 adapter->tids.hash_base = hash_base / 4; 5787 } else { 5788 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 5789 hash_base = t4_read_reg(adapter, hash_reg); 5790 adapter->tids.hash_base = hash_base; 5791 } 5792 } 5793 } 5794 5795 /* See what interrupts we'll be using */ 5796 if (msi > 1 && enable_msix(adapter) == 0) 5797 adapter->flags |= USING_MSIX; 5798 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 5799 adapter->flags |= USING_MSI; 5800 if (msi > 1) 5801 free_msix_info(adapter); 5802 } 5803 5804 /* check for PCI Express bandwidth capabiltites */ 5805 pcie_print_link_status(pdev); 5806 5807 err = init_rss(adapter); 5808 if (err) 5809 goto out_free_dev; 5810 5811 err = setup_fw_sge_queues(adapter); 5812 if (err) { 5813 dev_err(adapter->pdev_dev, 5814 "FW sge queue allocation failed, err %d", err); 5815 goto out_free_dev; 5816 } 5817 5818 fw_attach_fail: 5819 /* 5820 * The card is now ready to go. If any errors occur during device 5821 * registration we do not fail the whole card but rather proceed only 5822 * with the ports we manage to register successfully. However we must 5823 * register at least one net device. 5824 */ 5825 for_each_port(adapter, i) { 5826 pi = adap2pinfo(adapter, i); 5827 adapter->port[i]->dev_port = pi->lport; 5828 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 5829 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 5830 5831 netif_carrier_off(adapter->port[i]); 5832 5833 err = register_netdev(adapter->port[i]); 5834 if (err) 5835 break; 5836 adapter->chan_map[pi->tx_chan] = i; 5837 print_port_info(adapter->port[i]); 5838 } 5839 if (i == 0) { 5840 dev_err(&pdev->dev, "could not register any net devices\n"); 5841 goto out_free_dev; 5842 } 5843 if (err) { 5844 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 5845 err = 0; 5846 } 5847 5848 if (cxgb4_debugfs_root) { 5849 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 5850 cxgb4_debugfs_root); 5851 setup_debugfs(adapter); 5852 } 5853 5854 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 5855 pdev->needs_freset = 1; 5856 5857 if (is_uld(adapter)) { 5858 mutex_lock(&uld_mutex); 5859 list_add_tail(&adapter->list_node, &adapter_list); 5860 mutex_unlock(&uld_mutex); 5861 } 5862 5863 if (!is_t4(adapter->params.chip)) 5864 cxgb4_ptp_init(adapter); 5865 5866 if (IS_REACHABLE(CONFIG_THERMAL) && 5867 !is_t4(adapter->params.chip) && (adapter->flags & FW_OK)) 5868 cxgb4_thermal_init(adapter); 5869 5870 print_adapter_info(adapter); 5871 return 0; 5872 5873 out_free_dev: 5874 t4_free_sge_resources(adapter); 5875 free_some_resources(adapter); 5876 if (adapter->flags & USING_MSIX) 5877 free_msix_info(adapter); 5878 if (adapter->num_uld || adapter->num_ofld_uld) 5879 t4_uld_mem_free(adapter); 5880 out_unmap_bar: 5881 if (!is_t4(adapter->params.chip)) 5882 iounmap(adapter->bar2); 5883 out_free_adapter: 5884 if (adapter->workq) 5885 destroy_workqueue(adapter->workq); 5886 5887 kfree(adapter->mbox_log); 5888 kfree(adapter); 5889 out_unmap_bar0: 5890 iounmap(regs); 5891 out_disable_device: 5892 pci_disable_pcie_error_reporting(pdev); 5893 pci_disable_device(pdev); 5894 out_release_regions: 5895 pci_release_regions(pdev); 5896 return err; 5897 } 5898 5899 static void remove_one(struct pci_dev *pdev) 5900 { 5901 struct adapter *adapter = pci_get_drvdata(pdev); 5902 5903 if (!adapter) { 5904 pci_release_regions(pdev); 5905 return; 5906 } 5907 5908 adapter->flags |= SHUTTING_DOWN; 5909 5910 if (adapter->pf == 4) { 5911 int i; 5912 5913 /* Tear down per-adapter Work Queue first since it can contain 5914 * references to our adapter data structure. 5915 */ 5916 destroy_workqueue(adapter->workq); 5917 5918 if (is_uld(adapter)) { 5919 detach_ulds(adapter); 5920 t4_uld_clean_up(adapter); 5921 } 5922 5923 adap_free_hma_mem(adapter); 5924 5925 disable_interrupts(adapter); 5926 5927 for_each_port(adapter, i) 5928 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5929 unregister_netdev(adapter->port[i]); 5930 5931 debugfs_remove_recursive(adapter->debugfs_root); 5932 5933 if (!is_t4(adapter->params.chip)) 5934 cxgb4_ptp_stop(adapter); 5935 if (IS_REACHABLE(CONFIG_THERMAL)) 5936 cxgb4_thermal_remove(adapter); 5937 5938 /* If we allocated filters, free up state associated with any 5939 * valid filters ... 5940 */ 5941 clear_all_filters(adapter); 5942 5943 if (adapter->flags & FULL_INIT_DONE) 5944 cxgb_down(adapter); 5945 5946 if (adapter->flags & USING_MSIX) 5947 free_msix_info(adapter); 5948 if (adapter->num_uld || adapter->num_ofld_uld) 5949 t4_uld_mem_free(adapter); 5950 free_some_resources(adapter); 5951 #if IS_ENABLED(CONFIG_IPV6) 5952 t4_cleanup_clip_tbl(adapter); 5953 #endif 5954 if (!is_t4(adapter->params.chip)) 5955 iounmap(adapter->bar2); 5956 } 5957 #ifdef CONFIG_PCI_IOV 5958 else { 5959 cxgb4_iov_configure(adapter->pdev, 0); 5960 } 5961 #endif 5962 iounmap(adapter->regs); 5963 pci_disable_pcie_error_reporting(pdev); 5964 if ((adapter->flags & DEV_ENABLED)) { 5965 pci_disable_device(pdev); 5966 adapter->flags &= ~DEV_ENABLED; 5967 } 5968 pci_release_regions(pdev); 5969 kfree(adapter->mbox_log); 5970 synchronize_rcu(); 5971 kfree(adapter); 5972 } 5973 5974 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 5975 * delivery. This is essentially a stripped down version of the PCI remove() 5976 * function where we do the minimal amount of work necessary to shutdown any 5977 * further activity. 5978 */ 5979 static void shutdown_one(struct pci_dev *pdev) 5980 { 5981 struct adapter *adapter = pci_get_drvdata(pdev); 5982 5983 /* As with remove_one() above (see extended comment), we only want do 5984 * do cleanup on PCI Devices which went all the way through init_one() 5985 * ... 5986 */ 5987 if (!adapter) { 5988 pci_release_regions(pdev); 5989 return; 5990 } 5991 5992 adapter->flags |= SHUTTING_DOWN; 5993 5994 if (adapter->pf == 4) { 5995 int i; 5996 5997 for_each_port(adapter, i) 5998 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5999 cxgb_close(adapter->port[i]); 6000 6001 if (is_uld(adapter)) { 6002 detach_ulds(adapter); 6003 t4_uld_clean_up(adapter); 6004 } 6005 6006 disable_interrupts(adapter); 6007 disable_msi(adapter); 6008 6009 t4_sge_stop(adapter); 6010 if (adapter->flags & FW_OK) 6011 t4_fw_bye(adapter, adapter->mbox); 6012 } 6013 } 6014 6015 static struct pci_driver cxgb4_driver = { 6016 .name = KBUILD_MODNAME, 6017 .id_table = cxgb4_pci_tbl, 6018 .probe = init_one, 6019 .remove = remove_one, 6020 .shutdown = shutdown_one, 6021 #ifdef CONFIG_PCI_IOV 6022 .sriov_configure = cxgb4_iov_configure, 6023 #endif 6024 .err_handler = &cxgb4_eeh, 6025 }; 6026 6027 static int __init cxgb4_init_module(void) 6028 { 6029 int ret; 6030 6031 /* Debugfs support is optional, just warn if this fails */ 6032 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6033 if (!cxgb4_debugfs_root) 6034 pr_warn("could not create debugfs entry, continuing\n"); 6035 6036 ret = pci_register_driver(&cxgb4_driver); 6037 if (ret < 0) 6038 debugfs_remove(cxgb4_debugfs_root); 6039 6040 #if IS_ENABLED(CONFIG_IPV6) 6041 if (!inet6addr_registered) { 6042 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6043 inet6addr_registered = true; 6044 } 6045 #endif 6046 6047 return ret; 6048 } 6049 6050 static void __exit cxgb4_cleanup_module(void) 6051 { 6052 #if IS_ENABLED(CONFIG_IPV6) 6053 if (inet6addr_registered) { 6054 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6055 inet6addr_registered = false; 6056 } 6057 #endif 6058 pci_unregister_driver(&cxgb4_driver); 6059 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6060 } 6061 6062 module_init(cxgb4_init_module); 6063 module_exit(cxgb4_cleanup_module); 6064