1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <linux/uaccess.h> 66 #include <linux/crash_dump.h> 67 #include <net/udp_tunnel.h> 68 69 #include "cxgb4.h" 70 #include "cxgb4_filter.h" 71 #include "t4_regs.h" 72 #include "t4_values.h" 73 #include "t4_msg.h" 74 #include "t4fw_api.h" 75 #include "t4fw_version.h" 76 #include "cxgb4_dcb.h" 77 #include "srq.h" 78 #include "cxgb4_debugfs.h" 79 #include "clip_tbl.h" 80 #include "l2t.h" 81 #include "smt.h" 82 #include "sched.h" 83 #include "cxgb4_tc_u32.h" 84 #include "cxgb4_tc_flower.h" 85 #include "cxgb4_ptp.h" 86 #include "cxgb4_cudbg.h" 87 88 char cxgb4_driver_name[] = KBUILD_MODNAME; 89 90 #ifdef DRV_VERSION 91 #undef DRV_VERSION 92 #endif 93 #define DRV_VERSION "2.0.0-ko" 94 const char cxgb4_driver_version[] = DRV_VERSION; 95 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 96 97 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 98 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 99 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 100 101 /* Macros needed to support the PCI Device ID Table ... 102 */ 103 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 104 static const struct pci_device_id cxgb4_pci_tbl[] = { 105 #define CXGB4_UNIFIED_PF 0x4 106 107 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF 108 109 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 110 * called for both. 111 */ 112 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 113 114 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 115 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF} 116 117 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 118 { 0, } \ 119 } 120 121 #include "t4_pci_id_tbl.h" 122 123 #define FW4_FNAME "cxgb4/t4fw.bin" 124 #define FW5_FNAME "cxgb4/t5fw.bin" 125 #define FW6_FNAME "cxgb4/t6fw.bin" 126 #define FW4_CFNAME "cxgb4/t4-config.txt" 127 #define FW5_CFNAME "cxgb4/t5-config.txt" 128 #define FW6_CFNAME "cxgb4/t6-config.txt" 129 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 130 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 131 #define PHY_AQ1202_DEVICEID 0x4409 132 #define PHY_BCM84834_DEVICEID 0x4486 133 134 MODULE_DESCRIPTION(DRV_DESC); 135 MODULE_AUTHOR("Chelsio Communications"); 136 MODULE_LICENSE("Dual BSD/GPL"); 137 MODULE_VERSION(DRV_VERSION); 138 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 139 MODULE_FIRMWARE(FW4_FNAME); 140 MODULE_FIRMWARE(FW5_FNAME); 141 MODULE_FIRMWARE(FW6_FNAME); 142 143 /* 144 * The driver uses the best interrupt scheme available on a platform in the 145 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 146 * of these schemes the driver may consider as follows: 147 * 148 * msi = 2: choose from among all three options 149 * msi = 1: only consider MSI and INTx interrupts 150 * msi = 0: force INTx interrupts 151 */ 152 static int msi = 2; 153 154 module_param(msi, int, 0644); 155 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 156 157 /* 158 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 159 * offset by 2 bytes in order to have the IP headers line up on 4-byte 160 * boundaries. This is a requirement for many architectures which will throw 161 * a machine check fault if an attempt is made to access one of the 4-byte IP 162 * header fields on a non-4-byte boundary. And it's a major performance issue 163 * even on some architectures which allow it like some implementations of the 164 * x86 ISA. However, some architectures don't mind this and for some very 165 * edge-case performance sensitive applications (like forwarding large volumes 166 * of small packets), setting this DMA offset to 0 will decrease the number of 167 * PCI-E Bus transfers enough to measurably affect performance. 168 */ 169 static int rx_dma_offset = 2; 170 171 /* TX Queue select used to determine what algorithm to use for selecting TX 172 * queue. Select between the kernel provided function (select_queue=0) or user 173 * cxgb_select_queue function (select_queue=1) 174 * 175 * Default: select_queue=0 176 */ 177 static int select_queue; 178 module_param(select_queue, int, 0644); 179 MODULE_PARM_DESC(select_queue, 180 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 181 182 static struct dentry *cxgb4_debugfs_root; 183 184 LIST_HEAD(adapter_list); 185 DEFINE_MUTEX(uld_mutex); 186 187 static void link_report(struct net_device *dev) 188 { 189 if (!netif_carrier_ok(dev)) 190 netdev_info(dev, "link down\n"); 191 else { 192 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 193 194 const char *s; 195 const struct port_info *p = netdev_priv(dev); 196 197 switch (p->link_cfg.speed) { 198 case 100: 199 s = "100Mbps"; 200 break; 201 case 1000: 202 s = "1Gbps"; 203 break; 204 case 10000: 205 s = "10Gbps"; 206 break; 207 case 25000: 208 s = "25Gbps"; 209 break; 210 case 40000: 211 s = "40Gbps"; 212 break; 213 case 50000: 214 s = "50Gbps"; 215 break; 216 case 100000: 217 s = "100Gbps"; 218 break; 219 default: 220 pr_info("%s: unsupported speed: %d\n", 221 dev->name, p->link_cfg.speed); 222 return; 223 } 224 225 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 226 fc[p->link_cfg.fc]); 227 } 228 } 229 230 #ifdef CONFIG_CHELSIO_T4_DCB 231 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 232 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 233 { 234 struct port_info *pi = netdev_priv(dev); 235 struct adapter *adap = pi->adapter; 236 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 237 int i; 238 239 /* We use a simple mapping of Port TX Queue Index to DCB 240 * Priority when we're enabling DCB. 241 */ 242 for (i = 0; i < pi->nqsets; i++, txq++) { 243 u32 name, value; 244 int err; 245 246 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 247 FW_PARAMS_PARAM_X_V( 248 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 249 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 250 value = enable ? i : 0xffffffff; 251 252 /* Since we can be called while atomic (from "interrupt 253 * level") we need to issue the Set Parameters Commannd 254 * without sleeping (timeout < 0). 255 */ 256 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 257 &name, &value, 258 -FW_CMD_MAX_TIMEOUT); 259 260 if (err) 261 dev_err(adap->pdev_dev, 262 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 263 enable ? "set" : "unset", pi->port_id, i, -err); 264 else 265 txq->dcb_prio = enable ? value : 0; 266 } 267 } 268 269 int cxgb4_dcb_enabled(const struct net_device *dev) 270 { 271 struct port_info *pi = netdev_priv(dev); 272 273 if (!pi->dcb.enabled) 274 return 0; 275 276 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 277 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 278 } 279 #endif /* CONFIG_CHELSIO_T4_DCB */ 280 281 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 282 { 283 struct net_device *dev = adapter->port[port_id]; 284 285 /* Skip changes from disabled ports. */ 286 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 287 if (link_stat) 288 netif_carrier_on(dev); 289 else { 290 #ifdef CONFIG_CHELSIO_T4_DCB 291 if (cxgb4_dcb_enabled(dev)) { 292 cxgb4_dcb_reset(dev); 293 dcb_tx_queue_prio_enable(dev, false); 294 } 295 #endif /* CONFIG_CHELSIO_T4_DCB */ 296 netif_carrier_off(dev); 297 } 298 299 link_report(dev); 300 } 301 } 302 303 void t4_os_portmod_changed(struct adapter *adap, int port_id) 304 { 305 static const char *mod_str[] = { 306 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 307 }; 308 309 struct net_device *dev = adap->port[port_id]; 310 struct port_info *pi = netdev_priv(dev); 311 312 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 313 netdev_info(dev, "port module unplugged\n"); 314 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 315 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 316 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 317 netdev_info(dev, "%s: unsupported port module inserted\n", 318 dev->name); 319 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 320 netdev_info(dev, "%s: unknown port module inserted\n", 321 dev->name); 322 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR) 323 netdev_info(dev, "%s: transceiver module error\n", dev->name); 324 else 325 netdev_info(dev, "%s: unknown module type %d inserted\n", 326 dev->name, pi->mod_type); 327 328 /* If the interface is running, then we'll need any "sticky" Link 329 * Parameters redone with a new Transceiver Module. 330 */ 331 pi->link_cfg.redo_l1cfg = netif_running(dev); 332 } 333 334 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 335 module_param(dbfifo_int_thresh, int, 0644); 336 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 337 338 /* 339 * usecs to sleep while draining the dbfifo 340 */ 341 static int dbfifo_drain_delay = 1000; 342 module_param(dbfifo_drain_delay, int, 0644); 343 MODULE_PARM_DESC(dbfifo_drain_delay, 344 "usecs to sleep while draining the dbfifo"); 345 346 static inline int cxgb4_set_addr_hash(struct port_info *pi) 347 { 348 struct adapter *adap = pi->adapter; 349 u64 vec = 0; 350 bool ucast = false; 351 struct hash_mac_addr *entry; 352 353 /* Calculate the hash vector for the updated list and program it */ 354 list_for_each_entry(entry, &adap->mac_hlist, list) { 355 ucast |= is_unicast_ether_addr(entry->addr); 356 vec |= (1ULL << hash_mac_addr(entry->addr)); 357 } 358 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 359 vec, false); 360 } 361 362 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 363 { 364 struct port_info *pi = netdev_priv(netdev); 365 struct adapter *adap = pi->adapter; 366 int ret; 367 u64 mhash = 0; 368 u64 uhash = 0; 369 bool free = false; 370 bool ucast = is_unicast_ether_addr(mac_addr); 371 const u8 *maclist[1] = {mac_addr}; 372 struct hash_mac_addr *new_entry; 373 374 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 375 NULL, ucast ? &uhash : &mhash, false); 376 if (ret < 0) 377 goto out; 378 /* if hash != 0, then add the addr to hash addr list 379 * so on the end we will calculate the hash for the 380 * list and program it 381 */ 382 if (uhash || mhash) { 383 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 384 if (!new_entry) 385 return -ENOMEM; 386 ether_addr_copy(new_entry->addr, mac_addr); 387 list_add_tail(&new_entry->list, &adap->mac_hlist); 388 ret = cxgb4_set_addr_hash(pi); 389 } 390 out: 391 return ret < 0 ? ret : 0; 392 } 393 394 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 395 { 396 struct port_info *pi = netdev_priv(netdev); 397 struct adapter *adap = pi->adapter; 398 int ret; 399 const u8 *maclist[1] = {mac_addr}; 400 struct hash_mac_addr *entry, *tmp; 401 402 /* If the MAC address to be removed is in the hash addr 403 * list, delete it from the list and update hash vector 404 */ 405 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 406 if (ether_addr_equal(entry->addr, mac_addr)) { 407 list_del(&entry->list); 408 kfree(entry); 409 return cxgb4_set_addr_hash(pi); 410 } 411 } 412 413 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 414 return ret < 0 ? -EINVAL : 0; 415 } 416 417 /* 418 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 419 * If @mtu is -1 it is left unchanged. 420 */ 421 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 422 { 423 struct port_info *pi = netdev_priv(dev); 424 struct adapter *adapter = pi->adapter; 425 426 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 427 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 428 429 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 430 (dev->flags & IFF_PROMISC) ? 1 : 0, 431 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 432 sleep_ok); 433 } 434 435 /** 436 * cxgb4_change_mac - Update match filter for a MAC address. 437 * @pi: the port_info 438 * @viid: the VI id 439 * @tcam_idx: TCAM index of existing filter for old value of MAC address, 440 * or -1 441 * @addr: the new MAC address value 442 * @persist: whether a new MAC allocation should be persistent 443 * @add_smt: if true also add the address to the HW SMT 444 * 445 * Modifies an MPS filter and sets it to the new MAC address if 446 * @tcam_idx >= 0, or adds the MAC address to a new filter if 447 * @tcam_idx < 0. In the latter case the address is added persistently 448 * if @persist is %true. 449 * Addresses are programmed to hash region, if tcam runs out of entries. 450 * 451 */ 452 static int cxgb4_change_mac(struct port_info *pi, unsigned int viid, 453 int *tcam_idx, const u8 *addr, bool persist, 454 u8 *smt_idx) 455 { 456 struct adapter *adapter = pi->adapter; 457 struct hash_mac_addr *entry, *new_entry; 458 int ret; 459 460 ret = t4_change_mac(adapter, adapter->mbox, viid, 461 *tcam_idx, addr, persist, smt_idx); 462 /* We ran out of TCAM entries. try programming hash region. */ 463 if (ret == -ENOMEM) { 464 /* If the MAC address to be updated is in the hash addr 465 * list, update it from the list 466 */ 467 list_for_each_entry(entry, &adapter->mac_hlist, list) { 468 if (entry->iface_mac) { 469 ether_addr_copy(entry->addr, addr); 470 goto set_hash; 471 } 472 } 473 new_entry = kzalloc(sizeof(*new_entry), GFP_KERNEL); 474 if (!new_entry) 475 return -ENOMEM; 476 ether_addr_copy(new_entry->addr, addr); 477 new_entry->iface_mac = true; 478 list_add_tail(&new_entry->list, &adapter->mac_hlist); 479 set_hash: 480 ret = cxgb4_set_addr_hash(pi); 481 } else if (ret >= 0) { 482 *tcam_idx = ret; 483 ret = 0; 484 } 485 486 return ret; 487 } 488 489 /* 490 * link_start - enable a port 491 * @dev: the port to enable 492 * 493 * Performs the MAC and PHY actions needed to enable a port. 494 */ 495 static int link_start(struct net_device *dev) 496 { 497 int ret; 498 struct port_info *pi = netdev_priv(dev); 499 unsigned int mb = pi->adapter->pf; 500 501 /* 502 * We do not set address filters and promiscuity here, the stack does 503 * that step explicitly. 504 */ 505 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 506 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 507 if (ret == 0) 508 ret = cxgb4_change_mac(pi, pi->viid, &pi->xact_addr_filt, 509 dev->dev_addr, true, &pi->smt_idx); 510 if (ret == 0) 511 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 512 &pi->link_cfg); 513 if (ret == 0) { 514 local_bh_disable(); 515 ret = t4_enable_pi_params(pi->adapter, mb, pi, true, 516 true, CXGB4_DCB_ENABLED); 517 local_bh_enable(); 518 } 519 520 return ret; 521 } 522 523 #ifdef CONFIG_CHELSIO_T4_DCB 524 /* Handle a Data Center Bridging update message from the firmware. */ 525 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 526 { 527 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 528 struct net_device *dev = adap->port[adap->chan_map[port]]; 529 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 530 int new_dcb_enabled; 531 532 cxgb4_dcb_handle_fw_update(adap, pcmd); 533 new_dcb_enabled = cxgb4_dcb_enabled(dev); 534 535 /* If the DCB has become enabled or disabled on the port then we're 536 * going to need to set up/tear down DCB Priority parameters for the 537 * TX Queues associated with the port. 538 */ 539 if (new_dcb_enabled != old_dcb_enabled) 540 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 541 } 542 #endif /* CONFIG_CHELSIO_T4_DCB */ 543 544 /* Response queue handler for the FW event queue. 545 */ 546 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 547 const struct pkt_gl *gl) 548 { 549 u8 opcode = ((const struct rss_header *)rsp)->opcode; 550 551 rsp++; /* skip RSS header */ 552 553 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 554 */ 555 if (unlikely(opcode == CPL_FW4_MSG && 556 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 557 rsp++; 558 opcode = ((const struct rss_header *)rsp)->opcode; 559 rsp++; 560 if (opcode != CPL_SGE_EGR_UPDATE) { 561 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 562 , opcode); 563 goto out; 564 } 565 } 566 567 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 568 const struct cpl_sge_egr_update *p = (void *)rsp; 569 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 570 struct sge_txq *txq; 571 572 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 573 txq->restarts++; 574 if (txq->q_type == CXGB4_TXQ_ETH) { 575 struct sge_eth_txq *eq; 576 577 eq = container_of(txq, struct sge_eth_txq, q); 578 t4_sge_eth_txq_egress_update(q->adap, eq, -1); 579 } else { 580 struct sge_uld_txq *oq; 581 582 oq = container_of(txq, struct sge_uld_txq, q); 583 tasklet_schedule(&oq->qresume_tsk); 584 } 585 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 586 const struct cpl_fw6_msg *p = (void *)rsp; 587 588 #ifdef CONFIG_CHELSIO_T4_DCB 589 const struct fw_port_cmd *pcmd = (const void *)p->data; 590 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 591 unsigned int action = 592 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 593 594 if (cmd == FW_PORT_CMD && 595 (action == FW_PORT_ACTION_GET_PORT_INFO || 596 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 597 int port = FW_PORT_CMD_PORTID_G( 598 be32_to_cpu(pcmd->op_to_portid)); 599 struct net_device *dev; 600 int dcbxdis, state_input; 601 602 dev = q->adap->port[q->adap->chan_map[port]]; 603 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO 604 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) 605 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32) 606 & FW_PORT_CMD_DCBXDIS32_F)); 607 state_input = (dcbxdis 608 ? CXGB4_DCB_INPUT_FW_DISABLED 609 : CXGB4_DCB_INPUT_FW_ENABLED); 610 611 cxgb4_dcb_state_fsm(dev, state_input); 612 } 613 614 if (cmd == FW_PORT_CMD && 615 action == FW_PORT_ACTION_L2_DCB_CFG) 616 dcb_rpl(q->adap, pcmd); 617 else 618 #endif 619 if (p->type == 0) 620 t4_handle_fw_rpl(q->adap, p->data); 621 } else if (opcode == CPL_L2T_WRITE_RPL) { 622 const struct cpl_l2t_write_rpl *p = (void *)rsp; 623 624 do_l2t_write_rpl(q->adap, p); 625 } else if (opcode == CPL_SMT_WRITE_RPL) { 626 const struct cpl_smt_write_rpl *p = (void *)rsp; 627 628 do_smt_write_rpl(q->adap, p); 629 } else if (opcode == CPL_SET_TCB_RPL) { 630 const struct cpl_set_tcb_rpl *p = (void *)rsp; 631 632 filter_rpl(q->adap, p); 633 } else if (opcode == CPL_ACT_OPEN_RPL) { 634 const struct cpl_act_open_rpl *p = (void *)rsp; 635 636 hash_filter_rpl(q->adap, p); 637 } else if (opcode == CPL_ABORT_RPL_RSS) { 638 const struct cpl_abort_rpl_rss *p = (void *)rsp; 639 640 hash_del_filter_rpl(q->adap, p); 641 } else if (opcode == CPL_SRQ_TABLE_RPL) { 642 const struct cpl_srq_table_rpl *p = (void *)rsp; 643 644 do_srq_table_rpl(q->adap, p); 645 } else 646 dev_err(q->adap->pdev_dev, 647 "unexpected CPL %#x on FW event queue\n", opcode); 648 out: 649 return 0; 650 } 651 652 static void disable_msi(struct adapter *adapter) 653 { 654 if (adapter->flags & CXGB4_USING_MSIX) { 655 pci_disable_msix(adapter->pdev); 656 adapter->flags &= ~CXGB4_USING_MSIX; 657 } else if (adapter->flags & CXGB4_USING_MSI) { 658 pci_disable_msi(adapter->pdev); 659 adapter->flags &= ~CXGB4_USING_MSI; 660 } 661 } 662 663 /* 664 * Interrupt handler for non-data events used with MSI-X. 665 */ 666 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 667 { 668 struct adapter *adap = cookie; 669 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 670 671 if (v & PFSW_F) { 672 adap->swintr = 1; 673 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 674 } 675 if (adap->flags & CXGB4_MASTER_PF) 676 t4_slow_intr_handler(adap); 677 return IRQ_HANDLED; 678 } 679 680 /* 681 * Name the MSI-X interrupts. 682 */ 683 static void name_msix_vecs(struct adapter *adap) 684 { 685 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 686 687 /* non-data interrupts */ 688 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 689 690 /* FW events */ 691 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 692 adap->port[0]->name); 693 694 /* Ethernet queues */ 695 for_each_port(adap, j) { 696 struct net_device *d = adap->port[j]; 697 const struct port_info *pi = netdev_priv(d); 698 699 for (i = 0; i < pi->nqsets; i++, msi_idx++) 700 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 701 d->name, i); 702 } 703 } 704 705 static int request_msix_queue_irqs(struct adapter *adap) 706 { 707 struct sge *s = &adap->sge; 708 int err, ethqidx; 709 int msi_index = 2; 710 711 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 712 adap->msix_info[1].desc, &s->fw_evtq); 713 if (err) 714 return err; 715 716 for_each_ethrxq(s, ethqidx) { 717 err = request_irq(adap->msix_info[msi_index].vec, 718 t4_sge_intr_msix, 0, 719 adap->msix_info[msi_index].desc, 720 &s->ethrxq[ethqidx].rspq); 721 if (err) 722 goto unwind; 723 msi_index++; 724 } 725 return 0; 726 727 unwind: 728 while (--ethqidx >= 0) 729 free_irq(adap->msix_info[--msi_index].vec, 730 &s->ethrxq[ethqidx].rspq); 731 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 732 return err; 733 } 734 735 static void free_msix_queue_irqs(struct adapter *adap) 736 { 737 int i, msi_index = 2; 738 struct sge *s = &adap->sge; 739 740 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 741 for_each_ethrxq(s, i) 742 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 743 } 744 745 /** 746 * cxgb4_write_rss - write the RSS table for a given port 747 * @pi: the port 748 * @queues: array of queue indices for RSS 749 * 750 * Sets up the portion of the HW RSS table for the port's VI to distribute 751 * packets to the Rx queues in @queues. 752 * Should never be called before setting up sge eth rx queues 753 */ 754 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 755 { 756 u16 *rss; 757 int i, err; 758 struct adapter *adapter = pi->adapter; 759 const struct sge_eth_rxq *rxq; 760 761 rxq = &adapter->sge.ethrxq[pi->first_qset]; 762 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL); 763 if (!rss) 764 return -ENOMEM; 765 766 /* map the queue indices to queue ids */ 767 for (i = 0; i < pi->rss_size; i++, queues++) 768 rss[i] = rxq[*queues].rspq.abs_id; 769 770 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 771 pi->rss_size, rss, pi->rss_size); 772 /* If Tunnel All Lookup isn't specified in the global RSS 773 * Configuration, then we need to specify a default Ingress 774 * Queue for any ingress packets which aren't hashed. We'll 775 * use our first ingress queue ... 776 */ 777 if (!err) 778 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 779 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 780 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 781 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 782 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 783 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 784 rss[0]); 785 kfree(rss); 786 return err; 787 } 788 789 /** 790 * setup_rss - configure RSS 791 * @adap: the adapter 792 * 793 * Sets up RSS for each port. 794 */ 795 static int setup_rss(struct adapter *adap) 796 { 797 int i, j, err; 798 799 for_each_port(adap, i) { 800 const struct port_info *pi = adap2pinfo(adap, i); 801 802 /* Fill default values with equal distribution */ 803 for (j = 0; j < pi->rss_size; j++) 804 pi->rss[j] = j % pi->nqsets; 805 806 err = cxgb4_write_rss(pi, pi->rss); 807 if (err) 808 return err; 809 } 810 return 0; 811 } 812 813 /* 814 * Return the channel of the ingress queue with the given qid. 815 */ 816 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 817 { 818 qid -= p->ingr_start; 819 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 820 } 821 822 /* 823 * Wait until all NAPI handlers are descheduled. 824 */ 825 static void quiesce_rx(struct adapter *adap) 826 { 827 int i; 828 829 for (i = 0; i < adap->sge.ingr_sz; i++) { 830 struct sge_rspq *q = adap->sge.ingr_map[i]; 831 832 if (q && q->handler) 833 napi_disable(&q->napi); 834 } 835 } 836 837 /* Disable interrupt and napi handler */ 838 static void disable_interrupts(struct adapter *adap) 839 { 840 if (adap->flags & CXGB4_FULL_INIT_DONE) { 841 t4_intr_disable(adap); 842 if (adap->flags & CXGB4_USING_MSIX) { 843 free_msix_queue_irqs(adap); 844 free_irq(adap->msix_info[0].vec, adap); 845 } else { 846 free_irq(adap->pdev->irq, adap); 847 } 848 quiesce_rx(adap); 849 } 850 } 851 852 /* 853 * Enable NAPI scheduling and interrupt generation for all Rx queues. 854 */ 855 static void enable_rx(struct adapter *adap) 856 { 857 int i; 858 859 for (i = 0; i < adap->sge.ingr_sz; i++) { 860 struct sge_rspq *q = adap->sge.ingr_map[i]; 861 862 if (!q) 863 continue; 864 if (q->handler) 865 napi_enable(&q->napi); 866 867 /* 0-increment GTS to start the timer and enable interrupts */ 868 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 869 SEINTARM_V(q->intr_params) | 870 INGRESSQID_V(q->cntxt_id)); 871 } 872 } 873 874 875 static int setup_fw_sge_queues(struct adapter *adap) 876 { 877 struct sge *s = &adap->sge; 878 int err = 0; 879 880 bitmap_zero(s->starving_fl, s->egr_sz); 881 bitmap_zero(s->txq_maperr, s->egr_sz); 882 883 if (adap->flags & CXGB4_USING_MSIX) 884 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */ 885 else { 886 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 887 NULL, NULL, NULL, -1); 888 if (err) 889 return err; 890 adap->msi_idx = -((int)s->intrq.abs_id + 1); 891 } 892 893 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 894 adap->msi_idx, NULL, fwevtq_handler, NULL, -1); 895 return err; 896 } 897 898 /** 899 * setup_sge_queues - configure SGE Tx/Rx/response queues 900 * @adap: the adapter 901 * 902 * Determines how many sets of SGE queues to use and initializes them. 903 * We support multiple queue sets per port if we have MSI-X, otherwise 904 * just one queue set per port. 905 */ 906 static int setup_sge_queues(struct adapter *adap) 907 { 908 int err, i, j; 909 struct sge *s = &adap->sge; 910 struct sge_uld_rxq_info *rxq_info = NULL; 911 unsigned int cmplqid = 0; 912 913 if (is_uld(adap)) 914 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA]; 915 916 for_each_port(adap, i) { 917 struct net_device *dev = adap->port[i]; 918 struct port_info *pi = netdev_priv(dev); 919 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 920 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 921 922 for (j = 0; j < pi->nqsets; j++, q++) { 923 if (adap->msi_idx > 0) 924 adap->msi_idx++; 925 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 926 adap->msi_idx, &q->fl, 927 t4_ethrx_handler, 928 NULL, 929 t4_get_tp_ch_map(adap, 930 pi->tx_chan)); 931 if (err) 932 goto freeout; 933 q->rspq.idx = j; 934 memset(&q->stats, 0, sizeof(q->stats)); 935 } 936 937 q = &s->ethrxq[pi->first_qset]; 938 for (j = 0; j < pi->nqsets; j++, t++, q++) { 939 err = t4_sge_alloc_eth_txq(adap, t, dev, 940 netdev_get_tx_queue(dev, j), 941 q->rspq.cntxt_id, 942 !!(adap->flags & CXGB4_SGE_DBQ_TIMER)); 943 if (err) 944 goto freeout; 945 } 946 } 947 948 for_each_port(adap, i) { 949 /* Note that cmplqid below is 0 if we don't 950 * have RDMA queues, and that's the right value. 951 */ 952 if (rxq_info) 953 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id; 954 955 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 956 s->fw_evtq.cntxt_id, cmplqid); 957 if (err) 958 goto freeout; 959 } 960 961 if (!is_t4(adap->params.chip)) { 962 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0], 963 netdev_get_tx_queue(adap->port[0], 0) 964 , s->fw_evtq.cntxt_id, false); 965 if (err) 966 goto freeout; 967 } 968 969 t4_write_reg(adap, is_t4(adap->params.chip) ? 970 MPS_TRC_RSS_CONTROL_A : 971 MPS_T5_TRC_RSS_CONTROL_A, 972 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 973 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 974 return 0; 975 freeout: 976 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err); 977 t4_free_sge_resources(adap); 978 return err; 979 } 980 981 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 982 struct net_device *sb_dev) 983 { 984 int txq; 985 986 #ifdef CONFIG_CHELSIO_T4_DCB 987 /* If a Data Center Bridging has been successfully negotiated on this 988 * link then we'll use the skb's priority to map it to a TX Queue. 989 * The skb's priority is determined via the VLAN Tag Priority Code 990 * Point field. 991 */ 992 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) { 993 u16 vlan_tci; 994 int err; 995 996 err = vlan_get_tag(skb, &vlan_tci); 997 if (unlikely(err)) { 998 if (net_ratelimit()) 999 netdev_warn(dev, 1000 "TX Packet without VLAN Tag on DCB Link\n"); 1001 txq = 0; 1002 } else { 1003 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1004 #ifdef CONFIG_CHELSIO_T4_FCOE 1005 if (skb->protocol == htons(ETH_P_FCOE)) 1006 txq = skb->priority & 0x7; 1007 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1008 } 1009 return txq; 1010 } 1011 #endif /* CONFIG_CHELSIO_T4_DCB */ 1012 1013 if (select_queue) { 1014 txq = (skb_rx_queue_recorded(skb) 1015 ? skb_get_rx_queue(skb) 1016 : smp_processor_id()); 1017 1018 while (unlikely(txq >= dev->real_num_tx_queues)) 1019 txq -= dev->real_num_tx_queues; 1020 1021 return txq; 1022 } 1023 1024 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 1025 } 1026 1027 static int closest_timer(const struct sge *s, int time) 1028 { 1029 int i, delta, match = 0, min_delta = INT_MAX; 1030 1031 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1032 delta = time - s->timer_val[i]; 1033 if (delta < 0) 1034 delta = -delta; 1035 if (delta < min_delta) { 1036 min_delta = delta; 1037 match = i; 1038 } 1039 } 1040 return match; 1041 } 1042 1043 static int closest_thres(const struct sge *s, int thres) 1044 { 1045 int i, delta, match = 0, min_delta = INT_MAX; 1046 1047 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1048 delta = thres - s->counter_val[i]; 1049 if (delta < 0) 1050 delta = -delta; 1051 if (delta < min_delta) { 1052 min_delta = delta; 1053 match = i; 1054 } 1055 } 1056 return match; 1057 } 1058 1059 /** 1060 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1061 * @q: the Rx queue 1062 * @us: the hold-off time in us, or 0 to disable timer 1063 * @cnt: the hold-off packet count, or 0 to disable counter 1064 * 1065 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1066 * one of the two needs to be enabled for the queue to generate interrupts. 1067 */ 1068 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1069 unsigned int us, unsigned int cnt) 1070 { 1071 struct adapter *adap = q->adap; 1072 1073 if ((us | cnt) == 0) 1074 cnt = 1; 1075 1076 if (cnt) { 1077 int err; 1078 u32 v, new_idx; 1079 1080 new_idx = closest_thres(&adap->sge, cnt); 1081 if (q->desc && q->pktcnt_idx != new_idx) { 1082 /* the queue has already been created, update it */ 1083 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1084 FW_PARAMS_PARAM_X_V( 1085 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1086 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1087 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1088 &v, &new_idx); 1089 if (err) 1090 return err; 1091 } 1092 q->pktcnt_idx = new_idx; 1093 } 1094 1095 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1096 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1097 return 0; 1098 } 1099 1100 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1101 { 1102 const struct port_info *pi = netdev_priv(dev); 1103 netdev_features_t changed = dev->features ^ features; 1104 int err; 1105 1106 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1107 return 0; 1108 1109 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1110 -1, -1, -1, 1111 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1112 if (unlikely(err)) 1113 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1114 return err; 1115 } 1116 1117 static int setup_debugfs(struct adapter *adap) 1118 { 1119 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1120 return -1; 1121 1122 #ifdef CONFIG_DEBUG_FS 1123 t4_setup_debugfs(adap); 1124 #endif 1125 return 0; 1126 } 1127 1128 /* 1129 * upper-layer driver support 1130 */ 1131 1132 /* 1133 * Allocate an active-open TID and set it to the supplied value. 1134 */ 1135 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1136 { 1137 int atid = -1; 1138 1139 spin_lock_bh(&t->atid_lock); 1140 if (t->afree) { 1141 union aopen_entry *p = t->afree; 1142 1143 atid = (p - t->atid_tab) + t->atid_base; 1144 t->afree = p->next; 1145 p->data = data; 1146 t->atids_in_use++; 1147 } 1148 spin_unlock_bh(&t->atid_lock); 1149 return atid; 1150 } 1151 EXPORT_SYMBOL(cxgb4_alloc_atid); 1152 1153 /* 1154 * Release an active-open TID. 1155 */ 1156 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1157 { 1158 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1159 1160 spin_lock_bh(&t->atid_lock); 1161 p->next = t->afree; 1162 t->afree = p; 1163 t->atids_in_use--; 1164 spin_unlock_bh(&t->atid_lock); 1165 } 1166 EXPORT_SYMBOL(cxgb4_free_atid); 1167 1168 /* 1169 * Allocate a server TID and set it to the supplied value. 1170 */ 1171 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1172 { 1173 int stid; 1174 1175 spin_lock_bh(&t->stid_lock); 1176 if (family == PF_INET) { 1177 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1178 if (stid < t->nstids) 1179 __set_bit(stid, t->stid_bmap); 1180 else 1181 stid = -1; 1182 } else { 1183 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1184 if (stid < 0) 1185 stid = -1; 1186 } 1187 if (stid >= 0) { 1188 t->stid_tab[stid].data = data; 1189 stid += t->stid_base; 1190 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1191 * This is equivalent to 4 TIDs. With CLIP enabled it 1192 * needs 2 TIDs. 1193 */ 1194 if (family == PF_INET6) { 1195 t->stids_in_use += 2; 1196 t->v6_stids_in_use += 2; 1197 } else { 1198 t->stids_in_use++; 1199 } 1200 } 1201 spin_unlock_bh(&t->stid_lock); 1202 return stid; 1203 } 1204 EXPORT_SYMBOL(cxgb4_alloc_stid); 1205 1206 /* Allocate a server filter TID and set it to the supplied value. 1207 */ 1208 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1209 { 1210 int stid; 1211 1212 spin_lock_bh(&t->stid_lock); 1213 if (family == PF_INET) { 1214 stid = find_next_zero_bit(t->stid_bmap, 1215 t->nstids + t->nsftids, t->nstids); 1216 if (stid < (t->nstids + t->nsftids)) 1217 __set_bit(stid, t->stid_bmap); 1218 else 1219 stid = -1; 1220 } else { 1221 stid = -1; 1222 } 1223 if (stid >= 0) { 1224 t->stid_tab[stid].data = data; 1225 stid -= t->nstids; 1226 stid += t->sftid_base; 1227 t->sftids_in_use++; 1228 } 1229 spin_unlock_bh(&t->stid_lock); 1230 return stid; 1231 } 1232 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1233 1234 /* Release a server TID. 1235 */ 1236 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1237 { 1238 /* Is it a server filter TID? */ 1239 if (t->nsftids && (stid >= t->sftid_base)) { 1240 stid -= t->sftid_base; 1241 stid += t->nstids; 1242 } else { 1243 stid -= t->stid_base; 1244 } 1245 1246 spin_lock_bh(&t->stid_lock); 1247 if (family == PF_INET) 1248 __clear_bit(stid, t->stid_bmap); 1249 else 1250 bitmap_release_region(t->stid_bmap, stid, 1); 1251 t->stid_tab[stid].data = NULL; 1252 if (stid < t->nstids) { 1253 if (family == PF_INET6) { 1254 t->stids_in_use -= 2; 1255 t->v6_stids_in_use -= 2; 1256 } else { 1257 t->stids_in_use--; 1258 } 1259 } else { 1260 t->sftids_in_use--; 1261 } 1262 1263 spin_unlock_bh(&t->stid_lock); 1264 } 1265 EXPORT_SYMBOL(cxgb4_free_stid); 1266 1267 /* 1268 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1269 */ 1270 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1271 unsigned int tid) 1272 { 1273 struct cpl_tid_release *req; 1274 1275 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1276 req = __skb_put(skb, sizeof(*req)); 1277 INIT_TP_WR(req, tid); 1278 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1279 } 1280 1281 /* 1282 * Queue a TID release request and if necessary schedule a work queue to 1283 * process it. 1284 */ 1285 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1286 unsigned int tid) 1287 { 1288 void **p = &t->tid_tab[tid]; 1289 struct adapter *adap = container_of(t, struct adapter, tids); 1290 1291 spin_lock_bh(&adap->tid_release_lock); 1292 *p = adap->tid_release_head; 1293 /* Low 2 bits encode the Tx channel number */ 1294 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1295 if (!adap->tid_release_task_busy) { 1296 adap->tid_release_task_busy = true; 1297 queue_work(adap->workq, &adap->tid_release_task); 1298 } 1299 spin_unlock_bh(&adap->tid_release_lock); 1300 } 1301 1302 /* 1303 * Process the list of pending TID release requests. 1304 */ 1305 static void process_tid_release_list(struct work_struct *work) 1306 { 1307 struct sk_buff *skb; 1308 struct adapter *adap; 1309 1310 adap = container_of(work, struct adapter, tid_release_task); 1311 1312 spin_lock_bh(&adap->tid_release_lock); 1313 while (adap->tid_release_head) { 1314 void **p = adap->tid_release_head; 1315 unsigned int chan = (uintptr_t)p & 3; 1316 p = (void *)p - chan; 1317 1318 adap->tid_release_head = *p; 1319 *p = NULL; 1320 spin_unlock_bh(&adap->tid_release_lock); 1321 1322 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1323 GFP_KERNEL))) 1324 schedule_timeout_uninterruptible(1); 1325 1326 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1327 t4_ofld_send(adap, skb); 1328 spin_lock_bh(&adap->tid_release_lock); 1329 } 1330 adap->tid_release_task_busy = false; 1331 spin_unlock_bh(&adap->tid_release_lock); 1332 } 1333 1334 /* 1335 * Release a TID and inform HW. If we are unable to allocate the release 1336 * message we defer to a work queue. 1337 */ 1338 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid, 1339 unsigned short family) 1340 { 1341 struct sk_buff *skb; 1342 struct adapter *adap = container_of(t, struct adapter, tids); 1343 1344 WARN_ON(tid >= t->ntids); 1345 1346 if (t->tid_tab[tid]) { 1347 t->tid_tab[tid] = NULL; 1348 atomic_dec(&t->conns_in_use); 1349 if (t->hash_base && (tid >= t->hash_base)) { 1350 if (family == AF_INET6) 1351 atomic_sub(2, &t->hash_tids_in_use); 1352 else 1353 atomic_dec(&t->hash_tids_in_use); 1354 } else { 1355 if (family == AF_INET6) 1356 atomic_sub(2, &t->tids_in_use); 1357 else 1358 atomic_dec(&t->tids_in_use); 1359 } 1360 } 1361 1362 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1363 if (likely(skb)) { 1364 mk_tid_release(skb, chan, tid); 1365 t4_ofld_send(adap, skb); 1366 } else 1367 cxgb4_queue_tid_release(t, chan, tid); 1368 } 1369 EXPORT_SYMBOL(cxgb4_remove_tid); 1370 1371 /* 1372 * Allocate and initialize the TID tables. Returns 0 on success. 1373 */ 1374 static int tid_init(struct tid_info *t) 1375 { 1376 struct adapter *adap = container_of(t, struct adapter, tids); 1377 unsigned int max_ftids = t->nftids + t->nsftids; 1378 unsigned int natids = t->natids; 1379 unsigned int stid_bmap_size; 1380 unsigned int ftid_bmap_size; 1381 size_t size; 1382 1383 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1384 ftid_bmap_size = BITS_TO_LONGS(t->nftids); 1385 size = t->ntids * sizeof(*t->tid_tab) + 1386 natids * sizeof(*t->atid_tab) + 1387 t->nstids * sizeof(*t->stid_tab) + 1388 t->nsftids * sizeof(*t->stid_tab) + 1389 stid_bmap_size * sizeof(long) + 1390 max_ftids * sizeof(*t->ftid_tab) + 1391 ftid_bmap_size * sizeof(long); 1392 1393 t->tid_tab = kvzalloc(size, GFP_KERNEL); 1394 if (!t->tid_tab) 1395 return -ENOMEM; 1396 1397 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1398 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1399 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1400 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1401 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids]; 1402 spin_lock_init(&t->stid_lock); 1403 spin_lock_init(&t->atid_lock); 1404 spin_lock_init(&t->ftid_lock); 1405 1406 t->stids_in_use = 0; 1407 t->v6_stids_in_use = 0; 1408 t->sftids_in_use = 0; 1409 t->afree = NULL; 1410 t->atids_in_use = 0; 1411 atomic_set(&t->tids_in_use, 0); 1412 atomic_set(&t->conns_in_use, 0); 1413 atomic_set(&t->hash_tids_in_use, 0); 1414 1415 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1416 if (natids) { 1417 while (--natids) 1418 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1419 t->afree = t->atid_tab; 1420 } 1421 1422 if (is_offload(adap)) { 1423 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1424 /* Reserve stid 0 for T4/T5 adapters */ 1425 if (!t->stid_base && 1426 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 1427 __set_bit(0, t->stid_bmap); 1428 } 1429 1430 bitmap_zero(t->ftid_bmap, t->nftids); 1431 return 0; 1432 } 1433 1434 /** 1435 * cxgb4_create_server - create an IP server 1436 * @dev: the device 1437 * @stid: the server TID 1438 * @sip: local IP address to bind server to 1439 * @sport: the server's TCP port 1440 * @queue: queue to direct messages from this server to 1441 * 1442 * Create an IP server for the given port and address. 1443 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1444 */ 1445 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1446 __be32 sip, __be16 sport, __be16 vlan, 1447 unsigned int queue) 1448 { 1449 unsigned int chan; 1450 struct sk_buff *skb; 1451 struct adapter *adap; 1452 struct cpl_pass_open_req *req; 1453 int ret; 1454 1455 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1456 if (!skb) 1457 return -ENOMEM; 1458 1459 adap = netdev2adap(dev); 1460 req = __skb_put(skb, sizeof(*req)); 1461 INIT_TP_WR(req, 0); 1462 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1463 req->local_port = sport; 1464 req->peer_port = htons(0); 1465 req->local_ip = sip; 1466 req->peer_ip = htonl(0); 1467 chan = rxq_to_chan(&adap->sge, queue); 1468 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1469 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1470 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1471 ret = t4_mgmt_tx(adap, skb); 1472 return net_xmit_eval(ret); 1473 } 1474 EXPORT_SYMBOL(cxgb4_create_server); 1475 1476 /* cxgb4_create_server6 - create an IPv6 server 1477 * @dev: the device 1478 * @stid: the server TID 1479 * @sip: local IPv6 address to bind server to 1480 * @sport: the server's TCP port 1481 * @queue: queue to direct messages from this server to 1482 * 1483 * Create an IPv6 server for the given port and address. 1484 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1485 */ 1486 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1487 const struct in6_addr *sip, __be16 sport, 1488 unsigned int queue) 1489 { 1490 unsigned int chan; 1491 struct sk_buff *skb; 1492 struct adapter *adap; 1493 struct cpl_pass_open_req6 *req; 1494 int ret; 1495 1496 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1497 if (!skb) 1498 return -ENOMEM; 1499 1500 adap = netdev2adap(dev); 1501 req = __skb_put(skb, sizeof(*req)); 1502 INIT_TP_WR(req, 0); 1503 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1504 req->local_port = sport; 1505 req->peer_port = htons(0); 1506 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1507 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1508 req->peer_ip_hi = cpu_to_be64(0); 1509 req->peer_ip_lo = cpu_to_be64(0); 1510 chan = rxq_to_chan(&adap->sge, queue); 1511 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1512 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1513 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1514 ret = t4_mgmt_tx(adap, skb); 1515 return net_xmit_eval(ret); 1516 } 1517 EXPORT_SYMBOL(cxgb4_create_server6); 1518 1519 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1520 unsigned int queue, bool ipv6) 1521 { 1522 struct sk_buff *skb; 1523 struct adapter *adap; 1524 struct cpl_close_listsvr_req *req; 1525 int ret; 1526 1527 adap = netdev2adap(dev); 1528 1529 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1530 if (!skb) 1531 return -ENOMEM; 1532 1533 req = __skb_put(skb, sizeof(*req)); 1534 INIT_TP_WR(req, 0); 1535 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1536 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1537 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1538 ret = t4_mgmt_tx(adap, skb); 1539 return net_xmit_eval(ret); 1540 } 1541 EXPORT_SYMBOL(cxgb4_remove_server); 1542 1543 /** 1544 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1545 * @mtus: the HW MTU table 1546 * @mtu: the target MTU 1547 * @idx: index of selected entry in the MTU table 1548 * 1549 * Returns the index and the value in the HW MTU table that is closest to 1550 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1551 * table, in which case that smallest available value is selected. 1552 */ 1553 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1554 unsigned int *idx) 1555 { 1556 unsigned int i = 0; 1557 1558 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1559 ++i; 1560 if (idx) 1561 *idx = i; 1562 return mtus[i]; 1563 } 1564 EXPORT_SYMBOL(cxgb4_best_mtu); 1565 1566 /** 1567 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1568 * @mtus: the HW MTU table 1569 * @header_size: Header Size 1570 * @data_size_max: maximum Data Segment Size 1571 * @data_size_align: desired Data Segment Size Alignment (2^N) 1572 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1573 * 1574 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1575 * MTU Table based solely on a Maximum MTU parameter, we break that 1576 * parameter up into a Header Size and Maximum Data Segment Size, and 1577 * provide a desired Data Segment Size Alignment. If we find an MTU in 1578 * the Hardware MTU Table which will result in a Data Segment Size with 1579 * the requested alignment _and_ that MTU isn't "too far" from the 1580 * closest MTU, then we'll return that rather than the closest MTU. 1581 */ 1582 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1583 unsigned short header_size, 1584 unsigned short data_size_max, 1585 unsigned short data_size_align, 1586 unsigned int *mtu_idxp) 1587 { 1588 unsigned short max_mtu = header_size + data_size_max; 1589 unsigned short data_size_align_mask = data_size_align - 1; 1590 int mtu_idx, aligned_mtu_idx; 1591 1592 /* Scan the MTU Table till we find an MTU which is larger than our 1593 * Maximum MTU or we reach the end of the table. Along the way, 1594 * record the last MTU found, if any, which will result in a Data 1595 * Segment Length matching the requested alignment. 1596 */ 1597 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1598 unsigned short data_size = mtus[mtu_idx] - header_size; 1599 1600 /* If this MTU minus the Header Size would result in a 1601 * Data Segment Size of the desired alignment, remember it. 1602 */ 1603 if ((data_size & data_size_align_mask) == 0) 1604 aligned_mtu_idx = mtu_idx; 1605 1606 /* If we're not at the end of the Hardware MTU Table and the 1607 * next element is larger than our Maximum MTU, drop out of 1608 * the loop. 1609 */ 1610 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1611 break; 1612 } 1613 1614 /* If we fell out of the loop because we ran to the end of the table, 1615 * then we just have to use the last [largest] entry. 1616 */ 1617 if (mtu_idx == NMTUS) 1618 mtu_idx--; 1619 1620 /* If we found an MTU which resulted in the requested Data Segment 1621 * Length alignment and that's "not far" from the largest MTU which is 1622 * less than or equal to the maximum MTU, then use that. 1623 */ 1624 if (aligned_mtu_idx >= 0 && 1625 mtu_idx - aligned_mtu_idx <= 1) 1626 mtu_idx = aligned_mtu_idx; 1627 1628 /* If the caller has passed in an MTU Index pointer, pass the 1629 * MTU Index back. Return the MTU value. 1630 */ 1631 if (mtu_idxp) 1632 *mtu_idxp = mtu_idx; 1633 return mtus[mtu_idx]; 1634 } 1635 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1636 1637 /** 1638 * cxgb4_port_chan - get the HW channel of a port 1639 * @dev: the net device for the port 1640 * 1641 * Return the HW Tx channel of the given port. 1642 */ 1643 unsigned int cxgb4_port_chan(const struct net_device *dev) 1644 { 1645 return netdev2pinfo(dev)->tx_chan; 1646 } 1647 EXPORT_SYMBOL(cxgb4_port_chan); 1648 1649 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1650 { 1651 struct adapter *adap = netdev2adap(dev); 1652 u32 v1, v2, lp_count, hp_count; 1653 1654 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1655 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1656 if (is_t4(adap->params.chip)) { 1657 lp_count = LP_COUNT_G(v1); 1658 hp_count = HP_COUNT_G(v1); 1659 } else { 1660 lp_count = LP_COUNT_T5_G(v1); 1661 hp_count = HP_COUNT_T5_G(v2); 1662 } 1663 return lpfifo ? lp_count : hp_count; 1664 } 1665 EXPORT_SYMBOL(cxgb4_dbfifo_count); 1666 1667 /** 1668 * cxgb4_port_viid - get the VI id of a port 1669 * @dev: the net device for the port 1670 * 1671 * Return the VI id of the given port. 1672 */ 1673 unsigned int cxgb4_port_viid(const struct net_device *dev) 1674 { 1675 return netdev2pinfo(dev)->viid; 1676 } 1677 EXPORT_SYMBOL(cxgb4_port_viid); 1678 1679 /** 1680 * cxgb4_port_idx - get the index of a port 1681 * @dev: the net device for the port 1682 * 1683 * Return the index of the given port. 1684 */ 1685 unsigned int cxgb4_port_idx(const struct net_device *dev) 1686 { 1687 return netdev2pinfo(dev)->port_id; 1688 } 1689 EXPORT_SYMBOL(cxgb4_port_idx); 1690 1691 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 1692 struct tp_tcp_stats *v6) 1693 { 1694 struct adapter *adap = pci_get_drvdata(pdev); 1695 1696 spin_lock(&adap->stats_lock); 1697 t4_tp_get_tcp_stats(adap, v4, v6, false); 1698 spin_unlock(&adap->stats_lock); 1699 } 1700 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 1701 1702 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 1703 const unsigned int *pgsz_order) 1704 { 1705 struct adapter *adap = netdev2adap(dev); 1706 1707 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 1708 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 1709 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 1710 HPZ3_V(pgsz_order[3])); 1711 } 1712 EXPORT_SYMBOL(cxgb4_iscsi_init); 1713 1714 int cxgb4_flush_eq_cache(struct net_device *dev) 1715 { 1716 struct adapter *adap = netdev2adap(dev); 1717 1718 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS); 1719 } 1720 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 1721 1722 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 1723 { 1724 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 1725 __be64 indices; 1726 int ret; 1727 1728 spin_lock(&adap->win0_lock); 1729 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 1730 sizeof(indices), (__be32 *)&indices, 1731 T4_MEMORY_READ); 1732 spin_unlock(&adap->win0_lock); 1733 if (!ret) { 1734 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 1735 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 1736 } 1737 return ret; 1738 } 1739 1740 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 1741 u16 size) 1742 { 1743 struct adapter *adap = netdev2adap(dev); 1744 u16 hw_pidx, hw_cidx; 1745 int ret; 1746 1747 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 1748 if (ret) 1749 goto out; 1750 1751 if (pidx != hw_pidx) { 1752 u16 delta; 1753 u32 val; 1754 1755 if (pidx >= hw_pidx) 1756 delta = pidx - hw_pidx; 1757 else 1758 delta = size - hw_pidx + pidx; 1759 1760 if (is_t4(adap->params.chip)) 1761 val = PIDX_V(delta); 1762 else 1763 val = PIDX_T5_V(delta); 1764 wmb(); 1765 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1766 QID_V(qid) | val); 1767 } 1768 out: 1769 return ret; 1770 } 1771 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 1772 1773 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 1774 { 1775 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 1776 u32 edc0_end, edc1_end, mc0_end, mc1_end; 1777 u32 offset, memtype, memaddr; 1778 struct adapter *adap; 1779 u32 hma_size = 0; 1780 int ret; 1781 1782 adap = netdev2adap(dev); 1783 1784 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 1785 1786 /* Figure out where the offset lands in the Memory Type/Address scheme. 1787 * This code assumes that the memory is laid out starting at offset 0 1788 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 1789 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 1790 * MC0, and some have both MC0 and MC1. 1791 */ 1792 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 1793 edc0_size = EDRAM0_SIZE_G(size) << 20; 1794 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 1795 edc1_size = EDRAM1_SIZE_G(size) << 20; 1796 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 1797 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 1798 1799 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) { 1800 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1801 hma_size = EXT_MEM1_SIZE_G(size) << 20; 1802 } 1803 edc0_end = edc0_size; 1804 edc1_end = edc0_end + edc1_size; 1805 mc0_end = edc1_end + mc0_size; 1806 1807 if (offset < edc0_end) { 1808 memtype = MEM_EDC0; 1809 memaddr = offset; 1810 } else if (offset < edc1_end) { 1811 memtype = MEM_EDC1; 1812 memaddr = offset - edc0_end; 1813 } else { 1814 if (hma_size && (offset < (edc1_end + hma_size))) { 1815 memtype = MEM_HMA; 1816 memaddr = offset - edc1_end; 1817 } else if (offset < mc0_end) { 1818 memtype = MEM_MC0; 1819 memaddr = offset - edc1_end; 1820 } else if (is_t5(adap->params.chip)) { 1821 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 1822 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 1823 mc1_end = mc0_end + mc1_size; 1824 if (offset < mc1_end) { 1825 memtype = MEM_MC1; 1826 memaddr = offset - mc0_end; 1827 } else { 1828 /* offset beyond the end of any memory */ 1829 goto err; 1830 } 1831 } else { 1832 /* T4/T6 only has a single memory channel */ 1833 goto err; 1834 } 1835 } 1836 1837 spin_lock(&adap->win0_lock); 1838 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 1839 spin_unlock(&adap->win0_lock); 1840 return ret; 1841 1842 err: 1843 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 1844 stag, offset); 1845 return -EINVAL; 1846 } 1847 EXPORT_SYMBOL(cxgb4_read_tpte); 1848 1849 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 1850 { 1851 u32 hi, lo; 1852 struct adapter *adap; 1853 1854 adap = netdev2adap(dev); 1855 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 1856 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 1857 1858 return ((u64)hi << 32) | (u64)lo; 1859 } 1860 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 1861 1862 int cxgb4_bar2_sge_qregs(struct net_device *dev, 1863 unsigned int qid, 1864 enum cxgb4_bar2_qtype qtype, 1865 int user, 1866 u64 *pbar2_qoffset, 1867 unsigned int *pbar2_qid) 1868 { 1869 return t4_bar2_sge_qregs(netdev2adap(dev), 1870 qid, 1871 (qtype == CXGB4_BAR2_QTYPE_EGRESS 1872 ? T4_BAR2_QTYPE_EGRESS 1873 : T4_BAR2_QTYPE_INGRESS), 1874 user, 1875 pbar2_qoffset, 1876 pbar2_qid); 1877 } 1878 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 1879 1880 static struct pci_driver cxgb4_driver; 1881 1882 static void check_neigh_update(struct neighbour *neigh) 1883 { 1884 const struct device *parent; 1885 const struct net_device *netdev = neigh->dev; 1886 1887 if (is_vlan_dev(netdev)) 1888 netdev = vlan_dev_real_dev(netdev); 1889 parent = netdev->dev.parent; 1890 if (parent && parent->driver == &cxgb4_driver.driver) 1891 t4_l2t_update(dev_get_drvdata(parent), neigh); 1892 } 1893 1894 static int netevent_cb(struct notifier_block *nb, unsigned long event, 1895 void *data) 1896 { 1897 switch (event) { 1898 case NETEVENT_NEIGH_UPDATE: 1899 check_neigh_update(data); 1900 break; 1901 case NETEVENT_REDIRECT: 1902 default: 1903 break; 1904 } 1905 return 0; 1906 } 1907 1908 static bool netevent_registered; 1909 static struct notifier_block cxgb4_netevent_nb = { 1910 .notifier_call = netevent_cb 1911 }; 1912 1913 static void drain_db_fifo(struct adapter *adap, int usecs) 1914 { 1915 u32 v1, v2, lp_count, hp_count; 1916 1917 do { 1918 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 1919 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 1920 if (is_t4(adap->params.chip)) { 1921 lp_count = LP_COUNT_G(v1); 1922 hp_count = HP_COUNT_G(v1); 1923 } else { 1924 lp_count = LP_COUNT_T5_G(v1); 1925 hp_count = HP_COUNT_T5_G(v2); 1926 } 1927 1928 if (lp_count == 0 && hp_count == 0) 1929 break; 1930 set_current_state(TASK_UNINTERRUPTIBLE); 1931 schedule_timeout(usecs_to_jiffies(usecs)); 1932 } while (1); 1933 } 1934 1935 static void disable_txq_db(struct sge_txq *q) 1936 { 1937 unsigned long flags; 1938 1939 spin_lock_irqsave(&q->db_lock, flags); 1940 q->db_disabled = 1; 1941 spin_unlock_irqrestore(&q->db_lock, flags); 1942 } 1943 1944 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 1945 { 1946 spin_lock_irq(&q->db_lock); 1947 if (q->db_pidx_inc) { 1948 /* Make sure that all writes to the TX descriptors 1949 * are committed before we tell HW about them. 1950 */ 1951 wmb(); 1952 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1953 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 1954 q->db_pidx_inc = 0; 1955 } 1956 q->db_disabled = 0; 1957 spin_unlock_irq(&q->db_lock); 1958 } 1959 1960 static void disable_dbs(struct adapter *adap) 1961 { 1962 int i; 1963 1964 for_each_ethrxq(&adap->sge, i) 1965 disable_txq_db(&adap->sge.ethtxq[i].q); 1966 if (is_offload(adap)) { 1967 struct sge_uld_txq_info *txq_info = 1968 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1969 1970 if (txq_info) { 1971 for_each_ofldtxq(&adap->sge, i) { 1972 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1973 1974 disable_txq_db(&txq->q); 1975 } 1976 } 1977 } 1978 for_each_port(adap, i) 1979 disable_txq_db(&adap->sge.ctrlq[i].q); 1980 } 1981 1982 static void enable_dbs(struct adapter *adap) 1983 { 1984 int i; 1985 1986 for_each_ethrxq(&adap->sge, i) 1987 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 1988 if (is_offload(adap)) { 1989 struct sge_uld_txq_info *txq_info = 1990 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 1991 1992 if (txq_info) { 1993 for_each_ofldtxq(&adap->sge, i) { 1994 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 1995 1996 enable_txq_db(adap, &txq->q); 1997 } 1998 } 1999 } 2000 for_each_port(adap, i) 2001 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2002 } 2003 2004 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2005 { 2006 enum cxgb4_uld type = CXGB4_ULD_RDMA; 2007 2008 if (adap->uld && adap->uld[type].handle) 2009 adap->uld[type].control(adap->uld[type].handle, cmd); 2010 } 2011 2012 static void process_db_full(struct work_struct *work) 2013 { 2014 struct adapter *adap; 2015 2016 adap = container_of(work, struct adapter, db_full_task); 2017 2018 drain_db_fifo(adap, dbfifo_drain_delay); 2019 enable_dbs(adap); 2020 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2021 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2022 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2023 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2024 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2025 else 2026 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2027 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2028 } 2029 2030 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2031 { 2032 u16 hw_pidx, hw_cidx; 2033 int ret; 2034 2035 spin_lock_irq(&q->db_lock); 2036 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2037 if (ret) 2038 goto out; 2039 if (q->db_pidx != hw_pidx) { 2040 u16 delta; 2041 u32 val; 2042 2043 if (q->db_pidx >= hw_pidx) 2044 delta = q->db_pidx - hw_pidx; 2045 else 2046 delta = q->size - hw_pidx + q->db_pidx; 2047 2048 if (is_t4(adap->params.chip)) 2049 val = PIDX_V(delta); 2050 else 2051 val = PIDX_T5_V(delta); 2052 wmb(); 2053 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2054 QID_V(q->cntxt_id) | val); 2055 } 2056 out: 2057 q->db_disabled = 0; 2058 q->db_pidx_inc = 0; 2059 spin_unlock_irq(&q->db_lock); 2060 if (ret) 2061 CH_WARN(adap, "DB drop recovery failed.\n"); 2062 } 2063 2064 static void recover_all_queues(struct adapter *adap) 2065 { 2066 int i; 2067 2068 for_each_ethrxq(&adap->sge, i) 2069 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2070 if (is_offload(adap)) { 2071 struct sge_uld_txq_info *txq_info = 2072 adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 2073 if (txq_info) { 2074 for_each_ofldtxq(&adap->sge, i) { 2075 struct sge_uld_txq *txq = &txq_info->uldtxq[i]; 2076 2077 sync_txq_pidx(adap, &txq->q); 2078 } 2079 } 2080 } 2081 for_each_port(adap, i) 2082 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2083 } 2084 2085 static void process_db_drop(struct work_struct *work) 2086 { 2087 struct adapter *adap; 2088 2089 adap = container_of(work, struct adapter, db_drop_task); 2090 2091 if (is_t4(adap->params.chip)) { 2092 drain_db_fifo(adap, dbfifo_drain_delay); 2093 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2094 drain_db_fifo(adap, dbfifo_drain_delay); 2095 recover_all_queues(adap); 2096 drain_db_fifo(adap, dbfifo_drain_delay); 2097 enable_dbs(adap); 2098 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2099 } else if (is_t5(adap->params.chip)) { 2100 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2101 u16 qid = (dropped_db >> 15) & 0x1ffff; 2102 u16 pidx_inc = dropped_db & 0x1fff; 2103 u64 bar2_qoffset; 2104 unsigned int bar2_qid; 2105 int ret; 2106 2107 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2108 0, &bar2_qoffset, &bar2_qid); 2109 if (ret) 2110 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2111 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2112 else 2113 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2114 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2115 2116 /* Re-enable BAR2 WC */ 2117 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2118 } 2119 2120 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2121 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2122 } 2123 2124 void t4_db_full(struct adapter *adap) 2125 { 2126 if (is_t4(adap->params.chip)) { 2127 disable_dbs(adap); 2128 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2129 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2130 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2131 queue_work(adap->workq, &adap->db_full_task); 2132 } 2133 } 2134 2135 void t4_db_dropped(struct adapter *adap) 2136 { 2137 if (is_t4(adap->params.chip)) { 2138 disable_dbs(adap); 2139 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2140 } 2141 queue_work(adap->workq, &adap->db_drop_task); 2142 } 2143 2144 void t4_register_netevent_notifier(void) 2145 { 2146 if (!netevent_registered) { 2147 register_netevent_notifier(&cxgb4_netevent_nb); 2148 netevent_registered = true; 2149 } 2150 } 2151 2152 static void detach_ulds(struct adapter *adap) 2153 { 2154 unsigned int i; 2155 2156 mutex_lock(&uld_mutex); 2157 list_del(&adap->list_node); 2158 2159 for (i = 0; i < CXGB4_ULD_MAX; i++) 2160 if (adap->uld && adap->uld[i].handle) 2161 adap->uld[i].state_change(adap->uld[i].handle, 2162 CXGB4_STATE_DETACH); 2163 2164 if (netevent_registered && list_empty(&adapter_list)) { 2165 unregister_netevent_notifier(&cxgb4_netevent_nb); 2166 netevent_registered = false; 2167 } 2168 mutex_unlock(&uld_mutex); 2169 } 2170 2171 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2172 { 2173 unsigned int i; 2174 2175 mutex_lock(&uld_mutex); 2176 for (i = 0; i < CXGB4_ULD_MAX; i++) 2177 if (adap->uld && adap->uld[i].handle) 2178 adap->uld[i].state_change(adap->uld[i].handle, 2179 new_state); 2180 mutex_unlock(&uld_mutex); 2181 } 2182 2183 #if IS_ENABLED(CONFIG_IPV6) 2184 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2185 unsigned long event, void *data) 2186 { 2187 struct inet6_ifaddr *ifa = data; 2188 struct net_device *event_dev = ifa->idev->dev; 2189 const struct device *parent = NULL; 2190 #if IS_ENABLED(CONFIG_BONDING) 2191 struct adapter *adap; 2192 #endif 2193 if (is_vlan_dev(event_dev)) 2194 event_dev = vlan_dev_real_dev(event_dev); 2195 #if IS_ENABLED(CONFIG_BONDING) 2196 if (event_dev->flags & IFF_MASTER) { 2197 list_for_each_entry(adap, &adapter_list, list_node) { 2198 switch (event) { 2199 case NETDEV_UP: 2200 cxgb4_clip_get(adap->port[0], 2201 (const u32 *)ifa, 1); 2202 break; 2203 case NETDEV_DOWN: 2204 cxgb4_clip_release(adap->port[0], 2205 (const u32 *)ifa, 1); 2206 break; 2207 default: 2208 break; 2209 } 2210 } 2211 return NOTIFY_OK; 2212 } 2213 #endif 2214 2215 if (event_dev) 2216 parent = event_dev->dev.parent; 2217 2218 if (parent && parent->driver == &cxgb4_driver.driver) { 2219 switch (event) { 2220 case NETDEV_UP: 2221 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2222 break; 2223 case NETDEV_DOWN: 2224 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2225 break; 2226 default: 2227 break; 2228 } 2229 } 2230 return NOTIFY_OK; 2231 } 2232 2233 static bool inet6addr_registered; 2234 static struct notifier_block cxgb4_inet6addr_notifier = { 2235 .notifier_call = cxgb4_inet6addr_handler 2236 }; 2237 2238 static void update_clip(const struct adapter *adap) 2239 { 2240 int i; 2241 struct net_device *dev; 2242 int ret; 2243 2244 rcu_read_lock(); 2245 2246 for (i = 0; i < MAX_NPORTS; i++) { 2247 dev = adap->port[i]; 2248 ret = 0; 2249 2250 if (dev) 2251 ret = cxgb4_update_root_dev_clip(dev); 2252 2253 if (ret < 0) 2254 break; 2255 } 2256 rcu_read_unlock(); 2257 } 2258 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2259 2260 /** 2261 * cxgb_up - enable the adapter 2262 * @adap: adapter being enabled 2263 * 2264 * Called when the first port is enabled, this function performs the 2265 * actions necessary to make an adapter operational, such as completing 2266 * the initialization of HW modules, and enabling interrupts. 2267 * 2268 * Must be called with the rtnl lock held. 2269 */ 2270 static int cxgb_up(struct adapter *adap) 2271 { 2272 int err; 2273 2274 mutex_lock(&uld_mutex); 2275 err = setup_sge_queues(adap); 2276 if (err) 2277 goto rel_lock; 2278 err = setup_rss(adap); 2279 if (err) 2280 goto freeq; 2281 2282 if (adap->flags & CXGB4_USING_MSIX) { 2283 name_msix_vecs(adap); 2284 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2285 adap->msix_info[0].desc, adap); 2286 if (err) 2287 goto irq_err; 2288 err = request_msix_queue_irqs(adap); 2289 if (err) { 2290 free_irq(adap->msix_info[0].vec, adap); 2291 goto irq_err; 2292 } 2293 } else { 2294 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2295 (adap->flags & CXGB4_USING_MSI) ? 0 2296 : IRQF_SHARED, 2297 adap->port[0]->name, adap); 2298 if (err) 2299 goto irq_err; 2300 } 2301 2302 enable_rx(adap); 2303 t4_sge_start(adap); 2304 t4_intr_enable(adap); 2305 adap->flags |= CXGB4_FULL_INIT_DONE; 2306 mutex_unlock(&uld_mutex); 2307 2308 notify_ulds(adap, CXGB4_STATE_UP); 2309 #if IS_ENABLED(CONFIG_IPV6) 2310 update_clip(adap); 2311 #endif 2312 return err; 2313 2314 irq_err: 2315 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2316 freeq: 2317 t4_free_sge_resources(adap); 2318 rel_lock: 2319 mutex_unlock(&uld_mutex); 2320 return err; 2321 } 2322 2323 static void cxgb_down(struct adapter *adapter) 2324 { 2325 cancel_work_sync(&adapter->tid_release_task); 2326 cancel_work_sync(&adapter->db_full_task); 2327 cancel_work_sync(&adapter->db_drop_task); 2328 adapter->tid_release_task_busy = false; 2329 adapter->tid_release_head = NULL; 2330 2331 t4_sge_stop(adapter); 2332 t4_free_sge_resources(adapter); 2333 2334 adapter->flags &= ~CXGB4_FULL_INIT_DONE; 2335 } 2336 2337 /* 2338 * net_device operations 2339 */ 2340 static int cxgb_open(struct net_device *dev) 2341 { 2342 int err; 2343 struct port_info *pi = netdev_priv(dev); 2344 struct adapter *adapter = pi->adapter; 2345 2346 netif_carrier_off(dev); 2347 2348 if (!(adapter->flags & CXGB4_FULL_INIT_DONE)) { 2349 err = cxgb_up(adapter); 2350 if (err < 0) 2351 return err; 2352 } 2353 2354 /* It's possible that the basic port information could have 2355 * changed since we first read it. 2356 */ 2357 err = t4_update_port_info(pi); 2358 if (err < 0) 2359 return err; 2360 2361 err = link_start(dev); 2362 if (!err) 2363 netif_tx_start_all_queues(dev); 2364 return err; 2365 } 2366 2367 static int cxgb_close(struct net_device *dev) 2368 { 2369 struct port_info *pi = netdev_priv(dev); 2370 struct adapter *adapter = pi->adapter; 2371 int ret; 2372 2373 netif_tx_stop_all_queues(dev); 2374 netif_carrier_off(dev); 2375 ret = t4_enable_pi_params(adapter, adapter->pf, pi, 2376 false, false, false); 2377 #ifdef CONFIG_CHELSIO_T4_DCB 2378 cxgb4_dcb_reset(dev); 2379 dcb_tx_queue_prio_enable(dev, false); 2380 #endif 2381 return ret; 2382 } 2383 2384 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2385 __be32 sip, __be16 sport, __be16 vlan, 2386 unsigned int queue, unsigned char port, unsigned char mask) 2387 { 2388 int ret; 2389 struct filter_entry *f; 2390 struct adapter *adap; 2391 int i; 2392 u8 *val; 2393 2394 adap = netdev2adap(dev); 2395 2396 /* Adjust stid to correct filter index */ 2397 stid -= adap->tids.sftid_base; 2398 stid += adap->tids.nftids; 2399 2400 /* Check to make sure the filter requested is writable ... 2401 */ 2402 f = &adap->tids.ftid_tab[stid]; 2403 ret = writable_filter(f); 2404 if (ret) 2405 return ret; 2406 2407 /* Clear out any old resources being used by the filter before 2408 * we start constructing the new filter. 2409 */ 2410 if (f->valid) 2411 clear_filter(adap, f); 2412 2413 /* Clear out filter specifications */ 2414 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2415 f->fs.val.lport = cpu_to_be16(sport); 2416 f->fs.mask.lport = ~0; 2417 val = (u8 *)&sip; 2418 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2419 for (i = 0; i < 4; i++) { 2420 f->fs.val.lip[i] = val[i]; 2421 f->fs.mask.lip[i] = ~0; 2422 } 2423 if (adap->params.tp.vlan_pri_map & PORT_F) { 2424 f->fs.val.iport = port; 2425 f->fs.mask.iport = mask; 2426 } 2427 } 2428 2429 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2430 f->fs.val.proto = IPPROTO_TCP; 2431 f->fs.mask.proto = ~0; 2432 } 2433 2434 f->fs.dirsteer = 1; 2435 f->fs.iq = queue; 2436 /* Mark filter as locked */ 2437 f->locked = 1; 2438 f->fs.rpttid = 1; 2439 2440 /* Save the actual tid. We need this to get the corresponding 2441 * filter entry structure in filter_rpl. 2442 */ 2443 f->tid = stid + adap->tids.ftid_base; 2444 ret = set_filter_wr(adap, stid); 2445 if (ret) { 2446 clear_filter(adap, f); 2447 return ret; 2448 } 2449 2450 return 0; 2451 } 2452 EXPORT_SYMBOL(cxgb4_create_server_filter); 2453 2454 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2455 unsigned int queue, bool ipv6) 2456 { 2457 struct filter_entry *f; 2458 struct adapter *adap; 2459 2460 adap = netdev2adap(dev); 2461 2462 /* Adjust stid to correct filter index */ 2463 stid -= adap->tids.sftid_base; 2464 stid += adap->tids.nftids; 2465 2466 f = &adap->tids.ftid_tab[stid]; 2467 /* Unlock the filter */ 2468 f->locked = 0; 2469 2470 return delete_filter(adap, stid); 2471 } 2472 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2473 2474 static void cxgb_get_stats(struct net_device *dev, 2475 struct rtnl_link_stats64 *ns) 2476 { 2477 struct port_stats stats; 2478 struct port_info *p = netdev_priv(dev); 2479 struct adapter *adapter = p->adapter; 2480 2481 /* Block retrieving statistics during EEH error 2482 * recovery. Otherwise, the recovery might fail 2483 * and the PCI device will be removed permanently 2484 */ 2485 spin_lock(&adapter->stats_lock); 2486 if (!netif_device_present(dev)) { 2487 spin_unlock(&adapter->stats_lock); 2488 return; 2489 } 2490 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2491 &p->stats_base); 2492 spin_unlock(&adapter->stats_lock); 2493 2494 ns->tx_bytes = stats.tx_octets; 2495 ns->tx_packets = stats.tx_frames; 2496 ns->rx_bytes = stats.rx_octets; 2497 ns->rx_packets = stats.rx_frames; 2498 ns->multicast = stats.rx_mcast_frames; 2499 2500 /* detailed rx_errors */ 2501 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2502 stats.rx_runt; 2503 ns->rx_over_errors = 0; 2504 ns->rx_crc_errors = stats.rx_fcs_err; 2505 ns->rx_frame_errors = stats.rx_symbol_err; 2506 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 + 2507 stats.rx_ovflow2 + stats.rx_ovflow3 + 2508 stats.rx_trunc0 + stats.rx_trunc1 + 2509 stats.rx_trunc2 + stats.rx_trunc3; 2510 ns->rx_missed_errors = 0; 2511 2512 /* detailed tx_errors */ 2513 ns->tx_aborted_errors = 0; 2514 ns->tx_carrier_errors = 0; 2515 ns->tx_fifo_errors = 0; 2516 ns->tx_heartbeat_errors = 0; 2517 ns->tx_window_errors = 0; 2518 2519 ns->tx_errors = stats.tx_error_frames; 2520 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2521 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2522 } 2523 2524 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2525 { 2526 unsigned int mbox; 2527 int ret = 0, prtad, devad; 2528 struct port_info *pi = netdev_priv(dev); 2529 struct adapter *adapter = pi->adapter; 2530 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2531 2532 switch (cmd) { 2533 case SIOCGMIIPHY: 2534 if (pi->mdio_addr < 0) 2535 return -EOPNOTSUPP; 2536 data->phy_id = pi->mdio_addr; 2537 break; 2538 case SIOCGMIIREG: 2539 case SIOCSMIIREG: 2540 if (mdio_phy_id_is_c45(data->phy_id)) { 2541 prtad = mdio_phy_id_prtad(data->phy_id); 2542 devad = mdio_phy_id_devad(data->phy_id); 2543 } else if (data->phy_id < 32) { 2544 prtad = data->phy_id; 2545 devad = 0; 2546 data->reg_num &= 0x1f; 2547 } else 2548 return -EINVAL; 2549 2550 mbox = pi->adapter->pf; 2551 if (cmd == SIOCGMIIREG) 2552 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 2553 data->reg_num, &data->val_out); 2554 else 2555 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 2556 data->reg_num, data->val_in); 2557 break; 2558 case SIOCGHWTSTAMP: 2559 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2560 sizeof(pi->tstamp_config)) ? 2561 -EFAULT : 0; 2562 case SIOCSHWTSTAMP: 2563 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 2564 sizeof(pi->tstamp_config))) 2565 return -EFAULT; 2566 2567 if (!is_t4(adapter->params.chip)) { 2568 switch (pi->tstamp_config.tx_type) { 2569 case HWTSTAMP_TX_OFF: 2570 case HWTSTAMP_TX_ON: 2571 break; 2572 default: 2573 return -ERANGE; 2574 } 2575 2576 switch (pi->tstamp_config.rx_filter) { 2577 case HWTSTAMP_FILTER_NONE: 2578 pi->rxtstamp = false; 2579 break; 2580 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2581 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2582 cxgb4_ptprx_timestamping(pi, pi->port_id, 2583 PTP_TS_L4); 2584 break; 2585 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2586 cxgb4_ptprx_timestamping(pi, pi->port_id, 2587 PTP_TS_L2_L4); 2588 break; 2589 case HWTSTAMP_FILTER_ALL: 2590 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2591 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2592 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2593 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2594 pi->rxtstamp = true; 2595 break; 2596 default: 2597 pi->tstamp_config.rx_filter = 2598 HWTSTAMP_FILTER_NONE; 2599 return -ERANGE; 2600 } 2601 2602 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) && 2603 (pi->tstamp_config.rx_filter == 2604 HWTSTAMP_FILTER_NONE)) { 2605 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0) 2606 pi->ptp_enable = false; 2607 } 2608 2609 if (pi->tstamp_config.rx_filter != 2610 HWTSTAMP_FILTER_NONE) { 2611 if (cxgb4_ptp_redirect_rx_packet(adapter, 2612 pi) >= 0) 2613 pi->ptp_enable = true; 2614 } 2615 } else { 2616 /* For T4 Adapters */ 2617 switch (pi->tstamp_config.rx_filter) { 2618 case HWTSTAMP_FILTER_NONE: 2619 pi->rxtstamp = false; 2620 break; 2621 case HWTSTAMP_FILTER_ALL: 2622 pi->rxtstamp = true; 2623 break; 2624 default: 2625 pi->tstamp_config.rx_filter = 2626 HWTSTAMP_FILTER_NONE; 2627 return -ERANGE; 2628 } 2629 } 2630 return copy_to_user(req->ifr_data, &pi->tstamp_config, 2631 sizeof(pi->tstamp_config)) ? 2632 -EFAULT : 0; 2633 default: 2634 return -EOPNOTSUPP; 2635 } 2636 return ret; 2637 } 2638 2639 static void cxgb_set_rxmode(struct net_device *dev) 2640 { 2641 /* unfortunately we can't return errors to the stack */ 2642 set_rxmode(dev, -1, false); 2643 } 2644 2645 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2646 { 2647 int ret; 2648 struct port_info *pi = netdev_priv(dev); 2649 2650 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 2651 -1, -1, -1, true); 2652 if (!ret) 2653 dev->mtu = new_mtu; 2654 return ret; 2655 } 2656 2657 #ifdef CONFIG_PCI_IOV 2658 static int cxgb4_mgmt_open(struct net_device *dev) 2659 { 2660 /* Turn carrier off since we don't have to transmit anything on this 2661 * interface. 2662 */ 2663 netif_carrier_off(dev); 2664 return 0; 2665 } 2666 2667 /* Fill MAC address that will be assigned by the FW */ 2668 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap) 2669 { 2670 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN]; 2671 unsigned int i, vf, nvfs; 2672 u16 a, b; 2673 int err; 2674 u8 *na; 2675 2676 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev, 2677 PCI_CAP_ID_VPD); 2678 err = t4_get_raw_vpd_params(adap, &adap->params.vpd); 2679 if (err) 2680 return; 2681 2682 na = adap->params.vpd.na; 2683 for (i = 0; i < ETH_ALEN; i++) 2684 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 2685 hex2val(na[2 * i + 1])); 2686 2687 a = (hw_addr[0] << 8) | hw_addr[1]; 2688 b = (hw_addr[1] << 8) | hw_addr[2]; 2689 a ^= b; 2690 a |= 0x0200; /* locally assigned Ethernet MAC address */ 2691 a &= ~0x0100; /* not a multicast Ethernet MAC address */ 2692 macaddr[0] = a >> 8; 2693 macaddr[1] = a & 0xff; 2694 2695 for (i = 2; i < 5; i++) 2696 macaddr[i] = hw_addr[i + 1]; 2697 2698 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev); 2699 vf < nvfs; vf++) { 2700 macaddr[5] = adap->pf * nvfs + vf; 2701 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr); 2702 } 2703 } 2704 2705 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 2706 { 2707 struct port_info *pi = netdev_priv(dev); 2708 struct adapter *adap = pi->adapter; 2709 int ret; 2710 2711 /* verify MAC addr is valid */ 2712 if (!is_valid_ether_addr(mac)) { 2713 dev_err(pi->adapter->pdev_dev, 2714 "Invalid Ethernet address %pM for VF %d\n", 2715 mac, vf); 2716 return -EINVAL; 2717 } 2718 2719 dev_info(pi->adapter->pdev_dev, 2720 "Setting MAC %pM on VF %d\n", mac, vf); 2721 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac); 2722 if (!ret) 2723 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac); 2724 return ret; 2725 } 2726 2727 static int cxgb4_mgmt_get_vf_config(struct net_device *dev, 2728 int vf, struct ifla_vf_info *ivi) 2729 { 2730 struct port_info *pi = netdev_priv(dev); 2731 struct adapter *adap = pi->adapter; 2732 struct vf_info *vfinfo; 2733 2734 if (vf >= adap->num_vfs) 2735 return -EINVAL; 2736 vfinfo = &adap->vfinfo[vf]; 2737 2738 ivi->vf = vf; 2739 ivi->max_tx_rate = vfinfo->tx_rate; 2740 ivi->min_tx_rate = 0; 2741 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr); 2742 ivi->vlan = vfinfo->vlan; 2743 ivi->linkstate = vfinfo->link_state; 2744 return 0; 2745 } 2746 2747 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev, 2748 struct netdev_phys_item_id *ppid) 2749 { 2750 struct port_info *pi = netdev_priv(dev); 2751 unsigned int phy_port_id; 2752 2753 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id; 2754 ppid->id_len = sizeof(phy_port_id); 2755 memcpy(ppid->id, &phy_port_id, ppid->id_len); 2756 return 0; 2757 } 2758 2759 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf, 2760 int min_tx_rate, int max_tx_rate) 2761 { 2762 struct port_info *pi = netdev_priv(dev); 2763 struct adapter *adap = pi->adapter; 2764 unsigned int link_ok, speed, mtu; 2765 u32 fw_pfvf, fw_class; 2766 int class_id = vf; 2767 int ret; 2768 u16 pktsize; 2769 2770 if (vf >= adap->num_vfs) 2771 return -EINVAL; 2772 2773 if (min_tx_rate) { 2774 dev_err(adap->pdev_dev, 2775 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n", 2776 min_tx_rate, vf); 2777 return -EINVAL; 2778 } 2779 2780 if (max_tx_rate == 0) { 2781 /* unbind VF to to any Traffic Class */ 2782 fw_pfvf = 2783 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2784 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2785 fw_class = 0xffffffff; 2786 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 2787 &fw_pfvf, &fw_class); 2788 if (ret) { 2789 dev_err(adap->pdev_dev, 2790 "Err %d in unbinding PF %d VF %d from TX Rate Limiting\n", 2791 ret, adap->pf, vf); 2792 return -EINVAL; 2793 } 2794 dev_info(adap->pdev_dev, 2795 "PF %d VF %d is unbound from TX Rate Limiting\n", 2796 adap->pf, vf); 2797 adap->vfinfo[vf].tx_rate = 0; 2798 return 0; 2799 } 2800 2801 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu); 2802 if (ret != FW_SUCCESS) { 2803 dev_err(adap->pdev_dev, 2804 "Failed to get link information for VF %d\n", vf); 2805 return -EINVAL; 2806 } 2807 2808 if (!link_ok) { 2809 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf); 2810 return -EINVAL; 2811 } 2812 2813 if (max_tx_rate > speed) { 2814 dev_err(adap->pdev_dev, 2815 "Max tx rate %d for VF %d can't be > link-speed %u", 2816 max_tx_rate, vf, speed); 2817 return -EINVAL; 2818 } 2819 2820 pktsize = mtu; 2821 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */ 2822 pktsize = pktsize - sizeof(struct ethhdr) - 4; 2823 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */ 2824 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr); 2825 /* configure Traffic Class for rate-limiting */ 2826 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET, 2827 SCHED_CLASS_LEVEL_CL_RL, 2828 SCHED_CLASS_MODE_CLASS, 2829 SCHED_CLASS_RATEUNIT_BITS, 2830 SCHED_CLASS_RATEMODE_ABS, 2831 pi->tx_chan, class_id, 0, 2832 max_tx_rate * 1000, 0, pktsize); 2833 if (ret) { 2834 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n", 2835 ret); 2836 return -EINVAL; 2837 } 2838 dev_info(adap->pdev_dev, 2839 "Class %d with MSS %u configured with rate %u\n", 2840 class_id, pktsize, max_tx_rate); 2841 2842 /* bind VF to configured Traffic Class */ 2843 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2844 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH)); 2845 fw_class = class_id; 2846 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf, 2847 &fw_class); 2848 if (ret) { 2849 dev_err(adap->pdev_dev, 2850 "Err %d in binding PF %d VF %d to Traffic Class %d\n", 2851 ret, adap->pf, vf, class_id); 2852 return -EINVAL; 2853 } 2854 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n", 2855 adap->pf, vf, class_id); 2856 adap->vfinfo[vf].tx_rate = max_tx_rate; 2857 return 0; 2858 } 2859 2860 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf, 2861 u16 vlan, u8 qos, __be16 vlan_proto) 2862 { 2863 struct port_info *pi = netdev_priv(dev); 2864 struct adapter *adap = pi->adapter; 2865 int ret; 2866 2867 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7) 2868 return -EINVAL; 2869 2870 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0) 2871 return -EPROTONOSUPPORT; 2872 2873 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan); 2874 if (!ret) { 2875 adap->vfinfo[vf].vlan = vlan; 2876 return 0; 2877 } 2878 2879 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n", 2880 ret, (vlan ? "setting" : "clearing"), adap->pf, vf); 2881 return ret; 2882 } 2883 2884 static int cxgb4_mgmt_set_vf_link_state(struct net_device *dev, int vf, 2885 int link) 2886 { 2887 struct port_info *pi = netdev_priv(dev); 2888 struct adapter *adap = pi->adapter; 2889 u32 param, val; 2890 int ret = 0; 2891 2892 if (vf >= adap->num_vfs) 2893 return -EINVAL; 2894 2895 switch (link) { 2896 case IFLA_VF_LINK_STATE_AUTO: 2897 val = FW_VF_LINK_STATE_AUTO; 2898 break; 2899 2900 case IFLA_VF_LINK_STATE_ENABLE: 2901 val = FW_VF_LINK_STATE_ENABLE; 2902 break; 2903 2904 case IFLA_VF_LINK_STATE_DISABLE: 2905 val = FW_VF_LINK_STATE_DISABLE; 2906 break; 2907 2908 default: 2909 return -EINVAL; 2910 } 2911 2912 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 2913 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_LINK_STATE)); 2914 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, 2915 ¶m, &val); 2916 if (ret) { 2917 dev_err(adap->pdev_dev, 2918 "Error %d in setting PF %d VF %d link state\n", 2919 ret, adap->pf, vf); 2920 return -EINVAL; 2921 } 2922 2923 adap->vfinfo[vf].link_state = link; 2924 return ret; 2925 } 2926 #endif /* CONFIG_PCI_IOV */ 2927 2928 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2929 { 2930 int ret; 2931 struct sockaddr *addr = p; 2932 struct port_info *pi = netdev_priv(dev); 2933 2934 if (!is_valid_ether_addr(addr->sa_data)) 2935 return -EADDRNOTAVAIL; 2936 2937 ret = cxgb4_change_mac(pi, pi->viid, &pi->xact_addr_filt, 2938 addr->sa_data, true, &pi->smt_idx); 2939 if (ret < 0) 2940 return ret; 2941 2942 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2943 pi->xact_addr_filt = ret; 2944 return 0; 2945 } 2946 2947 #ifdef CONFIG_NET_POLL_CONTROLLER 2948 static void cxgb_netpoll(struct net_device *dev) 2949 { 2950 struct port_info *pi = netdev_priv(dev); 2951 struct adapter *adap = pi->adapter; 2952 2953 if (adap->flags & CXGB4_USING_MSIX) { 2954 int i; 2955 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 2956 2957 for (i = pi->nqsets; i; i--, rx++) 2958 t4_sge_intr_msix(0, &rx->rspq); 2959 } else 2960 t4_intr_handler(adap)(0, adap); 2961 } 2962 #endif 2963 2964 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate) 2965 { 2966 struct port_info *pi = netdev_priv(dev); 2967 struct adapter *adap = pi->adapter; 2968 struct sched_class *e; 2969 struct ch_sched_params p; 2970 struct ch_sched_queue qe; 2971 u32 req_rate; 2972 int err = 0; 2973 2974 if (!can_sched(dev)) 2975 return -ENOTSUPP; 2976 2977 if (index < 0 || index > pi->nqsets - 1) 2978 return -EINVAL; 2979 2980 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 2981 dev_err(adap->pdev_dev, 2982 "Failed to rate limit on queue %d. Link Down?\n", 2983 index); 2984 return -EINVAL; 2985 } 2986 2987 /* Convert from Mbps to Kbps */ 2988 req_rate = rate * 1000; 2989 2990 /* Max rate is 100 Gbps */ 2991 if (req_rate > SCHED_MAX_RATE_KBPS) { 2992 dev_err(adap->pdev_dev, 2993 "Invalid rate %u Mbps, Max rate is %u Mbps\n", 2994 rate, SCHED_MAX_RATE_KBPS / 1000); 2995 return -ERANGE; 2996 } 2997 2998 /* First unbind the queue from any existing class */ 2999 memset(&qe, 0, sizeof(qe)); 3000 qe.queue = index; 3001 qe.class = SCHED_CLS_NONE; 3002 3003 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE); 3004 if (err) { 3005 dev_err(adap->pdev_dev, 3006 "Unbinding Queue %d on port %d fail. Err: %d\n", 3007 index, pi->port_id, err); 3008 return err; 3009 } 3010 3011 /* Queue already unbound */ 3012 if (!req_rate) 3013 return 0; 3014 3015 /* Fetch any available unused or matching scheduling class */ 3016 memset(&p, 0, sizeof(p)); 3017 p.type = SCHED_CLASS_TYPE_PACKET; 3018 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL; 3019 p.u.params.mode = SCHED_CLASS_MODE_CLASS; 3020 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS; 3021 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS; 3022 p.u.params.channel = pi->tx_chan; 3023 p.u.params.class = SCHED_CLS_NONE; 3024 p.u.params.minrate = 0; 3025 p.u.params.maxrate = req_rate; 3026 p.u.params.weight = 0; 3027 p.u.params.pktsize = dev->mtu; 3028 3029 e = cxgb4_sched_class_alloc(dev, &p); 3030 if (!e) 3031 return -ENOMEM; 3032 3033 /* Bind the queue to a scheduling class */ 3034 memset(&qe, 0, sizeof(qe)); 3035 qe.queue = index; 3036 qe.class = e->idx; 3037 3038 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE); 3039 if (err) 3040 dev_err(adap->pdev_dev, 3041 "Queue rate limiting failed. Err: %d\n", err); 3042 return err; 3043 } 3044 3045 static int cxgb_setup_tc_flower(struct net_device *dev, 3046 struct tc_cls_flower_offload *cls_flower) 3047 { 3048 switch (cls_flower->command) { 3049 case TC_CLSFLOWER_REPLACE: 3050 return cxgb4_tc_flower_replace(dev, cls_flower); 3051 case TC_CLSFLOWER_DESTROY: 3052 return cxgb4_tc_flower_destroy(dev, cls_flower); 3053 case TC_CLSFLOWER_STATS: 3054 return cxgb4_tc_flower_stats(dev, cls_flower); 3055 default: 3056 return -EOPNOTSUPP; 3057 } 3058 } 3059 3060 static int cxgb_setup_tc_cls_u32(struct net_device *dev, 3061 struct tc_cls_u32_offload *cls_u32) 3062 { 3063 switch (cls_u32->command) { 3064 case TC_CLSU32_NEW_KNODE: 3065 case TC_CLSU32_REPLACE_KNODE: 3066 return cxgb4_config_knode(dev, cls_u32); 3067 case TC_CLSU32_DELETE_KNODE: 3068 return cxgb4_delete_knode(dev, cls_u32); 3069 default: 3070 return -EOPNOTSUPP; 3071 } 3072 } 3073 3074 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3075 void *cb_priv) 3076 { 3077 struct net_device *dev = cb_priv; 3078 struct port_info *pi = netdev2pinfo(dev); 3079 struct adapter *adap = netdev2adap(dev); 3080 3081 if (!(adap->flags & CXGB4_FULL_INIT_DONE)) { 3082 dev_err(adap->pdev_dev, 3083 "Failed to setup tc on port %d. Link Down?\n", 3084 pi->port_id); 3085 return -EINVAL; 3086 } 3087 3088 if (!tc_cls_can_offload_and_chain0(dev, type_data)) 3089 return -EOPNOTSUPP; 3090 3091 switch (type) { 3092 case TC_SETUP_CLSU32: 3093 return cxgb_setup_tc_cls_u32(dev, type_data); 3094 case TC_SETUP_CLSFLOWER: 3095 return cxgb_setup_tc_flower(dev, type_data); 3096 default: 3097 return -EOPNOTSUPP; 3098 } 3099 } 3100 3101 static int cxgb_setup_tc_block(struct net_device *dev, 3102 struct tc_block_offload *f) 3103 { 3104 struct port_info *pi = netdev2pinfo(dev); 3105 3106 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 3107 return -EOPNOTSUPP; 3108 3109 switch (f->command) { 3110 case TC_BLOCK_BIND: 3111 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb, 3112 pi, dev, f->extack); 3113 case TC_BLOCK_UNBIND: 3114 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi); 3115 return 0; 3116 default: 3117 return -EOPNOTSUPP; 3118 } 3119 } 3120 3121 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type, 3122 void *type_data) 3123 { 3124 switch (type) { 3125 case TC_SETUP_BLOCK: 3126 return cxgb_setup_tc_block(dev, type_data); 3127 default: 3128 return -EOPNOTSUPP; 3129 } 3130 } 3131 3132 static void cxgb_del_udp_tunnel(struct net_device *netdev, 3133 struct udp_tunnel_info *ti) 3134 { 3135 struct port_info *pi = netdev_priv(netdev); 3136 struct adapter *adapter = pi->adapter; 3137 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3138 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3139 int ret = 0, i; 3140 3141 if (chip_ver < CHELSIO_T6) 3142 return; 3143 3144 switch (ti->type) { 3145 case UDP_TUNNEL_TYPE_VXLAN: 3146 if (!adapter->vxlan_port_cnt || 3147 adapter->vxlan_port != ti->port) 3148 return; /* Invalid VxLAN destination port */ 3149 3150 adapter->vxlan_port_cnt--; 3151 if (adapter->vxlan_port_cnt) 3152 return; 3153 3154 adapter->vxlan_port = 0; 3155 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0); 3156 break; 3157 case UDP_TUNNEL_TYPE_GENEVE: 3158 if (!adapter->geneve_port_cnt || 3159 adapter->geneve_port != ti->port) 3160 return; /* Invalid GENEVE destination port */ 3161 3162 adapter->geneve_port_cnt--; 3163 if (adapter->geneve_port_cnt) 3164 return; 3165 3166 adapter->geneve_port = 0; 3167 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0); 3168 break; 3169 default: 3170 return; 3171 } 3172 3173 /* Matchall mac entries can be deleted only after all tunnel ports 3174 * are brought down or removed. 3175 */ 3176 if (!adapter->rawf_cnt) 3177 return; 3178 for_each_port(adapter, i) { 3179 pi = adap2pinfo(adapter, i); 3180 ret = t4_free_raw_mac_filt(adapter, pi->viid, 3181 match_all_mac, match_all_mac, 3182 adapter->rawf_start + 3183 pi->port_id, 3184 1, pi->port_id, false); 3185 if (ret < 0) { 3186 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n", 3187 i); 3188 return; 3189 } 3190 atomic_dec(&adapter->mps_encap[adapter->rawf_start + 3191 pi->port_id].refcnt); 3192 } 3193 } 3194 3195 static void cxgb_add_udp_tunnel(struct net_device *netdev, 3196 struct udp_tunnel_info *ti) 3197 { 3198 struct port_info *pi = netdev_priv(netdev); 3199 struct adapter *adapter = pi->adapter; 3200 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 3201 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 }; 3202 int i, ret; 3203 3204 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt) 3205 return; 3206 3207 switch (ti->type) { 3208 case UDP_TUNNEL_TYPE_VXLAN: 3209 /* Callback for adding vxlan port can be called with the same 3210 * port for both IPv4 and IPv6. We should not disable the 3211 * offloading when the same port for both protocols is added 3212 * and later one of them is removed. 3213 */ 3214 if (adapter->vxlan_port_cnt && 3215 adapter->vxlan_port == ti->port) { 3216 adapter->vxlan_port_cnt++; 3217 return; 3218 } 3219 3220 /* We will support only one VxLAN port */ 3221 if (adapter->vxlan_port_cnt) { 3222 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3223 be16_to_cpu(adapter->vxlan_port), 3224 be16_to_cpu(ti->port)); 3225 return; 3226 } 3227 3228 adapter->vxlan_port = ti->port; 3229 adapter->vxlan_port_cnt = 1; 3230 3231 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 3232 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F); 3233 break; 3234 case UDP_TUNNEL_TYPE_GENEVE: 3235 if (adapter->geneve_port_cnt && 3236 adapter->geneve_port == ti->port) { 3237 adapter->geneve_port_cnt++; 3238 return; 3239 } 3240 3241 /* We will support only one GENEVE port */ 3242 if (adapter->geneve_port_cnt) { 3243 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n", 3244 be16_to_cpu(adapter->geneve_port), 3245 be16_to_cpu(ti->port)); 3246 return; 3247 } 3248 3249 adapter->geneve_port = ti->port; 3250 adapter->geneve_port_cnt = 1; 3251 3252 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 3253 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F); 3254 break; 3255 default: 3256 return; 3257 } 3258 3259 /* Create a 'match all' mac filter entry for inner mac, 3260 * if raw mac interface is supported. Once the linux kernel provides 3261 * driver entry points for adding/deleting the inner mac addresses, 3262 * we will remove this 'match all' entry and fallback to adding 3263 * exact match filters. 3264 */ 3265 for_each_port(adapter, i) { 3266 pi = adap2pinfo(adapter, i); 3267 3268 ret = t4_alloc_raw_mac_filt(adapter, pi->viid, 3269 match_all_mac, 3270 match_all_mac, 3271 adapter->rawf_start + 3272 pi->port_id, 3273 1, pi->port_id, false); 3274 if (ret < 0) { 3275 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n", 3276 be16_to_cpu(ti->port)); 3277 cxgb_del_udp_tunnel(netdev, ti); 3278 return; 3279 } 3280 atomic_inc(&adapter->mps_encap[ret].refcnt); 3281 } 3282 } 3283 3284 static netdev_features_t cxgb_features_check(struct sk_buff *skb, 3285 struct net_device *dev, 3286 netdev_features_t features) 3287 { 3288 struct port_info *pi = netdev_priv(dev); 3289 struct adapter *adapter = pi->adapter; 3290 3291 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3292 return features; 3293 3294 /* Check if hw supports offload for this packet */ 3295 if (!skb->encapsulation || cxgb_encap_offload_supported(skb)) 3296 return features; 3297 3298 /* Offload is not supported for this encapsulated packet */ 3299 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3300 } 3301 3302 static netdev_features_t cxgb_fix_features(struct net_device *dev, 3303 netdev_features_t features) 3304 { 3305 /* Disable GRO, if RX_CSUM is disabled */ 3306 if (!(features & NETIF_F_RXCSUM)) 3307 features &= ~NETIF_F_GRO; 3308 3309 return features; 3310 } 3311 3312 static const struct net_device_ops cxgb4_netdev_ops = { 3313 .ndo_open = cxgb_open, 3314 .ndo_stop = cxgb_close, 3315 .ndo_start_xmit = t4_start_xmit, 3316 .ndo_select_queue = cxgb_select_queue, 3317 .ndo_get_stats64 = cxgb_get_stats, 3318 .ndo_set_rx_mode = cxgb_set_rxmode, 3319 .ndo_set_mac_address = cxgb_set_mac_addr, 3320 .ndo_set_features = cxgb_set_features, 3321 .ndo_validate_addr = eth_validate_addr, 3322 .ndo_do_ioctl = cxgb_ioctl, 3323 .ndo_change_mtu = cxgb_change_mtu, 3324 #ifdef CONFIG_NET_POLL_CONTROLLER 3325 .ndo_poll_controller = cxgb_netpoll, 3326 #endif 3327 #ifdef CONFIG_CHELSIO_T4_FCOE 3328 .ndo_fcoe_enable = cxgb_fcoe_enable, 3329 .ndo_fcoe_disable = cxgb_fcoe_disable, 3330 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3331 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate, 3332 .ndo_setup_tc = cxgb_setup_tc, 3333 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel, 3334 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel, 3335 .ndo_features_check = cxgb_features_check, 3336 .ndo_fix_features = cxgb_fix_features, 3337 }; 3338 3339 #ifdef CONFIG_PCI_IOV 3340 static const struct net_device_ops cxgb4_mgmt_netdev_ops = { 3341 .ndo_open = cxgb4_mgmt_open, 3342 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac, 3343 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config, 3344 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate, 3345 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id, 3346 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan, 3347 .ndo_set_vf_link_state = cxgb4_mgmt_set_vf_link_state, 3348 }; 3349 #endif 3350 3351 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev, 3352 struct ethtool_drvinfo *info) 3353 { 3354 struct adapter *adapter = netdev2adap(dev); 3355 3356 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver)); 3357 strlcpy(info->version, cxgb4_driver_version, 3358 sizeof(info->version)); 3359 strlcpy(info->bus_info, pci_name(adapter->pdev), 3360 sizeof(info->bus_info)); 3361 } 3362 3363 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = { 3364 .get_drvinfo = cxgb4_mgmt_get_drvinfo, 3365 }; 3366 3367 static void notify_fatal_err(struct work_struct *work) 3368 { 3369 struct adapter *adap; 3370 3371 adap = container_of(work, struct adapter, fatal_err_notify_task); 3372 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR); 3373 } 3374 3375 void t4_fatal_err(struct adapter *adap) 3376 { 3377 int port; 3378 3379 if (pci_channel_offline(adap->pdev)) 3380 return; 3381 3382 /* Disable the SGE since ULDs are going to free resources that 3383 * could be exposed to the adapter. RDMA MWs for example... 3384 */ 3385 t4_shutdown_adapter(adap); 3386 for_each_port(adap, port) { 3387 struct net_device *dev = adap->port[port]; 3388 3389 /* If we get here in very early initialization the network 3390 * devices may not have been set up yet. 3391 */ 3392 if (!dev) 3393 continue; 3394 3395 netif_tx_stop_all_queues(dev); 3396 netif_carrier_off(dev); 3397 } 3398 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3399 queue_work(adap->workq, &adap->fatal_err_notify_task); 3400 } 3401 3402 static void setup_memwin(struct adapter *adap) 3403 { 3404 u32 nic_win_base = t4_get_util_window(adap); 3405 3406 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3407 } 3408 3409 static void setup_memwin_rdma(struct adapter *adap) 3410 { 3411 if (adap->vres.ocq.size) { 3412 u32 start; 3413 unsigned int sz_kb; 3414 3415 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3416 start &= PCI_BASE_ADDRESS_MEM_MASK; 3417 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3418 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3419 t4_write_reg(adap, 3420 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3421 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3422 t4_write_reg(adap, 3423 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3424 adap->vres.ocq.start); 3425 t4_read_reg(adap, 3426 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3427 } 3428 } 3429 3430 /* HMA Definitions */ 3431 3432 /* The maximum number of address that can be send in a single FW cmd */ 3433 #define HMA_MAX_ADDR_IN_CMD 5 3434 3435 #define HMA_PAGE_SIZE PAGE_SIZE 3436 3437 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */ 3438 3439 #define HMA_PAGE_ORDER \ 3440 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \ 3441 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0) 3442 3443 /* The minimum and maximum possible HMA sizes that can be specified in the FW 3444 * configuration(in units of MB). 3445 */ 3446 #define HMA_MIN_TOTAL_SIZE 1 3447 #define HMA_MAX_TOTAL_SIZE \ 3448 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \ 3449 HMA_MAX_NO_FW_ADDRESS) >> 20) 3450 3451 static void adap_free_hma_mem(struct adapter *adapter) 3452 { 3453 struct scatterlist *iter; 3454 struct page *page; 3455 int i; 3456 3457 if (!adapter->hma.sgt) 3458 return; 3459 3460 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) { 3461 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl, 3462 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL); 3463 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG; 3464 } 3465 3466 for_each_sg(adapter->hma.sgt->sgl, iter, 3467 adapter->hma.sgt->orig_nents, i) { 3468 page = sg_page(iter); 3469 if (page) 3470 __free_pages(page, HMA_PAGE_ORDER); 3471 } 3472 3473 kfree(adapter->hma.phy_addr); 3474 sg_free_table(adapter->hma.sgt); 3475 kfree(adapter->hma.sgt); 3476 adapter->hma.sgt = NULL; 3477 } 3478 3479 static int adap_config_hma(struct adapter *adapter) 3480 { 3481 struct scatterlist *sgl, *iter; 3482 struct sg_table *sgt; 3483 struct page *newpage; 3484 unsigned int i, j, k; 3485 u32 param, hma_size; 3486 unsigned int ncmds; 3487 size_t page_size; 3488 u32 page_order; 3489 int node, ret; 3490 3491 /* HMA is supported only for T6+ cards. 3492 * Avoid initializing HMA in kdump kernels. 3493 */ 3494 if (is_kdump_kernel() || 3495 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6) 3496 return 0; 3497 3498 /* Get the HMA region size required by fw */ 3499 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3500 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE)); 3501 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3502 1, ¶m, &hma_size); 3503 /* An error means card has its own memory or HMA is not supported by 3504 * the firmware. Return without any errors. 3505 */ 3506 if (ret || !hma_size) 3507 return 0; 3508 3509 if (hma_size < HMA_MIN_TOTAL_SIZE || 3510 hma_size > HMA_MAX_TOTAL_SIZE) { 3511 dev_err(adapter->pdev_dev, 3512 "HMA size %uMB beyond bounds(%u-%lu)MB\n", 3513 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE); 3514 return -EINVAL; 3515 } 3516 3517 page_size = HMA_PAGE_SIZE; 3518 page_order = HMA_PAGE_ORDER; 3519 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL); 3520 if (unlikely(!adapter->hma.sgt)) { 3521 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n"); 3522 return -ENOMEM; 3523 } 3524 sgt = adapter->hma.sgt; 3525 /* FW returned value will be in MB's 3526 */ 3527 sgt->orig_nents = (hma_size << 20) / (page_size << page_order); 3528 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) { 3529 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n"); 3530 kfree(adapter->hma.sgt); 3531 adapter->hma.sgt = NULL; 3532 return -ENOMEM; 3533 } 3534 3535 sgl = adapter->hma.sgt->sgl; 3536 node = dev_to_node(adapter->pdev_dev); 3537 for_each_sg(sgl, iter, sgt->orig_nents, i) { 3538 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL | 3539 __GFP_ZERO, page_order); 3540 if (!newpage) { 3541 dev_err(adapter->pdev_dev, 3542 "Not enough memory for HMA page allocation\n"); 3543 ret = -ENOMEM; 3544 goto free_hma; 3545 } 3546 sg_set_page(iter, newpage, page_size << page_order, 0); 3547 } 3548 3549 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents, 3550 DMA_BIDIRECTIONAL); 3551 if (!sgt->nents) { 3552 dev_err(adapter->pdev_dev, 3553 "Not enough memory for HMA DMA mapping"); 3554 ret = -ENOMEM; 3555 goto free_hma; 3556 } 3557 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG; 3558 3559 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t), 3560 GFP_KERNEL); 3561 if (unlikely(!adapter->hma.phy_addr)) 3562 goto free_hma; 3563 3564 for_each_sg(sgl, iter, sgt->nents, i) { 3565 newpage = sg_page(iter); 3566 adapter->hma.phy_addr[i] = sg_dma_address(iter); 3567 } 3568 3569 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD); 3570 /* Pass on the addresses to firmware */ 3571 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) { 3572 struct fw_hma_cmd hma_cmd; 3573 u8 naddr = HMA_MAX_ADDR_IN_CMD; 3574 u8 soc = 0, eoc = 0; 3575 u8 hma_mode = 1; /* Presently we support only Page table mode */ 3576 3577 soc = (i == 0) ? 1 : 0; 3578 eoc = (i == ncmds - 1) ? 1 : 0; 3579 3580 /* For last cmd, set naddr corresponding to remaining 3581 * addresses 3582 */ 3583 if (i == ncmds - 1) { 3584 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD; 3585 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD; 3586 } 3587 memset(&hma_cmd, 0, sizeof(hma_cmd)); 3588 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) | 3589 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3590 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd)); 3591 3592 hma_cmd.mode_to_pcie_params = 3593 htonl(FW_HMA_CMD_MODE_V(hma_mode) | 3594 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc)); 3595 3596 /* HMA cmd size specified in MB's */ 3597 hma_cmd.naddr_size = 3598 htonl(FW_HMA_CMD_SIZE_V(hma_size) | 3599 FW_HMA_CMD_NADDR_V(naddr)); 3600 3601 /* Total Page size specified in units of 4K */ 3602 hma_cmd.addr_size_pkd = 3603 htonl(FW_HMA_CMD_ADDR_SIZE_V 3604 ((page_size << page_order) >> 12)); 3605 3606 /* Fill the 5 addresses */ 3607 for (j = 0; j < naddr; j++) { 3608 hma_cmd.phy_address[j] = 3609 cpu_to_be64(adapter->hma.phy_addr[j + k]); 3610 } 3611 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd, 3612 sizeof(hma_cmd), &hma_cmd); 3613 if (ret) { 3614 dev_err(adapter->pdev_dev, 3615 "HMA FW command failed with err %d\n", ret); 3616 goto free_hma; 3617 } 3618 } 3619 3620 if (!ret) 3621 dev_info(adapter->pdev_dev, 3622 "Reserved %uMB host memory for HMA\n", hma_size); 3623 return ret; 3624 3625 free_hma: 3626 adap_free_hma_mem(adapter); 3627 return ret; 3628 } 3629 3630 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3631 { 3632 u32 v; 3633 int ret; 3634 3635 /* Now that we've successfully configured and initialized the adapter 3636 * can ask the Firmware what resources it has provisioned for us. 3637 */ 3638 ret = t4_get_pfres(adap); 3639 if (ret) { 3640 dev_err(adap->pdev_dev, 3641 "Unable to retrieve resource provisioning information\n"); 3642 return ret; 3643 } 3644 3645 /* get device capabilities */ 3646 memset(c, 0, sizeof(*c)); 3647 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3648 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3649 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3650 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3651 if (ret < 0) 3652 return ret; 3653 3654 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3655 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3656 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3657 if (ret < 0) 3658 return ret; 3659 3660 ret = t4_config_glbl_rss(adap, adap->pf, 3661 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3662 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3663 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3664 if (ret < 0) 3665 return ret; 3666 3667 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3668 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3669 FW_CMD_CAP_PF); 3670 if (ret < 0) 3671 return ret; 3672 3673 t4_sge_init(adap); 3674 3675 /* tweak some settings */ 3676 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3677 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3678 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3679 v = t4_read_reg(adap, TP_PIO_DATA_A); 3680 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3681 3682 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3683 adap->params.tp.tx_modq_map = 0xE4; 3684 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3685 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3686 3687 /* associate each Tx modulation queue with consecutive Tx channels */ 3688 v = 0x84218421; 3689 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3690 &v, 1, TP_TX_SCHED_HDR_A); 3691 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3692 &v, 1, TP_TX_SCHED_FIFO_A); 3693 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3694 &v, 1, TP_TX_SCHED_PCMD_A); 3695 3696 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3697 if (is_offload(adap)) { 3698 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3699 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3700 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3701 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3702 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3703 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3704 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3705 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3706 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3707 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3708 } 3709 3710 /* get basic stuff going */ 3711 return t4_early_init(adap, adap->pf); 3712 } 3713 3714 /* 3715 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3716 */ 3717 #define MAX_ATIDS 8192U 3718 3719 /* 3720 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3721 * 3722 * If the firmware we're dealing with has Configuration File support, then 3723 * we use that to perform all configuration 3724 */ 3725 3726 /* 3727 * Tweak configuration based on module parameters, etc. Most of these have 3728 * defaults assigned to them by Firmware Configuration Files (if we're using 3729 * them) but need to be explicitly set if we're using hard-coded 3730 * initialization. But even in the case of using Firmware Configuration 3731 * Files, we'd like to expose the ability to change these via module 3732 * parameters so these are essentially common tweaks/settings for 3733 * Configuration Files and hard-coded initialization ... 3734 */ 3735 static int adap_init0_tweaks(struct adapter *adapter) 3736 { 3737 /* 3738 * Fix up various Host-Dependent Parameters like Page Size, Cache 3739 * Line Size, etc. The firmware default is for a 4KB Page Size and 3740 * 64B Cache Line Size ... 3741 */ 3742 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3743 3744 /* 3745 * Process module parameters which affect early initialization. 3746 */ 3747 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3748 dev_err(&adapter->pdev->dev, 3749 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3750 rx_dma_offset); 3751 rx_dma_offset = 2; 3752 } 3753 t4_set_reg_field(adapter, SGE_CONTROL_A, 3754 PKTSHIFT_V(PKTSHIFT_M), 3755 PKTSHIFT_V(rx_dma_offset)); 3756 3757 /* 3758 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3759 * adds the pseudo header itself. 3760 */ 3761 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3762 CSUM_HAS_PSEUDO_HDR_F, 0); 3763 3764 return 0; 3765 } 3766 3767 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3768 * unto themselves and they contain their own firmware to perform their 3769 * tasks ... 3770 */ 3771 static int phy_aq1202_version(const u8 *phy_fw_data, 3772 size_t phy_fw_size) 3773 { 3774 int offset; 3775 3776 /* At offset 0x8 you're looking for the primary image's 3777 * starting offset which is 3 Bytes wide 3778 * 3779 * At offset 0xa of the primary image, you look for the offset 3780 * of the DRAM segment which is 3 Bytes wide. 3781 * 3782 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3783 * wide 3784 */ 3785 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3786 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3787 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3788 3789 offset = le24(phy_fw_data + 0x8) << 12; 3790 offset = le24(phy_fw_data + offset + 0xa); 3791 return be16(phy_fw_data + offset + 0x27e); 3792 3793 #undef be16 3794 #undef le16 3795 #undef le24 3796 } 3797 3798 static struct info_10gbt_phy_fw { 3799 unsigned int phy_fw_id; /* PCI Device ID */ 3800 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3801 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3802 int phy_flash; /* Has FLASH for PHY Firmware */ 3803 } phy_info_array[] = { 3804 { 3805 PHY_AQ1202_DEVICEID, 3806 PHY_AQ1202_FIRMWARE, 3807 phy_aq1202_version, 3808 1, 3809 }, 3810 { 3811 PHY_BCM84834_DEVICEID, 3812 PHY_BCM84834_FIRMWARE, 3813 NULL, 3814 0, 3815 }, 3816 { 0, NULL, NULL }, 3817 }; 3818 3819 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3820 { 3821 int i; 3822 3823 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3824 if (phy_info_array[i].phy_fw_id == devid) 3825 return &phy_info_array[i]; 3826 } 3827 return NULL; 3828 } 3829 3830 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3831 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3832 * we return a negative error number. If we transfer new firmware we return 1 3833 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3834 */ 3835 static int adap_init0_phy(struct adapter *adap) 3836 { 3837 const struct firmware *phyf; 3838 int ret; 3839 struct info_10gbt_phy_fw *phy_info; 3840 3841 /* Use the device ID to determine which PHY file to flash. 3842 */ 3843 phy_info = find_phy_info(adap->pdev->device); 3844 if (!phy_info) { 3845 dev_warn(adap->pdev_dev, 3846 "No PHY Firmware file found for this PHY\n"); 3847 return -EOPNOTSUPP; 3848 } 3849 3850 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3851 * use that. The adapter firmware provides us with a memory buffer 3852 * where we can load a PHY firmware file from the host if we want to 3853 * override the PHY firmware File in flash. 3854 */ 3855 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3856 adap->pdev_dev); 3857 if (ret < 0) { 3858 /* For adapters without FLASH attached to PHY for their 3859 * firmware, it's obviously a fatal error if we can't get the 3860 * firmware to the adapter. For adapters with PHY firmware 3861 * FLASH storage, it's worth a warning if we can't find the 3862 * PHY Firmware but we'll neuter the error ... 3863 */ 3864 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3865 "/lib/firmware/%s, error %d\n", 3866 phy_info->phy_fw_file, -ret); 3867 if (phy_info->phy_flash) { 3868 int cur_phy_fw_ver = 0; 3869 3870 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3871 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3872 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3873 ret = 0; 3874 } 3875 3876 return ret; 3877 } 3878 3879 /* Load PHY Firmware onto adapter. 3880 */ 3881 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3882 phy_info->phy_fw_version, 3883 (u8 *)phyf->data, phyf->size); 3884 if (ret < 0) 3885 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3886 -ret); 3887 else if (ret > 0) { 3888 int new_phy_fw_ver = 0; 3889 3890 if (phy_info->phy_fw_version) 3891 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3892 phyf->size); 3893 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3894 "Firmware /lib/firmware/%s, version %#x\n", 3895 phy_info->phy_fw_file, new_phy_fw_ver); 3896 } 3897 3898 release_firmware(phyf); 3899 3900 return ret; 3901 } 3902 3903 /* 3904 * Attempt to initialize the adapter via a Firmware Configuration File. 3905 */ 3906 static int adap_init0_config(struct adapter *adapter, int reset) 3907 { 3908 struct fw_caps_config_cmd caps_cmd; 3909 const struct firmware *cf; 3910 unsigned long mtype = 0, maddr = 0; 3911 u32 finiver, finicsum, cfcsum; 3912 int ret; 3913 int config_issued = 0; 3914 char *fw_config_file, fw_config_file_path[256]; 3915 char *config_name = NULL; 3916 3917 /* 3918 * Reset device if necessary. 3919 */ 3920 if (reset) { 3921 ret = t4_fw_reset(adapter, adapter->mbox, 3922 PIORSTMODE_F | PIORST_F); 3923 if (ret < 0) 3924 goto bye; 3925 } 3926 3927 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3928 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3929 * to be performed after any global adapter RESET above since some 3930 * PHYs only have local RAM copies of the PHY firmware. 3931 */ 3932 if (is_10gbt_device(adapter->pdev->device)) { 3933 ret = adap_init0_phy(adapter); 3934 if (ret < 0) 3935 goto bye; 3936 } 3937 /* 3938 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3939 * then use that. Otherwise, use the configuration file stored 3940 * in the adapter flash ... 3941 */ 3942 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3943 case CHELSIO_T4: 3944 fw_config_file = FW4_CFNAME; 3945 break; 3946 case CHELSIO_T5: 3947 fw_config_file = FW5_CFNAME; 3948 break; 3949 case CHELSIO_T6: 3950 fw_config_file = FW6_CFNAME; 3951 break; 3952 default: 3953 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3954 adapter->pdev->device); 3955 ret = -EINVAL; 3956 goto bye; 3957 } 3958 3959 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3960 if (ret < 0) { 3961 config_name = "On FLASH"; 3962 mtype = FW_MEMTYPE_CF_FLASH; 3963 maddr = t4_flash_cfg_addr(adapter); 3964 } else { 3965 u32 params[7], val[7]; 3966 3967 sprintf(fw_config_file_path, 3968 "/lib/firmware/%s", fw_config_file); 3969 config_name = fw_config_file_path; 3970 3971 if (cf->size >= FLASH_CFG_MAX_SIZE) 3972 ret = -ENOMEM; 3973 else { 3974 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3975 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3976 ret = t4_query_params(adapter, adapter->mbox, 3977 adapter->pf, 0, 1, params, val); 3978 if (ret == 0) { 3979 /* 3980 * For t4_memory_rw() below addresses and 3981 * sizes have to be in terms of multiples of 4 3982 * bytes. So, if the Configuration File isn't 3983 * a multiple of 4 bytes in length we'll have 3984 * to write that out separately since we can't 3985 * guarantee that the bytes following the 3986 * residual byte in the buffer returned by 3987 * request_firmware() are zeroed out ... 3988 */ 3989 size_t resid = cf->size & 0x3; 3990 size_t size = cf->size & ~0x3; 3991 __be32 *data = (__be32 *)cf->data; 3992 3993 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3994 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3995 3996 spin_lock(&adapter->win0_lock); 3997 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3998 size, data, T4_MEMORY_WRITE); 3999 if (ret == 0 && resid != 0) { 4000 union { 4001 __be32 word; 4002 char buf[4]; 4003 } last; 4004 int i; 4005 4006 last.word = data[size >> 2]; 4007 for (i = resid; i < 4; i++) 4008 last.buf[i] = 0; 4009 ret = t4_memory_rw(adapter, 0, mtype, 4010 maddr + size, 4011 4, &last.word, 4012 T4_MEMORY_WRITE); 4013 } 4014 spin_unlock(&adapter->win0_lock); 4015 } 4016 } 4017 4018 release_firmware(cf); 4019 if (ret) 4020 goto bye; 4021 } 4022 4023 /* 4024 * Issue a Capability Configuration command to the firmware to get it 4025 * to parse the Configuration File. We don't use t4_fw_config_file() 4026 * because we want the ability to modify various features after we've 4027 * processed the configuration file ... 4028 */ 4029 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4030 caps_cmd.op_to_write = 4031 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4032 FW_CMD_REQUEST_F | 4033 FW_CMD_READ_F); 4034 caps_cmd.cfvalid_to_len16 = 4035 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 4036 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 4037 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 4038 FW_LEN16(caps_cmd)); 4039 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4040 &caps_cmd); 4041 4042 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 4043 * Configuration File in FLASH), our last gasp effort is to use the 4044 * Firmware Configuration File which is embedded in the firmware. A 4045 * very few early versions of the firmware didn't have one embedded 4046 * but we can ignore those. 4047 */ 4048 if (ret == -ENOENT) { 4049 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4050 caps_cmd.op_to_write = 4051 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4052 FW_CMD_REQUEST_F | 4053 FW_CMD_READ_F); 4054 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4055 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 4056 sizeof(caps_cmd), &caps_cmd); 4057 config_name = "Firmware Default"; 4058 } 4059 4060 config_issued = 1; 4061 if (ret < 0) 4062 goto bye; 4063 4064 finiver = ntohl(caps_cmd.finiver); 4065 finicsum = ntohl(caps_cmd.finicsum); 4066 cfcsum = ntohl(caps_cmd.cfcsum); 4067 if (finicsum != cfcsum) 4068 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 4069 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 4070 finicsum, cfcsum); 4071 4072 /* 4073 * And now tell the firmware to use the configuration we just loaded. 4074 */ 4075 caps_cmd.op_to_write = 4076 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4077 FW_CMD_REQUEST_F | 4078 FW_CMD_WRITE_F); 4079 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4080 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 4081 NULL); 4082 if (ret < 0) 4083 goto bye; 4084 4085 /* 4086 * Tweak configuration based on system architecture, module 4087 * parameters, etc. 4088 */ 4089 ret = adap_init0_tweaks(adapter); 4090 if (ret < 0) 4091 goto bye; 4092 4093 /* We will proceed even if HMA init fails. */ 4094 ret = adap_config_hma(adapter); 4095 if (ret) 4096 dev_err(adapter->pdev_dev, 4097 "HMA configuration failed with error %d\n", ret); 4098 4099 /* 4100 * And finally tell the firmware to initialize itself using the 4101 * parameters from the Configuration File. 4102 */ 4103 ret = t4_fw_initialize(adapter, adapter->mbox); 4104 if (ret < 0) 4105 goto bye; 4106 4107 /* Emit Firmware Configuration File information and return 4108 * successfully. 4109 */ 4110 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 4111 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 4112 config_name, finiver, cfcsum); 4113 return 0; 4114 4115 /* 4116 * Something bad happened. Return the error ... (If the "error" 4117 * is that there's no Configuration File on the adapter we don't 4118 * want to issue a warning since this is fairly common.) 4119 */ 4120 bye: 4121 if (config_issued && ret != -ENOENT) 4122 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 4123 config_name, -ret); 4124 return ret; 4125 } 4126 4127 static struct fw_info fw_info_array[] = { 4128 { 4129 .chip = CHELSIO_T4, 4130 .fs_name = FW4_CFNAME, 4131 .fw_mod_name = FW4_FNAME, 4132 .fw_hdr = { 4133 .chip = FW_HDR_CHIP_T4, 4134 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 4135 .intfver_nic = FW_INTFVER(T4, NIC), 4136 .intfver_vnic = FW_INTFVER(T4, VNIC), 4137 .intfver_ri = FW_INTFVER(T4, RI), 4138 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4139 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4140 }, 4141 }, { 4142 .chip = CHELSIO_T5, 4143 .fs_name = FW5_CFNAME, 4144 .fw_mod_name = FW5_FNAME, 4145 .fw_hdr = { 4146 .chip = FW_HDR_CHIP_T5, 4147 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 4148 .intfver_nic = FW_INTFVER(T5, NIC), 4149 .intfver_vnic = FW_INTFVER(T5, VNIC), 4150 .intfver_ri = FW_INTFVER(T5, RI), 4151 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4152 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4153 }, 4154 }, { 4155 .chip = CHELSIO_T6, 4156 .fs_name = FW6_CFNAME, 4157 .fw_mod_name = FW6_FNAME, 4158 .fw_hdr = { 4159 .chip = FW_HDR_CHIP_T6, 4160 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 4161 .intfver_nic = FW_INTFVER(T6, NIC), 4162 .intfver_vnic = FW_INTFVER(T6, VNIC), 4163 .intfver_ofld = FW_INTFVER(T6, OFLD), 4164 .intfver_ri = FW_INTFVER(T6, RI), 4165 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4166 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4167 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4168 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4169 }, 4170 } 4171 4172 }; 4173 4174 static struct fw_info *find_fw_info(int chip) 4175 { 4176 int i; 4177 4178 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 4179 if (fw_info_array[i].chip == chip) 4180 return &fw_info_array[i]; 4181 } 4182 return NULL; 4183 } 4184 4185 /* 4186 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 4187 */ 4188 static int adap_init0(struct adapter *adap) 4189 { 4190 int ret; 4191 u32 v, port_vec; 4192 enum dev_state state; 4193 u32 params[7], val[7]; 4194 struct fw_caps_config_cmd caps_cmd; 4195 int reset = 1; 4196 4197 /* Grab Firmware Device Log parameters as early as possible so we have 4198 * access to it for debugging, etc. 4199 */ 4200 ret = t4_init_devlog_params(adap); 4201 if (ret < 0) 4202 return ret; 4203 4204 /* Contact FW, advertising Master capability */ 4205 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, 4206 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state); 4207 if (ret < 0) { 4208 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 4209 ret); 4210 return ret; 4211 } 4212 if (ret == adap->mbox) 4213 adap->flags |= CXGB4_MASTER_PF; 4214 4215 /* 4216 * If we're the Master PF Driver and the device is uninitialized, 4217 * then let's consider upgrading the firmware ... (We always want 4218 * to check the firmware version number in order to A. get it for 4219 * later reporting and B. to warn if the currently loaded firmware 4220 * is excessively mismatched relative to the driver.) 4221 */ 4222 4223 t4_get_version_info(adap); 4224 ret = t4_check_fw_version(adap); 4225 /* If firmware is too old (not supported by driver) force an update. */ 4226 if (ret) 4227 state = DEV_STATE_UNINIT; 4228 if ((adap->flags & CXGB4_MASTER_PF) && state != DEV_STATE_INIT) { 4229 struct fw_info *fw_info; 4230 struct fw_hdr *card_fw; 4231 const struct firmware *fw; 4232 const u8 *fw_data = NULL; 4233 unsigned int fw_size = 0; 4234 4235 /* This is the firmware whose headers the driver was compiled 4236 * against 4237 */ 4238 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 4239 if (fw_info == NULL) { 4240 dev_err(adap->pdev_dev, 4241 "unable to get firmware info for chip %d.\n", 4242 CHELSIO_CHIP_VERSION(adap->params.chip)); 4243 return -EINVAL; 4244 } 4245 4246 /* allocate memory to read the header of the firmware on the 4247 * card 4248 */ 4249 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL); 4250 if (!card_fw) { 4251 ret = -ENOMEM; 4252 goto bye; 4253 } 4254 4255 /* Get FW from from /lib/firmware/ */ 4256 ret = request_firmware(&fw, fw_info->fw_mod_name, 4257 adap->pdev_dev); 4258 if (ret < 0) { 4259 dev_err(adap->pdev_dev, 4260 "unable to load firmware image %s, error %d\n", 4261 fw_info->fw_mod_name, ret); 4262 } else { 4263 fw_data = fw->data; 4264 fw_size = fw->size; 4265 } 4266 4267 /* upgrade FW logic */ 4268 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 4269 state, &reset); 4270 4271 /* Cleaning up */ 4272 release_firmware(fw); 4273 kvfree(card_fw); 4274 4275 if (ret < 0) 4276 goto bye; 4277 } 4278 4279 /* If the firmware is initialized already, emit a simply note to that 4280 * effect. Otherwise, it's time to try initializing the adapter. 4281 */ 4282 if (state == DEV_STATE_INIT) { 4283 ret = adap_config_hma(adap); 4284 if (ret) 4285 dev_err(adap->pdev_dev, 4286 "HMA configuration failed with error %d\n", 4287 ret); 4288 dev_info(adap->pdev_dev, "Coming up as %s: "\ 4289 "Adapter already initialized\n", 4290 adap->flags & CXGB4_MASTER_PF ? "MASTER" : "SLAVE"); 4291 } else { 4292 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 4293 "Initializing adapter\n"); 4294 4295 /* Find out whether we're dealing with a version of the 4296 * firmware which has configuration file support. 4297 */ 4298 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4299 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 4300 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 4301 params, val); 4302 4303 /* If the firmware doesn't support Configuration Files, 4304 * return an error. 4305 */ 4306 if (ret < 0) { 4307 dev_err(adap->pdev_dev, "firmware doesn't support " 4308 "Firmware Configuration Files\n"); 4309 goto bye; 4310 } 4311 4312 /* The firmware provides us with a memory buffer where we can 4313 * load a Configuration File from the host if we want to 4314 * override the Configuration File in flash. 4315 */ 4316 ret = adap_init0_config(adap, reset); 4317 if (ret == -ENOENT) { 4318 dev_err(adap->pdev_dev, "no Configuration File " 4319 "present on adapter.\n"); 4320 goto bye; 4321 } 4322 if (ret < 0) { 4323 dev_err(adap->pdev_dev, "could not initialize " 4324 "adapter, error %d\n", -ret); 4325 goto bye; 4326 } 4327 } 4328 4329 /* Now that we've successfully configured and initialized the adapter 4330 * (or found it already initialized), we can ask the Firmware what 4331 * resources it has provisioned for us. 4332 */ 4333 ret = t4_get_pfres(adap); 4334 if (ret) { 4335 dev_err(adap->pdev_dev, 4336 "Unable to retrieve resource provisioning information\n"); 4337 goto bye; 4338 } 4339 4340 /* Grab VPD parameters. This should be done after we establish a 4341 * connection to the firmware since some of the VPD parameters 4342 * (notably the Core Clock frequency) are retrieved via requests to 4343 * the firmware. On the other hand, we need these fairly early on 4344 * so we do this right after getting ahold of the firmware. 4345 * 4346 * We need to do this after initializing the adapter because someone 4347 * could have FLASHed a new VPD which won't be read by the firmware 4348 * until we do the RESET ... 4349 */ 4350 ret = t4_get_vpd_params(adap, &adap->params.vpd); 4351 if (ret < 0) 4352 goto bye; 4353 4354 /* Find out what ports are available to us. Note that we need to do 4355 * this before calling adap_init0_no_config() since it needs nports 4356 * and portvec ... 4357 */ 4358 v = 4359 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4360 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 4361 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 4362 if (ret < 0) 4363 goto bye; 4364 4365 adap->params.nports = hweight32(port_vec); 4366 adap->params.portvec = port_vec; 4367 4368 /* Give the SGE code a chance to pull in anything that it needs ... 4369 * Note that this must be called after we retrieve our VPD parameters 4370 * in order to know how to convert core ticks to seconds, etc. 4371 */ 4372 ret = t4_sge_init(adap); 4373 if (ret < 0) 4374 goto bye; 4375 4376 /* Grab the SGE Doorbell Queue Timer values. If successful, that 4377 * indicates that the Firmware and Hardware support this. 4378 */ 4379 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 4380 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMERTICK)); 4381 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4382 1, params, val); 4383 4384 if (!ret) { 4385 adap->sge.dbqtimer_tick = val[0]; 4386 ret = t4_read_sge_dbqtimers(adap, 4387 ARRAY_SIZE(adap->sge.dbqtimer_val), 4388 adap->sge.dbqtimer_val); 4389 } 4390 4391 if (!ret) 4392 adap->flags |= CXGB4_SGE_DBQ_TIMER; 4393 4394 if (is_bypass_device(adap->pdev->device)) 4395 adap->params.bypass = 1; 4396 4397 /* 4398 * Grab some of our basic fundamental operating parameters. 4399 */ 4400 #define FW_PARAM_DEV(param) \ 4401 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 4402 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 4403 4404 #define FW_PARAM_PFVF(param) \ 4405 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 4406 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 4407 FW_PARAMS_PARAM_Y_V(0) | \ 4408 FW_PARAMS_PARAM_Z_V(0) 4409 4410 params[0] = FW_PARAM_PFVF(EQ_START); 4411 params[1] = FW_PARAM_PFVF(L2T_START); 4412 params[2] = FW_PARAM_PFVF(L2T_END); 4413 params[3] = FW_PARAM_PFVF(FILTER_START); 4414 params[4] = FW_PARAM_PFVF(FILTER_END); 4415 params[5] = FW_PARAM_PFVF(IQFLINT_START); 4416 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 4417 if (ret < 0) 4418 goto bye; 4419 adap->sge.egr_start = val[0]; 4420 adap->l2t_start = val[1]; 4421 adap->l2t_end = val[2]; 4422 adap->tids.ftid_base = val[3]; 4423 adap->tids.nftids = val[4] - val[3] + 1; 4424 adap->sge.ingr_start = val[5]; 4425 4426 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 4427 /* Read the raw mps entries. In T6, the last 2 tcam entries 4428 * are reserved for raw mac addresses (rawf = 2, one per port). 4429 */ 4430 params[0] = FW_PARAM_PFVF(RAWF_START); 4431 params[1] = FW_PARAM_PFVF(RAWF_END); 4432 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4433 params, val); 4434 if (ret == 0) { 4435 adap->rawf_start = val[0]; 4436 adap->rawf_cnt = val[1] - val[0] + 1; 4437 } 4438 } 4439 4440 /* qids (ingress/egress) returned from firmware can be anywhere 4441 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 4442 * Hence driver needs to allocate memory for this range to 4443 * store the queue info. Get the highest IQFLINT/EQ index returned 4444 * in FW_EQ_*_CMD.alloc command. 4445 */ 4446 params[0] = FW_PARAM_PFVF(EQ_END); 4447 params[1] = FW_PARAM_PFVF(IQFLINT_END); 4448 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4449 if (ret < 0) 4450 goto bye; 4451 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 4452 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 4453 4454 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 4455 sizeof(*adap->sge.egr_map), GFP_KERNEL); 4456 if (!adap->sge.egr_map) { 4457 ret = -ENOMEM; 4458 goto bye; 4459 } 4460 4461 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 4462 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 4463 if (!adap->sge.ingr_map) { 4464 ret = -ENOMEM; 4465 goto bye; 4466 } 4467 4468 /* Allocate the memory for the vaious egress queue bitmaps 4469 * ie starving_fl, txq_maperr and blocked_fl. 4470 */ 4471 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4472 sizeof(long), GFP_KERNEL); 4473 if (!adap->sge.starving_fl) { 4474 ret = -ENOMEM; 4475 goto bye; 4476 } 4477 4478 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4479 sizeof(long), GFP_KERNEL); 4480 if (!adap->sge.txq_maperr) { 4481 ret = -ENOMEM; 4482 goto bye; 4483 } 4484 4485 #ifdef CONFIG_DEBUG_FS 4486 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 4487 sizeof(long), GFP_KERNEL); 4488 if (!adap->sge.blocked_fl) { 4489 ret = -ENOMEM; 4490 goto bye; 4491 } 4492 #endif 4493 4494 params[0] = FW_PARAM_PFVF(CLIP_START); 4495 params[1] = FW_PARAM_PFVF(CLIP_END); 4496 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4497 if (ret < 0) 4498 goto bye; 4499 adap->clipt_start = val[0]; 4500 adap->clipt_end = val[1]; 4501 4502 /* We don't yet have a PARAMs calls to retrieve the number of Traffic 4503 * Classes supported by the hardware/firmware so we hard code it here 4504 * for now. 4505 */ 4506 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16; 4507 4508 /* query params related to active filter region */ 4509 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 4510 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 4511 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 4512 /* If Active filter size is set we enable establishing 4513 * offload connection through firmware work request 4514 */ 4515 if ((val[0] != val[1]) && (ret >= 0)) { 4516 adap->flags |= CXGB4_FW_OFLD_CONN; 4517 adap->tids.aftid_base = val[0]; 4518 adap->tids.aftid_end = val[1]; 4519 } 4520 4521 /* If we're running on newer firmware, let it know that we're 4522 * prepared to deal with encapsulated CPL messages. Older 4523 * firmware won't understand this and we'll just get 4524 * unencapsulated messages ... 4525 */ 4526 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4527 val[0] = 1; 4528 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 4529 4530 /* 4531 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 4532 * capability. Earlier versions of the firmware didn't have the 4533 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 4534 * permission to use ULPTX MEMWRITE DSGL. 4535 */ 4536 if (is_t4(adap->params.chip)) { 4537 adap->params.ulptx_memwrite_dsgl = false; 4538 } else { 4539 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4540 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4541 1, params, val); 4542 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4543 } 4544 4545 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */ 4546 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4547 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4548 1, params, val); 4549 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0); 4550 4551 /* See if FW supports FW_FILTER2 work request */ 4552 if (is_t4(adap->params.chip)) { 4553 adap->params.filter2_wr_support = 0; 4554 } else { 4555 params[0] = FW_PARAM_DEV(FILTER2_WR); 4556 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4557 1, params, val); 4558 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0); 4559 } 4560 4561 /* Check if FW supports returning vin and smt index. 4562 * If this is not supported, driver will interpret 4563 * these values from viid. 4564 */ 4565 params[0] = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 4566 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4567 1, params, val); 4568 adap->params.viid_smt_extn_support = (ret == 0 && val[0] != 0); 4569 4570 /* 4571 * Get device capabilities so we can determine what resources we need 4572 * to manage. 4573 */ 4574 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4575 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4576 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4577 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4578 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4579 &caps_cmd); 4580 if (ret < 0) 4581 goto bye; 4582 4583 if (caps_cmd.ofldcaps || 4584 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) { 4585 /* query offload-related parameters */ 4586 params[0] = FW_PARAM_DEV(NTID); 4587 params[1] = FW_PARAM_PFVF(SERVER_START); 4588 params[2] = FW_PARAM_PFVF(SERVER_END); 4589 params[3] = FW_PARAM_PFVF(TDDP_START); 4590 params[4] = FW_PARAM_PFVF(TDDP_END); 4591 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4592 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4593 params, val); 4594 if (ret < 0) 4595 goto bye; 4596 adap->tids.ntids = val[0]; 4597 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4598 adap->tids.stid_base = val[1]; 4599 adap->tids.nstids = val[2] - val[1] + 1; 4600 /* 4601 * Setup server filter region. Divide the available filter 4602 * region into two parts. Regular filters get 1/3rd and server 4603 * filters get 2/3rd part. This is only enabled if workarond 4604 * path is enabled. 4605 * 1. For regular filters. 4606 * 2. Server filter: This are special filters which are used 4607 * to redirect SYN packets to offload queue. 4608 */ 4609 if (adap->flags & CXGB4_FW_OFLD_CONN && !is_bypass(adap)) { 4610 adap->tids.sftid_base = adap->tids.ftid_base + 4611 DIV_ROUND_UP(adap->tids.nftids, 3); 4612 adap->tids.nsftids = adap->tids.nftids - 4613 DIV_ROUND_UP(adap->tids.nftids, 3); 4614 adap->tids.nftids = adap->tids.sftid_base - 4615 adap->tids.ftid_base; 4616 } 4617 adap->vres.ddp.start = val[3]; 4618 adap->vres.ddp.size = val[4] - val[3] + 1; 4619 adap->params.ofldq_wr_cred = val[5]; 4620 4621 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4622 ret = init_hash_filter(adap); 4623 if (ret < 0) 4624 goto bye; 4625 } else { 4626 adap->params.offload = 1; 4627 adap->num_ofld_uld += 1; 4628 } 4629 } 4630 if (caps_cmd.rdmacaps) { 4631 params[0] = FW_PARAM_PFVF(STAG_START); 4632 params[1] = FW_PARAM_PFVF(STAG_END); 4633 params[2] = FW_PARAM_PFVF(RQ_START); 4634 params[3] = FW_PARAM_PFVF(RQ_END); 4635 params[4] = FW_PARAM_PFVF(PBL_START); 4636 params[5] = FW_PARAM_PFVF(PBL_END); 4637 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4638 params, val); 4639 if (ret < 0) 4640 goto bye; 4641 adap->vres.stag.start = val[0]; 4642 adap->vres.stag.size = val[1] - val[0] + 1; 4643 adap->vres.rq.start = val[2]; 4644 adap->vres.rq.size = val[3] - val[2] + 1; 4645 adap->vres.pbl.start = val[4]; 4646 adap->vres.pbl.size = val[5] - val[4] + 1; 4647 4648 params[0] = FW_PARAM_PFVF(SRQ_START); 4649 params[1] = FW_PARAM_PFVF(SRQ_END); 4650 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4651 params, val); 4652 if (!ret) { 4653 adap->vres.srq.start = val[0]; 4654 adap->vres.srq.size = val[1] - val[0] + 1; 4655 } 4656 if (adap->vres.srq.size) { 4657 adap->srq = t4_init_srq(adap->vres.srq.size); 4658 if (!adap->srq) 4659 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n"); 4660 } 4661 4662 params[0] = FW_PARAM_PFVF(SQRQ_START); 4663 params[1] = FW_PARAM_PFVF(SQRQ_END); 4664 params[2] = FW_PARAM_PFVF(CQ_START); 4665 params[3] = FW_PARAM_PFVF(CQ_END); 4666 params[4] = FW_PARAM_PFVF(OCQ_START); 4667 params[5] = FW_PARAM_PFVF(OCQ_END); 4668 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4669 val); 4670 if (ret < 0) 4671 goto bye; 4672 adap->vres.qp.start = val[0]; 4673 adap->vres.qp.size = val[1] - val[0] + 1; 4674 adap->vres.cq.start = val[2]; 4675 adap->vres.cq.size = val[3] - val[2] + 1; 4676 adap->vres.ocq.start = val[4]; 4677 adap->vres.ocq.size = val[5] - val[4] + 1; 4678 4679 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4680 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4681 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 4682 val); 4683 if (ret < 0) { 4684 adap->params.max_ordird_qp = 8; 4685 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 4686 ret = 0; 4687 } else { 4688 adap->params.max_ordird_qp = val[0]; 4689 adap->params.max_ird_adapter = val[1]; 4690 } 4691 dev_info(adap->pdev_dev, 4692 "max_ordird_qp %d max_ird_adapter %d\n", 4693 adap->params.max_ordird_qp, 4694 adap->params.max_ird_adapter); 4695 4696 /* Enable write_with_immediate if FW supports it */ 4697 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM); 4698 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4699 val); 4700 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0); 4701 4702 /* Enable write_cmpl if FW supports it */ 4703 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR); 4704 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, 4705 val); 4706 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0); 4707 adap->num_ofld_uld += 2; 4708 } 4709 if (caps_cmd.iscsicaps) { 4710 params[0] = FW_PARAM_PFVF(ISCSI_START); 4711 params[1] = FW_PARAM_PFVF(ISCSI_END); 4712 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4713 params, val); 4714 if (ret < 0) 4715 goto bye; 4716 adap->vres.iscsi.start = val[0]; 4717 adap->vres.iscsi.size = val[1] - val[0] + 1; 4718 /* LIO target and cxgb4i initiaitor */ 4719 adap->num_ofld_uld += 2; 4720 } 4721 if (caps_cmd.cryptocaps) { 4722 if (ntohs(caps_cmd.cryptocaps) & 4723 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) { 4724 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE); 4725 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4726 2, params, val); 4727 if (ret < 0) { 4728 if (ret != -EINVAL) 4729 goto bye; 4730 } else { 4731 adap->vres.ncrypto_fc = val[0]; 4732 } 4733 adap->num_ofld_uld += 1; 4734 } 4735 if (ntohs(caps_cmd.cryptocaps) & 4736 FW_CAPS_CONFIG_TLS_INLINE) { 4737 params[0] = FW_PARAM_PFVF(TLS_START); 4738 params[1] = FW_PARAM_PFVF(TLS_END); 4739 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4740 2, params, val); 4741 if (ret < 0) 4742 goto bye; 4743 adap->vres.key.start = val[0]; 4744 adap->vres.key.size = val[1] - val[0] + 1; 4745 adap->num_uld += 1; 4746 } 4747 adap->params.crypto = ntohs(caps_cmd.cryptocaps); 4748 } 4749 #undef FW_PARAM_PFVF 4750 #undef FW_PARAM_DEV 4751 4752 /* The MTU/MSS Table is initialized by now, so load their values. If 4753 * we're initializing the adapter, then we'll make any modifications 4754 * we want to the MTU/MSS Table and also initialize the congestion 4755 * parameters. 4756 */ 4757 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4758 if (state != DEV_STATE_INIT) { 4759 int i; 4760 4761 /* The default MTU Table contains values 1492 and 1500. 4762 * However, for TCP, it's better to have two values which are 4763 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4764 * This allows us to have a TCP Data Payload which is a 4765 * multiple of 8 regardless of what combination of TCP Options 4766 * are in use (always a multiple of 4 bytes) which is 4767 * important for performance reasons. For instance, if no 4768 * options are in use, then we have a 20-byte IP header and a 4769 * 20-byte TCP header. In this case, a 1500-byte MSS would 4770 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4771 * which is not a multiple of 8. So using an MSS of 1488 in 4772 * this case results in a TCP Data Payload of 1448 bytes which 4773 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4774 * Stamps have been negotiated, then an MTU of 1500 bytes 4775 * results in a TCP Data Payload of 1448 bytes which, as 4776 * above, is a multiple of 8 bytes ... 4777 */ 4778 for (i = 0; i < NMTUS; i++) 4779 if (adap->params.mtus[i] == 1492) { 4780 adap->params.mtus[i] = 1488; 4781 break; 4782 } 4783 4784 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4785 adap->params.b_wnd); 4786 } 4787 t4_init_sge_params(adap); 4788 adap->flags |= CXGB4_FW_OK; 4789 t4_init_tp_params(adap, true); 4790 return 0; 4791 4792 /* 4793 * Something bad happened. If a command timed out or failed with EIO 4794 * FW does not operate within its spec or something catastrophic 4795 * happened to HW/FW, stop issuing commands. 4796 */ 4797 bye: 4798 adap_free_hma_mem(adap); 4799 kfree(adap->sge.egr_map); 4800 kfree(adap->sge.ingr_map); 4801 kfree(adap->sge.starving_fl); 4802 kfree(adap->sge.txq_maperr); 4803 #ifdef CONFIG_DEBUG_FS 4804 kfree(adap->sge.blocked_fl); 4805 #endif 4806 if (ret != -ETIMEDOUT && ret != -EIO) 4807 t4_fw_bye(adap, adap->mbox); 4808 return ret; 4809 } 4810 4811 /* EEH callbacks */ 4812 4813 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4814 pci_channel_state_t state) 4815 { 4816 int i; 4817 struct adapter *adap = pci_get_drvdata(pdev); 4818 4819 if (!adap) 4820 goto out; 4821 4822 rtnl_lock(); 4823 adap->flags &= ~CXGB4_FW_OK; 4824 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4825 spin_lock(&adap->stats_lock); 4826 for_each_port(adap, i) { 4827 struct net_device *dev = adap->port[i]; 4828 if (dev) { 4829 netif_device_detach(dev); 4830 netif_carrier_off(dev); 4831 } 4832 } 4833 spin_unlock(&adap->stats_lock); 4834 disable_interrupts(adap); 4835 if (adap->flags & CXGB4_FULL_INIT_DONE) 4836 cxgb_down(adap); 4837 rtnl_unlock(); 4838 if ((adap->flags & CXGB4_DEV_ENABLED)) { 4839 pci_disable_device(pdev); 4840 adap->flags &= ~CXGB4_DEV_ENABLED; 4841 } 4842 out: return state == pci_channel_io_perm_failure ? 4843 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4844 } 4845 4846 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4847 { 4848 int i, ret; 4849 struct fw_caps_config_cmd c; 4850 struct adapter *adap = pci_get_drvdata(pdev); 4851 4852 if (!adap) { 4853 pci_restore_state(pdev); 4854 pci_save_state(pdev); 4855 return PCI_ERS_RESULT_RECOVERED; 4856 } 4857 4858 if (!(adap->flags & CXGB4_DEV_ENABLED)) { 4859 if (pci_enable_device(pdev)) { 4860 dev_err(&pdev->dev, "Cannot reenable PCI " 4861 "device after reset\n"); 4862 return PCI_ERS_RESULT_DISCONNECT; 4863 } 4864 adap->flags |= CXGB4_DEV_ENABLED; 4865 } 4866 4867 pci_set_master(pdev); 4868 pci_restore_state(pdev); 4869 pci_save_state(pdev); 4870 4871 if (t4_wait_dev_ready(adap->regs) < 0) 4872 return PCI_ERS_RESULT_DISCONNECT; 4873 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4874 return PCI_ERS_RESULT_DISCONNECT; 4875 adap->flags |= CXGB4_FW_OK; 4876 if (adap_init1(adap, &c)) 4877 return PCI_ERS_RESULT_DISCONNECT; 4878 4879 for_each_port(adap, i) { 4880 struct port_info *pi = adap2pinfo(adap, i); 4881 u8 vivld = 0, vin = 0; 4882 4883 ret = t4_alloc_vi(adap, adap->mbox, pi->tx_chan, adap->pf, 0, 1, 4884 NULL, NULL, &vivld, &vin); 4885 if (ret < 0) 4886 return PCI_ERS_RESULT_DISCONNECT; 4887 pi->viid = ret; 4888 pi->xact_addr_filt = -1; 4889 /* If fw supports returning the VIN as part of FW_VI_CMD, 4890 * save the returned values. 4891 */ 4892 if (adap->params.viid_smt_extn_support) { 4893 pi->vivld = vivld; 4894 pi->vin = vin; 4895 } else { 4896 /* Retrieve the values from VIID */ 4897 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 4898 pi->vin = FW_VIID_VIN_G(pi->viid); 4899 } 4900 } 4901 4902 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4903 adap->params.b_wnd); 4904 setup_memwin(adap); 4905 if (cxgb_up(adap)) 4906 return PCI_ERS_RESULT_DISCONNECT; 4907 return PCI_ERS_RESULT_RECOVERED; 4908 } 4909 4910 static void eeh_resume(struct pci_dev *pdev) 4911 { 4912 int i; 4913 struct adapter *adap = pci_get_drvdata(pdev); 4914 4915 if (!adap) 4916 return; 4917 4918 rtnl_lock(); 4919 for_each_port(adap, i) { 4920 struct net_device *dev = adap->port[i]; 4921 if (dev) { 4922 if (netif_running(dev)) { 4923 link_start(dev); 4924 cxgb_set_rxmode(dev); 4925 } 4926 netif_device_attach(dev); 4927 } 4928 } 4929 rtnl_unlock(); 4930 } 4931 4932 static const struct pci_error_handlers cxgb4_eeh = { 4933 .error_detected = eeh_err_detected, 4934 .slot_reset = eeh_slot_reset, 4935 .resume = eeh_resume, 4936 }; 4937 4938 /* Return true if the Link Configuration supports "High Speeds" (those greater 4939 * than 1Gb/s). 4940 */ 4941 static inline bool is_x_10g_port(const struct link_config *lc) 4942 { 4943 unsigned int speeds, high_speeds; 4944 4945 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps)); 4946 high_speeds = speeds & 4947 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G); 4948 4949 return high_speeds != 0; 4950 } 4951 4952 /* 4953 * Perform default configuration of DMA queues depending on the number and type 4954 * of ports we found and the number of available CPUs. Most settings can be 4955 * modified by the admin prior to actual use. 4956 */ 4957 static int cfg_queues(struct adapter *adap) 4958 { 4959 struct sge *s = &adap->sge; 4960 int i, n10g = 0, qidx = 0; 4961 int niqflint, neq, avail_eth_qsets; 4962 int max_eth_qsets = 32; 4963 #ifndef CONFIG_CHELSIO_T4_DCB 4964 int q10g = 0; 4965 #endif 4966 4967 /* Reduce memory usage in kdump environment, disable all offload. 4968 */ 4969 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) { 4970 adap->params.offload = 0; 4971 adap->params.crypto = 0; 4972 } 4973 4974 /* Calculate the number of Ethernet Queue Sets available based on 4975 * resources provisioned for us. We always have an Asynchronous 4976 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy 4977 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt 4978 * Ingress Queue. Meanwhile, we need two Egress Queues for each 4979 * Queue Set: one for the Free List and one for the Ethernet TX Queue. 4980 * 4981 * Note that we should also take into account all of the various 4982 * Offload Queues. But, in any situation where we're operating in 4983 * a Resource Constrained Provisioning environment, doing any Offload 4984 * at all is problematic ... 4985 */ 4986 niqflint = adap->params.pfres.niqflint - 1; 4987 if (!(adap->flags & CXGB4_USING_MSIX)) 4988 niqflint--; 4989 neq = adap->params.pfres.neq / 2; 4990 avail_eth_qsets = min(niqflint, neq); 4991 4992 if (avail_eth_qsets > max_eth_qsets) 4993 avail_eth_qsets = max_eth_qsets; 4994 4995 if (avail_eth_qsets < adap->params.nports) { 4996 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n", 4997 avail_eth_qsets, adap->params.nports); 4998 return -ENOMEM; 4999 } 5000 5001 /* Count the number of 10Gb/s or better ports */ 5002 for_each_port(adap, i) 5003 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 5004 5005 #ifdef CONFIG_CHELSIO_T4_DCB 5006 /* For Data Center Bridging support we need to be able to support up 5007 * to 8 Traffic Priorities; each of which will be assigned to its 5008 * own TX Queue in order to prevent Head-Of-Line Blocking. 5009 */ 5010 if (adap->params.nports * 8 > avail_eth_qsets) { 5011 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n", 5012 avail_eth_qsets, adap->params.nports * 8); 5013 return -ENOMEM; 5014 } 5015 5016 for_each_port(adap, i) { 5017 struct port_info *pi = adap2pinfo(adap, i); 5018 5019 pi->first_qset = qidx; 5020 pi->nqsets = is_kdump_kernel() ? 1 : 8; 5021 qidx += pi->nqsets; 5022 } 5023 #else /* !CONFIG_CHELSIO_T4_DCB */ 5024 /* 5025 * We default to 1 queue per non-10G port and up to # of cores queues 5026 * per 10G port. 5027 */ 5028 if (n10g) 5029 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g; 5030 if (q10g > netif_get_num_default_rss_queues()) 5031 q10g = netif_get_num_default_rss_queues(); 5032 5033 if (is_kdump_kernel()) 5034 q10g = 1; 5035 5036 for_each_port(adap, i) { 5037 struct port_info *pi = adap2pinfo(adap, i); 5038 5039 pi->first_qset = qidx; 5040 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 5041 qidx += pi->nqsets; 5042 } 5043 #endif /* !CONFIG_CHELSIO_T4_DCB */ 5044 5045 s->ethqsets = qidx; 5046 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 5047 5048 if (is_uld(adap)) { 5049 /* 5050 * For offload we use 1 queue/channel if all ports are up to 1G, 5051 * otherwise we divide all available queues amongst the channels 5052 * capped by the number of available cores. 5053 */ 5054 if (n10g) { 5055 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus()); 5056 s->ofldqsets = roundup(i, adap->params.nports); 5057 } else { 5058 s->ofldqsets = adap->params.nports; 5059 } 5060 } 5061 5062 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 5063 struct sge_eth_rxq *r = &s->ethrxq[i]; 5064 5065 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 5066 r->fl.size = 72; 5067 } 5068 5069 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 5070 s->ethtxq[i].q.size = 1024; 5071 5072 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 5073 s->ctrlq[i].q.size = 512; 5074 5075 if (!is_t4(adap->params.chip)) 5076 s->ptptxq.q.size = 8; 5077 5078 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 5079 init_rspq(adap, &s->intrq, 0, 1, 512, 64); 5080 5081 return 0; 5082 } 5083 5084 /* 5085 * Reduce the number of Ethernet queues across all ports to at most n. 5086 * n provides at least one queue per port. 5087 */ 5088 static void reduce_ethqs(struct adapter *adap, int n) 5089 { 5090 int i; 5091 struct port_info *pi; 5092 5093 while (n < adap->sge.ethqsets) 5094 for_each_port(adap, i) { 5095 pi = adap2pinfo(adap, i); 5096 if (pi->nqsets > 1) { 5097 pi->nqsets--; 5098 adap->sge.ethqsets--; 5099 if (adap->sge.ethqsets <= n) 5100 break; 5101 } 5102 } 5103 5104 n = 0; 5105 for_each_port(adap, i) { 5106 pi = adap2pinfo(adap, i); 5107 pi->first_qset = n; 5108 n += pi->nqsets; 5109 } 5110 } 5111 5112 static int get_msix_info(struct adapter *adap) 5113 { 5114 struct uld_msix_info *msix_info; 5115 unsigned int max_ingq = 0; 5116 5117 if (is_offload(adap)) 5118 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld; 5119 if (is_pci_uld(adap)) 5120 max_ingq += MAX_OFLD_QSETS * adap->num_uld; 5121 5122 if (!max_ingq) 5123 goto out; 5124 5125 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL); 5126 if (!msix_info) 5127 return -ENOMEM; 5128 5129 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq), 5130 sizeof(long), GFP_KERNEL); 5131 if (!adap->msix_bmap_ulds.msix_bmap) { 5132 kfree(msix_info); 5133 return -ENOMEM; 5134 } 5135 spin_lock_init(&adap->msix_bmap_ulds.lock); 5136 adap->msix_info_ulds = msix_info; 5137 out: 5138 return 0; 5139 } 5140 5141 static void free_msix_info(struct adapter *adap) 5142 { 5143 if (!(adap->num_uld && adap->num_ofld_uld)) 5144 return; 5145 5146 kfree(adap->msix_info_ulds); 5147 kfree(adap->msix_bmap_ulds.msix_bmap); 5148 } 5149 5150 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 5151 #define EXTRA_VECS 2 5152 5153 static int enable_msix(struct adapter *adap) 5154 { 5155 int ofld_need = 0, uld_need = 0; 5156 int i, j, want, need, allocated; 5157 struct sge *s = &adap->sge; 5158 unsigned int nchan = adap->params.nports; 5159 struct msix_entry *entries; 5160 int max_ingq = MAX_INGQ; 5161 5162 if (is_pci_uld(adap)) 5163 max_ingq += (MAX_OFLD_QSETS * adap->num_uld); 5164 if (is_offload(adap)) 5165 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld); 5166 entries = kmalloc_array(max_ingq + 1, sizeof(*entries), 5167 GFP_KERNEL); 5168 if (!entries) 5169 return -ENOMEM; 5170 5171 /* map for msix */ 5172 if (get_msix_info(adap)) { 5173 adap->params.offload = 0; 5174 adap->params.crypto = 0; 5175 } 5176 5177 for (i = 0; i < max_ingq + 1; ++i) 5178 entries[i].entry = i; 5179 5180 want = s->max_ethqsets + EXTRA_VECS; 5181 if (is_offload(adap)) { 5182 want += adap->num_ofld_uld * s->ofldqsets; 5183 ofld_need = adap->num_ofld_uld * nchan; 5184 } 5185 if (is_pci_uld(adap)) { 5186 want += adap->num_uld * s->ofldqsets; 5187 uld_need = adap->num_uld * nchan; 5188 } 5189 #ifdef CONFIG_CHELSIO_T4_DCB 5190 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 5191 * each port. 5192 */ 5193 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5194 #else 5195 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need; 5196 #endif 5197 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 5198 if (allocated < 0) { 5199 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 5200 " not using MSI-X\n"); 5201 kfree(entries); 5202 return allocated; 5203 } 5204 5205 /* Distribute available vectors to the various queue groups. 5206 * Every group gets its minimum requirement and NIC gets top 5207 * priority for leftovers. 5208 */ 5209 i = allocated - EXTRA_VECS - ofld_need - uld_need; 5210 if (i < s->max_ethqsets) { 5211 s->max_ethqsets = i; 5212 if (i < s->ethqsets) 5213 reduce_ethqs(adap, i); 5214 } 5215 if (is_uld(adap)) { 5216 if (allocated < want) 5217 s->nqs_per_uld = nchan; 5218 else 5219 s->nqs_per_uld = s->ofldqsets; 5220 } 5221 5222 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i) 5223 adap->msix_info[i].vec = entries[i].vector; 5224 if (is_uld(adap)) { 5225 for (j = 0 ; i < allocated; ++i, j++) { 5226 adap->msix_info_ulds[j].vec = entries[i].vector; 5227 adap->msix_info_ulds[j].idx = i; 5228 } 5229 adap->msix_bmap_ulds.mapsize = j; 5230 } 5231 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 5232 "nic %d per uld %d\n", 5233 allocated, s->max_ethqsets, s->nqs_per_uld); 5234 5235 kfree(entries); 5236 return 0; 5237 } 5238 5239 #undef EXTRA_VECS 5240 5241 static int init_rss(struct adapter *adap) 5242 { 5243 unsigned int i; 5244 int err; 5245 5246 err = t4_init_rss_mode(adap, adap->mbox); 5247 if (err) 5248 return err; 5249 5250 for_each_port(adap, i) { 5251 struct port_info *pi = adap2pinfo(adap, i); 5252 5253 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 5254 if (!pi->rss) 5255 return -ENOMEM; 5256 } 5257 return 0; 5258 } 5259 5260 /* Dump basic information about the adapter */ 5261 static void print_adapter_info(struct adapter *adapter) 5262 { 5263 /* Hardware/Firmware/etc. Version/Revision IDs */ 5264 t4_dump_version_info(adapter); 5265 5266 /* Software/Hardware configuration */ 5267 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n", 5268 is_offload(adapter) ? "R" : "", 5269 ((adapter->flags & CXGB4_USING_MSIX) ? "MSI-X" : 5270 (adapter->flags & CXGB4_USING_MSI) ? "MSI" : ""), 5271 is_offload(adapter) ? "Offload" : "non-Offload"); 5272 } 5273 5274 static void print_port_info(const struct net_device *dev) 5275 { 5276 char buf[80]; 5277 char *bufp = buf; 5278 const struct port_info *pi = netdev_priv(dev); 5279 const struct adapter *adap = pi->adapter; 5280 5281 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M) 5282 bufp += sprintf(bufp, "100M/"); 5283 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G) 5284 bufp += sprintf(bufp, "1G/"); 5285 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G) 5286 bufp += sprintf(bufp, "10G/"); 5287 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G) 5288 bufp += sprintf(bufp, "25G/"); 5289 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G) 5290 bufp += sprintf(bufp, "40G/"); 5291 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G) 5292 bufp += sprintf(bufp, "50G/"); 5293 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G) 5294 bufp += sprintf(bufp, "100G/"); 5295 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G) 5296 bufp += sprintf(bufp, "200G/"); 5297 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G) 5298 bufp += sprintf(bufp, "400G/"); 5299 if (bufp != buf) 5300 --bufp; 5301 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 5302 5303 netdev_info(dev, "%s: Chelsio %s (%s) %s\n", 5304 dev->name, adap->params.vpd.id, adap->name, buf); 5305 } 5306 5307 /* 5308 * Free the following resources: 5309 * - memory used for tables 5310 * - MSI/MSI-X 5311 * - net devices 5312 * - resources FW is holding for us 5313 */ 5314 static void free_some_resources(struct adapter *adapter) 5315 { 5316 unsigned int i; 5317 5318 kvfree(adapter->mps_encap); 5319 kvfree(adapter->smt); 5320 kvfree(adapter->l2t); 5321 kvfree(adapter->srq); 5322 t4_cleanup_sched(adapter); 5323 kvfree(adapter->tids.tid_tab); 5324 cxgb4_cleanup_tc_flower(adapter); 5325 cxgb4_cleanup_tc_u32(adapter); 5326 kfree(adapter->sge.egr_map); 5327 kfree(adapter->sge.ingr_map); 5328 kfree(adapter->sge.starving_fl); 5329 kfree(adapter->sge.txq_maperr); 5330 #ifdef CONFIG_DEBUG_FS 5331 kfree(adapter->sge.blocked_fl); 5332 #endif 5333 disable_msi(adapter); 5334 5335 for_each_port(adapter, i) 5336 if (adapter->port[i]) { 5337 struct port_info *pi = adap2pinfo(adapter, i); 5338 5339 if (pi->viid != 0) 5340 t4_free_vi(adapter, adapter->mbox, adapter->pf, 5341 0, pi->viid); 5342 kfree(adap2pinfo(adapter, i)->rss); 5343 free_netdev(adapter->port[i]); 5344 } 5345 if (adapter->flags & CXGB4_FW_OK) 5346 t4_fw_bye(adapter, adapter->pf); 5347 } 5348 5349 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 5350 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 5351 NETIF_F_GRO | NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 5352 #define SEGMENT_SIZE 128 5353 5354 static int t4_get_chip_type(struct adapter *adap, int ver) 5355 { 5356 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A)); 5357 5358 switch (ver) { 5359 case CHELSIO_T4: 5360 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 5361 case CHELSIO_T5: 5362 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 5363 case CHELSIO_T6: 5364 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 5365 default: 5366 break; 5367 } 5368 return -EINVAL; 5369 } 5370 5371 #ifdef CONFIG_PCI_IOV 5372 static void cxgb4_mgmt_setup(struct net_device *dev) 5373 { 5374 dev->type = ARPHRD_NONE; 5375 dev->mtu = 0; 5376 dev->hard_header_len = 0; 5377 dev->addr_len = 0; 5378 dev->tx_queue_len = 0; 5379 dev->flags |= IFF_NOARP; 5380 dev->priv_flags |= IFF_NO_QUEUE; 5381 5382 /* Initialize the device structure. */ 5383 dev->netdev_ops = &cxgb4_mgmt_netdev_ops; 5384 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops; 5385 } 5386 5387 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs) 5388 { 5389 struct adapter *adap = pci_get_drvdata(pdev); 5390 int err = 0; 5391 int current_vfs = pci_num_vf(pdev); 5392 u32 pcie_fw; 5393 5394 pcie_fw = readl(adap->regs + PCIE_FW_A); 5395 /* Check if fw is initialized */ 5396 if (!(pcie_fw & PCIE_FW_INIT_F)) { 5397 dev_warn(&pdev->dev, "Device not initialized\n"); 5398 return -EOPNOTSUPP; 5399 } 5400 5401 /* If any of the VF's is already assigned to Guest OS, then 5402 * SRIOV for the same cannot be modified 5403 */ 5404 if (current_vfs && pci_vfs_assigned(pdev)) { 5405 dev_err(&pdev->dev, 5406 "Cannot modify SR-IOV while VFs are assigned\n"); 5407 return current_vfs; 5408 } 5409 /* Note that the upper-level code ensures that we're never called with 5410 * a non-zero "num_vfs" when we already have VFs instantiated. But 5411 * it never hurts to code defensively. 5412 */ 5413 if (num_vfs != 0 && current_vfs != 0) 5414 return -EBUSY; 5415 5416 /* Nothing to do for no change. */ 5417 if (num_vfs == current_vfs) 5418 return num_vfs; 5419 5420 /* Disable SRIOV when zero is passed. */ 5421 if (!num_vfs) { 5422 pci_disable_sriov(pdev); 5423 /* free VF Management Interface */ 5424 unregister_netdev(adap->port[0]); 5425 free_netdev(adap->port[0]); 5426 adap->port[0] = NULL; 5427 5428 /* free VF resources */ 5429 adap->num_vfs = 0; 5430 kfree(adap->vfinfo); 5431 adap->vfinfo = NULL; 5432 return 0; 5433 } 5434 5435 if (!current_vfs) { 5436 struct fw_pfvf_cmd port_cmd, port_rpl; 5437 struct net_device *netdev; 5438 unsigned int pmask, port; 5439 struct pci_dev *pbridge; 5440 struct port_info *pi; 5441 char name[IFNAMSIZ]; 5442 u32 devcap2; 5443 u16 flags; 5444 int pos; 5445 5446 /* If we want to instantiate Virtual Functions, then our 5447 * parent bridge's PCI-E needs to support Alternative Routing 5448 * ID (ARI) because our VFs will show up at function offset 8 5449 * and above. 5450 */ 5451 pbridge = pdev->bus->self; 5452 pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP); 5453 pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags); 5454 pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2); 5455 5456 if ((flags & PCI_EXP_FLAGS_VERS) < 2 || 5457 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) { 5458 /* Our parent bridge does not support ARI so issue a 5459 * warning and skip instantiating the VFs. They 5460 * won't be reachable. 5461 */ 5462 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n", 5463 pbridge->bus->number, PCI_SLOT(pbridge->devfn), 5464 PCI_FUNC(pbridge->devfn)); 5465 return -ENOTSUPP; 5466 } 5467 memset(&port_cmd, 0, sizeof(port_cmd)); 5468 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 5469 FW_CMD_REQUEST_F | 5470 FW_CMD_READ_F | 5471 FW_PFVF_CMD_PFN_V(adap->pf) | 5472 FW_PFVF_CMD_VFN_V(0)); 5473 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd)); 5474 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd), 5475 &port_rpl); 5476 if (err) 5477 return err; 5478 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq)); 5479 port = ffs(pmask) - 1; 5480 /* Allocate VF Management Interface. */ 5481 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx, 5482 adap->pf); 5483 netdev = alloc_netdev(sizeof(struct port_info), 5484 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup); 5485 if (!netdev) 5486 return -ENOMEM; 5487 5488 pi = netdev_priv(netdev); 5489 pi->adapter = adap; 5490 pi->lport = port; 5491 pi->tx_chan = port; 5492 SET_NETDEV_DEV(netdev, &pdev->dev); 5493 5494 adap->port[0] = netdev; 5495 pi->port_id = 0; 5496 5497 err = register_netdev(adap->port[0]); 5498 if (err) { 5499 pr_info("Unable to register VF mgmt netdev %s\n", name); 5500 free_netdev(adap->port[0]); 5501 adap->port[0] = NULL; 5502 return err; 5503 } 5504 /* Allocate and set up VF Information. */ 5505 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev), 5506 sizeof(struct vf_info), GFP_KERNEL); 5507 if (!adap->vfinfo) { 5508 unregister_netdev(adap->port[0]); 5509 free_netdev(adap->port[0]); 5510 adap->port[0] = NULL; 5511 return -ENOMEM; 5512 } 5513 cxgb4_mgmt_fill_vf_station_mac_addr(adap); 5514 } 5515 /* Instantiate the requested number of VFs. */ 5516 err = pci_enable_sriov(pdev, num_vfs); 5517 if (err) { 5518 pr_info("Unable to instantiate %d VFs\n", num_vfs); 5519 if (!current_vfs) { 5520 unregister_netdev(adap->port[0]); 5521 free_netdev(adap->port[0]); 5522 adap->port[0] = NULL; 5523 kfree(adap->vfinfo); 5524 adap->vfinfo = NULL; 5525 } 5526 return err; 5527 } 5528 5529 adap->num_vfs = num_vfs; 5530 return num_vfs; 5531 } 5532 #endif /* CONFIG_PCI_IOV */ 5533 5534 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 5535 { 5536 struct net_device *netdev; 5537 struct adapter *adapter; 5538 static int adap_idx = 1; 5539 int s_qpp, qpp, num_seg; 5540 struct port_info *pi; 5541 bool highdma = false; 5542 enum chip_type chip; 5543 void __iomem *regs; 5544 int func, chip_ver; 5545 u16 device_id; 5546 int i, err; 5547 u32 whoami; 5548 5549 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 5550 5551 err = pci_request_regions(pdev, KBUILD_MODNAME); 5552 if (err) { 5553 /* Just info, some other driver may have claimed the device. */ 5554 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 5555 return err; 5556 } 5557 5558 err = pci_enable_device(pdev); 5559 if (err) { 5560 dev_err(&pdev->dev, "cannot enable PCI device\n"); 5561 goto out_release_regions; 5562 } 5563 5564 regs = pci_ioremap_bar(pdev, 0); 5565 if (!regs) { 5566 dev_err(&pdev->dev, "cannot map device registers\n"); 5567 err = -ENOMEM; 5568 goto out_disable_device; 5569 } 5570 5571 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 5572 if (!adapter) { 5573 err = -ENOMEM; 5574 goto out_unmap_bar0; 5575 } 5576 5577 adapter->regs = regs; 5578 err = t4_wait_dev_ready(regs); 5579 if (err < 0) 5580 goto out_free_adapter; 5581 5582 /* We control everything through one PF */ 5583 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5584 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 5585 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id)); 5586 if (chip < 0) { 5587 dev_err(&pdev->dev, "Device %d is not supported\n", device_id); 5588 err = chip; 5589 goto out_free_adapter; 5590 } 5591 chip_ver = CHELSIO_CHIP_VERSION(chip); 5592 func = chip_ver <= CHELSIO_T5 ? 5593 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5594 5595 adapter->pdev = pdev; 5596 adapter->pdev_dev = &pdev->dev; 5597 adapter->name = pci_name(pdev); 5598 adapter->mbox = func; 5599 adapter->pf = func; 5600 adapter->params.chip = chip; 5601 adapter->adap_idx = adap_idx; 5602 adapter->msg_enable = DFLT_MSG_ENABLE; 5603 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) + 5604 (sizeof(struct mbox_cmd) * 5605 T4_OS_LOG_MBOX_CMDS), 5606 GFP_KERNEL); 5607 if (!adapter->mbox_log) { 5608 err = -ENOMEM; 5609 goto out_free_adapter; 5610 } 5611 spin_lock_init(&adapter->mbox_lock); 5612 INIT_LIST_HEAD(&adapter->mlist.list); 5613 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS; 5614 pci_set_drvdata(pdev, adapter); 5615 5616 if (func != ent->driver_data) { 5617 pci_disable_device(pdev); 5618 pci_save_state(pdev); /* to restore SR-IOV later */ 5619 return 0; 5620 } 5621 5622 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 5623 highdma = true; 5624 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 5625 if (err) { 5626 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 5627 "coherent allocations\n"); 5628 goto out_free_adapter; 5629 } 5630 } else { 5631 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 5632 if (err) { 5633 dev_err(&pdev->dev, "no usable DMA configuration\n"); 5634 goto out_free_adapter; 5635 } 5636 } 5637 5638 pci_enable_pcie_error_reporting(pdev); 5639 pci_set_master(pdev); 5640 pci_save_state(pdev); 5641 adap_idx++; 5642 adapter->workq = create_singlethread_workqueue("cxgb4"); 5643 if (!adapter->workq) { 5644 err = -ENOMEM; 5645 goto out_free_adapter; 5646 } 5647 5648 /* PCI device has been enabled */ 5649 adapter->flags |= CXGB4_DEV_ENABLED; 5650 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 5651 5652 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver 5653 * Ingress Packet Data to Free List Buffers in order to allow for 5654 * chipset performance optimizations between the Root Complex and 5655 * Memory Controllers. (Messages to the associated Ingress Queue 5656 * notifying new Packet Placement in the Free Lists Buffers will be 5657 * send without the Relaxed Ordering Attribute thus guaranteeing that 5658 * all preceding PCIe Transaction Layer Packets will be processed 5659 * first.) But some Root Complexes have various issues with Upstream 5660 * Transaction Layer Packets with the Relaxed Ordering Attribute set. 5661 * The PCIe devices which under the Root Complexes will be cleared the 5662 * Relaxed Ordering bit in the configuration space, So we check our 5663 * PCIe configuration space to see if it's flagged with advice against 5664 * using Relaxed Ordering. 5665 */ 5666 if (!pcie_relaxed_ordering_enabled(pdev)) 5667 adapter->flags |= CXGB4_ROOT_NO_RELAXED_ORDERING; 5668 5669 spin_lock_init(&adapter->stats_lock); 5670 spin_lock_init(&adapter->tid_release_lock); 5671 spin_lock_init(&adapter->win0_lock); 5672 5673 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 5674 INIT_WORK(&adapter->db_full_task, process_db_full); 5675 INIT_WORK(&adapter->db_drop_task, process_db_drop); 5676 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err); 5677 5678 err = t4_prep_adapter(adapter); 5679 if (err) 5680 goto out_free_adapter; 5681 5682 if (is_kdump_kernel()) { 5683 /* Collect hardware state and append to /proc/vmcore */ 5684 err = cxgb4_cudbg_vmcore_add_dump(adapter); 5685 if (err) { 5686 dev_warn(adapter->pdev_dev, 5687 "Fail collecting vmcore device dump, err: %d. Continuing\n", 5688 err); 5689 err = 0; 5690 } 5691 } 5692 5693 if (!is_t4(adapter->params.chip)) { 5694 s_qpp = (QUEUESPERPAGEPF0_S + 5695 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 5696 adapter->pf); 5697 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 5698 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 5699 num_seg = PAGE_SIZE / SEGMENT_SIZE; 5700 5701 /* Each segment size is 128B. Write coalescing is enabled only 5702 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 5703 * queue is less no of segments that can be accommodated in 5704 * a page size. 5705 */ 5706 if (qpp > num_seg) { 5707 dev_err(&pdev->dev, 5708 "Incorrect number of egress queues per page\n"); 5709 err = -EINVAL; 5710 goto out_free_adapter; 5711 } 5712 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 5713 pci_resource_len(pdev, 2)); 5714 if (!adapter->bar2) { 5715 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 5716 err = -ENOMEM; 5717 goto out_free_adapter; 5718 } 5719 } 5720 5721 setup_memwin(adapter); 5722 err = adap_init0(adapter); 5723 #ifdef CONFIG_DEBUG_FS 5724 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 5725 #endif 5726 setup_memwin_rdma(adapter); 5727 if (err) 5728 goto out_unmap_bar; 5729 5730 /* configure SGE_STAT_CFG_A to read WC stats */ 5731 if (!is_t4(adapter->params.chip)) 5732 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 5733 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 5734 T6_STATMODE_V(0))); 5735 5736 /* Initialize hash mac addr list */ 5737 INIT_LIST_HEAD(&adapter->mac_hlist); 5738 5739 for_each_port(adapter, i) { 5740 netdev = alloc_etherdev_mq(sizeof(struct port_info), 5741 MAX_ETH_QSETS); 5742 if (!netdev) { 5743 err = -ENOMEM; 5744 goto out_free_dev; 5745 } 5746 5747 SET_NETDEV_DEV(netdev, &pdev->dev); 5748 5749 adapter->port[i] = netdev; 5750 pi = netdev_priv(netdev); 5751 pi->adapter = adapter; 5752 pi->xact_addr_filt = -1; 5753 pi->port_id = i; 5754 netdev->irq = pdev->irq; 5755 5756 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 5757 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5758 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_GRO | 5759 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 5760 NETIF_F_HW_TC; 5761 5762 if (chip_ver > CHELSIO_T5) { 5763 netdev->hw_enc_features |= NETIF_F_IP_CSUM | 5764 NETIF_F_IPV6_CSUM | 5765 NETIF_F_RXCSUM | 5766 NETIF_F_GSO_UDP_TUNNEL | 5767 NETIF_F_GSO_UDP_TUNNEL_CSUM | 5768 NETIF_F_TSO | NETIF_F_TSO6; 5769 5770 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL | 5771 NETIF_F_GSO_UDP_TUNNEL_CSUM | 5772 NETIF_F_HW_TLS_RECORD; 5773 } 5774 5775 if (highdma) 5776 netdev->hw_features |= NETIF_F_HIGHDMA; 5777 netdev->features |= netdev->hw_features; 5778 netdev->vlan_features = netdev->features & VLAN_FEAT; 5779 5780 netdev->priv_flags |= IFF_UNICAST_FLT; 5781 5782 /* MTU range: 81 - 9600 */ 5783 netdev->min_mtu = 81; /* accommodate SACK */ 5784 netdev->max_mtu = MAX_MTU; 5785 5786 netdev->netdev_ops = &cxgb4_netdev_ops; 5787 #ifdef CONFIG_CHELSIO_T4_DCB 5788 netdev->dcbnl_ops = &cxgb4_dcb_ops; 5789 cxgb4_dcb_state_init(netdev); 5790 cxgb4_dcb_version_init(netdev); 5791 #endif 5792 cxgb4_set_ethtool_ops(netdev); 5793 } 5794 5795 cxgb4_init_ethtool_dump(adapter); 5796 5797 pci_set_drvdata(pdev, adapter); 5798 5799 if (adapter->flags & CXGB4_FW_OK) { 5800 err = t4_port_init(adapter, func, func, 0); 5801 if (err) 5802 goto out_free_dev; 5803 } else if (adapter->params.nports == 1) { 5804 /* If we don't have a connection to the firmware -- possibly 5805 * because of an error -- grab the raw VPD parameters so we 5806 * can set the proper MAC Address on the debug network 5807 * interface that we've created. 5808 */ 5809 u8 hw_addr[ETH_ALEN]; 5810 u8 *na = adapter->params.vpd.na; 5811 5812 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 5813 if (!err) { 5814 for (i = 0; i < ETH_ALEN; i++) 5815 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 5816 hex2val(na[2 * i + 1])); 5817 t4_set_hw_addr(adapter, 0, hw_addr); 5818 } 5819 } 5820 5821 if (!(adapter->flags & CXGB4_FW_OK)) 5822 goto fw_attach_fail; 5823 5824 /* Configure queues and allocate tables now, they can be needed as 5825 * soon as the first register_netdev completes. 5826 */ 5827 err = cfg_queues(adapter); 5828 if (err) 5829 goto out_free_dev; 5830 5831 adapter->smt = t4_init_smt(); 5832 if (!adapter->smt) { 5833 /* We tolerate a lack of SMT, giving up some functionality */ 5834 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n"); 5835 } 5836 5837 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 5838 if (!adapter->l2t) { 5839 /* We tolerate a lack of L2T, giving up some functionality */ 5840 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 5841 adapter->params.offload = 0; 5842 } 5843 5844 adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size, 5845 sizeof(struct mps_encap_entry), 5846 GFP_KERNEL); 5847 if (!adapter->mps_encap) 5848 dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n"); 5849 5850 #if IS_ENABLED(CONFIG_IPV6) 5851 if (chip_ver <= CHELSIO_T5 && 5852 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 5853 /* CLIP functionality is not present in hardware, 5854 * hence disable all offload features 5855 */ 5856 dev_warn(&pdev->dev, 5857 "CLIP not enabled in hardware, continuing\n"); 5858 adapter->params.offload = 0; 5859 } else { 5860 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 5861 adapter->clipt_end); 5862 if (!adapter->clipt) { 5863 /* We tolerate a lack of clip_table, giving up 5864 * some functionality 5865 */ 5866 dev_warn(&pdev->dev, 5867 "could not allocate Clip table, continuing\n"); 5868 adapter->params.offload = 0; 5869 } 5870 } 5871 #endif 5872 5873 for_each_port(adapter, i) { 5874 pi = adap2pinfo(adapter, i); 5875 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls); 5876 if (!pi->sched_tbl) 5877 dev_warn(&pdev->dev, 5878 "could not activate scheduling on port %d\n", 5879 i); 5880 } 5881 5882 if (tid_init(&adapter->tids) < 0) { 5883 dev_warn(&pdev->dev, "could not allocate TID table, " 5884 "continuing\n"); 5885 adapter->params.offload = 0; 5886 } else { 5887 adapter->tc_u32 = cxgb4_init_tc_u32(adapter); 5888 if (!adapter->tc_u32) 5889 dev_warn(&pdev->dev, 5890 "could not offload tc u32, continuing\n"); 5891 5892 if (cxgb4_init_tc_flower(adapter)) 5893 dev_warn(&pdev->dev, 5894 "could not offload tc flower, continuing\n"); 5895 } 5896 5897 if (is_offload(adapter) || is_hashfilter(adapter)) { 5898 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 5899 u32 hash_base, hash_reg; 5900 5901 if (chip_ver <= CHELSIO_T5) { 5902 hash_reg = LE_DB_TID_HASHBASE_A; 5903 hash_base = t4_read_reg(adapter, hash_reg); 5904 adapter->tids.hash_base = hash_base / 4; 5905 } else { 5906 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 5907 hash_base = t4_read_reg(adapter, hash_reg); 5908 adapter->tids.hash_base = hash_base; 5909 } 5910 } 5911 } 5912 5913 /* See what interrupts we'll be using */ 5914 if (msi > 1 && enable_msix(adapter) == 0) 5915 adapter->flags |= CXGB4_USING_MSIX; 5916 else if (msi > 0 && pci_enable_msi(pdev) == 0) { 5917 adapter->flags |= CXGB4_USING_MSI; 5918 if (msi > 1) 5919 free_msix_info(adapter); 5920 } 5921 5922 /* check for PCI Express bandwidth capabiltites */ 5923 pcie_print_link_status(pdev); 5924 5925 err = init_rss(adapter); 5926 if (err) 5927 goto out_free_dev; 5928 5929 err = setup_fw_sge_queues(adapter); 5930 if (err) { 5931 dev_err(adapter->pdev_dev, 5932 "FW sge queue allocation failed, err %d", err); 5933 goto out_free_dev; 5934 } 5935 5936 fw_attach_fail: 5937 /* 5938 * The card is now ready to go. If any errors occur during device 5939 * registration we do not fail the whole card but rather proceed only 5940 * with the ports we manage to register successfully. However we must 5941 * register at least one net device. 5942 */ 5943 for_each_port(adapter, i) { 5944 pi = adap2pinfo(adapter, i); 5945 adapter->port[i]->dev_port = pi->lport; 5946 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 5947 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 5948 5949 netif_carrier_off(adapter->port[i]); 5950 5951 err = register_netdev(adapter->port[i]); 5952 if (err) 5953 break; 5954 adapter->chan_map[pi->tx_chan] = i; 5955 print_port_info(adapter->port[i]); 5956 } 5957 if (i == 0) { 5958 dev_err(&pdev->dev, "could not register any net devices\n"); 5959 goto out_free_dev; 5960 } 5961 if (err) { 5962 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 5963 err = 0; 5964 } 5965 5966 if (cxgb4_debugfs_root) { 5967 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 5968 cxgb4_debugfs_root); 5969 setup_debugfs(adapter); 5970 } 5971 5972 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 5973 pdev->needs_freset = 1; 5974 5975 if (is_uld(adapter)) { 5976 mutex_lock(&uld_mutex); 5977 list_add_tail(&adapter->list_node, &adapter_list); 5978 mutex_unlock(&uld_mutex); 5979 } 5980 5981 if (!is_t4(adapter->params.chip)) 5982 cxgb4_ptp_init(adapter); 5983 5984 if (IS_REACHABLE(CONFIG_THERMAL) && 5985 !is_t4(adapter->params.chip) && (adapter->flags & CXGB4_FW_OK)) 5986 cxgb4_thermal_init(adapter); 5987 5988 print_adapter_info(adapter); 5989 return 0; 5990 5991 out_free_dev: 5992 t4_free_sge_resources(adapter); 5993 free_some_resources(adapter); 5994 if (adapter->flags & CXGB4_USING_MSIX) 5995 free_msix_info(adapter); 5996 if (adapter->num_uld || adapter->num_ofld_uld) 5997 t4_uld_mem_free(adapter); 5998 out_unmap_bar: 5999 if (!is_t4(adapter->params.chip)) 6000 iounmap(adapter->bar2); 6001 out_free_adapter: 6002 if (adapter->workq) 6003 destroy_workqueue(adapter->workq); 6004 6005 kfree(adapter->mbox_log); 6006 kfree(adapter); 6007 out_unmap_bar0: 6008 iounmap(regs); 6009 out_disable_device: 6010 pci_disable_pcie_error_reporting(pdev); 6011 pci_disable_device(pdev); 6012 out_release_regions: 6013 pci_release_regions(pdev); 6014 return err; 6015 } 6016 6017 static void remove_one(struct pci_dev *pdev) 6018 { 6019 struct adapter *adapter = pci_get_drvdata(pdev); 6020 struct hash_mac_addr *entry, *tmp; 6021 6022 if (!adapter) { 6023 pci_release_regions(pdev); 6024 return; 6025 } 6026 6027 /* If we allocated filters, free up state associated with any 6028 * valid filters ... 6029 */ 6030 clear_all_filters(adapter); 6031 6032 adapter->flags |= CXGB4_SHUTTING_DOWN; 6033 6034 if (adapter->pf == 4) { 6035 int i; 6036 6037 /* Tear down per-adapter Work Queue first since it can contain 6038 * references to our adapter data structure. 6039 */ 6040 destroy_workqueue(adapter->workq); 6041 6042 if (is_uld(adapter)) { 6043 detach_ulds(adapter); 6044 t4_uld_clean_up(adapter); 6045 } 6046 6047 adap_free_hma_mem(adapter); 6048 6049 disable_interrupts(adapter); 6050 6051 for_each_port(adapter, i) 6052 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6053 unregister_netdev(adapter->port[i]); 6054 6055 debugfs_remove_recursive(adapter->debugfs_root); 6056 6057 if (!is_t4(adapter->params.chip)) 6058 cxgb4_ptp_stop(adapter); 6059 if (IS_REACHABLE(CONFIG_THERMAL)) 6060 cxgb4_thermal_remove(adapter); 6061 6062 if (adapter->flags & CXGB4_FULL_INIT_DONE) 6063 cxgb_down(adapter); 6064 6065 if (adapter->flags & CXGB4_USING_MSIX) 6066 free_msix_info(adapter); 6067 if (adapter->num_uld || adapter->num_ofld_uld) 6068 t4_uld_mem_free(adapter); 6069 free_some_resources(adapter); 6070 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist, 6071 list) { 6072 list_del(&entry->list); 6073 kfree(entry); 6074 } 6075 6076 #if IS_ENABLED(CONFIG_IPV6) 6077 t4_cleanup_clip_tbl(adapter); 6078 #endif 6079 if (!is_t4(adapter->params.chip)) 6080 iounmap(adapter->bar2); 6081 } 6082 #ifdef CONFIG_PCI_IOV 6083 else { 6084 cxgb4_iov_configure(adapter->pdev, 0); 6085 } 6086 #endif 6087 iounmap(adapter->regs); 6088 pci_disable_pcie_error_reporting(pdev); 6089 if ((adapter->flags & CXGB4_DEV_ENABLED)) { 6090 pci_disable_device(pdev); 6091 adapter->flags &= ~CXGB4_DEV_ENABLED; 6092 } 6093 pci_release_regions(pdev); 6094 kfree(adapter->mbox_log); 6095 synchronize_rcu(); 6096 kfree(adapter); 6097 } 6098 6099 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt 6100 * delivery. This is essentially a stripped down version of the PCI remove() 6101 * function where we do the minimal amount of work necessary to shutdown any 6102 * further activity. 6103 */ 6104 static void shutdown_one(struct pci_dev *pdev) 6105 { 6106 struct adapter *adapter = pci_get_drvdata(pdev); 6107 6108 /* As with remove_one() above (see extended comment), we only want do 6109 * do cleanup on PCI Devices which went all the way through init_one() 6110 * ... 6111 */ 6112 if (!adapter) { 6113 pci_release_regions(pdev); 6114 return; 6115 } 6116 6117 adapter->flags |= CXGB4_SHUTTING_DOWN; 6118 6119 if (adapter->pf == 4) { 6120 int i; 6121 6122 for_each_port(adapter, i) 6123 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 6124 cxgb_close(adapter->port[i]); 6125 6126 if (is_uld(adapter)) { 6127 detach_ulds(adapter); 6128 t4_uld_clean_up(adapter); 6129 } 6130 6131 disable_interrupts(adapter); 6132 disable_msi(adapter); 6133 6134 t4_sge_stop(adapter); 6135 if (adapter->flags & CXGB4_FW_OK) 6136 t4_fw_bye(adapter, adapter->mbox); 6137 } 6138 } 6139 6140 static struct pci_driver cxgb4_driver = { 6141 .name = KBUILD_MODNAME, 6142 .id_table = cxgb4_pci_tbl, 6143 .probe = init_one, 6144 .remove = remove_one, 6145 .shutdown = shutdown_one, 6146 #ifdef CONFIG_PCI_IOV 6147 .sriov_configure = cxgb4_iov_configure, 6148 #endif 6149 .err_handler = &cxgb4_eeh, 6150 }; 6151 6152 static int __init cxgb4_init_module(void) 6153 { 6154 int ret; 6155 6156 /* Debugfs support is optional, just warn if this fails */ 6157 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 6158 if (!cxgb4_debugfs_root) 6159 pr_warn("could not create debugfs entry, continuing\n"); 6160 6161 ret = pci_register_driver(&cxgb4_driver); 6162 if (ret < 0) 6163 goto err_pci; 6164 6165 #if IS_ENABLED(CONFIG_IPV6) 6166 if (!inet6addr_registered) { 6167 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6168 if (ret) 6169 pci_unregister_driver(&cxgb4_driver); 6170 else 6171 inet6addr_registered = true; 6172 } 6173 #endif 6174 6175 if (ret == 0) 6176 return ret; 6177 6178 err_pci: 6179 debugfs_remove(cxgb4_debugfs_root); 6180 6181 return ret; 6182 } 6183 6184 static void __exit cxgb4_cleanup_module(void) 6185 { 6186 #if IS_ENABLED(CONFIG_IPV6) 6187 if (inet6addr_registered) { 6188 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 6189 inet6addr_registered = false; 6190 } 6191 #endif 6192 pci_unregister_driver(&cxgb4_driver); 6193 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 6194 } 6195 6196 module_init(cxgb4_init_module); 6197 module_exit(cxgb4_cleanup_module); 6198