1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/bitmap.h> 38 #include <linux/crc32.h> 39 #include <linux/ctype.h> 40 #include <linux/debugfs.h> 41 #include <linux/err.h> 42 #include <linux/etherdevice.h> 43 #include <linux/firmware.h> 44 #include <linux/if.h> 45 #include <linux/if_vlan.h> 46 #include <linux/init.h> 47 #include <linux/log2.h> 48 #include <linux/mdio.h> 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/mutex.h> 52 #include <linux/netdevice.h> 53 #include <linux/pci.h> 54 #include <linux/aer.h> 55 #include <linux/rtnetlink.h> 56 #include <linux/sched.h> 57 #include <linux/seq_file.h> 58 #include <linux/sockios.h> 59 #include <linux/vmalloc.h> 60 #include <linux/workqueue.h> 61 #include <net/neighbour.h> 62 #include <net/netevent.h> 63 #include <net/addrconf.h> 64 #include <net/bonding.h> 65 #include <net/addrconf.h> 66 #include <asm/uaccess.h> 67 68 #include "cxgb4.h" 69 #include "t4_regs.h" 70 #include "t4_values.h" 71 #include "t4_msg.h" 72 #include "t4fw_api.h" 73 #include "t4fw_version.h" 74 #include "cxgb4_dcb.h" 75 #include "cxgb4_debugfs.h" 76 #include "clip_tbl.h" 77 #include "l2t.h" 78 79 char cxgb4_driver_name[] = KBUILD_MODNAME; 80 81 #ifdef DRV_VERSION 82 #undef DRV_VERSION 83 #endif 84 #define DRV_VERSION "2.0.0-ko" 85 const char cxgb4_driver_version[] = DRV_VERSION; 86 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver" 87 88 /* Host shadow copy of ingress filter entry. This is in host native format 89 * and doesn't match the ordering or bit order, etc. of the hardware of the 90 * firmware command. The use of bit-field structure elements is purely to 91 * remind ourselves of the field size limitations and save memory in the case 92 * where the filter table is large. 93 */ 94 struct filter_entry { 95 /* Administrative fields for filter. 96 */ 97 u32 valid:1; /* filter allocated and valid */ 98 u32 locked:1; /* filter is administratively locked */ 99 100 u32 pending:1; /* filter action is pending firmware reply */ 101 u32 smtidx:8; /* Source MAC Table index for smac */ 102 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ 103 104 /* The filter itself. Most of this is a straight copy of information 105 * provided by the extended ioctl(). Some fields are translated to 106 * internal forms -- for instance the Ingress Queue ID passed in from 107 * the ioctl() is translated into the Absolute Ingress Queue ID. 108 */ 109 struct ch_filter_specification fs; 110 }; 111 112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 113 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 114 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 115 116 /* Macros needed to support the PCI Device ID Table ... 117 */ 118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ 119 static const struct pci_device_id cxgb4_pci_tbl[] = { 120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4 121 122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is 123 * called for both. 124 */ 125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 126 127 #define CH_PCI_ID_TABLE_ENTRY(devid) \ 128 {PCI_VDEVICE(CHELSIO, (devid)), 4} 129 130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ 131 { 0, } \ 132 } 133 134 #include "t4_pci_id_tbl.h" 135 136 #define FW4_FNAME "cxgb4/t4fw.bin" 137 #define FW5_FNAME "cxgb4/t5fw.bin" 138 #define FW6_FNAME "cxgb4/t6fw.bin" 139 #define FW4_CFNAME "cxgb4/t4-config.txt" 140 #define FW5_CFNAME "cxgb4/t5-config.txt" 141 #define FW6_CFNAME "cxgb4/t6-config.txt" 142 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" 143 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" 144 #define PHY_AQ1202_DEVICEID 0x4409 145 #define PHY_BCM84834_DEVICEID 0x4486 146 147 MODULE_DESCRIPTION(DRV_DESC); 148 MODULE_AUTHOR("Chelsio Communications"); 149 MODULE_LICENSE("Dual BSD/GPL"); 150 MODULE_VERSION(DRV_VERSION); 151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); 152 MODULE_FIRMWARE(FW4_FNAME); 153 MODULE_FIRMWARE(FW5_FNAME); 154 MODULE_FIRMWARE(FW6_FNAME); 155 156 /* 157 * Normally we're willing to become the firmware's Master PF but will be happy 158 * if another PF has already become the Master and initialized the adapter. 159 * Setting "force_init" will cause this driver to forcibly establish itself as 160 * the Master PF and initialize the adapter. 161 */ 162 static uint force_init; 163 164 module_param(force_init, uint, 0644); 165 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter," 166 "deprecated parameter"); 167 168 static int dflt_msg_enable = DFLT_MSG_ENABLE; 169 170 module_param(dflt_msg_enable, int, 0644); 171 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap"); 172 173 /* 174 * The driver uses the best interrupt scheme available on a platform in the 175 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which 176 * of these schemes the driver may consider as follows: 177 * 178 * msi = 2: choose from among all three options 179 * msi = 1: only consider MSI and INTx interrupts 180 * msi = 0: force INTx interrupts 181 */ 182 static int msi = 2; 183 184 module_param(msi, int, 0644); 185 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); 186 187 /* 188 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers 189 * offset by 2 bytes in order to have the IP headers line up on 4-byte 190 * boundaries. This is a requirement for many architectures which will throw 191 * a machine check fault if an attempt is made to access one of the 4-byte IP 192 * header fields on a non-4-byte boundary. And it's a major performance issue 193 * even on some architectures which allow it like some implementations of the 194 * x86 ISA. However, some architectures don't mind this and for some very 195 * edge-case performance sensitive applications (like forwarding large volumes 196 * of small packets), setting this DMA offset to 0 will decrease the number of 197 * PCI-E Bus transfers enough to measurably affect performance. 198 */ 199 static int rx_dma_offset = 2; 200 201 #ifdef CONFIG_PCI_IOV 202 /* Configure the number of PCI-E Virtual Function which are to be instantiated 203 * on SR-IOV Capable Physical Functions. 204 */ 205 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV]; 206 207 module_param_array(num_vf, uint, NULL, 0644); 208 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3"); 209 #endif 210 211 /* TX Queue select used to determine what algorithm to use for selecting TX 212 * queue. Select between the kernel provided function (select_queue=0) or user 213 * cxgb_select_queue function (select_queue=1) 214 * 215 * Default: select_queue=0 216 */ 217 static int select_queue; 218 module_param(select_queue, int, 0644); 219 MODULE_PARM_DESC(select_queue, 220 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); 221 222 static struct dentry *cxgb4_debugfs_root; 223 224 static LIST_HEAD(adapter_list); 225 static DEFINE_MUTEX(uld_mutex); 226 /* Adapter list to be accessed from atomic context */ 227 static LIST_HEAD(adap_rcu_list); 228 static DEFINE_SPINLOCK(adap_rcu_lock); 229 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX]; 230 static const char *const uld_str[] = { "RDMA", "iSCSI", "iSCSIT" }; 231 232 static void link_report(struct net_device *dev) 233 { 234 if (!netif_carrier_ok(dev)) 235 netdev_info(dev, "link down\n"); 236 else { 237 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; 238 239 const char *s; 240 const struct port_info *p = netdev_priv(dev); 241 242 switch (p->link_cfg.speed) { 243 case 10000: 244 s = "10Gbps"; 245 break; 246 case 1000: 247 s = "1000Mbps"; 248 break; 249 case 100: 250 s = "100Mbps"; 251 break; 252 case 40000: 253 s = "40Gbps"; 254 break; 255 default: 256 pr_info("%s: unsupported speed: %d\n", 257 dev->name, p->link_cfg.speed); 258 return; 259 } 260 261 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, 262 fc[p->link_cfg.fc]); 263 } 264 } 265 266 #ifdef CONFIG_CHELSIO_T4_DCB 267 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ 268 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) 269 { 270 struct port_info *pi = netdev_priv(dev); 271 struct adapter *adap = pi->adapter; 272 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; 273 int i; 274 275 /* We use a simple mapping of Port TX Queue Index to DCB 276 * Priority when we're enabling DCB. 277 */ 278 for (i = 0; i < pi->nqsets; i++, txq++) { 279 u32 name, value; 280 int err; 281 282 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 283 FW_PARAMS_PARAM_X_V( 284 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | 285 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); 286 value = enable ? i : 0xffffffff; 287 288 /* Since we can be called while atomic (from "interrupt 289 * level") we need to issue the Set Parameters Commannd 290 * without sleeping (timeout < 0). 291 */ 292 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 293 &name, &value, 294 -FW_CMD_MAX_TIMEOUT); 295 296 if (err) 297 dev_err(adap->pdev_dev, 298 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", 299 enable ? "set" : "unset", pi->port_id, i, -err); 300 else 301 txq->dcb_prio = value; 302 } 303 } 304 #endif /* CONFIG_CHELSIO_T4_DCB */ 305 306 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) 307 { 308 struct net_device *dev = adapter->port[port_id]; 309 310 /* Skip changes from disabled ports. */ 311 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { 312 if (link_stat) 313 netif_carrier_on(dev); 314 else { 315 #ifdef CONFIG_CHELSIO_T4_DCB 316 cxgb4_dcb_state_init(dev); 317 dcb_tx_queue_prio_enable(dev, false); 318 #endif /* CONFIG_CHELSIO_T4_DCB */ 319 netif_carrier_off(dev); 320 } 321 322 link_report(dev); 323 } 324 } 325 326 void t4_os_portmod_changed(const struct adapter *adap, int port_id) 327 { 328 static const char *mod_str[] = { 329 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" 330 }; 331 332 const struct net_device *dev = adap->port[port_id]; 333 const struct port_info *pi = netdev_priv(dev); 334 335 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 336 netdev_info(dev, "port module unplugged\n"); 337 else if (pi->mod_type < ARRAY_SIZE(mod_str)) 338 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); 339 } 340 341 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ 342 module_param(dbfifo_int_thresh, int, 0644); 343 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); 344 345 /* 346 * usecs to sleep while draining the dbfifo 347 */ 348 static int dbfifo_drain_delay = 1000; 349 module_param(dbfifo_drain_delay, int, 0644); 350 MODULE_PARM_DESC(dbfifo_drain_delay, 351 "usecs to sleep while draining the dbfifo"); 352 353 static inline int cxgb4_set_addr_hash(struct port_info *pi) 354 { 355 struct adapter *adap = pi->adapter; 356 u64 vec = 0; 357 bool ucast = false; 358 struct hash_mac_addr *entry; 359 360 /* Calculate the hash vector for the updated list and program it */ 361 list_for_each_entry(entry, &adap->mac_hlist, list) { 362 ucast |= is_unicast_ether_addr(entry->addr); 363 vec |= (1ULL << hash_mac_addr(entry->addr)); 364 } 365 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast, 366 vec, false); 367 } 368 369 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr) 370 { 371 struct port_info *pi = netdev_priv(netdev); 372 struct adapter *adap = pi->adapter; 373 int ret; 374 u64 mhash = 0; 375 u64 uhash = 0; 376 bool free = false; 377 bool ucast = is_unicast_ether_addr(mac_addr); 378 const u8 *maclist[1] = {mac_addr}; 379 struct hash_mac_addr *new_entry; 380 381 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist, 382 NULL, ucast ? &uhash : &mhash, false); 383 if (ret < 0) 384 goto out; 385 /* if hash != 0, then add the addr to hash addr list 386 * so on the end we will calculate the hash for the 387 * list and program it 388 */ 389 if (uhash || mhash) { 390 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC); 391 if (!new_entry) 392 return -ENOMEM; 393 ether_addr_copy(new_entry->addr, mac_addr); 394 list_add_tail(&new_entry->list, &adap->mac_hlist); 395 ret = cxgb4_set_addr_hash(pi); 396 } 397 out: 398 return ret < 0 ? ret : 0; 399 } 400 401 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr) 402 { 403 struct port_info *pi = netdev_priv(netdev); 404 struct adapter *adap = pi->adapter; 405 int ret; 406 const u8 *maclist[1] = {mac_addr}; 407 struct hash_mac_addr *entry, *tmp; 408 409 /* If the MAC address to be removed is in the hash addr 410 * list, delete it from the list and update hash vector 411 */ 412 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) { 413 if (ether_addr_equal(entry->addr, mac_addr)) { 414 list_del(&entry->list); 415 kfree(entry); 416 return cxgb4_set_addr_hash(pi); 417 } 418 } 419 420 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false); 421 return ret < 0 ? -EINVAL : 0; 422 } 423 424 /* 425 * Set Rx properties of a port, such as promiscruity, address filters, and MTU. 426 * If @mtu is -1 it is left unchanged. 427 */ 428 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) 429 { 430 struct port_info *pi = netdev_priv(dev); 431 struct adapter *adapter = pi->adapter; 432 433 if (!(dev->flags & IFF_PROMISC)) { 434 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 435 if (!(dev->flags & IFF_ALLMULTI)) 436 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync); 437 } 438 439 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, 440 (dev->flags & IFF_PROMISC) ? 1 : 0, 441 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, 442 sleep_ok); 443 } 444 445 /** 446 * link_start - enable a port 447 * @dev: the port to enable 448 * 449 * Performs the MAC and PHY actions needed to enable a port. 450 */ 451 static int link_start(struct net_device *dev) 452 { 453 int ret; 454 struct port_info *pi = netdev_priv(dev); 455 unsigned int mb = pi->adapter->pf; 456 457 /* 458 * We do not set address filters and promiscuity here, the stack does 459 * that step explicitly. 460 */ 461 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, 462 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); 463 if (ret == 0) { 464 ret = t4_change_mac(pi->adapter, mb, pi->viid, 465 pi->xact_addr_filt, dev->dev_addr, true, 466 true); 467 if (ret >= 0) { 468 pi->xact_addr_filt = ret; 469 ret = 0; 470 } 471 } 472 if (ret == 0) 473 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan, 474 &pi->link_cfg); 475 if (ret == 0) { 476 local_bh_disable(); 477 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true, 478 true, CXGB4_DCB_ENABLED); 479 local_bh_enable(); 480 } 481 482 return ret; 483 } 484 485 int cxgb4_dcb_enabled(const struct net_device *dev) 486 { 487 #ifdef CONFIG_CHELSIO_T4_DCB 488 struct port_info *pi = netdev_priv(dev); 489 490 if (!pi->dcb.enabled) 491 return 0; 492 493 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || 494 (pi->dcb.state == CXGB4_DCB_STATE_HOST)); 495 #else 496 return 0; 497 #endif 498 } 499 EXPORT_SYMBOL(cxgb4_dcb_enabled); 500 501 #ifdef CONFIG_CHELSIO_T4_DCB 502 /* Handle a Data Center Bridging update message from the firmware. */ 503 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) 504 { 505 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); 506 struct net_device *dev = adap->port[port]; 507 int old_dcb_enabled = cxgb4_dcb_enabled(dev); 508 int new_dcb_enabled; 509 510 cxgb4_dcb_handle_fw_update(adap, pcmd); 511 new_dcb_enabled = cxgb4_dcb_enabled(dev); 512 513 /* If the DCB has become enabled or disabled on the port then we're 514 * going to need to set up/tear down DCB Priority parameters for the 515 * TX Queues associated with the port. 516 */ 517 if (new_dcb_enabled != old_dcb_enabled) 518 dcb_tx_queue_prio_enable(dev, new_dcb_enabled); 519 } 520 #endif /* CONFIG_CHELSIO_T4_DCB */ 521 522 /* Clear a filter and release any of its resources that we own. This also 523 * clears the filter's "pending" status. 524 */ 525 static void clear_filter(struct adapter *adap, struct filter_entry *f) 526 { 527 /* If the new or old filter have loopback rewriteing rules then we'll 528 * need to free any existing Layer Two Table (L2T) entries of the old 529 * filter rule. The firmware will handle freeing up any Source MAC 530 * Table (SMT) entries used for rewriting Source MAC Addresses in 531 * loopback rules. 532 */ 533 if (f->l2t) 534 cxgb4_l2t_release(f->l2t); 535 536 /* The zeroing of the filter rule below clears the filter valid, 537 * pending, locked flags, l2t pointer, etc. so it's all we need for 538 * this operation. 539 */ 540 memset(f, 0, sizeof(*f)); 541 } 542 543 /* Handle a filter write/deletion reply. 544 */ 545 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl) 546 { 547 unsigned int idx = GET_TID(rpl); 548 unsigned int nidx = idx - adap->tids.ftid_base; 549 unsigned int ret; 550 struct filter_entry *f; 551 552 if (idx >= adap->tids.ftid_base && nidx < 553 (adap->tids.nftids + adap->tids.nsftids)) { 554 idx = nidx; 555 ret = TCB_COOKIE_G(rpl->cookie); 556 f = &adap->tids.ftid_tab[idx]; 557 558 if (ret == FW_FILTER_WR_FLT_DELETED) { 559 /* Clear the filter when we get confirmation from the 560 * hardware that the filter has been deleted. 561 */ 562 clear_filter(adap, f); 563 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) { 564 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n", 565 idx); 566 clear_filter(adap, f); 567 } else if (ret == FW_FILTER_WR_FLT_ADDED) { 568 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff; 569 f->pending = 0; /* asynchronous setup completed */ 570 f->valid = 1; 571 } else { 572 /* Something went wrong. Issue a warning about the 573 * problem and clear everything out. 574 */ 575 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n", 576 idx, ret); 577 clear_filter(adap, f); 578 } 579 } 580 } 581 582 /* Response queue handler for the FW event queue. 583 */ 584 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, 585 const struct pkt_gl *gl) 586 { 587 u8 opcode = ((const struct rss_header *)rsp)->opcode; 588 589 rsp++; /* skip RSS header */ 590 591 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 592 */ 593 if (unlikely(opcode == CPL_FW4_MSG && 594 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { 595 rsp++; 596 opcode = ((const struct rss_header *)rsp)->opcode; 597 rsp++; 598 if (opcode != CPL_SGE_EGR_UPDATE) { 599 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" 600 , opcode); 601 goto out; 602 } 603 } 604 605 if (likely(opcode == CPL_SGE_EGR_UPDATE)) { 606 const struct cpl_sge_egr_update *p = (void *)rsp; 607 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); 608 struct sge_txq *txq; 609 610 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; 611 txq->restarts++; 612 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) { 613 struct sge_eth_txq *eq; 614 615 eq = container_of(txq, struct sge_eth_txq, q); 616 netif_tx_wake_queue(eq->txq); 617 } else { 618 struct sge_ofld_txq *oq; 619 620 oq = container_of(txq, struct sge_ofld_txq, q); 621 tasklet_schedule(&oq->qresume_tsk); 622 } 623 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { 624 const struct cpl_fw6_msg *p = (void *)rsp; 625 626 #ifdef CONFIG_CHELSIO_T4_DCB 627 const struct fw_port_cmd *pcmd = (const void *)p->data; 628 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); 629 unsigned int action = 630 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); 631 632 if (cmd == FW_PORT_CMD && 633 action == FW_PORT_ACTION_GET_PORT_INFO) { 634 int port = FW_PORT_CMD_PORTID_G( 635 be32_to_cpu(pcmd->op_to_portid)); 636 struct net_device *dev = q->adap->port[port]; 637 int state_input = ((pcmd->u.info.dcbxdis_pkd & 638 FW_PORT_CMD_DCBXDIS_F) 639 ? CXGB4_DCB_INPUT_FW_DISABLED 640 : CXGB4_DCB_INPUT_FW_ENABLED); 641 642 cxgb4_dcb_state_fsm(dev, state_input); 643 } 644 645 if (cmd == FW_PORT_CMD && 646 action == FW_PORT_ACTION_L2_DCB_CFG) 647 dcb_rpl(q->adap, pcmd); 648 else 649 #endif 650 if (p->type == 0) 651 t4_handle_fw_rpl(q->adap, p->data); 652 } else if (opcode == CPL_L2T_WRITE_RPL) { 653 const struct cpl_l2t_write_rpl *p = (void *)rsp; 654 655 do_l2t_write_rpl(q->adap, p); 656 } else if (opcode == CPL_SET_TCB_RPL) { 657 const struct cpl_set_tcb_rpl *p = (void *)rsp; 658 659 filter_rpl(q->adap, p); 660 } else 661 dev_err(q->adap->pdev_dev, 662 "unexpected CPL %#x on FW event queue\n", opcode); 663 out: 664 return 0; 665 } 666 667 /* Flush the aggregated lro sessions */ 668 static void uldrx_flush_handler(struct sge_rspq *q) 669 { 670 if (ulds[q->uld].lro_flush) 671 ulds[q->uld].lro_flush(&q->lro_mgr); 672 } 673 674 /** 675 * uldrx_handler - response queue handler for ULD queues 676 * @q: the response queue that received the packet 677 * @rsp: the response queue descriptor holding the offload message 678 * @gl: the gather list of packet fragments 679 * 680 * Deliver an ingress offload packet to a ULD. All processing is done by 681 * the ULD, we just maintain statistics. 682 */ 683 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp, 684 const struct pkt_gl *gl) 685 { 686 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq); 687 int ret; 688 689 /* FW can send CPLs encapsulated in a CPL_FW4_MSG. 690 */ 691 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG && 692 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL) 693 rsp += 2; 694 695 if (q->flush_handler) 696 ret = ulds[q->uld].lro_rx_handler(q->adap->uld_handle[q->uld], 697 rsp, gl, &q->lro_mgr, 698 &q->napi); 699 else 700 ret = ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], 701 rsp, gl); 702 703 if (ret) { 704 rxq->stats.nomem++; 705 return -1; 706 } 707 708 if (gl == NULL) 709 rxq->stats.imm++; 710 else if (gl == CXGB4_MSG_AN) 711 rxq->stats.an++; 712 else 713 rxq->stats.pkts++; 714 return 0; 715 } 716 717 static void disable_msi(struct adapter *adapter) 718 { 719 if (adapter->flags & USING_MSIX) { 720 pci_disable_msix(adapter->pdev); 721 adapter->flags &= ~USING_MSIX; 722 } else if (adapter->flags & USING_MSI) { 723 pci_disable_msi(adapter->pdev); 724 adapter->flags &= ~USING_MSI; 725 } 726 } 727 728 /* 729 * Interrupt handler for non-data events used with MSI-X. 730 */ 731 static irqreturn_t t4_nondata_intr(int irq, void *cookie) 732 { 733 struct adapter *adap = cookie; 734 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); 735 736 if (v & PFSW_F) { 737 adap->swintr = 1; 738 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); 739 } 740 if (adap->flags & MASTER_PF) 741 t4_slow_intr_handler(adap); 742 return IRQ_HANDLED; 743 } 744 745 /* 746 * Name the MSI-X interrupts. 747 */ 748 static void name_msix_vecs(struct adapter *adap) 749 { 750 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); 751 752 /* non-data interrupts */ 753 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); 754 755 /* FW events */ 756 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", 757 adap->port[0]->name); 758 759 /* Ethernet queues */ 760 for_each_port(adap, j) { 761 struct net_device *d = adap->port[j]; 762 const struct port_info *pi = netdev_priv(d); 763 764 for (i = 0; i < pi->nqsets; i++, msi_idx++) 765 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", 766 d->name, i); 767 } 768 769 /* offload queues */ 770 for_each_iscsirxq(&adap->sge, i) 771 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d", 772 adap->port[0]->name, i); 773 774 for_each_iscsitrxq(&adap->sge, i) 775 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iSCSIT%d", 776 adap->port[0]->name, i); 777 778 for_each_rdmarxq(&adap->sge, i) 779 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d", 780 adap->port[0]->name, i); 781 782 for_each_rdmaciq(&adap->sge, i) 783 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d", 784 adap->port[0]->name, i); 785 } 786 787 static int request_msix_queue_irqs(struct adapter *adap) 788 { 789 struct sge *s = &adap->sge; 790 int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0; 791 int iscsitqidx = 0; 792 int msi_index = 2; 793 794 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, 795 adap->msix_info[1].desc, &s->fw_evtq); 796 if (err) 797 return err; 798 799 for_each_ethrxq(s, ethqidx) { 800 err = request_irq(adap->msix_info[msi_index].vec, 801 t4_sge_intr_msix, 0, 802 adap->msix_info[msi_index].desc, 803 &s->ethrxq[ethqidx].rspq); 804 if (err) 805 goto unwind; 806 msi_index++; 807 } 808 for_each_iscsirxq(s, iscsiqidx) { 809 err = request_irq(adap->msix_info[msi_index].vec, 810 t4_sge_intr_msix, 0, 811 adap->msix_info[msi_index].desc, 812 &s->iscsirxq[iscsiqidx].rspq); 813 if (err) 814 goto unwind; 815 msi_index++; 816 } 817 for_each_iscsitrxq(s, iscsitqidx) { 818 err = request_irq(adap->msix_info[msi_index].vec, 819 t4_sge_intr_msix, 0, 820 adap->msix_info[msi_index].desc, 821 &s->iscsitrxq[iscsitqidx].rspq); 822 if (err) 823 goto unwind; 824 msi_index++; 825 } 826 for_each_rdmarxq(s, rdmaqidx) { 827 err = request_irq(adap->msix_info[msi_index].vec, 828 t4_sge_intr_msix, 0, 829 adap->msix_info[msi_index].desc, 830 &s->rdmarxq[rdmaqidx].rspq); 831 if (err) 832 goto unwind; 833 msi_index++; 834 } 835 for_each_rdmaciq(s, rdmaciqqidx) { 836 err = request_irq(adap->msix_info[msi_index].vec, 837 t4_sge_intr_msix, 0, 838 adap->msix_info[msi_index].desc, 839 &s->rdmaciq[rdmaciqqidx].rspq); 840 if (err) 841 goto unwind; 842 msi_index++; 843 } 844 return 0; 845 846 unwind: 847 while (--rdmaciqqidx >= 0) 848 free_irq(adap->msix_info[--msi_index].vec, 849 &s->rdmaciq[rdmaciqqidx].rspq); 850 while (--rdmaqidx >= 0) 851 free_irq(adap->msix_info[--msi_index].vec, 852 &s->rdmarxq[rdmaqidx].rspq); 853 while (--iscsitqidx >= 0) 854 free_irq(adap->msix_info[--msi_index].vec, 855 &s->iscsitrxq[iscsitqidx].rspq); 856 while (--iscsiqidx >= 0) 857 free_irq(adap->msix_info[--msi_index].vec, 858 &s->iscsirxq[iscsiqidx].rspq); 859 while (--ethqidx >= 0) 860 free_irq(adap->msix_info[--msi_index].vec, 861 &s->ethrxq[ethqidx].rspq); 862 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 863 return err; 864 } 865 866 static void free_msix_queue_irqs(struct adapter *adap) 867 { 868 int i, msi_index = 2; 869 struct sge *s = &adap->sge; 870 871 free_irq(adap->msix_info[1].vec, &s->fw_evtq); 872 for_each_ethrxq(s, i) 873 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); 874 for_each_iscsirxq(s, i) 875 free_irq(adap->msix_info[msi_index++].vec, 876 &s->iscsirxq[i].rspq); 877 for_each_iscsitrxq(s, i) 878 free_irq(adap->msix_info[msi_index++].vec, 879 &s->iscsitrxq[i].rspq); 880 for_each_rdmarxq(s, i) 881 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq); 882 for_each_rdmaciq(s, i) 883 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq); 884 } 885 886 /** 887 * cxgb4_write_rss - write the RSS table for a given port 888 * @pi: the port 889 * @queues: array of queue indices for RSS 890 * 891 * Sets up the portion of the HW RSS table for the port's VI to distribute 892 * packets to the Rx queues in @queues. 893 * Should never be called before setting up sge eth rx queues 894 */ 895 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) 896 { 897 u16 *rss; 898 int i, err; 899 struct adapter *adapter = pi->adapter; 900 const struct sge_eth_rxq *rxq; 901 902 rxq = &adapter->sge.ethrxq[pi->first_qset]; 903 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); 904 if (!rss) 905 return -ENOMEM; 906 907 /* map the queue indices to queue ids */ 908 for (i = 0; i < pi->rss_size; i++, queues++) 909 rss[i] = rxq[*queues].rspq.abs_id; 910 911 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, 912 pi->rss_size, rss, pi->rss_size); 913 /* If Tunnel All Lookup isn't specified in the global RSS 914 * Configuration, then we need to specify a default Ingress 915 * Queue for any ingress packets which aren't hashed. We'll 916 * use our first ingress queue ... 917 */ 918 if (!err) 919 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, 920 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | 921 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | 922 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | 923 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | 924 FW_RSS_VI_CONFIG_CMD_UDPEN_F, 925 rss[0]); 926 kfree(rss); 927 return err; 928 } 929 930 /** 931 * setup_rss - configure RSS 932 * @adap: the adapter 933 * 934 * Sets up RSS for each port. 935 */ 936 static int setup_rss(struct adapter *adap) 937 { 938 int i, j, err; 939 940 for_each_port(adap, i) { 941 const struct port_info *pi = adap2pinfo(adap, i); 942 943 /* Fill default values with equal distribution */ 944 for (j = 0; j < pi->rss_size; j++) 945 pi->rss[j] = j % pi->nqsets; 946 947 err = cxgb4_write_rss(pi, pi->rss); 948 if (err) 949 return err; 950 } 951 return 0; 952 } 953 954 /* 955 * Return the channel of the ingress queue with the given qid. 956 */ 957 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) 958 { 959 qid -= p->ingr_start; 960 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; 961 } 962 963 /* 964 * Wait until all NAPI handlers are descheduled. 965 */ 966 static void quiesce_rx(struct adapter *adap) 967 { 968 int i; 969 970 for (i = 0; i < adap->sge.ingr_sz; i++) { 971 struct sge_rspq *q = adap->sge.ingr_map[i]; 972 973 if (q && q->handler) { 974 napi_disable(&q->napi); 975 local_bh_disable(); 976 while (!cxgb_poll_lock_napi(q)) 977 mdelay(1); 978 local_bh_enable(); 979 } 980 981 } 982 } 983 984 /* Disable interrupt and napi handler */ 985 static void disable_interrupts(struct adapter *adap) 986 { 987 if (adap->flags & FULL_INIT_DONE) { 988 t4_intr_disable(adap); 989 if (adap->flags & USING_MSIX) { 990 free_msix_queue_irqs(adap); 991 free_irq(adap->msix_info[0].vec, adap); 992 } else { 993 free_irq(adap->pdev->irq, adap); 994 } 995 quiesce_rx(adap); 996 } 997 } 998 999 /* 1000 * Enable NAPI scheduling and interrupt generation for all Rx queues. 1001 */ 1002 static void enable_rx(struct adapter *adap) 1003 { 1004 int i; 1005 1006 for (i = 0; i < adap->sge.ingr_sz; i++) { 1007 struct sge_rspq *q = adap->sge.ingr_map[i]; 1008 1009 if (!q) 1010 continue; 1011 if (q->handler) { 1012 cxgb_busy_poll_init_lock(q); 1013 napi_enable(&q->napi); 1014 } 1015 /* 0-increment GTS to start the timer and enable interrupts */ 1016 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 1017 SEINTARM_V(q->intr_params) | 1018 INGRESSQID_V(q->cntxt_id)); 1019 } 1020 } 1021 1022 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q, 1023 unsigned int nq, unsigned int per_chan, int msi_idx, 1024 u16 *ids, bool lro) 1025 { 1026 int i, err; 1027 1028 for (i = 0; i < nq; i++, q++) { 1029 if (msi_idx > 0) 1030 msi_idx++; 1031 err = t4_sge_alloc_rxq(adap, &q->rspq, false, 1032 adap->port[i / per_chan], 1033 msi_idx, q->fl.size ? &q->fl : NULL, 1034 uldrx_handler, 1035 lro ? uldrx_flush_handler : NULL, 1036 0); 1037 if (err) 1038 return err; 1039 memset(&q->stats, 0, sizeof(q->stats)); 1040 if (ids) 1041 ids[i] = q->rspq.abs_id; 1042 } 1043 return 0; 1044 } 1045 1046 /** 1047 * setup_sge_queues - configure SGE Tx/Rx/response queues 1048 * @adap: the adapter 1049 * 1050 * Determines how many sets of SGE queues to use and initializes them. 1051 * We support multiple queue sets per port if we have MSI-X, otherwise 1052 * just one queue set per port. 1053 */ 1054 static int setup_sge_queues(struct adapter *adap) 1055 { 1056 int err, msi_idx, i, j; 1057 struct sge *s = &adap->sge; 1058 1059 bitmap_zero(s->starving_fl, s->egr_sz); 1060 bitmap_zero(s->txq_maperr, s->egr_sz); 1061 1062 if (adap->flags & USING_MSIX) 1063 msi_idx = 1; /* vector 0 is for non-queue interrupts */ 1064 else { 1065 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, 1066 NULL, NULL, NULL, -1); 1067 if (err) 1068 return err; 1069 msi_idx = -((int)s->intrq.abs_id + 1); 1070 } 1071 1072 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here, 1073 * don't forget to update the following which need to be 1074 * synchronized to and changes here. 1075 * 1076 * 1. The calculations of MAX_INGQ in cxgb4.h. 1077 * 1078 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs 1079 * to accommodate any new/deleted Ingress Queues 1080 * which need MSI-X Vectors. 1081 * 1082 * 3. Update sge_qinfo_show() to include information on the 1083 * new/deleted queues. 1084 */ 1085 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], 1086 msi_idx, NULL, fwevtq_handler, NULL, -1); 1087 if (err) { 1088 freeout: t4_free_sge_resources(adap); 1089 return err; 1090 } 1091 1092 for_each_port(adap, i) { 1093 struct net_device *dev = adap->port[i]; 1094 struct port_info *pi = netdev_priv(dev); 1095 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; 1096 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; 1097 1098 for (j = 0; j < pi->nqsets; j++, q++) { 1099 if (msi_idx > 0) 1100 msi_idx++; 1101 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, 1102 msi_idx, &q->fl, 1103 t4_ethrx_handler, 1104 NULL, 1105 t4_get_mps_bg_map(adap, 1106 pi->tx_chan)); 1107 if (err) 1108 goto freeout; 1109 q->rspq.idx = j; 1110 memset(&q->stats, 0, sizeof(q->stats)); 1111 } 1112 for (j = 0; j < pi->nqsets; j++, t++) { 1113 err = t4_sge_alloc_eth_txq(adap, t, dev, 1114 netdev_get_tx_queue(dev, j), 1115 s->fw_evtq.cntxt_id); 1116 if (err) 1117 goto freeout; 1118 } 1119 } 1120 1121 j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */ 1122 for_each_iscsirxq(s, i) { 1123 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], 1124 adap->port[i / j], 1125 s->fw_evtq.cntxt_id); 1126 if (err) 1127 goto freeout; 1128 } 1129 1130 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids, lro) do { \ 1131 err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids, lro); \ 1132 if (err) \ 1133 goto freeout; \ 1134 if (msi_idx > 0) \ 1135 msi_idx += nq; \ 1136 } while (0) 1137 1138 ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq, false); 1139 ALLOC_OFLD_RXQS(s->iscsitrxq, s->niscsitq, j, s->iscsit_rxq, true); 1140 ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq, false); 1141 j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */ 1142 ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq, false); 1143 1144 #undef ALLOC_OFLD_RXQS 1145 1146 for_each_port(adap, i) { 1147 /* 1148 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't 1149 * have RDMA queues, and that's the right value. 1150 */ 1151 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], 1152 s->fw_evtq.cntxt_id, 1153 s->rdmarxq[i].rspq.cntxt_id); 1154 if (err) 1155 goto freeout; 1156 } 1157 1158 t4_write_reg(adap, is_t4(adap->params.chip) ? 1159 MPS_TRC_RSS_CONTROL_A : 1160 MPS_T5_TRC_RSS_CONTROL_A, 1161 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | 1162 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); 1163 return 0; 1164 } 1165 1166 /* 1167 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. 1168 * The allocated memory is cleared. 1169 */ 1170 void *t4_alloc_mem(size_t size) 1171 { 1172 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1173 1174 if (!p) 1175 p = vzalloc(size); 1176 return p; 1177 } 1178 1179 /* 1180 * Free memory allocated through alloc_mem(). 1181 */ 1182 void t4_free_mem(void *addr) 1183 { 1184 kvfree(addr); 1185 } 1186 1187 /* Send a Work Request to write the filter at a specified index. We construct 1188 * a Firmware Filter Work Request to have the work done and put the indicated 1189 * filter into "pending" mode which will prevent any further actions against 1190 * it till we get a reply from the firmware on the completion status of the 1191 * request. 1192 */ 1193 static int set_filter_wr(struct adapter *adapter, int fidx) 1194 { 1195 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1196 struct sk_buff *skb; 1197 struct fw_filter_wr *fwr; 1198 unsigned int ftid; 1199 1200 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL); 1201 if (!skb) 1202 return -ENOMEM; 1203 1204 /* If the new filter requires loopback Destination MAC and/or VLAN 1205 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for 1206 * the filter. 1207 */ 1208 if (f->fs.newdmac || f->fs.newvlan) { 1209 /* allocate L2T entry for new filter */ 1210 f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan, 1211 f->fs.eport, f->fs.dmac); 1212 if (f->l2t == NULL) { 1213 kfree_skb(skb); 1214 return -ENOMEM; 1215 } 1216 } 1217 1218 ftid = adapter->tids.ftid_base + fidx; 1219 1220 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr)); 1221 memset(fwr, 0, sizeof(*fwr)); 1222 1223 /* It would be nice to put most of the following in t4_hw.c but most 1224 * of the work is translating the cxgbtool ch_filter_specification 1225 * into the Work Request and the definition of that structure is 1226 * currently in cxgbtool.h which isn't appropriate to pull into the 1227 * common code. We may eventually try to come up with a more neutral 1228 * filter specification structure but for now it's easiest to simply 1229 * put this fairly direct code in line ... 1230 */ 1231 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR)); 1232 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16)); 1233 fwr->tid_to_iq = 1234 htonl(FW_FILTER_WR_TID_V(ftid) | 1235 FW_FILTER_WR_RQTYPE_V(f->fs.type) | 1236 FW_FILTER_WR_NOREPLY_V(0) | 1237 FW_FILTER_WR_IQ_V(f->fs.iq)); 1238 fwr->del_filter_to_l2tix = 1239 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) | 1240 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) | 1241 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) | 1242 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) | 1243 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) | 1244 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) | 1245 FW_FILTER_WR_DMAC_V(f->fs.newdmac) | 1246 FW_FILTER_WR_SMAC_V(f->fs.newsmac) | 1247 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT || 1248 f->fs.newvlan == VLAN_REWRITE) | 1249 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE || 1250 f->fs.newvlan == VLAN_REWRITE) | 1251 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) | 1252 FW_FILTER_WR_TXCHAN_V(f->fs.eport) | 1253 FW_FILTER_WR_PRIO_V(f->fs.prio) | 1254 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0)); 1255 fwr->ethtype = htons(f->fs.val.ethtype); 1256 fwr->ethtypem = htons(f->fs.mask.ethtype); 1257 fwr->frag_to_ovlan_vldm = 1258 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) | 1259 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) | 1260 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) | 1261 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) | 1262 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) | 1263 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld)); 1264 fwr->smac_sel = 0; 1265 fwr->rx_chan_rx_rpl_iq = 1266 htons(FW_FILTER_WR_RX_CHAN_V(0) | 1267 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id)); 1268 fwr->maci_to_matchtypem = 1269 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) | 1270 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) | 1271 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) | 1272 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) | 1273 FW_FILTER_WR_PORT_V(f->fs.val.iport) | 1274 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) | 1275 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) | 1276 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype)); 1277 fwr->ptcl = f->fs.val.proto; 1278 fwr->ptclm = f->fs.mask.proto; 1279 fwr->ttyp = f->fs.val.tos; 1280 fwr->ttypm = f->fs.mask.tos; 1281 fwr->ivlan = htons(f->fs.val.ivlan); 1282 fwr->ivlanm = htons(f->fs.mask.ivlan); 1283 fwr->ovlan = htons(f->fs.val.ovlan); 1284 fwr->ovlanm = htons(f->fs.mask.ovlan); 1285 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip)); 1286 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm)); 1287 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip)); 1288 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm)); 1289 fwr->lp = htons(f->fs.val.lport); 1290 fwr->lpm = htons(f->fs.mask.lport); 1291 fwr->fp = htons(f->fs.val.fport); 1292 fwr->fpm = htons(f->fs.mask.fport); 1293 if (f->fs.newsmac) 1294 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma)); 1295 1296 /* Mark the filter as "pending" and ship off the Filter Work Request. 1297 * When we get the Work Request Reply we'll clear the pending status. 1298 */ 1299 f->pending = 1; 1300 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3); 1301 t4_ofld_send(adapter, skb); 1302 return 0; 1303 } 1304 1305 /* Delete the filter at a specified index. 1306 */ 1307 static int del_filter_wr(struct adapter *adapter, int fidx) 1308 { 1309 struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; 1310 struct sk_buff *skb; 1311 struct fw_filter_wr *fwr; 1312 unsigned int len, ftid; 1313 1314 len = sizeof(*fwr); 1315 ftid = adapter->tids.ftid_base + fidx; 1316 1317 skb = alloc_skb(len, GFP_KERNEL); 1318 if (!skb) 1319 return -ENOMEM; 1320 1321 fwr = (struct fw_filter_wr *)__skb_put(skb, len); 1322 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id); 1323 1324 /* Mark the filter as "pending" and ship off the Filter Work Request. 1325 * When we get the Work Request Reply we'll clear the pending status. 1326 */ 1327 f->pending = 1; 1328 t4_mgmt_tx(adapter, skb); 1329 return 0; 1330 } 1331 1332 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, 1333 void *accel_priv, select_queue_fallback_t fallback) 1334 { 1335 int txq; 1336 1337 #ifdef CONFIG_CHELSIO_T4_DCB 1338 /* If a Data Center Bridging has been successfully negotiated on this 1339 * link then we'll use the skb's priority to map it to a TX Queue. 1340 * The skb's priority is determined via the VLAN Tag Priority Code 1341 * Point field. 1342 */ 1343 if (cxgb4_dcb_enabled(dev)) { 1344 u16 vlan_tci; 1345 int err; 1346 1347 err = vlan_get_tag(skb, &vlan_tci); 1348 if (unlikely(err)) { 1349 if (net_ratelimit()) 1350 netdev_warn(dev, 1351 "TX Packet without VLAN Tag on DCB Link\n"); 1352 txq = 0; 1353 } else { 1354 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 1355 #ifdef CONFIG_CHELSIO_T4_FCOE 1356 if (skb->protocol == htons(ETH_P_FCOE)) 1357 txq = skb->priority & 0x7; 1358 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1359 } 1360 return txq; 1361 } 1362 #endif /* CONFIG_CHELSIO_T4_DCB */ 1363 1364 if (select_queue) { 1365 txq = (skb_rx_queue_recorded(skb) 1366 ? skb_get_rx_queue(skb) 1367 : smp_processor_id()); 1368 1369 while (unlikely(txq >= dev->real_num_tx_queues)) 1370 txq -= dev->real_num_tx_queues; 1371 1372 return txq; 1373 } 1374 1375 return fallback(dev, skb) % dev->real_num_tx_queues; 1376 } 1377 1378 static int closest_timer(const struct sge *s, int time) 1379 { 1380 int i, delta, match = 0, min_delta = INT_MAX; 1381 1382 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { 1383 delta = time - s->timer_val[i]; 1384 if (delta < 0) 1385 delta = -delta; 1386 if (delta < min_delta) { 1387 min_delta = delta; 1388 match = i; 1389 } 1390 } 1391 return match; 1392 } 1393 1394 static int closest_thres(const struct sge *s, int thres) 1395 { 1396 int i, delta, match = 0, min_delta = INT_MAX; 1397 1398 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { 1399 delta = thres - s->counter_val[i]; 1400 if (delta < 0) 1401 delta = -delta; 1402 if (delta < min_delta) { 1403 min_delta = delta; 1404 match = i; 1405 } 1406 } 1407 return match; 1408 } 1409 1410 /** 1411 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters 1412 * @q: the Rx queue 1413 * @us: the hold-off time in us, or 0 to disable timer 1414 * @cnt: the hold-off packet count, or 0 to disable counter 1415 * 1416 * Sets an Rx queue's interrupt hold-off time and packet count. At least 1417 * one of the two needs to be enabled for the queue to generate interrupts. 1418 */ 1419 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, 1420 unsigned int us, unsigned int cnt) 1421 { 1422 struct adapter *adap = q->adap; 1423 1424 if ((us | cnt) == 0) 1425 cnt = 1; 1426 1427 if (cnt) { 1428 int err; 1429 u32 v, new_idx; 1430 1431 new_idx = closest_thres(&adap->sge, cnt); 1432 if (q->desc && q->pktcnt_idx != new_idx) { 1433 /* the queue has already been created, update it */ 1434 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 1435 FW_PARAMS_PARAM_X_V( 1436 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | 1437 FW_PARAMS_PARAM_YZ_V(q->cntxt_id); 1438 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 1439 &v, &new_idx); 1440 if (err) 1441 return err; 1442 } 1443 q->pktcnt_idx = new_idx; 1444 } 1445 1446 us = us == 0 ? 6 : closest_timer(&adap->sge, us); 1447 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); 1448 return 0; 1449 } 1450 1451 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 1452 { 1453 const struct port_info *pi = netdev_priv(dev); 1454 netdev_features_t changed = dev->features ^ features; 1455 int err; 1456 1457 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) 1458 return 0; 1459 1460 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, 1461 -1, -1, -1, 1462 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); 1463 if (unlikely(err)) 1464 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; 1465 return err; 1466 } 1467 1468 static int setup_debugfs(struct adapter *adap) 1469 { 1470 if (IS_ERR_OR_NULL(adap->debugfs_root)) 1471 return -1; 1472 1473 #ifdef CONFIG_DEBUG_FS 1474 t4_setup_debugfs(adap); 1475 #endif 1476 return 0; 1477 } 1478 1479 /* 1480 * upper-layer driver support 1481 */ 1482 1483 /* 1484 * Allocate an active-open TID and set it to the supplied value. 1485 */ 1486 int cxgb4_alloc_atid(struct tid_info *t, void *data) 1487 { 1488 int atid = -1; 1489 1490 spin_lock_bh(&t->atid_lock); 1491 if (t->afree) { 1492 union aopen_entry *p = t->afree; 1493 1494 atid = (p - t->atid_tab) + t->atid_base; 1495 t->afree = p->next; 1496 p->data = data; 1497 t->atids_in_use++; 1498 } 1499 spin_unlock_bh(&t->atid_lock); 1500 return atid; 1501 } 1502 EXPORT_SYMBOL(cxgb4_alloc_atid); 1503 1504 /* 1505 * Release an active-open TID. 1506 */ 1507 void cxgb4_free_atid(struct tid_info *t, unsigned int atid) 1508 { 1509 union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; 1510 1511 spin_lock_bh(&t->atid_lock); 1512 p->next = t->afree; 1513 t->afree = p; 1514 t->atids_in_use--; 1515 spin_unlock_bh(&t->atid_lock); 1516 } 1517 EXPORT_SYMBOL(cxgb4_free_atid); 1518 1519 /* 1520 * Allocate a server TID and set it to the supplied value. 1521 */ 1522 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) 1523 { 1524 int stid; 1525 1526 spin_lock_bh(&t->stid_lock); 1527 if (family == PF_INET) { 1528 stid = find_first_zero_bit(t->stid_bmap, t->nstids); 1529 if (stid < t->nstids) 1530 __set_bit(stid, t->stid_bmap); 1531 else 1532 stid = -1; 1533 } else { 1534 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1); 1535 if (stid < 0) 1536 stid = -1; 1537 } 1538 if (stid >= 0) { 1539 t->stid_tab[stid].data = data; 1540 stid += t->stid_base; 1541 /* IPv6 requires max of 520 bits or 16 cells in TCAM 1542 * This is equivalent to 4 TIDs. With CLIP enabled it 1543 * needs 2 TIDs. 1544 */ 1545 if (family == PF_INET) 1546 t->stids_in_use++; 1547 else 1548 t->stids_in_use += 2; 1549 } 1550 spin_unlock_bh(&t->stid_lock); 1551 return stid; 1552 } 1553 EXPORT_SYMBOL(cxgb4_alloc_stid); 1554 1555 /* Allocate a server filter TID and set it to the supplied value. 1556 */ 1557 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) 1558 { 1559 int stid; 1560 1561 spin_lock_bh(&t->stid_lock); 1562 if (family == PF_INET) { 1563 stid = find_next_zero_bit(t->stid_bmap, 1564 t->nstids + t->nsftids, t->nstids); 1565 if (stid < (t->nstids + t->nsftids)) 1566 __set_bit(stid, t->stid_bmap); 1567 else 1568 stid = -1; 1569 } else { 1570 stid = -1; 1571 } 1572 if (stid >= 0) { 1573 t->stid_tab[stid].data = data; 1574 stid -= t->nstids; 1575 stid += t->sftid_base; 1576 t->sftids_in_use++; 1577 } 1578 spin_unlock_bh(&t->stid_lock); 1579 return stid; 1580 } 1581 EXPORT_SYMBOL(cxgb4_alloc_sftid); 1582 1583 /* Release a server TID. 1584 */ 1585 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) 1586 { 1587 /* Is it a server filter TID? */ 1588 if (t->nsftids && (stid >= t->sftid_base)) { 1589 stid -= t->sftid_base; 1590 stid += t->nstids; 1591 } else { 1592 stid -= t->stid_base; 1593 } 1594 1595 spin_lock_bh(&t->stid_lock); 1596 if (family == PF_INET) 1597 __clear_bit(stid, t->stid_bmap); 1598 else 1599 bitmap_release_region(t->stid_bmap, stid, 1); 1600 t->stid_tab[stid].data = NULL; 1601 if (stid < t->nstids) { 1602 if (family == PF_INET) 1603 t->stids_in_use--; 1604 else 1605 t->stids_in_use -= 2; 1606 } else { 1607 t->sftids_in_use--; 1608 } 1609 spin_unlock_bh(&t->stid_lock); 1610 } 1611 EXPORT_SYMBOL(cxgb4_free_stid); 1612 1613 /* 1614 * Populate a TID_RELEASE WR. Caller must properly size the skb. 1615 */ 1616 static void mk_tid_release(struct sk_buff *skb, unsigned int chan, 1617 unsigned int tid) 1618 { 1619 struct cpl_tid_release *req; 1620 1621 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); 1622 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); 1623 INIT_TP_WR(req, tid); 1624 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); 1625 } 1626 1627 /* 1628 * Queue a TID release request and if necessary schedule a work queue to 1629 * process it. 1630 */ 1631 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, 1632 unsigned int tid) 1633 { 1634 void **p = &t->tid_tab[tid]; 1635 struct adapter *adap = container_of(t, struct adapter, tids); 1636 1637 spin_lock_bh(&adap->tid_release_lock); 1638 *p = adap->tid_release_head; 1639 /* Low 2 bits encode the Tx channel number */ 1640 adap->tid_release_head = (void **)((uintptr_t)p | chan); 1641 if (!adap->tid_release_task_busy) { 1642 adap->tid_release_task_busy = true; 1643 queue_work(adap->workq, &adap->tid_release_task); 1644 } 1645 spin_unlock_bh(&adap->tid_release_lock); 1646 } 1647 1648 /* 1649 * Process the list of pending TID release requests. 1650 */ 1651 static void process_tid_release_list(struct work_struct *work) 1652 { 1653 struct sk_buff *skb; 1654 struct adapter *adap; 1655 1656 adap = container_of(work, struct adapter, tid_release_task); 1657 1658 spin_lock_bh(&adap->tid_release_lock); 1659 while (adap->tid_release_head) { 1660 void **p = adap->tid_release_head; 1661 unsigned int chan = (uintptr_t)p & 3; 1662 p = (void *)p - chan; 1663 1664 adap->tid_release_head = *p; 1665 *p = NULL; 1666 spin_unlock_bh(&adap->tid_release_lock); 1667 1668 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), 1669 GFP_KERNEL))) 1670 schedule_timeout_uninterruptible(1); 1671 1672 mk_tid_release(skb, chan, p - adap->tids.tid_tab); 1673 t4_ofld_send(adap, skb); 1674 spin_lock_bh(&adap->tid_release_lock); 1675 } 1676 adap->tid_release_task_busy = false; 1677 spin_unlock_bh(&adap->tid_release_lock); 1678 } 1679 1680 /* 1681 * Release a TID and inform HW. If we are unable to allocate the release 1682 * message we defer to a work queue. 1683 */ 1684 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) 1685 { 1686 struct sk_buff *skb; 1687 struct adapter *adap = container_of(t, struct adapter, tids); 1688 1689 WARN_ON(tid >= t->ntids); 1690 1691 if (t->tid_tab[tid]) { 1692 t->tid_tab[tid] = NULL; 1693 if (t->hash_base && (tid >= t->hash_base)) 1694 atomic_dec(&t->hash_tids_in_use); 1695 else 1696 atomic_dec(&t->tids_in_use); 1697 } 1698 1699 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); 1700 if (likely(skb)) { 1701 mk_tid_release(skb, chan, tid); 1702 t4_ofld_send(adap, skb); 1703 } else 1704 cxgb4_queue_tid_release(t, chan, tid); 1705 } 1706 EXPORT_SYMBOL(cxgb4_remove_tid); 1707 1708 /* 1709 * Allocate and initialize the TID tables. Returns 0 on success. 1710 */ 1711 static int tid_init(struct tid_info *t) 1712 { 1713 size_t size; 1714 unsigned int stid_bmap_size; 1715 unsigned int natids = t->natids; 1716 struct adapter *adap = container_of(t, struct adapter, tids); 1717 1718 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); 1719 size = t->ntids * sizeof(*t->tid_tab) + 1720 natids * sizeof(*t->atid_tab) + 1721 t->nstids * sizeof(*t->stid_tab) + 1722 t->nsftids * sizeof(*t->stid_tab) + 1723 stid_bmap_size * sizeof(long) + 1724 t->nftids * sizeof(*t->ftid_tab) + 1725 t->nsftids * sizeof(*t->ftid_tab); 1726 1727 t->tid_tab = t4_alloc_mem(size); 1728 if (!t->tid_tab) 1729 return -ENOMEM; 1730 1731 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; 1732 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; 1733 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; 1734 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; 1735 spin_lock_init(&t->stid_lock); 1736 spin_lock_init(&t->atid_lock); 1737 1738 t->stids_in_use = 0; 1739 t->sftids_in_use = 0; 1740 t->afree = NULL; 1741 t->atids_in_use = 0; 1742 atomic_set(&t->tids_in_use, 0); 1743 atomic_set(&t->hash_tids_in_use, 0); 1744 1745 /* Setup the free list for atid_tab and clear the stid bitmap. */ 1746 if (natids) { 1747 while (--natids) 1748 t->atid_tab[natids - 1].next = &t->atid_tab[natids]; 1749 t->afree = t->atid_tab; 1750 } 1751 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); 1752 /* Reserve stid 0 for T4/T5 adapters */ 1753 if (!t->stid_base && 1754 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)) 1755 __set_bit(0, t->stid_bmap); 1756 1757 return 0; 1758 } 1759 1760 /** 1761 * cxgb4_create_server - create an IP server 1762 * @dev: the device 1763 * @stid: the server TID 1764 * @sip: local IP address to bind server to 1765 * @sport: the server's TCP port 1766 * @queue: queue to direct messages from this server to 1767 * 1768 * Create an IP server for the given port and address. 1769 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1770 */ 1771 int cxgb4_create_server(const struct net_device *dev, unsigned int stid, 1772 __be32 sip, __be16 sport, __be16 vlan, 1773 unsigned int queue) 1774 { 1775 unsigned int chan; 1776 struct sk_buff *skb; 1777 struct adapter *adap; 1778 struct cpl_pass_open_req *req; 1779 int ret; 1780 1781 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1782 if (!skb) 1783 return -ENOMEM; 1784 1785 adap = netdev2adap(dev); 1786 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); 1787 INIT_TP_WR(req, 0); 1788 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); 1789 req->local_port = sport; 1790 req->peer_port = htons(0); 1791 req->local_ip = sip; 1792 req->peer_ip = htonl(0); 1793 chan = rxq_to_chan(&adap->sge, queue); 1794 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1795 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1796 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1797 ret = t4_mgmt_tx(adap, skb); 1798 return net_xmit_eval(ret); 1799 } 1800 EXPORT_SYMBOL(cxgb4_create_server); 1801 1802 /* cxgb4_create_server6 - create an IPv6 server 1803 * @dev: the device 1804 * @stid: the server TID 1805 * @sip: local IPv6 address to bind server to 1806 * @sport: the server's TCP port 1807 * @queue: queue to direct messages from this server to 1808 * 1809 * Create an IPv6 server for the given port and address. 1810 * Returns <0 on error and one of the %NET_XMIT_* values on success. 1811 */ 1812 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, 1813 const struct in6_addr *sip, __be16 sport, 1814 unsigned int queue) 1815 { 1816 unsigned int chan; 1817 struct sk_buff *skb; 1818 struct adapter *adap; 1819 struct cpl_pass_open_req6 *req; 1820 int ret; 1821 1822 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1823 if (!skb) 1824 return -ENOMEM; 1825 1826 adap = netdev2adap(dev); 1827 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req)); 1828 INIT_TP_WR(req, 0); 1829 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); 1830 req->local_port = sport; 1831 req->peer_port = htons(0); 1832 req->local_ip_hi = *(__be64 *)(sip->s6_addr); 1833 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); 1834 req->peer_ip_hi = cpu_to_be64(0); 1835 req->peer_ip_lo = cpu_to_be64(0); 1836 chan = rxq_to_chan(&adap->sge, queue); 1837 req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); 1838 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | 1839 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); 1840 ret = t4_mgmt_tx(adap, skb); 1841 return net_xmit_eval(ret); 1842 } 1843 EXPORT_SYMBOL(cxgb4_create_server6); 1844 1845 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, 1846 unsigned int queue, bool ipv6) 1847 { 1848 struct sk_buff *skb; 1849 struct adapter *adap; 1850 struct cpl_close_listsvr_req *req; 1851 int ret; 1852 1853 adap = netdev2adap(dev); 1854 1855 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 1856 if (!skb) 1857 return -ENOMEM; 1858 1859 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req)); 1860 INIT_TP_WR(req, 0); 1861 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); 1862 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : 1863 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); 1864 ret = t4_mgmt_tx(adap, skb); 1865 return net_xmit_eval(ret); 1866 } 1867 EXPORT_SYMBOL(cxgb4_remove_server); 1868 1869 /** 1870 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU 1871 * @mtus: the HW MTU table 1872 * @mtu: the target MTU 1873 * @idx: index of selected entry in the MTU table 1874 * 1875 * Returns the index and the value in the HW MTU table that is closest to 1876 * but does not exceed @mtu, unless @mtu is smaller than any value in the 1877 * table, in which case that smallest available value is selected. 1878 */ 1879 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, 1880 unsigned int *idx) 1881 { 1882 unsigned int i = 0; 1883 1884 while (i < NMTUS - 1 && mtus[i + 1] <= mtu) 1885 ++i; 1886 if (idx) 1887 *idx = i; 1888 return mtus[i]; 1889 } 1890 EXPORT_SYMBOL(cxgb4_best_mtu); 1891 1892 /** 1893 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned 1894 * @mtus: the HW MTU table 1895 * @header_size: Header Size 1896 * @data_size_max: maximum Data Segment Size 1897 * @data_size_align: desired Data Segment Size Alignment (2^N) 1898 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) 1899 * 1900 * Similar to cxgb4_best_mtu() but instead of searching the Hardware 1901 * MTU Table based solely on a Maximum MTU parameter, we break that 1902 * parameter up into a Header Size and Maximum Data Segment Size, and 1903 * provide a desired Data Segment Size Alignment. If we find an MTU in 1904 * the Hardware MTU Table which will result in a Data Segment Size with 1905 * the requested alignment _and_ that MTU isn't "too far" from the 1906 * closest MTU, then we'll return that rather than the closest MTU. 1907 */ 1908 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, 1909 unsigned short header_size, 1910 unsigned short data_size_max, 1911 unsigned short data_size_align, 1912 unsigned int *mtu_idxp) 1913 { 1914 unsigned short max_mtu = header_size + data_size_max; 1915 unsigned short data_size_align_mask = data_size_align - 1; 1916 int mtu_idx, aligned_mtu_idx; 1917 1918 /* Scan the MTU Table till we find an MTU which is larger than our 1919 * Maximum MTU or we reach the end of the table. Along the way, 1920 * record the last MTU found, if any, which will result in a Data 1921 * Segment Length matching the requested alignment. 1922 */ 1923 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { 1924 unsigned short data_size = mtus[mtu_idx] - header_size; 1925 1926 /* If this MTU minus the Header Size would result in a 1927 * Data Segment Size of the desired alignment, remember it. 1928 */ 1929 if ((data_size & data_size_align_mask) == 0) 1930 aligned_mtu_idx = mtu_idx; 1931 1932 /* If we're not at the end of the Hardware MTU Table and the 1933 * next element is larger than our Maximum MTU, drop out of 1934 * the loop. 1935 */ 1936 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) 1937 break; 1938 } 1939 1940 /* If we fell out of the loop because we ran to the end of the table, 1941 * then we just have to use the last [largest] entry. 1942 */ 1943 if (mtu_idx == NMTUS) 1944 mtu_idx--; 1945 1946 /* If we found an MTU which resulted in the requested Data Segment 1947 * Length alignment and that's "not far" from the largest MTU which is 1948 * less than or equal to the maximum MTU, then use that. 1949 */ 1950 if (aligned_mtu_idx >= 0 && 1951 mtu_idx - aligned_mtu_idx <= 1) 1952 mtu_idx = aligned_mtu_idx; 1953 1954 /* If the caller has passed in an MTU Index pointer, pass the 1955 * MTU Index back. Return the MTU value. 1956 */ 1957 if (mtu_idxp) 1958 *mtu_idxp = mtu_idx; 1959 return mtus[mtu_idx]; 1960 } 1961 EXPORT_SYMBOL(cxgb4_best_aligned_mtu); 1962 1963 /** 1964 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI 1965 * @chip: chip type 1966 * @viid: VI id of the given port 1967 * 1968 * Return the SMT index for this VI. 1969 */ 1970 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid) 1971 { 1972 /* In T4/T5, SMT contains 256 SMAC entries organized in 1973 * 128 rows of 2 entries each. 1974 * In T6, SMT contains 256 SMAC entries in 256 rows. 1975 * TODO: The below code needs to be updated when we add support 1976 * for 256 VFs. 1977 */ 1978 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1979 return ((viid & 0x7f) << 1); 1980 else 1981 return (viid & 0x7f); 1982 } 1983 EXPORT_SYMBOL(cxgb4_tp_smt_idx); 1984 1985 /** 1986 * cxgb4_port_chan - get the HW channel of a port 1987 * @dev: the net device for the port 1988 * 1989 * Return the HW Tx channel of the given port. 1990 */ 1991 unsigned int cxgb4_port_chan(const struct net_device *dev) 1992 { 1993 return netdev2pinfo(dev)->tx_chan; 1994 } 1995 EXPORT_SYMBOL(cxgb4_port_chan); 1996 1997 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) 1998 { 1999 struct adapter *adap = netdev2adap(dev); 2000 u32 v1, v2, lp_count, hp_count; 2001 2002 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2003 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2004 if (is_t4(adap->params.chip)) { 2005 lp_count = LP_COUNT_G(v1); 2006 hp_count = HP_COUNT_G(v1); 2007 } else { 2008 lp_count = LP_COUNT_T5_G(v1); 2009 hp_count = HP_COUNT_T5_G(v2); 2010 } 2011 return lpfifo ? lp_count : hp_count; 2012 } 2013 EXPORT_SYMBOL(cxgb4_dbfifo_count); 2014 2015 /** 2016 * cxgb4_port_viid - get the VI id of a port 2017 * @dev: the net device for the port 2018 * 2019 * Return the VI id of the given port. 2020 */ 2021 unsigned int cxgb4_port_viid(const struct net_device *dev) 2022 { 2023 return netdev2pinfo(dev)->viid; 2024 } 2025 EXPORT_SYMBOL(cxgb4_port_viid); 2026 2027 /** 2028 * cxgb4_port_idx - get the index of a port 2029 * @dev: the net device for the port 2030 * 2031 * Return the index of the given port. 2032 */ 2033 unsigned int cxgb4_port_idx(const struct net_device *dev) 2034 { 2035 return netdev2pinfo(dev)->port_id; 2036 } 2037 EXPORT_SYMBOL(cxgb4_port_idx); 2038 2039 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, 2040 struct tp_tcp_stats *v6) 2041 { 2042 struct adapter *adap = pci_get_drvdata(pdev); 2043 2044 spin_lock(&adap->stats_lock); 2045 t4_tp_get_tcp_stats(adap, v4, v6); 2046 spin_unlock(&adap->stats_lock); 2047 } 2048 EXPORT_SYMBOL(cxgb4_get_tcp_stats); 2049 2050 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, 2051 const unsigned int *pgsz_order) 2052 { 2053 struct adapter *adap = netdev2adap(dev); 2054 2055 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); 2056 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | 2057 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | 2058 HPZ3_V(pgsz_order[3])); 2059 } 2060 EXPORT_SYMBOL(cxgb4_iscsi_init); 2061 2062 int cxgb4_flush_eq_cache(struct net_device *dev) 2063 { 2064 struct adapter *adap = netdev2adap(dev); 2065 2066 return t4_sge_ctxt_flush(adap, adap->mbox); 2067 } 2068 EXPORT_SYMBOL(cxgb4_flush_eq_cache); 2069 2070 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) 2071 { 2072 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; 2073 __be64 indices; 2074 int ret; 2075 2076 spin_lock(&adap->win0_lock); 2077 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, 2078 sizeof(indices), (__be32 *)&indices, 2079 T4_MEMORY_READ); 2080 spin_unlock(&adap->win0_lock); 2081 if (!ret) { 2082 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; 2083 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; 2084 } 2085 return ret; 2086 } 2087 2088 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, 2089 u16 size) 2090 { 2091 struct adapter *adap = netdev2adap(dev); 2092 u16 hw_pidx, hw_cidx; 2093 int ret; 2094 2095 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); 2096 if (ret) 2097 goto out; 2098 2099 if (pidx != hw_pidx) { 2100 u16 delta; 2101 u32 val; 2102 2103 if (pidx >= hw_pidx) 2104 delta = pidx - hw_pidx; 2105 else 2106 delta = size - hw_pidx + pidx; 2107 2108 if (is_t4(adap->params.chip)) 2109 val = PIDX_V(delta); 2110 else 2111 val = PIDX_T5_V(delta); 2112 wmb(); 2113 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2114 QID_V(qid) | val); 2115 } 2116 out: 2117 return ret; 2118 } 2119 EXPORT_SYMBOL(cxgb4_sync_txq_pidx); 2120 2121 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) 2122 { 2123 struct adapter *adap; 2124 u32 offset, memtype, memaddr; 2125 u32 edc0_size, edc1_size, mc0_size, mc1_size, size; 2126 u32 edc0_end, edc1_end, mc0_end, mc1_end; 2127 int ret; 2128 2129 adap = netdev2adap(dev); 2130 2131 offset = ((stag >> 8) * 32) + adap->vres.stag.start; 2132 2133 /* Figure out where the offset lands in the Memory Type/Address scheme. 2134 * This code assumes that the memory is laid out starting at offset 0 2135 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 2136 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have 2137 * MC0, and some have both MC0 and MC1. 2138 */ 2139 size = t4_read_reg(adap, MA_EDRAM0_BAR_A); 2140 edc0_size = EDRAM0_SIZE_G(size) << 20; 2141 size = t4_read_reg(adap, MA_EDRAM1_BAR_A); 2142 edc1_size = EDRAM1_SIZE_G(size) << 20; 2143 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); 2144 mc0_size = EXT_MEM0_SIZE_G(size) << 20; 2145 2146 edc0_end = edc0_size; 2147 edc1_end = edc0_end + edc1_size; 2148 mc0_end = edc1_end + mc0_size; 2149 2150 if (offset < edc0_end) { 2151 memtype = MEM_EDC0; 2152 memaddr = offset; 2153 } else if (offset < edc1_end) { 2154 memtype = MEM_EDC1; 2155 memaddr = offset - edc0_end; 2156 } else { 2157 if (offset < mc0_end) { 2158 memtype = MEM_MC0; 2159 memaddr = offset - edc1_end; 2160 } else if (is_t5(adap->params.chip)) { 2161 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); 2162 mc1_size = EXT_MEM1_SIZE_G(size) << 20; 2163 mc1_end = mc0_end + mc1_size; 2164 if (offset < mc1_end) { 2165 memtype = MEM_MC1; 2166 memaddr = offset - mc0_end; 2167 } else { 2168 /* offset beyond the end of any memory */ 2169 goto err; 2170 } 2171 } else { 2172 /* T4/T6 only has a single memory channel */ 2173 goto err; 2174 } 2175 } 2176 2177 spin_lock(&adap->win0_lock); 2178 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); 2179 spin_unlock(&adap->win0_lock); 2180 return ret; 2181 2182 err: 2183 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", 2184 stag, offset); 2185 return -EINVAL; 2186 } 2187 EXPORT_SYMBOL(cxgb4_read_tpte); 2188 2189 u64 cxgb4_read_sge_timestamp(struct net_device *dev) 2190 { 2191 u32 hi, lo; 2192 struct adapter *adap; 2193 2194 adap = netdev2adap(dev); 2195 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); 2196 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); 2197 2198 return ((u64)hi << 32) | (u64)lo; 2199 } 2200 EXPORT_SYMBOL(cxgb4_read_sge_timestamp); 2201 2202 int cxgb4_bar2_sge_qregs(struct net_device *dev, 2203 unsigned int qid, 2204 enum cxgb4_bar2_qtype qtype, 2205 int user, 2206 u64 *pbar2_qoffset, 2207 unsigned int *pbar2_qid) 2208 { 2209 return t4_bar2_sge_qregs(netdev2adap(dev), 2210 qid, 2211 (qtype == CXGB4_BAR2_QTYPE_EGRESS 2212 ? T4_BAR2_QTYPE_EGRESS 2213 : T4_BAR2_QTYPE_INGRESS), 2214 user, 2215 pbar2_qoffset, 2216 pbar2_qid); 2217 } 2218 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); 2219 2220 static struct pci_driver cxgb4_driver; 2221 2222 static void check_neigh_update(struct neighbour *neigh) 2223 { 2224 const struct device *parent; 2225 const struct net_device *netdev = neigh->dev; 2226 2227 if (netdev->priv_flags & IFF_802_1Q_VLAN) 2228 netdev = vlan_dev_real_dev(netdev); 2229 parent = netdev->dev.parent; 2230 if (parent && parent->driver == &cxgb4_driver.driver) 2231 t4_l2t_update(dev_get_drvdata(parent), neigh); 2232 } 2233 2234 static int netevent_cb(struct notifier_block *nb, unsigned long event, 2235 void *data) 2236 { 2237 switch (event) { 2238 case NETEVENT_NEIGH_UPDATE: 2239 check_neigh_update(data); 2240 break; 2241 case NETEVENT_REDIRECT: 2242 default: 2243 break; 2244 } 2245 return 0; 2246 } 2247 2248 static bool netevent_registered; 2249 static struct notifier_block cxgb4_netevent_nb = { 2250 .notifier_call = netevent_cb 2251 }; 2252 2253 static void drain_db_fifo(struct adapter *adap, int usecs) 2254 { 2255 u32 v1, v2, lp_count, hp_count; 2256 2257 do { 2258 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); 2259 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); 2260 if (is_t4(adap->params.chip)) { 2261 lp_count = LP_COUNT_G(v1); 2262 hp_count = HP_COUNT_G(v1); 2263 } else { 2264 lp_count = LP_COUNT_T5_G(v1); 2265 hp_count = HP_COUNT_T5_G(v2); 2266 } 2267 2268 if (lp_count == 0 && hp_count == 0) 2269 break; 2270 set_current_state(TASK_UNINTERRUPTIBLE); 2271 schedule_timeout(usecs_to_jiffies(usecs)); 2272 } while (1); 2273 } 2274 2275 static void disable_txq_db(struct sge_txq *q) 2276 { 2277 unsigned long flags; 2278 2279 spin_lock_irqsave(&q->db_lock, flags); 2280 q->db_disabled = 1; 2281 spin_unlock_irqrestore(&q->db_lock, flags); 2282 } 2283 2284 static void enable_txq_db(struct adapter *adap, struct sge_txq *q) 2285 { 2286 spin_lock_irq(&q->db_lock); 2287 if (q->db_pidx_inc) { 2288 /* Make sure that all writes to the TX descriptors 2289 * are committed before we tell HW about them. 2290 */ 2291 wmb(); 2292 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2293 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); 2294 q->db_pidx_inc = 0; 2295 } 2296 q->db_disabled = 0; 2297 spin_unlock_irq(&q->db_lock); 2298 } 2299 2300 static void disable_dbs(struct adapter *adap) 2301 { 2302 int i; 2303 2304 for_each_ethrxq(&adap->sge, i) 2305 disable_txq_db(&adap->sge.ethtxq[i].q); 2306 for_each_iscsirxq(&adap->sge, i) 2307 disable_txq_db(&adap->sge.ofldtxq[i].q); 2308 for_each_port(adap, i) 2309 disable_txq_db(&adap->sge.ctrlq[i].q); 2310 } 2311 2312 static void enable_dbs(struct adapter *adap) 2313 { 2314 int i; 2315 2316 for_each_ethrxq(&adap->sge, i) 2317 enable_txq_db(adap, &adap->sge.ethtxq[i].q); 2318 for_each_iscsirxq(&adap->sge, i) 2319 enable_txq_db(adap, &adap->sge.ofldtxq[i].q); 2320 for_each_port(adap, i) 2321 enable_txq_db(adap, &adap->sge.ctrlq[i].q); 2322 } 2323 2324 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) 2325 { 2326 if (adap->uld_handle[CXGB4_ULD_RDMA]) 2327 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA], 2328 cmd); 2329 } 2330 2331 static void process_db_full(struct work_struct *work) 2332 { 2333 struct adapter *adap; 2334 2335 adap = container_of(work, struct adapter, db_full_task); 2336 2337 drain_db_fifo(adap, dbfifo_drain_delay); 2338 enable_dbs(adap); 2339 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2340 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2341 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2342 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 2343 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); 2344 else 2345 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2346 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F); 2347 } 2348 2349 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) 2350 { 2351 u16 hw_pidx, hw_cidx; 2352 int ret; 2353 2354 spin_lock_irq(&q->db_lock); 2355 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); 2356 if (ret) 2357 goto out; 2358 if (q->db_pidx != hw_pidx) { 2359 u16 delta; 2360 u32 val; 2361 2362 if (q->db_pidx >= hw_pidx) 2363 delta = q->db_pidx - hw_pidx; 2364 else 2365 delta = q->size - hw_pidx + q->db_pidx; 2366 2367 if (is_t4(adap->params.chip)) 2368 val = PIDX_V(delta); 2369 else 2370 val = PIDX_T5_V(delta); 2371 wmb(); 2372 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 2373 QID_V(q->cntxt_id) | val); 2374 } 2375 out: 2376 q->db_disabled = 0; 2377 q->db_pidx_inc = 0; 2378 spin_unlock_irq(&q->db_lock); 2379 if (ret) 2380 CH_WARN(adap, "DB drop recovery failed.\n"); 2381 } 2382 static void recover_all_queues(struct adapter *adap) 2383 { 2384 int i; 2385 2386 for_each_ethrxq(&adap->sge, i) 2387 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); 2388 for_each_iscsirxq(&adap->sge, i) 2389 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q); 2390 for_each_port(adap, i) 2391 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); 2392 } 2393 2394 static void process_db_drop(struct work_struct *work) 2395 { 2396 struct adapter *adap; 2397 2398 adap = container_of(work, struct adapter, db_drop_task); 2399 2400 if (is_t4(adap->params.chip)) { 2401 drain_db_fifo(adap, dbfifo_drain_delay); 2402 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); 2403 drain_db_fifo(adap, dbfifo_drain_delay); 2404 recover_all_queues(adap); 2405 drain_db_fifo(adap, dbfifo_drain_delay); 2406 enable_dbs(adap); 2407 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); 2408 } else if (is_t5(adap->params.chip)) { 2409 u32 dropped_db = t4_read_reg(adap, 0x010ac); 2410 u16 qid = (dropped_db >> 15) & 0x1ffff; 2411 u16 pidx_inc = dropped_db & 0x1fff; 2412 u64 bar2_qoffset; 2413 unsigned int bar2_qid; 2414 int ret; 2415 2416 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, 2417 0, &bar2_qoffset, &bar2_qid); 2418 if (ret) 2419 dev_err(adap->pdev_dev, "doorbell drop recovery: " 2420 "qid=%d, pidx_inc=%d\n", qid, pidx_inc); 2421 else 2422 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), 2423 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); 2424 2425 /* Re-enable BAR2 WC */ 2426 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); 2427 } 2428 2429 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 2430 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); 2431 } 2432 2433 void t4_db_full(struct adapter *adap) 2434 { 2435 if (is_t4(adap->params.chip)) { 2436 disable_dbs(adap); 2437 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2438 t4_set_reg_field(adap, SGE_INT_ENABLE3_A, 2439 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); 2440 queue_work(adap->workq, &adap->db_full_task); 2441 } 2442 } 2443 2444 void t4_db_dropped(struct adapter *adap) 2445 { 2446 if (is_t4(adap->params.chip)) { 2447 disable_dbs(adap); 2448 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); 2449 } 2450 queue_work(adap->workq, &adap->db_drop_task); 2451 } 2452 2453 static void uld_attach(struct adapter *adap, unsigned int uld) 2454 { 2455 void *handle; 2456 struct cxgb4_lld_info lli; 2457 unsigned short i; 2458 2459 lli.pdev = adap->pdev; 2460 lli.pf = adap->pf; 2461 lli.l2t = adap->l2t; 2462 lli.tids = &adap->tids; 2463 lli.ports = adap->port; 2464 lli.vr = &adap->vres; 2465 lli.mtus = adap->params.mtus; 2466 if (uld == CXGB4_ULD_RDMA) { 2467 lli.rxq_ids = adap->sge.rdma_rxq; 2468 lli.ciq_ids = adap->sge.rdma_ciq; 2469 lli.nrxq = adap->sge.rdmaqs; 2470 lli.nciq = adap->sge.rdmaciqs; 2471 } else if (uld == CXGB4_ULD_ISCSI) { 2472 lli.rxq_ids = adap->sge.iscsi_rxq; 2473 lli.nrxq = adap->sge.iscsiqsets; 2474 } else if (uld == CXGB4_ULD_ISCSIT) { 2475 lli.rxq_ids = adap->sge.iscsit_rxq; 2476 lli.nrxq = adap->sge.niscsitq; 2477 } 2478 lli.ntxq = adap->sge.iscsiqsets; 2479 lli.nchan = adap->params.nports; 2480 lli.nports = adap->params.nports; 2481 lli.wr_cred = adap->params.ofldq_wr_cred; 2482 lli.adapter_type = adap->params.chip; 2483 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A)); 2484 lli.iscsi_tagmask = t4_read_reg(adap, ULP_RX_ISCSI_TAGMASK_A); 2485 lli.iscsi_pgsz_order = t4_read_reg(adap, ULP_RX_ISCSI_PSZ_A); 2486 lli.iscsi_llimit = t4_read_reg(adap, ULP_RX_ISCSI_LLIMIT_A); 2487 lli.iscsi_ppm = &adap->iscsi_ppm; 2488 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk; 2489 lli.udb_density = 1 << adap->params.sge.eq_qpp; 2490 lli.ucq_density = 1 << adap->params.sge.iq_qpp; 2491 lli.filt_mode = adap->params.tp.vlan_pri_map; 2492 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */ 2493 for (i = 0; i < NCHAN; i++) 2494 lli.tx_modq[i] = i; 2495 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A); 2496 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A); 2497 lli.fw_vers = adap->params.fw_vers; 2498 lli.dbfifo_int_thresh = dbfifo_int_thresh; 2499 lli.sge_ingpadboundary = adap->sge.fl_align; 2500 lli.sge_egrstatuspagesize = adap->sge.stat_len; 2501 lli.sge_pktshift = adap->sge.pktshift; 2502 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN; 2503 lli.max_ordird_qp = adap->params.max_ordird_qp; 2504 lli.max_ird_adapter = adap->params.max_ird_adapter; 2505 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl; 2506 lli.nodeid = dev_to_node(adap->pdev_dev); 2507 2508 handle = ulds[uld].add(&lli); 2509 if (IS_ERR(handle)) { 2510 dev_warn(adap->pdev_dev, 2511 "could not attach to the %s driver, error %ld\n", 2512 uld_str[uld], PTR_ERR(handle)); 2513 return; 2514 } 2515 2516 adap->uld_handle[uld] = handle; 2517 2518 if (!netevent_registered) { 2519 register_netevent_notifier(&cxgb4_netevent_nb); 2520 netevent_registered = true; 2521 } 2522 2523 if (adap->flags & FULL_INIT_DONE) 2524 ulds[uld].state_change(handle, CXGB4_STATE_UP); 2525 } 2526 2527 static void attach_ulds(struct adapter *adap) 2528 { 2529 unsigned int i; 2530 2531 spin_lock(&adap_rcu_lock); 2532 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list); 2533 spin_unlock(&adap_rcu_lock); 2534 2535 mutex_lock(&uld_mutex); 2536 list_add_tail(&adap->list_node, &adapter_list); 2537 for (i = 0; i < CXGB4_ULD_MAX; i++) 2538 if (ulds[i].add) 2539 uld_attach(adap, i); 2540 mutex_unlock(&uld_mutex); 2541 } 2542 2543 static void detach_ulds(struct adapter *adap) 2544 { 2545 unsigned int i; 2546 2547 mutex_lock(&uld_mutex); 2548 list_del(&adap->list_node); 2549 for (i = 0; i < CXGB4_ULD_MAX; i++) 2550 if (adap->uld_handle[i]) { 2551 ulds[i].state_change(adap->uld_handle[i], 2552 CXGB4_STATE_DETACH); 2553 adap->uld_handle[i] = NULL; 2554 } 2555 if (netevent_registered && list_empty(&adapter_list)) { 2556 unregister_netevent_notifier(&cxgb4_netevent_nb); 2557 netevent_registered = false; 2558 } 2559 mutex_unlock(&uld_mutex); 2560 2561 spin_lock(&adap_rcu_lock); 2562 list_del_rcu(&adap->rcu_node); 2563 spin_unlock(&adap_rcu_lock); 2564 } 2565 2566 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) 2567 { 2568 unsigned int i; 2569 2570 mutex_lock(&uld_mutex); 2571 for (i = 0; i < CXGB4_ULD_MAX; i++) 2572 if (adap->uld_handle[i]) 2573 ulds[i].state_change(adap->uld_handle[i], new_state); 2574 mutex_unlock(&uld_mutex); 2575 } 2576 2577 /** 2578 * cxgb4_register_uld - register an upper-layer driver 2579 * @type: the ULD type 2580 * @p: the ULD methods 2581 * 2582 * Registers an upper-layer driver with this driver and notifies the ULD 2583 * about any presently available devices that support its type. Returns 2584 * %-EBUSY if a ULD of the same type is already registered. 2585 */ 2586 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p) 2587 { 2588 int ret = 0; 2589 struct adapter *adap; 2590 2591 if (type >= CXGB4_ULD_MAX) 2592 return -EINVAL; 2593 mutex_lock(&uld_mutex); 2594 if (ulds[type].add) { 2595 ret = -EBUSY; 2596 goto out; 2597 } 2598 ulds[type] = *p; 2599 list_for_each_entry(adap, &adapter_list, list_node) 2600 uld_attach(adap, type); 2601 out: mutex_unlock(&uld_mutex); 2602 return ret; 2603 } 2604 EXPORT_SYMBOL(cxgb4_register_uld); 2605 2606 /** 2607 * cxgb4_unregister_uld - unregister an upper-layer driver 2608 * @type: the ULD type 2609 * 2610 * Unregisters an existing upper-layer driver. 2611 */ 2612 int cxgb4_unregister_uld(enum cxgb4_uld type) 2613 { 2614 struct adapter *adap; 2615 2616 if (type >= CXGB4_ULD_MAX) 2617 return -EINVAL; 2618 mutex_lock(&uld_mutex); 2619 list_for_each_entry(adap, &adapter_list, list_node) 2620 adap->uld_handle[type] = NULL; 2621 ulds[type].add = NULL; 2622 mutex_unlock(&uld_mutex); 2623 return 0; 2624 } 2625 EXPORT_SYMBOL(cxgb4_unregister_uld); 2626 2627 #if IS_ENABLED(CONFIG_IPV6) 2628 static int cxgb4_inet6addr_handler(struct notifier_block *this, 2629 unsigned long event, void *data) 2630 { 2631 struct inet6_ifaddr *ifa = data; 2632 struct net_device *event_dev = ifa->idev->dev; 2633 const struct device *parent = NULL; 2634 #if IS_ENABLED(CONFIG_BONDING) 2635 struct adapter *adap; 2636 #endif 2637 if (event_dev->priv_flags & IFF_802_1Q_VLAN) 2638 event_dev = vlan_dev_real_dev(event_dev); 2639 #if IS_ENABLED(CONFIG_BONDING) 2640 if (event_dev->flags & IFF_MASTER) { 2641 list_for_each_entry(adap, &adapter_list, list_node) { 2642 switch (event) { 2643 case NETDEV_UP: 2644 cxgb4_clip_get(adap->port[0], 2645 (const u32 *)ifa, 1); 2646 break; 2647 case NETDEV_DOWN: 2648 cxgb4_clip_release(adap->port[0], 2649 (const u32 *)ifa, 1); 2650 break; 2651 default: 2652 break; 2653 } 2654 } 2655 return NOTIFY_OK; 2656 } 2657 #endif 2658 2659 if (event_dev) 2660 parent = event_dev->dev.parent; 2661 2662 if (parent && parent->driver == &cxgb4_driver.driver) { 2663 switch (event) { 2664 case NETDEV_UP: 2665 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); 2666 break; 2667 case NETDEV_DOWN: 2668 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); 2669 break; 2670 default: 2671 break; 2672 } 2673 } 2674 return NOTIFY_OK; 2675 } 2676 2677 static bool inet6addr_registered; 2678 static struct notifier_block cxgb4_inet6addr_notifier = { 2679 .notifier_call = cxgb4_inet6addr_handler 2680 }; 2681 2682 static void update_clip(const struct adapter *adap) 2683 { 2684 int i; 2685 struct net_device *dev; 2686 int ret; 2687 2688 rcu_read_lock(); 2689 2690 for (i = 0; i < MAX_NPORTS; i++) { 2691 dev = adap->port[i]; 2692 ret = 0; 2693 2694 if (dev) 2695 ret = cxgb4_update_root_dev_clip(dev); 2696 2697 if (ret < 0) 2698 break; 2699 } 2700 rcu_read_unlock(); 2701 } 2702 #endif /* IS_ENABLED(CONFIG_IPV6) */ 2703 2704 /** 2705 * cxgb_up - enable the adapter 2706 * @adap: adapter being enabled 2707 * 2708 * Called when the first port is enabled, this function performs the 2709 * actions necessary to make an adapter operational, such as completing 2710 * the initialization of HW modules, and enabling interrupts. 2711 * 2712 * Must be called with the rtnl lock held. 2713 */ 2714 static int cxgb_up(struct adapter *adap) 2715 { 2716 int err; 2717 2718 err = setup_sge_queues(adap); 2719 if (err) 2720 goto out; 2721 err = setup_rss(adap); 2722 if (err) 2723 goto freeq; 2724 2725 if (adap->flags & USING_MSIX) { 2726 name_msix_vecs(adap); 2727 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, 2728 adap->msix_info[0].desc, adap); 2729 if (err) 2730 goto irq_err; 2731 2732 err = request_msix_queue_irqs(adap); 2733 if (err) { 2734 free_irq(adap->msix_info[0].vec, adap); 2735 goto irq_err; 2736 } 2737 } else { 2738 err = request_irq(adap->pdev->irq, t4_intr_handler(adap), 2739 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 2740 adap->port[0]->name, adap); 2741 if (err) 2742 goto irq_err; 2743 } 2744 enable_rx(adap); 2745 t4_sge_start(adap); 2746 t4_intr_enable(adap); 2747 adap->flags |= FULL_INIT_DONE; 2748 notify_ulds(adap, CXGB4_STATE_UP); 2749 #if IS_ENABLED(CONFIG_IPV6) 2750 update_clip(adap); 2751 #endif 2752 /* Initialize hash mac addr list*/ 2753 INIT_LIST_HEAD(&adap->mac_hlist); 2754 out: 2755 return err; 2756 irq_err: 2757 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); 2758 freeq: 2759 t4_free_sge_resources(adap); 2760 goto out; 2761 } 2762 2763 static void cxgb_down(struct adapter *adapter) 2764 { 2765 cancel_work_sync(&adapter->tid_release_task); 2766 cancel_work_sync(&adapter->db_full_task); 2767 cancel_work_sync(&adapter->db_drop_task); 2768 adapter->tid_release_task_busy = false; 2769 adapter->tid_release_head = NULL; 2770 2771 t4_sge_stop(adapter); 2772 t4_free_sge_resources(adapter); 2773 adapter->flags &= ~FULL_INIT_DONE; 2774 } 2775 2776 /* 2777 * net_device operations 2778 */ 2779 static int cxgb_open(struct net_device *dev) 2780 { 2781 int err; 2782 struct port_info *pi = netdev_priv(dev); 2783 struct adapter *adapter = pi->adapter; 2784 2785 netif_carrier_off(dev); 2786 2787 if (!(adapter->flags & FULL_INIT_DONE)) { 2788 err = cxgb_up(adapter); 2789 if (err < 0) 2790 return err; 2791 } 2792 2793 err = link_start(dev); 2794 if (!err) 2795 netif_tx_start_all_queues(dev); 2796 return err; 2797 } 2798 2799 static int cxgb_close(struct net_device *dev) 2800 { 2801 struct port_info *pi = netdev_priv(dev); 2802 struct adapter *adapter = pi->adapter; 2803 2804 netif_tx_stop_all_queues(dev); 2805 netif_carrier_off(dev); 2806 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false); 2807 } 2808 2809 /* Return an error number if the indicated filter isn't writable ... 2810 */ 2811 static int writable_filter(struct filter_entry *f) 2812 { 2813 if (f->locked) 2814 return -EPERM; 2815 if (f->pending) 2816 return -EBUSY; 2817 2818 return 0; 2819 } 2820 2821 /* Delete the filter at the specified index (if valid). The checks for all 2822 * the common problems with doing this like the filter being locked, currently 2823 * pending in another operation, etc. 2824 */ 2825 static int delete_filter(struct adapter *adapter, unsigned int fidx) 2826 { 2827 struct filter_entry *f; 2828 int ret; 2829 2830 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids) 2831 return -EINVAL; 2832 2833 f = &adapter->tids.ftid_tab[fidx]; 2834 ret = writable_filter(f); 2835 if (ret) 2836 return ret; 2837 if (f->valid) 2838 return del_filter_wr(adapter, fidx); 2839 2840 return 0; 2841 } 2842 2843 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, 2844 __be32 sip, __be16 sport, __be16 vlan, 2845 unsigned int queue, unsigned char port, unsigned char mask) 2846 { 2847 int ret; 2848 struct filter_entry *f; 2849 struct adapter *adap; 2850 int i; 2851 u8 *val; 2852 2853 adap = netdev2adap(dev); 2854 2855 /* Adjust stid to correct filter index */ 2856 stid -= adap->tids.sftid_base; 2857 stid += adap->tids.nftids; 2858 2859 /* Check to make sure the filter requested is writable ... 2860 */ 2861 f = &adap->tids.ftid_tab[stid]; 2862 ret = writable_filter(f); 2863 if (ret) 2864 return ret; 2865 2866 /* Clear out any old resources being used by the filter before 2867 * we start constructing the new filter. 2868 */ 2869 if (f->valid) 2870 clear_filter(adap, f); 2871 2872 /* Clear out filter specifications */ 2873 memset(&f->fs, 0, sizeof(struct ch_filter_specification)); 2874 f->fs.val.lport = cpu_to_be16(sport); 2875 f->fs.mask.lport = ~0; 2876 val = (u8 *)&sip; 2877 if ((val[0] | val[1] | val[2] | val[3]) != 0) { 2878 for (i = 0; i < 4; i++) { 2879 f->fs.val.lip[i] = val[i]; 2880 f->fs.mask.lip[i] = ~0; 2881 } 2882 if (adap->params.tp.vlan_pri_map & PORT_F) { 2883 f->fs.val.iport = port; 2884 f->fs.mask.iport = mask; 2885 } 2886 } 2887 2888 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { 2889 f->fs.val.proto = IPPROTO_TCP; 2890 f->fs.mask.proto = ~0; 2891 } 2892 2893 f->fs.dirsteer = 1; 2894 f->fs.iq = queue; 2895 /* Mark filter as locked */ 2896 f->locked = 1; 2897 f->fs.rpttid = 1; 2898 2899 ret = set_filter_wr(adap, stid); 2900 if (ret) { 2901 clear_filter(adap, f); 2902 return ret; 2903 } 2904 2905 return 0; 2906 } 2907 EXPORT_SYMBOL(cxgb4_create_server_filter); 2908 2909 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, 2910 unsigned int queue, bool ipv6) 2911 { 2912 int ret; 2913 struct filter_entry *f; 2914 struct adapter *adap; 2915 2916 adap = netdev2adap(dev); 2917 2918 /* Adjust stid to correct filter index */ 2919 stid -= adap->tids.sftid_base; 2920 stid += adap->tids.nftids; 2921 2922 f = &adap->tids.ftid_tab[stid]; 2923 /* Unlock the filter */ 2924 f->locked = 0; 2925 2926 ret = delete_filter(adap, stid); 2927 if (ret) 2928 return ret; 2929 2930 return 0; 2931 } 2932 EXPORT_SYMBOL(cxgb4_remove_server_filter); 2933 2934 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev, 2935 struct rtnl_link_stats64 *ns) 2936 { 2937 struct port_stats stats; 2938 struct port_info *p = netdev_priv(dev); 2939 struct adapter *adapter = p->adapter; 2940 2941 /* Block retrieving statistics during EEH error 2942 * recovery. Otherwise, the recovery might fail 2943 * and the PCI device will be removed permanently 2944 */ 2945 spin_lock(&adapter->stats_lock); 2946 if (!netif_device_present(dev)) { 2947 spin_unlock(&adapter->stats_lock); 2948 return ns; 2949 } 2950 t4_get_port_stats_offset(adapter, p->tx_chan, &stats, 2951 &p->stats_base); 2952 spin_unlock(&adapter->stats_lock); 2953 2954 ns->tx_bytes = stats.tx_octets; 2955 ns->tx_packets = stats.tx_frames; 2956 ns->rx_bytes = stats.rx_octets; 2957 ns->rx_packets = stats.rx_frames; 2958 ns->multicast = stats.rx_mcast_frames; 2959 2960 /* detailed rx_errors */ 2961 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + 2962 stats.rx_runt; 2963 ns->rx_over_errors = 0; 2964 ns->rx_crc_errors = stats.rx_fcs_err; 2965 ns->rx_frame_errors = stats.rx_symbol_err; 2966 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 + 2967 stats.rx_ovflow2 + stats.rx_ovflow3 + 2968 stats.rx_trunc0 + stats.rx_trunc1 + 2969 stats.rx_trunc2 + stats.rx_trunc3; 2970 ns->rx_missed_errors = 0; 2971 2972 /* detailed tx_errors */ 2973 ns->tx_aborted_errors = 0; 2974 ns->tx_carrier_errors = 0; 2975 ns->tx_fifo_errors = 0; 2976 ns->tx_heartbeat_errors = 0; 2977 ns->tx_window_errors = 0; 2978 2979 ns->tx_errors = stats.tx_error_frames; 2980 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + 2981 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; 2982 return ns; 2983 } 2984 2985 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2986 { 2987 unsigned int mbox; 2988 int ret = 0, prtad, devad; 2989 struct port_info *pi = netdev_priv(dev); 2990 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; 2991 2992 switch (cmd) { 2993 case SIOCGMIIPHY: 2994 if (pi->mdio_addr < 0) 2995 return -EOPNOTSUPP; 2996 data->phy_id = pi->mdio_addr; 2997 break; 2998 case SIOCGMIIREG: 2999 case SIOCSMIIREG: 3000 if (mdio_phy_id_is_c45(data->phy_id)) { 3001 prtad = mdio_phy_id_prtad(data->phy_id); 3002 devad = mdio_phy_id_devad(data->phy_id); 3003 } else if (data->phy_id < 32) { 3004 prtad = data->phy_id; 3005 devad = 0; 3006 data->reg_num &= 0x1f; 3007 } else 3008 return -EINVAL; 3009 3010 mbox = pi->adapter->pf; 3011 if (cmd == SIOCGMIIREG) 3012 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, 3013 data->reg_num, &data->val_out); 3014 else 3015 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, 3016 data->reg_num, data->val_in); 3017 break; 3018 case SIOCGHWTSTAMP: 3019 return copy_to_user(req->ifr_data, &pi->tstamp_config, 3020 sizeof(pi->tstamp_config)) ? 3021 -EFAULT : 0; 3022 case SIOCSHWTSTAMP: 3023 if (copy_from_user(&pi->tstamp_config, req->ifr_data, 3024 sizeof(pi->tstamp_config))) 3025 return -EFAULT; 3026 3027 switch (pi->tstamp_config.rx_filter) { 3028 case HWTSTAMP_FILTER_NONE: 3029 pi->rxtstamp = false; 3030 break; 3031 case HWTSTAMP_FILTER_ALL: 3032 pi->rxtstamp = true; 3033 break; 3034 default: 3035 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 3036 return -ERANGE; 3037 } 3038 3039 return copy_to_user(req->ifr_data, &pi->tstamp_config, 3040 sizeof(pi->tstamp_config)) ? 3041 -EFAULT : 0; 3042 default: 3043 return -EOPNOTSUPP; 3044 } 3045 return ret; 3046 } 3047 3048 static void cxgb_set_rxmode(struct net_device *dev) 3049 { 3050 /* unfortunately we can't return errors to the stack */ 3051 set_rxmode(dev, -1, false); 3052 } 3053 3054 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 3055 { 3056 int ret; 3057 struct port_info *pi = netdev_priv(dev); 3058 3059 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */ 3060 return -EINVAL; 3061 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, 3062 -1, -1, -1, true); 3063 if (!ret) 3064 dev->mtu = new_mtu; 3065 return ret; 3066 } 3067 3068 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 3069 { 3070 int ret; 3071 struct sockaddr *addr = p; 3072 struct port_info *pi = netdev_priv(dev); 3073 3074 if (!is_valid_ether_addr(addr->sa_data)) 3075 return -EADDRNOTAVAIL; 3076 3077 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, 3078 pi->xact_addr_filt, addr->sa_data, true, true); 3079 if (ret < 0) 3080 return ret; 3081 3082 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 3083 pi->xact_addr_filt = ret; 3084 return 0; 3085 } 3086 3087 #ifdef CONFIG_NET_POLL_CONTROLLER 3088 static void cxgb_netpoll(struct net_device *dev) 3089 { 3090 struct port_info *pi = netdev_priv(dev); 3091 struct adapter *adap = pi->adapter; 3092 3093 if (adap->flags & USING_MSIX) { 3094 int i; 3095 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; 3096 3097 for (i = pi->nqsets; i; i--, rx++) 3098 t4_sge_intr_msix(0, &rx->rspq); 3099 } else 3100 t4_intr_handler(adap)(0, adap); 3101 } 3102 #endif 3103 3104 static const struct net_device_ops cxgb4_netdev_ops = { 3105 .ndo_open = cxgb_open, 3106 .ndo_stop = cxgb_close, 3107 .ndo_start_xmit = t4_eth_xmit, 3108 .ndo_select_queue = cxgb_select_queue, 3109 .ndo_get_stats64 = cxgb_get_stats, 3110 .ndo_set_rx_mode = cxgb_set_rxmode, 3111 .ndo_set_mac_address = cxgb_set_mac_addr, 3112 .ndo_set_features = cxgb_set_features, 3113 .ndo_validate_addr = eth_validate_addr, 3114 .ndo_do_ioctl = cxgb_ioctl, 3115 .ndo_change_mtu = cxgb_change_mtu, 3116 #ifdef CONFIG_NET_POLL_CONTROLLER 3117 .ndo_poll_controller = cxgb_netpoll, 3118 #endif 3119 #ifdef CONFIG_CHELSIO_T4_FCOE 3120 .ndo_fcoe_enable = cxgb_fcoe_enable, 3121 .ndo_fcoe_disable = cxgb_fcoe_disable, 3122 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3123 #ifdef CONFIG_NET_RX_BUSY_POLL 3124 .ndo_busy_poll = cxgb_busy_poll, 3125 #endif 3126 3127 }; 3128 3129 void t4_fatal_err(struct adapter *adap) 3130 { 3131 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0); 3132 t4_intr_disable(adap); 3133 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); 3134 } 3135 3136 static void setup_memwin(struct adapter *adap) 3137 { 3138 u32 nic_win_base = t4_get_util_window(adap); 3139 3140 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); 3141 } 3142 3143 static void setup_memwin_rdma(struct adapter *adap) 3144 { 3145 if (adap->vres.ocq.size) { 3146 u32 start; 3147 unsigned int sz_kb; 3148 3149 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); 3150 start &= PCI_BASE_ADDRESS_MEM_MASK; 3151 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); 3152 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; 3153 t4_write_reg(adap, 3154 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), 3155 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); 3156 t4_write_reg(adap, 3157 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), 3158 adap->vres.ocq.start); 3159 t4_read_reg(adap, 3160 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); 3161 } 3162 } 3163 3164 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) 3165 { 3166 u32 v; 3167 int ret; 3168 3169 /* get device capabilities */ 3170 memset(c, 0, sizeof(*c)); 3171 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3172 FW_CMD_REQUEST_F | FW_CMD_READ_F); 3173 c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); 3174 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); 3175 if (ret < 0) 3176 return ret; 3177 3178 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3179 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 3180 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); 3181 if (ret < 0) 3182 return ret; 3183 3184 ret = t4_config_glbl_rss(adap, adap->pf, 3185 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, 3186 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | 3187 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); 3188 if (ret < 0) 3189 return ret; 3190 3191 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, 3192 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, 3193 FW_CMD_CAP_PF); 3194 if (ret < 0) 3195 return ret; 3196 3197 t4_sge_init(adap); 3198 3199 /* tweak some settings */ 3200 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); 3201 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); 3202 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); 3203 v = t4_read_reg(adap, TP_PIO_DATA_A); 3204 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); 3205 3206 /* first 4 Tx modulation queues point to consecutive Tx channels */ 3207 adap->params.tp.tx_modq_map = 0xE4; 3208 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, 3209 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); 3210 3211 /* associate each Tx modulation queue with consecutive Tx channels */ 3212 v = 0x84218421; 3213 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3214 &v, 1, TP_TX_SCHED_HDR_A); 3215 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3216 &v, 1, TP_TX_SCHED_FIFO_A); 3217 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, 3218 &v, 1, TP_TX_SCHED_PCMD_A); 3219 3220 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ 3221 if (is_offload(adap)) { 3222 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, 3223 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3224 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3225 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3226 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3227 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, 3228 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3229 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3230 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | 3231 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); 3232 } 3233 3234 /* get basic stuff going */ 3235 return t4_early_init(adap, adap->pf); 3236 } 3237 3238 /* 3239 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. 3240 */ 3241 #define MAX_ATIDS 8192U 3242 3243 /* 3244 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3245 * 3246 * If the firmware we're dealing with has Configuration File support, then 3247 * we use that to perform all configuration 3248 */ 3249 3250 /* 3251 * Tweak configuration based on module parameters, etc. Most of these have 3252 * defaults assigned to them by Firmware Configuration Files (if we're using 3253 * them) but need to be explicitly set if we're using hard-coded 3254 * initialization. But even in the case of using Firmware Configuration 3255 * Files, we'd like to expose the ability to change these via module 3256 * parameters so these are essentially common tweaks/settings for 3257 * Configuration Files and hard-coded initialization ... 3258 */ 3259 static int adap_init0_tweaks(struct adapter *adapter) 3260 { 3261 /* 3262 * Fix up various Host-Dependent Parameters like Page Size, Cache 3263 * Line Size, etc. The firmware default is for a 4KB Page Size and 3264 * 64B Cache Line Size ... 3265 */ 3266 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); 3267 3268 /* 3269 * Process module parameters which affect early initialization. 3270 */ 3271 if (rx_dma_offset != 2 && rx_dma_offset != 0) { 3272 dev_err(&adapter->pdev->dev, 3273 "Ignoring illegal rx_dma_offset=%d, using 2\n", 3274 rx_dma_offset); 3275 rx_dma_offset = 2; 3276 } 3277 t4_set_reg_field(adapter, SGE_CONTROL_A, 3278 PKTSHIFT_V(PKTSHIFT_M), 3279 PKTSHIFT_V(rx_dma_offset)); 3280 3281 /* 3282 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux 3283 * adds the pseudo header itself. 3284 */ 3285 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, 3286 CSUM_HAS_PSEUDO_HDR_F, 0); 3287 3288 return 0; 3289 } 3290 3291 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips 3292 * unto themselves and they contain their own firmware to perform their 3293 * tasks ... 3294 */ 3295 static int phy_aq1202_version(const u8 *phy_fw_data, 3296 size_t phy_fw_size) 3297 { 3298 int offset; 3299 3300 /* At offset 0x8 you're looking for the primary image's 3301 * starting offset which is 3 Bytes wide 3302 * 3303 * At offset 0xa of the primary image, you look for the offset 3304 * of the DRAM segment which is 3 Bytes wide. 3305 * 3306 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes 3307 * wide 3308 */ 3309 #define be16(__p) (((__p)[0] << 8) | (__p)[1]) 3310 #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) 3311 #define le24(__p) (le16(__p) | ((__p)[2] << 16)) 3312 3313 offset = le24(phy_fw_data + 0x8) << 12; 3314 offset = le24(phy_fw_data + offset + 0xa); 3315 return be16(phy_fw_data + offset + 0x27e); 3316 3317 #undef be16 3318 #undef le16 3319 #undef le24 3320 } 3321 3322 static struct info_10gbt_phy_fw { 3323 unsigned int phy_fw_id; /* PCI Device ID */ 3324 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ 3325 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); 3326 int phy_flash; /* Has FLASH for PHY Firmware */ 3327 } phy_info_array[] = { 3328 { 3329 PHY_AQ1202_DEVICEID, 3330 PHY_AQ1202_FIRMWARE, 3331 phy_aq1202_version, 3332 1, 3333 }, 3334 { 3335 PHY_BCM84834_DEVICEID, 3336 PHY_BCM84834_FIRMWARE, 3337 NULL, 3338 0, 3339 }, 3340 { 0, NULL, NULL }, 3341 }; 3342 3343 static struct info_10gbt_phy_fw *find_phy_info(int devid) 3344 { 3345 int i; 3346 3347 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { 3348 if (phy_info_array[i].phy_fw_id == devid) 3349 return &phy_info_array[i]; 3350 } 3351 return NULL; 3352 } 3353 3354 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to 3355 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error 3356 * we return a negative error number. If we transfer new firmware we return 1 3357 * (from t4_load_phy_fw()). If we don't do anything we return 0. 3358 */ 3359 static int adap_init0_phy(struct adapter *adap) 3360 { 3361 const struct firmware *phyf; 3362 int ret; 3363 struct info_10gbt_phy_fw *phy_info; 3364 3365 /* Use the device ID to determine which PHY file to flash. 3366 */ 3367 phy_info = find_phy_info(adap->pdev->device); 3368 if (!phy_info) { 3369 dev_warn(adap->pdev_dev, 3370 "No PHY Firmware file found for this PHY\n"); 3371 return -EOPNOTSUPP; 3372 } 3373 3374 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then 3375 * use that. The adapter firmware provides us with a memory buffer 3376 * where we can load a PHY firmware file from the host if we want to 3377 * override the PHY firmware File in flash. 3378 */ 3379 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, 3380 adap->pdev_dev); 3381 if (ret < 0) { 3382 /* For adapters without FLASH attached to PHY for their 3383 * firmware, it's obviously a fatal error if we can't get the 3384 * firmware to the adapter. For adapters with PHY firmware 3385 * FLASH storage, it's worth a warning if we can't find the 3386 * PHY Firmware but we'll neuter the error ... 3387 */ 3388 dev_err(adap->pdev_dev, "unable to find PHY Firmware image " 3389 "/lib/firmware/%s, error %d\n", 3390 phy_info->phy_fw_file, -ret); 3391 if (phy_info->phy_flash) { 3392 int cur_phy_fw_ver = 0; 3393 3394 t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3395 dev_warn(adap->pdev_dev, "continuing with, on-adapter " 3396 "FLASH copy, version %#x\n", cur_phy_fw_ver); 3397 ret = 0; 3398 } 3399 3400 return ret; 3401 } 3402 3403 /* Load PHY Firmware onto adapter. 3404 */ 3405 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, 3406 phy_info->phy_fw_version, 3407 (u8 *)phyf->data, phyf->size); 3408 if (ret < 0) 3409 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", 3410 -ret); 3411 else if (ret > 0) { 3412 int new_phy_fw_ver = 0; 3413 3414 if (phy_info->phy_fw_version) 3415 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, 3416 phyf->size); 3417 dev_info(adap->pdev_dev, "Successfully transferred PHY " 3418 "Firmware /lib/firmware/%s, version %#x\n", 3419 phy_info->phy_fw_file, new_phy_fw_ver); 3420 } 3421 3422 release_firmware(phyf); 3423 3424 return ret; 3425 } 3426 3427 /* 3428 * Attempt to initialize the adapter via a Firmware Configuration File. 3429 */ 3430 static int adap_init0_config(struct adapter *adapter, int reset) 3431 { 3432 struct fw_caps_config_cmd caps_cmd; 3433 const struct firmware *cf; 3434 unsigned long mtype = 0, maddr = 0; 3435 u32 finiver, finicsum, cfcsum; 3436 int ret; 3437 int config_issued = 0; 3438 char *fw_config_file, fw_config_file_path[256]; 3439 char *config_name = NULL; 3440 3441 /* 3442 * Reset device if necessary. 3443 */ 3444 if (reset) { 3445 ret = t4_fw_reset(adapter, adapter->mbox, 3446 PIORSTMODE_F | PIORST_F); 3447 if (ret < 0) 3448 goto bye; 3449 } 3450 3451 /* If this is a 10Gb/s-BT adapter make sure the chip-external 3452 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs 3453 * to be performed after any global adapter RESET above since some 3454 * PHYs only have local RAM copies of the PHY firmware. 3455 */ 3456 if (is_10gbt_device(adapter->pdev->device)) { 3457 ret = adap_init0_phy(adapter); 3458 if (ret < 0) 3459 goto bye; 3460 } 3461 /* 3462 * If we have a T4 configuration file under /lib/firmware/cxgb4/, 3463 * then use that. Otherwise, use the configuration file stored 3464 * in the adapter flash ... 3465 */ 3466 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { 3467 case CHELSIO_T4: 3468 fw_config_file = FW4_CFNAME; 3469 break; 3470 case CHELSIO_T5: 3471 fw_config_file = FW5_CFNAME; 3472 break; 3473 case CHELSIO_T6: 3474 fw_config_file = FW6_CFNAME; 3475 break; 3476 default: 3477 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 3478 adapter->pdev->device); 3479 ret = -EINVAL; 3480 goto bye; 3481 } 3482 3483 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); 3484 if (ret < 0) { 3485 config_name = "On FLASH"; 3486 mtype = FW_MEMTYPE_CF_FLASH; 3487 maddr = t4_flash_cfg_addr(adapter); 3488 } else { 3489 u32 params[7], val[7]; 3490 3491 sprintf(fw_config_file_path, 3492 "/lib/firmware/%s", fw_config_file); 3493 config_name = fw_config_file_path; 3494 3495 if (cf->size >= FLASH_CFG_MAX_SIZE) 3496 ret = -ENOMEM; 3497 else { 3498 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3499 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3500 ret = t4_query_params(adapter, adapter->mbox, 3501 adapter->pf, 0, 1, params, val); 3502 if (ret == 0) { 3503 /* 3504 * For t4_memory_rw() below addresses and 3505 * sizes have to be in terms of multiples of 4 3506 * bytes. So, if the Configuration File isn't 3507 * a multiple of 4 bytes in length we'll have 3508 * to write that out separately since we can't 3509 * guarantee that the bytes following the 3510 * residual byte in the buffer returned by 3511 * request_firmware() are zeroed out ... 3512 */ 3513 size_t resid = cf->size & 0x3; 3514 size_t size = cf->size & ~0x3; 3515 __be32 *data = (__be32 *)cf->data; 3516 3517 mtype = FW_PARAMS_PARAM_Y_G(val[0]); 3518 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; 3519 3520 spin_lock(&adapter->win0_lock); 3521 ret = t4_memory_rw(adapter, 0, mtype, maddr, 3522 size, data, T4_MEMORY_WRITE); 3523 if (ret == 0 && resid != 0) { 3524 union { 3525 __be32 word; 3526 char buf[4]; 3527 } last; 3528 int i; 3529 3530 last.word = data[size >> 2]; 3531 for (i = resid; i < 4; i++) 3532 last.buf[i] = 0; 3533 ret = t4_memory_rw(adapter, 0, mtype, 3534 maddr + size, 3535 4, &last.word, 3536 T4_MEMORY_WRITE); 3537 } 3538 spin_unlock(&adapter->win0_lock); 3539 } 3540 } 3541 3542 release_firmware(cf); 3543 if (ret) 3544 goto bye; 3545 } 3546 3547 /* 3548 * Issue a Capability Configuration command to the firmware to get it 3549 * to parse the Configuration File. We don't use t4_fw_config_file() 3550 * because we want the ability to modify various features after we've 3551 * processed the configuration file ... 3552 */ 3553 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3554 caps_cmd.op_to_write = 3555 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3556 FW_CMD_REQUEST_F | 3557 FW_CMD_READ_F); 3558 caps_cmd.cfvalid_to_len16 = 3559 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | 3560 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | 3561 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | 3562 FW_LEN16(caps_cmd)); 3563 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3564 &caps_cmd); 3565 3566 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware 3567 * Configuration File in FLASH), our last gasp effort is to use the 3568 * Firmware Configuration File which is embedded in the firmware. A 3569 * very few early versions of the firmware didn't have one embedded 3570 * but we can ignore those. 3571 */ 3572 if (ret == -ENOENT) { 3573 memset(&caps_cmd, 0, sizeof(caps_cmd)); 3574 caps_cmd.op_to_write = 3575 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3576 FW_CMD_REQUEST_F | 3577 FW_CMD_READ_F); 3578 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3579 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, 3580 sizeof(caps_cmd), &caps_cmd); 3581 config_name = "Firmware Default"; 3582 } 3583 3584 config_issued = 1; 3585 if (ret < 0) 3586 goto bye; 3587 3588 finiver = ntohl(caps_cmd.finiver); 3589 finicsum = ntohl(caps_cmd.finicsum); 3590 cfcsum = ntohl(caps_cmd.cfcsum); 3591 if (finicsum != cfcsum) 3592 dev_warn(adapter->pdev_dev, "Configuration File checksum "\ 3593 "mismatch: [fini] csum=%#x, computed csum=%#x\n", 3594 finicsum, cfcsum); 3595 3596 /* 3597 * And now tell the firmware to use the configuration we just loaded. 3598 */ 3599 caps_cmd.op_to_write = 3600 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 3601 FW_CMD_REQUEST_F | 3602 FW_CMD_WRITE_F); 3603 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 3604 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), 3605 NULL); 3606 if (ret < 0) 3607 goto bye; 3608 3609 /* 3610 * Tweak configuration based on system architecture, module 3611 * parameters, etc. 3612 */ 3613 ret = adap_init0_tweaks(adapter); 3614 if (ret < 0) 3615 goto bye; 3616 3617 /* 3618 * And finally tell the firmware to initialize itself using the 3619 * parameters from the Configuration File. 3620 */ 3621 ret = t4_fw_initialize(adapter, adapter->mbox); 3622 if (ret < 0) 3623 goto bye; 3624 3625 /* Emit Firmware Configuration File information and return 3626 * successfully. 3627 */ 3628 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ 3629 "Configuration File \"%s\", version %#x, computed checksum %#x\n", 3630 config_name, finiver, cfcsum); 3631 return 0; 3632 3633 /* 3634 * Something bad happened. Return the error ... (If the "error" 3635 * is that there's no Configuration File on the adapter we don't 3636 * want to issue a warning since this is fairly common.) 3637 */ 3638 bye: 3639 if (config_issued && ret != -ENOENT) 3640 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", 3641 config_name, -ret); 3642 return ret; 3643 } 3644 3645 static struct fw_info fw_info_array[] = { 3646 { 3647 .chip = CHELSIO_T4, 3648 .fs_name = FW4_CFNAME, 3649 .fw_mod_name = FW4_FNAME, 3650 .fw_hdr = { 3651 .chip = FW_HDR_CHIP_T4, 3652 .fw_ver = __cpu_to_be32(FW_VERSION(T4)), 3653 .intfver_nic = FW_INTFVER(T4, NIC), 3654 .intfver_vnic = FW_INTFVER(T4, VNIC), 3655 .intfver_ri = FW_INTFVER(T4, RI), 3656 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3657 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3658 }, 3659 }, { 3660 .chip = CHELSIO_T5, 3661 .fs_name = FW5_CFNAME, 3662 .fw_mod_name = FW5_FNAME, 3663 .fw_hdr = { 3664 .chip = FW_HDR_CHIP_T5, 3665 .fw_ver = __cpu_to_be32(FW_VERSION(T5)), 3666 .intfver_nic = FW_INTFVER(T5, NIC), 3667 .intfver_vnic = FW_INTFVER(T5, VNIC), 3668 .intfver_ri = FW_INTFVER(T5, RI), 3669 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3670 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3671 }, 3672 }, { 3673 .chip = CHELSIO_T6, 3674 .fs_name = FW6_CFNAME, 3675 .fw_mod_name = FW6_FNAME, 3676 .fw_hdr = { 3677 .chip = FW_HDR_CHIP_T6, 3678 .fw_ver = __cpu_to_be32(FW_VERSION(T6)), 3679 .intfver_nic = FW_INTFVER(T6, NIC), 3680 .intfver_vnic = FW_INTFVER(T6, VNIC), 3681 .intfver_ofld = FW_INTFVER(T6, OFLD), 3682 .intfver_ri = FW_INTFVER(T6, RI), 3683 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 3684 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 3685 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 3686 .intfver_fcoe = FW_INTFVER(T6, FCOE), 3687 }, 3688 } 3689 3690 }; 3691 3692 static struct fw_info *find_fw_info(int chip) 3693 { 3694 int i; 3695 3696 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { 3697 if (fw_info_array[i].chip == chip) 3698 return &fw_info_array[i]; 3699 } 3700 return NULL; 3701 } 3702 3703 /* 3704 * Phase 0 of initialization: contact FW, obtain config, perform basic init. 3705 */ 3706 static int adap_init0(struct adapter *adap) 3707 { 3708 int ret; 3709 u32 v, port_vec; 3710 enum dev_state state; 3711 u32 params[7], val[7]; 3712 struct fw_caps_config_cmd caps_cmd; 3713 int reset = 1; 3714 3715 /* Grab Firmware Device Log parameters as early as possible so we have 3716 * access to it for debugging, etc. 3717 */ 3718 ret = t4_init_devlog_params(adap); 3719 if (ret < 0) 3720 return ret; 3721 3722 /* Contact FW, advertising Master capability */ 3723 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state); 3724 if (ret < 0) { 3725 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", 3726 ret); 3727 return ret; 3728 } 3729 if (ret == adap->mbox) 3730 adap->flags |= MASTER_PF; 3731 3732 /* 3733 * If we're the Master PF Driver and the device is uninitialized, 3734 * then let's consider upgrading the firmware ... (We always want 3735 * to check the firmware version number in order to A. get it for 3736 * later reporting and B. to warn if the currently loaded firmware 3737 * is excessively mismatched relative to the driver.) 3738 */ 3739 t4_get_fw_version(adap, &adap->params.fw_vers); 3740 t4_get_tp_version(adap, &adap->params.tp_vers); 3741 ret = t4_check_fw_version(adap); 3742 /* If firmware is too old (not supported by driver) force an update. */ 3743 if (ret) 3744 state = DEV_STATE_UNINIT; 3745 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { 3746 struct fw_info *fw_info; 3747 struct fw_hdr *card_fw; 3748 const struct firmware *fw; 3749 const u8 *fw_data = NULL; 3750 unsigned int fw_size = 0; 3751 3752 /* This is the firmware whose headers the driver was compiled 3753 * against 3754 */ 3755 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); 3756 if (fw_info == NULL) { 3757 dev_err(adap->pdev_dev, 3758 "unable to get firmware info for chip %d.\n", 3759 CHELSIO_CHIP_VERSION(adap->params.chip)); 3760 return -EINVAL; 3761 } 3762 3763 /* allocate memory to read the header of the firmware on the 3764 * card 3765 */ 3766 card_fw = t4_alloc_mem(sizeof(*card_fw)); 3767 3768 /* Get FW from from /lib/firmware/ */ 3769 ret = request_firmware(&fw, fw_info->fw_mod_name, 3770 adap->pdev_dev); 3771 if (ret < 0) { 3772 dev_err(adap->pdev_dev, 3773 "unable to load firmware image %s, error %d\n", 3774 fw_info->fw_mod_name, ret); 3775 } else { 3776 fw_data = fw->data; 3777 fw_size = fw->size; 3778 } 3779 3780 /* upgrade FW logic */ 3781 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, 3782 state, &reset); 3783 3784 /* Cleaning up */ 3785 release_firmware(fw); 3786 t4_free_mem(card_fw); 3787 3788 if (ret < 0) 3789 goto bye; 3790 } 3791 3792 /* 3793 * Grab VPD parameters. This should be done after we establish a 3794 * connection to the firmware since some of the VPD parameters 3795 * (notably the Core Clock frequency) are retrieved via requests to 3796 * the firmware. On the other hand, we need these fairly early on 3797 * so we do this right after getting ahold of the firmware. 3798 */ 3799 ret = t4_get_vpd_params(adap, &adap->params.vpd); 3800 if (ret < 0) 3801 goto bye; 3802 3803 /* 3804 * Find out what ports are available to us. Note that we need to do 3805 * this before calling adap_init0_no_config() since it needs nports 3806 * and portvec ... 3807 */ 3808 v = 3809 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3810 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); 3811 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); 3812 if (ret < 0) 3813 goto bye; 3814 3815 adap->params.nports = hweight32(port_vec); 3816 adap->params.portvec = port_vec; 3817 3818 /* If the firmware is initialized already, emit a simply note to that 3819 * effect. Otherwise, it's time to try initializing the adapter. 3820 */ 3821 if (state == DEV_STATE_INIT) { 3822 dev_info(adap->pdev_dev, "Coming up as %s: "\ 3823 "Adapter already initialized\n", 3824 adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); 3825 } else { 3826 dev_info(adap->pdev_dev, "Coming up as MASTER: "\ 3827 "Initializing adapter\n"); 3828 3829 /* Find out whether we're dealing with a version of the 3830 * firmware which has configuration file support. 3831 */ 3832 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3833 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); 3834 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3835 params, val); 3836 3837 /* If the firmware doesn't support Configuration Files, 3838 * return an error. 3839 */ 3840 if (ret < 0) { 3841 dev_err(adap->pdev_dev, "firmware doesn't support " 3842 "Firmware Configuration Files\n"); 3843 goto bye; 3844 } 3845 3846 /* The firmware provides us with a memory buffer where we can 3847 * load a Configuration File from the host if we want to 3848 * override the Configuration File in flash. 3849 */ 3850 ret = adap_init0_config(adap, reset); 3851 if (ret == -ENOENT) { 3852 dev_err(adap->pdev_dev, "no Configuration File " 3853 "present on adapter.\n"); 3854 goto bye; 3855 } 3856 if (ret < 0) { 3857 dev_err(adap->pdev_dev, "could not initialize " 3858 "adapter, error %d\n", -ret); 3859 goto bye; 3860 } 3861 } 3862 3863 /* Give the SGE code a chance to pull in anything that it needs ... 3864 * Note that this must be called after we retrieve our VPD parameters 3865 * in order to know how to convert core ticks to seconds, etc. 3866 */ 3867 ret = t4_sge_init(adap); 3868 if (ret < 0) 3869 goto bye; 3870 3871 if (is_bypass_device(adap->pdev->device)) 3872 adap->params.bypass = 1; 3873 3874 /* 3875 * Grab some of our basic fundamental operating parameters. 3876 */ 3877 #define FW_PARAM_DEV(param) \ 3878 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ 3879 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) 3880 3881 #define FW_PARAM_PFVF(param) \ 3882 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ 3883 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ 3884 FW_PARAMS_PARAM_Y_V(0) | \ 3885 FW_PARAMS_PARAM_Z_V(0) 3886 3887 params[0] = FW_PARAM_PFVF(EQ_START); 3888 params[1] = FW_PARAM_PFVF(L2T_START); 3889 params[2] = FW_PARAM_PFVF(L2T_END); 3890 params[3] = FW_PARAM_PFVF(FILTER_START); 3891 params[4] = FW_PARAM_PFVF(FILTER_END); 3892 params[5] = FW_PARAM_PFVF(IQFLINT_START); 3893 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); 3894 if (ret < 0) 3895 goto bye; 3896 adap->sge.egr_start = val[0]; 3897 adap->l2t_start = val[1]; 3898 adap->l2t_end = val[2]; 3899 adap->tids.ftid_base = val[3]; 3900 adap->tids.nftids = val[4] - val[3] + 1; 3901 adap->sge.ingr_start = val[5]; 3902 3903 /* qids (ingress/egress) returned from firmware can be anywhere 3904 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. 3905 * Hence driver needs to allocate memory for this range to 3906 * store the queue info. Get the highest IQFLINT/EQ index returned 3907 * in FW_EQ_*_CMD.alloc command. 3908 */ 3909 params[0] = FW_PARAM_PFVF(EQ_END); 3910 params[1] = FW_PARAM_PFVF(IQFLINT_END); 3911 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3912 if (ret < 0) 3913 goto bye; 3914 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; 3915 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; 3916 3917 adap->sge.egr_map = kcalloc(adap->sge.egr_sz, 3918 sizeof(*adap->sge.egr_map), GFP_KERNEL); 3919 if (!adap->sge.egr_map) { 3920 ret = -ENOMEM; 3921 goto bye; 3922 } 3923 3924 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, 3925 sizeof(*adap->sge.ingr_map), GFP_KERNEL); 3926 if (!adap->sge.ingr_map) { 3927 ret = -ENOMEM; 3928 goto bye; 3929 } 3930 3931 /* Allocate the memory for the vaious egress queue bitmaps 3932 * ie starving_fl, txq_maperr and blocked_fl. 3933 */ 3934 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3935 sizeof(long), GFP_KERNEL); 3936 if (!adap->sge.starving_fl) { 3937 ret = -ENOMEM; 3938 goto bye; 3939 } 3940 3941 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3942 sizeof(long), GFP_KERNEL); 3943 if (!adap->sge.txq_maperr) { 3944 ret = -ENOMEM; 3945 goto bye; 3946 } 3947 3948 #ifdef CONFIG_DEBUG_FS 3949 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), 3950 sizeof(long), GFP_KERNEL); 3951 if (!adap->sge.blocked_fl) { 3952 ret = -ENOMEM; 3953 goto bye; 3954 } 3955 #endif 3956 3957 params[0] = FW_PARAM_PFVF(CLIP_START); 3958 params[1] = FW_PARAM_PFVF(CLIP_END); 3959 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3960 if (ret < 0) 3961 goto bye; 3962 adap->clipt_start = val[0]; 3963 adap->clipt_end = val[1]; 3964 3965 /* query params related to active filter region */ 3966 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); 3967 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); 3968 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); 3969 /* If Active filter size is set we enable establishing 3970 * offload connection through firmware work request 3971 */ 3972 if ((val[0] != val[1]) && (ret >= 0)) { 3973 adap->flags |= FW_OFLD_CONN; 3974 adap->tids.aftid_base = val[0]; 3975 adap->tids.aftid_end = val[1]; 3976 } 3977 3978 /* If we're running on newer firmware, let it know that we're 3979 * prepared to deal with encapsulated CPL messages. Older 3980 * firmware won't understand this and we'll just get 3981 * unencapsulated messages ... 3982 */ 3983 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 3984 val[0] = 1; 3985 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); 3986 3987 /* 3988 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL 3989 * capability. Earlier versions of the firmware didn't have the 3990 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no 3991 * permission to use ULPTX MEMWRITE DSGL. 3992 */ 3993 if (is_t4(adap->params.chip)) { 3994 adap->params.ulptx_memwrite_dsgl = false; 3995 } else { 3996 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 3997 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 3998 1, params, val); 3999 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); 4000 } 4001 4002 /* 4003 * Get device capabilities so we can determine what resources we need 4004 * to manage. 4005 */ 4006 memset(&caps_cmd, 0, sizeof(caps_cmd)); 4007 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | 4008 FW_CMD_REQUEST_F | FW_CMD_READ_F); 4009 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); 4010 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), 4011 &caps_cmd); 4012 if (ret < 0) 4013 goto bye; 4014 4015 if (caps_cmd.ofldcaps) { 4016 /* query offload-related parameters */ 4017 params[0] = FW_PARAM_DEV(NTID); 4018 params[1] = FW_PARAM_PFVF(SERVER_START); 4019 params[2] = FW_PARAM_PFVF(SERVER_END); 4020 params[3] = FW_PARAM_PFVF(TDDP_START); 4021 params[4] = FW_PARAM_PFVF(TDDP_END); 4022 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4023 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4024 params, val); 4025 if (ret < 0) 4026 goto bye; 4027 adap->tids.ntids = val[0]; 4028 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); 4029 adap->tids.stid_base = val[1]; 4030 adap->tids.nstids = val[2] - val[1] + 1; 4031 /* 4032 * Setup server filter region. Divide the available filter 4033 * region into two parts. Regular filters get 1/3rd and server 4034 * filters get 2/3rd part. This is only enabled if workarond 4035 * path is enabled. 4036 * 1. For regular filters. 4037 * 2. Server filter: This are special filters which are used 4038 * to redirect SYN packets to offload queue. 4039 */ 4040 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { 4041 adap->tids.sftid_base = adap->tids.ftid_base + 4042 DIV_ROUND_UP(adap->tids.nftids, 3); 4043 adap->tids.nsftids = adap->tids.nftids - 4044 DIV_ROUND_UP(adap->tids.nftids, 3); 4045 adap->tids.nftids = adap->tids.sftid_base - 4046 adap->tids.ftid_base; 4047 } 4048 adap->vres.ddp.start = val[3]; 4049 adap->vres.ddp.size = val[4] - val[3] + 1; 4050 adap->params.ofldq_wr_cred = val[5]; 4051 4052 adap->params.offload = 1; 4053 } 4054 if (caps_cmd.rdmacaps) { 4055 params[0] = FW_PARAM_PFVF(STAG_START); 4056 params[1] = FW_PARAM_PFVF(STAG_END); 4057 params[2] = FW_PARAM_PFVF(RQ_START); 4058 params[3] = FW_PARAM_PFVF(RQ_END); 4059 params[4] = FW_PARAM_PFVF(PBL_START); 4060 params[5] = FW_PARAM_PFVF(PBL_END); 4061 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, 4062 params, val); 4063 if (ret < 0) 4064 goto bye; 4065 adap->vres.stag.start = val[0]; 4066 adap->vres.stag.size = val[1] - val[0] + 1; 4067 adap->vres.rq.start = val[2]; 4068 adap->vres.rq.size = val[3] - val[2] + 1; 4069 adap->vres.pbl.start = val[4]; 4070 adap->vres.pbl.size = val[5] - val[4] + 1; 4071 4072 params[0] = FW_PARAM_PFVF(SQRQ_START); 4073 params[1] = FW_PARAM_PFVF(SQRQ_END); 4074 params[2] = FW_PARAM_PFVF(CQ_START); 4075 params[3] = FW_PARAM_PFVF(CQ_END); 4076 params[4] = FW_PARAM_PFVF(OCQ_START); 4077 params[5] = FW_PARAM_PFVF(OCQ_END); 4078 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, 4079 val); 4080 if (ret < 0) 4081 goto bye; 4082 adap->vres.qp.start = val[0]; 4083 adap->vres.qp.size = val[1] - val[0] + 1; 4084 adap->vres.cq.start = val[2]; 4085 adap->vres.cq.size = val[3] - val[2] + 1; 4086 adap->vres.ocq.start = val[4]; 4087 adap->vres.ocq.size = val[5] - val[4] + 1; 4088 4089 params[0] = FW_PARAM_DEV(MAXORDIRD_QP); 4090 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4091 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, 4092 val); 4093 if (ret < 0) { 4094 adap->params.max_ordird_qp = 8; 4095 adap->params.max_ird_adapter = 32 * adap->tids.ntids; 4096 ret = 0; 4097 } else { 4098 adap->params.max_ordird_qp = val[0]; 4099 adap->params.max_ird_adapter = val[1]; 4100 } 4101 dev_info(adap->pdev_dev, 4102 "max_ordird_qp %d max_ird_adapter %d\n", 4103 adap->params.max_ordird_qp, 4104 adap->params.max_ird_adapter); 4105 } 4106 if (caps_cmd.iscsicaps) { 4107 params[0] = FW_PARAM_PFVF(ISCSI_START); 4108 params[1] = FW_PARAM_PFVF(ISCSI_END); 4109 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, 4110 params, val); 4111 if (ret < 0) 4112 goto bye; 4113 adap->vres.iscsi.start = val[0]; 4114 adap->vres.iscsi.size = val[1] - val[0] + 1; 4115 } 4116 #undef FW_PARAM_PFVF 4117 #undef FW_PARAM_DEV 4118 4119 /* The MTU/MSS Table is initialized by now, so load their values. If 4120 * we're initializing the adapter, then we'll make any modifications 4121 * we want to the MTU/MSS Table and also initialize the congestion 4122 * parameters. 4123 */ 4124 t4_read_mtu_tbl(adap, adap->params.mtus, NULL); 4125 if (state != DEV_STATE_INIT) { 4126 int i; 4127 4128 /* The default MTU Table contains values 1492 and 1500. 4129 * However, for TCP, it's better to have two values which are 4130 * a multiple of 8 +/- 4 bytes apart near this popular MTU. 4131 * This allows us to have a TCP Data Payload which is a 4132 * multiple of 8 regardless of what combination of TCP Options 4133 * are in use (always a multiple of 4 bytes) which is 4134 * important for performance reasons. For instance, if no 4135 * options are in use, then we have a 20-byte IP header and a 4136 * 20-byte TCP header. In this case, a 1500-byte MSS would 4137 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes 4138 * which is not a multiple of 8. So using an MSS of 1488 in 4139 * this case results in a TCP Data Payload of 1448 bytes which 4140 * is a multiple of 8. On the other hand, if 12-byte TCP Time 4141 * Stamps have been negotiated, then an MTU of 1500 bytes 4142 * results in a TCP Data Payload of 1448 bytes which, as 4143 * above, is a multiple of 8 bytes ... 4144 */ 4145 for (i = 0; i < NMTUS; i++) 4146 if (adap->params.mtus[i] == 1492) { 4147 adap->params.mtus[i] = 1488; 4148 break; 4149 } 4150 4151 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4152 adap->params.b_wnd); 4153 } 4154 t4_init_sge_params(adap); 4155 adap->flags |= FW_OK; 4156 t4_init_tp_params(adap); 4157 return 0; 4158 4159 /* 4160 * Something bad happened. If a command timed out or failed with EIO 4161 * FW does not operate within its spec or something catastrophic 4162 * happened to HW/FW, stop issuing commands. 4163 */ 4164 bye: 4165 kfree(adap->sge.egr_map); 4166 kfree(adap->sge.ingr_map); 4167 kfree(adap->sge.starving_fl); 4168 kfree(adap->sge.txq_maperr); 4169 #ifdef CONFIG_DEBUG_FS 4170 kfree(adap->sge.blocked_fl); 4171 #endif 4172 if (ret != -ETIMEDOUT && ret != -EIO) 4173 t4_fw_bye(adap, adap->mbox); 4174 return ret; 4175 } 4176 4177 /* EEH callbacks */ 4178 4179 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, 4180 pci_channel_state_t state) 4181 { 4182 int i; 4183 struct adapter *adap = pci_get_drvdata(pdev); 4184 4185 if (!adap) 4186 goto out; 4187 4188 rtnl_lock(); 4189 adap->flags &= ~FW_OK; 4190 notify_ulds(adap, CXGB4_STATE_START_RECOVERY); 4191 spin_lock(&adap->stats_lock); 4192 for_each_port(adap, i) { 4193 struct net_device *dev = adap->port[i]; 4194 4195 netif_device_detach(dev); 4196 netif_carrier_off(dev); 4197 } 4198 spin_unlock(&adap->stats_lock); 4199 disable_interrupts(adap); 4200 if (adap->flags & FULL_INIT_DONE) 4201 cxgb_down(adap); 4202 rtnl_unlock(); 4203 if ((adap->flags & DEV_ENABLED)) { 4204 pci_disable_device(pdev); 4205 adap->flags &= ~DEV_ENABLED; 4206 } 4207 out: return state == pci_channel_io_perm_failure ? 4208 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; 4209 } 4210 4211 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) 4212 { 4213 int i, ret; 4214 struct fw_caps_config_cmd c; 4215 struct adapter *adap = pci_get_drvdata(pdev); 4216 4217 if (!adap) { 4218 pci_restore_state(pdev); 4219 pci_save_state(pdev); 4220 return PCI_ERS_RESULT_RECOVERED; 4221 } 4222 4223 if (!(adap->flags & DEV_ENABLED)) { 4224 if (pci_enable_device(pdev)) { 4225 dev_err(&pdev->dev, "Cannot reenable PCI " 4226 "device after reset\n"); 4227 return PCI_ERS_RESULT_DISCONNECT; 4228 } 4229 adap->flags |= DEV_ENABLED; 4230 } 4231 4232 pci_set_master(pdev); 4233 pci_restore_state(pdev); 4234 pci_save_state(pdev); 4235 pci_cleanup_aer_uncorrect_error_status(pdev); 4236 4237 if (t4_wait_dev_ready(adap->regs) < 0) 4238 return PCI_ERS_RESULT_DISCONNECT; 4239 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) 4240 return PCI_ERS_RESULT_DISCONNECT; 4241 adap->flags |= FW_OK; 4242 if (adap_init1(adap, &c)) 4243 return PCI_ERS_RESULT_DISCONNECT; 4244 4245 for_each_port(adap, i) { 4246 struct port_info *p = adap2pinfo(adap, i); 4247 4248 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, 4249 NULL, NULL); 4250 if (ret < 0) 4251 return PCI_ERS_RESULT_DISCONNECT; 4252 p->viid = ret; 4253 p->xact_addr_filt = -1; 4254 } 4255 4256 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, 4257 adap->params.b_wnd); 4258 setup_memwin(adap); 4259 if (cxgb_up(adap)) 4260 return PCI_ERS_RESULT_DISCONNECT; 4261 return PCI_ERS_RESULT_RECOVERED; 4262 } 4263 4264 static void eeh_resume(struct pci_dev *pdev) 4265 { 4266 int i; 4267 struct adapter *adap = pci_get_drvdata(pdev); 4268 4269 if (!adap) 4270 return; 4271 4272 rtnl_lock(); 4273 for_each_port(adap, i) { 4274 struct net_device *dev = adap->port[i]; 4275 4276 if (netif_running(dev)) { 4277 link_start(dev); 4278 cxgb_set_rxmode(dev); 4279 } 4280 netif_device_attach(dev); 4281 } 4282 rtnl_unlock(); 4283 } 4284 4285 static const struct pci_error_handlers cxgb4_eeh = { 4286 .error_detected = eeh_err_detected, 4287 .slot_reset = eeh_slot_reset, 4288 .resume = eeh_resume, 4289 }; 4290 4291 static inline bool is_x_10g_port(const struct link_config *lc) 4292 { 4293 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 || 4294 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0; 4295 } 4296 4297 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q, 4298 unsigned int us, unsigned int cnt, 4299 unsigned int size, unsigned int iqe_size) 4300 { 4301 q->adap = adap; 4302 cxgb4_set_rspq_intr_params(q, us, cnt); 4303 q->iqe_len = iqe_size; 4304 q->size = size; 4305 } 4306 4307 /* 4308 * Perform default configuration of DMA queues depending on the number and type 4309 * of ports we found and the number of available CPUs. Most settings can be 4310 * modified by the admin prior to actual use. 4311 */ 4312 static void cfg_queues(struct adapter *adap) 4313 { 4314 struct sge *s = &adap->sge; 4315 int i, n10g = 0, qidx = 0; 4316 #ifndef CONFIG_CHELSIO_T4_DCB 4317 int q10g = 0; 4318 #endif 4319 int ciq_size; 4320 4321 for_each_port(adap, i) 4322 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); 4323 #ifdef CONFIG_CHELSIO_T4_DCB 4324 /* For Data Center Bridging support we need to be able to support up 4325 * to 8 Traffic Priorities; each of which will be assigned to its 4326 * own TX Queue in order to prevent Head-Of-Line Blocking. 4327 */ 4328 if (adap->params.nports * 8 > MAX_ETH_QSETS) { 4329 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n", 4330 MAX_ETH_QSETS, adap->params.nports * 8); 4331 BUG_ON(1); 4332 } 4333 4334 for_each_port(adap, i) { 4335 struct port_info *pi = adap2pinfo(adap, i); 4336 4337 pi->first_qset = qidx; 4338 pi->nqsets = 8; 4339 qidx += pi->nqsets; 4340 } 4341 #else /* !CONFIG_CHELSIO_T4_DCB */ 4342 /* 4343 * We default to 1 queue per non-10G port and up to # of cores queues 4344 * per 10G port. 4345 */ 4346 if (n10g) 4347 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; 4348 if (q10g > netif_get_num_default_rss_queues()) 4349 q10g = netif_get_num_default_rss_queues(); 4350 4351 for_each_port(adap, i) { 4352 struct port_info *pi = adap2pinfo(adap, i); 4353 4354 pi->first_qset = qidx; 4355 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; 4356 qidx += pi->nqsets; 4357 } 4358 #endif /* !CONFIG_CHELSIO_T4_DCB */ 4359 4360 s->ethqsets = qidx; 4361 s->max_ethqsets = qidx; /* MSI-X may lower it later */ 4362 4363 if (is_offload(adap)) { 4364 /* 4365 * For offload we use 1 queue/channel if all ports are up to 1G, 4366 * otherwise we divide all available queues amongst the channels 4367 * capped by the number of available cores. 4368 */ 4369 if (n10g) { 4370 i = min_t(int, ARRAY_SIZE(s->iscsirxq), 4371 num_online_cpus()); 4372 s->iscsiqsets = roundup(i, adap->params.nports); 4373 } else 4374 s->iscsiqsets = adap->params.nports; 4375 /* For RDMA one Rx queue per channel suffices */ 4376 s->rdmaqs = adap->params.nports; 4377 /* Try and allow at least 1 CIQ per cpu rounding down 4378 * to the number of ports, with a minimum of 1 per port. 4379 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port. 4380 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port. 4381 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port. 4382 */ 4383 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus()); 4384 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) * 4385 adap->params.nports; 4386 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports); 4387 4388 if (!is_t4(adap->params.chip)) 4389 s->niscsitq = s->iscsiqsets; 4390 } 4391 4392 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { 4393 struct sge_eth_rxq *r = &s->ethrxq[i]; 4394 4395 init_rspq(adap, &r->rspq, 5, 10, 1024, 64); 4396 r->fl.size = 72; 4397 } 4398 4399 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) 4400 s->ethtxq[i].q.size = 1024; 4401 4402 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) 4403 s->ctrlq[i].q.size = 512; 4404 4405 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) 4406 s->ofldtxq[i].q.size = 1024; 4407 4408 for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) { 4409 struct sge_ofld_rxq *r = &s->iscsirxq[i]; 4410 4411 init_rspq(adap, &r->rspq, 5, 1, 1024, 64); 4412 r->rspq.uld = CXGB4_ULD_ISCSI; 4413 r->fl.size = 72; 4414 } 4415 4416 if (!is_t4(adap->params.chip)) { 4417 for (i = 0; i < ARRAY_SIZE(s->iscsitrxq); i++) { 4418 struct sge_ofld_rxq *r = &s->iscsitrxq[i]; 4419 4420 init_rspq(adap, &r->rspq, 5, 1, 1024, 64); 4421 r->rspq.uld = CXGB4_ULD_ISCSIT; 4422 r->fl.size = 72; 4423 } 4424 } 4425 4426 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) { 4427 struct sge_ofld_rxq *r = &s->rdmarxq[i]; 4428 4429 init_rspq(adap, &r->rspq, 5, 1, 511, 64); 4430 r->rspq.uld = CXGB4_ULD_RDMA; 4431 r->fl.size = 72; 4432 } 4433 4434 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids; 4435 if (ciq_size > SGE_MAX_IQ_SIZE) { 4436 CH_WARN(adap, "CIQ size too small for available IQs\n"); 4437 ciq_size = SGE_MAX_IQ_SIZE; 4438 } 4439 4440 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) { 4441 struct sge_ofld_rxq *r = &s->rdmaciq[i]; 4442 4443 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64); 4444 r->rspq.uld = CXGB4_ULD_RDMA; 4445 } 4446 4447 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); 4448 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64); 4449 } 4450 4451 /* 4452 * Reduce the number of Ethernet queues across all ports to at most n. 4453 * n provides at least one queue per port. 4454 */ 4455 static void reduce_ethqs(struct adapter *adap, int n) 4456 { 4457 int i; 4458 struct port_info *pi; 4459 4460 while (n < adap->sge.ethqsets) 4461 for_each_port(adap, i) { 4462 pi = adap2pinfo(adap, i); 4463 if (pi->nqsets > 1) { 4464 pi->nqsets--; 4465 adap->sge.ethqsets--; 4466 if (adap->sge.ethqsets <= n) 4467 break; 4468 } 4469 } 4470 4471 n = 0; 4472 for_each_port(adap, i) { 4473 pi = adap2pinfo(adap, i); 4474 pi->first_qset = n; 4475 n += pi->nqsets; 4476 } 4477 } 4478 4479 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ 4480 #define EXTRA_VECS 2 4481 4482 static int enable_msix(struct adapter *adap) 4483 { 4484 int ofld_need = 0; 4485 int i, want, need, allocated; 4486 struct sge *s = &adap->sge; 4487 unsigned int nchan = adap->params.nports; 4488 struct msix_entry *entries; 4489 4490 entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1), 4491 GFP_KERNEL); 4492 if (!entries) 4493 return -ENOMEM; 4494 4495 for (i = 0; i < MAX_INGQ + 1; ++i) 4496 entries[i].entry = i; 4497 4498 want = s->max_ethqsets + EXTRA_VECS; 4499 if (is_offload(adap)) { 4500 want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets + 4501 s->niscsitq; 4502 /* need nchan for each possible ULD */ 4503 if (is_t4(adap->params.chip)) 4504 ofld_need = 3 * nchan; 4505 else 4506 ofld_need = 4 * nchan; 4507 } 4508 #ifdef CONFIG_CHELSIO_T4_DCB 4509 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for 4510 * each port. 4511 */ 4512 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need; 4513 #else 4514 need = adap->params.nports + EXTRA_VECS + ofld_need; 4515 #endif 4516 allocated = pci_enable_msix_range(adap->pdev, entries, need, want); 4517 if (allocated < 0) { 4518 dev_info(adap->pdev_dev, "not enough MSI-X vectors left," 4519 " not using MSI-X\n"); 4520 kfree(entries); 4521 return allocated; 4522 } 4523 4524 /* Distribute available vectors to the various queue groups. 4525 * Every group gets its minimum requirement and NIC gets top 4526 * priority for leftovers. 4527 */ 4528 i = allocated - EXTRA_VECS - ofld_need; 4529 if (i < s->max_ethqsets) { 4530 s->max_ethqsets = i; 4531 if (i < s->ethqsets) 4532 reduce_ethqs(adap, i); 4533 } 4534 if (is_offload(adap)) { 4535 if (allocated < want) { 4536 s->rdmaqs = nchan; 4537 s->rdmaciqs = nchan; 4538 4539 if (!is_t4(adap->params.chip)) 4540 s->niscsitq = nchan; 4541 } 4542 4543 /* leftovers go to OFLD */ 4544 i = allocated - EXTRA_VECS - s->max_ethqsets - 4545 s->rdmaqs - s->rdmaciqs - s->niscsitq; 4546 s->iscsiqsets = (i / nchan) * nchan; /* round down */ 4547 4548 } 4549 for (i = 0; i < allocated; ++i) 4550 adap->msix_info[i].vec = entries[i].vector; 4551 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, " 4552 "nic %d iscsi %d rdma cpl %d rdma ciq %d\n", 4553 allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs, 4554 s->rdmaciqs); 4555 4556 kfree(entries); 4557 return 0; 4558 } 4559 4560 #undef EXTRA_VECS 4561 4562 static int init_rss(struct adapter *adap) 4563 { 4564 unsigned int i; 4565 int err; 4566 4567 err = t4_init_rss_mode(adap, adap->mbox); 4568 if (err) 4569 return err; 4570 4571 for_each_port(adap, i) { 4572 struct port_info *pi = adap2pinfo(adap, i); 4573 4574 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); 4575 if (!pi->rss) 4576 return -ENOMEM; 4577 } 4578 return 0; 4579 } 4580 4581 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap, 4582 enum pci_bus_speed *speed, 4583 enum pcie_link_width *width) 4584 { 4585 u32 lnkcap1, lnkcap2; 4586 int err1, err2; 4587 4588 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */ 4589 4590 *speed = PCI_SPEED_UNKNOWN; 4591 *width = PCIE_LNK_WIDTH_UNKNOWN; 4592 4593 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP, 4594 &lnkcap1); 4595 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2, 4596 &lnkcap2); 4597 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */ 4598 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 4599 *speed = PCIE_SPEED_8_0GT; 4600 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 4601 *speed = PCIE_SPEED_5_0GT; 4602 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 4603 *speed = PCIE_SPEED_2_5GT; 4604 } 4605 if (!err1) { 4606 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT; 4607 if (!lnkcap2) { /* pre-r3.0 */ 4608 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB) 4609 *speed = PCIE_SPEED_5_0GT; 4610 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB) 4611 *speed = PCIE_SPEED_2_5GT; 4612 } 4613 } 4614 4615 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 4616 return err1 ? err1 : err2 ? err2 : -EINVAL; 4617 return 0; 4618 } 4619 4620 static void cxgb4_check_pcie_caps(struct adapter *adap) 4621 { 4622 enum pcie_link_width width, width_cap; 4623 enum pci_bus_speed speed, speed_cap; 4624 4625 #define PCIE_SPEED_STR(speed) \ 4626 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \ 4627 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \ 4628 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \ 4629 "Unknown") 4630 4631 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) { 4632 dev_warn(adap->pdev_dev, 4633 "Unable to determine PCIe device BW capabilities\n"); 4634 return; 4635 } 4636 4637 if (pcie_get_minimum_link(adap->pdev, &speed, &width) || 4638 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) { 4639 dev_warn(adap->pdev_dev, 4640 "Unable to determine PCI Express bandwidth.\n"); 4641 return; 4642 } 4643 4644 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n", 4645 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap)); 4646 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n", 4647 width, width_cap); 4648 if (speed < speed_cap || width < width_cap) 4649 dev_info(adap->pdev_dev, 4650 "A slot with more lanes and/or higher speed is " 4651 "suggested for optimal performance.\n"); 4652 } 4653 4654 static void print_port_info(const struct net_device *dev) 4655 { 4656 char buf[80]; 4657 char *bufp = buf; 4658 const char *spd = ""; 4659 const struct port_info *pi = netdev_priv(dev); 4660 const struct adapter *adap = pi->adapter; 4661 4662 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) 4663 spd = " 2.5 GT/s"; 4664 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) 4665 spd = " 5 GT/s"; 4666 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) 4667 spd = " 8 GT/s"; 4668 4669 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) 4670 bufp += sprintf(bufp, "100/"); 4671 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) 4672 bufp += sprintf(bufp, "1000/"); 4673 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) 4674 bufp += sprintf(bufp, "10G/"); 4675 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G) 4676 bufp += sprintf(bufp, "40G/"); 4677 if (bufp != buf) 4678 --bufp; 4679 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); 4680 4681 netdev_info(dev, "Chelsio %s rev %d %s %sNIC %s\n", 4682 adap->params.vpd.id, 4683 CHELSIO_CHIP_RELEASE(adap->params.chip), buf, 4684 is_offload(adap) ? "R" : "", 4685 (adap->flags & USING_MSIX) ? " MSI-X" : 4686 (adap->flags & USING_MSI) ? " MSI" : ""); 4687 netdev_info(dev, "S/N: %s, P/N: %s\n", 4688 adap->params.vpd.sn, adap->params.vpd.pn); 4689 } 4690 4691 static void enable_pcie_relaxed_ordering(struct pci_dev *dev) 4692 { 4693 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 4694 } 4695 4696 /* 4697 * Free the following resources: 4698 * - memory used for tables 4699 * - MSI/MSI-X 4700 * - net devices 4701 * - resources FW is holding for us 4702 */ 4703 static void free_some_resources(struct adapter *adapter) 4704 { 4705 unsigned int i; 4706 4707 t4_free_mem(adapter->l2t); 4708 t4_free_mem(adapter->tids.tid_tab); 4709 kfree(adapter->sge.egr_map); 4710 kfree(adapter->sge.ingr_map); 4711 kfree(adapter->sge.starving_fl); 4712 kfree(adapter->sge.txq_maperr); 4713 #ifdef CONFIG_DEBUG_FS 4714 kfree(adapter->sge.blocked_fl); 4715 #endif 4716 disable_msi(adapter); 4717 4718 for_each_port(adapter, i) 4719 if (adapter->port[i]) { 4720 struct port_info *pi = adap2pinfo(adapter, i); 4721 4722 if (pi->viid != 0) 4723 t4_free_vi(adapter, adapter->mbox, adapter->pf, 4724 0, pi->viid); 4725 kfree(adap2pinfo(adapter, i)->rss); 4726 free_netdev(adapter->port[i]); 4727 } 4728 if (adapter->flags & FW_OK) 4729 t4_fw_bye(adapter, adapter->pf); 4730 } 4731 4732 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 4733 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 4734 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 4735 #define SEGMENT_SIZE 128 4736 4737 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev) 4738 { 4739 u16 device_id; 4740 4741 /* Retrieve adapter's device ID */ 4742 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id); 4743 4744 switch (device_id >> 12) { 4745 case CHELSIO_T4: 4746 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 4747 case CHELSIO_T5: 4748 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 4749 case CHELSIO_T6: 4750 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 4751 default: 4752 dev_err(&pdev->dev, "Device %d is not supported\n", 4753 device_id); 4754 } 4755 return -EINVAL; 4756 } 4757 4758 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 4759 { 4760 int func, i, err, s_qpp, qpp, num_seg; 4761 struct port_info *pi; 4762 bool highdma = false; 4763 struct adapter *adapter = NULL; 4764 void __iomem *regs; 4765 u32 whoami, pl_rev; 4766 enum chip_type chip; 4767 4768 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 4769 4770 err = pci_request_regions(pdev, KBUILD_MODNAME); 4771 if (err) { 4772 /* Just info, some other driver may have claimed the device. */ 4773 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 4774 return err; 4775 } 4776 4777 err = pci_enable_device(pdev); 4778 if (err) { 4779 dev_err(&pdev->dev, "cannot enable PCI device\n"); 4780 goto out_release_regions; 4781 } 4782 4783 regs = pci_ioremap_bar(pdev, 0); 4784 if (!regs) { 4785 dev_err(&pdev->dev, "cannot map device registers\n"); 4786 err = -ENOMEM; 4787 goto out_disable_device; 4788 } 4789 4790 err = t4_wait_dev_ready(regs); 4791 if (err < 0) 4792 goto out_unmap_bar0; 4793 4794 /* We control everything through one PF */ 4795 whoami = readl(regs + PL_WHOAMI_A); 4796 pl_rev = REV_G(readl(regs + PL_REV_A)); 4797 chip = get_chip_type(pdev, pl_rev); 4798 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ? 4799 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 4800 if (func != ent->driver_data) { 4801 iounmap(regs); 4802 pci_disable_device(pdev); 4803 pci_save_state(pdev); /* to restore SR-IOV later */ 4804 goto sriov; 4805 } 4806 4807 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 4808 highdma = true; 4809 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 4810 if (err) { 4811 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 4812 "coherent allocations\n"); 4813 goto out_unmap_bar0; 4814 } 4815 } else { 4816 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 4817 if (err) { 4818 dev_err(&pdev->dev, "no usable DMA configuration\n"); 4819 goto out_unmap_bar0; 4820 } 4821 } 4822 4823 pci_enable_pcie_error_reporting(pdev); 4824 enable_pcie_relaxed_ordering(pdev); 4825 pci_set_master(pdev); 4826 pci_save_state(pdev); 4827 4828 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 4829 if (!adapter) { 4830 err = -ENOMEM; 4831 goto out_unmap_bar0; 4832 } 4833 4834 adapter->workq = create_singlethread_workqueue("cxgb4"); 4835 if (!adapter->workq) { 4836 err = -ENOMEM; 4837 goto out_free_adapter; 4838 } 4839 4840 /* PCI device has been enabled */ 4841 adapter->flags |= DEV_ENABLED; 4842 4843 adapter->regs = regs; 4844 adapter->pdev = pdev; 4845 adapter->pdev_dev = &pdev->dev; 4846 adapter->mbox = func; 4847 adapter->pf = func; 4848 adapter->msg_enable = dflt_msg_enable; 4849 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); 4850 4851 spin_lock_init(&adapter->stats_lock); 4852 spin_lock_init(&adapter->tid_release_lock); 4853 spin_lock_init(&adapter->win0_lock); 4854 4855 INIT_WORK(&adapter->tid_release_task, process_tid_release_list); 4856 INIT_WORK(&adapter->db_full_task, process_db_full); 4857 INIT_WORK(&adapter->db_drop_task, process_db_drop); 4858 4859 err = t4_prep_adapter(adapter); 4860 if (err) 4861 goto out_free_adapter; 4862 4863 4864 if (!is_t4(adapter->params.chip)) { 4865 s_qpp = (QUEUESPERPAGEPF0_S + 4866 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * 4867 adapter->pf); 4868 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, 4869 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); 4870 num_seg = PAGE_SIZE / SEGMENT_SIZE; 4871 4872 /* Each segment size is 128B. Write coalescing is enabled only 4873 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the 4874 * queue is less no of segments that can be accommodated in 4875 * a page size. 4876 */ 4877 if (qpp > num_seg) { 4878 dev_err(&pdev->dev, 4879 "Incorrect number of egress queues per page\n"); 4880 err = -EINVAL; 4881 goto out_free_adapter; 4882 } 4883 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), 4884 pci_resource_len(pdev, 2)); 4885 if (!adapter->bar2) { 4886 dev_err(&pdev->dev, "cannot map device bar2 region\n"); 4887 err = -ENOMEM; 4888 goto out_free_adapter; 4889 } 4890 } 4891 4892 setup_memwin(adapter); 4893 err = adap_init0(adapter); 4894 #ifdef CONFIG_DEBUG_FS 4895 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); 4896 #endif 4897 setup_memwin_rdma(adapter); 4898 if (err) 4899 goto out_unmap_bar; 4900 4901 /* configure SGE_STAT_CFG_A to read WC stats */ 4902 if (!is_t4(adapter->params.chip)) 4903 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) | 4904 (is_t5(adapter->params.chip) ? STATMODE_V(0) : 4905 T6_STATMODE_V(0))); 4906 4907 for_each_port(adapter, i) { 4908 struct net_device *netdev; 4909 4910 netdev = alloc_etherdev_mq(sizeof(struct port_info), 4911 MAX_ETH_QSETS); 4912 if (!netdev) { 4913 err = -ENOMEM; 4914 goto out_free_dev; 4915 } 4916 4917 SET_NETDEV_DEV(netdev, &pdev->dev); 4918 4919 adapter->port[i] = netdev; 4920 pi = netdev_priv(netdev); 4921 pi->adapter = adapter; 4922 pi->xact_addr_filt = -1; 4923 pi->port_id = i; 4924 netdev->irq = pdev->irq; 4925 4926 netdev->hw_features = NETIF_F_SG | TSO_FLAGS | 4927 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4928 NETIF_F_RXCSUM | NETIF_F_RXHASH | 4929 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 4930 if (highdma) 4931 netdev->hw_features |= NETIF_F_HIGHDMA; 4932 netdev->features |= netdev->hw_features; 4933 netdev->vlan_features = netdev->features & VLAN_FEAT; 4934 4935 netdev->priv_flags |= IFF_UNICAST_FLT; 4936 4937 netdev->netdev_ops = &cxgb4_netdev_ops; 4938 #ifdef CONFIG_CHELSIO_T4_DCB 4939 netdev->dcbnl_ops = &cxgb4_dcb_ops; 4940 cxgb4_dcb_state_init(netdev); 4941 #endif 4942 cxgb4_set_ethtool_ops(netdev); 4943 } 4944 4945 pci_set_drvdata(pdev, adapter); 4946 4947 if (adapter->flags & FW_OK) { 4948 err = t4_port_init(adapter, func, func, 0); 4949 if (err) 4950 goto out_free_dev; 4951 } else if (adapter->params.nports == 1) { 4952 /* If we don't have a connection to the firmware -- possibly 4953 * because of an error -- grab the raw VPD parameters so we 4954 * can set the proper MAC Address on the debug network 4955 * interface that we've created. 4956 */ 4957 u8 hw_addr[ETH_ALEN]; 4958 u8 *na = adapter->params.vpd.na; 4959 4960 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd); 4961 if (!err) { 4962 for (i = 0; i < ETH_ALEN; i++) 4963 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 + 4964 hex2val(na[2 * i + 1])); 4965 t4_set_hw_addr(adapter, 0, hw_addr); 4966 } 4967 } 4968 4969 /* Configure queues and allocate tables now, they can be needed as 4970 * soon as the first register_netdev completes. 4971 */ 4972 cfg_queues(adapter); 4973 4974 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end); 4975 if (!adapter->l2t) { 4976 /* We tolerate a lack of L2T, giving up some functionality */ 4977 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); 4978 adapter->params.offload = 0; 4979 } 4980 4981 #if IS_ENABLED(CONFIG_IPV6) 4982 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) && 4983 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) { 4984 /* CLIP functionality is not present in hardware, 4985 * hence disable all offload features 4986 */ 4987 dev_warn(&pdev->dev, 4988 "CLIP not enabled in hardware, continuing\n"); 4989 adapter->params.offload = 0; 4990 } else { 4991 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, 4992 adapter->clipt_end); 4993 if (!adapter->clipt) { 4994 /* We tolerate a lack of clip_table, giving up 4995 * some functionality 4996 */ 4997 dev_warn(&pdev->dev, 4998 "could not allocate Clip table, continuing\n"); 4999 adapter->params.offload = 0; 5000 } 5001 } 5002 #endif 5003 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) { 5004 dev_warn(&pdev->dev, "could not allocate TID table, " 5005 "continuing\n"); 5006 adapter->params.offload = 0; 5007 } 5008 5009 if (is_offload(adapter)) { 5010 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) { 5011 u32 hash_base, hash_reg; 5012 5013 if (chip <= CHELSIO_T5) { 5014 hash_reg = LE_DB_TID_HASHBASE_A; 5015 hash_base = t4_read_reg(adapter, hash_reg); 5016 adapter->tids.hash_base = hash_base / 4; 5017 } else { 5018 hash_reg = T6_LE_DB_HASH_TID_BASE_A; 5019 hash_base = t4_read_reg(adapter, hash_reg); 5020 adapter->tids.hash_base = hash_base; 5021 } 5022 } 5023 } 5024 5025 /* See what interrupts we'll be using */ 5026 if (msi > 1 && enable_msix(adapter) == 0) 5027 adapter->flags |= USING_MSIX; 5028 else if (msi > 0 && pci_enable_msi(pdev) == 0) 5029 adapter->flags |= USING_MSI; 5030 5031 /* check for PCI Express bandwidth capabiltites */ 5032 cxgb4_check_pcie_caps(adapter); 5033 5034 err = init_rss(adapter); 5035 if (err) 5036 goto out_free_dev; 5037 5038 /* 5039 * The card is now ready to go. If any errors occur during device 5040 * registration we do not fail the whole card but rather proceed only 5041 * with the ports we manage to register successfully. However we must 5042 * register at least one net device. 5043 */ 5044 for_each_port(adapter, i) { 5045 pi = adap2pinfo(adapter, i); 5046 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); 5047 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); 5048 5049 err = register_netdev(adapter->port[i]); 5050 if (err) 5051 break; 5052 adapter->chan_map[pi->tx_chan] = i; 5053 print_port_info(adapter->port[i]); 5054 } 5055 if (i == 0) { 5056 dev_err(&pdev->dev, "could not register any net devices\n"); 5057 goto out_free_dev; 5058 } 5059 if (err) { 5060 dev_warn(&pdev->dev, "only %d net devices registered\n", i); 5061 err = 0; 5062 } 5063 5064 if (cxgb4_debugfs_root) { 5065 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), 5066 cxgb4_debugfs_root); 5067 setup_debugfs(adapter); 5068 } 5069 5070 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ 5071 pdev->needs_freset = 1; 5072 5073 if (is_offload(adapter)) 5074 attach_ulds(adapter); 5075 5076 sriov: 5077 #ifdef CONFIG_PCI_IOV 5078 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) 5079 if (pci_enable_sriov(pdev, num_vf[func]) == 0) 5080 dev_info(&pdev->dev, 5081 "instantiated %u virtual functions\n", 5082 num_vf[func]); 5083 #endif 5084 return 0; 5085 5086 out_free_dev: 5087 free_some_resources(adapter); 5088 out_unmap_bar: 5089 if (!is_t4(adapter->params.chip)) 5090 iounmap(adapter->bar2); 5091 out_free_adapter: 5092 if (adapter->workq) 5093 destroy_workqueue(adapter->workq); 5094 5095 kfree(adapter); 5096 out_unmap_bar0: 5097 iounmap(regs); 5098 out_disable_device: 5099 pci_disable_pcie_error_reporting(pdev); 5100 pci_disable_device(pdev); 5101 out_release_regions: 5102 pci_release_regions(pdev); 5103 return err; 5104 } 5105 5106 static void remove_one(struct pci_dev *pdev) 5107 { 5108 struct adapter *adapter = pci_get_drvdata(pdev); 5109 5110 #ifdef CONFIG_PCI_IOV 5111 pci_disable_sriov(pdev); 5112 5113 #endif 5114 5115 if (adapter) { 5116 int i; 5117 5118 /* Tear down per-adapter Work Queue first since it can contain 5119 * references to our adapter data structure. 5120 */ 5121 destroy_workqueue(adapter->workq); 5122 5123 if (is_offload(adapter)) 5124 detach_ulds(adapter); 5125 5126 disable_interrupts(adapter); 5127 5128 for_each_port(adapter, i) 5129 if (adapter->port[i]->reg_state == NETREG_REGISTERED) 5130 unregister_netdev(adapter->port[i]); 5131 5132 debugfs_remove_recursive(adapter->debugfs_root); 5133 5134 /* If we allocated filters, free up state associated with any 5135 * valid filters ... 5136 */ 5137 if (adapter->tids.ftid_tab) { 5138 struct filter_entry *f = &adapter->tids.ftid_tab[0]; 5139 for (i = 0; i < (adapter->tids.nftids + 5140 adapter->tids.nsftids); i++, f++) 5141 if (f->valid) 5142 clear_filter(adapter, f); 5143 } 5144 5145 if (adapter->flags & FULL_INIT_DONE) 5146 cxgb_down(adapter); 5147 5148 free_some_resources(adapter); 5149 #if IS_ENABLED(CONFIG_IPV6) 5150 t4_cleanup_clip_tbl(adapter); 5151 #endif 5152 iounmap(adapter->regs); 5153 if (!is_t4(adapter->params.chip)) 5154 iounmap(adapter->bar2); 5155 pci_disable_pcie_error_reporting(pdev); 5156 if ((adapter->flags & DEV_ENABLED)) { 5157 pci_disable_device(pdev); 5158 adapter->flags &= ~DEV_ENABLED; 5159 } 5160 pci_release_regions(pdev); 5161 synchronize_rcu(); 5162 kfree(adapter); 5163 } else 5164 pci_release_regions(pdev); 5165 } 5166 5167 static struct pci_driver cxgb4_driver = { 5168 .name = KBUILD_MODNAME, 5169 .id_table = cxgb4_pci_tbl, 5170 .probe = init_one, 5171 .remove = remove_one, 5172 .shutdown = remove_one, 5173 .err_handler = &cxgb4_eeh, 5174 }; 5175 5176 static int __init cxgb4_init_module(void) 5177 { 5178 int ret; 5179 5180 /* Debugfs support is optional, just warn if this fails */ 5181 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); 5182 if (!cxgb4_debugfs_root) 5183 pr_warn("could not create debugfs entry, continuing\n"); 5184 5185 ret = pci_register_driver(&cxgb4_driver); 5186 if (ret < 0) 5187 debugfs_remove(cxgb4_debugfs_root); 5188 5189 #if IS_ENABLED(CONFIG_IPV6) 5190 if (!inet6addr_registered) { 5191 register_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5192 inet6addr_registered = true; 5193 } 5194 #endif 5195 5196 return ret; 5197 } 5198 5199 static void __exit cxgb4_cleanup_module(void) 5200 { 5201 #if IS_ENABLED(CONFIG_IPV6) 5202 if (inet6addr_registered) { 5203 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); 5204 inet6addr_registered = false; 5205 } 5206 #endif 5207 pci_unregister_driver(&cxgb4_driver); 5208 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ 5209 } 5210 5211 module_init(cxgb4_init_module); 5212 module_exit(cxgb4_cleanup_module); 5213