1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67 
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78 
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80 
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
87 
88 /* Host shadow copy of ingress filter entry.  This is in host native format
89  * and doesn't match the ordering or bit order, etc. of the hardware of the
90  * firmware command.  The use of bit-field structure elements is purely to
91  * remind ourselves of the field size limitations and save memory in the case
92  * where the filter table is large.
93  */
94 struct filter_entry {
95 	/* Administrative fields for filter.
96 	 */
97 	u32 valid:1;            /* filter allocated and valid */
98 	u32 locked:1;           /* filter is administratively locked */
99 
100 	u32 pending:1;          /* filter action is pending firmware reply */
101 	u32 smtidx:8;           /* Source MAC Table index for smac */
102 	struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
103 
104 	/* The filter itself.  Most of this is a straight copy of information
105 	 * provided by the extended ioctl().  Some fields are translated to
106 	 * internal forms -- for instance the Ingress Queue ID passed in from
107 	 * the ioctl() is translated into the Absolute Ingress Queue ID.
108 	 */
109 	struct ch_filter_specification fs;
110 };
111 
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115 
116 /* Macros needed to support the PCI Device ID Table ...
117  */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119 	static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121 
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123  * called for both.
124  */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126 
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
129 
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131 		{ 0, } \
132 	}
133 
134 #include "t4_pci_id_tbl.h"
135 
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW6_FNAME "cxgb4/t6fw.bin"
139 #define FW4_CFNAME "cxgb4/t4-config.txt"
140 #define FW5_CFNAME "cxgb4/t5-config.txt"
141 #define FW6_CFNAME "cxgb4/t6-config.txt"
142 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144 #define PHY_AQ1202_DEVICEID 0x4409
145 #define PHY_BCM84834_DEVICEID 0x4486
146 
147 MODULE_DESCRIPTION(DRV_DESC);
148 MODULE_AUTHOR("Chelsio Communications");
149 MODULE_LICENSE("Dual BSD/GPL");
150 MODULE_VERSION(DRV_VERSION);
151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
152 MODULE_FIRMWARE(FW4_FNAME);
153 MODULE_FIRMWARE(FW5_FNAME);
154 MODULE_FIRMWARE(FW6_FNAME);
155 
156 /*
157  * Normally we're willing to become the firmware's Master PF but will be happy
158  * if another PF has already become the Master and initialized the adapter.
159  * Setting "force_init" will cause this driver to forcibly establish itself as
160  * the Master PF and initialize the adapter.
161  */
162 static uint force_init;
163 
164 module_param(force_init, uint, 0644);
165 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
166 		 "deprecated parameter");
167 
168 static int dflt_msg_enable = DFLT_MSG_ENABLE;
169 
170 module_param(dflt_msg_enable, int, 0644);
171 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
172 
173 /*
174  * The driver uses the best interrupt scheme available on a platform in the
175  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
176  * of these schemes the driver may consider as follows:
177  *
178  * msi = 2: choose from among all three options
179  * msi = 1: only consider MSI and INTx interrupts
180  * msi = 0: force INTx interrupts
181  */
182 static int msi = 2;
183 
184 module_param(msi, int, 0644);
185 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
186 
187 /*
188  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
189  * offset by 2 bytes in order to have the IP headers line up on 4-byte
190  * boundaries.  This is a requirement for many architectures which will throw
191  * a machine check fault if an attempt is made to access one of the 4-byte IP
192  * header fields on a non-4-byte boundary.  And it's a major performance issue
193  * even on some architectures which allow it like some implementations of the
194  * x86 ISA.  However, some architectures don't mind this and for some very
195  * edge-case performance sensitive applications (like forwarding large volumes
196  * of small packets), setting this DMA offset to 0 will decrease the number of
197  * PCI-E Bus transfers enough to measurably affect performance.
198  */
199 static int rx_dma_offset = 2;
200 
201 #ifdef CONFIG_PCI_IOV
202 /* Configure the number of PCI-E Virtual Function which are to be instantiated
203  * on SR-IOV Capable Physical Functions.
204  */
205 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
206 
207 module_param_array(num_vf, uint, NULL, 0644);
208 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
209 #endif
210 
211 /* TX Queue select used to determine what algorithm to use for selecting TX
212  * queue. Select between the kernel provided function (select_queue=0) or user
213  * cxgb_select_queue function (select_queue=1)
214  *
215  * Default: select_queue=0
216  */
217 static int select_queue;
218 module_param(select_queue, int, 0644);
219 MODULE_PARM_DESC(select_queue,
220 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
221 
222 static struct dentry *cxgb4_debugfs_root;
223 
224 static LIST_HEAD(adapter_list);
225 static DEFINE_MUTEX(uld_mutex);
226 /* Adapter list to be accessed from atomic context */
227 static LIST_HEAD(adap_rcu_list);
228 static DEFINE_SPINLOCK(adap_rcu_lock);
229 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
230 static const char *const uld_str[] = { "RDMA", "iSCSI", "iSCSIT" };
231 
232 static void link_report(struct net_device *dev)
233 {
234 	if (!netif_carrier_ok(dev))
235 		netdev_info(dev, "link down\n");
236 	else {
237 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
238 
239 		const char *s;
240 		const struct port_info *p = netdev_priv(dev);
241 
242 		switch (p->link_cfg.speed) {
243 		case 10000:
244 			s = "10Gbps";
245 			break;
246 		case 1000:
247 			s = "1000Mbps";
248 			break;
249 		case 100:
250 			s = "100Mbps";
251 			break;
252 		case 40000:
253 			s = "40Gbps";
254 			break;
255 		default:
256 			pr_info("%s: unsupported speed: %d\n",
257 				dev->name, p->link_cfg.speed);
258 			return;
259 		}
260 
261 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
262 			    fc[p->link_cfg.fc]);
263 	}
264 }
265 
266 #ifdef CONFIG_CHELSIO_T4_DCB
267 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
268 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
269 {
270 	struct port_info *pi = netdev_priv(dev);
271 	struct adapter *adap = pi->adapter;
272 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
273 	int i;
274 
275 	/* We use a simple mapping of Port TX Queue Index to DCB
276 	 * Priority when we're enabling DCB.
277 	 */
278 	for (i = 0; i < pi->nqsets; i++, txq++) {
279 		u32 name, value;
280 		int err;
281 
282 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
283 			FW_PARAMS_PARAM_X_V(
284 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
285 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
286 		value = enable ? i : 0xffffffff;
287 
288 		/* Since we can be called while atomic (from "interrupt
289 		 * level") we need to issue the Set Parameters Commannd
290 		 * without sleeping (timeout < 0).
291 		 */
292 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
293 					    &name, &value,
294 					    -FW_CMD_MAX_TIMEOUT);
295 
296 		if (err)
297 			dev_err(adap->pdev_dev,
298 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
299 				enable ? "set" : "unset", pi->port_id, i, -err);
300 		else
301 			txq->dcb_prio = value;
302 	}
303 }
304 #endif /* CONFIG_CHELSIO_T4_DCB */
305 
306 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
307 {
308 	struct net_device *dev = adapter->port[port_id];
309 
310 	/* Skip changes from disabled ports. */
311 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
312 		if (link_stat)
313 			netif_carrier_on(dev);
314 		else {
315 #ifdef CONFIG_CHELSIO_T4_DCB
316 			cxgb4_dcb_state_init(dev);
317 			dcb_tx_queue_prio_enable(dev, false);
318 #endif /* CONFIG_CHELSIO_T4_DCB */
319 			netif_carrier_off(dev);
320 		}
321 
322 		link_report(dev);
323 	}
324 }
325 
326 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
327 {
328 	static const char *mod_str[] = {
329 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
330 	};
331 
332 	const struct net_device *dev = adap->port[port_id];
333 	const struct port_info *pi = netdev_priv(dev);
334 
335 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
336 		netdev_info(dev, "port module unplugged\n");
337 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
338 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
339 }
340 
341 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
342 module_param(dbfifo_int_thresh, int, 0644);
343 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
344 
345 /*
346  * usecs to sleep while draining the dbfifo
347  */
348 static int dbfifo_drain_delay = 1000;
349 module_param(dbfifo_drain_delay, int, 0644);
350 MODULE_PARM_DESC(dbfifo_drain_delay,
351 		 "usecs to sleep while draining the dbfifo");
352 
353 static inline int cxgb4_set_addr_hash(struct port_info *pi)
354 {
355 	struct adapter *adap = pi->adapter;
356 	u64 vec = 0;
357 	bool ucast = false;
358 	struct hash_mac_addr *entry;
359 
360 	/* Calculate the hash vector for the updated list and program it */
361 	list_for_each_entry(entry, &adap->mac_hlist, list) {
362 		ucast |= is_unicast_ether_addr(entry->addr);
363 		vec |= (1ULL << hash_mac_addr(entry->addr));
364 	}
365 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
366 				vec, false);
367 }
368 
369 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
370 {
371 	struct port_info *pi = netdev_priv(netdev);
372 	struct adapter *adap = pi->adapter;
373 	int ret;
374 	u64 mhash = 0;
375 	u64 uhash = 0;
376 	bool free = false;
377 	bool ucast = is_unicast_ether_addr(mac_addr);
378 	const u8 *maclist[1] = {mac_addr};
379 	struct hash_mac_addr *new_entry;
380 
381 	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
382 				NULL, ucast ? &uhash : &mhash, false);
383 	if (ret < 0)
384 		goto out;
385 	/* if hash != 0, then add the addr to hash addr list
386 	 * so on the end we will calculate the hash for the
387 	 * list and program it
388 	 */
389 	if (uhash || mhash) {
390 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
391 		if (!new_entry)
392 			return -ENOMEM;
393 		ether_addr_copy(new_entry->addr, mac_addr);
394 		list_add_tail(&new_entry->list, &adap->mac_hlist);
395 		ret = cxgb4_set_addr_hash(pi);
396 	}
397 out:
398 	return ret < 0 ? ret : 0;
399 }
400 
401 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
402 {
403 	struct port_info *pi = netdev_priv(netdev);
404 	struct adapter *adap = pi->adapter;
405 	int ret;
406 	const u8 *maclist[1] = {mac_addr};
407 	struct hash_mac_addr *entry, *tmp;
408 
409 	/* If the MAC address to be removed is in the hash addr
410 	 * list, delete it from the list and update hash vector
411 	 */
412 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
413 		if (ether_addr_equal(entry->addr, mac_addr)) {
414 			list_del(&entry->list);
415 			kfree(entry);
416 			return cxgb4_set_addr_hash(pi);
417 		}
418 	}
419 
420 	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
421 	return ret < 0 ? -EINVAL : 0;
422 }
423 
424 /*
425  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
426  * If @mtu is -1 it is left unchanged.
427  */
428 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
429 {
430 	struct port_info *pi = netdev_priv(dev);
431 	struct adapter *adapter = pi->adapter;
432 
433 	if (!(dev->flags & IFF_PROMISC)) {
434 		__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
435 		if (!(dev->flags & IFF_ALLMULTI))
436 			__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
437 	}
438 
439 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
440 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
441 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
442 			     sleep_ok);
443 }
444 
445 /**
446  *	link_start - enable a port
447  *	@dev: the port to enable
448  *
449  *	Performs the MAC and PHY actions needed to enable a port.
450  */
451 static int link_start(struct net_device *dev)
452 {
453 	int ret;
454 	struct port_info *pi = netdev_priv(dev);
455 	unsigned int mb = pi->adapter->pf;
456 
457 	/*
458 	 * We do not set address filters and promiscuity here, the stack does
459 	 * that step explicitly.
460 	 */
461 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
462 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
463 	if (ret == 0) {
464 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
465 				    pi->xact_addr_filt, dev->dev_addr, true,
466 				    true);
467 		if (ret >= 0) {
468 			pi->xact_addr_filt = ret;
469 			ret = 0;
470 		}
471 	}
472 	if (ret == 0)
473 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
474 				    &pi->link_cfg);
475 	if (ret == 0) {
476 		local_bh_disable();
477 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
478 					  true, CXGB4_DCB_ENABLED);
479 		local_bh_enable();
480 	}
481 
482 	return ret;
483 }
484 
485 int cxgb4_dcb_enabled(const struct net_device *dev)
486 {
487 #ifdef CONFIG_CHELSIO_T4_DCB
488 	struct port_info *pi = netdev_priv(dev);
489 
490 	if (!pi->dcb.enabled)
491 		return 0;
492 
493 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
494 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
495 #else
496 	return 0;
497 #endif
498 }
499 EXPORT_SYMBOL(cxgb4_dcb_enabled);
500 
501 #ifdef CONFIG_CHELSIO_T4_DCB
502 /* Handle a Data Center Bridging update message from the firmware. */
503 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
504 {
505 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
506 	struct net_device *dev = adap->port[port];
507 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
508 	int new_dcb_enabled;
509 
510 	cxgb4_dcb_handle_fw_update(adap, pcmd);
511 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
512 
513 	/* If the DCB has become enabled or disabled on the port then we're
514 	 * going to need to set up/tear down DCB Priority parameters for the
515 	 * TX Queues associated with the port.
516 	 */
517 	if (new_dcb_enabled != old_dcb_enabled)
518 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
519 }
520 #endif /* CONFIG_CHELSIO_T4_DCB */
521 
522 /* Clear a filter and release any of its resources that we own.  This also
523  * clears the filter's "pending" status.
524  */
525 static void clear_filter(struct adapter *adap, struct filter_entry *f)
526 {
527 	/* If the new or old filter have loopback rewriteing rules then we'll
528 	 * need to free any existing Layer Two Table (L2T) entries of the old
529 	 * filter rule.  The firmware will handle freeing up any Source MAC
530 	 * Table (SMT) entries used for rewriting Source MAC Addresses in
531 	 * loopback rules.
532 	 */
533 	if (f->l2t)
534 		cxgb4_l2t_release(f->l2t);
535 
536 	/* The zeroing of the filter rule below clears the filter valid,
537 	 * pending, locked flags, l2t pointer, etc. so it's all we need for
538 	 * this operation.
539 	 */
540 	memset(f, 0, sizeof(*f));
541 }
542 
543 /* Handle a filter write/deletion reply.
544  */
545 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
546 {
547 	unsigned int idx = GET_TID(rpl);
548 	unsigned int nidx = idx - adap->tids.ftid_base;
549 	unsigned int ret;
550 	struct filter_entry *f;
551 
552 	if (idx >= adap->tids.ftid_base && nidx <
553 	   (adap->tids.nftids + adap->tids.nsftids)) {
554 		idx = nidx;
555 		ret = TCB_COOKIE_G(rpl->cookie);
556 		f = &adap->tids.ftid_tab[idx];
557 
558 		if (ret == FW_FILTER_WR_FLT_DELETED) {
559 			/* Clear the filter when we get confirmation from the
560 			 * hardware that the filter has been deleted.
561 			 */
562 			clear_filter(adap, f);
563 		} else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
564 			dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
565 				idx);
566 			clear_filter(adap, f);
567 		} else if (ret == FW_FILTER_WR_FLT_ADDED) {
568 			f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
569 			f->pending = 0;  /* asynchronous setup completed */
570 			f->valid = 1;
571 		} else {
572 			/* Something went wrong.  Issue a warning about the
573 			 * problem and clear everything out.
574 			 */
575 			dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
576 				idx, ret);
577 			clear_filter(adap, f);
578 		}
579 	}
580 }
581 
582 /* Response queue handler for the FW event queue.
583  */
584 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
585 			  const struct pkt_gl *gl)
586 {
587 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
588 
589 	rsp++;                                          /* skip RSS header */
590 
591 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
592 	 */
593 	if (unlikely(opcode == CPL_FW4_MSG &&
594 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
595 		rsp++;
596 		opcode = ((const struct rss_header *)rsp)->opcode;
597 		rsp++;
598 		if (opcode != CPL_SGE_EGR_UPDATE) {
599 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
600 				, opcode);
601 			goto out;
602 		}
603 	}
604 
605 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
606 		const struct cpl_sge_egr_update *p = (void *)rsp;
607 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
608 		struct sge_txq *txq;
609 
610 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
611 		txq->restarts++;
612 		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
613 			struct sge_eth_txq *eq;
614 
615 			eq = container_of(txq, struct sge_eth_txq, q);
616 			netif_tx_wake_queue(eq->txq);
617 		} else {
618 			struct sge_ofld_txq *oq;
619 
620 			oq = container_of(txq, struct sge_ofld_txq, q);
621 			tasklet_schedule(&oq->qresume_tsk);
622 		}
623 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
624 		const struct cpl_fw6_msg *p = (void *)rsp;
625 
626 #ifdef CONFIG_CHELSIO_T4_DCB
627 		const struct fw_port_cmd *pcmd = (const void *)p->data;
628 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
629 		unsigned int action =
630 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
631 
632 		if (cmd == FW_PORT_CMD &&
633 		    action == FW_PORT_ACTION_GET_PORT_INFO) {
634 			int port = FW_PORT_CMD_PORTID_G(
635 					be32_to_cpu(pcmd->op_to_portid));
636 			struct net_device *dev = q->adap->port[port];
637 			int state_input = ((pcmd->u.info.dcbxdis_pkd &
638 					    FW_PORT_CMD_DCBXDIS_F)
639 					   ? CXGB4_DCB_INPUT_FW_DISABLED
640 					   : CXGB4_DCB_INPUT_FW_ENABLED);
641 
642 			cxgb4_dcb_state_fsm(dev, state_input);
643 		}
644 
645 		if (cmd == FW_PORT_CMD &&
646 		    action == FW_PORT_ACTION_L2_DCB_CFG)
647 			dcb_rpl(q->adap, pcmd);
648 		else
649 #endif
650 			if (p->type == 0)
651 				t4_handle_fw_rpl(q->adap, p->data);
652 	} else if (opcode == CPL_L2T_WRITE_RPL) {
653 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
654 
655 		do_l2t_write_rpl(q->adap, p);
656 	} else if (opcode == CPL_SET_TCB_RPL) {
657 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
658 
659 		filter_rpl(q->adap, p);
660 	} else
661 		dev_err(q->adap->pdev_dev,
662 			"unexpected CPL %#x on FW event queue\n", opcode);
663 out:
664 	return 0;
665 }
666 
667 /* Flush the aggregated lro sessions */
668 static void uldrx_flush_handler(struct sge_rspq *q)
669 {
670 	if (ulds[q->uld].lro_flush)
671 		ulds[q->uld].lro_flush(&q->lro_mgr);
672 }
673 
674 /**
675  *	uldrx_handler - response queue handler for ULD queues
676  *	@q: the response queue that received the packet
677  *	@rsp: the response queue descriptor holding the offload message
678  *	@gl: the gather list of packet fragments
679  *
680  *	Deliver an ingress offload packet to a ULD.  All processing is done by
681  *	the ULD, we just maintain statistics.
682  */
683 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
684 			 const struct pkt_gl *gl)
685 {
686 	struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
687 	int ret;
688 
689 	/* FW can send CPLs encapsulated in a CPL_FW4_MSG.
690 	 */
691 	if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
692 	    ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
693 		rsp += 2;
694 
695 	if (q->flush_handler)
696 		ret = ulds[q->uld].lro_rx_handler(q->adap->uld_handle[q->uld],
697 						  rsp, gl, &q->lro_mgr,
698 						  &q->napi);
699 	else
700 		ret = ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld],
701 					      rsp, gl);
702 
703 	if (ret) {
704 		rxq->stats.nomem++;
705 		return -1;
706 	}
707 
708 	if (gl == NULL)
709 		rxq->stats.imm++;
710 	else if (gl == CXGB4_MSG_AN)
711 		rxq->stats.an++;
712 	else
713 		rxq->stats.pkts++;
714 	return 0;
715 }
716 
717 static void disable_msi(struct adapter *adapter)
718 {
719 	if (adapter->flags & USING_MSIX) {
720 		pci_disable_msix(adapter->pdev);
721 		adapter->flags &= ~USING_MSIX;
722 	} else if (adapter->flags & USING_MSI) {
723 		pci_disable_msi(adapter->pdev);
724 		adapter->flags &= ~USING_MSI;
725 	}
726 }
727 
728 /*
729  * Interrupt handler for non-data events used with MSI-X.
730  */
731 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
732 {
733 	struct adapter *adap = cookie;
734 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
735 
736 	if (v & PFSW_F) {
737 		adap->swintr = 1;
738 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
739 	}
740 	if (adap->flags & MASTER_PF)
741 		t4_slow_intr_handler(adap);
742 	return IRQ_HANDLED;
743 }
744 
745 /*
746  * Name the MSI-X interrupts.
747  */
748 static void name_msix_vecs(struct adapter *adap)
749 {
750 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
751 
752 	/* non-data interrupts */
753 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
754 
755 	/* FW events */
756 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
757 		 adap->port[0]->name);
758 
759 	/* Ethernet queues */
760 	for_each_port(adap, j) {
761 		struct net_device *d = adap->port[j];
762 		const struct port_info *pi = netdev_priv(d);
763 
764 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
765 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
766 				 d->name, i);
767 	}
768 
769 	/* offload queues */
770 	for_each_iscsirxq(&adap->sge, i)
771 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d",
772 			 adap->port[0]->name, i);
773 
774 	for_each_iscsitrxq(&adap->sge, i)
775 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iSCSIT%d",
776 			 adap->port[0]->name, i);
777 
778 	for_each_rdmarxq(&adap->sge, i)
779 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
780 			 adap->port[0]->name, i);
781 
782 	for_each_rdmaciq(&adap->sge, i)
783 		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
784 			 adap->port[0]->name, i);
785 }
786 
787 static int request_msix_queue_irqs(struct adapter *adap)
788 {
789 	struct sge *s = &adap->sge;
790 	int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
791 	int iscsitqidx = 0;
792 	int msi_index = 2;
793 
794 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
795 			  adap->msix_info[1].desc, &s->fw_evtq);
796 	if (err)
797 		return err;
798 
799 	for_each_ethrxq(s, ethqidx) {
800 		err = request_irq(adap->msix_info[msi_index].vec,
801 				  t4_sge_intr_msix, 0,
802 				  adap->msix_info[msi_index].desc,
803 				  &s->ethrxq[ethqidx].rspq);
804 		if (err)
805 			goto unwind;
806 		msi_index++;
807 	}
808 	for_each_iscsirxq(s, iscsiqidx) {
809 		err = request_irq(adap->msix_info[msi_index].vec,
810 				  t4_sge_intr_msix, 0,
811 				  adap->msix_info[msi_index].desc,
812 				  &s->iscsirxq[iscsiqidx].rspq);
813 		if (err)
814 			goto unwind;
815 		msi_index++;
816 	}
817 	for_each_iscsitrxq(s, iscsitqidx) {
818 		err = request_irq(adap->msix_info[msi_index].vec,
819 				  t4_sge_intr_msix, 0,
820 				  adap->msix_info[msi_index].desc,
821 				  &s->iscsitrxq[iscsitqidx].rspq);
822 		if (err)
823 			goto unwind;
824 		msi_index++;
825 	}
826 	for_each_rdmarxq(s, rdmaqidx) {
827 		err = request_irq(adap->msix_info[msi_index].vec,
828 				  t4_sge_intr_msix, 0,
829 				  adap->msix_info[msi_index].desc,
830 				  &s->rdmarxq[rdmaqidx].rspq);
831 		if (err)
832 			goto unwind;
833 		msi_index++;
834 	}
835 	for_each_rdmaciq(s, rdmaciqqidx) {
836 		err = request_irq(adap->msix_info[msi_index].vec,
837 				  t4_sge_intr_msix, 0,
838 				  adap->msix_info[msi_index].desc,
839 				  &s->rdmaciq[rdmaciqqidx].rspq);
840 		if (err)
841 			goto unwind;
842 		msi_index++;
843 	}
844 	return 0;
845 
846 unwind:
847 	while (--rdmaciqqidx >= 0)
848 		free_irq(adap->msix_info[--msi_index].vec,
849 			 &s->rdmaciq[rdmaciqqidx].rspq);
850 	while (--rdmaqidx >= 0)
851 		free_irq(adap->msix_info[--msi_index].vec,
852 			 &s->rdmarxq[rdmaqidx].rspq);
853 	while (--iscsitqidx >= 0)
854 		free_irq(adap->msix_info[--msi_index].vec,
855 			 &s->iscsitrxq[iscsitqidx].rspq);
856 	while (--iscsiqidx >= 0)
857 		free_irq(adap->msix_info[--msi_index].vec,
858 			 &s->iscsirxq[iscsiqidx].rspq);
859 	while (--ethqidx >= 0)
860 		free_irq(adap->msix_info[--msi_index].vec,
861 			 &s->ethrxq[ethqidx].rspq);
862 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
863 	return err;
864 }
865 
866 static void free_msix_queue_irqs(struct adapter *adap)
867 {
868 	int i, msi_index = 2;
869 	struct sge *s = &adap->sge;
870 
871 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
872 	for_each_ethrxq(s, i)
873 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
874 	for_each_iscsirxq(s, i)
875 		free_irq(adap->msix_info[msi_index++].vec,
876 			 &s->iscsirxq[i].rspq);
877 	for_each_iscsitrxq(s, i)
878 		free_irq(adap->msix_info[msi_index++].vec,
879 			 &s->iscsitrxq[i].rspq);
880 	for_each_rdmarxq(s, i)
881 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
882 	for_each_rdmaciq(s, i)
883 		free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
884 }
885 
886 /**
887  *	cxgb4_write_rss - write the RSS table for a given port
888  *	@pi: the port
889  *	@queues: array of queue indices for RSS
890  *
891  *	Sets up the portion of the HW RSS table for the port's VI to distribute
892  *	packets to the Rx queues in @queues.
893  *	Should never be called before setting up sge eth rx queues
894  */
895 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
896 {
897 	u16 *rss;
898 	int i, err;
899 	struct adapter *adapter = pi->adapter;
900 	const struct sge_eth_rxq *rxq;
901 
902 	rxq = &adapter->sge.ethrxq[pi->first_qset];
903 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
904 	if (!rss)
905 		return -ENOMEM;
906 
907 	/* map the queue indices to queue ids */
908 	for (i = 0; i < pi->rss_size; i++, queues++)
909 		rss[i] = rxq[*queues].rspq.abs_id;
910 
911 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
912 				  pi->rss_size, rss, pi->rss_size);
913 	/* If Tunnel All Lookup isn't specified in the global RSS
914 	 * Configuration, then we need to specify a default Ingress
915 	 * Queue for any ingress packets which aren't hashed.  We'll
916 	 * use our first ingress queue ...
917 	 */
918 	if (!err)
919 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
920 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
921 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
922 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
923 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
924 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
925 				       rss[0]);
926 	kfree(rss);
927 	return err;
928 }
929 
930 /**
931  *	setup_rss - configure RSS
932  *	@adap: the adapter
933  *
934  *	Sets up RSS for each port.
935  */
936 static int setup_rss(struct adapter *adap)
937 {
938 	int i, j, err;
939 
940 	for_each_port(adap, i) {
941 		const struct port_info *pi = adap2pinfo(adap, i);
942 
943 		/* Fill default values with equal distribution */
944 		for (j = 0; j < pi->rss_size; j++)
945 			pi->rss[j] = j % pi->nqsets;
946 
947 		err = cxgb4_write_rss(pi, pi->rss);
948 		if (err)
949 			return err;
950 	}
951 	return 0;
952 }
953 
954 /*
955  * Return the channel of the ingress queue with the given qid.
956  */
957 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
958 {
959 	qid -= p->ingr_start;
960 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
961 }
962 
963 /*
964  * Wait until all NAPI handlers are descheduled.
965  */
966 static void quiesce_rx(struct adapter *adap)
967 {
968 	int i;
969 
970 	for (i = 0; i < adap->sge.ingr_sz; i++) {
971 		struct sge_rspq *q = adap->sge.ingr_map[i];
972 
973 		if (q && q->handler) {
974 			napi_disable(&q->napi);
975 			local_bh_disable();
976 			while (!cxgb_poll_lock_napi(q))
977 				mdelay(1);
978 			local_bh_enable();
979 		}
980 
981 	}
982 }
983 
984 /* Disable interrupt and napi handler */
985 static void disable_interrupts(struct adapter *adap)
986 {
987 	if (adap->flags & FULL_INIT_DONE) {
988 		t4_intr_disable(adap);
989 		if (adap->flags & USING_MSIX) {
990 			free_msix_queue_irqs(adap);
991 			free_irq(adap->msix_info[0].vec, adap);
992 		} else {
993 			free_irq(adap->pdev->irq, adap);
994 		}
995 		quiesce_rx(adap);
996 	}
997 }
998 
999 /*
1000  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1001  */
1002 static void enable_rx(struct adapter *adap)
1003 {
1004 	int i;
1005 
1006 	for (i = 0; i < adap->sge.ingr_sz; i++) {
1007 		struct sge_rspq *q = adap->sge.ingr_map[i];
1008 
1009 		if (!q)
1010 			continue;
1011 		if (q->handler) {
1012 			cxgb_busy_poll_init_lock(q);
1013 			napi_enable(&q->napi);
1014 		}
1015 		/* 0-increment GTS to start the timer and enable interrupts */
1016 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
1017 			     SEINTARM_V(q->intr_params) |
1018 			     INGRESSQID_V(q->cntxt_id));
1019 	}
1020 }
1021 
1022 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
1023 			   unsigned int nq, unsigned int per_chan, int msi_idx,
1024 			   u16 *ids, bool lro)
1025 {
1026 	int i, err;
1027 
1028 	for (i = 0; i < nq; i++, q++) {
1029 		if (msi_idx > 0)
1030 			msi_idx++;
1031 		err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1032 				       adap->port[i / per_chan],
1033 				       msi_idx, q->fl.size ? &q->fl : NULL,
1034 				       uldrx_handler,
1035 				       lro ? uldrx_flush_handler : NULL,
1036 				       0);
1037 		if (err)
1038 			return err;
1039 		memset(&q->stats, 0, sizeof(q->stats));
1040 		if (ids)
1041 			ids[i] = q->rspq.abs_id;
1042 	}
1043 	return 0;
1044 }
1045 
1046 /**
1047  *	setup_sge_queues - configure SGE Tx/Rx/response queues
1048  *	@adap: the adapter
1049  *
1050  *	Determines how many sets of SGE queues to use and initializes them.
1051  *	We support multiple queue sets per port if we have MSI-X, otherwise
1052  *	just one queue set per port.
1053  */
1054 static int setup_sge_queues(struct adapter *adap)
1055 {
1056 	int err, msi_idx, i, j;
1057 	struct sge *s = &adap->sge;
1058 
1059 	bitmap_zero(s->starving_fl, s->egr_sz);
1060 	bitmap_zero(s->txq_maperr, s->egr_sz);
1061 
1062 	if (adap->flags & USING_MSIX)
1063 		msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1064 	else {
1065 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1066 				       NULL, NULL, NULL, -1);
1067 		if (err)
1068 			return err;
1069 		msi_idx = -((int)s->intrq.abs_id + 1);
1070 	}
1071 
1072 	/* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1073 	 * don't forget to update the following which need to be
1074 	 * synchronized to and changes here.
1075 	 *
1076 	 * 1. The calculations of MAX_INGQ in cxgb4.h.
1077 	 *
1078 	 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1079 	 *    to accommodate any new/deleted Ingress Queues
1080 	 *    which need MSI-X Vectors.
1081 	 *
1082 	 * 3. Update sge_qinfo_show() to include information on the
1083 	 *    new/deleted queues.
1084 	 */
1085 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1086 			       msi_idx, NULL, fwevtq_handler, NULL, -1);
1087 	if (err) {
1088 freeout:	t4_free_sge_resources(adap);
1089 		return err;
1090 	}
1091 
1092 	for_each_port(adap, i) {
1093 		struct net_device *dev = adap->port[i];
1094 		struct port_info *pi = netdev_priv(dev);
1095 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1096 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1097 
1098 		for (j = 0; j < pi->nqsets; j++, q++) {
1099 			if (msi_idx > 0)
1100 				msi_idx++;
1101 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1102 					       msi_idx, &q->fl,
1103 					       t4_ethrx_handler,
1104 					       NULL,
1105 					       t4_get_mps_bg_map(adap,
1106 								 pi->tx_chan));
1107 			if (err)
1108 				goto freeout;
1109 			q->rspq.idx = j;
1110 			memset(&q->stats, 0, sizeof(q->stats));
1111 		}
1112 		for (j = 0; j < pi->nqsets; j++, t++) {
1113 			err = t4_sge_alloc_eth_txq(adap, t, dev,
1114 					netdev_get_tx_queue(dev, j),
1115 					s->fw_evtq.cntxt_id);
1116 			if (err)
1117 				goto freeout;
1118 		}
1119 	}
1120 
1121 	j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */
1122 	for_each_iscsirxq(s, i) {
1123 		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1124 					    adap->port[i / j],
1125 					    s->fw_evtq.cntxt_id);
1126 		if (err)
1127 			goto freeout;
1128 	}
1129 
1130 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids, lro) do { \
1131 	err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids, lro); \
1132 	if (err) \
1133 		goto freeout; \
1134 	if (msi_idx > 0) \
1135 		msi_idx += nq; \
1136 } while (0)
1137 
1138 	ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq, false);
1139 	ALLOC_OFLD_RXQS(s->iscsitrxq, s->niscsitq, j, s->iscsit_rxq, true);
1140 	ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq, false);
1141 	j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1142 	ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq, false);
1143 
1144 #undef ALLOC_OFLD_RXQS
1145 
1146 	for_each_port(adap, i) {
1147 		/*
1148 		 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1149 		 * have RDMA queues, and that's the right value.
1150 		 */
1151 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1152 					    s->fw_evtq.cntxt_id,
1153 					    s->rdmarxq[i].rspq.cntxt_id);
1154 		if (err)
1155 			goto freeout;
1156 	}
1157 
1158 	t4_write_reg(adap, is_t4(adap->params.chip) ?
1159 				MPS_TRC_RSS_CONTROL_A :
1160 				MPS_T5_TRC_RSS_CONTROL_A,
1161 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1162 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1163 	return 0;
1164 }
1165 
1166 /*
1167  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1168  * The allocated memory is cleared.
1169  */
1170 void *t4_alloc_mem(size_t size)
1171 {
1172 	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1173 
1174 	if (!p)
1175 		p = vzalloc(size);
1176 	return p;
1177 }
1178 
1179 /*
1180  * Free memory allocated through alloc_mem().
1181  */
1182 void t4_free_mem(void *addr)
1183 {
1184 	kvfree(addr);
1185 }
1186 
1187 /* Send a Work Request to write the filter at a specified index.  We construct
1188  * a Firmware Filter Work Request to have the work done and put the indicated
1189  * filter into "pending" mode which will prevent any further actions against
1190  * it till we get a reply from the firmware on the completion status of the
1191  * request.
1192  */
1193 static int set_filter_wr(struct adapter *adapter, int fidx)
1194 {
1195 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1196 	struct sk_buff *skb;
1197 	struct fw_filter_wr *fwr;
1198 	unsigned int ftid;
1199 
1200 	skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1201 	if (!skb)
1202 		return -ENOMEM;
1203 
1204 	/* If the new filter requires loopback Destination MAC and/or VLAN
1205 	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1206 	 * the filter.
1207 	 */
1208 	if (f->fs.newdmac || f->fs.newvlan) {
1209 		/* allocate L2T entry for new filter */
1210 		f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1211 						f->fs.eport, f->fs.dmac);
1212 		if (f->l2t == NULL) {
1213 			kfree_skb(skb);
1214 			return -ENOMEM;
1215 		}
1216 	}
1217 
1218 	ftid = adapter->tids.ftid_base + fidx;
1219 
1220 	fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1221 	memset(fwr, 0, sizeof(*fwr));
1222 
1223 	/* It would be nice to put most of the following in t4_hw.c but most
1224 	 * of the work is translating the cxgbtool ch_filter_specification
1225 	 * into the Work Request and the definition of that structure is
1226 	 * currently in cxgbtool.h which isn't appropriate to pull into the
1227 	 * common code.  We may eventually try to come up with a more neutral
1228 	 * filter specification structure but for now it's easiest to simply
1229 	 * put this fairly direct code in line ...
1230 	 */
1231 	fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1232 	fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1233 	fwr->tid_to_iq =
1234 		htonl(FW_FILTER_WR_TID_V(ftid) |
1235 		      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1236 		      FW_FILTER_WR_NOREPLY_V(0) |
1237 		      FW_FILTER_WR_IQ_V(f->fs.iq));
1238 	fwr->del_filter_to_l2tix =
1239 		htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1240 		      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1241 		      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1242 		      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1243 		      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1244 		      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1245 		      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1246 		      FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1247 		      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1248 					     f->fs.newvlan == VLAN_REWRITE) |
1249 		      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1250 					    f->fs.newvlan == VLAN_REWRITE) |
1251 		      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1252 		      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1253 		      FW_FILTER_WR_PRIO_V(f->fs.prio) |
1254 		      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1255 	fwr->ethtype = htons(f->fs.val.ethtype);
1256 	fwr->ethtypem = htons(f->fs.mask.ethtype);
1257 	fwr->frag_to_ovlan_vldm =
1258 		(FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1259 		 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1260 		 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1261 		 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1262 		 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1263 		 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1264 	fwr->smac_sel = 0;
1265 	fwr->rx_chan_rx_rpl_iq =
1266 		htons(FW_FILTER_WR_RX_CHAN_V(0) |
1267 		      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1268 	fwr->maci_to_matchtypem =
1269 		htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1270 		      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1271 		      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1272 		      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1273 		      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1274 		      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1275 		      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1276 		      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1277 	fwr->ptcl = f->fs.val.proto;
1278 	fwr->ptclm = f->fs.mask.proto;
1279 	fwr->ttyp = f->fs.val.tos;
1280 	fwr->ttypm = f->fs.mask.tos;
1281 	fwr->ivlan = htons(f->fs.val.ivlan);
1282 	fwr->ivlanm = htons(f->fs.mask.ivlan);
1283 	fwr->ovlan = htons(f->fs.val.ovlan);
1284 	fwr->ovlanm = htons(f->fs.mask.ovlan);
1285 	memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1286 	memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1287 	memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1288 	memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1289 	fwr->lp = htons(f->fs.val.lport);
1290 	fwr->lpm = htons(f->fs.mask.lport);
1291 	fwr->fp = htons(f->fs.val.fport);
1292 	fwr->fpm = htons(f->fs.mask.fport);
1293 	if (f->fs.newsmac)
1294 		memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1295 
1296 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1297 	 * When we get the Work Request Reply we'll clear the pending status.
1298 	 */
1299 	f->pending = 1;
1300 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1301 	t4_ofld_send(adapter, skb);
1302 	return 0;
1303 }
1304 
1305 /* Delete the filter at a specified index.
1306  */
1307 static int del_filter_wr(struct adapter *adapter, int fidx)
1308 {
1309 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1310 	struct sk_buff *skb;
1311 	struct fw_filter_wr *fwr;
1312 	unsigned int len, ftid;
1313 
1314 	len = sizeof(*fwr);
1315 	ftid = adapter->tids.ftid_base + fidx;
1316 
1317 	skb = alloc_skb(len, GFP_KERNEL);
1318 	if (!skb)
1319 		return -ENOMEM;
1320 
1321 	fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1322 	t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1323 
1324 	/* Mark the filter as "pending" and ship off the Filter Work Request.
1325 	 * When we get the Work Request Reply we'll clear the pending status.
1326 	 */
1327 	f->pending = 1;
1328 	t4_mgmt_tx(adapter, skb);
1329 	return 0;
1330 }
1331 
1332 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1333 			     void *accel_priv, select_queue_fallback_t fallback)
1334 {
1335 	int txq;
1336 
1337 #ifdef CONFIG_CHELSIO_T4_DCB
1338 	/* If a Data Center Bridging has been successfully negotiated on this
1339 	 * link then we'll use the skb's priority to map it to a TX Queue.
1340 	 * The skb's priority is determined via the VLAN Tag Priority Code
1341 	 * Point field.
1342 	 */
1343 	if (cxgb4_dcb_enabled(dev)) {
1344 		u16 vlan_tci;
1345 		int err;
1346 
1347 		err = vlan_get_tag(skb, &vlan_tci);
1348 		if (unlikely(err)) {
1349 			if (net_ratelimit())
1350 				netdev_warn(dev,
1351 					    "TX Packet without VLAN Tag on DCB Link\n");
1352 			txq = 0;
1353 		} else {
1354 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1355 #ifdef CONFIG_CHELSIO_T4_FCOE
1356 			if (skb->protocol == htons(ETH_P_FCOE))
1357 				txq = skb->priority & 0x7;
1358 #endif /* CONFIG_CHELSIO_T4_FCOE */
1359 		}
1360 		return txq;
1361 	}
1362 #endif /* CONFIG_CHELSIO_T4_DCB */
1363 
1364 	if (select_queue) {
1365 		txq = (skb_rx_queue_recorded(skb)
1366 			? skb_get_rx_queue(skb)
1367 			: smp_processor_id());
1368 
1369 		while (unlikely(txq >= dev->real_num_tx_queues))
1370 			txq -= dev->real_num_tx_queues;
1371 
1372 		return txq;
1373 	}
1374 
1375 	return fallback(dev, skb) % dev->real_num_tx_queues;
1376 }
1377 
1378 static int closest_timer(const struct sge *s, int time)
1379 {
1380 	int i, delta, match = 0, min_delta = INT_MAX;
1381 
1382 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1383 		delta = time - s->timer_val[i];
1384 		if (delta < 0)
1385 			delta = -delta;
1386 		if (delta < min_delta) {
1387 			min_delta = delta;
1388 			match = i;
1389 		}
1390 	}
1391 	return match;
1392 }
1393 
1394 static int closest_thres(const struct sge *s, int thres)
1395 {
1396 	int i, delta, match = 0, min_delta = INT_MAX;
1397 
1398 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1399 		delta = thres - s->counter_val[i];
1400 		if (delta < 0)
1401 			delta = -delta;
1402 		if (delta < min_delta) {
1403 			min_delta = delta;
1404 			match = i;
1405 		}
1406 	}
1407 	return match;
1408 }
1409 
1410 /**
1411  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1412  *	@q: the Rx queue
1413  *	@us: the hold-off time in us, or 0 to disable timer
1414  *	@cnt: the hold-off packet count, or 0 to disable counter
1415  *
1416  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1417  *	one of the two needs to be enabled for the queue to generate interrupts.
1418  */
1419 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1420 			       unsigned int us, unsigned int cnt)
1421 {
1422 	struct adapter *adap = q->adap;
1423 
1424 	if ((us | cnt) == 0)
1425 		cnt = 1;
1426 
1427 	if (cnt) {
1428 		int err;
1429 		u32 v, new_idx;
1430 
1431 		new_idx = closest_thres(&adap->sge, cnt);
1432 		if (q->desc && q->pktcnt_idx != new_idx) {
1433 			/* the queue has already been created, update it */
1434 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1435 			    FW_PARAMS_PARAM_X_V(
1436 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1437 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1438 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1439 					    &v, &new_idx);
1440 			if (err)
1441 				return err;
1442 		}
1443 		q->pktcnt_idx = new_idx;
1444 	}
1445 
1446 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1447 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1448 	return 0;
1449 }
1450 
1451 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1452 {
1453 	const struct port_info *pi = netdev_priv(dev);
1454 	netdev_features_t changed = dev->features ^ features;
1455 	int err;
1456 
1457 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1458 		return 0;
1459 
1460 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1461 			    -1, -1, -1,
1462 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1463 	if (unlikely(err))
1464 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1465 	return err;
1466 }
1467 
1468 static int setup_debugfs(struct adapter *adap)
1469 {
1470 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1471 		return -1;
1472 
1473 #ifdef CONFIG_DEBUG_FS
1474 	t4_setup_debugfs(adap);
1475 #endif
1476 	return 0;
1477 }
1478 
1479 /*
1480  * upper-layer driver support
1481  */
1482 
1483 /*
1484  * Allocate an active-open TID and set it to the supplied value.
1485  */
1486 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1487 {
1488 	int atid = -1;
1489 
1490 	spin_lock_bh(&t->atid_lock);
1491 	if (t->afree) {
1492 		union aopen_entry *p = t->afree;
1493 
1494 		atid = (p - t->atid_tab) + t->atid_base;
1495 		t->afree = p->next;
1496 		p->data = data;
1497 		t->atids_in_use++;
1498 	}
1499 	spin_unlock_bh(&t->atid_lock);
1500 	return atid;
1501 }
1502 EXPORT_SYMBOL(cxgb4_alloc_atid);
1503 
1504 /*
1505  * Release an active-open TID.
1506  */
1507 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1508 {
1509 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1510 
1511 	spin_lock_bh(&t->atid_lock);
1512 	p->next = t->afree;
1513 	t->afree = p;
1514 	t->atids_in_use--;
1515 	spin_unlock_bh(&t->atid_lock);
1516 }
1517 EXPORT_SYMBOL(cxgb4_free_atid);
1518 
1519 /*
1520  * Allocate a server TID and set it to the supplied value.
1521  */
1522 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1523 {
1524 	int stid;
1525 
1526 	spin_lock_bh(&t->stid_lock);
1527 	if (family == PF_INET) {
1528 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1529 		if (stid < t->nstids)
1530 			__set_bit(stid, t->stid_bmap);
1531 		else
1532 			stid = -1;
1533 	} else {
1534 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1535 		if (stid < 0)
1536 			stid = -1;
1537 	}
1538 	if (stid >= 0) {
1539 		t->stid_tab[stid].data = data;
1540 		stid += t->stid_base;
1541 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1542 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1543 		 * needs 2 TIDs.
1544 		 */
1545 		if (family == PF_INET)
1546 			t->stids_in_use++;
1547 		else
1548 			t->stids_in_use += 2;
1549 	}
1550 	spin_unlock_bh(&t->stid_lock);
1551 	return stid;
1552 }
1553 EXPORT_SYMBOL(cxgb4_alloc_stid);
1554 
1555 /* Allocate a server filter TID and set it to the supplied value.
1556  */
1557 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1558 {
1559 	int stid;
1560 
1561 	spin_lock_bh(&t->stid_lock);
1562 	if (family == PF_INET) {
1563 		stid = find_next_zero_bit(t->stid_bmap,
1564 				t->nstids + t->nsftids, t->nstids);
1565 		if (stid < (t->nstids + t->nsftids))
1566 			__set_bit(stid, t->stid_bmap);
1567 		else
1568 			stid = -1;
1569 	} else {
1570 		stid = -1;
1571 	}
1572 	if (stid >= 0) {
1573 		t->stid_tab[stid].data = data;
1574 		stid -= t->nstids;
1575 		stid += t->sftid_base;
1576 		t->sftids_in_use++;
1577 	}
1578 	spin_unlock_bh(&t->stid_lock);
1579 	return stid;
1580 }
1581 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1582 
1583 /* Release a server TID.
1584  */
1585 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1586 {
1587 	/* Is it a server filter TID? */
1588 	if (t->nsftids && (stid >= t->sftid_base)) {
1589 		stid -= t->sftid_base;
1590 		stid += t->nstids;
1591 	} else {
1592 		stid -= t->stid_base;
1593 	}
1594 
1595 	spin_lock_bh(&t->stid_lock);
1596 	if (family == PF_INET)
1597 		__clear_bit(stid, t->stid_bmap);
1598 	else
1599 		bitmap_release_region(t->stid_bmap, stid, 1);
1600 	t->stid_tab[stid].data = NULL;
1601 	if (stid < t->nstids) {
1602 		if (family == PF_INET)
1603 			t->stids_in_use--;
1604 		else
1605 			t->stids_in_use -= 2;
1606 	} else {
1607 		t->sftids_in_use--;
1608 	}
1609 	spin_unlock_bh(&t->stid_lock);
1610 }
1611 EXPORT_SYMBOL(cxgb4_free_stid);
1612 
1613 /*
1614  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1615  */
1616 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1617 			   unsigned int tid)
1618 {
1619 	struct cpl_tid_release *req;
1620 
1621 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1622 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1623 	INIT_TP_WR(req, tid);
1624 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1625 }
1626 
1627 /*
1628  * Queue a TID release request and if necessary schedule a work queue to
1629  * process it.
1630  */
1631 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1632 				    unsigned int tid)
1633 {
1634 	void **p = &t->tid_tab[tid];
1635 	struct adapter *adap = container_of(t, struct adapter, tids);
1636 
1637 	spin_lock_bh(&adap->tid_release_lock);
1638 	*p = adap->tid_release_head;
1639 	/* Low 2 bits encode the Tx channel number */
1640 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1641 	if (!adap->tid_release_task_busy) {
1642 		adap->tid_release_task_busy = true;
1643 		queue_work(adap->workq, &adap->tid_release_task);
1644 	}
1645 	spin_unlock_bh(&adap->tid_release_lock);
1646 }
1647 
1648 /*
1649  * Process the list of pending TID release requests.
1650  */
1651 static void process_tid_release_list(struct work_struct *work)
1652 {
1653 	struct sk_buff *skb;
1654 	struct adapter *adap;
1655 
1656 	adap = container_of(work, struct adapter, tid_release_task);
1657 
1658 	spin_lock_bh(&adap->tid_release_lock);
1659 	while (adap->tid_release_head) {
1660 		void **p = adap->tid_release_head;
1661 		unsigned int chan = (uintptr_t)p & 3;
1662 		p = (void *)p - chan;
1663 
1664 		adap->tid_release_head = *p;
1665 		*p = NULL;
1666 		spin_unlock_bh(&adap->tid_release_lock);
1667 
1668 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1669 					 GFP_KERNEL)))
1670 			schedule_timeout_uninterruptible(1);
1671 
1672 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1673 		t4_ofld_send(adap, skb);
1674 		spin_lock_bh(&adap->tid_release_lock);
1675 	}
1676 	adap->tid_release_task_busy = false;
1677 	spin_unlock_bh(&adap->tid_release_lock);
1678 }
1679 
1680 /*
1681  * Release a TID and inform HW.  If we are unable to allocate the release
1682  * message we defer to a work queue.
1683  */
1684 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1685 {
1686 	struct sk_buff *skb;
1687 	struct adapter *adap = container_of(t, struct adapter, tids);
1688 
1689 	WARN_ON(tid >= t->ntids);
1690 
1691 	if (t->tid_tab[tid]) {
1692 		t->tid_tab[tid] = NULL;
1693 		if (t->hash_base && (tid >= t->hash_base))
1694 			atomic_dec(&t->hash_tids_in_use);
1695 		else
1696 			atomic_dec(&t->tids_in_use);
1697 	}
1698 
1699 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1700 	if (likely(skb)) {
1701 		mk_tid_release(skb, chan, tid);
1702 		t4_ofld_send(adap, skb);
1703 	} else
1704 		cxgb4_queue_tid_release(t, chan, tid);
1705 }
1706 EXPORT_SYMBOL(cxgb4_remove_tid);
1707 
1708 /*
1709  * Allocate and initialize the TID tables.  Returns 0 on success.
1710  */
1711 static int tid_init(struct tid_info *t)
1712 {
1713 	size_t size;
1714 	unsigned int stid_bmap_size;
1715 	unsigned int natids = t->natids;
1716 	struct adapter *adap = container_of(t, struct adapter, tids);
1717 
1718 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1719 	size = t->ntids * sizeof(*t->tid_tab) +
1720 	       natids * sizeof(*t->atid_tab) +
1721 	       t->nstids * sizeof(*t->stid_tab) +
1722 	       t->nsftids * sizeof(*t->stid_tab) +
1723 	       stid_bmap_size * sizeof(long) +
1724 	       t->nftids * sizeof(*t->ftid_tab) +
1725 	       t->nsftids * sizeof(*t->ftid_tab);
1726 
1727 	t->tid_tab = t4_alloc_mem(size);
1728 	if (!t->tid_tab)
1729 		return -ENOMEM;
1730 
1731 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1732 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1733 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1734 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1735 	spin_lock_init(&t->stid_lock);
1736 	spin_lock_init(&t->atid_lock);
1737 
1738 	t->stids_in_use = 0;
1739 	t->sftids_in_use = 0;
1740 	t->afree = NULL;
1741 	t->atids_in_use = 0;
1742 	atomic_set(&t->tids_in_use, 0);
1743 	atomic_set(&t->hash_tids_in_use, 0);
1744 
1745 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1746 	if (natids) {
1747 		while (--natids)
1748 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1749 		t->afree = t->atid_tab;
1750 	}
1751 	bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1752 	/* Reserve stid 0 for T4/T5 adapters */
1753 	if (!t->stid_base &&
1754 	    (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1755 		__set_bit(0, t->stid_bmap);
1756 
1757 	return 0;
1758 }
1759 
1760 /**
1761  *	cxgb4_create_server - create an IP server
1762  *	@dev: the device
1763  *	@stid: the server TID
1764  *	@sip: local IP address to bind server to
1765  *	@sport: the server's TCP port
1766  *	@queue: queue to direct messages from this server to
1767  *
1768  *	Create an IP server for the given port and address.
1769  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1770  */
1771 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1772 			__be32 sip, __be16 sport, __be16 vlan,
1773 			unsigned int queue)
1774 {
1775 	unsigned int chan;
1776 	struct sk_buff *skb;
1777 	struct adapter *adap;
1778 	struct cpl_pass_open_req *req;
1779 	int ret;
1780 
1781 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1782 	if (!skb)
1783 		return -ENOMEM;
1784 
1785 	adap = netdev2adap(dev);
1786 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1787 	INIT_TP_WR(req, 0);
1788 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1789 	req->local_port = sport;
1790 	req->peer_port = htons(0);
1791 	req->local_ip = sip;
1792 	req->peer_ip = htonl(0);
1793 	chan = rxq_to_chan(&adap->sge, queue);
1794 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1795 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1796 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1797 	ret = t4_mgmt_tx(adap, skb);
1798 	return net_xmit_eval(ret);
1799 }
1800 EXPORT_SYMBOL(cxgb4_create_server);
1801 
1802 /*	cxgb4_create_server6 - create an IPv6 server
1803  *	@dev: the device
1804  *	@stid: the server TID
1805  *	@sip: local IPv6 address to bind server to
1806  *	@sport: the server's TCP port
1807  *	@queue: queue to direct messages from this server to
1808  *
1809  *	Create an IPv6 server for the given port and address.
1810  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1811  */
1812 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1813 			 const struct in6_addr *sip, __be16 sport,
1814 			 unsigned int queue)
1815 {
1816 	unsigned int chan;
1817 	struct sk_buff *skb;
1818 	struct adapter *adap;
1819 	struct cpl_pass_open_req6 *req;
1820 	int ret;
1821 
1822 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1823 	if (!skb)
1824 		return -ENOMEM;
1825 
1826 	adap = netdev2adap(dev);
1827 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1828 	INIT_TP_WR(req, 0);
1829 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1830 	req->local_port = sport;
1831 	req->peer_port = htons(0);
1832 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1833 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1834 	req->peer_ip_hi = cpu_to_be64(0);
1835 	req->peer_ip_lo = cpu_to_be64(0);
1836 	chan = rxq_to_chan(&adap->sge, queue);
1837 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1838 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1839 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1840 	ret = t4_mgmt_tx(adap, skb);
1841 	return net_xmit_eval(ret);
1842 }
1843 EXPORT_SYMBOL(cxgb4_create_server6);
1844 
1845 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1846 			unsigned int queue, bool ipv6)
1847 {
1848 	struct sk_buff *skb;
1849 	struct adapter *adap;
1850 	struct cpl_close_listsvr_req *req;
1851 	int ret;
1852 
1853 	adap = netdev2adap(dev);
1854 
1855 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1856 	if (!skb)
1857 		return -ENOMEM;
1858 
1859 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1860 	INIT_TP_WR(req, 0);
1861 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1862 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1863 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1864 	ret = t4_mgmt_tx(adap, skb);
1865 	return net_xmit_eval(ret);
1866 }
1867 EXPORT_SYMBOL(cxgb4_remove_server);
1868 
1869 /**
1870  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1871  *	@mtus: the HW MTU table
1872  *	@mtu: the target MTU
1873  *	@idx: index of selected entry in the MTU table
1874  *
1875  *	Returns the index and the value in the HW MTU table that is closest to
1876  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1877  *	table, in which case that smallest available value is selected.
1878  */
1879 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1880 			    unsigned int *idx)
1881 {
1882 	unsigned int i = 0;
1883 
1884 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1885 		++i;
1886 	if (idx)
1887 		*idx = i;
1888 	return mtus[i];
1889 }
1890 EXPORT_SYMBOL(cxgb4_best_mtu);
1891 
1892 /**
1893  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1894  *     @mtus: the HW MTU table
1895  *     @header_size: Header Size
1896  *     @data_size_max: maximum Data Segment Size
1897  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1898  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1899  *
1900  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1901  *     MTU Table based solely on a Maximum MTU parameter, we break that
1902  *     parameter up into a Header Size and Maximum Data Segment Size, and
1903  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1904  *     the Hardware MTU Table which will result in a Data Segment Size with
1905  *     the requested alignment _and_ that MTU isn't "too far" from the
1906  *     closest MTU, then we'll return that rather than the closest MTU.
1907  */
1908 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1909 				    unsigned short header_size,
1910 				    unsigned short data_size_max,
1911 				    unsigned short data_size_align,
1912 				    unsigned int *mtu_idxp)
1913 {
1914 	unsigned short max_mtu = header_size + data_size_max;
1915 	unsigned short data_size_align_mask = data_size_align - 1;
1916 	int mtu_idx, aligned_mtu_idx;
1917 
1918 	/* Scan the MTU Table till we find an MTU which is larger than our
1919 	 * Maximum MTU or we reach the end of the table.  Along the way,
1920 	 * record the last MTU found, if any, which will result in a Data
1921 	 * Segment Length matching the requested alignment.
1922 	 */
1923 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1924 		unsigned short data_size = mtus[mtu_idx] - header_size;
1925 
1926 		/* If this MTU minus the Header Size would result in a
1927 		 * Data Segment Size of the desired alignment, remember it.
1928 		 */
1929 		if ((data_size & data_size_align_mask) == 0)
1930 			aligned_mtu_idx = mtu_idx;
1931 
1932 		/* If we're not at the end of the Hardware MTU Table and the
1933 		 * next element is larger than our Maximum MTU, drop out of
1934 		 * the loop.
1935 		 */
1936 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1937 			break;
1938 	}
1939 
1940 	/* If we fell out of the loop because we ran to the end of the table,
1941 	 * then we just have to use the last [largest] entry.
1942 	 */
1943 	if (mtu_idx == NMTUS)
1944 		mtu_idx--;
1945 
1946 	/* If we found an MTU which resulted in the requested Data Segment
1947 	 * Length alignment and that's "not far" from the largest MTU which is
1948 	 * less than or equal to the maximum MTU, then use that.
1949 	 */
1950 	if (aligned_mtu_idx >= 0 &&
1951 	    mtu_idx - aligned_mtu_idx <= 1)
1952 		mtu_idx = aligned_mtu_idx;
1953 
1954 	/* If the caller has passed in an MTU Index pointer, pass the
1955 	 * MTU Index back.  Return the MTU value.
1956 	 */
1957 	if (mtu_idxp)
1958 		*mtu_idxp = mtu_idx;
1959 	return mtus[mtu_idx];
1960 }
1961 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1962 
1963 /**
1964  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1965  *	@chip: chip type
1966  *	@viid: VI id of the given port
1967  *
1968  *	Return the SMT index for this VI.
1969  */
1970 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1971 {
1972 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1973 	 * 128 rows of 2 entries each.
1974 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1975 	 * TODO: The below code needs to be updated when we add support
1976 	 * for 256 VFs.
1977 	 */
1978 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1979 		return ((viid & 0x7f) << 1);
1980 	else
1981 		return (viid & 0x7f);
1982 }
1983 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1984 
1985 /**
1986  *	cxgb4_port_chan - get the HW channel of a port
1987  *	@dev: the net device for the port
1988  *
1989  *	Return the HW Tx channel of the given port.
1990  */
1991 unsigned int cxgb4_port_chan(const struct net_device *dev)
1992 {
1993 	return netdev2pinfo(dev)->tx_chan;
1994 }
1995 EXPORT_SYMBOL(cxgb4_port_chan);
1996 
1997 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1998 {
1999 	struct adapter *adap = netdev2adap(dev);
2000 	u32 v1, v2, lp_count, hp_count;
2001 
2002 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2003 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2004 	if (is_t4(adap->params.chip)) {
2005 		lp_count = LP_COUNT_G(v1);
2006 		hp_count = HP_COUNT_G(v1);
2007 	} else {
2008 		lp_count = LP_COUNT_T5_G(v1);
2009 		hp_count = HP_COUNT_T5_G(v2);
2010 	}
2011 	return lpfifo ? lp_count : hp_count;
2012 }
2013 EXPORT_SYMBOL(cxgb4_dbfifo_count);
2014 
2015 /**
2016  *	cxgb4_port_viid - get the VI id of a port
2017  *	@dev: the net device for the port
2018  *
2019  *	Return the VI id of the given port.
2020  */
2021 unsigned int cxgb4_port_viid(const struct net_device *dev)
2022 {
2023 	return netdev2pinfo(dev)->viid;
2024 }
2025 EXPORT_SYMBOL(cxgb4_port_viid);
2026 
2027 /**
2028  *	cxgb4_port_idx - get the index of a port
2029  *	@dev: the net device for the port
2030  *
2031  *	Return the index of the given port.
2032  */
2033 unsigned int cxgb4_port_idx(const struct net_device *dev)
2034 {
2035 	return netdev2pinfo(dev)->port_id;
2036 }
2037 EXPORT_SYMBOL(cxgb4_port_idx);
2038 
2039 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2040 			 struct tp_tcp_stats *v6)
2041 {
2042 	struct adapter *adap = pci_get_drvdata(pdev);
2043 
2044 	spin_lock(&adap->stats_lock);
2045 	t4_tp_get_tcp_stats(adap, v4, v6);
2046 	spin_unlock(&adap->stats_lock);
2047 }
2048 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2049 
2050 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2051 		      const unsigned int *pgsz_order)
2052 {
2053 	struct adapter *adap = netdev2adap(dev);
2054 
2055 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2056 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2057 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2058 		     HPZ3_V(pgsz_order[3]));
2059 }
2060 EXPORT_SYMBOL(cxgb4_iscsi_init);
2061 
2062 int cxgb4_flush_eq_cache(struct net_device *dev)
2063 {
2064 	struct adapter *adap = netdev2adap(dev);
2065 
2066 	return t4_sge_ctxt_flush(adap, adap->mbox);
2067 }
2068 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2069 
2070 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2071 {
2072 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2073 	__be64 indices;
2074 	int ret;
2075 
2076 	spin_lock(&adap->win0_lock);
2077 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2078 			   sizeof(indices), (__be32 *)&indices,
2079 			   T4_MEMORY_READ);
2080 	spin_unlock(&adap->win0_lock);
2081 	if (!ret) {
2082 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2083 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2084 	}
2085 	return ret;
2086 }
2087 
2088 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2089 			u16 size)
2090 {
2091 	struct adapter *adap = netdev2adap(dev);
2092 	u16 hw_pidx, hw_cidx;
2093 	int ret;
2094 
2095 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2096 	if (ret)
2097 		goto out;
2098 
2099 	if (pidx != hw_pidx) {
2100 		u16 delta;
2101 		u32 val;
2102 
2103 		if (pidx >= hw_pidx)
2104 			delta = pidx - hw_pidx;
2105 		else
2106 			delta = size - hw_pidx + pidx;
2107 
2108 		if (is_t4(adap->params.chip))
2109 			val = PIDX_V(delta);
2110 		else
2111 			val = PIDX_T5_V(delta);
2112 		wmb();
2113 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2114 			     QID_V(qid) | val);
2115 	}
2116 out:
2117 	return ret;
2118 }
2119 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2120 
2121 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2122 {
2123 	struct adapter *adap;
2124 	u32 offset, memtype, memaddr;
2125 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2126 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
2127 	int ret;
2128 
2129 	adap = netdev2adap(dev);
2130 
2131 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2132 
2133 	/* Figure out where the offset lands in the Memory Type/Address scheme.
2134 	 * This code assumes that the memory is laid out starting at offset 0
2135 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2136 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2137 	 * MC0, and some have both MC0 and MC1.
2138 	 */
2139 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2140 	edc0_size = EDRAM0_SIZE_G(size) << 20;
2141 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2142 	edc1_size = EDRAM1_SIZE_G(size) << 20;
2143 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2144 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2145 
2146 	edc0_end = edc0_size;
2147 	edc1_end = edc0_end + edc1_size;
2148 	mc0_end = edc1_end + mc0_size;
2149 
2150 	if (offset < edc0_end) {
2151 		memtype = MEM_EDC0;
2152 		memaddr = offset;
2153 	} else if (offset < edc1_end) {
2154 		memtype = MEM_EDC1;
2155 		memaddr = offset - edc0_end;
2156 	} else {
2157 		if (offset < mc0_end) {
2158 			memtype = MEM_MC0;
2159 			memaddr = offset - edc1_end;
2160 		} else if (is_t5(adap->params.chip)) {
2161 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2162 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2163 			mc1_end = mc0_end + mc1_size;
2164 			if (offset < mc1_end) {
2165 				memtype = MEM_MC1;
2166 				memaddr = offset - mc0_end;
2167 			} else {
2168 				/* offset beyond the end of any memory */
2169 				goto err;
2170 			}
2171 		} else {
2172 			/* T4/T6 only has a single memory channel */
2173 			goto err;
2174 		}
2175 	}
2176 
2177 	spin_lock(&adap->win0_lock);
2178 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2179 	spin_unlock(&adap->win0_lock);
2180 	return ret;
2181 
2182 err:
2183 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2184 		stag, offset);
2185 	return -EINVAL;
2186 }
2187 EXPORT_SYMBOL(cxgb4_read_tpte);
2188 
2189 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2190 {
2191 	u32 hi, lo;
2192 	struct adapter *adap;
2193 
2194 	adap = netdev2adap(dev);
2195 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2196 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2197 
2198 	return ((u64)hi << 32) | (u64)lo;
2199 }
2200 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2201 
2202 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2203 			 unsigned int qid,
2204 			 enum cxgb4_bar2_qtype qtype,
2205 			 int user,
2206 			 u64 *pbar2_qoffset,
2207 			 unsigned int *pbar2_qid)
2208 {
2209 	return t4_bar2_sge_qregs(netdev2adap(dev),
2210 				 qid,
2211 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2212 				  ? T4_BAR2_QTYPE_EGRESS
2213 				  : T4_BAR2_QTYPE_INGRESS),
2214 				 user,
2215 				 pbar2_qoffset,
2216 				 pbar2_qid);
2217 }
2218 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2219 
2220 static struct pci_driver cxgb4_driver;
2221 
2222 static void check_neigh_update(struct neighbour *neigh)
2223 {
2224 	const struct device *parent;
2225 	const struct net_device *netdev = neigh->dev;
2226 
2227 	if (netdev->priv_flags & IFF_802_1Q_VLAN)
2228 		netdev = vlan_dev_real_dev(netdev);
2229 	parent = netdev->dev.parent;
2230 	if (parent && parent->driver == &cxgb4_driver.driver)
2231 		t4_l2t_update(dev_get_drvdata(parent), neigh);
2232 }
2233 
2234 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2235 		       void *data)
2236 {
2237 	switch (event) {
2238 	case NETEVENT_NEIGH_UPDATE:
2239 		check_neigh_update(data);
2240 		break;
2241 	case NETEVENT_REDIRECT:
2242 	default:
2243 		break;
2244 	}
2245 	return 0;
2246 }
2247 
2248 static bool netevent_registered;
2249 static struct notifier_block cxgb4_netevent_nb = {
2250 	.notifier_call = netevent_cb
2251 };
2252 
2253 static void drain_db_fifo(struct adapter *adap, int usecs)
2254 {
2255 	u32 v1, v2, lp_count, hp_count;
2256 
2257 	do {
2258 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2259 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2260 		if (is_t4(adap->params.chip)) {
2261 			lp_count = LP_COUNT_G(v1);
2262 			hp_count = HP_COUNT_G(v1);
2263 		} else {
2264 			lp_count = LP_COUNT_T5_G(v1);
2265 			hp_count = HP_COUNT_T5_G(v2);
2266 		}
2267 
2268 		if (lp_count == 0 && hp_count == 0)
2269 			break;
2270 		set_current_state(TASK_UNINTERRUPTIBLE);
2271 		schedule_timeout(usecs_to_jiffies(usecs));
2272 	} while (1);
2273 }
2274 
2275 static void disable_txq_db(struct sge_txq *q)
2276 {
2277 	unsigned long flags;
2278 
2279 	spin_lock_irqsave(&q->db_lock, flags);
2280 	q->db_disabled = 1;
2281 	spin_unlock_irqrestore(&q->db_lock, flags);
2282 }
2283 
2284 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2285 {
2286 	spin_lock_irq(&q->db_lock);
2287 	if (q->db_pidx_inc) {
2288 		/* Make sure that all writes to the TX descriptors
2289 		 * are committed before we tell HW about them.
2290 		 */
2291 		wmb();
2292 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2293 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2294 		q->db_pidx_inc = 0;
2295 	}
2296 	q->db_disabled = 0;
2297 	spin_unlock_irq(&q->db_lock);
2298 }
2299 
2300 static void disable_dbs(struct adapter *adap)
2301 {
2302 	int i;
2303 
2304 	for_each_ethrxq(&adap->sge, i)
2305 		disable_txq_db(&adap->sge.ethtxq[i].q);
2306 	for_each_iscsirxq(&adap->sge, i)
2307 		disable_txq_db(&adap->sge.ofldtxq[i].q);
2308 	for_each_port(adap, i)
2309 		disable_txq_db(&adap->sge.ctrlq[i].q);
2310 }
2311 
2312 static void enable_dbs(struct adapter *adap)
2313 {
2314 	int i;
2315 
2316 	for_each_ethrxq(&adap->sge, i)
2317 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2318 	for_each_iscsirxq(&adap->sge, i)
2319 		enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2320 	for_each_port(adap, i)
2321 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2322 }
2323 
2324 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2325 {
2326 	if (adap->uld_handle[CXGB4_ULD_RDMA])
2327 		ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2328 				cmd);
2329 }
2330 
2331 static void process_db_full(struct work_struct *work)
2332 {
2333 	struct adapter *adap;
2334 
2335 	adap = container_of(work, struct adapter, db_full_task);
2336 
2337 	drain_db_fifo(adap, dbfifo_drain_delay);
2338 	enable_dbs(adap);
2339 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2340 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2341 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2342 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2343 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2344 	else
2345 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2346 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2347 }
2348 
2349 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2350 {
2351 	u16 hw_pidx, hw_cidx;
2352 	int ret;
2353 
2354 	spin_lock_irq(&q->db_lock);
2355 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2356 	if (ret)
2357 		goto out;
2358 	if (q->db_pidx != hw_pidx) {
2359 		u16 delta;
2360 		u32 val;
2361 
2362 		if (q->db_pidx >= hw_pidx)
2363 			delta = q->db_pidx - hw_pidx;
2364 		else
2365 			delta = q->size - hw_pidx + q->db_pidx;
2366 
2367 		if (is_t4(adap->params.chip))
2368 			val = PIDX_V(delta);
2369 		else
2370 			val = PIDX_T5_V(delta);
2371 		wmb();
2372 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2373 			     QID_V(q->cntxt_id) | val);
2374 	}
2375 out:
2376 	q->db_disabled = 0;
2377 	q->db_pidx_inc = 0;
2378 	spin_unlock_irq(&q->db_lock);
2379 	if (ret)
2380 		CH_WARN(adap, "DB drop recovery failed.\n");
2381 }
2382 static void recover_all_queues(struct adapter *adap)
2383 {
2384 	int i;
2385 
2386 	for_each_ethrxq(&adap->sge, i)
2387 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2388 	for_each_iscsirxq(&adap->sge, i)
2389 		sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2390 	for_each_port(adap, i)
2391 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2392 }
2393 
2394 static void process_db_drop(struct work_struct *work)
2395 {
2396 	struct adapter *adap;
2397 
2398 	adap = container_of(work, struct adapter, db_drop_task);
2399 
2400 	if (is_t4(adap->params.chip)) {
2401 		drain_db_fifo(adap, dbfifo_drain_delay);
2402 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2403 		drain_db_fifo(adap, dbfifo_drain_delay);
2404 		recover_all_queues(adap);
2405 		drain_db_fifo(adap, dbfifo_drain_delay);
2406 		enable_dbs(adap);
2407 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2408 	} else if (is_t5(adap->params.chip)) {
2409 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2410 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2411 		u16 pidx_inc = dropped_db & 0x1fff;
2412 		u64 bar2_qoffset;
2413 		unsigned int bar2_qid;
2414 		int ret;
2415 
2416 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2417 					0, &bar2_qoffset, &bar2_qid);
2418 		if (ret)
2419 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2420 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2421 		else
2422 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2423 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2424 
2425 		/* Re-enable BAR2 WC */
2426 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2427 	}
2428 
2429 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2430 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2431 }
2432 
2433 void t4_db_full(struct adapter *adap)
2434 {
2435 	if (is_t4(adap->params.chip)) {
2436 		disable_dbs(adap);
2437 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2438 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2439 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2440 		queue_work(adap->workq, &adap->db_full_task);
2441 	}
2442 }
2443 
2444 void t4_db_dropped(struct adapter *adap)
2445 {
2446 	if (is_t4(adap->params.chip)) {
2447 		disable_dbs(adap);
2448 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2449 	}
2450 	queue_work(adap->workq, &adap->db_drop_task);
2451 }
2452 
2453 static void uld_attach(struct adapter *adap, unsigned int uld)
2454 {
2455 	void *handle;
2456 	struct cxgb4_lld_info lli;
2457 	unsigned short i;
2458 
2459 	lli.pdev = adap->pdev;
2460 	lli.pf = adap->pf;
2461 	lli.l2t = adap->l2t;
2462 	lli.tids = &adap->tids;
2463 	lli.ports = adap->port;
2464 	lli.vr = &adap->vres;
2465 	lli.mtus = adap->params.mtus;
2466 	if (uld == CXGB4_ULD_RDMA) {
2467 		lli.rxq_ids = adap->sge.rdma_rxq;
2468 		lli.ciq_ids = adap->sge.rdma_ciq;
2469 		lli.nrxq = adap->sge.rdmaqs;
2470 		lli.nciq = adap->sge.rdmaciqs;
2471 	} else if (uld == CXGB4_ULD_ISCSI) {
2472 		lli.rxq_ids = adap->sge.iscsi_rxq;
2473 		lli.nrxq = adap->sge.iscsiqsets;
2474 	} else if (uld == CXGB4_ULD_ISCSIT) {
2475 		lli.rxq_ids = adap->sge.iscsit_rxq;
2476 		lli.nrxq = adap->sge.niscsitq;
2477 	}
2478 	lli.ntxq = adap->sge.iscsiqsets;
2479 	lli.nchan = adap->params.nports;
2480 	lli.nports = adap->params.nports;
2481 	lli.wr_cred = adap->params.ofldq_wr_cred;
2482 	lli.adapter_type = adap->params.chip;
2483 	lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2484 	lli.iscsi_tagmask = t4_read_reg(adap, ULP_RX_ISCSI_TAGMASK_A);
2485 	lli.iscsi_pgsz_order = t4_read_reg(adap, ULP_RX_ISCSI_PSZ_A);
2486 	lli.iscsi_llimit = t4_read_reg(adap, ULP_RX_ISCSI_LLIMIT_A);
2487 	lli.iscsi_ppm = &adap->iscsi_ppm;
2488 	lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2489 	lli.udb_density = 1 << adap->params.sge.eq_qpp;
2490 	lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2491 	lli.filt_mode = adap->params.tp.vlan_pri_map;
2492 	/* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2493 	for (i = 0; i < NCHAN; i++)
2494 		lli.tx_modq[i] = i;
2495 	lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2496 	lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2497 	lli.fw_vers = adap->params.fw_vers;
2498 	lli.dbfifo_int_thresh = dbfifo_int_thresh;
2499 	lli.sge_ingpadboundary = adap->sge.fl_align;
2500 	lli.sge_egrstatuspagesize = adap->sge.stat_len;
2501 	lli.sge_pktshift = adap->sge.pktshift;
2502 	lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2503 	lli.max_ordird_qp = adap->params.max_ordird_qp;
2504 	lli.max_ird_adapter = adap->params.max_ird_adapter;
2505 	lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2506 	lli.nodeid = dev_to_node(adap->pdev_dev);
2507 
2508 	handle = ulds[uld].add(&lli);
2509 	if (IS_ERR(handle)) {
2510 		dev_warn(adap->pdev_dev,
2511 			 "could not attach to the %s driver, error %ld\n",
2512 			 uld_str[uld], PTR_ERR(handle));
2513 		return;
2514 	}
2515 
2516 	adap->uld_handle[uld] = handle;
2517 
2518 	if (!netevent_registered) {
2519 		register_netevent_notifier(&cxgb4_netevent_nb);
2520 		netevent_registered = true;
2521 	}
2522 
2523 	if (adap->flags & FULL_INIT_DONE)
2524 		ulds[uld].state_change(handle, CXGB4_STATE_UP);
2525 }
2526 
2527 static void attach_ulds(struct adapter *adap)
2528 {
2529 	unsigned int i;
2530 
2531 	spin_lock(&adap_rcu_lock);
2532 	list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2533 	spin_unlock(&adap_rcu_lock);
2534 
2535 	mutex_lock(&uld_mutex);
2536 	list_add_tail(&adap->list_node, &adapter_list);
2537 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2538 		if (ulds[i].add)
2539 			uld_attach(adap, i);
2540 	mutex_unlock(&uld_mutex);
2541 }
2542 
2543 static void detach_ulds(struct adapter *adap)
2544 {
2545 	unsigned int i;
2546 
2547 	mutex_lock(&uld_mutex);
2548 	list_del(&adap->list_node);
2549 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2550 		if (adap->uld_handle[i]) {
2551 			ulds[i].state_change(adap->uld_handle[i],
2552 					     CXGB4_STATE_DETACH);
2553 			adap->uld_handle[i] = NULL;
2554 		}
2555 	if (netevent_registered && list_empty(&adapter_list)) {
2556 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2557 		netevent_registered = false;
2558 	}
2559 	mutex_unlock(&uld_mutex);
2560 
2561 	spin_lock(&adap_rcu_lock);
2562 	list_del_rcu(&adap->rcu_node);
2563 	spin_unlock(&adap_rcu_lock);
2564 }
2565 
2566 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2567 {
2568 	unsigned int i;
2569 
2570 	mutex_lock(&uld_mutex);
2571 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2572 		if (adap->uld_handle[i])
2573 			ulds[i].state_change(adap->uld_handle[i], new_state);
2574 	mutex_unlock(&uld_mutex);
2575 }
2576 
2577 /**
2578  *	cxgb4_register_uld - register an upper-layer driver
2579  *	@type: the ULD type
2580  *	@p: the ULD methods
2581  *
2582  *	Registers an upper-layer driver with this driver and notifies the ULD
2583  *	about any presently available devices that support its type.  Returns
2584  *	%-EBUSY if a ULD of the same type is already registered.
2585  */
2586 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2587 {
2588 	int ret = 0;
2589 	struct adapter *adap;
2590 
2591 	if (type >= CXGB4_ULD_MAX)
2592 		return -EINVAL;
2593 	mutex_lock(&uld_mutex);
2594 	if (ulds[type].add) {
2595 		ret = -EBUSY;
2596 		goto out;
2597 	}
2598 	ulds[type] = *p;
2599 	list_for_each_entry(adap, &adapter_list, list_node)
2600 		uld_attach(adap, type);
2601 out:	mutex_unlock(&uld_mutex);
2602 	return ret;
2603 }
2604 EXPORT_SYMBOL(cxgb4_register_uld);
2605 
2606 /**
2607  *	cxgb4_unregister_uld - unregister an upper-layer driver
2608  *	@type: the ULD type
2609  *
2610  *	Unregisters an existing upper-layer driver.
2611  */
2612 int cxgb4_unregister_uld(enum cxgb4_uld type)
2613 {
2614 	struct adapter *adap;
2615 
2616 	if (type >= CXGB4_ULD_MAX)
2617 		return -EINVAL;
2618 	mutex_lock(&uld_mutex);
2619 	list_for_each_entry(adap, &adapter_list, list_node)
2620 		adap->uld_handle[type] = NULL;
2621 	ulds[type].add = NULL;
2622 	mutex_unlock(&uld_mutex);
2623 	return 0;
2624 }
2625 EXPORT_SYMBOL(cxgb4_unregister_uld);
2626 
2627 #if IS_ENABLED(CONFIG_IPV6)
2628 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2629 				   unsigned long event, void *data)
2630 {
2631 	struct inet6_ifaddr *ifa = data;
2632 	struct net_device *event_dev = ifa->idev->dev;
2633 	const struct device *parent = NULL;
2634 #if IS_ENABLED(CONFIG_BONDING)
2635 	struct adapter *adap;
2636 #endif
2637 	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2638 		event_dev = vlan_dev_real_dev(event_dev);
2639 #if IS_ENABLED(CONFIG_BONDING)
2640 	if (event_dev->flags & IFF_MASTER) {
2641 		list_for_each_entry(adap, &adapter_list, list_node) {
2642 			switch (event) {
2643 			case NETDEV_UP:
2644 				cxgb4_clip_get(adap->port[0],
2645 					       (const u32 *)ifa, 1);
2646 				break;
2647 			case NETDEV_DOWN:
2648 				cxgb4_clip_release(adap->port[0],
2649 						   (const u32 *)ifa, 1);
2650 				break;
2651 			default:
2652 				break;
2653 			}
2654 		}
2655 		return NOTIFY_OK;
2656 	}
2657 #endif
2658 
2659 	if (event_dev)
2660 		parent = event_dev->dev.parent;
2661 
2662 	if (parent && parent->driver == &cxgb4_driver.driver) {
2663 		switch (event) {
2664 		case NETDEV_UP:
2665 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2666 			break;
2667 		case NETDEV_DOWN:
2668 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2669 			break;
2670 		default:
2671 			break;
2672 		}
2673 	}
2674 	return NOTIFY_OK;
2675 }
2676 
2677 static bool inet6addr_registered;
2678 static struct notifier_block cxgb4_inet6addr_notifier = {
2679 	.notifier_call = cxgb4_inet6addr_handler
2680 };
2681 
2682 static void update_clip(const struct adapter *adap)
2683 {
2684 	int i;
2685 	struct net_device *dev;
2686 	int ret;
2687 
2688 	rcu_read_lock();
2689 
2690 	for (i = 0; i < MAX_NPORTS; i++) {
2691 		dev = adap->port[i];
2692 		ret = 0;
2693 
2694 		if (dev)
2695 			ret = cxgb4_update_root_dev_clip(dev);
2696 
2697 		if (ret < 0)
2698 			break;
2699 	}
2700 	rcu_read_unlock();
2701 }
2702 #endif /* IS_ENABLED(CONFIG_IPV6) */
2703 
2704 /**
2705  *	cxgb_up - enable the adapter
2706  *	@adap: adapter being enabled
2707  *
2708  *	Called when the first port is enabled, this function performs the
2709  *	actions necessary to make an adapter operational, such as completing
2710  *	the initialization of HW modules, and enabling interrupts.
2711  *
2712  *	Must be called with the rtnl lock held.
2713  */
2714 static int cxgb_up(struct adapter *adap)
2715 {
2716 	int err;
2717 
2718 	err = setup_sge_queues(adap);
2719 	if (err)
2720 		goto out;
2721 	err = setup_rss(adap);
2722 	if (err)
2723 		goto freeq;
2724 
2725 	if (adap->flags & USING_MSIX) {
2726 		name_msix_vecs(adap);
2727 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2728 				  adap->msix_info[0].desc, adap);
2729 		if (err)
2730 			goto irq_err;
2731 
2732 		err = request_msix_queue_irqs(adap);
2733 		if (err) {
2734 			free_irq(adap->msix_info[0].vec, adap);
2735 			goto irq_err;
2736 		}
2737 	} else {
2738 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2739 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2740 				  adap->port[0]->name, adap);
2741 		if (err)
2742 			goto irq_err;
2743 	}
2744 	enable_rx(adap);
2745 	t4_sge_start(adap);
2746 	t4_intr_enable(adap);
2747 	adap->flags |= FULL_INIT_DONE;
2748 	notify_ulds(adap, CXGB4_STATE_UP);
2749 #if IS_ENABLED(CONFIG_IPV6)
2750 	update_clip(adap);
2751 #endif
2752 	/* Initialize hash mac addr list*/
2753 	INIT_LIST_HEAD(&adap->mac_hlist);
2754  out:
2755 	return err;
2756  irq_err:
2757 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2758  freeq:
2759 	t4_free_sge_resources(adap);
2760 	goto out;
2761 }
2762 
2763 static void cxgb_down(struct adapter *adapter)
2764 {
2765 	cancel_work_sync(&adapter->tid_release_task);
2766 	cancel_work_sync(&adapter->db_full_task);
2767 	cancel_work_sync(&adapter->db_drop_task);
2768 	adapter->tid_release_task_busy = false;
2769 	adapter->tid_release_head = NULL;
2770 
2771 	t4_sge_stop(adapter);
2772 	t4_free_sge_resources(adapter);
2773 	adapter->flags &= ~FULL_INIT_DONE;
2774 }
2775 
2776 /*
2777  * net_device operations
2778  */
2779 static int cxgb_open(struct net_device *dev)
2780 {
2781 	int err;
2782 	struct port_info *pi = netdev_priv(dev);
2783 	struct adapter *adapter = pi->adapter;
2784 
2785 	netif_carrier_off(dev);
2786 
2787 	if (!(adapter->flags & FULL_INIT_DONE)) {
2788 		err = cxgb_up(adapter);
2789 		if (err < 0)
2790 			return err;
2791 	}
2792 
2793 	err = link_start(dev);
2794 	if (!err)
2795 		netif_tx_start_all_queues(dev);
2796 	return err;
2797 }
2798 
2799 static int cxgb_close(struct net_device *dev)
2800 {
2801 	struct port_info *pi = netdev_priv(dev);
2802 	struct adapter *adapter = pi->adapter;
2803 
2804 	netif_tx_stop_all_queues(dev);
2805 	netif_carrier_off(dev);
2806 	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2807 }
2808 
2809 /* Return an error number if the indicated filter isn't writable ...
2810  */
2811 static int writable_filter(struct filter_entry *f)
2812 {
2813 	if (f->locked)
2814 		return -EPERM;
2815 	if (f->pending)
2816 		return -EBUSY;
2817 
2818 	return 0;
2819 }
2820 
2821 /* Delete the filter at the specified index (if valid).  The checks for all
2822  * the common problems with doing this like the filter being locked, currently
2823  * pending in another operation, etc.
2824  */
2825 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2826 {
2827 	struct filter_entry *f;
2828 	int ret;
2829 
2830 	if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2831 		return -EINVAL;
2832 
2833 	f = &adapter->tids.ftid_tab[fidx];
2834 	ret = writable_filter(f);
2835 	if (ret)
2836 		return ret;
2837 	if (f->valid)
2838 		return del_filter_wr(adapter, fidx);
2839 
2840 	return 0;
2841 }
2842 
2843 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2844 		__be32 sip, __be16 sport, __be16 vlan,
2845 		unsigned int queue, unsigned char port, unsigned char mask)
2846 {
2847 	int ret;
2848 	struct filter_entry *f;
2849 	struct adapter *adap;
2850 	int i;
2851 	u8 *val;
2852 
2853 	adap = netdev2adap(dev);
2854 
2855 	/* Adjust stid to correct filter index */
2856 	stid -= adap->tids.sftid_base;
2857 	stid += adap->tids.nftids;
2858 
2859 	/* Check to make sure the filter requested is writable ...
2860 	 */
2861 	f = &adap->tids.ftid_tab[stid];
2862 	ret = writable_filter(f);
2863 	if (ret)
2864 		return ret;
2865 
2866 	/* Clear out any old resources being used by the filter before
2867 	 * we start constructing the new filter.
2868 	 */
2869 	if (f->valid)
2870 		clear_filter(adap, f);
2871 
2872 	/* Clear out filter specifications */
2873 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2874 	f->fs.val.lport = cpu_to_be16(sport);
2875 	f->fs.mask.lport  = ~0;
2876 	val = (u8 *)&sip;
2877 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2878 		for (i = 0; i < 4; i++) {
2879 			f->fs.val.lip[i] = val[i];
2880 			f->fs.mask.lip[i] = ~0;
2881 		}
2882 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2883 			f->fs.val.iport = port;
2884 			f->fs.mask.iport = mask;
2885 		}
2886 	}
2887 
2888 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2889 		f->fs.val.proto = IPPROTO_TCP;
2890 		f->fs.mask.proto = ~0;
2891 	}
2892 
2893 	f->fs.dirsteer = 1;
2894 	f->fs.iq = queue;
2895 	/* Mark filter as locked */
2896 	f->locked = 1;
2897 	f->fs.rpttid = 1;
2898 
2899 	ret = set_filter_wr(adap, stid);
2900 	if (ret) {
2901 		clear_filter(adap, f);
2902 		return ret;
2903 	}
2904 
2905 	return 0;
2906 }
2907 EXPORT_SYMBOL(cxgb4_create_server_filter);
2908 
2909 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2910 		unsigned int queue, bool ipv6)
2911 {
2912 	int ret;
2913 	struct filter_entry *f;
2914 	struct adapter *adap;
2915 
2916 	adap = netdev2adap(dev);
2917 
2918 	/* Adjust stid to correct filter index */
2919 	stid -= adap->tids.sftid_base;
2920 	stid += adap->tids.nftids;
2921 
2922 	f = &adap->tids.ftid_tab[stid];
2923 	/* Unlock the filter */
2924 	f->locked = 0;
2925 
2926 	ret = delete_filter(adap, stid);
2927 	if (ret)
2928 		return ret;
2929 
2930 	return 0;
2931 }
2932 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2933 
2934 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2935 						struct rtnl_link_stats64 *ns)
2936 {
2937 	struct port_stats stats;
2938 	struct port_info *p = netdev_priv(dev);
2939 	struct adapter *adapter = p->adapter;
2940 
2941 	/* Block retrieving statistics during EEH error
2942 	 * recovery. Otherwise, the recovery might fail
2943 	 * and the PCI device will be removed permanently
2944 	 */
2945 	spin_lock(&adapter->stats_lock);
2946 	if (!netif_device_present(dev)) {
2947 		spin_unlock(&adapter->stats_lock);
2948 		return ns;
2949 	}
2950 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2951 				 &p->stats_base);
2952 	spin_unlock(&adapter->stats_lock);
2953 
2954 	ns->tx_bytes   = stats.tx_octets;
2955 	ns->tx_packets = stats.tx_frames;
2956 	ns->rx_bytes   = stats.rx_octets;
2957 	ns->rx_packets = stats.rx_frames;
2958 	ns->multicast  = stats.rx_mcast_frames;
2959 
2960 	/* detailed rx_errors */
2961 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2962 			       stats.rx_runt;
2963 	ns->rx_over_errors   = 0;
2964 	ns->rx_crc_errors    = stats.rx_fcs_err;
2965 	ns->rx_frame_errors  = stats.rx_symbol_err;
2966 	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2967 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2968 			       stats.rx_trunc0 + stats.rx_trunc1 +
2969 			       stats.rx_trunc2 + stats.rx_trunc3;
2970 	ns->rx_missed_errors = 0;
2971 
2972 	/* detailed tx_errors */
2973 	ns->tx_aborted_errors   = 0;
2974 	ns->tx_carrier_errors   = 0;
2975 	ns->tx_fifo_errors      = 0;
2976 	ns->tx_heartbeat_errors = 0;
2977 	ns->tx_window_errors    = 0;
2978 
2979 	ns->tx_errors = stats.tx_error_frames;
2980 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2981 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2982 	return ns;
2983 }
2984 
2985 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2986 {
2987 	unsigned int mbox;
2988 	int ret = 0, prtad, devad;
2989 	struct port_info *pi = netdev_priv(dev);
2990 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2991 
2992 	switch (cmd) {
2993 	case SIOCGMIIPHY:
2994 		if (pi->mdio_addr < 0)
2995 			return -EOPNOTSUPP;
2996 		data->phy_id = pi->mdio_addr;
2997 		break;
2998 	case SIOCGMIIREG:
2999 	case SIOCSMIIREG:
3000 		if (mdio_phy_id_is_c45(data->phy_id)) {
3001 			prtad = mdio_phy_id_prtad(data->phy_id);
3002 			devad = mdio_phy_id_devad(data->phy_id);
3003 		} else if (data->phy_id < 32) {
3004 			prtad = data->phy_id;
3005 			devad = 0;
3006 			data->reg_num &= 0x1f;
3007 		} else
3008 			return -EINVAL;
3009 
3010 		mbox = pi->adapter->pf;
3011 		if (cmd == SIOCGMIIREG)
3012 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3013 					 data->reg_num, &data->val_out);
3014 		else
3015 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3016 					 data->reg_num, data->val_in);
3017 		break;
3018 	case SIOCGHWTSTAMP:
3019 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3020 				    sizeof(pi->tstamp_config)) ?
3021 			-EFAULT : 0;
3022 	case SIOCSHWTSTAMP:
3023 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3024 				   sizeof(pi->tstamp_config)))
3025 			return -EFAULT;
3026 
3027 		switch (pi->tstamp_config.rx_filter) {
3028 		case HWTSTAMP_FILTER_NONE:
3029 			pi->rxtstamp = false;
3030 			break;
3031 		case HWTSTAMP_FILTER_ALL:
3032 			pi->rxtstamp = true;
3033 			break;
3034 		default:
3035 			pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
3036 			return -ERANGE;
3037 		}
3038 
3039 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
3040 				    sizeof(pi->tstamp_config)) ?
3041 			-EFAULT : 0;
3042 	default:
3043 		return -EOPNOTSUPP;
3044 	}
3045 	return ret;
3046 }
3047 
3048 static void cxgb_set_rxmode(struct net_device *dev)
3049 {
3050 	/* unfortunately we can't return errors to the stack */
3051 	set_rxmode(dev, -1, false);
3052 }
3053 
3054 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3055 {
3056 	int ret;
3057 	struct port_info *pi = netdev_priv(dev);
3058 
3059 	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
3060 		return -EINVAL;
3061 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
3062 			    -1, -1, -1, true);
3063 	if (!ret)
3064 		dev->mtu = new_mtu;
3065 	return ret;
3066 }
3067 
3068 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3069 {
3070 	int ret;
3071 	struct sockaddr *addr = p;
3072 	struct port_info *pi = netdev_priv(dev);
3073 
3074 	if (!is_valid_ether_addr(addr->sa_data))
3075 		return -EADDRNOTAVAIL;
3076 
3077 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3078 			    pi->xact_addr_filt, addr->sa_data, true, true);
3079 	if (ret < 0)
3080 		return ret;
3081 
3082 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3083 	pi->xact_addr_filt = ret;
3084 	return 0;
3085 }
3086 
3087 #ifdef CONFIG_NET_POLL_CONTROLLER
3088 static void cxgb_netpoll(struct net_device *dev)
3089 {
3090 	struct port_info *pi = netdev_priv(dev);
3091 	struct adapter *adap = pi->adapter;
3092 
3093 	if (adap->flags & USING_MSIX) {
3094 		int i;
3095 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3096 
3097 		for (i = pi->nqsets; i; i--, rx++)
3098 			t4_sge_intr_msix(0, &rx->rspq);
3099 	} else
3100 		t4_intr_handler(adap)(0, adap);
3101 }
3102 #endif
3103 
3104 static const struct net_device_ops cxgb4_netdev_ops = {
3105 	.ndo_open             = cxgb_open,
3106 	.ndo_stop             = cxgb_close,
3107 	.ndo_start_xmit       = t4_eth_xmit,
3108 	.ndo_select_queue     =	cxgb_select_queue,
3109 	.ndo_get_stats64      = cxgb_get_stats,
3110 	.ndo_set_rx_mode      = cxgb_set_rxmode,
3111 	.ndo_set_mac_address  = cxgb_set_mac_addr,
3112 	.ndo_set_features     = cxgb_set_features,
3113 	.ndo_validate_addr    = eth_validate_addr,
3114 	.ndo_do_ioctl         = cxgb_ioctl,
3115 	.ndo_change_mtu       = cxgb_change_mtu,
3116 #ifdef CONFIG_NET_POLL_CONTROLLER
3117 	.ndo_poll_controller  = cxgb_netpoll,
3118 #endif
3119 #ifdef CONFIG_CHELSIO_T4_FCOE
3120 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
3121 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
3122 #endif /* CONFIG_CHELSIO_T4_FCOE */
3123 #ifdef CONFIG_NET_RX_BUSY_POLL
3124 	.ndo_busy_poll        = cxgb_busy_poll,
3125 #endif
3126 
3127 };
3128 
3129 void t4_fatal_err(struct adapter *adap)
3130 {
3131 	t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3132 	t4_intr_disable(adap);
3133 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3134 }
3135 
3136 static void setup_memwin(struct adapter *adap)
3137 {
3138 	u32 nic_win_base = t4_get_util_window(adap);
3139 
3140 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3141 }
3142 
3143 static void setup_memwin_rdma(struct adapter *adap)
3144 {
3145 	if (adap->vres.ocq.size) {
3146 		u32 start;
3147 		unsigned int sz_kb;
3148 
3149 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3150 		start &= PCI_BASE_ADDRESS_MEM_MASK;
3151 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3152 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3153 		t4_write_reg(adap,
3154 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3155 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3156 		t4_write_reg(adap,
3157 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3158 			     adap->vres.ocq.start);
3159 		t4_read_reg(adap,
3160 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3161 	}
3162 }
3163 
3164 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3165 {
3166 	u32 v;
3167 	int ret;
3168 
3169 	/* get device capabilities */
3170 	memset(c, 0, sizeof(*c));
3171 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3172 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3173 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3174 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3175 	if (ret < 0)
3176 		return ret;
3177 
3178 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3179 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3180 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3181 	if (ret < 0)
3182 		return ret;
3183 
3184 	ret = t4_config_glbl_rss(adap, adap->pf,
3185 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3186 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3187 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3188 	if (ret < 0)
3189 		return ret;
3190 
3191 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3192 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3193 			  FW_CMD_CAP_PF);
3194 	if (ret < 0)
3195 		return ret;
3196 
3197 	t4_sge_init(adap);
3198 
3199 	/* tweak some settings */
3200 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3201 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3202 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3203 	v = t4_read_reg(adap, TP_PIO_DATA_A);
3204 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3205 
3206 	/* first 4 Tx modulation queues point to consecutive Tx channels */
3207 	adap->params.tp.tx_modq_map = 0xE4;
3208 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3209 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3210 
3211 	/* associate each Tx modulation queue with consecutive Tx channels */
3212 	v = 0x84218421;
3213 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3214 			  &v, 1, TP_TX_SCHED_HDR_A);
3215 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3216 			  &v, 1, TP_TX_SCHED_FIFO_A);
3217 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3218 			  &v, 1, TP_TX_SCHED_PCMD_A);
3219 
3220 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3221 	if (is_offload(adap)) {
3222 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3223 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3224 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3225 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3226 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3227 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3228 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3229 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3230 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3231 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3232 	}
3233 
3234 	/* get basic stuff going */
3235 	return t4_early_init(adap, adap->pf);
3236 }
3237 
3238 /*
3239  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3240  */
3241 #define MAX_ATIDS 8192U
3242 
3243 /*
3244  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3245  *
3246  * If the firmware we're dealing with has Configuration File support, then
3247  * we use that to perform all configuration
3248  */
3249 
3250 /*
3251  * Tweak configuration based on module parameters, etc.  Most of these have
3252  * defaults assigned to them by Firmware Configuration Files (if we're using
3253  * them) but need to be explicitly set if we're using hard-coded
3254  * initialization.  But even in the case of using Firmware Configuration
3255  * Files, we'd like to expose the ability to change these via module
3256  * parameters so these are essentially common tweaks/settings for
3257  * Configuration Files and hard-coded initialization ...
3258  */
3259 static int adap_init0_tweaks(struct adapter *adapter)
3260 {
3261 	/*
3262 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
3263 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
3264 	 * 64B Cache Line Size ...
3265 	 */
3266 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3267 
3268 	/*
3269 	 * Process module parameters which affect early initialization.
3270 	 */
3271 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3272 		dev_err(&adapter->pdev->dev,
3273 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
3274 			rx_dma_offset);
3275 		rx_dma_offset = 2;
3276 	}
3277 	t4_set_reg_field(adapter, SGE_CONTROL_A,
3278 			 PKTSHIFT_V(PKTSHIFT_M),
3279 			 PKTSHIFT_V(rx_dma_offset));
3280 
3281 	/*
3282 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3283 	 * adds the pseudo header itself.
3284 	 */
3285 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3286 			       CSUM_HAS_PSEUDO_HDR_F, 0);
3287 
3288 	return 0;
3289 }
3290 
3291 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3292  * unto themselves and they contain their own firmware to perform their
3293  * tasks ...
3294  */
3295 static int phy_aq1202_version(const u8 *phy_fw_data,
3296 			      size_t phy_fw_size)
3297 {
3298 	int offset;
3299 
3300 	/* At offset 0x8 you're looking for the primary image's
3301 	 * starting offset which is 3 Bytes wide
3302 	 *
3303 	 * At offset 0xa of the primary image, you look for the offset
3304 	 * of the DRAM segment which is 3 Bytes wide.
3305 	 *
3306 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3307 	 * wide
3308 	 */
3309 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
3310 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3311 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
3312 
3313 	offset = le24(phy_fw_data + 0x8) << 12;
3314 	offset = le24(phy_fw_data + offset + 0xa);
3315 	return be16(phy_fw_data + offset + 0x27e);
3316 
3317 	#undef be16
3318 	#undef le16
3319 	#undef le24
3320 }
3321 
3322 static struct info_10gbt_phy_fw {
3323 	unsigned int phy_fw_id;		/* PCI Device ID */
3324 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
3325 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3326 	int phy_flash;			/* Has FLASH for PHY Firmware */
3327 } phy_info_array[] = {
3328 	{
3329 		PHY_AQ1202_DEVICEID,
3330 		PHY_AQ1202_FIRMWARE,
3331 		phy_aq1202_version,
3332 		1,
3333 	},
3334 	{
3335 		PHY_BCM84834_DEVICEID,
3336 		PHY_BCM84834_FIRMWARE,
3337 		NULL,
3338 		0,
3339 	},
3340 	{ 0, NULL, NULL },
3341 };
3342 
3343 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3344 {
3345 	int i;
3346 
3347 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3348 		if (phy_info_array[i].phy_fw_id == devid)
3349 			return &phy_info_array[i];
3350 	}
3351 	return NULL;
3352 }
3353 
3354 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3355  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3356  * we return a negative error number.  If we transfer new firmware we return 1
3357  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3358  */
3359 static int adap_init0_phy(struct adapter *adap)
3360 {
3361 	const struct firmware *phyf;
3362 	int ret;
3363 	struct info_10gbt_phy_fw *phy_info;
3364 
3365 	/* Use the device ID to determine which PHY file to flash.
3366 	 */
3367 	phy_info = find_phy_info(adap->pdev->device);
3368 	if (!phy_info) {
3369 		dev_warn(adap->pdev_dev,
3370 			 "No PHY Firmware file found for this PHY\n");
3371 		return -EOPNOTSUPP;
3372 	}
3373 
3374 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3375 	 * use that. The adapter firmware provides us with a memory buffer
3376 	 * where we can load a PHY firmware file from the host if we want to
3377 	 * override the PHY firmware File in flash.
3378 	 */
3379 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3380 				      adap->pdev_dev);
3381 	if (ret < 0) {
3382 		/* For adapters without FLASH attached to PHY for their
3383 		 * firmware, it's obviously a fatal error if we can't get the
3384 		 * firmware to the adapter.  For adapters with PHY firmware
3385 		 * FLASH storage, it's worth a warning if we can't find the
3386 		 * PHY Firmware but we'll neuter the error ...
3387 		 */
3388 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3389 			"/lib/firmware/%s, error %d\n",
3390 			phy_info->phy_fw_file, -ret);
3391 		if (phy_info->phy_flash) {
3392 			int cur_phy_fw_ver = 0;
3393 
3394 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3395 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3396 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3397 			ret = 0;
3398 		}
3399 
3400 		return ret;
3401 	}
3402 
3403 	/* Load PHY Firmware onto adapter.
3404 	 */
3405 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3406 			     phy_info->phy_fw_version,
3407 			     (u8 *)phyf->data, phyf->size);
3408 	if (ret < 0)
3409 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3410 			-ret);
3411 	else if (ret > 0) {
3412 		int new_phy_fw_ver = 0;
3413 
3414 		if (phy_info->phy_fw_version)
3415 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3416 								  phyf->size);
3417 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3418 			 "Firmware /lib/firmware/%s, version %#x\n",
3419 			 phy_info->phy_fw_file, new_phy_fw_ver);
3420 	}
3421 
3422 	release_firmware(phyf);
3423 
3424 	return ret;
3425 }
3426 
3427 /*
3428  * Attempt to initialize the adapter via a Firmware Configuration File.
3429  */
3430 static int adap_init0_config(struct adapter *adapter, int reset)
3431 {
3432 	struct fw_caps_config_cmd caps_cmd;
3433 	const struct firmware *cf;
3434 	unsigned long mtype = 0, maddr = 0;
3435 	u32 finiver, finicsum, cfcsum;
3436 	int ret;
3437 	int config_issued = 0;
3438 	char *fw_config_file, fw_config_file_path[256];
3439 	char *config_name = NULL;
3440 
3441 	/*
3442 	 * Reset device if necessary.
3443 	 */
3444 	if (reset) {
3445 		ret = t4_fw_reset(adapter, adapter->mbox,
3446 				  PIORSTMODE_F | PIORST_F);
3447 		if (ret < 0)
3448 			goto bye;
3449 	}
3450 
3451 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3452 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3453 	 * to be performed after any global adapter RESET above since some
3454 	 * PHYs only have local RAM copies of the PHY firmware.
3455 	 */
3456 	if (is_10gbt_device(adapter->pdev->device)) {
3457 		ret = adap_init0_phy(adapter);
3458 		if (ret < 0)
3459 			goto bye;
3460 	}
3461 	/*
3462 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3463 	 * then use that.  Otherwise, use the configuration file stored
3464 	 * in the adapter flash ...
3465 	 */
3466 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3467 	case CHELSIO_T4:
3468 		fw_config_file = FW4_CFNAME;
3469 		break;
3470 	case CHELSIO_T5:
3471 		fw_config_file = FW5_CFNAME;
3472 		break;
3473 	case CHELSIO_T6:
3474 		fw_config_file = FW6_CFNAME;
3475 		break;
3476 	default:
3477 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3478 		       adapter->pdev->device);
3479 		ret = -EINVAL;
3480 		goto bye;
3481 	}
3482 
3483 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3484 	if (ret < 0) {
3485 		config_name = "On FLASH";
3486 		mtype = FW_MEMTYPE_CF_FLASH;
3487 		maddr = t4_flash_cfg_addr(adapter);
3488 	} else {
3489 		u32 params[7], val[7];
3490 
3491 		sprintf(fw_config_file_path,
3492 			"/lib/firmware/%s", fw_config_file);
3493 		config_name = fw_config_file_path;
3494 
3495 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3496 			ret = -ENOMEM;
3497 		else {
3498 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3499 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3500 			ret = t4_query_params(adapter, adapter->mbox,
3501 					      adapter->pf, 0, 1, params, val);
3502 			if (ret == 0) {
3503 				/*
3504 				 * For t4_memory_rw() below addresses and
3505 				 * sizes have to be in terms of multiples of 4
3506 				 * bytes.  So, if the Configuration File isn't
3507 				 * a multiple of 4 bytes in length we'll have
3508 				 * to write that out separately since we can't
3509 				 * guarantee that the bytes following the
3510 				 * residual byte in the buffer returned by
3511 				 * request_firmware() are zeroed out ...
3512 				 */
3513 				size_t resid = cf->size & 0x3;
3514 				size_t size = cf->size & ~0x3;
3515 				__be32 *data = (__be32 *)cf->data;
3516 
3517 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3518 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3519 
3520 				spin_lock(&adapter->win0_lock);
3521 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3522 						   size, data, T4_MEMORY_WRITE);
3523 				if (ret == 0 && resid != 0) {
3524 					union {
3525 						__be32 word;
3526 						char buf[4];
3527 					} last;
3528 					int i;
3529 
3530 					last.word = data[size >> 2];
3531 					for (i = resid; i < 4; i++)
3532 						last.buf[i] = 0;
3533 					ret = t4_memory_rw(adapter, 0, mtype,
3534 							   maddr + size,
3535 							   4, &last.word,
3536 							   T4_MEMORY_WRITE);
3537 				}
3538 				spin_unlock(&adapter->win0_lock);
3539 			}
3540 		}
3541 
3542 		release_firmware(cf);
3543 		if (ret)
3544 			goto bye;
3545 	}
3546 
3547 	/*
3548 	 * Issue a Capability Configuration command to the firmware to get it
3549 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3550 	 * because we want the ability to modify various features after we've
3551 	 * processed the configuration file ...
3552 	 */
3553 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3554 	caps_cmd.op_to_write =
3555 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3556 		      FW_CMD_REQUEST_F |
3557 		      FW_CMD_READ_F);
3558 	caps_cmd.cfvalid_to_len16 =
3559 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3560 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3561 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3562 		      FW_LEN16(caps_cmd));
3563 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3564 			 &caps_cmd);
3565 
3566 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3567 	 * Configuration File in FLASH), our last gasp effort is to use the
3568 	 * Firmware Configuration File which is embedded in the firmware.  A
3569 	 * very few early versions of the firmware didn't have one embedded
3570 	 * but we can ignore those.
3571 	 */
3572 	if (ret == -ENOENT) {
3573 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3574 		caps_cmd.op_to_write =
3575 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3576 					FW_CMD_REQUEST_F |
3577 					FW_CMD_READ_F);
3578 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3579 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3580 				sizeof(caps_cmd), &caps_cmd);
3581 		config_name = "Firmware Default";
3582 	}
3583 
3584 	config_issued = 1;
3585 	if (ret < 0)
3586 		goto bye;
3587 
3588 	finiver = ntohl(caps_cmd.finiver);
3589 	finicsum = ntohl(caps_cmd.finicsum);
3590 	cfcsum = ntohl(caps_cmd.cfcsum);
3591 	if (finicsum != cfcsum)
3592 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3593 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3594 			 finicsum, cfcsum);
3595 
3596 	/*
3597 	 * And now tell the firmware to use the configuration we just loaded.
3598 	 */
3599 	caps_cmd.op_to_write =
3600 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3601 		      FW_CMD_REQUEST_F |
3602 		      FW_CMD_WRITE_F);
3603 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3604 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3605 			 NULL);
3606 	if (ret < 0)
3607 		goto bye;
3608 
3609 	/*
3610 	 * Tweak configuration based on system architecture, module
3611 	 * parameters, etc.
3612 	 */
3613 	ret = adap_init0_tweaks(adapter);
3614 	if (ret < 0)
3615 		goto bye;
3616 
3617 	/*
3618 	 * And finally tell the firmware to initialize itself using the
3619 	 * parameters from the Configuration File.
3620 	 */
3621 	ret = t4_fw_initialize(adapter, adapter->mbox);
3622 	if (ret < 0)
3623 		goto bye;
3624 
3625 	/* Emit Firmware Configuration File information and return
3626 	 * successfully.
3627 	 */
3628 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3629 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3630 		 config_name, finiver, cfcsum);
3631 	return 0;
3632 
3633 	/*
3634 	 * Something bad happened.  Return the error ...  (If the "error"
3635 	 * is that there's no Configuration File on the adapter we don't
3636 	 * want to issue a warning since this is fairly common.)
3637 	 */
3638 bye:
3639 	if (config_issued && ret != -ENOENT)
3640 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3641 			 config_name, -ret);
3642 	return ret;
3643 }
3644 
3645 static struct fw_info fw_info_array[] = {
3646 	{
3647 		.chip = CHELSIO_T4,
3648 		.fs_name = FW4_CFNAME,
3649 		.fw_mod_name = FW4_FNAME,
3650 		.fw_hdr = {
3651 			.chip = FW_HDR_CHIP_T4,
3652 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3653 			.intfver_nic = FW_INTFVER(T4, NIC),
3654 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3655 			.intfver_ri = FW_INTFVER(T4, RI),
3656 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3657 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3658 		},
3659 	}, {
3660 		.chip = CHELSIO_T5,
3661 		.fs_name = FW5_CFNAME,
3662 		.fw_mod_name = FW5_FNAME,
3663 		.fw_hdr = {
3664 			.chip = FW_HDR_CHIP_T5,
3665 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3666 			.intfver_nic = FW_INTFVER(T5, NIC),
3667 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3668 			.intfver_ri = FW_INTFVER(T5, RI),
3669 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3670 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3671 		},
3672 	}, {
3673 		.chip = CHELSIO_T6,
3674 		.fs_name = FW6_CFNAME,
3675 		.fw_mod_name = FW6_FNAME,
3676 		.fw_hdr = {
3677 			.chip = FW_HDR_CHIP_T6,
3678 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3679 			.intfver_nic = FW_INTFVER(T6, NIC),
3680 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3681 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3682 			.intfver_ri = FW_INTFVER(T6, RI),
3683 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3684 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3685 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3686 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3687 		},
3688 	}
3689 
3690 };
3691 
3692 static struct fw_info *find_fw_info(int chip)
3693 {
3694 	int i;
3695 
3696 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3697 		if (fw_info_array[i].chip == chip)
3698 			return &fw_info_array[i];
3699 	}
3700 	return NULL;
3701 }
3702 
3703 /*
3704  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3705  */
3706 static int adap_init0(struct adapter *adap)
3707 {
3708 	int ret;
3709 	u32 v, port_vec;
3710 	enum dev_state state;
3711 	u32 params[7], val[7];
3712 	struct fw_caps_config_cmd caps_cmd;
3713 	int reset = 1;
3714 
3715 	/* Grab Firmware Device Log parameters as early as possible so we have
3716 	 * access to it for debugging, etc.
3717 	 */
3718 	ret = t4_init_devlog_params(adap);
3719 	if (ret < 0)
3720 		return ret;
3721 
3722 	/* Contact FW, advertising Master capability */
3723 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3724 	if (ret < 0) {
3725 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3726 			ret);
3727 		return ret;
3728 	}
3729 	if (ret == adap->mbox)
3730 		adap->flags |= MASTER_PF;
3731 
3732 	/*
3733 	 * If we're the Master PF Driver and the device is uninitialized,
3734 	 * then let's consider upgrading the firmware ...  (We always want
3735 	 * to check the firmware version number in order to A. get it for
3736 	 * later reporting and B. to warn if the currently loaded firmware
3737 	 * is excessively mismatched relative to the driver.)
3738 	 */
3739 	t4_get_fw_version(adap, &adap->params.fw_vers);
3740 	t4_get_tp_version(adap, &adap->params.tp_vers);
3741 	ret = t4_check_fw_version(adap);
3742 	/* If firmware is too old (not supported by driver) force an update. */
3743 	if (ret)
3744 		state = DEV_STATE_UNINIT;
3745 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3746 		struct fw_info *fw_info;
3747 		struct fw_hdr *card_fw;
3748 		const struct firmware *fw;
3749 		const u8 *fw_data = NULL;
3750 		unsigned int fw_size = 0;
3751 
3752 		/* This is the firmware whose headers the driver was compiled
3753 		 * against
3754 		 */
3755 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3756 		if (fw_info == NULL) {
3757 			dev_err(adap->pdev_dev,
3758 				"unable to get firmware info for chip %d.\n",
3759 				CHELSIO_CHIP_VERSION(adap->params.chip));
3760 			return -EINVAL;
3761 		}
3762 
3763 		/* allocate memory to read the header of the firmware on the
3764 		 * card
3765 		 */
3766 		card_fw = t4_alloc_mem(sizeof(*card_fw));
3767 
3768 		/* Get FW from from /lib/firmware/ */
3769 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3770 				       adap->pdev_dev);
3771 		if (ret < 0) {
3772 			dev_err(adap->pdev_dev,
3773 				"unable to load firmware image %s, error %d\n",
3774 				fw_info->fw_mod_name, ret);
3775 		} else {
3776 			fw_data = fw->data;
3777 			fw_size = fw->size;
3778 		}
3779 
3780 		/* upgrade FW logic */
3781 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3782 				 state, &reset);
3783 
3784 		/* Cleaning up */
3785 		release_firmware(fw);
3786 		t4_free_mem(card_fw);
3787 
3788 		if (ret < 0)
3789 			goto bye;
3790 	}
3791 
3792 	/*
3793 	 * Grab VPD parameters.  This should be done after we establish a
3794 	 * connection to the firmware since some of the VPD parameters
3795 	 * (notably the Core Clock frequency) are retrieved via requests to
3796 	 * the firmware.  On the other hand, we need these fairly early on
3797 	 * so we do this right after getting ahold of the firmware.
3798 	 */
3799 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3800 	if (ret < 0)
3801 		goto bye;
3802 
3803 	/*
3804 	 * Find out what ports are available to us.  Note that we need to do
3805 	 * this before calling adap_init0_no_config() since it needs nports
3806 	 * and portvec ...
3807 	 */
3808 	v =
3809 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3810 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3811 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3812 	if (ret < 0)
3813 		goto bye;
3814 
3815 	adap->params.nports = hweight32(port_vec);
3816 	adap->params.portvec = port_vec;
3817 
3818 	/* If the firmware is initialized already, emit a simply note to that
3819 	 * effect. Otherwise, it's time to try initializing the adapter.
3820 	 */
3821 	if (state == DEV_STATE_INIT) {
3822 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3823 			 "Adapter already initialized\n",
3824 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3825 	} else {
3826 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3827 			 "Initializing adapter\n");
3828 
3829 		/* Find out whether we're dealing with a version of the
3830 		 * firmware which has configuration file support.
3831 		 */
3832 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3833 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3834 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3835 				      params, val);
3836 
3837 		/* If the firmware doesn't support Configuration Files,
3838 		 * return an error.
3839 		 */
3840 		if (ret < 0) {
3841 			dev_err(adap->pdev_dev, "firmware doesn't support "
3842 				"Firmware Configuration Files\n");
3843 			goto bye;
3844 		}
3845 
3846 		/* The firmware provides us with a memory buffer where we can
3847 		 * load a Configuration File from the host if we want to
3848 		 * override the Configuration File in flash.
3849 		 */
3850 		ret = adap_init0_config(adap, reset);
3851 		if (ret == -ENOENT) {
3852 			dev_err(adap->pdev_dev, "no Configuration File "
3853 				"present on adapter.\n");
3854 			goto bye;
3855 		}
3856 		if (ret < 0) {
3857 			dev_err(adap->pdev_dev, "could not initialize "
3858 				"adapter, error %d\n", -ret);
3859 			goto bye;
3860 		}
3861 	}
3862 
3863 	/* Give the SGE code a chance to pull in anything that it needs ...
3864 	 * Note that this must be called after we retrieve our VPD parameters
3865 	 * in order to know how to convert core ticks to seconds, etc.
3866 	 */
3867 	ret = t4_sge_init(adap);
3868 	if (ret < 0)
3869 		goto bye;
3870 
3871 	if (is_bypass_device(adap->pdev->device))
3872 		adap->params.bypass = 1;
3873 
3874 	/*
3875 	 * Grab some of our basic fundamental operating parameters.
3876 	 */
3877 #define FW_PARAM_DEV(param) \
3878 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3879 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3880 
3881 #define FW_PARAM_PFVF(param) \
3882 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3883 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3884 	FW_PARAMS_PARAM_Y_V(0) | \
3885 	FW_PARAMS_PARAM_Z_V(0)
3886 
3887 	params[0] = FW_PARAM_PFVF(EQ_START);
3888 	params[1] = FW_PARAM_PFVF(L2T_START);
3889 	params[2] = FW_PARAM_PFVF(L2T_END);
3890 	params[3] = FW_PARAM_PFVF(FILTER_START);
3891 	params[4] = FW_PARAM_PFVF(FILTER_END);
3892 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3893 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3894 	if (ret < 0)
3895 		goto bye;
3896 	adap->sge.egr_start = val[0];
3897 	adap->l2t_start = val[1];
3898 	adap->l2t_end = val[2];
3899 	adap->tids.ftid_base = val[3];
3900 	adap->tids.nftids = val[4] - val[3] + 1;
3901 	adap->sge.ingr_start = val[5];
3902 
3903 	/* qids (ingress/egress) returned from firmware can be anywhere
3904 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3905 	 * Hence driver needs to allocate memory for this range to
3906 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3907 	 * in FW_EQ_*_CMD.alloc command.
3908 	 */
3909 	params[0] = FW_PARAM_PFVF(EQ_END);
3910 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3911 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3912 	if (ret < 0)
3913 		goto bye;
3914 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3915 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3916 
3917 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3918 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3919 	if (!adap->sge.egr_map) {
3920 		ret = -ENOMEM;
3921 		goto bye;
3922 	}
3923 
3924 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3925 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3926 	if (!adap->sge.ingr_map) {
3927 		ret = -ENOMEM;
3928 		goto bye;
3929 	}
3930 
3931 	/* Allocate the memory for the vaious egress queue bitmaps
3932 	 * ie starving_fl, txq_maperr and blocked_fl.
3933 	 */
3934 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3935 					sizeof(long), GFP_KERNEL);
3936 	if (!adap->sge.starving_fl) {
3937 		ret = -ENOMEM;
3938 		goto bye;
3939 	}
3940 
3941 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3942 				       sizeof(long), GFP_KERNEL);
3943 	if (!adap->sge.txq_maperr) {
3944 		ret = -ENOMEM;
3945 		goto bye;
3946 	}
3947 
3948 #ifdef CONFIG_DEBUG_FS
3949 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3950 				       sizeof(long), GFP_KERNEL);
3951 	if (!adap->sge.blocked_fl) {
3952 		ret = -ENOMEM;
3953 		goto bye;
3954 	}
3955 #endif
3956 
3957 	params[0] = FW_PARAM_PFVF(CLIP_START);
3958 	params[1] = FW_PARAM_PFVF(CLIP_END);
3959 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3960 	if (ret < 0)
3961 		goto bye;
3962 	adap->clipt_start = val[0];
3963 	adap->clipt_end = val[1];
3964 
3965 	/* query params related to active filter region */
3966 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3967 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3968 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3969 	/* If Active filter size is set we enable establishing
3970 	 * offload connection through firmware work request
3971 	 */
3972 	if ((val[0] != val[1]) && (ret >= 0)) {
3973 		adap->flags |= FW_OFLD_CONN;
3974 		adap->tids.aftid_base = val[0];
3975 		adap->tids.aftid_end = val[1];
3976 	}
3977 
3978 	/* If we're running on newer firmware, let it know that we're
3979 	 * prepared to deal with encapsulated CPL messages.  Older
3980 	 * firmware won't understand this and we'll just get
3981 	 * unencapsulated messages ...
3982 	 */
3983 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3984 	val[0] = 1;
3985 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3986 
3987 	/*
3988 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3989 	 * capability.  Earlier versions of the firmware didn't have the
3990 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3991 	 * permission to use ULPTX MEMWRITE DSGL.
3992 	 */
3993 	if (is_t4(adap->params.chip)) {
3994 		adap->params.ulptx_memwrite_dsgl = false;
3995 	} else {
3996 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3997 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3998 				      1, params, val);
3999 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4000 	}
4001 
4002 	/*
4003 	 * Get device capabilities so we can determine what resources we need
4004 	 * to manage.
4005 	 */
4006 	memset(&caps_cmd, 0, sizeof(caps_cmd));
4007 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4008 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
4009 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4010 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4011 			 &caps_cmd);
4012 	if (ret < 0)
4013 		goto bye;
4014 
4015 	if (caps_cmd.ofldcaps) {
4016 		/* query offload-related parameters */
4017 		params[0] = FW_PARAM_DEV(NTID);
4018 		params[1] = FW_PARAM_PFVF(SERVER_START);
4019 		params[2] = FW_PARAM_PFVF(SERVER_END);
4020 		params[3] = FW_PARAM_PFVF(TDDP_START);
4021 		params[4] = FW_PARAM_PFVF(TDDP_END);
4022 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4023 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4024 				      params, val);
4025 		if (ret < 0)
4026 			goto bye;
4027 		adap->tids.ntids = val[0];
4028 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4029 		adap->tids.stid_base = val[1];
4030 		adap->tids.nstids = val[2] - val[1] + 1;
4031 		/*
4032 		 * Setup server filter region. Divide the available filter
4033 		 * region into two parts. Regular filters get 1/3rd and server
4034 		 * filters get 2/3rd part. This is only enabled if workarond
4035 		 * path is enabled.
4036 		 * 1. For regular filters.
4037 		 * 2. Server filter: This are special filters which are used
4038 		 * to redirect SYN packets to offload queue.
4039 		 */
4040 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4041 			adap->tids.sftid_base = adap->tids.ftid_base +
4042 					DIV_ROUND_UP(adap->tids.nftids, 3);
4043 			adap->tids.nsftids = adap->tids.nftids -
4044 					 DIV_ROUND_UP(adap->tids.nftids, 3);
4045 			adap->tids.nftids = adap->tids.sftid_base -
4046 						adap->tids.ftid_base;
4047 		}
4048 		adap->vres.ddp.start = val[3];
4049 		adap->vres.ddp.size = val[4] - val[3] + 1;
4050 		adap->params.ofldq_wr_cred = val[5];
4051 
4052 		adap->params.offload = 1;
4053 	}
4054 	if (caps_cmd.rdmacaps) {
4055 		params[0] = FW_PARAM_PFVF(STAG_START);
4056 		params[1] = FW_PARAM_PFVF(STAG_END);
4057 		params[2] = FW_PARAM_PFVF(RQ_START);
4058 		params[3] = FW_PARAM_PFVF(RQ_END);
4059 		params[4] = FW_PARAM_PFVF(PBL_START);
4060 		params[5] = FW_PARAM_PFVF(PBL_END);
4061 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4062 				      params, val);
4063 		if (ret < 0)
4064 			goto bye;
4065 		adap->vres.stag.start = val[0];
4066 		adap->vres.stag.size = val[1] - val[0] + 1;
4067 		adap->vres.rq.start = val[2];
4068 		adap->vres.rq.size = val[3] - val[2] + 1;
4069 		adap->vres.pbl.start = val[4];
4070 		adap->vres.pbl.size = val[5] - val[4] + 1;
4071 
4072 		params[0] = FW_PARAM_PFVF(SQRQ_START);
4073 		params[1] = FW_PARAM_PFVF(SQRQ_END);
4074 		params[2] = FW_PARAM_PFVF(CQ_START);
4075 		params[3] = FW_PARAM_PFVF(CQ_END);
4076 		params[4] = FW_PARAM_PFVF(OCQ_START);
4077 		params[5] = FW_PARAM_PFVF(OCQ_END);
4078 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4079 				      val);
4080 		if (ret < 0)
4081 			goto bye;
4082 		adap->vres.qp.start = val[0];
4083 		adap->vres.qp.size = val[1] - val[0] + 1;
4084 		adap->vres.cq.start = val[2];
4085 		adap->vres.cq.size = val[3] - val[2] + 1;
4086 		adap->vres.ocq.start = val[4];
4087 		adap->vres.ocq.size = val[5] - val[4] + 1;
4088 
4089 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4090 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4091 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4092 				      val);
4093 		if (ret < 0) {
4094 			adap->params.max_ordird_qp = 8;
4095 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4096 			ret = 0;
4097 		} else {
4098 			adap->params.max_ordird_qp = val[0];
4099 			adap->params.max_ird_adapter = val[1];
4100 		}
4101 		dev_info(adap->pdev_dev,
4102 			 "max_ordird_qp %d max_ird_adapter %d\n",
4103 			 adap->params.max_ordird_qp,
4104 			 adap->params.max_ird_adapter);
4105 	}
4106 	if (caps_cmd.iscsicaps) {
4107 		params[0] = FW_PARAM_PFVF(ISCSI_START);
4108 		params[1] = FW_PARAM_PFVF(ISCSI_END);
4109 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4110 				      params, val);
4111 		if (ret < 0)
4112 			goto bye;
4113 		adap->vres.iscsi.start = val[0];
4114 		adap->vres.iscsi.size = val[1] - val[0] + 1;
4115 	}
4116 #undef FW_PARAM_PFVF
4117 #undef FW_PARAM_DEV
4118 
4119 	/* The MTU/MSS Table is initialized by now, so load their values.  If
4120 	 * we're initializing the adapter, then we'll make any modifications
4121 	 * we want to the MTU/MSS Table and also initialize the congestion
4122 	 * parameters.
4123 	 */
4124 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4125 	if (state != DEV_STATE_INIT) {
4126 		int i;
4127 
4128 		/* The default MTU Table contains values 1492 and 1500.
4129 		 * However, for TCP, it's better to have two values which are
4130 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4131 		 * This allows us to have a TCP Data Payload which is a
4132 		 * multiple of 8 regardless of what combination of TCP Options
4133 		 * are in use (always a multiple of 4 bytes) which is
4134 		 * important for performance reasons.  For instance, if no
4135 		 * options are in use, then we have a 20-byte IP header and a
4136 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4137 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4138 		 * which is not a multiple of 8.  So using an MSS of 1488 in
4139 		 * this case results in a TCP Data Payload of 1448 bytes which
4140 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4141 		 * Stamps have been negotiated, then an MTU of 1500 bytes
4142 		 * results in a TCP Data Payload of 1448 bytes which, as
4143 		 * above, is a multiple of 8 bytes ...
4144 		 */
4145 		for (i = 0; i < NMTUS; i++)
4146 			if (adap->params.mtus[i] == 1492) {
4147 				adap->params.mtus[i] = 1488;
4148 				break;
4149 			}
4150 
4151 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4152 			     adap->params.b_wnd);
4153 	}
4154 	t4_init_sge_params(adap);
4155 	adap->flags |= FW_OK;
4156 	t4_init_tp_params(adap);
4157 	return 0;
4158 
4159 	/*
4160 	 * Something bad happened.  If a command timed out or failed with EIO
4161 	 * FW does not operate within its spec or something catastrophic
4162 	 * happened to HW/FW, stop issuing commands.
4163 	 */
4164 bye:
4165 	kfree(adap->sge.egr_map);
4166 	kfree(adap->sge.ingr_map);
4167 	kfree(adap->sge.starving_fl);
4168 	kfree(adap->sge.txq_maperr);
4169 #ifdef CONFIG_DEBUG_FS
4170 	kfree(adap->sge.blocked_fl);
4171 #endif
4172 	if (ret != -ETIMEDOUT && ret != -EIO)
4173 		t4_fw_bye(adap, adap->mbox);
4174 	return ret;
4175 }
4176 
4177 /* EEH callbacks */
4178 
4179 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4180 					 pci_channel_state_t state)
4181 {
4182 	int i;
4183 	struct adapter *adap = pci_get_drvdata(pdev);
4184 
4185 	if (!adap)
4186 		goto out;
4187 
4188 	rtnl_lock();
4189 	adap->flags &= ~FW_OK;
4190 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4191 	spin_lock(&adap->stats_lock);
4192 	for_each_port(adap, i) {
4193 		struct net_device *dev = adap->port[i];
4194 
4195 		netif_device_detach(dev);
4196 		netif_carrier_off(dev);
4197 	}
4198 	spin_unlock(&adap->stats_lock);
4199 	disable_interrupts(adap);
4200 	if (adap->flags & FULL_INIT_DONE)
4201 		cxgb_down(adap);
4202 	rtnl_unlock();
4203 	if ((adap->flags & DEV_ENABLED)) {
4204 		pci_disable_device(pdev);
4205 		adap->flags &= ~DEV_ENABLED;
4206 	}
4207 out:	return state == pci_channel_io_perm_failure ?
4208 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4209 }
4210 
4211 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4212 {
4213 	int i, ret;
4214 	struct fw_caps_config_cmd c;
4215 	struct adapter *adap = pci_get_drvdata(pdev);
4216 
4217 	if (!adap) {
4218 		pci_restore_state(pdev);
4219 		pci_save_state(pdev);
4220 		return PCI_ERS_RESULT_RECOVERED;
4221 	}
4222 
4223 	if (!(adap->flags & DEV_ENABLED)) {
4224 		if (pci_enable_device(pdev)) {
4225 			dev_err(&pdev->dev, "Cannot reenable PCI "
4226 					    "device after reset\n");
4227 			return PCI_ERS_RESULT_DISCONNECT;
4228 		}
4229 		adap->flags |= DEV_ENABLED;
4230 	}
4231 
4232 	pci_set_master(pdev);
4233 	pci_restore_state(pdev);
4234 	pci_save_state(pdev);
4235 	pci_cleanup_aer_uncorrect_error_status(pdev);
4236 
4237 	if (t4_wait_dev_ready(adap->regs) < 0)
4238 		return PCI_ERS_RESULT_DISCONNECT;
4239 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4240 		return PCI_ERS_RESULT_DISCONNECT;
4241 	adap->flags |= FW_OK;
4242 	if (adap_init1(adap, &c))
4243 		return PCI_ERS_RESULT_DISCONNECT;
4244 
4245 	for_each_port(adap, i) {
4246 		struct port_info *p = adap2pinfo(adap, i);
4247 
4248 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4249 				  NULL, NULL);
4250 		if (ret < 0)
4251 			return PCI_ERS_RESULT_DISCONNECT;
4252 		p->viid = ret;
4253 		p->xact_addr_filt = -1;
4254 	}
4255 
4256 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4257 		     adap->params.b_wnd);
4258 	setup_memwin(adap);
4259 	if (cxgb_up(adap))
4260 		return PCI_ERS_RESULT_DISCONNECT;
4261 	return PCI_ERS_RESULT_RECOVERED;
4262 }
4263 
4264 static void eeh_resume(struct pci_dev *pdev)
4265 {
4266 	int i;
4267 	struct adapter *adap = pci_get_drvdata(pdev);
4268 
4269 	if (!adap)
4270 		return;
4271 
4272 	rtnl_lock();
4273 	for_each_port(adap, i) {
4274 		struct net_device *dev = adap->port[i];
4275 
4276 		if (netif_running(dev)) {
4277 			link_start(dev);
4278 			cxgb_set_rxmode(dev);
4279 		}
4280 		netif_device_attach(dev);
4281 	}
4282 	rtnl_unlock();
4283 }
4284 
4285 static const struct pci_error_handlers cxgb4_eeh = {
4286 	.error_detected = eeh_err_detected,
4287 	.slot_reset     = eeh_slot_reset,
4288 	.resume         = eeh_resume,
4289 };
4290 
4291 static inline bool is_x_10g_port(const struct link_config *lc)
4292 {
4293 	return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4294 	       (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4295 }
4296 
4297 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4298 			     unsigned int us, unsigned int cnt,
4299 			     unsigned int size, unsigned int iqe_size)
4300 {
4301 	q->adap = adap;
4302 	cxgb4_set_rspq_intr_params(q, us, cnt);
4303 	q->iqe_len = iqe_size;
4304 	q->size = size;
4305 }
4306 
4307 /*
4308  * Perform default configuration of DMA queues depending on the number and type
4309  * of ports we found and the number of available CPUs.  Most settings can be
4310  * modified by the admin prior to actual use.
4311  */
4312 static void cfg_queues(struct adapter *adap)
4313 {
4314 	struct sge *s = &adap->sge;
4315 	int i, n10g = 0, qidx = 0;
4316 #ifndef CONFIG_CHELSIO_T4_DCB
4317 	int q10g = 0;
4318 #endif
4319 	int ciq_size;
4320 
4321 	for_each_port(adap, i)
4322 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4323 #ifdef CONFIG_CHELSIO_T4_DCB
4324 	/* For Data Center Bridging support we need to be able to support up
4325 	 * to 8 Traffic Priorities; each of which will be assigned to its
4326 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4327 	 */
4328 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4329 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4330 			MAX_ETH_QSETS, adap->params.nports * 8);
4331 		BUG_ON(1);
4332 	}
4333 
4334 	for_each_port(adap, i) {
4335 		struct port_info *pi = adap2pinfo(adap, i);
4336 
4337 		pi->first_qset = qidx;
4338 		pi->nqsets = 8;
4339 		qidx += pi->nqsets;
4340 	}
4341 #else /* !CONFIG_CHELSIO_T4_DCB */
4342 	/*
4343 	 * We default to 1 queue per non-10G port and up to # of cores queues
4344 	 * per 10G port.
4345 	 */
4346 	if (n10g)
4347 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4348 	if (q10g > netif_get_num_default_rss_queues())
4349 		q10g = netif_get_num_default_rss_queues();
4350 
4351 	for_each_port(adap, i) {
4352 		struct port_info *pi = adap2pinfo(adap, i);
4353 
4354 		pi->first_qset = qidx;
4355 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4356 		qidx += pi->nqsets;
4357 	}
4358 #endif /* !CONFIG_CHELSIO_T4_DCB */
4359 
4360 	s->ethqsets = qidx;
4361 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4362 
4363 	if (is_offload(adap)) {
4364 		/*
4365 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4366 		 * otherwise we divide all available queues amongst the channels
4367 		 * capped by the number of available cores.
4368 		 */
4369 		if (n10g) {
4370 			i = min_t(int, ARRAY_SIZE(s->iscsirxq),
4371 				  num_online_cpus());
4372 			s->iscsiqsets = roundup(i, adap->params.nports);
4373 		} else
4374 			s->iscsiqsets = adap->params.nports;
4375 		/* For RDMA one Rx queue per channel suffices */
4376 		s->rdmaqs = adap->params.nports;
4377 		/* Try and allow at least 1 CIQ per cpu rounding down
4378 		 * to the number of ports, with a minimum of 1 per port.
4379 		 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4380 		 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4381 		 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4382 		 */
4383 		s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4384 		s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4385 				adap->params.nports;
4386 		s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4387 
4388 		if (!is_t4(adap->params.chip))
4389 			s->niscsitq = s->iscsiqsets;
4390 	}
4391 
4392 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4393 		struct sge_eth_rxq *r = &s->ethrxq[i];
4394 
4395 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4396 		r->fl.size = 72;
4397 	}
4398 
4399 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4400 		s->ethtxq[i].q.size = 1024;
4401 
4402 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4403 		s->ctrlq[i].q.size = 512;
4404 
4405 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4406 		s->ofldtxq[i].q.size = 1024;
4407 
4408 	for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) {
4409 		struct sge_ofld_rxq *r = &s->iscsirxq[i];
4410 
4411 		init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4412 		r->rspq.uld = CXGB4_ULD_ISCSI;
4413 		r->fl.size = 72;
4414 	}
4415 
4416 	if (!is_t4(adap->params.chip)) {
4417 		for (i = 0; i < ARRAY_SIZE(s->iscsitrxq); i++) {
4418 			struct sge_ofld_rxq *r = &s->iscsitrxq[i];
4419 
4420 			init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4421 			r->rspq.uld = CXGB4_ULD_ISCSIT;
4422 			r->fl.size = 72;
4423 		}
4424 	}
4425 
4426 	for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4427 		struct sge_ofld_rxq *r = &s->rdmarxq[i];
4428 
4429 		init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4430 		r->rspq.uld = CXGB4_ULD_RDMA;
4431 		r->fl.size = 72;
4432 	}
4433 
4434 	ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4435 	if (ciq_size > SGE_MAX_IQ_SIZE) {
4436 		CH_WARN(adap, "CIQ size too small for available IQs\n");
4437 		ciq_size = SGE_MAX_IQ_SIZE;
4438 	}
4439 
4440 	for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4441 		struct sge_ofld_rxq *r = &s->rdmaciq[i];
4442 
4443 		init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4444 		r->rspq.uld = CXGB4_ULD_RDMA;
4445 	}
4446 
4447 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4448 	init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4449 }
4450 
4451 /*
4452  * Reduce the number of Ethernet queues across all ports to at most n.
4453  * n provides at least one queue per port.
4454  */
4455 static void reduce_ethqs(struct adapter *adap, int n)
4456 {
4457 	int i;
4458 	struct port_info *pi;
4459 
4460 	while (n < adap->sge.ethqsets)
4461 		for_each_port(adap, i) {
4462 			pi = adap2pinfo(adap, i);
4463 			if (pi->nqsets > 1) {
4464 				pi->nqsets--;
4465 				adap->sge.ethqsets--;
4466 				if (adap->sge.ethqsets <= n)
4467 					break;
4468 			}
4469 		}
4470 
4471 	n = 0;
4472 	for_each_port(adap, i) {
4473 		pi = adap2pinfo(adap, i);
4474 		pi->first_qset = n;
4475 		n += pi->nqsets;
4476 	}
4477 }
4478 
4479 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4480 #define EXTRA_VECS 2
4481 
4482 static int enable_msix(struct adapter *adap)
4483 {
4484 	int ofld_need = 0;
4485 	int i, want, need, allocated;
4486 	struct sge *s = &adap->sge;
4487 	unsigned int nchan = adap->params.nports;
4488 	struct msix_entry *entries;
4489 
4490 	entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4491 			  GFP_KERNEL);
4492 	if (!entries)
4493 		return -ENOMEM;
4494 
4495 	for (i = 0; i < MAX_INGQ + 1; ++i)
4496 		entries[i].entry = i;
4497 
4498 	want = s->max_ethqsets + EXTRA_VECS;
4499 	if (is_offload(adap)) {
4500 		want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets	+
4501 			s->niscsitq;
4502 		/* need nchan for each possible ULD */
4503 		if (is_t4(adap->params.chip))
4504 			ofld_need = 3 * nchan;
4505 		else
4506 			ofld_need = 4 * nchan;
4507 	}
4508 #ifdef CONFIG_CHELSIO_T4_DCB
4509 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4510 	 * each port.
4511 	 */
4512 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4513 #else
4514 	need = adap->params.nports + EXTRA_VECS + ofld_need;
4515 #endif
4516 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4517 	if (allocated < 0) {
4518 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4519 			 " not using MSI-X\n");
4520 		kfree(entries);
4521 		return allocated;
4522 	}
4523 
4524 	/* Distribute available vectors to the various queue groups.
4525 	 * Every group gets its minimum requirement and NIC gets top
4526 	 * priority for leftovers.
4527 	 */
4528 	i = allocated - EXTRA_VECS - ofld_need;
4529 	if (i < s->max_ethqsets) {
4530 		s->max_ethqsets = i;
4531 		if (i < s->ethqsets)
4532 			reduce_ethqs(adap, i);
4533 	}
4534 	if (is_offload(adap)) {
4535 		if (allocated < want) {
4536 			s->rdmaqs = nchan;
4537 			s->rdmaciqs = nchan;
4538 
4539 			if (!is_t4(adap->params.chip))
4540 				s->niscsitq = nchan;
4541 		}
4542 
4543 		/* leftovers go to OFLD */
4544 		i = allocated - EXTRA_VECS - s->max_ethqsets -
4545 		    s->rdmaqs - s->rdmaciqs - s->niscsitq;
4546 		s->iscsiqsets = (i / nchan) * nchan;  /* round down */
4547 
4548 	}
4549 	for (i = 0; i < allocated; ++i)
4550 		adap->msix_info[i].vec = entries[i].vector;
4551 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4552 		 "nic %d iscsi %d rdma cpl %d rdma ciq %d\n",
4553 		 allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs,
4554 		 s->rdmaciqs);
4555 
4556 	kfree(entries);
4557 	return 0;
4558 }
4559 
4560 #undef EXTRA_VECS
4561 
4562 static int init_rss(struct adapter *adap)
4563 {
4564 	unsigned int i;
4565 	int err;
4566 
4567 	err = t4_init_rss_mode(adap, adap->mbox);
4568 	if (err)
4569 		return err;
4570 
4571 	for_each_port(adap, i) {
4572 		struct port_info *pi = adap2pinfo(adap, i);
4573 
4574 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4575 		if (!pi->rss)
4576 			return -ENOMEM;
4577 	}
4578 	return 0;
4579 }
4580 
4581 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4582 					enum pci_bus_speed *speed,
4583 					enum pcie_link_width *width)
4584 {
4585 	u32 lnkcap1, lnkcap2;
4586 	int err1, err2;
4587 
4588 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4589 
4590 	*speed = PCI_SPEED_UNKNOWN;
4591 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4592 
4593 	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4594 					  &lnkcap1);
4595 	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4596 					  &lnkcap2);
4597 	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4598 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4599 			*speed = PCIE_SPEED_8_0GT;
4600 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4601 			*speed = PCIE_SPEED_5_0GT;
4602 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4603 			*speed = PCIE_SPEED_2_5GT;
4604 	}
4605 	if (!err1) {
4606 		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4607 		if (!lnkcap2) { /* pre-r3.0 */
4608 			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4609 				*speed = PCIE_SPEED_5_0GT;
4610 			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4611 				*speed = PCIE_SPEED_2_5GT;
4612 		}
4613 	}
4614 
4615 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4616 		return err1 ? err1 : err2 ? err2 : -EINVAL;
4617 	return 0;
4618 }
4619 
4620 static void cxgb4_check_pcie_caps(struct adapter *adap)
4621 {
4622 	enum pcie_link_width width, width_cap;
4623 	enum pci_bus_speed speed, speed_cap;
4624 
4625 #define PCIE_SPEED_STR(speed) \
4626 	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4627 	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4628 	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4629 	 "Unknown")
4630 
4631 	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4632 		dev_warn(adap->pdev_dev,
4633 			 "Unable to determine PCIe device BW capabilities\n");
4634 		return;
4635 	}
4636 
4637 	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4638 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4639 		dev_warn(adap->pdev_dev,
4640 			 "Unable to determine PCI Express bandwidth.\n");
4641 		return;
4642 	}
4643 
4644 	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4645 		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4646 	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4647 		 width, width_cap);
4648 	if (speed < speed_cap || width < width_cap)
4649 		dev_info(adap->pdev_dev,
4650 			 "A slot with more lanes and/or higher speed is "
4651 			 "suggested for optimal performance.\n");
4652 }
4653 
4654 static void print_port_info(const struct net_device *dev)
4655 {
4656 	char buf[80];
4657 	char *bufp = buf;
4658 	const char *spd = "";
4659 	const struct port_info *pi = netdev_priv(dev);
4660 	const struct adapter *adap = pi->adapter;
4661 
4662 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4663 		spd = " 2.5 GT/s";
4664 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4665 		spd = " 5 GT/s";
4666 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4667 		spd = " 8 GT/s";
4668 
4669 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4670 		bufp += sprintf(bufp, "100/");
4671 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4672 		bufp += sprintf(bufp, "1000/");
4673 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4674 		bufp += sprintf(bufp, "10G/");
4675 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4676 		bufp += sprintf(bufp, "40G/");
4677 	if (bufp != buf)
4678 		--bufp;
4679 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4680 
4681 	netdev_info(dev, "Chelsio %s rev %d %s %sNIC %s\n",
4682 		    adap->params.vpd.id,
4683 		    CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4684 		    is_offload(adap) ? "R" : "",
4685 		    (adap->flags & USING_MSIX) ? " MSI-X" :
4686 		    (adap->flags & USING_MSI) ? " MSI" : "");
4687 	netdev_info(dev, "S/N: %s, P/N: %s\n",
4688 		    adap->params.vpd.sn, adap->params.vpd.pn);
4689 }
4690 
4691 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4692 {
4693 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4694 }
4695 
4696 /*
4697  * Free the following resources:
4698  * - memory used for tables
4699  * - MSI/MSI-X
4700  * - net devices
4701  * - resources FW is holding for us
4702  */
4703 static void free_some_resources(struct adapter *adapter)
4704 {
4705 	unsigned int i;
4706 
4707 	t4_free_mem(adapter->l2t);
4708 	t4_free_mem(adapter->tids.tid_tab);
4709 	kfree(adapter->sge.egr_map);
4710 	kfree(adapter->sge.ingr_map);
4711 	kfree(adapter->sge.starving_fl);
4712 	kfree(adapter->sge.txq_maperr);
4713 #ifdef CONFIG_DEBUG_FS
4714 	kfree(adapter->sge.blocked_fl);
4715 #endif
4716 	disable_msi(adapter);
4717 
4718 	for_each_port(adapter, i)
4719 		if (adapter->port[i]) {
4720 			struct port_info *pi = adap2pinfo(adapter, i);
4721 
4722 			if (pi->viid != 0)
4723 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
4724 					   0, pi->viid);
4725 			kfree(adap2pinfo(adapter, i)->rss);
4726 			free_netdev(adapter->port[i]);
4727 		}
4728 	if (adapter->flags & FW_OK)
4729 		t4_fw_bye(adapter, adapter->pf);
4730 }
4731 
4732 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4733 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4734 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4735 #define SEGMENT_SIZE 128
4736 
4737 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4738 {
4739 	u16 device_id;
4740 
4741 	/* Retrieve adapter's device ID */
4742 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4743 
4744 	switch (device_id >> 12) {
4745 	case CHELSIO_T4:
4746 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4747 	case CHELSIO_T5:
4748 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4749 	case CHELSIO_T6:
4750 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4751 	default:
4752 		dev_err(&pdev->dev, "Device %d is not supported\n",
4753 			device_id);
4754 	}
4755 	return -EINVAL;
4756 }
4757 
4758 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4759 {
4760 	int func, i, err, s_qpp, qpp, num_seg;
4761 	struct port_info *pi;
4762 	bool highdma = false;
4763 	struct adapter *adapter = NULL;
4764 	void __iomem *regs;
4765 	u32 whoami, pl_rev;
4766 	enum chip_type chip;
4767 
4768 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4769 
4770 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4771 	if (err) {
4772 		/* Just info, some other driver may have claimed the device. */
4773 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4774 		return err;
4775 	}
4776 
4777 	err = pci_enable_device(pdev);
4778 	if (err) {
4779 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4780 		goto out_release_regions;
4781 	}
4782 
4783 	regs = pci_ioremap_bar(pdev, 0);
4784 	if (!regs) {
4785 		dev_err(&pdev->dev, "cannot map device registers\n");
4786 		err = -ENOMEM;
4787 		goto out_disable_device;
4788 	}
4789 
4790 	err = t4_wait_dev_ready(regs);
4791 	if (err < 0)
4792 		goto out_unmap_bar0;
4793 
4794 	/* We control everything through one PF */
4795 	whoami = readl(regs + PL_WHOAMI_A);
4796 	pl_rev = REV_G(readl(regs + PL_REV_A));
4797 	chip = get_chip_type(pdev, pl_rev);
4798 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4799 		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4800 	if (func != ent->driver_data) {
4801 		iounmap(regs);
4802 		pci_disable_device(pdev);
4803 		pci_save_state(pdev);        /* to restore SR-IOV later */
4804 		goto sriov;
4805 	}
4806 
4807 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4808 		highdma = true;
4809 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4810 		if (err) {
4811 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4812 				"coherent allocations\n");
4813 			goto out_unmap_bar0;
4814 		}
4815 	} else {
4816 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4817 		if (err) {
4818 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4819 			goto out_unmap_bar0;
4820 		}
4821 	}
4822 
4823 	pci_enable_pcie_error_reporting(pdev);
4824 	enable_pcie_relaxed_ordering(pdev);
4825 	pci_set_master(pdev);
4826 	pci_save_state(pdev);
4827 
4828 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4829 	if (!adapter) {
4830 		err = -ENOMEM;
4831 		goto out_unmap_bar0;
4832 	}
4833 
4834 	adapter->workq = create_singlethread_workqueue("cxgb4");
4835 	if (!adapter->workq) {
4836 		err = -ENOMEM;
4837 		goto out_free_adapter;
4838 	}
4839 
4840 	/* PCI device has been enabled */
4841 	adapter->flags |= DEV_ENABLED;
4842 
4843 	adapter->regs = regs;
4844 	adapter->pdev = pdev;
4845 	adapter->pdev_dev = &pdev->dev;
4846 	adapter->mbox = func;
4847 	adapter->pf = func;
4848 	adapter->msg_enable = dflt_msg_enable;
4849 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4850 
4851 	spin_lock_init(&adapter->stats_lock);
4852 	spin_lock_init(&adapter->tid_release_lock);
4853 	spin_lock_init(&adapter->win0_lock);
4854 
4855 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4856 	INIT_WORK(&adapter->db_full_task, process_db_full);
4857 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4858 
4859 	err = t4_prep_adapter(adapter);
4860 	if (err)
4861 		goto out_free_adapter;
4862 
4863 
4864 	if (!is_t4(adapter->params.chip)) {
4865 		s_qpp = (QUEUESPERPAGEPF0_S +
4866 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4867 			adapter->pf);
4868 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4869 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4870 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
4871 
4872 		/* Each segment size is 128B. Write coalescing is enabled only
4873 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4874 		 * queue is less no of segments that can be accommodated in
4875 		 * a page size.
4876 		 */
4877 		if (qpp > num_seg) {
4878 			dev_err(&pdev->dev,
4879 				"Incorrect number of egress queues per page\n");
4880 			err = -EINVAL;
4881 			goto out_free_adapter;
4882 		}
4883 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4884 		pci_resource_len(pdev, 2));
4885 		if (!adapter->bar2) {
4886 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
4887 			err = -ENOMEM;
4888 			goto out_free_adapter;
4889 		}
4890 	}
4891 
4892 	setup_memwin(adapter);
4893 	err = adap_init0(adapter);
4894 #ifdef CONFIG_DEBUG_FS
4895 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4896 #endif
4897 	setup_memwin_rdma(adapter);
4898 	if (err)
4899 		goto out_unmap_bar;
4900 
4901 	/* configure SGE_STAT_CFG_A to read WC stats */
4902 	if (!is_t4(adapter->params.chip))
4903 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4904 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4905 			      T6_STATMODE_V(0)));
4906 
4907 	for_each_port(adapter, i) {
4908 		struct net_device *netdev;
4909 
4910 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
4911 					   MAX_ETH_QSETS);
4912 		if (!netdev) {
4913 			err = -ENOMEM;
4914 			goto out_free_dev;
4915 		}
4916 
4917 		SET_NETDEV_DEV(netdev, &pdev->dev);
4918 
4919 		adapter->port[i] = netdev;
4920 		pi = netdev_priv(netdev);
4921 		pi->adapter = adapter;
4922 		pi->xact_addr_filt = -1;
4923 		pi->port_id = i;
4924 		netdev->irq = pdev->irq;
4925 
4926 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4927 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4928 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4929 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4930 		if (highdma)
4931 			netdev->hw_features |= NETIF_F_HIGHDMA;
4932 		netdev->features |= netdev->hw_features;
4933 		netdev->vlan_features = netdev->features & VLAN_FEAT;
4934 
4935 		netdev->priv_flags |= IFF_UNICAST_FLT;
4936 
4937 		netdev->netdev_ops = &cxgb4_netdev_ops;
4938 #ifdef CONFIG_CHELSIO_T4_DCB
4939 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
4940 		cxgb4_dcb_state_init(netdev);
4941 #endif
4942 		cxgb4_set_ethtool_ops(netdev);
4943 	}
4944 
4945 	pci_set_drvdata(pdev, adapter);
4946 
4947 	if (adapter->flags & FW_OK) {
4948 		err = t4_port_init(adapter, func, func, 0);
4949 		if (err)
4950 			goto out_free_dev;
4951 	} else if (adapter->params.nports == 1) {
4952 		/* If we don't have a connection to the firmware -- possibly
4953 		 * because of an error -- grab the raw VPD parameters so we
4954 		 * can set the proper MAC Address on the debug network
4955 		 * interface that we've created.
4956 		 */
4957 		u8 hw_addr[ETH_ALEN];
4958 		u8 *na = adapter->params.vpd.na;
4959 
4960 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4961 		if (!err) {
4962 			for (i = 0; i < ETH_ALEN; i++)
4963 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4964 					      hex2val(na[2 * i + 1]));
4965 			t4_set_hw_addr(adapter, 0, hw_addr);
4966 		}
4967 	}
4968 
4969 	/* Configure queues and allocate tables now, they can be needed as
4970 	 * soon as the first register_netdev completes.
4971 	 */
4972 	cfg_queues(adapter);
4973 
4974 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4975 	if (!adapter->l2t) {
4976 		/* We tolerate a lack of L2T, giving up some functionality */
4977 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4978 		adapter->params.offload = 0;
4979 	}
4980 
4981 #if IS_ENABLED(CONFIG_IPV6)
4982 	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4983 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4984 		/* CLIP functionality is not present in hardware,
4985 		 * hence disable all offload features
4986 		 */
4987 		dev_warn(&pdev->dev,
4988 			 "CLIP not enabled in hardware, continuing\n");
4989 		adapter->params.offload = 0;
4990 	} else {
4991 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4992 						  adapter->clipt_end);
4993 		if (!adapter->clipt) {
4994 			/* We tolerate a lack of clip_table, giving up
4995 			 * some functionality
4996 			 */
4997 			dev_warn(&pdev->dev,
4998 				 "could not allocate Clip table, continuing\n");
4999 			adapter->params.offload = 0;
5000 		}
5001 	}
5002 #endif
5003 	if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
5004 		dev_warn(&pdev->dev, "could not allocate TID table, "
5005 			 "continuing\n");
5006 		adapter->params.offload = 0;
5007 	}
5008 
5009 	if (is_offload(adapter)) {
5010 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5011 			u32 hash_base, hash_reg;
5012 
5013 			if (chip <= CHELSIO_T5) {
5014 				hash_reg = LE_DB_TID_HASHBASE_A;
5015 				hash_base = t4_read_reg(adapter, hash_reg);
5016 				adapter->tids.hash_base = hash_base / 4;
5017 			} else {
5018 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5019 				hash_base = t4_read_reg(adapter, hash_reg);
5020 				adapter->tids.hash_base = hash_base;
5021 			}
5022 		}
5023 	}
5024 
5025 	/* See what interrupts we'll be using */
5026 	if (msi > 1 && enable_msix(adapter) == 0)
5027 		adapter->flags |= USING_MSIX;
5028 	else if (msi > 0 && pci_enable_msi(pdev) == 0)
5029 		adapter->flags |= USING_MSI;
5030 
5031 	/* check for PCI Express bandwidth capabiltites */
5032 	cxgb4_check_pcie_caps(adapter);
5033 
5034 	err = init_rss(adapter);
5035 	if (err)
5036 		goto out_free_dev;
5037 
5038 	/*
5039 	 * The card is now ready to go.  If any errors occur during device
5040 	 * registration we do not fail the whole card but rather proceed only
5041 	 * with the ports we manage to register successfully.  However we must
5042 	 * register at least one net device.
5043 	 */
5044 	for_each_port(adapter, i) {
5045 		pi = adap2pinfo(adapter, i);
5046 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5047 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5048 
5049 		err = register_netdev(adapter->port[i]);
5050 		if (err)
5051 			break;
5052 		adapter->chan_map[pi->tx_chan] = i;
5053 		print_port_info(adapter->port[i]);
5054 	}
5055 	if (i == 0) {
5056 		dev_err(&pdev->dev, "could not register any net devices\n");
5057 		goto out_free_dev;
5058 	}
5059 	if (err) {
5060 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5061 		err = 0;
5062 	}
5063 
5064 	if (cxgb4_debugfs_root) {
5065 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5066 							   cxgb4_debugfs_root);
5067 		setup_debugfs(adapter);
5068 	}
5069 
5070 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5071 	pdev->needs_freset = 1;
5072 
5073 	if (is_offload(adapter))
5074 		attach_ulds(adapter);
5075 
5076 sriov:
5077 #ifdef CONFIG_PCI_IOV
5078 	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
5079 		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5080 			dev_info(&pdev->dev,
5081 				 "instantiated %u virtual functions\n",
5082 				 num_vf[func]);
5083 #endif
5084 	return 0;
5085 
5086  out_free_dev:
5087 	free_some_resources(adapter);
5088  out_unmap_bar:
5089 	if (!is_t4(adapter->params.chip))
5090 		iounmap(adapter->bar2);
5091  out_free_adapter:
5092 	if (adapter->workq)
5093 		destroy_workqueue(adapter->workq);
5094 
5095 	kfree(adapter);
5096  out_unmap_bar0:
5097 	iounmap(regs);
5098  out_disable_device:
5099 	pci_disable_pcie_error_reporting(pdev);
5100 	pci_disable_device(pdev);
5101  out_release_regions:
5102 	pci_release_regions(pdev);
5103 	return err;
5104 }
5105 
5106 static void remove_one(struct pci_dev *pdev)
5107 {
5108 	struct adapter *adapter = pci_get_drvdata(pdev);
5109 
5110 #ifdef CONFIG_PCI_IOV
5111 	pci_disable_sriov(pdev);
5112 
5113 #endif
5114 
5115 	if (adapter) {
5116 		int i;
5117 
5118 		/* Tear down per-adapter Work Queue first since it can contain
5119 		 * references to our adapter data structure.
5120 		 */
5121 		destroy_workqueue(adapter->workq);
5122 
5123 		if (is_offload(adapter))
5124 			detach_ulds(adapter);
5125 
5126 		disable_interrupts(adapter);
5127 
5128 		for_each_port(adapter, i)
5129 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5130 				unregister_netdev(adapter->port[i]);
5131 
5132 		debugfs_remove_recursive(adapter->debugfs_root);
5133 
5134 		/* If we allocated filters, free up state associated with any
5135 		 * valid filters ...
5136 		 */
5137 		if (adapter->tids.ftid_tab) {
5138 			struct filter_entry *f = &adapter->tids.ftid_tab[0];
5139 			for (i = 0; i < (adapter->tids.nftids +
5140 					adapter->tids.nsftids); i++, f++)
5141 				if (f->valid)
5142 					clear_filter(adapter, f);
5143 		}
5144 
5145 		if (adapter->flags & FULL_INIT_DONE)
5146 			cxgb_down(adapter);
5147 
5148 		free_some_resources(adapter);
5149 #if IS_ENABLED(CONFIG_IPV6)
5150 		t4_cleanup_clip_tbl(adapter);
5151 #endif
5152 		iounmap(adapter->regs);
5153 		if (!is_t4(adapter->params.chip))
5154 			iounmap(adapter->bar2);
5155 		pci_disable_pcie_error_reporting(pdev);
5156 		if ((adapter->flags & DEV_ENABLED)) {
5157 			pci_disable_device(pdev);
5158 			adapter->flags &= ~DEV_ENABLED;
5159 		}
5160 		pci_release_regions(pdev);
5161 		synchronize_rcu();
5162 		kfree(adapter);
5163 	} else
5164 		pci_release_regions(pdev);
5165 }
5166 
5167 static struct pci_driver cxgb4_driver = {
5168 	.name     = KBUILD_MODNAME,
5169 	.id_table = cxgb4_pci_tbl,
5170 	.probe    = init_one,
5171 	.remove   = remove_one,
5172 	.shutdown = remove_one,
5173 	.err_handler = &cxgb4_eeh,
5174 };
5175 
5176 static int __init cxgb4_init_module(void)
5177 {
5178 	int ret;
5179 
5180 	/* Debugfs support is optional, just warn if this fails */
5181 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5182 	if (!cxgb4_debugfs_root)
5183 		pr_warn("could not create debugfs entry, continuing\n");
5184 
5185 	ret = pci_register_driver(&cxgb4_driver);
5186 	if (ret < 0)
5187 		debugfs_remove(cxgb4_debugfs_root);
5188 
5189 #if IS_ENABLED(CONFIG_IPV6)
5190 	if (!inet6addr_registered) {
5191 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5192 		inet6addr_registered = true;
5193 	}
5194 #endif
5195 
5196 	return ret;
5197 }
5198 
5199 static void __exit cxgb4_cleanup_module(void)
5200 {
5201 #if IS_ENABLED(CONFIG_IPV6)
5202 	if (inet6addr_registered) {
5203 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5204 		inet6addr_registered = false;
5205 	}
5206 #endif
5207 	pci_unregister_driver(&cxgb4_driver);
5208 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5209 }
5210 
5211 module_init(cxgb4_init_module);
5212 module_exit(cxgb4_cleanup_module);
5213